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Abstract

Neutrinos are massless in the Standard Model (SM )and tkare CP violation
in the leptonic sector. Robust evidences of neutrino @mihs have confirmed
that the neutrinos do have masses, although small. The stadding of neutrino
masses requires new physics beyond SM. As the neutrinoigesimeutral particle,
it can be a Majorana fermion where neutrino will be its ownianticle. See-
saw mechanism provides a natural suppression of neutrirssesady introducing
a lepton number violating source at some high scale. In Hasis, we will study
neutrino masses in various seesaw scenarios and Grandluh#igries after a short
review of experimental status of neutrino masses and mixirigen we study the
role of neutrinos in two very important astrophysical andrmological problems,
1) baryon asymmetry of the present universe and 2) cosmicictdnce problem
for dark energy.

If the neutrinos are Majorana fermions, the low energy neatmass matrix
comes out to be symmetric. Assuming neutrinos to be Majoi@maions we have
constructed rephasing invariant measures of CP violatidmelements of the neu-
trino mass matrix, in the basis in which the charged leptossmaatrix is diagonal.
We have applied our approach to study CP violation in all thenomenologically
acceptable 3-generation two-zero texture neutrino massaes and have shown
that in any of these cases there is only one CP phase whichhges to the neu-
trino oscillation experiment and there are no Majorana gbas

An attractive explanation for tiny neutrino masses and kmatter antimatter
asymmetry of the present Universe lies in leptogenesis.rédéent thesizeof the
lepton asymmetry is precisely known, while thignis not known yet. We have de-
termined the sign of this asymmetry in the framework of tvghtthanded neutrino
models by relating the leptogenesis phase with the low grneéRyviolating phases
appearing in the leptonic mixing matrix. It has been shovat the knowledge of
low energy lepton-number violating rephasing invariaras mdeed determine the
sign of the present matter antimatter asymmetry of the Usévand hence indi-
rectly probing the light physical neutrinos to be of Majcaaype.

One of the very interesting model of dark energy in curregsdsibased on pro-
posal of mass varying neutrinos. We have proposed a ldit-sgmmetric model



that can accommodate this neutrino dark energy propospk yseesaw mecha-
nism is implemented to give masses to the neutrinos. Unékiéee models of mass
varying neutrinos, in the present model the mass paramied¢rdepends on the
scalar field (acceleron) remains very ligtdturally. The model is then embedded
in an SO(10) Grand Unified Theory and the allowed symmetrghirg scales are
determined by the condition of the gauge coupling unifigatithe neutrino masses
are studied in detail in this model, which shows that at I18dsft-right gauge sin-
glet fermions are required for consistent understandinth@bbserved low energy
neutrino mass spectrum.
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Chapter 1
Introduction

Although the existence of neutrinos was first proposed ir0D188Pauli to explain
the continuous energy spectrum of the electron coming fl@mticlear beta decay
process and was confirmed in 1956 by Cowan and Reifjethf fact that they have
masses too could only be verified conclusively in the lastdeades. The obvious
reason behind the difficulty to observe the neutrinos liehenfact that they are
very weakly interacting particles with very small masseleyinteract with other
particles through gravitational and weak interactionsweleer, their gravitational
influence comes out to be very small compared to their weakantion.

As the neutrinos interact through weak interaction, it pg@s to play some
special role in particle physics which can not be shared lyyodimer particle. The
properties of many astrophysical objects are addressecetegtihg and studying
the light coming from them. However, the light has to travebtugh the different
galactic and intergalactic spaces before coming to eanth laence, is quite per-
turbed. The situation is different with the case of neussiméhich get almost no
perturbation while coming from source to us. So it promisesatrry all the original
information and can be analyzed to reproduce the more aecpraperty of the as-
trophysical object. This has provided enough motivatich speculation to explore
the feasibility of telescope based on neutrino detection.

This thesis is divided in two parts. The first part concerrauaboth general and
model dependent study of masses and mixings of neutrinothinithe Standard
Model (SM) the neutrinos are massless and are describeddgdmponent Weyl
spinors. This is because of the absence of right-handedmesitn the SM. Hence
there is no CP violation in the leptonic sector within the SMe review some main
features of the SM in chapt@rand discuss fermion masses in detail.

Although neutrinos were thought to be massless initiallyyent evidences sug-
gest that neutrinos are massive, and they mix with each.offilee atmospheric
neutrino problemy] , solar neutrinosg-8] and laboratory neutrino oscillation ex-
periments §—11] have provided measurements of three mixing angles, asasell
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Chapter 1. Introduction 2

two mass squared differences. But we do not know the abseéltes of neu-
trino masses and there is no evidence of CP (charge corjuggiarity) violation
in leptonic sector till now.

To accommodate the neutrino masses, one need to go beyorgMh®ne
possible extension of the SM is to introduce three rightdeahneutrinos in SM
Lagrangian and to provide Dirac masses to the neutrinos.tifndact about the
neutrino is that it has no electric charge which endows ihwegrtain properties
not shared by the charged fermions of the SM, i.e., it can $ewin antiparticle
without violating electric charge conservation. In thadeahe neutrino is called a
Majorana fermion. We first explore the possibility of wrgia model independent
Lorentz invariant mass term for both Dirac and Majorana meos in chaptei3
and then discuss various neutrino experiments relatedttoflawor oscillations of
neutrinos and direct detection of neutrino masses.

The symmetric nature of the mass matrix of the Majorana imeagrat the low
energy requires only one unitary matrix to diagonalize tjck is not possible in
the case of Dirac neutrinos. So, in the basis where the ctié&geon mass matrix is
real and diagonal, all the information about mixing angled &P violating phases
remains in the neutrino mass matrix. At the same time, thgathalizing unitary
matrix turns out to be the mixing matrix in the leptonic se@od usually called as
Uppmns Mixing matrix [L2-14].

In the literature, the question of CP violation in the leptosector is usually
discussed by studying the neutrino mixing mattix{17]. The trouble in defining
the measures of CP violation in this way is that it requir@srtutrino mass matrix
to be diagonalized by some unitary matrix first. In chagtewe try to construct
independent measures of CP violation, directly from the éowrgy neutrino mass
matrix elements for any number of generations without K&stg our analysis to
any specific origin of the neutrino masses even if there am@ eetries present in
the neutrino mass matrix.

Analogy from the quark sector suggests that neutrinos shftate masses more
or less of the order of charged lepton masses. But very snadbes of neutrinos
(~ eV) requires some new mechanism to explain why neutrinos ahglstocom-
pared to the charged leptons. Assuming the neutrinos areagriha type, natural
suppression of neutrino masses can be explained by thenekgessaw mechanism
[18-20]. Three types of seesaw mechanism have been discussed litethture
for the purpose. Chaptéris devoted to the detailed discussion of the various see-
saw mechanisms along with their realization in the lefhtigymmetric extension
of SM.

The theory of Grand Unification has emerged as the most elegamattractive
scenario to go beyond SM. Out of the many attractive feataféSrand Unified
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Theory (GUT), one is that the fermion mass matrices whiclk ioolependent of
each other in the SM, get related in the GUT framework. Thoaglwith the recent
data of neutrino masses and mixing has triggered the stutheaieutrino masses
in various , especially predictive, GUT models. In chatene review botSU(5)
andSQ(10) GUTs and study various relations between fermion mass ceatwhile
keeping main focus around neutrinos.

The second part of the thesis mainly concerns about the fotewtrinos to
address two very challenging astrophysical and cosmabgioblems 1) cosmic
coincidence of dark energy and 2) current baryon asymmétheauniverse.

Present observations reveal that the dark energy (DE)ibatés about 70% to
the total density of our universe with equation of state —0.98+0.12, indicating
that we are living in an accelerated univer@@{23]. The DE can be expressed as
E# and this correspond to the energy sdale 3 x 10~ 3eV. But the results from
Cosmic Microwave Background reveal that universe was datathby matter at
red shift ¢=1100) with equation of state = 0, i.e., the acceleration of the universe
is a fairly recent phenomena. This is known as the cosmiaw@mce problem.

DE can be invoked by introducing a cosmological constantha Einstein’s
equation, but it faces severe fine-tuning problem as itedez8 nowhere near the
scale of DE. So one assumes that it is zero by some mechangstriesito explore
other ways to explain current acceleration of the unive@m®e possibility is to in-
troduce what are called tracking scalar fields rolling sioinlflat potentials which
track the matter or radiation energy density during matteradiation dominated
epochs being sub-dominant and become dominant only at thentyhase of the
universe P4-26]. The fact that only known scale near the scale of DE is schle o
neutrino masses suggests that neutrinos can play an impoota in solving cos-
mic coincidence problem. In an interesting possibilitypagled system of neutrino
and a light scalar field can behave like DE after neutrino®imss non-relativistic
[27]. Chapter8 is devoted to the discussion of Quintessence and neutrirkoetia
ergy (NDE) models along with the review of the observatiaadlences of current
acceleration of the universe.

In the original model of NDE, the SM is extended by includinggset right-
handed neutrinos and giving Majorana masses to the nesitwhah vary with a
scalar field, the acceleron. Naturalness requires the lsllagomasses of the right-
handed neutrinos also to be in the range of eV, so the mairvatimin of the seesaw
mechanism is lost. Also the mechanism cannot be embedded ieft-right sym-
metric model. In chaptetl, we try to construct a left-right symmetric model of
NDE keeping naturalness in mind. We then proceed furtheuglyshe embedding
of the left-right symmetric model in SO(10) GUT.

Understanding the origin of matter is one of the fundamegtedstions, the
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answer to which is most likely going to come from particle picg. Seesaw mech-
anism is at the heart of particle physics for this purposgesit not only explains
the smallness of neutrino masses but also provides a natltdion to the baryon
asymmetry of the universe through leptogene®.[Leptogenesis is a way to un-
derstand the baryon asymmetry of the universe by first crgdg¢ipton asymmetry

in the early universe. Chaptérdiscusses the basic structure of leptogenesis along
with some other mechanism for baryogenesis.

Although seesaw mechanism connects low energy neutring masrix with
high energy Yukawa couplings, still there is no one to oneespondence between
low energy parameter to high energy parameters in gene@heltr, one would
like to connect the low energy measures of CP violation (esged in conventional
form) to leptogenesis by choosing a suitable parametarzatihere it is transpar-
ent that which phases are responsible for leptonic CP veolatt low energy and
which ones are relevant for leptogenesis so that the viglufi leptogenesis can
be addressed if we can measure strength of CP violation agh@rgy in neutrino
oscillation experiments. With the same motivation in miwe, try to connect lep-
togenesis to low energy CP measures in chapden type | seesaw scenario with
two right-handed neutrinos where we expect less numberlofawn parameters.

Finally, the last chapter on conclusion summarizes our mark and the re-
lated results.
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Chapter 2
Standard Model and fermion masses

To the best of our present knowledge, the nature seems toudepeg with four
kinds of interactions (1) gravitational, (2) strong, (¥&romagnetic and (4) weak.
The gravitational interaction is universal, in the sens# thexists between any
two particles having energy and momentum. It is respons$dsléhe formation of
Galaxies, stars and planets. So far , a consistent renaabédi quantum theory of
gravity is still awaited.

The strong interaction manifests itself in the nucleonkaoic interactions inside
the nucleus. Actually, the nucleons are not the elementartycpes but consist of
guarks which, up to now, are believed to be the basic builtiogks of baryons.
The strong interaction, in its fundamental form, is mediaby gluons between
the quarks and its effective manifestation is the one, wisabbserved as a very
strong nuclear force between the protons and the neutrdms thieory describing
the strong interaction is known as quantum chromodynar@€d)) which is based
on a non-Abeliar8U(3). gauge symmetry.

The electromagnetic interaction is mediated by photonwédet any two par-
ticles carrying nonzero electric charge. It is best describy a theory known as
quantum electrodynamics (QED) based on an Abdllah)g gauge symmetryQ
corresponds to the charge of a particle. The need for the wéadaction arises for
the understanding of the nuclear beta decay. Initiallyxadsnensional effective
operator corresponding to four fermions was used to addnesseak interaction.
However, this four fermion operator badly fails to addrdssinteraction at higher
energies. Later, it was realized that it can emerge from a&rfwrdamental renor-
malizable theory. This new renormalizable theory, knowthaslectroweak theory,
has passed all the experimental tests up to now and is a veented part of the
Standard Model (SM).

The SM of patrticle physics has been constructed to addretsedhree interac-
tions, other than gravity, on one platform. It consist of tlstinct parts one strong
and the other one electroweak. We will be concentrating inostthe electroweak

6



Chapter 2. Standard Model and fermion masses 7

part in this chapter.

2.1 The model

The SM is based on the local gauge symmetry with the gaugepddli3). x
SU(2)L x U (1)y (Ggz1) where suffix ¢ corresponds to the color, L corresponds to
the left-handed (for fermions) and Y corresponds to the toiprge. TheSU(3)
part describes the strong interaction and$h#2), x U (1)y part describes the elec-
troweak interaction. The later is spontaneously brokehecetectromagnetic inter-
actionU (1)q below the electroweak scale (100 GeV). So the weak and the@le
magnetic interaction originate from the more fundamertadteoweak interaction.
The charge generat@of U (1)q is related tdls , the diagonal generator 80J(2),
andY , the generator dfl (1)y, as

Q=Ta +Y.

The fermion sector of the SM comes in three generations alhahe same
quantum numbers under the SM gauge group. They belong tamtidamental rep-
resentation of the SM gauge groGg,1. Moreover, the SM is left-right asymmetric,
i.e., its left-handed fermions belong to different repréagons as compared to the
right-handed ones. The left-handed fermions are doubfetenthe grousU(2),,
while the right-handed fermions are singlets. Also the ferms can be classified
into two types, quarks and leptons. Quarks participate it Istrong and elec-
troweak interactions while leptons participate only inctleweak interactions. The
guantum number assignments of the quarks are given as

(3,2,1/6]

QO

=

Il
PR
o C
[
~_
VR
© o
~_
N
o
- -
~_

I

Ur, Cr,tr = [3,1,2/3
drSr,bR = [3,1,-1/3]. 2.1)

Similarly the quantum numbers for the leptons are assigeed a

e (G0 C)

erR, IR, TR = [1727_1] (22)

[1,2,-1/2]

The right-handed counterpart of the left-handed neutraresabsent in the model,
which leads to massless neutrinos in the SM.
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| Gauge Bosons | Symbols | Gauge Group | Quantum No|
| Gluons | Gh | SU(3)c | [8,1,0] |
| Non-Abelian weak bosoh W, | SU(2), | 11,30 |
| Abelian bosons | By | U(1)y | [1.1,1] |

Table 2.1: SM gauge bosons

The SM interactions are mediated by spin one bosons knowawgegoosons.
The eight gauge bosons mediating strong interaction,cgli@ons, belong to the
adjoint representation 8U(3)c. Similarly, three gauge bosons correspond to the
adjoint representation dU(2),.. Also, U(1)y has one more gauge boson. The
transformation properties of all the gauge bosons are giveable2.1

In addition to the fermions and the gauge bosons, we need gsHigalar to
break the SM gauge symmetry. Its transformation propemywisn by the quantum
numbers

@

The kinetic term as well as the self interaction of gauge hesare given by the
following part of the Lagrangian

0= < ¢ ) =[1,2,1/2].

1 1 .. . 1
Lgauge: _ZGﬁVGaw — ZWLINWIMV — ZBW BIJV 5
where
G, = 0uG3—0,Gh+gsf*GGS

Wy = 00 — 00, -+ goe' I wWIw

fabc ande'k represent the structure constant of the Lie graBigs3). andSU(2),
respectively. g1, g2 andgs are the three gauge coupling constants of the groups
U(1)y, SU(2). andSU(3). respectively.

The couplings of the gauge bosons with the fermions and tggd4dhoson arise
by simply imposing the local gauge symmetry on the free fermmiand the Higgs
boson. The local gauge invariance requires partial dévivéd,) present in the ki-
netic term of the fermions and the Higgs boson to be replaged\ariant derivative
(Dy). The most general covariant derivative is related to thiéglalerivative as

Dy = 0u—i (01Y Bu+ Q2T W, + gsh3G3) (2.3)
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whereY, T andA? are the generators of the group$l)y, SU(2), andSU(3). re-
spectively. Y represents the hypercharge of the particle. However, altehms
inside the bracket in equatidh3 are present only when the matter particle trans-
forms non-trivially under all the three groups. If a parids singlet under any
of the three groups, the corresponding term will vanish endbvariant derivative.
For example, the leptons are singlet un8ek3). and so the term associated with
the coupling constards will vanish while writing the covariant derivative for the
leptons. Similarly, the terms associated wghwill vanish for all right-handed
fermions.

The kinetic term for the fermions and the Higgs boson in the&dé includes
their interaction with the SM gauge bosons. The relevartgfahe Lagrangian is
given as

L = iQ.DQ. +iurDuUR+idrDdr
i/ D¢ +iegDer

t
(DH(p) (Du(p>7

whereD = Dy

2.2 Spontaneous symmetry breaking

We know that the weak interaction is a finite range interactidile the electro-
magnetic interaction is an infinite range interaction. As fiinotons are massless
spin one bosons, it can carry the electromagnetic forces urgihite range. On the
other hand, the finite range dynamics of the weak interacéiquires rather massive
force carriers. So, three out of four gauge bosons correbpgmno the electroweak
part of the SM should get appropriate masses.

But, the SM gauge symmetry forbids mass term for any of theygduosons.
However, if we introduce gauge boson masses by hand, it pail gauge invari-
ance and renormalizability. The mechanism to provide nsatsne relevant gauge
bosons without destroying the renormalizability of theaitye known as Higgs
mechanism, is based on spontaneous breaking of SM gaugeetyynm

The spontaneous breaking of a given symmetry is achieveditngthe Higgs
potential such that the minima of the potential corresporalfinite vacuum expec-
tation value(vev) of the Higgs field. In other words, the grdstate of the theory
does not respect the underlying gauge symmetry and bresfsntaneously. Mass
terms for the gauge boson are automatically generated bedbeory is expanded
around the new vacuum. However, the renormalizability efttieory is still main-
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tained due to the underlying gauge symmetry.
The Higgs potential in the SM is given as

2 A 2
L(g) = —%w*qw 2 (cpTcp) -, (2.4)

wherep?, A > 0. The potential is bounded from down and ensures finite vev

< @'o>=Vv? = 2/\.

The gauge invariance allows to choose the following vacuamthfe theory

<o (7).

The electroweak gauge bosons obtains their mass terms bpeixyg the kinetic
term of the Higgs bosofDu(p]2 around the vacuum given abop®Vs= p— < ¢ >
as

1v2 12 )2 ; ,
T 24 [92 (W)™ +92 (W)™ + (—goW; -+ 91By) } : (2.5)
As a result, the spontaneous symmetry breaking leads tmtloeving charged
gauge boson

1
= )

with massM+ = gv/2. However, the presence of the mixed terms of the other
two gauge boson@NuS, By) in the third term of the expressi@n5reveals that these
two bosons are not in their mass basis in the broken theonyeler, the physical
gauge bosongZ, A,) can be simply written as the following linear combination of
the original fieIds(W3, Bu) parametrized by weak mixing andgdg, as

Zy \ [ cosBy —sinBw WE

Ay )\ sinbw cosBy B, /'
where siBy = (glilgz). The physical gauge bosdq, remains massless whilg,
becomes massive with malsly = My / cosBy .

It is straightforward to identifyAas the usual gauge field corresponding to the
photon, responsible for the electromagnetic interactieaging to the following

expression for elementary electric charge (e)
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e= 9% = g2COoBy .
V95 +93

The vacuum expectation valueef) is estimated by using the measured value of
Fermi constanGg at low energy corresponding to four fermion interaction:

1
V= V2Gg

The interaction of the physical gauge bosons with the fensiie described as

= (246GeV)?.

fgauge =~ (s W+ W) 2.6)
-IE 87, eB A, 2.7)

where the charged curreﬂ('x/i in the first row, the neutral curredg and the elec-
tromagnetic currenlg in the second row are written as

Jve = POV (Ta£it2) Y
= QuUY(T1iT2) Qui + L (T1 £iT2) A1

= TV + Aoy u BV Ve (28)
1
¥ = WiV (ov —Cavs) W
B = Ty, (2.:9)

whereoy = 13— 2Qsin26W andca = 13, | represents the generation indices gnd
represents both left-handed and right-handed fermions.

2.3 Fermion masses and mixing

Like the case of gauge bosons in SM, the pure mass term of thee@Mons are
also not invariant under SM gauge group simply because fiibdaded fermions
are doublets unde8U(2) while the right-handed ones are singlets. However, the
Higgs mechanism can again be implemented to realize rieatistsses for quarks
and leptons.

The left-handed fermions along with the right-handed femmsican couple to
the Higgs doublet to form invariant Yukawa terms in the SMeThlevant part of
the Lagrangian, called as Yukawa sector, is written as
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Ly = QU @(Yy)ijurj + Qui @(Ya)ijdr; + 2L @(Yo)ij€r;

where@ = it and i, j, k are the generation indices. The masses for all e S
fermions except neutrinos arise naturally when the Yukaeios of the SM is
expanded around the minima of the Higgs potentig >=v.

Lm = Qu <0> (Y0)ijurj+Qu < 0> (Ya)ijdrj+ 0L < @> (Y)ijer]
= UG V(Y0)ijurj+dui V(Ya)ijdrj + &L V(Yo)ijer), (2.10)

whereuy g represents the up-type left/right-handed quardisg represents the
down-type left/right-handed quarks agdg represent the left/right-handed charged
leptons. The type of mass term appearing in the expre&sidis known as Dirac
type mass term for the fermions. In the next chapter, we witl but that it is pos-
sible to write an another type of Lorentz invariant mass tdanown as Majorana
mass term, for charge neutral fermions like neutrinos. Nwosvrhass matrices for
the up-type quarksMy), down-type quark$Mgy) and charged lepton#,), in the
weak basis (as given in expressdd and2.2), can be written as

Mu — VYU
Mg = VY
M, = VY.

Obviously there is no mass matrix for the neutrinos becausenot possible to
write the corresponding Yukawa term in the absence of rigimteled neutrinos.

The quark and the charged lepton mass matrices are not @kgogeneral.
This fact leads to what is called as fermion mixing in SM. Letfiust consider the
quarks. In the three generation scenario, both up and dopsndyark mass ma-
trices are general 8 3 complex matrices having nine magnitudes and nine phases.
They need be diagonalized to go to their mass basis in ordaotode them defi-
nite masses. Two unitary matrices are required to diagomatch of the matrices.
It is logical as the left-handed and the right-handed fensibelongs to the differ-
ent representations the SM gauge group and their rotatemded to take from the
weak basis to the physical basis, can be quite independetlJ, L be the uni-
tary rotation that connects weak basis of left/right-hahdp-type quarks to their
mass basis, i.eu i = (UL);,ULa anduri = (UR);; URa whereuLa/Ra represents the
left/right-handed up type quarks in their mass basis, weexp

U/ MUg = M9
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whereMﬁ)iag is the 3x 3 real and diagonal matrix with the diagonal entries corre-
sponding to the physical masses of three up-type quarkslasiapproach to diag-
onalize the down-type quark mass matrix can be adopted thdtation matrix
D, corresponding to the left-handed and dhglto the right-handed down quarks
as

D/MaDgr = M.

One may think that the quarks can be rotated from the weals bashe mass
basis without any physical consequences. But it not truetdube presence of
charged current interaction term as shown in expres3i@nAlthough the charge
current interaction term is diagonal in the weak bésis, dy;), that we started with,
it no longer remains same once it is rewritten in the physeals. For example,

(W) = unyduw, +h.c
— (UL)ia ULaVu(DL)ib dLbWJ +h.c.
— U™ (UJDL> adebWqu +h.c.

The combined unitary matriliJDL is called as Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix

V=U/D..

However, the observable CKM mixing matrix can only infer abihne combined ef-
fect of the unitary rotation matrices of left-handed up aod/d type quarks and not
the individuals. Even similar kind of physical consequeisg®t possible for the ro-
tation corresponding to the right-handed quarks simplybse they do not appear
in the charge current interaction term. Although they appeaeutral current in-
teraction term, any such combined effect of rotations fahteft and right-handed
quarks exactly cancels as the same type of quarks (eithardgam) are present in
any of the Neutral current terms.

The unitary CKM matrix has three magnitude and six phasethfee genera-
tion. However, five of the phases can be absorbed in the réitwiiof the quarks.
The single unremovable complex phase produces CP violatitdre quark sector
which has been confirmed experimentally.

Unlike the quark sector, there is no such mixing possibléendharge current
interaction in the leptonic sector. The absence of massxrfatrneutrinos forbids
neutrinos to obtain a fixed mass basis. So the left-handddrymatrix for di-
agonalizing the charged lepton mass matrix, which appeaitsei charged current
interaction term, can be absorbed in the redefinition of teakibasis of the neu-
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trinos leading to no observable effect. However, we have fiowevidences that
neutrinos do have masses which can be accommodated onlywéego beyond
SM and look for some mass generating mechanism.



Chapter 3
Neutrino masses and mixing

There exists three flavors of active left-handed neutrinitis mo right-handed part-
ner in the SM leading to no masses for the neutrinos. Howdwerpbust evidences
of neutrino oscillations have given first push to go beyondtSMllow masses for

the neutrinos to explain the oscillations. However, theghaeutrality of the neu-
trinos opens up two possibilities for the nature of their sess They can either
posses Dirac masses with separate particle and antipadmhtity like any other

charged fermions or can have Majorana masses which meariarertce between

neutrinos are antineutrinos like photons. While all theapagters entering in the
neutrino oscillations are fairly known, the nature and thecdute scale of their
masses are still to be probed through the experiments imgpthe beta decay and
the neutrinoless double beta-decay processes.

3.1 Neutrino masses: Dirac and Majorana

The basic difference between a Dirac and Majorana neutiwnees from the fact
that the Dirac neutrino respects the lepton-number coatiernvwhile the Majorana
neutrino violates it by two units. Allowing the lepton-nuerhviolating processes
makes the Majorana case to be more interesting and phendogeaadly rich to
study.

A study of the Lorentz transformation property of a four cament Dirac
fermion reveals that it consists of two independent two{gonent Weyl spinors.
Decomposing the four component spinor under the g@U®) x SU(2)*, locally
isomorphic to the Lorentz groUpQ(3,1), reads

l]J(4) = l]J|_(2, 1) + qJR<17 2) )

where Y and Yr correspond to left-handed and right-handed componentef th
Dirac fermion, respectively . The two independent Weyl spsncan be projected

15
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out by the chiral projection operatér(liy5)as

b = s (1+y)P

Ur = 5(1-vys5)U.

NIFRNI -

The decomposition is invariant under the Lorentz grougp@andyr transform as
two separate irreducible representations. However, tbaépresentation matrices
transformingy. (Up) andyr (UR) , in the chiral representations pmatrices, can
be related as

U= (U e. (3.1)

The discrete parity transformati@®) takes the left and the right-handed Weyl
spinors into each other as

¢L<i>¢R-

Obviously, the SM is not invariant under parity transforimatas its left-handed
fermion members are doublets un@&(2), while the right-handed ones are sin-
glets. So the a Lagrangian for a Dirac particle in terms oiNleyl components can
be written as

Lp = Py oudr + PRy OuPr — Mo (PLPr+ PRYL) -

The mass term can be shown to be invariant under Lorentzforamation using
the relation3.1 It is apparent that in the absence of mass teppandr are just
the two independent Weyl spinors with no physical connectlbis only the mass
term which connects the two Weyl spinors. In other words thralgination of two
Weyl spinors connected with the mass term is interpreted Haown as a Dirac
fermion. Moreover, one can easily notice that the Lagramgganvariant under a
U (1)q symmetry where botlp, andyr have the same quantum numbers for charge
(Q) while their c-conjugatQLIJL/R)C correspond to{Q) charge. It means a Dirac
mass term can be constructed only with those two Weyl ferawamch have same
charges if there existsld(1)q symmetry, local or global.

However, it is also possible to construct a Lorentz invariaass term for a
single Weyl spinor as
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1 S
Lu = WL — 5M (W)W +he)

1
— WYau - 5M (W) Cyrhe),

where ()¢ is the c-conjugate ofy (z C(qJL)CT>. Although this mass term

is invariant under Lorentz transformation (can be showngigixpressior3.1), it
can be written only for a neutral particle if there exist@l)q symmetry in the
theory. In our nature, we have the remnlir{il)o symmetry corresponding to the
electromagnetic interaction . All the SM fermions excepitneos are charged par-
ticles and, hence, can be provided only the Dirac massesibipgwhe Dirac mass
term with the help of two Weyl spinors having same chargeswéder, a charge
neutral Weyl spinor like the SM left-handed neutrino canéha\vLorentz invariant
Majorana mass term. However, such a mass term for the neusradlowed under
the remnant) (1)g gauge symmetry, it is forbidden under the SM gauge symmetry.
This is because the Yukawa couplings, which can provide thpina mass terms
for the neutrinos in the broken symmetry, are forbidden uisdé gauge group.

The SM does not allow both Dirac and Majorana masses for thigines simply
because the left-handed neutrinos do not have the riglddthpartners to write
the Dirac mass term and the Majorana masses for the leftesmelutrino are not
possible to write. However, several extensions of SM, winethave to do anyway
to explain neutrino masses, are able to provide Dirac masddajorana masses or
both for the neutrinos.

3.2 Neutrino mixing

In the previous section, we concluded that the neutrinosbeagiven either the
Dirac or the Majorana masses due to its charge neutralityweader, generation of
neutrino masses requires new physics beyond SM. In thergrssetion, we will
assume neutrinos to be massive by some or other mechanisstihdonly its
phenomenological consequences.

Let us first consider the case of Dirac neutrinos which carribafty accom-
modated in the SM by introducing the singlet right-handedtmeos. From the
standpoint of mass generating mechanism, this will progidesqual footing for
both quarks and leptons. Moreover, the generic concept ginmin the quark
sector can be comfortably borrowed to explain mixing in #q@dnic sector.

Like the quark mass matrix, the charged lepton mass matnxrcgeneral be
diagonalized by a bi-unitary transformation. Without lo$generality we can as-
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sume the charged lepton mass matrix to be real, positive iagadwal to start with.
In other words, the flavor basis of the charged leptons camtetysassumed to be
same as its mass basis.

The charged-current interaction term in the leptonic gastgiven by

Lec= % &WLW, +he. (3.2)
in the mass basi®(j,i = e, 4, 1) of charged leptonsi,e., the flavor states, |4, T cor-
respond to physical states with our assumption. The flavamafutrino produced in
association with a charged lepton is always same as the fi&toe charged lepton.
However, the flavor states of the neutrinos need not be sante magss states and
so the neutrino mass matrix, in the chosen basis, is not neladiagonal in general.

Like the quark sector, the Dirac neutrino mass matrix canidgaalized by
two unitary matrices, one for rotating the left-handed rieas and other for the
right-handed one. The one for the left-handed neutrinogaspin the charged
current interaction ternB(2) and solely represents the mixing matrix in the leptonic
sector in the chosen mass basis for charged leptons. Tha&wmixing matrix, like
quarks, has three magnitudes and one physical phase.

However, the situation is slightly different in the case oéjbrana neutrinos.
For the case of Majorana neutrinos, the neutrino mass tarthédhree generation
scenario can be written as

Ly = myij Vi Cvji (3.3)

Unlike the Dirac case, the Majorana neutrino mass matrixesout to be a & 3
complex as well as symmetric matrix. The symmetric naturthefmass matrix
of the Majorana neutrinos at the low energy requires only wmgary matrix to
diagonalize it, which is not possible in the case of the Diraatrinos. IfU is the
diagonalizing neutrino mass matrx,, then we have

Utm, U* = K2 mp™@9 (3.4)

whererr\?iag = diagm, mp, mg] is a real diagonal matrix arp is a diagonal
phase matrix. The unitary matrik, (with i, j = e, Tanda, b= 1,2, 3) relates the
physical neutrino states, (with massesn,) to the weak states

Va = Uai Vi + Kpag® Uz Vi, (3.5)
so that the physical neutrinos satisfy the Majorana coowliti

v = K3V (3.6)
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The unitary neutrino mixing matril is able to diagonalize the, but it does
not guarantee the real mass eigenvalues. However, theymtrixU combined
with the Majorana phase matrikp can serve the purpose. This combined form
U andKp is known as the the neutrino PMNS mixing matdxmns[12-14], The
Upmns matrix can diagonalize thes, with real eigenvalues and is relateddcand
Kp as

Upvuns = UKp.

The standard PDG (Particle Data Group) parametrizati®h ¢f the PMNS
mixing matrix is given as

Upmns= R23(023)R13(813,613)R12(812)Uph, (3.7)

whereUp, = diag.(1,€",dE+013)) | &3 € [ 1] andRj(6;j) is the rotation
matrix in the(i, j) plane of the neutrino mass matrix. The expanded form of the
PDG parametrization reads as

C12C13 S12C13 Sp3e 018
_ i5 i5
Upmns= | —S12C23— C125p3513€/°13 C12C23 — S12523513€' 13 spac13 | -Upn(3.8)
S — C19Cp3S1 36213 —C — S19Cp35136/013 C3C
12523 — C12C23513 12523 — $12€23513 23C13

wheregij, 5 stands for coB;j and sirB;j respectively.

It is straightforward to observe that the PMNS mixing mainixhe case of Ma-
jorana neutrinos is different from the mixing matrix one lve tcase of Dirac neu-
trinos (or theCKM mixing matrix for quarks) in the sense that it is endowed with
two extra CP violating phasegand¢ [15]. In the Dirac case, these two phases
can be absorbed in the redefinition of the neutrino fields hedge, turn out to be
unphysical. However, the same kind of absorption is notiptess the case of Ma-
jorana neutrinos due to the Majorana condition given in eggion3.6and one end
up with the two more physical phases usually called as Mapphases. The two
physical phases i, acts as the new sources of CP violation. We will study their
CP violating nature in detail in the next chapter. Howeee, tiwvo phases are not
relevant for the neutrino oscillation because the paranegtiering in the neutrino
oscillation belongs to the matri¥ only. So the theory of neutrino oscillation can
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be formulated in terms of matrid without worrying about the Majorana phases.

3.3 Neutrino oscillations and evidences

From the basic concepts of quantum theory, we know that thie shat do not
evolve with time are the physical states or mass eigenstatesate described by
a linear combination of mass eigenstates does not remaaniamt and do evolve
with time. Similar situation happens to occur in the case a$sive neutrinos.

The neutrino participates in charged-current interactiith definite flavor same
as the flavor of the associated charged lepton. So the flatle ofeutrino is decided
by the flavor of the charged lepton involved in the same chaugeent interaction.
However, the fact that the flavor states of the neutrinos aréhe mass eigenstates
leads to the phenomena of neutrino flavor oscillation. If atmeo of a particular
flavor is allowed to travel a distance before its detectiboan evolve in between
and the flavor of the detected neutrino may not corresponidetotiginal flavor of
the neutrino.

The neutrinos in its physical state, > with massesn, and energye, evolves
with timet by a phase only as

| Va(t) >= e Eal | v,(0) > .

The time evolution of a neutrino of a particular flavatt = O will be given as

Vi) >= 5 e"FUg [vi(0) > .

a

The probability amplitude of detecting a neutrino with flayaafter time t can be
written as

<Vj [ vi(t) >= Z e_iEatUi;Uja.

a
For the ultra-relativistic neutrino, one can have the follty approximation

m
Ea~E+ 2.

Now replacing by L the distance traveled by the neutrino, the probability aiionqbé
turns out to be

<Vj [vi(L) >= Z eﬁi(E+m§L/E)Ui2Uja.
a

The probability of the process will be just the squire of thelgability amplitude
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|

o, [AmMEL
Vi) =< v v 2 — & — Z fUiaUp U ) sir? b

. [Amg L
+2Y Im (uigu ,—auibu-*b) sin U ,
£ J 2E

whereAmZ, =m2 —mg. Itis straightforward to realize that the necessary caolit
for the neutrinos to oscillation is that their mass squatfedinces should be finite.

3.3.1 Solar neutrinos

The first indication of the solar neutrino oscillation wagioed long back in 1967
in Homestake experiment by Davis and his collaborat®@s31]. It was an radio-
chemical experiment to detect the solar neutrino flux udiegitverse beta-decay
process

Vet 3'Cl = 3Ar+e .

By counting the Argon atoms by the radiochemical methods,etkperiment
found noticeable deficit in the observed electron neutrimo dompared to the flux
predicted by the standard solar model (SSM). However, itnvediglear at that time
whether the SSM has to be revised or some new physics is néedsglain the
observed deficit. Later, GALLEX32] and SAGE B3] experiments also based on
radiochemical techniques , but with lower energy threslbldeutrinos, produced
similar results.

However, these radiochemical experiments were not ableawde the direc-
tional correlation of the incoming flux from the sun. The ation was revolution-
ized when a real time experiment, the Kamiokande (1987 t®)LE®1, based on
Cherenkov techniques was able to provide directional akasenergy information
of the incoming neutrinos. This is possible by observing @egenkov radiation
produced by the relativistic electrons scattered eldstibg the high energy neu-
trinos

Va+e_ —>Vg+e_.

However, the scattering is dominantly sensitive to the tedecneutrinos be-
cause its cross-section is six times higher compared to otleeflavor neutrinos.
Since the threshold energy for neutrinos was much higheutab MeV, only the
8B neutrinos from the sun were possible to be detected in Kaanidé. The ex-
periment used kilo tons of water in a cylindrical tank surrded by thousands of
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photomultiplier tubes (PMTSs) to detect the Cherenkov rianiia Based offB neu-
trinos detection, Kamiokande reported the measured imeuttix to be around half
of what is expected from the SSM. So the Kamiokande was firsbtdirm the
disappearance of electron neutrinos in the solar neutnirxo fl

Later, the role of Kamiokande was replaced by Super-Kanmd&gb, 35-38]
which started in 1996 with more sensitivity and lower valfithoeshold energy for
the neutrinos( around 5 MeV). However, it was based on sira#perimental tech-
niques. The first phase of the experiment took data till JO12and measured the
8B neutrino flux to bg2.354-0.02(sta 4 0.08(sys)) x 1P cm~2s~1 [39] which is
less than half of what is expected from the SSM.

However, all the above experiments fails to address thetipmeshether the
incoming total solar neutrino flux is actually same as exgectThe amount of
the disappearance of electron neutrinos can only be thelicped with confidence.
The confusion about the reliability of the SSM was remove@mwBudbury Neu-
trino Observatory (SNO) measured the total neutrino fluxlifievors coming from
sun [7, 8, 40, 41]. The SNO is also a real time experiment based on Cherenkov
techniques but uses heavy watBxO) instead of the ordinary water. Using heavy
water, the SNO was able to detect both electron neutrin@sigir the charged in-
teraction as well as all active neutrino flavors through thetral current interaction
along with the interactions involving scattering:

Ve+d — p+p+e (chargedcurrent
Vag+d — vg+p+n (neutralcurrent,

Ve+€ — Vet+e  (elasticscattering

While charge current process is only sensitive to the edaateutrino, the neu-
tral current interaction is independent of the neutrinodtavSo the SNO could
measure both the electron neutrino flux and the total neuthix coming from the
sun independently. The ratio of the two fluxes is expectecet im the absence of
any oscillation which is in contradiction to what has beeraswed §]

FluxtC

The ratio confirms that solar neutrinos undergo oscillatiiependent of SSM.

3.3.2 Atmospheric neutrinos

The collision of the nuclei of the upper atmosphere with thengic ray protons
produces what are called as atmospheric neutrinos. Thejuption comes from
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the following chain process:

p+X -1 + Y

T v ()

B — €5 + Ve (V) + Uy (V) -

This production of the high energy neutrinos, above a few,@ethe upper at-
mosphere turns out to practically uniform around the eattetector on the earth
surface can detect neutrinos both down-going and up-gdihg.down-going neu-
trinos travel only few tens of kilometer while the up-goingutrinos coming from
the opposite side of the globe travel distance of about aétlesusand kilometers.
In the absence of any neutrino oscillation, the flux of botland down-going neu-
trinos of a given flavor would be expected to remain same. bl@g the ratio of
the muon neutrino flux to that of electron neutrino flux can teglcted to be around
2 by just looking at the chain reaction.

However, if neutrinos do oscillate one would expect asynmyriatthe observed
amount of up and down-going fluxes, definedAas= (%)a, simply because
the neutrinos coming from the other end of the globe travelugh distances to
oscillate into some other flavors. In fact the asymmetry reenlobserved in the
experiments, first reported by Super-Kamiokande collaimran 1998 p]. They
measured the following up-down asymmetry in muon and elaatieutrino fluxes
for multi-GeV events

Ay = —0.296+0.048+0.01,
Ae = —-0.036+0.067+0.02.

While there is a clear asymmetry in the muon neutrino flux,asgmmetry in
the electron neutrino flux is practically zero. This obsdrasymmetry in muon
neutrino flux was the first clear evidence of atmospheric rearirinos oscillation
to the tau neutrinos.

3.3.3 Reactor neutrinos

Nuclear reactors are rich sources of artificial electrornauatrinos(ve). The an-

tineutrinos are mainly produced due to the nuclear fissioth@fisotopes of Ura-
nium and Plutonium. The energy spectra and fluxoére estimated by studying
its correlation with thermal power of the reactor. The reaceutrino experiments
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basically looks for some deficit in the expectedflux at certain distance from the
reactor. In order to obtain observable oscillation at sh@tances, one relies on
measuring the disappearancevgbf few MeV energy.

The reactorg are detected through inverse neutron decay reaction

Vet+p—n+tet.

The produced positron soon annihilates with the surrouneiactron and the gen-
erated energy can be seen in the scintillator detector. VEhietection is finally
confirmed once the positron detection is consequentlyi@tbby neutron-capture
signal. Neglecting the small recoil of the neutron, the gnef the incomingve
can be easily correlated with the energy of positron to gesstiold energy 0¥ to
be around 1.8 GeV.

The first such reactor experiment was CHOOZ experim&ht42, 43] which
was located near CHOOZ power plant in Ardennes, France ait dbkm distance.

It started taking data in April 1997 up to July 1998 and meaduro noticeable
disappearance ok.

An another such experiment is KamLAND (Kamioka liquid stiator An-
tineutrino Detector) experimen®, 44]which is located in the same cavity of
Kamioka mine where Kamiokande experiment was functionitighas been de-
signed to detect the; coming from several reactors in Japan at an average distance
of 180 km. Based on the data taken between 2002 to 2004, KarbLstidwed a
clear disappearance of with the observed ratio of measured flux to the expected
one

R=0.658+0.0444+0.047,

indicating towards the clear phenomena of neutrino osialha.

3.3.4 Accelerator neutrinos

An another source of artificial neutrinos are due to the aca#drs where itis possi-
ble to get controlled and directional beam of the neutrifite accelerator neutrino
beam along its axis do not undergo much loss in its flux intgnsilike the case of
reactor neutrinos where the antineutrino flux is isotropid decreases rapidly with
the distance. The neutrino beam in the accelerators comestfre decay of pions
in flight produced by the collision of accelerated protonsdixed target:
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p-+target— 1 + Y

+

T v ()

B — € + Ve (Ve) + Uy (V) -

In fact the nature of the neutrino production in accelesisrsimilar to the
neutrino production in the Atmosphere. So the acceleraset experiments can
serve as an confirming test of the atmospheric neutrinolagoit. The detector is
situated at the distance of several hundred kilometers traraccelerators in the
path of the intense neutrino beam.

The first of such an accelerator neutrino experiment has loegrbaseline K2K
experiment 10, 45, 46] with a distance gap of 250 kilometers from the KEK labo-
ratory to the Super-Kamiokande detector in the Kamioka mirtee first phase of
K2K experiment started from June 1999 to July 2001. The stpbiase collected
the data from January 2003 to February 2004. Results of tlkedsperiment are
found in very good agreement with the results of Atmosphezigtrino experiments.
An another similar type of experiment is Main Injector Ne&udroscillation Search
(MINOS) [47-49] working in the same range of L/E. In addition to the study of
muon neutrino disappearance, it is also looking for electreutrino appearance.
To date, MINOS is also in good agreement with the resultsrabapheric neutrino
experiments.

3.3.5 Global fit of neutrino oscillation data

Based on the parametrization of neutrino mixing matrix ie éxpressior3.8, the
global fit to the parameters has been estimated at 90% C29hs [

Amg =m—m = (7.5940.20) x 10 ° eV?
Amg, = mg —m} (2.4340.13) x 10 3 eV?

sirf(2812) = 0.8740.03
sir? (2023) > 0.92
sir(2013) < 0.19. (3.9)

Moreover, there are two possible configuration of hieraraobymal and inverted
hierarchy, in the neutrino mass spectrum as shown in figure
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Figure 3.1: Two configuration for neutrino mass spectrjn [

3.4 Direct detection of neutrino masses

The neutrino oscillation experiments are able to provid@mation about the mix-
ing angles and the mass squired difference. However, theyotimfer anything
about the absolute mass scale of the three neutrinos. Itrés\vileere the non-
oscillation experiments play important role. The issue lsamddressed by experi-
ments like beta decay and neutrinoless double-beta decay.

3.4.1 Betadecay

Nuclear beta decay can serve as the most sensitive methogltsune the mass of
the electron neutrinos:

(AZ) — (AJZ+1)+e€e +Veg
n — p+e +Ve.

By measuring the end point of the spectral distribution e€&bn in the nuclear beta
decay, one can infer about absolute mass of the electromimaut The Tritium
beta decay is believed to be the most suited candidate fopuhgose from two
considerations (1) it has the smallest Q-valu€l8.574)KeV among all known beta
decays and (2) the atomic structure of the tritium atom s ¢esnplicated compared
to the other heavier atoms facilitating the accurate cateut of the atomic effect.

3H >%He+e +Ve.
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Based on the tritium beta decay experiment, Mab@ pnd Troitzk (1] have
provided the best constraint on the electron neutrino masdt 95% confidence
level:

m, < 2.3eV (Mainz)
my, < 2.5eV (Troitzk).

A future beta decay experiment KATRIN, a joint collaboratiof Mainz and
Troitzk, is scheduled to start in 2010 and expected to aetsewsitivity of 0.2 eV
to electron neutrino mass.

3.4.2 Neutrinoless double beta decay

If neutrinos are Majorana fermions in nature, the boundsfttee beta decay exper-
iments can be improved by observing the allowed neutrisodiesible beta decay
process. Although extremely weak double-neutrino betaylé2v(3) has been
observed in several candidates, a clear evidence of theim@ass double decay
(OvBp) is still missing. A 2B occurs when an even-even nucleus decays to an
another even-even nucleus where the single beta decayrge¢ioally forbidden.

(AZ) — (A/Z+2)+e +e +Ve+Ve
n+n — p+p+e +e +Ve+Ve (2VBP).

However, the Majorana neutrinos can allow the double betayeithout any
emission of the neutrinos.

(AZ) - (AJZ+2)+e +e
n+n — p+p+e +e  (0vBp).

This Qv decay is an extremely rare process and is very difficult teeoies
However, observation of any such process would be veryasterg for particle
physics as it would not only confirm the Majorana nature ferrteutrinos but would
also imply lepton-number violation in nature by two unitshelTamplitude of the
process is proportional to the effective mass

<m>= Y UZm = Mee,
|

wheremecis the (1,1) element of the neutrino mass matrix written artiass basis
of charged leptons.
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The most sensitive experiment orv@B decay has been carried out by
Heidelberg-Moscow group using 11 kg of enriché@e. It looked for the decay of
’6Geto "®Sethrough the following OB process

8Ge—"8Set 2.

By analyzing the data accumulated from August 1990 to May32@te group
has claimed to observe 29 events o33 decays corresponding to the following
range of the effective Majorana neutrino mass with 99% cenfig levelp2-54):

Mee= (0.1—0.9) eV.

However, the interpretation of the data is still controlarand confirmation of
the result is still awaited.



Chapter 4
CP violation In neutrino mass matrix

In the SM there is only one source of CP violation, which ishe tharged-current
mixing matrix in the quark sector. The charged-current nmgxinatrix in the quark
sector contains one CP phase, which has been observedoifisssible to identify
the position of the CP phase, since it is possible to make hagetransformations
to the quarks. However, it is possible to define a rephasingriant quantity as
product of elements of the mixing matrix that remains irsarunder any rephasing
of the quarks$5-58]. This is known as Jarlskog invariant.

In the leptonic sector, SM does not allow any CP violationonk considers
extensions of the SM to accommodate the observed neutrissaagthen there can
be several CP phase$q 59-62]. In the simplest scenario of three generations,
there could be one CP phase in the mixing matrix in the leptsector, similar to
the quark sector. In addition, if neutrinos are Majorandigas they can have two
more Majorana CP phasé&§]. In this case it is possible to work in a parametriza-
tion, in which all the three CP phases could be in the chaoyecent mixing matrix
in the leptonic sector. One of these CP phase will contributée neutrino oscil-
lation experiments, while the other two will contribute &pton-number violating
process like neutrinoless double beta decay. A naturabespion for the smallness
of the neutrino masses comes from the seesaw mechab&2(].

The CP phases in the leptonic sector has been studied araksreghnvariants
for both lepton-number conserving as well as lepton-nunatméating CP violation
have been constructeti3-17]. In the present chapter we try to study this question
only in terms of neutrino masses. Since neutrinos are pextiooly through weak
interactions, it is possible to work in the weak interacti@sis, in which the charged
lepton mass matrix is diagonal. The neutrino mass matrixis lbasis will then
contain all the information about CP violation. We try to firephasing invariant
combinations of the neutrino mass elements, so that witkethivariants some
general comments can be made about CP violation in the mattewt deriving
the structure of the charged-current mixing matrix.

29
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4.1 CP violation in the quark sector

We briefly review the rephasing invariants in terms of theingxmatrices and then
show how the same results can be obtained from the mass mattnizut taking

the trouble of diagonalizing them in the leptonic sector.n§ider first the quark
sector, where the up and the down quark mass matrices arendiied by the
bi-unitary transformations. Then, from the discussion eft®n 2.3, we know

that the charged current interactions in terms of the play$ields will contain the
Kobayashi-Cabibbo-Maskawa mixing matrix

v =U/D,.

Since the right-handed fields are singlets under the SMaatens, they do not
enter in the charged current interactions. In any physicadgsses, only this CKM
mixing matrix would appear and hence the matridgsand Dr becomes redun-
dant. So, the up and down quark masses have much more freeditimesphysical
observables that can determine W cannot infer about the up and down quark
masses uniquely.

For the CP violation, one needs to further consider the phgeaof the left-
handed fields. Any phase transformation to the up and dowrkgwall also trans-
form the CKM matrix

Vi — @ (dati)

However, if there is any CP phase in the CKM matrix, which earoe removed by
any phase transformations of the up and the down quarks|gshewpresent in the
following rephasing invariant known as Jarlskog invarigi-58]

Thus if the Jarlskog invariant is a measure of CP violatiothenquark sector and a
non-vanishing Jarlskog invariant would imply CP violatiorthe quark mixing. It

is apparent from the definition that any phase transformatio the up and down
quarks cannot changk;gj. In a three generation scenario there can be only one
such invariant and hence the CKM matrix can have only one GRghwhich is
invariant under rephasing of the up and the down quarks.

4.2 CP violation in the leptonic sector

From the discussion of the neutrino mixing matrix in the seci0.1 we know
that the Unitary matriXJ gives the mixing of the neutrinos and hence neutrino
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oscillations anKp is the Majorana phase matrix containing the Majorana phases
which are the new sources of CP violation entering due to tagMna nature of
the neutrinos. The unitary matrbt also can contain CP violating phases, which
should be observed in the neutrino oscillation experimelffe call these phases

in the mixing matrixU as Dirac phasesto distinguish them from th&lajorana
phasesThe main difference between a Majorana phase and a Diraephthat the
Majorana phases do not affect any lepton-number conseprgess like neutrino
oscillations. On the other hand, the Dirac phases may twtéito both lepton-
number conserving as well as lepton-number violating sses.

From the above discussions it is apparent that the infoonabout the CP
phases can be obtained from eitheandKp or only from the mass matrikl,. In
the literature the question of CP violation is usually desed by studyinty and
Kp. In this chapter we point out that it is possible to study thesiion of CP phases
only by studying the neutrino mass matm. In particular, the information about
CP violation is conveniently obtained from the rephasingirant combinations of
neutrino mass elements. When the neutrino masses oridiateseesaw mecha-
nism, the question of CP violation has been studied in dedaitl similar invariants
have been constructe@], 62]. Our approach is different in the sense that we are
working with only effective low energy neutrino mass matsithout restricting the
analysis to any specific origin of the neutrino masses. Gaulteare general and
applicable to any models of neutrino masses.

Consider the transformation of different quantities unither rephasing of the
neutrinos

Va — eiéaVa
G — @iy
Ua — e %y,

(KP>a - eiaa(KP)a' (4.2)

From these transformations it is possible to constructepdasing invariantslp-
17]
Sab = UiaUj, (Kp) 4 (Kp)y, - (4.3)

In the three generation case there will be three indepemédphasing invariant mea-
sures in case of Majorana neutrinos. There is another reghesariant which is
similar to the Jarlskog invariant in the quark sector,

tiajp = UiaUjpUipUj, (4.4)

S0 thatJiajp = Im tjajp and Sap = IM Sz becomes the measure of CP violation.
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Jiajb contains the information about the Dirac phase, wiigcontains information
about both Dirac as well as Majorana phases. One can theheiselation

tiajb = Siab* Sba

to eliminate the invariantd’s or else keep thd’s as independent measures and
reduce the number of independ&g. One convenient choice for the independent
measures is the independégfy,’s andsap’s. In the three generation case there is
only onetjaj, and twosap's.

The advantage of this parametrization is that the mea3ulig provides the
measure of the CP violation in any lepton-number conserpirugess like neu-
trino oscillation experiment, while the measuf&g, corresponds to CP violation
in lepton-number violating interactions like the neuttess double beta decay or
scattering processes likg~ +W~ — /- —i—éj‘ also. MoreoverJ,j, enters into the
lepton-number violation processes also.

Since only ond;, jp is independent, one can define the measure of CP violation
Jep in neutrino oscillation as the imaginary part of any one efitivariants ofjaju’s
using expressiod.4

Jep=1Im [uelupzugzugl} : (4.5)

Similarly, other two independent measures of CP violatihrand J, can be
constructed as

Ji = ImUaUg(Kp)11(Kp)22)
2 = ImUeaUg(Kp)11(Kp)s3] - (4.6)

So while rephasing invariant CP violating quantiiyp only appears in the
lepton-number conserving processes, like neutrino asiafts, all thredcp, J; and
Jo appears in the lepton-number violating processes, likérimeless double beta
decay. We will be using these construction of CP violatingsuges in some of the
chapters later.

4.3 Rephasing invariants with neutrino masses

We shall now proceed to construct such measures of CP dolatiterms of the
mass matrix itself. The rephasing invariant measures wighntixing matrix can
allow all the rephasing invariants non-vanishing even wihene is only one Dirac
phase. However, in the present formalism, the number ofasip invariants is
same as the number of CP phases. So, we can find out if theneNsegorana phase
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or not. Since the neutrino mass matrix is diagonalized byglsiunitary matrix,
the mass matrix contains all the information about the PMNSng matrix and
also the mass eigenstates. However, this is not obviousth&tiCP phase. When
the neutrinos are given a phase transformation, the massmwélt be transformed
the same way. Since the we are working in the weak basis, angformation to the
charged leptons can be transformed to the mixing matrix amgkrn to the neutrino
masses. Thus the phase transformation to the mass matrbesdme

Vi — ejéivi
6 — ey
Myij — @Fmnimnim;
N ei(ai-i-aj)Mvij‘ (4.7)

Whereq; = & —n;.

Consider the transformatida — XE, where X is the phase transformation to
the charged leptons. The mixing matrix will transformlas- X*U. However, in
equation3.4 this transformation can be interpreted as a transformatidne mass
matrix,m, — X*m, X*. Thus any rephasing invariant measure constructed with onl
the mass matrix will contain the information about CP vialat

Unlike the mixing matrices, the mass matrix is not unitarg amstead it is
symmetric. We write the elements of the mass matxjpasmj and try to construct
the rephasing invariants in termsmfj. This analysis do not depend on the origin
of neutrino masses. We work with the neutrino mass matrier afttegrating out
any heavier degrees of freedom and in the weak basis. Anyatiaterms that can
be constructed from the elements of the neutrino mass natizll realm*j mij =
Imij |2, as expected. Let us next consider the quartic terms

Fijk = My My Iy . (4.8)

It is easy to check that any three factors of the above quaktaziant can be made
real by appropriate rephasing, but fourth one will remaimptex. Since there
aren rephasing phasés;), one can get number of linear equations to make mass
elements of the mass matrix to be real.fBwumber of entries (excluding symmetric
elements) of the mass matrix can be made real, but positidhe mnass entries can
not be chosen randomly. That is the reason why all the abgeasing quartic
invariants can not be made real in general. A n symmetric matrix hasi(n+

1)/2 independent entries and so it has the same number of pli&asappropriate
rephasing, as argued abowendependent phases can be removed. Then, one is left
with n(n—1) /2 number of independent phases.
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To find out the minimal set of rephasing invariants we list sahthe transitive
and conjugation properties of the invariants:

Lipt Ipjt = |Mpjmpi fija
Liplip = [MpMcpl®fiju
and
Lij = L = Iaij = i (4.9)

Using these relations it can be shown that all fg are not independent and they
can be expressed in terms of a subset of these invarigptsand the quadratic

invariants as R
lijaa kiaa fjjgq ijaa

|rrba|4|mamjarrka'nG|2
Wherei, j # a anda = 1,2,...,n, wheren is the number of generations. On the
other hand, any quartics of the forfijaq can be expressed in terms By as

Lk = (4.10)

Im[Jiga - Tuajj - fijj]
Re [fiaqj] (Imi? [mjj]2)’

Im [Iijaot] = —Im [Iiotaj] = (4.11)
Thus we can express all other invariants in termgjigf and hence consider them
to be of fundamental importance. However, when there areitexeroes in the
neutrino mass matrix, some or all of these invariafy{g could be vanishing. In
that case, it is convenient to use thgq as the measure of CP violation. For the
present we shall concentrate on the more general case withimeemass matrices
without any texture zeroes, when the simplest rephasirayignts areljjj; .

We can thus define the independent CP violating measures as

lij = Im [Jijj] = Im [Gij; ] = Im [mgmyymmg], (i< ) (4.12)

These are the minimal set of CP violating measures one catrachand this gives
the independent CP violating quantities. Sihgsatisfies

lij=1i and Ij=0,

there aren(n— 1)/2 independent measures fogenerations.

We elaborate with some examples starting with a 2-generatienario. There
are threeljg, two of which are real: Ijp11 = [mMuamyo 2. and  Iyoop =
|m12rr|22|2. The third one can have imaginary phase, whiclyjs= Im[I1127] =
Im [my1mpomy,m5, ). In the 3-generation case there are thus three independent me
suredsy, 13, l23. Imaginary phases in all other quartigg are related to only these
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three independent measures. For example,

* *
I15-123- 113

[Ry= —12 23 13
1223 |m11|2 |m33|2

Similarly, for 4-generations there will be six rephasinganant independent
phases, which argo, 123,131, 114, 124, | 34.

The above arguments have been stated without considenntgsiure zeroes
in the mass matrix. If any element of the mass matrix is zéem these discussions
have to be generalized. It is because some quartic invargamt become undefined
because of vanishing denominator of the right hand sideeoéiipressiod.10and
4.11 In that case one needs to consider all possible invarigptswhich could be
non-vanishing. In addition, even if all the quartic invasis vanish, the product of
six mass matrix elements of the form

>k >k >k
Lijkipg = Mij Mg Mpg My Mg Mp;

could be non-vanishing and can contribute to CP violationheWthere are no
texture zeroes, the product of six mass elements do notioartg new information
about CP phases, they are related to the quartic invariants

Lk Togkj

(4.13)
|2

lijkipg =

Other products of six mass elements are of the farm,mq mpq My m; My =
[Mpgl? Jiji O |mij Mq Mpg|?.

We summarize this section by restating that when all elesenthe neutrino
mass matrix are non-vanishing;, (i < j) gives the total number of Dirac and
Majorana phases. If some of the elements of the mass matrighes, then either
i or fijkipg could also represent some of the independent phases.

4.4 CP violation in lepton number conserving pro-
cesses

The rephasing invariant independent phases containggl, in< j, are inclusive
of the Dirac phases as well as the Majorana phases. We shalidemtify the
rephasing invariant measures, which is independent of thefdna phases, which
would enter in the neutrino oscillation experiments. Thesmaatrix (n,) in terms
of the diagonal mass matrixJ can be expressed following equati® as

my=U"K3rm, UT.
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Thus the products
M = (m) m,) = (m, m})* =U mg U’ (4.14)

are independent of the Majorana phakgsand any rephasing invariant measure
constructed with elements;;"of M will contain only the Dirac phases and hence
should contribute to any lepton-number conserving prasess
The mass-squared elements transforms under rephasing of the neutrinos and
charged leptons as
My — €@~y (4.15)

Since the mass-squared matniy is Hermitian,l\7|T = M,, the mass elements
satisfy
mj = rﬁ]ﬁ. (4.16)

Thus the simplest rephasing invariant that can be constldcim the mass-squared
matrix M, is justrfy1. However, from equatiod.16it is obvious that this is a real
quantity. The next possible rephasing invariant would beadgatic term, but even
that is also real

MMy = My m; = |iy)>
Thus the simplest rephasing invariant combination thatccautain the complex CP
phase is of the form

Sk =My Mg (1 # ] #K). (4.17)

Im[ k] are antisymmetric under interchange of any two indices @mdé vanishes
when any two of the indices are same. We can expfgss terms ofM matrix
elements as,

Jik = MMMy

= <§ m*amja) (%m}ksrn(s) (; mf;ymy> (4.18)
Wherey o mi;mjq can be interpreted as scalar producitbfandjth row. A similar
invariant was constructed in the case of seesaw model ofineumasses in ref.7]
], although the approach to the problem is completely diffier In this expression,
if any one scalar product vanishes then number of indepemdphasing measure
Im[%;k] which are independent of the Majorana phases will be redbgeshe.
It is possible to express all the rephasing invariants ¢oimg the Dirac phases
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Jijk in terms of a minimal set OW invariantsfjn, (i < j <n)as

]ijnjjknjkin
[Min| [Mjn] (M

Jijk = (4.19)
wheren is the index corresponding to the number of generations s TWeudefine
the measures of CP violation in lepton-number conservinggsses as

Jijn = Im{Jijn] (i<j<n). (4.20)

These invariants Ifrfijc| are not independent of the invariantg and can be ex-
pressed as

Tiaip - Ikai
Fik = % Lljm |2a'°. (4.21)
ab,c a

So, the independent measutgsnclude these independent measures of Dirac CP
phases Ifdijn], (i < j<n).

There aren(n— 1) /2 phases present M for n generations, but all of them are
not independent(n — 1) of these phases can be removed by redefining the phases
of the leptons. That leavé¥’2 —n = (=802} _(n-1) ¢, independent phases in
M. This is the number of Dirac phases and may be observed inmeuwsscillation
experiments. Let us assume that some partiaulal entries are made real with
appropriate rephasing. We can take all possible pair-mtazfuhese real entries. To
have non-real rephasing invariafif, one will have to multiply pair-product with
some complex entry. For each real pair-product there qooresonly one complex
entry so that there product is a complex rephasing invadafihed as in equation
4.17. So number of all possible pair of real entries will give thember of non
vanishing rephasing measures independent of Majoran@ghdsich is"YC, =
W. This number is same as the number of physical phases piaddnas
it has been analyzed earlier.

In the 2-generation case there is only one CP phase which mjardha phase.
Which implies there should not be any non-vanishifpg which is trivial to check.

In the 3-generation case there is only one Dirac CP meastiehus

J123= M2 o3 a1 = % (M54 Ma2 My Myz MggMe] - (4.22)
ab.c

Thus given a neutrino mass matrix one can readily say if tlissimatrix will imply
CP violation in the neutrino oscillation experiments.

In the 4-generation case there are three CP phases in the PNMNE) matrix
and 3-Majorana phase. The independent rephasing invaigémirac phases will
be given asfi24, 134 and 234 . One dependent rephasing invariangiss which
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can be expressed as
12492347134

|y 4Tpaias|2
In general, these invariants satisfy

J123

JiikTia Ty = 10 P 2 T (4.23)

for n generations, whergej,k=1,2,...,n.

We summarize this section by restating fegeneration neutrino mass ma-
trix without any texture zeroes, the rephasing invariardgasponding to the
Dirac phase ardijjn, (i < j < n). If there are texture zeroes, then some of the
Jijk, (i < j <k, k#n) could also be independent.

4.5 Texture zeroes

In case neutrino mass matrix contains zero entries in aidhenns, it is convenient
to define basic independent quartic invariants to the repyas charged leptons in
slightly different form as,

lim My} M, M M
[Minl,|Mijnl,[Man[ =0 [Min| [Mijn | |Man|

Rijnn = (i< jandi,j+#n) (4.24)
Limit has to be taken for alith column elements. Any other such quartic invariant
can be expressed in terms of these independent rephasargimgX;j,, as,

Rijui = lennﬂk|nnﬂu*nnﬂkﬁnn (4.25)

Advantage of defining the independent rephasing(to theasipp of charged
lepton) invariantsRjnn as the limiting case is that the expressions do not become
undefined due to presence of vanishing denominators. Letitestive invariants in
a different form as,

Rijnn = |myj | @it8n=On=8in) (i i —£nandi< j)

WhereBy, is the phase present @ n) entry of the mass matrix. If there are some
zero entries present mh column, then the corresponding phases present in expres-
sion of Rjjnn Must be unphysical. So a subset of the set of these basicendept
invariants will be having the unphysical phases associaittdthe zero entries of
thenth column. We can not define CP measures corresponding toviednts hav-

ing unphysical phases by extracting the imaginary part efitlariants, although

we can define CP measure as usual for rest of the invariantthedinvariants de-
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fined above are invariants corresponding to the rephasiolgasfed leptons but not
rephasing of the unphysical phase corresponding to zere@gmresent in thaeth
column. We will have to construct the full rephasing invatgto all unphysical
phases in terms above invariants. This can be done by nyuttgptwo or more
invariants having unphysical phases in such a way that aetinphysical phases
cancel out. It turns out that eliminating one of these unmayphases correspond-
ing to the zero entries inth column reduces the number of full rephasing invariants
by one. Also, one independent full rephasing invariant (smeéne CP measure)
vanishes corresponding to the zero entry present in otlaernthh column (ornth
row). Thus the number of independent CP measiggsdefined as the imaginary
part of these full rephasing invariants for neutrino masgimbaving p zero entries
andq zero rows (all the row entries are vanishing) fogenerations is given by
n(n—1)

Nep = ——— —p+q (4.26)

This is equal to the number of physical phases present in #texwhich can not
be removed. In the same way we can study the mass-squarddesitrand write
down the number of rephasing invariant measures indepénéidfajorana phases
Ncp is given as

Nep — (n—l)z(n—Z)
wherer is the number of zero entries M andsis the number of those rows whose
all the entries excluding diagonal one are zero. It shoulshdiced that above

relation ofNep is only valid if Ncp is not zero.

4.6 Application to texture two-zero mass matrices

In this section, we discuss a potential application of oumigation in context of
neutrino mass matrix with two zero texturé8]. The study of all possible neutrino
mass matrices with two zero entries has revealed that omgnssich matrices are
phenomenologically allowed in light of existing data on g0 masses and mixing
[63, 64] . At the same time, the three texture zero mass matricesoaralfto be
inconsistent. The question of realization of the two textzegros in see saw context
has been discussed i, 66]. The possibility of the origin of textures zeros is
GUT scenarios has been addressedin$9]. Another such possibility that has
been considered in literature is by invoking some flavor sytny{70-72].

With our present formalism, we shall now study a class of Begation neutrino
mass matrices with two-zero textures, which has been listedf. [63]. There
are seven such mass matrices that are consistent with piegamation about
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Table 4.1: Phenomenologically allowed two texture neotrimass matrices

Pattern Texture ofn, Mass spectrum
0 0 x
Al 0 x x hierarchical
X X X
0 x O
Ao X X X hierarchical
0 x x
x x 0
B1 x 0 x guasi-degenerate
0 x x
x 0 X
B> 0 x x guasi-degenerate
x x 0
x 0 X
B3 0 0 x guasi-degenerate
X X X
x x 0
Ba X X X guasi-degenerate
0 x O
X X X
C x 0 x quasi-degenerate
x x 0

neutrino masses listed in the table

From our discussions in the previous section, there can lyeome CP phase
in all these cases. We shall now identify the rephasing iaaés in all the cases.
Although all these matrices differ in phenomenology, asaCP violation is con-
cerned, the interchange of the indi¢@s— 3) will not change any discussion. So,
we shall not explicitly discuss the modets, B2, B4, which can be obtained by
changing the indice@ < 3) from the matriceg\1, B1, Bz respectively.

CaseA;:
There is only one non-vanishirlg, which isl>3. The lepton-number conserving

rephasing invariant measulesis given by

[Ji2g = Im[(mg1Ma2) (MpoMp3 + MaoMe3) (Mg3Maa)|
= |mea|?l23 (4.27)

Thus there is only one Dirac CP phase in this case, which wilktribute to the
lepton-number conserving processes. The same resulidsfoal.
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CaseB;y:

In this case all the measurgg are vanishing. Even the invariants of the fofm
are all vanishing. However, there is one CP phase as distuisgbe previous
section. The invarianfy22133iS non-vanishing, which cannot be related to to the
lower invariants byl122133= I1221- 13322/|n'§2, sincempz = 0. The lepton-number
conserving invariant is related to this invariant by

[Ji2g = Im[(mi1Mi2)(Maome3) (M)
= Im[122133. (4.28)

Again there are no Majorana CP phase. The analysis is sartteefoases;.

CaseBa:

There is only one non-vanishing CP violating meadugewhich is related to the
lepton-number conserving measure by

[bi2g = Im[(mgmaz)(Maome3) (MygMya -+ Ma3May )]
= |mg2f®l13. (4.29)

There are no more CP phase left in addition to the one enteritepton-number
conserving processes. Replacing the ind{@s 3) we get for the casB4 a similar

relation[Jy23 = [mgp|?l12.

CaseC:

This is the most interesting case. There are no CP violateasures of the forry;,
although the invariant; 123is non-vanishing. So, there is one CP phase in this case,
as expected. This is related to the CP violating measureffeatts lepton-number
conserving processes by

Jioz = Im[(mymy2 + mgymg2) (MM 3) (Mg 3My g + Moy )|

= |myo|® 1123+ |M13? 103

Although this shows that the phase is a Dirac phase, in tr@apase ofm s = my3,
there will not be any CP violation in the neutrino oscillatiexperiments. This can
be verified from the fact that fam, = m 3 the third mixing angle and hend 3
vanishes. In this case the CP violation can originate fromagokhna phase, since
Ji23 vanishes even when hip3is non-vanishing.

Another way to understand this is to write the mass matrix diffarent basis.
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Whenm 2 = my3, we can write the mass matr@as

o X X
o X X
X o o

In this case the third generation decouples from the restxamkinow that for two
generation there is only a Majorana phase, which corresptmndon-vanishingy »
and there is no Dirac phase, as we stated above. This is theexample of two-
zero texture mass matrices where the CP violating phasd bewd Majorana phase,
but this mass matrix is not allowed phenomenologically.

Thus there are no phenomenologically acceptable two-zure neutrino
mass matrices, which has any Majorana phase. The only CRe glussible in
any two-zero texture 3-generation mass matrix is of Dirgetgnd should allow
CP violation in neutrino oscillation experiments.



Chapter 5

Seesaw mechanism of neutrino
masses

Observations of neutrino flavor oscillations from solard], atmospheric%] and
laboratory neutrino experiment8{11] have provided firm evidences that the neu-
trinos have masses, although very small. To accommodatadh&ino masses,
one needs to go beyond the SM of particle physics by exteralthgr the fermion
sector or the Higgs sector of the SM. One simple way is to thice right-handed
singlet neutrinos in the fermionic sector and generate fngclnass terms through
the Yukawa couplings. The inability to observe the rightiied neutrinos can be
attributed to its singlet nature as this ensures absengg/aiaupling of this singlets
with SM gauge bosons. From the standpoint of mass genernatguipanism, this
will provide an equal footing for both quarks and leptons. rbtaver, the generic
concept of mixing in the quark sector can be comfortablydeed to explain mix-
ing in the leptonic sector.

However, the situation turns out to be quite uncomfortaliienwve compare the
mass scale of neutrinos with that of charged leptons. Nlednedogy from the quark
sector suggests that the neutrinos should have masses mess of the order of
charged lepton masses. However, the observed very smadkesia$ the neutrinos
(~ eV) are quite far from expected (figuBel). Obviously, the picture is not able
to provide a natural framework to explain the very lightnekthe neutrino masses
so far as origin of all SM fermion masses is expected to comma Some common
fundamental structure. This along with considerationsathltharge neutrality of
neutrinos and lack of any evidence for the right-handedrimag below the weak
scale have produced much motivation to consider the pdisgiti neutrinos being
Majorana fermions, in the literature.

A Majorana fermion is characterized by the feature thatitsiswn antiparticle.
In fact, it is possible to generate Majorana masses in tlgaateseesaw framework
by introducing a lepton-number violating source at somé Isicale 18-20]. The

43
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Figure 5.1: Lightness of neutrinos

seesaw mechanism not only provides a natural way to redlzeuppression of
neutrino masses but also comes with an extra feature thaniegplain the cur-
rent baryon asymmetry of the universe through creating épéoh asymmetry at
the early universe which is possible due to presence of fterlenumber violat-
ing source termZ48, 73-83]. Depending on the different models and their matter
contents, several seesaw realizations exist in the litexatith the common desired
feature that all of them can provide three light neutrinapineed for the consistent
understanding of combined neutrino oscillation data frditha experiments.

5.1 Type | seesaw

As pointed out above, a naturally motivated extension ofShewould be to add
right-handed neutrinos to its fermionic content. Like anlyen charged fermion,
they get Dirac masses through the Yukawa couplings of th#-hignded neutrinos
with the electroweak lepton doublets and Higgs doublet. €arealso write the
Majorana mass term for these singlet right-handed neuaagthere is no prior
reason to neglect it while writing the most general Lagrangillowed by the SM
gauge group. However, this term will break the lepton nuntlyewo unitsAL = 2.
The characteristic feature of this seesaw scenario is tiatgauge singlet
fermions (right-handed neutrinos) can have a natural Ma@mass scale much
larger than the electroweak scale, which in turn, leads torabsuppression of the
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neutrino masses. The relevant part of Lagrangian will bergas
17 - —_—
L= <§(NRG)C('V'R>aBNRB+€u<p(Ye>ijeRj+€u<p(Yv>iaNRa +H.C.) ,(5.1)

where@ = 12¢* andi, j runs from 1 to 3, representing the left-handed fields.
represent the right-handed neutrino indicgsrepresents the SURx U(1)y dou-
blets,er; andNgry are the right-handed singlets of the theory.

Before we proceed further, we would like to make an importantark that
it is possible to add any reasonable numbers of right-handeattinos except one
which is not able to account for the observed non-degenarass spectrum of the
light neutrinos. After the electroweak symmetry breakihg,terms relevant for the
neutrino masses can be written as

1l 0 (M) (Vij)©
—Lymass= 2( VL (NRG) > < (MJD)” (MR)GB ) ( NRB )7

where Myp = YV is the Dirac mass matrix of the neutrinosjs the vev of
the SM Higgs andVr is the mass matrix of the right-handed neutrinos. Since the
Majorana mass matrix is symmetric alig > M, p, the whole mass matrix can be
block-diagonalized as following

0 M 0
Block — diagonalized [~ oo (™ ,
MI, Mg 0 Mg

where
m, = —MypMgMlp, (5.2)

After the block-diagonalization, one gets an effective 3low energy neutrino
mass matrixm, representing three light Majorana neutrinos &g representing
the heavy Majorana neutrinos. This way of making partidlgstlat the expense of
making another one heavy is known as seesaw mechanism angétticular one is
called as type | seesaw. The mass scalepois suppressed by the scaleMg. If
we take scale dfl,p roughly similar to the scale afi;, the upper bound on neutrino
masses can be converted to the lower boundgas

Mg > 10°GeV.

Such a high scale is beyond the reach of being tested in thegearration of
colliders.
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Figure 5.2: Type | (left) and type Il (right) seesaw realiaas

5.2 Type Il seesaw

In the type | seesaw scenario, we extended the fermionioseftthe SM by adding
two or more right-handed neutrinos. It predicts three liglajorana neutrinos be-
low the electroweak scale. However, an important point tiead to be realized is
that the number of degree of freedom of three light Majorasmatnnos are same to
that of three left-handed Weyl neutrinos. So, one may likexalore the possibility
to work without introducing the right-handed neutrinosaisehow the Majorana
mass term for the left-handed neutrinos can be allowed tewiti is in fact possi-
ble by extending the Higgs content of SM, instead of ferngaintent, by adding a
Higgs triplet € = (3, 1, 1)) with hypercharg®& = 1. This Higgs triplet can couple to
the lepton doublet and is able to give consistent masseg toditrinos provided it
gets a very tinwev The part of the Lagrangian responsible for the neutrinosess
is given as:

—_—
L= ffiCit2)(T . &) j+he.,

where C represent the inverse of charge conjugation operebe triplet can be
assigned lepton numbkr= —2 so that the above Yukawa terms respect the lepton-
number conservation. Now, if tifegets a non zergey, the lepton number will be
broken by two units leading the Majorana masses for thehiaftded neutrinos at
the low energy

m, =< &> f.

Expecting the Yukawa couplinghj to be of order one, we need to look for an
another seesaw mechanism which can naturally provide asregll vevfor the
triplet. The most general Higgs potential of one doulplet (¢*, ¢°) and one triplet



Chapter 5. Seesaw mechanism of neutrino masses 47

§= (&t &+, &%) is given as:

Vo= nfelo+MZETE
1 1

+ M09+ SM2(ET8)% + As(@'g)(ETE)

+ HE%PP+V2E o P +E 970 ) +he (5.3)
Obviously, the couplingié @o violates lepton number explicitly. In the initial triplet
model B4, 89, this term is avoided by imposing the lepton-number symyndthe
spontaneous breaking of the lepton number leads to a gaklsmson called Ma-
joron. The model predicts substantial decag dfoson into the Majoron arde(€°)
which has been ruled out by measured decay width lbdson. The significance of
HE @ term was first appreciated by§] where it was pointed out that the presence
of this term will not only help in avoiding any Majoran at lowmergy but also pro-
vides an small inducedevto the triplet. If doublet getsevas (¢°) = v and triplet
gets as(&Y) = u, then one can show thatgets an inducesevthrough the figure
5.2, suppressed by square of the mass of the triplet as

Wa

VA

where M is the mass of the triplet. So if the mass of the trigetery large, one
can naturally suppress the mass of the neutrinos, sinceethigimo mass matrix

is proportional tou. This mechanism is called as Type Il seesaw mechanism for
generating light neutrinos.

5.3 Type lll seesaw

There exists two versions of seesaw mechanism named aslhygeesaw in the
literature. In the first one, two or mo&U(2), fermionic triplets are added to the
SM. It can couple to the triplet combination of lepton doul@ed Higgs doublet
and can provide the Majorana mass to the neutrinos afteg thequiresvev. In
the second version, a different type of fermionic SM singfebvide the three light
Majorana neutrinos along with the right-handed singletieos.

5.3.1 Type lll seesaw with fermionic triplet

In this seesaw scenario, fermior8tJ(2)_ triplets (Tg) with Y = 0 are added to the
fermionic content of the SM36]. SM gauge group allows the Majorana mass term
for the fermion triplets and their couplings with the leptoublets and the Higgs
doublet are given as
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Figure 5.3: Type lll seesaw realization with fermionic teip

Table 5.1: Three types of seesaw mechanism

Type of seesaw Corresponding d=5 SM operator

Type | A(ULCT20) (0T T2 )
Type I ACLTH). (9 T o)
Type Il LCLTQ).(graTh)

- = . —

L = MrijTHCTLj + Vi (liC(it2) T T j 9.
If triplet is heavy, i.e.Mt > v, the neutrino mass matrix can be written in the same
way as in type | seesaw case

m, = VY M7y,

The low energy neutrino mass matrix takes the same strugsuretype | seesaw
(figure5.3) . So, we need at least two fermionic triplets to accountlierdvidence
of the non-degenerate spectrum of the neutrino masses.

Before we proceed to the next version of type Il seesaw, wadvike to make
the remark that the three seesaw scenario discussed so fae cactually, described
by a five dimensional SM operator after integrating out adl treavy degrees of
freedom in the model (table. 1).

Although the three operators in talilel appears to be different from each other,
they can all be shown to be equivalent. There are only thresiple tree-level real-
izations of this low energy operator which correspond tottiiee types of seesaw
mechanism mentioned so fé87. The difference is expected to arise only when
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the scale\ is probed nearby. Interesting study of all possithle 6 operators has
been performed ingg].

5.3.2 Type lll seesaw with fermionic singlet

In this scenario, the SM fermionic content is extended byiraglthree SM singlet
right-handed neutrinodNg) and three other singlet Weyl fermionSgj. One may

ask how to discriminate all the singlets into two groups. Tight-handed singlets
are characterized be the feature of providing Dirac mass#set neutrinos of the
correct order and that they are prevented to acquire Magonaasses like the left-
handed neutrinos. On the other hand, $assinglets are allowed to have the Majo-
rana masses. The coupling of both left-handed as well ash@ghded neutrinos are
allowed withSz. This new mechanism is also called Type Il seesaw mechanism
in the literature. The part of the Lagrangian which gives seago the neutrinos is
given as

0 (Myp)ij Finu ViL
Ly mass= (ViL7 NiCL ) SF"mL) (M\TD)ij 0 Fan Nﬁ_ . (5-4)
Fl u kI Q  Mmn S,

The low energy effective neutrino mass matrix will be given a

u

o~ Mo (FOMFTQ)M)p . (5.5)

m, =— (MVD + MJD)

The second term is known as double seesaw contribu®n90]. The first term
in the mass matrix is the type lll seesaw contributi®]] This seesaw scenario
has got a simple realization in the left-right symmetric midtiat we are going to
discuss in the next section.

5.4 Seesaw mechanism in left-right symmetric model

A very attractive extension of the SM, very different frone thbove, would be to
enlarge the gauge group of the SM such that the broken tgft-piarity is restored at
some high scale. This kind of model is known as left-right syetric model in the
literature and has been extensively studied. The model disigforic importance
as it provides nonzero small neutrino masses and embedssaes simply by
demanding the left-right symmetry breaking at some apjpatghigh scale.

In the model, the SM gauge group is extended to a left-rightragtric gauge
group,Grr = SU(3)c x SU(2)L x SU(2)r x U (1)(g_) [92-96]. The left-right sym-
metric nature of the model immediately predicts three riggntded neutrinos. The
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electric charge is defined in terms of the generators of themas:
B-L
Q=T3L+T3R+T=T3L+Y-, (5.6)

whereY = Tar + 25, The transformation properties of the quarks and the lepton
under the left-right symmetric gauge group are given as:

() 2 1 _(®R) = 1
QL— (dl_) = [372717 6] QR_ (dR) = [371727 6]

1 N 1
0 = <VL> =1,2,1,-3] flr= ( R) =11,1,2,—2]
e 2 er 2

The gauge boson (excluding gluons) sector consist of tyatets and one singlets,
other than QCD gauge bosons, as:

W Wi

M Rp

W= | WS, | =(1310), Wr=| W3, |=(1,130), Byg )=(1,1,1,0)
W Way

The right-handed neutrinNR is present in all the left-right symmetric model,
which is dictated by the structure of the fermion repres@ntand the gauge group.
As the name suggests, the left-right symmetric model isathiarized by demanding
invariance of the Lagrangian under following left-rightrpyatransformation :

SU2)L < SU@2)k

Q. < Qr

0 — [Ir

The next important thing that need to be realized is the lngasf left-right
gauge group to the SM group:
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SU(3)C X SU(Z)L X SU(Z)R x U (1)(B—L) [GLROI'nggD]
MR SU(3)e x SU(2)L xU(L)y  [Gsig0rGaz]
T SU(3)e x U (1)q [Gem -

For the purpose, one need a scalar Higgs transforming mnoakliyr under
SU(2)r. Giving avey, with a scale high enough compared to the weak scale, to
the scalar along the SM singlet direction will serve the pgg This scalar has
to be singlet undeBU(2),. as the SM gauge group remains unbroken in the first
step. Introducing this scalar to break the left-right grotgmsistency demands the
need for an another scalar which transforms trivially urléf2)r but non-trivially
underSU(2).. Before assigning the quantum numbers to these left-haaddd
right-handed Higgs fields, we discuss some interestingifeatf the potential min-
imization involving the two fields. As it would be conveniemot think in terms
of the vevvalues, let us assigm as avevto the left-handed Higgs angk to the
right-handed one. Keeping left-right symmetry in mind, cae write the potential
as

12

A 2 (9-MN)
V:—E(uf+u§)+z(uf+u§{) +

wherep? > 0 and\ > 0 to ensure that the potential is bounded from the below
and one of the solution for the extremwm= ug = 0 is maxima and not the minima
of the potential. The linear terms suchwasir and (u_ + ur) are forbidden within
the Higgs content chosen, but can appear in general whendvsoage more Higgs
fields specially to break the SM gauge group. The last termusial in deciding
the symmetry breaking pattern as the first two term are bbriti¢ direction of the
symmetry breaking.

For the casey < A, one gets the solution for minima of the potential as
u. = Ur # 0. This is unacceptable as we see the broken left-rightyp@rihature.
However, the casg > A provides two equally probable solutions= 0, ur # 0 or
ur = 0, u_ # 0 one of which is phenomenologically reasonable. So therilgfft
symmetric potential automatically produces a symmetnakireg pattern where
left-right symmetry breaking can be naturally realized.eTauge bosons related
to the brokerSU(2)r gauge group acquire the masses with the scale similar to the
scale ofur by absorbing the goldstone mode through the usual Higgs amésin.

Now to break the electroweak symmetry, one introduces abblk @) with
the quantum numbé, 2,2, 0) with respect to the left-right model given as:

2.2
UrUR,
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+

®— ( ‘p% ® ) . (1,2,2,0)
¢ @

Assigningvevto the neutral component df field not only leads to electroweak

breaking but also provides Dirac masses to all the fermionalsiding neutrinos in
the model as obvious from the following coupling®fwith the fermions:

— L= Vi L PER+ Yiij 0L PURj + Yoij QLPQR; + Yqij QL PQR; + h.c.,

where ® = iT,®iTy. Although the model automatically predicts the Dirac
masses for the neutrinos, the problem of realizing nausatiall masses for neu-
trinos still remains unsolved unless one tries to embeddbsasv framework in the
model. There do exist two well studied seesaw realizatiartbe left-right sym-
metric model in the literature.

5.4.1 Left-right type (I+Il) seesaw realization

So far we have just talked about the scalar fields needed ik lihee left-right
symmetry but have not specified them. There are two well stlichoices of Higgs
multiplets used to implement the breaking of the left-rigyimetric gauge group.
One of them which we discuss here is characterized by intiaddollowing set of
Higgs fields:

EL (1737 17 1) ) ER (17 1737 l)? (5'7)

Giving largevevto &g will spontaneously break the left-right group sponta-
neously and will violate th& — L quantum number by two units or the lepton num-
ber by two units. As it was discussed above, the coup,h'Fu;j(qDTET_> T iR T))
will allow the term inyvzuLuR which is linear inug in the potential. So the field
& will acquire an inducedevafter the electroweak symmetry breaking which is
related toug andv as follows:

u. = Vﬁ
Ur
So if uris taken to be large enough compared to the weak sgalill tend to
very small value compared to the weak scale. The relatioeng erucial as far as
the seesaw embedding is concerned. It is obvious to seenthd&th(2), triplet &
will provide very small Majorana masses to the left-handedtnnos as in type Il
seesaw scenario. At the same tirgg,will provide large Majorana masses to the
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right-handed neutrinos. The part of the Lagrangian relefaarihe neutrino masses
can be given as:

—

L= fLiijiC(iTz)(?- L)ALj+ fRij[FEiC(iTz)(? X ER)TERj—I-YgijE_LiCDERJ‘ +Vgij£_ua§£R,-

Therefor, in the left-right symmetric model both the ternmsresponding to
Type | and Type Il seesaw mechanism appear simultaneouftisr dssigningrev
to both Higgs fields, above equation turns out to be:

ML Myp VL
= (v, N¢ , 5.8
Ly mass ( L L)<M\TD M )(Nf_:) (5.8)

whereM_ = u_ f, Mg = Urf are the mass matrix corresponding to the Majorana
mass term of the left-handed( and the right-handed\{) neutrinos andvi,p

Is the mass matrix corresponding to the Dirac mass term ohéurinos. Block
diagonalizing the above matrix, the low energy neutrinosmaatrix is given as

m = M_—MypMg*M)p

2
V
= uf——YflyT
UR

Asy= 1, the scale of both the terms surprisingly comes out to bamisorder
in the left-right symmetric model. Hence the correspondiogtributions to the
neutrino masses due to the type | and Il seesaw terms are atitalty suppressed
as soon as we demand a relatively high scale breaking offtheglt gauge group.
So the left-right symmetric model provides a natural redion of both type(I+II)
seesaw mechanism consistent with each other.

5.4.2 Left-right type Il seesaw realization

An alternate scenario of breaking the left-right gauge grocan also be achieved by
the following set of Higgs field:

Xc (1,2,1,1/2) , xr(1,1,2,1/2), (5.9)

Let us denote thewevvalues by, andvgr. Obviously, providing a largeevto
XRr Will break the left-right gauge group at the desired higHeschike the previous
scenario) can again acquire an very small inducexvdue to the presence of the
coupling ofy with xgr andgleading to the same kind of relation:
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/V2
V=Y —
VVR

Both the scalarg r break theB — L number or the lepton number by one unit,
so will not be able to provide the Majorana masses to eith#reheutrinos. How-
ever, one can induce the Majorana masses for the neutrinaggrogucing three

fermionsSy, singlet under the left-right gauge group having very siivijorana
masses.

SK= (1,110

These singlets will interact with the neutrinos and will geate the Majorana
masses for the neutrinos. The terms contributing to therimeutnasses are:

£ =Mun(S)mC S+ FLimllCXE St Frim (€°)[; CXRS -+ Yaj CLi PLrj+ Vi i PLrj+h.c.

Assigning theve\s, we get

0 (Myp)ij FinvL VijL
Ly mass= (ViL, Ni(I:_a gnL) (M\TD)ij 0 FinVRr Nch ) (5.10)
Fl:nrjvl— FI:TI’I—JVR an %L

which is similar to the expressidn4. So it is also possible to realize the type
Il seesaw mechanism of the neutrino masses in the left-egimmetric scenario
by usingx, andyxr Higgs fields which simultaneously play the role of breaking t
left-right parity.

In both the left-right symmetry breaking scenario, we stnvith conserved
left-right parity. One can also have left-right symmetriodels starting with ex-
plicitly broken parity. In an other class of left-right syretnic models, the parity is
spontaneously broken by introducing a singlet Higgs field odder the left-right
parity transformation. The detailed discussion of all theases has been outlined

in [97].
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Grand unified theories and neutrino
masses

The idea of Grand Unified Theories (GUTs) has emerged asractate possibility

to go beyond the SM . It promises to unify the three differesige coupling con-
stants of the SM. The basic idea is that the three couplingteots vary differently
with respect to the energy scale and their renormalizatioogrunning shows that
they tend to meet at some very high energy scald@°GeV) known as the GUT
scale. Some new physics is expected to appear at this scale @dn be described
by a bigger gauge group with single coupling constant,the.grand unified group.

GUTs provide a natural platform to address some of the mgetamg issues
which is not possible elsewhere. It reduces the number afired) particle irre-
ducible multiplets in the SM into lesser number of irredleimultiplets under the
grand group. As a consequence the ad-hoc looking assignoheneé quantum
number to the SM fermions gets a predictive framework, fanegle the charge
guantization remains no more a surprise in GUTs. Anothey atiractive feature
Is that the fermion mass matrices, looking independentci esher in the SM, get
related in the GUT framework.

One of the common characteristic features of the GUTs igttpagdicts lepton
and baryon number violating interactions mediated by emghaof either a super
heavy gauge boson or a super heavy Higgs boson with correcitgm number
allowed byd = 6 dimensional operator of the SM. This arises from the faat th
guarks and leptons share their quantum numbers from the satiplet in GUTSs.
In particular, the gauge mediated interaction does notmtkpa the chosen Higgs
content or the symmetry breaking pattern and so promise®tade a model inde-
pendent test of GUTs. However, the GUT scale masses of thwy lgeaige bosons
make it almost impossible to observe any such clean evenan8meeds to look
for the signal in the process with relatively very small bgrdund to be practically
observed. One such kinetically allowed process is the detpgoton to pions and
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leptons.

Although, no such decay events have been observed to dditstitme is being
more and more tightly constrained. The current experiniéoeer bound of the
partial life time forp — et is 1, > 8.2 x 10® years and fop — p*° is 1p >
6.6 x 10°® years pPg). The theoretical decay rate of the proton can be estimated
aspg9:

Mp~ aéUTﬁ .
M v

This can be used to estimate the lower limit of the Heavy gdnog®n masses.
If the mass scale of super heavy gauge bosons are givdr as10"GeV, the above
proton decay bound is equivalent to

_ (Ycut (n-15) >
K = ( o ) x 107015 > 118, (6.1)

This also provides the lower bound on GUT scalé/gs> 10*°° asagyt does not
vary substantially.

In this chapter, we discuss the basic structure of two GUTNhates. The first
one isSU(5) GUT which has got the historical importance as it was the G
model proposedl[0d. The rank of theSU(5) group is same as the rank of SM
gauge group and so it is the smallest GUT gauge group to acooliaie SM gauge
group. Its non-supersymmetric minimal version, which wasally proposed, has
got very tight constraint on parameter space from the negegsults of the proton
decay experiments and moreover does not unify the threeegaaugpling constant.
However, several extensions have been studied in literatod we will discuss few
of them which are interesting from the point of view of thenfégon masses and
mixing specially in leptonic sector.

Out of the higher rank gauge groups containing the SM gaugepgas a sub-
group, the rank five semi-simple gro§0(10) has emerged as a very attractive
candidate for GUTs. The most interesting fact in favog@f10) GUT is that it can
accommodate the entire SM fermion content in a single 16dsional complex
irreducible spinor representation including right-hashdeutrino, with three copies
for the three families. Its all irreducible representasi@re anomaly free provid-
ing a natural predictive framework to understand fermiorssea and mixing. It is
also most preferable GUT framework to naturally embed seesachanism within
itself. In addition, the left-right symmetric gauge grousncalso be embedded in
SQ(10) GUT.
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6.1 SU(5) GUTs

In SU(5) GUT, all the SM fermions of each generation are accommodatieshda-
mental5 and antisymmetric 10-dimensional irreducible represtés as follows:

dy 0 u§ —us up ds

d(2: 1 0 U(i U d2
Ws=| d , llJlozﬁ 0 u ds | ,

e 0 ¢

VvV /L 0/,

where 1, 2, 3 represents the color indicedJ Ifepresent the gener8U(5) gauge
transformation, above multiplets will transform as

Ws — U*Ps, Wio— U PgoUT.

The gauge bosor#() of the SU(5) will be represented by its 24 dimensional
adjoint representation. The SM gauge bosons can be easiljyified from its de-
composition under SM gauge group as

Au(24) = G, (8,1,0) +W, (1,3,0) + By (1,1,0) + X4 (3,2, -5/6) + Y, (3,2,5/6) ,

(6.2)
whereX andY gauge bosons are the additional gauge bosons other thariMthe S
gauge bosons. Spontaneous symmetry breaking &itig) group to the SM group
automatically generates the GUT scale masses for thesgoaddligauge bosons
through Higgs mechanism. The nontrivial color and flavorabteristics ofX and
Y allow them to couple to the quark-quark and the quark-leptates. These are the
characteristic super heavy gauge bosons which can leadhdlsnd L violating
processes as discussed earlier.

6.1.1 Spontaneous symmetry breaking

The spontaneous symmetry breakingsef(5) gauge group to the SM gauge group
is achieved by introducing an adjoint Higgs. As it can be Sae¢he expressiob.2

of adjoint decomposition, it has a singlet in the directid®M group. Assigning a
24

vevtoward this singlet direction will serve the purpose. Bet ZlOiTi represents
if

the adjoint Higgs transforming & — UGU T, whereT’s are theéU (5) generators
and®;’s here represent the components of the adjoint Higgs. Tieembst general
Higgs potential can be written as (with the discrete symyn@t— —0) :
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2
1 1
V(0) = —t2Tre? + ;0o (Tr0%)*+ SreTret. (6.3)

Thevevalong the singlet direction of the SM corresponds toueevalue (©) =
V Diag(1,1,1, —-3/2, —-3/2).

The Higgs component having quantum num{&12, 5/6)or h.c. which has the
same quantum number as thatSid (5) gauge bosons corresponding to the broken
generators under the SM gauge group. These are goldstoresreatén up by the
corresponding gauge bosons after spontaneous symmeskimge In turn, these
gauge bosons become heavy by getting masses of GUT scaleerib@ing Higgs
components too can be shown to acquire GUT scale massesi@dabie following
conditions on parameter space are satisfied> 0, 15gg + 7Ao > 0.

The further breaking of the SM gauge group can be achievedbyimensional
Higgs multipletH. From its decomposition 5 (3,1,—-3/2) + @(1,2,1), one can
easily identify the SM Higg®. The color triplet component can mediate the scalar
driven proton decay and so need to be made heavy. The comBuhgy] invariant
potential can be given as

2
1 1
V(O,H) = —%TrOZ—FZg@ (T10%)*+ ZhoTre*
2
CHa gty A gt
BHTH+ 3 (HTH)

+aH'™HTre? - pHTe?H,

where we have some additional conditiops> 0,3 > 0. All the terms other than
the B term are insensitive to the direction @fl). Any vevassignment to the color
triplet must be avoided in order to retain the color gaugeugrand that is what
the conditionf3 > 0 ensures by demanding the potential minimization. With the
condition, theH field can acquire aevalong the direction of the charge neutral
component.

But we soon encounter a form of hierarchy problem what isedadis doublet-
triplet splitting problem. Both the mixed terms contribtikethe masses of doublet
and color triplet and the two contributions comes out to be lkiwearly indepen-
dent combination oft andf3 couplings times with GUT scale. Anyway we desire
heavy color triplet to avoid fast proton decay but at the same we require a light
doublet Higgs for electroweak breaking. Both the requineiman be simultane-
ously achieved only by a huge fine-tuning between the paemef at least 26
order of magnitude.
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6.1.2 Gauge coupling unification

It was only after the realization of the fact that strengttanfinteraction is not an
absolute concept but varies with the energy scale of theactien that led to the
idea of unification of all the coupling constants. The rugnaf the couplings is
described by the following one loop renormalization grogpaion:

o 1 (My) = o 1 (Mo) — 2aM0,

whereMo = In (%) andaj(M,) are the values of coupling constants at desired
scaleM, anda(Mp) are known values at scaMo. The g is the beta function
which contains the contributions from the gauge bosonspifers and scalars in
the model

1 11 2 . 1
a = {—EQ(Vectors + :—)’(Weyl Fermion$+ §Ci(CompIex scalaﬂ% :
Above the electroweak scale, the beta functions correspgnd different cou-

pling constants are given as

a B 41
1Y — 40,,_[7
L 19
2L T T
B 7
B = T

We write down the individual evaluation equation of the dowgs systematically
as

ay(My) = ap(Mw) —2a1y Myw
ot (My) = oyt (Mw) — 282 Myw
Og (My) = aigd(Mw) — 2850 Myw -

We choose initial starting values of the above three cogptionstants ( cen-
tral values) at scalély (= 100Ge\) to be the experimental values which are
oy (M) = 59.38, oy (My) = 29.93, andas!(Mw) = 8.47. The evolution of
the couplings have been plotted in figiéd

Obviously the couplings do not meet at a pomng.andas meat at energy scale
around 187 GeV which is preferable as a GUT scale to avoid fast protoaylegut
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' log,q(11/GeV)
18

Figure 6.1: Evolution of coupling constants$tJ(5) GUT

ajandazmeet too early than what is desirable. So 8¢5) GUT in its minimal
version is not viable simply because it is unable to providigication. One needs
to go beyond the minimal version to look for some other sana@ntributing to
beta function in order to achieve unification. Moreover,itiaimal version is also
not able to produce neutrino masses which we will discust nex

6.1.3 Neutrino masses

TheSU(5) GUT with minimal set of Higgs bosons as above allows folloguienor-
malizable Yukawa couplings:

Lo=(Ya)ij (W8);C(Wianp);HP
+ (Ya)ii €%PY" P10 C1 oy H -

With thevevassignment téd along the neutral directioa H >= (0,0,0,0,v), the
general structure of the fermion mass matrices emerges as

Mg = M| =VYy
Mu — VYu. (64)

The equality of the mass matrix of down type quark and chalgetn are not
mere coincidence. Its has to be there from the factstddes not play any role to
produce the fermion masses and is only breaks the GUT gro8Mtgroup. The
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vevpattern ofH is such that it can brea®U(5) to SU(4) x U (1) and not to the SM.
So the equality of the two matrices is the consequen&Ugfl) symmetry which is
still intact in Yukawa sector.

However, above mass matrix structure is not consistent edthent data on
masses of both quarks and charged leptons even if we forgeit adeutrinos.
Adding singlet right-handed neutrinos can provide masseéld neutrinos, but it
will not improve the situation for the charged fermions siynipecause the relations
in 6.4 are left unchanged. So one needs to go to non-trivial exdaasf minimal
SU(5) not only for consistent understanding of fermion masseslsatto look for
sources which can ensure the unification of the three cagipbnstants. Following
decomposition property can help to chose a Higgs multipleciwvcan couple with
the fermions to construct invariant Yukawa terms:

5x5 = 10+15
5x10 = 5+45
10x10 = 5445450 (6.5)

Only 5, 15 and 45 have a component that is electrically neatré color singlet
and so only they can be givere\s. In what follows, we discuss three different
scenarios of realization of neutrino masseSW(5) GUT.

Type | seesaw realization inSU(5) GUT

In this scenario, the Higgs sector of Georgi Glashow motlelj[is extended by

adding a 45-dimensional Higgs[101]. From expressioB.5, it is clear that assign-
ing vevwill affect both the mass matrix relations ®4. The Yukawa sector is given
as

Ly = (Y)ij (W5); C(W1);Ha + Mij (W1); C (),
(Ya)ij (W8);C (W10a ) HB+ (Yy)i P W100CW10ysHr
(w5);C

+
+ (Y3)ij (W8);C (Wops) ; Za + (Y0)ij e W10apClh10y0Z5; - (6.6)
The first two terms provide Dirac and Majorana masses forrimag and thus
lead to usual type | seesaw scenario if scale of Majorana mas#x is high enough.
The next two terms are similar to the minimal case. The last teyms, which
include 45 dimensional multipleX, correct the bad relatiof.4 for the charged
fermions present in the minimal version. Thean acquirezevin the charge neutral
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and color singlet direction in the following way
<3P - PV (63‘ — 46y46°‘4) .

Corresponding new mass matrix relations come out be

Mg = Ygv+YiV
M, = Yqv— 3Yd/\/
Mu — YUV+YL1\/ .

Obviously, we get enough parameter space to fit all the cdegenion data on
masses and mixing.

However, various split multiplets of 24 and 45 Higgs under$M gauge group
have to be given appropriate intermediate mass scales ébet@UT scale and
electroweak scale) in order to achieve unification at ddss@alel02 103. In
doing so, one leads to leptoquarks below the GUT scale whachneediate fast
proton decay. The recent studid®f] show that the model can be almost ruled
out by imposing the current experimental bound on Higgs atediproton decay.
Moreover, the absence of any relation between neutrinoesassl charged fermion
masses makes the model uninteresting.

Type Il seesaw realization inSU(5)GUT

Unlike the previous case, here we do not extend the fermiseator but try to
generate the Majorana masses for neutrinos solely by drggtioe Higgs sector.
From the decomposition in expressiém, it is clear that 15 dimensional multiplet
can serve the purpose. Looking at its decompositioa-18,3,1) & (3,2,1/6) &
(6,1,—2/3), one is provided with familiaBU(2)_ triplet (1,3,1) to realize type Il
seesaw by assigning it an approprie¢s. However, the unification constraints does
not depend much on the mass scale of the the tr{il& 1) and so its scale is not
constrained and can lie anywhere in principle.

Unlike the the case in Type | seesaw, 45 dimensional Higgstiseguired as
the 15 dimensional multiplet can provide successful urtifiaalone. The model
Is again dependent on the split mass scales of the diffeoemponent of 15 dimen-
sional Higgs for the unification and predicts a light leptadu(3,2,1/6) around
TeV scale making the model relevant at LHC to be ruled &Q#].

Although the model provides the Majorana masses for thainegt it is highly
dependent on the non-renormalizable operator in the Yulsawtor to generate the
consistent masses for other charged fermions. To retairett@malizability along
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with the desired mass structure for the fermions, the madekiended by adding
45 dimensional Higgsl04. Obviously, the structure of mass matrices for charged
fermions remains same as in the case of type | seesaw simgiyibe the Yukawa
terms responsible for generating these masses are idetlimaever, the Yukawa
terms for generating the neutrino masses change as

Lvo =i (49),C (45) 15

which provides the Majorana mass for the neutrinos after iggs$ilacquires theev
asm, =< 15> through type Il seesaw mechanism.

Type I+11l seesaw realization in SU(5)GUT

This very interesting realization was first proposedlidg by demanding the exten-
sion of the fermionic sector of minim&U(5)[10q by a 24 dimensional fermionic
adjoint. Looking at the decomposition of the adjoint repreation6.2, it is straight
forward to identify (i) the SM fermionic singlet which canrse in type | seesaw
realization of neutrino masses and (i) the SM fermioniplét needed for type 1lI
seesaw realization. Since we are adding just one fermialjairda, we have only
one fermionic singlet and one triplet. Once ®lg(5) GUT is broken, one ends up
with the following Yukawa terms relevant for neutrino masse

Lyy = 6C (YilF + Y3 ) H(1,2,1) + 731Fc 1r + %3F03F :

where Ms and Mt represent the Majorana masses for the singlet and thettriple
fermion.

After the electroweak symmetry breaking, this leads tafeihg mass structure
of neutrinos

Yiyd viy]
(m\,)ij =\ <I\S/I—SS+I\T/I—TT> :
The above mass structure immediately leads to one massglessw. Although the
unification does not need the singlet fermion, it is very gessto the triplet one.
The detailed unification study predicts the mass scale ofriplet to be less than
one TeV which makes the model phenomenologically relevaritHC.

However, the consistent understanding of the charged éermiasses requires
higher dimensional operator in the Yukawa sector. Its nerabized version has been
studied in LO7] by adding a again 45 dimensional Higgs multiplet. Obvigusie
mass matrix structures of charged fermions again come dag game as in type |
and Il case.
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6.2 SQ(10) GUTs

One of the compelling feature &Q(10) GUT is that its 16-dimensional complex
representation alone is able to accommodate the quantureetegf freedom of all
the SM fermions.

WL(16) = QL(3,2,1/6)ouf (3,1,-2/3) @ df (3,1,1/3)
®l(1,2,-1/2)p el (1,1,1)
®Nf (1,1,0)

The first row represents the quarks, second row correspdhé teptons. A SM
singlet appearing in the third row is an additional fermidmetr can be interpreted
as the right-handed neutrino. S&(10) GUT predicts the right-handed neutrino
from the model itself rather than putting it by hand like imsmodels oSU(5)
GUT.

The similar prediction in left-right symmetric mod@&Z-96] is not just a matter
of coincidence but is a natural consequence of the factlledéftt-right gauge group
is a maximal subgroup of tHeQ(10).

Gsoop = SU(3)C X SU(Z)L X SU(Z)R x U (1)(B,|_) xD C Sq:LO) ,

whereD is a discrete symmetry usually called as left-right paritDeparity [10§
under which we have a symmetry transformation over the femsas ;i — ;.
While discussing the left-right symmetric model in the poess chapter, the left-
right parity, i.e. the D-parity, has been assumed to be ir#tad is broken only at
the time of spontaneous breaking of the left-right gaugeigroHowever, in the
SQ(10) GUT, it is possible to break the D-parity even before the-igfnt gauge
group is broken.

An another group, which can appear between the GUT scalehanleft-right
scale or the SM scale, is the well celebrated Pati-Salameggumup P4] where
the two groupsSU(3)c andU (1)g_) are unified to a bigger groupU(4). The
new gauge group treats lepton number as a quark with fouttr.céhis was the
first bold attempt to unify the quarks and the leptons by pgtthem in the same
multiplet.

Gyop = SU (4) X SU(Z)L X SU(Z)R xD C SO(lO) .

The decomposition of the 16-plet fermion representatiareunthis gauge group
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reads as

16 = (42,1)®(4,1,2)
16 = (42,1)® (4,1

Allthe SM left-handed fermions including the SM singlet denaccommodated
in the spinor representation 8f10) decomposed under Pati-Salam group as

Ui Ux U3 Ve uj uj u§ vg
Ve = — @ C dC¢ dC ot '
d d d3 e / dj d; d3 e/
The columns represent the color degrees of freedoB8IlUg#l) and the rows corre-
spond to quantum degrees of freedom of left-right gaugemr&imilarly, thel6
plet can incorporate all the SM right-handed fermions ideig SM singlet.
So far we have concentrated mainly around the fermion assghin the model
and have not said much about the gauge sector. The gaugeshosiomg to the

adjoint 45-dimensional 2nd rank antisymmetric repregentaof SQ(10) with the
decomposition unddbs»21 given as

Au(45) = Gyac(8,1,1;0) Wy (1,3,1;0) ©Wir(1,1,3;0) ©Byg 1)(1,1,1,0)

4 - 4
31,1 0)®(3,1,1;—=
2 — 2

The gauge bosons in the first row belong to the left-right rhaael should not
acquire masses at the scaleSgi(10) breaking if left-right scale is an intermediate
scale of the model . The gauge bosons belonging to the lastow® can mediate
the proton decay and should become heavy at the scale of gnéfightion to avoid
the fast proton decay like the caseSb(5) GUT.

6.2.1 Symmetry breaking pattern

The most encouraging argument in favorSi®(10) over SU(5) GUT is that it al-
lows several intermediate breaking steps before one figally down to SM. This
helps to achieve relatively natural unification unlike tlese inSU(5) where the
unification requires ad-hoc mass scale assignment to thesplponents of a given
Higgs representation without any justification. The presesf intermediate break-
ing scales provides new sources to the beta functions andsttaes can be easily
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| Intermediate gauge group | Symbolic Representation
| SU(4) x SU(2). x SU(2)rx D | Ga2mp |
| SU(4) x SU(2)L x SU(2)r | Gazz |
| SU(3)c x SU(2)L x SU(2)r x U(1) 1) x D | Gs221D |
| SU(3)ex SU2)L xSUR)rxU (D) | Gazo1 |
| SUB)cxSUR)L xU(DrxU(D)@_t) | Gao11 |
| SU(3)e x SU(2)L x U (L)y | Gaz |

Table 6.1: Different intermediate Gauge Groups

determined by using unification constraints.

A desired symmetry breaking chains $0(10) GUT with one or more inter-
mediate steps are realized by choosing suitable Higgs catibns. However, all
possible chains may not turn out to be consistent with th&tiexj experimental data
available.

Realization ofSQ(10) breaking to left-right group can take place in two ways.
One way is to use 210 dimensional Higgs which decomposesr Urate Salam
gauge group as

210 = (1,1,1)a(151,1)& (6,2,2) & (15,3,1)
©(15,1,3) ©(10,2,2) ©(10,2,2).

Giving vevtowards the singlet direction will lead to Pati-Salam gaggmup. How-
ever, the D-parity is not respected by the singlet and isdmak the GUT scale.
For further breaking, we have componéhb, 1,1) of 210 which has a singlet un-
der the left-right gauge group. So it can be givento further break the Pati-Salam
group to the left-right group but without D-parity. Howey&-parity is intact if
SQ(10) is directly broken to left-right gauge group by giving appriatevevto the
(15,1,1)210 component.

Another way to achiev&(Q(10) breaking to the left-right group is possible by
choosing a combination ¢4+ 45)-dimensional Higgs with the decomposition of
54 Higgs under Pati-Salam group as

54=(1,1,1)®(1,3,3)®(20,1,1) © (6,2,2).

Unlike the case of 210, breaking &Q(10) to Pati -Salam group using the 54-
dimensional Higgs does not break D-parity. However, 54 @ldoes not serve the
purpose of further breaking to the left-right group. So adi@gohal 45 dimen-
sional Higgs Field, which has a singlet direction under gfedight group 6.7), is
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needed along with 54 Higgs. This singlet direction also eespD-parity and can
be assigned gevto break the Pati-Salam group down to the left-right groughwi
D-parity intact .

The next stage of the breaking of the left-right group dowihi® SM group
requires additional Higgs multiplets. The new multipleds e some suitable com-
binations of Higgs with dimensions 10, 16, 120,12656%10). Some of the mul-
tiplets can help in both breaking the left-right group andagating masses for the
fermions. Now the breaking of SM can take place by giving actebweak scale
vevto the left-right bi-doublet present in sor8€(10) Higgs multiplets. This also
produces the usual Dirac masses for fermions.

Other than unification, the intermediate mass scales leadveral interesting
phenomenological consequences. For example the breakiiy-olL) gauge sym-
metry provides lepton-number violating sources which cardpce, on one hand,
Majorana masses to neutrind®] and lepton asymmetry in early universe, on the
other hand. Moreover, the breaking scale will also enable determine the scale
of light Majorana neutrinos and possible amount of leptomasetry that can be
created. The fermion mass relation is also affected by teaking pattern.

Among another consequences, one is prediction of osofidtetween neutron
and antineutron19]. A low scale breaking of B—L) can lead to a possibility
of practical experimental detection of such oscillatiom. ehd the discussion, we
would like to emphasize that with the knowledge of internagéeliscales and the
Higgs content of the model, one is able to decide the uniioasgcale and can pre-
dict the proton decay width in various channels. The coestst of the prediction
with the current bounds will be finally the true test of a gi&@10)model.

6.2.2 Yukawa sector and neutrino masses

Although the set of Higgs fields required for breaking ®@10) group can be
quite complicated, the Higgs fields that can appear in theaWaksector to address
the question of fermion masses is rather simple so far agmelizability of the
model is demanded. The Higgs bosons that can couple to thermags

16x 16=10+120+126. (6.8)

The Higgs fields needed to generate fermion masses will lealvelbng to one
or more of 10, 120 an@i26-dimensional Higgs d8(Q(10).

Ly = (Y10)i; W16BCT " W16 104 + (Y120); W16 BCr TPy, 6120,p,
+ (Yaze)i; WaaBCT T PIYIOT 6 T26,py500 (6.9)
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wherel® are the analogs of the Dirac gamma matrices¥6(10) andB is the
analog of the conjugate matrix for the spinorsS®10). Due to the properties
of the ' matrices, the Yukawa couplings corresponding to 10 26l Higgs are
symmetric under interchange of generation indicasd j while one belonging to
120 is antisymmetric.

Any one of the three Higgs field can produce fermion massesqyiang ap-
propriatevev. However the contribution may not be always sufficient erotg
account for the current data on fermion masses and mixing.ekample, let us
consider the possibility to generate the fermion masseskynd the real 10 di-
mensional Higgs field alone. The 10 dimensional field hastarilgiit bi-doublet
component which can provide Dirac masses to all the fermésnaell as help in
breaking the SM gauge group.

10921 (1,2,2,0) @ (3,1, 1,—%) @ (3,1, 1,%).

It is straightforward to argue that the Yukawa couplingsho$ t10 pelt Higgs
would be same for all the fermions (up/down quarks and nkcitv@ged leptons)
leading to a common mass matrix:

My =Myp =My =My =< 10> Yqo. (6.10)

Extrapolation of this mass matrix relations to weak-scaleat able to account
for the fermion data as it predicts the mass matrix strudiurep type quarks and
down type quarks to be same although different from the commass matrix
corresponding to neutral and charged leptons by a factdreét

Mu(Z) ~ My(Z) ~ 3Myp(Z) =~ 3M;.

The unrealistic degeneracy between the up and the down tyaeksjcan be
avoided by complexifying the real 10 plet Higgs. Howevergasiill can not
avoid relation between the mass matrices of up type quarkanttinosM(Z) =
3Myp(Z) which can be simply ruled out using the current upper bounthemeu-
trino masses. So, to accommodate the existing data on femmasses and mixing,
one needs to add some new Higgs fields relevant in the Yukastarse

Yukawa sector with 10+126 Higgs

This combination of the two Higgs fields was first proposedlivd as a predictive
scenario for generating the fermion masses. The deconposit additional126
Higgs under Pati-Salam gauge group come out to be
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126= (15,2,2) @ (10,1,3) @ (10,3,1) @ (6,1,1) .

Further decomposition of the above components at theitgit-symmetric scale
reveals that15, 2, 2)1,6 contains usual left-right bi-doublet. The another splij¢s
field (10,1, 3)126 contains a left-right triplet with quantum numbeik 1,3, —1)
which can be traced back to be the complex conjugate of thket§r(1,1,3,1)
(see expressiob.7) that we have taken while discussing the type I+l seesal rea
ization in the left-right symmetric model (subsectid.]) in the previous chapter.
Since the combination 126126 has to be present to providevto their neutral
components, analogs of both the fiefjg1,1,3, —1) and&r(1,1,3,1) are present
in the model.

This component has a SM singlet and can break the left-righigto SM
group. One may wonder about the left counter figldl,3,1,1) of &r(1,1,3,1)
in the model which can be easily identified in the decompasidif (10,3, 1)126 Un-
der the left-right gauge group. So the presence of both thmtax fields§; andér
with the same quantum numbers as in expresSi@makes the discussion same as
in the left-right model.

So the discussion about breaking mechanism of the left-ngidel to the SM
in the subsectiob.4.1can be safely borrowed to conclude that t8(§10) model
is able to provide light Majorana masses to left-handedriveag, heavy Majorana
masses to right-handed neutrinos along with usual Diracsesadue to left-right
bi-doublet present in both 10 ad@6 Higgs leading to type I+l seesaw realization.

However, thel 26 Higgs field is contributing to fermion masses in two wa@a.
one hand, it§15,2,2)126 component is contributing to Dirac masses to fermions
along with(1,2,2)10 Higgs component and on the other hand(i6, 1, 3)126 and
(10,3,1)126 component generate Majorana masses for neutrinos. As aqoeisce,
we expect an obvious relation between the Majorana massxmoéteutrinos and
the Dirac mass matrix contribution due to 126 Higgs field whiin addition to
what we have in a general left-right model duesto(10) GUT.

Mg = kuyY1o+K Y26,
My = kgYio+KkyYize,
My = kyY10— 3k, Y26,
Myp = kgYio—3KgYioe,
ML = uLYize,
MR = URY126, (6.11)
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wherek g =< 1,2,2 >lljéd andk' =< 1522 >%‘é . M g are the Majorana mass
matrix for left/right-handed neutrinos ang r are theve\s of theg g fields present
in 126 dimensional Higgs.

The Yukawa coupling with the complex conjugate of 10 dimenal complex
Higgs field has been prevented by imposing the Peccei-Qyimmtry to provide
a predictive framework. The low energy neutrino mass matrtke model can be
simply written as

m = M. —MypMzM]p.

The realistic model will require a suitable admixture oféyipand type Il seesaw
term to explain the mixing and masses of both charged andaidéetmions.

Yukawa sector with 120+126 Higgs

In this model, complex 10 dimensional Higgs field is replabgch complex 120
dimensional Higgs]10, 111]. Unlike the case of complex 10 Higgs, the 120 Higgs
has two left-right bi-doublet. However, due to presenc2d, there will not be any
major change in the above discussion as far as neutrino masseoncerned. The
model will again lead to the type I+l seesaw realization efitnino masses. The
only difference would be in the expressions of Dirac masgioes of the fermions
simply because the contribution due to 120 Higgs to Diracsmaatrices would be
antisymmetric under interchange of generation. This m#deatshere are only three
complex Yukawa couplings on top of Yukawa couplings coroesfing to126 Higgs
in the model. A two generation study of the model revealsatabspheric mixing
angle should be as far as possible from the maximal valiig[ The degeneracy or
hierarchy of the neutrino spectrum is controlled by thetreta

m—m5  cosPy
m+m  1—sinf20,3/2°

Yukawa sector with 10+(16+ 16) Higgs

In this class of models, the fermionic sectorSf(10) GUT is extended by adding
two or moreSQ(10) singlet fermions. The natural extension would be addition
of one singlet fermion per generation. The complex 10 Higdsproduce Dirac
masses as usual. However, the combinaﬁ'ﬂﬁm— E) instead of 126 would change
the whole discussion about neutrino masses.

Looking at the decomposition of the new Higgs fields undetrright gauge
group will make it obvious that it has all the ingredients ¢alize type Ill seesaw
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mechanism for generating light neutrino masses.

1 1
16 = Xt(l7 27 17 _é) G9>(R(:|-7 17 27 E)

1 = 1
3,21, < 3,12, —
@(7 ) 76>@( ) =y & 6)
— 1., 1
16 = XL(172717§)@XR(171727_§)
1 = 1
3,12, - 32,1, —
@(7 ) 76>@( )&y - 6) )

wherex /g correspond to the same left-right doublet fields, requicetreak the
left-right gauge group to the SM group, as while addressivegtype Il seesaw
scenario in subsectidh4.2in the previous chapter. We would like to postpone a
detailed study of this scenario to the chagdigihere we would slightly extend the

model to address the dark energy of the universe within gradwork ofSQ(10)
GUTs.
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Chapter 7
Standard cosmology

The subject of cosmology deals with the study of the varidwasps of the evolution
of our universe. Our present understanding of the univerdased on two basic
postulates. First, the universe is homogeneous and isotabarge scale and the
second, the evolution of the universe is governed by Ein'stgieneral relativity.
A model independent study based on these two postulateslsabat the universe
becomes more and more dense and hot as we go back in the pgstrednto that
of present universe.

Proper understanding of the evolution of the universe nagug from the par-
ticle content and their interactions at various phasesefithiverse. According to
our current knowledge of particle physics, we are able tcagxtiate back up to the
temperature corresponding to the electroweak scale. Hawkwther extrapolation
requires input from new physics and is highly model depehd&nce many of the
models beyond the SMs are out of reach of the colliders in #a@ future, cosmol-
ogy can serve as an indirect probe to test these models asitlerse is expected
to carry certain characteristic imprints of the new physwtdle it was undergoing
the hot and dense phase corresponding to the scale of thehysieg

The standard big-bang model of cosmology appears to prénditthe universe
started from a kind of singularity with infinite dense and hegion. However,
the conclusion can not be drawn without knowing the correetngqum theory of
gravity. The quantum effect of gravity can not be ignoredvabtihe temperature
corresponding to the Planck scale and due to this very reéiseary of evolution
of the universe before the time corresponding to Planckesisahot possible to
formulate. Hence the phenomenology of the universe can lyestudied below the
Planck scale.

73
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7.1 FRW cosmology

The universe based on the symmetry of homogeneity and soisavell described
by the Friedmann-Robertson-Walker (FRW) metric

r2

A2 A2
ds? = —dt® 4 a2(t) e

+r2(de? +sirfed¢?) | ,

wherea(t) is scale factor with cosmic time The coordinates, 8 and@ are known
as comoving coordinateK represents the spatial curvature of the universe.

The dynamics of the universe is decided by the time depemrdehthe scale
factor which can be determined once we input this metric théoEinstein’s equa-
tion

1

along with specifying the matter content of the universeratizrized by the en-
ergy momentum tensdf, and cosmological constat For a homogeneous and
isotropic fluid the energy momentum tensor can be written as

Ty’ = Diag(—p, p, p, p) , (7.2)

wherep andp are energy density and pressure density of the fluid resedctiThe
conservation of energy momentum tensor implies the folgyaontinuity relation

d(pa®) = —pd(a’). (7.3)

If we define equation of state gs= wp, wherew is time independent, the
energy density can be shown to vary according to the follgvaquation (using
relation7.3)

p=a 3L+, (7.4)

To determine the evolution of the scale factor with time, veedto input the
FRW metric and energy momentum tensor in the Einstein’steguavhich leads to
two expressions as follows

N

2_ (3)" _ 8mep A K

H _<a) = 3 t3T @ (79)
a 4G 7AN

whereH is the Hubble parameter or the expansion rate of the unizerd¥; rep-



Chapter 7. Standard cosmology 75

Description ‘ Radiation domlnatloj Matter Domlnatlon‘ DE Domlnatlon‘

|
e : | 0 | -1 |
| Eq. of state | p=1p | p=0 | p=—p |
| pDa—31+°) | pOa* | pOa3 | pOconst |
(ﬁw) H=2 H=2% H = const
p Ot3Ta altY/? alt?? al et

Table 7.1: Expansion dynamics of the universe

resents the spatial curvature of the universe. In subse6tih3of chapter6, we
used the notatioRl for 5-dimensionaBSU(5) Higgs, but we will be using it for rep-
resenting the expansion rate of the univetde( (—2)2) for rest of the discussion in
this thesis.

From the expression.5, it is obvious to notice that the cosmological constant
N\ can be treated as a energy component of the universe whicirmrenmiform and
constant its energy density without any effect of the exjmmef the universe. The
energy component is called as the dark energy (DE) in a marergksense. Using
the relation7.4, we can easily findo = —1 for such an energy component of the
universe which implies a fluid with negative pressure withagepn of state

P= —PDE,

whereppe is the energy density of the DE given@sgn) = /A/8TG.
Now we rewrite equatiofi.5as
Kr

Q(t) —1=Qm(t) + Qr(t) + Qpe(t) — 1= @an)?’ (7.7)

where Q(t) = p(t)/pc(t) with the critical energy densitp¢(t) = 3H(t)?/8nG.
MoreoverQum(t) (= pm/Pc), Qr(t) (= pr/Pc) andQpe(t) (= ppe/pc) correspond
to the ratio of energy density of matter, radiation and DEhdritical energy den-
sity of the universe, respectively.

As theH?a? remains positive, the value 6f determines the spatial geometry of
the universe

Q>1 orp>pc =K =+1 Closed (7.8)
Q=1 orp=pc =K = 0 Flat (7.9)
Q<1 orp<pc; =K ,=-1 OpenUniverse (7.10)

However, the current observation shows @8t = to), wherety represents the age
of the universe, to be very close to o[
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Q%=1.011(12),

which implies that our universe can be treated as flat. So Vlecamsider our
universe to be flat for the rest of the discussion.

Let Hp represents the current value of the Hubble’s parametetenrdsHg =
100hKms1Mpc~1, whereh is a dimensionless quantity. Then the scale factor
dependence of the Hubble parameter can be given as

—H3 Z Q% a-3(1+w) (7.11)

wherei = R, M, DE. The expansion of the universe is parametrized in termseof th
cosmological redshiftg in the light coming from remote astrophysical objects. It
is related to the scale factor as

%

a(t)’

whereag is the current value of the scale factor which is conventigriaken to be
one without loss of generality. Now the expressiohlfor Hubble’s constant can

1+z=

be rewritten in terms af as

H2=HZY Q% (1423w,

The observed luminosity distan¢dy ) of any astrophysical object at redshift
can be related to the present value of @feas

z dZ

dL - (l—I—Z) W

_ 1+Z / (7.12)
\/ZI 1—|—Z’ 1+W|)
Similarly the age of the univergé) can also be related to tif#'s as
o= [t / T dz
") T Jo @¥2HE@)

= dz : (7.13)

0(1+2) \/z, (1+2)3(+w)

These relations will be useful when we discuss the DE paet latdetail.
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7.2 Thermodynamics of the early universe

From the discussion of the previous section, we easilyzedhat the scale factor
a decreases as we go back towards the past of our universe. é&ssadguence,
the energy densities of matter and radiation are expectieeddome more and more
dense with relatively high temperature. So although theetiruniverse is out of
thermal equilibrium, the same can not be expected in thg eail/erse. In spite
of the expansion of the universe, all the particles in thdéyaamiverse remain in
the thermal equilibrium due to the their rapid interactiovith each other. Thus,
our universe expands like a gaseous fluid in thermal equihbwith a varying
temperaturel. The energy densityp), number densityn) and pressure of a
weakly interacting gas with temperatufeand internal degree of freedogare
given as

3
n = g/%f(p% (7.14)
3
p = g/%E(p)f(px (7.15)
dS 2
p = g/(ZTf))g%f(p), (7.16)

whereE? = |p|?+n? and f(p) is the phase space distribution function given as

f(p) = dEWT 11 (7.17)

1 —1 Bose- Einstein
+1 Fermi— Dirac

andp is the chemical potential.
To discuss about entropy, we write the second law of thermauafycs

TdS=dU+ pdV,

whereU can be written abl = pV = pa°. Now using the relatio.3, we can show

that is d q

4t = g; (P) +p 5 () =0,
I.e., the entropy remains conserved during the expansitreafniversed S=0. So
the evolution of the universe is an adiabatic process ancethst is also valid even
in those epochs where the equation of state changes, likeeiegoch of matter-
radiation transition.

Moreover, the rapid interactions between the particlebénetarly universe en-
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‘ ‘ Relativistic bosor* Relativisticfermion‘ Non-relativistic particles*

n| T 12T | g(F)Te e
%gT“ %%gT“ mn
P 3 | 3 | nT(<p) |
s|  %gT 9T (4 3)n

Table 7.2:p, n, p and entropy densitgfor different particles.

sure that the local thermal equilibrium was maintained myrinost of the early
history of the early universe. In this case, the entropy penaving volume(S) is
expected to remain constant and can be written as

S= (p_l_ﬂ)) a® = s& = constant (7.18)

wheres is the corresponding entropy density. A list of expressifwisn, p, p
ands are given in the tabl@.2for relativistic fermions, bosons and non-relativistic
particles.

From the tabler.2, it is clear that the number, energy and entropy density of a
non-relativistic particles decreases exponentially asnatfon of temperature. So
the contribution tg, p ands comes mainly from relativistic species. Ignoring the
contribution from Non-relativistic species, we can write

2

- —g,T?

p 30g )
_ 1
p = 39

218 3

ST a9

whereT represents temperature of the photamgT ) andg.s(T) represent the net
relativistic degrees of freedom for energy density andagytdensity, respectively,
and given as

T\* 7 T\"

9(T) = 9i (—) + 3 o] (—) :

bogjnsI T 8fer%onsI T

T\® 7 T\°

wm = 3o (341 5 o (T)
bogjnsI T 8fer%onsI T

Summation extends over all fermion and bosons with temperdi and internal
degree of freedorg;. The relation fop can be used to write the following behavior
of Hubble parametdf with respect to temperatufie using the equatioid.5
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TZ
H(T)=166\0.—, (7.19)
Mpi
where we have ignored curvature afvderm in the radiation dominated early uni-
verse.
Since the total entropy per comoving volume is constant, arewrite from

equation7.18

g.sT3a® = constant

which impliesa ~ T~1. The conservation o8 also implies the relatioa® 0 s~ 1
which can be used to define total number of particles of a gipeies in a comov-
ing volume like the Baryon number of the universe as
N —Ng
LGS

which is expected to remain constant so long as baryon nuwdeting processes
are occurring very slowly. Itis useful to note that the epyrdensity is proportional
to the number density of relativistic particles and hencelzarelated to the number
density of photonﬁny) ass= 1.80g.sny. Today, we have= 7.1n,. However, since
0:«s is a function of temperature in general, the relation shbaldaken with some
caution.

The time variation of the number density of a particular sgeim the expanding
universe is crudely described by following equation

%1 =—-3Hn+TIn,

whererl is the interaction rate of the partidle= n'av. Heren' is the number density
of the target particle analv is the cross section multiplied by relative velocity of the
particles. So the evolution of the number density of a giyegcses is determined
by its interaction raté as long as the interaction rafteis greater than expansion
rateH of the universe. However, if the expansion rate begins datimg over the
interaction rate, the evolution will be solely governedHbyand the species will go
out of equilibrium. From the expressian19for H (T), the condition for a species
going out of equilibrium turns out to be

2

M(T) < 1.66,/G; n;— (7.20)
Pl

This condition is very important for explaining the currdraryon asymmetry
of the universe that we will discuss later.
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7.3 Brief thermal history of the universe

To the best of our current understanding, we can extrapotatpresent knowledge
of the universe up to the Planck scale. Above the Planck stalguantum behavior
gravity starts dominating and it is not possible to speewatything above this scale
due to the lack of our knowledge of quantum theory of gravitgonsistent theory
of gravity can only answer whether universe started withgaldaing or the scenario
was completely different. So we begin our discussion froenRlanck scale.

The next important scale below the Planck scale is the GUIE s€uring the
grand unification phase transition, rearrangement of tleeiwa provided heavy
masses to many of its gauge bosons and Higgs bosons, outaf ally a few could
provide baryon or lepton-number violating processes. Tda/ particles soon de-
cayed into the lighter particles and their recreation dempgue to the lack of light
particles with sufficient energy below the grand unificatpirase transition. The
next important event is believed to took place around teatpes corresponding
to 10°~19GeV when the lepton-number violating interactions credgetbn asym-
metry in the early universe which was later converted to twargsymmetry. The
left-right symmetry breaking is also expected to be in theesapoch if it is at all
existing in nature at some high scale.

The next important phase transition that occurred was tbetrelveak phase
transition at around 300 GeV when three of four electrowealgg bosons became
massive leading to almost frozen weak interactions. At #meperature around
100 to 300 MeV, the phase transition associated with chyairsetry breaking
is expected to take place. During this epoch the strongbraating quarks were
confined to color singlet states like baryon and mesons.

After the electroweak phase transition, the hedVy and Z gauge bosons
started decaying and became decoupled because their uepovostarted decreas-
ing due to their weak inverse decay rate. The strength of weakactions turned
out to be very small since it became inversely proportioonahe square of the
masses of the three heavy gauge bosons. Since the neutrnosudral particles
and they interact with other particles only through the wea&ractions, their in-
teraction rate decreased rapidly. Finally, their intecactate became smaller than
the expansion rate of the universe at temperature around\1 avid they decou-
pled from the rest of the relativistic plasma. Below 1 MeV tamperature of the
decoupled neutrinoT, ) kept on scaling aa—*. This very weak cosmic neutrino
background (CNB) is one of the very robust predictions oftigebang cosmology,
although still waiting to be confirmed. The expected curm@ntribution of the
energy density of the the CNB to the total energy densit2% [
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Q% = (0.001-0.05).

With this contribution, the upper bound on sum of all threatnao masses has
been estimated ag12

m, < 0.67eV.
2

which is an independent upper bound on the mass scale ofjtitenkeutrinos other
than the beta decay bound.

The next important and established event in the thermadtyisif universe was
nucleosynthesis. The protons and neutrons, formed afted sgmmetry breaking,
got together and synthesized primordial light nuclei auatbl MeV temperature.
The predictions of nucleosynthesis about the amount ofymed light nuclei fit
very well with the observations. So the primordial nucledbgsis provides the
earliest test of the standard cosmology.

After the neutrino decoupling, the temperature of the usiwelropped below
the mass of the electron and all tBé pairs were annihilated with onlg— left
along with light nuclei and photons. Soon after, the eletwrand the light nuclei
specially protons paired to form neutral atoms and univeessame opaque to the
photons. The interaction of the photons wathand other nuclei became very small
and the radiation decoupled from matter. This radiatiomédosmic microwave
background radiation (CMBR) that we observe today. ThegmetemperaturéTp)
and number densityny) of the CMBR have been measured to B[

To = 27251)K.

ng = 4105cm 3.

Although the CMBR is almost isotropic and homogeneous, sttitay fluctua-
tions in its temperaturéfL?] in different directions. This anisotropy of the CMBR
temperature provides important information needed toarjthe large scale struc-
ture formation in the universe.

Before ending this chapter , we would like to mention abowt wery important
issues in connection to the current state of our universe fifs$t is that our universe
has recently entere@ < 0.67) into the phase of acceleration which needs the dom-
ination of an DE density over the matter energy density. éutih the cosmological
constant can address this issue, as we pointed out earls@om runs into severe
fine-tuning problem. We will discuss the related problemshie next chapter in
detail and will review some alternatives to attack the thebfgm from an entirely
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different angle.

The other important issue that need to be address is thentloaeyon asym-
metry of the universe. There is no prior reason to assumaittiaerse started with
such an asymmetry. So one need to find out some consistenamsghto create
this asymmetry in some early phase of the evolution of thearae which remains
up to now in spite of some washout effects. A very popular raadm of creating
baryon asymmetry of the present universe is by first credéiptpn asymmetry in
early universe. The mechanism is known as leptogenesiswigcwill discuss in
detail in chapte®.



Chapter 8
Dark energy

Dark energy (DE) is a component of energy of our with equatibstatew = —1
with negative constant pressure. It can appear in the mastrgkform of Einstein’s
equation through the cosmological constant term. It ddesihe evolution of the
scale factor as can be easily seen from the expression

Zz—?(p%—:%p)—i—%.
The first term in the right-hand side remains positive foiaadn and matter com-
ponents while the second term is positive. So in the abseihoesmological con-
stant, the expansion rate of the universe will decelerate,a > 0 anda’'< 0. If
we extrapolate back, it can be easily realized that univensst have started from
a= 0. We can assume this point of the universe as the startimgywdht = 0. The
age of the universe, denoted with will be then just estimated from this reference
point.

However, if there exist a cosmological constant, the se¢ernd can dominate
over the first term at some phase of the universe as the energyjtyl of both ra-
diation and matter keeps on decreasing with the expansitreafniverse. Conse-
guently the universe can switch from the decelerating pttaae accelerating phase
of its evolution. It is in fact the situation at present whénere are enough and
growing evidences that universe has entered into an aetielgphase, although,
recently.

8.1 Observational evidences

The first direct evidence of the current acceleration pha#ieecuniverse has come
from the study of the observed luminosity distance and réidshthe Type la su-
pernovae 21, 22]. Astrophysical studies have shown that the type la sup@&rno
can be treated as an ideal standard candle and their luntyigisiance(d, ) can be

83
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‘ h ‘ Qf\)/l ‘anryonic‘ Q%arkMatter‘ Q%E ‘ WpE(A) ‘
\ 0.73(3)\ 0.27(2)\ %0.0425‘ ~0.20 \ 0.73(3)\ -0.97(7)\

Table 8.1: The best fit values for cosmological parameters

estimated by measuring the apparent magnitude. Knowingdyoandz, one can
estimate the present values@yfs using the expressioni12

The first evidence came in 1998 from two groups Supernova Glogiy Project
(SCP) and Higle Supernova Team (HSST). Assuming a flat universe and DE in the
form of A, they found that about 70% of the total energy density of tlesgnt
universe is in the form of DE. In 2004 HSST13 found that the matter density
(visible and dark matter) of the present universe is

0 0.05

and showed that universe exhibits transition from decetergphase to acceleration
phase (at 99% confidence level) at redshift aromrd 0.67. It is important to
note that the current acceleration of the universe is fagbent phenomena if one
compares it on cosmological time scale.

Another independent evidence for the presence of DE corosstfie age anal-
ysis of the universe. The fact that the age of the univéigeshould be greater
than the age of the oldest stellar objetts observed leads towards the need for the
presence of DE. The study of some oldest stellar objecid, [L15 suggests that
the age of the universe should be grater thar- 12 Gyr. However, the estimated
value oftg using the equatioi.13 in the absence of DE, comes out to be quite low
to =8—10Gyr. If one includes the cosmological constant the theaieage of the
universe can be shown to increase. For the vaigs= 0.3 andQ3. = 0.7, the
age of the universe is easily estimated tade 13.1Gyr which is consistent with
the age of the oldest stellar object.

The DE dominated universe has also got independent supporitfbservations
related to CMBR from WMAP 23] and large scale structuring (LSS) from SDSS
[116-11§. In the figure8.1, the allowed region in th@Y, — Q%E(/\) plane by the
supernovae, CMBR and LSS data has been shown . It is obviatictimmon
overlapping regions of CMBR and LSS together are able to ourthe existence
of the DE without using the supernova data. However, the reigpa data helps
in constraining the parameter space when it is included. thidl three data sets
can be simultaneously explained only when one assumes DE thebdominant
component of energy of the present universe. Based on threatogical model
with A, we list the best fit values of the relevant cosmological pexigrs from
PDG [29] in table8.1
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Figure 8.1: The allowed regions mf\’,, — Q%E(A) plane from the observation from
CMBR, LSS and SN I4]].

8.2 Problem with cosmological constant

So far we realized that the DE induced by cosmological congéam in the Ein-
stein’s equation can solve the the puzzle of the curreni@et®n of the universe.
However, it is interesting to note thAt was not initially proposed to explain the
acceleration of the universe. Einstein introduced it in7L8lachieve an static uni-
verse. Later, Hubble’s observation related to the expansidhe universe made
Einstein to drop this term. Its importance was realized sagently to explain the
accelerating universe.

Although the DE model in form oA\ is able to satisfy all the astrophysical data,
it also leads to two very uncomfortable problems (1) finarigrproblem and (2)
cosmic coincidence problem.

8.2.1 Finetunning problem

The cosmological constant runs through severe fine-turmolgl@m when we try to
realize it from the stand point of particle physics. Fromtigée physics point of
view, the cosmological constant naturally arises as zeat poergy or vacuum en-
ergy density(pyvac). The observed energy density corresponding to the cosnealog
constant comes out to be

pr =10 4'GeV* ~ (10 3eV)*.

On the other hand the vacuum energy density arising fromeirt energy of
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a quantum field with magsis given as

© d3k
pvac:/o VK2 +nP. (8.1)

(2ry®

Obviously one gets infinite contribution to the vacuum egeatgnsity. However,
the theory may be considered to be valid up to some upperfadale sakmax
Then the relatio.1 gives finite energy density

Kimax

16"

Pvac >~

Now if we take the natural cutoff of the energy scale to be E{astale, we see
that thepyac comes out to be extremely large value compared to observed ga
pa by 123 order of magnitude.

107“GeV*  for kmax= 10'°GeV (Planck Scalg
1019GeV*  for kmax= 10°GeV (SUSY Breaking Scale

Pvac >~

However, if our nature possess supersymmetry (SUSY), ttedf@cale can be
brought down to the scale of SUSY breaking as the total daution above the
SUSY breaking scale is exactly canceled due to equal andstppmntribution of
fermions and their super partner bosons or vice-verse. Uilrertt data from par-
ticle physics indicates the SUSY scale to lie around TeVescdlnfortunately, the
corresponding estimates of the vacuum energy density is agach larger com-
pared to the observamh. So, to achieve the observed value of DE energy density,
one will have to rely on very severe fine-tuning between thedantributions from
two independent quantities, cosmological constant andeh@point energy, which
seems to be quite an unnatural scenario.

8.2.2 Cosmic Coincidence problem

The fact that universe has entered into the acceleratiosephery recently (after
z< 0.67) has led to what is referred as the cosmic coincidenceegmobln other
words, the problem can be phrased as why the DE componeng afniierse has
dominated now and why the order @f is of the same order €®,. So although
these two energy densities vary differently at differerdas, they are of the same
order of magnitude today.

The problem becomes even worse with cosmological modelshwhtludeA.
Since the DE due to cosmological constant remains congtemighout the evolu-
tion of the universe/\ needs to be properly tuned so that it dominates only today.
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For example, the ratios of DE density to the radiation dgratitPlanck time and
at the time of electroweak phase transition are many orderagfnitude less than
compared to the present ratio of DE density to matter deigsity)

oA 10712 (Planck Scalg

Pr 107>  (Electroweak Scale

So an huge fine-tuning of the initial condition is requiredewsure the ratio
pR/Pw ~ 1 today.

With the problems discussed above, cosmological constad dot seem to be
a natural candidate for DE to explain the accelerating use/eThis has led many
others to presume the cosmological constant to be zereadsif small, by some
unknown mechanism and to explain the presence of DE by dysamhisome light
scalar field. This scenario is known as time varying DE saen&or the rest of the
discussion we will be moving around the models with time wag\DE only.

8.3 Varying DE models

As the name suggests the time varying DE scenarios allowtiequat state to vary
with time with the constraint that only its current value igse to—1. A successful
cosmological model should admit (1) a radiation dominated €) followed by
a long matter dominated era and (3) the finally the preserdla@ted era. So a
dynamical DE should have the feature that it is sub-doméhdtging radiation and
matter dominated era and becomes dominant only today.

8.3.1 Quintessence models

The relatively old and popular models of time varying DE stémare through dy-
namics of a scalar field, known as quintessence mddé] [L2Q. In this model the
energy density of DE is attributed to the energy density dfiatgssence described
by an ordinary scalar fieldY), minimally coupled to gravity. Neglecting the spatial
curvature, one can obtain the energy density and pressosgtylef the scalar field
as

1.
po = ;Q+V(Q), (8.2)

po = @ -V(Q. 83)

The corresponding equation of motion and equation of satgigen as
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dv

Q+3HQ = ~do’ (8.4)
1*-Vv(Q
_ 2
Wo = :—ZL‘Z V( ) (8.5)

Since the potential of the scalar field determines the dycsuwi the scalar field,
there exists variety of quintessence models with differemgémological conse-
quence. Also, the equation of state@tan vary in the range-1 < wg < +1.

In the limit of vanishing kinetic energy @2 < V(Q), the equation of state ap-
proaches towardexy = —1, the value required for the current acceleration of the
universe. However, one would like to obtain a natural gusémce solution for
cosmological constant problem with the desired featureitltan explain the late
time acceleration of the universe starting from wide ranigeital conditions and
equation of states. However, the energy density of DE shibelgub-dominant in
the radiation and the matter dominated era specially dusiggoang nucleosyn-
thesis where its dominant contribution can substantigilyilghe nucleosynthesis
predictions. It is only recently that DE has started domntabver matter density.

In fact, there exist solutions where the DE density follotws background en-
ergy density of the universe. The solutions are known asngcablutions 21—
123 where the ratio of the energy density of iQ¢o the background energy density
(ps) becomes almost constant

Pa _ constant (8.6)

PB

This is possible when there exists what are called as fixediticat points
working as attractors for the corresponding scaling sohsi An simple exponen-
tial potential has fixed points corresponding to a scalirlgtem as well as a non-
scaling solution. The non-scaling solution can provide tahe acceleration of the
universe. The parameters of the potential are required tdpested such that the
scaling solutions correspond to the sub-dominant DE dedsiting radiation and
matter dominated era.

However, the system should exit from the initial scalingusioh to enter the
accelerated phase. This is possible with tracker fields evtitexr DE tracks some
component of matter so that DE exit the scaling solution tallfirenter the accel-
erating phase of the univers&4-26]. The tracking solutions are not the fixed point
solutions like in case of scaling solutions and so the endamsity of the tracker
field changes according to the background energy density.

In an another interesting scenario, the DE is made to trazktiergy density of
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CNB. This scenario is also interesting from the fact thaait oaturally avoid some
of the unwanted issues related to the previous case wheres BEowed to track
Dark matter or baryonic matter.

8.3.2 Neutrino models of DE

A very interesting coincidence which is worth noting thag #§tale of DEppg ~
(10-3eV)*is almost close as the scale of neutrino masses. Motivatibxdhs fact,
Fradon, Nelson and Weiner suggested a scenario where aedosygtem of CNB
and a scalar field behaves like DE/]. The coupling is introduced by assuming that
the mass of the neutrino, varies as a function of the scalar field, called acceleron
(A4).

However, the coupling betweemand the neutrinos appears only when the neu-
trinos in the CNB become non-relativistic. The equationagaing the evolution of
the neutrino energy densipy, and scalar fielda can be obtained as

dinm, -

pv+3H(py+py) = qa A(py—3py) ,
. - d\Vf dinm,
28V0 2 _
A+2HA+a i a7 (pv—3pv) , (8.7)

whereV is the potential of the acceleron field. As the relatmn= 3py is satisfied
for the relativistic neutrinos, the right hand side of thewadtwo expressions van-
ishes leading to the fact that the relativistic neutrinod @ne acceleron field evolve
independent of each other. Only when the neutrinos becomeeiativistic, the
two components begin affecting the evolution of each other.

For the non-relativistic CNB the energy density will be givasp, = myn,
with pressure equals to zero. When the neutrinos becomeatativistic, effective
potential /) of the combined system of neutrinos ad@dvill be written as

V(my) = myny +Vo(m,),

where bothV andVp has been expressed as functiomyfinstead of4 for conve-
nience. Itis always possible to do so as the neutrino masglasdelated by some
functional form. Even iV does not have any minimum, the first term induces
an instantaneous minimum for the effective potentiadnd the acceleron field
relaxes at this minima satisfying the condition

V' (my) = ny+Vg(my) =0, (8.8)

whereV’ (m,) denotes derivative of the effective potentiaiv.r.t. my.
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However, the minima is not fixed but evolves slowly with thenher density
ny of CNB. The minima shifts towards the larger valuesmfasn, dilutes. So the
neutrino mass is decided by the competition between thedmos in the effective
potential. Neglecting the kinetic energy of the accelerelufithe equation of state
of the combined\{+ 4) system can be written as

Pressure  pg
Density pg+py

-V
_ 702_1+manv
Vo +myny \
V/
_1_m = _1+&_
\% Qv+Qﬂ

The observed late time value af ~ —1 implies that the energy density of the
CNB is a small fraction of the total energy density. This esponds to condition,
V4(m,) < V(m,) which can be achieved by choosing a flat potentialdasr rather
steep dependence of, on 4. With this condition, the combined (+ 4) system
behaves like DE with equation of state= —1 and causes the desired acceleration
of the universe. Since the neutrinos in CNB are expecteddorhe non-relativistic
now, the question of why DE dominated today gets a naturav@ns the mass
varying neutrino scenario.

Now we shall discuss the neutrino mass varying model in sfra@lone gen-
eration type | seesaw scenario. Since the right-handedineus the SM gauge
singlet, it can be allowed to vary as a functionfThe mass of light neutrinos are
given by the famous seesaw formula

Mo
Mg ()
Let us take the following flat potential for the model

m () =

Vo(4) = A*log[l+Mr(A)/H, (8.9)

where it is assumed thitr(4) /> 1 as the right-handed neutrino Majorana mass
scale is very highA\ is chosen to be equal to the characteristic energy scale pf DE
i.e.,\ ~ 10~3eV. We rewriting the above equation in termsnaf using the seesaw
formula as

Vo (m,) = A*log (%) ,

wheremy = M2, /L. Using equatior8.8, we getn, = A*/m, which implies a con-
stant energy density for non-relativistic CNB:
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m,n, = A%,

Hence the equation of sate can be simply written as

myny
\

()

which is almost equal te-1 as the second term vanishes because the scalgof
much smaller than the scalemw§. So the coupled+ ) system behaves like DE.

In the type | seesaw scenario, it is possible to vary the Silsimight-handed
neutrino with the acceleron field. However it is not posstblelo the same if this
right-handed neutrino emerges from left-right symmetriedel or GUT models.
The right-handed neutrino comes with right-handed chatgptbns in left-right
symmetric model and with other SM fermions in GUT models andransforms
non-trivially under the related gauge group. In chagterwe will try to construct
a left-right symmetric model for neutrino DE and try to emlieth SO(10) GUT
scenario.

0w = -1+



Chapter 9

Baryon asymmetry through lepton
asymmetry

To best of our understanding, the everything all around abk 88 earth, moon, our
solar system, galaxies and clusters, is made up of matt&acinour own existence
is because we live in a universe where the matter dominatsamtimatter. This

most challenging problem of cosmology can only be propediyressed when we
use our knowledge of particle physics.

But one may ask why we are not taking the baryon asymmetry asitsad
condition the universe started with. The first argument & there is no reason to
assume that universe would have started with an asymmetinginumber density
of a particle with a given quantum number and its antipaticThe second argu-
ment comes from the fact that the observed asymmetry is areeypysmall number.
In a volume containing T8 photons, we get around 6 matter particles in excess
to the antimatter particles. One will have to accept a venyatral fine-tuning of
the initial condition of the very early universe to explaimst current number. So
one assumes this initial value to be zero and try to invokeesparticle physics
mechanism to explain the puzzle.

The baryon asymmetry of the universe can be defined and estnma two
equivalent ways, first in terms of entropy density and th@sdadn terms of photon
number density as follows

e = nB;ngz%:(G.ﬂilQ)xlO_lO 9.1)
Y A
Yo = nB;nB_:(8.61i0.26)><10’11. 9.2)

The numbers have been taken frof®]] From the relation between current
entropy density and the photon density= s/7.1, as pointed out in the chapter of

92
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Figure 9.1: Dependence of CMBR anisotropyrn

standard cosmology, we can easily relate the above twovalsg = ng/7.1.

The observed values of the current baryon asymmetry hasigpost from two
independent sources. First one comes from big bang nucldessis. The predicted
primordial abundances of light nuclei, lik& *He, *He and’Li , are very sensitive
to the amount of baryon matter present at the time of nuctgbsgis. In fact, this
baryon asymmetry has to be generated before the nucleesysih order to have
the successful synthesis of the observed light nuclei irecoamount. One obtains
the following range of)g, although small but non-zero, which is consistent with all
the four abundance&9)

47x10 0 <ng<6.5x10 1% (95%).

The other independent support comes from the study of twot poirrelation
function of the anisotropy observed in the temperature oB&VIThe small tem-
perature anisotropies are usually analyzed by decomptségignal, coming from
a direction characterized by angkeandg, into spherical harmonid®j,) as

zaImYI m

wherea's are the expansion coefficients. The study of anisotrophénCMBR
temperature can be translated to the study of CMBR anguiaepspectrum given
asC =< |a|m|2 >. As the position and relative height of the acoustic peakb®f
CMBR anisotropy spectrum are sensitiveQdg, a fit of the power spectrum helps
to extract the value of parameter corresponding to the lpatiyphoton ratio along
with other parameters. The figueel (figure taken from 3]) shows the variation of

ATG(p
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the CMBR power spectrum fitting whets is taken to be up to 50% more and less
of the central value for best fit. A fit to recent WMAP 5 year daliang with Type

la supernova and SDSS data provides the following valueheratio of baryon
energy density to the total energy density of the univer§é B3

Qgh? = 0.02267" 509025

However, we will be using the value from PDG given in expres$.1or 9.2
for future discussion.

9.1 Baryogenesis

With the clear evidence of presence of baryon asymmetnyedtrtie of big bang nu-
cleosynthesis, we now turn to look for some mechanism faatorg baryon asym-
metry in the early universe. The mechanism is known as baryegjs. To generate
a small baryon asymmetry starting from baryon symmetrizensie, one need to
satisfy three conditions given by Sakharov in 196Z4].

9.1.1 Sakharov’s conditions
Baryon number violation

The presence of baryon number violating interactions ig fiest condition for gen-
erating baryon asymmetry from the baryon symmetric unezetlsbaryon number
(B) is conserved the interaction that generate a baryon &atateB = 0 will also
generate an antibaryon leading to vanishing net baryon sun@ince we have as-
sumed that the universe is neutral to any conserved chagartawith, this would
imply that the number density of the particles with nonzesmoybn number would
be same as the number density of the antiparticles.

C and CP violation

Now we assume that the first condition for baryon number timtais satisfied.
Then Sakharov’s second condition demands both C and CP tola¢ed also. Let
a initial statei goes to final stat¢ where baryon number is violated. Suppose C is
conserved in the process- |, then we can immediately conclude that the number
of left-handed particles with nonzero baryon number willgenerated in equal
amount to the number of corresponding left-handed antgbest So C violation is
necessary condition to see a net baryon number violation.

Now suppose if C is violated but CP is conserved, then the eurobleft-
handed particles generated will be compensated by the saméean of right-
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handed antiparticles generated. Same will be true with-figinded particles with
nonzero baryon number and corresponding left-handedatitjes. However, if
both C and CP are violated we expect asymmetry in the numbmarttles and the
antiparticles created.

Departure from thermal equilibrium

Since particle and antiparticle has opposite baryon nunioisrodd under C trans-
formation but even under parity (P) and time reversal (Tydfarmations. So B is
odd under CPT transformation. The thermal expectationevafithe baryon num-
ber< B >t is written as

Tr [Be*BH]
<B>= —— =
Tr [e*BH]

whereH is Hamiltonian of the system arfii= 1/T.
Since the Hamiltoniail commute with CPT, we can show that the expectation
value of the baryon number in thermal equilibrium comes oulgd zero as

Tr [B e*B'ﬂ Tr [CPT CPTflse*Bﬂ
<B>71 = =

Tr [e—BF'} Tr [e—BF']

Tr [CPT*BCPT gBH] Tr [B e*ﬁﬂ
- Tr [e*B'j'} o Tr [efﬁ'ﬂ
= —<B>1.

Thus an averaged baryon asymmetry vanishes in thermalilmquih. So depar-
ture from thermal equilibrium is also required to achievg aan-trivial amount of
baryon asymmetry. This is the third Sakharov’s condition.

9.1.2 Connecting baryon and lepton asymmetry

As the baryon number violation is a necessary condition &ydgenesis, let us
discuss the baryon-numbeB)(and lepton-numberl] violation in the SM itself.
In SM, both baryon number and lepton number are accidenbdladlsymmetries
at classical level, i.e., it is not possible to violate thegemetries at tree-level.
However, quantum corrections violate them leading to dldband L anomaly
[125 126. In other words the current associated wiglandL do not vanish after
including the quantum corrections. Further analysis shibvas althoughB andL
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are anomalous individually, a combinati@+ L is anomaly free. However, the
other linearly independent combinatiBnt L still remains anomalous.

The B+ L violation basically arises due to the vacuum structure efNlon-
Abelian nature of the gauge theory of SM. In a non-Abelianggatheory there
are infinitely many degenerate ground states, which areacteized by so-called
Chern-Simon number a&Ngs= +1, £2, ..., separated by a potential barrier whose
height is given by what is called as sphaleron energy. Fothiee generation of
fermions, the vacuum to vacuum transition can lead to tHevi@hg changes ifB
andL in termsNgs

AB: AL — BANCS
= 4£3n,

where n is an positive integer. However, in classical apipmakion, such vacuum
to vacuum tunneling in SM comes out to be exponentially segged O (10-15%))
and extremely smalll25 129 .

The situation changes drastically when one studies the pasreomena in ther-
mal bath. In 1985, Kuzmin, Rubakov and Shaposhnikd@#] pointed out that it is
possible to make transition from one vacuum to other by théflactuation over
the barrier in the thermal bath of early universe. When teatpee is larger than
the height of the barrier , the sphaleron medigBedL violating interactions can
become so strong that they are in equilibrium in the expandmverse. In fact, it
can be shown that sphalerons are in equilibrium for the rahtgmperature starting
from 107 GeV to 102 GeV.

As theB + L violating interactions are in equilibrium along with othaterac-
tions above the temperature corresponding to the elecopiease transition, one
would expect some relation between the baryon asymmetrieaioh asymmetry if
they are nonzero. If the asymmetry in number density of agpagticle(n;) and its
antiparticle(n;) is very small compared to the total number density, the asgtrym
is related to the chemical potentigk) of the particle as

_ gT3 /1
A ()
At high temperature, quarks, leptons and Higgs not onlyratteby gauge and
Yukawa couplings but also by sphaleron processes in addifi these processes
in equilibrium put various constraints on the chemical pate of different particles
and so this can lead towards some relation in the chemicahfiats. Since th&
and L are function of their chemical potentials, we expect soniaticen among
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them in the thermal bath . In fact a detail analysis of the dhahpotentials 128,
129 provides us the following relation between B and L, abowes&bweak phase
transition, for three generation scenario:

B = p(B-L)
L = (p—1)(B-L) (9.3)
B+L = (2p—1)(B—L), (9.4)

wherep = (244 4Ny ) / (664 13Ny ) and Ny is number of Higgs bi-doublets. It
is important to notice that any nonzero value ByrL or B+ L generated by any
mechanism can not survive unld3s- L is also generated. So any such asymmetry
in B+ L will be washed out before electroweak phase transitiondorshingB — L.

9.1.3 Mechanism for baryogenesis

Keeping Sakharov’s condition in mind, we now discuss th&wihg three inter-
esting mechanism for baryogenesis.

Electroweak baryogenesis

This mechanism is very interesting from the fact that it do@tsrequire completely
unknown and new physics beyond SM but tries to answer theobhaagymmetry
using our knowledge of SM1B0, 131]. The first Sakharov condition for baryon
number violation is easily satisfied as baryon number is ooserved at quantum
level. Considering the second condition, C violation ist@eixplicit in SM. More-
over CP violation is also established in the quark secttinoagh the amount of
violation is rather small. The last condition regarding aepre from thermal equi-
librium can be provided by strong first order electroweaksghaansition.

However, the phase transition for SM is not very strong arehdte CP vio-
lation in SM is not enough to create baryon asymmetry of cbraenount. Thus
a viable model of electroweak baryogenesis need a modditati the Higgs sec-
tor such that nature of phase transition changes and newesoaf CP violation is
generated. In one of the extension of SM where two Higgs daane present, one
get more parameter in the Higgs potential which can provile sources for CP
violation [132. However, the predictability of electroweak baryogesasi such
extension of SM is lost.
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GUT baryogenesis

The GUT baryogenesis was the first natural implementaticBatdharov’s condi-
tions to create baryon asymmetrd33-135. The B violation are very natural in
GUT scenario as quarks and leptons share quantum numberstifeosame multi-
plet. Since the fermions belongs to the chiral represemtat is maximally vio-

lated. Furthermore, sufficient amount of CP violation camnoerporated in GUT

as there exists many complex phases in the couplings of He@sgns, whose de-
cay violates baryon number. Moreover, departure from thémquilibrium can

also be easily satisfied as the expansion rate of the unigétbee unification scale
was sufficiently high compared to the decay rate of heavym®tmbaryon number
violating states.

Although GUT baryogenesis appeared to be quite a naturahsoe it soon ran
into washout problems. I8U(5) GUT both B and L are violated but the combi-
nation B-L remains conserved globally. EvenS@(10) GUT, B-L is the part of
the gauge group and is broken at some intermediate scaleargorbnumber vio-
lation at GUT scale in both the GUT scenarios conserves Bdt.vige saw in the
previous section that any baryon asymmetry will be washedeiore electroweak
phase transition unless B-L is nonzero. So the GUT scaleolgenesis in the B-L
conserving scenario is not possible to explain the currantdn asymmetry of the
universe [27. However, breaking of the B-L gauge symmetry$@(10) GUT
at some intermediate scale can provide lepton asymmetiverse which can be
later converted to baryon asymmetry. This mechanism is knasvbaryogenesis
via leptogenesis and can be a pars@i(10) GUT framework. However, this mech-
anism does not need to be a partS®10) GUT in general as it can also work
independently in some rather simple extensions of SM.

Baryogenesis via leptogenesis

This is the most popular mechanism at present to generay@rbasymmetry
by first creating lepton asymmetry. The mechanism, proptseBukugita and
Yanagida in 198648], has got enough scientific attention due to its simplicliye
lepton asymmetry can be created by introducing some Leptomber violating
source term at some appropriate high scale. This is in facsitlnation in seesaw
framework [L8-20] where a lepton-number violating term is introduced explic
to suppress the low energy neutrino masses naturally.

So seesaw mechanism not only provides very tiny masses tomeubut also
promises to create lepton asymmetry in early universe. THmn asymmetry
is partially converted to baryon asymmetry due to sphalgmcess before elec-
troweak phase transition leading to the current baryon asgtmc universe. The
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baryon asymmetry can be estimated in terms of the lepton mgym using rela-

tion9.3as
o p
B= (—p 1) L. (9.5)

Although leptogenesis is possible in all the seesaw saasasie will only dis-
cuss the details of leptogenesis mechanism in type | seesaw.

9.2 Leptogenesis

Leptogenesis is a simple and elegant mechanism to geneptslasymmetry in
the early universe before electroweak phase transitionyde | seesaw scenario,
the lepton asymmetry is created by out of equilibrium dechiieavy Majorana
neutrinos to leptons and antileptons in different amo@s} [ The first Sakharov
condition is easily satisfied due to presence of Majoranasrtexsn of the right-
handed neutrinos which violates lepton number by two udigg]][ C violation is
also maximal as in the SM. CP violation can also be incorgarhayy assuming unre-
movable phases present in the complex Yukawa couplingglof-handed neutrinos
with lepton doublets and Higgs doublet.

Let us write the part of the Lagrangian again relevant fotdgpnesis from
sectionl10.1

17 D —_—
L= <§(NRG)C('V'R>aBNRB+€ucp(Yz>ijeRj+€u<p(Yv>iaNRa+H.C.),(9.6)

where the symbols represent the similar thing as in the@et@.1 In a mass basis
where the right-handed neutrinos are real and diagonal tgerha neutrinos are
defined ad\; = %(Nmi NS;) with massed/;’s.

Due to the presence of CP violation in the model, the Majottzeavy right-
handed neutrind\|; decays into lepton+Higgs and antilepton+antiHiggs inedtéht
proportions. In the mass basis of right-handed neutritesCP asymmetry factor
is defined as _ —

- i (Ni — £) — T (N; —>£(p)7 0.7)
Ci (Ni — £@) + T (Nj — (o)
whererl’; is the decay rate of;. The denominator of the right-hand side of the

above expression is the average decay rate dftlggven as

1oyt 1 oyt

wherev is thevevof SM Higgse after electroweak symmetry breaking avidp is
the usual Dirac mass matrix for neutrinos.
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N] N]

Figure 9.2: The tree-level and vertex decay diagra®ps [

In a special case of normal mass hierarchly < My 3) in the right-handed
neutrino sector the lepton asymmetry created by decdyp efis wiped out due to
presence oN; and final lepton asymmetry is created only due to the decalyeof t
lightest right-handed neutrindl;.

Now let us define the lepton asymme¥tfysimilar to the baryon asymmetry as

v =
S
While Nz is in thermal equilibrium with the background particl&s remains zero.
As temperature of the universe drops below the mass dfithi starts to decouple
and then to decay generating lepton asymmetry. If the dujwifn number density
per comoving volume oz is YN0 before out of equilibrium decay, the final lepton
asymmetry, in crude sense, after the complete decay ofghemanded neutrinos
would be given as
Y. = ElYl\?d, (9.9)

whered is the dilution factor or efficiency factor which arises doetlie competi-
tions between decay rafg and expansion rate of the univetdeat T ~ M.

The equilibrium number density,\? before the decay is of order of 18 and
dilution factord ~ 0.1. For SM, théeYg is related toy, as

Ys = —0.55Y
= —0.55e1Y4d. (9.10)

Using the observed value % as given in expressiah2, above relation correspond
to the following required value faa

€1 >10°-10".

We will use the typical value fag to be 10°° for some of our analysis. However, it
is worth discussing CP violation in some detail.
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Figure 9.3: The tree-level and self-energy decay diagr&ins [

9.2.1 CP asymmetry

There are two independent sources of CP violation in theydpoacess of heavy
right-handed neutrinos in type | seesaw scenario. The fiistarises from the
interference of tree-level and vertex diagram as shownurdig9.2. This decay type
source for CP violation was used for thermal leptogenestiéninitial literature
[28, 73, 75, 136, 137]. The corresponding asymmetry factor can be calculated as

[139
2
e, 2 (091 G)

f(x)= \/ill—(ler)ln <1%()} :

The another source of CP violationd, 77] comes from the interference of tree-
level decay diagram of right-handed neutrinos with setrgy diagram as shown
in figure 9.3, The two heavy neutrinos in the self-energy diagram belontyvb
different generations and so CP violation is essentialiyiog from the Majorana
mass matrix of right-handed neutrino&s[ 77, 139-142. This oscillation type
source of CP violation was first studied irg] 77] to generate the lepton asymmetry

where

The corresponding asymmetry factor can be estimated as
2 M2
o= ity )7 o).
" <Y" Y") i “ M

g(X)=£(~

For the comparison between the two sources of CP violatiojusteake only

where

two heavy right-handed neutrinos. The only uncommon facimthe expression
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Figure 9.4: The comparison 6{x) andg(x) as a function ok = (My/M1)?

of CP parameter due to the two sources are the functiof and g(x), where
x = (M2/M1)?. So we plot the two functions ofin figure 9.4 to compare the CP
asymmetry factors from the two sources. When the mass e dwo heavy neu-
trinos is large the two CP asymmetry factors are comparadhbdeever, for almost
degenerate heavy neutrinos, the self-energy contribtitime CP violation is very
large leading to the resonance effect. Consequently theainoblepton asymmetry
generated through the self-energy diagram can be manysoofleragnitude larger
than the asymmetry generated trough the vertex diagrams.\ildy of resonant pro-
duction of lepton asymmetry is called as resonant leptagjeifiés, 77, 139-147.

Now the total CP asymmetry will be determined by the sum of8Reasymme-
try coming from the two independent sources.

For the hierarchical structure of right-handed neutrineses ,i.e. foM; <<
M23 , the only relevant total asymmetry factords (not all &’s) which can be
approximated as

3 1 -r 2 Ml
g1 = ——7Z|m {(Y\,Y\,) } ey (9.11)
161 (YVTYV> 1k Mk
11
This expression will be used in the next chapter where weidengype | seesaw

scenario with two right-handed neutrinos with hierarchioass structure.

9.2.2 Basic leptogenesis mechanism

In this subsection, we will study the basic mechanism ofdgphesis. The time
evolution of the number density per comoving volufeof the lightest heavy Ma-
jorana neutrino and the corresponding lepton asymm¢tryenerated in the ex-
panding universe are determined by solving full set of Boldimn equations. The
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main processes that can affect ¥pan the thermal bath include
1. Decay ofN;
N1 —=/+¢@ Ni—l{+0.

2. Inverse decay dfl;
{+@— N [+(E—>N1.
3. Higgs mediated 2-2 scatterifg\L = 1)

Ni/——1tQ , Nif——tQ (s—channe
Nit — ¢Q , Nit«—¢Q (t—channe)
NiQ+«— /¢t , NyQ—— ¢t (u—channe).

4. N mediated 2-2 scattering\L = 2)

(@ l@ | (sandt-channe)
00— @@ , (0 — @ (tandu— channe) .

Now just to illustrate a simple mechanism of leptogeneseswilt only consider
the processes involving decay and inverse decay. The dhesiméribution of the
s-channel oN; mediated 2- 2 scattering has also been included for consistency.
We shall see that the decay and the inverse decay togethalare describe qual-
itatively many features of the full solution. The final Batiann equation governing
the evolution ofYy andY, takes the following form

d\:;lf) = —D@) () -W12), (9.12)
d\:; iz) = &D(2) (W2 = Y$%2) —Wib(2) YL(2), (9.13)

where we have definerl= M1/T . In this chapter, we will use the notatiafor
this definition only instead of earlier definition for the siift used in the chaptér

YNeq is the equilibrium number density per comoving voluméNefand is given
as
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Figure 9.5: Evolution o¥y andY_ for the thermal initial abundance bk

Ny (3;([:23) M%TKZ(Ml/TD

Y o= M=
s (% 9.57%)
45 (@)
T 2rg. 4 Z%e(2)

where X (2) is the modified Bessel function of the second kiz) accounts for
strength of decay and inverse decay processes and is given as

%i(2)
%(2)’

D(z) = zK

where parameteK is a measure of how fast the decay rate is in comparison with
the expansion rate of the universe at temperatuteM;

_ b,
K = H (M) (9.14)

TheWp term determines the washout amount of the lepton asymmietayed
due to the decay dfi;



Chapter 9. Baryon asymmetry through lepton asymmetry 105

YN/ YL

0.001
10-5 K =0.01
107
10°°

lo—ll

4

0.01 0.1 1 10 100

Figure 9.6: Evolution o¥y and|Y_| for the zero initial abundance df;

1Yg 1
Wip(2) = 2 D(2) = ;2K %(2) . (9.15)

Now let us discuss the numerical solution of the set of eqna.12and9.13
with two kinds of typical initial conditions

1. Thermal initial abundance &, i.e., atz< 1, Yy = Yy "andY, =0,

2. Zero initial abundance &y, i.e., atz< 1, Yy = 0 andY, = 0.

The numerical solution for the thermal initial abundanc&lpis shown in fig-
ure 9.5 for different values of parametd¢. The black curve correspond to the
equilibrium value ofYy. TheYy evolution (solid curve) goes far away from the
equilibrium as we choose smaller values Kar This is obviously expected as the
decay ofN; corresponding to the one with relatively smaller ratio ofalerate to
expansion rate is more likely to run into out of equilibriufrthe lepton asymmetry
Y. (dashed curve) is simultaneously generated as the out ditegum decay ofN;
takes place. It is straight forward to observe that the fisghametry comes out to
be same for all the values taken #r It is only true for small values df. For large
values ofK, the final asymmetry will be moderately washed out simplyaloseN;
will remain in thermal equilibrium for longer time even atrtperature far below
|\/|1.

In the case of zero initial abundance Nf, Yy is first generated from zero
through the inverse decay and scattering until it reachegduilibrium value. Af-
terward, it again starts decaying in out of equilibrium whemperature drops below
its mass. The numerical solution corresponding to evahudidothYy (solid curve)
and|Y_| (dashed curve) have been shown in figlu@ If K > 1, both inverse decay

and decay are strong and so thermalization is fastYqnakchieves its equilibrium



Chapter 9. Baryon asymmetry through lepton asymmetry 106

value sooner at high temperature. Howevel K 1, Yy attains its state of thermal
equilibrium late at relatively lower temperature and solatheely smaller number
density ofN; per comoving volume is generated before it decays. Consdguthe
generated lepton asymmetry due to out of equilibrium deddy;as also lowered
due to smaller abundance achieved\yy

The interesting feature with the second initial conditisrthat lepton asym-
metry Y, starts generating even beforg achieves its equilibrium value. Simple
reason is that the CP violating effects are also preseneimtrerse decay process
of leptons, i.e., in the creation df. consequently, a lepton asymmetry is created in
the direction opposite to the one created due the declly.oDnceYy achieves its
equilibrium value, further creation of in opposite direction stops and then washed
out when subsequent out of equilibrium decayNefstarts taking place. However,
lepton asymmetry created by decay can overcome the onedrepinverse decay
with some final net lepton asymmetry after cancellation. NawK > 1, the decay
of Ny is fast andyy remains close to the equilibrium value while #r< 1, decay
is far out of equilibrium which is similar to the behavior asthe case of thermal
initial abundancy.

9.2.3 Lower bound onM¢

The lower bound orM; for sufficient leptogenesis comes from Davidson-lbarra
bound one1| [143. For a hierarchical structure of heavy Majorana neutrirasses
and normal hierarchy for light neutrinos, the bound is gigen

< 3 Ml(m3—m1)
~ 161 V2

Using relatior9.10 one can convert the the upper bound&nto the lower bound
onM; as follows

|€1]

Vv

Y 16mv2 ( Ys )(1)
L +
3,/Amg, \055YY/ \d

8.61x 10711 1
> 2.06x 106 =) Gev
% 206x10 <0.55>< 3.9><1cr3> (d)Ge

> 8.25x 10°GeV <%) .

As the dilution or efficiency factor can be utmost of orderte bound orvi;
can be approximately given as

M1 > 10°GeV.
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So the above bound should be satisfied in order to generdteiesotf amount of
baryon asymmetry in our universe. The bound remains santédanverted hier-
archical structure of light neutrino masses.



Chapter 10

Connecting leptogenesis to low
energy CP violation

The goal of the present neutrino oscillation experiment® idetermine the nine
degrees of freedom in the low energy neutrino mass matrigy Bine parametrized
by three masses, three mixing angles and three CP violaliaggs out of which
two are Majorana and one is Dirac. At present the neutrindlatgoen experiments
able to measure the two mass square differences, the sdlin@atmospheric, and
three mixing angles with varying degrees of precision, @/thlere is no information
about the phases.

In the present chapter we limit ourselves to the case of tygeesaw models.
Although we call them right-handed neutrinos, in the exi@msof the SM they are
just singlet fermions that transform trivially under the $duge group. So, there
is no apparent reasons for the number of heavy singlet nestto be same as the
number of left-handed neutrinos. So, for the main part ofdiscussions we restrict
ourselves to only two right-handed neutrinos. These resuilt also be true when
there are three right-handed neutrinos, but the third 4ingimded neutrino do not
mix with the other two neutrinos. We start with three riglaiaded neutrinos and
after some general comments work mostly with two right-tfeahideutrinos.

While there is no information about the absolute mass scaaléise physical
neutrinos, the currently discovered tiny mass scales;tthespheric neutrino mass
(Datm= y/|M& —m3|) in thevy, — v; oscillation and the solar neutrino mags, (=

\ /m% — mf) in theve — vy, Oscillation, can be explained by adding at least two right-
handed neutrinos to the SM Lagrangian. However, with twbtrltanded neutrinos
the seesaw mechanism predicts one of the physical lightineuhass to be exactly
zero which is permissible within the current knowledge ofitn@o masses and
mixing.

As discussed in previous chapter, the Majorana mass of ghé-handed neu-

108
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trino violatesL-number and hence is a natural source of lepton-asymmethgein
early Universe 28]. A partial lepton-asymmetry is then converted to baryomas
metry through the non-perturbative sphaleron processesjppressed above the
electroweak phase transition.

It is legitimate to ask if there are any connecting links bestw leptogenesis and
the CP violation in the low energy leptonic sector, in pattae neutrino oscillation
and neutrinoless double beta decay. In the context of thgé¢-manded neutrino
models several attempts have been taken in the literatgmnioect the CP violation
in leptogenesis and neutrino oscillatios®[61, 144, 145. Itis found that there are
almost no links between these two phenomena unless onaleosispecial assump-
tions [146, 147). In fact it is shown that leptogenesis can be possiblepeesve of
the CP violation at low energylfg. On the other hand, in the two right-handed
neutrino models there is a ray of hope connecting leptogength the CP violation
in neutrino oscillation49, 150 and neutrinoless double beta decay processes.

While the magnitude of CP violation is fairly known in the gkiaector, it is
completely shaded in the leptonic sector of the SM. Theegfsearching for CP
violation in the leptonic sector is of great interest in thlegent days. It has been
pointed out that the Dirac phase, being involved in the L eoviag processes, can
be measured in the long baseline neutrino oscillation éxyats [L51-154], while
the Majorana phase, being involved in the L violating preesscan be investigated
in the neutrinoless double beta deca$$ 156 processes.

At present the magnitude of baryon-asymmetry is preciselynn, while the
sign of this asymmetry is not known yet. However, by knowihg CP violating
phases in the leptonic mixing matrix one can determine the ef the baryon-
asymmetry. This is the study taken up in this work. We consid@inimal exten-
sion of the SM by including two singlet right-handed neutsnwhich are sufficient
to explain the present knowledge of neutrino masses andhgsxiWe adopt a gen-
eral parametrization of the neutrino Dirac Yukawa couplmgl give the possible
links between the CP violation in leptogenesis and neutsguillation, CP violation
in neutrinoless double beta decay and leptogenesis. Ibisrskhat the knowledge
of low energy CP violating rephasing invariants can indeetkanine the sign of
the baryon-asymmetry since the size of this asymmetry isvkrrecisely.

10.1 Type | seesaw and parameter counting

In this section we discuss about number of independent pessboth magnitude
and phases in type | seesaw framework. The write the comelspg part of the
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Lagrangian from the section

1 _ .
L — (é(NRa)C(MR)aBNRB-I-fLi(P(Ye)ijﬂRj+€Li(P(YV)iaNRg+H.C.) (10.1)

where notation are similar to one in the section. The low gn&eutrino mass
matrix comes out to be

my = —MypMg*MJp, (10.2)

Without loss of generality we considétr to be diagonal and in this basid,p
contains rest of the physical parameters that appears.in

As discussed in section , the diagonalizatiomgf through the lepton flavor
mixing matrixUpmns [12-14], gives us three masses of the physical neutrinos. Its
eigenvalues are given by

Diag __

my diag (m, mp, Mg) = Uf iy dWUpns: (10.3)

where the massasg; are real and positive. The standard PDG parametrization of
the PMNS mixing matriUpynsare described in the section . Let us write it again
for convenience

C12C13 S12C13 Sp3e 013
Upmns= | —S12C23— C128p3513€/%13 C12Cp3 — $12573513€ %13 313 | -Uph,
S — C12Cp3S13€/013 —c — S19Cp3S 36013 Cp3C
12523 — C12C23513 12523 — $12€23513 23C13

where notations are similar as in section. The two physicabps) and§, present
in Upp, associated with the Majorana character of neutrinos ateetevant for
neutrino oscillations. Thus we see that there are threeeghiasthe low energy
effective theory responsible for CP violation. Howevegdé phases may not give
rise to CP violation at high energy regime, in particulgotégenesis to our interest.
In the following we study this in the framework of three andrittwo right-handed
neutrino models.

In general ifn andn’ are the number of generations of the left and right-handed
neutrinos that take part in the seesaw then the total nunfogarameters in the
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effective theory is estimated to b&g7/]

Nmodui = n+n'+nn, (10.4)
Nphase == n(n/ - 1) . (105)

Forn= 3 andn’ = 3, Nmodui = 15 andNphase= 6, Which in the effective theory
manifests as three masses of charged leptons, three mdssgist-thanded neu-
trinos and remaining 15 parameters including nine moduli six phases in the
Dirac mass matridyp in a basis where the charged lepton mass matrix is real and
diagonal. equation

In the bi-unitary parametrization the mass maliyp can be given as

Myp = U,'md 29U, (10.6)

whereU andUg are 3x 3 unitary matricesU; diagonalizes the left-handed sector
while Ur is the diagonalizing matrix d‘f/IJDM\,D. Any arbitrary 3x 3 unitary matrix
U’ can be written as

U =€*PUP,, (10.7)
whereg¢ is an overall phase and

P, = diag(1,e %, e 192) (10.8)
P, = diag(1,e P e P2), (10.9)

are phase matricesl is a CKM like matrix parametrized by three angles and one
embedded phase. Now using equatl@n7in equationl0.6we get

Myp = €] GP] mE*PirUrPor. (10.10)

Without loss of generality three of the left phases can berdesl in the redefi-
nition of charged lepton fields. As a result the effectivealdimass matrix turns out
to be

Myp = U, Psm3?90gPog , (10.11)

whereP; = PILPlR is an effective phase matrix. Thus in the models with three
right-handed neutrindsl,p contains 15 parameters.

In leptogenesis, the CP asymmetry comes in a fM\fBM\,D, which contains
P,r andUg, i.e.,

MypMyp = PgRU;(mgiag)ZURPZR, (10.12)
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and hence is independent B andU, . Although it would be good to know the
exact relationship of the phases M andUg with the phases appearing in the
Upmnsmatrix but that is not possible. So, we try with some spe@aks.

Case-l: Let us first consider the case, Whgﬁ is a diagonal matrix. This is the
case when the right-handed neutrino Majorana mass mattiag®nal to start with.
The mass matrix can still contain Majorana phases. In thest,th andmp 29 will
commute and hendlel\‘:DM\,D will be real and there will not be any leptogenesis.
This already tells us that the phases in leptogenesis tigudepends on the mixing
of the right-handed physical neutrinos. Even in this caseetiwill be CP violation
at low energy as we shall see below. The light neutrino massxiggiven by

m, = ~0/(P3)?(Ur)2(Por) (M%) Mg 10y
so that the PMNS matrix will become
Upmns= UJPSPZR-

Thus both the Dirac and Majorana phases at low energy areaishing.

Case-II: We shall now consider another special case when there iptagle-
nesis. If the diagonal Dirac neutrino mass matrix is prdpaoel to a unit matrix,
i.e.,mp =m-1 (I is the identity matrix), again there is no leptogenesis,

M SMyp = P -1 .
In this case the light neutrino mass matrix becomes
m, = —U,"PsUrPrMMg *P,rUR PaU; |
so that the PMNS matrix can be read off to be
Upmns= UJP3URP2R-

Even in this case the Dirac and Majorana phases are present.

Thus in both these examples, even if CP violation is obseatddw energy
neutrino experiments, this CP violation may not be relatel&ptogenesis. Since
it is not possible to make any further progress with threepeautrinos, we shall
now restrict ourselves to models with two heavy neutrinos.
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10.2 Parametrization of M,p in two right-handed
neutrino models

From now on we shall work with only two right-handed neutsn@ his result will
be applicable when there are only two heavy neutrinos or \iiexne are three heavy
neutrinos but one of them do not mix with others and heavian the other right-
handed neutrinos and hence its contribution to the lightriveas is also negligible.
In the present case where we have 3 andn’ = 2, from equatiori0.4and10.5 we
getNmoguii = 11 andNphase= 3. The 14 parameters in the effective theory manifest
them as three masses of charged leptons, two masses ohagtied neutrinos
and remaining nine parameters including six moduli ancetiplgases appear in the
Dirac mass matrid,p.

There are various textures and their phenomenologicalicatpbns of Myp
in the two right-handed neutrino models that have been densil in the litera-
ture [158-160. In this chapter a general parametrization of the 3 mass matrix
of the Dirac neutrinos is considered. This is given by

Myp = VY, = VU/YZRH R (10.13)

whereU’ is an arbitrary Unitary matrix and the Yukawa coupling of the right-
handed neutrino model is given as

0 X
Yru=| z ye'® |. (10.14)
0 0

A derivation of equatiori0.14is given in the appendi®?. However, we declare
that the texture ofory is not unique. By choosing appropriately tHematrix one
can placex,y, z at different positions so as to get the different texture¥-af; .
Using10.7in equation10.13we get

Myp = VUP,YorH, (10.15)

whereU contains four parameters including three moduli and onsg@Racontains
two phases antry contains four parameters including three moduli and oneg@ha
which all together makes ten parameterMijp. However, by multiplying the phase
matrix P> with Yory one can see that one of the phases in the phase rRatie.,

B2 becomes redundant and can be dropped without loss of ginersd a result
the total number of effective parameters is actually nine lzence consistent with
our counting.
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Substituting\,p, given by equatiod0.15 in equatioriL1.9we can calculate the
effective neutrino mass matriry,. The diagonalization ofn,, through the lepton
flavor mixing matrixUpuns, then gives us two non-zero masses of the physical
neutrinos while setting one of the mass to be exactly zerb@srsin the following
section.

10.3 Neutrino masses and mixings in two right-
handed neutrino models

The unitary matrixU, appearing in equatiob0.15 can be parametrized &s
U= R23(@23) R13(@13, 5’13) Rlz(elz) . (10.16)

It turns out that this parametrization is useful in detelimgnthe leptonic mixing
matrix in two right-handed neutrino models. Now from eqola$.11.9and10.15
we get the effective neutrino mass matrix to be

m = —VUPYoaruMzYaryPUT
= —VUPXPUT, (10.17)
where
X = YoruMg Yoky - (10.18)

For simplicity of the calculation let us takes'® common from 2nd row o¥ory
matrix given by equatioth0.14and absorb it i, by redefining3; as(B1+0) — .
As a result opposite phase will reappear watiThen the matrixory turns out to
be

0 X
Yorn=| zd® 'y |. (10.19)
0 0

Using equatiori0.19in the above equatioh0.18we get

X2 Xy 0
M ¥ M222e2i6

X = ,\% e+ 5 o |. (10.20)
0 0 0

1This parametrization is usually used for determining thedeic mixing matrix in the PDG
parametrization. Here we have used it for parametrinigg
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In writing the above equation we have used a diagonal badiseofight-handed

neutrinos wherdir = diag (M1,M>). For simplicity, we absoriM; andMy in x,y
_X_ Y _z_ : .

andz aS 4 — & — band 75— SoX can be rewritten as:

N
al ab 0

X=| ab PP+c2e?® 0 |. (10.21)
0 0 0

Looking to the effective neutrino mass matrix as given byagiqun 10.17we can
guess that the diagonalizing matrix would be of the form

Upmins= UKy, (10.22)

whereKy is an unitary matrix. Using equatiod$.3and10.22in equation10.17
we see that

mb9 = —KIPXPK;, (10.23)

which implies thak, would diagonalize the matriXP. From the structure of
it is clear that one of the light physical neutrinos must besshess. The matriKy
can be parametrized as

KU = PZ R]_?_((L), (p> P7 (1024)
whereP = diag (€"/2,&"2/2 1) and

cosw  €%inw 0

Ri2(w,@) = | —e®sinw cosw O |, (10.25)
0 0 1
with
: (—a*+b*+c*+2b2c?cos B) (10.
and
—c%sin?
N : 10.27
ane a?+b2+c?cos P (10.27)

SinceRy2(w, @) diagonalizes the matriX the resulting diagonal matrix will have
complex eigenvalues in general. However, by choosing gpjaiely the phases of
P one can make the eigenvaluesofeal. Using equation$0.26and10.27we get
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the eigenvalue$hi, A2, A3} of X to be
A1 = a—abé®tanw, A\, =e 2?@a®+abd®cotw) and A3=0  (10.28)

The absolute masses of the physical neutrinos are then lgyvgm = v2|)\1|, mpy =
V2|A\2|, mg = 0}. The MSW effect in the solar neutrino oscillation experirtsein-
dicates thatm, > my. The corresponding mass scale, giving rise tovhe v,
oscillation, is given by

A = Mg —mg = VA([hol” — [A1]?). (10.29)

Using equatiori0.28in the above equation we get the solar neutrino mass scale to
be

1/2
AR = { (a2 +1%)2+c* + 2022 cos B)* — 4a4c4} /
~ 8x10 %e\?. (10.30)
The atmospheric mass scale, on the other hand, is given by
Ao = M5 — mg| = VA(]A2] — [As]?). (10.31)

Using equatiorl0.28in the above equation we get the atmospheric mass scale to
be

Amgtm -

g ((@®+Db?)%+c*+ 20°c?cos B

1/2
- {((az-i—b2)2+c4+2b20200529)2—4a4c4} / ) ,

12

2x 10 3eV?. (10.32)
These equations may be inverted to obtain

V(@ + b2+t +20%cPcosB) = 28mé,— A
a‘ch® = Amg(AmE,—Amé). (10.33)

Using equationd40.9and10.25in equation10.24we can rewrite the matrik
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as

Ku = Ria(w,@+B1)P

CoSWw €@ sinw 0
= —e (@+P) sinw COSWw 0 (10.34)
0 0 1
dni/2 0 0
0 édm/zh) ¢ : (10.35)
0 0 e P2

Thus using equations0.35and 10.16in equation10.22the PMNS matriUpumns
is given as

Upmns = Rz3(©23)Ri3(O13, 813) Ri2(©12) Rio(W, @+ B1) P, (10.36)

where

R12(©12)R12(w, @+ P1) = —sm@’lze P2 cos),e Pt 0

cos@),ePt  sin@),eP2 0
0 1
o) ¢ .
e\ ? 0 cos@), sin@, 0
= | o 1(72%) —sme12 cosd,, 0 (10.37)
0 0 1 0 0 1
(") o 0
0 o 1(%%%2) o |- (10.38)
0 0 1

In the above equation we have

cos®), = c0S2Cc0sDy— cosP+PB1)sin2wsin20;2, (10.39)
coS D12

. L ,

sin(p2—p1) = sin(@+PB1)tanw |cot207, SinooL. | (10.40)
. sin2wsin(@+ Bl)

sin(p1+ p2) sin20., (10.41)

For further simplification of the PMNS matrik0.36we now compute the matrix
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productRy2(012)Ky = Ri2(@12)Ri2(w, @+ B1)P’ which is given as

éPitpP2) 0 0 cos®), sin@), 0
0N
Ri2(O12)Ri2(00, @+ B)P = &Z 7P 0 10 —sin@), cosdy, 0
0 01 0 0 1
1 0 0
0 ¢€(P2—p1+(n2—n1)/2—P1) 0 (10.42)
0 0 o—i(B2—p2+%)

Using equatior10.42in equationl0.36theUpynsmatrix can be rewritten as:

Upmns = UKy

= Ro3(@23)Ri13(013,813)Ri2(0))
diag (1, €(Pz=P1+(N2-n1)/2-B1) oi(Be—p2+ 7))

= U.Kp, (10.43)

wherel is the CKM like matrix andKp is the Majorana phase matrix. The effective
CPviolating phase in th¥ matrix is given by

013 =13+ (P1+p2) - (10.44)

Note that in writing equatiod0.43the overall phase(#—P2) has been taken out.
Moreover, we absorb the unphysical phase matrix.diag(P1102) e~ (P1+02)) into
the redefinition of charged lepton fields. From equatid/@ 10.16and10.44we
see that, for the chosen parametrizatiorYgdy, two of the mixing angle®»3 and
©13 remains same as of tfjg — 3) and(1— 3) mixing angles in PDG parametriza-
tion of the leptonic mixing matrix. Thus we can wri@3 = 0,3 and©;3 = 0;3.
Since®1, gets modified t®’, , we can write®}, = 812. Moreover, the modified
CP violating phas@s3 is given by equatioi0.44 We will the global fit values for
the neutrino mixing angles as listed3td for our analysis.

10.4  Leptogenesis in two right-handed neutrino
models

We have discussed leptogenesis in type | seesaw scenahe previous chapter
with three right-handed neutrinos. However, the discusstonains same for two
right-handed neutrinos . We assume a normal mass hierakthy. & M>) in the

right-handed neutrino sector then the final lepton-asymmeiiven by the decay
of the lighter right-handed neutrinbl;. Using the expressid.11for CP asymme-
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(a) (b)
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Figure 10.1: The allowed values gpfare shown againt (in rad) for the observed
matter antimatter asymmetry, given by equati®with (a)'\,\f'l—; =0.1 and (b% =
0.01.

try parameter, arising from the decayNf, is then given by

—3 (Mg Im[(M{ Myp)12)2
£ = 2(_1) ( D w)12” (10.45)
16mrv \ M2 (MypMvp)11
Using equation40.15and10.14in the above equatiof0.45we get
-3 /M .
=—|—= . 10.4
€1 16n<M2)y28m29 (10.46)

From the above equatid®.46it is clear that ifd = 0 then there is no CP violation in

leptogenesis. Therefor@,can be thought of the phase associated Witln a basis

whereM;’s are complex. Moreovef always hangs around Soy = 0 implies no

leptogenesis. We will discuss more about later while we am@phe CP violation

in leptogenesis, neutrino oscillation and neutrinolesstbeta decay processes.
Now using the relatio®.9in the previous chapter, we can write the final lepton

asymmetry generated as

Y, = —5.97x 10-5M1 <ﬁ) y’sin29. (10.47)
My \ 103

A part of the lepton-asymmetry is then transferred to thgdraasymmetry via the

sphaleron processes which are unsuppressed above thiewkadt phase transition.

Taking into account the particle content in tBb), the relation between baryon and

lepton-asymmetries are described in expres8i@fQ Using this expression, we can

write

M1 / Y2d .
Ys ~ 3.28 % 10*5M—1 (%ﬂ) y?sin2d. (10.48)
2
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Figure 10.2: The overlapping region in thg/ny, — Jcp plane is shown a8 (in rad)
varies from 0 tortwith @23 = /4, ©13 = 13, 8}3 = B1 = /2 andz= x = 0.01.
The dashed line is obtained @, = 33.5°, y=0.01 andM—; = 0.1, while the solid
line is obtained fo®1, = 33.8°, y = 0.02 andM—; =0.01.

The observed baryon-asymmetry can also be given as

— =71 =23x10"—( —/— 2. 10.49
0y B= 22X Y M, (1&3 Y sin (10.49)
Comparing the above equatid0.49with the observed matter antimatter asymme-
try, we get

: Mz (1073
sin2 = (257 — 278 x10°==( ). 10.50
yPsin2 — a0 (o) (10.50)
We have shown the allowed values yfn figure 10.1 using (Y{d) = 1073, for
hierarchical right-handed neutrinos in the 6 plane. It is shown in figuré0.1(a)
that for (M1/M3) = 0.1 the minimum allowed value ofis 5x 10~3. However, this
value is lifted up to 17 x 102 for (M1/M,) = 0.01 as shown in figur&0.1(b).

10.5 CP violation in leptogenesis and neutrino oscil-
lation

It has been pointed out that the Dirac phaggcan be measured in the long baseline
neutrino oscillation experimentd$1-154. In that case the CP violation arises
from the difference of transition probabilityP = Poe—v, — Rie—v,- Itcan be shown
that the transition probabilityP is proportional to the leptonic Jarlskog invariant
Jep defined In expressiof.5 of the sectiort.2.
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Figure 10.3: The variation afg/ny is shown againsicp for different values of3;
and 6’13 as® (in rad) varies from 0 tat We have chosef®,3 = 11/4, ©13 = 13°,

@12 =335, x=y=2z=0.01 andy = 0.1.
Using expressiod.5, the rephasing invariadep can be rewritten as
Jep= :—ésin 201,SiN 20,35iN 2013€05013SIN(d}3+ P1+ P2) - (10.51)
Now using equation$0.26 10.27, 10.39and10.41in the above equatiob0.51we

get

1 Sin 20,35iN 2971308013

8 \/[(a2 +02)2 4 ¢4+ 202c2 cos B) — 4atch

x  [2abcosd)z{ —c?sinDcosPy + (82 + b® + c?cos B) sinf1 }

+ 2abcos D1,sind)5{ (a2 + b? + c?cos B) cosPy + c?sin BsinpB }

+  sind)3sin1o(—a +b* + ¢ + 2b°c?cos B)] . (10.52)

Jp =

From the above equatialD.52it is obvious thatlcp = 0 only if both sindj; = 0
andb = 0, while onlyb = 0 (equivalentlyy = 0) implies the condition for “no
leptogenesis”. This indicates that there is no one-to-ameespondence between
the CP violation in neutrino oscillation and the CP violatio leptogenesis, even in
the two right-handed neutrino models. However, it is indérey to see the common
regions in the plane dfng/ny) versusicp. This is shown in figure0.2by taking

a typical set of parameters. The main aim is to illustraterttaximal contrast
between the positive and negative valuesigfn, for a given set of values akp.
This helps us in determining the sign of the asymmetry by kngwhe size of the
asymmetry. From the figurE).2it is obvious that for the given set of parameters the
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positive sign of the asymmetry allows the valueggd in the range 49— 0.0495
for (M1/M2) = 0.1. However, this range is significantly reduced {My/M;) =
0.01. On the other hand, the negative sign of the asymmetrwsitbe values of
Jecp in the range M465— 0.047 for (M1/M>) = 0.1 which is further reduced for
(M1/M2) = 0.01. In this figure the value d®1> is used from figurel0.4 where
we have shown the allowed values®{, as0 varies from 0 tort. Note that the
above results are true for a non-z&gs. Consequently the allowed range of values
of Jcp may vary depending on the values ®f3. Thus we anticipate that in the
two right-handed neutrino models a knowledgdgf can predict the sign of matter
antimatter asymmetry of the Universe. We should note thafptiedictive power
of the model depends on the CP violating phgseandd,,. This can be visible
from figure10.3where we have shown the variationref/ny with Jcp for different
values off3; andd) 5. In particular, for the choiceg = /2, &3 = 0) and 31 =0,
3 = T1/2), the contrast between the positive and negative values/of, is almost
zero for a given set of values dgp. On the other hand, for the choid® (= 11/2,

13 =Ty/2) and 31 = 0, &3 = 0), the contrast between the positive and negative
values ofng/ny is maximal and can be chosen for the present purpose.

10.6 CP violation in leptogenesis and neutrinoless
double-beta decay

The observation of the neutrinoless double beta decay wanadide direct evi-
dence for the violation of totdl-number in the low energy effective theory and
hence probing the left-handed physical neutrinos to be Mag type. Note that
theL-number violation at high energy scale is a necessary iexiter leptogenesis.
In the canonical seesaw models this is conspired by assuhmnghe right-handed
neutrinos are Majorana in nature. However, this assummtaesn’'t ensure that
the left-handed physical neutrinos are Majorana type. asg that the physical
neutrinos are of Majorana type we investigate the conngtitiks between the two
L-number violating phenomena occurring at two differentrgnscales.

In the low energy effective theory with three generationsleft-handed
fermions, apart from thécp, one can write two more rephasing invariagtsand
Jo as discussed in sectigh2 However, in the models with two right-handed neu-
trinos one of the eigen values of the physical light neutrmass matrix is exactly
zero. Therefore, the corresponding phase in the Majoraasegoimatrix can always
be chosen so as to set one of the lepton-number violating @Rtwg rephasing
invariant to zero. In the present case = 0 and hence the corresponding phase is
arbitrary. This is ensured throu@a which is redundant and pointed out in equation
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Figure 10.4: The allowed range &% (in rad) in equatior10.55is shown a$ (in
rad) varies from 0 tatfor @}, = (33.9+1.6)°, B1 =1/2,x=2z=0.01 (a)y = 0.01
and(M1/Mz) = 0.1, and (b)y = 0.02 and(M1/M2) = 0.01.

10.15 Therefore, from equatioh0.43we can write the only.-number violating
CP violating rephasing invariant as:

J = Im VeV (Vpn)11(Vpn)22]

1. . —
= —ésm2®’1200§®135|n(p2—pﬁ—mziznl)—[31). (10.53)

Using equatiori0.42the above equatioh0.53can be rewritten as

co$ 013 1
2 [(@+b2)24 ¢4+ 2b2c2cos D + 2c2a? cos D)
X [sin201c088{—c?sin 2D cosPy + (a2 + b? + c? cos B) sinfy }
X \/(a2 +b?)2+ c* + 2c2a2 + 2b2c?cos B
+ sin201,sin8{c?sin M sinf; + (&% + b? + c? cos D) cosP; }
y (—a*+b* 4 c* + 2b’c?cos D)
V/ (82 +b2)2 + ¢4 4 2c2a? + 2h2c2cos D
2ab{(a? + b?)? + c* + 2b?c? cos B + 2¢%a’ cos 2}(}0 54)
V(@ + )2+ A +2c%2 + 2b2c2cos D |

+ cosX12Sind

In the above equatioh0.54the allowed values d®;» is obtained from

coso.. — |1 (—a*+b*+c?+2b%c?cos B) cos D,
e 2 V(@2 +12)2 + ¢4 + 2b2c? cos D)2 — da‘ch
1/2
2ab{c?sin 8sinB; + (a2 +b? + c?cos B) cosBs } 0/55)
V(@24 02)2 4 ¢4 + 2b2c2 cos D)2 — 4alch '

— Sin201>
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Figure 10.5: The overlapping region in t%—\] plane is shown a8 (in rad) varies

from O toTtwith ©13 = 13", B1 = 11/2 andx = z= 0.01. The solid line is obtained
for y=0.01 and®;, = 33.5°, while the dashed line is obtained wigh= 0.02 and
©12=338°.

by fixing @7, = (33.9+1.6)°. This is shown in figurd.0.4

From equatioril0.540ne can see thak# 0 as@ — 0 which is the condition
for “no leptogenesis”. Thus we see that there is no one-eamrespondence
between the twd.-number violating processes occurring at two differentrgye
scales. However, it is always interesting to see the ovpiggregions in the plane
of ”—nEy‘ versus] asf varies from O tat This is shown in figurd 0.5for a typical set of
parameters. From figurE).50ne can see that for positive sign of tR@asymmetry
the values of] lie in between—0.45 to —0.1 for (M;/M2) = 0.1. This range is
further reduced t¢—0.4— —0.15) for (M1/M2) = 0.01. On the other hand, for the
negative sign of th&-asymmetry the values dflie in the rangg0.05— 0.45) for
(M1/M2) = 0.1 and in the rang€0.15— 0.4) for (M1/Mz) = 0.01. Thus we see
that within the allowed range of parameters the contrastdxet the positive and
negative values of% is maximum for a given set of values df Therefore, we
expect a knowledge a¥ can precisely determine the sign®fasymmetry since the
value ofng/ny is known. Finally we note that, unlikip, J remains non-vanishing
even if®13 = 02. Now the remaining question to be addressed is hgiw, varies
with respect tal for different values of31. This is shown in figurd.0.6for a given
set of parameters. One can see thaffoe 0 and3; = rtboth positive and negative
values ofng/ny correspond to the same set of valueg efhich is unwelcome for
determination of sign of the asymmetry. On the other handg3fo#£ O, one can

2In three generations there are two of them. See for examelpaper by Y. Liu and U. Sarkar
in ref. [15]
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Figure 10.6: The variation c% with J
The variation of% is shown againsi for different values of31 as0 (in rad) varies

from 0 tott. We have chose®;3 =13°, @12 =335°, x=y=2z=0.01 andm—; =
0.1.

have maximal contrast between the positive and negativeesadfng/ny for the
given set of values of and hence can be chosen for the present purpose.
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Neutrino dark energy in SO(10) GUT
model

As discussed in chapt&; the original models of neutrino dark energy (NDE) or
the mass varying neutrinos (mavangy,[ 161, 162 are based on type | seesaw
mechanism by allowing the Majorana mass of the right-hamdedrinos to vary
with the acceleron field. The basic mechanism is discussedhbsectior8.3.2of
chapter8. However, this kind of model is not complete and several jemols are
pointed out in 7, 163. Some of the problems have been also solved in subsequent
works [164-168, but more studies are required to make this model fully iast.

In type | seesaw models of NDE, the Majorana masses of thehghded neu-
trinos varies with the acceleron field and that relates thésaf DE with the light
neutrino masses. Naturalness requires the Majorana magskes right-handed
neutrinos also to be in the range of eV and the main motivatiohe seesaw mech-
anism to naturally suppress the low energy neutrino massesti So the smallness
of the light neutrino masses cannot be attributed to a lag®h-number violating
mass scale in this theory. Moreover, the neutrino Dirac emeannot be made to
vary with the acceleron field, since that will then allow cbog of the acceleron
field with the charged leptons and a natural scale for the OEén be the mass
of the heaviest charged lepton. For the same reason, thisamisem cannot be em-
bedded into a left-right symmetric model, in which t88)(2)r group relates the
right-handed neutrinos to the right-handed charged lepton

The problem with the smallness of the mass parameter thandemn the ac-
celeron field can be softened in the NDE models in type Il sessanario 16§. In
the NDE model with the triplet Higgs scalars, the coefficiefthis trilinear scalar
coupling with mass dimension varies with the acceleron fiafdl naturalness al-
lows this parameter to be as large as a few hundred GeV. Adtinthe scale of this
mass parameter predicts new signals in the TeV range, there symmetry that
makes this scale natural.

126



Chapter 11. Neutrino dark energy in SO(10) GUT model 127

In this chapter, we construct a left-right symmetric modelthe NDE proposal
and try to embed this model i8Q(10) GUT. The most important feature of this
model is that the mass parameter varying with the acceleebth femains small
naturally and the scale of DE is related to the neutrino nsas3#is is the only
NDE model that can be embedded into a grand unified theorfipwitrelating the
scale of DE to the charged fermion masses.

11.1 Left-right symmetric model for NDE

We have discussed the basic structure of left-right symmatodel in detail in
chapter5. In addition to the basic gauge and fermion structure in #dferight
symmetric model, we introduce a singlet figdg. Although there is ndy_, the
model is consistent with left-right parity operation, srnte fieldSs transform to
its CP conjugate state under the left-right parity & < S°.. This also ensures
that the Majorana mass term is invariant under the paritysfmamation, because
this field Sg transform under the transformati®JU(2),. <« SU(2)g to itself Sg =
(1,1,1,0) « (1,1,1,0).

The various left-right symmetric models differ from eaclmeatin choice of
Higgs bosons and symmetry breaking chains . In the presedeinthe content
of the Higgs sector will be chosen according to the followdesired symmetry
breaking patterd[69 170:

SU(3)c x SU(2)L x SU2)rxU(1)g 1) [Gszem]
Y8 SU(3)e x SU2)L x U (1)rxU (L) 1) [Gazud
T SU(3)e x SU(2)L x U (1)y (G321
T SU(3)e x U (1)q [Gen -

Breaking of the left-right symmetric group 3211 requires a right triplet Higgs
scalarsAgr transforming afdg = (1,1,3,0). The triplet does not change the rank
of the gauge group and only break$)(2)r — U(1)r. Since it does not carry
any U (1)g_L quantum number, it cannot give any Majorana masses to the neu
tral fermions. For the next symmetry breaking stddél)r x U (1)L — U (1)y,
we introduce arsU(2)r doublet Higgs scalar fiel[gr = (1,1,2,1/2) [91]. Thevev

of Xr could also breakGszo1p] — [Gsz1], if the field Ag were not present. The
left-right parity would then require the existence of théd\ = (1,3,1,0) and
XL =(1,2,1,1/2). Finally, the SM symmetry breaking is mediated by a bi-detbl
field ® = (1,2,2,0), like in any other left-right symmetric model. This field ithg
Yukawa interaction with the SM fermions and provide Diracsses to all of them.
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We shall introduce one more Higgs bi-doublet sc&#ax (1,2, 2,0) that is required
to write a few desired terms in our model. We also introduasfaer singlet scalar
field n = (1,1,1,0), which acquires a tinyev of the order of the light neutrino
masses and generate the mass scale for the DE naturally.

Now we write down the explicit forms of all the scalar fieldsterms of their
components as

A0 AT AS AL
AL = L Lo , Ar= ROTR),
A —4p

@ o <w&’ wi)
®= , W= 1 :
(cpzm% W, 0d

X ( Xt )
XL - 5 XR — )
< xP X%

The most general scalar potential has to be constructedcim sway that they
respect the left-right parity transformation of the scéikelds listed below:

XL XR , AL Ar
Pl | Wyl

n<n.
Under the left-right gauge group transformation, the Hifygjsls transform as

AL —U AU | AR— UrARU
®—U oUr , WU WUl
XLt—=ULxe » Xr—UrXR

n—n.

In order to write down the scalar potential we also consttietfieldst2d*12
and 12W*12 from ® and W which transform in the same ways @sand¥. For
convenience, we represehtas@;, T2dt2 as@, (and similarly for®) from now on.

11.2 Potential minimization

We first write down the most general renormalizable gaugariant scalar potential
respecting left-right parity and study details of potelntinimization. Besides left-
right parity, we impose followings symmetry on only the Higgs potential to avoid
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few undesired terms
XL —iXL, XrR— —iXR,
AL — —AL, Ar— —DR,
(OO Y- -y

n—n.

We write the the Higgs potential as a sum of of various partsvarte down each

part separately as:

V = V(p+VqJ+VA+Vr]+VX+VA(NJ+VX(NJ+VF]XA(NJ

Vo = 3 Shualo)+ 5 2 wiele) r(alo)

!
2
ij Ayi
Vg = — %tr(lbrlbj)f% Lp4]kl (W) tr (W)
i,

Nyi
+ 5 U (gl wlen)

2

A
Vy — HZA[tr(ALAL)+tr(ARAR)]+ZA[tr(ALAL)2+tr(ARAR)2]

N
+ ZA [tr (ALALALAL> +1tr (ARARARAR>]
Oa

+5 [tr (ALAL) tr(ARAR)]
v |\/|2 A
N = N2 2 n*
2
u A
Ve = =5 XX XERXRI 5 [xXO? + (XRXR))

g
X [xLxL XiXR]
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Vagy = ;aq,-,- [BLAL +DRAR] tr (@ @)
—|7— ; ayij [ALAL +ARAR] tr (W wj)
+ ; Byij [tr(ALALQQ)) +1r (ArARG @))]
+ ; Buij [tr(ALALY; llJ}L Ftr (ARARY W))]
+ ; hagij tr(AL(ﬂAR(p,T) + ; hAqujtf(ALllJiARllJ}r)

Vigp = ;;‘cpxij X/ XL + XEXR) tr(cﬁ%tpj)
_|7’ ; hyxii DXOXL + XEXR] tr (W)

Vi = (o XU+ XEXR] + P [t (8] 80) +tr(BfaR) ) n?

+ (; P tr (@ @) + ; P tf(w?llJi)) n?
+ ; i'\r]ij n [tr(efacy;)) ii-tr(ﬂﬂARtlJ}L) +h.c]

+3 hyi n [x[axr+h.c].
|

We parametrize the true minima of the potential by givingsviv different scalar
fields as follows.

(v O (Vv O (w0 (w0
0= 0V , 2 = 0 v ) qu_ 0 W 7LIJ2_ 0 w 5
XL=<O>,XR=<O>, AL=<UL O>,AR=<UR O)
VL VR 0 —u 0 —ur

Since the phenomenological consistency requiresvandw > w, we ignore
potential terms involving/andw and write down the general scalar potential in
terms ofve\s of different scalar fields
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2 2
Ho Ao 4 Hy Ay 4
V = — 2@ %A YW ¥
VgV W W
2
H Aa
—EA (UE+U2R)+Z (Uﬁ‘i‘uéé)
M2 A
n.2,M 24
My
o W

b Ax 9
—5 MR+, MR +5 (W)
(g + Bo)V2 + (A + By)WP] (U2 + UB) + (hagV? + hagW?) UL Ur
+(hggV? + hyyW?) (VE +VR)
+[hnx (Y +VR) + hna(Uf 4 UR) + hqgV® + hngw?] U

+hy u(uL + Ur)vW+ hy U(VLVR)V.

For convenience, we have replacegH Ay — Ag, Ay+Ay — Ay, Ap+N\p —
Aa. The minimization of the potential is studied by taking partierivatives with
respect tovevs of all Higgs fields and then separately equating them ta Zwlving
all such equations will provide us the desired values. On&hefminimization
conditionsv| (gTVR> — VR (g—\\,’L> = 0 leads to the following relation betweep and
VR:

(VR—VE) [(Ax —gx)vLvr—hyuv] =0.

Since(v4 = V?) is not desirable phenomenologically, we chose

hyuv
VLVR = (11.1)
(Ax — )
Using above relation in an another minimization condit’r@(%) +VR (g—\\,’L> =0,
we get
12
Vv =2, (11.2)
Ax

Parametrizing, = A sinB, vg = A cosB and putting them in the two equatiohs.1
and11.2, we findA = —2/A, sin20 = 26 = % sincepy is a large number
compared to the numerator. So we get

VR = A= \2/ _“)2(/)\X7

Ayh
W = ag— M vk
(9x —Ax) M

We have chosen the parametrizationvpfandvg in such a way thatg gets value
equal to breaking scale @311 andv, gets a very small value. We could have done
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other way around but that is not what is phenomenologicdlibyad. Proceeding
with the same kind of analysis for andug, i.e., using two minimization conditions

uL (gTVR> —UR <gTVL> — 0 andu, (gTVR> +UR (%) =0, we get

UR = {/—M3/Ma,
Aaha (hA(pVZ + hA[_IJVv2>uR

u
S (M) T

Using equatiori1.], then field can be shown to geevonly by termhyu(u. +
ur) as only this term is linear in. The termhyu(v_vRr)v does not remain linear in
after we substitute the value @fvg from equationll.l Since the mass term foy
field is large and positive, we expect very smadl, So we can ignore some of the
terms in the potential while solving farand can easily obtain

hnvwW(uL + UR)
M7 — (Pnakz/Aa) — (hnxHZ/Ax)

After analyzing the complete scalar potential, we find a ®tast solution with
ordering

u=

URS>VR>V>W>SUS V. (11.3)

At this stage we can assume the different mass scales tomexipgamodel. How-
ever, when we embed this model in 83(10) grand unified theory, the gauge cou-
pling unification will impose strong constraints on the eiint symmetry breaking
scales. The left-right parity and ti$J(2)r breaking scale will come out to be above
10! GeV. So, we shall assumg ~ 10! GeV. We also assum@, ~ mp ~ Ug.
However, it will be possible to keep th&s211 sSymmetry breaking scale to be very
low, and hence, we shall assume ~ vg ~ TeV. We find the remaining mass scales
to bev ~ my ~ 100 GeV,u ~ u_ ~ eV andv, ~ 102 eV.

11.3 Embedding the model inSQ(10)GUT

We shall study here the embedding of the present model wiitis &liggs content in

SQ(10) GUT. We consider the following breaking patternS®(10) gauge group to
first Pati-Salam gauge grogJ(4) x SU(2). x SU(2)g, next to the left-right gauge
group and then to the SM gauge group
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SQ(10) SU(4) x SU(2)L x SU(2)r  [Gazp]
SU(3)c x SU(2)L x SU(2)r x U (1) (_1) [Gzz2m]
SU(3)c x SU(2)L xU(1)rxU(1)(g-1) [Gs211]
SU(3)¢ x SU(2)L x U (1)y [Gs21

(3)

SU(3)c x U (1)q [Gem| -

1213 1§ |5 |&

In the discussion of chaptér we saw that the Higgs multiplets which can provide
the masses for all the SM fermions are limited as<165 = 10s+ 120, + 126s. For
convenience, let us write how a 10 dimensional Higgs fidédddecomposes under
left-right gauge group as

1. = 1

—)69(3,1,1,5).

Ho(10) = ®(1.2,2.0)®(3,1,1,—

One can easily identify the bi-doubl@t(1, 2,2, 0) appearing in the left-right model
contained inHe(10). To include another bi-doublé¥(1,2,2,0) present in the
model, we introduce a second 10-dimensional Higgs fi&d10).

Although the fermion and gauge sector of 8@ 10) GUT model are quite sim-
ple, the Higgs sector is quite complicated since it is noy o@fuired for generating
fermion Masses, but an appropriate Higgs content is alsdatefor systematic and
consistent breaking of t#Q(10) gauge group down to the SM gauge group in one
or more steps. To brea&(O(10) gauge group to the Pati-Salam gauge group, one
requires Higgs fields eitheé}(54) or Y(210), both having singlet under Pati-Salam
decomposition. Although we have discussed some of thesedss subsection
6.2.10f chapter6, we discuss some part again for the sake of completeness.

Giving vevto either of the two fields in the singlet direction will seryes pur-
pose of the desired breaking. T, 1, 1) of Y'also has a singlet under the left-right
gauge group which can acquivevto break the Pati-Salam group to the left-right
group. The(15,3,1) and (15,1,3) Higgs multiplets ofY also contain the fields
AL (1,3,1,0) andAr(1,1,3,0) present the left-right model. However, thesinglet
under Pati-Salam gauge group is odd under D-Parity. If we ggwto Y singlet,
the left-right symmetry will be broken at unification scalgelf. Since our model
is left-right symmetric, we must avoid D-parity breakingtiliteft-right group is
broken.

However, the singlet ii5(54) field under Pati-Salam gauge group does respect
the D-parity and so can be used to break the GUT group to theSREm gauge
group. As discussed in subsecti6ér2.1 a 45-dimensional Higgs fiel&(45) is
needed along witls(54) for breaking the GUT group to the left-right group. The
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Higgs fieldA(45) has the decomposition under the left-right group as

A(45) = (17 1,1, O) 69AL(17 37 1, O) 69AR(:L? 1, 37 ; O)

4 — 4
@(3,1,1,§)@(3,1,1,—§)@(8,1,1,0)
2 _ 2
322 - 3,22 —-).
G9( b b 73)@( b b b 3)

The first row of the above decomposition is of our interest asmtains the fields
AL (1,3,1,0) andAr(1,1,3,0) of our model along with the left-right group singlet.
Moreover, the singlet is even under D-parity and so therlgfit symmetry is un-
broken untilAr acquiresvevalong the singlet direction to the SM gauge group. So
a combination of (45+54)-dimensional Higgs fields servaspampose to break the
GUT group to left-right group without violating the D-pariand we will work with
this combination for the rest of the discussion.

The fieldsx. (1,2,2,3) andxg (1,1,2,3) are still left to be embedded in some
tensors 0fSQ10). The desired quantum numbers indicate that they can be embed
ded in the spinorial Higgs representatié@(lB) @C(l6)> . Decomposition of the
16 16 spinor representation under left-right group are given a

1 1
16 = Xt<l7 27 17 _é) EBXR<17 17 27 E)

1, 1
3.2,1,2)®(3,1,2,—
@( ) ) 76>@( Pl ) 6)

1 1
16 = x.(1,2,1, E) ®XRr(1,1,2, _E)
1

1, -
3,1,2,2)®(3,2,1,—%
@( i) 76)@( =y 6) Y

Having embedded all the Higgs fields of our model i8@10) tensor fields, we
now study the renormalization group evolution of the vasicaupling constants.

11.4 Gauge coupling evolution

In the present section, we will be studying the set of twgaloenormalization group
(RG) equations for the evolution of the coupling constant$\will be verifying the
consistency of the choserevfor different Higgs fields in the context $Q(10)
GUT. For simplicity, we assume that the scMg andMc are very close and we
ignore the evolution of the coupling constants betweenwloestcales. This is quite
preferable as we will see later that the unification scalesry wightly constrained
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by the current proton decay bour@B] and any substantial difference between the
two breaking scales would make it even worse. We start wélidhowing equation
for the two-loop evaluation of the coupling constant

da; (1) _ & by (i) (11.4)

dt 2n 8 (xlfl

wheret =1In (Mu) andM,, is the desired energy scale where the couplings constants,
aj's, are be determined. . Th&'s andbjj’s are the one-loop and two-loop beta
functions governing the evolution of’s and include the contributions from gauge
bosons, fermions and scalars in the model.

The fermion contribution to the beta function is taken rifybin the starting, the
electroweak scale (100GeV). The contributions of the gdwag®ons to beta func-
tions are straightforward to compute as one can easilyméterthe expected mass
scales of the heavy gauge bosons corresponding to any gawegegyroup. How-
ever, the contribution coming from the Higgs content is rotkear because the
heavy Higgs modes can have various possible mass spectremil\ise the ex-
tended survival hypothesis to fix this uncertainty. The edez survival hypothesis
is based on the assumption that only minimal number of fin@gs of the param-
eters in the Higgs potential are imposed to ensure the kilgyan various gauge
boson masses. According to the extended survival hypathesly those scalar
multiplets are present at any given intermediate breakuaded/, of a intermedi-
ate gauge groufs; which are either required for breaking the gauge grGyor
needed to further break any other intermediate gauge grelopviscaléVl;. Rest of
the scalars are stuck at the unification scale.

A list of Higgs multiplets surviving at the breaking scaleadhtermediate group
Gy, using the extended survival hypothesis, are given in taflést of both one-
loop and two-loop beta coefficients, which include all thatabutions, that govern
the evolution above the breaking scalefto the next intermediate scale are also
listed.

Since our model contains intermediate steps, we requireopppte matching
conditions at the corresponding breaking scales. For tivddop RG running of
the coupling constants, the matching conditions have beemed in [L71, 172.
Suppose a gauge gro@is spontaneously broken into a sub-grqgyis; with sev-
eral individual factoiG;, then the following matching condition need to be satisfied
for the two-loop analysis

agh) - S —agrom) - S (11.5)
whereC(G/G;) is the quadratic Casimir invariant for the groGpG;.
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GroupG, Higgs content a b
—7 9 11
—26 5 1o
1,21 1,2 1 —
G321 ( ) ’%)10@( )’ & 21)10 3 12 8 g
(1231 (12 -3 3
B 44 18 104
5 5 25
9 3 1
—1 26 53 3 3
1 1
El, 2, Elo)loea(l(, 2,—5?)1(3 -3 12 81 3
G3211 1727720 UEB 1727_270 10
11 £ 1 53 17 15
(L1, -3,5)16T (L1 3 —3)1g k¥ 12 3 3 %
33 9 15 65
bl 4 5 F 18
7 -26 3 3 3
(1,2, 2, O)10
(17 27 27 0)10' 5 12 %’ 3 %
. (L2130 2Ll)yy | 2
3221D 1 1 39 9
(1,1,2,5)69(1,1,2 —3)5 5 12 3 5 3
(17 17 37 0)45 2
27 27 23
(17 3,1, 0)45 % 4 47 77 4

Table 11.1: Higgs multiplets at different intermediatedkiag scales along with the
both one-loop and two-loop beta coefficients, including!ladl contributions from
fermions, gauge bosons and Higgs bosons, which govern theten of coupling
constants above breaking scaleGfto the next breaking scale.
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Figure 11.1: Evolution of coupling constants

The boundary conditions at various breaking scales, usieg@xpressioil.5
can be written as

1. At scalemy:
_ 3 _ 2
al\(l(m) = galF:eL<m)+§a1(l|3,L)(m)~
2. At scaleMg:
~1 1 2
air(Mg) = GzR(MR)—ET,
ar(Mr) = 0oy (Mr).
3. At the unification scal#y
_ 2 _ 2
GZLl(MU)_fn = O‘zé(MU>—ET
_ 8
= O‘ul(MU)—ﬁ,
_ 3 _ 8
O‘Scl(MU)_HTT = O‘ul(MU)—ET,
_ _ 8
agl (My) = aul(MU)—ET-

The matching conditions at the unification scale have bedtewiby assuming the
Pati-Salam scale to be almost close to the unification scale.
Using the above boundary conditions we have numericallyesbihe equation
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Higgs multiplets contributing

SO(10) nggs_ tothreshold uncertainty {&3c, azL, 1R, al(BfL)}
Representation
(Decomposed und€&z11)
1.1. 1 l) @(11 _1 _1)7
16 (1, 127 2)16 T2 216 0,112
(1, 2, 07_2)16@(17 27 072)1_6 { 2 4}
45 (1, 3, l, O>45 {07 27 07 O}

Table 11.2: Threshold contribution at left-right breakstgle

11.4for the two-loop RG evolution for all the coupling constantée have taken the
breaking scale of the gauge groGa»11 to be around 1TeV. The unification scale
comes out to b&ly = 10*>4GeV and the corresponding coupling constant is found
asaL‘,l(MU) = 43.4. Also the breaking scale of left-right symmetric gaugeugr,o
i.e., Gzoopp turns out to beMg = 10'18GeV. The running of the various coupling
constants with energy scale are shown in figlLtel

However, we find that the scale of the unification along wite dij* are not
satisfying the most recent bounds on proton decay, altheeghclose to the limit.
From our discussion about proton decay in the cha@teve know that the most
recent proton decay bounéd] is equivalent to (from expressidhl)

_ (Ycut (n-15) >
K= ( o ) x 10P"-19 > 118 (11.6)

whereMy ~ 10"GeV. What we obtain for the value &fin our analysis ix = 6.07.
This is below the lower limit allowed by the proton decay bdwas specified in
the right-hand side of the expressibh.6 However, the value ok is very close
to the allowed lower limit and so we will try to explore the kibity of our model
by allowing threshold uncertainty in the Higgs spectrum atious intermediate
breaking scales. Itis important to remark at this pointéwmatould get the the value
of K to be so close to the limit only when we optimized certain degrof freedom
in the Higgs sector. For instance, the Higgs-bi-douétas been assumed to arise
from a real 10-dimension&(Q(10) HiggsHe. So® would not be equivalent to two
SM Higgs doublets at the electroweak scale but will be edentdo only one such
doublet. Similar assumption has been also takertHoHowever, we would like
to emphasize that the results and discussion of the potemtiamization part will
remain almost same.

The threshold uncertainty in the Higgs spectrum arises fibvenfact that the
Higgs bosons becoming heavy at a given breaking scale mayet@xactly same
masses equal to the energy corresponding to the breakileg bttavever, the Higgs
mass spectrum is expected to be scattered around the erfdhgylwreaking scale
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SO(10) Higgs Higgs multiplets contributing

: tothreshold uncertainty {asc, az, amm, A1) }
Representation (Decomposed und@s22m)

(3.1,1- )1069(3 1,1, 3)5

10 Br1-i,0GE1LY), (2002
(321,3),6%(321 55

16 GL2- %1) 8 (312 D {4,3,3,1}
(37 2,2, _%)45@ (3 2,2, _%)45

45 (8,1, 1, )45 {7,6,6,4}
(67 11 _%)54EB (67 11 %)54

54 (1,3, 3, 0)54 {8, 6,6, 8}
(8,1,1,0)5,

Table 11.3: Threshold contribution at the unification scale

within an small width. For our analysis, we follow a similgopoach as discussed
in [173. We assume that the masses of the Higgs bosons are scaiteted any
breaking scale within the factor (% to 30. So if the mass of a Higgs multiplet
around a given breaking sca\§ is My, then we expect

1 My g

30~ M, ~
To include the threshold uncertainty at a given breakindescae need to
slightly modify our matching conditions at that scale. Thatohing condition given
in expressiori1.5is modified as

Gal(l\/h) —% :O‘éil(M')_ﬁ_fn’
whereA; = a;InMW'I*. So the threshold uncertainty has been included in the nmatch
condition due to presence of the term involvingNiy /M, ).

To avoid any over estimation of the threshold uncertaintyagsume that all the
Higgs multiplets, belonging to a single common irreduchiggs representation of
SQ(10), becoming heavy at a given breaking scale will have the saassscale
around the breaking scale.

The threshold uncertainty at the breaking scale of gaugepg83,11iS van-
ishing. The Higgs multiplets, coming from differeB((10) irreducible Higgs,
contributing to the threshold uncertainty at remaining imtermediate scales, the
left-right breaking scale and the unification scale, aredisn the tablell.2 and
11.3 respectively. The corresponding calculated beta-caefis, (a;)’s, which in-
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Figure 11.2: Threshold uncertainty in the unification scale

clude the contribution from all the Higgs multiplets comiingm the samé&Q(10)
irreducible representation (as their masses are assunbeds@me), are also shown
for the two breaking scales.

Now using these calculateg}’s and including uncertainty iMy /M, as dis-
cussed before, we have shown a scattered-plot betweenmgophstant L and
the corresponding unification scdldy in figure 11.2 We have numerically ob-
tained the values fcmljl andMy for randomly chosen values fdf /M, between
the range(3—10 — 30). The random values for all the Higgs multiplets belonging to
the sames(Q(10) irreducible Higgs are taken to be same at one particulakbrga
scale but different at the other breaking scale.

Moreover, we have also plotted the curve correspondinggartbst recent pro-
ton decay bound (Red solid curve&dg and relatively older proton decay bound
(blue dashed curve)l[4 in figure 11.2to show the allowed region iuL‘,l-MU
plane. Only the right part of the curve is allowed by the baulds worth noting
that the allowed parameter space is more and more constrasienore updated
data on proton decay bound is available. However, we getsonadle allowed
region in the figurel1.2, although small, even after allowing the most conservative
threshold uncertainty. So we expect our model to be sat@fawithin the tolerable
amount of threshold uncertainty as far as proton decay bsurwhcerned.

11.5 Yukawa sector and neutrino masses

In the present section, we discuss the origin of neutrincse=s the model. Before
proceeding further we would like to make it clear that thedssion about neutrino
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masses in the present section will only move around theigft-symmetric model
with few inputs from theSQ(10) GUT in motivating about certain patterns for taken
Dirac mass matrices for fermions in our analysis. Moreower,discussion will be
mainly focused on the matrix structure of low energy newotrimass matrix allowed
with certain assumptions. We will also argue, in what fokouwhat the consistent
neutrino mass spectrum is not possible within picture of@mgvo SO(10) singlet
fermionsS. We start by writing the Yukawa sector of the model as

Ly = Yij i GRj®+Y] €L LRjW+ (FL) i SRnfLiXL + (FR)in Srfri XR(11.7)

1 _
+ Eanr]SCLmSRn (11.8)

The Yukawa coupling¥ andY’ are 3x 3 matrix, whileF_ andFg are 3x n matrices,
if we assume that there anesinglet fermionsS. SoM is an x n matrix. Our study
of consistent embedding of the model$@(10) GUT requires same structure for
both F. and Fr up to the scale of left-right symmetry breaking which, afR&®
running, can produce small difference at the weak scaletheopresent discussion
we assume it to be small enough so that it can be safely ignored

The Dirac masses for all the SM fermions including neutrinos generated
form the the first two terms by givingevto the bi-doublets as in any other left-
right symmetric model. Sinc® andW¥ are coming from two independent and real
SQ(10) 10-dimensional Higgs, the Dirac mass matrix for neutrinod aeharged
leptons are independent. However, the Dirac mass matrithioup-type quarks
have the same structure as the Dirac mass matrix for theimesiand similarly the
Dirac mass matrix for the down-type quarks will have simgttucture as the Dirac
mass matrix for the charged leptons (simply because all 3Mifms are assigned
to a multiplet of SQ(10) GUT). Although these similarities in the structures are
exact only at the GUT scale, we expect some of its features todre or less same
even at the low scale. So we can well assume that the Dirac mas# of the
neutrinos would almost appear diagonal in the basis wherehthrged lepton mass
matrix is diagonal. The assumption is based on the obsen/tat the up-type and
down-type quarks are simultaneously diagonal in the a lzssthe quark mixing
matrix is very close to unity. So we borrow the pattern from ¢juark sector to the
lepton sector where the structure of Dirac mass matrix ohgwgrinos is not directly
known unless neutrinos are Dirac fermions. We expect theviatg pattern of the
Dirac mass matrix of neutrinos in the diagonal basis of tree@éd leptons
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0 0 00001 0 0
m, 0 (ﬂ):v 0 o002 0 |,
) m,

m
Myp = VYIepton(E) =
0 0 03

Me
0
0

wherem andm, are masses of top and bottom quarks eldm,, m; are masses

of electron, muon and tau leptons.
The part of the Lagrangian relevant for the neutrino masgiggion is given as

follows,

\
Ly mass = (V NC, S:>LX N¢ +H.C.
s L
0 Yijv. Faw Vj
= (vnes) | )'vo0 Faw || N | +HC

We can easily identify this structure by the type Ill seesaéucture given in
expressiorb.4. In fact the our discussion here is just the extension of theipus
discussions in subsecti@?2.2and sectiorb.4.2

Ouir first task is to analyze the mass spectrum provided by #tebnX in case
of one generation of all fermions. We write the eigenvalugagipn as (eigenvalue:
A):

A3 —MuAZ — FA2A — 2Y FAw VR — MY2u =0

Case 1:A >> v, we get
)\()\—I— FVR) ()\ - FVR) =0

The above eigenvalue equation predicts two TeV scale Magofarmions. The
massless solution contradicts with the condition we sfianiéh, and so is unphysi-
cal.

Case 2:A << v, we get

N 2Yw MY2uv

W Favg

2Y MY?Zuv?
A=W ! (11.9)

VR F2v3
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Figure 11.3: Variation of mass

which is of order of eV. So the two Majorana fermions pick upss®s of the order
as high as TeV and one remains sufficiently light (~eV) to entdied as light
neutrino.

To make the discussion some more general, we take threeagiemsrfor all the
SM fermions including the left and right handed neutrinosdnly one generation
for the singletS. We look for a possibility whether it can account for the @rig
picture of three light active neutrinos. To search for anghspossibility, we try
to find out the mass spectrum, within this scenario, by sgl¥ar the eigenvalues
of the matrixX. To simplify further, we take all the eigenvalues of the matr
Myp to be same with a common value equal to the largest one faoaliaalysis.
This enable us to factor oyh? — szz)Z from the algebraic expression of Oj&t)
predicting four Majorana fermions of scale around 10Ge\é Tést of the factors
have got the same form as the expression of determinant enafase generation
of all SM fermions, as discussed earlier, leading to the t@¥ @and one eV scale
Majorana fermions. The scenario provides us only one lighittrino and, hence,
can not account for the observed neutrino mass spectrumxplore the effect of
some possible hierarchy present in the eigenvalues of ttee ass matrix of the
neutrino like one present in the charged lepton mass matexiake two of the
eigenvalues to be same and vary their scale below the thid fe are still able
to explicitly get two of the Majorana fermions having masalesequal tone (%)
One may think that the remaining two Majorana fermions mggitmass scale as
light as eV leading to three light neutrinos. To rule out aoghs possibility, we
have plotted the masses of the two remaining Majorana fersriwhich comes out
to be same) with the ratio of the two mass scales of the eif@ewaf the Dirac mass
mass matrix of the neutrinos in figutd.3 We find that the masses do not go below
the lightest mass scale of the eigenvalues\gf. So in two generation scenario $f
fermions, there is not much progress except we get two e\é $¢ajorana fermions
which is still not sufficient.
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We now turn to the case of three generation®dermions. The basic way to
get the low energy neutrino mass matrix has been outline@llinghich is given as

() (e
_ (%) [(Y+YT)+rY (FM*lFT)‘lvT} : (11.10)

as we havei” = r v g in our model (expressiohl.1) wherer = (A —gy) /hy.

The first term is the type-lll seesaw contributiddl] and the second term is
the double seesaw contribution. With the choice ofuées it is obvious that this
scenario provides us with three eV neutrinos.

Now we will try to explore the limits of the expressidri.10for low energy
neutrino mass matrix to check its consistency with curreté @n neutrino masses
and mixing by allowing some very simple form for matik

In its most general form, it is straight forward to argue thigtcan accommo-
date the existing data on neutrino masses and mixing sim@yalthe presence of
enough number parametersirandM unless type Ill term dominates significantly.
An interesting thing would be to consider some simpler fofrthe neutrino mass
matrix by reducing appropriate number of parameters withestolerable assump-
tions. The basic idea is to explore the possibility of anyhssienpler structure in
light of the current neutrino oscillation data.

We start with the assumption that the three singlet fermi®are blind to their
generation within themselves leading to the following dematic structure of ma-
trix M :

111
M=]111/|u
111

The structure allows us to believe that there is no inducedngibetween the left-
right neutrinos and the singlets. Somatrix can be written as product of a unitary
matrix and a diagonal matrix. The unitary matrix connectslihsis of the demo-
cratic structure to the basis where the charged lepton massabecomes diagonal.
To have some more simplicity, we are driven to assume thawibéasis are identi-
cal, i.e., the unitary mass matrix is identity matrix. Itdsdo the following structure
of the low energy neutrino mass matrix:
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a2 —2Mme ap ay
W e 2 _om
my = Ve ap Be— Zﬂmrl By '
ay By  ¥-2pm

wherea, B andy are the final parameters appearing in the neutrino massxmatri
after absorbing all the parameters preserf jriM andY. We take the following
familiar tri-bimaximal form of [L75 of the Uppnsmixing matrix for our discussion
and attempt to diagonalize, having above structure:

N V2 0
UPMNS:Utbm:76 -1 V2 V3|,
1 -v2 V3

whereb,3 = 11/4, 813 = 0, and sik0; = 1/3.

We attempt to diagonaliza, with the tri-biamaximal form of the mixing matrix
which requires the following relation of the parameter{fd andy with masses of
the charged leptons as:

al’ ~0.05

o (Me+my)

y ~ — M ~ 075

e (Me+my)

12

The diagonal neutrino mass matrix comes out of the form:

me O 0
mD39 Mo om0 <ﬂ)
0O 0 2 MM VR
(mutme)

So the present form afi, andUpynsproduces degenerate masses for the two light
neutrinos which is likely to be cured once we slightly desitom tri-bimaximal
form of Uppmns The deviation can be realized either by taking non-maxivahle

of 8,3 or non vanishing value d;3 or both. We take only non-zero value 6f3

to be the sole realization of the deviation for our purposée @eviated form of
tri-baimaximal matrix for very small value &3 can be parametrized as:

1 2 V2 013
Upmns= NG ~1-v2013 V2-613 V3
1-v2013 —V2-613 V3
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While trying to diagonalize then,, numerical methods are used to find out the
desired values of the free parameters. We find that the desggnencountered in
the case of tri-bimaximal mixing matrix disappears as scofirgte value o013 is
introduced. This finite value is determined by imposing theditionAmg, /Amg, ~
0.033 which leads to following value of stis

sinB13=0.11.

The value is well within the allowed value i3 from oscillation data. The correct
scale of the mass square differences is easily achieved stz the over all scale

of the neutrino mass matrix. The corresponding values abtier parameters come
out to be

= 0.02
= 0.06
y = =075

The point we would like to emphasize is that even the simplecsire of the
mass matrix taken in our analysis is able to account for thetieg framework of
three active light neutrinos even though the assumptiorysmocorrespond to any
real underlying symmetry.

11.6 Dark energy in the model

We shall now discuss the implementation of the NDE mechamsmar model. For
simplicity, we consider only one-generation scenario. \8&uae that the singlet
massMs = M(n) = M u varies with the acceleron field, so that the neutrino mass
becomes a dynamical quantity. This gives the coupling betviee neutrinos and
the acceleron, which stops the dynamical evolution of tloelacon fields when the
neutrinos become non-relativistic. When the neutrino®bexnon-relativistic the
dependence d¥ls on 4 governs the dynamics of the DE.

To compare the neutrino mass scale with the DE scale we vétesffective
potential using the Coleman-Weinberg tyi€ §

Vo = A%log(1+ |/Ms(A)]). (11.11)

The parametef\ (~ 10‘3eV) is chosen to fit the DE scale. This type of potentials
are extensively used in the DE literatuy][166. We can write the effective low-
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energy Lagrangian in our model

2,2

— Lot = Ms(ﬂ)%://_R Vivj +H.c. +A*og(1+ |/Ms(4)]), (11.12)
From the choices we have made aboutwtbes, we have retained only the dominant
double seesaw terrhl1.9in the effective Lagrangian. As ~ O(eV), the mass
parameteMs is of the order of eV. Since the ratiw/vg)? ~ 1072 — 1073, the
Yukawa couplings coupling to be of order unity. Thus the fingi terms in equation
11.12are comparable to the last term describing the DE potential.

The Majorana mass of neutrino varies with the acceleron fietgugh the pa-
rameterMs and the mass scale of this parameter remains near the sdale rdt-
urally. The interesting feature of our model is that we do not negduanaturally
small Yukawa couplings or symmetry breaking scale to a&higns naturalness
requirement. Also the variation ®fls does not affect charged fermion masses in
the model. Moreover, the electroweak symmetry breakingescand theU (1)r
breaking scales are comparable and hence the new gauge dmsesponding to
the groupJ (1)r will have usual mixing withiZ and should be accessible at LHC.

Since the local minimum of the potential relates the neatnrass to a deriva-
tive of the acceleron potential, the value of the accelereld fjets related to the
neutrino mass. The acceleron field provide an effectivaetitre force between
the neutrinos. When the this effective force is strongen tt@ gravity, perturba-
tions in the neutrino-acceleron fluid become unstable. Bhece of the free-energy
comes from the attractive interaction between the neuaimibthe acceleron field.
The instability is similar to that of the Jeans instabilipuhd in a self-gravitating
system. The instability can lead to inhomogeneity and stredormation; the in-
stability would grow till the degeneracy pressure of thetriras would arrest the
growth. The final state of the instability would produce mewt lumps or nuggets
[166, 177]. The neutrino lumps would then behave as dark matter arichailaf-
fect the dynamics of the acceleron field/B. This instability is a generic feature of
MaVaNs scenario, however it can be suppressed if the neutecome superfluid
[179 or if the MaVaNs perturbations become nonadiabatic.



Chapter 12
Conclusion

The charge neutrality of neutrinos opens up two possibiditytheir fermionic na-
ture. They can be either Dirac fermions with separate per&intiparticle identity
or Majorana fermions where it is its own antiparticle. Thew® possibility is
phenomenologically very rich and several seesaw mechagxsshin literature to
naturally explain the tiny masses of neutrinos.

In the case of Majorana neutrinos, the neutrino mass madrigymmetric
and contains all the information regarding CP violatingggsin the basis where
charged lepton mass matrix is diagonal. To explore this faethave constructed
rephasing invariant measures of CP violation with elemehtle neutrino masses
in the weak basis. For argeneration scenario, in the absence of any texture zeroes
there aren(n— 1)/2 independent measures of CP violation, given by

lij =Im [mimjjm*jm]-ﬁ] (i<j)

which corresponds to(n—1) /2 independent CP violating phases. Ofrly-1)(n—
2)/2 of these phases of CP violation can contribute to the meutscillation ex-
periments and are independent of the Majorana phases fohwie rephasing in-
variant measures of CP violation can be defined as

Jp= 3 m (M mja) (M M) (Mhemc)| (i< <),

We then defined invariants for mass matrices with textureegeand elaborated with
some examples. We studied all the phenomenologically #alskep3-generation
two-zero texture neutrino mass matrices. We showed that e no Majorana
phase in any of the allowed cases.

The neutrinos are likely to play a very important role in @iping the baryon
asymmetry of the present univers&8] 73]. Many interesting models, beyond the
SM, proposed to accommodate the neutrino masses come wéiktrafeature that

148
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they can create lepton asymmetry in the early universe wtachbe converted to
baryon asymmetry in the later phase of the universe. Thaetasgesaw framework
is the most preferable scenario for the the mechanism knewrag/ogenesis via
leptogenesis.

We have studied the connecting links between the CP viglgilrases giving
rise to leptogenesis, occurring at a high energy scale, lra@€P violating phases
appearing in the low energy phenomena, i.e., neutrinolasoih and neutrinoless
double beta decay processes. This is studied in the frarkesfdwo right-handed
neutrino models. The low energy leptonic CP violation isigtd in a rephasing
invariant formalism. It is shown that there are only two raging invariants; (1) the
lepton-number conserving CP violating rephasing invardgp which can be deter-
mined in the future long-baseline neutrino oscillation exments, (2) the lepton-
number violating CP violating rephasing invaridnwhich can be determined in the
neutrinoless double beta decay experiments. It is founicthieae is no one-to-one
correspondence between these two CP violating phenomeaarrimg at two dif-
ferent energy scales, even though the number of paramet@iging in the seesaw
is exactly same as the number of low energy observable pé&eesnéiowever, in a
suitable parameter space we have shown that the overlagggmns in the plane of
ng/ny versuslcp andng/ny versus) can indeed determine tisggnof the matter an-
timatter asymmetry of the present Universe assuming tleaizieof the asymmetry
is precisely known.

Neutrinos are also expected to address the problems oRIJE INDE models
are able to answer the cosmic coincidence puzzle of DE. Athcsuch models
have been constructed in seesaw scenario, there were wiglefor GUT models
to accommodate the NDE proposal. For the first time, we hametoacted a left-
right symmetric model of NDE that can be embedded inS&%10) GUT. After
discussing the Higgs content needed for the model, defglstential minimization
have been carried out considering all possible allowedgefithe complete analysis
allows the desired ordering of tive\s. Then we have studied the embedding of this
left-right symmetric model it O(10) GUT. We show thaB0O(10) GUT with Higgs
multipletsS(54), A(45), two H(10), C(16) ©C(16), n(1) along with an additional
fermion singlet is able to accommodate the left-right syrmimenodel.

We have studied the RG running of various couplings constadthave found
that the desired assignment f@vvalues for different Higgs fields is consistent with
the gauge unification. Then the origin and possible streaé@ineutrino masses has
been discussed in detail. It has been shown that generdtiimez light active
neutrinos of eV scale is not possible in scenario with onevar $Q(10) singlets
fermions. Then we have described the implementation of NDthe model. The
model allows the mass parameter of the left-right grouplsetnavhich varies with
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the acceleron field, to have the same scale as the scale oftBfyisg the desired
naturalness requirement.
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