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Abstract

In this thesis we investigate the properties of strongly in-
teracting matter at extremely high temperatures and densities.
The interactions of strongly interacting matter are governed by
the laws of Quantum Chromodynamics(QCD) which is a gauge
theory based on SU(3)

c

symmetry group. Standard model con-
tains six strongly interacting quarks and eight gluons which bind
together to form baryons such as protons, neutrons, etc and
mesons such as pions, kaons, etc, collectively known as hadrons
and make up the bulk of the observable universe. Strongly in-
teracting matter exhibits peculiar features owing to the strong
nature of its coupling, namely asymptotic freedom, confinement
and spontaneous breaking of chiral symmetry.

Chiral symmetry refers to the symmetry of the lagrangian
under chiral transformation. However the ground state of the
system may not exhibit the symmetries of the Lagrangian. In
such a case the symmetry of the theory is said to be sponta-
noeusly broken. In case of QCD the ground state of the system
at low energies exhibits spontaneous breaking of chiral symme-
try. Breaking of chiral symmetry results in mass generation
and is responsible for most of the mass observed in universe
since mass generated by higgs mechanism for stable quarks is
small and heavy quarks are unstable against decay and hence
not found in nature.

Asymptotic freedom refers to the fact that the strong cou-
pling decreases with increasing energy and thus at very high
energies the theory becomes weakly coupled. Weak coupling al-
lows one to use usual methods of perturbation theory to make
predictions about experiments and study the hot and dense mat-
ter created in heavy ion collisions. There have been considerable
success in the use of perturbation theory to explain the exper-
imental data obtained in heavy ion collisions. Despite the suc-
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cesses there are may unresolved problems that remain. Predic-
tions of the transport properties based on pQCD are in disagree-
ment with experimental data and lattice QCD which suggests
non-perturbative e↵ects remain in the matter produced in heavy
ion collisions for temperatures atleast few times the transition
temperature. Other than high temperatures, the picture is also
unclear at high densities. Lattice QCD, which is a first principle
implementation of QCD has the sign problem and perturbative
calculations are inapplicable due to large coupling for realistic
densites, e.g. in the core of neutron stars or the dense matter
produced in heavy ion collisions. Morever, it is also known that
neutron stars have a very strong magnetic field. Origin of such
high magnetic fields and its e↵ect on hadronic matter is also a
topic of active research. In view of these problems one turns to
e↵ective models which are based on phenomenological param-
eters and captures some of the basic properties of QCD. Two
such popular models are Nambu Jona Lasinio model(NJL) and
Polyakov Loop extended Quark Meson Model(PQM).

Nambu Jona Lasinio model was proposed by Yochiro Nambu
and Jona Lasinio as a low energy phenomenological model of
strong interactions. The model exhibits spontaneous chiral sym-
metry breaking and parameters of the model are fit to reproduce
low energy hadronic spectrum. Gluons are absent in the model
and the interaction is given by a four fermi point interaction.
The model has been successfully applied to the study of strongly
interacting matter both at high temperatures and high densi-
ties. Quark Meson Model(QM) is an extension of sigma model.
Whereas in NJL model the degrees of freedom are quarks, QM
model includes mesonic degrees of freedom such as pions. The
mesonic degrees of freedom are coupled to quarks and them-
selves through self interaction.

Both Nambu Jona Lasinio and Quark meson model do not
have gluons and they do not incorporate confinement. Due to
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confinement at low temperatures only color singlet hadrons are
observed. To include the e↵ect of confinement, QM model is
extended by introducing a potential in terms of the polyakov
loop which is the trace of the Wilson loop in temporal direction
and is also coupled to quark. It is calculated in Lattice QCD
which is a first principle calculation and is not restricted by
strong values of the QCD coupling. Including the polyakov loop
in the QM model suppresses the quark distribution functions,
especially below the transition temperature. Thus it results in
a statistical confinement of quarks in the sense that number
density of quarks below the transition temperature is highly
suppressed. This model is known as PQM model.

Using these two models we have studied the properties of
matter under extreme conditions of temperature and densities.
PQM is has been used to calculate the transport coe�cients of
hot matter created in heavy ion collision, namely the shear vis-
cosity, bulk viscosity and thermal conductivity. Results have
been obtained using kinetic theory and thermal averaging of
scattering rates. Values obtained for the transport coe�cients
are consistent with experimental results and other phenomeno-
logical studies.

For quark matter at high densities and large background mag-
netic field, which is relevant for the interior of neutron stars,
three flavor NJL model with determinant interaction has been
used with background magnetic field to study color supercon-
ductivity at high densities. Constraints of charge neutrality have
been imposed and resulting gapless modes have been studied.
Impact of background magnetic field on the superconducting
gap and neutrality conditions is also discussed.

Spontaneous spin polarization has been suggested as a possi-
ble mechanism for the origin of large magnetic fields in neutron
stars. In order to study spotaneous spin polarization in quark
matter, a three flavor NJL model with tensor interaction has
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been used with non-zero current quark masses. Two indepen-
dent spin polarization condensates arising from tensor interac-
tion in three flavor NJL model, have been studied as a function
of quark chemical potential. Magnetic field resulting from such
condensates is estimated and found to be of expected order of
magnitude.

Keywords: Quantum Chromodynamics, Chiral Symmetry,
Confinement, Asymptotic Freedom, Heavy ion collisions, Trans-
port coe�cients, Color Superconductivity, Spin polarization, Quark
matter
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Chapter 1

Introduction

1.1 Standard Model

As per our current understanding, nature is governed by four
fundamental forces, namely Gravity, Electromagnetism, Weak
interactions and Strong interactions. Gravity is responsible for
the formations of structures in universe on the largest scales, i.e.
solar system, galaxies, etc. Electromagnetism involves the phe-
nomena of light matter interaction. It explains the formation of
bound states such as atoms, emission and absorption of lights,
lasers, etc. Weak interactions are responsible for decay processes
such as neutron decay. Quantum Chromodynamics(QCD) is the
theory of strong interactions, also known as colour force. It is
the strongest of the four fundamental fources of nature. The
three quantum theories, QED, Electroweak and QCD together
form the Standard Model of particle physics [2]. Gravity [3],
which works well on the scale of universe, is not presently un-
derstood as a quantum theory.

Fig. 1.1 shows the basic constituents of Standard Model.
In the quantum picture of fundamental forces, the particles in-
teract by exchanging bosonic particles. These are �(photon) for

1
https://www.u-tokyo.ac.jp/content/400021545.jpg
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Figure 1.1: Fundamental particles in Standard Model.1

electromagnetic interactions, Z and W massive vector bosons for
weak interaction and g, gluons for strong interactions. e, µ, ⌧, ⌫

e

, ⌫
µ

, ⌫
⌧

are the six leptons. e, µ and ⌧ participate both in electromag-
netic and weak interactions whereas ⌫

e

, ⌫
µ

, ⌫
⌧

participate only in
weak interactions. Leptons do not participate in strong inter-
actions. u, d, s, t, d, b are the six quarks. They participate in all
three interactions. H is the Higgs boson, responsible for giving
masses to the particles. However as we shall discuss later, most
of the mass that we observe in the nature arises from strong
interaction(color force) and not the Higgs mechanism.

Figure 1.2: Relative strengths of fundamental interactions.2

Fig. 1.2 shows a rough comparision of the strengths of the
four fundamental interactions. Strong interaction are about 38
orders of magnitude stronger than gravity. This introduces novel

2
https://sites.google.com/a/pgscience.co.uk/physics/lessons/higher/higher-31-the-

standard-model/312-interaction-of-particles
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features in the interactions which are briefly discussed in follow-
ing sections. QCD has been successfully applied in explaining
the high energy deep inelastic scattering experiments as well as
low energy hadronic physics. Also lattice QCD, which is the
numerical implementation of QCD on computers has made pre-
dictions in agreement with observations.

1.2 Quantum Chromodynamics

Strong interaction is the force responsible for binding nucleons
at the fundamental level and is described by Quantum Chro-
modynamics, which describes the interactions between quarks
and gluons. Mathematically the strong force is described by the
Lagrangian [4] :

L =  ̄(i /D � ig�a /G
a

) + �1

4
Ga

µ⌫

Gµ⌫

a

(1.1)

Here  is a N
f

⇥ 1 column vector for N
f

flavors. Ga

µ⌫

=
@

µ

Aa

⌫

� @
⌫

Aa

µ

+ gfabcAb

µ

Ac

⌫

is the gluon field strength tensor. �a

are 3 ⇥ 3 generators of the SU(3)
c

in the fundamental represen-
tation. There are 8 such generators. Aµ

a

are eight gauge fields.
‘g0 is the strong gauge coupling.

Two important non-perturbative properties of QCD are chiral
symmetry breaking and confinement. We shall discuss both the
properties in the following discussion. However before discussing
these two important aspects of QCD we shall discuss in general
the spontanoeus symmetry breaking.

1.2.1 Spontaneous Symmetry Breaking

Symmetry [4] in particle physics refers to a transformation of
the fields which leave the Lagrangian invariant. As an example
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consider the following Lagrangian.

L = @
µ

�†@µ�+ (�†�)2 (1.2)

Under the transformation � ! ei↵�, where ↵ is a real num-
ber, the two terms in above Lagrangian transform as :

�†� ! �†e�i↵ei↵� = �†� (1.3)

@
µ

�†@µ� ! @
µ

�†e�i↵ei↵@µ� = @
µ

�†@µ� (1.4)

Clearly the two terms remain invariant and thus the La-
grangian also remains invariant. This is an example of a symme-
try transformation. However it may so happen that a symme-
try of the Lagrangian is not respected by the ground state(i.e.
the lowest energy state) of the system. For example if the
ground state has a non-zero expectation value h0|��|0i, then
the ground state is not invariant under the transformation � !
ei↵�. Symmetry breaking is ubiquitous is physics. Other ex-
amples include transition from paramagnetic to ferromagnetic
phase where spontaneous magnetisation breaks the rotational
invariance of the Lagrangian. In superconductivity gauge sym-
metry is spontaneously violated resulting in photon gaining mass
and Meissner e↵ect. Symmetry breaking is ubiquitous in nature
and is important in understanding the diverse phenomenon in
nature.

1.2.2 Chiral Symmetry

In the massless limit a fermion like a quark has a definite value
of helicity, which is the projection of spin angular momentum
on the three momentum of the particle. A Dirac spinor can be
written as :
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! =

✓
�
�

◆
(1.5)

The Dirac equation for a free particle reads:

E� = �.p�+ m�

E� = ��.p�+ m�
(1.6)

For a massless particle the above equations can be restated
as :

(�.p/|p|)� = �

(�.p/|p|)� = �� (1.7)

These are nothing but the helicity eigenstates. Eq. 1.7 also
show that for massless particles upper and lower component of
the spinor are decoupled. !

1

=
�
� 0

�
T is a particle with pos-

itive helicity while !
2

=
�
0 �

�
T is particle with negative helicity.

Chirality is defined as the eigenvalue of �
5

, where �
5

= i�
0

�
1

�
2

�
3

,
and �0

i

s are the Dirac gamma matrices. In Dirac representation
�

5

is given as :

�
5

=

✓
1 0
0 �1

◆
(1.8)

In massless limit chirality is the same as helicity. However a
massive spinor is not an eigenstate of chirality.

�
5

! =

✓
�

��

◆
6= �

✓
�
�

◆
(1.9)
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Thus a mass term breaks chiral symmetry since it couples
upper and lower components of Dirac spinor. Mathematically
the chiral transformations is:

 ! ei��5 (1.10)

Here � is angle of the transformation. The Lagrangian in
Eq.(1) is invariant under transformation Eq.(2). However a mass
term  ̄ is not invariant under the transformation Eq.(2). It
transforms as :

 ̄ !  ̄e2i��5 6=  ̄ (1.11)

Even in the absence of such mass term the QCD ground
state has a non-zero expectation value for the chiral condensate,
which is the expectation value h ̄ i. Therefore even though the
Lagrangian is invariant under chiral transformation, the QCD
ground state is not invariant. This is known as spontaneous
breaking of chiral symmetry. h ̄ i expectation value acts like
a mass term for the quarks.

1.2.3 Mass Generation : Higgs mechanism and Chiral
Symmetry

Higgs mechanism provides the masses to particles of the stan-
dard model. Consider the following lagrangian involving a fermion
 and boson �

L =  ̄i/@ + (@
µ

�)2 � g ̄� +
1

2
µ2�2 +

�

4
�4 (1.12)

The above lagrangian decribes a fermionic field without a
mass term and a bosonic field with a mass term with wrong
sign. The potential for the scalar field � has a minima at

� = v =
q

�µ

2

�

. Making the substitution � ! v + �̃ we get
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:

L =  ̄i/@ + (@
µ

�̃)2 � gv ̄ + g ̄ ̃ +
1

2
µ2(v + �̃)2 + �(v + �̃)4

(1.13)
One may notice that expanding the scalar field about the min-

ima of the potential has generated a mass term for the fermion.
This is in essence the mechanism of mass generation by Higgs.

However hadrons such as protons are much more heavy than
the sum of the masses of the constituent quarks generated by
Higgs mechanism. For example combined mass due to Higgs
mechanism of the three quarks which make up the proton is
only about 20 MeV whereas the mass of proton is about 930
MeV. Rest of the mass of hadronic matter comes from inter-
actions between quarks and gluons which result in a non zero
value of chiral condensate. Thus QCD is responsible for most of
the mass of visible matter in the universe.

Realistically mass of light quarks, i.e. their mass from Higgs
mechanism, is actually non-zero. This is suggested by Gell Mann
Oakes Renner(GOR) relation which relates mass of pion with u
and d quark current mass. If the current masses were zero, the
pion mass would be vanish too, as expected of a goldstone bo-
son of spontaneous chiral symmetry breaking. Moreover if the
non-zero mass of quarks were responsible for the breaking of
chiral symmetry, one would expect the existence of nuclear par-
ity doublets. Such parity doublets are not observed in nature.
Chiral symmetry breaking also imposes constraints on the low
e↵ective theories of hadrons which are successful in explaining
experimental data. These arguments suggest that chiral sym-
metry is spontaneously broken.
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1.2.4 Asymptotic Freedom

9. Quantum chromodynamics 25

The central value is determined as the weighted average of the individual measurements.

For the error an overall, a-priori unknown, correlation coe�cient is introduced and

determined by requiring that the total �

2
of the combination equals the number of

degrees of freedom. The world average quoted in Ref. 172 is

↵

s

(M

2
Z

) = 0.1184 ± 0.0007 ,

with an astonishing precision of 0.6%. It is worth noting that a cross check performed in

Ref. 172, consisting in excluding each of the single measurements from the combination,

resulted in variations of the central value well below the quoted uncertainty, and in a

maximal increase of the combined error up to 0.0012. Most notably, excluding the most

precise determination from lattice QCD gives only a marginally di�erent average value.

Nevertheless, there remains an apparent and long-standing systematic di�erence between

the results from structure functions and other determinations of similar accuracy. This

is evidenced in Fig. 9.2 (left), where the various inputs to this combination, evolved to

the Z mass scale, are shown. Fig. 9.2 (right) provides strongest evidence for the correct

prediction by QCD of the scale dependence of the strong coupling.
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Figure 9.2: Left: Summary of measurements of ↵

s

(M

2
Z

), used as input for the

world average value; Right: Summary of measurements of ↵

s

as a function of the

respective energy scale Q. Both plots are taken from Ref. 172.

July 30, 2010 14:57

Figure 1.3: 4-loop running of QCD coupling with energy scale Q3

Another important property of QCD is asymptotic freedom.
It refers to the fact that the strength of strong interaction de-
creases at high energies or short distances. QCD vacuum be-
haves like a dielectric. Just as in a dielectric the polarization
of the medium modifies the electric charge, in QCD polariza-
tion of quantum fluctuations anti-screen the charge resulting in
increasing charge density with distance. Mathematically this is
represented by the beta function of QCD, which tells us how
coupling varies with energy scale. At four loop the beta func-
tion is:

3
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-qcd.pdf
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↵
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(µ2

R

) =
1
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0
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✓
1 � b

1

b2

0

lnt
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+

b2

1
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0

b
2

b4

0
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�
b3

1

(ln3t � 5

2

ln2t � 2lnt + 1

2

) + 3b
0

b
1

b
2

lnt � 1

2

b2

0

b
3

b6

0

t3

◆
, t = ln

µ2

R

⇤2

(1.14)

Here N
c

and N
f

refer to the number of color and flavor repec-
tively. ⇤ or ⇤

QCD

is the scale which sets non-perturbativity scale
of QCD. It value is about 200 MeV. At energies high enough
compared to �

QCD

, the theory is weakly coupled and pertur-
bative techiques can be used. At low energies the coupling is
strong and one requires non perturbative techniques such as
Lattice QCD, QCD sum rules, e↵ective theories like Chiral per-
turbation theory, phenomenological models such as NJL model,
etc.

1.2.5 Confinement and Quark Gluon Plasma

Confinement refers to the fact that at low energies only color sin-
glet asymptotic states are observed in QCD. Unlike QED where
charge states such as ions, electrons, etc can exist in free state,
in QCD all the charges combine in such a way that only color-
less hadrons appear in the final state. However as the energy
density increases, the coupling becomes weak and at su�ciently
high energy densities the quark and gluons degrees of freedom
which are confined into hadrons can become “free” over a macro-
scopic region. Such a macroscopic system where the degrees of
freedom are quarks and gluons is known as quark gluon plasma.
Such a state can form at both high temperatures which are ob-
tained in relativistic heavy ion collisions and at high densities
which may exist inside of neutron stars.
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Figure 1.4: Phase diagram of strongly interacting matter. Baryon matter
density has been normalised by nuclear matter density d0 = 0.17/fm3.5

Having discussed the important properties of QCD we now
discuss the phase diagram of QCD and the challenges in under-
standing the nature of strongly interacting system.

1.3 Phase diagram of Quantum Chromody-
namics

A phase diagram of matter is a chart of the equilibrium phases
as a function of thermodynamic variables such as temperature,
chemical potential, etc. Fig. 5.2 shows the conjectured phase
diagram of Quantum Chromodynamics [5]. It is conjectured
because due to strong nature of coupling which prevents first
principle calculations and lack of direct experimental measure-
ments one doesn’t have a established picture of phase diagram.

5
https://compstar.uni-frankfurt.de/outreach/short-articles/the-qcd-phase-diagram-

and-the-critical-end-point/
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QCD has an intrinsic scale generated dynamically known as
⇤

QCD

. The value of ⇤
QCD

is about 200 MeV. Thus one ex-
pects phase transitions associated with energies ⇠ ⇤

QCD

. These
energies roughly correspond to temperatures of ⇠ 1012 K and
densities of the order of ⇠ 1015g/cm3, which is also roughly
the density of nucleon. Such high temperatures were present
in the universe a few microsceonds after the big bang. High
temperature are also obtained in collision of ultra relativistic
particles at particle accelerators such as Relativistic Heavy Ion
Collider(RHIC) and Large Hadron Collider(LHC). They reach
center of mass energies of 200 GeV and 13 TeV respectively.
These energies are much higher than the typical QCD scale and
hence once expects transition from hadronic to quark gluon mat-
ter in these collisions. Indeed, there are hints of such a transition
[6].

In high energy heavy ion collisions the number of particles
produced is much higher than the initial quark access over anti-
quarks. Therefore these collisions have a vanishing baryon chem-
ical potential. To study strongly interacting matter at densi-
ties few times the nuclear matter density(n

0

=0.17 fm�3) low en-
ergy collisions have been planned at facilities such as Nuclotron-
based Ion Collider Facility(NICA), Facility for Antiproton and
Ion Research(FAIR) and Japan Proton Accelerator Research
Complex(J-PARC). Other than these experiments, high densi-
ties are also expected inside neutron stars which have density
comparable to nuclear matter density. One may expect a phase
transition to deconfined matter in the core of such stars.

QCD at zero baryon chemical potential is well studied. Lat-
tice QCD, which is a first principle numerical implementation
of QCD is applicable. Results of Lattice QCD are dependent on
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the number of flavors and colors. For N
c

=3 and N
f

=0, i.e. a
pure glue theory, one gets a first order transition with T

c

⇠ 270
MeV. For three light flavors with realistic quark masses one gets
a crossover with a pseudo-critical temperature T

c

in the range
150 MeV - 200 MeV. Just above the critical temperature the
system is expected to be strongly coupled and non-perturbative
e↵ects are important.

At finite densities the picture is less clear. Lattice QCD is
not applicable due to sign problem associated with simulation in
presence of finite chemical potential. The coupling at these den-
sities is strong which prevents a perturbative analysis. Therefore
one turns to chiral models and Taylor expansion in Lattice QCD
to conjecture phase diagram at finite density. Such analysis sug-
gest existence of a QCD critical end point (T

cep

,µ
cep

). Beyond
this point the hadron-quark transition is a first order transition.
It is possible that this first order transition ends in another criti-
cal point (T

2

,µ
2

). Beyond this point the transition from nuclear
superfluid to quark gluon matter is continous and there is no
clear boundary between the two phases. This is known as the
quark-hadron continuity.

At asymptotically high densities pQCD is applicable and
analysis shows the ground state to be a color superconductor.
Due to the fact there are more degrees of freedom available in
QCD, namely color and flavor, there are several di↵erent super-
conducting states possible. Further di↵erent external conditions
like charge neutrality(both color and electrical) a↵ect the sta-
bility of phases and may favor phases with free energy which
is not minimum. At asymptotic densisties the favoured state is
Color-Flavor Locker(CFL) state in which color, flavor and spin
degrees of freedom are correlated. Other possibility at inter-
mediate densities is 2SC phase in which u and d quarks form
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cooper pairs while strange does not participate in superconduc-
tivity due to di↵erence in fermi energies. Inhomogenous super-
conducting states where the order parameter varies over space
are also known to exist, however the true ground state is unclear.

E↵ect of magnetic field [7] on QCD phase diagram has been
of interest in recent investigations. This is so because it has
been suggested that very strong magnetic fields of the order
of hadronic scale may be produced in heavy ion collisions. Also
neutron stars which are extremely dense environments are known
to have strong surface magnetic fields which may be strong
enough in the interior to a↵ect hadronic properties. Also a mag-
netic field included in QCD Lagrangian can be studied in Lattice
QCD as there is no sign problem like in the case of finite density.
Lattice simulations show that at T = 0 the chiral condensate
 ̄ increases with magnetic field. This is also observed in chiral
models. However at temperatures near the critical temperature
the chiral condensate decreases with increase in magnetic field.
This is contrary to results in chiral models.

Having discussed the phase diagram of QCD we now discuss
briefly the three topics investigated in doing the work towards
this thesis, namely transport properties, color superconductivity
and spontaneous spin polarization.

1.3.1 Transport properties

Fig. 1.3.1 shows a typical collision of two nuclei in heavy ion col-
lision. The two nuclei move in opposite direction at relativistic
energies. The shaded region shows the overlap of the two nu-
clei. In ultra-relativistic heavy ion collisions the non-overlapping
portion of the nuclei keep moving forward on their initial trajec-

6
http://article.sapub.org/10.5923.j.jnpp.20140406.02.html
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Figure 1.5: Heavy ion collision.6

tories. The overlapping region is in the shape of an almond and
has geometrical anisotropy. This geometrical anisotropy results
in pressure gradients which as the fireball evolves translates to
momentum anisotropy. Di↵erential distribution of final state
particles can be written as:

E
d3N

d3p
=

d3N

p
T

dp
T

dyd�
=

d2N

p
T

dp
T

dy

1

2⇡


1 +

X
2v

n

cos(n�)

�

Here p
T

is the transverse momentum, y is rapidity and � is
the azimuthal angle. In the second equality the azimuthal distri-
bution is expanded in fourier series. The first two coe�cients in
the fourier series, v

1

and v
2

are the directed and elliptic flow. v
2

is the average of the particle distribution weighted with cos(�).
Thus it measures the spatial anisotropy in the final momentum
of the particles which in turn is related to pressure gradients
at initial times. Thus v

2

, or the elliptic flow, is an important
variable to study the initial stages of heavy ion collisions and
deconfined matter which may be present in the initial stages.

The system produced in heavy ion collisions is studied us-
ing hydrodynamics which is a long wavelength description of
the system near equilibrium. Based on initial conditions and
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equation of state(EoS), it predicts the space time evolution of a
fluid. If a fluid in equilibrium is perturbed, then the perturba-
tions result in gradients. The system responds by generation of
currents which tend to bring system back to equilibrium which
is characterized by transport coe�cients. Transport properties
of a system refers to the ability of system as to how a physical
quantity, such as energy, momentum, charge, etc is transferred
from one point to another. For example perturbation in density
results in currents which can be mathematically stated as :

⇢v = �Dr⇢

In the above equation ⇢ is the density and D is a the trans-
port coe�cient. It is a property of the system and determines
how fast the perturbations in density di↵use. Some other ex-
amples include Ohm’s law J = ��r� and heat conductivity
Q = �rT . Viscosity tensor determines the flow of momen-
tum in the presence of velocity gradients. These coe�cients are
important because they are collective e↵ects originating from
microscopic interactions and can be measured in experiments.
Thus they relate the microscopic and macroscopic physics.

Transport coe�cients are also important for charting the
phase diagram of quantum chromodynamics as shown below.
Fig. 1.6 shows the plot of the ratio of shear viscosity to en-
tropy as a function of temperature for some common elements
and strongly interacting matter. One may note that around the
phase transitions the ratio shows minima. Thus one expects
that study of transport coe�cients can help in mapping the
phase diagram of strongly interacting matter. As evident from
Fig. 3 experiments show that the quark gluon plasma produced
in those collisions is the most perfect fluid known.

7
R A Laceyet al,Phys. Rev. Lett. 98, 092301 (2007)

16



Figure 1.6: ⌘/s for He, N2, and H2O and strongly interacting matter7

Figure 1.7: Data on elliptic flow8

Fig. 1.7 shows data on ellpitic flow as a function of transverse
momentum along with hydro results. One finds that the ellip-
tic flow is well explained by ideal hydrodynamics and viscous
hydrodynamics with a small ratio of ⌘/s. This suggests the im-

8
M Luzum and P Romatschke,Phys. Rev.C78, 034915 (2008), Erratum,ibid.C79,039903

(2009)
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portance of studying viscosity from a theoretical point of view.
Investigations in perturbative QCD(pQCD)[8, 9, 10], which are
valid in the limit T >> ⇤

QCD

give following results :

⌘ ⇠ T 3

↵2

s

ln↵�1

s

, ⇣ ⇠ ↵2

s

T 3

ln↵�1

s

⌘/T 3 shows a rising behavior while ⇣/T 3 shows a decreasing
behavior. In the asymptotic limit QCD behaves like a conformal
theory. Conformal theories have a vanishing ⇣. Thus the above
behavior of bulk viscosity is consistent in the limit T >> ⇤

QCD

.
The ratio of shear viscosity to entropy has also been studied in
the context of AdS/CFT duality[11] which indicate a universal
lower bound on this ratio of 1/4⇡. In this context it is intriguing
that the ratio ⌘/s obtained for QGP from experiments is close
to the lower bound.

Transport coe�cients for QGP have also been obtained from
lattice QCD[12, 13, 14]. These calculations also suggest a small
value of ⌘/s and a rise in ⇣/s close to transition temperature.

The expressions for shear viscosity, bulk viscosity and ther-
mal conductivity are respectively[15]:
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In order to calculate these transport coe�cients one needs
to know the masses of the constituent quarks and mesons as
well as the thermodynamic properties of the system. One also
needs to know the scattering rates. We have used Polyakov ex-
tended quark meson(PQM) model to calculate these quantities.
Polyakov loop allows one to include the e↵ect of confinement
in quark meson model by suppressing quark distributions below
chiral transition. The masses of quarks and mesons are obtained
from the thermodynamic potential. Scattering amplitudes are
obtained from interaction terms in the PQM lagrangian. Relax-
ation time is obtained by thermal averaging the scattering rates.
Once the relaxation time is calculated, the transport coe�cients
can be evaluated. Next we discuss color superconductivity.

1.3.2 Strongly interacting matter at high densities: Color
superconductivity

From condensed matter physics it is known that a system of
fermions with an attractive interaction is unstable with respect
to formation of cooper pairs. If the interaction is attractive then
it leads to a lowering of free energy of the system. The fermi
sphere is unstable and system evolves to a new ground state. It
was shown by Bardeen, Cooper and Schrie↵er that in presence
of an attractive interaction the ground state of such a system
is a condensate of cooper pairs with the formation of gap near
the fermi surface. The formation of such a gap in the energy
spectrum leads to suppression of the scattering of fermions and
leads to phenomenon of superconductivity.
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In case of conventional superconductors in condensed matter
physics it is the electrons which form the cooper pairs. Coulom-
bic interaction between the electrons is repulsive. However the
electrons also interact via exchange of phonons, which are vi-
brations in lattice. Phonon interactions generate an attractive
force between the electrons and at low enough temperatures
the phonon exchange is dominant over electromagnetic inter-
action leading to cooper instability and hence superconductiv-
ity. In case of QCD, due to the richer structure of color force,
there exist a spin antisymmetric color anti-triplet channel in
which quark-quark scattering is attractive. Thus one may ex-
pect cooper instability like phenomenon in strongly interacting
dense matter.

Possibility of color superconductivity was suggested soon af-
ter QCD was established as theory of strong interactions [16].
Superconductivity in perturbative limit was studied in[17, 18].
Gap estimated in initial investigations was small, of the order
of MeV, and therefore didn’t generate much interest. However
later it was suggested that the gap at intermediate densities
could be much higher of the order of 100 MeV[19, 20]. Since
critical temperature is also of the same order one expects that
color superconductivity may be of relevance in neutron stars and
even heavy ion collisions[21, 22, 23]. At intermediate densities
superconductivity was studied in refs. [19, 20] within NJL type
models and refs. [24, 25] in Instanton liquid model which also
find similar order of magnitude gap. Realistically one expects
the quark matter, if deconfined, to be color and electric charge
neutral. E↵ects of such charge neutrality conditions were inves-
tigated in [26, 27, 28, 29]. Refs.[30, 31, 32, 33, 34, 35, 36] studied
color superconductivity in background magnetic field.

In order to study color superconductivity in background mag-
netic field we employ Nambu-Jona Lasinio model with a diquark
interaction term. The Hamiltonian is given as:
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To incorporate magnetic field one solves for Dirac equation
with a background magnetic field and expands the spinors in
terms of landau levels as follows
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We assume a trial ground state with chiral and diquark con-
densate. With a trial ground state we can calculate the free
energy of the system for a given value of magnetic field and
quark chemical potential. All the calculations are restricted to
zero temperature. Minimizing free energy gives us the gap equa-
tions for the masses and superconducting gap �. Solving the
gap equations self consistently gives the gaps as a function of
chemical potential and magnetic field. Finally we discuss the
phenomenon of spontaneous spin polarization.

1.3.3 Spontaneous spin polarization in quark matter

Magnetars are neutrons stars which have unusually high mag-
netic fields. Surface magnetic fields of magnetars can be as
high as 1015 G. Inside the magnetic field could be even higher.
Such large magnetic fields have been attributed to flux conser-
vation during evolution of the star. However this hypothesis
implies the radius of the resulting star to be smaller than the
schwarzschild radius. Another explanation for the origin of ultra
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strong magnetic fields in neutron stars is sponatneous magneti-
sation in quark matter. Spontaneous polarization was studied
in Ref. [37] with a one gluon exchange. The resulting magnetic
field was estimated to be about 1017 G.

In the relativistic formalism spin polarization in dense quark
matter can be studied using two spin condensates, axial vector
condensate and tensor condensate. Axial vector condensate is
the spatial component of axial vector  †⌃i while the tensor
condensate is  †�0⌃i . In the non-relativistic limit these two
condensates are equivalent. Spontaneous spin polarization has
been studied in e↵ective models using these two condensates.
In Ref. [38] spin polarization was studied with AV condensate
along with color supercoductivity in NJL model. Ref. [39] has
investigated spin polarization in one flavor NJL model in AV
channel with a chiral condensate. Tensor spin polarization was
studied in Refs. [40] with two flavors and in Ref. [41] with
three flavors but zero current quark masses. Spin polarization
in the two cases exhibit di↵erent properties. AV condensate
shows co-existence with chiral condensate while it is zero in chi-
rally symmetric phase. Tensor condensate on the other hand
is zero in symmetry borken phase and acquires finite value in
symmetry restored phase.

In the present work we have considered tensor condensate
to study spin polarization in a 2+1 flavor NJL model with de-
terminant interaction and finite current quark masses. By in-
cluding finite current quark masses we can study the e↵ect of
spin condensate on the quark masses, specifically the mass of
strange quark which is large in NJL type models even after chi-
ral restoration for u and d quarks. This is also relevant in the
case where charge neutrality is imposed as strange quarks also
contribute to maintaining charge neutrality. Three flavor case
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is also interesting because one has to consider two di↵erent spin
condensates corresponding to two diagonal generators SU(3)

f

.

1.4 Organization of thesis

This thesis is organized as follows. In Chapter 1 we have given
introduction to Standard Model of particle physics and Quan-
tum Chromodynamics. Important features of Quantum Chro-
modynamics have been discussed along with the phase diagram
of quantum chromodynamics. Understanding the phase diagram
also motivates the study of properties of strongly interacting
matter which forms the work done towards completion of this
thesis.

In Chapter 2 we discuss the phenomenological models and
frameworks used in studying the properties of hot and dense
matter. We discuss two and three flavor Nambu-Jona Lasinio
model which is used in study of color superconductivity and fer-
romagnetism in quark matter at high densities. Thereafter we
discuss Polyakov loop extended quark meson model which we
have taken to calculate transport properties of matter at high
temperatures. We also discuss the derivation of transport coef-
ficents using Boltzmann equation in Relaxation Time Approxi-
mation. Solution of Dirac equation in magnetic field is derived
which is important for studying the phenomenon of color super-
conductivity in background magnetic field.

After dicussing the theoretical framework we discuss in detail
the calculation of transport coe�cients of hot and dense matter
in Chapter 3. After deriving the thermodynamics of Polyakov
loop extended quark meson model we use the results to calculate
scattering rates and transport coe�cients, namely shear viscos-
ity, bulk viscosity and thermal conductivity, of quark matter.
We present the results and discuss the implications.

In Chapter 4 we study the phenomenon of color supercon-
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ductivity in three flavor quark matter with determinant inter-
action in the presence of a background magnetic field. Method
of Bogoliubov transformation to study superconductivity is dis-
cussed. Quark masses and superconducting gap are derived for
varying quark chemical potential and magnetic field. Electrical
and color charge neutrality is discussed. Impositions of neutral-
ity conditions lead to gapless modes. These modes and the e↵ect
of magnetic field on color superconductivity and phase diagram
of QCD is discussed.

After studying transport coe�cients and color superconduc-
tivity we present the work on spontaneous spin polarization in
three flavor quark matter with determinant interaction in Chap-
ter 5. Study of spontanoeus spin polarization is motivated by
the need to understand origin of large magnetic fields in neu-
tron stars. The thermodynamic potential is derived at a mean
field level. Minimization of thermodynamic potential with re-
spect to quark masses and spin polarization condensates results
in gap equations which are solved self consistently. Variation of
masses and spin polarization condensates as a function of quark
chemical potential is discussed and magnetic field resulting from
such polarization is estimated which is found to be of the order
expeected in neutron stars.

Finally in Chapter 6 we conclude with the discussion of work
done in the thesis and its implications.
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Chapter 2

Phenomenological Models and
Mathematical Formalism

2.1 Introduction

After discussing the nature of strongly interacting matter and its
properties in Chapter 1, we now discuss some some theoretical
frameworks employed in the work done in this thesis. In the next
section we discuss two flavor Nambu Jona Lasinio (NJL)model
which is a phenomenological model . After discussing two NJL
model we extend the discussion to three flavor case which in-
cludes strange quark. This is relevant for study of color super-
conductivity and ferromagnetism. After discussing three flavor
NJL model we introduce Polyakov loop extended quark meson
model which combines the confining and chiral symmetry aspect
of Quantum Chromodynamics. Polyakov loop results in a sta-
tistical confinement while Quark meson model is written on the
principle of chiral symmetry and reproduces low energy hadronic
physics well. After discussing the models used in calculating the
properties of strongly interacting matter we discuss the trans-
port coe�cents which are derived using Boltzmann equation.
Finally we discuss the solution of Dirac equation in magnetic
field which s important for describing quarks in a background
magnetic field.

25



2.2 Nambu Jona Lasinio Model

The strong coupling nature of Quantum Chromodynamics makes
it di↵cult to extract useful information such as masses of bound
states like hadrons from the Lagrangian. It is possible to solve
QCD on a computer but it is a computationally intensive task
and has limitations at finite density. Some progress can be
made by making use of taylor expansion in chemical potential.
However results are limited to small chemical potential[42, 43,
44, 45]. Therefore one seeks simpler models of QCD which re-
produce important properties of the full theory in certain limit
and respects symmetries obeyed by QCD lagrangian. One such
model is the Nambu Jona Lasinio model[46, 47, 48]. It was orig-
inally postulated in 1962 by Y. Nambu and G. Jona-Lasinio as a
model of nucleons with a chiral invariant four fermi interaction.
The model was successful in generating large masses for hadrons
dynamically while incorporating chiral symmetry which forbids
mass term in the lagrangian. Later after the discovery of quarks
and gluons the doublet in the model was reinterpreted with up
and down quarks. The Lagrangian for the model is :

L =  ̄(i/@ � m) + G( ̄ )2 + ( ̄i�
5

⌧ )2 (2.1)

In the above lagrangian  =
�
u d

�
T

is quark doublet. ⌧ are
pauli matrices acting in isospin space and G is a dimensionful
constant. Dynamical generation of mass is obtained by consid-
ering the Dyson equation for quark propagator which leads to
following gap equation :

M = m + 2iG

Z
d4p

(2⇡)4

TrS(p) (2.2)

Here S(p) = 1

/

p�M

is the full quark propagator with dynamical
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mass M[49]. Taking the trace in color, spin and flavor space we
get :

M = m + 8N
f

N
c

Gi

Z
d4p

(2⇡)4

M

p2 � M 2 + i✏
(2.3)

For large enough four fermi coupling G there exists a non-
trivial solution to the above gap equation. Eq.(2.3) can be
rewritten in terms of chiral condensate as:

hq̄qi = �M � m

2G
(2.4)

Since the NJL postulates a four point interaction vertex, the
theory is non-renormalizable. This implies one requires a regu-
larization cut o↵. This a parameter of the theory along with the
coupling strength and quark mass m. These are fit to reproduce
the correct low energy hadron spectrum. Another limitation of
the model is that it does not include confinement.

2.2.1 Mesons in NJL model

In order to calculate the meson masses one evaluates the correla-
tion of two currents in specific channels. Doing so leads to e↵ec-
tive propagators for mesons in Random Phase Approximation(RPA)[50].
Considering the quark-antiquark T matrix in RPA approxima-
tion one gets :

T
M

(q2) =
2G

1 � 2G⇧
M

(q2)
(2.5)

Here meson polarization function ⇧
M

(q2) is :
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⇧
M

(q2) = i

Z
d4p

(2⇡)4

Tr[O
M

S(p + q)O
M

S(p)] (2.6)

Evaluating the traces and the gap equation we get following
for scalar and pseudo-scalar channel respectively:

⇧
�

(q2) =
1

2G

✓
1 � m

M

◆
� 1

2

✓
q2 � 4M 2

◆
I(q2)⇧

⇡

a

(q2)

=
1

2G

✓
1 � m

M

◆
� 1

2
q2I(q2)

The integral I(q2) is :

I(q2) = 4N
f

N
c

i

Z
d4p

(2⇡)4

1

[(p + q)2 � M 2 + i✏][p2 � M 2 + i✏]
(2.7)

The mass of meson of extracted from the pole position of
mesonic propagator at zero three momentum q = 0 as follows :

1 � 2GRe(⇧
M

(q2 = m
M

2)) = 0 (2.8)

Quark and meson coupling is obtained by taking the deriva-
tive of polarization function at q2 = m2

M

. The expression is :

g�2

Mqq

=
d⇧

M

dq2

|
q

2
=m

2
M

(2.9)

Pion decay constant is obtained from one pion to vacuum
matrix element:
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f
⇡

qµ�
ab

= g
⇡qq

Z
d4p

(2⇡)4

Tr[�µ�
5

⌧
a

2
S(p + q)i�

5

⌧
b

S(p)] (2.10)

It can be shown that that the Goldberger-Treimann relation
is satisfied [51].

g
⇡qq

f
⇡

= M + O(m) (2.11)

Further, to leading order in ‘m’, Gell-Mann-Oakes-Renner
relation was also shown to be valid [52].

f 2

⇡

m2

⇡

= �mhq̄qi + O(m2) (2.12)

To solve the equations we need to know the value of m
0

, G and
⇤. These are obtained using the pion mass m

⇡

= 135.0MeV[53],
pion decay constant f

⇡

= 92.4MeV[54] and chiral condensate
190  � < ūu >1/3 260MeV MeV[55].

2.3 Three flavor NJL model

In the three flavor case addition of strange quark explicitly
breaks chiral symmetry. This results in hs̄si 6= hūui. Lagrangian
for the three flavor model is :

L = q̄(/@ � m̂)q + L
sym

+ L
det

L
sym

= G
8X

a=0

[(q̄�
a

q)2 + (q̄i�
5

�
a

q)2]

L
det

= �K[det
f

(q̄(1 + �
5

)q) + det
f

(q̄(1 � �
5

)q)]

(2.13)

In the above lagrangian q is the quark field with three fla-
vors, m is the mass matrix. m

s

is di↵erent from m
u

and m
d
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and breaks SU(3) flavor symmetry explicitly. The L
sym

term
is written assuming SU(3)

f

symmetry as in case of two flavor
model. Here �

a

are the Gell Mann matrices and �
0

= I. L
det

is
the t’hooft determinant term. The determinant is taken in fla-
vor space. It breaks U(1)

a

symmetry explicity. U(1)
a

symmetry
is anomalous in QCD. This term is important for getting the
masses of ⌘ and ⌘‘ splitting correct in the three flavor model. In
mean field approximation the lagrangian 2.13 can be written as :

L =  ̄(i/@ � M̂ + µ�0) � 2g(�2

u

+ �2

u

+ �2

s

) + 4K�2

u

�
s

(2.14)

Here we have neglected expectation value for pseudoscalar
condensates. M̂ = diag(M

u

, M
d

, M
s

) is the diagonal mass ma-
trix. Constituent masses for quarks are given by:

M
u

= m
u

� 4g�
u

+ 2K�
u

�
s

M
d

= m
d

� 4g�
u

+ 2K�
u

�
s

M
s

= m
s

� 4g�
s

+ 2K�2

u

(2.15)

One may note that since in the present study isospin sym-
metry between up and down quarks is not broken, �

d

=�
u

is
substituted in all expressions. t’hooft term gives extra contribu-
tion to mass gap equations which mixes the flavors apart from
usual flavor diagonal terms. Using imaginary time formalism
we calculate the thermodynamic potential for the mean field la-
grangian as:
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⌦(T, µ, �
u

, �
s

) = �N
c

X

f=u,d,s

Z
d3p

(2⇡)3

✓
E

f+

+ E
f�

◆

+ T ln

✓
1 + e��(E

f+�µ)

◆

+ T ln

✓
1 + e��(E

f++µ)

◆
+ T ln

✓
1 + e��(E

f��µ)

◆

+ T ln

✓
1 + e��(E

f�+µ)

◆�

+ 2g(�2

u

+ �2

u

+ �2

s

) � 4K�2

u

�
s

,

The dispersion relations are :

E
u± =

p
p2 + M 2

u

E
d± =

q
p2 + M 2

d

E
s± =

p
p2 + M 2

s

Minimizing the potential implies following gap equations:

@⌦

@�
u

=
@⌦

@�
d

=
@⌦

@�
s

= 0 (2.16)

Gap equations can have several roots, but the solution with
the lowest value of thermodynamic potential is taken as the sta-
ble solution. Self consistent solution of above gap equations
gives the masses as a function of chemical potential and tem-
perature.

2.3.1 Parameter for three flavor NJL model

We begin the discussion with the parameterization of the model.
The parameters to be fixed are the three current quark masses
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(m
u

, m
d

, m
s

), the scalar coupling (g), the determinant coupling
K and the three momentum cut-o↵ ⇤ to regularize divergent
integrals. There are several parameter sets available for NJL
model [49]. These fits are obtained using low energy hadronic
properties such as pion decay constant and masses of pion, kaon
and ⌘0 [56, 57, 58]. The determinant interaction is important
as it breaks U(1)

A

symmetry and gives correct ⌘ mass. One
may note that there is discrepancy in determination of the de-
terminant coupling K. For example in Ref. [56] the value of the
coupling di↵ers by as much as 30 percent compared to value
used in present work. This discrepancy arises due to di↵erence
in treatment of ⌘0 mesons with a high mass [49]. In fact, this
leads to a nonphysical imaginary part for the corresponding po-
larization diagram in the ⌘0 meson channel. This is unavoidable
because NJL is not confining and is unrealistic in this context.
Within the above mentioned limitations of the model and the
uncertainty in the value of the determinant coupling, we proceed
with the present parameter set as given in Table (5.1) [49].

Parameters and cou-
plings

Value

Three momentum cuto↵ (⇤) ⇤ = 602.3 ⇥ 10�3

(GeV)
u quark mass (m

u

) m
u

= 5.5 ⇥ 10�3

(GeV)
d quark mass (m

d

) m
d

= 5.5⇥10�3 (GeV)
s quark mass (m

s

) m
s

= 140.7 ⇥ 10�3

(GeV)
Scalar coupling (g) g = 1.835/⇤2

Determinant interaction
(K)

K = 12.36/⇤5

Table 2.1: Parameter set considered in this work for 2+1 NJL model apart
from the tensor coupling G

T

.

In Fig. ?? we have plotted masses as a function of quark
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as a func-
tion of quark chemcial poten-
tial at zero temperature.

chemical potential and temperature. At zero chemical potential
and temperature the mass of u and d quarks is 367.6 MeV. As
the temperature is increased at zero quark chemical potential the
masses of quarks decrease. The decrease is maximum around
T=180 MeV. However the transition from high to low quark
masses is gradual which suggests a crossover. At temperatures
higher than the chiral transition temperature u and d masses
are small and asymptotically reach their current mass. The
strange mass is large even beyond the transition temperature,
bing about 350 MeV at T=300 MeV.

For vanishing temperatures the quark masses remain con-
stant upto a critical quark chemical potential µ

c

= µ
q

= 360
MeV. Masses of up and down quarks in this phase is 367.6 MeV.
Strange quark mass is about 549.4 MeV. At µ

q

= µ
c

there is a
sharp drop in quark masses suggesting a first order phase tran-
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sition. Up and down quark masses decrease from 367.6 MeV
to about 55 MeV while strange mass decreases from 549.4 MeV
to 464.5 MeV. One may note here that the strange quark mass
decreases as a result of determinant coupling to Up and down
quark masses. Such drop in strange quark mass at µ

q

= µ
c

is
not observed without determinant coupling.

2.4 Polyakov loop extended Quark Meson Model

2.4.1 Polyakov loop

The Polyakov loop is a Wilson loop in temporal direction. It is
defined as :

P(x) = Pexp(i

Z
�

0

d⌧A
0

(x, ⌧)) (2.17)

Here P is path ordering and A
0

(x, ⌧) is time component of
gauge field. Color trace of P(x) in the fundamental represen-
tation is creation operator of a quark at position x. In the
Polyakov gauge the temporal component of the gauge field is
time independent, i.e. A

0

(x, ⌧) = Ac

0

(x). Thus the Polyakov
loop operator simplifies to :

P(x) = exp(i�Ac

0

(x)) (2.18)

Here Ac

0

(x) = A(3)

0

(x)⌧
3

+ A(8)

0

(x)⌧
8

. Above relation can be
restated as:

Ac

0

(x) = �i(@
�

P(x))P†(x) (2.19)

Polyakov loop variable is the thermal expectation value of
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the Polyakov loop operator. It is defined as :

�(x) =
1

N
c

< tr
c

P(x) >
�

, �̄(x) =
1

N
c

< tr
c

P†(x) >
�

(2.20)

where the trace is taken in the fundamental representation.
In the infinite mass limit the Polyakov loop variable acts as
an order parameter for confinement-deconfinement transition.
In the confined phase the free energy of system is infinite and
Polyakov loop variable vanishes. In the deconfined phase free
energy is zero and Polyakov loop has a finite value. This forms
the polyakov criterion for confinement in pure gauge theory. Un-
der a center symmetry transformation, polyakov loop variable
transforms as :

� ! z�, z 2 Z
N

c

(2.21)

Thus the confined phase is center symmetric while in de-
confined phase center symmetry is broken. In the presence of
dynamical quarks the free energy doesn’t diverge anymore and
hence the order parameter is always finite. Therefore in the pres-
ence of dynamical quarks polyakov loop is no longer an order
parameter for confinement-deconfinement transition. The mean
values of the Polyakov loop variables are determined by minima
of the e↵ective Polyakov loop potential obtained for pure glue
theory in lattice QCD. In pure Yang mills theory one can write
the potential as :

U(�, �̄)

T 4

=
�b

2

4
(|�|2 + |�̄|2) � b

3

6
(�3 + �̄3) +

b
4

16
(|�|2 + |�̄|2)2

(2.22)
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By fitting thermodynamic potential to lattice results for pure
yang mills thermodynamics, we get b

3

= 0.75, b
4

= 7.5 and
temperature dependent b

2

as :

b
2

(T ) = a
0

+ a
1

✓
T

0

T

◆
+ a

2

✓
T

0

T

◆
2

+ a
3

✓
T

0

T

◆
3

(2.23)

Here a
0

= 6.75, a
1

= �1.95, a
2

= 2.625 and a
3

= �7.44.
With this parameterization, the critical temperature is T

0

=
270MeV .

Quark meson model couples quark to hadronic degrees of
freedom such as pions and sigma mesons. However the color
symmetry group SU(3)

c

which is gauged in QCD is now a global
symmetry and thus there are no gluons. Therefore we do not
have confinement in the model. Since the model lacks confine-
ment, contribution of quark degrees of freedom to quantities like
EoS are non-zero at low temperatures which is unrealistic. How-
ever since the mass of quarks is much greater than that of pion,
low temperature dynamics are dominated by mesons and results
of chiral perturbation theory are reproduced. Furthermore the
model shows chiral phase transition at realistic temperatures.
By combining the polyakov loop and quark meson model one
hopes to combine the confining properties of QCD with the chi-
ral dynamics of quark meson model to achieve a more realistic
EoS. The lagrangian for two flavor Polyakov extended quark me-
son model is given as:

L = q̄(i /D�g(�+i�
5

⌧ .⇡))q+
1

2
(@

µ

�)2+
1

2
(@

µ

⇡)2�U(�,⇡)�U(�, �̄)

(2.24)
The gauge covariant derivative reads:

/D(�) = �
µ

@
µ

� i�
0

A
0

(�), A
µ

= �
µ0

A
0

(2.25)
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The potential for mesons U(�,⇡) is defined as:

U(�,⇡) =
�

4
(�2 + ⇡

2 � v2)2 � c� (2.26)

Here the term linear in sigma is responsible for explicit chiral
symmetry breaking and giving finite mass to pions. Without this
term the Lagrangian is exactly invariant under SU(2)

L

⇥SU(2)
R

transformation.

2.4.2 Free energy in Quark meson model

The free energy of the quark meson model is :

⌦ = U(�, �̄) + U(�) + ⌦
q̄q

(�, �̄, �) (2.27)

Mesonic potential is as given in Eq. 2.26. The contribution
of quarks to the thermodynamic potential is:

⌦
q̄q

= �2N
f

T

Z
d3p

(2⇡)3

tr
c

[ln(1 + Pe�(E

p

�µ)/T ) + ln(1 + P†e�(E

p

+µ)/T )]

(2.28)
The single quasiparticle energy is given as:

E
p

=
q

p

2 + m2

q

(2.29)

After carrying out the color trace we get:

⌦
q̄q

= � 2N
f

T

Z
d3p

(2⇡)3

(ln[1 + 3(�+ �̄e�(E

p

�µ)/T )e�(E

p

�µ)/T + e�3(E

p

�µ)/T ]

+ ln[1 + 3(�̄+ �e�(E

p

+µ)/T )e�(E

p

+µ)/T + e�3(E

p

+µ)/T ])
(2.30)
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A cuto↵ ⇤ is not required since PQM model is renormalizable.
For a given temperature T and chemical potential µ the value of
� and Polyakov loop variables � and �̄ are found by minimizing
the thermodynamic free energy. Thus we get the gap equations :

@⌦

@�
=
@⌦

@�
=
@⌦

@�̄
= 0 (2.31)

The � and ⇡ masses are determined by the curvature of ⌦ at
the global minimum

M 2

�

=
@2⌦

@�2

, M 2

⇡

i

=
@2⌦

@⇡2

i

. (2.32)

These equations lead to the masses for the � and pions given as

M 2

�

= m2

⇡

+ �(3�2 � f 2

⇡

) + g2

�

@⇢
s

@�
(2.33)

M 2

⇡

= m2

⇡

+ �(�2 � f 2

⇡

) + g2

�

@⇢
ps

@⇡
. (2.34)

Explicitly,

@⇢
s

@�
=

6

⇡2

Z
dpp2


g

�

p2

E(p)3

(f�(p) + f
+

(p)) +
M

E(p)

✓
@f�
@�

+
@f

+

@�

◆�

(2.35)
The derivatives of the distribution functions with respect to to
the scalar field � are given as

@f�(p)

@�
=
�g2

�

�

E(p)


3f�

2 � 3e�3�!� + 4�̄e�2�!� + �e��!�

1 + 3�e��!� + 3�̄e�2�!� + e�3�!�

�

(2.36)
and,

@f
+

@�
=
�g2

�

�

E(p)


3f

+

2 � 3e�3�!+ + 4�e�2�!+ + �̄e��!+

1 + 3�̄e��!+ + 3�e�2�!+ + e�3�!+

�

(2.37)
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Similarly,

@⇢
ps

@⇡
=

6

⇡2

Z
dp

p2

E(p)
[f�(p) + f

+

(p)] . (2.38)

2.4.3 Parameters of PQM model

There are four parameters in the PQM model g, �, v and c. They
are obtained using spontaneous breakng of chiral symmetry, con-
stituent quark mass in vacuum and PCAC relations. The ex-
pectation value < � >= f

⇡

, where f
⇡

is the pion decay constant.
The expectation value < ⇡ > of psuedoscalar fields is set to zero.
Yukawa coupling g is fixed by vacuum quark mass as g = m

q

/f
⇡

.
Partial conserved axial current gives c = m2

⇡

f
⇡

. Quartic coupling
� is fixed by sigma mass as � = (m2

�

� m2

⇡

)/(2f 2

⇡

). Parameter
v is fixed by minima of the mesonic potential as v2 =< � >2

�c/(� < � >). The values of the masses and decay constant are
m

⇡

= 138MeV , m
�

= 600MeV , f
⇡

= 93MeV , m
q

= 300MeV ,
c = 1.77 ⇥ 106MeV 3, v = 87.6MeV , � = 19.7 and g = 3.2. T

0

is taken to be 192 MeV.

2.4.4 Phase structure of Polyakov quark meson model

In Fig. 2.4.4 we have plotted the variation of the chiral conden-
sate and Polyakov loop variable as a function of temperature for
µ

q

= 0. The chiral condensate has been normalized to 1. Since
the baryon chemical potential is zero the polyakov loop variable
and conjugate polyakov loop variable are equal. As temperature
increases the value of chiral condensate remains nearly constant
till about 150 MeV. From this point onwards the condensate
starts decreasing and around 170 MeV it decreases rapidly. As
temperature is further increased it decreases slowly but never
vanishes. The Polyakov loop variable on the other hand in-
creases with temperature. For small values of temperature the
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Figure 2.3: Variation of Polyakoc loop variable � and � as a function of
temperature at zero quark chemical potential.

polyakov loop variable is nearly zero. At high temperatures it
reaches unity. One may note that polyakov loop variable exceeds
unity in high temperature limit.

In Fig. 2.4.4 we have plotted the constituent quark mass and
meson masses as a function of temperature for vanishing quark
chemical potential. In chiral symmetry broken phase the pion
mass, being the mass of goldstone mode, is approximately con-
stant and varies only weakly with temperature. On the other
hand mass of �, which is about twice the constituent mass of
quark, drops significantly near the transition temperature. Be-
yond the chiral transition temperature, since the chiral symme-
try is restored, the masses of � and ⇡ mesons become equal as
they are chiral partners.

In Fig. 2.4.4 we have shown the trace anomaly as a function
of temperature. From the plot we see that conformal symmetry
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is maximally broken near the transition temperature. The peak
is found to increase with chemical potential. This is relevant for
the computation of bulk viscosity.
Next in order to study the critical behavior and susceptibilities,
one has to take higher derivatives of the thermodynamic poten-
tial with respect to order parameters. First order derivatives
vanish to get solutions corresponding to minima of thermody-
namic potential. Numerical di↵erentiation is less accurate for
higher order derivatives. We adopt a semi-analytic approach
here. Numerics are used only for calculating final expressions.[?].
For example, to calculate the derivative of the order parameter
X, (X = �,�, �̄) with respect to temperature is given by the
equation

@

@T

✓
@⌦

@X

◆
+
@

@�

✓
@⌦

@X

◆
d�

dT
+
@

@�

✓
@⌦

@X

◆
d�

dT
+
@

@�̄

✓
@⌦

@X

◆
d�̄

dT
= 0.

(2.39)
Thus we have a matrix equation of the type A · Y = B, where

A is the coe�cient matrix of the variables Y =
⇣

d�

dT

, d�

dT

, d

¯

�

dT

⌘
T

,

and B is the matrix of derivatives of the thermodynamic po-
tential involving explicit dependence on temperature, i.e., B =⇣
� @

@T

(�@⌦

@�

, �@⌦

@�

, �@⌦

@

¯

�

)T
⌘
.These matrix equations can be solved

using Cramers rule. The coe�cient matrix A is given by

A =

2

4
⌦

��

⌦
��

⌦
�

¯

�

⌦
��

⌦
��

⌦
�

¯

�

⌦
¯

��

⌦
¯

��

⌦
¯

�

¯

�

3

5 (2.40)

with, ⌦
ab

= @

2
⌦

@a@b

where a, b stand for �,� and �̄. Similarly,
to calculate the derivatives with respect to chemical potential,
the coe�cient matrix A remains the same while the matrix B
will involve derivatives of the thermodynamic potential involving
explicit dependence on the chemical potential.
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Solving Eq. (2.39) this way, we have plotted the deriva-
tives of the order parameters in Fig. 5.5. The critical temper-
ature is defined by the position of the peaks of these deriva-
tives of the order parameters. At zero chemical potential this
occurs at T

C

' 176 MeV. Let us note that at T
C

, the quark
mass is m

q

= g
�

� = 134MeV, while the Polyakov loop vari-
able � ⇠= 0.5. Thus at the critical temperature the e↵ect of
interaction is significant. As chemical potential for the quarks
increase the critical temperature decreases. With finite chemical
potential the peaks also become sharper and at higher chemical
potential the transition becomes a first order one. The critical
point within this model occurs at (T

c

, µ
c

) = (155, 163) MeV.

The other thermodynamic quantity that enters into the trans-
port coe�cient calculation is the velocity of sound. The same
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at constant density is defined as

c2

s

=

✓
�@P
@✏

◆

n

=
s�

µµ

� ⇢�
µT

T (�
TT

�
µµ

� �2

µT

)
(2.41)

where, P ,the pressure, is the negative of the thermodynamic
potential given in Eq. (4.59). Further, s = �@⌦

@T

is the entropy

density and the susceptibilities are defined as �
xy

= � @

2
⌦

@x@y

. The
velocity of sound shows a minimum near the crossover temper-
ature. Within the model, at low temperature when the con-
stituent quarks start contributing to the pressure, their contri-
bution to the energy density is significant compared to their
contribution to the pressure leading to decreasing behavior of
the velocity of sound until the crossover temperature, beyond
which it increases as the quarks become light and approach the
massless limit of c2

s

= 1

3

. Such a dip in the velocity of sound is
also observed in lattice simulation. As we shall observe later,
this behavior will have important consequences for the behavior
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of bulk viscosity as a function of temperature. We might men-
tion here that such a dip for the sound velocity was not observed
for two-flavor NJL [59]. For the linear sigma model calculations
such a dip was observed only for a large sigma meson mass [15].

2.5 Boltzmann equation

We follow a kinetic theory approach to study the transport co-
e�cients of hot and dense matter[60, 15, 8, 9, 61, 62]. Each
particle of given species is described by a phase space density
distribution function nearly in equilibrium. Then the distribu-
tion function can be expanded as :

f(x,p, t) = f 0(x,p, t) + f 1(x,p, t) (2.42)

Here f 0(x,p, t) is the local equilibrium distribution function
given as follows :

f 0(x,p, t) =
1

exp(�(x)(u
⌫

(x)p⌫ ⌥ µ(x))) + 1
(2.43)

with u
µ

= �
µ

(1,u) being the four velocity, �
u

=
p

1 � |u|2 is

th elorentz factor, µ is the chemical potential and E=
p

p

2 + M 2

is the dispersion relation with medium dependent mass M . The
Boltzmann equation for non-equilibrium distribution is :

@f
a

@t
+ v

a

.rf
a

� rE
a

.r
p

f
a

= �Ca[f ] (2.44)

In the above equation index ‘a’ refers to a particular species
of particle. Mass M being medium dependent can be di↵eren-
tiated with respect to spatial coordinates. Thus we can rewrite
the above equation as :
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pµ

E
a

@
µ

fa � M

Ea

@M

@xi

@fa

@pi

= �Ca[f ] (2.45)

In the above equation spatial and momentum gradients are as-
sumed to be small. Also in this work the collision integral Ca[f ]
on the right hand side contains only 2 !2 scatterings only. In
relaxation time approximation(RTA) the collision integral for
species ‘a’ contains non-equilibrium distribution only for species
‘a’ and equilibrium distribution for all other species. One may
note that collision term Ca[f

0

] for equilibrium distribution f
0

is
zero by detailed balance. Then the collision term can be written
as:

C[f ] = �f 1

a

/⌧
a

(2.46)

⌧
a

is the relaxation time, or the inverse of scattering rate of
species ‘a’. It depends on energy of particle ‘a’.

In order to derive transport coe�cients within RTA approxi-
mation we consider the change in energy momentum tensor due
to deviation from equilibrium of distribution functions. We con-
sider energy momentum tensor T µ⌫ and quark four current Jµ

as :

T µ⌫ = �pgµ⌫ + wuµu⌫ +�T µ⌫

J
µ

= nu
µ

+�J
µ

(2.47)

p is the pressure and is a function of temperature and pres-
sure, ✏ is the energy density and w = ✏ + p is enthalpy. u

µ

is
the four velocity of the fluid. �T µ⌫ and �J

µ

are the dissipative
parts defined in terms of viscosity and conductivity as follows:
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�T µ⌫ = ⌘

✓
Dµu⌫ + D⌫uµ +

2

3
�µ⌫@

↵

u↵

◆
� ⇣@

↵

u↵,

�J
µ

= �

✓
nT

w

◆
2

D
µ

✓
µ

T

◆ (2.48)

Here ⌘, ⇣ and � are the coe�cients of shear viscosity, bulk
viscosity and thermal conductivity respectively. D

µ

= @
µ

�
u

µ

u↵@
↵

is deriviative normal to uµ. One may note that in the
fluid rest frame D

0

=0 an D
i

= @
i

.
In terms of distribution functions the energy momentum ten-

sor and quark current can be written as:

T µ⌫ =
X

a

Z
d�a

pµp⌫

E
a

f
a

+ gµ⌫V (2.49)

J
µ

=

Z X

a

t
a

Z
d�

a

p
µ

E
a

f
a

(2.50)

d�
a

= g
a

d

3
p

(2⇡)

3 is the phase space measure and g
a

is degener-

acy for species ‘a’. pµ = (E
a

,p) and E
a

=
p
p

2 + m2. Second
term in Eq. 2.49 is the “vacuum” energy density contribution
giving a medium dependent mass. ta = ±1 for particles and anti-
particles. The distribution function here contains both the equi-
librium and non-equilibrium part. Using the non-equilibrium
part we can calculate the deviation in spatial part of energy
momentum tensor as :

�T ij =
X

a

Z
d�a

pipj

E
a

✓
�f

a

� f 0

a

�E
a

E
a

◆
� �ij�V (2.51)

47



Since the mass is medium dependent, its variation is also
taken into account. The variation in distribution function is
given as :

�f
a

= f
a

(E
a

, T, µ) � f 0

a

(E0

a

, T 0, µ0) = �f̃
a

� �E
a

T
(f 0

a

(1 � f 0

a

))

(2.52)

Here the superscript 0 denotes equilibrium values. It is only
the �f̃

a

which determines the transport coe�cients.

Deviation in vacuum energy is obtained using gap equation
as :

�V =
X

a

Z
d�

a

M

E
a

f
a

�M (2.53)

Deviation in energy momentum tensor can now be written as :

�T ij =
X

a

Z
d�

a

pipj

Ea

�f̃�
X

a

Z
d�

a

M

E
a

fa

✓
1+

p2(1 � f
a

)

3E
a

T
+

p

2

3E2

a

◆
�M

(2.54)

Here we have made the substituted pipj ⇠ 1

3

p

2 and �E
a

=
(M/E

a

)�M . Second term in the above equation vanishes. The
result is :

�T ij =
X

a

Z
d�

a

pipj

E
a

�f̃ (2.55)

Similarly for quark four current we have
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�J i =
X

a

t
a

Z
d�a

p

i

E
a

�f̃ (2.56)

In order to continue with the calculation we need to determine
�f̃a. This is achieved by using Boltzmann equation. The spatial
and momentum space gradients are assumed to be small. Thus
LHS of Eq. 2.45 is small due to assumption of small gradients.
Therefore the non-equilibrium distributions f

a

can be approxi-
mated by equilibrium distributions f 0

a

on the LHS of Eq. 2.45.
We choose the local rest frame u

µ

= (1, 0, 0, 0) in which velocity
gradients are zero. The derivative of f 0

a

is given as :

@
µ

f 0

a

= �f 0

a

(1 � f 0

a

)


� 1

T 2

(E
a

�µ
a

) +
1

T
@

µ

(⇡
⌫

u⌫ �µ↵)

�
(2.57)

E
a

also depends on the spatial position through dependence
of medium dependent mass M. Then the first term of Eq. 2.45
gives :

pµ

Ea

@
µ

f 0

a

=
f 0

a

(1 � f 0

a

)

Ea


Ea

T 2

pµ@
µ

T+pµ@
µ

✓
µa

T

◆
� 1

T
(pµ@

µ

Ea+pµp⌫@
µ

u
⌫

)

�

(2.58)

Second term of Eq. 2.45 gives :

@f 0

a

@pi

= �f 0

a

(1 � f 0

a

)
p

i

E
a

T
(2.59)

In the local rest frame @
⌫

u0 = 0. Combining Eqs. 2.58 and
2.59 we get for the LHS of Eq. 2.45 :
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(2.60)

Using energy momentum conservation and thermodynamic
relations we can write :

df 0

a

dt
=

f 0

a

(1 � f 0

a

)

T
qa(�, µ) = ��f̃a

⌧
a

(2.61)
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2

3Ea

@
k
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�
(2.62)

From above equation one can see that the Boltzmann equa-
tion relates the non-equilibrium distribution to variation in fluid
velocity, temperature and chemical potential. Using energy mo-
mentum conservation and baryon number conservation one can
relate the temporal derivatives of temperature and chemical po-
tential with velocity gradients and speed of sound.

@
0

T = �v2

n

Tr.u

@
0

µ = �v2

s

µr.u
(2.63)

Here v
n

and v
s

are speed of sound at constant number density
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and entropy respectively.
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(2.64)

Using thermodynamic relation the above equations can be
rewritten in following useful form as :
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µT
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(2.65)

Variation in the distribution function can now be written as
:

�f̃
a

⌧
a

= �f 0

a

(1 � f 0

a

)

T
qa(T, µ) (2.66)
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Q

a

(T, µ,p2) is given as :
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Substituting Eq. 2.66 in Eq. 2.55 we get :

�T ij =
X

a

Z
d�

pi

a

pj

a

TE
a

⌧
a

f 0

a

(1 � f 0

a

)q
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(p, �, µ) (2.69)

Here the term in Eq. 2.67 proportional to gradient of µ

T

van-
ishes by symmetry. Comparing with the disspative part of �T µ⌫

in Eq. 2.55 we get :
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(2.70)

Similarly substituting �f̃ in Eq. 2.56. we get :

�J
i

=
X

a

Z
d�

a

pi⌧ af 0

a

(1 � f 0

a

)qa(t, µ) (2.71)

Here the term proportional to µ

T

. Comparing with second
equation in Eq. 2.48. the thermal conductivity is :
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) (2.72)

Qa solutions in Eq. 2.68 should satisfy Landau Lifshitz con-
ditions u

µ

�Jµ = 0 and u
µ

u
⌫

T µ⌫ = 0. The conditions in the
local rest frame imply :
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�T 00 =
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�f
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(2.73)

Using Eq. 2.52, Landau Lifshitz conditions in relaxation time
approximation can be written as :

�J
0

= h⌧ aQa(T, µ)taga(T, µ)i = 0

�T 00 = h⌧ aQa(T, µ)Eaga(T, µ)i = 0
(2.74)
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✓
@Ea

@T

◆

�

=

✓
@Ea

@T

◆

µ

+

✓
@Ea

@µ

◆

T

✓
@µ

@T

◆

�✓
@µ

@T

◆

�

=
1

T


µ +

1

v2

n

✓
@p

@n

◆

✏

� (2.75)

The notation h�
a

(p)i stands for [62] :

h�
a

(p)i =

Z
d�[�

a

(p)f 0
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(1 � f 0

a

)] (2.76)

Landau-Lifshitz condition can also be satisfied by use of la-
grange multipliers as follows [63, 62] :

⌧
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Q
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Substituting Eq. 2.77 in Eq. 2.74 we get :
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Making the replacement Eq. 2.77 in Eq. 2.70 and using above
two relations one gets bulk viscosity as :
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Using the constraint �T 0i = 0 in rest frame, one gets follow-
ing expression for thermal conductivity as :
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2.6 Quark Matter in magnetic field

In order to solve Dirac equation in magnetic field we assume a
magnetic field in z-direction B = B

0

ẑ. We choose the gauge
A0

B

= Ay

B

= Az

B

= 0, Ax

B

= �yB
0

. Dirac equation for a particle
of mass m and charge eQ in presence of magnetic field is :
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H
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= ↵.⇧ + �m
(2.81)

Here ⇧ = �ir � eA is the conjugate momentum. For sta-
tionary states we can write :

 = e�iEt

✓
�
�

◆
(2.82)

In this two component notation one can write equation 2.81
as :

(E � m)� = �.(�ir � eQA)�(E + m)� = �.(�ir � eQA)�
(2.83)

Solving for � we get :
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
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3

)

�
� (2.84)

Taking the solution to be of the form � = eip.X

/

yf(y). There
are in general two independent solutions for f(y) which can be
taken to be eigenstates of �

z

as follows :

f
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The di↵erential equation satisfied by F
s

, where s is defined
as eigenvalue �

z

F
s

= sF
s

, is :

d2F
s

dy2

� (eQBy + p
x

)2F
s

+ (E2 �m2 � p2

z

+ eQBs)F
s

= 0 (2.86)

Transforming to dimensionless variable ⇣ =
p

e|Q|B(y +
p

x

eQB

), the above di↵erential equation can be simplified as :


d2

d⇣2

� ⇣2 + a
s

�
F

s

= 0 (2.87)

Here a
s

= E

2�m

2�p

2
z

+eQBs

e|Q|B . The form of the di↵erential equa-
tion is known as Hermite’s equation. The solutions exist for
a

s

= 2⌫ + 1 for ⌫ = 0, 1, 2, .... Energy eigenvalues are :

E2 = m2 + p2

z

+ (2⌫ + 1)e|Q|B � eQBs (2.88)
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N
⌫
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p
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(2.89)

I
⌫

satisfy the following completeness relations :

X

⌫

I
⌫

(⇣)I
⌫

(⇣⇤) =
p

e|Q|B�(⇣ � ⇣⇤) = �(y � y⇤) (2.90)

For Q = �1, energy eigenvalues are :

E2

n

= m2 + p2

z

+ 2neB (2.91)
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Except for n = 0, all other landau levels are two fold de-
generate, for s = 1, ⌫ = n � 1 and s = �1, thus ⌫ = n. For
n = 0 and Q = �1, ⌫ = �1

2

(1+ s). As ⌫ is non-negative, s = -1.
Thus n = 0 is not degenerate. The positive energy solutions are :
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+
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(⇣)
0

◆

f (n)
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I
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◆ (2.92)

For n = 0, I�1

(y) = 0. We have determined the upper com-
ponents of spinor Eq. 2.82. Lower two components can be
obtained by solving Eq. 2.83. Positive energy solutions of Dirac
equation are e�ip.X

/
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Positron or negative energy solutions are :
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Chapter 3

Transport Coe�cients of Hot
and Dense Matter

3.1 Introduction

Having discussed the Polyakov loop extended quark meson model and kinetic
theory formalism for transport coe�cients in Chapter 2, we now discuss in
detail the calculation of the transport coe�cients. Transport coe�cients of
matter under extreme conditions of temperature, density or external fields
are interesting for several reasons. In the context of relativistic heavy ion col-
lisions, these properties enter as dissipative coe�cients in the hydrodynamic
evolution of the quark gluon plasma that is produced following the collision
[64, 65, 66, 67, 68]. Indeed, an extremely low value of the shear viscosity-to-
entropy ratio (⌘/s) is needed to successfully describe the collective dynamics
of the quark gluon matter at high temperature and vanishing chemical poten-
tial to explain the elliptic flow data [69, 70, 71]. At intermediate densities,
near the chiral phase transition, which is being probed at the Facility for
anti-proton and Ion Research(FAIR) program at Geselleschaft fuer Schwe-
rionenforschung(GSI) and the Nuclotron-based Ion Collider fAcility(NICA)
program at Joint Institute for Nuclear Research(JINR) motivates us to un-
derstand the behavior of transport coe�cients at finite chemical potential
and temperature. motivates us to understand the behavior of transport co-
e�cients at finite chemical potential and temperature. Further, in the low
temperature and high-density regime, the matter could be in one of the pos-
sible types of color superconducting phases of which transport properties also
need to be understood [72, 73]. The cooling of neutron stars at short time
scales constrains the thermal conductivity [74] while the cooling through
neutrino emission on a much larger time scales constrains the phase of the
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matter in the interior of the compact star [75, 76]. Further, the observable
regarding the viscosity of the such matter is the r-mode instability. In the
absence of viscous damping, the fluid in the rotating star becomes unstable to
a mode that is coupled to gravity and radiates away the angular momentum
of the star [77, 78, 79]. Apart from the wide variety of applications of the
transport coe�cients of strongly interacting matter, their temperature and
chemical potential dependence may also be indicative of a phase transition.

Transport coe�cients for QCD matter in principle can be calculated us-
ing Kubo formulation [80]. However, QCD is strongly interacting for both
at energies accessible in heavy ion collision experiments as well as for the
densities expected to be there in the core of the neutron stars making the
perturbative estimations unreliable. Calculations using lattice QCD simula-
tions at finite chemical potential is also challenging and is limited only to the
equilibrium thermodynamic properties at small chemical potentials.

The understanding of the elliptic flow in relativistic heavy ion collisions
using hydrodynamics with a low (⌘/s) and its connection to the conjectured
lower bound (⌘/s > 1/4⇡) using ADS/CFT correspondence [11] stimulated
extensive investigation of this ratio for QCD matter. These have been stud-
ied using perturbative QCD [8, 9], transport simulations of the Boltzmann
equation [81, 82], relaxation time approximation for solving the Boltzmann
equations [1, 50, 59, 83, 62] and lattice simulation of QCD [14]. Most of
these calculations have been performed at vanishing baryon density. The gen-
eral variation of this ratio with temperature in most of these studies shows a
minimum at the transition temperature. The numerical value of ⌘ at the min-
imum, however, di↵ers by orders of magnitude. For example, Ref. [84, 85],
Refs. [86, 87, 88] have predicted ⌘ of order 0.001 GeV3, ⌘=0.002-0.003 GeV3

while Ref.[89] predicts a value of ⌘ ' 0.4 GeV3. Further, the behavior of ⌘/s
shows a monotonic decrease with temperature in the Nambu-Jona-Lasinio
(NJL) model in Ref. [90].

The bulk viscosity coe�cient ⇣ has also been estimated in various e↵ective
models as well as in lattice QCD. The rise of the bulk viscosity coe�cient
near the transition temperature has been observed in these e↵ective models
such as chiral perturbation theory [91], quasiparticle models [60], linear
sigma model [63], and the Nambu-Jona-Lasinio model [1, 59]. Large bulk
viscosity of matter produced in relativistic heavy ion collisions can give rise to
di↵erent interesting phenomenon such as cavitation where pressure vanishes
and hydrodynamic description of evolution becomes invalid [92, 93, 94, 95].
Here, again, the numerical value of the bulk viscosity coe�cients vary widely
from 10�5 GeV3 [96, 97] to 10�2 GeV3 [1].

The other transport coe�cient that is important at finite baryon density
is the coe�cient of thermal conductivity � [98, 99, 100]. The e↵ects of ther-
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mal conductivity in relativistic hydrodynamics has been discussed recently
in Refs. [101, 100]. This coe�cient has been evaluated in various e↵ective
models like the Nambu-Jona-Lasinio model using the Green-Kubo approach
[102], relaxation time approximation [59] and the instanton liquid model
[103]. The results, however, vary over a wide range of values, with � = 0.008
GeV�2 as in Ref. [86] to � ⇠ 10 GeV�2 as in Ref. [90] for a range of
temperatures (0.12 GeV <T< 0.17 GeV), which has been nicely tabulated
in Ref. [104].

We shall attempt here to estimate these transport coe�cients within an
e↵ective model of strong interaction, the Polyakov loop extended quark me-
son (PQM) model. It has become quite popular during last few years due
to its close relationship with the linear sigma model that captures the chiral
symmetry breaking aspect while being in agreement with the lattice QCD
results for thermodynamics at vanishing baryon density. The physics of con-
finement is taken care of at least partially by coupling the quark field to the
Polyakov loops so that quark excitations are suppressed below the transition
temperature. Let us note that the transport coe�cients like bulk viscosity
apart from the distribution functions also depend upon the bulk thermody-
namic quantities like velocity of sound. We wish to explore the e↵ects of
such nonperturbative properties on the transport coe�cients.

The transport coe�cients are evaluated within the relaxation time ap-
proximation of Boltzmann equation. The relaxation time is calculated by
evaluating the scattering rates of the particles in the model, namely, the
quarks and pion and sigma mesons, with their respective medium-dependent
masses. The scattering processes considered here are meson scatterings as
considered in Ref. [15], quark scattering through meson exchanges as in
Refs. [1, 59, 90], and quark-meson scatterings. As we shall see in the fol-
lowing, each of these processes brings out distinct features for the transport
coe�cients. We would like to mention here that these coe�cients have also
been estimated using Kubo formulation through one-loop self-energies for
quarks and mesons in a separate work [105].

We organize this chapter as follows. In the following section, we discuss
the two-flavor PQM model thermodynamics. The reason is that the ex-
pressions for transport coe�cients involve meson masses which are medium
dependent. Further, some transport coe�cients like the bulk viscosity in-
volves bulk thermodynamical properties such as energy density, pressure and
the velocity of sound. As the order parameters for chiral and confinement-
deconfinement transitions are coupled, this leads to nontrivial relations for
derivatives of the thermodynamic potential with respect to external param-
eters like chemical potential or temperature as the mean fields themselves
are also medium-dependent. Furthermore, the implicit dependence of these
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mean fields/ order parameters are calculated here analytically to avoid pos-
sible numerical errors. In Sec. 2.2.1,2.2.2 and 2.2.3 we estimate relaxation
time for di↵erent scatterings. In section 2.3.1 and 2.3.2 we present the re-
sults for relaxation time and transport coe�cients. Finally, we summarize
and draw the conclusions of the present investigation in section 2.4.

3.2 Transport coe�cients in relaxation time
approximation

We shall attempt here to estimate the transport coe�cients in the relaxation
time approximation where the particle masses are medium dependent. Such
attempts were made earlier for the �-model [15] as well as in the NJL model
to compute the shear and bulk viscosity coe�cients. Such an approach was
also made to estimate the viscosity coe�cients of pure gluon matter [61]. In
all these attempts, the expressions for the viscosity coe�cients were derived
for vanishing chemical potential. Several attempts were made to estimate
these coe�cients with finite chemical potential with di↵erent Ansatze. These
expressions were put on firmer ground by deriving the expressions when there
are mean fields and medium-dependent masses in a quasiparticle picture
[63]. The resulting expressions for the transport coe�cients were manifestly
positive definite as they should be. These expressions were derived explicitly
for the NJL model [59]. We use the same expressions here for the transport
coe�cients. The shear viscosity coe�cient is given by

⌘ =
1

15T
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Z
dp

(2⇡)3

p4
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⌧(E
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where, the sum is over all the di↵erent species contributing to the viscosity
coe�cients including the antiparticles, and, ⌧a is the energy-dependent re-
laxation time that we define in the following subsection. The coe�cient of
bulk viscosity is given by
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The thermal conductivity on the other hand is given by

� =
⇣ w
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In the above expressions, f 0
a

is the equilibrium fermion/boson distribu-
tion functions depending upon the statistics with (1 ± f 0

a

) being the Bose
enhancement/ Fermi suppression factors and t

a

= +1, 1 and 0 for the quark,
antiquark, meson respectively. Further, c2

s

=
�

@p

@✏

�
n

is the velocity of sound
at constant density and w = ✏+ p is the enthalpy density.

3.2.1 Relaxation time estimation- meson scatterings

As may be noted, the expressions for the transport coe�cients as in Eqs.
(3.1,3.2,3.3), depend not only on bulk thermodynamic properties like energy
density, pressure, velocity of sound but also on the energy-dependent relax-
ation time ⌧(E). In the following we shall first estimate the relaxation times
involving meson exchanges similar to Ref. [15].

Using the Lagrangian Eq. (2.24), we calculate the relaxation time in
PQM model by taking into account the following scattering amplitudes with
the corresponding matrix elements being given as
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The terms involving the propagators yield divergent integrals due to the
poles in s and u channel which is known in the literature [15]. To regulate
these integrals one can include a width for the mesons as evaluated in the
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next subsection (Eq. (3.20)). However, such a substitution violates crossing
symmetry. Further, these terms are generated from the three-point vertices
which are not taken into account in the mean field approximation used in
solving the gap equations and the resulting equation of state. Hence, to be
consistent with equation of state while maintaining crossing symmetry for
the scattering amplitudes, we approximate the above scattering amplitudes
by their limits when s, t and u are taken to be infinity and the scattering
amplitudes reduce to constants [15]. Thus, the scattering amplitudes essen-
tially reduce to constants. This allows us to compare our results with earlier
work of [15] and study the e↵ect of Polyakov loop and quarks within similar
approximation.

The energy-dependent interaction frequency !
a

(E
a

) for the particle specie
‘a‘ arising from a scattering process a, b ! c, d, which is also the inverse of the
energy-dependent relaxation time ⌧(E
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In the above, the summation is over all the particles except the species a
with a, b as the initial state.

The quantity W
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is dimensionless, Lorentz-invariant, and depends only
on the Mandelstam variable s and is given by
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In the above, we have included the Bose enhancement factors for the meson
scattering. The quantity W
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(s) is related to the cross section by noting that,
with t as the Mandelstam variable t = (p
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x2 + y2 + z2 � 2xy � 2yz � 2zx, is the magnitude of the 3-momentum of the
incoming particle in the c.m. frame. In the c.m. frame, using the energy
momentum-conserving delta function and integrating over the final momenta,
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where,
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In the limit of constant |M |2, Eq. (3.11) reduces to
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and, the transition frequency or the inverse relaxation time is given as
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To calculate e.g. the ⇡+ relaxation time (⌧
⇡

+), we consider the scattering
processes ⇡+ + ⇡i ! ⇡+ + ⇡i (i = +, �, 0) and, ⇡+ + � ! ⇡+ + �.

To get an order of magnitude of the average relaxation time, one can also
calculate an energy averaged mean interaction frequency for a given species
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3.2.2 Relaxation time estimation– Quark scatterings

We next consider the quark scattering within the model through the exchange
of pion and sigma meson resonances. The approach is similar to Refs. [59,
50, 90] performed within NJL model to estimate the corresponding relaxation
time for the quarks and antiquarks. The transition frequency is again given
by Eq. (3.8), with the corresponding W
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given as
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where,
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with the corresponding suppression factors appropriate for fermions. For the
quark scatterings, in the present case for two flavors we consider the following
scattering processes:

uū ! uū, ud̄ ! ud̄, uū ! dd̄,

uu ! uu, ud ! ud, ūū ! ūū,

ūd̄ ! ūd̄, dd̄ ! dd̄, dd̄ ! uū,

dū ! dū, dd ! dd, d̄d̄ ! d̄d̄,

One can use i-spin symmetry, charge conjugation symmetry and crossing
symmetry to relate the matrix element square for the above 12 processes to
get them related to one another and one has to evaluate only two independent
matrix elements to evaluate all the 12 processes. We choose these, as in Ref.
[50], to be the processes uū ! uū and ud̄ ! ud̄ and use the symmetry
conditions to calculate the rest. We note, however, that, while the matrix
elements are related, the thermal-averaged rates are not, as they involve also
the thermal distribution functions for the initial states as well as the Pauli
blocking factors for the final states. We also write down the square of the
matrix elements for these two processes explicitly [59, 50]–.
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Similarly, the same for the process ud̄ ! ud̄ is given as [50]
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The meson propagators D
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D
a

(
p

s,0) =
i

s � M2
a

� iIm⇧
M

a

(
p

s,0)
(3.19)

In the above, the masses of the mesons are given by Eqs. (2.33) and (2.34)
determined by the curvature of the thermodynamic potential. Further, in
Eq. (3.19), Im⇧(

p
s, 0) which is related to the width of the resonance as
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= 2m for sigma mesons.
With the squared matrix elements for the quark scatterings given as above

the transition frequency for the quark of a given species is
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3.2.3 Quark pion scattering and relaxation time

Next, we compute the contribution of quark meson scattering to the relax-
ation times for both mesons as well as quarks. One can argue that the
dominant contribution comes from pions as their number is large compared
to the sigma mesons both below and above T

c

. Therefore, in the following
we consider the quark-pion scattering only. The Lorentz-invariant scattering
matrix element can be written as Ū(p2)Tba

U(p1), with ŪU = 2m
q

and with
p1, p2 denoting the initial and the final quark momenta, respectively, and
q1, q2, being the momenta of the pions.

T
ba

= �
ba

1

2
(q1 + q2)

µ�
µ

(�
ab

B(+) + i✏
abc

⌧
c

B(�)) (3.22)

where,

B(+) = g2
�

✓
1

u � m2
q

� 1

s � m2
q

◆
, (3.23)

and

B(�) = �g2
�

✓
1

u � m2
q

+
1

s � m2
q

◆
. (3.24)

Averaging over the spin and isospin factors, the matrix element square
for the quark-pion scattering is given by

|M̄ |2 =
g4

�

6

�
(s � u)2 � t(t � 4m2

⇡

)
� �

3B2
+ + 2B2

�
�

(3.25)
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The corresponding transition frequency is given by

!
q⇡

(E
a

) =
1

2E
a

Z
d⇡

b

f(E
b

)W (q�⇡)
ab

. (3.26)

where,

W (q�⇡)
ab

=
1

8⇡
⇥ 1

2
p

sp0

Z
dt|M̄

q�⇡

|2(1 � f
q

)(1 + f
⇡

) (3.27)

In the above p2
0 = (s + m2

q

� m2
⇡

)2/(4s) � m2
q

. The scattering will contribute
to both the quark relaxation time as well as to the pion relaxation time using
Eq. (3.26) with appropriate modification for the initial state.

Let us note that there are poles in the u channel in the quark pion scatter-
ing term beyond the critical temperature when the pion mass become larger
than the quark mass. However, this is taken care of once we include the
imaginary part of the quark self-energy in the propagators for the quarks in
the calculation of the amplitude in Eqs. (3.23)-(3.24). The quark self-energy
due to scattering with mesons can be written as [85]

⌃(p0,p) = m⌃0 + � · p⌃3 � �0p0⌃4. (3.28)

so that the quark propagators get modified as

S(p0,p) =
1

p/ � m � ⌃ =
m(1 + ⌃0) + �0p0(1 + ⌃4) � � · p(1 + ⌃3)

p2
0(1 + ⌃4)2 � p2(1 + ⌃3)2 � m2(1 + ⌃0)2

. (3.29)

The imaginary part of the dimensionless functions ⌃
j

, (j = 0, 3, 4),i is
given as

Im⌃
j

(p0,p) =
g2

32⇡p
d

j

Z
E

max

E

min

dE
f

C
j

[f
b

(E
b

) + f�(E
f

) + f+(E
f

)]. (3.30)

In the above, E
b

= E
f

+p0, p0 =
p

p2 + m2 and f± are the distribution func-
tions for the quarks/antiquarks, f

b

is the meson distribution functions,and,
C

j

s are the weight factors given as

C0 = 1, C3 =
m2

M

� 2m2 � 2E
f

p0

2p2
, C4 = �E

f

p0
. (3.31)

The integration limits are given by

E
max,min

=
1

2m2


(m2

M

� 2m2)p0 ± |p|m
M

q
m2

M

� 4m2

�
(3.32)

Further, the degeneracy factors d3,4 are 3 for pions and 1 for sigma while d0

is -3 for pions and 1 for the sigma meson. To calculate the total relaxation
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Figure 3.1: Average relaxation time for pions (solid line) and sigma meson
(dotted line). Only meson-meson scatterings are considered here.

time for a quark of species ’a’, we compute the total interaction frequency as
!total

q

(E
a

) = !(E
a

) + !
q⇡

(E
a

). One can define an average relaxation time for
the quarks similar to Eq. (3.13) as ⌧̄ total

q

= 1
!̄

total

q

.

!̄total

q

=
1

n
q

Z
dp

(2⇡)3
f

q

(E)!total

q

(E) (3.33)

3.3 Results

3.3.1 Meson scatterings

Let us first discuss the results arising from meson scattering alone. Using
Eqs. (3.13), with constant |M |2 as discussed, we have plotted the average
relaxation times for the �-meson and ⇡ mesons in Fig. 4.5. The relaxation
times are minimum at the transition temperature. Because of larger mass of
�-mesons below the transition temperature, ⌧̄

�

is much larger as compared
to ⌧̄

⇡

. They become almost degenerate after the chiral transition as may be
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Figure 3.2: Computations show mesonic contribution calculated using only
meson-meson interactions. (a) : Shear viscosity to entropy ratio for µ =
0. Present results are shown by solid lines. The two dot dashed curves
correspond to results of linear sigma model of Ref. [15] corresponding two
di↵erent masses for sigma mesons. (b): Bulk viscosity to entropy ratio for
µ = 0. Results for current calculations are shown by solid line. The other
results correspond to Kapusta et.al. (short dashed) of linear sigma model
with (m
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=600 MeV), Kapusta et.al. (dash dot curve) for linear sigma model
with m

�

=900 MeV [15]
.
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expected from the behavior of their masses beyond the transition tempera-
ture. We may comment here that the particle with larger relaxation time
dominates the viscosities as it can transport energy and momentum to larger
distances before interacting. In Fig. 4.6 we have shown the behavior of the
specific viscosities (normalized to entropy density) as a function of temper-
ature. In Fig. 4.6(a), we have plotted the temperature dependence of the
ratio ⌘/s for µ = 0. The behavior of this ratio is essentially determined by
the behavior of the relaxation time. Similar to Fig. 4.5, ⌘/s shows a mini-
mum at the crossover temperature and the value at the minimum is about
⌘/s ⇠ 0.053 which is slightly lower than the KSS bound of 1/4⇡. We note
that we have considered here only the contributions from meson scatterings.
As we shall see later, inclusion of quark degrees of freedom increases the
ratio. We have also compared with linear sigma model calculations [15] in
which the quark as well as Polyakov loop contributions are not taken into
account. The general behavior of the present calculations is similar to earlier
calculations in the sense of having a minimum at the chiral crossover tem-
perature. However, the magnitude of the ratio at the critical temperature is
smaller compared to [15]. This is probably due to the fact that, the entropy
density in the present calculations has contributions including those of gluon
included through the Polyakov loop potential. The large entropy density, we
believe, decreases the magnitude of the ratio.

In Fig. 4.6(b) the ratio of bulk viscosity to entropy is plotted which shows
a maximum at the transition temperature. We have also plotted in the same
figure the results without quarks and Polyakov loop potential. The present
results show a distinct peak structure in the ⇣/s ratio at the crossover tem-
perature. Let us note that such a peak is expected as an e↵ect of large
conformality violation at the transition temperature as indicated in lattice
simulations [14, 106]. In Ref. [15], a peak structure is seen for a heavier
sigma meson (m

�

= 900MeV) which was interpreted as an e↵ect of stronger
self-coupling � for higher M

�

. However, in the present case, this arises with
quark and polyakov loop degrees of freedom even with a lighter M

�

= 600
MeV. The other characteristic feature of the present calculation is that, be-
yond the critical temperature the ratio ⇣/s falls at a slower rate as compared
to results of previous calculations. This has to do with the fact that veloc-
ity of sound approaches the ideal gas limit slowly as the e↵ect of Polyakov
loops on the quark distribution function remains significant beyond the crit-
ical temperature. In fact, at the transition temperature the value of the
Polyakov loop remains about half its value of the ideal limit. Apart from
this, the masses of mesons also get a↵ected by the quark distribution func-
tions significantly beyond the critical temperature. These non ideal e↵ects
lead to a slower decrease of the ratio beyond the critical temperature.
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Figure 3.3: Average relaxation time for quarks arising from quark scattering.
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3.3.2 Quark scatterings

Next, we discuss quark scattering. In Fig. 4.7 we show the behavior of av-
erage relaxation time for quark scattering. The quark scattering through
exchange of mesons is shown by the solid line in the figure. Let us recall that
the average relaxation time is inversely proportional to the transition rate
which is related to the cross section. The dominant contribution here comes
from the quark-antiquark scattering from the s channels through propaga-
tion of the resonance states, the pions and the sigma mesons. The masses
of the sigma meson decrease with temperature, becoming a minimum at the
transition temperature, leading to an enhancement of the cross section. Be-
yond this, the cross section decreases due to the increase in the masses of the
mesons. This, in turn, leads to a minimum in the relaxation time.

The average relaxation time for quarks including the quark meson scatter-
ing along with the quark scattering is shown as the dashed curve in Fig. 4.7.
This curve lies below the quark quark scattering curve as there is additional
contribution to the transition rate from the quark meson scattering. Be-
low the critical temperature, the quark meson scattering dominates over the
quark quark scattering due to the smaller mass of the pions as compared to
the massive constituent quarks. Beyond the critical temperature, one would
have expected the quark meson scattering contribution to be negligible be-
cause of the suppression due to the large meson masses. However, as was
noted earlier, beyond the critical temperature, there are poles in the scat-
tering amplitude in the u-channel for quark-pion scattering as the pion mass
becomes larger than the quark masses. This is, however, regulated by the
finite width of the quarks as calculated in Eq. (62). Nonetheless, the contri-
bution of the quark pion scattering to the total quark interaction frequency
!

q⇡

(E) is non-negligible beyond the critical temperature.
We next discuss the contribution of di↵erent scatterings to the specific

shear viscosity ⌘/s. The same is shown in Fig. 4.8(a) for vanishing chemical
potential. The contribution from the mesons to the shear viscosity is arising
from the meson scatterings only is shown by the green dashed curve while
the e↵ect of including the meson-quark scattering is shown by the maroon
dotted curve. Similarly the quark contribution to this ratio ⌘/s arising from
quark quark scattering only is shown by the red solid line while the total
contributions including the quark-pion scattering is shown by the blue dotted
line. This also demonstrates the importance of the scattering of quarks and
mesons to the total viscosity coe�cient. The total contributions from both
the quarks and mesons is shown as the black dashed curve in Fig. 4.8.

In a similar manner, various contributions to the specific bulk viscosity
(⇣/s) coe�cient are shown in Fig. 4.8(b). As may be observed, while no

72



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

100 110 120 130 140 150 160 170 180 190 200
T (MeV)

q -q scatterings
q q and q- scattering
meson meson with q- scattering
meson meson scattering
Total

⌘ s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

160 165 170 175 180 185 190 195 200
T (MeV)

⇣ s

q-q scatterings
q-q and q-⇡ scattering
meson-meson scattering
meson-meson and q- ⇡ scattering
Total

(a) (b)

Figure 3.4: Di↵erent contributions for specific viscosity coe�cients. ⌘/s
is shown in the left while ⇣/s is shown on the right. In both the figures,
contributions from the quarks with relaxation time computed using only
quark-quark scattering(red solid line) and also including quark-meson scat-
tering(blue dotted line) are shown as a function of temperature. The con-
tribution of the mesons due to meson-meson scattering (green dashed curve)
and including meson-quark scattering (maroon short dashed curve) is also
shown. The total contribution from the quarks and mesons are is shown by
the black long dashed curve. All the curves correspond to µ = 0 case.
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Figure 3.5: (a) : Shear viscosity to entropy ratio for µ = 0. Present results
are shown by solid lines. The dotted line correspond to results of NJL model
of Ref. [1] , the short dashed curve correspond to results of Marty et.al.
Ref. [90] and the long dashed curves correspond to results of Deb. et.al.
Ref. [59]. (b): The results of Bulk viscosity to entropy ratio compared with
other results in NJL models. The notation is similar to of (a).

peak structure is seen for this coe�cient from the contributions arising from
quarks scatterings only, such a structure is seen only when one includes the
quark meson scattering. The total e↵ect is shown as black dashed curve in
Fig. 4.8(b).

In Fig. 4.9, we compare the present results with earlier works on the NJL
model. As may be noted, in general, the behavior is similar regarding the
shear viscosity-to-entropy ratio. Both NJL as well as the present calcula-
tions of the PQM model show the similiar behavior of having a minimum
at the transition temperature as in Refs. [59, 1]. The results of Ref. [90],
on the other hand, show a monotonic decrease with temperature. The bulk
viscosity-to-entropy ratio, here however shows a much faster rise as the tem-
perature is lowered below the critical temperature. In fact, both the specific
viscosities rise much faster compared to NJL models below the critical tem-
perature in the PQM model considered here. The reason could be due to the
fact that the entropy density for PQM model is smaller compared to NJL
models. The Polyakov loop decreases as temperature is lowered which leads
to a suppression of quark distribution functions leading to decrease of en-
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Figure 3.6: Average relaxation time of quarks and antiquarks for µ = 100
MeV. The solid line correspond to the case of µ = 0 MeV.

tropy density at a faster rate as compared to NJL model. Moreover, within
the present approximation pions do not contribute to the thermodynamics
here. Further, for temerature larger than the critical temperature, the bulk
viscosity vanishes slowly with increase in temperature as compared to NJL
model. This is due to the fact that the Polyakov loop variable takes its
asymptotic values only at very high temperatures.

Next, we discuss about e↵ect of finite chemical potential on the transport
coe�cients. To begin with let us note that the average relaxation time ⌧̄

a

as in
Eq. (3.33) depends both on the transition rate and the density of the particles
in the initial state. To this end, let us discuss the case of T>T

c

. Here, the
quark densities are larger than those of antiquarks. Further, the dominant
contribution in this range of temperatures arises from ud̄ ! ud̄ scatterings.
As there are fewer antiquarks to scatter o↵, the average transition frequency
of quark-antiquark scattering decreases. This leads to ⌧̄

q

(µ) > ⌧̄
q

(µ = 0). On
the other hand, for the antiquarks, there are more quarks to scatter o↵ than
compared to the case of µ = 0. Hence, this leads to ⌧̄

q̄

(µ) < ⌧̄
q̄

(µ = 0). This
expected behavior is seen in Fig. 4.10. Next, let us consider the case T<T

c

.
In this case, the antiquark density is heavily suppressed due to constituent
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quark mass and the chemical potential and dominant contribution for quark
relaxation time, therefore arises from quark-quark scatterings. This leads
to ⌧̄

q

(µ) < ⌧̄
q

(µ = 0). On the other hand, for the antiquarks, though their
number density is smaller, their interaction frequency is enhanced both by
the larger amplitude for M

ud̄!ud̄

scattering and the larger number of quarks
as compared to case at µ=0. This leads to ⌧̄

q̄

(µ) < ⌧̄
q

(µ = 0) < ⌧̄
q̄

(µ = 0).
This general behavior is reflected in the average relaxation time dependence
on T in Fig. 4.10 below the critical temperature.

In Fig. 4.11, we have shown the results for the viscosities at µ = 100 MeV.
Fig. 4.11 (a) shows the variation of the specific shear viscosity (⌘/s) as a func-
tion of temperature for zero and finite chemical potential. The behavior of
shear viscosity essentially follows that of the behavior of the relaxation time.
⌘/s has a minimum at the critical temperature with ⌘/s|

min

⇠ 0.23 (µ = 0)
due to suppression of the scattering cross section at higher temperature. At
finite µ, the ratio is little higher as compared to the value at vanishing µ.
This is due to two reasons. Firstly, the relaxation time at nonzero chemical
potential is larger and, moreover, the quark density also becomes larger at fi-
nite chemical potential. At temperatures below the critical temperature and
near the critical temperature,⌘/s(µ) < ⌘/s(µ = 0) as the relaxation time
is lower. However, at lower temperatures, the meson scattering becomes
significant and ⌘/s for finite chemical potential becomes similar to that at
vanishing chemical potential as is observed in the figure.

In Fig. 4.11(b), we have plotted the bulk viscosity-to-entropy ratio for
µ = 0 MeV and µ = 100 MeV. It turns out that at finite µ the specific
bulk viscosity is smaller than the value at µ = 0 MeV. The reason for it is
the fact that the dominating contribution to the finite µ arise from the term
M2 � TM dM

dT

� µM dM

dµ

in the expression for ⇣/s in Eq. (3.2). This is due
to the sharp variations of the order parameters at finite chemical potential
as may be observed in Fig. 5.5. As this term contributes negatively to the
expression for ⇣, the specific bulk viscosity at finite µ is lower than that at
µ = 0 MeV.

In Fig. 3.8 , we have shown the results for thermal conductivity. We have
plotted here the dimensionless quantity �/T 2 as a function of temperature.
We have plotted the results for µ = 100MeV. As is well known, thermal
conduction which involves the relative flow of energy and baryon number
vanishes at zero baryon density. In fact, � diverges as 1/n2 as may be ex-
pected from the expression given in Eq. (3.3). However, in the dissipative
current, the conductivity occurs as �n2 [107, 108] and the heat conduc-
tion vanishes for µ = 0 [109]. On the other hand, in some cases, such as
when pion number is conserved, heat conduction can be sustained by pions.
In presece of a pionic chemical potential corresponding to a conserved pion
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number, thermal conductivity can be nonzero at vanishing baryonic chemical
potential. This has been the basis for estimation of thermal conductivity at
zero baryon density but finite pion density [86, 104, 96, 97]. However, in the
present case, we consider the case of vanishing pion chemical potential and
show only the contribution of quarks to thermal conductivity.

As expected from the behavior of the relaxation time, the specific thermal
conductivity has a minimum at the critical temperature similar to Ref. [59]
for the NJL model. The sharp rise of �/T2 can be understood by performing
a dimensional argument to show that at very high temperature when chi-
ral symmetry is is restored the integral increases as T3 while the prefactor
w/(nT ) grows as T2 for small chemical potentials. Apart from this kinematic
consideration, the integrand further is multiplied by ⌧(E) which itself is an
increasing function of temperature beyond T

c

. This leads to the sharp rise
of the ratio �/T 2 beyond the critical temperature. Below, the critical tem-
perature, however, the ratio decreases which is in contrast to NJL results of
Ref. [59]. The reason is twofold. First, the magnitude of the relaxation time
decreases when quark meson scattering is included as compared to quark-
quark scattering as shown in Fig. 4.7. Apart from this, in the integrand,the
distribution functions are suppressed by Polyakov loops as compared to NJL
model. As the antiquark densities are suppressed compared to quark densi-
ties at finite chemical potential, the high-temperature behavior is decided by
the quark-quark scattering.

3.4 Summary

Transport coe�cients of hot and dense matter are important inputs for the
hydrodynamic evolution of the plasma that is produced following a heavy ion
collision. In this chapter, we have investigated these co�cients taking into
account the the nonperturbative e↵ects related to chiral symmetry breaking
as well as confinement properties of strong interaction physics within an
e↵ective model, the Polyakov loop extended quark meson coupling model.
These coe�cients are estimated using the relaxation time approximation for
the solutions of the Boltzman kinetic equation.

We first calculated the medium-dependent masses of the mesons and
quarks within a mean field approximation. The contribution of the mesons
to the transport coe�cients has been calculated through estimating the re-
laxation time for the mesons arising both from meson-meson scattering and
meson-quark scattering. The contribution to the transport coe�cients arises
mostly from the meson scatterings at temperatures below the critical tem-
perature, while above the critical temperature, the contributions arising from
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the quark scatterings become dominant. In particular, quark-meson scatter-
ing contributes significantly to the relaxation time for the quarks both below
and above the critical temperature. The quark-pion scattering above the
critical temperature gives significant contribution due to the pole structure
of the corresponding scattering amplitude.

One important approximation in the present analysis is that the kinetic
terms for the mesons are not modified at finite temperature and meson dis-
persion relation remains similar to those at the zero-temperature relativistic
dispersion relation. The only temperature e↵ect that remains in the meson
dispersion lies in the temperature-dependent meson masses obtained through
the curvature of the e↵ective potential [110]. A more realistic approach
would be to use e↵ective field theory to have di↵erent dispersion relations for
the mesons [111, 112, 113] depending upon their velocities and calculate the
scattering processes to estimate the viscosities. However, such an approach
is beyond the scope of present work in which we have restricted ourselves to
thermal and density e↵ects included in the masses and widths for the mesons.

In general, the e↵ect of Polyakov loops lies in suppressing the quark con-
tribution below the critical temperature. This leads to, in particular, the
suppression of thermal conductivity at lower temperature arising from quark
scattering. The e↵ect of Polyakov loop also is significant near and above the
critical temperature. Indeed, both the quark masses as well as Polyakov loop
order parameter remain significantly di↵erent from their asymptotic values
near the critical temperature.
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Chapter 4

Color Superconductivity in
presence of background
magnetic field

4.1 Introduction

Having discussed transport properties of matter at high temperature, we
now discuss the properties of quark matter at extreme densities in presence
of large background magnetic field as relevant for the physics of neutron stars.
Other than high temperature and density, e↵ect of strong magnetic field on
QCD vacuum structure has attracted recent attention. This is motivated by
the possibility of creating ultra strong magnetic fields in non central collisions
at RHIC and LHC. The strengths of the magnetic fields are estimated to be
of hadronic scale [114, 115] of the order of eB ⇠ 2m2

⇡

(m2
⇡

' 1018 Gauss) at
RHIC, to about eB ⇠ 15m2

⇡

at LHC [115]. There have been recent calcula-
tions both analytic as well as with lattice simulations, which indicate that
QCD phase diagram is a↵ected by strong magnetic fields [116, 117, 118, 119].

In the context of cold dense matter, compact stars can be strongly mag-
netized. Neutron star observations indicate the magnetic field to be of the
order of 1012-1013 Gauss at the surface of ordinary pulsars [120]. Further,
the magnetars which are strongly magnetized neutron stars, may have even
stronger magnetic fields of the order of 1015 �1016 Gauss [121, 122, 123, 124,
125, 126, 127]. Physical upper limit on the magnetic field in a gravitation-
ally bound star is 1018 Gauss which is obtained by comparing the magnetic
and gravitational energies using virial theorem [128]. This limit could be
higher for self bound objects like quark stars [129]. Since the magnetic field
strengths are of the order of QCD scale, this can a↵ect both the thermody-
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namic as well as the hydrodynamics of such magnetized matter [130]. The
phase structure of dense matter in presence of magnetic field along with a non
zero chiral density has recently been investigated for two flavor PNJL model
for high temperatures relevant for RHIC and LHC [117]. There have also
been many investigations to look into the vacuum structure of QCD and it
has been recognised that the strong magnetic field acts as a catalyser of chiral
symmetry breaking [131, 132, 35, 36, 133, 134, 135, 136, 137, 138, 139]. The
e↵ects of magnetic field on the equation of state have been recently studied
in Nambu Jona Lasinio model at zero temperature for three flavors and the
equation of state has been computed for the cold quark matter [140, 141, 142]
taking into account chiral condensate structure with quark-antiquark pair for
the ground state.

On the other hand, color superconductivity is now an accepted conjec-
tured state of cold and dense quark matter describing Cooper pairing of
quarks of di↵erent colors and di↵erent flavors [19, 143, 144]. One can have a
rigorous treatment of the phenomenon of such pairing using asymptotic free-
dom of QCD at very high densities. In its simplest form, when masses of the
three quarks can be neglected compared to the chemical potential one can
have the color flavor locked (CFL) phase[19, 143, 144]. However, to apply it
to neutron star matter, the situation is more complicated as for the densities
expected in the interior of neutron star, the masses of strange quarks can-
not be neglected. Further, many nontrivial complications arise when beta
equilibrium and charge neutrality conditions are imposed in such systems
[145]. Since the well known sign problem prevents the first principle lattice
simulations at finite chemical potentials, one has to rely on e↵ective models
at this regime of moderate densities. One model that has been extensively
studied in this context has been the Nambu Jona Lasinio (NJL) model with
contact interactions [49].

Of late, there has been a lot of attention on the investigation of color su-
perconductivity in presence of magnetic field [30, 146, 147, 131, 35, 36, 33, 34].
Essentially, this is due to its possible application in the astrophysical situa-
tions as the densities in compact star cores are large enough to have possible
superconducting phase as well as such compact stars can have strong mag-
netic field as mentioned above. Let us also mention here that although such
systems can be color superconductors, these phases can be penetrated by a
‘rotated’ long range magnetic field. The corresponding rotated gauge field is a
linear combination of vacuum photon field and the 8-th gluon field[148, 149].
These rotated magnetic fields are not subjected to Meissener e↵ect. While
the Cooper pair is neutral with respect to the magnetic field, the quark quasi
particles have well defined charges. Therefore, the pairing phenomenon is af-
fected by the presence of magnetic field. Initially, the e↵ect of magnetic field
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on superconducting phase has been studied for CFL phase [30, 146, 147]
where all the three quarks take part in the pairing dynamics. However, for
realistic densities, such symmetric pairing is disfavored due to large strange
quark mass that leads to large mismatch in the fermi surface. The condition
of charge neutrality further complicates the pairing mechanism leading to
gapless modes for homogeneous diquark pairing [150, 151]. Superconductiv-
ity for the two flavor quark matter in presence of magnetic field has been
studied in Ref.s [35, 36, 152, 153, 154, 155] within NJL model. The e↵ect
of charge neutrality along with the interplay of chiral and superconducting
condensates has been analyzed in Ref.s[152, 153, 154, 155] in this model. A
complete three flavor analysis of magnetized dense quark matter including
superconductivity has not been attempted so far. In the present investigation
we include the e↵ects of strange quarks that takes part in chiral condensa-
tion but not in the diquark channel in the magnetized quark matter. As we
shall see, the strange quarks, similar to vanishing magnetic field case, play
an important role for charge neutral matter and the resulting equation of
state. Moreover, with the inclusion of a flavor mixing interaction term, the
strange quark scalar condensate not only a↵ects the light quark condensates
but also the diquark condensates.
We organize this chapter as follows. In section 3.2, we discuss an ansatz state
with quark-antiquark pairs related to chiral symmetry breaking, diquark and
diantiquark pairs for the light flavors related to color superconductivity in
in the presence of a magnetic field. We then generalize such a state to in-
clude the e↵ects of temperature and density. In section 3.3, we consider the
3 flavor NJL model along with the so called the Kobayashi-Maskawa-t’Hooft
(KMT) term – the six fermion determinant interaction term which breaks
U(1) axial symmetry as in QCD. We use this Hamiltonian and calculate its
expectation value with respect to the ansatz state to compute the energy
density as well the thermodynamic potential for this system. We minimize
the thermodynamic potential to determine the the ansatz functions and the
resulting mass gap equations. These coupled mass and superconducting gap
equations are solved and we discuss the results in section 3.4. We discuss
here the results with and without constraints of charge neutrality. Finally
we summarize and conclude in section 3.5. In the appendix we give some
details of the derivation of the evaluation of expectation values of the order
parameters.
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4.2 The ansatz for the ground state

Let us first consider the ground state structure relevant for chiral symmetry
breaking in presence of strong magnetic field [142]. We shall then modify
the same relevant for color superconductivity. To make the notations clear,
we first write down the field operator expansion for quarks with a current
quark mass m and charge q in the momentum space in the presence of a
constant magnetic field B. We take the field direction to be along the z-axis.
We choose the gauge such that the electromagnetic vector potential is given
as A

µ

(x) = (0, 0, Bx, 0). The quark field operator expansion in presence of
constant magnetic field is given as [142, 156]

 (x) =
X

n

X

r

1

2⇡

Z
dp\x

h
q0
r

(n,p\x)U
0
r

(x,p\x , n) + q̃0
r

(n, �p\x)V
0
r

(x, �p\x , n)
i
eip\x ·x\x .

(4.1)
The sum over n in the above expansion runs from 0 to infinity. In the
above, p\x ⌘ (p

y

, p
z

), and, r = ±1 denotes the up and down spins. We have
suppressed the color and flavor indices of the quark field operators. The
quark annihilation and antiquark creation operators, q0

r

and q̃0
r

, respectively,
satisfy the quantum algebra

{q0
r

(n,p\x), q
0†
r

0 (n0,p0
\x
)} = {q̃0

r

(n,p\x), q̃
0†
r

0 (n0,p0
\x
)} = �

rr

0�
nn

0�(p\x � p0
\x
). (4.2)

In the above, U
r

and V
r

are the four component spinors for the quarks and
antiquarks respectively. The explicit forms of the spinors for the fermions
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with mass m and electric charge q are given by

U0
" (x,p\x , n) =

0

BB@
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In the above, the energy of the n-th Landau level is given as ✏
n

=
p

m2 + p2
z

+ 2n|q|B
⌘
p

m2 + |p2| with p2 = p2
z

+ p2
? so that p2

? = 2n|q|B, p̂
z

= p
z

/|p|,
p̂? = 2n|q|B/|p|. In Eq.s (4.3), cot�0 = m/|p|. Clearly, for vanish-
ing masses �0 = ⇡/2. The functions I 0

n

s (with n � 0) are functions of
⇠ = |qB|(x � p

y

/|qB|) and are given as

I
n

(⇠) = c
n

exp

✓
�⇠

2

2

◆
H

n

(⇠) (4.4)

where, H
n

(⇠) is the Hermite polynomial of the nth order and I�1 = 0. The
normalization constant c

n

is given by

c
n

=

s p
|q|B

n!2n

p
⇡

The functions I
n

(⇠) satisfy the orthonormality condition
Z

d⇠I
n

(⇠)I
m

(⇠) =
p

|q|B�
n,m

(4.5)

so that the spinors are properly normalized. The detailed derivation of
these spinors and some of their properties are presented in the appendix
of Ref.[142].
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With the field operators now defined in terms of the annihilation and the
creation operators in presence of a constant magnetic field, one can write
down an ansatz for the ground state as in Ref.[142]. The ground state taken
as a squeezed coherent state involving quark and antiquarks pairs. Explicitly,
[151, 157, 158, 142]

|⌦i = U
Q

|0i. (4.6)

Here, U
Q

is an unitary operator which creates quark–antiquark pairs from
the vacuum |0i which in annihilated by the quark/antiquark annihilation
operators given in Eq.(4.1). Explicitly, the operator, U

Q

is given as [142]

U
Q

= exp

 1X

n=0

Z
dp\xq

0i

r

†
(n,p\x)a

i

r,s

(n, p
z

)hi(n,p
z

)q̃0i

s

(n, �p\x) � h.c.

!
(4.7)

In the above ansatz for the ground state, the function hi(n, p
z

) is a real
function describing the quark-antiquark condensates related to the vacuum
realignment for chiral symmetry breaking to be obtained from a minimization
of the thermodynamic potential. In the above equation, the spin dependent
structure ai

r,s

is given by

ai

r,s

=
1

|p
i

|
h
�
p

2n|q
i

|B�
r,s

� ip
z

�
r,�s

i
(4.8)

with |p
i

| =
p

p2
z

+ 2n|q
i

|B denoting the magnitude of the three momentum
of the quark/antiquark of i-th flavor (with electric charge q

i

) in presence of
a magnetic field. Summation over three colors is understood in the exponent
of U

Q

in Eq. (4.7). Clearly, a nontrivial h
i

(n, p
z

) breaks the chiral symmetry.
It is easy to show that the transformation of the ground state as in

Eq.(4.6) is a Bogoliubov transformation. With the ground state transforming
as Eq.(4.6), any operator O0 in the |0i basis transforms as

O = U
Q

O0U †
Q

(4.9)

and, in particular, one can transform the creation and annihilation operators
of Eq.(4.1) to define the transformed operators as above satisfying the same
anticommuation relations as in Eq.(4.2).

 (x) =
X

n

X

r

1

2⇡

Z
dp\x

h
q
r

(n,p\x)Ur

(x, n,p\x) + q̃
r

(n, �p\x)Vr

(x, n, �p\x)
i
eip\x ·x\x ,

(4.10)
with q

r

|⌦i = 0 = q̃†
r

|⌦i. In the above, we have suppressed the flavor and color
indices. It is easy to see that the U, V spinors are given by exactly similar to
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spinors U0, V0 in Eq.(4.3) but with the shift of the function �0 ! � = �0 �2h
with the function h(k) to be determined by a minimization of free energy. As
we shall see later, it is more convenient to vary �(k) rather than h(k). Let
us note that with Eq.(4.10), the four component quark field operator gets
defined in terms of the vacuum structure for chiral symmetry breaking given
through Eq.(4.6) and Eq.(4.7) [159, 160] in presence of the magnetic field.

The chiral order parameter in the condensate vacuum |⌦i can be evalu-
ated explicitly using the field operator expansion given in Eq.(4.10) and is
given by[142] (for i-th flavor)

I i

s

= h⌦| ̄i i|⌦i = � N
c

(2⇡)2

X

n

↵
n

|q
i

B|
Z

dp
z

cos�i (4.11)

This expression for the quark-antiquark condensate is exactly the same form
as derived earlier in the absence of the magnetic field [161, 157] once one
realizes that in presence of quantizing magnetic field with discrete Landau
levels, one has [152, 153, 154]

Z
dp

(2⇡)3
! |qB|

(2⇡)2

1X

n=0

↵
n

Z
dp

z

.

Next, we would like to generalize the ansatz of Eq.(4.6) with quark-
antiquark pairs in presence of magnetic field, to include quark-quark pairs
for the description of the ground state as relevant for color superconductiv-
ity. However, few comments in this context are in order. It is known that
in presence of color superconductivity, the diquark is electro-magnetically
charged and the usual magnetic field will have a Meissener e↵ect. How-
ever, a linear combination of the photon field and the gluon field given by
Ã

µ

= cos↵A
µ

� sin↵G8
µ

, still remains massless and is unscreened. For two

flavor color superconductivity, cos↵ = g/
p

g2 + e2/3 ⇠ 1/20 [148]. The
electron couples to this rotated gauge field by the coupling ẽ = e cos(↵).The
quark field couples to the rotated gauge field through its rotated charge Q̃.
In units of ẽ, the rotated charge matrix in the flavor- color space is given by

Q̃ = Q
f

⌦ 1
c

� 1
f

⌦ T 8
c

2
p

3
(4.12)

. Thus, the ẽ charges of red and green u quarks is 1/2; red and green down
and strange quarks is �1/2. The blue u-quark has Q̃ charge as +1, while the
blue d and s quarks are Q̃ chargeless. We shall take the rotated U(1) magnetic
field along the z�axis and spatially constant as before without the absence
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of superconductivity. The ansatz for the ground state with quark-antiquark
condensate is now taken as, with i being the flavor index,

|⌦i
�

= exp
X

flav

(B†
i

� B
i

)|0i. (4.13)

The flavor dependent quark-antiquark pair creation operator for u-quark (i =
1) is given as, with a = 1, 2, 3 being the color indices for red,blue and green
respectively

B†
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while, for the down and strange quarks (i=2,3) the same is given as
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The di↵erence between the pair creation operator in Eqs.(4.14) and (4.15)
lies on the contribution of the blue color. While the up blue quark has Q̃
charge, the blue quarks of down and strange quark are Q̃ neutral.

Next, we write down the ansatz state for having quark-quark condensates
which is given by

|⌦i = U
d

|⌦i
�

⌘ exp(B†
d

� B
d

)|⌦i
�

. (4.16)

In the above, B†
d

is the diquark (and di-antiquark) creation operator given
as

B†
d

=
X

n

Z
dp\x
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qia
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†rf(n, p
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)qjb
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†rf1(n, p

z

)q̃jb
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†
�
✏ij3✏3ab.

In the above, i, j are the flavor indices , a, b are the color indices and r = ±1/2
are the spin indices. The levi civita tensor ensures that the operator is
antisymmetric in color and flavor space along with the fact that only u, d
quarks with red and green colors take part in diquark condensation. The
blue u,d quarks as well as the strange quarks (all the three colors) do not take
part in the diquark condensation. The functions f(n, p

z

) and f1(n, p
z

) are
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condensate functions associated with quark-quark and antiquark-antiquark
condensates respectively. These functions are assumed to be independent
of color and flavor indices. We shall give a post facto justification for this
that these function depend upon the average energy and average chemical
potentials of the quarks that condense.

To include the e↵ects of temperature and density we next write down
the state at finite temperature and density |⌦(�, µ)i through a thermal Bo-
goliubov transformation over the state |⌦i using the thermofield dynamics
(TFD) method as described in Ref.s [162, 163, 164, 142]. This is particularly
useful while dealing with operators and expectation values. We write the
thermal state as

|⌦(�, µ)i = U
�,µ

|⌦i = U
�,µ

U
Q

|0i, (4.17)

where U
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is given as
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In Eq.(4.18), the underlined operators are the operators in the extended
Hilbert space associated with thermal doubling in TFD method, and, the
color flavor dependent ansatz functions ✓ia

± (n, k
z

, �, µ) are related to quark
and antiquark distributions as can be seen through the minimization of the
thermodynamic potential.

All the functions in the ansatz in Eq.(4.17) are to be obtained by mini-
mizing the thermodynamic potential. We shall carry out this minimization in
the next section. However, before carrying out the minimization procedure,
let us focus our attention to the expectation values of some known operators
to show that with the above variational ansatz for the ‘ground state’ given in
Eq.(4.17) these reduce to the already known expressions in the appropriate
limits.

Let us first consider the expectation value of the chiral order parameter.
The expectation value for chiral order parameter for the i-th flavor is given
as

I i

s

= h⌦(�, µ)| ̄
i

 
i

|⌦(�, µ)i =
3X

a=1

I ia

s

(4.18)
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These expectation values can be evaluated easily once we realize that the
state |⌦(�, µ)i as in Eq.(4.17) is obtained through successive Bogoliubov
transformations on the state |0i as in Eq.(4.13), Eq.(4.16). The details of
evaluation for the di↵erent order parameters is relegated to the appendix.
Explicitly, for the quarks that take part in superconductivity

I ia

s
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n

↵
n

|qiaB|
(2⇡)2
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dp
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where, ↵
n

= (2 � �
n,0) is the degeneracy factor of the n-th Landau level (all

levels are doubly degenerate except the lowest Landau level). Further,
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arising from the quarks which condense and

F ia

1 = sin2 ✓ia

+ + sin2 f1

⇣
1 � sin2 ✓ia

+ � |✏ij|✏ab| sin2 ✓jb

+

⌘
(4.21)

arising from antiquarks which condense. Thus, the scalar condensates aris-
ing from quarks that take part in superconductivity depend both on the
condensate functions in quark-antiquark channel (�i) as well as in quark-
quark channel (f, f1). Further, the thermal functions sin2 ✓ia

± , as we shall see
later, will be related to the number density distribution functions.

Next, for the non-superconducting blue up quarks, the contribution to
the scalar condensate is given by

I13
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�
. (4.22)

Let us note that in the limit of vanishing of the color superconducting con-
densate functions (f, f1 ! 0), the contributions given in Eq.(4.19) reduce to
Eq.(4.22) as they should [142].

Similarly, scalar condensate contribution from the charged strange quarks
(red, green) is given by
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(4.23)
Finally, for the uncharged quarks i.e. blue down and blue strange quarks,
the contributions to the scalar condensates are given by, for flavor i (i=2,3)
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(4.24)
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Next, we write down the condensate in the superconducting channel which
is given as

I
D
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Let us note that the superconducting condensate also depends upon the chiral
condensate functions �(p

z

) through the function cos
�

�

1

��

2

2

�
apart from the

thermal distribution functions sin2 ✓ia

± . Further, this dependence vanishes
when the u and d quark scalar condensates or equivalently the corresponding
masses of the quarks are equal.

The other quantity that we wish to investigate is the axial fermion current
density that is induced at finite chemical potential including the e↵ect of
temperature. The expectation value of the axial current density is given by

hj3
5i ⌘ h ̄a

i

�3�5 a

j

i.

Using the field operator expansion Eq.(4.10) and Eq.(4.3) for the explicit
forms for the spinors, we have for the i-th flavor
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Integrating over dp
y

using the orthonormal condition of Eq.(4.5), all the
terms in the above sum for the Landau levels cancel out except for the zeroth
Landau level so that,

hji3
5 i =

N
c

|q
i

|B
(2⇡)2
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dp

z

⇥
sin2 ✓i0

� � sin2 ✓i0
+

⇤
. (4.27)

which is identical to that in Ref.[165] once we identify the functions sin2 ✓i0
⌥

as the particle and the antiparticle distribution functions for the zero modes
(see e.g. Eq.(4.52) in the next section).

4.3 Evaluation of thermodynamic potential
and gap equations

As has already been mentioned, we shall consider in the present investigation,
the 3-flavor Nambu Jona Lasinio model including the Kobayashi-Maskawa-
t-Hooft (KMT) determinant interaction. The corresponding Hamiltonian
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Quark e-charge ẽ-charge
u-red 2

3
1
2

u-green 2
3

1
2

u-blue 2
3 1

d-red -1
3

1
2

d-green -1
3

1
2

d-blue -1
3 0

s-red -1
3

1
2

s-green -1
3

1
2

s-blue -1
3 0

Table 4.1: Table: List of quarks and their electromagnetic and rotated
charges

density is given as [49, 151, 142, 166]
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where  i,a denotes a quark field with color ‘a’ (a = r, g, b), and flavor ‘i’
(i = u, d, s), indices. ⇧ = �i(r � iẽÃQ̃) is the canonical momentum in
presence of the rotated U(1) gauge field Ã

µ

. When there is no superconduc-
tivity A

µ

= Ã
µ

which is the usual massless photon field with the coupling
to the quark field being given the electromagnetic charge eQ

f

where, Q
f

is
diagonal matrix (2/3, �1/3, �1/3). As mentioned in the previous section,
when superconducting gap is non vanishing, the massless gauge field is given
by Ã

µ

= cos↵A
µ

� sin↵G8
µ

, where, cos↵ = g/
p

g2 + e2/3. We have taken
here the standard convention of SU(3)

c

generators in the adjoint representa-
tion [148]. The Q̃ charges of the quarks are given in Table-I. It may also be
relevant here to mention that, while we are taking into account combination
of the photon and gluon field which is massless, the other orthogonal massive
component, is either Meissener screened or nucleated into vortices [167].

The matrix of current quark masses is given by m̂=diag
f

(m
u

, m
d

, m
s

)
in the flavor space. We shall assume in the present investigation, isospin
symmetry with m

u

=m
d

. In Eq. (4.28), �A, A = 1, · · · 8 denote the Gellmann

matrices acting in the flavor space and �0 =
q

2
3 11

f

, 11
f

as the unit matrix
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in the flavor space. The four point interaction term ⇠ G
s

is symmetric in
SU(3)

V

⇥ SU(3)
A

⇥ U(1)
V

⇥ U(1)
A

. In contrast, the determinant term ⇠ K
which for the case of three flavors generates a six point interaction which
breaks U(1)

A

symmetry. If the mass term is neglected, the overall symmetry
is SU(3)

V

⇥SU(3)
A

⇥U(1)
V

. This spontaneously breaks to SU(3)
V

⇥U(1)
V

implying the conservation of the baryon number and the flavor number. The
current quark mass term introduces additional explicit breaking of chiral
symmetry leading to partial conservation of the axial current. The last term
in Eq.(4.28) describe a scalar diquark interaction in the color antitriplet and
flavor antitriplet channel. Such a form of four point interaction can arise e.g.
by Fierz transformation of a four point vector current-current interaction
having quantum numbers of a single gluon exchange. In that case the diquark
coupling G

D

is related to the scalar coupling as G
D

= 0.75G
s

.
Next we evaluate the expectation value of the kinetic term in Eq.(4.28)

which is given as

T = h⌦(�, µ)| ia†(�i↵ · r � q̃iaBx↵2) 
ia|⌦(�, µ)i. ⌘

X

ia

T ia (4.29)

In the above the sum over the colors a and flavors i is understood. The color
flavor dependent charges q̃ia for the quasi particles is given in Table I. To
evaluate this, for non vanishing q̃ charges, we use Eq. (4.10) and the results
of spatial derivatives on the functions I

n

(⇠) (⇠ =
p

|q
i

|B(x � p
y

/(|q
i

|B))).

@I
n

@x
=
p

|qia|B
h
�⇠I

n

+
p

2nI
n�1

i
,

@I
n�1

@x
=
p

|q̃ia|B
h
�⇠I

n�1 +
p

2(n � 1)I
n�2

i
. (4.30)

Using above, straightforward but somewhat tedious manipulations leads to
the contribution arising from the quarks that take part in superconductivity,
i.e. for color, flavor indices i, a = 1, 2,

T ia = �
1X

n=0

↵
n

|ẽB|
2(2⇡)2

Z
dp

z

(m
i

cos�
i

+|p
i

| sin�
i

)(1�F ia�F ia

1 ) (i, a = 1, 2).

(4.31)
where, we have defined |p

i

|2 = p2
z

+ 2n|q̃B|, (q̃ = ẽ/2). Here, the quark-
antiquark condensate e↵ects are encoded in the function �

i

while diquark
and di-antiquark condensate e↵ects are encoded in the functions F ia and F ia

1

respectively as given in Eq.(4.20 and Eq.(4.21).
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For the blue u-quark, which is charged but does not take part in diquark
condensation the corresponding contribution to the kinetic term is given by

T 13 = �
1X

n=0

↵
n

|ẽB|
(2⇡)2

Z
dp

z

(m1 cos�1 + |p1| sin�1)(1 � sin2 ✓13
� � sin2 ✓13

+ )

(4.32)
The contribution of the charged strange quarks (with charges ẽ/2) to the
kinetic energy is given by, with a = 1, 2,

T 3a = �
1X

n=0

↵
n

|ẽB|
2(2⇡)2

Z
dp

z

(m3 cos�3 + |p3| sin�3)(1 � sin2 ✓3a

� � sin2 ✓3a

+ ).

(4.33)
Finally, the contribution from the ẽ -charge neutral quarks (blue d and

blue s) is given as

T i3 = �
Z

dp

(2⇡)3
(m

i

cos�
i

+ p sin�
i

)
�
1 � sin2 ✓i3

� � sin2 ✓i3
+

�
(i = 2, 3).

(4.34)
The contribution to the energy density from the the quartic interaction

term in Eq. (4.28), using Eq. (4.18) turns out to be,

V
S

⌘ �G
s

h⌦(�, µ)|
8X

A=0

⇥
( ̄�A )2 � ( ̄�5�A )2

⇤
|⌦(�, µ)i = �2G

S

X

i=1,3

I i

s

2
,

(4.35)
where, I i

s

= h ̄
i

 
i

i is the scalar quark-antiquark condensate given in Eq.(4.18).
Further, in the above, we have used the properties of the Gellman matricesP8

A=0 �
A

ij

�A

kl

= 2�
il

�
jk

.
Next, let us discuss the contribution from the six quark determinant in-

teraction term to the energy expectation value. There will be six terms
in the expansion of the determinant, each involving three pairs of quark
operators of di↵erent flavors. These are to be ‘contracted’ in all possible
manner while taking the expectation value. This means in the present con-
text of having quark-antiquark and diquark condensates, one can contract
a  with a  ̄ or  with a  . The former leads to condensates having
quark-antiquark condensates I(i)

s

while the latter leading to diquark con-
densates I

D

. Further, for the case of quark-antiquark condensate contri-
butions, the contracting  and  ̄ having the same color will lead to the
dominant contribution while contracting similar operators with di↵erent col-
ors will lead to a N

c

suppressed contribution. Next coming to contributions
arising from the diquarks, terms which are proportional to strange quark-
antiquark condensate hs̄si will be dominant. These will have the contrac-
tions of strange quark-antiquarks having the same color. The rest four terms
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will be suppressed atleast by a factor N
c

. Explicitly these two terms are

given by ⇠
P

h

s̄Ohs
h
ūÔhu ⇥ (d̄Ôhd) � ūÔhd ⇥ (d̄Ôhu)

i
, where h = ± and

Ô± = (1 ± �5). When contracted diquark wise, both the terms give identi-
cal contributions, except that the contribution of the second term will be of
opposite sign as compared to the first term. This is a consequence of flavor
antisymmetric nature of the diquark condensates. This leads to

V
det

= +Khdet
f

[ ̄(1 + �5) ] + det
f

[ ̄(1 � �5) ]i =
1

3
|✏

ijk

|I(i)
s

I(j)
s

I(k)
s

+
K

4
I(3)
s

I2
D

Next, the contribution from the diquark interaction is given by

V
D

= �hG
D

⇥
( ̄�5✏✏

c

 C)( ̄C�5✏✏
c

 )
⇤
i = �G

D

I2
D

(4.36)

where, the diquark condensate I
D

is already defined in Eq.(4.25).
To calculate the thermodynamic potential (negative of the pressure), we

also have to specify the chemical potentials relevant for the system. Here,
we shall be interested in the form of quark matter that might be present in
compact stars that are older than few minutes so that chemical equilibration
for weak interaction is satisfied. The relevant chemical potentials in such
case are the baryon chemical potential µ

B

= 3µ
q

, the chemical potential µ
E

associated with the electromagnetic charge, and, the color potentials µ3 and
µ8. The chemical potential is a matrix that is diagonal in color and flavor
space and is given by

µ
ij,ab

= (µ�
ij

+ Q
ij

µ
E

)�
ab

+ (T 3
ab

µ3 + T 8
ab

µ8)�ij (4.37)

Since, red and green color of a given flavor of quark is degenerate and the
diquark is in blue direction in the color space , we can assume µ3 = 0. As
mentioned earlier the flavor space charge Q ⌘ diag(2/3, �1/3, �1/3) which
couples to the electromagnetic field A

µ

.
The thermodynamic potential is then given by using Eq.s(4.29),(4.35),(4.36),

(4.36) and with s being the entropy density,

⌦ = T + V
S

+ V
det

+ V
D

� hµNi � 1

�
s, (4.38)

where we have introduced

hµNi = h ia

†
µ

ij,ab

 jbi =
X

i,a

µia⇢ia (4.39)

where, ⇢ia is the vector density ⇢ia = h ia

†
 iai. For the superconducting

quarks this is given by

⇢ia =
X

n

↵
n

ẽB

2(2⇡)2

Z
dp

z

�
F ia � F ia

1

�
(i, a = 1, 2) (4.40)
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while, for the blue u quark, the same is given by

⇢13 =
X

n

↵
n

ẽB

(2⇡)2

Z
dp

z

�
sin2 ✓13

� � sin2 ✓13
+

�
. (4.41)

For the charged strange quarks, this density is given by

⇢3a =
X

n

↵
n

ẽB

2(2⇡)2

Z
dp

z

�
sin2 ✓3a

� � sin2 ✓3a

+

�
(a = 1, 2) (4.42)

For the ẽ-uncharged quarks (blue down and blue strange) , the vector
density is given by

I i3
v

=
2

(2⇡)3

Z
dp
�
sin2 ✓i3

� � sin2 ✓i3
+

�
. (i = 2, 3) (4.43)

Finally, for the entropy density s =
P

i,a

sia where, sia is the entropy
density for quarks of flavor i and color a. For the ẽ-quarks, with charge q̃ia,
the phase space is Landau quantized and we have the entropy density given
as [162, 163]

sia = �
X

n

↵
n

|qia|B
(2⇡)2

Z
dp

z

{(sin2 ✓ia

� ln sin2 ✓ia

� + cos2 ✓ia

� ln cos2 ✓ia

� ) + (� ! +)}.

(4.44)
On the other hand, for the uncharged (blue down and blue strange)

quarks, the entropy density is given by

si3 = � 2

(2⇡)3

Z
dp{(sin2 ✓i3

� ln sin2 ✓i3
�+cos2 ✓i3

� ln cos2 ✓i3
�)+(� ! +)} (i = 2, 3).

(4.45)
Thus, the thermodynamic potential is now completely defined in terms of

the condensate functions �i, f(k) and the thermal distribution functions ✓ia

⌥
which will be determined through a functional extremisation of the thermo-
dynamic potential. Minimizing the thermodynamic potential with respect to
the quark-antiquark condensate function �

i

(p) i.e. �⌦/��
i

= 0 leads to,

cot�ia =
(m

i

� 4G
s

I i

s

+ K✏ijkIj

s

Ik

s

+ K/4I2
D

�
i3)

|p
ia

| ⌘ M
i

|p
ia

| (4.46)

where, as earlier, we have defined |p
ia

| =
p

p2
z

+ 2n|q
ia

|B and we have defined

the constituent quark mass M
i

= m
i

�4G
s

I(i)
s

+K|✏
ijk

|I(i)
s

I(j)
s

I(k)
s

+K/4I2
D

�i3.
These expressions are actually self consistent equations for the constituent
quark masses as scalar condensate I(i)

s

as given in Eq.(4.18) involve M
i
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through their dependence on �
i

. Explicitly, these mass gap equations are
given as

Mu = mu � 4G
s

I(u)
s

+ 2KI(d)
s

I(s)
s

, (4.47)

Md = md � 4G
s

I(d)
s

+ 2KI(u)
s

I(s)
s

, (4.48)

M s = ms � 4G
s

I(s)
s

+ 2KI(d)
s

I(u)
s

+
K

4
I2
D

, (4.49)

Let us note that while the color and flavor dependence on the quark-
antiquark condensate functions �ia arises only from the momentum |p

ia

| =p
p2

z

+ 2n|q̃
ia

|B through the color flavor dependent q̃ charges, the constituent
quark masses are color singlets and are given by the solutions of the self con-
sistent equations Eq.(4.47)-Eq.(4.49). Further, the flavor mixing determinant
interaction makes the masses of quark of a given flavor dependent upon the
condensates of the other flavor quarks. This apart, the strange quark mass
explicitly depends upon the diquark condensates through this determinant
interaction. Note that for the two flavor superconductivity as considered
here, the strange quark mass is a↵ected explicitly by the superconducting
gap given by the last term on the right hand side Eq.(4.49). Of course,
there is implicit dependence on the superconducting gap in the second term
through the functions F and F1 (given in Eq.s (4.20) and (4.21)). Further,
when chiral symmetry is restored for the light quarks i.e., when the scalar
condensates for the non strange quarks vanish, still, the determinant term
gives rise to a density dependent dynamical strange quark mass [166]. Such
a mass generation is very di↵erent from the typical mechanism of quark mass
generation through quark–antiquark condensates [168].

In a similar manner, minimizing the thermodynamic potential with re-
spect to the diquark function f(k) and di-antiquark function f1(k) i.e. �⌦

�f(k) =

0 and �⌦
�f

1

(k) = 0 leads to

tan 2f(k) =
2(G

D

� K

4 I(3)
s

)I
D

✏̄
n

� µ̄
cos(

�1 � �2

2
) ⌘ �

✏̄
n

� µ̄
cos(

�1 � �2

2
);

tan 2f1(k) =
�

✏̄
n

+ µ̄
cos(

�1 � �2

2
)

(4.50)

where, we have defined the superconducting gap � as

� = 2

✓
G

D

� K

4
I(3)
s

◆
I
D

(4.51)
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and, ✏̄ = (✏u
n

+ ✏d
n

)/2 , µ̄ = (µur + µdg)/2 = µ + 1/6µ
E

+ 1/
p

3µ8, where, we
have used Eq.(4.37) for the chemical potentials. Further, ✏i

n

is the nth Lan-
dau level energy for the ith flavor with constituent quark mass M

i

given as
✏i
n

=
p

p2
z

+ 2n|q
i

|B + M2
i

. It is thus seen that the diquark condensate func-
tions depend upon the average energy and the average chemical potential
of the quarks that condense. We also note here that the diquark conden-
sate functions depends upon the masses of the two quarks which condense
through the function cos

�
(�1 � �2)/2

�
. The function cos�

i

= M
i

/✏i
n

, can
be di↵erent for u,d quarks, when the charge neutrality condition is imposed.
Such a normalization factor is always there when the condensing fermions
have di↵erent masses as has been noted in Ref. [169] in the context of CFL
phase.

Finally, the minimization of the thermodynamic potential with respect
to the thermal functions ✓ia

± (k) gives

sin2 ✓ia

± =
1

exp(�(!
i,a

± µ
ia

)) + 1
, (4.52)

Various !ia’s (i, a ⌘ flavor, color) are explicitly given as

!11
n± = !12

n± = !̄
n± + �✏

n

± �
µ

⌘ !u

n± (4.53)

!21
n± = !22

n± = !̄
n± � �✏

n

⌥ �
µ

⌘ !d

n± (4.54)

for the quarks participating in condensation. Here,
¯!
n± =

p
(✏̄

n

± µ̄)2 +�2 cos2(�1 � �2)/2. Further, �✏
n

= (✏u
n

� ✏d
n

)/2 is half
the energy di↵erence between the quarks which condense in a given Landau
level and �µ = (µ

ur

� µ
dg

)/2 = µ
E

/2 is half the di↵erence between the
chemical potentials of the two condensing quarks. For the charged quarks
which do not participate in the superconductivity,

!ia

n± = ✏i
n

±µia. (4.55)

In the above, the upper sign corresponds to antiparticle excitation ener-
gies while the lower sign corresponds to the particle excitation energies.

Let us note that when the charge neutrality conditions are not imposed,
the masses of u and d quarks will be almost the same but for the e↵ect
of the (rotated) magnetic field as the magnitude of the charges for red and
green quarks are the same and that of the blue color is di↵erent. Since the
chemical potentials of all the quarks are the same when charge neutrality
is not imposed, all the four quasi particles taking part in diquark conden-
sation will have (almost) the same energy !̄

n�. On the other hand, when
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charge neutrality condition is imposed, it is clear from the dispersion rela-
tions given in Eq.(4.53), (4.54) that it is possible to have zero modes, i.e.,
!ia = 0 depending upon the values of �✏

n

and �µ. So, although we shall have
nonzero order parameter �, there will be fermionic zero modes or the gapless
superconducting phase [170, 171].

Substituting the solutions for the quark-antiquark condensate function �i

of Eq.(4.46), we have the solutions for the di↵erent quark-antiquark conden-
sates i.e. I ia

s

given by, using equations Eq.(4.19), Eq.(4.22) and Eq.(4.23),

I ia

s

= �
X

n

↵
n

(2⇡)2
(ẽB/2)

Z
dp

z

M
ip

p2
z

+ 2n(ẽB/2) + M2
i

�
1 � F ia � F ia

1

�

(i, a = 1, 2)

I13
s

= �
X

n

↵
n

(2⇡)2
(ẽB)

Z
dp

z

M1p
p2

z

+ 2n(ẽB) + M2
1

�
1 � sin2 ✓13

� � sin2 ✓13
+

�

(4.56)

I3a

s

= �
X

n

↵
n

(2⇡)2
(ẽB/2)

Z
dp

z

M3p
p2

z

+ 2n(ẽB/2) + M2
3

�
1 � � sin2 ✓3a

� � sin2 ✓3a

+

�

(a = 1, 2)

for the ẽ charged quarks while for the uncharged quarks (blue d and blue
strange quarks),

I i3
s

= � 2

(2⇡)3

Z
dp

M
i

i
p

p2 + M2
i

�
1 � sin2 ✓i3

� � sin2 ✓i3
+

�
(i = 2, 3)

(4.57)
Similarly, substituting the solutions for the diquark /di-antiquark condensate
functions from Eq.(4.50) in Eq. (4.25), we have, with the usual notations,⇠̄

n± =
✏̄
n

± µ̄ and !̄
n± =

p
⇠2
n± +�2 cos2(�1 � �2)/2,

I
D

=
2

(2⇡)2

X

n

↵
n

|ẽB/2|
Z

dp
z

� cos2

✓
�1 � �2

2

◆


1

!̄
n�

�
1 � sin2 ✓1

� � sin2 ✓2
�
�

+
1

!̄
n+

�
1 � sin2 ✓1

+ � sin2 ✓2
+

� �
(4.58)

Thus Eq.s(4.47)- (4.49) for the mass gaps, Eq.(4.51) for the superconducting
gap and Eq.s (4.56)-(4.58) define the self consistent mass gap equation for
the i-th quark flavor and the superconducting gap .
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Next we discuss the thermodynamic potential. We substitute the solu-
tions for the condensate functions Eq.(4.46), Eq.(4.50) in the expression for
the thermodynamic potential Eq.(4.38) and use the gap equations Eq.s(4.47)-
(4.49) and Eq.(4.51). The thermodynamic potential is then given by

⌦
q

= ⌦sc

1/2 +⌦s

1/2 +⌦0 +⌦1 +4G
s

X

i

I i

s

2 �4KIu

s

Id

s

Is

s

+
�2

4G0
D

� K

4
Is

s

I2
D

(4.59)

where, we have defined, an e↵ective diquark coupling G0
D

= G
D

� K

4I

s

s

in
presence of the determinant term which mixes the flavors. Let us now discuss
each of the terms in Eq.(4.59).The first term is the contribution from the
quarks that take part in superconductivity i.e. the red and blue, u,d quarks.
This contribution is given by

⌦sc

1/2 = �2
X

n

↵
n

(ẽB/2)

(2⇡)2

Z
(✏u

n

+ ✏d
n

)dp
z

+ 2
X

n

↵
n

(ẽB/2)

(2⇡)2

Z �
(⇠̄

n� + ⇠̄
n+) � (!̄

n� + !̄
n+)
�

� 2
X

n

X

i=u,d

2↵
n

(ẽB)/2

(2⇡)2�

Z
dp

z

⇥
log(1 + exp(��(!i

n� � µ
ir

))) + log(1 + exp(��(!i

n+ + µ
ir

)))
⇤

⌘ ⌦sc

1/2,0(T = 0, µ = 0) + ⌦sc

1/2,med

(T, µ) (4.60)

where, we have separated the contribution of the medium ⌦sc

1/2,med

from T =
0, µ = 0 contribution. Similarly, the (ẽ) charged strange quark contribution
to the thermodynamic potential is given by

⌦s

1/2 = �2
X

n

↵
n

(ẽB)/2

(2⇡)2

Z
(✏s

n

)

�
X

n

X

a=1,2

X

s=±1

↵
n

(ẽB)/2

(2⇡)2�

Z
dp

z

[log(1 + exp(��(!3a

+ sµ
ia

)]

⌘ ⌦s

1/2,0 + ⌦s

1/2,med

(4.61)

The term ⌦1 in Eq.(4.59) arises from the blue colored u- quark with charge
ẽ and is given as

⌦1 = �
X

n

↵
n

(ẽB)

(2⇡)2

Z
(✏u

n

)

�
X

n

X

s=±1

↵
n

(ẽB)

(2⇡)2�

Z
dp

z

[log(1 + exp(��(!33 + sµ33)]

⌘ ⌦u

1,0 + ⌦u

1,med
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Finally, the ẽ uncharged quarks’ contributions to the thermodynamic poten-
tial ⌦0 is given by

⌦0 = �2
X

i=2,3

Z
dp

(2⇡3)
✏i(p) � 2

(2⇡)3�

Z
dp
X

s=⌥1

[log(1 + exp(��(!23 + sµ33)]

(4.62)

Now, all the zero temperature and zero chemical potential contributions
of the thermodynamic potential in Eq.s(4.60)- (4.62) are ultraviolet diver-
gent. This divergence also gets transmitted to the gap equations through
the quark-antiquark as well as diquark condensates in equations Eq.(4.56),
Eq.(4.56),Eq.(4.57)and Eq.(4.58). For the chargeless case, these can be ren-
dered finite through a regularization with a sharp cut o↵ in the magnitude of
three momentum as is usually done in the NJL models. However, it is also
seen that a sharp cuto↵ in the presence of magnetic field for charged particles
su↵ers from cut-o↵ artifacts since the continuous momentum dependence in
two spatial dimensions are replaced by sum over discrete Landau levels. To
avoid this, some calculations use a smooth parametrisation for the cuto↵
as e.g. in Ref.[117] . In the present work however we follow the elegant
procedure that was followed in Ref. [140, 141] by adding and subtracting
a vacuum (zero field) contribution to the thermodynamic potential which is
also divergent. This manipulation makes e.g. the Dirac vacuum contribu-
tion in presence of magnetic field to a physically more appealing form by
separating the same to a zero field vacuum contribution and a finite field
contribution written in terms of Riemann-Hurwitz ⇣ function. The vacuum
contribution to the energy density arising from a charged quark can be writ-
ten as [142, 140, 141],
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, (4.63)

where, we have defined the dimensionless quantity, x
i

= M

2

i

2|q
i

B| , i.e. the mass

parameter in units of the magnetic field. Further, ⇣ 0(�1, x) = d⇣(z, x)/dz|
z=1

is the derivative of the Riemann-Hurwitz zeta function [172].

Using Eq.(4.63), the quark-antiquark condensate of (q̃) charged quarks
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can be written as
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The first term, I ia

s

vac

can be explicitly evaluated with a cuto↵ ⇤ as
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The medium contribution to the scalar condensate from the supercon-
ducting part is
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while, for the non superconducting blue u-quarks,
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Similarly, the contribution of the medium to the (q̃) charged strange quark-
antiquark condensate is
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In what follows, we shall focus our attention to zero temperature cal-
culations. Using the relation lim

�!1
1
�

ln(1 + exp(��!)) = �!✓(�!) and
using Eq.s(4.60), Eq.(4.63), we have the zero temperature thermodynamic
potential for the color superconducting quarks given as
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with,
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where we have defined the function G(⇤, M) as
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The prefactors in the first term correspond to color and spin degeneracy
factors while the same in the second term correspond to the color degeneracy
factor. The magnetic field dependent function, F (x
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, B) with x
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The medium contribution from the superconducting quarks is given as
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The three momentum cuto↵ ⇤ for the magnitude of momentum in the absence
of magnetic field leads to the sum over the Landau level upto n

max

= ⇤2

ẽB

.
Futher, the positivity of the magnitude of p

z

, restricts the cuto↵ in |p
z

| as
pn

z,max

=
p
⇤2 � nẽB for a given value of n of the Landau level.

The contribution of the blue up quark to the thermodynamic potential
⌦1 = ⌦1,0 + ⌦1,med

with
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where M
nu

=
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+ 2nẽB is the nth Landau level mass for up quark and
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with the zero temperature distribution function.
The ẽ charged strange quark contribution to the thermodynamic potential
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+ 2nẽB is the nth Landau level mass for the s-quarks.

Further, the sum over the Landau levels is restricted to ns
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arising from the distribution function at zero temperature ✓(µ � ✏
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) .
For the uncharged quarks, i.e. blue down and strange quarks we have,
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and for the medium part, with p
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In the above H
i

is the medium contribution from a single charge less
flavor given as

H
i

(µ, p
f

) =
1

16⇡2


p

fi

µ
i

(p2
fi

+ µ2
i

) � M4
i

log

✓
µi + p

fi

M i

◆�
(4.78)

Next, we write down the expressions for the condensates at zero tempera-
ture, that are needed to compute the thermodynamic potential in Eq.(4.59).
This is already given by Eq.(4.64). Here, we write down explicitly the zero
temperature limit for the same. The scalar condensate for,say, u-quarks is
given as
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The vacuum contribution Iu

s

vac

is already given in Eq.(4.65).
The scalar condensate medium contribution from the superconducting

red up and green up quarks are given as
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The expressions for the distribution functions F ia and F ia

1 is already given
in Eq.s (4.20)-(4.21) in terms of the diquark condensate functions and the
thermal distribution functions.In the zero temperature limit, the distribution
functions for e.g. u- quarks become
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The blue up quark contribution to the scalar condensate is given by
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As in Eq.(4.75) here we have defined the n-th Landau level mass for the blue
up quark as M2

nu

= M2
u

+ 2n|ẽB|. The magnetic field contribution to the
scalar condensate for the up quarks of a given color ‘a’ is given by
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where, x
a

= M2
u

/2|q
a

B| and q
a

= 1/2ẽ for red and green colors and ✓
a

= ẽ
for blue color up quarks.

In an identical manner, the scalar condensates for the down and strange
quarks Id

s

, Is

s

can be written down with appropriate changes for the charges
and the masses. The diquark condensate 4I

D

is given in Eq.(4.58) where
the zero temperature limit can be taken by replacing the distribution func-
tions sin2 ✓i = ✓(�!i), (i = u, d). Thus the thermodynamic potential gets
completely defined for the quark matter in presence of magnetic field.

In the context of neutron star matter, the quark phase that could be
present in the interior, consists of the u,d,s quarks as well as electrons, in
weak equilibrium

d ! u + e� + ⌫̄
e

� , (4.85a)
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s ! u + e� + ⌫̄
e

� , (4.85b)

and,
s + u ! d + u, (4.85c)

leading to the relations between the chemical potentials µ
u

, µ
d

, µ
s

, µ
E

as

µ
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+ µ
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. (4.86)

The neutrino chemical potentials are taken to be zero as they can di↵use
out of the star. So there are two independent chemical potentials needed
to describe the matter in the neutron star interior which we take to be the
quark chemical potential µ

q

and the electric charge chemical potential, µ
e

in
terms of which the chemical potentials are given by µ
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and µ
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. In addition, for description of the charge neutral
matter, there is a further constraint for the chemical potentials through the
following relation for the particle densities given by

Q
E

=
2

3
⇢

u

� 1

3
⇢

d

� 1

3
⇢

s

� ⇢
E

= 0. (4.87)

The color neutrality condition corresponds to
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In the above, ⇢ia is the number density for quarks of flavor i and color a. In
particular, the number densities of the condensing quarks are given as
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where, F ia, F ia

1 are defined in Eq.s (4.20), and Eq.(4.21) respectively in terms
of the condensate functions and e.g. for zero temperature is given explicitly
in Eq. (4.81) for up red quarks. For the blue colored quarks, the same for
the up blue quarks is given by
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while, for the ẽ uncharged d quarks,
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For the charged strange quarks the number densities are given by
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while, for the ẽ uncharged blue strange quarks,
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The electron number density is given by
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To discuss the pressure in the context of matter in the core of the neutron
star, one also have to add the contribution of the electrons to the thermody-
namic potential. Since we shall describe the system as a function of ẽB, we
shall take the approximations ẽ ⇠ e, A

µ

⇠ Ã
µ

to a good approximation as
the mixing angle is small. The corresponding thermodynamic potential for
the electrons is given by
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where, ne

max

=
µ

2

E

2|ẽB| . Thus the total thermodynamic potential or the negative
of the pressure is given as

⌦ = ⌦
q

+ ⌦
e

(4.96)

The thermodynamic potential (Eq. (4.96)), the mass and superconducting
gap equations Eq.(4.47),Eq.(4.48) ,Eq.(4.49) and Eq.(4.51), along with the
charge neutrality conditions, Eq.(4.87), Eq.(4.88) are the basis for our nu-
merical calculations for various physical situations that we shall discuss in in
detail in the following section.

4.4 Results and Discussions

We begin the discussions with the parameters of the NJL model. The model
parameters are the three current masses of quarks, namely m

u

,m
d

and m
s

and the couplings G
s

, G
d

and the determinant coupling K. This apart, one
additional parameter, the momentum cut o↵ ⇤, is also required to regularize
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the divergent integrals which are characteristic of the four point interaction of
NJL models. Except for the diquark coupling G

d

, there are several parameter
sets for the couplings derived from fitting of the meson spectrum and chiral
condensate [56, 57, 58]. The diquark coupling is not known from fitting since
one does not have a diquark spectrum to fit with. Fierz transforming quark-
antiquark term gives the relation G

d

=0.75 G
s

. Although not precise, many
other references use this value. The parameters used in our calculations are
m

u

=5.5 MeV, m
d

=5.5 MeV, m
s

=140.7 MeV for the current quark masses,
the momentum cuto↵ ⇤ = 602.5MeV and the couplings G

s

⇤2 =1.835 and
K⇤5=12.36 as have been chosen in Ref.[58]. After choosing the light current
quark mass m

u

=m
d

=5.5 MeV, the remaining four parameters are chosen
to fit vacuum values of pion decay constant f

⇡

, masses of pion, kaon ⌘0.
With this set of parameters the ⌘ meson mass is underestimated by about
6 percent and leads to u and d constituent mass in vacuum to be about
368 MeV. The strange mass is about 549 MeV at zero temperature and
density. The determinant interaction is responsible for U(1)

A

anomaly and
getting the correct eta mass. Further, this interaction also mixes the various
gap equations and a↵ects the superconducting gap significantly as we shall
see. However, we must point out that there is a large discrepancy in the
determination of this six fermion interaction coupling K. E.g. in Ref.[56] the
parameter K⇤5 di↵ers by as large as 30 percent as compared to the value
chosen here. This discrepancy is due to the di↵erence in the treatment of ⌘’
mesons with a high mass[49]. Infact, this leads to an unphysical imaginary
part for the corresponding polarization diagram in the ⌘’ meson channel. This
is unavoidable because NJL is not confining and is unrealistic in this context.
Within the above mentioned limitations of the model and the uncertainty in
the value of the determinant coupling, we proceed with the present parameter
set which has already been used for phase diagram of dense matter in the
Refs.[173, 174, 49] and for neutron star matter in Ref.[175].

We begin our discussion for the simpler case where the charge neutral-
ity conditions are not imposed. In this case, the electrical and color charge
chemical potential are set to zero so that all the quarks have same potential
µ

q

. In this case we have to solve four gap equations, three for the con-
stituent masses Eq.s(4.47,4.48,4.49) and the fourth for the superconducting
gap Eq.s(4.51,4.58). For given values of quark chemical potential and mag-
netic field we solve the gap equations self consistently. Few comments regard-
ing solving these gap equations may be in order. We solve the gap equations
at T=0. For non-vanishing magnetic fields, all the landau levels for the

medium part up to a cuto↵, n
max

=
p

µ

2�M

2

i

2ẽB

for each flavor i, are taken into
account. Near the µ

c

, the critical chemical potential, there can be multiple
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Figure 4.1: Constituent quark masses and superconducting gap when charge
neutrality conditions are not imposed. Fig.1-a shows the M

u

at zero tem-
perature as a function of quark chemical potential for di↵erent values of the
magnetic field. Fig. 1-b shows the same for the strange quark mass M

s

and
the superconducting gap.

solutions for the gap equations. We have chosen the solutions which have
the lowest thermodynamic potential.

In Fig.5.2 , we have shown the variation of the masses as a function
of quark chemical potential µ

q

for three di↵erent values of magnetic fields,
ẽB=0.1m2

⇡

,5 m2
⇡

,10 m2
⇡

. The results for ẽB = 0.1m2
⇡

reproduce the vanish-
ing magnetic field results. As the chemical potential increases, the masses
remain constant upto a critical value of quark chemical potential µ

c

and the
superconducting gap remains zero. At the critical chemical potential there is
a first order phase transition and the constituent masses drop sharply from
their vacuum values and the superconducting gap becomes non-zero. For
vanishing magnetic field, the isospin symmetry for the light quarks is un-
broken and the constituent masses of u and d quarks are degenerate. The
critical chemical potential,µ

c

, is about 340 MeV for (almost) vanishing mag-
netic field. In this case, the up and the down quark masses decrease from
their vacuum values of about 368 MeV to about 80 MeV. The strange mass
being coupled to other gaps via determinant interaction also decreases from
549 MeV to 472 MeV when this first order transition happens for the light
quarks. However, since this µ

c

is still less than the strange mass its density
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Figure 4.2: Baryon number density in units of nuclear matter density as a
function of chemical potential for di↵erent strengths of magnetic field at zero
temperature.

remains zero. The superconducting gap rises from 0 MeV to 88.0 MeV at
µ

c

. As the chemical potential is increased beyond µ
c

, the superconducting
gap shows a mild increase reaching a maximum value of 122 MeV at around
µ

q

⇠ 475 MeV. Beyond this value of µ, the strange quark mass starts de-
creasing rapidly. This leads to the e↵ective diquark coupling G0

D

=G
D

+K

4 hs̄si
decreasing resulting in a decrease in the superconducting gap with increasing
chemical potential.

In Fig.5.3, we have plotted the total baryon number density in units of
nuclear matter density(⇢

N

=0.17/fm�3) as function of quark chemical poten-
tial. For vanishing magnetic field, at the critical chemical potential µ

c

⇠ 340
MeV, the baryon density jumps from 0 to 0.38fm�3 which is about 2.2 times
the nuclear matter density.

Upon increasing the magnetic field, as seen in Fig.5.2, the vacuum con-
stituent quark masses increase due to magnetic catalysis at zero density. It
may also be observed here that the µ

c

for chiral transition for the light quarks
decreases with the magnetic field. Such a phenomenon is known as inverse
magnetic catalysis at finite chemical potential.[176]. Let us note that in the
superconducting phase the ẽ charges of the u and d quarks are identical in
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Figure 4.3: Critical chemical potential for chiral transition at zero tempera-
ture as a function of magnetic field

magnitude while that of unpaired blue quark are di↵erent for u and d quarks.
This results in the color summed scalar condensate Iu

s

and Id

s

to be di↵erent
in presence of magnetic field. This leads to di↵erence in constituent masses
for the light quarks. For ẽB=10 m2

⇡

the u mass in the chiral symmetry
broken phase increases by about 13.6 percent and strange mass by about
4.7 percent. The critical chemical potential decreases from about 340 MeV
to about 291 MeV. As seen in the plot, the superconducting gap decreases
and the peak value decreases from 122 MeV to 111 MeV. As may be seen
from Eq.(4.51) and Eq.(4.58), the superconducting gap depends upon the
e↵ective diquark coupling G0

D

= G
D

-K

4 Is

s

. With increase in magnetic field
the e↵ective coupling G0

D

has a slight increase in magnitude as the strange
quark condensate increases with magnetic field. Therefore, one would have
expected an increase in � with magnetic field. However, the variation in
� due to the magnetic field is essentially decided by Eq.(4.58). From here
also one would have expected an increase in � with magnetic field as ẽB oc-
curs in the numerator in Eq.(4.58). Infact, this behavior is actually seen for
high magnetic field, where, only the lowest Landau level contributes to the
integral in Eq.(4.58). For moderately strong magnetic fields, contributions
of the higher Landau levels become relevant for the behavior of gap with
magnetic field. As long as the contribution of higher Landau levels are non
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vanishing, the gap equation can support solution for the gap that decreases
with magnetic field. We may point out that ẽB=5 m2

⇡

and 10 m2
⇡

the cut
o↵ for Landau levels n

max

equals 3 and 1 respectively. For ẽB � 20 m2
⇡

only
the lowest Landau level contributes to the integral in Eq.(4.58) and the gap
increases with magnetic field. One may also note that at higher magnetic
fields the charge asymmetry between the u and d quark becomes apparent
in their masses as expected. At 10m2

⇡

the di↵erence is about 3.4 percent and
at 15m2

⇡

its about 5.7 percent at lower chemical potentials.
One may note that below the critical chemical potential µ

c

the u quarks
have higher mass compared to d quarks as all the three colors are charged
for u quarks while for the d quarks, the blue color is chargeless. However
beyond the critical chemical potential the u quark has a lower mass compared
to d quarks. This is because with magnetic field the medium contribution to
chiral condensate increases. This increase is same for the condensing pairs
of u and d quarks but di↵erent for the blue quarks. The blue up quark
has charge ẽ = 1 whereas it is zero for down blue quark. Therefore the
medium contribution from up quark is more than down quark and it reduces
the condensate for up quark and consequently its mass too. As we shall see
later, imposing charge neutrality requires the d quark chemical potential to
be much higher compared to u quarks to balance their larger positive charge.
This forces the d quark mass to be smaller compared to u quark mass above
critical chemical potential . This results in an opposite behavior for the u and
d quark masses with chemical potential, beyond µ

c

when charge neutrality
condition is imposed vis a vis when such condition is not imposed.

As may be observed from Fig.5.3, the baryon number density increases
with magnetic field for a given chemical potential. This is because for the
magnetic fields considered here, the symmetry is restored for lower chemical
potential at higher magnetic field. Thus for a given chemical potential beyond
the critical chemical potential the masses become smaller for higher magnetic
field leading to larger baryon number density. This is consistent with inverse
magnetic catalysis. One may note however that for very large fields, there
is magnetic catalysis of chiral symmetry breaking in the sense that critical
chemical potential increases with magnetic field. In Fig.5.5 we show the
behavior of µ

c

as a function of magnetic field. It is observed that µ
c

is
minimum for ẽB=19m2

⇡

.
To examine the e↵ect of flavor mixing determinant interaction, we show

in Fig.5.6, the variation of the masses and the superconducting gap without
the determinant interaction. As expected, without the mixing of flavors the
strange mass remains una↵ected when u and d quark masses decrease. This
is significantly di↵erent behavior compared to Fig.5.2 where the strange mass
decreases by about 74 MeV beyond µ

c

when there is a first order transition
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Figure 4.4: Gaps without determinant interaction at zero temperature as
a function of quark chemical potential. Solid curve refers to masses of u-d
quarks, the dashed curve refers to the mass of strange quark and the dotted
curve corresponds to the superconducting gap.

for the light quarks. This also a↵ects the superconducting gap. The super-
conducting gap is smaller as the e↵ective diquark coupling decreases without
the determinant interaction term.

In Fig.4.5 we show the variation of the gaps as a function of the magnetic
field for µ=200 MeV and µ=400 MeV. µ=200 MeV is less than the critical
µ

c

for any value of magnetic field considered here. Hence the constituent
masses are high and the superconducting gap is zero. We find that the masses
increase monotonically with the magnetic field. At ẽB=10 m2

⇡

, the u mass
increases by 14 percent of its zero field value while strange mass increases
by 5 percent. Similarly for µ=400 MeV which is larger than the critical
chemical potential for magnetic fields considered here, one also has finite
superconducting gap. However, in this case it is observed that the u and d
masses decrease slowly and monotonically with magnetic field while strange
quark mass remains almost constant. The superconducting gap shows an
oscillatory behavior with increase in magnetic field. The oscillatory behavior
is associated with the discontinuous changes in the density of states due
to Landau quantization and is similar to de Hass van Alphen e↵ects for
magnetized condensed matter system.
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Figure 4.5: Constituent quark masses as a function of magnetic field for T=0.
Fig.5-a shows the masses of the three quarks below the chiral transition
for µ=200 MeV. Fig. 5-b shows the same for the masses along with the
superconducting gap above the chiral transition for µ

q

= 400 MeV.
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Figure 4.6: Constituent quark masses and superconducting gap when charge
neutrality conditions are imposed. Fig.6-a shows the masses and supercon-
ducting gap at zero temperature as a function of quark chemical potential
for magnetic field ẽB = 0.1m2
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Fig. 6-b shows the same for ẽB = 10m2
⇡

.
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Charge neutral magnetized quark matter

Next we discuss the consequences of imposing charge neutrality conditions(Q
E

=
0,Q8 = 0). In Fig. 4.6 we show the results for the masses and the super-
conducting gaps for strength of the external magnetic field ẽB = 0.1m2

⇡

(Fig
6-a) and ẽB = 10m2

⇡

(Fig. 6-b). For small magnetic field(ẽB = 0.1m2
⇡

) the
masses in symmetry broken phase are the same as before but the critical
chemical potential is now shifted to around µ

c

= 364MeV as compared to
µ

c

= 335MeV when the condition is not imposed. At the transition point
with neutrality the u quark mass decreases from 367 MeV to 111 MeV and
the down quark mass from 367 MeV to 87 MeV. Charge neutrality requires
d quark number densities to be higher as compared to u quarks. Let us
note that near the critical chemical potential there are multiple solutions of
the gap equations. The solution which is thermodynamically preferred when
charge neutrality condition is not imposed may no longer be the preferred so-
lution when the constraint of charge neutrality is imposed [151]. The strange
quark mass is higher than the chemical potential at the chiral restoration so
its density is zero. However due to the determinant interaction the strange
mass decreases at the chiral restoration from 549 MeV to 472 MeV. At still
higher chemical potential the strange quark density becomes non-zero and
strange quark also helps in maintaining charge neutrality. The critical baryon
density when charge neutrality is imposed is however similar to case when
neutrality is not imposed. Specifically ⇢

c

⇠ 2.25⇢0 with charge neutrality
while ⇢

c

⇠ 2.26⇢0 without charge neutrality despite the fact that µ
c

is higher
(µ

c

= 364 MeV) for the charge neutral matter compared when such charge
neutrality condition is not imposed (µ

c

= 335 MeV). This is because the con-
stituent masses at the transition is large (M

u

⇠ 111MeV and M
d

⇠ 87MeV )
for charge neutral case compared to (M

u

⇠ M
d

⇠ 85MeV ) without charge
neutrality condition. For ẽB = 0.1m2

⇡

, at the chiral transition µ
c

= 364MeV
the superconducting gap increases from zero to 69 MeV. As the chemical
potential is further increased the superconducting gap increases to 80 MeV
till µ = µ1 ⇠ 420 MeV where it shows a sudden jump to 106 MeV. This hap-
pens when the gapless modes cease to exist as explained below. As magnetic
field is increased to ẽB = 10m2

⇡

, as may be observed in Fig.6-b, the critical
chemical potential µ

c

for the charge neutral matter decreases to 350 MeV
similar to the case without charge neutrality condition with inverse magnetic
catalysis. The superconducting gap on the other hand becomes smaller. One
can also observe that unlike vanishingly small magnetic field case, the super-
conducting gap increases smoothly with chemical potential from zero initial
value to 73 MeV at µ = µ1 ⇠ 400 MeV where it again jumps to a value of
83 MeV.
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Figure 4.7: Dispersion relation and the occupation number for condensing
quarks at T=0,µ

q

=340 MeV. Fig.7-a shows the dispersion relation for the
condensing quarks for zeroth Landau level. The upper curve is for u quark
and the lower curve corresponds to d quark dispersion relation. Fig. 7-b
shows the occupation number as a function of momentum for ẽB = 10m2

⇡

.
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Gapless modes

In the region between µ
c

and µ1 the system shows gapless mode which we
discuss now in some detail. Without magnetic field this has earlier been seen
for charge neutral matter [150, 151].

As discussed earlier, from the dispersion relations for Landau levels for the
superconducting matter as given in Eq.(4.53) and Eq.(4.54), it is possible to
have zero modes depending upon the values of �µ and �✏

n

. These quantities
are not independent parameters bu are dependent dynamically on the charge
neutrality condition and the gap equations. For charge neutral matter, near
µ

c

, the d-quark number density is larger so that �µ = µ
E

/2 is negative. This
renders !u

n

(p
z

) > 0 for any value of momentum p
z

. On the other hand, for
�µ negative, !d

n

can vanish for some values of p
z

. This defines the fermi
surfaces for the superconducting d quarks. It is easy to show that the excita-
tion energy of nth Landau level !d

n

for the condensing d quarks vanishes for
momenta |p

zn

|=
p

µ2
± � 2nẽB. Here µ±=(µ̄ ±

p
�µ2 ��2)✓(�µ ��). Thus

higher Landau levels can also have gapless modes so long as
p

µ2
± � 2nẽB is

non-negative. Gapless modes occur when the chemical potential di↵erence
�µ is greater than the superconducting gap. In Fig.7-a, we have plotted
the dispersion relation i.e. the excitation energy as a function of momen-
tum for the lowest Landau level for the condensing quarks for µ

q

=340 MeV
and magnetic field ẽB = 10m2

⇡

. The superconducting gap turns out to be
� =35.3 MeV and �µ =-74.5 MeV. The dispersion for the d quarks is given as
!d

0� = !̄0���✏+�µ while the same for u-quark is given as !u

0� = !̄0�+�✏��µ.
The average chemical potential is µ̄= 366 MeV. Far from the pairing region,
|p

z

| ⇠ µ̄ = 366MeV the spectrum looks like usual BCS type dispersion rela-
tion. Of the two excitation energies, !u

0 shows a minimum at p
z

= µ̄ with a
value !u

0�(|p
z

| = µ̄) ⇠ �� �µ = 110 MeV. On the other hand, !d

0� vanishes
at momenta |p

z

| = µ±. In this breached pairing region one has only unpaired
d-quarks and no u-quarks. This can be seen explicitly as below.

The number densities of u quarks participating in condensation is given
by

⇢u

sc

= ⇢ur+⇢ug =
X

n

↵
n

ẽB

(2⇡)2

Z
dp

z


1

2

✓
1 � ⇣̄

n�

!̄
n�

◆�
1 � ✓(�!d

n

)
�

� 1

2

✓
1 � ⇣̄

n+

!̄
n+

◆�

(4.97)

This is because !u

n� = !̄
n���µ+�✏ is always positive as �µ=µ

u�µ

d

2 is negative
and the theta function ✓(�!u

n

) does not contribute. Similarly the density of
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d-quarks participating in condensation is given by

⇢d

sc

= ⇢dr + ⇢dg =
X

n

↵
n

ẽB

(2⇡)2

Z
dp

z


✓(�!d

n

) +
1

2

✓
1 � ⇣̄

n�

!̄
n�

◆�
1 � ✓(�!d

n

)
�

� 1

2

✓
1 � ⇣̄

n+

!̄
n+

◆�

For positive !d

n�, the ✓-function contributions vanishes and the distribution
functions are the BCS distribution function. On the other hand, when |p

z

| 2
[P

n�, P
n+], !d

n

is negative leading to ⇢u

sc

to vanish but for the anti-particle
contribution. In this region of momenta, ⇢d

sc

is unity. We have plotted in
Fig. 7-b the occupation number of the up and down quarks that take part
in condensation as a function of the magnitude of momentum p

z

i.e. the
integrands of Eq.(4.97) and Eq.(4.98) respectively for the lowest Landau
level. It is easy to see from Eq.(4.97) and Eq.(4.98) e.g. for the lowest
Landau level, that except for the interval (µ�, µ+), the distribution function
is like the BCS distribution function. This is shown by the blue long-dashed
line. The u-quark distribution is shown by the red solid line while the d-
quark distribution is shown by the green short dashed line. Indeed, except
for the interval (µ�, µ+), all the three curves overlap with each other. In
the ’gapless’ momentum region, the u-quark occupation vanishes while d-
quark occupation is unity. This leads to fact that the momentum integrated
distribution function for the condensing u and d quarks are not the same for
the gapless region unlike the usual BCS phase. We have plotted the number
densities for the u- and d- quarks in Fig.4.8 which shows a fork structure in
the gapless region.

Gapless modes have been considered earlier for two flavor quark matter
both with[155, 152, 153, 154] and without magnetic field [150, 151]. However
it has been shown[177, 178] that in QCD at zero temperature the gapless 2SC
phases are unstable. This instability manifests itself in imaginary Meissner
mass of some species of the gluons. Finite temperature calculations[179] show
that at some critical value of temperature the instability vanishes. This value
may range from few MeV to tens of MeV. The instability of the gapless phases
indicate that there should be other phases of quark matter breaking trans-
lational invariance e.g. inhomogenous phase of quark matter like crystalline
color superconductivity[180, 181]. One may note that these considerations
apply to the case without magnetic field and may change in presence of strong
magnetic field.

In Fig.4.9, we have plotted the electric and color chemical potentials µ
E

and µ8 to maintain the electric and color charge neutrality conditions given
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Figure 4.8: Number densities of up and down quarks participating in the
superconductivity for ẽB = 0.1m2

⇡

(dashed line) and ẽB = 10m2
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(solid line)

in Eq.(4.87) and Eq.(4.88) as a function of quark chemical potential. For
2+1 flavor matter, strange quarks play an important role in maintaining
charge neutrality. As the the quark chemical potential increases, |µ

E

| in-
creases to maintain charge neutrality. When the chemical potential becomes
large enough for strange quarks to contribute to densities, they also help
in maintaining charge neutrality. This leads to decrease in electron density
or the corresponding chemical potential |µ

E

|. This behavior is reflected in
Fig. 9-a and 9-b as the initial slow rise of the |µ

E

|. However, as |µ
E

| in-
creases, the di↵erence �µ = �µ

E

/2 also increases and at µ1, the condition
�µ > � for gapless modes to exist ceases to be satisfied. At the gapless
to BCS transition point, the u-quark number density increases while that
of d-quarks decreases and both become equal as in the usual BCS pairing
phase. This leads to an increase in the positive electric charge density. To
maintain electrical charge neutrality, the electron density increases at this
point. Therefore gapless to BCS transition is accompanied with an increase
in |µ

E

|. On the other hand, at higher densities when strange quarks start
contributing to the density, it is accompanied with a drop in |µ

E

| as strange
quarks help in maintaining the charge neutrality along with the electrons.
It turns out that for ẽB = 0.1m2

⇡

, the strange quarks densities become non
vanishing after the gapless to BCS transition. This leads to the continuous
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Figure 4.9: Chemical potential µ
E

and µ8 for charge neutral quark matter.
|µ

E

| is plotted as a function of quark chemical potential µ
q

for magnetic field
ẽB = 0.1m2

⇡

(Fig.9-a )and for ẽB = 10m2
⇡

(Fig. 9-b). In Fig.9-a and Fig.9-b
we have also plotted the mass of strange quarks and superconducting gap as
a function of quark chemical potential to highlight the dependence of charge
chemical potential on these two parameters. In the lower two plots, the color
chemical potential µ8 is plotted as a function µ

q

for ẽB = 0.1m2
⇡

(Fig 9-c)
and for ẽB = 10m2

⇡

.
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decrease in the |µ
E

| in the BCS phase as seen in Fig. 9-a. On the other
hand, for larger fields, e.g. ẽB = 10m2

⇡

, chiral transition occurs at a lower
µ

c

due to magnetic catalysis and the strange quark density starts becoming
non vanishing at lower chemical potential. This leads to a decrease in |µ

E

|
at µ = 392MeV as may be seen in Fig.9-b. At µ = 400 MeV, there is the
transition from the gapless to BCS phase and is accompanied with a rise
in |µ

E

| as discussed above. Beyond µ = 400 MeV, |µ
E

| starts decreasing
monotonically as strange quark density increase.

In Fig.9-c and Fig.9-d, we have plotted the color chemical potential µ8.
For weak field case, µ8 is rather small (few MeVs) compared to both the
electric chemical potential as well as the quark chemical potential which are
two orders of magnitude larger. For small field, the di↵erence in densities of
red and green quarks and the blue quarks essentially arises because of the
di↵erence in the distribution functions. This results in a small but finite net
color charge. To maintain color neutrality one needs a small µ8 . On the other
hand, at large magnetic field, the net color charge di↵erence become larger
as the ẽ charges of red and green quarks and that of blue quarks are di↵erent.
This requires a somewhat larger µ8 to maintain color neutrality as seen in
Fig.9-d. In Fig.4.10 we have plotted the number densities of each species for
the charge neutral matter for two di↵erent magnetic fields. As may be clear
from both the plots the electron number densities gets correlated with the
strange quark number densities.

Finally, we discuss the equation of state (EOS) for di↵erent magnetic
fields. In Fig.4.11 we have plotted pressure as a function of energy for
ẽB=0.1m2

⇡

and 10m2
⇡

. One can observe that the EOS become sti↵er with
increase in magnetic field. This can be understood as follows. For µ < µ

c

,
the thermodynamic potential contribution from the field as in Eq. (4.70),
Eq.(4.74), Eq.(4.75) is dominant and decreases with increase in magnetic
field. This leads to a higher pressure for higher magnetic field. As the
chemical potential increases, for µ > µ

c

, the medium contribution become
dominant. As the masses decrease with magnetic field, the medium contri-
bution increases with magnetic field. Moreover, the field contributions also
leads to an increase in pressure. Both these e↵ects make the resulting EOS
sti↵er at higher magnetic field as may be seen in Fig.4.11.

4.5 Summary

We have analyzed here the e↵ect of magnetic field and neutrality conditions
on the chiral as well as diquark condensates within the framework of a three
flavor NJL model. The methodology uses an explicit variational construct
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Figure 4.10: Population of di↵erent species for charge neutral quark matter
for ẽB = 0.1m2
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(Fig. 10-a) and for ẽB = 10m2
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(Fig. 10-b).
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for the ground state in terms of quark-antiquark pairing for all the three
flavors as well as diquark pairing for the light quarks. A nice feature of
the approach is that the four component quark field operator in presence
of magnetic field could get expressed in terms of the ansatz functions that
appears for the description of the ground state. Apart from the method-
ology being di↵erent, we also have new results. Namely, the present inves-
tigations have been done in a three flavor NJL model along with a flavor
mixing six quark determinant interaction at finite temperature and density
and fields within the same framework. In that sense it generalizes the two
flavor superconductivity in presence of magnetic field considered earlier in
Ref.s[152, 153, 154, 35, 36, 30, 146, 147] and Ref.[155]. The gap functions
and the thermal distribution functions could be determined self consistently
for given values of the temperature, the quark chemical potential and the
strength of magnetic field.

For the charge neutral matter the chiral transition is a first order transi-
tion and we observe inverse magnetic catalysis at finite density. The chiral
condensate for strange quark a↵ects the u-d superconductivity through the
flavor mixing determinant interaction. The e↵ective diquark coupling in-
creases in presence of strange quark condensates. On the other hand the
diquark condensates contribute to the mass of the strange quark through
the determinant interaction. Inverse magnetic catalysis is observed for mag-
netic fields upto 19 m2

⇡

. Beyond it magnetic catalysis is observed for chiral
symmetry breaking [176].

At finite densities, the e↵ects of Landau quantization get manifested in
the oscillation of the order parameters similar to the de Hass van Alphen
e↵ect for magnetization in metals. However, in the present case of dense
quark matter, the order parameters, the masses and the superconducting
gap themselves are dependant on the strength of magnetic fields which leads
to a non periodic oscillation of the order parameter.

Imposition of charge neutrality condition for the quark matter leads to
gapless modes even in presence of magnetic field. The superconducting gaps
in gapless modes are smaller compared to the gaps in the BCS phase. The
transition from gapless to BCS phase is a sharp transition. Di↵erence in the
gap in the two phases at this transition decreases with magnetic field. For
charge neutral matter the strange quark plays an important role in main-
taining the charge neutrality. This leads to a depletion of electron density
at higher chemical potential where strange quarks start to contribute to the
densities. The resulting equation of state becomes sti↵er with magnetic field.

This completes our investigation of color superconductivity in three flavor
quark matter with background magnetic field. In the next chapter we study
possible origin of large magnetic fields in neutron stars due to spontaneous
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spin polarization.
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Chapter 5

Spontaneous Spin Polarization
in Quark Matter

5.1 INTRODUCTION

At high densities relative to nuclear saturation density and low temperature
exotic phases of QCD can exist, e.g. two flavor color superconducting phase
(2SC), color-flavor locked phase (CFL), crystalline color superconductor, etc.
Such high densities occur in the interior of neutron stars. Due to very low
temperature and high baryon density, in the interior of a neutron star various
QCD phases may be realized, e.g. deconfined quark matter [182, 183], meson
condensation in hadronic phase[184], two flavor color superconducting phase,
color-flavor locked phase [185, 48, 186] etc.

Further, compact objects like neutron stars can be strongly magnetized.
Observations indicate that the magnetic field strength at the surface of pul-
sars can be of the order of 1012 � 1013 Gauss [187, 120]. Strongly magne-
tized neutron stars (magnetars) may have even stronger magnetic fields ⇠
1015 � 1016 Gauss [121, 122, 123, 124, 125, 126]. Using virial theorem and
comparing the magnetic field energy and gravitational energy, one can es-
timate the physical upper bound on the strength of the magnetic field for
a gravitationally bound star to be of the order 1018 Gauss[187, 120]. For
self bound objects like quark stars this bound can be even higher [129].
The physical origin of the very strong magnetic field in the magnetars re-
quire reconsideration of the common understanding that the magnetic field
of a neutron star is originated from the progenitor star [188]. Since quark
matter can possibly be present at high densities, inside the neutron stars,
presence of quark ferromagnetic phase in high density quark matter has also
been suggested as possible explanation of large magnetic field associated with
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magnetars [37, 189, 38]. As a possible solution to this problem, author in
Ref.[37] examined the possible existence of spin-polarized deconfined quark
matter using one gluon exchange interaction between quarks in Fermi liquid
theory within Hartree-Fock approximation. Taking the idea as proposed in
the Ref.[37], spin polarization in the quark matter has been well explored in
the subsequent literature. In general, a collective spin polarization of charged
quarks can give rise to ferromagnetic nature of quark matter at high density,
hence the spin of the fermions play the crucial role in determining the possi-
bility of ferromagnetic nature of dense quark matter. It has been shown that
in non-relativistic framework there is no possibility of spin polarization in
normal nuclear matter[190]. On the contrary, using relativistic Hartree-Fock
approximation, possibility of spin polarization at asymptotic high density
has been suggested in Ref.[191, 192]. It is important to note that the rela-
tivistic framework may be more suitable than the non-relativistic approach
to understanding the existence of spin polarization. But in any case to ex-
plore spin polarization in quark matter at a high density or baryon chemical
potential a relativistic approach is very natural.

In relativistic framework “spin density” can be expressed in two di↵erent
ways, first by the spatial component of the axial vector (AV) mean field,
 †⌃i ⌘ � ̄�5�i , constructed out of the fermionic field (quarks) and
axial vector combination of Dirac gamma matrices; second by tensor Dirac
bilinear (T)  †�0⌃i ⌘ � ̄�12 . Although AV and T type mean fields are
di↵erent in the massless limit of fermions, it has been shown that they are
equivalent in nonrelativistic approximation [189]. Coexistence of the spin
polarization and color superconductivity has been studied using the AV in-
teraction for quark matter in NJL model [38]. The interplay between the
spin polarization and chiral symmetry breaking at finite density for a single
quark flavor using AV mean field has also been studied within NJL model in
Ref.[39]. In Ref.[39], it has been shown that for one flavor, spin polarization
is possible at finite density and zero temperature provided the ratio of the
couplings of the axial vector channel and the pseudo scalar channel satisfies
some lower bound. It has been argued in Ref.[39] that due to the interplay
between spin polarization and chiral symmetry for a certain value of chem-
ical potential, spin polarization appears due to the large dynamical quark
masses generated by spontaneous chiral symmetry breaking. Interestingly it
was also shown that spin polarization plays an important role in changing
the value of the dynamical mass and at a very high density, both dynami-
cal quark mass and spin polarization vanish in the chiral symmetric phase.
Although in Ref.[37] author introduced the idea of quark spin polarization
using one gluon exchange interaction, in the NJL model studies, AV mean
field has been used. Due to the Fierz transformation, one can get AV channel
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interaction between quarks from one gluon exchange interaction, but the ten-
sor Dirac bilinear representation of “spin density” operator does not appear
in the Fierz transformation of the one gluon exchange interaction. Hence at
asymptotically high densities where one gluon exchange interaction in per-
turbative QCD is applicable, spin polarization cannot be studied using the T
channel interaction. But for moderate densities near chiral phase transition
density perturbative QCD is not applicable and one can use QCD inspired
low energy e↵ective models e.g. NJL model. NJL model is not directly re-
lated to perturbative one gluon exchange interaction. In this model AV or T
channel interactions are not written keeping in mind the perturbative nature
of QCD and some nonperturbative e↵ects can give rise to tensor channel
interaction. Hence spin polarization in the tensor channel, which can be dif-
ferent from the AV channel can be studied within the NJL model. In fact,
the tensor channel opens up a completely di↵erent point of view in looking
into the spin polarization problem of quark matter at moderate densities e.g.
in two flavour NJL model spin-polarized phase can be shown to be present in
the chiral restored phase where the dynamical quark mass is zero [40, 193].
This result is di↵erent than the result obtained in Ref.[39], where spin po-
larization is not present in chiral restored phase. Since the manifestation of
the AV and T channel interaction is di↵erent, the interplay between the AV
and T type spin-polarized phases becomes interesting to study along with
the other phases expected to arise in high baryon density region of the QCD
phase diagram [38, 194, 39, 40, 195, 196, 197].

In this chapter we discuss the interplay between the spin polarization
condensate (h ̄⌃i i) and the scalar chiral condensate (h ̄ i) in (2+1) fla-
vor NJL model using only tensor(T) type interaction for spin polarization.
Most of the earlier works used some simplified approximation to study the
interplay between spin polarization and other high density phases, which in-
cludes single flavor NJL model [39], SU(2) flavor NJL model [40, 195], SU(3)
flavor NJL model [198] with zero current quark mass etc. However, for a
more realistic situation one should consider (2+1) flavor NJL model with
di↵erent current quark mass of strange and non-strange quarks. This apart,
the structure of ferromagnetic condensation for (2+1) flavor NJL model is
qualitatively di↵erent from that of two flavor NJL model as inherently two
di↵erent kinds of spin polarizations are possible which are associated with the
diagonal generators of the SU(3) flavour group. Behaviour of these spin polar-
ization condensates as function of temperature and quark chemical potential
(µ) has been discussed extensively. Since the spin polarization condensates
are also related to the quark-antiquark scalar condensates, it is evident that
the spin polarization condensates a↵ect the constituent mass of the quarks.
In this work spin polarization condensates due to the tensor type interaction
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appear in the chiral symmetry restored phase and the quark masses, specif-
ically strange quark masses, are strongly a↵ected by the spin polarization
condensates in the chiral symmetric phase.

This chapter is organized as follows. We first discuss the formalism of
2+1 flavour NJL model in the presence of tensor type interactions in section
4.1. In section 4.2 derivation of the thermodynamic potential is discussed
in a mean field approach. Once the thermodynamic potential is derived one
can get the gap equations to solve for the condensates. After the formalism
important results and the corresponding discussion are given in 4.3. Finally
in section 4.4 we summarize the work on spontaneous spin polarization.

5.2 Formalism

In order to study the spin polarization due to tensor channel interaction for
realistic (2 + 1) flavor and SU(3) color quarks we start with the following
NJL Lagrangian density [194, 49],

L =  ̄
�
i/@ � m̂

�
 + L

sym

+ L
det

+ L
tensor

+ µ ̄�0 , (5.1)

where  = (u, d, s)T is the three flavor quark field and the diagonal current
quark matrix is m̂ = diag

f

(m
u

, m
d

, m
s

). In this work we have assumed that
due to isospin symmetry in the non strange quark sector m

u

= m
d

. Strange
quark mass m

s

is di↵erent from the other light quark masses. Di↵erence be-
tween the strange and non strange quark masses explicitly breaks the SU(3)
flavor symmetry. µ is the quark chemical potential. In literature di↵erent
chemical potential for the strange and nonstrange quarks have been consid-
ered, but the phase diagram has no qualitative di↵erence. In this case we are
assuming that the quark chemical potential of the strange and nonstrange
quarks are same. Following the representations of di↵erent interaction terms
as given in Ref.[49], in general one considers,

L
sym

= g
a=8X

a=0

 �
 ̄�

a

 
�2

+
�
 ̄i�5�a

 
�2
�
. (5.2)

This term has been constructed keeping in mind the U(3)
L

⇥ U(3)
R

chiral
symmetry for three flavor case and it can be generalized to any number of
flavours N

f

. The interaction term L
sym

represents four point interaction,
where �0 =

p
2/3I

f

and �
a

, a = 1, ....(N2
f

�1) are the generators of SU(N
f

).
In the present case I

f

is 3 ⇥ 3 identity matrix and �
a

for a = 1, ...8 are the
Gell-Mann matrices.
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The interaction term L
det

in Eqn.(5.1) is ‘t Hooft determinant interaction
term. This term breaks U(1) axial symmetry explicitly and also successfully
describes the nonet meson properties[199, 56, 200]. It can be expressed as,

L
det

= �Kdet
f

[ ̄(1 + �5) + h.c] (5.3)

In this interaction term determinant is taken in the flavour space. This
term represents maximally flavour-mixing 2N

f

point interaction for N
f

quark
flavours. For two flavour NJL model this term does not introduce any new
dynamics because for two flavour case it gives four Fermi interaction which
is already there. But for three or more flavours this term generates new type
of interaction, e.g. for three flavour case it gives rise to six point interaction
term. The tensor interaction which is responsible for spin polarization is
given as [194, 198],

L
tensor

=
G

T

2

X

a=3,8

�
 ̄⌃

z

�
a

 
�2

, ⌃
z

=

✓
�

z

0
0 �

z

◆
, (5.4)

where �
z

is the third Pauli matrix. Here we have assumed polarization along
the z-axis. Note that L

tensor

is not invariant under chiral symmetry, rather
one requires to add a similar term with �5 matrix to make the tensor inter-
action symmetric under chiral symmetry. Since we are not considering any
condensation involving �5, we have omitted the term which ensures chiral
invariance for the tensor interaction. Thus the total Lagrangian with finite
chemical potential becomes,

L =  ̄
�
i/@ � m̂

�
 + g

a=8X

a=0

�
 ̄�

a

 
�2 � Kdet

f

[ ̄(1 + �5) + h.c]

+
X

a=3,8

G
T

2

�
 ̄⌃

z

�
a

 
�2

+ µ ̄�0 .

(5.5)

In the mean field approximation expanding the operators around their
expectation values and neglecting higher order fluctuations, we obtain,

(ūu)2 ' 2hūuiūu � hūui2 = 2�
ud

ūu � �2
ud�

d̄d
�2 ' 2hd̄did̄d � hd̄di2 = 2�

ud

d̄d � �2
ud

(s̄s)2 ' 2hs̄sis̄s � hs̄si2 = 2�
s

s̄s � �2
s�

 ̄⌃
z

�3 
�2 ' 2h ̄⌃

z

�3 i
�
 ̄⌃

z

�3 
�

� h ̄⌃
z

�3 i2 = 2F3

�
 ̄⌃

z

�3 
�

� F 2
3�

 ̄⌃
z

�8 
�2 ' 2h ̄⌃

z

�8 i
�
 ̄⌃

z

�8 
�

� h ̄⌃
z

�8 i2 = 2F8

�
 ̄⌃

z

�8 
�

� F 2
8 ,
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where the chiral condensates or the quark-antiquark condensates are
hūui = hd̄di ⌘ �

ud

, hs̄si ⌘ �
s

and the spin polarization condensates are
F3 = h ̄⌃

z

�3 i and F8 = h ̄⌃
z

�8 i. We can write the mean field Lagrangian
as,

L =  ̄
⇣
i/@ � M̂ + G

T

F3⌃z

�3 + G
T

F8⌃z

�8 + µ�0
⌘
 � 2g

�
�2

ud

+ �2
ud

+ �2
s

�

+ 4K�2
ud

�
s

� G
T

2
F 2

3 � G
T

2
F 2

8 ,

where, M̂ ⌘ diag(M
u

, M
d

, M
s

), with e↵ective masses,

M
u

=m
u

� 4g�
ud

+ 2K�
ud

�
s

M
d

=m
d

� 4g�
ud

+ 2K�
ud

�
s

M
s

=m
s

� 4g�
s

+ 2K�2
ud

.

For a given system at finite temperature and finite chemical potential
most important quantity for the understanding of the thermodynamic be-
haviour or the phase structure, is the thermodynamic potential. Once the
thermodynamic potential for this model is known, thermodynamic quantities
can be extracted using Maxwell relations. The thermodynamic potential for
the Lagrangian as given in Eqn.(5.6) in the grand canonical ensemble at a
finite temperature and finite chemical potential can be given as:

⌦(T, µ, �
ud

, �
s

, F3, F8) = � N
c
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where N
c

= 3 is the number of colors, transverse momentum p
T

=
p

p2
x

+ p2
y

and the single particle energies are,

E
u+ =

s

p2
z

+

✓q
p2

T

+ M2
u

+ G
T

✓
F3 +

F8p
3

◆◆2

E
u� =

s

p2
z

+

✓q
p2

T

+ M2
u

� G
T

✓
F3 +

F8p
3

◆◆2

E
d+ =

s

p2
z

+

✓q
p2

T

+ M2
d

+ G
T

✓
F3 � F8p

3

◆◆2

E
d� =

s

p2
z

+

✓q
p2

T

+ M2
d

� G
T

✓
F3 � F8p

3

◆◆2

E
s+ =

s

p2
z

+

✓q
p2

T

+ M2
s

+ G
T

2F8p
3

◆2

E
s� =

s

p2
z

+

✓q
p2

T

+ M2
s

� G
T

2F8p
3

◆2

Thermodynamic behaviour of the condensates can be found by solving
the gap equations, which can be found from the stationary conditions (for
details see Appendix),

@⌦

@�
ud

=
@⌦

@�
s

=
@⌦

@F3
=

@⌦

@F8
= 0 (5.6)

Gap equations can have several roots, but the solution with the lowest value
of thermodynamic potential is taken as the stable solution.

NJL model Lagrangian in (3+1) dimension has operators which have mass
dimension more than four, thus it can shown to be a non-renormalizable the-
ory [201]. Thus the divergence coming from the three momentum integral
of the vacuum part can not be removed by the renormalization prescrip-
tions. The model predictions inevitably depend on the regularization proce-
dures and parameter dependence in each regularization method has been re-
ported in Ref.[202, 203]. In this work we have considered the most frequently
used 3D momentum cuto↵ regulation scheme to regularize the divergence in
Eq.(5.6) for thermodynamic potential.
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Figure 5.1: Constituent quark mass as a function of quark chemical poten-
tial at zero temperature in the presence and absence of spin polarization
condensation. Red-solid line and green-dotted line represent non strange
and strange quark mass in the presence of spin polarization condensate F3.
Blue-dashed line and black-dotted line represents non strange and strange
quark constituent mass in the standard 2+1 flavor NJL model in the absence
of any spin polarization condensate. Sharp jump in the value of M

u

and
M

s

near µ = 0.360 GeV indicates the first order chiral phase transition. In
this case we have considered the tensor interaction coupling to be G

T

= 2g.
Comparing green and the black lines for strange quark it is clear that non
zero value of spin condensate a↵ects strange quark mass. However, the non
strange quark masses are almost una↵ected due to the presence of spin po-
larization condensate. For G

T

= 2g non zero value of F3 appears only near
0.480 GeV which is away from the chiral phase transition critical chemical
potential, hence in this case the chiral phase transition is una↵ected by the
presence of spin polarization.
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Figure 5.2: The figure shows the contour maps of the thermodynamics po-
tential with the set of parameters in table(5.1) and G

T

= 2g at T = 0.0 GeV
for di↵erent values of µ. The darker region in the plots show the lower value
of the thermodynamic potential. The horizontal and vertical axes represents
the non strange quark condensate �

ud

and strange quark condensate �
s

re-
spectively. Existence of almost degenerate vacuum is clear from the figure
near µ = 0.360 GeV. Hence the chiral phase transition near µ = 0.360 is
a first order phase transition. Spin polarization condensation F3 has no ef-
fect on the chiral phase transition. As we have shown in Fig.(5.3) non zero
value of F3 occurs near µ = 0.480 GeV at T = 0.0GeV for G

T

= 2g, which
is far away from the critical quark chemical potential for the chiral phase
transition.
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In the study of spin polarization in NJL model, the parameter which plays
the crucial role is the tensor channel interaction G

T

. If one considers only
vector current interaction, e.g. one gluon exchange interaction in perturba-
tive QCD processes, then such a tensor interaction can not be generated by
Fierz transformation. However, such a tensor interaction can be generated
from two gluon exchange diagrams [194]. It is relevant to point out that one
can also get tensor channel interaction by Fierz transformation from scalar
and pseudo scalar interaction [40],

g


( ̄ )2 + ( ̄i�5�a

 )2

�
=

g

4


( ̄ )2 � 1

2
( ̄�µ�⌫�

a

 )2 + .....

�
, (5.7)

which gives |g/G
T

| = 2. In the present investigation we can take G
T

as a free
parameter to study the inter relationship between scalar and tensor conden-
sates. It may also be noted that the parameters g and G

T

may be consid-
ered independently to derive mesonic properties [204, 205, 206]. It has been
shown that SU(2) NJL model with both positive and negative tensor cou-
plings can describe the phenomenology of mesons. Indeed SU(2) Lagrangian
has been considered with vector, axial vector and tensor interaction in Ref.
[206] where, the gap equations are solved in the usual Hartree approximation
while mesons are described in the random phase approximation [206]. In this
work we have only considered G

T

as a free parameter with positive values
only i.e. G

T

and g are of same sign. In the literature various values have been
considered e.g. G

T

= 2g, 1.5g [194] as well as G
T

= 4.0g [206]. We have also
obtained our results taking di↵erent values of G

T

. Results with some specific
parameter sets have been mentioned in the result and discussion section.

5.3 Results and Discussions

We begin the discussion with the parameterization of the model. The param-
eters to be fixed are the three current quark masses (m

u

, m
d

, m
s

), the scalar
coupling (g), the determinant coupling K, the tensor coupling(G

T

) and the
three momentum cut-o↵ ⇤ to regularize divergent integrals. Except for the
tensor coupling G

T

, there are several parameter sets available for NJL model
[49]. These fits are obtained using low energy hadronic properties such as
pion decay constant and masses of pion, kaon and ⌘0 [56, 57, 58]. The de-
terminant interaction is important as it breaks U(1)

A

symmetry and gives
correct ⌘ mass. One may note that there is discrepancy in determination
of the determinant coupling K. For example in Ref. [56] the value of the
coupling di↵ers by as much as 30 percent compared to value used in present
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work. This discrepancy arises due to di↵erence in treatment of ⌘0 mesons
with a high mass [49]. In fact, this leads to a nonphysical imaginary part
for the corresponding polarization diagram in the ⌘0 meson channel. This is
unavoidable because NJL is not confining and is unrealistic in this context.
Within the above mentioned limitations of the model and the uncertainty in
the value of the determinant coupling, we proceed with the present parameter
set as given in Table (5.1) [49].

Parameters and cou-
plings

Value

Three momentum cuto↵ (⇤) ⇤ = 602.3 ⇥ 10�3

(GeV)
u quark mass (m

u

) m
u

= 5.5 ⇥ 10�3

(GeV)
d quark mass (m

d

) m
d

= 5.5⇥10�3 (GeV)
s quark mass (m

s

) m
s

= 140.7 ⇥ 10�3

(GeV)
Scalar coupling (g) g = 1.835/⇤2

Determinant interaction
(K)

K = 12.36/⇤5

Table 5.1: Parameter set considered in this work for 2+1 NJL model apart
from the tensor coupling G

T

.

Let us first note that there are four condensates, �
ud

, �
s

, F3 ⌘ hū⌃
z

ui �
hd̄⌃

z

di and F8 ⌘ 1p
3

�
hū⌃

z

ui + hd̄⌃
z

di � 2hs̄⌃
z

si
�
, to be determined from

the solution of the gap Eq.(5.6). However for simplicity we shall first consider
F8 = F

3p
3
, so that the spin polarization condensate for d quarks and s quarks

are treated at the same footing i.e. hd̄⌃
z

di ⌘ hs̄⌃
z

si [198]. The results in
such a scenario is determined below.

5.3.1 Results with F
8

= F3p
3

Chiral phase transition and the behavior of quark masses for G
T

=
2g at zero temperature

Let us consider the thermodynamic potential at zero temperature as a func-
tion of quark chemical potential (µ) along with the condition F8 = F3/

p
3

[198]. For quantitative analysis we consider the tensor coupling G
T

= 2g.
Fig.(5.1) shows the behavior of the constituent quark masses as a function
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of quark chemical potential at zero temperature in the presence as well as in
the absence of spin polarization condensate F3.

From Fig.(5.1) it is clear that the vacuum masses (T = 0, µ = 0), for the
non strange quarks are 0.368 GeV and the strange quark mass is 0.549 GeV.
The vacuum masses for the constituent quarks remain the same as the case
with G

T

= 0, as the tensor condensates appear only at large chemical poten-
tial. This is chiral symmetry broken phase where constituent quark masses
are generated dynamically. Close to µ = µ

c

= 0.360 GeV there is sudden
drop in the masses of u, d quarks M

u

= M
d

. Because of the flavour mixing
due to the determinant interaction the strange quark mass also changes at
µ = µ

c

. This sudden change in the constituent mass indicates a first-order
phase transitions. It is also expected that chiral phase transition should oc-
cur in the 2+1 flavor NJL model near µ = 0.360 GeV at zero temperature
in the absence of spin polarization. Using the gap equations it can be shown
that at zero temperature and zero chemical potential F3 = 0 is a solution.
It turns out that at zero temperature and zero chemical potential F3 = 0 is
also a stable solution, hence F3 does not a↵ect the constituent quark masses
at low chemical potential at zero temperature. As the chemical potential is
increased beyond the chiral restoration for the light quarks, it is observed
that the spin polarized condensate develops for a range of chemical poten-
tial. In particular, as shown in Fig. (5.3) for zero temperature, a non zero F3

starts to develop at µ ' 0.480 GeV and increases slightly with µ, becoming a
maximum around µ ' 0.510 GeV, beyond which it decreases and eventually
vanishes at µ ' 0.600 GeV. Therefore we observe here in Fig.(5.1) that the
chiral transition for the light quarks is not a↵ected by the spin polarization
condensates as the latter exist at µ larger than µ

c

for G
T

= 2g. It is im-
portant to mention that both  ̄ and  ̄�µ�⌫ break the chiral symmetry,
but their thermodynamic behavior is quite opposite. At zero temperature
and zero chemical potential non zero value of scalar condensation is thermo-
dynamically stable, while the tensor condensate vanishes. However at high
chemical potential when the tensor condensate takes non zero value the chiral
condensate vanishes but for small current quark mass. The non invariance
of the tensor interaction under chiral symmetry can be manifested in the
change of quark masses even if the scalar condensate vanishes for the light
quarks.

We can also understand the behavior of the constituent quark masses
M

u

= M
d

and M
s

in the presence and absence of the spin polarization con-
densation by looking into the behaviour of thermodynamic potential as a
function of quark-antiquark condensates �

ud

, �
s

and spin polarization con-
densate F3 for di↵erent values of temperature (T) and chemical potential
µ. Contour plots of thermodynamic potential in the �

ud

� �
s

plane for dif-
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ferent value of chemical potential (µ) at zero temperature have been shown
in Fig.(5.2) with the set of parameters given in table(5.1) and G

T

= 2g.
The darker regions in the plots show the lower value of the thermodynamic
potential. The horizontal and vertical axes represent the nonstrange quark-
antiquark condensate �

ud

and strange quark-antiquark condensate �
s

. As
may be observed in Fig.(5.2), for zero temperature and µ < µ

c

⇠ 0.360 GeV
minimization of the thermodynamic potential gives us a unique nonzero value
of the quark-antiquark condensate. This nonzero value of both �

ud

and �
s

indicates chiral symmetry broken phase at zero temperature and µ  0.360
GeV. At µ = 0.360 GeV one can see the existence of almost degenerate
vacua in the thermodynamic potential one for �

ud

⇠ �0.015 GeV3 and the
other at �

ud

⇠ 0.0 GeV3. As the chemical potential is increased this degen-
eracy is lifted and the vacuum with �

ud

is close to zero has the minimum
value for the thermodynamic potential. At µ = 0.4 GeV the value of �

ud

as well as M
u

is very small and is close to the current quark mass value.
This indicates that at chemical potential larger than µ

c

= 0.360GeV chiral
symmetry is restored. This chiral symmetry restoration is partial in nature
in the sense that while the scalar condensate �

ud

' 0, but for the current
quark masses (m

u

, m
d

6= 0), the strange condensate �
s

is rather large as can
be seen in Fig.(5.1) and Fig.(5.2) . As µ is further increased beyond µ

c

, �
s

also approaches its (approximate) chiral limit continuously. Degeneracy in
the thermodynamic potential and a sharp jump in the order parameter (�

ud

)
indicates first order phase transition. Hence the chiral transition at zero
temperature is of first order in nature. This first order nature of the chiral
phase transition can also be seen at finite temperature, however, at relatively
larger temperature chiral phase transition does not remain as a first order
phase transition. In fact, the end of the first order transition to the crossover
defines the critical end point. At higher temperatures, beyond the critical
temperature quark-antiquark condensate changes smoothly across the critical
chemical potential.

When we take G
T

= 2g, the value of F3 is not large enough near µ = 0.360
GeV and the chiral phase transition is una↵ected by the spin polarization.
Since quark-antiquark condensates �

ud

and �
s

are intimately connected with
the F3, non zero value of F3 can change the quark dynamical mass (see
Fig.(5.1)). Strange quark mass is more a↵ected by the presence of the spin
polarization condensate (F3), because dynamical mass of u quark becomes
very small just after the chiral phase transition, however, strange quark has a
substantial mass even after the chiral phase transition. Similar to the result
at zero temperature, for G

T

= 2g chiral phase transition is almost una↵ected
in the presence of spin polarization at finite temperature also.
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Behavior of F3 for G
T

= 2g

Next let us focus our attention to the thermodynamic behavior of F3. Fig.(5.3)
shows the contour plots of the thermodynamic potential in �

s

� F3 plane
at zero temperature with increasing value of the chemical potential (µ) for
G

T

= 2g. As before the darkest regions in the contour plots show the global
minimum of the thermodynamic potential and the corresponding values of
�

s

and F3 are correct condensation value. It is clear from the Fig.(5.3) that
spin polarization is possible within the small range of chemical potential
µ ' 0.480 � 0.570 GeV at zero temperature. From this figure it is clear that
with increase in chemical potential �

s

decreases. In this work, we have kept
the value of µ  ⇤, because ⇤ is the cut-o↵ of the theory. When the chem-
ical potential is close to 0.6 GeV both �

s

and F3 becomes zero. For large
chemical potentials(µ > 570 MeV), spin polarization condensate completely
melts along with the other condensates. Presence of spin polarization con-
densation can a↵ect the QCD phase diagram in many di↵erent ways. As we
have already mentioned that the spin polarization condensate coming from
the tensor interaction also breaks the chiral symmetry, an obvious e↵ect of
a large value of spin polarization condensate should be seen in the chiral
phase transition. We have also observed that F3 decreases with increasing
temperature and vanishes at few tens of MeV. Therefore such condensates
do not a↵ect the critical end point.

Quark masses and ferromagnetic condensate for larger tensor cou-
pling

The left plot and the right plot in Fig.(5.4) are for quark masses and fer-
romagnetic condensate respectively, for the tensor coupling G

T

= 2.5g and
G

T

= 2.8g. One may note that for larger tensor coupling the u and d quark
masses are not a↵ected but the strange quark mass is significantly a↵ected.
Ferromagnetic condensate is stronger for larger value of tensor coupling and
survives for a longer range of quark chemical potential. It is important to
mention that for tensor couplings greater than G

T

= 3g the chiral transition
itself is a↵ected. However the requirement of baryon matter stability places
a upper bound on the value of tensor coupling.

Finite temperature e↵ect on the spin polarization condensate F3

for G
T

= 2g

After demonstrating the behavior of the spin polarization condensate as a
function of chemical potential at zero temperature for di↵erent values of the
tensor coupling, let us look into the temperature behavior of F3 for a fixed
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value of G
T

= 2g. Temperature behavior of spin polarization condensate as
well as �

s

is shown in Fig.(5.5). Fig.(5.5) shows the contour plots of thermo-
dynamic potential in the plane of �

s

� F3 for di↵erent values of temperature
and chemical potential. Each row shows the behavior of thermodynamic po-
tential as a function of increasing chemical potential for a fixed temperature.
On the other hand, each column shows the behavior of the thermodynamic
potential as a function of temperature for a fixed value of chemical potential.
From the first two row in Fig.(5.5), for temperature T = 0.02 GeV and 0.04
GeV, it is clear that as the chemical potential increases non zero value of spin
polarization develops. It attains a maximum value at an intermediate value
of the chemical potential and as the chemical potential becomes very high F3

becomes zero. However, each column shows that with increasing temperature
the formation of the spin polarization becomes di�cult and the maximum
value of F3 also decreases with temperature. The third row in Fig.(5.5) shows
that when the temperature is T = 0.06 GeV, value of the spin polarization
condensate F3 is almost zero. Hence one can conclude that as the tempera-
ture increases the range of chemical potential within which spin polarization
can exist decreases. Further there exists a temperature beyond which spin
polarization cannot occur irrespective of the value of chemical potential for a
given value of G

T

. Also note that with increase in temperature and chemical
potential strange quark condensate (�

s

) decreases.

Threshold coupling for existence of F3

The existence of spin polarization inevitably depends on the value of G
T

. G
T

determines the strength of the spin polarization condensation. The depen-
dence of F3 on the tensor coupling has been shown in the Fig(5.6). Fig.(5.6)
shows the thermodynamic potential in �

s

� F3 plane as a function of chem-
ical potential for three di↵erent values of tensor couplings G

T

= 2g, 1.8g
and 1.5g at zero temperature. Along each row in Fig.(5.6) the contours of
thermodynamic potential have been shown for di↵erent values of the chem-
ical potential but keeping G

T

fixed. On the other hand in each column of
Fig.(5.6) contours of thermodynamic potential have been shown for various
values the tensor coupling constant G

T

for a given chemical potential. Value
of the spin polarization condensate decreases with decreasing value of G

T

.
When G

T

= 2g, F3 has a substantial non zero value at zero temperature
and µ = 0.510 GeV, however for G

T

= 1.8g this value starts to decrease and
for G

T

= 1.5g spin polarization condensate F3 almost vanishes. This result
for zero temperature can be easily extended to a non zero temperature. For
finite temperature one requires a larger value of G

T

, for the spin polarization
to exist. As G

T

increases, the threshold µ above which F3 starts becoming
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nonvanishing decreases, and the critical µ above which F3 vanishes increases.
Both these behavior lead to a larger range of µ that supports a non vanishing
F3 as G

T

increases. Further the magnitude of F3 increases with G
T

.

5.3.2 Results for independent F
3

, F
8

We have already discussed the variation of F3 and F8 with chemical po-
tential where we have considered F8 = F3/

p
3 in the thermodynamic po-

tential. However for more general situation we have to consider F3 and
F8 simultaneously. In Fig.(5.7)(a), Fig.(5.7)(b), Fig.(5.7)(c) we have shown
the variation of F3 and F8 with chemical potential at zero temperature for
G

T

= 2g, 2.5g, 2.8g respectively. It is clear from the Fig.(5.7) that non zero
F3 appears at relatively smaller µ than F8. Since F8 is associated with strange
quark-antiquark condensate it survives even at larger chemical potential rel-
ative to the F3 condensate. It is also important to notice that with larger
tensor coupling spin condensates appear at relatively smaller quark chemical
potential.

5.3.3 Magnetic field due to spin polarization

The spin polarization condensate implies a alignment of spin of quarks. This
will lead to a magnetic field due to quark magnetic moment. We estimate
the strength of the e↵ective magnetic field (B

eff

) due to spin polarization
condensate as [40]:

µ̄
q

B
eff

= G
T

F, µ̄
q

=
µ

u

+ µ
d

2
, µ̄

u

=
(2

3e)

2m
q

, µ̄
d

=
(�1

3e)

2m
q

(5.8)

Here F denotes the spin polarization condensate and µ̄
q

is the average mag-
netic moment of the light quarks. For an estimation of B

eff

we take F ⇠
0.018 GeV3 (at quark chemical potential ⇠ 510 MeV) and G

T

= 2g. Using
these value we get eB

eff

⇠ m2
⇡

or 1018 Gauss. The value of the magnetic
field on the surface of the magnetars is of the order of 1015 Gauss, but in
the center the strength of the magnetic field can be higher. It is interesting
to note that even this crude estimation of the magnetic field due to the spin
polarized phase of the deconfined quark matter leads to a correct order of
magnitude estimation of the magnetic field in the core of the magnetars.
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5.4 Summary

In this chapter, we have considered the 2+1 flavor NJL model in the presence
of tensor interaction with non zero current quark masses. The original idea
of the presence of spin polarization in quark liquid was motivated considering
one gluon exchange interactions in perturbative QCD processes [37]. Ferro-
magnetic quark matter can arise due to both axial vector and tensor type
interaction. Although the axial vector type interaction can be generated from
the one gluon exchange QCD interaction by Fierz transformation, the tensor
type interactions cannot be generated using Fierz transformation. Thus at
very high densities where perturbative QCD processes are relevant, tensor
type of interaction will not be suitable to study spin polarization in quark
matter. More importantly at moderate densities close to the chiral phase
transition one expects nonperturbative e↵ects to play an important role. In
the present investigation within the ambit of NJL model applied to moder-
ate densities, we have considered only the tensor type four point interaction.
We might note here that the coupling constant of the tensor interaction is
related to the scalar and pseudo scalar channel. However in general, this
tensor coupling constant can be independent. We take the coupling constant
of the tensor interaction G

T

as a parameter of the model. We have taken
various values of the tensor couplings G

T

, e.g. G
T

= 2.0g and lower as well
as relatively larger values of G

T

, e.g. G
T

= 2.5g, 2.8g etc.

For 2+1 flavor NJL model, tensor type interaction at the mean field level
leads to two types of spin polarization condensates, F3 = h ̄⌃

z

�3 i and
F8 = h ̄⌃

z

�8 i. Since we have various condensates in 2+1 flavor NJL model
in the presence of tensor interaction we take a rather simplified approxima-
tion, where F3 and F8 are not independent rather F8 = F3/

p
3. One may

note that in general F3 and F8 are independent due to the fact that F8 is
associated with the strange quark spin polarization condensate, on the other
hand F3 contains only u, d quark spin polarization condensates. Therefore
we have also considered the case where F3 and F8 are treated independently.
Generically spin polarization for moderate tensor coupling (e.g. G

T

= 2g)
does not appear at zero temperature and zero chemical potential, rather it
appears at high µ in the chiral restored phase. At large chemical potential
and small temperature the generic feature of such spin polarized condensate
lies in a↵ecting the strange quark mass rather than the non-strange quark
masses for moderate tensor coupling. Such spin polarized condensate van-
ishes for temperatures of the order of few tens of MeV and thus can be
relevant for neutron stars and proto neutron stars. We also find that there is
a threshold tensor coupling, below which the spin polarization condensates
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do not develop.

Unlike superconducting diquark condensate, the spin polarization conden-
sate is not a monotonic function of chemical potential and as the chemical
potential is increased the magnitude becomes a maximum beyond which it
vanishes when µ is increased further. The range of chemical potential for
which such condensate exists as well as the magnitude of the condensate, in-
creases with the strength of the tensor coupling. We estimate the magnitude
of the magnetic field corresponding to the ferromagnetic condensate in high
density quark matter to be of the order of ⇠ m2

⇡

⇠ 1018 Gauss. It is impor-
tant to mention that although spin polarization condensate was thought as
a source of magnetic field in magnetars, magnetic field can also be present
in the neutron stars originated from the progenitor star. External magnetic
field can a↵ect the formation of spin condensates. In this context it has been
shown recently that one can have non vanishing spin polarization condensate
for quark matter in the presence of magnetic field [207].

This concludes the discussion on spontaneous spin polarization. In the
next section we give a summary of this thesis and give some future directions.
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Figure 5.3: This figure shows the contour plots of the thermodynamic po-
tential in �

s

� F3 plane at zero temperature with di↵erent values of quark
chemical potentials (µ) for the case of G

T

= 2g and F8 = F3/
p

3. It is clear
from the plots that non zero spin polarization appears at µ = 0.480 GeV,
reaches its maximum value near µ = 0.510 GeV and it completely melts near
µ = 0.600 GeV.
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Figure 5.4: Left Plot: Dependence of constituent quark mass on the quark
chemical potential at zero temperature in the presence as well as in the ab-
sence of spin polarization condensation for di↵erent values of tensor couplings
for F8 = F3/

p
3. Sharp jump in the value of M

u

and M
s

near µ = 0.360
GeV in both plots indicates the first order chiral phase transition which is
expected for standard 2+1 flavour NJL model. Right plot: Variation of spin
polarization condensate with quark chemical potential at zero temperature
with di↵erent values of tensor couplings G

T

= 2.5g and G
T

= 2.8g. For
larger tensor coupling tensor condensate form at relatively smaller chemical
potential and it remains non zero for a wide range of chemical potential.
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Figure 5.5: This figure shows the contour plots of the thermodynamic poten-
tial in �

s

� F3 plane for finite temperature (T) and finite chemical potential
(µ) with G

T

= 2g and F8 = F3/
p

3. Along each row as we move from left to
the right, temperature has been kept fixed but µ is increasing, similarly along
each column µ has been kept fixed with T increasing. Darker regions in these
contour plots show the global minimum of the thermodynamic potential. It
is clear from the plots that at small temperature non zero value of the spin
polarization starts to appear at smaller value of the chemical potential and
it also melts at higher chemical potential. Thus for smaller temperature the
domain of µ where one can get non zero spin polarization is larger. This
domain of existence for the spin polarization condensate becomes smaller
with increasing temperature T for a given value of G

T

. In fact when the
temperature is T = 0.06 GeV we cannot get spin polarization for any value
of µ.
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Figure 5.6: This figure shows the contour plots of the thermodynamic poten-
tial in �

s

� F3 plane for zero temperature (T) and finite chemical potential
(µ) with di↵erent values of tensor coupling G

T

and F8 = F3/
p

3. In the first,
second and the third row the tensor couplings are taken as G

T

= 2g, 1.8g and
1.5g respectively. Along each row temperature and G

T

has been kept fixed
but µ is increasing, similarly along each column µ and T has been kept fixed
with G

T

decreasing. Darker regions in these contour plots shows the global
minimum of the thermodynamic potential. It is clear from the plots that at
zero temperature, for larger value of tensor coupling spin polarization can
exist for a relatively wide range of chemical potential. With the decreasing
value of tensor coupling e.g. for G

T

= 1.5g spin polarization almost van-
ishes. This result can be easily extended to finite temperature. For non zero
temperature existence of spin polarization requires lager value of G

T

.
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Figure 5.7: Plot (a), (b) and (c) show the variation of F3 (red solid line)
and F8 (blue dotted line) with chemical potential where F3 and F8 consid-
ered simultaneously in the thermodynamic potential at zero temperature for
G

T

= 2g, 2.5g, 2.8g respectively. It is clear from the Fig.(5.7) that non zero
F3 appears at relatively smaller µ than F8. Since F8 is associated with strange
quark-antiquark condensate it survives even at larger chemical potential rel-
ative to the F3 condensate. It is also important to notice that with larger
tensor coupling spin condensates appear at relatively smaller quark chemical
potential.
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Chapter 6

Summary and Conclusions

Quantum Chromodynamics has been successfully applied in explaining
high energy collisions involving hadrons. This is possible because at high en-
ergies the QCD coupling is weak and perturbative methods of quantum field
theory can be used. However at lower energies the physics is more compli-
cated. Non-pertubative e↵ects play important role resulting in spontaneous
breaking of chiral symmetry and confinement. Spontaneous breaking of chi-
ral symmetry results in generation of large masses of hadrons and hence most
of the mass of the observable universe. Confinement binds the quarks and
gluons into colorless hadronics states. However under extreme conditions of
temperature and density, i.e. trillion degree kelvin and densities approaching
nuclear matter density, the strength of interaction is weak enough, owing to
asymptotic freedom, that quarks and gluons can become free and non longer
exist in colorless bound states. This state is known as quark gluon plasma.
Quark gluon plasma formed in heavy ion collisions or as it may possibly ex-
ist in neutron stars is expected to be strongly coupled. Results in heavy ion
collision are in disagreement with perturbative results and densities reached
in neutron stars are not expected to be high enough for perturbative results
to hold. Thus despite the success of QCD the phase diagram of strongly
interacting matter is still not fully understood.

In light of lack of first principle methods we use phenomenological models.
Two such models are NJL model and PQM model. NJL model is a model of
quarks based on four fermi interaction. It exhibits spontaneous chiral sym-
metry breaking and the parameters are fit to reproduce low energy hadronic
spectrum. It has been successfully applied in low energy hadronic physics.
Quark meson model is an extension of NJL model. Whereas in NJL model
degrees of freedom are quarks, in QM model degrees of freedom are quarks
and mesons. Quarks are coupled to mesons and mesons self-interact. This
model is further extended by coupling the quarks to polyakov loop. By doing
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so one includes the e↵ect of gluons which are otherwise absent in the model.
Polyakov loop is calculated in Lattice QCD, which is a first principle cacu-
lation. Doing so does not lead to confinement since there are no dynamical
gluons in the model, however it improves the equation of state by statisti-
cally suppressing quark contribution to thermodynamics quantities around
and below chiral transition temperature. We have discussed both the NJL
and PQM model in detail in Chapter 2. PQM model is also discussed in
Chapter 3. We have also discussed the derivation of transport coe�cients
from Boltzmann equation for quasiparticles and solution for Dirac equation
with background magnetic field in Chapter 2.

Having discussed the mathematical framework of phenomenological mod-
els and theory of transport coe�cients we discuss in detail the calculation of
these coe�cients in Chapter 3. The scattering amplitudes for meson-meson,
meson-quark and quark-quark are calculated from which the relaxation times
are obtained. We have kept the energy dependence of relaxation time in our
calculation of transport coe�cients without approximating by averaging re-
laxation time over energy. Do so we obtain a value of ⌘/s ⇠ 0.23 which is
close to KSS bound and also in accordance with data on heavy ion collision
which indicate a small value for this ratio. We also find a peak in ⇣/s near the
chiral transition which is also indicated in Lattice QCD results. Thermal con-
ductivity has also been calculated at finite density. At large temperatures
conductivity shows the expected T 2 behavior. Below the chiral transition
thermal conductivity is suppressed as quark contribution is suppressed due
to polyakov loop.

Having calculated transport properties of quark matter at high tempera-
tures, we turn to quark matter at high densities in Chapter 4. At high densi-
ties quark matter is expected to be in color superconducting phase. We use a
three flavor NJL model with determinant interaction as at such high densities
strange quark could play an important role and its presence a↵ects charge
neutrality. We also include a background magnetic field since neutron stars
where such high densities could be reached are known to have large magnetic
fields which could a↵ect properties of hadronic matter. Color superconductiv-
ity is studied using method of Bogoliubov transformation. Thermodynamic
potential is calculated using train ground state and masses and supercon-
ducting gap is obtained by minimizing thermodynamic potential. Gaps are
calculated as a function of varying quark chemical potential and magnetic
field. Charge neutrality conditions are imposed and resulting gapless modes
are studied.

After studying the interplay of color superconductivity and magnetic field
we focus on origin of large magnetic fields in neutron stars. Spontaneous spin
polarization of quark matter has been suggested as a possible mechanism for
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the large magnetic fields of neutron stars. We use a three flavor NJL model
with determinant interaction and tensor interaction to study the spin polar-
ization condensates. In three flavor case this leads to two spin polarization
condensates, F3 and F8. We also consider non-zero current quark masses for
the two light flavors. This combined with determinant interaction a↵ects the
strange mass significantly which has implications for charge neutrality. We
find the two condensates to be non-zero in two distinct intervals of quark
chemical potential beyond the chiral transition. In the chiral symmetry bro-
ken phase the two condensates are zero. This behavior is complimentary to
the case where axial vector interactions are used to study spin polarization.
In that case spin condensates are non-zero in the symmetry broken phase
and go to zero as symmetry is restored.

We have discussed in the thesis the transport coe�cients like viscosity
and thermal conductivity of quark matter within NJL and PQM models.
There are other interesting transport coe�cients of heavy quarks like drag
and di↵usion coe�cients. Incidentally, the related experimental data on nu-
clear modification factor R

A

A, the elliptic flow data v2 remain a challenge to
almost all the models of heavy quark dynamics. It will be interesting to see
how the non-perturbative features of chiral symmetry breaking and polyakov
loop expectation value, which are quite di↵erent from the asymptotic values,
near the transition temperature, a↵ect the heavy quark transport coe�cients.

Apart from QGP being the most perfect fluid, with the least value for
the viscosity to entropy ratio, it has also been the most vortical fluid. It
will be interesting to see the thermodynamic properties of the quark gluon
matter in presence of vorticity and their phenomenological implications in
such e↵ective models.

The situation at high density phase is even more interesting. What we
have discussed here is the homogenous phases of condensates, both in quark-
anti quark as well as diquark channels. However there are indications that
in the presence of di↵erence in chemical potential of di↵erent flavors, inho-
mogenous phases may be important regarding stability of the corresponding
condensate phase. It is even expected that the critical point in the QCD
phase diagram could be replaced by an elipses point at which the inhomge-
nous phase and two homogenous phases with broken and restored symmetry
meet. Clearly much more work is needed to have an understanding on matter
under extreme conditions.
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Chapter 7

Appendix

7.1 Appendix A

7.1.1 A. Evaluation of operator expectation values of
some operators

We give here some details of the evaluation of some operators at finite T,µ
and B in the state given in Eq.(4.17). As the state is obtained from |0i, one
can calculate the expectation values of di↵erent operators. e.g.

hqia†
r

(n, k\x), q
jb

r

0 (n0, k0
\x
)i = �ij�ab�

rr
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nn
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Similarly for the expectation values for the operators involving anti-quarks,
we have
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Using the field operator expansion of Eq.(4.10) and Eq.s (7.1) and (7.3), one
can evaluate

h ia†
↵

(x) jb

�

(y)i =
X

n

|q
i

B|
(2⇡)2

Z
dk\xe

ik\x ·(x�y)⇤ia,jb

�
�↵

(n, k\x) (7.5)

151



with
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where, we have defined ⇧± = (1 ± i�1�2)/2.
Similarly for the anti-quark spinors
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This leads to, e.g. for the expectation value of chiral condensate for a given
flavor as
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One can integrate over dp

y

to obtain the contribution for the quarks that are
charged as
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while, the contribution from the quarks that are neutral (down blue strange
blue ) is given as
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Next, we discuss about the contributions to diquark condensates.Similar
to Eq.(7.12), we have
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and, for anti-quark operators
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For the diquark condensates we have
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and,
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This leads to e.g. for expectation value of the diquark condensate as,
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7.2 Spontaneous Spin Polarization

7.2.1 Gap Equations

The gap equations for four independent condensates, two chiral condensates
�

ud

, �
s

and two spin polarization condensates F3, F8 are as follow,
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Transport coefficients in the Polyakov quark meson coupling model:
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We compute the transport coefficients, namely, the coefficients of shear and bulk viscosities, as well as
thermal conductivity for hot and dense matter. The calculations are performed within the Polyakov quark
meson model. The estimation of the transport coefficients is made using the Boltzmann kinetic equation
within the relaxation time approximation. The energy-dependent relaxation time is estimated from meson-
meson scattering, quark-meson scattering, and quark-quark scattering within the model. In our calculations,
the shear viscosity to entropy ratio and the coefficient of thermal conductivity show a minimum at the
critical temperature, while the ratio of bulk viscosity to entropy density exhibits a peak at this transition
point. The effect of confinement modeled through a Polyakov loop potential plays an important role both
below and above the critical temperature.

DOI: 10.1103/PhysRevD.97.014005

I. INTRODUCTION

Transport coefficients of matter under extreme conditions
of temperature, density, or external fields are interesting for
several reasons. In the context of relativistic heavy ion
collisions, these properties enter as dissipative coefficients
in the hydrodynamic evolution of the quark gluon plasma
that is produced following the collision [1–5]. Indeed, an
extremely low value of the shear viscosity-to-entropy ratio
(η=s) is needed to successfully describe the collective
dynamics of the quark gluon matter at high temperature
and vanishing chemical potential to explain the elliptic flow
data [6,7]. At intermediate densities, near the chiral phase
transition, which is being probed at the Facility for anti-
proton and Ion Research (FAIR) program at Geselleschaft
fuer Schwerionenforschung (GSI)–[8] and the Nuclotron-
based IonCollider fAcility (NICA) programat Joint Institute
for Nuclear Research(JINR)–[9] motivates us to understand
the behavior of transport coefficients at finite chemical
potential and temperature. Further, in the low-temperature
and high-density regime, the matter could be in one of the

possible types of color superconducting phases of which the
transport properties also need to be understood [10,11]. The
cooling of neutron stars at short time scales constrains the
thermal conductivity [12,13], while the cooling through
neutrino emission on much larger time scales constrains the
phase of thematter in the interior of the compact star [14,15].
Further, the observable regarding the viscosity of the such
matter is the r-mode instability. In the absence of viscous
damping, the fluid in the rotating star becomes unstable to a
mode that is coupled to gravity and radiates away the angular
momentum of the star [16,17]. Apart from the wide variety
of applications of the transport coefficients of strongly
interacting matter, their temperature and chemical potential
dependencemay also be indicative of a phase transition [18].
Transport coefficients for QCDmatter in principle can be

calculated using Kubo formulation [19]. However, QCD is
strongly interacting for both at energies accessible in heavy
ion collision experiments as well as for the densities
expected to be there in the core of the neutron stars making
the perturbative estimations unreliable. Calculations using
lattice QCD simulations at finite chemical potential are also
challenging and are limited only to the equilibrium
thermodynamic properties at small chemical potentials.
The understanding of the elliptic flow in relativistic

heavy ion collisions using hydrodynamics with a low
(η=s) and its connection to the conjectured lower bound
(η=s > 1=4π) using ADS/CFT correspondence [20] stimu-
lated extensive investigation of this ratio for QCD matter.
These have been studied using perturbative QCD [21],
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transport simulations of the Boltzmann equation [22,23],
relaxation time approximation for solving the Boltzmann
equations [24–27], and lattice simulation of QCD [28].
Most of these calculations have been performed at vanish-
ing baryon density. The general variation of this ratio with
temperature in most of these studies shows a minimum at
the transition temperature. The numerical value of η at the
minimum, however, differs by an order of magnitude. For
example, near transition temperature, Refs. [29–33] have
predicted η of order 0.001 GeV3, η ¼ 0.002–0.003 GeV3,
while Ref. [34] predicts a value of η≃ 0.4 GeV3. Further,
the behavior of η=s shows a monotonic decrease in the
Nambu–Jona-Lasinio (NJL) model in Ref. [35].
The bulk viscosity coefficient ζ has also been estimated

in various effective models as well as in lattice QCD. The
rise of the bulk viscosity coefficient near the transition
temperature has been observed in these effective models
such as chiral perturbation theory [36], quasiparticle
models [37], the linear sigma model [38], and the
Nambu–Jona-Lasinio model [24,25]. Large bulk viscosity
of matter produced in relativistic heavy ion collisions can
give rise to different interesting phenomenon such as
cavitation where pressure vanishes and hydrodynamic
description of evolution becomes invalid [39]. Here, again,
the numerical values of the bulk viscosity coefficients vary
widely from 10−5 [40] to 10−2 GeV3 [24].
The other transport coefficient that is important at

finite baryon density is the coefficient of thermal conduc-
tivity λ [41–43]. The effects of thermal conductivity in
relativistic hydrodynamics have been discussed recently in
Refs. [43,44]. This coefficient has been evaluated in various
effective models like the Nambu–Jona-Lasinio model using
the Green-Kubo approach [45], relaxation time approxi-
mation [25], and the instanton liquid model [46]. The
results, however, vary over a wide range of values, with
λ ¼ 0.008 GeV−2 as in Ref. [31] to λ ∼ 10 GeV−2 as in
Ref. [35] for a range of temperatures (0.12 GeV < T <
0.17 GeV), which has been nicely tabulated in Ref. [47].
We shall attempt here to estimate these transport coef-

ficients within an effective model of strong interaction,
the Polyakov loop extended quark meson (PQM) model. It
has become quite popular during last few years due to its
close relationship with the linear sigma model that captures
the chiral symmetry breaking aspect while being in agree-
ment with the lattice QCD results for thermodynamics at
vanishing baryon density. The physics of confinement is
taken care of at least partially by coupling the quark field to
the Polyakov loops so that quark excitations are suppressed
below the transition temperature. Let us note that the
transport coefficients like bulk viscosity apart from the
distribution functions also depend upon the bulk thermo-
dynamic quantities like the velocity of sound. We wish to
explore the effects of such nonperturbative properties on the
transport coefficients.
The transport coefficients are evaluated within the

relaxation time approximation of the Boltzmann equation.

The relaxation time is calculated by evaluating the scatter-
ing rates of the particles in the model, namely, the quarks
and pion and sigma mesons, with their respective medium-
dependent masses. The scattering processes considered here
are meson scatterings as considered in Ref. [38], quark
scattering through meson exchanges as in Refs. [24,25,35]
and quark-meson scattering. As we shall see in the follow-
ing, each of these processes brings out distinct features for
the transport coefficients. We would like to mention here
that these coefficients have also been estimated using Kubo
formulation through one-loop self-energies for quarks and
mesons in a separate work [48].
We organize the present investigation as follows. In the

following section, we discuss the two-flavor PQM model
thermodynamics. The reason is that the expressions for
transport coefficients involve meson masses which are
medium dependent. Further, some transport coefficients like
the bulk viscosity involves bulk thermodynamical properties
such as energy density, pressure and the velocity of sound.
As the order parameters for chiral and confinement-decon-
finement transitions are coupled, this leads to nontrivial
relations for derivatives of the thermodynamic potential with
respect to external parameters like chemical potential or
temperature as the mean fields themselves are also medium
dependent. Furthermore, the implicit dependence of these
mean fields/order parameters are calculated here analytically
to avoid possible numerical errors. In Sec. III, we give the
expressions for the transport coefficients in terms of relax-
ation time and estimate them to finally give the results for
these coefficients. We also compare them with the same
obtained with alternate approaches like the NJL model so
that the effects of the confinement-deconfinement transition
modeled through the Polyakov loop potential are explicitly
seen. Finally, we summarize and draw the conclusions of the
present investigation in Sec. IV.

II. THERMODYNAMICS OF PQM MODEL

We shall adopt here an effective model that captures two
important features of QCD, namely, chiral symmetry
breaking and its restoration at high temperature and/
densities as well as the confinement-deconfinement tran-
sitions. Two such effective models have become popular
recently—the Polyakov loop extended Nambu–Jona-
Lasinio model and the PQM. These models are extensions,
respectively, of the NJL model and linear sigma model that
captures various aspects of chiral symmetry breaking
pattern of strong interaction physics. Explicitly, the
Lagrangian of the PQM model is given by [49–53]

L ¼ ψ̄ðiγμDμ −m − gσðσ þ iγ5τ · πÞÞψ

þ 1

2
½∂μσ∂μσ þ ∂μπ∂μπ& − Uχðσ; πÞ −UPðϕ; ϕ̄Þ: ð1Þ

In the above, the first term is the kinetic and interaction
term for the quark doublet ψ ¼ ðu; dÞ interacting with the
scalar (σ) and the isovector pseudoscalar pion (π) field. The
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scalar field σ and the pion field π together form an SU(2)
isovector field. The quark field is also coupled to a spatially
constant temporal gauge field A0 through the covariant
derivative Dμ ¼ ∂μ − ieAμ; Aμ ¼ δμ0Aμ.
The mesonic potential Uχðσ; πÞ essentially describes the

chiral symmetry breaking pattern in strong interaction and
is given by

Uχðσ; πÞ ¼
λ
4
ðσ2 þ π2 − v2Þ2 − cσ: ð2Þ

The last term in the Lagrangian in Eq. (1) is responsible
for including the physics of color confinement in terms of a
potential energy for the expectation value of the Polyakov
loop ϕ and ϕ̄, which are defined in terms of the Polyakov
loop operator, which is a Wilson loop in the temporal
direction,

P ¼ P exp
!
i
Z

β

0
dx0A0ðx0;xÞ

"
: ð3Þ

In the Polyakov gauge, A0 is time independent and is in the
Cartan subalgebra, i.e., Aa

0 ¼ A3
0λ3 þ A8

0λ8. One can per-
form the integration over the time variable trivially as path
ordering becomes irrelevant so that PðxÞ ¼ expðβA0Þ. The
Polyakov loop variable ϕ and its Hermitian conjugate ϕ̄ are
defined as

ϕðxÞ ¼ 1

Nc
TrPðxÞ ϕ̄ðxÞ ¼ 1

Nc
P†ðxÞ: ð4Þ

In the limit of heavy quark mass, the confining phase is
center symmetric, and therefore hϕi ¼ 0, while for the
deconfined phase, hϕi ≠ 0. Finite quark masses break this
symmetry explicitly. The explicit form of the potential
Upðϕ; ϕ̄Þ is not known from first principle calculations.
The common strategy is to choose a functional form of the
potential that reproduces the pure gauge lattice simulation
thermodynamic results. Several forms of this potential have
been suggested in the literature. We shall use here the
polynomial parametrization [49]

UPðϕ; ϕ̄Þ ¼ T4
h
−
b2ðTÞ
2

ϕ̄ϕ −
b3
2
ðϕ3 þ ϕ̄3Þ þ b4

4
ðϕ̄ϕÞ2

i

ð5Þ

with the temperature-dependent coefficient b2 given as

b2ðTÞ ¼ a0 þ a1

!
T0

T

"
þ a2

!
T0

T

"
2

þ a3

!
T0

T

"
3

: ð6Þ

The numerical values of the parameters are

a0 ¼ 6.75; a1 ¼ −1.95;

a2 ¼ 2.625; a3 ¼ −7.44 ð7Þ

b3 ¼ 0.75; b4 ¼ 7.5: ð8Þ

The parameter T0 corresponds to the transition temperature
of Yang-Mills theory. However, for the full dynamical
QCD, there is a flavor dependence on T0ðNfÞ. For two
flavors, we take it to be T0ð2Þ ¼ 192 MeV as in Ref. [49].
The Lagrangian in Eq. (1) is invariant under SUð2ÞL ×

SUð2ÞR transformation when the explicit symmetry break-
ing term cσ vanishes in the potential Uχ in Eq. (2). The
parameters of the potential Uχ are chosen such that the
chiral symmetry is spontaneously broken in the vacuum.
The expectation values of the meson fields in vacuum are
hσi ¼ fπ and hπi ¼ 0. Here, fπ ¼ 93 MeV is the pion
decay constant. The coefficient of the symmetry breaking
linear term is decided from the partial conservation of the
axial vector current as c ¼ fπm2

π , mπ ¼ 138 MeV, being
the pion mass. Then, minimizing the potential, one has
v2 ¼ f2π −m2

π=λ. The quartic coupling for the meson λ is
determined from the mass of the sigma meson given as
m2

σ ¼ m2
π þ 2λf2π . In the present work, we take mσ ¼

600 MeV, which gives λ ¼ 19.7. The coupling gσ is fixed
here from the constituent quark mass in vacuumMq¼gqfπ ,
which has to be about one-third of nucleon mass that leads
to gσ ¼ 3.3 [54].
To calculate the bulk thermodynamical properties of the

system, we use a mean field approximation for the meson
and the Polyakov fields while retaining the quantum and
thermal fluctuations of the quark fields. The thermody-
namic potential can then be written as

ΩðT; μÞ ¼ Ωq̄q þ Uχ þUPðϕ; ϕ̄Þ: ð9Þ

The fermionic part of the thermodynamic potential is
given as

Ωq̄q ¼ −2NfT
Z

d3p
ð2πÞ3

½ln ð1þ 3ðϕþ ϕ̄e−βω−Þe−βω− þ e−3βω−Þ þ ln ð1þ 3ðϕþ ϕ̄e−βωþÞe−βωþ þ e−3βωþÞ& ð10Þ

modulo a divergent vacuum part. In the above, ω∓ ¼
Ep ∓ μ, with the single particle quark/antiquark energy

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
. The constituent quark/antiquark mass is

defined to be

M2 ¼ g2σðσ2 þ π2Þ: ð11Þ

The divergent vacuum part arises from the negative
energy states of the Dirac sea. Using standard renormal-
ization, it can be partly absorbed in the coupling λ and v2.
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However, a logarithmic correction from the renormalization
scale remains, and we neglect it in the calculations that
follow [54].
The mean fields are obtained by minimizing Ω with

respect to σ, ϕ, ϕ̄, and π. Extremizing the effective potential
with respect to the σ field leads to

λðσ2 þ π2 − v2Þ − cþ gσρs ¼ 0; ð12Þ

where the scalar density ρs ¼ −hψ̄ψi is given by

ρs ¼ 6Nfgσσ
Z

dp
ð2πÞ3

1

EP
½f−ðpÞ þ fþðpÞ&: ð13Þ

In the above, f∓ðpÞ are the distribution functions for the
quarks and antiquarks given as

f−ðpÞ ¼
ϕe−βω− þ 2ϕ̄e−2βω− þ e−3βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−
ð14Þ

and

fþðpÞ ¼
ϕ̄e−βωþ þ 2ϕe−2βωþ þ e−3βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ
: ð15Þ

The condition ∂Ω
∂ϕ ¼ 0 leads to

T4

!
−
b2
2
ϕ̄ −

b3
2
ϕ2 þ b4

2
ϕ̄ϕϕ̄

"
þ Iϕ ¼ 0; ð16Þ

where

Iϕ ¼
∂Ωq̄q

∂ϕ ¼ −6NfT
Z

dp
ð2πÞ3

×
!

e−βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−

þ e−2βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ

"
: ð17Þ

Similarly, ∂Ω
∂ϕ̄ ¼ 0 leads to

T4

!
−
b2
2
ϕ −

b3
2
ϕ̄2 þ b4

2
ϕ̄ϕ2

"
þ Iϕ̄ ¼ 0 ð18Þ

with

Iϕ̄ ¼
∂Ωq̄q

∂ϕ̄ ¼ −6NfT
Z

dp
ð2πÞ3

×
!

e−2βω−

1þ 3ϕe−βω− þ 3ϕ̄e−2βω− þ e−3βω−

þ e−βωþ

1þ 3ϕe−βωþ þ 3ϕ̄e−2βωþ þ e−3βωþ

"
: ð19Þ

Finally, minimization of the effective potential with
respect to π fields leads to

∂Ω
∂π ¼ λðσ2 þ π2 − v2Þπ þ gρps ¼ 0; ð20Þ

where the pseudoscalar density can be expressed as

ρps ¼ hq̄ιγ5τqi

¼ 6Nfgσπ
Z

dp
ð2πÞ3

1

EP
½f−ðpÞ þ fþðpÞ&: ð21Þ

The σ and π masses are determined by the curvature ofΩ
at the global minimum

M2
σ ¼

∂2Ω
∂σ2 ; M2

πi ¼
∂2Ω
∂π2i

: ð22Þ

These equations lead to the masses for the σ and pions
given as

M2
σ ¼ m2

π þ λð3σ2 − f2πÞ þ g2σ
∂ρs
∂σ ð23Þ

M2
π ¼ m2

π þ λðσ2 − f2πÞ þ g2σ
∂ρps
∂π : ð24Þ

Explicitly, using Eq. (13),

∂ρs
∂σ ¼ 6

π2

Z
dpp2

×
!
gσp2

EðpÞ3
ðf−ðpÞ þ fþðpÞÞ þ

M
EðpÞ

#∂f−
∂σ þ ∂fþ

∂σ
$"

:

ð25Þ

The derivatives of the distribution functions with respect to
the scalar field σ are given as

∂f−ðpÞ
∂σ ¼ βg2σσ

EðpÞ

!
3f2− −

3e−3βω− þ4ϕ̄e−2βω− þϕe−βω−

1þ3ϕe−βω− þ3ϕ̄e−2βω− þe−3βω−

"

ð26Þ

and

∂fþ
∂σ ¼ βg2σσ

EðpÞ

!
3f2þ −

3e−3βωþ þ 4ϕe−2βωþ þ ϕ̄e−βωþ

1þ 3ϕ̄e−βωþ þ 3ϕe−2βωþ þ e−3βωþ

"
:

ð27Þ

Similarly, using Eq. (21),

∂ρps
∂π ¼ 6

π2

Z
dp

p2

EðpÞ
½f−ðpÞ þ fþðpÞ&: ð28Þ
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In the above, we have set the expectation value of the pion
field to be zero, i.e., π ¼ 0, so that the constituent quark
mass is M2 ¼ g2σσ2.
The net quark density is given by

n ¼ −
∂Ω
∂μ ¼ 6

π2

Z
p2dp½f−ðpÞ − fþðpÞ& ð29Þ

The energy density ϵ ¼ Ω − T∂Ω=∂T þ μρq is given by

ϵ ¼ 6

π2

Z
p2dpEðpÞðf−ðpÞ þ fþðpÞÞ þUχ − 3UPðϕ; ϕ̄Þ

þ T5

2

db2ðTÞ
dT

ϕ̄ϕ: ð30Þ

In Fig. 1(a), we have plotted the constituent quark mass and
the meson masses as given in Eqs. (23) and (24) as a
function of temperature for vanishing baryon density. In the
chirally broken phase, the pion mass, being the mass of an
approximate Goldstone mode, is protected and varies
weakly with temperature. On the other hand, the mass of
σ, Mσ, which is approximately twice the constituent quark
mass,M, drops significantly near the crossover temperature.
At high temperature, being chiral partners, the masses of the
σ and π mesons become degenerate and increase linearly
with temperature. In Fig. 1(b), we have plotted the order
parameters σ and ϕ as a function of temperature for the
vanishing quark chemical potential. We also note that for
μ ¼ 0 the order parameters ϕ and ϕ̄ are the same. Because
of the approximate chiral symmetry, the chiral order
parameter decreases with temperatures to small values
but never vanishes. The Polyakov loop parameter, on the
other hand, grows from ϕ ¼ 0 at zero temperature to about
ϕ ¼ 1 at high temperatures. We might mention here that at
very high temperature the value of the Polyakov loop

parameter exceeds unity, the value in the infinite quark
mass limit.
Next, in Fig. 2, we show the dependence of the

trace anomaly ðϵ − 3pÞ=T4 on temperature. The conformal
symmetry is broken maximally at the critical temperature.
Further, finite chemical potential enhances this breaking
as it breaks scale symmetry explicitly. As we shall see
later, this will have its implication on the bulk viscosity
coefficients.
Next, to discuss critical behavior as well as to calculate

different thermodynamic quantities, one has to take deriv-
atives of the thermodynamic potential with respect to the
mean fields as well as the parameters like temperature and
the chemical potential. Vanishing of the first-order
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FIG. 1. (a) Temperature dependence of the masses of constituent quarks (M) and pions (Mπ) and sigma mesons (Mσ) and (b) the order
parameters σ and ϕ as a function of temperature for μ ¼ 0 MeV.
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FIG. 2. Temperature dependence of the scaled trace anomaly
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derivatives of the thermodynamic potential with respect to
the order parameters leads to the values of the order
parameters satisfying the coupled gap equations as shown.
However, to calculate many different thermodynamic quan-
tities, one also has to take into account the implicit
dependence of the order parameters on temperature as well
as chemical potential. One can do a numerical differ-
entiation of the order parameters after solving for them
from the gap equation. However, this can be numerically
less accurate, particularly for the higher-order derivatives.
We shall use here a semianalytic approach to calculate the
implicit contributions to the extent of taking the differ-
entiation of the expressions analytically [55]. Only the
values of the final expressions so obtained are computed
numerically. For example, to calculate the derivative of the
order parameter X, ðX ¼ σ;ϕ; ϕ̄Þ with respect to temper-
ature is given by the equation

∂
∂T

!∂Ω
∂X

"
þ ∂
∂σ

!∂Ω
∂X

"
dσ
dT

þ ∂
∂ϕ

!∂Ω
∂X

"
dϕ
dT

þ ∂
∂ϕ̄

!∂Ω
∂X

"
dϕ̄
dT

¼ 0: ð31Þ

Thus, we have a matrix equation of the type A · Y ¼ B,
where A is the coefficient matrix of the variables
Y ¼ ðdσdT ;

dϕ
dT ;

dϕ̄
dTÞ

T, and B is the matrix of derivatives of
the thermodynamic potential involving explicit dependence
on temperature, i.e., B ¼ ð− ∂

∂T ð−
∂Ω
∂σ ;−

∂Ω
∂ϕ ;−

∂Ω
∂ϕ̄Þ

TÞ. These
matrix equations can be solved using Cramer’s rule. The
coefficient matrix A is given by

A ¼

2

64
Ωσσ Ωσϕ Ωσϕ̄

Ωϕσ Ωϕϕ Ωϕϕ̄

Ωϕ̄σ Ωϕ̄ϕ Ωϕ̄ ϕ̄

3

75 ð32Þ

with Ωab ¼ ∂2Ω
∂a∂b, where a, b stand for σ;ϕ and ϕ̄. Similarly,

to calculate the derivatives with respect to chemical poten-
tial, the coefficient matrix A remains the same, while the
matrix B will involve derivatives of the thermodynamic
potential involving explicit dependence on the chemical
potential.
Solving Eq. (31) this way, we have plotted the deriva-

tives of the order parameters in Fig. 3. The critical
temperature is defined by the position of the peaks of
these derivatives of the order parameters. At zero chemical
potential, this occurs at TC ≃ 176 MeV. Let us note that at
TC the quark mass is mq ¼ gσσ ¼ 134 MeV, while the
Polyakov loop variable ϕ∼ ¼ 0.5. Thus, at the critical
temperature, the effect of interaction is significant. As the
chemical potential for the quarks increases, the critical
temperature decreases. With finite chemical potential,
the peaks also become sharper, and at higher chemical
potential, the transition becomes a first-order one. The
critical point within this model occurs at ðTc; μcÞ ¼
ð155; 163Þ MeV.
The other thermodynamic quantity that enters into the

transport coefficient calculation is the velocity of sound.
The same at constant density is defined as

c2s ¼
!
−
∂P
∂ϵ

"

n
¼

sχμμ − ρχμT
Tð χTTχμμ − χ2μTÞ

; ð33Þ

where P, the pressure, is the negative of the thermodynamic
potential given in Eq. (9). Further, s ¼ − ∂Ω

∂T is the entropy
density, and the susceptibilities are defined as χxy ¼ − ∂2Ω

∂x∂y.
The velocity of sound shows a minimum near the crossover
temperature as may be seen in Fig. 4. Within the model, at
low temperature when the constituent quarks start contrib-
uting to the pressure, their contribution to the energy
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FIG. 3. (a) Temperature derivative of the chiral order parameter ðdσdTÞ and (b) Polyakov loop parameter ðdϕdTÞ as a function of temperature.
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density is significant compared to their contribution to the
pressure, leading to decreasing behavior of the velocity of
sound until the crossover temperature, beyond which it
increases as the quarks become light and approach the
massless limit of c2s ¼ 1

3. Such a dip in the velocity of sound
is also observed in lattice simulation [56]. As we shall
observe later, this behavior will have important conse-
quences for the behavior of bulk viscosity as a function of
temperature. We might mention here that such a dip for the
sound velocity was not observed for two-flavor NJL [25].
For the linear sigma model calculations, such a dip was
observed only for a large sigma meson mass [38].

III. TRANSPORT COEFFICIENTS IN
RELAXATION TIME APPROXIMATION

We shall attempt here to estimate the transport coeffi-
cients in the relaxation time approximation where the
particle masses are medium dependent. Such attempts
were made earlier for the σ model [38] as well as in the
NJL model to compute the shear and bulk viscosity
coefficients. Such an approach was also made to estimate
the viscosity coefficients of pure gluon matter [57]. In all
these attempts, the expressions for the viscosity coefficients
were derived for vanishing chemical potential. Several
attempts were made to estimate these coefficients with
finite chemical potential with different Ansätze. These
expressions were put on firmer ground by deriving the
expressions when there are mean fields and medium-
dependent masses in a quasiparticle picture [58]. The
resulting expressions for the transport coefficients were
manifestly positive definite as they should be. These
expressions were derived explicitly for the NJL model
[25]. We use the same expressions here for the transport
coefficients. The shear viscosity coefficient is given by

η ¼ 1

15T

X

a

Z
dp

ð2πÞ3
p4
a

E2
a
τðEaÞf0að1$ f0aÞ; ð34Þ

where the sum is over all the different species contributing
to the viscosity coefficients including the antiparticles and
τa is the energy-dependent relaxation time that we define in
the following subsection. The coefficient of bulk viscosity
is given by

ζ ¼ 1

9T

X

a

Z
dp

ð2πÞ3
τa

Ea
2
fa0ð1$ fa0Þ

!
p2ð1 − 3vn2Þ

− 3vn2
"
M2 − TM

dM
dT

− μM
dM
dμ

#

þ 3

"∂P
∂n

#

ϵ

"
M

dM
dμ

− Eata
#$

2

: ð35Þ

The thermal conductivity, on the other hand, is given by

λ ¼
"
w
nT

#
2X

a

Z
dp

ð2πÞ3
p2

3E2
a
τaðEaÞ

"
ta −

nEa

w

#
2

× f0að1$ f0aÞ: ð36Þ

In the above expressions, f0a is the equilibrium fermion/
boson distribution functions depending upon the statistics
with ð1$ f0aÞ being the Bose enhancement/Fermi suppres-
sion factors and ta ¼ þ1;−1, and 0 for the quark,
antiquark, and meson, respectively. Further, c2s ¼ ð∂p∂ϵÞn is
the velocity of sound at constant density, and w ¼ ϵþ p is
the enthalpy density.

A. Relaxation time estimation—Meson scatterings

As may be noted, the expressions for the transport
coefficients as in Eqs. (34), (35), and (36) depend not
only on bulk thermodynamic properties like energy density,
pressure, and velocity of sound but also on the energy-
dependent relaxation time τðEÞ. In the following, we shall
first estimate the relaxation times involving meson
exchanges similar to Ref. [38].
Using the Lagrangian Eq. (1), we calculate the relaxation

time in the PQM model by taking into account the
following scattering amplitudes with the corresponding
matrix elements being given as

Mσþσ→σþσ ¼ −6λ − 36λ2fπ2

×
"

1

s −mσ
2
þ 1

t −mπ
2
þ 1

u −mπ
2

#
ð37Þ

Mπþσ→πþσ ¼ −2λ − 4λ2fπ2

×
"

3

t −mσ
2
þ 1

u −mπ
2
þ 1

s −mπ
2

#
ð38Þ
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FIG. 4. Temperature dependence of the velocity of sound at
constant density.
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Mπþπ→πþπ ¼ −2λ
!
s −mπ

2

s −mσ
2
δabδcd þ

t −mπ
2

t −mσ
2
δacδbd

þ u −mπ
2

u −mσ
2
δadδbc

"
ð39Þ

Mπþπ→σþσ ¼ −6λ − 4λ2fπ2

×
!

3

s −mσ
2
þ 1

t −mπ
2
þ 1

u −mπ
2

"
: ð40Þ

The terms involving the propagators yield divergent
integrals due to the poles in the s and u channels, which
is known in the literature [38]. To regulate these integrals,
one can include a width for the mesons as evaluated in
the next subsection [Eq. (54)]. However, such a substitu-
tion violates crossing symmetry. Further, these terms are
generated from the three-point vertices, which are not taken
into account in the mean field approximation used in
solving the gap equations and the resulting equation of
state. Hence, to be consistent with the equation of state
while maintaining crossing symmetry for the scattering
amplitudes, we approximate the above scattering ampli-
tudes by their limits when s, t, and u are taken to be infinity
and the scattering amplitudes reduce to constants [38].
Thus, the scattering amplitudes essentially reduce to con-
stants. This allows us to compare our results with the earlier
work of Ref. [38] and study the effect of the Polyakov loop
and quarks within a similar approximation.
The energy-dependent interaction frequency ωaðEaÞ for

the particle species a arising from a scattering process
a; b → c; d, which is also the inverse of the energy-
dependent relaxation time τðEaÞ, is given by, with dΓi ¼

dpi
2EiðpÞð2πÞ3

[25],

ωðEaÞ≡ τðEaÞ−1 ¼
X

b

Z
dΓbf0bWabðsÞ: ð41Þ

In the above, the summation is over all the particles except
the species a with a, b as the initial state.
The quantity Wab is dimensionless and Lorentz invari-

ant, and depends only on the Mandelstam variable s and is
given by

WabðsÞ ¼
1

1þ δab

Z
dΓcdΓdð2πÞ4δ4ðpa þ pb − pc − pdÞ

× jMj2ð1þ fcÞð1þ fdÞ: ð42Þ

In the above, we have included the Bose enhancement
factors for the meson scattering. The quantity WabðsÞ is
related to the cross section by noting that, with t as the
Mandelstam variable t ¼ ðpa − pcÞ2,

dσ
dt

¼ 1

64πs
1

p2
ab
jMj2; ð43Þ

where pabðsÞ ¼ 1=ð2
ffiffiffi
s

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

a; m2
bÞ

q
, and the kin-

ematic function λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz −
2zx is the magnitude of the 3-momentum of the incoming
particle in the c.m. frame. In the c.m. frame, using the
energy momentum–conserving delta function and integrat-
ing over the final momenta, we have

WabðsÞ ¼
4

ffiffiffi
s

p
pabðsÞ

1þ δab

Z
tmax

tmin

dt
!
dσ
dt

"

× ð1þ fcðEcÞÞð1þ fdðEdÞÞ; ð44Þ

where

tmax;min ¼ m2
a þm2

c −
1

2s
ðsþm2

a −m2
bÞðsþm2

c −m2
dÞ

% 1

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

a; m2
bÞλðs;m2

c; m2
dÞ

q
:

In the limit of constant jMj2, Eq. (44) reduces to

WabðsÞ ¼
1

1þ δab

jMj2

16π
ffiffiffi
s

p
pab

ðtmax − tminÞð1þ fcðEcÞÞ

× ð1þ fdðEdÞÞ; ð45Þ

and the transition frequency or the inverse relaxation time is
given as

ωðEaÞ≡ τðEaÞ−1¼
1

256π3Ea

Z
∞

mb

dEb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
b−m2

b

q
fðEbÞjMj2

×
Z

1

−1

dx
1þδab

1

pab
ffiffiffi
s

p ðtmax− tminÞ: ð46Þ

In the above,

s ¼ 2EaEb

!
1þm2

a þm2
b

2EaEb
−
papb

EaEb
x
"
:

To calculate, e.g., the πþ relaxation time (τπþ), we consider
the scattering processes πþ þ πi → πþ þ πi (i ¼ þ;−; 0)
and πþ þ σ → πþ þ σ.
To get an order of magnitude of the average relaxation

time, one can also calculate an energy-averaged mean
interaction frequency for a given species as ω̄a ≡ τ̄a−1 as

ω̄a ¼
1

na

Z
dp

ð2πÞ3
ωaðEaÞfaðEaÞ; ð47Þ

with

na ¼
Z

dp
ð2πÞ3

faðEaÞ: ð48Þ
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B. Relaxation time estimation—Quark scatterings

We next consider the quark scattering within the model
through the exchange of pion and sigma meson resonances.
The approach is similar to Refs. [25,35,59] performed
within the NJL model to estimate the corresponding
relaxation time for the quarks and antiquarks. The tran-
sition frequency is again given by Eq. (41), with the
corresponding Wab given as

Wq
abðsÞ ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p

1þ δab

Z
0

tmin

dt
"
dσ
dt

#"
1 − fc

" ffiffiffi
s

p

2
; μ
##

×
"
1 − fd

" ffiffiffi
s

p

2
; μ
##

; ð49Þ

where

dσ
dt

¼ 1

16πsðs − 4m2Þ
1

p2
ab
jM̄j2; ð50Þ

with the corresponding suppression factors appropriate for
fermions. For the quark scatterings, in the present case

for two flavors, we consider the following scattering
processes:

uū → uū; ud̄ → ud̄; uū → dd̄;

uu → uu; ud → ud; ūū → ūū;

ūd̄ → ūd̄; dd̄ → dd̄; dd̄ → uū;

dū → dū; dd → dd; d̄d̄ → d̄d̄:

One can use i-spin symmetry, charge conjugation sym-
metry, and crossing symmetry to relate the matrix element
square for the above 12 processes to get them related to one
another, and one has to evaluate only two independent
matrix elements to evaluate all the 12 processes. We choose
these, as in Ref. [59], to be the processes uū → uū and
ud̄ → ud̄ and use the symmetry conditions to calculate the
rest. We note, however, that, while the matrix elements are
related, the thermal-averaged rates are not, as they involve
also the thermal distribution functions for the initial states
as well as the Pauli blocking factors for the final states. We
also write down the square of the matrix elements for these
two processes explicitly [25,59]:

jM̄uū→uūj2 ¼ g4σ

$
s2jDπð

ffiffiffi
s

p
; 0Þj2 þ t2jDπð0;

ffiffiffiffiffi
−t

p
Þj2ðs − 4m2Þ2jDσð

ffiffiffi
s

p
; 0Þj2 þ ðt − 4m2Þ2jDσð0;

ffiffiffiffiffi
−t

p
Þj2

þ 1

Nc
ReðstD%

πð
ffiffiffi
s

p
; 0ÞDπð0;

ffiffiffiffiffi
−t

p
Þ þ sð4m2 − tÞD%

πð
ffiffiffi
s

p
; 0ÞDσð0;

ffiffiffiffiffi
−t

p
Þ

þ tð4m2 − sÞDπð0;
ffiffiffiffiffi
−t

p
ÞD%

σð
ffiffiffi
s

p
; 0Þ þ ð4m2 − sÞð4m2 − tÞDσð0;

ffiffiffiffiffi
−t

p
ÞD%

σð
ffiffiffi
s

p
; 0ÞÞ

%
: ð51Þ

Similarly, the same for the process ud̄ → ud̄ is given as [59]

jM̄ud̄→ud̄j2 ¼ g4σ

$
4s2jDπð

ffiffiffi
s

p
; 0Þj2 þ t2jDπð0;

ffiffiffiffiffi
−t

p
Þj2ðs − 4m2Þ2jDσð

ffiffiffi
s

p
; 0Þj2 þ ðt − 4m2Þ2jDσð0;

ffiffiffiffiffi
−t

p
Þj2

þ 1

Nc
Reð−2stD%

πð
ffiffiffi
s

p
; 0ÞDπð0;

ffiffiffiffiffi
−t

p
Þ þ 2sð4m2 − tÞD%

πð
ffiffiffi
s

p
; 0ÞDσð0;

ffiffiffiffiffi
−t

p
ÞÞ
%
: ð52Þ

The meson propagators Dað
ffiffiffi
s

p
; 0Þ, (a ¼ σ; π) are given by

Dað
ffiffiffi
s

p
; 0Þ ¼ i

s −M2
a − iImΠMa

ð
ffiffiffi
s

p
; 0Þ

: ð53Þ

In the above, the masses of the mesons are given by
Eqs. (23) and (24) determined by the curvature of
the thermodynamic potential. Further, in Eq. (53),
ImΠð

ffiffiffi
s

p
; 0Þ, which is related to the width of the resonance

as Γa ¼ ImΠa=Ma, is given as [59]

ImΠaðω; 0Þ ¼ θðω2 − 4m2Þ
NcNf

8πω
ðω2 − ϵ2aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 4m2

p

× ð1 − f−ðωÞ − fþðωÞÞ; ð54Þ

with ϵa ¼ 0 for pions and ϵa ¼ 2m for sigma mesons.
With the squared matrix elements for the quark scatter-

ings given as above, the transition frequency for the quark
of a given species is

ωqðEaÞ ¼
1

2Ea

Z
dπbfðEbÞW

q
ab: ð55Þ
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C. Quark pion scattering and
relaxation time

Next, we compute the contribution of quark meson
scattering to the relaxation times for both mesons as well
as quarks. One can argue that the dominant contribution
comes from pions as their number is large compared to
the sigma mesons both below and above Tc. Therefore,
in the following, we consider the quark pion scattering
only. The Lorentz-invariant scattering matrix element can
be written as Ūðp2ÞTbaUðp1Þ, with ŪU ¼ 2mq and with
p1, p2 denoting the initial and final the quark momenta,
respectively, and q1 and q2, being the momenta of the
pions,

Tba ¼ δba
1

2
ðq1 þ q2ÞμγμðδabBðþÞ þ iϵabcτcBð−ÞÞ; ð56Þ

where

BðþÞ ¼ g2σ

!
1

u −m2
q
−

1

s −m2
q

"
; ð57Þ

and

Bð−Þ ¼ −g2σ
!

1

u −m2
q
þ 1

s −m2
q

"
: ð58Þ

Averaging over the spin and isospin factors, the matrix
element square for the quark pion scattering is given by

jM̄j2 ¼ g4σ
6
ððs − uÞ2 − tðt − 4m2

πÞÞð3B2
þ þ 2B2

−Þ: ð59Þ

The corresponding transition frequency is given by

ωqπðEaÞ ¼
1

2Ea

Z
dπbfðEbÞW

ðq−πÞ
ab ; ð60Þ

where

Wðq−πÞ
ab ¼ 1

8π
×

1

2
ffiffiffi
s

p
p0

Z
dtjM̄q−πj2ð1 − fqÞð1þ fπÞ:

ð61Þ

In the above, p2
0 ¼ ðsþm2

q −m2
πÞ2=ð4sÞ −m2

q. The scat-
tering will contribute to both the quark relaxation time as
well as to the pion relaxation time using Eq. (60) with
appropriate modification for the initial state.
Let us note that there are poles in the u channel in the

quark pion scattering term beyond the critical temperature
when the pion mass becomes larger than the quark mass.
However, this is taken care of once we include the
imaginary part of the quark self-energy in the propagators
for the quarks in the calculation of the amplitude in
Eqs. (57) and (58). The quark self-energy due to scattering
with mesons can be written as [30]

Σðp0;pÞ ¼ mΣ0 þ γ · pΣ3 − γ0p0Σ4 ð62Þ

so that the quark propagators get modified as

Sðp0;pÞ ¼
1

p −m − Σ

¼ mð1þ Σ0Þ þ γ0p0ð1þ Σ4Þ − γ · pð1þ Σ3Þ
p2
0ð1þ Σ4Þ2 − p2ð1þ Σ3Þ2 −m2ð1þ Σ0Þ2

:

ð63Þ

The imaginary part of the dimensionless Σj, (j ¼ 0, 3, 4), is
given as

ImΣjðp0;pÞ ¼
g2

32πp
dj

Z
Emax

Emin

dEfCj½fbðEbÞ

þ f−ðEfÞ þ fþðEfÞ&. ð64Þ

In the above, Eb ¼ Ef þ p0, p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and f' are

the distribution functions for the quarks/antiquarks, fb is
the meson distribution function, and,Cj’s are weight factors
given as

C0 ¼ 1; C3 ¼
m2

M − 2m2 − 2Efp0

2p2
; C4 ¼ −

Ef

p0

:

ð65Þ

The integration limits are given by

Emax;min ¼
1

2m2

h
ðm2

M − 2m2Þp0 ' jpjmM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

M − 4m2

q i
:

ð66Þ

Further, the degeneracy factors d3;4 are 3 for pions and 1
for sigma, while d0 is −3 for pions and 1 for the sigma
meson. To calculate the total relaxation time for a quark of
species a, we compute the total interaction frequency as
ωtotal
q ðEaÞ ¼ ωðEaÞ þ ωqπðEaÞ. One can define an average

relaxation time for the quarks similar to Eq. (47) as
τ̄totalq ¼ 1

ω̄total
q

,

ω̄total
q ¼ 1

nq

Z
dp

ð2πÞ3
fqðEÞωtotal

q ðEÞ: ð67Þ

IV. RESULTS

A. Meson scatterings

Let us first discuss the results arising from meson
scattering alone. Using Eqs. (46), with constant jMj2 as
discussed, we have plotted the average relaxation times for
the σ meson and π mesons in Fig. 5. The relaxation times
are minimum at the transition temperature. Because of
larger mass of σ mesons below the transition temperature,
τ̄σ is much larger as compared to τ̄π. They become almost
degenerate after the chiral transition, as may be expected
from the behavior of their masses beyond the transition
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temperature. We may comment here that the particle with
larger relaxation time dominates the viscosities as it can
transport energy and momentum to larger distances before
interacting. In Fig. 6, we have shown the behavior of the
specific viscosities (normalized to entropy density) as a
function of temperature. In Fig. 6(a), we have plotted the
temperature dependence of the ratio η=s for μ ¼ 0. The
behavior of this ratio is essentially determined by the
behavior of the relaxation time. Similar to Fig. 5, η=s shows

a minimum at the crossover temperature, and the value at
the minimum is about η=s ∼ 0.053, which is slightly lower
than the KSS bound of 1=4π. We note that we have
considered here only the contributions from meson scatter-
ings. As we shall see later, inclusion of quark degrees of
freedom increases the ratio. We have also compared with
linear sigma model calculations [38] in which the quark as
well as Polyakov loop contributions are not taken into
account. The general behavior of the present calculations is
similar to earlier calculations in the sense of having a
minimum at the chiral crossover temperature. However, the
magnitude of the ratio at the critical temperature is smaller
compared to Ref. [38]. This is probably due to the fact that
the entropy density in the present calculations has con-
tributions including those of the gluon included through the
Polyakov loop potential. The large entropy density, we
believe, decreases the magnitude of the ratio.
In Fig. 6(b), the ratio of bulk viscosity to entropy is

plotted, which shows a maximum at the transition temper-
ature. We have also plotted in the same figure the results
without quarks and the Polyakov loop potential. The
present results show a distinct peak structure in the ζ=s
ratio at the crossover temperature. Let us note that such a
peak is expected as an effect of large conformality violation
at the transition temperature as indicated in lattice simu-
lations [28,60]. In Ref. [38], a peak structure is seen for a
heavier sigma meson (mσ ¼ 900 MeV), which was inter-
preted as an effect of stronger self-coupling λ for higherMσ.
However, in the present case, this arises with quark and
Polyakov loop degrees of freedom even with a lighter
Mσ ¼ 600 MeV. The other characteristic feature of the
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FIG. 6. Computations show mesonic contribution calculated using only meson-meson interactions. (a) Shear viscosity–to-entropy
ratio for μ ¼ 0. Present results are shown by solid lines. The two dot dashed curves correspond to results of the linear sigma model of
Ref. [38] corresponding two different masses for sigma mesons. (b) Bulk viscosity–to-entropy ratio for μ ¼ 0. Results for current
calculations are shown by the solid line. The other results correspond to the work by Kapusta et al. (short dashed line) of the linear sigma
model with (mσ ¼ 600 MeV) and Kapusta et al. (dash dot curve) for the linear sigma model with mσ ¼ 900 MeV [38].
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FIG. 5. Average relaxation time for pions (solid line) and sigma
meson (dotted line). Only meson-meson scatterings are consid-
ered here.
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present calculation is that, beyond the critical temperature,
the ratio ζ=s falls at a slower rate as compared to results of
previous calculations. This has to do with the fact that the
velocity of sound approaches the ideal gas limit slowly as
the effect of Polyakov loops on the quark distribution
function remains significant beyond the critical temper-
ature. In fact, at the transition temperature, the value of the
Polyakov loop remains about half its value of the ideal
limit. Apart from this, the masses of mesons also get
affected by the quark distribution functions significantly
beyond the critical temperature. These nonideal effects lead
to a slower decrease of the ratio beyond the critical
temperature.

B. Quark scatterings

Next, we discuss quark scattering. In Fig. 7, we show the
behavior of average relaxation time for quark scattering.
The quark scattering through the exchange of mesons is
shown by the solid line in the figure. Let us recall that
the average relaxation time is inversely proportional to the
transition rate, which is related to the cross section. The
dominant contribution here comes from the quark-
antiquark scattering from the s channels through propaga-
tion of the resonance states, the pions, and the sigma
mesons. The masses of the sigma meson decrease with
temperature, becoming a minimum at the transition temper-
ature, leading to an enhancement of the cross section.
Beyond this, the cross section decreases due to the increase
in the masses of the mesons. This, in turn, leads to a
minimum in the relaxation time.
The average relaxation time for quarks including the

quark meson scattering along with the quark scattering is
shown as the dashed curve in Fig. 7. This curve lies below
the quark-quark scattering curve as there is an additional
contribution to the transition rate from the quark meson
scattering. Below the critical temperature, the quark meson
scattering dominates over the quark-quark scattering due to
the smaller mass of the pions as compared to the massive
constituent quarks. Beyond the critical temperature, one
would have expected the quark meson scattering contri-
bution to be negligible because of the suppression due to
the large meson masses. However, as was noted earlier,
beyond the critical temperature, there are poles in the
scattering amplitude in the u channel for quark-pion
scattering as the pion mass becomes larger than the quark
masses. This is, however, regulated by the finite width of
the quarks as calculated in Eq. (62). Nonetheless, the
contribution of the quark-pion scattering to the total quark
interaction frequency ωqπðEÞ is non-negligible beyond the
critical temperature.
We next discuss the contribution of different scatterings

to the specific shear viscosity η=s. The same is shown in
Fig. 8(a) for vanishing chemical potential. The contribution
from the mesons to the shear viscosity arising from the
meson scatterings only is shown by the green dashed curve,

while the effect of including the meson-quark scattering is
shown by the maroon dotted curve. Similarly, the quark
contribution to this ratio η=s arising from quark-quark
scattering only is shown by the red solid line, while the
total contributions including the quark-pion scattering is
shown by the blue dotted line. This also demonstrates the
importance of the scattering of quarks and mesons to the
total viscosity coefficient. The total contributions from both
the quarks and mesons is shown as the black dashed curve
in Fig. 8.
In a similar manner, various contributions to the specific

bulk viscosity (ζ=s) coefficient are shown in Fig. 8(b). As
may be observed, while no peak structure is seen for this
coefficient from the contributions arising from quarks
scatterings only, such a structure is seen only when one
includes the quark meson scattering. The total effect is
shown as a black dashed curve in Fig. 8(b).
In Fig. 9, we compare the present results with earlier

works on the NJL model. As may be noted, in general,
the behavior is similar regarding the shear viscosity–to-
entropy ratio. Both NJL as well as the present calculations
of the PQM model show the similar behavior of having a
minimum at the transition temperature as in Refs. [24,25].
The results of Ref. [35], on the other hand, show a
monotonic decrease with temperature. The bulk viscosity–
to-entropy ratio here, however, shows a much faster rise as
the temperature is lowered below the critical temperature.
In fact, both the specific viscosities rise much faster
compared to NJL models below the critical temperature
in the PQM model considered here. The reason could be
due to the fact that the entropy density for the PQM model
is smaller compared to NJL models. The Polyakov loop
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FIG. 7. Average relaxation time for quarks arising from quark
scattering. The solid curve corresponds to quark quark-quark and
quark-antiquark scattering with meson exchange. The dashed
curve corresponds to including the effect of quark meson
scatterings. Both the curves correspond to the μ ¼ 0 case.
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decreases as the temperature is lowered, which leads to a
suppression of quark distribution functions, leading to
decrease of entropy density at a faster rate as compared
to the NJL model. Moreover, within the present approxi-
mation, pions do not contribute to the thermodynamics

here. Further, for temperature larger than the critical
temperature, the bulk viscosity vanishes slowly with an
increase in temperature as compared to the NJL model.
This is due to the fact that the Polyakov loop variable takes
its asymptotic values only at very high temperatures.
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FIG. 9. (a) Shear viscosity–to-entropy ratio for μ ¼ 0. Present results are shown by solid lines. The dotted line corresponds to results of
the NJL model of Ref. [24], the short dashed curve corresponds to results of Marty et al. Ref. [35], and the long dashed curves
correspond to the results of Deb et al. of Ref. [25]. (b) The results of the bulk viscosity–to-entropy ratio compared with other results in
NJL models. The notation is similar to that of (a).
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FIG. 8. Different contributions for specific viscosity coefficients. η=s is shown in the left, while ζ=s is shown on the right. In both the
figures, contributions from the quarks with relaxation time computed using only quark-quark scattering(red solid line) and also
including quark-meson scattering(blue dotted line) are shown as a function of temperature. The contribution of the mesons due to
meson-meson scattering (green dashed curve) and including meson-quark scattering (maroon short dashed curve) is also shown. The
total contribution from the quarks and mesons is shown by the black long dashed curve. All the curves correspond to the μ ¼ 0 case.
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Next, we discuss the effect of finite chemical potential on
the transport coefficients. To begin with, let us note that the
average relaxation time τ̄a as in Eq. (67) depends both on
the transition rate and the density of the particles in the
initial state. To this end, let us discuss the case of T > Tc.
Here, the quark densities are larger than those of antiquarks.
Further, the dominant contribution in this range of tem-
peratures arises from ud̄ → ud̄ scatterings. As there are
fewer antiquarks to scatter off, the average transition
frequency of quark-antiquark scattering decreases. This

leads to τ̄qðμÞ > τ̄qðμ ¼ 0Þ. On the other hand, for the
antiquarks, there are more quarks to scatter off than
compared to the case of μ ¼ 0. Hence, this leads to
τ̄q̄ðμÞ < τ̄q̄ðμ ¼ 0Þ. This expected behavior is seen in
Fig. 10. Next, let us consider the case T < Tc. In this
case, the antiquark density is heavily suppressed due to
constituent quark mass, and the chemical potential and
dominant contribution for quark relaxation time therefore
arises from quark-quark scatterings. This leads to
τ̄qðμÞ < τ̄qðμ ¼ 0Þ. On the other hand, for the antiquarks,
though their number density is smaller, their interaction
frequency is enhanced both by the larger amplitude for
Mud̄→ud̄ scattering and the larger number of quarks as
compared to case at μ ¼ 0. This leads to τ̄q̄ðμÞ <
τ̄qðμ ¼ 0Þ < τ̄q̄ðμ ¼ 0Þ. This general behavior is reflected
in the average relaxation time dependence on T in Fig. 10
below the critical temperature.
In Fig. 11, we have shown the results for the viscosities

at μ ¼ 100 MeV. Figure 11(a) shows the variation of the
specific shear viscosity (η=s) as a function of temperature
for zero and finite chemical potential. The behavior of shear
viscosity essentially follows that of the behavior of the
relaxation time. η=s has a minimum at the critical temper-
ature with η=sjmin ∼ 0.23 (μ ¼ 0) due to suppression of the
scattering cross section at higher temperature. At finite μ,
the ratio is a little higher as compared to the value at
vanishing μ. This is due to two reasons. First, the relaxation
time at nonzero chemical potential is larger, and, moreover,
the quark density also becomes larger at finite chemical
potential. At temperatures below the critical temperature
and near the critical temperature, η=sðμÞ < η=sðμ ¼ 0Þ
as the relaxation time is lower. However, at lower
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FIG. 11. Viscosities for μ ¼ 100 MeV. The left figure shows η=s as a function of temperature for μ ¼ 0 MeV (solid line) and
μ ¼ 100 MeV (dotted line). The right figure shows the ratio ζ=s as a function of temperature.
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FIG. 10. Average relaxation time of quarks and antiquarks
for μ ¼ 100 MeV. The solid line corresponds to the case
of μ ¼ 0 MeV.
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temperatures, the meson scattering becomes significant,
and η=s for finite chemical potential becomes similar to that
at vanishing chemical potential as is observed in the figure.
In Fig. 11(b), we have plotted the bulk viscosity–to-

entropy ratio for μ ¼ 0 MeV and μ ¼ 100 MeV. It turns
out that at finite μ the specific bulk viscosity is smaller than
the value at μ ¼ 0 MeV. The reason for it is the fact that the
dominating contribution to the finite μ arises from the term
M2 − TM dM

dT − μM dM
dμ in the expression for ζ=s in Eq. (35).

This is due to the sharp variations of the order parameters at
finite chemical potential as may be observed in Fig. 3.
As this term contributes negatively to the expression for ζ,
the specific bulk viscosity at finite μ is lower than that
at μ ¼ 0 MeV.
In Fig. 12, we have shown the results for thermal

conductivity. We have plotted here the dimensionless
quantity λ=T2 as a function of temperature. We have
plotted the results for μ ¼ 100 MeV. As is well known,
thermal conduction, which involves the relative flow of
energy and baryon number, vanishes at zero baryon density.
In fact, λ diverges as 1=n2, as may be expected from the
expression given in Eq. (36). However, in the dissipative
current, the conductivity occurs as λn2 [61,62], and the heat
conduction vanishes for μ ¼ 0 [63]. On the other hand, in
some cases, such as when the pion number is conserved,
heat conduction can be sustained by pions. In the presence
of a pionic chemical potential corresponding to a conserved
pion number, thermal conductivity can be nonzero at
vanishing baryonic chemical potential. This has been the
basis for the estimation of thermal conductivity at zero
baryon density but finite pion density [31,40,47]. However,
in the present case, we consider the case of vanishing pion
chemical potential and show only the contribution of
quarks to thermal conductivity.

As expected from the behavior of the relaxation time, the
specific thermal conductivity has a minimum at the critical
temperature similar to Ref. [25] for the NJL model. The
sharp rise of λ=T2 can be understood by performing a
dimensional argument to show that at very high temper-
ature when chiral symmetry is restored the integral
increases as T3 while the prefactor w=ðnTÞ grows as T2

for small chemical potentials. Apart from this kinematic
consideration, the integrand further is multiplied by τðEÞ,
which itself is an increasing function of temperature
beyond Tc. This leads to the sharp rise of the ratio λ=T2

beyond the critical temperature. Below the critical temper-
ature, however, the ratio decreases, which is in contrast to
the NJL results of Ref. [25]. The reason is twofold. First, the
magnitude of the relaxation time decreases when quark
meson scattering is included as compared to quark-quark
scattering as shown in Fig. 7. Apart from this, in the
integrand, the distribution functions are suppressed by
Polyakov loops as compared to the NJL model. As the
antiquark densities are suppressed compared to quark
densities at finite chemical potential, the high-temperature
behavior is decided by the quark-quark scattering.

V. SUMMARY

Transport coefficients of hot and dense matter are
important inputs for the hydrodynamic evolution of the
plasma that is produced following a heavy ion collision. In
the present study, we have investigated these coefficients,
taking into account the nonperturbative effects related to
chiral symmetry breaking as well as confinement properties
of strong interaction physics within an effective model, the
Polyakov loop extended quark meson coupling model.
These coefficients are estimated using the relaxation time
approximation for the solutions of the Boltzman kinetic
equation.
We first calculated the medium-dependent masses of the

mesons and quarks within a mean field approximation. The
contribution of the mesons to the transport coefficients has
been calculated through estimating the relaxation time for
the mesons arising both from meson-meson scattering and
meson-quark scattering. The contribution to the transport
coefficients arises mostly from the meson scatterings at
temperatures below the critical temperature, while above
the critical temperature, the contributions arising from the
quark scatterings become dominant. In particular, quark
meson scattering contributes significantly to the relaxation
time for the quarks both below and above the critical
temperature. The quark-pion scattering above the critical
temperature gives significant contribution due to the pole
structure of the corresponding scattering amplitude.
One important approximation in the present analysis is

that the kinetic terms for the mesons are not modified at
finite temperature and meson dispersion relation remains
similar to those at the zero-temperature relativistic dis-
persion relation. The only temperature effect that remains
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FIG. 12. Thermal conductivity in units of T2 as a function of
temperature for μ ¼ 100 MeV.
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in the meson dispersion lies in the temperature-dependent
meson masses obtained through the curvature of the
effective potential [54]. A more realistic approach would
be to use effective field theory to have different dispersion
relations for the mesons [64] depending upon their veloc-
ities and calculate the scattering processes to estimate the
viscosities. However, such an approach is beyond the scope
of present work in which we have restricted ourselves to
thermal and density effects included in the masses and
widths for the mesons.
In general, the effect of Polyakov loops lies in sup-

pressing the quark contribution below the critical temper-
ature. This leads to, in particular, the suppression of thermal
conductivity at lower temperature arising from quark
scattering. The effect of Polyakov loop also is significant
near and above the critical temperature. Indeed, both the

quark masses as well as Polyakov loop order parameter
remain significantly different from their asymptotic values
near the critical temperature. It will be interesting to
examine the consequences of such nonperturbative features
on the transport coefficients of heavy quarks as well as on
the collective modes of QGP above and near the critical
temperature. Some of these works are in progress and will
be reported elsewhere.

ACKNOWLEDGMENTS

The authors would like to acknowledge many discus-
sions with Guru Prasad Kadam and Pracheta Singha. S. G.
is financially supported by University Grants Commission
Dr. D. S. Kothari Post Doctoral Fellowship (India), under
Grant No. F4-2/2006 (BSR)/PH/15-16/0060.

[1] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63,
123 (2013).

[2] M. Gyulassy and L. McLerran, Nucl. Phys.A750, 30 (2005).
[3] H. Niemi, G. S. Denicol, P. Huovienen, E. Molnar, and

D. H. Rischke, Phys. Rev. Lett. 106, 212302 (2011).
[4] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev.

Lett. 97, 152303 (2006).
[5] M. Luzum and P. Romatschke, Phys. Rev. Lett. 103, 262302

(2009).
[6] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,

172301 (2007); T. Hirano and M. Gyulassy, Nucl. Phys.
A769, 71 (2006).

[7] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,
1340011 (2013).

[8] B. Friman et al., The CBM Physics Book: Compressed
Baryonic Matter in Laboratory Experiments, Lecture Notes
in Physics (Springer, Berlin, 2011).

[9] D. Blaschke, J. Aichelin, E. Bratkovskaya, V. Friese, M.
Gazdzicki, J. Randrup, O. Rogachevsky, O. Teryaev, and
V. Toneev, Eur. Phys. J. A 52, 267 (2016).

[10] S. Sarkar and R. Sharma, Phys. Rev. D 96, 094025 (2017).
[11] H. Heiselberg and C. Pethick, Phys. Rev. D 48, 2916 (1993).
[12] N. Chamel and P. Hansel, Living Rev. Relativity 11, 10

(2008).
[13] D. Page and S. Reddy, Annu. Rev. Nucl. Part. Sci. 56, 327

(2006).
[14] D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P.

Haensel, Phys. Rep. 354, 1 (2001).
[15] D. G. Yakovlev, O. Y. Gnedin, A. D. Kaminker, K. P.

Levenfish, and A. Y. Potekhin, Adv. Space Res. 33, 523
(2004).

[16] N. Andersson, Astrophys. J. 502, 708 (1998); N. Andersson
and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 299, 1059
(1998).

[17] T. K. Jha, H. Mishra, and V. Sreekanth, Phys. Rev. C 82,
025803 (2010).

[18] J. I. Kapusta, Relativistic Nuclear Collisions, Landolt-
Bornstein New Series, edited by R. Stock (Springer-Verlag,
Berlin, 2010), Vol. I/23.

[19] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[20] P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[21] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy

Phys. 11 (2000) 001; 01 (2003) 030; 05 (2003) 051.
[22] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302

(2009).
[23] V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L.

Bratkovskaya, and W. Cassing, Phys. Rev. C 87, 064903
(2013).

[24] C. Sasaki and K.Redlich, Nucl. Phys. A832, 62 (2010).
[25] P. Deb, G. P. Kadam, and H. Mishra, Phys. Rev. D 94,

094002 (2016).
[26] A. S. Khvorostukhin, V. D. Toneev, and D. N. Voskresensky,

Nucl. Phys. A915, 158 (2013).
[27] A. S. Khvorostukhin, V. D. Toneev, and D. N. Voskresensky,

Nucl. Phys. A845, 106 (2010).
[28] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).
[29] K. Itakura, O. Morimatsu, and H. Otomo, Phys. Rev. D 77,

014014 (2008).
[30] R. Lang, N. Kaiser, and W. Weise, Eur. Phys. J. A 48, 109

(2012).
[31] D. Fernandiz-Fraile and A. Gomez Nicola, Eur. Phys. J. C

62, 37 (2009).
[32] S. Mitra, S. Ghosh, and S. Sarkar, Phys. Rev. C 85, 064917

(2012).
[33] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke,

Phys. Rep. 227, 321 (1993).
[34] A. Dobado and S. N. Santalla, Phys. Rev. D 65, 096011

(2002); A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D
69, 116004 (2004).

[35] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, and
H. Berrehrah, Phys. Rev. C 88, 045204 (2013).

ABHISHEK, MISHRA, and GHOSH PHYS. REV. D 97, 014005 (2018)

014005-16

https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1016/j.nuclphysa.2004.10.034
https://doi.org/10.1103/PhysRevLett.106.212302
https://doi.org/10.1103/PhysRevLett.97.152303
https://doi.org/10.1103/PhysRevLett.97.152303
https://doi.org/10.1103/PhysRevLett.103.262302
https://doi.org/10.1103/PhysRevLett.103.262302
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1016/j.nuclphysa.2006.02.005
https://doi.org/10.1016/j.nuclphysa.2006.02.005
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1140/epja/i2016-16267-x
https://doi.org/10.1103/PhysRevD.96.094025
https://doi.org/10.1103/PhysRevD.48.2916
https://doi.org/10.12942/lrr-2008-10
https://doi.org/10.12942/lrr-2008-10
https://doi.org/10.1146/annurev.nucl.56.080805.140600
https://doi.org/10.1146/annurev.nucl.56.080805.140600
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.1016/j.asr.2003.07.020
https://doi.org/10.1016/j.asr.2003.07.020
https://doi.org/10.1086/305919
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1046/j.1365-8711.1998.01840.x
https://doi.org/10.1103/PhysRevC.82.025803
https://doi.org/10.1103/PhysRevC.82.025803
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2000/11/001
https://doi.org/10.1088/1126-6708/2003/01/030
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1103/PhysRevLett.102.172302
https://doi.org/10.1103/PhysRevLett.102.172302
https://doi.org/10.1103/PhysRevC.87.064903
https://doi.org/10.1103/PhysRevC.87.064903
https://doi.org/10.1016/j.nuclphysa.2009.11.005
https://doi.org/10.1103/PhysRevD.94.094002
https://doi.org/10.1103/PhysRevD.94.094002
https://doi.org/10.1016/j.nuclphysa.2013.07.008
https://doi.org/10.1016/j.nuclphysa.2010.05.058
https://doi.org/10.1103/PhysRevLett.100.162001
https://doi.org/10.1103/PhysRevD.77.014014
https://doi.org/10.1103/PhysRevD.77.014014
https://doi.org/10.1140/epja/i2012-12109-3
https://doi.org/10.1140/epja/i2012-12109-3
https://doi.org/10.1140/epjc/s10052-009-0935-0
https://doi.org/10.1140/epjc/s10052-009-0935-0
https://doi.org/10.1103/PhysRevC.85.064917
https://doi.org/10.1103/PhysRevC.85.064917
https://doi.org/10.1016/0370-1573(93)90092-R
https://doi.org/10.1103/PhysRevD.65.096011
https://doi.org/10.1103/PhysRevD.65.096011
https://doi.org/10.1103/PhysRevD.69.116004
https://doi.org/10.1103/PhysRevD.69.116004
https://doi.org/10.1103/PhysRevC.88.045204


[36] A. Dobado, F. J. Llane-Estrada, and J. T. Rincon, Phys. Lett.
B 702, 43 (2011).

[37] M. Bluhm, B. Kampfer, and K. Redlich, Phys. Rev. C 79,
055207 (2009).

[38] P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906
(2011).

[39] K. Rajagopal and N. Trupuraneni, J. High Energy Phys. 03
(2010) 018; J. Bhatt, H. Mishra, and V. Sreekanth, J. High
Energy Phys. 11 (2010) 106; Phys. Lett. B 704, 486 (2011);
Nucl. Phys. A875, 181 (2012).

[40] S. Mitra and S. Sarkar, Phys. Rev. D 87, 094026 (2013);
S. Mitra, S. Gangopadhyaya, and S. Sarkar, Phys. Rev. D
91, 094012 (2015).

[41] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke,
Phys. Rev. D 85, 114047 (2012).

[42] M. Greif, F. Reining, I. Bouras, G. S. Denicol, Z. Xu, and
C. Greiner, Phys. Rev. E 87, 033019 (2013).

[43] G. S. Denicol, H. Niemi, I. Bouras E. Molnar, Z. Xu,
D. H. Rischke, and C. Greiner, Phys. Rev. D 89, 074005
(2014).

[44] J. I. Kapusta and J. M. Torres-Rincon, Phys. Rev. C 86,
054911 (2012).

[45] M. Iwasaki and T. Fukutome, J. Phys. G 36, 115012 (2009).
[46] S. Nam, Mod. Phys. Lett. A 30, 1550054 (2015).
[47] S. Ghosh, Int. J. Mod. Phys. E 24, 1550058 (2015).
[48] P. Singha, A. Abhishek, G. Kadam, S. Ghosh, and H.

Mishra, arXiv:1705.03084v2.
[49] B. J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys.

Rev. D 76, 074023 (2007).

[50] U. S. Gupta and V. K. Tiwari, Phys. Rev. D 85, 014010
(2012).

[51] B. W. Mintz, R. Stiele, R. O. Ramos, and J. S. Bielich,
Phys. Rev. D 87, 036004 (2013).

[52] S. Carignano, M. Buballa, and W. Elkamhawy, Phys. Rev. D
94, 034023 (2016).

[53] H. Mishra and R. K. Mohapatra, Phys. Rev. D 95, 094014
(2017).

[54] O. Scavenius, A. Mocsy, I. N. Mishustin, and D. H. Rischke,
Phys. Rev. C 64, 045202 (2001).

[55] S. K. Ghosh, A. Lahiri, S. Majumder, M. G. Mustafa, S.
Raha, and R. Ray, Phys. Rev. D 90, 054030 (2014).

[56] A. Bazavov et al., Phys. Rev. D 90,094503 (2014).
[57] M. Bluhm, B. Kampfer, and K. Redlich, Phys. Rev. C 84,

025201 (2011).
[58] M. Albright and J. I. Kapusta, Phys. Rev. C 93, 014903

(2016).
[59] P. Zhuang, J. Hufner, S. P. Klevansky, and L. Neise,

Phys. Rev. D 51, 3728 (1995).
[60] F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663,

217 (2008).
[61] S. Gavin, Nucl. Phys. A435, 826 (1985).
[62] A. Hosoya and K. Kajantie, Nucl. Phys. B250, 666 (1985).
[63] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31, 53

(1985).
[64] D. T. Son and M. A. Stephanov, Phys. Rev. D 66, 076011

(2002); B. B. Brandt, A. Francis, H. B. Meyer, and D.
Robaina, Phys. Rev. D 92, 094510 (2015); S. Gupta and
R. Sharma arXiv:1710.05345.

TRANSPORT COEFFICIENTS IN THE POLYAKOV QUARK … PHYS. REV. D 97, 014005 (2018)

014005-17

https://doi.org/10.1016/j.physletb.2011.06.059
https://doi.org/10.1016/j.physletb.2011.06.059
https://doi.org/10.1103/PhysRevC.79.055207
https://doi.org/10.1103/PhysRevC.79.055207
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1007/JHEP03(2010)018
https://doi.org/10.1007/JHEP03(2010)018
https://doi.org/10.1007/JHEP11(2010)106
https://doi.org/10.1007/JHEP11(2010)106
https://doi.org/10.1016/j.physletb.2011.09.052
https://doi.org/10.1016/j.nuclphysa.2011.11.012
https://doi.org/10.1103/PhysRevD.87.094026
https://doi.org/10.1103/PhysRevD.91.094012
https://doi.org/10.1103/PhysRevD.91.094012
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevE.87.033019
https://doi.org/10.1103/PhysRevD.89.074005
https://doi.org/10.1103/PhysRevD.89.074005
https://doi.org/10.1103/PhysRevC.86.054911
https://doi.org/10.1103/PhysRevC.86.054911
https://doi.org/10.1088/0954-3899/36/11/115012
https://doi.org/10.1142/S0217732315500546
https://doi.org/10.1142/S0218301315500585
http://arXiv.org/abs/1705.03084v2
https://doi.org/10.1103/PhysRevD.76.074023
https://doi.org/10.1103/PhysRevD.76.074023
https://doi.org/10.1103/PhysRevD.85.014010
https://doi.org/10.1103/PhysRevD.85.014010
https://doi.org/10.1103/PhysRevD.87.036004
https://doi.org/10.1103/PhysRevD.94.034023
https://doi.org/10.1103/PhysRevD.94.034023
https://doi.org/10.1103/PhysRevD.95.094014
https://doi.org/10.1103/PhysRevD.95.094014
https://doi.org/10.1103/PhysRevC.64.045202
https://doi.org/10.1103/PhysRevD.90.054030
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevC.84.025201
https://doi.org/10.1103/PhysRevC.84.025201
https://doi.org/10.1103/PhysRevC.93.014903
https://doi.org/10.1103/PhysRevC.93.014903
https://doi.org/10.1103/PhysRevD.51.3728
https://doi.org/10.1016/j.physletb.2008.01.080
https://doi.org/10.1016/j.physletb.2008.01.080
https://doi.org/10.1016/0375-9474(85)90190-3
https://doi.org/10.1016/0550-3213(85)90499-7
https://doi.org/10.1103/PhysRevD.31.53
https://doi.org/10.1103/PhysRevD.31.53
https://doi.org/10.1103/PhysRevD.66.076011
https://doi.org/10.1103/PhysRevD.66.076011
https://doi.org/10.1103/PhysRevD.92.094510
http://arXiv.org/abs/1710.05345


 

Chiral symmetry breaking, color superconductivity, and equation of state
for magnetized strange quark matter

Aman Abhishek1,2,* and Hiranmaya Mishra1,†
1Theory Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

2Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382 355, India

(Received 25 October 2018; published 22 March 2019)

We investigate the vacuum structure of dense quark matter in strong magnetic fields in a three-flavor
Nambu Jona Lasinio (NJL) model including the Kobayashi-Maskawa-t’Hooft (KMT) determinant term
using a variational method. The method uses an explicit construct for the “ground” state in terms of quark-
antiquark condensates as well as diquark condensates in the background of a constant magnetic field. The
coupled mass gap equations and the superconducting gap equation are solved self-consistently and are used
to compute the thermodynamic potential along with charge neutrality conditions imposed for bulk matter.
Within the model, we observe inverse magnetic catalysis for chiral symmetry breaking for moderate
magnetic fields. Further, we observe gapless modes in the presence of the magnetic field when charge
neutrality conditions are imposed. The equation of state for charge neutral magnetized strange quark matter
is derived, and found to be stiffer compared to the vanishing magnetic field counterpart. This could be
relevant for gross structural properties of neutron stars.
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I. INTRODUCTION

The structure of vacuum in quantum chromodynamics
(QCD) and its modification under extreme environment has
been a major theoretical and experimental challenge in
current physics [1]. In particular, it is interesting to study
the modification of the structure of ground state at high
temperature and/or high baryon densities as related to the
nonperturbative aspects of QCD. This is important not only
from a theoretical point of view, but also for many
applications to problems of quark-gluon plasma (QGP)
that could be copiously produced in relativistic heavy ion
collisions as well as for the ultradense cold nuclear/quark
matter which could be present in the interior of compact
stellar objects like neutron stars. In addition to hot and dense
QCD, the effect of strong magnetic field on QCD vacuum
structure has attracted recent attention. This is motivated by
the possibility of creating ultrastrong magnetic fields in
noncentral collisions at RHIC and LHC. The strengths of the
magnetic fields are estimated to be of hadronic scale [2,3] of
the order of eB ∼ 2 m2

π (m2
π ≃ 1018Gauss) at RHIC, to about

eB ∼ 15 m2
π at LHC [3]. There have been recent calculations

both analytic as well as with lattice simulations, which
indicate that the QCD phase diagram is affected by strong
magnetic fields [4–6].
In the context of cold dense matter, compact stars can be

strongly magnetized. Neutron star observations indicate the
magnetic field to be of the order of 1012–1013 Gauss at the
surface of ordinary pulsars [7]. Further, the magnetars which
are strongly magnetized neutron stars, may have even
stronger magnetic fields of the order of 1015–1016 Gauss
[8–14]. The physical upper limit on the magnetic field in a
gravitationally bound star is 1018 Gausswhich is obtained by
comparing the magnetic and gravitational energies using
virial theorem [7]. This limit could be higher for self-bound
objects like quark stars [15]. Since the magnetic field
strengths are of the order of QCD scale, this can affect both
the thermodynamic as well as the hydrodynamics of such
magnetized matter [16]. The phase structure of dense matter
in the presence of the magnetic field along with a nonzero
chiral density has been investigated for two-flavor Polyakov
Loop extended Nambu-Jona Lasinio model (PNJL) model
for high temperatures relevant for RHIC and LHC [17].
There have also been many investigations to look into the
vacuum structure of QCD and it has been recognized that the
strong magnetic field acts as a catalyzer of chiral symmetry
breaking [18–22]. The effects of magnetic field on the
equation of state have been recently studied in the Nambu
Jona Lasinio model at zero temperature for three flavors and
the equation of state has been computed for the cold quark
matter [23,24] taking into account chiral condensate structure
with the quark-antiquark pair for the ground state.
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On the other hand, color superconductivity is now an
accepted conjectured state of cold and dense quark matter
describing Cooper pairing of quarks of different colors and
different flavors [25,26]. One can have a rigorous treatment
of the phenomenon of such pairing using asymptotic
freedom of QCD at very high densities. In its simplest
form, when masses of the three quarks can be neglected
compared to the chemical potential one can have the color
flavor locked (CFL) phase [25,26]. However, to apply it to
neutron star matter, the situation is more complicated as for
the densities expected in the interior of neutron star, the
masses of strange quarks cannot be neglected. Further,
many nontrivial complications arise when beta equilibrium
and charge neutrality conditions are imposed in such
systems [27]. Since the well known sign problem prevents
the first principle lattice simulations at finite chemical
potentials, one has to rely on effective models at this regime
of moderate densities. One model that has been extensively
studied in this context has been the Nambu Jona Lasinio
(NJL) model with contact interactions [28,29].
Of late, there has been a lot of attention on the

investigation of color superconductivity in the presence
of the magnetic field [18,19,30–32]. Essentially, this is due
to its possible application in the astrophysical situations as
the densities in compact star cores are large enough to have
a possible superconducting phase as well as such compact
stars can have a strong magnetic field as mentioned above.
Let us also mention here that although such systems can be
color superconductors, these phases can be penetrated by a
“rotated” long range magnetic field. The corresponding
rotated gauge field is a linear combination of vacuum
photon field and the eighth gluon field [33,34]. These
rotated magnetic fields are not subjected to the Meissener
effect. While the Cooper pair is neutral with respect to the
magnetic field, the quark quasiparticles have well-defined
charges. Therefore, the pairing phenomenon is affected by
the presence of the magnetic field. Initially, the effect of the
magnetic field on superconducting phase has been studied
for the CFL phase [30] where all three quarks take part in
the pairing dynamics. However, for realistic densities, such
symmetric pairing is disfavored due to large strange quark
mass that leads to large mismatch in the Fermi surface. The
condition of charge neutrality further complicates the
pairing mechanism leading to gapless modes for homo-
geneous diquark pairing [35,36]. Superconductivity for the
two-flavor quark matter in the presence of the magnetic
field has been studied in Refs. [19,37,38] within the NJL
model. The effect of charge neutrality along with the
interplay of chiral and superconducting condensates has
been analyzed in Refs. [37,38] in this model. A complete
three-flavor analysis of magnetized dense quark matter
including superconductivity has not been attempted so far.
In the present investigation we include the effects of strange
quarks that take part in chiral condensation but not in the
diquark channel in the magnetized quark matter. As we

shall see, the strange quarks, similar to the vanishing
magnetic field case, play an important role for charge
neutral matter and the resulting equation of state. Moreover,
with the inclusion of a flavor mixing interaction term, the
strange quark scalar condensate not only affects the light
quark condensates but also the diquark condensates.
We had earlier considered a variational approach to study

chiral symmetry breaking as well as color superconduc-
tivity in hot and dense matter with an explicit structure for
the “ground state” [36,39–41] with quark-antiquark con-
densate. The calculations were carried out within NJL
model with minimization of free energy density to decide
which condensate will exist at what density and/or temper-
ature. A nice feature of the approach is that the four
component quark field operator in the chiral symmetry
broken phase gets determined from the vacuum structure.
In the present work, we aim to investigate how the vacuum
structure in the context of chiral symmetry breaking and
color superconductivity gets modified in the presence of a
magnetic field. In the context of chiral symmetry breaking,
it was seen that, since the vacuum contains quark-antiquark
pairs, the Dirac vacuum gets corrections due to the effective
magnetic field apart from the modification of the medium
or the Fermi sea of quarks. In our analysis we also keep
these contributions to the equation of state.
We organize the paper as follows. In Sec. II, we discuss

an ansatz state with quark-antiquark pairs related to chiral
symmetry breaking, diquark and diantiquark pairs for the
light flavors related to color superconductivity in the
presence of a magnetic field. We then generalize such a
state to include the effects of temperature and density.
In Sec. III, we consider the three-flavor NJL model along
with the so-called the Kobayashi-Maskawa-t’Hooft (KMT)
term—the six fermion determinant interaction term which
breaks U(1) axial symmetry as in QCD. We use this
Hamiltonian and calculate its expectation value with
respect to the ansatz state to compute the energy density
as well the thermodynamic potential for this system. We
minimize the thermodynamic potential to determine the
ansatz functions and the resulting mass gap equations.
These coupled mass and superconducting gap equations are
solved and we discuss the results in Sec. IV. We discuss
here the results with and without constraints of charge
neutrality. Finally we summarize and conclude in Sec. V. In
the Appendix we give some details of the derivation of the
evaluation of expectation values of the order parameters.

II. THE ANSATZ FOR THE GROUND STATE

Let us first consider the ground state structure relevant
for chiral symmetry breaking in the presence of a strong
magnetic field [24]. We shall then modify the same relevant
for color superconductivity. To make the notations clear, we
first write down the field operator expansion for quarks
with a current quark massm and charge q in the momentum
space in the presence of a constant magnetic field B.
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We take the field direction to be along the z axis. We choose
the gauge such that the electromagnetic vector potential is
given as AμðxÞ ¼ ð0; 0; Bx; 0Þ. The quark field operator
expansion in the presence of a constant magnetic field is
given as [24,42]

ψðxÞ ¼
X

n

X

r

Z
dp x

2π
½q0rðn;p xÞU0

rðx;p x; nÞ

þ q̃0rðn;−p xÞV0
rðx;−px; nÞ&eip x·x x : ð1Þ

Here n is the Landau level and the sum over it runs from 0
to infinity. In the above, p x ≡ ðpy; pzÞ, and r ¼ '1
denotes the up and down spins. We have suppressed the
color and flavor indices of the quark field operators. The
quark annihilation and antiquark creation operators, q0r and
q̃0r , respectively, satisfy the quantum algebra

fq0rðn;p xÞ; q0†r0 ðn
0;p0

xÞg ¼ fq̃0rðn;p xÞ; q̃0†r0 ðn
0;p0

xÞg
¼ δrr0δnn0δðp x − p0

xÞ: ð2Þ

In the above, Ur and Vr are the four component spinors
for the quarks and antiquarks respectively. The explicit
forms of the spinors for the fermions with mass m and
electric charge q are given by

U0
↑ðx;p x;nÞ¼

0

BBBBB@

cosϕ0

2 ðθðqÞInþθð−qÞIn−1Þ
0

p̂z sin
ϕ0

2 ðθðqÞInþθð−qÞIn−1Þ

−ip̂⊥ sin
ϕ0

2 ðθðqÞIn−1−θð−qÞInÞ

1

CCCCCA
ð3aÞ

U0
↓ðx;p x;nÞ¼

0

BBBBB@

0

cosϕ0

2 ðθðqÞIn−1þθð−qÞInÞ

ip̂⊥ sin
ϕ0

2 ðθðqÞIn−θð−qÞIn−1Þ

−p̂z sin
ϕ0

2 ðθðqÞIn−1þθð−qÞInÞ

1

CCCCCA
ð3bÞ

V0
↑ðx;−p x;nÞ¼

0

BBBBB@

p̂⊥ sin
ϕ0

2 ðθðqÞIn−θð−qÞIn−1Þ

ip̂z sin
ϕ0

2 ðθðqÞIn−1þθð−qÞInÞ
0

icosϕ0

2 ðθðqÞIn−1þθð−qÞInÞ

1

CCCCCA
ð3cÞ

V0
↓ðx;−p x;nÞ¼

0

BBBBB@

ip̂z sin
ϕ0

2 ðθðqÞInþθð−qÞIn−1Þ

p̂⊥ sin
ϕ0

2 ðθðqÞIn−1−θð−qÞInÞ

−icosϕ0

2 ðθðqÞInþθð−qÞIn−1Þ
0

1

CCCCCA
: ð3dÞ

Here θðxÞ is the Heaviside theta function. In the above, the
energy of the nth Landau level is given as ϵn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ 2njqjB
p ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ jp2j

p
with p2 ¼ p2

z þ p2
⊥

so that p2⊥ ¼ 2njqjB, p̂z ¼ pz=jpj, p̂⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqjB

p
=jpj.

In Eqs. (3), cotϕ0 ¼ m=jpj. Clearly, for vanishing masses
ϕ0 ¼ π=2. The functions I0n s (with n ≥ 0) are functions of
ξ ¼

ffiffiffiffiffiffiffiffiffi
jqBj

p
ðx − py=jqBjÞ and are given as

InðξÞ ¼ cn exp
"
−
ξ2

2

#
HnðξÞ; ð4Þ

whereHnðξÞ is the Hermite polynomial of the nth order and
I−1 ¼ 0. The normalization constant cn is given by

cn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqjB

p

n!2n
ffiffiffi
π

p

s

:

The functions InðξÞ satisfy the orthonormality condition
Z

dξInðξÞImðξÞ ¼
ffiffiffiffiffiffiffiffiffi
jqjB

p
δn;m; ð5Þ

so that the spinors are properly normalized. The detailed
derivation of these spinors and some of their properties are
presented in the Appendix of Ref. [24].
With the field operators now defined in terms of the

annihilation and the creation operators in the presence of a
constant magnetic field, one can write down an ansatz for
the ground state as in Ref. [24]. The ground state is taken as
a squeezed coherent state involving quark and antiquarks
pairs. Explicitly [24,36,39,41],

jΩi ¼ UQj0i: ð6Þ

Here, UQ is an unitary operator which creates quark-
antiquark pairs from the vacuum j0i which in annihilated
by the quark/antiquark annihilation operators given in
Eq. (1). Explicitly, the operator UQ is given as [24]

UQ ¼ exp
"X∞

n¼0

Z
dp xq0ir †ðn; p xÞair;sðn; pzÞhiðn; pzÞ

× q̃0is ðn;−pxÞ − H:c:
#
: ð7Þ

In the above ansatz for the ground state, the function
hiðn; pzÞ is a real function describing the quark-antiquark
condensates related to the vacuum realignment for chiral
symmetry breaking to be obtained from a minimization of
the thermodynamic potential. In the above equation, the
spin dependent structure air;s is given by

air;s ¼
1

jpij
½−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqijB

p
δr;s − ipzδr;−s&; ð8Þ

with jpij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijB

p
denoting the magnitude of the

three momentum of the quark/antiquark of ith flavor (with
electric charge qi) in the presence of a magnetic field.
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Summation over three colors and three flavors is under-
stood in the exponent of UQ in Eq. (7). Clearly, a nontrivial
hiðn; pzÞ breaks the chiral symmetry.
It is easy to show that the transformation of the ground

state as in Eq. (6) is a Bogoliubov transformation. With the
ground state transforming as Eq. (6), any operatorO0 in the
j0i basis transforms as

O ¼ UQO0U†
Q; ð9Þ

and, in particular, one can transform the creation and
annihilation operators of Eq. (1) to define the transformed
operators as above satisfying the same anticommutation
relations as in Eq. (2):

ψðxÞ ¼
X

n

X

r

1

2π

Z
dp x½qrðn;p xÞUrðx; n;p xÞ

þ q̃rðn;−p xÞVrðx; n;−p xÞ&eip x·x x ; ð10Þ

with qrjΩi ¼ 0 ¼ q̃†r jΩi. In the above, we have suppressed
the flavor and color indices. It is easy to see that the form of
U, V spinors is exactly similar to the form of the spinors
U0, V0 as in Eq. (3) but with the shift of the function ϕ0 →
ϕ ¼ ϕ0 − 2h with the function hðkÞ to be determined by a
minimization of free energy. As we shall see later, it is more
convenient to vary ϕðkÞ rather than hðkÞ. Let us note that
with Eq. (10), the four component quark field operator gets
defined in terms of the vacuum structure for chiral
symmetry breaking given through Eq. (6) and Eq. (7) in
the presence of a magnetic field [43].
The chiral order parameter in the condensate vacuum

jΩi can be evaluated explicitly using the field operator
expansion given in Eq. (10) and is given by [24] (for ith
flavor)

Iis ¼ hΩjψ̄ iψ ijΩi ¼ −
X

n

Ncαn
jqiBj
ð2πÞ2

Z
dpz cosϕi: ð11Þ

This expression for the quark-antiquark condensate is
exactly the same form as derived earlier in the absence
of the magnetic field [39,40] once one realizes that in the
presence of a quantizing magnetic field with discrete
Landau levels, one has for the phase space integration [37]

Z
dp

ð2πÞ3
→

X∞

n¼0

αn
jqBj
ð2πÞ2

Z
dpz:

Next, we would like to generalize the ansatz of Eq. (6)
with quark-antiquark pairs in the presence of a magnetic
field, to include quark-quark pairs for the description of the
ground state as relevant for color superconductivity.
However, few comments in this context are in order. It
is known that in the presence of color superconductivity,
the diquark is electromagnetically charged and the usual

magnetic field will have a Meissner effect. However, a
linear combination of the photon field and the gluon field
given by Ãμ ¼ cos αAμ − sin αG8

μ still remains massless
and is unscreened. For two-flavor color superconductivity,
cos α ¼ g=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2=3

p
∼ 1=20 [33]. The electron couples

to this rotated gauge field by the coupling ẽ ¼ e cosðαÞ.
The quark field couples to the rotated gauge field through
its rotated charge Q̃. In units of ẽ, the rotated charge matrix
in the flavor-color space is given by

Q̃ ¼ Qf ⊗ 1c − 1f ⊗
T8
c

2
ffiffiffi
3

p : ð12Þ

Thus, the ẽ charges of red and green u quarks is 1=2; red
and green down and strange quarks is −1=2. The blue u
quark has Q̃ charge asþ1, while the blue d and s quarks are
Q̃ chargeless. We shall take the rotated U(1) magnetic field
along the z axis and spatially constant as before without the
absence of superconductivity. The ansatz for the ground
state with quark-antiquark condensate is now taken as, with
i being the flavor index,

jΩiχ ¼ exp
X

flav

ðB†
i − BiÞj0i: ð13Þ

The flavor dependent quark-antiquark pair creation oper-
ator for u quark (i ¼ 1) is given as, with a ¼ 1, 2, 3 being
the color indices for red, blue and green respectively,

B†
u¼

X3

a¼1

X∞

n¼0

Z
dp xq1ar ðn;p xÞ†a1r;sðn;pzÞf1aðn;pxÞq̃1as ðn;−p xÞ;

ð14Þ

while, for the down and strange quarks (i ¼ 2, 3) the same
is given as

B†
i ¼

X2

a¼1

X∞

n¼0

Z
dp xqiar ðn;p xÞ†air;sðn;pzÞhiaðn;p xÞq̃1as ðn;−p xÞ

þ
Z

dpqi3r ðpÞ†ðσ ·p̂ÞrshiðpÞq̃i3s ð−pÞ: ð15Þ

The difference between the pair creation operator in
Eqs. (14) and (15) lies on the contribution of the blue color.
While the up blue quark has Q̃ charge, the blue quarks of
down and strange quark are Q̃ neutral.
Next, we write down the ansatz state for having quark-

quark condensates which is given by

jΩi ¼ UdjΩiχ ≡ expðB†
d − BdÞjΩiχ : ð16Þ

In the above, B†
d is the diquark (and di-antiquark) creation

operator given as
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B†
d ¼

X

n

Z
dpx½qiar ðn; pxÞ†rfðn; pzÞq

jb
−rðn;−px; pzÞ

þ iq̃iar ðn; pxÞ†rf1ðn; pzÞq̃
jb
−rðn; pxÞ†&ϵij3ϵ3ab: ð17Þ

In the above, i, j are the flavor indices, a, b are the color
indices and r ¼ '1=2 are the spin indices. The Levi-Cività
tensor ensures that the operator is antisymmetric in color
and flavor space along with the fact that only u, d quarks
with red and green colors take part in diquark condensation.
The blue u, d quarks as well as the strange quarks (all three
colors) do not take part in the diquark condensation. The
functions fðn; pzÞ and f1ðn; pzÞ are condensate functions
associated with quark-quark and antiquark-antiquark con-
densates respectively. These functions are assumed to be
independent of color and flavor indices. We shall give a
post facto justification for this that these functions depend
upon the average energy and average chemical potentials of
the quarks that condense.
To include the effects of temperature and density we next

write down the state at finite temperature and density
jΩðβ; μÞi through a thermal Bogoliubov transformation
over the state jΩi using the thermofield dynamics (TFD)
method as described in Refs. [24,44,45]. This is particu-
larly useful while dealing with operators and expectation
values. We write the thermal state as

jΩðβ; μÞi ¼ Uβ;μjΩi ¼ Uβ;μUQj0i; ð18Þ

where Uβ;μ is given as

Uβ;μ ¼ eB
†ðβ;μÞ−Bðβ;μÞ;

with

B†ðβ; μÞ ¼
X∞

n¼0

Z
½dk xqiar ðn; kxÞ†θia− ðkz; n; β; μÞqiar ðn; kxÞ†

þ q̃iar ðn; kxÞθiaþðkz; n; β; μÞq̃iar ðn; kxÞ&: ð19Þ

In Eq. (19), the underlined operators are the operators in
the extended Hilbert space associated with thermal dou-
bling in the TFD method, and the color flavor dependent
ansatz functions θia'ðn; kz; β; μÞ are related to quark and
antiquark distributions as can be seen through the mini-
mization of the thermodynamic potential.
All the functions in the ansatz in Eq. (18) are to be

obtained by minimizing the thermodynamic potential. We
shall carry out this minimization in the next section.
However, before carrying out the minimization procedure,
let us focus our attention to the expectation values of some
known operators to show that with the above variational
ansatz for the ground state given in Eq. (18) these reduce to
the already known expressions in the appropriate limits.
Let us first consider the expectation value of the chiral

order parameter. The expectation value for chiral order
parameter for the ith flavor is given as

Iis ¼ hΩðβ; μÞjψ̄ iψ ijΩðβ; μÞi ¼
X3

a¼1

Iias : ð20Þ

These expectation values can be evaluated easily once we
realize that the state jΩðβ; μÞi as in Eq. (18) is obtained
through successive Bogoliubov transformations on the state
j0i as in Eqs. (13) and (16). The details of evaluation for the
different order parameters is relegated to the Appendix.
Explicitly, for the quarks that take part in superconductivity

Iias ¼−
X

n

αn
jqiaBj
ð2πÞ2

×
Z

dpz cosϕiað1−Fia−Fia
1 Þ; ði;a¼ 1;2Þ; ð21Þ

where αn ¼ ð2 − δn;0Þ is the degeneracy factor of the nth
Landau level (all levels are doubly degenerate except the
lowest Landau level). Further,

Fia¼sin2θia− þsin2fð1−sin2θia− − jϵijjϵabjsin2θjb− Þ; ð22Þ

arising from the quarks which condense and

Fia
1 ¼sin2θiaþ þsin2f1ð1−sin2θiaþ− jϵijjϵabjsin2θjbþ Þ; ð23Þ

arising from antiquarks which condense. Thus, the scalar
condensates arising from quarks that take part in super-
conductivity depend both on the condensate functions in
quark-antiquark channel (ϕi) as well as in quark-quark
channel (f; f1). Further, the thermal functions sin2 θia' , as
we shall see later, will be related to the number density
distribution functions.
Next, for the nonsuperconducting blue up quarks, the

contribution to the scalar condensate is given by

I13s ¼−
X

n

αn
jq13jB
ð2πÞ2

Z
dpz cosϕ13ð1− sin2θ13− − sin2θ13þ Þ:

ð24Þ

Let us note that in the limit of vanishing of the color
superconducting condensate functions (f; f1 → 0), the
contributions given in Eq. (21) reduce to Eq. (24) as they
should [24].
Similarly, scalar condensate contribution from the

charged strange quarks (red, green) is given by

I3as ¼−
X

n

αn
jq3ajB
ð2πÞ2

×
Z

dpz cosϕ3að1− sin2θ3a− − sin2θ3aþ Þ ða¼ 1;2Þ:

ð25Þ
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Finally, for the uncharged quarks, i.e., blue down and blue
strange quarks, the contributions to the scalar condensates
are given by, for flavor i (i ¼ 2, 3),

Ii3s ¼ −
2

ð2πÞ3

Z
dk cosϕið1 − sin2 θi3− − sin2 θi3þÞ: ð26Þ

Next, we write down the condensate in the supercon-
ducting channel which is given as

ID ¼ hψ̄ ia
c γ5ψ jbiϵijϵ3ab

¼
X

n

αn
jqiBj
ð2πÞ2

Z
dpz cos

!
ϕ1 − ϕ2

2

"

× ½sin 2fð1 − sin2θ1− − sin2θ2−Þ
þ sin 2f1ð1 − sin2θ1þ − sin2θ2þÞ&: ð27Þ

Let us note that the superconducting condensate also
depends upon the chiral condensate functions ϕðpzÞ
through the function cosðϕ1−ϕ2

2 Þ apart from the thermal
distribution functions sin2 θia' . Further, this dependence
vanishes when the u and d quark scalar condensates or
equivalently the corresponding masses of the quarks
are equal.
The other quantity that we wish to investigate is the axial

fermion current density that is induced at finite chemical
potential including the effect of temperature. The expect-
ation value of the axial current density is given by

hj35i≡ hψ̄a
i γ

3γ5ψa
j i:

Using the field operator expansion Eq. (10) and Eq. (3) for
the explicit forms for the spinors, we have for the ith flavor

hji35 i¼
X

n

Nc

ð2πÞ2

Z
dpxðI2n−I2n−1Þðsin2θi−−sin2θiþÞ: ð28Þ

Integrating over dpy using the orthonormal condition of
Eq. (5), all the terms in the above sum for the Landau levels
cancel out except for the zeroth Landau level so that

hji35 i ¼
NcjqijB
ð2πÞ2

Z
dpz½sin2 θi0− − sin2 θi0þ&; ð29Þ

which is identical to that in Ref. [46] once we identify the
functions sin2 θi0∓ as the particle and the antiparticle dis-
tribution functions for the zero modes [see e.g., Eq. (55) in
the next section]. In the chiral limit at zero temperature and
without superconductivity, one gets the following as the
axial current after summing over all three flavors:

hj05i ¼
3eB
2π2

#
μþ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

s

q %
: ð30Þ

III. EVALUATION OF THERMODYNAMIC
POTENTIAL AND GAP EQUATIONS

As has already been mentioned, we shall consider in the
present investigation, the three-flavor Nambu Jona Lasinio
model including the Kobayashi-Maskawa-t-Hooft (KMT)
determinant interaction. The corresponding Hamiltonian
density is given as [24,28,36,47]

H ¼ ψ†ð−iα ·ΠÞ þ γ0m̂Þψ

−GS

X8

A¼0

½ðψ̄λAψÞ2 − ðψ̄γ5λAψÞ2&

þ K½detf½ψ̄ð1þ γ5Þψ & þ detf½ψ̄ð1 − γ5Þψ &&
−GD½ðψ̄γ5ϵϵcψCÞðψ̄Cγ5ϵϵcψÞ&; ð31Þ

where ψ i;a denotes a quark field with color “a” (a¼ r, g, b),
and flavor “i” (i ¼ u, d, s), indices. Π ¼ −ið∇ − iẽÃQ̃Þ is
the canonical momentum in the presence of the rotated
U(1) gauge field Ãμ. ϵ is the Levi-Cività tensor in flavor
space while ϵc is the Levi-Cività tensor in color space.
ψC ¼ iγ1γ2ψ is the charge conjugate spinor. When there is
no superconductivity Aμ ¼ Ãμ which is the usual massless
photon field with the coupling to the quark field being given
the electromagnetic charge eQf, where Qf is diagonal
matrix ð2=3;−1=3;−1=3Þ. As mentioned in the previous
section, when the superconducting gap is nonvanishing, the
massless gauge field is given by Ãμ ¼ cos αAμ − sin αG8

μ,

where cos α ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ e2=3

p
. We have taken here the

standard convention of SUð3Þc generators in the adjoint
representation [33]. The Q̃ charges of the quarks are given in
Table I. Itmay also be relevant here tomention that,whilewe
are taking into account combination of the photon and gluon
field which is massless, the other orthogonal massive
component, is either Meissner screened or nucleated into
vortices [48].
The matrix of current quark masses is given by m̂ ¼

diagfðmu;md;msÞ in the flavor space. We shall assume in
the present investigation, isospin symmetry with mu ¼ md.

TABLE I. Table: List of quarks and their electromagnetic and
rotated charges.

Quark e-charge ẽ-charge

u-red 2
3

1
2

u-green 2
3

1
2

u-blue 2
3 1

d-red − 1
3 − 1

2

d-green − 1
3 − 1

2

d-blue − 1
3 0

s-red − 1
3 − 1

2

s-green − 1
3 − 1

2

s-blue − 1
3 0
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In Eq. (31), λA, A ¼ 1;…8 denote the Gellmann matrices

acting in the flavor space and λ0 ¼
ffiffi
2
3

q
1f, 1f as the unit

matrix in the flavor space. The four point interaction term
∼GS is symmetric in SUð3ÞV × SUð3ÞA ×Uð1ÞV ×Uð1ÞA.
In contrast, the determinant term ∼K which for the
case of three flavors generates a six point interaction which
breaks Uð1ÞA symmetry. In the absence of magnetic field,
if the mass term is neglected, the overall symmetry is
SUð3ÞV × SUð3ÞA ×Uð1ÞV . This spontaneously breaks to
SUð3ÞV × Uð1ÞV implying the conservation of the baryon
number and the flavor number. The current quark mass
term introduces additional explicit breaking of chiral
symmetry leading to partial conservation of the axial
current. The last term in Eq. (31) describe a scalar diquark
interaction in the color antitriplet and flavor antitriplet
channel. Such a form of four point interaction can arise e.g.,
by Fierz transformation of a four point vector current-
current interaction having quantum numbers of a single
gluon exchange. In that case the diquark coupling GD is
related to the scalar coupling as GD ¼ 0.75GS.
Next we evaluate the expectation value of the kinetic

term in Eq. (31) which is given as

T ¼ hΩðβ; μÞjψ ia†ð−iα ·∇ − q̃iaBxα2Þψ iajΩðβ; μÞi

≡
X

ia

Tia: ð32Þ

In the above the sum over the colors a and flavors
i is understood. The color flavor dependent charges

q̃ia for the quasiparticles is given in Table I. To evaluate
this, for nonvanishing q̃ charges, we use Eq. (10) and the
results of spatial derivatives on the functions InðξÞ
(ξ ¼

ffiffiffiffiffiffiffiffiffiffi
jqijB

p
ðx − py=ðjqijBÞÞÞ:

∂In
∂x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jqiajB

q
½−ξIn þ

ffiffiffiffiffiffi
2n

p
In−1&;

∂In−1
∂x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jq̃iajB

q
½−ξIn−1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn − 1Þ

p
In−2&: ð33Þ

Using the above, a straightforward but somewhat tedious
manipulations lead to the contribution arising from the
quarks that take part in superconductivity, i.e., for color,
flavor indices i, a ¼ 1, 2,

Tia ¼ −
X∞

n¼0

αn
jẽBj

2ð2πÞ2

Z
dpzðmi cosϕi þ jpij sinϕiÞ

× ð1 − Fia − Fia
1 Þ; ði; a ¼ 1; 2Þ; ð34Þ

where we have defined jpij2 ¼ p2
z þ 2njq̃Bj, (q̃ ¼ ẽ=2).

Here, the quark-antiquark condensate effects are encoded in
the function ϕi while diquark and di-antiquark condensate
effects are encoded in the functions Fia and Fia

1 respec-
tively as given in Eqs. (22) and (23).
For the blue u quark, which is charged but does not take

part in diquark condensation the corresponding contribu-
tion to the kinetic term is given by

T13 ¼ −
X∞

n¼0

αn
jẽBj
ð2πÞ2

Z
dpzðm1 cosϕ1 þ jp1j sinϕ1Þð1 − sin2 θ13− − sin2 θ13þ Þ: ð35Þ

The contribution of the charged strange quarks (with charges ẽ=2) to the kinetic energy is given by, with a ¼ 1, 2,

T3a ¼ −
X∞

n¼0

αn
jẽBj

2ð2πÞ2

Z
dpzðm3 cosϕ3 þ jp3j sinϕ3Þð1 − sin2θ3a− − sin2θ3aþ Þ: ð36Þ

Finally, the contribution from the ẽ -charge neutral quarks (blue d and blue s) is given as

Ti3 ¼ −
Z

dp
ð2πÞ3

ðmi cosϕi þ p sinϕiÞð1 − sin2θi3− − sin2θi3þÞ ði ¼ 2; 3Þ: ð37Þ

The contribution to the energy density from the quartic
interaction term in Eq. (31), using Eq. (20) turns out to be

VS ≡ −GShΩðβ; μÞ
""""
X8

A¼0

½ðψ̄λAψÞ2 − ðψ̄γ5λAψÞ2&
""""Ωðβ; μÞi

¼ −2GS

X

i¼1;3

Iis2; ð38Þ

where Iis ¼ hψ̄ iψ ii is the scalar quark-antiquark
condensate given in Eq. (20). Further, in the above,

we have used the properties of the Gellman matri-
ces

P
8
A¼0 λ

A
ijλ

A
kl ¼ 2δilδjk.

Next, let us discuss the contribution from the six quark
determinant interaction term to the energy expectation
value. There will be six terms in the expansion of the
determinant, each involving three pairs of quark operators
of different flavors. These are to be “contracted” in all
possible manner while taking the expectation value. This
means in the present context of having quark-antiquark
and diquark condensates, one can contract a ψ with a ψ̄
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or ψ with a ψ . The former leads to condensates having
quark-antiquark condensates IðiÞs while the latter leads to
diquark condensates ID. Further, for the case of quark-
antiquark condensate contributions, the contracting ψ
and ψ̄ having the same color will lead to the dominant
contribution while contracting similar operators with differ-
ent colors will lead to a Nc suppressed contribution. Next,
regarding the contributions arising from the diquark, terms
which are proportional to strange quark-antiquark con-
densate hs̄si will be dominant. These will have the
contractions of strange quark-antiquarks having the
same color. The rest of the four terms will be suppressed
at least by a factor Nc. Explicitly these two terms are given
by ∼

P
h s̄ O

hs½ūÔhu × ðd̄ÔhdÞ − ūÔhd × ðd̄ÔhuÞ$, where
h ¼ & and Ô& ¼ ð1& γ5Þ. When contracted diquark wise,
both terms give identical contributions, except that the
contribution of the second term will be of opposite sign as
compared to the first term. This is a consequence of the
flavor antisymmetric nature of the diquark condensates.
This leads to

Vdet ¼ þKhdetf½ψ̄ð1þ γ5Þψ $ þ detf½ψ̄ð1 − γ5Þψ $i

¼ 1

3
jϵijkjI

ðiÞ
s IðjÞs IðkÞs þ K

4
Ið3Þs I2D:

Next, the contribution from the diquark interaction is
given by

VD ¼ −hGD½ðψ̄γ5ϵϵcψCÞðψ̄Cγ5ϵϵcψÞ$i ¼ −GDI2D; ð39Þ

where the diquark condensate ID is already defined
in Eq. (27).
To calculate the thermodynamic potential (negative of the

pressure), we also have to specify the chemical potentials
relevant for the system. Here, we shall be interested in the
form of quark matter that might be present in compact stars
that are older than a few minutes so that chemical equili-
bration for weak interaction is satisfied. The relevant
chemical potentials in such a case are the baryon chemical
potential μB ¼ 3μq, the chemical potential μE associated
with the electromagnetic charge, and, the color potentials μ3
and μ8. The chemical potential is a matrix that is diagonal in
color and flavor space and is given by

μij;ab ¼ ðμδij þQijμEÞδab þ ðT3
abμ3 þ T8

abμ8Þδij: ð40Þ

Since red and green color of a given flavor of quark is
degenerate and the diquark is in the blue direction in the
color space, we can assume μ3 ¼ 0.
The thermodynamic potetial, Ω, is then given by using

Eqs. (32), (38), and (39), with s being the entropy density,

Ω ¼ T þ VS þ Vdet þ VD − hμNi − 1

β
s; ð41Þ

where we have introduced

hμNi ¼ hψ ia†μij;abψ jbi ¼
X

i;a

μiaρia; ð42Þ

where ρia is the vector density ρia ¼ hψ ia†ψ iai. For the
superconducting quarks this is given by

ρia ¼
X

n

αn
ẽB

2ð2πÞ2

Z
dpzðFia−Fia

1 Þ; ði;a¼ 1;2Þ; ð43Þ

while for the blue u quark, the same is given by

ρ13 ¼
X

n

αn
ẽB

ð2πÞ2

Z
dpzðsin2 θ13− − sin2 θ13þ Þ: ð44Þ

For the charged strange quarks, this density is given by

ρ3a¼
X

n

αn
ẽB

2ð2πÞ2

Z
dpzðsin2θ3a− −sin2θ3aþ Þ; ða¼1;2Þ:

ð45Þ

For the ẽ-uncharged quarks (blue down and blue
strange), the vector density is given by

Ii3v ¼ 2

ð2πÞ3

Z
dpðsin2θi3− − sin2θi3þÞ: ði ¼ 2; 3Þ: ð46Þ

Finally, the entropy density is given by s ¼
P

i;as
ia,

where sia is the entropy density for quarks of flavor i and
color a. For the quarks with charge q̃ia, the phase space
is Landau quantized and we have the entropy density given
as [44]

sia ¼ −
X

n

αn
jqiajB
ð2πÞ2

Z
dpzfðsin2θia− ln sin2θia− þ cos2θia− ln cos2θia− Þ þ ð− → þÞg: ð47Þ

On the other hand, for the uncharged (blue down and blue strange) quarks, the entropy density is given by

si3 ¼ −
2

ð2πÞ3

Z
dpfðsin2θi3− ln sin2θi3− þ cos2θi3− ln cos2θi3− Þ þ ð− → þÞg; ði ¼ 2; 3Þ: ð48Þ
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Thus, the thermodynamic potential is now completely
defined in terms of the condensate functions ϕi, fðkÞ
and the thermal distribution functions θia∓ which will be
determined through a functional extremization of the
thermodynamic potential. Minimizing the thermodynamic
potential with respect to the quark-antiquark condensate
function ϕiðpÞ, i.e., δΩ=δϕi ¼ 0, leads to

cotϕia ¼
ðmi − 4GSIis þ KϵijkIjsIks þ δi3 k

4 I
2
DÞ

jpiaj
≡ Mi

jpiaj
;

ð49Þ

where, as earlier, we have defined jpiaj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqiajB

p

and we have defined the constituent quark mass Mi ¼
mi−4GSI

ðiÞ
s þKjϵijkjI

ðiÞ
s IðjÞs IðkÞs þδi3I2D

k
4. These expres-

sions are actually self-consistent equations for the constitu-
ent quark masses as scalar condensate IðiÞs as given in
Eq. (20) involve Mi through their dependence on ϕi.
Explicitly, these mass gap equations are given as

Mu ¼ mu − 4GSI
ðuÞ
s þ 2KIðdÞs IðsÞs ; ð50Þ

Md ¼ md − 4GSI
ðdÞ
s þ 2KIðuÞs IðsÞs ; ð51Þ

Ms ¼ ms − 4GSI
ðsÞ
s þ 2KIðdÞs IðuÞs þ K

4
I2D: ð52Þ

Let us note that while the color and flavor dependence on
the quark-antiquark condensate functions ϕia arises only
from the momentum jpiaj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njq̃iajB

p
through the

color flavor dependent q̃ charges, the constituent quark
masses are color singlets and are given by the solutions of
the self-consistent equations (50)–(52). Further, the flavor
mixing determinant interaction makes the masses of quark
of a given flavor dependent upon the condensates of the
other flavor quarks. This apart, the strange quark mass
explicitly depends upon the diquark condensates through
this determinant interaction. Note that for the two flavor
superconductivity as considered here, the strange quark
mass is affected explicitly by the superconducting gap
given by the last term on the right-hand side Eq. (52). Of
course, there is implicit dependence on the superconducting
gap in the second term through the functions F and F1

[given in Eqs. (22) and (23)]. Further, when chiral
symmetry is restored for the light quarks, i.e., when the
scalar condensates for the nonstrange quarks vanish, still,
the determinant term gives rise to a density dependent
dynamical strange quark mass arising from diquark con-
densates of the light quarks [47]. Such a mass generation is
very different from the typical mechanism of quark mass
generation through quark-antiquark condensates [49].
In a similar manner, minimizing the thermodynamic

potential with respect to the diquark function fðkÞ and di-
antiquark function f1ðkÞ, i.e., δΩ

δfðkÞ¼0 and δΩ
δf1ðkÞ

¼0, leads to

tan 2fðkÞ ¼
2ðGD − K

4 I
ð3Þ
s ÞID

ϵ̄n − μ̄
cos

"
ϕ1 − ϕ2

2

#

≡ Δ
ϵ̄n − μ̄

cos
"
ϕ1 − ϕ2

2

#
;

tan 2f1ðkÞ ¼
Δ

ϵ̄n þ μ̄
cos

"
ϕ1 − ϕ2

2

#
; ð53Þ

where we have defined the superconducting gap Δ as

Δ ¼ 2

"
GD −

K
4
Ið3Þs

#
ID; ð54Þ

and ϵ̄¼ðϵunþϵdnÞ=2, μ̄¼ðμurþμdgÞ=2¼μþ1=6μEþ1=
ffiffiffi
3

p
μ8,

where we have used Eq. (40) for the chemical potentials.
Further, ϵin is the nth Landau level energy for the ith
flavor with constituent quark mass Mi given as
ϵin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijBþM2

i

p
. It is thus seen that the diquark

condensate functions depend upon the average energy and
the average chemical potential of the quarks that condense.
We also note here that the diquark condensate functions
depend upon the masses of the two quarks which condense
through the function cosððϕ1 − ϕ2Þ=2Þ. The function
cosϕi ¼ Mi=ϵin can be different for u,d quarks, when the
charge neutrality condition is imposed. Such a normaliza-
tion factor is always there when the condensing fermions
have different masses as has been noted in Ref. [50] in the
context of the CFL phase.
Finally, the minimization of the thermodynamic potential

with respect to the thermal functions θia%ðkÞ gives

sin2θia% ¼ 1

expðβðωi;a % μiaÞÞ þ 1
: ð55Þ

Various ωia’s ði; a≡ flavor; colorÞ are explicitly given as

ω11
n% ¼ ω12

n% ¼ ω̄n% þ δϵn % δμ ≡ ωu
n%; ð56Þ

ω21
n% ¼ ω22

n% ¼ ω̄n% − δϵn ∓ δμ ≡ ωd
n%; ð57Þ

for the quarks participating in condensation. Here,
¯ωn% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ̄n % μ̄Þ2 þ Δ2 cos2ðϕ1 − ϕ2Þ=2

p
. Further, δϵn ¼

ðϵun − ϵdnÞ=2 is half the energy difference between the
quarks which condense in a given Landau level and δμ ¼
ðμur − μdgÞ=2 ¼ μE=2 is half the difference between
the chemical potentials of the two condensing quarks.
For the charged quarks which do not participate in the
superconductivity,

ωia
n% ¼ ϵin % μia: ð58Þ

In the above, the upper sign corresponds to antiparticle
excitation energies while the lower sign corresponds to the
particle excitation energies.
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Let us note that when the charge neutrality conditions are
not imposed, the masses of u and d quarks will be almost the
same but for the effect of the (rotated) magnetic field
as the magnitude of the charges for red and green quarks
are the same and that of the blue color is different. Since the
chemical potentials of all the quarks are the same when
charge neutrality is not imposed, all four quasiparticles
taking part in diquark condensation will have (almost) the
same energy ω̄n−. On the other hand, when charge neutrality
condition is imposed, it is clear from the dispersion relations

given in Eqs. (56) and (57) that it is possible to have zero
modes, i.e., ωia ¼ 0 depending upon the values of δϵn and
δμ. So, although we shall have nonzero order parameter Δ,
there will be fermionic zero modes or the gapless super-
conducting phase [51,52].
Substituting the solutions for the quark-antiquark con-

densate function ϕi of Eq. (49), we have the solutions for
the different quark-antiquark condensates, i.e., Iias given by,
using Eqs. (21), (24), and (25),

Iias ¼ −
X

n

αn
ẽB

2ð2πÞ2

Z
dpz

Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nðẽB=2Þ þM2

i

p ð1 − Fia − Fia
1 Þ; ði; a ¼ 1; 2Þ; ð59Þ

I13s ¼ −
X

n

αn
ẽB

ð2πÞ2

Z
dpz

M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nðẽBÞ þM2

1

p ð1 − sin2θ13− − sin2θ13þ Þ; ð60Þ

I3as ¼ −
X

n

αn
ẽB

2ð2πÞ2

Z
dpz

M3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nðẽB=2Þ þM2

3

p ð1 − sin2θ3a− − sin2θ3aþ Þ; ða ¼ 1; 2Þ; ð61Þ

for the ẽ charged quarks while for the uncharged quarks (blue down and blue strange quarks),

Ii3s ¼ −
2

ð2πÞ3

Z
dp

Mi

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

p ð1 − sin2θi3− − sin2θi3þÞ; ði ¼ 2; 3Þ: ð62Þ

Similarly, substituting the solutions for the diquark/di-antiquark condensate functions from Eq. (53) in Eq. (27), we have,
with the usual notations, ξ̄n% ¼ ϵ̄n % μ̄ and ω̄n% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2n% þ Δ2 cos2ðϕ1 − ϕ2Þ=2

p
,

ID ¼ 2

ð2πÞ2
X

n

αnjẽB=2j
Z

dpzΔcos2
"
ϕ1 − ϕ2

2

#$
1

ω̄n−
ð1 − sin2θ1− − sin2θ2−Þ þ

1

ω̄nþ
ð1 − sin2θ1þ − sin2θ2þÞ

%
: ð63Þ

Thus Eqs. (50)–(52) for the mass gaps, Eq. (54) for the superconducting gap and Eqs. (59)–(63) define the self-consistent
mass gap equation for the ith quark flavor and the superconducting gap.
Next we discuss the thermodynamic potential. We substitute the solutions for the condensate functions [Eqs. (49) and

(53)] in the expression for the thermodynamic potential [Eq. (41)] and use the gap equations [Eqs. (50)–(52) and (54)]. The
thermodynamic potential is then given by

Ωq ¼ Ωsc
1=2 þΩs

1=2 þ Ω0 þ Ω1 þ 4Gs

X

i

Ii
2

s − 4KIus Ids Iss þ
Δ2

4G0
D
−
K
4
IssI2D; ð64Þ

where we have defined an effective diquark coupling G0
D ¼ GD − K

4 I
s
s in the presence of the determinant term which mixes

the flavors. Let us now discuss each of the terms in Eq. (64). The first term is the contribution from the quarks that take part
in superconductivity, i.e., the red and blue, u,d quarks. This contribution is given by

Ωsc
1=2 ¼ −2

X

n

αn
ẽB

2ð2πÞ2

Z
ðϵun þ ϵdnÞdpz þ 2

X

n

αn
ẽB

2ð2πÞ2

Z
ððξ̄n− þ ξ̄nþÞ − ðω̄n− þ ω̄nþÞÞ

− 2
X

n

X

i¼u;d

αn
ẽB

ð2πÞ2β

Z
dpz½logð1þ expð−βðωi

n− − μirÞÞÞ þ logð1þ expð−βðωi
nþ þ μirÞÞÞ'

≡Ωsc
1=2;0ðT ¼ 0; μ ¼ 0Þ þ Ωsc

1=2;medðT; μÞ; ð65Þ

where we have separated the contribution of the medium Ωsc
1=2;med from T ¼ 0, μ ¼ 0 contribution. Similarly, the (ẽ)

charged strange quark contribution to the thermodynamic potential is given by
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Ωs
1=2 ¼ −2

X

n

αn
ẽB

2ð2πÞ2

Z
dpzϵsn −

X

n

X

a¼1;2

X

s¼$1

αn
ẽB

2ð2πÞ2β

Z
dpz½logð1þ expð−βðω3a þ sμiaÞ'

≡Ωs
1=2;0 þΩs

1=2;med: ð66Þ

The term Ω1 in Eq. (64) arises from the blue colored u quark with charge ẽ and is given as

Ω1 ¼ −
X

n

αn
ẽB

ð2πÞ2

Z
ðϵunÞ −

X

n

X

s¼$1

αn
ẽB

ð2πÞ2β

Z
dpz½logð1þ expð−βðω33 þ sμ33Þ'≡Ωu

1;0 þ Ωu
1;med:

Finally, the ẽ uncharged quarks’ contributions to the thermodynamic potential Ω0 are given by

Ω0 ¼ −2
X

i¼2;3

Z
dp

ð2π3Þ
ϵiðpÞ − 2

ð2πÞ3β

Z
dp

X

s¼∓1

½logð1þ expð−βðω23 þ sμ33Þ': ð67Þ

Now, all the zero temperature and zero chemical potential
contributions of the thermodynamic potential in Eqs. (65)–
(67) are ultraviolet divergent. This divergence also gets
transmitted to the gap equations through the quark-antiquark
as well as diquark condensates in Eqs. (59), (60), (61), and
(63). For the chargeless case, these can be rendered finite
through a regularizationwith a sharp cutoff in themagnitude
of three momentum as is usually done in the NJL models.
However, it is also seen that a sharp cutoff in the presence of
magnetic field for charged particles suffers from cutoff
artifacts since the continuousmomentumdependence in two
spatial dimensions are replaced by the sum over discrete
Landau levels. To avoid this, some calculations use a smooth
parametrization for the cutoff as e.g., in Ref. [17]. In the
present work however we follow the elegant procedure that
was followed in Ref. [23] by adding and subtracting a
vacuum (zero field) contribution to the thermodynamic
potential which is also divergent. This manipulation makes
e.g., the Dirac vacuum contribution in the presence of
magnetic field to a physically more appealing form by
separating the same to a zero field vacuumcontribution and a
finite field contribution written in terms of the Riemann-
Hurwitz ζ function. The vacuum contribution to the energy
density arising from a charged quark can be written as
[23,24]

−
X∞

n¼0

αnjqiBj
ð2πÞ2

Z
dpz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2njqijBþM2

i

q

¼ −
2

ð2πÞ3

Z
dp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

i

q

−
jqiBj2

2π2

"
ζ0ð−1; xiÞ −

1

2
ðx2i − xiÞ ln xi þ

x2i
4

#
; ð68Þ

where we have defined the dimensionless quantity,

xi ¼
M2

i
2jqiBj

, i.e., the mass parameter in units of the magnetic
field. Further, ζ0ð−1; xÞ ¼ dζðz; xÞ=dzjz¼1 is the derivative
of the Riemann-Hurwitz zeta function [53].

Using Eq. (68), the quark-antiquark condensate of (q̃)
charged quarks can be written as

hψ̄ iaψ iai¼−
2

ð2πÞ3

Z
dp

Miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þM2

i

p

−
MijqiBj
2π2

"
xið1− lnxiÞþ lnΓðxiÞþ

1

2
ln
$
xi
2π

%#

þ Iiasmed

≡ Iiasvacþ Iias fieldþ Iiasmed: ð69Þ

The first term, Iias vac can be explicitly evaluated with a cutoff
Λ as

Iias vac ¼
Mi

2π2

"
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

q
−M2

i log
$
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

i

p

Mi

%#
:

ð70Þ

The medium contribution to the scalar condensate from
the superconducting part is

Iiasmed ¼
X

n

αn
ẽB

2ð2πÞ2

Z
dpz

Mi

ϵin
ðFia − Fia

1 Þ; ð71Þ

while, for the nonsuperconducting blue u quarks,

I13smed ¼
X

n

αn
ẽB

ð2πÞ2

Z
dpz

M1

ϵ1n
ðsin2θ13− − sin2θ13þ Þ: ð72Þ

Similarly, the contribution of the medium to the (q̃) charged
strange quark-antiquark condensate is

I3asmed¼
X

n

αn
ẽB

2ð2πÞ2

×
Z

dpz
M3

ϵ3n
ðsin2θ3a− −sin2θ3aþ Þ; ða¼1;2Þ: ð73Þ
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In what follows, we shall focus our attention to zero tem-
perature calculations. Using the relation limβ→∞

1
β lnð1þ

expð−βωÞÞ ¼ −ωθð−ωÞ and using Eqs. (65) and (68), we
have the zero temperature thermodynamic potential for the
color superconducting quarks given as

Ωsc
1=2ðT ¼ 0; μ; BÞ ¼ Ωsc

1=2;0ðT ¼ 0; μ ¼ 0Þ

þ Ωsc
1=2;medðT ¼ 0; μÞ; ð74Þ

with

Ωsc
1=2;0ðT ¼ 0; μ ¼ 0Þ

¼ −2 × 2
X

i¼u;d

GðΛ;MiÞ − 2
X

i¼u;d

Fðxi; BÞ; ð75Þ

where we have defined the function GðΛ;MÞ as

GðΛ;MÞ ¼ 1

ð2πÞ3

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
dp

¼ 1

16π2

"
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
ð2Λ2 þM2Þ

−M4 log
#
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p

M

$%
: ð76Þ

The prefactors in the first term correspond to color and spin
degeneracy factors while the same in the second term
corresponds to the color degeneracy factor. The magnetic
field dependent function, Fðxi; BÞ with xi ¼ M2

i =jqiBj,

Fðxi;BÞ¼
jqiBj2

2π2

"
ζ0ð−1;xiÞ−

1

2
ðx2i −xiÞ lnxiþ

x2i
4

%
: ð77Þ

The medium contribution from the superconducting
quarks is given as

Ωsc
1=2;medðT ¼ 0; μÞ ¼ 2

Xnmax

n¼0

αn
ẽB

2ð2πÞ2

Z
pmax
z;n

0
dpz½ξ̄n− þ ξ̄nþ − ðω̄n− þ ω̄nþÞ&

þ 2
Xnmax

n¼0

X

i¼u;d

αn
ẽB

2ð2πÞ2

Z
pmax
z;n

0
dpzi½ωi

n−θð−ωi
n−Þ þ ωi

nþθð−ωi
nþÞ&: ð78Þ

The three momentum cutoff Λ for the magnitude of momentum in the absence of magnetic field leads to the sum over the
Landau level up to nmax ¼ Λ2

ẽB. Further, the positivity of the magnitude of pz restricts the cutoff in jpzj as pmax
z;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − nẽB

p

for a given value of n of the Landau level.
The contribution of the blue up quark to the thermodynamic potential Ω1 ¼ Ω1;0 þ Ω1;med with

Ω1;0ðT ¼ 0; μ ¼ 0Þ ¼ −2GðΛ;MuÞ − Fðxu; BÞ; ð79Þ

and

Ω1;medðT ¼ 0; μÞ ¼
Xnumax

n¼0

αn
ẽB

ð2π2Þ

2

64μub
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub −M2

nu

q
þM2

nu log

0

B@
μub þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub −M2

nu

q

Mnu

1

CA

3

75; ð80Þ

where Mnu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u þ 2nẽB
p

is the nth Landau level mass for up quark and numax ¼ Int½μ
2
ub−M

2
u

2ẽB & is the maximum number of
Landau level consistent with the zero temperature distribution function.
The ẽ charged strange quark contribution to the thermodynamic potential Ωs

1=2 ¼ Ωs
1=2;0 þ Ωs

1=2;med, with

Ωs
1=2;0ðT ¼ 0; μ ¼ 0Þ ¼ −2 × 2GðΛ;MsÞ − 2Fðxs; BÞ; ð81Þ

and

Ω1=2;medðT ¼ 0; μÞ ¼ 2
Xnsmax

n¼0

αn
ẽB

2ð2π2Þ

"
μsr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2sr −M2

ns

q
þM2

ns log
#
μsr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2sr −M2

ns

p

Mns

$%
; ð82Þ

where Mns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s þ 2nẽB
p

is the nth Landau level mass for the s quarks. Further, the sum over the Landau levels is
restricted to nsmax ¼ Int½μ

2
sr−M2

s
ẽB & arising from the distribution function at zero temperature θðμ − ϵnÞ.
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For the uncharged quarks, i.e., blue down and strange
quarks, we have Ω0 ¼ Ω0;0 þ Ω0;med with

Ω0;0ðT ¼ 0; μ ¼ 0Þ ¼ −2
X

i¼d;s

GðΛ;MiÞ; ð83Þ

and for the medium part, with pfi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2i −M2

i

p
,

Ω0;medðT ¼ 0; μÞ ¼ 2
X

i¼d;s

Hiðμi3; pfiÞ: ð84Þ

In the aboveHi is the medium contribution from a single
chargeless flavor given as

Hiðμ; pfÞ ¼
1

16π2

"
pfiμiðp2

fi þ μ2i Þ −M4
i log

#
μi þ pfi

Mi

$%
:

ð85Þ

Next, we write down the expressions for the condensates
at zero temperature, which are needed to compute the
thermodynamic potential in Eq. (64). This is already given
by Eq. (69). Here, we write down explicitly the zero
temperature limit for the same. The scalar condensate
for, say, u quarks is given as

Ius ¼ IusvacþIursmedþIugsmedþIubsmedþ
X3

a¼1

Ifield−us ðxuaÞ: ð86Þ

The vacuum contribution Ius vac is already given in Eq. (70).
The scalar condensate medium contribution from the

superconducting red up and green up quarks is given as

Iursmed ¼ Iugsmed ¼−
Xnmax

n¼0

αn
ðẽBÞ
2ð2πÞ2

Z
dpz

Mu

ϵun
ðFurþFur

1 Þ:

ð87Þ

The expressions for the distribution functions Fia and Fia
1

are already given in Eqs. (22) and (23) in terms of the
diquark condensate functions and the thermal distribution
functions. In the zero temperature limit, the distribution
functions for e.g., u quarks become

Fur ¼ 1

2

#
1 −

ξ̄n−
ω̄n−

$
ð1 − θð−ωdÞÞ; ð88Þ

and

Fur
1 ¼ 1

2

#
1 −

ξ̄nþ
ω̄nþ

$
: ð89Þ

The blue up quark contribution to the scalar condensate
is given by

Iubsmed ¼ −
Xnumax

n¼0

2Mαn
ẽB

ð2πÞ2
log

#
pmax
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pmax
z

2 þM2
nu

p

Mnu

$
:

ð90Þ

As in Eq. (80) here we have defined the nth Landau level
mass for the blue up quark as M2

nu ¼ M2
u þ 2njẽBj. The

magnetic field contribution to the scalar condensate for the
up quarks of a given color “a” is given by

Ifield−us ðxuaÞ¼−Mu
jqaBj
2π2

"
xað1− lnxaÞþ lnΓðxaÞþ

1

2

xa
2π

%
;

ð91Þ

where xa ¼ M2
u=2jqaBj and qa ¼ ẽ=2 for red and green

colors and qa ¼ ẽ for blue color up quarks.
In an identicalmanner, the scalar condensates for the down

and strange quarks Ids , Iss can be written down with appro-
priate changes for the charges and the masses. The diquark
condensate 4ID is given in Eq. (63) where the zero temper-
ature limit can be taken by replacing the distribution
functions sin2 θi ¼ θð−ωiÞ, (i ¼ u, d). Thus the thermody-
namic potential,Ωq given inEq. (64) gets completely defined
for the quark matter in the presence of a magnetic field.
In the context of neutron star matter, the quark phase that

could be present in the interior consists of the u,d,s quarks
as well as electrons, in weak equilibrium,

d → uþ e− þ ν̄e− ; ð92aÞ

s → uþ e− þ ν̄e− ; ð92bÞ

and

sþ u → dþ u; ð92cÞ

leading to the relations between the chemical potentials μu,
μd, μs, μE as

μs ¼ μd ¼ μu þ μE: ð93Þ

The neutrino chemical potentials are taken to be zero as
they can diffuse out of the star. So there are two indepen-
dent chemical potentials needed to describe the matter in
the neutron star interior which we take to be the quark
chemical potential μq and the electric charge chemical
potential μe in terms of which the chemical potentials
are given by μs ¼ μq − 1

3 μe ¼ μd, μu ¼ μq þ 2
3 μe and

μE ¼ −μe. In addition, for a description of the charge
neutral matter, there is a further constraint for the chemical
potentials through the following relation for the particle
densities given by

QE ¼ 2

3
ρu −

1

3
ρd −

1

3
ρs − ρE ¼ 0: ð94Þ
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The color neutrality condition corresponds to

Q8 ¼
1ffiffiffi
3

p
X

i¼u;d;s

ðρi1 þ ρi2 − 2ρi3Þ ¼ 0: ð95Þ

In the above, ρia is the number density for quarks of flavor i
and color a. In particular, the number densities of the
condensing quarks are given as

ρia ¼
X

n

ẽB
2ð2πÞ2

Z
dpzðFia−Fia

1 Þ; ði;a¼ 1;2Þ; ð96Þ

where Fia; Fia
1 are defined in Eqs. (22) and (23) respec-

tively in terms of the condensate functions and e.g., for zero
temperature is given explicitly in Eq. (88) for up red quarks.
For the blue colored quarks, the same for the up blue quarks
is given by

ρub ¼
Xnumax

n¼0

αn
ẽB
2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ub −M2

u − 2nẽB
q

; ð97Þ

while for the ẽ uncharged d quarks

ρdb ¼ ðμ2db −M2
dÞ3=2

3π2
: ð98Þ

For the charged strange quarks the number densities are
given by

ρsr ¼ ρsg ¼
Xnsmax

n¼0

αn
ẽB

ð2πÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2sr −M2

s − nẽB
q

; ð99Þ

while for the ẽ uncharged blue strange quarks

ρsb ¼ ðμ2sb −M2
sÞ3=2

3π2
: ð100Þ

The electron number density is given by

ρE ¼
Xnmaxe

n

αn
ẽB
π2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2E − 2nẽB

q #
: ð101Þ

To discuss the pressure in the context of matter in the
core of the neutron star, one also has to add the contribution
of the electrons to the thermodynamic potential. Since we
shall describe the system as a function of ẽB, we shall take
the approximations ẽ ∼ e, Aμ ∼ Ãμ to a good approximation
as the mixing angle is small. The corresponding thermo-
dynamic potential for the electrons is given by

Ωe ¼
Xnemax

n¼0

αn
eB

ð2πÞ2

$
μE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2E − 2neB

q

− 2neB log
"
μE þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2E − 2neBÞ

p
ffiffiffiffiffiffiffiffiffiffiffi
2neB

p
#%

; ð102Þ

where nemax ¼
μ2E

2jẽBj. Clearly in Eqs. (101) and (102) we have
neglected the electron mass (mE ∼ 0.5 MeV), which is
small compared to μE which is few tens of MeV. Thus the
total thermodynamic potential or the negative of the
pressure is given as, with Ωq given in Eq. (64)

Ω ¼ Ωq þΩe: ð103Þ

The thermodynamic potential [Eq. (103)], the mass and
superconducting gap equations [Eqs. (50)–(52) and (54)],
along with the charge neutrality conditions [Eq. (94) and
(95)] are the basis for our numerical calculations for various
physical situations that we shall discuss in detail in the
following section.

IV. RESULTS AND DISCUSSIONS

We begin the discussions with the parameters of the NJL
model. The model parameters are the three current masses
of quarks, namely mu, md and ms and the couplings GS, GD
and the determinant coupling K. This apart, one additional
parameter, the momentum cutoff Λ, is also required to
regularize the divergent integrals which are characteristic of
the four point interaction of NJL models. Except for the
diquark couplingGD, there are several parameter sets for the
couplings derived from fitting of the meson spectrum and
chiral condensate [54–56]. The diquark coupling is not
known from fitting since one does not have a diquark
spectrum to fit with. The Fierz transforming quark-antiquark
term from one gluon exchange term gives the relation GD ¼
0.75 GS. Although not precise, many other references use
this value [47,57,58]. However some other referen-
ces [59,60] also consider the case of stronger diquark
couplingGD ¼ GS apart fromGD ¼ 0.75 GS. In the follow-
ing we shall limit ourselves only to the case of
GD ¼ 0.75 GS. For a nice discussion on this we refer the
interested reader to Sec. 4.2.2 of Ref. [61]. The parameters
used in our calculations are mu¼ 5.5MeV,md ¼ 5.5 MeV,
ms ¼ 140.7 MeV for the current quark masses, the
momentum cutoff Λ ¼ 602.5 MeV and the couplings Gs
Λ2 ¼ 1.835 and KΛ5 ¼ 12.36 as have been chosen in
Ref. [56]. After choosing the light current quark mass
mu ¼ md ¼ 5.5 MeV, the remaining four parameters are
chosen to fit vacuum values of pion decay constant fπ ,
masses of pion, kaon and η0.With this set of parameters the η
meson mass is underestimated by about 6 percent and leads
to u and d constituent mass in vacuum to be about 368MeV.
The strange mass is about 549 MeVat zero temperature and
density. The determinant interaction is responsible forUð1ÞA
anomaly and getting the correct eta mass. Further, this
interaction also mixes the various gap equations and affects
the superconducting gap significantly as we shall see.
However, we must point out that there is a large discrepancy
in the determination of this six fermion interaction coupling
K. For example, in Ref. [54] the parameter KΛ5 differs by as

AMAN ABHISHEK and HIRANMAYA MISHRA PHYS. REV. D 99, 054016 (2019)

054016-14



large as 30 percent as compared to the value chosen here.
This discrepancy is due to the difference in the treatment of
η0 mesons with a high mass [28]. In fact, this leads to an
unphysical imaginary part for the corresponding polariza-
tion diagram in the η0 meson channel. This is unavoidable
because NJL is not confining and is unrealistic in this
context. Within the above-mentioned limitations of the
model and the uncertainty in the value of the determinant
coupling, we proceed with the present parameter set which
has already been used for phase diagram of dense matter in
Refs. [28,59] and for neutron star matter in Ref. [62].
We begin our discussion for the simpler case where the

charge neutrality conditions are not imposed. In this case,
the electrical and color charge chemical potential are set to
zero so that all the quarks have same potential μq. In this
case we have to solve four gap equations, three for the
constituent masses [Eqs. (50)–(52)] and the fourth for the
superconducting gap [Eqs. (54) and (63)]. For given values
of quark chemical potential and magnetic field we solve the
gap equations self-consistently. A few comments regarding
solving these gap equations may be in order. Although the
gap equations and the thermodynamic potential has been
written down for a given T and μ, we confine our attention
to the case of zero temperature only in the present
investigation. Second, for nonvanishing magnetic fields,
all the Landau levels for the medium part up to a cutoff,

nmax ¼
ffiffiffiffiffiffiffiffiffiffi
μ2−M2

i

p
2ẽB for each flavor i, are taken into account.

Near the μc, the critical chemical potential for chiral
transition for light quarks, there can be multiple solutions
for the gap equations. We have chosen the solutions which
have the lowest thermodynamic potential.

In Fig. 1, we have shown the variation of the masses as a
function of quark chemical potential μq for three different
values of magnetic fields, ẽB ¼ 0.1 m2

π , 5 m2
π , 10 m2

π . The
results for ẽB ¼ 0.1 m2

π reproduce the vanishing magnetic
field results. As the chemical potential increases, the
masses remain constant up to a critical value of quark
chemical potential μc and the superconducting gap remains
zero. At the critical chemical potential there is a first order
phase transition and the constituent masses drop sharply
from their vacuum values and the superconducting gap
becomes nonzero. For vanishing magnetic field, the isospin
symmetry for the light quarks is unbroken and the
constituent masses of u and d quarks are degenerate.
The critical chemical potential, μc, is about 340 MeV
for (almost) vanishing magnetic field. In this case, the up
and the down quark masses decrease from their vacuum
values of about 368 MeV to about 80 MeV. The strange
mass being coupled to other gaps via determinant inter-
action also decreases from 549 to 472 MeV when this first
order transition happens for the light quarks. However,
since this μc is still less than the strange mass its density
remains zero. The superconducting gap rises from 0 to
88.0 MeV at μc. As the chemical potential is increased
beyond μc, the superconducting gap shows a mild increase
reaching a maximum value of 122 MeV at around μq ∼
475 MeV beyond which the gap shows a mild decrease
with μ.
Such a decrease of the gap with chemical potential could

be due to two reasons. First, at higher chemical potentials,
beyond μ ¼ 475 MeV, the strange quark mass starts
decreasing rapidly. This leads to a decrease of the effective
diquark couplingG0

D ¼ GD þ K
4 hs̄si resulting in a decrease
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FIG. 1. Constituent quark masses and superconducting gap when charge neutrality conditions are not imposed. Part (a) shows the Mu
at zero temperature as a function of quark chemical potential for different values of the magnetic field. Part (b) shows the same for the
strange quark mass Ms and the superconducting gap.
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in the superconducting gap with increasing chemical
potential. Second, such a behavior of decreasing super-
conducting gap with μ for large μ could also be a
manifestation of a finite cutoff in the momentum integra-
tion in e.g., Eq. (78). One may note that the first term in
Eq. (78) is the contribution from the medium. Indeed, for
T ¼ 0, μ ¼ 0 the contributions of the two terms in the
integrand here cancel out unlike the term in Eq. (68) which
is a genuine vacuum contribution and is divergent. The
second term in Eq. (78) in any case gives a contribution
from the medium when δμ ≠ 0. For both terms the upper
limit of pz integration, pmax

z;n , has a Λ dependence.
Therefore, it is expected that there will be a cutoff
dependence in the contribution of this term to the thermo-
dynamic potential. This effect of finite cutoff therefore will
be more pronounced at large μ. Thus the decrease of the
superconducting gap at large μ in Fig. 1(b) could also be a
reflection of this effect. Therefore the decreasing behavior
of Δ can be both due to the decrease of effective diquark
coupling G0

D, and the effects of a finite cutoff.
In Fig. 2, we have plotted the total baryon number density

in units of nuclear matter density (ρN ¼ 0.17=fm−3) as a
function of quark chemical potential. For vanishing mag-
netic field, at the critical chemical potential μc ∼ 340 MeV,
the baryon density jumps from0 to 0.38 fm−3which is about
2.2 times the nuclear matter density.
Upon increasing the magnetic field, as seen in Fig. 1, the

vacuum constituent quark masses increase due to magnetic
catalysis at zero density. It may also be observed here that
the μc for chiral transition for the light quarks decreases
with the magnetic field. Such a phenomenon is known as
inverse magnetic catalysis at finite chemical potential [63].
Let us note that in the superconducting phase the ẽ charges

of the u and d quarks are identical in magnitude while that
of the unpaired blue quark are different for u and d quarks.
This results in the color summed scalar condensate Ius and
Ids to be different in the presence of a magnetic field. This
leads to the difference in constituent masses for the light
quarks. For ẽB ¼ 10 m2

π the u mass in the chiral symmetry
broken phase increases by about 13.6 percent and strange
mass by about 4.7 percent. The critical chemical potential
decreases from about 340 MeV to about 291 MeV. As seen
in the plot, the superconducting gap decreases and the peak
value decreases from 122 to 111 MeV. As may be seen
from Eqs. (54) and (63), the superconducting gap depends
upon the effective diquark coupling G0

D ¼ GD- K4 I
s
s. With

an increase in magnetic field the effective coupling G0
D has

a slight increase in magnitude as the strange quark con-
densate increases with magnetic field. Therefore, one
would have expected an increase in Δ with magnetic field.
However, the variation in Δ due to the magnetic field is
essentially decided by Eq. (63). From here also one would
have expected an increase in Δ with magnetic field as ẽB
occurs in the numerator in Eq. (63). In fact, this behavior is
actually seen for high magnetic field, where only the lowest
Landau level contributes to the integral in Eq. (63). For
moderately strong magnetic fields, contributions of the
higher Landau levels become relevant for the behavior of
gap with magnetic field. As long as the contribution of
higher Landau levels are nonvanishing, the gap equation
can support the solution for the gap that decreases with
magnetic field. We may point out that ẽB ¼ 5 m2

π and
10 m2

π the cutoff for Landau levels nmax equals 3 and 1
respectively. For ẽB ≥ 20 m2

π only the lowest Landau level
contributes to the integral in Eq. (63) and the gap increases
with magnetic field. One may also note that at higher
magnetic fields the charge asymmetry between the u and d
quark becomes apparent in their masses as expected. At
10 m2

π the difference is about 3.4 percent and at 15 m2
π its

about 5.7 percent at lower chemical potentials.
One may note that below the critical chemical potential

μc the u quarks have higher mass compared to d quarks as
all the three colors are charged for u quarks while for the d
quarks, the blue color is chargeless. However, beyond the
critical chemical potential the u quark has a lower mass
compared to d quarks. This is because with magnetic field
the medium contribution to chiral condensate increases.
This increase is the same for the condensing pairs of u and d
quarks but different for the blue quarks. The blue up quark
has charge ẽ ¼ 1whereas it is zero for the down blue quark.
Therefore the medium contribution from the up quark is
more than the down quark and it reduces the condensate for
the up quark and consequently its mass too. As we shall see
later, imposing charge neutrality requires the d quark
chemical potential to be much higher compared to u quarks
to balance their larger positive charge. This forces the d
quark mass to be smaller compared to u quark mass above
critical chemical potential. This results in an opposite
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FIG. 2. Baryon number density in units of nuclear matter
density as a function of chemical potential for different strengths
of magnetic field at zero temperature.
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behavior for the u and d quark masses with chemical
potential, beyond μc when the charge neutrality condition is
imposed vis-à-vis when such a condition is not imposed.
As may be observed from Fig. 2, the baryon number

density increases with magnetic field for a given chemical
potential. This is because for the magnetic fields considered
here, the symmetry is restored for lower chemical potential
at higher magnetic field. Thus for a given chemical
potential beyond the critical chemical potential the masses
become smaller for higher magnetic field leading to larger
baryon number density. This is consistent with inverse
magnetic catalysis. One may note however that for very
large fields, there is magnetic catalysis of chiral symmetry
breaking in the sense that critical chemical potential
increases with magnetic field. In Fig. 3 we show the
behavior of μc as a function of magnetic field. It is observed
that μc is minimum for ẽB ¼ 19 m2

π.
To examine the effect of flavor mixing determinant

interaction, we show in Fig. 4 the variation of the masses
and the superconducting gap without the determinant
interaction. As expected, without the mixing of flavors
the strange mass remains unaffected when u and d quark
masses decrease. This is significantly different behavior
compared to Fig. 1 where the strange mass decreases by
about 74 MeV beyond μc when there is a first order
transition for the light quarks. This also affects the super-
conducting gap. The superconducting gap is smaller as the
effective diquark coupling decreases without the determi-
nant interaction term.
In Fig. 5 we show the variation of the gaps as a function

of the magnetic field for μ ¼ 200 MeV and μ ¼ 400 MeV.
μ ¼ 200 MeV is less than the critical μc for any value of
magnetic field considered here. Hence the constituent
masses are high and the superconducting gap is zero.

We find that the masses increase monotonically with the
magnetic field. At ẽB ¼ 10 m2

π , the u mass increases by 14
percent of its zero field value while strange mass increases
by 5 percent. Similarly for μ ¼ 400 MeV which is larger
than the critical chemical potential for magnetic fields
considered here, one also has finite superconducting gap.
However, in this case it is observed that the u and d masses
decrease slowly andmonotonicallywithmagnetic fieldwhile
strange quark mass remains almost constant. The super-
conducting gap shows an oscillatory behavior with increase
in magnetic field. The oscillatory behavior is associated with
the discontinuous changes in the density of states due to
Landau quantization and is similar to de Hass van Alphen
effects for magnetized condensed matter system.
Finally, in Fig. 6 we have plotted the axial current density

normalized to the same for three flavor without any
condensates as given in Eq. (30) as a function of baryon
density for values of magnetic field 5 and 10 m2

π . For
smaller chemical potentials but above the chiral transition
this ratio is about 0.75 since strange quarks do not
contribute as their masses are larger than these values of
chemical potential. For μq about 480 MeV the strange
quarks contribution to the axial current density becomes
nonvanishing and the ratio approaches to the value
when there are no condensates. Let us note that while
quark masses decrease with chemical potential, the super-
conducting gap increases with chemical potential. This
leads to a nearly constant value for this ratio for the range of
chemical potential below the strange quark mass. Above
μq ¼ 480 MeV, the ratio shows a monotonic increase
with chemical potential as the strange quark mass starts
decreasing.
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A. Charge neutral magnetized quark matter

Next we discuss the consequences of imposing charge
neutrality conditions (QE ¼ 0,Q8 ¼ 0). In Fig. 7 we show
the results for the masses and the superconducting gaps
for strength of the external magnetic field ẽB ¼ 0.1 m2

π
[Fig. 7(a)] and ẽB ¼ 10 m2

π [Fig. 7(b)]. For small magnetic
field (ẽB ¼ 0.1 m2

π) the masses in the symmetry broken
phase are the same as before but the critical chemical
potential is now shifted to around μc ¼ 364 MeV as
compared to μc ¼ 335 MeV when the condition is not
imposed. At the transition point with neutrality the u-quark

mass decreases from 367 to 111 MeV and the down quark
mass from 367 to 87 MeV. Charge neutrality requires d
quark number densities to be higher as compared to u
quarks. Let us note that near the critical chemical potential
there are multiple solutions of the gap equations. The
solution which is thermodynamically preferred when the
charge neutrality condition is not imposed may no longer be
the preferred solution when the constraint of charge neutral-
ity is imposed [36]. The strange quarkmass is higher than the
chemical potential at the chiral restoration so its density
is zero. However due to the determinant interaction the
strange mass decreases at the chiral restoration from 549 to
472MeV.At still higher chemical potential the strange quark
density becomes nonzero and strange quark also helps in
maintaining charge neutrality.
The critical baryon density when charge neutrality is

imposed is however similar to the case when neutrality is
not imposed. Specifically ρc ∼ 2.25ρ0 with charge neutral-
ity while ρc ∼ 2.26ρ0 without charge neutrality despite
the fact that μc is higher (μc ¼ 364 MeV) for the charge
neutral matter compared when such charge neutrality con-
dition is not imposed (μc ¼ 335 MeV). This is because the
constituent masses at the transition is large (Mu ∼ 111 MeV
and Md ∼ 87 MeV) for charge neutral case compared to
(Mu ∼Md ∼ 85 MeV) without the charge neutrality con-
dition. For ẽB ¼ 0.1 m2

π, at the chiral transition μc ¼
364 MeV the superconducting gap increases from zero to
69 MeV. As the chemical potential is further increased the
superconducting gap increases to 80 MeV until μ ¼ μ1 ∼
420 MeV where it shows a sudden jump to 106 MeV. This
happens when the gapless modes cease to exist as explained
below. As magnetic field is increased to ẽB ¼ 10 m2

π , as
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may be observed in Fig. 6(b), the critical chemical potential
μc for the charge neutral matter decreases to 350 MeV
similar to the case without the charge neutrality condition
with inverse magnetic catalysis. The superconducting gap
on the other hand becomes smaller. One can also observe
that unlike the vanishingly small magnetic field case, the
superconducting gap increases smoothly with chemical
potential from zero initial value to 73 MeV at μ ¼ μ1 ∼
400 MeV where it again jumps to a value of 83 MeV.

B. Gapless modes

In the region between μc and μ1 the system shows
gapless mode which we discuss now in some detail.
Without magnetic field this has earlier been seen for charge
neutral matter [35,36,64].
As discussed earlier, from the dispersion relations for

Landau levels for the superconducting matter as given in
Eqs. (56) and (57), it is possible to have zero modes
depending upon the values of δμ and δϵn. These quantities
are not independent parameters but are dependent dynami-
cally on the charge neutrality condition and the gap
equations. For charge neutral matter, near μc, the d-quark
number density is larger so that δμ ¼ μE=2 is negative. This
renders ωu

nðpzÞ > 0 for any value of momentum pz. On the
other hand, for δμ negative, ωd

n can vanish for some values
of pz. This defines the Fermi surfaces for the super-
conducting d quarks. It is easy to show that the excitation
energy of nth Landau level ωd

n for the condensing d quarks
vanishes for momenta jpznj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2$ − 2nẽB

p
. Here μ$=

(μ̄$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
)θðδμ − ΔÞ. Thus higher Landau levels

can also have gapless modes so long as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2$ − 2nẽB

p
is

non-negative. Gapless modes occur when the chemical
potential difference δμ is greater than the superconducting
gap. In Fig. 8(a), we have plotted the dispersion relation
i.e., the excitation energy as a function of momentum for
the lowest Landau level for the condensing quarks for μq ¼
340 MeV and magnetic field ẽB ¼ 10 m2

π . The super-
conducting gap turns out to be Δ ¼ 35.3 MeV and
δμ ¼ −74.5 MeV. The dispersion for the d quarks is given
as ωd

0− ¼ ω̄0− − δϵþ δμ while the same for the u quark is
given as ωu

0− ¼ ω̄0− þ δϵ − δμ. The average chemical
potential is μ̄ ¼ 366 MeV. Far from the pairing region,
jpzj ∼ μ̄ ¼ 366 MeV the spectrum looks like the usual
BCS-type dispersion relation. Of the two excitation ener-
gies, ωu

0 shows a minimum at pz ¼ μ̄ with a value
ωu
0−ðjpzj ¼ μ̄Þ ∼ Δ − δμ ¼ 110 MeV. On the other hand,

ωd
0− vanishes at momenta jpzj ¼ μ$. In this breached

pairing region one has only unpaired d quarks and no u
quarks. This can be seen explicitly as below.
The number densities of u quarks participating in

condensation is given by

ρusc ¼ ρur þ ρug

¼
X

n

αnẽB
ð2πÞ2

Z
dpz

"
1

2

#
1 −

ζ̄n−
ω̄n−

$
ð1 − θð−ωd

nÞÞ

−
1

2

#
1 −

ζ̄nþ
ω̄nþ

$%
; ð104Þ

where ζ̄n− ¼ ϵ̄n − μ̄, μ ¼ μ11þμ22
2 and ϵ̄ ¼ ϵuþϵd

2 . This is

because ωu
n− ¼ ω̄n− − δμþ δϵ is always positive as δμ ¼

μu−μd
2 is negative and the theta function θð−ωu

nÞ does not
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π . Part (b) shows
the same for ẽB ¼ 10 m2
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contribute. Similarly the density of d quarks participating in
condensation is given by

ρdsc¼ρdrþρdg

¼
X

n

αn
ẽB

ð2πÞ2

Z
dpz

!
θð−ωd

nÞþ
1

2

"
1−

ζ̄n−
ω̄n−

#
ð1−θð−ωd

nÞÞ

−
1

2

"
1−

ζ̄nþ
ω̄nþ

#$
: ð105Þ

For positive ωd
n−, the θ-function contributions vanishes and

the distribution functions are the BCS distribution function.
On the other hand, when jpzj ∈ [Pn−; Pnþ], ωd

n is negative
leading to ρusc to vanish but for the antiparticle contribution.
In this region of momenta, ρdsc is unity. We have plotted
in Fig. 8(b) the occupation number of the up and down
quarks that take part in condensation as a function of
the magnitude of momentum pz i.e., the integrands of
Eqs. (104) and (105) respectively for the lowest Landau
level. It is easy to see from Eqs. (104) and (105) e.g., for the
lowest Landau level that, except for the interval ðμ−; μþÞ,
the distribution function is like the BCS distribution
function. This is shown by the blue long-dashed line.
The u-quark distribution is shown by the red solid line
while the d-quark distribution is shown by the green short
dashed line. Indeed, except for the interval ðμ−; μþÞ, all
three curves overlap with each other. In the “gapless”
momentum region, the u-quark occupation vanishes while
d-quark occupation is unity. This leads to the fact that the
momentum integrated distribution function for the con-
densing u and d quarks is not the same for the gapless
region unlike the usual BCS phase. We have plotted the

number densities for the u and d quarks in Fig. 9 which
shows a fork structure in the gapless region.
Gapless modes have been considered earlier for two

flavor quark matter both with [37,38] and without magnetic
field [35,36]. However it has been shown [65,66] that in
QCD at zero temperature the gapless 2SC phases are
unstable. This instability manifests itself in imaginary
Meissner mass of some species of the gluons. Finite
temperature calculations [67] show that at some critical
value of temperature the instability vanishes. This value
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may range from fewMeV to tens of MeV. The instability of
the gapless phases indicates that there should be other
phases of quark matter breaking translational invariance
e.g., inhomogenous phase of quark matter like crystalline
color superconductivity [68,69]. One may note that these
considerations apply to the case without magnetic field and
may change in the presence of a strong magnetic field.
In Fig. 10, we have plotted the electric and color

chemical potentials μE and μ8 to maintain the electric
and color charge neutrality conditions given in Eqs. (94)
and (95) as a function of quark chemical potential.
For 2þ 1 flavor matter, strange quarks play an important

role in maintaining charge neutrality. As the quark chemical
potential increases, jμEj increases to maintain charge
neutrality. When the chemical potential becomes large
enough for strange quarks to contribute to densities, they
also help in maintaining charge neutrality. This leads to a
decrease in electron density or the corresponding chemical
potential jμEj. This behavior is reflected in Figs. 10(a) and
10(b) as the initial slow rise of the jμEj. However, as jμEj
increases, the difference δμ ¼ −μE=2 also increases and at
μ1, the condition δμ > Δ for gapless modes to exist ceases
to be satisfied. At the gapless to BCS transition point, the
u-quark number density increases while that of d quarks
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decreases and both become equal as in the usual BCS
pairing phase. This leads to an increase in the positive
electric charge density. To maintain electrical charge
neutrality, the electron density increases at this point.
Therefore gapless to BCS transition is accompanied with
an increase in jμEj. On the other hand, at higher densities
when strange quarks start contributing to the density, it is
accompanied with a drop in jμEj as strange quarks help in
maintaining the charge neutrality along with the electrons.
It turns out that for ẽB ¼ 0.1 m2

π, the strange quark
densities become nonvanishing after the gapless to BCS
transition. This leads to the continuous decrease in the jμEj
in the BCS phase as seen in Fig. 10(a). On the other hand,
for larger fields, e.g., ẽB ¼ 10 m2

π, chiral transition occurs
at a lower μc due to magnetic catalysis and the strange
quark density starts becoming nonvanishing at lower
chemical potential. This leads to a decrease in jμEj at μ ¼
392 MeV as may be seen in Fig. 10(b). At μ ¼ 400 MeV,
there is the transition from the gapless to BCS phase and is
accompanied with a rise in jμEj as discussed above. Beyond
μ ¼ 400 MeV, jμEj starts decreasing monotonically as
strange quark density increase.
In Figs. 10(c) and 10(d), we have plotted the color

chemical potential μ8. For the weak field case, μ8 is rather
small (few MeVs) compared to both the electric chemical
potential as well as the quark chemical potential which are
2 orders of magnitude larger. For the small field, the
difference in densities of red and green quarks and the
blue quarks essentially arises because of the difference in
the distribution functions. This results in a small but finite
net color charge. To maintain color neutrality one needs a
small μ8. On the other hand, at the large magnetic field, the
net color charge difference becomes larger as the ẽ charges
of red and green quarks and that of blue quarks are

different. This requires a somewhat larger μ8 to maintain
color neutrality as seen in Fig. 10(d). In Fig. 11 we have
plotted the number densities of each species for the charge
neutral matter for two different magnetic fields. As may be
clear from both plots the electron number densities get
correlated with the strange quark number densities.
Finally, we discuss the equation of state (EOS) for

differentmagnetic fields. In Fig. 12we have plotted pressure
as a function of energy for ẽB ¼ 0.1 m2

π and 10 m2
π . One can

observe that the EOSs become stiffer with increase in
magnetic field. This can be understood as follows. For
μ < μc, the thermodynamic potential contribution from the
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π (b).

0

200

400

600

800

1000

1200

P
re

ss
ur

e
[M

eV
/f

m
3 ]

0 500 1000 1500 2000

Energy density [MeV/fm3]

B=0.1m
B=10m

FIG. 12. Equation of state for ẽB ¼ 0.1 m2
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field as in Eqs. (75), (79), and (81) is dominant and decreases
with an increase in magnetic field. This leads to a higher
pressure for higher magnetic field. As the chemical potential
increases, for μ > μc, the medium contribution becomes
dominant. As the masses decrease with magnetic field, the
medium contribution increases with magnetic field.
Moreover, the field contributions also lead to an increase
in pressure. Both these effectsmake the resulting EOS stiffer
at higher magnetic field as may be seen in Fig. 12.

V. SUMMARY

We have analyzed here the effect of magnetic field and
neutrality conditions on the chiral as well as diquark
condensates within the framework of a three-flavor NJL
model. This essentially generalizes the results of Ref. [24]
to include the u-d superconductivity in the presence of a
magnetic field. The methodology uses an explicit varia-
tional construct for the ground state in terms of quark-
antiquark pairing for all three flavors as well as diquark
pairing for the light quarks. A nice feature of the approach
is that the four component quark field operator in the
presence of a magnetic field could get expressed in terms of
the ansatz functions that appear for the description of the
ground state. Apart from the methodology being different,
we also have new results. Namely, the present investiga-
tions have been done in a three-flavor NJL model along
with a flavor mixing six quark determinant interaction at
finite temperature and density and fields within the same
framework. In that sense it generalizes the two flavor color
superconductivity in the presence of a magnetic field
considered earlier in Refs. [19,37,38]. The gap functions
and the thermal distribution functions could be determined
self-consistently for given values of the temperature, the
quark chemical potential and the strength of magnetic field.
For the charge neutral matter the chiral transition is a first

order transition and we observe inverse magnetic catalysis
at finite density. The chiral condensate for strange quark
affects the u-d superconductivity through the flavor mixing
determinant interaction. The effective diquark coupling
increases in the presence of strange quark condensates.
On the other hand the diquark condensates contribute to the
mass of the strange quark through the determinant inter-
action. Inverse magnetic catalysis is observed for magnetic
fields up to 19 m2

π. Beyond it magnetic catalysis is
observed for chiral symmetry breaking [63].
At finite densities, the effects of Landau quantization get

manifested in the oscillation of the order parameters similar
to the de Hass van Alphen effect for magnetization in
metals. However, in the present case of dense quark matter,
the order parameters, the masses and the superconducting
gap themselves are dependant on the strength of magnetic
fields which leads to a nonperiodic oscillation of the order
parameter.
Imposition of charge neutrality condition for the quark

matter leads to gapless modes even in presence of magnetic

field. The superconducting gaps in gapless modes are
smaller compared to the gaps in the BCS phase. The
transition from gapless to BCS phase is a sharp transition.
The difference in the gap in the two phases at this transition
decreases with magnetic field. For charge neutral matter the
strange quark plays an important role in maintaining the
charge neutrality. This leads to a depletion of electron
density at higher chemical potential where strange quarks
start to contribute to the densities. The resulting equation of
state becomes stiffer with magnetic field.
We have considered here quark-antiquark pairing and

diquark pairing in the ansatz for ground state which is
homogeneous with zero total momentum. However it is
possible that the condensates be spatially inhomogeneous
[70] with a net total momentum [71–74]. Indeed, the gapless
modes for the charge neutral matter leads to instability
arising from imaginary Meissner masses for some of the
gluons when δμ > Δ [66]. This can be suggestive of having
inhomogeneous superconducting phases [68,69] which are
not considered here. The phase structure here would be
nontrivial and interesting in the presence of two vectors, the
magnetic field and nonzero momentum of the condensate.
Furthermore, the equation of state derived for charge neutral
quark matter combined with the same for hadronic matter
can be used to study structural properties of neutron star with
quark matter core. It will be interesting to see the compat-
ibility of such an equation of state which is constrained by
astrophysical observations like GW170817 [75]. Some of
these investigations are in progress and will be reported
elsewhere.
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APPENDIX: EVALUATION OF OPERATOR
EXPECTATION VALUES OF

SOME OPERATORS

We give here some details of the evaluation of some
operators at finite T, μ and B in the state given in Eq. (18).
As the state is obtained from j0i, one can calculate the
expectation values of different operators, e.g.,

hqia†r ðn;kxÞ;qjbr0 ðn
0;k0xÞi¼δijδabδrr0δnn0δðk x−k0

xÞFiaðk xÞ;
ðA1Þ

where

Fiaðk xÞ ¼ sin2θia− þ sin2fð1 − sin2θia− − jϵijϵabjsin2θjb− Þ
× ð1 − δa3Þð1 − δi3Þ: ðA2Þ

Similarly for the expectation values for the operators
involving antiquarks, we have
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hq̃ia†r ðn; kxÞ; q̃jbr0 ðn
0; k0xÞi ¼ δijδabδrr0δnn0δðk x − k0

xÞð1 − Fia
1 ðk xÞÞ; ðA3Þ

where

Fia
1 ðk xÞ ¼ sin2θiaþ þ sin2f1ð1 − sin2θiaþ − jϵijϵabjsin2θjbþ Þð1 − δa3Þð1 − δi3Þ: ðA4Þ

Using the field operator expansion of Eq. (10) and Eqs. (A1) and (A3), one can evaluate

hψ ia†
α ðxÞψ jb

β ðyÞi ¼
X

n

jqiBj
ð2πÞ2

Z
dkxeik x·ðx−yÞΛia;jb

− βαðn; kxÞ ðA5Þ

with

Λia;jb
− ¼ δijδab½Fiaðn; kzÞUβrðn; kxÞUrαðn; kxÞ† þ ð1 − Fia

1 ðn; kzÞÞVβrðn;−kxÞVrαðn;−kxÞ†&: ðA6Þ

Explicitly,

Urðn; p xÞU†
rðn; p xÞ ¼

1

2

0

BBBB@

ð1þ cosϕÞI2n 0 p̂z sinϕI2n ip̂⊥ sinϕInIn−1
0 ð1þ cosϕÞI2n−1 −ip̂⊥ sinϕInIn−1 −p̂z sinϕI2n−1

p̂z sinϕI2n ip̂⊥ sinϕInIn−1 ð1 − cosϕÞI2n 0

−ip̂⊥ sinϕInIn−1 −p̂z sinϕI2n−1 0 ð1 − cosϕÞI2n−1

1

CCCCA
:

¼ 1

2

!
I2nð1þ γ0 cosϕÞΠþ þ I2n−1ð1þ γ0 cosϕÞΠ− þ p̂z

2
sinϕðγ0γ3ðI2n þ I2n−1Þ þ γ5ðI2n − I2n−1ÞÞ

− p̂⊥ sinϕγ2γ0
"
; ðA7Þ

where we have defined Π' ¼ ð1' iγ1γ2Þ=2, p̂z ¼
pz
jpj, p̂⊥ ¼

ffiffiffiffiffiffiffiffi
2nqB

p
jpj with jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nqB

p
.

Similarly for the antiquark spinors

Vrðn;−pxÞV†
rðn;−pxÞ ¼

1

2

0

BBBB@

ð1 − cosϕÞI2n 0 −p̂z sinϕI2n −ip̂⊥ sinϕInIn−1
0 ð1 − cosϕÞI2n−1 ip̂⊥ sinϕInIn−1 p̂z sinϕI2n−1

−p̂z sinϕI2n −ip̂⊥ sinϕInIn−1 ð1þ cosϕÞI2n 0

ip̂⊥ sinϕInIn−1 p̂z sinϕI2n−1 0 ð1þ cosϕÞI2n−1

1

CCCCA
:

¼ 1

2

!
I2nð1 − γ0 cosϕÞΠþ þ I2n−1ð1 − γ0 cosϕÞΠ− −

p̂z

2
sinϕðγ0γ3ðI2n þ I2n−1Þ þ γ5ðI2n − I2n−1ÞÞ

þ p̂⊥ sinϕγ2γ0
"
: ðA8Þ

This leads to, e.g., for the expectation value of chiral condensate for a given flavor as

Iis ¼ hψ̄ iψ ii ¼ −
1

ð2πÞ2
X

n

X

a

Z
dpydpzð1 − Fia − Fia

1 Þ cosϕi
nðI2n þ I2n−1Þ: ðA9Þ

One can integrate over dpy to obtain the contribution for the quarks that are charged as

Iis ¼
X

a

X

n

αn
ð2πÞ2

jqiBj
Z

dpzð1 − Fia − Fia
1 Þ cosϕi

n: ðA10Þ

On the other hand, the contribution to the scalar condensate from the quarks that are neutral (down blue and strange blue) is
given as
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Iis ¼
2

ð2πÞ3

Z
dp cosϕið1 − sin2θi3− − sin2θi3þÞ ði ¼ 2; 3Þ: ðA11Þ

Next, we discuss about the contributions to diquark condensates. Similar to Eq. (A12), we have

hqiar ðn; kxÞ; qjbr0 ðn
0; k0xÞi ¼ rδr;−r0ϵijϵ3abδnn0δðk x þ k0

xÞ sin 2fðn; kzÞð1 − sin2θia− − sin2θjb− Þ
≡ rδr;−r0ϵijϵ3abδnn0δðk x þ k0

xÞGðkz; nÞ ðA12Þ

and, for antiquark operators

hq̃iar ðn; kxÞ; q̃jbr0 ðn
0; k0xÞi ¼ rδr;−r0ϵijϵ3abδnn0δðk x þ k0

xÞ sin 2fðn; kzÞð1 − sin2 θia− − sin2 θjb− Þ
≡ rδr;−r0ϵijϵ3abδnn0δðk x þ k0

xÞG1ðkz; nÞ: ðA13Þ

For the diquark condensates we have

hψ ia
α ðxÞψ jb

β ðyÞi ¼ ϵijϵ3ab
X

n

jqiBj
ð2πÞ2

Z
dkxeik x·ðx−yÞ½PuCγ5Gðkz; nÞ þ PvCγ5G1ðkz; nÞ&βα; ðA14Þ

where PuCγ5 ¼
P

rrUαrU0
−rβ and PvCγ5 ¼

P
rrVαrV 0

−rβ and the prime on the spinors denotes a spinor with opposite
charge and momentum corresponding to the unprimed spinors. Explicitly,

Pu ¼
1

2

0

BBBBB@

cos ϕ2 cos
ϕ0

2 I
2
n 0 p̂z cos

ϕ
2 sin

ϕ0

2 I
2
n ip̂⊥ cos ϕ2 sin

ϕ0

2 InIn−1

0 cos ϕ2 cos
ϕ0

2 I
2
n−1 −ip̂⊥ cos ϕ2 sin

ϕ0

2 InIn−1 −p̂z cos
ϕ
2 sin

ϕ0

2 I
2
n−1

p̂z cos
ϕ0

2 sin
ϕ
2 I

2
n ip̂⊥ cos ϕ

0

2 sin
ϕ
2 InIn−1 sin ϕ

2 sin
ϕ0

2 I
2
n 0

−ip̂⊥ sin ϕ
2 cos

ϕ0

2 InIn−1 −p̂z sin
ϕ
2 cos

ϕ0

2 I
2
n−1 0 sin ϕ

2 sin
ϕ0

2 I
2
n−1

1

CCCCCA
ðA15Þ

and

Pv ¼
1

2

0

BBBBB@

− sin ϕ
2 sin

ϕ0

2 I
2
n 0 p̂z sin

ϕ
2 cos

ϕ0

2 I
2
n ip̂⊥ sin ϕ

2 cos
ϕ0

2 InIn−1

0 − sin ϕ
2 sin

ϕ0

2 I
2
n−1 −ip̂⊥ sin ϕ

2 cos
ϕ0

2 InIn−1 −p̂z sin
ϕ
2 cos

ϕ0

2 I
2
n−1

p̂z cos
ϕ
2 sin

ϕ0

2 I
2
n ip̂⊥ cos ϕ2 sin

ϕ0

2 InIn−1 − cos ϕ2 cos
ϕ0

2 I
2
n 0

−ip̂⊥ cos ϕ2 sin
ϕ0

2 InIn−1 −p̂z cos
ϕ
2 sin

ϕ0

2 I
2
n−1 0 − cos ϕ2 cos

ϕ0

2 I
2
n−1

1

CCCCCA
: ðA16Þ

This leads to, e.g., for expectation value of the diquark condensate as

ID ¼ hψ̄ ia
c γ5ψ jbiϵijϵ3ab

¼ 2

ð2πÞ2
X

n

αnjqiBj
Z

dpz cos
!
ϕ1 − ϕ2

2

"
½sin 2fð1 − sin2 θ1− − sin2 θ2−Þ þ sin 2f1ð1 − sin2 θ1þ − sin2 θ2þÞ&: ðA17Þ
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We investigate the ferromagnetic (spin polarization) condensation in (2+1) flavor Nambu Jona-
Lasinio(NJL) model with non-zero current quark masses at finite temperature and density which
may be relevant in the context of neutron stars. The spin polarization condensation arises due
to a tensor type interaction that may be generated due to non- perturbative effects in Quantum
Chromodynamics(QCD). In this investigation we study the interplay between chiral condensate and
spin polarization condensation for different values of tensor coupling. Spin polarization in the case
of 2+1 flavor is different from two flavor case because of an additional F8 condensate associated with
λf
8
flavor generator. We find non-zero values of the two spin condensates in the chirally restored

phase. Beyond a certain temperature the spin polarization condensates vanish for any value of quark
chemical potential. The spin condensates affect the chiral phase transition, quark masses and the
quark dispersion relation. Thermodynamic behavior of F3 and F8 are found to be different and they
affect the quark masses differently.

PACS numbers: 25.75.-q, 12.38.Mh

I. INTRODUCTION

One of the recent interests in high energy physics is to study the phase diagram of strongly interacting matter.
QCD phase diagram has been studied extensively in the temperature (T ) - baryon chemical potential (µB) plane
[1, 2]. The first principle lattice QCD (LQCD) simulations give a reliable prediction about the nature of QCD phases
and phase transitions at zero baryon chemical potential and finite temperature [3–5]. Although LQCD calculations
can be trusted at small baryon chemical potential µB ≃ 0 using extrapolation, at relatively large baryon chemical
potential the “fermion sign problem”[6]in LQCD prevents one from making reliable estimates. LQCD calculations
predict that at µB = 0, the nature of the transition from confined hadronic phase to deconfined quark gluon plasma
(QGP) phase is not a thermodynamic phase transition rather it is a smooth crossover with a transition temperature
Tc ∈ [149 − 163] MeV [7]. On the other hand, QCD inspired effective field theory models e.g. Nambu-Jona-Lasinio
model (NJL) etc., indicate that the phase transition from the hadronic phase to QGP phase at large baryon chemical
potential and small temperature is first order in nature with physical quark masses. This indicates the presence of
a critical endpoint at the end of the first order chiral phase transition line in the QCD phase diagram. Apart from
the confined hadronic phase and deconfined QGP phases, QCD phase diagram has a very rich structure at a low
temperature and high baryon chemical potential. In this region of the phase diagram, possibility of various exotic
phases has been investigated such as the color superconducting phase[8–10], quarkyonic phase[11], inhomogeneous
chiral condensed phase [12–14], etc.
Heavy ion collision experiments e.g. relativistic heavy ion collider (RHIC) and large hadron collider (LHC), give us

a unique opportunity to explore the QCD phase diagram. Strongly interacting QGP produced in these experiments
at relativistic energies recreates the physical conditions of the microsecond old universe just after the big bang. The
strongly interacting plasma produced in these high energy collisions can be characterized as high temperature and
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low baryon chemical potential QGP. At high densities relative to nuclear saturation density and low temperature
exotic phases of QCD can exist, e.g. two flavor color superconducting phase (2SC), color-flavor locked phase (CFL),
crystalline color superconductor, etc. Some of these high density QCD phases can also be explored in the upcoming
heavy ion collision experiments at moderate center of mass energies at FAIR and NICA. Apart from these terrestrial
experiments, the interior astrophysical ultra compact objects like neutron stars provide an ideal condition to indirectly
explore these high density QCD phases. Due to very low temperature and high baryon density, in the interior of a
neutron star various QCD phases may be realized, e.g. deconfined quark matter [15, 16], meson condensation in
hadronic phase[17], two flavor color superconducting phase, color-flavor locked phase [8–10] etc.
Further, compact objects like neutron stars can be strongly magnetized. Observations indicate that the magnetic

field strength at the surface of pulsars can be of the order of 1012−1013 Gauss [18]. Strongly magnetized neutron stars
(magnetars) may have even stronger magnetic fields ∼ 1015−1016 Gauss [19–25]. Using virial theorem and comparing
the magnetic field energy and gravitational energy, one can estimate the physical upper bound on the strength of the
magnetic field for a gravitationally bound star to be of the order 1018 Gauss[18]. For self bound objects like quark
stars this bound can be even higher [26]. The physical origin of the very strong magnetic field in the magnetars require
reconsideration of the common understanding that the magnetic field of a neutron star is originated from the progenitor
star [27]. Since quark matter can possibly be present at high densities, inside the neutron stars, presence of quark
ferromagnetic phase in high density quark matter has also been suggested as possible explanation of large magnetic
field associated with magnetars [28–30]. As a possible solution to this problem, author in Ref.[28] examined the
possible existence of spin-polarized deconfined quark matter using one gluon exchange interaction between quarks in
Fermi liquid theory within Hartree-Fock approximation. Taking the idea as proposed in the Ref.[28], spin polarization
in the quark matter has been well explored in the subsequent literature. In general, a collective spin polarization of
charged quarks can give rise to ferromagnetic nature of quark matter at high density, hence the spin of the fermions
play the crucial role in determining the possibility of ferromagnetic nature of dense quark matter. It has been shown
that in non-relativistic framework there is no possibility of spin polarization in normal nuclear matter[31]. On the
contrary, using relativistic Hartree-Fock approximation, possibility of spin polarization at asymptotic high density
has been suggested in Ref.[32, 33]. It is important to note that the relativistic framework may be more suitable than
the non-relativistic approach to understanding the existence of spin polarization. But in any case to explore spin
polarization in quark matter at a high density or baryon chemical potential a relativistic approach is very natural.
In relativistic framework “spin density” can be expressed in two different ways, first by the spatial component

of the axial vector (AV) mean field, ψ†Σiψ ≡ −ψ̄γ5γiψ, constructed out of the fermionic field (quarks)ψ and axial
vector combination of Dirac gamma matrices; second by tensor Dirac bilinear (T) ψ†γ0Σiψ ≡ −ψ̄σ12ψ. Although AV
and T type mean fields are different in the massless limit of fermions, it has been shown that they are equivalent in
nonrelativistic approximation [29]. Coexistence of the spin polarization and color superconductivity has been studied
using the AV interaction for quark matter in NJL model [30]. The interplay between the spin polarization and chiral
symmetry breaking at finite density for a single quark flavor using AV mean field has also been studied within NJL
model in Ref.[34]. In Ref.[34], it has been shown that for one flavor, spin polarization is possible at finite density
and zero temperature provided the ratio of the couplings of the axial vector channel and the pseudo scalar channel
satisfies some lower bound. It has been argued in Ref.[34] that due to the interplay between spin polarization and chiral
symmetry for a certain value of chemical potential, spin polarization appears due to the large dynamical quark masses
generated by spontaneous chiral symmetry breaking. Interestingly it was also shown that spin polarization plays an
important role in changing the value of the dynamical mass and at a very high density, both dynamical quark mass
and spin polarization vanish in the chiral symmetric phase. Although in Ref.[28] author introduced the idea of quark
spin polarization using one gluon exchange interaction, in the NJL model studies, AV mean field has been used. Due
to the Fierz transformation, one can get AV channel interaction between quarks from one gluon exchange interaction,
but the tensor Dirac bilinear representation of “spin density” operator does not appear in the Fierz transformation
of the one gluon exchange interaction. Hence at asymptotically high densities where one gluon exchange interaction
in perturbative QCD is applicable, spin polarization cannot be studied using the T channel interaction. But for
moderate densities near chiral phase transition density perturbative QCD is not applicable and one can use QCD
inspired low energy effective models e.g. NJL model. NJL model is not directly related to perturbative one gluon
exchange interaction. In this model AV or T channel interactions are not written keeping in mind the perturbative
nature of QCD and some nonperturbative effects can give rise to tensor channel interaction. Hence spin polarization
in the tensor channel, which can be different from the AV channel can be studied within the NJL model. In fact, the
tensor channel opens up a completely different point of view in looking into the spin polarization problem of quark
matter at moderate densities e.g. in two flavour NJL model spin-polarized phase can be shown to be present in the
chiral restored phase where the dynamical quark mass is zero [35, 36]. This result is different than the result obtained
in Ref.[34], where spin polarization is not present in chiral restored phase. Since the manifestation of the AV and T
channel interaction is different, the interplay between the AV and T type spin-polarized phases becomes interesting
to study along with the other phases expected to arise in high baryon density region of the QCD phase diagram
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[12, 30, 34, 35, 37–41].
In the present work we discuss the interplay between the spin polarization condensate (⟨ψ̄Σiψ⟩) and the scalar chiral

condensate (⟨ψ̄ψ⟩) in (2+1) flavor NJL model using only tensor(T) type interaction for spin polarization. Most of
the earlier works used some simplified approximation to study the interplay between spin polarization and other high
density phases, which includes single flavor NJL model [34], SU(2) flavor NJL model [35, 40], SU(3) flavor NJL model
[42] with zero current quark mass etc. However, for a more realistic situation one should consider (2+1) flavor NJL
model with different current quark mass of strange and non-strange quarks. This apart, the structure of ferromagnetic
condensation for (2+1) flavor NJL model is qualitatively different from that of two flavor NJL model as inherently two
different kinds of spin polarizations are possible which are associated with the diagonal generators of the SU(3) flavour
group. Behaviour of these spin polarization condensates as function of temperature and quark chemical potential (µ)
has been discussed extensively. Since the spin polarization condensates are also related to the quark-antiquark scalar
condensates, it is evident that the spin polarization condensates affect the constituent mass of the quarks. In this
work spin polarization condensates due to the tensor type interaction appear in the chiral symmetry restored phase
and the quark masses, specifically strange quark masses, are strongly affected by the spin polarization condensates in
the chiral symmetric phase.
This paper is organized in the following manner. We first discuss the formalism of 2+1 flavour NJL model in the

presence of tensor type interactions in Sec.(II). In Sec.(II) derivation of the thermodynamic potential is discussed in
a mean field approach. Once the thermodynamic potential is derived one can get the gap equations to solve for the
condensates. After the formalism important results and the corresponding discussion are given in Sec.(III). Finally
in Sec.(IV) we summarize our work.

II. FORMALISM

In order to study the spin polarization due to tensor channel interaction for realistic (2 + 1) flavor and SU(3) color
quarks we start with the following NJL Lagrangian density [39, 43],

L = ψ̄
(

i/∂ − m̂
)

ψ + Lsym + Ldet + Ltensor + µψ̄γ0ψ, (1)

where ψ = (u, d, s)T is the three flavor quark field and the diagonal current quark matrix is m̂ = diagf (mu,md,ms).
In this work we have assumed that due to isospin symmetry in the non strange quark sector mu = md. Strange quark
mass ms is different from the other light quark masses. Difference between the strange and non strange quark masses
explicitly breaks the SU(3) flavor symmetry. µ is the quark chemical potential. In literature different chemical
potential for the strange and nonstrange quarks have been considered, but the phase diagram has no qualitative
difference. In this case we are assuming that the quark chemical potential of the strange and nonstrange quarks are
same. Following the representations of different interaction terms as given in Ref.[43], in general one considers,

Lsym = g
a=8
∑

a=0

[

(

ψ̄λaψ
)2

+
(

ψ̄iγ5λaψ
)2

]

. (2)

This term has been constructed keeping in mind the U(3)L × U(3)R chiral symmetry for three flavor case and it can
be generalized to any number of flavours Nf . The interaction term Lsym represents four point interaction, where
λ0 =

√

2/3If and λa, a = 1, ....(N2
f − 1) are the generators of SU(Nf). In the present case If is 3× 3 identity matrix

and λa for a = 1, ...8 are the Gell-Mann matrices.
The interaction term Ldet in Eqn.(1) is ‘t Hooft determinant interaction term. This term breaks U(1) axial symmetry

explicitly and also successfully describes the nonet meson properties[44–46]. It can be expressed as,

Ldet = −Kdetf [ψ̄(1 + γ5)ψ + h.c] (3)

In this interaction term determinant is taken in the flavour space. This term represents maximally flavour-mixing 2Nf

point interaction for Nf quark flavours. For two flavour NJL model this term does not introduce any new dynamics
because for two flavour case it gives four Fermi interaction which is already there. But for three or more flavours
this term generates new type of interaction, e.g. for three flavour case it gives rise to six point interaction term. The
tensor interaction which is responsible for spin polarization is given as [39, 42],
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Ltensor =
GT

2

∑

a=3,8

(

ψ̄Σzλaψ
)2

, Σz =

(

σz 0
0 σz

)

, (4)

where σz is the third Pauli matrix. Here we have assumed polarization along the z-axis. Note that Ltensor is
not invariant under chiral symmetry, rather one requires to add a similar term with γ5 matrix to make the tensor
interaction symmetric under chiral symmetry. Since we are not considering any condensation involving γ5, we have
omitted the term which ensures chiral invariance for the tensor interaction. Thus the total Lagrangian with finite
chemical potential becomes,

L = ψ̄
(

i/∂ − m̂
)

ψ + g
a=8
∑

a=0

(

ψ̄λaψ
)2 −Kdetf [ψ̄(1 + γ5)ψ + h.c] +

∑

a=3,8

GT

2

(

ψ̄Σzλaψ
)2

+ µψ̄γ0ψ. (5)

In the mean field approximation expanding the operators around their expectation values and neglecting higher
order fluctuations, we obtain,

(ūu)2 ≃ 2⟨ūu⟩ūu− ⟨ūu⟩2 = 2σudūu− σ2
ud

(

d̄d
)2 ≃ 2⟨d̄d⟩d̄d− ⟨d̄d⟩2 = 2σudd̄d− σ2

ud

(s̄s)2 ≃ 2⟨s̄s⟩s̄s− ⟨s̄s⟩2 = 2σss̄s− σ2
s

(

ψ̄Σzλ3ψ
)2 ≃ 2⟨ψ̄Σzλ3ψ⟩

(

ψ̄Σzλ3ψ
)

− ⟨ψ̄Σzλ3ψ⟩2 = 2F3

(

ψ̄Σzλ3ψ
)

− F 2
3

(

ψ̄Σzλ8ψ
)2 ≃ 2⟨ψ̄Σzλ8ψ⟩

(

ψ̄Σzλ8ψ
)

− ⟨ψ̄Σzλ8ψ⟩2 = 2F8

(

ψ̄Σzλ8ψ
)

− F 2
8 , (6)

where the chiral condensates or the quark-antiquark condensates are ⟨ūu⟩ = ⟨d̄d⟩ ≡ σud, ⟨s̄s⟩ ≡ σs and the spin
polarization condensates are F3 = ⟨ψ̄Σzλ3ψ⟩ and F8 = ⟨ψ̄Σzλ8ψ⟩. We can write the mean field Lagrangian as,

L = ψ̄
(

i/∂ − M̂ +GTF3Σzλ3 +GTF8Σzλ8 + µγ0
)

ψ − 2g
(

σ2
ud + σ2

ud + σ2
s

)

+ 4Kσ2
udσs

−
GT

2
F 2
3 −

GT

2
F 2
8 , (7)

where, M̂ ≡ diag(Mu,Md,Ms), with effective masses,

Mu =mu − 4gσud + 2Kσudσs
Md =md − 4gσud + 2Kσudσs

Ms =ms − 4gσs + 2Kσ2
ud. (8)

For a given system at finite temperature and finite chemical potential most important quantity for the understanding
of the thermodynamic behaviour or the phase structure, is the thermodynamic potential. Once the thermodynamic
potential for this model is known, thermodynamic quantities can be extracted using Maxwell relations. The thermo-
dynamic potential for the Lagrangian as given in Eqn.(7) in the grand canonical ensemble at a finite temperature and
finite chemical potential can be given as:
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Ω(T, µ,σud,σs, F3, F8) =−Nc

∑

f=u,d,s

∫

d3p

(2π)3

[(

Ef+ + Ef−

)

+ T ln

(

1 + e−β(Ef+−µ)

)

+ T ln

(

1 + e−β(Ef++µ)

)

+ T ln

(

1 + e−β(Ef−
−µ)

)

+ T ln

(

1 + e−β(Ef−
+µ)

)]

+ 2g(σ2
ud + σ2

ud + σ2
s )− 4Kσ2

udσs +
GT

2
F 2
3 +

GT

2
F 2
8 ,

=−
6

4π2

∑

f=u,d,s

∫ Λ

0
dpT

∫

√
Λ2−p2

T

0
pTdpz

[(

Ef+ + Ef−

)

+ T ln

(

1 + e−β(Ef+−µ)

)

+ T ln

(

1 + e−β(Ef++µ)

)

+ T ln

(

1 + e−β(Ef−
−µ)

)

+ T ln

(

1 + e−β(Ef−
+µ)

)]

+ 2g(σ2
ud + σ2

ud + σ2
s )− 4Kσ2

udσs +
GT

2
F 2
3 +

GT

2
F 2
8 (9)

where Nc = 3 is the number of colors, transverse momentum pT =
√

p2x + p2y and the single particle energies are,

Eu+ =

√

p2z +

(

√

p2T +M2
u +GT

(

F3 +
F8√
3

))2

Eu− =

√

p2z +

(

√

p2T +M2
u −GT

(

F3 +
F8√
3

))2

Ed+ =

√

p2z +

(

√

p2T +M2
d +GT

(

F3 −
F8√
3

))2

Ed− =

√

p2z +

(

√

p2T +M2
d −GT

(

F3 −
F8√
3

))2

Es+ =

√

p2z +

(

√

p2T +M2
s +GT

2F8√
3

)2

Es− =

√

p2z +

(

√

p2T +M2
s −GT

2F8√
3

)2

(10)

Thermodynamic behaviour of the condensates can be found by solving the gap equations, which can be found from
the stationary conditions (for details see Appendix),

∂Ω

∂σud
=

∂Ω

∂σs
=

∂Ω

∂F3
=

∂Ω

∂F8
= 0 (11)

Gap equations can have several roots, but the solution with the lowest value of thermodynamic potential is taken as
the stable solution.
NJL model Lagrangian in (3+1) dimension has operators which have mass dimension more than four, thus it can

shown to be a non-renormalizable theory [47]. Thus the divergence coming from the three momentum integral of the
vacuum part can not be removed by the renormalization prescriptions. The model predictions inevitably depend on the
regularization procedures and parameter dependence in each regularization method has been reported in Ref.[48, 49].
In this work we have considered the most frequently used 3D momentum cutoff regulation scheme to regularize the
divergence in Eq.(9) for thermodynamic potential.
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FIG. 1: Constituent quark mass as a function of quark chemical potential at zero temperature in the presence and absence
of spin polarization condensation. Red-solid line and green-dotted line represent non strange and strange quark mass in the
presence of spin polarization condensate F3. Blue-dashed line and black-dotted line represents non strange and strange quark
constituent mass in the standard 2+1 flavor NJL model in the absence of any spin polarization condensate. Sharp jump in
the value of Mu and Ms near µ = 0.360 GeV indicates the first order chiral phase transition. In this case we have considered
the tensor interaction coupling to be GT = 2g. Comparing green and the black lines for strange quark it is clear that non
zero value of spin condensate affects strange quark mass. However, the non strange quark masses are almost unaffected due to
the presence of spin polarization condensate. For GT = 2g non zero value of F3 appears only near 0.480 GeV which is away
from the chiral phase transition critical chemical potential, hence in this case the chiral phase transition is unaffected by the
presence of spin polarization.

In the study of spin polarization in NJL model, the parameter which plays the crucial role is the tensor channel
interaction GT . If one considers only vector current interaction, e.g. one gluon exchange interaction in perturbative
QCD processes, then such a tensor interaction can not be generated by Fierz transformation. However, such a tensor
interaction can be generated from two gluon exchange diagrams [39]. It is relevant to point out that one can also get
tensor channel interaction by Fierz transformation from scalar and pseudo scalar interaction [35],

g

[

(ψ̄ψ)2 + (ψ̄iγ5λaψ)
2

]

=
g

4

[

(ψ̄ψ)2 −
1

2
(ψ̄γµγνλaψ)

2 + .....

]

, (12)

which gives |g/GT | = 2. In the present investigation we can take GT as a free parameter to study the inter relationship
between scalar and tensor condensates. It may also be noted that the parameters g and GT may be considered
independently to derive mesonic properties [50–52]. It has been shown that SU(2) NJL model with both positive and
negative tensor couplings can describe the phenomenology of mesons. Indeed SU(2) Lagrangian has been considered
with vector, axial vector and tensor interaction in Ref. [52] where, the gap equations are solved in the usual Hartree
approximation while mesons are described in the random phase approximation [52]. In this work we have only
considered GT as a free parameter with positive values only i.e. GT and g are of same sign. In the literature various
values have been considered e.g. GT = 2g, 1.5g [39] as well as GT = 4.0g [52]. We have also obtained our results taking
different values of GT . Results with some specific parameter sets have been mentioned in the result and discussion
section.
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FIG. 2: The figure shows the contour maps of the thermodynamics potential with the set of parameters in table(I) and GT = 2g
at T = 0.0 GeV for different values of µ. The darker region in the plots show the lower value of the thermodynamic potential.
The horizontal and vertical axes represents the non strange quark condensate σud and strange quark condensate σs respectively.
Existence of almost degenerate vacuum is clear from the figure near µ = 0.360 GeV. Hence the chiral phase transition near
µ = 0.360 is a first order phase transition. Spin polarization condensation F3 has no effect on the chiral phase transition. As
we have shown in Fig.(3) non zero value of F3 occurs near µ = 0.480 GeV at T = 0.0GeV for GT = 2g, which is far away from
the critical quark chemical potential for the chiral phase transition.

III. RESULTS AND DISCUSSIONS

We begin the discussion with the parameterization of the model. The parameters to be fixed are the three current
quark masses (mu,md,ms), the scalar coupling (g), the determinant coupling K, the tensor coupling(GT ) and the
three momentum cut-off Λ to regularize divergent integrals. Except for the tensor coupling GT , there are several
parameter sets available for NJL model [43]. These fits are obtained using low energy hadronic properties such as
pion decay constant and masses of pion, kaon and η′ [45, 53, 54]. The determinant interaction is important as it
breaks U(1)A symmetry and gives correct η mass. One may note that there is discrepancy in determination of the
determinant coupling K. For example in Ref. [45] the value of the coupling differs by as much as 30 percent compared
to value used in present work. This discrepancy arises due to difference in treatment of η′ mesons with a high mass
[43]. In fact, this leads to a nonphysical imaginary part for the corresponding polarization diagram in the η′ meson
channel. This is unavoidable because NJL is not confining and is unrealistic in this context. Within the above
mentioned limitations of the model and the uncertainty in the value of the determinant coupling, we proceed with
the present parameter set as given in Table (I) [43].
Let us first note that there are four condensates, σud, σs, F3 ≡ ⟨ūΣzu⟩ − ⟨d̄Σzd⟩ and F8 ≡

1√
3

(

⟨ūΣzu⟩+ ⟨d̄Σzd⟩ − 2⟨s̄Σzs⟩
)

, to be determined from the solution of the gap Eq.(11). However for simplicity

we shall first consider F8 = F3√
3
, so that the spin polarization condensate for d quarks and s quarks are treated at the
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Parameter Set

Parameters and couplings Value

Three momentum cutoff (Λ) Λ = 602.3 × 10−3 (GeV)

u quark mass (mu) mu = 5.5× 10−3 (GeV)

d quark mass (md) md = 5.5× 10−3 (GeV)

s quark mass (ms) ms = 140.7 × 10−3 (GeV)

Scalar coupling (g) g = 1.835/Λ2

Determinant interaction (K) K = 12.36/Λ5

TABLE I: Parameter set considered in this work for 2+1 NJL model apart from the tensor coupling GT .

same footing i.e. ⟨d̄Σzd⟩ ≡ ⟨s̄Σzs⟩ [42]. The results in such a scenario is determined below.

A. Results with F8=
F3√
3

1. Chiral phase transition and the behavior of quark masses for GT = 2g at zero temperature

Let us consider the thermodynamic potential at zero temperature as a function of quark chemical potential (µ)
along with the condition F8 = F3/

√
3 [42]. For quantitative analysis we consider the tensor coupling GT = 2g. Fig.(1)

shows the behavior of the constituent quark masses as a function of quark chemical potential at zero temperature in
the presence as well as in the absence of spin polarization condensate F3.
From Fig.(1) it is clear that the vacuum masses (T = 0, µ = 0), for the non strange quarks are 0.368 GeV and

the strange quark mass is 0.549 GeV. The vacuum masses for the constituent quarks remain the same as the case
with GT = 0, as the tensor condensates appear only at large chemical potential. This is chiral symmetry broken
phase where constituent quark masses are generated dynamically. Close to µ = µc = 0.360 GeV there is sudden
drop in the masses of u, d quarks Mu = Md. Because of the flavour mixing due to the determinant interaction
the strange quark mass also changes at µ = µc. This sudden change in the constituent mass indicates a first-order
phase transitions. It is also expected that chiral phase transition should occur in the 2+1 flavor NJL model near
µ = 0.360 GeV at zero temperature in the absence of spin polarization. Using the gap equations it can be shown
that at zero temperature and zero chemical potential F3 = 0 is a solution. It turns out that at zero temperature
and zero chemical potential F3 = 0 is also a stable solution, hence F3 does not affect the constituent quark masses
at low chemical potential at zero temperature. As the chemical potential is increased beyond the chiral restoration
for the light quarks, it is observed that the spin polarized condensate develops for a range of chemical potential. In
particular, as shown in Fig. (3) for zero temperature, a non zero F3 starts to develop at µ ≃ 0.480 GeV and increases
slightly with µ, becoming a maximum around µ ≃ 0.510 GeV, beyond which it decreases and eventually vanishes at
µ ≃ 0.600 GeV. Therefore we observe here in Fig.(1) that the chiral transition for the light quarks is not affected
by the spin polarization condensates as the latter exist at µ larger than µc for GT = 2g. It is important to mention
that both ψ̄ψ and ψ̄γµγνψ break the chiral symmetry, but their thermodynamic behavior is quite opposite. At zero
temperature and zero chemical potential non zero value of scalar condensation is thermodynamically stable, while
the tensor condensate vanishes. However at high chemical potential when the tensor condensate takes non zero value
the chiral condensate vanishes but for small current quark mass. The non invariance of the tensor interaction under
chiral symmetry can be manifested in the change of quark masses even if the scalar condensate vanishes for the light
quarks.
We can also understand the behavior of the constituent quark masses Mu = Md and Ms in the presence and

absence of the spin polarization condensation by looking into the behaviour of thermodynamic potential as a function
of quark-antiquark condensates σud, σs and spin polarization condensate F3 for different values of temperature (T)
and chemical potential µ. Contour plots of thermodynamic potential in the σud − σs plane for different value of
chemical potential (µ) at zero temperature have been shown in Fig.(2) with the set of parameters given in table(I)
and GT = 2g. The darker regions in the plots show the lower value of the thermodynamic potential. The horizontal
and vertical axes represent the nonstrange quark-antiquark condensate σud and strange quark-antiquark condensate
σs. As may be observed in Fig.(2), for zero temperature and µ < µc ∼ 0.360 GeV minimization of the thermodynamic
potential gives us a unique nonzero value of the quark-antiquark condensate. This nonzero value of both σud and
σs indicates chiral symmetry broken phase at zero temperature and µ ≤ 0.360 GeV. At µ = 0.360 GeV one can
see the existence of almost degenerate vacua in the thermodynamic potential one for σud ∼ −0.015 GeV3 and the
other at σud ∼ 0.0 GeV3. As the chemical potential is increased this degeneracy is lifted and the vacuum with σud
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is close to zero has the minimum value for the thermodynamic potential. At µ = 0.4 GeV the value of σud as well
as Mu is very small and is close to the current quark mass value. This indicates that at chemical potential larger
than µc = 0.360GeV chiral symmetry is restored. This chiral symmetry restoration is partial in nature in the sense
that while the scalar condensate σud ≃ 0, but for the current quark masses (mu,md ̸= 0), the strange condensate
σs is rather large as can be seen in Fig.(1) and Fig.(2) . As µ is further increased beyond µc, σs also approaches its
(approximate) chiral limit continuously. Degeneracy in the thermodynamic potential and a sharp jump in the order
parameter (σud) indicates first order phase transition. Hence the chiral transition at zero temperature is of first order
in nature. This first order nature of the chiral phase transition can also be seen at finite temperature, however, at
relatively larger temperature chiral phase transition does not remain as a first order phase transition. In fact, the end
of the first order transition to the crossover defines the critical end point. At higher temperatures, beyond the critical
temperature quark-antiquark condensate changes smoothly across the critical chemical potential.
When we take GT = 2g, the value of F3 is not large enough near µ = 0.360 GeV and the chiral phase transition

is unaffected by the spin polarization. Since quark-antiquark condensates σud and σs are intimately connected with
the F3, non zero value of F3 can change the quark dynamical mass (see Fig.(1)). Strange quark mass is more affected
by the presence of the spin polarization condensate (F3), because dynamical mass of u quark becomes very small just
after the chiral phase transition, however, strange quark has a substantial mass even after the chiral phase transition.
Similar to the result at zero temperature, for GT = 2g chiral phase transition is almost unaffected in the presence of
spin polarization at finite temperature also.

2. Behavior of F3 for GT = 2g

Next let us focus our attention to the thermodynamic behavior of F3. Fig.(3) shows the contour plots of the
thermodynamic potential in σs − F3 plane at zero temperature with increasing value of the chemical potential (µ)
for GT = 2g. As before the darkest regions in the contour plots show the global minimum of the thermodynamic
potential and the corresponding values of σs and F3 are correct condensation value. It is clear from the Fig.(3) that
spin polarization is possible within the small range of chemical potential µ ≃ 0.480− 0.570 GeV at zero temperature.
From this figure it is clear that with increase in chemical potential σs decreases. In this work, we have kept the
value of µ ≤ Λ, because Λ is the cut-off of the theory. When the chemical potential is close to 0.6 GeV both σs
and F3 becomes zero. For large chemical potentials(µ > 570 MeV), spin polarization condensate completely melts
along with the other condensates. Presence of spin polarization condensation can affect the QCD phase diagram in
many different ways. As we have already mentioned that the spin polarization condensate coming from the tensor
interaction also breaks the chiral symmetry, an obvious effect of a large value of spin polarization condensate should
be seen in the chiral phase transition. We have also observed that F3 decreases with increasing temperature and
vanishes at few tens of MeV. Therefore such condensates do not affect the critical end point.

3. Quark masses and ferromagnetic condensate for larger tensor coupling

The left plot and the right plot in Fig.(4) are for quark masses and ferromagnetic condensate respectively, for the
tensor coupling GT = 2.5g and GT = 2.8g. One may note that for larger tensor coupling the u and d quark masses
are not affected but the strange quark mass is significantly affected. Ferromagnetic condensate is stronger for larger
value of tensor coupling and survives for a longer range of quark chemical potential. It is important to mention that
for tensor couplings greater than GT = 3g the chiral transition itself is affected. However the requirement of baryon
matter stability places a upper bound on the value of tensor coupling.

4. Finite temperature effect on the spin polarization condensate F3 for GT = 2g

After demonstrating the behavior of the spin polarization condensate as a function of chemical potential at zero
temperature for different values of the tensor coupling, let us look into the temperature behavior of F3 for a fixed value
of GT = 2g. Temperature behavior of spin polarization condensate as well as σs is shown in Fig.(5). Fig.(5) shows
the contour plots of thermodynamic potential in the plane of σs −F3 for different values of temperature and chemical
potential. Each row shows the behavior of thermodynamic potential as a function of increasing chemical potential
for a fixed temperature. On the other hand, each column shows the behavior of the thermodynamic potential as a
function of temperature for a fixed value of chemical potential. From the first two row in Fig.(5), for temperature
T = 0.02 GeV and 0.04 GeV, it is clear that as the chemical potential increases non zero value of spin polarization
develops. It attains a maximum value at an intermediate value of the chemical potential and as the chemical potential
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becomes very high F3 becomes zero. However, each column shows that with increasing temperature the formation
of the spin polarization becomes difficult and the maximum value of F3 also decreases with temperature. The third
row in Fig.(5) shows that when the temperature is T = 0.06 GeV, value of the spin polarization condensate F3 is
almost zero. Hence one can conclude that as the temperature increases the range of chemical potential within which
spin polarization can exist decreases. Further there exists a temperature beyond which spin polarization cannot occur
irrespective of the value of chemical potential for a given value of GT . Also note that with increase in temperature
and chemical potential strange quark condensate (σs) decreases.

5. Threshold coupling for existence of F3

The existence of spin polarization inevitably depends on the value of GT . GT determines the strength of the spin
polarization condensation. The dependence of F3 on the tensor coupling has been shown in the Fig(6). Fig.(6) shows
the thermodynamic potential in σs − F3 plane as a function of chemical potential for three different values of tensor
couplings GT = 2g, 1.8g and 1.5g at zero temperature. Along each row in Fig.(6) the contours of thermodynamic
potential have been shown for different values of the chemical potential but keeping GT fixed. On the other hand in
each column of Fig.(6) contours of thermodynamic potential have been shown for various values the tensor coupling
constant GT for a given chemical potential. Value of the spin polarization condensate decreases with decreasing value
of GT . When GT = 2g, F3 has a substantial non zero value at zero temperature and µ = 0.510 GeV, however for
GT = 1.8g this value starts to decrease and for GT = 1.5g spin polarization condensate F3 almost vanishes. This
result for zero temperature can be easily extended to a non zero temperature. For finite temperature one requires a
larger value of GT , for the spin polarization to exist. As GT increases, the threshold µ above which F3 starts becoming
nonvanishing decreases, and the critical µ above which F3 vanishes increases. Both these behavior lead to a larger
range of µ that supports a non vanishing F3 as GT increases. Further the magnitude of F3 increases with GT .

B. Results for independent F3, F8

We have already discussed the variation of F3 and F8 with chemical potential where we have considered F8 = F3/
√
3

in the thermodynamic potential. However for more general situation we have to consider F3 and F8 simultaneously. In
Fig.(7)(a), Fig.(7)(b), Fig.(7)(c) we have shown the variation of F3 and F8 with chemical potential at zero temperature
for GT = 2g, 2.5g, 2.8g respectively. It is clear from the Fig.(7) that non zero F3 appears at relatively smaller µ than
F8. Since F8 is associated with strange quark-antiquark condensate it survives even at larger chemical potential
relative to the F3 condensate. It is also important to notice that with larger tensor coupling spin condensates appear
at relatively smaller quark chemical potential.

C. Magnetic field due to spin polarization

The spin polarization condensate implies a alignment of spin of quarks. This will lead to a magnetic field due to
quark magnetic moment. We estimate the strength of the effective magnetic field (Beff ) due to spin polarization
condensate as [35]:

µ̄qBeff = GTF, µ̄q =
µu + µd

2
, µ̄u =

(23e)

2mq
, µ̄d =

(− 1
3e)

2mq
(13)

Here F denotes the spin polarization condensate and µ̄q is the average magnetic moment of the light quarks. For an
estimation of Beff we take F ∼ 0.018 GeV3 (at quark chemical potential ∼ 510 MeV) and GT = 2g. Using these
value we get eBeff ∼ m2

π or 1018 Gauss. The value of the magnetic field on the surface of the magnetars is of the
order of 1015 Gauss, but in the center the strength of the magnetic field can be higher. It is interesting to note that
even this crude estimation of the magnetic field due to the spin polarized phase of the deconfined quark matter leads
to a correct order of magnitude estimation of the magnetic field in the core of the magnetars.

IV. CONCLUSIONS

In this work, we have considered the 2+1 flavor NJL model in the presence of tensor interaction with non zero
current quark masses. The original idea of the presence of spin polarization in quark liquid was motivated considering
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one gluon exchange interactions in perturbative QCD processes [28]. Ferromagnetic quark matter can arise due to
both axial vector and tensor type interaction. Although the axial vector type interaction can be generated from
the one gluon exchange QCD interaction by Fierz transformation, the tensor type interactions cannot be generated
using Fierz transformation. Thus at very high densities where perturbative QCD processes are relevant, tensor
type of interaction will not be suitable to study spin polarization in quark matter. More importantly at moderate
densities close to the chiral phase transition one expects nonperturbative effects to play an important role. In the
present investigation within the ambit of NJL model applied to moderate densities, we have considered only the
tensor type four point interaction. We might note here that the coupling constant of the tensor interaction is related
to the scalar and pseudo scalar channel. However in general, this tensor coupling constant can be independent. We
take the coupling constant of the tensor interaction GT as a parameter of the model. We have taken various values
of the tensor couplings GT , e.g. GT = 2.0g and lower as well as relatively larger values of GT , e.g. GT = 2.5g, 2.8g etc.

For 2+1 flavor NJL model, tensor type interaction at the mean field level leads to two types of spin polarization
condensates, F3 = ⟨ψ̄Σzλ3ψ⟩ and F8 = ⟨ψ̄Σzλ8ψ⟩. Since we have various condensates in 2+1 flavor NJL model in
the presence of tensor interaction we take a rather simplified approximation, where F3 and F8 are not independent
rather F8 = F3/

√
3. One may note that in general F3 and F8 are independent due to the fact that F8 is associated

with the strange quark spin polarization condensate, on the other hand F3 contains only u, d quark spin polarization
condensates. Therefore we have also considered the case where F3 and F8 are treated independently. Generically spin
polarization for moderate tensor coupling (e.g. GT = 2g) does not appear at zero temperature and zero chemical
potential, rather it appears at high µ in the chiral restored phase. At large chemical potential and small temperature
the generic feature of such spin polarized condensate lies in affecting the strange quark mass rather than the
non-strange quark masses for moderate tensor coupling. Such spin polarized condensate vanishes for temperatures of
the order of few tens of MeV and thus can be relevant for neutron stars and proto neutron stars. We also find that
there is a threshold tensor coupling, below which the spin polarization condensates do not develop.

Unlike superconducting diquark condensate, the spin polarization condensate is not a monotonic function of chemical
potential and as the chemical potential is increased the magnitude becomes a maximum beyond which it vanishes
when µ is increased further. The range of chemical potential for which such condensate exists as well as the magnitude
of the condensate, increases with the strength of the tensor coupling. We estimate the magnitude of the magnetic field
corresponding to the ferromagnetic condensate in high density quark matter to be of the order of ∼ m2

π ∼ 1018 Gauss.
It is important to mention that although spin polarization condensate was thought as a source of magnetic field in
magnetars, magnetic field can also be present in the neutron stars originated from the progenitor star. External
magnetic field can affect the formation of spin condensates. In this context it has been shown recently that one can
have non vanishing spin polarization condensate for quark matter in the presence of magnetic field [55].
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Appendix

The gap equations for four independent condensates, two chiral condensates σud, σs and two spin polarization
condensates F3, F8 are as follow,
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∂Ω

∂σud
= −Nc

∫

d3p

(2π)3

[

Mu

Eu+

(

1 +
GT (F3 + F8/

√
3)

√

p2T +M2
u

)

(−4g + 2Kσs)

{

1−
1

1 + eβ(Eu+
−µ)

−
1

1 + eβ(Eu+
+µ)

}

+
Mu

Eu
−

(

1−
GT (F3 + F8/

√
3)

√

p2T +M2
u

)

(−4g + 2Kσs)

{

1−
1

1 + eβ(Eu
−

−µ)
−

1

1 + eβ(Eu
−

+µ)

}

+
Md

Ed+

(

1 +
GT (F3 − F8/

√
3)

√

p2T +M2
d

)

(−4g + 2Kσs)

{

1−
1

1 + eβ(Ed+
−µ)

−
1

1 + eβ(Ed+
+µ)

}

+
Md

Ed
−

(

1−
GT (F3 − F8/

√
3)

√

p2T +M2
d

)

(−4g + 2Kσs)

{

1−
1

1 + eβ(Ed
−

−µ)
−

1

1 + eβ(Ed
−

+µ)

}

+
Ms

Es+

(

1 +
2GTF8/

√
3

√

p2T +M2
s

)

(4Kσud)

{

1−
1

1 + eβ(Es+
−µ)

−
1

1 + eβ(Es+
+µ)

}

+
Ms

Es
−

(

1−
2GTF8/

√
3

√

p2T +M2
s

)

(4Kσud)

{

1−
1

1 + eβ(Es
−

−µ)
−

1

1 + eβ(Es
−

+µ)

}]

+ 8gσud − 8Kσudσs = 0 (14)

∂Ω

∂σs
= −Nc

∫

d3p

(2π)3

[

Mu

Eu+

(

1 +
GT (F3 + F8/

√
3)

√

p2T +M2
u

)

(2Kσud)

{

1−
1

1 + eβ(Eu+
−µ)

−
1

1 + eβ(Eu+
+µ)

}

+
Mu

Eu
−

(

1−
GT (F3 + F8/

√
3)

√

p2T +M2
u

)

(2Kσud)

{

1−
1

1 + eβ(Eu
−

−µ)
−

1

1 + eβ(Eu
−

+µ)

}

+
Md

Ed+

(

1 +
GT (F3 − F8/

√
3)

√

p2T +M2
d

)

(2Kσud)

{

1−
1

1 + eβ(Ed+
−µ)

−
1

1 + eβ(Ed+
+µ)

}

+
Md

Ed
−

(

1−
GT (F3 − F8/

√
3)

√

p2T +M2
d

)

(2Kσud)

{

1−
1

1 + eβ(Ed
−

−µ)
−

1

1 + eβ(Ed
−

+µ)

}

+
Ms

Es+

(

1 +
2GTF8/

√
3

√

p2T +M2
s

)

(−4g)

{

1−
1

1 + eβ(Es+
−µ)

−
1

1 + eβ(Es+
+µ)

}

+
Ms

Es
−

(

1−
2GTF8/

√
3

√

p2T +M2
s

)

(−4g)

{

1−
1

1 + eβ(Es
−

−µ)
−

1

1 + eβ(Es
−

+µ)

}]

+ 4gσs − 4Kσ2
ud = 0 (15)

∂Ω

∂F3
= −Nc

∫

d3p

(2π)3

[

GT

√

p2T +M2
u +GT (F3 + F8/

√
3)

Eu+

{

1−
1

1 + eβ(Eu+
−µ)

−
1

1 + eβ(Eu+
+µ)

}
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√

p2T +M2
u −GT (F3 + F8/

√
3)
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−

{

1−
1
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−

−µ)
−

1
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+µ)

}
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√

p2T +M2
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√
3)
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{

1−
1

1 + eβ(Ed+
−µ)

−
1

1 + eβ(Ed+
+µ)

}
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√

p2T +M2
d −GT (F3 − F8/

√
3)
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−

{

1−
1

1 + eβ(Ed
−

−µ)
−

1

1 + eβ(Ed
−

+µ)

}]

+GTF3 = 0 (16)
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∂Ω

∂F8
= −Nc

∫

d3p

(2π)3

[

GT√
3

√

p2 +M2
u +GT (F3 + F8/

√
3)

Eu+

{

1−
1

1 + eβ(Eu+
−µ)

−
1

1 + eβ(Eu+
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}

−
GT√
3

√

p2 +M2
u −GT (F3 + F8/

√
3)
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−

{

1−
1

1 + eβ(Eu
−

−µ)
−

1

1 + eβ(Eu
−
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}

−
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3

√

p2 +M2
d +GT (F3 − F8/

√
3)

Ed+

{

1−
1

1 + eβ(Ed+
−µ)

−
1

1 + eβ(Ed+
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}

+
GT√
3

√

p2 +M2
d −GT (F3 − F8/

√
3)

Ed
−

{

1−
1

1 + eβ(Ed
−

−µ)
−

1

1 + eβ(Ed
−

+µ)

}

+ 2
GT√
3

√

p2 +M2
s + 2GTF8/

√
3

Es+

{

1−
1

1 + eβ(Es+
−µ)

−
1

1 + eβ(Es+
+µ)

}

− 2
GT√
3

√

p2 +M2
s − 2GTF8/

√
3

Es
−

{

1−
1

1 + eβ(Es
−

−µ)
−

1

1 + eβ(Es
−

+µ)

}]

+GTF8 = 0 (17)
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FIG. 3: This figure shows the contour plots of the thermodynamic potential in σs−F3 plane at zero temperature with different
values of quark chemical potentials (µ) for the case of GT = 2g and F8 = F3/

√
3. It is clear from the plots that non zero spin

polarization appears at µ = 0.480 GeV, reaches its maximum value near µ = 0.510 GeV and it completely melts near µ = 0.600
GeV.
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FIG. 4: Left Plot: Dependence of constituent quark mass on the quark chemical potential at zero temperature in the presence
as well as in the absence of spin polarization condensation for different values of tensor couplings for F8 = F3/

√
3. Sharp jump

in the value of Mu and Ms near µ = 0.360 GeV in both plots indicates the first order chiral phase transition which is expected
for standard 2+1 flavour NJL model. Right plot: Variation of spin polarization condensate with quark chemical potential
at zero temperature with different values of tensor couplings GT = 2.5g and GT = 2.8g. For larger tensor coupling tensor
condensate form at relatively smaller chemical potential and it remains non zero for a wide range of chemical potential.
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FIG. 5: This figure shows the contour plots of the thermodynamic potential in σs − F3 plane for finite temperature (T) and
finite chemical potential (µ) with GT = 2g and F8 = F3/

√
3. Along each row as we move from left to the right, temperature has

been kept fixed but µ is increasing, similarly along each column µ has been kept fixed with T increasing. Darker regions in these
contour plots show the global minimum of the thermodynamic potential. It is clear from the plots that at small temperature
non zero value of the spin polarization starts to appear at smaller value of the chemical potential and it also melts at higher
chemical potential. Thus for smaller temperature the domain of µ where one can get non zero spin polarization is larger. This
domain of existence for the spin polarization condensate becomes smaller with increasing temperature T for a given value of
GT . In fact when the temperature is T = 0.06 GeV we cannot get spin polarization for any value of µ.
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FIG. 6: This figure shows the contour plots of the thermodynamic potential in σs − F3 plane for zero temperature (T) and
finite chemical potential (µ) with different values of tensor coupling GT and F8 = F3/

√
3. In the first, second and the third

row the tensor couplings are taken as GT = 2g, 1.8g and 1.5g respectively. Along each row temperature and GT has been kept
fixed but µ is increasing, similarly along each column µ and T has been kept fixed with GT decreasing. Darker regions in these
contour plots shows the global minimum of the thermodynamic potential. It is clear from the plots that at zero temperature, for
larger value of tensor coupling spin polarization can exist for a relatively wide range of chemical potential. With the decreasing
value of tensor coupling e.g. for GT = 1.5g spin polarization almost vanishes. This result can be easily extended to finite
temperature. For non zero temperature existence of spin polarization requires lager value of GT .
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FIG. 7: Plot (a), (b) and (c) show the variation of F3 (red solid line) and F8 (blue dotted line) with chemical potential where
F3 and F8 considered simultaneously in the thermodynamic potential at zero temperature for GT = 2g, 2.5g, 2.8g respectively.
It is clear from the Fig.(7) that non zero F3 appears at relatively smaller µ than F8. Since F8 is associated with strange
quark-antiquark condensate it survives even at larger chemical potential relative to the F3 condensate. It is also important to
notice that with larger tensor coupling spin condensates appear at relatively smaller quark chemical potential.
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