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Abstract

The Standard Model (SM) has been extremely successful in explaining the funda-

mental interactions among elementary particles. However, the electroweak sym-

metry breaking (EWSB) sector of the SM remains untested yet as its central pillar,

known as the Higgs boson, has not been discovered so far. That is why the most

important goal of the current and future colliders like the Large Hadron Collider

(LHC) at CERN and the International Linear Collider (ILC) is to discover the

Higgs boson and study its properties with great precision so as to ascertain it

to be the SM Higgs as different alternate scenarios beyond the SM (BSM) e.g.,

Minimal Supersymmetric Standard Model (MSSM), Two Higgs Doublet Model

(THDM) etc. allow for a number of Higgs particles. Also, the top quark, because

of its large mass (close to EWSB scale), is considered to play an important role

in the probe of EWSB. In this thesis, we study Higgs boson and top quark cou-

plings in various new physics (NP) scenarios and at different colliders to probe the

EWSB utilizing the polarization of the final state top quark at the LHC and the

polarization of the initial beams at the ILC.

In the case of the ILC, we study anomalous ZZH and γZH couplings in the

process e+e− → ZH with polarized initial beams. We consider both electron

and positron beams to be polarized simultaneously. Our main emphasis in this

work is to obtain simultaneous limits on the anomalous couplings to the extent

possible making use of combination of observables and/or polarizations. We study

angular distributions of the Z using both longitudinally as well as transversely

polarized beams and construct various asymmetries. We also study the angular

correlations of the charged leptons coming from Z decay. Using the momenta

of the charged leptons, we construct various correlations having definite CP and

T transformation properties. We find that the longitudinal polarization helps to

enhance the sensitivities of the couplings relative to the unpolarized case. The

most remarkable result from the study of transverse polarization is that it helps

to probe a specific coupling Imaγ which is inaccessible in the distributions with

longitudinally polarized as well as unpolarized beams.

In the context of the LHC, we focus on the study of NP involved in single-top

production. First we study the single-top production in association with a W−

boson to study the sensitivity of the LHC to anomalous tbW couplings. Here we

also consider the possibility of CP violation. Then we study single-top production

in association with a charged Higgs in THDM of type II and probe the parameters
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of the model at the LHC. In these studies, we utilize polarization of the final

state top quarks since different NP scenarios give different predictions for top

polarization. As a measure of top polarization, we look at various laboratory frame

distributions of its decay products, viz., lepton angular and energy distributions

and b-quark angular distributions, without requiring reconstruction of the rest

frame of the top. In the charged Higgs case, we only study charged lepton angular

distributions as they have been proven to be independent of any NP involved in

top-decay and hence are the pure probes of parameters of THDM contributing

only in the production. We construct certain asymmetries to study the sensitivity

of these distributions to the NP involved in the single-top production. We find

that these asymmetries are sensitive probes of the NP involved in the single-top

production.
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Chapter 1

Introduction

The Standard model (SM) of particle physics has been the most ambitious and the

most organized efforts of many great particle physicists over the years to answer

the question of what this universe is made up of. It has been a crown jewel of high

energy particle physics for past several decades. However, there are various issues

which cannot be explained in the SM, for example, the observed matter-antimatter

asymmetry of the universe, experimentally observed neutrino mass etc. Also, the

first-principle understanding of the mechanism of spontaneous electroweak sym-

metry breaking (EWSB) is not fully available to us. In the SM, masses of all the

elementary particles are generated by introducing a scalar doublet into the theory

which after acquiring the vacuum expectation value (vev) induce the EWSB. This

mechanism is known as the Higgs mechanism which provides us three would-be

Goldstone bosons corresponding to three broken generators, which appear as lon-

gitudinal polarizations of massive gauge bosons. The fourth degree of freedom of

the scalar doublet is CP even and neutral, and corresponds to the “Higgs” boson

[1]. So far, the Higgs boson has not been discovered. Therefore, the most im-

portant aim of current colliders, viz., the Large Hadron Collider (LHC) at CERN

and the Tevatron at Fermilab; and future colliders, viz., the International linear

collider (ILC) and the Compact Linear Collider (CLIC), is to probe the mecha-

nism of EWSB through the study of interactions of Higgs with heavier particles

like electroweak (EW) gauge bosons and the top quark.

The top quark is the heaviest elementary particle discovered so far. It has been

discovered at the Tevatron which is a proton-antiproton collider. Because of its

large mass, it is widely considered to be closely related to the mechanism of EWSB

and provides a natural window to probe the hypothesis concerning the EWSB. The

1
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top quark is unique in the sense that it decays before its hadronization and hence

provides a way to study the polarization of top quarks through the distribution of

its decay products.

In this thesis, we explore different possible ways to probe the mechanism of

EWSB through the studies of Higgs boson and top quarks at colliders. We utilize

the polarization as a tool to probe the new physics responsible for EWSB. In the

case of ILC we utilize the facility of beam polarization which we expect to be

available there at the time of its operation. In the context of LHC, we study the

polarization of top quarks in various single top production processes and construct

various laboratory frame observables to probe couplings of top quarks and Higgs

bosons related to EWSB. We have followed model independent approach in our

analysis to probe the Higgs and the top quark couplings.

We begin this chapter with a brief overview of the SM and its Lagrangian. We

then give an overview of EWSB and then study the Higgs boson couplings with

the EW gauge bosons and fermions. We also give a brief introduction to the issue

of polarization studies at colliders.

1.1 Standard Model (SM)

The SM [2] is a quantum field theory of the fundamental building blocks of the

universe. These fundamental building blocks include fermions interacting with each

other through interaction mediators known as gauge bosons. These gauge bosons

arise by requiring the theory to be locally gauge invariant under transformations

in the SM gauge group SU(3)C × SU(2)L × U(1)Y .

We begin with a brief overview of construction of a Lagrangian invariant un-

der local gauge transformations. This idea forms the building block of all gauge

theories. The Lagrangian in a non-interacting SU(N) gauge theory, also known as

Yang-Mills theory [3], of a fermion of mass m is given by

L = Ψ̄ (i∂µγ
µ −m) Ψ (1.1)

where Ψ is a N-plet of fermion fields ψa. It can be easily checked that the La-

grangian 1.1 is invariant under the phase transformation Ψ(x) → eiα
aTa

Ψ(x),

where αa (a = 1, . . . , N) are constant parameters and T a(a = 1, . . . , N) are the

generators of the SU(N) group represented by Hermitian matrices which obey the

commutation relations
[

T a, T b
]

= ifabcT c. (1.2)
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This invariance is known as ‘global’ SU(N) gauge invariance. Now, let the phase

parameters αa depend upon space-time i.e., αa = αa(x). Now the Lagrangian 1.1

is not invariant under such a local gauge transformation. To make it local gauge

invariant, we must introduce vector fields into the theory which is accomplished

through the definition of covariant derivative as :

Dµ ≡ ∂µ + igT aAa
µ(x) (1.3)

where Aa
µ transforms according to

T aAa
µ(x) → eiα

a(x)Ta

{

T bAb
µ(x)−

i

g
∂µ

}

(

eiα
c(x)T c)†

, (1.4)

ensuring that DΨ transforms exactly like Ψ under the gauge group SU(N). This

leads to the locally gauge invariant Lagrangian in terms of Dirac fields:

L = iΨ̄γµDµΨ−mΨ̄Ψ, (1.5)

The covariant derivative brings in interaction between fermion fields and vector

fields. For dynamical vector fields, it must have kinetic terms in the Lagrangian.

We write kinetic term for vector field as :

L = −1

4
Ga
µνGµν

a , (1.6)

where

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gfabcGbµGcν , (1.7)

to ensure that the kinetic term for non-abelian vector fields Ga
µ be invariant under

gauge transformation. g is the same coupling that appears in the covariant deriva-

tive for the fermion. In the Lagrangian for vector fields, we cannot write mass

terms for them explicitly because mass terms break gauge invariance.

As the basic recipe to construct a local gauge invariant Lagrangian has been

explained, we now write the Lagrangian for the SM. The particle content in the

SM is given in Table 1.1. In the SM, the left-chiral fermions and the right-chiral

fermions have different quantum numbers, with the left-chiral fields arranged in

doublets,

LL =

(

νe

e

)

L

, QL =

(

u

d

)

L

, (1.8)

and the right-fermion fields in singlets,

eR, uR, dR. (1.9)
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Particles electric charge spin

Quarks
u, c, t +2/3 1/2

d, s, b −1/3 1/2

Leptons
e, µ, τ −1 1/2

νe, νµ, ντ 0 1/2

Gauge bosons
γ, Z , gluons 0 1

W± ±1 1

Scalar Higgs 0 0

Table 1.1: Particle content of the SM

The Lagrangian describing the fundamental particles and their interactions in the

SM is invariant under the transformations of the group SU(3)C ×SU(2)L ×U(1)Y

as well as Lorentz invariant. We write the SM Lagrangian in the following form :

LSM = LEW + LQCD (1.10)

where

LQCD = Ψ̄

[

igs
λa

2
Aa

µγ
µ

]

Ψ− 1

4
GaµνGa

µν (1.11)

and LEW is further written as :

LEW = LF + LG + LY + LS, (1.12)

with

LF =
3
∑

i=1

ψ̄i
LγµDµ

Lψ
i
L +

3
∑

i=1

ψ̄i
RγµDµ

Rψ
i
R, (1.13)

LG = −1

4
WaµνWa

µν −
1

4
BµνBµν , (1.14)

LY = −Y ij
u q̄

i
Lφ̃u

j
R − Y ij

d q̄
i
Lφd

j
R − Y ij

e L̄
i
Lφe

j
R, (1.15)

LS = (Dµ
Lφ)

†
(DLµφ)− V(φ). (1.16)

In the Lagrangian of spin-half matter fields LF , the sum runs for all three

generations of lepton and quark fields. In the Lagrangian of gauge fields LG, Wa
µν

and Bµν are the field strength tensors for the vector fields of SU(2)L and U(1)Y

gauge groups respectively. In the Yukawa Lagrangian LY , Y ij
u , Y ij

d and Y ij
e are

the Yukawa matrices for up-type quarks, down-type quarks and charged leptons
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respectively. The fermions couple to gauge bosons through covariant derivatives

which are defined as:

Dµ
L =

(

i∂µ − g2
2
τaW aµ − g1

2
Y Bµ

)

, (1.17)

Dµ
R =

(

i∂µ − g1
2
Y Bµ

)

. (1.18)

In the Lagrangian of Dirac and vector fields, there are no mass terms for them

as they are forbidden by the gauge symmetries. We will see in the next section how

the particle masses are generated by the spontaneous breakdown of SU(2)L×U(1)Y
to U(1)Q (known as Higgs mechanism).

1.2 Electroweak Symmetry breaking (EWSB) in

the SM

The gauge invariance under SU(2)L forbids mass terms for the fermions. Similarly,

gauge boson mass terms m2
AA

µAµ are also not allowed by gauge invariance. As

we demand the SM Lagrangian to be gauge invariant, these explicit mass terms

cannot be accommodated in the Lagrangian. Since all these particles are found

to be massive in nature, we need to have some mechanism to generate masses

of all the particles without spoiling gauge invariance. This problem is cured by

introducing a hypercharge Y = 1 scalar SU(2)L doublet into the SM and when

this scalar acquires a vev, it induces a spontaneous symmetry breaking, thereby

generating the masses of all the particles in the SM. This mechanism is known as the

Higgs-Brout-Englert-Guralnik-Hagen-Kibble mechanism of spontaneous symmetry

breaking (SSB) [1] or simply “the Higgs mechanism”. Under SSB, the Lagrangian

remains invariant under the gauge transformations but the vacuum state do not

respect the symmetry.

In the SM, SSB is induced by a Higgs doublet which is a hypercharge Y = 1

scalar SU(2)L doublet. The Higgs interacts with fermions through Yukawa cou-

plings written in Eq. 1.15 and couples to gauge bosons through covariant derivative

in the kinetic terms in the Lagrangian LS of Eq. 1.16. The Higgs potential in Eq.

1.16 can be written as

V(φ) = −m2φ†φ+ λ|φ†φ|2. (1.19)

It can be easily checked that the wrong sign in the mass term leads to non-zero
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constant vev for the scalar field. We choose vev φ0 of the Higgs field to be

φ0 =
1√
2

(

0

v

)

(1.20)

and expand φ in terms of fluctuation around φ0 as

φ =
1√
2

(

0

v +H(x)

)

exp [i−→τ · −→η (x)/v] (1.21)

with v =
√

m2/λ, −→η (x) being three Goldstone bosons and h(x) being the Higgs

boson.

1.2.1 Generation of gauge boson masses

The masses of the gauge bosons are generated through the covariant derivative

of the scalar field. Using Eq. 1.21, we write the LS of Eq. 1.16 in terms of the

expansion 1.21 of the scalar field (given in Eqn. 1.21) as

|DL
µφ|2 =

1

2
(∂µH)2 +

1

8
(v +H)2

[

g22|W 1
µ + iW 2

µ |2 + |g2W 3
µ − g1Bµ|2

]

.(1.22)

We define new fields W±
µ , Zµ and Aµ by

W±
µ =

(

W 1
µ ∓W 2

µ

)

√
2

, Zµ =

(

g2W
3
µ − g1Bµ

)

√

g21 + g22
, Aµ =

(

g1W
3
µ + g2Bµ

)

√

g21 + g22
, (1.23)

and rewrite the Eq. 1.22 in terms of these fields as

|Dµφ|2 =
1

2
(∂µH)2 +

1

8
(v +H)2

[

2g22W
+
µ W

µ− +
(

g21 + g22
)

ZµZ
µ
]

. (1.24)

Hence, from Eq. 1.24, the masses of the EW gauge bosons are

mW =
1

2
g2v; mZ =

1

2
v
√

g21 + g22, mA = 0; (1.25)

The appearance of mass terms for the gauge bosons after SSB can be explained by

gauge bosons absorbing (eating) the would-be Goldstone bosons, ηi, which serve

as longitudinal polarizations of the gauge bosons. Thus, after SSB, the local gauge

group SU(2)L×U(1)Y is broken down to U(1)Q and since photon, Aµ corresponds

to unbroken group U(1)Q, it remains massless.

As mentioned previously, the SSB has mixed the Bµ and W 3
µ gauge bosons and

the mass eigenstates consist of the massive Z boson and massless photon Aµ,
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(

Zµ

Aµ

)

=

(

cos θW − sin θW

sin θW cos θW

)(

W 3
µ

Bµ

)

(1.26)

where the mixing angle θW is defined as

tan θW =
g1
g2
. (1.27)

It is customary to define SM couplings in terms of the weak mixing angle, θW ,

coupling of the photon, e, mass of the Z, mZ , and mass of the Higgs boson, mH ,

rather than parameters µ2, λ, g1 and g2. It is trivial to relate these two sets of

parameters and the relations among the two sets of parameters are:

sin θW =
g1

√

g21 + g22
, cos θW =

g2
√

g21 + g22
, mZ =

mW

cos θW
, e = g1 sin θW . (1.28)

1.2.2 Generation of fermion masses

We have seen how SSB generates masses of the gauge bosons. In the SM, the same

mechanism provides masses for the fermions through Yukawa interactions of Eqn.

1.15. As can be seen from the Eqn. 1.15, there is only one term for lepton while

there are two terms for quarks in the Lagrangian. This is because of the fact that

there are no right handed neutrinos in the SM. After SSB, if we write Higgs field

φ in terms of physical fields in Eqn. 1.15, we obtain

L = −Y ij
e

[

v√
2

(

ēiLe
j
R + ēiRe

j
L

)

+
H√
2

(

ēiLe
j
R + ēiRe

j
L

)

]

(1.29)

− Y ij
d

[

v√
2

(

d̄iLd
j
R + d̄iRd

j
L

)

+
H√
2

(

d̄iLd
j
R + d̄iRd

j
L

)

]

(1.30)

− Y ij
u

[

v√
2

(

ūiLu
j
R + ūiRu

j
L

)

+
H√
2

(

ūiLu
j
R + ūiRu

j
L

)

]

(1.31)

From Eqn. 1.29, the terms involving the vev of the Higgs field are the mass

terms for the lepton. Since there are no right-handed neutrinos, one can choose a

basis where Yukawa matrix for lepton Y ij
e is diagonal and the mass of leptons are

given by

mi
e =

Y ii
e v√
2
. (1.32)

The scene is somewhat complicated for the quark sector. Because of the pres-

ence of right-handed up quarks in the SM, the diagonalization of the up and down
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quark Yukawa matrices Y ij
u and Y ij

d is not trivial. One can choose a basis where Y ij
u

is diagonal. This implies choosing a basis where up quark, charm quark and top

quark are the physical particles. However, the matrix Y ij
d need not be diagonal in

this basis. This is a new feature, not encountered for leptons, since there was only

one kind of matrix in the leptonic case which could always be taken as diagonal.

To obtain physical states for down type quarks, we then need to diagonalize

this mass matrix. This task is executed by doing bi-unitary transformation. It

implies that for any matrix Y ij, it is possible to find two unitary matrices K and

K′ such that Ȳ = K′YK is diagonal. The diagonal elements are then interpreted as

the masses of physical down type quarks identified as down quark, strange quark

and bottom quark. Hence the masses of down and up type quarks are written as

(md)ii =
Ȳdv√
2
D̄i

LDi
R, (mu)ii =

Ȳuv√
2
Ū i
LU i

R, (1.33)

where U i and Di are the physical states for up and and down type quarks respec-

tively and are defined as:

U i
L = Kij†

u U j
L, U i

R = K′ij†
u U j

R (1.34)

Di
L = Kij†

d Dj
L, Di

R = K′ij†
d Dj

R (1.35)

This has an interesting consequence on the gauge interactions of quarks. The

interaction of W with quarks in terms of mass eigenstates can be written as:

LW =
g√
2

∑

ij

[

Ū i
L(K†

LK
′
R)ijγ

µDj
RW

+
µ + h.c.

]

. (1.36)

The matrix Vij = (K†
LK

′
R)ij is known as the Cabbibo-Kobayashi-Maskawa (CKM)

matrix and is related to the generational rotation. The CKM matrix is parameter-

ized by three real rotational angles and one CP-violating phase. The form of the

neutral current interaction is the same when written either in terms of gauge or in

terms of mass eigenstates. This implies that there is no mixing matrix analogous

to the CKM matrix in the neutral current sector.

1.3 The Higgs boson phenomenology

The study of the Higgs boson involves the measurement of its mass, decay widths,

spin and couplings to various particles. There are predictions of Higgs boson

couplings with other particles in the framework of a model. However, the Higgs

mass remains an independent parameter in any model and only bounds on it are

predicted assuming its couplings in that model.
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1.3.1 Bounds on the Higgs boson mass

Mass of the Higgs boson is one of the parameters that cannot be predicted in

the SM. However it is possible to obtain the theoretical bounds on it by using

unitarity of scattering amplitudes, triviality of scalar field theory and stability of

the vacuum. We give a brief overview of these bounds. (See Ref. [4] for details.)

The cross section of W+
L W

−
L scattering has a bad high energy behavior if one

does not include Higgs exchange diagram in the theoretical calculation. In princi-

ple, the amplitude of W+
L W

−
L → W+

L W
−
L violates unitarity at very high energies

and hence to restore unitarity, one needs to include the Higgs exchange diagram.

Writing the cross section of process W+
LW

−
L →W+

L W
−
L by decomposing scattering

amplitude A in terms of partial wave amplitudes aℓ as

σ =
16π

s

∞
∑

0

(2ℓ+ 1)|aℓ|2 (1.37)

and using optical theorem

σ =
1

s
Im[A(θ = 0)], (1.38)

where A(θ = 0) is the scattering amplitude in forward direction, we get

|aℓ|2 = |Reaℓ|2 + |Imaℓ|2 = Imaℓ ⇒ |Reaℓ| ≤
1

2
. (1.39)

The Higgs contributes to the J = 0 partial wave amplitude for the process and in

the high energy limit (s≫ m2
H), we obtain a0 = − m2

H

8πv2
which leads to upper bound

on Higgs mass to be 870 GeV. The same analysis can be carried out for processes

W+
L W

−
L → ZLZL, ZLZL → ZLZL etc. and combining scattering amplitudes of all

such process further restricts the upper bound on the Higgs mass to 710 GeV.

The other theoretical bounds on the Higgs mass come from the Renormalization

Group (RG) evolution of the Higgs quartic coupling. In a pure scalar λφ4 theory,

the quartic coupling λ at scale Q2 using RGE equation is written as

d

dlogQ2
λ(Q2) =

3

4π2
λ2(Q2) + higher order terms. (1.40)

However, in the SM, the running of the Higgs self-coupling gets contribution from

fermions and gauge bosons. Including these contributions, RGE for the quartic

coupling is written as :

d

dlogQ2
λ(Q2) =

1

16π2

[

12λ2 + 6λλt − 3λ2t −
3

2
λ(3g22 + g21)

+
3

16
(2g42 + (g22 + g21)

2)
]

(1.41)
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where λt is the top Yukawa coupling and the mass of the Higgs is related to its self

coupling λ by mH = 2λv2.

For large Higgs self-coupling λ i.e., for large Higgs mass, the first term in Eqn.

1.41 dominates and hence for heavy Higgs, the quartic coupling at scale Q2 can be

approximately written as

λ(Q2) =
λ(v2)

[

1− 3
4π2λ(v2)log

Q2

v2

] . (1.42)

Hence, for large energy, the coupling λ grows and eventually diverges at

Qc = vexp

(

2π2

3λ

)

= vexp

(

4π2v2

3m2
H

)

. (1.43)

The point where λ diverges is called the Landau pole. On the other hand, at very

small energy scale, Q≪ v, the coupling λ becomes very small and eventually goes

to zero making the Higgs theory non-interacting or trivial. Thus, for a theory to

be perturbative upto some scale, one can choose a Higgs mass such that λ remains

finite over entire range and avoids the Landau pole. Using Eqn. 1.43, one can find

the upper limit on Higgs mass as:

m2
H <

8π2v2

3log(Q
2

v2
)

(1.44)

where Q is the scale of new physics. For Q ∼ 106, one requires mH ≤ 200 GeV and

for Q ∼ 103, the Higgs mass can be as large as 1 TeV, still avoiding the Landau

pole.

For small quartic coupling λ the top quark contribution can be dominant and

could lead the coupling to a negative value, thus making the vacuum of the theory

unstable. This vacuum stability condition puts a lower bound on the Higgs mass

m2
H ≥ v2

8π2

[

−12
m4

t

v4
+

3

16
(2g22 + (g21 + g22)

2)

]

log
Q2

v2
. (1.45)

The lower bound on the Higgs mass depends on the scale of new physics Q. For

example, at Q ∼ 103 GeV, we have mH > 70 GeV and for Q ∼ 106 GeV, the lower

limit on Higgs mass is 130 GeV (For a recent discussion, see [5].).

The direct constraints on the Higgs mass come from LEP-I and LEP-II ex-

periments at CERN. At LEP-I, the Higgs boson has been searched at cm energy√
s ∼ mZ in the s-channel process e+e− → ZH with Z being off-shell and decaying

to fermion-antifermion pair. Absence of any Higgs signal at LEP-I set a limit of
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mH & 65.2 GeV at 95% CL. At LEP-II, the same process, but now with an on-shell

Z, was reviewed at
√
s = 209 GeV and no Higgs signal has been found which put a

limit of mH > 114.4 GeV at 95 % CL (For details, see [6].). The combined results

from CDF and D0 on direct search for a SM Higgs boson in the channel pp̄→ V H ,

where V = W,Z exclude the mass range 160 < mH < 170 GeV at 95 % CL [7].

The EW precision measurements also put an upper bound on the Higgs mass. The

global χ2 fit to all the EW measurements as a function of the Higgs mass put a

95% CL upper bound on mH to be mH . 163 GeV [8].

1.3.2 Higgs boson couplings

The Higgs couplings to the SM particles are determined by the mass of the particles

to which it couples. The Higgs couplings to the EW gauge bosons can be read from

the Eqn. 1.22 by expanding (v +H)2 and keeping the terms linear in H :

:
2im2

W

v
gµν

W+
µ

W−
ν

H
:

2im2
Z

v
gµν

Zµ

Zν

H

Figure 1.1: SM couplings of the Higgs boson to EW gauge bosons.

The Higgs boson couplings to the SM fermions can be written from Eqns. 1.29,

1.30 and 1.31 as

Γff̄H =
Y ii

f√
2
=
mf

v
(1.46)

where f can be any of the fermions i.e., charged lepton, down-type quarks and

up-type quarks.

Once the Higgs boson is discovered, it would require a detailed and precise mea-

surement of its fundamental properties, i.e., its spin, its mass and more importantly

its couplings to heavier particles, to establish it as the SM Higgs. Since almost

all BSM theories predict the existence of more than one Higgs boson, it would be
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essential to analyze the experimental data with the most general Higgs interac-

tions encompassing various BSM models. Therefore, it is apt to adopt a model

independent or effective Lagrangian approach to perform this sort of analysis in a

more general and unambiguous manner.

Anomalous Higgs boson couplings to vector bosons

As mentioned earlier, Higgs couplings are proportional to masses of the particles

which it couples. Hence, it is appropriate to study Higgs interactions with heavier

particles like the massive EW vector bosons W± and Z. We study interactions of

EW bosons with the Higgs in a model-independent approach and write the most

general V V H (V = W/Z/γ) interactions consistent with the Lorentz invariance as

ΓV
µν = gVmZ

[

aV gµν +
bV
m2

Z

(k1νk2µ − gµνk1 · k2) +
b̃V
m2

Z

ǫµναβk
α
1 k

β
2

]

, (1.47)

where k′is denote the momenta of the two vector bosons. In general, the couplings

aV , bV and b̃V are complex. The couplings aV and bV are CP even while the

coupling b̃V is CP odd. Hence the simultaneous presence of both the couplings

would signal CP violation.

However, there is an alternative approach for the model independent analysis

where the effective Lagrangian for an interaction is originated when all the dy-

namical degrees of freedom above a particular cut-off scale Λ are integrated out

in an underline theory. This results in a series of higher-dimensional operators in

the effective Lagrangian. The operators in the effective Lagrangian are suppressed

by powers of Λ and are weighted by real coefficients which are known as Wilson

coefficients.

The effective Lagrangian for the V V H interactions is written as

Leff
HV V =

∑

i

fi
Λ2

Oi +
∑

i

f̃i
Λ2

Õi (1.48)

where Oi and Õi are the CP-even and CP-odd dimension-6 operators satisfying

SU(2)L × U(1)Y and are listed below:
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OWW = Φ†WµνWµνΦ,

OWW = Φ†BµνBµνΦ,

OWW = Φ†BµνWµνΦ,

OW = (Dµ
LΦ)

†Wµν (Dν
LΦ) ,

OB = (Dµ
LΦ)

† Bµν (Dν
LΦ) ,

OΦ,1 = (DLµΦ)
†Φ†Φ (Dµ

LΦ) , (1.49)

ÕWW =
1

2
ǫµναβΦ

†WµνWαβΦ,

ÕWW =
1

2
ǫµναβΦ

†BµνBαβΦ,

ÕWW =
1

2
ǫµναβΦ

†BµνWαβΦ,

ÕW =
1

2
ǫµναβ (Dµ

LΦ)
† Wαβ (Dν

LΦ) ,

ÕB =
1

2
ǫµναβ (Dµ

LΦ)
† Bαβ (Dν

LΦ) , (1.50)

where covariant derivative Dµ
L is defined in Eqn. 1.17. These operators contribute

to anomalousW+W−H , ZZH , γZH and γγH couplings in Eqn. 1.47. One specific

practical aspect in which our approach differs from that of effective Lagrangians is

that while the couplings are all taken to be real in the latter approach, we allow

the couplings to be complex, and, in principle, momentum-dependent form factors.

In the next two chapters, we will investigate the sensitivity of 500 GeV ILC

to these anomalous V ZH (V = Z, γ) couplings utilizing the facility of both

longitudinal and transverse beam polarizations. A brief introduction about beam

polarizations at a linear collider has been given in the next section.

1.4 Beam polarization at linear collider

The full potential of a linear collider can only be achieved through polarized beams

as it would lead to search for new physics with high sensitivity. Already the Stan-

ford Linear Collider (SLC) has highlighted the importance of polarized electron

beams in the SLAC Large Detector (SLD) experiment through the detailed and

precise measurements of parity violation in weak neutral current interaction by

studying e+e− collisions at the Z resonance [9]. The electron beam was 75% po-
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larized in the SLD experiment which provided enhancement in statistical power of

a factor of 25 for left-right forward-backward asymmetry. In particular the SLD

experiment determined best individual measurement of the weak mixing angle θW .

In our work, we consider both electron and positron beams to be polarized

at ILC. A high degree of polarization of at least 80% for electron beams and

30% for positron beams has already been achieved at a test facility [10]. New

results indicate that 60% polarization for positron beams should be achievable

[11]. The dominant processes in e+e− collisions are annihilation (s-channel) and

scattering (t- and u-channel) processes. In annihilation processes, the helicities of

initial electron and positron are correlated by the spin of the particle exchanged

in the channel. Suitable combinations of electron and positron polarizations can

be tuned to enhance the signal process and also suppress background processes.

In scattering processes, the helicities of electron and positron are directly related

to the properties of final state particles. Hence, tuning the polarizations of both

the beams simultaneously may provide unique probes to new physics. Having both

beams polarized would significantly increase the number of measurable observables,

providing more powerful diagnostics tools which may be indispensable for revealing

the structure of new physics.

1.4.1 Polarized cross sections

The helicity amplitude of the process e+(pe+, λe+)e
−(pe−, λe−) → X can be written

as

Tλ
e−

,λ
e+

= v̄(pe+, λe+)Γu(pe−, λe−), (1.51)

where Γ is a combination of (γµ, γµγ5, 1, γ5, σµν) which are the basis elements

(V,A,S,P,T) of the Dirac algebra. The polarized electron/positron beam is de-

scribed by a 2× 2 spin-density matrix ρλ
e±

,λ
e±

so that the transition probability is

given by:

|M|2 =
∑

λ
e+

,λ
e−

,λ′

e+
,λ′

e−

ρλ
e+

,λ′

e+
ρλ

e−
,λ′

e−
Tλ

e−
,λ

e+
T ∗
λ′

e−
,λ′

e+

=
∑

λ
e+

,λ
e−

,λ′

e+
,λ′

e−

ρλ
e+

,λ′

e+
ρλ

e−
,λ′

e−
[v̄(pe+ , λe+)Γu(pe−, λe−)]

×
[

ū(pe+, λ
′
e+)Γ̄v(pe−, λ

′
e−)
]

(1.52)
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To evaluate Eqn. 1.52, we use projection operators defined by

u(p, λ′)ū(p, λ) =
1

2

[

δλ,λ′ + γ5s
a
µσλ,λ′

]

(p/+m) (1.53)

v(p, λ′)v̄(p, λ) =
1

2

[

δλ′,λ + γ5s
a
µσλ′,λ

]

(p/−m), (1.54)

where σa, a = 1, 2, 3 are the Pauli matrices. The three four-component spin vectors

saµ and pµ/m form an orthogonal system.

In the high energy limit pe± ≫ me±, the Eqns. 1.53 and 1.54 are written as

u(pe±, λ
′
e±)ū(pe±, λe±) =

1

2

[

(1 + λe±γ5) δλ
e±

,λ′

e±

+ γ5{s1e±σ1
λ
e±

,λ′

e±
+ s2e±σ

2
λ
e±

,λ′

e±
}
]

p/e± (1.55)

v(pe±, λ
′
e±)v̄(pe±, λe±) =

1

2

[

(1− λe±γ5) δλ′

e±
,λ

e±

+ γ5{s1e±σ1
λ′

e±
,λ

e±
+ s2e±σ

2
λ′

e±
,λ

e±
}
]

p/e± (1.56)

The 2 × 2 density matrix for electron (positron) can be expanded in terms of

Pauli’s matrices as :

ρλ
e±

,λ′

e±
=

1

2

[

δλ
e±

,λ′

e±
+ P 1

e±σ
1
λ
e±

,λ′

e±
+ P 2

e±σ
2
λ
e±

,λ′

e±
+ P 3

e±σ
3
λ
e±

,λ′

e±

]

. (1.57)

Here, P 3
e± is the degree of longitudinal polarization with P 3

e± > 0 corresponding to

right handed polarization while P 3
e± < 0 corresponds to left handed polarization.

P 1
e± and P 2

e± are the degrees of polarization perpendicular to the scattering plane

and in the scattering plane respectively. P T
e± =

√

(P 1
e±)

2 + (P 2
e±)

2 is the degree of

transverse polarization.

1.4.2 Longitudinally polarized beams

With longitudinally polarized beams, the cross section, σpol, at an e+e− collider

can be subdivided into

σpol =
1

4

[

(1 + PL)
(

1 + PL

)

σRR + (1− PL)
(

1− PL

)

σLL

+ (1 + PL)
(

1− PL

)

σRL + (1− PL)
(

1 + PL

)

σLR

]

(1.58)

where PL and PL are the degrees of longitudinal polarization for electron and

positron beams respectively and σRL stands for the cross section if electron and
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positron beams are completely right handed (PL = +1) and left handed (PL = −1)

polarized respectively. The other cross sections, σRR, σLL and σLR are defined

analogously.

In case of annihilation diagrams, helicities of initial beams are coupled to each

other and can only couple to spin-0 or spin-1 particles. In the SM, it would

lead to e+e− → γ∗/Z in the chiral limit (the limit of vanishing electron mass).

So, the cross section of e+e− annihilation into a vector particle with arbitrary

longitudinally polarized beams is given by

σpol =
1 + PL

2

1− PL

2
σRL +

1− PL

2

1 + PL

2
σLR,

= (1− PLPL)
σRL + σLR

4

[

1− PL − PL

1− PLPL

σLR − σRL

σLR + σRL

]

,

= (1− PLPL)σ0
[

1− P eff
L ALR

]

, (1.59)

with

the unpolarized cross section: σ0 =
σRL + σLR

4
(1.60)

the left-right asymmetry: ALR =
σLR − σRL

σLR + σRL

(1.61)

and, the effective polarization: P eff
L =

PL − PL

1− PLPL

. (1.62)

The annihilation cross section can be enhanced if the both beams are polarized

and if signs of PL and PL are opposite, see Eqn. 1.59. Introducing the effective

luminosity, Leff by

Leff =
1

2
(1− PLPL)L, (1.63)

Eqn. 1.59 can be written as

σpol = 2σ0(Leff/L)[1− P eff
L ALR]. (1.64)

Some values of effective polarization and effective luminosity are given in Table

1.2. Notice from the third row in Table 1.2 that the effective polarization is closer

to 100% even though initial beam polarizations are rather low. Also, effective

luminosity of the initial beams is increased upto 50%. Hence, it is desirable that

beam polarizations at the ILC should have opposite signs.
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P eff
L Leff/L

PL = 0, PL = 0 0% 0.50

PL = +80%, PL = 0 +80% 0.50

PL = −80%, PL = +60% −95% 0.74

PL = +80%, PL = +60% +39% 0.26

Table 1.2: Effective polarization and effective luminosity for realistic values of

longitudinal beam polarization.

1.4.3 Transversely polarized beams

At colliders, one can define the z-axis along the beam direction. If the initial beams

are unpolarized or longitudinally polarized, we have a rotational symmetry around

the beam axis and final state particles are distributed uniformly around the z-axis.

The presence of transverse polarization breaks this cylindrical symmetry of the

initial state by fixing a transverse direction in the lab frame. With this additional

reference direction, it becomes possible to look for azimuthal distribution, even in

a 2 → 2 processes, which is impossible otherwise.

For the transversely polarized beams, we take the e− polarization to be along

the x axis and that of the e+ in the xy plane, making an angle of δ with the x axis,

so that δ = 0 corresponds to parallel e− and e+ transverse polarizations. With

transversely polarized beams, cross section for e+e− → γ∗/Z∗ is given by [12]

σpol =
1

4

[

|TLL|2 + |TRR|2 + |TRL|2 + |TLR|2
]

− 2PTP T

{

[cos δ Re (TRRT
∗
LL) + cos(2φ− δ)Re (TLRT

∗
RL)]

− [sin(2φ− δ)]Im(TLRT
∗
RL)− sin δ Im(T∗

RRTLL)
}

+ PT

{

cos δ[Re(TRLT
∗
LL) + Re(TRRT

∗
LR)]

+ sin δ[Im(T∗
RLTLL) + Im(T∗

RRTLR)]
}

− P T

{

cos δ[Re(TLRT
∗
LL) + Re(TRRT

∗
RL)]

+ sin δ[Im(T∗
LRTLL) + Im(T∗

RRTRL)]
}

(1.65)

where TRL is the helicity amplitude for the process with completely right-handed

and left-handed polarized electron and positron beams respectively and other he-

licity amplitudes are defined analogously. In the limit of vanishing electron mass,

amplitudes TLL and TRR give zero contributions.

In a 2 → 2 process, the initial-state momenta are anti-parallel defining the
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beam axis and with one of the final-state momenta, one can suitably choose the

φ = 0 plane. With only two independent coplanar vectors, one can construct only

few observables. Hence, one needs to include spins of the final state particles to

construct more observables to probe new physics involved in the process. Since ex-

act reconstruction of the spin of the final state particles is difficult, 2 → 2 processes

are less informative. With transversely polarized beams, there is a possibility of

studying the azimuthal distribution of final state particles even in the 2 → 2 pro-

cess. Hence, the obvious advantage of transverse polarization over longitudinal

polarization is the presence of a transverse reference direction, which can be used

to construct azimuthal asymmetries with specific transformation properties under

C, P and T.

1.5 Polarization of top quarks and its measure-

ment at colliders

With a large mass of ∼ 172 GeV, the top quark has an extremely short lifetime,

calculated in the SM to be τt = 1/Γt ∼ 5× 10−25 s. This is an order of magnitude

smaller than the hadronization time scale, which is roughly 1/ΛQCD ∼ 3 × 10−24

s. Thus, in contrast to lighter quarks, the top decays before it can form bound

states with lighter quarks [13]. As a result, the spin information of the bare top,

which depends solely on its production process, is reflected in characteristic angular

distributions of its decay products. Thus, the degree of polarization of an ensemble

of top quarks can provide important information about the underlying physics in

its production, apart from usual variables like cross sections, since any couplings

of the top to new particles can alter its degree of polarization and the angular

distributions of its decay products1.

The top polarization can be determined by the angular distribution of its decay

products. In the SM, the dominant decay mode is t → bW+, with a branching

ratio (BR) of 0.998, with the W+ subsequently decaying to ℓ+νℓ (semileptonic

decay, BR 1/9 for each lepton) or ud̄, cs̄ (hadronic decay, BR 2/3). The angular

distribution of a decay product f for a top quark ensemble has the form ( see for

example [14]),
1

Γf

dΓf

d cos θf
=

1

2
(1 + κfPt cos θf ). (1.66)

1For reviews on top quark physics and polarization see [14, 15, 16].
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Here θf is the angle between f and the top spin vector in the top rest frame and

Pt =
N↑ −N↓

N↑ +N↓

, (1.67)

is the degree of polarization of the top quark ensemble where N↑ and N↓ refer to

the number of positive and negative helicity tops respectively. Γf is the partial

decay width and κf is the spin analyzing power of f . Obviously, a larger κf

makes f a more sensitive probe of the top spin. The charged lepton and d quark

are the best spin analyzers with κℓ+ = κd̄ = 1, while κνℓ = κu = −0.30 and

κb = −κW+ = −0.39, at tree level [14]. Thus the ℓ+ or d have the largest probability

of being emitted in the direction of the top spin and the least probability in the

direction opposite to the spin. Since at the LHC, leptons can be measured with

high precision, we focus on leptonic decays of the top.

For hadronic tt̄ production, spin correlations between the decay leptons from the

t and t̄ have been extensively studied in the SM and for BSM scenarios [14, 15, 17].

These spin correlations measure the asymmetry between the production of like

and unlike helicity pairs of tt̄ which can probe new physics in top pair production.

However, this requires the reconstruction of the t and t̄ rest frames, which results

in large systematic errors and loss of statistics at the LHC. In this thesis, we

investigate top polarization in the lab. frame, which would be more directly and

easily measurable without having to construct the top rest frame.

1.6 Plan of the thesis

As stated earlier, the main emphasis of this thesis is to probe the mechanism of

EWSB through the use of polarization studies at colliders. In the light of this,

we have briefly introduced the need for beam polarization at a linear collider and

elaborated the advantages of longitudinally and transversely polarized beams in the

probe of new physics. We also introduced the idea of top polarization measurement

at the colliders as a tool to probe new physics.

In chapter two, we study the role of longitudinally polarized beams to probe

anomalous ZZH and γZH couplings at a linear collider in the process e+e− →
ZH . We construct various asymmetries from Z angular distributions. We also

construct the correlations utilizing the momenta of Z-decay leptons having definite

CP and T transformation properties. We find that longitudinal polarization helps

in enhancing the sensitivities to these anomalous Higgs couplings.
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In chapter three, we study transverse polarization of the beams at a linear

collider in the context of anomalous ZZH and γZH couplings. In the presence

of transverse polarization, we get additional reference direction enabling us to

construct azimuthal asymmetries. The most remarkable result in this analysis is

that a particular coupling Imaγ can be probed with transversely polarized beams

which is not possible otherwise. We also find that transverse polarization helps to

put limits on anomalous couplings independent of each other.

In chapter four, we study single-top production in association with a W bo-

son in the presence of anomalous tbW couplings. We look for the effect of top

anomalous couplings on top polarization in the process. Since determination of

top polarization requires reconstruction of top-rest frame which is a difficult task

at the LHC, we focus on constructing observables in the laboratory frame which

are easily measurable and are faithful probes of top polarization. In light of this,

we study various distributions of top-decay products in the laboratory frame and

construct various asymmetries to put limits on anomalous couplings.

In chapter five, we focus on the issue of CP violation in single-top production

in the presence of anomalous tbW couplings. We study the asymmetries for both

tW− and t̄W+ production and decay. Any difference in the measurement of these

asymmetries would be a signal of CP violation. We find that the difference is

proportional to the product of the sine of CP-phase and the sine of absorptive

phase. Hence, for non-zero CP violation, there must be CP and absorptive phases

simultaneously present in the amplitude.

In chapter six, we study single-top production in association with a charged

Higgs in a Two Higgs Doublet Model (THDM) of type II. We study top polar-

ization as a tool to probe the parameters of THDM. Since charged-lepton angular

distribution is a clean and pure probe of top polarization in any top production

process, we focus on the angular distribution of the charged lepton. We study az-

imuthal distribution and construct an asymmetry from this distribution. We find

that this asymmetry is a good probe of parameters of THDM at LHC energies.



Chapter 2

Anomalous V ZH couplings with

longitudinally polarized beams

As explained in the introduction, the EWSB sector of the SM is yet to be veri-

fied and its crucial component i.e., the SM Higgs boson, signaling the symmetry

breaking in the SM, is yet to be discovered. It is expected that the currently op-

erating LHC would most likely discover a scalar boson with the properties of the

SM Higgs. However, there are a number of scenarios beyond the standard model

like MSSM and THDM, which predict the existence of more than one scalar with

different CP and weak isospin quantum numbers. Hence, ascertaining the mass

and other properties of the scalar boson or bosons is an important task to estab-

lish it to be the SM Higgs boson. However, this task of studying Higgs properties

precisely would prove extremely difficult for LHC due to large QCD backgrounds.

The ILC with its much cleaner environment would be a much better place to per-

form precision studies of Higgs properties. The first step in the study of Higgs

properties would be to determine the tensor structure of its couplings with other

SM particles. Using various symmetry principles, one can write the most general

structure of Higgs couplings. The anomalous parts in the couplings are assumed to

arise from higher-order corrections in a renormalized theory or higher-dimensional

operators in an effective theory.

In this chapter, we discuss in detail probes of Higgs couplings to two neutral

EW gauge bosons viz., Z and γ, at the ILC using unpolarized and longitudinally

polarized beams in the process e+e− → ZH . We study how longitudinally po-

larized beams at ILC would help to increase the sensitivities to anomalous Higgs

couplings. The dominant production mechanisms of the Higgs boson at a linear

21
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e�
e+

VV f
�f H(a) e�

e+ V V f�fH(b)
Figure 2.1: Higgs production diagrams at e+e− linear collider (a) vector boson

fusion diagram (b) Bjorken or Higgs-Strahlung diagram. For f = e, νe, both (a)

and (b) contribute while for all other fermions, only (b) contributes.

e+e− collider are the following (also shown in Fig. 2.1):

1. the Higgs-strahlung process (e+e− → ZH),

2. the WW -fusion process (e+e− → νeνeH),

3. the ZZ-fusion process (e+e− → e+e−H).

We consider in a general model-independent way the production of a Higgs

mass eigenstate H in a possible extension of SM through the process e+e− → HZ

mediated by s-channel virtual γ and Z. The process e+e− → HZ is generally

assumed to get a contribution from a diagram with an s-channel exchange of Z.

At the lowest order, the ZZH vertex in this diagram would be simply a point-

like coupling. However, interactions beyond the SM can modify this point-like

vertex by means of a momentum-dependent form factor, as well as by adding more

complicated momentum-dependent forms of anomalous interactions considered in

[20]-[30]. In Fig. 2.1, the anomalous ZZH vertex is denoted by a blob. There is

also a diagram with a photon propagator and an anomalous γZH vertex, which

does not occur in SM at tree level. This coupling vanishes in SM at tree level, but

can get contributions at higher order in SM or in extensions of SM. Such anomalous

γZH couplings were considered earlier in [22, 24, 29, 30].
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The anoamlous V ZH couplings have been searched for through the processes

e+e− → Hγ, e+e− → HZ and e+e− → e+e−H at LEP by the L3 collaboration

with 602 pb−1 of integrated luminosity at cm energies
√
s = 189 − 209 GeV [18].

The Higgs decay channels H → ZZ and H → Zγ were also considered and no

evidence was found for anomalous Higgs production and decay. In the context of a

linear collider, the anomalous ZZH couplings in the process e+e− → HZ have been

addressed before in several works [20, 23, 25, 26, 28]. In Ref. [21], the authors have

studied anomalous γZH couplings in the process e+e− → τ+τ−γ with the data

provided by the L3 collaboration. They find an improvement of about an order of

magnitude over the results obtained by the L3 collaboration. Refs. [22, 24, 29, 30]

do take into account both γZH and ZZH couplings. However, they relate both to

coefficients of terms of higher dimensions in an effective Lagrangian, whereas we

treat all couplings as independent of one another. Moreover, [24] does not discuss

effects of beam polarization. On the other hand, we attempt to seek ways to

determine the couplings completely independent of one another. Refs. [29, 30] does

have a similar approach to ours. They make use of optimal observables and consider

only longitudinal electron polarization, whereas we seek to use simpler observables

and asymmetries constructed out of the Z angular variables, and consider the

effects of longitudinal and transverse polarization of both e− and e+ beams. The

authors of [29] also include τ polarization and b-jet charge identification which we

do not require. One specific practical aspect in which our approach differs from

that of the effective Lagrangians is that while the couplings are all taken to be

real in the latter approach, we allow the couplings to be complex, and in principle,

momentum-dependent form factors.

Refs. [31, 32] considered a beyond-SM contribution represented by a four-point

e+e−HZ coupling general enough to include the effects of the diagrams of Fig. 2.1,

as well as additional couplings going beyond s-channel exchanges. By considering

appropriate relations between those form factors and momentum dependencies, one

can derive the expressions we consider here. While the four-point coupling is the

most general, the dominant contributions are likely to arise from the three-point

couplings considered here.

Our emphasis has been on simultaneous independent determination of cou-

plings, to the extent possible, making use of a combination of asymmetries and/or

polarizations. We have also tried to consider rather simple observables, conceptu-

ally, as well as from an experimental point of view. With this objective in mind, we

use only Z angular distributions without including the polarization or the decay of
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the Z. This amounts to using the sum of the momenta of the Z decay products.

Since we do not require charge determination, this has the advantage that one

can include both leptonic and hadronic decays of the Z. On the other hand, if

a measurement on the Higgs-boson decay products is made, we can also use the

two-neutrino decay channels of Z since the missing energy-momentum would be

fully determined.

When all couplings are assumed to be independent and nonzero, we find that

angular asymmetries and momentum correlations are linear combinations of a cer-

tain number of anomalous couplings (in our approximation of neglecting terms

quadratic in anomalous couplings). By using that many number of observables,

for example, different asymmetries, or the same asymmetry measured for different

beam polarizations, one can solve simultaneous linear equations to determine the

couplings involved. This is the approach we follow here. A similar technique of

considering combinations of different polarizations was made use of, for example,

in [41].

2.1 Anomalous V ZH couplings

Assuming Lorentz invariance, the general structure for the vertex corresponding to

the process V ∗
µ (k1) → Zν(k2)H , where V ≡ γ or Z, can be written as [23, 25, 26, 29]

ΓV
µν = gVmZ

[

aV gµν +
bV
m2

Z

(k1νk2µ − gµνk1 · k2) +
b̃V
m2

Z

ǫµναβk
α
1 k

β
2

]

, (2.1)

where aV , bV and b̃V , are form factors, which are in general complex. We have

omitted terms proportional to k1µ and k2ν , which do not contribute to the process

e+e− → HZ in the limit of vanishing electron mass. The constant gZ is chosen to

be g/ cos θW , so that aZ = 1 for SM. gγ is chosen to be e. Of the interactions in

Eqn. 2.1, the terms with b̃Z and b̃γ are CP violating, whereas the others are CP

conserving. It may be noted that electromagnetic gauge invariance requires aγ to

vanish for k21 = 0, and is therefore proportional to k21. Henceforth we will write

aZ = 1 + ∆aZ , ∆aZ being the deviation of aZ from its tree-level SM value. The

other form factors are vanishing in SM at tree level. Thus the above “couplings,”

which are deviations from the tree-level SM values, could arise from loops in SM

or from new physics beyond SM. We could of course work with a set of modified

couplings where the anomalous couplings denote deviations from the tree-level
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values in a specific extension of the SM model, like a concrete two-Higgs doublet

model. The corresponding modifications are trivial to incorporate.

2.2 The process e+e− → HZ

The expression for the amplitude for the process

e−(p1) + e+(p2) → Zα(q) +H(k), (2.2)

arising from the SM diagram of Fig. 2.1 with a point-like ZZH vertex, is

MSM = − e2

4 sin2 θW cos2 θW

mZ

s−m2
Z

v(p2)γ
α(gV − γ5gA)u(p1), (2.3)

where the vector and axial-vector couplings of the Z to electrons are given by

geV = −1 + 4 sin2 θW , g
e
A = −1, (2.4)

and θW is the weak mixing angle.

While we have restricted the actual calculation to SM couplings in calculating

MSM , it should be borne in mind that in models with more than one Higgs doublet

this amplitude would differ by an overall factor depending on the mixing among

the Higgs doublets. Thus our results are trivially applicable to such extensions of

SM, by an appropriate rescaling of the coupling. Our expressions are not, however,

applicable for the case when the Higgs is a pure pseudoscalar in models conserving

CP, since in that case, the SM-like lowest-order couplings are absent.

2.2.1 Differential cross sections

We obtain the differential cross section for the process (2.2) keeping the pure SM

contribution, and the interference between the SM amplitude and the amplitudes

with anomalous γZH and ZZH couplings respectively. We ignore terms bilinear

in the anomalous couplings, assuming that the new-physics contribution is small.

We treat the two cases of longitudinal and transverse polarizations for the electron

and positron beams separately. In this chapter, we consider only the effects of

longitudinally polarized beams and transversely polarized beams in process 2.2

will be considered in the next chapter.

Helicity amplitudes for the process were obtained earlier in the context of an

effective Lagrangian approach [24, 22, 29, 30], and could be made use of for obtain-

ing the differential cross section for the case of longitudinal polarization, and, with
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less ease, for the case of transverse polarization. We have used instead trace tech-

niques employing the symbolic manipulation program ‘FORM’ [42]. We neglect

the mass of the electron.

We choose the z axis to be the direction of the e− momentum, and the xz plane

to coincide with the HZ production plane in the case when the initial beams are

unpolarized or longitudinally polarized. We then define θ to be the polar angle of

the momentum ~q of the Z. We use the convention ǫ0123 = +1 for the Levi-Civita

tensor.

2.2.2 Angular distribution of Z

The angular distribution for the process (2.2) with longitudinal polarizations PL

and PL respectively of the e− and e+ beams may be written as

dσL
dΩ

=
(

1− PLPL

)

[AL +BL sin
2 θ + CL cos θ], (2.5)

where AL, BL, CL are further written in terms of contributions from SM alone

(superscript “SM”), interference between SM and ZZH terms (superscript Z),

and interference between SM and γZH (superscript γ):

AL = ASM
L + AZ

L + Aγ
L, (2.6)

BL = BSM
L +BZ

L +Bγ
L, (2.7)

CL = CZ
L + Cγ

L. (2.8)

In case of CL, which is the coefficient of a CP-odd term, there is no contribution

from SM. The expressions for the various terms used above are as follows.

ASM
L = BSM

L

2m2
Z

|~q|2 = (ge2V + ge2A − 2geV g
e
AP

eff
L )KSM , (2.9)

CSM
L = 0, (2.10)

where

KSM =
α2|~q|

2
√
s sin4 2θW

m2
Z

(s−m2
Z)

2
. (2.11)
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We also have

AZ
L = 2

(

Re ∆aZ + Re bZ

√
sq0

m2
Z

)

(ge2V + ge2A − 2geV g
e
AP

eff
L )KSM , (2.12)

BZ
L = 2Re ∆aZ

|~q|2
2m2

Z

(ge2V + ge2A − 2geV g
e
AP

eff
L )KSM , (2.13)

CZ
L = 2Im b̃Z

√
s|~q|
m2

Z

(

(ge2V + ge2A )P eff
L − 2geV g

e
A

)

KSM , (2.14)

Aγ
L =

(

Re aγ + Re bγ

√
sq0

m2
Z

)

(geV − geAP
eff
L )Kγ, (2.15)

Bγ
L = Re aγ

|~q|2
2m2

Z

(geV − geAP
eff
L )Kγ , (2.16)

Cγ
L =

√
s|~q|
m2

Z

Im b̃γ
(

geA − geV P
eff
L

)

Kγ (2.17)

where

Kγ =
α2|~q|√
s sin2 2θW

m2
Z

s(s−m2
Z)
. (2.18)

The expressions for the Z energy q0 and the magnitude of its three-momentum

|~q| are

q0 =
s+m2

Z −m2
H

2
√
s

, |~q| =
√

s2 + (m2
Z −m2

H)
2 − 2s(m2

Z +m2
H)

2
√
s

. (2.19)

Immediate inferences from these expressions are enumerated below:

1. If the six coefficients Aγ,Z
L , Bγ,Z

L and Cγ,Z
L could be determined independently

using angular distributions and polarization, it would be possible to deter-

mine the six anomalous couplings Reaγ,Re∆aZ ,Rebγ ,RebZ , Imb̃γ and Imb̃Z .

2. Imaginary parts of aγ , ∆aZ , bγ , bZ , and real parts of b̃γ , b̃Z do not contribute

to the angular distributions at this order, and hence remain undetermined.

3. Numerically geV is small (about −0.12 for sin2 θW = 0.22), while geA = −1.

Hence, in the absence of polarization, from among the anomalous contribu-

tions, the terms AZ
L , B

Z
L and Cγ

L dominate over the others. If these coefficients

are determined from angular distributions, it would be possible to measure

Re∆aZ ,RebZ and Im b̃γ with greater sensitivity. On the other hand, there

would be very low sensitivity to the remaining couplings, viz., Reaγ ,Rebγ

and Im b̃Z .
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4. Within the combinations of couplings which appear in Aγ
L and AZ

L , the con-

tributions of Rebγ and RebZ are enhanced because of the factor
√
sq0/m2

Z

multiplying them. This improves their sensitivity.

5. With longitudinal polarization turned on, with a reasonably large value of

P eff
L , the coefficients CZ

L , A
γ
L and Bγ

L would become significant. In that case,

the sensitivity to Re aγ , Re bγ and Im b̃Z would be improved.

6. In view of (5), it is clear that a combination of angular distributions for

the polarized and unpolarized cases will help in disentangling the different

couplings.

We now examine how the angular distributions in the presence of longitudinal

polarization may be used to determine the various form factors.

2.2.3 Angular asymmetries of the Z boson

In this section we discuss observables like partial cross sections and angular asym-

metries which can be used to determine the anomalous couplings.

An obvious choice of observable is the total cross section σ, which is even

under C, P and T1. It would get contribution from the SM terms as well as a

linear combination of the real parts of anomalous couplings Re∆aZ , Reaγ , RebZ

and Rebγ , provided the range in θ is forward-backward symmetric.

On the other hand, with longitudinal polarization, the cross section depends on

a different linear combination of the real parts of the anomalous couplings. Thus,

combining results of the measurement with unpolarized beams with those of the

measurement with longitudinally polarized beams with e− and e+ polarizations of

the same sign or opposite signs would give three relations with which to constrain

the four couplings.

The expression for the partial cross sections in the longitudinal polarization

case, in terms of the coefficients AL and BL used in the differential cross section,

is

σL(θ0) = (1− PLPL)4π cos θ0

[

AL +

(

1− 1

3
cos2 θ0

)

BL

]

, (2.20)

where θ0 is the cut-off angle.

1Henceforth, T will always refer to naive time reversal, i.e., reversal of all momenta and spins,

without interchange of initial and final states.
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The terms proportional to cos θ can be determined using a simple forward-

backward asymmetry:

AFB(θ0) =
1

σ(θ0)

[

∫ π/2

θ0

dσ

dθ
dθ −

∫ π−θ0

π/2

dσ

dθ
dθ

]

, (2.21)

where

σ(θ0) =

∫ π−θ0

θ0

dσ

dθ
dθ, (2.22)

and θ0 is a cut-off in the forward and backward directions which could be chosen

to optimize the sensitivity.

The expression for AL
FB(θ0) for longitudinal polarization is

AL
FB(θ0) =

CL cos θ0

2
[

ASM
L +BSM

L

(

1− 1
3
cos2 θ0

)] , (2.23)

where we have used only the SM cross section in the denominator because we work

to linear order in the anomalous couplings. This asymmetry is odd under CP and

is proportional to C and therefore to a combination of Imb̃Z and Imb̃γ . It should

be noted that only imaginary parts of couplings enter. This is related to the fact

that the CP-violating asymmetry AFB(θ0) is odd under naive CPT. It follows that

for it to have a non-zero value, the amplitude should have an absorptive part [44].

The asymmetry AL
FB, in the presence of longitudinal polarization, determines a

different combination of the same couplings Imb̃Z and Imb̃γ . Thus observing asym-

metries with and without polarization, the two imaginary parts can be determined

independently.

In the same way, a combination of the cross section for the unpolarized and

longitudinally polarized beams can be used to determine two different combinations

of the remaining couplings which appear in (2.5). However, one can get information

only on the real parts of ∆aZ , bZ , aγ , bγ, not their imaginary parts.

2.2.4 Numerical Calculations

We now evaluate various observables and their sensitivities for a linear collider

operating at
√
s = 500 GeV. We assume that longitudinal beam polarizations

of PL = ±0.8 and PL = ±0.6 can be reached. With this choice of individual

polarizations, the factor 1−PLPL, occurring in the expression for the cross section,

is 0.52 or 1.48 depending on whether the electron and positron have like-sign or
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unlike-sign polarizations. (We take the sign of polarization to be positive for right-

handed polarization). The effective polarization P eff
L , defined in Eqn. 1.62, which

appears in various expressions is then 0.385 or 0.946 in the two cases of like-sign

and unlike-sign polarizations.

We have chosen mH = 120 GeV for the main part of our calculations. We

comment later on the results for larger Higgs masses.

We have made use of the following values of other parameters: MZ = 91.19

GeV, α(mZ) = 1/128, sin2 θW = 0.22. For studying the sensitivity of the linear

collider, we have assumed an integrated luminosity of L ≡
∫

Ldt = 500 fb−1.

Cross section

The simplest observable is the total rate that can be used to determine some

combination of anomalous couplings. If we integrate the differential cross section

with respect to polar and azimuthal angle over the full ranges, we would get a

combination of the couplings Re∆aZ , RebZ , Reaγ and Rebγ . Different combinations

of these same couplings enter the unpolarized cross section and cross sections with

same-sign or opposite-sign polarizations of the beams.

The anomalous part of the cross section in Eqn. 2.20 can be written as

σL(θ0)− σSM
L (θ0) = σSM

L (θ0)

[

2

(

Re∆aZ +
2
√
sq0

2m2
Z +

(

1− 1
3
cos2 θ0

)

|~q|2RebZ
)

+
(geV − geAP

eff
L )

(ge2V + ge2A − 2geV g
e
AP

eff
L )

Kγ

KSM

(

Reaγ +
2
√
sq0

2m2
Z +

(

1− 1
3
cos2 θ0

)

|~q|2Rebγ
)]

(2.24)

It can be seen that for fixed cut-off, measuring the cross section for two differ-

ent polarization combinations can determine two combinations of two anomalous

couplings each, viz.,

cZ ≡ 2

(

Re∆aZ +
2
√
sq0

2m2
Z +

(

1− 1
3
cos2 θ0

)

|~q|2RebZ
)

(2.25)

and

cγ ≡ 2geV sin2 2θW
ge2V + ge2A

s−m2
Z

s

(

Reaγ +
2
√
sq0

2m2
Z +

(

1− 1
3
cos2 θ0

)

|~q|2Rebγ
)

. (2.26)

Further, using the same combinations of polarizations, cZ and cγ can again be

determined for a different value of cut-off θ0. This would give two equations for
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Figure 2.2: The region in the cγ − cZ plane accessible at the 95% CL with cross

sections with different beam polarization configurations for integrated luminosity

L = 500 fb−1. 0, 0, +,+ and +,− stand for the cases of zero, like-sign and

opposite-sign e− and e+ polarizations. The cut-off θ0 is taken to be π/16.

each of cZ and cγ . It would then be possible to determine all four of Re∆aZ , RebZ ,

Reaγ and Rebγ independent of one another.

Fig. 2.2 shows the 95% CL constraints in the cγ − cZ plane from polarization

combinations (PL, PL) of (0, 0), (0.8,+0.6) and (0.8,−0.6), using a cut-off θ0 =

π/16. The lines correspond to the solutions of the equation

|σL(θ0)− σSM
L (θ0)| = 2.45

√

σSM
L (θ0)/L (2.27)

for the three polarization combinations.

The best simultaneous limits on cγ and cZ are obtained using a combination of

unpolarized beams and longitudinally polarized beams with opposite signs, viz.,

|Re cγ| ≤ 0.00271, |Re cZ| ≤ 0.0137. (2.28)

The individual limits that can be obtained keeping one coupling to be nonzero at

a time and setting the rest to be zero are shown in Table 2.1.

A direct procedure would of course be to determine all four couplings by solving

four simultaneous equations obtained by using two combinations of polarization,

each for two values of cut-off. Applying this approach for polarization combinations

PL = PL = 0 and (PL, PL) = (0.8,−0.6), and the cut-off values θ0 = π/16 and

θ0 = π/4, we find the 95% CL limits of

|Reaγ | ≤ 0.320; |Re∆aZ | ≤ 0.128; |Rebγ | ≤ 0.0721; |RebZ | ≤ 0.0287. (2.29)
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|Reaγ | |Re∆aZ | |Rebγ | |RebZ |
Unpolarized 0.0705 0.00553 0.0149 0.00117

PL = 0.8, PL = +0.6 0.0423 0.00805; 0.00890 0.00169

PL = 0.8, PL = −0.6 0.00741 0.00516 0.00156 0.00109

Table 2.1: Individual 95% CL limits on the couplings Reaγ, Re∆aZ , Rebγ , RebZ ob-

tained from the cross section for a cut-off θ0 = π/16 for different beam polarization

combinations.

The two other polarization combinations, viz., PL = PL = 0 or (PL, PL) =

(0.8,+0.6) used with (PL, PL) = (0.8,−0.6), give worse limits than these.

Forward-backward Asymmetry

As can be seen from Eqn. 2.23, the forward-backward asymmetry AFB can be

a probe of the combination of the couplings Imb̃Z and Imb̃γ . We examine the

accuracy to which this combination can be determined. The limits which can be

placed at the 95% CL on the two parameters contributing to the asymmetry is

given by equating the asymmetry to 2.45/
√
NSM , where NSM is the number of SM

events. This leads to the relation

|AFB| =
2.45

√

LσSM
L

, (2.30)

where L is the integrated luminosity.

We show in Fig. 2.3 a plot of the relation Eqn. 2.30 in the space of the couplings

involved for unpolarized beams, and for the two combinations of longitudinal po-

larizations (PL, PL) ≡ (0.8,+0.6), denoted by (+,+) and (PL, PL) ≡ (0.8,−0.6),

denoted by (+,−). The intersection of the lines corresponding to any two com-

binations gives a closed region which is the allowed region at 95% CL. The best

simultaneous limits are obtained by considering the region enclosed by the inter-

sections of the lines corresponding to PL = PL = 0 and (PL, PL) = (0.8,−0.6).

These limits are

|Imb̃γ | ≤ 4.69× 10−3; |Imb̃Z | ≤ 5.61× 10−3. (2.31)

Individual limits on the two couplings obtained from the forward-backward asym-

metry by setting one coupling to zero at a time for the three polarization combi-

nations are shown in Table 2.2.
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Figure 2.3: The region in the Imb̃Z-Imb̃γ plane accessible at the 95% CL with

forward-backward asymmetry with different beam polarization configurations for

integrated luminosity L = 500 fb−1. 0, 0, +,+ and +,− stand for the cases of zero,

like-sign and opposite-sign e− and e+ polarizations.

|Imb̃γ | |Imb̃Z |
Unpolarized 0.00392 0.0108

PL = 0.8, PL = +0.6 0.00543 0.0229

PL = 0.8, PL = −0.6 0.00320 0.00262

Table 2.2: Individual 95% CL limits on the couplings Imb̃γ , Imb̃Z , obtained from

the forward-backward asymmetry for a cut-off θ0 = π/16 for different beam polar-

ization combinations.

It can be seen that the limit is improved considerably in the case of opposite-

sign polarizations as compared to unpolarized beams for Imb̃Z , but only marginally

in case of Imb̃γ . Like-sign polarizations make the limits worse.

2.3 The process e+e− → ZH → ℓ+ℓ−H

We now calculate the amplitude for the process

e−(p1) + e+(p2) → Zα(q) +H(k) → ℓ−(p3)ℓ
+(p4)H, (2.32)
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where ℓ is either µ or τ . The expression for the amplitude for 2.32 arising from

the SM diagram of Fig. 2.1 with a point-like ZZH vertex, is

MSM =
e3mZ

16 sin3 θW cos3 θW (s−m2
Z)(q

2 −m2
Z)

× [v(p2)γ
α(gV − γ5gA)u(p1) u(p3)γα(gV − γ5gA)v(p4)] ,

(2.33)

The corresponding amplitude for the diagram with an anomalous γZH vertex is

MγZH =
e2

16 sin2 θW cos2 θW s(q2 −m2
Z)

Γγ
αβ

×
[

v(p2)γ
αu(p1) u(p3)γ

β(gV − γ5gA)v(p4)
]

,

(2.34)

and the amplitude with an anomalous ZZH vertex is

MZZH =
e2

16 sin2 θW cos2 θW (s−m2
Z)(q

2 −m2
Z)

ΓZ
αβ

×
[

v(p2)γ
α(gV − γ5gA)u(p1) u(p3)γ

β(gV − γ5gA)v(p4)
]

,

(2.35)

where the anomalous vertex factors ΓV
αβ are given by eq. (2.1).

2.3.1 Differential cross sections

We now obtain the differential cross section for the process (2.32) keeping the pure

SM contribution, and the interference between the SM amplitude of Eq. 2.33 and

the amplitudes with anomalous γZH and ZZH couplings from Eqs. 2.34 and 2.35

respectively. We ignore terms bilinear in the anomalous couplings, assuming that

the new-physics contribution is small. We neglect the mass of the electron.

The expression for the cross section with longitudinal polarizations PL and PL

for e− and e+ beams respectively is

σL =

∫

d3p3
2p03

∫

d3p4
2p04

( e

4 sin θW cos θW

)2

× 1

(q2 −m2
Z)

2 + Γ2
Z

(1− PLPL)
[

FL
SM + FL

Z + FL
γ

]

where FL
SM , FL

Z and FL
γ are the contributions from the SM alone, interference

between the SM and the ZZH terms and interference between the SM and the

γZH terms respectively, full analytical expressions of which are given in Appendix

I.

Inferences from expressions of distributions for longitudinally polarized beams:
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1. Including decay of Z into charged leptons, we get additional contributions

from anomalous couplings Imbγ, ImbZ , Reb̃γ and Reb̃Z , which are absent in

the distributions without Z decay,

2. Couplings Imaγ and Im∆aZ are still absent from distributions of decay lep-

tons for longitudinally polarized beams.

2.3.2 Observables

We have evaluated the expectation values of the observables for unpolarized and

longitudinally polarized beams. We have chosen e− polarization to be equal to ±0.8

and e+ polarization to be ±0.6. We have done phase space integrals numerically.

We have used the expressions of the cross sections to leading order of anomalous

couplings for the calculations of the expectation values of the observables in the

formula

〈Oi〉 =
1

σ

∫

Oi
dσ

d3p3d3p4
d3p3d

3p4. (2.36)

We construct observables based on their CP and T transformation properties.

The various possible observables that we have used in our analysis, along with their

CP and T transformation properties have been listed in Table 2.3. Observables

which are even under CP get contributions from CP-even V ZH couplings which

are ∆aZ , aγ , bZ and bγ ; and observables which are odd under CP get contributions

from CP-odd V ZH anomalous couplings which are b̃Z and b̃γ . The CPT theorem

implies that observables which are CP even and T even would get contribution from

real part of the couplings, as also those which are CP odd and T odd, implying that

observables which are CPT even get contributions from real part of couplings. On

the other hand, observables, which are CPT odd which means that they should

either be CP odd and T even or CP even and T odd, get contributions from

imaginary part of the couplings as they would require presence of absorptive part

in the amplitude and hence require imaginary parts from couplings.

CP-even observables get contributions from ReaV , RebV , if they are T even,

and ImaV , ImbV , if they are T odd. CP-odd observables get contributions from

Reb̃V or Imb̃V , depending on whether they are T odd or T even.

The observables we have chosen are by no means exhaustive. They have been

chosen based on simplicity, and with the idea of extracting information on all

couplings, and if possible, placing limits on them independently of one another.

In the next section we discuss numerical evaluation of the cross sections and
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Symbol Observable CP T Couplings

X1 (p1 − p2).q − + Imb̃Z , Imb̃γ

X2 P.(p3 − p4) − + Imb̃Z , Imb̃γ

X3 (−→p3 ×−→p4)z − − Reb̃Z , Reb̃γ

X4 (p1 − p2).(p3 − p4)(
−→p3 ×−→p4)z − − Reb̃Z , Reb̃γ

X5 (p1 − p2).q(
−→p3 ×−→p4)z + − ImbZ , Imbγ

X6 P.(p3 − p4)(
−→p3 ×−→p4)z + − ImbZ , Imbγ

X7 [(p1 − p2).q]
2 + + RebZ , Rebγ

X8 [(p1 − p2).(p3 − p4)]
2 + + RebZ , Rebγ

Table 2.3: Possible observables to constrain anomalous couplings, their CP and T

properties and the couplings they probe. Here, P = p1 + p2 and q = p3 + p4

.

asymmetries, and demonstrate how information using more than one observable,

or one observable, but different polarization choices can be used to disentangle the

different anomalous couplings. We will also study the numerical limits that can be

put on the couplings at a linear collider.

We calculate the individual limits (taking all other couplings except one to

be zero) which can be placed at the 95% CL on a coupling contributing to the

correlation of Oi is given by following relation:

Lim = 1.96

√

〈O2
i 〉SM − 〈Oi〉2SM

〈O〉1
√

LσSM
L

(2.37)

where 〈O〉1 is the expectation value of the observable O for unit value of the

coupling, L is the integrated luminosity, and σSM is the SM cross section.

The limits which can be placed at the 95% CL on the two parameters con-

tributing to the expectation value of Oi is given by equating the deviation of the

expectation value of the observable from the SM value with 2.45/
√
NSM , where

NSM is the number of SM events. This leads to the relation

|〈Oi〉 − 〈Oi〉SM | = 2.45

√

〈O2
i 〉SM − 〈Oi〉2SM
√

LσSM
L

(2.38)
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As seen from Table 2.3, each observable chosen by us has dependence on a

combination of a limited number of couplings, depending upon the transformation

properties under CP and T. Thus any single observable can only be used to deter-

mine, or put limits on, a combination of couplings. We can determine, from a single

observable, limits on individual couplings either under an assumption on the re-

maining couplings which contribute to the observable, or by combining the results

from more than one observable, or more than one combination of polarization. We

will refer to limits on a coupling as an individual limit if the limit is obtained on

the assumption of all other couplings being zero. If no such assumption is made,

and more than one observable is used simultaneously to put limits on all couplings

contributing to these observables, we will refer to the limits as simultaneous limits.

2.3.3 Sensitivities with longitudinal beam polarization

The differential cross section with longitudinally polarized beams, apart from an

overall factor (1− PLPL), depends on the “effective polarization” P eff
L . Since P eff

L

is about 0.946 for PL = 0.8, PL = −0.6, and 0.385 for PL = 0.8, PL = 0.6, a high

degree of effective polarization can be achieved using these partial polarizations for

e− and e+ beams opposite in sign to each other, which are expected to be available

at the ILC.

We now consider the effect of longitudinal polarization on the correlations and

the sensitivities. We also suggest measurement of correlations with different combi-

nations of polarization. Since these would give different combinations of couplings,

their measurements may be used to put simultaneous limits on couplings, without

assuming any coupling to be zero.

We can write expectation values of X1, . . . , X6 schematically as :

〈X1〉 ∝ A1[2gV gA − (g2V + g2A)P
eff
L ]Imb̃Z +B1[gV P

eff
L − gA]Imb̃γ (2.39)

〈X2〉 ∝ A2[2gV gAP
eff
L − (g2V + g2A)]Imb̃Z +B2[gV − gAP

eff
L ]Imb̃γ (2.40)

〈X3〉 ∝ A3[2gV gA − (g2V + g2A)P
eff
L ]Reb̃Z +B3[gV P

eff
L − gA]Reb̃γ (2.41)

〈X4〉 ∝ A4[2gV gAP
eff
L − (g2V + g2A)]Reb̃Z +B4[gV − gAP

eff
L ]Reb̃γ (2.42)

〈X5〉 ∝ A5[2gV gAP
eff
L − (g2V + g2A)]ImbZ +B5[gV − gAP

eff
L ]Imbγ (2.43)

〈X6〉 ∝ A6[2gV gA − (g2V + g2A)P
eff
L ]ImbZ +B6[gV P

eff
L − gA]Imbγ (2.44)

where A′
is and B′

is are some kinematical coefficients.

From Eqns. 2.39, 2.41 and 2.44, we see that with unpolarized beams, the con-

tributions of anomalous couplings Imb̃Z , Reb̃Z and ImbZ to expectation values of



2.3. The process e+e− → ZH → ℓ+ℓ−H 38

X1, X3 and X6 respectively are suppressed due to vector coupling gV while with

the longitudinally polarized beams, these couplings get an additional term in the

expectation values which enhance their contributions to respective expectation val-

ues by a factor of (g2V + g2A)/(2gV gA). Hence, with longitudinally polarized beams

with opposite sign of beam polarization, the individual limits on the anomalous

couplings Imb̃Z , Reb̃Z and ImbZ are enhanced by the factor of 5 relative to unpo-

larized beams as shown in Table 2.4.

Similarly from Eqns. 2.40, 2.42 and 2.43, we see that with unpolarized beams,

the contributions of anomalous couplings Imb̃γ , Reb̃γ and Imbγ to expectation val-

ues of X2, X4 and X5 respectively are suppressed due to vector coupling gV while

with the longitudinally polarized beams, these couplings get an additional term in

the expectation values which enhance their contributions to respective expectation

values by a factor of gA/gV . Hence, with longitudinally polarized beams with op-

posite sign of beam polarization, the individual limits on the anomalous couplings

Imb̃γ , Reb̃γ and Imbγ are enhanced by the factor of 8 relative to unpolarized beams

as shown in Table 2.4.

Observables X7 and X8 being CP even and T even get contributions from real

parts of CP-even couplings. Since their expectaion values are nonzero in the SM,

they will get contribution from anomalous couplings in the denominator. Their

expectation values can be written schematically as :

〈X7,8〉 =
[a7,8(1 + Re∆aZ) + b7,8RebZ + c7,8Reaγ + d7,8Rebγ ]

[a7,8(1 + Re∆aZ) + b′7,8RebZ + c7,8Reaγ + d′7,8Rebγ ]
. (2.45)

As can be seen from Eqn. 2.45 that the numerator and denominator get equal

contribution from couplings Re∆aZ and Reaγ . So, when we write 〈X7,8〉 to linear

order in anomalous couplings by expanding the denominator and keeping only the

linear terms in anomalous couplings, we find that the contributions of the couplings

Re∆aZ and Reaγ cancel exactly while the contributions of RebZ and Rebγ survive.

The expectation values of X7,8 can be written in the linear order in couplings RebZ

and Rebγ as:

〈X7〉 ∝ A7[2gV gAP
eff
L − (g2V + g2A)]RebZ +B7[gV − gAP

eff
L ]Rebγ (2.46)

〈X8〉 ∝ A8[2gV gAP
eff
L − (g2V + g2A)]RebZ +B8[gV − gAP

eff
L ]Rebγ . (2.47)

Hence, the limits on the coupling Rebγ are enhanced by a factor of gA/gV ∼ 8.3

in the presence of longitudinally polarized beams utilizing X7 and X8 relative to

unpolarized beams.
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The 95% CL individual limits on anomalous ZZH and γZH couplings utilizing

the observables listed in Table 2.3 using different beam polarizations are given in

Table 2.4.

Limits for polarizations

Observable Coupling PL = 0 PL = 0.8 PL = 0.8

PL = 0 PL = 0.6 PL = −0.6

X1 (p1 − p2).q Imb̃Z 4.11× 10−2 8.69× 10−2 9.94× 10−3

Imb̃γ 1.49× 10−2 2.06× 10−2 1.22× 10−2

X2 P.(p3 − p4) Imb̃Z 4.12× 10−2 5.99× 10−2 3.84× 10−2

Imb̃γ 5.23× 10−1 3.12× 10−1 5.52× 10−2

X3 (~p3 × ~p4)z Reb̃Z 1.41× 10−1 2.97× 10−1 3.40× 10−2

Reb̃γ 5.09× 10−2 7.05× 10−2 4.15× 10−2

X4 (p1 − p2).(p3 − p4) Reb̃Z 2.95× 10−2 4.29× 10−2 2.75× 10−2

×(~p3 × ~p4)z Reb̃γ 3.81× 10−1 2.24× 10−1 3.95× 10−2

X5 (p1 − p2).q(~p3 × ~p4)z ImbZ 7.12× 10−2 1.04× 10−1 6.64× 10−2

Imbγ 9.10× 10−1 5.42× 10−1 9.53× 10−2

X6 P.(p3 − p4)(~p3 × ~p4)z ImbZ 7.12× 10−2 1.50× 10−1 1.72× 10−2

Imbγ 2.58× 10−2 3.57× 10−2 2.10× 10−2

X7 [(p1 − p2).q]
2 RebZ 1.75× 10−2 2.54× 10−2 1.63× 10−2

Rebγ 2.23× 10−1 1.34× 10−1 2.35× 10−2

X8 [(p1 − p2).(p3 − p4)]
2 RebZ 1.53× 10−2 2.22× 10−2 1.42× 10−2

Rebγ 1.94× 10−1 1.16× 10−1 2.04× 10−2

Table 2.4: The 95 % C.L. limits on the anomalous ZZH and γZH couplings, cho-

sen nonzero one at a time, from various observables with unpolarized and longitu-

dinally polarized beams for
√
s = 500 GeV and integrated luminosity

∫

L dt = 500

fb−1.

We determine simultaneous limits on a pair of anomalous couplings through the

measurement of a single observable using different polarization combinations for the

measurement or through the measurements of more than one observable utilizing

only unpolarized beams. For the sake of illustration for each case, we first consider

observable X1. The expectation value of X1 gets contribution from two couplings

Imb̃Z and Imb̃γ and is written in schematic form in Eqn 2.39. The different beam

polarization combinations would give different expectation values for the observ-

able. A graphical way of obtaining simultaneous limits with different combinations
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of polarization is illustrated for X1 in Fig. 2.4 where relation Eqn. (2.38) is plot-

ted in the space of the couplings involved for unpolarized beams denoted by (0, 0),

and for the two combinations of longitudinal polarizations (PL, PL) ≡ (0.8,−0.6),

and (PL, PL) ≡ (−0.8, 0.6), respectively denoted by (+,−) and (−,+). The lines

corresponding to any two combinations gives a closed region which is the allowed

region at 95% CL.

-0.04

-0.02

0

0.02

0.04

-0.1 -0.05 0 0.05 0.1

Im
b̃ γ

Im b̃Z

0, 0

+,−

−,+

Figure 2.4: The region in the Imb̃Z-Imb̃γ plane accessible at the 95% CL with

observable X1 with different beam polarization configurations. (0, 0), (+,−) and

(−,+) stand for (PL, PL) = (0, 0), (0.8,−0.6) and (−0.8, 0.6) respectively.

The best simultaneous limits on Imb̃Z is obtained by considering the region

enclosed by the lines corresponding to (PL, PL) = (0.8,−0.6) and (PL, PL) =

(−0.8, 0.6), while on Imb̃γ , it is obtained by the region enclosed by the lines corre-

sponding to (PL, PL) = (0, 0) and (PL, PL) = (0.8,−0.6). These limits are

|Imb̃Z | ≤ 2.72× 10−2, |Imb̃γ | ≤ 2.13× 10−2. (2.48)

Using the same strategy for all the observables X1, . . . , X8, we obtain 95% CL

simultaneous limits on all the couplings and these limits are given in Table 2.5.

We now illustrate how the measurements of two different observables can de-

termine the simultaneous limits on a pair of anomalous couplings. For this, we

consider observables X1 and X2. With unpolarized beams, X1 and X2 both probe

different combinations of Imb̃Z and Imb̃γ . We show in Fig. 2.5 a plot of relation Eq.

2.38 in the space of the couplings involved for observables X1 and X2 utilizing only

unpolarized beams. The lines corresponding to two combinations gives a closed



2.3. The process e+e− → ZH → ℓ+ℓ−H 41

Limit on coupling for the

Observable Coupling polarization combination

(0, 0), (−,+) (0, 0), (+,−) (−,+), (+,−)

X1 Imb̃Z 4.50× 10−2 3.59× 10−2 2.14× 10−2

Imb̃γ 4.28× 10−2 2.74× 10−2 3.04× 10−2

X2 Imb̃Z 9.73× 10−2 7.56× 10−2 8.54× 10−2

Imb̃γ 3.06× 10−1 2.19× 10−1 1.37× 10−1

X3 Reb̃Z 1.54× 10−1 1.22× 10−1 7.29× 10−2

Reb̃γ 1.46× 10−1 9.31× 10−2 1.08× 10−1

X4 Reb̃Z 5.37× 10−2 6.89× 10−2 6.10× 10−2

Reb̃γ 1.56× 10−1 2.18× 10−1 9.78× 10−2

X5 ImbZ 1.67× 10−1 1.29× 10−1 1.48× 10−1

Imbγ 5.27× 10−1 3.76× 10−1 2.36× 10−1

X6 ImbZ 7.79× 10−2 6.18× 10−2 3.69× 10−2

Imbγ 7.39× 10−2 4.72× 10−2 5.27× 10−2

X7 RebZ 2.53× 10−2 1.27× 10−2 3.11× 10−2

Rebγ 1.05× 10−1 5.74× 10−2 5.11× 10−2

X8 RebZ 2.58× 10−2 2.05× 10−2 3.37× 10−2

Rebγ 1.15× 10−1 6.33× 10−2 5.26× 10−2

Table 2.5: Simultaneous 95 % C.L. limits on the anomalous ZZH and γZH

couplings from various observables using longitudinally polarized beams with

different polarization combinations (0, 0), i.e., PL = 0, PL = 0, (±,∓), i.e.,

(PL = ±0.8, PL = ∓0.6) for
√
s = 500 GeV and integrated luminosity

∫

L dt = 500

fb−1.

region which is the allowed region at 95% CL. The simultaneous limits obtained

by considering the extremities of this closed region are

|Imb̃Z | ≤ 7.73× 10−2, |Imb̃γ| ≤ 5.44× 10−2. (2.49)

The intercepts on the two axes of each line give us the individual limits on the two

couplings for that observable.

Similarly, with unpolarized beams, X3 and X4 both probe different combina-

tions of Reb̃Z and Reb̃γ while X5 and X6 both probe different combinations of

ImbZ and Imbγ . Analogous to Fig. 2.5, we can have a plot of relation Eq. 2.38

in the space of the couplings involved for observables X3 and X4 utilizing only
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Figure 2.5: The region in the Imb̃Z-Imb̃γ plane accessible at the 95% CL with

observables X1 and X2 with unpolarized beams for integrated luminosity L = 250

fb−1.

unpolarized beams. The 95 % CL simultaneous limits on couplings Reb̃Z and Reb̃γ

obtained by considering the extremities of this closed region are

|Reb̃Z | ≤ 6.08× 10−2, |Reb̃γ | ≤ 1.12× 10−1. (2.50)

Similarly, with X5 and X6, the 95% CL simultaneous limits on couplings ImbZ and

Imbγ are

|ImbZ | ≤ 1.25× 10−1, |Imbγ| ≤ 9.39× 10−2. (2.51)

With unpolarized beams, X7 and X8 both probe different combinations of RebZ

and Rebγ . Simultaneous limits on RebZ and Rebγ from X7 and X8 are very bad

since slopes of the two lines corresponding to X7 and X8 are of same sign and

approximately equal in magnitude.

2.3.4 Effects of kinematical cuts

In practice, any measurement will need kinematical cuts for the identification of

the decay leptons. We have examined the effect of kinematical cuts on our results

using the following kinematical cuts [26]:

1. Ef ≥ 10 GeV for each outgoing charged lepton,

2. 5◦ ≤ θ0 ≤ 175◦ for each outgoing charged lepton to remain away from the beam

pipe,
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3. ∆Rll ≥ 0.2 for the pair of charged lepton, where (∆R)2 ≡ (∆φ)2 + (∆η)2,

∆φ and ∆η being the separation in azimuthal angle and rapidity, respectively, for

detection of the two leptons as separated.

In addition to this, we imposed a cut on the invariant mass of the ff so as to

confirm the onshellness of the Z boson, which is

R1 ≡ |mff −MZ | ≤ 5ΓZ . (2.52)

In addition to this, we impose a cut |ml−l+ −MZ | ≤ 5ΓZ on the invariant mass

ml−l+ of the lepton pair, so as to constrain the Z boson to be more or less on shell.

This cut would allow us to test how well our results would simulate the results for

a genuinely onshell Z. Moreover, the cut would also reduce contamination from

γγH couplings, which contribute in principle to the process (2.32), though not to

e+e− → HZ.

After imposing these cuts, we find that all observables except X1 and X2 are

not very sensitive to these cuts. The limit on X1 and X2 change by 20− 30%.

2.3.5 Sensitivities at different cm energies

Since the anomalous couplings bZ , bγ , b̃Z and b̃γ correspond to interactions which

are momentum dependent, the sensitivity would be dependent on the cm energy.

Naively, it is expected from eq. (3.22) that an increase by a factor of 2 in the cm

energy as well as in the luminosity would result in an improvement in the limit

by an overall factor 2
√
2 ≈ 3. A factor of 4 improvement comes from the energy

dependence of the anomalous term in the differential cross section contributing to

the left-hand side of (3.22), an additional factor of
√
2 from the increase in the

luminosity, but a decrease by a factor of 2 since σSM in denominator of the right-

hand side falls by a factor 4. To investigate this, we have obtained sensitivities of

all the observables to the anomalous couplings at
√
s = 1000 GeV with integrated

luminosity
∫

L dt = 1000 fb−1.

We find that only X3, X4, X5 and X8 are more sensitive to anomalous couplings

at higher energy and luminosity. It can be checked that the dominant contribu-

tion from longitudinally polarized Z produced at an anomalous γZH or ZZH

vertex, which should grow with energy, actually vanishes, leaving a sub-dominant

energy dependence which is the same as that in SM. Hence whether or not there

is improvement in sensitivity with cm energy has to be studied on a case by case

basis.
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In the above, we have assumed a Higgs mass of 120 GeV. For larger values of

mH , for larger Higgs masses, we find decreased sensitivities.

2.3.6 Comparison with earlier works

It is appropriate to compare our results with those in works using the same parame-

terization as ours for the anomalous coupling and with an approach similar to ours.

The paper of Han and Jiang [25] discuss limits on the CP-violating ZZH coupling

Imb̃Z obtained using the forward-backward asymmetry of the Z. With identical

values of
√
s and integrated luminosity, Han and Jiang quote limits of 0.019 and

0.0028 for Imb̃Z , respectively for unpolarized and longitudinally polarized beams

with opposite-sign e+ and e− polarizations. The corresponding numbers we have

form AFB are 0.011 and 0.0026. The agreement is thus good, considering that

Ref. [25] employs additional experimental cuts, which could reduce the nominal

sensitivity. The limits on Imb̃Z and Imb̃γ we have from X1 are 0.041 and 0.0099.

The agreement with Ref. [25] is reasonable, after taking into account the facts that

we use only one leptonic channel, and that they employ additional experimental

cuts. The papers in [26] also deal only with anomalous ZZH couplings. The 3σ

limit they quote for Imb̃Z is 0.064 for unpolarized beams, and 0.0089 for polarized

beams. After correcting for the CL limit of 1.96σ which we use, and the inclusion

of a single leptonic decay mode, their limits are still somewhat worse. This could

be attributed to the stringent kinematic cuts imposed by them, and to the different

luminosity choice in the case of polarized beams. Similarly, the limits quoted in

[26] for RebZ and ImbZ are worse compared to ours by a factor of order 2 or 3 in

the unpolarized as well as the cases of longitudinally polarized beams. As for the

case of γZH couplings, comparison with earlier works is not easy because of the

different approach to parametrization of couplings.

2.4 Conclusions and discussion

We have obtained analytical expressions for angular distributions of the Z boson

and differential cross sections of the charged leptons from Z-decay in the process

e+e− → ZH → ℓ+ℓ−H including anomalous γZH and ZZH couplings to linear

order in the presence of unpolarized and longitudinally polarized beams. We have

then looked at observables and asymmetries which can be used in combinations

to disentangle the various couplings to the extent possible. We have also obtained
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the sensitivities of these observables and asymmetries to the various couplings for

a definite configuration of the linear collider.

In certain cases where the contribution of a coupling is suppressed due to the

fact that the vector coupling of the Z to e+e− is numerically small, longitudi-

nal polarization helps to enhance the contribution of this coupling. As a result,

longitudinal polarization improves the sensitivity.

We find that with a linear collider operating at a c.m. energy of 500 GeV with

the capability of 80% electron polarization and 60% positron polarization with an

integrated luminosity of 500 fb−1, using the simple cross section and asymmetry

measurements described above it would be possible to place 95% CL individual

limits of the order of few times 10−3 or better on all couplings taken nonzero

one at a time with use of an appropriate combination (PL and PL of opposite

signs) of longitudinal beam polarizations. Polarization gives an improvement in

sensitivity by a factor of 5 to 10 as compared to the unpolarized case for the real

parts of γZH couplings, and the imaginary parts of ZZH couplings. The use of

polarization also enables simultaneous determination (without any coupling being

assumed zero) of all couplings which appear in the differential cross section, viz.,

Re∆aZ , Reaγ, Imaγ , RebZ , Rebγ , Imb̃γ and Imb̃Z . The simultaneous limits are,

as expected, less stringent, of the order of 0.1 − 0.3 for Reaγ and Re∆aZ , and of

the order of 0.03 − 0.07 on Rebγ and RebZ . The simultaneous limits on the CP-

violating couplings Imb̃γ and Imb̃Z are a little better, being respectively 5 × 10−3

and 6× 10−3.



Chapter 3

Anomalous V ZH couplings with

transversely polarized beams

As explained in the introduction (Chapter 1), transverse polarization is useful

because it provides an additional reference direction, thus enabling the study of

azimuthal distributions of final-state particles even in 2 → 2 processes.

The question of whether transverse beam polarization, which could be obtained

with the use of spin rotators, would be useful in probing new physics, has been

addressed in recent times in the context of the ILC [31]-[39]. The cross section with

transverse polarization generally provides combinations of the same couplings as

longitudinal polarization. A marked exception is the angular dependence associ-

ated with the coupling Imaγ – it is possible to use an azimuthal asymmetry which

depends entirely on this coupling when the beams are transversely polarized, and

its measurement would determine this coupling directly. Unpolarized or longitudi-

nally polarized beams provide no access to Imaγ. Another azimuthal asymmetry

in the presence of transverse polarization helps to isolate a combination of two cou-

plings Re∆aZ and RebZ out of the four which contribute to the differential cross

section with longitudinal polarization. Transverse polarization can also help iso-

late other couplings, since, as it turns out, usually the contribution of one coupling

dominates most observables.

In the last chapter, we studied the process in e+e− → HZ to probe the anoma-

lous γZH and ZZH couplings utilizing angular asymmetries of the Z and the

observables constructed with momenta of Z-decay leptons and initial e+ and e−

momenta with longitudinal beam polarization. In this chapter, we study the role

of transversely polarized beams in the process e+e− → ZH to probe anomalous

46
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V ZH couplings at a linear collider. We first consider the angular distribution of

the Z and construct azimuthal asymmetries associated with it. We also consider

the angular distribution of decay leptons from the Z. We utilize momenta of the

decay leptons and spins and momenta of the initial electron and positron beams to

construct various momentum correlations having specific CP and T transformation

properties.

3.1 The process e+e− → HZ

The expression for the amplitude for the process

e−(p1) + e+(p2) → Zα(q) +H(k), (3.1)

arising from the SM diagram with a point-like ZZH vertex, is

MSM = − e2

4 sin2 θW cos2 θW

mZ

s−m2
Z

v(p2)γ
α(gV − γ5gA)u(p1), (3.2)

where the vector and axial-vector couplings of the Z to electrons are given by

geV = −1 + 4 sin2 θW , g
e
A = −1, (3.3)

and θW is the weak mixing angle.

3.1.1 Angular distribution of Z with transversely polarized

beams

For transversely polarized beams, we take the e− polarization to be along the x

axis and that of the e+ in the xy plane, making an angle of δ with the x axis,

so that δ = 0 corresponds to parallel e− and e+ transverse polarizations. The

expression for the differential cross section with transverse polarization PT for the

e− beam and P T for the e+ beam is

dσT
dΩ

=
[

AT +BT sin2 θ + CT cos θ

+ PTP T sin2 θ {DT cos(2φ− δ) + ET sin(2φ− δ)}
]

,
(3.4)

where AT , BT , CT , DT and ET are further written in terms of contributions from

SM alone (superscript “SM”), interference between SM and ZZH terms (super-

script Z), and interference between SM and γZH (superscript γ), in exact analogy
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with expressions for AL, BL and CL given in Chapter 2 for the longitudinal polar-

ization case. The expressions for the separate contributions for these coefficients

are as follows.

ASM
T = BSM

T

2m2
Z

|~q|2 = (ge2V + ge2A )KSM , (3.5)

CSM
T = 0, DSM

T =
|~q|2
2m2

Z

(ge2V − ge2A )KSM , ESM
T = 0, (3.6)

AZ
T = 2(ge2V + ge2A )

(

Re∆aZ + RebZ

√
sq0

m2
Z

)

KSM , (3.7)

BZ
T = 2

|~q|2
2m2

Z

Re∆aZ(g
e2
V + ge2A )KSM , CZ

T = 2Imb̃Z

√
s|~q|
m2

Z

2geV g
e
AK

SM , (3.8)

DZ
T = 2

|~q|2
2m2

Z

(−Re∆aZ)(g
e2
V − ge2A )KSM , EZ

T = 0, (3.9)

Aγ
T =

(

Reaγ + Rebγ

√
sq0

m2
Z

)

(geV )K
γ , (3.10)

Bγ
T =

|~q|2
2m2

Z

Reaγ(g
e
V )K

γ, Cγ
T =

√
s|~q|
m2

Z

Imb̃γ (g
e
A)K

γ , (3.11)

Dγ
T =

|~q|2
2m2

Z

Reaγ(−geV )Kγ, Eγ
T =

|~q|2
2m2

Z

Imaγ(g
e
A)K

γ. (3.12)

where KSM and Kγ have been defined in Chapter 2.

Taking a look at the above equations, we note the following:

(i) For studying any effects dependent on transverse polarization, and therefore,

of the azimuthal distribution of the Z, both electron and positron beams have to

be polarized.

(ii) If the azimuthal angle φ of Z is integrated over, there is no difference be-

tween the transversely polarized and unpolarized cross sections [43]. Thus the

usefulness of transverse polarization comes from the study of nontrivial φ depen-

dence.

(iii) A glaring advantage of using transverse polarization would be to determine

Imaγ from the sin(2φ− δ) dependence of the angular distribution. It can be seen

that ET receives contribution only from Eγ
T , which determines Imaγ independently

of any other coupling. Moreover, Imaγ does not contribute to unpolarized or

longitudinally polarized cases.

(iv) The cos(2φ − δ) dependence of the angular distribution (the DT term)

determines a combination only of the couplings Re∆aZ and Reaγ . On the other

hand, in the case of unpolarized or longitudinally polarized beams the coefficient
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BL does depend only on Reaγ and Re∆aZ , and if measured, can give information

on Reaγ and Re∆aZ independently of Rebγ and RebZ . However, there is no simple

asymmetry which allows BL to be measured separately from AL, which depends

on a combination of all four of Reaγ , Re∆aZ , Rebγ and RebZ .

(v) The real parts of the CP-violating couplings b̃Z and b̃γ remain undetermined

with either longitudinal or transverse polarization without considering Z decay.

(vi) Im∆aZ also remains undetermined.

3.1.2 Azimuthal asymmetries

Transversely polarized beams can in principle provide more information through

the azimuthal angular distribution which has terms dependent on sin2 θ sin 2φ and

sin2 θ cos 2φ. The φ-dependent terms occur with the factor of PTP T . Thus, both

beams need to have transverse polarization for a nontrivial azimuthal dependence.

We can construct observables which isolate terms dependent on sin2 θ sin 2φ and

sin2 θ cos 2φ.

(a) The sin2 θ sin 2φ term

We define an azimuthal asymmetry to separate out the sin2 θ sin 2φ term:

AT(θ0) =
1

σSM
T (θ0)

[
∫ π−θ0

θ0

dθ

(

∫ π/2

0

dφ−
∫ π

π/2

dφ

+

∫ 3π/2

π

dφ−
∫ 2π

3π/2

dφ

)

dσT
dθdφ

]

,

(3.13)

where we use only the SM cross section in the denominators, since we work to first

order in anomalous couplings.

The integrals in the above may be evaluated to yield

AT(θ0) =
2

π
PTP T

(DT sin δ + ET cos δ)
(

1− 1
3
cos2 θ0

)

ASM
T +BSM

T

(

1− 1
3
cos2 θ0

) , (3.14)

In the simplest scenario when δ = 0 or π, we see that the asymmetry AT isolates

a coefficient denoted by ET in the expression of Eqn. (3.14). Since ESM
T and EZ

T

are vanishing, this asymmetry uniquely determines Eγ
T , and hence the coupling

Imaγ . We thus have the important result that a measurement of AT(θ0) when the

electron and positron polarizations are parallel to each other directly gives us a

measurement of Imaγ, which cannot be measured without the use of transverse

polarization. This, in the present context, is the most important use of transverse

polarization.
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That Im∆aZ does not contribute to asymmetry AT can be seen as follows. The

transverse polarization dependent part of the differential cross section arises from

the interference of amplitudes with a dissimilar e− and e+ helicity combination, and

is proportional to Re (ei2φTLRT
∗
RL) [43]. Here φ is the azimuthal angle of a final-

state particle, and the subscripts on T denote the helicities. It is easy to check that

in this expression, to first order in anomalous couplings, the Im∆aZ contribution

drops out. This is because the aZ contribution is given by the SM contribution,

which is real, multiplied by the coupling aZ . This may also be inferred from the

relevant tables in [40].

We can also choose to evaluate the expectation value of any operators which

are odd functions of sin 2φ. We have chosen the three operators sign(sin 2φ) whose

expectation value corresponds to the asymmetry AT, sin 2φ and sin3 2φ. The 95%

CL limit that can be placed on Imaγ was determined for each operator O using

|Imaγ| ≤ 1.96

√

〈O2〉
〈O〉1

√

LσSM
T

, (3.15)

where 〈O〉1 is expectation value for unit value of the coupling. Table 3.1 shows

limits on the |Imaγ | at the 95% confidence level for various Higgs masses. It is seen

Operators MH = 120 GeV MH = 200 GeV MH = 300 GeV

sign(sin 2φ) 0.0409 0.0522 0.101

sin 2φ 0.0368 0.0470 0.0913

sin3 2φ 0.0388 0.0495 0.0963

Table 3.1: Limits on Imaγ for the various Higgs masses

that the best limits are obtained using the operator sin 2φ.

(b) The sin2 θ cos 2φ term

The coefficient of the cos 2φ term, viz., DT , is associated with Re∆aZ and Reaγ.

We define an asymmetry

A′T(θ0) =
1

σT (θ0)

[
∫ π−θ0

θ0

dθ

(

∫ π/4

−π/4

dφ−
∫ 3π/4

π/4

dφ

+

∫ 5π/4

3π/4

dφ−
∫ 7π/4

5π/4

dφ

)

dσT
dθdφ

]

,

(3.16)

to isolate the real parts of couplings ∆aZ and aγ . In the definition of the asymmetry

A′T, we use total cross section including the anomalous V ZH couplings in linear

order since the asymmetry A′T itself gets contribution from the SM.
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After performing the integrals in Eqn. 3.16, we get the following expression for

A′
T :

A′T(θ0) =
2

π
PTP T

(DT cos δ − ET sin δ)
(

1− 1
3
cos2 θ0

)

AT +BT

(

1− 1
3
cos2 θ0

) . (3.17)

When we expand the cross section in the denominator to obtain the expression

for the asymmetry to linear order in anomalous couplings, we find that the denom-

inator at linear order cancels the contribution of the coupling Reaγ approximately,

while introducing contributions of RebZ and Rebγ , though the contribution of Rebγ

is found to be negligibly small. Thus, we conclude that asymmetry A′T probes the

combination of couplings Re∆aZ and RebZ .

As this asymmetry does not vanish for the SM, we use the following expression

for determining the limit on the linear combination of couplings at 95% CL.

|A′T −A′T SM | ≤ 2.45

√

1− (A′T SM)2√
LσSM

, (3.18)

where ASM is the value of the asymmetry in SM.

As this asymmetry is proportional to the product PTP T , changing the sign of

polarization will only give a change of sign of the asymmetry. It is thus not possible

to obtain two different combinations of the couplings Re∆aZ and RebZ as in the

earlier case of longitudinal polarization. However, it would be possible to obtain

simultaneous limits on these couplings by choosing two different cut-offs on the

azimuthal angle φ, which would give two equations. We have not attempted this

in the present work.

The individual limits using A′T on Re∆aZ and RebZ each taken nonzero by

turns, are

|Re∆aZ | ≤ 0.267, |RebZ | ≤ 0.113 (3.19)

3.2 The process e+e− → ZH → ℓ+ℓ−H

In the previous section, we only focused on the angular distribution of the Z mo-

mentum which amounts to using the sum of the momenta of the Z-decay products.

With only Z momentum, the angular distribution do not get contributions from

couplings like ImbZ , Imb̃Z , Reb̃Z , Imbγ , Imb̃γ and Reb̃γ . These couplings may con-

tribute to the process e+e− → ZH if we consider the angular distributions of the

decay leptons.
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To explore this possibility, we now consider the Z decaying to charged leptons

as:

e−(p1) + e+(p2) → Zα(q) +H(k) → ℓ−(p3) + ℓ+(p4) +H(k), (3.20)

where ℓ is either µ or τ . Helicity amplitudes for the process were obtained earlier

in the context of an effective Lagrangian approach [22, 29]. We have used instead

trace techniques employing the symbolic manipulation program ‘FORM’ [42]. We

neglect the mass of the electron.

We choose the z axis along the e− momentum and the positive x axis is chosen

to be along the direction of the e− polarization (or the e+ polarization taken to be

parallel to the e− polarization).

The amplitudes for the process 3.20 in the case of the SM and in the presence

of anomalous ZZH and γZH couplings are given by Eqns. 2.33, 2.34 and 2.35 in

Chapter 2. The expression for the cross section with transverse polarization PT

for e− beam and P T for e+ beam is

σT =

∫

d3p3
2p03

d3p4
2p04

( e

4 sin θW cos θW

)2

1

(q2 −m2
Z)

2 + Γ2
Zm

2
Z

[

FT
SM + FT

Z + FT
γ

]

(3.21)

where FT
SM , FT

Z and FT
γ are the contributions from the SM alone, interference

between the SM and the ZZH terms and interference between the SM and the

γZH terms respectively, full analytical expressions of which are given in Appendix

II. The expression for the differential cross section with transverse polarization PT

for e− beam and P T for e+ beam has terms either independent of the PT and P T ,

or proportional to the product PTP T . The phase space integrals of Eqn. 3.21 have

been evaluated numerically.

3.2.1 Observables

We evaluate expectation values of the observables Yi (i = 1, 2, . . . 6) for transversely

polarized beams. The observables Yi have definite transformation properties under

CP and T. The definitions of Yi with their CP and T transformation properties

are given in Table 3.2.



3.2. The process e+e− → ZH → ℓ+ℓ−H 53

Symbol Observable CP T Couplings

Y1 (qxqy) + − Imaγ

Y2 (q2x − q2y) + + RebZ ,Reaγ ,Rebγ

Y3 (p3 − p4)x(p3 − p4)y + − Imaγ , Imbγ

Y4 qxqy(p3 − p4)z − − Reb̃Z , Reb̃γ

Y5 (p3 − p4)x(p3 − p4)yqz + − ImbZ , Imbγ

Y6 [(p3)
2
x − (p4)

2
x]− [(p3)

2
y − (p4)

2
y] − + Imb̃Z , Imb̃γ

Table 3.2: Possible observables to constrain anomalous couplings, their CP and T

properties and the couplings they probe. Here, P = p1 + p2 and q = p3 + p4.

3.2.2 Sensitivities with transverse beam polarization

For the purpose of numerical calculations, we have made use of the following val-

ues of parameters: MZ = 91.19 GeV, α(MZ) = 1/128, sin2 θW = 0.22. We have

evaluated expectation values of the observables and their sensitivities to the anoma-

lous couplings for ILC operating at
√
s = 500 GeV having integrated luminosity

∫

Ldt = 500 fb−1. We have assumed that transverse polarizations of PT = ±0.8

and P T = ±0.6 would be accessible for e− and e+ beams respectively.

We have determined in each case the limit which can be placed at the 95% CL

on a coupling contributing to the correlation of Oi using

|〈Oi〉 − 〈Oi〉SM| = f

√

〈O2
i 〉SM − 〈Oi〉2SM√
LσSM

, (3.22)

where the subscript “SM” refers to the value in SM, and where f is 1.96 when only

one coupling is assumed non-zero, and 2.45 when two couplings contribute.

The observables Yi have vanishing expectation values in the absence of trans-

verse polarization. As noted earlier, the differential cross section depends on trans-

verse polarization through the product PTP T . Hence both beams need to be po-

larized to observe the effects of these terms.

We have listed in Table 3.3 the results for individual limits obtained by utiliz-

ing transversely polarized beams. The most significant result is for the coupling

Imaγ . We find that the observable Y1 can constrain Imaγ independent of all other
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couplings. This is particularly significant because Imaγ can not be constrained

with longitudinal polarization.

In the determination of 〈Y2〉 the numerator receives contribution only from

Re∆aZ and Reaγ. However, the denominator at the linear order cancels the con-

tribution of Re∆aZ exactly and that of Reaγ approximately, while introducing a

dependence of 〈Y2〉 on RebZ and Rebγ .

Limits for polarizations

Observable Coupling PT = 0.8, P T = ±0.6

Y1 (qxqy) Imaγ 1.98× 10−1

Y2 (q2x − q2y) Reaγ 8.15× 10−1

RebZ 2.65× 10−2

Rebγ 3.41× 10−1

Y3 (p3 − p4)x(p3 − p4)y Imaγ 9.62

Imbγ 4.72× 10−2

Y4 qxqy(p3 − p4)z ImbZ 1.58× 10−1

Imbγ 1.96

Y5 (p3 − p4)x(p3 − p4)yqz Reb̃Z 5.56× 10−2

Reb̃γ 6.89× 10−1

Y6 [(p3)
2
x − (p4)

2
x]− [(p3)

2
y − (p4)

2
y] Imb̃Z 1.10× 10−1

Imb̃γ 1.36

Table 3.3: The 95 % C.L. limits on anomalous ZZH and γZH couplings chosen

nonzero one at a time from various observables with transverse polarization.

The other observables listed in Table 3.3 do not allow limits on single couplings

to be isolated. However, in each of these cases, if one assumes the couplings

contributing to the expectation value to be of the same order of magnitude, then

one of the couplings makes a dominant contribution to the expectation value,

leading to an independent limit on that coupling. For example, Y2, Y3, Y4, Y5 and

Y6 can place independent limits on RebZ , Imbγ , ImbZ , Reb̃Z and Imb̃Z , respectively.

3.2.3 Effects of kinematical cuts and change in cm energy

We employ the same cuts which we used in Chapter 2 for longitudinally polarized

beams to identify the final-state particles. We find that except Y6, for which limits
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on couplings change by 20− 30%, other observables are not very sensitive to these

cuts.

We also look at the effect on the sensitivity with the the change of cm energy.

For this, we study the sensitivity of observables at
√
s = 1000 GeV and integrated

luminosity of 1000 fb−1. We find that observables Y1, Y2, Y5 and Y6 become less

sensitive to anomalous couplings with higher cm energies while Y4 is more sensitive

to anomalous couplings at higher cm energies. Y3 behaves differently relative to

all other observables. While the limit on Imaγ improves by about an order of

magnitude, the limit on Imbγ get worse with increase in cm energy. Thus, the

naive expectation as discussed in Chapter 2 is not realized. The behaviour of

sensitivities at high cm energies is non-trivial and requires more elaborate study

which we have not attempted in our work.

3.2.4 Comparison with earlier works

The sensitivities on anomalous ZZH couplings with transversely polarized beams

at a linear collider have been studied in Ref. [27]. The conclusion from their

analysis is that transverse polarization helps to obtain limits on all anomalous

ZZH couplings independent of one another. In our work, we widen this conclusion

by incorporating the contribution of anomalous γZH couplings and show that

transverse polarization indeed disentangles contributions of all ZZH and γZH

couplings independent of one another. We find that the limits obtained in Ref. [27]

are 2 to 3 times worse than that of ours. This can be attributed to the fact that

they implement stringent cuts. Also, the limits obtained on anomalous couplings

using transverse polarization are comparable to the ones obtained through the use

of longitudinally polarized beams.

As for the case of γZH couplings, comparison with earlier work is not easy

because of the different approach to parameterization of couplings. Also, there is

no work dealing in transverse polarization with which we could make a comparison.

3.3 Conclusions and discussion

We have obtained angular distributions for the process e+e− → ZH → ℓ+ℓ−H

in the presence of anomalous γZH and ZZH couplings to linear order in these

couplings in the presence of transverse beam polarizations. We find that transverse

polarization probes a combination of couplings in which only one of the couplings



3.3. Conclusions and discussion 56

dominates over others. In that case, it can be assumed that transverse polarization

helps to determine the couplings almost independently of one another. The main

advantage of transverse polarization is that it enables constraining Imaγ which is

not accessible without transverse polarization.

We have also obtained the sensitivities of these observables and asymmetries to

the various couplings for a definite configuration of the linear collider. Transverse

polarization enables the determination of Imaγ independent of all other couplings,

with a possible 95% CL limit of about 0.2. Independent limits on RebZ and Imbγ

of a few times 10−2 are possible, whereas those on ImbZ , Reb̃Z and Imb̃Z would be

somewhat larger, ranging upto about 0.1.

We consider only one leptonic decay mode of Z in our analysis in the Z-decay.

Including both µ+µ− and τ+τ− modes would trivially improve the sensitivity.

In case of observables like Y1, Y2, which do not need charge identification, even

hadronic decay modes of Z can be included, which would considerably enhance

the sensitivity. However considering a specific charged-lepton channel has enabled

us to get a handle on Imbγ , ImbZ , Reb̃γ and Reb̃Z , which were not accessible in

using only Z distributions.

We have not included the decay of the Higgs boson in our analysis. For now,

one could simply divide our limits by the square root of the branching ratios and

detection efficiencies. Including the decay will entail some loss of efficiency.



Chapter 4

Anomalous tbW
− couplings in

single-top production at the LHC

As has been discussed in Chapter 1 (Introduction), the EWSB sector of the SM

is still not fully established. The top quark because of its heavy mass close to

EWSB scale may play a special role in the understanding of the mechanism of

EWSB. Since EWSB plays an important role in the generation of fermion masses,

the effects from new physics (NP) would be more apparent in the top-quark sector

than in any light-quark sector in the SM. A few examples have been discussed

in Ref. [46] to illustrate that different models of EWSB mechanism will induce

different interactions among the top quark andW and Z bosons. Therefore through

the study of the top quark, one may eventually learn about symmetry breaking

mechanism of the EW theory. The most significant consequence of the large mass

of the top quark is that it decays before its hadronization and hence its spin

information is preserved in its decay products. So, through the study of angular

distributions of top-decay products, one can determine the degree of polarization

of the top quarks in a top-quark ensemble. Different new physics models give

different predictions for top polarization. Hence, top polarization may be used as

a tool to study new physics involved in top production.

At the Large Hadron Collider (LHC), top quarks will be produced mainly in

pairs dominantly through gluon fusion whose contribution to the cross section is

90%, while quark-antiquark annihilation contributes 10%. Both these production

mechanisms proceed mainly through QCD interactions. Since gluon couplings are

chirality-conserving, the polarization of top quarks can arise only through the Z-

exchange contribution to qq̄ annihilation channel, and is expected to be very small.

57
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However, single-top production can also occur [54, 55, 56, 57, 58, 59, 60, 61, 64, 66],

and has already been seen [67]. Since it proceeds via weak interactions, top quarks

will have large polarization [60, 61]. At LHC energies, single-top quark events

in the SM are expected to be produced via a) the t-channel (bq → tq′) process,

b) the s-channel process (qq̄′ → tb̄) and c) the tW associated production process

(bg → tW−) [58]. In all these processes, there is at least one chiral vertex which

gives rise to large top polarization. The three processes are completely different

kinematically and can be separated from each other. The tW− mode of single-top

production is distinct from other two modes in the sense that it is affected by the

new physics only in the tbW vertex while, in other modes, there may be exotic

scalars or gauge bosons which can give additional contributions to the process. In

this work, we study in detail the effect of anomalous tbW vertex on top polarization

in associated production of the top quark with a W boson.

As discussed in Chapter I (Introduction), the most direct way to determine

top polarization is by measuring the angular distribution of its decay products in

its rest frame. However, at the LHC reconstructing the top-rest frame results in

large systematic errors and loss in statistics. Our main aim in this work is to devise

observables which can be measured in the lab frame and give a good estimate of top

polarization and thence probe anomalous tbW couplings in single-top production.

For this, we study various laboratory-frame distributions of the charged lepton and

the b quark coming from top decay.

4.1 Single-top production

Single-top quark events can be produced by following mechanisms at the LHC

1. t-channel process, bq → tq′ (shown in Fig. 4.1 (a)),

2. W -g fusion progess, gq → tbq′ (shown in Fig. 4.1 (b)),

3. Drell-Yan type s-channel process, q′q̄ →W ∗ → tb̄ (shown in Fig. 4.1 (c)),

4. tW associated production, gb→ tW− (shown in Fig. 4.2).

All these three mechanisms of single top productions are kinematically different

and can be separated from each other. As can be seen from Fig. 4.1 and 4.2, in all

three mechanisms of single-top production, there is at least one chiral tbW vertex

which may enhance the polarization of the final state top quarks.
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t
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Figure 4.1: Feynman diagrams for various single-top production processes.

4.2 Anomalous tbW couplings

Among all top couplings to gauge and Higgs bosons, the tbW vertex deserves spe-

cial attention since the top quark is expected to decay almost completely via this

interaction. However, in several extensions of SM, as for example supersymmetry

and models of dynamical symmetry breaking, sizable deviations are possible from

the SM predictions and also new decays of top quarks are possible. These devia-

tions of the tbW vertex may be observed in top decays. Single-top production is

another source to study deviation in the tbW vertex.

For on-shell top, bottom andW , the most general effective vertices for the tbW

interaction up to dimension five can be written as [68]

Vt→bW+ =
−g√
2
Vtb

[

γµ(f1LPL + f1RPR)−
iσµν

mW
(pt − pb)ν(f2LPL + f2RPR)

]

(4.1)
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for the decay t→ bW+, and

Vb→tW− =
−g√
2
V ∗
tb

[

γµ(f∗1LPL + f∗1RPR)−
iσµν

mW
(pt − pb)ν(f

∗
2RPL + f∗2LPR)

]

(4.2)

for tW− production from a virtual b, where Vtb is the Cabibbo-Kobayashi-Maswkawa

matrix element, and f1L, f2L, f1R, f2R are couplings.

In the SM, f1L = 1 and f1R = f2L = f2R = 0. We have assumed all the anomalous

couplings to be complex and consider real and imaginary parts of these couplings as

independent parameters. We assume CP to be conserved in this analysis. Various

extensions of the SM would have specific predictions for these anomalous couplings.

For example, the contributions to these form factors in two Higgs doublet model

(2HDM), minimal supersymmetric standard model (MSSM) and top-color assisted

Technicolor model (TC2) have been evaluated in Ref. [69].

Tevatron provides the only existing direct limits on anomalous tbW couplings

throughW -polarization measurements. Recently, CDF II with 2.7 fb−1 of collected

data reported results for the longitudinal and right-handed helicity fractions of the

W boson in semileptonic top-decays [62]. D0 also reported results on W helicity

fractions using a combination of semileptonic and dilepton decay channels [63].

These results onW -polarization measurements led to a limit of [−0.3, 0.3] on f2R at

the 95% confidence level (CL) [64] in single-top production. The CMS and ATLAS

collaborations have also reported theW helicity fractions with early LHC data [65].

In Ref. [66], the authors have used the recent top-quark decay asymmetries from

ATLAS and the t-channel single-top cross section from CMS to put the limits on

tbW couplings. They find that despite the small statistics available, the early LHC

limits of [−0.6, 0.3] on f2R are not too far from the Tevatron limits.

Apart from direct measurements at the LHC and Tevatron, there are stringent

indirect constraints coming from low-energy measurements of anomalous tbW cou-

plings. The measured rate of b → sγ puts stringent constraints on the couplings

f1R and f2L of about 4 × 10−3, since their contributions to B-meson decay get an

enhancement factor of mt/mb [70, 71, 72, 73]. The bound on the anomalous cou-

pling f2R is very weak, [−0.15, 0.57] at 95 % CL [73]. In Ref. [74], a slightly more

stringent bound has been found on f2R utilizing Bd,s − B̄d,s mixing. These bounds

are obtained by taking one coupling to be non-zero at a time. However if one allows

all couplings to be non-zero simultaneously, there is a possibility of cancellations

among contributions of different couplings and the limits on these couplings could

be very different.
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4.3 The spin density matrix formalism for a generic

top-production process

Let us consider a generic process of top production with X and subsequent semilep-

tonic decay of t and inclusive decay of X , AB → tX → bℓ+νℓX . Since Γt/mt ∼
0.008, we can use the narrow width approximation (NWA) to write the cross sec-

tion as a product of the 2 → 2 production cross section times the decay width of

the top. However, in probing top polarization using angular distributions of the

decay lepton, it is necessary to keep the top spin information in its decay arising

from its production, thus requiring the spin density matrix formalism. As in [76],

the amplitude squared can be factored into production and decay parts using the

NWA as

∑

spins

|M|2 = πδ(p2t −m2
t )

Γtmt

∑

λ,λ′

ρ(λ, λ′)Γ(λ, λ′), (4.3)

where ρ(λ, λ′) and Γ(λ, λ′) are the 2 × 2 top production and decay spin density

matrices and λ, λ′ = ±1 denote the sign of the top helicity. After phase space

integration of ρ(λ, λ′) we get the resulting polarization density matrix σ(λ, λ′).

The (1,1) and (2,2) diagonal elements of σ(λ, λ′) are the cross sections for the

production of positive and negative helicity tops and σtot = σ(+,+) + σ(−,−) is

the total cross section. We define the degree of longitudinal polarization Pt as

Pt =
σ(+,+)− σ(−,−)

σ(+,+) + σ(−,−)
. (4.4)

The off-diagonal elements of σ(λ, λ′) are the production rates of the top with

transverse polarization. We obtain the top-decay density matrix Γ(λ, λ′) for the

process t → bW+ → bℓ+νℓ including anomalous tbW couplings and write it in a

Lorentz invariant form. We find

Γ(±,±) = g4 |∆(p2W )|2[m2
t − 2(pt · pℓ)]

[

|f1L|2
{

(pt · pℓ)∓mt(pℓ · n3)
}

+ Ref1Lf
∗
2R

{

mtmW ∓ m2
t +m2

W

mW

(pℓ · n3)∓
2

mW

(pb · n3)(pt · pℓ)
}

+
|f2R|2
2

{

m2
W +

m2
t − 2pt · pℓ

2
∓ 2 [(pℓ · n3) + (pb · n3)]

}]

, (4.5)



4.4. Single-top production in association with a W boson 62

for the diagonal elements and

Γ(∓,±) = g4 |∆(p2W )|2[m2
t − 2(pt · pℓ)]

[

|f1L|2 {−mt[pℓ · (n1 ∓ in2)]}

− Ref1Lf
∗
2R

{m2
t +m2

W

mW
[pℓ · (n1 ∓ in2)]−

2

mW
[pb · (n1 ∓ in2)](pt · pℓ)

}

− |f2R|2
{

[(pℓ + pb) · (n1 ∓ in2)]
}]

, (4.6)

for the off-diagonal ones. Here ∆(p2W ) is the W boson propagator, for which we

will use the narrow-width approximations in our numerical calculations, and nµ
i ’s

(i = 1, 2, 3) are spin four-vectors for the top with four-momentum pt corresponding

to rest-frame spin quantization axes x, y and z respectively, with the properties

ni · nj = −δij and ni · pt = 0. In the top rest frame they take the standard form

n0
i = 0, nk

i = δki .

Using the NWA the differential cross section for top production and decay, with

inclusive decay of X can be written as

dσ =
1

32 Γtmt

1

(2π)4

[

∑

λ,λ′

dσ(λ, λ′) ×
(

Γ(λ, λ′)

pt · pℓ

)

]

Eℓ d cos θt d cos θℓ dφℓ

× dEℓ dp
2
W , (4.7)

where the lepton integration variables are in the lab frame and the b-quark energy

integral is replaced by an integral over the invariant mass p2W of the W boson.

dσ(λ, λ′) is the differential cross section for the 2 → 2 process of top production

with indicated spin indices of the top. As shown in [76], by measuring the angular

distributions of the decay lepton in the top rest frame (which requires reconstruct-

ing the top rest frame) analytic expressions for the longitudinal and transverse

components of the top polarization can be obtained by a suitable combination of

lepton polar and azimuthal asymmetries. However, as pointed out earlier, it would

be useful and interesting to devise variables for the top-decay products in the labo-

ratory frame, which are easily measured and are sensitive to probes of new physics

responsible for top production.

4.4 Single-top production in association with a

W boson

As stated earlier, single-top production at hadron colliders occurs through three

different modes. All these three modes are distinct in terms of initial and final



4.4. Single-top production in association with a W boson 63

states and are in principle separately measurable. As mentioned earlier, the tW−

mode of single-top production is distinct from other two modes in the sense that it

is affected by the new physics only in the tbW vertex while, in other modes, there

may be exotic scalars or gauge bosons which can give additional contributions to

the process. The tW− mode of single-top production has been studied in detail

in Ref. [58]. At the parton level, the tW− production proceeds through a gluon

g(pg)

b(pb)

W−

t(pt, λt)
b

(a)

g(pg)

b(pb) W−

t(pt, λt)

t

(b)

Figure 4.2: Feynman diagrams contributing to associated tW− production at the

LHC.

W+ νℓ+

ℓ+

b

t

Figure 4.3: Anomalous tbW couplings in top decay

and a bottom quark each coming from a proton and gets contribution from two

diagrams. Feynman diagrams for the process g(pg)b(pb) → t(pt, λt)W
− are shown

in Fig. 4.2, where λt = ±1 represent the top helicity and the blobs denote effective

tbW vertices, including anomalous couplings, in the production process. These

couplings are also involved in the decay of the top as shown in Fig. 4.3.

We obtain analytical expressions for the spin density matrix for tW production
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including anomalous couplings. Use was made of the analytic manipulation pro-

gram FORM [78]. We find that at linear order, only the real part of the coupling

f2R gives significant contribution to the production density matrix, whereas con-

tributions from all other couplings are proportional to the mass of b quark (which

we neglect consistently) and hence vanish in the limit of zero bottom mass. To

second order in anomalous couplings, other anomalous couplings do contribute,

but we focus only on f2R, since its contribution, arising at linear order, is domi-

nant. Expressions for the spin density matrix elements ρ(±,±) and ρ(±,∓) for

tW production, where ± are the signs of the top-quark helicity, are given in the

Appendix III.

4.4.1 Production cross section

After integrating the density matrix given in the Appendix III over the phase

space, the diagonal elements of this integrated density matrix, which we denote

by σ(+,+) and σ(−,−), are respectively the cross sections for the production of

positive and negative helicity tops and σtot = σ(+,+) + σ(−,−) is the total cross

section.

For numerical calculations, we use the leading-order parton distribution func-

tion (PDF) sets of CTEQ6L [79] with a factorization scale of mt = 172.6 GeV. We

also evaluate the strong coupling at the same scale, αs(mt) = 0.1085. We make use

of the following values of other parameters: MW = 80.403 GeV, the electromag-

netic coupling αem(mZ) = 1/128 and sin2 θW = 0.23. We set f1L = 1 and Vtb = 1

in our calculations. We take only one coupling to be non-zero at a time in the

analysis, except in Sec.4.7.

In Fig. 6.2, we show the cross section as a function of various anomalous

tbW couplings for two different values of centre-of-mass (cm) energies of 7 TeV

and 14 TeV for which the LHC is planned to operate. We show contributions of

anomalous couplings to the cross section at linear order as well as without the

approximation. From Fig. 4.4, one can infer that the cross section is very sensitive

to negative values of Ref2R. The linear approximation is seen to be good for values

of anomalous coupling ranging from −0.05 to 0.05.

Since the cross section may receive large radiative corrections at the LHC, we

focus on using observables like asymmetries which are ratios of some partial cross

sections, and which are expected to be insensitive to such corrections.
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Figure 4.4: The cross section for tW− production at the LHC for two different

cm energies, 7 TeV (left) and 14 TeV (right), as a function of anomalous tbW

couplings.

4.4.2 Top-angular distribution

The angular distribution of the top quark would be modified by anomalous cou-

plings. Since the top quark is produced in a 2 → 2 process, its azimuthal distribu-

tion is flat. We can study its polar distribution with the polar angle defined with

respect to either of the beam directions as the z axis. We find that the polar distri-

bution is sensitive to anomalous tbW couplings. The normalized polar distribution
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Figure 4.5: The top-polar angular distributions for tW− production at the LHC for

two different cm energies, 7 TeV (left) and 14 TeV (right), for different anomalous

tbW couplings.

is plotted in Fig. 4.5 for cm energies 7 TeV and 14 TeV.

As can be seen from Fig. 4.5, the curves for the polar distributions for the
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SM and for the anomalous couplings of magnitude 0.2 are separated from each

other. The top distribution has no forward-backward asymmetry, the colliding

beams being identical. However, we can define an asymmetry utilizing the polar

distributions of the top quark as

At
θ =

σ(|z| > 0.5)− σ(|z| < 0.5)

σ(|z| > 0.5) + σ(|z| < 0.5)
(4.8)

where z is cos θt. We plot this asymmetry as a function of anomalous tbW couplings
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Figure 4.6: The top polar asymmetries for tW− production at the LHC for two

different cm energies, 7 TeV (left) and 14 TeV (right), as a function of anomalous

tbW couplings. The grey band corresponds to the top-polar asymmetry predicted

in the SM with a 1 σ error interval.

for two cm of energies
√
s = 7 TeV and 14 TeV in Fig. 4.6. The asymmetry

At
θ requires accurate determination of the top direction in the lab frame and a

quantitative estimate of its sensitivity to anomalous couplings needs details of the

efficiency of reconstruction of the direction. We do not study this asymmetry any

further, but proceed to a discussion of top polarization.

4.4.3 Top polarization

The degree of longitudinal polarization Pt of the top quark is given by Eqn. 4.4.

This polarization asymmetry is shown in Fig. 4.7 as a function of anomalous

couplings in the linear approximation, as well as without approximation, for
√
s =

7 TeV and 14 TeV. As compared to the SM value of −0.256 for
√
s = 14 TeV,

the degree of longitudinal top polarization varies from −0.075 to −0.281 for Ref2R

varied over the range −0.2 to +0.2, while it varies from −0.139 to −0.256 for the
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Figure 4.7: The top polarization asymmetry for tW− production at the LHC

for two different cm energies, 7 TeV (left) and 14 TeV (right), as a function of

anomalous tbW couplings. The grey band corresponds to the top-polarization

asymmetry predicted in the SM with a 1 σ error interval.

same range of Imf2R, and is symmetric about Imf2R = 0. We notice that just as

for the total cross section, Pt is sensitive to negative values of Ref2R. Also, Pt is

equally sensitive to negative and positive values of Imf2R. Thus Pt can be a very

good probe of Ref2R and Imf2R if it can be measured at the LHC. However, the

standard measurement of Pt requires reconstruction of the top-rest frame which is a

difficult task, and would entail reduction in efficiency. We will therefore investigate

lab-frame decay distributions for the measurement of anomalous couplings.

All the quantities considered so far, viz., the total cross section, the top polar

distribution and the top polarization, can only be measured using information

from the decay of the top. Both the polar distribution and the top polarization

would play a role in determining the distributions of the decay products. Our main

aim is to devise observables which can be measured in the lab frame and give a

good estimate of top polarization and thence probe anomalous tbW couplings in

single-top production. We proceed to construct such observables from kinematic

variables of the charged lepton and b quark produced in the decay of the top.

4.5 Charged-lepton distributions

To preserve spin coherence while combining top production with decay, we make

use of the spin density matrix formalism. Since Γt/mt ∼ 0.008, we can use the

narrow width approximation (NWA) to write the cross section in terms of the
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product of the 2 → 2 production density matrix ρ and the decay density matrix Γ

of the top as written in Eqn. 4.3. The top production spin density matrix ρ(λ, λ′)

for process gb → tW− is given in Appendix III. The top decay density matrix

Γ(λ, λ′) for the process t → bW+ → bℓ+νℓ including anomalous tbW couplings is

given in Eqns. 4.5 and 4.6 in a Lorentz invariant form.

The details of the factorization of the differential cross section for top produc-

tion followed by its decay in a generic production process into production and

decay parts has been elaborated earlier (See [76] for full details). We use the NWA

for single-top production and its decay to write the partial cross section in the

parton cm of frame as

dσ =
1

32(2π)4Γtmt

∫

[

∑

λ,λ′

dσ(λ, λ′)

d cos θt

(〈Γ(λ, λ′)〉
pt · pℓ

)

]

d cos θt d cos θℓ dφℓ

× EℓdEℓ dp
2
W , (4.9)

where the b-quark energy integral is replaced by an integral over the invariant

mass p2W of the W boson, its polar-angle integral is carried out using the Dirac

delta function of Eqn. 4.3, and the average over its azimuthal angle is denoted

by the angular brackets. dσ(λ, λ′)/d cos θt is proportional to ρ(λ, λ′), with the

normalization chosen so that dσ(λ, λ)/d cos θt is the differential cross section for

the 2 → 2 process of tW− production with helicity index λ of the top.

4.5.1 Angular distributions of charged leptons

We evaluate top decay in the rest frame of the top quark with the z axis as the

spin quantization axis, which would also be the direction of the boost required to

go to the parton cm frame. In the rest frame of the top quark, the diagonal and

off-diagonal elements of decay density matrix, after averaging over the azimuthal
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angle of b quark w.r.t. the plane of top and lepton momenta, are given by

〈Γ(±,±)〉 = g4mtE
0
ℓ |∆W (p2W )|2(m2

t − 2pt · pℓ)
[

{

|f1L|2 + Ref1Lf
∗
2R

mt mW

pt · pℓ

}

× (1± cos θ0ℓ )− |f2R|2
(

1− m2
t +m2

W

2pt · pℓ

)

(1∓ cos θ0ℓ )

± |f2R|2
m2

Wm
2
t

2(pt · pℓ)2
cos θ0ℓ

]

, (4.10)

〈Γ(±,∓)〉 = g4mtE
0
ℓ |∆W (p2W )|2(m2

t − 2pt · pℓ) sin θ0ℓ e±iφ0
ℓ

[

|f1L|2

+ Ref1Lf
∗
2R

mt mW

pt · pℓ
+ |f2R|2

{

1− m2
t +m2

W

2pt · pℓ
+

m2
Wm

2
t

2(pt · pℓ)2
}

]

, (4.11)

where this averaging over the azimuthal angle of the b quark is most conveniently

carried out in a coordinate system defined with the z axis along the lepton mo-

mentum direction.

In the limit of small anomalous coupling f2R, we see from Eqs. 4.10 and 4.11

that if we drop quadratic terms in f2R, 〈Γ(λ, λ′)〉 factorizes into a pure angular part

A(λ, λ′), which depends on helicities, and a lepton-energy dependent part which

does not depend on the helicities, where

A(±,±) = (1± cos θ0ℓ ), A(±,∓) = sin θ0ℓe
±iφ0

ℓ . (4.12)

The factorization of 〈Γ(λ, λ′)〉 into A(λ, λ′) and a helicity-independent part in

the rest frame of the top quark implies that since the corrections from anomalous

couplings reside in the helicity-independent part, they are identical to those of

the total width appearing in the denominator of the angular distribution, and

cancel. This leads to the result of [75, 76] that the energy averaged lepton angular

distributions are insensitive to the new physics in top-quark decay in any top

production process.

We study the angular distribution of the charged lepton in the lab frame both

in the linear approximation of the anomalous couplings as well as with full contri-

butions of the anomalous couplings without approximation.

We first obtain the angular distribution of the charged lepton in the parton cm

frame, by integrating over the lepton energy, with limits given by m2
W < 2(pt ·pℓ) <

m2
t . This integral can be done analytically, giving the following expression for the
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Figure 4.8: The normalized polar distribution of the charged lepton in tW− pro-

duction at the LHC for two different cm energies, 7 TeV (left) and 14 TeV (right),

for different anomalous tbW couplings.

differential cross section in the parton cm frame:

dσ

d cos θt d cos θℓ dφℓ

=
1

32 Γtmt

1

(2π)4

∫

[

∑

λ,λ′

dσ(λ, λ′)

d cos θt
g4A′(λ, λ′)

]

× |∆(p2W )|2dp2W , (4.13)

where

A′(±,±) =
m6

t

24(1− βt cos θtℓ)3E2
t

[

(1− r2)2
{

(1± cos θtℓ)(1∓ βt)

×
[

|f1L|2(1 + 2r2) + 6rRef1Lf
∗
2R

]

+ |f2R|2(2 + r2)(1∓ cos θtℓ)(1± βt)
}

∓ 12r2|f2R|2
(

1− r2 + 2 log r
)

(cos θtℓ − βt)
]

, (4.14)

A′(±,∓) =
m7

t

24(1− βt cos θtℓ)3E3
t

sin θtℓe
±iφℓ

[

(1− r2)2
{

|f1L|2(1 + 2r2)

+ 6r Ref1Lf
∗
2R − |f2R|2(2 + r2)

}

− 12r2 |f2R|2
(

1− r2 + 2 log r
)

]

.

Here r = mW/mt and cos θtℓ is the angle between the top quark and the charged

lepton from the top decay in the parton cm frame, given by

cos θtℓ = cos θt cos θℓ + sin θt sin θℓ cosφℓ, (4.15)

where θℓ and φℓ are the lepton polar and azimuthal angles. In the lab frame, the

lepton polar angle is defined w.r.t. either of the beam direction and the azimuthal
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angle is defined with respect to the top-production plane chosen as the x-z plane,

with beam direction as the z axis and the convention that the x component of

the top momentum is positive. At the LHC, which is a symmetric collider, it is

not possible to define a positive direction of the z axis. Hence lepton angular

distribution is symmetric under interchange of θℓ and π − θℓ as well as of φℓ and

2π − φℓ. The lab frame expression for the differential cross section is obtained

from Eq. 4.13 by an appropriate Lorentz transformation and integration over the

parton densities.
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Figure 4.9: The normalized azimuthal distribution of the charged lepton in tW−

production at the LHC for two different cm energies, 7 TeV (left) and 14 TeV

(right), for different anomalous tbW couplings in the linear approximation. Imf2R

does not contribute in the linear order.

We first look at the polar distribution of the charged lepton and the effect on

it of anomalous tbW couplings. As can be seen from Fig. 4.8, where we plot the

polar distribution for two cm of the LHC energies
√
s = 7 TeV and 14 TeV, the

normalized distributions are insensitive to anomalous tbW couplings.

We next look at the contributions of anomalous couplings to the azimuthal

distribution of the charged lepton. In Fig. 4.9, we show the normalized azimuthal

distribution of the charged lepton in a linear approximation of the couplings for√
s = 7 TeV and 14 TeV for different values of Ref2R. At linear order, contributions

of all other couplings vanish in the limit of vanishing bottom mass. In Fig. 4.10,

we show the normalized azimuthal distribution of the charged lepton including

higher-order terms in the couplings for
√
s = 7 TeV and 14 TeV for different

values of Ref2R and Imf2R. We see that the curves for real and imaginary parts

of the anomalous coupling f2R peak near φℓ = 0 and φℓ = 2π. The curves are
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Figure 4.10: The normalized azimuthal distribution of the charged lepton in tW−

production at the LHC for two different cm energies, 7 TeV (left) and 14 TeV

(right), for different anomalous tbW couplings without the linear approximation

well separated at the peaks for the chosen values of the anomalous tbW couplings

and are also well separated from the curve for the SM. We define an azimuthal

asymmetry for the lepton to quantify these differences in the distributions by

Aφ =
σ(cosφℓ > 0)− σ(cosφℓ < 0)

σ(cosφℓ > 0) + σ(cosφℓ < 0)
, (4.16)

where the denominator is the total cross section. Plots of Aφ as a function of the
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Figure 4.11: The azimuthal asymmetries of the charged lepton in tW− production

at the LHC for cm energy 7 TeV without lepton cuts (left) and with cuts (right),

as a function of anomalous tbW couplings. The grey band corresponds to the

azimuthal asymmetry predicted in the SM with 1 σ error interval.

couplings with and without cuts on the lepton momenta are shown in Fig. 4.11 for
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a cm energy of 7 TeV. In the former case, the rapidity and transverse momentum

acceptance cuts on the decay lepton that we have used are |η| < 2.5, pℓT > 20

GeV. The corresponding plots at
√
s =14 TeV with and without lepton cuts are
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Figure 4.12: The azimuthal asymmetries of the charged lepton in tW− production

at the LHC for cm energy 14 TeV without lepton cuts (left) and with cuts (right),

as a function of anomalous tbW couplings. The grey band corresponds to the

azimuthal asymmetry predicted in the SM with a 1σ error interval.

shown in the Fig. 4.12. The lepton cuts increase the value of Aφ for the SM from

0.35 to around 0.45, and also increase Aφ substantially with anomalous couplings

included. However, the cuts result in the reduction of signal events and from the

Figs. 4.11 and 6.7, we see that these cuts actually decrease the sensitivity to

anomalous couplings.

The azimuthal distribution depends both on top polarization and on a kine-

matic effect. According to Eqn. 1.66, the decay lepton is emitted preferentially

along the top spin direction in the top rest frame, with κf = 1. The corresponding

distributions in the parton cm frame are given by Eqn. 4.13 with the angular

parts described by Eqs. 4.14 and 4.15. The rest-frame forward (backward) peak

corresponds to a peak for cos θtℓ = ±1, as seen from the factor (1± cos θtℓ) in the

numerator of Eqn. 4.14. This is the effect of polarization. The kinematic effect is

seen in the factor (1−βt cos θtℓ)3 in the denominator of Eqns. 4.14 and 4.15, which

again gives rise to peaking for large cos θtℓ. Eqn. 4.15 therefore implies peaking

for small φℓ. This is borne out by the numerical results.
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4.5.2 Energy distribution of charged leptons

We now study the energy distribution dσ/dEℓ of charged leptons to probe anoma-

lous tbW couplings in single-top production and decay. In the rest frame of the top

quark, the Eℓ distribution of the decay density matrix Γ(λ, λ′) depends only on the

combination of helicities, (λ, λ′). To linear order in the couplings, only the angular

part of Γ(λ, λ′) depends on the helicities, and the energy dependence is the same

for all helicity combinations, and is determined by the effective couplings occurring

in decay. However, there is a weak dependence on the production differential cross

section introduced because the boost to the parton cm frame is determined by θtℓ.

Thus, the Eℓ distribution arises mainly from the decay process, and depends only

weakly on the polarization.

We plot in Fig. 4.13 the Eℓ distribution for
√
s = 7 and 14 TeV. We see
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Figure 4.13: The energy distribution of the charged lepton in tW− production

at the LHC for cm energies 7 TeV (left) TeV and 14 TeV (right) for different

anomalous tbW couplings.

that the distribution is peaked at low values of Eℓ around 40-45 GeV, and all

curves intersect at a particular value of Eℓ ≈ 62 GeV. We also observe that the Eℓ

distribution is mainly sensitive to Ref2R.

As seen from Fig. 4.13, the Eℓ distribution is very sensitive to negative values

of Ref2R and shows little sensitivity for positive values. The Eℓ distribution at

7 TeV is peaked slightly more as compared to that for 14 TeV LHC, though the

position of the peak for both is about the same.

The curves for the Eℓ distribution for anomalous tbW couplings of ±0.2 and the

SM are well separated from each other and intersect at EC
ℓ = 62 GeV. To quantify

this difference and to make better use of statistics, we construct an asymmetry
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around the intersection point of the curves, defined by

AEℓ
=
σ(Eℓ < EC

ℓ )− σ(Eℓ > EC
ℓ )

σ(Eℓ < EC
ℓ ) + σ(Eℓ > EC

ℓ )
, (4.17)

where the denominator is the total cross section. Plots for AEℓ
as a function the
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Figure 4.14: The energy asymmetry of the charged lepton in tW− production at

the LHC for cm energy 14 TeV without lepton cuts (left) and with cuts (right), as

a function of anomalous tbW couplings. The grey band corresponds to the energy

asymmetry predicted in the SM with a 1σ error interval.

coupling are shown in Fig. 4.14 for two cm energies of 7 TeV and 14 TeV. We can

see from the figure that AEℓ
is very sensitive to Ref2R and hence can be a sensitive

probe of this coupling. It is also seen from the figure that the AEℓ
for the SM is

positive for
√
s = 7 TeV, but negative for

√
s = 14 TeV. This is in accordance with

a sharper peaking of the energy distribution in the former case. Another difference

between the asymmetries for the two cm energies is that AEℓ
changes sign with the

sign for some value of Ref2R in case of
√
s = 7 TeV, but remains negative in case

of
√
s = 14 TeV.

4.6 Angular distribution of b quarks

Although the charged-lepton azimuthal distribution provides a neat way to probe

top polarization independent of new physics in the top-decay vertex, it suffers from

low branching ratio of W and hence low number of events for the analysis. This

situation can be improved upon by using b-quark angular distributions, without

restricting only to the leptonic decays of the W coming from top decay, and thus
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utilizing all the single-top events. We thus assume, for purposes of this section,

that the top quark can be identified in hadronic and semi-leptonic decays with

sufficiently good efficiency to enable measurement of b-quark distribution in all of

them.

As described earlier, we use NWA to factorize the full process into single-top

production and top decay. Similar to Eqn. 4.7, we can write the full differen-

tial cross section for the process g(pg)b(pb) → t(pt, λt)W
− followed by t(pt, λt) →

b(p′b)W
+ as

dσ

d cosθt dΩb
=

1

128(2π)3ŝ3/2
|−→pt |
Γtmt

(m2
t −m2

W )

E2
t (1− βt cos θbt)2

×
∑

λt,λ′
t

[ρ(λt, λ
′
t) Γ(λt, λ

′
t)] , (4.18)

where the polar angle θt of the top quark, and the polar and azimuthal angles

θb and φb of the b quark produced in top decay, are measured with respect to

the parton direction as the z axis, and with the xz plane defined as the plane

containing the top momentum. θbt is the angle between the top momentum and

the momentum of the decay b quark.

The density matrix for single-top production ρ(λt, λ
′
t) appearing in Eqn. 4.18 is

given in the Appendix III. The decay density matrix for t→ bW in the top-quark

rest frame is given by 1

Γ(±,±) =
g2m2

t

2

[

C1 ± C2 cos θ0b
]

, (4.19)

Γ(±,∓) =
g2m2

t

2

[

C2 sin θ0be±φ0
b

]

, (4.20)

where

C1 =
1

2r2
(1− r2)

[

|f1L|2(2r2 + 1) + Ref1Lf
∗
2R 6r + |f2R|2(2 + r2)

]

, (4.21)

C2 =
1

2r2
(1− r2)

[

|f1L|2(2r2 − 1) + Ref1Lf
∗
2R 2r + |f2R|2(2− r2)

]

. (4.22)

The rest frame polar and azimuthal angles of the b, respectively θ0b and φ0
b , may

be expressed in terms of the parton cm frame angles in a straightforward way.

Plots for the azimuthal distribution of the b quark for different values of anoma-

lous couplings Ref2R and Imf2R are shown in Fig. 4.15. The curves for values ±0.2

1The expressions for charged-lepton and b-quark angular distributions agree with those given

in Ref. [83]
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of these couplings are well separated from each other and from the SM curve. In

the azimuthal distribution of the b quark, we get dependence on anomalous cou-

plings both from production as well as decay. We find that the contributions from

production and from decay come with opposite signs, partially cancelling each

other.
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Figure 4.15: The azimuthal distribution of the b quark in tW− production at the

LHC for cm energies 7 TeV and 14 TeV for different anomalous tbW couplings.

To study the sensitivity and make the best use of azimuthal b-quark distribu-

tion, we construct an asymmetry Ab :

Ab =
σ(cosφb > 0)− σ(cosφb < 0)

σ(cosφb > 0) + σ(cosφb < 0)
. (4.23)

The asymmetry Ab is plotted in Fig. 4.16 as a function of anomalous couplings

for the cm energies
√
s = 7 TeV and 14 TeV. From the figure it is clear that Ab

shows less sensitivity to couplings Ref2R and Imf2R as compared to other asymme-

tries. As stated earlier, this is due to the fact that the contributions of anomalous

couplings to the asymmetry from the production and the decay are of opposite in

sign and hence tend to cancel each other.

4.7 Sensitivity analysis for anomalous tbW cou-

plings

We now study the sensitivities of the observables discussed in the previous sections

to the anomalous tbW couplings at the LHC running at two cm of energies viz.,
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Figure 4.16: The azimuthal asymmetry of the b quark in tW− production at the

LHC for cm energies 7 TeV and 14 TeV as a function of anomalous tbW couplings.

The grey band corresponds to the asymmetry predicted in the SM with a 1σ error

interval.

7 TeV and 14 TeV, with integrated luminosities 1 fb−1 and 10 fb−1, respectively.

To obtain the 1σ limit on the anomalous tbW couplings from a measurement of

an observable, we find those values of the couplings for which observable deviates

by 1σ from its SM value. The statistical uncertainty σi in the measurement of any

generic asymmetry Ai is given by

σi =

√

1− (ASM
i )

2

N , (4.24)

where ASM
i is the asymmetry predicted in the SM and N is the total number of

events predicted in the SM. We apply this to the various asymmetries we have

discussed. In case of the top polarization asymmetry, the limits are obtained on

the assumption that the polarization can be measured with 100% accuracy.

The 1σ limits on Ref2R and Imf2R are given in Table 4.1 where we assume

only one anomalous coupling to be non-zero at a time. We have also assumed

measurements on a tW− final state. Including the t̄W+ final state will improve

the limits by a factor of
√
2. In case of the lepton distributions, we take into account

only one leptonic channel. Again, including other leptonic decays of the top would

improve the limits further. The limits corresponding to a linear approximation in

the couplings are denoted by the label “lin. approx.”. Apart from the 1σ limits

shown in Table 4.1, which correspond to intervals which include zero value of the

coupling, there are other disjoint intervals which could be ruled out by null if no

deviation from the SM is observed for Pt and AEℓ
. This is apparent from Figs.
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4.7 and 4.14. The additional allowed intervals for Ref2R from Pt measurement are

[0.158, 0.205] and [0.160, 0.167] for cm energies of 7 TeV and 14 TeV, respectively.

The corresponding intervals for AEℓ
are [0.147, 0.285] and [0.175, 0.185] 2.

7 TeV 14 TeV

Observable Ref2R Imf2R Ref2R Imf2R

Pt [−0.025, 0.032] [−0.072, 0.072] [−0.004, 0.004] [−0.034, 0.034]

Pt (lin. approx.) [−0.027, 0.027] − [−0.004, 0.004] −
Aφ [−0.133, 0.194] [−0.150,0.150] [−0.034, 0.086] [−0.050, 0.050]

Aφ (lin. approx.) [−0.204, 0.204] − [−0.030, 0.030] −
Ab [−0.191, 0.147] [−0.177, 0.177] [−0.096, 0.035] [−0.059, 0.059]

AEℓ
[−0.044, 0.073] [−0.114, 0.114] [−0.006, 0.009] [−0.038, 0.038]

Table 4.1: Individual limits on real and imaginary parts of anomalous coupling f2R

which may be obtained by the measurement of the observables shown in the first

column of the table at two cm of energies viz., 7 TeV and 14 TeV with integrated

luminosities of 1 fb−1 and 10 fb−1 respectively. A dash “−” indicates that no limits

are possible.

It is seen that the azimuthal asymmetry Aφ and the energy asymmetry AEℓ
of

the charged lepton are more sensitive to negative values of the anomalous couplings

Ref2R. AEℓ
is the most sensitive of the asymmetries we consider. In fact, the sensi-

tivity of AEℓ
to Ref2R and Imf2R is comparable to the sensitivity of top polarization

to the same couplings, despite the fact that only one leptonic decay channel, with a

branching fraction of about 1/9, is considered for AEℓ
. The additional contribution

to AEℓ
of the f2R coupling through the top decay channel seems to compensate for

the low branching fraction. Ab is seen to have the lowest sensitivity, where there is

partial cancellation of contributions to the asymmetry from production and from

decay.

We also obtain simultaneous limits (taking both Ref2R and Imf2R non-zero

simultaneously) on these anomalous couplings that may be obtained by combining

the measurements of all observables. For this, we perform a χ2 analysis to fit all the

observables to within fσ of statistical errors in the measurement of the observable.

We define the following χ2 function

χ2 =
n
∑

i=1

(

Pi − Oi

σi

)2

, (4.25)

2[a, b] denotes the allowed values of the coupling f at the 1σ level, satisfying a < f < b.
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Figure 4.17: The 1σ (central region), 2σ (middle region) and 3σ (outer region)

CL regions in the Ref2R-Imf2R plane allowed by the combined measurement of two

observables at a time. The left, centre and right plots correspond to measurements

of the combinations AEℓ
-Aφ, AEℓ

-Ab and Aφ-Ab respectively. The χ
2 values for 1σ,

2σ and 3σ CL intervals are 2.30, 6.18 and 11.83 respectively for 2 parameters in

the fit.

where the sum runs over the n observables measured and f is the degree of the

confidence interval. Pi’s are the values of the observables obtained by taking both

anomalous couplings non-zero (and are functions of the couplings Ref2R and Imf2R)

and Oi’s are the values of the observables obtained in the SM. σi’s are the statistical

fluctuations in the measurement of the observables, given in Eqn. 4.24.

In Fig. 4.17, we show the 1σ, 2σ and 3σ regions in Ref2R-Imf2R plane allowed

by combined measurement of asymmetries AEℓ
, Aφ and Ab taken two at a time.

For this, in the χ2 function of Eqn. 4.25, we have taken only two of the three

observables at a time. From among the three combinations shown in Fig. 4.17, we

find that the strongest simultaneous limits come from the combined measurement

of AEℓ
and Aφ, viz., [−0.01, 0.02] on Ref2R and [−0.05, 0.05] on Imf2R, at the 1σ

level.

In Fig. 4.18, we show the 1σ, 2σ and 3σ regions in Ref2R-Imf2R plane allowed by

combined measurement of all three asymmetries AEℓ
, Aφ and Ab simultaneously.

We find that the combined measurement of all the observables provide the most

stringent simultaneous limits on Ref2R and Imf2R of [−0.010, 0.015] and [−0.04,

0.04] respectively at 1σ. We find that the energy asymmetry AEℓ
plays a crucial

role in determining the combined limits.

We now compare our results with those of other works on the determination of

anomalous tbW couplings at the LHC. Refs. [57, 82, 83, 84, 59, 60, 66], have studied

single-top production at the LHC in the context of anomalous tbW couplings.
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Figure 4.18: The 1σ (central region), 2σ (middle region) and 3σ (outer region) CL

regions in the Ref2R-Imf2R plane allowed by the combined measurement of all the

observables simultaneously.

Boos et al. [57] find a limit of 0.12 < f2R < 0.13 at the LHC with 100 fb−1

of luminosity. Refs. [59, 60] considered couplings f1L and f1R in their analysis

and ignored f2R on which we focus. In Ref. [82], the authors have studied all

three single-top production channels to probe anomalous tbW couplings and have

utilized combinations of observables like cross sections, W polarization helicity

fractions in top decay, and other angular asymmetries. They predict a 1σ limit of

[−0.012, 0.024] on the coupling f2R with an integrated luminosity of 30 fb−1. Ref.

[83] determines expected 3σ limits on Ref2R to be [−0.056, 0.056] and on Imf2R

to be [−0.115, 0.115], with 10 fb−1 of integrated luminosity. Najafabadi [84] has

studied the tW channel for single-top production and determined the expected 1σ

CL limits on anomalous coupling f2R to be in the range [−0.026, 0.017] with 20

fb−1 of integrated luminosity at 14 TeV LHC using the single-top production cross

section.

Refs. [80, 81, 68] have studied various observables in tt̄ pair production at

the LHC with semileptonic decays of the top. Ref. [68] predict 1σ limit on f2R

of [−0.019, 0.018] with 10 fb−1 of integrated luminosity. Refs. [81, 80] study W

polarization in top decay in top-quark pair production at the LHC to constrain

the anomalous tbW couplings. They construct various asymmetries and helicity

fractions to probe anomalous couplings in the decay of the top quark. Ref. [80]
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quotes a 2σ limit of 0.04 on f2R with full detector-level simulations including sys-

tematic uncertainties and with different observables. Ref. [81] obtain a limit on

f2R of [−0.0260, 0.0312] with simulation of the ATLAS detector.

All these analyses except those of [68, 83] consider anomalous tbW couplings

to be real parameters. In our analysis, we consider all anomalous couplings to

be complex and find that only the real part of the coupling f2R gives significant

contribution to all observables at linear order in anomalous couplings. Without

a linear approximation, other couplings also contribute at the quadratic level.

However, we focus only on the f2R since its contribution is dominant, occurring

as it does at linear order. With integrated luminosity 10 fb−1 and cm energy

14 TeV, we find the most stringent limits possible on Ref2R to be [−0.006, 0.009]

and on Imf2R to be ±3.8 × 10−2, coming from the lepton energy asymmetry AEℓ
,

which are nominally an order of magnitude better than the Tevatron direct search

limit and better than the limits obtained in Refs. [57, 81, 82, 68, 80, 83]. Our

estimate [−0.044, 0.073] for limits on Ref2R in the
√
s = 7 TeV run is comparable

to the numbers obtained by the extrapolation of the result of [66] to an integrated

luminosity of 1 fb−1. It is of course true that including realistic detector efficiencies,

especially for b tagging, will worsen our limits somewhat. But, the crucial point

in our analysis is that we are able to determine limits on real and imaginary parts

of coupling f2R separately while others determine limits only on the magnitude of

f2R.

4.8 Backgrounds and next-to-leading-order cor-

rections

It is worthwhile to examine the dominant backgrounds to our signal process gb→
tW−. Background estimation and extraction of the signal for this process has been

studied in detail in Refs. [58, 85]. The main background for this signal would come

from (a) processes which contain continuum of W+W−b involving an off-shell top

quark, (b) top-pair production where one of the b quarks is missed as it lies outside

the detector range, (c) processes containing W+W−j where lighter-quark jet j is

misidentified as a b-quark jet (the probability being 1%). The contributions of the

processes W+W−b and W+W−j, which are of order O(αsα
2
W ), are much smaller

than the tW− signal, which is of order O(αsαW ). Tait [58] has considered both W’s

to decay leptonically and hence the final state consists of two hard charged leptons
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+ one b jet + missing ET (arising from two neutrinos). For such a signal, the

process ZZj would also act as background where one of the Z decays into a pair

of the charged leptons and the other Z decays into neutrinos. In Ref. [58], all the

backgrounds are simulated at LO in the strong and weak couplings and standard

acceptance cuts (pT > 15 GeV and η < 2) are applied on all final state particles.

To suppress large tt̄ background, it is required that there should not be more than

one hard b jet. After applying these cuts and with integrated luminosity less than

1 fb−1 at 14 TeV LHC, the conclusion of the Ref. [58] is that 5σ observation of

single-top events in tW− channel is possible.

The authors of Ref. [85] consider the situation where the W coming from the

top quark decays leptonically and the other W decays into two light-quark jets.

Therefore the signal would consist of three jets, one of which is a hard b jet, an

isolated hard charged lepton and missing energy. The jet multiplicity requirement

rejects a major part of the tt̄ background. Also, the requirement of the two-jet

invariant mass to be within the vicinity of theW mass (70 GeV-90 GeV) eliminates

all backgrounds which do not have anotherW , as for exampleW+jets, other single-

top and QCD processes. In all these analyses, b-tagging efficiency is assumed to

be 60%. After applying all the cuts, it has been shown that 10% sensitivity can

be achieved with 1 fb−1 by combining both electron and muon channels.

Turning to radiative corrections, NLO QCD corrections to the process gb →
tW− in the context of the 14 TeV LHC have been studied in detail in Ref. [86].

These corrections are substantial, up to 70% of the LO cross section. They are

shown to be dependent on the factorization scale and increase steadily with the

increment in the scale. For factorization scale µ = µ0/2 = (mt +mW )/2, the K

factor for the QCD correction is 1.4 while for µ = 2µ0 = 2(mt +mW ), it is around

1.7. In our analysis, we have taken µ = mt, for which the K factor is expected to

be about 1.5.

The complete NLO EW corrections have been calculated in Ref. [87] for pp→
tW− +X in the context of the LHC. The EW corrections are always positive and

are maximum for tW invariant mass closed to threshold value. With increase in tW

invariant mass, these EW corrections decrease. So, the maximum EW correction

is around 7% at threshold and it goes down to 3.5% for tW invariant mass of 1200

GeV.

In our analysis, we have not included any K factor. Including NLO factors

in our analysis would not change the asymmetries much, but would increase the

signal and hence, the sensitivity on anomalous couplings would be enhanced.
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4.9 Summary and discussion

We have investigated the sensitivity of the LHC to anomalous tbW couplings in

single-top production in association with a W− boson followed by semileptonic

decay of the top. We derived analytical expressions for the spin density matrix

of the top quark including contributions of both real and imaginary parts of the

anomalous tbW couplings. We find that in the limit of vanishing b quark mass,

only the real part of coupling f2R contributes to the spin density matrix at linear

order. Because of the chiral structure of the anomalous tbW couplings, the result-

ing top polarizations are vastly different from those expected in the SM. We find

that substantial deviations, as much as 20-30%, in the degree of longitudinal top

polarization from the SM value of −0.256 are possible even for anomalous cou-

plings of magnitude 0.1. The degree of longitudinal top polarization varies from

−0.075 to −0.281 for Ref2R while for Imf2R it is symmetric around the SM value

and varies from −0.139 to −0.256 for the same range of Imf2R as compared to the

SM value of −0.256 for 14 TeV LHC.

Since top polarization can only be measured through the distributions of its

decay products in top decay, we studied distributions of top-decay products. We

consider the top to decay semi-leptonically, since this channel is expected to have

the best accuracy and spin analyzing power. However, decay distributions can

get contributions from anomalous couplings responsible for top polarization as

well as for top decay. We find that normalized charged-lepton azimuthal and

energy distributions and b-quark azimuthal distributions are sensitive to anomalous

couplings Ref2R and Imf2R. In each case, we define an asymmetry, whose deviation

from the SM value would be a measure of the anomalous couplings. We find that

the azimuthal asymmetry Aφ and the energy asymmetry AEℓ
of the charged lepton

are more sensitive to negative values of the anomalous couplings Ref2R. A limit

of [−0.034, 0.086] on Ref2R would be possible from Aφ for cm energy of 14 TeV

at the LHC with integrated luminosities of 10 fb−1 respectively. For Imf2R the

corresponding limit is ±0.050. AEℓ
, which is the most sensitive of the asymmetries

we consider, probes Ref2R and Imf2R in the ranges [−0.006, 0.009] and ±0.038

respectively. Limits from Ab are the least stringent, though not much worse than

those from AEℓ
.

The above results correspond to assuming only one coupling to be nonzero at

a time. We also estimated simultaneous limits on Ref2R and Imf2R by combining

measurements of all observables using a χ2 analysis. The best possible 1σ limits on
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these couplings were found to be [−0.010, 0.015] and [−0.050, 0.050], respectively.

The limits we estimate for LHC with
√
s = 7 TeV and integrated luminosity

1 fb−1 are obviously worse. Nevertheless, they are comparable to those expected

from an analysis of W helicities as carried out in [66].

In summary, our proposal will enable limits to be placed on f2R which are

somewhat better than limits expected from other measurements at the LHC, and

at least an order of magnitude better than the indirect limits.

Our results would be somewhat worsened by the inclusion realistic detection

efficiencies for the b jet and for the detection of the W . However, we would like

to emphasize that since we do not require accurate reconstruction of the full top-

quark four-momentum, the limits are not likely to be much worse. On the other

hand, inclusion of the t̄W+ final state, as well as additional leptonic channels in

top decay would contribute to improving on our estimates of the limits. A more

complete analysis including detector simulation would be worthwhile to carry out.



Chapter 5

CP-violation in single-top

production

The phenomenon of CP violation (CPV) is important because it is believed to

be a key in the understanding of the observed matter-antimatter or the baryon

asymmetry of the universe. In the SM, the only source of CPV is the CKM phase

associated with the CKM matrix for the inter-generational quark mixing. However,

the amount of CPV predicted in the SM is insufficient to explain this asymmetry

[88]. In many cases, extensions of the SM such as the THDM and the MSSM are

able to supply the CPV required to produce such a baryon asymmetry in the early

universe. In fact, in these models, it is precisely the CP-violating phases associated

with the couplings of the top quark with scalar particles which drive baryogenesis

[89]. Thus the study of CPV in the top-quark sector could shed light on these

primordial processes.

In this chapter, we would like to examine to what extent CP violation, a dis-

tinctly weak interaction phenomenon, can be studied at the LHC in associated tW

production. A number of extensions of SM, for example models with more than

one Higgs doublet and CP-violating MSSM, have been proposed which incorporate

new mechanisms of CP violation. In particular, it is expected that these would

also modify tbW couplings. We extend the study of Chapter 4 to include both

tW− and t̄W+ production to find a way to probe CP-violating anomalous tbW

couplings. While a comparison of the parton-level processes for the production of

tW− and t̄W+ states can immediately allow us to lay a finger on CP violation,

the use of a pp initial state, which is not self-conjugate, involves some assumptions

about parton distributions, as we shall see.

86



87

There are a number of proposals for the study of CP violation in top-pair

production at lepton [90], photon [91] and hadron colliders [92]. However, CP

violation in single-top production has received little attention [93]. The reason

can be seen to be two-fold. For one, unlike in tt̄ production, where the final state

is self-conjugate, in single-top production, a process involving t has to be related

to another involving t̄, which is not straightforward. The other reason is the low

event rate for single-top production expected at Tevatron. Single-top production

at the LHC can be substantial, and it would be worthwhile attempting to extract

information on CP violation, even though it needs more elaborate analysis than in

the case of pair production.

We propose making use of the same variables which we employed in Chapter 4

for tW− production, but for a study CP violation, we would also need analogous

variables for t̄W+ production. The difference (in certain cases the sum) of these

variables for the cases of tW− and t̄W+ production would be a measure of CP

violation. For convenience, in this work we will adopt a linear approximation for

the couplings. This enables determination of limits on the CP-violating parameter

which are independent of the parameter itself.

The measurement of CP violation at e+e−, γγ and pp̄ colliders is straightforward

because the initial state being self-conjugate, a study of CP-conjugate final-state

particles can reveal the extent of CP violation, if present. However, in case of the

LHC, the intial state being pp is not self-conjugate. Since a CP transformation

relates a pp state to a p̄p̄ state, a naive comparison of processes related by CP is

not possible. However, the trick is to consider either a partonic initial state which

is self-conjugate (gg or qq̄), or one whose densities in pp and pp̄ initial states can

be related to each other in a simple way. The former possibility is realized in case

of tt̄ pair production. In the case of single-top production, however, the initial

state partonic state is not self-conjugate. However, if associated tW− production

is considered, the relevant partons are b and g, whose respective densities in p

and p̄ are equal, and also equal to those of the conjugates b̄ and g, from simple

charge conjugation invariance of strong interactions governing parton distributions

in hadrons.

To elaborate on this further, consider a partial cross section for tW− inclusive

production at the LHC:

dσ (p(p1)p(p2) → t(pt, ht)W
−(pW−)X) =

∫

dx1 dx2 fb(x1)fg(x2)

× dσ̂bg→tW−(x1p1, x2p2, pt, ht, pW−),
(5.1)
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where dσ̂bg→tW− is the corresponding parton-level partial cross section, and fb, fg

are the densities of b, g partons in the proton. p1, p2, pt and pW− are respectively

the momenta of the two protons, t and W−, and ht is the helicity of t. Under CP

this partial cross section is related to that for the process p̄p̄→ t̄W+X̄ :

dσ
(

p̄(p1)p̄(p2) → t̄(pt̄, ht̄)W
+(pW+)X̄

)

=

∫

dx1 dx2 f̄b̄(x1)f̄g(x2)

× dσ̂b̄g→t̄W+(x1p1, x2p2, pt̄,−ht̄, pW+),

(5.2)

where, now, f̄ represents the parton density in an anti-proton. If we assume that

fb̄(x) = f̄b̄(x), fg(x) = f̄g(x), (5.3)

we can equate the partial cross section of the above p̄p̄-initiated process to that of

a pp-initiated process:

dσ(p̄p̄→ t̄W+X̄) = dσ(pp→ t̄W+X̄). (5.4)

Thus, CP invariance at the parton level, which implies

dσ̂bg→tW−(x1p1, x2p2, pt, ht, pW−) = dσ̂b̄g→t̄W+(x1p1, x2p2, pt̄,−ht̄, pW+), (5.5)

gives, for the hadron-level cross sections,

dσ(pp→ t(pt, ht)W
−(pW−)X) = dσ(pp→ t̄(pt̄,−ht̄)W+(pW+)X̄). (5.6)

A violation of this relation would signal CP violation. Thus, CP implies equal and

opposite longitudinal polarizations for t and t̄ in the two processes.

The assumptions regarding equality of b-quark and gluon distributions in p

and p̄ depend on C invariance of strong interactions responsible for the structure

of the proton. In principle, there could be small weak-inteaction corrections which

violate C invariance. These are difficult to estimate, and in this work we assume

that these corrections are small compared to CP-violation effects we investigate.

The relations (5.3) are equivalent to equality of b and b̄ densities in the proton, and

in practice, all parametrizations of parton distributions obey the equality. This is

the assumption we make in our calculations.

5.1 The structure of tbW vertex

For the on-shell top, bottom and W , we write the most general effective vertices

for the tbW interaction up to dimension five as

Vt→bW+ =
−g√
2
Vtb

[

γµ(f1LPL + f1RPR)−
iσµν

mW
(pt − pb)ν(f2LPL + f2RPR)

]

(5.7)
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for the decay t→ bW+, and

Vb→tW− =
−g√
2
V ∗
tb

[

γµ(f∗1LPL + f∗1RPR)−
iσµν

mW
(pt − pb)ν(f

∗
2RPL + f∗2LPR)

]

(5.8)

for tW− production from a virtual b, where Vtb is the Cabibbo-Kobayashi-Maswkawa

matrix element, and f1L, f2L, f1R, f2R are anomalous couplings of top quarks.

Similarly, the most general effective vertices for the t̄b̄W interaction up to

dimension five can be written as

Vt̄→b̄W− =
−g√
2
Vtb

[

γµ(̄f1LPL + f̄1RPR)−
iσµν

mW
(pt − pb)ν (̄f2RPL + f̄2LPR)

]

(5.9)

for the decay t̄→ b̄W−, and

Vb̄→t̄W+ =
−g√
2
V ∗
tb

[

γµ(̄f∗1LPL + f̄∗1RPR)−
iσµν

mW
(pt − pb)ν (̄f

∗
2LPL + f̄∗2RPR)

]

(5.10)

for t̄W+ production from a virtual b̄, where Vtb is the Cabibbo-Kobayashi-Maswkawa

matrix element, and f̄1L, f̄2L, f̄1R, f̄2R are anomalous couplings for anti-top quarks.

We write anomalous tbW and t̄b̄W couplings in terms of modulus and phase as

f1L = |f1L|eiφ1L f̄1L = |̄f1L|eiφ̄1L

f1R = |f1R|eiφ1R f̄1R = |̄f1R|eiφ̄1R

f2L = |f2L|eiφ2L f̄2L = |̄f2L|eiφ̄2L

f2R = |f2R|eiφ2R f̄2R = |̄f2R|eiφ̄2R (5.11)

where φ’s and φ̄’s denote the phases in the anomalous couplings of top and antitop

respectively.

CP invariance requires, apart from Vtb to be real, that

f1L = f̄1L, f1R = f̄1R, f2L = f̄2R, f2R = f̄2L. (5.12)

which further implies that

|f1L| = |̄f1L| φ1L = φ̄1L (5.13)

|f1R| = |̄f1R| φ1R = φ̄1R (5.14)

|f2L| = |̄f2R| φ2L = φ̄2R (5.15)

|f2R| = |̄f2L| φ2R = φ̄2L (5.16)
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Another useful set of relations follows from CPT invariance (in the absence of

absorptive parts):

f∗1L = f̄1L; f∗1R = f̄1R; f∗2R = f̄2L; f∗2L = f̄2R (5.17)

which implies

|f1L| = |̄f1L| φ1L = −φ̄1L (5.18)

|f1R| = |̄f1R| φ1R = −φ̄1R (5.19)

|f2L| = |̄f2R| φ2L = −φ̄2R (5.20)

|f2R| = |̄f2L| φ2R = −φ̄2L (5.21)

One can write the phase φ’s as a sum of two phases, the CP-violating phase δ

and the phase corresponding to absorptive part α. Then, we have

φ1L = δ1L + α1L φ̄1L = −δ1L + α1L (5.22)

φ1R = δ1R + α1R φ̄1R = −δ1R + α1R (5.23)

φ2L = δ2L + α2L φ̄2L = −δ2R + α2R (5.24)

φ2R = δ2R + α2R φ̄2R = −δ2L + α2L (5.25)

Hence, δ = 0 signifies no CP violation and α = 0 signifies no absorptive parts.

From Eqn. 5.12, we see that any CP-violating observable must be proportional

to the combinations: (f1L − f̄1L), (f1R − f̄1R), (f2L − f̄2R) and (f2R − f̄2L). In the

presence of absorptive parts, these observables are proportional to the real parts

of these combinations and signal CP violation. The real part of (f2R − f̄2L) can be

written as

Ref2R − Ref̄2L = −2|f2R| sin δ2R sinα2R. (5.26)

Thus, we must have both δ and α to be nonzero simultaneously to have non-

vanishing values of CP-violating observables if they are to arise from absorptive

parts.

5.2 CP-violating observables in tW channel of

single-top production

We study the single-top production process gb → tW− and its CP-conjugated

process gb̄ → t̄W+ to study CP violation. We assume that anomalous tbW cou-

plings contributing in the production and in the decay are CP violating and arise
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from the absorptive parts of the amplitudes. In Chapter 4, we have obtained an-

alytical expressions for the spin density matrix for the top quark produced in the

process gb→ tW− and for the top decay including the full contribution of anoma-

lous tbW couplings. The corresponding expressions for the CP-conjugated process

gb̄ → t̄W+ and t̄ → b̄W− can be obtained from those expressions by replacing

Ref2R by Ref̄2L taking appropriate helicity of the antitop.

We obtain the contribution of CP-violating tbW couplings in sums or differences

of observables in tW− and t̄W+ production and decay, and examine how well

the couplings can be constrained by them. We will assume that the anomalous

couplings are small and work in a linear approximation of the couplings. We also

retain only Ref2R and Ref̄2L , since these are the only ones which contribute in the

limit of vanishing bottom mass, which we set to zero.

For our numerical analysis, we use the leading-order parton distribution func-

tion (PDF) sets of CTEQ6L [79] with a factorization scale of mt = 172.6 GeV.

We also evaluate the strong coupling at the same scale, αs(mt) = 0.1085. We

make use of the following values of other parameters: MW = 80.403 GeV, the

electromagnetic coupling αem(mZ) = 1/128 and sin2 θW = 0.23.

We study the sensitivities of the observables discussed in Chapter 4 to CP

violation at the LHC for two cm of energies viz., 7 TeV and 14 TeV, with integrated

luminosities 2 fb−1 and 10 fb−1, respectively. For the case of 7 TeV LHC, we

also quote limits with 5 fb−1 of integrated luminosity. To obtain the 1σ limit on

anomalous tbW couplings from a measurement of an observable, we find those

values of the couplings for which the observable deviates by 1σ from its SM value.

The statistical uncertainty σi in the measurement of the sum or difference any two

generic asymmetries is given by σi =
√

2/N , where N is the total number of events

predicted in the SM. We apply this to the various cases we have discussed. In the

case of the top polarization asymmetry, the limits are obtained on the assumption

that the polarization can be measured with 100% accuracy.

5.2.1 Production rate asymmetry

The simplest asymmetry we consider is the rate asymmetry in the production of

tW− and t̄W+. We define

σ− ≡ σ(pp→ tW−X) (5.27)

and

σ+ ≡ σ(pp→ t̄W+X). (5.28)
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As stated before, we assume the equality of b and b̄ densities in the proton. Then,

at linear order in anomalous couplings,

σ− = σ0 + Ref2R σ1 (5.29)

σ+ = σ0 + Ref̄2L σ1. (5.30)

Here σ0 is the SM cross section, which is identical for pp → tW−X) as well as

pp → t̄W+X . σ1 is the cross section arising from interference of the anomalous

contribution with the SM amplitude, for unit anomalous coupling.

We consider the rate asymmetry

Aσ =
σ+ − σ−

σ+ + σ−
, (5.31)

which is, in the linear approximation,

Aσ =
(Ref̄2L − Ref2R) σ1

2σ0
=

∆2R σ1
σ0

(5.32)

where ∆2R is the CP-violating parameter defined by

∆2R = (Ref̄2L − Ref2R) ≡ −2|f2R| sinα2R sin δ2R. (5.33)

σ0 and σ1 can be obtained by numerical integration over parton densities of ana-

lytical expressions for the corresponding parton-level quantities. The latter may

be easily found from expressions in Appendix III.

We plot the asymmetry ACPV
σ in Fig. 5.1 as a function of the CP-violating

parameter ∆2R for the two cm of energies 7 TeV and 14 TeV. We also show the

1σ fluctuation in the measurement of the asymmetry with 2 fb−1 and 10 fb−1 of

integrated luminosities for 7 and 14 TeV LHC respectively. 1σ fluctuation from the

SM asymmetry with 5 fb−1 of luminosity is also shown in the case of 7 TeV. We

find that 1σ limit of ±5.42 × 10−3 on ∆2R can be obtained from ACPV
σ at 14 TeV

LHC with 10 fb−1 of integrated luminosity. At 7 TeV LHC, the limits on ∆2R are

±2.89× 10−2 and ±1.83× 10−2 with 2 fb−1 and 5 fb−1 of integrated luminosities.

5.2.2 CP-violating asymmetry – Production and decay

Since the top quark decays into b andW via tbW interactions, we also consider CP

violation in top decay. Here, we construct an asymmetry in single-top production

with subsequent decay of the top quark into charged leptons, assuming CP violation
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Figure 5.1: The CP asymmetry in tW production at the LHC as a function of ∆2R

for the cm energies 7 TeV (left) and 14 TeV (right). In the left plot, the outer and

inner grey bands correspond to the 1σ error intervals for the asymmetry predicted

in the SM with 2 fb−1 and 5 fb−1 of integrated luminosity respectively.

in both production and decay. Using the narrow-width approximation (NWA), we

can write the cross section for the process pp→ tW−X → bℓ+νW− as

σ−(pp→ bℓ+νW−X) =
1

Γt

[

ρ(pp→ tW−X)⊗ Γ(t→ bℓ+ν)
]

, (5.34)

where Γt is total decay width of the top. ρ(pp→ tW−X), Γ(t→ bℓ+ν) are respec-

tively the production and decay density matrices (with appropriate integration of

the phase space carried out), and ⊗ denotes a matrix product. The density matrix

formalism is used here to ensure proper spin coherence between production and

decay.

We can write down an analogous expression for the cross section σ+ of conjugate

process of t̄ production, with decay into a state containing ℓ+. We then define the

asymmetry in charged-lepton production rates as

Ad =
σ−(pp→ bℓ+νW−X)− σ+(pp→ b̄ℓ−ν̄W+X̄)

σ−(pp→ bℓ+νW−X) + σ+(pp→ b̄ℓ−ν̄W+X̄)
(5.35)

Hence, the asymmetry Ad, in linear approximation of anomalous couplings,

again turns out to be proportional to (Ref̄2L − Ref2R) = −2|f2R| sin δ2R sinα2R.

We plot the asymmetry ACPV
d in Fig. 5.2 as a function of the CP-violating

parameter ∆2R for the two cm energies 7 TeV and 14 TeV. We also show the

1σ fluctuation in the measurement of the asymmetry with 2 fb−1 and 10 fb−1 of

integrated luminosities for 7 and 14 TeV LHC respectively. 1σ fluctuation from the

SM asymmetry with 5 fb−1 of luminosity is also shown in the case of 7 TeV. We
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find that 1σ limit of ±2.43 × 10−2 on ∆2R can be obtained from ACPV
d at 14 TeV

LHC with 10 fb−1 of integrated luminosity. At 7 TeV LHC, the limits on ∆2R are

±1.37× 10−1 and ±8.67× 10−2 with 2 fb−1 and 5 fb−1 of integrated luminosities.
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Figure 5.2: The CPV asymmetry in tW production and top-decay at LHC as a

function of ∆2R for the cm energies 7 TeV (left) and 14 TeV (right). In the left

plot, the outer and inner grey bands correspond to the 1σ error intervals for the

asymmetry predicted in the SM with 2 fb−1 and 5 fb−1 of integrated luminosity

respectively.

5.2.3 Top Polarization asymmetry

We define the degree of longitudinal polarization Pt of the top as

Pt =
N+

t −N−
t

N+
t +N−

t

. (5.36)

where N+
t and N−

t are the numbers for the positive and negative helicity tops and

N = N+
t +N−

t is the total number of events.

In the linear approximation of anomalous couplings, the polarization Pt for the

top and Pt̄ for the antitop can be written as

Pt = P 0
t + Ref2R P 1

t , (5.37)

Pt̄ = −P 0
t − Ref̄2L P

1
t , (5.38)

where P 0
t and P 1

t are contributions from the SM and from the interference of

anomalous contribution with the SM amplitude, for unit value of anomalous cou-

plings, respectively.
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We define CP-violating asymmetry in top and antitop polarization as

APt
= Pt̄ + Pt (5.39)

which in the linear order in anomalous couplings takes the form

APt
= −(Ref̄2L − Ref2R)P

1
t = −∆2RP

1
t . (5.40)

In Fig. 5.3, we show the asymmetry APt
as a function of ∆2R for the two

cm energies 7 TeV and 14 TeV with 1σ fluctuations in the measurement of the

asymmetry. We find that the asymmetry constructed using top polarization is a

sensitive probe of CP violation. We obtain the 1σ limit of ±5.06 × 10−3 on ∆2R

at 14 TeV LHC with 10 fb−1 of integrated luminosity. At 7 TeV, the limits are

±2.85× 10−2 and ±1.80× 10−2 with 2 fb−1 and 5 fb−1 of integrated luminosities.
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Figure 5.3: The CP-violating top-polarization asymmetry in tW− and t̄W+ pro-

duction at the LHC as a function of ∆2R for the cm energies 7 TeV (left) and 14

TeV (right). In the left plot, the outer and inner grey bands correspond to the 1σ

error intervals for the asymmetry predicted in the SM with 2 fb−1 and 5 fb−1 of

integrated luminosity respectively.

5.3 CP-violating observables from top-decay prod-

ucts

5.3.1 Azimuthal asymmetry of charged lepton

In Chapter 4, we studied azimuthal distributions of the charged lepton from top-

quark decay in the single-top production process in the presence of anomalous



5.3. CP-violating observables from top-decay products 96

tbW couplings. We found that the charged-lepton azimuthal distributions are

sensitive to anomalous couplings and the distributions show deviation from the

SM distribution. So, to quantify this deviation and make the best use of statistics,

we define a charged-lepton azimuthal asymmetry in single-top production process

as

Aφ =
σ(cosφℓ > 0)− σ(cosφℓ < 0)

σ(cosφℓ > 0) + σ(cos φℓ < 0)
(5.41)

where φ is the azimuthal angle of charged lepton w.r.t. the top/antitop production

plane. In the linear order in anomalous tbW couplings, this asymmetry can be

written as

A−
φ = A0

φ + Ref2RA
1
φ, (5.42)

A+
φ = A0

φ + Ref̄2LA
1
φ, (5.43)

where A−
φ and A+

φ are azimuthal asymmetries of the charged lepton coming from

top/antitop decays respectively. The A0
φ and A1

φ denote contributions to the asym-

metry from the SM and and from the interference of anomalous contribution with

the SM amplitude respectively, for unit value of anomalous couplings.

We define a CP-violating asymmetry ACPV
φ

ACPV
φ = A+

φ − A−
φ (5.44)

which in linear approximation of anomalous couplings can be written as

ACPV
φ = (Ref̄2L − Ref2R)A

1
φ = ∆2RA

1
φ. (5.45)

In Fig. 5.4, we show the asymmetry ACPV
φ as a function of ∆2R for the two

cm energies 7 TeV and 14 TeV together with 1σ fluctuations in measurement of

the asymmetry. From the figure, it can be seen that the asymmetry ACPV
φ shows

low sensitivity to CP violation at 7 TeV. We obtain 1σ limit of ±2.80 × 10−2 on

CP-violating parameter ∆2R at 14 TeV with 10 fb−1 of integrated luminosity. At

7 TeV, the limits are ±2.07 × 10−1 and ±1.43 × 10−1 with 2 fb−1 and 5 fb−1 of

integrated luminosities.

5.3.2 Energy asymmetry of charged lepton

In Chapter 4, we found that the charged-lepton energy distribution is sensitive to

anomalous tbW couplings and the curves for the Eℓ distribution for anomalous tbW

couplings of ±0.2 and the SM are well separated from each other and intersect at
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Figure 5.4: The CP-violating azimuthal asymmetry of the charged lepton from

top/antitop decay in tW− and t̄W+ production at the LHC as a function of ∆2R

for the cm energies 7 TeV (left) and 14 TeV (right). In the left plot, the outer and

inner grey bands correspond to the 1σ error intervals for the asymmetry predicted

in the SM with 2 fb−1 and 5 fb−1 of integrated luminosity respectively.

about EC
ℓ = 62 GeV. We constructed an asymmetry around the intersection point

of the curves, defined by

AEℓ
=
σ(Eℓ < EC

ℓ )− σ(Eℓ > EC
ℓ )

σ(Eℓ < EC
ℓ ) + σ(Eℓ > EC

ℓ )
. (5.46)

We define a CP-violating asymmetry utilizing the energy asymmetry of the

charged lepton coming from top/antitop decay in single-top production as

ACPV
Eℓ

= AE
ℓ−

−AE
ℓ+

= ∆2RA
1
Eℓ
, (5.47)

where ℓ+ and ℓ− come from top and antitop decay respectively.

We plot the asymmetry ACPV
Eℓ

in Fig. 5.5 as a function of CP-violating param-

eter ∆2R for two cm energies 7 TeV and 14 TeV. We also show the 1σ fluctuation

in the measurement of the asymmetry with 2 fb−1 and 10 fb−1 of integrated lumi-

nosities for 7 and 14 TeV respectively. 1σ fluctuation with 5 fb−1 of luminosity is

also shown in the case of 7 TeV. We find that 1σ limit of ±1.86 × 10−2 on ∆2R

can be obtained from ACPV
Eℓ

at 14 TeV with 10 fb−1 of integrated luminosity. At 7

TeV, the limits on ∆2R are ±9.68× 10−2 and ±6.12× 10−2 with 2 fb−1 and 5 fb−1

of integrated luminosities.
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Figure 5.5: The CP-violating energy asymmetry of the charged lepton from

top/antitop decay in tW− and t̄W+ production at the LHC as a function of

∆2R for the cm energies 7 TeV (left) and 14 TeV (right). In the left plot, the

outer and inner grey bands correspond to the 1σ error intervals for the asymmetry

predicted in the SM with 2 fb−1 and 5 fb−1 of integrated luminosity respectively.

5.3.3 Azimuthal asymmetry of b quark

In Chapter 4, we found that the b-quark azimuthal distribution is sensitive to

anomalous tbW couplings and the curves for the distribution for anomalous tbW

couplings of ±0.2 and the SM are well separated from each other. We constructed

an asymmetry around the intersection point of the curves, defined by

Ab =
σ(cos φb > 0)− σ(cos φb < 0)

σ(cosφb > 0) + σ(cosφb < 0)
(5.48)

where φ is the azimuthal angle of b quark w.r.t. the top/antitop production plane.

In the linear order in anomalous tbW couplings, this asymmetry can be written as

A−
b = A0

b + Ref2RA
1
b , (5.49)

A+
b = A0

b + Ref̄2LA
1
b , (5.50)

where A−
b and A+

b are azimuthal asymmetries of b quark coming from top/antitop

decays respectively. The A0
b and A1

b denote contributions to the asymmetry from

the SM and and from the interference of anomalous contribution with the SM

amplitude respectively, for unit value of anomalous couplings.

We define a CP-violating asymmetry ACPV
b

ACPV
b = A+

b − A−
b (5.51)
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which in the linear approximation of anomalous couplings can be written as

ACPV
b = (Ref̄2L − Ref2R)A

1
b = ∆2RA

1
b . (5.52)

In Fig. 5.6, we show the asymmetry ACPV
b as a function of ∆2R for two cm

of energies 7 TeV and 14 TeV with the 1σ fluctuations in the measurement of

the asymmetry. From the figure, it can be seen that the asymmetry ACPV
b shows

low sensitivity to CP violation at 7 TeV. We obtain 1σ limit of ±3.15 × 10−2 on

CP-violating parameter ∆2R at 14 TeV with 10 fb−1 of integrated luminosity. At

7 TeV, the limits are ±1.65 × 10−1 and ±1.04 × 10−1 with 2 fb−1 and 5 fb−1 of

integrated luminosities.
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Figure 5.6: The CP-violating asymmetry of the b quark coming from top/antitop

decay in tW− and t̄W+ production at the LHC as a function of ∆2R for the cm

energies 7 TeV (left) and 14 TeV (right). In the left plot, the outer and inner grey

bands correspond to the 1σ error intervals for the asymmetry predicted in the SM

with 2 fb−1 and 5 fb−1 of integrated luminosity respectively.

5.4 Summary and conclusions

We have investigated the possibility of measuring CP-violating tbW couplings at

the LHC through the conjugate processes of tW− and t̄W+ production. We pro-

posed a number of CP-violating asymmetries which would be sensitive to the CP-

odd combination of couplings ∆2R ≡ f̄2L− f2R, the difference of the couplings asso-

ciated with top and antitop. The results for the 1σ limits coming from the various

asymmetries for the chosen combinations of cm energy and integrated luminosity

are summarized in Table 5.1.
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Asymmetry
√
s = 7 TeV

√
s = 14 TeV

L = 2 fb−1 L = 5 fb−1 L = 10 fb−1

ACPV
σ 2.89× 10−2 1.83× 10−2 5.42× 10−3

APt
2.85× 10−2 1.80× 10−2 5.06× 10−3

ACPV
d 0.137 8.67× 10−2 2.43× 10−2

ACPV
φℓ

0.207 0.143 2.80× 10−2

ACPV
Eℓ

9.68× 10−2 6.12× 10−2 1.86× 10−2

ACPV
φb

0.165 0.104 3.15× 10−2

Table 5.1: 1σ limits on the magnitude of the CP-violating combination of couplings,

|∆2R|, possible at the LHC from various asymmetries defined in the text.

We see from the table that 1σ limits on ∆2R possible for
√
s = 7 TeV, even

with L = 5 fb−1, are of the order of about 0.1, perhaps at the limit of validity

of our linear approximation. The limit from APt
is nominally better, but cannot

be realized since the polarization cannot be measured with 100% accuracy. For√
s = 14 TeV, on the other hand, the limits are of the order of a few times 10−2,

well within the validity range of the approximation. The best limit, 1.86 × 10−2,

would come from the measurement of ACPV
Eℓ

.

We conclude from our analysis that the tW mode of single-top production

would be an alternative place to look for CP-violating tbW couplings apart from

the decay of top and antitop produced as a tt̄-pair. We find that the energy

asymmetry, ACPV
Eℓ

, is the most sensitive to the CP-violating parameter and would

enable a limit of about 1.86 × 10−2 to be placed on |∆2R|, for a cm energy of 14

TeV and integrated luminosity of 10 fb−1. The limits possible for an operational

energy of 7 TeV for integrated luminosity of up to 5 fb−1 are not as good, being

at the level of 10-20%.

Our limits would no doubt be somewhat worse when relevant detection efficien-

cies of the W produced in association with the top and the b-quark are taken into

account (see [58, 94] for a discussion on backgrounds for the process). However, we

do not expect the limits to be much worse, since we do not require full reconstruc-

tion of the top momentum. Moreover, we have been conservative in that we have

included only one charged lepton in our analysis – including other charged-lepton

would improve the limits. It is also likely that the integrated luminosity collected

by the LHC at
√
s = 14 TeV will be better than the 10 fb−1 assumed by us. All

in all we conclude that it would be possible to obtain limits on the CP-violating
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anomalous coupling in the region of 10−2 by employing the energy asymmetry

of the charged lepton. It would be worthwhile carrying out a more detailed and

refined analysis.

We adopted a linear approximation in the couplings, which in Chapter 4 was

found to be strictly valid for |Ref2R|, |Ref̄2L| < 0.05. It is straightforward to do

away with approximation. However, that would make an interpretation of results

somewhat more complicated. Our results may be taken to be indicative of the

results of a full calculation without approximation.



Chapter 6

Associated production of single

top with charged Higgs in 2HDM

at the LHC

In the SM, the EW symmetry is broken through a single SU(2) scalar doublet,

i.e., through the Higgs mechanism. However, while the SM Higgs mechanism is

the simplest way to break the EW symmetry, there are reasons to consider an

enlarged Higgs sector [95]. Models with two Higgs doublets can address the strong

CP problem and generate additional sources of CPV needed for baryogenesis [96].

Moreover, the most popular paradigm for addressing the gauge hierarchy problem,

supersymmetry (SUSY), contains two Higgs doublets in its simplest formulation

[95, 97]. The spectrum of two Higgs doublet models (THDM) involves three neutral

and two charged Higgs bosons. Different versions of the THDM also have different

couplings of the scalars to fermions. Thus, even if scalar particles were to be

discovered at the LHC, it is necessary to probe in detail the precise couplings to

these particles to establish the underlying model and pinpoint the exact mechanism

of EW symmetry breaking. Charged Higgs particles exist even in extensions of

the SM which involve the introduction of a SU(2) triplet of scalars, which are also

interesting from the point of view of obtaining a small Majorana mass for neutrinos

in the type-II see-saw mechanism [98]. It is possible to produce a single top quark

in association with a charged Higgs in such models. We study, in this work, such

a process in the context of a type II THDM or SUSY models, where the up-type

quarks couple to one of the Higgs doublets and down- type quarks couple to the

other Higgs doublet [95].

102
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In this chapter, we investigate top polarization in the single production of the

top in association with a charged Higgs of the type II THDM or the MSSM. Single-

top production in association with a charged Higgs can be used to probe the size

and nature of the tbH coupling in the type II THDM. Apart from the cross section,

the angular distribution of the top, and even the polarization of the top would give

additional information enabling the determination of the tbH coupling. Here we

concentrate on the polarization of the top in the process, which would be a measure

of the extent of parity violation in the couplings. It will be seen that polarization

gives a handle on the combination A2
L − A2

R of the left-handed and right-handed

couplings, AL ≡ mt cot β and AR ≡ mb tan β of the charged Higgs to the top, where

tan β is the ratio of the vacuum expectation values (vevs) of the Higgs doublets,

in contrast to the combination A2
L + A2

R measured by the cross section or angular

distribution.

As stated earlier, the angular distribution of the charged lepton has a special

property − it is independent of new physics in the tbW decay vertex, to linear

order in the anomalous couplings, and is thus a pure probe of new physics in

top production alone. We show that the azimuthal distribution of the lepton is

sensitive to top polarization and can be used to probe the coupling parameter

tan β in the type II THDM. This approach has been recently used to probe new

physics in the case of top pair production in a model with an extra heavy vector

resonance (Z ′) with chiral couplings [51]. The effects of top polarization in tW and

tH− production have been studied previously in [77], where the effects of 1-loop

electroweak SUSY corrections have been considered; however, they do not consider

top decay. Top polarization in different modes of single top production has also

been studied in [99], where spin sensitive variables are used to analyze effective

left- and right-handed couplings of the top coming from BSM physics.

6.1 Two-Higgs Doublet Model of Type II

The Higgs sector of the SM can be minimally extended by including another Higgs

doublet which is a replica of the first doublet, so that the modified Higgs sector

contains two Higgs doublets with the same quantum numbers

Φ1 =

(

φ+
1

φ0
1

)

, Φ2 =

(

φ+
2

φ0
2

)

, (6.1)
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with hypercharges Y1 = Y2 = 1. In general, both doublets could acquire vev,

〈Φ1〉 =
v1√
2
; 〈Φ2〉 =

v2√
2
. (6.2)

Depending on how these Higgs doublets couple to the up and the down sectors of

quarks and leptons, there can be four different types of THDM. In this chapter,

we focus top-charged Higgs production in the type II THDM.

In the type II THDM, one Higgs doublet, say Φ1 couples to the down sector

of fermions while the other Higgs doublet i.e., Φ2 couples to the up sector. The

Lagrangian for the Yukawa sector can be written as :

−LY = YU
ij Q̄iLΦ̃2UjR + YD

ij Q̄iLΦ1DjR + h.c., (6.3)

In the expanded form when written in terms of mass eigenstates, it is:

−LY =
g

2mW cos β
D̄MDD

[

cosαH0 − sinαh0
]

− ig tanβ

2mW

D̄MDγ5DA
0

+
g

2MW sin β
ŪMUU

[

sinαH0 + cosαh0
]

− ig cot β

2mW
ŪMUγ5UA

0

+
g√
2mW

Ū [cot βMUPL + tanβMDPR]DH
+ + h.c. (6.4)

where tan β is the ratio of vevs of two Higgs doublets i.e., tanβ = v2/v1, and α is

the mixing angle of CP-even Higgs bosons.

6.2 Top polarization in the two Higgs doublet

model

We consider the process of single-top production in association with a charged

Higgs in the type II THDM or the MSSM. For our purposes, the model is completely

characterized by two parameters, the mass of the charged HiggsMH− and the ratio

of the vacuum expectation values of the Higgs doublets tan β. At the parton level,

single-top production proceeds via

g(p1) b(p2) → t(p3, λt)H
−(p4), (6.5)

where λt = ±1 is the sign of the helicity of the top. The tree level s and t channel

diagrams contributing to the above process are shown in Fig. 6.1.

As mentioned in Chapter 4, a study of top polarization using angular distribu-

tions of the top decay products requires computing the spin density matrix for top
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g(p1)

b(p2)

H−(p4)

t(p3, λt)
b

(a)

g(p1)

b(p2) H−(p4)

t(p3, λt)

t

(b)

Figure 6.1: Feynman diagrams contributing to the top charged-Higgs production

at the LHC.

production and decay. We have obtained simple analytic expressions for the top

production density matrix. In the type II THDM the tbH− coupling is

gtbH− =
g√
2mW

(mt cot βPL +mb tanβPR), (6.6)

where g is the SU(2) gauge coupling and PL and PR are the left and right handed

projection operators respectively, PL,R = (1∓γ5)/2. One can immediately see that

at tan β =
√

mt/mb , the pseudoscalar part of the coupling, which is proportional

to γ5, vanishes and the coupling (6.6) is purely scalar. Since polarization is parity

violating we expect that the polarized cross section (4.4) should vanish for this

value of tan β and we indeed find this to be the case, as will be shown later in Fig.

6.3.

Denoting the energy, momentum and scattering angle of the top in the parton

center-of-mass (cm) frame by Et, pt and θt respectively and the parton level Man-

delstam variable by ŝ, the diagonal elements of the top-production density matrix

are given by

ρ(+,+) = F1m
2
t cot

2 β + F2m
2
b tan

2 β (6.7)

ρ(−,−) = F2m
2
t cot

2 β + F1m
2
b tan

2 β, (6.8)
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where F1 and F2 are defined by

F1 =

(

ggs
2mW

)2
1

6
√
ŝ(Et − pt cos θt)2

{

p2t (Et + pt) sin
2 θt cos

2 θt
2

+
[

4Et(Et + pt)(Et −
√
ŝ)− pt+ 2m2

t

√
ŝ + (ŝ(Et + pt)

+ m2
t (Et − pt)− 4m2

tEt)
]

sin2 θt
2

}

(6.9)

F2 =

(

ggs
2mW

)2
1

6
√
ŝ(Et − pt cos θt)2

{

p2t (Et − pt) sin
2 θt sin

2 θt
2

+
[

4Et(Et − pt)(Et −
√
ŝ)− pt+ 2m2

t

√
ŝ+ (ŝ(Et − pt)

+ m2
t (Et + pt)− 4m2

tEt)
]

cos2
θt
2

}

. (6.10)

The off-diagonal elements are

ρ(+,−) = ρ(−,+) = −
(

ggs
2mW

)2
1

6
√
ŝ(Et − pt cos θt)2

(m2
t cot

2 β −m2
b tan

2 β)

×mt sin θt(2Et

√
ŝ−m2

t − ŝ+ p2t sin
2 θt). (6.11)

In deriving the above expressions we have neglected the kinematic effects of

the b-quark mass but kept factors of mb occurring in the tbH− coupling (6.6).

Analytic expressions for the helicity amplitudes for associated tH− production can

be found in [77], where a similar convention for retaining factors of mb is used;

our density matrix elements (6.8) and (6.11), obtained by an independent method,

agree with those obtained using the helicity amplitudes of [77]. A plot of the cross

section as a function of the coupling tanβ is shown in Fig. 6.2 for various values

of charged Higgs masses. We show the cross section for two different centre of

mass energies of 7 TeV and 14 TeV and have used the leading-order PDF sets of

CTEQ6L1 [100]. We see that the cross sections have a similar profile for various

MH− values and fall sharply for largerMH−. The cross sections are proportional to

(m2
t cot

2 β +m2
b tan

2 β), which is minimized for tanβ =
√

mt

mb
≃ 6.41, independent

of the cm energy and the value of MH− . This can indeed be seen from Fig. 6.2.

Here we have taken the top mass to be 172.6 GeV and have evaluated the PDF’s

at the same scale.

The tbH− vertex has a scalar-pseudoscalar (A+Bγ5) chiral structure which is

different from vector-axial vector coupling of the tbW and tt̄Z0 vertices. One thus

expects a very different longitudinal polarization asymmetry given by Eqn. (4.4)

for top charged-Higgs production compared to tt̄ production, and for the closely
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Figure 6.2: The cross section for top charged-Higgs production at LHC for two

different cm energies, 7 TeV (left) and 14 TeV (right), as a function of tan β for

various charged Higgs masses.

related process of associated tW production in the SM proceeding via gb → tW .

For SM tW production we find the longitudinal polarization to be Pt ≃ −0.25; for

tt̄ production it is O(−10−4). The very small value of Pt for top pair production

in the SM is because the dominant contribution for both gg → tt̄ and qq̄ → tt̄

comes from chirality conserving s-channel gluon exchange processes, resulting in

the production of largely unpolarized tops. These values of Pt have also been

calculated in [50], where top polarization effects for top-slepton production in R-

parity violating SUSY was considered. We show the polarization asymmetry for

tH− production in Fig. 6.3 as a function of tanβ for both
√
s = 7 and 14 TeV. In
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Figure 6.3: The polarization asymmetries for top charged-Higgs production at

LHC for two different cm energies, 7 TeV (left) and 14 TeV (right), as a function

of tan β for various charged Higgs masses.
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Figure 6.4: The polarization asymmetry for top charged-Higgs production at LHC

for a cm energy of 7 TeV (left) and 14 TeV (right), as a function ofMH− for various

tan β values.

contrast to the related case of top-slepton production considered in [50] where Pt

was found to be independent of the R-parity violating SUSY tbl̃ coupling, here Pt

does have an interesting dependence on tanβ. As mentioned previously, we notice

the interesting feature that the polarization vanishes at tan β =
√

mt

mb
for all MH−

and ŝ, as expected from the vanishing of the chiral part of the coupling (6.6) at

this tan β value, the same value for which the cross sections are minimized. The

curves change sign at this point and saturate rapidly for larger tanβ values.

A plot of Pt vs the charged Higgs mass for various values of tanβ is shown in Fig.

6.4, for
√
s = 7 and 14 TeV. We notice that the polarization asymmetry vanishes

for a charged Higgs mass close to 1100 GeV for
√
s = 7 TeV and around 1000 GeV

for the 14 TeV case, for all tanβ, and changes sign as MH− is increased. This

can be understood as follows. In the expression for the polarization asymmetry

Pt ∝ ρ(+,+)− ρ(−,−), the angular integrals can be done analytically. Since the

parton distributions of the gluon and the b quark peak at low x, the remaining PDF

integrals over the momentum fractions of the gluon and b are dominated at low

x, i.e, at the threshold for top charged-Higgs production. One can show that the

expressions for Pt, expanded in powers of the top momentum pt (i.e, evaluated close

to ŝ = (mt+MH−)2), vanishes forMH− = 6mt ≃ 1035.6 GeV at leading order in pt,

for all tan β, in reasonable agreement with Fig. 6.4. Of course, one cannot get an

exact analytic expression for MH− when Pt vanishes without doing the numerical

integrals over the gluon and b quark PDF’s. Still, the above argument, which is

independent of the cm energy of the colliding protons, is useful for understanding
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why the polarization vanishes close to MH− ≃ 1000 GeV for both
√
s = 7 and 14

TeV.

The important point to note is that the magnitude and sign of these asym-

metries are sensitively dependent on MH− and tanβ values and are significantly

different from the case of tW and tt̄ production, because of the different chiral

structure of the tbW vertex.

6.3 Azimuthal distributions of decay leptons

As mentioned in previous sections, the top quark decays rapidly and its properties

have to be deduced from its decay products. The top polarization can be deter-

mined by the angular distribution of its decay products using Eqn. (1.66). The

lab frame polar distribution of the lepton is independent of the anomalous tbW

decay vertex. However, we find that it is not sensitive to model parameters and is

largely indistinguishable from the tW case in the SM.

As shown in [76] and references therein, the azimuthal angle of the decay lepton

in the lab frame is sensitive to the top polarization and independent of possible

new physics in the tbW decay vertex and is thus a convenient probe. The lepton

azimuthal angle φℓ is defined with respect to the top production plane chosen as

the x − z plane, with the beam direction as the z axis and the convention that

the x component of the top momentum is positive. Since at the LHC, one cannot

uniquely define a positive direction of z axis, the lepton azimuthal distribution is

identical for φl and 2π − φl and is symmetric around φl = π.

The φℓ distribution for a pure, i.e, 100% positively or negatively polarized top

quark ensemble is obtained by using only the (+,+) or (−,−) density matrix

elements respectively in Eqn. (4.7). This is, of course, expected to be different

from that for an ensemble with a partial degree of polarization Pt. In computing

the φℓ distributions we have taken into account the full spin coherence effects of

the top encoded in the diagonal and off-diagonal elements of the production and

decay spin density matrices.

With the above choice of frame, the normalized lepton azimuthal distributions

for
√
s = 7 TeV are shown in Fig. 6.5 for small and large values of tan β, for

various MH− values. The corresponding plots for a cm energy of 14 TeV is shown

in Fig. 6.6. The φℓ distribution for tW− production in the SM is also shown for

comparison.

The φℓ distributions for other values of tan β and MH− have a similar profile,
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Figure 6.5: The normalized lepton azimuthal distribution for tanβ = 5 (left) and

tan β = 40 (right) for various charged Higgs masses at a cm energy of 7 TeV.
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Figure 6.6: The normalized lepton azimuthal distribution for tanβ = 5 (left) and

tan β = 40 (right) for various charged Higgs masses at a cm energy of 14 TeV.
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Figure 6.7: Aφ as a function of tan β and different charged Higgs masses at
√
s = 14

TeV without lepton cuts (left) and with cuts (right). The red band corresponds to

the azimuthal asymmetry for tW production in the SM with a 2σ error interval.

with a peak at φℓ = 0 and 2π. The φℓ distribution depends on both kinematic

and top polarization effects and the factors which influence its shape have been

explained in chapter 4. The angular distribution of the charged lepton coming from

top decay in any generic top-production process is written in parton cm frame in

Eqn. 4.13 with the angular parts described by Eqs. 4.14 and 4.15. The rest-frame

forward (backward) peak corresponds to a peak for cos θtℓ = ±1, as seen from the

factor (1±cos θtℓ) in the numerator of Eqn. 4.14. This is the effect of polarization.

The kinematic effect is seen in the factor (1 − βt cos θtℓ)
3 in the denominator of

Eqns. 4.14 and 4.15, which again gives rise to peaking for large cos θtℓ. Eqn. 4.15

therefore implies peaking for small φℓ. This is borne out by the numerical results.

We notice that the curves are separated at the peaks for different MH− values

and are very different from the tW case in the SM. As in [51, 76, 101, 102], we

can quantify this difference by defining a normalized azimuthal asymmetry for the

lepton as

Aφ =
σ(cosφℓ > 0)− σ(cosφℓ < 0)

σ(cosφℓ > 0) + σ(cosφℓ < 0)
, (6.12)

where the denominator is the total cross section. Plots for Aφ as a function of

tan β with and without cuts on the lepton momenta are shown in Fig. 6.7 for a cm

energy of 14 TeV. We have used the following rapidity and transverse momentum

acceptance cuts on the decay lepton: |η| < 2.5, pℓT > 20 GeV. Also shown is the

SM value for Aφ for tW production with a 2σ error band.

The lepton cuts only mildly increase the value of Aφ for the charged Higgs

case and the value for tW production in the SM is also enhanced from about
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0.35 without cuts to about 0.5 with cuts, as can been seen from Fig. 6.7. The

azimuthal asymmetry also shows considerable variation, as a function of tan β,

roughly in the range 3 . tan β . 15 and becomes flat for values outside this

range and almost independent ofMH− . From Fig. 6.3, we see that this is the same

range of tan β for which the polarization Pt shows variation, becoming constant for

roughly tan β > 15; thus, the azimuthal asymmetry follows the same trends as the

top polarization. If the mass of the charged Higgs is known, from a measurement

of Aφ it would be easier to determine tanβ if it lies within this range.
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Figure 6.8: The fractional accuracy of tanβ at 2σ CL as a function of tan β for√
s = 7 TeV (left) and 14 TeV (right) using the polarization Pt, with

∫

Ldt = 1

fb−1 and 10 fb−1 respectively.

We now investigate the accuracy to which one can determine tanβ from the top

polarization, Pt, and the azimuthal asymmetry Aφ. The accuracy of the determina-

tion of parameter tanβ at tanβ0, from the measurement of an observable O(tanβ),

is ∆ tanβ if |O(tanβ) − O(tanβ0)| < ∆O(tanβ0) for | tanβ0 − tanβ| < ∆tan β,

where ∆O(tanβ0) is the statistical fluctuation in O at an integrated luminos-

ity L. The corresponding fractional accuracy is then ∆ tanβ/ tanβ0. For top-

polarization, Pt and azimuthal asymmetry, Aφ, the statistical fluctuations at a

level of confidence f are given by ∆O = f/
√
Lσ ×

√
1− O2, where O denotes Pt

or Aφ.

In Fig. 6.8, we show the fractional accuracy ∆ tan β/ tanβ in the determination

of the coupling tanβ from the polarization Pt at the 2σ confidence level (CL). We

choose, for illustration, charged Higgs masses of 120 and 200 GeV and an integrated

luminosity of 1 fb−1 and 10 fb−1 for
√
s = 7 and 14 TeV respectively. We use, for

convenience, the criterion ∆ tanβ/ tanβ < 0.3 for an accurate determination of
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tan β since this corresponds to a relative accuracy of about 1% in the determination

of physical quantities, which are proportional to the square of the couplings.

Then, we see that at
√
s = 7 TeV, tan β can be determined accurately for

values between roughly 3 and 25 for MH− = 120 GeV and between 3 and 20 for

MH− = 200 GeV. The corresponding range for tanβ determination for the LHC

running at 14 TeV are 3 to 30 forMH− = 120 GeV and 3 to 25 forMH− = 200 GeV.

For larger tanβ (and even for very low tan β) the sensitivity worsens since the Pt

curves become flat and do not show much variation as a function of tanβ, as can be

seen from Fig. 6.3. One can, of course, choose a different value for ∆ tanβ/ tanβ

as a measure of tan β accuracy in which case the corresponding limits on tanβ will

be different as can be read from the plots.

We now consider the accuracy to which tanβ can be determined from the more

conveniently measurable azimuthal asymmetry. Plots of the fractional accuracy for

this case are shown in Fig. 6.9 and Fig. 6.10 for the cases of
√
s = 7 TeV and 14

TeV respectively and with the indicated charged Higgs masses and luminosities.

If we use the same criterion for tan β accuracy as before, ∆ tanβ/ tanβ < 0.3,
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Figure 6.9: The fractional accuracy of tan β as a function of tan β for
√
s = 7 TeV

using the azimuthal asymmetry Aφ for MH− = 120 GeV (left) and MH− = 200

GeV (right).

we notice that for a cm energy of 7 TeV and an integrated luminosity of 1 fb−1,

the azimuthal asymmetry is not a very sensitive measure of tanβ. For the lower

charged Higgs mass of 120 GeV, and at the 1σ CL, tanβ can be probed roughly

in the range 6 to 12; the sensitivity worsens for larger charged Higgs masses or

CL’s. Top polarization is a better probe of tan β than the azimuthal asymmetry.

However, this is due to the fact that in constructing the asymmetry only the semi-
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Figure 6.10: The fractional accuracy of tanβ as a function of tan β for
√
s = 14

TeV using the azimuthal asymmetry Aφ forMH− = 120 GeV (left) andMH− = 200

GeV (right).

leptonic decay modes of the top have been considered, which reduces the cross

section by a factor of 3. The sensitivities are considerably enhanced if we include

all decay channels of the top. But it must be remembered that using any decay

product of the top other than ℓ+ and d̄ to construct the azimuthal asymmetry will

make Aφ dependent on new physics in the tbW vertex. For the LHC running at√
s = 14 TeV, Aφ is a more sensitive measure of tan β compared to the 7 TeV case,

at least for the lower charged Higgs mass of 120 GeV. For this case tanβ can be

probed in the range 3 to 25 at the 1σ CL and between 3 and 20 at a 2σ CL. For

MH− = 200 GeV, Aφ is sensitive to tan β only at the 1σ CL for a smaller range of

5 to 15.

As is to be expected, tanβ can be determined to a higher accuracy and for a

larger range using the top polarization Pt, compared to the azimuthal asymmetry

constructed from the decay lepton; the restriction to semi-leptonic decay modes of

the top further reduces the sensitivity to Aφ. However, it is interesting to note that

the profile of the plots of ∆ tanβ/ tanβ vs tan β computed by using Aφ, shown in

Fig. 6.9 and 6.10, is similar to that obtained by using the polarization Pt, shown

in Fig. 6.8. Aφ follows the change in Pt as a function of the coupling tanβ and is

thus a faithful probe of the top polarization itself. At least for
√
s = 14 TeV and

MH− = 120 GeV, the range in which tan β can be probed accurately using Aφ or

Pt is roughly similar for both variables.

Thus, the azimuthal asymmetry can be a convenient and sensitive probe of

both the top polarization and the coupling parameter tan β in the THDM, at least
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in the regions of parameter space mentioned above.

6.4 Backgrounds and Next-to-leading order cor-

rections

It is worthwhile to comment on the dominant backgrounds to our signal process

gb → tH− → tt̄b. When MH− > mt + mb, we require the top to decay semi-

leptonically and the anti-top to decay hadronically to trigger on the charged Higgs

signal, as well as for the purpose of reconstruction of the top quarks and the charged

Higgs. The complete final state therefore consists of 3 b jets + 2 light jets + 1

lepton + missing energy. The main background for this signal would come from

next-to-leading order NLO QCD processes, which are (a) gg → tt̄bb̄, (b) gb→ tt̄b,

and (c) gg → tt̄g, where in the first case, one of the b jets is missed and in the

last case the gluon jet is mis-tagged as a b jet (with probability of around 1%).

Refs. [103, 104, 105] have investigated the charged-Higgs signal in this process in

great detail for the LHC with triple b-tagging. They have used kinematical cuts

of pT > 30 GeV and |η| < 2.5 for all jets and assume b-tagging efficiency of 40%

in their analysis. The conclusion from their analysis for 30 fb−1 of accumulated

data is that there are enough number of events for charged Higgs discovery in this

channel at the 5-σ level upto a mass of 600 GeV for very large values of tan β

(> 25) and very small values of tan β (< 5). We can expect better visibility for the

charged Higgs when the b-tagging efficiency increases in future. Backgrounds from

weak processes like tW +X, bb̄+X and W + 2j would be suppressed because we

choose the signal to consist of 3 b jets and an isolated lepton.

When MH− < mt + mb, the dominant decay of the H− is into τ + ν̄τ . Our

signal in this will be gb → tH− → tτ−ν̄τ → bℓ+νℓτ
−ν̄τ . For this final state of b +

lepton + τ + missing energy, the background now comes from the processes of tt̄

production with the t̄ decaying into a τ and tW− production with W− decaying

into a τ . In both these cases, since the τ comes from W− decay, τ polarization can

be used to suppress the background [106]. While the presence of two neutrinos in

the final state would seem to make it impossible to reconstruct the top production

plane needed for our analysis, we are helped by the fact that the tH− events are

produced close to the threshold because of the sharp peaking of the initial-state

partons at low x. Thus it is a reasonable approximation to treat the top quark and

the charged Higgs as at rest, enabling approximate determination of the energy
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and momenta of both neutrinos on an event-by-event basis.

The NLO QCD corrections to the process gb→ tH− have been studied in Refs.

[107, 108] and next-to-next-to-leading-order (NNLO) soft gluon corrections have

been evaluated in Ref. [109]. These corrections are shown to be substantial, upto

85% of the LO cross section for large Higgs masses. It has been also shown that

the K-factor in this process is proportional to the mass of charged Higgs and do

not depend on tan β. As QCD corrections are model independent, one can use the

K-factor appropriately in the analysis to rescale the LO result to the NLO order.

The normalized differential cross sections and the asymmetries we calculate would

be insensitive to the higher order corrections. We have not used any K-factor in

our analysis. Including NLO QCD corrections through the naive use of K-factor

would increase our signal cross section by a factor of 1.5-1.85 depending upon the

charged Higgs mass and hence sensitivity to the parameters would increase.

The complete NLO EW calculations for the process gb→ tH− have been done

in Ref. [110] for type II 2HDM. They have reported that the NLO EW correction

to the total cross section is very mild. It varies from less than 1% for low values of

tan β to less than 4% for higher values of tanβ. The effects of NLO EW corrections

to observables like top polarization, normalized angular distributions and angular

asymmetries are expected to be small. For example, in Ref. [77], it has been

shown that NLO EW supersymmetric effects on top polarization is almost zero for

all values of charged Higgs masses and all values of tan β except for tan β ≈ 10,

for which correction is around -1% to -3%.

Any NLO corrections to top decay will not affect our analysis of charged-lepton

angular distributions and asymmetries as it has been proven that charged-lepton

angular distributions are independent of any corrections to form factors in top de-

cay. There can also be NLO corrections from non-factorizable diagrams. However,

this analysis has not been done in the literature so far and it would be interesting

to see the effect of these non-factorizable diagrams to our analysis which is beyond

the scope of this work.

6.5 Summary

We have studied the issue of using the polarization of the top quark produced

in association with a charged Higgs in the type II THDM or SUSY models as a

probe of the coupling parameter tan β occurring in such models. Since the top

decays before it has the time to hadronize, its polarization, reflected in the angular
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distribution of its decay products, can be a probe of new physics underlying its

production. We have derived analytic expressions for left and right polarized tH−

production (and the off-diagonal elements as well in the spin density matrix).

Essentially because of the scalar-pseudoscalar coupling (6.6) of the tbH− vertex,

compared to the vector-axial vector couplings of the top in the SM, the resulting

polarizations are vastly different from that expected in the SM and are sensitively

dependent on the charged Higgs mass and tan β, as shown in Figs. 6.3 and 6.4,

where we considered both the cm energies of 7 and 14 TeV at which the LHC is

planned to run. The degree of longitudinal top polarization can be as large as

0.3 to 0.4 (for a charged Higgs mass of 120 GeV and for tan β values less than 5

and greater than 10), compared to the SM values of −0.25 for tW production or

O(−10−4) for tt̄ production. Characteristic of the tbH− coupling in the THDM,

the 2 → 2 top production cross sections are minimized and the polarizations vanish

and change sign as a function of tan β at tan β =
√

mt

mb
.

We then investigated to what extent top polarization is reflected in the angular

distribution of the decay lepton in the process t → bW+ → bνℓℓ
+, with inclusive

decay of the b and H−. Since it is known that the laboratory frame angular

distributions of the charged lepton in top decay depends only on the top production

process and are independent of new physics in the tbW vertex, we considered the

azimuthal distribution of the lepton from top decay, Aφ, as a probe of new physics in

its production (we find the polar distribution of the lepton in the THDM insensitive

to tanβ and the charged Higgs mass and almost identical to tW production in the

SM). Aφ is sensitive to tanβ values roughly in the range 3 . tanβ . 15, for

different charged Higgs masses considered and becomes constant for larger tan β

values. This is the same range in which the top polarization shows variation as a

function of tanβ; Aφ thus captures the dependence of Pt on tanβ. If the charged

Higgs mass is already known, a measurement of Aφ can help measure tan β if it

lies in the above range.

We also computed the fractional accuracy to which tanβ can be measured,

as a function of tan β, from the top polarization Pt and a measurement of the

azimuthal asymmetry Aφ. Using the criterion that ∆ tanβ/ tanβ < 0.3 for an

accurate determination of tanβ, we find that Pt can help determine tanβ lying in

the range between 3 and 25 for a cm energy of 7 TeV and between 3 and 30 for the

14 TeV case, at the 2σ CL for MH− = 120 GeV; the range is only slightly smaller

for a largerMH− of 200 GeV. While the azimuthal asymmetry is not very sensitive

to an accurate measurement of tan β for the LHC running at 7 TeV, we find that
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at 14 TeV one can use the azimuthal asymmetry to probe tan β up to 25 at the 1σ

CL and for MH− = 120 GeV; for MH− = 200 GeV the corresponding range is 5 to

15. Including both leptonic and hadronic decay modes of the top is expected to

increase the sensitivity of the azimuthal asymmetry to tanβ; however, this renders

the asymmetry sensitive to new physics in the tbW decay vertex, apart from new

physics in top production.

The sensitivity plot for tan β determination using Aφ follows roughly the one

obtained by using Pt. Thus, the azimuthal asymmetry of the decay lepton can be a

convenient and accurate probe of the top polarization and the coupling parameter

tan β of the THDM or SUSY models for the LHC running at
√
s = 14 TeV and

for smaller charged Higgs masses.



Chapter 7

Summary

The Standard Model (SM) has been extremely successful in explaining the fun-

damental interactions among elementary particles: quarks and leptons. Quarks

interact through electroweak and color interactions while leptons interact only

through electroweak interactions. However, some aspects of the SM have not been

fully established yet. For example, the electroweak symmetry breaking (EWSB)

sector of the SM remains untested yet. The central pillar of the EWSB, known as

the Higgs, has not been discovered so far. That is why the most important goal of

the current and future colliders like the Large Hadron Collider (LHC) at CERN,

International Linear Collider (ILC) and Compact Linear Collider (CLIC) is to dis-

cover the Higgs and study its properties with great precision so as to ascertain it to

be the SM Higgs as different alternate scenarios beyond the SM (BSM) allow for a

number of Higgs particles e.g., Minimal Supersymmetric Standard Model (MSSM),

Two Higgs Doublet Model (THDM) etc. Also, the top quark, because of its large

mass (close to EWSB scale), is considered to be a window to probe the EWSB.

In this thesis, we study Higgs boson and top quark couplings in various scenarios

and at different colliders to probe the EWSB utilizing the polarization of the final

state top quark at the LHC and the polarization of the initial beams at the ILC.

In the first two chapters of the thesis, we study anomalous ZZH and γZH cou-

plings in the process e+e− → ZH at the ILC with polarized beams. We consider

both electron and positron beams to be polarized simultaneously and have studied

longitudinal and transverse polarization of the beams separately. We assume all

anomalous couplings to be complex and consider their real and imaginary parts to

be independent parameters. Our main emphasis in this work is to obtain simul-

taneous limits on the couplings to the extent possible making use of combination
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of the observables and/or polarizations. We study angular distributions of the

Z using both longitudinally as well as transversely polarized beams and construct

various asymmetries. We also study the angular correlations of the charged leptons

coming from Z-decay. Using the momenta of the charged leptons, we construct var-

ious correlations having definite CP and T transformation properties which thence

probe the couplings having the same transformation properties under CP and T.

We find that the longitudinal polarization helps to enhance the sensitivities of the

couplings relative to the unpolarized case. The most remarkable result from the

study of transverse polarization is that it helps to probe a specific coupling Imaγ

which is inaccessible in the distributions with longitudinally polarized as well as

unpolarized beams.

In the next two chapters, we study the sensitivity of the LHC to anomalous

tbW couplings in single-top production in association with a W− boson followed

by semileptonic decay of the top. We calculate top polarization and the effects

of these anomalous couplings to it at two centre-of-mass (cm) energies of 7 TeV

and 14 TeV. As a measure of top polarization, we look at various laboratory frame

distributions of its decay products, viz., lepton angular and energy distributions

and b-quark angular distributions, without requiring reconstruction of the rest

frame of the top, and study the effect of anomalous couplings on these distributions.

We construct certain asymmetries to study the sensitivity of these distributions

to anomalous tbW couplings. We find that 1σ limits on real and imaginary parts

of the dominant anomalous coupling f2R which may be obtained by utilizing these

asymmetries at the LHC with cm energy of 14 TeV and an integrated luminosity of

10 fb−1 are at least as good as the expectations from other direct measurements at

the LHC and at over an order of magnitude better than the expected indirect search

limits. We also study the possibility of CP-violation in anomalous tbW couplings

in the single top production process. We construct all the observables (as discussed

above) in the case of CP-violation and find that these observables are proportional

to the difference of the couplings f2R and f̄2L. We study the sensitivities of these

observables to the CP-violation at two configurations of the LHC and probe the

difference, f2R − f̄2L, which would be a signal of CP-violation.

We study single top production in association with a charged Higgs in the type

II THDM at the Large Hadron Collider. The polarization of the top, reflected in

the angular distributions of its decay products, can be a sensitive probe of new

physics in its production. We present theoretically expected polarizations of the

top for top charged-Higgs production, which is significantly different from that in
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the closely related process of tW production in the Standard Model. We then

show that an azimuthal asymmetry, constructed from the decay lepton angular

distribution in the laboratory frame, is a sensitive probe of top polarization and

can be used to constrain parameters involved in top charged-Higgs production.

To summarize, we explore different possible ways to probe the mechanism of

EWSB through the study of polarization of initial beams in the context of ILC

and final state polarization of the top quark in the context of the LHC.



Appendix I

Cross section using longitudinally polarized beams

The expression for the cross section for process e−(p1)e
+(p2) → ℓ−(p3)ℓ

+(p4)H

with longitudinal polarizations PL and PL for e− and e+ beams respectively is

σL =

∫

d3p3
2p03

∫

d3p4
2p04

( e

4 sin θW cos θW

)2

× 1

(q2 −m2
Z)

2 + Γ2
Z

(1− PLPL)
[

FL
SM + FL

Z + FL
γ

]

where FL
SM , FL

Z and FL
γ are the contributions from the SM alone, interference

between the SM and the ZZH terms and interference between the SM and the

γZH terms respectively.

Let us first denote :

CV 1
Z = (gfV

2
+ gfA

2
){(geV 2 + geA

2)− 2geV g
e
AP

eff
L }, (7.1)

CA1
Z = 2gfV g

f
A{(geV 2 + geA

2)P eff
L − 2geV g

e
A}, (7.2)

CV 1
γ = 2gfV g

f
A(g

e
A − geV P

eff
L ), (7.3)

CA1
γ = (gfV

2
+ gfA

2
)(geV − geAP

eff
L ), (7.4)

CV 2
Z = (gfV

2
+ gfA

2
){(geV 2 + geA

2)P eff
L − 2geV g

e
A}, (7.5)

CA2
Z = 2gfV g

f
A{(geV 2 + geA

2)− 2geV g
e
AP

eff
L }, (7.6)

CV 2
γ = 2gfV g

f
A(g

e
V − geAP

eff
L ), (7.7)

CA2
γ = (gfV

2
+ gfA

2
)(geV P

eff
L − geA), (7.8)

E = ǫαβσρp
α
1 p

β
2p

σ
3p

ρ
4, (7.9)

sij = (pi · pj), (7.10)

BZ =
mZ

s−m2
Z

( e

2 sin θW cos θW

)2

, (7.11)

Bγ = e2
mZ

s
. (7.12)
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where geV and geA are the vector and the axial-vector couplings of intial electron

and positron with Z while gfV and gfA are the vector and the axial-vector couplings

of final-state fermions with Z. The e and θW is the electromagnetic coupling and

the weak-mixing angle respectively.

Using the above notations, we write the analytical expressions of the SM con-

tribution FL
SM

FL
SM = 8B2

Z

[

CV 1
Z (s13s24 + s14s23)− CA1

Z (s13s24 − s14s23)
]

,

the contribution from interference between the SM and the ZZH terms

FL
Z =

8B2
Z

m2
Z

[

2m2
ZRe∆aZ [C

V 1
Z {s13s24 + s14s23}

+ CA1
Z {s14s23 − s13s24}] (7.13)

+ RebZ
{

s12s34[C
V 1
Z S1 − CA1

Z S2]

− (s14s23 − s13s24)[C
V 1
Z S2 − CA1

Z S1]
}

+ E
[

ImbZ{CV 2
Z S4 + CA2

Z S3} − Reb̃Z{CA1
Z S1 − CV 1

Z S2}
]

+ Imb̃Z{s12s34[CA2
Z S3 − CV 2

Z S4]

+ (s14s23 − s13s24)[C
V 2
Z S3 − CA2

Z S4]}
]

, (7.14)

and the contribution from interference between the SM and the γZH terms

FL
γ =

8BZBγ

m2
Z

[

2m2
ZReaγ [C

A1
γ {s13s24 + s14s23}]

+ CV 1
γ {s14s23 − s13s24}]

+ Rebγ
{

s12s34[C
A1
γ S1 − CV 1

γ S2]

− (s14s23 − s13s24)[C
A1
γ S2 − CV 1

γ S1]
}

+ E
[

Imbγ{CA2
γ S4 + CV 2

γ S3} − Reb̃γ{CV 1
γ S1 − CA1

γ S2}
]

+ Imb̃γ{s12s34[CV 2
γ S3 − CA2

γ S4]

+ (s14s23 − s13s24)[C
A2
γ S3 − CV 2

γ S4]}
]

. (7.15)
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Appendix II

Cross section using transversely polarized beams

The expression for the cross section for process e−(p1)e
+(p2) → ℓ−(p3)ℓ

+(p4)H

with transverse polarizations PT and P T for e− and e+ beams respectively is

σT =

∫

d3p3
2p03

∫

d3p4
2p04

( e

4 sin θW cos θW

)2 1

(q2 −m2
Z)

2 + Γ2
Z

[

FT
SM + FT

Z + FT
γ

]

where FT
SM , FT

Z and FT
γ are the contributions from the SM alone, interference

between the SM and the ZZH terms and interference between the SM and the

γZH terms respectively.

Let us first denote :

E3 = ǫαβσρn
αpβ3p

σ
1p

ρ
2 (7.16)

E4 = ǫαβσρn
αpβ4p

σ
1p

ρ
2 (7.17)

S1 = s13 + s14 + s23 + s24 (7.18)

S2 = s13 − s14 − s23 + s24 (7.19)

S3 = s13 − s14 + s23 − s24 (7.20)

S4 = s13 + s14 − s23 − s24 (7.21)

sin = pi · n (7.22)

where n is the spin four vector of the inital electron and positron.

Using the above notations, we write the analytical expressions of the SM con-

tribution FT
SM

FT
SM = 8B2

Z

[

(gfV
2
+ gfA

2
){[(geV 2 + geA

2)− PTP T (g
e
V
2 − geA

2)]}
× (s14s23 + s13s24) + 4gfV g

f
Ag

e
V g

e
A(s14s23 − s13s24)

+ PTP T (g
f
V

2
+ gfA

2
)(geV

2 − geA
2)s12(2s3ns4n + s34)

]

, (7.23)

the FT
Z which comes from interference between the SM and the ZZH terms

FT
Z = FT

Re∆aZ
+ FT

RebZ
+ FT

ImbZ
+ FT

Reb̃Z
+ FT

Imb̃Z
(7.24)

where

FT
Re∆aZ

= 16B2
ZRe∆aZ

[

(gfV
2
+ gfA

2
){[(geV 2 + geA

2)− PTP T (g
e
V
2 − geA

2)]}
×(s14s23 + s13s24) + 4gfV g

f
Ag

e
V g

e
A(s14s23 − s13s24)

+PTP T (g
f
V

2
+ gfA

2
)(geV

2 − geA
2)s12(2s3ns4n + s34)

]

(7.25)
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FT
RebZ

=
8B2

Z

m2
Z

RebZ

[

(gfV
2
+ gfA

2
)
{

(geV
2 + geA

2)[s12s34S1 − (s14s23 − s13s24)S2]

− PTP T (g
e
V
2 − geA

2)[s12s34S1 + (s14s23 − s13s24)S2

+ 2s12s3ns4nS1 − 2s12(s13 + s23)s
2
4n − 2s12s

2
3n(s14 + s24)]

}

+ 4gfV g
f
Ag

e
V g

e
A {(s14s23 − s13s24)S1 − s12s34S2}

]

(7.26)

FT
ImbZ

=
8B2

Z

m2
Z

ImbZ

[

(gfV
2
+ gfA

2
)(2geV g

e
A)(E4s3n − E3s4n)S3

+ 2gfV g
f
A(g

e
V
2 + geA

2)(E3s4n − E4s3n)S4 + 2gfV g
f
A(g

e
V
2 − geA

2)PTP T

× [(E3s4n + E4s3n)S2 + 2s3n(s24 − s14)E3 + 2s4n(s13 − s23)E4]
]

(7.27)

FT
Reb̃Z

=
8B2

Z

m2
Z

Reb̃Z

[

(gfV
2
+ gfA

2
)(geV

2 + geA
2)S2(s3nE4− s4nE3)

− 2gfV g
f
A2g

e
V g

e
AS1(s4nE3− s3nE4)− PTP T (g

f
V

2
+ gfA

2
)

× (geV
2 − geA

2)[(s4nE3 + s3nE4)S4 − 2E3s3n(s14 − s24)

− 2E4s4n(s13 − s23)]
]

(7.28)

FT
Imb̃Z

=
8B2

Z

m2
Z

Imb̃Z

[

2gfV g
f
A(g

e
V
2 + geA

2){s12s34S3 − (s14s23 − s13s24)S4}

− PTP T2g
f
V g

f
A(g

e
V
2 − geA

2){(s14s23 − s13s24)S4

+ s12s34S3 + 2s12[s
2
3n(s14 + s24)− s24n(s13 + s23)− s3ns4nS3]}

+ 2(gfV
2
+ gfA

2
)geV g

e
A{(s14s23 − s13s24)S3 − s12s34S4}

]

(7.29)

and the F T
γ which comes from interference between the SM and the γZH terms

FT
γ = FT

Reaγ + F T
Imaγ + FT

Rebγ + FT
Imbγ + FT

Reb̃γ
+ FT

Imb̃γ
(7.30)

where

FT
Reaγ = 16BZBγReaγ

[

geV (1 + PTP T )}(s14s23 + s13s24)

+2gfV g
f
Ag

e
A(s14s23 − s13s24)

+PTP T (g
f
V

2
+ gfA

2
)geV s12(2s3ns4n + s34)

]

(7.31)

FT
Imaγ = 8BZBγ

[

2geA(g
f
V

2
+ gfA

2
)PTP T{s3nE4 + s4nE3}

]

Imaγ (7.32)
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FT
Rebγ =

8BZBγ

m2
Z

Rebγ

[

(gfV
2
+ gfA

2
)
{

geV [s12s34S1 − (s14s23 − s13s24)S2]

− geV PTP T [s12s34S1 + (s14s23 − s13s24)S2

+ 2s12s3ns4nS1 − 2s12(s13 + s23)s
2
4n − 2s12s

2
3n(s14 + s24)]

}

+ 2gfV g
f
Ag

e
A[(s14s23 − s13s24)S1 − s12s34S2]

− 2gfV g
f
Ag

e
APTP T [(s14s23 − s13s24)S1 + s12s34S2

+ 2s12{s3ns4nS2 − s23n(s14 − s24) + s24n(s13 − s23)}]
]

(7.33)

FT
Imbγ =

8BZBγ

m2
Z

Imbγ

[

(gfV
2
+ gfA

2
)geA(E4s3n − E3s4n)S3

+ 2gfV g
f
Ag

e
V (E3s4n − E4s3n)S4 − 2geV g

f
V g

f
APTP T

× [(E3s4n + E4s3n)S2 + 2s3n(s24 − s14)E3 + 2s4n(s13 − s23)E4]
+ PTP T g

e
A(g

f
V

2
+ gfA

2
)(E4s3n + E3s4n)S1

− 2E4s4n(s13 + s23)− 2E3s3n(s14 + s24)
]

(7.34)

FT
Reb̃γ

=
8BZBγ

m2
Z

Reb̃γ

[

(gfV
2
+ gfA

2
)geV S2(s3nE4− s4nE3)

− 2gfV g
f
Ag

e
AS1(s4nE3− s3nE4) + PTP T (g

f
V

2
+ gfA

2
)

× geV [(s4nE3 + s3nE4)S4 − 2E3s3n(s14 − s24)

− 2E4s4n(s13 − s23)]− 2PTP Tg
f
V g

f
Ag

e
A{s4nE3 + s3nE4}S3

− 2E4s4n(s13 + s23) + 2E3s3n(s14 + s24)
]

(7.35)

FT
Imb̃γ

=
8BZBγ

m2
Z

Imb̃γ

[

2gfV g
f
Ag

e
V {s12s34S3 − (s14s23 − s13s24)S4}

− 2gfV g
f
Ag

e
V PTP T{(s14s23 − s13s24)S4 + s12s34S3

+ 2s12[s
2
3n(s14 + s24)− s24n(s13 + s23)− s3ns4nS3]}

+ (gfV
2
+ gfA

2
)geA{(s14s23 − s13s24)S3 − s12s34S4}

− geA(g
f
V

2
+ gfA

2
)PTP T{(s14s23 − s13s24)S3 + s12s34S4

+ 2s12[s
2
3n(s14 − s24) + s24n(s13 − s23)− s3ns4nS4]}

]

. (7.36)
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Appendix III

In this appendix, we give the spin density matrix elements for the single-top pro-

duction process. For this we use the following notation for scalar products of four-

momenta involved in the process: (pt · pb) = Stb, (pt · pg) = Stg and (pb · pg) = Sbg.

Also, we use the following expressions :

F1 =
g2g2s

24S2
tgS2

bg

[

{

|f1L|2
(

1 +
m2

t

2m2
W

)

+ 3Ref1Lf
∗
2R

mt

mW
+ 3|f2R|2

m2
t

2m2
W

}

×
{

[Stb + Stg − Sbg]
[

2StgStbSbg −m2
tS2

bg

]

− StgSbg

[

S2
bg − S2

tg

]

}

− |f1L|2
m2

t

m2
W

S2
tgS2

bg + Ref1Lf
∗
2R

mt

mW

{

2StgS2
bg[Sbg − Stg]

}

+
|f2R|2
m2

W

{

m2
t [−S2

bg(SbgStg − S2
tb + S2

bg)] + StgSbg

[

Stb(Stg + Stb − Sbg)

× {3(Sbg − Stg)− Stb}+ {(Sbg + Stg)(S2
bg − S2

tg)− S3
tg}
]

}

]

F2 =
g2g2s

12S2
tgS2

bg

[

{

|f1L|2
(

1− m2
t

2m2
W

)

+ Ref1Lf
∗
2R

mt

mW
+ |f2R|2

m2
t

2m2
W

}

mtSbg

×
[

(Sbn + Sgn)Stg (Stb + Stg)− Sbg

(

StbSgn + StgSbn +m2
tSbn − Sgn

)

+ StbStgSbn

]

− |f1L|2
m2

t

m2
W

StgS2
bgSgn + Ref1Lf

∗
2R

1

mW

{

2S2
tgSbg[StbSgn − StgSbn]

}

+ |f2R|2
{

Sbn(Stb − Sbg + Stg)(m
2
tS2

bg − 3SbgS2
tg + S2

bgStg − 2SbgStgStb)

+ 2SbgS2
tgStb + Sgn(Stb − Sbg − Stg)(−SbgStgStb + SbgS2

tg − S3
bg)− 2SbgS3

tg

+ S2
bg(StbSbg + 2SbgStg + S2

bg +m2
tStg)

}]

The diagonal elements of the spin density matrix for single-top production in

tW channel can be written as

ρ(±,±) = F1 ± F2 (7.37)

with Sgn = (pg.n3) and Sbn = (pb.n3) and the off-diagonal elements are

ρ(±,∓) = F2 (7.38)

with Sgn = (pg · (n1 ± in2)) and Sbn = (pb · (n1 ± in2)) where n
µ
i ’s (i = 1, 2, 3) are

the four-vectors with the properties ni · nj = −δij and ni · pt = 0. n1, n2 and n3

represent spin four-vectors of the top quark with spin respectively along the x, y

and z axis in the top rest frame.
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