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CHAPTERI

Synopsis

This thesis deals with a number of topics falling under the general subject of optical
manipulation of atoms. We present new results on population trapping phenomenon
on one hand and on the other the myriad manifestations of quantum interference . We
discuss the central role played by quantum interference in phenomena like trapping
in two-level and multilevel systems, optical bistability, nonlinear generation of signal

and its control. Different chapters are devoted to the following:

NéWT‘i‘apping Phenomenon in Atomic Systems: The trapping phenomenon in atomic
systems occupies a very special place in Quantum Optics. The coherent population
trapping (CPT) phenomenon in three-level A system driven by two monochromatic
fields is well known. The trapping phenomenon we describe is quite different from
the well known CPT phenomenon. We demonstrate new trapping states in a two-level
system, using classical frequency modulated electromagnetic fields.

~ We further generalize this phenomenon to multi-level systems and discuss its ap-
plication in creating inversion across multiple levels. We also propose an optical atom

scheme for the three-level ladder system, where this effect can be realized.

Trapping in Two-Level System - Control of Quantum Tunneling: The two-level sys-
tems so far are not known to exhibit trapping except in presence of quantized field.
We have demonstrated new trapping phenomenon in two-level systems in presence
of a' classical frequency modulated (FM) electromagnetic field . We work in the semiclassi-
cal regime, where classical fields are applied to atoms with discrete atomic levels. A
proper choice of parameters of the applied field, like the amplitude (M) and the fre-
quency () of modulation, leads to trapping of the population on the appropriéte time
scales. These time scales, for observation of trapping, are governed by the frequency
of modulation, and are limited by the lifetime of the excited state (™).

This phenomenon has very important applications in tunneling phenomenon. The

trapping of population in a two-level system is akin to localization in a double-well

vi



potential. We describe here a method for coherent control of quantum tunneling .

- The FM field has an exp (: M sin Qt) kind of time dependence, whose spectrum con-
tains frequency components at w + nfQ for n = 0,+1,+2, ..., with J,(M) as the cor-
responding weight factors (w is the central frequency about which the modulation is
done). To observe the trapping of population we choose the frequency of modulation
~ such thatQ > «, and the index of modulation such that its a zero of the zeroth order Bessel
function ie., J,(M) = 0. In terms of tunneling, the suppression of quantum tunneling
~ in double-well potential is analogous to our modulating away the resonant component
of the applied FM field and hence suppressing any excitation in the atom.

The population in presence of a monochromatic field undergoes the usual Rabi os-

. cillations between the ground state (|g)) and the excited state (|e)) of the atom i.e., the

population moves back and forth from |g) — |e¢) — |g) — |e) and so on. The ampli-
tude and frequency of this oscillation depends on the intensity and the detuning of the
appliéd monochromatic field. On the other hand, application of a FM field makes the
population undergo a complicated motion in between the states |g) and |e). This is due
to the presence of multiple frequency components in the FM field. The effective Hamil-
. tonian governing this complex motion is given as H.;; = Hy. + Hos. The dynamics
on a time scale slower than Q™! is governed mainly by the dc component. Hence, by
B choosing the index of modulation to be such that Jo(M) = 0, we make the term Hy,
negligible. Moreover, by choosing M to be large we minimize the contribution of H,,,
since for large M, |J,(M)| < 1, for all n. Under these conditions one can observe the
trapping of population on the appropriate time scales (i.e. 7 < Q-1).
Inan alternate picture one can understand this in terms of level crossing phenomenon.

By goihg into the instantaneous frame of this interaction we observe co-sinusoidal time
dependence of the energies of the bare levels. The tunrieling of population occurs at
times where the energy levels cross i.e., at times 7 ~ nr/2Q, where n is an integer.
To observe this phenomenon of crossing of energy levels leading to jumps, we again
require that y < €. The transition probabilities at these crossings have been calculated
using the Landau-Zener theory for crossing of two adiabatic levels and was found
to match well with the exact numerical calculation. We also propose a possible ex-

perimental realization using a transition of Yb atom, whose excited state life time is
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~ 1 pusec and a FM field with modulation frequency @ > 1MHz would lead to an ob-

servation time in the range of nanoseconds.

Multiple Level Crossings - Built up Coherent Effects: We have generalized this
trapping phenomenon to multi-level systems and studied the effects of phase accumu-
lation due to coherent evolution. Involvement of multiple atomic levels in this process
results in having richer dynamics than the two-level system, due to many more cross-
ings of the energy levels that take place. The application of FM fields ensures coherent
evolution in between crossings, and hence inclusion of phase effects, for population
redistribution after multiple crossings, becomes essential. We investigate the effect of
phase being accumulated along various pathways in between crossings. Due to coher-
ent evolution of the system in between crossings, population after multiple crossings is not a
_ mere product of Landau - Zener transition probabilities at each crossing . The population
accumulates different phase as it evolves in time, along different states (or paths). This
relative phase was tailored to show the existence of quantum interference effects. These
are similar to the phase effects experimentally observed using sech pulses, where in-
terference was observed in the resonant microwave multiphoton probability between
two states (21s and 19,3 Stark) of K, as a function of intensity and duration of the mi-
crowave pulse. In our system, the phase accumulated along these paths was tailored
by changing the detunings (A, ), of central frequency () of the FM fields along
both the transitions, from the bare atomic levels. This provides another control over
the amount of population transferred at the crossing, apart from the strength of the
field-atom coupling (Rabi frequency). Besides, population trapping is observed in all
the levels, when the coupling fields along both the transitions of the three-level ladder

system are chosen to satisfy the conditions for trapping.

Creating Inversion Across Multiple Levels: As an application of this trappihg phe-
_nomenon, we have presented a method of inverting the populati'on across multiple levels
. In our scheme the population in the intermediate state remains unaffected . The conven-
tional method used for such inversion, the Rapid Adiabatic Passage method, is very

sensitive to the timings of the various sequence of pulses, and cannot be used if the in-
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termediate level is populated. The method we propose is better on both these counts,
as we use continuous wave fields and the population of the intermediate state remains
unaffected. The only requirement other than the trapping condition is that all the three
levels cross simultaneously. This occurs whenever we choose jA;| = |Aq, and the lev-
els cross at times T = cos™! A/MQ. Hence, this scheme would be experimentally more
attractive than the conventional methods adopted for creating population inversion

across multiple levels.

Realization of Coherently Driven Atomic Systems by Coupled Cavities: The phe-
nomenon of classical light interacting with an atom can be simulated by a purely
classical system called Optical Atom . The various effects of light - matter interaction
discussed earlier can be observed in regimes not accessible in experiments with real
atoms. In an Optical Atom, the atomic levels of the atom are simulated by various
classical modes of the field in an optical cavity. The interaction of the atom with an elec-
tromagnetic field is equivalently provided by appropriate coupling of these classical
modes. In a real atom one does not have any control on its characteristic parameters
like lifetime, energies of various levels and the transition probabilities between them.
But these parameters can be controlled in its Optical Atom simulation. As of now
there has been no scheme to simulate the three-level system in optical atoms. We have
proposed a scheme which would simulate the three-level system , using two identical
coupled optical cavities (say coupled fibre ring cavities).

In the coupled cavity we have four degenerate modes, two counter propagating
modes in each of them. We lift the degeneracy of a set of counter propagating modes,
using the Sagnac effect, in one cavity. We couple these non-degenerate modes to the
(degenerate) modes in the second cavity, using a lossless 2 x 2 fibre coupler. This
conservative coupling results in an anti-crossing in the mode structure of the cavity.
Moreover, the degenerate modes of the second cavity are coupled using a dissipative
coupler, could be a localized absorber. The Faraday isolator used to obtain the Sagnac
effect, provides the appropriate time dependence which simulates the coupling field
between the various levels. Thus, effectively we have three non-degenerate modes ap-

propriately coupled to simulate a three-level cascade system with two coupling fields.



We make one to one correspondence of the coupled ring cavity optical atom to the

atomic parameters.

Control of Optical Bistability: We have demonstrated application of the effects of
Quantum Interferences and Electromagnetic Field Induced Transparency in the coop-
erative phenomenon of Optical Bistability . We have shown that by using a control field
which couples the excited state of the usual two-state atomic system to another level,
one can obtain substantial decrease (~ 50%) in the threshold intensity required to switch
from the off state to the on state . We use a control field to create another channel along
which the system can evolve, and these channels interfere to modify the absorptive and
dispersive properties of the atom. We have proposed two schemes (i ) ladder system,
where the control field couples the excited state to a level above it; and (ii ) A configu-
ration with the excited state coupled to another ground state. We consider a collection
of such atoms in an uni-directional ring cavity which provides the necessary feedback
for obtaining bistable behavior. The control field does not circulate in the cavity but is
used to control the polarization at the bistable transition.

The control field creates an Autler-Townes kind of splitting of the absorptibn pro-
file, which decreases absorption at the line center, leading to lower saturation thresh-
old. Furthermore, the control field creates another channel along which the system can
evolve. The absorption and dispersion characteristics of the transition involved in the
bistable operation, are now dependent on the decay of the coupling level whiéh is not
dipole connected. This leads to an interference effect, which is used to lower the) thresh-
old of switching. We have achieved this Idwering of threshold in both the absorptive and
dispersive kind of bistability. We have also studied the switching times in presence of
the control field. We found that the exponent for critical slowing down is dependent
on the control field strength. We have thus utilized these control field induced Quan-
tum Interference effects and Electromagnetically Induced transparency to achieve lowering

of the bistability threshold in an all-optical bistable system.

Multistability Induced by Control Field: We also demonstrate the possibility of con-

trol field induced multistable behavior . This multistability is achieved at much lower



intensity levels than conventionally possible. By merely changing the control field
parameters like intensity and detuning, one can alter the region of multistability . This
would provide greater operational control on the multistable system and moreover
provide a way of using the same device for both bistable and multistable operation, by
merely changing the control field parameters.

For experiments in cells, there are various effects that hamper the efficacy of these
processes. One major contribution in gases is due to Doppler broadening. We look into
this éspect and undertake velocity averaging in the Doppler free geometry for both the
A and the ladder system for the control of bistability. This would provide the actual

extent of lowering of threshold in an experiment.

Enhancement of Nonlinear Optical Effects: In nonlinear optics one of the goals has
been - how to improve the efficiency of signal generation. The ideas of atomic coher-
ence and quantum interference have been used in wide variety of applications such
as to achieve, electromagnetically induced transparency, lasing without inversion, en-
hancement refractive index, generation of ultra violet radiation, control two-photon
transitions, spontaneous emission noise quenching and host of other phenomenon.
Its also well known that the atomic coherence is maximized in a coherent population
trapping (CPT) state, between the ground states in a three-level A system. We study
in detail the enhancement of nonlinear signal by utilizing the maximal coherence of the
CPT state . In our scheme we essentially have two fields acting simultaneously on each
transition in a A-system. By choosing the detunings of the pump fields such that we
operate at the coherent population trapping condition, we create the required atomic
coherence. We have proposed enhancement of w, + Q generated by the nonlinear pro-
cess (wi + ) = wy — w2 + (wz + N), under CPT conditions created by the pumps w; and
wy. In this process w; and w; + Q2 are absorbed and w;, is emitted, to generate the field at
wy + 2. We show that one can achieve enhancement of the order of ~ 10? in the generated
signal intensity. We also demonstrate that its advantageous to operate at CPT with
a finite detuning from the atomic resonance. As we have two fields simultaneously

Skt

coupling each transition, we have explicit time dependence of ¢=**. We expand the

system density matrix into its Fourier components and then solve numerically a set of
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coupled equations using matrix continued fraction . The advantage of this method lies
in the fact that one is not restricted to weak fields at w; ; + £, but all the fields involved

could be strong and of arbitrary strengths. Our non-perturbative treatment is exact .

Pulse Matching at Higher Probe Powers: We have also studied the phenomenon of
pulse matching at high probe powers, where we study the propagation of these fields
through a thick medium. Pulse rhatching is a consequence of the CPT state in turn
modifying the radiation field. While interacting with the CPT state, only the field com-
ponents that preserve this state survive and do not experience absorption, whereas all
the other non-matched Fourier components are attenuated in propagation through the
medium. As a consequence after a characteristic propagation distance the transmitted
field contains only components that are matched in amplitude and phase to the CPT state
. Until now all the studies have been undertaken in the limit of weak probe powers.
Our non-perturbative analysis enables us to address this issue - whether for a thick
medium pulse matching will occur at high probe powers. We found the rem‘arkable
result that even at higher probe intensities pulse matching takes place . We also observe
substantial lowering of the propagation distance required to obtain phase matching, at
higher probe powers.

We would like to draw attention to the fact that the effects we discuss can be real-
ized using atomic vapor in cells. There are many atomic species like Na, K, Rb, Cs,
Y'b, Ne, which can be used as the active medium, with appropriate coupling lasers, to

simulate various two-level and three-level systems.
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CHAPTER I

Introduction

The field of optics is presently undergoing a second revolution, almost three decades
after the first demonstration of laser action. The arrival of lasers brought in the first
revolution, which led to a phenomenal development in non-linear optics. Since then,
many significant developments have taken place due to experimental realizations of
a wide ranging counterintuitive concepts, like lasing without inversion, micromaser,
and investigations of basic quantum mechanics such as measurement problem and
complementarity. There have been exciting advancements in application of quantum
optical ideas - in atom optics, all-optical computation schemes, including laboratory
demonstration of resonance fluorescence, lasers, micromaser, single one atom lasers,
squeezed states, Bose-Einstein condensation etc. The list of these new advancements
is almost inexhaustive.

Historically, it was at the turn of the century, Planck [1] thought of quantizing os-
cillators inside a cavity to explain the complete spectral distribution of the electro-
magnetic energy radiated by a blackbody source. He achieved that end successfully.
Extensions of these ideas led Einstein [2] in 1905 to introduce the hypothesis of cor-
puscularity of electromagnetic radiation to explain photoelectric effect. The quantum
of radiation was named photon much later in 1926 [3]. The interaction of electromag-
netic radiation with atoms was discussed by Einstein [4] in 1917 where he introduced
phenomenologically the basic idea of stimulated emission . It was only in 1960 that
stimulated emission was utilized to obtain laser action. It was Dirac [5], in 1927 who
explained interference phenomenon shown by light, which at the same time shows the
excitation of a specific atom located along a wavefront by absorbing one photoﬁ'. This
essentially combined the wave-like and particle-like characteristics of light. |

The essence of the quanfum theory of radiation is that a quantized simple har-
monic oscillator is associated with each mode of the quantized field. Among the many
achievements of the quantum theory of light, are the explanation of spontaneous emis-

sion, Lamb shift, Casimir effect, photon statistics of laser - particularly the non-classical



aspects like sub-Poissonian statistics, squeezed states and photon antibunching.

In many of these processes the basic unit of light-matter interaction is the two-level
system interacting with a monochromatic field. It has been in vogue right from the
days of old quantum theory when Einstein gave the detailed derivation of the black-
body radiation formula. Einstein proposed phenomenologically three coefficients, cor-
responding to various processes involved in the atom-field interaction, (a) the transi-
tion rate for absorption | g)' — |e) is proportional to the energy density of the radiation
with the proportionality constant By, (b) the rate of spontaneous emission |e) — |g), is
given by Ay, and (c) the transition rate of stimulated emission |e) — |g), is again pro-
portional to the energy density of the radiation and the proportionality constant is B.,.
All these constants are independent of the energy density of the applied radiation field

and are interrelated,

D
Beg = (Bg) Bgea

hw?

Aeg = (m) Bega (21)

hence, the transition rates corresponding to all the phenomenon due to interaction be-
tween the applied field and a given pair of energy levels can be expressed in terms
of a single coefficient. In eqn. (2.1), D, (D.) are the degeneracies of the éround and
the excited states, respectively, and w is the atomic transition frequency. On undertak-
ing a complete quantum mechanical calculation we obtain these coefficients which are
intrinsic properties of the specific two-level medium, |
| _ éld:glzw:’
“73 ke’

here, d_, is the expectation value of the dipole moment operator of the transition |g) <

A

2.2)

|e), it will be dealt in detail in the following section. Hence, the response of a medium
to an incident electromagnetic field seems as though it is a rigid characteristic prop-
~ erty of the medium. We have seen in recent past that one can substantially tailor these
properties using the ideas of quantum interference and atomic coherence. These ideas
have been extensively used in making absorbing medium transparent, refractive index
has been modified in a controlled fashion by orders of magnitude, unprecedented effi-
ciencies have been attained in nonlinear optical processes. In this thesis we discuss in

detail our contributions to some of these exciting developments.
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In many problems of interest in quantum optics, one is.interested in the interaction
of the radiation field with a medium which contains a large number of atoms. We will
deal with such interactions, like in optical bistability (in chapter 5) and pulse matching
phenomenon (in chapter 6). We now demonstrate the mathematical framework to deal
with such problems. Typically, the set of equations for the field and the matter are dealt
with in a self-consistent manner.

The field is treated classically and the atoms are treated quantum mechanically.
This is known as the semi-classical approximation. One essentially neglects quantum
correlations between the atom and the field, i.e. the operator products E(t)P(t) can
be factored in their expectation values as (E(t) P(t)) = (E(t)) (P(t)). A consistent
application of such factorization leads to the semi-classical radiation theory. In the
semi-classical theory (E(t)) is interpreted to be a purely classical field. Most of the
applications we are dealing with here involve large number of photons (typically, cw
laser would have ~ 10° photons/mode, whereas the pulsed laser has ~ 10'7 pho-
tons/mode), hence it is quite safe to neglect these quantum correlations.

The classical field induces dipole moments in the medium and the macroscopic po-
larization (P) of the medium is obtained in a self-consistent manner. The calculation
of the polarization involves performing a statistical summation of individual dipoles
using the density matrix formalism (section 2.1). The classical electromagnetic field
is described by the Maxwell’s equations, these equations relate the electric and mag-
netic field vectors E and H, respectively, together with the displacement and inductive

vectors D and B', respectively, (in Gaussian units)

- . 18B
V-D =4np, VXE——E—é—{, )
v.B=0, Vxﬁ=i’if+la—p, (2.3)
c c Ot
where,
D=E+4zP, H=B-4xM, J=JE. (2.4)

where, ¢ is the speed of light in vacuum. We assume that the medium is homogeneous,

nonmagnetic (M = 0), and non-conducting (¢ = 0) , and that there are no free charges

(p=0).
On combining the curl equations in (2.3), taking appropriate time derivatives, and

3




using the relations (2.4), we obtain the following wave equation,

vif_ (Eﬁ)z *E _ 4n 9*P

A 23)

c

As we see in eqn. (2.5), the polarization P, acts as a source term in the equation for the

radiation field. The electromagnetic field E(7,, ), given as
E(F,,1) = B(,)e =7 4 ¢, (2.6)

acts uniformly on the atom at the position 7. If the field is given as in eqn. (2.6), then

the the linear response of the medium is given by its polarization ,

B(7ot) = By(7)e @R 4 o, 2.7)
The direction of propagation of the field is along the wave vector k, with |[E| = wn/c,
where n is the linear refractive index of the medium at the frequency w. The vector
character of the field comes from its polarization, hence, the field amplitude can be
written as E'Q(Fo) = ¢£, where é denotes the polarization direction. Similarly, the atomic
polarization amplitude is given by P. If we neglect the z- and y- dependence of the
field and consider a plane wave traveling the z- direction, the Laplacian in eqn. (2.5)
goes as a second order derivative along the 2- direction.

The amplitudes of the field, £ and the polarization, P are generally slowly varying
functions of position and time on the scale of the optical wavelength and the optical
period, respectively. Hence, on substituting eqn. (2.6) and eqn. (2.7) in eqn. (2.5), and
on undertaking the slowly varying envelope approximation as given in eqn.(2.9), the wave

equation reduces to a first order differential equation,

08 10€ 2rmik

a=teo -

P (2.8)

The following approximations are made in order to obtain eqn. (2.8)

o€ o€ o€ &
k€| > 5»-5;2-, ]w€|>>‘-5{ Fel

> . (2.9)

In the next section, we introduce the density matrix formalism and derive the explicit
form of the response of the medijum to the incident electromagnetic field. We include
various decay mechanisms and obtain a set of coupled differential equations that gov-

ern the dynamics of this system.



2.1 Semiclassical Treatment of Elementary Light-Matter Interaction

We describe here a general mathematical framework to understand light-matter in-
teraction, where the field is considered classical and the atom has quantized energy
levels (Semiclassical picture). Such a quantum system (i.e. the atom + field system),
can be described in the most general way using the density matrix formalism . The usual
wave function approach has a limitation of not being tenable to account for sponta-
neous emission from the excited state to the ground state and the dephasing processes,
although decays out of the system can be incorporated. The general formulation of
density matrix can account for most relaxation mechanisms like, spontaneous emis-
sion, collisions, finite laser line widths and any other damping mechanisms [6].

The physical system is completely characterized by its wavefunction |¢). To obtain
a particular information of the system, we calculate the expectation value (quantum

mechanical average) of the corresponding operator O,

(O)gm = ($|O19). - (210)

In most realistic situations we do not know |¥) completely, we only know that the
system is in the state |¢/) with a probability P,. This amounts to taking an ensemble

average (statistical average) of large number of similar systems prepared identically,
{((O)gm)at = Tr(Op), (2.11)

where, the density operator p is defined as
p =2 Pyld)¥l e
v

We see from eqns. (2.11) and (2.12), that Tr(Op) = Tr(pO). If for a particular state |3),),
P,, = 1,and all other P, = 0, then p = |1/,)(%»| and the state is called a pure state . From
conservation of probability Tr(p) = 1, and in general Tr(p?) < 1 (the equality holds
for a pure state). The evolution equation for the density matrix is obtained from the
Schrédinger equation,

1) = —%H 1), (2.13)

where, the overdot represents first order time derivative. We take the time derivative



of p in equation (2.12) and obtain
b =2 Pull¥)(el + 1)), (2.14)
¢ .

where, the probability Py is time independent, and on using eqn. (2.13) for %) and (%]
in eqn. (2.14), we get | _

p=—7H,pl (2.15)
The decay terms are added phenomenologically to the above equation in the semiclas-
sical treatment. They can be derived from first principles using the complete quantum
picture, where the atom interacts with infinitely many radiation modes of the vacuum
(7).

If the incident field is nearly monochromatic and if the frequency of the field co-
incides with one of the transition frequencies of the atom, then the atom can be ap-
proximated to a two-level system . In reality no such two-level atom exists but under a
coherent near-resonant interaction, the approximation is quite valid. We now derive
explicitly the equations of motion of the density matrix for such a two-level system.

The typical wavefunction of the atom is
¥} = Co(t)lg) + Celt)le), - (216)
where, |g) and |e) represent the ground and the excited states involved in the near
resonant interaction. The unperturbed Hamiltonian is
H, = hwylg) + huee). 2.17)

where hw, and fw, are the absolute energies of the two levels. The interaction of the
radiation field and the atom can be reduced to a simple form in the dipole - approximation
(E 7 & 1), here k is the wave vector of the incident plane wave at 7, + ', the position of
the electron, bound to the force center (nucleus) of the atom located at 7,. Hencé, in the
dipole - approximation, i.e. when the field wavelength is much larger than the atomic

size, the interaction term is given as
Hin = —eF+ E(7,1). - (2.18)

The explicit form of the plane wave electromagnetic field is given in eqn. (2.6). The

dipole operator is written as

d=3d;li)il, i # 5 . (219)
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where, i,j = g, € for the two-level atom. In eqn. (2.19) d;; is the average of the dipole
moment between the states |¢) and |j) i.e. d;; = e(¢|F]7). As can be seen, d is a vector
operator with odd parity, hence there are no diagonal elements in eqn. (2.19). For
the two-level atom described by the wavefunction in eqn. (2.16), the density matrix

elements are

pes = (glolg) = ICo(t)I%,
pee = (glole) = Cy(t)CL(2),
(elolg) = pges
(elple) = |Ce(t)I?, (2.20)

Peg =

Pee =

where, as defined in eqn. (2.12), p = |¢)(¥|, with the wavefunction ) of eqn. (2.16).
In eqn. (2.20) the diagonal terms p,q and p.. are the probabilities of being in the ground
and the excited states, respectively; also termed as populations of the corresponding
states. For the meaning of ’the off-diagonal terms, we need to consider the atomic
polarization. The atomic polarization P(%,,t), for an atom ( at ,) can be got by taking
the average of the dipole moment operator of eqn. (2.19), as was indicated 'in eqn.

(2.11) for any operator O,
P(Fmt) = Tl'(dp) = dge Peg(f"ay t) + c.c. (221)

Hence, the off-diagonal elements determine the atomic polarization . We emphasize here
that the off-diagonal element p,. is the measure of atomic coherence . As one can see from
its very definition, pge = |Cy(t)||Ce(t)|e"®s=%<), hence we see that a definite phase rela-
tionship (¢, — ¢.), between the levels |g) and |e) implies finite atomic coherence, other-
wise a random phase term would average out, making the atomic coherence negligible.
- This terminology comes about, because it is conceptually quite similar to coherence in
electromagnetic fields, where the longitudinal coherence between two wavetrains can
be visualized as a definite phase relationship between them as they propagate, in con-
trast to the incoherent light, wherein wavetrains tend get out of step very often, hence
the relative phase between such incoherent wavetrains gets averaged out. |

We now derive the equations of motion for the density matrix elements under the

evolution of the total Hamiltonian H = H, + H;,, given by eqns. (2.17) and (2.18).
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The field in the interaction Hamiltonian, E(7,,t) acts uniformly on the atom, and in
the dipole approximation is given as in eqn. (2.6). On using eqn. (2.15) and adding

phenomenologically appropriate decay rates, we get the following equations of motion

for the density matrix,
Poe = —2Ypee +i[G pge — c.c,
Peg = ~(teg +1A)peg +iG (Bgg — Pee)
Bog = 2Vee —i(G Pge — c.c, (2.22)

where, G = d - E,e*% [k, and the detuning given by A = w, — w, — w, is the mea-
sure of the mismatch of the applied field frequency from the atomic resonance. The
decay tefm 2v is the spontaneous emission rate or the relaxation rate of the excited state
through radiative decay to the ground state. The coherence term j.,, decays radiatively
as 7., = v, for low density atomic (vapor) systems where only the radiative decay
contributes, its also called the natural linewidth of the system. There could be other
sources of decay of this coherence term, like the collisional dephasing (I'**). Hence, in
general 7., = v+ I'?"). The radiative decay (or spoﬁtaneous emission) arises due to the
interaction of the atom with the reservoir with a large number of degrees of freedom.
Even in the absence of any photons there are quantum fluctuations associated with the
vacuum which can be visualized as a collection of a large number of harmonic oscilla-
tors, one for each mode of the infinite set of modes of the vacuum state, coupled to the
atom. This coupling leads to the decay, that is energy initially in the atom redistributes
itself among these oscillators, leading to damping and thus causing the relaxation of
the excited atom to the ground state.

In getting the equations of motion for the density matrix eqns. (2.22), we have un-
dertaken the rotating-wave approximation . It involves going into the frame of the field,
which is varying at the frequency w, and neglecting the contributions of the counter-
rotating terms which oscillate rapidly as e**>“t, This is a very good approximation at
optical frequencies, where the frequencies involved are ~ 10'* Hz, as the oscillations
at 2w would average out. The rotating-wave approximation in the fully quantized pic-
ture is equivalent to neglecting the energy nonconserving terms of the kind that involve
the atom going from the ground state to the excited state and simultaneously emitting

a photon, and the term which involves emission of a photon accompanied by a transi-
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tion from the excited state to the ground state. The density matrix elements 5 in eqn.

(2.22) are the slowly varying quantities, which are related to the original p as follows:

pi = pi, fori=e,g
p~eg = pege‘.w‘a
Pge = Pge e, (2.23)

The solution of eqn. (2.22) in the steady state and in the limit of no decay (i.e. y — 0)
leads to the well known Rabi oscillation of the atomic inversion. The atomic inversion
is given as

A? - 4|GF\ . , Nt 913
Pee — Pgg = (—_—Qflﬂ) sin? — + cos® — (2.24)

2 2’
where, the generalized Rabi frequency 2 is

Q = /A2 + 4G  (225)

In the special case when the atom is on resonance with the incident field (A = 0), eqn.
(2.24) reduces to cos (2|G|t), hénce, the inversion oscillates cosinusoidally between —1
and 1 at a frequency 2. This two-level atom interacting with an electromagnetic field
has been discussed in detail in the classic book of Allen and Eberly [8].

In the semiclassical regime, we have seen that without inclusion of the decays, a
monochromatic field acting on a two-level atom leads to Rabi oscillations of the atomic
inversion. In contrast, a complete quantum treatment of the two-level atom interacting
with a single mode of the quantized radiation field leads to certain collapse and revival
phenomenon due to the quantum aspects of the field [9]. There are a host of phe-
nomenon which occur due to the quantum nature of the field, like quantum statistics
of fields in micromaser; field trapping states, which occur due to the granular structure
of the photon distribution. In this thesis we restrict our discussion to the semi-classical

regime.

2.2 Coherent Population Trapping

The arrival of monochromatic and tunable laser sources has seen a revolution in a va-

riety of nonlinear processes. These processes no longer involve merely a two-level



atom with a single monochromatic field. Among the various nonlinear processes, ap-
plication of two continuous monochromatic fields on a three-level system leads the
atom into a coherent superposition of states -. Under certain conditions, the population
is trapped in these states, and is stable against absorption from the applied radiation
field. This phenomenon is known as Coherent Population Trapping (CPT) [10, 11]. This
coherent superposition is a non-absorbing state, where the atoms’ evolution is A‘exactly
out of phase with the incoming radiation field, and hence no absorption takes place.

This phenomenon was first observed by Alzetta et al. [12] as the disappearance of
fluorescent emission in an optical pumping experiment on sodium atoms. They had
used a multimode laser irradiating sodium atoms in a cell, in the presence of an inho-
mogeneous magnetic field, which led to the creation of an non-absorbing state in only
a small region in the cell. It appeared as a dark line inside a bright fluorescent cell and
hence is also known as dark resonance or non-absorbing resonance . At the same time,
and independently, the pumping and trapping phenomenon originated by two reso-
nant laser fields in the A - system was experimentally demonstrated by Gray et al. [13]
in the Sodium atom. They pointed out that the Sodium atoms were pumped into the
non-absorbing state due to the presence of interfering processes. Early theoretical anal-
ysis also showed the presence of such interfering processes [14] that led to pumping of
the atoms into the CPT state. The work of Dalton and Knight {15} contained the main
characteristics of the phenomenon, and the complete term Coherent Population Trapping
was used.

Since then many related phenomenon have been discovered, like lasing without in-
veseion, field induced transparency, pulse matching and the corresponding matched
photon statistics. The population trapping state of a A-system driven by quantized
fields was discovered by Agarwal [16] where the manifestation of matched photon
statistics was observed. Pulse matching also leads to correlation of high frequency
phase fluctuations of the two fields [17] and therefore can be used to reduce noise in the
short time measurement of phase difference.
| The coherent population trapping state involves two fields interacting with a A-
system. The atom is prepared in a coherent superposition of the two ground states,

and this leads to cancellation of absorption, even in the presence of resonant fields.
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Figure 2.1: A three-level A system, interacting with two coherent monochromatic fields G,
(G2) which are operating at frequency w; (w;), the spontaneous emission rate from the excited

state |1) to the two ground states |3) and |2) is 2y, and 2v,, respectively.

The total Hamiltonian of the three-level A-system, shown in Fig. 2.1, interacting with

two monochromatic fields is
H = hwi3An + hwysAgy — (dis - Eie 1) Ay — (diz - Eze YAy + hec, (2.26)

where 4;; is the atomic transition operator |i)(j|. The energy is measured from the
ground state |3) and kw3 (hwss) is the energy difference between level [1) (]2)) from
the ground level [3). Here, d;; is the dipole interaction term for the transition 1) &
7). The transition |2) « |3) is dipole forbidden. The Rabi frequencies along the two
~ transitions [1) & [3) (]1) & [2)) is given as 2G; = 2(dy; - E)/h (G, = 2(dys -
iiz) /R). We now transform the Hamiltonian in eqn. (2.26) into the time independent

_+ form Hj, where H; = U'HU, where the unitary operator U provides this canonical
transformation. This is equivalent to undertaking the rotating wave approximation at

the operator level, where the transformed time-independent Hamiltonian is
Hy = hd A + h(A) — Az)Az — K(G1 A1z + G2A1,) + h.c. (2.27)

We can write the équafions of motion of the density matrix using the Hamiltonian eqn.
(2.27) on similar lines as indicated in section 2.1, by undertaking the rotating-wave
approximation and adding radiative decay due to spontaneous emission from the ex-
cited state |1) to levels |2) and |3). We see that at the two-photon Raman condition, i.e.
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A; — Az = 0, the Hamiltonian in eqn. (2.27) can bé diagonalized such that one of its
eigenvalues is zero and the associated eigenstate is the non-interacting dark resonance.
The eigenvector corresponding to it is a specific linear combination of the ground states
|2) and [3). The trapping state is given as

_ Gil2) - Ga3)
VIGE+1GP

This state is radiatively stable (there is no spontaneous emission from this state, as its a

|-) (2.28)

linear combination of ground states) and is non-interacting with the applied field i.e.,
(1|H|p-) = 0. (2.29)

Hence, its also called a non-coupled state .

This state corresponds to maximum coherence between the ground states, hence the
off-diagonal term corresponding to atomic coherence between the two ground states
lp2s| = 0.5, and in the steady state the population is completely trapped in these states
i.e. pa2 = p33 = 0.5, whereas the excited state is empty, p11 = 0. Moreover, all the other
off-diagonal elements, p;; = p;3 = 0, leading to zero absorption even in the presence
of near-resonant fields. These aspects of the coherent population trapped state i.e. the
zero absorption accompanied with maximal coherence has been exploited in a range of
applications like high resolution spectroscopy, nonlinear optics, laser cooling, adiabatic

transfer, etc. We briefly discuss only a few of these effects.

2.3 Adiabatic Transfer

There has been a lot of interest in finding ways of inverting population across multiple
levels. The CPT phenomenon can be utilized to this end, on observing eqn. (2.28),
we see that by adiabatically turning on and off the fields G;, G; we can achieve the
desired effect. If we consider the case, in which we start with the atom in the ground
state |3) and G3 = 0, with G| finite and then proceed to turn G, off while turning G,
on , we will end up with the atom in state |2). Injtially, the atom need not be in the
CPT state, but by the continuous action of the fields accompanied with spontaneous
decay, it could be forced into that state. Then the atom would stay in the state [¢_),

if the fields are varied slowly enough (adiabatically) [18]. In the above method, the
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timing and overlap of the two pulses is crucial. The intermediate state experiences
substantial population when both the pulses overlap, which can reduce the efficiency
of the transfer drastically if the intermediate level has finite decay. This problem is
overcome by applying counterintuitive pulse sequences, where the pulse G, is applied
ahead of G,. This results in ~ 100% population transfer, without the intermediate level
experiencing any transient population. ‘

In both these kinds of mechanisms, its critical that the intermediate state is empty.
We propose another method, using the new trapping states discussed in chapter 3. In
our proposal the population of the intermediate state remains unaffected , this alleviates
a severe restriction of the usual adiabatic method of creating inversion across multiple
levels. We use cw excitation, this further simplifies the requirement of careful timing

of the pulses. We discuss the details of our proposal in chapter 4.

2.4 Electromagnetically Induced Transparency

Electromagnetically Induced Transparency (EIT) [19] is the modification of the absorp-
tion profile of an atomic transition, when the upper level is coherently coupled to a
third state by a strong laser field. Under the right circumstances, the absorption of
the weak, resonant probe beam will be substantially reduced, see for example Fig. 2.3
(a). In effect, EIT is a technique of eliminating the effect of medium on a propagating
beam of light. Its been used in a wide variety of applications like eliminating self -
focusing or defocusing, to improve transmission through inhomogeneous refracting
gases and metal vapor [20] creating large populations of coherently driven uniformly
phased atoms. Many of the experiments on EIT by the group of Harris, have been per-
formed on Lead vapor, we show in Fig. 2.2 the relevant levels of Pb and the transitions
involved. These coherently prepared atoms have also been utilized in other applica-
tions, like modifying the index of refraction, isotope discrimination, nonlinear optics,
spontaneous emission noise quenching, pulse matching etc.

In the classical picture, the contribution to the dielectric constant of the medium
at the applied frequencies is due to the electronic motion at those frequencies. One
can reduce this contribution by driving the electron by two identical sinusoidal forces

acting exactly out of phase, which would result in non-movement of the electron. In
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- Figure 2.2: Schematic of the relevant levels of 298 Pb, on the |1) & |2) transition the pump field

is applied, whereas the probe is applied on the |1) ¢ |3) transition.

" quantum mechanical terms, for a typical A-system (Fig. 2.1) the probability amplitude
of the electron being in excited state is driven by two terms of equal magnitude and
opposite phase (sign). One driving term is proportional to the probability amplitude of
one ground state (say, |3)) and the other term is oppositely phased and is proportional
to probability amplitude of the other ground state (|2)). These driving terms lead to
- complete cancellation . of the probability amplitude of the electron being in the excited
state and the expectation value of the sinusoidal motion at each applied frequency is
zero.

The first experimental demonstration of EIT was by the group of Harris [21, 22] in
optically opaque Strontium vapor. The correspondence between the A system of Fig.
2.1 and the three-levels of Strontium vapor was |1) — (4d5d! D,), [2) — (4d5p' D,) and
|3) — (5s5p' D), the field coupling the [1) « |2) was at 570.3 nm, whereas the probe
field at [1) « |3) transition was at 337.1 nm. The absorption linewidth was broad, as the
excited state (4d5d' D,), was chosen so as to lie (~ 45926 cm™!) above the first ionization
threshold of Strontium, so that the decay is much faster through autoionization, than
through the radiative channel. On applying a strong monochromatic laser coupling
this excited state to another ground state resulted in enhanced transmission (~ 40%),

in contrast to the earlier e~ kind of extinction due to absorption in the medium. The
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Figure 2.3: (a) Imaginary and (b) real parts of the susceptibility of the probe w; in presence of
a strong coupling field (G2 = 5v) at w;. The dotted curves are in the absence of the coupling

. field. Normalization is to the peak value of the imaginary part of susceptibility.

physical effect that is of essence in EIT is the CPT phenomenon. The most essential
feature being that unlike the two-level atom, in the multi-level scheme one can create
coherence to tailor the atomic response, in other words, absorption and emission line
shapes of an atom need not be the same.

~ Observation of this quantum interference effect between dressed states in EIT was
done on a three-level A-system in Rb vapor. Even on reduction of the Rabi frequency
of the coupling laser below the spontaneous decay rate of the common excited state
(so that there is no Autler-Townes splitting), a narrow dip with sub-natural linewidth

in the absorption curve of the probe was observed [23]. This clearly demonstrated that
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the absorption reduction at low pump intensity was due to interference effect between
the dressed state, not due to ac-stark shift of the atomic levels.

The dispersive properties, of the transition that was made transparent exhibits a rapidly
varying refractive index and also zero group velocity dispersion at the line center, see Fig.
2.3 (b). The slope of the Re [x] determines the group velocity, not the magnitude of
Re [x] (which is zero at the line center). The group velocity is proportional to real
part of (9x/dw)~!, whereas the group velocity dispersion is given by the higher order
derivative, namely the real part of (3%x/dw?). This was reported by Harris et al. [24]
where they observed slow group velocity of ¢/250 at EIT. The dispersion line shape
distortion was confirmed by Xiao et al. [25] for a ladder system in Rb vapor. They
reported the first experiment with inhomogeneous broadening with cw diode lasers con-
tinuously tunable over a wide range of frequencies. They modeled the experiment
with the inclusion of Doppler broadening and the finite line widths of the diode lasers.
They observed 66.4 % reduction in absorption at EIT, limited only by the laser line
width and the finite lifetime of the uppermost level, which was coupled with a strong
laser to the excited state of the probe transition.

The temporal and spatial dynamics of propagating EIT pulses in an optically thick
medium was done by Kasapi et al. [26] where they got pulse velocities of ¢/ 165 with
55% transmission in Pb vapor. They also observed strong-probe-field effect, where they
observed reshaping of the coupling pulse with the probe pulse, and the subsequent
propagation of this pulse pair. The EIT transmission was found to be near diffraction-
limited in an otherwise, highly distorting medium. They also developed an interesting
method of measuring the Lorentzian line shapes, by merely measuring the energy of
the input and the transmitted pulse and its propagation delay [27] without requiring
the exact knowledge of the laser frequencies, atomic density or the matrix elements
governing the transition.

There have been numerous other demonstrations of EIT in various systems. EIT
in laser cooled Rb atom in A;system with detailed experimental results was done by
Hopkins et al. [28]. Comparison of V, A and the = system was done in the presence

of Doppler broadening by Fulton et al. [29]. In a Doppler broadened medium the EIT
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position shifts across the velocity groups v, such that for the A system
A= (kl F kz)v + A, _ (2.30)

where A;(A,) is the detuning of the probe (coupling) laser frequency from the atomic
transition frequency, and k;(kz) = 1/A;(1/A;). The — sign in eqn. (2.30), is for coprop-
agating'beams, whereas, the + sign for the counterpropagating beams. Hence, in the
perturbative limit , if |k,| = |ke|, then for the copropagating geometry the position of
resonance is same for all the velocity groups and the mediurn can be considered nearly
Doppler free. Whereas, in EIT one generaily has a strong coupling laser which leads to
residual Doppler broadening. One assumes a Maxwell-Boltzman distribution for the

atomic velocities such that the probability distribution function is given as

p(Ay) = \/Q:rwe"‘?’m’. (2.31)
where, D is the width of the Gaussian.

The peaks due to the strong coupling field Gy, in A system of Fig. 2.1, are located
at A, = Aq/2 4 ‘/(A2/2)2 + |G2|* (see Fig. 2.3 (a)). The net widths due to Doppler

broadening in presence a strong coupling field have been calculated analytically in

[30] in the copropagating geometry and are given as

Nn+vw+D (I:F Ag )
2 JAZ+4|Gy2) ]

at the two ac-Stark shifted peaks. Its is clear from eqn. (2.32), that for nonzero A,,

B = . (2.32)

one of the peaks is much narrower than D, where as the other peak is correspohdingly
broader, hence, by controlling the parameters of the coupling field like Rabi frequency
G; and its detuning A3, one can manipuléte the linewidth of the |1} & |3} &amiﬁon to
obtain sub - Doppler resolution.

The wavelength matched enhancement in EIT was discussed by Shepherd et al.
[31]. It involves proper choice of relative wavelengths of the coupling and the probe
field such that, it would result in reduced residual Doppler line width. The wave-
length dependence between the probe and the coupling laser wavelength was studied
in Doppler broadened cascade system, where it was found that the best overall trans-
parency for Rabi splitting less than the Doppler width was for coupling laser wave-

lengths less than that of the probe. Another iﬁteresting effect is that, for a probe with
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finite linewidth only the frequency components that satisfy the two-photon condition
with the given linewidth of the coupling laser, experience transparency. It was exper-
imentally demonstrated that the filtered probe field is locked in frequency relative to
the coupling field [32].

Recently, EIT in an ideal A-system was for the first time demonstrated in Rb by Li
and Xiao [33] where they observed 85% reduction in the absorption, at room tempera-
ture in the Doppler free geometry. The EIT ideas have been extended to the case where
the excited state is a continuum [34], and even to detuned multistate systems [35].

Among the many application of EIT, recently Kasapi [36] demonstrated enhanced
isotope discrimination of 0.03 % of 27 Pb, seen clearly in the back ground of 2°¢ Pb, The
dominant species (***Pb) is rendered transparent using EIT (at the two-photon condi-
tion). The other species (**7 Pb) has slightly shifted energy levels hence does not show
EIT. This discrimination is further increased in the other species (**" Pb). The Rabi fre-
quency of the coupling laser is so adjusted such that the ac-Stark shifted level matches
with the probe field, thus rendering it opaque leading to a significant discrimination of
the two species.

There a few limitations / conditions in obtaining EIT, firstly, the number of pho-
tons in the coupling transition should exceed the product of the number of atoms or
molecules in the laser path times the ratio of the oscillator strengths of the probe and
the coupling transitions [37], secondly the peak powers of the lasers should be large so
that the EIT width exceeds the linewidth of the Raman transition. Lastly, in order to
maintain EIT while using pulses its important to operate within the dephasing time of
the Raman transition. Most of the schemes discussed above deal with ideal three level
systems (like in Fig. 2.1), if the excited state is in the continuum transparency does not
work quite as well [34, 38]. Schemes of obtaining EIT with many lower states being
populated as in molecules is still a challenge (till date). |

As we have observed earlier, the peak power of the lasers must be sufficient such
that the transmission width of EIT should exceed the linewidth of the Raman transi-
tions. Such a requirement on the power of the lasers in solid state systems leads to
breakdown of the material, due to exceedingly broad transitions in solids. The first

demonstration of EIT in solid was by Zhao et al. [39] in Ruby. They used a magnetic
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field to create closely spaced lower levels. These levels were coupled by a microwave
field at 16.3 GHz frequency and 0.1 ps pulse width. The Ruby sample was cooled
to 2.4 K at liquid Helium temperature. They observed 20 % reduction in the absorp-
tion. Recently, there has been another experimental demonstration of EIT in solid - rare
earth doped crystal [40]. They observed 100% transmission of the probe field due to
EIT in an optically dense Pr** doped Y,5:0;s at 5.5 K. They used three beams derived
from the same dye laser at various frequencies through acousto-optic modulator, one
was the coupling field, the probe field and the repump field which recharges the holes
burnt by the coupling and the probe laser. The ground state linewidth was 30 K Hz and
power levels of ~ 1000 W/cm? were sufficient for achieving EIT with the correspond-
ing powers of the probe and repump fields as 14 and 11 W/cm?, respectively. Efficient
EIT in rare-earth doped crystals would open up exciting potential applications such as
high-resolution non-linear optical image processing, high efficiency signal processing,

optical data storage and LWI at ultra-violet frequencies in solids.

2.5 Enhancement of Nonlinear Optical Effects

Nonlinear optics on coherently prepared atoms has ushered in a new era of highly ef-
ficient nonlinear processes. There have been many experiments where nonlinear pro-
cesses like sum frequency generation, optical phase conjugation throughf four wave
mixing, vacuum ultra-violet (VUV) and extreme ultra violet (XUV) radiation genera-
tion under coherent preparation of the active medium, typically gas (atomic vapor) have
shown dramatic enhancement in their efficiencies. The important advantage of using
gas over a solid medium, as-the nonlinear medium, is the sharp resonance enhancement
of the nonlinear optical susceptibility which can overcome the disadvantage arising
from low number density of gas compared to a solid. However, the generated field at
resonance also experiences large linear absorption, which seriously limits the conver-
sion / generation efficiency of the nonlinear process. The main limitations at resonance
arise due to strong resonant absorption and phase mismatching.

Many of these problems have been addressed by various groups. Tewari and Agar-
wal [41] showed that strong fields can modify the phase matching conditions using

additional fields, and thus control the nonlinear generation process more effectively.

19



*

The efficiency of generation depends on the ratio x® /Im(xV). The linear response
x'!) can be drastically modified using the strong control field, which could lead to
complete suppression of absorption (Im(x(!))) and even a change in the sign of linear
dispersion (Re(x(")). Amplification of fundamental together with EIT can be used to
enhance VUV generation [42]. Tremendous possibilities exist for enhancing nonlin-
ear signals by judicious choice of control field parameters like strength and frequency.
Harris et al. [43] proposed that by coupling the excited state to a metastable state using
additional coherent field, the nonlinear susceptibility x(¥ (third harmonic generation)
can be enhanced through constructive interference , while at the same time the linear sus-
. ceptibility is made negligible by destructive interference . The comparison between the
efficiencies of both these proposals [41, 43] was done in Ref. [44] where they found that
these large efficiencies arise from the same mechanism. The efficiencies were found to
be same , if the four-photon line width of Ref. [41], and two-photon line width of Ref.
[43] was chosen same, along with two-photon resonance condition. The first experi-
mental demonstration of enhancement of VUV using a control laser was done by Jain
et al. [45)].

Recently, Harris and Jain [46] proposed an optical parametric oscillator pumped by
population-trapped atoms. The oscillator is based on enhancing the second order non-
linear susceptibility to the same order as the linear susceptibility. They obtained gain
in a single coherence length, thus taking care of the limitations posed by phase match-
ing condition. The gain bandwidth exceeded the degenerate frequency of the signal
and idler. For Pb vapor, the calculated gain maximized at 1.88 ym with bandwidth of
~ 7500 cm~!. Again the main point in all these various processes is to utilize effects of
quantum interference and atomic coherence to our needs.

In the recent past, series of experiments by Hakuta et al. [47, 48, 49, 50] in atomic hy-
drogen have utilized coherent preparation of the active medium. Resonantly enhanced
second-harmonic generation accompanied with reduced absorption was achieved by
coupling the 2s state and the 2p state of Hydrogen using an electric dc field [47]. Zhang
et al. [48, 49] demonstrated nonlinear optical sum-frequency generation using EIT by

applying a strong coupling laser on the 2s-3p transition. The coupling laser made the

~* Lyman-3 (3p-1s) transition transparent (due to destructive interference), which led to
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continuous growth of the 103 nm Lyman-g (VUV) radiation, without suffering reso-
nant absorption and phase mismatching. Whereas, the two-photon coupling of 1s-2s
state produces the required constructive interference to resonantly enhance the sum-
frequency generation at the Lyman-4 transition. Along the similar lines, Zhang et ak;
[50] demonstrated generation of XUV by using EIT. They obtained radiation in the
range of 97.3 - 92.6 nm from coherently coupling the 1s-np transition (n=4-8) in Hy-
drogen atom. A strong pulsed radiation was used to couple the 1s-np transitions, the
generation efficiency was found to be limited only by the availability of the coupling
laser power to create EIT.

Recently, Hemmer et al. {51] observed unusually efficient optical phase conjuga-
tion (OPC), by utilizing the CPT phenomenon. They showed that CPT can write large-
amplitude nonlinear-optical gratings at much lower intensities than required to satu-
rate the optical transitions. The conventional limitations in OPC were because of slow
response and/or low efficiencies of the existing nonlinear optical materials at laser in-
tensities achievable with compact cw lasers. Typically, fast response in sodium vapor
was observed but with pump powers of 100 W/cm?. In this experiment, they demon-
strated high-efficiency OPC signal (an order of magnitude higher), for pump intensities
of 1 W/em? with a response time of 1 us. Grove et al. [52] demonstrated high gain (
~ 30) and low spatial distortion simultaneously, for the OPC signal in the same system.
They also observed high degree of intensity-noise correlation between the amplified
probe and the conjugate signal.

Another experiment by Jain et al. [53] utilizing the maximal atomic coherence of
the CPT state for efficient nonlinear frequency conversion to the ultraviolet, obtained
an efficiency of ~ 40%. The details of which will be discussed in chapter 6. We describe
a nonperturbative treatment for this nonlinear generation. We obtain explicit form of
the lineshape (in the perturbative regime) and obtain enhancements of the order of
~ 10° and more at CPT. We also find that, in a thick medium, even in the presence
of strong probe , pulse matching occurs. In chapter 6, we describe in deta11 all these

non-perturbative effects in the generation of optical signals.
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2.6 Quantum Interference and its Various Manifestations

We have seen that coherent preparation of various atomic states using coherent fields,
can under certain conditions, lead to atomic coherence that can cancel absorption.
These non-absorbing resonance'es due to atomic coherence and interference has led to
some interesting effects like the ones we have discussed in sections 2.2, 2.4, 2.5, there
have been other unexpected consequences like, lasing without inversion, enhancement
of refractive index accompanied with vanishing absorption and quenching of sponta-
neous emission. These effects arise primarily due to interplay of coherence created
within the atomic system. The coherent fields acting on various atomic transitions cre-
ate definite phase relationships between various atomic states, thus preparing the system
in a coherent superposition of states.

All these phenomenon are usually accomplished in a three-level atomic system
in which there are two coherent routes along which the population can be absorbed,
these pathways interfere either destructively or constructively and lead to these interest-
ing effects. These interference effects are generally attributed to interference between
dressed states [54, 22]. In many of these proposals a strong field is applied, which one
might say shifts the position of the levels and the absorption will then be proportional
to (shift of the dressed states from the original bare levels)~2. However, it has been
established in the A-system, that the absorption minima is due to inferference effect [23]
where the minima persists even when the applied field is not strong enough to create
dressed states, which in the weak field case are not significantly shifted from the bare
atomic resonances.

We present in this section, an i.nteresting viewpoint to understand these quantum
interferences as an interplay of contributions from various line shapes , as shown by
Agarwal [55]. We describe here in brief the underlying physics. The line shapes of
these systems consists of four different contributions, two Lorentzian contributions
corresponding to the absorptive process, and two dispersive contributions arising from
dispersion (frequency dependent field velocities inside the medium). The absorptive
contributions are generally positive, whereas the dispersive contributions could either
be positive or negative. In the region of the dressed states, created due to the strong

field, the probe field absorption line shape is dominated by only one contribution, the
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Lorentzian located at the dressed state; whereas at the bare atomic resonance all four
contributions are significant . Hence due to this a negative dispersive contribution to
the line shape leads to destructive interference, whereas a positive contribution will
lead to constructive interference. It is to be noted that the absorptive contributions to
the dressed states are not indepéndent of each other, and this inter-dependence is pro-
vided by the dispersive terms. One can derive these line shapes in the perturbative
limit (i.e. to first order in the weak probe and to all orders in the coupling field), using
the density matrix equations for the specific system. We now give explicitly the line-
shape for the A-system (Fig. 2.1), which has been extensively studied in this thesis. For
a strong field resonantly coupling the transition (A; = 0) that is initially empty, and a
weak probe coupling the ground state (i.e. G, 3> G,), the absorption can be written as

(T3 +1A,)Ty3

A=R - - .
eG% + (T3 +iA,)(T23 +14,)

(2.33)

In writing eqn. (2.33) we have ignored the constant factors that are not pertinent to
our discussion here. From the point of view of various line shapes contributing to the

absorption A, we have the two Lorentzian contributions LiatA; = +G; as,

1 ST Ny

2 (2.34)

;(Al FGy) + (Da_-zLPn)?’

Ly=

and the dispersive contributions D; at A, = +G, as,

1
Dy =- A1 F Ga . (2.35)
T (A F Gy)? + (Euiz-_lln)

The absorption 4, can be written using eqns. (2.34) and (2.35), as

_ T Al1s
A= L+ L)+ 55

(Dy = D), (2.36)

where, the factor J is the measure of interference produced, which in this case B =
(T'13—T23)/2. The decays '3 = 71+I‘§§") and similarly, I'y; = Pg’;"), where F,(;-’") represent
- the contributions due to collisions which lead to dephasing between the states |;) and
|7); and 27, is the spontaneous decay rate of the excited state |1) to the ground state
|3).‘ The transition [2) « |3) is not dipole allowed, hence there is no radiative decay

involved between these states. We see that when there is no dephasing (i.e. ;3 = 0)

- then the absorptive and dispersive contributions cancel each other completely at the
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line center (A; = 0) leading to an absolute zero in the absorption profile. We have
seen that the interference effect and the associated atomic coherence has tremendous
possibilities, which we have exploited in a variety of applications in chapter 5 and 6.

Another novel manifestation of quantum interference was proposed by us in the
control of two-photon transition probabilities [56]. We presented a scheme for the control
of two-photon transition probability by applying a control laser that couples the inter-
mediate state to another level, leading to interference between various pathways. This
strong coupling results in a dressed state doublet which gives rise to two pathways for
the two-photon transition instead of an unique pathway due to the previously single
intermediate level. We gave a simple physical picture using the Fermi-Golden rule for
the two-photon transition. We found that one could either enhance (due to construc-
tive interference) or inhibit (due to destructive interference) the two-photon transition
probability by merely changing the strength and detuning of the control field. We
found that the interference minima that causes inhibition of the two-photon transition
is quite robust against Doppler broadening. We also calculated enhancements of the
order of ~ 10?, even in the presence of Doppler broadening, for typical parameter val-
ues of Rb vapor in the Doppler free geometry (section 2.4}.

The quantum interference effect discussed above arise within each atom in a dilute
medium. There is no coherence between various atoms and the absorption is directly
proportional to the density of atoms. We have studied the effects of quantum interfer-
ence in the cooperative phenomenon of optical bistability in chapter 5. In such cooperative
phenomenon the atoms tend to act in unison leading to a co-operative behavior. Opti-
cal bistability occurs only above a certain critical value of the co-operative parameter.
This parameter depends on the atomic sample (absorption coefficient x length of the
sample), as well as the positive feedback of the cavity (transmission coefficient of the
mirrors) that is essential for optical bistability.

The co-operative behavior is best described in the phenomenon of superradiance
[57] where the rate at which each atom radiates is significantly influenced by the pres-
enée of all the other atoms. Hence if several atoms éxre very close to each other then,
each one has to work against the radiation reaction produced not only By its own field,

but also by the fields of its neighbors. This results in enhanced decay rate, so that it
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loses energy more rapidly than it would on its own. It could also under certain con-
ditions lead to inhibition of the decay. These cooperative features manifest themselves
in the spectrum of the radiated field in optical bistability, where in the lower branch
the spectrum of the transmitted light is narrower than the natural line width (due to
the Eo-operaﬁve effect), whereas in the upper branch the atoms radiate more or less
independent of each other leading to broad spectrum, and beyond the first threshold
the spectrum is three peaked similar to the fluorescence spectrum of an atom driven
by a strong coherent field.

We have used the effects of quantum interference to control the threshold of switch-
ing in optical bistability , we describe this phenomenon in detail in chapter 5. We study
both the ladder and the A-system, where, by applying a control field, that does not
circulate in the cavity, we effectively control the various characteristics of optical bista-
bility. We also obtained multistable behavior by merely changing the parameters of
this control field.

We next present a brief discussion of the various other manifestations of quantum
interference phenomenon, like spontaneous emission noise quenching, lasing without
inversion, modification of refractive index. Though these processes are not directly
dealt with in relation to our present work, we mention them for completeness, and,
also because the underlying features of these phenomenon run all through in relation

to those specific processes discussed in the thesis.

2.7 Quantum Interference induced Quenching of Spontaneous Emis-

sion

In this section we deal with another aspect of quantum interference, which is spon-
taneous emission reduction or cancellation (equivalently - population inversion without
emission). Way back in 1974, Agarwal {7] first found drastic changes in the spon-
taneous emission in a V' - system with degenerate excited states. It was found that
for initial population in one of the excited states, th:e population in the steady state
gets trapped equally in an unsymmetrized combination of the excited states and the

ground state. This was primarily due the quantum interference effect. More recently
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there has been a renewed interest in this direction, Harris [54] in 1989 pointed out the
suppression of autoionization in a three-level system, when the upper two levels were
degenerate. Scully et. al. [58] extended this idea to the non-degenerate case. They con-
sidered the emission process into a single mode, and predicted cancellation of sponta-
neous emission from the non-degenerate levels into this mode. The decay process was
out of the system. Recently, Zhu and Scully [59] further studied spontaneous emission
quenching from two non-degenerate levels, while also including the decay from the
excited state to the ground state. This general result takes into account the interaction
of the vacuum modes with all the transitions of the three-level atom.

In these two systems of Refs. [54, 58] the essential idea is to create atomic coherence
by a driving field such that it leads to cancellation of spontaneous emission. The main
conditions for achieving this are, the dipole moments of the two upper levels for spon-
taneous emission and the corresponding dipole moments of the driving field coupling
to the fourth level should be parallel or antiparallel. Spontaneous emission cancella-
tion is observed if the the ratio of the decays of both the levels is equal to the ratio
of the Rabi frequencies of the driving field of both the transitions to the fourth level.
Ail these conditions are satisfied in Sodium dimers, where Xia et al [60] experimentally
observed spontaneous emission cancellation. They observed complete depression of
the spontaneous emission peak, and at the same time they experimentally showed that
considerable amount of population is present in the upper pair levels.

Spontaneous emission noise in Lasers without population inversion was compared
for various systems by Agarwal [61] like in the A-system, the two-level system driven
by strong pump and a weak probe, and systems with externally pumped dressed states
and also the autoionizing states. He found substantial reduction of the linewidth of
such lasers as compared to the linewidth of conventional lasers. Hence there is not only
reduction in spontaneous emission but also narrowihg of the linewidth (also called sub-
natural linewidth ). Narducci et al. [62] had predicted narrowing of the linewidth in a
V system driven by one strong and one weak field. This was experimentally observed
by Zhu et al. [63]. Line narrowing in ladder systems was reported by Zhu et al. [64].
Agarwal [65] demonstrated in A-system that this quenching is due to aispersive con-

tributions to the lineshape.
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Another technique of controlling spontaneous emission noise is to create and utilize
coherence induced correlations in the atomic system. The origin of the laser linewidth
is due to the random diffusion of phase, which arises due to addition of spontaneously

‘emitted photons with random phases to the laser field. Its possible to eliminate the
spontaneous emission noise in the relative linewidths, by correlating the spontaneous
emission events via atomic coherence. Lasers operating via such phase coherent atomic
ensemble are known as correlated spontaneous emission lasers . It has been realized ex-

perimentally [66].

2.8 Lasing Without Inversion

Since the advent of laser in 1962, there was almost an universal acceptance of the fact
that population inversion was the essential key to lasing . It was only about 20 years later
that the first proposal of lasing without population inversion was made by Harris [54].
He undertook a semiclassical analysis of a three-level system where the upper two lev-
els were lifetime broadened and could decay by autoionization to the same continuum.
It was found that the stimulated emission and absorption line shapes were different .
This was due to the Fano [67] type interferences which arise due to the coupling to the
continuum. The complete quantized treatment of the same system was undertaken by
Imamoglu [68]. Another scheme was suggested by Scully et al. [58] where the three-
level atoms pass through a resonant cavity and interact with the same monochromatic
field at both the optical transitions, creating the desired coherence. There were other
schemes [69] where atoms interact with periodic train of ultrashort pulses (at such a
repetition rate R, so that w,3 = ¢ R, where ¢ is an integer) to create coherence between
the two low lying states of a A-system (Fig. 2.1). In all these schemes, its the combina-
tion of externally created atomic coherence (using either coherent fields or coupling to
the same continuum) and interference effects , which leads to gain without population
inversion. |

Among these various schemes there has always been a search for determining
whether the gain mechanism is due to some kind of hidden inversion in an appropri-
ate set of basis states or a purely coherence effect . Origin of gain has been discussed by

Agarwal [70] where it was found that in the system proposed by the group of Harris
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[71] the gain was due to coherence effect, whereas schemes due to Scully et al. [58] the
initial coherence led to appropriate inversion between the lasing levels. Hence, gener-
ally speaking, LWI could be classified into two categories, firstly, LWI in any state basis
, and secondly, LWI in bare state basis , but inversion in hidden (dressed) state basis.
One can usually distinguish these two mechanisms by the spectrum of their gain pro-
file. In the first case, the coupling laser near resonance on another transition creates
the desired coherence and the gain on the lasing transition appears on the line center
(which without the coupling laser would correspond to absorption maxima) [71, 72].
The schemes involving the inversion in the dressed state generally involve strong cou-
pling laser detuned from resonance and asymmetrical gain feature occurring on one of
the Autler-Townes doublet transitions {73, 74, 75]. Zhu and Lin in Ref. [75] obtained
steady state sub-Doppler amplification in coherently pumped Rb atoms, due to LWI in
the bare state basis but with inversion in the dressed states. This scheme was same as
proposed by Imamoglu et al. in Ref. [71].

The very first experimental report of lasing without inversion was by Zibrov et al.
[76]. They used inversionless gain of the V system to demonstrate LWL They ob-
served inversionless amplification of weak probe in Rb vapor using low power cw
diode lasers, they verified the absence of inversion and finally obtained noninversion
laser oscillation in a cavity. Two sublevels of the ground state were coupled to a pair
of excited states via three fields, one strong driving, one weak probe, and the third
incoherent pump to partially undo the effect of optical purnping to one of the ground
sublevels. They observed a gain of 8 - 16 % per pass. They confirmed the interference /
coherence effect by increasing the linewidth of the probe laser, which led to disappear-
ance of the amplification peak. They finally observed self-generated laser oscillation
in a ring cavity, when the inversionless gain medium was placed in it. Unlike the
previous experiments, where the CPT state was used - which meant inversion in the
dressed state basis, in the V system the cancellation of absorption is purely due to quan-
_ tum interference . Alternatively, it could be viewed as a result of Fano-type interferences
between the dressed states [73, 77, 78].

Continuous wave (cw) amplification and laser oscillation without population in-

version was observed for the first time, in the A system within the D, manifold of
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the Sodium atom, by Padmabandu et al. [79]. They used atomic beam as the lasing
medium and the essential idea was the use of EIT in combination with optical pump-

ing. The scheme was close to what was suggested by Imamoglu et al. [71]. For detailed
reviews on LWI see Refs. [80, 81, 82].

Recently, there have also been other experiments where gain has been observed
without the associated conventional population inversion. In the time dependent tran-
sient regime, Fry et al. [83] observed amplification without inversion (AWI) at CPT in
Sodium. Other transient regime experiments in AWI are discussed in Refs. [84, 85, 86].
These experiments not only observed amplification, but established unequivocally the

absence of population inversion at the same time [83, 86].

2.9 Modification of Refractive Index

Quantum coherence and interference have led to many new techniques in nonlinear
optics. The index of refraction of a gaseous medium can reach large values at optical
frequencies (at A =~ ), but the price one pays for such high dispersion is the accom-
panying high absorption which is of the same order. But utilizing principles of atomic
coherence and quar{tum interference one can cancel absorption at certain frequencies
near the atomic resonance and simultaneously increase the index of refraction .

Scully [87] first proposed that if atoms are initially prepared in a coherent super-
position of ground (or excited) state doublet, then under appropriate conditions it can
lead to large resonant enhancement of the refractive index accompanied with vanish-
ing absorption. In this system without any population in the excited state, the absorp-
tion cancellation coincided with vanishing refraction (though with a large slope [88]),
but by prov1d1ng a small fraction of atoms in the excited state, absorption vanishes
away from resonance where the corresponding index of refraction is quite large.

Since then there have been a host of other proposals that exploit the idea of quan-
tum coherence dramatically modifying the susceptibility of the medium. In real exper-
iments coherence degrading processes like Doppler broadening and collisions need to
be taken into account. Fleischhauer et al. [78] demonstrated cancellation of absorption
and high refractive index in a variety of schemes, and particularly the Raman system

. (a coherently driven scheme) which is less sensitive to Doppler broadening.
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These coherences could also be created by incoherent processes as shown in Ref.
[54, 68]. Where, two closely spaced levels decay radiatively to common ground state,
leading to coherence between them. The requirement being that they have the same
J and m; quantum numbers, so that they couple to the same vacuum modes with the
same strength. In analogy to the coupling of spontaneous emission, incoherent pump
processes can lead to atomic coherence as well [89]. Along similar lines Shnitman et
al. [90] recently demonstrated the control of electronic branching ratio in photodisso-
ciation of Na, using incoherent control. First a laser was used to dress the continuum
with an initially empty bound state, this created a laser induced continuum structure,
which was made to interfere with a two-photon excitation from the ground state. They
observed that the yields along the two product channels could be altered by more than
25% by merely changing the frequency of these fields. These fields are independently
applied leading to incoherent control. '

Recently, there has been an experimental demonstration of the enhanced index of
refraction via quantum coherence in Rb [91]. Earlier experiments [25, 92] have demon-
strated large dispersion of the index of refraction (steep slope of the dispersion profile)
accompanying EIT, but in this experiment the index enhancement not only allows for
large dispersion but also for a large refractive index in itself, while maintaining a trans-
parent medium. They had two fields, one the coupling laser and the probe laser along
the two arms of the A-system in the D, manifold of " Rb, and another incoherent pump
field that populates one of the ground states via one way pumping to the other ground
state. They obtained zero absorption accompanied with a phase shift ~ 7, which cor-
responds to a change in refractive index An ~ 107*. They performed the experiment
in an optically thick medium. They also found that the index of refraction and its slope
at the point of zero absorption can be increased with appropriate incoherent pumping.

This enhanced refraction suggests application to optical interferometry, it could be
used for high precision magnetometry [93] where if a material showing EIT is placed
in one arm of the interferometer, then a small change in the magnetic field would cause
a Zeeman shift of the Raman levels (ground states of the A-system) cauémg an unusu-

ally large change in the path in that arm and hence highly improved measurement

sensitivity.
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Among other methods of creating maximal coherence to obtain vanishing absorp-
tion and ultralarge index of refraction, recently Kocharovskaya et al. [94] suggested
that spontaneous emission can be drastically modified with strong coherent field, if
one of the dynamic Stark levels crosses a neighboring atomic state. Now this unper-
turbed atomic ground state can decay into the dressed excited states and surprising enough,

this leads to maximum coherence between the excited states and large refractive index.
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CHAPTER III

New Trapping Phenomenon in a
Two-Level System with Phase Modulated Fields:

In quantum optics the trapping states of a system occupy a very special place, there
has always been a search for trapping phenomenon in various systems. We have seen
in chapter 2 the importance of the coherent population trapping states in three-level
systems and the seminal role it plays in various applications. Here we are looking
for trapping phenomenon jn the two-level system which is the fundamental unit of
matter - field interaction. Its well known that when a two-level system interacts with
a monochromatic field the population undergoes Rabi oscillations in absence of decays,
as was shown in section 2.1. At a first glance it seems as though the two-level system
does not show any trapping phenomenon. We analyze the two-level system interacting
with a polychromatic field . We find that for a specific kind of multi-colored excitation
one indeed has trapping of population in the two-level system.

The motivation for using a multi-colored field comes from the well known coherent
population trapping phenomenon, which occurs in a A-system that is driven by two
fields of distinct frequencies, so adjusted so as to satisfy the two-photon Raman condi-
tion. In the steady state through an interplay of quantum interference and incoherent
decay processes the coherent population trapped state is formed. Once the trapped
state is formed it does not any longer interact with the fields that generated it. We have
discussed in detail the coherent population trapping phenomenon in section 2.2. Most
of the existing investigations discuss the trapping states in the three-level systems.

- The two-level systems so far are not known to exhibit trappmg states except when
the two-level atom is interacting with a quantized field [96). These trapping states due
to the quantized field were predicted for the micromaser, where the intra-cavity field
- shows trapping behavior. These field states are number states that remam trapped -

because successive atoms undergo 2rq pulses where ¢ is an integer, leavmg the field

'This work was published as a Rapid communication in Physical Review A, titled Realization of

Trapping in Two-Level System with Frequency Modulated Fields, Ref. [95].
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in the micromaser cavity unaffected. These effects can be seen only at extremely low
temperatures and tend to get washed out even if the temperature corresponds to only
0.1 — 1 thermal photons.

In this chapter we demonstrate the existence of new population trapping states in
a two-level system driven by a classical poly-chromatic field. The two-level system
is excited by a classical phase-modulated field and under appropriate conditions of
the applied field one observes trapping of population. We present both analytical and
numerical results on trapping and also on jumps in the system which occur when the
bare energy levels cross. This point of view comes about naturally by observing the
dynamics from a frame that is oscillating with the instantaneous field frequency. We
also give explicitly the conditions under which this phenomenon can be observed in
real atomic systems.

We would like to emphasize here that the trapping states we describe here are quite
different and unrelated to the coherent population trapping states described in section
2.2. Unlike the steady state CPT states these trapping states are observed in the tran-
sient regime. Moreover the underlying mechanism involved in the formation of these
trapped states is quite different from that of the coherent population trapping case.
The trapping in these systems is more akin to localization and the jumps correspond to
the tunneling phenomenon in the context of the double-well potential. We will bring
out the relation between them in section 3.6.

There has been another closely related work by Lam and Savage [97] where they
achieved complete inversion in a two-level atom by modulating away the resonant
component and retaining only the correlated sidebands of the applied field. They ob-
served suppression of excitation which is similar to the trapping phenomenon we dis-
covered. Many studies have been undertaken with a poly-chromatic field, wherein
specifically the response of the two-level atom subject to a bichromatic field has been
very extensively studied [98, 99, 100, 101]. However most of the literature concerns the
steady state though some papers deal explicitly with the transient response [102, 103].

In chapter 4 we study the consequences of this trapping phenomenoﬁ in a three-level
system. From the point of view of level crossing it leads to richer multiple crossings.

We calculate the Landau-Zener like probability at the crossing of these bare energy
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Figure 3.1: Schematic of a two-level system, and the relevant levels of the Y atom, which has
an excited state lifetime of 875 nsec. The atomic resonance frequency is w,, and the applied

field frequency is at w.

levels. We find that quantum interference effect due to coherent accumulation of phase
between crossings, plays a crucial role in determining the population after multiple
crossings. We further use the trapping states, and propose a new scheme of inverting
population across multiple levels even if initially there is finite population in the intermediate
state . This scheme would be experimentally more attractive as it lifts certain stringent

conditions required in the usual rapid adiabatic passage method. These issues will be

discussed in detail in chapter 4.

3.1 Two-Level Dynamics : A Spin - 1/2 System

A two-level atom is conceptually the same kind of object as a spin-1/2 particle in mag-
netic field. The basic dynamical equations i.e. the Schrédinger equation that governs
~ the evolution of the two-level atom variables are practically same as those appropriate
to the spin-1/2 system. Feynman et al. [104] developed a simple but rigorous and
complete geometrical picture of the Schrodinger equation describing a two-level sys-
tem interacting with a near resonant field. This analogy between the two-level system
- and the spin-1/2 system is quite convenient and one can apply the Pauli spin operators

instead of the Fermi operators for the atomic levels. We give below the correspondence
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between the Fermi operators A;; = |i)(j| and the pseudo-spin operators

St o leMal,
ST e |g)el,
5* o 5(leXel - lo)gl). @)

A two-level system with the excited state |e) and the ground state |g) interacting with
a monochromatic field is shown in Fig. 3.1. The field at frequency w could in general
be detuned from the atomic resonance frequency w, by an amount A (= w, — w). The
initial inversion is given by 5, which is +1 or —3 when the atom is initially in the
excited state or the ground state, respectively. The equations of motion that would

govern the dynamics of such a system in the pseudo-spin notation for the Hamiltonian
H=hAS*+2(gS*+ Ho)is

(%) = = (z;-i8)(s") +ig(s7)
(57) = = (g +ia)(s7) ~ig(s")
() =~z -m+idsh -y G2

The decay constant 1/T, determines the decay of the polarization and, T is also known
as transverse relaxation time as it involves transverse directions; similarly, the decay of
the inversion is given by 1/T; where T; is known as the longitudinal relaxation time.
For purely 'radiative‘decay the decay times of polarization and the inversion obey the

simple relation T; = 2T}. The well known steady state solutions of the eqn. 3.2 are as

follows:
(5+) = g Ta(1 +iATy)n
(14 (AT2)? + |gI*Tv T)’
(1+(AT:)? + |g|*Th T3)’
(Sz) = (1 + (ATz)z)ﬂ (33)

(1+(AT:)? + |g*ThT2)
In the two-level system described in section 2.1 we saw that the atom undergoes a
Rabi oscillation (flopping) between the upper and the lower states urider the action
of an electromagnetic field in complete analogy with the spin-1/2 system. In the next

section we describe the dynamics of the two-level atom interacting with a frequency
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modulated field. We discover that for appropriate parameter values of the frequency

modulated field we get trapping of population .

3.2 Population Trapping in Two-Level Systems

In order to keep the analysis as simple as possible we consider the phase modulated
field on resonance with the frequency of the atomic transition. The interaction Hamil-

tonian in the interaction picture can be written as
H=h (55" 01 He), (3.4)

®(t) = Msin(t), (3.5)
where M and () are the index of modulation and the frequency of modulation , respectively,
and g is the Rabi frequency. A

The phase modulated field has a rich spectrum with Fourier components at integral
multiples of the frequency of modulation i.e. at w + nQ; each of the n components are
weighted by the corresponding Bessel functions J,. The index / depth of modulation
M determines how far away from the central frequency (w) is the variation of phase
undertaken to obtain the phase modulated field. The spectral features can be seen on

using the generating function for the Bessel functions [105]

exp(izsinf) = io e* J(2),
. k=-00
= Jo(2) + 2 Jar(2) cos ([2k] 8) + 2: " Jaks1(2) sin ([2k + 1] 6).
k=1 k=0

(3.6)

where on making the following correspondence we get the spectrum of the phase mod-
ulated field, ie. 6 — Qt and z - M. Following this expansion of eqn. (3.6), the

interaction Hamiltonian (3.4) can be written explicitly as

_hg & i +
H= > € J(M)ST + Hec. (3.7)
k=—o00

~ We now provide the motivation for the choice parameter values required to obtain
the trapping phenomenon. On assuming that (2 is large we can make a second rotat-

ing wave approximation (the first rotating wave approximation was already made in
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writing eqn. (3.4) by going into the frame rotating at the field frequency) leading to

H~ %g-Jo(M)S* +He (3.8)

Fot weak coupling g and large ) one expects this rotating wave approximation to be a
good one. Note further that if M is chosen such that

Jo(M) =0, | (3.9)

then the interaction Hamiltonian (3.8) vanishes, and in such a case one is left only with
the rapidly oscillating terms in eqn. (3.7), i.e. e*"¥ forn = 2,3,4.... Clearly under
these conditions one would expect that no dynamical evolution will take place on a time
scale that is slower than the scale of periodic exponentials in eqn. (3.7) and that the populations
will thus be trapped on this slow time scale . At times ¢t ~ nw/2Q) the other exponentials
in (3.7) become important and these would lead to a transition between the two states
of the system. As seen in eqn. (3.6) at times t = /2, 3w /29, 57 /200... only the
terms corresponding to odd values of k would contribute (i.e. last term in eqn. (3.6)
where sin 0|,=./20 = 1); whereas the even orders would be negligible at these times.
Again one would expect trapping in the time interval (r/2Q, /() followed by a jump.
We will verify these qualitative results by integrating numerically the time dependent
Schrédinger equation. We do not make any approximations on the Hamiltoniaﬁ, in the
numerical calculation like large 2 and neglecting higher order terms in eqn. (3.7), but
use the complete form as in eqn. (3.4). We show in Fig. 3.2 the phenomenon of trapping
for some typical parameter values.

Among various control schemes to coherently tailor the end results of a phenomenon
the phase modulated field can be used to dramatically change/redistribute the ioniza-
tion of a single ground state. Recently Radmore et al. [106] showed that our trapping
condition can be used to alter ionization spectrum. They showed that by choosing ap-
propriate index of modulation such that certain Fourier components are suppressed,
akin to our choice as in eqn. (3.9), the final-state ionization spectrum exhibits a redis-
tribution of population.

The jump at time /20 can also be understood in terms of the crossing of the bare-

energy levels of the system in an appropriate reference frame. We can transform (3.4)
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Figure 3.2: Probability p of excitation as a function of €2t, where we choose M = 14.9309177086

the fifth zero of J, and ¢/Q = 8.0 ; v/ = 0.0 (i.e. in the absence spontaneous emission).

into a frame that is rotating with the instantaneous frequency of the field, then the effec-

tive Hamiltonian becomes
H 55 = hMQcos(§2t)S* + (%S+ + H.c.) . ' (3.10)

We see in eqn. (3.10) that the cosinusoidal time dependence periodically lifts the de-
generacy between the two levels of Fig. 3.7 whereas the tunneling between these two
st.ates is due to the coupling g. In other words one can look at it in terms of real cross-
ing of energy levels and the coupling between the two levels, denoted by g, transforms
thése into anti-crossings . The energies of the two levels cross each other whenever.
cos(Qt) = 0, i.e. whent = nm/2Q (n=1,3,5...). The Landau-Zener theory predicts the
transition probability between such crossings under some simplified approximations
which is discussed in detail in the next section.

The periodic coefficient of S* in eqn. (3.10) is reminiscent of the Flouquet analy-
sis. Such an analysis arises from the dressed state approach in the semiclassical limit
of large photon number, in this limit they are fully equivalent. The limitation of the

Flouquet analysis however is that it cannot take into account quantum effects of the
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driving field. The evolution of the pro.babilities in these two levels will be governed
by this periodic Hamiltonian and would result in a second-order differential equation
with periodic coefficients. The Flouquet’s theorem states that if the coefficients along
with being uniformly periodic are also devoid of singularities but for poles, then, one
can always find solutions of the form e#*®;(¢) where ®,(t) are periodic with the same
periodicity as the coefficient. This analysis is widely used to obtain spectrum of such
systems, which would correspond to transitions between various Flouquet states ®;(t).
We do not undertake such a treatment as we are interested in the dynamic evolution
of the system, in our work we present a simple analysis where the physical motivation

becomes immediately transparent.

3.3 Landau-Zener Formula

Landau and Zener calculated in 1932 the the transition probability when energy levels
cross [107, 108]. Landau-Zener (LZ) formula deals with non-adiabatic transitions be-
tween two adiabatic states as the sysiem traverses a crossing of the energy levels. The
LZ formula has been used extensively in calculating probabilities of transitions that oc-
cur between adiabatic states when they energetically cross each other, say at crossing of
two potential energy curves in problems of slow atomic and ionic collisions. There the
motion of the heavy nuclei is treated classically and the various inelastic processes are
investigated by solving non-stationary Schrédinger equation, LZ theory is used exten-
sively to calculate various transition probabilities. The states involved should depend
weakly on the parameter which when varied causes the crossing leading to transition
between them. This means that LZ formula is valid only if the departure from adiabatic
behavior is not too large [109]. The LZ model is quite simplistic as was shown in detail
by Bates [110] but due to its simple analytical form (in the asymptotic limit) its been
in vogue for quite some time. Bates pointed out that the validity of the LZ formula
~ is more restrictive than is commonly supposed. The major objections raised were, the
failure of the LZ formula to take in to account the transitions that occur away from
the crossings, the atomic orbitals being spherically unsymmetric, and the variation of
iriteraction ('coupling) energy with nuclear separation.

In this section we indicate the essential steps and approximations that go into the
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derivation of the Landau-Zener (LZ) formula.-Wg consider two states ¢, and ¢, evolv-

ing under the following Hamiltonian

H & _ €1 €12 & ’ (3.11)
o €12 € o

where the term ¢, (¢;) are the time dependent energies (eigenvalues in absence of the
coupling) of the two states ¢, (¢,), respectively. These states are coupled to each other

through a constant coupling term e;,. We start with a wave equation of the form
d < i
(H + iha) {Ci(t)er Jad 4 Cot)er Jadt} = (3.12)

Using relation (3.11) we get the following simultaneous first order differential equa-

tions

d i
—ih;it-cl = eper [ o

—ih%Cz = eperf@-ay o (3.13)

We need to know the asymptotic values of the solutions of eqns. (3.13). The boundary
conditions that are used correspond to our knowledge that the system is initially in
state ¢, i.e. |Cy(—00)]> = 1 and Cy(—o0) = 0. We are interested in the probability
of the system making a transition to the other state ¢1, which is given by the term
|C1(o0)]®. On eliminating C, from eqn. (3.13) and making a suitable transformation
Cy = emn [ (ca—ar)a U, we get the standard Weber equation

2

LU K
=+ (f2 - z% + f;—tz) U, =0, (3.14)

- where the constant f = €;,/h and the energy difference is assumed to be a linear func-
tion of time, i.e. (¢; — €;)/k = at. This can be thrown into the standard form by redefin-
'ing the temporal variable to z = /ae=i"/4 ¢, and the constants n = f*/a. Then the
Weber function “D_,,_,(iz)" is a particular solution of the differential équation (3.14).

On using the boundary conditions described earlier and undertaking the asymptotic

limit i.e. ¢ - oo, we have

2mke 2=
2 _ —_—1 _ p—27K
|C1(o0)]* = M DT == (3.15)
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where k = €},/h|4 (¢ —e )| We now make the correspondence of various parameters e
to our system. Though our system involves multiple crossings, for large Q2 the crossings
are well separated hence we can approximate each crossing, say at Qt = 7/2, as a
single two-level crossing. The constant coupling term €;; — kg/2, the energy difference
(€1 — €2) = MSQcos (), we note that the cosinusoidal variation is linear at Qt = /2.
Hence for sufficiently large 2 the asymptotic derivation of the LZ formula (3.15) will
be closer to the observed and also the effect of multiple crossings will be minimal at
the first crossing. We discuss in detail the effects of multiple crossings in chapter 4.
Hence the transition from the ground to the excited state will occur with a proba-
bility
p=1-—e¢™, (3.16)

where

o (hgr & ~
"= FZhMcos@))] © anar g & 1 (3.17)

3.4 Results and Discussion

In continuation of our earlier qualitative discussion in section 3.2, we demonstrate in
this section the trapping phenomenon quantitatively when the various conditions in-
cluding the one in eqn. (3.9) are satisfied. We assume that the system has a very long
excited state life-time and that the atom is initially in the ground state at time ¢t = 0.
~ Some typical results are shown in the Fig. 3.2 and 3.3 where the probability of excita-
tion is plotted as it evolves in time (Qt is the dimensionless quantity denoting time).
In the interval 0 < Qt < = /2 the atom remains trapped in the ground state except for
the small oscillations at the fast time scales. These fast oscillations are due to the other
higher order Fourier components as discussed in section 3.2. At time Qt = /2 the
atom makes a transition to the excited state. This transition can also be understood as
an effect of crossing of the adiabatic states. The transition probability matches closely to
the LZ formula of eqn. (3.16) in the region of the crossing, where our system is approx-
imated by the Landau-Zener model. In Fig. 3.2 we choose the fifth zero of the J,(M)
at M = 14.9309, and the tenth zero at M = 30.6346 in Fig. 3.3. We see that the trapping

of population is more pronounced for larger values of M because J,(M) < 1,¥n for
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Figure 3.3: Probability p of excitation as a function of t, where we choose the tenth zero of Jo
i.e.M = 30.6346064684; g/Q = 8.0 ; v/ = 0.0 (i.e. in the absence spontaneous emission).

M>1.

In Fig. 3.4 we plot different contour plots of the evolution of the polarizations from
U = 0 — 27. The system starts evolving in the ground state with $* ~ —0.5 and
the polarizations $%, 5¥ along the perpendicular directions -, y-, respectively. While
the population is trapped the polarizations vary with large magnitude (~ 0.3) in a
circular fashion. Then at times Qt = 7/2 the value of inversion is reversed, whereas
the polarizations 5%, $¥ continue to vary with large magnitude in the interval /2 <
M < 3r/2. Again at time Ot = 37 /2 the inversion reverts back to its original value. As
pointed out by Lam and Savage [97] this excitation scheme could result in obtaining
complete inversion in a two-level system even in the absence 6f resonant excitation
(as Jo(M) = 0). We also observe that in the region 7/2 < Qt < 37/2 the atomic
polarization is quite significant. Thus the atomic state in this region is-a coherent state
or a Bloch state [111] which is essentially obtained by a rotation of the ground state
| = 1/2). Moreover other initial conditions like the atom prepared in a dressed state

lead to similar behavior.
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Figure 3.4: Contour plots for the atomic polarizations and inversion when M =

30.6346064684; g/ = 8.0; v/Q = 0.0 (i.e. in the absence spontaneous emission).

3.5 Effects of Spontaneous Emission

We also study the effect of radiative decay from the excited state to the ground state
on the trapping phenomenon. In Fig. 3.5 we show the effect of the atomic sponta-
neous emission which is expected to change the characteristics of the trapping state
particularly if ¥ ~ Q. The decay destroys the trapping like character of the evolution
but leaves a signature of the correlated sideband excitation. In the steady state the
population is larger than the one with just a single detuned monochromatic field [97].
The correlated sideband excitation results from the phase modulated field, where for
evéry n{l component with weight factor J,(M) there is a —nf component having the
same strength (J_,(M)) acting together in a correlated fashion. In the presence of decay
the trapping feature is lost but the jumps still occur, this is due to the presence of the
bare state crossings which continue to occur even in presence of decays. We show this

feature in Fig. 3.6 where we compare the excitation through a monochromatic field
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Figure 3.5: Effect of weak spontaneous emission on the probability p of excitation for different
values of v (= 1/2 Einstein A coefficient), v/Q = 0.01(z = 2z + 0.0,y = 2/3y), v/ = 0.05(z =
T+25y=y+03),7/Q=01(c=z4+50,y=y+08); M = 30.6346064684; g/ = 8.0.
For clarity the different curves have been displaced as indicated by the transformations in the

bracket. For example, y = y + 0.8 means: the value on the y axis equals the actual value plus
0.8.

and the frequency modulated field. We observe the effects of energy crossing in the

dynamics of these two cases.

3.6 Trapped States and Control of Tunneling

We bring out in this section the connection between these new trapping states and
the traditional tunneling phenomenon. The tunneling phenomenon has continued to
attract considerable attention since the early days of quantum mechanics [107, 108,
112, 113] as it is of fundamental importance in many branches of physics. The very
first demonstration of the effects of quantum tunneling was by Hund [114] for intra-
molecular rearrangement in pyramidal molecules which physically manifested as the

tunnel splitting of the vibrational spectra. Since then there have been a host of physical
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Figure 3.6: The effect of large spontaneous emission leads to disappearance of the trapping like
character, but the jumps still exist, we have 7 /= 0.5 with ¢/Q = 8.0, and M = 30.6346064684
(solid line), the case of the usual monochromatic excitation (M = 0.0), is plotted in dotted lines,

for comparison.

systems where the phenomenon of tunneling has been observed.

The essential system in these phenomenon is again the two-level system coupled
to an external driving field. Such a two-level system typifies many physical systems
in diverse fields, it can either exactly represent a spin-1/2 particle or approximately
the chiral states of an optically active molecule. A particle in a double well potential
can also be approximated as a two-level system in the regime of low excitation. In
Fig. 3.7 we show the equivalence between the two-level system we deal with and the
double-well potential.

The problem at hand is, say if initially the wavefunction (representing the particle
or population etc.) is in one of the wells, equivalently one could say its trapped in one
of the levels, then one studies its evolution in time under the influence of the external
driving field. In our system, the population {(depicted by small circles in Fig. 3.7) is
trapped in one of the states while the coupling between these states is provided by g.
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Figure 3.7: Equivalence between our two-level system and the double-well potential. In (a)
the coupling g leads to tunneling in the two-level system, whereas the term M} cos (§2t) pe-
riodically lifts the degeneracy between the levels. In (b), the particle is initially localized in
one of the wells of the double-well potential, while the tunneling is controlled through a time
dependent external field E(t) represeﬁted by the dashed arrow.

The degeneracy between these states is periodically lifted in a cosinusoidal fashion.
Its the coupling term g that leads to tunneling between the levels at those times when
the levels become degenerate. In the double well potential, the particle (denoted by
the Gaussian wave packet in Fig. 3.7) is initially in one of the wells and this system is
driven by a time-dependent external field which is responsible for the tunneliné of the
particle between the two wells. Essentially the exchange of population between these
states is equivalent to the tunneling phenomenon in the double-well potential.

In the recent times there has been a lot of interest in control of tunneling, we give
a brief review of some relevant developments. Lin and Ballentine [115] found that
monochromatic (oscillatory) external field acting on a quartic double well oscillator
can increase the rate of coherent tunneling to several orders of magnitude ~ 10* higher
than the undriven system. They also found a coherent oscillatory property of this tun-
neling phenomenon, the initial wave packet launched in one stable zone oscillates back
and forth and retains the coherence character between the two wells (st.able zones). In
contrast the phenomenon of suppression of tunneling in double well systems.was dis-
covered by Grossman et al. [116] for certain parameter values of the driving force.

They found that periodic driving can slow down tunneling by any desired degree or

46



even suppress it altogether in a perfectly coherent way.

These effects in driven two-level model were analyzed in the context of controlling
tunneling [117] and it was found that tunneling could either be enhanced, reduced
or totally suppressed. The control of tunneling has many applications, like Bavli and
Metiu [118] demonstrated that a semi-infinite Gaussian pulse can take the electron from
a delocalized energy eigenstate of the double well, localize it in one of the wells and
keep it there. The emission properties of the electron in the double well [119] are quite
interesting and leads to low-frequency generation due to strong localization in one of
the wells [120].

Along similar lines the suppression of this quantum dynamical tunneling using
laser fields has been proposed for a quantum system (molecule or impurity center),
embedded in a host environment, such embedding leads to a symmetric double well
potential for the ground electronic state and an asymmetric one for the excited elec-
tronic state of this quantum system [121]. The external laser field couples the symmet-
ric ground electronic state to the asymmetric excited electronic state. It was observed
that for Rabi frequency of the coherent driving field larger than the ground state double
well potential splitting there was suppression of the dynamical tunneling. The potential
splitting in this system occurs because initial localization in one well implies a superpo-
sition of symmetric and antisymmetric states, which are energetically non-degenerate
and this energy difference appears as the potential splitting. There are numerous other
examples of such quantum dynamical tunneling like it describes the internal rotation
in molecules [122], or rotation of a single molecule in a crystalline or amorphous envi-
ronment [123], or complex conformational changes in glasses [124], biological systems
[125] etc. |

We have seen that in our system we can not only create the population trapping
phenomenon but also control the tunneling to the other level at the crossing. By vary-
ing the frequency of modulation one can either increase or decrease the times for which
the trapped population remains in a particular state, whereas by changing the coupling
g the tunneling from one state to another can be controlled. Thus, in .conclusion the

conditions under which the trapping states can be observed on the time scale ¢ are

Q> y; J(M)=0, t< (3.18)

il
a

47



In earlier transient experiments Mossberg and co-workers [103] used Yb atom tran-
sition which has the lifetime 7 ~ 875 nsec, see relevant levels of Y'b in F1g 3.1. This
atom seems suited for observing trapping states discussed here as we can use ) ~ 1
MH2z and observation time in the range of nanoseconds to microseconds to observe
jumps. Hence we have demonstrated the possibility of producing new trapping of
population in two-level system in presence of classical fields; the existence of which
depends on the conditions summarized in the eqn. (3.18). We further show that j jumps
occur whenever the energy levels in the frame rotating with the instantaneous fre-
quency of the field cross each other. One has complete control over trapping and tun-
neling dynamics by appropriate choice of frequency of modulation and the amplitude
of the applied frequency modulated field. The issues discussed in this chapter would
be quite interesting in the context of higher spins or multi-level systems where several

levels can cross at the same time, and we discuss these aspects in the next chapter.
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CHAPTER IV

Multiple Landau-Zener Crossings and

Quantum Interference Effects using New Trapping
Phenomenon:

We have seen in the previous chapter demonstration of new trapping phenomenon in
two-level system driven by classical phase modulated field. In this chapter we extend
these ideas to the multilevel systems, typically the three-level ladder system. Many
interesting effects come to fore in this three-level scheme. We find that the excitation
amplitude after multiple crossings is not a mere product of Landau - Zener transition
" probabilities at each crossing due to coherent evolution of the system in between cross-
ings. In this system the trapping of population by frequency modulated fields ensures
coherent evolution, and inclusion of phase effects for population redistribution after
multiple crossings becomes necessary. The relative phase accumulated by various adi-
abatic states as they evolve along different paths is tailored to show the existence of
quantum interference effects. |

We have shown in section 3.3 the derivation of the Landau-Zener (LZ) [107, 108] for-
mula. Extension of the LZ formula for multilevel crossing (even infinite set of two-level
crossings) when they are well separated has been shown to decompose into elementary
LZ factors at each crossing [127]. Each crossing mixes only a pair of adjacent states.
On the other hand, multilevel crossing 1n the contexf of scattering of atoms and ions
has been dealt in detail by Nakamura [128] where the dependence of the probability
amplitude on stokes phase is noticed. Its inclusion leads to a better matching of the LZ
theory with the exact quantum calculation. This provides the motivation for including
the effects of coherent evolution between multiple crossings.

Further, in this chapter we also deal with such multiple crossing where for an ap-

'This work was published as a regular article in Physical Review A, titled Multiple Landau - Zener
Crossings and Quantum Interference in Atoms driven by Phase Modulated Fields, Ref. [126]. Also
presented as an oral presentation at National Laser Symposium - 97, Center for Advanced Technology,
Indore, INDIA, and at the LAMP session at Winter College on Quantum Optics: Novel Radiation Sources,
ICTP, Trieste, ITALY.
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'propriate choice of parameters simultaneous crossing of all the three-levels takes place.
We utilize this type of crossing to demonstrate a new mechanism for achiéving nearly
complete population inversion across multi-level systems, even if the intermediate lev-
els are occupied . This inversion of population takes place without affecting the population
in the intermediate state . We discuss the advantages of this method over the usual rapid
adiabatic passage process (RAP) which uses unconventional sequence of pulses [129]
to achieve such inversion. This inversion can also be completely undone/ reversed at
the next crossing. We also present an optical atoms implementation of the three-level
ladder system. It is a classical, all optical analog of the quantum system - particu-

larly of the three-level ladder system where these and many other effects related to the

three-level systems can be realized.

4.1 Model

As we had demonstrated in chapter 3, a two-level system in presence of frequency
modulated electromagnetic field shows trapping of population and its redistribution
at periodic intervals of time [95]. These times correspond to the times at which the
adiabatic levels cross each other. The applied field being coherent ensures coherent
evolution between the crossings. As a generalization, we consider here a three-level
ladder system (Fig. 4.1) in presence of frequency modulated electromagnetic field.
Here, its not a mere generalization of the earlier spin-1/2 system to a spin-1 system
but to a more general three-level ladder system, as we also include arbitrary detunings

of the fields from the atomic levels. The phase modulated field at the atom is given as
E = Eie™t+() 4 Freilattna®) | 000 gu4) = Misin(it),i = 1,2, (4.1)

where M; and §2; are the index of modulation and the frequency of modulation, respec-
tively. This field interacts with a three-level cascade system, as shown in Fig. 4.1. The
field centered at w; couples the transitions |1) 12), and w; couples |2) & |3). The

total Hamiltonian of the system is
H = hwa|1)(1] — hwas|3)(3| - d - E, (4.2)

where d = dia|1)(2| + a’";3|2)(3| + c.c. The first two terms in H correspond to the unper-

turbed system where the energies are being measured from the middle level |2), and the
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Figure 4.1: Three-level ladder system with the energies being measured from the middle level
|2). Transitions |1) « |2) and |2) « |3) are coupled by frequency modulated fields centered
at w; and w; respectively. A;, Az and 2G), 2G; are the detunings and Rabi frequencies of the

corresponding transitions, respectively.

last term in eqn (4.2) is the interaction term in the dipole approximation . We describe the
dynarﬁics of the atom plus field system by the Schrodinger equation

ihfl—l;f—) = H|y), . (4.3)
where ) = C1|1) + C;|2) + C3|3), and H denotes the total Hamiltonian given in eqn.
(4.2). We have already discussed in section 3.2 the various conditions for localization
of population in a two-level system in presence of a frequency modulated field, we
extend those conditions for the multilevel system. The interaction Hamiltonian for

this three-level ladder system (Fig. 4.1) is

Hip = —dys- (E, ff Jk(Ml)e“kn") 11)(2| - das- (E‘z +2°° Jk(Mg)e""‘n") 12)(3| + H.c.

e e (4.4)

‘where, as indicated by subscripts 1 and 2 one could in general have two different fre-
quency modulated fields coupling these transitions.

As we have discussed in section 3.2 for large Q the major contribution on the time

scales slower than the periodic exponentials in eqn. (4.4) would be from the Jo(M; 2)

terms, moreover magnitudes of J,,(M) diminishes with increase in |n| for any finite
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index of modulation M. Hence for large frequency of modulation
Hint = —dyp- By Jo(M)|1)(2] ~ das- By Jo(Ma)|2)(3). (4.5)

By choosing M; to be a zero of the zeroth order Bessel function simultaneously along
both the transitions, i.e. Jo(M;) = 0 fori = 1 and 2, the dominant term in the interaction
Hamiltonian becomes negligible , which effectively leads to trapping of the population
on the appropriate time scales. At times ¢ ~ 76 551 3%..., (for the resonant case) the
other exponentials would dominate the interaction term (particularly the terms with
odd k, which vary as 8in()|e=n/20 = 1, as was described in the discussion following
| eqn. (3.6)) causing transitions between different levels.

We now transform equation (4.3) into a franie rotating with the instantaneous fre-
quency of the field. We define new complex amplitudes C;’s in the instantaneous frame,

using the following transformation,

él = C et'(u-'|¢+¢l (l)),

C2 = C?,
Cs = Czeilwatt+ha(t)) (4.6)
We undertake the rotating wave approximation and hence neglect the rapidly rotatmg

terms at twice the optical frequency which vary as ex2(“it+#:(t) (for ; = 1,2), then the

equations of evolution for the slowly varying C;’s are

¢, ~i(A; = MyQ cos (Ut +0)) iGy 0 é
C’g = ZGI 0 1G2 ég ,(47)
Cs 0 iG3 (A2 — MyQ cos (Qyt)) Cs

where the overdot denotes the first order time derivative, A; = w;; — w, and Ay =
wa3 — wy are the detunings, the pérameters 2G, = ?;—’11;"—& and 2G, = 343;‘1;1 are the Rabi
frequencies of the corresponding transitions, 6 provides the initial phase mismatch
between the fields E; and E,. In order to solve equation (4.7), if we proceed along
the lines of Landau and Zener as in Ref. [107, 108], i.e. consider only linear terms in
the expansion of cos () at the crossing (Qt ~ 7/2), we obtain a third-order differential

equation which cannot be solved analytically. Hence, we resort to numerically solving
the eqns. (4.7).
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Thus the conditions for observing trapping of population and and its redistribution
due to jumps (at the crossings) are firstly, the choice of the modulation index M; such
* that Jo(M;) = 0 for both i = 1,2 simultaneously, and secondly the choice of modulation

frequency Q; which would set the times at which jumps (‘crossings of the bare energy
levels) would occur. The trapping states are limited by the decay processes in the atom
as was discussed in detail in section 3.5; hence we require ©; > +;, where 2v; is the
spontaneous emission rate between various transitions [1) — |2) and [2) — |3), for
1 = 1 and 2 simultaneously, to observe the trapping and jumps.

There have been manifestations of similar trapping phenomenon in solid state sys-
tems. Kenkre et al. [130] have demonstrated dynamic localization in quantum transport
theory where they considered the motion of a charged particle in an infinite lattice
driven by a harmonic time dependent electric field. The condition for this dynamic lo-

| calization is very similar to the condition obtained here. The essential difference being
that they have finite number of lattice sites in the problem, which would be equivalent
to an equispaced multilevel (finite numbéf) system in our case. This leads to competi-
tion between two length scales, one is the length scale of localization (similar to our )
and the other being reflection scale due to finiteness of the lattice size. Some features
of this reflection due to finite size of the lattice size (in our case, levelé), are utilized in
section 4.2,2, where .we exploit this to invert population across the multi-level system.
Another difference between dynamic localization and our trapping phenomenon is the
sensitivity to the J,(M) = 0 condition, the dynamic localization is lost if M is chosen to
be slightly away from the zero of the Bessel function. A detailed comparison between
our quantum optic trapping phenomenon and the dynamic localization in solid state
systems is made by Raghavan et al. in Ref. [131] where they also discuss the interplay

of these two length scales and bring out the differences between these two systems.

4.2 Caléulations and Discussion

In this section we demonstrate the phenomenon of trapping and jumps and the need -
to consider phase effects, due to coherent evolution of the population along different
interfering pathways. To observe trapping we choose the index of modulation such

that its a zero of the Bessel J, function. The jumps occur at times when the bare energy

53



10F " (@)
08} o
0.6

IC, 2

0.4 fh |l T i

0.2

Energy

ey,
R IT
n iy,
UL LTI
|Il|"l“l|l|"‘-:
T A AR
Soaw l'l::.
OERYE l,

Probability

Tave
- --'w-.__.v.-':.

10 . 15

Qt

Figure 4.2: (a) There is no trapping of population if the M;’s are chosen such that Jo(M;) # 0.
ForMy = M; =7, = Q, =1,4;, =10, A, = -10, G; = G; = 6, with the initial
condition |Ci|? = 1, |C3|? = |C3]? = 0. (b) The evolution of the energy levels, given by (4.8)
and the crossings of these levels for a choice of M such that Jo(M) = 0,M = 30.6346 and
~ the other parameters being same as in (a). The dashed, dotted and solid lines are for energies
of levels |1),|2) and 3) respectively. (c) Dynamic evolution of the trapping of population in
various states. At every crossing of the energy levels (first two crossings are denoted by circle
and arrow) there is redistribution of population, for M = 30.6346 and other parameters being
same as in (a). Similar to (b) the dashed, dotted and solid lines denote |C,|?, |C2]? and |C3|?
mspecﬁvely A; and G; are in the units of Q.

54



levels cross. Fig. 4.2 shows the trapping of population and its transfer at the times
when the v'energy levels cross. The energy levels and the various crossings depicted
m the figures correspond to the zero-order Hamiltonian in the rotating frame. As is
* well known the consideration of the non-adiabatic coupling G;’s between the adiabatic
states would transform these crossings into avoided-crossings .

We initially put in all the population in state |1) and show the importance of the
choice of M for trapping to occur. In Fig. 4.2 (a) we do not have any trapping, as M is
not a zero of the Bessel J, function (for ksimplicity we take M; = M; and Q; = Q,, the
general case is discussed later). For M; = 30.6346 (tenth zero of the J; Bessel function)
we have trapping of population, see Fig. 4.2 (c). The zero-order energies (i.e. without
the non-adiabatic coupling term) of the adiabatic levels |1) and |3), as measured from

|2), in the frame corotating with the instantaneous field frequency are

El(t) = Al - M1Q1C08(91t+0),
Eg(t) = 0,
Eg (t) = -—(Az - MngCOS(ta)). (48)

Hence whenever E; = E; (fori # j; 1,j = 1,2,3), the levels |i) and |;) cross at those
times causing a population transfer, see Fig. 4.2 (b). The first crossing takes place
when E; = E, at Qt ~ 1.23; the second crossing is at 2t ~ 1.57 when E; = Ej; the next
crossing takes place when E, = E; at it ~ 1.90 and so on. Most of the population
evolves adiabatically for the parameters chosen, which results in a change of character at
the avoided crossing. Only a small fraction of the population suffers no change across
the crossing due to the non-adiabatic coupling.

Here its the G;’s that providé the coupling between various adiabatic states |i)’s
and transform these crossings into avoided crossings . As the system evolves quasi-
adiabatically (i.e. G? > MQ) across the crossing, it leads to an exchange of character
(in our case the population) at the avoided crossing. The purely adiabatic limit would
be G? » MQ, which would lead to negligible population in the initial state after the
avoided cr_ossihg. The population transfer probability at the crossing of two levels can
be approximated by the Landau-Zener formula by taking only the linear terms in the
expansion of cos (2t) in eqn. (4.8) about the crossing time (i.e. at 0t = 7/2). The

probability at the first crossing turns aut to be p = 1 — e7*™ with k = G?/|4(E, - E,)|
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Figure 4.3: (a) The level |1) (dashed) does not cross any other level for a choice of § = /2
and M, = 30.6346, M; = 14.9309,% = 1/2,Q; = 1,A; = 20,A; = 5,G; = 8,G; = 3 and
initially the population is in level |3). The energies of |2} and |3) are denoted by dotted and
solid line, respectively. (b) Trapping is clearly seen even when M; # M, Qy # 2, and a finite

8, all parameters being same as in (a). A; and G; are in the units of §2,.

as described in section 3.3. At t ~ 1.23 p = 0.8, which is comparable to the observed
probability after the first crossing.

The crossing of energy levels is essential for population transfer, otherwise it re-
mains trapped in various levels depending on the initial condition. In general trapping
is also observed when M, # M,, however they have both to be chosen as zeros of the
Jo Bessel function. Choice of unequal }; and {2, does not affect these trapping states.
Trapping is also unaffected by the initial phase mismatch between the fields E, and E,.
If the phase mismatch 6 or choice of {2;’s does not result in extra érossings of the energy

levels, the characteristic trapping dynamics of the system does not suffer. We show in
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Fig. 4.3 that trapping.persists for a general choice of parameters, i.e. when M, # M,,
4 # Q; and a finite phase difference 8 is present between the two fields.

'42.1 Quantum Interference Effect due to Coherent Evolution

To illustrate the need to consider phase accumulated between two crossings along the
various paths of evolution, we choose the values of A,z such that level [1) does not
cross the other levels, see Fig. 4.4 (a). There is a periodic exchange of population,
predominantly between levels |2) and [3), whereas the population in |1) remains prac-
tically unaffected. We begin initially with the population in 13). The probability of it
| b&\g tuﬂsﬁerred to |2) at the first crossing is p = 0.9 using the Landau - Zener the-
. If ¢ one considers each crossing independently, the probability at every crossing is

the same because the absolute value of the slope of the energy difference (E; — E3)
is same at all crossings, see Fig. 4.4 (a). To determine the population after multiple
crossings one cannot merely take the individual Landau - Zener probabilities [127] at
each crossing, as it would imply a steady decrease in the probability of population transfer
- with increasing number of crossings . While the observed probability is more or less inde-
pendent of the number of crossings the system has undergone. The population in |3)
revives completely after even number of crossings, Fig. 4.4 (b). Thus the probability
~ after multiple crossings requires consideration of the phase accumulated by the system
between such crossings along with the transition probabilities at each crossing.

It was shown by Berry [132] that when a quantum system is forced round a cycle
: by an adiabatic change, it will return with an extra phase which is purely geometric in
nature. It is well known that if the evolution is dissipative then this geometric phase
| could be complex leading to a geometric contribution to the amplitude and hence to
the probability of being in the initial state. Berry [133] discovered the possibility of
geometric amplitude in non-dissipative (unitary evolution) systems, and proposed a
twisted Landau - Zener model . In the conventional Landau - Zener model (section 3. 3),
the coupling between the two states is constant (e12), whereas the energies vary linearly
(t, ~€; = at/h) along the evolution path (in our case time). In contrast the twisted Lan-
" dau - Zener model has a coupling of the kind €;,e~"*(), its this term ®(t) that results
- in the geometric amplitude factor. Berry studied a particular case where o(t) = pt?,
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Figure 4.4: (a) The energy level |1) (dashed) does not cross with |2) (dotted) and |3) (solid) for
M =14.9309, A; = 25, A, = 10, G, = 7,G; = 3, with the initial condition IC312 =1, |Cy)? =

|C5|?> = 0. The arrows denote the various paths along which the system evolves in between
crossings. (b) The population in |3), where after multiple crossings the probability is not a
mere product of Landau -Zener probabilities at each crossing. (c) Quantum interference effect
observed in the net population in level |3) at Qt = 6.0, by changing the path (which depends on

43) along which the system evolves (shown by arrows in (b)) and thus, accumulates different

‘phase. A; and G; are in the units of Q.
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whereas in our case we have a sinusoidal dependence for ®(t). This geometric am-
~ plitude factor arises even for systems for which the corresponding path is open . At
first sight a geometric contribution due to an open path seems impossible, but if the
open path represents an avoided crossing then the transition dynamics depends on
relative difference between the two adiabatic eigenstates. In addition a finite curvature
would induce opposite geometric contributions to these adiabatic states in which case
a relative phase difference is locally defined. If this contribution changes as a function
of time then observable effects can arise in the transition probability. Bouwmeester et
al. [134] have implemented the Gaussian twisted Landau - Zener model for the two-
level system in optical atoms and demonstrated the effect of phase due to curvature
of the path followed in the parameter space. As a result even for opeﬁ paths phase
effects strongly influence transition probability as is also demonstrated in our system .
This Gaussian twisted Landau - Zener model takes care of the unphysical property
of the twisted Landau - Zener model of Berry where ®(t) diverges as ¢t — +oo. The
Gaussian twisted Landau - Zener model has the form ®(t) = u(1 — e~(/9)), hence near
the avoided crossing at (¢ = 0) it behaves like a 3¢, and far away from it it takes the
constant value .

In an interesting experiment Gatzke et al. [135] observed quantum interference effects
in microwave multiphoton transitions. The interference resulted due to different phase
accumulated along different paths as the system evoived. They applied a microwave

pulse that brought into resonance two-photon transition between the 21s state and the
| 19,3 Stark state of Potassium. When a sech pulse is applied the system traverses res-
onance (akin to crossing in our case) twice , once on the rising edge of the pulse, and
another on the falling edge. The superposition of the two states involved evolves co-
herently in between these resonances. The Landau - Zener probabilities are considered
at each traversal of the resonance and also the phase accumulated in between these
crossings. Due to the coherent evolution between the crossings, this phase plays a
pivotal role in determining the population after the second crossing. This leads to in-
terference in the transition probability when the relative phase accumulated by each
state during the pulse is varied by changing either the width or the intensity of the ra-

diation pulse. In our system this relative phase can be varied by changing the detuning
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of the field.

As is shown Fig. 4.4 (a), there are two distinct pathways (indicated by the arrows) at
each crossing along which the system evolves, thereafter the levels cross again and so
on. In between these crossings the superposition of the corresponding states evolves
coherently in time. The net transition probability between the two states depends on
the relative phase accumulated along each path. The path traversed by the system can
be varied by varying the detunings . We examine, the probal';ility of population being
in level |2) and its dependence on the path traversed between the first two crossings.
We observe the evolution of the system from Qt = 0 to 6.0, by which time level [2)
has crossed a second time with level |3). By varying A, the phase accumulated by the
system as it evolves along the two paths between the two crossings is varied, and we
see quantum interference effect as shown in Fig. 4.4 (c). The probability of population
transfer varies substantially from 0.2 to 0.8, by varying the relative phase between the
paths of evolution of the system between crossings.

There have been other proposals where due to coherent evolution phase effects play
an important role. Vitanov and Knight [136] considered non-perturbative treatment of
coherent excitation of two-level system by a train of equally spaced identical pulses.
They found that the phase accumulation during the free evolution between the pulses

plays as important a role as the phase accumulation during the pulse.

4.2.2 Creating Inversion Across Multiple Levels

We now exploit this combination of the trapping condition and simultaneous crossing
of all the levels for creating inversion across the ladder system. We first describe in
brief the usual rapid adiabatic passage (RAP) method thats conventionally used and
then bring out the advantages of our method. Our method is quite different from the
usual population transfer in three-level systems by RAP [129]. As was described in
brief in section 2.3 in RAP one requires a sequence of unconventional pulses, so that
first the empty set of levels is pumped and only thereafter - with some temporal over-
lap - the initially populated levels are addressed. In this way the intermediate level
remains practically unpopulated . Another RAP proposal is to apply temporarily co-

incident pulses with frequency sweep in an anti-intuitive manner so that again the
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unpopulated levels experience the resonance and thereafter the populated level. Re-
cent calculation have also shown that this ‘unconvgntional pulse sequence results in
negligible population in the intermediate state hence invérsion is unaffected even if
the intermediate state is in the continuum [137].

Efficient population transfer has been achieved experimentally in a three-level lad-
der system by frequency-swept ultrashort laser pulse in Rb by Broers et al. [138]. They
demonstrated complete population inversion using intuitive sequence of two succes-
sive adiabatic passages. They also obtained 100 % inversion by an counterintuitive di-
rection of sweep of frequency which resulted in a strong reduction of the intermediate
level population. This was due to direct crossing of the bottom and the topmost level.
Their proposal of using a single counterintuitively chirped pulse is not applicable to a
A system because of absence of direct crossing between the dressed initial and final
states. Whereas our scheme could be applied even to the A system by proper choice
of detunings. Hence our scheme is more flexible in terms of arranging appropriate
crossings of levels, which is done by changing the detunings of the coupling fields
independently along the two transitions rather than careful timing / overlapping of
various pulses and / or direction of chirping of the pulse.

We now describe our mechanism for creating inversion. In addition to the trapping
condition we require that all the three levels cross simultaneously at each crossing. This
results whenever A, = A,, and at times ¢ = cos-! (A/MSQ). We observe a periodic ex-
change of population between the top and the bottom level at every crossing, whereas
the population in the middle level remains intact . If the population is initially put
in level |1) (]3)) after the first crossing the population is transferred to [3) (]1)), with
the intermediate level experiencing only a little transient population, see Fig. 4.5 (a).
Note further that the population transfer to the intermediate state is not complete only
~ 10 — 20% goes into it. The inversion achieved at the first crossing is completely un-
done at the next crossing. Here we deal with cw fields and as the application of the FM
fields lead to simultaneous trapping and crossing of all the levels, it is experimentally
more attractive. In contrast the RAP proposals involve dressing of unpbpulated levels
first and thereafter the populated level cross with the appropriate state using careful

timing. Hence RAP schemes are extremely sensitive to timing of various pulses. An-
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Figure 4.5: (a) When all the three-levels cross at every crossing, there is a periodic exchange
of population between |1} and |3}, the population of level |3} is plotted in solid line, whereas
the level {2) which experiences partial population transfer is plotted in dotted line. For M =
30.6346, A; = Ay = 5, G, = G, = 7, with the initial condition |C1|2 = 1, [C3? = |C3]? = 0.
(b) Same as in (a) with initial condition |C;|? = 1, |C1|? = |C3|? = 0, the population in the
intermediate state {(dotted) remains unaffected even after multiple crossings with other levels.

Population in |1) and |3} are denoted by the solid lines (these lines overlap each other exactly).
A; and G; are in the units of 2.
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other major advantage of our scheme over RAP is that the presence of finite population
in the intermediate level renders the RAP process very inefficient . Whereas in our scheme
population in the intermediate state remains untouched . Only the population in |1) and
|3) get exchanged at every crossing. Fig. 4.5 (b) shows this feature, when all the popu-
lation is initially in |2), it remains unchanged even after multiple crossings with levels
1) and [3). Thus we have demonstrated a new method of inverting population across

multiple levels even if initially there is finite population in the intermediate state .

4.3 Classical Analogue of Coherently Driven Atomic Systems : An

Optical Atoms Realization

The basic unit one deals with in the physics of atomic optical resonance is a two-level
atom interacting with an electromagnetic radiation of a frequency that matches the en-
ergy level separation in the atom. Woerdman et al. [139] have shown in detail that
a system formed using two distinct coupled classical optical modes show analogous
characteristics, this system has been termed as an optical atom . There are many advan—z
- tages of carrying out studies with optical atoms; they being macroscopic in nature one
has precise control on all the parameters over ranges that are sometimes not accessible
in experiments with real atoms. Moreover, one can make continuous measureriient on
this classical optical field without influencing the dynamics of the system, whereas in
the quantum case a measurement yields a collapse of the wavefunction.

- Classical analogue of the two-level quantum system has thrown light into issues
like validity of the rotating wave approximation which is taken for granted at opti-
cal frequencies used to excite real atom; in optical atoms the manifestations of the
inclusion of counter rotating terms has been experimentally observed. Among the
phenomenon associated with the breakdown of rotating wave approximation are the
Bloch-Seigert shift and multiphoton transitions. The Bloch-Seigert effect results in a
change in the transition frequency which can be considered, for the single-photon case,
as the consequence of dynamic stark shift produced by the non-resonant terms which
are neglected in the rotating wave approximation. Among realizations of the multi-

level systems Woerdman et al. [139] have shown that systems with even number of
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levels like four, six etc. can be simulated in optical atoms by an appropriate choice
of different longitudinal modes of the cavity and coupling them appropriately. The
three-level system has so far eluded an optical atom realization.

Here we propose an optical implementation of a three-level ladder system . Moreover in
the trapping phenomenon we describe the trapping is more effective if the contribution
of J,(M) for n > 0 to the interaction term of the Hamiltonian is minimal, which can
be ensured by choosing high index of modulation M. The experimental difficulty with
real atoms lies in achieving high index of modulétion at optical frequencies, and hence
optical atoms would be best suited in this regime.

In an optical atom Spreeuw et al. [139] considered a single longitudinal mode of an
optical ring cavity. This mode has twofold propagation degeneracy (waves traveling in
the clockwise, counterclockwise direction), as well as twofold polarization degeneracy
(modes with polarization along x,y directions or the o+, o~ polarization states). By lift-
ing either of these degeneracies we obtain two modes with separate frequencies. For
brevity we deal with only one type of degeneracy - the propagation degeneracy; the
polarization implementation can be carried out on the lines of Ref. [139]. The prop-
agation degeneracy can be lifted using the Sagnac effect. which produces a frequency
difference, quantified by 25, for the two counter propagating modes. By increasing
the tuning parameter § the modes are pulled apart yielding a real crossing for the two
modes at S = 0 (i.e. when there is no rotation the modes are degenerate). An avoided
crossing is obtained by coupling these two modes by means of backscattering . The
rate of backscattering W (for a reflecting element with amplitude reflection coefficient
r < 1 the backscattering rate is rc/L where L/c is the roundtrip time in the cavity of
length L) determines the minimum frequency separation at § = 0. Similar tuning and
coupling can be obtained for the polarization degeneracies, using électro-optic modu-
lators.

In contrast to a single ring cavity used in Ref. [139] for the two-level atom, here
we require two identical coupled ring cavities as shown in Fig. 4.6. One possibility
could be two identical fiber-optic ring resonators coupled using a lossless 2 x 2 fiber
optic coupler. We distinguish the various modes by their direction of propagation . The

eigenmodes, for a particular polarization state of a single longitudinal mode in the
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Figure 4.6: Schematic of the Optical implementation of the three-level ladder system. Q

rot

depicts the effect of the Faraday rotator (FAR). The conservative coupling of both the cavities is
got by alossless 2x 2 fiber coupler (FC). The dissipative coupler (DC) is a thin localized absorber.
The three non-degenerate propagation modes simulating the three-level ladder system are the

cwy, ccw; and cw;-ccws.

coupled cavity, would be two degenerate set of modes traveling clockwise (cw) and
counterclockwise (ccw) in each cavity. Thus there would be four degenerate modes
cwy, ccwy, cw; and ccw; (where 1 and 2 label the two cavities). Now the basic idea is to
lift the degeneracies of two modes in one of the cavities, and couple all these modes
appropriately. The two-mode description in each cavity is valid in the regime where
the frequency splitting of the longitudinal mode is much smaller than the free spectral
range of the ring cav1ty

The Faraday rotator in the ring-resonator 1 would simulate mechanical rotation
of only the ring cavity 1 (we assume weak coupling between the two cavities), this
would result in a round-trip phase difference between the cw; and ccw, modes due
to the Sagnac effect thus lifting the degeneracy between these counter propagating
modes. This would create a mode structure for the coupled cavity which would be

quite similar to the two-level case, but would also contain the degenerate modes of
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cavity 2 (cw,, ccw;) which would not change as the parameter S (x rotation rate of
cavity 1) is varied.

We require that the coupling between the modes cw, and ccw; (as well as, ccw,
and cw;) should be conservative [140], which would result in frequency splitting in the
passive mode structure of the coupled cavity. Whereas the coupling (by backscattering)
in cavity 2 between cw; and ccw, should be of the dissipative kind, which would cause
frequency locking of these two modes.

These various couplings can be realized in the following way. To realize a conserva-
tive coupling a lossless 2 x 2 fiber optic coupler can be used which would merely redis-
tribute the intensity between the cw; and ccw, (and correspondingly between ccw, and
cw;) modes. This coupling causes a frequency splitting bétween the modes and would
result in an aniicrossing in the passive coupled cavity mode structure. The width of
this frequency splitting would be proportional to the coupling ratio of the 2 x 2 cou-
pler. On the other hand the dissipative coupler (DC) could be a localized absorber i. e,a
thin (as compared to the wavelength of the input field) absorbing layer placed perpen-
dicular to the mode axis, that would cause frequency locking of the modes in cavity

2. This phenomenon of frequency locking is same as the so called locking problem of
‘ the counterpropagating modes due to injection signal (caused by scattering etc.) in
laser gyroscopes at low rotation rates [141]. As there is no rotation of cavity 2 the cw,
and ccw; modes get frequency locked and become degenerate. Without this dissipative
coupler we would have two two-level systems shifted in frequencies such that cw, and
ccw; would be uncoupled and near degenerate. Whereas with the dissipative coupling
there would be three non-degenerate modes in the system cwy, cew; and cw; — ccw, (as
the modes in the cavity 2 are coupled and frequency locked).

These three non-degenerate frequencies would be wy. and wo, Where wy near a spe-
cific crossing point (w!, 07,) in the energy band structure, along the lines of Ref. [142] is
given as in eqn. (4.9). The index i corresponds to possible different longitudinal modes

of the cavity, and the index j denotes different rotation rates.

L
Wy =w, k 5 W(Qrot - Qiot) + w:; ’ (4.9)

where L is the length of each cavity, Q2o is the uniform angular frequency with which

the cavity 1 rotates, n is the refractive index and Ay = (‘/—zi)Awl. Here Aw, is the
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free spectral range of the ring resonator i, and v is the intensity coupling coefficient
per round trip between the modes at frequencies wy and the.mode with frequency w,,
respectively (which depend on the coupling ratio of the 2 x 2 fiber coupler).

'On similar lines as in Ref. [139] the two parameters S and W in the three-level
case correspond to the Faraday isolator strength whiéh is proportional to S and is es-
sentially a measure of the frequency splitting. Whereas W is proportional to intensity
coupling of the modes cw; & ccw; (x W) and ccw; & cw, (x W_), via the 2 x 2
coupler (see Fig. 4.6). We define the eigenvectors of the Hamiltonian Hs for W = 0 as
the S-basis, and those for S = 0 as the W-basis. In the S-basis we have the following

Hamiltonian
S W, 0
Hs=|W, 0 W_|. - (4.10)
0 wW. -§

For simplicity we assume a symmetrical 2 x 2 coyplerie. W = W, = W_. On
diagonalizing eqn. (4.10) we get the eigenfrequencies which are w, = 0 and wy =
+1/25%7 + W2. On varying the parameter S one obtains an avoided crossing due to the
coupling W. | ‘

Now let us consider the three-level optical atom in presence of a harmonically time
dependent field at the frequency wy i.e. , § = Soe™*** + c.c. We transform the Hamilto-

nian (4.10) into the W-basis which after the rotating wave approximation is

Ay So O
Hv=|5 0 S |- (4.11)
0 So —A_

The detunings are defined as A, = w; — W, and A_ = w; — W_.. The generalized
Rabi frequency of the optical atom between the various transitions is proportional to
VA% +25¢ (for W, = W_). A comparison of eqn. (4.11) with the three-level ladder

system shows that the analogy between the three-level atomic system and its optical
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implementation is complete if the following connections are made

Wiz & wyi
wis & e 4.12)
Ay & Az

di2, Ci;:; + magneto-optic coefficient of FAR x its length.

To observe the phenomenon of trapping states discussed earlier, one would have
to generate an appropriate field S at the Faraday rotator so that 8B/3t simulates fre-
quency modulated field with an modulation index M such that J,(M) = 0; and also the
frequency of modulation §2, the choice of which would determine the times at which
various levels cross each other leading to jumps.

Furthermore a three-level A-configuration is also possible with an appropriate choice
of a set of longitudinal modes in the cavity and the corresponding coupling of these
modes. Unlike the fiber optic possibility one could even go in for bulk optic cavities
where a variable coupling between the cavities can be obtained using various methods
of evanescent coupling [143]. This optical atom implementation would open avenues
to observe richer dynamics of the three-level systems in hitherto unexplored parameter
regime.

Thus in conclusion, we have discussed the following issues in this chapter: (a)
We have shown parameter regimes where various kinds of multi-level crossings occur
causing population redistribution, we have shown that trapping of population persists,
even if there is an initial phase mismatch between the two applied fields or unequal
choice of the modulation index and modulation frequency; (b) The phase accumulated
by various states in between these crossings plays a vital role in determining the tran-
sition probabilities after multiple crossings leading to quantum interference effect; (c)
We have demonstrated a new method for near 100% population inversion in three-
level ladder system even in presence of finite intermediate state population without
affecting it; (d) We have proposed a classical optical implementation of the three-level

ladder system using coupled cavities for optical atoms in which such a phenomenon

can be observed.
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CHAPTER V

Control of Optical Bistability:

Quantum coherence and interference has led to many new optical phenomenon like
possibility of producing laser action without population inversion (section 2.8), gener-
ation of large refractive index with zero absorption (section 2.9), enhancement of non-
linear signal generation (section 2.5), quenching of spontaneous emission noise (sec-
tion 2.7) and Electromagnetic field induced transparency (section 2.4). The three-level
schemes are usually the most popular ones in considerations of field induced trans-
parency. The transparency arises from the Autler-Townes splitting of the absorption
line as well as due to intetferehces which makes the absorption proportional to the de-
cay of the atomic coherence between two states that are not directly connected by a
dipole transition. |
Allthe applications listed above involve either single atom situations or those which
are equivalent to non-interacting atoms , for example even in the context of pulse match-
ing [145] where coherently prepared medium inturn drives the fields that prepare
them. In this chapter we investigate the role of atomic coherence and interferences
in the context of collective phenomenon inside a resonator. An external elec&orﬁagneﬁc
field is used in tandem with the usual bistable field and is tuned close to resonance
along another transition in the atomic system. This external field controls the polariza-
tion along the bistable transition. We examine the modification of the bistability charac-
teristics such as the thresholds, switching times etc. We also find that this control field
can lead to multistability .
Historically absorptive bistability in all-optical systems was first predicted by Széke
et al. [146]; McCall [147] showed that under suitable conditions differential gain with
transistor action is possible for absorptive bistability in a Fabry-Perot cavity. This led

to the very first experiments by Gibbs et al. [148] in Sodium where they observed both

!This work was published as a regular article in Physical Review A, titled Controlling Optical Bista-
bility using Electromagnetic- Field - Induced - Transparency and Quantum Interferences, Ref. [144].
Also presented as an oral presentation at XXIII National Symposium of The Optical Society of India on Optics
and Optoelectronics, IRDE, Dehradun, INDIA.
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transistor action and bistable behavior. Among the early theoretical and experimental
works some of the following works in Refs. [149, 150, 151] are noteworthy. Since then
there has been lot of activity in achieving efficient bistable devices for wide range of
applications, from optical communication to optical realization of quantum comput-

ing.

51 Whatis Optical Bistability ?

On injecting a cw laser beam on an empty optical cavity the transmitted intensity is
proportional to the input intensity. The proportionality constant depends on the cavity
mistuning and the finesse of the cavity. When the cavity is filled with either an ab-
sorptive or dispersive material the transmitted intensity becomes a nonlinear function
of the input intensity. The behavior of the system depends on the ratio of absorption
coefficient () x length (L) of the active medium and the cavity mirror transmissivity
(T'). Above a critical value of the-co-operative parameter (aL/T), we have the bistable
behavior. In the lower branch of the hysteresis loop of bistability the atoms no longer
evolve individually but act in unison . Hence the term co-operative phenomenon. Only
when the atom-field interaction leads to such a co-operative (collective) effects do we
get bistability. Optical bistability is said to occur when for a range of input values of the in-
cident field intensity, there are two stable (bistable) output states . It involves interplay of
both feedback from the mirrors (cavity) and nonlinearity of the atom-field interaction.
These systems have great potential as devices because they can work as optical
transistors, all-optical memory elements, or all-optical pulse shapers as they eliminate
noisy features of the input light (discriminators, clippers and limiters). Presently there
is major thrust in making practical, miniaturized and fast bistable devices which would
eventually lead to realization of efficient all-optical processing devices, hopefully in the
near future. Our work is a step in that direction, here we propose among other features
schemes of lowering the threshold for switching as high threshold for bistability is one
of the bottlenecks in the direction of miniaturization. We also show that multistable op-
eration can be got by merely changing the control field parameters, similarly transistor
action and bistable operation requires a proper choice of control field parameters. This

opens up a possibility of using the same device for multiple operations.
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1

Figure 5.1: Uni-directional ring cavity with atomic sample of length L, with n homogeneously
broadened atoms with atomic configuration as given in Fig. 5.2. EJ and ET are the incident and

transmitted fields respectively and E; is the control field. For the mirrors1and2 R+ T =1,
and mirrors 3 and 4 have R = 1.

We demonstrate the application of electromagnetic field induced transparency and
quantum interference effects in the co-operative phenomenon of optical bistability . We use
another control field to tailor the polarization of the bistable transition. The control
field used along with the usual electromagnetic field of the two-level scheme results in
a considerable lowering of the threshold intensity . We study the transient response of the
system in the mean field limit and describe the regression to the steady state when per-
turbed away from it; in our system the regression exponent is itself dependent on the
control field. We also demonstrate the possibility of control field induced multistability

and the fine control one has on its various threshold characteristics.

5.2 Model Calculations

In order. to keep the analysis as simple as possible we consider an uni-directional ring
cavity (Fig. 5.1) with the mirrors 3 and 4 with 100% reflectivity and the mirrors 1 and
2 have the reflection and transmission coefficient (R and T, respectively) such that
R + T = 1. This is the standard model of optical bistability given by Bonifacio and

Lugiato [150, 152]. The atomic system is a collection of n homogeneously broadened
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Figure 5.2: The transitions labeled |2) and |3) are the bistable transitions, the control field E,
couples the excited state |2) to another level above (for system (a)) or below (for system (b)) the

excited state. Here A,’s are the detunings and +;’s are the decays of the corresponding levels.

two-level atoms which have their excited states coupled to yet another level which
could be energetically above or below this excited state (we consider both such cases,

as shown in Fig. 5.2, the system (a) and (b), respectively). The field at the atom that

couples these various transitions can be written as
E = Eje™™' § Eye™'? 4 c.c., (5.1

where the subscripts 1 and 2 refer to the transitions |1) «+ |2) and |2) « |3), respec-
tively. In both these systems the coherent field E, applied to the transition |2) > |3)
corresponds to the usual two-level scheme and |1) « |2) is the transition on which
the control field E, is applied. The control field does not circulate in the cavity and thus
its dynamical evolution can be ignored . The present scheme should not be mixed up
with two-photon bistability [153] which in general deals with situations where the in-
termediate state is far from resonance. In our present work we deal with the control of
single-photon bistability . We consider the system (a) as shown in Fig. 5.2 where the level
|1) decays through spontaneous emission to level |2) with Einstein A - coefficient 21,
and level |2) decays to |3) with Einstein A-coefficient 2y,. Similarly in system (b) the
level |2) decays to levels |1) and |3) with the Einstein A-coefficients 2v; and 27,, respec-
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tively; and the level |1) decays to|3) with the decay rate of 2v (Fig. 5.2). We describe
the dynamics of the atom plus the radiation fields by the well known Maxwell-Bloch

equations. The unperturbed Hamiltonian of the atom is given as
Ho = ﬁw13l1)(1| + hw23|2)(2|, (52)

where energies are measured from the ground state |3). In the dipole approximation the
interaction Hamiltonian between the atom and the external fields is given by H;,, =
—d - E, where d is the atomic dipole moment operator having only the off-diagonal
elements

d = dia[1)(2] + ds[2)(3] + c.c. (5.3)

The total Hamiltonian for the system is given by H = H, + Hin. Density matrix for-
malism is used to study the evolution of the system. Incoherent processesb like the
spontaneous emission from different levels are included phenomenologically in the
standard way as described in section 2.1.

We undertake the rotating wave approximation for the fields and neglect the rapidly
oscillating terms like e**1* and e*%“2* which is quite valid in the optical regime where
the fields oscillate at ~ 101 Hz. This transforms the evolution equations of the density

matrix pag for system (a) to those for slowly varying quantities 5,3, where

Pi = piit =123

swyt

pra = pr2e ",
Pz = st_eiw",
P13 = petlrtenlt (5.4)

The equations of evolution of the density matrix are:

/.311 = =2vipn +1G1pa — iGIﬁxz;

Pz = ~(n+72+il)p+ 1G1(P22 — pn1) — iG3p13,

Pa = —(m+i(Ar+ B2))p1s + iGifss — iGapua, '

= 2mpu — 2vhn — iGipn +iGip1z + iGaps — iGipaa,

s = —(72 +ils)pas + iGip1a + iGa(pss — fna),

Pss = 2mapas — 1G2p32 + 1G3p2s. ‘ (5.5)
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For the system (b), the following transformations are undertaken to get rid of the

rapidly rotating terms
;5.‘:' = Pis‘,i= 1a2a3
prz = pe™"’,
Pz = pue,
ps = prae ), (5.6)

The equations of motion for the system (b) in the rotating wave approximation are:

puu = 2mpan — wpn —iGipra + iGipa,

Pz = —(n+m+v+idi)pz —1Gi(u — pn) — iGrhrs,

pia = —(v+i(A1 — A2))pis + iGipas — iGapra,

5ay = =2 +72)Paz + iGipra — iGpa + iGapas — iGas,

Pz = —(m + 72— iD2)p2s + iG1pas — 1G2(pa2 — Pas),

fsz = 2vpu + 2%2p2 — iGapn +1Gipan. (5.7)

The overdots in eqns. (5.5) and (5.7) denote first order time derivative of the corre-
sponding variables. The parameters 2G, = 2dy; - Ey [k and 2G; = 2dzs - By /R are the
Rabi frequencies associated with the laser fields E) and E,, respectively. The detunings
of the field from the atomic transitions are given by A; = wy; —w; and A3 = u;23 - wy.
It is the field at frequency w; that circulates through the cavity and shows bistable be-
havior, hence we examine the induced polarization on the |2) « |3) transition which is
given by

P(w;) = ndszfpas, (5.8

where n is the number of atoms per unit volume.

In the ring cavity (Fig. 5.1) the coherent field E7 at frequency w; enters into the cav-
ity from the semi-silvered mirror 1 and drives the atomic sample. The control field at
frequency w, further regulates the induced polarization P(w;) through Autler-Townes
effect and interference effects, which alters the absorption and the dispersion profiles
of the active medium at the field frequency w,. The boundary conditions for the ring
cavity impose the following conditions between the incident field Ej, the transmitted

field ET, the fields E,(0,t) and E;(L;,t) which are fields at positions 0 and L in the
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cavity,

E](t) = VTEy(Lyt)
E,(0,t) = VTEL(t)+ Re % Ey(Ly,t — At), (5.9)

where L, is the length of the sample, and At = (L; 4+ 2L;)/c is the time light takes to
travel from mirror 2 to mirror 1. The cavity detuning 8, = (w.—w,)Lr/c, where w. is the
frequency of the cavity nearest to resonance with the incident field frequency w,, and
Ly =2(Ly+ Ly) is the total length of the cavity. In eqn. (5.9) the first condition is for the
transmitted field amplitude which is merely determined by the field at the end of the
sample at position L, in the cavity times the square root of the transmission coefficient of
the semi-silvered mirror 2; while the second boundary condition in eqn. (5.9) is at the
position 0, where two field amplitudes add up - one contribution is from the incoming
field transmitted through the input mirror 1, and the second contribution comes from
the feedback (i.e. the field at L, at an earlier time ¢t — At) which could utmost be out of
phase by a factor 4, due to cavity mistuning.

The field equation in the slowly varying envelope approximation (described in eqn.

(2.9)),
0F, , OF,

Bt ¢ 0z .
with the boundary conditions (5.9) is solved in the steady state limit, i.e. 0E,/0t =

= 2mi Wy d32 P(LUQ), (510)

dpi;/ 8t = 0. Unlike the two-level system where the induced polarization P(w;) reduces
to a relatively simple analytical form we had to resort to numerically solving these self-
consistent set of field-matter equations. To obtain the polarization we solve the set of
simultaneous coupled equations (5.5) or (5.7) for the system (a) or (b), respectively.
Then using the relation (5.8) we integrate equation (5.10) in the steady state limit over
the length of the sample inside the cavity. The boundary conditions used in the steady

state limit reduce eqn. (5.9) to

E;?r = \/TE2(L1)
Ey(0) = VTE! + Re=* Ey(L,). | (5.11)

We also note that in the limit of the control field G, — 0 for system (a), and on taking

the multiple limit G; — 0, 71 — 0 for system (b); both the systems reduce to the
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Figure5.3: Shows the decrease in the threshold due to the control field for system (a) compared
to the usual two-level bistable system. The threshold can be controlled by changing thc.e control
field G, /v2 = 3,5,7,10,20; C = 400; and A, = Az = 0, Note'the possibility of transistor action
for G /v2 = 10.

conventional two-level scheme where the absorption coefficient a on the |2) « |3)
transition is given by
_4dmws diyn

In order to compare the results with the two-level system we define the usual co-
operation parameter C such that C = aL,/2T , same as in the two-level system [152, 154].

5.3 Electromagnetic Control of Optical Bistability

In this section we present details of our numerical results. We show that on application

of the control field one can drastically modify the threshold for switching . Fig. 5.3 gives
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Figure 5.4: The quantum interference effect induced decrease in the threshold by having a
long lived state |1) , i.e., 71 /72 = 0.1,0.25,0.5,1.0; G1 /2 = 1.0, C = 400; and Ai=A=0.

the bistable behavior of the two-level system subjected to a control field on the upper
transition in system (a). Clearly the control field leads to the lowering of the bistability
threshold owing to the Autler-Townes splitting . The control field creates a dressed state
doublet at :i:\/Af+—4|GlP- . The absorption at the linecenter decreases with increase in
the control field G,. As the control field gets too large the bistable behavior disappears,

as for large G, there is hardly any linear absorption and even the linear dispersion at
the linecenter is zero.

We now examine the perturbative result to understand the quantum interference
effect. For the ladder system Fig. 5.2 (a), the linear susceptibility on the transition
|2) > |3) to all orders in the strength of the control field G, and to first order in the
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cavity field G; is given by

G? -
Ay + Ay — 1)

X(a)(w2) o [(Ag —i72) — ( (5.13)

In absence of the control field the susceptibility x(q)(w2) in eqn. (5.13) has only the
first term, the second term comes about due to interference between the two possible
absorption channels of the field at the frequency w; to the dressed state doublet created
by G, on the transition |1) < |2). Due to this interference term the absorption of
population from |3) is now dependent on the decay of the coherence 4,3 though the
transition |1) ¢ |3) is not dipole allowed. At resonanceie. A, = A; = 0, egn. (5.13)

reduces to
n
a ————————————
Gl + 7
The absorption at the linecenter again decreases with a decrease in v;. Thus if the

X(a)(w2) (5.14)

level |1) is long lived then we can achieve further lowering of the bistability threshold.
This is demonstrated in the Fig. 5.4. We see that over and above the reduction due
to the Autler-Townes splitting there is a further reduction of the threshold due to the
interference effect . The reduction in the threshold is quite significant, its more than 50%
as one decreases v; from 1.0 to 0.1. ,

We do not expect any change in the second bistability threshold (i.e., the threshold
for switching from the on state to the off state), as here the field G; becomes too large
thereby offsetting the advantage of a long lived state |1), this is also clearly seen in eqn.
(5.14). We also demonstrate this by calculating the all order response of the control
field on the |2) « |3) transition. The result of this calculation is shown in Fig. 5.5. We
see that the atomic coherence decay v, from the upper level plays little role for large
G2. The response at the bistable transition is drastically modified by this decay.

Furthermore we compare the bistability threshold for the two-level system, and the
control field scheme (say for example system (a)). We arrange various parameters such
that both have the same degree of absorption (i.e. same value of the Imaginary part
of p23). To this end, in the two-level system the input field is detuned by an amount
so that the linear absorption is same as that at the linecenter in presence of the control
field. As the Fig. 5.6 shows there is substantial advantage in using a control field as the

threshold of switching is much lower with the control field than without it.
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Figure 5.5: The all order nonlinear absorption for different values of the cavity field G,/y; =
0.1, 5.0 and Gl/‘)'g = 1.0.

We next present the modifications in the bistability characteristics if the control field
is applied on the transition as in Fig. 5.2(b). In the absence of the parameter v the
coherent population trapping (section 2.2) occurs if the two detunings are equal . This
leads to disappearance of the bistability hysteresis. In the presence of decay v and
operating on resonance, the absorption on the |2) ¢ |3) transition is again proportional
to the decay v of level |1) which is not dipole connected to level |3).

Recently Shang-quing Gong et al. [155] analyzed our model for the case with v — 0,
where by taking into account the effect of phase fluctuations in the control field at
the coherent population trapping condition they get back the bistable behavior which
was lost due to the coherent population trapping phenomenon. With increase in the
linewidth of the control laser they found that the threshold increased (bistable hystere-

sis loop became wider). Furthermore they also analyzed our three-level A-model in
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Figure 5.6: For the same level of absorption, i.e., Im(fz3) = 3.85 x 10~3, the appropriately
detuned two-level system (G1/7; = 0.0, A; = 0.0, A; = 5.0) requires a much larger threshold
than the three-level scheme (a) with the control field for C = 400, Gi1/72=5.0,4; = A; =0.0.

which the atoms in the closely spaced lower levels (system (b) without v and closely
spaced levels |1) and |3)) are initially prepared in a coherent superposition state [156].
They found that bistability characteristics can also be controlled by varying the initial
coherence between these lower levels. This initial coherence could be obtained in many
ways, say through a microwave field coupliﬁg the two lower levels. With increase in
the initial coherence they obtained wider bistable hysteresis loop.

Coming back to our system (b) (Fig. 5.1 (b)) the analog of eqn. (5.13) for the A-

system is,

. G? -
x@(wz) ¢ | =8 = iln +72) = 3 AT iu)] : (5.15)

Fig. 5.7 gives the changes in the bistability characteristics as the strength of the control
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Figure 5.7: Effect of quantum interferences for system (b) for v = 0.0, C = 400, A; = 0.0, A; =
1.0,Gi/v2 = 1,,3.,5.,7.,10.. The behavior is similar to that for the ladder system (Fig. 5.4).

field is changed. We have chosen A; = 0, v = 0, and to avoid the coherent population
trapping condition we choose our field frequencies such that A; # 0. The results are
somewhat similar to those for situation of Fig. 5.3, we see substantial reduction in the
bistability threshold (more than 50%_) with increase in the control field strength. We

discuss in the next section the transient response of our proposals.

5.4 Control Field Induced Changes in Transient Response

For simplicity we consider the transient response of the system in the mean field approxi-
mation [150], i.e. in the multiple limit aL; — 0, T — 0, and é, — 0. It is called the mean
field limit as the field inside the cavity does not change very much in each pass, due

to the weak coupling ( aL; — 0) but the mean lifetime of the photons ( Lt /cT) in the
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Figure 5.8: Comparison between the two-level scheme and the proposed schemes, the rise

time is equal to (rk ~ 5.0). The temporal evolution is shown for different operating points, in

the two-level system y,, = 401.01,401.1 and for system (a) y,, = 83.8,83.9, 84.0 one observes

critical slowing down phenomenon as we approach the switch up intensity. We choose C =

400, A; = A, = 0.0.
cavity is large because T' — 0. Thus the photons even in this weak coup‘ling limit experi-
ence substantial interaction with the atoms due to the many passes they make through
the sample owing to longer photon lifetimes. The limit §, — 0 implies that the cavity
detuning is smaller than the free spectral range but of the same order of magnitude as
the cavity lifetime ™!, thus ensuring that we operate in the cavity mode resonant with
the incident field. It should be noted that our previous discussion on control of the
switching threshold is completely general and no mean field approximation is made.

The time evolution of the transmitted field in a good cavity (i.e. k™! « ;) and with
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Figure 5.9: Temporal evolution in the multistable domain, the switching to the second stable
state at yop = 140, 140.5 is oscillatory with a small rise time(< 7x = 5.0), switching to the third
stable state at yo, = 140.7,141.0 takes longer time (> 7« = 15.0). Also the operating point
beyond the multistable region y,, = 156.0 takes similar time (~ 7x = 15.0).

8, = 0 is given by

0z

K = —(z —y)—2CP,, (5.16)

where k™! = ¢T'/ Lt is the cavity lifetime, z and y are the normalized amplitudes of the
transmitted and the incident fields, respectively. Here the decays 1 = 72 = 7, and the
dimensionless normalized fields are, z = d3; EY/ (2h%4?T)Y/? (transmitted field) and
y = dz; E!/(2h*42T)!? (incident field); and P, is the normalized nonlinear response of
the medium defined as P, = (n/v/2)~}[P(w2)/i], on similar lines as in Ref. [152]. The
transmitted amplitude z is complex, whereas the incident field y is assumed to be real.

We initially begin with no input field, ie. y = 0,z = 0 and then set the input field y to
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. an operating point yo,, and observe the dynamical evolution of the transmittéd field by ‘
integrating eqn. (5.16) till the output field reaches its steady state value corresponding
to the input field yop. The polarization P, in eqn. (5.16) is derived from inverting the
equations (5.5) or (5.7) in the steady state for the scheme (a) or (b), respectively. The
transient response with the control field (solid line) has a very similar behavior to the
usual two-level case (dotted line) as is shown in Fig. 5.8. We see that the rise time
(r& ~ 5.0) for both the cases, with and without the control field. As is shown later
in section 5.6 multistability is observed for an appropriate choice of the control field
parameters like intensity and detunings. The transient study shows that if we choose
the operating point (y.,) in the multistable case the output switches to the second stable
state in an oscillatory fashion but with a fast response time, see Fig. 5.9. The switching
times are relatively longer for switching from the second to the third stable state very

similar to that of an operating point chosen beyond the multistable region.

5.5 Regression to steady state

In this section, we discuss how a system responds to perturbation when its initially in a
stable stationary state. When the system is slightly displaced from this stable state the
regression to the steady state is governed by the eigenvalues of the relaxation matrix
obtained from linearizing eqn. (5.16) around the stationary state. In eqn. (5.16) we
consider z — z, + dz, where z, is the steady state value and éz is small perturbation
such that éz <« z,. We expand P,(z,z*) in Taylor series around the stationary state

value (z,) and take only the terms linear in éz, i.e.

Py(zo + 62,27 + 62°) & Py(z0,32) + 62 (6%’(%)) + 62" (6—%&@> . (5.17)
:Z:O [

On linearizing eqn. (5.16) we get the following eigenvalue equation
§ 1+20 (&) 20 (&) §
cofs ) [ire@) @ J[e]
0t | sz 20 (%) 1+2C (%) || &
We are considering here the following situation. Let us assume that the system is ini-

tially in a steady state corresponding to the input field value El. If the incident field E;
is rapidly changed to E} + 6E] (|5 Ej| < E; ) the system approaches the new, slightly
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Figure 5.10: The regression to steady state is governed by the eigenvalue A « (y, — y)f’, where
B depends on the control field. With increase in control field the system takes longer time to
return to its steady state, the inset depicts the usual two-level system where 8 = 0.5.

different steady state corresponding to the input field value of Ej + $E]. This can be
experimentally observed by looking at the transient behavior of the transmitted light.
The solution of the linearized equations (5.18) are linear combinations of exponentials
e*t, The smallest eigenvalue of eqn. (5.18) (one with the smallest real part) governs this
rate of regression to the steady state. If we consider the system approaching the lower
threshold, i.e. as y — y,, then we have the eigenvalue A — 0, as (yi, ~ y)?, where
B = 1/2 for the two-level atom model (see inset of Fig. 5.10). The regression to the
steady state goes as e and as A — 0 we observe the phenomenon of critical slowing
down as we approach the threshold point. The value of 4 is no longer a constant as in
the two-level atom case but is now dependent on the the control field, see Fig. 5.10. This

chénges the slope of the curves in Fig. 5.10 and now the eigenvalue A near the thresh-
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Figure 5.11: Control-field induced multistability for C = 400, A; = 0, Ay = 10.0 and.Gl/ Yo =
5.,7.,10.,20.

old has a different power law dependence, i.e. A o (y:» —y)® where 3 now depends on the
control field and with the increase in G, the system takes longer time to revert back to its

steady state value. In the next section we describe control field induced multistability.

5.6 Control Field Induced Multistability

We describe in this section the possibility of obtaining multistability due to the control
field. The multistability in three level systems has been reported under various con-
ditions [157]. The aspect that we report is that, multistability in two-level systems can
be induced by a control field which is not a second cavity field. In the presence of the

control field the polarization of the medium is found to be the ratio of two polynomials
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of order 5 and 6 in G,,

Ga(cr + e2|Ga|? + c3]Gal?)
cq + cs5|G2|? + ce|Ga|* + C7|G2|6,

~ where ¢; to ¢; are complex parameters that depend on the detunings, lifetimes, and

P,(Gs2) =

(5.19)
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Figure 5.12: The region of multistability could be relocated by varying the detunings A, = 10.,
A; = 5.and A; = 0.0, Az = 10.0. Here, C = 400 and G /72 = 10.

the control field strength of the respective systems. For the usual two-level system we
have only the first order term in the numerator and up to the second order term in G,
in the denominator, giving rise only to bistability . Whereas in presence of the control
field in the appropriate parameter domain (i.e. choice of ¢;’s) one has the possibility of
multistability . These multistable solution would correspond to the various roots of the
polarization given by the polynomial in eqn. (5.19).

In Fig. 5.1, 5.12 and 5.13 we show some representative situations of multistable

behavior for different parameters like strengths and detunings of the control field. As
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Figure 5.13: The region of input intensities over which there is multistability is broadened by
increasing A; = 0., 5., Here C = 400 and G1/7; = 10,

we increase the field strength of the control field (from G, = 5.0) we see the onset of
the multistable hump at G, = 7.0, and it has completely manifested for G, = 10.0 and
20.0, as shown in Fig. 5.11. One does not merely get multistability but by changing the
parameters of the system, one can choose / alter the region of multistability as shown in
Fig. 5.12. In Fig. 5.13 we show that my merely changing the detuning of the control
laser, one can increase the region of multistable behavior. All these show that one has
greater control over the various regions of operation due to the external control field
which can be varied independently. Hence by changing these external field parameters
we can alter the region in which this multistate switch can operate.

In conclusion, we have demonstrated schemes with which one can substantially de-

crease the threshold required for a bistable device using field induced transparency
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and quantum interference effects. We also studied the transient response of these con-
trol field induced bistable schemes. We have shown existence of multiple hysteresis
for an appropriate choice of control field parameters. This provides for a possibility of
versatile use of the same device configuration in more than one application, both as a

bistable as well as a multistable switch.
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CHAPTER VI

Enhanced Nonlinear Signal Generation under
Coherent Population Trapping Conditions:

In nonlinear optics one of the goals has been - how to improve the efficiency of
the genefation. We have reviewed in section 2.5 some of the recent experiments where
enhancement of the efficiency of the nonlinear generation process has been achieved by
coherent preparation of the medium. Indeed the ideas of atomic coherence have been
used in very wide variety of applications such as to lasing without inversion (section
2.8), large refractive index and magnetometry (section 2.9). In many of these proposals
atomic coherence plays a vital role. We know that the atomic coherence is maximized in
a coherent population trapping state (section 2.2). Recently, an ensemble of Pb atoms
prepared in this maximum coherence state was utilized for efficient conversion of blue
to ultraviolet light [53]. Atomic coherence was utilized to obtain the effective nonlinear
susceptibility to be of the same order as the linear susceptibility. This was accomplished
by using EIT to prepare near-maximal atomic coherence on a Raman transition. They
obtained efficiency of ~ 40% in the conversion of intense blue laser light at 425 nm to
violet light at 293 nm. Here we study in detail the enhancement of nonlinear signal
by utilizing this maximal coherence of the CPT state, we augment their findings in the
non-perturbative regime.

Most of the previous studies have been carried out in the weak probe case, in this
chapter we develop a non-perturbative approach to study the generatidn of nonlinear
signals in a coherently prepared medium. We study the nonlinear generation process
in a system prepared in the coherent population trapping state. We calculate enhance-
ment factors of the order of ~ 102 in the generated signal under a variety of conditions.

In our scheme we have two fields acting simultaneously on each transition in a A-

system. By choosing the detunings of the pump fields such that we operate at the

1This work has been accepted for publication as a regular article in Physical Review A, titled En-
hancement of Nonlinear Optical Signal under Coherent Population Trapping Conditions, Ref. [158].
Also presented in an invited talk at National Laser Symposium - 97, Physical Research Laboratory, Ahmed-
abad, INDIA.
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Figure 6.1: (a) The generation of nonlinear signal atw, + 2, in the nonlinear process, produced
by absorption of wy, w2 + Q and emission of w,. (b) The A - configuration for the atom and the
four fields coupled to the various transitions. (c) The possible wave mixing geometry for this
process in a thin medium. The fields atw; and w; + 2 are almost collinear and hence the relative

angles between them do not matter. All the dashed lines refer to the generated field atw; + Q.

coherent population trapping condition, we create the required atomic coherence.

We study the enhancement of w; + (2 generated by the nonlinear process (w; + ) ="
wy —wz + (w2 + ), under CPT conditions in a three-level A-system. Fig.‘ 6.1 (a) depicts
this process, where w; and w; + ) are absorbed and w; is emitted to generate the field at
w; + Q. Our analysis is non-perturbative, hence all the fields at w;, w; and w; + €2 can be
strong. Our approach also enables us to study other related issues like pulse matching
in the non-perturbative domain. Our non-perturbative analysis enable's us to answer,
if for a thick medium pulse matching will occur at high probe powers. We find the

remarkable result that even at l’ﬁgher probe intensities pulse matching takes place.
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6.1 Non-perturbative Formulation

We consider a A-system Fig. 6.1 (b). The excited state |1) is coupled to [3) (|2)) by the
monochromatic field E, (Ez) with frequency w; (w2). We have another set of fields E}
(E;) at frequency w; + € (w; + Q) acting again on the same set of transitions |1) > |3)

(1) « |2)): The total Hamiltonian of the system is given as

" Hr = hwizAn + hwsApn — diz - (E.ze-i(w’t":’ﬂ + E‘Qe_‘((“’z‘Lmt'E’i"n)Alg
: —Jls . (E‘le-i(w,:-z,.r) + E‘;e—i((w1+0)t—i€; .1"'))A13 +he 6.1)

where A;; is the atomic transition operator [i)( j|. The energy is measured from the
ground state |3}, and kw3 (hwas) is the energy difference between level |1) (|2)) from the
- ground level |3). Here d;; is the dipole interaction term for the transition l2) & 15); k's
are the wave-vectors of the corresponding fields with amplitﬁdes E ’s. The equations

.of motion for the density matrix after applying the rotating wave approximation are

fi‘g_;l' = —2(m +1)pon + (G2 + Gye™ Yo — i(G; + G’ €)p1,

o +i(Gy + G’le.—"“)pal - .i(G; + G, e_f“)pw, | )

it —(n + 72 + i82)pra — i(Ga + Ghe™ ) (p11 — p22) +i(G1 + Gie ) paz,

é%? = —(m+72+ti1A)ps+ G2+ Ghe ™) pys — 1(G1 + Gie ) (2p11 + p22 — 1),
%:—2 = 2yp11 — i(Ga + Gy~ M)om +i(G; + Gy €™ )pna,

%‘?‘ = (A7 — Ai)p2s + i(Gy + G €™)py3 —i(Gy + Gre™™)pa, (6.2)

where the Rabi frequencies of various fields are given by 2G; = 2(dy3 - E e 7Y [h,
2G, = 2(dis - Ege‘i‘"") /h, and similarly the Rabi frequencies 2G, 2G), for the primed
fields E/, Ej, fespectively. The quantities 27, (27) are the spontaneous emission decay
rates from |1) to |3) (]2)) and the detunings are A; = w13 —w; and Az = (w13 — wa3) —Wwa.
As we are dealing with a closed three level scheme we have p1; +p22+p3s = 1. Note the
explicit time dependence of ¥ in eqns. (6.2), as two fields simultaneously couple each

transition. In order to obtain non-perturbative solution of egns. (6.2) we expand pqs in

terms of its Fourier components as

= —inft ()
pap= 3 € "Vpgp. (6.3)

n=-—0oo
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On substituting the relation (6.3) in eqns. (6.2) and equating the various coefficients
of e*" we obtain coupled set of equations (6.4) for each Fourier component. Each
Fourier term is denoted by n and is coupled to the nearest neighbour components n +1
and n — 1. These coupled equations have been solved numerically using the matrix
continued fractions [159] as is shown in some detail in the next sect_ion. The advantage
of this method lies in the fact that one is not restricted to weak fields at w; + Q but the
fields involved could be of arbitrary strengths.

6.2 Matrix Continued Fraction

In this section, we show the methodology of using the matrix continued fractions tech-
nique to solve the coupled set of equations which we obtained in the previous section.
We need to solve non-perturbatively for all the Fourier components, and these equa-

tions can be cast into the matrix form as
AnQn + A+¢n+l + A_Qn-l = i'05n,o + r+6n—l,0 + r_<sn+l.0 ’ (64)

where ®; are 8 x 1 column matrices containing the density matrix elements pos for the
it* Fourier component, here o, 3 = 1,2,3; AF are 8 x 8 square matrices containing the
coefficients of the corresponding density matrix elements in ®; and r are 8 x 1-column
matrices which contain the inhomogeneous components, which result from elimina-
tion of the p3; term from all the equations using the relation p:(,g) =1- pﬁ) + pg‘;) (where
the superscript () refers to the zeroth order Fourier component). All components in
boldface signify that they are matrices. We observe that various Fourier components
denoted by the subscript n, are coupled to its nearest neighbor n + 1, due to the e***
dependence in eqn. (6.2). The three term recursion relation (6.4) can be cast in the form
of a matrix continued fraction [159]. We first deal with the homogeneous set of equations,

i.e. forn # 0, 1. Hence for n > 1 and n < —1, we introduce matrices Zy, such that
&, =72,.1° : (6.5)
Using eqn. (6.5) in eqn. (6.4) we obtain the following recursion relation forn # 0,41,

AnZ, + A+Zn+l +A7Z,, =0. : (66)
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We define the quantity X, such that
X, = Z.Z7},. (6.7)

On substituting the relation (6.7) in eqn. (6.6), we obtain for n > 1 the following matrix

continued fraction
X, =—(A,+ At X,41) A" (6.8)
For n < —1 we again redefine the variablesas Y_, = X:}. and obtain another matrix
continued fraction .
Y_ = —(Acnot +ATY o) lAY. (6.9)
We now consider the equations with inhomogeneous terms, i.e. for n = 0,%1, the

following inhomogeneous set of equations are obtained from eqn. (6.4)

Ad, +AT®, + A"®, = rt; forn=1, (6.10)
Ao® + At®, + A ®_, = r’; forn=0, (6.11)
A_1¢1 + A+Qo + A_@_g = r H forn = -1. (6.12)

On evaluating the matrix continued fraction relations (6.8) and (6.9) numerically we ob-
tain X, and Y_;, respectively. Then, on using relations (6.7) and (6.5) for X,, we obtain
the term ®, in (6.10), and similarly we use Y_; to obtain the term &_; in eqn. (6.12).
On substituting these we solve the three matrix simultaneous equations (6.10,6.11,6.12).
We are interested in the response of the system at w; +  hence we require the solution
®, of eqn. (6.4). As we have seen no assumptions are made on the relative strengths of
various fields in the continued fraction technique. One needs to sum the series involv-
ing the Fourier expansion i.e. eqn. (6.3), to larger values of n as the strengths of the
primed fields become comparable to the fields that create the CPT state. This essen-
tially boils down to evaluating the matrix continued fraction equations (6.8) and (6.9),

by taking larger values for n and summing more terms.

6.3 Dressed state analysis - Nonlinear signal in the perturbative limit

In the limit when the applied field at w, + Q and the generated field at w, + Q are weak we

can obtain an analytical result for the generated field. As we are interested in the signal
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generated at the CPT condition the two-photon resonance condition i.e. A, = Az = A
is assumed. Moreover, the fields at frequencigs w; and w, that create the CPT state are
assumed to be strong suéh that the primed fields merely act as perturbation to these.
We perform the dressed state analysis under these conditions.

This analysis is undertaken by solving the master equation in a representation such
that the Hamiltonian in eqn. (6.1) without the primed fields is diagonal (H = Hr{E! -
0}, fori = 1,2). This representation is obtained through an unitary transformation S
such that

STHS = A, (6.13)

where A is the diagonalized form of the Hamiltonian with the eigenvalues of H as its

elements. The unitary transformation S at zero detuning is

]

v

where ¢ = |G;]? + |G;|®. The transformation (6.13) is equivalent to going from the
q gomg

(6.14)

e T
a2

sleslesk

old basis |1),]2),|3) to a new basis |¢4), |¢1) which are eigenstates of the diagonalized
Hamiltonian. The state |¢.) = (G2|3) — G1|2))/V/{ gets decoupled from the applied
fields and hence from any further evolution. In this representation the equations of

motion for the transformed density matrix 5 (= S'pS) are

%5‘ = —i[A, p] — i[Ha, 5} + SY{L(SBSN}S,  (6.15)

where the Liouville operator £ operating on p contains all the decay terms of eqns.
(6.2), which are transformed appropriately as decays of p, as is shown in eqn. (6.15) (the
last term on the right hand side). The second term on the right hand side in eqn. (6.15)
contains the interaction of the primed fields at frequencies w, ; +  with the atom which
is treated as a perturbation to the Hamiltonian H of eqn. (6.13), where Hq = S'HqS.
The radiative decay terms lead to the coupling of the various matrix elements of 5 to
each other. Without the Hq term (i.e. zeroth order in the perturbation), the steady
state solution of eqn. (6.15) leads to the well known non-coupled state. Only one term

survives that is j__ = 1, all other jos = 0. In this perturbative limit we take just the
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first Fourier component in eqn. (6.3) for the expansion of p,s in eqns. (6.2). In the limit
Y1 = Y2 and to first order in the primed fields (w, 2 + ) the relevant equations of motion

for the density matrix p are,
dp(l) .‘ . _(0 -
— —(n—z\/Z) pid+npyl —ippll e,

dpt) : —i
L - —<n+2\/5) A4 o i e, (6.16)

where the constants n = (y1 + 72 +1A)/2 and p = (GG, — G4,G,)//2(. These equa-
tions are valid approximately even when 11 # v, as we have ignored the terms with
(M — 72)/Gi d'ependence in eqns. (6.16). We also note that eqns. (6.16) are obtained
without any secular approximation [160]. As we are examining the field generated at
w; + § the relevant polarization is the pg’(wl +Q)=3%,; Sl,-ﬁ,(})S}?,. Hence on solving
eqn. (6.16) in the steady state and using this summation relation, we get

(G1G) — G2 GY)G5Q

() wh = - ; .
Aslr ) = T 1 - i) (R — iy - i0) - (AEgEe )

(6.17)

Hence eqn. (6.17) gives the lineshape of the generated signal at CPT (A; = A, = A),
in the weak field limit (G}, G; <« G, G;) and for equal decays in both arms of the A
system (y1 = 72). We observe that for A = 0 the generated signal ( atw, + Q) peaks at

|G1]% + |G2|? beside the absolute minima at 2 = 0. We make a note that in deriving
eqn. (6.17) we have not put any restriction on , it could be of arbitrary magnitude.

We observe in eqn. (6.17) that whenever G, G} = G,G] the signal goes to zero for all
§2. This is because the two processes (w; +§) = w; —wo+ (w2 +0) and (wy +0Q) = wy—wy +
(w1 + ) acting in opposite directions cancel each other exactly . At CPT the population
in the states |3) and |2) is equal, where the fields w; and w; act. The first process is
depicted in Fig. 6.1 (a), and the second process is similar but starting with w; being
absorbed from |2) and w, being emitted, followed by absorption of w; + 2 and leading
to generation of w; + Q2. These processes become equally probable at CPT condition and
act in opposite direction, leading to exact cancellation of these two pathways and hence
there is no signal generation atw, ; + Q.

In Ref. [53] the enhancement was observed in the regime where Q@ > G; > G/,
1 = 1,2. Here we have no such restriction on the frequency of the generated field . In

eqn. (6.17) we provide the line shape of the generated field for all Q.
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Figure 6.2: (a) The intensity of the nonlinear signal at w, + §, for G, = Gy =Gy, = 1.0
while operating at CPT (dotted lines) ie. A; = A; = 0. The solid line shows the signal
away from the CPT éondition (A; = 5.0,A; = 0.0), it has been enhanced by a factor of 5 for
clarity. (b) The generated field intensity for higher field strengths G| = G, = G% = 10.0 while
operating at CPT (dotted lines). The solid line shows the signal away from the CPT condition
(A1 = 0.0, Az = 50.0), it has been enhanced by a factor of.10 for clarity. All fields and detunings

are scaled in terms of v.
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6.4 Enhancement of nonlinear signals

We show in Fig. 6.2 the generated intensit& when operating at CPT and away from it.
The intensity of the generated signal is proportional to |py3(w; + )2, we set Gy =0
while calculating this polarization. To obtain the population trapped state one needs
to tune the frequency of the fields w; and w, such that A, = A,. By operating at CPT
we minimize unwanted absorption, otherwise as we are dealing with intensities of the
fields which are much lower than the saturation intensity of the respective transitions it
would have led to pronounced absorption at resonance. We observe that at CPT in Fig.
6.2 (a), the enhéhcement in the generated field intensity is about 1.4 x 102 and 3 x 102, at
Q ~ 3 and 30, respectively (in fact for a wide range of {2, away from the line center the
enhancement is about ~ 10%). Furthermore, the minima at Q ~ 5.0 in the non-CPT case
(Fig. 6.2 (a)) is because the generated field £, and E, come into two-photon resonance.
In contrast, the smaller peak at Q ~ —5.0 is when E/, and E, form a CPT state leading
to slight enhancement in E!. '

We also show the strong field case in Fig. 6.2 (b) at CPT (dotted line), i.e. for G, =
G2 = G; = 10.0 and A; = A; = 0.0. We observe an enhancement of the order of ~ 10
and more for all  away from zero. The oScillations at CPT are due to the presence of
two strong fields coupling one transition. The solid line in Fig. 6.2 (b) denotes the field
away from CPT with A; = 0.0,A; = 50.0. With an increase in the mistuning from the
two-photon condition the enhancement increases. We make a note that all the profiles
in Fig. 6.2 have been calculated non-perturbatively using the matrix continued fraction
technique described in section 6.2.

We next discuss the source of this enhancement - why there is enhancement in per-
forming nonlinear optical experiments at CPT? As was discussed in section 2.2 at CPT
the ground state atoms evolve into a coherent superposition with approximately equal
and oppositely phased probability amplitudes in states |2) and |3), i.e. py; = p33 = 0.5 and
p2s = —0.5. This atomic coherence (denoted by p,3) oscillates 180° out of phase with
the optical coherence creating an interference minima at A, = A, [10]: This interfer-
ence populates the state [y_) and this state gets decoupled from further evolution thus
making the medium transparent. to these fields. The CPT state enhances the generation

of signal at w; + Q2 because, firstly it provides enhanced coherence between |2) and |3) (po3)

98



Re p23(m1—(o2)

Figure 6.3: The coherence term Re(p23), as a function of mistuning A, — A,; For the fields
tuned such that A; = 0, the dashed line is for G, = G; = 1.0 and the dotted line forG, = G2 =
10.0. The solid line is when the fields are away from the single photon resonant condition i.e.

Ay = 50.0 and G, = G2 = 1.0, note that the minima varies sharply around A; — A = 0.0.

which determines the relevant optical coherence py3 (see third equation in (6.2) for dpis/dt);
and secondly greater population is available in 12) (= 0.5) where the field G acts. In
contrast, when one is away from CPT not only that py; is small even the population is
distributed in all the three levels. Thus the enhancement is not merely due to reduced
absorption of G; and G but depends crucially on the coherence term pa3(wy —ws) which
provides the nonlinear interference in the CPT state.

In Fig. 6.3 we depict the behévior of p23 due to the fields G, and G, as a function
of the mistuning (from the CPT condition). For lower amplitudes of the field G, and
G, this coherence term varies sharply as a function of the mistuning from the CPT
condition (A; — Az). The width of the minimum at the two-photon resonance depends
on the field strengths and hence in turn depends on the single photon detuning. This
width decreases with increase in the detuning A (we discuss below the case of utilizing

CPT state formed when A; = A, = A # 0) as shown in Fig. 6.3. As is well known
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Figure 6.4: (a) The signal at CPT for G; = G = G, = 1.0 and for fields detuned from single
photon resonant condition i.e. A; = Az = 30, 50, 70. The inset depicts the generated field for
higher field strengths, G; = G, = G4 = 10.0 with A; = 100.0 at CPT (upper curve § = 0.0),
and away from it (lower curve é§ = 10.0). (b) Same as Fig. 4(a), but slightly away from the CPT

condition such that A; — A; = § = 2.0. The solid, dotted and dashed curves are for the signal
at A, = 30,50 and 70, respectively. All G’s, A’s and ( are scaled in terms of .
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even at low light levels the quantum interference effects at the population trapped state
persists [161, 162]. Clearly coherence term falls sharply for certain range of trapping fields
as one moves away from the CPT condition. This then explains the large enhancement
while working at the CPT condition.

The essential condition for formation of the CPT state is the frequency of the applied
fields such that A; = A; = A. We now discuss the case with nonzero A, i.e. when we
are away from single photon resonance of the pump fields G, G;. The signal due to the
CPT state formed with fields detuned from the atomic transition is shown in Fig. 64,
for Gi = G; = G} = 1.0when A, = A, = A = 30.0, 50.0, 70.0. We have also set
M = 72 = 1. At CPT the response at w; + (2 is given by eqn. (6.17). For large A the
two peaks should beat A/2 + \/(A/2)"‘ +1{Gi> + |G2|*. Wehave A > v, ~ G, i = 1,2,

hence the peak at @ ~ —(|G,|*+|G,{*)/A is dominated by the minima of the numerator

in eqn. (6.17) and consequently we have only one maxima at ~ A itself (Fig. 6.4(a)).
The enhancement due to the CPT state varies from 4.2 x 104, 1.5 x 102 at Q ~ —25, 75,
respectively. It should also be noted that when one is away from the single photon
resonance one needs to go only slightly away from CPT (§ = A, ~ A, = 2.0) to see the
advantage of operating at it unlike in the resonant case (with A = 0) shown in Fig. 6.2
(a). Operating at the detuned condition (i.e. A # 0) has twofold advantages, firstly one
gets an increase in the generated signal (for A; = 30, 50, 70, i = 1,2, the enhancement
in the intensity of the signal due to CPT is ~ 3 x 10?, 2.3 x 10%, 6.8 x 10% at Q ~ 20)
when operated at same § as compared to the single photon resonant case; secondly the
experimental ease, as this lifts the stringent condition of operating the laser fields E,
and E; at atomic resonance. The inset in Fig. 6.4(a) depicts the enhancement ~ 20 at
CPT for larger field strengths, ie. G, = G; = G} = 10.0 with A, = 100.0. At CPT
¢ = 0.0 which is the upper curve and the lower curve is away from CPT for § = 10.0.
We have plotted only the relevant range of 2 as away from CPT at § ~ 100.0 there is
enhancement due to the resonant Raman process. For larger A; = 500.0 and the same
mistuning § = 10.0 the enhancement is 2 x 10% (not shown). At CPT for propagation
to larger distances in a medium pulse matching occurs which is discussed in the next

section.
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6.5 Non-perturbative Regime of Pulse Matching

Pulse matching was first proposed by Harris [145] in a A system for weak probe fields.
It was shown that when an ensemble of atoms prepared in the CPT state were probed
by fields with arbitrary time-varying envelope, they establish transparency. Thus the
fields propagate over lengths which are order of magnitude bigger than Beer’s absorp-
tion length. The various Fourier components of the probe pulse after a characteristic
distance no longer experience absorption, and hence are decoupled from the atom.
Only the Fourier components that are matched in frequency difference, amplitude and
phase, so as to preserve the CPT state survive. They continue to propagate through the
medium without any loss due to absorption. Harris {163] derived new pair of variables
which are normal modes for EIT to study matched pulses.

This matching of pulse occurs for a weak probe field, as the strength of the probe
pulse is increased a coupled pulse pair propagates with a common group velocity,
these pulse pairs are termed as adiabatons [164, 165]. If the time variation of the pulses
is slow enough this pulse pair appears to be stable and may propagate to large dis-
tances, but because of nonadiabatic components such pulse pair is not stable [166] and
after propagating a sufficient distance they evolve into a pair of matched pulses.

We now derive the equations governing this signal generation process along a
medium containing N homogeneously broadened atoms per unit volume. We ignore
the depletion of the fields E; for i = 1,2, and examine the evolution of the primed fields
Elfori=1,2, along the z direction in a medium of length L and characterized by the
absorption coefficient a, as shown in Fig. 6.1 (c). The wave equation after the slowly

varying envelope approximation (section 2.9) for these primed fields is

% = z%‘:—i P, i=1,2. (6.18)
where the wave vector k! = (w; + Q)n;/c and n; is the refractive index (linear) at the
frequency w, + (1. The polarization characterizing the medium is given as P = Tr(dp)
which can be separated into different components at different frequencies, thus P, (P,)
will be obtained from p;3 (and p;;) at w;, + N (and w; + ), respectively.

If we calculate the polarization in the weak field ‘limit (ie. E! <« E)) the polarization

P, is linear in the primed fields and the wave equation (6.18) takes the following form,
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which is the well known form for the evolution equations in Ref. [145]. Hence at
CPT (A: = 0) for v = 1 for i = 1,2, in the limit of non-depleting pumps the evolution

equations for the weak probes are

F, : . ik F,
) w T ', (6.19)
dz \ R, —ikgemitk el F,

where we have introduced dimensionless quantities Fy, F, such that Fj = cf,;, . E{ /B

and F; = cﬂz . E; /h~42. The terms «; that qualify the medium are

QG2
(1 +ivT — i1 =iV - Q) - 1)
a,QGlG;

(1 + il — )1 —iT - i) ~ 1)’
QQQGQGT
C((1+3vVT—i)(1 ~ iVl — i) 1)’

. @G, |2
' (14 ivVE = i1 — i/ — i) — 1)

with ¢ = |Gi|? + |G,|* and G, = d}3 - E\/tiand G, = dy, - Ey /K. The absorption coeffi-

cients q; are given as

K1 =

Ky . =

Ky =

(6.20)

dm(w; + Q) 2. N
o= it Q) dyy N i=1,2. (6.21)
hengyi

In eqn. (6.19) the phase matching condition is Ak = (k; — &}) — (k; — k) = 0, which can
be achieved for the geometry given in Fig. 6.1 (c). Hakuta et al. [167] observed self-
induced phase matching in parametric anti-Stokes Raman scattering in solid hydrogen.
In the experiment of Jain et al. [53], they have observed enhanced conversion in the
regime where {2 3> G >> . To obtain the correspondence with their result we redefine
the fields F), — F,Gjexpix;z and F; — FG, expiksz, and take the large 0 limit. In this

limit «; takes only real values and results in redefining the phase matching condition as
Ak + (a1]Gal? = a3|Gi)?)/¢Q ~ 0, which then leads to equations (1) and (2) of Ref.
[53]. In our approach we do not restrict the values of § and hence the generated field
frequency can be arbitrary. |

The solution of eqn. (6.19) after phase matching and with the initial conditions that
the field G| is zero at the z = 0 and is generated along the medium given a finite input
field G, (i.e., F1(0) = 0 and F3(0) at z = 0) is

Fi(z) = 5%91(1 — &%), Fy(z) = %O—)(l + ™). (6.22)
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IF,(2)l

Figure 6.5: The generation of the nonlinear signal at w; + 2 along the length of the medium,

as shown in wave mixing geometry (Fig. 6.1 (c)), for aL = 40, 2 = 10.0,G; = G2 = 1.0 and the

initial conditions F;(0) = 0.0, F;(0) = 1.0. For the detuning A; = 50.0, the signal at CPT i.e.‘
§ = 0'(solid). For clarity the signal for the non-CPT case i.e. § = 2 (dotted) and 5 (dashed) have

been scaled by a factor of 10. Note the enhancement due to CPT. '

We observe pulse matching of Harris [145] for large z, i.e. Fl(éo) = Fy(oc0) = F,(0)/2.
In Ref. [145] the medium was initially prepared in a CPT state and the propagation of
weak probe fields through the medium was calculated. They used the wavefunction
approach where the decay channel was such that the excited state decays out of the A
scheme to either a state or a continuum. In contrast we use here the density matrix picture
in which all possible decay channels can be handled. Furthermore, in our treatment the
propagating probe fields could be of comparable magnitude with those forming the CPT
state, so that the polarization in eqn. (6.19) is no longer linear but contains all the higher
powers of the fields F; and F.

To calculate the polarization non-perturbatively, we use the expansion (6.3) in eqns.

(6.2) and obtain a coupled set of equations for various Fourier components (for each
n), which are solved simultaneously using matrix continued fractions as shown in sec-

tion 6.2. The evolution of the fields inside the medium is obtained by integrating the
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propagation equations (6.18) using the Runge-Kutta method. The polarization is calcu-
lated non-perturbatively using the fields at each z which in turn modifies the fields inside
the medium along the direction of propagation; this process is iterated along the whole
length of the medium.

In Fig. 6.5 we depict the generation of the field at w; + Q along the length of the
medium z in the units of oL ( = 40) at Q = 10.0. We expect a linear dependence of the
amplitude of the generated field in the thin medium. The solid line depicts the genera-
tion of signal at CPT and the dotted lines away from CPT. We see a dramatic increase in
the amplitude of the generated signal at CPT. The enhancement of the amplitude of the
generated field due to CPT is by a factor of ~ 230 and 608, in contrast to the non-CPT
case for the mistuning ¢ = 2 and 5, respectively. The generation of w; + 2 takes place
at the cost of w; + {1 (not shown in the figure) as they propagate through the medium.

To observe the pulse matching at higher probe powers the equations (6.18) were inte-
grated for various initial conditions; namely the generated field F;, = 0 at z = 0 and
various input levels of the field F;. The polarization was calculated non-perturbatively
and used to update the field at each z along the medium. In Fig. 6.6 we see the gener-
ation and build up of the field Fy(w; + ). This build up initially occurs at the cost of
Fa(wz + ) (dotted lines), then there are oscillations and exchange 6f energy between
these fields until they are matched, such that '

F_G

B G
after which they propagate in the medium without any loss. The condition (6.23) is got

(6.23)

by requiring that the CPT state is a non-interacting state in presence of all the four fields
(similar to the condition in eqn. (2.29) where the Hamiltonian given in eqn. (6.1)isused
instead). Moreover this steady state condition is independent of the relative strengths of
thé various fields. We now compare the weak probé case (Fig. 6.6 (a)) and the strong
probe case (Fig. 6.6 (b)). We observe that for higher probe power (i.e. F;, F, ~ G,, Gg)
the characteristic length for pulse matching is subsfantially reduced compared to the
weak probe case. This is due to reenforcement of the CPT state in presence of stronger |
frequency matched components (Fi(w; + ), 1 = 1,2) in the propagating fields. Even
for the thick medium (aL = 8 x 10%) its advantageous to operate at the CPT condition.

This is seen in the inset of Fig. 6.6 where we plot the generated field at z = 0.05 (aL)"!
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Figure 6.6: Pulse matching at higher probe powers at CPT with aL = 8 X 103, Q = 10.0, for
G, = G, = 15.0, F;(0) = 0.0 and F3(0) = 0.1 (a), 10.0 (b). The solid and dashed curves give
respectively the fields | F1(z)]| and |F;(z)|. At higher probe powers the pulée matching occurs at
shorter distances. The inset depicts the field generated at z = 0.05(aL)~! (shown by the arrow),

for the strong probe case at CPT (dotted line), and away from CPT (solid line), i.e. § = 50.0, as
a function of €. .
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as a function of .

In conclusion, we have studied the variou_s aspects of how the atomic coherence
plays a very fundamental role in generation of nonlinear signal. By operating at the
CPT condition we obtain maximum coherence which in turn leads to enhancement of
the signal. We have also seen that it is useful to operate at CPT with finite detuning
from the atomic resonance. Furthermore we have demonstrated pulse matching even
at higher probe powers. In fact we have shown that pulse matching takes place at much
shorter distances inside the medium at higher proEe powers. From our analysis its
clear that by choosing various other atomic schemes one could enhance other nonlinear

mixing processes using the coherence of the population trapped state..
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CHAPTER VII

Conclusions

We have demonstrated new 'population trapping states in two-level systems using clas-
sical frequency modulated field. We derived explicit conditions under which these
trapping phenomenon can be observed. We found that these trapping states are ac-
companied by crossing of energy levels, which lead to jumps in the population of the
system. We found that this trapping phenomenon is limited by the excited state life-
time. '

We generalized these states to a three-level cascade system. We found that trapping
of population persists, even if there is an initial phase mismatch between the two ap-
plied fields, or unequal choice of the modulation index and modulation frequency. We
observed the effects of coherent evolution in between crossing of energy levels leading
to quantum interference. We have also proposed a new method of creating inversion
across multiple states without affecting the population of the intermediate state, this
was achieved by utilizing these trapping states with appropriate choice of parameters
such that all the energy levels cross simultaneously. We furthermore described a pos-
sible optical atom realization of the three-level ladder system.

We have also studied various manifestations of the quantum interference effect in
optical bistability and nonlinear generation of signals.

We demonstrated the effects of field induced transparency and quantum interfer-
ence in the cooperative phenomenon of optical bistability, by coupling the excited
states to another level using a control field. We have demonstrated control field in-
duced decrease in the switching threshold. We obtained decrease in the threshold by
more than 50 %, using reduced absorption through Autler - Townes effect and also
the quantum interference effect. We also studied the temporal evolution of switching,
in our proposal, we found that the coefficient of critical slowing down is dependent
on the control field parameters. We have also obtained multistable behavior for an
appropriate control field, where the region of multistability could be fine tuned by a

judicious choice of the control field parameters.
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In nonlinear generation, we studied various aspects of how atomic coherence plays
a vital role in this phenomenon, we demonstrated enhancement of the signal by oper- |
ating the pump fields at the coherent population trapping condition. We found that its
useful to operate at CPT with finite detuning from the atomic resonances. We obtained
enhancements of more than 10? in the generated signal intensity. We also developed a
non-perturbative approach to deal with problems involving two strong fields coupling
the same transition. We have also studied the pulse matching phenomenon for higher
probe powers and demonstrated that pulse matching does occur at higher probe pow-
ers. In fact we have shown that pulse matching takes place at much shorter distances

inside the medium at lugher probe powers.
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