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Abstract 

 

Climate and tectonics are important processes that sculpt the surface of Earth and control 

other geomorphic and sediment transport processes. Therefore understanding of timing and 

amplitude of the past seismic and tectonic history of area during the geological past is needed 

to inform the planning of built and other infrastructures. This calls for the development of 

long series of patterns and nature of release of stress as earthquakes. This thesis examined 

three possibilities to reconstruct the timing of the past earthquakes using both theoretical 

calculations from first principles and their field/laboratory validations in respect of the use of 

luminescence dating technique that enabled dating of the most recent thermal or optical 

exposure of natural minerals constituting the sediment. The three possible archives of the 

chronology of past earth quakes are the sand dikes, the fault gouges and tectonically sculpted 

landforms. 

Earlier studies on sand dikes (Porat et al., 2007) indicated a reduced luminescence signal 

in dikes compared to host, despite the absence of any obvious possibility of thermal or 

daylight bleaching. Following recent preliminary works (Singh et al., 2009), this thesis 

examined in detail the aspect of flash heating of sediment in sand dike due to grain friction 

using first principles and inferred that heating up to few hundred degrees could occur. The 

critical parameters were the sediment viscosity, width of the dike and injection velocity. 

Effect of these parameters on rise in temperature was examined. Flash heating was invoked 

as it reconciled with thermal zeroing of luminescence signal. This was validated by 

luminescence dating and analysis of luminescence properties of the sand dike and host 

samples from North−East (Assam). The studies suggested the resetting of luminescence due 

to viscous heating during the injection of the sand dikes. The experimental validation 

included the estimation of extent of heating in dike samples by laboratory measurement. For 

this the sensitivity of 110 °C TL peak of quartz was used. 

The second possibility of dating past earthquakes/tectonic event was via the dating of 

pulverized rock material during the movement along a fault viz. the fault gouge. The heat 

excursion due to slip was simulated along with the heat dissipation and it was seen that 
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sufficient heat to reset luminescence would be generated for slip of about 15 cm and if dated 

can provide a direct age estimate of the past seismic activity.  

The third possibility of dating tectonic events was via the dating of fault scarp and river 

channels affected by the earthquake in the Great Rann of Kachhchh, Western India. 

The principal conclusion of the thesis is that flash heating under suitable conditions can 

result in the zeroing of luminescence. Thermal zeroing of luminescence can result in resting 

of signal in dike and gouge material. These make therefore luminescence dating an attractive 

option for the dating of past earth quakes and tectonic events. 

The catastrophic earthquakes in the rocks lead to the formation of the gouge material. The 

extent of heating in the fault gouge material was estimated by theoretical calculations and 

validated with the experiments in laboratory. Attempt was also made to understand the effect 

of stress on the quartz grains. Quartz grains were stressed by dropping different mass from 

different heights and luminescence from these stressed grains were recorded. The results 

presented in Chapter 5, show the pattern of reduction in luminescence due to the applied 

stress on the samples.  

The luminescence studies were also made using standard laboratory protocols on the 

dike, fault gouge and fault scarp samples to estimate the time of tectonic events. The results 

from the fault scarp and truncated river channels from Western India are presented in Chapter 

6. 

Based on the studies on sand dike samples four earthquake events of M >6 and M >7 

were identified in North-East, further the fault gouge samples suggested two earthquakes in 

Sikkim-Darjeeling Himalaya. Results of fault scarp samples suggested that the present form 

of Allah bund scarp was an outcome of two major earthquakes in the area. These events were 

1819 earthquake and another tectonic event between 1.4−2 ka. 
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Chapter 1 

Introduction 

1.1 Motivation and Background 

Tectonics and seismicity arise from complex motion of plates and consequent generation 

and release of internal and external stresses on various spatial and temporal scales. These 

play an important role in transforming and creating new landscapes and affect the life and 

landscapes on the earth. Evaluation of seismic hazards on the earth therefore becomes 

necessary to better inform the development of survival strategies and, this call for 

reconstruction of the timing and amplitude of past tectonic/seismic events as also of 

understanding of the stresses and rock structure underneath. Dating of seismic/tectonic events 

is an essential part of the paleoseismology. It provides an estimate of the fault activity, 

associated deformations, rate of fault slip, and rate of earthquake recurrence. For dating of 

fault activity one need to 1) identify the fault related features (e.g. fault gouge, liquefaction 
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features, fault scarp, river terraces etc), 2) assign a date to these features using suitable 

geochronological methods (Burbank and Anderson, 2009) 

 Reconstruction of history of earth evolution process is challenging. Several methods and 

techniques have been and are being developed. These methods can be divided in to two 

categories 1) relative dating methods and 2) absolute dating methods (Table 1). Some of 

these methods are summarized in section 1.2. Ideally the technique best suited to reconstruct 

past seismic/tectonic events are the ones that use materials/landscape feature that were 

created in direct response to past tectonic /seismic events. This thesis explores the use of 

luminescence dating in the reconstruction of the dating of past seismic events and examines 

the prospect of dating of fault gouges, sand dikes, fault scarp and sediments of truncated river 

channels and follows from previous such attempts by Ikeya et al. (1982), Singhvi et al. 

(1994), Banerjee (1996), Banerjee et al. (1999), for Fault Gouge and Porat et al. (2007), 

Mahan and Crone (2008) for Sand Dikes.  

The identification of a geomorphic marker related (directly or indirectly) to the tectonic 

activity is an essential part to have correct estimation of time of the tectonic activity. The best 

suitable geomorphic markers which can be used to reconstruct the past seismic history such 

as river terraces, Fault scarp, Fault Gouge and Sand Dikes are a consequence of tectonic 

activity and provide a suitable means to understand the seismic history of the area.  

 

 

Figure 1.1: Schematic diagram showing (a) fault gouge and (b) sand dike 
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When the two blocks of rock slide each other a fine powdery material is generated (May 

or may not be recrystallized depending upon the frictional temperature generated during 

faulting event), the material generated is called as fault gouge. The fault gouge is usually 

composed of detrital minerals and secondary authigenic clay minerals. Particularly, illite 

forms due to retrograde hydration reactions (Zwingmann and Mancktelow, 2004). 

When earthquake takes place shock waves are generated, these waves travel through the 

earth’s crust. Due to the hydrostatic pressure some of the base material is injected into the 

layers overlying the base material. During this process the water act as lubricant, the injected 

material is called dike. Figure 1.1 shows the schematic diagram of fault gouge and sand dike. 

1.2 Chronometric methods for Fault Gouges and Sand dikes 

The methods for estimating the timing of earthquakes can be classified as direct and 

indirect dating methods. The direct dating methods use the features which are directly 

associated with the event, like fault gouge, injection dikes, sand blows, surfaces exposed by 

faulting. In case of indirect methods associated features like fault scarp, river terraces, 

colluvium wedge etc are used. The other indirect methods which were used in past includes 

relationships between the displaced and un−displaced layer associated with the fault 

(Yamazaki et al., 1984), surface texture analysis of quartz grains  (Kanaori et al., 1978; 

Kanaori, 1983). Some of these chronometric methods are discussed in following sections 

1.2.1 Cosmogenic radionuclide method 

Cosmogenic radionuclides are produced by nuclear spallation reactions in the rocks, due 

to exposure to cosmic ray neutrons and muons at the surface of the earth (lal and Arnold, 

1985). Materials ranging in age from few hundred years to tens of million years can be dated 

using this method. Presently commonly used nuclides are10Be , C14 , Al26 , Cl36 , He3 , Ne21  

and stable noble gases. In most of the case the used target is quartz which contains Si and O, 

and product are Be10 , 26 Al  and Cl36 , the production of a radionuclide by nuclear reaction is 

given by following equation 

 [1 exp( )]RP tλ
λ

= − −   (1.1)
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The Cosmogenic Radionuclide Method (CRN) has been applied on fault scarp and 

exposed fault rock surfaces. When the faulting takes place one of the blocks is uplifted, and 

the uplifted surface gets exposed to cosmic rays. On exposed surface a buildup of cosmic ray 

induced radionuclides takes place and concentration gives an estimate of age of fault 

movement.  The method was used for the dating of fault scarp along the Hebgen Lake fault 

zone (Zreda and Noller, 1998). The 36Cl ages from the bedrock and fault scarp indicated that 

the earthquakes were occurred at 0.4, 1.7, 2.6, 7.0, 20.3, and 23.8 ka. Phillips et al. (2003) 

applied the CRN on alluvial fault scarp of Canyon fault in central New Mexico. The CRN 

ages on the alluvial fault scarp accounted for degraded fault scarp profile in the Canyon fault 

suggested the rupture event during 79−108 ka and 5−46 ka. Palumbo et al. (2004) and 

Schlagenhauf et al. (2011) used the method to estimate the movement along Magnola fault in 

Central Italy, and  suggested occurrence of at least five events at 4.8, 6.7, 7.4, 10.5 and 12.0 

ka with slips varying from 275 to 155 cm along Magnola fault. Schlagenhauf et al. (2011) 

using CRN dating suggested the 9 large earthquakes occurrence along the Magnola fault in 

two 5–6 ka long cycles. 

Where P is number of atoms of the unstable product nuclide, R is production rate of the 

product nuclide by the nuclear Reaction and λ is decay constant of the unstable product 

nuclide. 

1.2.2 Radiocarbon dating method 

The method of radiocarbon dating relies on the principal that the carbon (organic matter) 

is widely distributed over the earth, and cycled through many carbon reservoirs. Various 

geological processes including the volcanic activities, deposition of carbon in sediments etc., 

involves the carbon cycle (Craig, 1953; Craig, 1957). Carbon has three isotopes C12 , 13C  and

C14 . Among these C14  is radioactive with half−life of 5730 years while other two are stable. 

In the upper atmosphere the radioactive carbon isotope is produced by the cosmic ray 

spallation on N14 , subsequently oxidized to 2
14CO  and distributed to earth’s atmosphere 

(Taylor, 1985). Most of this 2CO is absorbed by the ocean, leaving a small percentage for the 

terrestrial biosphere. The metabolic processes maintain the activity of C14 in living organisms 

with the atmosphere. Once the metabolic processes cease (due to death of the organism, 

plant, human or animal) the decay of radioactive carbon isotope starts. Measuring the activity  
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Table1.1: Dating methods for seismic and tectonic events (after Noller et al., 2000) 

 

Method Dating 
Range Material/Proxies used 

(a) Relative Dating methods 
Soils and Soil−profile 

development 10−500 ka Boulders, changes in soil properties due 
to weathering, redistribution of minerals 

Scarp morphology 2−20 ka Changes in scarp profile due to surface 
processes 

Rock and mineral 
weather 0.1−400 ka Boulders, alteration of rock and 

minerals due to exposure to weathering 
(b) Absolute Dating methods 

Cosmogenic 
Radionuclide 

~years to 
10Ma Quartz, olivene 

Radiocarbon 50 years to 
50 ka Wood, shell, organic tissues 

Fission Track >2 ka apatite, mica, sphene, zircon, volcanic 
glass 

K−Ar dating >20 ka K−bearing silicates 

U Series 0.1 ka to 50 
ka 

Sedimentary materials, carbonate 
(corals and speleothems) 

Electron Spin 
Resonance 

1 ka to >100 
Ma Enamel, bone, calcite, gypsum 

Luminescence 
(TL/OSL) 

~30 years to 
~500 ka Quartz, feldspar 
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of residual C14  in the dead organism the age of sample can be estimated. The conventional 

age calculation equation (Stuiver and Polach, 1977) is given by 

 8033log sample
e

STD

CPM
t

CPM
 

=  
 

  (1.2) 

Where sampleCPM  is the activity (counts per minute) for sample and STDCPM  is the 

activity for the standard. In the recent past the new improved method uses the isotope 

fractionation method and the equation 1.2 is modified to  

 
14

8033log 1
1000e
D Ct

 
= + 

 
  (1.3) 

With D14C representing the normalized value of d14C and, 

 14 1 1000sample

STD

CPM
d C

CPM
 

= − 
 

  0/00 (1.4) 

The dating range of this method is from 50 years to 50000 years beyond which limitation 

of measurement techniques make it difficult to measure the concentration. Radiocarbon 

dating method was applied to determine the recurrence of earthquakes due to the movement 

along San Andreas fault California (Berger and Kaufman, 1980). The wood, charcoal and 

other organic materials associated with earthquake induced geomorphic features (e.g. sand 

dike) or broken stem of tree were used previously for radiocarbon dating to estimate the 

occurrence of earthquakes (Tuttle and Seeber, 1991; Bull, 1996; Sukhija et al., 1999; Tuttle et 

al., 2000). 

1.2.3 Fission track dating analysis 

The Fission Track Dating (FTD) method was introduced by Price and Walker (1963), 

afterwards the method was applied to variety of minerals e.g. mica, glass, calcite, zircon, 

horneblende, sphene and apatite. The method is based on the fact that the heavy charged 

particles from radioactive nuclides such as Uranium, while pass through the insulating 

material could leave the trails of the radiation damage. These tracks are called fission tracks. 

Each fission event produces single track as the two fragments fly in opposite directions and 

produce line defect in the crystal. These tracks can be seen by high resolution optical 
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microscope after etching the sample to stabilize the tracks (Young, 1958; Silk and Barnes, 

1959; Price and Walker, 1962). The concentration of the natural 238U in the sample can be 

estimated by counting number of tracks for natural collected sample and compared with the 

tracks due to irradiation of sample by 238U in laboratory (Price and Walker, 1963; Naeser, 

1967). The age equation and age of the sample is given by   

 1 log 1 sD
e

D f i

It ρλ ϕσ
λ λ ρ

 
= +  

 
  (1.5) 

where Dλ is total decay constant for 238U, fλ  is spontaneous fission decay constant of 

238U, I is isotopic ratio 235 238/U U , σ is thermal neutron cross section for 235U , φ is thermal 

neutron fluence, sρ is spontaneous track density =number of spontaneous tracks/ area of 

sample and iρ is induced track density =number of induced tracks/ area of sample. Seward 

and Mancktelow (1994) used the FTD of apatite and zircon from the Simplon fault zone in 

the Simplon Alps. The FTD of apatite and zircons separated from the pseudotachylyte layer 

and from the borehole samples from Nojima fault Japan gave the initiation of the Nojima 

fault at ~60 Ma (Murakami and Tagami, 2004; Yamada et al., 2007).  

1.2.4 Fault scarp diffusion 

In this method, the age of a fault are derived by fitting the scarp profiles to the synthetic 

profiles generated using a diffusion equation or alternatively by classification using linear 

discriminant function (Mayer, 1984). In this method scrap degradation is expressed as a 

continuity equation for conservation of mass with sediment transport model (Bucknam and 

Anderson, 1979; Hanks et al., 1984; Nash, 1984). The age estimates are obtained by solving 

diffusion equation 

 
u uK F
t x x

∂ ∂  ∂  =   ∂ ∂ ∂  
  (1.6) 

Where u is the elevation, x is the horizontal distance, t is time, F is the function of slope 

representing the transport of the material at any time and at any point along the profile.  

Diffusion coefficient K is estimated by comparing the morphology of fault scarp with the 

morphology of scarps of known age. The diffusion equation (1.6)  has been solved 
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analytically (Hanks et al., 1984) and numerically using linear and nonlinear method to 

estimate the time of fault scarp formation (Andrews and Bucknam, 1987; Mattson and Bruhn, 

2001). Pearthree and Calvo (1987) used the scarp diffusion method and estimated ages of 

faulted and unfaulted surfaces or about 100 ka for the most recent surface−rupture event. 

This method has been used to estimate the age of fault scarp formed due to repeated slip 

events along the San Andreas fault (Arrowsmith et al., 1998),  scarp in Arava Valley along 

the Dead Sea, Israel (Enzel et al., 1996), fault scarp created due to surface−rupturing 

earthquakes along the Wasatch Fault Zone (Mattson and Bruhn, 2001).  

1.2.5 U/Th dating 

Uranium/Thorium or Uranium series dating is based on the detection the activities of
234 U  decaying to 230Th products in the decay chain of 238 U . The method can only be used if 

secular equilibrium has been established in the parent and daughter decay. When water seeps 

through the ground it dissolves some uranium but no thorium, as a result during evaporation 

of water. At the time of mineral formation the Uranium is trapped and starts decaying to 

produce the thorium. The elemental fractionation is a result of the different geochemical 

behavior of U and Th. U mainly exists in two oxidation states in nature (U4+and U6+), and at 

the Earth’s surface it is dominant in its soluble U6+ form. It is soluble as uranyl ion (UO2)2+  

in various uranyl carbonate forms (Ivanovich and Harmon, 1992) 

For U/Th dating, the initial ratio of ( )230 238Th/ U at the time of sample formation must be 

known or calculated. With time, 230Th accumulates in the sample through radiometric decay. 

The sample age is based on the difference between the initial ratio of ( )230 238Th/ U and the 

one in the sample being dated. The method assumes that the sample does not exchange 230Th 

or 234U with the environment (i.e., it is a closed system.) The method can be used for samples 

that can retain U and Th, such as carbonate sediments, bones and teeth. Ages between 1000 

and 300,000 years have been reported. 

Taking the assumption that the decay system remains closed after the deposition of U and 

Th, the development of ( )234 238U/ U  and ( )230 238Th/ U  is described by equations (Ivanovich 

and Harmon, 1992) below  
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 234

234 234
-λ t

238 238
initial

U U(t) = -1 e +1
Th Th

    
         

   (1.7) 

 ( ) ( )230 230 234

230 230
-λ t -(λ  - λ )t230

238 238
230 234

λTh U(t) = 1-e  + (t) - 1 1 - e
U U λ -λ

    
    

    
  (1.8) 

Where ( )234 238

initial
U/ U is the initial ( )234 238U/ U  ratio, iλ  are the decay constants for 

230Th  and 234 U , respectively. 

The method has been used to constrain the tectonic activities along various faults (Uysal 

et al., 2007; Nuriel et al., 2012; Saillard et al., 2012). Paleoseismic events using mollusk from 

seismically uplifted beaches in Persian Gulf gave age range 11.3−2 ka (Ivanovich et al., 

1983). U/Th ages from Grotta del Cervo Italy, suggested the seismic activity in the periods 

350−150 ka, 110−90 ka, 40−30 ka and <5 ka (Postpischl et al., 1991). Flotte et al., (2001) 

and Verhaert et al., (2004) used this method on post−tectonic flowstones on fault planes and 

syn−tectonic calcite mixed with brecciated limestones.  Some other studies have utilized the 

U−series dating technique to date displaced and damaged cave deposits to constrain the 

recurrence patterns of paleoseismic events (Pons−Branchu et al., 2004; Kagan et al., 2005). 

Speleothems from preseismic and postseismic depostis from  Soreq and Har−Tuv caves, 

located near Dead Sea Transform in Israel were dated by U/Th dating (Kagan et al., 2005). 

Eighteen earthquake events were identified in the Dead Sea Transform and a recurrence 

interval of 10 ka was estimated during 185 ka period. Uysal et al. (2007) used U/Th dating 

method to date travertine deposits precipitated in co−seismic extensional fissures along a 

fault in Western Turkey, and suggested the initiation of formation of fissures ranging from  

24.6 ± 0.2 ka to 121.0 ± 2.0 ka. Recently travertine deposits in North Anatolian Fault Zone, 

Turkey were dated by Temiz et al. (2013), using U/Th method. The estimated age of these 

travertine deposits were 52,649 ± 8040 years and 96,308 ± 17,674 years, and between 17,962 

± 1671 years and 133,463 ± 76,882 years.  

1.2.6 K−Ar dating 

The K−Ar system has been used for the dating of lavas and was developed in 1950s. 

Potassium has three natural occurring isotopes 41K, 39K and 40K, former two are stable 

whereas Potassium−40 is radioactive and decays with a half−life of 1.25 billion years. 40K 
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decays to 40Ar and 40Ca in a ratio of ~11 to ~89. Chemically potassium is reactive metal 

whereas argon is an inert gas meaning while mineral formation potassium will be trapped and 

argon will escape.  Argon is found in Earth’s atmosphere to about 1 percent. So assuming 

that no air gets into a mineral grain when it first forms, it has zero argon content i.e. a fresh 

mineral grain has its K−Ar "clock" set at zero. The K−Ar method works by counting these 

radiogenic 40Ar atoms trapped inside minerals. The age equation for K−Ar method is  

 
40 *

40
e

1 Ar λt =  - 1
λ K λ
  
     

  (1.9) 

Where λ is total decay constant of 40K, λe
 is the decay constant of 40K to 40Ar, 40Ar* is the 

argon produced by decay of 40K. 

With an assumption of having illite formation insitu, the method was first applied by 

Lyons and Jonathan (1971) to determine the absolute timing of fault activities. Illite separated 

from the fault gouge was used. A discrepancy was observed in expected and measured age by 

K−Ar method and attributed to the loss of radiogenic argon from the fault gouge.  Illite 

separated from fault gouge has been used as the test object for isotopic dating (K−Ar ) and to 

analyze the characteristics of fault activities (Yurtmen et al., 2002; Zwingmann and 

Mancktelow, 2004; Uysal et al., 2006; Sasseville et al., 2008; Zwingmann et al., 2010; Tu et 

al., 2012).  

1.2.7 Electron Spin Resonance (ESR) Dating 

Electron Spin Resonance (also called as Electron Paramagnetic Resonance, EPR) 

involves the measurements of paramagnetic ions in a sample. ESR is a non−destructive 

method for measuring the concentration of paramagnetic species (centers) and free radicals in 

liquids and solids. Some of these centers are inducted by exposure to radiation and the 

concentration of such centers in a sample is a measure of the total radiation dose to which the 

sample was exposed. The age can be calculated from geological dose by estimating the 

annual dose of the natural radiation from the content of natural radioactive elements (238U, 
232Th, 40 K, and cosmic rays). 

Observation of ESR is based on the fact that a charged particle spins around its axis and 

acts like a tiny bar magnet. In a magnetic field, the degeneracy of a particular energy state 

that depends on the value of ml   (magnetic quantum number) as well as of total quantum 
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number (n), is broken and lead to the Zeeman splitting. Under  a magnetic field H, spin states 

of a paramagnetic system are quantized in directions parallel and antiparallel to the field 

resulting in a splitting of the energy levels, so that the interaction of magnetic moment with 

magnetic field gives rise to an additional energy contribution E, ΔE = -μ .H  or  

  

 , sE = - H = -g m Hs zµ β∆   (1.10) 

Where g is known as g factor, β is the Bohr magnetron, ms  is the spin quantum number 

of electron. The value of E corresponding to the two possible states is shown in Figure 1.2. 

The population in the two energy states is governed by the Maxwell Boltzmann  law and it is 

possible to excite charges from lower energy state to the upper, by supplying external energy 

in the microwave region such that the relation (1.11) is satisfied, 

 E = h  = g  Hν β∆  (1.11) 

This is the fundamental equation of ESR and represents the resonance condition. Here ν 

is the frequency of electromagnetic radiation. The age equation is given by 

 ( ) .eDAge T
D

=   (1.12) 

Where in equation(1.12), De is the equivalent dose and D
•

 is the dose rate at which dose 

has been accumulated in the sample.  

Ikeya et al. (1982) reported the first ESR date by using quartz grains from Atotsugawa 

fault gouge. The fault gouge was dated to 65 ka. Fukuchi et al. (1986) used different ESR 

centers to date the movement along Itoigawa−Shizuoka Tectonic line and Minobu fault in 

Japan. The fault movement range was estimated to be from 0.30 Ma to 0.55 Ma. Buhay et al. 

(1988) used the plateau ESR ages for finer grain size and suggested the movement along San 

Jacinto Fault around 75 ka. In similar approach Lee and Schwarcz (1994) used different ESR 

centers and age plateau for different grain sizes to date the fault gouge along the San Gabriel 

fault zone. The results from their study suggested the tectonic activity along the San Gabriel 

fault zone during 339−440 ka (Limerock fault), 230−611 ka (Barrel Spring fault), 344−666 

ka (Santa Clara fault), 352−984 (Bear Divide fault) and 221−504 ka (San Gabriel fault). 
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Figure 1.2: Splitting of the energy levels in a magnetic field (Zeeman splitting) 

 

The ESR dating has been used to date the events like mineralization, thermal annealing, 

geological faults and optical bleaching (Grun and Invernati, 1985; Ikeya, 1993; Grun, 2006). 

The ESR dates on fault gouge from Palghat gap shear zone Kerala, India suggested that fault 

at Desamangalam was active during the mid−Quaternary period ~ 430 ka (Gundu Rao et al., 

2002). ESR dating of intrafault gypsum from Katrol hill range, India suggested the uplift 

during late quaternary period (~70 ka) (Mathew et al., 2004). ESR dating of  calcareous fault 

gouge from Ushikubi fault in Japan using 3SO−  center showed the latest movement along the 

fault at around 1.9 ka (Fantong et al., 2013).  

1.2.8 Soil chronosequence method 

The soils of deposits or surfaces that have been deformed or are related to tectonics, have 

been successfully used to date neotectonic events (Birkeland, 1984; Amit et al., 1996; 

McCalpin and Berry, 1996). 

A chronosequence is defined as “A sequence of soils developed on similar parent 

materials and relief under the influence of constant or ineffectively varying climate and biotic 

factors, whose differences can thus be ascribed to the lapse of differing increments of time 
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since the initiation of soil formation” (Stevens and Walker, 1970). In the method the soil 

chronosequence of faulted area are compared to independent age estimates of similar soil 

chronosequence of nearby region and thus time for tectonic events are constrained, 

(McCalpin and Berry, 1996).  

Buried soils developed on colluvial and fluvial sediments were dated using 

thermoluminescence (Forman et al., 1988) in Utah and Colorado from Wasatch fault zone 

America. The ages obtained on the buried soils were 0.5 ± 0.1 ka and 2.7 ± 0.4 ka. The 

thermoluminescence method was used to date the paleoearthquakes by Forman et al. (1989), 

Forman et al. (1991) and McCalpin and Forman (1991). Forman et al. (1991) identified three 

faulting events which occurred during 4.5−3.5 ka, 3.2−2.5 ka and 1.4−1.0 ka. The TL ages 

obtained were in good agreement with radiocarbon ages from the site. Porat et al. (1996) 

using Infrared stimulated luminescence on soil samples and correlating these with the 

geomorphic features suggested that Arava valley has faced three tectonic events at 34.8 ka, 

18.1 ka and 2 ka. Fault gouge from South−Central Kumaun Himalaya was dated by infrared 

stimulated luminescence of feldspar mineral (Singhvi et al., 1994; Banerjee, 1996). Optically 

stimulated luminescence method was sued to date alluvial gravels and colluvial deposits from 

Sabzevar thrust fault in northeastern Iran (Fattahi et al., 2006). Rodríguez−Pascua et al. 

(2012) using radiocarbon dating of the soil samples from a trench, lacustrine cores and 

archaeoseismic records suggested three events along the Pozohondo fault in South East 

Spain. These events were dated to < 26,000 years BP, 8000 BP and centuries I−VI AD.  

1.3 Luminescence 

1.3.1 Basic principles 

When an insulating material, like mineral is exposed to ionizing radiation a tiny fraction 

of energy is stored in the form of trapped charges at defect sites in the lattice. The residence 

time of these charges ranges from a second or less to millions of years. The storage of these 

charges is cumulative with radiation dose and this makes the possible use of luminescence a 

tool for radiation dosimetry and geological chronometry. The mechanism of luminescence 

can be understood with band theory of solids. (Aitken, 1985; Chen and McKeever, 1997; 

McKeever and Chen, 1997; Bøtter−Jensen et al., 2003c). Irradiation by ionizing radiation 

caused excitation of electrons in the valence band to the conduction band and some of these 
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get trapped at lattice defects that result in localized energy states (Figure 1.3a and b). The 

stored charges can be released by external stimulus (thermal, optical, mechanical etc.) and 

some of these released charges radiatively recombine to emit light (Figure 1.3c). Generally 

two variants used for external stimulation are thermal stimulation and optical stimulation and 

both variants are used. The light intensity after the stimulation is proportional to the trapped 

charges and hence proportional to the radiation dose.  

 

 

Figure 1.3: Mechanism of luminescence a)ionization and trapping of electrons and holes at localized 
energy states, b)trapping depends upon the amount of trapping energy (separation from 

conduction band or valence band for electron or hole respectively) and c) release of light in 
the form of luminescence after external stimulation like heat or light (after Aitken, 1985) 

 

The life time of these trapped charges is decided by the charge environment at its 

trapping site i.e. binding energy of trapped charge, called as trap depth. The life time of a trap 

can be expressed as, 

 1 exp( / )s E kTτ −=  (1.13) 

where s is the frequency factor, E is the trap depth, k is the Boltzmann’s constant and T is 

the ambient temperature. The trap depth typically ranges between 0.5−2.0 eV, giving life 

time ranging from 1−1015 s for very shallow traps to very deep traps (Singhvi and Wagner, 

1986).  

14 

 



Chapter 1:Introduction 
 

 

Figure 1.4: Natural TL glow curves for (a) feldspar (PCMA−11 from Gish Fault) and (b) quartz 
(BB−1 from Bedabari site) 

 

1.3.2 Thermoluminescence (TL) 

In thermally stimulated luminescence measurements eviction of charges occurs as the 

temperature of sample is increased in a controlled manner and one observes a series of peaks 

in luminescence emission, termed as glow peaks and glow curves. At higher temperatures the 

incandescence takes over. The basic concepts were developed by Randall and Wilkins (1945) 

and later by Garlick and Gibson (1948). Levy (1974) provide a summary of the basics of 

physical processes leading to thermoluminescence. The details of thermoluminescence 

process can be found in McKeever (1985) and Aitken (1985). A typical glow curve for 

feldspar and quartz are shown in Figure 1.4, and the shape can change depending on the 

spectral window in which the emission is recorded. 

1.3.3 Optically Stimulated Luminescence (OSL) 

In OSL the luminescence is recorded under constant wave stimulation and the signal is in 

the form of decay curve known as shine down curve. In the recent past OSL was preferably 

used over TL due to advantages like probing of single type traps, absence of interference 

from black body radiation, thereby improving the signal to noise ratio to be large, absence of 

phase change due to heating etc. Based on the wavelength of the optical stimulation source 

the OSL is termed as IRSL (InfraRed Stimulated Luminescence), BLSL (Blue Light  
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Figure 1.5: Shine down curves for (a) PCMA-11, feldspar from Gish fault (IRSL stimulation) and (b) 
KKT-16, quartz from Kakoti site (BLSL stimulation) 

 

Stimulated Luminescence) etc. Whereas based on the stimulating power it is termed as 

continuous wave OSL (CW−OSL), linear modulated OSL (LMOSL) or pulsed OSL 

(Bøtter−Jensen et al., 2003c). Figure 1.5 shows the IRSL and OSL shine down curves for 

feldspar and quartz samples collected from Gish fault zone and Kakoti site (sand dike). 

The CW OSL from quartz and feldspar can be expressed as the sum of exponentials 

(Bailey et al., 1997; Bluszcz and Adamiec, 2006; Li and Li, 2006) and are termed as the 

components of OSL decay. Murari (2008) suggested that the blue stimulated luminescence 

can be expressed as sum of exponentials, 

 kt
OSL k

k
I a e λ−=∑   (1.14) 

where a k  is the amplitude of kth component and kλ  is the product of photon flux and 

photo−ionization cross−section (decay constant). In general up to three components have 

been reported in quartz OSL but in some cases it can even be seven. For feldspars generally 

three components are inferred (Kitis et al., 2002; Tsukamoto et al., 2006).   

1.3.4 Luminescence dating 

In essence luminescence dating (LD) is dosimetry of natural environment. The 
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early attempts to use luminescence method in estimating the exposure of radiation towards 

natural mineral and their TL properties was done by Daniels and his coworkers in early 

1940s. Later attempts were made to use the method in ceramics, personal dosimetry, 

archaeology and earth sciences (Aitken et al., 1964; Aitken et al., 1968; Bortolot et al., 1973; 

McKeever, 1985; Singhvi and Wagner, 1986) 

 In luminescence dating the radiation dose acquired by a natural mineral is measured as 

the intensity of stimulated luminescence and this with appropriate calibration for 

luminescence sensitivity is converted to radiation dose units. The measurement of elemental 

abundance of naturally occurring radioactive nuclides (e.g. U−238, U−235, Th−232 and 

K−40) enables in computation of annual dose rate and the ratio of (acquired radiation dose 

and dose rate) these two provide the age. 

The events dated by the method are the events that erase the geological luminescence to 

zero or a near zero value. On burial the accumulation of luminescence is reinitiated due to 

irradiation of ambient radioactivity. The event which can be dated by luminescence technique 

are,  i) the most recent daylight exposure of the minerals in the sediment, ii) heating event 

and iii) authigenic precipitation event i.e. mineral formation (Singhvi and Wagner, 1986).  

The luminescence signal from a mineral, exposed to natural ionizing radiation, is 

proportional to concentration of the trapped electron in a particular trap. The electron 

population in the trapping center is proportional to time of irradiation. Thus, naturally 

available ubiquitous minerals can be used as thermoluminescent dosimeters, with the 

constraints,  

I. the number of trap sites in the mineral are sufficiently large (to avoid saturation of 

luminescent signal)  

II. the life time of the trapped electrons is higher than the event duration, (to have 

sufficient time for the storage of luminescence signal) 

III. the system is closed, implies there should not be any means to leak the trapped 

electron or there is no change in the natural dose rate. In any case if there was any 

leakage, or change a proper correction for that should be applied 

IV. and most importantly when the event starts, the trapped electron population, 

related to “that” signal, must be zeroed (resetting of luminescence signal) 
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Most commonly used and available natural dosimeters which satisfy above constraints 

are quartz and feldspar. 

1.3.4.1 Quartz 

Quartz is the most widely used dating chronometer due to its robustness against 

weathering and the long terms stability of its luminescence signal. Several authors 

(McKeever, 1985; Franklin et al., 1995; Krbetschek et al., 1997; Bøtter−Jensen et al., 2003a) 

reported the TL glow peaks and emission spectrum of quartz. Quartz has TL peaks at 

95−110°C, 150−180°C, 200−220°C, 325°C and 375°C with trap depth 0.84 eV to 1.66 eV 

and life time 0.13×10−3 year to ≥ 108 year (Aitken, 1985). Three main TL emission bands of 

quartz used for dating applications are 360−440 nm (UV−blue), 460−500 nm (blue−green) 

and at 600−650 nm (orange−red). The OSL spectra of quartz with 647 nm stimulation 

suggest, the presence of single emission band centered at 365 nm (Huntley et al., 1996). The 

OSL of quartz is correlated with 325°C TL peak (Smith et al., 1990; Kitis et al., 2010).  

The difficulty with quartz however has been its lower saturation in respect of 

luminescence intensity with radiation dose.  In normal radiation environments, this low 

saturation dose limits its application to 100 ka and thereabouts, however using isolation of 

components higher ages have also been reported (Pawley et al., 2010; Zander and Hilgers, 

2013).  

1.3.4.2 Feldspar 

Most natural feldspars belong to the  K−Na−Ca ternary diagram and have a  general 

formula x y 1- x+y 2- x+y( ) ( ) ( )2+ x+y 8K Na Ca Al Si O  (Krbetschek et al., 1997). In general feldspars have 

an ordered structure at low temperature and disorder structure at high temperature. At high 

temperature, all feldspar can form mixed crystals because of larger lattice parameters. Most 

feldspar classified in three groups, (i) sodium feldspars, (ii) potassium feldspars and (iii) 

calcium feldspars. Feldspar has TL peaks at 120°C, 250°C and 330°C with trap depth 0.76 

eV to 1.68 eV and corresponding life time of the trapped electron ranges from 0.16×10−3 year 

to 9.2×109 years (Aitken, 1985; Stricertsson, 1985; Mejdahl, 1989).The TL emission from 

feldspars comprises emissions at 280 nm, 340 nm, 380−400 nm, 550 nm and 730 nm 

(Townsend et al., 1993; Rendell et al., 1995). The IR stimulation using diodes (centered 

emission at 880 nm) of K feldspar showed two emission band from 300−350 nm and 
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centered at ~410 nm (Huntley et al., 1991). A correlation between the TL and IRSL was 

suggested, implying that the same recombination centers are being used by the two processes 

The OSL stimulation of feldspar measured at 3.1 eV (300 nm) show emission bands 

centered at ~2.05 eV (600 nm), ~1.45 eV (855 nm) (Hütt et al., 1988). It was found that the 

600−620 nm emission can be bleached by visible and IR stimulation. Jungner and Huntley 

(1991) using 633 nm He−Ne laser stimulated the K  feldspar from Finland and observed that 

the stimulated emissions show band at 340 nm, strong emission at 400 nm and little emission 

at 300 and 500 nm wavelengths.  

Most of the feldspar used in the natural dosimetry has been reported to be more sensitive 

and have higher saturation dose limits as compared to quartz, making them suitable for dating 

the older events. Wintle (1973)reported that the ages obtained from the feldspar were 

underestimated and attributed this as athermal or anomalous fading. The occurrence of 

anomalous fading in IRSL signal of feldspar has been also reported by several workers 

(Wintle, 1977; Spooner, 1992; Spooner, 1994; Lamothe and Auclair, 1999; Huntley and 

Lamothe, 2001) and models have been proposed for the fading mechanism (Aitken, 1985; 

Visocekas, 1985; Templer, 1986). The fading has been explained by quantum mechanical 

tunneling (Poolton et al., 2002a; Poolton et al., 2002b; Li and Li, 2008) described by a power 

law decay (Delbecq et al., 1974; Huntley, 2006).  

Recent work using elevated temperature (290 °C) IRSL, after IR bleaching of the sample 

and known as post−IR IRSL (pIRIR290) of K feldspar suggested less fading of the 

luminescence signal (Jain and Ankjærgaard, 2011; Thiel et al., 2011; Thomsen et al., 2011; 

Buylaert et al., 2012). Jain and Ankjærgaard (2011) using the time resolved OSL (TR−OSL) 

attempted to understand decay of feldspar signal due to tunneling.  The various luminescence 

phenomena in feldspar such as luminescence efficiency, thermal partitioning of charge in 

different energy states and the recombination routes were successfully explained by using 

single trap model by them. The detail work by Sohbati et al. (2013) on the IRSL stimulation 

of Na−rich feldspar using IR stimulation at 50 °C, pIRIR stimulation at 290 °C in yellow and 

blue emission suggested that the pIRIR290 in yellow emission is relatively stable, and when 

corrected for fading provided a good agreement with known ages. 
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1.3.5 Age determination (Age equation) 

The estimation of radiation exposure of mineral in the natural environment and the rate at 

which exposure took place, the ratio of these two provide the luminescence age of the 

mineral. The total absorbed dose is estimated by calibration experiments which provide the 

laboratory beta dose that gives the same luminescence as given by a natural sample. This 

dose is termed as the paleodose or the equivalent beta dose (De).  The time (age) since the last 

exposure to heat or light might have happened can be given by  

Luminescence acquired (L) Luminescenceacquired (L)Age(T)
Rate of Luminescence (Luminescence year)

= =  (1.15) 

 
Luminescenceacquired (L)= 

(Luminescence radiation dose) x ( radiation dose year )
  (1.16) 

 
L

(L/d)×(d/t)
=   (1.17) 

 
i i

i

LT =
χ D∑

 (1.18)  

where, i =α,β,γ and c (cosmic rays), χ  = Luminescence sensitivity 

luminescence/radiation dose) and D = dose rate (radiation dose/year). 

The linear energy transfer (LET) of alpha is higher than that of beta and gamma on 

account of higher charge and mass. This leads to a higher ionization density along the 

α−tracks and leads to charge saturation effects such that charge produced exceeds the trap 

available. Thus a major fraction of charge produced is not utilized to increase the level of 

luminescence. Consequently the efficiency of luminescence production per Gy of dose is 

reduced. Beta, gamma and cosmic rays have low LET and hence the luminescence 

production is higher. Thus, 

 cα β γχ χ χ χ≠ = =  (1.19) 

With the above equality the age equation can be modified to, 
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c

PT
aD D D Dα β γ

=
+ + +

 (1.20) 

Where, α βa = χ /χ  is the alpha efficiency factor and βP = L/χ  is the laboratory dose (from 

a calibrated source) that produces the same level of luminescence in sample as by the natural 

dose rate and known as paleodose (P) or equivalent dose (De).  

1.3.6 Evaluation of De 

The basic principle is to compare natural luminescence with the luminescence induced by 

artificial (laboratory) irradiation. Two analytical methods, multiple aliquot additive dose 

method (MAAD) and single aliquot regeneration (SAR) method have been used widely. 

Methods for measurement of De are given in Chapter 2. 

1.3.7 Dose rate 

The amount of nuclear (ionizing) radiation delivered per unit time to a material is called 

dose rate and for dating application is usually expressed as Gy/ka. The dose rate is estimated 

by measuring concentration of natural radioactive elements (U, Th, and K). U and Th 

concentration can be measured using thick source ZnS (Ag) alpha counting whereas 40K is 

estimated by gamma spectrometry. Cosmic rays contribution is computed using the latitude, 

longitude, altitude and the average burial depth and equations as suggested by Prescott and 

Hutton (1994). Details of dose rate calculations are discussed in Chapter 2. 

1.4 Objectives and scope of the Thesis 

The present thesis explored the application of luminescence dating for the dating of 

seismic events. The main objective of the thesis is to ascertain that the zeroing of 

luminescence signal occurs during the seismic events. For this the three types of markers 

were used 1) sand dikes, 2) fault gouge and 3) river terraces and truncated river channels. 

Sand dikes are the direct outcome of seismic events and are of potential to provide the 

timing of the event. However a big difficulty is to make prediction, if the zeroing of signal 

happened. This concern has been addressed in the present work and calculations are being 

reported. Experimental work on the sand dike has been done and the dike samples were 

collected from North east India. 
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Similarly for the fault gouge the resetting of signal has been discussed and results from 

North east India have been presented. 

The samples from Great Rann of Kutch were collected for paleaochannels and based on 

the luminescence studies an attempt was done to reconstruct the past seismic history of the 

region. 

1.5 Chapter−wise details 

Chapter 1: Introduction 

This chapter describes the motivation of work and a brief description of dating methods used to 

date seismic and tectonic events. The basic principles and methodology of Luminescence dating is 

discussed in detail. A discussion on the minerals used for luminescence dating and nature of their 

signal is also presented.   

Chapter 2: Experimental procedures and protocols 

In this chapter details about the instruments used for the measurements in luminescence dating are 

discussed. This include, selection of luminescence emission using different optical filters and 

detection of light along with sample preparation methods and different measurement protocols used to 

estimate radiation dose.  

Chapter 3: Resetting of Luminescence in Sand Dikes 

This chapter discusses the resetting of luminescence signal due to viscous heating of dike 

material. The mathematical model has been discussed and calculations for rise in temperature during 

injection of dike have been described. 

Chapter 4: Luminescence studies of Sand Dikes 

This chapter discusses the results of luminescence studies carried out for samples, collected from 

different sand dikes from the north east India. 

Chapter 5: Resetting of Luminescence in Fault Gouges 

In this chapter a review of earlier work is given for the resetting of luminescence signal in fault 

gouge material. The calculations have been made to show that there is a rise in temperature during the 

rock rupture due to transient heating. This chapter also describes the results of luminescence studies 

carried out on samples collected from Sikkim Himalaya (North East India). 
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Chapter 6: Luminescence studies of tectonic events in Western India 

In this chapter the luminescence studies performed on the samples from Great Rann of Kachchh 

and a model for the landscape evolution during the last 5 ka have been presented. 

Chapter 7: Conclusions and Summary 

This chapter summarizes the results obtained from the present study and also gives the future 

outlook. 
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Chapter 2 

 Experimental procedures and protocols 

2.1 Introduction 

This chapter presents a general discussion of methods and protocols used in the thesis 

along with a description of instruments used. The discussion includes sample collection and 

preparation, measurement techniques, analysis protocols and related aspects.  

2.2 Sample collection and preparation methods 

After freshly exposing the section the samples were collected in specially designed 

cylindrical tubes (~20 cm long and 2.5 cm diameter) made of aluminum or galvanized iron 

(Chandel et al., 2006). Due care was taken during the collection to ensure that the sample did 

not get   any exposure to daylight. In the laboratory, the sample tubes were opened under 

subdued red light conditions and the outer ~ 5 cm from both sides of the tube were used for 
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the dose rate estimation. Central 10 cm portion was chemically processed for luminescence 

analysis. The laboratory equivalent dose ( eD ) were estimated either using fine grain fraction 

(poly mineral) or coarse grain fraction (quartz). The grain size was chosen considering the 

availability of fraction and mean grain size.  A brief description of fine grain and coarse grain 

method is given in section 2.2.1 and section 2.2.2 

2.2.1 Fine Grain Method 

The fine grain method was developed by (Zimmerman, 1971a). In this method fine grain 

fraction (4−11 μm) are extracted after treating the naturally collected sample with 1N HCl 

and 30% 2 2H O  to remove carbonates and organic matter respectively. This is followed by a 

de−flocculation treatment in 0.01N sodium oxalate solution. The de−flocculation helps to 

remove the clay size fraction. Multiple cycles of these steps are needed and at each step the 

samples were kept in ultrasonic bath to facilitate desegregation. Finally, the fine grain 

fraction is extracted by Stokes’ settling method by suspending the sample in 6 cm column of 

alcohol for 1.5 minutes (to remove >11 μm) and for 15 minutes (to remove < 4 μm grain 

size). The 4−11 μm fraction is re−suspended in alcohol and equal volume of ∼1 ml is pipetted 

onto 9.65 mm diameter aluminum discs kept in glass vials of ∼1 cm diameter. These vials 

were then dried at temperature < 50 °C for about 16 hours. Since it is physically difficult to 

extract either quartz or feldspar from this grain size the luminescence signal is cumulative for 

polymineralic assemblages, where the signal is mostly dominated by K−feldspar on account 

of its significantly higher luminescence sensitivity. The use of fine grain luminescence 

implies the use of full age equation and the need to determine the alpha efficiency. This 

implies additional measurements using a vacuum alpha irradiation. Despite the tedium of 

additional measurements, the alpha dose dilutes the uncertainty due to environmental dose. 

2.2.2 Coarse Grain Method  

The method  proposed by Ichikawa (1965) was further developed by Fleming (Fleming, 

1970; Fleming, 1979). The chemical pretreatments here comprise treatment by 1N HCl and 

30% H2O2 as for the fine grain method. After the removal of carbonate and organic matter the 

sample is dried at temperature < 50 °C and sieved to obtain the desired grain size. The quartz 

and feldspar separation is done either by density separation method using sodium 
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polytungstate (ρ = 2.58 gm/ 3cm ) where quartz (ρ = 2.65 gm/ 3cm ) sinks and feldspar (ρ = 

2.56 gm/ 3cm ) floats; or by magnetic separation  (Porat, 2006) using a Frantz Magnetic  

Separator (Model LB−1 of S. G. Frantz Company Inc.). The quartz fraction after separation is 

etched by 40% HF for 80 minutes (equivalent to removal of 15−20 μm alpha skin) followed 

by 12N HCl treatment for 30 minutes to dissolve the fluorides and oven dried at temperature 

< 50 °C for final measurement. Etched, cleaned and dried grains were deposited on stainless 

steel discs of diameter 9.65 mm using silicon oil ( silkosprayTM ). The advantage of using 

quartz is that it has no internal radioactivity and does not suffer athermal fading of its 

luminescence signal but the tradeoff is its lower saturation range. On the other hand the 

feldspar luminescence provides a possibility of both higher and lower dating range due to 

high sensitivity and saturation dose but has the difficulty associated with athermal fading.  

2.3 Measurement of TL and OSL: Instrument 

In the present work for the measurement of luminescence, two instruments Risø TL/OSL 

reader (Bøtter−Jensen et al., 2000) and Daybreak 2200 Reader (Bortolot, 2000) were used. A 

typical TL/OSL reader is an assembly of following units 

 
1. A detection unit (assembly of photomultiplier tube and detection filters)  

2. Stimulation unit (for TL/OSL measurements) 

3. Irradiation unit (for administrating laboratory dose) 

4. A system controller for interface and readout system  

2.3.1 Detection Unit (TL OSL Reader) 

The detection unit is the assembly of photomultiplier tube (PMT) and combination of 

filters placed in its front. The filters enable the selection of the desired band of emission and 

detection (normally UV 370 ± 30 nm for Quartz OSL AND TL) and 470 ± 30 nm for 

Feldspar (Feldspar IRSL and TL). 

2.3.1.1 Photomultiplier Tube (PMT) 

To detect the luminescence signal from quartz/feldspar minerals, a bi−alkali type PMT 

(EMI 9235 QA) is used. The maximum detection efficiency of this type of PMT is ~ 380 nm 
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(Figure 2.1), which makes it possible to detect the entire luminescence signal from quartz or 

feldspar grains in Ultraviolet (UV) to Blue region. For bright samples the photon counts were 

kept < 55 10×  count/second (to avoid pileup effects) by employing either neutral density 

filter or by keeping low power of stimulation source. The sample to PMT cathode distance in 

the Risø TL/OSL luminescence reader is 55 mm, giving a detection solid angle of 

approximately 0.4 steradians (Bøtter−Jensen et al., 2000; Bøtter−Jensen et al., 2003a). 

 

 

Figure 2.1: PMT response curve of quantum efficiency vs. wavelength.  (Bøtter−Jensen et al., 2003a) 

2.3.1.2 Filters 

The emission of luminescence from minerals, like quartz and feldspar, ranges in the 

entire visible region of electromagnetic spectrum, more specifically UV to near Infrared (IR) 

range, after stimulation. The samples are stimulated using Light Emitting Diodes (LEDs) or 

lasers, in general blue (470 ± 30) nm for quartz and 890 ± 80 nm IR for feldspar. The main 

objectives of using a filter combination are (a) to avoid interference from stimulation source, 

(b) to isolate the desired emission band and (c) to reduce the blackbody radiation. To detect 
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emission from quartz samples during OSL measurement a 7.5 mm thick Hoya U−340 (330 ± 

35 nm) filter was used. The emission from feldspar is around 410 nm (Krbetschek et al., 

1997), for which the blue emission was selected using Corning CS 7−59 (390 ± 60 nm) filter 

along with a combination of BG−39 (320−650 nm) filter to cut the IR. The transmission 

spectra of these filter is shown in Figure 2.2. 

2.3.2 Stimulation Unit 

A luminescence sample can be stimulated either by heat (Thermal Stimulation) or light 

(Optical Stimulation). The Risø TL/OSL and Daybreak 2200 Reader both have heating and 

optical stimulation units suitable for quartz and feldspar minerals.  

2.3.2.1 Thermal Stimulation 

A linear heating is obtained by placing the sample on a low−mass heater strip made of a 

Nickel and Kanthal (a high resistance alloy). The heater strip is shaped with a depression to 

provide good heat transmission to the sample and to lift sample disc securely into the 

measurement position. The desired temperature is obtained by feeding a controlled current 

through the heating element. A good control on the temperature of heater strip is obtained by 

mounting a Cromel−Alumel (Cr/Al) thermocouple underneath the heater strip which provides 

feedback to controller for controlling the temperature. The heating system is able to heat 

samples to 700 °C, at linear heating rates from 0.1 to 10 °C/s with step of 0.1 °C/s. The 

heating strip is constantly purged by nitrogen gas which not only prevents the heating system 

from oxidation at high temperatures but also helps in conduction of heat to the sample from 

the heater plate to the grains and quenches spurious non radiative luminescence. In Risø 

reader the precession of the temperature control is < ±4°C and the error in reproducibility of 

heating rate is < 1%. 

2.3.2.2 Optical Stimulation 

For stimulation of quartz and feldspar samples blue and IR LEDs were used respectively. 

Infrared (IR) stimulation in the region 800−900 nm can stimulate luminescence from most 

feldspars (Hütt et al., 1988), but not from quartz at room temperature. For the stimulation of  

 

28 

 



 Chapter 2: Experimental procedures and protocols 
 

 

 

Figure 2.2: (a) Stimulation spectra of IR− LED and the filter combinations used to detect the 
luminescence in blue region and (b) Stimulation spectra of Blue LED and the filter 
combinations used to detect the luminescence in UV region 
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a single grain quartz sample, a green laser at 532 nm was used. The optical arrangement of 

Risø and Daybreak TL/OSL reader are as follows 

Risø TL/OSL reader: In this system, an array of 28 blue LEDs is used. The LEDs are 

arranged in 4 clusters each containing seven of them. The emission wavelength of these 

LEDs is 470 ± 20 nm (Bøtter-Jensen et al., 2003). A long pass green filter (Schott GG−420) 

is incorporated in front of each blue LED cluster to minimize the amount of tail end of 

directly scattered blue light into the detection window (center at 330 nm). The distance 

between stimulation source and sample is ~20 mm. The maximum total power from 28 blue 

LEDs is 80 mW/cm2 at the sample position (Bøtter-Jensen et al., 2003). The IR LEDs, 

arranged in three clusters each containing seven individual LEDs, emits at 870 ± 40 nm. The 

maximum power is ~145 mW/cm2 at the sample position (Bøtter-Jensen et al., 2003). Basic 

component of OSL detection system is shown in Figure 2.3. 

The luminescence from single grains is achieved by stimulating grains kept in rhodium 

plated aluminum disc containing 100 cylindrical holes with 300 µm diameter and 300 µm 

depth, arranged in the form of a 10 by 10 array with 600 µm spacing between hole centers. 

The individual grains are stimulated by using a 10 mW  

Nd:YVO4 solid state laser beam, emitting at 532 nm focused at a spot <20 µm in diameter 

with maximum energy fluence rate at the sample of ~50 W/cm2. The laser spot is steered by 

orthogonal mirrors attached to two programmed high precision motors.  

Daybreak TL/OSL reader: The daybreak system has 20 blue LEDs, arranged in two 

parallel rows each containing 10 LEDs, emitting light at 470 ± 30 nm with maximum power 

60 mW/cm2 at sample position. For IR excitation, 10 LEDs arranged in two rows each 

containing 5 of them are used with the peak wavelength at 880 nm and the maximum power 

delivered to the sample position is 50 mW/cm2 (Bortolot, 2000). 

2.3.3 Irradiation Unit 

2.3.3.1 Risø TL/OSL Reader 

Most experiments were carried out on a Risø TL/OSL TL/DA−15 which has a mounted 

beta irradiator (90Sr/90Y beta source) on the top of the system as shown in Figure 2.3a. The 

distance between the radiation source and the sample is 5 mm. The calibration of the source  
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Figure 2.3: (a) Schematic of TL/OSL Reader, (b) detailed schematic of illumination and detection unit 

from (after Bøtter−Jensen et al., 2003b) 
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on the system using calibration quartz supplied by Risø yielded the beta source strength 

to be 3.29 Gy/min. 

2.3.3.2 Daybreak TL/OSL Reader 

Daybreak−2200 TL−OSL reader has the beta irradiator with source strength of 0.9 

Gy/min as calibrated on March, 2012. The distance between the irradiation source and 

sample is 15 mm. In few cases the beta irradiations were performed using a 20 slots beta 

irradiator manufactured by Daybreak−Nuclear and medical systems. The calibration of 

Daybreak beta irradiator gave a dose rate of 0.061 Gy/sec and 0.041 Gy/sec for Quartz 

(90−150 μm) and fine grains (4−11 μm), respectively. 

For alpha efficiency calculation a six seater alpha irradiator with 241Am  source in 

vacuum was used (Singhvi and Aitken, 1978). 241Am decays with a half−life of 432.6 years 

emitting alpha particles of several energies ranging from 4.76 MeV to 5.54 MeV. However, 

most dominant decay is through 5.48 MeV (85% probability) and 5.44 MeV (13% 

probability) α particle (www.nndc.bnl.gov data). This isotope is commercially available in 

form of 1 µm thick layer backed with 200 µm silver foil and front face protected by 2 µm 

thick gold−palladium alloy protective covering. 

2.4 Measurement of Natural Dose Rate 

The age estimation of natural samples requires the estimation of natural dose rate that 

results in luminescence buildup. Environmental dose rate is the rate at which energy is 

deposited in the sediment from the ambient nuclear radiation flux. Major contributors to 

environmental dose rate are Uranium ( 238 U , 235 U ), Thorium ( 232Th ) and Potassium ( 40 K ). 

The decay schemes for these radioactive isotopes are shown in Figure 2.4 and Figure 2.5. 

Given the large decay time (~Billon years) of these radionuclides the activity of these 

radionuclides over a Million year time scales can reasonably be assumed as constant. 

However in the case of samples with interaction with water there is a reasonable chance of 

the parent/daughter being unsupported and in such case the dose rate becomes time 

dependent. In this case the present activity is used to calculate the evolution of dose rate with  

 

32 

 

http://www.nndc.bnl.gov/


 Chapter 2: Experimental procedures and protocols 
 

 

 
Figure 2.4: Decay schemes of the Uranium series, (a) Uranium−235 and (b) Uranium−238 
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Figure 2.5: Decay schemes of the radioactive series, (a) Thorium−232, and (b) Potassium−40 and 

Rubidium−87 
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Figure 2.6: Ranges of ionizing radiations in natural environment 

 

time and this is folded in with the total dose to compute the age.   The radiation from these 

isotopes is in the form of α, β particles and γ rays (Figure 2.6). Also a small (< 2% )  but 

finite contribution (Mejdahl, 1987) from rubidium ( 87 Rb ) and secondary cosmic rays 

mesons, electrons and gamma rays also contributes to the annual dose rate .  The natural dose 

delivered to sample arises both from the radioactivity within the individual grain and the 

radioactivity in the surrounding matrix. Internal dose rate is ~ few % for coarse grains (>100 

µm) of feldspars (Mejdahl, 1987) but is absent in quartz grains due to its being devoid of any 

internal radioactivity.  The concentrations of U, Th and K in the sample can be determined by 

many experimental techniques such as thick source alpha counters, gamma ray spectrometry 

using germanium detector and thallium activated Sodium Iodide (NaI) scintillation 

spectrometer.   

The annual dose can be  calculated using the conversion factors by (Adamiec and Aitken, 

1998) taking into account the matrix, its grain size distribution, the distribution of 

radioactivity and the fraction that is being used. In present study thick source alpha counting 

technique was used.  

In scintillation counters ionizing particles produce scintillation corresponding to each decay 

of parent to daughter nucleus. The scintillation are then detected and amplified by PMT and 

counted using electronic counting unit. The techniques for the measurement of different 

radioactivity concentration are briefly discussed in next section 
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2.4.1 Measurement of Uranium (U−238) and Thorium (Th−232) Concentration 

The estimation of concentration of U and Th were done by thick source α pair counting 

technique (Aitken, 1985; Appendix J) 

In thick source alpha counting the sample is powdered to less than 10 µm size and 

typically an alpha thick layer (>20 µm) of powdered sample is spread uniformly on a 42 mm 

diameter ZnS(Ag) scintillation screen, positioned in a sealed perspex holder. The detector 

gives total number of alpha counts due to both U and Th, slow pair counts for decay 

series 220 Rn → 216 Po  ( 1/2T  = 0.15 s) and fast pair counts for decay series 219 Rn → 

215 Po ( 1/2T = 0.0018 s). The concentrations of U and Th are proportional to count rate and the 

relationship between count rate and the concentrations of U and Th for the particular 

geometry is discussed in Aitken,1985. In this calculation, it is assumed that the decay series 

of U and Th are in equilibrium. However, disequilibrium may take place mainly due to loss 

of Rn ( =3.83 days) from U−238 decay series. Such cases can be tested using hyper pure 

Germanium (HPGe) detector by measuring γ rays from different members of the decay chain. 

The discrepancy in U concentrations, calculated from the characteristics gamma ray, emitted 

from different radioisotopes before and after Rn of the decay chain decides the 

disequilibrium phenomenon. For the present work all samples showed equilibrium.  

2.4.2 Measurement of Potassium (K−40) Concentration 

To estimate the concentration of Potassium in sediments γ counting is done by using 

NaI(Tl) as scintillator. In this the gamma ray photons emitted by sediment is compared with a 

known standard and concentration is found by comparing the count rate of the two. 

In gamma spectrometry a 3˝×3˝ well type thallium (Tl) activated sodium iodide crystal 

and lithium doped hyper pure germanium crystal were used to measure the K concentration 

in the sample. To measure 40 K concentration, the Compton subtracted photo peak 

corresponding to 1.46 MeV gamma photon emissions were used. The background subtracted 

photo peak is then compared with KCl standards with known concentration. To ensure 

identical geometry for sample and standard a Perspex spacer was used. To reduce the 

232Th
235 U

1/2T

40 K
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background ~6˝ lead shield was used. The resolution of the NaI detector was 4 keV whereas 

HPGe detector had resolution of 0.25 keV. 

2.4.3 Measurement of Cosmic Ray Dose Rate 

Cosmic rays consist of the charged particles which get deflected by earth’s magnetic 

field. In earth’s equatorial region cosmic ray flux is minimum, where magnetic field lines are 

perpendicular to the direction of the charged particle, and in the polar region it is maximum, 

where magnetic field lines are nearly parallel to the direction of the charged particle. Very 

high energetic particle (>GeV) can enter into the earth atmosphere. Most of the cosmic rays 

are absorbed by the earth’s atmosphere. However the secondary particles mainly muons 

contribute to the natural dose rate. These particles show a dependency on altitude and 

geographical latitude due to earth magnetic field. The cosmic dose rate was calculated as a 

function of altitude and latitude using equations as suggested by  Prescott and Hutton (1994). 

2.4.4 Moisture content 

The presence of water in the void spaces affects the dose rate significantly. The water in 

voids does not carry any radioactivity but attenuates the radiation dose from the radioactivity 

in the sediment. Therefore, a correction to the dose rate estimation is made to estimate the 

dose rate correctly. This is calculated considering saturation water content (W) measured in 

laboratory and expressed as 

 
weight of waterW=

weight of dry sample
  (2.1) 

W and a factor F which is the average soil water content as a fraction of this saturation 

water content W is used for the dose rate estimation. It is generally considered to be (0.8 ± 

0.2)W. Using these two factors and the nuclear tables the α, β and γ dose rates are corrected 

as suggested by Zimmerman (1971a) and the dose rates used were calculated as  

  dry

1 + 1.50 W F
DD α

α

•
•

=
× ×

  (2.2) 
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  dry

1 + 1.25 W F
DD β

β

•
•

=
× ×

  (2.3) 

  dry

11 + 1.14 W F
DD γ

γ

•
•

=
× ×

  (2.4) 

W refers to sample and 1W  to soil. 

2.4.5 Alpha efficiency ‘a’ value 

The luminescence efficiency of alpha particles is less as compared to beta and gamma. 

This occurs due to local charge saturation effects and high linear energy transfer by alpha 

particles as compared to beta and gamma ray. The alpha efficiency factor ‘a’ can be 

determined by the formula suggested by Aitken and Bowman (1975) 

 
βa = 

13×s×y
  (2.5) 

Where, S (μm
−2

min
−1

), is the strength of alpha source and β, is the beta dose (Gy) which 

induces the same amount of luminescence as y minutes of alpha dose. There are other 

formalisms for ‘a’ value estimation but overall these provide similar results (Bowman and 

Huntley, 1984).  

2.5 Equivalent Dose ( eD ) 

An important component of the luminescence dating is the estimation of equivalent dose

eD . The equivalent dose eD  is the amount of laboratory beta or gamma dose that produces 

the same amount of luminescence signal, as given by the natural sample or as received by the 

sample due to irradiation in the environment. Aitken (1985) summarizes several protocols 

devised to estimate eD . These protocols take into account the changes in sensitivity 

(Luminescence per unit dose per unit mass) during various readout cycles. These 

measurement protocol include,  Multiple Aliquot Additive Dose abbreviated as MAAD, 

(Aitken, 1985) and Single Aliquot Additive dose abbreviated as SAAD, (Stokes et al., 2000; 

Wallinga et al., 2000; Zhao et al., 2003; Vandenberghe et al., 2004). In these protocols, 
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incremental beta doses are given in addition to natural dose to a set of identical discs and a 

dose versus luminescence growth curve is constructed. The eD  estimate is made by 

extrapolating the growth curve on negative x axis (dose axis). Depending on the sample 

requirement several other protocols like, Australian slide method (Prescott et al., 1993),  

photo transferred thremoluminescence abbreviated as PTTL, (Murray, 1996), thermally 

transferred OSL (TTOSL) by, Wang et al., (2007), Post IR IRSL (Buylaert et al., 2009) etc. 

have been  developed to make the age determination more robust. In these measurements 

different normalization criterion are applied to make the luminescence signal and sample or 

aliquot independent. Some of these are weight normalization, zero glow normalization, 

second glow normalization and short shine normalization. Aitken (1985) provide a good over 

view and assessment of the normalization methods. All these protocols applied to samples 

provide a better estimation of equivalent dose. However single aliquot protocol (Murray and 

Wintle, 2000) is now the most widely and routinely used protocol. 

 Equivalent dose measurement methods can be broadly classified into two categories, viz 

the additive dose method and the regenerative dose method, which are described here. 

2.5.1 Multiple Aliquot Additive Dose Method (MAAD)  

This method was first developed for the Thermoluminescence dating of archeological 

pottery (Aitken, 1985). This method uses several identical aliquots of same sample. In order 

to obtain appropriate , aliquots are divided into several groups, the very first group is used 

for the measurement of natural luminescence (i.e. sample as received) and other groups are 

given increasing laboratory dose (e.g. β1, β2, β3….. βN) over and above the natural signal. The 

luminescence signal thus obtained is plotted against the applied dose and a growth curve is 

reconstructed. The equivalent dose is obtained by extrapolation of the growth−curve to zero 

luminescence intensity (Figure 2.7), and the distance of this intersection point to the origin is 

equal to the . This method assumes that all aliquots have identical radiation history and 

that the radiation response of the sample. This method while ensures against sensitivity 

changes, requires a priori assessment of the nature of the growth curve. Further in MAAD, 

growth curve is extrapolated on to the x−axis; hence the result depends quite significantly on 

the choice of the mathematical function used (linear, exponential or polynomial). In addition 

to this, problem arises when the extrapolation is to be made over a large dose−span, where 

eD

eD
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the growth is non−linear and/or there is a large scatter between the data points. As the 

construction of growth curves involves a large number of aliquots, appropriate normalization 

(discussed in section 2.5.2) is needed. Monte−Carlo simulations by Felix and Singhvi (1997) 

provide practical guidelines for construction of growth curves and extrapolations. 

2.5.2 Normalization methods 

For De measurement in laboratory using MAAD or SAR protocol, the assumption of 

identical environment and dose rate is not completely fulfilled. For example in MAAD 

protocol, the amount of sample number of bright grain in every disc may not same and 

different irradiations are given to different set of discs before the luminescence measurement 

which will cause difference in luminescence sensitivity. Similarly in SAR protocol, same disc 

is being repeatedly used and in each cycle irradiation (variable), preheat and luminescence 

measurement are done which will also cause different luminescence sensitivity at different 

cycle whereas all these protocol aim to measure the luminescence to construct dose response 

curve under identical sensitivity condition. In order to circumvent this problem, several 

normalization methods have been proposed (Aitken, 1985; Jain et al., 2003). The most 

common methods employed are; 

2.5.2.1 Weight normalization 

In this method aliquots are normalized by weight of sample and assume that either all 

grains have identical luminescence output or in every disc, number of effective bright grains 

is equal. Given that individual grains have variable luminescence sensitivity and that in 

general less than few percent of the grains provide a major fraction of luminescence of an 

aliquot, weight normalization often results in a scatter of ~10% or more (Aitken, 1985; Jain et 

al., 2003). 

2.5.2.2 Zero glow normalization 

This method was used initially for TL MAAD protocol (Aitken et al., 1979). A small test 

dose on natural sample is given and luminescence output corresponding to 110 °C TL peak 

which is absent in natural sample due to its short life (of about few hours) is used for the 

normalization of high temperature peak. A correlation between 110 °C TL peak and OSL in 
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quartz (Stoneham and Stokes, 1991) led to the potential of this method  (Stokes, 1994). In the 

present work this method has been used in SAR protocol to correct for the change in the 

 

 
Figure 2.7: Multiple Aliquot Additive Dose (MAAD) method schematic 

 

natural sensitivity during first read out of OSL (Singhvi et al., 2011) and is termed as Natural 

Correction Factor (NCF). 

2.5.2.3 Short shine normalization 

In this method a very short period (0.1 s) OSL signal is recorded before the measurement 

(~40 s recording of OSL). The short pulse deplete the signal by <1%. This method assumes 

that the luminescence sensitivity of first 0.1 s and rest of the OSL decay curve are correlated. 

This method is also used for multiple aliquot where short shine of natural sample take care 

the sample amount and the sensitivity. The applicability of this method is limited in very 

young or dim samples with low natural light levels. 
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2.5.2.4 Post normalization 

This method is widely used in SAR protocol (Murray and Wintle, 2000). After each 

luminescence measurement a small test dose is given to the samples and then luminescence 

due to test dose is measured. The test dose signal at each cycle is the measure of sensitivity at 

each cycle. In the present work, mostly this normalization procedure was used. 

2.5.3 Single Aliquot Regenerative Protocol (SAR) 

The SAR protocol by Murray and Roberts (1997) and by Murray and Wintle (2000) 

suggested the single aliquot regeneration procedure for OSL signals.  In this method each 

disc (single aliquot) or each grain (single grain) provides one equivalent dose. This method 

improves the dose precision by combining measurements of several discs or grains and 

provides statistical firmness.  

In SAR method De is estimated on a single aliquot by recording its natural luminescence 

and then a regeneration growth curve generated by giving incremental beta dose. The 

intensity of natural sample is then read on the regenerated growth curve to obtain De as 

shown in Figure 2.8. In this method choice of signal and pretreatment to get that signal are 

important. At each stage a sensitivity measurement is included to ensure that any lab induced 

sensitivity is corrected for. For example OSL−SAR in quartz a preheat of 160−300°C is 

given to remove the unstable trapped electrons, which has lifetime less than or nearly same of 

age of the sample and first ~0−0.8 second of OSL signal is used for De estimation (Murray 

and Wintle, 2000). The natural and regenerative OSL measurements are carried out at 125 °C 

in order to keep the 110 °C trap empty during the OSL stimulation (Murray and Wintle, 

2000). Table 1 gives the details of SAR protocol, which was used. The specific details of the 

protocols, used for different samples will be described in the corresponding section. 

2.5.4 Natural Correction Factor (NCF) 

During the measurement of OSL in SAR protocol the changes in the sensitivity occurring 

in each regeneration cycle are taken care off by normalizing the signal with successive test 

dose OSL. Normalization in SAR protocol holds good if any OSL measurement and 

consecutive test dose OSL are measured under identical sensitivity condition or same factor 

of sensitivity change takes place during these two consecutive measurements for each cycle. 
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But natural OSL is measured in laboratory sensitivity condition whereas immediate test dose 

OSL is measured under laboratory condition. The conventional SAR protocol (Murray and 

Wintle, 2000) has in−built 

 

 

Figure 2.8: Single aliquot regeneration method, sensitivity corrected luminescence is plotted 
against the incremental doses (R1, R2, R3….). De is measured by interpolating the 
(LN/TN) on to the dose axis (Murray and Wintle, 2000) 

 

assumption of no change in sensitivity during natural OSL readout. However during the 

measurement of natural OSL (first OSL measurement), sensitivity change can happen 

(Singhvi et al., 2008). 

To overcome this problem (Singhvi et al., 2010), introduced a modified SAR 

(NCF−SAR) protocol. In this protocol the additional steps are, before and after the natural 

OSL measurement a test dose TL up to 200°C is measured and the ratio of these two TL peak 

(after/before) is then multiplied with the natural point (LN/TN) and the modified sensitivity 

corrected natural point is the interpolated on the regeneration growth curve. The detail of the 

protocol is discussed by Singhvi et al. (2011). 
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Table 2.1:Single aliquot regenerative protocol (Murray and Wintle, 2000) 

Step Treatment Observation 

1 Preheat (160−300 °C) / 10 (s)  
2 OSL (Natural) LN 

3 Test dose  
4 Cut heat (160 °C) / 10 (s)  
5 Test dose OSL TN 

6 Illumination (240−280 °C) / 100 (s)  
7 Regeneration dose (R1)  
8 Preheat (160−300 °C) / 10 (s)  
9 OSL (R1) L1 

10 Test dose  
11 Cut heat (160 °C) / 10 (s)  
12 Test dose OSL T1 

13 Illumination (240−280 °C) / 100 (s)  
14 Go to step−7 and repeat it for R2, R3……  

 

 

 

Figure 2.9: NCF correction factor model after (Singhvi et al., 2011) 
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Figure 2.10: (a) Histogram for the sample JR−4 (Jira village), (b) Radial plot of JR−4. Shaded 

region is the band of 2σ on the y−axis and (c) Probability density plot for the same 
sample 

 

(b) 
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2.6 The nature of Distribution in De with in a sample 

When the SAR protocol is repeated for number of aliquots for single event, each aliquot 

provide a De value which is slightly different from other, resulting into the distribution of De. 

There could be several causes for this distribution of De for a single event e.g. partial resetting 

of the luminescence signal, heterogeneous distribution 40K hotspot within the matrix (Mayya 

et al., 2006) or because of experimental variation. To have the knowledge of degree of 

scattering in De values, a pictorial representation is necessary. Several methods have been 

proposed in order to visualize the distribution, as follows. 

2.6.1 Radial plot 

A radial plot is a graphical representation of De values (Galbraith, 1988; Galbraith, 1990), 

especially for comparing several estimates which have different precision.  

Figure 2.10b shows the radial plot of the same sample. The X−axis represents the 

precision, expressed in relative error (%). The Y−axis is the standardized estimates of De, 

which is, 

 log( )′−
′

eD w
E

 (2.1) 

where, w´ is weighted average of all the aliquots, and E´ is the standard error of logDe. 

Equivalent doses are statistically consistent at the 2σ level are easily recognized, as these fall 

within the shaded band. 

2.6.2 Probability Density Plots 

In this a Gaussian can be simulated for Each De value with an error associated with it as 

standard deviation. For N number of De will N Gaussian are simulated. The average Gaussian 

is constructed and represented as probability density plot (Figure 2.10c). Recent work by 

Chauhan and Singhvi (2011) suggested that the dose visualization methods such as radial plot 

and histograms may not be sufficient to draw inferences on the proper causes for the 

distribution in the paleodose and few other checks might be helpful. They suggested using 

the ratio (R) of maximum to minimum paleodose to account for the beta heterogeneity due to 

radioactive potassium in the sediment matrix as an additional proxy. A ratio R ≥ 10 would 
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then imply sources of paleodose distribution (such as poor bleaching) other than the K 

heterogeneity, and a ratio less than 10 would imply well bleaching of the sample and mean 

De would give the correct age of the event. The minimum number of aliquots required for the 

estimation of De will also depend on the amount of radioactive potassium in the sediment 

matrix. As suggested for K = 3%, minimum 24 aliquots would be needed to have a dose 

within ± 5% range of the actual value. 

2.7 Estimation of errors in TL/OSL measurement 

The errors in a luminescence age can be divided into two groups as in other standard 

cases, a) random errors and b) systematic errors. Random errors are those that comprise error 

in estimation of eD , error in a−value, error in spectrometric measurement, in the computation 

of the annual dose and arise due to statistical fluctuation in photon counting, scintillation 

counting etc. Systematic errors are those that comprise error in the calibration of the alpha 

and beta source, error in calibration of alpha and gamma counters, parameters used in 

converting the U and Th concentration to dose rate, error in water content etc. The error 

estimation in the present case was based on the calculation proposed by Aitken (1985) and 

Murray and Olley (2002) . The error quoted in TL/OSL ages are normally at 1 sigma level. 
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Chapter 3 

Resetting of Luminescence in Sand Dikes  

3.1 Introduction 

Injection dikes have been seen in a wide range of geological settings, and are 

consequence of injection of host material through the overlying sediment layers due to 

pressure difference induced by the passage of Rayleigh waves, produced by earthquakes. 

Earthquakes of magnitude M > 5 can produce liquefaction (Atkinson, 1984; Allen, 1986; 

McCalpin, 1996; Galli, 2000; Castilla and Audemard, 2007) and can result in the form of 

sand dikes few tens of mm to meter height.  Even though their final forms are similar at 

different locations,  there are uncertainties about their formation and associated processes 

(Aspler and Donaldson, 1985).  

In terms of their chronology, isolated attempts have been made to date these injected 

dikes using luminescence dating technique (Porat et al., 2007; Mahan and Crone, 2008). 
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Porat et al. (2007) used OSL to differentiate between depositional and injection dikes and 

found that the ages in case of injection dikes were lower compared to the source layer 

suggesting that the dike injection event caused some reduction of luminescence. The age for 

source layer was 33.9 ± 2.0 ka and that of injected material ranged from 12.1 ± 1.1 ka to 13.5 

± 1.1 ka. This significant difference is possible only if these sand dikes have been exposed to 

sun light or have undergone heating to reset the TL/OSL clocks. There is no evidence that 

injected materials have been exposed to sunlight as they reside in subsurface. Besides, 

absence of evidences of mineralogical changes in the injected material due to an extended 

thermal regime and lowering of the luminescence signal lead us to postulate possible flash 

type heating which would rest the TL/OSL clock during the injection of the dike (Singh et al., 

2009). This concept proposed that viscous flash heating during  the injection of  sand dikes 

results in resetting of luminescence signal to yield the results as obtained by Porat et al. 

(2007). Following the initial work of (Singh et al., 2009), we considered the possibility of 

heating during the injection process on account of injection speed and friction between 

sediment grains leading to viscous heating. In the geological literature, viscous heating has 

been invoked to explain a wide variety of geological processes, such as mantle convection 

models, lithospheric delamination, plateau uplift, subduction, continental collision, shear 

zones, and microstructure (Ranalli, 1995; Schubert et al., 2001). The role of frictional 

heating, also termed as viscous dissipation has been used to define the total heat budget 

required for the metamorphism process beneath the earth surface (Graham and England, 

1976; England and Thompson, 1984; Burg and Gerya, 2005). Burg and Gerya (2005) have 

recently discussed the role of viscous  heating in the modeling of metamorphism of 

collisional orogens in Central Alps. In this chapter an attempt has been made to estimate the 

temperature rise in liquefaction process due to the viscous heating of sand material. 

3.2 Mechanism of Dike Formation 

Vertical injection of a fluid requires high pressure difference and a medium to act as 

lubricant. These requirements are fulfilled when a sandy layer with sufficient pore water is 

sandwiched in two layers of high cohesiveness layers of clay. When a cyclic stress during 

earthquakes is applied to such a system, the water mixed sand layer intrudes into the clay 

layer and forms sand dike (Seed, 1979; McCalpin, 1996). Shearing stress   increases the pore-
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water pressure and this result into the liquefaction (Mohindra and Bagati, 1996; Moretti, 

2000; Rodrı́guez−Pascua et al., 2000). Thus a dike can be considered an example of a natural 

hydraulic fracture (Lorenz et al., 1991; Cosgrove, 2001). The intruded material is locked into 

the fractured zone after the dissipation of excess pressure. The process of dike formation can 

be explained in three steps: (1) a build-up of an excess fluid pressure in a sand body; (2) 

failure of the seal i.e. fracturing of upper clay layer; (3) subsequent fluidization of the 

unconsolidated sand and injection into host sediments (Jolly and Lonergan, 2002). Two 

models for the injection dikes have been proposed viz., a) channel flow model and b) crack 

dilation due to injection of material (Levi et al., 2008). In the channel flow model, the dike is 

injected due to the pressure gradient (higher pressure at the source layer and lower pressure 

towards surface). As shown in Figure 3.1 this can be represented by following equation 

 

( ) ( )out in
f r

P  - PdP = + ρ - ρ  g
dx 2l   (3.1) 

 

 

Figure 3.1: schematic representation of upward flow of dike and b) dialation profile of dike (after 
Levi et al., 2008) 

 

Where 2l is the dike height, ρr is the density of host material and ρf is the fluid density 

i.e. density of material injected as dike, Pin is the pressure at source layer and Pout is the 
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pressure at 𝑥 =  2l. For the dikes which are exposed at the surface, Pout is same as the 

atmospheric pressure and it will be the lowest magnitude of the pressure.  

Equation (3.1) with appropriate boundary (Levi et al., 2008) can be solved to obtain the 

pressure at the source layer to be  

 
1.75 3

f r o3 utρ  ρ lg+P
0.0791

P 2( )
4

e f
in

R l
w

ν ρ
−= +   (3.2) 

In above equation Pin is the pressure at source layer, Pout is the pressure at the depth where 

dike terminates, Re is the Reynolds number, w is the half width of the dike, ρr, ρf  are the 

density of host material and the fluid, 2l is the height of the dike and g is acceleration due to 

gravity.  

The channel flow model assumes the source layer as the pressure reservoir. This means 

for the injection of the material through the overlying layers sufficient pressure is available. 

This assumption leads limitation on the Pout. The magnitude of Pout will increase in proportion 

to the mixture viscosity, and will decrease in proportion to the channel width. For example if 

the channel width w1>w2 then the Pout corresponding to width w1 will be less for the same 

amount of the pressure at the source layer. 

In the dike dilation profile a correlation between opening profiles and existing pressure 

gradient was assumed, just before the injection process ceased. This model takes into 

consideration that a fracture was already in existence and the only pressure difference was 

needed was for the injection of the material. With this assumption the pressure gradient in the 

model was assumed to be comparable to the fluid pressure in the dikes.  

Based on this the estimation of driving pressure and the injection velocities were done. 

For channel flow model, the injection velocity estimates were made for different dike widths 

and for kinematic viscosities 3×10-3 and 15×10-3. The injection velocities found to be varying 

from 0.2 to ~ 250 m/s and the corresponding pressure at source layers varied from ~0.2 to 

~65 MPa. The estimates show injection velocity of ~10m/s with injection time of 0.1 to 2 

seconds for a dike of height of ~18 m, with driving pressure 1 MPa.  
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3.3 Resetting of luminescence 

In luminescence dating, the dated events are the most recent heating or most recent light 

exposure. Therefore, for a robust age estimate of dike formation event, it is necessary to 

ascertain that the luminescence signal is either reduced to zero or near zero level during the 

injection of dike.  

Based on the comparison of luminescence ages from filled dike, injection dike and host 

rocks Porat et al. (2007) proposed the possibility of resetting of OSL signal in dikes. The 

Resetting of luminescence signal during dike formation has not been explored as yet. 

Eddingsaas and Suslick (2006) suggested that a shock wave that accelerate the micrometer-

sized particles to high velocities leads to the interparticle collisions and create similar effect 

as mechanoluminescence and can reset the luminescence signal. In sand dike formation the 

injected material also faces the cyclic stress which may result in collision of quartz grains and 

thereby reducing the luminescence (Levi et al., 2008).  

We have analyzed  an alternative way of thermal resetting via the effect of viscous 

heating of the sediment grain during dike injection and, extended the initial concepts of   

Singh et al. (2009) and then examined these via field studies ( discussed in Chapter 4) 

3.3.1 Equation for Heat Dissipation in a fluid 

When stress is applied to a fluid the dissipation of shear strain due to the viscosity of fluid 

takes place which causes the local viscous heating of the fluid material (Singh et al., 2009). 

This process has been observed in various areas of science and engineering. When a 

deviatoric stress is applied to a fluid the fluid parcel is distorted and strain is generated. The 

strain rates are a measure of how fast the three components of velocity change in each 

direction. The strain rate tensor of a fluid parcel under the influence of deviatoric stress is 

given by 

 
1
2

ji
ij

j i

uue
x x

 ∂∂
≡ +  ∂ ∂ 

  (3.3) 
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Where ui and uj are the velocity components and xi, xj are position coordinates of the point 

under observation in fluid parcel. For an isotropic Newtonian fluid the relation between 

deviatoric stress and strain rate tensor can be give as  

 2ij ij kke e ijτ µ λ δ= +   (3.4) 

Where δij is the Kronecker delta, δij is 0 if i≠j and 1 if i=j, μ is dynamic viscosity, λ is 

second viscosity. The second viscosity is small in most of fluids and can be considered as 

zero (Rosenhead, 1954). 

The deviatoric stress is a second rank tensor and the average of normal deviatoric stress on 

three mutual perpendicular planes in the fluid is the average of the diagonal elements of the 

stress tensor therefore from equation (3.4) we have, 

 ( )1 22 3
3 3 3
ii

ii ii ii B iie e e k eτ µ λ µ λ = + = + = 
 

  (3.5) 

Here Bk  is the bulk viscosity and is a measure of compression or dissipation due to 

applied stress. Inserting equation (3.5) in equation (3.4) and substituting the value of eij from 

equation (3.3) leads to, 

 
2 22
3 3

ji k
ij ij B kk ij B ij

j i k

uu ue k e k
x x x

τ µ µ δ µ µ δ
 ∂∂ ∂   = + − = + + −     ∂ ∂ ∂    

  (3.6) 

Equation (3.6) is the general form of deviatoric stress for a fluid under consideration. The 

viscous dissipation of energy (viscous heat) due to the deviatoric stress is, 

 i
ij

j

u
x

φ τ ∂
≡

∂
  (3.7) 

Therefore the heat dissipated for a Newtonian1 fluid can be obtained by substituting 

equation (3.6) into equation (3.7) and is  

1 A fluid for which viscous stresses that arise from its flow, at every point, are proportional to the rate of 
change of its deformation over time 
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2 2
1 12
2 3

ji k i
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j i k i

uu u uk
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φ µ δ
  ∂    ∂ ∂ ∂ = + − +      ∂ ∂ ∂ ∂      

  (3.8) 

 This is general expression for viscous heating  assuming the medium as incompressible 

and homogeneous fluid with constant density, specific heat and thermal conductivity 

(Schubert et al., 2001). 

3.3.2 Viscous Heating in Sand Dikes 

Viscous heating due to the applied stress on a fluid is given by equation (3.8). For an 

incompressible fluid flowing in vertical direction, the boundary conditions are  

 0, 0ji

i i

uu
x x

∂∂
= =

∂ ∂
  (3.9) 

with these boundary conditions equation (3.8) yields  

 
2 2

2 2
i

j

u u
x y

µ µ   ∂ ∂
Φ = =    ∂ ∂  

  (3.10) 

Where u is vertical velocity and y is horizontal coordinate. For a simple Poiseuille flow 

with central velocity as umax , and adopting model Fujii and Uyeda (1974) for infinitely long 

tubes for thermal point of view we have 

 
2

max

2
u

w
µ  Φ =  
 

  (3.11) 

Where w is the half width of the dike. Equation (3.11) is the total heat generated due to 

viscous heating during the injection of the dike. 

3.3.3 Rise in temperature during injection of a sand dike 

The general heat conduction equation is  

 
2

2

T Tc K
t x

ρ ∂ ∂
= +Φ

∂ ∂
  (3.12) 
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Where Kc  and ,ρ are density, heat capacity and thermal conductivity of fluid (sand dike), 

t is time and x is spatial coordinate perpendicular direction of injection of sand dike. The rise 

in temperature during injection of dike can be obtained by solving equation (3.12). 

In order to calculate the local temperature it is assumed that the heat generated by the 

viscous heating, will not be dissipated far away from the heat source (as the sand is not a 

good conductor of heat). We thus can drop the first term in right hand side of equation (3.12) 

and the rise in the temperature is given by 

 dTc
dt

ρ = Φ   (3.13) 

Substituting the value of Φ  from equation (3.11), rise in temperature  T∇  is 

 
( )2

2max
max

/ ( / )2
2

u w u wT t t
c c

µ
ν

ρ
∇ = ∇ = ∇   (3.14) 

( / )ν µ ρ= is the kinematic viscosity in above equation. 

 

Table 3.1: Soil Profile Type Classifications reproduced from International Building code Council 
(2009) 

Soil Profile 
Type Soil Profile Name Average Shear-Wave Velocity 

to 30-m depth (Vs) 
A Hard Rock Vs > 1524 
B Rock 762 <Vs< 1524 
C Very dense soil and soft rock 366 < Vs< 762 
D Stiff soil profile 183 < Vs< 366 
E Soft soil profile Vs < 183 

 

Maximum channel velocity i.e. maxu for sand dikes generated by fracturing is about half 

of the Rayleigh wave velocity (Freund, 1998). The Rayleigh wave velocity is equal to 0.92 of 

the shear wave velocity. Shear wave velocity, sV is of the order of 1500 m/s in hard rock and 

760 m/s in compact soil layer as determined by seismological investigation (Table 3.1). 

Taking the boundary limit value for soil profile type C and D the shear wave velocity 366 

m/s would result into 168 m/s of channel velocity. We shall consider a channel velocity 

55 

 



 Chapter 3: Resetting of Luminescence in Sand Dikes 
 

towards lower side 50 m/ss. Heat capacity c  can be estimated by combining the heat capacity 

of sand and water and the porosity. Taking the heat capacity of sand as 800 J/Kg-K and heat 

capacity of water as 4180 J/Kg-K, we get the heat capacity of the sand dike for 30% porosity 

as 1814 J/Kg K. 

Levi et al. (2008) estimated the value of kinematic viscosity as 04(0.3 1.5) 10−− × m2s-1. 

However if material is injected at depth, it would be desirable to use the values of kinematic 

viscosity under confining pressure.  

 

 

Figure 3.2: Temperature rise during injection of dike 

 

The experimental measurement of the kinematic viscosity was done by Kawamura et al. 

(2002). Their laboratory experiments simulated the liquefaction under confined pressure. The 

dynamic viscosity for various confining pressures and as a function of time since liquefaction 

starts, were measured experimentally. Based on their experimental results we have 

considered a lower value of kinematic viscosity as 1.0 m2s-1. The other input parameters are 
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dike width mw 05.02 =  and injection time 0.4t s∇ = . The rise in temperature from equation 

(3.14) is 

  ~ 440T∇ = K  (3.15) 

 

 

Table 3.2: Rise in temperature for a combination of different channel velocity and dike width, for 
kinematic viscosity 1 m2/s and injection time 1 second 

Max. Channel 
Velocity (m/s) 

Dike width (m) 

0.05 0.10 0.15 0.20 0.25 0.30 

10 44 11 5 3 2 1 

20 176 44 20 11 7 5 

30 397 99 44 25 16 11 

40 706 176 78 44 28 20 

50 1103 276 123 69 44 31 

60 1588 397 176 99 64 44 

70 2161 540 240 135 86 60 

80 2822 706 314 176 113 78 

90 3572 893 397 223 143 99 

100 4410 1103 490 276 176 123 
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Which implies the final temperature after the injection will be ~470 °C when the 

background temperature of the material before injection is 30 °C. Table 3.2 shows the 

estimated rise in temperature for various channel velocity and dikes of different widths. We 

have considered   m2/s and injection time of 1 second.   

3.4 Discussion 

In present study we considered the likely role of viscous heating in resetting TL clocks of 

sand dikes material emplaced by earthquakes. The most crucial considerations are the 

velocity of dike emplacement and the viscosity of the sand dike materials. Sub-surface sand 

mobilization studies show that the viscosity would depend on confining pressures and also on 

time scale at which liquefaction takes place. Figure 3.2 shows the estimated rise in 

temperature during the injection of dike of different width and velocities, using the proposed 

model of viscous heating.  It is evident from the Figure 3.2 that a temperature of 450 °C 

could be achieved under confining pressure for a value of kinematic viscosity of 1 m2/s.  

 

 
Figure 3.3: Schematic of rise in temperature and its dependence on channel flow. Maximum channel 

flow of the injected material will be at the center of the dike, and will therefore result into 
the maximum viscous heating of the material. The flow velocity at the edge of the dike 
will be minimum and thus may lead to partial resetting of the luminescence in the material 
near to edge of the dike 
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Kawamura et al. (2002) suggested that the value of kinematic viscosity is ~14 m2/s for 

confining pressure as low as 0.05 MPa. This suggests that heating of up to 450 °C is possible 

in the dike of size several tens of cm. Such a rise in temperature will reset the TL clocks of 

the quartz grains. In our present model we have not considered the effect of transfer of heat 

energy away from the heat generation point. 

In the present model a linear channel flow of dike injection was used, assuming the 

maximum channel flow at the center of the dike and minimum at the edge. As shown in 

Figure 3.3 the maximum amplitude rise during the injection of dike is at the center of the dike 

(gray color shaded zone), as the injection velocity at the edge is minimum the rise in 

temperature would be less. In view of this sample for the luminescence measurements have 

been collected from the best possible proximity of the center of the dike, where probability of 

resetting of signal is higher.  

We have shown by taking conservative values of the parameters occurring in viscous 

heating that temperatures rise would be sufficient to reset the TL clocks of quartz grains 

during the formation of sand dikes. It is also suggested that the samples for the luminescence 

measurements should be collected from the center of the dike where probability of resetting 

of luminescence signal will be more. 
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Chapter 4 

Luminescence Studies of Sand Dikes 

4.1 Introduction 

Northeast India is seismically one of the six most active regions of the world and is 

placed in zone 5 falling in the highest seismic zone in India (BIS, 2002). The North-Eastern 

region of India is bounded by Himalayan mountain belt in the North, the  

Indo-Myanmar Range limits the East and the mighty Brahmaputra forms the Assam 

plain. The region has experienced several earthquakes (M >7) during the last hundred years 

as shown in Table 4.1 (Tiwari, 2002). The high seismicity in the region is attributed to the 

collision tectonics, between the Indian plate and the Eurasian plate in the north and 

subduction tectonics along the Indo-Myanmar range (IMR) in the east (Dewey and Bird, 

1970; Molnar and Tapponnier, 1975; Molnar and Tapponnier, 1977; Rao and Kumar, 1997). 
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Major faults which remained active in the North-East region as reported by the 

Geological survey of India (Report, 2009) are, the basement faults consisting of E-W Dauki 

Fault along southern margin of the Shillong plateau NW-SE fault to the west of Shillong 

plateau, the Mikir Hills; NE-SW belt of imbricate thrusts over the northern part of Naga-

Patkai range, the E-W and NE-SW frontal Himalayan thrust belt, the NW-SE Mishmi Thrust 

along Lohit foot-hills over the N-E Himalayan syntaxis, probable north-easterly extension of 

NE-SW Calcutta-Mymensing gravity high to the south of the North Cachar Hills through 

Cachar district.  

Towards understanding the seismicity of North-East India region several workers used 

the liquefaction features associated with the earthquake events (e. g. Sukhija et al., 1999; 

Sukhija et al., 2000; Thomas et al., 2007b; Reddy et al., 2009).  

In the present study the attempt was made to understand the applicability of luminescence 

dating to the liquefaction features (sand dikes). The samples were collected with the help of 

Dr. Devender Kumar from National Geophysical Research Laboratory, Hyderabad. 

4.2 Study Area 

The study area is located in Upper Assam, Northeast India. The samples were collected 

for the sand dikes from five sites namely Bedabari (26° 00’ 32.1”N, 90° 39’ 20.7”E), Belta 

Ghat (26° 00’ 16.5”N, 90° 39’ 7.1”E), Jira (25° 57’ 37.2”N, 90° 38’ 21.6”E), Nam Gaon (26° 

13’ 10.6”N, 92° 26’ 57.4”E) and Kakoti (26° 12’ 14.2”N, 92° 31’ 48.8”E). The map of the 

study area is shown in Figure 4.1. The shallow water table in the region and ongoing 

tectonics leads to the deformation of soft sediments giving rise to the variety of sand dikes. 

Non availability of surface trace of the faults in the area makes it important to use the 

paleoliquefaction features (sand dikes) to reconstruct the past seismic history. Several sand 

dikes as well as multiple sand dikes were reported to be seen in the area after 1897 

earthquake (Oldham, 1899; Sukhija et al., 1999). The reported thickness and height of the 

sand dikes in the area was up to 30 cm and >1 m. In few cases the sand water was ejected to 

the height of 3-5m (Sukhija et al., 1999). Similar observation of liquefactions were reported 

by Reddy et al. (2009) in connection with 1905 Assam earthquake. 
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4.3 Luminescence Studies of Sand dikes 

In the present work the quartz extracted from a suit of 47 samples collected from sand dikes, 

source sand and host layers were analyzed by using the OSL method. The samples were 

tested for the dose recovery and preheat plateau to check the suitability of the SAR/NCF 

SAR protocol. Figure 4.9 shows the TL glow curves of quartz extracted from dike and host 

from Bedabari, Kakoti and Jira sites. A distinct peak at 300°C was observed for all samples 

along with a peak at 325 °C in all samples except for Bedabari site, in which the peak 

intensity is low and was overshadowed by the 300 °C peak. After giving 65.8 Gy beta dose in 

laboratory three peaks were observed in the same samples. The peaks were centered at 240 

°C, 300 °C and 325 °C. The OSL response of the quartz is correlated with the 325 °C TL 

peak. The stability of higher temperature peak in range 200−450 °C, was tested by plotting 

Table 4.1:List of major earthquakes in North East India 

 
Place Year Magnitude 
Cachar March 21, 1869 7.8 
Shillong plateau June 12, 1897 8.7 
Sibsagar August 31, 1906 7 
Myanmar December 12, 1908 7.5 
Srimangal July 8, 1918 7.6 
SW Assam September 9, 1923 7.1 
Dhubri July 2, 1930 7.1 
Assam January 27, 1931 7.6 
Nagaland 1932 7 
N-E Assam October 23, 1943 7.2 
Arunachal July 7, 1947 7.5 
Upper Assam July 29, 1949 7.6 
Upper Assam August 15, 1950 8.7 
Patkai Range, Arunachal 1950 7 
Manipur-Burma border 1954 7.4 
Darjeeling 1959 7.5 
Indo-Myanmar border August 6, 1988 7.5 
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the ratio of N/ (N+β) with respect to the stimulation temperature. It is evident from Figure 4.6 

that the TL signal of these samples is stable in temperature range350−450 °C showing a 

plateau in this temperature range. 

 

 
Figure 4.1: Location map of the study area. The sites Bedabari, Beltaghat are close to the Krishnai 

river and Jira is near the Mora Krishna river (dead river). The other sites Kakoti and 
Namgon are close to the Kopili River  (modified after Sukhija et al., 1999) 
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4.3.1 Extent of heating 

The extent of thermal resetting in the dike samples was tested by using the step wise 

heating method. It was observed that the 110 °C TL peak of quartz is sensitized after the 

repeated cycle of irradiation and heat (Zimmerman, 1971b; Rink et al., 1999). The protocol 

used for this experiment is shown in Figure 4.2.  The TD response of TL 110 °C peak for 

dike and host layer samples from Bedabari site is shown in Figure 4.3a. 

 

 
Figure 4.2: Flow chart for the measurement protocol for the monitoring of 110 ℃ TL peak of quartz 

(Step wise heating). 

 

It was observed that the sensitization in the dike sample is more as compared to the host layer 

samples.The normalized TL response of 110 °C peak after The TL sensitivity change in step-

wise heating method for sand dike and host layer samples collected from sites Bedabari, 

Beltaghat, Jira and Kakoti are shown in Figure 4.3(a), (b), Figure 4.4(a) and (b). Rink et al. 

(1999) used the stepwise heating experiment on quartz samples to see the change in 

sensitivity of the 110 °C peak of quartz and to estimate the extent of heating in quartz 

samples based on the laboratory preheat experiments. It was observed that the sensitivity of 

110 °C quartz peak does not show any significant change in the sensitivity if the preheat 

temperature is less than the temperature already experienced by the sample. After that the 

64 

 



 Chapter 4:Luminescence Studies of Sand Dikes 
 

significant increase in the TD response of TL 110 °C peak was observed. In present case the 

sensitivity of 110 °C  TL peak does not show any significant change up to preheat cycle of 

300 °C (Figure 4.3). For Bedabari site it was observed that the increase in sensitivity started 

in temperature range 350-400 °C suggesting that the dike samples have faced heating 

between 350-400 °C. Similarly for the Beltaghat the TL sensitivity started increasing in a 

temperature range 350-400 °C. This suggested that the dike samples from the Beltaghat site 

also have faced heating at least up to 350 °C. 

TL sensitivity of dike samples was found to be increasing significantly in temperature ranges 

350-400 °C for the samples collected from Jira, Namgaon and Kakoti site. In all cases it was 

observed that the TL sensitivity after preheat temperature of 300 °C, became twice of the 

sensitivity at first preheat cycle and seven to ten times after preheat of 350 °C. These 

observations suggested us to infer that in present case all dike samples have at least 

experienced heating up to 350 °C. As discussed in Chapter 3, the only possibility of this 

heating in case of sand dike is viscous heating which might led the temperature to increase 

>350 °C and will result in the resetting of the luminescence signal in sand dikes. In another 

experiment to find the extent of possible heating of dike sample a preheat experiment was 

done for host layer samples. In this experiment the sample from the host layer was preheated 

at different temperature (200, 300 and 350 °C) for 10 second and the TL response of higher 

temperature peak (300-400 °C) was recorded. The results obtained are shown in Figure 4.5. It 

was observed that preheat of 250 °C reduce the level of natural luminescence in host layer 

sample equivalent to the natural luminescence signal in dike. This indicated that in dike 

samples the heating was > 250 °C (Figure 4.5a) .For the samples collected from Kakoti sites, 

it was observed that the >300 °C temperature is required to bring the natural luminescence 

from host sample to the natural luminescence equivalent in dike samples (Figure 4.5b). 

4.3.2 Age Estimation  

The typical OSL decay curves, growth curves and dose recovery curves for two of the 

representative samples from Kakoti site are shown in Figure 4.7 (a), (b), (c) and (d). The dose 

recovery of all samples was within ±10%. Figure 4.8 shows the preheat plateau for samples 

KKT-1 and KKT-17, the stable value of De was observed for preheat temperature ranging  
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Figure 4.3: (a) Sensitivity change in 110 °C peak of quartz from dike and host samples for Bedabari 

and (b) Beltaghat sites 
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Figure 4.4: (a) Sensitivity change in 110 °C peak of quartz from dike and host samples for Jira and (b) 

Kakoti sites 
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Figure 4.5: Effect of preheat on higher temperature TL peak for samples from (a) Beltaghat site and 

(b) Kakoti site 
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from 200-260 °C. Typical SAR growth curves of quartz extracted for KKT−16, KKT−17, 

NG-3, NG-7, BG2 and BG-4 are shown in Figure 4.10(a-f). The regeneration curves were 

constructed using the standard protocols SAR and NCF-SAR as discussed in chapter-2. A 

comparison of NCF corrected De (Mean and Minimum+2σ) and without NCF correction is 

shown in 

Table 4.2. The De values without NCF correction show a larger distribution as compared to 

those obtained after NCF correction. Figure 4.11 shows the comparison of De distribution 

(histogram) for samples KKT-1 and KKT-14 with NCF correction and without NCF 

correction. 

The distribution in the De values after NCF correction indicates the extent of partial resetting 

of luminescence signal during the resetting event. All samples were examined for the dose 

distribution by using the radial plots and histograms. The histograms for the samples were 

constructed using the bin size from the median of the errors of the doses. Typical radial plots 

and corresponding histograms for few samples are shown (Figure 4.12 to Figure 4.15). In 

view of the partial resetting of luminescence signal the ages were computed by using the 

minimum+2σ values (in most of the cases the least 10% and minimum+2σ values were 

similar or within the error range of each other).The details of the radioactivity data, water 

content, SAR ages obtained are shown in Table 4.1. A short discussion on the luminescence 

ages obtained for the samples collected from the different sites is given below 

1. Bedabari 

At Bedabari site two dikes (height ~1.5 m and width 15 cm, 5 cm) were found. The ages 

obtained for dike samples are 787 ± 121 years, 935 ± 113 years and for host layers are 787 ± 

104 years, 1104 ± 127years. 

2. Beltaghat 

At Beltaghat two sites (150 meter away from each other) were explored for the sand 

dikes. At the first site, a dike of height about 3.5 m, bottom width about 25 cm was seen. Five 

samples were collected from this location (two from dike, one from bottom of the dike, one 

from source and one from host layer). The ages obtained for dike samples are 846 ± 147, 928 

± 116 and 903 ± 141 years, and for host layer and source layer are 1060 ± 158, 1178 ± 149 

years respectively.   
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Figure 4.7: Dose recovery of samples KKT-10 and KKT-16 for Kakoti site (a, c); natural shine down 

curve for same samples (b,d), the growth curves for these samples are shown in the inset 
of figures (b) and (d). 
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Figure 4.8: Preheat Plateau for Samples (a) KKT-1 and (b) KKT-17 collected from Kakoti site. 
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Figure 4.9: TL glow curves (natural and dosed ) for dike and host samples (a), (b) Bedabari site; (c), 
(d) Kakoti site; (e), (f) Jira site. 
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From the nearby site another dike was also found, where sand was intruded in to the sand 

layer. Seven samples were collected from this location. Being a narrow dike, sometimes it 

was difficult to sample exactly from the dike and host layer and in that case sample from the 

dike/source or dike/host boundary was taken. This helped us in understanding the horizontal 

resetting pattern in dikes. The dike samples from this location gave age of 526 ± 69 years. 

The ages obtained for other samples are 1557 ± 219, 1023 ± 134 and 1128 ± 154 years for 

host layers; 641 ± 88 years for host/dike boundary and 921 ± 159, 943 ± 146 years for 

source/dike boundary. 

3. Jira 

At Jira a dike of height ~1.5 m and width 13 cm was found. Four samples were collected 

from this site are, two for dike, one for host and one for source layer. The dike samples from 

this site were dated to 600 ± 79, 677 ± 181 years; source layer sample was dated to 553 ± 84 

years and the host sample was dated to 911 ± 115 years. 

4. Kakoti  

At Kakoti two sites were explored (within 200 meter of each other). A dike of height 3.1 

m and width ~ 50 cm was found, which was having another branch of about same width.  

Total eight samples from this location were collected (two dike samples, three host layer 

samples and three source layer samples). The dike samples from this location were dated to 

111 ± 12, 594 ± 90 years. Host layer samples were dated to 1521 ± 243, 1022 ± 161, 772 ± 

107 years. The source layer samples were dated to 658 ± 95, 249 ± 40 and 512 ± 74 years. 

From another nearby location dikes with multiple branching were found. The total height of 

these dikes were 5.5 m and the widths varied from 5 cm to ~15 cm. Total eleven samples 

were collected from this site. The six dike samples were dated to 256 ± 35, 359 ± 57, 477 ± 

67, 306 ± 37, 202 ± 24, 250 ± 34 years. The host layer samples were dated to 530 ± 74, 444 ± 

91years. The source samples were dated to762 ± 128 and 177 ± 24 years. The sample from 

sand layer exposed at surface was dated to 305 ± 37years. 

5. Namgaon 

At Namgaon a dike of height ~1.6 m and width ~56 cm was found. Total eight samples 

(three dike samples, four host layer samples, and one source layer sample) were collected.  
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Figure 4.10: SAR regeneration curves for samples (a) KKT-16, (b) KKT-17, (c) NG-3  and (d) NG-7 

constructed using the NCF protocol as discussed in chapter-2; SAR regeneration curves 
for samples (e) BG-2 and (f) BG-4 
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Figure 4.11: Histogram showing comparisons of De distribution with NCF protocol (a), (c) and 

without NCF protocol (b) and (d) for samples KKT-1 and KKT-14 
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Figure 4.12: (a, c and e) shows the radial plot of De obtained for samples BB−1, BG−2 and BG−4 and 

(b, d and f) shows the dose distribution for these samples 
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Figure 4.13: (a, c and e) shows the radial plot of De obtained for samples JR−3, JR−4 and JR−7 and 

(b, d and f) shows the dose distribution for these samples  
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Figure 4.14: (a, c and e) shows the radial plot of De obtained for samples KKT−1, KKT−8 and 

KKT−14 and (b, d and f) shows the dose distribution for these samples 
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Figure 4.15: (a, c and e) shows the radial plot of De obtained for samples KKT−16, KKT−17 and 

NG−7 and (b, d and f) shows the dose distribution for these samples 
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Table 4.2: Comparison of SAR De with NCF correction and without NCF correction 

 

Sample 
De with NCF Correction De without NCF Correction 

% Variation from 
NCF De 

Mean Min+2σ Mean Min+2σ Mean Min+2σ 

KKT-1 1.74 ± 0.11 0.23 ± 0.02 2.00 ± 0.12 2 ± 0.12 15 36 

KKT-2 2.21 ± 0.19 0.96 ± 0.1 2.45 ± 0.18 2.45 ± 0.18 11 60 

KKT-3 4.69 ± 0.19 2.94 ± 0.31 4.56 ± 0.16 4.56 ± 0.16 3 4 

KKT-4 2.9 ± 0.14 1.97 ± 0.2 3.29 ± 0.18 3.29 ± 0.18 14 4 

KKT-5 2.71 ± 0.13 1.63 ± 0.18 2.68 ± 0.12 2.68 ± 0.12 1 82 

KKT-6 1.76 ± 0.12 0.91 ± 0.09 2.17 ± 0.21 2.17 ± 0.21 24 70 

KKT-7 1.32 ± 0.11 0.59 ± 0.07 1.83 ± 0.18 1.83 ± 0.18 39 69 

KKT-8 2.11 ± 0.19 0.9 ± 0.1 2.31 ± 0.19 2.31 ± 0.19 10 32 

KKT-10 1.58 ± 0.15 0.55 ± 0.06 2.26 ± 0.13 2.26 ± 0.13 43 53 

KKT-12 1.72 ± 0.2 0.85 ± 0.09 2.13 ± 0.22 2.13 ± 0.22 24 54 

KKT-14 1.59 ± 0.08 0.62 ± 0.06 2.58 ± 0.13 2.58 ± 0.13 62 62 

KKT-16 1.57 ± 0.09 0.52 ± 0.06 1.89 ± 0.11 1.89 ± 0.11 21 78 

KKT-17 2.66 ± 0.23 1.1 ± 0.11 3.65 ± 0.34 3.65 ± 0.34 38 27 

KKT-18 2.2 ± 0.14 1.05 ± 0.19 3.02 ± 0.16 3.02 ± 0.16 38 32 

KKT-20 1.45 ± 0.13 0.43 ± 0.04 2.28 ± 0.29 2.28 ± 0.29 57 89 

NG-1 1.26 ± 0.14 0.22 ± 0.03 1.16 ± 0.11 1.16 ± 0.11 8 69 

NG-2 1.39 ± 0.17 0.29 ± 0.03 1.43 ± 0.17 1.43 ± 0.17 3 13 

NG-3 1.08 ± 0.15 0.29 ± 0.03 1.53 ± 0.22 1.53 ± 0.22 42 18 

NG-4 1.24 ± 0.17 0.45 ± 0.06 1.28 ± 0.17 1.28 ± 0.17 3 73 

NG-5 0.86 ± 0.1 0.24 ± 0.02 1.12 ± 0.25 1.12 ± 0.25 30 41 

NG-6 1.26 ± 0.2 0.3 ± 0.03 1.77 ± 0.25 1.77 ± 0.25 40 27 

NG-7 1.17 ± 0.11 0.58 ± 0.1 1.3 ± 0.11 1.3 ± 0.11 11 43 

NG-8 0.88 ± 0.1 0.16 ± 0.02 0.92 ± 0.09 0.92 ± 0.09 4 57 
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Table 4.3: Details of samples, depth, type, radioactivity data, 
water content, De and calculated Ages 

 

 
    U (ppm) Th (ppm) K (%) CR (Gy/ka) Water 

(%)  
 
 

 
  

    6.2 ± 0.2 20.6 ± 0.7 3.4 ± 0.1 179.9 ± 9 15 ± 5          
    3.8 ± 0 12.8 ± 0.2 3.2 ± 0.1 178.3 ± 8.9 15 ± 5          

    9.9 ± 0.2 33.1 ± 0.7 2.5 ± 0.1 167.4 ± 8.4 20 ± 5          

    13.3 ± 0.1 44.4 ± 0.4 3.7 ± 0.1 168.1 ± 8.4 20 ± 5          
    6.3 ± 0.2 20.9 ± 0.7 3.5 ± 0.1 180 ± 9 20 ± 5          
    3 ± 0 10.1 ± 0.1 3 ± 0.1 173.2 ± 8.7 15 ± 5          

   
   6.3 ± 0.2 20.9 ± 0.7 1.6 ± 0.1 165.5 ± 8.3 15 ± 5          

    9.5 ± 0.1 31.7 ± 0.4 2.4 ± 0.1 169 ± 8.5 20 ± 5          
    5.4 ± 0.1 17.9 ± 0.3 3.1 ± 0.1 160.8 ± 8 20 ± 5          
    9.7 ± 0.2 32.3 ± 0.6 2.4 ± 0.2 150.5 ± 7.5 15 ± 5          
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Table 4.3 Continued 

 

S. 

No. 
Sample Type Depth U (ppm) Th (ppm) K (%) CR  

 

 
 

 

 

 

  

11 BG-7 host 4.62 2.4 ± 0.1 7.9 ± 0.2 2 ± 0.1 14                

12 BG-8 host 4.70 5.9 ± 0.2 19.6 ± 0.5 2.2 ± 0.1 148                

13 BG-9 
host/dike 

boundary 
4.72 10.4 ± 0.3 34.9 ± 0.9 1.9 ± 0.1 148                

14 BG-10 
source/dike 

boundary 
4.94 3.3 ± 0.1 10.9 ± 0.3 1.5 ± 0.1 146                

15 BG-11 
source/dike 

boundary 
5.10 2.1 ± 0 6.9 ± 0.2 3.1 ± 0.1 146                

16 BG-12 host 4.90 5.3 ± 0 17.8 ± 0.1 1.8 ± 0.1 145                

17 JR-3 dike 1.15 3.7 ± 0 12.3 ± 0.2 3 ± 0.1 18                

18 JR-4 host 1.18 10.2 ± 0.3 34 ± 0.9 3.1 ± 0.1 181                

19 JR-5 dike 1.54 3.4 ± 0 11.4 ± 0.1 2 ± 0.1 177                

20 JR-7 source 1.94 4.6 ± 0.1 15.2 ± 0.2 2.9 ± 0.1 172                
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Table 4.3 Continued 

 

S. 

No. 
Sample Type Depth U (ppm) Th (ppm) K (%) C   

 

 
 

 

 

 

 

 

21 KKT-1 dike 0.63 2.1 ± 0.1 7 ± 0.2 1.4 ± 0.1 1                

22 KKT-2 dike 1.46 2.6 ± 0.1 8.6 ± 0.2 0.7 ± 0.1 1                

23 KKT-3 host 1.62 12.9 ± 0.4 43.2 ± 1.3 1.6 ± 0.1 1             
  

 

24 KKT-4 host 2.02 3.7 ± 0.1 12.3 ± 0.4 0.7 ± 0.1 1             
  

 

25 KKT-5 host 2.17 4.1 ± 0.1 13.7 ± 0.4 0.7 ± 0.1 1                

26 KKT-6 source 2.50 2.2 ± 0.1 7.3 ± 0.2 0.7 ± 0.1 1                

27 KKT-7 source 2.86 4 ± 0.1 13.2 ± 0.3 1.2 ± 0.1 1                

28 KKT-8 source 3.10 1.8 ± 0 5.9 ± 0.1 1.4 ± 0.1                

29 KKT-10 dike 2.20 2.4 ± 0 8.1 ± 0.1 1.3 ± 0.1 1                

30 KKT-11 dike 3.50 2.8 ± 0.1 9.3 ± 0.3 0.6 ± 0.1 1                
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Table 4.3 Continued 

 

 

 
   U (ppm) Th (ppm) K (%) CR (Gy/ka) 

Water 

(%) 
 

 

 

 

  

    1.5 ± 0 5 ± 0.1 0.6 ± 0.1 146.8 ± 7.3 20 ± 5          

    1.2 ± 0 4.1 ± 0.1 0.5 ± 0.1 172 ± 8.6 15 ± 5          

    3.2 ± 0.1 10.5 ± 0.3 0.9 ± 0.1 161.5 ± 8.1 15 ± 5          

    1.3 ± 0 4.2 ± 0.1 0.5 ± 0.1 152.6 ± 7.6 15 ± 5          

    2.6 ± 0 8.6 ± 0.1 1.2 ± 0.1 174.3 ± 8.7 15 ± 5          

    2.2 ± 0 7.4 ± 0.1 1.6 ± 0.1 160.2 ± 8 20 ± 5          

    2.8 ± 0.1 9.2 ± 0.3 1.8 ± 0.1 156.8 ± 7.8 20 ± 5          

    1.5 ± 0 5.2 ± 0.1 1.3 ± 0.1 145.3 ± 7.3 20 ± 5          
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Table 4.3 Continued 

 

 

 
 Type Depth U (ppm) Th (ppm) K (%) 

CR 

(Gy/ka) 

Water 

(%) 
De 

 

 

 

 

 

  

dike 

xposed 

 surface 

at the 

ime of 

event 

0.60 1.7 ± 0 5.7 ± 0.1 0.8 ± 0.1 194.3 ± 9.7 15 ± 5 0.4 ± 0       

  host 0.30 4.5 ± 0.1 14.9 ± 0.5 2.4 ± 0.1 193 ± 9.7 20 ± 5 0.2 ± 0       

  dike 0.60 3.3 ± 0.1 10.9 ± 0.2 0.9 ± 0.1 189.8 ± 9.5 15 ± 5 0.3 ± 0       

  host 0.72 3.2 ± 0 10.8 ± 0.1 2.3 ± 0.1 188.1 ± 9.4 20 ± 5 0.3 ± 0       

  dike 1.00 3.2 ± 0.1 10.7 ± 0.3 1.3 ± 0.1 184.2 ± 9.2 15 ± 5 0.4 ± 0.1       

  dike 1.35 4.6 ± 0.1 15.2 ± 0.2 1.1 ± 0.1 179.7 ± 9 20 ± 5 0.2 ± 0       

  source 1.70 2.8 ± 0.1 9.4 ± 0.2 1.2 ± 0.1 175.4 ± 8.8 20 ± 5 0.3 ± 0       

  host 0.51 5.6 ± 0.1 18.7 ± 0.2 2.2 ± 0.1 191.1 ± 9.6 20 ± 5 0.6 ± 0.1       

  host 1.47 3.8 ± 0.1 12.6 ± 0.2 1.1 ± 0.1 178.2 ± 8.9 20 ± 5 0.3 ± 0       
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The ages obtained are 135 ± 17, 193 ± 32, 96 ± 13 year for dike samples; 153 ± 22 years 

for source layer sample; 60 ± 9, 98 ± 13, 160 ± 32 and 141 ± 23 years for host layer samples. 

4.4 Discussion 

The luminescence studies of sand dike samples collected from the North-East India 

suggested the resetting of luminescence signal during the injection of dikes. While for some 

cases the ages obtained from the dike sample and host layers were found to be within errors 

for others a discernible difference was seen. In all dike samples it was found that the samples 

show an increasing trend from top to bottom. The samples from the top of the dike gave 

minimum ages. As identified by At Kakoti site a layer of same material as of sand dike was 

found below 30 cm from the present day surface. A sand blow was found at the Kakoti site 

which gave a greater  

opportunity to ascertain the resetting of luminescence signal during the injection of the dike. 

At this site the source sand from ~ 5 m below the present day surface was found to be 

intruded in the form of dike ~ 5m. The dike was truncated ~ 30 cm below at the present day 

surface. At this depth the dike was found in contact with a sand layer of (about 5−10 cm in 

thickness) same material as of the sand. This suggested that the source sand was blown (sand 

blow) up to the surface at the time of earthquake. Thus the material of this sand blow was 

exposed to sunlight and most likely led to the zeroing of the luminescence of the quartz 

grains of the material. The sample collected from this sand blow layer gave age of 305±37 

years, and the samples from the dike which were connected to this layer were dated to 

256±35 years, 359±57 years, 477±67 years and 306±37 years. These ages from the exposed 

sand at surface and those of the dikes are in good agreement of each other indicating a 

resetting of the luminescence signal in the dike material. As the dike material itself was not 

exposed to the sunlight the possible mechanism which might have caused the luminescence 

signal to zero in the dike sample is the viscous heating as discussed in chapter-3.  

 Based on the study performed on the sand dike samples we suggest multiple tectonic 

events in this area. The ages on the sand dikes suggested tectonic events at around 300 years, 

500 years and 1 ka.  Earlier work by Sukhija et al. (1999) and Reddy et al. (2009) based on 

the radiocarbon dating resulted in similar ages from Beltaghat, Bedabari and Jira sites. Their 
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results were based on the radiocarbon ages from the charcoal, wood, tree trunk affected by 

the tectonic events.  

 

 
Figure 4.16: Estimation of the minimum magnitude of earthquake resulting paleoliquefaction at the 

study area by plotting the distances of liquefaction sites from epicenters on the global data 
curve of Obermeier (1996). The location of the Bedabari, Beltaghat, and Jira sites (lower 
black rectangle) and for Kakoti and Namgaon sites (upper black rectangle) are plotted 
considering that the earthquake epicenter which produced liquefaction either occurred: 
within a radius of 35 km and 150 km (distance between 1987 Shillong Plateau earthquake 
epicenter and the sites). The magnitude of the earthquake(s) estimated based on these two 
scenarios ranges between M6 and M7.5 respectively. 

 

Liquefaction have been reported widely for magnitudes M >5 (Allen, 1986; McCalpin, 

1996; Galli, 2000). The earthquakes of magnitude 6-6.5 are frequent in Shillong Plateau, 

however does not results into the liquefaction (Sukhija et al., 1999). This implies that the 

liquefaction features in this area due to prehistoric earthquakes were of at least M ≥6.5. 

Considering that shilling plateau is tectonically active, and was active in the past as well, it is 

reasonable to correlate the formation of sand dikes explored in the study area with the 
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earthquakes that was occurred in 1897 having an epicenter at 26°N 91°E. The distance of the 

study sites from this location is about 35 km (Bedabari, Beltaghat, and Jira sites), and about 

150 km (Namgaon and Kakoti sites). In order to find the possible magnitude of earthquake 

events we used the global data of earthquake magnitude vs epicentral distances from 

Obermeier (1996). The global data has been generated based on the maximum distance of 

liquefaction seen from the epicenter. In our case when the distance of the location for 

Belataghat and Kakoti site was plotted on the global data taking the epicenter same as of 

1897 earthquake of Shillong plateau. It was found that the liquefaction features near at the 

Bedabari and nearby sites have been generated by at least an earthquake of M > 6, and 

earthquake of magnitude M > 7 might have caused the formation of sand dikes in the Kakoti 

and Namgaon sites. 

4.5 Conclusion 

The important outcome of the present work on luminescence studies of sand dikes 

samples suggested that the resetting in quartz is possible due to rise in temperature caused by 

viscous heating during the injection of the dike. Also it was observed that the dikes of narrow 

width have more difference in ages from host layer as compared to the broader dikes. For 

example the dike at the Namgaon site is of width ~ 50 cm and for this site the ages obtained 

for dike and host samples are in ranges 90−190 and 60−160 years respectively. For Kakoti 

site the dikes are of narrow size and the ages obtained from the dike and that from the 

exposed material at surface were in agreement showing a resetting in dike.  

The possibility of resetting of luminescence is more in narrow dikes, and to find better 

age estimate dikes of narrow width should be used. The samples should be collected from the 

center of the dikes, where extent of viscous heating will be high. For example the samples 

collected from the source/dike boundary or host/dike boundary have higher ages as compared 

to the dike ages at Beltaghat site where dike was formed due to intrusion of sand into sand 

layer. As suggested in chapter-3 the channel flow velocity during the injection of the dike 

will be higher in the central part and therefore the probability of thermal resetting of 

luminescence signal will be higher at the center. The results obtained from the Beltaghat site 

supports this view. 
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The dike ages from various sites in the present study falls near three time periods i.e. 300 

years, 500 years and 1 ka. The events dated by luminescence are the last heating or sun light 

exposure. In the present case as discussed the resetting of luminescence in the dike was due 

to the viscous heating caused by the earthquakes in the area. This suggested that the area 

have faced four earthquakes of magnitude between M 6 to M 7.5 at around 111, 300 years, 

500 year and 1 ka. At Kakoti site the multiple injected dikes and branching of dike suggested 

that these dikes might be due to more than one earthquake in this area. These events might 

have occurred at 111 years and 500 years before. The first event of 111 years before might be 

during 1905 Assam earthquake  
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Appendix 

Stratigraphy 

The samples were collected from the North-East India, Assam state. A field trip was 

organized in collaboration with Dr. Devender Kumar from National Geophysical Research 

Institute. An extensive field survey was done by covering and area 150 km towards east and 

west of Guwahati. Given below are the details of the sampling sites 

A.1 Beltaghat  

The Beltaghat (26° 0’ 16.5” N 90° 39’ 7.1” E) site is located near the Krishnai river 

(Mora meaning dead in local language). Being closure to the river this site made favorable 

conditions for the formation of sand dikes during seismic events. From bottom upward 

sequence started with 25 cm thick layer of medium to coarse light brown sand with some 

(source unexposed). Overlying to this was a 40 cm thick layer of medium grain light brown 

sand of. A sand dike was intruded into 250 cm thick layer of brown clay. The actual source of 

the sand dike material was unexposed. 

Five samples were collected from this site from a depth of 1.3 m, 1.9 m, 2.3 m, 2.6 m and 

3.1 m (Figure 4.18)  

Another sand dike (sand intruded in sand) was also found at about 150 m away from this 

site Figure 4.20. From this location seven samples were collected for dike, host layer, source 

layer and boundary layers of dike/host and dike/source from depth of 4.4 m, 4.6 m, 4.7 m, 

4.7, 4.9 m, 5.1 m and 4.90 m. The ages obtained for these samples are shown in Figure 4.20 

along with their location. 

A.2 Bedabari 

Bedabari site (26° 0’ 32.1” N 90° 39’ 20.7” E) is also located near to the Mora Krishnai 

river. At this site the bottom upward sequence started with 140 cm thick graded brown sand 

with fining upward sequence. Overlying to this was a 100 cm thick layer of modern clay. 

Two sand dikes of light brown sand were intruded into the host layer. The source layer of the 

dikes was not exposed. 
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Five samples from depths 1.0 m 1.3 m, 1.4 cm, 2.3 m and 2.4 m were collected from this 

site. One sample was discarded on site due to clay contamination. 

A.3 Jira 

At Jira site (25° 57’ 37.2” N 90° 38’ 21.6” E) the bottom upward sequence of 

sedimentation is as follows. A 34 cm thick layer of silty clay was seen at the bottom; over 

this layer was a clay layer of thickness 100 cm. The top of the dike was covered with 73 cm 

thick modern clay. 

Four samples were collected from this site from depths 85 cm, 115 cm, 154 cm and 190 

cm. the ages obtained along with the sample marker are shown in Figure 4.24. 

A.4 Namgaon 

Eight samples were collected from Namgaon site (26° 13’ 10.6” N 92° 26’ 57.4” E). A 

thick layer of black clay of thickness 28 cm started the bottom sequence. This was followed 

by a layer of fine grain sand of thickness 82 cm, after which a layer of light gray sand of 

layer thickness 45 cm was seen. The sequence ended with a clay layer of thickness ~20cm. 

The samples were collected from depth of 38 cm, 51 cm, 60 cm, 72 cm, 100 cm, 135 cm, 

147 cm and 170 cm. The ages obtained on these samples are shown in Figure 4.26. 

A.5 Kakoti 

At Kakoti (26° 12’ 14.2” N 92° 31’ 48.8” E) two sites were explored for dikes. The 

bottom upward sequence at this site started with a 20 cm thick light gray sand. The was 

overlain by 44 cm thick light brown sand, followed by 19 cm thick black clay. This was 

followed by a layer of thickness 9 cm of dark brown sand, followed by 13 cm thick light gray 

clay, followed by thin layer (5 cm thick) of light brown sand, followed by 32 cm thick light 

brown clay. The sequence ended with a clay layer of thickness 140 cm.  

Eight samples were collected from this site; the ages obtained from this site are shown in 

Figure 4.28. 

About 200 m away from this site multiple sand dikes were seen with branching. 11 

samples collected from this site from different depth (Table 4.3). The sequence of 

sedimentation at this site from bottom upward started with a source sand brown to yellow in 

color the completed source layer was not exposed. Overlying this was 45 cm dark gray sticky  
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Figure 4.17: Field Photograph of dike in Beltaghat site-1 
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Figure 4.18: Stratigraphy of the Beltaghat site, ages obtained for samples are shown adjacent to the 

samples marked 
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Figure 4.19: Field photograph of dike from Beltaghat site-2 

 

 

 
Figure 4.20: Stratigraphy of the Beltaghat site, ages obtained for samples are shown adjacent to the 

samples marked 
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Figure 4.21: Field photograph of dike from Bedabari site 
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Figure 4.22: Stratigraphy of Bedabari site, ages obtained for samples are shown adjacent to sampling 

mark 
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Figure 4.23: Field photograph of dike from Jira site 
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Figure 4.24: Stratigraphy of Jira site, ages obtained for samples are shown adjacent to sampling mark 
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Figure 4.25: Field photograph of dike from Namgaon site 
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Figure 4.26: Stratigraphy of Namgaon site, ages obtained for samples are shown adjacent to sampling 

mark 
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Figure 4.27: Field photograph of dike from Kakoti site-1 
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Figure 4.28: Stratigraphy of Kakoti site-1, ages obtained for samples are shown adjacent to sampling 

mark 
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Figure 4.29: Field photograph of dike from Kakoti site-2 
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Figure 4.30: Stratigraphy of Kakoti site-2, ages obtained for samples are shown adjacent to sampling 

mark 
 

clay, followed by 40 cm thick brown sand of medium grain size. A 10 cm thick silty clay 

followed the sequence in upward direction, overlying this was a layer of 15 cm thick fine 

sand, followed by 15 cm thick dark gray sticky clay, a 45 cm thick layer of medium grain 

brown sand continued the sequence of sedimentation. Overlying this sand layer was 5 cm 

thick light gray clay, followed by 50 cm thick layer of medium to fine sand, continued in 

upward direction by a 60 cm thick layer of medium to fine silty sand. This layer was 

underlain by 110 cm thick layer of silty clay. The sequence was terminated by 30 cm clay 

layer which was overriding the 5-10 cm thick sand layer of dike material. Figure 4.1shows 

the ages obtained for this site. 
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Chapter 5 

Resetting of Luminescence in Fault Gouges 

5.1 Introduction 

The Himalayan arc (Himalayan frontal thrust, main boundary thrust and main central 

thrust) represents a zone of strong seismic activity in the north and North−East region of 

India. This region has faced several major earthquakes in the last century (of magnitude > 7, 

Table 4.1). These earthquakes claimed lives of several thousand people, caused large damage  

and pose great threat to the population in the area (Bilham et al., 2001). Therefore, it becomes 

important to understand the mechanisms responsible for producing such catastrophic 

earthquakes and their repeat frequency. This is possible if one understand the past behavior 

of seismicity in the areas to predict their future behavior (Crone, 1987).  

To understand the seismic history of Sikkim-Darjeeling Himalaya, luminescence studies 

were made on fault gouge samples. 
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5.2 Fault Gouge 

A geological fault is a fracture or zone of weakness in a volume of rock along which 

relative movement of block of different rock mass occurred due to applied stress. When the 

two blocks of rock slide in opposite direction at the fracture zone, the surfaces are damaged 

and erosion takes place, this process is known as wear. Under brittle condition and due to the 

hardness contrast between the blocks a powdery material is formed and is known as fault 

gouge (Scholz, 1987). The gouge material may or may not be recrystallized depending upon 

the frictional heat generated at the fault plane. The fault gouge comprises of detrital minerals 

and secondary authigenic clay minerals, particularly Illite forms deposited by later processes 

(Zwingmann and Mancktelow, 2004). Most of the earthquakes are caused by slip along pre-

existing faults and of interest is to understand the nature and style of stress accumulation, 

stress release and its periodicity/recurrence rate if any. The work by Ikeya et al. (1982) to 

date the fault using Electron Spin Resonance opened up the possibility to develop the 

thermoluminescence method for dating of fault gouges (Singhvi et al., 1994; Banerjee, 1996). 

The first attempt to date paleoearthquakes using TL method was made by Forman et al. 

(1988) on samples collected by excavating a trench in the study area. 

5.3 Resetting of luminescence in Fault Gouge 

The dating of fault gouge using ESR or Luminescence is based on the assumption of 

resetting of signal to zero or near zero level during the rupture event. Several workers have 

investigated the zeroing of ESR signal based on the burial depth and the amount of 

displacement during the fault movement (e.g. Ariyama, 1985), use of different ESR (E’, Al, 

OHC, GE) centers in quartz from injected veins in at the time of faulting (Fukuchi et al., 

1985; Fukuchi et al., 1986), age plateau method for different grain size (Buhay et al., 1988; 

Lee and Schwarcz, 1994), use of isochrones age method for different grain sizes (Ikeya et al., 

1995). 

The resetting of ESR signal in fault gouge was attributed to the hydrostatic stress and to 

localized heating (Ikeya et al., 1982; Miki and Ikeya, 1982). Laboratory experiments to 

understand the effect of fracturing, crushing and grinding of quartz grains suggest that ESR 

signal associated with E’ and OHC centers decreases with applied stress and reduces to zero 
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at differential stress of 700 MPa (Tanaka and Shidahara, 1985). The decrease in signal is 

faster in larger grains as compared to smaller size grains (Tanaka and Shidahara, 1985; 

Fukuchi et al., 1986). Ariyama (1985) reported a resetting of E’ and Ge centers at a minimum 

pressure of 2 MPa at a minimum displacement of 20 cm. Annealing experiments made by 

Fukuchi et al. (1986) showed that Al and E’ centers are completely reset at 400 ℃ while 

OHC and Ge centers reset beyond 400 ℃. Fukuchi (1992) attempted to find the resetting 

condition for ESR signal by thermal conduction on frictional heat as proposed by McKenzie 

and Brune (1972) combining with the decay curves of ESR signal. They concluded that ESR 

signal can never be reset under normal stress less than 6.8 MPa at a displacement of 1m. Also 

for ESR measurement on fault gouge material samples should be collected at least from a 

depth of 200 m or below, from the surface. The shearing experiments suggest that resetting of 

ESR signal is possible for a normal stress of 4 MPa. Also the ages obtained using finer grain 

sizes (< 100 μm) are closely related to the fault movement. The movement on Nojima fault 

during 1995 earthquake in Japan provided opportunity to study the resetting of ESR signal in 

quartz. Fukuchi and Imai (1998) studied the resetting of E’ center as a result of movement on 

Nojima fault and did not find the resetting of ESR signal associated with E’ center.   

Theoretical studies have also been made to understand the resetting of ESR and 

Luminescence signals. McKenzie and Brune (1972) estimated the rise in temperature as a 

result of frictional heating and suggested that ~1000 ℃ temperature could be achieved during 

rupture of rocks during earthquakes. This was useful in explaining the presence of glassy 

material and pseudotachylyte as reported by several workers (Scott and Drever, 1953; Sibson, 

1975; Sibson, 1977). 

Studies of friction induced thermoluminescence (triboluminescence) have been reported 

by Suzuki and Kennedy (1991). The luminescence sensitivity of gouge material is found to 

be higher as compared to host rock material. The grain size dependence of fault gouge age 

and also the effect of mechanical stress on luminescence (mechanoluminescence) from gouge 

and host material studies  show that the grain size < 200 μm can be used for dating of fault 

gouges (Singhvi et al., 1994; Banerjee et al., 1999).  

Banerjee (1996) used the crystallinity of Illite group minerals and chlorite peak ratio 

method to estimate the extent of heating in fault gouge material. However due to the masking 

of the XRD peaks in the clay minerals by muscovite and kaolinite peaks the results were not 
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very promising. In another attempt to see the effect of mechanical stress on the luminescence 

of fault gouge and host rock samples, Banerjee (1996) performed the mechanoluminescence 

(ML) studies. The samples from fault gouge and host rock were stressed by dropping a fixed 

mass from different heights resulting in variable mechanical stress applied to the samples. 

The ML intensity of the samples was recorded by a PMT placed below the sample mount. It 

was found that the ML intensity of host rock was five times higher as compared to the fault 

gouge material. When the stress on the samples was applied repeatedly, the ML intensity 

from host rock or fault gouge material appear only in first two or three cycles after which ML 

from the sample was not seen. Based on their results they inferred that earthquakes of M >6 

might cause the resetting of luminescence in fault gouge material. 

The zeroing of ESR and luminescence signal due to mechanical stress is caused by 

localization of stress near the zone of weakness in the grains i.e. defect sites and consequent  

development of  micro cracks in the grains. At grain boundary due to frictional sliding the 

stress concentrated around the defects leads to the breaking of the bonds which results in 

detrapping of the electrons from their sites (Lee and Schwarcz, 1994). The migrated charges 

released then recombine with the holes and thus reset the ESR centers to zero or near zero 

level. The effect of stress will be strongest at the grain-grain contact and thus resetting will be 

higher for smaller grain size Figure 5.1.  

 
Figure 5.1: Schematic for resetting due to mechanical stress. Smaller grain (in center) will have larger 

level of resetting as compared to larger grains (after Lee and Schwarcz, 1994).  

 

The milling experiment by Takeuchi (2006) to see the effect of stress on surface resetting 

of luminescence suggest that only 500 nm outer surface is reset due to the applied stress, and 

therefore finer grain size is suitable for dating of fault gouge using luminescence. The 

crushing experiment using hand crushing, automatic grinder and pellet die press does not 
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show clear signature of resetting of luminescence in quartz grains (Toyoda et al., 2000). 

Recent studies by Rink et al. (1999) and Toyoda et al. (2000) suggest that the luminescence 

sensitivity of quartz grains increases after the crushing. 

5.4 Amplitude rise of temperature in fault gouge due to frictional Heating  

In case of fault gouge material the zeroing occurs by heat generated during slip of blocks 

of rock. In order to decipher the temperature conditions at faulting events thermal modeling 

of such event is needed (Fukuchi, 1989; Caggianelli et al., 2005). In this regard the transient 

thermal modeling of earthquake faults considering appropriate slip rates, conductivities and 

pressure conditions would enable to construct the temperature profiles as a function of space 

and time. With these temperature profile and considering general order of kinetics of trapped 

charges in luminescent minerals, the extent of resetting by fault event can be studied. A 

preliminary work in this direction was done by Murari et al. (2009). Such studies have yet not 

been fully explored and would provide a prime opportunity to study the applicability of OSL 

to the fault activities. In present case we have extend the work by Murari et al. (2009). 

5.4.1 Mathematical model 

Several models to estimate the amplitude rise in temperature during earthquake frictional 

sliding, exist (e.g. McKenzie and Brune, 1972; Lachenbruch, 1980). The rupture event along 

a fault and the evolution of slip can be described and studied in three phases 1) nucleation 

phase, 2) a phase of maximum and constant slip velocity and 3) deceleration phase. These 

phases are shown in Figure 5.1. In the nucleation phase there is stress buildup which is 

locked at the fault plane. When the stress is increased to the brittle fracture limit of the rock 

the fracture is initiated. During this phase, the velocity of the fault plane rapidly changes 

from zero to a maximum limit that is determined by the fracture limit of the rock material. 

This phase is of short time and also results into the frictional heating. 

During the rupture the blocks slide on each other and the materials on the surfaces of the 

contact are crushed. The blocks move with a constant velocity and the stress energy is used in 

crushing and heating of the material due to friction. 

As the stress energy decreases a limit comes when the slip of blocks starts slowing down 

i.e. the deceleration phase. During this the heat is generated due to friction at the surfaces of  
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Figure 5.2: Schematic representation of earthquake event. The event is divided into three phases i.e. 

nucleation, constant velocity and deceleration phase. 

 

contact. This phase is characterized by a progressive decrease of slip velocity until movement 

of blocks stop  (Swanson, 1992). 

For the simplicity of the calculations the fault plane is assumed to be aligned with z=0 

plane. If 1a and 2a  are the acceleration and deceleration during nucleation phase and 

deceleration phase then during the rupture in three phases the velocity can be represented as  

 
1 1

1 1 2

1 2 2 3

v 0 (a)
v v ( )
v v ( )

a t t t
t t t b

a t t t t c

= ≤ ≤
= ≤ ≤
= − ≤ ≤

  (5.1) 

The heat flux due to frictional sliding generated at z=0 plane will diffuse in both x and y 

direction. Considering the fault plane lying in x-y plane, the heat flux at any time t and at a 

distance z from origin can be found by solving the 1D heat flux diffusion equation 

 
2

2

f f
z t

η ∂ ∂
=

∂ ∂
  (5.2) 

In equation (5.2) η  is the thermal diffusivity of medium, z is the distance from the fault 

plane and t is the time. The temperature ( , )z tΘ  and heat flux are related to each other by 

following equation 
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 ( , )z tf K
z

∂Θ
= −

∂
  (5.3) 

In case of rock rupture since the temperature far from the fault plane is zero, it is 

reasonable to take the boundary condition 0as zΘ→ →∞ . Therefore using this boundary 

condition, the temperature Θ  can be obtained by integrating equation (5.3) and is given by 

 1 ( , )
z

f z t dz
K

∞
Θ = − ∫   (5.4) 

Now taking into account the symmetry of the generation of heat (heat is generated at z=0 

plane), it can be considered that the heat source is a line source at z=0. 

 

 
Figure 5.3: Schematic of heat generation during faulting event. The fault plane is at z=0, which is 

indicated as source and at z= ∞ is a sink indicating that the heat flux is zero at sink 

 

Figure 5.3 shows the schematic of the situation at the time of faulting. Since the fault 

plane is considered at z=0 axis, it works as a source of heat flux. Far from the fault plane the 

heat flux is zero indicating a sink. The heat diffusion equation in this case can be solved by 

considering the two doublet of heat source (sink is also a negative source) using the method 

suggested by Carslaw and Jaeger (1959). The heat flux due to a continuous doublet of 

strength f (z,t’) at the point z', in the case of linear flow, is given by 

 
2

3/23
0

( ') ( ', ') (z z')( , ) exp '
( ') 4 ( ')4

tz z f z tf z t dt
t t t tκπκ

 − − −
=  − − 

∫   (5.5) 
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Substituting 1/2 1/2' 2 ( ')z z t tκ α− = − , equation (5.5) can be rewritten as  

 ( )2
2

2
'/2 ( t)

'2( , ) ', '
4z z

z z
f z t e f z t d for z z

K
α

κ

α
καπ

∞
−

−

 −
= − > 

 
 

∫   (5.6) 

In our case z’=0 therefore  

 2
2

2
/2 ( t)

2( , ) 0,
4z

zf z t e f z t d
K

α

κ

α
καπ

∞
−  

= = − 
 

∫   (5.7) 

During the rupture due to frictional sliding the heat flux generated is given by  

 ( 0, ) v( )ff z t tτ= =   (5.8) 

Here fτ  is the shear stress and v is the slip velocity (Sibson, 1975). The shear stress fτ   

is given by  

 ( )nf d pτ µ σ= −   (5.9) 

In equation (5.9), dµ is the dynamic friction coefficient nσ  is the normal stress (equal to 

the overburden of the overlying material) and p is the pore pressure. If the rupture takes place 

at a depth H, and the material density is ρ, acceleration due to gravity is g, then n gHσ ρ= . 

Defining / ( )p gHλ ρ=  the shear stress is gH(1 )f dρτ µ λ= − . λ is a factor which is 

governed by the pore pressure of the overlying material. The heat flux f(z,t) generated during 

these phase can be represented as  

 ( ) 1 10, 0ff z t a t t tτ= = ≤ ≤  (5.10) 

 ( ) 1 1 1 20, ff z t a t t t tτ= = ≤ ≤   (5.11) 

     ( ) ( ){ }1 1 2 2 2 30, ff z t a t a t t t t tτ= = − − ≤ ≤    (5.12) 

Here f(z=0,t) is the heat flux generated at fault plane located at z=0 axis and at time t. 

113 

 



 Chapter 5: Resetting of Luminescence in Fault Gouges 
 

5.4.2 Temperature during nucleation phase (0≤ t ≤ t1) 

The rise in temperature during nucleation phase is obtained by substituting equation 

(5.10) into equation (5.7)   

 

2
2

1 1 2
/2 ( t)

2 2

2( , )
4

exp
2 44

f
z

zf z t a t e d

qz z t zqt erfc qz
tt

α

κ
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καπ

κ κπ κκ

∞
− 
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 

    = + − −    
    

∫
  (5.13) 

Where 1gH(1 )dq aµ ρ λ= −  and ( )/ 4erfc z tκ  is the complementary error function and is 

given by 

 
22( ) 1 ( )

x

erfc x erf x e dα α
π

∞
−= − = ∫   

Therefore rise in temperature during nucleation phase is given by substituting equation 

(5.13) into equation (5.4) and is given by 
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  (5.14) 

5.4.3 Temperature during constant velocity phase (t1≤ t ≤ t2) 

The amount of heat flux generated during this phase can be obtained by substituting 

equation (5.11) into equation (5.7) and is given by 
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Using above expression for heat flux in equation (5.4) will give the rise in temperature 

during phase of constant slipping velocity. There the rise in temperature during this phase is 
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 (5.16) 

5.4.4 Temperature during deceleration phase (t2≤ t ≤ t3) 

The heat flux generated during this phase can be obtained by substituting equation (5.12) 

into equation (5.7) and is given by 
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The rise in temperature due to the heat flux given in equation (5.17) is obtained by 

substituting this into equation (5.4) and is given by  
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5.4.5 Temperature after rupturing is stopped (t>t3) 

For t > t3 the heat flux is not generated as there is no more movement along the fault 

plane, and only diffusion of heat takes place. Therefor temperature for this phase was 

evaluated with the source method  by Carslaw and Jaeger (1959). The temperature in this 

region is given by 

 ( ) ( ) ( )
( )
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( ){ }2 2

4 3 4 34 3, 3 , z z z z
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z t t z t t dz
e e

∞
′ ′− − − +
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 ′ ′Θ > = Θ = + ∫  (5.20) 

5.4.6 Temperature profiles during faulting 

The amplitude rise in case of rupture event was estimated using equations (5.14), (5.16), 

(5.19) and (5.20). These integrals were evaluated numerically. In general 1 2a a≠ , however it 

is difficult to constraint this condition due to lack of information during on acceleration 

during nucleation phase and deceleration phase. In present case we have considered 1 2a a=  

which implies that time for nucleation and deceleration phase are same, also 1 3 2t t t= − . 

Considering the maximum slip velocity v the total slip during the rupture event is  
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v t t t
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  (5.21) 

The temperature profiles during the faulting event were analyzed for the effect of slip 

velocity, pore pressure, dynamic friction coefficient and thermal conductance. We have 

considered that the rupture event takes place at a depth of 1km. It is observed that the rise in 

temperature for a pore pressure of factor 0.6 and for rock having dynamic friction coefficient 

0.6 can go up to around 1300 ℃ for a total slip of 25 cm. The temperature near the fault plane 

decreases as the pore pressure is increased. The temperature rise for pore pressure factor 0.6 

is about 500 ℃ Figure 5.5. The rise in temperature is significantly affected by the variation in 

the dynamic friction coefficient. When the dynamic friction coefficient is decreased the 

temperature at the  
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Figure 5.4: Effect of slip distance (slip velocity) on temperature rise during rupture at 1mm and 5mm 

away from the fault plane for depth of 1km (λ=0.6, 𝛍𝛍=0.6, κ  =1e-6, K=2.5 and 𝛒𝛒=2800)  

 
Figure 5.5: Effect of pore pressure on rise in temperature during rupture at a depth of 1km (d=10cm, 

μ=0.6, κ =1e-6, K=2.5 and 𝛒𝛒=2800) 
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Figure 5.6: Effect of friction coefficient on rise in temperature during rupture at a depth of 1km 

(d=10cm,λ  =0.6κ =1e-6, K=2.5 and 𝛒𝛒=2800) 

 
Figure 5.7: Effect of thermal conductance on rise in temperature during rupture at a depth of 1km 

(d=10cm, μ =0.6, λ  =0.6,κ  =1e-6 and 𝛒𝛒=2800) 
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fault plane is decreased as shown in Figure 5.6. Figure 5.7 shows the effect of thermal 

conductance on rise in temperature close to the fault plane. 

For luminescence dating the TL peaks in range from 200-400 ℃ or the OSL signal 

associated with the peaks in this temperature range are being used for quartz and feldspar 

minerals. To reset the TL/OSL signal the mineral need to be heated to <400 ℃. From the 

present model study it is evident that the required temperature can be achieved for a 

combination of model parameters.  

5.5 Luminescence Studies of Fault Gouge Samples 

The resetting of luminescence signal was tested using the fault gouge samples collected 

from the Sikkim−Darjeeling Himalaya. The samples were analyzed using TL and IRSL of 

feldspar. 

5.5.1 Predose effect in quartz 

The quartz 110 ℃ TL peak is a prominent peak with short life time of few hours (~ 7 hrs, 

trap depth 0.8 eV) at room temperature. The sensitivity (luminescence per unit dose) of this 

peak changes after heating to 500 ℃ following the pre exposure to radiation. Since then 

several works (e.g. Wright, 1979; Haskell et al., 1980; Kitis et al., 2006; Koul, 2008; Koul et 

al., 2010; Oniya et al., 2012; Polymeris et al., 2012) have studied the characteristics of 110 ℃ 

quartz peak to use it for dosimetric purpose. The predose method has been used for accident 

dosimetry and for archaeological authenticity testing (Aitken, 1985; Bailiff, 1994). The 

method was used to find the thermal history (firing temperature) of fine grained quartz for 

pottery (David and Sunta, 1981; Koul and Chougaonkar, 2011; Polymeris et al., 2013). 

Zimmerman (1971b) suggested the possible mechanism based on the sensitization of deeper 

trap due to pre exposure to radiation and subsequent heating. The model proposed by  

Zimmerman (1971b) was modified to include the additional electron level to compete during 

heating (Chen, 1979; Chen and Leung, 1999). The experimental observation in predose 

method was complemented by the theoretical work (Pagonis et al., 2003; Adamiec et al., 

2006; Pagonis et al., 2008).  

For the explanation of predose in the model thermally disconnected electron traps, 

thermally unstable non-radiative recombination centers (reservoir centers) were introduced. 
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When dose is administered to the quartz (predose) the electrons are trapped in the thermally 

disconnected traps. Due to repeated cycle of heating these thermally disconnected traps are 

sensitized and results in increasing the TL sensitivity of the 100 ℃ peak of quartz. These 

traps does not show sensitization to the test dose to the pre heated temperature, and thus were 

of potential use in finding the firing temperature of the samples. The method was tested for 

natural quartz samples (David and Sunta, 1981).  

5.5.2 Estimation of rise in temperature during faulting 

To ascertain the last heating temperature faced by the fault gouge samples and host rock 

samples we used the method as suggested by (David and Sunta, 1981). The protocol used for 

this purpose is shown in Figure 5.8. The sample was preheated from 200 ℃ to 500 ℃ in steps 

of 50 ℃. The intensity ratio (Si/S0) is then plotted against the  

 

 
Figure 5.8: Flow chart for the measurement protocol for the monitoring of 110 ℃ TL peak of quartz 

 

preheat temperatures. It was observed that the fault gouge samples show a sensitivity increase 

initially as compared to the host rock samples. In case of gouge samples it was observed that 

the increase in sensitivity starts in range of 250 ℃– 300 ℃, whereas for the host samples the 

sensitivity remains almost constant till 500 ℃ (Figure 5.11). This has been attributed to the 

past heating of gouge samples. The TD response of TL 110 ℃ peak of quartz after preheat of 

200 ℃ gave 2390, 9929, 70322, 13906, 6221, 8089 and 83119 integrated TL intensity 
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(Photon counts) for samples PCMA-8, 9, 10, 11, 12, 13, and 14. The samples PCMA-8 to 10 

are from fault gouge material and others are from host material.  The fault gouge samples 

show a higher dose response as compared to the host samples with exception of PCMA-8 and 

PCMA-14. This higher dose response might be due to heating of the fault gouge material 

during the wear process. 

5.5.3 Equivalent Dose and Age Estimation 

The Fault gouge and host samples were analyzed using the MAAD protocol for fine grain 

feldspar extracted from the samples. Figure 5.9 shows the dose response of samples. For 

these samples the stability of the signal was observed in temperature range of 200 ℃ to 350 

℃, and the luminescence signal from within this range was used to calculate the equivalent 

dose (ED) of the samples. Figure 5.10 shows the ED plateau for samples PCMA-8, PCMA-

10, PCMA-12 and PCMA-13. The alpha efficiency was measured for all the samples and 

results are listed in Table 5.1. 

5.5.1 Athermal Fading  

Fading is the loss of luminescence signal on storage. Athermal fading, is the loss of 

luminescence signal at room temperature arising due to quantum mechanical tunneling of 

trapped charges (Visocekas, 1985) and these cannot be explained by the standard kinetics 

considerations. Athermal fading was first observed in the case of volcanic feldspars by 

Wintle (1973). It was observed that UV blue emissions from volcanic feldspars exhibit 

significant fading of the luminescence signal at room temperature and hence are not suitable 

for dating purpose. For the measurement of the fading rates samples were irradiated and 

stored and after storage recorded for the faded TL signal. The ages were then corrected by the 

method suggested by Huntley and Lamothe (2001). The ages corrected for fading are also 

shown in Table 5.1. 

5.6 Effect of stress on Quartz 

In order to analyze the effect of stress on natural quartz, the quartz samples were stressed 

in laboratory and the luminescence measurements were done to characterize them and to see  

 

122 

 



 Chapter 5: Resetting of Luminescence in Fault Gouges 
 

 

 

 
Figure 5.9: (a), (c) and (e) normalized glow curves for PCMA-8, 9 and 10; (b), (d) and (f) ratio of 

N/(N+β ) showing the stability of the TL signal for same samples and (g) natural TL glow 
curves for the same samples 
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Figure 5.10: Equivalent dose plateau for samples (a) PCMA-8, (b) PCMA-10, (c) PCMA-12 and (d) 

PCMA-13 
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Figure 5.11: Change in sensitivity of 110 ℃ TL peak for samples PCMA-9, PCMA-11 (fault 

gouge) and for PCMA-14 (host)  

 

the level of resetting of different quartz peak as well to see the change in the sensitivity of 

these peaks. 

5.6.1 Effect of stress on OSL of quartz 

In order to see the effect of stress on TL 100 °C peak, Figure 5.12 shows the 

measurement protocol, the measurement was performed in two steps. In first step the sample 

was given small test dose (6.5 Gy) to induce 110 °C TL peak and then TL and OSL of the 

sample were recorded. This procedure was repeated three more time to assure that there is no 

change in the sensitivity of 110 °C TL peak and OSL counts.  

In second step after giving small test dose (6.5 Gy) the sample was stressed once (stress= 

4.8 MPa), and then the TD and measurement cycles were repeated three more times. Figure 

5.13 and Figure 5.14 show the response of 110 °C peak and OSL shine down curve before 

and after stress, as can be seen that there is reduction in the counts after stress.  

To see the effect of variable and cumulative effect on TL 110°C, a protocol as shown in 

Figure 5.15 was used. 
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Table 5.1: Details of samples, measured De, radioactivity data, alpha 
efficiency fading factor, assumed water content and TL ages 

 

 
 

 

Th 

(ppm) 
K (%) CR 

Dose 

Rate 

a-

value 
Water ED (Gy) 

Age 

(ka) 

 

 

 

  

 

 36.5±0.4 5.3±0.1 220±22 11.9±0.2 0.07 15±5 25.8±2.0 2.2±0.2   

 

 4.4±0.1 3.5±0.1 241±24 8.0±0.2 0.02 15±5 21.3±2.4 2.6±0.3   

 

 111±1 5.7±0.1 250±25 25.9±0.6 0.04 15±5 68.2±2.0 2.6±0.1   

 

 110±1 6.1±0.1 250±25 23.4±0.6 0.02 15±5 33.4±1.2 1.4±0.1   

 

 20.5±0.3 2.4±0.1 250±25 5.7±0.1 0.02 15±5 223.0±17.2 40.0±3.2   

 

 7.0±1.0 3.6±0.1 250±25 5.5±0.2 0.02 15±5 361.8±14.5 66.2±3.4   

 

 9.0±1.0 3.9±0.1 250±25 6.4±0.2 0.06 15±5 206.1±13.5 32.2±2.4   
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Figure 5.12: Measurement protocol to see the effect of stress on 110 °C peak and OSL 

 

 

 

 
Figure 5.13: TL 110 °C response before and after stress . 
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Figure 5.14: OSL normalized to first run 

5.6.2 Effect of cumulative stress and variable stress on natural quartz 

 

 

 
Figure 5.15:-Protocol to see the effect of cumulative and variable stress on quartz 110 °C peak 
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Figure 5.16: Stress induced 110 °C TL peak 

 

 
Figure 5.17: Response of 325 ºC peak after stress 
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Figure 5.18: Measurement protocol to see the effect of same amount of stress due to repeated cycles. 

 

 
Figure 5.19: effect on grain size on TL counts integrated over temperature range 220−400°C 

 

It was observed that samples which are not irradiated, when stressed show stress induced 

110 °C TL peak. Figure–21 shows the measurement protocol. As shown the measurement 
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and after that TL 200 °C was recorded for the normalization purpose. The remaining sample 
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measurement and remaining part was again stressed (stress = 22.8 MPa) and then the same 

process continued up to 37.6 MPa stress. Figure 5.16 shows the effect of cumulative stress, it 

was observed that the stress induced TL 110 °C peak. It was also observed that the height of 

this peak is dependent on the applied stress. When sample was stressed by dropping the 

increasing weight (height remains constant) a reduction of TL counts for TL 325 °C peak was 

also observed.  

In another set of experiment the fixed amount of stress was applied to the sample the 

measurement protocol is shown in Figure 5.18. After the sample was stressed a small part of 

the sample was used for measurement of TL peak for coarser and finer part.  

Figure 5.19 shows the effect of repeated stress on grain size TL counts integrated over 

temperature range 220−400°C were used and, the counts are weight normalized. It was 

expected that the resetting should be more in case of finer part but results suggest that due to 

the stress the resetting in coarser part is more. The reason is probably that due to the presence 

of coarser grains the stress is not applied effectively on finer grains.  

5.7 Results and Discussion 

Limited studies exist using thermoluminescence (TL) regarding the dosimetry of faulting 

events (Banerjee, 1996; Banerjee et al., 1999).  Previous attempts to date faulting events were 

limited by the use of grain size plateau for EDs. It was suggested that the fine grain sample is 

safe to date the fault gouge samples as there is high chance of resetting of OSL signal as 

compare to coarse grain (Wintle and Murray, 2006). In general, fine grain dosimetry is done 

using infrared stimulation (IRSL) of feldspar. However, feldspar minerals face a few 

problems like anomalous fading and change in sensitivity during the measurements.  Coarse 

grain quartz dating was not used earlier because of the non-availability of information on 

thermal history of the samples. It was thought that the resetting will be partial either due to 

insufficient frictional heat or due to the crushing effects. 

The three phase model as discussed in section 5.3 suggested that, in case of earthquake 

rupture event, frictional heat generated during slip of rock ca reset the luminescence signal. 

To simulate the temperature conditions resulting from fault, temperature profile were 

generated using transient thermal modeling.  Figure 5.4, Figure 5.5, Figure 5.6, and Figure 
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5.7 shows the T-t curve for fixed depth (1000 m) and for variable pore pressure factor with 

various slips up to 25 cm and for different values of vertical distances (1 and 3 mm) from 

fault plane. The time duration of slip was assumed to be of 0.6 for low magnitude 

earthquakes (De Lorenzo et al., 2001).  A minimum total slip of about 10 cm is can generate 

temperature in the range 300−400 °C at depth of 1000m from surface. As the depth is 

increased, the desired temperature can be attained even for slip lesser than 10 cm. 

The initial observations on the thermal profiles have shown that even for the values of the 

fault parameters’ corresponding to weak faults, the temperatures generated at the fault plane 

are close to 400 °C. This indicated that the temperatures as high as 400 °C could reduce the 

TL signal during the faulting.  The three phase model of rupturing suggested that the rise in 

temperature during the formation of fault gouge for shallow earthquakes can be more than 

450 °C. This temperature is sufficient to reset the TL signal in quart and feldspar minerals.  

Stress experiments performed on the quartz samples suggested the possibility of resetting 

of luminescence due to mechanical stress. In these experiments silicon oil was used to mount 

the grains on the stainless steel discs, which worked as the lubricant in the stress experiment. 

As a result of applied stress the material was crushed resulting into the finer grain sizes, 

which to some extent simulates the formation of fault gouge. This suggests that crushing will 

also contribute in the resetting of the luminescence. 

The fault gouge sample study from the Sikkim-Darjeeling Himalaya gave age about 1.9 

ka and 3.5 ka which are low as compared to the host rock ages of the order of 100 ka. This 

suggested the resetting of luminescence signal in gouge samples during the earthquake. The 

sensitivity measurements made on gouge and host rock samples suggested that the 

temperature rise during these events was above 300-350 °C which is sufficient to reset the TL 

peak of feldspar used for the ED measurements. The ages from the gouge samples suggested 

at least two earthquake events in the region at around 2 ka and 3.5 ka. 
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Chapter 6 

Luminescence studies of Tectonic Events in western India 

6.1 Introduction 

The Great Rann of Kachchh (~300 km in length and 80-100 km in width) is a unique 

landscape in western India which gets inundated during the monsoon by wind- driven marine 

storm surges and continental fluvial influxes (Glennie and Evans, 1976).  The Rann is bound 

by the Nagar Parker Fault (NPF) on the north and Kachchh Mainland Fault (KMF) on the 

south (Biswas, 1987) as shown in Figure 6.1a.  

Western Great Rann is known for its tectonic instability. Paleoseismological 

investigations in the vicinity of 1819 earthquake indicate the occurrence of an older 

earthquake around 800‒1000 years ago (Rajendran and Rajendran, 2001). According to Merh 

(2005) and Maurya et al. (2008), the present Rann is an uplifted floor of the former gulf. In a 

recent study, Chowksey et al. (2010) suggested uplift of the Rann after 2 ka based on the 

133 

 



 Chapter 6: Luminescence studies of Tectonic Events in western India 
 

occurrence of raised notches and abraded platforms. The most recent one was the 1819 Allah 

Bund earthquake which not only created a NE-SW trending scarp (Figure 6.1b) but was 

known to have significantly modified the geomorphic processes in the region (Oldham, 

1926). 

Sedimentation in the Great Rann has been controlled by the interplay between continental 

and marine processes (Glennie and Evans, 1976; Roy and Merh, 1982; Srivastava, 1971). 

The occurrence of clay and silt with sandy lenticles is interpreted as deposition in a low 

energy, protected tidal flat environment (Srivastava, 1971). Based on the limited 

sedimentological and geochemical studies, Glennie and Evans (1976) suggested that the 

Great Rann was probably occupied by shallow marine gulfs following the rise in sea level 

after the glacial epoch, whereas continental sediment influx dominated during the 

transgressive phase. According to them, clay mineral assemblages dominated by illite, 

kaolinite, chlorite and montmorillonite suggest the influence of the Indus River drainage 

system. 

In present thesis an attempt was made to understand the processes responsible for terrain 

configuration in the vicinity of Allah Bund with an assumption that (i) presence of scarp and 

relict raised channels may point to tectonic and seismic activities and (ii) evidence for both 

continental and marine processes may be well preserved. The other objectives of the study 

include,  to (i) ascertain the process responsible for Rann sedimentation  in terms of marine 

and continental,  assign chronology to various depositional events and environments and to 

reconstruct paleoseismic events. To address these issues a detailed field stratigraphy of the 

Rann sediments, relict and raised fluvial channels was undertaken. Due to the paucity of 

organic matter in fluvial sediment and the problem of the reservoir correction in marine 

sediments, Optical dating technique have been employed for constraining various 

geomorphic/climatic processes. 

6.2 Study area  

The present study is focused on the western part of the Great Rann between the Nara 

River in the west (240 07′ 36″ N and 690 07′ 15″E) and Shakti Bet in the east (240 03′ 16″ N 

and 690 34′ 13″E; Figure 6.1b). The rationale behind selection of the studied area was (i) the 

terrain was severely affected by 1819 Allah Bund earthquake, (ii) it preserves both Rann and 
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Bet sequences, and (iii) was drained by the Nara River in the past. Climatically the area lies 

in arid zone. The mean annual rainfall ranges from 200–380 mm and is contributed by the 

southwest summer monsoon (Pramanik, 1952). Vegetation is scant, dominated by shrubs and 

grows along a few linear tracts containing fine sand <1 m below the surface, which probably 

represent past stream courses. The shallow sedimentary sequences investigated as a part of 

this study are north of the Allah Bund scarp and are well above present-day tidal inundation 

(Figure 6.1b). The field stratigraphy and sedimentology of the sections studied are discussed 

below 

6.2.1 Bet sequences 

Karim Shahi: At Karim Shahi (24º 07′ 42″ N and 69º 30′ 73″ E), a 200 cm-thick micaceous 

sedimentary sequences, shows four distinct fining-upward units and overlies the clayey-silt 

dominated Rann sediment (Figure 6.2, Karim Shahi). From the bottom upwards, unit-1 

consists of a 15 cm-thick light grey crudely laminated, fine micaceous sand overlain by a 6 

cm-thick light brown silty-clay. The unit-2 is succeeded by a 35 cm- thick fine, light grey 

micaceous sand with dispersed clay laminae overlain by a 5 cm-thick compact light grey 

silty-clay. The overlying unit-3 has a 10 cm-thick light grey fine micaceous sand overlain by 

a 10 cm-thick light grey compact silty-clay. The uppermost unit-4 is dominated by a 30 cm-

thick dark grey crudely laminated, fine micaceous sand capped by a 10 cm-thick light grey 

silty-clay. Finally, the succession terminates with a 25 cm-thick crudely laminated light grey 

medium to fine sand. The grain size analyses of unit-1 and 2 show dominance of sand 

(50−51%), followed by silt (46−47 %) and clay in traces (0.5−0.4%). To the west of the Bet 

sequence, a few archeological mounds are located in the low-lying areas overlying the Rann 

sediment. One such mound was excavated during the investigation in order to document the 

stratigraphy and to collect samples for optical and radiocarbon dating. The stratigraphy of the 

mound from the bottom upwards shows a 30 cm-thick crudely layered mixture of dark grey 

silty-clay, containing dispersed charcoal and bones. This is overlain by a 20 cm-thick light 

grey silty-clay with broken potsherds and finally capped by 60 cm of assorted archaeological 

debris containing bones, potsherds and charcoal (Figure 6.2, Archaeological mound). 
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Figure 6.1: (a) Map showing the location of the study area, NPF—Nagar Parker Fault, KMF—

Kachchh Mainland Fault (after Biswas, 1987). (b) Geomorphological map of the area 
(after Rajendran and Rajendran, 2001; Merh, 2005). 
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Figure 6.2: Stratigraphy and optical chronology of the shallow sedimentary sequences 
investigated in the present study. (1) Allah Bund (Rann sediment), (2) Rann 
sediment (incised channel), (3) Nara River bank, (4) Nara River Bed, (5) 
Karim Shahi (Bet sediment), (6) Karim Shahi (Archaeological mound) and 
(7) Rann sediment (at Shakti Bet). Radiocarbon ages are shown in italic bold 
font. Dashed upward arrow indicates land movement, whereas the downward 
arrow indicates river incision. 
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Depositional environment: The deposition of fining-upward sequence is attributed to a 

flood-plain environment for the following reasons; (i) sand horizons are parallel laminated 

(unlike the coastal fining-upward sequences which are largely cross-laminated), (ii) it 

overlies lenticular bedded clayey-silt (tidal flat) and (iii) it is associated with micaceous-rich 

elevated sandy Bets. In view of this the depositional environment is interpreted as a flood-

plain adjacent to the trunk channel (Reineck and Singh, 1980). For flood-plain aggradation 

the channel should have a consistent flow path, well-defined channel morphology (e.g. a 

meandering course) and episodic over− spilling of fine sediment on to the adjacent 

floodplains (Juyal et al., 2000). 

The Indus River sediments are rich in mica (Chauhan, 1994) because a significant 

contribution comes from the higher Himalayan crystalline lithologies (Alizai et al., 2011). 

Presently, the Indus River flows nearly 100 km west of the study area. The Nara River, an 

eastern branch tributary of the Indus River that once flowed into the Great Rann (Oldham, 

1926), was the major source of sediment into the western Great Rann. In view of this, the 

presence of micaceous sand in the Bet sediment at Karim Shahi can be attributed to the 

contribution from the Indus alluvial plain. However, it is also likely that a part of the sand 

could have been reworked by the ephemeral streams from the parabolic dune fields located in 

the north of the study area (Figure 6.1).  

Near Karim Shahi, the archaeological site is proximal to the line of present-day tidal 

inundation. Therefore, it is logical to assume that during the time of human occupation, the 

site would have been well above the tidal reach and its present elevation can be attributed to 

land-level changes caused due to an earthquake. That is because the historical evidence 

suggests that prior to the 1819 Allah Bund earthquake, a large tract of the land north-east of 

Kori Creek was above high tide level. After the 1819 earthquake, a terrain north of Kori 

Creek was subsided by about 1−5 m, which led to the creation of Sindri basin (Wynne, 

1872).  The archeological site is located towards the northern margin of the subsided Sindri 

basin; hence it is reasonable to suggest that the present elevation of the archaeological site is 

due to the earthquake-induced land subsidence.  
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6.2.2 Rann Sequences 

Allah Bund Scarp: At the mouth of the dried bed of the erstwhile Nara River (24º 12′ 63″ N 

and 69º 11′ 84″ E), a 160 cm scarp developed on Rann sediment shows the dominance of  

laterally impersistent clayey-silt punctuated very fine micaceous sand laminae (Figure 6.2, 

Allah Bund Rann sediment).  

Incised Rann sediment: A 45 cm-thick section incised by ephemeral streams was exposed 

along a raised NW-SE trending channel on the Allah Bund scarp (24º 07′ 39.32″ N and 69º 

07′ 05.32″ E). The lower-most 15 cm-thick unit is dominated by cherry brown clayey-silt and 

is overlain by a 7 cm-thick ripple laminated, fine grain sand. This is succeeded by a 30 cm-

thick clayey-silt with fine sand lenticles, which is capped by recent aeolian sand (Figure 6.2, 

Rann sediment, incised channel).  

Rann sediment at Shakti Bet: In a low-lying area near Shakti Bet (24º 03′ 46″ N and 69º 29′ 

54″ E), a 260 cm-thick sedimentary succession was exposed in a dried channel section 

(Figure 6.2, Rann sediment near Shakti Bet). The succession shows a 20 cm-thick light to 

dark grey clay containing discrete sand lenticles. This is overlain by a 105 cm-thick ripple-

laminated dark to light brown medium to fine micaceous sand.  The sand horizon is 

succeeded by a 60 cm-thick cherry brown laminated clayey-silt horizon punctuated by cm-

thick mottled lenticular fine sand. This is overlain by a 35 cm-thick brown, sticky silty-clay 

alternating with light to dark grey laminated sand. The succession is terminated with a 40 cm-

thick cherry brown sticky clay interspersed with sandy laminae. 

Nara River bed: A 120 cm-deep pit was dug into the Nara River bed (24º 07′ 36.7″ N and 

69º 07′ 15.1″ E) where it cuts through the 1819 Allah Bund fault scarp (Figure 6.2, Nara 

River bed). The Nara River has incised the tidal flat sediment containing bivalve shells 

(preserved in their living position). The lowermost 10 cm-thick clayey-silt layer has abundant 

unbroken Turritella shells overlain by 20 cm-thick medium to fine laminated micaceous sand 

with clay streaks. Overlying this is a 30 cm-thick cherry brown silty-clay with laminated fine 

sand intercalations in the upper part. This is overlain by a 25 cm-thick rippled and planar 

laminated, medium to fine sand with convolutions. Finally, a sandy-clay alteration marks the 

top of the river bed succession.   
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Depositional environment: Texturally, the fine grained nature of the Rann sediment 

(clayey-silt with occasional fine sand) suggests deposition in a tidal flat environment 

(Christiansen et al., 2006). On tidal flats, clay and fine silt is transported in suspension, 

whereas sand is carried by traction (Krögel and Flemming, 1998). Sand is deposited during 

flood and ebb tide and develops ripple bed forms with internal cross- lamination, whereas, 

clay is deposited during slack water condition and drapes the ripple surfaces or settles in 

inter-ripple troughs (Chakrabarti, 2005). The dominance of a tidal flat environment is further 

suggested by the occurrence of lenticular and wavy bedding with current ripple bedforms 

(Reineck and Singh, 1980). The presence of 105 cm-thick, current-laminated micaceous sand 

at Shakti Bet suggests deposition under changing tidal and wave currents. Deposition of sand 

occurred during the periods of moderate current activity whereas clay was deposited during 

calm water conditions (Le Hir et al., 2000; Yang et al., 2006). Conventionally the sand 

dominated areas in a tidal flat are located close to the low tide mark, which are exposed to the 

stronger tidal currents (Bungenstock and Schäfer, 2009), 2009). It is therefore likely that 

deposition of rippled-laminated 105 cm-thick sand horizons took place on low to moderate 

energy areas; viz. the coastline was close to the Shakti Bet. The infrequent presence of cherry 

brown clayey-silt suggests periodic sub-aerial exposure (Srivastava, 1971). The fossil 

evidence, such as the in-situ bivalve and the unbroken Turritella shells, further indicates that 

the Rann sedimentation occurred under intertidal-marine environment (Desai and Patel, 

2008). 

6.3 Evidence of Past seismic events  

Truncated nature of the raised channel suggests episodic uplift of the channel bed due to 

seismic activity. Rajendran et al. (1998) based on the presence of truncated dry channels and 

absence of incipient drainage suggested existence of pre 1819 scarp. This would imply that 

the raised channels suggest an earthquake similar to the 1819 event. Evidence of tectonic 

activity is further supported by the presence of contorted horizon (flame structures) in the N-

S trending raised channel sediments. Flame structures are the direct expression of the seismic 

activity associated with faults and are generated under the same regional or local stress field 

that originates in the fault slip (Rodríguez−Pascua et al., 2001). These features are generated 

due to liquefaction/ fluidization process (Owen, 1996) and the lowest magnitude that can  
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Figure 6.3: Drainage pattern in the vicinity of Allah Bund. Western segment shows higher density of 

embryonic streams (W) compared to the Eastern segment (E). Channels show a 
preferential south west side trend.  
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generate such features is ~M 5 (Atkinson, 1984). Maurya et al. (2006) also suggested the 

possibility of the type of liquefaction features based on their Ground Penetrating Radar study 

for 2001 earthquake in Banni region. However, the silty-clay dominated with occasional 

sandy lenticles in NE-SW trending raised channel suggests that it was carved on pre-existing 

Rann sediments that were deposited under tidal influence and was brought to the present 

elevation due to the past earthquake. Absence of prominent sand horizons is interpreted as 

reduced continental flux. Evidence for active seismicity in the study area is also suggested by 

the westward deviation of the streams behind the scarp Figure 6.3. Such deviations have been 

attributed to high rate of structural uplift relative to erosion rates in which case transverse 

rivers encountering a growing anticline will often be deviated rather than cutting across the 

structure, following the areas of structural weakness, such as transverse faults (Seeber and 

Gornitz, 1983; Gupta, 1997). 

6.4 Luminescence Studies of Rann Samples 

A suite of 13 sediment samples and one pottery sample were analyzed. The pottery 

sample was analyzed using the Thermoluminescence (TL) dating technique (Zimmerman, 

1971a), whereas optical dating was used for sediment samples employing the Single Aliquot 

Regeneration (SAR) protocol. In absence of coarse grains in sample SBTL-1, the Multiple 

Aliquot Additive Dose (MAAD) technique on polymineral fine grained extracts was used 

(Singhvi et al., 2001).  

Figure 6.4 shows the preheat plateau test for samples KSTL-2 and ABTl-1 for preheat 

temperature ranging from 180−280 ℃. It is evident from the figure that a preheat temperature 

from 220 to 260 ℃ can be used for De measurements. 

Figure 6.5 (a) and (c) shows the dose recovery tests for samples KSTL-1 and KSTL-2 along 

with the SAR growth curves for same samples (b) and (d). The shine down curves for these 

samples are shown in upper right corners of (b) and (d) along with the SAR growth curves. 

To visualize the dose distribution of samples radial plot as well as histograms were used 

Figure 6.6 (a), (c), (e) and (g) show the radial plots of samples ABTL-1, ABTL-2, KSTL-2 

and ABP-1 and (b), (d), (f) and (h) shows the histograms of these samples. 
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Figure 6.4: Preheat plateau test for samples (a) KSTL-2 and (b) ABTL-1 
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Figure 6.5: Dose Recovery test for 10 discs of sample (a) KSTL-1 and (c) KSTL-2, SAR Growth 
curve and Shine down curve for sample (b) KSTL-1 and (d) KSTL-2 
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Figure 6.6: (a), (c), (e) and (g) shows radial plots for the samples ABTL-1, ABTL-2, KSTL-2 and 
ABP-1 and (b), (d), (f) and (h) showing the histograms of these samples. Total number of 
discs (n) shown on the upper right corner of the figures. 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

6

8

10
KSTL-2

 

 

N
o.

 o
f A

liq
uo

ts

Dose (Gy)

n=30

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

No
. o

f A
liq

uo
ts

 
 

Dose (Gy)

n=30ABP-1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

4

5

6

7

8

9
n=20ABTL-2

 

 

No
. o

f A
liq

uo
ts

Dose (Gy)

(a) 
  (b) 

  

(c) 
  

(e) 
  

(g) 
  

(d) 
  

(f) 
  

(h) 
  

0 4 8 12 16 20 24 28
0

4

8

12

16

20

24

 

 

No
. o

f A
liq

uo
ts

Dose (Gy)

n=34ABTL-1

145 

 



 Chapter 6: Luminescence studies of Tectonic Events in western India 
 

The ages obtained on Rann sediment ranged from 5.5 ± 1.0 to 1.0 ± 0.2 ka, whereas the 

Bet sediments were dated between 5.0 ± 0.5 and 3.0 ± 0.3 ka (Table 6.1, Figure 6.2). The 

pottery sample was dated to 3.0 ± 0.5 ka. The temporal changes in sedimentation rate were 

obtained for the Shakti Bet Rann sequence by linear interpolation between two dated depths 

viz. 233−133 cm (5.5 to 5 ka) and 133−50 cm (5 to 3 ka) (Fig. 5), which gives a decreasing 

rate from 2 to 0.4 mm/yr. Additionally, three samples were dated using the conventional 

radiocarbon method. These included a charcoal from the archaeological site and two shell 

samples, one each from the incised tidal flat terrace surface (~2 m above the Nara River bed) 

and one sample at 125 cm below the Nara River bed. The charcoal sample collected from 30 

cm below the archaeological mound at Karim Shahi was radiocarbon dated to 3100 ± 350 cal 

yr BP. Within error, this age accords well with the OSL age of 3.0 ± 0.5 ka obtained on a 

pottery sample, suggesting that the site belongs to the late-Harappan period. The dead bivalve 

shells found in the living position on the river bank surface at 2 m were dated to 2220 ± 130 

cal yr BP whereas the Turritella shells collected 125 cm below the present Nara River gave 

an age of 1420 ±1 30 cal yr BP (Figure 6.2, Nara River bank and Nara River bed).  

6.5 Discussion 

Field stratigraphy, sedimentology and optical dating of the shallow sedimentary 

sequences in the western Great Rann indicate that during the last 5.5 to 2 ka, the major part of 

the western Great Rann was under the influence of tidal flat sedimentation. Low energy 

fluvial sedimentation was limited to the north and north-eastern margins implying that 

compared to the tidal flat environment, fluvial activity was much more subdued during the 

last 5.5 ka. This negates the suggestion that Nara-Hakra Rivers were receiving waters from 

the Himalaya and were flowing through the Great Rann of Kachchh (Oldham, 1893; Stein, 

1942; Ghose et al., 1979). The low-lying western Great Rann opens into the Arabian Sea 

through the macrotidal Kori Creek, which serves as a conduit for seawater to seasonally enter 

inland and flood the Great Rann of Kachchh during the monsoon (Roy and Merh, 1982; Inam 

et al., 2007; Prizomwala et al., 2010). Thus, in such a morphological setting, a marginally 

high sea level can inundate a large area. However, the sedimentological observations indicate 

marginal fluctuations in high sea level during 5.5 to 2 ka. This observation is in accordance 

with the suggestion of a high sea level in the western India during 6 and 2 ka (Chamyal et al., 
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2003 and reference therein). There is no estimate on the height of this high sea level from the 

western Great Rann of Kuchchh during the mid-Holocene. However, studies carried out in 

the Little Rann (Gupta, 1975) and the Saurashtra coast of India (Juyal et al., 1995; Mathur et 

al., 2004; Gaur et al., 2006) suggested that relative to present, sea level was 2−4 m high 

during 6 and 2 ka. Considering the above, it is reasonable to assume that the western Great 

Rann was under the dominance of a marginally high sea between 5.5 and 2 ka.    

The sediment distribution in the tidal flats is governed by the tidal current and wave energies. 

Near the level of low tide (lower part of the tidal flat), both current and wave energies are 

greater than the high tide area (Heineck, 1967). Dellwig et al. (2000) used the geochemical 

proxies, in particular the trace and heavy minerals, along with the grain size to ascertain the 

temporal changes in tidal current velocities The illite-dominated Indus River is the major 

source of suspended sediment, which is dispersed eastward towards the Gulf of Kachchh by 

the long shore-current (Rao and Rao, 1995; Prizomwala et al., 2010). The significant 

proportion of the sediments in western Great Rann was derived from the Indus River source 

which was transported into the tidal flat through the Kori Creek during marginally higher sea 

level (Glennie and Evans, 1976).  

The western part of the Great Rann is known for experiencing earthquakes in the historical 

past (Burnes, 1835; Oldham, 1926; Rajendran and Rajendran, 2001; Rajendran et al., 2008). 

Thus, it is reasonable to consider the role of earthquakes in the evolution of the landforms. 

River course is one of the sensitive indicators of past earthquakes. For example, Rajendran et 

al. (1998), based on the presence of truncated dry channels and the absence of incipient 

drainage in the east of the Nara River bed, suggested the existence of a pre-1819 earthquake. 

According to Rajendran and Rajendran (2001), the Allah Bund represents a compound scarp 

formed by repetitive earthquakes. The above suggestion seems to be reasonable as discussed 

below. The bivalves (Bernea truncata and Mya sp.) dated to 2.2 ka were residing on a surface 

that was incised by the Nara River to a depth of ~ 2 m and below 1.25 m of the Nara River 

bed, where the Turritella shells are dated to 1.4 ka (Figure 6.2, Nara River bank). This 

implies that the Nara River occupied the present course (westward shift) after 2.2 ka and 

incised to a depth of 3 m before the channel aggradation began with tidal flat sedimentation. 

The bivalves are filter feeders; Mya sp. makes deep burrows, while Bernea truncata is 

mechanical borer which prefers to colonize on the dewatered sediments/firm mud and live in  

147 

 



 Chapter 6: Luminescence studies of Tectonic Events in western India 
 

 

 Table 6.1: Equivalent dose (De), Dose Rate and ages obtained on the western Great Rann 
sediments. 

Sample 
No. U (ppm) Th 

(ppm) K (%) 
Cosmic 
Ray 
(µGy/a) 

a 
value De (Gy) 

Dose  
rate 
Gy/ka 

Age 
(ka) 

ABP-2 3.6±0.7 10±2 2.4±0.1 205±20 - 8.7±0.4 3.8±0.3 2.0±0.2 
ABP-1 4.0±1.0 10±4 1.6±0.1 200±20 - 10.3±0.2 3.1±0.4 3.3±0.4 
ABTL-
2 3.1±0.5 6 ±2 2.6±0.1 210±21 - 9.6±0.3 3.0±0.2 3.0±0.2 

ABTL-
1 3.5±0.6 8±2 2.6±0.1 194±19 - 11.7±0.2 3.3±0.2 4.0±0.2 

KRM 
OSL-2 4.1±0.1 22±0.4 2.35±0.02 195±20  11.8±0.1 3.7±0.5 3.0±0.5 

KRM 
OSL-1 2.7±0.05 12±0.2 1.84±0.02 214±21  10.7±0.1 2.4±0.4 4.5±1.0 

KSTL-
2 1.7±0.6 8±2 2.6±0.1 214±21 - 6.7±0.4 2.6±0.2 3.0±0.3 

KSTL-
1 1.6±0.6 8±2 1.9±0.1 195±20 - 11.0±0.4 2.2±0.2 5.0±0.5 

SBTL-
4 2.5±0.5 7±2 2.6±0.1 210±20 0.06 11.6±0.5 4.5±0.3 3.0±0.2 

SBTL-
3 2.4±0.5 5±2 2.0±0.1 198±20 - 9.4±0.8 2.0±0.3 5.0±1.0 

SBTL-
1 2.4±0.5 5±2 2.1±0.1 185±19 - 10.6±0.2 2.0±0.3 5.5±1.0 

NRM 
OSL-1 4.3±0.04 19.6±0.2 1.87±0.01 205±20 - 3.1±0.1 2.9±0.4 1.0±0.2 

NRM 
OSL-3 4.3±0.04 21.0±0.2 1.96±0.01 210±21 - 3.0±0.2 3.2±0.5 1.0±0.5 

KS-
ARCH 3.2±0.6 4±2 2.2±0.1 214±21 0.04 11.0±2.0 4.1±0.2 3.0±0.5 
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the subtidal zone (Desai and Patel, 2008). Considering this, it is logical to interpret the 

mortality of these bivalves in response to the withdrawal of the subtidal environment. The 

withdrawal of the sea after 2.2 ka could either be gradual due to the onset of regional aridity 

(climatically induced) in western, central and southern India (Kale, 1999; Thomas et al., 

2007a; Roy et al., 2008), or abrupt due to the land-level change caused by an earthquake. At 

this stage, due to limited data, it is difficult to ascertain the relative contribution of either of 

the two factors in the withdrawal of subtidal environment from the western Great Rann.  

However, the present study allow us to suggest that around 5.5 ka the low tide region was 

located around Shakti Bet and the high tide zone was further inland (towards east of Shakti 

Bet, Figure 6.7a). Based on this analogy, the decreased concentration of the trace elements 

and major element ratios and the dominance of clayey-silt during 5 and 3 ka can be 

interpreted as the westward shift in the high tide zone caused due to the relative lowering of 

sea level. 

According to Rajendran and Rajendran (2001), the 90 km-long Allah Bund Fault Scarp 

(ABFS) is a compound scarp formed by more than one event, with a cumulative height of 5.3 

m. Continued activity along the ABFS led to the westward migration of the Nara River. 

Abrupt lateral migrations of alluvial rivers in tectonically active areas are quite common 

(Schumm, 1986). This would imply that ABFS was in existence before the 1819 earthquake 

and probably prior to 2.2 ka. Until the subsurface topography is ascertained using detailed 

geophysical surveys, the antiquity of the ABFS as suggested in the present study (Figure 

6.7c) remains preliminary and tentative. Historical evidence indicates existence of moderate 

fluvial activity in the Nara River until 1768 AD (Burnes, 1835). The northward tilting of the 

1819 Allah Bund scarp created a natural a barrier for the river which had already lost its 

stream power due to the construction of dams in the upstream (Wynne, 1872). The 1819 

Allah Bund earthquake of magnitude 7.5 not only uplifted the Rann sediment to variable 

height (3 to 6 m) to a distance of ~90 km (Rajendran and Rajendran, 2001), but also caused a 

coseismic subsidence of 1‒5 m in the south which led to the creation of Sindri basin (Wynne, 

1872; Oldham, 1926); Figure 6.7c). Based on the presence of abandoned channels, meander 

scrolls, shifting of stream courses, it has been estimated that around 15 km-wide zone lying 

north of the ABFS was affected by the 1819 earthquake (Rajendran and Rajendran, 2001). 

This earthquake led to the complete disruption of the Nara River channel which flowed into 

the Kori Creek and was used for navigation (Oldham, 1926). Thus, based on above it can be 

149 

 



 Chapter 6: Luminescence studies of Tectonic Events in western India 
 

suggested that the present day topography is an outcome of the 1819 earthquake (Figure 

6.7c).   

6.6 Conclusions 

Sedimentation during 5.5 and 2 ka was dominated by a tidal flat environment implying a 

higher sea level than today. Fluvial sediment contribution in the western Great Rann 

sedimentation was limited, confined to the northern fringe of the study area. Thus, contrary to 

the earlier suggestions, our study did not find evidence for the existence of a major river 

draining through the western Great Rann during the last 5.5 ka. The geochemical 

characteristics of the Rann and Bet sediments suggest that the Indus River was a major 

contributor of sediment into the Western Great Rann which was largely routed through the 

Kori Creek. After around 2.2 ka and before 1.4 ka a combination of climate and tectonic 

activity probably led to the withdrawal of intertidal environment from the major part of the 

western Great Rann. The present-day landform and earth surface processes are largely 

modulated by the 1819 Allah Bund earthquake.  
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Figure 6.7: (a) Marginal lowering of the sea between 5 and 3 ka caused by low energy environment 
around Shakti Bet and the river activity was limited to the north-eastern fringes. Surface 
expression of the Allah Bund Fault Scarp (ABFS) may have appeared at this time. Human 
settlement probably also came around this period. (b) Fluvial system began to weaken 
along with withdrawal of marginally high sea; first major earthquake probably caused 
initiation of Allah Bund Fault during 2.2 and 1.4 ka. (c) Weakening of fluvial regime 
continued, development of Allah Bund scarp and submergence of Sindri after 1819 
earthquake to achieve present land form. 
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Chapter 7 

Conclusions and Future Outlook 

7.1 Conclusions 

This thesis examined the basic physics underlying the dating of seismic events using fault 

gouges, sand dikes, fault scarps, sediments of truncated river channels using luminescence 

dating. The general conclusions from this thesis are, 

A. Luminescence dating of sand dikes 

1. Calculation from first principles, suggest that during the formation of sand dike, 

under favourable conditions grain friction between the sediment grains injected as 

dikes can result in flash heating that is sufficient to erase the pre-existing 

luminescence at the time of injection and at the same time, the transient nature of 

flash heating enables a preservation of the pristine mineral composition without 

any thermally induced alteration. Some of the suitable conditions for such a flash 

152 

 



 Chapter 7: Conclusion and Future Outlook 
 

heating to occur are of kinematic viscosity of order m2s-1, minimum velocity of 30 

ms-1 for narrow dike (~5 cm wide) 

2. Luminescence studies on samples of dikes from Assam along Mora Krishna river 

and from Kakoti site indicated evidence of such a heating. Further experiments 

such as estimation of heating using predose sensitization of quartz, suggested the 

temperature rise at least up to 400 °C during the injection of dikes. These studies 

also enable dating of past earthquake during 111 years, 300 years, 500 years and 1 

ka, and we anticipate a magnitude of M > 6 for Beltagat and nearby sites and M> 

7 for Kakoti and Namgaon sites. 

B. Luminescence Studies on Fault Gouges 

1. In this case also, calculation from first principles enabled us to compute the heat 

generation during faulting and grain friction heating. Computation of heat 

conduction shows that under reasonable condition a slip of ~10 cm can result in 

finite heating of gouge material up to 350 °C and more, and this heat then 

conducts to the gouge matrix and in the process resets the luminescence of the 

grains constituting the gouge. 

2. Studies on fault gouges from Gish fault led to evidence of heating in gouge 

material of about 300-350 °C. The luminescence dating of fault gouge samples 

suggested at least two tectonic events at ~ 2 ka and 3.5 ka. 

All these sequences were a direct consequence of the seismic/tectonic events and the 

basic effort in the case of fault gouge and sand dikes was to validate the basic premises of the 

application of luminescence methodology in respect of the zeroing of luminescence signals at 

the time of faulting/sand dike formation. The other application was the use of standard 

luminescence dating procedures to an important area in western India viz. Allah Bund to 

reconstruct the paleoseismic history of the area.  

The resetting of the luminescence signal in both cases i.e. sand dikes and fault gouge was 

tested by theoretical calculations and experimental methods. Based on the present study 

following inferences can be drawn  
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1. The resetting of the luminescence signal in the formation of sand dikes is possible 

due to viscous heating. The calculations made by using viscous heating model for 

sand dikes suggested that a temperature rise > 400 °C is possible.  

2. The resetting of luminescence is more at the center of the dike as compared 

towards the edge. The temperature increase in narrow dike is higher as compared 

to the dike of larger width. Therefore it is suggested that the dikes of narrow width 

are chosen for sampling and samples from the dikes should be collected from the 

center of the dike. 

3. The extent of heating in sand dikes was estimated experimentally based on the 

sensitivity of the dike samples and host samples. This suggested that the rise in 

temperature during the injection of the dike was 350−400 °C.  

4. The samples for dating of paleoseismic events using sand dikes from North East 

India suggested tectonic events at 111 years, 300 years, 500 year and 1 ka. The 

earthquake of magnitude M >6 caused the injection of dikes in Beltaghat and 

nearby site areas, and M > 7 caused the injection of dikes in Kakoti and Namgaon 

sites. 

5. The simulations made for the estimation of rise in temperature during the rupture 

events due to friction heating (transient heating) suggested that the temperature 

rise can be > 400 °C for faulting at a depth of 1 km. This temperature rise will 

result in the resetting of luminescence signal in fault gouge material. 

6. The extent of temperature rise for fault gouge material was made by using predose 

method and suggested that the gouge material experienced a temperature of ~500 

°C. The laboratory stress experiments on the quartz samples suggested that the 

transient shock events which also result in the crushing of quartz grains will also 

contribute to the lowering of the luminescence and higher stress may result into 

the full resetting on the luminescence signal. 

7. The luminescence studies of fault gouge samples collected from the 

Sikkim−Darjeeling Himalaya suggested two earthquakes in the areas at around 2 

ka and 3.5 ka. 
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8. Luminescence dating of samples from fault scarp, truncated channels and 

historical site in the proximity of Allah bund area in Great Rannn of Kuchchh 

suggest that the Allah bund scarp was created from at least two major earthquakes 

viz. the 1819 and between 2.5 and 1.4 ka respectively. 

7.2 Future work 

In present work while established the premises of dating of dikes and fault gouges, there 

is a need for further refinement, first by an extensive analysis of luminescence of fault gouges 

and sand dikes and their analysis in respect of the parameters such as host matrix and its 

physical characteristics, the slip in case of faulting, the depth of dike injection etc. Such a 

study will pave way or a more robust and routine application of luminescence methods for 

chronology. This is needed as in terms of sensitivity luminescence only provides a mean to 

date young historical events so that the methodology could be verified. Secondly 

luminescence parameters such as predose sensitization are also needed to provide additional 

constraints on heating and transient heating for fault gouge and sand dike respectively. 

Theoretical calculations so far comprised several assumptions such as heat near the 

surface of the block, and away from the fault plane is zero, the velocity of the dike material 

during injection is less as compared to the center of the dike. For the estimation of 

temperature during the formation of sand dikes a linear flow of sand material is considered. 

However in nature the flow has to be decelerating and hence the heat generation should 

expectedly be nonlinear. Field observation suggests most of the sand dikes are of conical in 

shape (narrow at top and broad at bottom). Since the rise in temperature is affected by the 

width of the dike it is important to include this in the calculations. For this a detail 

mathematical model is needed, which takes into account the geometry of the dike and will 

help in considering the better position of samples for luminescence studies. In the present 

model we have considered the conservative value of kinematic viscosity; the model can be 

extended to include the effect of kinematic viscosity under confining pressure based on 

theoretical models for it. 

Similarly for the estimation of rise in temperature we have not considered the second 

order effects which will also affect the temperature. For example as soon as the rupture on a 

fault plane takes place the dynamic frictional coefficient will change. This will have 
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significant effect and might cause lowering in the temperature as the recent measurement on 

the Great East Japan earthquake suggest a lower value of the frictional coefficient during the 

coseismic slip (Fulton et al., 2013; Ujiie et al., 2013). Also the effect of temperature due to 

the change in pore pressure as result of increase in temperature (coupling of the two as a 

feedback system) is not taken into account. The inclusion of this into the model will give 

better estimates of temperature rise during the rupture events. 

The quartz can be used as a geothermometer based on the apparent age and temperature 

for different cooling rate (Li and Li, 2012). The detailed laboratory protocols need to be 

developed for this method which will be helpful in estimating the last cooling luminescence 

age for dikes and fault gouge samples. 

In the present case dike samples from five different locations were studied to ascertain the 

resetting of luminescence signal. The North East area in India is seismically active and has 

experienced several earthquakes. However based on the sand dike studies we could identify 

four seismic events, and one of them was identified from the recent past (1905 earthquake). 

This indicated that the injection of dike was probably not there during other earthquakes, 

even  these earthquakes were of higher magnitude M >7. This needs further investigations for 

the possible mechanism of the injection of the dikes in this area. Also the effect of multiple 

earthquakes on the resetting of luminescence in the dike material needs further experimental 

and theoretical work. 
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