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Abstract

While numerous theoretical security proofs back up quantum key distribution (QKD),

its practical implementation introduces vulnerabilities that adversaries can exploit.

Many proofs assume idealistic, perfect devices, neglecting the imperfections present

in real-world setups. These device imperfections become loopholes, potentially

leaking partial key information to eavesdroppers. The theoretical advantage of QKD

lies in detecting attacks, not their absolute prevention. However, it is possible that

an adversary may exploit the loopholes present in practical implementations to gain

information without alerting the authenticated parties.

The primary objective of this thesis is to attempt to bridge the gap between the the-

oretical and experimental QKD. Proper characterization of our devices is essential

to account for this information leakage in key rate estimation. The studies have

been performed at both the detection and the source end, concluding by proposing

a protocol to achieve our goal.

The receiver’s end is highly prone to an attack by the adversary. We have examined

the effects of detection coupling mismatch at the receiver’s end, finding possible

information leakage. We observed how high coupling mismatch leads to informa-

tion leakage, even for symmetrical modes. We compared low and high coupling

mismatch cases employing cross-correlation and quantified the mutual information

between the receiver and eavesdropper.

Many practical QKD protocols employ weak coherent laser pulses, following Pois-

sonian statistics implying a non-zero probability of more than one photon per pulse.

Rigorous characterization of photon statistics facilitates attack detection and secure

key rate estimation, enhancing overall QKD system security. We have character-

ized our source to estimate the mean photon number using multiple detectors for
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comparison against single detector measurements. Additionally, we studied inten-

sity fluctuations to identify and mitigate potential information leakage due to state

preparation flaws. As detailed in the following paragraph, we have addressed prac-

tical QKD implementation constraints using weak coherent pulses.

Enhancing the key rate in the practical implementation of QKD settings is challeng-

ing. To overcome this challenge, we proposed the Entrapped Pulse Coincidence

Detection (EPCD) protocol that does not require additional resources beyond those

for BB84 and decoy state protocol. Here, we employ random pulses between the

encoded pulses as well as monitor coincidences that aid in the detection of sophisti-

cated attacks, leading to higher key rates. We performed a comparative analysis of

key rates using different protocols and assessed their effectiveness. We have used

the convex optimisation problem to optimize key rates, providing tight bounds on

asymptotic key rates. This method yields reasonable bounds and is adaptable for

schemes requiring further tightening. Results from field implementation illustrate

substantial enhancements in asymptotic key rates, with plans for future finite-size

analysis of the proposed protocol.

This research addresses the challenges of information leakage due to imperfect de-

vices in practical QKD implementations. The studies propose methods to improve

key rate estimation by characterizing source imperfections and detector coupling

mismatch. Here, we introduce an integrated approach to get tighter bounds on the

key rate. The aim is to bridge the gap between theoretical security and practical

QKD, paving the way for secure quantum communication.

Keywords: Quantum Key Distribution (QKD), Quantum Communication,

Quantum Cryptography, Discrete Variable QKD, Information Leakage, Cross

Correlation, BB84 Protocol.
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Chapter 1

Introduction

When you know your WHY, you’ll know your WAY

- Michael Hyatt

1.1 Information Security

The threat to information security by unauthorized access to confidential data and

private information is appalling, not only for commercial and defence applications

but also for human dignity. Since ancient times, many cryptographic techniques

have been employed to ensure the secrecy of communication. Cryptography and

cryptanalysis are two integral facets of cryptology (Fig. 1.1). While cryptogra-

phy involves designing algorithms for secure data protection, cryptanalysis plays a

crucial role in identifying vulnerabilities in these algorithms. This back-and-forth

process of recognizing weaknesses and designing algorithms to overcome them em-

powers us to enhance the security of our cryptographic systems.

Cryptography involves cryptographic primitives, algorithms, protocols, and schemes.

1
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Figure 1.1: Cryptology classification: Cryptography and Cryptanalysis, with Cryptography
branching into Symmetric and Asymmetric techniques.

Cryptographic primitives are the tools in the cryptography toolkit, including encryp-

tion, hash functions, message authentication codes and digital signatures. Encryp-

tion is classified as symmetric and asymmetric key cryptography, as discussed in

Sec.1.2. Encryption provides confidentiality; however, we need additional tools to

ensure data integrity and user authentication. Hash functions, message authentica-

tion codes (MACs), and digital signature schemes help overcome such challenges.

Hash functions convert input data into a fixed-size string of characters, acting like

digital fingerprints to ensure data integrity. Message Authentication Codes (MACs)

and digital signatures are used to verify the authenticity and integrity of data; MACs

use secret keys, while digital signatures use a public-private key pair. Cryptographic

algorithms are the recipe for the steps involved, and protocols are a sequence of

message exchanges achieving the security goals. A cryptographic scheme refers to

the implementation of cryptographic primitives and their infrastructure. However,

potential attacks exist on these cryptosystems, like exhaustive key search, dictio-

nary attacks, primitive-specific attacks, algorithm-specific attacks, and side-channel

attacks. Investigation of these cryptographic schemes is a crucial aspect of crypt-

analysis for developing strong security systems.
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1.2 Cryptography

The primary objective of cryptography is to facilitate a secure exchange of informa-

tion between two parties, the sender and receiver, commonly known as Alice and

Bob, in the presence of an adversary, Eve. Cryptography provides a means to up-

hold the privacy of the message through cryptographic tools, ensuring secure com-

munication. When Alice wishes to communicate with Bob securely, she employs

encryption to transform her message (plaintext) into an unreadable ciphertext us-

ing a secret key. This ciphertext is incomprehensible to anyone lacking the proper

key. Afterwards, Alice transmits this encrypted message to Bob, who utilizes the

corresponding key to perform decryption. Decryption is extracting the original

plaintext message from the encrypted ciphertext.

Cryptography is broadly classified into two categories based on the tools and algo-

rithms employed in encryption and decryption: Symmetric-key cryptography and

Asymmetric-key cryptography.

1.2.1 Symmetric-key cryptography

Symmetric-key cryptography employs identical keys for both encryption and de-

cryption (Fig. 1.2).

The drawback of symmetric-key cryptography is that Alice and Bob must agree on

a shared key in advance, which becomes challenging when they are geographically

separated. Asymmetric-key cryptography offers a potential resolution by eliminat-

ing the need for a pre-established secret key.
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Figure 1.2: Symmetric-key cryptography using the same key, K, for encoding and decod-
ing, that is secret to sender and receiver.

1.2.2 Asymmetric-key cryptography

In 1976, Diffie and Hellman [1] introduced the concept of employing two distinct

keys in cryptographic operations. They suggested the use of a public key, which is

distributed openly through a communication channel and employed for encryption,

and a private key, which is kept confidential for decryption purposes (Fig. 1.3).

The renowned asymmetric key cryptosystem, developed by Rivest, Shamir, and

Adleman (RSA) in 1978 [2], relies on the computational complexity of the prime

factorization problem.

However, Peter Shor, in 1997 [3], proposed an algorithm for solving the prime

factorization problem in polynomial time using a quantum computer. The clas-

sical cryptographic techniques based on computational complexity cannot offer

information-theoretic security. The advancement in quantum technology poses a

substantial threat to the existing cryptosystems[4–6].
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Figure 1.3: Asymmetric-key cryptography: Sender uses the public key to encode the mes-
sage, and the receiver decodes it using the private key.

1.3 Cryptanalysis

Cryptanalysis involves analyzing cryptographic systems to identify weaknesses and

develop methods to break their security. In cryptography, security encompasses

three key aspects: the attack model, adversarial goal, and security level. The at-

tack model specifies the adversary’s knowledge about the cryptosystem. We follow

Kerckhoff’s principle [7, 8], which assumes the adversary knows the protocol and

the scheme of the cryptosystem. The adversarial goal defines what the adversary

seeks to obtain from the cryptographic system, specifying the information it aims to

acquire. Ultimately, the security level dictates the effort to compromise the crypto-

graphic system, encompassing both computational resources and the time required

for a successful attack. A security statement for a cryptographic scheme affirms

that a specific adversarial goal cannot be attained within a defined attack model,

considering specified computational resources.

Computational security means it is practically impossible to breach a crypto-

graphic system within a reasonable time frame, given the available computational



6 Chapter 1. Introduction

resources. We aim for the unconditional security, which implies that the cryp-

tosystem stands impervious to any attack without making any assumptions about

the extent of Eve’s power. This level of security represents the utmost assurance

in safeguarding sensitive information. It is important to note that asymmetric key

cryptography provides computational security and does not guarantee information-

theoretic security. The advent of quantum computers significantly threatens existing

cryptographic algorithms, and we can no longer guarantee the security of sensitive

information with classical communication.

Forward Secrecy is crucial for ensuring the confidentiality of past communica-

tions even if current encryption keys are compromised, guaranteeing future security.

Consider the duration x (in years) required for classical cryptographic keys to re-

main secure, referred to as the security shelf-life. Next, let y denote the time needed

to migrate from the existing classical infrastructure to quantum-secure encryption,

known as the migration time. Finally, let z be the collapse time, representing the

period needed to develop a large quantum computer. If the sum x+ y > z, then it is

a concerning issue for future security. Developing cryptographic tools resistant to

quantum attacks is essential to guarantee the long-term security of encrypted data.

According to [9], the need to develop quantum-safe solutions is urgent due to pro-

jected timelines for quantum computing’s potential impact on cryptography. This

urgency stems from concerns about how long encrypted data must remain secure

and the rapid advancements in quantum computing technology.

1.4 One Time Pad

In 1926, Vernam introduced the One-Time Pad (OTP) [10]. In 1949, Claude Shan-

non provided formal validation in “Communication Theory of Secrecy System” [11]

and demonstrated the information-theoretical security of the OTP; it necessitates
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Figure 1.4: Encryption using One Time Pad (OTP): A secure and random key of the same
length as the message used to encrypt the message.

several conditions:

1. The key must be entirely random.

2. The key must match the length of the message.

3. The key must be distributed securely.

4. The key must never be used again.

The randomness and security of this key ensures that only someone possessing it

can decrypt the encoded message, rendering it unintelligible to anyone else (Fig.

1.4). However, the requirements of OTP pose challenges for practical implementa-

tion. While symmetric key cryptography employing the OTP achieves information-

theoretic security, it ultimately faces the challenge of key distribution, especially

when Alice and Bob are geographically separated.

1.5 Quantum Key distribution

The problem of cryptography ultimately melts down to the key distribution prob-

lem. When the key is secure, the adversary cannot deduce any information from the

ciphertext. Quantum Key Distribution (QKD) enables the authenticated parties to
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establish such secure keys. QKD, combined with OTP, opens the door for uncon-

ditionally secure communications. The security of QKD protocols is based on the

fundamental laws of physics and assumes no limits on the adversary’s technological

power [12–19]. It offers a secure key distribution not because it forbids an adver-

sary from attacking the system but because we can detect an attack when it occurs.

Bennett and Brassard proposed the first QKD protocol in 1984 [20], followed by

many other protocols [21–26]. BB84 was first demonstrated in 1992 [27]. Since

then, there have been great advances in QKD both in theory and practice [28–33].

The QKD relies on several fundamental principles of quantum mechanics to ensure

secure communication. These principles include:

1. Uncertainty Principle: We cannot precisely measure two canonically conju-

gate variables simultaneously.

2. No Cloning Theorem: It is impossible to clone an arbitrary quantum state

perfectly [34].

3. Perturbation: Any measurement on a quantum system perturbs the quantum

state.

4. Entanglement Monogamy: For two systems to be maximally entangled with

each other, they must not be entangled with any third system.

The aforementioned statements highlight a pessimistic perspective, emphasizing

the inability to measure two conjugate variables simultaneously, clone a quantum

state, measure a quantum state without perturbing the system, and establish en-

tanglement with a third party. Nonetheless, these intrinsic properties of quantum

systems provide an opportunity for unconditionally secure communications. Using

mutually unbiased bases and no-cloning theorem enables us to detect the presence
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of an eavesdropper in an ideal QKD system. QKD encompasses various branches,

as depicted in Fig. 1.5.

Figure 1.5: Classification of Quantum Key Distribution (QKD) based on four categories:
Prepare and measure (P & M) QKD, Entanglement Based QKD, Discrete Variable (DV)
QKD and Continuous variable (CV) QKD.

1.6 Theoretical QKD v/s Practical QKD

The experimental implementation of QKD protocols uses imperfect devices that

act as Achilles’ heel. Though QKD’s theoretical advantage lies in detecting at-

tacks, not their absolute prevention, practical implementations with imperfect de-

vices might not raise sufficient red flags. Fig. 1.6 represents how the theoretical

security assumptions of the components do not hold for practical implementations

of a standard BB84 protocol. These assumptions may vary from protocol to proto-

col and must be considered during the experimental implementation. Eavesdroppers

could leverage these imperfections to extract partial information without triggering

alarms. This poses a significant concern, highlighting the discrepancy between the-

oretical promises and real-world capabilities. While numerous theoretical security
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proofs back up quantum key distribution (QKD), many of them assume idealistic,

perfect devices, neglecting the imperfections present in real-world setups. The prac-

tical implementation introduces vulnerabilities that adversaries can exploit [35–50].

The loopholes due to device imperfections need to be acknowledged, and counter-

measures to the potential attacks must be proposed. We could improve our QKD

system by using better single photon sources, high-efficiency detectors, and a low-

loss channel. However, we could not reach the ideal limit since the real devices are

bound to have imperfections. An eavesdropper may exploit device imperfections

to gain partial information about the key without alerting the authenticated users,

which makes us question the security of QKD protocols. The security analyses of

device imperfections have been studied in [17, 19, 51]. Device-independent QKD

[52], and measurement device-independent QKD [53], [54] protocols have helped to

overcome these device imperfections. Another solution is security patching, where

we can characterize and monitor our QKD system to estimate the information leak-

age. It is critical when we work with imperfect devices to detect Eve’s presence

and improve the performance of the QKD system. The ultimate goal is to attain

unconditional security, but until then, we must acknowledge the flaws in our imple-

mentation.

Precisely characterizing device imperfections is essential to bridge the gap between

theory and practical implementations. This would enable us to define the protocol’s

operational and security limits. A comprehensive security analysis, considering re-

alistic device parameters and potential attack scenarios, is essential to any Quantum

Key Distribution (QKD) protocol.
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Figure 1.6: Comparison between the theoretical security assumption and experimental im-
plementation parameters for standard BB84 protocol

1.7 Thesis

1.7.1 Objective

The primary objective of this thesis is to attempt to bridge the gap between the theo-

retical and experimental QKD. While QKD offers theoretical information security,

its real-world implementation poses challenges due to device imperfections, poten-

tially leading to information leakage. Therefore, it is crucial to thoroughly charac-

terize these devices to accurately estimate key rates while considering information

leakage. This study focuses on investigating vulnerabilities at both the detection

and source end. We aim to enhance the practicality of QKD while maintaining its

security. To achieve this, we have proposed a new protocol designed to advance this

objective.
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1.7.2 Overview

We have examined the effects of detection coupling mismatch between detectors,

revealing potential information leakage. We gain insights into mitigating this leak-

age by comparing low and high coupling mismatch cases using cross-correlation

and mutual information.

Additionally, we have rigorously characterized the photon statistics of weak coher-

ent laser pulses commonly used in practical QKD protocols. Understanding these

statistics, especially in protocols like decoy state and coincidence detection, aids in

detecting information leakage and estimating secure key rates. Our characterization

includes estimating mean photon numbers using multiple detectors and studying in-

tensity fluctuations to address potential information leakage due to state preparation

flaws, thereby enhancing information-theoretic security.

Furthermore, we have addressed practical implementation constraints using weak

coherent pulses by integrating conventional decoy pulse approaches with coinci-

dence detection protocols. This integration allows the detection of sophisticated

attacks and leads to higher key rates. Optimization of key rates using Semi-Definite

Programming (SDP) provides tight bounds and demonstrates significant enhance-

ments in asymptotic key rates in field implementations.

1.7.3 Organisation

• Chapter-1: Introduction

This chapter provides a foundation in cryptography, progressively establish-

ing the necessity for quantum cryptography. It explores the practical limi-

tations of implementing quantum key distribution (QKD). Subsequently, the
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chapter outlines the motivation for the research conducted within this thesis.

Finally, the primary research objectives are articulated.

• Chapter-2: Theoretical Background

This chapter introduces the fundamental concepts and methods used in this

study. It explains the key ideas and frameworks that the research builds upon.

The chapter also explores the concept of qubits and how they are represented,

manipulated and measured. It describes the specific equipment and detectors

used in practical implementations of QKD protocols. Finally, the chapter

details the chosen research methods, including the techniques used to gather

and analyze information. This chapter provides a clear understanding of the

research approach and its components.

• Chapter-3: Vulnerability due to detection coupling mismatch

This chapter examines the impact of coupling mismatch between detectors on

information security. It assesses the extent to which a potential eavesdropper

can access information due to coupling mismatch at the receiver’s detectors,

specifically analyzing the mutual information between Eve and the receiver.

The chapter discusses experiments conducted with Gaussian and Laguerre-

Gaussian signal modes. It underscores the significance of considering detec-

tion coupling mismatch to prevent potential side-channel attacks.

• Chapter-4: Mitigating the source-side channel vulnerability

This chapter highlights the critical role of precise measurement and charac-

terization of photon statistics in enhancing the overall security of the Quan-

tum Key Distribution (QKD) system. It details a meticulous characterization

of the photon source to determine the average photon number using multi-

ple detectors, allowing for comparison against measurements obtained with

a single detector. Additionally, the analysis of intensity fluctuations aids in
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the identification and mitigation of potential information leakage arising from

imperfections in the state preparation process. Ultimately, this chapter strives

to bridge the gap between theoretical concepts and practical implementation

to achieve information-theoretic security in QKD systems.

• Chapter-5: Decoy and Coincidence Detection QKD Protocol

This chapter addresses limitations encountered in practical implementations

of Quantum Key Distribution (QKD) utilizing weak coherent pulses. It ex-

amines enhancing the conventional method of employing decoy pulses by

incorporating it with coincidence detection (CD) protocols. Furthermore, it

presents a straightforward algorithm for computing asymptotic key rates ap-

plicable to this protocol. The chapter also delves into experimental implemen-

tations, illustrating that monitoring coincidences in the decoy state protocol

yields improved key rates in real-world experimental scenarios.

• Chapter-6: Summary and Future Perspective

This chapter presents a concise summary of the overall research. It examines

the principal findings, their significance and implications. Moreover, it offers

an overview of the key takeaways from each chapter of the thesis, integrat-

ing them with the current state of knowledge within the field. Additionally,

the chapter acknowledges the inherent limitations and proposes avenues for

future research endeavours.

1.8 Summary

This chapter explored the critical role of information security on both a personal and

national scale. It introduced the two main branches of cryptology: cryptography,

the art of securing information, and cryptanalysis, the art of breaking such codes.
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The chapter then delved into symmetric and asymmetric key distribution methods,

highlighting their limitations. Furthermore, it discussed the potential vulnerabilities

of classical cryptography to advancements in algorithms and the rise of quantum

computers. The concept of the one-time pad (OTP) was introduced, demonstrating

how secure communication hinges on the secure distribution of keys. Following

this, the chapter explored Quantum Key Distribution (QKD) as a method for se-

cure key exchange, leveraging the fundamental principles of quantum mechanics to

eliminate reliance on assumptions about an eavesdropper’s capabilities. The chapter

acknowledged potential loopholes arising from device imperfections, thereby moti-

vating further research in this domain. Finally, the objective, overview and structure

of the thesis are outlined.





Chapter 2

Theoretical Background

Everything should be made as simple as possible, but no simpler

- Albert Einstein

2.1 Information Theory

Information is an organized arrangement of letters, numbers, or symbols following

a set of rules for communication. In 1837, Samuel Morse demonstrated the elec-

trical telegraph employing sequences of dots and dashes to represent the alphabetic

characters, known as Morse codes. Claude Shannon’s seminal work “Mathematical

Theory of Communication” in 1948 [55] laid the groundwork for the digitization

of information. In modern times, electronics enable us to encode information using

bits, a binary digit that can take values 0 or 1. Bits are the basic building blocks for

digital information storage, transmission, and processing. Information theory quan-

tifies the fundamental limits of data compression and channel capacity. Following

are several essential tools that aid in this quantification.

17



18 Chapter 2. Theoretical Background

2.1.1 Shannon Entropy

Shannon entropy is the key concept of information theory. IfX is a random variable,

then Shannon entropy is the measure of information we gain by learning about X .

In an alternative view, Shannon entropy measures uncertainty before we learn the

value of X . If p(x) is the probability distribution of X , with x ∈ X then Shannon

entropy is given as:

H (X) = −
∑
x∈X

p(x) log p(x). (2.1)

Entropy is a function of the probability distribution of X and not of its values.

Hence, it is also represented as H(p). Throughout this study, the log is to the base

at 2, and the unit of entropy is bits unless specified otherwise.

Binary entropy

The entropy of a random variable having a binary probability distribution, just two

probable outcomes, is called the binary entropy. If p and (1−p) are the probabilities

of the two outcomes, then the binary entropy (Hbin) is given as:

Hbin (p) = −p log p− (1− p) log(1− p). (2.2)

Joint Entropy

If (X, Y ) are a pair of random variables with joint probability distribution p(x, y),

with x ∈ X and y ∈ Y , then their joint entropy H(X, Y ) is defined as:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y). (2.3)
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Conditional entropy

The conditional entropy H(Y |X) of a pair of X and Y , is given as:

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x), (2.4)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x), (2.5)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x). (2.6)

where, p(x, y) is the joint probability and p(y|x) & p(x|y) are the conditional prob-

abilities.

2.1.2 Relative entropy

Relative entropy, also known as the Kullback-Leibler (KL) divergence, is the asym-

metric measure of the difference between two probability distributions. If p(x) and

q(x) are two probability distribution functions, then their relative entropy D (p||q)

is defined as:

D (p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (2.7)

KL-divergence quantifies the additional bits needed to represent an event from a

distribution q(x) instead of p(x).

2.1.3 Mutual Information

Mutual information is the amount of information one random variable has about

the other. Alternatively, mutual information quantifies how the knowledge of one

random variable reduces the uncertainty of the other. Mutual information between
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two random variables (X, Y ) is the relative entropy between the product of their

probability distributions and the joint probability (Eq. (2.8)).

I(X : Y ) = D(p(x, y)||p(x)p(y))

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.8)

Relation Between Entropy and Mutual Information

In Eq. (2.9), we establish the relationship between mutual information and entropy

of two random variables.

I(X : Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x|y)

p(x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(x) +
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y)

= −
∑
x∈X

∑
y∈Y

p(x) log p(x)− (−
∑
x∈X

∑
y∈Y

p(x, y) log p(x|y))

= H(X)−H(X|Y ). (2.9)

Hence, mutual information is rightly defined as reducing the uncertainty of one

random variable with the knowledge of another. The symmetry of joint distribution

p(x, y) implies that the Mutual information is symmetric, i.e.

I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X),

I(X : Y ) = I(Y : X). (2.10)
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2.2 Quantum Information Theory

Quantum information theory encompasses a broad spectrum of topics. This discus-

sion will focus on areas pertinent to our interests, including qubits, their manipula-

tion, measurement, and the no-cloning theorem.

2.2.1 Qubits

Quantum binary digits or qubits are the building blocks of quantum information sci-

ence. Here, we take a mathematical approach to understand qubits and will discuss

their physical realization in Sec. 2.3. A qubit is a pure quantum state represented

by a vector |ψ〉 in the two-dimensional Hilbert space (H2). Any qubit can be repre-

sented as a superposition of two states |0〉& |1〉.

|ψ〉 = α |0〉+ β |1〉 , (2.11)

Here, {|0〉 , |1〉} ∈ H2 and are orthogonal to each other, i.e. 〈0|1〉 = 0. The

coefficients α and β are complex numbers representing the amplitudes of |0〉& |1〉,

respectively. For a normalized state 〈ψ|ψ〉 = 1, |α|2+|β|2= 1, ensuring the total

probability of finding the qubit in either state is unity. Examples of qubits include

photon polarization states, electron spin states, and two-level energy states.

2.2.2 Bloch Sphere Representation

For a two-dimensional qubit system, {1, σx, σy, σz} form the basis set. These are

called the Pauli Basis, and any operator can be written as a linear combination of
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Figure 2.1: The Bloch sphere: Pure states lie at the surface with Bloch vector ~a of unit

magnitude |~a|= 1. The center represents maximally mixed state ρ =
1

2
1.

operators in Pauli Basis. Any unit trace qubit density operator ρ can be written as:

ρ =
1

2
(1 + aXσx + aY σy + aZσz), (2.12)

where, aX , aY and aZ are components of a vector ~a. We introduce a vector ~σ having

components σx, σy and σz operators.

ρ =
1

2
(1 + ~a · ~σ). (2.13)

The vector ~a is the block vector for the density operator ρ.

The Bloch vectors representing pure states form a sphere in real 3-D space, known

as the Bloch sphere (Fig. 2.1). The orthogonal state vectors |0〉 and |1〉 correspond

to antipodal points on the Bloch sphere.

A qubit can be represented as a point on a unit three-dimensional sphere known as
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the Bloch sphere (Fig. 2.1). We can rewrite Eq. (2.11) as:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 , (2.14)

where the angles θ and φ define the specific point on the Bloch sphere, with 0 ≤

θ ≤ π and 0 ≤ φ < 2π. The measurements performed in the {|0〉 , |1〉} basis will

yield these basis states with probabilities of cos2
(
θ

2

)
and sin2

(
θ

2

)
.

2.2.3 Basis for a Qubit

Any quantum state can be represented as a superposition of the basis vectors within

a Hilbert space. The choice of basis is not unique, and the same quantum state can

be represented using different basis vectors:

• Standard/Computational Basis: |0〉& |1〉 form the standard basis vectors

of the two-dimensional Hilbert space and are orthogonal to each other, i.e.

〈0|1〉 = 0.

|0〉 =

1

0

 , |1〉 =

0

1

 . (2.15)

• Hadamard Basis: Another commonly used basis is the Hadamard basis, i.e.

|+〉 & |−〉, where 〈+|−〉 = 0. The Hadamard basis vectors are represented

in terms of standard basis vectors as:

|+〉 =
|0〉+ |1〉√

2
, |−〉 =

|0〉 − |1〉√
2

. (2.16)

From Eq. (2.15) and Eq. (2.16) we get,

|+〉 =
1√
2

1

1

 , |−〉 =
1√
2

 1

−1

 . (2.17)
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• General Basis: In terms of computational basis, we define the general basis

as:

|V (θ, φ)〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 ,

|V ⊥(θ, φ)〉 = −eiλ sin(θ/2) |0〉+ ei(λ+φ) cos(θ/2) |1〉 .
(2.18)

From Eq. (2.15) and Eq. (2.18) we get,

|V (θ, φ)〉 =

 cos(θ/2)

eiφ sin(θ/2)

 , |V ⊥(θ, φ)〉 =

 −eiλ sin(θ/2)

ei(λ+φ) cos(θ/2))

 .

(2.19)

2.2.4 Manipulating Qubits

Quantum gates are used to manipulate the quantum state and are unitary (Û ), i.e.

Û †Û = Î. Here, Û † is the Hermitian conjugate of Û obtained by transposing U and

taking the complex conjugate of each element. A single qubit quantum operator is

usually represented as a 2× 2 unitary matrix (Û ).

|ψ′〉 = Û |ψ〉 . (2.20)

The most general form of a single qubit unitary operator is,

Ûλ,θ,φ =

 cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

 , (2.21)

where,

0 ≤ θ ≤ π,

0 ≤ φ < 2π, &

0 ≤ λ < 2π.
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With different values of θ, φ, and λ, many single qubit operators can be constructed

(Table 2.1). We can visualize a single qubit unitary as rotation on the Bloch sphere

using the angles θ, φ and λ. The transformation comprises three rotations, with the

first rotation about the z-axis by an angle λ, followed by a rotation about the y-axis

by an angle θ and then about the z-axis by an angle φ (see Fig. 2.2).

Operator λ θ φ Matrix

Identity 0 0 0 Î =

(
1 0
0 1

)
Pauli X(bit flip) π π 0 X̂ =

(
0 1
1 0

)
Pauli Y(bit and phase flip)

π

2
π

π

2
Ŷ =

(
0 −i
i 0

)
Pauli Z(phase flip) π 0 0 Ẑ =

(
1 0
0 −1

)
Hadamard π

π

2
0 Ĥ =

1√
2

(
1 1
1 −1

)
Table 2.1: Examples of Single qubit Unitary Operators Ûλ,θ,φ

(a) (b)

Figure 2.2: (a) Visualisation of a Unitary transformation Ûλ,θ,φ as a rotation on the Block
sphere. (b) An example of X̂ transformation on a block sphere where, X̂ = Ûπ,π,0
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2.2.5 Measuring Qubits

A set of measurement operators, {Mm}, characterizes a quantum state measure-

ment. These operators satisfy the completeness relation
∑
x

M †
mMm = I, where I is

the identity operator. When the quantum state |ψ〉 is measured with measurement

operator, Mm it collapses to a state given by |ψm〉 with a probability, pm:

|ψm〉 =
Mm |ψ〉√
〈ψ|M †

mMm|ψ〉
, (2.22)

pm = 〈ψ|M †
mMm|ψ〉 . (2.23)

Let us consider the measurement of the state |ψ〉 in standard basis (Eq. (2.11)) with

two measurement operators, M0 & M1 (Eq. (2.24)).

M0 = |0〉 〈0| , M1 = |1〉 〈1| . (2.24)

Operating the measurement operator M0 and M1 on |ψ〉 we get,

M0 |ψ〉 = α |0〉 ,

M1 |ψ〉 = β |1〉 . (2.25)

The normalised states |ψ0〉 & |ψ1〉 and the probabilities p0 & p1 are given in Eq.

(2.26) and Eq. (2.27) respectively.

|ψ0〉 =
M0 |ψ〉√
〈ψ|M †

0M0|ψ〉
=
α |0〉
|α|

,

|ψ1〉 =
M1 |ψ〉√
〈ψ|M †

1M1|ψ〉
=
β |1〉
|β|

.

(2.26)
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p0 = 〈ψ|M †
0M0|ψ〉 = |α|2,

p1 = 〈ψ|M †
1M1|ψ〉 = |β|2.

(2.27)

Similarly, one can perform the measurements in the Hadamard basis. Where the

measurement operators are given as M+ = |+〉 〈+| and M− = |−〉 〈−|. We first

write our state in the Hadamard basis (Eq. (2.16)) and then use the measurement

operators.

2.2.6 Multiple qubits

Let us consider a two-qubit state. The general two-qubit state is represented as:

ψA,B = α00 |0〉A |0〉B + α01 |0〉A |1〉B + α10 |1〉A |0〉B + α11 |1〉A |1〉B , (2.28)

where {|0〉A , |1〉A} and {|0〉B , |1〉B} are computational basis of qubit A and B

respectively. Considering the two-qubit system as one system, it has four compu-

tational basis states ({|00〉 , |01〉 , |10〉 , |11〉}). Similar to the single qubit case, the

state on measurement collapses to |m〉, m = (00, 01, 10, 11) with probability |αm|2.

There are multiqubit operators/gates; one of the famous examples is a controlled-

NOT gate. This gate has two inputs: the control qubit and the target qubit. In

Fig. 2.3, the top and bottom lines represent the control qubit and the target qubit,

respectively. In a controlled-NOT (CNOT) operation, if the control qubit is |0〉, then

the target qubit remains unchanged, and if the control qubit is |1〉, then the target

qubit is flipped (valid for computational basis).

|00〉 → |00〉 ; |01〉 → |01〉 ; |10〉 → |11〉 ; |11〉 → |10〉 . (2.29)
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Figure 2.3: Controlled not gate with |A〉 as the control qubit and |B〉 as the target qubit.
Input state |A〉 |B〉 are in computational basis.

Following is the matrix representation of the C-NOT (ĈX) operator:

ĈX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (2.30)

2.2.7 Entangled States

We have explored qubits, which are closed systems. While a closed system is useful

for analysis, achieving perfect isolation is impossible in practice. The universe, as

a whole, might be the only truly closed system.

Consider a closed, isolated system comprising two subsystems: A and B with quan-

tum state |ΨAB〉 ∈ HA ⊗HB of subsystems A and B,

|ΨAB〉 =
n∑
i=1

m∑
j=1

αij |ai〉 |bj〉 , αij = 〈ai, bj|ΨAB〉 , (2.31)

where, {|ai〉}(i = 1, 2, · · · , n) and {|bj〉} (i = 1, 2, · · · ,m) are orthonormal basis

vectors of subsystems A and B [56].
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If the subsystems A and B are not correlated then αij = α
(A)
i α

(B)
j . In this case,

|ΨAB〉 =
[ n∑
i=1

α
(A)
i |ai〉

][ n∑
j=1

α
(B)
i |bj〉

]
≡ |ψA〉 |ψB〉 , (2.32)

where, |ψA〉 (|ψ〉B) is the state vector of subsystem A(B).

If the systems A and B are correlated, then αij 6= α
(A)
i α

(B)
j , which means that we

cannot write ΨAB as in Eq. (2.32). Such a state is called an entangled state.

Among the simplest and most well-known entangled states are the Bell states. These

states represent the maximum degree of entanglement between two qubits and serve

as a resource for many quantum information protocols. Bell states are given by,

• |β00〉 =
|00〉+ |11〉√

2
,

• |β01〉 =
|01〉+ |10〉√

2
,

• |β10〉 =
|00〉 − |11〉√

2
,&

• |β11〉 =
|01〉 − |10〉√

2
.

Figure 2.4: Circuit comprising a Hadamard (H) gate and a controlled not (CNOT) gate to
generate the Bell states. Depending on the control qubit |A〉 and the target qubit |B〉, we
generate the Bell state βAB .

The Bell states can be generated by using two qubits, a Hadamard and C-NOT gate

as shown in Fig. 2.4. The circuit begins with the control qubit |A〉 and the target
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qubit |B〉. Let us consider the initial state |A〉 |B〉 = |0〉 |0〉. The Hadamard gate

is applied to the control qubit |A〉, creating a superposition state
1√
2

(|0〉 + |1〉).

Next, the CNOT gate is applied, which flips the state of the target qubit |B〉 if the

control qubit |A〉 is in the state |1〉, is applied. This results in the entangled Bell state

βAB =
1√
2

(|00〉 + |11〉). Depending on the initial states of |A〉 and |B〉, different

Bell states can be generated.

2.2.8 Mixed States

Consider a case where the quantum state Q results from a random process, such

that the state |ψα〉 is prepared with a probability pα. The possible states |ψα〉 do

not have to be orthogonal. This ensemble Q of such individual systems is called a

mixed state.

Consider measuring an observable A on the system. For a particular subset of the

ensemble where the system is in state |ψα〉, the average value of the measurement

for that state is given by 〈A〉α = 〈ψα|A|ψα〉. To find the average value over the

entire ensemble, we need to consider the probability pα of each state |ψα〉. This

gives us:

〈A〉 =
∑
α

pα 〈Aα〉 =
∑
α

pα 〈ψα|A|ψα〉 . (2.33)

Using Tr(A |ψα〉〈ψα|) = 〈ψα|A|ψα〉, we get,

〈A〉 =
∑
α

pαTr(A |ψα〉〈ψα|)

= Tr(ρ̂A). (2.34)
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Where, ρ̂ is the density operator defined as:

ρ̂ =
∑
α

pα|ψα〉〈ψα|. (2.35)

This density matrix ρ encapsulates the statistical mixture of the states.

2.2.9 Generalised states and measurements

Firstly, we discuss some mathematical prerequisites for understanding the general

representation of quantum states and their measurements. These definitions are as

follows:

• Linear Operator: Consider a complex vector space Cd of dimension d. A

linear operator L : Cd → Cd′ can be represented as a d′× d matrix,

L =


L11 L12 · · · L1d

L21 · · · · · · L2d

...
... . . . ...

Ld′1 Ld′2 · · · Ld′d

 (2.36)

where, Lij ∈ C and the set of linear operators denoted as L (Cd,Cd′)

• Hermitian Operator: A linear operator M ∈ L (Cd,Cd) is Hermitian if

M † = M . A hermitian operator has real eigenvalues ({λj}) for the orthonor-

mal basis {{vj}}. We can write a hermitian operator in its diagonalised form

as: M =
∑
j

λj|vj〉〈vj|.

• Positive Semi-definite Matrix: A positive semi-definite matrix is a hermi-

tian matrix having all the eigenvalues {λi}i as non-negative (λi ≥ 0) and is

denoted as M ≥ 0
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• Trace of a matrix: The trace of a matrix is given as:

tr(M) =
∑
j

〈vj|M |vj〉 . (2.37)

Density operator

The state vectors can only describe pure states. However, in many situations, we

encounter mixtures of states. Density matrix formalism provides a generalized rep-

resentation of pure and mixed states. It is also useful for dealing with subsys-

tems of a non-separable (entangled) state. A density operator is a linear operator

ρ̂ ∈ L (Cd,Cd) used to represent a quantum system in Cd. In (2.35), we defined the

density operator for a mixed state. It satisfies the following conditions:

1. ρ̂ ≥ 0, meaning ρ is positive semi-definite, and

2. tr(ρ̂) = 1, indicating that the trace of ρ is equal to 1.

3. tr(ρ̂2) ≤ 1. For pure states tr(ρ̂2) = 1

POVMs

A positive operator valued measurement (POVM) on Cd is a set of positive semi-

definite operators {Mx}x∈X such that∑
x

Mx = ICd ,

where ICd is the identity operator on Cd. The subscript x labels the measurement

outcome and the probability px of observing outcome x is:

px = tr(Mxρ). (2.38)
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Kraus Operators

Consider a POVM operator, M = {Mx} on Cd. A Kraus operator representation of

M consists of a set of linear operators Ax ∈ L (Cd,Cd) such that Mx = A†xAx for

each x. Karus decomposition is the positive square root of Mx, i.e., Ax =
√
Mx.

It is not unique since for any unitary Ux on Cd, A′x = Ux
√
Mx, is also a valid

decomposition. If Mx = |ux〉〈ux| is a projector, then
√
Mx = Mx and hence

Ax = Mx

Post-Measurement state

Let ρ be a density matrix and M = {Mx} a POVM with Kraus decomposition

given by the operators {Ax}. If a measurement is performed and the outcome x is

obtained, the state of the system after the measurement, conditioned on the outcome

x, is given by

ρ|x =
AxρA

†
x

tr(A†xAxρ)
. (2.39)

Projective Measurements

A projective measurement, also known as a von Neumann measurement, is defined

by a set of orthogonal projectors Mx = Πx such that
∑
x

Πx = I and Kraus decom-

position is Ax = Πx. The probability qx of obtaining the measurement outcome x

is given by

qx = tr(Πxρ), (2.40)

and the post-measurement state is:

ρ|x =
ΠxρΠx

tr(Πxρ)
. (2.41)
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2.2.10 von Neumann entropy

The von Neumann entropy measures the uncertainty or disorder in a quantum sys-

tem. For a density matrix ρ, it is defined as:

S(ρ) = −Tr(ρ log2 ρ). (2.42)

If λx are the eigenvalues of ρ we also express von Neumann entropy as:

S(ρ) = −
∑
x

λx log λx. (2.43)

The entropy quantifies the uncertainty or disorder in the system. For a pure state

(where ρ = |ψ〉〈ψ|), the entropy is zero, indicating no uncertainty. For mixed states,

the entropy is positive, reflecting the average uncertainty or missing information

about the system’s precise state. Unlike classical entropy, quantum entropy can

be influenced by entanglement. For example, in a maximally entangled pair of

qubits, each qubit has an entropy of 1, but the combined system has zero entropy,

illustrating that quantum entropy can be less for the whole system than for its parts

due to entanglement.

2.2.11 No-Cloning Theorem

In 1982, W.K. Wootters and W.H. Zurek [34] showed that it is impossible to clone

an unknown quantum state. We first define a cloning process, which consists of

three aspects: the quantum state (ψ), the blank state (|b〉), and a quantum clone

(|Mb〉). The joint state of the composite system is given as:

|Ψ〉 = |ψ〉 ⊗ |b〉 ⊗ |Mb〉 . (2.44)
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We consider that the entire system is informationally isolated, and the action of the

quantum clone can be represented as a unitary time evolution operator Uc acting on

the joint state of the composite system. After the cloning, the quantum state remains

unchanged, and the blank state becomes an exact copy of the quantum state. The

final state is:

|Ψ′〉 = |ψ〉 ⊗ |ψ〉 ⊗ |Mψ〉 . (2.45)

No Cloning Theorem: The no-cloning theorem implies that such a cloning ma-

chine, which can create identical copies of an arbitrary unknown quantum state,

cannot exist. Here, we prove the no-cloning theorem. Consider two quantum states

φ1 and φ2. The initial composite system for these states can be written as:

|Φ1〉 = |φ1〉 ⊗ |b〉 ⊗ |Mb〉 ,

|Φ2〉 = |φ2〉 ⊗ |b〉 ⊗ |Mb〉 . (2.46)

After the cloning process, the final state is given as:

|Φ′1〉 = |φ1〉 ⊗ |φ1〉 ⊗ |Mφ2〉 ,

|Φ′2〉 = |φ2〉 ⊗ |φ2〉 ⊗ |Mφ2〉 . (2.47)

Now consider a state φ+ which is a superposition of the states φ1 and φ2.

|φ+〉 =
1√
2

(|φ1〉+ |φ2〉). (2.48)

The composite state of Φ+ before and after the cloning process is given by Φ+ and

Φ′+, respectively.

|Φ+〉 = |φ+〉 ⊗ |b〉 ⊗ |Mb〉 , (2.49)

|Φ′+〉 = |φ+〉 ⊗ |φ+〉 ⊗ |Mφ+〉 . (2.50)
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Using (2.47) and (2.48) in (2.49) we get:

|Φ′+〉 =
1√
2

(|Φ′1〉+ |Φ′2〉)

=
1√
2

(|φ1〉 ⊗ |φ1〉 ⊗ |Mφ1〉+ |φ2〉 ⊗ |φ2〉 ⊗ |Mφ2〉). (2.51)

This is not the correct cloned state since Eq. (2.51) is not equal to (2.50). This

concludes the proof of the no-cloning theorem.

2.3 Photonic Qubits and Polarization Encoding

Photons are an excellent resource for quantum information and communication pro-

tocols due to their ease of generation and manipulation. They are an indispensable

part of communication systems and are often called “flying qubits”. The devel-

opment of efficient single-photon detectors has significantly simplified photonic

quantum information processing. The versatility of photons in quantum information

processing stems from the availability of multiple degrees of freedom, such as polar-

ization, orbital angular momentum, path, position, momentum, time, or frequency,

for carrying information. While all these modalities offer potential for information

encoding, in our study, we utilize the polarization degree of freedom of photons.

2.3.1 Quantization of Electromagnetic Field

Quantization of the electromagnetic (EM) field involves treating the EM field as a

collection of quantized harmonic oscillators, where each mode of the field corre-

sponds to a quantized energy level. Photons are the elementary excitations of the

normal mode of the field. We now start our discussion on field quantization. In free

space, the electromagnetic field satisfies the classical Maxwell’s equations:
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∇ · E = 0, (2.52)

∇ ·B = 0, (2.53)

∇× E = −∂B
∂t
, (2.54)

∇×B = µ0ε0
∂E

∂t
. (2.55)

The electric field E and magnetic field B can be expressed in terms of the vector

potential A. Specifically, the magnetic field is given by:

B = ∇×A. (2.56)

The corresponding electric field can be derived from the vector potential using:

E = −∇φ− ∂A

∂t
, (2.57)

where φ is the scalar potential, which can be set to zero in the absence of free

charges, simplifying the expression for E, giving

E = −∂A
∂t
. (2.58)

Now, we impose the Coulomb gauge condition:

∇ ·A = 0. (2.59)

Under these conditions, the vector potential A satisfies the wave equation:

∇2A− µ0ε0
∂2A

∂t2
= 0. (2.60)

Using c2 =
1

µ0ε0
, this simplifies to:

∇2A− 1

c2
∂2A

∂t2
= 0. (2.61)
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This is a three-dimensional wave equation, and we can find electric and magnetic

fields by finding the vector potential A.

In a cubic box of side length L with periodic boundary conditions, the general

solution for the vector potential can be written as a superposition of all possible

modes:

A(r, t) =
∑
k,s

eks
(
Aks(t)e

ik·r + A∗ks(t)e
−ik·r) . (2.62)

Aks(t) = Akse
−iωkt. (2.63)

A(r, t) =
∑
k,s

eks
(
Akse

i(k·r−ωkt) + A∗kse
−i(k·r−ωkt)

)
, (2.64)

where the wave vectors k are quantized as:

k =
2π

L
(nx, ny, nz), (2.65)

with nx, ny, and nz being integers, and ω = c|k|. Each k has two independent

polarization states denoted by s, with corresponding polarization vectors ek,s and

ek,s′ . From the gauge condition of Eq. (2.59), we get,

k · eks = k · eks′ = 0, (2.66)

The polarization vectors ek,s and ek,s′ are orthogonal to k and to each other,

eks · eks′ = δss′ . (2.67)

The electric and magnetic fields can be deduced from the solution for vector poten-

tial given in Eq. (2.64) using Eq. (2.58) and Eq. (2.56)

E(r, t) = i
∑
k,s

ωkek,s
(
Akse

i(k·r−ωkt) − A∗kse−i(k·r−ωkt)
)
, (2.68)
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B(r, t) =
i

c

∑
k,s

ωk(κ× ek,s)
(
Akse

i(k·r−ωkt) − A∗kse−i(k·r−ωkt)
)
. (2.69)

where, κ = k/|k|.

The Hamiltonian for the EM wave is given by:

H =
1

2

∫
V

(
ε0E · E +

1

µ0

B ·B
)
. (2.70)

Using the periodic boundary condition and the solutions for the electric and mag-

netic fields we obtain the final Hamiltonian as:

H = 2ε0V
∑
k,s

ω2
kAk,sA

∗
k,s. (2.71)

We now introduce the canonical conjugate variables to quantize the system.

Aks =
1

2ωk(ε0V )1/2
[ωkqks + ipks] , (2.72)

A∗ks =
1

2ωk(ε0V )1/2
[ωkqks − ipks] . (2.73)

Upon substitution of (2.72) and (2.73) in (2.71) we get:

H =
1

2

∑
k,s

(
p2ks + ω2

kq
2
ks

)
. (2.74)

The quantization of the field is achieved by requiring that the canonical variables

transform into operators that obey the following commutation relations:

[q̂ks, q̂k′s′ ] = 0, (2.75)

[p̂ks, p̂k′s′ ] = 0, (2.76)

[q̂ks, p̂k′s′ ] = ih̄δkk′δss′ . (2.77)



40 Chapter 2. Theoretical Background

We define the single-mode annihilation and creation operators as

âks =
1

(2h̄ωk)1/2
[ωkq̂ks + ip̂ks] , (2.78)

â†ks =
1

(2h̄ωk)1/2
[ωkq̂ks − ip̂ks] . (2.79)

and they satisfy,

[âks, âk′s′ ] = 0, (2.80)

[â†ks, â
†
k′s′ ] = 0, (2.81)

[âks, â
†
k′s′ ] = δkk′δss′ . (2.82)

The total energy of the electromagnetic field is given by:

Ĥ =
∑
ks

h̄ωk

(
â†ksâks +

1

2

)
(2.83)

=
∑
ks

h̄ωk

(
n̂ks +

1

2

)
, (2.84)

where, n̂ks is the number operator for mode ks.

n̂ks = â†ksâks. (2.85)

Number states (Fock States)

Each of the modes is independent of each other and has eigenstate |nks〉. Let us

denote a single mode ks as j such that, âkjsj = âj and â†kjsj = â†j . Then the

Hamiltonian is,

Ĥ =
∑
j

h̄ωj

(
n̂j +

1

2

)
. (2.86)
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The photon number state of multi modes is a product state of all the modes given

as,

|n1〉|n2〉|n3〉 . . . ≡ |n1, n2, n3, . . .〉 = |{nj}〉, (2.87)

which is an eigenstate of Ĥ such that,

Ĥ|{nj}〉 = E|{nj}〉, (2.88)

and the eigenvalue E is,

E =
∑
j

h̄ωj

(
nj +

1

2

)
. (2.89)

Each mode j is quantized with quanta of energy h̄ωj .

Quantized electric and magnetic field

Based on the classical depiction of the electromagnetic field and the correspondence

principle, the quantized electric and magnetic fields can be formulated using the

non-Hermitian operators â and â†:

Ê(r, t) =
∑
k,s

√
h̄ωk
2ε0V

eks
(
iâkse

i(k·r−ωkt) + H.c.
)
, (2.90)

B̂(r, t) =
1

c

∑
k,s

(κ× ek,s)

√
h̄ωk
2ε0V

eks
(
iâkse

i(k·r−ωkt) + H.c.
)
, (2.91)

where, H.c. stands for hermitian conjugate.

2.3.2 Coherent States

The coherent states are the eigenstates of annihilation operator a†, satisfying,

â |α〉 = α |α〉 . (2.92)
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where, α is a complex eigenvalues, since â is a non-hermitian operator. We also

have,

〈α| â† = α∗ 〈α| . (2.93)

The number states |n〉 form a complete set and the coherent state is defined as a

superposition of these Fock states as,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (2.94)

The probability P (n) of having n photons in a coherent state is obtained by evalu-

ating 〈n|α〉

〈n|α〉 = e−
|α|2
2

∞∑
m=0

αm√
m!
〈n|m〉

= e−
|α|2
2
αn√
n!
, (2.95)

where, we have used orthonormality (〈n|m〉 = δnm) of number states. Thus,

P (n) ≡ |〈n|α〉|2= e−|α|
2 |α|2n

n!
. (2.96)

The mean photon number µ in a coherent state is found using the expectation value

of n̂,

µ ≡ 〈α|n̂|α〉 = 〈α|â†â|α〉 = 〈α|α∗α|α〉 = α∗α. (2.97)

Using (2.96) and (2.97) we get,

P (n) =
µn

n!
e−µ. (2.98)

Hence, we conclude that a coherent state follows the Poissonian distribution.
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2.3.3 Polarization

Maxwell’s wave theory provides the classical framework for understanding light po-

larization. According to this theory, the direction of the electric field vector within

the electromagnetic wave determines the polarization state. Different types of po-

larization arise depending on the orientation and relative amplitudes of the electric

field’s components in the transverse plane. Consider the plane wave propagating

along z direction with wave-vector k,

E = x̂Exe
(−i(ωt−kz)) + ŷEye

(−i(ωt−kz))eiφ, (2.99)

where, Ex and Ey are amplitudes of electric field in x and y direction and φ is the

phase between the electric field components along x and y direction.

• Linear Polarization: The electric field oscillates in a single, fixed direction.

Light with fields predominantly in the x or y direction is termed horizontally

or vertically polarized, respectively. (φ = 0)

• Circular Polarization: The electric field vector rotates about the propagation

axis as the wave advances. This rotation is classified as right-circular or left-

circular, depending on the direction of rotation. (φ = π/2, Ex = Ey)

• Elliptical Polarization: Similar to circular polarization, the electric field ro-

tates during propagation but with unequal amplitudes in its orthogonal com-

ponents, resulting in an elliptical trajectory. (φ 6= 0, φ 6= π/2)

• Unpolarized Light: The electric field vector lacks a defined direction and

oscillates randomly.

The direction of the electric field vector determines the polarization state. In the
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quantized description of the electromagnetic fields, mode operators are associated

with the classical field’s quantum version. Photons, excitations of the quantized

fields, inherit the properties inherent in the classical description. Hence, photon

polarization can be treated similarly to the polarization of classical fields.

2.3.4 Polarization Basis

Within this discussion, we focus on utilizing the degree of freedom of polarization

to encode and generate qubits.

First, we establish the definitions of polarizations that are about to be used. We

consider the wave propagation in the z-direction, with the transverse plane being

the x and y. If the electric field points in the x direction, we call it horizontally

(H) polarized light; if it points in the y direction, we call it vertically (V ) polarized

light. We call these rectilinear polarizations, and the Jones vector used to represent

these polarization states are:

|H〉 =

1

0

 , (2.100)

|V 〉 =

0

1

 . (2.101)

We further define diagonal and anti-diagonal polarizations for the electric field di-

rection at an angle of 45° and−45°, with x axis, respectively. We call these diagonal

polarizations, and their Jones vector representations are:

|D〉 =
1√
2

1

1

 (2.102)
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|A〉 =
1√
2

 1

−1

 (2.103)

Acknowledging that any arbitrary polarization state can be effectively constructed

through a linear superposition of its basis vectors is crucial. The Jones matrices

have a one-to-one correspondence to the basis vectors defined for the qubit states

defined in Sec. 2.2.3, where,

• The rectilinear basis aligns with the standard basis, where the states |0〉 and

|1〉 correspond to |H〉 and |V 〉 respectively.

• The diagonal basis aligns with the Hadamard basis, where the states represent

an equal superposition of horizontal and vertical polarization (|+〉& |−〉) (Eq.

(2.16)).

By employing the basis and leveraging the power of superposition, we unlock the

potential to encode and manipulate information using the polarization of light, cre-

ating the foundation for various quantum information processing applications.

2.3.5 Manipulating Polarization of Photons

Under free-space propagation, the polarization state of light remains unchanged.

However, certain anisotropic materials can alter it. These materials possess bire-

fringence, i.e. they have different refractive indices for two orthogonal polarization

components (ordinary and extraordinary). Birefringent materials are basic to vari-

ous optical elements like polarizers, quarter-wave plates, and half-wave plates that

manipulate the polarization state.
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Polarizers

A polarizer allows only a specific polarization to pass through. Suppose that a

polarizer is oriented at 0° with x axis. It lets only the H polarization pass through

and completely blocks the V polarization. The Jones matrix of such a polarizer is:

Up0 =

1 0

0 0

 (2.104)

A polarizer kept at an angle θ with the x axis is given as:

Upθ = R(θ)Up0R(−θ) (2.105)

where, R(θ) is the rotation matrix given by:

R(θ) =

cos θ − sin θ

sin θ cos θ

 (2.106)

Using Eq. (2.104), Eq. (2.106) and Eq. (2.105) we get:

Upθ =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 (2.107)

Wave plates

Waveplates are also known as retarders since they slow down one component of

polarization with respect to the other. Jones matrix for waveplates with its fast axis

aligned to H polarisation is given by:

UW =

1 0

0 eiδ

 (2.108)
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Half-wave Plates (HWP)

A half-wave plate (HWP) introduces a phase of λ/2 between the two orthogonal

components of polarization aligned along its fast and slow axis. The Jones matrix

for a HWP kept with its fast axis aligned to H polarization is:

Uhwp0 =

1 0

0 −1

 (2.109)

The Jones matrix for a HWP kept with its fast axis at an angle θ to H polarization

is:

Uhwpθ = R(θ)Uhwp0R(−θ) (2.110)

=

cos 2θ sin 2θ

sin 2θ − cos 2θ



Quarter-Wave Plates (QWP)

A quarter-wave plate (HWP) introduces a phase of λ/4 between the two orthogonal

components of polarisation aligned along its fast and slow axis. The Jones matrix

for a QWP kept with its fast axis aligned to H polarisation is:

Uqwp0 =

1 0

0 −i

 (2.111)

The Jones matrix for a QWP kept with its fast axis at an angle θ to H polarization

is:

Uqwpθ = R(θ)Uqwp0R(−θ) (2.112)
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=

 cos2 θ + i sin2 θ (1− i) sin θ cos θ

(1− i) sin θ cos θ sin2 θ + i cos2 θ


We can choose different angles θ of HWP and QWP to get the desired polar-

ization of the photon. These act as the quantum operators for manipulating our

photonic qubits in polarization degree of freedom. For example, HWP@45° and

HWP@22.5° act as bit flip and phase flip operators for rectilinear polarization.

2.4 Quantum Key Distribution

Most QKD protocols are classified into Prepare & Measure QKD and entanglement-

based QKD (Fig. 1.5). Prepare and measure protocols depend on measurement

uncertainty to ensure the secrecy of the key. The entanglement-based protocols

leverage the non-local correlations to ensure communication security. Our work

focuses on prepare and measure based QKD using polarization degree of freedom

in two mutually unbiased bases.

A general prepare and measure QKD protocol involves two main phases: quan-

tum communication and classical post-processing. Alice encodes her random bits

in quantum states during quantum communication and sends them to Bob via the

quantum channel, such as optical fibre or free space. Eve can intercept this quantum

channel to access the information. However, due to the principles of quantum me-

chanics, Eve cannot perfectly clone the quantum states, and any attempt to gain in-

formation disturbs the quantum state. Bob measures the received signal and records

bit values.

Alice and Bob perform sifting, keeping only the bits measured in the same basis

and discarding those measured in different bases. They then use a portion of the

raw data for parameter estimation and conduct error correction (EC) to detect and
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fix errors, which is followed by privacy amplification (PA) to minimize the informa-

tion Eve can extract. We get the final secret key after the quantum communication

and classical post-processing. There are two methods for reconciliation: direct rec-

onciliation (DR) or reverse reconciliation (RR). In DR, Bob processes his outcomes

to infer Alice’s encoding, assisted by forward classical communication (CC) from

Alice. In RR, Alice processes her encoding to infer Bob’s outcomes, assisted by

backward CC from Bob.

Although Eve cannot alter the messages on the authenticated classical channel, she

can read all the information without any consequences. Ultimately, the key gener-

ated at the end of the QKD protocol emerges from the interactions among Alice,

Bob, and Eve. Here, we assume that Alice and Bob exchange an infinite number of

states, i.e. the asymptotic limit. The asymptotic key rate can be determined by the

difference in mutual information I among the involved parties, as per Csiszar and

Korner’s classical theorem [57]. In direct reconciliation (DR) and reverse reconcil-

iation (RR) key rate is given as,

RDR := I(A : B)− I(A : E)

RRR := I(A : B)− I(B : E) (2.113)

We now discuss the steps involved in quantum key distribution, specifically the

quantum communication and classical post-processing phases, in detail.

Encoding and Decoding

First, Alice encodes the qubits in the desired degree of freedom, say polarization,

by randomly between two non-orthogonal bases. She then transmits the prepared

state via a quantum channel to Bob. Bob then makes a choice between the mutually

unbiased basis and takes the measurement. The key generated after this is the raw
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key Rraw.

Sifting

Alice and Bob utilize a public channel to disclose which basis they employed to

prepare or measure their qubits and the timing of detection events. However, they

refrain from disclosing the measurement results. When Alice and Bob employ the

same basis, they should obtain perfectly correlated bits. Discarding bits when dif-

ferent bases are used is termed as sifting. The collection of bits remaining after this

basis reconciliation constitutes the sifted key of length ns. If Nt number of bits are

transmitted, and s is the sifting parameter [58], then the sifted key generation rate

is given as:

Rsifted = sRraw (2.114)

The sifted key length, ns is given as,

ns = NtRsifted (2.115)

Error Correction and Privacy Amplification

If an adversary attempts to intercept the key, it will induce errors in the system.

However, practical implementations often encounter errors due to imperfections in

the devices used. Unfortunately, discerning between errors caused by the system

and those due to eavesdropping is infeasible. Consequently, solely relying on the

premise that any eavesdropping will inevitably lead to errors and expose the intru-

sion is insufficient as security proof in practical systems.

The Quantum Bit Error Rate (QBER) serves as a key metric in quantum communi-

cation, gauging the frequency of errors in transmitted quantum bits (qubits). QBER
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denotes the probability that a qubit sent between parties is received inaccurately due

to channel noise or adversarial interference. Lower QBER values signify enhanced

fidelity and security in quantum communication setups.

Practical QKD systems mitigate system errors and potential eavesdropping by in-

corporating two vital additional procedures: error correction and privacy am-

plification. Both of these steps can be conducted using a public channel. Error

correction aims to ensure that Alice and Bob possess the same key, while privacy

amplification focuses on ensuring their shared key’s confidentiality.

Error correction enables the estimation of the error rate, denoted as e, and subse-

quently corrects errors at the cost of a few bits. The minimum number of bits (κ) to

be exchanged publicly to perform error correction [55].

lim
ns→∞

κ

ns
= −e log2 e− (1− e) log2(1− e) ≡ h(e) (2.116)

The inefficiency of practical error correction algorithms is accounted by f(e), thus

Eq. (2.116) is rewritten as:

lim
ns→∞

κ

ns
= −f(e) [e log2 e+ (1− e) log2(1− e)] ≡ f(e)h(e) (2.117)

Privacy amplification compresses the error-corrected key into a final secure key,

adjusting for potential information leakage to the eavesdropper during prior trans-

mission phases. It is conducted using generalized privacy amplification theory [59],

assuming that all errors are potentially attributed to eavesdropping. It states that the

length of the final key is:

r = nsτ − κ− t (2.118)

where, ns is sifted key length, κ is the number of bits disclosed during error correc-
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tion, t is the security parameter and τ is the shrinking factor given by:

τ = − log2 pc
ns

(2.119)

where pc is the average collision probability, quantifying Eve’s mutual information

with Alice and Bob. The parameter t quantifies the level of security by determin-

ing how much information about the final key can be known by an eavesdropper.

The security parameter t ensures that the eavesdropper’s probability of successfully

guessing the key is at most 2−t. Given Nt as the total number of transmitted bits, ns

as the number of sifted bits, and r as the length of the secure key, we can determine

the secure key generation rate R using Eq. (2.115) and Eq. (2.118). The secure key

generation rate R is expressed as:

R = lim
Nt→∞

r

Nt

= lim
ns→∞

Rsifted

(
τ − κ

ns
− t

ns

)
. (2.120)

As the length of ns becomes very large, it can be shown that
t

ns
= 0. Using Eq.

(2.117) we get the secure key rate as,

R = Rsifted (τ − f(e)h(e)) . (2.121)

The values of Rsifted and τ depend on the system parameters and the QKD protocol.

2.4.1 Security of QKD

In 1999, Lo and Chau [14] gave a security framework for QKD based on entan-

glement distillation. Later on, Shor and Preskill [16] employed Calderbank Shor

Steane (CSS) code [60, 61] simplifying entanglement-based security proof for pre-

pare and measure protocol. Significant contributions to the security proofs of QKD

were made by Biham et al. (2000) [62], Mayers (2001) [18], Devetak and Winter
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(2005)[63], and Koashi (2009) [64]. The concept of composable security was inte-

grated into quantum cryptography, establishing a rigorous definition of secure keys

in [65, 66]. Further, the effects due to finite key size were addressed in security

proofs by Renner [67], Scarani [68], and Tomamichel [69].

In an ideal scenario where the QKD protocol is flawless, without implementation

errors or eavesdropping, the resulting sifted key would be perfectly secure. How-

ever, practical QKD implementations often encounter errors due to imperfections

in the devices used. Security analyses have thoroughly investigated device imper-

fections in practical QKD systems, with foundational work by Lütkenhaus (2000)

[17]; Inamori, Lütkenhaus, and Mayers (2007) [51]; and Gottesman et al. (2004)

[19] that established a significant framework for analyzing realistic devices.

New protocols were developed to address these imperfections, including the decoy

state protocol [70–73], the differential phase shift protocol [24], the Scarani-Acín-

Ribordy-Gisin (SARG) protocol [25], the coherent one-way (COW) protocol [26],

and the measurement-device-independent (MDI) protocol [53]. Notably, the decoy

state protocol allows secure QKD using weak coherent pulses, and the MDI protocol

eliminates all detection side channels.

Security Criteria

To establish the security of QKD, we first need to define the security criteria. Ideally,

a secure key must meet two conditions: 1. Correctness i.e. the key bit strings

shared between Alice and Bob are identical; 2. Secrecy i.e. the key bit string

shared between Alice and Bob remains secret, unknown to the adversary.

Let kA and kB be the key bit strings for Alice and Bob, respectively, and ρE repre-

sent Eve’s quantum state. In an ideal scenario, kA = kB = k (ensuring correctness),
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and ρE is independent of k (ensuring secrecy). The classical-classical-quantum (c-

c-q) state of Alice, Bob, and Eve is described by:

ρideal
ABE = 2−m

∑
k

|k〉A〈k|⊗|k〉B〈k|⊗ρE. (2.122)

However, in practical situations, kA may not equal kB, and Eve might be correlated

with the key. Thus, the joint c-c-q state is:

ρABE =
∑
kA,kB

P (kA, kB)|kA〉〈kA|⊗|kB〉〈kB|⊗ρ(kA,kB)
E . (2.123)

where, P (kA, kB) is the probability distribution of the final state ρABE . Due to

practical limitations such as finite data size and imperfect error correction, Alice

and Bob cannot always produce a perfect key. Instead, it is reasonable to allow for

a small failure probability [65, 66]. If the key bit strings shared between Alice and

Bob are identical, with a failure probability of εcorr and remain secret with a failure

probability of εsec, then A QKD protocol is considered ε secure. Where, ε is the

overall failure probability given by ε = εcorr + εsec.

The key concept of composable security [65, 66] is to define a perfectly secure ideal

protocol and then prove that the real protocol is almost identical to the ideal one

in every possible scenario. The measure of distinguishability is the trace distance

between the ideal (ρideal
ABE) and real state (ρABE). The composable security of QKD

protocol [65] is defined as ε secure if:

min
ρE

1

2
(1− pabort)‖ρABE − ρideal

ABE‖1≤ ε (2.124)

where pabort is the probability of aborting the protocol and ‖A‖1≡ Tr[
√
A†A] is the

trace norm.

The expressions of key rates in (2.113) and (2.120) account for the non-ideal sce-



2.4. Quantum Key Distribution 55

narios; however, they fail to model all the device imperfections. Modelling these

device imperfections and including them in the key rate requires rigorous knowl-

edge about their workings and is outside the scope of this work. Here we have

measured the vulnerabilities of the devices used and quantified their side channel,

which helps to precisely estimate the key. This can be quantified by calculating the

mutual information between Alice and Eve or Bob and Eve by knowing the vul-

nerabilities in the system. The modified key rates, according to Csiszar and Korner

[57], will be

R = I(A : B)− I(A : E)− Is(A,B : E) (2.125)

Is(A,B : E) is the information leakage due to a side channel arising from system

vulnerabilities at Alice and Bob’s end. This thesis aims to quantify this information

leakage, be it due to device imperfections at the source or the detector. Additionally,

it gives estimates on the key rate in real implementation.

2.4.2 Strategies for Eavesdropping

QKD protocols have been extensively studied for their security against various

types of attacks. Initially, the BB84 protocol addressed intercept and resend at-

tacks, wherein an eavesdropper intercepts qubits sent by the sender, measures them,

and then resends them to the intended receiver. As illustrated in Fig. 2.5, if Eve

performs such an attack, it will introduce an error of about 25%. The upper limit on

the error for BB84 is 11%. Hence, Alice and Bob will detect the interception.

Subsequent exploration of generalized delayed measurements led to the identifica-

tion of three categories of attacks: individual, collective, and coherent.

• Individual Attacks: In individual attacks (Fig. 2.6(a)), Eve entangles a quan-
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Figure 2.5: Intercept Resend Attack: Alice sends qubits, Eve randomly selects basis with
50% probability and sends the measured qubit to Bob. In such a case, Alice and Bob find
25% QBER, greater than the acceptable 11%. The protocol is discarded.

tum probe with each qubit independently and stores them until the measure-

ment basis is announced.

• Collective Attacks: Collective attacks (Fig. 2.6(b)) are similar to individual

attacks but permit Eve to perform a global generalized measurement on all

probes as a single quantum system using a quantum computer.

• Coherent Attacks: Coherent attacks (Fig. 2.6(c)) consider the entire quantum

transmission as one system entangled with a probe of large dimensionality.

This study will concentrate on practical quantum communication systems, acknowl-

edging that current and foreseeable technology cannot perform coordinated or co-

herent attacks. Since future eavesdropping methods cannot break present quantum

transmissions, we will address individual attacks in our thesis.
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(a) Individual Attack

(b) Collective Attack

(c) Coherent Attack

Figure 2.6: Attacks on Quantum Key Distribution: (a) individual, (b) collective and (c)
coherent attack strategies of an adversary.
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2.4.3 BB84 Protocol

Stephen Wiesner first proposed the concept of quantum cryptography in 1983 [74],

and it gained renewed attention when Charles H. Bennett and Gilles Brassard intro-

duced the first quantum key distribution (QKD) protocol in 1984, famously known

as the BB84 protocol [20]. In our implementation of the BB84 protocol, Alice gen-

erates qubit states by encoding single photons in a polarisation degree of freedom

and sends them to Bob. Fig. 2.7 represents a schematic diagram of the protocol.

Figure 2.7: Schematics for Standard BB84 Protocol depicting the basis choice of Alice
and Bob, the encoded bit and the check for compatibility of basis choice. Only the bits of
compatible basis form the sifted key.

Protocol. The systematic steps of the BB84 Protocol are listed below:

1. Set i = 0. Here, i is a variable that tracks the current round number.

2. State Preparation (Alice’s Lab): Alice generates random numbers Xi ∈

{0, 1}, Ai ∈ {0, 1}. She first decides between the two Mutually Unbiased
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basis (MUBs) depending on the outcome of Xi, and then she encodes her

photon in any one degree of polarization as the qubit Ai.:

(a) When, Xi = 0, then she prepares her state in the Standard basis (H/V or

0/1).

i. Ai = 0, she encodes in H polarisation.

ii. Ai = 1, she encodes in V polarisation.

(b) When, Xi = 1, then she prepares her state in the Hamadard basis (D/A

or +/-).

i. Ai = 0, she encodes in D polarisation.

ii. Ai = 1, she encodes in A polarisation.

3. State transmission: Alice sends the prepared state to Bob through the quan-

tum channel.

4. State measurement (Bob’s lab): Bob generates a random bit Yi, which de-

cides the measurement basis.

(a) If, Yi = 0, then he measures the qubit in the Standard basis (H/V or

0/1).

(b) If Yi = 1, then he measures the qubit in the Hadamard Basis.

After the measurement, Bob gets a bit Bi

5. Proceed to step 1 unless i equals n, and set i = i+1. Proceed to the next step

otherwise. Here, n represents the total number of rounds for the protocol.

6. Alice and Bob publicly disclose the value of the bits (X1,X2, · · · ,Xn) and

(Y1,Y2, · · · Yn) respectively. They discard the rounds in which Xi 6= Yi - i.e.

they only focus on the rounds from the set h := {i ∈ {1, 2, · · ·n} : Xi = Yi}.
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7. From any randomly chosen subset g ⊂ h, with |g|� |h| they estimate QBER

(the probability that Ai 6= Bi whenever Xi = Yi ):

E :=
|{i ∈ g : Ai 6= Bi}|

|{i ∈ g}|
(2.126)

8. If E ≥ 11%, they discard the protocol. Otherwise, they proceed to the classi-

cal post-processing and perform error correction and privacy amplification.

2.4.4 Encoding Photons with Polarization

The above-mentioned QKD protocol is typically implemented using the polariza-

tion of single photons as the qubits. Such an implementation is made possible using

a combination of waveplates and polarizers. In our QKD scheme, utilizing four

lasers (Fig. 2.8), we encode our quantum states using the states |H〉, |V 〉, |D〉, and

|A〉. Here, |D〉 and |A〉 are defined as superpositions of |H〉 and |V 〉, where,

|D〉 =
(|H〉+ |V 〉)√

2
,

|A〉 =
(|H〉 − |V 〉)√

2
.

(2.127)

Each laser emits pulses randomly at a rate of 1.25 MHz. Polarizing beam split-

ters (PBS) are utilized in our setup to transmit |H〉 states and reflect |V 〉 states.

Additionally, half-wave plates (HWP) set at 22.5 degrees serve to transform |H〉

states into |D〉 states and |V 〉 states into |A〉 states. This configuration enables us to

efficiently encode and manipulate quantum information for secure communication

protocols.
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Figure 2.8: Polarisation Encoding Setup: Laser 1,2,3,& 4; PBS: polarising beam splitter;
HWP: half wave plate, BS: beam splitter; V-NDF: variable neutral density filter.

Figure 2.9: Polarisation Decoding: BS: beam splitter; HWP: half-wave plate; PBS: polaris-
ing beam splitter; C: coupler; SPCM: single photon counting module; TDC: time to digital
converter.



62 Chapter 2. Theoretical Background

2.4.5 Decoding Polarisation of Photons

In our QKD decoding scheme (Fig. 2.9), a beam splitter (BS) randomly selects

the basis for measurement. We decode our quantum states in two different basis:

{|H〉 , |V 〉} and {|D〉 , |A〉}. A polarizing beam splitter (PBS) is employed to trans-

mit |H〉 states and reflect |V 〉 states. Furthermore, half-wave plates (HWP) set at

22.5 degrees transform |H〉 states into |D〉 states and |V 〉 states into |A〉 states.

Photons from the quantum channel are coupled to single-photon counting modules

(SPCMs) via couplers C1, C2, C3, and C4. Finally, the time-to-digital converter

(TDC) records the timing information of photon detections.

2.4.6 BB84 Protocol with Weak Coherent Pulses

Weak coherent pulses are generally used in the practical implementation of the

BB84 protocol. When these coherent pulses are encoded in polarisation degree

of freedom, we represent them as |α, ek〉, where ek is the polarisation degree of

freedom.

Source

Alice sends phase-randomized weak coherent pulses. The state ρ emitted by Alice

can be represented as a mixture of coherent states |αeiθ, ek〉, with θ phase as,

ρ =
1

2π

∫ 2π

0

|αeiθ, ek〉 〈αeiθ, ek| dθ (2.128)

The coherent state |αeiθ, ek〉 can be expressed in terms of number states |n, ek〉 as

follows:

|αeiθ, ek〉 = e−
|α|2
2

∞∑
n=0

(αeiθ)n√
n!
|n, ek〉
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= e−
|α|2
2

∞∑
n=0

αneinθ√
n!
|n, ek〉 (2.129)

Substituting this expression into the density matrix ρ, we get,

ρ = e−|α|
2
∞∑
n=0

|α|2n

n!
|n, ek〉〈n, ek|

=
∞∑
n=0

P (n) |n, ek〉〈n, ek| (2.130)

where P (n) = e−|α|
2 |α|2n

n!
represents the probability of finding the system in the

n-th number state. Using (2.96) and (2.97) we get,

P (n) =
µn

n!
e−µ. (2.131)

where µ is the mean photon number.

Channel

The encoded qubits can be transmitted from Alice to Bob either using a free space

channel or an optical fibre-based channel. The losses in the free space quantum

channel are mainly due to the geometrical loss due to beam divergence and the

different transmitter and receiver aperture sizes. The other cause in the free space is

atmospheric loss due to absorption and scattering. The transmittance in free space

tFS is thus given as:

tFS = ηGL · ηAL (2.132)

where, ηGL is geometric loss factor and ηAL is atmospheric loss factor.

The loss in the fiber-based channel is characterised by the loss coefficient α′ mea-

sured in dB/km, channel length l and the channel transmittance tFB is given as,
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tFB = 10−α
′l/10 (2.133)

We adopt identical notations and formalism as presented in [73] for congruence.

Depending on the type of channel used we get the channel transmittance between

Alice and Bob as tAB

Detector

We define the efficiency at Bob as ηBob, which includes the transmittance of the

optical components as well as the detection efficiency. Then the overall efficiency

η for detection by Bob of a single photon sent by Alice is,

η = tAB · ηBob (2.134)

We use threshold detectors that can only detect the presence and absence of a pulse.

The probably of detection of an n photon state emitted by Alice is given as:

ηn = 1− (1− η)n. (2.135)

Yield

Yield Yn is the conditional probability of a detection event at Bob’s side when Alice

sends an n photon pulse. The yield Yn includes the probability of detection of n

photon pulse, ηn and the background events Y0. We assume that the background

counts and the signal are independent of each other. Then yield Yn is given as,

Yn = Y0 + ηn − Y0ηn. (2.136)
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Gain

GainQµ is the probability with which Bob detects a signal sent by Alice. It depends

on the characteristics of the source, channel and detectors, and hence is a function

of mean photon number µ and the yield Yn. The overall gain for any protocol (not

necessarily ideal protocol) is given in terms of yields by:

Qµ =
∞∑
i=0

Yn
µn

n!
e−µ =

∞∑
n=0

Qn, (2.137)

where,

Qn = Yn
µn

n!
e−µ. (2.138)

Here, Qn is the conditional gain when a pulse containing n number of photons is

emitted by Alice and Qµ is the overall gain.

Quantum Bit Error Rate (QBER)

Quantum Bit error rate (QBER) Eµ is the rate with which Bob makes a wrong

detection when his basis is compatible with Alice’s. The error rate of a n-photon

state en for an ideal protocol is given as,

en =
e0Y0 + edηn

Yn
, (2.139)

where ed is the detection error. For any protocol (not necessarily an ideal protocol),

QBER is related to mean photon number µ, yields Yn and error rates en as

EµQµ =
∞∑
n=0

enYn
µn

n!
e−µ. (2.140)
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2.5 Summary

In this chapter, we tried to map theoretical concepts from information theory with

their practical applications. Initially we examined the key tools such as Shannon

entropy and mutual information, establishing a relation between the two. Then, we

explored qubits, their representation on the Bloch sphere, methods of manipulation,

and techniques for measurement. Additionally, we introduced the density matrix

formalism and discussed von Neumann entropy. Furthermore, we covered QKD

algorithms, emphasizing their security aspects alongside error correction and pri-

vacy amplification. By leveraging the polarization degree of freedom, we explored

practical implementations. Specifically, we discussed the BB84 protocol employing

weak coherent pulses, accompanied by essential mathematical frameworks defining

concepts such as yield, gain, and Quantum Bit Error Rate (QBER). Looking ahead,

our subsequent chapters will gradually introduce additional concepts and techniques

relevant to our ongoing study.



Chapter 3

Vulnerability due to detection

coupling mismatch

3.1 Introduction

QKD facilitates the secure distribution of keys, which is ensured by a limit on the

estimated QBER. Nevertheless, device imperfections in practical implementations

can introduce vulnerabilities. Exploiting these imperfections, adversaries may ac-

quire key information without alerting authenticated parties.

In a QKD protocol, information is typically encoded using a single degree of free-

dom, such as polarization, in our case. Side-channel attacks leverage the leakage

of information through additional characteristics of the transmitted signal, such as

spectral properties, spatial modes, or timing. Several studies, including [75, 76],

explored potential side channels arising from Alice’s state preparation in free-space

BB84 QKD with polarization-encoded, attenuated pulses. Free-space quantum key

67



68 Chapter 3. Vulnerability due to detection coupling mismatch

distribution (QKD) involves an additional spatial mode of photons compared to

fiber-based QKD. Consequently, it is essential to carefully examine the potential

leakage of side channels in free-space setups due to spatial mode discrepancies to

gauge the extent of information accessible to eavesdroppers. In the BB84 protocol,

combining different lasers to generate the four polarizations can introduce spatial

mismatches, potentially resulting in information leakage. Ensuring that photons

share the same spatial profile is crucial; they must be indistinguishable in terms of

their spatial modes.

Moreover, imperfections at the detection end can also create vulnerabilities, as high-

lighted in [77]. Discrepancies in the coupling among the four detectors receiving

the encoded polarization state introduce an extra degree of freedom at Bob’s end,

which adversaries could exploit. Side-channel attacks resulting from mismatches in

detection efficiency due to spatial mode variations of incoming photons have been

investigated in prior studies such as [78] and [79]. Characterizing all components of

the QKD system is crucial to addressing information leakage stemming from side

channels.

Our present investigation [80] focuses on information leakage at the detector end,

stemming from coupling mismatches among the four detectors. This occurs when

there is misalignment at the receiver’s end, causing the couplers to deviate from the

transverse plane of the incoming beam and be at relative angles from each other.

Our characterization is specifically targeted at the detection setup. Even when all

four states share the same spatial mode, detection coupling mismatch can occur due

to misalignment at the receiver’s end, where the couplers are not aligned with the

incoming beam’s transverse plane and are positioned at relative angles. To ensure

no information leakage due to different spatial modes of the signal, we employ a

single laser with a half-wave plate to generate the four polarization states. Following
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propagation through a free-space channel, we examine the distribution at all four

detectors at the receiver’s end.

Free-space quantum communication presents one of the various potential applica-

tions of orbital angular momentum (OAM) in light beams. Spatial multiplexing

and de-multiplexing OAM beams alongside other states, such as polarization, of-

fer additional independent data carriers [81]. However, free-space quantum key

distribution (QKD) is vulnerable to atmospheric turbulence, causing beam broad-

ening. Research by [82] indicates that in a random inhomogeneous medium, the

beam broadening of an average vortex beam is less than that of a Gaussian beam.

Therefore, we conducted experiments involving two signal modes: Gaussian and

Laguerre-Gaussian (LG) with radial index 0 and azimuthal index 1 (LG01 mode).

It is worth noting that information is encoded solely in the polarization degree of

freedom, not in the orbital angular momentum (OAM) degree associated with the

azimuthal index of LG mode. We included LG modes to illustrate that high coupling

mismatch results in information leakage, and enhanced coupling helps mitigate in-

formation leakage.

In this study, we outline the mathematical framework for computing the mutual

information between Eve and Bob based on the parameters outlined in Sec. 3.2.

Subsequently, in Sec. 3.3, we delve into the experimental specifics, including the

eavesdropper’s strategy for acquiring key information. The experimental findings

are detailed in Sec. 3.4, followed by the conclusion in Sec. 3.5, where we address

the potential implications of this leakage and propose methods for reducing errors

to enhance the key rate.
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3.2 Theoretical Background

Here, we examine the security vulnerabilities inherent in our QKD system and ex-

plore a potential attack in Sec. 3.2.1. Adhering to the standard convention, we

refer to the sender as Alice, the receiver as Bob, and the adversary as Eve. The

information acquired by Eve can be quantified utilizing certain mathematical tools.

The mathematical framework essential for quantifying the information leakage is

discussed in Sec. 3.2.2.

3.2.1 Loopholes and attack

QKD is theoretically unconditionally secure under ideal conditions. However, when

implemented in real-world scenarios with imperfect devices (such as source, detec-

tors, and optics), security vulnerabilities arise. Various well-known attacks exploit

imperfections in sources and detectors, including the photon number splitting at-

tack [36], detector blinding or bright pulse attacks [44, 83], faked state attacks

[84, 85], time shift attacks [86], spatial mismatch [79], among others. Any devi-

ation in source parameters, such as laser pulse width, wavelength, power, and beam

profile, can provide information to Eve [75, 76]. Similarly, discrepancies at the de-

tection end may also result in information leakage. In this study, we analyze the

impact of misalignment or coupling mismatch at the detection setup on information

leakage to Eve. Here, “coupling” refers to the amount of signal coupled to the fiber

with the assistance of collimators.

From an attacker’s perspective, Eve aims to gather information stealthily without

raising suspicion, and the imperfections of the devices in the practical system can

assist her in this endeavour. In our attack model, Eve intercepts the signal and mea-
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sures its polarization. Subsequently, she manipulates Bob into making a measure-

ment in a basis compatible with hers by directing the beam at an angle where the

detector corresponding to her measurement has the highest probability of detection.

For example, if Eve measures the H/V basis and obtains an H polarization result,

she directs the beam to a position where the probability of H detection is highest

among Bob’s detectors. This manipulation relies on exploiting the detectors’ vary-

ing detection probabilities at different angles stemming from significant coupling

mismatches. Eve can gain advanced knowledge of which position yields the maxi-

mum detection probability for a specific detector, enabling her to characterize and

exploit these vulnerabilities. Experimental details are in Sec. 3.3.2.

3.2.2 Information Leakage

There are multiple methods for quantifying the information leakage to Eve. Here,

we quantify it in terms of the mutual information between Bob and Eve. The objec-

tive is to examine potential side-channel attacks at the receiver’s end. Let B and E

represent two discrete random variables with alphabets B and E , respectively. The

mutual information between B and E is defined as follows:

I(E : B) = H(B)−H(B|E), (3.1)

where H(B) denotes the Shannon entropy, which is calculated as follows:

H(B) = −
∑
b∈B

p(b) log2(p(b)), (3.2)

b ∈ B, p(b) is the probability of obtaining b andH(B|E) is the conditional Shannon

entropy,

H(B|E) = −
∑
ev∈E

p(ev)
∑
b∈B

p(b|ev) log2(p(b|ev)) (3.3)
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p(b|e) is the conditional probability of obtaining b given e.

Using Eq. (3.3) in Eq. (3.1), we get,

I(E : B) = H(B) +
∑
ev∈E

p(ev)
∑
b∈B

p(b|ev) log2(p(b|ev)) (3.4)

Using Bayes theorem,

p(b|ev) =
p(b)

p(ev)
p(ev|b), (3.5)

we get,

I(E : B) = 1 +
∑
ev∈E

∑
b∈B

p(ev|b)
2

log2

(
p(ev|b)
2p(ev)

)
. (3.6)

Here, we assume a binary symmetric channel. We have H(B) = 1 and p(b) = 1/2

due to the uniformly distributed bits and considering the basis selection to be a

completely random process.

In Eqs. (3.3) - (3.6), ev represents the parameter that Eve can utilize to acquire infor-

mation. These parameters in QKD are an extra degree of freedom that an adversary

can exploit to gain some information. Here, we want to explore the information

detection leakage due to a detection coupling mismatch. We employ the approach

proposed in [76] to estimate information leakage in terms of cross-correlation. Here,

we briefly introduce the concept of cross-correlation.

Cross-correlation measures the similarity between two different functions. This

is determined by shifting one function g(s) relative to another function f(s) by a

certain interval (∆s). At each step of the shift, the values of both functions are

evaluated, and the cross-correlation is computed. For discrete systems, the cross-

correlation between two functions is given by:

R(∆s) =
∞∑
i=0

f ∗(si)g(si + ∆s) (3.7)
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whereR(∆s) represents the cross-correlation between f(s) and g(s) when their ori-

gins are shifted by ∆s (Figure 4.1). For continuous functions, the cross-correlation

is expressed as:

R(∆s) =

∫ ∞
0

f ∗(s)g(s+ ∆s)ds. (3.8)

The correlation function R provided by Equation (3.8) indicates the similarity be-

tween f and g concerning ∆s, where ∆s represents the shift between the two func-

tions and R ranges from 0 to 1.

(a) (b)

(c) (d)

Figure 3.1: (a) and (b) are the distributions for detectors i and j, respectively, at each
position X and Y of the lens L2. (c) shows how one distribution is scanned over the other
for different ∆s to measure the cross-correlation Rij(∆s). (d) shows the overlap of two
distributions at ∆s = 0

In subsequent discussions, detections in the four detectors are plotted against the
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Figure 3.2: Relation between coupling quality in terms of R(∆s) and information leakage
in terms of I(E:B).

lens L2’s X and Y positions (See Section. 3.3.2). We want to calculate the cross-

correlation between the two detectors; hence, f and g correspond to the detection

matrix. Fig. 3.1(a) and Fig. 3.1(b) depict the distributions of the two detectors i

and j, respectively. Fig. 3.1(c) shows the scan of one matrix over another at ∆s

to calculate the cross-correlation R(∆s) and Fig. 3.1(d) shows the overlap of two

distributions at ∆s = 0. The indistinguishability between the detection matrix can

be known from R(∆s = 0). When they are exactly similar, the cross-correlation

R(∆s = 0) = 1 = R(0). R(0) measures the detection mismatch between the

detectors, and p(ev|b) is the probability of Eve gaining the information exploiting

such mismatch hence by argument, we can compare R(0)× 1

2
with Eve’s guessing

probability p(ev|b). Consequently, mutual information can be computed in terms of

cross-correlation.

I(E : B) = 1 +
∑
i,j
i 6=j

Rij(0)

4
log2

(
Rij(0)

4

)
. (3.9)

We denote the cross-correlation between detectors i and j as Rij . The summation
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includes the cross-correlation values for the respective detectors. We can expand

(3.9) as:

I(E : B) = 1 +
Rij(0)

4
log2

(
Rij(0)

4

)
+
Rji(0)

4
log2

(
Rji(0)

4

)
. (3.10)

We can verify from (3.10) that in case of the same detection matrices, R(0) = 1 and

I(E : B) will be zero. Evaluating cross-correlation provides an estimate of infor-

mation leakage. The relationship between coupling quality and information leakage

is illustrated in Fig. 3.2. We have calculated the cross-correlation numerically.

3.3 Experimental Setup

Figure 3.3: Experimental setup for characterizing coupling mismatch in detection: NDF:
Neutral Density Filter; HWP: Half Wave Plate; BS : Beam Splitter; PBS : Polarizing Beam
Splitter; M1 and M2 : Mirrors; L1, L2, L3 and L4: Lens of 2.5 cm, 30 cm, 20 cm and 5cm
respectively; C1, C2, C3 and C4: Couplers; SPCM: Single Photon Counting Module; TDC:
ID-900 Time Controller; SPP: spiral phase plate which is introduced to generate LG mode.

The experimental setup schematic for investigating the detection coupling mis-

match is depicted in Fig. 3.3. This setup comprises three main sections: Alice, Bob,

and Eve. Alice’s section encompasses the source and encoding optics responsible

for generating weak coherent laser pulses with the desired polarization. Further de-
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tails regarding Alice’s setup are provided in Sec. 3.3.1. Eve’s section, detailed in

Sec. 3.3.2, allows us to explore potential attacks stemming from detection coupling

mismatch. Bob’s section involves decoding optics and a single-photon counting

module (SPCM) utilized for detecting photons originating from Alice, discussed

comprehensively in Sec. 3.3.3.

3.3.1 Sender: Alice

For this experiment, a laser diode operating at 808nm (L808P010 Thorlabs) serves

as the source. We have developed a custom laser driver circuit (LDC) capable of

driving laser diodes in pulsed mode. The parameters of the laser diode, including

repetition rate, power, and pulse width, can be adjusted according to the experimen-

tal requirements using the LDC. In this setup, the laser diode operates at a repetition

rate of 5MHz, with an optical pulse width of 1ns. The laser beam is attenuated us-

ing a neutral density filter (NDF), followed by a combination of a half-wave plate

(HWP1) and a polarizing beam splitter (PBS) for additional attenuation of the pulse.

The transmitted beam from the PBS is horizontally polarized (H), and it undergoes

further encoding of the signal pulse in the desired polarization degree of freedom

by passing through another half-wave plate (HWP2).

The diode laser inherently produces a Gaussian beam, with which the experiment

was performed. Subsequently, the experiment was repeated using the LG01 mode,

generated by introducing a spiral phase plate (SPP) into the beam path (Fig. 3.3).

3.3.2 Adversary: Eve

We consider the adversary (Eve) positioned within the channel to manipulate the

signal. Our objective is to investigate the impact of the detection probability of the
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signal at various incident angles on the receiver’s optics. To minimize beam diver-

gence during propagation, the beam transmitted by Alice undergoes magnification

through a combination of lenses L1 and L2, with focal lengths of 2.5 cm and 30

cm, respectively, kept at a distance of 32.5 cm from each other. Each lens has an

aperture size of 1 inch. Lens L2 is integrated into Eve’s setup, allowing her to utilize

it in her attack. It is mounted on the motorized X and Y translation stage (Thorlabs

- KMTS50E/M). Through this configuration, we analyze the effect on the detection

probability across the four detectors.

Modifying the positions of the stage will induce changes in the incident angle of the

incoming signal. Manual recording of data by adjusting the XY position and not-

ing down counts on the time-to-digital converter (TDC) each time is laborious and

time-consuming. To streamline our experimental procedures, we have automated

our data acquisition process by interfacing the motorized stage and TDC with the

computer using LabVIEW. This automation involves moving the stage in incre-

ments of 40µm while simultaneously recording the single detection counts from

four detectors using the TDC. Lens L2 is oriented perpendicular to the direction of

beam propagation, ensuring that the translation stage alters only the transverse co-

ordinates of the lens. This translation of lens L2 in two transverse directions enables

the beam to be projected at different positions onto the receiver’s optics.

3.3.3 Receiver: Bob

At the receiver end, the collecting optics consist of a combination of lenses L3 and

L4, with focal lengths of 20 cm and 5 cm, respectively, kept 25 cm from each other.

After collecting optics at Bob, the beam radius is 1.8 mm and 1.7 mm for Gaussian

and vortex beams, respectively. The beam is then directed towards Bob’s decoding

optics, which include a combination of beam splitter (BS), polarizing beam splitter
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(PBS), and half-wave plates. The beam splitter (BS1) randomly selects between the

two measurement bases. The four beams passing through PBS2 and PBS3 are fur-

ther coupled to the single-photon detectors (Excelitas SPCM-800-14-FC) (D1-D4)

using a multi-mode fibre (MMF) aided by an adjustable fibre collimator. The colli-

mator used is the CFC5-B from Thorlabs of focal length 4.6mm, and the multi-mode

fiber is the M42L01 from Thorlabs with core diameter 50µm and numerical aperture

0.22. The MMF is employed to enhance collection efficiency without favouring any

specific modes. Subsequently, the detectors are connected to a four-channel time-

to-digital converter (TDC, IDQuantique ID900), which records the detection events

and their timing information.

3.3.4 Experiment Steps

Initially, the beam and all optical components are aligned using apertures, and the

coupling is fine-tuned to achieve maximum counts in the detector. Lens L2 is se-

cured on theXY translation stage to ensure the transmitted beam is well-collimated

and aligned. Counts are then recorded for the four detectors at various X and Y po-

sitions, and the normalized counts are plotted against the X and Y values.

We investigate the detection coupling mismatch by determining the correlation be-

tween two 2D matrices. We obtain a 2D matrix containing the counts in each detec-

tor at every position X and Y of the lens. Subsequently, we numerically solve Eq.

(3.8) to estimate the correlation between the two matrices, and Eq. (3.9) is utilized

to calculate the corresponding information leakage.

To achieve a perfect alignment, couplers should be perpendicular to the incoming

beam, with the transverse plane defined by the XY plane and the direction of beam

propagation along the Z axis. Suppose the coupler of one detector is at an angle
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θ with the X axis. If all other detectors are also at this θ angle, there will be no

coupling mismatch due to alignment despite the overall alignment being off by θ.

Therefore, relative alignment is crucial. Coupling involves four degrees of freedom:

transverse movement in the X and Y directions and tip-tilt about the X and Y axes.

The ideal method for alignment is to keep all couplers perpendicular to the incom-

ing beam, ensuring no relative alignment mismatch. In the case of high coupling

mismatch conditions, we maximized the detectors’ counts without considering the

couplers’ orientation. However, we aligned the couplers perpendicular to the in-

coming beam for low coupling mismatch while maximizing the counts, ensuring

optimal alignment and minimal mismatch.

During optical alignment, it is crucial to position the components within the trans-

verse plane of the propagating beam. To enhance coupling, we manipulate the ori-

entation of the small coupling lens, which is mounted on the tip-tilt mounts and

two translation stages. The tip-tilt mounts assist in adjusting the angle, while the

translation stages facilitate movement within the transverse plane.

3.4 Results and discussion

The counts recorded in all four detectors at various positions of the incident signal

beam were plotted and analyzed. Fig. 3.4-left illustrates the normalized plots of

detector counts for high coupling mismatch (left), while Fig. 3.4-right depicts the

normalized plots of detector counts for low coupling mismatch (right), correspond-

ing to the X and Y positions of lens L2 for an incident Gaussian beam. The range

of X and Y scales remains consistent across all plots. The colour bar displayed on

the right side scales the colour to values. As the plots are normalized, the intensities

can be interpreted as the probability of detection at a specific position.
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Figure 3.4: Normalized plots of detector counts for high coupling mismatch (left) and low
coupling mismatch (right) with X and Y position of lens L2 (mm) for a incident Gaussian
beam. The range of X and Y scales are same for all plots. The colorbar shown on right
scales the color to values.
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The experiment conducted with the Gaussian mode in the laboratory environment

aimed to yield similar plots in all four detectors. However, the plots for high cou-

pling mismatch, as depicted in Fig. 3.4-left, are not identical across the four de-

tectors, indicating a varying probability of detection when the beam falls at specific

positions at the coupler. Certain positions ofX and Y exhibit a higher probability of

detection in one detector compared to others. Eve can exploit this by selecting the

positions of X and Y to induce detection in a particular detector with a high prob-

ability, thus exerting control over Bob’s detection and gaining partial information

without disclosing her presence. Conversely, for low coupling mismatch, as illus-

trated in Fig. 3.4-right, the plots are nearly identical for all four detectors. These

similar plots offer no additional information to Eve regarding the polarization or

basis used for encoding the signal.

The correlation between two detectors is determined using Eq. (3.8). Counts

recorded for the X and Y positions of the lens create a two-dimensional matrix for

each detector. For a given n×nmatrix for the two detectors, the (2n+1)×(2n+1)

cross-correlation matrix is computed numerically. The value of R at ∆s = 0 pro-

vides insight into the distinguishability of the functions. These results can also be

interpreted in terms of the cross-correlation R of plots among all four detectors, as

illustrated in Table 3.1 and Fig. 3.6. For low coupling mismatch, the value of R is

nearly 1, whereas for high coupling mismatch, it is lower. Table 3.1 also displays

the information leakage to Eve in terms of mutual information. Fig. 3.7 compares

the information leakage to Eve between low and high coupling mismatch scenarios.

For low coupling mismatch, I(E : B) is approximately 10−2, while for high cou-

pling mismatch, it is around 10−1, which is an order of magnitude higher. These

values are influenced by the amount of detection coupling mismatch between the

detectors, thereby helping quantify the mismatch. If the coupling deteriorates fur-

ther, this value will increase. The findings suggest that a high correlation in the
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Figure 3.5: Normalized plots of detector counts for high coupling mismatch (left) and low
coupling mismatch (right) with X and Y position of lens L2 (mm) for a incident order-1
vortex beam. The range of X and Y scales are same for all plots. The colorbar shown on
right scales the color to values.



3.4. Results and discussion 83

spatial profiles observed by the four detectors implies less information leakage.

Detectors
Gaussian Beam

High coupling mismatch Low coupling mismatch
R I(E:B) R I(E:B)

D1 & D2 0.7423 0.0981 0.9868 0.0038
D1 & D3 0.7307 0.1039 0.9816 0.0052
D1 & D4 0.7723 0.0838 0.9450 0.0164
D2 & D3 0.6239 0.1638 0.9902 0.0028
D2 & D4 0.6565 0.1442 0.9661 0.0099
D3 & D4 0.9227 0.0237 0.9451 0.0164

Table 3.1: Cross-Correlation between the detectors and Mutual information between Bob
and Eve (in bits) for low and high coupling mismatch of Gaussian beam.

Detectors
Vortex order 1

High coupling mismatch Low coupling mismatch
R I(E:B) R I(E:B)

D1 & D2 0.7196 0.1096 0.9880 0.0034
D1 & D3 0.6641 0.1398 0.9797 0.0058
D1 & D4 0.7539 0.0925 0.9446 0.0166
D2 & D3 0.6158 0.1689 0.9904 0.0027
D2 & D4 0.7163 0.1442 0.9671 0.0096
D3 & D4 0.8944 0.0237 0.9499 0.0149

Table 3.2: Cross-Correlation between the detectors and Mutual information between Bob
and Eve (in bits) for low and high coupling mismatch of vortex beam of order 1.

The experiment was subsequently conducted using a vortex signal beam, and the

counts were graphed against the correspondingX and Y positions. Fig. 3.5 displays

the normalized plots of detector counts for high coupling mismatch (left) and low

coupling mismatch (right), depicting the X and Y positions of lens L2 (in mm)

for an incident order-1 vortex beam. Notably, no significant difference is observed

in the plots between Gaussian and vortex beams. Table 3.2 reveals that the values

of cross-correlation and information leakage for the Laguerre Gaussian mode are

approximately equivalent to those for the Gaussian mode. This suggests that the

symmetric spatial mode for low coupling mismatch minimizes information leakage.
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Figure 3.6: Cross-correlation for the high and low coupling mismatch between the detectors
for Gaussian beam.

Figure 3.7: Information leakage for the high and low coupling mismatch between the de-
tectors for Gaussian beam.
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(a)

(b)

Figure 3.8: Two cases (a) and (b) where we observe similar cross-correlation values for
different detection matrices corresponding to coupling mismatch.
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The cross-correlation between two detection matrices can be similar for two dif-

ferent configurations of mismatches. Fig. 3.8 showcases two cases where similar

cross-correlation values are observed for different detection matrices corresponding

to coupling mismatch. The figures are accompanied by their respective values of

cross-correlation and mutual information. However, the pivotal aspect is to charac-

terize the device for any potential information leakage and minimize it while inte-

grating it into the estimation of the secure key rate. The focus of this experiment is

to assess the extent of leakage caused by misalignment (coupling mismatch), which

impacts not only the key rate but also the security. Quantifying this leakage aids in

monitoring the amount of side-channel leakage at Bob’s end.

3.5 Summary and Conclusion

We have investigated how a high coupling mismatch at the detectors’ end results

in information leakage to Eve, even for symmetrical modes. We compared cases

of low and high coupling mismatch in terms of cross-correlation and mutual infor-

mation. Ideally, mutual information, which estimates information leakage, should

be zero. In our case, information leakage improves by an order of magnitude with

improved coupling. The values of information leakage serve as a metric for quan-

tifying the degree of mismatch between the two detectors. The experiment was

conducted for both Gaussian and Laguerre Gaussian beams, considering two types

of symmetrical modes. The results indicate that with proper coupling of the beam

to the detectors and a symmetric profile of the incoming beam, information leakage

is minimized. Mutual information between Eve and Bob due to mismatch is cal-

culated and can be considered in privacy amplification. This experiment not only

enhances system security but also determines the amount of secure keys that can

be extracted from it, which is significant for standardizing any QKD system for
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deployment.





Chapter 4

Mitigating the source-side channel

vulnerability

4.1 Introduction

Properly characterising the devices employed in implementing QKD protocols is

essential to ensure security. This concern has been addressed in various studies

[35–38, 40, 44, 87]. A critical aspect of optical quantum cryptography involves

using single-photon Fock states. Though realizing true single-photon sources ex-

perimentally remains challenging, several practical options are employed. These

include weak coherent pulses (WCPs), heralded single-photon sources, and entan-

gled photon sources [31].

Numerous QKD implementations utilize weak coherent pulses (WCPs) as an ap-

proximation for single-photon Fock states. These pulses are generated by signifi-

cantly attenuating a pulsed laser source via calibrated attenuators. It is widely ac-

89
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cepted that laser sources operating significantly above the threshold produce coher-

ent states. Consequently, the resulting weak laser pulses display Poissonian statis-

tics. The mean photon number serves as the distinctive characteristic of Poissonian

statistics. Ensuring accurate measurement of the average photon count is imperative

for the successful implementation of secure QKD with WCPs.

There is a non-zero probability of obtaining more than a single photon per pulse

due to the Poisson statistics of WCPs. This exposes our QKD system to adversarial

attacks such as the photon number splitting attack [36]. To mitigate the risk of

information leakage, the decoy state protocol [70–73] has been proposed. Decoy

pulses with slightly different mean photon numbers are sent along with the signal

pulses. Since Decoy pulses are also characterized by Poisson statistics, accurate

estimation and characterization of photon statistics become desirable.

Implementing QKD protocols relies on the widespread use of single-photon avalanche

photodiodes (SPADs) [88]. It is important to consider various factors such as dead

time, spectral range, dark count rate, timing jitter, detection efficiency, and the pho-

ton number resolution [89] when assessing the capabilities of a single-photon detec-

tor. SPADs are threshold detectors which are non-photon resolving. They are often

referred to as on-off detectors since they can only detect the presence or absence of

a pulse containing photons. Therefore, utilizing a single SPAD for characterizing

the source may yield inaccurate estimates. Previous studies [90–93] discuss various

approaches to photon characterization using multiple on-off detectors.

In this work, we focus on characterizing the photon statistics of WCPs for QKD

applications. We first estimate the mean photon number utilizing a single detec-

tor. Thereafter, we employ four detectors for source characterisation to achieve

higher accuracy. Previously in [93], authors suggest the utilization of four detectors
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to compute limits on probabilities for lower photon numbers (n ≤ 3). We have

extended this approach to obtain highly accurate estimations of the mean photon

numbers. We gave a comparison of new results with previous estimates. There-

after, we investigated the deviation of the mean photon number (µ) and analyze the

resulting information leakage caused by this miscalculation.

Many studies have explored various state preparation flaws, providing security proofs

that establish protective measures even in the presence of these loopholes [94–100].

Lasers inherently exhibit statistical fluctuations since they follow Poisson statistics.

However, in practical experiments, additional variability can arise from factors such

as power supply instabilities, temperature variations, laser driver noise, mechanical

vibrations, etc. Ideally, all sources with the same mean photon number (µ) should

exhibit the same variance. However, experimental fluctuations can cause these vari-

ances to differ. We aim to study the mismatch between the fluctuations of these

sources and understand its impact on the security of our Quantum Key Distribution

(QKD) process.

The chapter’s organization is as follows: In Sec. 4.2, we discuss the theoretical

background for estimating the mean photon number per pulse and the fluctuations of

a weak coherent pulse (WCP) source. Next, in Sec. 4.3, we detail the experimental

setup and procedures. Sec. 4.4 presents the results of our source characterization

of intensity and fluctuations. Finally, in Sec. 4.5, we conclude and summarize our

findings.

4.2 Theoretical Background

In this section, we present the theoretical prerequisites for our study.
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4.2.1 Weak Coherent Pulses (WCPs)

A pulsed laser with a repetition rate νrep and wavelength λ is attenuated to produce

weak coherent pulses (WCPs). As lasers are coherent sources, even a faint laser

emits coherent states. The number of photons per pulse is not deterministic but

follows a Poisson distribution. Here, we elaborate on the method we use to generate

WCPs with a desired distribution.

It is imperative for QKD sources to maintain a mean photon number of less than one

to adhere to the security requirements of QKD protocols. We begin by measuring

the average power Pavg of the source, from which we calculate the energy per pulse

Epulse as:

Epulse =
Pavg
νrep

. (4.1)

The average number of photons per pulse navg is given by,

navg =
Epulseλ

hc
. (4.2)

To achieve the desired mean photon number, we employ a neutral density filter

with a specified optical density (OD). The OD determines the level of attenuation

applied to the laser beam. By selecting a suitable filter and adjusting the attenuation,

we can generate weak coherent pulses (WCPs) with the desired Poisson statistics

characterized by a mean photon number denoted as µdesired, which is suitable for

QKD applications.

µdesired =
Epulseλ

hc
∗ 10−OD. (4.3)

We now elaborate on methods to estimate the mean photon number (µ) of the source
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utilized in QKD implementations.

4.2.2 Method-I : Using single detection

Single-photon detectors based on avalanche photodiodes are employed to detect the

number of detections per second.

N = µ× νrep × η. (4.4)

Where N represents the number of detections per second, νrep is the repetition rate

of the laser, and η denotes the detection efficiency. We can estimate the value of µ

as:

µ =
N

νrep × η
. (4.5)

Single photon avalanche photodiodes are the predominant choice for detecting quan-

tum signals, capable of discerning the presence or absence of photons within a

pulse. However, relying solely on a single on-off detector may result in underesti-

mating photon statistics. Hence, employing photon-resolving detectors or a more

comprehensive methodology becomes crucial in characterizing the Quantum Key

Distribution (QKD) source. Accurately estimating µ holds paramount significance

for accurate key rate calculations.

4.2.3 Method-II Rigorous Characterisation

For source characterization, it is essential to split the pulse using a sufficient num-

ber of beam splitters and threshold detectors. Since the mean photon number in

Quantum Key Distribution (QKD) is typically low, we assume that the multi-photon

probability is minimal. This assumption allows us to thoroughly characterize the
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Figure 4.1: The branching efficiencies are defined as the probability for a photon to reach
a particular detector. In the setup shown above the four branching efficiencies can be given
as {T1T2, T1R2, R1T3, R1R3}.

source using multiple detectors, such as four detectors (D = 4). Fig. 4.1 illustrates

an example of the setup required for conducting such characterization. The branch-

ing efficiencies define the probability of a photon reaching a specific detector. Let

ηb,i denote the branching efficiency, ηc,i represent the coupling efficiency, and ηd,i

indicate the quantum efficiency of the detectors.

Overall efficiency is given as,

ηi = ηb,i ∗ ηc,i ∗ ηd,i, (4.6)

where i = 1, 2, 3, 4 represents all four arms and respective detectors. The average

efficiency is given by,

η :=
1

4

D∑
i=1

ηi. (4.7)

We define ZD := {1, 2, 3, 4} as the set of all the detectors. We aim to record the r-

fold coincidences (r = 2, 3, 4), where r = 1 refers to the counts in a single detector.

Let us denote the observed r-fold coincidence probability as: cobs,r [93].

cobs,r =

(
D

r

)−1 ∑
W⊂Ir

cobs,W , (4.8)

where Ir := {W ⊂ ZD | |W |= r} represents all possible subsets W of ZD with
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cardinality |W |= r. cobs,W denotes the total coincidence probability of the set W ,

where all detectors in W detect irrespective of the detection events in the remaining

detectors. The averaged r-fold coincidences, given that the pulse has n photons, is

defined as:

cobs,r = cn,r :=
r∑
j=0

(−1)jωr,j
∑
W∈Ij

(
1−

∑
i∈W

ηi

)n

, (4.9)

where,

ωr,j :=

(
D−j
r−j

)(
D
r

) . (4.10)

For a Poisson distribution with mean photon number µ, the averaged r-fold coinci-

dences (r = 1, 2, 3, 4) should satisfy:

cobs,r =
∞∑
n=0

pncn,r, (4.11)

where,

pn =
e−µµn

n!
. (4.12)

To evaluate the coincidences from experimental data, we will utilize Eq. (4.8) as

referenced in our work. Furthermore, we will employ the bounds specified in the

article [93] to experimentally verify the Poissonian statistics of the WCPs used in

QKD implementations and accurately estimate the mean photon number for the

distribution.

4.2.4 Information Leakage

An adversary could potentially acquire complete information regarding the bit value

encoded within a multi-photon pulse. Privacy amplification diminishes the informa-

tion accessible to an adversary concerning the shared key between the authenticated

parties. It is crucial to ascertain the optimal number of bits for subtraction in privacy
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amplification to prevent underestimation. Given that Eve’s attack strategy cannot be

predicted in advance, we consider an attack scenario wherein Eve can access all in-

formation within the multi-photon pulses. Absolute security could be ensured by

employing adequate privacy amplification, whereby all bit values associated with

the multi-photon pulses are discarded.

Misestimation of information leakage

If a WCP source follows a Poisson distribution with µ representing the mean photon

count per pulse, then the probability of multi-photons per pulse is expressed as:

pmulti =
∑
pn≥2

pn (4.13)

When estimating the secure key rate, we account for this worst-case scenario by

discarding the coincidences between Bob’s detectors and only considering the sin-

gle detections with a basis compatible with Eve. We estimate the subtraction terms

as the multi-photon pulses contributing to the single detections to address the infor-

mation leakage. Therefore, we consider:

I(A : E) =
∑
pn≥2

(
pn ∗

1

2n

)
(4.14)

Here, pn is the probability of Alice emitting a pulse containing n photons and pn =

e−µµn/n!. The factor of 1/2n is the probability of Bob receiving the detection in

the correct basis for a n photon pulse. Since only the detections in the correct basis

contribute to the key we have considered the contributions from the multi-photon

pulses as the information leakage. We have considered the case where Eve mimics

the photon statistics and sends the same no. of photons to Bob as she received from

Alice.
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To estimate the information leakage accurately, we must estimate the multiphoton

pulses, which eventually reduces to estimating the mean photon number per pulse

(µ) accurately. We will see in the results how miscalculation of mean photon num-

ber (see Fig. 4.3) leads to misestimation of information leakage (see Fig. 4.4).

Here, we have considered the WCP BB84 QKD protocol. However, in the decoy

state protocol, the estimation of single-photon and vacuum yields also depends on

the mean photon number of the signal and decoy states. Therefore, this rigorous

characterization study is valid for decoy and non-decoy cases. While the informa-

tion leakage discussed here is case-specific, the methodology and insights gained

can also be extended to other scenarios. An incorrect calculation of the mean pho-

ton number will inevitably lead to an inaccurate estimation of information leakage.

Information leakage due to fluctuations

We use polarisation degree of freedom for encoding the photons. Any additional

degree of freedom inherent in our states could be exploited and poses a potential

risk of a side-channel attack. The weak coherent source has intrinsic intensity fluc-

tuations with time. Our aim is to explore the disparities in the fluctuations mani-

fested by the sources. Assuming Ns signal states are emitted with an intensity of

µ, we propose that accurately Nsµe
−µ out of the Ns signal states correspond to

single photons. It is crucial to ensure that these fluctuations are not a parameter

that Eve can exploit to gain information. Ideally, weak coherent sources should fol-

low Poissonian statistics, where the variance is equal to the mean photon number.

However, experimentally, they deviate from the mean and differ from each other

(see Fig.4.4). By studying the cross-correlation among these sources, we can esti-

mate the side-channel leakage and ensure the robustness of our system against such

vulnerabilities.
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To quantitatively evaluate the level of information leakage to Eve, we employ

the methodology introduced in [76]. The similarity between the sources is charac-

terised by the correlation function R. By comparing R with Eve’s guessing proba-

bility p(e|b), we can compute the mutual information in terms of cross-correlation.

I ′(A : E) = 1 +
∑
i,j
i 6=j

Rij

4
log2

(
Rij

4

)
. (4.15)

In this context, Rij represents the cross-correlation between sources i and j. When

the functions are perfectly identical, I ′(A : E) reduces to zero, as indicated by Eq.

(4.15). The assessment of cross-correlation provides an approximation of the degree

of information leakage. In order to distinguish between information leakages caused

by multi-photon pulses and those from side channels, we denote them as I(A : E)

and I ′(A : E), respectively.

4.3 Experimental Method

The experimental setup has four diode lasers operating at 808 nm (L808P010 Thor-

labs). Utilizing the standard BB84 transmitter configuration, these lasers contribute

to generating the four polarization states essential for QKD. To ensure consistency,

we meticulously selected diodes with closely matched characteristics. Additionally,

a custom-designed laser driver circuit was employed to drive these diodes effec-

tively. Subsequent to this, we conducted a thorough characterization of the diodes,

focusing on parameters like wavelength, pulse width, and spatial profile to optimize

their indistinguishability. Any discernibility in other degrees of freedom, such as

spatial mode, temporal profile, or spectral profile, poses a risk of potential side-

channel attacks, which have been addressed in prior research [75, 76]. The source

setup encompasses the laser diodes along with the attenuating optics.
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Figure 4.2: Experimental setup for characterising photon statistics of the source: V-NDF:
Variable Neutral Density Filter; NDF: Neutral Density Filter; HWP: Half Wave Plate; BS:
Beam Splitter; PBS: Polarizing Beam Splitter; M: Mirror; C: Coupler; D: Single Photon
Counting Module; TDC: ID-900 Time Controller.

Each laser diode is triggered by voltage pulses with a repetition rate of 1.25 MHz.

Employing a half-wave plate and a polarizing beam splitter (PBS), the emitted beam

from the diodes undergoes polarization and attenuation adjustments. The PBS al-

lows horizontally polarized light to transmit while reflecting vertically polarized

light. Adjusting the half-wave plate’s rotation controls each beam’s intensity. Up

to this point, the setup remains identical for both bases. To transition to the di-

agonal basis, we introduce another half-wave plate rotated by 22.5◦. This rotation

aligns the beam’s polarization with the diagonal basis. The beams merge at a beam

splitter (BS1), with only one arm’s output considered while the other is discarded.

The beam intensity is halved due to the combination of the four beams at this beam

splitter.

Subsequently, all four beams traverse through a variable neutral density filter (NDF)

with a maximum optical density (OD) of 4, accompanied by a fixed NDF with an
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optical density of 6. These filters attenuate the beam intensity accordingly. We

intend to examine the photon statistics of the resultant beam from this final NDF,

which constitutes the signal. To analyze the photon statistics of each source inde-

pendently, we block the other sources and analyze them individually, one by one.

Parameter Value
Coincidence window 2 ns

Pulse width 1 ns
Detection jitter 350 ps

Dark counts 100 cps
Background counts (bg)

bg in detector-1 425 cps
bg in detector-2 1049 cps
bg in detector-3 1119 cps
bg in detector-4 1904 cps

Table 4.1: Coincidence window, pulse width, detection jitter, dark counts, and background
counts. Counts are recorded for an integration window of 1s, i.e. counts per second (cps).
Background counts of the detectors are the averaged values for 1s. The dark count is the
maximum dark count of the detector.

We collect timestamps for detections from each source, including two-fold, three-

fold, and four-fold coincidences. We also measure the background counts by block-

ing the source, noting that each detector experiences varying background levels due

to differing background light exposures (see table 4.1). To ensure accuracy, these

detections are subtracted from the total counts during source characterization. Since

background counts for each detector are treated separately, they do not affect our

analysis. The coincidence window is kept as 2ns, keeping in mind the pulse width

and the detection jitter (see table 4.1). The detectors have a dead time, i.e. a period

after detection for which the detector is not responsive to any incoming photons.

This period is crucial since it might lead to underestimating detection count rates.

However, the dead time of our detectors is very low, specifically 22 ns, and our laser

emits pulses at an interval of 800 ns. Hence, there will not be any significant effect.
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Beam Splitter T 2 R2

BS3 0.494 0.453
BS4 0.474 0.446
BS5 0.461 0.456

Table 4.2: Transmittance and reflectance of beam-splitters used in characterisation setup

We adjust the variable NDF to obtain different µ values. The estimation of µ is

approximately calculated using Eq. (4.16).

N = µνrepη (4.16)

Where N represents the count rate in the detector per second, µ stands for the mean

photon number, νrep denotes the repetition rate, which is 1.25 MHz, and η signifies

the overall efficiency. The overall efficiency, described by Eq. (4.6), encompasses

the quantum efficiency of the detector (ηd1 = ηd2 = ηd3 = ηd4 = 65%), fiber-

coupling efficiencies (ηc1 = 85%, ηc2 = 0.91%, ηc3 = 0.87%, and ηc4 = 0.88%),

and branching efficiency (ηbi). While acknowledging the potential discrepancies in

detector efficiencies, for which we rely on the data sheets of the instruments. Given

the reciprocal nature of characterizing a detector with a source and vice versa, we

conduct the characterization one at a time. The beam splitters do not exhibit a 50-

50 splitting ratio; therefore, we also incorporate these experimental efficiencies into

our calculations. We characterized the beam splitters, and Table 4.2 contains the

transmittance and reflectance values.

Hence, with Eq. (4.16), we can approximately determine whether we have reached

the intended value of µ by examining the count numbers in a single detector, as

elaborated in Sec. 4.2.2, given that these counts solely indicate the presence or

absence of a pulse containing photons. Subsequently, we characterize the source

by analyzing the r-fold coincidences recorded to estimate µ using Sec. 4.2.3. We

will utilize Eq. (4.8) to evaluate the coincidences from experimental data ([101]).
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Furthermore, we employ the probability bounds specified in the article [93] (see

Appendix A.1) to experimentally verify the Poissonian statistics of the WCPs used

in QKD implementations and accurately estimate the mean photon number for the

distribution. This procedure is iterated for all four laser diodes emitting various

polarizations. The steps to data analysis are presented in Appendix A.2

We employ a single detector for each source to investigate the intensity fluctuations

of all four sources. Additionally, we adjust the variable attenuator by rotating it to

achieve the desired count rate while the detectors capture individual signals. This

data is recorded over multiple cycles to analyze the source fluctuations. The experi-

ment is repeated for different source intensities to observe fluctuations as a function

of intensity.

4.4 Results and Discussion

We recorded both single and coincidental detections and confirmed that the photon

statistics adhere to a Poisson distribution, as elaborated in Sec. 4.2.3. Comparing

the computed values obtained through Method-I (Sec. 4.2.2) and Method-II (Sec.

4.2.3), we illustrated the disparity as a function of the mean photon number (µ) in

Fig. 4.3. As expected, the difference in the estimated values grows with an increase

in the mean photon number. This trend is foreseeable since a single detector lacks

the precision to make accurate measurements, especially in the presence of multi-

photon pulses. Coincidences obtained through multiple on-off detectors offer higher

accuracy.

We compute the mutual information for each scenario using Eq. (4.14) using the

mean photon numbers from method 1(4.2.2) and method 2(4.2.3). We then find the

difference between these estimated leakages to find the miscalculation in informa-
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Figure 4.3: Difference between the mean photon number (µ) calculated using Method-I
and Method-II of mean photon number (µ).

tion leakage. We must emphasize that we are examining the worst-case scenario,

where Eve can exploit information from all multi-photon pulses within the BB84

protocol. This study can be expanded to cover other prepare-and-measure protocols

employing weak coherent pulses as the source. Accurate assessment of potential in-

formation leakage is essential, achievable only through a well-characterized under-

standing of photon statistics. Errors in estimating the mean photon number result in

an incorrect estimation of I(A : E). An adversary can exploit the undisclosed por-

tion of information. The corresponding variation in information leakage I(A : E)

with respect to the mean photon number (µ) is illustrated in Fig. 4.4.

Fig. 4.5 depicts the fluctuations in intensity relative to the average photon count for

all four sources. These fluctuations were derived using a single consistent detector

based on multiple iterations of single-count data obtained from each source. The

error bars represent the deviation between data points and the fitted linear curve. As

expected, increasing the mean photon count results in higher intensity fluctuations.

The differences observed among the four laser diodes stem from inherent variations,

as no two diodes are perfectly identical. Moreover, slight discrepancies in the com-

ponents of the laser diode driver circuit can also impact the outcomes. These chal-
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Figure 4.4: Information leakage due to miscalculated mean photon number (µ) as a func-
tion of mean photon number (µ)

Figure 4.5: The variation in intensity fluctuations for all four sources vs the average photon
count (µ).



4.4. Results and Discussion 105

lenges are common in practical scenarios involving multiple lasers. The ongoing

approach involves improving the quality of the devices and meticulously character-

izing them to identify any imperfections.

Fig. 4.6 displays the distribution of all four sources with an average value of 0.5

photons per pulse. weak coherent sources ideally follow Poissonian statistics, where

the intensity fluctuations match the mean photon number. In our case, with a

mean of 0.5, the variances for sources 1, 2, 3, and 4 are 0.5678, 0.5272, 0.5000,

and 0.5566, respectively. Since Poissonian statistics are determined solely by the

mean photon number, plotting the experimental data against a Poissonian distribu-

tion would not provide significant insights. We used a large sample set, and it’s

known that any distribution tends to approximate a Gaussian distribution with large

samples. However, we do not claim that the sources follow a Gaussian distribu-

tion. Instead, using a Gaussian distribution is a mathematical aid to experimentally

calculate the cross-correlation since it is characterized by both mean and variance.

These plots, based on fitted data, compare the fluctuations of all four sources at a

specific µ value. The shaded region’s area represents the probability of no detection,

as counts cannot be negative.

Figure 4.6: The distribution of all four sources at an average value of 0.5 photons per pulse

The correlations and possible information leakage are presented in Table 4.3. Main-
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taining consistency and uniformity among the sources is vital to prevent disparities.

Diverse intensity fluctuations among the sources might enable Eve to extract in-

formation, potentially leading to a side-channel attack. By examining the pairwise

correlations among all the sources, we aim to circumvent Eve’s attempts to gather

information between bits or across basis. Therefore, accurately estimating the ex-

tent of information leakage is crucial for ensuring secure quantum communication.

Sources R I(A:E)
S1 & S2 0.9904 0.0027
S1 & S3 0.9715 0.0082
S1 & S4 0.9993 0.0002
S2 & S3 0.9949 0.0014
S2 & S4 0.9948 0.0014
S3 & S4 0.9796 0.0058

Table 4.3: The correlations R and the potential information leakage I(A : E) among
different sources.

4.5 Summary and Conclusion

The WCPs utilized in QKD implementations adhere to a Poisson distribution. Ac-

curately characterizing this source is crucial to accurately estimate potential infor-

mation leakage arising from multi-photon pulses. Since the SPADs employed are

not photon-resolving, employing multiple on-off detectors offers enhanced reso-

lution. For QKD applications, four SPADs are sufficient, given that the average

photon number per pulse remains well below one. Inaccurate determination of the

mean photon number could result in undetected information leakage, leaving the

system vulnerable to adversarial attacks. Thus, comprehensive characterization of

mean photon numbers in practical QKD systems employing weak coherent pulses

is imperative. Discrepancies between the mean photon number and the resulting in-
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formation leakage are assessed, with values escalating as the mean photon number

increases. While the one-detector method suffices for smaller µ values (µ ≤ 0.3),

beyond this threshold, the approximation deviates significantly from rigorous char-

acterization.

The variations observed among the four sources differ, leading to a maximum infor-

mation leakage of around 10−2 bits per pulse. These fluctuations become more pro-

nounced as the intensity rises, highlighting the importance of assessing the intensity

gap between the decoy and signal states. Significant differences could potentially

open avenues for side-channel attacks by Eve. Calibrating commercial devices,

including the QKD system, is crucial to comprehend their limitations. The study

indicates that the information leakage grows as the mean photon number (µ ≤ 1)

increases. Hence, for higher µ values, employing four detectors yields more accu-

rate outcomes. Alternatively, utilizing number-resolving single-photon detectors is

possible, but they are expensive and bulky.





Chapter 5

Entrapped Pulse Coincidence

Detection Protocol

5.1 Introduction

We have consistently emphasized the significance of acknowledging device imper-

fections and loopholes in the security of QKD protocols. The presence of imper-

fect sources constitutes one such vulnerability. In many instances of prepare and

measure protocols, weak coherent pulses (WCPs) are utilized instead of a single

photon source (SPS). These WCPs adhere to Poissonian statistics, meaning there is

a chance of multi-photon pulses. An attacker could exploit the occurrence of multi-

ple photons in a pulse to execute a photon number splitting (PNS) attack and extract

information from the shared key.

To mitigate the vulnerabilities exposed in the practical application of QKD proto-

cols, we have two options: transition to a more resilient protocol or apply security

109
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patches to counter known attacks. Security patching involves careful monitoring

of various system parameters to identify and rectify potential information leaks.

By considering imperfections in the source, we can gauge the information leak-

age stemming from pulses containing multiple photons. The introduction of se-

curity proofs accommodating device imperfections can be found in the literature

[17, 19, 51]. Furthermore, researchers in [70] suggested using decoy states as a

defence against the PNS attack. The integration of ideas from [19] and [70] laid the

groundwork for the decoy state protocol [71–73], which stands as one of the most

widely employed QKD protocols.

Monitoring coincidences serves as an alternative strategy to counter PNS attacks. It

involves comparing the anticipated and observed coincidences at the recipient’s end

when a source emits weak coherent pulses with known photon statistics through a

well-defined channel. Previous investigations [102–104] have proposed this method

to restrict the eavesdropper’s access to the key information, with some proposing its

utilization to augment the key rate. However, [105] warns about the potential for an

eavesdropper to execute a sophisticated PNS attack by replicating detector statistics.

In this study, we suggest merging the decoy state protocol with coincidence detec-

tion as a countermeasure against a wide range of advanced PNS attacks. Following

convention, we designate the sender as Alice, the receiver as Bob, and the adver-

sary as Eve. We monitor coincidences not only for the signal but also for the decoy

states. Since Eve lacks information regarding the transmission of a signal or de-

coy, it becomes impractical for her to replicate the receiver’s statistics accurately.

This augmentation complements the standard decoy state protocol, thus bolstering

security measures. Consequently, even if Eve succeeds in replicating statistics on

average at Bob’s end through various strategies, disparities between the yield of

signal and decoy pulses emerge. By incorporating two-fold coincidences, we can
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attain heightened key rates while fortifying security against sophisticated PNS at-

tacks employing decoy states. To avoid confusion with the decoy state protocol, we

will refer to these extra pulses as entrapped pulses. We will call this the entrapped

pulse coincidence detection (EPCD) protocol. This integration of entrapped pulses

and coincidence detections allows us to strategically exploit their functionalities.

If the observed coincidences suggest that a PNS attack has not been executed, we

include the effects of two-photon gain (Q2) and error (e2) in the asymptotic key

rate, as outlined in [104]. Additionally, if security against the unambiguous state

discrimination (USD) attack is desired, it becomes impossible to integrate contri-

butions from three or higher photon gains and error terms. Given the added con-

siderations from the statistics of two-photon events, it becomes essential to devise

a method for establishing stringent bounds on the achievable key rates within the

protocol.

It is challenging to compute the key rates of a general QKD protocol. It is difficult

to obtain tight lower bounds using analytical techniques since key rate estimation

involves solving a nonlinear optimization problem with many variables. Comput-

ing lower bounds on key rates by making approximations as in [73] often leads to

pessimistically underestimated key rates.

Many studies [106–112] propose novel techniques to obtain good lower bounds on

the secure key rate. Obtaining tight bounds on the key rates based on the generalized

decoy state protocol has been of interest, and several novel techniques [106–112]

have been proposed that successfully compute good lower bounds on the rates. A

common approach involves recasting the decoy state protocol into an entanglement-

based protocol, followed by conducting a security analysis of this revised protocol.

These techniques leverage advanced results in convex optimization and serve as
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highly effective tools for computing key rates of any general QKD protocols.

In this work, we introduce a simple-to-implement method to derive tight bounds

on the key rates. Our method differs from the previous approaches. Our approach

relies on formulating the optimization problem for computing the key rate as a series

of converging polynomial optimization problems, each of which can be efficiently

solved using well-established numerical techniques. Implementing our method is

straightforward and can be easily coded.

Although, in principle, it is feasible to compute arbitrarily tight bounds on the key

rate, doing so requires increased computational time and resources. In practice, our

method yields reasonably tight key rates within just a few minutes when executed

on a personal computer with a standard configuration. Subsequently, we utilize the

suggested protocol and key rate calculation method in a free-space QKD implemen-

tation. Through our method, we illustrate that our proposed protocol outperforms

the decoy state protocol when coincidence monitoring certifies the absence of the

PNS attack [36].

Our protocol employs entrapped pulses and monitors coincidences, necessitating

proper source and channel characterization. The channel transmittance must be

known and trusted, as this is crucial for defending against photon-number-splitting

(PNS) attacks through coincidence monitoring. We assume the asymptotic limit

in our analysis, with finite key analysis planned for future research. Our protocol

is designed to be secure against passive and active attacks; any interference by an

eavesdropper (Eve) would be detected due to the disturbance introduced in the quan-

tum states. Thus, our protocol provides a robust security framework, even under an

active attack, ensuring reliable QKD implementation.

This chapter is structured as follows. In Sec. 5.2.4, we present the protocol, while



5.2. Theoretical background 113

Sec. 5.3 outlines our approach for calculating the secret key rate associated with the

protocol. Sec. 5.4 provides details regarding the experimental setup and the method

utilized for data analysis. Our experimental findings and the implementation of

Semi-Definite Programming (SDP) for key rate computation are discussed in Sec.

5.5, followed by concluding remarks in Sec. 5.6.

Figure 5.1: Standard Scheme for Quantum Communication in free space with existing
classical systems

5.2 Theoretical background

The BB84 protocol’s implementation with weak coherent pulses is vulnerable to

PNS attacks, wherein Eve exploits the multi-photon pulses sent by Alice. Tradi-

tional mitigation against PNS attacks, such as the decoy state protocol, involves

sending occasional decoy pulses along with signal pulses. An alternative strategy,

proposed by [104] and [103], suggests monitoring coincidences at Bob’s end to

detect PNS attacks. The protocol proposed in this work involves implementing

modifications at both Alice’s and Bob’s ends. Specifically, entrapped pulses are

transmitted from Alice’s end, and Bob’s end is equipped to monitor coincidence

detections. This approach effectively mitigates PNS attacks and leads to a notable

enhancement in key rates. In this section we first discuss the secure key rates for
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decoy and CD protocol, and then define our EPCD protocol, along with the methods

to compute key rates.

5.2.1 Secure key rate: Decoy state Protocol

We employ weak coherent pulses in practical implementations of the BB84 pro-

tocol hence, there is a non-zero probability of multiphoton pulses. However, we

only consider the contributions from the single-photon pulses in the key rate. The

asymptotic secure key rate [73] is given as:

R ≥ 1

2
{−QµHbin(Eµ)f(Eµ) +Q1 (1−Hbin(e1))} . (5.1)

Here, µ is the mean photon number of the signal pulses, Qµ is the overall gain of

signal states, Eµ is the overall quantum bit error (QBER), Q1 is the gain of single-

photon states, e1 is the error rate of single photon states and Hbin(e) is the binary

entropy.

Qµ and Eµ are the experimental parameters, however Q1 and e1 needs estimation.

For the case with only one decoy, traditional analytical methods in [73] compute

lower bounds on the key rate by establishing bounds on Q1 and e1.

5.2.2 Secure key rate: Coincidence Detection Protocol

We can detect a PNS attack by monitoring the coincidences, given a well-characterized

source and channel. This monitoring allows us to determine whether the photon

statistics have been altered or remain unchanged [103]. If the statistics are un-

changed, we are assured that no PNS attack has been performed. However, Eve

can still perform the collective and unambiguous state discrimination (USD) attack

[113].
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Let us consider the collective attacks without the USD attack. The attack results in

the maximum mutual information between Alice and Eve, I(A;E)i, which can be

expressed as [104]:

I(A;E)i = Hbin

(
1 + cosi c

2

)
, (5.2)

where cos c = 1− 2ei. The key rate is given as;

R ≥ 1

2

{
−Qµf(Eµ)Hbin(Eµ) +Q1 [1−Hbin(e1)] +

∞∑
i=2

Qi (1− I(A;E)i)

}
,

(5.3)

Here, i represents the state containing i number of photons. Qi and ei are the gain

and error rate of this i-photon state, respectively. Hbin(e) is the binary entropy.

Now, we consider when Eve performs collective and USD attacks. If Eve employs

the USD attack, it will certainly fail on two-photon pulses but might have a non-zero

success probability with three or more photon pulses [113]. Hence, we consider the

contributions due to just single and two-photon states.

R ≥ 1

2
{ −QµHbin(Eµ)f(Eµ) +Q1 (1− Φ(2e1 − 1))

+Q2

(
1− Φ((2e2 − 1)2)

)
}. (5.4)

Where φ(x) is defined as follows:

Φ(x) := Hbin

(
1

2
+
x

2

)
. (5.5)

Here, Q2 and e2 denote the two-photon gains and error rates, respectively. When

calculating the secure key rates for the protocol, the values of gains Q1, Q2, and

the error rates e1,e2, are unknown. In a typical decoy state protocol employing an

infinite number of decoy states, accurate estimation of values is achievable. Never-

theless, this method demands significant resources and is practically unattainable.

Study [73] suggested utilizing approximations with a single decoy state, but these
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approximations tend to underestimate the key rates. Here, we propose leveraging

the current setup by utilizing coincidences alongside optimization techniques to

establish tighter bounds on the key rates. In Sec. 5.3, we elaborate on our method-

ology for computing key rates.

5.2.3 Monitoring Coincidences

We monitor the coincidences to examine if the photon statistics have been altered

or if they remain unchanged[103]. If altered, we can compute rates using Eq. (5.1).

Conversely, if the detected coincidences match the expected statistics, we can con-

clude that no PNS attack has occurred, and the key rate can be calculated using

Eq.(5.4). Now, we discuss the estimation of coincidences for a characterised source

and channel. The coincidences depend on both the statistics of the source as well as

the overall transmittance.

The probability that Alice emits an n photon pulse is given by P (n),

P (n) =
e−µµn

n!
(5.6)

Then the overall efficiency η for detection by Bob of a single photon sent by Alice

is (See 2.4.6),

η = tAB · ηBob (5.7)

where tAB is channel transmissivity and ηBob is the detection efficiencies at Bob’s

end, including optical and detector efficiency. We can replace all the losses in the

channel, Bob’s optics and the detection efficiencies by a beam splitter of transmit-

tance η. If we consider each photon in a pulse independent of each other, then the

probability of detection of each photon is η. Thus, We can monitor the coincidences

by comparing the expected coincidences to the observed ones as presented in [103].
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We consider the case when a pulse containing n photons (|n〉) falls on the 50 : 50

beam splitter.

|n〉 →
n∑
k=0

(
n

k

)
|n− k〉R |k〉T (5.8)

We now discuss the case of our interest, when two photons pulse emitted by Alice.

The probability of getting two-fold coincidence only occurs when both the photons

exit from different parts of the beam splitter, i.e. case II in Table. 5.2.3 which has

the probability 1/2.

Cases Transmitted Photons Reflected Photons Probability
I 2 0 1/4
II 1 1 1/2
III 0 2 1/4

Table 5.1: Cases and probabilities when two photons are incident on Bob’s beam splitter.

The probability that Alice emits a two-photon pulse is e−µµ2/2. The overall proba-

bility that these two photons reach Bob’s detection setup after passing the quantum

channel and get detected as a two-fold coincidence is e−ηµµ2η2/4. Since this proba-

bility is directly related to η2, the coincidence rates will be suppressed quadratically

with losses in the channel. We characterize the source and the channel well and can

estimate the expected number of coincidences and check for a PNS attack [103].

5.2.4 EPCD Protocol

We now define our protocol of using entrapped pulses along with the two-photon

coincidences, i.e. entrapped pulse coincidence detection (EPCD) protocol.

Protocol (Entrapped Pulse Coincidence Detection Protocol (EPCD)). In this proto-

col, we present a comprehensive approach to utilizing entrapped pulses, along with

monitoring coincidences. Alice sends a signal characterized by an average photon
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number ν0, along with K entrapped pulses characterized by average photon num-

bers ν1, ν2, · · · , νK . For a sequence of n pulses, each identified by an index i, the

subsequent actions are iterated for each pulse.

Figure 5.2: Graphical representation of signal and entrapped pulses randomly transmitted
by Alice

1. State preparation (Alice’s lab): Alice generates random numbersDi ∈ {0, 1, · · ·K},

Xi ∈ {0, 1} and Ai ∈ {0, 1}. Where,

(a) Di determines whether a signal (ν0) or an entrapped pulse (ν1, ν2, · · · νK)

is transmitted. If D = d then mean photon number is νd

(b) Xi determines the basis in which pulse i is encoded. If Xi = 0(1), she

encodes in Standard (Hadamard) basis.

(c) Ai is the bit value encoded for pulse i.

2. State transmission: Alice sends the prepared state to Bob through a quantum

channel.

3. State measurement (Bob’s lab): Bob lets the pulse pass through a beam split-

ter, having two ports B(0) and B(1). At wing, B(0) (B(1)) Bob performs mea-

surement in the Standard (Hadamard) basis. Let B(j)
i denote the measured bit

value for the pulse i in port j.
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4. Alice and Bob continue to prepare and measure, incrementing the value of i

to i+ 1 until i = n. Once i = n, they proceed to the next step.

5. Alice publicly discloses the value of her basis (X1,X2, · · · ,Xn).

6. Let Yi denote Bob’s basis choice and Bi is the measured bit value. No mea-

surement outcome is denoted as ⊥.

(a) If B(j⊕1)
i =⊥ and B(j)

i ∈ {0, 1}: Yi = j , Bi = B(j)
i .

(b) If B(0)
i ,B(1)

i ∈ {0, 1}, then Bob sets Yi = x and Bi = B(x)
i if Xi = x.

(c) Else Bob sets Yi randomly and Bi =⊥.

7. Bob publicly discloses the values of the basis (Y1,Y2, . . . ,Yn). Alice and Bob

then discard the rounds in which Xi 6= Yi, i.e., they only focus on the rounds

from the set h := {i ∈ {1, 2, . . . , n} : Xi = Yi}.

8. Alice also discloses the entrapped pulses used in each round (D1,D2, · · · ,Dn).

9. Alice and Bob perform error correction and privacy amplification as in stan-

dard BB84 protocol. From any randomly chosen subset g ⊂ h, with |g|� |h|

they estimate Gains (probability that a signal sent by Alice is received by

Bob):

Qνd :=
|{i ∈ g : Di = d,Bi 6=⊥}|
|{i ∈ g : Di = d}|

(5.9)

and QBER (Eνd) i.e. the probability that Alice’s bit value does not match

with Bob’s bit value (Ai 6= Bi) whenever they both prepared and measured in

same basis (Xi = Yi)):

Eνd :=
|{i ∈ g : Di = d,Ai 6= Bi}|
|{i ∈ g : Di = d}|

(5.10)
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Figure 5.3: Graphical representation of basis selection and recorded measurements at Bob’s
end for ith pulse

The above is a generalised description of the protocol; for consistency, we will use

ν0 = µ to represent the mean photon number of the signal state. The implementa-

tion of the standard decoy state protocol closely follows the procedure outlined in

the above protocol, involving one beam splitter and two branches denoted as D(0)

and D(1). While measurements in the standard basis are performed by D(0), D(1)

conducts measurements in the Hadamard basis. The primary distinction lies in the

coincidence monitoring, with no significant impact on the experimental feasibility

of the protocol. The experimental demonstration of this protocol is discussed in

Sec. 5.4.

As noted in [102–104], it has been observed that the PNS attack can be detected by

simply measuring the coincidences, even without the presence of entrapped pulses.

However, Eve can mimic the photon statistics at Bob’s end [105] if we only send the

signal without the entrapped pulses. Nevertheless, this type of attack can be effec-

tively countered by employing entrapped pulses. Since the adversary is uncertain

whether the transmitted state is an entrapped pulse, she cannot replicate the photon

statistics for both the signal and the entrapped pulses.
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5.3 Computing Key-rate

We first discuss the computation of the key rate for coincidence detection given by

Eq.(5.4). Recalling discussion in Sec. 2.4.6, and using Eq.(2.138) in Eq.(5.4) we

get,

R ≥ 1

2

{
−QµHbin(Eµ)f(Eµ) + Y1µe

−µ (1− Φ(2e1 − 1))

+Y2
µ2

2
e−µ

(
1− Φ((2e2 − 1)2)

)}
. (5.11)

where we have substituted, Q1 = Y1µe
−µ and Q2 = Y2

µ2

2
e−µ, using Eq.(2.138).

Here, Y1 and Y2 are single and two-photon yields, respectively.

We know thatQµ andEµ are experimental parameters hence, the optimisation prob-

lem reduces to the last two terms of Eq.(5.11). We take out the common factor of

e−µ. Hence, the key rate can be obtained by solving the following optimization

problem:

r := min

(
Y1µ (1− Φ (2e1 − 1)) + Y2

µ2

2

(
1− Φ

(
(2e2 − 1)2

)))
s.t.∀k : Yk, ek ∈ [0, 1]

∀d : Qνde
νd =

∞∑
k=0

Yk
νkd
k!

∀d : EνdQνde
νd =

∞∑
k=0

ekYk
νkd
k!

(5.12)

The reason for performing such an optimization is straightforward to understand.

The objective function of the optimization problem concerns the key rateR (refer to

Eq. (5.4)). This key rate relies on the k photon yields Yk and k photon error rates ek,

which are not directly known from experimental statistics. However, what is known

are the overall gain Qµ and the QBER (Eµ). When we consider just the coincidence
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detection protocol, the constraints of the optimization problem are related just to the

Gain and QBER of the signal. However, when we include the entrapped states, we

get an extra set of constraints on the optimization problem from the Gain and QBER

of the signal and the decoy states. The more decoy states, the better; however, for

practical reasons, we have constrained ourselves to just a single decoy state.

Now we consider the cases when coincidences are not considered, i.e. the cases of

BB84 and decoy state protocol. The key rate to be estimated is given by,

R ≥ 1

2

{
−QµHbin(Eµ)f(Eµ) + Y1µe

−µ (1− Φ(2e1 − 1))
}
. (5.13)

In this case, the optimization problem for computing the key rate differs from Eq.

(5.12) only in the objective function. Specifically, it does not include contributions

from the two-photon terms Y2 and e2. Hence, the optimisation problem is:

r := min (Y1µ (1− Φ (2e1 − 1)))

s.t.∀k : Yk, ek ∈ [0, 1]

∀d : Qνde
νd =

∞∑
k=0

Yk
νkd
k!

∀d : EνdQνde
νd =

∞∑
k=0

ekYk
νkd
k!

(5.14)

It is to be noted that for the non-decoy case d = 0, there is just a single intensity,

ν0 = µ. For the decoy state, the number of constraints depends on the number of

decoy states employed.

Given that no assumptions can be made about the Yields Yk ∈ [0, 1] and error rates

ek ∈ [0, 1], we acknowledge the possibility of a potential adversary to manipulate

them freely. The adversary is, in principle, unrestricted in choosing any values for

these parameters, provided that the chosen values align with the observed exper-

imental statistics. This fact is captured using the constraints in the optimization
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problem, limiting the choice available to the adversary. To account for the strategy

that is most advantageous to the adversary within these constraints, we minimize

the rate.

In the literature, Ma et al. [73] conducted the first comprehensive exploration of

lower bounds on the asymptotic key rates for the decoy state protocol. For the case

with only one decoy, traditional analytical methods compute lower bounds on the

key rate by first establishing bounds on Y1 and e1:

Y0 ≤ Y U
0 :=

EνQνe
ν

e0
, (5.15)

Y1 ≥ Y L
1 :=

µ

µν − ν2

(
Qνe

ν −Qµe
µ

(
ν2

µ2

)
− Y U

0

(
µ2 − ν2

µ2

))
, (5.16)

e1 ≤ eU1 :=
EνQνe

ν

Y L
1 ν

(5.17)

Exploiting the monotonicity properties of binary entropy, specifically that Hbin(x)

is increasing for all x ∈ [0, 1/2], and the fact that (1−Hbin(x)) > 0, a lower bound

on the secure key rate (5.13) is given by:

R ≥ 1

2

{
−Qµf(Eµ)Hbin(Eµ) + Y L

1 µe
−µ (1−Hbin(eU1 )

)}
. (5.18)

An immediate approach to computing lower bounds on the key rate for the proto-

col with coincidence detection involves employing similar analytic techniques to

establish upper and lower bounds, denoted as Y L
2 and eU2 , on Y2 and e2 respectively,

that are compatible with the constraints. However, this process is tedious, and tight

bounds may not be easily found. The next section introduces a simple-to-implement

method to iteratively derive bounds on the key rate that converge to the asymptotic

key rate from below.



124 Chapter 5. Entrapped Pulse Coincidence Detection Protocol

5.3.1 Solving the optimization problem

Two primary challenges emerge when addressing optimization problem Eq. (5.12).

First, the problem is non-convex due to the non-convex nature of both the con-

straints and the objective function in Eq. (5.12). General optimization problems

are notoriously difficult to solve due to their abstract nature unless they fit specific

classes of convex optimization problems. As a result, the optimization problem

cannot be solved directly using conventional techniques. Second, the optimization

problem involves infinitely many free parameters, namely, Yk and ek. The presence

of these infinitely many parameters adds further complexity to the problem.

The challenge of dealing with infinitely many variables can be addressed straight-

forwardly by recognizing that the contribution of Yk and ek when k � 1 is negli-

gible to the sums
∑
k

(νkd/k! )Yk and
∑
k

(νkd/k! )Ykek. Consequently, we relax the

constraints of Eq. (5.12) by truncating the infinite sums
∑
k

(νkd/k! )Yk to involve

sums over a finite number of variables. This comes, however, with a small penalty

that depends on the number of terms kept in the sum. We formally implement this

truncation in the Appendix. B.1.

We begin by discussing our general technique for addressing certain simple non-

polynomial optimization problems, drawing inspiration from [114, 115]. This method

involves deriving lower bounds for optimization problems through the partitioning

of the parameter space into smaller sub-spaces. Formally, this partition (or grid), de-

noted asP , divides the space into multiple sub-domains {Ci}i. For each sub-domain

Ci, we formulate a new optimization problem (or sub-problem) by constraining

the parameters to that sub-domain. Each sub-problem can be lower-bounded by

a polynomial optimization problem using simple methods, such as Taylor’s theo-
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rem, with only a minimal loss of tightness. Obtaining lower bounds on the resulting

sub-problems is achieved by computing the Semi-definite Programming (SDP) re-

laxations of the polynomial optimization problem (in practice, this is done using

software tools like NCPOL2SDPA [116]). Detailed information on partitioning and

lower-bounding the sub-problems generated by any given partition is formally done

in Appendix-C.3 of [117].

The solutions to the optimization problems can be improved by refining the partition

so that the sub-domains have smaller dimensions. Typically, if the partitioning is

done over the parameter space of P independent parameters, then enhancing tight-

ness by a factor of β would require computing βP times more sub-problems. Con-

sequently, this technique is particularly applicable and effective when partitioning

is applied to a relatively smaller number of parameters.

Now let us return to the optimization problem at hand. There are only two non-

polynomial terms Φ(2e1 − 1) and Φ((2e2 − 1)2) in the optimization problem. Fur-

thermore, only two parameters, e1 and e2, contribute to the non-polynomial terms

in the problem. As e1 and e2 are both constrained within the range of [0, 1], we con-

struct a partition P of the set [0, 1]× [0, 1] , generating rectangular sub-domains Ci.

Leveraging the properties of the function Φ(x), we find the constants ξmax
1,i and ξmax

2,i

that (tightly) lower bound the functions Φ(2e1 − 1) and Φ((2e2 − 1)2) respectively

in the sub-domain Ci1(See Lemma 3, Appendix-C.3 of [117]). We then use these

tight bounds to lower-bound the objective function as follows∑
k∈{1,2}

Yk
µk

k!

(
1− Φ

(
(2ek − 1)k

))
≥
∑

k∈{1,2}

Yk
µk

k!
·
(
1− ξmax

k,i

)
. (5.19)

The loss in tightness when bounding the objective functions by such constants ξmax
1,i

1To minimize the objective function, a lower-bound on −Φ((2ek − 1)k) is needed.
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and ξmax
2,i depend upon the dimensions of the domain Ci. Thus, the loss of tightness

can be made arbitrarily small by refining the partition. However, making a finer

partition comes at the expense of higher computation time, as more and more sub-

problems need to be numerically solved.

All the results lead to the following final result, which forms the basis of the algo-

rithm for computing key rate r (as defined in equation Eq. (5.12)).

Theorem 1(Informal): Consider a partition P = {Ci}i of the interval [0, 1]× [0, 1].

The minimum achievable value r ≥ min
i
{rn(Ci)}i, where each rn(Ci) corresponds

to the solution of a polynomial optimization problem over 2n number of variables

(given by equation C.12, [117]). Moreover, for any given (arbitrarily small) margin

of error ε > 0, there exists (a sufficiently large) n and a (sufficiently fine) partition

P such that the difference |r −min
i
{rn(Ci)}i| is at-most ε.

In essence, this result implies that the lower bounds can be determined with arbitrar-

ily high precision by solving multiple polynomial optimization problems and then

computing the minimum of all the results obtained.

Assuming a random background with errors occurring equally likely, we explicitly

set the background error rate as e0 = 1/2. To account for the impact of finite statis-

tics on the experimental values Qµ, Qν , Eµ, and Eν , it is imperative to consider

uncertainties in their measurement. In Appendix E, Theorem-1 of [117]is modi-

fied to accommodate these statistical uncertainties in the computation of rates. It

is important to note that the key rates reported here are in the asymptotic limit.

However, this analysis only serves to acknowledge the uncertainty associated with

experimentally observed values, and the computed rates are still asymptotic key

rates compatible with experimentally obtained statistics with relevant uncertainties

in observed values. The computation of finite-round statistics can, in principle, be
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performed using theoretical tools such as the Generalized Entropy Accumulation

Theorem [118, 119]. Such analysis would require a more sophisticated analysis

and is reserved for future work.

5.4 Experimental Method

This section outlines the experimental procedures involved in implementing our

secure QKD protocol. The experimental setup consists of three main stages: state

preparation, transmission, and state measurement.

Figure 5.4: Schematic of the experimental setup. It includes both the optics and elec-
tronic components. LD: Laser Diodes, HWP, Half Wave Plate, BS: Beam Splitter, PBS:
Polarising Beam Splitter, NDF: Neutral Density Filter, VOA: Variable optical Attenuator,
DM: Dichroic Mirror, L: lens, MMF: Multi-Mode Fibre, SPCM: Single Photon Counting
Module, DAQ: Data Acquisition system
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5.4.1 State Preparation: Alice

Alice utilizes the polarization state of weak coherent pulses to encode the quan-

tum information for transmission. Weak coherent pulses are generated by atten-

uating the laser pulses using neutral density filters. Our experimental setup (see

Fig. 5.4) includes four laser diodes operating at a wavelength of 808 nm (Thor-

labs L808P010). An in-house designed laser driving circuit, controlled by a Field

Programmable Gate Array (FPGA), activates the laser diodes. This setup generates

pulses at a frequency of 5 MHz, with each pulse having an optical width of 1 ns.

These pulses are then optically engineered to create four polarizations—horizontal

(H), vertical (V), diagonal (D), and anti-diagonal (A)—using polarizing beam split-

ters (PBS) and half-wave plates (HWP). The combination of PBS and HWP acts

as a polarizer and assists in pulse attenuation. The FPGA ensures the lasers are

randomly triggered to produce the four polarization states. We have analyzed all

four sources to address potential issues like pulse width, wavelength variations, and

power discrepancies [76]. After combining all pulses on a beam splitter (BS), the

signal passes through a fixed and variable neutral density filter (NDF), reducing the

intensity further. The variable NDF is adjusted to modify signal intensity, quantified

in terms of mean photon number, as described in [120]. The decoy pulses are gen-

erated using this variable NDF by changing the intensity of the pulses. This enables

us to conduct a proof of principle decoy state QKD, using the pulses at two different

intensities for generating the signal and the decoy pulses. Thereafter, Alice sends

the encoded signal and decoy pulses to Bob via the free space channel.
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5.4.2 Transmission: The Channel

The communication signal is sent to Bob via a free-space channel. At the Thaltej

campus of the Physical Research Laboratory (PRL) in Ahmedabad, Gujarat, India,

two adjacent buildings are involved in the communication setup. Both the sending

and receiving stations are located in rooms on the rooftop of the first building. A

reflector positioned on the second building aids in directing the signal towards Bob.

The channel is then characterized for the losses, where we have included the losses

due to launching and collecting optics in the channel loss itself. The channel was

characterized using the beacon laser of 633 nm, giving the transmittance of 86%.

The experimental parameters and their values are specified in Table. 5.2. We have

conducted our experiment in a natural environment rather than a controlled labora-

tory setting, deliberately incorporating atmospheric interference and night lighting

variables. This approach ensures a more comprehensive and realistic assessment,

enhancing the credibility and applicability of our findings.

Parameter Value
Channel Transmission 0.86

Pulse width 1 ns
Detection jitter 350 ps

Coincidence window 2 ns
Detection Efficiency 0.62
Coupling Efficiency 0.87

Dark counts 100 cps
Background counts 3000 cps

Table 5.2: The values for channel transmission, pulse width, detection jitter, coincidence
window, detector efficiency and coupling efficiency, dark and background counts. The unit
cps is for counts per second. The background and dark counts are the worst cases consid-
ered.
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5.4.3 State Measurement: Bob

Upon reaching Bob, the signal is decoded through projective measurements onto

four polarization states. The measurement basis is determined using a beam splitter

(BS), with an HWP at 22.5 degrees in one path for diagonal basis and the other

path for rectilinear basis. Signals are detected using single photon counting mod-

ules (Excelitas-SPCM-AQRH-14), and a high-performance data acquisition card

records detection timestamps across various polarizations. The detection efficiency,

coupling efficiency, dark counts and background counts were recorded and are re-

ported in Table. 5.2. Due to the nature of our source as a WCP, coincidences can

occur during detection. The coincidence window is kept as 2 ns. After sufficient

quantum state exchange, Alice and Bob move on to post-processing.

5.4.4 Data Analysis and Postprocessing

We recorded the timestamps when each pulse of Alice was emitted in all four po-

larisations. Bob’s recorded data comprises the timestamps for detection clicks in all

four detectors. From Bob’s time stamps, we estimated the singles and the coinci-

dences. If only one detector clicks for a given time stamp, it is a single detection;

otherwise, we record two, three and fourfold coincidences depending on the num-

ber of detectors giving a simultaneous click. Alice reveals her chosen basis publicly.

For single detections, Bob retains those where his basis is compatible with Alice’s

basis. In the case of coincidence detection, Bob is only interested in two-fold co-

incidences, specifically those occurring in opposite basis. In such instances, Bob

selects measurements aligned with Alice’s basis choice. These steps correspond to

Steps 5-8 outlined in the protocol detailed in Sec. 5.2.4. The refined bits from this

process form the sifted key, a portion of which is used to assess the gain and quan-
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tum bit error rate (QBER). This gain and QBER are then further used to estimate

the bounds on the key rates of different protocols. The algorithm 2 of Appendix B.2

5.5 Results and discussion

Increasing the key rate in practical scenarios continues to be challenging, given

that other approaches typically necessitate additional hardware or sophisticated op-

timization techniques for key extraction. To address this, we devised a middle-

ground solution that demands minimal resources from both software and hardware

perspectives. We conducted a comparative analysis of key rates across various pro-

tocols and evaluated the effectiveness of our key rate optimization method against

several existing approaches.

We conducted a comparison between the traditional decoy-state method and the

proposed SDP-based method to calculate lower bounds on secure key rates, as de-

fined in Eq. (5.18). This comparison was carried out across various values of the

mean photon number, illustrated in Fig. 5.5, by simulating the decoy-based BB84

protocol under different mean photon numbers. Throughout the simulation, the

mean photon number of the decoy was held constant at ν = 0.1. Our findings show

that our proposed method yields tighter lower bounds compared to the traditional

analytic method, achieving a 27% improvement at the optimal mean photon number

(µ = 0.8). This improvement indicates reduced key wastage in terms of resource

utilization.

We utilized our SDP-based method to analyze key rates across four protocols:

BB84, decoy state protocol, CD protocol, and EPCD protocol. Employing the SDP

technique, we determined bounds on yields and errors to compute key rate bounds

using Eq. (5.18) and Eq. (5.4). The respective key rates were plotted against
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Figure 5.5: Key rates (bits per pulse) as a function of mean photon number (µ) for two
cases: (i) traditional analytical technique and (ii) proposed numerical technique using sim-
ulated results

Figure 5.6: Simulated key rates (bits per pulse) as a function of mean photon number (µ)
for four protocols: (i) BB84 Protocol, (ii) CD protocol, (iii) Decoy state protocol and (iv)
EPCD protocol.
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Figure 5.7: Experimental secure key rates (bits per pulse) as a function of mean photon
number (µ) for four protocols: (i) BB84 Protocol, (ii) CD protocol, (iii) Decoy state protocol
and (iv) EPCD protocol. Lines drawn are for the aid of the eye.

Figure 5.8: Key rates (bits per pulse) as a function of distance (in km) for four protocols:
(i) BB84 Protocol, (ii) CD protocol, (iii) Decoy state protocol and (iv) EPCD protocol. The
plots are in log scale
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the mean photon number (µ) in Fig. 5.6. Our analysis demonstrates a significant

enhancement in key rate when coincidences are considered. Specifically, the coin-

cidence detection (CD) protocol allows for a higher optimal mean photon number

(µ = 1.1) compared to using the traditional decoy-state method without coinci-

dences (µ = 0.8). Furthermore, comparing the optimal key rates of the decoy state

protocol and the EPCD protocol, we observe an improvement of approximately

64%.

Using the experimental setup described in the previous Section, we executed proto-

cols systematically across various signal intensities, each corresponding to distinct

mean photon numbers. The experimentally obtained gain (Qµ) and quantum bit

error rate (QBER) (Eµ) were then utilized to estimate optimal bounds on the se-

cure key rate as discussed in Sec. 5.3. We incorporated timestamps to record both

coincidences and single detections during data collection at different source inten-

sities. This approach allowed us to investigate four variants of our quantum key

distribution (QKD) protocol: Standard BB84, BB84 with decoy states, BB84 with

coincidence monitoring, and BB84 with entrapped pulses and coincidence monitor-

ing. Optimal key rates were computed for all four protocols across different mean

photon number values (µ), as depicted in Fig. 5.7. Additionally, our experimental

results align well with theoretical predictions regarding improvements in secure key

rates. Notably, we achieved a maximum key rate of 0.17 bits per pulse using the

EPCD protocol.

We have simulated the expected secure key rate for the four protocols as a function

of distance over fiber with a loss of 0.2 dB/km. The simulated key rates are plotted

in Fig. 5.8. In this simulation, we have considered the mean photon number of

the signal and decoy to be µ = 0.8 and ν = 0.1, respectively. It is evident that

the EPCD protocol consistently gives higher key rates than other protocols across
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varying distances, showcasing its effectiveness in extending communication ranges.

This consistent performance highlights the EPCD protocol’s reliability and strength

in addressing challenges related to communication distance.

5.6 Summary and Conclusion

In this work, we have proposed the entrapped pulse coincidence detection (EPCD)

protocol, where we have integrated two approaches to harness their collective strength.

Monitoring coincidences of the signal as well as entrapped pulses allows us to de-

tect the most practical, sophisticated PNS attacks. With an assurance of no PNS

attack, we showed that by including contributions from two-photon statistics, we

could achieve higher key rates.

A novel method for optimizing key rates using Semi-Definite Programming (SDP)

is introduced, providing tight bounds on asymptotic key rates for the protocols dis-

cussed in this chapter. In practical terms, this method yields reasonable bounds on

key rates within a few minutes when executed on a personal computer. Moreover,

the method is readily parallelizable, ensuring adaptability for scenarios where com-

puted bounds may need further tightening, although we have not encountered such

a situation in our experience thus far. This method has been used to compute the

asymptotic key rates for the field implementation of our protocol. The obtained

results illustrate that employing the proposed protocol substantially enhances the

asymptotic key rates. We plan to conduct a future study on the finite-size analysis

of our proposed protocol.





Chapter 6

Summary

Unlike conventional cryptography, which depends on the difficulty of breaking the

code, QKD guarantees security based on the fundamental laws of physics. However,

practical implementations of QKD can introduce vulnerabilities that attackers could

exploit. This thesis explores some of these potential security gaps at the source and

detection stages and proposes solutions to address these limitations while improving

key generation rates.

The first chapter emphasizes the importance of establishing secure keys for enabling

secure communication. It discusses two main branches of cryptology: cryptogra-

phy, the art of securing information, and cryptanalysis, the art of breaking such

codes. Further, we discussed cryptographic techniques, including symmetric and

asymmetric key distribution methods, along with their limitations. It highlights the

weaknesses of classical cryptography, especially its vulnerability to future advance-

ments like powerful algorithms and quantum computers. Following the introduction

of the one-time pad (OTP), the issue of security essentially boils down to a key dis-

tribution problem. It then discusses how QKD has enabled secure key exchange

137
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by utilizing the laws of quantum mechanics to guarantee security without needing

to guess an eavesdropper’s limitations. However, potential vulnerabilities due to

imperfect devices highlight the need for further research in this area. Finally, it

presents the objective, overview and structure of the thesis.

The second chapter introduces the theoretical concepts of information theory and

the practical realization of QKD protocols. Initially, it examines the key tools, such

as Shannon entropy and mutual information, and establishes a relationship between

the two. Then, it explores qubits, their Bloch sphere representation, manipulation

techniques, and measurement methods. Moreover, we introduced the density ma-

trix formalism and delved into von Neumann entropy. Additionally, we explored

Quantum Key Distribution (QKD) algorithms, highlighting their security aspects,

including error correction and privacy amplification techniques. Leveraging the

polarization degree of freedom, it discusses practical implementations and estab-

lishes direct correspondences between theory and application. It then discusses the

BB84 protocol using weak coherent pulses, along with the essential mathematical

framework defining yield, gain, and QBER. In the following chapters, we gradually

introduced additional concepts and techniques relevant to the subsequent study.

The third chapter focuses on detector coupling mismatch and explores how imper-

fections at the detector end can lead to information leakage. We investigate scenar-

ios with low and high coupling mismatch, comparing them using cross-correlation

and mutual information. Our work demonstrates that improved coupling signifi-

cantly reduces information leakage by an order of magnitude. These leakage values

quantify the mismatch between detectors. Experiments are conducted using both

Gaussian and Laguerre-Gaussian beams for two types of symmetrical modes. We

calculate the mutual information between an eavesdropper and the legitimate re-

ceiver due to this mismatch. By addressing the information leakage, this research
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not only enhances system security but also helps determine the amount of secure

key that can be extracted.

The fourth chapter discusses the implementation of QKD using a weak coherent

source following Poissonian distribution. Accurate characterization of mean photon

number per pulse for weak coherent sources is crucial for secure QKD to minimize

information leakage from unintended multi-photon pulses. This chapter addresses

the limitations of SPADs and proposes using four detectors for better resolution in

low-photon scenarios employed in QKD. The chapter emphasizes the importance of

proper characterization to avoid security vulnerabilities and recommends using four

detectors for high mean photon number settings. The difference in the mean photon

number calculated using one and four SPADs is estimated. The values increase with

an increase in the mean photon number. Inaccurate mean photon number estimation

can cause undetected information leaks, hence compromising security.

The fifth chapter introduces the Entrapped Pulse Coincidence Detection (EPCD)

protocol, which combines two existing approaches for improved security in Quan-

tum Key Distribution (QKD). EPCD leverages the strengths of both decoy state

detection and coincidence counting to effectively address Photon Number Splitting

(PNS) attacks, a sophisticated eavesdropping technique. Additionally, the chap-

ter presents a novel method using Semi-Definite Programming (SDP) to calculate

tighter bounds on achievable key rates for various QKD protocols. It provides

tighter bounds on key rates compared to traditional methods and is parallelizable,

allowing for further refinement of bounds if needed. Simulations further confirm

the effectiveness of the EPCD protocol across different communication distances.

The EPCD protocol consistently outperforms others, demonstrating its potential to

extend secure communication distance.
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6.1 Scope For Future Work

In this thesis, we have studied the potential information leakage to the eavesdrop-

per due to imperfections at the source and detector end. We explored the ways for

rigorous characterisation of statistics of weak coherent pulses employed as a source

in QKD protocols. We discussed the vulnerabilities due to the use of these WCPs

instead of single photon sources. Finally, we proposed the entrapped pulse coinci-

dence detection (EPCD) protocol to enhance the security as well as the key rates of

protocols employing WCPs.

Expanding on the foundation established in this thesis, we want to conduct a

rigorous finite-key analysis to quantify the achievable secure key rate. By com-

paring this achievable key rate and security level with traditional QKD protocols

utilizing Weak Coherent Pulses (WCPs), we can quantify the enhancements pro-

vided by EPCD in terms of security and efficiency for the practical case of finite

key distribution.

In long-distance communication, loss is a critical factor affecting achievable key

rates. For the EPCD protocol, the two-photon yield depends quadratically on chan-

nel transmittance, necessitating thorough protocol analysis under loss conditions in

future studies. In free-space communication, atmospheric turbulence is inevitable,

making it essential to investigate its impact on EPCD protocol performance. Atmo-

spheric turbulence introduces distortions and losses in the communication channel,

directly affecting achievable key rates and Quantum Bit Error Rate (QBER). De-

veloping simulation models and conducting controlled experiments will help quan-

tify the impact of various turbulence parameters. Comparing the EPCD protocol’s

performance under turbulent conditions with existing protocols will provide valu-

able insights into their relative resilience against real-world channel imperfections.
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Studying turbulence effects on polarization, phase, and mode will be crucial, espe-

cially for satellite-to-ground QKD, where turbulence can significantly impact per-

formance and reliability.

Finally, exploring Measurement Device-Independent Quantum Key Distribution

(MDI-QKD) offers a path towards even stronger communication security. MDI-

QKD protocol enables the removal of side-channel attacks at the detector’s end.

While MDI-QKD requires nearly perfect state preparation by Alice and Bob, this is

a manageable condition since they can use attenuated laser pulses and verify their

states in a secure environment. Future research can refine the protocol to address

imperfections in state preparation, making MDI-QKD an even more practical and

secure solution. The potential future scope includes optimizing performance and

developing advanced protocols to support long-distance communication.

By pursuing these exciting avenues of future research, we can significantly con-

tribute to developing secure and practical QKD protocols that can be implemented

in real-world applications.





Appendix A

Supplementary Material for Chapter

4

A.1 Upper and lower limits of probability

The weak coherent pulses follow poisonnian photon statistics and to characterise

such a source its essential to give the rigourous bounds on pn. Such bounds were

formulated in [93] and the explicit formulas for the bounds calculated with D = 4

are given below. Where, they defined c̃obs,r := cobs,r/cr,r, which reduces to c̃obs,r =

cobs,r/(r! η
r) for the uniform cases of η = η1 = η2 = η3 = η4. They are of

O(1) in the limit of η → 0. To simplify the notations, they also defined sj :=∑
W∈Ij

∏
i∈W

ηi/

 D

j

 (j = 2, . . . , D), and ξi,j := si/
(
sjη

i−j)− 1(i, j = 2, . . . , D).
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The formula for the uniform case is simply given by setting ξi,j = 0 for all i, j.

pL0 = 1− c̃obs,1 + [1− (1− 3ξ2,1) η] c̃obs,2

−
[
1− (3− 3ξ3,2) η + (2− 12ξ3,2 + 6ξ3,1) η

2
]
c̃obs,3

+ 4 (1 + ξ4,3) η
[
1− 6η + (11 + 3ξ3,1) η

2

−6 (1 + ξ3,1) η
3
]
c̃obs,4,

(A.1)

pU0 = 1− c̃obs,1 + [1− (1− 3ξ2,1) η] c̃obs,2

−
[
1− (3− 3ξ3,2) η + (2− 12ξ3,2 + 6ξ3,1) η

2
]
c̃obs, 3

+ [1− (6− 2ξ4,3) η + (11 + 6ξ2,1 − 8ξ3,2/3

−12ξ4,3 + 11ξ4,2/3) η2 − (6 + 24ξ2,1 − 32ξ3,2/3

−16ξ4,3 + 44ξ4,2/3− 6ξ4,1) η
3
]
c̃obs ,4,

(A.2)

pL1 = c̃obs,1 − [2− (1− 3ξ2,1) η] c̃obs,2

+
[
3− (6− 6ξ3,2) η + (2− 12ξ3,2 + 6ξ3,1) η

2
]
c̃obs ,3

− [4− (18− 6ξ4,3) η + (22 + 12ξ2,1

−16ξ3,2/3− 24ξ4,3 + 22ξ4,2/3) η2

− (6 + 24ξ2,1 − 32ξ3,2/3

−16ξ4,3 + 44ξ4,2/3− 6ξ4,1) η
3
]
c̃obs 4,,

(A.3)

pU1 = c̃obs, 1 − [2− (1− 3ξ2,1) η] c̃obs, 2

+
[
3− (6− 6ξ3,2) η + (2− 12ξ3,2 + 6ξ3,1) η

2
]
c̃obs, 3

− 4 (1 + ξ4,3) η
[
3− 12η + (11 + 3ξ3,1) η

2
]
c̃obs,4,

(A.4)
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pL2 = c̃obs,2 − 3 [1− (1− ξ3,2) η] c̃obs,3

+ 12 (1 + ξ4,3) η(1− 2η)c̃obs 4,,
(A.5)

pU2 = c̃obs ,2 − 3 [1− (1− ξ3,2) η] c̃obs ,3

+ [6− (18− 6ξ4,3) η + (11 + 6ξ2,1

−8ξ3,2/3− 12ξ4,3 + 11ξ4,2/3) η2
]
c̃obs ,4,

(A.6)

pL3 = c̃obs,3 − [4− 2 (3− ξ4,3) η] c̃obs,4, (A.7)

pU3 = c̃obs ,3 − 4 (1 + ξ4,3) ηc̃obs ,4, (A.8)

pL≥4 = 4! (1 + ξ4,1) η
4c̃obs ,4, (A.9)

pU≥4 = c̃obs 4.. (A.10)

A.2 Data Analysis of Chapter 4

Algorithm 1 Source Characterization
1: Data Preparation and Initialisation

• Read the data file containing 100 sets.

• Separate the columns into singles, two-fold coincidences, three-fold co-

incidences, and four-fold coincidences.

2: Method 1 (4.2.2)



146 Chapter A. Supplementary Material for Chapter 4

• Use the equation (4.5) in Method 1 to calculate the mean photon number

for each row.

• Compute the average mean photon number and variance over the 100

repetitions for each intensity level.

3: Method 2 (4.2.3)

• Use Method 2 to calculate the mean photon number.

• For each row, calculate the upper and lower limits on probabilities for the

number of photons per pulse (see appendix A.1).

• Perform a Poissonian fit to these probabilities to determine the mean pho-

ton number.

• Compute the average mean photon number and variance over the 100

repetitions for each intensity level.

4: Repeat for Different Intensities

• Repeat the analysis for different intensities of the same source.

• Record the mean photon numbers for each intensity level using Method

1 and Method 2.

5: Repeat for Different Sources

• Repeat the analysis (Steps 1 to 4) for all four sources.

• Record the mean photon numbers for each source at each intensity level.

6: end =0
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Supplementary Material for Chapter

5

B.1 Converting to a finite optimisation problem

As the objective function of problem (5.12) only consists of 2 terms with 4 vari-

ables, removing infinite parameters from constraints suffices. Consider the follow-

ing lower bound on the constraint for Qνd in the optimization problem:

Qνde
νd =

n∑
k=0

Yk
νkd
k!

+
∞∑

k=n+1

Yk
νkd
k!

≤
n∑
k=0

Yk
νkd
k!

+
∞∑

k=n+1

νkd
k!

(B.1)

where the above inequality holds because Yk ∈ [0, 1]. Therefore, defining Θn(νd)

by the sum

Θn(νd) :=
∞∑

k=n+1

νkd
k!

= eνd −
n∑
k=0

νkd
k!

(B.2)
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allows us to obtain a relaxation corresponding to the constraintQνde
νd =

∞∑
k=0

Ykν
k
d/k!

in optimization problem (5.12):

Qνde
νd −Θn(νd) ≤

n∑
k=0

Yk
νkd
k!
≤ Qνde

νd . (B.3)

In other words, we have formed a relaxation of the constraint given by an infinite

sum of infinitely many variables through a constraint that involves a finite sum of

finitely many variables. We use similar arguments to derive the following relax-

ations of the constraints for EνdQνde
νd in optimization problem (5.12):

EνdQνde
νd −Θn(νd) ≤

n∑
k=0

ekYk
νkd
k!
≤ EνdQνde

νd (B.4)

The above relaxations allow us to prove the following lemma:

Lemma 1. Let us consider the optimization problem

rn := inf
(
Y1µ (1− Φ (2e1 − 1))

+ Y2
µ2

2

(
1− Φ

(
(2e2 − 1)2

)) )
s.t. ∀k : Yk, ek ∈ [0, 1]

∀d : Qνde
νd −Θn(νd) ≤

n∑
k=0

Yk
µk

k!

∀d :
n∑
k=0

Yk
µk

k!
≤ Qνde

νd

∀d : EνdQνde
νd −Θn(νd) ≤

n∑
k=0

ekYk
µk

k!

∀d :
n∑
k=0

ekYk
µk

k!
≤ EνdQνde

νd (B.5)
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Then rn ≤ r. Furthermore,

lim
n→∞
|rn − r|= 0

Proof. Consider the optimization problems for rn and r. From the preceding dis-

cussion, it is evident that the constraints in problem (B.5) serve as relaxations for

the constraints in problem (5.12). Consequently, the feasible set of optimization

problem (5.12) is a subset of that of optimization problem (B.5). Moreover, the

optimization problems designed to compute both r and rn share identical objective

functions. Thus, rn ≤ r holds for all n ∈ R.

Additionally, it is straightforward to recognize that when n < m, the constraints

of the optimization problem for rn are relaxations of those for rm. This imme-

diately implies that rn ≤ rm. As we continue this process, the feasible set for

the optimization problem for rn approaches that of the optimization problem for r.

Consequently, the non-decreasing sequence {rn}n will converge to r.

B.2 Data Analysis of Chapter 5

Algorithm 2 Computing the Key Rate
1: Input:

2: Gain and QBER for signal (Qµ, Eµ)

3: Gain and QBER for decoy (Qν , Eν)

4: Signal and decoy intensities (µ, ν)

5: Step 1: Define Function to Calculate Key Rate for BB84

6: function calculate_key_rate_BB84(Qµ, Eµ, µ):

7: Formulate the objective function (5.14)

8: Define constraints based on Qµ, Eµ, µ

9: Solve the optimization problem using the SDP solver
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10: Compute the key rate K using Eq. (5.13)

11: return key rate K of BB84

12: Step 2: Define Function to Calculate Key Rate for CD

13: function calculate_key_rate_CD(Qµ, Eµ, µ):

14: Formulate the objective function (5.12)

15: Define constraints based on Qµ, Eµ, µ

16: Solve the optimization problem using the SDP solver

17: Compute the key rate K using Eq. (5.11)

18: return key rate K of CD

19: Step 3: Define Function to Calculate Key Rate for Decoy

20: function calculate_key_rate_Decoy(Qµ, Eµ, Qν , Eν , µ, ν):

21: Formulate the objective function (5.14)

22: Define constraints based on Qµ, Eµ, Qν , Eν , µ, ν

23: Solve the optimization problem using the SDP solver

24: Compute the key rate K using Eq. (5.13)

25: return key rate K of Decoy

26: Step 4: Define Function to Calculate Key Rate for EPCD

27: function calculate_key_rate_EPCD(Qµ, Eµ, Qν , Eν , µ, ν):

28: Formulate the objective function (5.12)

29: Define constraints based on Qµ, Eµ, Qν , Eν , µ, ν

30: Solve the optimization problem using the SDP solver

31: Compute the key rate K using Eq. (5.11)

32: return key rate K of EPCD

33: Step 5: Execute and Obtain Results

34: Obtain key rates for each protocol:

35: KBB84 ← calculate_key_rate_BB84(Qµ, Eµ, µ)

36: KCD ← calculate_key_rate_CD(Qµ, Eµ, µ)
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37: KDecoy ← calculate_key_rate_Decoy(Qµ, Eµ, Qν , Eν , µ, ν)

38: KEPCD ← calculate_key_rate_EPCD(Qµ, Eµ, Qν , Eν , µ, ν)

39: Output:

40: Key rates;KBB84, KCD, KDecoy, and KEPCD

41: end =0
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