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Abstract

Neutrinos are massless in the Standard Model (SM )and there is no CP violation

in the leptonic sector. Robust evidences of neutrino oscillations have confirmed

that the neutrinos do have masses, although small. The understanding of neutrino

masses requires new physics beyond SM. As the neutrino is charge-neutral particle,

it can be a Majorana fermion where neutrino will be its own antiparticle. See-

saw mechanism provides a natural suppression of neutrino masses by introducing

a lepton number violating source at some high scale. In this thesis, we will study

neutrino masses in various seesaw scenarios and Grand unified theories after a short

review of experimental status of neutrino masses and mixing. Then we study the

role of neutrinos in two very important astrophysical and cosmological problems,

1) baryon asymmetry of the present universe and 2) cosmic coincidence problem

for dark energy.

If the neutrinos are Majorana fermions, the low energy neutrino mass matrix

comes out to be symmetric. Assuming neutrinos to be Majoranafermions we have

constructed rephasing invariant measures of CP violation with elements of the neu-

trino mass matrix, in the basis in which the charged lepton mass matrix is diagonal.

We have applied our approach to study CP violation in all the phenomenologically

acceptable 3-generation two-zero texture neutrino mass matrices and have shown

that in any of these cases there is only one CP phase which contributes to the neu-

trino oscillation experiment and there are no Majorana phases.

An attractive explanation for tiny neutrino masses and small matter antimatter

asymmetry of the present Universe lies in leptogenesis. At present thesizeof the

lepton asymmetry is precisely known, while thesignis not known yet. We have de-

termined the sign of this asymmetry in the framework of two right-handed neutrino

models by relating the leptogenesis phase with the low energy CP violating phases

appearing in the leptonic mixing matrix. It has been shown that the knowledge of

low energy lepton-number violating rephasing invariants can indeed determine the

sign of the present matter antimatter asymmetry of the Universe and hence indi-

rectly probing the light physical neutrinos to be of Majorana type.

One of the very interesting model of dark energy in current days is based on pro-

posal of mass varying neutrinos. We have proposed a left-right symmetric model
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that can accommodate this neutrino dark energy proposal. Type III seesaw mecha-

nism is implemented to give masses to the neutrinos. Unlike earlier models of mass

varying neutrinos, in the present model the mass parameter that depends on the

scalar field (acceleron) remains very lightnaturally. The model is then embedded

in an SO(10) Grand Unified Theory and the allowed symmetry breaking scales are

determined by the condition of the gauge coupling unification. The neutrino masses

are studied in detail in this model, which shows that at least3 left-right gauge sin-

glet fermions are required for consistent understanding ofthe observed low energy

neutrino mass spectrum.
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Chapter 1

Introduction

Although the existence of neutrinos was first proposed in 1930 by Pauli to explain

the continuous energy spectrum of the electron coming from the nuclear beta decay

process and was confirmed in 1956 by Cowan and Reines [4], the fact that they have

masses too could only be verified conclusively in the last twodecades. The obvious

reason behind the difficulty to observe the neutrinos lies inthe fact that they are

very weakly interacting particles with very small masses. They interact with other

particles through gravitational and weak interactions. However, their gravitational

influence comes out to be very small compared to their weak interaction.

As the neutrinos interact through weak interaction, it promises to play some

special role in particle physics which can not be shared by any other particle. The

properties of many astrophysical objects are addressed by detecting and studying

the light coming from them. However, the light has to travel through the different

galactic and intergalactic spaces before coming to earth and, hence, is quite per-

turbed. The situation is different with the case of neutrinos which get almost no

perturbation while coming from source to us. So it promises to carry all the original

information and can be analyzed to reproduce the more accurate property of the as-

trophysical object. This has provided enough motivation and speculation to explore

the feasibility of telescope based on neutrino detection.

This thesis is divided in two parts. The first part concerns about both general and

model dependent study of masses and mixings of neutrinos. Within the Standard

Model (SM) the neutrinos are massless and are described by two component Weyl

spinors. This is because of the absence of right-handed neutrinos in the SM. Hence

there is no CP violation in the leptonic sector within the SM.We review some main

features of the SM in chapter2 and discuss fermion masses in detail.

Although neutrinos were thought to be massless initially, current evidences sug-

gest that neutrinos are massive, and they mix with each other. The atmospheric

neutrino problem [5] , solar neutrinos [6–8] and laboratory neutrino oscillation ex-

periments [9–11] have provided measurements of three mixing angles, as wellas

1



Chapter 1. Introduction 2

two mass squared differences. But we do not know the absolutevalues of neu-

trino masses and there is no evidence of CP (charge conjugation+parity) violation

in leptonic sector till now.

To accommodate the neutrino masses, one need to go beyond theSM. One

possible extension of the SM is to introduce three right-handed neutrinos in SM

Lagrangian and to provide Dirac masses to the neutrinos. Another fact about the

neutrino is that it has no electric charge which endows it with certain properties

not shared by the charged fermions of the SM, i.e., it can be its own antiparticle

without violating electric charge conservation. In that case, the neutrino is called a

Majorana fermion. We first explore the possibility of writing a model independent

Lorentz invariant mass term for both Dirac and Majorana neutrinos in chapter3

and then discuss various neutrino experiments related to both flavor oscillations of

neutrinos and direct detection of neutrino masses.

The symmetric nature of the mass matrix of the Majorana neutrinos at the low

energy requires only one unitary matrix to diagonalize it, which is not possible in

the case of Dirac neutrinos. So, in the basis where the charged lepton mass matrix is

real and diagonal, all the information about mixing angles and CP violating phases

remains in the neutrino mass matrix. At the same time, the diagonalizing unitary

matrix turns out to be the mixing matrix in the leptonic sector and usually called as

UPMNSmixing matrix [12–14].

In the literature, the question of CP violation in the leptonic sector is usually

discussed by studying the neutrino mixing matrix [15–17]. The trouble in defining

the measures of CP violation in this way is that it requires the neutrino mass matrix

to be diagonalized by some unitary matrix first. In chapter4, we try to construct

independent measures of CP violation, directly from the lowenergy neutrino mass

matrix elements for any number of generations without restricting our analysis to

any specific origin of the neutrino masses even if there are zero entries present in

the neutrino mass matrix.

Analogy from the quark sector suggests that neutrinos should have masses more

or less of the order of charged lepton masses. But very small masses of neutrinos

(∼ eV) requires some new mechanism to explain why neutrinos are solight com-

pared to the charged leptons. Assuming the neutrinos are of Majorana type, natural

suppression of neutrino masses can be explained by the elegant seesaw mechanism

[18–20]. Three types of seesaw mechanism have been discussed in theliterature

for the purpose. Chapter5 is devoted to the detailed discussion of the various see-

saw mechanisms along with their realization in the left-right symmetric extension

of SM.

The theory of Grand Unification has emerged as the most elegant and attractive

scenario to go beyond SM. Out of the many attractive featuresof Grand Unified
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Theory (GUT), one is that the fermion mass matrices which look independent of

each other in the SM, get related in the GUT framework. This along with the recent

data of neutrino masses and mixing has triggered the study ofthe neutrino masses

in various , especially predictive, GUT models. In chapter6, we review bothSU(5)

andSO(10) GUTs and study various relations between fermion mass matrices while

keeping main focus around neutrinos.

The second part of the thesis mainly concerns about the role of neutrinos to

address two very challenging astrophysical and cosmological problems 1) cosmic

coincidence of dark energy and 2) current baryon asymmetry of the universe.

Present observations reveal that the dark energy (DE) contributes about 70% to

the total density of our universe with equation of stateω =−0.98±0.12, indicating

that we are living in an accelerated universe [21–23]. The DE can be expressed as

E4 and this correspond to the energy scaleE ∼ 3×10−3eV. But the results from

Cosmic Microwave Background reveal that universe was dominated by matter at

red shift (z=1100) with equation of stateω = 0, i.e., the acceleration of the universe

is a fairly recent phenomena. This is known as the cosmic coincidence problem.

DE can be invoked by introducing a cosmological constant in the Einstein’s

equation, but it faces severe fine-tuning problem as its scale lies nowhere near the

scale of DE. So one assumes that it is zero by some mechanism and tries to explore

other ways to explain current acceleration of the universe.One possibility is to in-

troduce what are called tracking scalar fields rolling slowly in flat potentials which

track the matter or radiation energy density during matter or radiation dominated

epochs being sub-dominant and become dominant only at the current phase of the

universe [24–26]. The fact that only known scale near the scale of DE is scale of

neutrino masses suggests that neutrinos can play an important role in solving cos-

mic coincidence problem. In an interesting possibility, a coupled system of neutrino

and a light scalar field can behave like DE after neutrinos becomes non-relativistic

[27]. Chapter8 is devoted to the discussion of Quintessence and neutrino dark en-

ergy (NDE) models along with the review of the observationalevidences of current

acceleration of the universe.

In the original model of NDE, the SM is extended by including singlet right-

handed neutrinos and giving Majorana masses to the neutrinos which vary with a

scalar field, the acceleron. Naturalness requires the Majorana masses of the right-

handed neutrinos also to be in the range of eV, so the main motivation of the seesaw

mechanism is lost. Also the mechanism cannot be embedded into a left-right sym-

metric model. In chapter11, we try to construct a left-right symmetric model of

NDE keeping naturalness in mind. We then proceed further to study the embedding

of the left-right symmetric model in SO(10) GUT.

Understanding the origin of matter is one of the fundamentalquestions, the
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answer to which is most likely going to come from particle physics. Seesaw mech-

anism is at the heart of particle physics for this purpose, since it not only explains

the smallness of neutrino masses but also provides a naturalsolution to the baryon

asymmetry of the universe through leptogenesis [28]. Leptogenesis is a way to un-

derstand the baryon asymmetry of the universe by first creating lepton asymmetry

in the early universe. Chapter9 discusses the basic structure of leptogenesis along

with some other mechanism for baryogenesis.

Although seesaw mechanism connects low energy neutrino mass matrix with

high energy Yukawa couplings, still there is no one to one correspondence between

low energy parameter to high energy parameters in general. However, one would

like to connect the low energy measures of CP violation (expressed in conventional

form) to leptogenesis by choosing a suitable parametrization where it is transpar-

ent that which phases are responsible for leptonic CP violation at low energy and

which ones are relevant for leptogenesis so that the viability of leptogenesis can

be addressed if we can measure strength of CP violation at lowenergy in neutrino

oscillation experiments. With the same motivation in mind,we try to connect lep-

togenesis to low energy CP measures in chapter10 in type I seesaw scenario with

two right-handed neutrinos where we expect less number of unknown parameters.

Finally, the last chapter on conclusion summarizes our mainwork and the re-

lated results.



Part I

Neutrino masses and CP invariants
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Chapter 2

Standard Model and fermion masses

To the best of our present knowledge, the nature seems to be equipped with four

kinds of interactions (1) gravitational, (2) strong, (3) electromagnetic and (4) weak.

The gravitational interaction is universal, in the sense that it exists between any

two particles having energy and momentum. It is responsiblefor the formation of

Galaxies, stars and planets. So far , a consistent renormalizable quantum theory of

gravity is still awaited.

The strong interaction manifests itself in the nucleon-nucleon interactions inside

the nucleus. Actually, the nucleons are not the elementary particles but consist of

quarks which, up to now, are believed to be the basic buildingblocks of baryons.

The strong interaction, in its fundamental form, is mediated by gluons between

the quarks and its effective manifestation is the one, whichis observed as a very

strong nuclear force between the protons and the neutrons. The theory describing

the strong interaction is known as quantum chromodynamics (QCD) which is based

on a non-AbelianSU(3)c gauge symmetry.

The electromagnetic interaction is mediated by photons between any two par-

ticles carrying nonzero electric charge. It is best described by a theory known as

quantum electrodynamics (QED) based on an AbelianU(1)Q gauge symmetry.Q

corresponds to the charge of a particle. The need for the weakinteraction arises for

the understanding of the nuclear beta decay. Initially, a six dimensional effective

operator corresponding to four fermions was used to addressthe weak interaction.

However, this four fermion operator badly fails to address the interaction at higher

energies. Later, it was realized that it can emerge from a more fundamental renor-

malizable theory. This new renormalizable theory, known asthe electroweak theory,

has passed all the experimental tests up to now and is a very essential part of the

Standard Model (SM).

The SM of particle physics has been constructed to address all the three interac-

tions, other than gravity, on one platform. It consist of twodistinct parts one strong

and the other one electroweak. We will be concentrating mostly on the electroweak

6
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part in this chapter.

2.1 The model

The SM is based on the local gauge symmetry with the gauge group SU(3)c×
SU(2)L×U(1)Y (G321) where suffix c corresponds to the color, L corresponds to

the left-handed (for fermions) and Y corresponds to the hypercharge. TheSU(3)c

part describes the strong interaction and theSU(2)L×U(1)Y part describes the elec-

troweak interaction. The later is spontaneously broken to the electromagnetic inter-

actionU(1)Q below the electroweak scale (100 GeV). So the weak and the electro-

magnetic interaction originate from the more fundamental electroweak interaction.

The charge generatorQof U(1)Q is related toT3L, the diagonal generator ofSU(2)L,

andY , the generator ofU(1)Y, as

Q = T3L +Y .

The fermion sector of the SM comes in three generations all having the same

quantum numbers under the SM gauge group. They belong to the fundamental rep-

resentation of the SM gauge groupG321. Moreover, the SM is left-right asymmetric,

i.e., its left-handed fermions belong to different representations as compared to the

right-handed ones. The left-handed fermions are doublets under the groupSU(2)L,

while the right-handed fermions are singlets. Also the fermions can be classified

into two types, quarks and leptons. Quarks participate in both strong and elec-

troweak interactions while leptons participate only in electroweak interactions. The

quantum number assignments of the quarks are given as

QL =

(
uL

dL

)
,

(
cL

sL

)
,

(
tL
bL

)
≡ [3,2,1/6]

uR, cR, tR ≡ [3,1,2/3]

dR,sR,bR ≡ [3,1,−1/3] . (2.1)

Similarly the quantum numbers for the leptons are assigned as

ℓL =

(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)
≡ [1,2,−1/2]

eR, µR, τR ≡ [1,2,−1] . (2.2)

The right-handed counterpart of the left-handed neutrinosare absent in the model,

which leads to massless neutrinos in the SM.
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Gauge Bosons Symbols Gauge Group Quantum No

Gluons Ga
µ SU(3)c [8, 1, 0]

Non-Abelian weak boson Wi
µ SU(2)L [1, 3, 0]

Abelian bosons Bµ U(1)Y [1, 1, 1]

Table 2.1: SM gauge bosons

The SM interactions are mediated by spin one bosons known as gauge bosons.

The eight gauge bosons mediating strong interaction, called gluons, belong to the

adjoint representation ofSU(3)c. Similarly, three gauge bosons correspond to the

adjoint representation ofSU(2)L. Also, U(1)Y has one more gauge boson. The

transformation properties of all the gauge bosons are givenin table2.1.

In addition to the fermions and the gauge bosons, we need a Higgs scalar to

break the SM gauge symmetry. Its transformation property isgiven by the quantum

numbers

φ =

(
φ+

φ0

)
≡ [1, 2, 1/2] .

The kinetic term as well as the self interaction of gauge bosons are given by the

following part of the Lagrangian

Lgauge=−
1
4

Ga
µνGaµν− 1

4
Wi

µνW
iµν− 1

4
BµνBµν ,

where

Ga
µν = ∂µGa

ν−∂νGa
µ+g3 f abcGb

µGc
ν

Wi
µν = ∂µW

i
ν−∂νW

i
µ+g2εi jkW j

µWk
ν

Bµν = ∂µBν−∂νBµ .

f abc andεi jk represent the structure constant of the Lie groupsSU(3)c andSU(2)L

respectively. g1, g2 andg3 are the three gauge coupling constants of the groups

U(1)Y, SU(2)L andSU(3)c respectively.

The couplings of the gauge bosons with the fermions and the Higgs boson arise

by simply imposing the local gauge symmetry on the free fermions and the Higgs

boson. The local gauge invariance requires partial derivative (∂µ) present in the ki-

netic term of the fermions and the Higgs boson to be replaced by covariant derivative

(Dµ). The most general covariant derivative is related to the partial derivative as

Dµ = ∂µ− i
(
g1YBµ+g2τiWi

µ+g3λaGa
µ

)
, (2.3)
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whereY, τi andλa are the generators of the groupsU(1)Y, SU(2)L andSU(3)c re-

spectively. Y represents the hypercharge of the particle. However, all the terms

inside the bracket in equation2.3 are present only when the matter particle trans-

forms non-trivially under all the three groups. If a particle is singlet under any

of the three groups, the corresponding term will vanish in the covariant derivative.

For example, the leptons are singlet underSU(3)c and so the term associated with

the coupling constantg3 will vanish while writing the covariant derivative for the

leptons. Similarly, the terms associated withg2 will vanish for all right-handed

fermions.

The kinetic term for the fermions and the Higgs boson in the SMalso includes

their interaction with the SM gauge bosons. The relevant part of the Lagrangian is

given as

L = iQLDQL + iuRDuR+ idRDdR

+ iℓLDℓL + ieRDeR

+
(
Dµφ

)†
(Dµφ) ,

whereD = Dµγµ.

2.2 Spontaneous symmetry breaking

We know that the weak interaction is a finite range interaction while the electro-

magnetic interaction is an infinite range interaction. As the photons are massless

spin one bosons, it can carry the electromagnetic forces up to infinite range. On the

other hand, the finite range dynamics of the weak interactionrequires rather massive

force carriers. So, three out of four gauge bosons corresponding to the electroweak

part of the SM should get appropriate masses.

But, the SM gauge symmetry forbids mass term for any of the gauge bosons.

However, if we introduce gauge boson masses by hand, it will spoil gauge invari-

ance and renormalizability. The mechanism to provide masses to the relevant gauge

bosons without destroying the renormalizability of the theory, known as Higgs

mechanism, is based on spontaneous breaking of SM gauge symmetry.

The spontaneous breaking of a given symmetry is achieved by writing the Higgs

potential such that the minima of the potential correspond to a finite vacuum expec-

tation value(vev) of the Higgs field. In other words, the ground state of the theory

does not respect the underlying gauge symmetry and breaks itspontaneously. Mass

terms for the gauge boson are automatically generated once the theory is expanded

around the new vacuum. However, the renormalizability of the theory is still main-
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tained due to the underlying gauge symmetry.

The Higgs potential in the SM is given as

L (φ) =−µ2

2
φ†φ+

λ
4

(
φ†φ
)2

., (2.4)

whereµ2, λ > 0. The potential is bounded from down and ensures finite vev

< φ†φ >= v2 = µ2/λ .

The gauge invariance allows to choose the following vacuum for the theory

< φ >=

(
0

v

)
.

The electroweak gauge bosons obtains their mass terms by expanding the kinetic

term of the Higgs boson
∣∣Dµφ

∣∣2 around the vacuum given aboveφphys= φ−< φ >

as

△L =
∣∣Dµ < φ >

∣∣2

=
1
2

v2

4

[
g2
(
W1

µ

)2
+g2

(
W2

µ

)2
+
(
−g2W

3
µ +g1Bµ

)2
]

. (2.5)

As a result, the spontaneous symmetry breaking leads to the following charged

gauge boson

W±µ =
1√
2

(
W1

µ ∓W2
µ

)

with massMW± = gv/2. However, the presence of the mixed terms of the other

two gauge bosons
(
W3

µ , Bµ
)

in the third term of the expression2.5reveals that these

two bosons are not in their mass basis in the broken theory. However, the physical

gauge bosons
(
Zµ, Aµ

)
can be simply written as the following linear combination of

the original fields
(
W3

µ , Bµ
)

parametrized by weak mixing angleθW as

(
Zµ

Aµ

)
=

(
cosθW −sinθW

sinθW cosθW

)(
W3

µ

Bµ

)
,

where sinθW = g1
(g1+g2)

. The physical gauge bosonAµ remains massless whileZµ

becomes massive with massMZ = MW/cosθW .

It is straightforward to identifyAµas the usual gauge field corresponding to the

photon, responsible for the electromagnetic interaction,leading to the following

expression for elementary electric charge (e)
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e=
g1g2√
g2

1+g2
2

= g2cosθW .

The vacuum expectation value (vev) is estimated by using the measured value of

Fermi constantGF at low energy corresponding to four fermion interaction:

v2 =
1√
2GF

= (246GeV)2 .

The interaction of the physical gauge bosons with the fermions is described as

Lgauge = − g√
2

(
Jµ
W+ W+

µ +Jµ
W−W−µ

)
(2.6)

−g1g2

e
Jµ

Z Zµ−eJµ
QAµ , (2.7)

where the charged currentJµ
W± in the first row, the neutral currentJµ

Z and the elec-

tromagnetic currentJµ
Q in the second row are written as

Jµ
W± = ψLiγµ(τ1± iτ2)ψLi

= QLiγµ(τ1± iτ2)QLi + ℓLiγµ(τ1± iτ2)ℓLi

= uLiγµdLi +dLiγµuLi +eLiγµνLi +νLiγµeLi (2.8)

Jµ
Z = ψiγµ1

2
(cV−cAγ5)ψi

Jµ
Q = ψiγµQψi , (2.9)

wherecV = τ3−2Qsin2θW andcA = τ3, i represents the generation indices andψ
represents both left-handed and right-handed fermions.

2.3 Fermion masses and mixing

Like the case of gauge bosons in SM, the pure mass term of the SMfermions are

also not invariant under SM gauge group simply because the left-handed fermions

are doublets underSU(2)Lwhile the right-handed ones are singlets. However, the

Higgs mechanism can again be implemented to realize realistic masses for quarks

and leptons.

The left-handed fermions along with the right-handed fermions can couple to

the Higgs doublet to form invariant Yukawa terms in the SM. The relevant part of

the Lagrangian, called as Yukawa sector, is written as
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LY = QLi φ̃(Yu)i j uR j +QLi φ(Yd)i j dR j + ℓLi φ(Yℓ)i j eR j ,

whereφ̃ = iτ2φ∗ and i, j, k are the generation indices. The masses for all the SM

fermions except neutrinos arise naturally when the Yukawa sector of the SM is

expanded around the minima of the Higgs potential< φ >= v.

Lm = QLi < φ̃ > (Yu)i j uR j +QLi < φ > (Yd)i j dR j + ℓLi < φ > (Yℓ)i j eR j

= uLi v(Yu)i j uR j +dLi v(Yd)i j dR j +eLi v(Yℓ)i j eR j , (2.10)

where uL/R represents the up-type left/right-handed quarks,dL/R represents the

down-type left/right-handed quarks andeL/R represent the left/right-handed charged

leptons. The type of mass term appearing in the expression2.10is known as Dirac

type mass term for the fermions. In the next chapter, we will find out that it is pos-

sible to write an another type of Lorentz invariant mass term, known as Majorana

mass term, for charge neutral fermions like neutrinos. Now the mass matrices for

the up-type quarks(Mu), down-type quarks(Md) and charged leptons(Mℓ), in the

weak basis (as given in expression2.1and2.2), can be written as

Mu = vYu

Md = vYd

Mℓ = vYℓ .

Obviously there is no mass matrix for the neutrinos because it is not possible to

write the corresponding Yukawa term in the absence of right-handed neutrinos.

The quark and the charged lepton mass matrices are not diagonal in general.

This fact leads to what is called as fermion mixing in SM. Let us first consider the

quarks. In the three generation scenario, both up and down type quark mass ma-

trices are general 3×3 complex matrices having nine magnitudes and nine phases.

They need be diagonalized to go to their mass basis in order toprovide them defi-

nite masses. Two unitary matrices are required to diagonalize each of the matrices.

It is logical as the left-handed and the right-handed fermions belongs to the differ-

ent representations the SM gauge group and their rotation, needed to take from the

weak basis to the physical basis, can be quite independent. Let UL/R be the uni-

tary rotation that connects weak basis of left/right-handed up-type quarks to their

mass basis, i.e.uLi = (UL)ia uLa anduRi = (UR)ia uRa whereuLa/Ra represents the

left/right-handed up type quarks in their mass basis, we expect

U†
LMuUR = MDiag

u ,
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whereMDiag
u is the 3×3 real and diagonal matrix with the diagonal entries corre-

sponding to the physical masses of three up-type quarks. Similar approach to diag-

onalize the down-type quark mass matrix can be adopted with the rotation matrix

DL corresponding to the left-handed and andDR to the right-handed down quarks

as

D†
LMdDR = MDiag

d .

One may think that the quarks can be rotated from the weak basis to the mass

basis without any physical consequences. But it not true dueto the presence of

charged current interaction term as shown in expression2.8. Although the charge

current interaction term is diagonal in the weak basis(uLi, dLi), that we started with,

it no longer remains same once it is rewritten in the physicalbasis. For example,

(
Jµ
W+ W+

µ

)
= uLiγµdLiW

+
µ +h.c.

→ (UL)ia uLaγµ(DL)ib dLbW
+
µ +h.c.

→ uLaγµ
(
U†

LDL

)
ab

dLbW
+
µ +h.c.

The combined unitary matrixU†
LDL is called as Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix

V = U†
LDL .

However, the observable CKM mixing matrix can only infer about the combined ef-

fect of the unitary rotation matrices of left-handed up and down type quarks and not

the individuals. Even similar kind of physical consequenceis not possible for the ro-

tation corresponding to the right-handed quarks simply because they do not appear

in the charge current interaction term. Although they appear in neutral current in-

teraction term, any such combined effect of rotations for both left and right-handed

quarks exactly cancels as the same type of quarks (either up or down) are present in

any of the Neutral current terms.

The unitary CKM matrix has three magnitude and six phases forthree genera-

tion. However, five of the phases can be absorbed in the redefinition of the quarks.

The single unremovable complex phase produces CP violationin the quark sector

which has been confirmed experimentally.

Unlike the quark sector, there is no such mixing possible in the charge current

interaction in the leptonic sector. The absence of mass matrix for neutrinos forbids

neutrinos to obtain a fixed mass basis. So the left-handed unitary matrix for di-

agonalizing the charged lepton mass matrix, which appears in the charged current

interaction term, can be absorbed in the redefinition of the weak basis of the neu-
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trinos leading to no observable effect. However, we have nowfirm evidences that

neutrinos do have masses which can be accommodated only whenwe go beyond

SM and look for some mass generating mechanism.



Chapter 3

Neutrino masses and mixing

There exists three flavors of active left-handed neutrinos with no right-handed part-

ner in the SM leading to no masses for the neutrinos. However,the robust evidences

of neutrino oscillations have given first push to go beyond SMto allow masses for

the neutrinos to explain the oscillations. However, the charge neutrality of the neu-

trinos opens up two possibilities for the nature of their masses. They can either

posses Dirac masses with separate particle and antiparticle identity like any other

charged fermions or can have Majorana masses which means no difference between

neutrinos are antineutrinos like photons. While all the parameters entering in the

neutrino oscillations are fairly known, the nature and the absolute scale of their

masses are still to be probed through the experiments involving the beta decay and

the neutrinoless double beta-decay processes.

3.1 Neutrino masses: Dirac and Majorana

The basic difference between a Dirac and Majorana neutrino comes from the fact

that the Dirac neutrino respects the lepton-number conservation while the Majorana

neutrino violates it by two units. Allowing the lepton-number violating processes

makes the Majorana case to be more interesting and phenomenologically rich to

study.

A study of the Lorentz transformation property of a four component Dirac

fermion reveals that it consists of two independent two-component Weyl spinors.

Decomposing the four component spinor under the groupSU(2)×SU(2)∗, locally

isomorphic to the Lorentz groupSO(3,1), reads

ψ(4)≡ ψL(2,1)+ψR(1,2) ,

where ψLand ψR correspond to left-handed and right-handed component of the

Dirac fermion, respectively . The two independent Weyl spinors can be projected

15
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out by the chiral projection operator1
2 (1± γ5)as

ψL =
1
2

(1+ γ5)ψ

ψR =
1
2

(1− γ5)ψ .

The decomposition is invariant under the Lorentz group asψL andψR transform as

two separate irreducible representations. However, the two representation matrices

transformingψL (UL) andψR (UR) , in the chiral representations ofγ matrices, can

be related as

UL =
(
U−1

R

)†
γ0 . (3.1)

The discrete parity transformation(P ) takes the left and the right-handed Weyl

spinors into each other as

ψL
P←→ ψR.

Obviously, the SM is not invariant under parity transformation as its left-handed

fermion members are doublets underSU(2)L while the right-handed ones are sin-

glets. So the a Lagrangian for a Dirac particle in terms of itsWeyl components can

be written as

LD = iψLγµ∂µψL + iψRγµ∂µψR−mD (ψLψR+ψRψL) .

The mass term can be shown to be invariant under Lorentz transformation using

the relation3.1. It is apparent that in the absence of mass term,ψLandψR are just

the two independent Weyl spinors with no physical connection. It is only the mass

term which connects the two Weyl spinors. In other words the combination of two

Weyl spinors connected with the mass term is interpreted what is known as a Dirac

fermion. Moreover, one can easily notice that the Lagrangian is invariant under a

U(1)Q symmetry where bothψL andψR have the same quantum numbers for charge

(Q) while their c-conjugate
(
ψL/R

)c
correspond to (−Q) charge. It means a Dirac

mass term can be constructed only with those two Weyl fermions which have same

charges if there exists aU(1)Q symmetry, local or global.

However, it is also possible to construct a Lorentz invariant mass term for a

single Weyl spinor as
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LM = iψLγµ∂µψL−
1
2

M
(
(ψL)

cψL +h.c.
)

= iψLγµ∂µψL−
1
2

M
(
(ψL)

T CψL +h.c.
)

,

where(ψL)
c is the c-conjugate ofψL

(
= C(ψL)

cT)
. Although this mass term

is invariant under Lorentz transformation (can be shown using expression3.1), it

can be written only for a neutral particle if there exist aU(1)Q symmetry in the

theory. In our nature, we have the remnantU(1)Q symmetry corresponding to the

electromagnetic interaction . All the SM fermions except neutrinos are charged par-

ticles and, hence, can be provided only the Dirac masses by writing the Dirac mass

term with the help of two Weyl spinors having same charges. However, a charge

neutral Weyl spinor like the SM left-handed neutrino can have a Lorentz invariant

Majorana mass term. However, such a mass term for the neutrino is allowed under

the remnantU(1)Q gauge symmetry, it is forbidden under the SM gauge symmetry.

This is because the Yukawa couplings, which can provide the Majorana mass terms

for the neutrinos in the broken symmetry, are forbidden under SM gauge group.

The SM does not allow both Dirac and Majorana masses for the neutrinos simply

because the left-handed neutrinos do not have the right-handed partners to write

the Dirac mass term and the Majorana masses for the left-handed neutrino are not

possible to write. However, several extensions of SM, whichwe have to do anyway

to explain neutrino masses, are able to provide Dirac massesor Majorana masses or

both for the neutrinos.

3.2 Neutrino mixing

In the previous section, we concluded that the neutrinos canbe given either the

Dirac or the Majorana masses due to its charge neutrality. However, generation of

neutrino masses requires new physics beyond SM. In the present section, we will

assume neutrinos to be massive by some or other mechanism andstudy only its

phenomenological consequences.

Let us first consider the case of Dirac neutrinos which can be trivially accom-

modated in the SM by introducing the singlet right-handed neutrinos. From the

standpoint of mass generating mechanism, this will providean equal footing for

both quarks and leptons. Moreover, the generic concept of mixing in the quark

sector can be comfortably borrowed to explain mixing in the leptonic sector.

Like the quark mass matrix, the charged lepton mass matrix can in general be

diagonalized by a bi-unitary transformation. Without lossof generality we can as-
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sume the charged lepton mass matrix to be real, positive and diagonal to start with.

In other words, the flavor basis of the charged leptons can be safely assumed to be

same as its mass basis.

The charged-current interaction term in the leptonic sector is given by

Lcc =
g√
2

ēLiγµνLi W
−
µ +h.c. (3.2)

in the mass basis (eLi , i = e,µ,τ) of charged leptons ,i.e., the flavor statese,µ,τ cor-

respond to physical states with our assumption. The flavor ofa neutrino produced in

association with a charged lepton is always same as the flavorof the charged lepton.

However, the flavor states of the neutrinos need not be same asits mass states and

so the neutrino mass matrix, in the chosen basis, is not real and diagonal in general.

Like the quark sector, the Dirac neutrino mass matrix can be diagonalized by

two unitary matrices, one for rotating the left-handed neutrinos and other for the

right-handed one. The one for the left-handed neutrinos appears in the charged

current interaction term (3.2) and solely represents the mixing matrix in the leptonic

sector in the chosen mass basis for charged leptons. This unitary mixing matrix, like

quarks, has three magnitudes and one physical phase.

However, the situation is slightly different in the case of Majorana neutrinos.

For the case of Majorana neutrinos, the neutrino mass term for the three generation

scenario can be written as

LM = mνi j νT
iL C ν jL (3.3)

Unlike the Dirac case, the Majorana neutrino mass matrix comes out to be a 3×3

complex as well as symmetric matrix. The symmetric nature ofthe mass matrix

of the Majorana neutrinos at the low energy requires only oneunitary matrix to

diagonalize it, which is not possible in the case of the Diracneutrinos. IfU is the

diagonalizing neutrino mass matrixmν, then we have

U† mν U∗ = K2
P mDiag

ν ., (3.4)

wheremDiag
ν = diag[m1, m2, m3] is a real diagonal matrix andKP is a diagonal

phase matrix. The unitary matrixUia (with i, j = e,µ,τ anda,b= 1,2,3) relates the

physical neutrino statesνa (with massesma) to the weak states

νa = Uai νi +KPaa
2 U∗ai νc

i , (3.5)

so that the physical neutrinos satisfy the Majorana condition

ν = K2
P νc. (3.6)



Chapter 3. Neutrino masses and mixing 19

The unitary neutrino mixing matrixU is able to diagonalize themν but it does

not guarantee the real mass eigenvalues. However, the unitary matrixU combined

with the Majorana phase matrixKP can serve the purpose. This combined form

U andKP is known as the the neutrino PMNS mixing matrixUPMNS [12–14], The

UPMNSmatrix can diagonalize themν with real eigenvalues and is related toU and

KP as

UPMNS = U KP .

The standard PDG (Particle Data Group) parametrization [29] of the PMNS

mixing matrix is given as

UPMNS= R23(θ23)R13(θ13,δ13)R12(θ12)Uph, (3.7)

whereUph = diag.(1,eiη,ei(ξ+δ13)) , δ13 ∈ [−π,π] andRi j (θi j ) is the rotation

matrix in the(i, j) plane of the neutrino mass matrix. The expanded form of the

PDG parametrization reads as

UPMNS=




c12c13 s12c13 s13e−iδ13

−s12c23−c12s23s13eiδ13 c12c23−s12s23s13eiδ13 s23c13

s12s23−c12c23s13eiδ13 −c12s23−s12c23s13eiδ13 c23c13




.Uph,(3.8)

whereci j , si j stands for cosθi j and sinθi j respectively.

It is straightforward to observe that the PMNS mixing matrixin the case of Ma-

jorana neutrinos is different from the mixing matrix one in the case of Dirac neu-

trinos (or theCKM mixing matrix for quarks) in the sense that it is endowed with

two extra CP violating phasesη andξ [15]. In the Dirac case, these two phases

can be absorbed in the redefinition of the neutrino fields and,hence, turn out to be

unphysical. However, the same kind of absorption is not possible in the case of Ma-

jorana neutrinos due to the Majorana condition given in expression3.6and one end

up with the two more physical phases usually called as Majorana phases. The two

physical phases inUph acts as the new sources of CP violation. We will study their

CP violating nature in detail in the next chapter. However, the two phases are not

relevant for the neutrino oscillation because the parameter entering in the neutrino

oscillation belongs to the matrixU only. So the theory of neutrino oscillation can
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be formulated in terms of matrixU without worrying about the Majorana phases.

3.3 Neutrino oscillations and evidences

From the basic concepts of quantum theory, we know that the state that do not

evolve with time are the physical states or mass eigenstates. A state described by

a linear combination of mass eigenstates does not remain invariant and do evolve

with time. Similar situation happens to occur in the case of massive neutrinos.

The neutrino participates in charged-current interactionwith definite flavor same

as the flavor of the associated charged lepton. So the flavor ofthe neutrino is decided

by the flavor of the charged lepton involved in the same charge-current interaction.

However, the fact that the flavor states of the neutrinos are not the mass eigenstates

leads to the phenomena of neutrino flavor oscillation. If a neutrino of a particular

flavor is allowed to travel a distance before its detection, it can evolve in between

and the flavor of the detected neutrino may not correspond to the original flavor of

the neutrino.

The neutrinos in its physical state| νa > with massesma and energyEa evolves

with time t by a phase only as

| νa(t) >= e−iEat | νa(0) > .

The time evolution of a neutrino of a particular flavori at t = 0 will be given as

| νi(t) >= ∑
a

e−iEatU∗ia | νi(0) > .

The probability amplitude of detecting a neutrino with flavor j after time t can be

written as

< ν j | νi(t) >= ∑
a

e−iEatU∗iaU ja .

For the ultra-relativistic neutrino, one can have the following approximation

Ea≃ E +
m2

a

2E
.

Now replacingt byL the distance traveled by the neutrino, the probability amplitude

turns out to be

< ν j | νi(L) >= ∑
a

e−i(E+m2
aL/E)U∗iaU ja .

The probability of the process will be just the squire of the probability amplitude
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P
(
νi → ν j

)
≡< ν j | νi(L) >2 = δi j −4 ∑

a>b

Re
(
U∗iaU jaUibU∗jb

)
sin2

[△m2
abL

4E

]

+2 ∑
a>b

Im
(
U∗iaU jaUibU∗jb

)
sin

[△m2
abL

2E

]
,

where△m2
ab = m2

a−m2
b. It is straightforward to realize that the necessary condition

for the neutrinos to oscillation is that their mass square differences should be finite.

3.3.1 Solar neutrinos

The first indication of the solar neutrino oscillation was noticed long back in 1967

in Homestake experiment by Davis and his collaborators [30, 31]. It was an radio-

chemical experiment to detect the solar neutrino flux using the inverse beta-decay

process

νe+ 37Cl→ 37Ar +e− .

By counting the Argon atoms by the radiochemical methods, the experiment

found noticeable deficit in the observed electron neutrino flux compared to the flux

predicted by the standard solar model (SSM). However, it wasnot clear at that time

whether the SSM has to be revised or some new physics is neededto explain the

observed deficit. Later, GALLEX [32] and SAGE [33] experiments also based on

radiochemical techniques , but with lower energy thresholdof neutrinos, produced

similar results.

However, these radiochemical experiments were not able to provide the direc-

tional correlation of the incoming flux from the sun. The situation was revolution-

ized when a real time experiment, the Kamiokande (1987 to 1996) [34], based on

Cherenkov techniques was able to provide directional as well as energy information

of the incoming neutrinos. This is possible by observing theCerenkov radiation

produced by the relativistic electrons scattered elastically by the high energy neu-

trinos

να +e−→ να +e− .

However, the scattering is dominantly sensitive to the electron neutrinos be-

cause its cross-section is six times higher compared to other two flavor neutrinos.

Since the threshold energy for neutrinos was much higher, about 7 MeV, only the
8B neutrinos from the sun were possible to be detected in Kamiokande. The ex-

periment used kilo tons of water in a cylindrical tank surrounded by thousands of
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photomultiplier tubes (PMTs) to detect the Cherenkov radiation. Based on8B neu-

trinos detection, Kamiokande reported the measured neutrino flux to be around half

of what is expected from the SSM. So the Kamiokande was first toconfirm the

disappearance of electron neutrinos in the solar neutrino flux.

Later, the role of Kamiokande was replaced by Super-Kamiokande [6, 35–38]

which started in 1996 with more sensitivity and lower value of threshold energy for

the neutrinos( around 5 MeV). However, it was based on similar experimental tech-

niques. The first phase of the experiment took data till July 2001 and measured the
8B neutrino flux to be(2.35±0.02(stat)±0.08(sys))×106cm−2s−1 [39] which is

less than half of what is expected from the SSM.

However, all the above experiments fails to address the question whether the

incoming total solar neutrino flux is actually same as expected. The amount of

the disappearance of electron neutrinos can only be then predicted with confidence.

The confusion about the reliability of the SSM was removed when Sudbury Neu-

trino Observatory (SNO) measured the total neutrino flux in all flavors coming from

sun [7, 8, 40, 41]. The SNO is also a real time experiment based on Cherenkov

techniques but uses heavy water(D2O) instead of the ordinary water. Using heavy

water, the SNO was able to detect both electron neutrinos through the charged in-

teraction as well as all active neutrino flavors through the neutral current interaction

along with the interactions involving scattering:

νe+d → p+ p+e− (chargedcurrent) ,

να +d → να + p+n (neutralcurrent) ,

νe+e− → νe+e− (elasticscattering) .

While charge current process is only sensitive to the electron neutrino, the neu-

tral current interaction is independent of the neutrino flavor. So the SNO could

measure both the electron neutrino flux and the total neutrino flux coming from the

sun independently. The ratio of the two fluxes is expected to be 1 in the absence of

any oscillation which is in contradiction to what has been measured [8]

FluxCC

FluxNC = 0.306±0.026(stat)±0.024(syst) .

The ratio confirms that solar neutrinos undergo oscillationindependent of SSM.

3.3.2 Atmospheric neutrinos

The collision of the nuclei of the upper atmosphere with the cosmic ray protons

produces what are called as atmospheric neutrinos. They production comes from
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the following chain process:

p+X→ π± + Y

π± → µ±+νµ
(
νµ
)

µ±→ e±+νe(νe)+νµ
(
νµ
)

.

This production of the high energy neutrinos, above a few GeV, in the upper at-

mosphere turns out to practically uniform around the earth.A detector on the earth

surface can detect neutrinos both down-going and up-going.The down-going neu-

trinos travel only few tens of kilometer while the up-going neutrinos coming from

the opposite side of the globe travel distance of about several thousand kilometers.

In the absence of any neutrino oscillation, the flux of both upand down-going neu-

trinos of a given flavor would be expected to remain same. Moreover, the ratio of

the muon neutrino flux to that of electron neutrino flux can be predicted to be around

2 by just looking at the chain reaction.

However, if neutrinos do oscillate one would expect asymmetry in the observed

amount of up and down-going fluxes, defined asAα =
(

U−D
U+D

)
α, simply because

the neutrinos coming from the other end of the globe travel enough distances to

oscillate into some other flavors. In fact the asymmetry has been observed in the

experiments, first reported by Super-Kamiokande collaboration in 1998 [5]. They

measured the following up-down asymmetry in muon and electron neutrino fluxes

for multi-GeV events

Aµ = −0.296±0.048±0.01,

Ae = −0.036±0.067±0.02.

While there is a clear asymmetry in the muon neutrino flux, theasymmetry in

the electron neutrino flux is practically zero. This observed asymmetry in muon

neutrino flux was the first clear evidence of atmospheric muonneutrinos oscillation

to the tau neutrinos.

3.3.3 Reactor neutrinos

Nuclear reactors are rich sources of artificial electron antineutrinos(νe). The an-

tineutrinos are mainly produced due to the nuclear fission ofthe isotopes of Ura-

nium and Plutonium. The energy spectra and flux ofνe are estimated by studying

its correlation with thermal power of the reactor. The reactor neutrino experiments
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basically looks for some deficit in the expectedνe flux at certain distance from the

reactor. In order to obtain observable oscillation at shortdistances, one relies on

measuring the disappearance ofνe of few MeV energy.

The reactorνe are detected through inverse neutron decay reaction

νe+ p→ n+e+ .

The produced positron soon annihilates with the surrounding electron and the gen-

erated energy can be seen in the scintillator detector. Theνe detection is finally

confirmed once the positron detection is consequently followed by neutron-capture

signal. Neglecting the small recoil of the neutron, the energy of the incomingνe

can be easily correlated with the energy of positron to get threshold energy ofνe to

be around 1.8 GeV.

The first such reactor experiment was CHOOZ experiment [11, 42, 43] which

was located near CHOOZ power plant in Ardennes, France at about 1 km distance.

It started taking data in April 1997 up to July 1998 and measured no noticeable

disappearance ofνe.

An another such experiment is KamLAND (Kamioka liquid scintillator An-

tineutrino Detector) experiment [9, 44]which is located in the same cavity of

Kamioka mine where Kamiokande experiment was functioning.It has been de-

signed to detect theνe coming from several reactors in Japan at an average distance

of 180 km. Based on the data taken between 2002 to 2004, KamLAND showed a

clear disappearance ofνe with the observed ratio of measured flux to the expected

one

R= 0.658±0.044±0.047,

indicating towards the clear phenomena of neutrino oscillations.

3.3.4 Accelerator neutrinos

An another source of artificial neutrinos are due to the accelerators where it is possi-

ble to get controlled and directional beam of the neutrinos.The accelerator neutrino

beam along its axis do not undergo much loss in its flux intensity unlike the case of

reactor neutrinos where the antineutrino flux is isotropic and decreases rapidly with

the distance. The neutrino beam in the accelerators comes from the decay of pions

in flight produced by the collision of accelerated protons ona fixed target:
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p+ target→ π± + Y

π± → µ±+νµ
(
νµ
)

µ±→ e±+νe(νe)+νµ
(
νµ
)

.

In fact the nature of the neutrino production in accelerators is similar to the

neutrino production in the Atmosphere. So the accelerator based experiments can

serve as an confirming test of the atmospheric neutrino oscillation. The detector is

situated at the distance of several hundred kilometers fromthe accelerators in the

path of the intense neutrino beam.

The first of such an accelerator neutrino experiment has beenlong baseline K2K

experiment [10, 45, 46] with a distance gap of 250 kilometers from the KEK labo-

ratory to the Super-Kamiokande detector in the Kamioka mine. The first phase of

K2K experiment started from June 1999 to July 2001. The second phase collected

the data from January 2003 to February 2004. Results of the K2K experiment are

found in very good agreement with the results of Atmosphericneutrino experiments.

An another similar type of experiment is Main Injector Neutrino oscillation Search

(MINOS) [47–49] working in the same range of L/E. In addition to the study of

muon neutrino disappearance, it is also looking for electron neutrino appearance.

To date, MINOS is also in good agreement with the results of atmospheric neutrino

experiments.

3.3.5 Global fit of neutrino oscillation data

Based on the parametrization of neutrino mixing matrix in the expression3.8, the

global fit to the parameters has been estimated at 90% CL as [29]:

∆m2
21 = m2

2−m2
1 = (7.59±0.20)×10−5 eV2

∆m2
32 = m2

3−m2
2 = (2.43±0.13)×10−3 eV2

sin2(2θ12) = 0.87±0.03

sin2(2θ23) > 0.92

sin2(2θ13) < 0.19. (3.9)

Moreover, there are two possible configuration of hierarchy, normal and inverted

hierarchy, in the neutrino mass spectrum as shown in figure3.1.
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Figure 3.1: Two configuration for neutrino mass spectrum [1]

3.4 Direct detection of neutrino masses

The neutrino oscillation experiments are able to provide information about the mix-

ing angles and the mass squired difference. However, they donot infer anything

about the absolute mass scale of the three neutrinos. It is here where the non-

oscillation experiments play important role. The issue canbe addressed by experi-

ments like beta decay and neutrinoless double-beta decay.

3.4.1 Beta decay

Nuclear beta decay can serve as the most sensitive method to measure the mass of

the electron neutrinos:

(A, Z) → (A, Z+1)+e−+νe

n → p+e−+νe .

By measuring the end point of the spectral distribution of electron in the nuclear beta

decay, one can infer about absolute mass of the electron neutrinos. The Tritium

beta decay is believed to be the most suited candidate for thepurpose from two

considerations (1) it has the smallest Q-value(= 18.574)KeV among all known beta

decays and (2) the atomic structure of the tritium atom is less complicated compared

to the other heavier atoms facilitating the accurate calculation of the atomic effect.

3H→3 He+e−+νe.
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Based on the tritium beta decay experiment, Mainz [50] and Troitzk [51] have

provided the best constraint on the electron neutrino mass both at 95% confidence

level:

mνe < 2.3eV (Mainz)

mνe < 2.5eV (Troitzk) .

A future beta decay experiment KATRIN, a joint collaboration of Mainz and

Troitzk, is scheduled to start in 2010 and expected to achieve sensitivity of 0.2 eV

to electron neutrino mass.

3.4.2 Neutrinoless double beta decay

If neutrinos are Majorana fermions in nature, the bounds from the beta decay exper-

iments can be improved by observing the allowed neutrinoless double beta decay

process. Although extremely weak double-neutrino beta decay (2νββ) has been

observed in several candidates, a clear evidence of the neutrinoless double decay

(0νββ) is still missing. A 2νββ occurs when an even-even nucleus decays to an

another even-even nucleus where the single beta decay is energetically forbidden.

(A, Z) → (A, Z+2)+e−+e−+νe+νe

n+n → p+ p+e−+e−+νe+νe (2νββ) .

However, the Majorana neutrinos can allow the double beta decay without any

emission of the neutrinos.

(A, Z) → (A, Z+2)+e−+e−

n+n → p+ p+e−+e− (0νββ) .

This 0νββ decay is an extremely rare process and is very difficult to observe.

However, observation of any such process would be very interesting for particle

physics as it would not only confirm the Majorana nature for the neutrinos but would

also imply lepton-number violation in nature by two units. The amplitude of the

process is proportional to the effective mass

< m>= ∑
i

U2
eimi = mee,

wheremee is the (1,1) element of the neutrino mass matrix written in the mass basis

of charged leptons.



Chapter 3. Neutrino masses and mixing 28

The most sensitive experiment on 0νββ decay has been carried out by

Heidelberg-Moscow group using 11 kg of enriched76Ge. It looked for the decay of
76Geto 76Sethrough the following 0νββ process

76Ge→76 Se+2e− .

By analyzing the data accumulated from August 1990 to May 2003, the group

has claimed to observe 29 events of 0νββ decays corresponding to the following

range of the effective Majorana neutrino mass with 99% confidence level[52–54]:

mee= (0.1−0.9) eV.

However, the interpretation of the data is still controversial and confirmation of

the result is still awaited.



Chapter 4

CP violation in neutrino mass matrix

In the SM there is only one source of CP violation, which is in the charged-current

mixing matrix in the quark sector. The charged-current mixing matrix in the quark

sector contains one CP phase, which has been observed. It is not possible to identify

the position of the CP phase, since it is possible to make any phase transformations

to the quarks. However, it is possible to define a rephasing invariant quantity as

product of elements of the mixing matrix that remains invariant under any rephasing

of the quarks [55–58]. This is known as Jarlskog invariant.

In the leptonic sector, SM does not allow any CP violation. Ifone considers

extensions of the SM to accommodate the observed neutrino masses, then there can

be several CP phases [15, 59–62]. In the simplest scenario of three generations,

there could be one CP phase in the mixing matrix in the leptonic sector, similar to

the quark sector. In addition, if neutrinos are Majorana particles they can have two

more Majorana CP phases[59]. In this case it is possible to work in a parametriza-

tion, in which all the three CP phases could be in the charged-current mixing matrix

in the leptonic sector. One of these CP phase will contributeto the neutrino oscil-

lation experiments, while the other two will contribute to lepton-number violating

process like neutrinoless double beta decay. A natural explanation for the smallness

of the neutrino masses comes from the seesaw mechanism [18–20].

The CP phases in the leptonic sector has been studied and rephasing invariants

for both lepton-number conserving as well as lepton-numberviolating CP violation

have been constructed [15–17]. In the present chapter we try to study this question

only in terms of neutrino masses. Since neutrinos are produced only through weak

interactions, it is possible to work in the weak interactionbasis, in which the charged

lepton mass matrix is diagonal. The neutrino mass matrix in this basis will then

contain all the information about CP violation. We try to findrephasing invariant

combinations of the neutrino mass elements, so that with those invariants some

general comments can be made about CP violation in the model without deriving

the structure of the charged-current mixing matrix.

29
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4.1 CP violation in the quark sector

We briefly review the rephasing invariants in terms of the mixing matrices and then

show how the same results can be obtained from the mass matrixwithout taking

the trouble of diagonalizing them in the leptonic sector. Consider first the quark

sector, where the up and the down quark mass matrices are diagonalized by the

bi-unitary transformations. Then, from the discussion of section 2.3, we know

that the charged current interactions in terms of the physical fields will contain the

Kobayashi-Cabibbo-Maskawa mixing matrix

V = U†
LDL.

Since the right-handed fields are singlets under the SM interactions, they do not

enter in the charged current interactions. In any physical processes, only this CKM

mixing matrix would appear and hence the matricesUR andDR becomes redun-

dant. So, the up and down quark masses have much more freedom and the physical

observables that can determine theVαi cannot infer about the up and down quark

masses uniquely.

For the CP violation, one needs to further consider the rephasing of the left-

handed fields. Any phase transformation to the up and down quarks will also trans-

form the CKM matrix

Vαi → ei(dα−ui).

However, if there is any CP phase in the CKM matrix, which cannot be removed by

any phase transformations of the up and the down quarks, should be present in the

following rephasing invariant known as Jarlskog invariant[55–58]

Jαiβ j = Im[VαiVβ jV
∗
α jV

∗
βi ]. (4.1)

Thus if the Jarlskog invariant is a measure of CP violation inthe quark sector and a

non-vanishing Jarlskog invariant would imply CP violationin the quark mixing. It

is apparent from the definition that any phase transformations to the up and down

quarks cannot changeJαiβ j . In a three generation scenario there can be only one

such invariant and hence the CKM matrix can have only one CP phase, which is

invariant under rephasing of the up and the down quarks.

4.2 CP violation in the leptonic sector

From the discussion of the neutrino mixing matrix in the section 10.1, we know

that the Unitary matrixU gives the mixing of the neutrinos and hence neutrino
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oscillations andKP is the Majorana phase matrix containing the Majorana phases,

which are the new sources of CP violation entering due to the Majorana nature of

the neutrinos. The unitary matrixU also can contain CP violating phases, which

should be observed in the neutrino oscillation experiments. We call these phases

in the mixing matrixU as Dirac phasesto distinguish them from theMajorana

phases. The main difference between a Majorana phase and a Dirac phase is that the

Majorana phases do not affect any lepton-number conservingprocess like neutrino

oscillations. On the other hand, the Dirac phases may contribute to both lepton-

number conserving as well as lepton-number violating processes.

From the above discussions it is apparent that the information about the CP

phases can be obtained from eitherU andKP or only from the mass matrixMν. In

the literature the question of CP violation is usually discussed by studyingU and

KP. In this chapter we point out that it is possible to study the question of CP phases

only by studying the neutrino mass matrixmν. In particular, the information about

CP violation is conveniently obtained from the rephasing invariant combinations of

neutrino mass elements. When the neutrino masses originatefrom seesaw mecha-

nism, the question of CP violation has been studied in details and similar invariants

have been constructed [61, 62]. Our approach is different in the sense that we are

working with only effective low energy neutrino mass matrixwithout restricting the

analysis to any specific origin of the neutrino masses. Our results are general and

applicable to any models of neutrino masses.

Consider the transformation of different quantities underthe rephasing of the

neutrinos

νa → eiδaνa

ℓi → eiηiℓi

Uia → e−i(ηi−δa)Uia

(KP)a → eiδa (KP)a . (4.2)

From these transformations it is possible to construct the rephasing invariants [15–

17]

siab = UiaU
∗
ib (KP)∗a(KP)b . (4.3)

In the three generation case there will be three independentrephasing invariant mea-

sures in case of Majorana neutrinos. There is another rephasing invariant which is

similar to the Jarlskog invariant in the quark sector,

tia jb = UiaU jbU∗ibU∗ja, (4.4)

so thatJia jb = Im tia jb andSiab = Im siab becomes the measure of CP violation.
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Jia jb contains the information about the Dirac phase, whileSiab contains information

about both Dirac as well as Majorana phases. One can then use the relation

tia jb = siab ·siba

to eliminate the invariantsJ’s or else keep theJ’s as independent measures and

reduce the number of independentS’s. One convenient choice for the independent

measures is the independenttia jb’s ands1ab’s. In the three generation case there is

only onetia jb and twos1ab’s.

The advantage of this parametrization is that the measureJia jb provides the

measure of the CP violation in any lepton-number conservingprocess like neu-

trino oscillation experiment, while the measuresS1ab corresponds to CP violation

in lepton-number violating interactions like the neutrinoless double beta decay or

scattering processes likeW−+W−→ ℓ−i + ℓ−j also. Moreover,Jia jb enters into the

lepton-number violation processes also.

Since only onetia jb is independent, one can define the measure of CP violation

JCP in neutrino oscillation as the imaginary part of any one of the invariants oftia jb’s

using expression4.4

JCP = Im
[
Ue1Uµ2U

∗
e2U

∗
µ1

]
. (4.5)

Similarly, other two independent measures of CP violation,J1 andJ2, can be

constructed as

J1 = Im[Ue1U
∗
e2(KP)∗11(KP)22]

J2 = Im[Ue1U
∗
e3(KP)∗11(KP)33] . (4.6)

So while rephasing invariant CP violating quantityJCP only appears in the

lepton-number conserving processes, like neutrino oscillations, all threeJCP, J1 and

J2 appears in the lepton-number violating processes, like neutrinoless double beta

decay. We will be using these construction of CP violating measures in some of the

chapters later.

4.3 Rephasing invariants with neutrino masses

We shall now proceed to construct such measures of CP violation in terms of the

mass matrix itself. The rephasing invariant measures with the mixing matrix can

allow all the rephasing invariants non-vanishing even whenthere is only one Dirac

phase. However, in the present formalism, the number of rephasing invariants is

same as the number of CP phases. So, we can find out if there is any Majorana phase
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or not. Since the neutrino mass matrix is diagonalized by a single unitary matrix,

the mass matrix contains all the information about the PMNS mixing matrix and

also the mass eigenstates. However, this is not obvious withthe CP phase. When

the neutrinos are given a phase transformation, the mass matrix will be transformed

the same way. Since the we are working in the weak basis, any transformation to the

charged leptons can be transformed to the mixing matrix and in turn to the neutrino

masses. Thus the phase transformation to the mass matrix will become

νi → eiδi νi

ℓi → eiηiℓi

Mνi j → ei(δi+δ j−ηi−η j )Mνi j

→ ei(αi+α j )Mνi j . (4.7)

Whereαi = δi−ηi .

Consider the transformationE→ XE, where X is the phase transformation to

the charged leptons. The mixing matrix will transform asU → X∗U . However, in

equation3.4 this transformation can be interpreted as a transformationto the mass

matrix,mν→X∗mνX∗. Thus any rephasing invariant measure constructed with only

the mass matrix will contain the information about CP violation.

Unlike the mixing matrices, the mass matrix is not unitary and instead it is

symmetric. We write the elements of the mass matrixmν asmi j and try to construct

the rephasing invariants in terms ofmi j . This analysis do not depend on the origin

of neutrino masses. We work with the neutrino mass matrix after integrating out

any heavier degrees of freedom and in the weak basis. Any quadratic terms that can

be constructed from the elements of the neutrino mass matrixare all real,m∗i j mi j =

|mi j |2, as expected. Let us next consider the quartic terms

Ii jkl = mi j mklm
∗
il m
∗
k j. (4.8)

It is easy to check that any three factors of the above quarticinvariant can be made

real by appropriate rephasing, but fourth one will remain complex. Since there

aren rephasing phases(δi), one can getn number of linear equations to make mass

elements of the mass matrix to be real. Son number of entries (excluding symmetric

elements) of the mass matrix can be made real, but positions of the mass entries can

not be chosen randomly. That is the reason why all the above rephasing quartic

invariants can not be made real in general. Ann×n symmetric matrix hasn(n+

1)/2 independent entries and so it has the same number of phases.By appropriate

rephasing, as argued above,n independent phases can be removed. Then, one is left

with n(n−1)/2 number of independent phases.
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To find out the minimal set of rephasing invariants we list some of the transitive

and conjugation properties of the invariants:

Ii jpl Ip jkl = |mp jmpl|2Ii jkl

Ii jkpIipkl = |mipmkp|2Ii jkl

and

Ii jkl = I ∗ilk j = Ikli j = I ∗k jil (4.9)

Using these relations it can be shown that all theIi jkl are not independent and they

can be expressed in terms of a subset of these invariantsIi j αα and the quadratic

invariants as

Ii jkl =
Ii j ααIklααI

∗
liααI

∗
k jαα

|mαα|4|miαmjαmkαmlα|2
(4.10)

Wherei, j 6= α andα = 1,2, ...,n, wheren is the number of generations. On the

other hand, any quartics of the formIi j αα can be expressed in terms ofIββαα as

Im [Ii j αα] =−Im [Iiαα j ] =− Im[Iiiαα · Iαα j j · Iii j j ]

Re [Iiαα j ] (|mii |2 |mj j |2)
. (4.11)

Thus we can express all other invariants in terms ofIii j j and hence consider them

to be of fundamental importance. However, when there are texture zeroes in the

neutrino mass matrix, some or all of these invariantsIii j j could be vanishing. In

that case, it is convenient to use theIi j αα as the measure of CP violation. For the

present we shall concentrate on the more general case with neutrino mass matrices

without any texture zeroes, when the simplest rephasing invariants areIii j j .

We can thus define the independent CP violating measures as

Ii j = Im [Iii j j ] = Im [Iii j j ] = Im [miimj j m
∗
i j m
∗
ji ], (i < j) (4.12)

These are the minimal set of CP violating measures one can construct and this gives

the independent CP violating quantities. SinceIi j satisfies

Ii j = I ji and Iii = 0,

there aren(n−1)/2 independent measures forn generations.

We elaborate with some examples starting with a 2-generation scenario. There

are threeIi jkl , two of which are real: I1211 = |m11m12|2; and I1222 =

|m12m22|2. The third one can have imaginary phase, which isI12 = Im[I1122] =

Im [m11m22m∗12m
∗
21]. In the 3-generation case there are thus three independent mea-

suresI12, I13, I23. Imaginary phases in all other quarticsIi jkl are related to only these
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three independent measures. For example,

I 2
1223=

I ∗12 · I ∗23 · I13

|m11|2 |m33|2
.

Similarly, for 4-generations there will be six rephasing invariant independent

phases, which areI12, I23, I31, I14, I24, I34.

The above arguments have been stated without considering any texture zeroes

in the mass matrix. If any element of the mass matrix is zero, then these discussions

have to be generalized. It is because some quartic invariants can become undefined

because of vanishing denominator of the right hand side of the expression4.10and

4.11. In that case one needs to consider all possible invariantsIi jkl , which could be

non-vanishing. In addition, even if all the quartic invariants vanish, the product of

six mass matrix elements of the form

Ii jkl pq = mi j mkl mpq m∗il m∗kq m∗p j

could be non-vanishing and can contribute to CP violation. When there are no

texture zeroes, the product of six mass elements do not contain any new information

about CP phases, they are related to the quartic invariants

Ii jkl pq =
Ii jkl Ipqk j

|mk j|2
. (4.13)

Other products of six mass elements are of the form,mi j mkl mpq m∗il m∗k j m∗pq =

|mpq|2 Ii jkl or |mi j mkl mpq|2.

We summarize this section by restating that when all elements of the neutrino

mass matrix are non-vanishing,Ii j , (i < j) gives the total number of Dirac and

Majorana phases. If some of the elements of the mass matrix vanishes, then either

Ii jkl or Ii jkl pq could also represent some of the independent phases.

4.4 CP violation in lepton number conserving pro-

cesses

The rephasing invariant independent phases contained inIi j , i < j, are inclusive

of the Dirac phases as well as the Majorana phases. We shall now identify the

rephasing invariant measures, which is independent of the Majorana phases, which

would enter in the neutrino oscillation experiments. The mass matrix (mν) in terms

of the diagonal mass matrix ( ˆmν) can be expressed following equation3.4as

mν = U∗ K2
P m̂ν U†.
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Thus the products

M̃ = (m†
ν mν) = (mν m†

ν)
∗ = U m̂2

ν U† (4.14)

are independent of the Majorana phasesKP and any rephasing invariant measure

constructed with elements ˜mi j of M̃ will contain only the Dirac phases and hence

should contribute to any lepton-number conserving processes.

The mass-squared elements ˜mi j transforms under rephasing of the neutrinos and

charged leptons as

m̃i j → ei(αi−α j )m̃i j . (4.15)

Since the mass-squared matrix ˜mν is Hermitian,M̃†
ν = M̃ν, the mass elements

satisfy

m̃i j = m̃∗ji . (4.16)

Thus the simplest rephasing invariant that can be constructed from the mass-squared

matrix M̃ν is justm̃11. However, from equation4.16it is obvious that this is a real

quantity. The next possible rephasing invariant would be a quadratic term, but even

that is also real

m̃i j m̃ji = m̃i j m̃
∗
i j = |m̃i j |2.

Thus the simplest rephasing invariant combination that cancontain the complex CP

phase is of the form

Ji jk = m̃i j m̃jk m̃ki (i 6= j 6= k). (4.17)

Im[Ji jk] are antisymmetric under interchange of any two indices and hence vanishes

when any two of the indices are same. We can expressJi jk in terms ofM matrix

elements as,

Ji jk = m̃i j m̃jkm̃kl

=

(
∑
α

m∗iαmjα

)(

∑
β

m∗jβmkβ

)(

∑
γ

m∗kγmlγ

)
(4.18)

Where∑α m∗iαmjα can be interpreted as scalar product ofith and jth row. A similar

invariant was constructed in the case of seesaw model of neutrino masses in ref. [?

], although the approach to the problem is completely different. In this expression,

if any one scalar product vanishes then number of independent rephasing measure

Im[Ji jk] which are independent of the Majorana phases will be reducedby one.

It is possible to express all the rephasing invariants containing the Dirac phases
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Ji jk in terms of a minimal set of(n−1)(n−2)
2 invariantsJi jn, (i < j < n) as

Ji jk =
Ji jnJ jknJkin

|min| |mjn| |mkn|
(4.19)

wheren is the index corresponding to the number of generations. Thus we define

the measures of CP violation in lepton-number conserving processes as

Ji jn = Im[Ji jn] (i < j < n). (4.20)

These invariants Im[Ji jk] are not independent of the invariantsIi jkl and can be ex-

pressed as

Ji jk = ∑
a,b,c

Iia jb · Ikaic

|mia|2
. (4.21)

So, the independent measuresIi j include these independent measures of Dirac CP

phases Im[Ji jn], (i < j < n).

There aren(n−1)/2 phases present iñM for n generations, but all of them are

not independent.(n−1) of these phases can be removed by redefining the phases

of the leptons. That leavesn(n−1)
2 −n =

(n−1)(n−2)
2 =(n−1) C2 independent phases in

M̃. This is the number of Dirac phases and may be observed in neutrino oscillation

experiments. Let us assume that some particularn−1 entries are made real with

appropriate rephasing. We can take all possible pair-product of these real entries. To

have non-real rephasing invariantJi jk , one will have to multiply pair-product with

some complex entry. For each real pair-product there correspond only one complex

entry so that there product is a complex rephasing invariantdefined as in equation

4.17. So number of all possible pair of real entries will give the number of non

vanishing rephasing measures independent of Majorana phases which is(n−1)C2 =
(n−1)(n−2)

2 . This number is same as the number of physical phases presentin M̃ as

it has been analyzed earlier.

In the 2-generation case there is only one CP phase which is a Majorana phase.

Which implies there should not be any non-vanishingJi jk , which is trivial to check.

In the 3-generation case there is only one Dirac CP measure, which is

J123 = m̃12 m̃23 m̃31 = ∑
a,b,c

[m∗a1 ma2 m∗b2 mb3 m∗c3mc1] . (4.22)

Thus given a neutrino mass matrix one can readily say if this mass matrix will imply

CP violation in the neutrino oscillation experiments.

In the 4-generation case there are three CP phases in the PMNSmixing matrix

and 3-Majorana phase. The independent rephasing invariants of Dirac phases will

be given asJ124, J134 andJ234 . One dependent rephasing invariant isJ123 which
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can be expressed as

J123 =
J124J234J

∗
134

|m̃14m̃24m̃34|2
.

In general, these invariants satisfy

Ji jkJ
∗
iklJil j = |m̃i j m̃ikm̃il |2J jkl (4.23)

for n generations, wherei, j,k = 1,2, ...,n.

We summarize this section by restating forn-generation neutrino mass ma-

trix without any texture zeroes, the rephasing invariants corresponding to the

Dirac phase areJi jn, (i < j < n). If there are texture zeroes, then some of the

Ji jk , (i < j < k, k 6= n) could also be independent.

4.5 Texture zeroes

In case neutrino mass matrix contains zero entries in all thecolumns, it is convenient

to define basic independent quartic invariants to the rephasing of charged leptons in

slightly different form as,

Ri jnn = lim
|min|,|mjn|,|mnn|→0

mi j m∗inm∗jnmnn

|min| |mjn| |mnn|
(i ≤ j andi, j 6= n) (4.24)

Limit has to be taken for allnth column elements. Any other such quartic invariant

can be expressed in terms of these independent rephasing invariantsRi jnn as,

Ri jkl = Ri jnnRklnnR
∗

linnR
∗

k jnn (4.25)

Advantage of defining the independent rephasing(to the rephasing of charged

lepton) invariantsRi jnn as the limiting case is that the expressions do not become

undefined due to presence of vanishing denominators. Let us write the invariants in

a different form as,

Ri jnn = |mi j |ei(θi j +θnn−θin−θ jn) (i, j 6= n and i≤ j)

Whereθkn is the phase present at(k,n) entry of the mass matrix. If there are some

zero entries present innth column, then the corresponding phases present in expres-

sion ofRi jnn must be unphysical. So a subset of the set of these basic independent

invariants will be having the unphysical phases associatedwith the zero entries of

thenth column. We can not define CP measures corresponding to the invariants hav-

ing unphysical phases by extracting the imaginary part of the invariants, although

we can define CP measure as usual for rest of the invariants. All the invariants de-
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fined above are invariants corresponding to the rephasing ofcharged leptons but not

rephasing of the unphysical phase corresponding to zero entries present in thenth

column. We will have to construct the full rephasing invariants to all unphysical

phases in terms above invariants. This can be done by multiplying two or more

invariants having unphysical phases in such a way that all ofthe unphysical phases

cancel out. It turns out that eliminating one of these unphysical phases correspond-

ing to the zero entries innth column reduces the number of full rephasing invariants

by one. Also, one independent full rephasing invariant (andso one CP measure)

vanishes corresponding to the zero entry present in other than nth column (ornth

row). Thus the number of independent CP measuresNCP defined as the imaginary

part of these full rephasing invariants for neutrino mass matrix havingp zero entries

andq zero rows (all the row entries are vanishing) forn generations is given by

NCP =
n(n−1)

2
− p+q (4.26)

This is equal to the number of physical phases present in the matrix which can not

be removed. In the same way we can study the mass-squared matricesM̃ and write

down the number of rephasing invariant measures independent of Majorana phases

ÑCP is given as

ÑCP =
(n−1)(n−2)

2
− r +s

wherer is the number of zero entries iñM ands is the number of those rows whose

all the entries excluding diagonal one are zero. It should benoticed that above

relation of ˜NCP is only valid if NCP is not zero.

4.6 Application to texture two-zero mass matrices

In this section, we discuss a potential application of our formulation in context of

neutrino mass matrix with two zero textures[63]. The study of all possible neutrino

mass matrices with two zero entries has revealed that only seven such matrices are

phenomenologically allowed in light of existing data on neutrino masses and mixing

[63, 64] . At the same time, the three texture zero mass matrices are found to be

inconsistent. The question of realization of the two texture zeros in see saw context

has been discussed in [65, 66]. The possibility of the origin of textures zeros is

GUT scenarios has been addressed in [67–69]. Another such possibility that has

been considered in literature is by invoking some flavor symmetry [70–72].

With our present formalism, we shall now study a class of 3-generation neutrino

mass matrices with two-zero textures, which has been listedin ref. [63]. There

are seven such mass matrices that are consistent with present information about
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Table 4.1: Phenomenologically allowed two texture neutrino mass matrices
Pattern Texture ofmν Mass spectrum

A1




0 0 ×
0 × ×
× × ×


 hierarchical

A2




0 × 0
× × ×
0 × ×



 hierarchical

B1



× × 0
× 0 ×
0 × ×


 quasi-degenerate

B2



× 0 ×
0 × ×
× × 0


 quasi-degenerate

B3



× 0 ×
0 0 ×
× × ×


 quasi-degenerate

B4




× × 0
× × ×
0 × 0



 quasi-degenerate

C



× × ×
× 0 ×
× × 0


 quasi-degenerate

neutrino masses listed in the table

From our discussions in the previous section, there can be only one CP phase

in all these cases. We shall now identify the rephasing invariants in all the cases.

Although all these matrices differ in phenomenology, as faras CP violation is con-

cerned, the interchange of the indices(2↔ 3) will not change any discussion. So,

we shall not explicitly discuss the modelsA2,B2,B4, which can be obtained by

changing the indices(2↔ 3) from the matricesA1,B1,B3 respectively.

CaseA1:

There is only one non-vanishingIi j , which is I23. The lepton-number conserving

rephasing invariant measureJ123 is given by

[J123] = Im [(m∗31m32)(m
∗
22m23+m∗32m33)(m

∗
33m31)]

= |m31|2I23 (4.27)

Thus there is only one Dirac CP phase in this case, which will contribute to the

lepton-number conserving processes. The same result is valid for A2.
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CaseB1:

In this case all the measuresIi j are vanishing. Even the invariants of the formIi j

are all vanishing. However, there is one CP phase as discussed in the previous

section. The invariantI122133 is non-vanishing, which cannot be related to to the

lower invariants byI122133= I1221· I3322/|m2
22, sincem22 = 0. The lepton-number

conserving invariant is related to this invariant by

[J123] = Im [(m∗11m12)(m
∗
32m33)(m

∗
23m21)]

= Im[I122133]. (4.28)

Again there are no Majorana CP phase. The analysis is same forthe caseB2.

CaseB3:

There is only one non-vanishing CP violating measureI13, which is related to the

lepton-number conserving measure by

[J123] = Im [(m∗31m32)(m
∗
32m33)(m

∗
13m11+m∗33m31)]

= |m32|2I13. (4.29)

There are no more CP phase left in addition to the one enteringin lepton-number

conserving processes. Replacing the indices(2↔ 3) we get for the caseB4 a similar

relation[J123] = |m32|2I12.

CaseC:

This is the most interesting case. There are no CP violating measures of the formIi j ,

although the invariantI1123 is non-vanishing. So, there is one CP phase in this case,

as expected. This is related to the CP violating measure thataffects lepton-number

conserving processes by

J123 = Im[(m∗11m12+m∗31m32)(m
∗
12m13)(m

∗
13m11+m∗23m21)]

= |m12|2I1123+ |m13|2I ∗1123.

Although this shows that the phase is a Dirac phase, in the special case ofm12= m13,

there will not be any CP violation in the neutrino oscillation experiments. This can

be verified from the fact that form12 = m13 the third mixing angle and henceU13

vanishes. In this case the CP violation can originate from a Majorana phase, since

J123 vanishes even when Im1123 is non-vanishing.

Another way to understand this is to write the mass matrix in adifferent basis.
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Whenm12 = m13, we can write the mass matrixC as




X X 0

X X 0

0 0 X


 .

In this case the third generation decouples from the rest andwe know that for two

generation there is only a Majorana phase, which corresponds to non-vanishingI12

and there is no Dirac phase, as we stated above. This is the only example of two-

zero texture mass matrices where the CP violating phase could be a Majorana phase,

but this mass matrix is not allowed phenomenologically.

Thus there are no phenomenologically acceptable two-zero texture neutrino

mass matrices, which has any Majorana phase. The only CP phase possible in

any two-zero texture 3-generation mass matrix is of Dirac type and should allow

CP violation in neutrino oscillation experiments.
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Seesaw mechanism of neutrino

masses

Observations of neutrino flavor oscillations from solar [6–8], atmospheric [5] and

laboratory neutrino experiments [9–11] have provided firm evidences that the neu-

trinos have masses, although very small. To accommodate theneutrino masses,

one needs to go beyond the SM of particle physics by extendingeither the fermion

sector or the Higgs sector of the SM. One simple way is to introduce right-handed

singlet neutrinos in the fermionic sector and generate the Dirac mass terms through

the Yukawa couplings. The inability to observe the right-handed neutrinos can be

attributed to its singlet nature as this ensures absence of any coupling of this singlets

with SM gauge bosons. From the standpoint of mass generatingmechanism, this

will provide an equal footing for both quarks and leptons. Moreover, the generic

concept of mixing in the quark sector can be comfortably borrowed to explain mix-

ing in the leptonic sector.

However, the situation turns out to be quite uncomfortable when we compare the

mass scale of neutrinos with that of charged leptons. Natural analogy from the quark

sector suggests that the neutrinos should have masses more or less of the order of

charged lepton masses. However, the observed very small masses of the neutrinos

(∼ eV) are quite far from expected (figure5.1). Obviously, the picture is not able

to provide a natural framework to explain the very lightnessof the neutrino masses

so far as origin of all SM fermion masses is expected to come from some common

fundamental structure. This along with considerations of both charge neutrality of

neutrinos and lack of any evidence for the right-handed neutrinos below the weak

scale have produced much motivation to consider the possibility of neutrinos being

Majorana fermions, in the literature.

A Majorana fermion is characterized by the feature that it isits own antiparticle.

In fact, it is possible to generate Majorana masses in the elegant seesaw framework

by introducing a lepton-number violating source at some high scale [18–20]. The

43



Chapter 5. Seesaw mechanism of neutrino masses 44

Figure 5.1: Lightness of neutrinos

seesaw mechanism not only provides a natural way to realize the suppression of

neutrino masses but also comes with an extra feature that it can explain the cur-

rent baryon asymmetry of the universe through creating the lepton asymmetry at

the early universe which is possible due to presence of the lepton-number violat-

ing source term [28, 73–83]. Depending on the different models and their matter

contents, several seesaw realizations exist in the literature with the common desired

feature that all of them can provide three light neutrinos required for the consistent

understanding of combined neutrino oscillation data from all the experiments.

5.1 Type I seesaw

As pointed out above, a naturally motivated extension of theSM would be to add

right-handed neutrinos to its fermionic content. Like any other charged fermion,

they get Dirac masses through the Yukawa couplings of the right-handed neutrinos

with the electroweak lepton doublets and Higgs doublet. Onecan also write the

Majorana mass term for these singlet right-handed neutrinoas there is no prior

reason to neglect it while writing the most general Lagrangian allowed by the SM

gauge group. However, this term will break the lepton numberby two units∆L = 2.

The characteristic feature of this seesaw scenario is that the gauge singlet

fermions (right-handed neutrinos) can have a natural Majorana mass scale much

larger than the electroweak scale, which in turn, leads to natural suppression of the
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neutrino masses. The relevant part of Lagrangian will be given as

L =

(
1
2
(NRα)c(MR)αβNRβ + ℓLiφ(Yℓ)i j eR j + ℓLiφ̃(Yν)iαNRα +H.C.

)
, (5.1)

where φ̃ = τ2φ∗ and i, j runs from 1 to 3, representing the left-handed fields.α
represent the right-handed neutrino indices.ℓLi represents the SU(2)L×U(1)Y dou-

blets,eRi andNRα are the right-handed singlets of the theory.

Before we proceed further, we would like to make an importantremark that

it is possible to add any reasonable numbers of right-handedneutrinos except one

which is not able to account for the observed non-degeneratemass spectrum of the

light neutrinos. After the electroweak symmetry breaking,the terms relevant for the

neutrino masses can be written as

−Lνmass=
1
2

(
νLi (NRα)c

)( 0 (MνD)i j

(MT
νD)i j (MR)αβ

)(
(νL j)

c

NRβ

)
,

whereMνD = Yνv is the Dirac mass matrix of the neutrinos,v is the vev of

the SM Higgs andMR is the mass matrix of the right-handed neutrinos. Since the

Majorana mass matrix is symmetric andMR≫MνD, the whole mass matrix can be

block-diagonalized as following

Block−diagonalized

(
0 MνD

MT
νD MR

)
⇒
(

mν 0

0 MR

)
,

where

mν =−MνDM−1
R MT

νD, . (5.2)

After the block-diagonalization, one gets an effective 3×3 low energy neutrino

mass matrixmν representing three light Majorana neutrinos andMR representing

the heavy Majorana neutrinos. This way of making particles light at the expense of

making another one heavy is known as seesaw mechanism and this particular one is

called as type I seesaw. The mass scale ofmν is suppressed by the scale ofMR. If

we take scale ofMνD roughly similar to the scale ofmτ, the upper bound on neutrino

masses can be converted to the lower bound ofMR as

MR > 109GeV.

Such a high scale is beyond the reach of being tested in the next generation of

colliders.
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Figure 5.2: Type I (left) and type II (right) seesaw realizations

5.2 Type II seesaw

In the type I seesaw scenario, we extended the fermionic sector of the SM by adding

two or more right-handed neutrinos. It predicts three lightMajorana neutrinos be-

low the electroweak scale. However, an important point thatneed to be realized is

that the number of degree of freedom of three light Majorana neutrinos are same to

that of three left-handed Weyl neutrinos. So, one may like toexplore the possibility

to work without introducing the right-handed neutrinos if somehow the Majorana

mass term for the left-handed neutrinos can be allowed to write. It is in fact possi-

ble by extending the Higgs content of SM, instead of fermionic content, by adding a

Higgs triplet (ξ≡ (3, 1, 1)) with hyperchargeY = 1. This Higgs triplet can couple to

the lepton doublet and is able to give consistent masses to the neutrinos provided it

gets a very tinyvev. The part of the Lagrangian responsible for the neutrino masses

is given as:

L = fi j ℓ
T
LiC(iτ2)(

−→τ �
−→
ξ )ℓL j +h.c. ,

where C represent the inverse of charge conjugation operator. The tripletξ can be

assigned lepton numberL =−2 so that the above Yukawa terms respect the lepton-

number conservation. Now, if theξ gets a non zerovev, the lepton number will be

broken by two units leading the Majorana masses for the left-handed neutrinos at

the low energy

mν =< ξ0 > f .

Expecting the Yukawa couplingsfi j to be of order one, we need to look for an

another seesaw mechanism which can naturally provide a verysmall vev for the

triplet. The most general Higgs potential of one doubletφ = (φ+,φ0) and one triplet
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ξ = (ξ++, ξ+, ξ0) is given as:

V = m2φ†φ+M2ξ†ξ

+
1
2

λ1(φ†φ)2+
1
2

λ2(ξ†ξ)2+λ3(φ†φ)(ξ†ξ)

+ µ(ξ̄0φ0φ0+
√

2ξ−φ+φ0+ξ−−φ+φ+)+h.c. (5.3)

Obviously, the couplingµξφφ violates lepton number explicitly. In the initial triplet

model [84, 85], this term is avoided by imposing the lepton-number symmetry. The

spontaneous breaking of the lepton number leads to a goldstone boson called Ma-

joron. The model predicts substantial decay ofZ boson into the Majoron andRe(ξ0)

which has been ruled out by measured decay width ofZ boson. The significance of

µξφφ term was first appreciated by [78] where it was pointed out that the presence

of this term will not only help in avoiding any Majoran at low energy but also pro-

vides an small inducedvevto the triplet. If doublet getsvevas〈φ0〉= v and triplet

gets as〈ξ0〉 = u, then one can show thatu gets an inducedvev through the figure

5.2, suppressed by square of the mass of the triplet as

u =−µv2

M2 ,

where M is the mass of the triplet. So if the mass of the tripletis very large, one

can naturally suppress the mass of the neutrinos, since the neutrino mass matrix

is proportional tou. This mechanism is called as Type II seesaw mechanism for

generating light neutrinos.

5.3 Type III seesaw

There exists two versions of seesaw mechanism named as type III seesaw in the

literature. In the first one, two or moreSU(2)L fermionic triplets are added to the

SM. It can couple to the triplet combination of lepton doublet and Higgs doublet

and can provide the Majorana mass to the neutrinos after theφ acquiresvev. In

the second version, a different type of fermionic SM singlets provide the three light

Majorana neutrinos along with the right-handed singlet neutrinos.

5.3.1 Type III seesaw with fermionic triplet

In this seesaw scenario, fermionicSU(2)L triplets (TF ) with Y = 0 are added to the

fermionic content of the SM [86]. SM gauge group allows the Majorana mass term

for the fermion triplets and their couplings with the leptondoublets and the Higgs

doublet are given as
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Figure 5.3: Type III seesaw realization with fermionic triplet

Table 5.1: Three types of seesaw mechanism

Type of seesaw Corresponding d=5 SM operator

Type I 1
Λ(ℓT

LiCτ2φ)(φTτ2ℓL j)

Type II 1
Λ(ℓT

LiCτ2
−→τ ℓL j).(φTτ2

−→τ φ)

Type III 1
Λ(ℓT

LiCτ2
−→τ φ).(φτ2

−→τ ℓL j)

L = MTi j
−→
TLiC
−→
TL j +YTi jℓ

T
LiC(iτ2)

−→τ .
−→
TL jφ .

If triplet is heavy, i.e.,MT ≫ v, the neutrino mass matrix can be written in the same

way as in type I seesaw case

mν =−v2YTM−1
T YT .

The low energy neutrino mass matrix takes the same structureas in type I seesaw

(figure5.3) . So, we need at least two fermionic triplets to account for the evidence

of the non-degenerate spectrum of the neutrino masses.

Before we proceed to the next version of type III seesaw, we would like to make

the remark that the three seesaw scenario discussed so far can be, actually, described

by a five dimensional SM operator after integrating out all the heavy degrees of

freedom in the model (table5.1).

Although the three operators in table5.1appears to be different from each other,

they can all be shown to be equivalent. There are only three possible tree-level real-

izations of this low energy operator which correspond to thethree types of seesaw

mechanism mentioned so far [87]. The difference is expected to arise only when
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the scaleΛ is probed nearby. Interesting study of all possibled = 6 operators has

been performed in [88].

5.3.2 Type III seesaw with fermionic singlet

In this scenario, the SM fermionic content is extended by adding three SM singlet

right-handed neutrinos (NR) and three other singlet Weyl fermions (SR). One may

ask how to discriminate all the singlets into two groups. Theright-handed singlets

are characterized be the feature of providing Dirac masses to the neutrinos of the

correct order and that they are prevented to acquire Majorana masses like the left-

handed neutrinos. On the other hand, theSR singlets are allowed to have the Majo-

rana masses. The coupling of both left-handed as well as right-handed neutrinos are

allowed withSR. This new mechanism is also called Type III seesaw mechanism

in the literature. The part of the Lagrangian which gives masses to the neutrinos is

given as

Lν mass= (νiL ,Nc
iL,Sc

mL)




0 (MνD)i j Finu

(MT
νD)i j 0 FinΩ

FT
m ju FT

m jΩ Mmn







ν jL

Nc
jL

Sc
nL


 . (5.4)

The low energy effective neutrino mass matrix will be given as

mν =−
(
MνD +MT

νD

) u
Ω
−MνD

(
FΩM−1FTΩ

)
MT

νD . (5.5)

The second term is known as double seesaw contribution [89, 90]. The first term

in the mass matrix is the type III seesaw contribution [91]. This seesaw scenario

has got a simple realization in the left-right symmetric model that we are going to

discuss in the next section.

5.4 Seesaw mechanism in left-right symmetric model

A very attractive extension of the SM, very different from the above, would be to

enlarge the gauge group of the SM such that the broken left-right parity is restored at

some high scale. This kind of model is known as left-right symmetric model in the

literature and has been extensively studied. The model has got historic importance

as it provides nonzero small neutrino masses and embeds seesaw in it simply by

demanding the left-right symmetry breaking at some appropriate high scale.

In the model, the SM gauge group is extended to a left-right symmetric gauge

group,GLR≡SU(3)c×SU(2)L×SU(2)R×U(1)(B−L) [92–96]. The left-right sym-

metric nature of the model immediately predicts three right-handed neutrinos. The
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electric charge is defined in terms of the generators of the group as:

Q = T3L +T3R+
B−L

2
= T3L +Y ., (5.6)

whereY = T3R+ B−L
2 . The transformation properties of the quarks and the leptons

under the left-right symmetric gauge group are given as:

QL =

(
uL

dL

)
≡ [3,2,1,

1
6
] QR =

(
uR

dR

)
≡ [3,1,2,

1
6
]

ℓL =

(
νL

eL

)
≡ [1,2,1,−1

2
] ℓR =

(
NR

eR

)
≡ [1,1,2,−1

2
]

The gauge boson (excluding gluons) sector consist of two triplets and one singlets,

other than QCD gauge bosons, as:

WµL =




W+
Lµ

W0
Lµ

W−Lµ


≡ (1,3,1,0), WµR=




W+
Rµ

W0
Rµ

W−Rµ


≡ (1,1,3,0), Bµ(B−L)≡ (1,1,1,0)

The right-handed neutrinoNR is present in all the left-right symmetric model,

which is dictated by the structure of the fermion representation and the gauge group.

As the name suggests, the left-right symmetric model is characterized by demanding

invariance of the Lagrangian under following left-right parity transformation :

SU(2)L ↔ SU(2)R

QL ↔ QR

ℓL ↔ ℓR

WµL ↔ WµR

The next important thing that need to be realized is the breaking of left-right

gauge group to the SM group:
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SU(3)c×SU(2)L×SU(2)R×U(1)(B−L) [GLRorG322D]

MR→ SU(3)c×SU(2)L×U(1)Y [GstdorG321]
mW→ SU(3)c×U(1)Q [Gem] .

For the purpose, one need a scalar Higgs transforming non-trivially under

SU(2)R. Giving a vev, with a scale high enough compared to the weak scale, to

the scalar along the SM singlet direction will serve the purpose. This scalar has

to be singlet underSU(2)L as the SM gauge group remains unbroken in the first

step. Introducing this scalar to break the left-right group, consistency demands the

need for an another scalar which transforms trivially underSU(2)R but non-trivially

underSU(2)L. Before assigning the quantum numbers to these left-handedand

right-handed Higgs fields, we discuss some interesting feature of the potential min-

imization involving the two fields. As it would be convenientto think in terms

of the vevvalues, let us assignuL as avev to the left-handed Higgs anduR to the

right-handed one. Keeping left-right symmetry in mind, onecan write the potential

as

V =−µ2

2

(
u2

L +u2
R

)
+

λ
4

(
u2

L +u2
R

)2
+

(g−λ)

2
u2

Lu2
R ,

whereµ2 > 0 andλ > 0 to ensure that the potential is bounded from the below

and one of the solution for the extremumuL = uR = 0 is maxima and not the minima

of the potential. The linear terms such asuLuR and(uL +uR) are forbidden within

the Higgs content chosen, but can appear in general when we add some more Higgs

fields specially to break the SM gauge group. The last term is crucial in deciding

the symmetry breaking pattern as the first two term are blind to the direction of the

symmetry breaking.

For the caseg < λ, one gets the solution for minima of the potential as

uL = uR 6= 0. This is unacceptable as we see the broken left-right parity in nature.

However, the caseg > λ provides two equally probable solutionsuL = 0, uR 6= 0 or

uR = 0, uL 6= 0 one of which is phenomenologically reasonable. So the left-right

symmetric potential automatically produces a symmetry breaking pattern where

left-right symmetry breaking can be naturally realized. The gauge bosons related

to the brokenSU(2)R gauge group acquire the masses with the scale similar to the

scale ofuR by absorbing the goldstone mode through the usual Higgs mechanism.

Now to break the electroweak symmetry, one introduces a bi-double (Φ) with

the quantum number(1,2,2,0) with respect to the left-right model given as:
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Φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)
: (1,2,2,0)

Assigningvevto the neutral component ofΦ field not only leads to electroweak

breaking but also provides Dirac masses to all the fermions including neutrinos in

the model as obvious from the following coupling ofΦ with the fermions:

−Lm = Yℓi j ℓLiΦℓR j +Ỹℓi j ℓLi Φ̃ℓR j +YQi jQLiΦQR j +ỸQi jQLi Φ̃QR j +h.c. ,

where Φ̃ = iτ2Φ iτ2. Although the model automatically predicts the Dirac

masses for the neutrinos, the problem of realizing naturally small masses for neu-

trinos still remains unsolved unless one tries to embed the seesaw framework in the

model. There do exist two well studied seesaw realizations in the left-right sym-

metric model in the literature.

5.4.1 Left-right type (I+II) seesaw realization

So far we have just talked about the scalar fields needed to break the left-right

symmetry but have not specified them. There are two well studied choices of Higgs

multiplets used to implement the breaking of the left-rightsymmetric gauge group.

One of them which we discuss here is characterized by introducing following set of

Higgs fields:

ξL (1,3,1,1) , ξR (1,1,3,1) , (5.7)

Giving largevev to ξR will spontaneously break the left-right group sponta-

neously and will violate theB−L quantum number by two units or the lepton num-

ber by two units. As it was discussed above, the couplingγTr
(

Φ†−→ξL ·−→τ Φ
−→
ξR ·−→τ

)

will allow the term inγv2uLuR which is linear inuL in the potential. So the field

ξL will acquire an inducedvevafter the electroweak symmetry breaking which is

related touR andv as follows:

uL = γ
v2

uR

So if uRis taken to be large enough compared to the weak scale,uL will tend to

very small value compared to the weak scale. The relation is very crucial as far as

the seesaw embedding is concerned. It is obvious to see that theSU(2)L triplet ξL

will provide very small Majorana masses to the left-handed neutrinos as in type II

seesaw scenario. At the same time,ξR will provide large Majorana masses to the
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right-handed neutrinos. The part of the Lagrangian relevant for the neutrino masses

can be given as:

L = fLi j ℓ
T
LiC(iτ2)(

−→τ ·
−→
ξL)ℓL j + fRi jℓ

T
RiC(iτ2)(

−→τ ×
−→
ξR)†ℓR j+Yℓi j ℓLiΦℓR j+Ỹℓi j ℓLi Φ̃ℓR j

Therefor, in the left-right symmetric model both the terms corresponding to

Type I and Type II seesaw mechanism appear simultaneously. After assigningvev

to both Higgs fields, above equation turns out to be:

Lν mass= (νL, Nc
L)

(
ML MνD

MT
νD MR

)(
νL

Nc
L

)
, (5.8)

whereML = uL f , MR = uR f are the mass matrix corresponding to the Majorana

mass term of the left-handed (νL) and the right-handed (Nc
L) neutrinos andMνD

is the mass matrix corresponding to the Dirac mass term of theneutrinos. Block

diagonalizing the above matrix, the low energy neutrino mass matrix is given as

mν = ML−MνDM−1
R MT

νD

= uL f − v2

uR
Y f−1YT

As γ≈ 1, the scale of both the terms surprisingly comes out to be of same order

in the left-right symmetric model. Hence the correspondingcontributions to the

neutrino masses due to the type I and II seesaw terms are automatically suppressed

as soon as we demand a relatively high scale breaking of the left-right gauge group.

So the left-right symmetric model provides a natural realization of both type(I+II)

seesaw mechanism consistent with each other.

5.4.2 Left-right type III seesaw realization

An alternate scenario of breaking the left-right gauge group can also be achieved by

the following set of Higgs field:

χL (1,2,1,1/2) , χR (1,1,2,1/2) , (5.9)

Let us denote theirvevvalues byvL andvR. Obviously, providing a largevevto

χR will break the left-right gauge group at the desired high scale. Like the previous

scenario,χL can again acquire an very small inducedvevdue to the presence of the

coupling ofχL with χR andφ leading to the same kind of relation:
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vL = γ
′ v2

vR

Both the scalarsχL,R break theB−L number or the lepton number by one unit,

so will not be able to provide the Majorana masses to either ofthe neutrinos. How-

ever, one can induce the Majorana masses for the neutrinos byintroducing three

fermionsSR, singlet under the left-right gauge group having very smallMajorana

masses.

SR ≡ (1, 1, 1, 0)

These singlets will interact with the neutrinos and will generate the Majorana

masses for the neutrinos. The terms contributing to the neutrino masses are:

L = Mmn(S
c
L)

T
mCSc

Ln+FL jmℓT
LiCχ⋆

LSc
Lm+FRim(ℓc)T

Li CχRSc
Lm+Yℓi j ℓLiΦℓR j+Ỹℓi j ℓLi Φ̃ℓR j+h.c.

Assigning thevevs, we get

Lν mass= (νiL, Nc
iL , Sc

mL)




0 (MνD)i j FinvL

(MT
νD)i j 0 FinvR

FT
m jvL FT

m jvR Mmn







ν jL

Nc
jL

Sc
nL


 , (5.10)

which is similar to the expression5.4. So it is also possible to realize the type

III seesaw mechanism of the neutrino masses in the left-right symmetric scenario

by usingχL andχR Higgs fields which simultaneously play the role of breaking the

left-right parity.

In both the left-right symmetry breaking scenario, we started with conserved

left-right parity. One can also have left-right symmetric models starting with ex-

plicitly broken parity. In an other class of left-right symmetric models, the parity is

spontaneously broken by introducing a singlet Higgs field odd under the left-right

parity transformation. The detailed discussion of all these cases has been outlined

in [97].



Chapter 6

Grand unified theories and neutrino

masses

The idea of Grand Unified Theories (GUTs) has emerged as an attractive possibility

to go beyond the SM . It promises to unify the three different gauge coupling con-

stants of the SM. The basic idea is that the three coupling constants vary differently

with respect to the energy scale and their renormalization group running shows that

they tend to meet at some very high energy scale (∼ 1015GeV) known as the GUT

scale. Some new physics is expected to appear at this scale which can be described

by a bigger gauge group with single coupling constant, i.e.,the grand unified group.

GUTs provide a natural platform to address some of the most appealing issues

which is not possible elsewhere. It reduces the number of required particle irre-

ducible multiplets in the SM into lesser number of irreducible multiplets under the

grand group. As a consequence the ad-hoc looking assignmentof the quantum

number to the SM fermions gets a predictive framework, for example the charge

quantization remains no more a surprise in GUTs. Another very attractive feature

is that the fermion mass matrices, looking independent of each other in the SM, get

related in the GUT framework.

One of the common characteristic features of the GUTs is thatit predicts lepton

and baryon number violating interactions mediated by exchange of either a super

heavy gauge boson or a super heavy Higgs boson with correct quantum number

allowed byd = 6 dimensional operator of the SM. This arises from the fact that

quarks and leptons share their quantum numbers from the samemultiplet in GUTs.

In particular, the gauge mediated interaction does not depend on the chosen Higgs

content or the symmetry breaking pattern and so promises to provide a model inde-

pendent test of GUTs. However, the GUT scale masses of the heavy gauge bosons

make it almost impossible to observe any such clean event. Soone needs to look

for the signal in the process with relatively very small background to be practically

observed. One such kinetically allowed process is the decayof proton to pions and

55
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leptons.

Although, no such decay events have been observed to date, its lifetime is being

more and more tightly constrained. The current experimental lower bound of the

partial life time for p→ e+π0 is τp > 8.2×1033 years and forp→ µ+π0 is τp >

6.6× 1033 years [98]. The theoretical decay rate of the proton can be estimated

as[99]:

Γp≃ α2
GUT

m5
p

M4
X,Y

.

This can be used to estimate the lower limit of the Heavy gaugeboson masses.

If the mass scale of super heavy gauge bosons are given asMX ≃ 10nGeV, the above

proton decay bound is equivalent to

κ =
(αGUT

45

)
×102(n−15) & 11.8. (6.1)

This also provides the lower bound on GUT scale asMX & 1015.5 asαGUT does not

vary substantially.

In this chapter, we discuss the basic structure of two GUT scenarios. The first

one isSU(5) GUT which has got the historical importance as it was the firstGUT

model proposed [100]. The rank of theSU(5) group is same as the rank of SM

gauge group and so it is the smallest GUT gauge group to accommodate SM gauge

group. Its non-supersymmetric minimal version, which was initially proposed, has

got very tight constraint on parameter space from the negative results of the proton

decay experiments and moreover does not unify the three gauge coupling constant.

However, several extensions have been studied in literature and we will discuss few

of them which are interesting from the point of view of the fermion masses and

mixing specially in leptonic sector.

Out of the higher rank gauge groups containing the SM gauge group as a sub-

group, the rank five semi-simple groupSO(10) has emerged as a very attractive

candidate for GUTs. The most interesting fact in favor ofSO(10) GUT is that it can

accommodate the entire SM fermion content in a single 16-dimensional complex

irreducible spinor representation including right-handed neutrino, with three copies

for the three families. Its all irreducible representations are anomaly free provid-

ing a natural predictive framework to understand fermion masses and mixing. It is

also most preferable GUT framework to naturally embed seesaw mechanism within

itself. In addition, the left-right symmetric gauge group can also be embedded in

SO(10) GUT.
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6.1 SU(5) GUTs

In SU(5) GUT, all the SM fermions of each generation are accommodatedin funda-

mental5 and antisymmetric 10-dimensional irreducible representations as follows:

ψ5 =




dc
1

dc
2

dc
3

e

−ν




L

, ψ10 =
1√
2




0 uc
3 −uc

2 u1 d1

0 uc
1 u2 d2

0 u3 d3

0 ec

0




L

,

where 1, 2, 3 represents the color indices. IfU represent the generalSU(5) gauge

transformation, above multiplets will transform as

ψ5→U⋆ψ5 , ψ10→U ψ10UT .

The gauge boson (Aµ) of the SU(5) will be represented by its 24 dimensional

adjoint representation. The SM gauge bosons can be easily identified from its de-

composition under SM gauge group as

Aµ(24)≡Gµ(8,1,0)+Wµ(1,3,0)+Bµ(1,1,0)+Xµ(3,2,−5/6)+Yµ
(
3̄,2,5/6

)
,

(6.2)

whereX andY gauge bosons are the additional gauge bosons other than the SM

gauge bosons. Spontaneous symmetry breaking of theSU(5) group to the SM group

automatically generates the GUT scale masses for these additional gauge bosons

through Higgs mechanism. The nontrivial color and flavor characteristics ofX and

Y allow them to couple to the quark-quark and the quark-leptonstates. These are the

characteristic super heavy gauge bosons which can lead to both B and L violating

processes as discussed earlier.

6.1.1 Spontaneous symmetry breaking

The spontaneous symmetry breaking ofSU(5) gauge group to the SM gauge group

is achieved by introducing an adjoint Higgs. As it can be seenin the expression6.2

of adjoint decomposition, it has a singlet in the direction of SM group. Assigning a

vevtoward this singlet direction will serve the purpose. LetΘ =
24

∑
i=1

ΘiTi represents

the adjoint Higgs transforming asΘ→UΘU†, whereTi ’s are theSU(5) generators

andΘi ’s here represent the components of the adjoint Higgs. Then the most general

Higgs potential can be written as (with the discrete symmetry Θ→−Θ) :
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V (Θ) =−µ2
Θ
2

TrΘ2+
1
4

gΘ
(
TrΘ2)2

+
1
2

λΘTrΘ4 . (6.3)

The vevalong the singlet direction of the SM corresponds to thevevvalue〈Θ〉 =
V Diag(1, 1, 1,−3/2,−3/2).

The Higgs component having quantum number(3, 2, 5/6)or h.c. which has the

same quantum number as that ofSU(5) gauge bosons corresponding to the broken

generators under the SM gauge group. These are goldstone modes eaten up by the

corresponding gauge bosons after spontaneous symmetry breaking. In turn, these

gauge bosons become heavy by getting masses of GUT scale. Theremaining Higgs

components too can be shown to acquire GUT scale masses provided the following

conditions on parameter space are satisfied:λΘ > 0, 15gΘ +7λΘ > 0.

The further breaking of the SM gauge group can be achieved by a5-dimensional

Higgs multipletH. From its decomposition 5= (3,1,−3/2)+ φ(1,2,1), one can

easily identify the SM Higgsφ . The color triplet component can mediate the scalar

driven proton decay and so need to be made heavy. The combinedSU(5) invariant

potential can be given as

V (Θ, H) = −µ2
Θ
2

TrΘ2+
1
4

gΘ
(
TrΘ2)2

+
1
2

λΘTrΘ4

−µ2
H

2
H†H +

λh

4

(
H†H

)2

+αH†H TrΘ2−βH†Θ2H ,

where we have some additional conditionsλh > 0,β > 0. All the terms other than

theβ term are insensitive to the direction of〈H〉. Any vevassignment to the color

triplet must be avoided in order to retain the color gauge group and that is what

the conditionβ > 0 ensures by demanding the potential minimization. With the

condition, theH field can acquire avevalong the direction of the charge neutral

component.

But we soon encounter a form of hierarchy problem what is called as doublet-

triplet splitting problem. Both the mixed terms contributeto the masses of doublet

and color triplet and the two contributions comes out to be two linearly indepen-

dent combination ofα andβ couplings timesv with GUT scale. Anyway we desire

heavy color triplet to avoid fast proton decay but at the sametime we require a light

doublet Higgs for electroweak breaking. Both the requirement can be simultane-

ously achieved only by a huge fine-tuning between the parameters of at least 26

order of magnitude.
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6.1.2 Gauge coupling unification

It was only after the realization of the fact that strength ofan interaction is not an

absolute concept but varies with the energy scale of the interaction that led to the

idea of unification of all the coupling constants. The running of the couplings is

described by the following one loop renormalization group equation:

α−1
i (Mµ) = α−1

i (M0)−2aiMµ0 ,

whereMµ0 = ln
(

Mµ
M0

)
andαi(Mµ) are the values of coupling constants at desired

scaleMµ and α(M0) are known values at scaleM0. The ai is the beta function

which contains the contributions from the gauge bosons, fermions and scalars in

the model

ai =
1
4π

[
−11

3
Ci(Vectors)+

2
3
(Weyl Fermions)+

1
3
Ci(Complex scalars)

]
.

Above the electroweak scale, the beta functions corresponding to different cou-

pling constants are given as

a1Y =
41
40π

,

a2L = − 19
24π

,

a3c = − 7
4π

.

We write down the individual evaluation equation of the couplings systematically

as

α−1
1Y (Mµ) = α−1

1Y (MW)−2a1Y MµW

α−1
2L (Mµ) = α−1

2L (MW)−2a2L MµW

α−1
3c (Mµ) = α−1

3c (MW)−2a3c MµW .

We choose initial starting values of the above three coupling constants ( cen-

tral values) at scaleMW (= 100GeV) to be the experimental values which are

α−1
1Y (Mµ) = 59.38, α−1

2L (MW) = 29.93, andα−1
3c (MW) = 8.47. The evolution of

the couplings have been plotted in figure6.1

Obviously the couplings do not meet at a point.α2 andα3 meat at energy scale

around 1017 GeV which is preferable as a GUT scale to avoid fast proton decay. But



Chapter 6. Grand unified theories and neutrino masses 60

Α1
-1

Α3
-1

Α2
-1

2 4 6 8 10 12 14 16 18
log10HΜ�GeVL5

10

20

30

40

50

60

Α-1

Figure 6.1: Evolution of coupling constants inSU(5) GUT

α1andα2meet too early than what is desirable. So theSU(5) GUT in its minimal

version is not viable simply because it is unable to provide unification. One needs

to go beyond the minimal version to look for some other sources contributing to

beta function in order to achieve unification. Moreover, theminimal version is also

not able to produce neutrino masses which we will discuss next.

6.1.3 Neutrino masses

TheSU(5) GUT with minimal set of Higgs bosons as above allows following renor-

malizable Yukawa couplings:

L = (Yd)i j (ψα
5)i C

(
ψ10αβ

)
j
Hβ

+ (Yu)i j εαβγδrψ10αβCψ10γδHr .

With thevevassignment toH along the neutral direction< H >= (0,0,0,0,v), the

general structure of the fermion mass matrices emerges as

Md = Ml = vYd

Mu = vYu . (6.4)

The equality of the mass matrix of down type quark and chargedlepton are not

mere coincidence. Its has to be there from the fact thatdoes not play any role to

produce the fermion masses and is only breaks the GUT group toSM group. The
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vevpattern ofH is such that it can breakSU(5) to SU(4)×U(1) and not to the SM.

So the equality of the two matrices is the consequence ofSU(4) symmetry which is

still intact in Yukawa sector.

However, above mass matrix structure is not consistent withcurrent data on

masses of both quarks and charged leptons even if we forget about neutrinos.

Adding singlet right-handed neutrinos can provide masses to the neutrinos, but it

will not improve the situation for the charged fermions simply because the relations

in 6.4 are left unchanged. So one needs to go to non-trivial extensions of minimal

SU(5) not only for consistent understanding of fermion masses butalso to look for

sources which can ensure the unification of the three coupling constants. Following

decomposition property can help to chose a Higgs multiplet which can couple with

the fermions to construct invariant Yukawa terms:

5×5 = 10+15

5×10 = 5+45

10×10 = 5+45+50 (6.5)

Only 5, 15 and 45 have a component that is electrically neutral and color singlet

and so only they can be givenvevs. In what follows, we discuss three different

scenarios of realization of neutrino masses inSU(5) GUT.

Type I seesaw realization inSU(5) GUT

In this scenario, the Higgs sector of Georgi Glashow model [100] is extended by

adding a 45-dimensional HiggsΣ [101]. From expression6.5, it is clear that assign-

ing vevwill affect both the mass matrix relations of6.4. The Yukawa sector is given

as

LY = (YνD)i j (ψ
α
5)i C(ψ1) j Hα +Mi j (ψ1)i C(ψ1) j

+ (Yd)i j (ψα
5)i C

(
ψ10αβ

)
j
Hβ +(Yu)i j εαβγδrψ10αβCψ10γδHr

+ (Y′d)i j (ψα
5)i C

(
ψ10βδ

)
j Σβδ

α +(Y′u)i j εαβγδrψ10αβCψ10γσΣσ
δr . (6.6)

The first two terms provide Dirac and Majorana masses for neutrinos and thus

lead to usual type I seesaw scenario if scale of Majorana massmatrix is high enough.

The next two terms are similar to the minimal case. The last two terms, which

include 45 dimensional multipletΣ, correct the bad relation6.4 for the charged

fermions present in the minimal version. TheΣ can acquirevevin the charge neutral
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and color singlet direction in the following way

< Σαβ
γ >= δβ5v′

(
δα

γ −4δγ4δα4
)

.

Corresponding new mass matrix relations come out be

Md = Ydv+Y′dv′

Ml = Ydv−3Y′dv′

Mu = Yuv+Y′uv′ .

Obviously, we get enough parameter space to fit all the charged fermion data on

masses and mixing.

However, various split multiplets of 24 and 45 Higgs under the SM gauge group

have to be given appropriate intermediate mass scales (between GUT scale and

electroweak scale) in order to achieve unification at desired scale[102, 103]. In

doing so, one leads to leptoquarks below the GUT scale which can mediate fast

proton decay. The recent studies [104] show that the model can be almost ruled

out by imposing the current experimental bound on Higgs mediated proton decay.

Moreover, the absence of any relation between neutrino masses and charged fermion

masses makes the model uninteresting.

Type II seesaw realization inSU(5)GUT

Unlike the previous case, here we do not extend the fermionicsector but try to

generate the Majorana masses for neutrinos solely by extending the Higgs sector.

From the decomposition in expression6.5, it is clear that 15 dimensional multiplet

can serve the purpose. Looking at its decomposition 15= (1,3,1)⊕ (3,2,1/6)⊕
(6,1,−2/3), one is provided with familiarSU(2)L triplet (1,3,1) to realize type II

seesaw by assigning it an appropriatevev. However, the unification constraints does

not depend much on the mass scale of the the triplet(1,3,1) and so its scale is not

constrained and can lie anywhere in principle.

Unlike the the case in Type I seesaw, 45 dimensional Higgs is not required as

the 15 dimensional multiplet can provide successful unification alone. The model

is again dependent on the split mass scales of the different component of 15 dimen-

sional Higgs for the unification and predicts a light leptoquark (3,2,1/6) around

TeV scale making the model relevant at LHC to be ruled out [105].

Although the model provides the Majorana masses for the neutrinos, it is highly

dependent on the non-renormalizable operator in the Yukawasector to generate the

consistent masses for other charged fermions. To retain therenormalizability along
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with the desired mass structure for the fermions, the model is extended by adding

45 dimensional Higgs [104]. Obviously, the structure of mass matrices for charged

fermions remains same as in the case of type I seesaw simply because the Yukawa

terms responsible for generating these masses are identical. However, the Yukawa

terms for generating the neutrino masses change as

LYν = Yi j (ψα
5)i C

(
ψβ

5

)
j
15αβ ,

which provides the Majorana mass for the neutrinos after 15 Higgs acquires thevev

asmν =< 15> Y through type II seesaw mechanism.

Type I+III seesaw realization in SU(5)GUT

This very interesting realization was first proposed in [106] by demanding the exten-

sion of the fermionic sector of minimalSU(5)[100] by a 24 dimensional fermionic

adjoint. Looking at the decomposition of the adjoint representation6.2, it is straight

forward to identify (i) the SM fermionic singlet which can serve in type I seesaw

realization of neutrino masses and (ii) the SM fermionic triplet needed for type III

seesaw realization. Since we are adding just one fermionic adjoint, we have only

one fermionic singlet and one triplet. Once theSU(5) GUT is broken, one ends up

with the following Yukawa terms relevant for neutrino masses:

LYν = ℓiC
(
Yi

S1F +Yi
T3F

)
H(1,2,1)+

MS

2
1FC1F +

MT

2
3FC3F ,

whereMS and MT represent the Majorana masses for the singlet and the triplet

fermion.

After the electroweak symmetry breaking, this leads to following mass structure

of neutrinos

(mν)i j = v2

(
Yi

SY
j

S

MS
+

Yi
TY j

T

MT

)
.

The above mass structure immediately leads to one massless neutrino. Although the

unification does not need the singlet fermion, it is very sensitive to the triplet one.

The detailed unification study predicts the mass scale of thetriplet to be less than

one TeV which makes the model phenomenologically relevant for LHC.

However, the consistent understanding of the charged fermion masses requires

higher dimensional operator in the Yukawa sector. Its renormalized version has been

studied in [107] by adding a again 45 dimensional Higgs multiplet. Obviously, the

mass matrix structures of charged fermions again come out tobe same as in type I

and II case.
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6.2 SO(10) GUTs

One of the compelling feature ofSO(10) GUT is that its 16-dimensional complex

representation alone is able to accommodate the quantum degrees of freedom of all

the SM fermions.

ψL(16) = QL (3,2,1/6)⊕uc
L

(
3̄,1,−2/3

)
⊕dc

L

(
3̄,1,1/3

)

⊕ℓL (1,2,−1/2)⊕ec
L (1,1,1)

⊕Nc
L (1,1,0) .

The first row represents the quarks, second row correspond tothe leptons. A SM

singlet appearing in the third row is an additional fermion which can be interpreted

as the right-handed neutrino. SoSO(10) GUT predicts the right-handed neutrino

from the model itself rather than putting it by hand like in some models ofSU(5)

GUT.

The similar prediction in left-right symmetric model [92–96] is not just a matter

of coincidence but is a natural consequence of the fact that the left-right gauge group

is a maximal subgroup of theSO(10).

G3221D ≡ SU(3)c×SU(2)L×SU(2)R×U(1)(B−L)×D ⊂ SO(10) ,

whereD is a discrete symmetry usually called as left-right parity or D-parity [108]

under which we have a symmetry transformation over the fermions asψLi → ψc
Li .

While discussing the left-right symmetric model in the previous chapter, the left-

right parity, i.e. the D-parity, has been assumed to be intact and is broken only at

the time of spontaneous breaking of the left-right gauge group. However, in the

SO(10) GUT, it is possible to break the D-parity even before the left-right gauge

group is broken.

An another group, which can appear between the GUT scale and the left-right

scale or the SM scale, is the well celebrated Pati-Salam gauge group [94] where

the two groupsSU(3)c andU(1)(B−L) are unified to a bigger groupSU(4). The

new gauge group treats lepton number as a quark with fourth color. This was the

first bold attempt to unify the quarks and the leptons by putting them in the same

multiplet.

G422D ≡ SU(4)×SU(2)L×SU(2)R×D⊂ SO(10) .

The decomposition of the 16-plet fermion representation under this gauge group
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reads as

16 ≡ (4,2,1)⊕
(
4̄,1,2

)

16 ≡
(
4̄,2,1

)
⊕ (4,1,2) .

All the SM left-handed fermions including the SM singlet canbe accommodated

in the spinor representation ofSO(10) decomposed under Pati-Salam group as

ψ16L ≡
(

u1 u2 u3 νe

d1 d2 d3 e−

)

L

⊕
(

uc
1 uc

2 uc
3 νc

e

dc
1 dc

2 dc
3 e+

)

L

.

The columns represent the color degrees of freedom ofSU(4) and the rows corre-

spond to quantum degrees of freedom of left-right gauge group. Similarly, the16

plet can incorporate all the SM right-handed fermions including SM singlet.

So far we have concentrated mainly around the fermion assignment in the model

and have not said much about the gauge sector. The gauge bosons belong to the

adjoint 45-dimensional 2nd rank antisymmetric representation of SO(10) with the

decomposition underG3221 given as

Aµ(45) ≡ Gµ3c(8,1,1;0)⊕WµL(1,3,1;0)⊕WµR(1,1,3;0)⊕Bµ(B−L) (1,1,1,0)

⊕(3,1,1;
4
3
)⊕ (3,1,1;−4

3
)

⊕(3,2,2;
2
3
)⊕ (3,2,2;−2

3
) . (6.7)

The gauge bosons in the first row belong to the left-right model and should not

acquire masses at the scale ofSO(10) breaking if left-right scale is an intermediate

scale of the model . The gauge bosons belonging to the last tworows can mediate

the proton decay and should become heavy at the scale of grandunification to avoid

the fast proton decay like the case inSU(5) GUT.

6.2.1 Symmetry breaking pattern

The most encouraging argument in favor ofSO(10) overSU(5) GUT is that it al-

lows several intermediate breaking steps before one finallygets down to SM. This

helps to achieve relatively natural unification unlike the case inSU(5) where the

unification requires ad-hoc mass scale assignment to the split components of a given

Higgs representation without any justification. The presence of intermediate break-

ing scales provides new sources to the beta functions and their scales can be easily
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Intermediate gauge group Symbolic Representation

SU(4)×SU(2)L×SU(2)R×D G422D

SU(4)×SU(2)L×SU(2)R G422

SU(3)c×SU(2)L×SU(2)R×U(1)(B−L)×D G3221D

SU(3)c×SU(2)L×SU(2)R×U(1)(B−L) G3221

SU(3)c×SU(2)L×U(1)R×U(1)(B−L) G3211

SU(3)c×SU(2)L×U(1)Y G321

Table 6.1: Different intermediate Gauge Groups

determined by using unification constraints.

A desired symmetry breaking chains inSO(10) GUT with one or more inter-

mediate steps are realized by choosing suitable Higgs combinations. However, all

possible chains may not turn out to be consistent with the existing experimental data

available.

Realization ofSO(10) breaking to left-right group can take place in two ways.

One way is to use 210 dimensional Higgs which decomposes under Pati-Salam

gauge group as

210 ≡ (1,1,1)⊕ (15,1,1)⊕ (6,2,2)⊕ (15,3,1)

⊕(15,1,3)⊕ (10,2,2)⊕ (10,2,2) .

Giving vevtowards the singlet direction will lead to Pati-Salam gaugegroup. How-

ever, the D-parity is not respected by the singlet and is broken at the GUT scale.

For further breaking, we have component(15,1,1) of 210 which has a singlet un-

der the left-right gauge group. So it can be givenvevto further break the Pati-Salam

group to the left-right group but without D-parity. However, D-parity is intact if

SO(10) is directly broken to left-right gauge group by giving appropriatevevto the

(15,1,1)210 component.

Another way to achieveSO(10) breaking to the left-right group is possible by

choosing a combination of(54+45)-dimensional Higgs with the decomposition of

54 Higgs under Pati-Salam group as

54≡ (1,1,1)⊕ (1,3,3)⊕ (20,1,1)⊕ (6,2,2) .

Unlike the case of 210, breaking ofSO(10) to Pati -Salam group using the 54-

dimensional Higgs does not break D-parity. However, 54 alone does not serve the

purpose of further breaking to the left-right group. So an additional 45 dimen-

sional Higgs Field, which has a singlet direction under the left-right group (6.7), is
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needed along with 54 Higgs. This singlet direction also respects D-parity and can

be assigned avev to break the Pati-Salam group down to the left-right group with

D-parity intact .

The next stage of the breaking of the left-right group down tothe SM group

requires additional Higgs multiplets. The new multiplets can be some suitable com-

binations of Higgs with dimensions 10, 16, 120,126 ofSO(10). Some of the mul-

tiplets can help in both breaking the left-right group and generating masses for the

fermions. Now the breaking of SM can take place by giving an electroweak scale

vevto the left-right bi-doublet present in someSO(10) Higgs multiplets. This also

produces the usual Dirac masses for fermions.

Other than unification, the intermediate mass scales lead toseveral interesting

phenomenological consequences. For example the breaking of (B−L) gauge sym-

metry provides lepton-number violating sources which can produce, on one hand,

Majorana masses to neutrinos [19] and lepton asymmetry in early universe, on the

other hand. Moreover, the breaking scale will also enable usto determine the scale

of light Majorana neutrinos and possible amount of lepton asymmetry that can be

created. The fermion mass relation is also affected by the breaking pattern.

Among another consequences, one is prediction of oscillation between neutron

and antineutron [19]. A low scale breaking of(B− L) can lead to a possibility

of practical experimental detection of such oscillation. To end the discussion, we

would like to emphasize that with the knowledge of intermediate scales and the

Higgs content of the model, one is able to decide the unification scale and can pre-

dict the proton decay width in various channels. The consistency of the prediction

with the current bounds will be finally the true test of a givenSO(10)model.

6.2.2 Yukawa sector and neutrino masses

Although the set of Higgs fields required for breaking theSO(10) group can be

quite complicated, the Higgs fields that can appear in the Yukawa sector to address

the question of fermion masses is rather simple so far as renormalizability of the

model is demanded. The Higgs bosons that can couple to the matter are

16×16≡ 10+120+126. (6.8)

The Higgs fields needed to generate fermion masses will have to belong to one

or more of 10, 120 and126-dimensional Higgs ofSO(10).

LY = (Y10)i j ψ16iBCΓαψ16j10α +(Y120)i j ψ16iBCΓαΓβΓγψ16j120αβγ

+ (Y126)i j ψ16iBCΓαΓβΓγΓδΓωψ16j126αβγδω , (6.9)
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whereΓα are the analogs of the Dirac gamma matrices forSO(10) andB is the

analog of the conjugate matrix for the spinors ofSO(10). Due to the properties

of the Γ matrices, the Yukawa couplings corresponding to 10 and126 Higgs are

symmetric under interchange of generation indicesi and j while one belonging to

120 is antisymmetric.

Any one of the three Higgs field can produce fermion masses by acquiring ap-

propriatevev. However the contribution may not be always sufficient enough to

account for the current data on fermion masses and mixing. For example, let us

consider the possibility to generate the fermion masses by taking the real 10 di-

mensional Higgs field alone. The 10 dimensional field has a left-right bi-doublet

component which can provide Dirac masses to all the fermionsas well as help in

breaking the SM gauge group.

10
G3221→ Φ(1,2,2,0)⊕ (3,1,1,−1

3
)⊕ (3,1,1,

1
3
) .

It is straightforward to argue that the Yukawa couplings of this 10 pelt Higgs

would be same for all the fermions (up/down quarks and neutral/charged leptons)

leading to a common mass matrix:

Mℓ = MνD = Mu = Md =< 10> Y10. (6.10)

Extrapolation of this mass matrix relations to weak-scale is not able to account

for the fermion data as it predicts the mass matrix structurefor up type quarks and

down type quarks to be same although different from the common mass matrix

corresponding to neutral and charged leptons by a factor of three:

Mu(Z)≃Md(Z)≃ 3MνD(Z)≃ 3Mℓ.

The unrealistic degeneracy between the up and the down type quarks can be

avoided by complexifying the real 10 plet Higgs. However, one still can not

avoid relation between the mass matrices of up type quark andneutrinosMu(Z) =

3MνD(Z) which can be simply ruled out using the current upper bound onthe neu-

trino masses. So, to accommodate the existing data on fermion masses and mixing,

one needs to add some new Higgs fields relevant in the Yukawa sector.

Yukawa sector with 10+126Higgs

This combination of the two Higgs fields was first proposed in [109] as a predictive

scenario for generating the fermion masses. The decomposition of additional126

Higgs under Pati-Salam gauge group come out to be
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126= (15,2,2)⊕ (10,1,3)⊕
(
10,3,1

)
⊕ (6,1,1) .

Further decomposition of the above components at the left-right symmetric scale

reveals that(15,2,2)126contains usual left-right bi-doublet. The another split Higgs

field (10,1,3)126 contains a left-right triplet with quantum numbers(1,1,3,−1)

which can be traced back to be the complex conjugate of the triplet ξR(1,1,3,1)

(see expression5.7) that we have taken while discussing the type I+II seesaw real-

ization in the left-right symmetric model (subsection5.4.1) in the previous chapter.

Since the combination 126+ 126 has to be present to providevev to their neutral

components, analogs of both the fieldsξ∗R(1,1,3,−1) andξR(1,1,3,1) are present

in the model.

This component has a SM singlet and can break the left-right group to SM

group. One may wonder about the left counter fieldξL(1,3,1,1) of ξR(1,1,3,1)

in the model which can be easily identified in the decomposition of(10,3,1)126 un-

der the left-right gauge group. So the presence of both the complex fieldsξL andξR

with the same quantum numbers as in expression5.7makes the discussion same as

in the left-right model.

So the discussion about breaking mechanism of the left-right model to the SM

in the subsection5.4.1can be safely borrowed to conclude that thisSO(10) model

is able to provide light Majorana masses to left-handed neutrinos, heavy Majorana

masses to right-handed neutrinos along with usual Dirac masses due to left-right

bi-doublet present in both 10 and126 Higgs leading to type I+II seesaw realization.

However, the126 Higgs field is contributing to fermion masses in two ways.On

one hand, its(15,2,2)126 component is contributing to Dirac masses to fermions

along with(1,2,2)10 Higgs component and on the other hand, its(10,1,3)126 and

(10,3,1)126component generate Majorana masses for neutrinos. As a consequence,

we expect an obvious relation between the Majorana mass matrix of neutrinos and

the Dirac mass matrix contribution due to 126 Higgs field which is in addition to

what we have in a general left-right model due toSO(10) GUT.

Md = kuY10+k′uY126,

Mu = kdY10+k′dY126,

Mℓ = kuY10−3k′uY126,

MνD = kdY10−3k′dY126,

ML = uLY126,

MR = uRY126, (6.11)
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whereku/d =< 1,2,2 >
u/d
10 andk′ =< 15,2,2 >

u/d
126 . ML/R are the Majorana mass

matrix for left/right-handed neutrinos anduL/R are thevevs of theξL/R fields present

in 126 dimensional Higgs.

The Yukawa coupling with the complex conjugate of 10 dimensional complex

Higgs field has been prevented by imposing the Peccei-Quinn symmetry to provide

a predictive framework. The low energy neutrino mass matrixin the model can be

simply written as

mν = ML−MνDM−1
R MT

νD .

The realistic model will require a suitable admixture of type I and type II seesaw

term to explain the mixing and masses of both charged and neutral fermions.

Yukawa sector with 120+126Higgs

In this model, complex 10 dimensional Higgs field is replacedby a complex 120

dimensional Higgs [110, 111]. Unlike the case of complex 10 Higgs, the 120 Higgs

has two left-right bi-doublet. However, due to presence of126, there will not be any

major change in the above discussion as far as neutrino masses are concerned. The

model will again lead to the type I+II seesaw realization of neutrino masses. The

only difference would be in the expressions of Dirac mass matrices of the fermions

simply because the contribution due to 120 Higgs to Dirac mass matrices would be

antisymmetric under interchange of generation. This meansthat there are only three

complex Yukawa couplings on top of Yukawa couplings corresponding to126 Higgs

in the model. A two generation study of the model reveals thatatmospheric mixing

angle should be as far as possible from the maximal value[111]. The degeneracy or

hierarchy of the neutrino spectrum is controlled by the relation:

m2
3−m2

2

m2
3 +m2

2

=
cos2θ23

1−sin22θ23/2
.

Yukawa sector with 10+
(
16+16

)
Higgs

In this class of models, the fermionic sector ofSO(10) GUT is extended by adding

two or moreSO(10) singlet fermions. The natural extension would be addition

of one singlet fermion per generation. The complex 10 Higgs will produce Dirac

masses as usual. However, the combination
(
16+16

)
instead of 126 would change

the whole discussion about neutrino masses.

Looking at the decomposition of the new Higgs fields under left-right gauge

group will make it obvious that it has all the ingredients to realize type III seesaw
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mechanism for generating light neutrino masses.

16 = χ∗L(1,2,1,−1
2
)⊕χR(1,1,2,

1
2
)

⊕(3,2,1,
1
6
)⊕ (3,1,2,−1

6
)

16 = χL(1,2,1,
1
2
)⊕χ∗R(1,1,2,−1

2
)

⊕(3,1,2,
1
6
)⊕ (3,2,1,−1

6
) ,

whereχL/R correspond to the same left-right doublet fields, required to break the

left-right gauge group to the SM group, as while addressing the type III seesaw

scenario in subsection5.4.2in the previous chapter. We would like to postpone a

detailed study of this scenario to the chapter11where we would slightly extend the

model to address the dark energy of the universe within the framework ofSO(10)

GUTs.
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Neutrinos and astroparticle
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Chapter 7

Standard cosmology

The subject of cosmology deals with the study of the various phases of the evolution

of our universe. Our present understanding of the universe is based on two basic

postulates. First, the universe is homogeneous and isotropic at large scale and the

second, the evolution of the universe is governed by Einstein’s general relativity.

A model independent study based on these two postulates reveals that the universe

becomes more and more dense and hot as we go back in the past compared to that

of present universe.

Proper understanding of the evolution of the universe needsinput from the par-

ticle content and their interactions at various phases of the universe. According to

our current knowledge of particle physics, we are able to extrapolate back up to the

temperature corresponding to the electroweak scale. However, further extrapolation

requires input from new physics and is highly model dependent. Since many of the

models beyond the SMs are out of reach of the colliders in the near future, cosmol-

ogy can serve as an indirect probe to test these models as the universe is expected

to carry certain characteristic imprints of the new physicswhile it was undergoing

the hot and dense phase corresponding to the scale of the new physics.

The standard big-bang model of cosmology appears to predictthat the universe

started from a kind of singularity with infinite dense and hotregion. However,

the conclusion can not be drawn without knowing the correct quantum theory of

gravity. The quantum effect of gravity can not be ignored above the temperature

corresponding to the Planck scale and due to this very reason, theory of evolution

of the universe before the time corresponding to Planck scale is not possible to

formulate. Hence the phenomenology of the universe can be only studied below the

Planck scale.

73
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7.1 FRW cosmology

The universe based on the symmetry of homogeneity and isotropy is well described

by the Friedmann-Robertson-Walker (FRW) metric

ds2 =−dt2+a2(t)

[
dr2

1−Kr2 + r2(dθ2+sin2θdφ2)

]
,

wherea(t) is scale factor with cosmic timet. The coordinatesr, θ andφ are known

as comoving coordinates.K represents the spatial curvature of the universe.

The dynamics of the universe is decided by the time dependence of the scale

factor which can be determined once we input this metric intothe Einstein’s equa-

tion

Gµν ≡Rµν−
1
2

gµνR+Λgµν = 8πGTµν , (7.1)

along with specifying the matter content of the universe characterized by the en-

ergy momentum tensorTµν and cosmological constantΛ. For a homogeneous and

isotropic fluid the energy momentum tensor can be written as

Tµ
ν = Diag(−ρ, p, p, p) , (7.2)

whereρ andp are energy density and pressure density of the fluid respectively. The

conservation of energy momentum tensor implies the following continuity relation

d
(
ρa3)=−pd

(
a3) . (7.3)

If we define equation of state asp = ωρ, whereω is time independent, the

energy density can be shown to vary according to the following equation (using

relation7.3)

ρ = a−3(1+ω) . (7.4)

To determine the evolution of the scale factor with time, we need to input the

FRW metric and energy momentum tensor in the Einstein’s equation which leads to

two expressions as follows

H2 =

(
ȧ
a

)2

=
8πGρ

3
+

Λ
3
− Kr

a2 , (7.5)

ä
a

= − 4πG
3

(ρ+3p)+
Λ
3

, (7.6)

whereH is the Hubble parameter or the expansion rate of the universeandKr rep-
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Description Radiation domination Matter Domination DE Domination

ω 1
3 0 −1

Eq. of state p = 1
3ρ p = 0 p =−ρ

ρ ∝ a−3(1+ω) ρ ∝ a−4 ρ ∝ a−3 ρ ∝ const

H = 2
3(1+w)t H = 1

2t H = 2
3t H = const

ρ ∝ t
2

3(1+ω) a ∝ t1/2 a ∝ t2/3 a ∝ eHt

Table 7.1: Expansion dynamics of the universe

resents the spatial curvature of the universe. In subsection 6.1.3of chapter6, we

used the notationH for 5-dimensionalSU(5) Higgs, but we will be using it for rep-

resenting the expansion rate of the universe (H =
( ȧ

a

)2
) for rest of the discussion in

this thesis.

From the expression7.5, it is obvious to notice that the cosmological constant

Λ can be treated as a energy component of the universe which remains uniform and

constant its energy density without any effect of the expansion of the universe. The

energy component is called as the dark energy (DE) in a more general sense. Using

the relation7.4, we can easily findω = −1 for such an energy component of the

universe which implies a fluid with negative pressure with equation of state

p =−ρDE ,

whereρDE is the energy density of the DE given asρDE(Λ) = Λ/8πG.

Now we rewrite equation7.5as

Ω(t)−1= ΩM(t)+ΩR(t)+ΩDE(t)−1=
Kr

(aH)2 , (7.7)

where Ω(t) = ρ(t)/ρc(t) with the critical energy densityρc(t) = 3H(t)2/8πG.

Moreover,ΩM(t)(= ρM/ρc), ΩR(t)(= ρR/ρc) andΩDE(t)(= ρDE/ρc) correspond

to the ratio of energy density of matter, radiation and DE to the critical energy den-

sity of the universe, respectively.

As theH2a2 remains positive, the value ofΩ determines the spatial geometry of

the universe

Ω > 1 or ρ > ρc ⇒ Kr = +1 Closed, (7.8)

Ω = 1 or ρ = ρc ⇒ Kr = 0 Flat, (7.9)

Ω < 1 or ρ < ρc ⇒ Kr =−1 OpenUniverse. (7.10)

However, the current observation shows thatΩ0(t = t0), wheret0 represents the age

of the universe, to be very close to one [29]



Chapter 7. Standard cosmology 76

Ω0 = 1.011(12) ,

which implies that our universe can be treated as flat. So we will consider our

universe to be flat for the rest of the discussion.

Let H0 represents the current value of the Hubble’s parameter written asH0 =

100hKms−1Mpc−1, whereh is a dimensionless quantity. Then the scale factor

dependence of the Hubble parameter can be given as

H2 = H2
0 ∑

i
Ω(0)

i a−3(1+wi) , (7.11)

wherei = R, M, DE. The expansion of the universe is parametrized in terms of the

cosmological redshift (z) in the light coming from remote astrophysical objects. It

is related to the scale factor as

1+z=
a0

a(t)
,

wherea0 is the current value of the scale factor which is conventionally taken to be

one without loss of generality. Now the expression7.11for Hubble’s constant can

be rewritten in terms ofz as

H2 = H2
0 ∑

i
Ω(0)

i (1+z)3(1+wi) .

The observed luminosity distance(dL) of any astrophysical object at redshiftz

can be related to the present value of theΩ0
i as

dL = (1+z)
Z z

0

dz′

H(z′)

=
(1+z)

H0

Z z

0

dz′√
∑i Ω

(0)
i (1+z′)3(1+wi)

. (7.12)

Similarly the age of the universe(t0) can also be related to theΩ’s as

t0 =
Z t0

0
dt =

Z ∞

0

dz′

(1+z′)H(z′)

=
dz′

H0(1+z′)
√

∑i Ω
(0)
i (1+z′)3(1+wi)

. (7.13)

These relations will be useful when we discuss the DE part later in detail.
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7.2 Thermodynamics of the early universe

From the discussion of the previous section, we easily realize that the scale factor

a decreases as we go back towards the past of our universe. As a consequence,

the energy densities of matter and radiation are expected tobecome more and more

dense with relatively high temperature. So although the current universe is out of

thermal equilibrium, the same can not be expected in the early universe. In spite

of the expansion of the universe, all the particles in the early universe remain in

the thermal equilibrium due to the their rapid interactionswith each other. Thus,

our universe expands like a gaseous fluid in thermal equilibrium with a varying

temperatureT. The energy density(ρ), number density(n) and pressurep of a

weakly interacting gas with temperatureT and internal degree of freedomg are

given as

n = g
Z

d3p
(2π)3 f (p) , (7.14)

ρ = g
Z

d3p
(2π)3 E(p) f (p) , (7.15)

p = g
Z

d3p
(2π)3

|p|2
3E

f (p) , (7.16)

whereE2 = |p|2+m2 and f (p) is the phase space distribution function given as

f (p) =
1

e(E−µ)/T ±1




−1 Bose−Einstein

+1 Fermi−Dirac
(7.17)

andµ is the chemical potential.

To discuss about entropy, we write the second law of thermodynamics

T dS= dU + pdV,

whereU can be written asU = ρV = ρa3. Now using the relation7.3, we can show

that

T
dS
dt

=
d
dt

(
ρa3)+ p

d
dt

(
a3)= 0,

i.e., the entropy remains conserved during the expansion ofthe universe,dS= 0. So

the evolution of the universe is an adiabatic process and theresult is also valid even

in those epochs where the equation of state changes, like in the epoch of matter-

radiation transition.

Moreover, the rapid interactions between the particles in the early universe en-
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Relativistic boson Relativistic fermion Non-relativistic particles

n ζ(3)
π2 gT3 3

4
ζ(3)
π2 gT3 g

(mT
2π
)3/2

e−(m−µ)/T

ρ π2

30 gT4 7
8

π2

30 gT4 mn

p 1
3ρ 1

3ρ nT (≪ ρ)

s 2π2

45 gT3 7
8

2π2

45 gT3
(m−µ

T + 5
2

)
n

Table 7.2:ρ, n, p and entropy densitys for different particles.

sure that the local thermal equilibrium was maintained during most of the early

history of the early universe. In this case, the entropy per comoving volume(S) is

expected to remain constant and can be written as

S=

(
ρ+ p

T

)
a3 = sa3 = constant. (7.18)

wheres is the corresponding entropy density. A list of expressionsfor n, ρ, p

ands are given in the table7.2for relativistic fermions, bosons and non-relativistic

particles.

From the table7.2, it is clear that the number, energy and entropy density of a

non-relativistic particles decreases exponentially as a function of temperature. So

the contribution toρ, p ands comes mainly from relativistic species. Ignoring the

contribution from Non-relativistic species, we can write

ρ =
π2

30
g∗T4 ,

p =
1
3

ρ

s =
2π2

45
g∗sT3 ,

whereT represents temperature of the photons.g∗(T) andg∗s(T) represent the net

relativistic degrees of freedom for energy density and entropy density, respectively,

and given as

g∗(T) = ∑
bosons

gi

(
Ti

T

)4

+
7
8 ∑

fermions
gi

(
Ti

T

)4

,

g∗s(T) = ∑
bosons

gi

(
Ti

T

)3

+
7
8 ∑

fermions
gi

(
Ti

T

)3

.

Summation extends over all fermion and bosons with temperature Ti and internal

degree of freedomgi . The relation forρ can be used to write the following behavior

of Hubble parameterH with respect to temperatureT using the equation7.5
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H (T) = 1.66
√

g∗
T2

MPl
, (7.19)

where we have ignored curvature andΛ term in the radiation dominated early uni-

verse.

Since the total entropy per comoving volume is constant, we can write from

equation7.18

g∗ST3a3 = constant,

which impliesa∼ T−1. The conservation ofS also implies the relationa3 ∝ s−1

which can be used to define total number of particles of a givenspecies in a comov-

ing volume like the Baryon number of the universe as

YB =
(nB−nB̄)

s
,

which is expected to remain constant so long as baryon numberviolating processes

are occurring very slowly. It is useful to note that the entropy density is proportional

to the number density of relativistic particles and hence can be related to the number

density of photons
(
nγ
)

ass= 1.80g∗Snγ. Today, we haves= 7.1nγ. However, since

g∗S is a function of temperature in general, the relation shouldbe taken with some

caution.

The time variation of the number density of a particular species in the expanding

universe is crudely described by following equation

dn
dt

=−3Hn+Γn,

whereΓ is the interaction rate of the particleΓ = n′σv. Heren′ is the number density

of the target particle andσv is the cross section multiplied by relative velocity of the

particles. So the evolution of the number density of a given species is determined

by its interaction rateΓ as long as the interaction rateΓ is greater than expansion

rateH of the universe. However, if the expansion rate begins dominating over the

interaction rate, the evolution will be solely governed byH and the species will go

out of equilibrium. From the expression7.19for H (T), the condition for a species

going out of equilibrium turns out to be

Γ(T) < 1.66
√

g∗
T2

MPl
. (7.20)

This condition is very important for explaining the currentbaryon asymmetry

of the universe that we will discuss later.
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7.3 Brief thermal history of the universe

To the best of our current understanding, we can extrapolateour present knowledge

of the universe up to the Planck scale. Above the Planck scalethe quantum behavior

gravity starts dominating and it is not possible to speculate anything above this scale

due to the lack of our knowledge of quantum theory of gravity.A consistent theory

of gravity can only answer whether universe started with a big-bang or the scenario

was completely different. So we begin our discussion from the Planck scale.

The next important scale below the Planck scale is the GUT scale. During the

grand unification phase transition, rearrangement of the vacuum provided heavy

masses to many of its gauge bosons and Higgs bosons, out of which only a few could

provide baryon or lepton-number violating processes. The heavy particles soon de-

cayed into the lighter particles and their recreation dropped due to the lack of light

particles with sufficient energy below the grand unificationphase transition. The

next important event is believed to took place around temperature corresponding

to 108−10GeV when the lepton-number violating interactions createdlepton asym-

metry in the early universe which was later converted to baryon asymmetry. The

left-right symmetry breaking is also expected to be in the same epoch if it is at all

existing in nature at some high scale.

The next important phase transition that occurred was the electroweak phase

transition at around 300 GeV when three of four electroweak gauge bosons became

massive leading to almost frozen weak interactions. At the temperature around

100 to 300 MeV, the phase transition associated with chiral symmetry breaking

is expected to take place. During this epoch the strongly interacting quarks were

confined to color singlet states like baryon and mesons.

After the electroweak phase transition, the heavyW± and Z gauge bosons

started decaying and became decoupled because their reproduction started decreas-

ing due to their weak inverse decay rate. The strength of weakinteractions turned

out to be very small since it became inversely proportional to the square of the

masses of the three heavy gauge bosons. Since the neutrinos are neutral particles

and they interact with other particles only through the weakinteractions, their in-

teraction rate decreased rapidly. Finally, their interaction rate became smaller than

the expansion rate of the universe at temperature around 1 MeV and they decou-

pled from the rest of the relativistic plasma. Below 1 MeV thetemperature of the

decoupled neutrinos(Tν) kept on scaling asa−1. This very weak cosmic neutrino

background (CNB) is one of the very robust predictions of thebig-bang cosmology,

although still waiting to be confirmed. The expected currentcontribution of the

energy density of the the CNB to the total energy density is [29]
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Ω0
ν = (0.001−0.05) .

With this contribution, the upper bound on sum of all three neutrino masses has

been estimated as [112]

∑
i

mν < 0.67eV.

which is an independent upper bound on the mass scale of the light neutrinos other

than the beta decay bound.

The next important and established event in the thermal history of universe was

nucleosynthesis. The protons and neutrons, formed after chiral symmetry breaking,

got together and synthesized primordial light nuclei at around 1 MeV temperature.

The predictions of nucleosynthesis about the amount of produced light nuclei fit

very well with the observations. So the primordial nucleosynthesis provides the

earliest test of the standard cosmology.

After the neutrino decoupling, the temperature of the universe dropped below

the mass of the electron and all thee± pairs were annihilated with onlye− left

along with light nuclei and photons. Soon after, the electrons and the light nuclei

specially protons paired to form neutral atoms and universebecame opaque to the

photons. The interaction of the photons withe− and other nuclei became very small

and the radiation decoupled from matter. This radiation is the cosmic microwave

background radiation (CMBR) that we observe today. The present temperature(T0)

and number density
(
nγ
)

of the CMBR have been measured to be [29]

T0 = 2.725(1)K .

nγ = 410.5cm−3 .

Although the CMBR is almost isotropic and homogeneous, it has tiny fluctua-

tions in its temperature[112] in different directions. This anisotropy of the CMBR

temperature provides important information needed to explain the large scale struc-

ture formation in the universe.

Before ending this chapter , we would like to mention about two very important

issues in connection to the current state of our universe. The first is that our universe

has recently entered(z< 0.67) into the phase of acceleration which needs the dom-

ination of an DE density over the matter energy density. Although the cosmological

constant can address this issue, as we pointed out earlier, it soon runs into severe

fine-tuning problem. We will discuss the related problems inthe next chapter in

detail and will review some alternatives to attack the the problem from an entirely
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different angle.

The other important issue that need to be address is the current baryon asym-

metry of the universe. There is no prior reason to assume thatuniverse started with

such an asymmetry. So one need to find out some consistent mechanism to create

this asymmetry in some early phase of the evolution of the universe which remains

up to now in spite of some washout effects. A very popular mechanism of creating

baryon asymmetry of the present universe is by first creatinglepton asymmetry in

early universe. The mechanism is known as leptogenesis which we will discuss in

detail in chapter9.



Chapter 8

Dark energy

Dark energy (DE) is a component of energy of our with equationof stateω = −1

with negative constant pressure. It can appear in the most general form of Einstein’s

equation through the cosmological constant term. It does affect the evolution of the

scale factor as can be easily seen from the expression

..
a
a

=− 4πG
3

(ρ+3p)+
Λ
3

.

The first term in the right-hand side remains positive for radiation and matter com-

ponents while the second term is positive. So in the absence of cosmological con-

stant, the expansion rate of the universe will decelerate, i.e., a > 0 andä < 0. If

we extrapolate back, it can be easily realized that universemust have started from

a= 0. We can assume this point of the universe as the starting point with t = 0. The

age of the universe, denoted witht0, will be then just estimated from this reference

point.

However, if there exist a cosmological constant, the secondterm can dominate

over the first term at some phase of the universe as the energy density of both ra-

diation and matter keeps on decreasing with the expansion ofthe universe. Conse-

quently the universe can switch from the decelerating phaseto an accelerating phase

of its evolution. It is in fact the situation at present wherethere are enough and

growing evidences that universe has entered into an accelerating phase, although,

recently.

8.1 Observational evidences

The first direct evidence of the current acceleration phase of the universe has come

from the study of the observed luminosity distance and redshift of the Type Ia su-

pernovae [21, 22]. Astrophysical studies have shown that the type Ia supernova

can be treated as an ideal standard candle and their luminosity distance(dL) can be

83
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h Ω0
M Ω0

Baryonic Ω0
DarkMatter Ω0

DE ωDE(Λ)

0.73(3) 0.27(2) ≈0.0425 ≈0.20 0.73(3) -0.97(7)

Table 8.1: The best fit values for cosmological parameters

estimated by measuring the apparent magnitude. Knowing both dL andz, one can

estimate the present values ofΩi ’s using the expression7.12.

The first evidence came in 1998 from two groups Supernova Cosmology Project

(SCP) and High-zSupernova Team (HSST). Assuming a flat universe and DE in the

form of Λ, they found that about 70% of the total energy density of the present

universe is in the form of DE. In 2004 HSST [113] found that the matter density

(visible and dark matter) of the present universe is

Ω0
M = 0.29+0.05

−0.03,

and showed that universe exhibits transition from deceleration phase to acceleration

phase (at 99% confidence level) at redshift aroundz = 0.67. It is important to

note that the current acceleration of the universe is fairlyrecent phenomena if one

compares it on cosmological time scale.

Another independent evidence for the presence of DE comes from the age anal-

ysis of the universe. The fact that the age of the universe(t0) should be greater

than the age of the oldest stellar objects(ts) observed leads towards the need for the

presence of DE. The study of some oldest stellar objects [114, 115] suggests that

the age of the universe should be grater than 11−12 Gyr. However, the estimated

value oft0 using the equation7.13, in the absence of DE, comes out to be quite low

t0 = 8−10Gyr. If one includes the cosmological constant the theoretical age of the

universe can be shown to increase. For the valuesΩ0
M = 0.3 andΩ0

DE = 0.7, the

age of the universe is easily estimated to bet0 = 13.1Gyr which is consistent with

the age of the oldest stellar object.

The DE dominated universe has also got independent support from observations

related to CMBR from WMAP [23] and large scale structuring (LSS) from SDSS

[116–118]. In the figure8.1, the allowed region in theΩ0
M−Ω0

DE(Λ) plane by the

supernovae, CMBR and LSS data has been shown . It is obvious that common

overlapping regions of CMBR and LSS together are able to confirm the existence

of the DE without using the supernova data. However, the supernova data helps

in constraining the parameter space when it is included. Allthe three data sets

can be simultaneously explained only when one assumes DE to be the dominant

component of energy of the present universe. Based on the cosmological model

with Λ, we list the best fit values of the relevant cosmological parameters from

PDG [29] in table8.1.
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Figure 8.1: The allowed regions inΩ0
M−Ω0

DE(Λ) plane from the observation from
CMBR, LSS and SN Ia[2].

8.2 Problem with cosmological constant

So far we realized that the DE induced by cosmological constant term in the Ein-

stein’s equation can solve the the puzzle of the current acceleration of the universe.

However, it is interesting to note thatΛ was not initially proposed to explain the

acceleration of the universe. Einstein introduced it in 1917 to achieve an static uni-

verse. Later, Hubble’s observation related to the expansion of the universe made

Einstein to drop this term. Its importance was realized onlyrecently to explain the

accelerating universe.

Although the DE model in form ofΛ is able to satisfy all the astrophysical data,

it also leads to two very uncomfortable problems (1) fine-tuning problem and (2)

cosmic coincidence problem.

8.2.1 Finetunning problem

The cosmological constant runs through severe fine-tuning problem when we try to

realize it from the stand point of particle physics. From particle physics point of

view, the cosmological constant naturally arises as zero point energy or vacuum en-

ergy density(ρvac). The observed energy density corresponding to the cosmological

constant comes out to be

ρΛ = 10−47GeV4≃ (10−3eV)4 .

On the other hand the vacuum energy density arising from zeropoint energy of
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a quantum field with massm is given as

ρvac =

Z ∞

0

d3k

(2π)3

√
k2+m2 . (8.1)

Obviously one gets infinite contribution to the vacuum energy density. However,

the theory may be considered to be valid up to some upper cutoff scale saykmax.

Then the relation8.1gives finite energy density

ρvac≃
k4

max

16π2 .

Now if we take the natural cutoff of the energy scale to be Planck scale, we see

that theρvac comes out to be extremely large value compared to observed value of

ρΛ by 123 order of magnitude.

ρvac≃





1074GeV4 for kmax= 1019GeV(PlanckScale)

1010GeV4 for kmax= 103GeV (SUSYBreakingScale) .

However, if our nature possess supersymmetry (SUSY), the cutoff scale can be

brought down to the scale of SUSY breaking as the total contribution above the

SUSY breaking scale is exactly canceled due to equal and opposite contribution of

fermions and their super partner bosons or vice-verse. The current data from par-

ticle physics indicates the SUSY scale to lie around TeV scale. Unfortunately, the

corresponding estimates of the vacuum energy density is again much larger com-

pared to the observedρΛ. So, to achieve the observed value of DE energy density,

one will have to rely on very severe fine-tuning between the two contributions from

two independent quantities, cosmological constant and thezero point energy, which

seems to be quite an unnatural scenario.

8.2.2 Cosmic Coincidence problem

The fact that universe has entered into the acceleration phase very recently (after

z< 0.67) has led to what is referred as the cosmic coincidence problem. In other

words, the problem can be phrased as why the DE component of the universe has

dominated now and why the order ofΩ0
DE is of the same order ofΩ0

M. So although

these two energy densities vary differently at different epochs, they are of the same

order of magnitude today.

The problem becomes even worse with cosmological models which includeΛ.

Since the DE due to cosmological constant remains constant throughout the evolu-

tion of the universe,Λ needs to be properly tuned so that it dominates only today.
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For example, the ratios of DE density to the radiation density at Planck time and

at the time of electroweak phase transition are many order ofmagnitude less than

compared to the present ratio of DE density to matter density(∼ 1)

ρΛ
ρr
≃





10−123 (PlanckScale)

10−55 (ElectroweakScale) .

So an huge fine-tuning of the initial condition is required toensure the ratio

ρ0
Λ/ρ0

M ∼ 1 today.

With the problems discussed above, cosmological constant does not seem to be

a natural candidate for DE to explain the accelerating universe. This has led many

others to presume the cosmological constant to be zero, instead of small, by some

unknown mechanism and to explain the presence of DE by dynamics of some light

scalar field. This scenario is known as time varying DE scenario. For the rest of the

discussion we will be moving around the models with time varying DE only.

8.3 Varying DE models

As the name suggests the time varying DE scenarios allow equation of state to vary

with time with the constraint that only its current value is close to−1. A successful

cosmological model should admit (1) a radiation dominated era, (2) followed by

a long matter dominated era and (3) the finally the present accelerated era. So a

dynamical DE should have the feature that it is sub-dominated during radiation and

matter dominated era and becomes dominant only today.

8.3.1 Quintessence models

The relatively old and popular models of time varying DE scenario are through dy-

namics of a scalar field, known as quintessence model [119, 120]. In this model the

energy density of DE is attributed to the energy density of a quintessence described

by an ordinary scalar field (Q), minimally coupled to gravity. Neglecting the spatial

curvature, one can obtain the energy density and pressure density of the scalar field

as

ρQ =
1
2

Q̇2+V(Q) , (8.2)

pQ =
1
2

Q̇2−V(Q) . (8.3)

The corresponding equation of motion and equation of sate are given as
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Q̈+3HQ̇ = −dV
dQ

, (8.4)

ωQ =
1
2Q̇2−V(Q)
1
2Q̇2+V(Q)

. (8.5)

Since the potential of the scalar field determines the dynamics of the scalar field,

there exists variety of quintessence models with differentcosmological conse-

quence. Also, the equation of state ofQ can vary in the range−1≤ ωQ≤+1.

In the limit of vanishing kinetic energy oḟQ2 < V(Q), the equation of state ap-

proaches towardsωQ = −1, the value required for the current acceleration of the

universe. However, one would like to obtain a natural quintessence solution for

cosmological constant problem with the desired feature that it can explain the late

time acceleration of the universe starting from wide range of initial conditions and

equation of states. However, the energy density of DE shouldbe sub-dominant in

the radiation and the matter dominated era specially duringbig-bang nucleosyn-

thesis where its dominant contribution can substantially spoil the nucleosynthesis

predictions. It is only recently that DE has started dominating over matter density.

In fact, there exist solutions where the DE density follows the background en-

ergy density of the universe. The solutions are known as scaling solutions [121–

123] where the ratio of the energy density of theQ to the background energy density

(ρB) becomes almost constant

ρQ

ρB
= constant. (8.6)

This is possible when there exists what are called as fixed or critical points

working as attractors for the corresponding scaling solutions. An simple exponen-

tial potential has fixed points corresponding to a scaling solution as well as a non-

scaling solution. The non-scaling solution can provide late time acceleration of the

universe. The parameters of the potential are required to beadjusted such that the

scaling solutions correspond to the sub-dominant DE density during radiation and

matter dominated era.

However, the system should exit from the initial scaling solution to enter the

accelerated phase. This is possible with tracker fields where the DE tracks some

component of matter so that DE exit the scaling solution to finally enter the accel-

erating phase of the universe [24–26]. The tracking solutions are not the fixed point

solutions like in case of scaling solutions and so the energydensity of the tracker

field changes according to the background energy density.

In an another interesting scenario, the DE is made to track the energy density of
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CNB. This scenario is also interesting from the fact that it can naturally avoid some

of the unwanted issues related to the previous case where DE is allowed to track

Dark matter or baryonic matter.

8.3.2 Neutrino models of DE

A very interesting coincidence which is worth noting that the scale of DEρDE ≃
(10−3eV)4 is almost close as the scale of neutrino masses. Motivated with this fact,

Fradon, Nelson and Weiner suggested a scenario where a coupled system of CNB

and a scalar field behaves like DE [27]. The coupling is introduced by assuming that

the mass of the neutrinomν varies as a function of the scalar field, called acceleron

(A).

However, the coupling betweenA and the neutrinos appears only when the neu-

trinos in the CNB become non-relativistic. The equation governing the evolution of

the neutrino energy densityρν and scalar fieldA can be obtained as

ρν +3H (ρν + pν) =
d lnmν

dA
Ȧ (ρν−3pν) ,

Ä +2HȦ +a2dV0

dA
= −a2d lnmν

dA
(ρν−3pν) , (8.7)

whereV is the potential of the acceleron field. As the relationρν = 3pν is satisfied

for the relativistic neutrinos, the right hand side of the above two expressions van-

ishes leading to the fact that the relativistic neutrinos and the acceleron field evolve

independent of each other. Only when the neutrinos become non-relativistic, the

two components begin affecting the evolution of each other.

For the non-relativistic CNB the energy density will be given asρν = mνnν

with pressure equals to zero. When the neutrinos become non-relativistic, effective

potential (V) of the combined system of neutrinos andA will be written as

V(mν) = mνnν +V0(mν) ,

where bothV andV0 has been expressed as function ofmν instead ofA for conve-

nience. It is always possible to do so as the neutrino mass andA is related by some

functional form. Even ifV0 does not have any minimum, the first term induces

an instantaneous minimum for the effective potentialV and the acceleron fieldA

relaxes at this minima satisfying the condition

V ′ (mν) = nν +V ′0(mν) = 0, (8.8)

whereV ′ (mν) denotes derivative of the effective potentialV w.r.t. mν.
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However, the minima is not fixed but evolves slowly with the number density

nν of CNB. The minima shifts towards the larger values ofmν asnν dilutes. So the

neutrino mass is decided by the competition between the two terms in the effective

potential. Neglecting the kinetic energy of the acceleron field, the equation of state

of the combined (ν+A) system can be written as

ω =
Pressure
Density

=
pA

ρA +ρν

=
−V0

V0+mνnν
=−1+

mνnν
V

= −1−mνV ′0(mν)

V
=−1+

Ων
Ων +ΩA

.

The observed late time value ofω ≈ −1 implies that the energy density of the

CNB is a small fraction of the total energy density. This corresponds to condition,

V ′0(mν)≪V(mν) which can be achieved by choosing a flat potential forA or rather

steep dependence ofmν onA . With this condition, the combined (ν +A) system

behaves like DE with equation of stateω =−1 and causes the desired acceleration

of the universe. Since the neutrinos in CNB are expected to become non-relativistic

now, the question of why DE dominated today gets a natural answer in the mass

varying neutrino scenario.

Now we shall discuss the neutrino mass varying model in simplified one gen-

eration type I seesaw scenario. Since the right-handed neutrino is the SM gauge

singlet, it can be allowed to vary as a function ofA . The mass of light neutrinos are

given by the famous seesaw formula

mν (A) =
M2

νD

MR(A)
.

Let us take the following flat potential for the model

V0(A) = Λ4 log[1+MR(A)/µ] , (8.9)

where it is assumed thatMR(A)/µ≫ 1 as the right-handed neutrino Majorana mass

scale is very high.Λ is chosen to be equal to the characteristic energy scale of DE,

i.e.,Λ∼ 10−3eV. We rewriting the above equation in terms ofmν using the seesaw

formula as

V0(mν) = Λ4 log

(
m0

mν

)
,

wherem0 = M2
νD/µ. Using equation8.8, we getnν = Λ4/mν which implies a con-

stant energy density for non-relativistic CNB:
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mνnν = Λ4 .

Hence the equation of sate can be simply written as

ω = −1+
mνnν

V

= −1+

[
1+ log

(
m0

mν

)]
,−1

which is almost equal to−1 as the second term vanishes because the scale ofmνis

much smaller than the scale ofm0. So the coupled (ν+A) system behaves like DE.

In the type I seesaw scenario, it is possible to vary the SM singlet right-handed

neutrino with the acceleron field. However it is not possibleto do the same if this

right-handed neutrino emerges from left-right symmetric model or GUT models.

The right-handed neutrino comes with right-handed chargedleptons in left-right

symmetric model and with other SM fermions in GUT models and so transforms

non-trivially under the related gauge group. In chapter11, we will try to construct

a left-right symmetric model for neutrino DE and try to embedit in SO(10) GUT

scenario.



Chapter 9

Baryon asymmetry through lepton

asymmetry

To best of our understanding, the everything all around us such as earth, moon, our

solar system, galaxies and clusters, is made up of matter. Infact, our own existence

is because we live in a universe where the matter dominates over antimatter. This

most challenging problem of cosmology can only be properly addressed when we

use our knowledge of particle physics.

But one may ask why we are not taking the baryon asymmetry as aninitial

condition the universe started with. The first argument is that there is no reason to

assume that universe would have started with an asymmetry inthe number density

of a particle with a given quantum number and its antiparticle . The second argu-

ment comes from the fact that the observed asymmetry is a veryvery small number.

In a volume containing 1010 photons, we get around 6 matter particles in excess

to the antimatter particles. One will have to accept a very unnatural fine-tuning of

the initial condition of the very early universe to explain this current number. So

one assumes this initial value to be zero and try to invoke some particle physics

mechanism to explain the puzzle.

The baryon asymmetry of the universe can be defined and estimated in two

equivalent ways, first in terms of entropy density and the second in terms of photon

number density as follows

ηB =
nB−nB̄

nγ
=

nB

nγ
= (6.12±19)×10−10 (9.1)

YB =
nB−nB̄

s
= (8.61±0.26)×10−11. (9.2)

The numbers have been taken from [29]. From the relation between current

entropy density and the photon densitynγ = s/7.1, as pointed out in the chapter of

92
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Figure 9.1: Dependence of CMBR anisotropy onηB

standard cosmology, we can easily relate the above two values asYB = ηB/7.1.

The observed values of the current baryon asymmetry has got support from two

independent sources. First one comes from big bang nucleosynthesis. The predicted

primordial abundances of light nuclei, likeD, 3He, 4He and7Li , are very sensitive

to the amount of baryon matter present at the time of nucleosynthesis. In fact, this

baryon asymmetry has to be generated before the nucleosynthesis in order to have

the successful synthesis of the observed light nuclei in correct amount. One obtains

the following range ofηB, although small but non-zero, which is consistent with all

the four abundances [29]

4.7×10−10≤ ηB≤ 6.5×10−10 (95%) .

The other independent support comes from the study of two point correlation

function of the anisotropy observed in the temperature of CMBR. The small tem-

perature anisotropies are usually analyzed by decomposingthe signal, coming from

a direction characterized by anglesθ andφ, into spherical harmonics(Ylm) as

△T (θ, φ)

T
= ∑

l ,m

almYl ,m,

wherealm’s are the expansion coefficients. The study of anisotropy inthe CMBR

temperature can be translated to the study of CMBR angular power spectrum given

asCl =< |alm|2 >. As the position and relative height of the acoustic peaks ofthe

CMBR anisotropy spectrum are sensitive toΩB, a fit of the power spectrum helps

to extract the value of parameter corresponding to the baryon to photon ratio along

with other parameters. The figure9.1(figure taken from [3]) shows the variation of
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the CMBR power spectrum fitting whenηB is taken to be up to 50% more and less

of the central value for best fit. A fit to recent WMAP 5 year dataalong with Type

Ia supernova and SDSS data provides the following value for the ratio of baryon

energy density to the total energy density of the universe as[112]

ΩBh2 = 0.02267+0.00058
−0.00059.

However, we will be using the value from PDG given in expression 9.1 or 9.2

for future discussion.

9.1 Baryogenesis

With the clear evidence of presence of baryon asymmetry at the time of big bang nu-

cleosynthesis, we now turn to look for some mechanism for creating baryon asym-

metry in the early universe. The mechanism is known as baryogenesis. To generate

a small baryon asymmetry starting from baryon symmetric universe, one need to

satisfy three conditions given by Sakharov in 1967 [124].

9.1.1 Sakharov’s conditions

Baryon number violation

The presence of baryon number violating interactions is very first condition for gen-

erating baryon asymmetry from the baryon symmetric universe. If baryon number

(B) is conserved the interaction that generate a baryon froma stateB = 0 will also

generate an antibaryon leading to vanishing net baryon number. Since we have as-

sumed that the universe is neutral to any conserved charge tostart with, this would

imply that the number density of the particles with nonzero baryon number would

be same as the number density of the antiparticles.

C and CP violation

Now we assume that the first condition for baryon number violation is satisfied.

Then Sakharov’s second condition demands both C and CP to be violated also. Let

a initial statei goes to final statej where baryon number is violated. Suppose C is

conserved in the processi→ j, then we can immediately conclude that the number

of left-handed particles with nonzero baryon number will begenerated in equal

amount to the number of corresponding left-handed antiparticles. So C violation is

necessary condition to see a net baryon number violation.

Now suppose if C is violated but CP is conserved, then the number of left-

handed particles generated will be compensated by the same number of right-
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handed antiparticles generated. Same will be true with right-handed particles with

nonzero baryon number and corresponding left-handed antiparticles. However, if

both C and CP are violated we expect asymmetry in the number ofparticles and the

antiparticles created.

Departure from thermal equilibrium

Since particle and antiparticle has opposite baryon number, B is odd under C trans-

formation but even under parity (P) and time reversal (T) transformations. So B is

odd under CPT transformation. The thermal expectation value of the baryon num-

ber< B >T is written as

< B >=
Tr
[
Be−βĤ

]

Tr
[
e−βĤ

] ,

whereĤ is Hamiltonian of the system andβ = 1/T.

Since the Hamiltonian̂H commute with CPT, we can show that the expectation

value of the baryon number in thermal equilibrium comes out to be zero as

< B >T =
Tr
[
Be−βĤ

]

Tr
[
e−βĤ

] =
Tr
[
CPT CPT−1Be−βĤ

]

Tr
[
e−βĤ

]

=
Tr
[
CPT−1BCPT e−βĤ

]

Tr
[
e−βĤ

] =−
Tr
[
Be−βĤ

]

Tr
[
e−βĤ

]

= −< B >T .

Thus an averaged baryon asymmetry vanishes in thermal equilibrium. So depar-

ture from thermal equilibrium is also required to achieve any non-trivial amount of

baryon asymmetry. This is the third Sakharov’s condition.

9.1.2 Connecting baryon and lepton asymmetry

As the baryon number violation is a necessary condition for baryogenesis, let us

discuss the baryon-number (B) and lepton-number (L) violation in the SM itself.

In SM, both baryon number and lepton number are accidental global symmetries

at classical level, i.e., it is not possible to violate thesesymmetries at tree-level.

However, quantum corrections violate them leading to global B and L anomaly

[125, 126]. In other words the current associated withB andL do not vanish after

including the quantum corrections. Further analysis showsthat althoughB andL
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are anomalous individually, a combinationB− L is anomaly free. However, the

other linearly independent combinationB+L still remains anomalous.

The B+ L violation basically arises due to the vacuum structure of the Non-

Abelian nature of the gauge theory of SM. In a non-Abelian gauge theory there

are infinitely many degenerate ground states, which are characterized by so-called

Chern-Simon number as△Ncs=±1,±2, ..., separated by a potential barrier whose

height is given by what is called as sphaleron energy. For thethree generation of

fermions, the vacuum to vacuum transition can lead to the following changes inB

andL in termsNcs

△B =△L = 3△Ncs

= ±3n,

where n is an positive integer. However, in classical approximation, such vacuum

to vacuum tunneling in SM comes out to be exponentially suppressed
(
O
(
10−165

))

and extremely small [125, 126] .

The situation changes drastically when one studies the samephenomena in ther-

mal bath. In 1985, Kuzmin, Rubakov and Shaposhnikov [127] pointed out that it is

possible to make transition from one vacuum to other by thermal fluctuation over

the barrier in the thermal bath of early universe. When temperature is larger than

the height of the barrier , the sphaleron mediatedB+ L violating interactions can

become so strong that they are in equilibrium in the expanding universe. In fact, it

can be shown that sphalerons are in equilibrium for the rangeof temperature starting

from 102 GeV to 1012 GeV.

As theB+L violating interactions are in equilibrium along with otherinterac-

tions above the temperature corresponding to the electroweak phase transition, one

would expect some relation between the baryon asymmetry andlepton asymmetry if

they are nonzero. If the asymmetry in number density of a given particle(ni) and its

antiparticle(n̄i) is very small compared to the total number density, the asymmetry

is related to the chemical potential(µi) of the particle as

ni− n̄i = nd
gT3

6

(µi

T

)
.

At high temperature, quarks, leptons and Higgs not only interact by gauge and

Yukawa couplings but also by sphaleron processes in addition. All these processes

in equilibrium put various constraints on the chemical potential of different particles

and so this can lead towards some relation in the chemical potentials. Since theB

and L are function of their chemical potentials, we expect some relation among
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them in the thermal bath . In fact a detail analysis of the chemical potentials [128,

129] provides us the following relation between B and L, above electroweak phase

transition, for three generation scenario:

B = p(B−L)

L = (p−1)(B−L) (9.3)

B+L = (2p−1)(B−L) , (9.4)

wherep = (24+4NH)/(66+13NH) andNH is number of Higgs bi-doublets. It

is important to notice that any nonzero value forB, L or B+ L generated by any

mechanism can not survive unlessB−L is also generated. So any such asymmetry

in B+L will be washed out before electroweak phase transition for vanishingB−L.

9.1.3 Mechanism for baryogenesis

Keeping Sakharov’s condition in mind, we now discuss the following three inter-

esting mechanism for baryogenesis.

Electroweak baryogenesis

This mechanism is very interesting from the fact that it doesnot require completely

unknown and new physics beyond SM but tries to answer the baryon asymmetry

using our knowledge of SM [130, 131]. The first Sakharov condition for baryon

number violation is easily satisfied as baryon number is not conserved at quantum

level. Considering the second condition, C violation is quite explicit in SM. More-

over CP violation is also established in the quark sector, although the amount of

violation is rather small. The last condition regarding departure from thermal equi-

librium can be provided by strong first order electroweak phase transition.

However, the phase transition for SM is not very strong and even the CP vio-

lation in SM is not enough to create baryon asymmetry of correct amount. Thus

a viable model of electroweak baryogenesis need a modification in the Higgs sec-

tor such that nature of phase transition changes and new sources of CP violation is

generated. In one of the extension of SM where two Higgs doublet are present, one

get more parameter in the Higgs potential which can provide new sources for CP

violation [132]. However, the predictability of electroweak baryogenesis in such

extension of SM is lost.
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GUT baryogenesis

The GUT baryogenesis was the first natural implementation ofSakharov’s condi-

tions to create baryon asymmetry [133–135]. The B violation are very natural in

GUT scenario as quarks and leptons share quantum numbers from the same multi-

plet. Since the fermions belongs to the chiral representation, C is maximally vio-

lated. Furthermore, sufficient amount of CP violation can beincorporated in GUT

as there exists many complex phases in the couplings of heavybosons, whose de-

cay violates baryon number. Moreover, departure from thermal equilibrium can

also be easily satisfied as the expansion rate of the universeat the unification scale

was sufficiently high compared to the decay rate of heavy bosons to baryon number

violating states.

Although GUT baryogenesis appeared to be quite a natural scenario, it soon ran

into washout problems. InSU(5) GUT both B and L are violated but the combi-

nation B-L remains conserved globally. Even inSO(10) GUT, B-L is the part of

the gauge group and is broken at some intermediate scale. So baryon number vio-

lation at GUT scale in both the GUT scenarios conserves B-L. But we saw in the

previous section that any baryon asymmetry will be washed out before electroweak

phase transition unless B-L is nonzero. So the GUT scale baryogenesis in the B-L

conserving scenario is not possible to explain the current baryon asymmetry of the

universe [127]. However, breaking of the B-L gauge symmetry inSO(10) GUT

at some intermediate scale can provide lepton asymmetric universe which can be

later converted to baryon asymmetry. This mechanism is known as baryogenesis

via leptogenesis and can be a part ofSO(10) GUT framework. However, this mech-

anism does not need to be a part ofSO(10) GUT in general as it can also work

independently in some rather simple extensions of SM.

Baryogenesis via leptogenesis

This is the most popular mechanism at present to generate baryon asymmetry

by first creating lepton asymmetry. The mechanism, proposedby Fukugita and

Yanagida in 1986 [28], has got enough scientific attention due to its simplicity.The

lepton asymmetry can be created by introducing some Lepton number violating

source term at some appropriate high scale. This is in fact the situation in seesaw

framework [18–20] where a lepton-number violating term is introduced explicitly

to suppress the low energy neutrino masses naturally.

So seesaw mechanism not only provides very tiny masses to neutrinos but also

promises to create lepton asymmetry in early universe. Thislepton asymmetry

is partially converted to baryon asymmetry due to sphaleronprocess before elec-

troweak phase transition leading to the current baryon asymmetric universe. The
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baryon asymmetry can be estimated in terms of the lepton asymmetry using rela-

tion 9.3as

B =

(
p

p−1

)
L . (9.5)

Although leptogenesis is possible in all the seesaw scenarios, we will only dis-

cuss the details of leptogenesis mechanism in type I seesaw.

9.2 Leptogenesis

Leptogenesis is a simple and elegant mechanism to generate lepton asymmetry in

the early universe before electroweak phase transition. Intype I seesaw scenario,

the lepton asymmetry is created by out of equilibrium decay of heavy Majorana

neutrinos to leptons and antileptons in different amount [28] . The first Sakharov

condition is easily satisfied due to presence of Majorana mass term of the right-

handed neutrinos which violates lepton number by two units [124]. C violation is

also maximal as in the SM. CP violation can also be incorporated by assuming unre-

movable phases present in the complex Yukawa couplings of right-handed neutrinos

with lepton doublets and Higgs doublet.

Let us write the part of the Lagrangian again relevant for leptogenesis from

section10.1

L =

(
1
2
(NRα)c(MR)αβNRβ + ℓLiφ(Yℓ)i j eR j + ℓLiφ̃(Yν)iαNRα +H.C.

)
, (9.6)

where the symbols represent the similar thing as in the section10.1. In a mass basis

where the right-handed neutrinos are real and diagonal the Majorana neutrinos are

defined asNi = 1√
2
(NRi±Nc

Ri) with massesMi ’s.

Due to the presence of CP violation in the model, the Majoranaheavy right-

handed neutrinoNi decays into lepton+Higgs and antilepton+antiHiggs in different

proportions. In the mass basis of right-handed neutrinos, the CP asymmetry factor

is defined as

εi =
Γi (Ni → ℓφ)− Γ̄i

(
Ni → ℓ̄φ̄

)

Γi (Ni → ℓφ)+ Γ̄i
(
Ni → ℓ̄φ̄

) , (9.7)

whereΓi is the decay rate ofNi . The denominator of the right-hand side of the

above expression is the average decay rate of theNi given as

ΓDi =
1

8π

(
Y†

ν Yν

)
ii

Mi =
1

8πv2

(
M†

νDMνD

)
ii

Mi , (9.8)

wherev is thevevof SM Higgsφ after electroweak symmetry breaking andMνD is

the usual Dirac mass matrix for neutrinos.
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Figure 9.2: The tree-level and vertex decay diagrams [3].

In a special case of normal mass hierarchy (M1 << M2,3) in the right-handed

neutrino sector the lepton asymmetry created by decay ofN2,3 is wiped out due to

presence ofN1 and final lepton asymmetry is created only due to the decay of the

lightest right-handed neutrino,N1.

Now let us define the lepton asymmetryYL similar to the baryon asymmetry as

YL =
nL−nL̄

s
.

While N1 is in thermal equilibrium with the background particles,YL remains zero.

As temperature of the universe drops below the mass of theN1, it starts to decouple

and then to decay generating lepton asymmetry. If the equilibrium number density

per comoving volume ofN1 is Y0
N before out of equilibrium decay, the final lepton

asymmetry, in crude sense, after the complete decay of the right-handed neutrinos

would be given as

YL = ε1Y
0
Nd , (9.9)

whered is the dilution factor or efficiency factor which arises due to the competi-

tions between decay rateΓ1 and expansion rate of the universeH atT ≃M1.

The equilibrium number densityY0
N before the decay is of order of 10−3 and

dilution factord≃ 0.1. For SM, theYB is related toYL as

YB = −0.55YL

= −0.55ε1Y
0
Nd . (9.10)

Using the observed value ofYB as given in expression9.2, above relation correspond

to the following required value forε1

ε1 & 10−6−10−7 .

We will use the typical value forε to be 10−6 for some of our analysis. However, it

is worth discussing CP violation in some detail.
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Figure 9.3: The tree-level and self-energy decay diagrams [3].

9.2.1 CP asymmetry

There are two independent sources of CP violation in the decay process of heavy

right-handed neutrinos in type I seesaw scenario. The first one arises from the

interference of tree-level and vertex diagram as shown in figure9.2. This decay type

source for CP violation was used for thermal leptogenesis inthe initial literature

[28, 73, 75, 136, 137]. The corresponding asymmetry factor can be calculated as

[138]

εi =
1
8π

1(
Y†

ν Yν

)
ii

∑
k

Im

[(
Y†

ν Yν

)2

ik

]
f

(
M2

k

M2
i

)
,

where

f (x) =
√

x

[
1− (1+x) ln

(
1+x

x

)]
.

The another source of CP violation [76, 77] comes from the interference of tree-

level decay diagram of right-handed neutrinos with self-energy diagram as shown

in figure 9.3. The two heavy neutrinos in the self-energy diagram belong to two

different generations and so CP violation is essentially coming from the Majorana

mass matrix of right-handed neutrinos [76, 77, 139–142]. This oscillation type

source of CP violation was first studied in [76, 77] to generate the lepton asymmetry

.

The corresponding asymmetry factor can be estimated as

εi =
1
8π

1(
Y†

ν Yν

)
ii

∑
k

Im

[(
Y†

ν Yν

)2

ik

]
g

(
M2

k

M2
i

)
,

where

g(x) =

√
x

1−x
.

For the comparison between the two sources of CP violation wejust take only

two heavy right-handed neutrinos. The only uncommon factors in the expression
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Figure 9.4: The comparison off (x) andg(x) as a function ofx = (M2/M1)
2

of CP parameter due to the two sources are the functionf (x) and g(x), where

x = (M2/M1)
2. So we plot the two functions ofx in figure9.4 to compare the CP

asymmetry factors from the two sources. When the mass ratio of the two heavy neu-

trinos is large the two CP asymmetry factors are comparable.However, for almost

degenerate heavy neutrinos, the self-energy contributionto the CP violation is very

large leading to the resonance effect. Consequently the amount of lepton asymmetry

generated through the self-energy diagram can be many orders of magnitude larger

than the asymmetry generated trough the vertex diagram. This way of resonant pro-

duction of lepton asymmetry is called as resonant leptogenesis [76, 77, 139–142].

Now the total CP asymmetry will be determined by the sum of theCP asymme-

try coming from the two independent sources.

For the hierarchical structure of right-handed neutrino masses ,i.e. forM1 <<

M2,3 , the only relevant total asymmetry factor isε1 (not all εi ’s) which can be

approximated as

ε1 =− 3
16π

1(
Y†

ν Yν

)
11

∑
k

Im

[(
Y†

ν Yν

)2

1k

]
M1

Mk
. (9.11)

This expression will be used in the next chapter where we consider type I seesaw

scenario with two right-handed neutrinos with hierarchical mass structure.

9.2.2 Basic leptogenesis mechanism

In this subsection, we will study the basic mechanism of leptogenesis. The time

evolution of the number density per comoving volumeYN of the lightest heavy Ma-

jorana neutrino and the corresponding lepton asymmetryYL generated in the ex-

panding universe are determined by solving full set of Boltzmann equations. The



Chapter 9. Baryon asymmetry through lepton asymmetry 103

main processes that can affect theYL in the thermal bath include

1. Decay ofN1

N1→ ℓ+φ N1→ ℓ̄+ φ̄ .

2. Inverse decay ofN1

ℓ+φ→ N1 ℓ̄+ φ̄→ N1 .

3. Higgs mediated 2-2 scattering(△L = 1)

N1ℓ←→ t̄ Q , N1 ℓ̄←→ t Q̄ (s−channel)

N1 t←→ ℓ̄Q , N1 t̄←→ ℓQ̄ (t−channel)

N1Q←→ ℓ t , N1Q̄←→ ℓ̄ t̄ (u−channel) .

4. N mediated 2-2 scattering(△L = 2)

ℓφ←→ ℓ̄ φ̄ , (sandt−channel)

ℓℓ←→ φ̄ φ̄ , ℓ̄ ℓ̄←→ φφ (tandu−channel) .

Now just to illustrate a simple mechanism of leptogenesis, we will only consider

the processes involving decay and inverse decay. The on-shell contribution of the

s-channel ofN1 mediated 2−2 scattering has also been included for consistency.

We shall see that the decay and the inverse decay together areable to describe qual-

itatively many features of the full solution. The final Boltzmann equation governing

the evolution ofYN andYL takes the following form

dYN(z)
dz

= −D(z)(YN(z)−Yeq
N (z)) , (9.12)

dYL(z)
dz

= ε1D(z)(YN(z)−Yeq
N (z))−WID(z) YL(z) , (9.13)

where we have definedz= M1/T . In this chapter, we will use the notationz for

this definition only instead of earlier definition for the redshift used in the chapter7

.

Yeq
N is the equilibrium number density per comoving volume ofN1 and is given

as
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Figure 9.5: Evolution ofYN andYL for the thermal initial abundance ofN1

Yeq
N =

neq
N

s
=

(
3ζ(3)
4π2 M2

1 TK2(M1/T)
)

(
2π2

45 g∗sT3
)

=
45

2π4g∗s

3ζ(3)

4
z2K2(z)

whereK〉(z) is the modified Bessel function of the second kind.D(z) accounts for

strength of decay and inverse decay processes and is given as

D(z) = zK
K1(z)
K2(z)

,

where parameterK is a measure of how fast the decay rate is in comparison with

the expansion rate of the universe at temperatureT = M1

K =
ΓD1

H (M1)
. (9.14)

TheWID term determines the washout amount of the lepton asymmetry created

due to the decay ofN1



Chapter 9. Baryon asymmetry through lepton asymmetry 105

YN
eq

K = 10
K = 0.01

0.01 0.1 1 10 100
z

10-11

10-9

10-7

10-5

0.001

YN�YL

Figure 9.6: Evolution ofYN and|YL| for the zero initial abundance ofN1

WID(z) =
1
2

Yeq
N

Yeq
ℓ

D(z) =
1
4

z3KK1(z) , . (9.15)

Now let us discuss the numerical solution of the set of equations9.12and9.13

with two kinds of typical initial conditions

1. Thermal initial abundance ofN1, i.e., atz≪ 1,YN = Yeq
N andYL = 0,

2. Zero initial abundance ofN1, i.e., atz≪ 1,YN = 0 andYL = 0.

The numerical solution for the thermal initial abundance ofN1 is shown in fig-

ure 9.5 for different values of parameterK. The black curve correspond to the

equilibrium value ofYN. TheYN evolution (solid curve) goes far away from the

equilibrium as we choose smaller values forK. This is obviously expected as the

decay ofN1 corresponding to the one with relatively smaller ratio of decay rate to

expansion rate is more likely to run into out of equilibrium.The lepton asymmetry

YL (dashed curve) is simultaneously generated as the out of equilibrium decay ofN1

takes place. It is straight forward to observe that the final asymmetry comes out to

be same for all the values taken forK. It is only true for small values ofK. For large

values ofK, the final asymmetry will be moderately washed out simply becauseN1

will remain in thermal equilibrium for longer time even at temperature far below

M1.

In the case of zero initial abundance ofN1, YN is first generated from zero

through the inverse decay and scattering until it reaches the equilibrium value. Af-

terward, it again starts decaying in out of equilibrium whentemperature drops below

its mass. The numerical solution corresponding to evolution of bothYN (solid curve)

and|YL| (dashed curve) have been shown in figure9.6. If K≫ 1, both inverse decay

and decay are strong and so thermalization is fast andYN achieves its equilibrium
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value sooner at high temperature. However, ifK≪ 1,YN attains its state of thermal

equilibrium late at relatively lower temperature and so a relatively smaller number

density ofN1 per comoving volume is generated before it decays. Consequently, the

generated lepton asymmetry due to out of equilibrium decay of N1 is also lowered

due to smaller abundance achieved byN1.

The interesting feature with the second initial condition is that lepton asym-

metryYL starts generating even beforeYN achieves its equilibrium value. Simple

reason is that the CP violating effects are also present in the inverse decay process

of leptons, i.e., in the creation ofN1. consequently, a lepton asymmetry is created in

the direction opposite to the one created due the decay ofN1. OnceYN achieves its

equilibrium value, further creation ofYL in opposite direction stops and then washed

out when subsequent out of equilibrium decay ofN1 starts taking place. However,

lepton asymmetry created by decay can overcome the one created by inverse decay

with some final net lepton asymmetry after cancellation. Nowfor K≫ 1, the decay

of N1 is fast andYN remains close to the equilibrium value while forK≪ 1, decay

is far out of equilibrium which is similar to the behavior as in the case of thermal

initial abundancy.

9.2.3 Lower bound onM1

The lower bound onM1 for sufficient leptogenesis comes from Davidson-Ibarra

bound on|ε1| [143]. For a hierarchical structure of heavy Majorana neutrino masses

and normal hierarchy for light neutrinos, the bound is givenas

|ε1|.
3

16π
M1(m3−m1)

v2 .

Using relation9.10, one can convert the the upper bound on|ε1| to the lower bound

onM1 as follows

M1 &
16πv2

3
√
△m2

31

(
YB

0.55Y0
N

)(
1
d

)

& 2.06×1016
(

8.61×10−11

0.55×3.9×10−3

)(
1
d

)
GeV

& 8.25×108GeV

(
1
d

)
.

As the dilution or efficiency factor can be utmost of order 1, the bound onM1

can be approximately given as

M1 & 109GeV.
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So the above bound should be satisfied in order to generate sufficient amount of

baryon asymmetry in our universe. The bound remains same forthe inverted hier-

archical structure of light neutrino masses.



Chapter 10

Connecting leptogenesis to low

energy CP violation

The goal of the present neutrino oscillation experiments isto determine the nine

degrees of freedom in the low energy neutrino mass matrix. They are parametrized

by three masses, three mixing angles and three CP violating phases out of which

two are Majorana and one is Dirac. At present the neutrino oscillation experiments

able to measure the two mass square differences, the solar and the atmospheric, and

three mixing angles with varying degrees of precision, while there is no information

about the phases.

In the present chapter we limit ourselves to the case of type Iseesaw models.

Although we call them right-handed neutrinos, in the extensions of the SM they are

just singlet fermions that transform trivially under the SMgauge group. So, there

is no apparent reasons for the number of heavy singlet neutrinos to be same as the

number of left-handed neutrinos. So, for the main part of ourdiscussions we restrict

ourselves to only two right-handed neutrinos. These results will also be true when

there are three right-handed neutrinos, but the third right-handed neutrino do not

mix with the other two neutrinos. We start with three right-handed neutrinos and

after some general comments work mostly with two right-handed neutrinos.

While there is no information about the absolute mass scalesof the physical

neutrinos, the currently discovered tiny mass scales; the atmospheric neutrino mass

(∆atm =
√
|m2

3−m2
2|) in theνµ−ντ oscillation and the solar neutrino mass (∆⊙ =

√
m2

2−m2
1) in theνe−νµ oscillation, can be explained by adding at least two right-

handed neutrinos to the SM Lagrangian. However, with two right-handed neutrinos

the seesaw mechanism predicts one of the physical light neutrino mass to be exactly

zero which is permissible within the current knowledge of neutrino masses and

mixing.

As discussed in previous chapter, the Majorana mass of the right-handed neu-

108
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trino violatesL-number and hence is a natural source of lepton-asymmetry inthe

early Universe [28]. A partial lepton-asymmetry is then converted to baryon asym-

metry through the non-perturbative sphaleron processes, unsuppressed above the

electroweak phase transition.

It is legitimate to ask if there are any connecting links between leptogenesis and

the CP violation in the low energy leptonic sector, in particular neutrino oscillation

and neutrinoless double beta decay. In the context of three right-handed neutrino

models several attempts have been taken in the literature toconnect the CP violation

in leptogenesis and neutrino oscillations [60, 61, 144, 145]. It is found that there are

almost no links between these two phenomena unless one considers special assump-

tions [146, 147]. In fact it is shown that leptogenesis can be possible irrespective of

the CP violation at low energy [148]. On the other hand, in the two right-handed

neutrino models there is a ray of hope connecting leptogenesis with the CP violation

in neutrino oscillation [149, 150] and neutrinoless double beta decay processes.

While the magnitude of CP violation is fairly known in the quark sector, it is

completely shaded in the leptonic sector of the SM. Therefore, searching for CP

violation in the leptonic sector is of great interest in the present days. It has been

pointed out that the Dirac phase, being involved in the L conserving processes, can

be measured in the long baseline neutrino oscillation experiments [151–154], while

the Majorana phase, being involved in the L violating processes, can be investigated

in the neutrinoless double beta decay [155, 156] processes.

At present the magnitude of baryon-asymmetry is precisely known, while the

sign of this asymmetry is not known yet. However, by knowing the CP violating

phases in the leptonic mixing matrix one can determine the sign of the baryon-

asymmetry. This is the study taken up in this work. We consider a minimal exten-

sion of the SM by including two singlet right-handed neutrinos which are sufficient

to explain the present knowledge of neutrino masses and mixings. We adopt a gen-

eral parametrization of the neutrino Dirac Yukawa couplingand give the possible

links between the CP violation in leptogenesis and neutrinooscillation, CP violation

in neutrinoless double beta decay and leptogenesis. It is shown that the knowledge

of low energy CP violating rephasing invariants can indeed determine the sign of

the baryon-asymmetry since the size of this asymmetry is known precisely.

10.1 Type I seesaw and parameter counting

In this section we discuss about number of independent parameters both magnitude

and phases in type I seesaw framework. The write the corresponding part of the
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Lagrangian from the section

L −
(

1
2
(NRα)c(MR)αβNRβ + ℓLiφ(Ye)i j ℓR j + ℓLi φ̃(Yν)iαNRα +H.C.

)
,(10.1)

where notation are similar to one in the section. The low energy neutrino mass

matrix comes out to be

mν =−MνDM−1
R MT

νD , (10.2)

Without loss of generality we considerMR to be diagonal and in this basisMνD

contains rest of the physical parameters that appears inmν.

As discussed in section , the diagonalization ofmν, through the lepton flavor

mixing matrixUPMNS [12–14], gives us three masses of the physical neutrinos. Its

eigenvalues are given by

mDiag
ν ≡ diag.(m1,m2,m3) = U†

PMNSmνU
∗
PMNS, (10.3)

where the massesmi are real and positive. The standard PDG parametrization of

the PMNS mixing matrixUPMNSare described in the section . Let us write it again

for convenience

UPMNS=




c12c13 s12c13 s13e−iδ13

−s12c23−c12s23s13eiδ13 c12c23−s12s23s13eiδ13 s23c13

s12s23−c12c23s13eiδ13 −c12s23−s12c23s13eiδ13 c23c13




.Uph,

where notations are similar as in section. The two physical phasesη andξ, present

in Uph, associated with the Majorana character of neutrinos are not relevant for

neutrino oscillations. Thus we see that there are three phases in the low energy

effective theory responsible for CP violation. However, these phases may not give

rise to CP violation at high energy regime, in particular, leptogenesis to our interest.

In the following we study this in the framework of three and than two right-handed

neutrino models.

In general ifn andn′ are the number of generations of the left and right-handed

neutrinos that take part in the seesaw then the total number of parameters in the
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effective theory is estimated to be [157]

Nmoduli = n+n′+nn′ , (10.4)

Nphase = n(n′−1) . (10.5)

For n = 3 andn′ = 3, Nmoduli = 15 andNphase= 6, which in the effective theory

manifests as three masses of charged leptons, three masses of right-handed neu-

trinos and remaining 15 parameters including nine moduli and six phases in the

Dirac mass matrixMνD in a basis where the charged lepton mass matrix is real and

diagonal. equation

In the bi-unitary parametrization the mass matrixMνD can be given as

MνD = U†
Lmdiag

D UR, (10.6)

whereUL andUR are 3×3 unitary matrices.UL diagonalizes the left-handed sector

whileUR is the diagonalizing matrix ofM†
νDMνD. Any arbitrary 3×3 unitary matrix

U ′ can be written as

U ′ = eiϕP1ŨP2 , (10.7)

whereϕ is an overall phase and

P1 = diag.(1,e−iα1,e−iα2) , (10.8)

P2 = diag.(1,e−iβ1,e−iβ2) , (10.9)

are phase matrices.̃U is a CKM like matrix parametrized by three angles and one

embedded phase. Now using equation10.7in equation10.6we get

MνD = ei(−ϕL+ϕR)P†
2LŨ†

LP†
1Lmdiag

D P1RŨRP2R. (10.10)

Without loss of generality three of the left phases can be absorbed in the redefi-

nition of charged lepton fields. As a result the effective Dirac mass matrix turns out

to be

MνD = Ũ†
LP3mdiag

D ŨRP2R, (10.11)

whereP3 = P†
1LP1R is an effective phase matrix. Thus in the models with three

right-handed neutrinosMνD contains 15 parameters.

In leptogenesis, the CP asymmetry comes in a formM†
νDMνD, which contains

P2R andŨR, i.e.,

M†
νDMνD = P†

2RŨ†
R(mdiag

D )2ŨRP2R, (10.12)
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and hence is independent ofP3 andŨL. Although it would be good to know the

exact relationship of the phases inP2R andŨR with the phases appearing in the

UPMNSmatrix but that is not possible. So, we try with some special cases.

Case-I:Let us first consider the case, whenŨR is a diagonal matrix. This is the

case when the right-handed neutrino Majorana mass matrix isdiagonal to start with.

The mass matrix can still contain Majorana phases. In that case,ŨR andmdiag
D will

commute and henceM†
νDMνD will be real and there will not be any leptogenesis.

This already tells us that the phases in leptogenesis crucially depends on the mixing

of the right-handed physical neutrinos. Even in this case there will be CP violation

at low energy as we shall see below. The light neutrino mass matrix is given by

mν =−Ũ†
L(P3)

2(ŨR)2(P2R)2(mdiag
D )2M−1

R Ũ∗L

so that the PMNS matrix will become

UPMNS= Ũ†
LP3P2R.

Thus both the Dirac and Majorana phases at low energy are non-vanishing.

Case-II: We shall now consider another special case when there is no leptoge-

nesis. If the diagonal Dirac neutrino mass matrix is proportional to a unit matrix,

i.e.,mD = m· I (I is the identity matrix), again there is no leptogenesis,

M†
νDMνD = m2 · I .

In this case the light neutrino mass matrix becomes

mν =−Ũ†
LP3ŨRP2Rm2M−1

R P2RŨT
RP3Ũ

∗
L ,

so that the PMNS matrix can be read off to be

UPMNS= Ũ†
LP3ŨRP2R.

Even in this case the Dirac and Majorana phases are present.

Thus in both these examples, even if CP violation is observedat low energy

neutrino experiments, this CP violation may not be related to leptogenesis. Since

it is not possible to make any further progress with three heavy neutrinos, we shall

now restrict ourselves to models with two heavy neutrinos.
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10.2 Parametrization of MνD in two right-handed

neutrino models

From now on we shall work with only two right-handed neutrinos. This result will

be applicable when there are only two heavy neutrinos or whenthere are three heavy

neutrinos but one of them do not mix with others and heavier than the other right-

handed neutrinos and hence its contribution to the light neutrinos is also negligible.

In the present case where we haven= 3 andn′= 2, from equation10.4and10.5, we

getNmoduli = 11 andNphase= 3. The 14 parameters in the effective theory manifest

them as three masses of charged leptons, two masses of right-handed neutrinos

and remaining nine parameters including six moduli and three phases appear in the

Dirac mass matrixMνD.

There are various textures and their phenomenological implications of MνD

in the two right-handed neutrino models that have been considered in the litera-

ture [158–160]. In this chapter a general parametrization of the 3×2 mass matrix

of the Dirac neutrinos is considered. This is given by

MνD = vYν = vU′Y2RH , (10.13)

whereU ′ is an arbitrary Unitary matrix and the Yukawa coupling of thetwo right-

handed neutrino model is given as

Y2RH =




0 x

z ye−iθ

0 0


 . (10.14)

A derivation of equation10.14is given in the appendix??. However, we declare

that the texture ofY2RH is not unique. By choosing appropriately theU matrix one

can placex,y,z at different positions so as to get the different textures ofY2RH .

Using10.7in equation10.13we get

MνD = vŨP2Y2RH , (10.15)

whereŨ contains four parameters including three moduli and one phase,P2 contains

two phases andY2RH contains four parameters including three moduli and one phase

which all together makes ten parameters inMνD. However, by multiplying the phase

matrix P2 with Y2RH one can see that one of the phases in the phase matrixP2, i.e.,

β2 becomes redundant and can be dropped without loss of generality. As a result

the total number of effective parameters is actually nine and hence consistent with

our counting.
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SubstitutingMνD, given by equation10.15, in equation11.9we can calculate the

effective neutrino mass matrix,mν. The diagonalization ofmν, through the lepton

flavor mixing matrixUPMNS , then gives us two non-zero masses of the physical

neutrinos while setting one of the mass to be exactly zero as shown in the following

section.

10.3 Neutrino masses and mixings in two right-

handed neutrino models

The unitary matrixŨ , appearing in equation10.15, can be parametrized as1

Ũ = R23(Θ23)R13(Θ13,δ′13)R12(Θ12) . (10.16)

It turns out that this parametrization is useful in determining the leptonic mixing

matrix in two right-handed neutrino models. Now from equations.11.9and10.15

we get the effective neutrino mass matrix to be

mν = −v2ŨP2Y2RHM−1
R YT

2RHP2Ũ
T

= −v2ŨP2XP2Ũ
T , (10.17)

where

X = Y2RHM−1
R YT

2RH . (10.18)

For simplicity of the calculation let us takee−iθ common from 2nd row ofY2RH

matrix given by equation10.14and absorb it inP2 by redefiningβ1 as(β1+θ)→ β1.

As a result opposite phase will reappear withz. Then the matrixY2RH turns out to

be

Y2RH =




0 x

zeiθ y

0 0


 . (10.19)

Using equation10.19in the above equation10.18we get

X =




x2

M2

xy
M2

0
xy
M2

y2

M2
+ z2e2iθ

M1
0

0 0 0


 . (10.20)

1This parametrization is usually used for determining the leptonic mixing matrix in the PDG
parametrization. Here we have used it for parametrizingmD.
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In writing the above equation we have used a diagonal basis ofthe right-handed

neutrinos whereMR = diag.(M1,M2). For simplicity, we absorbM1 andM2 in x,y

andzas x√
M2
→ a, y√

M2
→ b and z√

M1
→ c. SoX can be rewritten as:

X =




a2 ab 0

ab b2+c2e2iθ 0

0 0 0


 . (10.21)

Looking to the effective neutrino mass matrix as given by equation 10.17we can

guess that the diagonalizing matrix would be of the form

UPMNS= ŨKu , (10.22)

whereKu is an unitary matrix. Using equations10.3and10.22in equation10.17

we see that

mDiag
ν =−K†

uP2XP2K∗u , (10.23)

which implies thatKu would diagonalize the matrixP2XP2. From the structure ofX

it is clear that one of the light physical neutrinos must be massless. The matrixKu

can be parametrized as

Ku = P2R12(ω,φ)P, (10.24)

whereP = diag.(eiη1/2,eiη2/2,1) and

R12(ω,φ) =




cosω eiφ sinω 0

−e−iφ sinω cosω 0

0 0 1


 , (10.25)

with

tan2ω =

[
2ab

(
a4+b4+c4 +2a2b2+2b2c2cos2θ+2c2a2cos2θ

)1/2

(−a4 +b4+c4 +2b2c2cos2θ)

]
,(10.26)

and

tanφ =

[ −c2sin2θ
a2+b2+c2cos2θ

]
. (10.27)

SinceR12(ω,φ) diagonalizes the matrixX the resulting diagonal matrix will have

complex eigenvalues in general. However, by choosing appropriately the phases of

P one can make the eigenvalues ofX real. Using equations10.26and10.27we get
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the eigenvalues{λ1,λ2,λ3} of X to be

λ1 = a2−abeiφ tanω , λ2 = e−2iφ(a2+abeiφ cotω) and λ3 = 0 (10.28)

The absolute masses of the physical neutrinos are then givenby {m1 = v2|λ1|, m2 =

v2|λ2|, m3 = 0}. The MSW effect in the solar neutrino oscillation experiments in-

dicates thatm2 > m1. The corresponding mass scale, giving rise to theνe− νµ

oscillation, is given by

∆m2
⊙ ≡m2

2−m2
1 = v4(|λ2|2−|λ1|2) . (10.29)

Using equation10.28in the above equation we get the solar neutrino mass scale to

be

∆m2
⊙ = v4

{[
(a2+b2)2+c4 +2b2c2cos2θ

]2−4a4c4
}1/2

≃ 8×10−5eV2 . (10.30)

The atmospheric mass scale, on the other hand, is given by

∆m2
atm≡ |m2

2−m2
3|= v4(|λ2|2−|λ3|2) . (10.31)

Using equation10.28in the above equation we get the atmospheric mass scale to

be

∆m2
atm =

v4

2

(
(a2+b2)2+c4 +2b2c2cos2θ

+
{(

(a2+b2)2+c4 +2b2c2cos2θ
)2−4a4c4

}1/2
)

,

≃ 2×10−3eV2 . (10.32)

These equations may be inverted to obtain

v4((a2+b2)2+c4+2b2c2cos2θ
)

= 2∆m2
atm−∆m2

⊙

a4c4v8 = ∆m2
atm(∆m2

atm−∆m2
⊙). (10.33)

Using equations10.9and10.25in equation10.24we can rewrite the matrixK
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as

Ku = R12(ω,φ+β1)P
′

=




cosω ei(φ+β1) sinω 0

−e−i(φ+β1) sinω cosω 0

0 0 1


 (10.34)




eiη1/2 0 0

0 ei(η2/2−β1) 0

0 0 e−iβ2


 . (10.35)

Thus using equations10.35and10.16in equation10.22the PMNS matrixUPMNS

is given as

UPMNS= R23(Θ23)R13(Θ13,δ′13)R12(Θ12)R12(w,φ+β1)P
′ , (10.36)

where

R12(Θ12)R12(ω,φ+β1) =




cosΘ′12e
iρ1 sinΘ′12e

iρ2 0

−sinΘ′12e
−iρ2 cosΘ′12e

−iρ1 0

0 0 1




=




e
i
(

ρ1+ρ2
2

)

0 0

0 e
−i
(

ρ1+ρ2
2

)

0

0 0 1







cosΘ′12 sinΘ′12 0

−sinΘ′12 cosΘ′12 0

0 0 1


 (10.37)




e
i
(

ρ1−ρ2
2

)

0 0

0 e
−i
(

ρ1−ρ2
2

)

0

0 0 1


 . (10.38)

In the above equation we have

cos2Θ′12 = cos2ωcos2Θ12−cos(φ+β1)sin2ωsin2Θ12, (10.39)

sin(ρ2−ρ1) = sin(φ+β1) tanω
[
cot2Θ′12+

cos2Θ12

sin2Θ′12

]
, (10.40)

sin(ρ1+ρ2) =
sin2ωsin(φ+β1)

sin2Θ′12
. (10.41)

For further simplification of the PMNS matrix10.36we now compute the matrix
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productR12(Θ12)Ku = R12(Θ12)R12(ω,φ+β1)P′ which is given as

R12(Θ12)R12(ω,φ+β1)P
′ = ei(

η1
2 −ρ2)




ei(ρ1+ρ2) 0 0

0 1 0

0 0 1







cosΘ′12 sinΘ′12 0

−sinΘ′12 cosΘ′12 0

0 0 1







1 0 0

0 ei(ρ2−ρ1+(η2−η1)/2−β1) 0

0 0 e−i(β2−ρ2+
η1
2 )


 .(10.42)

Using equation10.42in equation10.36theUPMNSmatrix can be rewritten as:

UPMNS = ŨKu

= R23(Θ23)R13(Θ13,δ13)R12(Θ′12)

diag.(1,ei(ρ2−ρ1+(η2−η1)/2−β1),e−i(β2−ρ2+
η1
2 ))

= U .KP , (10.43)

whereU is the CKM like matrix andKP is the Majorana phase matrix. The effective

CPviolating phase in theV matrix is given by

δ13 = δ′13+(ρ1+ρ2) . (10.44)

Note that in writing equation10.43the overall phaseei(
η1
2 −ρ2) has been taken out.

Moreover, we absorb the unphysical phase matrix diag.(1,e−(ρ1+ρ2),e−(ρ1+ρ2)) into

the redefinition of charged lepton fields. From equations3.8, 10.16and10.44we

see that, for the chosen parametrization ofY2RH, two of the mixing anglesΘ23 and

Θ13 remains same as of the(2−3) and(1−3) mixing angles in PDG parametriza-

tion of the leptonic mixing matrix. Thus we can writeΘ23≡ θ23 andΘ13≡ θ13.

SinceΘ12 gets modified toΘ′12 , we can writeΘ′12 = θ12. Moreover, the modified

CP violating phaseδ13 is given by equation10.44. We will the global fit values for

the neutrino mixing angles as listed in3.9for our analysis.

10.4 Leptogenesis in two right-handed neutrino

models

We have discussed leptogenesis in type I seesaw scenario in the previous chapter

with three right-handed neutrinos. However, the discussion remains same for two

right-handed neutrinos . We assume a normal mass hierarchy (M1 << M2) in the

right-handed neutrino sector then the final lepton-asymmetry is given by the decay

of the lighter right-handed neutrino,N1. Using the expression9.11for CP asymme-



Chapter 10. Connecting leptogenesis to low energy CP violation 119

0 0.002 0.004 0.006 0.008 0.01
y

0

0.5

1

1.5

2

2.5

3

Θ

HaL

0 0.01 0.02 0.03 0.04 0.05
y

0

0.5

1

1.5

2

2.5

3

Θ

HbL

Figure 10.1: The allowed values ofy are shown againstθ (in rad) for the observed
matter antimatter asymmetry, given by equation??, with (a)M1

M2
= 0.1 and (b)M1

M2
=

0.01.

try parameter, arising from the decay ofN1, is then given by

ε1 =
−3

16πv2

(
M1

M2

)
Im[(M†

νDMνD)12]
2

(M†
νDMνD)11

. (10.45)

Using equations10.15and10.14in the above equation10.45we get

ε1 =
−3
16π

(
M1

M2

)
y2sin2θ . (10.46)

From the above equation10.46it is clear that ifθ = 0 then there is no CP violation in

leptogenesis. Therefore,θ can be thought of the phase associated withMi in a basis

whereMi ’s are complex. Moreover,θ always hangs aroundy. Soy = 0 implies no

leptogenesis. We will discuss more about later while we compare the CP violation

in leptogenesis, neutrino oscillation and neutrinoless double beta decay processes.

Now using the relation9.9in the previous chapter, we can write the final lepton

asymmetry generated as

YL =−5.97×10−5M1

M2

(
Y0

Nd

10−3

)
y2sin2θ . (10.47)

A part of the lepton-asymmetry is then transferred to the baryon-asymmetry via the

sphaleron processes which are unsuppressed above the electroweak phase transition.

Taking into account the particle content in theSM, the relation between baryon and

lepton-asymmetries are described in expression9.10. Using this expression, we can

write

YB≃ 3.28×10−5M1

M2

(
Y0

Nd

10−3

)
y2sin2θ . (10.48)
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Figure 10.2: The overlapping region in thenB/nγ−JCP plane is shown asθ (in rad)
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The dashed line is obtained forΘ12 = 33.5◦, y= 0.01 andM1

M2
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line is obtained forΘ12 = 33.8◦, y = 0.02 andM1
M2

= 0.01.

The observed baryon-asymmetry can also be given as

nB

nγ
= 7.1YB = 2.3×10−4M1

M2

(
Y0

Nd

10−3

)
y2sin2θ . (10.49)

Comparing the above equation10.49with the observed matter antimatter asymme-

try, we get

y2sin2θ = (2.57 − 2.78)×10−6M2

M1

(
10−3

Y0
Nd

)
. (10.50)

We have shown the allowed values ofy in figure 10.1, using(Y0
Nd) = 10−3, for

hierarchical right-handed neutrinos in they−θ plane. It is shown in figure10.1(a)

that for(M1/M2) = 0.1 the minimum allowed value ofy is 5×10−3. However, this

value is lifted up to 1.7×10−2 for (M1/M2) = 0.01 as shown in figure10.1(b).

10.5 CP violation in leptogenesis and neutrino oscil-

lation

It has been pointed out that the Dirac phaseδ13 can be measured in the long baseline

neutrino oscillation experiments [151–154]. In that case the CP violation arises

from the difference of transition probability∆P= Pνe→νµ−Pν̄e→ν̄µ. It can be shown

that the transition probability∆P is proportional to the leptonic Jarlskog invariant

JCP defined In expression4.5of the section4.2.
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Using expression4.5, the rephasing invariantJCP can be rewritten as

JCP =
1
8

sin2Θ′12sin2Θ23sin2Θ13cosΘ13sin(δ′13+ρ1+ρ2) . (10.51)

Now using equations10.26, 10.27, 10.39and10.41in the above equation10.51we

get

JCP =
1
8

sin2Θ23sin2Θ13cosΘ13√
[(a2+b2)2 +c4+2b2c2cos2θ]

2−4a4c4

×
[
2abcosδ′13{−c2sin2θcosβ1+(a2+b2 +c2cos2θ)sinβ1}

+ 2abcos2Θ12sinδ′13{(a2+b2 +c2cos2θ)cosβ1+c2sin2θsinβ1}
+ sinδ′13sin2Θ12(−a4 +b4+c4 +2b2c2cos2θ)

]
. (10.52)

From the above equation10.52it is obvious thatJCP = 0 only if both sinδ′13 = 0

and b = 0, while only b = 0 (equivalentlyy = 0) implies the condition for “no

leptogenesis". This indicates that there is no one-to-one correspondence between

the CP violation in neutrino oscillation and the CP violation in leptogenesis, even in

the two right-handed neutrino models. However, it is interesting to see the common

regions in the plane of(nB/nγ) versusJCP. This is shown in figure10.2by taking

a typical set of parameters. The main aim is to illustrate themaximal contrast

between the positive and negative values ofnB/nγ for a given set of values ofJCP.

This helps us in determining the sign of the asymmetry by knowing the size of the

asymmetry. From the figure10.2it is obvious that for the given set of parameters the
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positive sign of the asymmetry allows the values ofJCP in the range 0.049−0.0495

for (M1/M2) = 0.1. However, this range is significantly reduced for(M1/M2) =

0.01. On the other hand, the negative sign of the asymmetry allows the values of

JCP in the range 0.0465−0.047 for (M1/M2) = 0.1 which is further reduced for

(M1/M2) = 0.01. In this figure the value ofΘ12 is used from figure10.4 where

we have shown the allowed values ofΘ12 asθ varies from 0 toπ. Note that the

above results are true for a non-zeroΘ13. Consequently the allowed range of values

of JCP may vary depending on the values ofΘ13. Thus we anticipate that in the

two right-handed neutrino models a knowledge ofJCP can predict the sign of matter

antimatter asymmetry of the Universe. We should note that the predictive power

of the model depends on the CP violating phasesβ1 andδ′13. This can be visible

from figure10.3where we have shown the variation ofnB/nγ with JCP for different

values ofβ1 andδ′13. In particular, for the choice (β1 = π/2, δ′13 = 0) and (β1 = 0,

δ′13 = π/2), the contrast between the positive and negative values ofnB/nγ is almost

zero for a given set of values ofJCP. On the other hand, for the choice (β1 = π/2,

δ′13 = π/2) and (β1 = 0, δ′13 = 0), the contrast between the positive and negative

values ofnB/nγ is maximal and can be chosen for the present purpose.

10.6 CP violation in leptogenesis and neutrinoless

double-beta decay

The observation of the neutrinoless double beta decay wouldprovide direct evi-

dence for the violation of totalL-number in the low energy effective theory and

hence probing the left-handed physical neutrinos to be Majorana type. Note that

theL-number violation at high energy scale is a necessary criteria for leptogenesis.

In the canonical seesaw models this is conspired by assumingthat the right-handed

neutrinos are Majorana in nature. However, this assumptiondoesn’t ensure that

the left-handed physical neutrinos are Majorana type. Assuming that the physical

neutrinos are of Majorana type we investigate the connecting links between the two

L-number violating phenomena occurring at two different energy scales.

In the low energy effective theory with three generations ofleft-handed

fermions, apart from theJCP, one can write two more rephasing invariantsJ1 and

J2 as discussed in section4.2. However, in the models with two right-handed neu-

trinos one of the eigen values of the physical light neutrinomass matrix is exactly

zero. Therefore, the corresponding phase in the Majorana phase matrix can always

be chosen so as to set one of the lepton-number violating CP violating rephasing

invariant to zero. In the present casem3 = 0 and hence the corresponding phase is

arbitrary. This is ensured throughβ2 which is redundant and pointed out in equation



Chapter 10. Connecting leptogenesis to low energy CP violation 123

0 0.5 1 1.5 2 2.5 3
Θ

0

0.25

0.5

0.75

1

1.25

1.5

Q12

HaL

0 0.5 1 1.5 2 2.5 3
Θ

0

0.25

0.5

0.75

1

1.25

1.5

Q12

HbL

Figure 10.4: The allowed range ofΘ12 (in rad) in equation10.55is shown asθ (in
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10.15. Therefore, from equation10.43we can write the onlyL-number violating

CP violating rephasing invariant as:

J = Im
[
Ve1V

∗
e2(Vph)

∗
11(Vph)22

]

= −1
2

sin2Θ′12cos2Θ13sin(ρ2−ρ1+
(η2−η1)

2
−β1) . (10.53)

Using equation10.42the above equation10.53can be rewritten as

J = −cos2Θ13

2
1

[(a2+b2)2+c4 +2b2c2cos2θ+2c2a2cos2θ]

×
[
sin2Θ12cosθ{−c2sin2θcosβ1+(a2+b2+c2cos2θ)sinβ1}

×
√

(a2+b2)2+c4 +2c2a2+2b2c2cos2θ

+ sin2Θ12sinθ{c2sin2θsinβ1+(a2+b2+c2cos2θ)cosβ1}

× (−a4+b4+c4 +2b2c2cos2θ)√
(a2+b2)2+c4 +2c2a2+2b2c2cos2θ

+ cos2Θ12sinθ
2ab{(a2+b2)2+c4 +2b2c2cos2θ+2c2a2cos2θ}√

(a2+b2)2+c4 +2c2a2+2b2c2cos2θ

]
.(10.54)

In the above equation10.54the allowed values ofΘ12 is obtained from

cosΘ′12 =

[
1
2

[
1+

(
−a4+b4 +c4+2b2c2cos2θ

)
cos2Θ12√

((a2+b2)2+c4 +2b2c2cos2θ)2−4a4c4

− sin2Θ12
2ab{c2sin2θsinβ1+(a2 +b2+c2cos2θ)cosβ1}√

((a2+b2)2+c4 +2b2c2cos2θ)2−4a4c4

]]1/2

,(10.55)
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Figure 10.5: The overlapping region in thenB
nγ
−J plane is shown asθ (in rad) varies

from 0 toπ with Θ13 = 13◦, β1 = π/2 andx = z= 0.01. The solid line is obtained
for y = 0.01 andΘ12 = 33.5◦, while the dashed line is obtained withy = 0.02 and
Θ12 = 33.8◦.

by fixing Θ′12 = (33.9±1.6)◦. This is shown in figure10.4.

From equation10.54one can see thatJ 6= 0 asθ→ 0 which is the condition

for “no leptogenesis". Thus we see that there is no one-to-one correspondence

between the twoL-number violating processes occurring at two different energy

scales. However, it is always interesting to see the overlapping regions in the plane

of nB
nγ

versusJ asθ varies from 0 toπ. This is shown in figure10.5for a typical set of

parameters. From figure10.5one can see that for positive sign of theB-asymmetry

the values ofJ lie in between−0.45 to−0.1 for (M1/M2) = 0.1. This range is

further reduced to(−0.4−−0.15) for (M1/M2) = 0.01. On the other hand, for the

negative sign of theB-asymmetry the values ofJ lie in the range(0.05−0.45) for

(M1/M2) = 0.1 and in the range(0.15−0.4) for (M1/M2) = 0.01. Thus we see

that within the allowed range of parameters the contrast between the positive and

negative values ofnB
nγ

is maximum for a given set of values ofJ. Therefore, we

expect a knowledge ofJ can precisely determine the sign ofB-asymmetry since the

value ofnB/nγ is known. Finally we note that, unlikeJCP, J remains non-vanishing

even ifΘ13 = 0 2. Now the remaining question to be addressed is hownB/nγ varies

with respect toJ for different values ofβ1. This is shown in figure10.6for a given

set of parameters. One can see that forβ1 = 0 andβ1 = π both positive and negative

values ofnB/nγ correspond to the same set of values ofJ which is unwelcome for

determination of sign of the asymmetry. On the other hand forβ1 6= 0,π one can

2In three generations there are two of them. See for example the paper by Y. Liu and U. Sarkar
in ref. [15]
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Figure 10.6: The variation ofnB
nγ

with J

The variation ofnB
nγ
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=
0.1.

have maximal contrast between the positive and negative values ofnB/nγ for the

given set of values ofJ and hence can be chosen for the present purpose.



Chapter 11

Neutrino dark energy in SO(10) GUT

model

As discussed in chapter8, the original models of neutrino dark energy (NDE) or

the mass varying neutrinos (mavans) [27, 161, 162] are based on type I seesaw

mechanism by allowing the Majorana mass of the right-handedneutrinos to vary

with the acceleron field. The basic mechanism is discussed insubsection8.3.2of

chapter8. However, this kind of model is not complete and several problems are

pointed out in [27, 163]. Some of the problems have been also solved in subsequent

works [164–168], but more studies are required to make this model fully consistent.

In type I seesaw models of NDE, the Majorana masses of the right-handed neu-

trinos varies with the acceleron field and that relates the scale of DE with the light

neutrino masses. Naturalness requires the Majorana massesof the right-handed

neutrinos also to be in the range of eV and the main motivationof the seesaw mech-

anism to naturally suppress the low energy neutrino masses is lost. So the smallness

of the light neutrino masses cannot be attributed to a large lepton-number violating

mass scale in this theory. Moreover, the neutrino Dirac masses cannot be made to

vary with the acceleron field, since that will then allow coupling of the acceleron

field with the charged leptons and a natural scale for the DE will then be the mass

of the heaviest charged lepton. For the same reason, this mechanism cannot be em-

bedded into a left-right symmetric model, in which theSU(2)R group relates the

right-handed neutrinos to the right-handed charged leptons.

The problem with the smallness of the mass parameter that depends on the ac-

celeron field can be softened in the NDE models in type II seesaw scenario [168]. In

the NDE model with the triplet Higgs scalars, the coefficientof this trilinear scalar

coupling with mass dimension varies with the acceleron field, and naturalness al-

lows this parameter to be as large as a few hundred GeV. Although the scale of this

mass parameter predicts new signals in the TeV range, there is no symmetry that

makes this scale natural.

126
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In this chapter, we construct a left-right symmetric model for the NDE proposal

and try to embed this model inSO(10) GUT. The most important feature of this

model is that the mass parameter varying with the acceleron field remains small

naturally and the scale of DE is related to the neutrino masses. This is the only

NDE model that can be embedded into a grand unified theory, without relating the

scale of DE to the charged fermion masses.

11.1 Left-right symmetric model for NDE

We have discussed the basic structure of left-right symmetric model in detail in

chapter5. In addition to the basic gauge and fermion structure in the left-right

symmetric model, we introduce a singlet fieldSR. Although there is noSL, the

model is consistent with left-right parity operation, since the fieldSR transform to

its CP conjugate state under the left-right parity as:SR↔ Sc
L. This also ensures

that the Majorana mass term is invariant under the parity transformation, because

this field SR transform under the transformationSU(2)L↔ SU(2)R to itself SR≡
(1,1,1,0)↔ (1,1,1,0).

The various left-right symmetric models differ from each other in choice of

Higgs bosons and symmetry breaking chains . In the present model, the content

of the Higgs sector will be chosen according to the followingdesired symmetry

breaking pattern[169, 170]:

SU(3)c×SU(2)L×SU(2)R×U(1)(B−L) [G3221D]

MR→ SU(3)c×SU(2)L×U(1)R×U(1)(B−L) [G3211]
mr→ SU(3)c×SU(2)L×U(1)Y [G321]
mW→ SU(3)c×U(1)Q [Gem] .

Breaking of the left-right symmetric group toG3211 requires a right triplet Higgs

scalars∆R transforming as∆R≡ (1,1,3,0). The triplet does not change the rank

of the gauge group and only breaksSU(2)R→ U(1)R. Since it does not carry

any U(1)B−L quantum number, it cannot give any Majorana masses to the neu-

tral fermions. For the next symmetry breaking stage,U(1)R×U(1)B−L→U(1)Y,

we introduce anSU(2)R doublet Higgs scalar fieldχR≡ (1,1,2,1/2) [91]. Thevev

of χR could also break[G3221D]→ [G321], if the field ∆R were not present. The

left-right parity would then require the existence of the fields ∆L ≡ (1,3,1,0) and

χL ≡ (1,2,1,1/2). Finally, the SM symmetry breaking is mediated by a bi-doublet

field Φ≡ (1,2,2,0), like in any other left-right symmetric model. This field hasthe

Yukawa interaction with the SM fermions and provide Dirac masses to all of them.
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We shall introduce one more Higgs bi-doublet scalarΨ≡ (1,2,2,0) that is required

to write a few desired terms in our model. We also introduce another singlet scalar

field η ≡ (1,1,1,0), which acquires a tinyvev of the order of the light neutrino

masses and generate the mass scale for the DE naturally.

Now we write down the explicit forms of all the scalar fields interms of their

components as

∆L =

(
∆0

L ∆+
L

∆−L −∆0
L

)
, ∆R =

(
∆0

R ∆+
R

∆−R −∆0
R

)
,

Φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
, Ψ =

(
ψ0

1 ψ+
1

ψ−2 ψ0
2

)
,

χL =

(
χ+

L

χ0
L

)
, χR =

(
χ+

R

χ0
R

)
,

The most general scalar potential has to be constructed in such a way that they

respect the left-right parity transformation of the scalarfields listed below:

χL↔ χR , ∆L↔ ∆R

Φ↔Φ† , Ψ↔Ψ†

. η↔ η .

Under the left-right gauge group transformation, the Higgsfields transform as

∆L→UL ∆L U†
L , ∆R→UR ∆R U†

R

Φ→UL Φ U†
R , Ψ→UL Ψ U†

R

χL→UL χL , χR→UR χR

η→ η .

In order to write down the scalar potential we also constructthe fieldsτ2Φ∗τ2

andτ2Ψ∗τ2 from Φ andΨ which transform in the same ways asΦ andΨ. For

convenience, we representΦ asφ1, τ2Φτ2 asφ2 (and similarly forΨ) from now on.

11.2 Potential minimization

We first write down the most general renormalizable gauge invariant scalar potential

respecting left-right parity and study details of potential minimization. Besides left-

right parity, we impose followingZ4 symmetry on only the Higgs potential to avoid
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few undesired terms
χL→ iχL , χR→−iχR,

∆L→−∆L , ∆R→−∆R,

Φ→Φ , Ψ→−Ψ ,

η→ η .

We write the the Higgs potential as a sum of of various parts and write down each

part separately as:

V = Vφ +Vψ +V∆ +Vη +Vχ +V∆φψ +Vχφψ +Vηχ∆φψ

Vφ = −∑
i, j

µ2
φi j

2
tr(φ†

i φ j)+ ∑
i, j ,k,l

λφi jkl

4
tr(φ†

i φ j) tr(φ†
kφl )

+ ∑
i, j ,k,l

Λφi jkl

4
tr(φ†

i φ jφ†
kφl )

Vψ = −∑
i, j

µ2
ψi j

2
tr(ψ†

i ψ j)+ ∑
i, j ,k,l

λψi jkl

4
tr(ψ†

i ψ j) tr(ψ†
kψl )

+ ∑
i, j ,k,l

Λψi jkl

4
tr(ψ†

i ψ jψ†
kψl )

V∆ = −µ2
∆
2

[tr(∆L∆L)+ tr(∆R∆R)]+
λ∆
4

[tr(∆L∆L)
2+ tr(∆R∆R)2]

+
Λ∆
4

[tr(∆L∆L∆L∆L)+ tr(∆R∆R∆R∆R)]

+
g∆
2

[tr(∆L∆L) tr(∆R∆R)]

Vη =
M2

η

2
η2 +

λη

4
η4

Vχ = −
µ2

χ

2
[χ†

LχL +χ†
RχR]+

λχ

4
[(χ†

LχL)
2+(χ†

RχR)2]

+
gχ

2
[χ†

LχL χ†
RχR]
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V∆φψ = ∑
i, j

αφi j [∆L∆L +∆R∆R] tr(φ†
i φ j)

+∑
i, j

αψi j [∆L∆L +∆R∆R] tr(ψ†
i ψ j)

+∑
i, j

βφi j [ tr(∆L∆Lφiφ†
j )+ tr(∆R∆Rφ†

i φ j)]

+∑
i, j

βψi j [ tr(∆L∆Lψiψ†
j + tr(∆R∆Rψ†

i ψ j)]

+∑
i, j

h∆φi j tr(∆Lφi∆Rφ†
j )+∑

i, j
h∆ψi j tr(∆Lψi∆Rψ†

j )

Vχφψ = ∑
i, j

hφχi j [χ†
LχL +χ†

RχR] tr(φ†
i φ j)

+∑
i, j

hψχi j [χ†
LχL +χ†

RχR] tr(ψ†
i ψ j)

Vηχ∆φψ =
(

hηχ [χ†
LχL +χ†

RχR]+hη∆ [tr(∆†
L∆L)+ tr(∆†

R∆R)]
)

η2

+

(

∑
i, j

hηφi j tr(φ†
i φ j)+∑

i, j
hηψi j tr(ψ†

i ψ j)

)
η2

+∑
i, j

hηi j η [tr(φ†
i ∆Lψ j)+ tr(φi∆Rψ†

j )+h.c.]

+∑
i

hχi η [χ†
LφiχR+h.c.] .

We parametrize the true minima of the potential by giving vevs to different scalar

fields as follows.

φ1 =

(
v 0

0 v′

)
, φ2 =

(
v′ 0

0 v

)
, ψ1 =

(
w 0

0 w′

)
, ψ2 =

(
w′ 0

0 w

)
,

χL =

(
0

vL

)
, χR =

(
0

vR

)
, ∆L =

(
uL 0

0 −uL

)
, ∆R =

(
uR 0

0 −uR

)

η = u.

Since the phenomenological consistency requiresv≫ v′andw≫w′, we ignore

potential terms involvingv′andw′ and write down the general scalar potential in

terms ofvevs of different scalar fields
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V = −
µ2

φ

2
v2+

λφ

4
v4−

µ2
ψ

2
w2 +

λψ

4
w4

−µ2
∆
2

(u2
L +u2

R)+
λ∆
4

(
u4

L +u4
R

)

+
M2

η

2
u2+

λη

4
u4

−
µ2

χ

2
(v2

L +v2
R)+

λχ

4
(v4

L +v4
R)+

gχ

2
(v2

L v2
R)

+[(αφ +βφ)v
2+(αψ +βψ)w2] (u2

L +u2
R)+(h∆φv2+h∆ψw2) uLuR

+(hφχv2 +hψχw2) (v2
L +v2

R)

+[hηχ(v
2
L +v2

R)+hη∆(u2
L +u2

R)+hηφv2+hηψw2] u2

+hη u(uL +uR)vw+hχ u(vLvR)v.

For convenience, we have replacedλφ + Λφ → λφ, λψ + Λψ → λψ, λ∆ + Λ∆ →
λ∆. The minimization of the potential is studied by taking partial derivatives with

respect tovevs of all Higgs fields and then separately equating them to zero. Solving

all such equations will provide us the desired values. One ofthe minimization

conditionsvL

(
∂V
∂vR

)
−vR

(
∂V
∂vL

)
= 0 leads to the following relation betweenvL and

vR:

(v2
R−v2

L)
[
(λχ−gχ)vLvR−hχuv

]
= 0.

Since(v2
R = v2

L) is not desirable phenomenologically, we chose

vLvR =
hχuv

(λχ−gχ)
. (11.1)

Using above relation in an another minimization conditionvL

(
∂V
∂vR

)
+vR

(
∂V
∂vL

)
= 0,

we get

v2
L +v2

R =−
µ2

χ

λχ
. (11.2)

ParametrizingvL = A sinθ, vR = A cosθ and putting them in the two equations11.1

and11.2 , we findA = −µ2
χ/λχ sin2θ = 2θ =

2hχuv
(λχ−gχ) sinceµχ is a large number

compared to the numerator. So we get

vR = A = 2
√
−µ2

χ/λχ ,

vL = Aθ =
λχhχ

(gχ−λχ)

uvvR
µ2

χ
.

We have chosen the parametrization ofvL andvR in such a way thatvR gets value

equal to breaking scale ofG3211andvL gets a very small value. We could have done
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other way around but that is not what is phenomenologically allowed. Proceeding

with the same kind of analysis foruL anduR, i.e., using two minimization conditions

uL

(
∂V
∂uR

)
−uR

(
∂V
∂uL

)
= 0 anduL

(
∂V
∂uR

)
+uR

(
∂V
∂uL

)
= 0, we get

uR = 2
√
−µ2

∆/λ∆ ,

uL =
λ∆h∆

(g∆−λ∆)

(h∆φv2 +h∆ψw2)uR

µ2
∆

.

Using equation11.1, theη field can be shown to getvevonly by termhηu(uL +

uR) as only this term is linear inu. The termhχu(vLvR)v does not remain linear inu

after we substitute the value ofvLvR from equation11.1. Since the mass term forη
field is large and positive, we expect very smallvev. So we can ignore some of the

terms in the potential while solving foru and can easily obtain

u =
hηvw(uL +uR)

M2
η− (hη∆µ2

∆/λ∆)− (hηχµ2
χ/λχ)

.

After analyzing the complete scalar potential, we find a consistent solution with

ordering

uR≫ vR > v > w≫ u≫ vL . (11.3)

At this stage we can assume the different mass scales to explain the model. How-

ever, when we embed this model in anSO(10) grand unified theory, the gauge cou-

pling unification will impose strong constraints on the different symmetry breaking

scales. The left-right parity and theSU(2)R breaking scale will come out to be above

1011 GeV. So, we shall assumeuR∼ 1011 GeV. We also assumemη ∼ m∆ ∼ uR.

However, it will be possible to keep theG3211 symmetry breaking scale to be very

low, and hence, we shall assumemχ∼ vR∼ TeV. We find the remaining mass scales

to bev∼mw∼ 100 GeV,u∼ uL ∼ eV andvL ∼ 10−2 eV.

11.3 Embedding the model inSO(10)GUT

We shall study here the embedding of the present model with all its Higgs content in

SO(10) GUT. We consider the following breaking pattern ofSO(10) gauge group to

first Pati-Salam gauge groupSU(4)×SU(2)L×SU(2)R, next to the left-right gauge

group and then to the SM gauge group
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SO(10)
MU→ SU(4)×SU(2)L×SU(2)R [G422D]
MI→ SU(3)c×SU(2)L×SU(2)R×U(1)(B−L) [G3221D]

MR→ SU(3)c×SU(2)L×U(1)R×U(1)(B−L) [G3211]
mr→ SU(3)c×SU(2)L×U(1)Y [G321]
mW→ SU(3)c×U(1)Q [Gem] .

In the discussion of chapter6, we saw that the Higgs multiplets which can provide

the masses for all the SM fermions are limited as 16×16= 10s+120a+126s. For

convenience, let us write how a 10 dimensional Higgs fieldHΦ decomposes under

left-right gauge group as

HΦ (10) = Φ(1,2,2,0)⊕ (3,1,1,−1
3
)⊕ (3,1,1,

1
3
) .

One can easily identify the bi-doubletΦ(1,2,2,0) appearing in the left-right model

contained inHΦ(10). To include another bi-doubletΨ(1,2,2,0) present in the

model, we introduce a second 10-dimensional Higgs fieldHΨ(10).

Although the fermion and gauge sector of theSO(10) GUT model are quite sim-

ple, the Higgs sector is quite complicated since it is not only required for generating

fermion Masses, but an appropriate Higgs content is also needed for systematic and

consistent breaking of theSO(10) gauge group down to the SM gauge group in one

or more steps. To breakSO(10) gauge group to the Pati-Salam gauge group, one

requires Higgs fields eitherS(54) or ϒ(210), both having singlet under Pati-Salam

decomposition. Although we have discussed some of these issues in subsection

6.2.1of chapter6, we discuss some part again for the sake of completeness.

Giving vevto either of the two fields in the singlet direction will servethe pur-

pose of the desired breaking. The(15,1,1) of ϒ also has a singlet under the left-right

gauge group which can acquirevevto break the Pati-Salam group to the left-right

group. The(15,3,1) and (15,1,3) Higgs multiplets ofϒ also contain the fields

∆L(1,3,1,0) and∆R(1,1,3,0) present the left-right model. However, theϒ singlet

under Pati-Salam gauge group is odd under D-Parity. If we give vev to ϒ singlet,

the left-right symmetry will be broken at unification scale itself. Since our model

is left-right symmetric, we must avoid D-parity breaking until left-right group is

broken.

However, the singlet inS(54) field under Pati-Salam gauge group does respect

the D-parity and so can be used to break the GUT group to the Pati-Salam gauge

group. As discussed in subsection6.2.1, a 45-dimensional Higgs fieldA(45) is

needed along withS(54) for breaking the GUT group to the left-right group. The
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Higgs fieldA(45) has the decomposition under the left-right group as

A(45) = (1,1,1,0)⊕∆L(1,3,1,0)⊕∆R(1,1,3, ;0)

⊕(3,1,1,
4
3
)⊕ (3,1,1,−4

3
)⊕ (8,1,1,0)

⊕(3,2,2,
2
3
)⊕ (3,2,2,−2

3
) .

The first row of the above decomposition is of our interest as it contains the fields

∆L(1,3,1,0) and∆R(1,1,3,0) of our model along with the left-right group singlet.

Moreover, the singlet is even under D-parity and so the left-right symmetry is un-

broken until∆R acquiresvevalong the singlet direction to the SM gauge group. So

a combination of (45+54)-dimensional Higgs fields serves our purpose to break the

GUT group to left-right group without violating the D-parity and we will work with

this combination for the rest of the discussion.

The fieldsχL
(
1,2,2, 1

2

)
andχR

(
1,1,2, 1

2

)
are still left to be embedded in some

tensors ofSO(10). The desired quantum numbers indicate that they can be embed-

ded in the spinorial Higgs representation
(
C(16)⊕C(16)

)
. Decomposition of the

16⊕16 spinor representation under left-right group are given as

16 = χ∗L(1,2,1,−1
2
)⊕χR(1,1,2,

1
2
)

⊕(3,2,1,
1
6
)⊕ (3,1,2,−1

6
)

16 = χL(1,2,1,
1
2
)⊕χ∗R(1,1,2,−1

2
)

⊕(3,1,2,
1
6
)⊕ (3,2,1,−1

6
) ,

Having embedded all the Higgs fields of our model intoSO(10) tensor fields, we

now study the renormalization group evolution of the various coupling constants.

11.4 Gauge coupling evolution

In the present section, we will be studying the set of two-loop renormalization group

(RG) equations for the evolution of the coupling constants and will be verifying the

consistency of the chosenvev for different Higgs fields in the context ofSO(10)

GUT. For simplicity, we assume that the scaleMU andMC are very close and we

ignore the evolution of the coupling constants between the two scales. This is quite

preferable as we will see later that the unification scale is very tightly constrained
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by the current proton decay bound [98] and any substantial difference between the

two breaking scales would make it even worse. We start with the following equation

for the two-loop evaluation of the coupling constantαi

dα−1
i (t)

dt
=− ai

2π
− bi j

8π2

(
1

α−1
j

)
(11.4)

wheret = ln
(
Mµ
)

andMµ is the desired energy scale where the couplings constants,

αi ’s, are be determined. . Theai ’s andbi j ’s are the one-loop and two-loop beta

functions governing the evolution ofαi ’s and include the contributions from gauge

bosons, fermions and scalars in the model.

The fermion contribution to the beta function is taken rightfrom the starting, the

electroweak scale (100GeV). The contributions of the gaugebosons to beta func-

tions are straightforward to compute as one can easily determine the expected mass

scales of the heavy gauge bosons corresponding to any given gauge group. How-

ever, the contribution coming from the Higgs content is not so clear because the

heavy Higgs modes can have various possible mass spectrum. We will use the ex-

tended survival hypothesis to fix this uncertainty. The extended survival hypothesis

is based on the assumption that only minimal number of fine-tunings of the param-

eters in the Higgs potential are imposed to ensure the hierarchy in various gauge

boson masses. According to the extended survival hypothesis, only those scalar

multiplets are present at any given intermediate breaking scaleMI of a intermedi-

ate gauge groupGI which are either required for breaking the gauge groupGI or

needed to further break any other intermediate gauge group below scaleMI . Rest of

the scalars are stuck at the unification scale.

A list of Higgs multiplets surviving at the breaking scale ofa intermediate group

GI , using the extended survival hypothesis, are given in table. A list of both one-

loop and two-loop beta coefficients, which include all the contributions, that govern

the evolution above the breaking scale ofGI to the next intermediate scale are also

listed.

Since our model contains intermediate steps, we require appropriate matching

conditions at the corresponding breaking scales. For the tow-loop RG running of

the coupling constants, the matching conditions have been derived in [171, 172].

Suppose a gauge groupG is spontaneously broken into a sub-group∏i Gi with sev-

eral individual factorGi , then the following matching condition need to be satisfied

for the two-loop analysis

α−1
G (MI )−

C(G)

12π
= α−1

Gi
(MI)−

C(Gi)

12π
, (11.5)

whereC(G/Gi) is the quadratic Casimir invariant for the groupG/Gi .
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GroupGI Higgs content a b

G321

(
1, 2, 1

2

)
10⊕

(
1, 2,−1

2

)
10(

1, 2, 1
2

)
10′⊕

(
1, 2,−1

2

)
10′




−7

−3

21
5







−26 9
2

11
10

12 8 6
5

44
5

18
5

104
25




G3211

(
1, 2, 1

2 0
)

10⊕
(
1, 2,−1

2 0
)

10(
1, 2, , 1

2 0
)

10′⊕
(
1, 2,−1

2, 0
)

10′(
1, 1,−1

2, 1
2

)
16+

(
1, 1, 1

2,−1
2

)
16




−7

−3

53
12

33
8







−26 9
2

3
2

1
2

12 8 1 3
2

12 3 17
4

15
8

4 9
2

15
8

65
16




G3221D

(1, 2, 2, 0)10
(1, 2, 2, 0)10′(
1, 2, 1,−1

2

)
16⊕

(
1, 2, 1, 1

2

)
16(

1, 1, 2, 1
2

)
16⊕

(
1, 1, 2,−1

2

)
16

(1, 1, 3, 0)45
(1, 3, 1, 0)45




−7

−5
2

−5
2

9
2







−26 9
2

9
2

1
2

12 39
2 3 9

4

12 3 39
2

9
4

4 27
4

27
4

23
4




Table 11.1: Higgs multiplets at different intermediate breaking scales along with the
both one-loop and two-loop beta coefficients, including allthe contributions from
fermions, gauge bosons and Higgs bosons, which govern the evolution of coupling
constants above breaking scale ofGI to the next breaking scale.
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Figure 11.1: Evolution of coupling constants

The boundary conditions at various breaking scales, using the expression11.5,

can be written as

1. At scalemr :

α−1
1Y (mr) =

3
5

α−1
1R (mr)+

2
5

α−1
1(B−L)(mr) .

2. At scaleMR:

α−1
1R (MR) = α−1

2R (MR)− 2
12π

,

α−1
2R (MR) = α−1

2L (MR) .

3. At the unification scaleMU

α−1
2L (MU)− 2

12π
= α−1

2R (MU)− 2
12π

= α−1
U (MU )− 8

12π
,

α−1
3c (MU)− 3

12π
= α−1

U (MU )− 8
12π

,

α−1
B−L (MU) = α−1

U (MU )− 8
12π

.

The matching conditions at the unification scale have been written by assuming the

Pati-Salam scale to be almost close to the unification scale.

Using the above boundary conditions we have numerically solved the equation
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SO(10)Higgs
Representation

Higgsmultipletscontributing
to thresholduncertainty
(DecomposedunderG3211)

{
a3c, a2L, a1R, a1(B−L)

}

16

(
1, 1, 1

2, 1
2

)
16⊕

(
1, 1,−1

2,−1
2

)
16(

1, 2, 0,−1
2

)
16⊕

(
1, 2, 0, 1

2

)
16

{
0, 1, 1

2, 9
4

}

45 (1, 3, 1, 0)45 {0, 2, 0, 0}

Table 11.2: Threshold contribution at left-right breakingscale

11.4for the two-loop RG evolution for all the coupling constants. We have taken the

breaking scale of the gauge groupG3211 to be around 1TeV. The unification scale

comes out to beMU = 1015.4GeV and the corresponding coupling constant is found

asα−1
U (MU) = 43.4. Also the breaking scale of left-right symmetric gauge group,

i.e., G3221D turns out to beMR = 1011.6GeV. The running of the various coupling

constants with energy scale are shown in figure11.1.

However, we find that the scale of the unification along with the α−1
U are not

satisfying the most recent bounds on proton decay, althoughvery close to the limit.

From our discussion about proton decay in the chapter6, we know that the most

recent proton decay bound [98] is equivalent to (from expression6.1)

κ =
(αGUT

45

)
×102(n−15) & 11.8., (11.6)

whereMU ≃ 10nGeV. What we obtain for the value ofκ in our analysis isκ = 6.07.

This is below the lower limit allowed by the proton decay bound as specified in

the right-hand side of the expression11.6. However, the value ofκ is very close

to the allowed lower limit and so we will try to explore the viability of our model

by allowing threshold uncertainty in the Higgs spectrum at various intermediate

breaking scales. It is important to remark at this point thatwe could get the the value

of κ to be so close to the limit only when we optimized certain degrees of freedom

in the Higgs sector. For instance, the Higgs-bi-doubletΦ has been assumed to arise

from a real 10-dimensionalSO(10) HiggsHΦ. SoΦ would not be equivalent to two

SM Higgs doublets at the electroweak scale but will be equivalent to only one such

doublet. Similar assumption has been also taken forΨ. However, we would like

to emphasize that the results and discussion of the potential minimization part will

remain almost same.

The threshold uncertainty in the Higgs spectrum arises formthe fact that the

Higgs bosons becoming heavy at a given breaking scale may notget exactly same

masses equal to the energy corresponding to the breaking scale. However, the Higgs

mass spectrum is expected to be scattered around the energy of the breaking scale
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SO(10)Higgs
Representation

Higgsmultipletscontributing
to thresholduncertainty
(DecomposedunderG3221D)

{
a3c, a2L, a2R, a1(B−L)

}

10

(
3, 1, 1− 1

3

)
10⊕

(
3, 1, 1, 1

3

)
10(

3, 1, 1− 1
3

)
10′⊕

(
3, 1, 1, 1

3

)
10′

{2, 0, 0, 2}

16

(
3, 2, 1, 1

6

)
16⊕

(
3, 2, 1,−1

6

)
16(

3, 1, 2,−1
6

)
16⊕

(
3, 1, 2, 1

6

)
16

{4, 3, 3, 1}

45

(
3, 2, 2,−1

3

)
45⊕

(
3, 2, 2,−1

3

)
45

(8, 1, 1, 0)45
{7, 6, 6, 4}

54

(
6, 1, 1,−2

3

)
54⊕

(
6, 1, 1, 2

3

)
54

(1, 3, 3, 0)54
(8, 1, 1, 0)54

{8, 6, 6, 8}

Table 11.3: Threshold contribution at the unification scale

within an small width. For our analysis, we follow a similar approach as discussed

in [173]. We assume that the masses of the Higgs bosons are scatteredaround any

breaking scale within the factor of130 to 30. So if the mass of a Higgs multiplet

around a given breaking scaleMI is MH , then we expect

1
30

.
MH

MI
. 30.

To include the threshold uncertainty at a given breaking scale, we need to

slightly modify our matching conditions at that scale. The matching condition given

in expression11.5is modified as

α−1
G (MI)−

C(G)

12π
= α−1

Gi
(MI )−

C(Gi)

12π
− λi

12π
,

whereλi = ai ln
MH
MI

. So the threshold uncertainty has been included in the matching

condition due to presence of the term involving ln(MH/MI ).

To avoid any over estimation of the threshold uncertainty weassume that all the

Higgs multiplets, belonging to a single common irreducibleHiggs representation of

SO(10), becoming heavy at a given breaking scale will have the same mass scale

around the breaking scale.

The threshold uncertainty at the breaking scale of gauge group G3211is van-

ishing. The Higgs multiplets, coming from differentSO(10) irreducible Higgs,

contributing to the threshold uncertainty at remaining twointermediate scales, the

left-right breaking scale and the unification scale, are listed in the table11.2and

11.3, respectively. The corresponding calculated beta-coefficients,(ai)’s, which in-
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Figure 11.2: Threshold uncertainty in the unification scale.

clude the contribution from all the Higgs multiplets comingfrom the sameSO(10)

irreducible representation (as their masses are assumed tobe same), are also shown

for the two breaking scales.

Now using these calculatedai ’s and including uncertainty inMH/MI , as dis-

cussed before, we have shown a scattered-plot between coupling constantα−1
U and

the corresponding unification scaleMU in figure 11.2. We have numerically ob-

tained the values forα−1
U andMU for randomly chosen values forMH/MI between

the range
(

1
30−30

)
. The random values for all the Higgs multiplets belonging to

the sameSO(10) irreducible Higgs are taken to be same at one particular breaking

scale but different at the other breaking scale.

Moreover, we have also plotted the curve corresponding to the most recent pro-

ton decay bound (Red solid curve) [98] and relatively older proton decay bound

(blue dashed curve) [174] in figure 11.2 to show the allowed region inα−1
U -MU

plane. Only the right part of the curve is allowed by the bound. It is worth noting

that the allowed parameter space is more and more constrained as more updated

data on proton decay bound is available. However, we get a reasonable allowed

region in the figure11.2, although small, even after allowing the most conservative

threshold uncertainty. So we expect our model to be satisfactory within the tolerable

amount of threshold uncertainty as far as proton decay boundis concerned.

11.5 Yukawa sector and neutrino masses

In the present section, we discuss the origin of neutrino masses in the model. Before

proceeding further we would like to make it clear that the discussion about neutrino
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masses in the present section will only move around the left-right symmetric model

with few inputs from theSO(10) GUT in motivating about certain patterns for taken

Dirac mass matrices for fermions in our analysis. Moreover,the discussion will be

mainly focused on the matrix structure of low energy neutrino mass matrix allowed

with certain assumptions. We will also argue, in what follows, that the consistent

neutrino mass spectrum is not possible within picture of oneor two SO(10) singlet

fermionsS. We start by writing the Yukawa sector of the model as

LY = Yi j ℓLi ℓR jΦ+Y′i j ℓLi ℓR jΨ+(FL)in SRn ℓLiχL +(FR)in Sc
LnℓRi χR(11.7)

+
1
2

MmnηSc
LmSRn (11.8)

The Yukawa couplingsY andY′ are 3×3 matrix, whileFL andFR are 3×n matrices,

if we assume that there aren singlet fermionsS. SoM is an×n matrix. Our study

of consistent embedding of the model inSO(10) GUT requires same structure for

both FL and FR up to the scale of left-right symmetry breaking which, afterRG

running, can produce small difference at the weak scale. Forthe present discussion

we assume it to be small enough so that it can be safely ignored.

The Dirac masses for all the SM fermions including neutrinosare generated

form the the first two terms by givingvev to the bi-doublets as in any other left-

right symmetric model. SinceΦ andΨ are coming from two independent and real

SO(10) 10-dimensional Higgs, the Dirac mass matrix for neutrinos and charged

leptons are independent. However, the Dirac mass matrix forthe up-type quarks

have the same structure as the Dirac mass matrix for the neutrinos and similarly the

Dirac mass matrix for the down-type quarks will have similarstructure as the Dirac

mass matrix for the charged leptons (simply because all SM fermions are assigned

to a multiplet ofSO(10) GUT). Although these similarities in the structures are

exact only at the GUT scale, we expect some of its features to be more or less same

even at the low scale. So we can well assume that the Dirac massmatrix of the

neutrinos would almost appear diagonal in the basis where the charged lepton mass

matrix is diagonal. The assumption is based on the observation that the up-type and

down-type quarks are simultaneously diagonal in the a basisas the quark mixing

matrix is very close to unity. So we borrow the pattern from the quark sector to the

lepton sector where the structure of Dirac mass matrix of theneutrinos is not directly

known unless neutrinos are Dirac fermions. We expect the following pattern of the

Dirac mass matrix of neutrinos in the diagonal basis of the charged leptons
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MνD = vYlepton

(
mt

mb

)
=




me 0 0

0 mµ 0

0 0 mτ



(

mt

mb

)
≃ v




0.0001 0 0

0 0.02 0

0 0 0.3


 ,

wheremt andmb are masses of top and bottom quarks andme, mµ, mτ are masses

of electron, muon and tau leptons.

The part of the Lagrangian relevant for the neutrino mass generation is given as

follows,

Lν mass =
(

ν Nc, Sc
)

L
. X .




ν
Nc

Sc




L

+H.C.

=
(

νi Nc
i Sc

m

)

L




0 Yi j v FinvL(
Yi j
)T

v 0 FinvR

FT
m jvL FT

m jvR Mmnu







ν j

Nc
j

Sc
n




L

+H.C.

We can easily identify this structure by the type III seesaw structure given in

expression5.4. In fact the our discussion here is just the extension of the previous

discussions in subsection6.2.2and section5.4.2.

Our first task is to analyze the mass spectrum provided by the matrix X in case

of one generation of all fermions. We write the eigenvalue equation as (eigenvalue:

λ):

λ3−Mu λ2−F2v2
Rλ−2YF2vvLvR−MY2uv2 = 0

Case 1:λ >> v, we get

λ(λ+FvR) (λ−FvR) = 0

The above eigenvalue equation predicts two TeV scale Majorana fermions. The

massless solution contradicts with the condition we started with, and so is unphysi-

cal.

Case 2:λ << v, we get

λ =−2YvvL
vR

+
MY2uv2

F2v2
R

,

λ =−2YvvL
vR

+
MY2uv2

F2v2
R

(11.9)
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Figure 11.3: Variation of mass

which is of order of eV. So the two Majorana fermions pick up masses of the order

as high as TeV and one remains sufficiently light (~eV) to be identified as light

neutrino.

To make the discussion some more general, we take three generations for all the

SM fermions including the left and right handed neutrinos but only one generation

for the singletS. We look for a possibility whether it can account for the existing

picture of three light active neutrinos. To search for any such possibility, we try

to find out the mass spectrum, within this scenario, by solving for the eigenvalues

of the matrixX. To simplify further, we take all the eigenvalues of the matrix

MνD to be same with a common value equal to the largest one for initial analysis.

This enable us to factor out
(
λ2−z2v2

)2
from the algebraic expression of Det(X)

predicting four Majorana fermions of scale around 10GeV. The rest of the factors

have got the same form as the expression of determinant in case of one generation

of all SM fermions, as discussed earlier, leading to the two TeV and one eV scale

Majorana fermions. The scenario provides us only one light neutrino and, hence,

can not account for the observed neutrino mass spectrum. To explore the effect of

some possible hierarchy present in the eigenvalues of the Dirac mass matrix of the

neutrino like one present in the charged lepton mass matrix,we take two of the

eigenvalues to be same and vary their scale below the third one. We are still able

to explicitly get two of the Majorana fermions having mass scale equal tome

(
mt
mb

)
.

One may think that the remaining two Majorana fermions mightget mass scale as

light as eV leading to three light neutrinos. To rule out any such possibility, we

have plotted the masses of the two remaining Majorana fermions (which comes out

to be same) with the ratio of the two mass scales of the eigenvalues of the Dirac mass

mass matrix of the neutrinos in figure11.3. We find that the masses do not go below

the lightest mass scale of the eigenvalues ofmνD. So in two generation scenario ofS

fermions, there is not much progress except we get two eV scale Majorana fermions

which is still not sufficient.
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We now turn to the case of three generation forS fermions. The basic way to

get the low energy neutrino mass matrix has been outlined in [91] which is given as

mν = −
(

vvL

vR

)(
Y+YT)+

(
uv2

v2
R

)
Y
(
FM−1FT)−1

YT ,

= −
(

vvL

vR

)[(
Y+YT)+ rY

(
FM−1FT)−1

YT
]

, (11.10)

as we haveuv2 = r vvLvR in our model (expression11.1) wherer =
(
λχ−gχ

)
/hχ.

The first term is the type-III seesaw contribution [91] and the second term is

the double seesaw contribution. With the choice of thevevs, it is obvious that this

scenario provides us with three eV neutrinos.

Now we will try to explore the limits of the expression11.10for low energy

neutrino mass matrix to check its consistency with current data on neutrino masses

and mixing by allowing some very simple form for matrixM.

In its most general form, it is straight forward to argue thatmν can accommo-

date the existing data on neutrino masses and mixing simply due to the presence of

enough number parameters inF andM unless type III term dominates significantly.

An interesting thing would be to consider some simpler form of the neutrino mass

matrix by reducing appropriate number of parameters with some tolerable assump-

tions. The basic idea is to explore the possibility of any such simpler structure in

light of the current neutrino oscillation data.

We start with the assumption that the three singlet fermionsSare blind to their

generation within themselves leading to the following democratic structure of ma-

trix M :

M =




1 1 1

1 1 1

1 1 1


u

The structure allows us to believe that there is no induced mixing between the left-

right neutrinos and the singlets. So,F matrix can be written as product of a unitary

matrix and a diagonal matrix. The unitary matrix connects the basis of the demo-

cratic structure to the basis where the charged lepton mass matrix becomes diagonal.

To have some more simplicity, we are driven to assume that thetwo basis are identi-

cal, i.e., the unitary mass matrix is identity matrix. It leads to the following structure

of the low energy neutrino mass matrix:
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mν =
vvL

vR




α2−2mt
mb

me αβ αγ
αβ β2−2mt

mb
mµ βγ

αγ βγ γ2−2mt
mb

mτ


 ,

whereα, β and γ are the final parameters appearing in the neutrino mass matrix

after absorbing all the parameters present inF, M andY. We take the following

familiar tri-bimaximal form of [175] of theUPMNSmixing matrix for our discussion

and attempt to diagonalizemν having above structure:

UPMNS= Utbm =
1√
6




2
√

2 0

−1
√

2
√

3

1 −
√

2
√

3


 ,

whereθ23 = π/4, θ13 = 0, and sin2θ12 = 1/3.

We attempt to diagonalizemν with the tri-biamaximal form of the mixing matrix

which requires the following relation of the parametersα, β andγ with masses of

the charged leptons as:

α = 0

β ≃ mµ√
mb
2mt

(
mτ +mµ

) ≃ 0.05

γ ≃ − mτ√
mb
2mt

(
mτ +mµ

) ≃−0.75

The diagonal neutrino mass matrix comes out of the form:

mDaig
ν ≃−2mt

mb




me 0 0

0 me 0

0 0 2 mµmτ

(mµ+mτ)



(

vvL

vR

)

So the present form ofmν andUPMNSproduces degenerate masses for the two light

neutrinos which is likely to be cured once we slightly deviate from tri-bimaximal

form of UPMNS. The deviation can be realized either by taking non-maximalvalue

of θ23 or non vanishing value ofθ13 or both. We take only non-zero value ofθ13

to be the sole realization of the deviation for our purpose. The deviated form of

tri-baimaximal matrix for very small value ofθ13 can be parametrized as:

UPMNS=
1√
6




2
√

2 θ13

−1−
√

2θ13
√

2−θ13
√

3

1−
√

2θ13 −
√

2−θ13
√

3



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While trying to diagonalize themν, numerical methods are used to find out the

desired values of the free parameters. We find that the degeneracy encountered in

the case of tri-bimaximal mixing matrix disappears as soon as finite value ofθ13 is

introduced. This finite value is determined by imposing the condition∆m2
21/∆m2

31≃
0.033 which leads to following value of sinθ13

sinθ13 = 0.11.

The value is well within the allowed value forθ13 from oscillation data. The correct

scale of the mass square differences is easily achieved by adjusting the over all scale

of the neutrino mass matrix. The corresponding values of theother parameters come

out to be

α = 0.02

β = 0.06

γ = −0.75

The point we would like to emphasize is that even the simple structure of the

mass matrix taken in our analysis is able to account for the existing framework of

three active light neutrinos even though the assumptions may not correspond to any

real underlying symmetry.

11.6 Dark energy in the model

We shall now discuss the implementation of the NDE mechanismin our model. For

simplicity, we consider only one-generation scenario. We assume that the singlet

massMs = M〈η〉= M u varies with the acceleron fieldA , so that the neutrino mass

becomes a dynamical quantity. This gives the coupling between the neutrinos and

the acceleron, which stops the dynamical evolution of the acceleron fields when the

neutrinos become non-relativistic. When the neutrinos become non-relativistic the

dependence ofMs onA governs the dynamics of the DE.

To compare the neutrino mass scale with the DE scale we write the effective

potential using the Coleman-Weinberg type [176]

V0 = Λ4 log(1+ |µ̄/Ms(A)|) . (11.11)

The parameterΛ
(
∼ 10−3eV

)
is chosen to fit the DE scale. This type of potentials

are extensively used in the DE literature [27, 166]. We can write the effective low-
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energy Lagrangian in our model

−Le f f = Ms(A)
Y2

F2

v2

v2
R

νiν j +H.c.+Λ4 log(1+ |µ̄/Ms(A)|) , (11.12)

From the choices we have made about thevevs, we have retained only the dominant

double seesaw term11.9 in the effective Lagrangian. Asu ∼ O(eV), the mass

parameterMs is of the order of eV. Since the ratio(v/vR)2 ∼ 10−2− 10−3, the

Yukawa couplings coupling to be of order unity. Thus the firsttwo terms in equation

11.12are comparable to the last term describing the DE potential.

The Majorana mass of neutrino varies with the acceleron fieldthrough the pa-

rameterMs and the mass scale of this parameter remains near the scale ofDE nat-

urally. The interesting feature of our model is that we do not need any unnaturally

small Yukawa couplings or symmetry breaking scale to achieve this naturalness

requirement. Also the variation ofMs does not affect charged fermion masses in

the model. Moreover, the electroweak symmetry breaking scale v and theU(1)R

breaking scales are comparable and hence the new gauge bosoncorresponding to

the groupU(1)R will have usual mixing withZ and should be accessible at LHC.

Since the local minimum of the potential relates the neutrino mass to a deriva-

tive of the acceleron potential, the value of the acceleron field gets related to the

neutrino mass. The acceleron field provide an effective attractive force between

the neutrinos. When the this effective force is stronger than the gravity, perturba-

tions in the neutrino-acceleron fluid become unstable. The source of the free-energy

comes from the attractive interaction between the neutrinoand the acceleron field.

The instability is similar to that of the Jeans instability found in a self-gravitating

system. The instability can lead to inhomogeneity and structure formation; the in-

stability would grow till the degeneracy pressure of the neutrinos would arrest the

growth. The final state of the instability would produce neutrino lumps or nuggets

[166, 177]. The neutrino lumps would then behave as dark matter and will not af-

fect the dynamics of the acceleron field [178]. This instability is a generic feature of

MaVaNs scenario, however it can be suppressed if the neutrino become superfluid

[179] or if the MaVaNs perturbations become nonadiabatic.
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Conclusion

The charge neutrality of neutrinos opens up two possibilityfor their fermionic na-

ture. They can be either Dirac fermions with separate particle-antiparticle identity

or Majorana fermions where it is its own antiparticle. The second possibility is

phenomenologically very rich and several seesaw mechanismexist in literature to

naturally explain the tiny masses of neutrinos.

In the case of Majorana neutrinos, the neutrino mass matrix is symmetric

and contains all the information regarding CP violating phases in the basis where

charged lepton mass matrix is diagonal. To explore this fact, we have constructed

rephasing invariant measures of CP violation with elementsof the neutrino masses

in the weak basis. For ann-generation scenario, in the absence of any texture zeroes

there aren(n−1)/2 independent measures of CP violation, given by

Ii j = Im [miimj j m
∗
i j m
∗
ji ] (i < j)

which corresponds ton(n−1)/2 independent CP violating phases. Only(n−1)(n−
2)/2 of these phases of CP violation can contribute to the neutrino oscillation ex-

periments and are independent of the Majorana phases for which the rephasing in-

variant measures of CP violation can be defined as

Ji jn = ∑
a,b,c

Im
[
(m∗ia mja) (m∗jb mnb) (m∗nc mic)

]
(i < j < n).

We then defined invariants for mass matrices with texture zeroes and elaborated with

some examples. We studied all the phenomenologically acceptable 3-generation

two-zero texture neutrino mass matrices. We showed that there are no Majorana

phase in any of the allowed cases.

The neutrinos are likely to play a very important role in explaining the baryon

asymmetry of the present universe [28, 73]. Many interesting models, beyond the

SM, proposed to accommodate the neutrino masses come with anextra feature that

148
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they can create lepton asymmetry in the early universe whichcan be converted to

baryon asymmetry in the later phase of the universe. The elegant seesaw framework

is the most preferable scenario for the the mechanism known as baryogenesis via

leptogenesis.

We have studied the connecting links between the CP violating phases giving

rise to leptogenesis, occurring at a high energy scale, and the CP violating phases

appearing in the low energy phenomena, i.e., neutrino oscillation and neutrinoless

double beta decay processes. This is studied in the framework of two right-handed

neutrino models. The low energy leptonic CP violation is studied in a rephasing

invariant formalism. It is shown that there are only two rephasing invariants; (1) the

lepton-number conserving CP violating rephasing invariant JCP which can be deter-

mined in the future long-baseline neutrino oscillation experiments, (2) the lepton-

number violating CP violating rephasing invariantJ which can be determined in the

neutrinoless double beta decay experiments. It is found that there is no one-to-one

correspondence between these two CP violating phenomena, occurring at two dif-

ferent energy scales, even though the number of parameters involving in the seesaw

is exactly same as the number of low energy observable parameters. However, in a

suitable parameter space we have shown that the overlappingregions in the plane of

nB/nγ versusJCP andnB/nγ versusJ can indeed determine thesignof the matter an-

timatter asymmetry of the present Universe assuming that thesizeof the asymmetry

is precisely known.

Neutrinos are also expected to address the problems of DE [27]. NDE models

are able to answer the cosmic coincidence puzzle of DE. Although such models

have been constructed in seesaw scenario, there were no left-right or GUT models

to accommodate the NDE proposal. For the first time, we have constructed a left-

right symmetric model of NDE that can be embedded in anSO(10) GUT. After

discussing the Higgs content needed for the model, details of potential minimization

have been carried out considering all possible allowed terms. The complete analysis

allows the desired ordering of thevevs. Then we have studied the embedding of this

left-right symmetric model inSO(10) GUT. We show thatSO(10) GUT with Higgs

multipletsS(54), A(45), two H(10), C(16)⊕C(16), η(1) along with an additional

fermion singlet is able to accommodate the left-right symmetric model.

We have studied the RG running of various couplings constantand have found

that the desired assignment forvevvalues for different Higgs fields is consistent with

the gauge unification. Then the origin and possible structure of neutrino masses has

been discussed in detail. It has been shown that generation of three light active

neutrinos of eV scale is not possible in scenario with one or two SO(10) singlets

fermions. Then we have described the implementation of NDE in the model. The

model allows the mass parameter of the left-right group singlet, which varies with



Chapter 12. Conclusion 150

the acceleron field, to have the same scale as the scale of DE satisfying the desired

naturalness requirement.
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