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Abstract

The Standard Model (SM) of particle physics has been very successful in explain-

ing a wide range of experimental observations and the discovery of the Higgs boson at

the Large Hadron Collider has confirmed the mode of generation of the masses of the

fundamental particles via the mechanism of electroweak symmetry breaking. This has

put the SM on a solid foundation. However, despite its success in explaining most of

the experimental data, the SM can not address certain issues, of which two of the most

important are non-zero neutrino mass and the existence of dark matter.

The most plausible way to generate small neutrino masses is the seesaw mechanism

which implies neutrinos to be lepton number violating Majorana particles. This Majo-

rana nature of the neutrinos can give rise to the neutrino-less double beta decay process

in which the total lepton number is violated by two units. It is well known that the

canonical high scale seesaw models are not testable in the colliders and there are var-

ious low scale seesaw models proposed in the literature motivated by their testability.

Such models can have various phenomenological as well as theoretical consequences.

For example, the heavy seesaw particles can lead to enhanced rates of various charged

lepton flavor violating decays and the new couplings associated with the seesaw can

alter the stability/metastability of the electroweak vacuum. In addition, these heavy

particles can have interesting signatures in the collider experiments. In this thesis, we

study various phenomenological and theoretical implications of massive neutrinos in

the context of various low scale seesaw models. We also explore the possibilities of

having viable candidates for dark matter in the context of seesaw models.

First, we explore the implications of the Dark-LMA (DLMA) solution to the so-

lar neutrino problem for neutrino-less double beta decay (0νββ ). The standard Large

Mixing Angle (LMA) solution corresponds to standard neutrino oscillations with ∆m2
21 '

7.5 × 10−5 eV2 and sin2 θ12 ' 0.3, and satisfies the solar neutrino data at high sig-

nificance. The DLMA solution appears as a nearly-degenerate solution to the solar

neutrino problem for ∆m2
21 ' 7.5 × 10−5 eV2 and sin2θ12 ' 0.7, once we allow for

the existence of large non-standard neutrino interactions in addition to standard oscil-

lations. We show that while the predictions for the effective mass governing 0νββ re-

mains unchanged for the inverted hierarchy, that for normal hierarchy becomes higher
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for the Dark-LMA parameter space and moves into the “desert region” between the

two. This sets a new goal for sensitvity reach for the next generation experiments if no

signal is found for the inverted hierarchy by the future search programmes. We also

obtain the sensitivity for the DLMA region in the future 136Xe experiments.

In the next part of the thesis, we study the minimal type-III seesaw model in which

we extend the SM by adding two SU(2)L triplet fermions with zero hypercharge to

explain the origin of the non-zero neutrino masses. The lightest active neutrino will be

massless in this case. We use the Casas-Ibarra parametrization for the neutrino Yukawa

coupling matrix and by choosing the two triplets to be degenerate, we have only three

independent real parameters, namely the mass of the triplet fermions and a complex

angle. The parametrization used allows us to have low masses of the triplet fermions

and large Yukawa couplings at the same time. We show that the naturalness conditions

and the limits from lepton flavor violating decays provide very stringent bounds on

the model parameters along with the constraints from the stability/metastability of the

electroweak vacuum. We perform a detailed analysis of the model parameter space

including all the constraints for both normal as well as inverted hierarchies of the light

neutrino masses. We find that most of the region that is allowed by lepton flavor

violating decays and naturalness falls is stable/metastable depending on the values of

the SM parameters.

In addition to neutrino masses, the existence of the dark matter is another issue that

points towards the need for an extension of the SM. Hence, it is important to study the

implications of the models that can simultaneously address these two issues. From this

point of view, we consider singlet extensions of the SM, both in the fermion and the

scalar sector, to account for the generation of neutrino mass at the TeV scale and the

existence of dark matter, respectively. For the neutrino sector we consider models with

extra singlet fermions which can generate neutrino masses via the so called inverse or

linear seesaw mechanism whereas a singlet scalar is introduced as the candidate for

dark matter. The scalar particle is odd under a discrete Z2 symmetry which ensures its

stability. We show that although these two sectors are disconnected at low energy, the

coupling constants of both the sectors get correlated at a high energy scale by the con-

straints coming from the perturbativity and stability/metastability of the electroweak
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vacuum. The singlet fermions try to destabilize the electroweak vacuum while the sin-

glet scalar aids the stability. As a consequence, the electroweak vacuum may attain

absolute stability even up to the Planck scale for suitable values of the parameters.

We delineate the parameter space for the singlet fermion and the scalar couplings for

which the electroweak vacuum remains stable/metastable and at the same time giving

the correct relic density and neutrino masses and mixing angles as observed.

In addition to the simple extensions of the particle content, we also consider a class

of gauged U(1) extensions of the SM, where active light neutrino masses are generated

by an inverse seesaw mechanism. Along with the three right handed neutrinos needed

for the cancellation of gauge anomalies, we add three singlet fermions. This allows

us to consider large neutrino Yukawa couplings keeping the U(1)′ symmetry breaking

scale to be of the order of ∼ O(1) TeV. Demanding an extra Z2 symmetry under

which, the third generations of both the electrically neutral fermions are odd gives us

a stable dark matter candidate. We express the U(1) charges of all the fermions in

terms of the U(1) charges of the SM Higgs and the new complex scalar. We perform

a comprehensive study to find out the parameter space consistent with the low energy

neutrino data, vacuum stability and perturbativity, dark matter bounds and constraints

from the collider searches.

Keywords: Neutrino mass, Seesaw mechanism, Majorana neutrinos, Neutrino-less

double beta decay, Vacuum stability, Metastability, Low scale seesaw, Dark matter,

Naturalness, Lepton flavor violation.
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Chapter 1

Introduction

In nature, we have four fundamental forces which are identified as : the strong inter-

action, the electromagnetic interaction, the weak interaction and the gravitational in-

teraction. The fundamental interactions are mediated by the exchange of field quanta,

i.e. particles, which are called as gauge bosons. The Standard Model (SM) of the par-

ticle physics is a mathematical framework that explains how the elementary particles

interact among themselves via these fundamental forces except for the gravitational

interaction [6–8]. In this chapter, we review the basics of the SM including the Higgs

mechanism and the generation of the particle masses. Then we discuss the major mo-

tivations towards the search for a theory beyond SM, with special emphasis on the

issues of neutrino oscillation (which indicates that the neutrinos are massive) and the

existence of the dark matter.

1.1 The Standard Model

The SM is based on the principle of the invariance of the Lagrangian under local gauge

transformations and the gauge group corresponding to the SM is GSM = SU(3)c ×

SU(2)L × U(1)Y , where c stands for the color quantum number, the subscript L indi-

cates that only the left-handed fermions transform under SU(2) and Y stands for the

hypercharge. Corresponding to each generator of the gauge group, there is a gauge

boson which act as the mediator of the forces. The SM has been highly successful in

explaining a wide range of experimental observations and the discovery of the Higgs

1
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boson at the Large Hadron Collider (LHC) experiment has completed the hunt for the

last missing piece of the SM [9, 10]. The Higgs boson holds a special status in the SM

as it gives mass to all the other particles, with the exception of the neutrino 1.

Figure 1.1: The building blocks of the SM. The first three columns correspond to the

three generations of fermions (the matter particles) including quarks and leptons. The

fourth column corresponds to the gauge bosons, the force carriers. The last column

consists of the Higgs boson, which gives masses to all the other particles except neu-

trinos. The mass, charge and spin are also given for all the particles. Image source :

Wikipedia [1]

The SM consists of three generation of fermions (which include both the quarks

and the leptons), the Higgs doublet (H) and the gauge bosons corresponding to the

strong (gluons) and the electroweak (EW) interactions (W±, Z, γ). Fig. 1.1 shows the

particle content of the SM along with the mass, charge and spin of each particle. The

transformation properties of the matter and the Higgs field content under SU(3)c ×

1The Higgs boson can give rise to a Dirac mass term for the neutrinos once we include right handed

neutrinos as well. But this requires the Yukawa couplings to be extremely small (∼ O(10−12)) to give

the sub-eV scale neutrino masses and this is not natural.
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SU(2)L × U(1)Y are as given below.

QL =

uL
dL

 ∼ (3, 2,
1

6
) ; dR ∼ (3, 1, − 1

3
) ; uR ∼ (3, 1,

2

3
), (1.1)

lL =

νL
eL

 ∼ (1, 2, − 1

2
) ; eR ∼ (1, 1, − 1) , (1.2)

H =
1√
2

 G+

v + h+ iG0

 ∼ (1, 2,
1

2
). (1.3)

From the above transformation properties, one can see that the left-handed fermions

transform as doublets under SU(2)L whereas the right-handed fermions transform as

singlets. Also, note that there are no right-handed neutrinos in SM and hence one can

not have a Dirac mass term for the neutrinos. However, with the above transforma-

tion properties, one can not write mass terms for any of the particles that are invariant

under the SU(3)c × SU(2)L × U(1)Y gauge symmetry. The Higgs mechanism of

spontaneous symmetry breaking prescribes a way in which the particle masses can be

generated in a gauge invariant way [11–14]. In this mechanism, the SU(2)L × U(1)Y

gauge group is broken down to U(1)Qem where Qem stands for the electromagnetic

charge. For a particle, Qem is related to the hypercharge and the SU(2) isospin I3 by

the Gell-MannNishijima formula [15, 16] as,

Qem = I3 + Y. (1.4)

1.1.1 The Higgs Mechanism and the Generation of the Particle

Masses

The SM Higgs doublet can be written as,

H =
1√
2

 G+

v + h+ iG0

 ≡ 1√
2

φ1 + iφ2

φ3 + iφ4

 . (1.5)

This is the minimal choice of the Higgs multiplet that one needs to give masses to all

the SM particles except neutrinos. The terms in the Lagrangian that involve H are
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given as,

LH = (DµH)†(DµH)− V (H) + LY ukawa (1.6)

where the first term corresponds to the kinetic as well as the gauge interaction terms

via the covariant derivative, the second term represents the Higgs potential and the

Yukawa terms correspond to the interaction of the Higgs field with the fermions. The

most general gauge invariant scalar potential is given by,

V (H) = −µ2H†H + λ(H†H)2. (1.7)

Μ 2 < 0
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Figure 1.2: Plots of V (H) as a function of |H| =
√
H†H . The left panel is for µ2 < 0

and the right panel is for µ2 > 0. We have taken |µ2| = 88.4 (GeV)2 and λ = 0.129

from the measured values of mh ∼ 125 GeV and v ∼ 246 GeV.

Let us examine the possible signs of the coefficients of the two terms in the above

equation :

• Case - 1 : λ < 0 : In this case, the potential is unbounded from below and the

vacuum will be unstable.

• Case-2 : µ2 < 0, λ > 0 : The potential has a minimum at |H| =
√
H†H = 0 (as

shown in the left panel of Fig. 1.2). Here, the action of a gauge transformation

on the vacuum state H = 0 does not alter the vacuum state and as result, the EW

symmetry is unbroken in the vacuum.

• Case - 3 : µ2 > 0, λ > 0 : Here, the potential has a minimum at H†H =
µ2

2λ
,

which is away from |H| = 0. In this case, the vacuum is not invariant un-

der SU(2)L × U(1)Y transformations and hence, the gauge symmetry is broken

spontaneously.
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Coming to the symmetry breaking scale, the potential is a function of,

H†H =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4), (1.8)

which is the square of the length of a vector in the four dimensional space. The mini-

mization of the potential fixes the length of the vector as,

H†H =
µ2

2λ
, (1.9)

which is positive for µ2 > 0. This projects out a spherical surface from the four

dimensional space when the potential is minimized. In fact, the SU(2)L×U(1)Y gauge

transformations on H is equivalent to the rotations in this four dimensional space.

Under such a rotation, the potential is invariant since it depends only on the length of

the vector from the origin, but the vacuum is not. Thus, there is an infinite number of

equivalent vacuum states (all the vectors of length
√
µ2/2λ), each of which transform

to a new vacuum (another vector of length
√
µ2/2λ) under the SU(2)L×U(1)Y gauge

transformation.

Now, let us consider the excitations around this vacuum state. Since the potential

is flat along the three rotational directions, excitations in these directions cost zero

energy. Hence, these correspond to the massless Goldstone bosons [17–20]. But, an

excitation along the radial direction is like climbing the wall and corresponds to a

massive particle.

For convenience, H can be written in another form as,

H =
1√
2

exp
(iζaσa

v

) 0

v + h

 . (1.10)

Here, σa are the Pauli matrices, h and ζa are the fields and a is summed over 1,2,3.

This representation is equivalent to the one in Eq.1.5 and the fields ζa correspond to

φ1, φ2 and φ4. Now, the SU(2)L × U(1)Y gauge transformations on H are given by,

U(1)Y : H → exp
(iλY (x)

2

)
, (1.11)

SU(2)L : H → exp
(iλaL(x)σa

2

)
. (1.12)
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Choosing λaL(x) = −2ζa/v at every point in space-time brings us to a gauge in

which,

H =
1√
2

 0

v + h

 . (1.13)

Thus, the unphysical Goldstone degrees of freedom have been gauged away. This

is known as the unitary gauge. In fact, the Goldstone modes will appear as the longitu-

dinal degrees of freedom of the three gauge bosons W±
µ and Zµ. These gauge bosons

get mass through their interaction with the Higgs field via the covariant derivative in

the kinetic term,

Dµ = ∂µ − i
g′

2
Bµ − i

g

2
W a
µσ

a. (1.14)

Wµ
± correspond to

Wµ
1 ∓ iWµ

2

√
2

and one of the two linear combinations of Bµ and

Wµ
3 gives Zµ, the other one being Aµ, the massless photon.

Also, the charged leptons and the quarks get mass from the Yukawa interactions,

− LY ukawa = YeeRH
†lL + YddRH

†QL + YuuRH̃
†QL + H. c., (1.15)

where, H̃ = iσ2H∗ and σ2 is the second Pauli matrix.

Note that the neutrinos are massless tn the SM due to absence of right handed neu-

trinos. This is to incorporate parity violation which was observed in 1956 by Madam

Wu and her collaborators by observing angular distribution of electrons in the the β-

decay of 60Co nuclei [21]. In addition, the left handed and the right handed charged

fermions are also not treated on equal footing in the SM since only the left handed

fermions participate in the charged current (CC) weak interactions.

As already mentioned, the SM is a very successful model and is in very good

agreement with most of the observed phenomena. Still, there are several compelling

reasons that motivate us to look for theories beyond the Standard Model (BSM). Some

of the theoretical drawbacks of the SM which motivate us to consider a new theory are,

• The SM contains a large number (19) of free parameters which have to be deter-

mined from various experiments and this is certainly not a desirable characteris-

tic of a minimal theory of nature.
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• The masses of the fermions in the SM vary over a wide range, all the way from

the sub-eV scale neutrinos to the top quark of mass ∼ 170 GeV. There is no

explanation to why such a large hierarchy among fermion masses exists.

• The Higgs mass gets large corrections from the higher order loop diagrams due

to its self-interaction as well as the couplings with gauge bosons and fermions.

The theory is perceived unnatural if a severe fine-tuning between the quadratic

radiative corrections and the bare mass is needed to bring down Higgs mass to

the observed scale. This is known as fine-tuning or naturalness problem.

• The ultimate goal of particle physicists has been to have one unified field the-

ory that describes all the interactions in a single framework. The three gauge

couplings are not unified at any scale in the SM and this motivates studies of

grand Unified theories in which SM can be embedded in some larger groups like

SO(10) or SU(5). Also, gravity, the fourth fundamental force is not included in

the SM.

• It is observed that the present universe contain mostly matter and no antimatter

other than the rare antiparticles produced from cosmic rays. The SM can not

explain this observed matter-antimatter asymmetry of the Universe.

In addition, the two most important motivations for going beyond the SM come

from experiments which are the observation of neutrino oscillations which has shown

that the neutrinos are massive and the existence of dark matter. In the next two sections,

we will discuss the phenomena of neutrino oscillation and the issue of dark matter in

some detail.

1.2 Neutrino Oscillation

Neutrino oscillation is a quantum mechanical interference phenomenon in which a

neutrino created with a particular flavor can be measured to have a different flavor

after propagating for some distance in space [22–24]. The transition probability varies

as a periodic function, which depends on the distance of propagation, the energy of

the neutrinos as well as the neutrino-mass squared differences. This phenomenon was
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predicted for the first time by Bruno Pontecorvo in 1957 [22, 23]. The observation of

this phenomenon implies that the neutrino has a non-zero mass unlike as predicted by

the SM and hence, this serves as the first direct experimental indication of the existence

of a theory beyond SM.

In the case of the massive neutrinos, the three flavor eigenstates (να) are superpo-

sitions of the mass eigenstates (νi), i.e.,

να =
3∑
i=1

Uαiνi, (1.16)

where it is assumed that there are three different mass eigenstates andU is the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix relating the mass and the fla-

vor eigenstates. In the standard three neutrino mixing, U is a 3×3 unitary matrix. If the

neutrinos are Majorana particles, U will have three mixing angles and three physical

phases (two Majorana phases and one Dirac CP phase) and if the neutrinos are Dirac

particles, U is parametrized by three mixing angles and only one phase (the Dirac CP

phase). In the standard parametrization, U is given as,

U =


c12c13 s12c13 s13e

−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23s12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13

P, (1.17)

where cij = cosθij , sij = sinθij and the phase matrix P = diag (1, eiα2 , ei(α3+δ))

contains the Majorana phases.

In vacuum, the probability of transition from one flavor (να) to another flavor (νβ)

is given by,

P (να → νβ) =δαβ − 4
∑
i>j

Re (U∗αiUβiUαjU
∗
βi) sin2(∆m2

ij

L

4E
)

+ 2
∑
i>j

Im (U∗αiUβiUαjU
∗
βi) sin(∆m2

ij

L

2E
)

, (1.18)

where E is the energy of the neutrino and L is the distance between the source and

the detector. From this equation, one can see that the neutrino oscillation probabilities

are sensitive only to the mass squared differences and the mixing angles, but not to the

absolute masses. Also, the probabilities are independent of the Majorana phases and
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hence the oscillation experiments can not provide any bound on these. The propaga-

tion of the neutrinos can be modified considerably when they travel through a dense

medium like in the sun or the core of the earth. Hence, the probability for oscillation

will be different than that in the vacuum. This mechanism of flavor changing is known

as Mikhaev-Smirnov-Wolfenstein (MSW) effect [25–27], named after the ones who

pointed out for the first time that there is an interplay between neutrino mixing and

the flavor non changing neutrino-matter interactions. We will discuss more on this in

chapter 3.

The first indication of neutrino oscillation came from the observed shortfall of so-

lar neutrinos in the Homestake radio-chemical experiment using 37Cl [28]. This was

corroborated by Ga based experiments Gallex [29], SAGE [30] and GNO [31] and

also the real time Kamiokande neutrino electron scattering experiments [32]. High

statistics Super-Kamiokande (SK) experiment [33, 34], a successor of Kamiokande

also supported this. Finally the smoking gun signature came from the Sudbury Neu-

trino Observatory (SNO) experiment [35, 36] which could measure the ratio of the CC

events that are sensitive only to νe to the neutral current (NC) events that are sensitive

to all three neutrino flavors. The observed value for CC/NC ratio was less than 1 and

this unambiguously affirmed the presence of a νµ/ντ component in solar νe flux. This

established neutrino flavor conversion as the solution to the solar neutrino problem.

Another major importance of the SNO experiment was that the NC events matched

with the flux of 8B neutrinos as predicted by the standard solar model (SSM) [37].

This showed that the SSM does a great job in describing the physical processes that

occur in the sun’s core. Subsequently, the KamLAND experiment confirmed the os-

cillation parameters responsible for solar neutrino problem using man made reactor

neutrinos [38, 39].

Indication of neutrino oscillation also came from the disappearance of the atmo-

spheric νµ and ν̄µ in the Kamiokande and IMB [40, 41] experiments. This came to

be known as the atmospheric neutrino anomaly. SK experiment later confirmed this

and also measured the zenith angle distribution of the atmospheric neutrinos. The

departure of the observed zenith angle distribution from expectations conclusively es-

tablished νµ − ντ oscillation as the solution to the atmospheric anomaly. Also, the
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long-baseline accelerator neutrino experiment K2K [42] provided strong evidences for

νµ disappearance due to oscillations, which was later confirmed by the MINOS [43–45]

and the T2K [46, 47] long baseline experiments. These experiments lend independent

support to atmospheric neutrino oscillations using beam neutrinos. All these experi-

ments established the existence of neutrino oscillations which confirmed the existence

of nonzero neutrino masses and mixing.

Assuming there are three mass eigenstates of the active light neutrinos, there are

two independent mass squared differences. From the matter effect of the solar neu-

trinos in the sun, it has been inferred that the sign of ∆m2
21(∆m2

sol) is positive. But

the sign of the other mass squared difference, ∆m2
3l(∆m

2
atm) is not yet known from

the experiments. This implies the possibility of two different hierarchies for the light

neutrino masses : Normal hierarchy (NH) : m1 < m2 << m3 with

m1 ; m2 =
√
m2

1 + ∆m2
sol ; m3 =

√
m2

1 + ∆m2
sol + ∆m2

atm, (1.19)

Inverted hierarchy (IH) : m3 << m1 ≈ m2 with

m1 =
√
m2

3 + ∆m2
atm ; m2 =

√
m2

3 + ∆m2
sol + ∆m2

atm ; m3. (1.20)

Fig. 1.3 displays the two possible hierarchies of the active neutrino masses and the col-

ors in the mass eigenstates indicates the amount of different flavor eigenstate present.

In addition to these two hierarchies, the neutrino masses can also have a quasi-degenerate

spectrum in which m1 ∼ m2 ∼ m3 >>
√

∆m2
atm.

The 3σ ranges of the mixing angles and the mass squared difference given by the

global analysis of neutrino oscillation data with three light active neutrinos [48] are

given below. Similar analysis can also be found in references [49, 50].

? Mass squared differences

∆m2
21/10−5eV2 = (6.79→ 8.01) ; ∆m2

3l/10−3eV2 =

(+2.431→ +2.622) NH

(−2.606→ −2.413) IH
(1.21)

? Mixing angles

sin2θ12 = (0.275→ 0.350) ; (1.22)
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Figure 1.3: Neutrino mass hierarchies.

sin2θ23 =

(0.428→ 0.624) NH

(0.433→ 0.623) IH
; sin2θ13 =

(0.02044→ 0.02437) NH

(0.02067→ 0.02461) IH
(1.23)

? Dirac CP Phase

δ =

(0.75π → 2.03π) NH

(1.09π → 1.95π) IH
(1.24)

Here, ∆m2
3l = ∆m2

31 > 0 for NH and ∆m2
3l = ∆m2

32 < 0 for IH and one can see

that the value of r = | ∆m
2
sol

∆m2
atm

| is very small. Also, out of the three mixing angles, two

are large (θ12 and θ23) and one is small (θ13) unlike in the case of quark mixing where

all the mixing angles are small and the largest on is θC ∼ 13◦, the Cabibbo angle [51].

The Majorana phases are allowed in the range 0− π. It has been found that the best fit

of the data is for the NH and IH is disfavoured with a ∆χ2 = 4.7(9.3) without (with)

Super-Kamiokande atmospheric neutrino data [48].

As already mentioned, the neutrino oscillation experiments are not sensitive to the

absolute neutrino masses. But, the neutrino-less double beta decay process (0νββ)

[52] is sensitive to the absolute neutrino masses through the effective Majorana mass
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mββ , given by,

|mββ| = |ΣU2
eimi|. (1.25)

We will discuss more about 0νββ later. In addition to ββ0ν decay, the non-oscillation

data from single β-decay add an independent constraint on the absolute neutrino masses

through its sensitivity to the observable,

mβ = [ c2
13c

2
12m

2
1 + c2

13s
2
12m

2
2 + s2

13m
2
3 ]

1
2 (1.26)

The Troitsk nu-mass experiment [53] and the Mainz experiment [54] put constraints on

the electron neutrino mass as mβ < 2.05 eV and mβ < 2.3 eV respectively. KATRIN

is an ongoing experiment at the Karlsruhe Institute of Technology and has a sensitivity

of mβ ∼ 0.2 eV at 90% confidence level and has a 3σ discovery potential of 0.3 eV

[55, 56]. Also, the cosmological constraint on the sum of light neutrino masses as

given by the Planck 2018 results [57] puts an upper limit on the sum of the active light

neutrino masses as, Σ = m1 +m2 +m3 < 0.12 eV

1.3 Dark Matter

There are several astrophysical evidences that have established that there is more mat-

ter in the universe than the luminous matter and this unknown matter is called as dark

matter (For review, see references [58–61]). Even though there are several evidences

for the existence of dark matter, we still do not know much about its nature. A success-

ful theory of particle physics should provide some suitable candidate for dark matter.

One thing that we know for sure is that dark matter can not be baryonic, since in

that case, the cosmic microwave background (CMB) structure that is being seen today

would have been different. The information on the abundance of the light elements

during the big bang nucleosynthesis (BBN) era also gives similar constraints on the

baryonic content. Other important properties of any dark matter candidate is that it

should be electrically neutral, weakly interacting and massive. In this section, after

reviewing some of the astrophysical evidences for the existence of dark matter, we will

briefly discuss the particle physics properties of the dark matter. We will also discus the

principles behind the direct and the indirect detections as well as the collider searches

of dark matter.
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1.3.1 Evidences

The studies of the galactic clusters, gravitational lensing and CMB provide very com-

pelling evidences for the existence of dark matter. We briefly review them here.

Galactic clusters

In 1932, the Dutch astronomer Jan Oort observed stellar motions in the galactic neigh-

borhood and calculated the velocities of the stars from Doppler Shift [62]. It was found

that in order to prevent the stars from escaping, the galaxies should be three times more

massive than as indicated by the luminous matter, which implied the presence of some

unknown, missing matter.

Around the same time when Oort made his discovery, Fritz Zwicky conducted an

independent study of the Coma cluster [63]. Zwicky found that the average mass of one

Nebula in this cluster is MNebula = 4.5 × 1010M� (M� is the solar mass) and hence,

the entire mass of the cluster with around thousand nebula should be 4.5 × 1013M�.

This was very surprising since this value was only about 10% of the mass measured

from the luminosity indicating that the majority of the mass on the coma cluster is

non-luminous.

Galactic rotation curve

Almost 40 years later, Vera Rubin along with her collaborators studied the rotational

curve of around 60 isolated galaxies [64]. According to Newtons law of gravity, the

rotational velocity of the stars as a function of the distance from the center (R) of the

galaxy is given by the relation,

v(R) =

√
GM(R)

R
. (1.27)

Here, M(R) is the total mass contained within a radius R. If one assumes that the ma-

jority of the mass is concentrated in the galactic nucleus as indicated by the luminosity

profile, then V (R) should decrease as 1/
√
R for stars that are far from the galactic

center as indicated by the dotted line in Fig. 1.4. But it was found from the galactic

rotation curves that the stellar velocity remains constant with increasing distance as

shown by the solid line in Fig. 1.4. This indicates the presence of some non-luminous
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Figure 1.4: Rotation curve of a typical spiral galaxy. Line A represents the prediction

from observed luminous mass distribution combined with the Newtonian gravity and

line B corresponds to the actual observation. Image source : Wikipedia [2]

mass contributing to M(R), extending out to a great distance beyond the central lumi-

nous region of the galaxy.

Gravitational lensing

The Bullet cluster (IE0657-56) contains two colliding clusters of galaxies. The speed

and shape of the ’Bullet’ combined with the other information from different tele-

scopes indicate that about 150 million years ago, the smaller cluster passed through

the core of the larger cluster. These two huge objects collided at very high speed of

several million miles per hour. Due to the gravity of the mass in the cluster, light from

the background galaxies will be distorted and this is known as gravitational lensing.

Because of lensing, two distorted images of the same background galaxy can be seen

above and below the real location of the galaxy. By observing several background

galaxies like this, it is possible to make a map indicating where the majority of the

mass in the cluster is located. It was found that the largest lensing is in the region that

is not luminous, which is attributed to the presence of dark matter in this region [65].

It has been found that out of the total mass of the Bullet cluster, ∼ 2% is due to the

galaxies , ∼ 10% is due to the intergalactic plasma and ∼ 88% is because of the dark

matter.
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Cosmic microwave background

Even though the observations that we have discussed above give compelling evidence

of localized dark matter, they do not say anything about the total amount of dark matter

in the universe. This information can be extracted by studying the CMB radiation,

which was emitted 13.7 billion years ago, just a few thousand years after the big bang.

As the Universe got cooled, the neutral hydrogen atoms were formed and the photons

got decoupled from the matter. These CMB photons can travel very long distances (∼

Mpc) in straight lines without getting scattered. The Planck 2018 measurements of the

CMB [57] give the following constraints on the baryonic and the total matter content

of universe :

Ωmh
2 = 0.1430± 0.0011 ; Ωbh

2 = 0.02237± 0.00015 (1.28)

The baryon density can be subtracted from the total matter density to find the global

dark matter density as,

ΩDMh
2 = 0.1200± 0.0012. (1.29)

During the period of Big-bang nucleosynthesis (BBN) ( i.e., a few seconds to a few

minutes after the Big Bang), protons and neutrons fused together to form deuterium,

helium and also, trace amounts of lithium and some other light elements. The other

heavy elements were produced later inside the stars. The BBN limits the average bary-

onic content of the universe. The largest source of deuterium in the universe is BBN

since any deuterium found or produced in stars will immediately get fused to helium.

From the deuterium to hydrogen ratio (D/H) of regions with low levels of elements

heavier than lithium, theD/H abundance directly after BBN can be determined. D/H

ratio is heavily dependent on the overall density of baryons in the universe and hence,

measuring the D/H abundance gives the overall baryon abundance and this is also

consistent with the CMB observations.

1.3.2 Properties and Possible Candidates

Since the ordinary matter is made of particles, it is very natural to assume that the

dark matter is also composed of some sort of elementary particles. There are several
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particle physics models in the literature with fermionic/scalar/vector dark matter. Any

prospective dark matter candidate has to fulfill the following criteria :

• Massive, in order to explain the gravitational effects.

• Neutral since the dark matter is non-luminous.

• Stable and long-lived since they have not decayed until today.

• No strong interaction and at most weak interaction.

• Either cold or warm, but not hot. (A cold DM candidate is non-relativistic at

the time of freeze-out, with a number density of n ∼ T 3/2em/T , where T and m

are the temperature and the mass of the DM species. Hot DM is relativistic at

the time of freeze-out, with n ∼ T 3 and a warm particle belongs somewhere in

between these two cases.)

The SM contains left handed neutrinos which are stable and neutral. But as we already

discussed, the Planck data constrains the sum of the neutrino masses to be ≤ 0.12 eV

[57]. This indicates a very small relic density and hence can not account for the whole

dark matter content. This points towards the need for a theory beyond SM.

The weakly interacting massive particles (WIMPs) are popular candidates since

they can have the right relic abundance to account for dark matter. The WIMPs were

in equilibrium with the thermal plasma in the early universe when the temperature was

high. As the universe expands, the temperature decreases along with which, the num-

ber density of WIMPs also decreases. Finally, it reaches a point where this number

density remains constant, a stage called freeze out. This depends on the thermal aver-

age of the effective annihilation cross section times the relative velocity, 〈σeffv〉. The

evolution of the number density (n) of a particle in the early universe is governed by

the Boltzmann equation,

dn

dt
+ 3Hn = −〈σeffv〉(n2 − neq2), (1.30)

whereH is the Hubble parameter and neq is the number density at equilibrium. One

can get the correct dark matter relic density as given in Eqn.1.29 for particle masses
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of ∼ 0.1− 1 TeV having interactions with typical strength of that of weak interaction.

This remarkable coincidence is often referred to as WIMP miracle. Among the various

WIMP models of dark matter studied in literature, the so called Higgs portal models

[66–68] are the simplest ones. Here, the SM is extended by an additional singlet scalar

with a Z2 symmetry. This scalar is odd under the Z2 symmetry ensuring its stability,

which is necessary for a dark matter candidate. In chapter 5, we have studied this

model in detail in the context of TeV scale seesaw models. In addition, one of the

right handed neutrinos added for neutrino mass generation via seesaw mechanism (see

chapter 2) can be made a dark matter candidate by adding an extra Z2 symmetry. We

have explored such a scenario in the context of a class of general U(1) extensions of

the SM in chapter 6. Also, there are several particles like neutralinos, sneutrinos and

gravitinos which can be possible dark matter candidates in the context of various super-

symmetric models [69–72]. In addition to WIMPs, several other candidates for dark

matter such as strongly interacting massive particles (SIMPs) [73], axionic dark matter

[74], Massive Compact Halo Objects (MACHOs) [75], the Kaluza-Klein particle [76],

etc. have been proposed in the literature. However, in this thesis, we have limited our

studies to just WIMPs where we have considered scalar as well as fermionic singlets

as dark matter candidates.

1.3.3 Detection

Detection of the dark matter is very important in determining its properties and also in

understanding their role in the structure formation of the universe. Many experiments

have searched and are currently searching for a WIMP like dark matter and they use

different detection methods. Here, we briefly discuss the basic principles of the direct

and indirect detection schemes as well as the collider searches for dark matter particles

(See [77] for a recent review).

Direct Detection

The direct detection experiments [78, 79] try to measure the energy deposited due

to the recoil of the nuclei in a detector resulting from the elastic scattering with the

WIMP. The detectors are located far underground in order to reduce the effect of the
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background cosmic rays and are sensitive to the WIMPs streaming across the earth.

The recoiling nucleus in the detector deposits energy in the form of ionization, heat

and light, which can be detected. The energy with which a nucleus of mass M recoils

after an elastic collision with a dark matter particle of mass m is given as,

E =
(µ2v2

M

)
(1− cos θ). (1.31)

Here, µ =
Mm

M +m
is the reduced mass, v is the relative velocity of the dark matter

particle with respect to the nucleus and θ is the angle of scattering in the center of

mass frame. Sensitivity to a wide range of WIMP masses can be achieved using liquid

noble gases such as Xenon and Argon. The Large Underground Xenon (LUX) experi-

ment located 1,510 meters underground at the Sanford Underground Laboratory in the

Homestake Mine of South Dakota aims to detect the WIMP dark matter interactions

with the ordinary matter on Earth [80]. The Particle and Astrophysical Xenon Detector

(PandaX), the XENON experiment, COSINE, DAMA etc are some of the other direct

detection experiments. No positive signal for the detection of dark matter has been

observed in any direct detection experiment so far and this has put some bounds on the

nucleon dark matter scattering cross section 2.

Indirect Detection

The indirect detection experiments are based on the detection of particles produced

due to the annihilation or decay of dark matter [82]. These can include gamma rays,

neutrinos as well as antimatter (positrons). The gamma rays from the annihilation of

WIMPs are more readily produced in the galactic center. There are two processes by

which these can be produced: First is the one in which the WIMPs annihilate into

a quark-antiquark pair, which can further produce a particle jet from which a stream

of gamma rays is emitted. The second one is the direct annihilation of WIMPs into

gamma rays. WIMPs can have typical masses of ∼ O(100) GeV and can produce

very high energy gamma rays. Even though such a gamma ray line will be a direct

indication of the dark matter, the detection is not very easy because the production of
2The DAMA experiment has claimed an observation of the annual modulation in the dark matter

signal because of the relative motion of the earth through the dark matter halo [81]. However, this has

not been confirmed by other experiments.
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gamma rays from other sources is not understood well. The Fermi Gamma Ray Space

Telescope of NASA is designed to capture the gamma rays from the center of our own

galaxy [83].

Similarly, the annihilation of WIMPs may produce highly energetic neutrinos,

which can travel very long distances and can be detected by the neutrino detectors

on earth. The IceCube Neutrino Observatory at the AmundsenScott South Pole Sta-

tion in Antarctica which is designed to look for point sources of neutrinos in the TeV

range to explore the high energy astrophysical processes is an example [84]. In ad-

dition, antimatter can be an excellent signal of dark matter because of the relatively

lower cosmic abundance. For instance, the WIMP annihilation can produce positrons

through secondary products of annihilation such as W+W−, where W+ → e + νe .

One has to study the flux of the antimatter particles over the entire galactic halo rather

than the flux in particular areas. This is because the products are charged and hence

will be affected by the magnetic fields within the space and might lose their energy

very soon. So we might not be able to say where the annihilation was exactly taken

place, unlike gamma rays and neutrinos.

The EDGES experiment, that has been designed to observe the signatures of the

Hydrogen from the epoch of reionization after the formation of the stars in the early

universe, observed an absorption profile in the radio background at the frequency of 78

MHz. This has been interpreted as a redshifted 21 cm line and it is highly improbable

that the radiation from stars and stellar remnants account for this [85]. It is possible

that the observed amplitude can be due to the cooling of gas as a result of interactions

between dark matter and baryons.

Searches at the LHC

The dark matter searches have been carried out by the ATLAS and the CMS exper-

iments as well [86]. The presence of a dark matter particle will be seen as a large

missing momentum Emiss
T in the colliders (See [87] for a review.). The advantage of

the collider searches of dark matter is that there is no background signal from other

astrophysical sources and hence can compliment the other direct and indirect detection

experiments. If the mass of the mediator is much higher than that of the dark matter
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particle, then the WIMP pair will be boosted in a direction opposite to that of the visi-

ble hadronic particle(s) which will give the mono-X signature. Here X can be photon,

gluon, quarks, W , Z, H , etc. In the case of WIMPs heavier than the mediators, the

constraints coming from the collider searches will be weak since the WIMP production

cross section is kinematically suppressed.

1.4 Thesis Overview

In this thesis, we have studied various phenomenological and theoretical implications

of massive neutrinos, assuming neutrinos are Majorana particles and they get a small

non-zero mass via the seesaw mechanism. We have explored a few models that simul-

taneously explain the origin of neutrino masses and the existence of dark matter and

how these two sectors are related by various theoretical constraints like vacuum stabil-

ity and perturbative unitarity using the renormalization group running of the couplings.

In the next chapter, we have reviewed various seesaw models including a few TeV

scale extensions. We have also discussed their phenomenological as well as theoretical

implications like 0νββ decay, lepton flavor violation, vacuum stability etc.

Chapter 3 discusses one of the major implications of the Majorana nature of the

neutrinos in detail : the lepton number violating 0νββ decay. In particular, we have

studied the impact of the so-called Dark-LMA solution to the solar neutrino problem in

the presence of large non-standard interactions (NSI) for the future 0νββ experiments.

In chapter 4, we have studied the minimal type-III seesaw model in which we have

extended the SM by adding two SU(2)L triplet fermions with zero hypercharge. We

show that the naturalness conditions and the limits from lepton flavor violating decays

provide very stringent bounds on the model parameters along with the constraints from

the stability/metastability of the electroweak vacuum.

In chapter 5, we consider singlet extensions of the SM, both in the fermion and

the scalar sector, to account for the generation of neutrino mass at the TeV scale and

the existence of dark matter respectively. We show that the coupling constants of

these two seemingly disconnected sectors at low energy get correlated at high energy

scale by the constraints coming from the perturbativity and stability/metastability of
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the electroweak vacuum.

In chapter 6, we study a class of gauged U(1) extensions of the SM, where ac-

tive light neutrino masses are generated by a minimal inverse seesaw mechanism. The

model also has a stable fermionic dark matter candidate. We express the U(1) charges

of all the fermions in terms of the U(1) charges of the SM Higgs and the new complex

scalar. We perform a comprehensive study to chart out the parameter space consistent

with the low energy neutrino data, vacuum stability and perturbative unitarity con-

straints, dark matter bounds and constraints from the collider searches.

Finally, we summarize and present the impact of our results in chapter 7.





Chapter 2

Massive Neutrinos in Physics Beyond

the Standard Model :

Seesaw Mechanism

2.1 Introduction

As discussed in the previous chapter, it is now well established that the neutrinos have

small, non-zero masses and this serves as one of the major motivations for going be-

yond the SM. One can generate small neutrino masses either by extending just the

particle content or by extending the gauge group and consequently the particle con-

tent. Among the various models proposed for understanding the sub-eV scale neutrino

masses, the so-called seesaw mechanism is considered as the most natural approach.

Here, the tree level exchange of some heavy particle present at a higher energy scale

will give rise to an effective dimension-five Weinberg operator κlLlLHH[88] at low

scale. This operator generates tiny lepton number violating Majorana neutrino masses

once the EW symmetry is broken. Here, κ is a proportionality constant with negative

mass dimension and is inversely proportional to the energy scale at which the new

physics enters.

There are three ways to form a gauge singlet with the SM doublets lL and H such

that neutrino mass can be generated. Thus depending on the type of the heavy states

added for the ultraviolet completion, three different types of seesaw mechanisms are

23
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possible :

(i) Type-I seesaw mechanism : lL and H form an SU(2) singlet [2 ⊗ 2 = 3 ⊕ 1] and

this singlet forms a singlet term with a heavy singlet right-handed neutrino [89–92],

(ii) Type-II seesaw mechanism : lL and lL (as well as H and H) form an SU(2) triplet

[2⊗ 2 = 3⊕ 1] and this triplet forms a singlet with a scalar triplet [3⊗ 3 = 5⊕ 3⊕ 1]

[93–96] and

(iii) Type-III seesaw mechanism : lL and H form an SU(2) triplet [2⊗ 2 = 3⊕ 1] and

this triplet forms a singlet with a heavy fermionic triplet [3⊗ 3 = 5⊕ 3⊕ 1] [97].

The different seesaw mechanisms can be implemented in various models like the

left-right symmetric models, SO(10) grand unified models, etc. (See [98] for a review.)

Ha Hd v

EW Symmetry

lLc

g lLb

f
νL

g νL
f

v

κ5

Breaking

κ5

Figure 2.1: The effective dimension-five operator giving rise to a small neutrino mass

2.2 The effective Lagrangian for the seesaw model of

neutrino mass

In this section, we review how one can generate the effective dimension-five operator

giving rise to the Majorana neutrino masses in the case of seesaw models using the

effective action and the classical equations of motion [99]. We will discuss the case of

the type-I seesaw model. Similar procedure can also be applicable for the type-II and

type-III seesaw models as well.

In the case of type-I seesaw mechanism, one can, in general, introduce n heavy

right handed Majorana neutrinos (NR) into the SM , keeping the EW Lagrangian in-

variant under SU(2)L × U(1)Y .Then the most general gauge invariant renormalizable

Lagrangian is given by, L = LSM + LNR , where,

LNR = iN̄Rγµ∂
µNR − l̄LYνH̃NR +

1

2
N̄ c
RMNNR + h.c.. (2.1)
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Here, Yν is the Yukawa coupling matrix of dimension 3×n and MN is the n×n com-

plex symmetric Majorana mass matrix for NR. Note that the lepton number violating

Majorana mass terms are allowed by the gauge symmetries. MN can have n complex

eigenvalues, Mi = eiθi |Mi| = ηi|Mi|. We will work in a basis in which MN is real

and diagonal. Then, the Majorana neutrino eigenstates with Ni = N c
i are given by,

Ni =
√
ηiNRi +

√
η∗i N

c
Ri, (2.2)

and the Lagrangian for heavy neutrinos becomes,

LNR =
1

2
N̄i(iγµ∂

µ −Mi)Ni − (
1

2
[l̄LH̃Yν

√
η∗ + l̄cLH̃

∗
Y ∗ν
√
η]iNi + h.c.). (2.3)

An effective Lagrangian, Leff valid at energies less than O(MN) ∼ Λ can be

constructed by integrating out the heavy Majorana neutrinos Ni. Leff has a power

series expansion in 1/M ,

Leff = LSM +
1

M
Ld=5 +

1

M2
Ld=6 + ... (2.4)

LSM contains all SU(3) × SU(2) × U(1) invariant operators of d ≤ 4 and the gauge

invariant operators of d > 4 accounts for the physics effects of heavy Ni at energies

<< M ∼ Λ. The effective Lagrangian is defined through the effective action as,

eiSeff = exp [ i

∫
d4xLeff (x) ] = eiSSM

∫
DN DN̄ eiSN . (2.5)

Here,

SSM =

∫
d4xLSM(x). (2.6)

The classical equations of motion for the N field with solution N0 are obtained

from
δS

δNi(x)
|N0i

= 0 ;
δS

δN̄i(x)
|N̄0i

= 0. (2.7)

Using the solutions for N0i and N̄0i, the effective action is given by,

Seff = SSM + SN(N0), (2.8)

where,

SN(N0) =
1

2

∫
d4x(l̄LH̃Yν

√
η∗+l̄cLH̃

∗
Y ∗ν
√
η)i

δij

i/∂ −Mi

(
√
ηY †ν H̃

†
lL+
√
η∗Y T

ν H̃
T
lcL)j.

(2.9)
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The contributions to the Leff can be obtained by substituting,

1

i/∂ −M
= − 1

M
− i/∂

M2
+ ... (2.10)

in Eqn.2.9. This yields us the terms of dimension d ≤ 6, in which, the d = 5 operator

of the effective Lagrangian for the seesaw model is obtained as,

δLd=5 =
1

2
(καβ)(l̄cLα H̃

∗
)(H̃

†
lLβ) + h.c., (2.11)

where,

καβ = (Y ∗ν
η

M
Y †ν )αβ. (2.12)

Eqn.2.11 gives the well known dimension-five Weinberg operator which gives rise

to small Majorana neutrino masses once the EW symmetry is broken and the Higgs

doublet, H acquires a vev, v/
√

2 ≈ 174 GeV. The Majorana mass matrix of the light

neutrinos is given by,

mαβ = −καβ
v2

2
. (2.13)

Alternately, one can also evaluate the tree level diagram in Fig. 2.2 using the

Majorana fermion Feynman rules and do a matching to derive Eqn.2.13.

NRκ +

`Lαi

Hδ

Hβ

`Lγj

NRκ

`Lαi

Hδ

Hβ

`Lγj

s, t << M2
κ

`Lαi

Hδ

Hβ

`Lγj

κ5

1

Figure 2.2: The tree diagrams giving rise to the effective dimension-five Weinberg

operator in the type-I seesaw model.

2.3 Seesaw Mass Matrix and Diagonalization

We have discussed the origin of seesaw and the generation of the dimension-five Wein-

berg operator in the last section. In this section, we describe the mass matrices arising

in different types of seesaw mechanism and explain the diagonalization procedure.
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2.3.1 Type-I Seesaw Mechanism

From Eqn.2.1, after spontaneous symmetry breaking, the terms relevant for the neu-

trino mass are,

− Lmass = ν̄LMDNR +
1

2
N̄ c
RMNNR + h.c., (2.14)

where, MD = Yνv/
√

2. Noting that ν̄LMDNR = N̄ c
RM

T
Dν

c
L, the above equation can

be written as,

− Lmass =
1

2
( ν̄L N̄ c

R )

 0 MD

MT
D MN

 νcL

NR

 + h.c. (2.15)

The scale of MN can naturally be chosen to be much higher than the EW scale v since

NR and the corresponding Majorana mass terms are not related to the EW symmetry

breaking. Without loss of generality, we will be working in a flavor basis in which Ml

is diagonal, and also real and positive. To diagonalize the (3 + n) × (3 + n) neutrino

mass matrix, one can use a unitary matrix as [100, 101],

UT
0 Mν U0 = Mdiag

ν (2.16)

where, Mdiag
ν = diag (m1, m2, m3, M1, M2, .., n) with mass eigenvalues mi (i =

1, 2, 3) and Mj (j = 1, ..., n) for three light neutrinos and n heavy neutrinos respec-

tively. Following a two-step diagonalization procedure, U0 can be expressed as (by

keeping terms up to order O(M2
D/M

2
N)) [101],

U0 = W T =

UL V

S UH

 =

 (1− 1

2
ε)Uν M∗

D(M−1
N )∗UR

−M−1
N MT

D Uν (1− 1

2
ε′)UR

 . (2.17)

Here, UL, V, S and UH are 3 × 3 , 3 × n , n × 3 and n × n matrices respectively,

which are not unitary. W is the matrix which brings the full (3 +n)× (3 +n) neutrino

matrix, in the block diagonal form,

W T

 0 MD

MT
D MN

W =

Mlight 0

0 Mheavy

 , (2.18)

T = diag (Uν , UR) diagonalizes the mass matrices in the light and heavy sectors

appearing in the upper and lower block of the block diagonal matrix respectively. The

parameters ε and ε′ characterize the non-unitarity and are given by,

ε = M∗
DM

−1∗
N M−1

N MT
D , (2.19)
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ε′ = M−1
N MT

DM
∗
DM

−1∗
N . (2.20)

In the limit O(MN) >> O(MD), one can derive the seesaw formula for the light

neutrino mass matrix as,

Mν ≈ −MDM
−1
N MT

D. (2.21)

Also, the heavy Majorana maass matrix will be

Mheavy ≈MN (2.22)

Now, assuming O(MD) ≈ 100GeV (the EW scale, assuming order of Yukawa

couplings to be 1) , to get the observed sub-eV scale light neutrinos, it can be seen

from Eqn.2.21 that M0 ≈ 1014GeV , which is close to the grand unification scale.

The above seesaw formula is very general and can be used whenever the condition

O(MN) >> O(MD) is met. Here, the unitarity violation of the PMNS matrix is

negligibly small, which need not be the case when one consider TeV scale seesaw

mechanisms. Also note that the minimum number of right handed neutrinos required to

explain the observed oscillation data is two, in which case, the lightest active neutrino

is massless.

2.3.2 Type-II Seesaw Mechanism

In the case of the type-II seesaw mechanism, the SM is extended with a SU(2) triplet

Higgs field, ∆. In the adjoint representation,

∆ =

∆+/
√

2 ∆++

∆0 −∆+/
√

2

 . (2.23)

The Yukawa part of the Lagrangian relevant for the neutrino masses is given by,

L∆ = −Y∆lcLβεβγ∆γαPLlLα+µ∆Hβεβγ∆γαHα−(M∆)2 Tr [∆†∆] + h.c.. (2.24)

Here, α, β, γ are the SU(2) indices and the flavor indices have been suppressed.

After symmetry breaking, the neutral component of ∆ gets a vev,

v∆ = (µ∆)∗v2/(M∆)2. (2.25)

The light neutrino mass matrix is then given by,

mν = 2(Y∆v∆). (2.26)
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For µ∆ ∼M∆ ∼ 1012− 1014 GeV, one gets, v∆ ∼ v2/M∆, which is suppressed by

the mass scale M∆. For Y∆ ≈ O(1), light neutrino masses of the sub-eV scale can be

generated . In the case of type-II seesaw model, one can also have a TeV scale seesaw

assuming that the lepton number is explicitly violated at a low energy scale such that

µ∆ << v << M∆ [102]. In this case, small neutrino mass can be generated by taking

µ∆ ∼ O(1) keV, v∆ ∼ O(10) eV, M∆ ∼ O(1) TeV and Y∆ ∼ O(0.1).

2.3.3 Type-III Seesaw Mechanism

In type-III seesaw, the SM is extended with n fermionic triplets ΣRi , i = 1, 2, ..n with

zero hypercharge. These triplets can be represented as,

ΣR =

Σ0
R/
√

2 Σ+
R

Σ−R −Σ0
R/
√

2

 ≡ Σi
Rσ

i

√
2
. (2.27)

Here, Σ±R = (Σ1
R ∓ iΣ2

R)/
√

2. The terms of the Lagrangian that are responsible for

the neutrino mass generation are,

− LΣ = H̃
†
ΣR

√
2YΣlL +

1

2
Tr [ΣRMΣc

R] + h.c., (2.28)

where the generation indices have been suppressed and M is the Majorana mass of the

triplet fermions. Once the Higgs field H acquires the vev, the neutral fermion mass

matrix can be written as,

Mν =

 0 MT
D

MD M

 . (2.29)

In this case, MD = YΣv/
√

2. This mass matrix can be diagonalized in the same way as

we had discussed for the type-I seesaw and in the limit M >> MD, the light neutrino

mass matrix can be written as,

mlight = −MT
DM

−1MD. (2.30)

The minimal model corresponds to n = 2 as in the case of type-I seesaw model.

The charged components of the triplet fermions mix with the charged leptons of SM

and this is governed by the Lagrangian [103],

L = −
(
l̄R Ψ̄R

) ml 0
√

2MD M

 lL

ΨL

 + h.c.. (2.31)
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Here we have defined,

Ψ = Σ+c
R + Σ−R. (2.32)

The above charged fermion mass matrix can be diagonalized by a bi-unitary trans-

formation. We will discuss in more detail about the type-III seesaw in Chapter 4.

2.4 TeV Scale Extensions of the Type-I Seesaw

In the last section, we have seen that in the case of simple type-I seesaw mechanism,

one has to either go for extremely small Yukawa couplings or one has to resort to very

large seesaw scale. Thus, the canonical type-I seesaw model has no direct experimental

testability. A way out is to lower the seesaw scale, and different variants to the type-I

seesaw have been proposed in literature. By decoupling the new physics scale from

the scale of the lepton number violation, one can reduce the scale of new physics to

TeV. Then, the smallness of the neutrino mass can be attributed to small lepton number

violating terms. As per the t Hooft’s criteria [104], a tiny value of the lepton number

violating parameter is deemed natural, since when this is zero, the global U(1) lepton

number symmetry is restored and neutrinos are massless.

One can get the most general low scale extension of the canonical type-I seesaw

scenario by adding m right handed neutrinos NR and n gauge-singlet sterile neutrinos

νs to the SM. νs and NR are assigned with lepton numbers −1 and +1 respectively.

The most general Yukawa Lagrangian responsible for neutrino masses before SSB is,

−Lν = lLYν H
cNR + lLYsH

cνs +N c
RMR νs +

1

2
νcsMµνs +

1

2
N c
RMNNR + h.c..

(2.33)

Here, Yν and Ys are the Yukawa coupling matrices and MN and Mµ are the Majorana

mass matrices for NR and νs respectively. Yν , Ys, MN and Mµ are of dimensions

3×m, 3× n, m×m and n× n respectively.

Now, after SSB, the mass terms for the neutral fermions can be written as,

−Lmass = νLMDNR + νLMsνs +N c
RMRνs +

1

2
νcsMµνs +

1

2
N c
RMNNR + h.c.

(2.34)
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where, MD = Yν〈H〉 and Ms = Ys〈H〉 . The neutral fermion mass matrix M can

be defined as,

− Lmass =
1

2
( νL N c

R νcs )


0 MD Ms

MT
D MN MR

MT
s MT

R Mµ



νcL

NR

νs

 + h.c. (2.35)

One can get the variants of the singlet seesaw scenarios from this equation by

setting certain terms to be zero. Another significant feature of the TeV scale seesaw

models is that they can have appreciably large values of light-heavy mixing.

2.4.1 Inverse Seesaw Mechanism

Ms andMN are taken to be zero [105] in the inverse seesaw model. Since the mass term

MR is not subject to the SU(2)L symmetry breaking and the mass term Mµ violates

the lepton number, the scales corresponding to the three sub-matrices of the neutral

fermion mass matrix may naturally have a hierarchy MR >> MD >> Mµ . Assuming

m = n = 3, which is motivated by the grand unified theories based on superstring

inspired E6 models[105], the 9 × 9 inverse seesaw mass matrix can be rewritten as,

Mν =

 0 M̂D

M̂T
D M̂R

 (2.36)

where,

M̂D = (MD 0) and M̂R =

 0 MR

MT
R Mµ

 . (2.37)

In this case, the effective light neutrino mass matrix in the seesaw approximation is

given by,

Mlight ≈ −M̂DM̂
−1
R M̂T

D = MD(MT
R )−1MµM

−1
R MT

D (2.38)

where we have used,

 0 MR

MT
R Mµ

−1

=

−(MT
R )−1MµM

−1
R (MT

R )−1

M−1
R 0

 . (2.39)

In the heavy sector, there will be three pairs of degenerate pseudo-Dirac neutrinos

of masses of the order ∼ MR ± Mµ. Note that the smallness of Mlight is naturally
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attributed to the smallness of both Mµ and
MD

MR

. For instance, Mlight ∼ O (0.1) eV

can easily be achieved for
MD

MR

∼ 10−2 and Mµ ∼ O (1) keV. Thus, the seesaw scale

can be lowered down considerably assuming Yν ∼ O(0.1), such that MD ∼ 10 GeV

and MR ∼ 1 TeV. Here, the minimal model corresponds to m = n = 2 in which case,

the lightest active neutrino is massless.

The same procedure that was discussed in section 2.2 to can be extended to this

case also where we use a 9× 9 unitary matrix, U0, to diagonalize the mass matrix,

UT
0 Mν U = Mdiag

ν (2.40)

where, Mdiag
ν = diag (m1, m2, m3, M1, ..., M6) with mass eigenvalues mi (i =

1, 2, 3) and Mj (j = 1, ..., 6) for three light neutrinos and 6 heavy neutrinos respec-

tively. In this case, the parameter ε characterizing the non-unitary correction to the

PMNS matrix is given by,

ε = M̂∗
DM̂

−1∗
R M̂−1

R M̂T
D , (2.41)

which is ∼ O
(M2

D

M2
R

)
to the leading order.

2.4.2 Linear Seesaw Mechanism

In linear seesaw model, the Yukawa coupling terms of νL to the singlet fields νs are

also introduced, keeping the Majorana mass terms to be 0 [106–108]. Thus neutral

fermion mass matrix will be,


0 MD Ms

MT
D 0 MR

MT
s MT

R 0

 . (2.42)

whereMs >> MD,MR. Using the same method outlined in the case of the inverse

seesaw model, the effective light neutrino mass matrix becomes,

Mν = MT
DM

−1
s MR + MT

TM
−1
s MD. (2.43)

Note that this contains only one power of the Dirac mass term and hence known

as linear seesaw. To get the conditions required to have Mν ≈ 0.1 eV , one can make
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an order of magnitude estimate as it was done in the earlier cases. Assuming typical

values MD ≈ 100GeV and Ms ≈ 1TeV , one needs Ys ≈ 10−11 to get the correct

order of the light neutrino masses. The minimal linear seesaw model corresponds to

m = n = 1.

2.4.3 Double Seesaw Mechanism

The double seesaw model is almost similar to the inverse seesaw scenario [105, 109],

but unlike in the case of the inverse seesaw mechanism where the order of the sub-

matrix Mµ is very small, in double seesaw mechanism, Mµ is taken to be very large.

The form of the neutral fermion mass matrix and hence the expression for the low

energy mass matrix is the same as for the inverse seesaw, but now obeys the condition,

MD,MR << Mµ and MD <<
M2

R

Mµ

. Thus, the expression for the light neutrino

masses is given by Eqn. 6.11 whereas the heavy neutrinos will have masses of the

orderMµ andM2
R/Mµ. Here, one will again have to resort to a large seesaw scale. The

correct order of magnitude of neutrino masses can be obtained by taking MD ≈ 100

GeV, Mµ ≈Mpl and MR ≈MGUT ≈ 1016 GeV.

2.4.4 Extended Double Seesaw Mechanism

In this case, the neutral fermion mass matrix is given by [110, 111],

− Lmass =
1

2
( νL N c

R νcs )


0 MD 0

MT
D MN MR

0 MT
R Mµ



νcL

NR

νs

 + h.c., (2.44)

where only the Yukawa coupling term of νL to νs is kept as 0. Following the same

procedure as earlier, the neutral fermion mass matrix in the extended double seesaw

mechanism (EDSM) can be rewritten as

 0 M̂D

M̂T
D M̂R

 , (2.45)



34
Chapter 2. Massive Neutrinos in Physics Beyond the Standard Model :

Seesaw Mechanism

where, M̂D = (MD 0) and M̂R =

MN MR

MT
R Mµ

. Then, assuming O(M̂D) <<

O(M̂R), the effective light neutrino mass matrix Mν can be approximately written as,

Mν ≈ −M̂DM̂
−1
R M̂T

D = MD(MRM
−1
µ MT

R −MN)−1MT
D, (2.46)

provided MN 6= MRM
−1
µ MT

R .

Now, consider the following two cases :

(1) Mass scale of MN << the mass scale of MRM
−1
µ MT

R : Then, the formula can

be approximated as

Mν ≈ MD(MT
R )−1MµM

−1
R MT

D (2.47)

which is the same as that for Inverse seesaw mechanism.

(2) Mass scale of MN >> the mass scale of MRM
−1
µ MT

R : In this case,

Mν ≈ −MDM
−1
R MT

D (2.48)

Thus, it can be seen that the EDSM will degenerate into either the conventional

type-I seesaw or the inverse seesaw depending on whether MN >> MRM
−1
µ MT

R or

MN << MRM
−1
µ MT

R . Also, one can verify that the EDSM boils down to the canoni-

cal type-I seesaw when MN = MRM
−1
µ MT

R exactly holds [111].

2.4.5 Radiative neutrino mass mechanism for the Inverse Seesaw

Models

In Eqn. 6.10, if bothMs andMµ are kept as 0, the neutral fermion mas matrix becomes

[112],


0 MD 0

MT
D MN MR

0 MT
R 0

 . (2.49)
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In this case, it can be seen that the effective light neutrino mass matrix will turn out

to be 0 at the tree level, but it acquires a small, non-zero value at the one-loop level due

to the Majorana mass term for NR (MN ).

2.5 Implications of Seesaw

We have already seen that the seesaw mechanism is one of the most popular mod-

els for explaining the generation of tiny neutrino masses and according to this, the

neutrinos are lepton number violating Majorana particles. This can have various phe-

nomenological as well as theoretical consequences, especially in the case of TeV scale

seesaw models. For example, the lepton number violating couplings can give rise to

the neutrino-less double beta decay (0νββ) process and the heavy seesaw particles can

lead to enhanced rates of various lepton flavor violating (LFV) decays. The seesaw

models can naturally incorporate leptogenesis which can explain the observed baryon

asymmetry of the universe. Also, the new couplings associated with the seesaw can

alter the stability of the EW vacuum. In addition, these heavy particles can have inter-

esting signatures in collider experiments. In this section, we discuss in some detail the

implications that have been considered in this thesis.

2.5.1 Neutrino-less Double Beta Decay

The question of whether the neutrinos are Dirac particles or lepton number violating

Majorana particles for which the particle and the antiparticle are the same is one of the

major puzzles in neutrino physics. Oscillation experiments do not help us to determine

the Majorana nature of neutrinos and hence, one needs to study processes in which the

total lepton number is violated.

The 0νββ process [52] ( XA
Z → XA

Z+2 + 2e−), in which the lepton number is

violated by 2 units can establish the Majorana nature of the neutrinos. There is another

process, two-neutrino double beta decay (2νββ), first proposed by Maria Goeppert-

Mayer in 1935 [113] and is allowed in SM for some even-even nuclei for which, pairing

forces make the nucleons more bound than in its (Z+1, A) neighbor, but less than that
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Figure 2.3: Feynman diagram showing 0νββ decay by active light neutrino exchange.

in the (Z + 2, A) nuclide. It is an extremely rare process of the second order in GF ,

where GF is the Fermi’s constant. 2νββ was first observed in a laboratory in 1987 by

the group of Michael Moe at UC Irvine for Se 82 nucleus [114] :

Se 82 → Kr 82 + 2e− + 2 ν̂

with a half life of 1.1 × 1020 years. This conserves the lepton number and hence

provides a confirmation of the SM. 0νββ decay is further suppressed by the propor-

tionality of the transition amplitude to the effective Majorana mass. 0νββ decay has

not been observed so far and there are several ongoing and upcoming experiments

search for 0νββ.

Considering the standard 3 generation picture, it can be shown that the rate of the

0νββ decay is given as [115, 116],

Γ0νββ

ln 2
= G0ν(Q,Z) |Mν |2

|mββ|2

m2
e

(2.50)

G0ν contains the phase space factors and Q = Mi−Mf − 2me, where Mi and Mf are

the masses of the initial and the final nuclei respectively, mββ is the effective Majorana

mass given by Eqn.1.25 and me is the electron mass. Mν is the nuclear matrix element

whose calculation is highly challenging. The best limit on the half life of ββ0ν decay

is T1/2 > 1.07× 1026 years coming from the KamLAND-Zen experiment using 136Xe

[117]. This gives a bound on the effective mass,

mββ ≤ 0.061− 0.165eV.

The range corresponds to the uncertainty in nuclear matrix elements.
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What we have discussed so far is the long-range mechanism of 0νββ process due

to the three active light neutrinos. In addition to this, the ββ0ν process can also get con-

tributions from the short-range mechanism due to the heavy particles associated with

the seesaw, especially when these particles are at the TeV scale [118–123]. In such

cases, the different diagrams may interfere, and as a result, there can be an enhance-

ment or suppression of the rate of 0νββ. Such contributions to 0νββ in the context of

left-right symmetric models have been discussed in [124–129].

2.5.2 Lepton Flavor Violation

The phenomenon of neutrino oscillation already indicates that the lepton flavor is vi-

olated in the neutral lepton sector. Now, the question is whether this happens in the

charged lepton sector as well. Search for charged LFV decays has been carried out

for processes involving leptons, mesons, Z bosons etc,. [130, 131]. For the seesaw

models considered in this thesis, the most relevant processes are the decays µ → eγ

and µ→ 3e and µ→ e conversion in the atomic nucleus. Lot of ongoing experiments

are looking for these LFV decays. The current upper bound on the branching ratio (Br)

of µ→ eγ is [132],

Br(µ → e γ) < 4.2× 10−13. (2.51)

In the case of SM modified with neutrino mass terms and mixing, the prediction for

Br(µ→ eγ) is very small,

Br(µ → e γ)SM ≤ 10−50, (2.52)

and hence, this process can not be observed. But in the case of the seesaw models, the

new heavy particles can give rise to additional diagrams contributing to this process.

For example, in the case of type-I seesaw model, the heavy neutrino contribution to

Br(µ→ eγ) is,

Br(µ → e γ)type−I =
3α

8π
|VeiViµ†f(x)|2, (2.53)

where

x =
(M2

i

m2
W

)
, f(x) =

x(1− 6x+ 3x2 + 2x3 − 6x2 lnx)

2(1− x)4
. (2.54)

Here, f(x) is a slowly varying function of x ranging from 0 to infinity. V is the light

heavy mixing matrix and Mi are the masses of the heavy neutrinos. In the case of TeV



38
Chapter 2. Massive Neutrinos in Physics Beyond the Standard Model :

Seesaw Mechanism

scale seesaw models where the light-heavy mixing is large, the Br(µ → eγ) can be

enhanced considerably.

The upper bounds on the branching ratio for the decay µ→ 3e and µ→ e conver-

sion in the nucleus also put very strong constraints on the masses of the heavy particles

in low scale seesaw models and are given as[133–135],

Br(µ → 3e) < 1.0× 10−12, (2.55)

R(µTi→ e T i) < 4.3× 10−12 (2.56)

and

R(µAu→ eAu) < 7× 10−13. (2.57)

Here, R(µN → eN) is the ratio of µ to e conversion rate to the total nucleon muon

capture rate for the nucleus N .

2.5.3 Vacuum Stability

The tree level Higgs potential in the SM is given by,

V (H) = −m2H†H + λ(H†H)2. (2.58)

This will get corrections from higher order loop diagrams of SM particles. Thus, we

have the one-loop effective Higgs potential (V1(h)) in standard model as [136, 137],

V SM
1 (h) =

∑
i

ni
64π2

M4
i (h)

[
ln
M2

i (h)

µ2(t)
− ci

]
. (2.59)

Here, the index i is summed over all SM particles and cH,G,f = 3/2 and cW,Z =

5/6, whereH, G, f, W andZ stand for the Higgs boson, the Goldstone boson, fermions

and W and Z bosons respectively ; Mi(h) can be expressed as,

M2
i (h) = κi(t)h

2(t) − κ′i(t).

The values of ni, κi and κ′i are given as [136],

nW = 6 ; κW =
1

4
g2(t) ; κ′W = 0

nZ = 3 ; κZ =
1

4
(g2(t) + g′2(t)) ; κ′Z = 0
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nf = −12 ; κf =
1

2
y2
f (t) ; κ′f = 0

nH = 1 ; κH =
3

4
λ(t) ; κ′H = m2(t)

nG = 3 ; κG =
1

4
λ(t) ; κ′G = m2(t) (2.60)

Here h = h(t) denotes the classical value of the Higgs field, t being the dimen-

sionless parameter related to the running energy scale µ as t = log(µ/MZ). For

h(t) >> v, the effective potential could be approximated as,

V SM
eff = λeff (h)

h4

4
(2.61)

with

λSMeff (h) = e4Γ(h) [λ(µ = h) + λ
(1)
eff (µ = h) + λ

(2)
eff (µ = h) ]. (2.62)

λ
(1)
eff and λ(2)

eff are the one- and two- loop contributions respectively and their expres-

sions are given in appendix-B.

In addition to the correction to the potential, it is well known that the couplings in

any quantum field theory get corrections from higher-order loop diagrams because of

which, the couplings run with the renormalization scale. For a coupling C, we have

the renormalization group equation (RGE),

µ
dC

dµ
=
∑
i

β
(i)
C (2.63)

where i stands for the ith loop. In the case of the SM, the Higgs quartic coupling λ

is pulled down to negative values by renormalization group running, at an energy of

about 109 − 1010 GeV. The exact scale at which λ becomes negative depends on the

value of αs and the top quark mass Mt, as the dominant contribution comes from the

top-Yukawa coupling, yt [138, 139]. If the quartic coupling λ(µ) becomes negative at

large renormalization scale µ, it means that the Higgs potential would be unbounded

from below in the early universe and the vacuum would be unstable in that era. This

implies the existence of another low lying vacuum and the EW vacuum can decay to

this vacuum via quantum tunneling. But it does not pose any threat to the SM as it has

been shown that the decay time is greater than the age of the universe [140], in which

case, it is said that the EW vacuum is metastable.
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Mh = 125 GeV ;

Αs = 0.1184 ;

M t = 173.7 , 173.1, 172.5 GeV
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(a) Running of λ for different values of Mt keep-

ing αS and Mh fixed.

Mh = 125 GeV ;

M t = 173.1 GeV ;

Αs = 0.1177 , 0.1184 , 0.1191
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(b) Running of λ for different values of αs keep-

ing Mt and Mh fixed.

Figure 2.4: Running of λ with the renormalization scale for different values of the SM

parameters.

In Fig. 2.4, we have plotted the running of the λ for different values of the SM

parameters. In the left panel, we have shown the running for different values of Mt

keeping all the other parameters fixed whereas in the right panel, it is shown for differ-

ent values αS . From these plots, one can see that an increase in Mt (or equivalently, an

increase in yt) pulls the EW vacuum towards the unstable region whereas an increase

in αs pushes it towards stability. The SM RGEs used are given in appendix-B.

The present central values of the SM parameters, especially the top Yukawa cou-

pling yt and strong coupling constant αs with Higgs mass Mh ≈ 125.7 GeV suggest

that the beta function of the Higgs quartic coupling βλ(≡ dV (h)/dh) goes from nega-

tive to positive around 1015 GeV [138, 139] and this is the scale at which the aforemen-

tioned extra deeper minima is situated. The expression for the probability with which

the EW vacuum tunnel into that true (deeper) vacuum at zero temperature is given by

[140, 141],

P0 = VU Λ4
B exp

(
− 8π2

3 |λ(ΛB)|

)
(2.64)

where ΛB is the energy scale at which the action of the Higgs potential is minimum.

VU is the volume of the past light cone taken as τ 4
U , where τU is the age of the universe



2.5. Implications of Seesaw 41

(τU = 4.35 × 1017 sec)[142]. 1. For the vacuum to be metastable, one should have

P0 < 1 which implies that [144],

0 > λ(µ) > λmin(ΛB) =
−0.06488

1− 0.00986 ln (v/ΛB)
, (2.65)

whereas the situation λ(µ) < λmin(ΛB) leads to an unstable vacuum.

In the presence of new physics, the new particles can affect the running of λ and

also, alter the effective potential. In fact, the presence of additional Yukawa couplings

can destabilize the vacuum whereas the presence of extra scalar quartic couplings can

stabilize it. For example, in the context of the SM extended with neutrino masses via

type-I seesaw mechanism, the RGE for the SM quartic coupling is modified as,

βλ = βλSM + 4λTr(Y †ν Yν)− 4Tr[(Y †ν Yν)
2]. (2.66)

From the above equation, it can be seen that the neutrino Yukawa coupling is giving

additional negative contribution. In addition, the contribution of the extra neutrino

Yukawa coupling to the one loop effective potential can be written as [145, 146],

V ν
1 (h) = −((M ′†M ′)ii)

2

32π2

[
ln

(M ′†M ′)ii
µ2(t)

− 3

2

]
− ((M ′M ′†)jj)

2

32π2

[
ln

(M ′M ′†)jj
µ2(t)

− 3

2

]
.

(2.67)

Here M ′ =
Yν√

2
h and j and i run over the light and the heavy neutrinos respectively.

Also, the above equation is in the diagonal basis for Y †ν Yν . In this case, the effective

quartic coupling will get modified as,

λeff (h) = λSMeff (h) + λνeff (h), (2.68)

where,

λνeff (h) = −e
4Γ(h)

32π2

[
((Y ′

†
νY
′
ν)ii)

2

(
ln

(Y ′†νY
′
ν)ii

2
− 3

2

)
+

((Y ′νY
′†
ν)jj)

2

(
ln

(Y ′νY
′†
ν)jj

2
− 3

2

)]
.

(2.69)

Demanding the EW vacuum to be stable in this case can give additional constraints

on the masses of the heavy neutrinos as well as the Yukawa couplings. Particularly, in
1In this work, we have neglected the loop corrections and gravitational correction to the action of the

Higgs potential [143]
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the case of the TeV scale seesaw models with sizable Yukawa couplings, the stability

of the vacuum can be altered considerably by the contribution from the neutrinos since

here, the effect of the neutrino Yukawa couplings enter at a lower scale due to low mass

thresholds [146–155]. In this thesis, we have studied the stability of the EW vacuum

in the presence of various low scale seesaw models in great detail.

2.5.4 Collider Signatures

One of the major motivations for considering low scale seesaw models is that they can

be tested in the collider experiments. The heavy particles of masses of the order of ∼

O(TeV) associated with the low scale seesaw models can have interesting signatures in

the colliders (See [156] for a recent review.). For example, a Majorana heavy neutrino

can give the smoking gun lepton number violating signature of same-sign dilepton plus

jets with a very less SM background and no missing transverse energy in the context

of hadron colliders [157–165],

pp(pp)→ W ∗ → Nl± → l±l±jj. (2.70)

Similarly, the charged fermions and scalars in the context of type-II and type-III see-

saw models can have interesting signatures in the colliders. Since the scalar and the

fermionic triplets have direct interactions with the gauge bosons unlike in the case of

type-I seesaw model, these states can be directly produced at the colliders via their

gauge interactions. For the type-II seesaw, the most important signal will be the detec-

tion of a doubly charged scalar which has lepton number violating interactions [166–

177]. The most important production channels in this case are,

pp→ Z∗γ∗ → ∆++∆−−,∆+∆− ; pp→ W±∗W±∗ → ∆±∆± ;

pp→ W ∗ → ∆±±∆∓,∆±±W∓
(2.71)

The doubly charged Higgs can decay to l±l±, W±W±, W±∆± or ∆±∆±. The triplet

fermions in the type-III seesaw model can be produced and detected in the collider

experiments through the process(es) [166, 178–185],

pp→ Σ+Σ− → mj + n l + 6ET (2.72)
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wherem,n are integers. In the case of inverse seesaw model where the heavy neutrinos

are pseudo-Dirac neutrinos, the golden signature is the trilepton signal [166, 186–194]

:

pp(pp)→ W ∗ → Nl± → l±l±l± + /ET . (2.73)

The presence of the extra gauge bosons and additional scalars in the gauge exten-

sions with Majorana neutrinos provide more ways of testing the models in the collid-

ers. In this thesis, we have studied an inverse seesaw model in the context of a class of

U(1) extensions of the SM in Chapter 6, where we have constrained the mass and the

coupling of the extra gauge boson from collider bounds.





Chapter 3

Implications of the Dark-LMA

Solution for Neutrino-less Double Beta

Decay

3.1 Introduction

:

The question whether neutrinos are Dirac or Majorana particle is one of the most

fundamental issues in physics which is still unanswered. The most straightforward way

to probe the Majorana nature of neutrinos is through 0νββ experiments [52]1. They

measure the half-life, which in the standard mechanism can be expressed in terms of

the effective mass mββ , which in turn depends on the oscillation parameters as well as

the neutrino mass ordering, as discussed in section 2.5.1. A positive signal of 0νββ will

be a definite confirmation of the existence of lepton number violating Majorana mass

term for the neutrinos [93]. Such a term requires the existence of some theory beyond

the Standard Model of particle physics. This could also be related to the observed

dominance of matter over antimatter which is essential for our existence. The searches

for 0νββ have been on-going for the past several decades [195].

In this chapter, we discuss the implications of the so-called Dark-LMA (DLMA)

1The heavy Majorana neutrinos can also be probed via the lepton number violating dilepton signal

at the hadron colliders [157–165].

45
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[196–198] solution to the solar neutrino problem for 0νββ. The standard LMA so-

lution corresponds to standard neutrino oscillations with ∆m2
21 ' 7.5 × 10−5 eV2

and sin2 θ12 ' 0.3, and satisfies the solar neutrino data at high significance. The

DLMA solution appears as a nearly-degenerate solution to the solar neutrino prob-

lem for ∆m2
21 ' 7.5 × 10−5 eV2 and sin2θ12 ' 0.7, once we allow for the existence

of non-standard neutrino interactions (NSIs) in addition to standard oscillations. The

KamLAND experiment is unable to break this degeneracy since it observes neutrino

oscillations in vacuum which depends on sin2 2θ12 which is the same for both LMA

and DLMA solutions. The occurrence of the DLMA solution can also adversely affect

the determination of mass ordering in beam based neutrino oscillation experiments in

presence of NSI [199–201]. In this chapter, we will see that while the IH band for the

effective mass in 0νββ experiments remains nearly same for LMA and DLMA solu-

tions, the NH band gets shifted upwards for the DLMA solution. As a result this may

make it possible for the next-generation experiments to start probing 0νββ for NH as

well. Along with opening up new regions of the effective neutrino mass to be probed by

future 0νββ experiments, this also provides a way of testing the long-standing DLMA

solution to the solar neutrino problem, irrespective of the value of the NSI parameters.

In the next section, we discuss the matter effect in solar neutrinos and the DLMA

solution in the presence of large NSI. In section 3.3, we briefly discuss the various

experiments looking for 0νββ and their current status. Then we analyze the implica-

tions of the DLMA solution to 0νββ in section 3.4. After examining the sensitivity

of the new parameter space for 0νββ due to the DLMA solution in the future 136Xe

experiments in section 3.5, we summarize in section 3.6.

3.2 Large NSI and the DLMA Solution

The presence of NSI will modify the neutrino flavor evolution equation resulting in

a degeneracy which leads to the DLMA solution. This requires a solar mixing angle

greater than π/4 and indicates an uncertainty in the neutrino mass hierarchy. We need

non-oscillation experiments to lift this degeneracy. In this section, after reviewing the

two flavor neutrino evolution equation in matter and the MSW effect, we discuss how
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the presence of NSI will lead to the DLMA solution for θ12.

3.2.1 Two Flavor Neutrino Evolution Equation in Matter

Assuming there are only two flavors and two mass eigenstates corresponding to them,

the time evolution equation in vacuum for neutrinos in the mass eigenstate basis can

be written as,

i

ν̇1

ν̇2

 =

E1 0

0 E2

ν1

ν2

 . (3.1)

This can be converted to the flavor basis using a unitary transformation,

iU

ν̇1

ν̇2

 = U

E1 0

0 E2

UTU

ν1

ν2


or,

i

ν̇e
ν̇µ

 = U

E1 0

0 E2

UT

νe
νµ

 (3.2)

Where U is the 2× 2 orthogonal neutrino mixing matrix given by,

U =

 cos θ sin θ

− sin θ cos θ

 . (3.3)

Taking Ei = p +
m2
i

2E
and defining ∆i =

m2
i

2E
and ∆21 = ∆2 − ∆1 =

∆m2

2E
, the

evolution equation becomes,

i

ν̇e
ν̇µ

 =
∆21

2

− cos 2θ sin 2θ

sin 2θ cos 2θ

νe
νµ

 . (3.4)

Here, we have ignored the constant phase part that has no contribution to the transi-

tion probability. Thus, the Hamiltonian for neutrino propagation in vacuum is obtained

as,

Hvac =
∆21

2

− cos 2θ sin 2θ

sin 2θ cos 2θ

 . (3.5)
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When the active neutrino flavors propagate through matter, their evolution equation

is modified by the potentials due to their interactions with the medium via the coher-

ent forward elastic weak charged current (CC) and the neutral current (NC) scatterings

[25–27]. Since normal matter consists of electron, proton and neutron, the CC inter-

actions affect only νe whereas the NC interactions affect all the three active neutrinos.

The potential due to NC scattering modifies the propagation equation for all the neu-

trinos in the same way and hence it does not affect the final expressions of neutrino

oscillation probabilities. The CC interaction affects only νe and it modifies the proba-

bility expression significantly. The interaction potential is given by the average of the

effective Hamiltonian over the electron background and is given by,

HCC =
√

2GFNe. (3.6)

Thus, in the presence of matter the total Hamiltonian becomes,

Hvac+mat =

−∆21

2
cos 2θ +

√
2GFNe

∆21

2
sin 2θ

∆21

2
sin 2θ

∆21

2
cos 2θ

 , (3.7)

and the evolution equation in matter becomes,

i

ν̇e
ν̇µ

 =

−∆21

2
cos 2θ +

√
2GFNe

∆21

2
sin 2θ

∆21

2
sin 2θ

∆21

2
cos 2θ


νe
νµ

 . (3.8)

This evolution equation describes the νe ↔ νµ oscillation in matter. Now, we can

apply a unitary transformation to convert the above equation into the mass basis using

the matrix,

UM =

 cos θM sin θM

− sin θM cos θM

 , (3.9)

where θM is the mixing angle in matter and it can be expressed as,

tan 2θM =

∆m2
21

2E
sin 2θ

∆m2
21

2E
cos 2θ −

√
2GFNe

. (3.10)

Here, θ is the mixing angle in vacuum. Now if the condition,

∆m2
21

2E
cos 2θ =

√
2GFNe (3.11)

is satisfied, tan 2θM becomes infinite. i.e., θM = π/4, which corresponds to maximum

mixing even if the vacuum mixing angle θ is small. This is called MSW resonance
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and the above condition is called the MSW resonance condition [25–27]. The MSW

resonance condition is sensitive to the sign of ∆m2
21. Since the sign of the perturbing

potential is positive for neutrinos, resonance can occur only if ∆21 > 0 and θ < π/4

or ∆21 < 0 and θ > π/4. Similarly, for antineutrinos, the resonance condition is

given by ∆21 > 0 and θ > π/4 or ∆21 < 0 and θ < π/4. Thus the enhancement

of the oscillation probabilities depends on the sign of ∆21 and the octant of θ and the

experimental measurement of this resonance can help in determining the same.

Now, the difference of neutrino eigenenergies in matter is (eigenvalues ofHvac+mat),

E1 − E2 =

√(
∆m2

2E
cos 2θ −

√
2GFNe

)2

+

(
∆m2

2E

)2

sin2 θ. (3.12)

Noting that E2 − E1 = (m2
2 − m2

1)/2E in vacuum, we can see from the above

equation how the mass squared difference is modified in the presence of matter.

3.2.2 Three Flavors neutrino evolution equation in the presence of

NSI

In the three flavor scenario, the Hamiltonians for the neutrino and the antineutrino

flavor states are given as,

Hν = Hvac +Hmat and H ν̄ = (Hvac −Hmat)
∗ (3.13)

respectively. Here,

Hvac = UvacDvacU
†
vac, (3.14)

with

Dvac =
1

2Eν
diag (0,∆m2

21,∆m
2
31), (3.15)

and ∆m2
ij = m2

i −m2
j . In the following discussion, we have assumed that the active

neutrino masses follow NH. Including NSI, the most general matter potential can be

parametrized as,

Hmat = Hm+HNSI =
√

2GFNe(r)


1 0 0

0 0 0

0 0 0

+
√

2GF

∑
f=e,u,d

Nf (r)


εfee εfeµ εfeτ

εf∗eµ εfµµ εfµτ

εf∗eτ εf∗µτ εfττ

 .
(3.16)
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The Lagrangian for NSI in matter is given by the effective four fermion operator as,

LNSI = −2
√

2GF ε
fP
αβ (ν̄αγ

µνβ)(f̄γµPf), (3.17)

where f is the charged fermion, P is the projection operator (left and right) and εfPαβ

are the NSI parameters which govern the deviation from the standard interactions. NSI

affects the neutrino propagation in matter through vector couplings and hence in the

matter Hamiltonian, we can write εfαβ = εfLαβ + εfRαβ .

3.2.3 Earth Matter potential for the solar and KamLAND neutri-

nos

Following the discussion in [202], for this case, we can work in the limit ∆m2
31 →∞

which effectively means,

GF

∑
f

Nf (r)ε
f
αβ �

∆m2
31

Eν
. (3.18)

The survival probability Pee can be written in this approximation as,

Pee = c4
13Peff + s4

13. (3.19)

We can calculate the probability, Peff in an effective 2× 2 model with the Hamil-

tonian Heff = Heff
vac +Heff

mat where,

Heff
vac =

∆m2
21

4Eν

− cos 2θ12 sin 2θ12

sin 2θ12 cos 2θ12

 and (3.20)

Heff
mat =

√
2GFNe(r)

c2
13 0

0 0

+
√

2GF

∑
f

Nf (r)

−εfD εfN

εf∗N εfD

 . (3.21)

The new parameters εfD and εfN are related to εfαβ as,

εfD =c13s13Re[e
iδCP (s23ε

f
eµ + c23ε

f
eτ )]− (1 + s2

13)c23s23Re(ε
f
µτ )−

c2
13

2
(εfee

− εfµµ) +
s2

23 − s2
13c

2
23

2
(εfττ − εfµµ),

(3.22)

εfN = c13(c23ε
f
eµ − s23ε

f
eτ ) + s13e

−iδCP [s2
23ε

f
µτ − c2

23ε
f∗
µτ + c23s23(εfττ − εfµµ)] (3.23)

Thus, the oscillation probabilities depend on ∆m2
21, θ12, θ13, one real matter pa-

rameter εfD and one complex matter parameter εfN for each f . In the analysis of solar
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data, one considers a particular choice of f (f = e, u or d) at a time. Since the angle

θ13 appears only through Eqn.3.19, it is enough to consider 0 ≤ θ13 ≤ π/2. The ef-

fective Hamiltonian Heff is invariant under ∆m2
21 → −∆m2

21 and θ12 → θ12 + π/2

and hence without loss of generality, one can take ∆m2
21 > 0. Also from Hvac

eff we

can write −π ≤ 2θ12 ≤ π or −π/2 ≤ θ12 ≤ π/2. The probabilities are insensitive

to the non-diagonal entries of Eqn.3.21 which gives the symmetry θ12 → −θ12 and

εfN → −ε
f
N and this further restricts θ12 to 0 ≤ θ12 ≤ π/2. Thus in the most general

case, we have, ∆m2
21 > 0, 0 ≤ θij ≤ π/2, εfD as real and εfN as complex. In the NSI, if

we take the fermion as electron (f = e), there is another exact symmetry. In this case,

Heff
mat =

√
2GFNe(r)

−εeD +
c2

13

2
εeN

εe∗N εeD −
c2

13

2

 . (3.24)

The probabilities are invariant under H → −H∗ which corresponds to the sym-

metry transformations ∆m2
21 → −∆m2

21, ε
e
D −

c2
13

2
→ −(εeD −

c2
13

2
), εeN → −εe∗N .

Combining this we can reabsorb the sign flip of both ∆m2
21 and εe∗N into θ12, resulting

in the transformation θ12 → π/2− θ12, ε
e
D → c2

13 − εeD, εeN → εe∗N . This invariance im-

plies that for each point in the light side of the parameter space (region with θ12 < π/4)

there is a point in the dark side (region with θ12 > π/4), which cannot be distinguished

experimentally by oscillation alone and this is the origin of the DLMA solution [196–

198, 202]. Note that such a symmetry is no longer exact for f = u/d, but it is still

realized with considerable accuracy.

The scattering experiments can resolve the degeneracy associated with the DLMA

solution by measuring the NSI parameters. For instance, in [203], combined con-

straints from neutrino oscillation and CHARM and NuTeV measurements were used

to demonstrate that the degeneracy between the two LMA solutions can be resolved

if NSI is only with the down quarks. Subsequently, the study performed in [204] in-

cluded the COHERENT neutrino-nucleus scattering data and showed that the DLMA

solution can be disfavored at the 3.1σ and 3.6σ C.L. for NSI with up and down quarks,

respectively. However, it is worth stressing that these bounds depend on the mass of

the light mediator and it has been shown in [205] that the COHERENT data excludes

the DLMA solution at 95% C.L. for light mediator mass > 48 MeV only. The global
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analysis including oscillation and COHERENT data performed in [206] shows that the

DLMA solution is still allowed at 3σ, albeit for a smaller range of values of NSI pa-

rameters and for light mediators of mass≥ 10 MeV. It has been found that by including

COHERENT constraints, the DLMA solution is valid at 2σ confidence level for values

of NSI parameters in the range [206],

− 0.41 < εuee − εuµµ < 0.729 and − 0.373 < εdee − εdµµ < 0.668. (3.25)

Also, from now onwards, we denote the DLMA solution for θ12 in the presence of NSI

as θD12 and the standard LMA solution as θ12. The 3σ ranges of these two parameters

are given in Table 3.1 [48, 206].

3.3 0νββ Experiments

The search for 0νββ is of great importance since it will tell us if neutrinos are Dirac

particles or lepton number violating Majorana particles. A lot of experiments searching

for this rare decay have been performed in the past and there are several ongoing and

future experiments that search for 0νββ using different techniques and isotopes (See

[207] for a recent review.). As mentioned before, these experiments measure the half-

life which is given by,

T 0ν
1/2 = aε

√
MT

BdE
, (3.26)

where M is the mass of the isotope, T is the observation time scale, B is the back-

ground in counts/(keV kg yr), dE is the energy resolution and ε is the efficiency. This

half life is then related to the effective mass mββ through Eqn.2.50. There are various

parameters that one should take into account like the Q value and natural abundance of

the isotope, cost effectiveness of the isotopic enrichment, resolution, efficiency, back-

ground etc. while planning a 0νββ experiment using a particular isotope. The most

commonly used isotopes are 136Xe, 76Ge and 130Te.

In general, the experiments follow two main approaches where main difference is

only how the electrons are detected :

• Indirect methods : The unnatural concentrations of the daughter nuclei in se-

lected samples are measured after very long exposures. Eg. : KamLAND-Zen
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[117], GERDA [208], nEXO [209], CUORE [210].

• Direct methods : The properties of the two electrons emitted in real time in

the ββ decay are measured. Here, the 0νββ decay isotope is separate from the

detector. Eg. : SuperNEMO [211, 212].

As mentioned in chapter 2, the best limit on the half life of ββ0ν decay is T1/2 <

1.5×1025 years coming from the KamLAND-Zen experiment using 136Xe [117]. This

gives a bound on the effective mass,

mββ ≤ 0.061− 0.165eV.

The range corresponds to the uncertainty in nuclear matrix elements. Also, the GERDA

experiment using 76Ge gives a bound on T1/2 as T1/2(76Ge) > 8×1025 years [208] and

the combined results of Cuoricino and CUORE experiments using 130Te give a bound

of T1/2(130Te) > 1.5 × 1025 years [210]. The corresponding bounds on mββ are less

stringent compared to the one coming from the KamLAND-Zen. Among the various

next generation experiments, the 136Xe experiment - nEXO has the best sensitivity

with a 3σ discovery sensitivity of T1/2 = 5.7 × 1027 years [209]. This corresponds to

mββ sensitivity of ∼ 0.007− 0.020 eV.

3.4 Predictions of the DLMA solution for 0νββ

The half-life for 0νββ process in the standard three generation picture is given by

Eqn.2.50 as,
Γ0νββ

ln2
= G

∣∣∣Mν

me

∣∣∣2m2
ββ

Here, mββ is the effective neutrino mass, which, in the standard parametrization given

in Eqn.1.17 is given by,

mββ = |m1 c
2
12c

2
13 +m2 s

2
12c

2
13e

2iα2 +m3 s
2
13e

2iα3|. (3.27)

Clearly, |mββ| depends on whether the neutrino mass states follow normal or inverted

hierarchy or if they are quasi-degenerate in addition to the mixing parameters.

Fig. 3.1 shows mββ as a function of the lightest neutrino mass for both NH and

IH. The pink region is for NH with the standard solution for θ12 and the red band
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Figure 3.1: The effective neutrino mass mββ for 0νββ as a function of the lightest

neutrino mass for both NH and IH. The pink region is for NH with the standard solution

for θ12 and the red band is for NH with θD12. For the IH case(the blue band), mββ

remains the same for the DLMA solution. See text for details.

is for NH with θD12, corresponding to the DLMA solution 2. The dark blue band

is for IH with the standard θ12 value and the cyan band (which overlaps with the blue

band) is for IH with θD12. The gray band (0.071−0.161 eV) corresponds to the current

upper limit from combined results of GERDA and KamLAND-Zen experiments [213].

The region above this is disallowed. The range corresponds to the NME uncertainty

[208, 214, 215]. The black dashed line represents the future 3σ sensitivity of the nEXO

experiment : T1/2 = 5.7 × 1027 years [209], which, for the highest value of NME,

translates to mββ = 0.007 eV. This can probe a small part of the NH region with the

LMA solution for mlightest ≥ 0.005 eV, whereas the upper edge of the DLMA region

can be probed even for small values ofmlightest. The yellow region is disfavored by the

2Note that the effective dimension-6 operator that gives rise to NSI and the dark-LMA solution is

a lepton flavor violating operator whereas it conserves the lepton number. On the other hand, 0νββ

violates lepton number by two units. Hence the NSI operators can not contribute directly to 0νββ.
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cosmological constraints on the sum of the light neutrino masses [57]. In obtaining this

plot, all the oscillation parameters are varied in their 3σ ranges [48] and the Majorana

phases are varied from 0 to π.

From the figure, we can see that for NH, mββ for the DLMA solution is higher

than that for the standard LMA solution, shifting into the gap between IH and NH. The

effect is more pronounced for lower values of mlightest. There is some overlap in the

predictions between the maximum value of mββ for the LMA with the minimum value

of this for the DLMA solution, which increases as mlightest increases. One noteworthy

feature is the absence of the cancellation region for the DLMA solution. For IO, the

predicted values of mββ remain the same for LMA and DLMA solutions. Since the

predictions of mββ for NH with LMA and IH with DLMA are well separated, the

generalized hierarchy degeneracy [200] is not present.

The behavior of mββ can be understood by considering the limiting cases for dif-

ferent mass schemes.

Inverted Hierarchy : In this case, for very small values of m3 such that m3 <<√
∆m2

atm, m2 ≈ m1 ≈
√

∆m2
atm, the effective mass is given as,

mββIH ≈
√

∆m2
atm(| c2

12c
2
13 + s2

12c
2
13e

2iα2 |).

In this region, mββ is independent of m3 and is bounded from above and below by a

maximum and minimum value given by [216],

mββIHmax = |c2
13

√
∆m2

atm | (α2 = 0, π),

mββIHmin = |c2
13 cos2θ12

√
∆m2

atm | (α2 = π/2).

The maximum value is independent of θ12 while for the minimum value, we can see

from Table 3.1, that the 3σ range for |cos2θ12| is the same for both LMA and DLMA

solutions. This explains why the prediction for mββ is the same for both the cases in

this region.

Now, as m3 approaches ∼
√

∆m2
atm, the other masses can be approximated as,

m1 ≈ m2 ≈
√

2∆m2
atm and the effective mass becomes,

mββIH =
√

∆m2
atm |(

√
2c2

13( c2
12 + s2

12e
2iα2) + s2

13e
2iα3)|.
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sin2θ12 sin2θD12 cos2θ12 cos2θD12 sin2θ13

Maximum 0.350 0.725 0.45 −0.30 0.024

Minimum 0.275 0.650 0.30 −0.45 0.020

Table 3.1: The 3σ ranges of the oscillation parameters relevant for understanding the behavior

of the effective mass in different limits.

This is maximum for α2 = α3 = 0 and is again independent of θ12. Also, mββIH is

minimum for α2 = π/2 and α3 = 0 or π/2 depending on whether we take θ12 or θD12.

But since, s2
13 is very small, this is almost independent of what we choose for α3 and

effectively, the minimum of mββIH in this regime is approximated as,

mββIHmin =
√

∆m2
atm |

√
2c2

13cos2θ12|,

which is independent of the solution for θ12.

Normal Hierarchy: Unlike in IO, the behavior of mββ is different for the LMA as

well as the DLMA solutions of θ12. For very small values of m1 such that m1 <<

m2 ≈
√

∆m2
sol << m3 ≈

√
∆m2

atm , mββ can be written as,

mββNH =
√

∆m2
atm|
√
r s2

12c
2
13e

2iα2 + s2
13e

2iα3|,

where, r = | ∆m
2
sol

∆m2
atm

|. The maximum value of this corresponds to α2 = α3 = 0, π

and the minimum value corresponds to α2 = 0 and α3 = π/2. These will be higher

for higher values of sin2θ12. This explains why the prediction for mββ for the DLMA

solution in this region is higher.

Moving on to the cancellation region, the typical values of masses are m1 ∼ 0.005

eV, m2 ∼ 0.01 eV and m3 ∼ 0.05 eV. Then, the minimum of mββ (α2 = α3 = π/2)

can be approximated as,

mββmin ≈ m1|(1− 3s2
12c

2
13 − 11s2

13)|.

For the values of s2
12 and s2

13 as listed in the Table 3.1, complete cancellation is possible

in the LMA region. However, for s2
12 in the DLMA region, such a cancellation is not

possible because of higher values of s2
12.
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Figure 3.2: 136Xe discovery sensitivity as a function of sensitive exposure for a se-

lection of sensitive background levels. The yellow, black, brown and blue lines corre-

spond to different values of the sensitive background levels of 0, 10−5, 10−4 and 10−3

cts/(kgiso yr) respectively.

As we increase the value of m1 and reach the limit of partial hierarchy where

m1 ≈ m2 ≈
√

∆m2
sol << m3 ≈

√
∆m2

atm, the maximum value of mββ is given by,

mββNHmax ≈
√

∆m2
atmrc

2
13 (α2 = α3 = 0),

which is independent of θ12. Hence the maximum values of mββ for the two LMA

solutions tend to overlap. In QD limit, mββ varies linearly with the common mass

scale m0 and both maximum and minimum values are independent of θ12.

At this point it is worthwhile to note that if we assume the existence of a fourth

sterile neutrino as suggested by the LSND/MiniBooNE results, even with the standard

LMA solution, the predictedmββ for NH can be in the desert region [217, 218]. In fact,

depending on the value of the mass squared difference governing the LSND/MiniBooNE

oscillations, the prediction can even overlap with the IH prediction for three generation

and hence, can be probed by the near future experiments.
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Isotope NME (Mν) G(10−15year−1) T1/2 range (years)
136Xe 1.6− 4.8 14.58 5.3× 1027 − 1.7× 1029

76Ge 2.8− 6.1 2.363 2.0× 1028 − 3.4× 1029

130Te 1.4− 6.4 14.22 4.9× 1028 − 2.2× 1029

Table 3.2: The T1/2 ranges corresponding to the DLMA region mββ = 0.004 − 0.0075 eV

for different isotopes. The NME values [208, 214] and the phase space factors [215] used in

the calculation are also given.

3.5 Sensitivity in the future experiments

Here, we discuss a simple method to obtain the sensitivity of the DLMA region in

the future 136Xe experiments following the discussion in reference [213]. The discov-

ery sensitivity is prescribed as the value of T1/2 for which an experiment has a 50%

probability of measuring a 3σ signal above the background. It is defined as,

T1/2 = ln2
NAε

maS3σ(B)
. (3.28)

Here, NA is the Avogadro number, ma is the atomic mass of the isotope, B = βε is

the expected background where ε and β denote the sensitive exposure and background

respectively ; S3σ is the value for which half of the measurements would give a signal

above B assuming a Poisson signal and is calculated from the relation

1− CDF Poisson(C3σ|S3σ +B) = 50%.

C3σ denotes the number of counts for which the cumulative Poisson distribution with

meanB followsCDFPoisson(C3σ|B) = 3σ. To avoid the discrete variations that would

arise in the discovery sensitivity if C3σ is restricted to be integer valued, we use the fol-

lowing definition ofCDFPoisson as a continuous distribution inC using the normalized

upper incomplete gamma function,

CDFPoisson(C|µ) =
Γ(C + 1, µ)

Γ(C + 1)
.

Using the above equations, the T1/2 discovery sensitivities of 136Xe as a function of

ε for various values of β are shown in Fig. 3.2. In this plot, the red shaded band
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corresponds to the new allowed region of mββ ∼ 0.004 − 0.0075 eV for the DLMA

solution. This band in mββ which is due to the variation of the parameters in the

PMNS matrix, is converted to a band in T1/2 using Eqn.2.50, by taking into account

the NME uncertainty as given in Table 3.2. The pink band corresponds to mββ =

10−3 eV, which is the minimum of the NH regime for lower values of mlightest with

the LMA solution. In Fig. 3.2, the dotted black line corresponds to the future 3σ

sensitivity of nEXO, which is T1/2 = 5.7×1027 years [209]. The yellow, black, brown

and blue lines correspond to different values of the sensitive background levels of 0,

10−5, 10−4 and 10−3 cts/(kgisoyr) respectively. From the figure, we can see that for

a sensitive background level of 10−4 cts/(kgisoyr), the DLMA region could be probed

with a sensitive exposure greater than ∼ 5000 kgisoyr. To probe the 10−3 regime

shown by the dashed lines requires lower background levels and/or higher sensitive

exposure. In Table 3.2, we have given the T1/2 ranges corresponding to the DLMA

region, mββ = 0.004− 0.0075 eV for three different isotopes.

3.6 Summary

Searching for 0νββ process is of utmost importance since it can establish the Majorana

nature of the neutrinos which implies they are their own antiparticles. This will in-

turn signify a lepton number violating Majorana mass term for the neutrinos, which

may hold the key in explaining why neutrino masses are much smaller than the other

fermion masses. This can have profound implications for a deeper understanding of

physics beyond the Standard Model of particle physics. So far these searches have

yielded negative results and have put an upper bound on the effective mass governing

0νββ. Assuming light Majorana neutrino exchange as the sole mechanism for 0νββ,

the predictions of effective mass for IH and NH are separated by a “desert region”.

The current upper bound is just above the IH region (∼ 0.1 eV ) and several future

experiments with sensitivity reach ∼ 0.015 eV are expected to probe the IH parameter

space completely. However if no positive signal is found in these searches then the

projected sensitivity reach of these experiments are in the ballpark of 0.005 eV which

can explore only a small part of the NH region for lightest neutrino mass ≥ 0.005 eV
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[209]. The next frontier that is envisaged is ∼ 10−3 eV [219]. In this chapter, we

have seen that if the Dark-LMA solution to the solar neutrino problem is true, then

the effective mass for NH shifts into the intermediate “desert zone” between NH and

IH. Therefore, in an incremental advancement, a new goal for the 0νββ experiments

can be to first explore this region ∼ 0.004 − 0.0075 eV, which is possible even for

very low values of the lightest neutrino mass. This not only defines a newer sensitivity

goal of future 0νββ experimental program for the NH scenario, but can also provide

an independent confirmation/refutal of the Dark-LMA solution to the solar neutrino

problem in presence of non-standard interactions.



Chapter 4

Naturalness, Vacuum Stability and

Lepton Flavor Violation in Minimal

Type-III Seesaw Model

4.1 Introduction

As discussed earlier, the most elegant way to give mass to neutrinos is the seesaw

mechanism. This relates new physics at a high scale to the smallness of neutrino mass.

The fact that the GUT scale seesaw models have no testability at the colliders gave rise

to intense research in TeV scale seesaw models.

Another important aspect to be considered while studying the seesaw models is

the issue of naturalness. It is well known that the Higgs mass gets large corrections

from the higher order loop diagrams due to its self-interaction as well as the couplings

with gauge bosons and fermions. The theory is perceived unnatural if a severe fine-

tuning between the quadratic radiative corrections and the bare mass is needed to bring

down Higgs mass to the observed scale. Although the dimensional regularization can

throw away the quadratic divergences, the presence of other dangerous logarithmic

and finite contributions can cause similar naturalness problem. In the case of seesaw

models in which the new particles couple to the SM Higgs, this naturalness problem is

enhanced [153, 220–229]. Reducing the seesaw scale to TeV will in turn bring down

the correction to the Higgs mass to be of the order of TeV.

61
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Thus, while testability at the colliders serves as an experimental motivation for

considering low scale seesaw models, the naturalness problem acts as a theoretical

motivation. At the same time, the TeV scale seesaw models alter the stability of the

EW vacuum considerably and demanding the EW vacuum to be stable/metastable up

to the MPlanck puts further constraints on the masses and the couplings. The stabil-

ity/metastability of the EW vacuum in the context of various seesaw models have been

studied in references [146–152, 154, 155, 230–234]. In particular, in reference [235],

the authors have discussed the implications of vacuum stability and gauge-Higgs uni-

fication in the context of the type-III seesaw model and reference [155] has discussed

the EW vacuum metastability in the context of type-I as well as type-III seesaw mod-

els. In reference [153], the authors have studied the implications of naturalness and

vacuum stability in a minimal type-I seesaw model. Similarly, the naturalness and vac-

uum stability in the case of the type-II seesaw model have been studied in reference

[228].

This chapter is based on the work done in [236] and here we study the consequences

of naturalness and vacuum stability in the minimal type-III seesaw model, in which

we extend the SM by adding two SU(2)L triplet fermions with zero hypercharge to

explain the origin of the non-zero neutrino masses and mixing. Here, the lightest

active neutrino will be massless. We use the Casas-Ibarra (CI) parametrization for the

neutrino Yukawa coupling matrix [237, 238] and by choosing the two triplets to be

degenerate, we have only three independent real parameters, namely the mass of the

triplet fermions and a complex angle in the CI parametrization. We study and constrain

these parameters using the bounds from naturalness, EW vacuum stability as well as

LFV decays.

This chapter is organized as follows: In section 4.2, we review the minimal type-

III seesaw model and the parametrization used for our studies. In section 4.3, we

discuss the implications of naturalness in the minimal type-III seesaw model and in

section 4.4, we have discussed the constraints from the LFV decays. After this, we

discuss the effective Higgs potential in the presence of the extra fermion triplets and

the renormalization group (RG) evolution of the different couplings, and present a

detailed discussion of the results. Finally, we summarize in section 4.7.
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4.2 The Minimal Type-III Seesaw Model

We extend the standard model with two fermionic triplets ΣRi , i = 1, 2 having zero

hypercharge as given in Eqn.2.27. For simplicity, we consider the scenario in which

the Majorana mass matrix M is proportional to the identity matrix so that the heavy

fermions have degenerate masses, each of which is now denoted by MΣ. The seesaw

Lagrangian and the diagonalization procedure have been discussed in section 2.3.3 and

the light neutrino mass matrix is given by,

mlight = −MT
DM

−1MD. (4.1)

Note that here, the lightest active neutrino is massless. We use the Casas-Ibarra parametriza-

tion [237, 238] for the Yukawa coupling matrix YΣ, such that the constraints on the light

neutrino mixing angles as well as the mass squared differences as predicted from the

oscillation data are automatically satisfied. In this parametrization,

YΣ =

√
2

v

√
DΣR

√
DνU

†, (4.2)

where DΣ = diag(MΣ,MΣ), Dν = diag(m1,m2,m3), and R is an arbitrary complex

2 × 3 orthogonal matrix which parametrizes the information that is lost in the decou-

pling of the triplet fermions. The light neutrino masses for the normal and inverted

hierarchies are given by,

m1 = 0 , m2 =
√

∆m2
sol , m3 =

√
∆m2

atm (NH)

m1 =
√

∆m2
atm , m2 =

√
∆m2

sol + ∆m2
atm , m3 = 0 (IH). (4.3)

We use the standard parametrization of the PMNS matrix U as given in Eqn.1.17. But

now, the phase matrix P is given as P = diag (e−iα, e+iα, 1) where α is the Majorana

phase. In our numerical analysis, we have used the values of mass squared differences

and mixing angles in the 3σ ranges as shown in section 1.2 and varied the phases δ

and α between 0 to 2π. It has been shown in reference [238] that the matrix R can be



64
Chapter 4. Naturalness, Vacuum Stability and Lepton Flavor Violation in Minimal

Type-III Seesaw Model

parametrized as,

R =



0 cos z ζ sin z

0 −sin z ζ cos z

 (NH)

 cos z ζ sin z 0

−sin z ζ cos z 0

 (IH),

(4.4)

where z is a complex parameter and ζ = ±1. We fix the value of ζ to be +1 for all our

analysis and this does not change any of our results. Thus the only free parameters in

the model are the mass of the triplet fermions, MΣ and the complex number, z. z can

take any value in the complex plane.

Note that the experimental searches performed by the CMS and the ATLAS have

put lower bounds on the triplet masses. CMS [239] has set a lower limit of 430 GeV on

the triplet mass with the data from
√
s = 13 TeV run whereas depending on the various

scenarios studied, the ATLAS results rule out masses in the range below 325−540 GeV

[240].

4.3 Naturalness

One of the problems associated with the high-scale seesaw models is that the associ-

ated heavy particles give very large corrections to the Higgs mass making the theory

unnatural. Here, we shall see the implications of naturalness in the context of the

type-III seesaw scenario. The tree level SM Higgs potential is given by,

V = −µ2(H†H) + λ(H†H)2, (4.5)

where,

H =
1√
2

 G+

v + h+ iG0

 . (4.6)

As discussed in Chapter 1, the vev, v = 246 GeV and this will give the physical Higgs

particle with tree level mass as m2
h = 2λv2. For the naturalness of the Higgs mass,

the heavy right handed neutrino loop corrections to the mass parameter µ should be

smaller than O(TeV2). In the MS scheme, the correction is given by,

δµ2 ≈ 3

4π2
Tr[Y †ΣD

2
ΣYΣ]. (4.7)
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(a) Naturalness contour for NH.

(b) Naturalness contour for IH.

Figure 4.1: Naturalness contours in the Im[z]-MΣ plane. The figure in the upper

(lower) panel is for NH (IH). In the shaded regions, δµ2 is less than p% of 1TeV2

where p = 500, 100, 50, 20, 10, 5, 1 (from top to bottom). The unshaded regions are

disfavored by naturalness.
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Note that we have taken the quantity (ln[
MΣ

µR
] − 1

2
) to be unity (where µR is the

renormalization scale). Now, using the parametrization in Eqn.4.2, we get,

δµ2 ≈ 3

4π2

2

v2
Tr[DνR

†D3
ΣR]

=
3M3

Σ

2π2v2
cosh(2Im[z])×


√

∆m2
sol +

√
∆m2

atm (NH)√
∆m2

atm +
√

∆m2
sol + ∆m2

atm (IH).

(4.8)

From the above expressions, we can see that the only unknown parameters are MΣ and

Im[z].

In Fig. 4.1, we have presented the naturalness contours in the Im[z]-MΣ plane

for both NH and IH. In the shaded rgions, δµ2 is demanded to be less than p% of

1TeV2 where p = 500, 100, 50, 20, 10, 5, 1 (from top to bottom). The unshaded regions

are disfavored by naturalness. From these plots, we can see that higher the mass of

the triplet, smaller the allowed values of the Im [z]. For instance, demanding δµ2 <

(1 TeV)2 implies thatMΣ ≤ 1.84×107 GeV for Im[z] = 0 andMΣ ≤ 3×105 GeV for

Im[z] = 6. These bounds become even more stringent as we demand δµ2 to be smaller

as could be seen from the plots. Also, from Eqn.4.8, we can see that the δµ2 values for

NH and IH differ roughly by a factor of half (∆m2
atm >> ∆m2

sol). This effect can be

seen from the fact that for a given value of Im(z), the maximum allowed value of MΣ

for NH is slightly higher than that for IH.

4.4 Constraints from Lepton Flavor Violation

The decay widths and the branching ratios (BR) for the various LFV decays in the

context of type-III seesaw model have been worked out in the reference [103]. This

model can have the decays µ → eγ and τ → lγ at the one loop level and µ → 3e as

well as τ → 3l processes in the tree level due to the charged lepton mixing. However,

among all the LFV decays, the most stringent bound is the one coming from µ to e

conversion in the nuclei. The µ→ e conversion rate to the total nucleon muon capture

rate ratio (Rµ→e) puts a bound on εeµ. For the 48
22Ti nuclei, the bound given by Eqn.2.56
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Figure 4.2: Bounds on z from LFV (blue dotted line) and naturalness (purple, magenta

and brown solid lines). The figure in the top (bottom) is for NH (IH). The unshaded

region is allowed by both LFV as well as naturalness bounds.
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gives an upper bound εeµ in the triplet fermion model as [103] 1,

εeµ < 1.7× 10−7. (4.9)

We present the constraints on z andMΣ from this bound in Fig. 4.2 for both NH and

IH. The region above the blue dotted line are disallowed by the LFV bounds whereas

the regions to the right of the purple, magenta and brown solid lines are disallowed by

the naturalness bounds depending on the naturalness condition used. We can clearly

see that the naturalness bounds restrict larger values of MΣ whereas the LFV bound

constrains the larger values of Im(z) corresponding to the smaller values of MΣ. The

unshaded region is the one that is allowed by both LFV as well as the naturalness

bounds. One can notice from these plots that for both NH and IH, the maximum

allowed value of Im(z) is ∼ 10 which corresponds to a triplet mass of ∼ 104 GeV. In

generating these plots, we have varied the light neutrino mass squared differences and

mixing angles in their 3σ ranges and the Dirac and Majorana phases are varied in the

range 0 to 2π and we have presented the most stringent bounds.

4.5 Vacuum Stability

In this section, we discuss how the stability of the EW vacuum is modified in the

presence of the extra fermionic triplets if we assume that there is no other new physics

up to the Planck scale (MPlanck). It is well known that if we have extra fermions,

they tend to destabilize the EW vacuum. We aim to quantify this effect and obtain

constraints in the context of the model outlined.

Following the method outlined in [145, 146, 234], the additional contribution to

the one-loop effective potential from the fermionic triplet is given as,

V Σ
1 (h) = −3(M †

D(h)MD(h))2
ii

32π2

[
ln

(M †
D(h)MD(h))ii
µ2(t)

− 3

2

]

−
3(MD(h)M †

D(h))2
jj

32π2

[
ln

(MD(h)M †
D(h))jj

µ2(t)
− 3

2

]
,

(4.10)

1Note that this process can occur in tree level in the type-III seesaw model due to the charged lepton

mixing. There is only one way to induce a µ− e transition along the same fermionic line, including two

Yukawa couplings and two inverse mass matrices MΣ.This is through the combination εeµ.
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where MD(h) =
YΣ√

2
h and j, i run over the three light neutrinos and the two triplet

fermions respectively. In this analysis, we use the two-loop contributions to the effec-

tive potential for the SM particles whereas the contribution due to the extra fermion

triplet is considered up to one-loop only. For high field value h(t) >> v, the effective

potential can be approximated as, V SM+Σ
eff = λeff (h)

h4

4
. The one- and two- loop SM

expressions for λeff (h) can be found in reference [139]. The contribution due to the

extra fermionic triplet is obtained as,

λΣ
eff (h) = −3 e4Γ(h)

32π2

(
(Y †ΣYΣ)2

ii

(
ln

(Y †ΣYΣ)ii
2

− 3

2

)
+(YΣY

†
Σ)2

jj

(
ln

(YΣY
†

Σ)jj
2

− 3

2

))
(4.11)

where, the factor Γ(h) =

∫ h

Mt

γ(µ) d lnµ indicates the wave function renormalization

of the Higgs field. Here γ(µ) is the anomalous dimension of the Higgs [136, 137, 241–

243], the contribution to which from the fermion triplet at one loop is
3

2
Tr
(
YΣY

†
Σ

)
.

We also assume that µ = h. In this choice, all the running coupling constants ensure

faster convergence of the perturbation series of the potential [244].

We compute the RG evolution of all the couplings to analyse the Higgs potential

up to MPlanck. We first calculate all the SM couplings at the top mass scale Mt, taking

care of the threshold corrections [144, 245–247]. We use one-loop RGEs to calculate

SU(2) and U(1) gauge couplings g2(Mt) and g1(Mt)
2. For the SU(3) gauge coupling

g3(Mt), we use three-loop RGEs considering contributions from the five quarks and

the effect of the sixth, i.e., the top quark has been taken using an effective field theory

approach. We also include the leading term in the four-loop RGE for αs. The mismatch

between the top pole mass and the MS renormalized coupling has been taken care by

using the threshold correction yt(Mt) =

√
2Mt

v
(1 + δt(Mt)), where δt(Mt) is the

matching correction for yt at the top pole mass. We use λ(Mt) =
M2

H

2v2
(1 + δH(Mt))

for the Higgs quartic coupling λ. To calculate this at the scale Mt, we have included

the QCD corrections up to three loops [248], electroweak corrections up to one-loop

[249, 250] and the O(ααs) corrections to the matching of top Yukawa and top pole

mass [246, 251]. The matching conditions we have used are given in appendix-B We

have reproduced the SM couplings at Mt as in references [139, 144] by using these

2Our result will not change significantly even if we use the two-loop RGEs for g1 and g2.



70
Chapter 4. Naturalness, Vacuum Stability and Lepton Flavor Violation in Minimal

Type-III Seesaw Model

threshold corrections. We evolve them up to the heavy fermionic mass scale using the

SM RGEs [252–255]. The extra contributions due to the femionic triplets are included

after the threshold heavy fermionic mass scale [256]. The one-loop RGEs for λ, yt, g2

and YΣ after the scale MΣ are as given below :

βλ =
1

16π2

(3

8
g4

1 +
3

4
g2

1g
2
2 +

9

8
g4

2 − 3g2
1λ− 9g2

2λ+ 24λ2 + 12λy2
t − 6y4

t

+ 12λTr(YΣY
†

Σ)− 10Tr(YΣY
†

ΣYΣY
†

Σ)
) (4.12)

βyt =
1

16π2

(
yt

(9

2
yt2 − 8g2

3 −
17

12
g2

1 −
9

4
g2

2 + 3Tr(YΣY
†

Σ)
))

(4.13)

βg2 =
1

16π2

(
− 1

2
g3

2

)
(4.14)

βYΣ
=

1

16π2

(
YΣ

(5

2
YΣY

†
Σ + 3y2

t −
33

4
g2

2 −
3

4
g2

1 + 3Tr(YΣY
†

Σ)
))

(4.15)

Then we evolve all the couplings up to MPlanck to find the position and depth of

the new minima at the high scale.

In Fig. 4.3, we show the running of the Higgs quartic coupling for four different

sets of benchmark points for the minimal type-III seesaw model. In the first figure,

the purple and gray lines correspond to Mt = 171.3 and 174.9 GeV respectively with

the value of Tr[Y †ΣYΣ]
1
2 fixed as 0.283 and MΣ = 107 GeV. For the first case, we

can see that the Higgs quartic coupling λ remains positive up to MPlanck, i.e., the

EW vacuum is absolutely stable up to the MPlanck. For Mt = 174.9 GeV, we can

see that λ ∼ λeff becomes negative at the energy scale ∼ 109 GeV, the so called

instability scale ΛI , and remains negative upto MPlanck. However, we find that the

beta function of the Higgs quartic coupling βλ(≡ dV (h)/dh) becomes zero around

the energy scale ∼ 1017 GeV, which implies that there is an extra deeper minima at

that scale and we have checked that the EW vacuum corresponding to this point is

metastable. Similarly in the second figure, we have given the running of the quartic

coupling for two different values of Tr[Y †ΣYΣ]
1
2 with fixed Mt and MΣ. We notice that

as the value of the Tr[Y †ΣYΣ] is increased from 0.283 to 0.636, the EW vacuum shifts

from the metastable to the unstable region. In this way, the conditions of stability and

metastability can put constraints on the allowed values of Tr[Y †ΣYΣ]
1
2 .



4.5. Vacuum Stability 71

Mt=171.3 GeV

Mt=174.9 GeV

Metastable

Unstable

Mh=125.7 GeV, αS=0.1184, Trace [yΣ
†
yΣ]

1

2 =0.283

105 108 1011 1014 1017

-0.05

0.00

0.05

0.10

Running RGE Scale μ[GeV]

λ

Mt=171.3 GeV

Mt=174.9 GeV

Metastable

Unstable

Mh=125.7 GeV, αS=0.1184, Trace [yΣ
†
yΣ]

1

2 =0.283

105 108 1011 1014 1017

-0.05

0.00

0.05

0.10

Running RGE Scale μ[GeV]

λ

Figure 4.3: RG evolution of the Higgs quartic coupling . The figure in the top shows

the running of λ for different values of Mt with fixed MΣ and Tr[Y †ΣYΣ]
1
2 whereas the

figure in the bottom shows the running of λ for different values of Tr[Y †ΣYΣ]
1
2 with MΣ

and Mt fixed. For both the plots, we have taken MΣ1 = MΣ2 = MΣ = 107 GeV.
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Figure 4.4: The phase diagram in the Tr [Y †ΣYΣ]
1
2 − MΣ plane for NH. Here, we have

used the central values of Mt, Mh and αs. The color coding of the lines (blue, purple,

magenta and brown) are the same as in Fig. 4.2. The horizontal red solid line separates

the unstable and the metastable regions of the EW vacuum.

4.5.1 Phase diagram of Vacuum stability

As we have already discussed in section 2.5.3, the present central values of the SM

parameters imply that an extra deeper minima exists near MPlanck. Hence, there is a

possibility that the EW vacuum might tunnel into that true (deeper) vacuum. In the

type-III seesaw model, depending upon the new physics parameter space, the stability

of the EW vacuum is modified compared to that in the SM and there are two effects

contributing to this. The first one is the negative contribution to the running of λ as

well as to the effective Higgs potential due to the triplet fermion Yukawa coupling

(see the Eqns. 5.10 and 4.12). The second one is through the modified RGE for the

SU(2) gauge coupling, g2 (Eqn.4.14), which in turn gives a positive contribution to the

running of λ. These effects have also been discussed in reference ([155]).

In Fig. 4.4, we have given the phase diagram in the Tr [Y †ΣYΣ]
1
2 −MΣ plane for the

central values of the SM parameters, Mt = 173.1, Mh = 125.7 and αs = 0.1184. Note

that since the bounds from vacuum stability put constraints on the values of Tr [Y †ΣYΣ]
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Figure 4.5: The phase diagram in the Tr [Y †ΣYΣ]
1
2 − MΣ plane for NH. The figure in

the top (bottom) gives the most liberal (stringent) bound from vacuum stability with

minimum (maximum) value of Mt and maximum (minimum) values of Mh and αs.

The color coding of the lines (blue, purple, magenta and brown) are the same as in Fig.

4.2. The horizontal red solid line separates the unstable and the metastable regions of

the EW vacuum.
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and MΣ, and Tr[Y †ΣYΣ] depends only on Im(z) and MΣ as given by the equation,

Tr [Y †ΣYΣ] =
2

v2
MNcosh(2 Im (z))×

∑
i

mi, (4.16)

one can choose either (Tr [Y †ΣYΣ], MΣ) or ( Im (z), MΣ) as the two independent pa-

rameters. Hence, from here onwards, all the plots are given in the Tr [Y †ΣYΣ]
1
2 − MΣ

plane. In Fig. 4.4, the horizontal red solid line separating the unstable region (red)

and the metastable (yellow) region is obtained when βλ(µ) = 0 along with λ(µ) =

λmin(ΛB). From this plot, we can see that the parameter space with Tr [Y †ΣYΣ]
1
2 &

0.64 with the heavy fermion mass scale 200 − 108 GeV are excluded by instability of

the EW vacuum. The gray dashed line corresponds to the points for which the beta

function of the quartic coupling λ is zero at MPlanck, i.e., the second minima is sit-

uated at that scale. Also, we can see a very small green region for lower values of

masses and couplings for which the EW vacuum is absolutely stable. However, this

region is disfavored from the LFV constraints as shown by the blue dotted line. The

region to the right of this line is allowed by the current bounds from LFV as given in

Eqn.4.9. We have also given the bounds from naturalness in these figures as shown

by the slanted solid lines corresponding to three different values of δµ2. Thus, one

can see that the area that are allowed both by naturalness as well as LFV falls in the

stability/metastability region.

In Fig. 4.5, we have again plotted the phase diagram in the Tr [Y †ΣYΣ]
1
2 − MΣ

plane for NH, but with different values of the SM parameters. The figure in the top

(bottom) gives the most liberal (stringent) bound from vacuum stability with minimum

(maximum) value of Mt and maximum (minimum) values of Mh and αs from their

allowed 3σ ranges. Clearly, with the smallest value of Mt and the largest values of Mh

and αs, the stability region increases as is shown by the green region in the figure in

the top panel. On the other hand, in the bottom panel with the highest value of Mt and

lowest values of Mh and αs, no region of stability is found. In this case, the parameter

space with Tr [Y †ΣYΣ]
1
2 > 0.68 (0.58) is disfavored from the instability condition in the

top(bottom) panels.

Fig. 4.6 gives the phase diagram in the Mt − Tr [Y †ΣYΣ]
1
2 plane for NH with the

central values of Mh and αs. The dashed lines separate the metastable and the unstable

regions whereas the solid lines separate the stable and the metastable regions. The red,
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Figure 4.6: The phase diagram in the Mt − Tr [Y †ΣYΣ]
1
2 plane for NH for the central

values ofMh and αs. The dashed lines separate the metastable and the unstable regions

whereas the solid lines separate the stable and the metastable regions. The three colors

are for for three different values of MΣ. The two vertical lines give the LFV and

naturalness bounds for MΣ = 104 GeV and the region in the left of the LFV line (red)

is allowed by both.

blue and purple colored lines correspond to the representative values ofMΣ as 104, 107

and 1012 GeV respectively. The two vertical lines give the LFV and the naturalness

(δµ2 < 1 TeV2) bounds for MΣ = 104 GeV and the allowed region is to the left of the

red vertical line. The horizontal shaded gray region denote the 3σ allowed range ofMt.

It is seen that in this region, the vacuum is metastable for lower values of Tr [Y †ΣYΣ]
1
2 ,

while for higher values, the vacuum is unstable. Once we consider the bounds from

LFV, Tr [Y †ΣYΣ]
1
2 is less than 0.18 and the vacuum is in the metastable region.

In Fig. 4.7, we have shown the phase diagram in the Mt−Mh plane for MΣ = 104

GeV. The red dashed lines correspond to the 3σ variation in αs. The figures in the

top and bottom correspond to Tr [Y †ΣYΣ]
1
2 = 0.20 and 0.40 respectively. The ellipses

correspond to the allowed values of Mt and Mh at 1σ, 2σ and 3σ. From this figure,
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we can clearly see that higher values of Mt and YΣ affect the stability of the EW

vacuum negatively whereas higher value of Mh has a positive effect on the stability.

For Tr [Y †ΣYΣ]
1
2 = 0.20, some areas of the parameter space fall in the stable region

when Mt and Mh are taken in the 3σ ranges, whereas for Tr [Y †ΣYΣ]
1
2 = 0.40, all the

allowed parameter space is in the metastable region.

It is also important to look at the change in the confidence level at which the

(meta)stability is excluded or allowed [144, 257, 258] in the context of the minimal

type-III seesaw model. The confidence level plot(s) will provide a quantitative mea-

surement of the (meta)stability for the new physics parameter space. In Fig. 4.8, we

show how the confidence level at which EW vacuum is allowed(excluded) from the

metastability(instability) depends on new Yukawa couplings of the heavy fermions for

the type-III seesaw model for different values of MΣ and αs. To plot these, we have

considered the variation of Mt (from 160 to 180 GeV) and Mh (from 120 to 132 GeV)

in the Mt −Mh plane for fixed values of αs. We draw the metastability line and an

ellipse to which the metastability line is the tangent and the point corresponding to the

central values of Mt and Mh (Mt = 173.1 GeV, Mh = 125.7 GeV) as the center (See

Fig. 4.7 for instance). Then we calculate the confidence level as,

Confidence level =
a of the ellipse
1σ error of Mt

=
b of the ellipse
1σ error of Mh

, (4.17)

where a and b are the lengths of the major and minor axes of the ellipse. Figures in

the top and the bottom panels are plotted with the triplet masses as MΣ = 104 GeV

and 1012 GeV respectively. In both cases the EW vacuum is metastable for smaller

values of the new Yukawa coupling. We can see that the confidence level at which the

EW vacuum is metastable (yellow region) increases with the increase of Tr [Y †ΣYΣ]
1
2 .

Also, one can see that the confidence level at which the EW vacuum is metastable

increases with the increase in the mass of the fermion triplets. We can also see the

effect of αs on the confidence level. The dashed, solid and dotted red lines correspond

to the values of αs as 0.1177, 0.1184 and 0.1191 respectively. Clearly, the confidence

level at which the EW vacuum is metastable decreases with the increase in αs. This is

because, αs has a positive effect on the stability of the EW vacuum and the increase in

αs increases the confidence level at which the vacuum is stable and thereby decreasing

the confidence level at which it is unstable. The EW vacuum becomes metastable
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Figure 4.7: The phase diagram in the Mt − Mh plane for two different values of

Tr [Y †ΣYΣ]
1
2 and MΣ = 104 GeV. The ellipses correspond to the allowed values of Mt

and Mh at 1σ, 2σ and 3σ.



78
Chapter 4. Naturalness, Vacuum Stability and Lepton Flavor Violation in Minimal

Type-III Seesaw Model

Mh=125.7 GeV

Mt=173.1 GeV

MΣ=10
4
GeV

UnstableMetastable

αs(MZ )=0.1184±0.0007 (3σ)

0.2 0.4 0.6 0.8

5

10

15

Trace[YΣ

†
YΣ]

1

2 (MZ)

C
o
n
fi
d
e
n
c
e
le
v
e
l
(σ

)

(a)

Mh=125.7 GeV

Mt=173.1 GeV

MΣ=10
12

GeV

αs(MZ )=0.1184±0.0007 (3σ)

UnstableMetastable

0.2 0.4 0.6 0.8

5

10

15

Trace[YΣ

†
YΣ]

1

2 (MZ )

C
o

n
fi
d

e
n

c
e

le
v
e

l
(σ

)

(b)

Figure 4.8: Dependence of confidence level at which the EW vacuum stability is

excluded/allowed on Tr [Y †ΣYΣ]
1
2 for different values of αs and MΣ.
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for Tr [Y †ΣYΣ]
1
2 = 0.646 ± 0.008 and Tr [Y †ΣYΣ]

1
2 = 0.648 ± 0.011 corresponding to

αs = 0.1184 ± 0.0007 for MΣ = 104 and 1012 GeV respectively. The demarcations

between the stable and the metastable regions in the plots are only for the central values

of αs

4.6 Neutrino-less Double Beta Decay

The neutral components of the triplet fermions may give rise to additional contributions

to 0νββ through their mixing with the light neutrinos. The half life for 0νββ in this

case is given by,

Γ0νββ

ln 2
= G0ν(Q,Z)

|Mν
2|

m2
e

∣∣∣ΣU2
eimi + 〈p2〉 V

2
ei

MΣ

∣∣∣2. (4.18)

Here, V is the light heavy mixing matrix and 〈p2〉 is given by,

〈p2〉 = −memp
MN

Mν

, (4.19)

where me and mp are the masses of the electron and proton respectively and the

magnitude of 〈p2〉 is around (100 MeV)2. Mν and MN represent the nuclear matrix

elements corresponding to the light neutrino and the neutral component of the triplet

fermion exchange respectively. Using the expression for V from Eqn.2.17, i.e., V =

M∗
D(M−1)∗UR, and the expression for YΣ from Eqn.4.2, we get,

V 2
ei

MΣ

=
ΣU2

eimi

M2
Σ

. (4.20)

Thus the contribution due to the triplet is suppressed by a factor of 〈p2〉/M2
Σ as com-

pared to the light neutrino contribution. Thus, the triplet fermions in type-III seesaw

mechanism has no significant contribution to 0νββ even for the values of MΣ as low

as 100 GeV.

4.7 Summary

In this chapter, we have analyzed the implications of naturalness and the stability of

the electroweak vacuum in the context of the minimal type-III seesaw model. We have



80
Chapter 4. Naturalness, Vacuum Stability and Lepton Flavor Violation in Minimal

Type-III Seesaw Model

also studied the constraints from LFV decays. We have found that the lighter masses

of the fermionic triplets, MΣ ' 400 GeV are disallowed for all values of YΣ by the

constraints from the µ → e conversion in the nucleus. At the same time, the heavier

triplet masses are disfavored by naturalness. For instance, if we demand the correction

to the Higgs mass to be less than 200 GeV, it will put an upper bound of ∼ 105 GeV

on the masses of the triplets. Also, the maximum value of Tr[Y †ΣYΣ]
1
2 that is allowed is

0.1, corresponding toMΣ ∼ 104 GeV. Another important result is that in the parameter

space which is allowed by both the LFV as well as naturalness constraints, the EW

vacuum is stable/metastable depending on the values of Tr[Y †ΣYΣ]
1
2 and the standard

model parameters used. Hence, one does not really have to worry about the instability

of the vacuum in this model. The major part of the allowed parameter space lies in a

region that could be tested in the future collider experiments.



Chapter 5

TeV Scale Singlet Seesaw, Scalar Dark

Matter and Vacuum Stability

5.1 Introduction

As discussed in the introduction, two major experimental motivations entailing scenar-

ios beyond SM are neutrino mass and dark matter. For neutrino mass, most natural

approach is the seesaw mechanism and from the point of view of testability at the

colliders, the TeV seesaw mechaninsm have become an extensive topic of research of

late. On the other hand among the various models of dark matter that are proposed in

the literature, the most minimal renormalizable extension of the SM are the so called

Higgs portal models [66–68]. These models include a scalar singlet that couples only

to the SM Higgs. An additional Z2 symmetry is imposed to prevent the decay of the

DM and safe-guard its stability. The coupling of the singlet with the Higgs provides

the only portal for its interaction with the SM. Nevertheless there can be testable con-

sequences of this scenario which can put constraints on its coupling and mass. These

include constraints from searches of invisible decay of Higgs at the LHC [259–261],

direct and indirect detections of dark matter as well as compliance with the observed

relic density [233, 262–266]. Implications of such an extra scalar for the LHC [267–

271] and ILC [272] have also been studied. Combined constraints from all these have

been discussed in [273–277] and most recently in [278].

In addition, the singlet Higgs can also affect the stability of the EW vacuum and

81
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this has been discussed in [144, 279–283]. It is seen from these studies that the singlet

scalar can help in stabilizing the EW vacuum by adding a positive contribution which

prevents the Higgs quartic coupling from becoming negative. On the other hand, as

also seen in the previous chapter, the extra fermions can affect the stability adversely

and for TeV seesaw models the effect can be appreciable because of low mass thresh-

olds and large Yukawa couplings. The implications of TeV seesaw models with sizable

Yukawa couplings to the stability of the vacuum have been discussed in [146–155].

In this chapter, we extent the SM by adding extra fermion as well as scalar singlets

and see to what extend the additional scalar singlet can ameliorate the stability problem

introduced by fermionic singlets and at the same time explaining the origin of neutrino

mass as well as the existence of dark matter. This is based on the work done in [234].

Here, the real singlet scalar is the dark matter candidate where we have imposed an

additional Z2 symmetry which ensures its stability. For generation of neutrino mass

at TeV scale we consider two models : (1) The general inverse seesaw model with

three right handed neutrinos and three additional singlets and (2) The minimal linear

seesaw model. These two sectors are disconnected at the low energy. However, the

consideration of the stability of the electroweak vacuum and perturbativity induces a

correlation between the two sectors. We study the stability of the electroweak vacuum

in this model and explore the effect of the two opposing trends - singlet fermions trying

to destabilize the vacuum further and singlet Higgs trying to oppose this. We find the

parameter space, which is consistent with the constraints of relic density and neutrino

oscillation data and at the same time can cure the instability of the electroweak vac-

uum. We present some benchmark points for which the electroweak vacuum is stable

up to the Planck’s scale (MPlanck). In addition to absolute stability, we also explore the

parameter region which gives metastability in the context of this model. We investigate

the combined effect of these two sectors and obtain the allowed parameter space con-

sistent with observations and vacuum stability/metastability and perturbativity. Some

studies including neutrino mass, dark matter and/or vacuum stability analysis using

scalar singlets can be found in [284–287].

This chapter is organized as follows. In the next section we discuss the fermionic

and the scalar sectors of the models that we have studied including the scalar potential
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in the presence of a singlet scalar. Section 5.3 presents the effective Higgs potential

and the renormalization group (RG) evolution of the different couplings. In particular

we include the contribution from both fermion and scalar singlets in the effective po-

tential. In section 5.4, we discuss the existing constraints on the fermion and the scalar

sector couplings from experimental observations and also from perturbativity. Then

we discuss our results a in detail and finally, summarize in section 5.7. .

5.2 Fermionic and the Scalar Sectors of the Model

Here, we briefly discuss the fermionic and the scalar sectors of the models that we are

studying.

5.2.1 Fermionic Sector

Out of the various models we had discussed in chapter 2, we will be considering two

models :

• Inverse Seesaw Model (ISM) : Here, we consider a (3+3+3) scenario for the

inverse seesaw model. The Lagrangian and the diagonalization procedure are

discussed in detail in section 2.4.

• Minimal Linear Seesaw Model (MLSM) : In the case of the MLSM, we add

only one right handed neutrino NR and one gauge-singlet sterile neutrino νs

[146, 186, 288]. In such a case, the lightest neutrino mass is zero. The source

of the lepton number violation is through the coupling Ys which is assumed to

be very small. Here, Yν and Ys are the (3 × 1) Yukawa coupling matrices and

the overall neutrino mass matrix is a symmetric matrix of dimensions 5× 5. The

light neutrino mass matrix to the leading order is given by Eqn.2.43. The heavy

neutrino sector will consist of a pair of degenerate neutrinos.

5.2.2 Scalar Sector

As mentioned earlier, in addition to the extra fermions, we also add an extra real scalar

singlet S to the SM. The potential for the scalar sector with an extra Z2 symmetry
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under S → −S is given by,

V (S,H) = −m2H†H + λ(H†H)2 +
κ

2
H†H S2 +

m2
S

2
S2 +

λS
24
S4 . (5.1)

In this model, we take the vacuum expectation value (vev) of S as 0, so that Z2

symmetry is not broken. The SM scalar doublet H is given as,

H =
1√
2

 G+

v + h+ iG0

 (5.2)

where the vev v = 246 GeV.

Thus, the scalar sector consists of two particles h and S, where h is the SM Higgs

boson with a mass of ∼ 126GeV , and the mass of the extra scalar is given by,

M2
DM = mS

2 +
κ

2
v2. (5.3)

As the Z2 symmetry is unbroken up to the Planck scale, MPlanck = 1.22 × 1019

GeV, the potential can have minima only along the Higgs field direction and also this

symmetry prevents the extra scalar from acquiring a vacuum expectation value. This

extra scalar field does not mix with the SM Higgs. Also an odd number of this extra

scalar does not couple to the SM particles and the new fermions. As a result, this

scalar is stable and serve as a viable weakly interacting massive dark matter particle.

The scalar field S can annihilate to the SM particles as well as to the new fermions

only via the Higgs exchange. So it is called a Higgs portal dark matter.

5.3 Effective Higgs Potential and RG evolution of the

Couplings

The effective Higgs potential and the renormalization group equations are the same for

both the linear and the inverse seesaw models. The two models differ only by the way

in which a small lepton number violation is introduced in them, whose effect could

be neglected in the RG evolution. So, effectively, the RGEs are the same in both the

models, the only difference being the dimensions of the Yukawa coupling matrices and

the number of heavy neutrinos present in the model.



5.3. Effective Higgs Potential and RG evolution of the Couplings 85

5.3.1 Effective Higgs Potential

In the presence of the extra singlets, the effective potential will get additional contri-

butions from the extra scalar and the fermions. Thus, we have the one-loop effective

Higgs potential (V1(h)) in our model as,

V SM+S+ν
1 (h) = V SM

1 (h) + V S
1 (h) + V ν

1 (h), (5.4)

where V SM
1 (h) is the SM contribution discussed in chapter 2. The one loop contribu-

tion due to the extra scalar is given by [289, 290]

V S
1 (h) =

1

64π2
M4

S(h)

[
ln
M2

S(h)

µ2(t)
− 3

2

]
. (5.5)

where

M2
S(h) = m2

S(t) + κ(t)h2(t)/2

The contribution of the extra neutrino Yukawa coupling to the one loop effective

potential can be written as [145, 146],

V ν
1 (h) = −((M ′†M ′)ii)

2

32π2

[
ln

(M ′†M ′)ii
µ2(t)

− 3

2

]
− ((M ′M ′†)jj)

2

32π2

[
ln

(M ′M ′†)jj
µ2(t)

− 3

2

]
.

(5.6)

Here M ′ =
Yν√

2
h for inverse seesaw and M ′ = (

Yν√
2
h

Ys√
2
h ) for linear seesaw.

Also, j and i run over the light and heavy neutrinos respectively. In our analysis, we

have taken two-loop (one-loop) contributions to the effective potential from the SM

particles (extra singlet scalar and fermions). For h(t) >> v, the effective potential

could be approximated as,

V SM+S+ν
eff = λeff (h)

h4

4
(5.7)

with

λeff (h) = λSMeff (h) + λSeff (h) + λνeff (h). (5.8)

where λSMeff (h) is the SM contribution. The contributions due to the extra scalar and

the neutrinos are given by

λSeff (h) = e4Γ(h)

[
κ2

64π2

(
ln
κ

2
− 3

2

)]
(5.9)
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and

λνeff (h) = −e
4Γ(h)

32π2

[
((Y ′

†
νY
′
ν)ii)

2

(
ln

(Y ′†νY
′
ν)ii

2
− 3

2

)

+ ((Y ′νY
′†
ν)jj)

2

(
ln

(Y ′νY
′†
ν)jj

2
− 3

2

)] (5.10)

where,

Γ(h) =

∫ h

Mt

γ(µ) d lnµ. (5.11)

Here γ(µ) is the anomalous dimension of the Higgs field and in eqn.(5.10), Y ′ν =

Yν for inverse seesaw and Y ′ν = (Yν Ys) for linear seesaw. The contribution of the

singlet scalar to the anomalous dimension is zero [279] and the contribution from the

right handed neutrinos at one loop is given in eqn.(5.16).

5.3.2 Renormalization Group evolution of the couplings from Mt

to MPlanck

As we had done for the type-III model in the previous chapter, here also we have

evaluated the SM coupling constants at the the top quark mass scale and then run them

using the RGEs from Mt to MPlanck where we have taken into account the various

threshold corrections at Mt [245, 248, 291]. To evaluate the couplings from Mt to

MPlanck, we have used three-loop RGEs for the SM couplings [139, 252, 253, 255,

292], two-loop RGEs for the extra scalar couplings [282, 284, 293] and one-loop RGEs

for the extra neutrino Yukawa couplings [294] 1. The one loop RGEs for the scalar

quartic couplings and the neutrino Yukawa coupling in our model are given below:

βλ =
1

16π2

( 27

100
g4

1 +
9

10
g2

1g
2
2 +

9

4
g4

2−
9

5
g2

1λ−9g2
2λ+12λ2 +κ2 +4Tλ−4Y

)
(5.12)

βκ =
1

16π2

(
− 9

10
g2

1κ−
9

2
g2

2κ+ 6λκ+ λSκ+ 4κ2 + 2Tκ
)

(5.13)

βλS =
1

16π2

(
3λ2

S + 12κ2
)

(5.14)

1Our results do not change with the inclusion of two loop RGEs of Neutrino Yukawa couplings

which has been checked using SARAH [295].
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βYν =
1

16π2

(
Yν

(
3

2
Y †ν Yν −

3

2
Y †l Yl + T − 9

20
g2

1 −
9

4
g2

2

))
(5.15)

where,

T = Tr(3Y †uYu + 3Y †d Yd + Y †l Yl + Y †ν Yν)

Y = Tr(3(Y †uYu)
2 + 3(Y †d Yd)

2 + (Y †l Yl)
2 + (Y †ν Yν)

2). (5.16)

The effect of β- functions of new particles enters into the SM RGEs at their effec-

tive masses.

5.4 Existing bounds on the fermionic and the scalar

sectors

For the vacuum stability analysis, we need to find the Yukawa and scalar couplings

that satisfy the existing experimental and theoretical constraints. These bounds are

discussed below.

5.4.1 Bounds on the fermionic Sector

• Cosmological constraint on the sum of light neutrino masses As already mentioned

in section 1.2, the Planck 2018 results put an upper limit on the sum of active

light neutrino masses to be [57]

Σ = m1 +m2 +m3 < 0.12 eV. (5.17)

• Constraints from Oscillation data We use the standard parametrization of the PMNS

matrix and the 3σ ranges of the oscillation parameters as discussed in section 1.2.

• Constraints on the non-unitarity of UPMNS = UL The analysis of the electroweak

precision observables along with various other low energy precision observables

put bound on the non-unitarity of light neutrino mixing matrix UL [296]. At 90%

confidence level,

|ULU †L| =


0.9979− 0.9998 < 10−5 < 0.0021

< 10−5 0.9996− 1.0 < 0.0008

< 0.0021 < 0.0008 0.9947− 1.0

 , (5.18)
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where UL is defined in Eqn.2.17 which can be extended for the case of in-

verse/linear seesaw models. The constraints on the unitarity also takes care of

the constraints coming from various charged LFV decays.

• Bounds on the heavy neutrino masses The search for heavy singlet neutrinos at

LEP by the L3 collaboration in the decay channel N → eW showed no

evidence of a singlet neutrino in the mass range between 80 GeV (|Vαi|2 ≤

2 × 10−5) and 205 GeV (|Vαi|2 ≤ 1) [297], Vαi being the mixing matrix el-

ements between the heavy and light neutrinos. Heavy singlet neutrinos in the

mass range from 3 GeV up to the Z-boson mass (mZ) has also been excluded

by LEP experiments from Z-boson decay up to |Vαi|2 ≈ 10−5 [298–300]. The

recent search for the trilepton events in proton-proton collisions at
√
s = 13

TeV conducted by the CMS collaboration gives a bound of |Vαi|2 < 0.01 for

MN ∼ 200 GeV [301]. These constraints are taken care of in our analysis and

we have taken the mass of the lightest heavy neutrino to be greater than or equal

to 200 GeV.

5.4.2 Bounds on the Scalar Sector

• Constraints on scalar potential couplings from perturbative unitarity Constraints

on the scalar sector couplings in the singlet scalar model from perturbative uni-

tarity has been discussed in [302]. At very high field values, one can obtain the

scattering matrix a0 for the J = 0 partial wave [303] by considering the various

scalar-scalar scattering amplitudes. Using the equivalence theorem [304–306],

we have reproduced the perturbative unitarity bounds on the eigenvalues of the

scattering matrix for this model. These are given by [302]

|κ(Λ)| ≤ 8π, and
∣∣∣6λ+ λS ±

√
4κ2 + (6λ− λS)2

∣∣∣ ≤ 16π. (5.19)

• Dark matter constraints The parameter space for the scalar sector should also sat-

isfy dark matter relic density constraint given by Eqn.1.29. In addition, the invis-

ible Higgs decay width and the recent direct detection experiments, in particular,

the LUX-2016 [80] data and the indirect Fermi-LAT data[307] restrict the arbi-

trary Higgs portal coupling and the dark matter mass [144, 278].
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Since the extra fermions are heavy (& 200 GeV), for low dark matter mass

(around 60 GeV), the dominant (more than 75 %) contributions to the relic den-

sity is from the SS → bb̄ channel. The channels SS → V, V ∗ also contribute

to the relic density where V stands for the vector bosons W and Z, V ∗ indicates

the virtual particle which can decay into the SM fermions. In this mass region,

the value of the Higgs portal coupling κ is O(10−2) to get the relic density in

the right ballpark and simultaneously satisfying the other experimental bounds.

However, this region is not of much interest to us since such a small coupling

will not contribute much to the running of λ and hence will not affect the sta-

bility of the EW vacuum much. The LUX-2016 data [80] has ruled out the dark

matter mass region ∼ 70− 500 GeV.

If we consider MDM >> Mt, the annihilation cross-section is proportional to
κ2

M2
DM

, which ensures that the relic density band in κ − MDM [144] plane is

a straight line. In this region, one can get the right relic density if the ratio of

dark matter mass to the Higgs portal coupling κ is ∼ 3300 GeV. In this case, the

dominant contributions to the dark matter annihilation channel are SS → hh, tt̄,

VV.

We use FeynRules [308] along with micrOMEGAs [309, 310] to compute the

relic density of the scalar dark matter. We have checked that the contribution

from annihilation into extra fermions is very small. However this could be sig-

nificant for dark matter mass & 2.5 TeV, provided the Yukawa couplings are large

enough. But, in the stability analysis discussed in section 5.5.1, we will see that

the dark matter mass & 2.5 TeV requires the value of κ & 0.65 which violates

the perturbativity bounds before MPlanck. Thus, we consider the dark matter

mass in the range ∼ 500 GeV - 2.5 TeV with κ in the range ∼ 0.15 to 0.65. It is

to be noted that in the presence of the singlet fermions the value of κ(MZ) and

hence MDM for which the perturbativity is not obeyed will also depend upon the

value of Tr [Y †ν Yν ]. This will be discussed in the next section.
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5.5 Results

In this section, we present our results of the stability analysis of the electroweak vac-

uum in the two seesaw scenarios. We confine ourselves to the normal hierarchy. The

results for the inverted hierarchy are not expected to be very different [146]. We have

used the package SARAH[295] to do the RG analysis in our work.

5.5.1 Inverse Seesaw Model

For the inverse seesaw model, the input parameters are the entries of the matrices Yν ,

MS and Mµ. Here Yν is a complex 3× 3 matrix. MS is a real 3× 3 matrix and Mµ is a

3×3 diagonal matrix with real entries. We vary the entries of various mass matrices in

the range 10−2 < Mµ < 1 keV and 0 < MR < 5 × 104 GeV. This implies a heavy

neutrino mass of maximum up to a few TeV. With these input parameters, we search for

parameter sets consistent with the low energy data using the downhill simplex method

[311]. We present in table 5.1, some representative outputs consistent with data for

two benchmark points. In this table, Tr[YνY †ν ] is an input. As a consistency check, we

also give the value of Br(µ→ e γ).

Vacuum Stability

In this section, we will discuss how the presence of the new fermionic and scalar

couplings affect the running of the Higgs quartic coupling and thereby alter the stability

of the EW vacuum. In Fig. 5.1, we display the running of the couplings for various

benchmark points in the ISM. In Fig. 5.1(a), we have shown the variation in the running

of the Higgs quartic coupling λ for different values of Tr [Y †ν Yν ] (0, 0.15 and 0.30) for

a fixed value of the Higgs portal coupling κ = 0.304. We have chosen the dark matter

mass MDM = 1000 GeV to get the relic density in the right ballpark. As λS doesn’t

alter the relic density, we have fixed its value at 0.1 for all the plots given in this chapter.

We can see that for Tr [Y †ν Yν ] = 0 , i.e., without the right handed neutrinos, the EW

vacuum remains absolutely stable up to MPlanck (green line) and for large values of Tr

[Y †ν Yν ], the EW vacuum goes towards the instability (Higgs quartic coupling becomes

negative around ΛI ∼ 1010 GeV (red line) and ΛI ∼ 108 GeV (black line)) region.
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Figure 5.1: Running of the couplings with the energy scale in the Inverse seesaw

model.



92 Chapter 5. TeV Scale Singlet Seesaw, Scalar Dark Matter and Vacuum Stability

Parameter BM − I BM − II

∆m2
21/10−5eV 2 8.0891 7.8228

∆m2
31/10−3eV 2 2.4391 2.5046

sin2 θL12 0.2710 0.3429

sin2 θL23 0.3850 0.3850

sin2 θL13 0.0239 0.0229

δPMNS 1.1173 1.4273

φ1, φ2 2.5187, 2.9377 2.9384, 3.1379

mi/10−1 eV 0.10, 0.13, 0.511 0.23, 0.25, 0.558

Mj GeV 200.77, 200.77, 461.159, 210.01, 210.01, 487.284,

461.16, 1744.67, 1744.669 487.28, 1451.34, 1451.344

Tr[YνY
†
ν ] 0.1 0.2

Br(µ→ e γ) 0.731× 10−16 0.1× 10−16

Table 5.1: Output values for two different benchmark points for inverse seesaw model satis-

fying all the low energy constraints

In Fig. 5.1(b), we plot the running of λ for a fixed value of Tr [Y †ν Yν ] = 0.1 and

different sets of κ and MDM . It is seen that for a larger value of κ = 0.45 withMDM =

1500 GeV, the EW vacuum remains stable up to MPlanck (purple line). For κ = 0.304

with MDM = 1000 GeV, the quartic coupling λ (red line) becomes negative around

ΛI ∼ 1011 GeV and in the absence of the singlet scalar field, i.e., for κ = 0, λS = 0

(blue line), λ becomes negative around ΛI ∼ 109 GeV and the vacuum goes to the

metastability region.

In Figs. 5.1(c) and 5.1(d), we have shown the running of all the three scalar quartic

couplings, λ, κ and λS and Tr[Y †ν Yν ] for (MDM , κ) = (1000 GeV, 0.304) and (1500

GeV, 0.456) respectively. It can be seen that the values of λs and κ increases consider-

ably with the energy scale and can reach the perturbativity bound atMPlanck depending

upon the initial values of κ and λS at MZ . Here for λS = 0.1, the maximum allowed

value of κ will be 0.58 from perturbativity. The value of Tr[Y †ν Yν ] increases only

slightly with the energy scale and the value of λS increases faster for larger value of κ.
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Figure 5.2: Phase diagram in the Tr[Y †ν Yν ] - κ plane. We have fixed all the entries of

Yν except for (Yν)33. The three boundary lines (two dotted and a solid) correspond to

Mt = 173.1 ± 0.6 GeV (3σ) and we have taken λS(MZ) = 0.1. The dark matter

mass is dictated by κ(Mz) to give the correct relic density. See text for details.

Tunneling Probability and Phase Diagrams

In our model, the EW vacuum shifts towards stability/instability depending upon the

new physics parameter space for the central values of Mh = 125.7 GeV, Mt = 173.1

GeV and αs = 0.1184 and there might be an extra minima around 1012−17 GeV. In Fig.

5.2, we have given the phase diagram in the Tr [Y †ν Yν ] − κ plane. The line separating

the stable region and the metastable region is obtained when the two vacuua are at

the same depth, i.e., λ(µ) = βλ(µ) = 0. The unstable and the metastable regions

are separated by the boundary line where βλ(µ) = 0 along with λ(µ) = λmin(ΛB),

as defined in Eqn.2.65. For simplicity, we have plotted Fig. 5.2 (also Fig. 5.1) by

fixing all the eight entries of the 3× 3 complex matrix Yν , but varying only the (Yν)33

element to get a smooth phase diagram. From Fig. 5.2, it could be seen that the

values of κ beyond ∼ 0.58 are disallowed by perturbativity bounds and those below

∼ 0.16 are disallowed by the direct detection bounds from LUX-2016 [80]. The value
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of the dark matter mass in this allowed range is thus ∼ 530 − 2100 GeV. Note that

the vacuum stability analysis of the inverse seesaw model done in reference [152]

had found that the parameter space with Tr [Y †ν Yν ] > 0.4 were excluded by vacuum

metastability constraints. Whereas, in our case, Fig. 5.2 shows that the parameter space

with Tr [Y †ν Yν ] & 0.25 are excluded for the case when there is no extra scalar. The

possible reasons could be that we have kept the maximum value of the heavy neutrino

mass to be around a few TeV, whereas the authors of [152] had considered heavy

neutrinos as heavy as 100 TeV. Obviously, considering larger thresholds would allow

us to consider large value of Tr[Y †ν Yν ] as the corresponding couplings will enter into

RG running only at a higher scale. Another difference with the analysis of [152] is that

we have fixed 8 of the 9 entries of the Yukawa coupling matrix Yν . Also, varying all the

9 Yukawa couplings will give us more freedom and the result is expected to change.

The main result that we deduce from this plot is the effect of κ on the maximum

allowed value of Tr [Y †ν Yν ], which increases from 0.26 to 0.4 for a value of κ as large

as 0.6. In addition, we see that the upper bound on κ(MZ) from perturbativity at

MPlanck decreases from 0.64 to 0.58 as the value of Tr[Y †ν Yν] changes from 0 to 0.44.

This can be explained from the expression of the βκ in eqn.(5.16) which shows that

[Y †ν Yν ] affect the running κ positively through the quantity T . Since MDM ∼ 3300

κ GeV for MDM >> Mt, the mass of dark matter for which perturbativity is valid,

decreases with increase in the value of the Yukawa coupling.

Confidence level of vacuum stability

Following the discussion in the last chapter, in Fig. 5.3, we graphically show how the

confidence level at which stability of electroweak vacuum is allowed/excluded depends

on new Yukawa couplings of the heavy fermions for the inverse seesaw model in the

presence of the extra scalar (dark matter) field. We have plotted the dependence of

confidence level against the trace of the Yukawa coupling, Tr[Y †ν Yν ] for fixed values of

Higgs portal coupling κ = 0.304 in Fig. 5.3(a). Here, the dark matter mass MDM =

1000 GeV is dictated by κ to obtain the correct relic density. Similar plot with a

higher value of κ = 0.455 with dark matter mass MDM = 1500 GeV is shown in Fig.

5.3(b). In this case the electroweak vacuum is absolutely stable for a larger parameter
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Figure 5.3: Dependence of confidence level at which the EW vacuum stability is

excluded/allowed on Tr[Y †ν Yν ] for two different values of κ and MDM . We have taken

λS(MZ) = 0.1.
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space. For a particular set of values of the model parameters Mh = 125.7 GeV,

Mt = 173.1 GeV, αs(Mz) = 0.1184 and κ, the confidence level (one-sided) at which

the electroweak vacuum is absolutely stable (green region) decreases with the increase

of Tr[Y †ν Yν ] and becomes zero for Tr[Y †ν Yν ] = 0.06 in Fig. 5.3(a) and Tr[Y †ν Yν ] = 0.20

in Fig. 5.3(b). The confidence level at which the absolute stability of electroweak

vacuum is excluded (one-sided) increases with the trace of the Yukawa coupling in the

yellow region.

5.5.2 Minimal Linear Seesaw Model

In the minimal linear seesaw case, the Yukawa coupling matrices Yν and Ys can be

completely determined in terms of the oscillation parameters apart from the overall

coupling constant yν and ys respectively [288]. For normal hierarchy, in MLSM, the

Yukawa coupling matrices Yν and Ys can be parametrized as,

Yν =
yν√

2

(√
1 + ρU †3 + ei

π
2

√
1− ρU †2

)
(5.20)

Ys =
ys√

2

(√
1 + ρU †3 + ei

π
2

√
1− ρU †2

)
(5.21)

where

ρ =

√
1 + r −

√
r√

1 + r +
√
r
. (5.22)

Here, Ui’s are the columns of the unitary PMNS matrix Uν and r is the ratio of

the solar and the atmospheric mass squared differences. This parametrization makes

the vacuum stability analysis in the minimal linear seesaw model easier since there

are only two independent parameters yν and MN in the fermion sector, where MN

is the degenerate mass of the two heavy neutrinos (the value of ys being very small

O(10−11)). A detailed analysis has already been performed in reference [146]. Here,

we are interested in the interplay between theZ2 odd singlet scalar and singlet fermions

in the vacuum stability analysis.

In Fig. 5.4, we have plotted the running of the Higgs quartic coupling λ with the

energy scale µ up to MPlanck. The Figs. 5.4(a) and 5.4(b) show the running of λ for

different values of k (0.0, 0.304, 0.456) and MDM (0,1000 GeV, 1500 GeV), for MN

= 200 GeV and MN = 104 GeV respectively for a fixed value of y2
ν = 0.1. Comparing
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these two plots, we can see that λ tends to go to the instability region faster for smaller

values of the heavy neutrino mass. So, the EW vacuum is more stable for larger values

ofMN , because the effect of extra singlet fermion in the running of λ enters at a higher

value. We also find that as the value of κ increases from 0 to 0.304, the electroweak

vacuum becomes metastable at a higher value of the energy scale. For κ = 0.456 the

electroweak vacuum becomes stable up to MPlanck even in the presence of the singlet

fermions.

Figs. 5.4(c) and 5.4(d) display the running of λ for different values of y2
ν (0.0, 0.15,

0.3) and for fixed values of k = 0.304 and MDM = 1000 GeV, for MN = 200 GeV

and for MN = 104 GeV respectively. It could be seen from these plots that larger the

value of yν , earlier λ becomes negative and more is the tendency for the EW vacuum

to be unstable as expected. We note from these two figures that for κ = 0.304, absolute

stability is attained only for yν = 0 even in the presence of the singlet scalar.

In Fig. 5.5, we have shown the phase diagram in the yν − MN plane. The stable

(green), unstable (red) and the metastable (yellow) regions are shown and it could be

seen that higher the value of MN , larger the allowed values of yν by vacuum stability

as we have discussed earlier. The unstable and the metastable regions are separated

by solid red line for the central values of the SM parameters, Mh = 125.7 GeV, Mt =

173.1 GeV and αs = 0.1184. The red dashed lines represent the 3σ variation of the top

quark mass. However, we get significant stable region forMh = 125.7 GeV,Mt = 171.3

GeV and αs = 0.1191 which corresponds to the solid line separating the stable and the

metastable region. The region in the left side of the blue dotted line is disallowed by

LFV constraints for the normal hierarchy of light neutrino masses. Fig. 5.5(a) is drawn

in the absence of the extra scalar and Fig. 5.5(b) is drawn for (κ, MDM ) = (0.304, 1000

GeV). Clearly, there is more stable region in the presence of the extra scalar and the

boundary line separating the metastable and the unstable regions also shifts upwards

in this case.

In Fig. 5.6, we have shown the phase diagrams in the yν - κ plane for two different

values of the heavy neutrino masses : Fig. 5.6(a) for MN = 200 GeV and Fig. 5.6(b)

for MN = 104 GeV. Here also, the red dashed lines represent the 3σ variation of top

quark mass. It could clearly be seen that as the value of the heavy neutrino mass is
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Figure 5.4: Running of the quartic coupling λ in MLSM with extra scalar for two

different values of MN . In the upper panel, the three lines are for different values of

MDM and κ whereas in the lower panel, they are for different values of yν and fixed

values of MDM and κ.
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Figure 5.5: Phase diagrams in the yν -MN plane in the presence and the absence of the

extra scalar. Region in the left side of the blue dotted line is disallowed by constraint

from BR(µ → eγ). The three boundary lines (two dotted and a solid) correspond to

Mt = 173.1 ± 0.6 GeV (3σ) and we have taken λS(MZ) = 0.1 in the second plot.
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Figure 5.6: Phase Diagrams in the yν - κ plane for two different values of MN . Here,

λS(MZ) = 0.1 and the dark matter mass is dictated by κ(Mz) to give the correct relic

density.
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higher, the unstable region shifts towards the large values of yν . This is a result that

should be expected from Fig. 5.5. In this model, the theory becomes non-perturbative

(grey) for κ = 0.64 for yν = 0.05. The maximum allowed value of κ by perturbativity

at MPlanck decreases with increase in yν as we have also seen for the inverse seesaw

case. The region κ . 0.16 is excluded from the recent direct detection experiment at

LUX.

5.6 Neutrino-less Double Beta Decay

The heavy neutral fermions may give rise to additional contributions to 0νββ through

their mixing with the light neutrinos. Analogous to Eqn.4.18, the half life for 0νββ in

this case is given by,

Γ0νββ

ln 2
= G0ν(Q,Z)

|Mν
2|

m2
e

∣∣∣ΣU2
eimi + 〈p2〉V

2
ei

Mi

∣∣∣2, (5.23)

where V is the light-heavy mixing. From the fact that the lepton number violating

parameters in both the inverse as well as the linear seesaw models are very small, we

can predict that the heavy neutrino contribution to 0νββ will be very small. To see this

explicitly in the case of the inverse seesaw model, consider the second term,

V 2
ei

Mi

=
V 2
e1

M1

+
V 2
e2

M2

+
V 2
e3

M3

+
V 2
e4

M4

+
V 2
e5

M5

+
V 2
e6

M6,
. (5.24)

In the limit µ = 0, we have,M1 = M2,M3 = M4,M5 = M6, V 2
e1 = −V 2

e2, V 2
e3 = −V 2

e4

and V 2
e5 = −V 2

e6. Thus, the above term vanishes. Even if we consider the limit µ 6= 0,

one can see that the additional contribution is negligibly small compared to the active

light neutrino contribution. One can reach similar conclusion in the case of the linear

seesaw model as well and this has been discussed in [146].

5.7 Summary

In this chapter we have analysed the stability of the electroweak vacuum in the context

of TeV scale inverse seesaw and minimal linear seesaw models extended with a scalar

singlet dark matter. We have studied the interplay between the contribution of the extra
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singlet scalar and the singlet fermions to the EW vacuum stability. We have shown that

the coupling constants in these two seemingly disconnected sectors can be correlated

at high energy by the vacuum stability/metastability and perturbativity constraints.

In the inverse seesaw scenario, the EW vacuum stability analysis is done after

fitting the model parameters with the neutrino oscillation data and non-unitarity con-

straints on UPMNS (including the LFV constraints from µ → eγ). For the minimal

linear seesaw model, the Yukawa matrix Yν can be fully parameterized in terms of the

oscillation parameters excepting an overall coupling constant yν which can be con-

strained from vacuum stability and LFV. We have taken the heavy neutrino masses of

order up to a few TeV for both the seesaw models. An extra Z2 symmetry is imposed

to ensure that the scalar particle serves as a viable dark matter candidate. We include

all the experimental and theoretical bounds coming from the constraints on relic den-

sity and dark matter searches as well as unitarity and perturbativity up to MPlanck. For

the masses of new fermions from 200 GeV to a few TeV, the annihilation cross section

to the extra fermions is very small for dark matter mass O(1 − 2) TeV. We have also

checked that the theory violates perturbativity before MPlanck for dark matter mass

& 2.5 TeV. In addition we find that the value of the Higgs portal coupling κ (MZ) for

which perturbativity is violated at MPlanck decreases with increase in the value of the

Yukawa couplings of the new fermions. For MDM >> Mt, one can approximately

write MDM ∼ 3300 κ GeV. This implies that with the increasing Yukawa coupling, the

mass of dark matter for which the perturbativity is maintained also decreases. Thus the

RGE running induces a correlation between the couplings of the two sectors from the

perturbativity constraints.

The presence of the fermionic Yukawa couplings in the context of TeV scale seesaw

models drives the vacuum more towards instability while the singlet scalar tries to

arrest this tendency. Overall, we find that it is possible to find parameter spaces for

which the electroweak vacuum remains absolutely stable for both inverse and linear

seesaw models in the presence of the extra scalar particle. We find an upper bound

from metastability on Tr[Y †ν Yν ] as 0.25 for κ = 0 which increases to 0.4 for κ = 0.6 in

inverse seesaw model. We have also seen that in the absence of the extra scalar, the

values of the Yukawa coupling yν greater than 0.42 are disallowed in the minimal linear
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seesaw model. But, in the presence of the extra scalar the values of yν up to ∼ 0.6 are

allowed for dark matter mass∼ 1 TeV. The correlations between the Yukawa couplings

(Tr[Y †ν Yν ] or yν) and κ are presented in terms of phase diagrams.

Inverse and linear seesaw models can be explored at LHC through trilepton sig-

natures [186–194]. A higher value of Yukawa couplings, as can be achieved in the

presence of the Higgs portal dark matter, can facilitate observing such signals at col-

liders.





Chapter 6

Inverse Seesaw and Fermionic Dark

Matter in a Class of gauged U(1)

Extensions of the SM

6.1 Introduction

In the last two chapters, we have explored some low scale seesaw models in which

the SM was extended by new particles without altering the gauge group structure. In

this chapter, we study a class of models in which the SM gauge group is extended

by an additional U(1) gauge group. The models with an extra U(1) gauge group

naturally contain three right handed neutrinos as a result of the conditions for the gauge

anomaly cancellation. Thus, the active light neutrino masses can be generated via the

canonical type-I seesaw mechanism [89–92]. However, as we have already discussed,

the canonical type-I seesaw model is not testable and this leads us to consider low

scale seesaw models like inverse seesaw with sizable Yukawa couplings. An inverse

seesaw mechanism in the context of aU(1)B−L extension of the SM has been studied in

reference [149]. In these models, the presence of extra singlet fermions (in addition to

the right handed neutrinos) helps us to bring down the seesaw scale (which is the U(1)

breaking scale) to ∼ O(TeV), simultaneously allowing for large Yukawa couplings,

Yν ∼ O(0.1).

The implications for the stability of the electroweak (EW) vacuum in the context

105
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of U(1) extended models have been studied in [150, 232, 312–315]. In such models,

the behavior of the EW vacuum depends also on the U(1) quantum numbers chosen,

since the renormalization group equations (RGEs) depend on these quantum numbers.

The conformal symmetric versions of such models have been considered in references

[232, 315]. In addition, these models can accommodate a dark matter candidate even in

the minimal version (with type-I seesaw), by adding an additional Z2 symmetry [316,

317], where the third generation of the right handed neutrinos act as the dark matter

candidate. Other versions of the U(1)B−L extension with scalar dark matter have been

studied in [318–320]. Also, there are various realizations of the grand unified theories

(GUTs) that predict the existence of extra Z ′ boson [321, 322]. The presence of the

extraZ ′ boson that couples to the quarks and the leptons also gives rise to a rich collider

phenomenology in the U(1) models[232, 314, 323, 324]. Searches for such Z ′ boson

through its decay to the dileptons have been conducted by the ATLAS and the CMS

collaborations and lower limits on the Z ′ mass have been obtained [5, 325, 326].

In this chapter, we consider a class of gauged U(1) extensions of the SM, where

active light neutrino masses are generated by an inverse seesaw mechanism. This is

based on the work that has been done in [327]. In addition to the three right handed

neutrinos, we add three singlet fermions and demand an extra Z2 symmetry under

which, the third generations of both the neutral fermions are odd, which in turn gives

us a stable fermionic dark matter candidate. This allows us to consider large neutrino

Yukawa couplings and at the same time, keeping the U(1)′ symmetry breaking scale

to be of the order of ∼ O(1) TeV. The main difference of this inverse seesaw model

from that considered in [149] is that the extra neutral fermions are singlets under the

gauge group and hence we do not have to worry about anomaly cancellation. Also,

instead of considering one particular model, we express the U(1) charges of all the

fermions in terms of the U(1) charges of the SM Higgs and the new complex scalar.

We perform a comprehensive study of the bounds on the model parameters from low

energy neutrino data, vacuum stability, perturbative unitarity and dark matter as well

as collider constraints.

The rest of the chapter is organized as follows. In sections 6.2 and 6.3, we introduce

the class of the U(1) models under consideration and discuss the fermionic and the
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scalar sectors. We discuss the fitting of the neutral fermion mass matrix in section 6.4,

by taking all the experimental constraints into account. In section 6.5, we discuss the

RG evolution of the couplings and present the parameter space allowed by vacuum

stability and perturbative unitarity in various planes. This is followed by a discussion

on the dark matter scenario in these models, where we present the parameter space

giving the correct relic density and satisfying the direct detection bounds at the same

time. In section 6.7, we discuss the combined bounds from vacuum stability, unitarity,

dark matter relic density and the collider constraints and finally, we summarize in

section 6.8.

6.2 Model and Neutrino Mass at the tree level

The model considered is based on the gauge group SU(3)c × SU(2)L × U(1)Y ×

U(1)′. In addition to the SM particles, we have three right handed neutrinos NRi,

a complex scalar Φ required to break the U(1)′ symmetry and three gauge singlet

Majorana fermions Si. An extra Z2 symmetry is imposed to have a stable fermionic

dark matter. The matter and Higgs sector field content along with their transformation

properties under SU(3)c × SU(2)L × U(1)Y × U(1)′ are given below.

QL =

uL
dL

 ∼ (3, 2,
1

6
, xq) ; dR ∼ (3, 1, − 1

3
, xd) ; uR ∼ (3, 1,

2

3
, xu),

(6.1)

lL =

νL
eL

 ∼ (1, 2, − 1

2
, xl) ; eR ∼ (1, 1, − 1, xe) ; NR ∼ (1, 1, 0, xν),

(6.2)

H =
1√
2

 G+

v + h+ iG0

 ∼ (1, 2,
1

2
,
xH
2

) ; Φ =
1√
2

(φ+u+iχ) ∼ (1, 1, 0, −xΦ),

(6.3)

νs ∼ (1, 1, 0, 0). (6.4)

Note that the generation indices have been suppressed here. Under Z2, the third

generation of NR and νs, i.e., NR3 and νs3 are odd whereas all the other particles are

even and we assume that this Z2 is not broken.
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The U(1)′ charges of the fermions are defined to satisfy the gauge and gravitational

anomaly-free conditions:

U(1)′ × [SU(3)c]
2 : 2xq − xu − xd = 0,

U(1)′ × [SU(2)L]2 : 3xq + xl = 0,

U(1)′ × [U(1)Y ]2 : xq − 8xu − 2xd + 3xl − 6xe = 0,

[U(1)′]2 × U(1)Y : x2
q − 2x2

u + x2
d − x2

l + x2
e = 0,

[U(1)′]3 : 6x3
q − 3x3

u − 3x3
d + 2x3

l − x3
ν − x3

e = 0,

U(1)′ × [grav]2 : 6xq − 3xu − 3xd + 2xl − xν − xe = 0. (6.5)

The most general Yukawa Lagrangian (along with the Majorana mass for νs) in-

variant under SU(3)c × SU(2)L × U(1)Y × U(1)′ that can be written using the fields

given above is,

−LYukawa = YelLHeR+YνlLH̃NR+YuQLH̃uR+YdQLHdR + yNSNRΦνs+
1

2
νscMµνs + h.c.,

(6.6)

where H̃ = iσ2H
∗. The invariance of this Yukawa Lagrangian under the U(1)′ sym-

metry gives us the following conditions :

xH
2

= −xq + xu = xq − xd = −xl + xν = xl − xe ; −xΦ = xν . (6.7)

Using these conditions and the anomaly-free conditions, the U(1)′ charges of all the

fermions could be determined in terms of xH and xΦ as,

xν = −xΦ ; xl = −xΦ −
xH
2

; xe = −xΦ − xH ,

xq =
1

6
(2xΦ + xH) ; xu =

1

3
(2xH + xΦ) ; xd =

1

3
(xΦ − xH), (6.8)

Note that the choice xΦ = 1 and xH = 0 correspond to the well known U(1)B−L

model. From eqn.(6.6), after symmetry breaking, the terms relevant for neutrino mass

are,

− Lmass = νLMDNR +NRMRS +
1

2
νscMµνs + h.c., (6.9)
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where, MD = Yν〈H〉 and MR = yNS〈Φ〉 . The neutral fermion mass matrix Mν can

be defined as,

− Lmass =
1

2
( νcL NR νsc )


0 M∗

D 0

M †
D 0 MR

0 MT
R Mµ



νL

N c
R

νs

 + h.c.. (6.10)

The mass scales of the three sub-matrices of Mν may naturally have a hierarchy

MR >> MD >> Mµ . Then, the effective light neutrino mass matrix in the seesaw

approximation is given by,

Mlight = M∗
D(MT

R )−1MµM
−1
R M †

D. (6.11)

Thus, we have an inverse seesaw mechanism in which the smallness of Mlight is nat-

urally attributed to the smallness of both Mµ and
MD

MR

. Because of the extra Z2 sym-

metry, the Yukawa coupling matrices Yν and yNS and hence the mass matricesMD and

MR will have the following textures,

MR = yNS〈Φ〉 ∼


× × 0

× × 0

0 0 ×

 and MD = Yν〈H〉 ∼


× × 0

× × 0

× × 0

 . (6.12)

In addition, we will choose Mµ to be diagonal without loss of generality. Since NR3

and S3 do not mix with other neutral fermions, they will not contribute to the seesaw

mechanism and we will have a minimal inverse seesaw mechanism (3 νL + 2 NR + 2

νs case) in which the lightest active neutrino will be massless. The two fermions NR3

and νs3 mix among themselves and the lightest mass eigenstate could be a stable dark

matter candidate. In the heavy sector, we will have two pairs of degenerate pseudo-

Dirac neutrinos of masses of the order ∼ MR ± Mµ that mix with the active light

neutrinos.

6.3 Scalar Potential of the Model and Symmetry Break-

ing

The scalar potential of the model is given by,

V (Φ, H) = m2
1H
†H + λ1(H†H)2 + λ3H

†H Φ†Φ + m2
2Φ†Φ + λ2(Φ†Φ)2 . (6.13)
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The trivial conditions that give a stable potential are,

λ1 > 0 ; λ2 > 0 and λ3 > 0, (6.14)

and if λ3 < 0, the stability of the potential can still be achieved by satisfying the

following conditions :

λ1 > 0, λ2 > 0, 4λ1λ2 − λ2
3 > 0. (6.15)

The above conditions are obtained by demanding the Hessian matrix corresponding

to the potential to be positive definite at large field values [150, 328].

The two scalar fields acquire vacuum expectation values(vevs) given by,

〈H〉 =
1√
2

0

v

 ; 〈Φ〉 =
u√
2
. (6.16)

The values of v and u are determined by the minimization conditions and are given by,

v2 =
m2

2λ3/2−m2
1λ2

λ1λ2 − λ2
3/4

; u2 =
m2

1λ3/2−m2
2λ1

λ1λ2 − λ2
3/4

. (6.17)

After symmetry breaking, the mixing between the fields h and φ could be rotated

away by an orthogonal transformation to get the physical mass eigenstates as, The

values of v and u are determined by the minimization conditions and are given by,

v2 =
m2

2λ3/2−m2
1λ2

λ1λ2 − λ2
3/4

; u2 =
m2

1λ3/2−m2
2λ1

λ1λ2 − λ2
3/4

. (6.18)

After symmetry breaking, the mixing between the fields h and φ could be rotated

away by an orthogonal transformation to get the physical mass eigenstates as, The

values of v and u are determined by the minimization conditions and are given by,

v2 =
m2

2λ3/2−m2
1λ2

λ1λ2 − λ2
3/4

; u2 =
m2

1λ3/2−m2
2λ1

λ1λ2 − λ2
3/4

. (6.19)

After symmetry breaking, the mixing between the fields h and φ could be rotated

away by an orthogonal transformation to get the physical mass eigenstates as,h1

h2

 =

cosθ −sinθ

sinθ cosθ

h
φ

 , (6.20)
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The masses of the scalar eigenstates are,

m2
h1,2

= λ1v
2 + λ2u

2 ∓
√

(λ1v2 − λ2u2)2 + (λ3uv)2. (6.21)

From these, one can get the relations,

λ1 =
m2
h1

4v2
(1 + cos2θ) +

m2
h2

4v2
(1− cos2θ),

λ2 =
m2
h1

4u2
(1− cos2θ) +

m2
h2

4u2
(1 + cos2θ),

λ3 = sin2θ
(m2

h2
−m2

h1

2uv

)
. (6.22)

We use these equations to set the initial conditions on the scalar couplings λ1, λ2

and λ3 while running the renormalization group equations. Also, from the above equa-

tions, one can get,

tan2θ =
λ3uv

λ1v2 − λ2u2
. (6.23)

6.3.1 Perturbative Unitarity

In addition to the vacuum stability conditions, the constraints from the perturbative

unitarity conditions also put bounds on the model parameters. As we discussed in the

previous chapter, by considering the hh→ hh and φφ→ φφ processes, one can derive

combined constraints on the three couplings appearing in the scalar potential[329, 330]

:

|λ3| ≤ 8π ; 3(λ1 + λ2)±
√
λ2

3 + 9(λ1 − λ2)2 ≤ 8π (6.24)

Demanding the running gauge couplings to remain in the perturbative regime gives us,

gi ≤
√

4π, (6.25)

where gi stands for SM gauge couplings. For the U(1) gauge coupling g′, we require,

(xq,d,u,l,e,ν,Φ)g′, (xH/2)g′ <
√

4π. (6.26)
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6.4 Numerical Analysis and Parameter Scanning in the

Neutrino Sector

To study the parameter space allowed by vacuum stability as well as perturbativity

bounds upto MPlanck using the RGEs, we have to first fix the initial values for all the

couplings. While setting the initial values for the neutrino Yukawa couplings Yν and

yNS , we have to make sure that they reproduce the correct oscillation parameters and

satisfy all the experimental constraints. For this, we find sample benchmark points for

Yν , yNS and Mµ and the vev of the extra scalar Φ (u) by fitting them with all the con-

straints using the downhill simplex method [311] like we did in the case of the inverse

seesaw model in the previous chapter. Note that here, Yν is a complex 3 × 2 matrix,

yNS is a complex 2×2 matrix and Mµ is a 2×2 diagonal matrix with real entries. The

various constraints we have taken include the bounds on oscillation parameters (mass

squared differences and mixing angles), cosmological constraint on the sum of light

neutrino masses and the constraints on the non-unitarity of UPMNS = UL and these

are discussed in sections 1.2 and 5.4. In table (6.1), we give two benchmark points

consistent with all the experimental data discussed above. As a consistency check, we

also give the value of Br(µ→ e γ) obtained at the two benchmark points.

6.5 RG Evolution

We have evaluated the SM coupling constants at the the top quark mass scale and then

run them using the RGEs from Mt to Mplanck. For this, we have taken into account

the various threshold corrections at Mt [245, 248, 291]. Then the SM RGEs are used

to run all the couplings upto the vev of the new scalar, after which, the new couplings

enter. Then we use the modified RGEs for the SU(3)c × SU(2)L × U(1)Y × U(1)′

and these have been generated using SARAH [295]. We have used two-loop RGEs for

all the SM parameters and g′ and the new scalar couplings λ2 and λ3, whereas for the

neutrino Yukawa couplings, we have used the one-loop RGEs. The one-loop RGEs of

the model are given in appendix-B. Throughout this paper, we have fixed the standard

model parameters as mh = 125.7 GeV, Mt = 173.4 GeV and αs = 0.1184. Also, we
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Parameter BM − I BM − II

Tr[YνY
†
ν ] 0.089 0.222

[Yν ]3×2


0.119− i 0.065 0− i 0.026

0.001− i 0.009 0.062 + i 0.01

−i 0.249 −0.001− i 0.063



−0.003− i 0.002 0.129

0.191− i 0.226 0.004− i 0.014

0.008− i 0.231 0.252 + i 0.024


Tr[yNSy

†
NS] 0.010 0.110

[yNS]2×2

0.003− i 0.011 0.043− i 0.026

0.082 + i 0.025 −i 0.007

 0.028 + i 0.013 0.288 + i 0.099

0.13− i 0.005 0.001 + i 0.001


[Mµ]2×2 GeV

2.303× 10−6 0

0 −1.636× 10−8

 −6.4735× 10−9 0

0 −6.9781× 10−8


Mj GeV 1773.43, 1773.43, 3058.59, 3058.59 1095.88, 1095.88, 2598.39, 2598.39

Br(µ→ e γ) 1.069× 10−14 1.811× 10−14

u (TeV ) 50 12

Table 6.1: Two sample benchmark points for the neutrino sector. The above parameters give

the correct mixing angles and satisfies the non-unitarity constraints on UPMNS . The value of

Br(µ→ e γ) is given as a check.

have kept the U(1) gauge mixing to be 0 at the scale u throughout this paper.

Fig. 6.1 displays the allowed region in the mh2 − θ plane for the model with

xH = xΦ = 1, keeping all the other parameters fixed. For the neutrino Yukawa

couplings, we have used BM-I from the Table 6.1 and we have fixed g′ = 0.1 and

y33
NS = 0.5. From the figure, one can see that for higher values of θ, only smaller

values of mh2 are allowed whereas for smaller values of θ, larger values of mh2 over

a wider range are allowed. Also it can be seen that for this model with the considered

set of parameters, the values of mh2 > 33 TeV and θ > 0.013 are disallowed.

In Fig. 6.2, we have plotted the running of λ1, λ2 and λ3 for the model with

xH = xΦ = 1 for two different values of mh2 and θ. The figure in the left side is

for mh2 = 15 TeV and θ = 0.004 whereas the one in the right side is for mh2 = 20

TeV and θ = 0.003. For the neutrino Yukawa couplings, we have used BM-I from the

Table 6.1 and we have fixed g′ = 0.1 and y33
NS = 0.5. We can see that all the three
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Figure 6.1: Region in the mh2 − θ plane allowed by both vacuum stability and per-

turbativity bounds upto MPlanck for the model with xH = xΦ = 1. For the neutrino

Yukawa couplings, we have used BM-I from the Table 6.1 and we have fixed g′ = 0.1

and y33
NS = 0.5.
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(a) mh2 = 15 TeV, θ = 0.004
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(b) mh2 = 20 TeV, θ = 0.003

Figure 6.2: Running of λ1, λ2, λ3 and 4λ1λ2−λ2
3 for the model with xH = xΦ = 1 for

two different values of mh2 and θ. For the neutrino Yukawa couplings, we have used

BM-I from the Table 6.1 and we have fixed g′ = 0.1 and y33
NS = 0.5.
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quartic couplings remain positive up to MPlanck for both the cases implying that the

electroweak vacuum is absolutely stable. This can be seen from Fig. 6.1 as well where

the above mentioned points fall in the stable region. Here, the presence of the extra

scalar coupling helps in stabilizing the vacuum.

(a) (b)

Figure 6.3: Regions in the mh2 − xH and mh2 − xΦ planes allowed by both vacuum

stability and perturbativity bounds upto MPlanck for two different values of θ. For the

left panel, we have fixed xΦ = 1 and for the right panel, we have fixed xH = 1. For

the neutrino Yukawa couplings, we have used BM-I from the Table 6.1 and we have

fixed g′ = 0.1 and y33
NS = 0.5. The red region is for θ = 0.003 and the blue region is

for θ = 0.01.

In Fig. 6.3, we have plotted the regions allowed by both vacuum stability and

perturbativity bounds upto MPlanck in the mh2 − xH and mh2 − xΦ planes, for two

different values of θ. The red regions are for θ = 0.003 and the blue regions are for

θ = 0.01. The left panel of Fig. 6.3 shows the allowed regions in the mh2 − xH plane

keeping all the other parameters fixed. For the neutrino Yukawa couplings, we have

used BM-I from the Table 6.1 and we have fixed xΦ = 1, g′ = 0.1 and and y33
NS = 0.5.

It can be seen that for θ = 0.01, a very narrow region of mh2 in the range ≈ 9 − 10

TeV is allowed by the stability and perturbativity constraints and the corresponding

allowed range of xH is ≈ −5.7 − 4.1. Here, the higher values of mh2 are disfavored

by the perturbativity constraints whereas the lower values of mh2 are disfavored by the

constraints from vacuum stability. At the same time, for θ = 0.003, mh2 ≈ 11 − 30

TeV is allowed depending on the value of xH .

Similarly, in the right panel of Fig. 6.3, we have shown the allowed region in the
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mh2 − xΦ plane keeping xH = 1 and all the other parameters fixed for two different

values of θ. Here also, for θ = 0.01, the values of mh2 greater than 10 TeV are

disfavored by unitarity constraints. The lower values of mh2 are disfavored by the

stability constraints depending on the value of xΦ. For −3 ≤ xΦ ≤ 3, values of mh2

less than ∼ 9 TeV are disallowed, whereas for −5.5 ≤ xΦ ≤ −3 and 3 ≤ xΦ ≤ 4,

values ofmh2 as low as∼ 3 TeV are allowed. For θ = 0.003, values ofmh2 < 14−15.5

TeV are disallowed depending on the values of xH , but values as high as 30 TeV are

allowed for −5 ≤ xH ≤ 4. These results are consistent with the observations from

Fig. 6.1 where we have seen that for xH = xΦ = 1, larger(smaller) values of mh2 are

disfavored for larger(smaller) values of θ.

(a) Running of λ for different values of Mt

keeping αS and Mh fixed.

(b) Running of λ for different values of αs

keeping Mt and Mh fixed.

Figure 6.4: Regions in the xΦ − xH plane allowed by both vacuum stability and per-

turbativity upto MPlanck. We have taken the mass of the extra scalar to be 6 TeV (10

TeV) in the left (right) panel. For the neutrino Yukawa couplings, we have used BM-I

from the Table 6.1 and we have fixed θ = 0.01, g′ = 0.1 and y33
NS = 0.5 for both the

plots.

In Fig.6.4, we have presented the regions in the xΦ − xH plane allowed by both

vacuum stability (absolute stability) and perturbativity upto MPlanck for fixed values

of mh2 , θ and g′. For the neutrino Yukawa couplings, we have used the BM-I in Table

6.1 and we have taken and y33
NS = 0.5. The mass of the extra scalar have been taken

to be 6 TeV (10 TeV) in the left (right) panel and the values of θ and g′ are taken to be

0.01 and 0.1 respectively for both the plots. From these two figures, we can see that

increasing the scalar mass will allow more values of xΦ for a given value of xH . In
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fact, one can see that the allowed values for xΦ lie in the ranges≈ ±3 to±6 and≈ ±1

to ±6 for the figures in the left and the right panels respectively. Also, xH lies in the

range ≈ −7 to 7 for both the cases with the considered values of the parameters. This

can be understood from eqn.6.22 which shows that higher value of mh2 implies higher

value of the scalar couplings which in turn favors stability.

(a) Running of λ for different values of Mt

keeping αS and Mh fixed.

(b) Running of λ for different values of αs

keeping Mt and Mh fixed.

Figure 6.5: Regions in the M ′
Z − xH plane allowed by both vacuum stability and

perturbativity bounds up to MPlanck. We have taken the mass of the extra scalar to be

7 TeV (10.5 TeV) in the left (right) panel. For the neutrino Yukawa couplings, we have

used BM-I from the Table 6.1 and we have fixed θ = 0.01, xΦ = 1 and and y33
NS = 0.5

for both the plots.

Fig.6.5, displays the regions allowed by both vacuum stability and perturbativity

up to MPlanck in the M ′
Z − xH plane for fixed values of mh2 , θ and xΦ. Here also, we

have used the BM-I in Table 6.1 for the neutrino Yukawa couplings and we have taken

and y33
NS = 0.5. The mass of the extra scalar have been taken to be 7 and 10.5 TeV in

the left and the right panels respectively and the values of θ and xΦ are taken to be 0.01

and 1 for both the plots. Also, we have varied g′ from 0 to 1 keeping u fixed at 50 TeV

and xH in the range -8 to 8. The corresponding values of M ′
Z have been calculated

using,

M ′
Z =

√
(xΦg′u)2 + (

xH
2
g′vSM)2. (6.27)

From these figures, we can see that lower values of M ′
Z allow large values of xH .

From these figures, one can see that for a lower scalar mass, the lower values of M ′
Z

(or equivalently, lower values of g′) are disfavored. For mh2 = 7 TeV, values of M ′
Z
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less than 12 TeV are disallowed and a very small range of xH is allowed whereas for

mh2 = 10.5 TeV, values of M ′
Z as low as 1 TeV are allowed and correspondingly, xH

is allowed from −8 to 8.

6.6 Dark matter scenario

In this section we discuss dark matter physics in our model with respect to the con-

straints from relic density and direct detection experiments. As mentioned earlier, the

third generations of NR and SL (NR3, νs3) are odd under the Z2 parity in the general

U(1)′ inverse seesaw model that we consider. This ensures the stability of NR3 and

νs3 which is required for these to be potential dark matter candidates. As a result the

relevant interactions in the Lagrangian can be written as

−L2
mass ⊃ y33

NSNR3νs3Φ +M33
S ν

c
s3νs3. (6.28)

Note that NR3 can not couple to the SM Higgs and lepton doublets due to the Z2

symmetry. After the symmetry breaking we have 〈Φ〉 =
u√
2

and the mass matrix can

be written as,

MN3S3 =

 0 M33
NS

M33
NS M33

S

 (6.29)

where M33
NS =

y33
NSu√

2
. Now rotating the basis we can write the physical eigenstates asN c

R3

νs3

 =

 cos θ sin θ

− sin θ cos θ

ψ1

ψ2

 (6.30)

where tan 2θ =

∣∣∣∣2M33
NS

−M33
S

∣∣∣∣ =
√

2
y33
NSu

M33
S

. Note that ψ1 and ψ2 are Majorana fermions.

The mass eigenvalues are obtained as,

mψ1,ψ2 =
1

2

√
(M33

S )2 + 4(M33
NS)2 ∓ 1

2
M33

S , (6.31)

where we take mψ1 < mψ2 . Thus ψ1 is the lightest Z2 odd particle and our dark

matter candidate. Putting ψ1 and ψ2 back into Eq. 6.28 along with the physical mass

eigenstates of h and φ we write the interaction among Z2 odd fermion and scalars as,

−L ⊃ y33
NS

(
− sin θ cos θ cos θ h1 + cos θ sin θ sin θ h2

)(
− ψc1ψ1 + ψc2ψ2

)
. (6.32)
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Figure 6.6: (a) Scalar mediated dark matter annihilation (b) Direct detection and (c)

Z ′ mediated dark matter annihilation.

Then the dark matter candidate can annihilate through the scalar portal (Fig. 6.6a),

where interactions between h2 and SM particles are induced by scalar mixing (See

Eqn.6.20) and these couplings are equal to the SM Higgs couplings times sin θ. In

addition, the dark matter can annihilate to the SM particles via Z ′ exchange (Fig. 6.6c)

where the gauge interactions are given by,

L ⊃ −xΦg
′

2
Z ′µ
(
cos2 θψ̄1γ

µγ5ψ1 + sin2 θψ̄2γ
µγ5ψ2 − 2 cos θ sin θψ̄1γ

µγ5ψ2

)
.(6.33)

Furthermore, dark matter can annihilate into Z ′Z ′ mode via scalar portal where the

relevant scalar-Z ′Z ′ interaction is given by

L ⊃ M ′
Z

2

u
cos θ h2Z

′Z ′ − M ′
Z

2

u
sin θ h1Z

′Z ′. (6.34)

6.6.1 Relic density

Here we analyze the relic density of our dark matter candidate. The dark matter can-

didate ψ1 annihilate into the SM particles via processes induced by Z ′ and scalar bo-

son interactions as shown in Fig. 6.6. Then we estimate the relic density using mi-

crOMEGAs 4.3.5 [331] implementing the relevant interactions. Firstly we focus on
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the parameter space where the Z ′ mediated process dominates for dark matter annihi-

lation. For illustration, in Fig. 6.7, we show the relic density as a function of the dark

matter mass (MDM ≡ mψ1) for M ′
Z = 4 TeV, fixing the other parameters as indicated

in the plot. The plot indicates that the required gauge coupling is g′ & 0.5 but it is ex-

cluded by the LHC data as we will see later. Note that in this case, the value of g′ that

gives the correct relic density depends on the choice of xH and xΦ since the interaction

strength of Z ′ with the other particles is a product of g′ and a linear combination of xH

and xΦ. If we increase xH and xΦ, then the value of g′ that can give the correct relic

density can be lowered. However, for smaller values of g′, the LHC constraints imply

much lower values of M ′
Z where the Z ′ exchange is not a dominant process. We also

find that the Z ′ mediated process cannot provide sufficient annihilation cross section

to explain the observed relic density if dark matter is heavier than ∼ 3 TeV, complying

with the requirement that the gauge coupling satisfy (xq,d,u,l,e,ν,Φ)g′, (xH/2)g′ <
√

4π

for perturbativity. This tendency comes from the fact that the annihilation cross section

is P-wave suppressed since our dark matter particle is Majorana fermion.

We will now focus on the contribution of h2 exchange process to the relic density

of dark matter. For illustrating the effect of this process, we show the relic density as

a function of dark matter mass for different values of y33
NS and mh2 in Fig. 6.8. In the

left panel, we have fixed y33
NS = 2.5 and plotted the relic density as a function of MDM

for three different values of mh2 , keeping all the other parameters fixed. Similarly,

we have taken mh2 = 13 TeV in the right plot and plotted the relic density for three

different values of y33
NS . We find that the observed relic density can be realized for

y33
NS & 2 when mh2 = 13 TeV. In addition, mh2 ∼ 2MDM is preferred to enhance the

annihilation cross section which implies that mh2 mass is around O(10) TeV in our

model. Note that such a heavy mass scale for h2 is also preferred in stabilizing the

scalar potential as we already discussed in the previous section.

We perform a parameter scan and search for the allowed regions which can give the

correct relic density of dark matter. Firstly, we perform parameter scan in the following

ranges focusing on the scalar exchange process,

MDM ∈ [1.0, 10.0] TeV, mh2 ∈ [1.8MDM , 2.2MDM ], y33
NS ∈ [0.2, 3.0], sin θ ∈ [0.001, 0.02],



6.6. Dark matter scenario 121

mh2
= 10 TeV

mZ' = 4 TeV

yNS
33 = 0.1

sin Θ = 0.01

xF = xH = 1

sin Θ = 0.1

Wh2 = 0.12

g ' = 0.4

0.5

0.6

1.85 1.90 1.95 2.00 2.05 2.10

0.05

0.10

0.20

0.50

MDM @TeVD

W
h

2

Figure 6.7: Relic abundance as a function of dark matter mass for different values of

g′. All the other parameters have been fixed as given in the plot.

mZ' = 6 TeV

g ' = 0.1

sin Θ = 0.005

xF = xH = 1

sin Θ = 0.5

yNS
33 = 2.5

mh2 = 13.0 TeV

13.5 TeV

14 TeV

Wh2 = 0.12

6.2 6.4 6.6 6.8 7.0 7.2

0.02

0.05

0.10

0.20

0.50

1.00

MDM @TeVD

W
h

2

mh2
= 13 TeV

mZ' = 6 TeV

g ' = 0.1

sin Θ = 0.005

xF = xH = 1

sin Θ = 0.5

yNS
33 = 1.5

2.0
2.5Wh2 = 0.12

6.2 6.3 6.4 6.5 6.6

0.02

0.05

0.10

0.20

0.50

1.00

MDM @TeVD

W
h

2

Figure 6.8: Relic abundance as a function of dark matter mass : (a) For different values

of mh2 and fixed y33
NS = 2.5 ; (b) For different values of y33

NS and fixed mh2 = 13 TeV.
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Figure 6.9: Parameter regions that give the correct relic density of dark matter in

MDM -YN3 andMh2-sin θ planes for scanning done in the ranges of parameters as given

by Eq. (6.35).

xH ∈ [−5, 5], xΦ ∈ [−5, 5], sin θ ∈ [0.2, 0.7], M ′
Z = 5 TeV, g′ = 0.01.

(6.35)

We fixed Z ′ mass and g′ for simplicity. Note that we chose mh2 ∼ 2MDM since

we can obtain the observed relic density in this region via h2 exchange process as

discussed above. In Fig. 6.9, we show the allowed parameter space in MDM − y33
NS

and mh2 − sin θ planes that give the correct relic density of dark matter, 0.11 < Ωh2 <

0.13, adopting the approximate range around the best fit value [57]. From the left

panel of Fig. 6.9, we can see that in general, for larger values of MDM , the allowed

values of y33
NS are large. But, a few points with smaller values of y33

NS are also obtained

for MDM > M ′
Z since ψ1ψ1 → h2 → Z ′Z ′ process is kinematically allowed there.

In the right panel of Fig. 6.9, we have shown the allowed parameter space in the

mh2 − sin θ plane. From this plot, we can see that sin θ can be small for MDM > M ′
Z

(mh2 ∼ 2MDM ) since h2Z
′Z ′ coupling is not suppressed by sin θ as we can see from

Eqn. (6.34). However, we have some lower limit of sin θ for MDM < M ′
Z since here,

ψ1ψ1 → h2 → Z ′Z ′ process is kinematically disallowed and the coupling of h2 to the

SM particles is suppressed by sin θ.
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6.6.2 Direct detection

Here we briefly discuss the constraints from the direct detection experiments by es-

timating the dark matter-nucleon (N) scattering cross section in our model. Firstly

note that the Z ′ exchange process between dark matter and nucleon will not get strin-

gent constraint since dark matter-Z ′ interaction is via axial vector current due to the

Majorana property of dark matter and provides spin-dependent operator for dark mater-

nucleon interaction. We thus focus on the scalar mediated processes for dark matter-

nucleon scattering where the corresponding Feynman diagram is given in Fig 6.6b. In

our case, the dark matter interacts with the nucleon through the scalar boson exchange

(h1, h2). The relevant interaction Lagrangian with the mixing effect is given by,

L ⊃ Cψ1ψ1h1h1ψc1ψ1 + Cψ1ψ1h1h2ψc1ψ1 + CNNh1h1NN + CNNh2h2NN, (6.36)

where the effective couplings are,

Cψ1ψ1h1 = sin θ cos θ cos θ
Y 3
N√
2
, Cψ1ψ1h2 = − sin θ cos θ sin θ

Y 3
N√
2
, (6.37)

CNNh1 = sin θghNN , CNNh2 = cos θghNN . (6.38)

Hence the effective Lagrangian can be written as,

Leff = Ghψ1ψ1NN, (6.39)

Gh =
[Cψ1ψ1h1Ch1NN

m2
h1

+
Cψ2ψ2h2Ch2NN

m2
h2

]
(6.40)

where mh1 and mh2 are the SM and BSM Higgs masses. The corresponding cross

section of Fig. 6.6b in the non-relativistic limit can be calculated as,

σ = g2
hNN

M2
DMM

2
N

16π(M2
DM +M2

N)2
(Y 3

N sin 2θ sin 2θ)2
( 1

m2
h1

− 1

m2
h2

)2

, (6.41)

where, MDM and MN are the dark matter and nucleon masses respectively. The

effective coupling can be written as ghNN =
fNMN

v
√

2
where we apply fN = 0.287

for neutron [310] 1 and v = 246 GeV. We then estimate the cross sections applying

allowed parameter sets obtained in previous subsection and the results are shown in

Fig. 6.10. The black dotted and dashed lines show the current upper bounds from
1fN for proton has similar value and we here just use fN in estimating the cross section.
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Figure 6.10: Nucleon-dark matter scattering cross section as a function of dark matter

mass for parameters that give the correct relic density. The current upper bounds from

PANDAX-II [3] (black dotted line) and XENON-1t [4] (back dashed line) are also

shown.

PANDAX-II [3] and XENON-1t [4] respectively. We find that our parameter region

is allowed by the direct detection constraints since the cross section is suppressed by

small sin θ which is also preferred by the constraints from vacuum stability. The cross

section will be further explored by the future direct detection experiments.

6.7 Bounds on the M ′
Z − g′ plane

In this section, we consider the production of Z ′ from the proton proton collision at the

LHC and its decay into different types of leptons. We first calculate the Z ′ production

cross section at the LHC from protons followed by the decay into lepton, pp→ Z ′ →

`+`− with ` = e, µ. In our analysis we calculate the cross section combining the

electron and muon final states. We compare our cross section with the latest ATLAS

search [5] for the heavy Z ′ resonance. Since we are considering U(1)′ models with

extra Z ′, the ATLAS results can be compared directly with our results. Atlas analysis

has considered different models like SSM and Z ′ψ [332] where the Z ′ decays into e and
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Figure 6.11: Comparison between the ATLAS [5] (black solid line) result and model

cross sections (blue lines) for the different values of xH and xΦ. The model cross

sections are produced with gModel = 0.05. The left and right panels correspond to

xH < 0 and xH > 0 respectively and we have considered xΦ > 0 for both the cases.

µ. Conservatively considering these limits for our case we first produce the Z ′ (300

GeV ≤ M ′
Z ≤ 6 TeV) at the 13 TeV LHC followed by the decay into dilepton mode

and finally compare with the cross sections in our model. To calculate the bounds on

the g′, we calculate the model cross section, σModel, for the process pp→ Z ′ → 2e, 2µ,

with a U(1)′ coupling constant gModel at the LHC at the 13TeV center of mass energy.

Then we compare this with the observed ATLAS bound (σObserved
ATLAS ) for

Γ

m
= 3% which

has been studied for the SSM. The corresponding cross sections are plotted in Fig. 6.11

for different choices of xH and xΦ. Thus, the value of g′ corresponding to a given M ′
Z

is given as,

g′ =

√√√√σObserved
ATLAS(
σModel

g2
Model

) , (6.42)

since the cross section varies with the square of the U(1)′ coupling (g2
Model).

In this analysis we consider several choices of the xH and xΦ to calculate the

bounds in the M ′
Z − g′ plane. These correspond to two scenarios : (1) xH is nega-

tive and xΦ is positive for which the results are shown in Fig. 6.12 and (2) both xH and

xΦ are positive and the corresponding constraints in the M ′
Z − g′ plane are shown in

Fig. 6.13. The interaction of the Z ′ with the fermions via the covariant derivative will

depend on the xH and xφ values and is given by the Lagrangian,
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Figure 6.12: Allowed parameter space combining the bounds obtained on g′ as a func-

tion of M ′
Z from vacuum stability and perturbativity (red dots), dark matter constraints

(green dots) and collider (region below the blue solid line). The blue shaded regions

are ruled out by the recent ATLAS search [5] at 139 fb −1 luminosity.
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Figure 6.13: Allowed parameter space combining the bounds obtained on g′ as a func-

tion of M ′
Z from vacuum stability and perturbativity (red dots), dark matter constraints

(green dots) and collider (region below the blue solid line). The blue shaded regions

are ruled out by the recent ATLAS search [5] at 139 fb−1 luminosity.

−Lint ⊃ fLγ
µg′QxZ

′
µfL + fRγ

µg′Q′xZ
′
µfR. (6.43)

Here, fL and fR are the left handed and right handed fermions and Qx and Q′x

are the corresponding charges under the U(1)′ gauge group. These charges are linear

combinations of xH and xΦ and will appear in the CV and CA coefficients of the Z ′

interactions. The Z ′ interaction with the colored fermions will contain the color factor

Nc = 3 in the interaction whereas Nc = 1 for the uncolored fermions. The bounds

from the collider for various models are shown by the blue solid lines in Figs. 6.12 and

6.13. The blue shaded regions in these figures are ruled out by the current LHC data

obtained from the ATLAS experiment [5] at 139 fb−1 luminosity.

In these figures, we have also given the bounds from vacuum stability, perturba-

tivity and relic density for purposes of comparison. For finding the regions that are

allowed by vacuum stability and perturbativity, we have done a scanning in the follow-
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ing ranges of parameters,

g′ ∈ [0.0001, 1.0], u ∈ [0.3, 100] TeV mh2 ∈ [2.0, 16] TeV, y33
NS ∈ [0.2, 2.5],

(6.44)

with θ = 0.01. For Yν and (yNS)2×2, we have used BM-I from the Table 6.1 and we

have scaled yNS according to the variation in u. The values ofM ′
Z have been calculated

using Eq.6.27 and the allowed regions are shown by the red points in Figs. 6.12 and

6.13. It can be seen from these figures that the bulk of the parameter space allowed

by vacuum stability lies in the region disfavoured by the ATLAS results. Regions

beyond M ′
Z > 5TeV that is not explored by ATLAS are seen to be allowed by vacuum

stability and perturbativity constraints. Future ATLAS results will be able to explore

this region.

Similarly, to find out the points that can give the correct dark matter relic density,

we have performed a scanning of parameters in the ranges,

g′ ∈ [0.0001, 1.0], M ′
Z ∈ [0.1, 16] TeV mh2 ∈ [2.0, 16] TeV,

y33
NS ∈ [0.2, 2.5],MDM ∈ [1.0, 10.0]TeV. (6.45)

Here also, we have fixed θ = 0.01. The green dots in Figs. 6.12 and 6.13 cor-

respond to the values that give the correct dark matter relic density. The constraints

coming from this is seen to be less stringent than the combined constraints from vac-

uum stability, perturbativity and ATLAS analysis.

6.8 Summary

In this chapter, we have studied the inverse seesaw model in a class of general U(1)

extensions of the SM. We have studied the parameter spaces in various planes that

are allowed by vacuum stability and perturbativity as well as consistent with the low

energy neutrino data. In addition, this model can have a prospective dark matter can-

didate by demanding the third generations of the SU(2)L singlet neutral fermions to

be odd odd under a discrete Z2 symmetry. Comparing the Z ′ production and its decay

into the dilepton mode at the LHC with the current ATLAS results, we find the bounds
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on the U(1)′ coupling constant with respect to the Z ′ mass. Finally, combining all the

constraints, we obtain the resultant allowed parameter space which can be probed in

the future experiments.





Chapter 7

Summary and Conclusions

The SM has been higly successful in explaining a wide range of experimental obser-

vations and the the discovery of the Higgs boson at the Large Hadron Collider ex-

periment in 2012 has completed the hunt for its last missing piece. The Higgs boson

holds a special status in the SM as it gives mass to all the other particles whereas the

neutrinos are predicted to be massless in the SM due to the absence of right handed

neutrinos. However, observation of neutrino oscillation from solar, atmospheric, re-

actor and accelerator experiments necessitates the extension of the SM to incorporate

small neutrino masses. In addition, there are several astrophysical evidences that have

established the existence of dark matter. These are the two major experimental indi-

cations that motivate us to consider theories beyond SM and a successful theory of

particle physics should be able to address these two issues.

The seesaw mechanism is considered to be the most elegant way to generate small

neutrino masses. The philosophy of the seesaw mechanism is that the neutrinos are

Majorana particles and lepton number is violated at high energy. According to this,

the tree level exchange of some heavy particle at high energy will give rise to the

dimension-five Weinberg operator at low energy, which in turn will give rise to small

Majorana masses to the neutrinos once the electroweak symmetry is broken. Depend-

ing on whether the exchange particle is a fermionic singlet, scalar triplet or fermionic

triplet, the corresponding scenarios are called as type-I, type-II and type-III seesaw

models respectively. However, in order to get a neutrino mass of the sub-eV scale, one

has to take the new particles to be extremely heavy or else take the new couplings to

131
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be extremely small. This spoils the testability of the theory which motivates one to

consider the low scale seesaw models. One can reduce the scale of new physics to TeV

by decoupling the new physics scale from the scale of lepton number violation. The

smallness of the neutrino mass can then be attributed to small lepton number violat-

ing terms. Tiny values of the latter are deemed natural in accordance with t Hoofts

naturalness criteria, since when these parameters are set to zero, the global U(1) lep-

ton number symmetry is restored and neutrinos become massless. Such models can

have various phenomenological as well as theoretical consequences. For example, the

heavy seesaw particles can lead to enhanced rates of various charged lepton flavor

violating decays and the new couplings associated with the seesaw can alter the sta-

bility/metastability of the electroweak vacuum. In addition, these heavy particles can

have interesting signatures in the collider experiments. In this thesis, we have stud-

ied various phenomenological and theoretical implications of massive neutrinos in the

context of different low scale seesaw models. We have also explored the possibility of

having a plausible candidate for dark matter in the context of seesaw models.

We yet do not know whether neutrinos are lepton number violating Majorana par-

ticles or Dirac particles even though the seesaw mechanism implies that they are Ma-

jorana particles. This can be tested in the experiments searching for the lepton number

violating neutrino-less double beta decay. No positive result has been observed in any

of the experiments so far and this has put an upper bound on the effective mass gov-

erning 0νββ. The predictions for the effective mass for IH and NH are separated by

a “desert region” if we assume that the light Majorana neutrino exchange is the sole

mechanism for 0νββ. The current upper bound is just above the IH region (∼ 0.1 eV )

and several future experiments with sensitivity reach∼ 0.015 eV are expected to probe

the IH parameter space completely. However if no positive signal is found in these

searches then the projected sensitivity reach of these experiments are in the ballpark of

of 0.005 eV which can explore only a small part of the NH region for lightest neutrino

mass ≥ 0.005 eV. The next frontier that is envisaged is ∼ 10−3 eV. In this thesis, we

have explored the implications of the DLMA solution to the solar neutrino problem

for neutrino-less double beta decay (0νββ ). The standard LMA solution corresponds

to standard neutrino oscillations with ∆m2
21 ' 7.5 × 10−5 eV2 and sin2 θ12 ' 0.3,
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and satisfies the solar neutrino data at high significance. The DLMA solution appears

as a nearly-degenerate solution to the solar neutrino problem for ∆m2
21 ' 7.5 × 10−5

eV2 and sin2θ12 ' 0.7, in the presence of large NSIs. We have seen that if we take

the Dark-LMA solution, the effective mass for NH shifts into the intermediate “desert

zone” between NH and IH whereas the predictions for IH remain the same. Therefore,

in an incremental advancement, a new goal for the 0νββ experiments can be to first

explore this region ∼ 0.004 − 0.0075 eV, which is possible even for very low values

of the lightest neutrino mass. In addition to defining a new sensitivity goal for future

0νββ experimental program, this also can provide an independent confirmation/refutal

of the DLMA solution to the solar neutrino problem in presence of NSI.

We have also studied a minimal type-III seesaw model where we have extended the

SM by adding two degenerate SU(2)L triplet fermions with zero hypercharge. In this

case, the lightest active neutrino is massless and the minimality of the model allows us

to express the yukawa couplings (YΣ) in terms of just three free parameters (a complex

number z and the degenerate mass of the triplet fermion, MΣ) using the Casas-Ibarra

parametrization. We have analyzed the implications of naturalness and the stability

of the electroweak vacuum in this context. We have found that the lighter masses

of the fermionic triplets, MΣ ' 400 GeV are disallowed for all values of YΣ by the

constraints coming from µ → e conversion in the atomic nucleus. At the same time,

the heavier triplet masses are disfavored by naturalness depending on the naturalness

condition that we impose. For instance, if we demand the correction to the Higgs mass

to be less than 200 GeV, it will put an upper bound of ∼ 105 GeV on the masses of

the triplets. Also, the maximum value of Tr[Y †ΣYΣ]
1
2 that is allowed in this case by the

compbined bounds from LFV and naturalness is 0.1, corresponding toMΣ ∼ 104 GeV.

Another important result is that in the parameter space which is allowed by both LFV

as well as naturalness constraints, the EW vacuum is stable/metastable depending on

the values of Tr[Y †ΣYΣ]
1
2 and the standard model parameters used. Hence, one does not

really have to worry about the instability of the vacuum in this model.

In the next chapter, we have analyzed the stability of the electroweak vacuum in the

context of TeV scale inverse seesaw and minimal linear seesaw models extended with

a scalar singlet dark matter. We have studied the interplay between the contribution
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of the extra singlet scalar and the singlet fermions to the EW vacuum stability. We

have shown that the coupling constants in these two seemingly disconnected sectors

can be correlated at high energy by the vacuum stability/metastability and perturba-

tivity constraints. In the inverse seesaw scenario, the EW vacuum stability analysis is

done after fitting the model parameters with the neutrino oscillation data and the non-

unitarity constraints on UPMNS . For the minimal linear seesaw model, the Yukawa

matrix Yν can be fully parameterized in terms of the oscillation parameters excepting

an overall coupling constant yν which can be constrained from vacuum stability and

LFV. We have taken the heavy neutrino masses of order up to a few TeV for both the

seesaw models. An extra Z2 symmetry is imposed to ensure that the scalar particle

serves as a viable dark matter candidate. We include all the experimental and theo-

retical bounds coming from the constraints on relic density and dark matter searches

as well as unitarity and perturbativity up to MPlanck. For the masses of new fermions

from 200 GeV to a few TeV, the annihilation cross section to the extra fermions is

very small for dark matter mass O(1 − 2) TeV. We have also checked that the theory

violates perturbativity before MPlanck for DM mass & 2.5 TeV. In addition we find

that the value of the Higgs portal coupling κ (MZ) for which perturbativity is violated

at MPlanck decreases with increase in the value of the Yukawa couplings of the new

fermions. For MDM >> Mt, one can approximately write MDM ∼ 3300 κ GeV. This

implies that with the increasing Yukawa coupling, the mass of dark matter for which

the perturbativity is maintained also decreases. Thus the RGE running induces a corre-

lation between the couplings of the two sectors from the perturbativity constraints. The

presence of the fermionic Yukawa couplings in the context of TeV scale seesaw models

drives the vacuum more towards instability while the singlet scalar tries to arrest this

tendency. Overall, we have found that it is possible to find parameter spaces for which

the electroweak vacuum remains absolutely stable for both inverse and linear seesaw

models in the presence of the extra scalar particle. We have hot an upper bound from

metastability on Tr[Y †ν Yν ] as 0.25 for κ = 0 which increases to 0.4 for κ = 0.6 in inverse

seesaw model. We have also seen that in the absence of the extra scalar, the values of

the Yukawa coupling yν greater than 0.42 are disallowed in the minimal linear seesaw

model. But, in the presence of the extra scalar the values of yν up to ∼ 0.6 are al-
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lowed for dark matter mass ∼ 1 TeV. The correlations between the Yukawa couplings

(Tr[Y †ν Yν ] or yν) and κ are presented in terms of phase diagrams.

In addition to the simple particle extensions, we have also studied a class of gauged

U(1) extensions of the SM, where active light neutrino masses are generated by the

inverse seesaw mechanism. In addition to the three right handed neutrinos needed for

the anomaly cancellation, we have added three extra neutral fermions. We have kept

the third generations of the SU(2)L singlet neutral fermions as odd under a discrete

Z2 symmetry and the lightest of this can be a stable dark matter candidate. Using

the conditions from anomaly cancellation and gauge invariance, we have expressed the

U(1) charges of all the fermions in terms of theU(1) charges of the SM Higgs (xH) and

the new complex scalar (xΦ). We have studied the parameter spaces in various planes

that are consistent with the low energy neutrino data a well as allowed by absolute

stability of the EW vacuum and perturbativity and at the same time giving the correct

relic density. We have seen that these bounds depends strongly on the model under

consideration since the corresponding RGEs depend on the values of xH and xΦ. Also,

comparing the Z ′ production and its decay into the dilepton mode at the LHC with the

current ATLAS results, we have found the bounds on the U(1)′ coupling constant with

respect to the Z ′ mass for different models.

Also, we have found that the extra contributions to the neutrino-less double beta

decay process due to the extra heavy particles in these low scale seesaw models that

we have considered are negligibly small in comparison to the standard light Majorana

neutrino contributions.

As a general conclusion of the thesis, we have studied various theoretical and phe-

nomenological implications of seesaw models with special emphasis on low scale vari-

ants. We also considered the possibilities of inclusion of a viable dark matter candidate

in models that can generate neutrino masses suggested by the oscillation data. We have

stressed on constraining the parameter spaces of these models using the bounds from

vacuum stability, perturbativity and low energy neutrino oscillation data as well as dark

matter and collider constraints in some cases. Analysis of future data from various ex-

periments can further test these models.





Appendix A

Effective Potential

A.1 Calculating the Effective Potential in a Simple φ4

Theory

In this section, we will derive the expression for the for a simple φ4 theory [333, 334].

Consider a scalar field theory defined by the Lagrangian,

L =
1

2
(∂φ)2 − 1

2
µ2φ2 − 1

4!
λφ4. (A.1)

The generating function is defined as,

Z = eiW (J) =

∫
Dφei[S(φ)+Jφ], (A.2)

where for convenience, we define Jφ =

∫
d4xJ(x)φ(x). HereW (J) is the generating

functional and J(x) is the external source. Now, the classical expectation value of the

field φ is given by,

φc ≡
δW

δJ(x)
=

1

Z

∫
Dφei[S(φ)+Jφ]φ(x). (A.3)

The above relation determines φc(x) as a functional of J . Given a functional W of J ,

a Legendre transform can be performed to obtain a functional Γ of φc,

Γ(φc) = W (J)−
∫
d4xJ(x)φc(x). (A.4)

J is to be eliminated in favor of φc on the right-hand side of Eqn.A.4 by solving

Eqn.A.3. We expand Γ(φc) in the form,

Γ(φc) =

∫
d4(x)[−Veff (φc) + Z(φc)(∂φc)

2) + ...]. (A.5)
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Also, the functional derivative of Γ is given by,

δΓ(φc)

δφC(y)
=

∫
d4x

δJ(x)

δφc(y)

δW (J)

δJ(x)
−
∫
d4x

δJ(x)

δφc(y)
φc(x)− J(y) = −J(y). (A.6)

The above relation can be thought of as the dual of δW (J)/δJ(x) = φc(x). If J and

φc are independent of x, using Eqn.A.5, the condition given by Eqn.A.6 becomes,

V ′eff (φc) = J. (A.7)

If there is no external source,

V ′eff (φc) = 0. (A.8)

Thus, the vacuum expectation value of φ in the absence of an external source is ob-

tained by minimizing Veff (φc).

Now, eiW (J) =

∫
Dφei[S(φ)+Jφ] can be evaluated in the steepest descent approxi-

mation, and the steepest descent point, φs(x) is obtained as the solution of,

δ[S(φ) +
∫
d4yJ(y)φ(y)]

δφ(x)
|φs = 0. (A.9)

That is,

∂2φs(x) + V ′[φs(x)] = J(x). (A.10)

Writing the dummy integration variable in EqnA.2 as φ = φs + φ̃ and expanding

to quadratic order in φ̃,

Z = eiW (J) =

∫
Dφei[S(φ)+Jφ]

' ei[S(φs)+Jφs]

∫
Dφ̃ei

∫
d4x 1

2
[(∂φ̃)2−V ′′(φs)φ̃2]

= ei[S(φs)+Jφs]− 1
2

Tr ln[∂2+V ′′(φs)]

, (A.11)

where, φs, being a solution of Eqn.A.10, is a function of J . Thus,

W (J) = [S(φs) + Jφs] +
1

2
Tr ln[∂2 + V ′′(φs)] + ... (A.12)

where ... stands for the higher order terms, and hence using Eqn.A.3,

φc =
δW

δJ
=
δ[S(φs) + Jφs]

δφs

δφs
δJ

+ φs + ... = φs + ... (A.13)

That is, to leading order, φc is equal to φs. Thus from Eqn.A.4,
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Γ(φ) = S(φ) +
i

2
Tr ln[∂2 + V ′′(φ)] + ... (A.14)

Restricting to the case where φ is independent of x and hence V ′′(φ) is a constant

and the operator ∂2 + V ′′(φ) is translational invariant, one gets,

Tr ln [∂2 + V ′′(φ)] =

∫
d4x〈x| ln [∂2 + V ′′(φ)]|x〉

=

∫
d4x

∫
d4k

2π4
〈x|k〉〈k|ln [∂2 + V ′′(φ)]|k〉〈k|x〉

=

∫
d4x

∫
d4k

2π4
ln [−k2 + V ′′(φ)].

(A.15)

Using the above two equations and Eqn.A.5,

Veff (φ) = V (φ)− i

2

∫
d4k

2π4
ln [−k2 + V ′′(φ)]. (A.16)

This is known as the Coleman-Weinberg effective potential [333].

Now, consider adding a fermion field, ψ to the this simple φ4 theory and the corre-

sponding Lagrangian is,

Lψ = ψ̄(iγµ∂
µ −m− fφ)ψ. (A.17)

In the path integral,

Z =

∫
Dφ Dψ̄ Dψei

∫
d4x[ 1

2
(∂φ)2−V (φ)+ψ̄(iγµ∂µ−m−fφ)ψ]. (A.18)

After performing the integration over ψ,

Z =

∫
Dφ Dψ̄ Dψei

∫
d4x[ 1

2
(∂φ)2−V (φ)+Tr ln (iγµ∂µ−m−fφ)]. (A.19)

Repeating the same steps as in Eqn.A.15, we can find the fermion contribution to

the effective potential as,

VF (φ) = i

∫
d4k

(2π)4
Tr ln (iγµ∂

µ −m− fφ). (A.20)

The same procedure can be extended to calculate the contribution to the effective

potential due to the scalars, fermions and gauge bosons in the case of SM.
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A.2 Correction to the SM Effective Potential due to a

Singlet Scalar

For SM extended by a singlet scalar, the new scalar potential is given by,

V (S,H) = −m2H†H + λ(H†H)2 +
κ

2
H†H S2 +

m2
S

2
S2 +

λS
24
S4 . (A.21)

Substituting for the SM scalar doublet H and expanding around the classical value

h(t), the mass term for the scalar S is given by,

M2
S(h) =

∂2V

∂S2
= m2

S + κh2/2. (A.22)

Thus, from Eqn.A.16, the contribution to the effective potential due to S is given

by [289, 290],

V S
eff (h) =− i

2

∫
d4k

2π4
ln [−k2 +M2

S]

=
1

2

∫
d4kE
2π4

ln [k2
E +M2

S]

= −1

4

(M2
S

4π

)2[2
ε
− γE + ln4π +

3

2
− ln M2

S

]
,

(A.23)

where we have used dimensional regularization.

In the MS scheme,

V S
eff (h) =

1

64π2
M4

S(h)

[
ln
M2

S(h)

µ2
− 3

2

]
, (A.24)

where µ is the renormalization scale. This is what we used in Eqn.5.5.

A.3 Neutrino Correction to the SM Effective Potential

In the case of SM extended by type-I seesaw, the fermions come in multiple generations

and the expression for the effective potential given in Eqn.A.20 can be generalized as,

Veff (h) = i

∫
d4k

(2π)4
Tr ln(kµγµδij − |M |ij). (A.25)

Here, i and j are the generation indices.
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The relevant part of the Lagrangian in this case is,

LNR =
1

2
( ν̄L N̄ c

R )

 0 Yν
h√
2

Y T
ν

h√
2

MN


 νcL

NR

 + h.c.

= −1

2
ψ̄cMPRψ −

1

2
ψ̄M†PLψ

. (A.26)

Thus, the mass term relevant for Eqn.A.25 is given by,

Mij =
∂2V

∂ψj∂ψi
= (MPL +M†PR)ij. (A.27)

In the limit h >> MN , the matrix M †M will take the form,

M †M =

(YνY
†
ν PL + Y ∗ν Y

T
ν PR)

h2

2
0

0 (Y †ν YνPR + Y T
ν Y

∗
ν PL)

h2

2

 (A.28)

Now, the trace in Eqn.A.25 can be simplified as,

Tr ln(kµγµδij − |M |ij) =
1

2
[Tr ln(kµγµδij − |M |ij) + Tr ln(kµγµδij − |M |ij)]

=
1

2
[Tr ln(kµγµδij − |M |ij) + Tr lnγ5(kµγµδij − |M |ij)γ5]

=
1

2
[Tr ln(kµγµδij − |M |ij) + Tr ln(−kµγµδij − |M |ij)]

=
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2
Tr ln(−k2δii + (M †M)ii)

(A.29)

Thus, after using dimensional regularization, the fermionic contribution to the ef-

fective potential in the MS scheme becomes,

Veff (h) = −(M †M)2
ii

16π2

[
ln
((M †M)ii

µ2

)
− 3

2

]
. (A.30)

Here, we are working in a basis in whichM †M is diagonal. In the case of neutrinos,

using Eqn.A.28 and noting that there will be an additional factor of half since both the

neutrinos have only one handedness each, the effective potential becomes [145, 146],

V ν
1 (h) = −

(1
2
h2(Y †ν Yν)ii)

2

32π2

[
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(1
2
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µ2(t)
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2

]
−

(1
2
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†
ν )jj)

2

32π2

[
ln

(1
2
h2(YνY

†
ν )jj)

µ2(t)
−3

2

]
.

(A.31)
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In the case of type-III seesaw model, one can get the expression for the effective

potential in the same way as outlined above and the final answer will differ only by a

multiplicative factor of 3, as can be seen in Eqn.4.10.



Appendix B

Renormalization Group Equations,

Effective Quartic Coupling and

Matching Conditions at Mt

B.1 Standard Model RGEs

Beta function of the standard model coupling constants and the mass term up to three

loop are presented here for completeness [139, 252–255, 292],
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B.1.1 Matching Conditions at Mt

To calculate the couplings at the scaleMt, we have included the QCD corrections up to

three loops [248], electroweak corrections up to one-loop [249, 250] and the O(ααs)

corrections to the matching of top Yukawa and top pole mass [246, 251].
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(B.7)
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B.1.2 Effective Higgs quartic coupling for SM

The Higgs effective quartic coupling including the one- and two-loop radiative correc-

tions is given as[139],
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eff (φ) = e4Γ(φ)[λ(µ = φ) + λ
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eff (µ = φ)]. (B.12)

Here,
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where,
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Γ(φ) =

∫ φ

Mt

γ(µ) d lnµ .

Here, γ(µ) is the anomalous dimensions of the Higgs field and is given as,
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B.2 One-loop RGEs in General U(1) Extended Models

with Inverse Seesaw Mechanism

Here, we give the one-loop RGEs for the SU(3)c × SU(2)L × U(1)Y × U(1)′ model

that we have considered in chapter 6 and these have been generated using SARAH

[295].
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We consider singlet extensions of the standard model, both in the fermion and in the scalar sector, to
account for the generation of neutrino mass at the TeV scale and the existence of dark matter, respectively.
For the neutrino sector we consider models with extra singlet fermions that can generate neutrino mass via
the so-called inverse or linear seesaw mechanism, whereas a singlet scalar is introduced as the candidate for
dark matter. We show that although these two sectors are disconnected at low energy, the coupling
constants of both the sectors get correlated at the high-energy scale by the constraints coming from the
perturbativity and stability/metastability of the electroweak vacuum. The singlet fermions try to destabilize
the electroweak vacuum while the singlet scalar aids the stability. As an upshot, the electroweak vacuum
may attain absolute stability even up to the Planck scale for suitable values of the parameters. We delineate
the parameter space for the singlet fermion and the scalar couplings for which the electroweak vacuum
remains stable/metastable and at the same time gives the correct relic density and neutrino masses and
mixing angles as observed.

DOI: 10.1103/PhysRevD.96.055020

I. INTRODUCTION

The Large Hadron Collider (LHC) experiment has
completed the hunt for the last missing piece of the
Standard Model (SM) with the discovery of the Higgs
boson [1,2]. The Higgs boson holds a special status in the
SM as it gives mass to all the other particles, with the
exception of the neutrino. However, observation of neutrino
oscillation from solar, atmospheric, reactor, and accelerator
experiments necessitates the extension of the SM to
incorporate small neutrino masses. The seesaw mechanism
is considered to be the most elegant way to generate small
neutrino masses. The origin of the seesaw is from the
dimension-five effective operator κLLHH, proposed by
Weinberg in [3]. Here, L and H are the SM lepton and
Higgs fields, respectively. κ is a coupling constant with
inverse mass dimension. This term violates the lepton
number by two units and implies that neutrinos are
Majorana particles. The generation of the effective dimen-
sion-five operator needs extension of the SM by new
particles. The most minimal scenario in this respect is
the canonical type-1 seesaw model, in which the SM is
extended by heavy right-handed Majorana neutrinos for
ultraviolet completion of the theory [4–7]. The essence of
the seesaw mechanism lies in the fact that the lepton
number is explicitly violated at a high-energy scale that

defines the scale of the new physics. However, to get an
observed neutrino mass of the order of mν ∼ 0.01 eV one
needs the Majorana neutrinos to be very heavy
(∼1015 GeV), close to the scale of grand unification.
However, since such high scales are not accessible to
colliders, in the context of the LHC, there have been a
proliferation of studies involving TeV scale seesaw models.
For recent reviews see, for instance, [8,9]. For an ordinary
seesaw mechanism, lowering the scale of new physics to
TeV requires small Yukawa couplings Oð10−6Þ,1 and for
such values, the light-heavy mixing is small and no
interesting collider signals can be studied. One of the ways
to reduce the scale of new physics to TeV is to decouple the
new physics scale from the scale of lepton number
violation. The smallness of the neutrino mass can then
be attributed to small lepton number violating terms. A tiny
value of the latter is deemed natural, since when this
parameter is zero, the global U(1) lepton number symmetry
is reinstated and neutrinos are massless. One of the most
popular TeV scale seesaw models based on the above idea
is the inverse seesaw model [13]. This contains additional
singlet states (νs), along with the right-handed neutrinos
(NR), having opposite lepton numbers. The lepton number
is broken softly by introducing a small Majorana mass term
for the singlets. This parameter is responsible for the
smallness of the neutrino mass, and one does not require
small Yukawa couplings to get observed neutrino masses;
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1Unless very special textures leading to cancellations are
invoked [10–12].
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at the same time the scale of new physics can be at TeV.
Another possibility of a TeV scale singlet seesaw model is
the linear seesawmodel [14–16]. In this case, a small lepton
number violating term is generated by the coupling
between the left-handed neutrinos and the singlet states.
Thus, the inverse seesaw and the linear seesaw differ from
each other in the way lepton number violation is introduced
in the model, as we will see in the next section. Also, the
particle content of the minimal models that agree with the
oscillation data for these two are different. For the linear
seesaw, we need only one NR and one νs [17–19], whereas
in the inverse seesaw case, we need twoNR and two νs [20].
Note that the minimal linear seesaw model is the simplest
reconstructable TeV scale seesawmodel having a minimum
number of independent parameters.
Apart from the neutrino mass, another issue that requires

extension of the SM is the existence of dark matter (DM).
Measurements by Planck and WMAP demonstrate that
nearly 85% of the Universe’s matter density is dark [21].
Among the various models of dark matter that are proposed
in the literature, the most minimal renormalizable extension
of the SM is the so-called Higgs portal models [22–24].
These models include a scalar singlet that couples only to
the Higgs. An additional Z2 symmetry is imposed to
prevent the decay of the DM and safeguard its stability.
The coupling of the singlet with the Higgs provides the
only portal for its interaction with the SM. Nevertheless,
there can be testable consequences of this scenario that can
put constraints on its coupling and mass. These include
constraints from searches of invisible decay of Higgs at the
LHC [25–27], direct and indirect detections of DM as well
as compliance with the observed relic density [28–33].
Implications for the LHC [34–38] and ILC [39] have also
been studied. Combined constraints from all these have
been discussed in [40–44] and most recently in [45].
The singlet Higgs can also affect the stability of the

electroweak (EW) vacuum [46–51]. It is well known that
the electroweak vacuum in the standard model is metastable
and the Higgs quartic coupling λ is pulled down to negative
value by renormalization group running, at an energy of
about 109–1010 GeV, depending on the value of αs and the
top quark mass mt, as the dominant contribution comes
from the top-Yukawa coupling, yt [52,53]. This indicates
the existence of another low lying vacuum. If the quartic
coupling λðμÞ becomes negative at large renormalization
scale μ, it implies that in the early universe the Higgs
potential would be unbounded from below and the vacuum
would be unstable in that era. But it does not pose any
threat to the standard model as it has been shown that the
decay time is greater than the age of the universe [54]. In
the context of the standard model extended with neutrino
masses via the canonical type-1 seesaw mechanism, the
Yukawa coupling of the RH neutrinos also contributes to
the RG running, just as yt, and thereby we expect it to affect
the electroweak vacuum stability negatively. But this effect

is not so much because, as discussed before, in order to get
the light neutrino masses, either one has to resort to
extremely small Yukawa couplings or one needs a very
large Majorana mass scale ð≈1015 GeVÞ and the contri-
bution to the running of λ is much smaller in both cases
compared to that from yt. However, for the TeV scale
seesaw models with sizable Yukawa couplings, the stability
of the vacuum can be altered considerably by the con-
tribution from the neutrinos [18,55–63]. On the other hand,
the singlet scalar can help in stabilizing the electroweak
vacuum by adding a positive contribution that prevents
the Higgs quartic coupling from becoming negative. The
stability of the electroweak vacuum in the context of the
singlet scalar extended SM with an unbroken Z2 symmetry
has been explored in [46,48–50].
In this paper, we extend the SM by adding extra fermion

as well as scalar singlets to explain the origin of neutrino
mass as well as the existence of dark matter.2 The candidate
for dark matter is a real singlet scalar added to SM with an
additional Z2 symmetry that ensures its stability. For
generation of neutrino mass at the TeV scale we consider
two models. The first one is the general inverse seesaw
model with three right-handed neutrinos and three addi-
tional singlets. The second one is the minimal linear seesaw
model. These two sectors are disconnected at low energy.
However, the consideration of the stability of the electro-
weak vacuum and perturbativity induces a correlation
between the two sectors. We study the stability of the
electroweak vacuum in this model and explore the effect of
the two opposing trends—singlet fermions trying to desta-
bilize the vacuum further and singlet Higgs trying to
oppose this. We find the parameter space, which is
consistent with the constraints of relic density and neutrino
oscillation data and at the same time can cure the instability
of the electroweak vacuum. We present some benchmark
points for which the electroweak vacuum is stable up to
Planck’s scale. In addition to absolute stability, we also
explore the parameter region that gives metastability in the
context of this model. We investigate the combined effect
of these two sectors and obtain the allowed parameter space
consistent with observations and vacuum stability/metasta-
bility and perturbativity.
The plan of the paper is as follows. In the next section we

discuss the TeV scale singlet seesaw models, in particular,
the inverse seesaw and linear seesaw mechanism. We also
outline the diagonalization procedure to give the low-
energy neutrino mass matrix. In Sec. III we discuss the
potential in the presence of a singlet scalar. Section IV
presents the effective Higgs potential and the renormaliza-
tion group (RG) evolution of the different couplings. In
particular, we include the contribution from both fermion

2For other studies including neutrino mass, dark matter, and/or
vacuum stability analysis using scalar singlets see, for instance,
[64–67].
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and scalar singlets in the effective potential. In Sec. V we
discuss the existing constraints on the fermion and the
scalar sector couplings from experimental observations and
also from perturbativity. We present the results in Sec. VI
and the conclusions in Sec. VII.

II. TEV SCALE SINGLET SEESAW MODELS

The most general low scale singlet seesaw scenario
consists of adding m right-handed neutrinos NR and n
gauge-singlet sterile neutrinos νs to the standard model.
The lepton number for νs is chosen to be −1 and that forNR
is þ1. For simplicity, we will work in a basis where the
charged leptons are identified with their mass eigenstates.
We can write the most general Yukawa part of the
Lagrangian responsible for neutrino masses, before sponta-
neous symmetry breaking as

−Lν ¼ l̄LYνHcNR þ l̄LYsHcνs þ Nc
RMRνs þ

1

2
νcsMμνs

þ 1

2
Nc

RMNNR þ H:c:; ð2:1Þ

where lL and H are the lepton and the Higgs doublets,
respectively; Yν and Ys are the Yukawa coupling matrices;
MN and Mμ are the symmetric Majorana mass matrices for
NR and νs, respectively; and Yν, Ys, MN , and Mμ are of
dimensions 3 ×m, 3 × n, m ×m, and n × n, respectively.
Now, after symmetry breaking, the above equation gives

−Lmass ¼ ν̄LMDNR þ ν̄LMsνs þ Nc
RMRνs þ

1

2
νcsMμνs

þ 1

2
Nc

RMNNR þ H:c:; ð2:2Þ

whereMD ¼ YνhHi andMs ¼ YshHi. The neutral fermion
mass matrix M can be defined as

−Lmass ¼
1

2
ðν̄LNc

R ν
c
sÞ

0
B@

0 MD Ms

MT
D MN MR

MT
s MT

R Mμ

1
CA
0
B@

νcL
NR

νs

1
CAþ H:c:

ð2:3Þ

From this equation, we can get the variants of the singlet
seesaw scenarios by setting certain terms to be zero.

A. Inverse seesaw model

In the inverse seesaw model (ISM),Ms andMN are taken
to be zero [13]. The mass scales of the three submatrices of
M may naturally have a hierarchy MR ≫ MD ≫ Mμ,
because the mass term MR is not subject to the SUð2ÞL
symmetry breaking and the mass term Mμ violates the
lepton number. Thus we can take Mμ to be naturally small
by ’t Hooft’s naturalness criteria since the expected degree

of lepton number violation in nature is very small. In this
paper, we consider a (3þ 3þ 3) scenario for the inverse
seesaw model for generality, and hence all the three
submatrices MR, MD, and Mμ are 3 × 3 matrices. The
effective light neutrino mass matrix in the seesaw approxi-
mation is given by

Mlight ¼ MDðMT
RÞ−1MμM−1

R MT
D; ð2:4Þ

and in the heavy sector, we will have three pairs of
degenerate pseudo-Dirac neutrinos of masses of the order
∼MR �Mμ. Note that the smallness of Mlight is naturally
attributed to the smallness of bothMμ and

MD
MR

. For instance,

Mlight ∼Oð0.1Þ eV can easily be achieved for MD
MR

∼ 10−2

and Mμ ∼Oð1Þ keV. Thus, the seesaw scale can be
lowered considerably assuming Yν ∼Oð0.1Þ, such that
MD ∼ 10 GeV and MR ∼ 1 TeV.

B. Minimal linear seesaw model

In Eq. (2.3), if we putMN andMμ to be zero and choose
the hierarchy MR ≫ MD ≫ Ms, we will get the linear
seesaw model [14–16]. In this paper, we consider the
minimal linear seesaw model (MLSM) in which we add
only one right-handed neutrino NR and one gauge-singlet
sterile neutrino νs [17–19]. In such a case, the lightest
neutrino mass is zero. The source of lepton number
violation is through the coupling Ys, which is assumed
to be very small. Here, Yν and Ys are the (3 × 1) Yukawa
coupling matrices, and the overall neutrino mass matrix is a
symmetric matrix of dimensions 5 × 5. The light neutrino
mass matrix to the leading order is given by

Mlight ¼ MDðMT
RÞ−1MT

S þMSðMT
RÞ−1MT

D: ð2:5Þ

Assuming MD ∼ 100 GeV and MR ∼ 1 TeV, one needs
Ys ∼ 10−11 to get light neutrino mass mν ∼ 0.1 eV. The
heavy neutrino sector will consist of a pair of degenerate
neutrinos.

C. Diagonalization of the seesaw matrix
and nonunitary PMNS matrix

The diagonalization procedure is the same for both cases.
Here we illustrate it for the inverse seesaw case. The 9 × 9
inverse seesaw mass matrix can be rewritten as

Mν ¼
�

0 M̂D

M̂T
D M̂R

�
; ð2:6Þ

where M̂D ¼ ðMD 0 Þ and M̂R ¼ ð 0
MT

R

MR
Mμ
Þ. We can

diagonalize the neutrino mass matrix using a 9 × 9 unitary
matrix [68,69],

UT
0MνU ¼ Mdiag

ν ; ð2:7Þ
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where Mdiag
ν ¼ diagðm1; m2; m3;M1;…;M6Þ with mass

eigenvalues miði ¼ 1; 2; 3Þ and Mjðj ¼ 1;…; 6Þ for three
light neutrinos and six heavy neutrinos, respectively.
Following the two-step diagonalization procedure, U0

could be expressed as [by keeping terms up to order
OðM̂2

D=M̂
2
RÞ] [69]

U0 ¼ WT ¼
�
UL V

S UH

�

¼
� ð1 − 1

2
ϵÞUν M̂�

DðM̂−1
R Þ�UR

−M̂−1
R M̂T

DUν ð1 − 1
2
ϵ0ÞUR

�
: ð2:8Þ

Here, UL, V, S, and UH are 3 × 3, 3 × 6, 6 × 3, and 6 × 6
matrices, respectively, which are not unitary. W is the
matrix that brings the full 9 × 9 neutrino matrix, in the
block diagonal form,

WT

�
0 M̂D

M̂T
D M̂R

�
W ¼

�
Mlight 0

0 Mheavy

�
; ð2:9Þ

T ¼ diagðUν; URÞ diagonalizes the mass matrices in the
light and heavy sectors appearing in the upper and lower
blocks of the block diagonal matrix, respectively. In the
seesaw limit,Mlight is given by Eq. (2.4) andMheavy ¼ M̂R.
In Eq. (2.8), UL corresponds to the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix that acquires a nonuni-
tary correction ð1 − ϵ

2
Þ. The parameters ϵ and ϵ0 characterize

the nonunitarity and are given by

ϵ ¼ M̂�
DM̂

−1�
R M̂−1

R M̂T
D; ð2:10Þ

ϵ0 ¼ M̂−1
R M̂T

DM̂
�
DM̂

−1�
R : ð2:11Þ

III. SCALAR POTENTIAL OF THE MODEL

As mentioned earlier, in addition to the extra fermions,
we also add an extra real scalar singlet S to the standard
model. The potential for the scalar sector with an extra Z2

symmetry under S → −S is given by

VðS;HÞ ¼ −m2H†H þ λðH†HÞ2 þ κ

2
H†HS2

þm2
S

2
S2 þ λS

24
S4: ð3:1Þ

In this model, we take the vacuum expectation value
(VEV) of S as 0, so that Z2 symmetry is not broken. The
standard model scalar doublet H could be written as

H ¼ 1ffiffiffi
2

p
�

Gþ

vþ hþ iG0

�
; ð3:2Þ

where the VEV v ¼ 246 GeV.

Thus, the scalar sector consists of two particles h and S,
where h is the standard model Higgs boson with a mass of
∼126 GeV, and the mass of the extra scalar is given by

M2
DM ¼ mS

2 þ κ

2
v2: ð3:3Þ

As the Z2 symmetry is unbroken up to the Planck scale
Mpl ¼ 1.22 × 1019 GeV, the potential can have minima
only along the Higgs field direction, and also this symmetry
prevents the extra scalar from acquiring a vacuum expect-
ation value. This extra scalar field does not mix with the SM
Higgs. Also an odd number of this extra scalar does not
couple to the standard model particles and the new
fermions. As a result, this scalar is stable and serves as
a viable weakly interacting massive dark matter particle.
The scalar field S can annihilate to the SM particles as well
as to the new fermions only via the Higgs exchange. So it is
called a Higgs portal dark matter.

IV. EFFECTIVE HIGGS POTENTIAL AND RG
EVOLUTION OF THE COUPLINGS

The effective Higgs potential and the renormalization
group equations are the same for both the linear and the
inverse seesaw models. The two models differ only by the
way in which a small lepton number violation is introduced
in them, whose effect could be neglected in the RG
evolution. So, effectively, the renormalization group equa-
tions (RGEs) are the same in both the models, the only
difference being the dimensions of the Yukawa coupling
matrices and the number of heavy neutrinos present in
the model.

A. Effective Higgs potential

The tree level Higgs potential in the standard model is
given by

VðHÞ ¼ −m2H†H þ λðH†HÞ2: ð4:1Þ

This will get corrections from higher order loop diagrams
of SM particles. In the presence of the extra singlets, the
effective potential will get additional contributions from the
extra scalar and the fermions. Thus, we have the one-loop
effective Higgs potential [V1ðhÞ] in our model as

VSMþSþν
1 ðhÞ ¼ VSM

1 ðhÞ þ VS
1ðhÞ þ Vν

1ðhÞ; ð4:2Þ

where the one-loop contribution to the effective potential
due to the standard model particles is given by [70,71]

VSM
1 ðhÞ ¼

X
i

ni
64π2

M4
i ðhÞ

�
ln
M2

i ðhÞ
μ2ðtÞ − ci

�
: ð4:3Þ

Here, the index i is summed over all SM particles and
cH;G;f ¼ 3=2 and cW;Z ¼ 5=6, where H, G, f, W, and Z
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stand for the Higgs boson, the Goldstone boson,
fermions, and W and Z bosons, respectively; MiðhÞ can
be expressed as

M2
i ðhÞ ¼ κiðtÞh2ðtÞ − κ0iðtÞ:

The values of ni, κi, and κ0i are given in Eq. (4) in [70].
Here h ¼ hðtÞ denotes the classical value of the Higgs field,
t being the dimensionless parameter related to the running
energy scale μ as t ¼ logðμ=MZÞ.
The one-loop contribution due to the extra scalar is given

by [72,73]

VS
1ðhÞ ¼

1

64π2
M4

SðhÞ
�
ln
M2

SðhÞ
μ2ðtÞ −

3

2

�
; ð4:4Þ

where

M2
SðhÞ ¼ m2

SðtÞ þ κðtÞh2ðtÞ=2:

The contribution of the extra neutrino Yukawa coupling
to the one-loop effective potential can be written as [18,74]

Vν
1ðhÞ ¼ −

ððM0†M0ÞiiÞ2
32π2

�
ln
ðM0†M0Þii
μ2ðtÞ −

3

2

�

−
ððM0M0†ÞjjÞ2

32π2

�
ln
ðM0M0†Þjj

μ2ðtÞ −
3

2

�
: ð4:5Þ

HereM0 ¼ Yνffiffi
2

p h for inverse seesaw andM0 ¼ ðYνffiffi
2

p h Ysffiffi
2

p hÞ
for linear seesaw. Also, i and j run over three light
neutrinos and m heavy neutrinos, respectively. In our
analysis, we have taken two-loop (one-loop) contributions
to the effective potential from the standard model particles
(extra singlet scalar and fermions). For hðtÞ ≫ v, the
effective potential could be approximated as

VSMþSþν
eff ¼ λeffðhÞ

h4

4
ð4:6Þ

with

λeffðhÞ ¼ λSMeff ðhÞ þ λSeffðhÞ þ λνeffðhÞ; ð4:7Þ

where the standard model contribution is

λSMeff ðhÞ ¼ e4ΓðhÞ½λðμ ¼ hÞ þ λð1Þeff ðμ ¼ hÞ þ λð2Þeff ðμ ¼ hÞ�:
ð4:8Þ

λð1Þeff and λð2Þeff are the one- and two-loop contributions,
respectively, and their expressions can be found in [53].
The contributions due to the extra scalar and the neutrinos
are given by

λSeffðhÞ ¼ e4ΓðhÞ
�

κ2

64π2

�
ln
κ

2
−
3

2

��
ð4:9Þ

and

λνeffðhÞ ¼ −
e4ΓðhÞ

32π2

�
ððY 0†

νY 0
νÞiiÞ2

�
ln
ðY 0†

νY 0
νÞii

2
−
3

2

�

þ ððY 0
νY 0†

νÞjjÞ2
�
ln
ðY 0

νY 0†
νÞjj

2
−
3

2

��
; ð4:10Þ

where

ΓðhÞ ¼
Z

h

Mt

γðμÞd ln μ: ð4:11Þ

Here γðμÞ is the anomalous dimension of the Higgs field,
and in Eq. (4.10), Y 0

ν ¼ Yν for the inverse seesaw and
Y 0

ν ¼ ðYνYsÞ for the linear seesaw. The contribution of the
singlet scalar to the anomalous dimension is zero [46], and
the contribution from the right-handed neutrinos at one
loop is given in Eq. (4.19).

B. Renormalization group evolution
of the couplings from Mt to Mplanck

We know that the couplings in a quantum field theory get
corrections from higher-order loop diagrams and as a result,
the couplings run with the renormalization scale. For a
coupling C, we have the RGE,

μ
dC
dμ

¼
X
i

βðiÞC
ð16π2Þi ; ð4:12Þ

where i stands for the ith loop.
We have evaluated the SM coupling constants at the top

quark mass scale and then run them using the RGEs from
mt to Mplanck. For this, we have taken into account the
various threshold corrections at Mt [75–77]. All couplings
are expressed in terms of the pole masses [78]. We have
used one-loop RGEs to calculate g1ðMtÞ and g2ðMtÞ.3 For
g3ðMtÞ, we use the three-loop RGE running of αs where we
have neglected the sixth quark contribution and the effect of
the top quark has been included using an effective field
theory approach. We have also taken the leading term in the
four-loop RGE for αs. The mismatch between the top pole
mass and the MS renormalized coupling has been included.
This is given by

ytðMtÞ ¼
ffiffiffi
2

p
Mt

v
ð1þ δtðMtÞÞ; ð4:13Þ

where δtðMtÞ is the matching correction for yt at the top
pole mass, and similarly for λðMtÞ we have

3Our results are not changed even if we use the two-loop RGEs
for g1 and g2.
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λðMtÞ ¼
M2

H

2v2
ð1þ δHðMtÞÞ: ð4:14Þ

We have included the QCD corrections up to three loops
[76], electroweak corrections up to one loop [79,80], and
the OðααsÞ corrections to the matching of the top Yukawa
and the top pole mass [78,81]. Using these corrections, we
have reproduced the couplings at Mt as in Refs. [49,53].
Now to evaluate the couplings from Mt to Mplanck, we

have used three-loop RGEs for standard model couplings
[53,82–85], two-loop RGEs for the extra scalar couplings
[50,64,86], and one-loop RGEs for the extra neutrino
Yukawa couplings [87].4 The one-loop RGEs for the scalar
quartic couplings and the neutrino Yukawa coupling in our
model are given as

βλ ¼
27

100
g41 þ

9

10
g21g

2
2 þ

9

4
g42 −

9

5
g21λ − 9g22λ

þ 12λ2 þ κ2 þ 4Tλ − 4Y; ð4:15Þ

βκ ¼ −
9

10
g21κ −

9

2
g22κ þ 6λκ þ λSκ þ 4κ2 þ 2Tκ; ð4:16Þ

βλS ¼ 3λ2S þ 12κ2; ð4:17Þ

βYν
¼ Yν

�
3

2
Y†
νYν −

3

2
Y†
l Yl þ T −

9

20
g21 −

9

4
g22

�
; ð4:18Þ

where

T ¼ Trð3Y†
uYu þ 3Y†

dYd þ Y†
l Yl þ Y†

νYνÞ;
Y ¼ Trð3ðY†

uYuÞ2 þ 3ðY†
dYdÞ2 þ ðY†

l YlÞ2 þ ðY†
νYνÞ2Þ:

ð4:19Þ
The effect of β functions of new particles enters into the

SM RGEs at their effective masses.

V. EXISTING BOUNDS ON THE FERMIONIC
AND THE SCALAR SECTORS

For the vacuum stability analysis, we need to find the
Yukawa and scalar couplings that satisfy the existing
experimental and theoretical constraints. These bounds
are discussed below.

A. Bounds on the fermionic sector

(i) Cosmological constraint on the sum of light neu-
trino masses: The Planck 2015 results put an upper
limit on the sum of active light neutrino masses to
be [21]

Σ ¼ m1 þm2 þm3 < 0.23 eV: ð5:1Þ

(ii) Constraints from oscillation data: We use the stan-
dard parametrization of the PMNS matrix in which

Uν ¼

0
B@

c12c13 s12c13 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

1
CAP; ð5:2Þ

where cij ¼ cos θij, sij ¼ sin θij, and the phase matrix P ¼ diagð1; eiα2 ; eiðα3þδÞÞ contains the Majorana phases. The
global analysis [89,90] of neutrino oscillation measurements with three light active neutrinos give the oscillation
parameters in their 3σ range, for both normal hierarchy (NH) for which m3 > m2 > m1 and inverted hierarchy (IH)
for which m2 > m1 > m3, as follows:
(a) Mass squared differences

Δm2
21=10

−5 eV2 ¼ ð7.03 → 8.09Þ;
�Δm2

31=10
−3 eV2 ¼ ð2.407 → 2.643Þ NH

Δm2
31=10

−3 eV2 ¼ ð−2.635 → −2.399Þ IH
: ð5:3Þ

(b) Mixing angles

sin2 θ12 ¼ ð0.271 → 0.345Þ; ð5:4Þ

sin2θ23 ¼
� ð0.385 → 0.635Þ
ð0.393 → 0.640Þ ; sin2θ13 ¼

� ð0.01934 → 0.02392Þ NH

ð0.01953 → 0.02408Þ IH
: ð5:5Þ

4Our results do not change with the inclusion of two-loop RGEs of neutrino Yukawa couplings, which have been checked using
SARAH [88].
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(iii) Constraints on the nonunitarity ofUPMNS ¼ UL: The
analysis of electroweak precision observables along
with various other low-energy precision observables
put boundon thenonunitarityof light neutrinomixing
matrix UL [91]. At 90% confidence level,

jULU
†
Lj

¼

0
B@
0.9979−0.9998 < 10−5 < 0.0021

< 10−5 0.9996–1.0 < 0.0008

< 0.0021 < 0.0008 0.9947–1.0

1
CA:

ð5:6Þ
This also takes care of the constraints coming from
various charged lepton flavor violating (LFV) decays
such as li → ljγ, among which μ → eγ is the one that
gives the most severe bound [92],

Brðμ → eγÞ < 4.2 × 10−13: ð5:7Þ
(iv) Bounds on the heavy neutrino masses: The search

for heavy singlet neutrinos at LEP by the L3
Collaboration in the decay channel N → eW
showed no evidence of a singlet neutrino in the
mass range between 80 GeVðjVαij2 ≤ 2 × 10−5Þ
and 205 GeVðjVαij2 ≤ 1Þ [93], Vαi being the mixing
matrix elements between the heavy and light neu-
trinos. Heavy singlet neutrinos in the mass range
from 3 GeV up to the Z-boson mass ðmZÞ has also
been excluded by LEP experiments from Z-boson
decay up to jVαij2 ≈ 10−5 [94–96]. These constraints
are taken care of in our analysis by keeping the mass
of the lightest heavy neutrino to be greater than or
equal to 200 GeV.

B. Bounds on the scalar sector

(i) Constraints on scalar potential couplings from per-
turbative unitarity: Constraints on the scalar sector
couplings in the singlet scalar model from perturba-
tive unitarity has been discussed in [97]. At very high
field values, one can obtain the scattering matrix a0
for the J ¼ 0 partial wave [98] by considering the
various scalar-scalar scattering amplitudes. Using the
equivalence theorem [99–104], we have reproduced
the perturbative unitarity bounds on the eigenvalues
of the scattering matrix for this model. These are
given by [97]

jκðΛÞj ≤ 8π and���6λþ λS �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2 þ ð6λ − λSÞ2

q ��� ≤ 16π: ð5:8Þ

(ii) Dark matter constraints: The parameter space for
the scalar sector should also satisfy the Planck
and WMAP imposed dark matter relic density
constraint [21],

ΩDMh2 ¼ 0.1198� 0.0026: ð5:9Þ

In addition, the invisible Higgs decay width and
the recent direct detection experiments, in particular,
the LUX-2016 [105] data and the indirect Fermi-
LAT data [106], restrict the arbitrary Higgs portal
coupling and the dark matter mass [45,49].

Since the extra fermions are heavy (≳200 GeV),
for low dark matter mass (around 60 GeV), the
dominant (more than 75%) contribution to the relic
density is from the SS → bb̄ channel. The channels
SS → V; V� also contribute to the relic density
where V stands for the vector bosons W and Z,
and V� indicates the virtual particle that can decay
into the SM fermions. In this mass region, the value
of the Higgs portal coupling κ is Oð10−2Þ to get the
relic density in the right ballpark and simultaneously
satisfy the other experimental bounds. However, this
region is not of much interest to us since such a small
coupling will not contribute much to the running of λ
and hence will not affect the stability of the EW
vacuum much. The LUX-2016 data [105] have ruled
out the dark matter mass region ∼70–500 GeV.

If we consider MDM ≫ Mt, the annihilation cross
section is proportional to κ2

M2
DM
, which ensures that the

relic density band in the κ −MDM [49] plane is a
straight line. In this region, one can get the right relic
density if the ratio of dark matter mass to the Higgs
portal coupling κ is ∼3300 GeV. In this case, the
dominant contributions to the dark matter annihila-
tion channel are SS → hh; tt̄, VV.

We use FeynRules [107] along with micrOMEGAs

[108,109] to compute the relic density of the scalar
DM. We have checked that the contribution from
annihilation into extra fermions is very small.
However, this could be significant for dark matter
mass ≳2.5 TeV, provided the Yukawa couplings are
large enough. But, in the stability analysis discussed
in Sec. VI A 2, we will see that the dark matter mass
≳2.5 TeV requires the value of κ ≳ 0.65, which
violates the perturbativity bounds before the Planck
scale. Thus, we consider the dark matter mass in the
range ∼500 GeV–2.5 TeV with κ in the range
∼0.15–0.65. It is to be noted that in the presence
of the singlet fermions the value of κðMZÞ and hence
MDM for which the perturbativity is not obeyed will
also depend upon the value of Tr ½Y†

νYν�. This will be
discussed in the next section.

VI. RESULTS

In this section, we present our results of the stability
analysis of the electroweak vacuum in the two seesaw
scenarios. We confine ourselves to the normal hierarchy.
The results for the inverted hierarchy are not expected to be
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very different [18]. We have used the package SARAH [88]
to do the RG analysis in our work.

A. Inverse seesaw model

For the inverse seesaw model, the input parameters are
the entries of the matrices Yν, MS, and Mμ. Here Yν is a
complex 3 × 3 matrix.MS is a real 3 × 3 matrix, andMμ is
a 3 × 3 diagonal matrix with real entries. We vary the
entries of various mass matrices in the range 10−2 < Mμ <
1 keV and 0 < MR < 5 × 104 GeV. This implies a heavy
neutrino mass of maximum up to a few TeV. With these
input parameters, we search for parameter sets consistent
with the low-energy data using the downhill simplex
method [110]. We present in Table I, some representative
outputs consistent with data for three benchmark points. In
this table, Tr½YνY

†
ν� is an input. As a consistency check, we

also give the value of Brðμ → eγÞ.

1. Vacuum stability

In Fig. 1, we display the running of the couplings for
various benchmark points in the ISM. In Fig. 1(a), we have
shown the variation in the running of the Higgs quartic
coupling λ for different values of Tr ½Y†

νYν� (0, 0.15, and
0.30) for a fixed value of the Higgs portal coupling
κ ¼ 0.304. We have chosen the DM mass MDM ¼
1000 GeV to get the relic density in the right ballpark.
As λS does not alter the relic density, we have fixed its value
at 0.1 for all the plots in this paper. We can see that for Tr
½Y†

νYν� ¼ 0; i.e., without the right-handed neutrinos, the
EW vacuum remains absolutely stable up to the Planck
scale (green line) and for large values of Tr ½Y†

νYν�, the EW
vacuum goes toward the instability [Higgs quartic coupling
becomes negative around ΛI ∼ 1010 GeV (red line) and
ΛI ∼ 108 GeV (black line)] region.
In Fig. 1(b), we plot the running of λ for a fixed value of

Tr ½Y†
νYν� ¼ 0.1 and different sets of κ and MDM. It is seen

that for a larger value of κ ¼ 0.45 withMDM ¼ 1500 GeV,

the EW vacuum remains stable up to the Planck scale
(purple line). For κ ¼ 0.304 with MDM ¼ 1000 GeV, the
quartic coupling λ (red line) becomes negative around
ΛI ∼ 1011 GeV, and in the absence of the singlet scalar
field, i.e., for κ ¼ 0, λS ¼ 0 (blue line), λ becomes negative
around ΛI ∼ 109 GeV and the vacuum goes to the meta-
stability region.
In Figs. (1c)and (1d), we have shown the running of all

three scalar quartic couplings, λ, κ, and λS and Tr½Y†
νYν� for

ðMDM; κÞ ¼ ð1000 GeV; 0.304Þ and (1500 GeV, 0.456),
respectively. It can be seen that the values of λs and κ
increase considerably with the energy scale and can reach
the perturbativity bound at the Planck scale depending
upon the initial values of κ and λS atMZ. Here for λS ¼ 0.1,
the maximum allowed value of κ will be 0.58 from
perturbativity. The value of Tr½Y†

νYν� increases only slightly
with the energy scale, and the value of λS increases faster
for a larger value of κ.

2. Tunneling probability and phase diagrams

The present central values of the SM parameters,
especially the top Yukawa coupling yt and strong coupling
constant αs with Higgs mass Mh ≈ 125.7 GeV, suggest
that the beta function of the Higgs quartic coupling
βλð≡dVðhÞ=dhÞ goes from negative to positive around
1015 GeV [52,53]. This implies that there is an extra deeper
minima situated at that scale. So there is a finite probability
that the electroweak vacuum might tunnel into that true
(deeper) vacuum. But this tunneling probability is not
large enough, and hence the lifetime of the EW vacuum
remains larger than the age of the universe. This implies
that the EW vacuum is metastable in the SM. The expres-
sion for the tunneling probability at zero temperature is
given by [54,111]

P0 ¼ VUΛ4
B exp

�
−

8π2

3jλðΛBÞj
�
; ð6:1Þ

TABLE I. Output values for three different benchmark points for the inverse seesaw model satisfying all the low-energy constraints

Parameter BM-I BM-II BM-III

Δm2
21=10

−5 eV2 8.0891 7.8228 7.6277
Δm2

31=10
−3 eV2 2.4391 2.5046 2.4078

sin2 θL12 0.2710 0.3429 0.3449
sin2 θL23 0.3850 0.3850 0.4102
sin2 θL13 0.0239 0.0229 0.0238
δPMNS 1.1173 1.4273 1.1715
ϕ1;ϕ2 2.5187, 2.9377 2.9384, 3.1379 0.4264, 0.7426
mi=10−1 eV 0.10, 0.13, 0.511 0.23, 0.25, 0.558 0.10, 0.13, 0.507
Mj GeV 200.77, 200.77, 461.159,

461.16, 1744.67, 1744.669
210.01, 210.01, 487.284,
487.28, 1451.34, 1451.344

200.00, 200.00, 332.993,
332.99, 3568.87, 3568.869

Tr½YνY
†
ν� 0.1 0.2 0.3

Brðμ → eγÞ 0.731 × 10−16 0.1 × 10−16 0.13 × 10−15
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where ΛB is the energy scale at which the action of
the Higgs potential is minimum. VU is the volume of
the past light cone taken as τ4U, where τU is the age of the
universe (τU ¼ 4.35 × 1017 s) [21]. In this work we have
neglected the loop corrections and gravitational correction
to the action of the Higgs potential [112]. For the vacuum
to be metastable, we should have P0 < 1, which implies
that [49]

0 > λðμÞ > λminðΛBÞ ¼
−0.06488

1 − 0.00986 lnðv=ΛBÞ
; ð6:2Þ

whereas the situation λðμÞ < λminðΛBÞ leads to the unstable
EW vacuum. In these regions, κ and λS should always be
positive to get the scalar potential bounded from below

[49]. In our model, the EW vacuum shifts toward stability/
instability depending upon the new physics parameter
space for the central values of Mh ¼ 125.7 GeV,
Mt ¼ 173.1 GeV, and αs ¼ 0.1184, and there might be
extra minima around 1012–17 GeV.
In Fig. 2, we have given the phase diagram in the

Tr½Y†
νYν� − κ plane. The line separating the stable region

and the metastable region is obtained when the two vacuua
are at the same depth, i.e., λðμÞ ¼ βλðμÞ ¼ 0. The unstable
and the metastable regions are separated by the boundary
line where βλðμÞ ¼ 0 along with λðμÞ ¼ λminðΛBÞ, as
defined in Eq. (6.2). For simplicity, we have plotted
Fig. 2 (also Fig. 1) by fixing all the eight entries of the
3 × 3 complex matrix Yν, but varying only the ðYνÞ33
element to get a smooth phase diagram. From Fig. 2, it

(a) (b)

(c) (d)

FIG. 1. Running of the couplings with the energy scale in the inverse seesaw model. (a) Running of λ for dierent values of Tr½Y†
νYν�

and a fixed value of κ. (b) Running of λ for a fixed value of Tr½Y†
νYν� and dierent values of κ. (c) Running of the couplings with energy for

dark matter mass of 1000 GeV. (d) Running of the couplings with energy for dark matter mass of 1500 GeV.
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could be seen that the values of κ beyond ∼0.58 are
disallowed by perturbativity bounds, and those below
∼0.16 are disallowed by the direct detection bounds from
LUX-2016 [105]. The value of the dark matter mass in this

allowed range is thus ∼530–2100 GeV. Note that the
vacuum stability analysis of the inverse seesaw model
done in Ref. [60] had found that the parameter space with
Tr½Y†

νYν� > 0.4 was excluded by vacuum metastability
constraints. Whereas, in our case, Fig. 2 shows that the
parameter space with Tr½Y†

νYν�≳ 0.25 is excluded for the
case when there is no extra scalar. The possible reasons
could be that we have kept the maximum value of the heavy
neutrino mass to be around a few TeV, whereas the authors
of [60] had considered heavy neutrinos as heavy as
100 TeV. Obviously, considering larger thresholds would
allow us to consider large values of Tr½Y†

νYν� as the
corresponding couplings will enter into RG running only
at a higher scale. Another difference with the analysis of
[60] is that we have fixed eight of the nine entries of the
Yukawa coupling matrix Yν. Also, varying all the nine
Yukawa couplings will give us more freedom and the result
is expected to change. The main result that we deduce from
this plot is the effect of κ on the maximum allowed value of
Tr ½Y†

νYν�, which increases from 0.26 to 0.4 for a value of κ
as large as 0.6. In addition, we see that the upper bound on
κðMZÞ from perturbativity at the Planck scale decreases
from 0.64 to 0.58 as the value of Tr[Y†

νYν] changes
from 0 to 0.44. This can be explained from the expression
of the βκ in Eq. (4.19), which shows that ½Y†

νYν� affect the
running κ positively through the quantity T. Since MDM ∼
3300κ GeV for MDM ≫ Mt, the mass of dark matter for
which perturbativity is valid decreases with the increase in
the value of the Yukawa coupling.

FIG. 2. Phase diagram in the Tr½Y†
νYν� − κ plane. We have fixed

all the entries of Yν except for ðYνÞ33. The three boundary lines
(two dotted and a solid) correspond toMt ¼ 173.1�0.6GeV (3σ),
and we have taken λSðMZÞ ¼ 0.1. The dark matter mass is dictated
by κðMzÞ to give the correct relic density. See text for details.

(a) (b)

FIG. 3. Dependence of confidence level at which the EW vacuum stability is excluded/allowed on Tr½Y†
νYν� for two different values of

κ and MDM. We have taken λSðMZÞ ¼ 0.1. (a) ðκ;MDMÞ ¼ ð0.304; 1000 GeVÞ. (b) ðκ;MDMÞ ¼ ð0.455; 1500 GeVÞ.
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3. Confidence level of vacuum stability

As we have seen, the stability of the electroweak vacuum
changes due to the presence of new physics, and hence it
becomes important to demonstrate the change in the
confidence level at which stability is excluded or allowed
(one sided) [49,113,114]. In particular, it will provide a
quantitative measurement of (meta)stability in the presence
of new physics. In Fig. 3, we graphically show how the
confidence level at which stability of electroweak vacuum
is allowed/excluded depends on new Yukawa couplings of
the heavy fermions for the inverse seesaw model in the
presence of the extra scalar (dark matter) field. We have
plotted the dependence of the confidence level against the

trace of the Yukawa coupling, Tr½Y†
νYν�, for fixed values of

Higgs portal coupling κ ¼ 0.304 in Fig. 3(a). Here, the dark
matter mass MDM ¼ 1000 GeV is dictated by κ to obtain
the correct relic density. A similar plot with a higher value
of κ ¼ 0.455 with dark matter mass MDM ¼ 1500 GeV is
shown in Fig. 3(b). In this case the electroweak vacuum is
absolutely stable for a larger parameter space. For a
particular set of values of the model parameters Mh ¼
125.7 GeV, Mt ¼ 173.1 GeV, αsðMzÞ ¼ 0.1184, and κ,
the confidence level (one sided) at which the electroweak
vacuum is absolutely stable (green region) decreases with
the increase of Tr½Y†

νYν� and becomes zero for Tr½Y†
νYν� ¼

0.06 in Fig. 3(a) and Tr½Y†
νYν� ¼ 0.20 in Fig. 3(b). The

(a) (b)

(c) (d)

FIG. 4. Running of the quartic coupling λ in MLSM with extra scalar for two different values ofMN . In the upper panel, the three lines
are for different values of MDM and κ, whereas in the lower panel, they are for different values of yν and fixed values of MDM and κ.
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confidence level at which the absolute stability of the
electroweak vacuum is excluded (one sided) increases with
the trace of the Yukawa coupling in the yellow region.

B. Minimal linear seesaw model

In the minimal linear seesaw case, the Yukawa coupling
matrices Yν and Ys can be completely determined in terms
of the oscillation parameters apart from the overall coupling
constant yν and ys, respectively [17]. For normal hierarchy,
in MLSM, the Yukawa coupling matrices Yν and Ys can be
parametrized as

Yν ¼
yνffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffi

1þ ρ
p

U†
3 þ ei

π
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
U†

2

�
; ð6:3Þ

Ys ¼
ysffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffi

1þ ρ
p

U†
3 þ ei

π
2

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

p
U†

2

�
; ð6:4Þ

where

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p
−

ffiffiffi
r

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ r

p þ ffiffiffi
r

p : ð6:5Þ

Here, Ui’s are the columns of the unitary PMNS matrix
Uν and r is the ratio of the solar and the atmospheric mass
squared differences. This parametrization makes the vac-
uum stability analysis in the minimal linear seesaw model
easier since there are only two independent parameters yν
and MN in the fermion sector, where MN is the degenerate
mass of the two heavy neutrinos [the value of ys being very
small Oð10−11Þ]. A detailed analysis has already been

performed in Ref. [18]. Here, we are interested in the
interplay between the Z2 odd singlet scalar and singlet
fermions in the vacuum stability analysis.
In Fig. 4, we have plotted the running of the Higgs

quartic coupling λ with the energy scale μ up to the Planck
scale. Figures 4(a) and 4(b) show the running of λ for
different values of k (0.0, 0.304, 0.456) and MDM (0,
1000 GeV, 1500 GeV), for MN ¼ 200 GeV and MN ¼
104 GeV, respectively, for a fixed value of y2ν ¼ 0.1.
Comparing these two plots, we can see that λ tends to
go to the instability region faster for smaller values of the
heavy neutrino mass. So, the EW vacuum is more stable for
larger values of MN , because the effect of the extra singlet
fermion in the running of λ enters at a higher value. We also
find that as the value of κ increases from 0 to 0.304, the
electroweak vacuum becomes metastable at a higher value
of the energy scale. For κ ¼ 0.456 the electroweak vacuum
becomes stable up to the Planck scale even in the presence
of the singlet fermions.
Figures 4(c) and 4(d) display the running of λ for

different values of y2ν (0.0, 0.15, 0.3) and for fixed values
of k ¼ 0.304 and MDM ¼ 1000 GeV, for MN ¼ 200 GeV
and for MN ¼ 104 GeV, respectively. It could be seen
from these plots that the larger the value of yν, the earlier λ
becomes negative and greater is the tendency for the
EW vacuum to be unstable as expected. We note from
these two figures that for κ ¼ 0.304, absolute stability is
attained only for yν ¼ 0 even in the presence of the singlet
scalar.
In Fig. 5, we have shown the phase diagram in the yν-MN

plane. The stable (green), unstable (red), and the metastable

(a) (b)

FIG. 5. Phase diagrams in the yν-MN plane in the presence and the absence of the extra scalar. The region to the left side of the blue
dotted line is disallowed by constraint from BRðμ → eγÞ. The three boundary lines (two dotted and a solid) correspond to Mt ¼
173.1� 0.6 GeV (3σ), and we have taken λSðMZÞ ¼ 0.1 in the second plot. (a) Without the extra scalar. (b) With scalar,
ðκ;MDMÞ¼ ð0.304; 1000 GeVÞ
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(yellow) regions are shown, and it could be seen that the
higher the value of MN , the larger the allowed values of yν
by vacuum stability as we have discussed earlier. The
unstable and the metastable regions are separated by solid
red lines for the central values of the SM parameters,
Mh ¼ 125.7 GeV, Mt ¼ 173.1 GeV, and αs ¼ 0.1184.
The red dashed lines represent the 3σ variation of the
top quark mass. However, we get a significant stable region
for Mh ¼ 125.7 GeV, Mt ¼ 171.3 GeV, and αs ¼ 0.1191,
which corresponds to the solid line separating the stable
and the metastable regions. The region to the left side of the
blue dotted line is disallowed by LFV constraints for the
normal hierarchy of light neutrino masses. Figure 5(a) is
drawn in the absence of the extra scalar and Fig. 5(b) is
drawn for ðκ;MDMÞ ¼ ð0.304; 1000 GeVÞ. Clearly, there
is a more stable region in the presence of the extra scalar,
and the boundary line separating the metastable and the
unstable regions also shifts upwards in this case.
In Fig. 6, we have shown the phase diagrams in the

yν-κ plane for two different values of the heavy neutrino
masses: Fig. 6(a) for MN ¼ 200 GeV and Fig. 6(b) for
MN ¼ 104 GeV. Here also, the red dashed lines represent
the 3σ variation of top quark mass. It could clearly be seen
that as the value of the heavy neutrino mass is higher, the
unstable region shifts toward the large values of yν. This is a
result that should be expected from Fig. 5. In this model,
the theory becomes nonperturbative (grey) for κ ¼ 0.64 for
yν ¼ 0.05. The maximum allowed value of κ by perturba-
tivity at the Planck scale decreases with an increase in yν as

we have also seen for the inverse seesaw case. The region
κ ≲ 0.16 is excluded from the recent direct detection
experiment at LUX.

VII. CONCLUSIONS

In this paper we have analyzed the stability of the
electroweak vacuum in the context of the TeV scale inverse
seesaw and minimal linear seesaw models extended with a
scalar singlet dark matter. We have studied the interplay
between the contribution of the extra singlet scalar and
the singlet fermions to the EW vacuum stability. We have
shown that the coupling constants in these two seemingly
disconnected sectors can be correlated at high energy
by the vacuum stability/metastability and perturbativity
constraints.
In the inverse seesaw scenario, the EW vacuum stability

analysis is done after fitting the model parameters with the
neutrino oscillation data and nonunitarity constraints on
UPMNS (including the LFV constraints from μ → eγ). For
the minimal linear seesaw model, the Yukawa matrix Yν

can be fully parametrized in terms of the oscillation
parameters excepting an overall coupling constant yν,
which can be constrained from vacuum stability and LFV.
We have taken the heavy neutrino masses of order up to a
few TeV for both the seesaw models. An extra Z2

symmetry is imposed to ensure that the scalar particle
serves as a viable dark matter candidate. We include all the
experimental and theoretical bounds coming from the
constraints on relic density and dark matter searches as

(a) (b)

FIG. 6. Phase diagrams in the yν-κ plane for two different values of MN . Here, λSðMZÞ ¼ 0.1 and the dark matter mass is dictated by
κðMzÞ to give the correct relic density.
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well as unitarity and perturbativity up to the Planck scale.
For the masses of new fermions from 200 GeV to a few
TeV, the annihilation cross section to the extra fermions is
very small for dark matter mass Oð1–2Þ TeV. We have
also checked that the theory violates perturbativity before
the Planck scale for DM mass ≳2.5 TeV. In addition, we
find that the value of the Higgs portal coupling κ (MZÞ for
which perturbativity is violated at the Planck scale
decreases with an increase in the value of the Yukawa
couplings of the new fermions. For MDM ≫ Mt, one can
approximately write MDM ∼ 3300κ GeV. This implies
that with the increasing Yukawa coupling, the mass of
dark matter for which the perturbativity is maintained also
decreases. Thus the RGE running induces a correlation
between the couplings of the two sectors from the
perturbativity constraints.
It is well known that the electroweak vacuum of SM

is in the metastable region. The presence of the
fermionic Yukawa couplings in the context of TeV
scale seesaw models drives the vacuum more toward

instability while the singlet scalar tries to arrest this
tendency. Overall, we find that it is possible to find
parameter spaces for which the electroweak vacuum
remains absolutely stable for both inverse and linear
seesaw models in the presence of the extra scalar
particle. We find an upper bound from metastability
on Tr½Y†

νYν� as 0.25 for κ ¼ 0, which increases to 0.4 for
κ ¼ 0.6 in the inverse seesaw model. We have also seen
that in the absence of the extra scalar, the values of the
Yukawa coupling yν greater than 0.42 are disallowed in
the minimal linear seesaw model. But, in the presence of
the extra scalar the values of yν up to ∼0.6 are allowed
for dark matter mass ∼1 TeV. The correlations between
the Yukawa couplings (Tr½Y†

νYν� or yν) and κ are
presented in terms of phase diagrams.
Inverse and linear seesaw models can be explored at

LHC through trilepton signatures [19,115–123]. A higher
value of Yukawa couplings, as can be achieved in the
presence of the Higgs portal dark matter, can facilitate
observing such signals at colliders.
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