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Abstract

This thesis explores the field of quantum communication and focuses on Quantum Key

Distribution (QKD) protocols. As technology and computer science advancements

continue to revolutionize communication, the need for secure communication has be-

come more pressing. Classical cryptography faces challenges in providing provable

security. Quantum communication, specifically QKD, offers an alternative approach

to ensure unconditional security and track eavesdroppers in real-time.

The thesis delves into both discrete variable (DV) QKD using polarization and con-

tinuous variable (CV) QKD protocols using phase. The entanglement-based DVQKD

protocols are proven to be more secure than the prepare and measure protocols but

require more resources than a typical BB84. To strike a balance between security and

resources, the thesis implements the BB84 protocol using a heralded single-photon

source, requiring fewer resources and providing enhanced security. Our method uses a

single-photon source, making the approach more efficient and secure than using weak

coherent pulses. The protocol eliminates the need for an external random number

generator for random polarization state preparation, instead, a beam splitter (BS) per-

forms the random selection task. However, DVQKD protocols suffer disadvantages in

the form of the requirement for single photon sources and detectors. These limitations

restrict the rate of key exchange as well as open the QKD protocols to various attacks

by an eavesdropper.

In contrast, CVQKD protocols bypass such stringent requirements by exchanging

single photons with weak coherent states and single photon detectors with photodi-

odes. The CVQKD approach offers several evident advantages. These advantages

include cost reduction, higher secure key generation rates, and scalability. The thesis
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explores various classes of CVQKD protocols over free space, motivated by free space

advantages such as reduced optical losses, and polarization insensitivity.

In this thesis, we have implemented various classes of CVQKD protocols over free

space which include, discrete modulation and Gaussian modulation CVQKD. Free

space offers various advantages over fiber, as the optical losses are less in free space

compared to fiber. In addition, the free space channel is insensitive to polarization

compared to fiber, which results in light polarization being nearly unchanged during

propagation. The presence of Eve in the line of sight could be detected easily. In

addition to this, compared to fiber CVQKD, atmospheric link offers the possibility of

broader geographical coverage and more flexible transmission.

The work involves characterizing the CVQKD setup, accounting for imperfections

that can impact the key rate, and conducting both laboratory and field demonstrations.

Simulation results are used to verify experimental values, and free space field studies

assess the feasibility of CVQKD for satellite-based applications. Despite challenges

faced in the field, the results demonstrate the potential of CVQKD as an efficient and

secure quantum communication solution.

Overall, this thesis contributes to the growing field of quantum communication

by implementing and analyzing various QKD protocols, paving the way for practical

applications in secure communication systems.

Keywords: Quantum Cryptography, Quantum Communication, Quantum Key Dis-

tribution, Discrete Variable, Continuous Variable, Discrete Modulation, Gaussian Mod-

ulation, BB84 Protocol, Heralded Photons, Balanced Homodyne Detection.



vii

Abbreviations

BS Beam Splitter
EB QKD Entanglement Based Quantum Key Distribution
DV QKD Discrete Variable Quantum Key Distribution
CV QKD Continuous Variable Quantum Key Distribution
DM CV QKD Discrete modulation Continuous Variable Quantum Key Distribution
GM CV QKD Gaussian modulation Continuous Variable Quantum Key Distribution
OHT Optical Homodyne Tomography
BHD Balanced Homodyne Detection
PD Photodetectors
EPS Entangled Photon Source
EC Error Correction
FC Fiber Coupler
FPGA Field Programmable Gate Array
HWP Half Wave Plate
MI Mutual Information
PA Privacy Amplification
PBS Polarizing Beam Splitter
PE Parameter Estimation
P&M QKD Prepare & Measure Quantum Key Distribution
QKD Quantum Key Distribution
QBER Quantum Bit Error Rate
QWP Quarter Wave Plate
RNG Random Number Generator
SPDC Spontaneous Parametric Down Conversion
SPCM Single Photon Counting Module
SPS Single Photon Source
SLM Spatial Light Modulator
PSE Post Selection Efficiency
AM Amplitude Modulator
PM Phase Modulator





Contents

Acknowledgements i

Abstract v

Abbreviations vii

Contents ix

List of Figures xvii

List of Tables xxix

1 Introduction 1

1.1 Classical Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Symmetric Key Cryptography . . . . . . . . . . . . . . . . . 3

1.1.2 Asymmetric Key Cryptography . . . . . . . . . . . . . . . . 5

ix



x CONTENTS

1.2 Quantum Key Distribution . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Properties of Quantum System . . . . . . . . . . . . . . . . . 8

1.2.2 Basic Security . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Classification of QKD . . . . . . . . . . . . . . . . . . . . . 13

1.3 Discrete Variable QKD . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Continuous Variable QKD . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Objective of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Organisation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Theoretical Background 31

2.1 Light as Quanta of ElectroMagnetic (EM) Field . . . . . . . . . . . . 32

2.2 Representation of States . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Fock States . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Quadrature States . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.4 Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Quantum States and its Measurement . . . . . . . . . . . . . . . . . . 44

2.3.1 Quantum State . . . . . . . . . . . . . . . . . . . . . . . . . 44



CONTENTS xi

2.3.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Linear Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.2 Beam Splitter . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Gaussian Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.1 Displacement Operator . . . . . . . . . . . . . . . . . . . . . 49

2.6.2 Symplectic Transform . . . . . . . . . . . . . . . . . . . . . 49

2.7 Generation & Detection of Light . . . . . . . . . . . . . . . . . . . . 51

2.7.1 Generation of Light . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.2 Detection of Light . . . . . . . . . . . . . . . . . . . . . . . 57

2.8 Shannon Information . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.1 Shannon Entropies for Gaussian States . . . . . . . . . . . . 64

2.9 Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.9.1 Holevo Bound . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.9.2 von Neumann Entropy for Gaussian States . . . . . . . . . . 66

2.9.3 Secret Key Rate . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.10 Secure Key Rate for CVQKD Protocols . . . . . . . . . . . . . . . . 69



xii CONTENTS

2.10.1 Transmittance and Noise . . . . . . . . . . . . . . . . . . . . 69

2.10.2 Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . 71

2.10.3 Signal to Noise Ratio and Mutual Information . . . . . . . . . 74

2.10.4 Estimation of Holevo Bound . . . . . . . . . . . . . . . . . . 75

2.10.5 Equivalence of Coherent State and TMSVS Protocols . . . . . 76

3 BB84 Protocol using Heralded Single-Photon Source 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.1 Random Selection of the States . . . . . . . . . . . . . . . . 82

3.2.2 Transmission Through Channel . . . . . . . . . . . . . . . . 85

3.2.3 Detection of State . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.5 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.6 Privacy Amplification . . . . . . . . . . . . . . . . . . . . . 89

3.2.7 Security of the Protocol: g(2)(0) Correlation . . . . . . . . . . 91

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



CONTENTS xiii

4 Measuring the Shot Noise for Continuous Variable Applications 97

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Theory and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.1 Pulsed Laser Source . . . . . . . . . . . . . . . . . . . . . . 109

4.3.2 BHD with Amplification . . . . . . . . . . . . . . . . . . . . 110

4.3.3 BHD without Amplification . . . . . . . . . . . . . . . . . . 111

4.3.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5 Free Space Discrete Modulation CVQKD 125

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Theory and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 Protocol Execution . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.2 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.3 Mutual Information and Security . . . . . . . . . . . . . . . . 132

5.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 134



xiv CONTENTS

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.1 Alice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.2 Bob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Implementation of Gaussian Modulation CVQKD 145

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 Atmospheric CVQKD 161

7.1 State Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Transmission Through Channel . . . . . . . . . . . . . . . . . . . . . 164

7.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4 Experimental Results from Field Study . . . . . . . . . . . . . . . . . 167



CONTENTS xv

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8 Summary 173

A Noise Model 179

Bibliography 181

List of Publications 209





List of Figures

1.1 Symmetric key distribution. Alice encrypts his plaintext P, using key

K, and gets the ciphertext C, which is transmitted through the classi-

cal channel. Bob decrypts the ciphertext using the same key K, and

retrieves the plaintext P. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Asymmetric key distribution. Alice and Bob use different keys K and

K’ for encryption and decryption. . . . . . . . . . . . . . . . . . . . 5

1.3 General layout of a quantum key distribution protocol. . . . . . . . . 7

1.4 Schematics for entanglement monogamy. . . . . . . . . . . . . . . . 12

1.5 Classification of QKD; GM: Gaussian Modulation; DM: Discrete Mod-

ulation; GG02: Grosshan and Grangier; QPSK: Quadrature Phase

Shift Keying; QAM: Quadrature Amplitude Modulation. . . . . . . . 13

1.6 Schematics of BB84 protocol. . . . . . . . . . . . . . . . . . . . . . 16

1.7 Schematics of Ekert (E91) Protocol. Image credit-Ayan Biswas. . . . 17

1.8 Schematic for prepare and measure CVQKD. . . . . . . . . . . . . . 20

xvii



xviii LIST OF FIGURES

1.9 Gaussian modulation protocol for continuous variable QKD. . . . . . 21

1.10 Discrete modulation protocol for continuous variable QKD. . . . . . . 23

2.1 Phasor diagram of a (a) vacuum state, (b) coherent state, and (c) squeezed

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Chapter 1

Introduction

Nature encompasses a wide range of scales, each with its own set of questions to ex-

plore. When we look at extremely small scales, smaller than the Compton wavelength,

we enter the realm of Quantum Mechanics (QM). Despite significant advancements in

our understanding of QM through both theory and experiments, we are still in the pro-

cess of fully comprehending it. At the quantum level, things can get quite complicated.

The way physical quantities behave here is very different from our everyday experi-

ences. Some of the surprising predictions of QM include the uncertainty principle,

which says we can’t know certain properties of particles with complete accuracy and

entanglement, where particles can be connected in ways that seem impossible based

on our classical intuition. In the quantum world, individual particles can act in peculiar

ways, and this is one of the unique features of QM.

Quantum physics possesses unique characteristics that lay the foundation for Quan-

tum Key Distribution (QKD), which is one of its most ubiquitous applications. Along-

side quantum mechanics, quantum information theory has rapidly expanded, giving

1
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birth to the fields of quantum information and quantum computation. This thesis fo-

cuses on exploring different classes of QKD protocols and their practical implementa-

tions. Chapter-1 delves into the necessity for secure communication and the limitations

of classical cryptographic methods, leading to a detailed exploration of various QKD

protocols. By exploring into these cutting-edge concepts, the thesis aims to contribute

to the growing field of quantum communication and information.

1.1 Classical Cryptography

As technology and computer science advancements continue to revolutionize com-

munication, the need for secure communication has become more pressing. With the

digitization of information, ensuring data security has become crucial for everyone [1].

The internet has brought together various computer networks, facilitating communica-

tion across the globe for private, public, academic, business, and government entities,

making information confidentiality a top priority in real-life situations [2].

Cryptology is the science of secure communication. Cryptology comprises two

main fields: cryptography and cryptanalysis [3–5]. Cryptography is a technique used

to send information securely so that only the intended recipient can read it. It involves

encoding (encryption) and decoding (decryption) messages to hide the information

they carry, making it ideal for sending secret or confidential information. Cryptogra-

phy focuses on creating codes and ciphers to protect the information. On the other

hand, cryptanalysis deals with the technique of breaking these codes within a specific

timeframe. By understanding how to break codes, cryptanalysis plays a vital role in

ensuring the security of a given cryptosystem. The combination of code-making and

code-breaking forms a secure cryptosystem within cryptology [4].

Initially, cryptography served military purposes, but with advances in telecommu-
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nication, secure communication has become essential for everyone, not just nations but

also individuals communicating with each other. To understand the communication

process, we introduce three main characters: Alice and Bob, who want to communi-

cate securely, and Eve, a third party who could eavesdrop on the information.

The message Alice wants to send is called plaintext (P). To protect it, she combines

it with a key to create ciphertext or cryptogram (C) through encryption (E). Bob, the

recipient, performs a decryption operation (D) using a corresponding key to retrieve

the original message. The security of a cryptosystem relies on the key; without it,

the cryptogram should be impossible to unlock. The goal is to protect the message as

long as its information is valuable. Further, cryptography is classified into two types:

symmetric key cryptography and asymmetric key cryptography, based on whether the

same or different keys are used for encoding and decoding.

1.1.1 Symmetric Key Cryptography

In symmetric key cryptography, we use the same key ’K’ for both encryption and

decryption. Alice encrypts her plaintext into ciphertext by combining it with the key

’K’. The encrypted message is then securely transmitted to Bob through channels like

WiFi-protected access (WPA) or local area network (LAN). Bob, in turn, decrypts the

ciphertext using the same key ’K’ to retrieve the original message. The process of key

distribution in the symmetric algorithm is illustrated in Figure 1.1.

The encryption and decryption algorithm can be written as,

EK(P) =C =⇒ Encryption (1.1)

DK(C) = P =⇒ Decryption (1.2)
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Figure 1.1: Symmetric key distribution. Alice encrypts his plaintext P, using key K,
and gets the ciphertext C, which is transmitted through the classical channel. Bob
decrypts the ciphertext using the same key K, and retrieves the plaintext P.

The one-time pad (OTP), also known as Vernam ciphers, was initially proposed by

Gilbert Vernam of AT&T in 1926 and falls under the category of symmetric key distri-

bution. The encryption and decryption algorithms are publicly known, and the security

of the cryptogram relies entirely on the secrecy of the key [3, 4]. For OTP to be secure,

the key must consist of a sequence of randomly chosen, sufficiently long bits of string.

Later, Shannon proved that OTP is information-theoretically secure [6], meaning

its security remains intact regardless of the computing power available to potential

eavesdroppers. If the key is truly random, never reused, and kept secret, OTP can offer

perfect secrecy. However, despite Shannon’s proof of its security, OTP has significant

drawbacks in practical applications;

• It requires a perfectly random key.

• Secure key generation and exchange of the key must be at least as long as the

message itself.

The OTP’s requirement to renew the key for every message makes key distribution
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prohibitively expensive. As a result, in most applications, absolute secrecy is not fea-

sible, and less expensive and less secure systems are used. For critical applications,

OTP may be employed due to its perfect secrecy, but for routine use like e-commerce,

more practical approaches are favored.

Symmetric cryptosystems, such as the data encryption standard (DES), use shorter

keys, typically 64 bits, along with complicated permutations and nonlinear functions to

produce ciphertext from plaintext divided into blocks [5, 7]. Other cryptosystems like

IDEA and advanced encryption standards (AES) follow similar principles, providing

secure encryption for various applications [4, 8].

1.1.2 Asymmetric Key Cryptography

Asymmetrical cryptosystems involve the use of different keys for encryption and de-

cryption. They are commonly known as public-key cryptosystems. The two main

public-key cryptography techniques; the Diffie-Hellman key exchange protocol [9]

and the RSA encryption system [10], are used currently. The key distribution using an

asymmetric algorithm is shown in Fig. 1.2. Public-key cryptography allows communi-

Figure 1.2: Asymmetric key distribution. Alice and Bob use different keys K and K’
for encryption and decryption.
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cating parties to exchange messages without prior agreement on a secret key. Instead,

each party has a public key and a private key. The concept is analogous to a secure

safe - anyone can lock it using the public key, but only the owner with the private key

can unlock it. This system underpins the security of the Internet, acting like a mailbox

where anyone can deposit a letter, but only the rightful owner can access it by using

their private key. The security of public-key cryptosystems relies on the computational

complexity of the algorithm. For instance, RSA encryption is based on the difficulty

of prime factorisation for large integers. As the number of digits increases, the time

required to factorise the number becomes significantly more challenging. Thus, in-

creasing the number of digits renders the task computationally infeasible [1, 4, 5].

Despite its elegance, public-key cryptography faces a significant challenge. Cur-

rently, there is no definitive proof regarding the difficulty of factoring large integers,

leaving open the possibility of the existence of a fast factorisation algorithm. Pe-

ter Shor’s discovery of a polynomial algorithm for fast factorisation using a quantum

computer adds uncertainty to the nonexistence of a similar algorithm for classical com-

puters [11–14]. Likewise, all public key cryptosystems rest on unproven assumptions

that may be weakened or overcome by theoretical or practical advances. In other

words, the security of asymmetric cryptosystems is not mathematically proven, pos-

ing a serious threat to their reliability and making them susceptible to potential future

breakthroughs [1, 15, 16].

Quantum cryptography [17] brings an entirely new way of solving the key distri-

bution problem. It provides a better secure key distribution because, unlike classical

cryptography, the security of quantum cryptography relies on the laws of Quantum

Mechanics rather than the complexity of the mathematical algorithms.
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1.2 Quantum Key Distribution

The increasing need for secure communication has led to the rise of quantum

communication in recent decades [18, 19]. The laws of Quantum Mechanics make

it strong evidence of practical application in quantum cryptography and ensure the se-

curity of the information transfer between the communicating parties. Quantum key

distribution (QKD) represents the future of secure communication, incorporating both

quantum and classical communication. QKD utilizes quantum states to encode infor-

mation, offering not only unconditional security [20, 21] but also real-time detection

of eavesdroppers [12, 21]. Compared to conventional cryptography [17, 22], QKD’s

information-theoretic security, rather than relying on computational hardness, makes it

more resilient against attacks and information leakage during communication [15, 23].

Figure 1.3: General layout of a quantum key distribution protocol.

The QKD protocol follows a general layout as depicted in Fig. 1.3. The process

begins with Alice and Bob exchanging quantum bits or Qubits. The key information is

encoded using a prescribed set of quantum states of a single particle. The transmission

of qubits occurs through an insecure quantum channel. Eavesdropping, in this context,

involves an eavesdropper performing measurements on the transmitted qubits. Upon
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receiving the quantum state, Bob retrieves the key information by conducting measure-

ments. The actual key exchange occurs through a quantum channel, and afterward, the

key is further processed using an authenticated classical channel. This QKD approach

ensures secure communication through quantum principles and authenticated classical

channels.

1.2.1 Properties of Quantum System

In quantum communication, the information is stored in the form of quantum bits or

qubits, representing quantum states. Therefore, we consider the quantum states and

their measurements in detail [24, 25].

• Quantum State

Any degree of freedom can be used to encode or represent bits. Some of the ex-

amples are polarisation, orbital angular momentum (OAM), time, frequency of

photons, or the field quadratures of the electromagnetic field. The qubit in hori-

zontal polarisation is represented as |H⟩ while in vertical polarisation |V ⟩. One

can also have a superposition of |H⟩ & |V ⟩ polarisation, which is represented as

c1|H⟩+ c2|V ⟩. Where c1 and c2 are the probability amplitudes (can be complex

numbers) of |H⟩ & |V ⟩ states, respectively.

In addition, we can have different states of the electromagnetic oscillator, like the

quadrature states. The single-mode system allows for the definition of position-

and momentum-like operators as follows: q̂ =
1√
2
(â† + â) and p̂ =

i√
2
(â† −

â). The canonical conjugate variables q̂ and p̂ satisfy the commutation relation,

[q̂, p̂] = i. The coherent state |α⟩ can be written in terms of quadrature states

|q+ ip⟩.
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• Projective Measurement

Measuring qubits on a corresponding basis will project them in one of the eigen-

basis of the measurement operators. The below example makes the statement

clear.

Measuring in {H,V} basis means the projectors are PH = |H⟩⟨H| & PV = |V ⟩⟨V |

indicates projection of the states on the corresponding polarisation. Let the ini-

tial state of the system be |ψ⟩in = |H⟩ then the measurement result leads to

|ψ⟩ f =
P|ψ⟩in

in⟨ψ|P|ψ⟩in
, (1.3)

|ψ⟩ f , final state after measurement. The subscript in P can either be H or V

based on the projection used in the measurement. Here, |ψ⟩ f in PH will be |H⟩

and in PV , it will be 0. If initial state is in superposition |ψ⟩in = c1|H⟩+ c2|V ⟩

then, the probability of the final state in H is
c1

2

c2
1 + c2

2
and in V is

c2
2

c2
1 + c2

2
. This

indicates that measurement of state in the wrong basis will give random results

[15, 17].

• Quantum Entanglement

According to quantum entanglement, if two systems are entangled, then they

share a strong non-local correlation (quantum correlation), which will be main-

tained even when they are separated by vast distances. The essence of entan-

glement is that measurement performed on one particle directly affects the state

of the other particle even when they are far apart. Mathematically, an entangled

state can be represented as two states which are non-separable.

Consider two photons, a and b, whose combined state is written as,

|ψ⟩ab = |ψ⟩a ⊗|ψ⟩b , (1.4)
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where |ψ⟩a and |ψ⟩b are the individual quantum states of each photon. Eq. 1.4

is not an entangled state because the combined state can be written as a direct

product of the two photons. Therefore, measuring the state of photon a, will not

affect the state of photon b.

A pair of photons is said to be entangled if the quantum state of each particle can

not be described independently but only the quantum state as a whole. Mathe-

matically,

|ψ⟩ab ̸= |ψ⟩a ⊗|ψ⟩b . (1.5)

Here, the state, |ψ⟩ab, is a non-separable state and shows the non-local correla-

tions.

The aforementioned properties serve as the foundation of quantum computing and

quantum information [18, 19]. A more detailed mathematical explanation of these

concepts is provided in Chapter-2.

1.2.2 Basic Security

The basic principles that guide the ideas of security in any QKD protocols are as fol-

lows.

No-cloning Theorem

It is impossible to construct a universal machine that can copy an arbitrary quantum

state [26, 27]. The laws of quantum mechanics prevent copying an unknown quan-

tum state. This makes QKD protocols robust against eavesdropping while exchanging

information.
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Consider a machine performing unitary operations clones a state |ψ⟩.

|ψ⟩|b⟩|Uo⟩= |ψ⟩|ψ⟩|Uψ⟩ (1.6)

Here, |b⟩ is the blank state of the machine, and |ψ⟩ is the state to be copied. |Uo⟩ and

|Uψ⟩ are the initial and the final states of the machine. This is true for any arbitrary

state |φ⟩ as well.

Now, if we want to copy an arbitrary state of the form, α|ψ⟩+β |φ⟩, where α , β

are complex numbers. Then, we get,

(α|ψ⟩+β |φ⟩)|b⟩|Uo⟩= α|ψ⟩|ψ⟩|Uψ⟩+β |φ⟩|φ⟩|Uφ ⟩ (1.7)

However, the state that should be obtained after copying is desired to be

(α|ψ⟩+β |φ⟩)⊗ (α|ψ⟩+β |φ⟩) (1.8)

So, the state that the copying machine gives is not the desired state that one should

obtain. So, from the unitary transform, one can never clone an unknown arbitrary

quantum state. This principle prevents an interceptor (or eavesdropper) from copying

the state exactly.

Uncertainty Principle

One cannot measure two canonically conjugate variables, such as position and mo-

mentum (X , P), with arbitrary accuracy simultaneously. In general, the uncertainty
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principle between two conjugate variables is

△q△p ≥ h
4π

. (1.9)

This property provides an advantage in ensuring security in any QKD protocol.

When a measurement is performed on one basis, it randomizes the result on a conju-

gate basis. Consequently, the uncertainty principle limits the maximum information

that can be revealed to a third party, such as Eve, without creating any disturbance.

This feature ensures that eavesdropping is impossible without detection, making QKD

inherently secure.

Entanglement Monogamy

In quantum physics, if the two particles or systems are entangled with each other, then

there is no way a third party can be correlated with any one of them. This is explained

in Fig. 1.4. The monogamy of entanglement is a fundamental principle in Quantum

Figure 1.4: Schematics for entanglement monogamy.

Mechanics, which states that quantum entanglement cannot be simultaneously shared

by an unlimited number of systems [28]. This unique property plays a crucial role in

enhancing the security of entanglement-based QKD protocols.

In entanglement-based QKD, the security of the key exchange relies on the use of
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entangled quantum states between the communicating parties, Alice and Bob. When

they share a maximally entangled pair, which serves as the basis for the final secret

key, the monogamy of entanglement ensures that the potential eavesdropper, Eve, can-

not have correlations with both Alice and Bob simultaneously. This property makes it

impossible for Eve to gain any information about the secret key during the transmis-

sion.

1.2.3 Classification of QKD

In QKD, the key information is encoded in the quantum state of light, which is then

transmitted through a quantum channel [29]. The receiver performs a prescribed set

of measurements on the received quantum state. Based on the techniques of state

preparation and detection, QKD has been classified broadly into two categories [30]

i.e., discrete variable (DV) and continuous variable (CV) QKD. In DVQKD, the key

Figure 1.5: Classification of QKD; GM: Gaussian Modulation; DM: Discrete Modu-
lation; GG02: Grosshan and Grangier; QPSK: Quadrature Phase Shift Keying; QAM:
Quadrature Amplitude Modulation.
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information is encoded in discrete properties of light, such as the polarisation state,

time of arrival, or phase [12, 31]. On the other hand, in CVQKD, the key information

is encoded in continuous properties of light, like the field quadratures of the electro-

magnetic oscillator [32]. DVQKD uses single-photon detectors for detection [33, 34],

while CVQKD employs homodyne/heterodyne detectors [35–37].

The classification of QKD on the basis of state preparation and measurement is

shown in Fig. 1.5. DVQKD and CVQKD protocols are further divided into prepare

and measure, and entanglement-based protocols. There are various classes of protocols

that belong to prepare and measure [38, 39] and entanglement-based DVQKD proto-

cols [28, 40–42]. The first proposed protocol BB84 [43] and B92 [31], belongs to the

class of prepare and measure protocols. Whereas BBM92 [44] & Ekert-91 [41] belong

to entanglement-based protocols [42].

Based on the techniques of modulation, the prepare and measure CVQKD proto-

cols are classified further into Gaussian modulation (GM) [45, 46] and discrete mod-

ulation (DM) protocols [47, 48]. The Gaussian modulation coherent state (GMCS)

CVQKD and GG02 belong to the earlier case. Quadrature phase shift keying (QPSK)

and quadrature amplitude modulation (QAM) [49], belong to the latter case. The

entanglement-based CVQKD includes the squeezed state protocols that also use Gaus-

sian modulation [32].

The details of quadrature states and squeezed states will be discussed in Chapter-2.
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1.3 Discrete Variable QKD

Prepare & Measure Protocol (BB84 Protocol)

Charles H. Benett and Gilles Brassard proposed the first QKD protocol in 1984, [23]

named BB84. The protocol execution includes the following steps.

1. Alice encodes her key information in the polarisation state of the photon. She

randomly chooses a basis ({H,V}, or {D,A}) from a set of mutually unbiased

basis. She assigns the bit values to the polarisation states as H → 0,V → 1,D →

0,A → 1.

2. She sends the encoded state to Bob through a quantum channel, which can be

either a free space or a fiber-optic channel.

3. Bob randomly chooses his measurement basis and records the data.

4. Once sufficient bits are collected, Alice and Bob use the authenticated classical

channel to disclose their basis choice.

5. They keep the results for which the basis are compatible. They are left with the

raw key. This process is called sifting.

6. They announce the results of a small fraction of the key over a public channel to

estimate the errors. If the error is above a threshold, they abort the protocol, and

if the error is below the threshold value, they further do the post-processing to

get a secure key.

7. Furthermore, they perform the error correction (to make the key identical) and

the privacy amplification (to make the key secure against eavesdropper) to ex-
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tract the secure key. A fraction of the key is used in this process, which is

removed from the final key.

A schematic of the protocol is shown in Fig. 1.6. This protocol was first demonstrated

Figure 1.6: Schematics of BB84 protocol.

experimentally in 1992 [31]. Later, a similar protocol, B92 was proposed, which tells

how one can do QKD with just two non-orthogonal states [39].

Entanglement-based DVQKD

In 1991, Arthur Ekert proposed another type of QKD protocol, which was based on

the principle of quantum entanglement known as the Ekert-91 protocol [41]. In Ekert’s

protocol, instead of Alice sending particles to Bob, there is a central source creating

entangled particles and sending one to Alice and one to Bob. The protocol is briefly

described below.

• A common sender ’Charlie’ prepares an entangled state |ψ⟩= (|00⟩+ |11⟩)/
√

2

and sends the state to Alice and Bob through a quantum channel (fiber or free
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Figure 1.7: Schematics of Ekert (E91) Protocol. Image credit-Ayan Biswas.

space).

• Alice and Bob independently make their measurements in random basis.

• The measurement bases of Alice are ({22.5/-22.5},{67.5/-67.5},{0/90}) where

as Bob’s bases are({0/90},{45/-45})

• After the measurement process, both Alice and Bob declare their basis choices

through the public channel.

• Alice and Bob will form the key when they choose the same bases for their

measurements (i.e., when both of them measure in {0/90} basis).

• The rest of the measurement results will be used to check the Bell’s parameter

for the security of the protocol.

The schematic of the protocol is shown in Fig. 1.7.

The security of these protocols is based on the monogamy of entanglement, i.e.,

the entanglement between two systems decreases when a third system interacts with
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the entangled photons. The protocols are secure against any eavesdropping strategy.

The Bell’s parameter for the maximally entangled state is 2
√

2 if the particle is not

disturbed by the eavesdropper. If a maximally entangled state is used for a key gen-

eration, then the Bell parameter (S) below 2
√

2 (for ideal channel) will be considered

insecure [41, 50–53]. For real situations both S, and quantum bit error rate (QBER)

are measured, if S is less than 2
√

2 and there is QBER in the generated keys, then

one goes for error correction and privacy amplification to distill the secret keys [54–

56]. The advantage of working with entanglement-based DVQKD is that it does not

require random number generators. Randomness is inherent in the process of the gen-

eration of entangled photons. However, the price of entanglement-based DVQKD is

a lower key generation rate due to the limited brightness of contemporary entangled

photon-pair sources.

Another similar type of protocol used for entanglement-based DVQKD is BBM92

protocol [57]. It avoids the need to measure Bell’s inequality violation. The key is

formed only from the compatible basis on both Alice’s and Bob’s sides. This increases

the key rate but makes it less secure.

1.4 Continuous Variable QKD

The demonstration of continuous-variable quantum teleportation in [58] has made

significant interest in the field of CVQKD. The first protocol of CVQKD proposed by

F. Grosshans and P. Grangier was based on the Gaussian modulation of the squeezed

states [59]. The idea of Gaussian-modulation CVQKD with coherent states was sub-

sequently explored in [60, 61]. CVQKD utilizes the quadrature modulation and mea-

surement of amplitude and phase from a bright laser to distribute the secret key. These

protocols have various practical advantages over DVQKD protocols. In CV quantum
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processing, the bandwidth of the homodyne detection is significantly higher (∼ GHz)

compared to that of the avalanche photodetectors used in DVQKD. Homodyne de-

tection is far more efficient than single-photon detection, achieving higher detection

efficiency [62, 63]. The key rate obtained in CV is much higher than DV for a cer-

tain distance as one can encode the key information in the quadrature states that can

have infinite basis values [64–66]. The major advantage of CVQKD is that it uses only

telecommunication components that are much more mature from a technological point

of view and, hence, compatible with available classical infrastructure.

In DVQKD protocols, we obtained the key directly in binary form, which has direct

applicability in the field. But for CVQKD protocols, we get the key in continuous

form. We perform the homodyne detection at the receiver ends. So, instead of getting

a binary number, the obtained key is in the form of the Gaussian key elements. Secret

key distillation could be performed to extract the binary key from these continuous key

elements [67, 68]. We will be discussing different classes of CVQKD protocols in the

following sections.

Prepare & Measure Protocol (A Protocol with Coherent State)

The more general schematic of the prepare and measure protocol is shown in Fig. 1.8.

The quantum key establishment includes state preparation and measurement. In par-

ticular, we encode the information in a weak coherent signal that carries the amplitude

and phase quadrature of the beam. These are analogous to position and momentum

for a light mode and, hence, are continuous, conjugate variables. We do the amplitude

and the phase modulation of the light. Based on the modulation techniques, CVQKD

is classified into Gaussian modulation and discrete modulation CVQKD. The mod-

ulation techniques involved in both protocols are further discussed in the upcoming
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section. The encoded state is transmitted through the quantum channel to Bob. Bob

Figure 1.8: Schematic for prepare and measure CVQKD.

performs the homodyne/heterodyne detection. The local oscillator (LO) is a strong

classical beam, acts as a phase reference, and selects the random basis measurement q

or p. LO can be transmitted along with the signal or can be created at the receiver’s

end called a local-local oscillator (LLO) [69, 70]. Once the key is established, we do

further post-processing, which includes sifting, error reconciliation, parameter estima-

tion, and privacy amplification to extract the secure key. The information that one

obtains is strictly limited by the generalized uncertainty principle for simultaneous

measurements of conjugate variables.

Gaussian Modulation CVQKD

The protocol was proposed by Grosshans and Grangier in 2002, where coherent states

are modulated in both quadratures simultaneously, called GG02. It uses the idea of

Gaussian modulation. Alice generates coherent states of light mode with Gaussian

distributed quadratures, and Bob’s measurements are homodyne measurements. This
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protocol allows for facilitated implementations and high secret key generation rates;

this follows from the fact that homodyne detection can operate faster than the photon

detectors used for BB84. The protocol includes the following steps.

• Alice prepares a large number of coherent states |α1⟩ , |α2⟩ , ......., |αN⟩. Where,

αi are complex variables selected from two identical and independent normal

distributions N(0,Vmod) with variance Vmod.

• Alice transmits the state through a quantum channel that could be fiber or free

space.

Figure 1.9: Gaussian modulation protocol for continuous variable QKD.

• Once the state is received by Bob, he performs homodyne (heterodyne) and mea-

sures a random quadrature q or p (q & p) for each state and informs Alice about

his choices of both quadratures.

• After sifting, Both Alice and Bob are left with N or 2N real-valued numbers

corresponding to their measurement outcomes (homodyne or heterodyne). De-
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noting the sequence for Alice and Bob symbols, x = (x1, ........,xn) and y =

(y1, ........,yn).

• Alice and Bob perform error reconciliation (direct or reverse reconciliation) and

use classical error-correction techniques to correct the errors in their raw key

formed after sifting.

• They perform parameter estimation to calculate the channel transmittance and

excess noise present in the system and calculate the covariance matrix. This

puts an upper bound on Eve’s information. Once this estimate is obtained, Alice

and Bob can compute a secure key of a certain length.

• At the end, they perform privacy amplification to the obtained key using univer-

sal Hash functions to their respective corrected strings and obtain a final secure

key.

Discrete Modulation CVQKD

The other class of CVQKD is known as discrete modulation CVQKD. In such proto-

cols, we do the discrete modulation of the coherent state [71–74]. The advantage of

the protocol is that it simplifies the modulation scheme and key extraction task, which

are a bit more complicated in GG02 protocols, where one extracts the key from contin-

uous random values. The other benefit of implementing discrete modulation CVQKD

is its long-distance applicability. In these protocols, reconciliation efficiency remains

remarkably high even at very low SNR, and these protocols can be applied for long-

distance applications.

The protocol we are going to analyse consists of the following steps:
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• Alice prepares a quantum state |S⟩, which is randomly chosen out of four coher-

ent states |±α⟩, |± iα⟩ of a given mode. Here, α > 0.

• She then transmits the state to Bob over a quantum channel.

• Bob performs homodyne detection on the received signal and randomly decides

to measure the q̂ quadrature or the p̂ quadrature.

Figure 1.10: Discrete modulation protocol for continuous variable QKD.

• Alice and Bob repeat the processes mentioned above sufficiently many times.

• Alice reveals which basis she used in each process through a classical channel.

She also randomly chooses a part of the process and reveals the state she sent.

• Bob estimates the parameters of the quantum channel using the data revealed

by Alice. Then, he selects the data to be used for key generation in accordance

with his measurement and the estimated channel parameters. He uses only the

processes for which he made a correct choice of measurement basis. Here, the

correct basis refers to the q-basis for | ±α⟩, whereas the p-basis for | ± iα⟩.

Bob informs Alice which process was selected. In the theoretical analysis, we

assume that Bob also reveals the absolute value |m| of his outcome m.
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• Bob makes a bit string by assigning 0 for the negative m and 1 for the positive

m of the selected measurement, respectively.

• Alice makes a bit string by assigning 0 for | −α⟩, | − iα⟩, whereas, 1 for |α⟩,

|iα⟩.

• Alice and Bob share a secure key by applying error correction and privacy am-

plification to the bit strings obtained.

Entanglement Based CVQKD (A Squeezed State Protocol)

The entanglement-based protocols involved entangled beams of light and showed EPR

correlations [75] of quadratures. The CVQKD protocols based on entangled states of

light [76, 77] are proved to be more secure against adversaries. The security of such

protocols is given against the strongest collective attacks that are optimal under certain

symmetries of the protocol [78–80].

The protocol execution involves the following steps. Alice generates Gaussian key

elements randomly and independently, denoted by a variable XA. Alice chooses two

different encoding rules, which may require different variances,

XA,i ∼ N(0,ΣA,i
√

No) (1.10)

where XA,i decide that the state is squeezed in q for i = 1 or in p for i = 2. The idea

of the protocol is as follows. The Heisenberg Uncertainty principle implies that it is

impossible to measure with absolute accuracy both the quadrature of a single-mode, q,

and p. Let us now detail the two encoding rules.

• In case 1, Alice prepares a squeezed vacuum state such that the fluctuations of
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q are squeezed with parameter s1 < 1 and applies a displacement of q by an

amount equal to XA,1 i.e., such that ⟨q⟩ = XA,1. Hence, Alice’s encoding rule is

XA,1 → |XA,1,s1⟩.

• In case 2, Alice sends a squeezed state p squeezed with parameter s2 > 1, and

applies a displacement of p by an amount equal to XA,2, i.e., such that ⟨p⟩=XA,2.

Hence, Alice’s encoding rule is XA,2 → |XA,2,s2⟩.

• On his side, Bob measures either q or p, yielding the result YB,q or YB,p, choosing

at random which quadrature he measures.

• After sending a predefined number of squeezed states, Alice reveals to Bob the

encoding rule for each squeezed state. They keep only the useful transmissions

over the quantum channel; that is, they discard the key elements for which Alice

used case 1 (or case 2), and Bob measured p (or q). The remaining key elements

corresponding to Bob’s measurements are denoted by YB.

• They reconstruct the distributions corresponding to correct measurements and

do the classical post-processing to get the secret key.

The QKD techniques mentioned above appear to be secure and effective in address-

ing the key distribution problem. Ideally, all these QKD techniques offer unconditional

security from an information-theoretic perspective. However, achieving this level of

security in practical implementations presents challenges. The main hurdle lies in

constructing a QKD system that balances minimalistic resources with maximum secu-

rity. Currently, there are numerous protocol implementations in the literature [81, 82].

However, some of these implementations may suffer from either low key generation

rates or reduced security levels. Striking the right balance between key generation

rate and protocol security becomes a soft trade-off in QKD system design. The recent
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work in the field of QKD is directed in two directions: implementing the protocols and

giving more advanced security proofs for the existing protocols [20, 40, 83, 84].

Various DVQKD protocols have been implemented since the discovery of BB84

protocol [12, 31, 85–87]. Ground-to-satellite link has been established successfully [88].

The rigorous security proofs are developed for finite size key analysis [89–92] for

DVQKD protocols. A lot of work has been done to account for the various imper-

fections present in a QKD experiment, and security proofs are given [93, 94]. To

eliminate the source imperfection and increase the key rate with the same security a

decoy state protocol is implemented [95–97]. In addition, measurement device inde-

pendent (MDI) QKD is implemented, which removes the fear of side channel attack

at the detection end [98]. That is, the scope of QKD applications is expanding every

year, as well as the number of approaches to its implementation.

Certainly, QKD systems are not meant to replace existing infrastructures but rather

be integrated into them. As a result, a significant portion of current and prospective

research in quantum communications focuses on finding practical solutions to various

challenges. One such solution involves utilizing coherent detection methods in QKD

systems, which use devices already employed in classical fiber-optical communication

systems, rather than relying on single-photon detectors, which are both complex and

expensive. These QKD systems based on coherent detection methods are referred

to as CVQKD systems [60, 99–102]. The CVQKD approach offers several evident

advantages. These advantages include cost reduction, high secure key generation rates,

and scalability. Embracing CVQKD can pave the way for more efficient and feasible

quantum communication systems. By exploring CVQKD, we can discover a faster and

more reliable QKD approach that optimizes resources and operates efficiently within

the constraints of classical infrastructure.
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1.5 Objective of the Thesis

QKD is a promising method to achieve secure communication resistant against ad-

versaries between two parties, the sender (Alice) and the receiver (Bob). The increase

in demand for secure communication at a very high speed has given origin to various

classes of QKD protocols. The two major families of QKD protocols are DVQKD and

CVQKD protocols. Such protocols have been the subject of wide research and have

been experimentally implemented over long distances. A successful demonstration of

satellite-to-ground quantum communication has been done. India has initiated efforts

in this direction by setting it as one of the objectives of the National Quantum Mission

(NQM). This NQM is expected to accelerate quantum technology (QT) led economic

growth, nurture the ecosystem in the country, and make India one of the leading nations

in the development of Quantum Technologies and Applications (QTA).

Being less resource-intensive QKD promises to integrate with the current commu-

nication setup within the coming years. The entanglement-based DVQKD protocols

are proven to be more secure than the prepare and measure protocols but require more

resources than a typical BB84. Keeping this in mind, to get a trade-off between re-

sources and security, we have implemented the BB84 protocol using heralded single-

photon source. The proposed method uses less resources, i.e., five detectors, compared

to BBM92, which uses eight detectors and is more secure than weak coherent pulses.

Since we use a single-photon source, it does not require an external random number

generator to prepare various polarisation states randomly. Instead, a beam splitter (BS)

does the job of random selection.

DVQKD protocols suffer disadvantages in the form of the requirement for single-

photon sources and detectors. These limitations restrict the rate of key exchange as
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well as open the QKD protocols to various attacks by an eavesdropper. Compared

to DVQKD protocols, CVQKD protocols bypass such stringent requirements by ex-

changing single-photons with weak coherent states and single-photon detectors with

photodetectors.

In this thesis, we have implemented various classes of CVQKD protocols over free

space, which include, discrete modulation and Gaussian modulation CVQKD. This is

the first time we have demonstrated this class of protocols in our lab in India. Free

space offers various advantages over fiber, as the optical losses are less in free space

compared to fiber. In addition, the free space channel is insensitive to polarisation

compared to fiber, which results in light polarisation being nearly unchanged during

propagation. The presence of Eve in the line of sight could be detected easily. In

addition to this, compared to fiber CVQKD, atmospheric link offers the possibility of

broader geographical coverage and more flexible transmission.

We performed the field demonstration of discrete modulation and Gaussian mod-

ulation CVQKD over an atmospheric channel. Along with this, we have worked on

the various experimental parameters affecting the key rate of the protocols. We have

highlighted the imperfections present in the initial characterisation of the setup. These

imperfections could lead to security threats in CVQKD and could have a strong im-

pact on the achievable key rate. We have performed both theoretical and experimental

studies of these parameters.

1.6 Organisation of Thesis

This thesis is organized into eight Chapters. Chapter-1, is dedicated to under-

standing the basic concepts, which will help to follow the protocols described in the

upcoming Chapters. In this Chapter, we discussed the need for QKD protocols for se-
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cure communication. This Chapter includes various classes of QKD that are currently

used in practice. The study includes both prepare & measure and entanglement-based

QKD protocols.

Chapter-2, is divided into two sections. Section-I is based on the formalism of

quantum mechanics, and Section II includes the study of the tools needed for the ex-

ecution of a QKD protocol. In Section I, the concept of quantum state measurement,

the idea of quantum entanglement, and density matrix formalism are described in brief.

We discuss the electromagnetic harmonic oscillator and its possible states. We further

study the mathematical treatment of the balanced homodyne detection in detail, which

is used to measure the field quadratures of the electromagnetic field. Section-II de-

scribes details of the post-processing of the CVQKD. Further, we calculate the mutual

information and the secure key rate for CVQKD protocols.

In Chapter-3, we describe the implementation of BB84 QKD protocol using a her-

alded single-photon. Where these photons are produced by the Spontaneous Paramet-

ric Down-Conversion (SPDC) process. Further, We discuss the experimental results

and the measured security parameters.

In Chapter-4, we do the initial characterisation of the setup for CV applications,

which deals with measuring the shot noise. We accounted for various imperfections

present in the detection system and gave a theoretical and experimental understanding

of the same.

In Chapter-5, we have demonstrated a discrete modulation CVQKD protocol in a

controlled environment of the lab. We have proposed a noise model to account for

the channel losses and done the simulation to see the effects of various parameters

on the secure key rate. These simulated results would help in the certification of the
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experimental results.

In Chapter-,6 we have implemented the Gaussian modulation CVQKD protocol

over free space in laboratory settings. We have performed a careful characterisation of

the setup including electronic noise, shot noise, detection efficiency, and delay mea-

surements. We have extracted the various experimental parameters and the mutual

information for the protocol.

In Chapter-7, we have performed the field demonstration of discrete and Gaussian

modulation CVQKD over atmospheric channels and simultaneously studied the effect

of environmental parameters on the secure key rate.

Finally, the summary of the thesis and the future scope are given in Chapter-8.



Chapter 2

Theoretical Background

QKD is a broad field that requires a basic knowledge of quantum mechanics, classical

and quantum information theory, fundamental quantum optics, computation, and other

branches of physics. In the previous Chapter, we considered the broad perspective

of discrete and continuous variable QKD. Before the execution of QKD, we need a

theoretical background that would help us in understanding the work presented in the

thesis. In this Chapter, we will study the mathematical background required to un-

derstand the DV and CV QKD. It involves the definitions of various types of quantum

states and the mechanism for preparing them. This Chapter is organized into two major

sections; Section I describes the basic concepts of Quantum Mechanics, and Section II

gives the details of the tools required for the practical implementation of QKD.

31
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Section I - Basic Concepts

2.1 Light as Quanta of ElectroMagnetic (EM) Field

Light shows both wave and particle aspects. It considers various phenomena such

as interference and diffraction, dispersion, polarisation, etc. All these are the classical

aspects of light. On the other hand, light appears as a click in the detector, called

the photon. This aspect of light is considered in the photo-electric effect, Compton

scattering, etc. The reason for this strange behavior of light is not known, but it has

been formulated within the framework of the quantum theory of light. To understand

this better, we will start with the classical description of the EM field, then quantise it.

Classically the dynamics of the EM field are given by Maxwell equations. In the

vacuum, these equations are:

∇×E = −ε0
∂H
∂ t

, (2.1)

∇ ·E = 0, (2.2)

∇×H = µ0
∂E
∂ t

, (2.3)

∇ ·H = 0, (2.4)

where µ0 and ε0 are the permeability and the permittivity of free space. It satisfies the

relation, µ0ε0 = c2, c being the speed of light. The EM field follows the wave equation,

which is given by

∇
2E− ∂ 2E

∂ t2 = 0. (2.5)
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It has a plane wave solution moving with the speed of light, which is given by

E(r, t) = ∑
i

Eiε
(λ )
i

[
αi,λ ei(k·r−ωit)+α

∗
i,λ e−i(k·r−ωit)

]
. (2.6)

Here, E(r, t) is a complex vector function called spatial-temporal mode. It includes

all classical wave aspects, including polarisation. i is mode index, λ is polarisation,

ωi is frequency of the ith mode, and αi,λ and α
∗
i,λ are complex constants. Ei is a real

constant. A similar structure can be seen for the magnetic field; for further details, see

[103].

Quantisation of EM field

The quantised EM field [25] can be identified by replacing the complex scalar αi,λ and

α
∗
i,λ with the annihilation and creation operators âi,λ and â†

i,λ . These operators further

satisfy the commutation relations

[
âi,λ , â

†
i′,λ ′

]
= δii′δλλ ′ ,[

âi,λ , âi′,λ ′

]
= 0, and

[
â†

i,λ , â
†
i′,λ ′

]
= 0 (2.7)

Hence, the quantised electric field can be expressed as

E(r, t) = ∑
i

Eiε
(λ )
i

[
âi,λ ei(k·r−ωit)+ â†

i,λ e−i(k·r−ωit)
]
. (2.8)

2.2 Representation of States

There are different possible representations of states.
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2.2.1 Fock States

The single-mode states of the EM oscillator are known as Fock states, denoted by

|n⟩, also referred to as number states. These states are the eigenstates of the number

operator n̂, with the corresponding eigenvalue n. It is given by

n̂|n⟩= n|n⟩. (2.9)

The Fock states |n⟩ are eigenstates of the Hamiltonian

H|n⟩= h̄ω(n+1/2)|n⟩= En|n⟩, (2.10)

with eigenvalue, En. Further, these states can be written as the excitation of the vacuum

state,

|n⟩= (â†)n/(
√

n!)|0⟩, (2.11)

The number states, |n⟩, have a definite and fixed photon number equal to n. These

states being the eigenstates of the number operator, satisfy the orthonormality condi-

tion and form the complete basis of orthogonal states.

Orthogonality relation: ⟨m|n⟩ = δm,n (2.12)

Completeness: ∑ |n⟩⟨n| = I (2.13)

Therefore, an arbitrary state, |ψ⟩, which is a superposition of energy eigenbasis, is

|ψ⟩= ∑Cn |n⟩ . (2.14)
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In general, the density operator is used for describing any state of one mode of light,

ρ̂ =
∞

∑
m,n=0

pm,n |m⟩⟨n| , (2.15)

where ρ̂ is a positive Hermitian operator with tr(ρ̂) = 1. The trace of the squared

density operator, tr(ρ̂2), can be used in measuring the purity of a state. It yields a

value between 1/n and 1, where 1 represents a pure state and n is the dimension of the

Hilbert space.

This single-mode formalism for the EM field can be extended to the multi-mode

formalism by redefining the basis |ni⟩ as

|ni⟩= |n1⟩⊗ |n2⟩⊗ ...⊗|ni⟩ (2.16)

where |n1⟩ represents the n1 photons in the first mode and similar for others. This basis

is the tensor product of different modes present.

2.2.2 Quadrature States

For a single-mode, the quantised electric field, Eq. (2.8) can be expressed as

E(r, t) = E0ε(λ )
[
q̂cos(k · r−ωt)+ p̂sin(k · r−ωt)

]
. (2.17)

Here the operators p̂ and q̂ are defined as the quadratures of the EM field. These are

given by

q̂ =
1√
2
(â† + â),and (2.18)

p̂ =
i√
2
(â† − â) (2.19)
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These operators satisfy the commutation relation

[q̂, p̂] = i, (2.20)

and the Uncertainty principle,

∆q∆p = 1/4, (2.21)

where ∆q = ⟨q̂2⟩− ⟨q̂⟩2 and ∆p = ⟨p̂2⟩− ⟨p̂⟩2 are defined as the variances of the ob-

servables q̂ and p̂ respectively.

These operators can be considered analogous to the position and the momentum

operators, even though they are not directly related to the position and momentum of

the photons. Instead, they are associated with the harmonic oscillator linked to the

single optical mode.

The quadrature states are the eigenstates of the corresponding operators

q̂|q⟩ = q|q⟩

p̂|p⟩ = p|p⟩.

Forming the orthonormality conditions

⟨q|q′⟩ = δ (q−q′), and (2.22)

⟨p|p′⟩ = δ (p− p′), (2.23)

for the complete orthogonal basis

∫
∞

−∞

|q⟩⟨q| = I (2.24)
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∫
∞

−∞

|p⟩⟨p| = I (2.25)

Both of these states are related via the Fourier transformation relation.

|q⟩= 1√
2π

∫
∞

−∞

dqe−iq·p |p⟩ , and |p⟩= 1√
2π

∫
∞

−∞

d peiq·p |q⟩ (2.26)

It is to be noted that the quadrature states cannot be measured directly. So, we need to

find the probability distribution for these states. One can measure them using the well-

known technique called homodyne detection; further details are discussed in 2.7.2.

We can write the Fock states in the coordinate representation also. |n⟩ in the co-

ordinate representation is

ψn(q) = ⟨q|n⟩ (2.27)

One can calculate the ψ0(q) by using the annihilation operator on the vacuum and

solving the differential equation. For details, see textbooks such as [36]. Hence, the

eigenstates of the harmonic oscillator can be obtained as follows:

ψn(q) =
1√

2nn!
√

π
Hn(q)exp(−q2/2), (2.28)

where Hn(q) are defined as the Hermite polynomials [104]. The probability distribu-

tion of the q quadrature, |ψn(q)|2, is found to be Gaussian in nature.

2.2.3 Coherent States

Though the Fock states are useful for the representation of states, they are difficult

to generate experimentally. Alternatively, lasers are commonly used as sources of
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light, generating coherent states. Hence, it is important to understand the properties of

coherent states. The coherent state, also known as Glauber states, denoted as |α⟩, is

the eigenstate of the annihilation operator, â,

â |α⟩= α |α⟩ . (2.29)

It is to be noted that since â is not a hermitian operator, the eigenvalue of â is complex

(C) in nature. Hence, the coherent states have well-defined amplitude, |α|, and phase,

argα . One can further note that the vacuum is a coherent state as well since it verifies

Eq. (2.29) for α = 0. Therefore, the mean energy of the coherent state is

⟨H⟩= ⟨α|
(

â†â+1/2
)
|α⟩= |α|2 +1/2. (2.30)

It is the sum of vacuum energy and the intensity of classical waves. It can also be seen

that the shift in the phase angle of the coherent state is given by

Û(θ) |α⟩= exp(−iθ) |α⟩ . (2.31)

Further, The coherent state can be viewed as a displaced vacuum state. It is expressed

as

|α⟩= D(α)|0⟩= exp(α â† −α
∗â)|0⟩, (2.32)

where D(α) is the displacement operator [104]. We stress that the coherent states

are not physically similar to the vacuum states. They only have some quantum noise

properties in common. In order to understand it better, we can compute the quadra-

ture wave functions ψα(q) and ψα(p). First, we write the displacement operator in

terms of quadratures q and p by decomposing the complex amplitude, α , into real and
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imaginary parts, i.e., α = 2−1/2(q0 + ip0), as

D̂ = exp(ip0q̂− iq0 p̂) = exp
(

ip0q0

2

)
exp(−iq0 p̂)exp(ip0q̂) (2.33)

Here, we have used the Baker-Campbell-Hausdorff formula

exp(A+B) = exp(A)exp(B)exp
(
−1

2
[A,B]

)
, (2.34)

provided [A,B] commutes. These states have both wave-like aspects as well as particle-

like aspects. Above, we considered the displacement operator in terms of quadratures q

and p, and hence the wave aspects. The probability distribution for both the quadrature

wave function comes out as Gaussian.

ψα(q) = π
−1/4 exp

[
−(q−q0)

2

2
+ ip0q− ip0q0

2

]
(2.35)

It is the position wave function and a similar equation can be obtained for the mo-

mentum wave function [36]. On the other hand, in the particle picture, we express the

displacement operator in terms of annihilation and creation operator.

D̂ = exp
(
−1

2
|α|2

)
exp(α â†)exp(−α

∗â) (2.36)

Again we have used the Baker-Campbell-Hausdorff formula to obtain this relation.

Further, using Eq. (2.36) and Baker-Campbell-Hausdorff formula

exp(−α A) B exp(α A) = B−α[A,B]+α
2/2[A, [A,B]]+ ..., (2.37)
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The displacement operator acted on the annihilation operator, a, and displaced it by

the complex number α . It is given as

D†(α)âD(α) = â+α. (2.38)

A similar expression can be obtained for the quadratures of the field

D†(α)q̂D(α) = q̂+
√

2R(α), (2.39)

D†(α)p̂D(α) = p̂+
√

2I(α). (2.40)

Hence, the coherent state |α⟩ can be obtained by displacing the vacuum state, |0⟩, in

the phase space by
√

2R(α) along the q̂ axis and by
√

2I(α) along the p̂ axis.

Now, using Eq. (2.36), we can write the coherent state in the form of the number

of states

|α⟩= exp
(
−1

2
|α|2

)
∞

∑
n=0

αn(â†)n

n!
|0⟩ (2.41)

which provides a coherent state as

|α⟩= exp
(
−1

2
|α|2

)
∞

∑
n=0

αn
√

n!
|n⟩ (2.42)

The probability of getting n photons in |α⟩ would be,

pn = |⟨n|α⟩|2 = |α|2n

n!
exp(−|α|2) (2.43)

that comes out to Poissonian in nature with mean and variance equal to |α|2. Classical

particles obey the same statistical law when they are taken at random with an average
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of |α|2 each time. Hence, the coherent states are often referred to as quasi-classical

states since, in addition to exhibiting Poisson distribution statistics, they also minimise

the product of uncertainties in phase and amplitude, as governed by the uncertainty

principle shown in Eq. (2.21). These properties are justified since the coherent states

follow a wave-like nature. The statistics would lead to fluctuation in the source.

Another essential property of coherent states is that they are not orthogonal to each

other because they are not eigenstates of a Hermitian operator.

⟨α ′|α⟩ = ⟨0| D̂†(α ′)D̂(α) |0⟩ ,

= ⟨0|D(α ′−α) |0⟩= exp(−|α ′−α|2/2). (2.44)

These states may become orthogonal when their amplitudes differ sufficiently. Conse-

quently,

| ⟨α ′|α⟩|2 = exp(−|α ′−α|)2. (2.45)

This falls to zero when the difference between the amplitudes α
′ and α is large com-

pared to the quadrature noise level of the vacuum. Moreover, it is noted that the set of

these states satisfies the completeness relations, which is given by

1
2π

∫
|α⟩⟨α|dq0d p0 = I. (2.46)

Due to lack of orthogonality, the coherent states are even over-complete.
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Figure 2.1: Phasor diagram of a (a) vacuum state, (b) coherent state, and (c) squeezed
state.

2.2.4 Squeezed States

We have understood the properties of coherent states. They have only as much theo-

retical uncertainty in the quadrature amplitudes as the vacuum. A valid question then

can be asked; Are the coherent states minimum uncertainty states? It is to be noted

that the minimum uncertainty states act as displaced states, and contain Gaussian wave

functions well like the coherent states. The minimum uncertainty states differ from the

coherent state in a way that the former does not necessitate the variance, ∆
2q to be

1/2 like the latter. Hence, the variances in q and p are not required to be equal and

1/2 to follow the Heisenberg uncertainty principle. Consequently, the statistical un-

certainty of the quadrature, q, may be squeezed below the vacuum level 1/2 at the cost

of enhancing the uncertainty in the quadrature, p, and vice versa.

Therefore, squeezed states are defined as the quantum state with minimum uncer-

tainty, and they hold the uncertainty relation defined for coherent states but with un-

equal uncertainty in both quadratures. These states can be generated by first applying

the squeezing operator, denoted as S(ε), with the squeezing parameter ε = re2iθ , and

then applying the displacement operator to a vacuum state. The squeezing operator is
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defined as

Ŝ(ε) = exp
(1

2
(ε∗â2 − ε â†

2
)
)
. (2.47)

The squeezing operator applied directly to a vacuum state produces a state known as

the squeezed vacuum state, represented as S(r)|0⟩. For a squeezing factor r > 0, the

variance of the squeezed quadrature decreases below shot noise unit (e−2r < 1/2). In

order to satisfy the Heisenberg uncertainty relation, the variance of conjugate quadra-

ture must increase with the squeezing (e2r > 1/2). In a Fock state basis, squeezed

vacuum state is given by,

S(r)|0⟩= 1√
coshr

∞

∑
n=0

√
(2n)!

2nn!
tanhn r|2n⟩ (2.48)

The mean number of photon ⟨N̂⟩ in a squeezed state is calculated by using the defini-

tion of the number operator,

⟨N̂⟩= 1
2
[
⟨(x̂2 + p̂2)⟩−1

]
= sinh2 r (2.49)

When the squeezing operator is applied to a coherent state, it results in the scaling of

the quadratures, characterised by the squeezing factor r, and a rotation by θ . The state

is called squeezed coherent state. The variance of both quadratures is defined by

∆q = e−r, (2.50)

∆p = er

A more straightforward approach to creating the squeezed coherent states is achieved

by applying a displacement operator D(α) to a squeezed vacuum state, denoted as
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(D(α)S(r)|0⟩).

2.3 Quantum States and its Measurement

With this brief idea of various representations of states of the EM field, we now

understand how these states are used in the language of QKD.

2.3.1 Quantum State

In the classical picture, information is encoded in bits [105], which is composed of a

two-level system. One of the examples is a coin with a head and tail as a two-level

system. On the other hand, in the quantum picture, a qubit, analogous to a bit, is used.

It describes a two-level system, including the superposition state between the two. In

principle, the quantum state is described by a state vector in the Hilbert space. The

Hilbert space is an infinite dimensional complex vector space with an inner product

having the property that it is complete or closed. Hence, an arbitrary qubit state can be

written in terms of orthogonal basis |0⟩ , |1⟩ as

|Φ⟩= a |0⟩+b |1⟩ , (2.51)

with the normalization of the state: ⟨Φ|Φ⟩= 1, where ⟨Φ| is defined as a dual of |Φ⟩.

The evolution of a quantum state is governed by the Schrödinger equation:

ih̄
d |Φ⟩

dt
= Ĥ |Φ⟩ . (2.52)

In the above equation, h̄ represents Planck’s constant, and Ĥ is the Hamiltonian op-

erator, which is Hermitian (i.e., Ĥ† = Ĥ). Further, this equation can be simplified in
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terms of |Φ′(t ′)⟩ = U (t ′, t) |Φ(t)⟩, where U (t, t ′) is defined as the evolution operator

stating the evolution of state from t to t ′. The evolution of the quantum state is pro-

vided by two interpretations: the Heisenberg picture and the Schrodinger picture. The

former picture involves the time evolution of the operator, whereas the latter involves

the time evolution of the state vector. For discrete variables, the Schrodinger picture is

found to be useful. On the other hand, the Heisenberg picture is found to be useful for

continuous variables.

2.3.2 Measurement

In quantum mechanics, the description of a quantum state involves a set of measure-

ment operators denoted as M̂m, where ”m” represents the index of possible measure-

ment outcomes. Let’s consider the example from Eq. (2.51) with a family of mea-

surement operators: M̂1 = |1⟩⟨1| and M̂0 = |0⟩⟨0|. It should be noted that in QM, the

state of a system is not predetermined, but the measurement operators determine the

probabilities associated with obtaining measurement results of either 1 or 0.

p(1) = ⟨φ |M̂†
1M̂1|φ⟩= |b|2

p(0) = ⟨φ |M̂†
oM̂o|φ⟩= |a|2

(2.53)

Upon performing a measurement, the quantum state undergoes a transformation based

on the obtained result, resulting in a modified state given by

M̂m |φ⟩√
⟨φ |M̂†

mM̂ |φ⟩
(2.54)

If we obtain a measurement result of 0, the quantum state will collapse to |0⟩. Simi-

larly, if the measurement outcome is 1, the state will collapse to |1⟩.
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2.4 Entanglement

Entanglement is a fundamental concept in quantum mechanics, arising when com-

posite quantum systems interact and become inseparable, leading to the formation of

entangled states. Mathematically, entangled states are described as a superposition of

product states, given by |ψ⟩=∑
i, j

Ci, j |i⟩⊗| j⟩, where Ci, j represents the complex coef-

ficients and |i⟩ and | j⟩ denote the individual states of the constituent systems. These

entangled states defy a separable representation and exhibit nontrivial correlations that

transcend classical boundaries.

The entanglement of composite states is quantified using various measures, such as

entanglement entropy, concurrence, or entanglement negativity [52]. These measures

provide a quantitative assessment of the amount of entanglement present in a given

state, highlighting the degree of correlation and nonlocality between the constituent

systems. Entanglement plays a pivotal role in many aspects of quantum information

processing. For instance, in quantum computing, entanglement enhances computa-

tional power by allowing quantum operations on the entire entangled system. In quan-

tum cryptography, entanglement-based protocols, such as quantum key distribution,

provide secure communication channels that are inherently resistant to eavesdropping

due to the entanglement-based detection of any unauthorized interference.

2.5 Linear Operations

In the upcoming section, we will provide a comprehensive explanation of the set of

linear and Gaussian operations [32] applicable to a multi-mode optical field. Building

upon the states discussed in Sec. 2.2, these states can be combined with other states

through the utilization of unitary operators. By employing these operations, the optical
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field can be manipulated in a manner that preserves linearity and Gaussian character-

istics. Here we will discuss two important operations that will be used in the thesis,

phase shift operation and beam splitter operation.

2.5.1 Phase Shift

The phase shift operator is parametrized by a parameter θ . The phase shifting operator

is defined as,

Û(θ) = exp(−iθ n̂) (2.55)

As the name suggests, the phase shifting operator provides the amplitude â with a

phase shift θ when acting on â,

Û†(θ)âÛ(θ) = âexp(−iθ) (2.56)

Phase shifting rotates the quadratures,

q̂θ ≡ Û†(θ)q̂Û(θ) = q̂cosθ + p̂sinθ (2.57)

p̂θ ≡ Û†(θ)p̂Û(θ) = −q̂sinθ + p̂cosθ (2.58)

We see that we can go from a position representation to a momentum representation

via a phase shift θ of π/2.

2.5.2 Beam Splitter

A beam splitter is a fundamental and commonly used optical element in various optics

experiments. It functions by combining or splitting a beam of light using a partially
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transparent surface with a transmission parameter, 0 ≤ T ≤ 1, and a reflectivity pa-

rameter, R = 1− T . A beam splitter is a four-port device with two input ports and

two output ports, as shown in Fig. 2.2. When a beam splitter with a transmission pa-

rameter T is applied to two optical fields with annihilation operators âin and b̂in, the

transformation is given by:

Figure 2.2: Beam splitter model. âin and b̂in are the input modes. âout and b̂out are the
output modes.

âout

b̂out

=

 √
T

√
1−T

−
√

1−T
√

T


âin

b̂in

 . (2.59)

The beam splitter operator is crucial in experimental modeling as it allows us to ac-

count for losses. In any experimental setup, there are various sources of loss, such as

scattering from optical components, spatial mode matching, and inefficient detection.

By using the beam splitter operator, we can effectively model these losses and under-

stand how a vacuum or thermal state from the environment can couple into the signal

mode.
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2.6 Gaussian Operators

A Gaussian operation is a transformation that takes a Gaussian state and maps it to

another Gaussian state, preserving the Gaussian characteristics of the input state. The

corresponding operators for different cases are given here.

2.6.1 Displacement Operator

The displacement operator used to generate the coherent states simply translates the

mean of the state,

x̂|out =
√

T x̂|in +dx

p̂|out =
√

T p̂|in +dp

(2.60)

where, T is transmission coefficient, d is displacement in quadratures, x and p, i.e.,

(dx,dp) =
√

2(R(α),I(α)). Moreover, under the displacement operator, the covari-

ance matrix of a Gaussian state remains invariant.

2.6.2 Symplectic Transform

In the context of Gaussian quantum information, symplectic operators correspond to

unitary operators in Hilbert-space notation [45]. A matrix S is considered symplectic

if it satisfies the relation

SΩST = Ω (2.61)
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where, Ω is a fixed 2n × 2n nonsingular, skew-symmetric matrix having form

Ω =

 0 In

−In 0

 . (2.62)

A symplectic operation transforms a Gaussian state as follows:

X̂ → SX̂, and (2.63)

Σ → SΣST . (2.64)

In this context, the matrix S is a 2N × 2N matrix with real elements. Moreover, the

determinant of every symplectic matrix is det S = 1. The symplectic operations corre-

sponding to the passive operations described in Section 2.5 are provided below.

Phase Shift: The symplectic operator for a single-mode state undergoing a phase

shift of θ corresponds to a rotation between the quadratures. It is given by:

SPS(θ) =

 cosθ sinθ

−sinθ cosθ

 (2.65)

The symplectic operator for a beam splitter with transmission T is having form

mentioned in Eq. (A.1).

Squeezing Operator: The symplectic operator for squeezing a single-mode state

is expressed as follows:

SSq(r) =

e−r 0

0 er

 (2.66)

The unitary squeezed state operator, SSq, also acts as a phase shift on the input state.



2.7. Generation & Detection of Light 51

Two Modes Squeezed States: By combining different symplectic operators, one

can construct various Gaussian states. For instance, a two-mode squeezed state can be

generated by combining two orthogonally squeezed states using a beam splitter. The

symplectic operator is given by,

SBS(r) =

 cosh(r)I sinh(r)σz

sinh(r)σz cosh(r)I

 . (2.67)

where, I is 2× 2 identity matrix. The superscript in the symplectic operator notation

indicates the mode on which the operator is acting. The matrix σz is written as

σz =

1 0

0 −1

 . (2.68)

2.7 Generation & Detection of Light

Light is a wonderful object to perform experiments with [24]. Lasers can gen-

erate light of superb quality, optical devices can process light with great precision,

and highly efficient detectors are available to measure the quantum properties of light.

Classical optics is well well-established century-old theory, so we understand very

well the classical features of light and can focus on the non-classical quantum effects.

This is the reason that many fundamental concepts of quantum mechanics have been

realized through quantum optics. So quantum optics has much to offer to those who

are interested in practical demonstrations of fundamental quantum principles. More-

over, light is the most likely candidate for practical applications of state measurements.

Light is a typical high-technology tool to investigate or to change various properties of

matter. By gaining as much information as possible about, we can better explain the
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behavior of material probes. Additionally, because light is used for communication,

certainly worth studying is how to extract the maximal information allowed by the very

principles of quantum mechanics.

2.7.1 Generation of Light

In order to prepare the quantum state for QKD protocols, one requires a single-photon

source which is difficult to generate experimentally. One of the alternatives to the

problem is to use weak coherent pulses (WCP) or SPDC sources (heralded single-

photon sources). The details of both processes are given below.

Weak Coherent Pulses

WCP are attenuated laser pulses that are assumed to carry a single-photon in a given

pulse. Many well-known QKD protocols use weak coherent laser pulses to encode the

quantum state [106, 107]. These sources differ from the ideal single-photon sources

and follow the Poisson statistics. A highly attenuated pulsed laser source is used to

Figure 2.3: Generation of weak coherent pulses.

realize these weak coherent pulses. There is a non-zero probability, however low, to

get more than a single-photon in a pulse.
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Spontanoeus Parametric Down-Conversion (SPDC) Process

One of the methods of generating a single-photon is the SPDC process [108, 109]. This

is a nonlinear process where an input ’pump’ photon of high energy passing through a

nonlinear second-order crystal creates two lower energy photons, signal, and idler, at

the output. The process is called ’spontaneous’ because both the photons are created

Figure 2.4: (a) Generation of entangled photon pair in spontaneous parametric down-
conversion SPDC process. Phase matching condition in this process derives from (b)
energy conservation and (c) momentum conservation.

spontaneously. There are no initial signal and idler fields to stimulate the generation of

down-converted photons. They are generated from vacuum energy fluctuations. The

term ‘parametric’ indicates that the nonlinear interaction between the photons and the

crystal does not add or subtract energy or momentum. The term ‘down-conversion’

means that the generated signal and idler photon pairs must have a lower frequency

than the pump photon according to energy conservation.

In a nonlinear medium, the dielectric polarisation vector is expanded as a power
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series in terms of the electric field.

P(t) ∝ χ
(1)E(t)+χ

(2)E2(t)+χ
(3)E3(t)+ ....... (2.69)

In this representation, the coefficients χ
(n) correspond to the n-th order susceptibilities

of the medium. The linear optical transformations are captured by the χ
(1) term, while

the higher-order terms account for the nonlinear effects in the medium. χ
(2) is the

second-order susceptibility of the crystal which arises due to the dipole moment per

unit volume (or polarisation) induced by the electric field of light propagating through

the crystal.

Consider that the pump field is quantised. The SPDC process requires photon-

crystal interaction. Therefore, the interaction Hamiltonian can be written as

Ĥ ∼ χ
(2)âpâ†

s â†
i +H.c. (2.70)

where H.c. is the Hermitian conjugate. âp is the annihilation operator of the pump

photon. â†
s and â†

i are the creation operator of the signal and idler photons respectively.

Because of the ‘spontaneous’ nature of the process, the signal and idler are initially in

vacuum states, and during the interaction with the crystal, the pump photon annihilates

and gets converted into two photons, signal and idler,

|1⟩p |0⟩s |0⟩i → âpâ†
s â†

i |1⟩p |0⟩s |0⟩i = |0⟩p |1⟩s |1⟩i . (2.71)

Both the photons, signal and idler, are assumed to be created simultaneously. Because

of the simultaneous generation, the correlation between both the photons in various

degree of freedom have been maintained. This correlation in various DoFs such as

polarisation, OAM, path, time etc. leads to the entanglement between both the photons.
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Phase-Matching: SPDC process follows energy and momentum conservation.

According to the conservation law, the sum of the energy of the signal and idler must

be equal to the energy of the pump photon. Similarly, the sum of the momentum of the

signal and idler photon must be equal to the momentum of the pump photon. These

two conservations are jointly known as phase-matching conditions [110].

ωp = ωs +ωi,

−→
k p =

−→
k s +

−→
k i.

(2.72)

where ωp, ωs and ωi are the frequency and
−→
k p,

−→
k s and

−→
k i are the wave vector of

pump, signal and idler respectively. Both the photons that emerge from the crystal go

along different directions following momentum conservation.

Depending upon the crystal structure and orientation of optic axis, there are three

types of SPDC: Type-0 Phase Matching: In Type-0 SPDC process, signal, idler and

pump all have same polarisation. The joint state of SPDC photons for horizontally

polarised pump is written as,

|ψ⟩SPDC = |H⟩s |H⟩i , (2.73)

For a vertically polarised pump, the state becomes,

|ψ⟩SPDC = |V ⟩s |V ⟩i . (2.74)

Type-I Phase Matching: In Type-I SPDC process, signal and idler have same polar-

isation but orthogonal to the pump polarisation. The joint state of SPDC photons for
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horizontally polarised pump is written as,

|ψ⟩SPDC = |V ⟩s |V ⟩i , (2.75)

For vertically polarised pump, the state becomes:

|ψ⟩SPDC = |H⟩s |H⟩i , (2.76)

The states given in Eq. (2.75) and (2.76) are not entangled. If two Type-I crystals

joined together have an optical axis perpendicular to each other then one can generate

a polarisation-entangled state using diagonal/anti-diagonal pump polarisation. The

joint state of SPDC photons with two crystals stacked together is written as,

|ψ⟩SPDC = c1 |H⟩s |H⟩i ± c2 |V ⟩s |V ⟩i . (2.77)

For maximally entangled state c1 = c2 = 1/
√

2. This method was first demonstrated

by Kwiat et.al.

Type-II Phase Matching: In Type-II SPDC process, signal and idler have orthogo-

nal polarisation. Both the photons are emitted along two different cones due to the

birefringent property of the nonlinear crystal. And the intersection of cones provides

the polarisation entangled state. The joint state of SPDC photons of these intersecting

points is written as

|ψ⟩SPDC =
1√
2
(|H⟩s |V ⟩i ±|V ⟩s |H⟩i) . (2.78)

Type-II crystal is most commonly used for the generation of the polarisation-entangled

state.
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2.7.2 Detection of Light

What are photons? Photons, in simple terms, are the fundamental units that trigger a

photon counter to click. To understand photons, it is crucial to consider the process

of detection. In a laboratory setting, photons are not directly detected; instead, they

are typically converted into electrical signals, which are then detected and analysed

[111]. This allows us to retrieve the information encoded in the light and carried

by the photons. Light travels as a high-frequency electromagnetic wave, and can be

detected using two methods: field detection and intensity detection. Field detection

enables the measurement of both the amplitude and phase information of the light,

while intensity detection only provides information about the light’s intensity, without

any phase details. Broadly speaking there are two different ways of recording the light.

One is the detection of individual photons, while the other involves measuring the

currents generated by a stream of photons. The choice between these methods depends

on factors such as the time response of the photo-detector and the magnitude of the

photon flux. Each technology has its own applications and is employed accordingly.

Single Photon Detection

The measurement of the Fock basis (photon number states) is facilitated by a specific

type of detector known as a photon-resolution detector. This detector is designed to

distinguish and discriminate between different Fock states, denoted as |n⟩. However,

accurately determining the photon number presents significant challenges, and there

is currently no detector capable of efficiently achieving this task [112–114]. Instead,

a more practical objective is the use of a photon-sensitive detector (Fig. 2.5) that can

differentiate between the absence of photons (|0⟩) and the presence of one or more
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Figure 2.5: Detection of weak coherent pulses by single-photon detector; SMF:
Single-mode Fiber; FC: Fiber Coupler; WCP: Weak Coherent Pulses; MMF: Multi-
mode Fiber; SPCM: Single-Photon Detector.

photons. Avalanche photodetectors (APDs) are currently employed to achieve photon

sensitivity, although even this poses technical difficulties. APDs work on the principle

of reverse bias voltage breakdown. They are heavily doped PiN photodetectors that

produce more electron-hole pairs for conduction with just a single incident photon.

APDs are meticulously calibrated to achieve single-photon detection capability.

Realistic APDs encounter two primary sources of errors. First, not all photons that

reach the detector initiate an avalanche. The efficiency (ηAPD) of the detector rep-

resents the ratio of detected photons to the incoming photons count. This efficiency

is modeled as a beam splitter with a transmittance (ηAPD) placed before an ideal de-

tector. The second source of error arises from what is known as dark counts. These

correspond to spontaneous clicks that occur without any incident photon triggering

them. Fortunately, the influence of dark counts can be reduced to an insignificant level

by triggering the detector only when an incoming pulse is anticipated.

Quadrature Detection: Homodyne Detection

Balanced Homodyne Detection (BHD) [36, 115] is a well-known and efficient tech-

nique to measure the field quadratures of the electromagnetic oscillator.

Mathematical Treatment of BHD: In a standard BHD, the signal ’a’ under study



2.7. Generation & Detection of Light 59

interferes at a 50% beam-splitter with a strong coherent reference beam ’b’, known as

the LO, as illustrated in Fig. 2.6. The resulting outputs are collected by two photode-

tectors, and the difference in the photocurrents is directly related to the field quadrature

⟨x̂φ ⟩. Here, φ is determined by the phase difference between the LO and the signal, and

it can be easily adjusted by varying the optical path length of the LO. The annihilation

Figure 2.6: Balance homodyne detection scheme.

operators at the two output port of the beam splitter are written in terms of inputs,

ĉ =
1√
2
(â+ b̂), d̂ =

1√
2
(b̂− â), (2.79)

After the BS, the two modes are detected by two identical photodetectors. The two

photocurrents are measured and subtracted from each other. The photocurrents Ic and

Id are proportional to the photon number observables n̂c = ĉ†ĉ and n̂d = d̂†d̂.

The difference photocurrent Î is written as,

Î = n̂c − n̂d = ĉ†ĉ− d̂†d̂, (2.80)
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Using equation Eq. (2.79), it simplifies to,

Î = b̂†â+ â†b̂,

Introducing the phase in the LO arm,

b̂ → b̂eiφ , b̂† → b̂†e−iφ (2.81)

The photocurrent operator now becomes,

Îφ = â†b̂eiφ + b̂†âe−iφ (2.82)

This is the observable that we are actually measuring here. Now, we have to see the

relation of the photocurrent to the quadratures. Consider, the signal mode is given by

state ρs, and LO mode is given by z =
1√
2
(q̂+ ip̂). The expectation value of photocur-

rent would be given by,

⟨Îφ ⟩ = Tr
[
ρ̂s ⊗|z⟩⟨z|Îφ

]
=

√
2|z|Tr

[
ρ̂sx̂φ

]
=

√
2|z|⟨x̂φ ⟩ (2.83)

From the Eq. (2.83), we can see that ⟨Îφ ⟩ is nothing but scaled ⟨x̂φ ⟩, with the rescaling

factor
√

2|z|.

This ⟨x̂φ ⟩ is having form,

⟨x̂φ ⟩= q̂cosφ + p̂sinφ (2.84)

Calculating the second moment ⟨x̂2
φ ⟩ (fluctuation of quadrature i.e variance), it would
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comes out,

⟨Î2
φ ⟩= ⟨x̂2

φ ⟩+ ⟨ â†â
2|z|2

⟩ (2.85)

This implies that homodyne photocurrent coincides with quadrature moment only,

when the signal mode satisfies,

⟨â†â⟩ ≪ |z|2 (2.86)

Changing the phase of the local oscillator with respect to the signal we would get

the quadrature value q̂ or p̂ for different φ values.
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Section II - Tools for QKD

In QKD, once the process of key establishment is done the further post-processing of

the key is performed to get the secure key. In DVQKD, the key is directly obtained

in binary form and one can do the error correction and privacy amplification to obtain

the final key. Whereas, in CVQKD the key is obtained in terms of Gaussian random

numbers, called the key elements. There are various steps to reach the final secure

key which include, parameter estimation, reconciliation, error correction, and privacy

amplification. In this Section, we will discuss the steps involved in the process of

secure key extraction.

2.8 Shannon Information

The field of Information Theory was originally established by the works of Harry

Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in 1948 [16, 116,

117]. Information theory offers a mathematical framework for quantifying informa-

tion through Shannon entropy, which measures the information of a random variable

X. For a random variable, the entropy is defined as

H(X) =−∑
x

p(x)log2 p(x) (2.87)

where, p(x) is the probability of the X having the outcome x. The event X could be

a coin toss, die roll, etc. Given H(X) = 1 implies that the variable X is maximally

random. The relation for Shannon entropy holds for multiple variables. For the two

random variables X and Y , the joint entropy is given by,

H(X ,Y ) =−∑
x,y

p(x,y)log2 p(x,y) (2.88)
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In the case where X and Y are independent, the joint entropy is equal to the sum of

their individual entropies.

Conditional entropy is another significant parameter, defined as the uncertainty

of variable X when the outcome of variable Y is known.

H(X/Y ) =−∑
x,y

p(x,y)log2
p(x,y)
p(y)

(2.89)

Therefore, one can proceed to define the mutual information, which quantifies how

much information can be obtained from variable X by observing variable Y , consid-

ering both variables X and Y . In practical terms, this is commonly explained as the

shared information between variables X and Y .

H(X ;Y ) = I(X ;Y ) =−∑
x,y

p(x,y)log2
p(x,y)

p(x)p(y)
(2.90)

Mutual information, conditional entropy, and joint entropy hold the following rela-

tions:

H(X/Y ) = H(X ,Y )−H(Y )

I(X ;Y ) = H(X)−H(X/Y ) = H(X)+H(Y )−H(X ,Y )

H(X ,Y )≤ H(X)+H(Y )

(2.91)
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2.8.1 Shannon Entropies for Gaussian States

The Shannon entropy for a variable X which is described by a Gaussian distribution

with variance σ
2 and mean zero is defined as,

H(X) =
1
2

log2σ
2 +C (2.92)

where C represents an arbitrary constant. To extend this concept to a two-mode state,

we define the covariance matrix (details are given in Sec.2.10.2). The covariance ma-

trix represents the joint entropy for variables X and Y with covariance CX ,Y , which is

defined as

Σ =

 σ
2

X CX ,Y

CT
X ,Y σ

2
Y

 (2.93)

The joint entropy is given by

H(X ,Y ) =
1
2

log2det[Σ]+C” (2.94)

where C” represents an arbitrary constant. Likewise, the conditional entropy is defined

as,

H(Y/X) =
1
2

log2σ
2
Y/X +C (2.95)

where, C represents an arbitrary constant, and σ
2
Y/X is the conditional variance

σ
2
Y/X = σ

2
Y −

CX ,Y

σ2
X

(2.96)
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Finally, the mutual entropy is written as,

H(X : Y ) = H(Y )−H(Y/X) =
1
2

log2
σ2

Y

σ2
Y/X

= H(X)−H(X/Y ) =
1
2

log2
σ2

X

σ2
X/Y

= H(X)+H(Y )−H(X ,Y ) =
1
2

log2
σ2

Y σ2
X

detΣ
.

(2.97)

2.9 Quantum Information

Similar to the classical case, the information carried by a quantum state is measured

by using von Neumann entropy [18, 118]. The entropy of a state described by a density

operator, ρ is given by

S(ρ) =−tr(ρlog2ρ). (2.98)

The following relations hold for conditional, joint, and mutual von Neumann entropy

S(A,B) = −tr(ρABlog2ρ
AB)

S(A/B) = S(A,B)−S(B)

S(A : B) = S(A)+S(B)−S(A,B)

(2.99)

In the context of von Neumann entropy, conditional entropy can be negative, and it is

often regarded as an indication of entanglement.
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2.9.1 Holevo Bound

The Holevo bound holds significant importance in quantum information as it sets an

upper limit on the accessible information. This bound is particularly crucial for QKD.

When Alice prepares a series of states ρx, and Bob performs a measurement to obtain

outcome Y , the accessible information available to Bob is bounded by the following

relation,

H(a : b)≤ S(a : B) = χ(a : B) = S(ρ)−∑
x

pxS(ρx) (2.100)

where ρ = ∑
x

pxρx and χ(a : B) represents the Holevo quantity. In this context, clas-

sical states are denoted by lowercase letters to distinguish them from quantum states,

which are represented by uppercase letters.

2.9.2 von Neumann Entropy for Gaussian States

A Gaussian state can be represented as a tensor product of thermal states [32]. The

covariance matrix Σ, which characterises the Gaussian state, can be written as follows,

SΣST =⊗N
k=1λk1 (2.101)

where each λk1 is the covariance matrix of a thermal state and λk is a symplectic

eigenvalue of Σ. For a N mode thermal state ρ the entropy is given by

S(ρ) =
N

∑
k=1

S(G(λK −1)/2) (2.102)



2.9. Quantum Information 67

where

G(x) = (x+1)log2(x+1)− xlog2x (2.103)

Symplectic Eigenvalues

The symplectic eigenvalues of the matrix Σ are obtained by diagonalizing it with a

symplectic transform S as shown in Eq. (2.101). Determining the symplectic eigen-

values is a straightforward process for both one and two-mode states.

Single-Mode State

The symplectic eigenvalue for a single-mode state can be obtained simply by taking

the square root of the determinant of the matrix Σ.

λ
2 = det[Σ] (2.104)

Two-Mode State

For two modes state, finding the symplectic eigenvalues is a more challenging task

compared to single-mode states. We define the covariance matrix to find the symplectic

eigenvalues. Consider the covariance matrix,

Σ =

 Σ1 C12

CT
12 Σ2

 (2.105)
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We define the two symplectic invariants to find the symplectic eigenvalues.

∆ = λ
2
1 +λ

2
2 = detΣ1 +detΣ2detC12 (2.106)

λ
2
1 λ

2
2 = detΣ (2.107)

The symplectic eigenvalues are the solutions of the polynomials,

z2 −∆z+detΣ = 0 (2.108)

With the solution,

λ
2
1,2 =

1
2
[
∆±

√
∆2 −4detΣ

]
(2.109)

2.9.3 Secret Key Rate

The secret key rate for direct and reverse reconciliation in QKD is given by,

rDR = I(A : B)− I(A : E) (2.110)

rRR = I(A : B)− I(B : E) (2.111)

where, I(A : B) is the mutual information shared between Alice and Bob and I(A : E) is

the Holevo bound giving the information leakage to Eve. The subscript RR denotes the

reverse reconciliation and DR represents direct reconciliation. In RR Alice corrects his

erroneous data after sifting by comparing it with Bob. Whereas, in DR Bob corrects

his data after verifying it with Alice. For a secure QKD protocol, the quantity must be

non-zero. For rRR,rDR ≥ 0 implies that the mutual information between Alice and Bob,

I(A : B) must be greater than Alice and Eve (I(A : E)) and Bob and Eve (I(B : E)).
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2.10 Secure Key Rate for CVQKD Protocols

The asymptotic secure key rate [30] for a CVQKD protocol is given by the relation,

K = β I(A : B)− I(B : E) (2.112)

Here, β is the reconciliation efficiency, and I(A : B) is mutual information shared be-

tween Alice and Bob. The factor I(B : E) is the Holevo bound that would tell the in-

formation leakage due to the third party called Eve. To calculate the value of I(A : B)

& I(B : E), we estimate the parameters for channel transmittance and the excess noise

[45].

2.10.1 Transmittance and Noise

A CVQKD protocol is characterised by two important parameters, channel transmit-

tance, and noise. The key rate of the protocol strongly depends on these two factors.

The noise in the system is mainly contributed by two reasons: channel noise and detec-

tion noise. The detection noise is contributed due to the imperfections in the homodyne

measurement and is controlled by the receiver (Bob). The channel noise is added in the

channel during the transmission and could be due to a third-party intervention called

Eve. The presence of Eve would introduce extra noise called excess noise. The total

noise would be sum of the both channel noise and detector noise.

Channel noise is mainly contributed due to channel loss and excess noise, and

could be defined as,

Ξch =
1−Tch

Tch
+ξA (2.113)

where, the first term is the channel loss, and ξA is the excess noise introduced in the
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channel which could be due to modulation noise or phase noise.

Detection noise is mainly contributed by lossdue to detector efficiency, or due to

electronic noise νel.

Ξdet =
1−ηdet

ηdet
+

νel

ηdet
(2.114)

Total noise is,

Ξ = Ξch +
1

Tch
Ξdet (2.115)

Tch, ηdet and νel are known parameters whereas, ξ is an unknown parameter that needs

to be estimated.

In order to estimate the values for channel transmittance and excess noise, we will

consider the case for Gaussian modulation discussed in Chapter 1. The reduced form

of Gaussian modulation could be applied to other modulation techniques as well.

As mentioned in Chapter 1, Sec. 1.4, the modulation variance of Alice’s encoded

state is Vmod (in the case of Gaussian modulation). In addition, the noise variance of

the coherent state is Vo = 1 which comes due to the quantum fluctuations of the source

known as shot noise. Once Alice’s signal is transmitted through a lossy and noisy

channel, Bob will measure the total quadrature variance.

VB = TVmod +1+ξ (2.116)

where T is the channel transmittance given by

T = Tchηdetηcoup (2.117)

and ξ is the total excess noise that is contributed due to channel as well as detection

losses. ξ could also be introduced by third-party intervention in between the channel.
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2.10.2 Covariance Matrix

The bosonic multi-mode states are represented in terms of covariance matrices Σ. The

diagonal terms of the covariance matrix give the variance of the quadrature and off-

diagonal terms give mutual covariance function. Knowledge of Σ is essential to com-

pute the Holevo bound. An N-mode Gaussian state is characterised by a displacement

vector x̂ and a covariance matrix of dim 2Nx2N.

x̂ = (q̂1, p̂1, q̂2, p̂2, . . . q̂N , p̂N)
T . (2.118)

This satisfies the commutation relations.

[
x̂ j, x̂k]= 2iΩ jk ; Ω =

N⊕
l=1

 0 1

−1 0

 (2.119)

The elements of the covariance matrix are given by

Σ
i j =

1
2

〈{
x̂ j −⟨x̂ j⟩, x̂k −⟨x̂k⟩

}〉
(2.120)

=
1
2

(
⟨x̂ jx̂k⟩+ ⟨x̂kx̂ j⟩

)
−⟨x̂ j⟩⟨x̂k⟩ (2.121)

= E(x̂ j, x̂k) (2.122)

The diagonal elements are given as,

Σ
j j =

〈(
x̂ j)2〉− (

〈
x̂ j〉)2

(2.123)

= V (x̂ j) (2.124)
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ΣAB =

q̂1 p̂1 .......... p̂N

q̂1

p̂1

.

.

.

.

p̂N



V (q̂1) E(q̂1, p̂1) .......... E(q̂1, p̂N)

E(p̂1, q̂1) V (p̂1) .......... E(p̂1, p̂N)

. . .......... .

. . .......... .

. . .......... .

. . .......... .

E(p̂N , q̂1) E(p̂N , p̂1) .......... V (p̂N)



(2.125)

Here, the diagonal elements give the variance of quadratures and the off-diagonal ele-

ments give the covariance of two quadratures.

For the prepare and measure Gaussian modulated coherent state protocol (GMCS),

we can actually take a mathematically equivalent entanglement-based scheme. Alice

prepares a two-mode squeezed vacuum state (TMSVS) and performs measurements

on both quadratures of her mode using heterodyne detection [45]. She then sends the

other mode to Bob. The covariance matrix for TMSVS is defined as,

ΣAB =

q̂A p̂A q̂B p̂B

q̂A

p̂A

q̂B

p̂B



V 0
√

V 2 −1 0

0 V 0 −
√

V 2 −1√
V 2 −1 0 V 0

0 −
√

V 2 −1 0 V


(2.126)

=

 V12

√
V 2 −1σz√

V 2 −1σz V12

 (2.127)
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where, σz represents the Pauli matrix and V denotes the variance of the quadrature

operators. The variance of the quadratures q and p is defined by the relation,

V (q̂) = ⟨q̂2⟩−⟨q̂⟩2 (2.128)

V (p̂) = ⟨p̂2⟩−⟨p̂⟩2

For the GMCS case, the variance of both quadratures is equal and is the sum of

actual Alice’s modulation variance and shot noise variance,

V =Vmod +Vo =Vmod +1 (2.129)

Hence the covariance matrix in Eq. 2.126 takes the form

ΣAB =

 (Vmod +1)12

√(
V 2

mod +2Vmod
)
σz√(

V 2
mod +2Vmod

)
σz (Vmod +1)12

 . (2.130)

When transmitting the state to Bob, the signal is influenced by the transmittance of

the channel T as well as the excess noise ξ coming from imperfect modulation, de-

tection noise, etc. By modeling this channel loss as the output of a beam splitter of

transmittance T one can get a covariance matrix after transmission as follows,

ΣAB =

 VA12 Cov(A,B)12

Cov(A,B)12 VB12

 (2.131)

=

 (Vmod +1)12

√
T
(
V 2

mod +2Vmod
)
σz√

T
(
V 2

mod +2Vmod
)
σz (TVmod +1+ξ )12

 .

Hence, for Gaussian modulation CVQKD, the covariance matrix can be defined by
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Eq. 2.131 followed by the Gaussian distribution Q ∼ P ∼ N(0,Vmod) for the quadra-

tures mentioned in Sec. 1.4. The matrix can be further reduced to represent the discrete

modulation CVQKD.

2.10.3 Signal to Noise Ratio and Mutual Information

The SNR is simply described by,

SNR =
PS

PN
(2.132)

where PS is the total signal power and PN is the total noise power arriving at the channel

output.

The variance in Bob’s quadrature (homodyne detection) was obtained previously

as

VB =V (q̂B) =V (p̂B) = TV mod +1+ξ , (2.133)

Here, TV mod corresponds to the signal (with damped modulation) and 1+ ξ is the

added noise.

The SNR for the case of homodyne detection in Gaussian modulation is defined as

SNR =
TVmod

1+ξ
(2.134)

where, T denotes the transmittance, Vmod denotes the modulation variance of Alice’s

quadratres, ξ is the total excess noise.
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The mutual information between Alice and Bob is given by the relation,

IAB =
1
2

log2(1+SNR)

=
1
2

log2(1+
TVmod

1+ξ
)

(2.135)

2.10.4 Estimation of Holevo Bound

Holevo bound is the maximum information Eve can have on the shared key before

privacy amplification. For reverse reconciliation, this is given by,

IEB = SE −SE|B. (2.136)

Here, SE represents the von Neumann entropy of the state accessible to Eve and SE|B

is the same after Bob has done his measurements (homodyne or heterodyne). The von

Neumann entropy of a Gaussian state is given by the symplectic eigenvalues of its

covariance matrix discussed in Sec. 2.9.2. For a covariance matrix Σ, the symplectic

eigenvalues are defined as the modulus of the ordinary eigenvalues of the matrix.

Σ̄ = iΩΣ (2.137)

Ω is defined in Eq. (2.119). Since only the modulus of the eigenvalues is considered,

a 2Nx2N covariance matrix will give only N symplectic eigenvalues (see Sec. 2.9.1).

For a Gaussian state defined by a covariance matrix Σ, the von Neumann entropy is

given by

S = ∑
i

g(νi) (2.138)
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with

g(νi) =
ν +1

2
log2

ν +1
2

− ν −1
2

log2
ν −1

2
(2.139)

where, νi are the symplectic eigenvalues of Σ.

2.10.5 Equivalence of Coherent State and TMSVS Protocols

The security proofs against various attacks rely on an entanglement-based description

of the protocol, which is formally equivalent to the prepare and measure scheme pre-

sented in the Chapter. So, Alice can go from a prepare and measure scenario to an

entanglement-based scenario which is easier for doing security analysis. Therefore,

Alice and Bob scale the quadrature values they obtained from experimental measure-

ments, transforming Σ
PM to Σ

EB. The covariance matrix for prepare and measure

protocol for transmission T and excess noise ξ is given by,

Σ
PM =


Vmod12

√
T
µ

V mod 12√
T
µ

V mod 12
T
µ

V mod +1+
ε

µ
12

=

 aPM
12 cPM

12

cPM
12 bPM1

 . (2.140)

Here µ = 1 for homodyne detection and µ = 2 for heterodyne detection. The entanglement-

based TMSVS covariance matrix is given by,

Σ
EB =

 V12
√

T
√

V 2 −1σz
√

T
√

V 2 −1σz (T [V −1]+1+ξ )12

 (2.141)

=

 (Vmod +1)12
√

T
√

V 2
mod +2Vmodσz

√
T
√

V 2
mod +2Vmodσz (TVmod +1+ξ )12


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=

aEB
12 cEB

σz

cEB
σz bEB

12


Alice proceed to find the values of aEB,bEB and cEB. Using the below transformation

Alice can go from a prepare and measure scenario to an entanglement-based scenario

which is easier for doing security analysis.

1. Since aEB =V =Vmod +1, this can be easily calculated by Alice.

2. Comparing Eq. (2.141) and Eq. (2.140) one can see bEB = µbPM −µ +1. Alice

can calculate bPM from the disclosed data by Bob and hence find bEB.

3. To find cEB Alice & Bob rescales their quadrature values as,

q̂EB
A =

√
V +1
V −1

q̂PM
A =

√
V mod +2

V mod
q̂PM

A

p̂EB
A =−

√
V +1
V −1

p̂PM
A =−

√
V mod +2

V mod
p̂PM

A ,

q̂EB
B =

√
µ q̂PM

B ,

p̂EB
B =

√
µ p̂PM

B ,

(2.142)

cEB =
〈
q̂EB

A q̂EB
B

〉
=

√
V mod +2

Vmod

√
µ
〈
q̂PM

A q̂PM
B

〉
(2.143)

Alice will use the data disclosed by Bob to compute
〈
qPM

A qPM
B

〉
and

〈
pPM

A pPM
B

〉
and multiply the factor

√
(Vmod +2)/Vmod

√
µ to get cEB.

From this Alice can compute the transmittance and excess noise as follows,

T =

(
cEB)2

V 2
mod +2V mod

= µ

(
cPM

V mod

)2

ξ =VB −TV mod −1 = bEB −TV mod −1

(2.144)
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Using this information, Alice can proceed to find the Holevo bound discussed in Sec-

tion 2.10.4 and finally calculate the secure key rate.



Chapter 3

BB84 Protocol using Heralded

Single-Photon Source

The BB84 quantum key distribution (QKD) protocol set the course for achieving se-

cure communication. Since then, much work has been done in the direction of QKD

implementation to improve the experimental limitations and the security aspects. In

this Chapter, we have implemented a passive QRNG-based BB84 QKD protocol using

a heralded single-photon source employing the SPDC process. The proposed protocol

is secure against PNS and side-channel attacks, offering an advantage over a typical

BB84 and decoy state protocol. Further, the implementation does not require an ex-

ternal QRNG source and can be implemented with fewer resources than the BBM92

protocol. The heralded photon from an SPDC process is used to prepare the four po-

larisation states and is then sent to Bob through a quantum channel. The quality of the

single-photon source is calculated by measuring the second-order correlation g2(0)

function. The security of the implemented protocol is hence given, and the key rate is

extracted.

79
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3.1 Introduction

Quantum key distribution (QKD) is one of the most ubiquitous applications of

quantum information, which exploits the fundamental principles of quantum mechan-

ics to exchange the cryptographic key between two communicating parties. It provides

information-theoretic security in the sense that the security of the protocol entirely re-

lies on the laws of quantum mechanics instead of the complexity of the mathematical

algorithms; hence, making no assumptions about the adversary’s technological pow-

ers.

The first proposed QKD protocol was BB84 [119], where the key information is

encoded into the polarisation state of a single-photon. Since the implementation of

BB84, several protocols have been demonstrated [120–123]. These protocols are the-

oretically unconditionally secure [124–126]. However, various experimental impair-

ments raise the security threats to these protocols[127–129]. A typical BB84 requires

a single-photon source that deterministically produces a single-photon per pulse. The

generation of true single-photons is experimentally challenging; instead, we use weak

coherent pulses that follow Poissonian statistics. This leads to a non-zero probabil-

ity of having more than one photon. Such implementations are susceptible to photon

number splitting (PNS) [128] attack by an eavesdropper. To reduce the vulnerability

against such attacks; several innovative protocols have been demonstrated, which in-

clude decoy state protocol [97], entanglement-based (EB) protocols [120, 121], and

measurement device independent (MDI) QKD protocols [130]. However, the imple-

mentation of these protocols is much more complicated in practice. In implementa-

tions of the decoy state BB84 protocols, multiple lasers are often used to generate the

signal and the decoy states, opening the implementation to various side-channel at-

tacks. Moreover, such an implementation also leads to an increase in the setup size
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and complexity. On the other hand, the EB protocols are proven to be more secure but

suffer from a low key generation rate since a fraction of the key is used for entangle-

ment verification. Another major challenge with EB protocols is the distribution of the

entanglement over long distances with high fidelity. The EB protocols require more

resources than the typical prepare and measure BB84 protocol.

To get a trade-off between resources and security, we have implemented the BB84

protocol using a heralded single-photon source [131]. One of the ways to generate a

single-photon source is the nonlinear process of spontaneous parametric down con-

version (SPDC) [132] where a photon pair is generated from the nonlinear crystal fol-

lowed by certain phase-matching conditions. By doing the conditional measurement

on one of the photons, we can infer the presence of the other. Such a process is called

heralding. To perform the QKD, Alice keeps one of the photons generated by the

SPDC process for heralding, and the other photon is encoded in four different delays

and polarisation states. The encoded photons are transmitted to Bob through a quan-

tum channel. Bob measures the photons using single-photon detectors. To check the

quality of the single-photon source, we have measured the second-order correlation

function g2(0) [104, 133]. Thus we assure the security of the implemented protocol

and extract the key rate.

The advantage of our implementation of BB84 using the heralded single-photon

over a typical BB84 lies in the fact that the protocol provides security against PNS

attack since we are using a single-photon source instead of weak coherent pulses.

Moreover, the protocol offers advantages over the decoy state protocol since we do

not require additional sources, and the four polarisation states are prepared by using

only a single source, which prevents any side-channel attacks [134]. In addition, the

proposed method uses less resources compared to BBM92 protocol [44] and does not
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require an external quantum random number generator (QRNG) to prepare various

polarisation states randomly.

This Chapter is organized into the following sections. In Section 5.2, we have given

a background for the understanding of the protocol and given the security parameters

for the protocol. Section 5.4 describes the experimental implementation of BB84 QKD

protocol by using a heralded single-photon source. We highlight the results obtained

from the experiment. We conclude our work with some remarks in Section 5.5.

3.2 Background

In this section, we describe the implementation of BB84 protocol using heralded

single-photon source. For the implementation of the protocol, we use the SPDC pro-

cess to generate single-photon pairs. The generation of single-photon pairs using

SPDC process is performed at Alice’s end, like in a typical BB84. In this process,

an incident pump photon gets annihilated and creates a pair of photons such that the

total energy and momentum of the system remain conserved. The generated photons

of the pair are called signal and idler. By detecting one of the photons using a single-

photon detector, the presence of the other photon can be inferred. Such a process is

called heralding. Alice uses signal photon for heralding, and idler photon is used to

prepare the four polarisation states |H⟩, |V ⟩, |D⟩, and |A⟩. The encoded states are

transmitted to Bob through a free space channel. Bob performs the detection using

single-photon detectors. The whole process is divided into the following steps.

3.2.1 Random Selection of the States

Usually, in a typical BB84 and decoy state protocol, we require a random number

that is generated using a QRNG [135, 136]. In heralded BB84 protocol, the job of
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randomly selecting the states, is embedded in the setup itself.

Figure 3.1: Schematic for SPDC process; HWP: Half Wave Plate; PBS: Polaris-
ing Beam Splitter; L: Lens; BIBO: Bismuth Borate Nonlinear Crystal; BPF: Band-
pass Filter; PM: Prism Mirror; FC: Fiber Coupler; MMF: Multi-mode Fiber; SPCM:
Single-Photon Detector; TDC: Time-to-Digital Converter; BS: Beam Splitter.

The experimental setup for generating a single-photon using the SPDC process is

shown in Fig. 3.1. Alice has a continuous wave diode laser (TOPTICA) operating at

405 nm with an output power of 6 mW. A combination of half-wave plate (HWP1)

and polarising beam splitter (PBS1) is used to tune the power of the laser. A nonlinear

crystal, BIBO of type-I, is used to generate the single-photon pairs using the SPDC

process. A lens (L1) of focal length 50 cm is used to focus the pump beam onto the

crystal to increase the process’s efficiency. A pair of non-collinear vertically polarised

signal and idler is emitted from the crystal, which are separated by using a prism mirror

(PM). A band-pass filter (BPF) of 810 ± 5 nm is used to block the pump beam. Signal

photon is used for heralding. It is coupled to the fiber coupler (FC) through multi-

mode fiber (MMF) and is measured by using a single-photon detector (SPCM). The

timestamps are recorded using a time-to-digital converter (TDC). The idler arm is used
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to prepare the four polarisation states, which are then transmitted to Bob via free space.

Figure 3.2: State preparation for BB84 protocol using heralded single-photon source;
HWP: Half Wave Plate; BS: Beam Splitter; M: Mirrors.

Once we generate the signal and idler photons, we prepare the four polarisation

states |H⟩, |V ⟩, |D⟩, and |A⟩. The state preparation setup consists of two cascaded

Mach-Zehnder interferometers with Half Wave Plates (HWPs) in them, shown in Fig.

3.2. As such, a single-photon passing through the setup can take four paths. The spe-

cific path the photon chooses is made random by the use of beam splitters. The HWPs

change the polarisation depending on the path chosen. We ensured that the beam split-

ters are as close to 50:50 as possible to generate the four polarisation states with equal

probability. The BSs placed in the idler arm do the job of randomly selecting the

photon sent to Bob.

The input polarisation to BS1 is |V ⟩. The photon can choose either of the four

paths: ac, bc, ad, or bd. The HWP2 and HWP3 are placed at 45o and 22.5o to convert

the polarisation into |H⟩ and |D⟩, respectively. The photon following the path ’ac’ or
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’bc’ is |V ⟩ or |H⟩ polarised. The photon following the paths ’ad’ or ’bd’ is |A⟩ or |D⟩

polarised. The states after BS3 are transmitted to Bob through a quantum channel.

3.2.2 Transmission Through Channel

The quantum state is transmitted to Bob through a quantum channel. For sending

qubits in polarisation degree of freedom, one can use free space or optical fiber as a

channel. Free space offers an advantage as the polarisation drifts in free space are much

less compared to fiber. Exploring free space is essential for terrestrial applications and

satellite communication. Alice transmits her states to Bob through free space.

3.2.3 Detection of State

The photons are measured by projecting their polarisation state onto the four states

by employing a combination of HWPs and PBSs followed by SPCMs. Bob’s detec-

tion setup includes a 50:50 beam splitter (BS4), which acts as a basis selector that

randomly selects the basis for the projection measurement, as shown in Fig. 3.3. The

measurement of the state in {H,V} and {D,A} basis is done by keeping a PBS3 and

a combination of HWP4 and PBS2 respectively. The photons are detected by single-

photon avalanche detectors (Excelitas, SPCM-AQRH-14-FC). The detector efficiency

of the detectors is 65%. We use multi-mode fibers to couple the photons to the detec-

tors. The number of detected photons and their arrival times are recorded by using the

time-to-digital converter (TDC) and time tagger.
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Figure 3.3: Detection of the quantum states at receiver’s end; HWP: Half Wave Plate;
PBS: Polarising Beam Splitter; FC: Fiber Coupler; SPCM: single-Photon Detector;
TDC: Time-to-Digital Converter; BS: Beam Splitter.

3.2.4 Post-processing

Once the key establishment process is done, Alice and Bob further process their data

to extract the secure key. They perform sifting to get the correlated bit string. Ad-

ditionally, they do the reconciliation to estimate and correct the error present in the

correlated data. The final step includes privacy amplification to make the key more

secure by minimising the information to Eve.

The sifting process requires that the photon arrival time at the receiver’s end and

the time when they are launched from the transmitter must be known. Alice and Bob

are inherently synchronised due to SPDC process and thus the timestamp information

can be correctly extracted by both Alice and Bob. Since Alice has encoded her state in

polarisation states following different optical paths, she knows the precise delays for

various polarisation states, which is shown in Table 3.1. Moreover, the absolute delay

of the heralded signal photon from the crystal to the detector is known by Alice, which
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is 3.07 ns. To perform sifting, Alice and Bob follow the steps mentioned here.

Path Absolute Time Delay (ns) Output States
ac 11.84 |V ⟩
ad 8.8 |A⟩
bc 13.57 |H⟩
bd 10.52 |D⟩

Table 3.1: The table contains time delays for different output polarisation states at
Alice’s end, and this delay information is limited to Alice only.

• Bob sends his timestamps and corresponding basis information to Alice. Alice

compares the heralded signal with Bob’s timestamps.

• The relation between the recorded timestamps of Alice (tA) and Bob (tB) follow

the relation

tB = tA +∆+δch (3.1)

where ∆ is the delay in the path lengths in the state preparation setup, and δch is

the delay due to the quantum channel.

• If the difference in the recorded timestamps matches the time delay for any of

the four polarisation states, then the timestamp corresponds to the state sent by

Alice.

• Alice removes all the detections for which the timestamp difference is not one of

the four-time delays mentioned in Table 3.1. Also, the detections corresponding

to the wrong basis measurements are discarded.

• Alice and Bob are left with correlated key elements and perform further post-

processing to get the secure key.

The quantum bit error rate (QBER) is then evaluated using a small portion of the

sifted key. The estimated QBER is used to evaluate the mutual information shared
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between Alice and Bob and also to further assess the amount of information leaked to

a potential Eve. The final steps include error correction using LDPC codes [137, 138]

and then privacy amplification using Toeplitz hashing [90].

3.2.5 Error Correction

In classical communication, error correction codes are employed to mitigate errors in-

duced by channel noise [138, 139]. This is accomplished by introducing additional

bits, known as parity bits (r), into the message. The error correction codes involve

the use of a generator matrix (G) at the transmitter, while a parity check matrix (H)

is utilized at the receiver to calculate syndromes (s) for decoding. In QKD, the de-

coding process is performed at a single node, either Alice or Bob. Unlike classical

communication, only the syndrome (s) is exchanged between Alice and Bob. Based

on the syndrome (s) information, both parties modify their respective keys. Through

this process, the keys at both Alice and Bob eventually become identical. During the

parameter estimation (PE) phase, if the QBER falls below the specified threshold de-

termined by the protocol, the remaining keys undergo error correction. This leads

to the establishment of identical keys between Alice and Bob. The error correction

procedure can be executed by considering either Alice’s or Bob’s bits as correct.

For error-correcting, the remaining bits in the sifted key are divided into small

blocks of certain bits (say l). r parity bits are required to construct a parity check

matrix [F ]r×l . 

s1

s2

...

sr


r×1

=



F11 F12 · · · F1l

F21 F22 · · · F2n

...
... . . . ...

Fr1 Fr2 · · · Frl


r×l



g1

g2

...

gl


l×1

(3.2)
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Equation (3.2) denotes the basic operation for finding syndrome. After multiplication

with sift key this results in syndrome [s]r that is sent over the public channel to Bob.

Bob matches these blocks of syndrome with his ones for detecting the errors. The

syndrome which does not match is then corrected by the maximum likelihood tech-

nique [140]. There are several kinds of error-correcting algorithms eg. parity checks,

Hamming code, and Low-Density Parity Check (LDPC) [137, 141]. The common

error-correcting technique used in QKD is LDPC which is efficient and easy to imple-

ment in the system.

3.2.6 Privacy Amplification

Privacy amplification (PA) is a crucial process in QKD that aims to eliminate any

leaked information and distill a final secret key from a long-secret random sequence,

utilizing a universal hash function [142]. When combined with error correction, such

as LDPC or any other error correction codes, it allows for minimizing Eve’s informa-

tion about the key, reducing it to a negligibly small amount in the asymptotic limit. To

ensure the effectiveness of PA, the selection of a hash function over the public channel

must only occur after the quantum exchange between Alice and Bob. This precau-

tion prevents Eve from strategizing her attack based on their choice. Among various

hash functions suitable for privacy amplification, Pulitzer hashing [143] stands out as

a 2-universal hash function, enhancing the quality of randomness. For optimal per-

formance, a completely random initial seed is required, which can be obtained from

the output of a QRNG. The error-corrected bit string can be effectively hashed using

this approach. By integrating privacy amplification with error correction and employ-

ing the 2-universal hash function, the security of the final secret key is significantly

enhanced in the context of QKD. The hashing of the error-corrected bit string can be
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given by [144]



y1

y2

...

ym


m×1

=



h1 0 · · · 0 0

h2 h1 · · · 0 0

h3 h2 · · · 0 0
... h3 · · · h1 0

hm−1
... · · · h2 h1

hm hm−1 · · ·
... h2

0 hm · · · hm−2
...

0 0 · · · hm−1 hm−1

0 0
... · · · hm


m×l



g1

g2

...

gl


l×1

(3.3)

Here, [g]l×1 is the error corrected bit length, [h]m×l is the hash matrix and [y]m×1 is the

final secret key which has no correlation with Eve. This process is similar for Alice

and Bob which both can do independently. Estimation of final bit length after PA is

given by

m = l − t − s, (3.4)

Here l is the error corrected bits, and t is the amount of knowledge exchanged between

Alice and Bob to correct the error due to all possible reasons. Exchanging syndromes

in error correction might leak some information to Eve that’s why it is subtracted.

Security parameter s can be chosen according to the key one needs to compress in PA

[143]. This parameter also depends on the number of bits sacrificed due to information

exchange in EC. To check the quality of PA one can use randomness test suites, NIST,

DieHarder, ENT, etc. To finally test that the keys are identical, Alice encrypts a short

message with the generated key for Bob to check whether he can decrypt or not.
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3.2.7 Security of the Protocol: g(2)(0) Correlation

In quantum optics, the measurement of the second-order correlation g(2)(τ) plays an

important role, particularly in the observation of a purely quantum phenomenon called

’anti-bunching’ [25]. This measurement is commonly carried out using the Hanbury

Brown Twiss (HBT) experiment [104]. In the case of an ideal single-photon source,

where photons are emitted sequentially, each photon faces the option of being trans-

mitted through the BS or being reflected. When the two paths are equal, the proba-

bility of getting the clicks in two detectors simultaneously is zero, i.e. g(2)(0) = 0.

This confirms the true single-photon nature of the source and ensures the security of

the QKD experiments. For heralded single-photon sources produced by SPDC, the

correlation of the photons in the HBT experiment is performed between the idler (i)

and the conditioned detection of the signal (s), as depicted in Figure 3.4. In the per-

Figure 3.4: An illustration of the HBT experiment to find the second-order correlation
g(2)(0).

fect case of a single-photon source, where there is no delay between the detections of

photons in arms s, i1, and i2, the three-fold detection probability among these arms
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becomes zero. This probability, represented as Ps,i1,i2 , when normalized with respect

to the corresponding two-fold coincidences, provides the second-order correlation (for

zero delay).

g(2)(0) =
Ps,i1,i2

Ps,i1Ps,i2
(3.5)

where Ps,i1 and Ps,i2 are the probabilities of two-fold coincidence between s− i1, and

s− i2 pairs. The expression for the conditioned probability of coincidence detection is

given by Pi, j =
Ri, j

Ri
, where Ri, j represents the coincidence rates in the respective arms,

and Ri represents the count rate of the heralding arm. By substituting various probabil-

ities into Eq. 3.5, the expression for g(2)(0) in terms of experimentally measured rates

can be represented as follows:

g(2)(0) =
Rs,i1,i2Rs

Rs,i1Rs,i2
(3.6)

To calculate g(2)(0), one can directly measure the three-fold coincidences between the

heralding signal mode and the two idler modes. The value of g(2)(0) = 0.006±0.0002

for multi-mode fiber.

3.3 Results and Discussion

We performed the experiment for BB84 QKD protocol using a heralded single-

photon source in our lab over free space. The experimental setup for the protocol is

shown in Fig. 3.5. The overview of the transmitter and receiver setup in the laboratory

is shown in Fig. 3.6. Alice used a continuous wave diode laser (TOPTICA) operating

at a wavelength of 405 nm. To prepare the state, one of the photons generated by the

SPDC process is heralded by Alice, and the other photon is encoded in four differ-

ent polarisation states. The encoded photon is transmitted to Bob through a quantum

channel. Bob detects the photon using a single-photon detector. Alice and Bob collect
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Figure 3.5: Experimental setup for BB84 protocol using heralded single-photon;
HWP: Half Wave Plate; PBS: Polarising Beam Splitter; L: Lens; BIBO: Bismuth Bo-
rate Nonlinear Crystal; BPF: Band-pass Filter; PM: Prism Mirror; FC: Fiber Coupler;
MMF: Multi-mode Fiber; SPCM: Single-Photon Detector; TDC: Time-to-Digital Con-
verter; BS: Beam Splitter; M: Mirrors.

Figure 3.6: Laboratory view of transmitter and receiver setup for BB84 using a her-
alded single-photon. The receiver on the breadboard is made ready for the field exper-
iment.

the timestamps of the recorded photons. They further performed the sifting to get the

correlated data, followed by the steps mentioned in Section 5.2.

While performing the experiment, we made the assumption that the beam splitters



94 Chapter 3. BB84 Protocol using Heralded Single-Photon Source

used in the experiment were nearly 50:50. Further, we assumed that the detectors

were operating at the same efficiencies. We calculated the g(2)(0) and ensured that

our source is true single-photon nature. The secure key rate K, is obtained using the

relation [145],

K = P1 ∗ (1−2H(δ )) (3.7)

where H is the binary Shannon entropy, δ is the bit error, and P1 is the probability of

the photon pair detection.

We measured the various experimental parameters required to perform the QKD.

The channel transmittance for free space in lab is 98%. The detection efficiency of

the detectors is 65%. The coupling efficiency of the multi-mode fiber is 85%. The

obtained sifted key rate is 14 kbps, with a QBER of 7%. The secure key rate obtained

after error correction and privacy amplification is 5 kbps.

We plotted the correlated counts obtained from the independent detections per-

formed by Alice and Bob. The correlation is established between the heralded photon

measured by Alice and the polarisation encoded photons received by Bob at differ-

ent time delays. The time delay for the heralded photon is fixed, which is 3.07 ns.

The photons at Bob’s end arrive at different delays. The correlated counts for various

measured polarisations are plotted in Fig. 3.7. From the figure, we can see that the

correlated counts are less for V-polarisation. This could be due to the experimental

imperfections or poor coupling of the polarisation to fiber.

Further, we performed the experiment to calculate the second-order correlation

function, g(2)(0), at Alice’s end. The calculated values of g(2)(0) would confirm the

true single nature of the photon source. We use multi-mode fibers to couple the photons

into the detector. The experimentally measured g(2)(0) correlation obtained for Alice
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Figure 3.7: Output of the four independent correlated detections performed for Alice
and Bob basis. The peaks indicate the correlated counts for the respective polarisa-
tions. The yellow zone indicates the background counts that represents the unwanted
detections due to stray light or uncorrelated signal and idler photons.

has a value 0.006± 0.0002, which deviate slightly from the ideal value zero, hence

certify the single-photon nature of the source.

We have performed a simulation of the expected key rate vs distance for the pro-

posed protocol and we have compared it with a decoy state protocol. The results are

plotted in Fig. 3.8. In this simulation we have considered a weak coherent pulse based

decoy state protocol with a mean photon number µ = 0.1. In the proposed protocol

we have considered the photon statistics of the emitted pair to be sub-Poissonian with

a mean photon number µ = 0.1. The quantum channel has been considered to be an

optical fiber. The transmittance of the channel versus distance is given by t = 10
−αl
10 ,

where l is the length of the channel and α = 0.2dB/km. For a free space channel a

similar simulation can be performed by considering the free space losses which include

losses due to divergence, atmospheric scattering, and atmospheric extinction. It is seen

that the proposed protocol outperforms the decoy state protocol for longer distances as
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is expected from single photon based QKD protocols.

Figure 3.8: Comparison plot of the secure key rate vs distance for a weak coherent
pulse based decoy state protocol and the proposed protocol.

3.4 Conclusion

In conclusion, we have implemented a BB84 protocol using a heralded single-

photon source. The protocol is secure against PNS attacks, implying no requirement

for decoy signals to check for Eve. Further, the implementation provides additional se-

curity against side-channel attacks and offers an advantage over typical BB84 and de-

coy state protocol. The protocol requires fewer resources than BBM92, and eliminates

the requirement of external QRNG. Additionally, the quality of the true single-photon

source is certified by calculating the second-order correlation function. Further, we are

working to improve the QBER of the protocol.



Chapter 4

Measuring the Shot Noise for

Continuous Variable Applications

Measuring the quantum fluctuations of a laser source is the first task in performing

CVQKD protocols. The quantum fluctuations of the source are measured using bal-

anced homodyne detection. In this chapter, we have measured the shot noise of a

pulsed laser using imperfect homodyne detection. The imperfections accounted for in

the detection process are a delay between the homodyne output arms and also due to

the selection of the pulse integration window larger as well as smaller than the pho-

tocurrent pulse width during the analysis. We have analysed the imperfect detection

results for two different experimental layouts, and a comparative study has been per-

formed. From our analysis, it is evident that these imperfections play a significant role

in balanced homodyne detection and must be optimized properly. Our results indicate

that balanced homodyne detection can be performed using limited resources, which

paves the way for easy experimental realization of optical homodyne tomography and

CVQKD in a laboratory setting.

97
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4.1 Introduction

The first step in the experimental realization of any quantum key distribution (QKD)

protocol [30, 146] is measuring the quantum fluctuations of a source. For a coherent

laser source, the quantum fluctuations are measured in terms of shot noise [24]. Shot

noise is the fundamental noise present in the state and is unavoidable. The calibra-

tion of the shot noise [147] is essential for coherent state based continuous variable

(CV) QKD protocols [60, 99–101, 148, 149] to characterize the minimum noise that is

present in the state. In CVQKD protocols, the shot noise is the minimum uncertainty

present in the state, and all the noises are calculated with respect to the shot noise [45].

The detector and channel imperfections manifest as excess noise [150–152] over and

above the shot noise. In CVQKD protocols, the presence of an eavesdropper is de-

tected based on the excess noise, which is the difference between the observed noise

and the shot noise [69, 153].

Balanced homodyne detection (BHD) is a well-established technique used to mea-

sure the field quadratures of the electromagnetic field [104, 111] and shot noise. BHD

has become a standard tool in experimental quantum optics and is used in quantum

tomography [36, 63, 115], and quantum information applications [62, 154, 155]. Shot

noise of a source is measured using balanced detection where the signal is split equally

using a 50:50 beam splitter (BS) and made to fall on two identical photodetectors. The

resulting photocurrents are subtracted and amplified. The subtraction process elimi-

nates all sources of classical noise, and we measure the quantum or shot noise [29].

While measuring shot noise using BHD, it is essential to ensure that the delay be-

tween the two homodyne arms is zero and the intensities are equal, where we assume

that detectors have the same efficiencies. Imperfection in any of these conditions can
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lead to errors in the shot noise measurement [156]. The inefficiencies in the BHD pro-

cess that could affect the measurement are imperfect balancing due to optical losses,

non-unitary detector efficiencies, and electronic noise [157–159]. In addition to these,

the imperfections in the detection process could be due to a delay between the ho-

modyne output arms and also due to an improper selection of the pulse integration

window during the analysis. These imperfections are to be taken care of, especially

in time domain BHD [160, 161], where a pulsed laser source is used. In time domain

BHD, the output photocurrents consist of a train of pulses. The quadrature value is

retrieved by integrating or averaging the photocurrent over the pulse region [162]. The

time lag between the pulses arriving at the two detectors causes different responses

between them leading to an improper cancellation of the subtracted output. Moreover,

a wrong selection of the integration window could lead to an error in the measured

quadrature value.

In this chapter, we have measured the shot noise of a pulsed laser source using

imperfect detection. The study of shot noise measurements performed in this Chap-

ter are carried out in order to understand the impact of imperfections in the detection

setup on balanced homodyne detection. These studies are crucial for systems ultra-

fast laser systems employing femtosecond or picosecond pulses with high repetition

rates which in turn are essential for high rate QKD applications. We have consid-

ered two different layouts and have studied the effect of delay and pulse integration

window on the measurement of shot noise. In Layout-1 (Fig. 4.1), we have used a

commercially available balanced amplified detector. The output signals from the two

photodetectors are subtracted and amplified using a transimpedance amplifier (AMP).

In Layout-2 (Fig. 4.2), we simply use two individual photodetectors and subtract the

signal using a digital storage oscilloscope (DSO) without amplification. The experi-

ment performed using Layout-2 is to study the measurement of shot noise using two
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Figure 4.1: The schematic diagram for balanced detection with amplification, Layout-
1; LO: Local Oscillator Field; BS: Beam Splitter; D1 & D2: Photodetectors; AMP:
Transimpedance Amplifier.

Figure 4.2: The schematic diagram for balanced detection without amplification,
Layout-2; LO: Local Oscillator Field; BS: Beam Splitter; PD1 & PD2: Photodetec-
tors.

individual photodetectors. Such a setup has an advantage in reducing the cost of the

experimental resources as well as increasing the bandwidth of detection for high rate

QKD applications. Since the photodetectors work at GHz, whereas the commercial

balanced detectors are limited to hundreds of MHz. We have measured the shot noise

using Layout-1 and Layout-2 for three different delay conditions and for various pulse

integration windows. We have performed a comparative study for both layouts.

The motivation behind the present work is to find out a method for shot noise

measurement and CVQKD implementation that requires less resources and is cost-

effective.
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The chapter is organized as follows. In Sec. 4.2, a theoretical background for ho-

modyne detection using a pulsed laser source is outlined. The effect of delay and pulse

integration window on shot noise measurement is discussed, and simulation results are

presented. In Sec. 4.3, we have described the experimental setup for Layout-1 and

Layout-2 to study the effects of the imperfections mentioned above. The experimen-

tal results for both layouts are shown and discussed in Sec. 4.4. We end with the

concluding remarks in Sec. 4.5.

4.2 Theory and Simulation

BHD (Fig. 4.3) is a popular method to measure the quadratures of the electromag-

netic field modes where the signal whose quadratures are to be measured interferes

with a strong coherent field called the local oscillator (LO) at a 50:50 beam splitter.

The resulting beams are made to fall upon photodetectors, and the generated photocur-

rents are subtracted. By varying the phase difference between the LO field and the

signal field, the suitable quadrature is selected for measurement. For a single-mode of

the electromagnetic field, the quadrature operators are defined as

q̂ =
1√
2
(â+ â†), (4.1)

p̂ =
1

i
√

2
(â− â†). (4.2)

The homodyne output operator, î is proportional to the difference of the intensities in

the output arms, i.e.,

î ∝ Î1 − Î2. (4.3)
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Figure 4.3: The schematic diagram of imperfect balanced homodyne detection; BS:
Beam splitter; τ: Delay between the two homodyne outputs; ÊLO(t) & Ês(t): LO
and signal fields; Ê1(t) & Ê2(t): BS output modes; Î1(t) & Î2(t): Photocurrents of
photodetectors D1 & D2 respectively; î(t): Subtracted photocurrent.

The expectation value of the homodyne operator for a general signal is evaluated to be

⟨îφ ⟩ =
√

2|αLO|⟨q̂s cosφ + p̂s sinφ⟩, (4.4)

where q̂s and p̂s are the quadratures of the signal field, and φ is the phase difference

between the signal and the LO. By setting the phase difference between the signal and

the LO to 0 or π/2, the quadratures q̂s or p̂s can be measured respectively.

In the experiment performed in the present chapter, we have used a pulsed laser

source as the LO field. Classically the electric field equation for a pulsed laser source

is given by,

E(t) =
M

∑
l=−M

E0e−i(ωlt+φl)+h.c., (4.5)

where the index l represents a single-mode of the field and h.c. stands for Hermitian

conjugate. The frequencies of consecutive modes are equally spaced i.e., ωl+1 −ωl =

∆ω . The phase difference between consecutive modes is made constant which results
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in a train of pulses. Here, we outline a simple quantum picture of the effect of delay

on the photocurrents generated and its effect on the measurement of shot noise.

The electromagnetic field [25] of the LO is given by

ÊLO(t) =
M

∑
l=−M

âle−iwlt +h.c.

= Ê+
LO(t)+ Ê−

LO(t). (4.6)

Ê+(t) and Ê−(t) are referred to as the positive and negative frequency parts of the

electromagnetic fields respectively. The state of the LO field is written as a multi-

mode coherent state such as

|ᾱ⟩=
M⊗

l=−M

|αl⟩ , (4.7)

where the phase difference between the coherent states of successive modes is a con-

stant, i.e., αl = |α0|eilφ0 . The intensity of the LO field is given by,

ILO(t) =
|α0|2

2

(sin2 ((M+0.5)∆ωt)
sin2 (0.5∆ωt)

)
. (4.8)

Similarly, the signal field derived from the same source is given by

Ês(t) =
M

∑
l=−M

b̂le−iwlt +h.c.. (4.9)

For measuring the shot noise of the pulsed laser source, the signal arm is blocked.

Hence, the state of the signal field is given by

|0̄⟩=
M⊗

l=−M

|0l⟩ , (4.10)

which is the multi-mode vacuum state. The combined state of the input fields is given
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by

|ψ⟩in = |ᾱ⟩a ⊗|0̄⟩b , (4.11)

The action of the 50:50 beam splitter on the input fields is given by the matrix equation[25]

ĉ

d̂

=


1√
2

1√
2

− 1√
2

1√
2


â

b̂

 , (4.12)

where â and b̂ are the annihilation operators of the input modes and ĉ and d̂ are

the annihilation operators of the output modes. Using the transformation relation in

Eq. (4.12), the positive frequency part of the output fields from the beam splitter is

given by

Ê+
1 (t) = ∑

l

1√
2
(âl + b̂l)e−iwlt , (4.13)

Ê+
2 (t) = ∑

l

1√
2
(b̂l − âl)e−iwlt . (4.14)

In a conventional balanced homodyne experiment, the intensities and the path

lengths after the BS are balanced in order to eliminate the classical noise. However,

precisely balancing the path lengths is often a difficult task as there could be a delay

between the photocurrents due to the different responses of the photodetectors or even

due to their internal construction. The delay between the generation of the photocur-

rents is modeled as a path delay between the two output arms. The extra phase picked

up by the corresponding field in that arm is given by

Ê+
1 (t) = ∑

l

1√
2
(âl + b̂l)e−iwlte−iwlτ , (4.15)

where τ is the delay between the two photocurrents. The photodetectors in the output
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arms measure the intensity which is given by the operator

Î(t) = Ê−(t)Ê+(t), (4.16)

where Ê−(t) = (Ê+(t))†. The subtracted photocurrent is evaluated using

î(t) ∝ Î1(t)− Î2(t)

= Ê−
1 (t)Ê+

1 (t)− Ê−
2 (t)Ê+

2 (t). (4.17)

In order to evaluate the statistics of the photocurrent, we evaluate the expectation

value and the variance of the difference current operator with respect to the input state

given in Eq. (4.11). Evaluating the expectation value of the difference current operator

given in Eq. (4.17) with respect to the state in Eq. (4.11), we have

⟨î(t)⟩ψin = ⟨Ê−
1 (t)Ê+

1 (t)− Ê−
2 (t)Ê+

2 (t)⟩ψin

=
|α0|2

2

(sin2 ((M+0.5)∆ω(t + τ))

sin2 (0.5∆ω(t + τ))

−sin2 ((M+0.5)∆ωt)
sin2 (0.5∆ωt)

)
. (4.18)

It is evident from Eq. (4.18), that as τ approaches 0, the expectation value vanishes.

This is in accordance with the general expression for the homodyne output and can

be verified from Eq. (4.4). Similarly, the variance of the difference photocurrent is

evaluated to be

⟨∆î2(t)⟩ψin = ⟨î2(t)⟩ψin −⟨î(t)⟩2
ψin

=
|α0|2(2M+1)

2

(sin2 ((M+0.5)∆ω(t + τ))

sin2 (0.5∆ω(t + τ))
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Figure 4.4: Simulated results for shot noise for various delays. The curve shows
voltage variance for different average power values for 0 delay and delays of 60 ps and
120 ps.

+
sin2 ((M+0.5)∆ωt)

sin2 (0.5∆ωt)

)
. (4.19)

It is readily seen from Eq. (4.19), that as τ approaches 0, the variance of the dif-

ference current is proportional to the intensity of the LO field Eq. (4.8). We have

performed a simulation on the measurement of the shot noise of a pulsed laser source

when there is a delay between the two homodyne arms. We have also simulated the

effect of different pulse integration windows on the measurement of shot noise. In the

simulation, we have generated a pulsed laser field with a repetition rate of 80 MHz.

The impulse response of the photodetectors has been taken into account to generate

output electronic pulses with a width of 1.6 ns. These parameters are chosen in order

to replicate the conditions observed in our experiment. For ultrafast pulses, when de-

tected using photodetectors, the output photocurrent pulses have a pulse width of the

order of ns. This is due to the impulse response of the photodetector. In our exper-
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Figure 4.5: Simulated results for shot noise for various pulse integration win-
dows (IW). The voltage variances are plotted against the average power for different
integration windows (IW1, IW2 & IW3). The integration windows selected are 1.6 ns,
1.8 ns, & 2 ns, respectively.
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Figure 4.6: Simulated results for shot noise for various delays with different respon-
sivities of the detector. A 1% difference in the responsivities of the detectors has been
considered here. The shot noise variance is plotted against the input LO power for
different delays as well for the case of different detector responsivities.
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Figure 4.7: Simulated results for shot noise for various integration windows with
different responsivities of the detector. A 1% difference in the responsivities of the
detector has been considered here. The shot noise variance is plotted against the input
LO power for different delays and for the case of different detector responsivities.

imental setup, it was observed that the output photocurrent pulses had a pulse width

of 5 ns and 1 ns for Layout-1 and Layout-2, respectively. Our simulation has taken

these effects into account. Further, the delay between the homodyne arms has no sig-

nificant impact on the shot noise measurement if the pulse width is much larger than

the delay. The simulated results for various delay conditions are shown in Fig. 4.4,

and the results for the various integration windows are shown in Fig. 4.5. It is seen

from Fig. 4.4 that on increasing the delay between the output arms, the measured shot

noise also increases. Further, this increase has a non-linear dependence on the delay

as evident from Eq. (4.19). Similarly, from Fig. 4.5, it is evident that, on increasing

the pulse integration window, the measured shot noise value increases. Fig. 4.6 depicts

the effect of different responsivities of the photodetectors on shot noise measurement

for various delays between the detector arms. Similarly, Fig. 4.7 depicts the effect of

different responsivities of the photodetectors on shot noise measurement for different

integration windows used. A difference of 1% in the responsivities between the detec-
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tors is considered here. It is evident that when there is a difference in the responsivities

between the detectors, the measured shot noise increases. The experimental results are

discussed and compared with the theoretical simulations in Sec. 4.4.

4.3 Experimental Setup

The implementation of a BHD for time domain analysis is followed by the below

experimental details.

4.3.1 Pulsed Laser Source

In the experimental setup, we have used an 810 nm ultrafast mode-locked Ti-Sapphire

laser, with an output power of approximately 500 mW. The pulse width of the laser is

around 30 fs with a repetition rate of 80 MHz. The spectral width of the laser is 20 nm

as shown in Fig. 4.8. A variable optical attenuator (VAT) is used to reduce the laser

Figure 4.8: Laser spectrum for femtosecond pulsed laser.

output power to 2 mW which is desired for our experiment. The beam is split using a

50:50 beam splitter (BS). Two attenuators (ATT) are placed in the output arms of the

BS in order to balance the photocurrents. The attenuators are a combination of a half-
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wave plate (HWP) and a polarising beam splitter (PBS). The experimental schematic

for both layouts is similar except for the detection part.

4.3.2 BHD with Amplification

The experimental setup for Layout-1 is as shown in Fig. 4.9. In Layout-1, we have

used a commercially available balanced detector (Thorlab’s PDB435A, DC-350 MHz)

to measure the subtracted photocurrent output which is the homodyne signal. The

Figure 4.9: The schematic diagram for Layout-1. A mode-locked 810nm pulsed laser
having a repetition rate 80 MHz is used as a source, and a variable attenuator (VAT)
is used to control its power. A 50:50 beam splitter (BS), with additional attenuators in
each arm, is used to balance the photocurrents. Mirror M1 is used to control the delay
between the two output arms. The output difference signal from BHD consisting of
photodetectors (D1 and D2) and transimpedance amplifier (AMP) is seen and recorded
on an oscilloscope (OSC).

balanced detector consists of two photodetectors (D1 and D2) and the photocurrents

are subtracted and amplified internally using a trans-impedance amplifier (AMP). A

digital storage oscilloscope (Agilent/Infiniium DSO 900254A, 2.5 GHz, 20 GSa/s) is

used to record the output signal of BHD. The mirror M1 is mounted on a translation

stage in order to control the delay between the two arms. The experimental setup is
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shown in Fig. 4.9.

To confirm the linear functioning of the photodetectors, the average voltage signal

is determined as a function of the input optical power for each photodetector. The

noise variance of a balanced detector is expected to change linearly with the LO power

with a constant offset representing the electronic noise. We measured the shot noise

as a function of LO power for three different delays and the results are discussed in

Sec. IV.

4.3.3 BHD without Amplification

The experimental setup for Layout-2 is as shown in Fig. 4.10. In Layout-2, we have

used two individual photodetectors (PDs), [DET025AFC, bandwidth 2 GHz, efficiency

76 %], to measure the photocurrents. The difference signal is obtained by subtract-

ing the photocurrents using a digital storage oscilloscope (DSO 900254A, 20GS/s,

2.5GHz). The experimental setup for the same is shown in Fig.4.10. Mirror M1 is

placed on a translation stage and is used to control the delay between the two output

arms of BS. Similar to Layout-1, we have performed the linearity test of the photode-

tectors and have measured the shot noise as a function of LO power. The results are

presented in Sec. IV, and both layouts are compared.

4.3.4 Data Acquisition

The data acquisition for both Layout-1 and Layout-2 is similar. The steps involved in

the process are detailed below.
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Figure 4.10: The schematic diagram for Layout-2. A mode-locked 810 nm pulsed
laser having a repetition rate 80 MHz is used as a source, and a variable attenuator
(VAT) is used to control its power. A 50:50 beam splitter (BS) with additional attenu-
ators in each arm is used to balance the power. Mirror M1 controls the delay between
the two arms of BS. Instead of using a BHD, we use two photodetectors and subtract
the output photocurrents using the oscilloscope (OSC) and save the pulses.

Photodetector Linearity Test

The first step in the process of balanced detection includes the characterization of the

individual photodetectors. To perform the linearity test of individual photodetector we

proceed with the following steps,

• Sequentially, we open the photodetectors one at a time and record the output

voltage as a function of the incident optical power on each detector. The optical

power is controlled by using ATT placed before the BS.

• An acquisition window of 50 ns is set in the oscilloscope that contains 4 pulses/-

trace with a separation of 12.5 ns. In this setting, both the detector outputs are

recorded. 2000 such time traces (containing 8000 pulses) are recorded for each

power value.
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• The measurement is repeated for input optical power varying from 100 µW to

400 µW .

• The average voltage signal from both the photodetectors is plotted versus the

input optical power incident on them. The resultant graphs for Layout-1 and

Layout-2 are shown in Fig. 4.14 and Fig. 4.15 respectively.

Shot Noise Linearity Test

In the process of characterizing balanced detection, another essential test involves mea-

suring the noise variance with respect to the LO power. This measurement is conducted

with the input set to the vacuum state, meaning the signal beam is blocked. In a bal-

anced detection, the noise variance is expected to change linearly with the LO power,

with a constant offset representing electronic noise. This linear relationship ensures

that the measured noise corresponds to the shot noise. The steps for measuring shot

noise are detailed below.

1. An acquisition window of 50 ns is set in the oscilloscope that contains 4 pulses in

a single trace with a separation of 12.5 ns. In this setting, the subtracted signal is

recorded. 2000 such time traces (containing 8000 pulses) are recorded for each

power value shown in Fig. 4.11.

2. The average trace is calculated and subtracted from each original trace shown in

Fig. 4.12.

3. The traces obtained by this procedure are shown in Fig. 4.13.

4. To measure the shot noise, the processed pulses are integrated over a window

of 5 ns for Layout-1 and 1 ns for Layout-2. This dissimilarity in the integration
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Figure 4.11: Data processing procedure, for Layout-2 at a fixed LO power. 2000
original time traces containing 8000 pulses.

windows is due to the different response times of the photodetectors. The vari-

ance of all such integrated values is determined for one particular power. This

procedure is repeated for the various LO powers considered.

5. The measurement is repeated for LO power varying from 250 µW to 950 µW

within a step size of 50 µW for both Layout-1 and Layout-2. The power of the

LO is changed using ATT placed before the BS in each case.

6. The data is collected for three different delays; 0 ps, 70 ps, and 140 ps for both

Layout-1 and Layout-2. The graphs for shot noise for the respective layouts at

different delay conditions are shown in Fig. 4.16 and Fig. 4.17.

7. To study the effect of the pulse integration window on shot noise, the delay

is fixed between the homodyne arms and the integration window is varied for

both layouts. For Layout-1, the zero delay condition is set, and the integration

windows 4.2 ns, 4.6 ns, 5.3 ns, 6.8 ns, and 8.2 ns are considered. For Layout-2,
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Figure 4.12: 2000 processed traces (8000 pulses) obtained by subtracting the average
trace from the original traces.

Figure 4.13: Average trace obtained by averaging 2000 original time traces.
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the zero delay condition is set and the integration windows 0.8 ns, 1 ns, 1.2 ns,

1.5 ns, and 1.75 ns are considered. The graphs for the same are shown in Fig.

4.18 and Fig. 4.19.

8. The electronic noise is measured by blocking the LO beam and recording the

resulting noise signal in the oscilloscope. The integration process is carried out

over the corresponding intervals and the electronic noise is estimated.

4.4 Results and Discussion

We have carried out an experiment to measure the shot noise using the two layouts

described in the previous Section. We are interested in studying the effect of delay

between the two homodyne arms and the effect of varying the pulse integration window

on the measured shot noise. We have also performed a comparative study of both

layouts. The data acquisition procedure has been described in Sec. 4.3.4.

Fig. 4.14 and Fig. 4.15 plot the results of the linearity test of the individual pho-

todetectors for Layout-1 and Layout-2, respectively. It is evident from Fig. 4.15 that

both the photodetectors exhibit a linear response to the input optical power and that

their responses are identical. From Fig. 4.14, it is evident that the photodetectors in

the balanced detector exhibit a linear response to the input optical power. However,

it is readily seen that the responses differ slightly in the high power regime. This is

due to the fact that there is a difference in the responsivities of the photodetectors of

about 7%. The simulated impact of different responsivity on the measured shot noise is

shown in Sec. 4.2. There could be an additional noise added to the shot noise due to the

different responsivity of the detectors. This difference can be compensated by adjust-

ing the power in one of the homodyne output arms in the experimental setup such that

both detectors show similar behavior. This compensation is achieved experimentally
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Figure 4.14: Linearity graphs for the photodetectors for Layout-1. The graph plots
the mean output voltage as a function of the input optical power incident on the pho-
todetectors.
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Figure 4.15: Linearity graph for the photodetectors for Layout-2. The graph plots the
mean output voltage as a function of the input optical power incident on the photode-
tectors.
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by adjusting the attenuators (ATT) positioned in the homodyne output arms.

Fig 4.16 and Fig. 4.17 plot the variation of the shot noise measured as a function of

the LO power for different delay conditions for Layout-1 and Layout-2, respectively.

It is observed that the shot noise measured using the balanced detector follows the lin-

earity trend for all the delays considered. It is further seen that, on increasing the delay

between the homodyne arms, the slope of the shot noise graph increases. We define the

signal-to-noise ratio (SNR) as the ratio between the measured quadrature variance at a

particular LO power to the electronic noise measured. An SNR of 1.27 is obtained for

zero delay condition at 950 µW LO power. The shot noise clearance can be defined

as 10log10(SNR). For our experimental scenario, the clearance is found to be 1.04

dB for the maximum LO power of 950 µW. The SNR increases with increasing LO

power since the shot noise variance increases linearly as a function of LO power while

electronic noise remains constant. In Fig. 4.16, the measured variances include contri-

butions from electronic noise and quantum noise. By taking the difference between the

measured variances at zero delay and the electronic noise, the quantum noise remains,

which is plotted in the inset in the same figure. The same process, when applied to the

measured variances at various delays yields similar graphs and are plotted in the inset.

The subtracted variances at various delays have contributions from classical noise over

quantum noise. The same process could be applied to the variances measured using

Layout-2 to extract the quantum noise and the contribution of classical noise over the

quantum noise for various delays. On comparing Fig. 4.16 and Fig. 4.4, it is readily

seen that the experiment reproduces the theoretical simulation results. It is observed

from Fig. 4.17 that the shot noise measured using Layout-2 is seen to be underesti-

mated compared to the electronic noise. This could be due to the reason that the signal

is almost merged with the electronic noise because of the absence of the amplifier, and

we are not able to resolve it. However, it is seen that the slope of the shot noise graph
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Figure 4.16: Shot noise graph for different LO power values for Layout-1. The volt-
age variances are plotted against three delay conditions i.e. 0 ps, 70 ps, and 140 ps.
The constant line denotes the electronic noise. The data points represent experimental
results, and the lines are the fitted curves. The inset denotes the difference between the
measured variances and electronic noise at various delays. Thus, the graph for zero
delay in the inset corresponds to the quantum noise, while the rest of the graphs in the
inset contains an additive classical noise over the quantum noise.
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Figure 4.17: Shot noise linearity graph for different LO power values for Layout-2.
The graph consists of electronic noise and variance for three delay conditions i.e. 0 ps,
70 ps, and 140 ps.

increases with increasing delay between the homodyne arms. It is seen that for the case

of 140 ps delay, the data deviates from the linearity at some power values. We repeated

the measurements, but the behavior is consistent for this particular case. However, we

choose to work in the linear region only.

Fig. 4.18 and Fig. 4.19 show the shot noise measured versus the LO power for

varying pulse integration window for zero delay condition for Layout-1 and Layout-2

respectively. It is observed that both graphs follow the linearity trend expected and

with the same slope. However, the intercept is seen to increase which indicates a

constant additive noise which is over and above the shot noise. This might be due

to the reason that with an increase in pulse integration window we are including an

additive noise to the estimation process leading to an increase in the shot noise values.

This consequently leads to an overestimation of the electronic noise level. Comparing

Fig. 4.5 with Fig. 4.18 and Fig. 4.19, it is seen that the experimental measurements of
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Figure 4.18: A graph for variance vs LO power for different integration windows, i.e.,
4.2 ns, 4.6 ns, 5.3 ns, 6.8 ns, and 8.2 ns for Layout-1.

shot noise using various pulse integration windows match the results of the simulation

based on the theory outlined in Sec. 4.2.

From the graphs, it is evident that the delay and pulse integration window have a

considerable effect on the measurement of shot noise and must be accounted for care-

fully. Comparing the two schemes, we can conclude that there is a difference in the

estimation of the shot noise at the zero delay condition, which is due to a difference

in the amplification. Both layouts behave in a similar fashion on increasing the delay.

Since the shot noise characterization is the primary task, one can use Layout-2 at the

cost of increased variance due to some additional delay. Since the delay introduced

is constant for each power value of the local oscillator, it should not affect the shot

noise linearity trend. By accounting for the constant additive noise increase, we can

use Layout-2 for estimating the shot noise of any pulsed laser source. This is par-

ticularly advantageous for experiments in continuous variable quantum optics as the
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Figure 4.19: A graph for variance vs LO power for different integration windows i.e.
0.8 ns, 1 ns, 1.2 ns, 1.5 ns, and 1.75 ns for Layout-2.

layout requires fewer resources and there is no need to worry about the specifics of the

amplifier such as gain and common mode rejection ratio (CMRR). One application of

balanced detection has been the implementation of Quantum Random Number Gener-

ators (QRNG) based on shot noise [35, 136, 163]. Such QRNGs employ the use of a

continuous wave laser as one can generate random numbers at a very high rate. The

current studied experimental setup can be extended to generating random numbers at

a very high rate using the shot noise of a pulsed laser source. However, the rate of

random number generation will be limited by the repetition rate of the laser source.

Further, the quality of the random numbers thus generated will be affected by the var-

ious imperfections which are addressed in this chapter. The excess noise added to the

shot noise due to improper calibration of delay and pulse integration window could af-

fect the quality of QRNG. This study might be helpful in characterizing such a QRNG

and statistically validating the random numbers thus generated.
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4.5 Conclusion

We have proposed a cost-effective scheme for measuring the shot noise of a pulsed

laser source. We have studied the effect of delay between the homodyne arms and

pulse integration window on the measurement of shot noise of a pulsed laser source.

The parameters of delay and pulse integration window have a considerable effect on

the measurement of shot noise and need to be accounted for carefully. By account-

ing for the additive noise caused by the introduction of a delay, Layout-2 proves to be

an economical method for performing homodyne detection. Such a method is surely

beneficial for demonstrations of CVQKD or optical tomography where homodyne de-

tection is used.





Chapter 5

Free Space Discrete Modulation

CVQKD

Quantum Key Distribution (QKD) offers unconditional security in principle. Many

QKD protocols have been proposed and demonstrated to ensure secure communica-

tion between two authenticated users. Continuous variable (CV) QKD offers many

advantages over discrete variable (DV) QKD since it is cost-effective, compatible with

current classical communication technologies, efficient even in daylight, and gives a

higher secure key rate. Keeping this in view, we demonstrate a discrete modulation

CVQKD protocol in the free space which is robust against polarisation drift. We also

present the simulation results with a noise model to account for the channel noise and

the effects of various parameter changes on the secure key rate. These simulation re-

sults help us to verify the experimental values obtained for the implemented CVQKD.

125



126 Chapter 5. Free Space Discrete Modulation CVQKD

5.1 Introduction

With the advancement in technology, the demand for secure communication has

increased. In classical communication, the security relies on the complexity of the un-

derlying mathematical algorithm and can be easily compromised once there is enough

computational advancement [164]. QKD [119, 165] provides a secure way to distribute

a key between two communicating parties, Alice and Bob. QKD uses quantum states to

encode the key information, and its security completely relies on the laws of quantum

mechanics, making no assumptions about the adversary’s technological power [166].

The key exchange takes place through the quantum channel and is post-processed us-

ing an authenticated classical channel.

Implementing QKD over large distances enables secure quantum communication

over a global scale and involves DVQKD protocols, which require encoding the key

information in a single quantum state [88, 167–171]. The practical implementation

of these QKD protocols involves various challenges, one of which is the generation

of deterministic single-photons. However, achieving this in experimental setups can

be difficult. Therefore, in order to experimentally demonstrate the DVQKD protocols,

weak coherent pulses are widely used as an approximate single-photon source. But the

risk of photon number splitting attacks would still persist in the weak coherent source,

which could lead to security loopholes [172]. On the other hand, entanglement-based

DVQKD protocols [44] are unconditionally secure [132], but the key rate obtained is

very low.

Among the class of QKD protocols, CVQKD protocols have the potential to be

proven as one of the best candidates [46, 99, 173]. CVQKD protocols use the quadra-

tures of the electromagnetic field to encode key information [30, 174]. These protocols
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are compatible with well-established classical communication technologies, thus en-

abling us to use existing communication infrastructure with enhanced security [175,

176] provided through quantum mechanics. Further, CVQKD protocols could be im-

plemented using standard telecommunication components with a higher key rate [66,

177] as compared to DVQKD protocols. The state preparation step requires the use

of amplitude and phase modulators, and the measurement step uses balanced homo-

dyne detectors that are already available commercially and operate at a very high

rate [62, 154, 155]. In addition, homodyne detectors are cost-effective and have high

quantum efficiency at telecommunication wavelengths. These protocols are efficient

at room temperature and daylight since the local oscillator acts as a spectral, temporal,

and spatial filter and is robust against stray light.

According to the modulation scheme, we can divide CVQKD protocols into Gaus-

sian modulation (GM) CVQKD and discrete modulation (DM) CVQKD. In the former

case, one performs Gaussian modulation for both amplitude and phase quadratures,

like Gaussian modulated coherent state (GMCS) or GG02 protocols [60, 61, 101]. The

latter is based on the discrete modulation of the quadratures, like quadrature amplitude

modulation (QAM) [49], and quadrature-phase sifts keying (QPSK) [48, 74, 178, 179]

Gaussian modulated protocols offer practicality, advanced security proofs, [175] and

have been successfully demonstrated to distances of hundreds of km [148] in fiber,

making them efficient for metropolitan area networks. However, implementing such

protocols over long distances is challenging as it is difficult to maintain good recon-

ciliation efficiency at low signal-to-noise ratio (SNR) [67, 68]. The DM-CVQKD pro-

tocols simplify the modulation scheme and key extraction task, which is a bit compli-

cated in GM-CVQKD protocols, where one extracts the key from continuous random

values. DM-CVQKD protocols are remarkable for long-distance applicability even at

low SNR [64, 180].
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In this Chapter, we report the implementation of a free space DM-CVQKD pro-

tocol in the lab. The Chapter is structured as follows. In Sec. 5.2, the theoretical

background for the protocol is discussed, and a noise model is presented to account

for the channel noise. The imperfections present in the experiment are simulated and

discussed. In Sec. 5.3, the experimental setup for the four-state DM-CVQKD is pre-

sented. Sec. 5.4 shows the experimental results, and we end up with concluding re-

marks in Sec. 5.5.

5.2 Theory and Simulation

In this Section, we discuss the theoretical aspects of the protocol implemented and

present the details of the simulation performed. Further, we describe imperfections in

the experimental implementation and provide models to simulate them. We end the

Section with remarks on the security of the protocol and present the simulated results.

5.2.1 Protocol Execution

The protocol implemented in this manuscript consists of the following steps.

1. Alice randomly selects from the four coherent states |αeiφA⟩, where φA is chosen

from 0,π/2,π , and 3π/2 by modulating the phase of her signal. This signal is

transmitted to the receiver Bob. The phases 0 and π correspond to encoding

the bit in the q̂ basis, and π/2 and 3π/2 correspond to the p̂ basis, respectively.

Here, |α|2 is the mean photon number of the signal.

2. Bob performs homodyne detection [36] on the received signal and randomly de-

cides to measure the q̂ quadrature or the p̂ quadrature by modulating the phase

of the local oscillator (LO), choosing φB as 0 or π/2 respectively.
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3. After the exchange of signals, Alice discloses the basis in which the bit was

encoded, and Bob discloses the basis in which the signal was measured. They

retain the pulses for which the encoding and the measuring basis match. This

process is called sifting.

4. The quadrature probability distributions for the measurements made by Bob

for various φ = φA − φB are Gaussian centered at ±α for φ = 0 and π re-

spectively and at 0 for φ = π/2 and 3π/2. The probability distributions for

φ = π/2 and 3π/2 are indistinguishable and hence do not contribute to the key.

5. The measured values for φ = 0 and π contribute to the key. Since in homodyne

detection, the measured output values are continuous, Bob assigns a threshold

x0 to the sifted signals for post-selection and assigns his bit value as

bit value =


1 xφ > x0

0 xφ <−x0

inconclusive −x0 < xφ < x0.

(5.1)

6. Alice assigns her bit value as 1 for φA = 0 and π/2 and 0 for φA = π and 3π/2.

7. Alice and Bob disclose a fraction of their raw key in order to perform parameter

estimation and mutual information to get the final secret key.

In order to understand the limitations of the carried out laboratory demonstration,

a simulation of the DM-CVQKD protocol was performed.
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5.2.2 Noise Model

One of the major roadblocks in the implementation of quantum information protocols

is the presence of noise and attenuation, which is unavoidable due to interactions of

the quantum system with the environment. The state that Alice prepares is sent to Bob

via a quantum channel which in reality can either be a fiber optic or a free space. The

propagation of this state through the quantum channel alters the state at the output,

which in turn affects Bob’s measurement and introduces errors in the generated key.

The effect of the transmission losses and the channel noise on the transmitted state can

be evaluated by considering a model as shown in Fig. 5.1.

A fictitious beam splitter of transmittance T < 1 is inserted into the quantum chan-

nel separating Alice and Bob. The beam splitter couples the quantum state to the

environment, which introduces noise in the state (see App. A). The transmittance T

models the attenuation of the signal in the quantum channel. The density matrix for

the ensemble of states shared by Alice can be written as

ρ̂sig =
1
4
(|α⟩⟨α|+ |−α⟩⟨−α|+ |iα⟩⟨iα|+ |−iα⟩⟨−iα|) . (5.2)

The effect of the channel can be evaluated by using the covariance matrix formal-

ism [46]. The covariance matrix for the state in Eq. (5.2) is evaluated as

V =

 |α|2

2
+

1
4

0

0
|α|2

2
+

1
4

 . (5.3)

Here, Vmod =
|α|2

2
is Alice’s modulation variance. The covariance matrix after propa-
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Figure 5.1: Theoretical model of the channel transmittance and noise included in the
simulation. The beam splitter has a transmittance T ≤ 1 and couples the quantum state
|α⟩sig with the environment and hence introduces excess noise in input state. Here âsig

& b̂env represent the input field operators of signal and the environment respectively
and â′sig & b̂out denote the output field operators after interaction at the BS.

gation through the channel can be evaluated as

VBob =

T
|α|2

2
+

1
4
+ξch 0

0 T
|α|2

2
+

1
4
+ξch

 , (5.4)

where ξch is the noise added to the signal due to transmission in the channel.

Similarly, an imperfect homodyne detection at the receiver end can also be modeled

using a beam splitter with transmittance η , which denotes the detection efficiency and

noise ξele, which models the electronic noise in shot noise units. The final covariance

matrix for Alice and Bob’s data will read as

VAB =

 α|2

2
I2

√
T η |α|2

2
I2√

T η |α|2

2
I2 (T η

|α|2

2
+

1
4
+ξch +ξele)I2

 , (5.5)
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where I2 represents the 2x2 identity matrix.

5.2.3 Mutual Information and Security

The secret key rate for a QKD protocol is defined by the relation,

kDR = β I(A : B)− I(A : E) or (5.6)

kRR = β I(A : B)− I(B : E), (5.7)

in the case of direct and reverse reconciliation, respectively [134]. Here I(A : B) is

the mutual information shared between Alice and Bob, and I(A : E) or I(B : E) is the

information leakage to Eve in case of direct reconciliation or reverse reconciliation. β

is the reconciliation efficiency.

For DM-CVQKD under consideration, we have evaluated the mutual information

between Alice and Bob by the relation,

IAB =
(q1 +q2)

2
+

q1

2
log2(

q1

(q1 +q2)
)+

q2

2
log2(

q2

(q1 +q2)
), (5.8)

where,

q1 = erfc

 (x0 −
√

T α)√
2(1

4 +ξch +ξele)

 and (5.9)

q2 = erfc

 (x0 +
√

T α)√
2(1

4 +ξch +ξele)

 . (5.10)
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Figure 5.2: Plot of mutual information as a function of transmittance with different
excess noises. Here, ξ = ξch +ξele represents the total excess noise at Bob’s end. ξch
denotes the noise added to the signal due to transmission in the channel & ξele denotes
the electronic noise present in the detection.

In Fig. 5.2, we plot the secret key rate achieved by the protocol for the case of a

simple beam splitter attack by Eve. In this attack, Eve replaces the channel with a

beam splitter of similar transmittance and a perfectly transmitting channel. Eve splits

the signal on the beam splitter and keeps a part of the signal for measurement. The

transformation on the state can be seen as

|α⟩B |0⟩E → |
√

T α⟩B |
√

1−T α⟩E , (5.11)

where T is the transmittance of the channel, and the subscripts denote the person re-

ceiving the state. Eve then waits for the basis announcement and measures her state

in the correct basis. Depending on the measurement result Eve makes a guess on the

state sent by Alice. If her measured quadrature value is positive she makes a guess of

Alice’s bit as 1 otherwise as 0. The mutual information between Eve and Bob, I(B : E),
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can be evaluated and the secret key rate can be given as in Eq. (5.7). We have evaluated

the mutual information between Bob and Eve for this particular beam splitter attack

numerically, and the final secret key rate is as shown in Fig. 5.2. The secret key rate

has been evaluated assuming the protocol is implemented with transmittance known as

a function of distance. It is seen from Fig. 5.2 that for experimentally relevant values

of excess noise, the protocol achieves a positive key rate even up to a distance of 35

km.

5.2.4 Simulation Results

In this Section, we have presented the simulation results obtained from our study. The

results would help in a better understanding of the experimental setup and optimiza-

tion of the experimental parameters. For simulation, the channel transmittance T , and

the excess noise were considered as 0.9 (under lab conditions) and 0.02, respectively.

Also, the signal was taken to be a weak coherent state with an average of 1 photon

per pulse. Fig. 5.3 depicts the probability distribution of the values measured by Bob

after both have disclosed their phases. It can be seen that the probability distributions

for φ = 90◦ and φ = 270◦ are indistinguishable from each other, and hence Alice and

Bob discard those measurements. The mean of the probability distribution correspond-

ing to φ = 0◦ and φ = 180◦ differs from ±1 due to attenuation in the channel and is

given by ±
√

T . Fig. 5.4 depicts the post-selection efficiency and the quantum bit error

rate (QBER) versus the threshold value selected for various mean photon numbers of

the signal. It can be readily seen from Fig. 5.4 that increasing the threshold value de-

creases the bit error rate and also decreases the post-selection efficiency. The trade-off

gained by reducing the bit error rate is the reduction in post-selection efficiency which

ultimately has an effect on the key rate. The simulation can help in optimizing the

trade-off between bit error rate and post-selection efficiency by the optimal selection
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Figure 5.3: The simulated probability distribution of the measured homodyne output
x̂φ corresponding to φ = 0,π/2,π,3π/2. Here, the mean photon number of the signal
is 1. The channel transmittance T was taken to be 0.9 (under lab conditions) and
the excess noise was taken to be 0.02. The probability distributions corresponding to
φ = π/2 and φ = 3π/2 are indistinguishable; hence, the corresponding measurements
are discarded.
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Figure 5.4: Plot of post-selection efficiency (top) and bit error rate (bottom) as a
function of the threshold for various average photon number in the signal. The channel
transmittance T was taken to be 0.9 (under lab conditions) and the excess noise was
taken to be 0.02. It can be readily seen from the above graphs that on increasing the
threshold x0, the bit error rate decreases; however, it also results in a decreasing post-
selection efficiency which results in a lower key rate.
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of the threshold value for the experiment being performed.

5.3 Experimental Setup

The experimental setup for the demonstration of DM-CVQKD protocol in free

space is shown in Fig. 6.1. We have used a 780 nm pulsed laser (NPL79B) operating at

a 1 MHz repetition rate and 30 ns pulse width. We set up a Mach Zehnder interferom-

eter (MZI) for the implementation of the DM-CVQKD protocol. The beam from the

laser splits at a PBS into two arms of the interferometer. One arm is the signal, and the

other is the local oscillator (LO). Alice controls the signal arm, whereas the LO arm is

a part of Bob’s detection system. We have used electro-optic phase modulators (EO-

PM-NR-C1) to modulate the phase of Alice and Bob’s signals.

We used a high-speed AWG (Tektronix AWG5000) to drive a high-voltage ampli-

fier (Thorlabs HVA200) which in turn drives the PM. Both signal and LO arms include

four mirror alignments (M2,M3 and M8,M9 are placed on translation stages) to adjust

the delay between them. Before using the PM, the interferometer is calibrated so as to

have zero phase difference between the arms. To do this, the mirror M5 is placed on a

PZT-stage (Attocube, ECSx3080) controlled by an AMC100 controller for a fine scan

of the interferometer phase. Homodyne detection is performed at the final BS. The

detection system includes a balanced homodyne detector, BHD (Thorlab’s PDB435A,

DC-350 MHz), which measures the subtracted photocurrent falling on the two detec-

tors. A mixed signal oscilloscope, MSO (Tektronix 6-series), is used to record the

output signal of BHD.
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Figure 5.5: Experimental scheme for free space DM-CVQKD: HWP: Half Wave
Plate; PBS: Polarising Beam Splitter; PM: Electro-optic Phase Modulator; LO: Lo-
cal Oscillator; M: Mirrors; PZT: Piezo Controlled Nano-positioner Stage; AMC100:
Nano-positioner Controller; ODF: Optical Density Filter; BS: Beam Splitter; BHD:
Balanced Homodyne Detector; MSO: Mixed Signal Oscilloscope; AWG: Arbitrary
Waveform Generator.

5.3.1 Alice

One arm of the interferometer i.e. the signal arm, is controlled by Alice. The phase

modulator PM1 is used to encode the four-phase values for Alice i.e., 0,π/2,π and

3π/2. The half voltage, Vπ of PM is 170 V. An optical density filter (ODF) with OD =

4 is placed in the signal arm to reduce the signal intensity. Using the combination of

HWP1 and ODF, we can control the mean photon number of the signal.

5.3.2 Bob

The other arm of the interferometer, which is the LO arm, is controlled by Bob. The

power of the LO is varied using the HWP1 placed before the PBS. PM2 selects the

q̂-quadrature and p̂-quadrature values corresponding to 0, and π/2. The mirror M5 is
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placed on a piezo nano-positioner stage to fine tune the path delay between the signal

and LO arms. Bob performs homodyne detection at the final BS of the interferometer.

5.3.3 Data Acquisition

The phase modulation at both Alice’s and Bob’s ends is performed at a rate of 1 MHz.

The subtracted output signal from the BHD is saved using an MSO. We have saved

8.1x104 pulses in a single acquisition. Once sufficient data has been recorded, post-

processing is performed. We integrate the individual pulses over their respective pulse

duration. Each integrated value corresponds to one quadrature value at that particular

phase. We then perform sifting, and the raw key is generated. The raw key is further

processed, and the secure key is obtained. Error correction and privacy amplification

are performed using LDPC codes and Toeplitz hashing, respectively.

5.4 Results and Discussion

In this Section, we present the results of our experimental implementation of the

protocol. The security analysis of the DM-CVQKD experiments performed in the

Chapter includes an asymptotic analysis of the security. Further, we have used the

assumption that the excess noise due to an imperfect detection system is well charac-

terised as in a trusted device scenario. The excess noise due to the channel has been

attributed to Eve. Initial security analyses of DM-CVQKD protocols have assumed

that the security of the Gaussian modulation can be extended to discrete modulation

protocols under certain conditions on the modulation variance. However, recent results

have improved upon this method, and better secure key rate bounds are available based

on numerical methods [181].

The initial step in implementing the DM-CVQKD protocol is balancing the mea-
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surement setup (not shown in Fig 6.1) and measuring the shot noise variance of the

laser source [147, 153]. In the previous Chapter, we have performed the shot noise

measurements using femtosecond laser. The study of shot noise measurements per-

formed in Chapter-4 were carried out in order to understand the impact of imperfec-

tions in the detection setup on balanced homodyne detection. These studies are crucial

for systems ultra-fast laser systems employing femtosecond or picosecond pulses with

high repetition rates which in turn are essential for high rate QKD applications. We

further found that these imperfections have negligible impact on nanosecond pulsed

laser sources. While performing the CVQKD experiments we employed a nanosec-

ond pulsed laser due to the constraint on the modulators performing at a max rate of 1

MHz. The effect of the excess noise due to imperfections in the homodyne measure-

ment was found to be negligible and we were further able to ensure that the studied

imperfections were mitigated by careful alignment.

To perform the intial calibration, the signal arm is blocked, and the difference

signal is measured as a function of the LO power. This measurement is used to find

out the shot noise and define the shot noise unit (SNU) for the experiment. Once the

initial calibration is done, the power of the LO is fixed at 0.25 mW. The electronic

noise-to-shot noise (electronic-to-shot noise ratio) clearance is found to be 15 dB. We

then proceed with the implementation of the DM-CVQKD protocol.

The interferometer is calibrated to achieve zero path difference between the arms.

The condition for constructive and destructive interference is achieved with a visibility

of 98%. The signal is attenuated by using an optical density filter (ODF) of OD =

4 with an input power of 60 µW before ODF. The delay introduced by the ODF is

compensated by scanning the translation stage and PZT stage. The phase of the signal

is then varied from 0 to 2π by applying an appropriate voltage to the PM and the q̂
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Figure 5.6: The variation of the mean q̂ quadrature value of the signal as a function of
the applied voltage to the PM. The voltage being applied to the PM is amplified using
a voltage amplifier with a gain of -20X.

quadrature is measured using homodyne detection. For each applied voltage, 2000

pulses are saved, and the mean of the integrated values for the pulses are plotted as a

function of the applied voltage as shown in Fig 5.6. The fluctuation in the data is due

to the inherent phase instability of the Mach-Zehnder interferometer.

A proof of principle experimental demonstration of free space DM-CVQKD has

been performed. The voltages fed to both Alice and Bob’s PM are generated ran-

domly using an AWG, shown in Fig. 6.1. A single acquisition in the MSO contains

8.1x104 pulses. In order to retrieve the quadrature values from the signal, pulses are

integrated over the respective time window. We do the basis sifting for Alice and

Bob’s data. The sifted key has a length of 4x104 bits. The probability distributions

of the quadrature values corresponding to relative phases are plotted in Fig 5.7. The

threshold value x0 chosen for the experiment is 0. For our laboratory experiments, the

channel transmittance, T = 0.95, and detector efficiency η = 0.76 are observed. We

calculated the mutual information between Alice and Bob, and finally, the secure key

rate is extracted. The experimental parameters are shown in Table 5.1.
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Figure 5.7: Probability distributions of the homodyne detected signal for the four
relative phases between signal and LO. The points represent the experimental data,
and the curves represent the best fit.

Parameters Values
Signal processed 8.1x104 pulses

Sifted bits 4x104 bits
PSE 3.2x104 bits

QBER 5%
Secure key rate 0.35 (bit/pulse)

Table 5.1: The experimental results for the executed protocol for a single acquisition
window. Here, PSE is the Post-selection Efficiency and QBER is the Quantum Bit
Error Rate.

While performing CVQKD experiments, the very important parameter is the phase

fluctuation of the Mach-Zehnder interferometer that affects the key rate. To account

for these fluctuations, the phase stabilization of the MZI should be performed. To

maximize the key rate, we will consider the noises introduced due to various sources

present in the experiment in the near future. The advantage of DM-CVQKD is that

it can go beyond QPSK modulation with constellations of larger size (e.g., 64 or 256

QAM). Such intermediate-size constellations provide better performance than the 4-

state QPSK in practice. This could be one of the interesting perspectives of this work.

We are exploring different CV-QKD schemes, including 16, 64, and 256 QAM. A
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comparative study will also be performed to see the performance of these protocols

and to explore their sustainability over atmospheric channels.

5.5 Conclusion

We have performed a prototype tabletop experiment of the DM-CVQKD protocol

and have used the results to extract a secure key. We have also performed a simula-

tion with a realistic noise model encountered in field demonstrations. The trade-off

between the secure key rate and the bit error rate is illustrated using the results of the

simulation. These studies assist in surveying the feasibility of continuous variable-

based QKD protocols for ground as well as satellite-based communication systems.

Conclusively, we can say that continuous variable-based QKD protocols can be per-

ceived as the next frontier in the field of secure communication, be it fiber, free space,

or satellite-to-ground communication.





Chapter 6

Implementation of Gaussian

Modulation CVQKD

In this chapter, we performed the demonstration of Gaussian modulation CVQKD pro-

tocol over free space in the laboratory setting. We transmitted the Gaussian modulated

coherent state over a quantum channel and performed the shot noise-limited homo-

dyne detection at the receiver’s end. We carefully calibrated the setup and calculated

the electronic noise, shot noise and detection efficiency of the setup. We calculated

the mutual information between Alice and Bob. Further, the processing of the data is

under progress to assess the efficacy of this particular implementation to compare it

with other implementations. The study of the protocol over free space would help in

the field tests over the atmospheric channels and to check the feasibility of the satellite

communication.

145



146 Chapter 6. Implementation of Gaussian Modulation CVQKD

6.1 Introduction

QKD is one of the major applications of quantum information science. It is a pro-

cess of generating a secure key between two legitimate users, Alice and Bob, over

an insecure channel. The first QKD protocol was proposed in 1984, known as the

BB84 protocol, which uses single-photons as an information carrier and belongs to the

class of DVQKD. An alternative to the protocol is given after fifteen years of the first

protocol of DVQKD, which was QKD with continuous variables (CV) proposed by

Grosshans and Grangier (GG) in 2002. The first protocol of CVQKD was proposed

using squeezed state of light. Later, protocols with coherent states came into the pic-

ture. The coherent state CVQKD protocol has an advantage over the squeezed state, as

the generation of squeezed states is technically difficult. In the coherent state CVQKD,

the key information is encoded in amplitude and phase of weak coherent states, thus al-

lowing for implementation with current modulation methods and telecom-based equip-

ment. The physical implementation of CVQKD using Gaussian modulated coherent

state (GMCS) is based on mature optical communication techniques with high relia-

bility and low cost. The motivation for CVQKD comes due to the better efficiency of

homodyne detection at telecommunication wavelength (1550 nm) over single-photon

detectors. These wavelengths are used in fiber optics because they have the lowest

attenuation of the fiber.

Achieving a high secure key rate and long transmission distance are the major

parameters for any secure communication for its practical applicability. Numerous

progress has been made in this direction for Gaussian modulation (GM) CVQKD pro-

tocols. A secure key rate of 1 Mbps@25 km [182] and 6.214 bps@202 km [148] has

been achieved in fiber using a transmitted local oscillator (LO) scheme. But transmit-

ting LO along with the signal in fiber could lead to cross-talk and might be venerable
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to quantum hacking attacks [183–185]. To overcome such limitations, the scheme us-

ing a local-local oscillator (LLO) has been proposed and demonstrated successfully.

A secure key rate of 26.9 Mbps@15 km [186] and 7.04 Mbps@25 km [187] has been

obtained using the LLO scheme. A recent study highlights the asymptotic secure key

rate experimentally calculated to be 7.55 Mbps@50 km, 1.87 Mbps@75 km, and 0.51

Mbps@100 km, respectively [188] using the LLO scheme over the fiber channel.

While working with fiber as a quantum channel, we are limited by various factors

like fiber losses; polarisation drifts inside the fiber, dispersion losses, and imperfect

phase noise compensation. The problems are more prominent at higher speeds and

over long distances. Compared to fiber-based CVQKD, the least work has been done

in the direction of free space CVQKD. The free space CVQKD has the advantage

over fiber-based as the transmission losses in free space are less than the fiber. It

is easy to detect the presence of Eve in the line of sight. In addition to this, a free

space channel is insensitive to polarisation compared to a fiber channel, which results

in light polarisation being nearly unchanged during propagation. The feasibility of

CVQKD in free space over long distances would help in satellite-based communication

[189–191] and quantum networking [192, 193]. Practically, GM-CVQKD protocols

have made significant progress in both theoretical security aspects [175, 194–196] and

experimental techniques [197, 198].

In this chapter, we have implemented free space GM-CVQKD over 5-meters in

our lab. In Sec. 6.2, we discuss the theoretical background for the protocol. In Sec.

6.3 we show the experimental implementation of the setup. In Sec. 6.4 we discuss the

experimental results and we end up with concluding remarks in Sec. 6.5.
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6.2 Theory

In GM-CVQKD protocol, Alice randomly generates two groups of Gaussian ran-

dom numbers from two identical and independent normal distributions N(0,VA) cor-

responding to quadrature q and p. The quadrature q and p have the same modulation

variance VA in terms of shot noise unit. Gaussian modulation consists of intensity mod-

ulation and phase modulation. Intensity obeys a Rayleigh distribution, while phase

obeys a uniform distribution. The quadratures q and p follow the relations,

q = Asigcosφsig,

p = Asigsinφsig

(6.1)

where Asig =
√

q2 + p2 and φsig = tan−1(q/p) are the information loaded on the in-

tensity modulator and phase modulator. After the preparation of each coherent state,

Alice transmits the state to Bob through a quantum channel. Bob performs either ho-

modyne (heterodyne) detection to extract the quadrature q or p (q & p). Later, using a

publicly authenticated channel, he informs Alice about which quadrature he measured,

so she may discard the irrelevant data. After many similar exchanges, Alice and Bob

share a set of correlated Gaussian variables, which we call ’key elements’.

Alice and Bob perform classical data processing to obtain a secure binary key.

They publicly compare a random sample of their key elements to evaluate the error

rate and transmission efficiency of the quantum channel. From the observed corre-

lations, Alice and Bob evaluate the amount of information they share (IAB = IBA),

and the maximum information Eve may have obtained (by eavesdropping) about their

values (IAE or IBE). From this information, they extract a common secure key ’k’ of

a certain length. This requires classical communication over an authenticated pub-



6.2. Theory 149

lic channel and may be divided into two steps, reconciliation (correcting the errors

while minimizing the information to Eve) and privacy amplification (making the key

secure) [67]. As we deal here with continuous data, we are developing reconciliation

algorithms to extract common bit strings from the correlated key elements.

In the process of information reconciliation, where one party sends information

about their key to the other party, two different approaches can be employed: forward

reconciliation, where Bob corrects his bits based on Alice’s data, or reverse reconcili-

ation, where Alice corrects her bits based on Bob’s data [59, 68]. In forward reconcili-

ation, if the channel transmittance is less than 50% (3 dB loss limit), no secure key can

be extracted. To overcome this limitation, Alice and Bob opt for reverse reconcilia-

tion. In this method, Bob sends the correction information to Alice, who then corrects

her bit string based on Bob’s data. In this scenario, Bob’s data is considered primary,

and since Alice possesses more information about Bob’s measurement results than Eve

does, the mutual information IAB remains greater than IBE for any total transmission T.

As a result, a non-zero key can be obtained even for high transmission losses.

After the successful reconciliation process, Alice and Bob will possess the same

bit string. However, it is important to note that Eve might still have some information

about the key. To minimize Eve’s probability of successfully guessing a portion of

the key to an acceptable level, Alice and Bob perform privacy amplification, a process

detailed further in Chapter 3, to enhance the security of the key.

The process of estimating the parameters experimentally is discussed in detail here,

Secure Key Rate: The secure key rate exchanged between Alice and Bob is cal-

culated by using the relation,

k = β IAB − IBE (6.2)
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where, β is the reconciliation efficiency, and IAB is the mutual information exchanged

between Alice and Bob. IBE denotes the Holevo bound, which put an upper bound to

the information shared between Bob and Eve.

Parameter Estimation: In QKD protocols, the estimation of channel parameters

holds significant importance. The mutual information between Alice and Bob, denoted

as IAB, is solely dependent on the signal-to-noise ratio (SNR).

The SNR for the case of homodyne detection in Gaussian modulation is defined as

SNR =
TVmod

1+ξ
(6.3)

where, T denotes the total transmittance, Vmod is Alice modulation variance, and ξ

denotes the total excess noise.

The mutual information between Alice and Bob is defined by

IAB =
1
2

log2(1+SNR)

=
1
2

log2(1+
TVmod

1+ξ
)

(6.4)

The Holevo bound IEB, puts an upper bound to the information shared between

Bob and Eve and is defined as,

IEB = SE −SE/B (6.5)

here, SE and SE/B represent the von Neumann entropy of the state accessible to Eve for

collective measurement and projective measurement performed by Bob. The Holevo

bound is derived from the covariance matrix mentioned in Chapter 2, Sec. 2.10.2. The
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entropies SE and SE/B are determined by the symplectic eigenvalues of the covariance

matrix describing these states. The actual quantum state from which SE and SE/B are

derived depends on which kind of eavesdropping attack is assumed. More details re-

garding the covariance matrix and Holevo information have been discussed in Chapter

2.

This is to be considered that the detection performed in the experiment is quantum

( shot noise) limited detection. So, prior to the actual parameter estimation, the mea-

surement apparatus needs to be calibrated in order to map Bob’s measurement in terms

of shot noise unit (SNU) [45].

6.3 Experimental Setup

The experimental setup for the demonstration of GM-CVQKD protocol in free

space over a distance of 5 meters is shown in Fig. 6.1.

At Alice’s side, a 780 nm pulsed laser (NPL79B) operating at a 1 MHz repetition

rate and 30 ns pulse width is used as a source. The beam is divided into two parts by

a polarising beam splitter (PBS1). The upper arm is the local oscillator (LO) arm and

the lower arm is the signal arm. The signal is incident on amplitude (EO-AM-NR-C1)

and phase (EO-AM-NR-C1) modulator to generate amplitude and phase modulated

signal. The electrical modulation signal is generated by using high-speed arbitrary

waveform generator, AWG (Tektronix AWG5000) and is fed to the high voltage am-

plifiers (Thorlabs HVA200), which in turn drives the amplitude and phase modulators.

An optical density filter (ODF) with OD = 2 is placed in the signal arm to reduce the

signal intensity further. Using the combination of half wave plate (HWP1) and ODF,

we can control the intensity (hence mean photon number) of the signal. The signal

and LO beams are multiplexed at the PBS3, having orthogonal polarisations. Both the
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Figure 6.1: Experimental scheme for free space GM-CVQKD over 5 meters: HWP:
Half Wave Plate; PBS: Polarising Beam Splitter; PM: Electro-optic Phase Modulator;
AM: Electro-optic Amplitude Modulator; PR: Polariser; LO: Local Oscillator; M: Mir-
rors; PZT: Piezo Controlled Nano-positioner Stage; AMC100: Nano-positioner Con-
troller; ODF: Optical Density Filter; BS: Beam Splitter; BHD: Balanced Homodyne
Detector; MSO: Mixed Signal Oscilloscope; AWG: Arbitrary Waveform Generator.

signal and LO are transmitted through the free space over a single transmission line.

State Preparation: Random Voltage Generation by AWG

As discussed in Sec. 6.2, in GM-CVQKD protocol the random voltages are selected

from the two identical Gaussian distributions. These distributions are generated by

using MATLAB programming and are shown in Fig. 6.2 (a) and Fig. 6.2 (b). We obtain

the Rayleigh distribution and uniform distribution from these Gaussian distributions by

using the conversion relation given in Eq. 6.1. The random voltages given to AM are

selected from the Rayleigh distribution and the random voltages fed to PM are selected

from the uniform distribution, which is shown in Fig. 6.2 (c) and Fig. 6.2 (d). Both

distributions are fed to the AWG. The AWG’s signal is given to the amplifiers which in

turn drive the AM and PM of Alice. The AM and PM are high-voltage devices with a
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half-wave voltage of 260 V and 170 V. So, we use two cascaded amplifiers to achieve

the high voltages.

Figure 6.2: Distributions fed to the AM and PM of Alice. Figure (a) and Figure (b)
represent the Gaussian distributions corresponding to the quadrature q and p generated
using MATLAB programming. Figure (c) and Figure (d) are the Rayleigh and uniform
distributions fed to the AWG which drives the AM and PM of Alice.

Quantum Channel

The encoded signal along with the LO is transmitted through the free space over a

distance of 5 meters. The beam diameter increases with the propagation distance. The

beam is de-magnified at the receiver side by using a lens combination (not shown in

the Fig. 6.1) of 50 cm and 10 cm to obtain the original beam diameter which is 800

µm.
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At Bob’s end, a PBS4 is placed to separate the signal and LO. The transmitted

arm is the LO arm and the reflected arm is the signal arm. The beam in the LO arm

is incident on the PM2 followed by an HWP3. PM2 selects the q-quadrature and p-

quadrature values corresponding to the phase values 0, and π/2. A delay line is kept in

the LO arm to compensate for the delay introduced by AM placed in the signal arm of

Alice. A mirror M in the signal arm is placed on a piezo controlled translation stage,

PZT-stage (Attocube, ECSx3080) controlled by an AMC100 controller for a fine scan

of the interferometer phase. The two beams, i.e., signal and LO interfere at the 50:50

BS, and homodyne detection is performed. The detection system includes a balanced

homodyne detector, BHD (Thorlab’s PDB435A, DC-350 MHz), which measures the

subtracted photocurrent falling on the two detectors. A mixed signal oscilloscope,

MSO (Tektronix 6-series), is used to record the output signal of BHD.

Data Acquisition

The amplitude and phase modulation at both Alice’s and Bob’s ends is performed at

a rate of 1 MHz. The random voltage signals of 1 µs for the respective cases are

generated using AWG. The voltage signals are fed to the AM and PM of Alice and

Bob. A copy of the signal from AWG is given to the MSO for the record of the

given voltages. The subtracted output photocurrent from BHD is saved in MSO. The

recorded signals in the MSO are shown in Fig. 6.3. Channel-1 is the homodyne output

of the balanced detector. Channel-2 and Channel-3 are the copy of random voltages

fed to AM and PM of Alice. Channel-4 is the copy of the random voltage fed to the

PM of Bob. In a single acquisition 2x105 pulses are saved. Once sufficient data has

been recorded, post-processing is performed.
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Figure 6.3: The voltage signals recorded in the oscilloscope. Channel-1 is the dif-
ference signal of the balanced detector. Channel-2 and Channel-3 are the copy of the
random voltage signals fed to the AM and PM of Alice. Channel-4 is the random volt-
age signal fed to PM of Bob.

Post-processing

Once Alice and Bob exchange sufficient signals (key elements), they further do the

post-processing of the data which includes the following steps.

Quadraure Extraction: The distributions fed for the amplitude and phase modu-

lation of Alice are Rayleigh and uniform distributions. We do the intensity and phase

modulation of the signal at a certain optical power. We retrieve the quadratures strike

out q and p for Alice by using the relation mentioned in Eq. 6.1. Whereas, at Bob’s

end we get a series of pulses in terms of voltage signals. We integrate each pulse over

its respective pulse duration. We use Python programming to perform the integration.

These integrated values correspond to the quadrature value q or p depending on the

basis selection of Bob. Now, Alice and Bob are at the same level, Alice having a pair

of (q and p) and Bob with (q or p).
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Sifting: Further, we then strike out sifting to generate the raw key. Alice and

Bob use a classical authenticated channel to announce the basis. Bob will disclose

on which basis he has done the measurement and Alice will keep the respective basis

and discard the mismatched values. Both Alice and Bob are left with the correlated

string of Gaussian data. We calculate the mutual information shared between Alice

and Bob. Further, the processing of the data is under progress to assess the efficacy of

this particular implementation to compare it with other implementations.

6.4 Results and Discussion

As discussed in the previous chapters, The initial step in the protocol execution is

the measurement of shot noise and checking the clearance of the signal (shot noise to

electronic noise ratio). We measured the electronic noise by blocking the signal and

LO. The distribution of the measured electronic noise is shown in Fig. 6.4.

Figure 6.4: Electronic noise distribution. The left side shows the data points and the
right side shows the distribution of the electronic noise.

We then measured the shot noise of the LO at a fixed power by blocking the signal

arm. We measured the shot noise at LO power 274 µW at the receiver’s end. To mea-

sure the shot noise, we recorded 10,000 pulses in a single acquisition and integrated
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the individual pulse over the pulse width. The distribution for the integrated values at

a fixed LO power is shown in Fig. 6.5.

Figure 6.5: The distribution of the integrated quadrature values for shot noise mea-
surement at fixed LO power. The left side shows the data points and the right side
shows the distribution of the measured shot noise.

We calculated the voltage variance for the given LO power from the integrated

values. We re-scaled the voltage variance to define the shot noise unit (SNU). We

calculated the electronic noise in term of SNU and the values are given in Tab. 6.1.

The electronic noise-to-shot noise (electronic-to-shot noise ratio) clearance is found to

be 15 dB.

Paramters Values
Shot noise unit (SNU) 1.069
Electronic noise (SNU) 0.04

Table 6.1: The table contains the values of shot noise unit (SNU) and electronic noise
calculated from the experiment.

We proceed further with the implementation of GM-CVQKD. In Gaussian mod-

ulation, we take the assumption that the protocol works in asymptotic limits. We do

not consider the finite size effect on the secure key rate. A further assumption is that

collective attacks are optimal as we are working in an asymptotic regime. Further,
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we consider that the excess noise due to the electronic noise does not contribute to

Eve’s information as in a trusted device scenario. Alice prepared the amplitude and

phase-modulated coherent state and transmit it to Bob through a quantum channel.

Bob performed balanced homodyne detection to retrieve the state back. Both Alice

and Bob performed sifting and are left with the correlated Gaussian key elements. The

probability distributions for Alice and Bob after performing the sifting process are

shown in Fig. 6.6 and Fig. 6.7. From the Figures, we observed that Alice’s distribu-

tions are more scattered compared to the distributions of Bob. This perhaps could be

due to the modulation performed at Alice’s end. The random pattern feed to the modu-

lators repeats after a fixed time. We are further verifying the reasons for the scattering

of Alice’s Data.

(a) (b)

Figure 6.6: Probability distributions for Alice’s quadrature values (a) q - quadrature,
(b) p - quadrature.

(a) (b)

Figure 6.7: Probability distributions for Bob’s quadrature values (a) q - quadrature,
(b) p - quadrature.



6.5. Conclusion 159

We estimated the experimental parameters. The channel transmissivity is 95.23

% and the detection efficiency is 76 %. We calculated SNR and mutual information

shared between Alice and Bob and the results are shown in Table 6.2. The excess noise

Paramters Values
Signal processed (pulses) 2x105

Sifted key (pulses) 2x105

SNR 2.69
Mutual information (bits/pulse) 0.94

Table 6.2: Showing the experimental parameters including the SNR and mutual infor-
mation obtained from the collected data for 200 milliseconds.

ξ is mainly assumed to be contributed due to the electronic noise only. The mutual in-

formation between Alice and Bob obtained from the experiment is 0.94 bits/pulse.

We are designing an algorithm for the reconciliation of Alice and Bob’s Data. Fur-

ther, post-processing of the data is under progress to compare the performance of this

particular implementation with the other implementations. A few of the limitations of

the described setup include instabilities due to the interferometer, limited resolution of

Alice’s modulation, and a limit on the LO power available for performing the detec-

tion. We are currently designing an improved setup to address these challenges. These

studies would help in the field implementation of the protocol.

6.5 Conclusion

In summary, the free space GM-CVQKD was demonstrated successfully in the

lab. The obtained results from the experimental studies were discussed. The detector

shot noise, electronic noise, detection efficiency, delays etc. were carefully calibrated.

The data were successfully transmitted and recorded. The mutual information was

extracted from the experimental data. The processing of the data is under progress

to assess the efficacy of this particular implementation to compare it to other imple-
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mentations. The study of the protocol over free space would help in field tests over

atmospheric channels and to check the feasibility of satellite communication.



Chapter 7

Atmospheric CVQKD

In the previous Chapters, we performed a demonstration of the discrete modulation and

Gaussian modulation CVQKD in the laboratory. In this Chapter, we have attempted

the atmospheric CVQKD to learn what issues will have to be addressed for a real-life

application of quantum communication. Compared to fiber CVQKD, atmospheric link

offers a possibility of broader geographical coverage and more flexible transmission

[199–202]. However, many negative features of the atmospheric channel will reduce

the achievable secure key rate, such as beam extinction and a variety of turbulence

effects [203].

We carried out the field experiments during the monsoon season in the month of

June. While performing the experiment over the atmospheric channel in heavily rainy

and windy weather, several challenges are faced. The beam quality gets deteriorated

after transmitting through free space. Due to the effect of the wind, the beam coupled

to the detector in small proportion leading to coupling losses. Besides, the phase noise

in the system is enhanced due to atmospheric disturbances [204]. Considering these

161
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parameters into account, we extracted some results from the field experiments. Further

studies in this direction are going on. The details of the field experiment are discussed

in the upcoming sections.

7.1 State Preparation

In this section, we will study the state preparation for the discrete modulation (DM)

and Gaussian modulation (GM) CVQKD. Alice encodes her quantum bit information

in phase in case of DM-CVQKD (discussed in Chapter 5) and in both amplitude and

phase in case of GM-CVQKD (discussed in Chapter 6).

State Preparation for Discrete Modulation

In case of DM-CVQKD, Alice does the phase modulation of the signal and transmits

the signal and LO to Bob through a channel. Bob performs homodyne detection to

retrieve the phase information. The acquisition system for the protocol is shown in

Fig. 7.1. It consists of Alice’s and Bob’s phase modulators (PM). The random voltages

are fed to the modulators using an arbitrary waveform generator (AWG). High voltage

amplifiers (AMP) drive the modulators. A copy of the signal fed to modulators is

also given to the oscilloscope that will give the time information of the signal. The

modulation is performed at 1 MHz. The random voltages generated for Alice’s and

Bob’s PM are converted to the phase values and are shown in Fig. 7.2.

State Preparation for Gaussian Modulation

In GM-CVQKD, Alice does both the amplitude and phase modulation of the signal.

Whereas, Bob performs homodyne detection and requires only the phase modulator.



7.1. State Preparation 163

Figure 7.1: Acquisition system for DM-CVQKD; AWG: Arbitrary Waveform Gen-
erator; AMP: Voltage Amplifier; PM: Phase Modulator; BHD: Balanced Homodyne
Detector.

Figure 7.2: Random phase values obtained after converting the random voltages of
Alice and Bob into phases.

The random voltages fed to Alice’s amplitude and phase modulator are selected from

the Rayleigh distribution (fed to AM) and the uniform distribution (fed to PM). The ac-

quisition system for GM-CVQKD is shown in Fig. 7.3. The modulation is performed

at 500 kHz. The random voltage signals generated at Alice’s and Bob’s end are shown

in Fig. 7.4.

An overview of the data acquisition system used in the field is shown in Fig. 7.5.
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Figure 7.3: Data Acquisition system for GM-CVQKD; AWG: Arbitrary Waveform
Generator; AMP: Voltage Amplifier; AM: Amplitude Modulator; PM: Phase Modula-
tor; BHD: Balanced Homodyne Detector.

Figure 7.4: The recorded signals consisting of the random voltages generated at Al-
ice’s and Bob’s end and the output signal of the balanced detector.

7.2 Transmission Through Channel

The encoded signal and the LO are transmitted to the atmosphere over free space.

The beam diverges while transmitting over free space, and the beam size increases

along with the propagation distance. To manage the actual beam size, we used launch-

ing and collecting optics in order to compensate for the divergence effect.
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Figure 7.5: An illustration of the devices used during the field implementation for data
acquisition for DM-CVQKD and GM-CVQKD.

Launching and Receiving Optics

The launching optics consists of a combination of two lenses with different focal

lengths. The beam is expanded at the launching end to reduce the beam’s divergence

as the beam size is related to divergence by the relation wo = 1/θ . To expand the

beam, the configuration of lenses is selected such that f2 > f1 and the beam size after

the second lens is expanded.

The expanded beam is collected at receiving (Bob) end using another lens combi-

nation. The first lens at Bob’s end is of a larger focal length, and the second lens is

of a smaller focal length to reduce the beam size. After passing through both lenses,

the beam is guided to Bob’s detection setup. For very large distances, instead of a

lens combination, one needs to go for the telescope due to the higher divergence of the

beam.
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Figure 7.6: Schematic of launching and receiving optics. L1 and L2 are the lenses
with focal length f1 and f2.

Beacon Laser

The signal used for QKD applications is a weak signal which can not be monitored

properly during transmission in the atmosphere. A beacon beam is sent along with the

signal. For this, we use a visible laser of strong intensity. Both the QKD signal and

Beacon laser are aligned along the common path and sent to Bob over free space.

7.3 Detection

Bob received the transmitted signal multiplexed with the LO. He separates the

signal and LO and performs the projective measurements on the LO beam to measure

in either q-basis or p-basis. This is achieved by doing the random phase selection using

the phase modulator on Bob’s end which is shown in Fig. 7.1 for DM-CVQKD and

Fig. 7.3 for GM-CVQKD. Bob records the data by using an oscilloscope for a certain

acquisition window. Once sufficient data is collected, Alice and Bob further do the

post-processing to obtain the secure key.
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The procedure for post-processing for both DM-CVQKD and GM-CVQKD is dis-

cussed in Chapter 5 and Chapter 6.

7.4 Experimental Results from Field Study

We performed the field demonstration for DM-CVQKD and GM-CVQKD. The

experimental setup for both configurations is embedded in a single setup and is shown

in Fig. 7.7. The illustration of the field view is shown in Fig. 7.8 and Fig. 7.9. We

Figure 7.7: Experimental setup for CVQKD consisting of transmitter and receiver.

Figure 7.8: An illustration of the transmitter and receiver setup during field imple-
mentation.

performed 35 m CVQKD in the daytime on 9th June 2023, at PRL, Thaltej campus,
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Figure 7.9: Daytime and nighttime view of the experiment performed over 35 m and
200 m in the field.

New building. We extracted the data for DM-CVQKD. The data plot for shot noise

measurement is shown in Fig. 7.10. The probability distributions for the measured

quadrature values of Bob’s relative phases for different mean photon numbers of the

signal are shown in Fig. 7.11. From Fig. 7.10, we can see, the data for shot noise mea-

Figure 7.10: The plot of the shot noise data. The left side shows the plot of the
integrated pulse values and the right side plots the probability of these integrated values
at a fixed LO power of the receiver.

surement is highly noisy. This could be due to harsh weather conditions. The weather

was very humid and windy due to the monsoon season. The probability distributions

obtained for Bob’s measurement shown in Fig. 7.11 overlap with each other for both
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(a) (b)

Figure 7.11: Probability distributions for Bob’s quadrature values for four relative
phases for different mean values of photons. (a) mean photon number is 11.2 and (b)
mean photon number is 1.12.

cases. The error in data is quite high and no key rate is extracted. This is because of

the reason that the phase noise in the system is enhanced due to atmospheric distur-

bances. To improve the performance of the protocol, we are working on the resolution

of the various problems accounted for during the implementation. To compensate for

the phase, we are working on the live monitoring of the data so that the phase shift can

be corrected during the protocol execution itself.

We extracted the data for GM-CVQKD for 35 m on the same day during the

evening time. The probability distributions obtained at Alice and Bob’s end after the

process of sifting are given in Fig. 7.12 and Fig. 7.13. From the graphs, we see that

the correlation between Alice and Bob’s data is weak. One of the possible reasons for

this could be the atmospheric disturbances and the transmission losses over the atmo-

spheric channel which was more than 50 %. The signal-to-noise ratio and the mutual

information calculated between Alice and Bob have values 8.23x10−4 and 5.9x10−4

for 35 m GM-CVQKD.

The demonstration of 200 m CVQKD was carried out on 3rd July 2023 between

the Astro building and the New building at Thaltej campus PRL. The atmospheric

losses for 200 m were very high. For the transmitted power of 1 mW the received
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(a) (b)

Figure 7.12: Probability distributions for Alice’s quadrature values (a) q - quadrature,
(b) p - quadrature.

(a) (b)

Figure 7.13: Probability distributions for Bob’s quadrature values (a) q - quadrature,
(b) p - quadrature.

power was just 50 µW . And after passing the aperture (used for mode cleaning), the

power left was only 7-8 µW . This does not fulfill the requirement of the strong local

oscillator. The power losses in the atmosphere could be due to high humidity present

in the weather and high absorption losses or several other experimental parameters.

To resolve the issues, we are doing further investigations in this direction. We will

perform the demonstrations after the problems are being resolved.

7.5 Conclusion

The free atmospheric CVQKD was attempted to learn what issues will have to be

addressed for a real-life application of quantum communication. The results are not
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promising. This could be due to the harsh weather condition, humidity, monsoon sea-

son, or several other experimental parameters. The power losses were unexpectedly

high during the propagation through the channel. We are trying to figure out the rea-

sons for the losses. We are exploring the effects of atmospheric parameters affecting

the key rate. Due to the monsoon season, we could not continue with the experiment.

We will repeat the experiment to resolve the various issues faced during the implemen-

tation of the atmospheric CVQKD.





Chapter 8

Summary

The demand for secure communication has given massive popularity to quantum com-

munication over the past few decades. The laws of Quantum Mechanics (QM) make

it strong evidence of practical application in quantum cryptography thanks to the no-

cloning theorem and Heisenberg’s Uncertainty principle. These properties ensure the

security of the information transfer between the communicating parties. QKD is the fu-

ture of modern secure communication with the assistance of classical communication.

QKD not only provides unconditional security [20, 21] but also helps detect eaves-

droppers’ presence in real-time. QKD works better than conventional cryptography

as its security is based on the laws of QM rather than on the system’s computational

hardness [15, 23]. This point is crucial to prevent any attack or information leakage

during communication.

The increase in demand for quantum communication has given origin to various

classes of QKD protocols, including DVQKD and CVQKD. DVQKD protocols have

been experimentally implemented over long distances, whereas CVQKD protocols

173
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are proven as a faithful candidate for large metropolitan area networks due to their

high compatibility with current classical infrastructure as well as the high key rate

achievable.

In my thesis, we have implemented different classes of QKD protocols and have

studied the impact of various parameters on the secure key rate. The thesis includes

the demonstration of the two different classes of CVQKD based on discrete modula-

tion (DM) and Gaussian modulation (GM).

Chapter 2 provided a theoretical understanding of the various steps involved in im-

plementing QKD protocols. We begin with a discussion on the basic concepts of QM.

We further build a theoretical understanding of quantising the electromagnetic field

and describe its possible states. The idea of quantum entanglement and the generation

and detection of photons is discussed in brief. The Chapter also deals with the basics of

balanced homodyne detection and its mathematical understanding, which is a part of

the detection system in CVQKD. The Chapter explains mutual information and secret

key extraction from a practical aspect. In Chapter 3, we discuss the implementation of

BB84 QKD protocol using heralded single-photons generated by the SPDC process.

The various steps involved in the experimental implementation are discussed in detail

with the results.

In Chapter 4, we performed the initial characterisation of the setup for CV applica-

tions to QKD, which deals with measuring the shot noise of the source. We accounted

for various imperfections present in the detection system and provided a theoretical

and experimental understanding. In Chapter 5, we demonstrated free space CVQKD

using DM. For this demonstration, a simulation has been performed, which includes

the effects of various parameters on the secure key rate extraction. A noise model has

been proposed, and a trade-off between the mean photon number and QBER is ob-
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tained. The key rate is evaluated for several distances, including transmittance and ex-

cess noise. These simulated results help in the verification of the experimental results.

In Chapter 6, a free space demonstration of GM-CVQKD has been done in the lab.

The protocol gives a much higher key rate and is one of the best possible candidates

for the metropolitan area network. A complete characterisation of the setup is done

in the lab, including amplitude and phase modulator characteristics. We discussed the

obtained results from the experimental studies.

In Chapter 7, we performed the field demonstration of the DM-CVQKD and GM-

CVQKD over an atmospheric channel. The free space field studies assist us in assess-

ing the feasibility of CVQKD protocols for satellite-based applications and offering

various advantages over fiber. We further discussed the experimental challenges faced

in the field with some of the results.

Scope for Future Work

In my thesis, we have studied two different classes of QKD protocols, which in-

clude the study of DV and CV protocols. Both have their own experimental challenges

and limitations. In SPDC-based DVQKD, the obtained key rate is relatively low but

provides a more secure way compared to prepare and measure protocols implemented

with weak laser pulses. In prepare and measure protocols, the key rate is high with

compromised security due to sophisticated attacks possible due to the experimental

imperfections. We need to look for protocols that include the advantages of both DV

and CV protocols. The state preparation can be done using DV techniques, which is

easier, whereas detection can be performed using homodyne detection, which is an

efficient detection technique.

In Chapter 3, we study the various imperfections present in the balanced detection
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for shot noise measurements. These imperfections could lead to security loopholes

for CVQKD applications and affect the outcomes of the optical homodyne detection

used to measure the quantum state of light. In addition, the imperfection in shot noise

measurement could affect the quality of QRNGs based on shot noise measurement for

pulsed laser. So, we can study in detail the effect of imperfections on the security

of CVQKD and optical homodyne tomography. In Chapter 5, we demonstrated DM-

CVQKD, and the field demonstration for the same is performed in Chapter 7. These

protocols work well even at low SNR. There are various classes for DM-CVQKD

protocols. One of the works in this direction could be to check the sustainability of

various protocols over free space in an atmospheric channel at low SNR and compare

their performances.

In Chapters 6 and 7, we performed the demonstration of the GM-CVQKD in a lab-

oratory setting and in the field. There are numerous challenges faced during the field

implementation of CVQKD. However, implementation of CVQKD at long distances is

a challenging task and has various practical limitations to go beyond hundreds of kilo-

meters [205]. Besides the imperfections of transmitter and receiver devices, the main

physical limitations in long-distance CVQKD are path loss and environmental noise.

To address these limitations and extend the secure distance of QKD, an alternative

approach involves using satellite-based communication links [206, 207]. By deploy-

ing a network of satellites with corresponding ground stations, large terrestrial losses

can be overcome [88, 208, 209], and excessive noise can be minimised, as the noisy

portion of the free-space communication link is primarily limited to the first ten kilo-

meters of the atmosphere. One of the global solutions contributing towards quantum

cryptography network, and hence, quantum internet could be achieved by coupling the

satellite-based QKD with a reliable quantum repeater (QR) infrastructure [210–212].

The use of noiseless linear amplifiers (NLA) and QR can help to increase the distance
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over which CVQKD protocols can be performed. Hence, by exploring the potential in-

tegration of existing CVQKD proposals like GG02 with QRs and satellite technology,

we hope to achieve substantial secret key rates over long distances [213, 214].

Furthermore, the motivation for my study is to check the practical applicability of

the CVQKD protocols for satellite quantum communication and quantum networking

[192, 215]. My further aim is to work in the direction of quantum networking and

satellite quantum communication [216, 217].





Appendix A

Noise Model

Consider the field operator âsig of the signal and b̂env of the environment (Fig. 5.1).

The signal is in a coherent state which is given by |α⟩sig

The action of the beam splitter on the field operators are given by

â′sig

b̂out

=

 √
T

√
1−T

−
√

1−T
√

T


 âsig

b̂env

 . (A.1)

The mode represented by the field operator âout is received by Bob, who performs a

measurement on the corresponding quantum state. Since we are dealing with Gaussian

states and the noise model represents a Gaussian transformation on the modes, we can

utilize the elegant variance matrix formalism to understand the effect of the quantum

channel on the state. The covariance matrix of a single-mode Gaussian state is given

by

Vi j =
1
2
〈
{x̂i, x̂ j}

〉
−⟨x̂i⟩⟨x̂ j⟩, (A.2)

where x̂= [q̂, p̂]T are the quadrature operators of the signal mode given by q̂=
1
2
(âsig+
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â†
sig) and p̂ =

i
2
(â†

sig − âsig), and {Â, B̂} = ÂB̂+ B̂Â denotes the anti-commutator of

operators Â and B̂. For the example of a coherent state the covariance matrix reduces

to

V =
1
4

1 0

0 1

 . (A.3)

Using Eq. ((A.1)), the quadrature operators of the output signal can be written as

q̂′sig =
√

T q̂sig +
√

1−T q̂env and (A.4)

p̂′sig =
√

T p̂sig +
√

1−T p̂env. (A.5)

The combined covariance matrix of the signal and the environment after the action of

the beam splitter is given by

Σ = BS

1
4

I2 02

02 N0I2

BST , (A.6)

where N0 denotes the channel noise and the matrix BS is defined as

BS =

 √
T I2

√
1−T I2

−
√

1−T I2
√

T I2

 . (A.7)

Evaluating the expression given in Eq. A.6, the covariance matrix of the singal reaching

Bob is given by

VBob =

T
|α|2

2
+

1
4
+ξch 0

0 T
|α|2

2
+

1
4
+ξch

 , (A.8)

where N0 =
1
4
+(ξch/(1−T )).
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