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Abstract

In this thesis we study the effect of pre-inflationary raidiatera and curvature on cosmic
microwave background (CMB) anisotropy and polarizatione $tow that if inflation was

preceded by the radiation era, there would exist a decoupkxchal distribution of gravitons

at the beginning of inflation that change the nearly scalariant spectrum of the gravita-
tional waves generated during inflation. Due to thisBasmode of the CMB polarization are
enhanced at large angles. This enhancement may be obserfetite polarization experi-

ments like PLANCK. Observation of this enhancement may ksl testing an important
class of models of inflation "Warm inflation’.

In natural inflation models, the inflaton is pseudo NambudStmne boson (PNGB). To
satisfy observations the spontaneous symmetry breakigg)(Scale of the PNGB has to be
at Planck scale. We show that if one couples this PNGB withatesh bath as in warm
inflationary models, the SSB scale can be reduced to the GBIE.Sé/e also show that one
can generate spontaneous leptogenesis in this model as PES8erivative coupling with
the lepton current. Another feature of this model is thatrédicts large non-Gaussianity
which may be observed in the future PLANCK experiment.

We also show that if the universe had a large curvature béfdiegion, then there would
be a deviation from the scale invariant perturbations ofitfilaton at the beginning of in-
flation. This may affect the large scale CMB anisotropy. Weawobthe expression for the
power spectrum of comoving curvature perturbation in cdgmth open and closed universe.
We apply the Bunch-Davies boundary condition and evaluegbwer spectrum at horizon
crossing. We compare the temperature anisotropy genebgteing our formula and the
Ratra-Peebles formula with the WMAP 5yr data. We find thatmawer spectrum gives low

guadrupole for closed universe but matches with the Ragebles formula at high The dif-

Vil
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ference in the temperature anisotropy at loavising due to the different boundary conditions

is unobservable because of cosmic variance.
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Chapter 1

Introduction

An important advance in theoretical cosmology is the ideefbdtion- a period of rapid ac-
celerated expansion during the early universe before BiggBnucleosynthesid[2, 3]. It
was introduced to solve certain problems of the standardatrafccosmology, and later it was
realized §, 5, 6, 7, 8] that it not only solves the problems of the standard modelasimol-
ogy but also provides seeds for the anisotropy in cosmicawniave background (CMB) and
structures in the universe. The predictions of inflatiort th@re are super-horizon correla-
tions in the CMB, were first confirmed by Cosmic Background lexgr (COBE) P]. The
precise measurements of CMB anisotropy, being done by Wétk Microwave Anisotropy
Probe (WMAP) [LO] and other ground based, balloon based and satellite bapediments,
are also consistent with the early period of inflation.

Inflation sets up the initial conditions for the hot Big-Baamyexponential expansion leaves
the universe homogeneous and isotropic at large scalesexjtbnentially small curvature.
During inflation the potential energy of a scalar field, cadlleflaton, dominates the energy
density of the universe and inflaton rolls slowly throughptstential. When this slow-roll
condition breaks down, inflation ends and inflaton decaysatther standard model particles
(reheating). During slow-roll motion there are quantum tilations in the inflaton field and
vacuum fluctuations in the transverse traceless tensooptre metric. The quantum fluctu-
ations in inflaton are coupled to metric perturbations (for gravitational potential) through
Einstein’s equation. These perturbations, generatedhguniflation, become super-horizon
and they re-enter the horizon during radiation and mattenidated era providing seeds for
CMB anisotropy and structures in the universe. Inflatiordprs nearly scale invariant and

nearly Gaussian density perturbations. It also predicisiyscale invariant spectrum of grav-
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itational waves. The two-point correlation function of sleeperturbations in Fourier space is
called as power spectrum. The shape of the primordial geations is determined in terms
of spectral index.

CMB anisotropy and polarization is represented in termsooir ftwo-point correlation
functions namely temperature-temperature correlatioction T T, polarization correlation
functionsEE andBB, and temperature-polarization correlation functibB. HereE andB
are curl free and divergence-free modes of CMB polarizati@t are rotationally invariant
combinations of Stokes parameté&)sandU. The temperature anisotropy and polarization
are expanded in terms of spherical harmonics and their wotgorrelation functions are
given in terms of angular power spectgs. The perturbations responsible for small angle
CMB anisotropy entered the horizon earlier to or during rabaation, so the primordial
perturbations are modified on these scales. These anigegrsipow the features of acoustic
oscillations set in the electron-baryon plasma before mdsnation. But the perturbations
responsible for the large angle CMB anisotropy entered trezbn after recombination and
they contain the signature of primordial perturbationsegated during inflation. The met-
ric perturbations generated during inflation give rise tigéascale CMB anisotropy via the
Scahs-Wolfe effecf[1]. We can determine the amplitude and spectral index of tineature
perturbations generated during inflation by CMB anisotropy

CMB observations give tight constraints on the amplitudg spectral index of primordial
perturbations that put an upper bound on the scale of inflatidich in generic models of
inflation turns out to be close to the GUT scate 10'%GeV). The amplitude and spectral
index are determined by the potential of inflaton, so we carstrain the models of inflation
by measuring the CMB anisotropy. There are a large numberafats of inflation that
can generate the required spectrum of the density pertartsatbut all these models are not
compatible with particle physics as most of them requireessanmatural fine tuning of masses
and couplings in the potential. For e.g. Ag®* model we must hava < 1012 to satisfy
observations and one can not keep this value small if highagraorrections are included.
There are a large number of attempts to realize inflation rtigha physics.

One alternative to the standard models of inflation is warftation [12], in which inflaton
is always coupled with radiation but the latter is sub-dcaminin density and does not affect
the exponential expansion. In these models inflaton is beisgjpated in the radiation and

the dissipation along with the Hubble expansion providesgvsbll. In warm inflation the
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density perturbations are generated due to thermal fliotnsin inflaton field. One can have
sufficient duration of slow-roll and can generate nearlyjesgavariant perturbations in warm
inflation models with reasonable values of masses and cmspiin the inflaton potential. The
another attempt to realize cold inflation is 'Natural inftati [13, 14, 15 where inflaton is
pseudo Nambu Goldstone Boson (PNGB) of some spontaneostgrbsymmetry at high
scale. In these models the flatness of the inflaton potestiptatected from higher order
corrections due to shift symmetry.

Although the predictions of inflation i.e scale invariandiabatic and Gaussian pertur-
bations are almost consistent with CMB observatidlfy,[we lack a unique model of in-
flation. CMB observations also show some features on largke smisotropy which are not
well understood. The quadrupole anisotropy is suppresseédrere are glitches in the low
anisotropy. These features are seen in the super-horizdessand are generated during the
early part of inflation.

To solve the horizon problem we assume that the perturbmtiorresponding to our hori-
zon size today, were leaving the inflationary horizon at thgibning of inflation and the
duration of inflation should be nearly 60 e-folds. It may dle@pen that inflation could have
started earlier and the length scales corresponding to ouzdn left the de Sitter horizon
later. If this is the case, all information prior to inflatievill have no effect on large scales.
But if inflation happens for minimal number of e-folds, thésea chance that we can see the
signatures of pre-inflation universe. The perturbationsesponding to largest angle CMB
anisotropies, that have entered the horizon recently, generated during the early period of
inflation, so they are most likely to reflect the signatureprefinflation universe. The condi-
tions prior to inflation are of importance as they determimelarge scale (low I) spectrum of
the CMB. The conditions prior to inflation can also help us @eimining the correct model
of inflation.

We have studied the effect of pre-inflationary radiation @nd curvature on CMB. We
have shown 17] that if there was a radiation era prior to the inflation, therthe time of
inflation there will exist a decoupled thermal distributiohgravitons. Gravitational waves
generated during inflation will be amplified by the processtirinulated emission into the
existing thermal distribution of gravitons. Consequenthe usual zero temperature scale
invariant tensor spectrum is modified by a temperature dégarfactor. This thermal correc-

tion factor amplifies thé&-mode polarization of the CMB by an order of magnitude atdarg



1. INTRODUCTION 4

angles. The observations of this enhancement can help asting warm inflation models.

Radiation era prior to inflation is a natural condition forrweainflation models as in warm
inflation models inflaton field is always coupled to the radiat As mentioned earlier this
property of warm inflation can be used to construct a poteafimflaton that has the values
of couplings allowed in particle physics. In 'Natural inf@at’ models, where the inflaton is
PNGB, the nearly scale invariant spectrum of density pbétions is attained only when the
symmetry breaking scale is of the order of Planck scale. 3tage can be reduced to the GUT
scale by coupling the PNGB to a thermal bath, as in warm ioflathodels and one can get
the amplitude and spectral index which agrees with the WMa#R §.8]. In our work we give
a GUT model of PNGB arising out of spontaneously broken leptember at the GUT scale
which gives rise to heavy Majorana masses for the right héine@@trinos which is needed in
see-saw models. Since PNGB has a derivative coupling wihejpton current, this model
can generate leptogenesis spontaneously.

An interesting observable feature of CMB anisotropy is i@aissianity which implies
that there may be higher order correlation functions presethe CMB anisotropy. The
non-Gaussianity in the CMB anisotropy is generated duedgtimordial non-Gaussianity
in the perturbations and some other effects. All standafldtionary mechanisms generate
very small amount of non-Gaussianity. The observation of @aussian fluctuation will help
us testing all the models of inflation. With warm inflation iimasg dissipative regime, as in
our model, we can have large non-Gaussianity which may bereég in the forthcoming
PLANCK experiment.

Anther observable feature of the pre-inflation universenes ¢urvature at the beginning
of inflation. As inflation starts, curvature of the universeeg down very rapidly. According
to inflation, curvature today is equal to the curvature dgiimflation when our horizon left
the inflationary horizon. If we obsen different than unity today then there was a residual
curvature present at the time when our observable univefséhke de Sitter horizon. Due to
the presence of large curvature at the beginning of inflath@ne will be deviation from the
scale invariant perturbations of the inflaton at the begigmf inflation. This may have some
effects on large angle CMB anisotropy. We calculate the itlepsrturbations for both open
and closed universe cases using the Bunch-Davies vacuuditiooron the initial statel9].
We use our power spectrum to calculate the temperature tampgospectrum and compare

the results with the WMAP five year data. We find that our powscsrum gives a lower
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quadrupole anisotropy whe@ — 1 > 0, but matches the temperature anisotropy calculated
from the standard Ratra-Peebles power spect@fhdt largel. The determination of spatial
curvature from temperature anisotropy data is not muclecegteby the different power spectra
which arise from the choice of different boundary conditidor the inflaton perturbation.

The outline of the thesis is as follows. In the second chaptewill give a very brief
description of the standard theory of density perturbatiand theory of CMB anisotropy and
polarization. In the third chapter we will describe the effef pre inflationary radiation era
on CMB polarization. In the fourth chapter we will describarm inflation with PNGB and
its phenomenological applications. In the fifth chapter vilkdescribe the effect of curvature

on CMB anisotropy and in the last chapter we will conclude.



Chapter 2

Standard theory of density perturbations

and CMB anisotropy

In this chapter we will briefly review the theory of inflatiom@ density perturbations in
both supercooled and warm inflationary models. We will alsmsaries the theory of CMB

anisotropy and polarization.

2.1 Standard model of cosmology

The standard model of cosmology is based on the assump@bnhih universe is homoge-
neous and isotropic at large scales. The geometry of the gensmus and isotropic space-

time is given by Friedmann-Robertson-Walker (FRW) linensdet

ds? = —dt®>+a(t) +r2de?+r?sirfedq¢?| . (2.1)

r
(1-Kr?)
Herea(t) is the scale factor which describes the time evolution ofuthiwerse, ; 6, @)
are the comoving coordinates aidspecifies the spatial 3-curvature of the universe. The
signature of the metric is (-,+,+,+). The physical distanaa be found by multiplying the

comoving distance with scale factor. According to our carian present value ia= 1 and
it is dimensionless, whereaé has the dimension dength 2. The matter content of the
universe is described in terms of energy-momentum tefigorFor a perfect homogeneous

and isotropic fluid it is given as

Tw = (P+P) Uty + PG - (2.2)
6
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Herep andp are the total energy density and pressure of the fluidignislits four velocity. In

the rest frame of the fluid,, can be expressed dsag{p, p, p, p}. The energy-momentum
tensor satisfies the equation of continuiyT,, = 0. After solving the Einstein’s equation
G = 8nG Ty and the continuity equation fqx = 0 we obtain the following Friedmann

equations for the evolution of the scale factor,

-\ 2
a 8nG K

Hz:(a) =T 5 (23)
p+3H(p+p) =0, (2.4)
i 4nG
a3 (p+3p), (2.5)

hereH is the Hubble’s constant. The equation of state is definqu-asvp, wherew = 0 for
2

matter ano% for radiation. The behavior of the scale factor is giveraast3@+w . Radiation

and matter densities scale @as* anda 2 respectively. If we divide Eq. 2.3) by H?, define

Pc = SHG 2 andQ = We get
K

The curvature of the universe can be described in ternf®.d?resent day observations con-
strainQ to be very close to 1 i.e the universe is almost flat.

FRW line element can be written in a different form by usingfosmal transformation
di=2as

ds? = a%(1) |—dt + +12d6? +r? sirf0d¢?| (2.7)

(1- K 2)
heret denotes the conformal time. We can defife= %/ = aH as the Hubble constant
in conformal time. Since no information can travel fasteartHight, above theory predicts

particle horizon i.e the maximum physical distance tragdddg photons from the big bang

until timet. It is given by
t dt/

a(t’)

A physical length scal@ is within the horizon ifA < H™1. This condition can be expressed

~H™1 (2.8)

Ru(t) = a(t) |

in terms of comoving wavenumbér= Z%a ask <« aH for scales outside the horizon and
k > aH for scales inside the horizon. There are various shortcgaai the standard model
of cosmology. Among them are the horizon or the large scateosihmess problem, the flatness

problem, monopole problem, entropy problem and the orifjslemsity perturbation problem.
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We will briefly review the flatness problem and the horizonkpemn.

2.1.1 Flatness problem:

Present observations show that the universe is very ngaalyedly flat i.eQqp ~ 1. The curva-
ture of the universe grows &— 1 ~ glﬁz So to have) ~ 1 todayQ — 1 has to be fine tuned
up to 1 part in 186 at the time of BBN.

2.1.2 Horizon problem

The angular size of the horizon at the time of recombinatias wearly 1 in the sky. During
radiation and matter dominated era physical length scales @sa but the horizon size
grows asa? and a respectively. So the length scales of angular size larger ih ( scales
corresponding td < 200 for CMB anisotropy) were outside the horizon before anti@time

of last scattering. Today we are observing the same aveeagedrature of CMB coming from
all regions in the sky. We also observe super-horizon teatpes correlations in CMB. There
is no way to establish thermal equilibrium if these regiomsewnever in causal contact before

last scattering. We also cannot explain the observed dupé&en temperature correlations.

2.2 Introduction to inflation

To solve the horizon problem we should have a period duringhvthe length scales evolve
faster than the horizon. As horizon size is neatly! and all the physical length scales are
proportional toa, this condition can be expressed as

(%) _ 40, (2.9)

To achieve this condition the idea of inflation was introdi¢&]. During this period uni-
verse accelerates i < —%. The length scales that were outside the horizon at the time
of recombination were generated inside the horizon dumfigtion and left the inflationary
horizon. This provides a mechanism to establish thermalibgum among the regions that
were acausal during recombination. It is obvious from Ex5)(that for accelerated expan-
sionp < —3p. Consider a condition whene ~ —p, hence energy density remains constant

(EQ. 2.4). In this caseH remains constant i.e the horizon remains constant. Theigalys
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length scales evolve exponentiallyas- €'t. So the length scales of our horizon size were
inside the inflationary horizon and since they grew fastantthe horizon during inflation
they became super-horizon after the beginning of inflatiwh r@-entered the present horizon
during the radiation and matter dominated epoch. So allehgth scales we observe today
had a chance to be in causal contact during inflation and heeclkeave the same average
temperature of the CMB in all directions. The curvature & tiverse is reduced to very

small value due to exponential expansion and we have a fle¢rs@ at the end of inflation.

2.2.1 Inflaton

During inflation the conditionZ.9) must be satisfied, so the pressure has to be negative. Nei-
ther radiation nor matter can give negative pressure. Bhéhieved by a scalar field called

inflaton. The action of the scalar field is given by

1
S= —/d“x\/—gL:/d“x\/ —g {éaucpa“(pntv((p) + Vinteraction| - (2.10)

From this action one can derive the equation of motion of tifiaton field which is given as

. .2
@+ (3H+T) —?cpjtv’((p):o, (2.11)

hereV'(@) denotes the differentiation &f (@) w.r.t @ andT is due to the interaction of the
inflaton field with other particles present in the backgrounthe energy density and the

pressure for the scalar field can be found from the energy-embam tensor of the scalar field

T = 04900 Gy (%aacpa“wvap)) , (2.12)
hence
: 2
p = ToongrV((P)ﬂL(gg, (2.13)
: 2
p = m:%—v«p)—(g;"g . (2.14)

So if we take a homogeneous field with very small kinetic ep&rg can haves ~ —p which

can give inflation.
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2.2.2 Slow-roll

The inflaton field can be written in terms of time dependentbgemeous part and fluctuations
around it as
O(X,t) = @(t) + d@(x,t). (2.15)

The equation of motion for the homogeneous gaft) (we will denote it agp) can be obtained
from Eq. @.11) i.e

O+ (3H+M)p+V'(p) =0. (2.16)

In supercooled inflation it is assumed that inflaton is wealdypled to other fields sb
is neglected. The conditiof%% < V(@) means that the field rolls down slowly through its
potential. To achieve this the potential of inflaton shouédvery flat. The flatness of the

potential is determined by the following parameters caleglow-roll parameters,

H M3 /V)\?
M3 (V") 1V
5 — n—s:—H—"’(.p. (2.19)

For inflatione < 1, n < 1 andd <« 1. The conditiom < 1 implies that the mass of the
inflaton field should be less than the Hubble constant dunifigtion. During inflation only
the potential energy of the scalar field dominates and a#ratbmponents are diluted expo-
nentially so Eq.2.3) becomes

_81G

HZ = S22V (o) (2.20)

Under the slow-roll approximation the equation of motionrdfaton becomes
3He=—V'(¢). (2.21)
The duration of inflation is given in terms of the number obédings defined as

t
N:/ Hat. (2.22)
0
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It can be written in terms of andV’ by using equations2(20) and @.21) as

8t eV

N=-—— [ =
M3 Jg V'’

do. (2.23)

Here@ and@; are the values of the inflaton field at the beginning and theaénaflation

respectively. If we assume that the length scales correébpgrio our horizon size today
were leaving the inflationary horizon at the beginning ofatifin, we must have nearly 60
e-foldings. Inflation ends when the slow-roll conditiors 1 breaks down and after that the

inflaton field decays into radiation during reheating.

2.3 Perturbations during inflation

A nice feature of inflation is that it generates seeds for CMigs@tropy and structures in
the universe. During inflation there are quantum fluctuationthe inflaton field. Since the
potential energy of the inflaton field dominates the energysidg of the universe, the quantum
fluctuations in the inflaton field cause perturbations in thergy-momentum tensor. These
perturbations generate the metric perturbations as trega@upled to the geometry through
Einstein’s equation. A detailed calculations of densitytyations during inflation can be
found in [21, 22, 23, 24]. We will follow [ 21, 24] and briefly describe the generation of scalar
and tensor perturbations during inflation.

The perturbations in the metric up to first order can be writie

O = G + OG- (2.24)

One can splibgy, in scalar, vector and tensor perturbations according tio tlemsformation

under 3-rotation. The perturbed line element can be writen

d$ = a(1) [~ (1+20)dt?+ (2B +S)dXdt + ((1—2W) &
+ 2B +W )+ Wi, +hij) dXdx] . (2.25)

Here®, W, E andB are 3-scalars§ andW are divergence free 3-vectolfs; is a traceless

and transverse 3-tensor and a comma with a variable meaderit@tived;. S, W andhj;
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satisfy the following four constraints,

S, = Wi=0, (2.26)
h = oh;=0. (2.27)

We have four scalar functions, four components for two vescand two components for tensor
i.e ten degrees of freedom to describe perturbed metric. Mgntbese, scalar perturbations
are the most important for CMB anisotropy and structure fation. \Vector perturbations
describes rotational motion of the fluid and they are not gged in standard inflation so
we will not consider them. Tensor perturbationg describe gravitational waves. These
gravitational waves play an important role in CMB polariaat Since scalar, vector and
tensor perturbations are decoupled. one can study theselgsions separately.

Quantum fluctuations in the inflaton field generate pertumbatin the energy-momentum

tensor which are given a&]]

1

1 ov

In component form it will be

ov

5Too = 0@ ¢f + 2V (@) a® + a2 5 5, (2.29)
1
5Toi = 0 5@ + éaiEscpfz — 3BV(g) a2, (2.30)
oV
5T = <6<dqf — pg? - azapé(l)(p— Wg? 1+ 2wV (@) az) 3ij
+ Ej@°—2E;V(gal. (2.31)

Here and afterward a prime on a variable will denote its denie w.r.t conformal time. Now

5TH can be obtained by using the relation

5Ty = 8(¢"Tw)
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Hence we obtain

5T = é <(D(p(2 _5d ¢ — écpg—\(/p a2) , (2.33)
5TL = % (aqufz + aiacqu) : (2.34)
5T — _afz‘p"j, (2.35)
5Th = % K—qufz 1 5¢ ¢ — &p‘;—\(/p az) 5‘,} . (2.36)

By using the covariant energy-momentum conservation egjual, T,, = 0 we can calcu-

late the perturbed Klein-Gordon equation describing tredugion of o,

/ . .
&g’ + 2%&;{ —0'0;0¢— V' —3W ¢ +@a;0' (E'—B) + 6cp% 2+ 2q>g—\(/pa2 =0. (2.37)

2.3.1 Gauge invariance

An important issue regarding the cosmological perturlveticeory is the behavior of the per-
turbations under coordinate transformation. The cootditransformations are referred to as
the gauge transformations in general relativity. We wileHy review the behavior of scalar
perturbations under coordinate transformations anddhice gauge invariant quantities. Con-

sider the following infinitesimal coordinate transfornuats
M= x4 W (2.38)

where & are four infinitesimally small functions of space-time. Timetric tensorgy in
the new coordinates can be found by applying the laws of toamstion of a second rank

covariant tensori.e

Y X% oxP
G (%) = ﬁﬁgas(xp) (2.39)
= gl O¢) + Bgw — g & — G &S (2.40)

Here we have taken only the linear termsdmand. One can split the metric in the new

coordinate as

Guv ) = GL (%) + OG- (2.41)
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Using Eq. 2.40 and Eq. 2.41) and taking into account that

ol (%) = Gl (%) — gfurE, (2.42)
we get
S = O — Gy — Ol &y — GV G (2.43)

The spatial part of the infinitesimal vectélt = (EO,Ei) can be written as
g =g, +0'E, (2.44)

where&!, is divergence free vector arfdrepresents the real scalar degrees of freedom. One

can find the transformation rules for the scalar perturlmetd, W, E andB using Eq. 2.43

R (2.45)
Y = L|J+%/E°, (2.46)
E = E-§, (2.47)
B = B—&+&° (2.48)

The perturbations in the scalar field transform as

3p(%) = Bp(x°) — E°. (2.49)

From these equations one can construct gauge invariaatblesi, first introduced by Bardeen
[25], for ® andW

oC! :—(D+§[(—B+ E)al’, (2.50)
o__y, ¥(g_FE
W= W (B 2). (2.51)

and the gauge invariant quantity for the perturbations engtalar field is

5¢°' = —8p+ ¢ (E' - B). (2.52)
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We can choose two functiog8 and& by imposing the conditions on scalar perturbations. By
doing this we are actually fixing a coordinate system or chpa gauge.
There are a number of gauge choices used in the literatumedouse conformal-Newtonian

gauge that is defined by the conditiBn= B = 0. In this gauge the metric takes the form
ds? = —a2 [(1+20)dt? + (1 - 2W) §;dxXdx] . (2.53)

From equationsa.50 and @.5]) it can be seen that the Bardeen’s variables are equal to the
conformal-Newtonian gauge variables.

The evolution equations for the conformal-Newtonian gawayéables can be obtained by
solving Einstein’s equation. With the metric perturbasarp to the first order the Einstein
tensor can be expressed@$ = GKI,(O) +8GY,. So Einstein’s equation for the perturbations
can be written as

dGY, = 8nGSTY. (2.54)

For the metric 2.53 the perturbed Einstein tensor can be giveZis P26

3Gy = = (6H%d 4 6HW —20,0'W), (2.55)

3G) =

QR+

(—2Ho® — 20,W) (2.56)

5G|, = P <2ﬂcp’+4%ﬁ¢—2}[2q>+aiaiq>+4}[w’+2w”—aiaiw>5ij
— dojp+a'ow|. (2.57)
From .54 we obtain
3H (W + HD) - [PV = 4AnGalsTyY, (2.58)
—0; (W +HP) = 4AnGasT?, (2.59)
W H(QWA ) + (24 + HP) D + %DZ(CD—W) &,

—%aiaj (®—W) = AnGa2sT!. (2.60)
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The first two equations are called as Hamiltonian and monmemtnstraints. If there is no

anisotropic stressST‘j will not have any off-diagonal element, so
0'0j (P —W)=0=D=W. (2.61)

Now we can use equation®.83), (2.35 and .36 to get the equations fd¥ in presence of

inflaton fluctuations. We also use the fact that

H = —41Ge? = H' — H? = —AnGg>. (2.62)
Hence we obtain
2 / / 2 v 5
0°W —3HY — (H' +2H )W = 41nG 6cp<d+6cp%a , (2.63)
W+ HWY = 41G(39¢), (2.64)
W4 3HW + (H +2H))W = 41G (e'quf — 6cp‘3—\(/p az) . (2.65)

To get the final equation fo# we subtract Eq.4.63 from Eq. .69, use Eq. 2.64) to
eliminated@ and use the Klein-Gordan equation (unperturbed). The fopadhon in Fourier

space becomes

I’(’+2(j{_%) fk+2(}['_}[%)wk+k2wk:0. (2.66)

In terms of the slow-roll parametegsandn it becomes

V42 (N —€) Wi +2H? (n — 28) Wy + K2Wy = 0. (2.67)

This equation implies thaY remains nearly constant on super-horizon scales.

2.3.2 Comoving curvature perturbation

Another gauge invariant quantity that is useful for inflatoy perturbations is comoving cur-

vature perturbation. It remains constant outside the barigo it is most widely used in
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inflation. The intrinsic spatial curvature of constant timgersurfaces is given as
ORr= 22y (2.68)
=2 . :

Y that appears in the spatial part of metric perturbationsiked as curvature perturbation.
From Eq. .46 we know that under the transformation— 1+ £° on constant time hyper-
surfaces it transforms as

W W4 A0 (2.69)

Now we define a hypersurface on whidlp = 0. From the transformation rules fop (2.49

we see that
o0
¢’

This hypersurface is called as comoving hypersurface aadtinvature perturbation in this

59— 59— g0 =0— "=

hypersurface is called as comoving curvature perturbaiwhis denoted by and is given

as

qf
T (2.70)
2.3.3 Power spectrum
All the perturbations in Fourier space can be written as
d3k ik-x
F(x,t) = / X (). 2.71)
(2m)2

The two point correlation of the perturbations in Fourieasp is called as power spectrum

Ps (k) and is defined as

(0[f¢ fio[0) = 83 (k — k)zktf P (K). (2.72)
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In conformal Newtonian gauge the relation between the ¢uregerturbatiot and inflaton

perturbationdg on super-horizon scale can be obtained by using £G4,

W, zeHé.—i“. (2.73)

So the gauge-invariant comoving curvature perturba®pmvill be (using Eq.2.70

g(k:wk+H6.—¢(?<=(l+e)H6.—$‘:H6-—(n(, (2.74)

¢

and its power spectrum will be

I H2 e 2K

Pp = —5— = 3 |%. 2.75
3 2T[2(p2|cn< M,%en' | (2.75)

Here [5¢|? = <O|6cq‘:6cn<|0>. To find the expectation value &bP(x,t) we can expand it in

terms of creation and annihilation operator

3

ox.) = [ %{ak 5@c(1) +al | 3 (1)] € (2.76)

The equation of motion fadg, can be found from the perturbed Klein-Gordon equat®3)

in conformal Newtonian gauge

. . k2 .o
Oy + 3H3 + 50 + V78 = —2W V' + 4¥y .

The second term on the right hand side can be neglected blm‘k@} < |WV’| on super-
horizon scales. Using Eq2(73 and the relatio’’V’ = —3H¢, the perturbed Klein-Gordon

eguation on super-horizon scales can be rewritten as

. 2
6@+3H6(n<+%6qk+ (V" —6eH?) g = 0. (2.77)

Introducing another field variabl®oy = %"k the perturbed Klein-Gordon equation in confor-
mal time becomes
a//
doy + {k?+ (V" —6eH?) a2—z} =0. (2.78)
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Using the relation between scale factor and conformal tinméng inflation i.ea = — —~

Ht(1l—¢)
and the definition of slow-roll parametgreq. .78 becomes
1/, 1
S0, — = (v — 4_1) doy = 0, (2.79)
v o= §+9£—3r]. (2.80)

This equation is Bessel equation and the solution can beewiit terms of Hankel's functions.
50k = v/—T [cl(k) HY (—kt) + () H\Sz)(—kr)] . (2.81)

To find the constants; (k) andcy (k) it is assumed that for very short wavelengths the solution
matches with the plane waviw, ~ e KT/\/2k. The assumption that in the limit of small
wavelengths compared to the horizon size, the modes shalidvie like canonical plane
waves in Minkowski space is called the Bunch Davies boundandition. For very short

wavelengths we have>>> aH or (—kt > 1). The asymptotic limit of the Hankel’s functions

x>>1 \/ é x=3v=3) (x>> 1) ~ \/%e“@“%"‘%), (2.82)

Using this we get,(k) = 0 andc; (k) = ‘/Tﬁei("*%)g. So Eq. 2.81) becomes

is given as

60k:\/2ﬁ d+2)2 /THY (—k1). (2.83)

Since we are interested in super-horizon scalks < 1, we use another asymptotic limit of
Hankel’s functions i e-l\, (X< 1) ~/2/me 122V~ 2 (v)/I'(3/2))x~" to get the behavior
of ok on super-horizon scales.

3) rv) 1 1

—d(v=3)5o(v- — (—kt)27V
ooy =€ 2 r(3/2)\/27k( kt)z—. (2.84)

Sinceg andn are very small, we can put~ 5 in the factors, but not in the exponents and we

H [ Kk\iV
15| ~ @(ﬁ) . (2.85)

get
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Hence the power spectrum from EQ.715 becomes

amt (HN? k™t L k™!
o= g () (an) =(a) (259

where we have defined tlspectral index gof the comoving curvature perturbation as

d|nPg(
Ns—1= Gk

=3—-2v=21—6e. (2.87)

The above power spectrum can be written as

ns—1
Py (k) = AZ (ko) (%) : (2.88)

whereky = agHp is called as pivot point anAﬁi(ko) is the amplitude of the perturbations

corresponding to wave numbig.

2.3.4 Tensor perturbations
Another important prediction of inflation is generation ehsor perturbations. The tensor
perturbations are described by the transverse tracelessfiihe perturbed metricX.25 h;;.
It can be written as
hij = h—kq—ij_—khX e,f, (2.89)

whereg; = &®&—8& 28,6 =& §6,+8& © & are polarization tensors ahd-* represents
the plus and cross polarizations of gravitational wavepeaesvely. The latter are just like

scalar fields and obey Einstein equation,
. a . .
h'"+2ah"+k2h' =0,i =+, x. (2.90)

The above equation is similar to the wave equation for a reasdtee particle. The power

spectrum of tensor perturbations is defined as

3 . .
s 3 (ki (k) = Pra® (ks ko) @)
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We will discuss tensor perturbations in detail in the nexdptier. The power spectrum for the

tensor perturbations comes out to be

64t/ H\2/ k\™ k\M !
=g () ()~ (&) o2

The amplitude of the tensor perturbations is determineeitims of scalar to tensor ratio

which is defined as

r=_" =16¢. (2.93)

2.4 CMB anisotropy and polarization

A major observational support for inflation is CMB anisotyo he perturbations generated
during inflation, that move outside the horizon, re-entairdyradiation or matter dominated
era and cause CMB anisotropy. In this section we will brieflyiew the theory of CMB
anisotropy and polarization. There are a large number aéves and books on CMBZE,
27, 28, 29, 30]. CMB radiation can be described in terms of Four Stokesrpatars I, Q, U
and V. A monochromatic and linearly polarized plane waveppgating in directiom tan be

expressed as

E(x,t) = (&E1+&Ey)elk*iu), (2.94)
Ei = a1€®, Ey=ae®, (2.95)

whereé; and& are unit vectors perpendicular to The Stokes parameters are defined as

1)+ (83),

af) — (a),

(&
Q {
U = (2aiacoqd — 1)),
\% {

2a182SiN(02 — 81)).

We will not consider the paramet®t as it is not generated by Thomson scattering and is

absent in standard models of CMB polarization. Consideglat thanded rotation by an angle
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a in a plane perpendicular @ I remains invariant bu® andU changes as

Q = Qcos21+Usin2u, (2.96)
U = —Qsin2x+Ucosa. (2.97)

We can see that the polarization degikee \/W is invariant under rotation. Radiation
field of CMB can also be characterized in terms of polarizatensorljj. The Stokes param-
etersQ andU are defined a® = % andU = '172. The temperature anisotropy is given as
T= % The polarization tensor is normalized such that it represthe fractional inten-
sity. One can construct two spin weighted quantities fortthe Stokes parametef3 andU

which have a definite value of spin i.8]]
(Q+iU) (A) = eT29(Q+U) (A). (2.98)

We can expand them in terms of sgispherical harmonics a8]]

T(h) = ZaT,ImYIm(m, (2.99)
(Q+iU)(h) = ZaszzYum(ﬁ), (2.100)
(Q—-iU)(A) = Za—sz—zYlm(ﬁ)- (2.101)

To calculate the power spectra for all these quantities wi® gadrame where the wave vector
k is parallel toZ'direction and then sum over &l This process is complicated @andU
are not rotationally invariant. One can define two spin rajsand lowering operatod and

d as B1]

B Nim(A) = [(1—9)(1+5+ D)2, Yim(),

J¥im®) = —[(1+9)(1 s+ 12 Yim(A). (2.102)
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Using equations.100 and @.107) we get

] 1/2
32Q )0 = 5 | 55| amin(d) 2109
1/2
92Q-)M) = 3 |{Fg| aanin® (2.104)
(2.105)

One can introduce linear combinations®f, anda_p|m as 32, 31]

(az,lm + a—2,Im)

Em = — 5 : (2.106)

a: —a_
g im = (22t . 2im) (2.107)

Now one can construct two rotationally invariant quansitees

EM) = —[0%(Q+1U)+%(Q-1U)

1 {(I+2)!

264 (1-2)!

1/2
} (Bo1m-+ o1 Wim(P)

1/2
= 5[] e, 2109

B(A) = ~[d%(Q+iU)-d2(Q—-iU)]

N

1/2
i p—

1/2
S || cem¥in(d) (2109)

The expression for the expansion coefficieatsm, agm andagm can be found by using

equation 2.99, (2.108, (2.109 and using the orthogonality conditions of spherical hammo

ics.
arm = [ QYT (). (2.110)
~1/2
Beim = K:im [ dQVim@E®), (2.111)
(1+2)

17-1/2
agim = { } /dQ * (A)B(A). (2.112)
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E andB behave differently under parity transformatidhremains unchanged whikchanges
sign [32). The statistics of CMB is described in terms of four angylawer spectra that rep-
resent the two point correlation betwe&nE, B andTE. We do not have the correlations
betweenT B andEB as they are generated by parity violating interactions. s€hgvo point

correlation functions are represented in term€afgiven as

1 m=l §
ClTT — 2I—+1mzz_|<aT7'maT’lm>’ (2.113)
L
CFE = iﬁf (8E 1mae im) (2.114)
20 +1 & VEmEE
=
¢ = 1S (@maem) (2.115)
2041 & VT
—|
GTE = mz (8T 1maE Im) (2.116)
| 2|+1m:_| T7Im ) )

2.4.1 Boltzmann equation

CMB angular power spectra are calculated using Boltzmamatsan for photon distribution
function f. In case of homogeneous and isotropic universe this fuméidBose-Einstein
distribution function depending only on the energy of pmstoBut because of metric pertur-
bations it becomes function of the coordingteconjugate momentd and conformal time.
We will describe how one calculates CMB angular power spagénerated due to scalar and

tensor perturbations.The Boltzmann equation is given as

df
E = CcoIIision- (2-117)

The derivative on left hand side is Euler derivative and tightrhand side represents the
collision term due to Thomson scattering. First we will ecdéde the left hand side of the
equation due to scalar perturbations. The conjugate manaeatdefined aBH = ‘é#f whereA

is affine parameter. These are related to the proper monperta' measured by an observer
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at a fixed spatial coordinate by

PO —(1—¢):%(1—¢), (2.118)
PR = al-Wp=(1-¥a, (2.119)

whereq; is comoving three-momentg = ap. We can write this in terms of its magnitude
and direction agj = qn wheren, n' = 6i,-ninj = 1. So the phase space distribution function
for photons can be written as(x', P, 1) — f (X',q,n;j,T). We can write photon distribution
function as an unperturbed Bose-Einstein distributigi) and first order perturbations in it

ie fM(x,q,nj,1),
f (x,q,nj,7) = fo(q) <1+ fU (X, q, n,—,r)) . (2.120)

So from Eq. 2.117 we get

af(d DdxX afo(qg)d ot dny
fo(Q)a—T+foq 6x' it géq) d? fo(d) —— o dt = Ceollision-

(2.121)

Here the last term is second order perturbation so it can Qk-ECl'ed,dT can be written as

d¥ dédrn P
== r=n (2.122)

To calculateg—g we use geodesic equation for photons i.e

ddF: rhsP PP =o0. (2.123)

UsingP? = d)\ L and taking théth component of momenta above equation becomes

odP

i

+ TP PP =0. (2.124)
Here the connectlorié' ap include unperturbed part and first order perturbations.ntyger-
turbed affine connections for the given metric perturbatitsee 21]) we get

dP PIpk

oo = O OPP—29(P L 2WP o (05 +0;WE, — O WS ) (2.125)
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Usingg= q'n; and the relation between conjugate momé#t@ee Eqg.2.119) and comoving

momentay, 99 can be written as

dg

i . . o
e <a2(1— W) %—FT) +2Ha?(1—W)P —azw’P') ni —a?P'a;Win;. (2.126)

Now we can use equation®.(25, (2.126 and @.119 and take only first order terms to get

99_ v —qgnao. (2.127)
dt
So the Boltzmann equation becomes
of W afM . dInfy 1
ot T oxi n'+ dIng (W/_niaiq)) = f_OCcoIIision- (2.128)

This equation can be written in Fourier space as

af® aln f
o ikuf@ 0
ot HIkUE ding

, 1
(W —ikuo) = f_OCcollision- (2.129)

Herep = k- fi andk is the wave number of perturbations. Before recombinatmtons
are tightly coupled to baryon, interacting via Thomson t&ratg. Due to Thomson scat-
tering photons are polarized in a plane perpendicular. td@o find the Boltzmann equation
for temperature anisotropy and polarization we define redythase space density function
corresponding to the sum of intensities in two directiens, in a plane perpendicular to ~

as
_ JoPdaab(a) @ (q)
' [dPdagb(a)

Similarly one can also define another funct®pcorresponding to difference in the intensities

(2.130)

in the two directionsey ande,. The Boltzmann equations for these two quantities can be
obtained from Eqg.4.129 and are given as

or, . ;o |

a—T—l—lkUFy—“'(qJ —ikpe) = Cegpiisions (2.131)

G,
o kUG, = CS ision (2.132)
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The collision terms on right hand side can be found3g B4, 35. We again define tempera-

ture anisotropyAt = %T and polarization function&g andAy as

' f
fan) = fo( 2 ) @+ jofaa-on-a. (2139

At can be written in terms of ) using Eq. 2.120 and Eq. 2.133 as

- dIn f
(1) (i . _ . 0
fo(q) <1+f (x,q,n,,T)) fo(q) (1 At a|nq)' (2.134)
So .
dlnfg\ ~
_ _ (@ 0
At f (alnq) ) (2.135)

Now using the definition oF, we getFR, = 4At. Hence the Boltzmann equations & will
be (using 2.13)), (2.132)

A pikpal® = @ ikud

: 1
+ K’{—A(TS)+A(TS(’%+|pvb+§P2(u)l'l}, (2.136)
S S 9 1
Ay +ikpay = Kl{—AEg)‘i'é(l_PZ(u))rl}: (2.137)
A Liknd = —wal, (2.138)

where S in the superscript represents scalar perturbatiepds baryon velocity and1 =
A(TSZ) +A§§3 +A§2. k" denotes the differential optical depth for Thomson scitteand is given
by K" = anexe 07, Wherea(1) is scale factorne is electron number densitye is ionization
fraction andot is Thomson scattering cross section. One can also definalisfunction
g(1) = k’e(=%)_ It gives the probability that a photon we observe last scatt at timer. This
function is strongly peaked around recombination. We caheapliationsZ.137 and @.138

to find the the Boltzmann equation for the degree of lineaapzhtionP as

. 1
A,(DS)’ + |kuA£,S) = Kl{—Al(:,S) +5 (L—=Px(W)Mn}. (2.139)

Now we will find Boltzmann equation foAs due to tensor perturbations.The tensor per-

turbations are described in detail in the last section. Hexenvork with a different linear
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combination of+ and x given as following,

h*™ —ih*
ht = (2.140)
\/é )
+ 1ifX
o D ;é'h . (2.141)
In case of tensor perturbations
~dhi
g_ilz_%n'nla_r”_ (2.142)

Now if we choose axis in the direction of perturbation momentithe polarization tensors
defined by Eq.Z.89 will be

e)_(FX: _e;/Fy: 1, e)>(<y: e)>/<x: 1. (2143)

So
nnlgl = sirfBcos @ sirBsir’ = sin*Bcosy, (2.144)
nnlg = 2sirfBcospsing= sin*Bsin 2p. (2.145)

Now to describe the Boltzmann equations for two gravitalomave polarizations new vari-
ables can be introduced £ cosB)[36, 37, 31]

MDAk = (=)&) + (1 - w)e 2o (k)| A7 (T k),
(8 +ing ) (wAK) = |(1-W2N(K) + (1+ )26 202 (k)| &

(8 —iag ) TAk) = [ (1+ W2 (k) + (1 w2 22(k) | A (1K),
(2.146)

whereT in the superscript represents tensor perturbations. TiterBann equations for these
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functions can be written a8, 31]

BT il = e (B —), 2147
AT Likpal) = K (Ag) +x), (2.148)
_Axm im0 Lgm o
X - (1OATO + 35AT2 + 210 T4
3~(T 6 ~(T 1 T
gAgg + 3—5A§,2) - E)Aéﬁ). (2.149)

2.4.2 Calculation of angular power spectra

We can expand (k,A, 1) in terms of Legendre polynomials as

A(k,AT) =
|

(=) (20 + 1) (K, T)R (). (2.150)

M

The quantities\ (k, A, T) are random variables and their values depend upon initiale-
tions generated during inflation. These can be writteA@sn, 1) = W(k)A(k, |, T). Let us
first calculate the angular power spectra for temperatureotmopy and polarization from
scalar perturbations. The present value of temperaturgotinpy, T (i) = At (To, X, 1) at

x = 0,T =T can be expressed in Fourier modes as

TOw = 1 [ dHwon® =0k w), (2.151)
(2m)2

Q94U ) = —1 / ckW(k)e a1 =10,k ),  (2.152)
(2m)?

(CITICIT — / kW (k)e#%ns (1 =10,k, ). (2.153)
(2m)2

Heredy , is the angle needed to rotate thandr dependent basis to a fixed frame in the sky.

The power spectrum for the longitudinal gauge varial#g¢k) is given as

(W (K)W(K)) = i—TquJ(k)ES“) (k—k'). (2.154)
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One can solve the equatiors 139, (2.139 using line of sight method3g] and the solution

will be
T .
AS - / " eSS (i 1), (2.155)
0
T .
B9 = 2a-i®) [ g, (2:150)
0
where

Kk 42 kK a2) " ae
(2.157)

Since scalar perturbations do not contribut®tmode so one can find the expressionAgr
for EQ. 2.159 as B1]

\/ M 3" Vi 3’ 3a'M
§rs)(k,f)=£31(ATo+CI>+ +4+ )+e—"(cb’+w)+g(b+_)+_g _

AI(ES)(To, K = _§ d-[g( )N(T,k) 92 [(1 u )26|ka '[0:|

— 2 2+ = \2dku(t—T1p)
= 4/ dtg(1) rk(1+0)<k(r To)“€ 0).
(2.158)

We can expand plane waveXH(-T0) in terms of spherical Bessel functions as (ket
K(to—1))

HT—T0) — g = > (D) (2 +1) i (R (W). (2.159)
Using equations.15J), (2.110 and @.155 we get

T .
"o HarsS (k7). (2.160)

aT7|m:/dQ * (A)

Putting this value of jm in equation 2.113, using €.154 and @.159 we get the angular

power spectrum of T as [3]]

To 2
ST [ Ptk ‘/0 des™ (k1)1 (¥)

(2.161)
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Similarly the power spectrum fdE E can be calculated as

C(OEE _ (4m '+§ /kzdkRp [/drg “() . (2.162)

To get the cross-correlation betwe€randE we can use the differential equation satisfied by

the spherical Bessel functiong, + 2j{ /x-+ [L— (I + 1) /x?] j; = 0. Introducing

2500 — [ s knico,
AS(K) = \/ :2 /Tod S (k1) ji(x
s) _
% (k1) = 4X2 7 (2.163)
we get
dk 2
CoTE = (am [ R[]
c®T8 — (am / dkkP(p(k)A(S)(k)A(ESl)(k). (2.164)

Now we will calculate the angular power spectra due to tepsaiurbations. The solution of

the equations.147 and @.148 can be obtained by line of sight method &§][

ADoK = [(1- 1B + (1-iP)e 2ok | [ e kv,
O +ia] )00k = [(L-w2EoNtK) + (1+ 7% 29| [ drers k),
(05 —iad)(Tonk) = [(1+w2Poni(K) + (1 pZe 2h2(K) /Todtéx*‘sg%k,r),
(2.165)
where
SV (k1) = —he™* 40y,

Skt = —ox. (2.166)
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For tensor modes all three quantltm%r andA( ) are non-vanishing and one can cal-

culate them by acting with the spin raising and lowering apms on the above equations.

A (w0, Ak) = |(1- )Pt (k) + (1 1) 2ok | /OTOdTéT)(T,k) _—

2D (10,A,k) = :(1—pz)eZi‘phl(k)+(1—u2)e—2ifph2(k): %(x)/OTOdrsg)(r,k) & i,

oy (0. k) = [(1-1B)e0nt(k) - (1 1)e2n?(k) | B(X /Omdré,”(r,k) —n
(2.167)

where E(X) = —12+ X2[1 — 82] — 8xdy and B(x) = 8x+ 2x2d,. Now angular power spectra

for all these modes can be obtained as in the case of scatarlpsrons. They will be

cMTT (4n)8f2): %H(k)’/orodré”(k,r)j'i—zx)z, (2.168)
To ~ . ./ 2
e = (am [ S ([ arsT ke [~ + 59 + 20 )
| 2.169
dk © ) 4§72 ( )
CP®B = (4nm) P (/O sy (k, 1) _2j,’(x)+7D . (2.170)

Here we have used the definition of tensor power spect(k) given in 2.91) One can

further simplify these expressions by integrating by ptresderivativeg|(x) andj;’(x). This

T (1+2)! [T T) ji(x
Al — 1/l_ /o|§r (k1) 2,

finally leads to

T 10
A(E%l = dtS<E (K, 1) ji1(X),
T) _ X 22X X 2X | X . X
% k1) = g<X_Q+F_B()_g(k2+k) 29@7
4 2 .
k1) = g(%+%)+29§. (2.171)

The power spectra are given by
dk 2
e = (m [ SCPrlo[al ]

c™ = (am d—kkPT(k)A(TTR(k)A(ETl)(k), (2.172)
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whereX stands fofT, E or B.

TheseC;s are calculated using public domain codes CAMB]| jor CMBFAST [39]. Itis
clear from above formula that the€gs are related to the primordial power spectra of scalar
and tensor perturbations. The perturbations that enteeekddrizon before recombinations are
modified due to acoustic oscillations in the electron bamyi@asma so they do not retain infor-
mation of primordial perturbations. The perturbationd #natered the horizon after recombi-
nation are responsible for large angle CMB anisotropy aet #ffect on CMB anisotropy is
known as Sachs Wolfe effect]].

2.4.3 Large scale CMB anisotropy

To calculate large scale CMB anisotropy let us write the terafure anisotropy as from
Eq. 2.157)

TO @) = is / d3kAl (1 =10,k ). (2.173)
(2m)2

The integral solution foA(TS) (T =To,k, 1) is given by Eq. 2.155. For large angle anisotropy
we can neglect the Doppler term and higher multipoles in theee term 2.157. Using
Eq. 2.155 and Eq. 2.157 we get

T .
AP (1 =10k, ) = /O " dteHT0) [g (Ao + ) + e (& + )] (2.174)

The visibility function is peaked around decoupling timg: so we can take sudden decou-
pling limit in which the visibility function behaves as Doalelta function around,ec and its

integral can be approximated as step function i.e

9(t) = O(T—Treo), (2.175)

e—K(T,TO)

Putting these in Eq2(174 we get

] T .
AP (1= To.k. ) = 40 (Bro 4 D)+ [ dtd T (@ ). (2177)
Trec

The first term in Eq. 2.177) represents the ordinary SW effect and the second term-corre

sponds to the integrated SW effect. If we take adiabaticupeations and no anisotropic
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stress = ®), we get|(Ato+ P)|, = % and we can neglect the integrated SW effect. So

|Trec

TO M) = 1 / dkehttecto) PK) (2.178)
(22 3

We can neglectec in the exponential. Using the definition 6fs and expanding the plane

wave in terms of spherical Bessel functions (see E4.59) we get

G = [ ey P ko). (2.179)

Assuming that the power spectrum has the fé&ptk) = A%k™~1 we get
2
cTT— % / kK22 (kto). (2.180)

After integration it gives

2 rf+%-3Hr@-n
T 4";'6:12%—4 ( +n2 52) ( i) _ (2.181)
91y’ ril-s+3r2-3)
For scale invariant spectrumg= 1) the above equation becomes
1(1+1) g7 _ A?
-7 =—. 2.182
o G 9 (2.182)

If we take the power spectrum of comoving curvature pertuoba Eq. 2.86 we get Py =

3R)

I(1+1) 77 Ag(
T =% (2.183)

From CMB observations we can determine the amplitude anctisppeérdex of primordial per-
turbations. WMAP 5-year data gives the values of these petensito be‘\% =(2.414+0.11) x

109 andns = 0.963:312. From the amplitude of the power spectrum we get using R

4 (H?
2 _ AT (HNY o
A% = s (211) 1079, (2.184)
1
Writing H in terms of potential of the scalar field, we get from aboveagigun that(\g’) 4~
10'%GeV. This gives an upper bound on the scale of inflation. If aleetré@? or Ag* po-
tentials, we get that for 60 e-foldings> Mp, m~ 103GeV and\ ~ 10~12. It implies that
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inflaton should be weakly coupled and there is huge diffexdretween its mass and value.
Such values of field and couplings are not natural in parpblsics. There are a large number
of attempts to construct a model of inflation. Among one ofthattempts is natural inflation
[13, 14, 40]. We will discuss these models in details in the subsequeapters.

2.5 Warm inflation

There is another class of models of inflation called warm iiita[12]. In these models infla-

ton is interacting with other fields during inflation. Radiat is also present sub-dominantly
and radiation density is nearly constant. The energy oftmflés constantly being transferred
to the radiation by dissipation. The damping of inflaton isyaded both by dissipation and

Hubble constant. The evolution equation for the inflatonveg by [41]

O+ (3H +T)p+V'(p) =0, (2.185)

wherel (@, T) is damping term an¥f (@, T) is thermodynamic potential. We can define a pa-
rameterQ = % that describes the strength of the thermal damping comparbe expansion
damping. For warm inflation in strong dissipative regi@es> 1. The equation for radiation
energy density is given by

pr +4Hp, =P (2.186)

Here the second term on the left hand side describes theadedrethe radiation density due to
Hubble expansion and the term of the right hand side desctiitegproduction of radiation due
to dissipation. Because of slow-roll the right hand sidegarty constant. Sp; ~ 0. Since
the temperature of the universe remains nearly constaneeating is required. Inflation
ends when potential energy of the inflaton field falls bellbe tadiation energy density and
the universe becomes radiation dominated. Because of theidg terml” warm inflation

has extra slow-roll parameters which are given by

M
= —PF (2.187)

" ().

TV/eT
o = v (2.188)
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Under the slow-roll approximation we get from EQ.185 that

V/

(P:—m- (2.189)

The slow-roll conditionsp? < V(@) andg < 3H (1+ Q) here imply that all of the slow-roll
parameters are smaller thar-1Q. So the slow-roll conditions here are relaxed compared to
the supercooled inflation.

The density perturbations in warm inflation models are gateer by thermal fluctuations
in the inflaton field. These fluctuations are calculated usiaggevin equation. A detailed
derivation in the strong coupling regime can be found4f|[ The power spectrum for the

comoving curvature perturbations in this regime is giverj4ij

Py = <Z (2.190)
The expression for spectral index can be obtained by usendefinition .87) and it is given

as

1 9 3 9

Warm inflation models predict nearly scale invariant speutiof scalar perturbations with
natural values of masses and couplings in the inflaton patent

As we have seen in this chapter that the large scale CMB aojsotind polarization
depends on the parameters of inflation, we can study impfipre-inflation universe by

observing large scale CMB anisotropy and polarization.



Chapter 3

Effect of pre-inflation thermal era on

CMB polarization

3.1 Introduction

In this chapter we describe the effect of pre-inflationamgiadion era onB-mode of polar-
ization and its implications for warm inflation models. Rn#ation radiation era has been
studied in §i2, 17, 43, 44]. Bhattacharya et all42] have studied the effect of pre-inflation
radiation era on the scalar perturbations generated dunflagion. They have considered that
the fluctuations corresponding to our length scales werergésd during inflation by stimu-
lated emission in the existing background of the thermahitofis decoupled before inflation.
They assume that inflaton was in thermal equilibrium befafaiion and it was decoupled
from radiation at the beginning of inflation but it retainds ihermal equilibrium. Conven-
tionally the power spectrum is calculated assuming Bunchid3aboundary condition. They
have calculated the inflaton power spectrum by assumingnikialistate of the inflaton to
have thermal distribution. Because of this the curvatumegyspectrum is modified at large
scales and CMB anisotropy at large angles is enhanced. Gmopaf this modified CMB
anisotropy with WMAP data can give an upper bound on the teatpes of inflaton at the
time when length scales corresponding to our horizon wexétg the de Sitter horizon.
Similar approach can be used in case of tensor perturbagjensrated during inflation
[17]. Inflationary models predict a nearly scale invariant $peuo of gravitational waves
[45, 46] that has not been observed till now. The temperature awigpgenerated from tensor

perturbations is very small compared to the scalar oncesndly significant at large The

37



3. EFFECT OF PRE-INFLATION THERMAL ERA ON CMB POLARIZATION 38

amplitude of tensor perturbations is determined in termten$or to scalar ratio defined in
equation 2.93. It depends on the slow-roll parameterObservations of tensor perturbations
will help us in determining the scale of inflation. The defwgttest of the existence of these
cosmological gravitational waves would be the observatibB mode polarization in the
CMB as they are generated only by gravitational wadds47]. The recent WMAP three year
results 1] give only an upper bound on tt&mode polarization! 52! 211) CBB(2 5 <0. 05(K)?2.
Because of a radiation era prior to inflation there would beearhal background of gravi-
tons at the time of inflation. This thermal distribution ofagitons would have decoupled
close to Plank era. As in the case of scalar perturbatiomesgémeration of tensor perturba-
tion during inflation would be bgtimulated emissiomto this existing thermal background
of gravitational waves. This may change the scale invapaater spectrum of the primordial

gravitational waves49].

3.2 Tensor perturbations during inflation with a prior radi-
ation era

As mentioned earlier, the tensor perturbations have twepeddent degrees of freedom which
can be chosen as" andh* polarization modes. To compute the spectrum of gravitalion
wavesh(x, 1) during inflation, we expregs™) andh(*) in terms of the creation- annihilation

operator as49]:

. 3
H0t) = S [ i)

+oal fe ()] &<
d3k ) )

(3.1)

hereh' obeys the Einstein’s equatioB.00). Here we define the power spectrum of the tensor
perturbation$(k)

(0 (0n(K)) = 5 RS (k - ). 3.2)

This is equivalent to the definitior2(91) with Pr = 4P,. The usual quantization condition

between the fields and their canonical momenta yi@gl;al,] = &%(k — k') and the vacuum
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satisfiesak|0) = 0. If the graviton field had zero occupation prior to inflatibwen the vacuum
expectation value of the number operator(iaéa@ = 0 and we would obtain a correlation
function~ | fi(1)|2. However if the graviton field was in thermal equilibrium ainse earlier
epoch it will retain its thermal distribution even after depling from the other radiation fields

and its occupation number will be given 44:

1
(afay) = (m) & (k—K). (3.3)

Using Eg. 8.1) and Eq. 8.3) it can be seen that (puttirfig= Kg = 1):

rongey) — Lo (1+ 2 )63<k—k’>,

a?(1)M3 et —1
16 fk<r)|2 L 3l 1!
7a2(r)M% coth 5T o°(k —k'). (3.4)

From the defining relation, Eg3(2), for the tensor power spectrum and E8.4j we find that
the power spectrum for the thermal gravitons can be expdaagerms of the mode functions
fk(1) as:

B 8k3 | fy|? k

Ph(K) = (T coth {ﬁ} . (3.5)

The equation for the mode functiofigt) can be obtained from Eq(90) i.e
a//
f + (kz—g) f = 0. (3.6)

Above equation can be solved for a quasi de Sitter space asfdoscalar perturbations in
previous chapter (see EQ.78 and €.79) In quasi de Sitter space conformal timand the
scale factog(t) are related by(t) = —1/Ht(1—¢€)

So the equation3(6) becomes,
f/ + {kz—é (vz—})} fk=0, (3.7)
wherek = |k| andv = %+s. Eq. 3.7) has the general solution given by,
() = V=T |ea(l) HY (kD) + ok P (k) | (3.8)

As done for the scalar perturbations in the previous chapéassume that when the modes
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are well within the horizon they can be approximated by flatcgptime solutiong,°(1) =
\/%(e‘”“,(k > aH). Matching the general solution in Ec3.8) with the solution in the
high frequency (flat space-time) limit gives the value of toastants of integratiog (k) =

Vg +2)7 and cy(k) = 0. Eq. @.8) then implies that for-kt > 1 ork < aH,

w

—
—~

<
S~—

1
Vak

fi(1) = V253 (—kr)z 7V (3.9)

~—

rc

Substituting the solution as given in ER.9 for the super-horizon modek & aH) in

Eq. 3.5 for the tensor power spectrum, we obtain:

16m (H\? / k\™ k
SO )
64m ([ H k\™ k
= (o) () ooz 1)

with nt = 3—2v = —2¢ and it is called as spectral index. We can now rewrite the powe

spectrum as,

k k

Pr (k) = At (Ko) (%)m coth[f} , (3.12)

wherekg is referred to as the pivot point amd ko) is the normalization constamr (ko) =

2
ﬁﬂiy (2—"#) whereHy, is the Hubble parameter evaluated wlagth= ko during inflation.
P

3.3 Effect of pre-inflationary radiation era on CMB polar-
ization

The modification in the tensor power spectrum due to pretiofiary radiation era may af-
fect the large scale CMB anisotropy and polarization. Steogperature anisotropy gets very
small contribution from tensor perturbations, above dffean be neglected foF T correla-
tions. TheEE polarization signal also gets a contribution from the tersturbations but
it is mainly dominated by the scalar perturbations. So tret bgnal for gravitational waves
is the BB polarization angular spectrum which is generated by thegrilial tensor pertur-

bations only. The angular power spectrum of B8 polarization modes generated by the
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gravitational waves is given by EQ.(L70 [47],

dk
*
< | [ zirog +

e = (am [ TRh(K)

4ji(x). 7
|l (3.13)

whereg(t) = K’e ¥ is the visibility function and’ is the differential optical depth for Thom-
son scattering.

The temperature dependent factor becomes important wieeratiok/(2T) is less than
unity. The co-moving wave-numbé&rand the co-moving temperatuiie can be related to
the physical parameters at the time of inflation as followskiig the largest measurable
perturbation scal&now/anow >~ Rgl (whereRy, = 4000Mpc is the size of the present horizon),
and assuming that perturbations of the present horizoe saale just leaving the inflationary
horizonH~1 at the beginning of inflation we see that the temperature ettginning of

inflation Tj /a; must be,
k  Hg

x_na 4
2T — 2T

, (3.14)

in order to have a significant effect on the tensor power spect T, /a; ~ (30V /g, 12)Y4,
V being the inflaton potential which is related to the curvatat the time of inflationH =
(811/3)Y2v1/2 /Mp andg, ~ 100 is the effective number of spin/polarization degreefses-
dom of relativistic particles. Therefore inflation is expextto start at a temperatufe/a; =
0.24(HMp)Y/2. Actually the gravitons which are decoupled will have a tenagure slightly
below the radiation temperature because of the partidles tthe inflaton itself) which have
annihilated into radiation prior to inflation. But as theesffive number of degrees of free-
dom, g, ~ 100, is large this difference of temperature is not significaSo for inflation at
the GUT scaley/4 ~ 10°GeV, we haveH ~ 10'1GeV and the temperature at the start of
inflation T; /a; ~ 104" 15GeV. So the enhancement of the graviton power spectrum by the
factor cotk{%) = coth(g—%') could be by as large as a factor of*t8 at lowk due to thermal
gravitons.

In Fig. 3.1 we show the angular correlations of CMBR temperature andrizaition as-
suming a thermal graviton spectrum (. along with the WMAP ¢hyears datadg]). The plots
for TT, TE and BB correspond to co-moving graviton tempemafli = 0.001Mpc . For

comparison we have plotted tiBB angular correlations af = 0. We see that with a tem-
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Figure 3.1:The TT, TE and the BB correlations with thermal graviton spectrum along with the WMAP
three years data [48]. The plots for TT , TE and BB correspond to co-moving graviton temperature
T = .001Mpc . For comparison we have plotted the BB angular correlations at T = 0. We see that
with a graviton temperature T = .001Mpc ? the BB correlations are amplified at | < 30[17].

peratureT = 0.001Mpc ! the BB correlations are amplified b 30. We see that only the
BB correlation is enhanced by the correction to the tensor pewectrum as expected. The
contribution of tensors to the TT angular spectrum is coraplarat lowl to the contribution
from the scalars and there exists the possibility that Hrigd tensor contribution at lolmay
be detected from the analysis of the TT angular spectrunealon

We have added the unlensed scalar and tensor contributiayenerate thd T,EE, TE
andBB correlations. The plots were obtained by running CMBFASE] [with the following
parameter§), = 0.05,Q. = 0.25 andQ, = 0.70. Optical deptht = 0.08 and Hubble parame-
terh=0.7. The value of scalar spectral index= 0.97 and the value of tensor spectral index
is takennt = —0.01. Tensor to scalar ratio is taken to bid) = 0.1 atky = 0.002Mpc L.
The output of the CMBFAST was normalized to the WMAP valuek at0.002Mpc? (i.e
| = 30). For the curves shown in Fig.1the tensor power spectra is modified due to thermal
effects With% — 500k. At k= 0.0002Mpc?, foti‘(SO(k) = 10 so there is a large enhance-
ment of the BB polarization dt= 2 — 6, while atkg = 0.002Mpc ™, coth(500p) ~ 1.3 and
there is hardly any enhancement of the BB signal (or in theevafr (kg) in keeping with the

observational constraints from WMAP+SDSS)]). The magnitude of the co-moving gravi-
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ton temperature needed to produce this effedt fianow = 10~°Mpc—L. This corresponds to
a temperature of;/a ~ 4 x Rgl X anow/@ = 4H (whereR, ~ 4000Mpc is the size of the
present horizon). As we have seen inflation can start as sedmeatemperatur@; /a; falls
belowV1/4 ~ 10*H. Consequently a temperature larger th&hat the beginning of inflation
is not unreasonably high.

In standard inflation models the vacuum fluctuations of tflaton field give the density
perturbations. As mentioned earlier because of radiatiapeor to inflation the scalar power
spectrum will be modified due to thermal distribution of imdla that were decoupled at the

beginning of inflation42]. The power spectrum for the curvature perturbations well b

HY [k \™ k
Pg (K) = pEar (ﬁ) coth{ﬁ} : (3.15)

The extra temperature dependent term implies that theraldghme an up-turn of th@ T
anisotropy spectrum at lol. This expected up-turn il +1)C; is not seen in the WMAP
one-yeafT T spectrum §2]. This means that there is no significant number density okba
ground density of inflatons at the time when the modes whielcarrently entering our hori-
zon, were exiting the horizon during inflation. This coulgpan for two reasons. The back-
ground density of inflatons may have decayed or annihilatedlighter particles by this time
or the inflaton was cooled from the expected temperature2#i{BiMp)/2 to belowH by the
time the modes corresponding to our present horizon wewigaéhe De-Sitter horizon. This
implies that there were an extrsN = In(0.24(Mp/H)¥/2) e-foldings (which has the value
AN ~ 10 for GUT scale inflation) than what is needed to solve thézbarproblem. In the
case of gravitons the first condition does not apply as thepuage at the Planck scale and if
the expected upturn in th@B mode spectrum is not seen that would imply that the duration

of inflation was longer than what is needed to solve the har@oblem.

3.4 Implications for warm inflation models

In warm inflation models12, 51] where the inflaton is in thermal equilibrium with the ra-
diation bath and the scalar curvature perturbations arergéed by thermal fluctuations in-
stead of by quantum fluctuations, there is no ¢tBT) correction in the inflaton power

spectrum due to stimulated emission. However this cowadictor will be present in the
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graviton spectrum since gravitons are still produced byntura fluctuations. The tempera-
ture of the thermal bath remains constant during warm imfftebiut the graviton temperature
will decrease exponentially. The scalar curvature pedtion in warm inflation is given as
Eq. 2.190 [41]:

1/2 15/2r1/2
I:,(warm): (E) [2H> 4T, (3.16)

R 4 02 ’
wherel designates the decay width of the inflaton field dpds the temperature of the

radiation bath.

There are observational constraints on the tensor scdlardefined as:

(3.17)

From the combination of WMAP three year dafd)and SDSS large scale structure surveys
[52] we have the bound(ky = 0.002Mpc 1) < 0.28(95%CL) whereky = 0.002Mpc * cor-
responds td = Tokg ~ 30 with the distance to the decoupling surfage- 14,400Mpc. SDSS
measures galaxy distributions at red-shifts 0.1 and probe& in the range @16hMpc—1 <

k < 0.11hMpc~L. From the expressions &% in warm inflation, Eq. 8.16), andPr we see
that the scalar-tensor ratio in warm inflation models (asegra nearly scale invariant tensor

power spectrum) has a scale dependence at large anglesgiven

K
=1tk T ~riho) (7). @.18)
2T

We see that (k) has a spectral indexr ~ —1 for large scale perturbations. If we consider
k ~ 0.0002Mpc ! which corresponds tb ~ 3 then the value of (k) = 10r(ko). So even
with r(kg) ~ 0.1 as constrained by galaxy surveys, we can hd@kg~ 1 at the quadrupole
anisotropy. TheB mode polarization at = 3 is enhanced from its value at= 30 by a
corresponding factor of 10. This is true as long as the teatpegT; /a; < 10°H which as
we have seen in the earlier discussion is expected if thex¢hisrmal era prior to inflation.

For example taking the inflaton potential to\se= (1/2)nm?¢?, we have the scalar power:

520 2T
plam () 53 % T (3.19)

R = 9. Mg/zrng/za
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and the tensor power,

128 mP ¢} ko
and the scalar-tensor ratio,
m7/2(p8/2 1 Ko
r(ko) = 8.413( v coth [E} : (3.21)

whereqy is the value of the inflaton field when the sclite= 0.002Mpc ! was leaving the
inflaton horizon. By choosing the parameters= 1.4 x 1012GeV, I = 0.5 x 10'3GeV, T ~

T, = 0.24 x 10'%GeV, gn ~ 0.8 x 10'°GeV we havePr ~ 2.3 x 10~° as required by WMAP
three year data andko) = 0.095. The value of is larger atk = 0.0002Mpc ! by a factor of
~ 10 and theB-modes are magnified A= 3 compared to their value &t 30 by a factor 10,

also in warm inflation scenarios.

3.5 Conclusions

Direct observation of gravitational waves would nail thetlatill unconfirmed prediction of
inflation. The amplitude of gravitational waves gives thebHie curvature during inflation
and would tell us the value of the inflation potentiaB]54]. In addition gravitational waves
produced during inflation can have several applicatiors l#ptogenesis by the gravitational
spin-coupling to neutrinos5p] or by a gravitational Chern-Simon coupling of the lepton
number currentg6]. Observation of theB-mode polarization in the CMB would confirm
the existence of primordial super-horizon gravitationalves. Observationally, the three year
WMAP data only gives an upper bound qﬁ‘B with | = (2—6) [48]. The error bars on
theC,BB are presently a factor of five larger than the predictionsffstandard inflation theory
with scalar tensor ratio as large a80which is close to the observational upper bouggh, <
0.28(95%CL).

In this chapter we have studied the effects of pre-inflatipmadiation era orB-modes.
Pre-inflation radiation era has also been studied by Powellkinney 3] and Wang et all
[44]. They study the dynamics of phase transition between tiadizera and inflation. If
inflation lasted for nearly 60 e-foldings, it is possiblettitize length scales corresponding
to the large scale anisotropy were generated in the radiatia. They apply the boundary

conditions in the radiation dominated era and show thaketiell be suppression at low



3. EFFECT OF PRE-INFLATION THERMAL ERA ON CMB POLARIZATION 46

But in our study we have considered that all the perturbateme generated during inflation
as stimulated emission in the existing background of thegravitons.

Due to thermal gravitons thePB at low | ~ (2— 6) could be larger by a factor of 10
compared to what would be expected from the observationadtcaint onr and could be
within the range of observability of WMAP. The upcoming Riarexperiment$7] will mea-

sureClBZB( o at the level of 104(uK)? . Ground based polarization experimer&§][like

1-1
QUaD, QUIET, Clover and PolarBear measure anisotropiesatisangular scales only (at

| > 100 where thermal effects discussed here are negligiberan observié:lBB at the level
10-2(uK)? . These experiments can probé@ the range ®M5— 0.1 independent of thermal
effects. A combination of data from WMAP/Plank at large a&asghnd ground based polariza-
tion experiments at small angles will therefore either obser definitely rule out the thermal
enhancement effect.

If WMAP or Planck rule out a spectral index of ~ —1 at lowl, which is the prediction
from thermal gravitons, then for the standard inflationagdels it would mean that the dura-
tion of inflation has to be longer AN = In(0.24(Mp/H)/2) e-foldings than what is needed
to solve the horizon problem. Warm inflation modé&l5[59] cannot evade this constraints by
supercooling during inflation. IB-modes are observed and the tensor spectral index dt low

is not close to-1, then warm inflation models can be ruled out.



Chapter 4

Natural inflation at the GUT scale

4.1 Introduction

It is well known that for single slow-rolling field to satisfbservations the ratio of the height
of the potential to théwidth)* should be §0]

g <O (10—6 . 10—8) (4.1)

whereAV is the change in the potential adgp is the change in the fielg during slow-
roll. This condition means that inflaton must be extremelpk¥g self-coupled, with effective
quartic self-coupling constant (in realistic modeéls; 10~12). The small ratio of mass scales
required by above condition quantifies the flatness of themi@l. This is known as the fine-
tuning problem in inflation. To realize inflationary modetgaarticle physics some times such
a small coupling is postulated and is fine tuned to be smalltduadiative corrections. In
supersymmetric models such small coupling arise due tolsatad of mass scales but these
models have limitations.

There is another model of inflation to explain this small nrasi® that is called as 'Natu-
ral Inflation’ [13, 14, 40]. In this model inflaton is pseudo Nambu-Goldstone BosonGBN
Its potential is flat due to shift symmetry. Nambu-Goldstbnsons (NGB) arise due to spon-
taneous breaking of a global symmetry and their potentiekestly flat as long as the shift
symmetry is exact. Since we need slow-rolling, there shbeleéxplicit symmetry breaking

to make the potential nearly flat. Due to explicit symmetrgaking NGB acquires mass and

47
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itis called as pseudo Nambu-Goldstone boson (PMGB). Ithepdtential of the form

V=N (1+ cos(%p)). 4.2)

Here one has two scalekjs the spontaneous symmetry breaking scale and\aiscexplicit
symmetry breaking scale. The small mass ratio required tisfgabservations (Eq.4(1))
can be easily accommodated in case of PNGB. For example, idke\ at the GUT scale
andf larger than GUT scale, we can haza%)% ~ % to be very small.

As we have seen earlier that the parameters of the potemitabe determined by am-
plitude and spectral index of primordial curvature poweedpum, in the natural inflation
models the symmetry breaking scdlés related to the spectral index as= 1 — M%/(Snfz)
and CMB observations constraigto be 0948< ns < 0.977 [16]. This implies that the sym-
metry breaking scalé has to be close to the Planck scalé][ As discussed in Banks et al
[61] a symmetry breaking scale larger thisip makes the theory susceptible to large quantum
corrections which can destabilize the flat PNGB potentidler€ have been several attempts
at solving this largef problem in natural inflation. Arkadi-Hamed et &7 invoke extra di-
mensions with the Wilson loop of a gauge field in the extra disnen to explain whyf ~ Mp.
Similar arguments are also given by Kaplan and Wei6&}. [Kim et al [64] invoke two field
natural inflation to bring down the symmetry breaking scat Planck scale. Kinney and
Mahanthappadb] show that in some special symmetry breaking schemes thargi@aterm
in the PNGB field is subdominant compared to the higher oetens and in these models the
symmetry breaking scales can be lower than the Planck scale.

In this chapter we show that if the PNGB inflaton is coupled tadiation bath (with a
sub-dominant energy density) as in warm inflation modelthe symmetry breaking scale
can be in the GUT scale and be consistent with the obsengtiftthe temperature anisotropy
spectrum observed by WMAR.§]. In this model since the dissipative coupling of the PNGB
inflaton makes it roll slowly even in a steep potentiéljs lowered fromMp to Mgyt ~
10'6GeV.
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4.2 The potential for PNGB

As a specific model let us consider the SU(5) model where tite handed neutrindl is a
singlet. In the see-saw mechanis@®]one generates a heavy Majorana mass by coupling

this right handed neutrino to a SU(5) singlet Higgs,
Ly =gH <(NR)CNR+ H .c) . (4.3)

This Lagrangian obeys U(1) lepton number symmetnN.e> Ne A, H — He?”, In order
to break lepton number spontaneously we have a potenti#héariggs
f2

A HTH - —)2 (4.4)

—in= 8( 2

Heref is the spontaneous symmetry breaking scale.

At the minima of the potential the Higgs is given bly_ feT Here the radial mode
of H is superheavy and is frozen out, so it can be neglected. Thelamvariableg is the
Goldstone boson of the spontaneously broken lepton nunyioemstry i,e U(1) symmetry.

So the Lagrangian becomes

Lore = 50u0-+ SRRV S@NRINR) ) g e ((NNR+HC) (49

This Lagrangian is symmetric under the transformatipas @+ 2A andN — Ne A, At this
stage is massless. Quantum gravity effects are expected to bileaklgsymmetries at the
Planck scale. If there is an explicit symmetry breaking dugravity the Goldstone boson

acquires mass. The explicit symmetry breaking term can bleeoform

M? 1
L= ((N )°Nr+H c) +0(—%> (4.6)

Because of this explicit symmetry breaking the Goldstorsb@cquire mass and its potential

V() =A* (1+cos<%p)). (4.7)

A is related to explicit symmetry breaking scale- M_:: The mass of the PNGB is given by

M = “TZ = ’\Tz This implies tha\ = p= M—i Now if we takeM ~ Mgyt ~ 106 — 107GeV

can be given agj[/]
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then we have\ ~ 1013 — 10MGeV which is the allowed range by WMAP data.

4.3 Warm natural inflation

In warm inflation the equation of motion of inflaton field is givby Eq. 2.189
@+ (3H+MNe+V/'(T)=0. (4.8)

In slow roll approximation we negleqtin the Eq. ¢.8). During inflation the potential energy

of the inflaton field dominates over radiation density. Sodineamics ofp field is governed

by
: \V
® = Ty (4.9
81
H? = —V. (4.10)
3m3
Rewriting the slow role parameters
2 2 2
16m\V )’ gnV '’
M2 v/ M2 TV
p p_ YT
_ M _p _ 4.11
B gn rv’ 8 Vv’ (4.11)

As mentioned earlier the density perturbations during wiafitation are generated by thermal

fluctuations. The power spectrum for the density pertudvetigiven in 1] is

1,91
™3z H2l2T
Pg = (—) 7 (4.12)

which can be written in terms of potential and its derivatiseng Eq. 4.10 and Eq. 4.9 as

5/4
m1i/2 [ 8m Vo/Ars/2T
Py = <Z> <3M%> G (4.13)
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Using the natural inflation potentiad (7) we get for the power spectrum,

(5/4
n>1/2 ( 8m )5/4 ro/27 f2 (1+C°S(Tp)

Pr= (- — 4.14
R <4 3m32 N3 Sir? 9 (4.14)
The spectral index is defined @ 87)
din Pg{
ne—1= Ik (4.15)
In terms of the slow roll parameters this can be writtenZzagq1
3H 9 3 9

For the given potential(7) the spectral index will be

3H 3M2 3+cos?
o—1=—F 64m|‘o2 ElJrcos‘:p; @0

The observational constraint oy from WMAP 5-year datal6] is 0.948 < ng < 0.977.
So it is obvious from above Eq. that if we take warm inflatiorsirong dissipative regime i.e
I" is very large compared tH, we can have small value df (fig. 4.1). But the cold natural
inflation models on the other hand the spectral index 1— M2/ (8mf2). This implies that
in the cold natural inflation models WMAP data gives a stroogstrainf > 0.7Mp [15)].

The slow roll parameteg for this model is

M2 siPd
g=—"
16nf2<

. 4.18)
2 (
1+cos‘Tp>

At the end of inflatiore = 1+ Q, whereQ = % This will give @ as

2
o 1—(1+r) 16,\;‘;
COS— = . (4.19)
f 16mf2
1+(1+r) M2

PuttingQ = 3.9 x 10* and f = 8 x 10'%GeV we getp; = 2.9 f. One can calculate the value

of @at the time when length scales corresponding to our horizene feaving the inflationary
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Figure 4.1: The allowed range 6{GeV) andl (GeV) from the range of spectral indexand
the amplitude of curvature perturbatiob% from WMAP. Fig. from [L§].

horizon. The e-foldings may be calculated as

/‘Pf Hd _8nr eV

o ® 0 T BHM2 o VIO
(9

tonr (2 (- sin( )

3H MG sin(%)

(4.20)

The scalar field lies betweearf and 0. FoiN = 60 we getp = 1.02f. The value of the scalar
field remains in the GUT regime and still gives adequate @ufigls to solve the horizon and

curvature problems.

4.3.1 Microphysical model for large dissipation

As shown in the last section we need a large dissipation caaffito satisfy observations.
The dissipation mechanism to realize warm inflation wasistuoh [68, 69, 51]. In [68] the
effective evolution equation of motion of an overdampedifiglteracting with other fields

was studied. It was shown that large dissipation during waffation is possible if we con-
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sider a large number of fields. Later i69, 51] a different approach was developed in which
dissipation was achieved by indirect coupling of the infteto the radiation. In these mod-
els the mass of some heavy scalar fields coupled to inflatamgelsedue to the evolution the
background inflaton field and it excites heavy scalar fieldddcay into lighter fields. The
coupling of the heavy scalar fiejgdwith inflaton can be described by another explicit symme-

try breaking term
Ly = 20°¢°X°. (4.21)

This fieldy is again coupled to the radiation fiedldas

1
= —hf (a’(* +x%0%). 4.22
Lo =7 (X" +Xx°0%) (4.22)
Another feature of this two stage coupling is that it geresa large dissipation without
destabilizing the inflaton potential by loop correctiofi§][ The dissipation coefficierit for
this model has been calculated by Berera eté},[

_ 16¢? T

r=—55Tin = (4.23)

The interaction terms in the LagrangiahZ1) can generate one loop corrections to the inflaton
mass that can destabilize the flatness of the potedtigl (For the potential to remain flat the
mass correctiog? f2 should be smaller thaﬁé. If we take/A ~ 10%3GeV andf ~ 10%GeV
theng < 108, For the validity of above expressior.p3, the mass of field should be
smaller thanT. So if we take one loop correction to the massyofield (T ~ 10'2GeV)
because of field h should be smaller than 18. If we takeg andh of the same order we can
havel” ~ 10%°Gev.

4.3.2 Predictions for non-Gaussianity

We infer physics during inflation by determining the ampdiétand spectral index of the scalar
perturbations and tensor to scalar ratio. These paramerot enough to constrain the infla-
tionary models as there are various mechanism to produatetieed spectrum of primordial

perturbations during inflation. There is another obsemrvat can help us in determining the
correct model of inflation. It is the deviation from the purau@sian statistics i.e presence of

higher order correlation functions of CMB temperature atrigpy. The statistical properties
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of the fluctuations on the sky are determined by the n-poirretation function i.e
(f(n) F(R2) F(Az).... T (An)). (4.24)

If the perturbations are Gaussian, all odd correlation fimns are zero and all higher order
correlation functions can be expressed in terms of two poantelation functions. So tow
point correlation function is the only parameter requiredthe Gaussian distribution. But if
the distribution is not Gaussian one needs higher ordeeladion functions. The three point
correlation function of scalar curvature perturbationsimiform energy density hypersurface

( is called as bispectrum defined &4]
(TU(k1)T(k2)T(k3)) = (21) By (K1, ko, k) 33 (k1 + ko +ka). (4.25)

We use( instead ofR_ here as it is used most commonly in the literature of non-Giangy
[72, 73, 74]. One can define a non-linearity paramdtgrwhich is observationally important

for non-Gaussianity as

B (ki, k2, k3)

5
fne = = . 4.26
N 6 2 2) + 22 (ks) + Pk (k) (420
Here we use the different definition of the power spectrum i.e
(T (k1)g(k2)) = (2r°) P(k1)8 (ke + ko). (4.27)

In simple inflationary models non-Gaussianity arises dug@dgber order interaction terms in

the potential and non-linearity in the gravitational paiain In these model$y is given as

5
fN|_= 1—2(ns—1). (4.28)

So in simple inflationary models one gets very small deviatitom Gaussian fluctuations.

In warm inflation non-Gaussianity was studied by Gupta ef78) 6] and Moss et al
[71]. Gupta et al have considered the non-Gaussianity due i ¢inder term in the inflaton
potential and have shown that its magnitude is comparabletoase of supercooled inflation.
Moss et al have taken into account the non-linear coupling/den radiation and inflaton

fluctuations on sub-horizon scales also and has shown tigat éanount of non-Gaussianity
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can be generated during warm inflation. Thg for warm inflation models is given by/[l]

r 5
fN|_——15|n<1—|— m) 5 (4.29)

Taking the allowed range éffrom the fig @.1)i.e 1x 102 < I < 3x 10 we get—1226 <
fnL < —106.2 which is allowed by WMAP-5 datalp] (—151 < fy; < 253).

4.3.3 Leptogenesis

Big-Bang Nucleosynthesis calculations show that the piteday baryon to photon ratio is
Ng = 6.1f8:§ x 10719, This corresponds to the baryon asymmetry of the order ofpare
in 30 million during early universe. It was pointed out ii7] that the asymmetric decay
of heavy neutrino into charged leptons and charged antoteppdue to CP violation creates
a lepton asymmetry in the early universe. This lepton asytryrie converted to baryon
asymmetry by sphaleron processes at the electroweak doalleis section we discuss how
one can generate lepton asymmetry from warm natural inflatio

The PNGB coupling to lepton current is obtained frof3f as

1 .
Lint = ?au(PJE (4.30)
For the homogeneous inflaton this will be
Lin = <01, (4.31)

f

heren_ is lepton number. Therefor$ is like a chemical potential for the lepton number,

M= ?. At equilibrium the lepton number is given by

e (%)

Y E T
_ 9T
= Ov 67 (4.32)
So the lepton to entropy ratio will be
n 15 (
nL=t_ 2> 99 (4.33)

s  A4mg fT
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Using slow roll approximatioip = —\%/. For this model we get

15 gyA?

=g fort

(4.34)

If we takeA ~ 1013GeV, f ~ 10GeV, T ~ 102 GeV andT ~ 102GeV, we get from4.34)
nL ~ 1019 (fig. 4.2).

1 ns=0.963 005 -
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Figure 4.2: The allowed range ¢{GeV) and/\(GeV) using spectral indems curvature per-
turbationsAZ and lepton to entropy ratig for T = 10'*GeV andl” = 10**GeV. Fig. from
[18].

If the lepton number is violated spontaneously at sc¢atleen there is an effective lepton

number violating dimension five operataid

Ly= %hhll +hc (4.35)
wherel is the lepton doublet anl is the Higgs doublet of the standard model. When the
electroweak symmetry is broken by the Higgs acquiring a vekien it generates a light

neutrino massn, = 4?. The operator4.35 can wipe out any generated lepton number at

high temperature by the lepton number violating interawtiot h — 1€+ h'. The interaction
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rate of this lepton number violating reaction &]

T3
My=004-;. (4.36)

These lepton number violating interactions will decoupla eemperature

1
f4/\4 6
) . (4.37)

Tg =416 ——
d ( M%

For A\ ~ 10'3GeV andf ~ 10’GeV this temperature i§ ~ 104GeV. Since the temperature
of the radiation bath i¥ < 10'3GeV the lepton asymmetry generated by the rolling PNGB
field will not be washed out by lepton number violating intgrans with the light Higgs.

The fact that PNGB’s coupling to the lepton/baryon currentfithe derivative coupling
form which gives rise to spontaneous leptogenesis of CohdrKaplan B0] was first recog-
nized by Dolgov et al§1, 82]. In [81, 82] a natural inflation without damping was examined
for generation of baryon/lepton number. It was found thailzions of the inflaton at the
end of inflation wipes out the baryon/lepton asymmetry sdRN&B model of creating B/L
asymmetry during natural inflation was considered unfdagii, 82]. In [83] it was shown
that if one assumes the chaotic inflation potenti&? and couples the inflaton to radiation
as in warm inflation and in addition assumes, @j E7L coupling of the inflaton then one can

get the required baryon asymmetry with a suitable choiceacdipeters.

4.4 Conclusions

There has been a long standing problem with utilizing thepibaéntial of PNGB's for inflation
as the nearly scale invariant power spectrum which is ctergisvith observations generated
only when the symmetry breaking scdle- Mp [13, 14, 40, 61, 62, 63, 64]. In this chapter we
have shown that by coupling the inflaton to a radiation bashr{avarm inflation models1[?])
can reducef to the GUT scale. The value of the inflaton fiepd- f ~ Mgyt which makes
the inflaton potential stable against Planck scale radiatorrections. We give a model of
inflation where the inflaton is the PNGB arising from spontarsebreaking of lepton number
which also gives a large Majorana mass for the right handettines as required in see-saw

models p6]. Since the PNGB’s have a derivative coupling to the leptorrent this model
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also generates a lepton asymmetry spontaneo@8lyduring inflation. We show that with
the parameters of the inflation model which give the correapléude and spectral index of
CMBR also give the required lepton asymmetrynef~ 10-10 which can be converted to a

baryon asymmetry of the same order by sphaleron processes @lectro-weak era’[/].



Chapter 5

Effect of spatial curvature on CMB

anisotropy

5.1 Introduction

As we have mentioned earlier that the era prior to inflatibhi$ expected to leave some
imprint on the perturbation modes which leave the horizatiexaand are the last to re-enter
our horizon and these effects would be observable if thetduraf inflation is nearly 60 e-
folds. In the previous chapters we have shown how the radiaia prior to inflation affects
large scale CMB anisotropy and polarization. In this chap®will describe how large scale
CMB anisotropy are affected if we had a large curvature leefiofiation.

There are well motivated cosmological models where thears&/could have a non-zero
curvature when inflation started. The modes which exitechttrezon at that time will carry
an imprint of the curvature in the spectrum of the densitytyreations. As the curvature of
the universe decreases exponentially after the beginrfimgflation, there may be a resid-
ual curvature still present by the time the scales which aterang our horizon at present
were leaving the inflationary horizon. Because of this theitebe deviation from the scale
invariant perturbations due to non-zero curvature. Weutate the density perturbations in
both open and closed universe and show that we get a low qualdrii universe was closed
before inflation.

A calculation of the density perturbations generated dumflation in a universe with a
non-zero spatial curvature was first performed by Abbott odeafer §4]. They performed

the calculation of density perturbation by assuming saakariant perturbations. Lyth and

59
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Stewart B5] and Ratra and Peebled] have studied quasi-de-Sitter models . They performed
the calculation using conformal boundary conditions ferttode functions. A calculation for
open universe inflation and assuming the Bunch-Davieslraonditions for the mode func-
tion was done by Sasaki et @f] and Bucher et al§7]. They have considered inflation in
two stages. In one stage inflaton is stuck to a flase vacuurmahe next stage inflaton rolls
slowly towards its true minima and the open universe ariggb® nucleation of a single bub-
ble. To calculate the density perturbations they have assidered Bunch Davies vacuum
modes. In our study we obtain the same solutions for the madetibns as§5, 20, 86, 87)
but the main difference is that we evaluate the power specatthorizon crossing. We assume
adiabatic perturbations which are frozen after the modégtexhorizon. The horizon cross-
ing condition also involves the curvature and that accotortshe main difference between
our result and earlier workgp, 20, 86, 87].

The corrections to the power spectrum at horizon scales anéiphicative powers of
(1+K/B?), where the curvatur& = (Qq — 1)(agHo)? and B is the comoving canonical
wavenumber. We calculate the primordial power spectrunifercase closed and open uni-
verse at the time of inflation. We choose the Bunch-Davies\lary condition to normalize
the wave-functions. For the case of closed universe wembtaifollowing expression for the

power spectrum

HY 1 B

Pz (B) = 2T[2(-p2 <1+%)27 W

=3,4,5--- (forK > 0) (5.2)

and for the case of inflation in an open universe

_HY 1 B
PK(B)—ZH2A¢2<1_%)2<1+B£2|>’ VK|

> 1, (forK <0) (5.2)

whereq@is the inflaton field. In the case of closed univefsiakes discrete values in units of
VK = R;! (R¢ being the curvature radius), the modes correspondirfyy tK = 1,2 can be
eliminated by gauge transformatior&{ so there is a large-wavelength cutofffat! = R./3.
This large wavelength cut-off in a closed universe has beex to explain the observed low
CMB anisotropy at low multi-poles3g] and [89]. In the case of open universe only modes
with B > /[K] cross the inflationary horizon.

Our result for the power spectrum in the closed and open waveases differs from the
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phenomenological power spectrud,

HY 1

WP o 1

(5.3)

used in the calculation of CMB anisotropies in both the dalioaed open cases. Our results
agree qualitatively withg.3) in that the power at smafll is suppressed in the closed universe
inflation (5.1) and enhanced in the open universe.

According to inflation [], the curvature of the present univer®g — 1 is related to the

curvature at any time during inflatiaR; — 1 as

Q-1 [aH\?
- _ 5.4
Qi—1 (aoHo) G4

If & is the scale factor at the time during inflation when scales@size of our present horizon
were exiting the inflationary horizon theHo = ajH; and Qg = Q;. If at the beginning of
inflation (Qstart — 1) = O(1) then in order to have a deviation of say one-percent fronmyunit
the present curvature, the number of e-foldings prior teghraust be small. Putting an upper
bound on the present curvatuf®y — 1) from observations also puts a lower bound on the
number of extra e-foldings necessary in inflation in additio the minimum number needed
to solve the horizon problen®[].

The geometry of the universe can be determined from the CM&#opy from the an-

_K

Eq. 2.6)). The angular diameter distance of an object in case offlanmiverse is given as

gular size of the acoustic peak. The curvature density inddfasdy =1—Q = — (see

i — a sinh[v/QkHos] Qk >0 5.5)
Ho\/1Qx] | sin [vV=0OkHos] Qk <0

There is degeneracy in the parameters so we need other tista senstrain the curvature of
the universe. The constraints on the density of the uni@mdepend upon priors like the value
Ho andQ,. The constraint on curvature from WMAP five year déité][for the ACDM model
is (Qo—1) =0.099+ 0.1 and for thew— CDM model is(Qp — 1) = 0.122+ 0.1. Combining
other data sets like LSSP] and HST P3] constraints the curvature more tightly. For example
WMAPS5+HST data constraints tfi€o— 1) = 0.0174+0.02 for thew—CDM model. However

these constraints are loosened again if the assumptionaifatcc perturbation is relaxed. For
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example the if the perturbation is assumed to be isocureahen combination of WMAP
[16] , LSS [92] and HST P3] and supernovae observations gives a constraint on thetgens
of the universe atQp — 1) = 0.06+ 0.02 [94] which means that the curvature at oaeould

be as large ak /(agHo)? = 0.08. In the case of the closed universe the power spectbuth (
Px O (1+K/B?) 2 at the scale of the horizdpi= agHo would be suppressed by about 16%
compared to the power for the flat universe.

We use our power spectrum to calculate the temperature tampsospectrum and com-
pare the results with the WMAP five year data assuming ad@patturbations. We find that
our power spectrum gives a lower quadrupole anisotropy vben 1 > 0, but matches the
temperature anisotropy calculated from the standard HReebles power spectrum at laige
We also find that using the closed universe power spectiudd)(for larger values of)g the
guadrupole anisotropy is suppressed more. However the Whl#sRrvation of a strong sup-
pression of the quadrupole temperature anisotropy caremexplained by the modified power
spectrum for a closed universe as suggestedByfpr realistic values of other parameters
(like Ho) .

5.2 Scalar power spectrum

We expand the inflaton fielg(x,t) = @(t) + dp(X,t), where the perturbationsp around the
constant backgroung(t) obey the minimally coupled KG equation (in the spatially flatige)

. a.- 1,
—dp— —[0%¢p=0. .
op+ 3a6(p 2 0p=0 (5.6)
With the separation of variables
Op(x,t) = Z&w(t)Q(x, k) (5.7)
the KG equation can be split as

S+ 325 +k—26 =0 (5.8)
P+ 330+ 580 =0, :

02Q(x, k) = —k*Q(x, k), (5.9)
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where[J? is the Laplacian operator for the spatial part. Making t@sformatiordt = dt/a

ando(1,k) = a(1)dg« (1) we get the KG equation far(t, k)

" 2 a’ _
o+ (k —5)0_0, (5.10)

where primes denote derivatives w.r.t conformal tme

The Friedman equations in conformal time are

I\ 2
(%) _ —8;[Gpa2—K, (5.11)
ay\’ 4TG

Consider the universe with cosmological constant and ¢ureathenp = p) andp = —p,

and we get using the Friedman equations,

" 16MG
%: —opal—K =202 K, (5.13)

whereH, = (%p;\)l/2 is the Hubble parameter during pure inflation. Substituffd3 in

the KG equationg.10 we obtain,
0”4 (K* —2a®H? + K)o = 0. (5.14)

The curvature affects the wave equationagf) in the explicit dependenck and also in
the changed dynamics of-dependence of the scale factowhich is important in the early
stages of inflation.

The scalar field perturbation can be written as

o(T,k)
a(1)

0Q(X,T) = Z Q(x,k), (5.15)

whereao(1) is the solution of equatiorb(14) and the spatial harmoni€3(x, k) are solutions

of equation $.9) [84]. One can separate the radial and angular mod€Xx»fk) as

Q(x,k) = Dp(r) Y™(6,9), (5.16)
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wherep = (k?+K)¥2 are the eigenvalues of the radial-part of the Laplacian wigienfunc-
tions given by the hyperspherical Bessel functimﬁgr) which are listed in§4]. In the limit
K — 0, the radial eigenfunctior®}(r) — ji(kr). For a closed universeg(r) is given as §4]

NormConstan‘:)___[3 (cosy). (5.17)
(siny)2 +

op(r) =

wherey =1+ KTrZ. For the closed universr;e'[3 must satisfy periodic boundary condition to be
single valued i.e
®p(— cosy) = cos|(B— 1 1) T dp(cosy). (5.18)

So 3 must be an integer. The valuBs= 1 and = 2 correspond to the modes that can be
removed by gauge transformatiori5].

For open universe the radial part of the eigen functions vl

NormConstan}D_f_
2+|B

Dp(r) = (coshy). (5.19)

(sinhy)?2

Here[3 can take any positive real value as there are no periodicdaryrtonditions to satisfy.

The orthogonality property of these functions is given as

/ yr2drdQQI"(r,8,9) Q5. ™ (1,6,¢) = L S Srant B (5.20)

BZ

wherey= (1+ KTrZ)_3 is the determinant of the spatial metric, and completersess i
> [ BRI (0. 0Q4 (0. ) = v 158 156~ 8)S(0—¢).  (5.2)
,m

In case of closed universe the integral oBés replaced by sum over the integ@s/K =
3,4,5....

The gauge invariant perturbations are a combination ofimatrd inflaton perturbations.
The comoving curvature perturbation is gauge invariantiaisdrelated to the inflaton pertur-

bations in the spatially flat gauge as

R(X,T) = Eécp(x ,T). (5.22)
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Comoving curvature perturbation is frozen outside thezuworitill it re-enters in the radiation
or matter era. CMB anisotropies at large angles are causedrgture perturbations in the
surface of last scattering which enter in the matter era. Sdwhs-Wolfe effect at large angles,
relates the temperature perturbation in the directiaiServed by the observer located at the

point (Xp, Tp) to the curvature perturbation at the poiRrts, 1. s) in the LSS,

OT (Xo,A, T 1
T _ 28 s ), 523

wherex; s = (T .s— Tp). Using the completeness dBm(r, 6, @) we can expaneR as a sum-

over the eigenmodes,

R(XLs, TLs) = Z / B*dp {% 5%@)} Q" (xcs). (5.24)

=T,

Here we have used the fact tatdoes not change after exiting the horizon during inflatidn (a
a conformal time which we shall denote by) till it re-enters the horizon close to the LS era.
Using the Sachs-Wolfe relatio®.23 and the mode expansion of the curvature perturbation

(5.29) and using the orthogonality (20 of Q'm we obtain

(TR -5 2R o) [ BB R(B TR0 o) (525)

The angular spectrui@, of temperature anisotropy defined by

<5T§ > 22'4*;[1 Ay ) G (5.26)

can be written in terms of the power spectrum of curvaturéypleations by comparings(26)
with (5.25),

dp 1

G=4n| 52

~=|Px (B)[?|Ph(To — Tus)[%, (5.27)

where the power spectrum of curvature perturbations is defas

3 2
Pﬂ{(@:;—nz[(%) |6<pB<T>|2] . (5.28

=T,

We shall now derive the power spectrum for the open and clogkdion universes.
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5.3 Closed universe inflation

For a closed univers& > 0, from the Friedman equatiob.(L1) we get
a=Ha, /1— K (5.29)

alt)= \é—f coshH,t. (5.30)

which can be integrated to give

The solution $.30 represents a bounce solution where there is a contrachiagepfort < 0
and a bounce a(t = 0) = Hﬁ; and an expanding phase for- 0. We shall choose the
expanding phase when the cosmological constant startsxdding over the curvature energy
as the start of inflation. It is during the expanding phaseé tthemodes exit the horizon ( to
re-enter later during radiation and or matter era). Ourltesio not depend on the history of
the universe prior td = O i.e whether there was a contracting phase and a bourice @tor

a closed universe began directly in the expanding phaseqfsatum tunneling as irdp).

The conformal time is given by

arcsinﬁ. (5.31)

t(a)—/ da -1
H) a2 /1—WA2% VK aH,

The conformal time spans the interval= (— =5 as the scale factaa varies between

a9
(Hif,oo), so forK > 0 our initial conditions are different from the standardatitbn case. The

dependence of the scale factor on the conformal time is édarom 6.31)

WK1
a(t) = Ty snvKe (5.32)

The conformal time KG equatio® (14 for the closed-inflationary universe is of the form

o”(t) + [kz —K <2005e8\/RT - 1)] o(1) = 0. (5.33)
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This equation can be solved exactly and the solutions are

o(t,k) = ¢ <—\/Kcot\/Rt +ivike+ K) d VIZHKT
+ C <—\/Kcot\/Rr —ivkZ+ K) e IVIEHKT (5.34)
As done in the case of the flat universe the normalizationtemsc; andc, are determined

by imposing the Bunch-Davies initial condition which statleat modes which are deep inside

the horizon in the past should behave like positive frequerane waves,

o(T— k) = Pt 5.35

wheref = (k?+ K)¥2. This implies that; = 0 and
_ 1 5.36
1| = W (5.36)

The quantum fielay(x, ) can be expanded in terms of the mode functidn34) as
o(x.1) =3 | FdB (am Q' X)0(B) + B QF X TR). 63
m

Using the commutation relation of(x, ) and the orthogonality 0@'[3’“ (5.20 we see that

the creation and annihilation operators obey the canon@mamutation relations

B3] = 2808 B3 S (5.38)

From the foregoing discussion it is clear tifiats the radial canonical momentum. The
guantum fluctuations become classical wigea aH. We shall evaluate the power spectrum
at horizon crossing, as the modes do not change after extimgnflation horizon till they
re-enter the horizon in the radiation or matter era.

Substituting the constantg andc; in the general solution5(34) and going back to the

0@, we find that

(0155 (1)2|0) = oL 25 (5.39)

We want to evaluate the spectrum of perturbations at horizossing as adiabatic perturba-

B2+ K cot \/KT]
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tions do not change after horizon crossing. The horizonsingscondition is given by

K\ 1/2
B=a.H(a,) =a, (Hf—g) (5.40)

from which we obtain the values of the scale factor

2 K\1/2
a — BT (5.41)
H)
and of the conformal time
1 VK
T, = ——=arctan—— (5.42)
VK B

at horizon crossing. The corresponding value of the Hubatameter is

B

H(a.) = Hxi(ﬁz T (5.43)
The power spectrur® () in this case is given by
Hy 1
Pz (B) = —2 5.44
T

5.4 Open universe inflation

Now we consider the case of an open universe With 0. From the Friedman equatioB.(1)

we have
: [, K
where we work with the absolute value of the curvature, tgkirio account thak| = —K in

this case. The above expression can be integrated to give

alt)= {'m sinhH, t (5.46)

A

with initial conditiona(t = 0) = 0. In the case of open universe there is no classical coirtgact
phase or bounce. The universe begins in the expanding phddbecurvature decreases in
time compared to the cosmological constant which at lagjees a pure de-Sitter expansion.

Models of open universe inflation where the universe arisés=a0 by quantum tunneling
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have been studied i®f, 87, 86.

The conformal time is

-1 . v/ IK
da :\/?arc&nhH'—a'. (5.47)
K A
H)\a2 1"‘% | |

1(a) =

The conformal time spans the intervial= (—,0) as the scale factor varies in the interval

a= (0,0). We can solve foa(t) and obtain

VIKI__ 1 (5.48)

Hy sinhy/[K[t

at)=-—
The conformal time KG equation for the open-inflationarywense is of the form
o’(1)+ [kz — K| (2 cosech/|K |t + 1)] o(t) =0. (5.49)

This equation has exact solutions

a(t) = Cl(—\/|K|COth |K|T+iM)éMT
+ cZ<\/Wcoth |K|T—|—i\/k2_7||(|)e—i\/k2——l<|1‘ (5.50)

The normalization constants andc; are chosen by imposing the Bunch-Davies initial con-
dition, that in the infinite past — —o the modes were well within the inflation horizon and

were positives frequency plane waves,

o(k,T— —00) = —— &P, (5.51)

where for the open univerge= /kZ — |K|. Imposing this condition on5(50 we obtain the

integration constants, = 0 and

1
1| = — (5.52)

V/2BK

We then obtain for the magnitude & (1) = o(1)/a(T) the expression,

1
|6(pB(T)|2 = a(.l.)z

(5.53)

B2+ |K|coth? /K]t
2(B>+[K|)B
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Since the adiabatic modes freeze after Hubble crossingydiver spectrum is evaluated

at horizon crossing. The horizon crossing condition is gikg

1/2
B=a.H(a.) =a. (Hf + |a*£2|) , (5.54)

and we obtain for the scale factor at Hubble crossing

2 kNl/2
a, = % (5.55)

and the corresponding conformal time is given by

1 VIK|
marctan 5 (5.56)

The Hubble parameter at horizon crossing is

T*:_

B
VB2 -IK|

We notice that in an open-universe stage of inflation, ongyrttodes satisfying the condition

H(a.) = H, (5.57)

B2 > |K| will cross the Hubble radius.
With this, we obtain the following expression for the curv& power spectrum at Hubble

crossing
Hy! 1

R

. (5.58)

5.5 Effectof curvature on temperature anisotropy spectrum

There are first principle calculations of power spectrumia-flat inflationary universe[]],
[85],[97], [99], [86] and [87] . Our results for the primordial power spectra for both thesed
and open pre-inflation universe cases differ in some ddtaits these earlier papers because
of differences in the way we have implemented the initialdibons. Our results of the
primordial power spectrum have been derived assuming tleatacuum state in the infinite
past was the Bunch-Davies vacuum and we have evaluatedithergial power spectrum at
horizon crossing of the perturbation modes.

The power spectrum obtained by Ratra and PeeBlgsahd Lyth and Stewarid5] for the
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open universe case, obtained by assuming conformal bogdadition for the initial state

attT — —o is .
H 1
Pg (B) = - . (5.59)
(1)
This is sometime written in the form
_3 1 B 1
B PK(B)DB(BZJrK):B(BZﬂLl)' (5.60)

Bucher et al $7] and Sasaki et alg6] consider an open universe with a tunneling solution
and assume that the initial states annihilate the Bunche®axacuum and obtain a power

spectrum

4
) ! L ] . (5.61)

Pz (B) = 22 <1+%) coth[\/Tf|

In our study we also assume a Bunch-Davies vacuum but wedmntsie standard slow roll
inflation model, where the expansion was dominated by theature term prior to inflation,
and evaluate the power spectrum at the horizon &4 (a.) = 3. In our solution for the
power spectrum of the open universe cas@)(we have a factor of A(1— |K|/B?) instead of
coth(r3/+/|K]) of (5.61). All three solutions for the power spectru®.), (5.59 and 6.61)
agree in the limit of small curvatur| /B2 — 0.

For the closed universe case, the curvature power specuariuanction of is obtained
in [89] numerically and they find that curvature causes a suppesxithe power spectrum
at low 3 which agrees with our result. Analytic expressions for tbever spectrum for closed
universe inflation is also given by Starobinsl®g] where it is seen that the power spectrum
is enhanced at loy8 for inflation with positive curvature. We find that for the easf closed
universe the power spectrum is slightly suppressed afllawd our result agrees qualitatively
with that of [89] but disagrees withdg].

As an example the experimental bound on the total densitiyefihiverse from a combi-
nation of WMAP and HST supernovae observations®86& Qg < 1.06 [10, 16] in the w-cdm

models. If one uses the Ratra-Peebles form of the powerrspedbr the closed universe

4
PK(B) = 2:2)\('[)2 <1_1%> )

(5.62)
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we see that for perturbations of the horizon gize Hpag, the power spectrum is suppressed

by up to 6% (compared to the flat universe). On the other haoidfuses the power spectrum

(5.1) for the closed universe the suppression of large scale poare be as large as 12%.

Although the Ratra-Peebles formula for the power spectrian derived for open universe

inflation (K < 0) it is used in numerical programs like CAMBY] and CMBFAST Bg] also

for the closed universe case wikh> 0 when deriving the temperature anisotropy spectrum.
In principle the choice of power spectrum used as an inpun(@AMB and CMBFAST)

will affect the determination of cosmological parameteke Qg, Hp, ns etc from the CMB

data. In Fig.5.1 we show the temperature anisotropy for a closed univerde @4t= 1.06

calculated using the power spectrum44) (dashed line) and the temperature anisotropy cal-

culated using the Ratra-Peebles power spectfuB0( (solid line).

0,=1.06

6000

Ratra-Peebles Power Spectrum ——
This Paper ------
WMAP 5-Yr Data -+

5000

4000

3000

I(1+1)Cy/21t pK?

2000

1000

1000 T
1 10 100 1000 10000

Figure 5.1: Comparison of temperature anisotropy with tla¢rd&rPeebles power spectrum
(5.60 and the power spectrund.@d4) derived assuming a Bunch-Davies vacuum. The tem-
perature anisotropy has been calculated for a closed weiwsith Qg = 1.06. Fig. from
[19].
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We modified the CAMB program to determine the temperatursaropy spectrum and
we have taken the best fit values of all other parametersie t etc. We find that there is
some difference between the two closd te 2 but essentially no difference at larbeThe
difference at lowet is highlighted in Fig.5.2where we have shown the same plot as in Fig.
5.1, but only for the lowl values. We see that the temperature anisotropy calculaied u
(5.44) shows a suppression at Idweompared to the Ratra-Peebles form. However owing to

the large cosmic variance statistical error at lotlie difference is statistically insignificant.

0,=1.06
2000 —_— .
Ratra-Peebles Power Spectrum ——
This Paper ------
WMAP 5-Yr Data --+--:
1500 | .
N
X
3
&
) 1000
=)
X :
; i
500 | " -
+
0 I L L L L L L |
1 10

Figure 5.2: Comparison of temperature anisotropy with tiagrd&rPeebles power spectrum
(5.60 and the power spectrurd.@4) at low values of for a closed universe witkg = 1.06.
Fig. from [19].

In Fig. 5.3 we show that in the case of closed universe for larger valieQpothe
guadrupole anisotropy is even more suppressed and fits théRVdata better using the
closed universe power spectrut44). This qualitatively supports the idea proposedaf][

that a positive spatial curvature should suppress the pawew | but the magnitude of the
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suppression for realistic values of parameters is not emaogxplain the quadrupole sup-

pression observed by WMAP.

2000 |
Qy=1.02, Hy=79.3 ——
0,104, H=70
Q,=1.08, Hj=58.3 -------
WMAP 3-Yr Data -+
1500 , |
N
N4
2 ~~
S looo Ry
i - =
:
500 |- |
O 1

Figure 5.3: Suppression of quadrupole temperature anigptrith increasing spatial curva-
ture from the power spectruns@4). Fig. from [19].

In Fig. 5.4 we show the allowed parameter space of the Hubble paramedesuavature
from the WMAP-5 data for th€wCDM model. We have used the power spectriini{)
and the Ratra-Peebles for.§0 to calculate the theoretical prediction for the tempamatu
anisotropy using CAMB. Marginalizing all other parametess plot the allowed values ¢
andQg at 90%€.L. Since the theoretical prediction from the two power sgentatch closely
except at lowl, the chi-square from the two differs only in the second detiptace and the

allowed parameter space from the two power spectra areit@éas shown in Fig5.4.
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Figure 5.4: The allowed parameter space fo§ and Hubble parametedy (in units
Km/sec/Mpc) at 90%C.L from WMAPS data. There is no discernible difference in the
parameter space when one assumes the Ratra-Peebles foowesfgpectrumi.60 or the
form (5.44) calculated in this chapter. Fig fromJ).

5.6 Conclusion

At the beginning of inflation the curvatuge — 1 is expected to be of order one. By the time
perturbations of our horizon size exit the inflation horizéine curvature drops t@g— 1
which is the present value. A non-zero observation of theature will tell us whether the
universe prior to inflation was open or closed (even thoughk @lmost flat now) and put
constraints on the number of extra e-foldings that must lvaeeirred beyond the minimum
number needed to solve the horizon problem. Spatial cuatia threshold effect which can
give us information on the pre-inflation universe from olva¢ions of the CMB anisotropy
at large angles, similar to the effect of a possible pre-igitathermal era42, 17]. From
the power spectrum of the closefl.]) and open inflationg.2) cases we see thatlf > 0,
power is suppressed at large angles and & O power is enhanced at large angles. The
WMAP observation of a strong suppression of the quadrupotgerature anisotropy cannot
be explained by the modified power spectrum for a closed usévas suggested b§g] for

realistic values of other parameters (lidg) . The determination of the spatial curvature from
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the WMAP data is not observably affected by the choice of thenlary condition used for
the determination of the primordial power spectrum in a edrinflationary universe. The
difference in the anisotropy at lowfrom different calculations of the power spectrum are

smaller than the cosmic variance and therefore are ingdjstgmable even in principle.



Chapter 6

Conclusion and discussions

Inflation [1] solves the major problems of the standard model of Big-Bemgmology and
it also provides seeds for the CMB anisotropy and structurethe universe. It predicts
nearly scale invariant and Gaussian density perturbatioasare consistent with the CMB
observations]6]. To satisfy CMB observations ther must be nearly 60 efadifrom the
end of inflation to the time when the length scales correspontb our horizon leaves the
inflationary horizon. The amplitude and the spectral indeihe scalar perturbations must
be [L6] Ag =2.41+0.11x 10°° andns = 0.963"0014 respectively. These observational
constraints put an upper bound on the scale of inflation thrastout to be at the GUT scale (
(V)?lt < 10'®GeV). The lower bound on the scale of inflation comes from thgeovations of
tensor perturbations which will be confirmed by the detettibB-mode of CMB polarization.
The parameters of the inflaton potential are determineddwithplitude and the spectral index
of the density perturbations. Asir?¢? or Ag* type of potentials the value gfmust be greater
thanMp and\ < 1012 These models are not natural from particle physics pointef.
There are large number of attempts to come up with a modelctiraimake sense from
observational and theoretical point of view. One of them &w inflation [L2] in which
radiation is also present during inflation but it remainsdarhinant. Inflaton is being dissi-
pated into the radiation, so the temperature remains nearigtant and there is no phase of
reheating. In these models density perturbations are geteby thermal fluctuations in the
inflaton field. Since thermal fluctuations are classical $®rtodel also provide a solution to
the quantum to classical transition problem of cold inflatibh cold inflation models there is
a model of inflation called as, "Natural inflation” in whichfiaton is PNGB of some spon-

taneously broken symmetry. This model can accomodate stalkks ad ~ ’]}—: whereA is

77
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explicit symmetry breaking scale arfds spontaneous symmetry breaking (SSB) scale. The
flatness of the potential in this model is protected from brgbrder corrections due to shift
symmetry. Observational constraints ngrequire that the SSB scalieshould bef ~ Mp

[15].

Although inflation seems to be a best model to understandrthm @f CMB anisotropy,
there are still some unexplained features in the large €€l anisotropy like low quadrupole
and glitches at low. As these anisotropies were generated during the very statyes of in-
flation, they can have imprint of pre-inflationary univerSeudy of pre-inflation universe can
give us information about the correct model of inflation.

In this thesis we have presented the effect of pre-inflatipnadiation era and effect of
curvature before inflation on CMB anisotropy and polariaati We have shownl[/] that
due to the decoupled thermal distribution of gravitons Bdemof CMB polarization will be
enhanced at low. As WMAP gives an upper bound on the B-modes but the stantamthy
predicts very low tensor to scalar ratio which is below thesstvity of WMAP. Due to this
enhancement WMAP in future may see a signal of B-modes anitl jut an upper bound on
the graviton temperature when our observable universe @asrig the inflationary horizon.
If this temperature is less than the temperature at the heggrof inflation we will have extra
e-foldings than what is required to solve horizon problemwhrm inflation the temperature
remains nearly constant so the predictions of thermal esdragnt of tensor modes cannot
be evaded (if not seen in B-modes) by assuming extra e-igéd@ts in cold inflation with a
pre-inflation thermal era.

Warm inflationary models require radiation as sub-domircantponent to provide damp-
ing during inflation. We have studied warm inflation with PN@8tential [L8] and we have
shown that the spontaneous symmetry breaking scale cardbeee to the GUT scale. An-
other feature of this model is that it can generate large Gaassianity that can be observed
in future experiments. Since PNGB has derivative couplothe lepton current, this model
can automatically generated lepton asymmetry during iofiat

Another important question related to the pre-inflationvense is whether the universe
was closed or open before inflation. Inflation tells that thevature of the universe at the
time when our horizon left the de Sitter horizon should beat¢d¢o the curvature at present.
If we observe a non-zero value of the curvature at present;amesay that inflation lasted

only for minimum number of e-foldings and the universe wasfla before inflation. A large
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curvature before inflation may affect large scale CMB amggmt. We have calculated power
spectrum for curvature perturbations in both closed andhapeverse during inflation1[9].
We have used Bunch-Davies boundary condition for the modetions and have evaluated
the power spectrum at horizon crossing. It is observed tiexetis suppression at lowfor
closed universe. But this suppression is not sufficient e the low value of quadrupole.
The effect at lowl temperature anisotropy due to different boundary conaigtithat are used

to calculate different power spectra, is not observablebse of cosmic variance.
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