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Abstract

Magnetic topology involves the properties of magnetic field lines, such as

their linkages and knottedness, which remain unchanged under ideal displace-

ments such as bending and stretching. Understanding the magnetic topology

of the solar corona is important as its change implies magnetic reconnection—

a discontinuous process that re-structures the magnetic field lines and converts

magnetic energy into heat and kinetic energy, resulting in various solar erup-

tive phenomena like solar flares, coronal jets, and coronal bright points. In two

dimensions (2D), reconnection occurs at magnetic neutral or null points where

the magnetic field is zero, and the configurations near these points can be either

elliptic (O-type) or hyperbolic (X-type). In three dimensions (3D), reconnection

occurs at topologies such as 3D magnetic nulls (where the magnetic field is zero)

and separators—lines formed through the intersection of two fan planes. Con-

temporary research (theory, extrapolation, simulation, and observation) suggests

that 3D nulls are abundant in the solar atmosphere and drive various solar tran-

sients such as flares, jets, and coronal bright points. However, the mechanism

behind the generation of 3D nulls is not yet fully understood.

In the above background, the thesis explores how 3D magnetic nulls are cre-

ated and annihilated by employing Implicit Large Eddy Simulations (ILESs)

where magnetohydrodynamics (MHD) equations are solved in the absence of

explicit magnetic diffusivity. The magnetofluid is idealized to be thermodynam-

ically inactive and incompressible. Importantly, any simulation attempting to

explore null generation (and annihilation) must satisfy the following two crite-

ria,

1. identities of the nulls require to be maintained with high fidelity,

2. the net topological degree must be preserved.

Both these conditions are satisfied in the carried-out simulations and are dis-

cussed later in the thesis.

In its core chapters, the thesis explores three particular cases for the gener-

ation of nulls. In the first one, the dynamics are onset with a prescribed flow
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in a magnetic configuration having an isolated, current-free, proper radial 3D

null point. The flow renders the spine to bend toward the fan plane, resulting

in magnetic reconnections along with the creation of a null pair having oppo-

site topological degrees. Resultantly, the overall net topological degree remains

preserved. The way these null pairs are generated is new, novel, and different

from the usual pitchfork bifurcation. Importantly, the generated null pairs are

created away from the central null, likely due to the interaction between the

imposed flow and the reconnection outflow from the central current layer. In-

terestingly, as the simulation progresses, new null pairs develop spontaneously,

which is a novel finding. These spontaneously generated null pairs also preserve

the overall net topological degree, adding credibility to the simulation. The sim-

ulation also shows that nulls can annihilate in pairs. Tracing of magnetic field

lines in time reveals that magnetic reconnections are the underlying cause for

both the generation and annihilation of the nulls.

The second case study advances the first one by exploring the physics of

autonomous null generations through a data-based simulation of a flaring re-

gion using photospheric magnetograms of a solar active regions instead of any

predetermined magnetic structure or any prescribed flow—making it a unique

exploration of spontaneous null generation in a realistic scenario. Additionally,

solar active regions have complex magnetic topologies, suggesting that the 3D

nulls have similar complexity. Understanding this process is crucial for insights

into chromospheric and coronal heating. The active region is selected based on

its proximity to the solar disk center, ensuring minimal errors in the observed

photospheric magnetic field, the constancy of the photospheric magnetic flux

across the active region during the flare, allowing for a line-tied boundary con-

dition to simplify simulations and the availability of contemporary multiwave-

length observations. The initial coronal magnetic field is obtained by extrap-

olating photospheric vector magnetogram data using the Non-Force-Free Field

extrapolation technique. The resulting non-zero Lorentz force drives the plasma,

generating initial dynamics, and the simulation focuses on the part of the flare’s

reconnection-dominated impulsive phase, aligned with the objectives. The three
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representative null generation/annihilation processes are chosen for a detailed

analysis. One particularly interesting case involved a spontaneously generated

radial null pair, not reported previously. Each null in this pair exhibited the typ-

ical dome-shaped structure of fan field lines expected in the solar atmosphere,

accompanied by footpoint brightening in the 1600 Åchannel of the Atmospheric

Imaging Assembly (AIA), linked to slip reconnection. These brightenings may

result from non-thermal particles impacting the lower solar atmosphere’s plasma.

Eventually, two such spontaneously generated nulls approach each other and get

annihilated. Magnetic reconnection is identified as the underlying cause for both

the generation and annihilation, preserving the net topological degree throughout

the process. The other two null pairs exhibited similar characteristics, reinforcing

the idea that magnetic reconnection is responsible for the spontaneous generation

of 3D nulls in the solar atmosphere, and the observational signatures of these

spontaneously generated nulls strongly support the findings.

Although null generation was ubiquitous in both above studies, nevertheless,

the initial magnetic field contained magnetic nulls. It is then imperative to look

for null generation in a scenario where no pre-existing nulls are present to estab-

lish the spontaneity of their generation. The plausibility of such a scenario has

been explored in the third case study, where the initial magnetic field was chaotic

and devoid of any 3D null. Toward the goal, the MHD simulations with vary-

ing levels of chaoticity have been carried out. The initial magnetic fields have

been derived by superposing two ABC fields, each satisfying the linear force-

force condition. For the computations, C ∈ {0.15, 0.20, 0.25, 0.30} corresponds

to initial fields with increasing chaoticity. A direct correlation has been found

between chaoticity levels and the number of null generations, with higher chaotic-

ity leading to earlier null creations and increased null count. Further, to explore

null generation/annihilation in more detail, the chaoticity is set at C = 0.3. A

spontaneously generated spiral null pair is selected as an exemplar of the null

generation process. Interestingly, one of the nulls changes its nature from spiral

to radial with evolution. Subsequently, this radial null reverts to a spiral null,

which later annihilates with a different spiral null created in a distinct null pair
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generation process. The relevant magnetic field lines are traced over time and

advected with the plasma flow in the ideal region to illustrate the global impact

of the creation and annihilation of nulls. It is found that the field lines change

their connectivity from one domain to a different domain—demonstrating that

the spontaneous generation (and annihilation) of 3D null point pairs leads to a

change in the global field topology.

The results are found to be interesting and, more importantly, thought-

provoking. In all three cases, magnetic reconnection is found to be the underlying

cause of the generation and annihilation of nulls, and with nulls being prefer-

ential sites of reconnection—a novel possibility of reconnection-assisted sponta-

neous generation of nulls and subsequent reconnection at those nulls cannot be

denied. Such a continuous process can explain the abundance of nulls in the

solar atmosphere and contribute to solar chromospheric and coronal heating.

Keywords: Magnetic Topology; Magnetic Reconnection; Magnetohydro-

dynamics; Coronal Magnetic fields; Flares; Three-dimensional nulls; Genesis

and Annihilation.
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have a temperature of approximately 106 K. These loops contrast

greatly with the cool chromosphere below. (https://upload.

wikimedia.org/wikipedia/commons/9/93/Traceimage.jpg) . . 8

1.4 An example of reconnection near an X-type null point is shown

through Schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 The Figure presents the example of a configuration in 2D near

the null points. For α2 > 1, X-type null (panel (a)), α2 = −1,

Circular-type (panel (b)), and α2 < −1, Elliptical-type (panel (c)). 15

1.6 Schematic represents the Sweet-Parker model of reconnection. . . 16

1.7 Schematic represents the Petscheck model of reconnection. . . . . 19

xi

https://upload.wikimedia.org/wikipedia/commons/9/93/Traceimage.jpg
https://upload.wikimedia.org/wikipedia/commons/9/93/Traceimage.jpg


xii LIST OF FIGURES

1.8 The Figure depicts the concept of reconnection in 3D proposed

by Axford. Magnetic connection: Two plasma elements, P and

Q, are connected by a magnetic field line at time t1 and remain

connected by a magnetic field line at any later time t2 under the

plasma displacement. Slip-reconnection: the plasma elements P

and Q are connected by a magnetic field line at time t1; however,

at a later time, t2, plasma elements exchange the magnetic field

lines and do not remain connected by a magnetic field line. . . . . 22

1.9 An example of a 3D magnetic null point along with a spine-fan

plane is shown in the Figure. The small yellow sphere represents

the null point; the spine and fan plane are marked by arrows. . . . 24

1.10 The Schematic represents an example of a magnetic separator.

Blue and Red circles represent the negative and positive null

points, whereas the separator is drawn in green; the picture

adapted from (Pontin, 2011). . . . . . . . . . . . . . . . . . . . . 25

2.1 A schematic showing different phases indicated at the top; taken

from (Benz, 2017). . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 The schematic shows a modified version of the CHSKP model for

a solar flare, adapted from Shibata et al. (1995). . . . . . . . . . . 34

2.3 The figure depicts an example of flare onset by a 3D magnetic

null; adapted from Nayak et al. (2021). . . . . . . . . . . . . . . . 36

2.4 Two different types of jets, (a) an anemone jet, and (b) a two-

sided jet; picture credit: (Shen, 2021). The arrow marks highlight

the bright points near the base of both jets. . . . . . . . . . . . . 37

2.5 The Figure depicts two 3D magnetic nulls (in pink) and their

associated field lines; picture taken from Nayak et al. (2019). . . . 38

2.6 The sequence of field lines evolution, showing the magnetic recon-

nection and covering the duration of the jet; picture adapted from

Nayak et al. (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . 39



LIST OF FIGURES xiii

2.7 Identified coronal bright points in the quiet-Sun region; picture

adapted from Zhang et al. (2001). . . . . . . . . . . . . . . . . . . 41

2.8 The schematic shows the several possible configurations leading to

CBP, where (i) pre-interaction, (ii) interaction, (iii) cancellation,

and (iv) final phases, for (a) equal and opposite, (b) unequal and

opposite, (c) a large bipolar and a small unipolar, and a weak

bipolar and a strong unipolar magnetic fragments. The schematic

has been adapted from Priest et al. (1994). . . . . . . . . . . . . . 42

2.9 Figure shows the identified CBPs in SXR and EUV channels at

01:01 UT. The picture adapted from Zhang et al. (2012). . . . . . 43

2.10 Top view (left) and side view (right) of the coronal magnetic field

feature around the two CBPs. The picture adapted from Zhang

et al. (2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Figure depicts the association of 3D null point fan-dome structure

with observed X-ray emissions from CBPS in CH regions. The

picture has been taken from Galsgaard et al. (2017). . . . . . . . . 44

2.12 Figure depicts the potential 3D null point configuration for p = 1. 49

2.13 Figure depicts the example of non-potential 3D null point configu-

ration for J⊥ = 0, Jthresh = 2 and J∥ = 1, i.e., |J∥| < Jthresh (panel

(a)), where p = 1, is used. Panel (b) depicts for |J∥| = Jthresh and

depicts the example of non-potential 3D null point configuration

for Eigenvalues (λ1 = 1, λ2 = 1, λ3 = −2). . . . . . . . . . . . . . . 49

2.14 Figure depicts the example of non-potential 3D null point config-

uration for J∥ = 3, J⊥ = 0 (panel (a)), J∥ = 5, J⊥ = 0 (panel(b))),

and J∥ = 5, J⊥ = 5 (panel (c)). . . . . . . . . . . . . . . . . . . . 50

2.15 Panel (a) depicts the example of the positive 3D null point where

fan field lines are directed away from null whereas spine field lines

are directed toward the null resulting in topological degree −1,

whereas fan field lines directed toward null point making topolog-

ical degree +1 is shown in panel (b). . . . . . . . . . . . . . . . . 51



xiv LIST OF FIGURES

3.1 The different filters of AIA centered on specific wavelength and

their corresponding observing solar atmosphere regions and differ-

ent characteristic temperatures are listed in the table. The table

has been adapted from Lemen et al. (2012). . . . . . . . . . . . . 58

3.2 The figure depicts the model of plasma β variation with height.

The figure has been adapted from Gary (2001). . . . . . . . . . . 61

3.3 The flow chart of coronal magnetic field extrapolation algorithm

to obtain extrapolated coronal magnetic field, using singe-layer

vector magnetogram. The figure has been taken from Hu et al.

(2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Initial magnetic field configuration (left panel), which includes a

potential (current free) 3D null located at the center of the box.

The null point is shown by plotting the isosurface ψ (black sur-

face) marked by an arrow. The two sets of field lines constituting

the upper spine (in red color) and lower spine (in blue color) are

fanning out in the fan plane (marked by arrows). For more de-

tails, the magnified view of the selected region (rectangular box)

is shown in the right panel. The magnetic field lines in the upper

and lower spine are directed toward the 3D potential null (null is

shown by the black isosurface) and receding away from the null

point in the fan plane, making the topological degree −1. . . . . . 89



LIST OF FIGURES xv

4.2 Evolution of grid averaged magnetic (solid line) and kinetic

(dashed line) energies normalized to their respective initial values.

The magnetic energy increases as a consequence of the deforma-

tion of magnetic field lines due to the initial sinusoidal flow until

t ≈ 10s. Afterward, it gets somewhat flattened in t ∈ {10, 15}s.

The total energy density (magnetic + kinetic) increases inside the

volume. Consequently, the increment in kinetic energy is seen, and

it gets arrested by the viscosity, showing a peak around t ≈ 3.2s.

Subsequently, it starts increasing sharply as a result of magnetic

reconnection in the current sheet near the central null showing

another peak at t ≈ 15s. Within this span, the primary null pairs

get generated. With time the spiral null (a constituent of a pair

of nulls) gets more twisted—as shown in Figure 4.7. The increase

in twist may result in the observed increase in magnetic energy. . 91

4.3 The snapshots of the figure spanning time t ∈ {0, 3.2}s represent

the evolution total energy density (magnetic + kinetic) through

Direct Volume Rendering (DVR). The color scale of the DVR rep-

resents the magnitude of the total energy density and is shown in

the bottom right corner. At t = 0 s, the maximal energy density

(pink) is at the top and bottom boundaries. With the evolution,

maximal energy increases inside the volume (pink color) (c.f. pan-

els (a)-(f)). Ultimately, an increase in the magnetic and kinetic

energy is seen in the same time span. . . . . . . . . . . . . . . . . 92



xvi LIST OF FIGURES

4.4 The snapshots of the figure spanning t ∈ {0, 14.544} s represent

the evolution of the field lines. Here, the field lines are traced in

time (the same field lines are traced by keeping the corresponding

initial point of a field line invariant). At the t = 0 s, a current free

radial null is located at the center of the box, and the red field lines

are plotted near this central null. In panel (a), a set of auxiliary

field lines (green and pink) in the first quadrant and (yellow and

blue) are plotted in the third quadrant to demonstrate the null

generation. The sinusoidal flow bends the spine towards the fan

plane and consequently, pushes the auxiliary field lines to bend

(panel (b)). Further evolution generates the elbow shape struc-

ture (panel (c)-(e)) and develops current intensity accordingly, as

shown in panel (c) onward. The magnitude of current density

| J | / | B | is shown through DVR. Green (in the first quadrant)

and blue (in the third quadrant ) field lines are changing their

connectivity see panel (e)—a sign of magnetic reconnection. Con-

sequently, 3D null in the pairs has been generated at t =14.544 s

(panel (f)). Each pair consists of a radial and spiral null marked

by arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES xvii

4.5 The snapshots of this Figure plot the selected magnetic field

lines of the first quadrant and advected through plasma

flow in t ∈ {14.496, 14.544}s to illustrate the magnetic re-

connection in null creation. Notably, here and hereafter,

while advecting field lines, care has been taken to select

seed points in the flow such that they always remain away

from the reconnection region i,e., in the ideal region of the

plasma, allowing identification of reconnection. For example,

in this case the coordinates of seed points at t = 14.544s are

(−0.003π, 0.630π, 0.322π), (−0.002π, 0.625π, 0.328π), (−0.001π, 0.586π, 0.316π)

and (−0.005π, 0.586π, 0.316π) for the four depicted field

lines whereas the location of the current enhanced region is

≈ (−0.008π, 0.556π, 0.296π) in x, y and z directions. The

development of the elbow shape is clearly visible in panels (a)

and (b), which becomes most prominent in panel (c). Further,

Across panels (c) and (d), one of the two green field lines changes

its connectivity by moving from the right to the left of the

elbow. Such changes in the connectivity of a single field line are

suggestive of magnetic reconnection. Topological features such as

the radial and spiral nulls along with their spine and fan plane of

the radial null are marked by arrows in panel (d)—which are in

concurrence with the same features depicted in panel (f) of Figure

4.5. Similarly, the pink field lines also change their connectivity

through magnetic reconnection. . . . . . . . . . . . . . . . . . . . 95
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4.6 The plot shows the variation in average magnetic energy

normalized to its corresponding value at t = 14.0 s.

The average is taken over a subvolume of physical extent

{(−0.143π, 0.111π); (0.396π, 0.650π); (0.111π, 0.365π)} in x, y and

z directions constituting the null pair at the first quadrant. The

vertical axis represents the magnitude of average magnetic energy

normalized to its corresponding value at 14.0s, and the horizon-

tal axis represents time (in seconds). The monotonic decrease of

magnetic energy in t ∈ {14.0, 14.544} s corroborates the magnetic

reconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.7 The snapshots of field lines spanning t ∈ {14.544, 18.128} s rep-

resents the evolution of nulls. Here, the nulls are traced in time

through the trilinear technique, and field lines are drawn to the

locations of nulls. At t = 14.544s, primary null pairs have been

detected for the first time, and field lines are plotted near them,

shown in panel (a). In subsequent panels, nulls are traced, and the

twist of field lines of spiral null is increasing. Consequently, nulls

of a particular pair are receding from each other (compare panels

(a)-(j)). Simultaneously, the increase in the current density near

the spiral null is also seen with the help of DVR of | J | / | B |. In

each pair, one is radial null and another is spiral null (more details

can be seen in Figure 4.8). Radial and spiral nulls are marked by

arrows in panel (a) (the time instance when nulls have been gen-

erated in the system and in panel (j) (the time instance at which

the first quadrant null pair is at maximum separation), only not

in other panels so that the null structures can be seen clearly. . . 97
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4.8 Figure illustrates the detailed structure of nulls in a pair. The

first quadrant null pair consists of a radial null and a spiral null

(panel (a)). The field lines of radial null are plotted in (green),

and that of a spiral null is plotted in (pink). The direction of spine

field lines of radial null is towards the null point and away from

the null point in the fan plane, making the topological degree −1,

whereas the direction of spine field lines of spiral null is away from

the null point and towards the null point in the fan plane resulting

the topological degree +1. Therefore, the net topological degree

of this pair is zero, and the net topological degree of the system

remains unaffected. Similarly, panel (b) illustrates details of the

third quadrant null pair, which also consists of a radial null and

a spiral null. The field lines of radial and spiral null are drawn

in yellow and blue, respectively. The direction of spine field lines

of radial null is towards the null point and receding away from

the null point in the fan plane making the topological degree −1

whereas the direction of spine field lines of spiral null is away from

the null point and towards the null point in the fan plane resulting

the topological degree +1. The conservation of the topological

degree is self-explanatory. . . . . . . . . . . . . . . . . . . . . . . 98
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4.9 The snapshots of field lines spanning the t ∈ {0, 15.2} s illustrate

the evolution of central null marked by 3D null in the figure (the

initial current free radial null located at the center of the box).

The spine and fan field lines of the initial null are plotted in red

and blue (panel(a)), with red field lines constituting the upper

spine while field lines in blue belong to the lower spine. With the

evolution, the current sheet (CS) near the central null develops

which facilitates the magnetic reconnection in the current sheet.

Panel (b) shows an intermediate field line structure in which the

current sheet has been started to develop (identified with DVR of

large | J | / | B |). The color scale of the DVR (right bottom cor-

ner) represents the magnitude of the current intensity. The blue

and red field lines slip over the fan plane, and an intermediate

structure is shown in panel(c) before the reconnection in the CS

near the central null. The red and blue field lines are changing

their connectivity (evident by panels (d)-(h)) and become part of

the lower and upper spine, earlier at t =0 s (panel (a)), red and

blue field lines were only part of the upper and lower spine respec-

tively. The corresponding magnetic energy decrease is shown in

Fig. 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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4.10 The plot shows the variation in average magnetic energy spanning

time t ∈ {10.0, 15.2} s. The vertical axis represents the normalized

average magnetic energy, and the horizontal axis represents the

time (in seconds). The plot shows the decrease in magnetic energy

with time, which is averaged over the subvolume of physical extent

{(−0.111π, 0.079π); (−0.111π, 0.079π); (−0.111π, 0.079π)} in x, y

and z directions constituting the central null and normalized to its

initial value at t = 10 s (the approximate time when reconnection

started in the current sheet near the central null). The decrease

in magnetic energy corroborates the magnetic reconnection near

the central null. In the same time span, the increase in the kinetic

energy is seen (see Fig.. 4.2), the whereas magnetic energy of full

volume remains somewhat flattened. . . . . . . . . . . . . . . . . 101

4.11 Figure illustrates the inflow and reconnection outflow at the cen-

tral null using pink and blue arrows at a time t = 10.56 s. The

red field lines are drawn to demonstrate the central null. The pink

and blue arrows heading toward null represent the inflow, whereas

those pointing away from central null represent the reconnection

outflow. This outflow further confirms the reconnection at central

null. The plotting of reconnection outflow is possible here because

the central null is also a stagnation point. In contrast, in other re-

connection locations, the flow is a superposition of evolved plasma

flow and reconnection outflow (not separable). . . . . . . . . . . . 102



xxii LIST OF FIGURES

4.12 The snapshots of the figure illustrate the evolution of the null

first quadrant pair, which consists of a radial null and a spiral

null. Here, nulls are traced in time, and field lines are plotted

near them to show evolution. Radial (pink) and Spiral (green)

null, along with its fan and spine, are marked by arrows. Panel

(a) depicts radial and spiral null field line configurations at t =

16.608 s. The twist of the spiral null decreases, and consequently,

nulls come closer to each other (the decrease in separation can be

seen by comparing panels (a) and (b)) as they evolve in time. The

decrease continues until the nulls in the pair is annihilated (panel

(c)). The physical process behind annihilation is identified and is

shown in Fig.4.13. A similar process is also seen in the case of the

third quadrant null pair. . . . . . . . . . . . . . . . . . . . . . . . 103

4.13 The snapshots of the figure spanning t ∈ {16.640, 16.992} illus-

trate the physical process responsible for the annihilation of nulls

of the first quadrant pair (shown in figure 4.12). The field lines

are traced in time, and the time span of this figure is chosen for

demonstration purposes of the physical process. Panel (a) illus-

trates the configuration at t = 16.640 s with the pink field lines

mainly constituting the spiral null, fan plane, and the lower spine

of the radial null, and the green field lines belonging to the ra-

dial null constituting the upper spine and fan plane (marked by

arrows). The current intensity is shown with the help of DVR of

| J | / | B |. In subsequent panels, the pink field lines change the

connectivity through reconnection at the radial null, and simulta-

neously, the twist is reduced. The pink field lines become part of

the upper spine and fan plane of radial null (panel (a)-(d)). Conse-

quently, nulls will come close to each other as the twist decreases.

This process continues till the nulls get annihilated. . . . . . . . . 105
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4.14 The snapshots of the figure spanning t ∈ {18.5600, 18.624} high-

light the dynamics of selected magnetic field lines belonging to the

first quadrant nulls and advected with the plasma flow velocity.

The change in connectivity of field lines from panel (a) to (d) is a

clear indication of reconnection. . . . . . . . . . . . . . . . . . . . 106

4.15 The plot shows the variation in separation with time between nulls

of the first quadrant null pair. The vertical axis represents the

separation between the two nulls of a first quadrant pair, and the

horizontal axis represents the time (in seconds). The separations

of nulls start increasing with time and show a peak around t = 18.2

s, then decrease with time, and finally, nulls get annihilated around

t = 19.3 s. A similar variation is also seen for the third quadrant

null pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.16 The plot illustrates the evolution of volume averaged | B ·

∇B | normalized to its initial value in the range t ∈

{14.54, 19.31}s—covering the total duration in which the nulls

(in the first quadrant) get generated and later, annihilated.

The average is taken over a physical volume of extent

{(−0.174π, 0.143π); (0.333π, 0.650π); (0.111π, 0.429π)} in x, y and

z coordinates, enclosing the null pair throughout their evolution.

The plot shows an initial increase in magnetic tension along with

the increase in separation between the nulls. Subsequently, as the

nulls approach each other, the tension decreases. The vertical axis

represents the modulus of normalized averaged magnetic tension,

and the horizontal axis represents time (in seconds). . . . . . . . . 108
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4.17 Panels ((a)-(f)) illustrate the locations of nulls with time. The

location of nulls is traced through the trilinear null detection tech-

nique and located then in the 643 grid by using a Python 3D point

plot. The red, blue, and green dots represent the locations of cen-

tral, primary, and spontaneously generated nulls, respectively. At

t = 0 s, only a central null is present (panel (a)). With evolu-

tion, the primary nulls are generated, and locations are shown in

panel (b) along with central null at time t = 14.72s. The nulls

also get generated spontaneously with further evolution in time.

The locations of spontaneously generated along with the central

and primary nulls at time t = 18.4, 18.88, 20.16 and 20.32s are

shown in subsequent panels (c)-(f). The spontaneously generated

null pair (shown in panel (d)) is considered for the detailed study

based on the time tractability of the pair and can be confirmed

by the estimating time from panels (d) and (f), which mark the

approximate time of generation and annihilation, respectively. . . 109

4.18 The panels (a)-(c) illustrate the evolution of field lines by tracing

in time, which leads to the spontaneous generation of null pairs.

The field line configuration at t = 18.400s (panel (a)) changes to

another configuration at t = 18.762s and develops the elbow-type

structure (marked by an arrow in panel (b)). The enhancement in

current intensity (identified by DVR of | J | / | B |) is seen accord-

ingly. Further evolution makes the red and blue field lines helical

through magnetic reconnection and, as a consequence, sponta-

neously generates a radial and a spiral null (marked by arrows in

panel (c)). In subsequent panels (d)-(f), nulls are traced, and field

lines are drawn at them. With evolution, the twist of the spiral

null increases, and consequently, the nulls recede from each other.

The increase in separation can be clearly seen by comparing panels

(c)-(f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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4.19 The selected field lines (one blue, one red, and two green col-

ors) are plotted and advected with plasma flow to illustrate the

magnetic reconnection in spontaneous null generation. The field

lines are moving with the plasma velocity (panels (a)-(c)). Later,

across panels (c) and (d), one of the two green field lines is changes

its connectivity and traverses through the left of the red and blue

field lines. Such change in connectivity is through magnetic recon-

nection. To illustrate the developed structure clearly, the region

marked by a rectangular box has been zoomed in and shown in

the inset of panel (d), in which the spine and fan plane of radial

and spiral null are marked by arrows. . . . . . . . . . . . . . . . . 111

4.20 Figure illustrates the details of a spontaneously generated null

pair, which also consists of a radial and spiral null. The field lines

are drawn near the radial (in green) and that of the spiral null

(in red). The spine and fan plane of both nulls are marked in the

figure. The direction of fan field lines of radial null is towards the

null point and that of the spine field lines is directed away from the

null point making topological degree +1 whereas the spine field

lines of spiral null are directed towards the null point and directed

away from the null point in the fan plane resulting the topological

degree −1. The net topological degree of this pair is zero and the

conservation of net topological is self-explanatory. . . . . . . . . . 112

4.21 This plot shows the variation in separation with time between

nulls of a spontaneously generated pair. The vertical axis repre-

sents the separation between the two nulls, and the horizontal axis

represents the time (in seconds). The nulls are being generated

around t ≈ 18.688s with a separation. The separation initially

increases, followed by a decrease, ultimately leading to the anni-

hilation around t ≈ 20.35s. The spontaneous null pair shows a

similar behavior as seen in the case of primary null (see Fig.. 4.15).113



xxvi LIST OF FIGURES

4.22 The snapshots of magnetic field lines illustrate the annihilation

of spontaneously generated null pairs. To identify the physical

process behind this phenomenon, field lines are traced (panels (a)

to (b)) in time. The current density near the nulls is shown using

DVR of | J | / | B |. In panel (a), the red field lines constitute the

spine and fan plane of the spiral null, and the two green field lines

constitute the lower spine of the radial null traverses through the

right side of the spiral null. One of the two green field lines changes

its connectivity, belongs to the upper spine of the radial null, and

traverse the left of the spiral nulls (panel (b)). Such changes in

connectivity are a telltale sign of magnetic reconnection. The

twist of the spiral null decreases with time, and consequently, nulls

come towards each other. This process continues until the nulls

annihilate. Panels (c)-(f) illustrate the null annihilation in which

nulls are traced in time, and the neighboring field lines are drawn

near them. The nulls get annihilated at t ≈ 20.320 s in pair as

expected from the conservation of the topological degree (panel (f)).114

4.23 The plot shows the variation in average magnetic ten-

sion spanning the time t ∈ {18.688, 20.304}s and nor-

malized to its corresponding initial value at t = 18.688

s. The average is over a subvolume of physical extent

{(−0.047π, 0.016π); (0.396π, 0.555π); (0.396π, 0.429π)} in x, y and

z directions constituting the spontaneously generated null pair.

The vertical axis represents the normalized average magnetic ten-

sion, and the horizontal axis represents the time (in seconds). The

increase and decrease of magnetic tension is visibly compatible

with the corresponding change in inter-null separation of sponta-

neously generated pair. . . . . . . . . . . . . . . . . . . . . . . . . 115
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4.24 The figure illustrates the evolution of magnetic configuration en-

closing a potential 3D null (panel (a)) in 1283 resolution. Four sets

of auxiliary field lines (in Blue, Pink, Cyan, and Green) are drawn

to demonstrate the generation and annihilation of nulls. With the

evolution, the auxiliary field lines develop an elbow shape (panel

(b)), and subsequently, a pair of 3D nulls, which consists of ra-

dial and spiral 3D nulls, get generated (panel (c)) at t = 14.96s.

As they evolve, the separation between the nulls increases after

their generation till around t = 16.40s (panel (d)), and subse-

quently, starts decreasing (panel (e)) until their pairwise annihi-

lation (panel (f)). The increase and decrease of magnetic tension

is visibly compatible with the corresponding change in inter-null

separation of spontaneously generated pair . . . . . . . . . . . . . 117

5.1 Panel (a) depicts the Geostationary Operational Environmental

Satellite (GOES) soft X-ray flux over the duration of the flare

in the 1 − 8 Åchannel. This graph illustrates a gradual increase

in intensity starting around 02 : 45 UT (marked by the dashed

vertical line), with the peak occurring at 03 : 04 UT (dash-dot

vertical line). Our simulations cover the time range from 02:48

to 02:56 UT, as marked by two blue vertical solid lines during

the rising phase of the flare. The photospheric flux variation for

approximately 13 minutes, starting from 02 : 44 : 41 UT, is shown

in panel (b), where the solid line represents positive flux and the

dashed line represents negative flux. . . . . . . . . . . . . . . . . . 124

5.2 The plot illustrates the variation in minimized deviation (En) with

the number of iterations (k) for Non-Force Free Field extrapola-

tion. This deviation decreases monotonically and saturates ap-

proximately at ≈ 36.3% for 1500 iterations. . . . . . . . . . . . . . 126
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5.3 Panel (a) of the Figure depicts the direct volume rendering (DVR)

of the magnitude of Lorentz force, showing the presence of the

Lorentz force at lower heights. To further corroborate this ob-

servation, the logarithmic variation in the horizontally averaged

strength of Lorentz force with height (z) is shown in panel (b). As

expected, the logarithmic value of horizontally averaged Lorentz

force decreases with height. Notably, the Lorentz force density

is non-zero near the photosphere and nearly vanishes at coronal

heights, similar to the typical description of the solar corona. . . . 127

5.4 The panel (a) illustrates the overall evolution of the number of

nulls over time. The vertical axis represents the number of nulls,

while the horizontal axis represents time (in seconds). As time

progresses, the overall number of nulls decreases. At t = 0s, there

are approximately 4000 nulls are present, which are distributed as

depicted in panels (b) and (c) (panel (c) is from a different angle to

show the distribution). The size of the box is 324.8Mm, 185.6Mm

and 139.2Mm in x-, y- and z-direction respectively. The nulls are

primarily located in the lower solar atmosphere, with some also

found in the higher solar atmosphere (refer to panel (c)). . . . . . 130

5.5 The figure illustrates the evolution of radial nulls over time. Nulls

are traced in time, and field lines are drawn at their locations.

The variation in magnitude of current intensity (identified by the

Direct Volume Render (DVR) of | J | / | B |) is shown by the color

bar. At t = 120.032s (panel (a)), nulls are spontaneously created

in pairs, and the trilinear null detection technique detects them

simultaneously. The generated null pair consists of two radial nulls

and are shown as radial null 1 and radial null 2 in the figure. It

can be verified by collapsing them into 2D, where they appear to

be akin to X-type nulls (shown in the inset of panel (a)). As the

evolution continues, both radial nulls move away from each other

after their generation (see panels (a)-(f)). . . . . . . . . . . . . . . 131
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5.6 Magnetic field lines are traced in time and advected with plasma

flow. The evolution shows the creation of nulls in pairs, consisting

of two radial nulls marked as radial null 1 and radial null 2. The

enhanced current intensity is overlaid using the DVR tool in VA-

POR. At t = 118.096s, two green field lines connect from regions

a to b and from e to d, while two pink field lines connect from

regions c to d (panel (a)). During the evolution, one pink field

line changes its connectivity from regions c to d and reconnects to

regions c to a, and one green field line also changes its connectivity

from regions b to a to regions b to d (panel (b)). Simultaneously,

two radial nulls are created and marked by arrows in panel (b).

Such changes in the connectivity of field lines represent magnetic

reconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.7 The figure details the topological features of spontaneously gener-

ated radial nulls at time t = 193.6s. Two radial nulls are generated

simultaneously and are marked by arrow as radial null 1 and ra-

dial null 2. Green and pink field lines are drawn near the radial

null 1 and radial null 2, respectively. The fan field lines (in green)

of radial null 1 are directed toward the null, making topological

degree +1, while the fan field lines (in pink) of radial null 2 are

directed away from the null, making topological degree −1. . . . . 134
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5.8 The figure depicts the footpoint brightening in the AIA

1600Åchannel associated with slip reconnection. The spine and

the fan plane of the radial null (marked as ‘null’) are indicated

by white arrows. Two sets of field lines drawn near the radial

null 2 demonstrate the foot point brightening associated with slip

reconnection. The plasma flow is plotted near the z = 0 plane and

shown by blue arrows. Notably, the red field line, marked by the

white arrow at t = 197.47s, is initially anchored to point ‘a’ (panel

(a)) changes its connectivity from point ‘a’ to point ‘b’ through

slip reconnection (plasma flow direction is different from the field

line motion), resulting in the associated brightening seen in panel

(b). Subsequently, the red field line changes its connectivity from

point ‘b’ to point ‘c’ and then to point ‘d’ (refer to panels (c)

and (d)). The overlaid AIA channel has dimension approximately

32.63Mm× 63.80Mm in x and y, respectively. . . . . . . . . . . . 136

5.9 In this figure, the evolution of radial nulls is shown by tracing and

drawing field lines over time. The field lines (in green) are drawn

near the radial null 1, and field lines (in pink) are drawn at radial

null 2. The spine and fan plane of radial nulls are marked by ar-

rows. With the evolution, radial nulls are approaching each other

(panels (a)-(e)) and ultimately get annihilated at t = 342.672 s

(panel (f)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.10 Field lines are traced in time and advected with plasma flow. Five

green and pink field lines are initially part of the spine and fan

plane of radial null 1 and radial null 2, respectively (panel (a)).

With the evolution, the green and pink field lines change their

connectivity and get disconnected from the nulls. Consequently,

the nulls are approaching each other and ultimately annihilate

each other, as shown in Figure 5.9. . . . . . . . . . . . . . . . . . 139
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5.11 The figure depicts foot point brightening (marked by circles)in the

AIA 1600 Åchannel associated with magnetic reconnection, which

annihilates the radial nulls. With the evolution (panels (a)-(d)),

nulls are approaching each other with a change in connectivity of

field lines, and the corresponding footpoint locations of field lines

are co-spatial with the increased intensity in AIA 1600 Åfilter,

emulating the telltale signs of magnetic reconnection. The overlaid

AIA channel has dimension approximately 32.63Mm × 63.80Mm

in x and y, respectively. . . . . . . . . . . . . . . . . . . . . . . . 140

5.12 The panels of the figure illustrate the generation of nulls in a pair

near a pre-existing 3D null. Magnetic field lines (in red) are drawn

near the pre-existing null (a null already present at t = 135.52s),

while sky-blue and green field lines are included to facilitate the

generation of nulls at a later time (panel (a)). With the evolution,

the sky-blue and green field lines develop an elbow shape at around

t = 160.69 s, and an enhancement in current intensity (identified

by the Direct Volume Render of | J | / | B |), marked as ‘cs’, is

seen accordingly (panel (b)). In panel (c), a pair of nulls consisting

of a radial and a spiral null is generated at t = 164.56 s. Panels (c)-

(d), spanning t ∈ 164.56, 178.11 s, depict the tracing of nulls and

the plotting of field lines. As the evolution progresses, the radial

and spiral nulls move away from each other after their generation,

whereas the spiral null of the generated pair approaches the pre-

existing null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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5.13 The figure illustrates the details of a pre-existing null along with a

spontaneously generated null pair, which consists of a radial null

and a spiral null at t = 178.11s. The field lines (in red) are drawn

near the location of the pre-existing null. The fan field lines are

directed toward the null, resulting in a topological degree of +1.

Field lines drawn near the radial null (in sky blue) and those of the

spiral null (in green) are also shown. The spine and fan planes,

along with the topological degrees of both nulls, are marked in

the figure. The direction of the fan field lines of the radial null is

toward the null point, and the spine field lines are directed away

from the null point, resulting in a topological degree of +1. On

the other hand, the spine field lines of the spiral null are directed

toward the null point in the fan plane and away from the null point,

resulting in a topological degree of −1. The net topological degree

of this generated pair is zero, and the spiral null gets annihilated

with the pre-existing null (in a pair). Therefore, the conservation

of the net topological degree is self-explanatory. . . . . . . . . . . 142

5.14 Panels depict the footpoint brightening corresponding to the slip

reconnection of fan field lines of the radial null of the spiral-radial

null pair-1. The radial null is marked as “null” and the local

plasma flow shown by blue arrows is plotted near the z = 0 plane.

Initially, at t = 164.35 s, the green field line indicated by the white

arrow is anchored to point a (panel (a)). With the evolution, the

footpoints of the green field lines are changing their connectivity to

points b and c (panel (b)) and subsequently to points d, e, f, and g

due to slip reconnection. The overlaid AIA channel has dimension

approximately 21.75Mm× 21.75Mm in x and y, respectively. . . . 143
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5.15 Nulls are traced over time, and field lines are drawn near the

locations of the nulls. Panels (a)-(d) of this figure illustrate the

annihilation of a spiral null and a pre-existing null. The spine and

fan planes of the radial, spiral, and pre-existing nulls are indicated

by the arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.16 The figure illustrates the details of the radial null t = 203.28s, left

in the domain after the annihilation of the generated spiral null

with the pre-existing null. The fan field lines of the radial null

point toward the null point, while the spine field lines are directed

away from the null point, resulting in a topological degree of +1. . 145

5.17 The snapshots of the field lines represent the evolution of nulls as

they are traced over time. At t = 180.05 seconds, it is the first

instance when nulls in a pair first appear using the trilinear detec-

tion technique, and field lines are drawn near their locations (panel

(a)). These spontaneously generated nulls are named radial-spiral-

pair-2 and consist of a spiral null (in yellow) and a radial null (in

pink). As the evolution progresses, the spiral and radial nulls are

moving away from each other (panels (a)-(d)). The spiral null

loses its spirality and gets converted into a radial null; the con-

version from spiral to radial null can be verified by collapsing the

null’s structure in 2D, where a spiral null will appear as an “O”

type and a radial null will appear as an “X” type null. Panels (e)

and (f) depict the 2D projections of the spiral null and converted

radial null at t = 199.41s and t = 267.17s, respectively. This

illustration shows a similar conversion from “O” to “X” type. . . . 147
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5.18 The figure illustrates the topological details of spontaneously gen-

erated radial-spiral-pair-2 nulls at t = 199.41s. These nulls are

generated in a pair and consist of a spiral null (in yellow) and a

radial null (in pink). The spine field lines (in pink) of the radial

null are directed toward the null point, resulting in a topological

degree of −1, while the fan field lines (in yellow) of the spiral

null are directed toward the null point, making a topological de-

gree +1. The net topological degree of this local system is zero,
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Chapter 1

Introduction

1.1 A brief introduction to magnetic topology

Topology, a branch of mathematics, studies properties of spaces that are invariant

under any continuous deformation, such as bending, stretching, and shrinking,

while disallowing, closing, or opening holes, passing through itself, and tearing

or gluing the parts. It is sometimes called “rubber-sheet geometry” because

the objects can be stretched and contracted like rubber but cannot be broken.

Such transformations which preserve the topology but change the geometry are

called homeomorphisms. An example of homeomorphism is the transformation

of a doughnut into a coffee cup and vice versa. The doughnut and coffee cup

are topological equivalent because both have one hole (handle); they can be

mathematically or topologically transformed into one another without cutting

them in any way (Fig. 1.1).

Figure 1.1: Figure represents the continuous transformation of a coffee cup into
a donut and vice versa. Hence, these two are topologically equivalent.

Notably, both preservation and change in magnetic topology are important

1
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contributing factors in deciding the terminal state of magnetized plasmas. For

example, the theory of plasma relaxation is based on a comparative study of at

least two physical quantities, one changing its topology, whereas for the other,

the topology remains preserved for all practical purposes. The most celebrated

among the relaxation theories is Taylor’s theory of plasma relaxation (Taylor,

1974) where the magnetic topology represented by twists and writhes of magnetic

field lines remains approximately conserved while the magnetic energy decays—

leading to a state where the volume current density is parallel to the magnetic

field: a force-free state. Such relaxations can also be envisaged to be occurring in

solar flares; see Agarwal et al. (2024); Agarwal & Bhattacharyya (2024). In ad-

dition to twists and writhes, which are believed to be generated by photospheric

dynamics, the generation of other magnetic configurations that contribute to the

topology is not well understood and merits further attention—the focus of the

thesis—built up after introducing the necessary concepts.

1.1.1 Homeomorphism

In mathematics, specifically in topology, homomorphism is a continuous bijec-

tive mapping function between topological spaces. It has a continuous inverse

function that preserves all the topological properties of a given space. Two

spaces with a homeomorphism between them are called homeomorphic, and are

topological equivalent. Mathematically, A mapping function f:X → Y between

two topological spaces (X and Y) is a homeomorphism if it has the following

properties:

• f is a bijection (one-to-one and onto),

• f is continuous, and

• the inverse function f−1 is continuous.

The dynamics of solar coronal loops away from the reconnection regions can

be an example of homeomorphism where the involved plasma flow transforms

one morphology of any given magnetic field line into another one. The other
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examples include slippage of magnetic field lines over a high squashing degree

region—described later (Sect. 1.3.4) in the thesis.

1.2 Magnetic topology

Magnetic topology incorporates the properties of the magnetic field lines, such

as the connectivities, linkages, and knottedness, which remains preserved under

an ideal evolution (Parnell et al., 2015). Continuous transformations such as

stretching and bending are examples of ideal evolution under which magnetic

topology does not change. A change in magnetic topology implies a change in the

connectivity of magnetic field lines—a non-ideal discontinuous process (Parnell

et al., 2015). One such process in magnetized plasma is the magnetic reconnec-

tion: a process where field line connectivity changes along with the generation of

heat and kinetic energy, can change magnetic topology (Parker, 1973; Hornig &

Schindler, 1996) and is believed to be responsible for the solar transients. More

details about magnetic reconnection can be found in Sect. 1.3. Magnetic re-

connections are ubiquitous in space, astrophysical as well as laboratory plasmas,

and their manifestations can be found in Earth’s magnetosphere, astrophysical

jets, sawtooth crashes in tokamaks, and the accretion disks of astrophysical ob-

jects such as black holes, and neutron stars. Magnetic reconnection is one of the

main mechanisms which can explain the million-degree Kelvin temperature of

the solar corona (Parker, 1994).

Since favorable magnetic topology is required to initiate the magnetic re-

connection, exploring it is crucial to understand the reconnection-driven various

solar phenomena discussed in the following. Magnetic topology is immensely

important because of its central role in onsetting various solar transients. Such

transients can be solar flares (Aulanier et al., 2000; Masson et al., 2009; Edgar &

Régnier, 2024), Coronal Mass Ejections (CMEs) (Ugarte-Urra et al., 2007), jets,

and coronal bright points, can affect space weather.

Standardly, the astrophysical plasmas in general and solar plasmas in par-

ticular, can be approximated as a magnetized fluid governed by magnetohydro-
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dynamics (MHD) description (Alfvén, 1942). The MHD description basically

combines Navier-Stokes and Maxwell’s equations, and are given by (in SI units)

• Momentum balance or force balance equation for incompressible fluid: Con-

servation of momentum

ρ
dv

dt
= −∇p+ J×B+ ρν∇2v, (1.1)

where ρ, v, p, J, B, and ν is the plasma density, flow velocity, kinetic

pressure, current density, magnetic field, and the kinematic viscosity of

the magnetofluid, respectively and d
dt

is total convective derivative or La-

grangian derivative, i.e., d
dt
= ∂

∂t
+ v · ∇.

• Mass continuity equation: Conservation of mass

∂ρ

∂t
+∇ · (ρv) = 0, (1.2)

• Solenoidality condition

∇ ·B = 0, (1.3)

• Ampere’s law in pre-Maxwellian form

∇×B = µ0J, (1.4)

• Faraday’s Law

∇× E = −∂B
∂t
, (1.5)

• Ohm’s law

E+ v ×B = N, (1.6)

• Energy equation
d

dt
(
p

ργ
) = 0, (1.7)

where N in Eq. (1.6), is the non-ideal term and can be written as N = ηJ for
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resistive plasmas, where η is the electrical resistivity. In Eq. (1.7) γ is the ratio

of the specific heat of the gas.

One of the fundamental MHD equations, namely, the induction equation for

resistive plasma can be derived as follows: Taking curl of Eq. (1.6) and using

N = ηJ,

∇× E+∇× (v×B) = η(∇× J), (1.8)

from Eqs. (1.3) and the vector identity ∇ × (∇ ×A) = ∇(∇ ·A) − ∇2A, the

Eq. (1.8) transforms to

−∂B
∂t

+∇× (v×B) =
η

µ0

(
∇(∇ ·B)−∇2B

)
. (1.9)

Using solenoidality condition i.e., Eq. (1.3), the Eq. (1.9) yields the Induction

equation
∂B

∂t
= ∇× (v×B) + λ∇2B, (1.10)

where λ ≡ η/µ0 is the magnetic diffusivity. This equation shows how the mag-

netic field B evolves with time. The first term ∇ × (v × B) on the right-hand

side of Eq.(1.10) is the advection term while the second term represents (λ∇2B)

is resistive diffusion. The ratio of advection to resistive diffusion is known as the

magnetic Reynolds number, given by

RM =
L0v0
λ

, (1.11)

where L0 is length scale over which the magnetic field varies and v0 is the char-

acteristic speed. It is useful in determining whether the fluid flow will carry the

magnetic field or the magnetic field will diffuse, which is essential for analyzing

magnetohydrodynamic processes, e.g., if RM >> 1 (ideal limit) the advection

processes dominate over diffusion, but if RM << 1 (non-ideal limit) then the

diffusive processes become dominant.



6 Chapter 1. Introduction

1.2.1 Ideal limit (RM >> 1)

Magnetic topology remains conserved in this limit as shown by Hornig &

Schindler (1996). Conservation of topology means that the field lines of the

vector field are deformed in a smooth manner so that their connections, knotted-

ness, and linkage stay the same and no field lines are cut or reconnected. This

is an example of a homeomorphism, i.e., a bijective transformation mapping,

which maps a magnetic field configuration at time t0 onto another magnetic field

configuration at the later time t, as shown in Fig. 1.2. In addition to the conser-

Figure 1.2: Schematic represents an example of Homeomorphism, the left field
lines configuration represents the magnetic field B1 at time t0 transformed into
the field lines configurations shown on the right representing magnetic field B2

at the later time t (t0 < t). Both field line configurations have similar magnetic
topology. The image is adapted from Hornig & Schindler (1996)

vation of magnetic topology, the concepts of conservation of magnetic flux and

magnetic field line are equally important to understand magnetic reconnection.

In an ideal MHD limit, both the magnetic flux and magnetic field lines remain

conserved, as discussed below:
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Conservation of magnetic flux

In the limit of RM ≫ 1, Alfvèn theorem (Alfvén, 1942) states that magnetic

flux through any closed curve remains conserved—the flux-freezing condition,

implying that the magnetic field lines are frozen-in or tied to the plasma, i.e.,

field lines move with the plasma parcels (Priest, 2014). For example, magnetic

field lines trace the plasma loops observed in the corona, shown in Fig. 1.3. In

this limit, the Induction equation reduces to

∂B

∂t
−∇× (v ×B) = 0. (1.12)

To prove the theorem, one needs to show that the rate of change of magnetic flux

in a closed contour moving with a local plasma velocity remains constant with

time. Consider a surface S bounded by a closed contour C, which moves with a

plasma velocity. Then an elementary magnetic flux Φ, for a constant magnetic

field, through an infinitesimal area dS is

dΦ = B · n̂dS, (1.13)

where B is a constant magnetic field and n̂ is the unit vector normal to dS. The

change in the flux will be achieved by change in magnetic field strength crossing

at a fixed location with time ∂B/∂t · n̂dS, and the change in the magnetic field

at two points separated by an infinitesimal length dl moving with velocity v with

respect to time B · (v× dl). Combining these, the total flux change through the

contour C can be written as

d

dt

∫
s

B · n̂dS =

∫
s

∂B

∂t
· n̂dS +

∫
C

B · (v × dl). (1.14)

Using the vector identity a · (b× c) = (a× b) · c, the second term on the RHS

of Eq. (1.14) can transforms to

B · (v × dl) = −(v ×B) · dl. (1.15)
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Figure 1.3: Example of solar coronal loops observed by the Transition Region
And Coronal Explorer (TRACE), 171Å filter. These loops have a temperature
of approximately 106 K. These loops contrast greatly with the cool chromo-
sphere below. (https://upload.wikimedia.org/wikipedia/commons/9/93/
Traceimage.jpg)

Now, Eq. (1.14) will be

d

dt

∫
s

B · n̂dS =

∫
s

∂B

∂t
· n̂dS −

∫
C

(v ×B) · dl. (1.16)

https://upload.wikimedia.org/wikipedia/commons/9/93/Traceimage.jpg
https://upload.wikimedia.org/wikipedia/commons/9/93/Traceimage.jpg
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Using the Stoke’s theorem

∫
C

(v ×B) · dl =
∫
s

(∇× (v ×B)) · n̂dS. (1.17)

Eq. (1.16) becomes

d

dt

∫
s

B · n̂dS =

∫
s

(
∂B

∂t
− (v ×B)

)
· n̂dS. (1.18)

From Induction Eq. (1.12), the above Eq. (1.18) turns out to be

d

dt

∫
s

B · n̂dS = 0, (1.19)

and hence, the magnetic flux remains conserved.

Conservation of magnetic field lines

In ideal plasmas, the conservation of magnetic field lines follows from the con-

servation of magnetic flux. The concept of magnetic field lines can be illustrated

by writing the ideal Induction equation in the following convenient form

∂B

∂t
+ (v · ∇)B = (B · ∇)v−B(∇ · v). (1.20)

The first term on the RHS of Eq. (1.20) represents that the magnetic field

strength increases due to either acceleration of plasma parcel along the field or

the shearing motion normal to the field, resulting in the change of direction of the

field by increasing the field component along the flow direction. The second term

on the right-hand side suggests the decrease and increase in the field strength

depending upon the expansion (∇·v > 0) and compression (∇·v < 0) of plasma,

respectively. The mass continuity equation (Eq. (1.2)) can be written as.

∂ρ

∂t
+ v · ∇ρ = −ρ(∇ · v), (1.21)
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the rearrangement of Induction equation (Eq. (1.20)) and use of Eq. (1.21) gives

d

dt

(
B

ρ

)
=

(
B

ρ
· ∇
)
v. (1.22)

The Eq. (1.22) suggests that field lines are moving with plasma. To visualize this,

let us consider a length element δX along the magnetic field line moving with

plasma. Consider the plasma velocity at one end of the length segment is v and

v+δv at another end. Differential velocity between both ends is δv = (δX ·∇)v.

Then, the rate of change of the length element (δX) within time interval dt can

be expressed as
dδX

dt
= δv = (δX · ∇)v, (1.23)

which has the same form as Eq. (1.22), implies that if the magnetic field (B) and

length element (δX) are initially parallel, both will remain parallel at all time.

Hence, this implies that any two plasma parcels connected by the magnetic field

line will remain connected for all the time in ideal plasmas—conservation of

magnetic field lines.

1.2.2 Non-ideal limit (RM << 1)

The frozen-in field lines can be deformed to generate currents through sheared

plasma flow, and this current increases with a local decrease in L, effectively

decreasing the RM . In this non-ideal limit RM ≪ 1, the Induction equation

reduces to the form:
∂B

∂t
= λ∇2B. (1.24)

The Eq. (1.24) represents the diffusive limit of the Induction equation, and the

solution can be written as which describes how magnetic fields evolve under this

condition,

B = B0 exp

(
− t

τd

)
, (1.25)

where τd = L2/λ is called the diffusion time scale, the time scale over which

magnetic field lines diffuse out from the plasma parcels. If the configurations of

these diffused field lines are favorable, the field lines can reconnect and generate
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solar transients.

1.2.3 Conservation of magnetic topology

The ideal plasma evolution governed by the Induction equation given in Eq.

(1.12) conserves the magnetic field lines and, therefore, magnetic topology. The

condition for conservation of magnetic topology derived by Hornig & Schindler

(1996), for a smooth magnetic field and field line transport velocity (w) can be

written as follows.
∂B

∂t
+w · ∇B−B · ∇w = ΛB, (1.26)

provided that a scalar function Λ(x, t) exist and defined as Λ = −∂2r′/∂r∂t,

for parameters r and r′ are the parameters with which magnetic field varies as

defined by Hornig & Schindler (1996). The expansion of the second terms in Eq.

(1.12) gives,
∂B

∂t
+ v · ∇B−B · ∇v + (∇ · v)B = 0, (1.27)

for which the Ohm’s is

E+ v ×B = 0. (1.28)

From Eqs. (1.26) and (1.27), it is clear that the ideal plasmas conserve the

magnetic topology, where Λ = −∇·v andw = v, i.e. field lines transport velocity

is the ideal plasma velocity. Therefore, magnetic topology is well-preserved in

ideal MHD. However, magnetic topology is a property of the magnetic field

alone and it can also be preserved in a non-ideal plasma, where field lines are

not preserved by the plasma flow. The corresponding Ohm’s law associated with

Eq. (1.26) can be derived by using the divergence-free condition of the magnetic

field, resulting in B · ∇(Λ +∇ ·w) = 0, and is given by

E+w ×B = Aµ, (1.29)

where ∇ × Aµ = µB = −(Λ + ∇ · w)B and µB has a vector potential Aµ.

Therefore, non-deal Ohm’s law governed by Eq. (1.29) can also preserve the

magnetic topology. For example, Ohm’s law using Hall term, which preserves
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the magnetic topology, is written as

E+ v ×B =
1

en
(J×B) +∇ψ. (1.30)

The Ohm’s law given in Eq. (1.30) has similar form (for µ = 0) given in Eq.

(1.29), the field lines are frozen-in the electron fluid and do not move at the

plasma velocity v. The transporting velocity w can be given as

w = v − J

en
. (1.31)

Consequently, the topology of the field remains preserved. However, the plasma

parcel slips across the field lines, and the connection between the plasma ele-

ments and a magnetic field line breaks. Overall, topology being the property of

magnetic field alone and can be conceptualized if there is no plasma. The topol-

ogy can remain frozen in a transporting velocity w, which does not represent a

realistic velocity. For example, the resistive Ohm’s law is given as follows.

E+ v ×B = λJ, (1.32)

where λ is the magnetic diffusivity. This form of Ohm’s law, governed by Eq.

(1.32), does not provide a general transporting velocity. However, it can satisfy

the condition of conservation topology in certain cases. An example is,

B = bxêx + by(x, t)êy, (1.33)

where bx provides the constant background of the magnetic field and v = 0. It

can be shown, if Λ = 0, the magnetic topology is conserved, and the transporting

velocity u is,

u =
λJz(x, t)

bx
êy. (1.34)

Notably, the velocity given by Eq. (1.34) neither represents the plasma velocity

nor any other fluid velocity; however, it transports the field lines to conserve

magnetic topology and flux. In the above backdrop, magnetic reconnection is
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discussed in the following section.

1.3 Magnetic reconnection

1.3.1 Reconnection in two dimension

The original concept of reconnection was started from two-dimensional (2D)

analyses and defines the process through which plasma flows across a surface

that separates the distinct topologically connected magnetic field lines domains as

magnetic field line merging or reconnection (Vasyliunas, 1975). In this scenario,

two separatrices intersect at a neutral point where |B| = 0. In 2D, reconnection

can occur at these neutral or null points (Pontin, 2011), and an example is shown

through schematic in Fig. 1.4. The configuration near the neutral point can be

obtained from Eq. 1.36 by putting α > 1 and using the field lines equation as

follows.
dxi
ds

=
Bxi

|B|
, (1.35)

where i = 1, 2, 3 represents the x, y, z, component of Cartesian coordinate

system, respectively. The red and blue field lines are connected from a to b and

c to d (panel (a)), and the black dashed lines distinguish different topological

domains and are called separatrix surfaces. The neutral point where |B| =

0 is situated at their intersection. The magnetic field expression for such a

configuration can be obtained as follows.

B = yêx + α2xêy, (1.36)

where êx and êy are unit vectors along x and y directions of a Cartesian coordi-

nate system. The α2 > 1 gives the expression for X-type neutral points, as shown

above. An unbalanced force generates inflow shown by two horizontal thick ar-

rows (in green) and brings a pair of oppositely directed field lines, namely, ab

and dc, near the neutral point where they diffuse out because of a violation of

the flux-freezing condition. At the null point, the two field lines change their
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Figure 1.4: An example of reconnection near an X-type null point is shown
through Schematic.

connection from a to b to a to c and from d to c to d to b, respectively. Sub-

sequently, reconnected field lines leave the reconnection region with the outflow,

shown by the two thick vertical arrows (in pink).

Topologies favorable for magnetic reconnection in 2D

Neutral points

As discussed above (sect. 1.3.1), the reconnection in 2D occurs only at null

points. A location in a magnetic configuration where the magnetic field is zero

is called a neutral point or null point. In 2D, they are of two types: (i) X-

points and O-points, based on their field lines structures near the null points, i.e.,

hyperbolic and circular or elliptic, respectively. The X-points are ideal sites for

magnetic reconnection because the oppositely directed field lines can break their

connections and get reconnected, releasing energy. On the other hand, O-type

nulls are the locations of flux annihilation or creations. Figure 1.5 presents the
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examples of configuration in 2D near the null points obtained from Eq. (1.36), (i)

X-type (α2 > 1), and (ii) O-type; Circular-type (α2 = −1), and Elliptical-type

(α2 < −1). An asymmetric compression of the X-type null point will lead to

(a) (b) (c)

Figure 1.5: The Figure presents the example of a configuration in 2D near the
null points. For α2 > 1, X-type null (panel (a)), α2 = −1, Circular-type (panel
(b)), and α2 < −1, Elliptical-type (panel (c)).

the development of two Y-type nulls, characterized by strong current densities,

or current sheets, localized on a plane across which the magnetic field flips sign.

The first quantitative steady-state model of the reconnection process in a current

sheet, which employed the MHD description of plasma, was proposed by Sweet

and Parker (Sweet, 1958; Parker, 1957) is discussed in the following.

1.3.2 Sweet-parker model

This model utilizes the order of magnitude analysis approach to derive the re-

connection rate of a solar flare. The plasma is assumed to be in steady-state

(∂/∂t = 0), incompressible, and is a low plasma-β (where β is the ratio of kinetic

pressure to magnetic pressure) (Choudhuri, 1998). These assumptions lead to

the reduced set of MHD equations, which are given as follows.

v · ∇ρ = 0, (1.37)

ρ(v · ∇)v = J×B, (1.38)

0 = v × (J×B) + λ∇2B, (1.39)
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∇ ·B = 0, (1.40)

Figure 1.6: Schematic represents the Sweet-Parker model of reconnection.

In the model, the plasma inflow vi is assumed in such a way that it pushes the

oppositely directed magnetic field lines toward a diffusion region or current sheet

of length 2L and width 2l, sandwiched between the oppositely directed magnetic

field (see Fig. 1.6). For a uniform mass density ρ, from the mass conservation

(Eq.(1.37)) principle,

ρ(4L)vi = ρ(4l)vo, (1.41)

where vo is the outflow speed of plasma. Therefore,

Lvi = lvo. (1.42)

From the flux balance,

viBi = voBo. (1.43)

By order-of-magnitude analysis, the current density is J ≈ Bi/(µ0l) and the

Lorentz force along the diffusion region is (J × B)x ≈ (BoBi)/(µ0l). Lorentz
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force accelerates the plasma from rest at the neutral point to v0 over a distance

L, and so, by Eq. (1.38) where the plasma pressure gradient is neglected, we

have

ρ
v2o
L

≈ BoBi

(µ0l)
, (1.44)

dividing Eq. (1.43) by Eq. (1.42), gives

Bi

L
≈ Bo

l
, (1.45)

and Eq. (1.44) then gives

vo =
Bi√
ρµ0

≈ vA, (1.46)

where vA is Alfvèn speed. From Eq. (1.39),

viBi

L
=
λBo

l2
, (1.47)

using Eq. (1.45) leads to

vi =
λ

l
. (1.48)

From Eq. (1.42), (1.46), and (1.48), the reconnection rate, defined as the ratio

of inflow speed to outflow speed, can be given as follows.

MA =
vi
vA

=
1√
S
, (1.49)

whereMA is known as the Alfvèn-Mach number and S is a dimensionless number

known as the Lundquist number, which compares the timescale (τA) of an Alfvèn

wave crossing to the timescale of resistive diffusion (τD). It is a special case of

the magnetic Reynolds number when the Alfvèn velocity is the typical velocity

scale of the system and is given by

S =
LvA
λ

=
τD
τA

(1.50)

where L is the typical length scale of the system, λ is the magnetic diffusivity of

the plasma. A large Lundquist number indicates plasma to be highly conducting
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and has magnetic field lines frozen to the plasma parcels, while a small Lundquist

number makes the plasma to be diffusive and allows for the field lines to diffuse

through the plasma parcel, violating the flux freezing condition (Priest & Forbes,

2000).

For a solar flare the typical values can be L ≡ 107m, vA ≡ 105 ms−1, and λ ≡ 1

m2s−1, the Lundquist number S = 1012 and the reconnection rate is 10−6, which

is smaller than its expected value in flares (Aschwanden, 2005). Consequently, a

fast reconnection model, the Petschek model, was proposed and discussed below.

1.3.3 Petschek model

The speed at which magnetic flux enters the diffusion region can be significantly

increased, proposed by Petschek (Petschek, 1964), if the size of the diffusion

region, where oppositely directed magnetic fields meet, is much smaller than

the overall system’s length scale. He suggested that the four standing slow-mode

MHD shock waves accelerate the plasma parallel to the shock front. The external

plasma flow velocity ve equals the shock speed vs, where vs is given as follows.

vs =

√
B2

n

µ0ρ
, (1.51)

where Bn is the normal component of the magnetic field. He also suggested

that L << Le, where L is the length of the diffusion region and Le is the

system’s length scale. Consider vi and Bi represent the plasma inflow velocity

and magnetic field strength in the inflow region, respectively, and ve and Be are

the plasma flow velocity and the magnetic field strength in an external region

surrounding the diffusion region. In the external region, the reconnection rate

(Me) and the Lundquist number (Se) can be written as.

Me =
ve
vAe

, (1.52)

and

Se =
LevAe

η
. (1.53)
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From magnetic flux conservation and assuming a steady state,

viBi = veBe. (1.54)

Therefore, the reconnection rates in the inflow and external regions are related

as.
Mi

Me

=
B2

e

B2
i

. (1.55)

Near the diffusion region, the magnetic field Bi is slightly curved compared to

Figure 1.7: Schematic represents the Petscheck model of reconnection.

the uniform external magnetic field Be due to the normal component Bn of the

shocks. The shock speed vs causes By to be 2Bn on both sides of the diffusion

region. In the diffusion region (between −L and L), Bn vanishes. The total

magnetic field in the inflow region is the sum of the external field Be and the

field Bi obtained by solving Laplace’s equation in the upper half region.

Bi = Be −
4

π
Bnlog

Le

L
. (1.56)
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From Eq. (1.51), (1.52) and vs = ve, the Eq. (1.56) will be

Bi = Be −
4

π
Melog

Le

L
. (1.57)

As the reconnection rate Me increases, the shock angle increases while the diffu-

sion region’s size decreases. Petschek suggested that if Me is large enough, the

process will self-regulate and provide the expression for the reconnection rate

M∗
e ≈ π

8logS
, (1.58)

where S is the Lundquist number defined in the Sweet-Parker model. For solar

flare, the rate lies between 0.01 and 0.1; therefore, much faster than the rate

given by the Sweet-Parker model (Priest, 2014). Hence, the Petschek model is

also known as the fast reconnection model.

Although studying the reconnection process in 2D helps us understand the ba-

sics, real-life scenarios involve complex 3D magnetic structures, like those found

in the solar atmosphere and other astrophysical systems. In 3D, reconnection

is more complicated and generally may not involve anti-parallel magnetic field

lines. Instead, there are possible sites for magnetic reconnection, such as 3D null

points, where |B| = 0, and non-null (|B| ̸= 0) locations like separators. In the

following, a brief introduction to 3D reconnection is presented.

1.3.4 Magnetic reconnection in three dimension

In 3D, magnetic reconnection offers a more comprehensive understanding of so-

lar flares compared to the traditional 2D framework like the model developed by

Carmichael (Carmichael, 1964), Sturrock (Sturrock, 1966), Hirayama (Hirayama,

1974), and Kopp & Pneuman (Kopp & Pneuman, 1976), also known as CSHKP

model. Unlike the 2D model, which heavily relies on the presence of a flux rope

system (CSHKP model), 3D reconnection allows for dynamic magnetic interac-

tions even in the absence of flux ropes. For example, the X3.1 class flare on

October 24, 2014, was found to be onset by reconnection near a 3D magnetic
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null, completed with well-recognizable fan and spine structures; for details of 3D

nulls, refer to Sec. 1.3.4, that drives energy release and generates observable fea-

tures like circular chromospheric ribbons. Further, recent observations from So-

lar Orbiter reveal persistent null-point reconnection in the corona (Cheng et al.,

2023), emphasizing the necessity of studying reconnection in 3D. These findings

strongly compel further to explore the reconnection in 3D to fully understand

its role in dynamic coronal processes. There are several definitions of magnetic

reconnection in 3D, found in the literature, for example, (i) the reconnection

requires plasma flow across a separatrix surface proposed by Vasyliunas (1975),

(ii) the electric field along the X-type neutral line or separator is necessary for

reconnection in 3D proposed by Sonnerup (1979), and (iii) the reconnection is

based on the change in the connection between the magnetic field line and plasma

elements due to the localized breakdown of the frozen-in field proposed by Ax-

ford (1984). The connection used in this definition means that plasma elements

initially linked by a single magnetic field line remain connected over time. Im-

portantly, Vasyliunas’s and Sonnerup’s definitions require identifying separatrix

surfaces in 3D, which involves tracing magnetic field lines back to their origin,

which can be difficult, especially in realistic scenarios (Birn et al., 1997). At the

same time, Axford’s definition is more general because it doesn’t rely on mag-

netic topology and doesn’t need tracing field lines back to their origin. Instead,

it focuses on the temporal evolution of magnetic field line connections between

plasma elements over short times and possibly small distances. This definition

highlights the exchange of magnetic field lines between plasma elements, i.e.,

the breakdown of magnetic connections, also known as the slippage of plasma

elements from magnetic field lines (see Fig. 1.8). This concept led to the idea of

General Magnetic Reconnection (GMR) proposed by Hesse & Schindler (1988);

Schindler et al. (1988). According to GMR, 3D reconnection is classified into

two categories: (i) Zero-B reconnection: Where reconnection occurs at location

having the magnetic field strength (|B| = 0) zero in the diffusion region; 3D

null points reconnections are the examples of Zero-B reconnection, (ii) Finite-B

Reconnection: Where the reconnection occurs at the location where magnetic
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Figure 1.8: The Figure depicts the concept of reconnection in 3D proposed by
Axford. Magnetic connection: Two plasma elements, P and Q, are connected by
a magnetic field line at time t1 and remain connected by a magnetic field line at
any later time t2 under the plasma displacement. Slip-reconnection: the plasma
elements P and Q are connected by a magnetic field line at time t1; however, at
a later time, t2, plasma elements exchange the magnetic field lines and do not
remain connected by a magnetic field line.

field is non-zero (|B| ≠ 0) in the diffusion region; The reconnection occurring at

the separators, and Quasi-Separatrix Layers (QSLs) are the examples of Finite-B

reconnections. Soft X-ray observations of fast bidirectional motions of coronal

loops (Aulanier et al., 2007), observed by Hinode spacecraft, provide evidence

supporting the existence of slipping magnetic reconnection in the Sun’s corona.

These motions, which involve rapid shifts of coronal loop footpoints, co-align

with the brightening. The slip reconnection occurs at regions of steep magnetic

field gradients, such as quasi-separatrix layers (QSLs), where magnetic field lines

undergo continuous slippage rather than vanishing entirely. Notably, such slip-

ping reconnections at quasi-separatrix layers (QSLs) are studied by Prasad et al.

(2018) and suggested that they are co-located with post-flare circular brightening
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at chromospheric heights. This dynamic process not only explains the observed

chromospheric features but also highlights the critical role of reconnection in 3D

in driving energy release and plasma motions in the solar atmosphere. These re-

connections exemplify finite-B reconnection. The following briefly introduces the

concept of 3D magnetic null and separator along with QSL, which are relevant

to the thesis.

Null points in three dimensions

A point in space where the magnetic field (|B| = 0) is zero is called a 3D mag-

netic null point. They are crucial in understanding the mangetic reconnections

(Dungey., 1959; Schindler et al., 1988; Wyper & Jain, 2010; Pontin & Priest,

2022; Cheng et al., 2023) leading to various solar transients, wave mode con-

version (Kumar et al., 2024) and coronal heating (Parnell & De Moortel, 2012)

because of their unique structure. The magnetic field structure around the null

point can be characterized by two distinct structures, namely the Spine and Fan

plane. A set of field lines that diverge out from the null or converge into the null

point in a plane is called a Fan plane. The fan planes are also known as separatrix

surfaces, as this plane separates two topologically distinct regions of magnetic

reconnectivity (Pontin, 2011). The same set of field lines is directed toward or

away from the null along an axis known as the spine (see Fig. 1.9). For more

details about the structure and properties associated with 3D magnetic nulls, see

Sect. 2.4. The spines and separatrix surfaces are important topological features

to quantify the solar coronal magnetic field. Due to the dynamic nature of the

solar photosphere, i.e., the presence of the photospheric plasma flow, the current

density accumulation can occur along the spines and separatrix surfaces, which

may lead to magnetic reconnection and can contribute to the coronal heating

(Priest et al., 2002). However, there is very little observational evidence to show

what roles each of these mechanisms plays in the way in which the solar corona

is heated. Another important magnetic topology known as a magnetic separator

is introduced in the following.
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Figure 1.9: An example of a 3D magnetic null point along with a spine-fan plane
is shown in the Figure. The small yellow sphere represents the null point; the
spine and fan plane are marked by arrows.

Magnetic separator

The lines which are formed through the intersection of separatrix surfaces and

connect two nulls are known as magnetic separators (Longcope, 1996) (see Fig.

1.10). The magnetic field strength varies along the separators, and reconnection

at this topology is an example of the non-zero B reconnection. Suppose one

projects the magnetic field onto any plane perpendicular to the separator line.

In that case, then the projected field has an X-type null at the point where the

separator crosses the plane, and the two associated separatrices correspond to

the intersections of the separatrix surfaces with the plane. Separators enable the

formation and accumulation of high current density at large scales (Lau & Finn,

1990; Haynes et al., 2007; Parnell et al., 2010a; Stevenson et al., 2015). They

connect vast distances in the solar corona and facilitate reconnections across
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Figure 1.10: The Schematic represents an example of a magnetic separator.
Blue and Red circles represent the negative and positive null points, whereas the
separator is drawn in green; the picture adapted from (Pontin, 2011).

extended regions of the solar corona, unlike the highly localized reconnection at

3D null points (Close et al., 2004; Parnell et al., 2010b; Platten et al., 2014).

Longcope et al. (2005) observes the separator reconnection in the solar corona

and its presence has been confirmed within Earth’s magnetosphere through in

situ measurements from cluster satellites (Xiao et al., 2007; Guo et al., 2013) and

through numerical models (Dorelli & Bhattacharjee, 2008; Komar et al., 2013).

In the Earth’s magnetosphere, separators can be found at Dayside magnetopause

as well as magnetotail and serve as the magnetic reconnection in the Earth’s

magnetosphere (Wang & Bhattacharjee, 1996; Dorelli et al., 2007; Guo et al.,

2022). Separator reconnections play a role in particle acceleration as suggested by

Metcalf et al. (2003); Threlfall et al. (2016). Moreover, a recent study by Parnell

(2024) has shown the importance of separators in 3D magnetic reconnection.
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Quasi-Separatrix Layers (QSLs)

Quasi-separatrix Layers (QSLs) are the magnetic configuration having a large

gradient in the mapping of the footpoints of field lines, and strong currents may

arise and can serve as the preferential sites for the magnetic reconnection in 3D

(Demoulin et al., 1996, 1997; Titov, 2007). The reconnections at the QSLs are

also examples of finite or non-zero B reconnection, the idea floated by Schindler

et al. (1988). In principle, the gradient in footpoint mapping is quantified by a

Q-value known as the squashing factor and can be calculated as follows.

Consider two footpoints locations R1 (x1, y1) and R2 (x2, y2). The footpoints

are mapped from locations R1 to R2; the associated Jacobian matrix is given by

D12 =

∂x2

∂x1

∂x2

∂y1

∂y2
∂x1

∂y2
∂y1

 =

a b

c d

 (1.59)

The squashing factor (Q-value) is given by

Q =
a2 + b2 + c2 + d2

|Bn,1(x1, y1)/Bn,2(x2, y2)|
(1.60)

where Bn,1(x1, y1) and Bn,2(x2, y2) are the components normal to the target

planes. To represent the location of QSLs, the criterion on squashing degree

is Q > 2 (Liu et al., 2016). The field lines are prone to slip in the regions

having large Q-values, and the connectivity of different field lines change from

one polarity to another same polarity at the bottom layers exhibiting the slip-

running or slipping reconnection (Aulanier et al., 2006, 2007).

3D magnetic nulls play a key role in energy release through magnetic recon-

nection, although they are not the only locations where reconnection can occur

in complex astrophysical plasmas. They are observed in the reconnection facil-

itating current layer of Earth’s magnetotail through in situ experiments from

the Cluster satellite (Xiao et al., 2006, 2007) and being inferred from fully 3D

simulations of polar cusp regions (Dorelli et al., 2007). The reconnections in lab-

oratory plasma have also shown the importance of 3D nulls (Gray et al., 2010).

In the solar atmosphere, the existence of 3D nulls is almost guaranteed due to
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the large number of mixed flux sources observed in the photospheric magne-

tograms. In quiet Sun conditions, the number of nulls is to be greatest near

the photosphere with a drop with height between an exponential (Régnier et al.,

2008) and power law (Longcope & Parnell, 2009). During an increased solar

activity, reconnection onset by a 3D nulls plays an important role in solar flare

in the higher solar atmosphere (Aulanier et al., 2000; Nayak et al., 2021). The

other solar phenomena such as solar jets (Pariat et al., 2009; Liu et al., 2011),

flare brightening (Fletcher et al., 2001; Masson et al., 2009), flux emergence

(Török et al., 2009), and coronal mass ejections (Longcope, 1996; Lynch et al.,

2008) are also linked to reconnections occuring at 3D nulls. The extrapolations

and simulations (Prasad et al., 2018; Nayak et al., 2021) have also shown the

existence of 3D nulls in the solar atmosphere (Fletcher et al., 2001), and are

preferential sites for reconnections (Zweibel & Yamada, 2009; Yamada et al.,

2010). Recent observations suggest that coronal rain is ubiquitous (Mason et al.,

2019) in large-scale coronal magnetic topologies, particularly those associated

with null points, spine lines, and fan surfaces. The frequent occurrence of rain

formation in such regions indicates that these structures play a significant role

in coronal cooling, with potential mechanisms including thermal nonequilibrium

and interchange reconnection. Moreover, contemporary observations show the

persistent null point reconnection resulted in supplying the mass in the corona

(Cheng et al., 2023). Magnetic reconnections onset by 3D null topology are the

proposed as underlying cause of these solar transients (for details, refer to Chap-

ter 2). The 3D magnetic nulls are abundant in the solar atmosphere and play

crucial role in onsetting the various coronal transients; the mechanism of their

generation merits utmost attention. Additionally, the existence of 3D null can

be counter-intuitive. To fix ideas, consider (N-1) a number of magnetic dipoles

in 3D, which produce a magnetic field B at a point P. In principle, it is possible

to position an additional dipole, say the Nth one, in a way that its magnetic

field contribution at P is -B. Therefore, the net magnetic field at P is zero, and

the point P is a 3D null point. However, this is a tailor-made arrangement and

is not expected to be trivially achieved in a magnetically complex system like
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the active region corona. It is then important to explore whether such a special

arrangement is feasible in a magnetic system and, if it is, how the configuration

is sustained. The straightforward expectation is the reliance on a mechanism

fundamental to magnetohydrodynamics. Both theory and simulations (Parker,

1994; Kumar et al., 2017) suggest magnetic reconnection to be a fundamental

process expected in a near-ideal fluid through a local reduction of the magnetic

Reynolds number.

1.4 Objective and Outline of the Thesis

In the backdrop of Sections 1.3.4, it is imperative to explore various properties

of 3D null topologies and, more importantly, their generation—the objective of

the thesis. To achieve this objective, the necessity is to trace magnetic field

line evolution and identify locations of newly generated nulls along with their

dynamics. Incidentally, not much work has been done with this objective. Nayak

et al. (2020) carried out a set of MHD simulations, in one of which spontaneous

generation of magnetic nulls was obtained. Although magnetic reconnection

seemed to be a plausible cause behind the generations, but was not established

rigorously. Another thrust area is the exploration of null bifurcation where a

null bifurcates into three nulls (including the original one) within a null current

sheet—a region having a steep gradient of the magnetic field (Wyper & Pontin,

2014). Nevertheless, identifying the mechanism to generate nulls still remains

elusive. Toward this goal, aptly devised numerical simulation is employed. Three

sets of simulations are carried out. Two are with analytical initial conditions to

enforce more control on the field line evolution, whereas the first one also sets

up the essential foundation for such studies. These computations are augmented

with a data-based simulation where the initial magnetic field is constructed using

the vector magnetogram data of an Active Region on the solar photosphere. The

purpose here is to look at and study null generations and corresponding dynamics

in a realistic scenario and, further, to compare the findings against observational

features. On this general note, the thesis is further structured as,
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In the first part of the Chapter 2 titled Observational manifestation of mag-

netic reconnection and theory of 3D magnetic null, the overview and examples

of the solar flare, jets, and coronal bright point onset by 3D magnetic null are

presented. The second part discusses the structure and properties associated

with 3D magnetic null.

Chapter 3Methodology and necessary numerical tools introduces the EULAG-

MHD model, used extensively for the simulations and trilinear null detection

tools required for detection, tracing, calculation of the topological degree of nulls

and in the determination of the nature of the nulls.

Chapter 4 3D magnetic null generation and annihilation with an initial an-

alytical magnetic field explores the mechanism of 3D magnetic null generation

and annihilation through MHD simulation of an initial analytical magnetic field

having an isolated current-free 3D null. The simulation is initiated through a

prescribed sinusoidal flow, which deforms the spine of the existing null and leads

to reconnections, resulting in null pair generation having a complimentary topo-

logical degree. Interestingly, subsequent evolution shows reconnection-assisted

spontaneous null pairs generation—preserves net topological degree—increasing

the tenability of the simulation. The pairwise annihilation of nulls is also seen.

This chapter establishes reconnection-assisted null pair generation and annihila-

tion in two scenarios: initial flow-assisted and autonomous.

Chapter 5 Spontaneous generation and annihilation of 3D magnetic nulls in

the solar atmosphere explores the plausibility of the spontaneous generation of

nulls in naturally occurring plasmas, i.e., solar atmosphere, identify the mech-

anism behind it and its observation implications. A data-based simulation of

a C6.6 class flare associated with the photospheric active region NOAA 11977

is carried out for the goal. The simulation confirms the spontaneous pairwise

generation of 3D nulls with magnetic reconnections as the underlying cause. Im-

portantly, magnetic field lines associated with the spontaneously generated nulls

are found to trace observed chromospheric bright points—highlighting their ob-

servational relevance.

Chapter 6 Generation of 3D magnetic nulls in an initially chaotic magnetic
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field devoid of any nulls explores 3D magnetic null generation through the MHD

simulation with an initial analytical chaotic magnetic field devoid of any null

while precisely identifying the locations, topological degrees, and natures (spiral

or radial) of nulls, along with the tracing of field lines in light of recent advance-

ments and tools. This chapter also explores the influence of the chaoticity on 3D

null generation.

The first part of Chapter 7 Summary and Future Scopes summarizes the

results of the thesis work. In the second part, the future scopes are discussed.



Chapter 2

Observational manifestation of

magnetic reconnection and

theory of 3D magnetic null

In the frozen-in limit, magnetic topology remains preserved while plasma parcels

trace the magnetic field lines. Whereas change in magnetic topology—magnetic

reconnection occurs in the diffusive limit of the plasma achieved through an

increase in gradients of the current density, which can initiate the solar transients.

Thus, understanding the topology of the solar coronal magnetic field is crucial

for comprehending the solar transients. The following presents a brief overview

of the relevant solar transients, highlighting their key aspects.

2.1 Solar Flares

Solar flares are the sudden and intense release of electromagnetic (EM) radiation

from the solar atmosphere, emanating from the release of stored magnetic energy

in the active region’s magnetic field lines. These events profoundly affect space

weather, including Earth’s lower ionosphere. Various studies have revealed their

origin, associated magnetic configuration, and impact using ground and space

observations. Flares cover the whole EM spectrum and have different temporal

scales. In the following, the distinct phases of Solar flares are discussed.

31
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3D magnetic null

• Pre-flare phase: This phase is characterized by gradual energy buildup

with heating of the plasma and soft X-ray (SXR) emission.

• Impulsive phase: This phase is marked by the rapid energy release and

acceleration of particles; the signature is the X-ray footpoint sources ap-

pearing at the chromospheric height.

• Flash phase: this phase is characterized by rapid increase in intensity in

Hα.

• Decay phase: where the coronal plasma relaxes (Benz, 2017).

The stages of a flare in multi-wavelengths are depicted in Fig.2.1. The solar

flares are believed to be driven by magnetic reconnection, a process that releases

stored magnetic energy in twisted field lines. For a length scale (L) and magnetic

field (B) of a typical sunspot, the stored magnetic energy (Emag) can be

Emag ≈
(
B2

8π

)
L3 ≈

(
B

103G

)2(
L

3× 109cm

)3

1033ergs, (2.1)

which is sufficient enough to produce a large flare (Shibata & Magara, 2011).

Giovanelli (1947, 1948), Hoyle (1950) have first proposed that the hyperbolic

X-type neutral points (B = 0) play a role in the excitation of particles during

flares and auroras. Later, Dungey (1953) proved that the X-type neutral point is

likely a site for releasing charged particles in astrophysical plasmas. The indirect

evidences of similar reconnection-assisted events in other astrophysical plasmas

have further supported this proposal (Verbunt, 1982; Mullan, 1986; Romanova &

Lovelace, 1992; Drenkhahn & Spruit, 2002; Giannios, 2010). Based on magnetic

reconnection, the standard flare model by Carmichael (1964); Sturrock (1966);

Hirayama (1974); Kopp & Pneuman (1976); Svestka & Cliver (1992) (CHSKP

model) has been developed and is explained through schematic in Figure 2.2.

Essential to the standard flare model is the presence of a magnetic flux rope,

a set of twisted magnetic field lines anchored on the photosphere and confining

the cooler plasma material. The rope is quantified by the winding number or

twist (Tw) parameter, which measures the number of turns the field lines make
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Figure 2.1: A schematic showing different phases indicated at the top; taken
from (Benz, 2017).

about the axis while going from positive to negative polarity across the polar-

ity inversion line (PIL). Some studies for example Yan et al. (2001); Roussev
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Figure 2.2: The schematic shows a modified version of the CHSKP model for a
solar flare, adapted from Shibata et al. (1995).

et al. (2003) showed that the optimal winding number is > 2 whereas, Amari

& Luciani (1999); Aulanier & Demoulin (1998); Régnier & Amari (2004); van

Ballegooijen (2004); Su (2007); Savcheva & van Ballegooijen (2009) suggest that

the number is < 2. Antiochos et al. (1994) proposed that the winding num-
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ber or twist parameter be even less than 0.5. Importantly, if the rope begins

to rise after its activation, it stretches the overlying field lines and creates a

magnetic vacuum below it. The local decrease in magnetic pressure brings op-

positely directed field lines toward each other, developing an extended current

sheet (CS) that onsets magnetic reconnection, which manifests itself as the flare.

The reconnection also accelerates charged particles, which move along the post-

reconnection magnetic field lines and ultimately impact the lower atmosphere.

Consequently, the ambient plasma is heated, and the corresponding pressure im-

balance causes the plasma to flow up. This flow gradually fills up the magnetic

loops with plasma. The process is known as chromospheric evaporation, and the

field lines visible in the soft X-ray are called the soft X-ray loops. The more

details can be found in (Benz, 2017; Shibata & Magara, 2011). Recent numerical

simulation proposed that the magnetic reconnection onset by a 3D magnetic null

can contribute to the solar flare (Nayak et al., 2021). The initial magnetic field

was constructed by extrapolating the photospheric magnetogram of active region

NOAA 12017 at 17:48 on March 29, 2014, hosting an X-class flare by employing

the Non-Force Free Field extrapolation technique. The initial field contains the

important topology, a 3D magnetic null (see panel (a) of Fig. 2.3). With the

evolution, magnetic reconnections occur at the 3D null and can potentially ex-

plain the observed chromospheric brightenings during the flare. Panel (c) depicts

the co-spatiality of the footpoints of field lines constituting the fan surface with

the observed chromospheric brightenings where the AIA 304 Åchannel is overlaid

with the co-temporal field line structure of null. Consequently, it is expected that

magnetic reconnection at the null accelerates the charged particles, which travel

along the field lines and dissipate their energy while entering into the denser

chromosphere, resulting in brightenings. The magnetic reconnection (marked by

the green arrow in panel (b)) at null restructure the corresponding spine and fan

field lines and the change in connectivity of lower spine and fan field lines (in

pink) to the upper spine and fan field lines (in sky blue) (c.f. panels (b) and (d)

of Fig. 2.3). The post-reconnections field lines marked by black arrows (panel

(d)) are comparable with the observed post-flare loops.
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Figure 2.3: The figure depicts an example of flare onset by a 3D magnetic null;
adapted from Nayak et al. (2021).

2.2 Jets

Jets are the collimated eruptions from the solar atmosphere. These are ener-

getically 104-105 orders less than the flares (Pucci et al., 2013; Raouafi et al.,

2016) and can be of many varieties—like chromospheric jets, surges, spicules,

microspicules, and large coronal jets. The nomenclature is based on their obser-

vational traits. They differ in length scales and formation heights in the solar

atmosphere. The jets are reckoned as smaller versions of the large filament erup-

tions like in CMEs. They are ubiquitous and are visible in the active regions,

coronal holes, quiet the Sun, and preferably in boundaries with open coronal field

lines. Jets are seen in different wavelengths, like in Hα, extreme UV, and X-rays,

and can have different temperatures. Several instruments such as Solar and He-

liospheric Observatory (SOHO; (Domingo et al., 1995)), the Transition Region

and Coronal Explorer (TRACE; (Handy et al., 1999)), the Reuven Ramaty High

Energy Solar Spectroscopic Imager (RHESSI; (Lin et al., 2002)), the Hinode (Ko-
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sugi et al., 2007), the Solar Terrestrial Relations Observatory (STEREO; (Kaiser

et al., 2008)), the Solar Dynamics Observatory (SDO; (Pesnell et al., 2012)), and

the Interface Region Imaging Spectrograph (IRIS; (De Pontieu et al., 2014)) have

recorded jets in the past and still are doing so. Some ground-based observatories

have also contributed to the study of the jets. Shibata et al. (1994) arranged

the jets into two types. One is the straight anemone jet, and the other is the

two-sided jet. In the case of an anemone jet, a collimated plasma erupts (the

spire part) with a bright point (at the base part) behind it or in the inverted

Y-shape (also referred to as lambda or Eiffel tower shape). In contrast, the two-

sided jet has bipolar plasma columns spreading out from the central bright point.

Panel-(a) in Fig.2.4 shows an anemone jet, and panel-(b) shows a two-sided jet.

The anemone jets are again divided into two sub-types: (1) standard jets and (2)

Figure 2.4: Two different types of jets, (a) an anemone jet, and (b) a two-sided
jet; picture credit: (Shen, 2021). The arrow marks highlight the bright points
near the base of both jets.

blowout jets based on their observational appearances (Moore et al., 2010). An

additional X-ray brightening inside the base arc, blowout eruption of the core

field of the base arc, often made of cool filament (T∼ 104 − 105K) plasma, and

extra jet-spire strand anchored near to the bright point makes blowout jet dif-

ferent from the standard jets (for details see Moore et al. (2010)). The standard

jets are driven by reconnection as proposed by (Yokoyama & Shibata, 1995; Shi-
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mojo et al., 1996; Canfield et al., 1996; Shimojo & Shibata, 2000), and Shimojo

et al. (1998) provided the model of the standard jets driven by reconnection. A

universal model for the eruption of CME and jet is proposed by Wyper et al.

(2017) and claimed that the eruptions follow the breakout model. Various stud-

ies proposed that the jets can also be due to flux cancellation (Panesar et al.,

2016, 2017, 2018), and flux emergence (Mulay et al., 2016). The details of the

different eruption mechanisms and origins of jets can be found in Raouafi et al.

(2016); Shen (2021). Recent data-constrained MHD simulation proposed that

the magnetic reconnections onset by a set of two 3D nulls (shown in Fig. 2.5)

initiated the jet (Nayak et al., 2019) and claimed that the evolution agrees with

the breakout model of blowout jets. In Fig. 2.5, two 3D magnetic nulls (in pink)

and the open magnetic field lines (in red) constitute the outer spines of the null

pairs, whereas the anchored field lines (in blue and yellow) making the inner

spines of the nulls are shown at 05 : 48 UT. Figure 2.6 depicts the sequence

Figure 2.5: The Figure depicts two 3D magnetic nulls (in pink) and their asso-
ciated field lines; picture taken from Nayak et al. (2019).

of the field lines evolution starting (panel (a)) from the field lines configuration

shown in Fig. 2.5 spanning t ∈ {05 : 48, 06 : 05} UT, covering the durion of the
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jet. Importantly, with the evolution, anchored field lines (in yellow and blue)

changed their connectivity and became part of the outer spine (panels (b)-(f)).

Consequently, the entrapped cold plasma can get channeled along the open field

lines of the outer spine and make the spire. Noticeably, the plasma flow vectors

shown in green become more field-aligned with the evolution.

Figure 2.6: The sequence of field lines evolution, showing the magnetic recon-
nection and covering the duration of the jet; picture adapted from Nayak et al.
(2019).
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2.3 Coronal Bright Points

The Coronal Bright Points (CBPs) are the phenomenon that appears as bright

structures in extreme-ultraviolet (EUV) and X-ray wavelengths ubiquitously

found in the solar atmosphere. They are small-scale (on average 20”-30”), short-

lived (from a few minutes to a few tens of hours) structures (Golub et al., 1977;

Webb et al., 1993; Brown et al., 2001; Mou et al., 2016) and are believed to be the

signature of a direct energy deposition in the upper solar atmosphere (McIntosh,

2007). The CBPs are first imaged in Soft X-Ray (SXR) during rocket missions

in 1968-1973 (Vaiana et al., 1973) and analyzed later through the Skylab mission

(Golub et al., 1976a,b; Habbal, 1992). Fig. 2.7 shows the example of identified

CBPs in the quiet Sun region. Various studies (Parnell et al., 1994a,b) proposed

that CBPs are often linked with the cancellation of opposite polarity magnetic

fragments in the photosphere (i.e., so-called canceling magnetic features) and

have been considered as evidence of magnetic reconnection occurring in CBPs

(Pérez-Suárez et al., 2008; Alexander et al., 2011; Zhang et al., 2012). (Preś &

Phillips, 1999) suggested that all the energy losses of a CBP are, in fact, re-

plenished by magnetic energy. Additionally, (Zhang et al., 2014) has proposed

that the interchange reconnection might occur between two close chambers of a

CBP. A model has been proposed by (Priest et al., 1994; Parnell et al., 1994b)

where the reconnection results from the converging motion of magnetic polarities

in different scenarios as shown in Figure 2.8 and the interaction distance has to

be less than a certain value in order to trigger the appearance of a CBP. This

cancellation, driven by converging motions of two magnetic bipolar sources, can

heat the solar corona as proposed by (von Rekowski et al., 2006a,b; von Rekowski

& Hood, 2008). Figure 2.9 shows the images in SXR of Hinode/XRT (top left)

and three EUV channels (171 Å, 195 Å, and 284 Å) of STEREO/EUVI. (Zhang

et al., 2012) has identified around 13 CBPs and labeled them as BP1-BP13. The

dashed box (59.8” × 59.8”) on the top left of each panel drawn in the dark area

is considered as the background, and a careful inspection of the 5 hr SXR images

reveals that the quiet background region does not contain any CBP. To study
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Figure 2.7: Identified coronal bright points in the quiet-Sun region; picture
adapted from Zhang et al. (2001).

the dynamics and the associated magnetic configuration of CBPs, they picked

two major CBPs, i.e., BP1 and BP2. Their study suggested that CBPs are cov-

ered by a dome-like separatrix surface, with the 3D magnetic null point structure

above it, as shown in Fig. 2.10 from two view angles. Top view (left) and side

view (right) of the coronal magnetic field configuration, inclosing the 3D nulls

around the two CBPs at 01:01 UT. The magnetic field lines near the spines are

plotted in blue, and those below the dome-shaped separatrix are in green. The

background color image depicts the SXR map at 01:00 UT, with the photospheric

magnetogram superposed; black solid lines correspond to the positive polarity,

and the dashed lines correspond to the negative polarity. They proposed that
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Figure 2.8: The schematic shows the several possible configurations leading to
CBP, where (i) pre-interaction, (ii) interaction, (iii) cancellation, and (iv) final
phases, for (a) equal and opposite, (b) unequal and opposite, (c) a large bipolar
and a small unipolar, and a weak bipolar and a strong unipolar magnetic frag-
ments. The schematic has been adapted from Priest et al. (1994).

the repetitive CBP flashes and the recurrent SXR jets result from the impulsive

null-point reconnection. At the same time, the long-lived brightenings are due to

the interchange reconnection along the separatrix surface. The CBPs in coronal

holes (CH) and quiet Sun regions are seen to reside in regions on the Sun where

coronal magnetic nulls are present and proposed by (Galsgaard et al., 2017).

Using null point location and topology, the relation between the magnetic field

structure and the projected location of the X-ray emission for the 10 selected BP

regions is established. They showed that the X-ray emissions are associated with
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Figure 2.9: Figure shows the identified CBPs in SXR and EUV channels at 01:01
UT. The picture adapted from Zhang et al. (2012).

the 3D null points fan-dome structure for all observed CBPs in CH regions. One

such example using the time evolution of the BP1 case is shown in Fig. 2.11. The

magnetogram is shown in the top row and scaled to ±200G, and the magnetic

field configurations using potential field extrapolation. The negative and positive

polarity are represented by blue and red color, respectively. The isosurface (in

grey) renders the location of the null point, with the field lines drawn near the

null. The color of the field line depicts the magnetic field strength, strongest

field (in red), and weak field (in green-blue). The bottom boundary depicts the

XRT observations scaled linearly, shown in lower rows, where red represents low
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Figure 2.10: Top view (left) and side view (right) of the coronal magnetic field
feature around the two CBPs. The picture adapted from Zhang et al. (2012).

values and purple shows the peak values. The left to right pictures correspond

to the time at 06:38:13 UT, 08:38:05 UT, 10:38:08 UT, and 11:59:35 UT on 09

November 2007. They strongly suggested that the presence of a null point is

important to release the energy from CBPs.

Figure 2.11: Figure depicts the association of 3D null point fan-dome structure
with observed X-ray emissions from CBPS in CH regions. The picture has been
taken from Galsgaard et al. (2017).

Overall, it is important to emphasize that the topology of 3D magnetic null

has a crucial role in hosting the magnetic reconnection and shaping the various
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reconnection-driven solar transients, as presented above. Therefore, it is crucial

to understand the topology of 3D magnetic null. The following discusses the

structure and properties associated with 3D magnetic nulls.

2.4 Theory of 3D magnetic null

2.4.1 Structure of 3D nulls

The local magnetic structure in the vicinity of magnetic null (where B = 0) can

obtained by assuming that the field varies linearly (Lau & Finn, 1990; Parnell

et al., 1996). Using Taylor’s first-order expansion and considering the null point

is situated at the origin, the magnetic field B near a null point can be expressed

as follows:-

B = B(x0) +∇B|x0 · (x− x0) = M · r (2.2)

where x0 is location of magnetic null, r is a position vector (x,y,z)T, and M is a

jacobian matrix with its elements (∂Bi/∂xj) given as follows.

M =


∂Bx

∂x
∂Bx

∂y
∂Bx

∂z

∂By

∂x

∂By

∂y

∂By

∂z

∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

 (2.3)

The divergence-free condition (∇ ·B = 0) of the magnetic field provides,

∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0. (2.4)

The trace of matrix M is given by

Tr(M) =
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
(2.5)

Combining Eq. (2.4) and (2.5), we get

Tr(M) = 0 (2.6)
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If λi i.e. (λ1, λ2, λ3) are the Eigenvalues of the matrix M. Then from Eq. (2.6),

we get

Tr(M) = λ1 + λ2 + λ3 = 0, (2.7)

and by solving the Eigenvalue equation |M − λI| = 0, we get the three Eigen-

vectors (x1,x2,x3) corresponding to the three eigenvalues (λ1, λ2, λ3). The

Eq. (2.7) restricts that there exists a single Eigenvalue whose sign will al-

ways be opposite to the sign of the real part of the remaining two Eigenval-

ues. The spine is the field lines parallel to the Eigenvector related to that

single Eigenvalue. In contrast, the field lines tangential to the plane formed

by the Eigenvectors of the remaining two Eigenvalues are called Fan plane

(Parnell et al., 1996). It is sometimes known as the Separatrix surface as

it differentiates the two magnetic flux domains. One such example of 3D

magnetic null is shown in Fig. 1.9. From Maxwell’s Eq. (1.4), we have

µ0(Jx, Jy, Jz) = ((∂Bz/∂y−∂By/∂z), (∂Bx/∂z−∂Bz/∂x), (∂By/∂x−∂Bx/∂y)).

Therefore, off-diagonal elements of the matrix M given by Eq. (2.4) are related

to the current density, and the diagonal elements are associated with the po-

tential part of the magnetic field (Parnell et al., 1996). To study all possible

configurations of the localized field of the 3D null point, the matrix M can be

reduced to the least number of free parameters without losing the generality. For

that, if we choose the local orthogonal coordinate system such that the Eigen-

vector associated with the single Eigenvalue, which makes the spine of the null

is in the z-direction, i.e., the spine is directed along the z-axis and the Eigenvec-

tors of the remaining Eigenvalues forming a plane, i.e., fan plane is in x,y-plane.

Further, the matrix may be reduced by rotating the xy-plane about the z-axis

so that the new x-axis can be aligned toward the net resultant current in the

xy-plane. Finally, by dividing by a scale factor, the matrix is further reduced to

the following (Parnell et al., 1996).

M =


1 1

2
(q − J∥) 0

1
2
(q + J∥) p 0

0 J⊥ −(p+ 1)

 (2.8)
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, where p ≥ −1, q2 ≤ J2
∥ + 4p, with p and q defined as the potential part of the

field and the current density J can be written as

J =
1

µ0

(J⊥, 0, J∥). (2.9)

where J∥ represents the component of current parallel to the spine and J⊥ rep-

resents the component of current perpendicular to the spine. Where the pa-

rameters and elements of M can be written in terms of magnetic field as fol-

lows, p = ∂By/∂y, q = 2∂By/∂x, J∥ = (∂By/∂x) − (∂Bx/∂y), J⊥ = ∂Bz/∂y,

∂Bx/∂x = 1, ∂Bx/∂y = (1/2)(q − J∥), ∂By/∂x = (1/2)(q + J∥), ∂Bz/∂x =

∂Bx/∂z = ∂By/∂z = 0. The condition det(M) = 0 gives the case of degenerate

nulls where two or more nulls are overlapped on each other and the configura-

tion near the nulls can be obtained by considering the higher order terms in the

expansion of field near the null (Yang, 2017). Therefore, to avoid the degeneracy

the condition det(M) ̸= 0 must hold. Further, the threshold current Jthresh can

be obtained by putting the discriminant of the matrix (shown in Eq. (2.8)) equal

to zero and is given in terms of p and q.

Jthresh =
√

(p− 1)2 + q2. (2.10)

The Eigenvalues (λ1, λ2, λ3) associated with matrix given in Eq. (2.8) can given

as

λ1 =
p+ 1 +

√
Jthresh

2 − J2∥

2
, (2.11)

λ2 =
p+ 1−

√
Jthresh

2 − J2∥

2
, (2.12)

and

λ3 = −(p+ 1). (2.13)

The relative values of Jthresh and J∥ will decide whether the (λ1, λ2) will be real

or complex Eigenvalues. The complex Eigenvalues arise due to the non-zero

values and the differences of the off-diagonal elements. Consequently, they are
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associated with the current density. Therefore, the presence of current in the field

structure makes the Eigenvalues complex. They will exist in complex conjugate

pairs because of the condition mentioned in Eq. (2.7). In the following, the nulls

can be classified into two types based on the value of current density (J).

2.4.2 Radial and Spiral 3D null

If the current density (J) is zero, i.e., J∥ = 0, J⊥ = 0, the 3D null is potential

(current-free) 3D magnetic null. Further, if q = 0, then the matrix M given in

Eq. (2.8) reduces to the following.

M =


1 0 0

0 p 0

0 0 −(p+ 1)

 (2.14)

The Eigenvalus of the above matrix are λ1 = 1, λ2 = p, λ3 = −(p + 1) and the

magnetic can be written as

B = (x, py,−(p+ 1)) (2.15)

The example of a 3D potential null for p = 1 is shown in Fig. 2.12 and they

are also called as radial null. The field lines in the fan plane are emanating

radially outward. If the current density is non-zero in the null configuration, it is

called a non-potential or current-carrying null. For this scenario, the matrix in

Eq. (2.8) can be utilized to construct the magnetic field, and the corresponding

Eigenvalues are mentioned in Eq. (2.11)-(2.13). For q = 0, the magnetic field

can be written as follows.

B = (x− 1

2
J∥y,

1

2
J∥x+ py, J⊥y − (p+ 1)z) (2.16)

In the following, examples of non-potential nulls are shown. Fig. 2.13 shows

the field lines configuration near the null for J⊥ = 0, Jthresh = 2 and J∥ = 1,

i.e., |J∥| < Jthresh, where p = 1, is used. Therefore, all three Eigenvalues (λ1 =
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Figure 2.12: Figure depicts the potential 3D null point configuration for p = 1.

1 +
√
3/2, λ2 = 1 −

√
3/2, λ3 = −2) are real and distinct. For |J∥| = Jthresh,

Figure 2.13: Figure depicts the example of non-potential 3D null point configu-
ration for J⊥ = 0, Jthresh = 2 and J∥ = 1, i.e., |J∥| < Jthresh (panel (a)), where
p = 1, is used. Panel (b) depicts for |J∥| = Jthresh and depicts the example of non-
potential 3D null point configuration for Eigenvalues (λ1 = 1, λ2 = 1, λ3 = −2).

i.e., two out of three Eigenvalues will be the same, and an example is shown

in Fig. 2.13. Here, J∥ = 2 is used. Therefore, the all three Eigenvalues (λ1 =

1, λ2 = 1, λ3 = −2) are real and two are repeated. For |J∥| > Jthresh, i.e., the
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two Eigenvalues will be complex numbers. The examples are shown in Fig. 2.14,

having J∥ = 3, J∥ = 5 with J⊥ = 0 (panels (a), (b)), and J∥ = 5, with J⊥ = 5

(panel (c)), respectively. It is noted that the J∥ (current along the spine) plays

Figure 2.14: Figure depicts the example of non-potential 3D null point configu-
ration for J∥ = 3, J⊥ = 0 (panel (a)), J∥ = 5, J⊥ = 0 (panel(b))), and J∥ = 5,
J⊥ = 5 (panel (c)).

a role in spiraling the field lines in the fan plane near the null (c. f. panels

(a)-(b)) and with J⊥ = 0, the spine and fan plane are at a right angle. However,

the J⊥ ̸== makes the spine and fan plane field lines inclined as shown in panel

(c) of Fig. 2.14. All these three nulls are known as spiral nulls, and their two

Eigenvalues are complex conjugate pairs. In conclusion, the 3D nulls with current

J∥ along the spine are spiral nulls whose Eigenvalues contain imaginary parts.

By changing the parameters p, q, J∥, and J⊥, the different field line structures of

the null can be obtained. However, the magnetic field is a vector quantity, and

the field line direction in those structures defines the topological degree (TD)

discussed in the next Section.

2.4.3 Topological degree of 3D magnetic null

Two cases are possible depending on the direction of the magnetic field near the

null in the spine-fan topology. (i) The field lines in the spine directed toward

null and emanating out from the null in the fan plane are called Positive null,

and (ii) Negative type null; the fan field lines are directed toward the null and

directed away from the null along the spine (Lau & Finn, 1990). From Eq. (2.2)
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and at magnetic nulls (B(x0) = 0), the equation reduces to

B = ∇B|x0 · (x− x0) (2.17)

The direction of magnetic field B can be obtained by calculating the det∇B|x0 ,

which defines the topological degree of the null as follows (Lau & Finn, 1990).

TD = sign(det(∇B|x0)) = ±1. (2.18)

Therefore, if the fan field lines are directed toward the null, then the topological

degree of the 3D null is “+1” and vice-versa. The examples of 3D null having

TD +1, and −1 are shown in Fig. 2.15. To locate, trace, and determine their

Figure 2.15: Panel (a) depicts the example of the positive 3D null point where
fan field lines are directed away from null whereas spine field lines are directed
toward the null resulting in topological degree −1, whereas fan field lines directed
toward null point making topological degree +1 is shown in panel (b).

type (spiral or radial) based on the nature (complex or real) of Eigenvalues of

∇B|null, and topological degrees, the modified trilinear null detection technique

(see Sect. 3.3) has been employed. If a system initially consists of i number of

3D nulls and uses Taylor’s first order expansion near each null, the magnetic field

can be written as (Greene, 1992; Murphy et al., 2015).

B = B(xi) +
∑
i

∇B|xi
· (x− xi), (2.19)
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where xi are the locations of the null points, where B(xi) = 0. Therefore, the

net topological degree (D) is defined as follows.

D =
∑
i

sign(det(∇B|xi
)) (2.20)

If that system evolves with time and the number of nulls varies with time, then

it should satisfy the conservation of net topological degree proven in the next

Section.

2.4.4 Conservation of net topological degree of 3D nulls

An interesting fundamental property of 3D nulls is the conservation of the net

topological degree, denoted by D, which is proven mathematically in the follow-

ing. From ideal Ohm’s law

E+ v ×B = 0 (2.21)

Taking curl on both sides, we get

∇× E+∇× (v ×B) = 0, (2.22)

Using Maxwell’s Eq. (1.4), we have

∂B

∂t
= ∇× (v ×B) (2.23)

∂B

∂t
= v(∇ ·B)−B(∇ · v) + (B · ∇)v − (v · ∇)B, (2.24)

using ∇ ·B = 0
∂B

∂t
= B · ∇v − v · ∇B−B(∇ · v), (2.25)

and at magnetic null (B=0)

∂B

∂t
= −v · ∇B, (2.26)

∂B

∂t
+ v · ∇B = 0 (2.27)
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dB

dt
= 0, (2.28)

Therefore, 3D magnetic nulls will preserve their identity during the ideal plasma

evolution. However, the resistive Ohm’s law, which allows the magnetic recon-

nection in the system, is given as follows.

E+ v ×B = ηJ (2.29)

where η represents the magnetic diffusivity. Taking curl on both side of Eq.

(2.29),

∇× E+∇× (v ×B− ηJ) = 0, (2.30)

using Maxwell’s Eq. (1.4), we have

∂B

∂t
= ∇× (w ×B), (2.31)

where w × B = v × B − ηJ and w is a velocity which has two contributions

one from plasma velocity and other from diffusion velocity. On expanding the

right-hand side of Eq. (2.31),

∂B

∂t
= w(∇ ·B)−B(∇ ·w) + (B · ∇)w − (w · ∇)B, (2.32)

using ∇ ·B = 0,

∂B

∂t
= (B · ∇)w − (w · ∇)B−B(∇ ·w), (2.33)

and at magnetic null (B = 0),

∂B

∂t
= −(w · ∇)B, (2.34)

or
dB

dt
= 0, (2.35)
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3D magnetic null

The above Eq. (2.35) tells that even in the presence of magnetic reconnections,

the 3D magnetic null will preserve its identity in the reference frame moving

with velocity w (Hornig & Schindler, 1996). Therefore, the identity of 3D null is

preserved in both the cases, ideal and in resistive plasma, which implies that 3D

nulls can be traced in time. If a system initially consists of i number of 3D nulls

and uses Taylor’s first order expansion near each null, the magnetic field can be

written as (Greene, 1992; Murphy et al., 2015).

B = B(xi) +
∑
i

∇B|xi
· (x− xi), (2.36)

where xi are the locations of the null points. From Eq. (2.35) and (2.36), we get

B is constant. Therefore,

∑
i

∇B|xi
= constant. (2.37)

From Eq. (2.20) and (2.37), the net topological degree is

D =
∑
i

sign(det(∇B|xi
)) = constant (2.38)

Therefore, D is constant in time, i.e., the net topological degree remains con-

served with the evolution and puts stringent constraints on the change in a

number of null in time. Hence, in a system having one or more nulls, the net

topological degree of nulls is invariant (Hornig & Schindler, 1996). Consequently,

the plasma evolution, which generates and annihilates the 3D nulls, must satisfy

this fundamental constraint and is also explored in the thesis work along with

the core objective described in Sec. 1.4 through numerical simulations. For the

purpose, the employed numerical tools are described in the next chapter.



Chapter 3

Methodology and necessary

numerical tools

3.1 Data Acquisition

3.1.1 SDO

The Solar Dynamics Observatory (SDO) is the first space-weather mission in

NASA’s Living With a Star (LWS) program, launched on February 11, 2010,

into a circular geosynchronous orbit inclined by 28◦ about the longitude of the

SDO (Pesnell et al., 2012). It started providing science data on May 01, 2010.

The science goal is to determine how the Sun’s magnetic field is generated and

structured, how this stored magnetic energy is released into the heliosphere and

geospace as the solar wind, energetic particles, and variations in the solar ir-

radiance, which will lead to an increased understanding of the role that solar

variability plays in changes in Earth’s atmospheric chemistry and climate. For

the aim, the SDO mission includes three scientific instruments: Atmospheric

Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE),

and Helioseismic and Magnetic Imager (HMI). The data only from HMI and

AIA instruments have been used in this Thesis, as discussed below.

55
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Helioseismic and Magnetic Imager (HMI)

The Helioseismic and Magnetic Imager (HMI) instrument aims to study solar os-

cillations using helioseismic techniques and magnetic fields near the solar surface.

The HMI instrument is designed to measure the vector magnetic field, solar sur-

face velocity, and continuum intensity at the solar photosphere using the 6173Å

Fe I absorption line (Schou et al., 2012). HMI gives the full disk photospheric

velocity measurement (or Dopplergram) every 45 seconds with a resolution of 1

arcsec, a noise level ≈ 25m s−1, used to understand the Sun’s interior. HMI uses

the Zeeman effect (Zeeman, 1897) of the same spectral line to measure the Stokes

parameters (I, Q, U, V, defined below) required to create full-disk photospheric

Line-of-sight (LOS) and vector magnetic field maps (vector magnetogram). The

LOS magnetograms have a cadence of 45 seconds with a resolution of 1 arcsec,

a noise level of 17 G, and a dynamic range of ±3 kG. The cadence of vector

magnetograms is 12 minutes and has a polarization accuracy of no less than

0.3%. HMI thus provides the first rapid-cadence measurements of the strength

and direction of the solar magnetic field over the visible disk of the Sun. As

discussed above, the magnetic field on the Sun’s photosphere is measured using

Zeeman’s effect, in which the splitting of spectral lines occurs in the presence of

the magnetic field. The shift in the wavelength (Borrero et al., 2011) is given by

∆λ = ±4.67× 10−10geff |B|λ20 = ±0.04464|B|(mÅ) (3.1)

where ∆λ, geff , λ0, and |B| is a shift in wavelength, Landè g-factor, central wave-

length, and strength of the magnetic field, respectively. For HMI, the Fe I (6173

Å) line is used for which the Landè g-factor is 2.5 (Borrero et al., 2011). The

polarization state of the radiation is measured in the form of a Stokes vector (I,

Q, U, and V ). Where I represents the total intensity of the radiation, Q repre-

sents the intensity difference between vertical and horizontal linear polarization,

U is the intensity difference between linear polarization at +45◦ and −45◦ and V

is the intensity difference between right and left-hand circular polarization. The
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Stokes parameter can be written as (Venkatakrishnan & Gosain, 2008):

I =< E2
x > + < E2

y >, (3.2)

Q =< E2
x > − < E2

y >, (3.3)

U = Re < ExE
∗
y >, (3.4)

V = Im < ExE
∗
y > (3.5)

where, Ex and Ex are components of Electric field and <> represents the ex-

pectation value. Using Stokes vector and by employing the Very Fast Inversion

of Stokes Vector (VFISV) (Borrero et al., 2011) code, the required vector mag-

netic field is obtained (Metcalf et al., 1991). Two types of datasets are available

at the HMI pipeline first, the full disk of temporal cadence 720s and 135s and

a cylindrical equal-area active region patch with temporal cadence of 720s, for

details http://jsoc.stanford.edu/jsocwiki/HARPDataSeries. The compo-

nents of the field are the radial (Br), poloidal Bp, and toroidal Bt, which are Br,

Bp, and Bt equal to Bx, -By and Bz, respectively, in cartesian coordinate system.

The ‘hmi. sharpcea720s’ data series magnetogram from the HMI on board the

SDO has been used in one of the studies of the Thesis. This data series pro-

vides the magnetic field on a Cartesian grid, which is initially remapped onto a

Lambert cylindrical equal-area (CEA) projection and then transformed into he-

liographic coordinates (Bobra et al., 2014). For details of the data products, see

http://jsoc.stanford.edu/HMI/Vector_products.html. The coronal mag-

netic field can be constructed from these photospheric magnetograms using ex-

trapolation models. In Section 3.2, the NFFF extrapolation model, relevant to

this Thesis, is discussed.

http://jsoc.stanford.edu/jsocwiki/HARPDataSeries
http://jsoc.stanford.edu/HMI/Vector_products.html
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Atmospheric Imaging Assembly (AIA)

The AIA is an array of four telescopes that gives simultaneous high-resolution

full disk images of the surface and atmosphere of the Sun with 1.5 arcsec spatial

resolution and 12-second temporal resolution. Filters on the telescopes cover ten

different wavelength bands. The seven narrow-band imaging in extreme ultravi-

olet (EUV) bands centered on specific lines: Fe XVIII (94 Å), Fe XVII, XXI (131

Å), Fe IX (171 Å), Fe XII, XXIV (193 Å), Fe XIV (211 Å), He II (304 Å), and

Fe XVI (335 Å). Two observe in C IV (near 1600 Å) and the nearby continuum

(1700 Å), and one filter observes in the visible to align the images from other fil-

ters. With these multiple simultaneous high-resolution full disk observations, the

key aspects of the solar activity are to be revealed. The wavelength bands cover

temperature diagnostics range from 6000 K to 3 ×106K (Lemen et al., 2012).

The primary ions for each band, their characteristic emission temperatures, and

the types of solar features that may be observed are listed in the table 3.1.

Figure 3.1: The different filters of AIA centered on specific wavelength and their
corresponding observing solar atmosphere regions and different characteristic
temperatures are listed in the table. The table has been adapted from Lemen
et al. (2012).

3.1.2 Geostationary Operational Environmental Satellite

(GOES)

The data from Geostationary Operational Environmental Satellite (GOES)-15,

launched on 4 March 2010, has been used in this Thesis. GOES-15 was one of the
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many GOES. The GOESs are the mission of the National Aeronautics and Space

Administration (NASA) and are operated and managed by the National Oceanic

and Atmospheric Administration (NOAA). In September 2010, it recorded its

first data and the last data was recorded in March 2020. The class of solar

flare is defined based on X-ray flux measured by X-ray sensors onboard GOES-

15 (Antalova, 1996; Bowen et al., 2013). GOES-15 has two soft X-ray (SXR)

channels, which measure fluxes in two bands, first in (0.5-4) Åand the second in

(1-8) Å, which approximately corresponds to the energy ranges of (3-25) keV and

(1.5-12) keV, respectively. The X-ray fluxes are measured in the physical unit of

W m−2. Classes A, B, C, M, and X are defined based on the peak fluxes. The

most powerful flares in this classification are flares of the X class, corresponds

to the absolute flux of more than 10−4 W m−2 in the SXR-range, X-ray flares of

M1-M9 classes correspond to the flux from 10−5 to 10−4 W m−2, X-ray flares of

C1-C9 corresponds to the flux from 10−6 to 10−5 W m−2, X-ray flares of B1-B9

corresponds to the flux from 10−7 to 10−6 W m−2, and X-ray flares of class A

correspond to the flux less than 10−7 W m−2 (Antalova, 1996; Bowen et al., 2013;

Bruevich, 2020).

3.2 Non-Force Free Field (NFFF) extrapolation

The importance of magnetic topology in magnetic reconnection leading to various

solar eruptions is discussed in Chapter 3. Therefore, it is important to determine

the solar coronal field’s magnetic topology to understand these phenomena. In

the absence of a reliable direct measurement of the coronal magnetic field, the

viable alternative is to use the solar coronal magnetic field extrapolation model.

The photospheric plasma has high plasma-β and is not force-free, and plasma-β

is negligible at the mid-corona as suggested by (Gary, 2001), see Fig. 3.2. A

straightforward calculation gives the rationale for NFFF extrapolation (Mitra

et al., 2018). The salient features are discussed for completeness. A dimensional

analysis of the momentum balance equation of MHD will lead to the following
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for the ratio of the Lorentz force to the rate of change of momentum

|J×B|
|ρdv

dt
|

∼ B2

ρ|v|2
∼ B2

ρ|vth|2
|vth|2

|v|2
∼ 1

β

|vth|2

|v|2
(3.6)

where vth is the kinetic velocity. The above equation for the typical plasma flow

velocity and thermal velocity at the photosphere is ∼ 1 Km s−1 (Vekstein, 2016;

Khlystova & Toriumi, 2017), leads to

|J×B|
|ρdv

dt
|

∼ 1

β
, (3.7)

or

|J×B| ∼ |ρdv
dt

| (3.8)

since β ≈ 1 at the Photosphere. Therefore, Eq. (3.8) suggests that the Lorentz

force is non-zero at the photosphere, which can act as a driver for corresponding

plasma motions. Notably, the NFFF extrapolation model is different from more

widely used Non-Linear Force Free Field (NLFFF) extrapolation as it supports

a non-zero Lorentz force while such a force is zero in NLFFF.

The following briefly introduces the NFFF extrapolation model used in the

Thesis. For the extrapolation purpose, the method developed by Hu & Dasgupta

(2008); Hu et al. (2008) and uses the principle of minimum dissipation rate

(MDR), which is applicable to open dissipative systems like the solar corona

(Bhattacharyya et al., 2007). According to this principle, the terminal state of

a relaxing magnetofluid is determined by minimizing the total (Ohmic+viscous)

dissipation rate while keeping the generalized helicity dissipation rates invariant

(Bhattacharyya et al., 2007). An inhomogeneous double-curl Beltrami equation

for the magnetic field B given by (Bhattacharyya & Janaki, 2004; Bhattacharyya

et al., 2007) is being solved.

∇×∇×B+ a1∇×B+ a2B = ∇ψ, (3.9)
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Figure 3.2: The figure depicts the model of plasma β variation with height. The
figure has been adapted from Gary (2001).

where a1 and a2 are the constants. This equation can be written as

∇×∇×B′ + a1∇×B′ + a2B
′ = 0, (3.10)

where B′ = B − ∇ψ/a2. The solution to a double-curl Beltrami equation (Eq.

3.10) can be given by using Chandrasekhar-Kendall functions, forming a com-

plete orthonormal basis.

B = B1 +B2 +B3; ∇×Bi = αiBi, (3.11)
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where i = 1, 2, 3 and αi are constant for a given Bi(Hu & Dasgupta, 2008; Hu

et al., 2008). Here, each sub-field Bi represents a linear force-free field (LFFF)

characterized by specific constants αi. Without a loss of generality, a selection

α1 ̸= α3 and α2 = 0 can be made, implying B2 a potential field. By taking curl

two times on both sides of Eq. (3.11), one can obtain the following,


B1

B2

B3

 = υ−1


B

∇×B

∇×∇×B

 , (3.12)

where υ−1 is the Vandermonde matrix and given below.

υ−1 =


1 1 1

α1 α2 α3

α2
1 α2

2 α2
3

 (3.13)

is non-singular if αs are distinct. According to Eq. (3.11), one can get the

final extrapolated field by summing the three LFFFs. Subsequently, an iterative

approach is employed to determine the optimal pair α = α1, α3, which finds the

pair by minimizing the average deviation between the observed (Bt) and the

calculated (bt) transverse field on the photospheric boundary. Effectively, the

metric

En =

( M∑
i=1

|Bt,i − bt,i| × |Bt,i|
)/( M∑

i=1

|Bt,i|2
)
, (3.14)

whereM = n2 represents the total number of grid points on the transverse plane

is iteratively minimized (Prasad et al., 2018).

The iteration starts with k = 0, i.e. B
(k)
2 = cminB

′ in the extended series

of potential field, B
(k)
2 , k = 0, 1, 2, 3, ..., and devise an iteration procedure as

depicted in Fig. 3.3. In the flow chart, Y and N represent the Yes and No

satisfying criterion shown in the logic boxes, and kmax represents the maximum

number of iterations. The En can be evaluated by Eq. 3.14, and if the value

is small enough, the process ends. Otherwise, iteration goes to the next step

(k = k + 1), in which the next sub-potential field in the series is obtained from
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∇bt = Bt − bt, add it to the existing series, and repeat the computation. To

achieve an optimal value of En, a corrector potential field B2 is further derived

from the difference transverse field, i.e., Bt − bt, and added to the previous B2

in anticipation of an improved match between the transverse fields, as measured

by the En. In the Eq. 3.14, the grid points are weighted with respect to the

Figure 3.3: The flow chart of coronal magnetic field extrapolation algorithm
to obtain extrapolated coronal magnetic field, using singe-layer vector magne-
togram. The figure has been taken from Hu et al. (2010).

strength of the observed transverse field to minimize the contribution from the
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weaker fields (see Hu & Dasgupta (2008); Hu et al. (2010), for further details).

3.3 Detection of 3D magnetic null

3.3.1 A trilinear method to detect the 3D null points

3D null points are important locations in the magnetic field, as discussed in

Chapter 3. A trilinear method is utilized to locate the 3D nulls in the data

cube generated from the numerical simulations (Haynes & Parnell, 2007). These

numerical experiments provide the data in a cube grid, which can divide the

computational domains into a grid of cells. The knowledge of the field between

the grid points is required to trace the field lines within the cells. The field is

interpolated using the trilinear interpolation method to estimate the field be-

tween grid points. The linear, bilinear, and trilinear interpolation methods are

discussed below.

Linear interpolation

The simplest form of interpolation between B(0) and B(1) in one-dimension (1D)

is linear interpolation, which generates an equation of the form

B(x) = B(0) + [B(1)−B(0)]x (3.15)

By rearranging the above equation, one gets

B(x) = [1− x]B0 + xB1, (3.16)

where B0 = B(0) and B1 = B(1).

Bilinear interpolation

Similar to 1D interpolation, two-dimensional (2D) interpolation can be obtained

by interpolating linearly along the horizontal sides of a square of unit length and

then by linear interpolation between the two resulting points. Points along the
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bottom of the square are given by B0(x) = (1 − x)B00 + xB10 and along the

top by B1(x) = (1 − x)B01 + xB11, where B00 = B(0, 0),B01 = B(0, 1), and

B11 = B(1, 1) etc. Then the field at a point x, y is given by interpolating along

the vertical line of constant x between points B0(x) and B1(x). Hence,

B(x, y) = (1− y)B0(x) + yB1(x) (3.17)

= (1− x)(1− y)B00 + x(1− y)B10 + (1− x)yB01 + xyB11 (3.18)

B(x, y) = a+ bx+ cy + dxy (3.19)

where a = B00, b = B10 −B00, c = B01 −B00, and d = B11 −B10 −B01 +B00.

A similar result can be obtained by doing the first vertical interpolation followed

by the horizontal interpolation.

Trilinear interpolation

By expanding 2D interpolation to three-dimensional (3D), the trilinear interpo-

lation for the field at a point (x, y,z) inside a cube of unit length can be obtained.

B(x, y, z) = a+ bx+ cy + dxy + ez + fxz + gyz + hxyz. (3.20)

where a = B000,

b = B100 −B000,

c = B010 −B000,

d = B110 −B100 −B010 +B000,

e = B001 −B000,

f = B101 −B100 −B001 +B000,

g = B011 −B010 −B001 +B000,

h = B111 −B110 −B101 −B011 +B100 +B010 +B001 −B000,

and B000 = B(0, 0, 0), B111 = B(1, 1, 1) etc. The values of these constants are

unique for each cube. These equations form a trilinear interpolation and give

equal values on the shared surface of adjacent cubes (Haynes & Parnell, 2007).
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Location of null point on the surface

If a 3D null is at a surface, it can be located as follows. From bilinear interpolation

discussed in Sect.3.3.1.

Bi(x, y, z) = ai + bix+ ciy + dixy, (3.21)

where i ∈ (1, 2). At the null point, B1(x, y, z) = B2(x, y, z) = 0 should be

satisfied. Therefore, for a given value of x, the resulting 2D coordinate is found

using

y =
−(ai + bix)

(ci + dix)
(3.22)

or for a given value of y

x =
−(ai + biy)

(ci + diy)
(3.23)

3.3.2 Algorithm for finding null point

The trilinear null finding method can be divided into three distinct parts, namely,

(i) reduction; in this part, every cell gets quickly scanned, and the cells that do

not contain a null point are removed. (ii) This part confirms if a null point does

or does not lie inside a flagged grid cell. (ii) The last (third) part then finds

the position of the null point within the grid cell. The following briefly discusses

these three parts of the trilinear null-finding method.

Reduction

This stage of the algorithm scans every grid cell and examines whether a null

point can exist inside the grid cell by assuming that the field is linear or trilinear

within each cell. This implicit assumption implies that there is sufficient resolu-

tion in the data. Consequently, it constrains the minimum and maximum values

of Bx, By, and Bz at the corners of the cell. Therefore, if Bx is non-zero and

has the same sign at each corner of the cell, it can not be zero. Similarly for

By, and Bz. The sign of the Bx, By, and Bz should be opposite at each corner

of the cell for the existence of the null. Failing of this condition, i.e., if any of
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the three magnetic field components have the same sign at all eight corners of

any cell. That cell is removed from the further analysis since it can not contain

a null point.

Analysis

The analysis part of the method is based upon the fact that if a null point exists,

it must lie on all three of the following curves: Bx=By=0, Bx=Bz= 0, and

By=Bz=0. These curves must be one of two types: (i) a loop inside a cell. In

this scenario, there will be two nulls within the cell, which implies considerable

subgrid structure and clearly shows insufficient grid resolution. (ii) a curve that

extends through the boundary of the cell at each end. This case is the most

important as the trilinear algorithm is designed to detect these types of null

points. The lines Bx=0, By= 0, and Bz= 0 on the cell’s surface are found, and

the remaining magnetic field components change their sign respectively along

the surface. Then, the null point exists on the surface and can be located using

the method described in Sect. 3.3.1. For the corners, Bx=By=0, Bx=Bz= 0,

and By=Bz=0, and if Bz, By, and Bx change their sign along these corners, then

the null point will exist and can located using Eq. (3.16). Finally, if all three

components, Bx, By, and Bz, change their sign inside the cell, then the null point

exists inside the cell and can be located by the method described in Sect.3.3.2.

Location of the null point

Once the existence of a null point has been confirmed within a given cell, then

null gets located to subgrid resolution. There are many possible methods for

locating the nulls at the subgrid scale. However, the following 3D Newton-

Raphson method, which is fast and generally successful, is employed. A 3D

version of the iterative Newton-Raphson method for finding roots of equations

is given by

x⃗i+1 = x⃗i − [∇B|x⃗i
]−1B⃗i(x⃗i), (3.24)
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where [∇B]ij =
∂Bi

∂xj
and x⃗i is location of initial guess for the null. This calculation

is repeated until |x⃗i+1− x⃗i| or B⃗i(x⃗i) is less than a given tolerance. The trilinear

method chooses the initial guess x⃗0 to be at either the center of the cell or a

cell corner to locate the null. The distinct initial points are tried in this method

until the iterative method succeeds at some point within the cell. If this method

fails, the grid cell is split into eight subgrid cells using trilinear interpolation,

and the trilinear method is used again on these eight new cells to locate the null.

In general, the trilinear method is accurate for most nonlinear fields, and null

points may be falsely created or destroyed, either in pairs or lost through the

boundaries of the domain where the field within a cell is highly nonlinear. If we

constrain the field to be trilinear within cells, the trilinear method is accurate

with the exception when two null points exist within one cell, making it highly

suitable for numerical magnetic fields (Haynes & Parnell, 2007).

Calculation of topological degree and nature of 3D nulls

The trilinear null detection technique has been employed to detect the 3D nulls

studied in the Thesis, which is developed by (Chiti, 2020) based on the theory

mentioned in Sect.3.3. It gives the location (x, y, z) of the 3D nulls and the value

of |B| at that position. The script is written in Python programming language

and can be found at https://zenodo.org/record/4308622#.YByPRS2w0wc.

However, the modified version of the code provides the topological degree (see

Sect. 2.4.3) of each detected 3D null (Maurya et al., 2024). It also provides

the eigenvalues as well as eigenvectors calculated at the detected nulls, which

ultimately gives information about the nature (spiral or radial) (for theory, refer

to Sect. 2.4.2) of nulls (Maurya et al., 2024).

3.4 Numerical Model

A successful numerical simulation of active region dynamics requires stringent

satisfaction with the condition of flux-freezing away from the reconnection sites,

while at the sites, the requirement is to break the flux-freezing and allow for

https://zenodo.org/record/4308622#.YByPRS2w0wc
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diffusion of magnetic field lines. In other words, the necessity is an intermittent

diffusivity that appears only when and where the magnetic reconnections occur.

For our computations, we utilize the well-established numerical model EULAG-

MHD (Smolarkiewicz & Charbonneau, 2013), which is an extension of the hy-

drodynamic model EULAG predominantly used in atmospheric and climate re-

search (Prusa et al., 2008). The EULAG-MHD is based on the spatio-temporally

(at least) second-order accurate non-oscillatory forward-in-time (NFT) advection

scheme multidimensional positive definite advection transport algorithm, MP-

DATA, (Smolarkiewicz & Margolin, 1998; Smolarkiewicz, 2006). The accuracy

of MPDATA ensures the satisfaction of the flux-freezing with a high fidelity away

from the reconnection region. Additionally, a feature unique to MPDATA and

important in our calculations is its proven effectiveness in generating an intermit-

tent and adaptive residual dissipation whenever the concerned advective field is

under-resolved (Margolin et al., 2006). The magnetic nulls and QSLs, in the ab-

sence of magnetic diffusion, provide an unbound sharpening of the corresponding

field gradient and inevitably generate under-resolved scales. The MPDATA then

produces the residual dissipation to regularize these scales through the onset of

simulated magnetic reconnections. In the following, we present salient features

of the EULAG-MHD that are relevant to our simulations.

3.4.1 Advection solver MPDATA

MPDATA is a finite-difference algorithm invented by P. K. Smolarkiewicz in

the early 1980s (Smolarkiewicz, 1983, 1984; Smolarkiewicz & Clark, 1986). The

algorithm is at least second-order accurate, positive definite, conservative, and

computationally efficient. The second-order accuracy in MPDATA is achieved

by utilizing the first-order accurate donor cell (also known as upstream or up-

wind) scheme in an iterative manner. The first iteration is a simple donor cell

differencing. With a donor cell solution obtained from the first iteration, MP-

DATA increases the accuracy of the calculation by estimating and compensating

for (second-order) truncation error in the second iteration. Similarly, additional

iterations can be performed to approximately compensate the residual error pro-
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duced from the previous iteration, which further enhances the accuracy. Since

its invention, MPDATA has been extended to curvilinear coordinates, full mono-

tonicity preservation, third-order accuracy, and variable sign fields; details can be

found in (Smolarkiewicz & Margolin, 1998; Smolarkiewicz, 2006). Here, we dis-

cuss basic concepts underlying the design of the MPDATA scheme in Cartesian

coordinates.

Derivation of MPDATA

To fix ideas, we consider a simple one-dimensional advection equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
= 0 (3.25)

for a scalar variable ϕ. The velocity k may also be a function of space and time.

The donor cell discretization of the advection equation is given by,

ϕn+1
i = ϕn

i −
∂t

∂x
(ki+ 1

2
ϕn
r − ki− 1

2
ϕn
l ) (3.26)

where ϕn
r and ϕn

l are chosen depending on the sign of ki+ 1
2
and ki− 1

2
:

ϕn
r =

{ϕn
i , k

i+1
2
>0,

ϕn
i+1, k

i+1
2
<0,

(3.27)

and

ϕn
r =

{ϕn
i−1, k

i−1
2
>0,

ϕn
i , k

i−1
2
<0,

(3.28)

with the integer and half-integer indices corresponding to cell centers and cell

walls. In Eq. (3.26), ϕn+1
i on the LHS is the solution sought at the grid point

(tn+1, xi) with δt = tn+1−tn and δx = xi+1−xi representing temporal and spatial

increments respectively. The above case distinctions can be avoided by writing
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the Eq. (3.26) in the following form,

ϕn+1
i = ϕn

i −
∂t

2∂x
(ki+ 1

2
(ϕn

i +ϕ
n
i+1)−ki− 1

2
(ϕn

i−1+ϕ
n
i )+|ki+ 1

2
|(ϕn

i −ϕn
i+1)−|ki− 1

2
|(ϕn

i−1−ϕn
i )

(3.29)

Notably, if the sign of k determines the flow direction, this scheme always chooses

the values of ϕ (for a given time), which lies in the upstream direction (Griebel

et al., 1997). The donor cell approximation in flux form is expressed as,

ϕn+1
i = ϕn

i [F (ϕ
n
i , ϕ

n
i+1,Ui+ 1

2
)− F (ϕn

i−1, ϕ
n
i ,Ui− 1

2
)], (3.30)

where the flux function F is

F (ϕL, ϕR,U) = [U]+ϕL + [U]−ϕR, (3.31)

U ≡ aδt
δx

represents the dimensionless local Courant number while, [U]+ ≡ 0.5(U+

|U|) and [U]− ≡ 0.5(U− |U|) denoting the nonnegative and nonpositive parts of

the Courant number (Smolarkiewicz & Margolin, 1998; Smolarkiewicz, 2006).

The donor cell scheme is conditionally stable, and the corresponding stability

condition, for every time step, has a form

max

(
|ki+ 1

2
|δt

δx

)
≤ 0∀i. (3.32)

Moreover, under the condition Eq. (3.32), the scheme is also positive definite,

implying if ϕ0
i ≥ 0,∀i and n. These two properties, as well as low computational

cost and low phase error, make the scheme (Eq. (3.30)) attractive for the numer-

ical evaluation of the advection equation. However, the scheme being first-order

accurate (both in space and time) produces large implicit numerical diffusion.

To quantify the diffusion in Eq. (3.30), we assume k to be constant and ϕ to

be nonnegative for simplicity. A straightforward truncation analysis, expanding

all dependent variables in a second-order Taylor series about the time level n

and spatial point i, reveals that the scheme more accurately approximates the
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advection-diffusion equation

∂ϕ

∂t
=
∂(kϕ)

∂x
+

∂

∂x

(
K
∂ϕ

∂x

)
(3.33)

where the diffusion coefficient

K =
δx2

2δt
(|U| − U2) (3.34)

In other words, the scheme estimates the solution of the advection equation with

a second-order truncation error. To enhance the accuracy, it is necessary to

construct a numerical estimate of the error and subtract it from Eq. (3.30).

The basic strategy, fundamental to all MPDATA schemes, is then to once again

utilize a donor cell approximation to calculate the error term in order to preserve

the properties of the donor cell scheme. To do so, the error term, the RHS term

of Eq. (3.33), is rewritten as

e1 ≡ ∂

∂x

(
K
∂ϕ

∂x

)
≡ ∂(k1ϕ)

∂x
(3.35)

where e1 symbolizes error term and k1 ≡ K
ϕ

∂ϕ
∂x

is termed as pseudo velocity. The

superscript (1) is used to mark the first iteration for subtracting the error. To

compensate the error, we again use the donor cell scheme, but this time with

the pseudo velocity k1 and the ϕn+1 already available from Eq. (3.30) in lieu of

the physical velocity k and the ϕn. A first-order accurate estimate of the pseudo

velocity is

k1
i+ 1

2
≡ 2K

δx

ϕ
(1)
i+1 − ϕ

(1)
i

ϕ
(1)
i+1 + ϕ

(1)
i

(3.36)

where ϕ(1) represents the first-order accurate ϕn+1 estimated from Eq. (3.30).

The modified Courant number is V 1
i+ 1

2

≡
k1
i+1

2

δt

δx
. In the second iteration, we

subtract a donor cell estimate of the error to improve the accuracy. The equation

of the second iteration is

ϕ2
i = ϕ1

i −
[
F
(
ϕ1
i , ϕ

1
i+1, V

1
i+ 1

2

)
− F

(
ϕ1
i−1, ϕ

1
i , V

1
i− 1

2

)]
(3.37)
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which estimates ϕn+1 which is the second-order accurate while preserving the

sign of ϕ. It is an easy matter to show that, like the donor cell scheme, MP-

DATA is consistent and conditionally stable (Smolarkiewicz, 1983; Smolarkiewicz

& Margolin, 1998; Smolarkiewicz, 2006). However, in contrast to the donor

scheme, MPDATA does not contain strong numerical implicit diffusion because

of the improved accuracy. The extension of MPDATA to multiple dimensions is

straightforward. To demonstrate, we consider a simple two-dimensional advec-

tion equation,
∂ϕ

∂t
+
∂(kϕ)

∂x
+
∂(lϕ)

∂y
= 0, (3.38)

where k and l are velocities in the x and y directions. The corresponding donor

cell approximation is then

ϕn+1
i,j = ϕn

i,j −
[
F
(
ϕn
i,j, ϕ

n
i+1,j, Ui+ 1

2
,j

)
− F

(
ϕn
i−1,j, ϕ

n
i,j, Ui− 1

2
,j

)]
−
[
F
(
ϕn
i,j, ϕ

n
i,j+1, Ui,j+ 1

2

)
− F

(
ϕn
i,j−1, ϕ

n
i,j, Ui,j− 1

2

)]
(3.39)

where the flux function is similar to Eq. (3.31) and, U ≡ kδt
δx

and V ≡ lδt
δy

are

Courant numbers. Further, the Taylor’s series expansion of Eq. (3.39) about the

cell point (i, j) and the time level n with constant velocities yields the following

advection-diffusion equation,

∂ϕ

∂t
+
∂(kϕ)

∂x
+
∂(lϕ)

∂y
= K

∂2ϕ

∂x2
+ L

∂2ϕ

∂y2
− UV δxδy

δt

δ2ϕ

δxδy
, (3.40)

with K ≡ δx2

2δt
(|U| − U2) and L ≡= δy2

2δt
(|V| − V2). To estimate the truncation

error using the donor cell scheme, we rewrite the error terms, the RHS terms of

Eq. (3.40), in the following form

K
∂2ϕ

∂x2
+ L

∂2ϕ

∂y2
− UV δxδy

δt

δ2ϕ

δxδy
=
∂(k1ϕ)

∂x
+
∂(l1ϕ)

∂y
(3.41)

where

k1 ≡ K

ϕ

∂ϕ

∂x
− UV δxδy

2δt

1

ϕ

δϕ

δy
(3.42)
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and

l1 ≡ L

ϕ

∂ϕ

∂y
− UV δxδy

2δt

1

ϕ

δϕ

δx
(3.43)

are pseudo velocities in the x and y directions. Utilizing these velocities and

updated value of ϕn+1 from Eq. (3.30), the donor cell scheme is used to estimate

the error. In the second iteration, the error is subtracted to enhance the accuracy.

Extension to generalized transport equation

The general transport equation is

∂φ

∂t
+∇ · (Kφ) = R, (3.44)

where R combines all forcing and source terms. In general, both R and velocity

k depend on variable φ. The forward-in-time discretization of Eq. (3.44) is

assumed as,
φn+1 − φn

δt
+∇ · (kn+ 1

2φn) = Rn+ 1
2 . (3.45)

Expansion of 3.45 into the second-order Taylor series about the time level n

shows that the scheme 3.45 approximates to the equation

∂φ

∂t
+∇·(kφ) = R−∇·[0.5δtk(k · ∇φ) + 0.5δtkφ(∇ · k)]+∇·(0.5δtkR)+O

(
δt2
)
.

(3.46)

In RHS of Eq. (3.46), all O(δt) truncation errors originated by uncentered time

differencing in Eq. (3.45) are already expressed by spatial derivatives. Specifi-

cation of the time levels of both the advective velocity and the forcing term as

n + 1
2
in Eq. (3.45) eliminates O(δt) truncation errors which are proportional

to their temporal derivatives (Smolarkiewicz & Clark, 1986). From Eq. (3.46),

it is clear that the formulation of second-order accurate forward-in-time scheme

for Eq. (3.44) requires the compensation of O(δt) truncation errors to at least

the second-order accuracy. For such a formulation, we note O(δt) error terms in

Eq. (3.46) have two distinct components. The first component is merely due to

advection and does not involve the forcing R. In contrast, the second component
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depends on the forcing R. Toward compensating the first component, notable

is the reduction of Eq. (3.44) to a homogeneous transport equation for R = 0.

Then, MPDATA scheme retains the form of the basic scheme (subsection 3.4.3)

where the first donor cell iteration utilizes the advective velocity kn+2 and φn,

and subsequent iterations use pseudo velocities and φ calculated from the pre-

ceding iteration; for details cf. (Smolarkiewicz, 1991; Smolarkiewicz & Margolin,

1993, 1998; Smolarkiewicz, 2006). Compensation of the second component re-

quires subtraction of a first-order accurate approximation of the error from the

RHS of Eq. (3.45). A simple, efficient, and second-order accurate MPDATA for

Eq. (3.44) can then be symbolically written as,

φn+1
i = Ai

(
φn + 0.5δtRn,Kn+ 1

2

)
+ 0.5δtRn+1

i , (3.47)

where A denotes the basic MPDATA advection scheme (Smolarkiewicz, 1991;

Smolarkiewicz & Margolin, 1993). In this equation, we assume Rn+2 =

0.5 (Rn +Rn+1) with Rn+1 representing 0(δt2) accurate approximation of R at

time level (n + 1). Noticeably, the first donor cell iteration in the MPDATA

scheme uses the auxiliary variable φn + 0.5δtRn in lieu of the physical variable

φn with a physical advective velocity kn+
1
2 . The advection of the auxiliary field

is important for preserving the global accuracy and stability of the forward-

in-time approximations (Smolarkiewicz, 1991; Smolarkiewicz & Margolin, 1993;

Smolarkiewicz & Margolin, 1997).

The advective velocity at intermediate n+ 1
2
time level may be approximated

by linear interpolation or extrapolation

kn+ 1
2 =

1

2

(
kn+1 + kn

)
, (3.48)

kn+ 1
2 =

1

2

(
3kn − kn−1

)
, (3.49)

either of which is sufficient to maintain second-order accuracy in Eq. (3.47).

For the subtleties involved in a particular choice of kn+ 1
2 , readers are refereed to

(Smolarkiewicz & Clark, 1986).
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Nonoscillatory MPDATA

The basic MPDATA scheme discussed above preserves sign1 but not monotonic-

ity of the advected variables (Smolarkiewicz, 1983, 1984; Smolarkiewicz & Clark,

1986) and, in general, the solutions are not free of spurious oscillations partic-

ularly in presence of steep gradients (Smolarkiewicz & Grabowski, 1990; Smo-

larkiewicz, 1991). However, MPDATA is made fully monotone (Smolarkiewicz,

1991) by adapting the flux-corrected-transport (FCT) methodology (Boris &

Book, 1973; Book et al., 1975; Boris & Book, 1976). Actually, MPDATA is well

suited for this kind of approach for a number of reasons. First, the initial MP-

DATA iteration is the donor cell scheme—a low-order monotone scheme which

is commonly used as the reference in the FCT design. Second, assuring the

monotonicity of subsequent iterations provides a higher-order accurate reference

solution for the next iteration with the effect of improving the overall accuracy

of the resulting FCT scheme. Third, since all MPDATA iterations have sim-

ilar low phase errors characteristic of the donor cell scheme (Smolarkiewicz &

Clark, 1986), the FCT procedure mixes solutions with consistent phase errors.

This significantly improves the overall accuracy of the resulting FCT scheme

(Smolarkiewicz & Grabowski, 1990).

3.4.2 EULAG-MHD

The numerical model EULAG is an established model for simulating fluid flows

across a wide range of scales and physical scenarios (Prusa et al., 2008). The

name EULAG alludes to the capability to solve fluid equations in either an

Eulerian (Smolarkiewicz & Margolin, 1993) or a Lagrangian (Smolarkiewicz &

Pudykiewicz, 1992) mode. The numerics of EULAG are unique, owing to a com-

bination of MPDATA advection schemes, robust elliptic solver, and generalized

coordinate formulation enabling grid adaptivity. The EULAG-MHD is a spin-off

of the numerical model EULAG (Charbonneau & Smolarkiewicz, 2013). Here, we

describe the numerical apparatus of EULAG-MHD utilized for our calculations.

1For historical reasons, we refer to this property as positive-definiteness in the previous
subsections.
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Governing equations of EULAG-MHD

MHD equations for an incompressible magnetofluid with infinite electrical con-

ductivity are cast in the following form

dv

dt
= −∇π +

1

4πρ0
B · ∇B+ Fν , (3.50)

dB

dt
= B · ∇v −B∇ · v, (3.51)

∇ · v = 0, (3.52)

∇ ·B = 0, (3.53)

in non-rotating Cartesian coordinates. The Lagrangian derivative is related to

the Eulerian derivative in the usual manner

d

dt
≡ ∂

∂t
+ (v · ∇) . (3.54)

Importantly, by incompressibility we mean dρ
dt

= 0 and ρ =constant. Although

incompressibility approximation is a restrictive approximation for the coronal

plasma, it was also used in earlier works (Dahlburg et al., 1991; Aulanier et al.,

2005). Moreover, the compressibility of the fluid is important for the thermody-

namics of the coronal loops (Ruderman & Roberts, 2002), whereas the magnetic

topology is not affected by viscosity. On the RHS of the momentum transport

equation (3.50), π is a density normalized pressure in which thermodynamic pres-

sure is subsumed to magnetic pressure. Fν symbolizes the viscous drag force. All

other symbols have their usual meaning. On a general note, EULAG’s governing

equations are formulated and solved in transformed time-dependent generalized

curvilinear coordinates

(t̄, x̄) ≡ (t, F (t, x)) , (3.55)

The physical domain (t, x), where the physical problem is posed, is assumed

to be any stationary orthogonal coordinate system (i.e., Cartesian, spherical,

and cylindrical). Moreover, the transformed horizontal coordinates (x̄, ȳ) are as-
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sumed to be independent of the vertical coordinate z (Prusa & Smolarkiewicz,

2003)(Prusa & Smolarkiewicz, 2003). The calculations carried out in this Thesis

implement the physical domain to be Cartesian and, therefore, both the compu-

tational domain and the physical domain are identical, i.e., (t̄, x̄) ≡ (t, x). Here,

we present the details of the EULAG-MHD for the Cartesian domain. The gen-

eralized coordinate formulation of EULAG-MHD utilizes the rigorous tensorial

exposition of MHD equations; cf. (Smolarkiewicz & Charbonneau, 2013).

Numerics

Utilizing equations (3.52) and (3.51), the momentum transport equation (3.50)

and the induction equation (3.51) can be rewritten as,

∂Ψ

∂t
+∇ · (vΨ) = R (3.56)

where

Ψ = {v,B}T (3.57)

represents the vector of dependent variables and

R = {Rv,RB}T (3.58)

denotes the RHS forcing terms in Eqs. (3.50) and (3.51). Notably, in Eq. (3.56),

the Lorentz force term of the momentum transport equation and the convective

term of the induction equation is cast in the conservative forms via relations,

B · ∇B = ∇ ·BB,B · ∇v = ∇ ·Bv. (3.59)

In addition, an ad hoc term −∇π∗ is added to the RHS of the induction equation,

in the spirit of the pressure π in the momentum transport equation, to ensure

∇ ·B = 0 in numerical integrations. The equation (3.56) is integrated using the

non-oscillatory forward-in-time algorithm MPDATA. Following section (3.4.1),

an EULAG template algorithm for integration of the (3.56) can be compactly
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written as,

Ψn+1
i = Ai

(
Ψn + 0.5δtRn,vn+ 1

2

)
+ 0.5δtRn+1

i ≡ Ψ̂i + 0.5δtRn+1
i , (3.60)

where Ψn+1
i is the solution sought at the grid point (tn+1, xi). For an inviscid

dynamics (Fν = 0), the model template algorithm (3.60) is implicit for all de-

pendent variables in Eqs. (3.50) and (3.51 because all forcing terms are assumed

to be unknown at time level n+ 1. To retain the proven structure of Eq. (3.60)

for the MHD system, the EULAG-MHD template can be viewed as

Ψn+1,q
i = Ψ̂i +

δt

2
LΨ|n+1,q

i +
δt

2
N(Ψ)|n+1,q−1

i − δt

2
∇Θ|n+1,q

i , (3.61)

where the RHS forcing R is decomposed into linear term LΨ with L denoting

a linear operator, non linear-term N(Ψ)), and potential term −∇Θ with Θ =

(π, π, π, π∗, π∗, π∗). In Eq. (3.61), q = 1, ...,m numbers fixed point iterations.

The algorithm Eq. (3.61) is still implicit with respect to the forcing terms LΨ

and −∇Θ. Using straightforward algebraic manipulations, the representation

Eq. (3.61) can be cast into a closed form

Ψn+1,q
i = [I− 0.5δtL]−1

(
ˆ̂
Ψ− 0.5δt∇Θn+1,q

)
i
, (3.62)

where the explicit element is modified to

ˆ̂
Ψ = Ψ̂+ 0.5δtN(Ψ)|n+1,q−1. (3.63)

The viscous forcing within this algorithm framework is incorporated by inte-

grating explicitly to the first-order accuracy in time and then adding to the

auxiliary argument of MPDATA operator A. Now the argument modifies as

Ψ̃ = Ψn + 0.5δt(Rn + 2R̃) where R̃ symbolizing the first-order time accurate

viscous forcing. All the dependent variables being spatially co-located in Eq.

(3.62), the time updated Ψ is obtained by solving two discrete elliptic equations

for π and π∗ generated by the solenoidality constraints Eqs. (3.52) and (3.53)
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discretized consistently with the divergence operator implied by A; see (Prusa

et al., 2008). Under appropriate boundary conditions, these elliptic equations are

solved iteratively using a preconditioned generalized conjugate residual (GCR)

algorithm (Eisenstat, 1983; Eisenstat et al., 1983; Smolarkiewicz & Margolin,

1997). Because the GCR is an iterative scheme, to distinguish the iterations

appearing in Eq. (3.61) and in the GCR solver, the iteration in Eq. (3.61) is

refereed as “outer”, while the iteration corresponds to GCR is termed as “in-

ner.” The convergence of the outer iteration is generally controlled by the time

step of the model and monitored by the convergence of the inner iteration in

the GCR solvers (Smolarkiewicz & Szmelter, 2009, 2011). With the completion

of the outer iteration loop, the solution updates, and the total implicit forcing

RI = LΨ − ∇Θ in Eq. (3.61) is returned as RIni = 2
δt

(
Ψn

i −
ˆ̂
Ψi

)
. While the

total explicit forcing RE = N(Ψ) + R̃ is calculated according to its definition

using the updated solution, soREn
i = REi(Ψ

n). The total forcingR = RI+RE

is then stored for use in the subsequent time step in the auxiliary argument of

the MPDATA operator in Eq. (3.60).

In the following, we briefly discuss the actual implementation of the iterative

formulation of Eq. (3.60). The iterations progress stepwise such that the most

current update of a dependent variable is used in the ongoing step, wherever

possible. Each outer iteration has two distinct blocks. The first block involves the

integration of the momentum transport equation where the magnetic field enters

the Lorentz force and is taken as supplementary. Being at the half of a single

outer iteration, it is denoted by the index q − 1
2
. This block ends with the final

update of the velocity via the solution of the elliptic equation for π. Hence, this

block actually mirrors the standard EULAG solution of hydrodynamic equations

(Prusa et al., 2008), leading to the nomenclature “hydrodynamic block”. The

second block, referred to as the “magnetic block,” uses the current updates of

the velocities to integrate the induction equation. It ends with the final update

of the magnetic field via the solution of the elliptic equation for π∗ to clean the

divergence of the magnetic field. In the following, we summarize the sequence of

steps fulfilled at each outer iteration for integrating the MHD Eqs. (3.50)-(3.53).
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For brevity, the superscripts n are dropped everywhere, as by now, there should

be no ambiguity. Moreover, at q = 1 the initial guess for v and B is assumed as

v0 = 2vn+1 − vn, and B0 = 2Bn+1 −Bn, respectively.

The first step of the hydrodynamic block starts with the estimation of the

magnetic field Bq− 1
2 at time tn+1 by inverting the induction equation,

B
q− 1

2
i = B̂i + 0.5δt

[
Bq− 1

2 · ∇vq−1 −Bq− 1
2 tr∇vq−1

]
i
. (3.64)

The subsequent step uses this latest magnetic field to obtain velocity following

the standard EULAG procedure,

vq
i = vi +

0.5δt

ρ0µ0

(∇ · (BB)
q− 1

2
i − 0.5δt (∇π)qi . (3.65)

Plugging this velocity in the discrete form of the Eq. (3.52) produces the elliptic

equation for the pressure π, the solution of which provides the updated solenoidal

velocity v. The first step of the magnetic block begins with the estimation of the

magnetic field Bq− 1
4 at tn+1 using the update velocity, and the latest magnetic

field is evaluated implicitly in analogy to Eq. (3.64):

B
q− 1

4
i = B̂i + 0.5δt

[
Bq− 1

4 · ∇vq −Bq− 1
4 tr{∇vq}

]
i
. (3.66)

where the superscript q− 1
4
is symbolized as such for being a quarter of iteration

away from the accomplishment. The subsequent step follows in the spirit of the

momentum transport equation, using the conservative form of the forcing terms

in the induction equation:

Bq
i = B̂i + 0.5δt

(
∇ ·Bq− 1

4vq
)
i
− 0.5δt (∇π∗)qi . (3.67)

Implementing the magnetic field in the discrete form of the solenoidality condi-

tion Eq. (3.53) produces the elliptic equation for auxiliary pressure term π∗, the

solution of which provides the updated solenoidal magnetic field B.

EULAG-MHD is parallelized with MPI (Message Passing Interface), which
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supports NetCDF for writing output data. For visualization of magnetic field

lines, the VAPOR (Visualization and Analysis for Ocean, Atmosphere, and So-

lar Researchers) developed by the National Center for Atmospheric Research

(NCAR) is utilized. VAPOR can easily handle data up to terabytes (Clyne

et al., 2010). The magnetic field lines are traced by using VAPOR’s field line

advection technique under the influence of flow vector (Clyne et al., 2010). The

EULAG-MHD model is presently running on the High-Performance Computing

Cluster: Param Vikram-1000, operational at the Physical Research Laboratory,

which has 108 computing nodes dispensing 7296 CPU cores, 2,76,480 GPU Cores,

74 TB of RAM, and 1 PB of high-performance Lustre parallel filesystem (the

details can be found at https://www.prl.res.in/prl-eng/paramvikram1000).

3.4.3 Implicit large eddy simulation

As discussed above, EULAG-MHD is based on the MPDATA advection scheme.

Notably, the higher-order truncation terms of MPDATA provide an implicit tur-

bulence model (Domaradzki et al., 2003; Margolin et al., 2006) and hence, al-

low to perform LESs without utilizing an explicit subgrid model (Smolarkiewicz

& Prusa, 2002; Domaradzki et al., 2003; Domaradzki & Radhakrishnan, 2005;

Rider, 2006; Prusa et al., 2008). In contrast to the standard LESs, which filter

out the under-resolved scales by applying explicit subgrid-scale models, MP-

DATA filter-outs the under-resolved scales by utilizing the residual dissipation—

intermittent and adaptive to the generation of under-resolved scales—produced

via numerics which mimics the action of explicit subgrid-scale turbulence models.

In literature, such calculations relying on the properties of non-oscillatory numer-

ics are referred to as implicit large eddy simulations (ILESs). A detailed review

along with numerous examples of ILES is given in a book edited by Grinstein &

Drikakis (2007), which includes its applications to local and global solar/stellar

convection. In a simulation with fixed grid resolution, under-resolved scales ap-

pear at the reconnection regions. MPDATA produces sufficient local effective

residual dissipation, which sustains the monotonic nature of the solution and

removes these under-resolved scales. Being intermittent and adaptive, the resid-

https://www.prl.res.in/prl-eng/paramvikram1000
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ual dissipation, as mentioned above, facilitates the model’s ability to perform

ILESs. The regular solar cycles have been simulated successfully by Ghizaru

et al. (2010); Racine et al. (2011) while utilizing such ILESs with model and

subsequently, the rotational torsional oscillations are characterized and analyzed

by (Beaudoin et al., 2013). The simulations conducted with EULAG-MHD con-

tinue relying on the effectiveness of ILES in regularizing the onset of magnetic

reconnections, concurrent and collocated with the reconnection sites (Kumar et

al., 2013, 2015a) (Kumar et al., 2013, 2015; Kumar & Bhattacharyya, 2016).

The above delegation of the entire magnetic diffusivity to ILES has its own

advantages and limitations. The residual dissipation being localized and inter-

mittent minimizes computational cost in simulating magnetic reconnections and

simultaneously maximizes the effective Reynolds number away from the recon-

nection sites (Waite & Smolarkiewicz, 2008; Smolarkiewicz & Szmelter, 2009).

Contrarily, in the absence of physical diffusivity, a direct relation between elec-

tric field and current density does not exist—rendering estimation of magnetic

Reynolds number difficult. Moreover, the residual dissipation being intermittent

in time and space, its quantification is meaningful only in the spectral space

where analogous to the eddy viscosity of explicit subgrid-scale models for turbu-

lent flows, it only acts on the shortest modes admissible on the grid (Domaradzki

et al., 2003), in particular, in the vicinity of steep gradients in simulated fields.

In summary, the Sect. 3.4 describes the numerical models EULAG-MHD

used to explore the generation and annihilation of 3D null points. The numerical

models are based on (at least) second-order accurate (both in space and time)

non-oscillatory forward in-time advection scheme MPDATA. MPDATA utilizes

the donor-cell scheme iteratively to improve the accuracy of the solution while

preserving the properties of the donor-cell scheme. We have discussed the deriva-

tion of MPDATA and its salient features, which are relevant to our calculations,

followed by the review of the numerics of the numerical model EULAG-MHD.

The model employs the established framework of EULAG with an additional

magnetic block to solve the induction equation. Notably, the proven property

of MPDATA to produce locally adaptive residual dissipations in response to the
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generation of under-resolved scales facilitates the numerical model to carry out

computations in the spirit of implicit large eddy simulations.



Chapter 4

3D magnetic null generation and

annihilation with an initial

analytical magnetic field

4.1 Introduction

For the aim of this study described in Sect. 1.4, the magnetic field lines of a

current-free null are deformed with a prescribed flow. The field lines constitut-

ing the fan and spine get deformed accordingly, resulting in the folding of a set

of auxiliary field lines, which ultimately reconnects to generate null pairs. This

process of null pair generation is distinctive in comparison to an earlier work done

by Wyper & Pontin (2014) where fan-spine reconnection was invoked to generate

nulls through pitchfork bifurcations within a tearing-unstable three-dimensional

current sheet about an existing null. New nulls were also generated through

internal reconnections and interactions of resulting flux ropes, which were local-

ized within the ropes. Complimentary to those findings, here, further evolution

shows the spontaneous generation of null pairs, which are located more sparsely

in space. Indeed, a recent simulation by Nayak et al. (2020) established the

spontaneous formation of 3D nulls from an initial chaotic magnetic field devoid

of any nulls. Although not explicitly analyzed, the simulation was indicative of

the probable role of reconnections in the autonomous generation of nulls. The
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novelty of the present work is its considerably detailed focus on the reconnection

dynamics leading to spontaneous generation and annihilation of magnetic nulls.

The important properties associated with 3D nulls are presented in Sect.

2.4 and are highlighted here. Firstly, a 3D null maintains its identity during

evolution by satisfying the differential equation

dB

dt
= 0, (4.1)

at the null point shown in Hornig & Schindler (1996), the d/dt being the La-

grangian derivative. As a consequence, tracking a null point during a simulated

evolution is feasible. Second, in any evolution, the net topological degree defined

in Greene (1992) and Longcope (2005) of a system consisting N number of nulls

defined by

D =
∑
N

Sign (det(∇B|xN
)), (4.2)

remains conserved Hornig & Schindler (1996); Pontin & Priest (2022). The

conservation law puts a stringent constraint on any simulation involving the

generation/annihilation of nulls that must be satisfied to make the computation

credible.

The generic structure of the field lines around a 3D null involves spine and

fan structures (Fig. 4.1). The spine is made of two complementary sets of field

lines approaching (or receding) from each other and fanning out on the plane

containing the 3D null—constituting the fan plane. The topological degree of a

null is assigned to be +1 or −1, defined by Lau & Finn (1990), depending upon

the direction of the magnetic field lines of either the spine or fan relative to the

null. For example, if field lines of the spine are directed away from the magnetic

null point, the TD is +1 and vice-versa. The simulations presented here conserve

the net topological degree by producing null pairs consisting of radial and spiral

nulls of complementary topological degrees, which ascertains the computations

to be reliable.

This chapter is organized as follows. Sec. 4.1.1 describes the construction of

the initial magnetic field and the flow. The simulation results are presented in
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Sec. 4.2 and Sect. 4.3 summarizes the important findings.

4.1.1 Initial magnetic field and flow

Toward constructing the initial state, Taylor’s first-order expansion of the mag-

netic field in the vicinity of the null is given by Parnell et al. (1996):

B = M · r (4.3)

where M is a matrix with elements Mij =


∂Bx

∂x
∂Bx

∂y
∂Bx

∂z

∂By

∂x

∂By

∂y

∂By

∂z

∂Bz

∂x
∂Bz

∂y
∂Bz

∂z

 and r is the position

vector (x, y, z)T.

The initial magnetic field is constructed to support an isolated linear

null at the origin of the computational cube having physical extensions

{(−π, π), (−π, π), (−π, π)} in the three directions of a Cartesian coordinate sys-

tem mapped on a 64 × 64 × 64 computational grid. From Parnell et al. (1996),

the components of a general magnetic field B supporting such a null is

Bx = x+
1

2
(q − J∥)y, (4.4)

By =
1

2
(q + J∥)x+ py, (4.5)

Bz = J⊥y − (p+ 1)z, (4.6)

where the constants p and q are related to the potential part of the B whereas

J∥ and J⊥ are currents parallel and perpendicular to the spine. The initial field

is constructed by selecting p = 1, q = 0, J∥ = 0 and J⊥ = 0. The null is located

at the origin x = 0. Notably, here and afterward, the well-established trilinear

method described in Sect. 3.3 is used to locate the nulls. The parameters q

and p are selected so that the constructed null is a positive proper radial null

with the fan plane being constituted by field lines having rotational symmetry.

The null is current free owing to the absence of J∥ and J⊥, which makes the fan
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and spine field lines perpendicular to each other. Categorically, the current free

null is chosen to ensure the initial Lorentz force is zero and the only controlling

parameter to initiate the dynamics is a prescribed flow which, can be tailored to

initiate reconnection. Figure 4.1 depicts the initial field line topology. Notably,

the isosurface (colored black in the figure) of the functional

ψ(x) = exp

[
− (B−B0)

2

d0
2

]
, (4.7)

aids to visualize the null. The chosen isovalue is ψ0 = 0.06563, whereas the

constants are B0 = 0.0075, d0 = 0.036. The rationale behind the technique is

documented in the appendix of Nayak et al. (2020). Magnetic field lines in the

neighborhood of the null are plotted in the inset with their directions indicated

by arrows. With magnetic field lines constituting the fan plane being directed

away from the null, its topological degree is −1. The x, y, and z directions of

the Cartesian coordinate system are indicated with red, green, and blue arrows,

respectively.
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Figure 4.1: Initial magnetic field configuration (left panel), which includes a
potential (current free) 3D null located at the center of the box. The null point
is shown by plotting the isosurface ψ (black surface) marked by an arrow. The
two sets of field lines constituting the upper spine (in red color) and lower spine
(in blue color) are fanning out in the fan plane (marked by arrows). For more
details, the magnified view of the selected region (rectangular box) is shown in
the right panel. The magnetic field lines in the upper and lower spine are directed
toward the 3D potential null (null is shown by the black isosurface) and receding
away from the null point in the fan plane, making the topological degree −1.

The initial flow is

v = {0, 0.5 sin(z), 0}, (4.8)

as in Nayak et al. (2020), which is chosen to initiate reconnection while main-

taining the null to be a stagnation point. The second requirement is to make

sure that the null point remains more or less static during the evolution and,

specifically, does not move outside the computation box—resulting in a seem-

ing violation of the topological degree preservation. The amplitude is selected

through a trial and error basis to achieve computationally effective optimal dy-

namics, highlighting crucial features of the evolution.

4.2 Results

The simulation is started with the aforementioned field, flow, and grid resolution.

The kinematic viscosity is set as ν0 = 0.010 while the spatial and the tempo-
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ral grid increments are ∆x = ∆y = ∆z = 0.09973 and ∆t = 0.016, in CGS

units. The open boundary condition is applied for both magnetic and velocity

fields. The grid resolution is retained to be 64 × 64 × 64 to facilitate magnetic

reconnection while optimizing the computation cost. A crude estimate of the

Lundquist number (S = LVA

η
; VA ≡ Alfvèn speed, η ≡ magnetic diffusivity) at

the reconnection sites can be obtained by approximating η = (∆x)2

∆t
using dimen-

sional analysis. Plugging in all parameters, the estimated value is S = 0.665 for

the simulation—this is as expected since the local magnetic Reynolds number

will always be of order 1 for structures on the grid scale. For reference, the solar

coronal value is 107 (viz., Ref. (Bora et al., 2021)). Here, the Lundquist number

based on the domain size is smaller due to the mismatch between the length

scales of the computational box and the coronal scales, which are of the order of

106 m. However, this difference is inconsequential since the frozen-in condition

is maintained with a high fidelity in locations away from the reconnection sites

(Bhattacharyya et al., 2010)—see discussion in Sect.3.4. The overall evolution of

the magnetofluid is depicted in Figure 4.2 by tracing time variations of normal-

ized magnetic (solid line) and kinetic (dashed line) energies averaged over the

whole computational volume. The normalization parameters are the correspond-

ing values at t = 0s. An approximate monotonic increase of the magnetic energy

is seen, which lasts for t ≈ 10s. Subsequently, the curve somewhat flattens out

until just before t ≈ 15s. The increase can be attributed to the bending of spine

field lines because of the initial flow. The normalized kinetic energy also shows

an initial increase and reaches a peak value at t ≈ 3.2s after which, it presumably

gets arrested by the viscosity. The initial increase in kinetic energy is suggestive

of an energy flux entering the volume.
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Figure 4.2: Evolution of grid averaged magnetic (solid line) and kinetic (dashed
line) energies normalized to their respective initial values. The magnetic energy
increases as a consequence of the deformation of magnetic field lines due to the
initial sinusoidal flow until t ≈ 10s. Afterward, it gets somewhat flattened in
t ∈ {10, 15}s. The total energy density (magnetic + kinetic) increases inside
the volume. Consequently, the increment in kinetic energy is seen, and it gets
arrested by the viscosity, showing a peak around t ≈ 3.2s. Subsequently, it starts
increasing sharply as a result of magnetic reconnection in the current sheet near
the central null showing another peak at t ≈ 15s. Within this span, the primary
null pairs get generated. With time the spiral null (a constituent of a pair of
nulls) gets more twisted—as shown in Figure 4.7. The increase in twist may
result in the observed increase in magnetic energy.

Figure 4.3 plots the Direct Volume Rendering (DVR) of the total (magnetic +

kinetic) energy density and establishes the energy density to be initially maximal

at the top and bottom surface. Subsequently, the energy density peaks up inside

the volume and can contribute to the observed kinetic energy increase. Note that

the increase of total energy in the domain is consistent with theoretical analyses

of null collapse in 2D and 3D. Specifically, our applied flow causes the initial

(unstable) equilibrium to be lost as the spine and fan approach one another. This

“collapse” process was studied in the linear region (close to the null) and shown

to approach a state with a current singularity at the null, with the energy being

supplied from the external region—see, e.g., Bulanov & Olshanetsky (1984);
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Bulanov & Sakai (1997). Due to the open boundaries in our simulation, the

same energy inflow through the boundaries occurs.

Figure 4.3: The snapshots of the figure spanning time t ∈ {0, 3.2}s represent
the evolution total energy density (magnetic + kinetic) through Direct Volume
Rendering (DVR). The color scale of the DVR represents the magnitude of the
total energy density and is shown in the bottom right corner. At t = 0 s, the
maximal energy density (pink) is at the top and bottom boundaries. With the
evolution, maximal energy increases inside the volume (pink color) (c.f. panels
(a)-(f)). Ultimately, an increase in the magnetic and kinetic energy is seen in
the same time span.



4.2. Results 93

The details of magnetic field line dynamics overlaid with DVR of | J | / | B |,

J being the volume current density are plotted in Figure 4.4. The initial points

of the field line integrals are kept fixed in time. The interval for the plot is

t ∈ {0, 14.544} s, covering the evolution from the initial field configuration to the

detection of the first two additional null pairs detected by the trilinear method.

The auxiliary field lines in pink and green color (in the first quadrant) along with

blue and yellow field lines (in the third quadrant) are plotted to facilitate the

demonstration of null generations. As the initial flow pushes the plasma, the up-

per and the lower spines along with the auxiliary field lines get deformed (panels

(b) to (e)). Importantly, the auxiliary field lines get elbow-shaped, most promi-

nently in panel (e). The current intensity also increases accordingly. Finally, the

two complementary sides of the elbow seemingly reconnect and generate a pair

of nulls (panel (f)), each pair consisting of a radial and a spiral null.

To further relate the magnetic reconnection with null pair generation, in

Figure 4.5 field lines in the first quadrant are advected with the plasma flow

velocity in t ∈ {14.496, 14.544}s. Notably, here and hereafter, while advecting

field lines, care has been taken to select seed points in the flow such that they

always remain away from the reconnection region, i.e., in the ideal region of

the plasma, allowing identification of reconnection (Knizhnik & Cabral-Pelletier,

2022). For example, in this case, the coordinates of seed points at t = 14.544 s are

(−0.003π, 0.630π, 0.322π), (−0.002π, 0.625π, 0.328π), (−0.001π, 0.586π, 0.316π)

and (−0.005π, 0.586π, 0.316π) for the four depicted field lines whereas the loca-

tion of the current enhanced region is ≈ (−0.008π, 0.556π, 0.296π) in x, y and z

directions. The development of the elbow shape is clearly visible in panels (a)

and (b), which becomes most prominent in panel (c). Further, Across panels (c)

and (d), one of the two green field lines changes its connectivity by moving from

the right to the left of the elbow. Such changes in the connectivity of a single

field line are suggestive of magnetic reconnection. Topological features such as

the radial and spiral nulls along with their spine and fan plane of the radial

null are marked by arrows in panel (d)—which are in concurrence with the same

features depicted in panel (f) of Figure 4.5. Similarly, the pink field lines also
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change their connectivity through magnetic reconnection.

Figure 4.4: The snapshots of the figure spanning t ∈ {0, 14.544} s represent the
evolution of the field lines. Here, the field lines are traced in time (the same
field lines are traced by keeping the corresponding initial point of a field line
invariant). At the t = 0 s, a current free radial null is located at the center of
the box, and the red field lines are plotted near this central null. In panel (a), a
set of auxiliary field lines (green and pink) in the first quadrant and (yellow and
blue) are plotted in the third quadrant to demonstrate the null generation. The
sinusoidal flow bends the spine towards the fan plane and consequently, pushes
the auxiliary field lines to bend (panel (b)). Further evolution generates the
elbow shape structure (panel (c)-(e)) and develops current intensity accordingly,
as shown in panel (c) onward. The magnitude of current density | J | / | B |
is shown through DVR. Green (in the first quadrant) and blue (in the third
quadrant ) field lines are changing their connectivity see panel (e)—a sign of
magnetic reconnection. Consequently, 3D null in the pairs has been generated
at t =14.544 s (panel (f)). Each pair consists of a radial and spiral null marked
by arrows.

Figure 4.6 depicts the magnetic energy, averaged over a subvolume of physical
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extent {(−0.143π, 0.111π); (0.396π, 0.650π); (0.111π, 0.365π)} in x, y and z direc-

tions constituting the null pair of the first quadrant, to decrease monotonically

in t ∈ {14.0, 14.54} s and further corroborates the magnetic reconnection.

Figure 4.5: The snapshots of this Figure plot the selected magnetic field lines of
the first quadrant and advected through plasma flow in t ∈ {14.496, 14.544}s
to illustrate the magnetic reconnection in null creation. Notably, here and
hereafter, while advecting field lines, care has been taken to select seed points
in the flow such that they always remain away from the reconnection region
i,e., in the ideal region of the plasma, allowing identification of reconnection.
For example, in this case the coordinates of seed points at t = 14.544s are
(−0.003π, 0.630π, 0.322π), (−0.002π, 0.625π, 0.328π), (−0.001π, 0.586π, 0.316π)
and (−0.005π, 0.586π, 0.316π) for the four depicted field lines whereas the
location of the current enhanced region is ≈ (−0.008π, 0.556π, 0.296π) in x, y
and z directions. The development of the elbow shape is clearly visible in panels
(a) and (b), which becomes most prominent in panel (c). Further, Across panels
(c) and (d), one of the two green field lines changes its connectivity by moving
from the right to the left of the elbow. Such changes in the connectivity of a
single field line are suggestive of magnetic reconnection. Topological features
such as the radial and spiral nulls along with their spine and fan plane of the
radial null are marked by arrows in panel (d)—which are in concurrence with
the same features depicted in panel (f) of Figure 4.5. Similarly, the pink field
lines also change their connectivity through magnetic reconnection.
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Figure 4.7 traces the evolution of the null pairs along with neighboring field lines

from their first detection at t = 14.5440s to t = 18.1280s when the separation

between the constituent nulls of a pair is maximum. The radial and spiral nulls

are further marked with arrows in panels (a) and (j) for better identification.

Notably, the field lines belonging to the spiral null get more twisted with time.

This increased twist generates more magnetic tension, which pushes the two nulls

of a given pair further apart, cf. panels (a) to (j) of the Figure 4.7.

Figure 4.6: The plot shows the variation in average magnetic energy normalized
to its corresponding value at t = 14.0 s. The average is taken over a subvolume
of physical extent {(−0.143π, 0.111π); (0.396π, 0.650π); (0.111π, 0.365π)} in x, y
and z directions constituting the null pair at the first quadrant. The vertical
axis represents the magnitude of average magnetic energy normalized to its cor-
responding value at 14.0s, and the horizontal axis represents time (in seconds).
The monotonic decrease of magnetic energy in t ∈ {14.0, 14.544} s corroborates
the magnetic reconnection.
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Figure 4.7: The snapshots of field lines spanning t ∈ {14.544, 18.128} s represents
the evolution of nulls. Here, the nulls are traced in time through the trilinear
technique, and field lines are drawn to the locations of nulls. At t = 14.544s,
primary null pairs have been detected for the first time, and field lines are plotted
near them, shown in panel (a). In subsequent panels, nulls are traced, and the
twist of field lines of spiral null is increasing. Consequently, nulls of a particular
pair are receding from each other (compare panels (a)-(j)). Simultaneously, the
increase in the current density near the spiral null is also seen with the help of
DVR of | J | / | B |. In each pair, one is radial null and another is spiral null
(more details can be seen in Figure 4.8). Radial and spiral nulls are marked by
arrows in panel (a) (the time instance when nulls have been generated in the
system and in panel (j) (the time instance at which the first quadrant null pair
is at maximum separation), only not in other panels so that the null structures
can be seen clearly.
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Figure 4.8: Figure illustrates the detailed structure of nulls in a pair. The first
quadrant null pair consists of a radial null and a spiral null (panel (a)). The field
lines of radial null are plotted in (green), and that of a spiral null is plotted in
(pink). The direction of spine field lines of radial null is towards the null point
and away from the null point in the fan plane, making the topological degree
−1, whereas the direction of spine field lines of spiral null is away from the
null point and towards the null point in the fan plane resulting the topological
degree +1. Therefore, the net topological degree of this pair is zero, and the
net topological degree of the system remains unaffected. Similarly, panel (b)
illustrates details of the third quadrant null pair, which also consists of a radial
null and a spiral null. The field lines of radial and spiral null are drawn in
yellow and blue, respectively. The direction of spine field lines of radial null is
towards the null point and receding away from the null point in the fan plane
making the topological degree −1 whereas the direction of spine field lines of
spiral null is away from the null point and towards the null point in the fan
plane resulting the topological degree +1. The conservation of the topological
degree is self-explanatory.
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To determine the topological degree of the generated nulls, Figure 4.8 mag-

nifies the pairs. Panel (a) depicts the null pair in the first quadrant, whereas

the null pair in the third quadrant is illustrated in panel (b). In panel (a), the

spine and fan field lines of the radial and spiral null along with their directions

are clearly marked. The direction of fan field lines (green) of the radial null is

away from the null, making its topological degree −1. The spiral null has its

fan plane field lines (pink) toward the null and, hence, has a topological de-

gree +1. Consequently, the net topological degree of the pair becomes zero.

A similar topology is observed in the null pair in the third quadrant. From

panel (b), it is self-explanatory that the topological degree of the radial null

is again −1, whereas that of the spiral null is +1. The net topological degree

for the pair is again zero, making the overall degree to be −1—the same as its

initial value. In the rest of the paper, these two null pairs generated by the

sinusoidal flow are called primary pairs in order to differentiate them from the

spontaneously generated nulls observed throughout the computational domain

and time. It is imperative to correlate the evolution of kinetic and magnetic

energies with the aforementioned field line dynamics. For this purpose, we focus

on the dynamics of field lines near the central null (Figure 4.9). An important

observation is the slippage of fan field lines (visible in the accompanying anima-

tion https://doi.org/10.1063/5.0107601.4) from t ≈ 7s, changing magnetic

connectivity and resulting in magnetic reconnection. The plasma flow is found

to be in a direction other than the slippage (not shown), and reconnection is

confirmed to be the cause of the connectivity change. An important epoch is

the t ∈ {10, 15}s, where the magnetic energy remains somewhat flattened, but

kinetic energy shows a sharp rise (see Figure 4.2). The flattening of the mag-

netic energy is suggestive of possible reconnections, which arrest its initial rise

owing to the deformation of field lines by the flow as reconnections are known

to decrease magnetic energy; see Olshevsky et al. (2013) for details. Indeed, a

current sheet develops (panel (b)) and later facilitates magnetic reconnections

near the central null cf. panels (d) to (h).

https://doi.org/10.1063/5.0107601.4
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Figure 4.9: The snapshots of field lines spanning the t ∈ {0, 15.2} s illustrate
the evolution of central null marked by 3D null in the figure (the initial current
free radial null located at the center of the box). The spine and fan field lines
of the initial null are plotted in red and blue (panel(a)), with red field lines
constituting the upper spine while field lines in blue belong to the lower spine.
With the evolution, the current sheet (CS) near the central null develops which
facilitates the magnetic reconnection in the current sheet. Panel (b) shows an
intermediate field line structure in which the current sheet has been started to
develop (identified with DVR of large | J | / | B |). The color scale of the DVR
(right bottom corner) represents the magnitude of the current intensity. The
blue and red field lines slip over the fan plane, and an intermediate structure is
shown in panel(c) before the reconnection in the CS near the central null. The
red and blue field lines are changing their connectivity (evident by panels (d)-
(h)) and become part of the lower and upper spine, earlier at t =0 s (panel (a)),
red and blue field lines were only part of the upper and lower spine respectively.
The corresponding magnetic energy decrease is shown in Fig. 4.10.
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The magnetic energy in a subvolume of physical extent

{(−0.111π, 0.079π); (−0.111π, 0.079π); (−0.111π, 0.079π)} in x, y and z di-

rections constituting the central null is also calculated. Its plot in the

corresponding time interval shows a monotonic decrease (Figure 4.10) and

corroborates the reconnection.

Figure 4.10: The plot shows the variation in average magnetic energy
spanning time t ∈ {10.0, 15.2} s. The vertical axis represents the
normalized average magnetic energy, and the horizontal axis represents
the time (in seconds). The plot shows the decrease in magnetic en-
ergy with time, which is averaged over the subvolume of physical extent
{(−0.111π, 0.079π); (−0.111π, 0.079π); (−0.111π, 0.079π)} in x, y and z direc-
tions constituting the central null and normalized to its initial value at t = 10
s (the approximate time when reconnection started in the current sheet near
the central null). The decrease in magnetic energy corroborates the magnetic
reconnection near the central null. In the same time span, the increase in the
kinetic energy is seen (see Fig.. 4.2), the whereas magnetic energy of full volume
remains somewhat flattened.

Further, Figure 4.11 depicts flow lines at an approximate time instance from

which the inflow and outflow regions can be readily identified.
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Figure 4.11: Figure illustrates the inflow and reconnection outflow at the central
null using pink and blue arrows at a time t = 10.56 s. The red field lines are drawn
to demonstrate the central null. The pink and blue arrows heading toward null
represent the inflow, whereas those pointing away from central null represent the
reconnection outflow. This outflow further confirms the reconnection at central
null. The plotting of reconnection outflow is possible here because the central
null is also a stagnation point. In contrast, in other reconnection locations, the
flow is a superposition of evolved plasma flow and reconnection outflow (not
separable).

In the overlapping time span t ∈ {14, 16}s, (Panels (a) and (j) of Figure 4.7),

the spiral nulls are created and their twist get enhanced. The corresponding

increase in the magnetic energy may supersede the arrest, allowing magnetic

energy to rise again from t ≈ 15s onward. The primary null pairs get annihilated

as the magnetofluid evolves in time. For the demonstration and analyses, the

null pair in the first quadrant is selected. The snapshots of Figure 4.12 spanning

t ∈ {16.608, 19.808}s show the evolution of null pair by tracing their locations

and plotting field lines near them. At t = 16.608s, the radial (in green) and spiral

(in pink) null are at some distance from each other (panel (a)). With time, their

separation decreased (panel (b)) and ultimately got annihilated at t = 19.808s

(panel (c)).
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Figure 4.12: The snapshots of the figure illustrate the evolution of the null first
quadrant pair, which consists of a radial null and a spiral null. Here, nulls are
traced in time, and field lines are plotted near them to show evolution. Radial
(pink) and Spiral (green) null, along with its fan and spine, are marked by arrows.
Panel (a) depicts radial and spiral null field line configurations at t = 16.608 s.
The twist of the spiral null decreases, and consequently, nulls come closer to
each other (the decrease in separation can be seen by comparing panels (a) and
(b)) as they evolve in time. The decrease continues until the nulls in the pair
is annihilated (panel (c)). The physical process behind annihilation is identified
and is shown in Fig.4.13. A similar process is also seen in the case of the third
quadrant null pair.
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The field lines are selected and traced in time span t ∈ {16.64, 16.992} to neatly

identify the physical process and shown in Figure 4.13. The pink field lines

mainly constitute the spiral null along with the lower spine and fan plane of the

radial null, and the green field lines only belong to the radial null (panel (a)).

With the advancement in time, the pink field lines changed their connectivity

and became part of the upper spine of the radial null (panels (b) and (c)); earlier,

they were part of the lower spine. Consequently, the pink field lines open up and

reduce the twist of the spiral null. They become part of the radial null in further

evolution (panel (d)). The corresponding decrease in magnetic tension allows

the nulls to come close to each other and also enables lower-lying twisted field

lines to expand and ultimately reconnect further. This process continues along

with the decrease in a twist of the spiral null and the separation between the

nulls until the pairs are annihilated. The conservation of the topological degree

is self-explanatory. To further establish the reconnection, Fig.4.14 highlights the

dynamics of selected magnetic field lines belonging to the first quadrant nulls

and advected with the plasma flow velocity. The change in connectivity of field

lines from panel (a) to (d) is a clear indication of reconnection. Figure 4.15 plots

the separation

∆s =

√√√√ 3∑
i=1

(xi2 − xi1)
2 (4.9)

where the subscripts refer to the two nulls of the pair while the superscript

denotes the Cartesian coordinates. The plot in Figure 4.15 shows the nulls ini-

tially recede from each other for t ∈ {14.544, 18.2}s, after their generation at

t = 14.544s and the separation being maximum approximately at t ≈ 18.2s.

Subsequently, they start to move toward each other—ultimately leading to their

annihilation at t = 19.312s. Similar dynamics are seen to be responsible for the

annihilation of the primary null pair in the third quadrant also. Toward estab-

lishing the role of magnetic tension in increasing and decreasing the separation

between the spiral and the radial null, Figure 4.16 plots evolution of volume av-

eraged | B ·∇B | normalized to its initial value in the range t ∈ {14.54, 19.31}s—

covering the total duration in which the nulls (in the first quadrant) get generated
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and, later, annihilated.

Figure 4.13: The snapshots of the figure spanning t ∈ {16.640, 16.992} illustrate
the physical process responsible for the annihilation of nulls of the first quadrant
pair (shown in figure 4.12). The field lines are traced in time, and the time
span of this figure is chosen for demonstration purposes of the physical process.
Panel (a) illustrates the configuration at t = 16.640 s with the pink field lines
mainly constituting the spiral null, fan plane, and the lower spine of the radial
null, and the green field lines belonging to the radial null constituting the upper
spine and fan plane (marked by arrows). The current intensity is shown with the
help of DVR of | J | / | B |. In subsequent panels, the pink field lines change
the connectivity through reconnection at the radial null, and simultaneously, the
twist is reduced. The pink field lines become part of the upper spine and fan
plane of radial null (panel (a)-(d)). Consequently, nulls will come close to each
other as the twist decreases. This process continues till the nulls get annihilated.
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Figure 4.14: The snapshots of the figure spanning t ∈ {18.5600, 18.624} highlight
the dynamics of selected magnetic field lines belonging to the first quadrant nulls
and advected with the plasma flow velocity. The change in connectivity of field
lines from panel (a) to (d) is a clear indication of reconnection.

The average is taken over a physical volume of extent

{(−0.174π, 0.143π); (0.333π, 0.650π); (0.111π, 0.429π)} in x, y and z coor-

dinates, enclosing the null pair throughout their evolution. The plot shows an

initial increase in magnetic tension along with the increase in separation between

the nulls. Subsequently, as the nulls approach each other, the tension decreases.

A similar variation of magnetic tension is also found in the third quadrant.

Astoundingly, null pairs also get spontaneously generated from t = 18.4s onward

(panel (c) onward of Figure 4.17). In the figure, the locations of these nulls are

indicated with green colored dots whereas the red and blue dots locate central

and primary nulls respectively. The locations are determined by the trilinear

method and plotted using a 3D point plot in Python. The panels of Figure 4.17

cover t ∈ {0, 20.32}s, where initially only a central null (red dot) at t = 0s is
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present (panel (a)) and at t = 14.72 s primary nulls (blue dot) are there together

with central null (panel (b)). The locations of spontaneously generated nulls are

represented by green dots (panel (c)-(f)).

Figure 4.15: The plot shows the variation in separation with time between nulls of
the first quadrant null pair. The vertical axis represents the separation between
the two nulls of a first quadrant pair, and the horizontal axis represents the time
(in seconds). The separations of nulls start increasing with time and show a peak
around t = 18.2 s, then decrease with time, and finally, nulls get annihilated
around t = 19.3 s. A similar variation is also seen for the third quadrant null
pair.

Importantly, these spontaneously generated nulls also get annihilated. To

explore the spontaneous generation and annihilation of null pairs, one pair of

spontaneously generated null has been selected (green dot plotted in panel (d)

of Figure 4.17). The selection of the pair is based on the clarity of the field line

dynamics and tractability of the involved null pair over sufficient time (the time

can be validated by calculating the total time of presence of the null pair in the

system with the help of panel (d) to (f), where panel (d) and (f) represents the

approximate time when nulls are generated and annihilated in the system respec-

tively. Panels (a)-(c) of Figure 4.18 show the snapshots of field line evolution by
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tracing the field lines in time, leading to the spontaneous creation of the null pair

(panel (c)). The null pairs are detected once again using the trilinear method.

Panels (a)-(c) plot two field lines (in red and blue) and green field lines, which,

during their evolution, develop complementary elbow-type structures similar to

the one developed by the auxiliary field lines participating in the formation of

the primary nulls. The current intensity also increases accordingly. Further evo-

lution introduces a sharp change in topology and makes the field lines helical

(panel (c) of Figure 4.18). Such change in topology indicates magnetic recon-

nection, albeit the participating field lines cannot be identified because of their

complex geometry. Astoundingly, the spiral null appears at the same instant (t

= 18.688 s) with distinct lower, upper spine and the fan plane (the upper spine

is shown in the subsequent panels only).
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Figure 4.16: The plot illustrates the evolution of volume averaged | B · ∇B |
normalized to its initial value in the range t ∈ {14.54, 19.31}s—covering the
total duration in which the nulls (in the first quadrant) get generated and
later, annihilated. The average is taken over a physical volume of extent
{(−0.174π, 0.143π); (0.333π, 0.650π); (0.111π, 0.429π)} in x, y and z coordinates,
enclosing the null pair throughout their evolution. The plot shows an initial in-
crease in magnetic tension along with the increase in separation between the
nulls. Subsequently, as the nulls approach each other, the tension decreases.
The vertical axis represents the modulus of normalized averaged magnetic ten-
sion, and the horizontal axis represents time (in seconds).
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Figure 4.17: Panels ((a)-(f)) illustrate the locations of nulls with time. The
location of nulls is traced through the trilinear null detection technique and
located then in the 643 grid by using a Python 3D point plot. The red, blue,
and green dots represent the locations of central, primary, and spontaneously
generated nulls, respectively. At t = 0 s, only a central null is present (panel
(a)). With evolution, the primary nulls are generated, and locations are shown in
panel (b) along with central null at time t = 14.72s. The nulls also get generated
spontaneously with further evolution in time. The locations of spontaneously
generated along with the central and primary nulls at time t = 18.4, 18.88, 20.16
and 20.32s are shown in subsequent panels (c)-(f). The spontaneously generated
null pair (shown in panel (d)) is considered for the detailed study based on
the time tractability of the pair and can be confirmed by the estimating time
from panels (d) and (f), which mark the approximate time of generation and
annihilation, respectively.
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Figure 4.18: The panels (a)-(c) illustrate the evolution of field lines by tracing
in time, which leads to the spontaneous generation of null pairs. The field line
configuration at t = 18.400s (panel (a)) changes to another configuration at t
= 18.762s and develops the elbow-type structure (marked by an arrow in panel
(b)). The enhancement in current intensity (identified by DVR of | J | / | B |)
is seen accordingly. Further evolution makes the red and blue field lines helical
through magnetic reconnection and, as a consequence, spontaneously generates
a radial and a spiral null (marked by arrows in panel (c)). In subsequent panels
(d)-(f), nulls are traced, and field lines are drawn at them. With evolution, the
twist of the spiral null increases, and consequently, the nulls recede from each
other. The increase in separation can be clearly seen by comparing panels (c)-(f).
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The snapshots shown in panels (d)-(f) show the further evolution, where nulls are

traced in time, and the field lines are plotted at the nulls. With the evolution, the

twist of spiral null increases, so enhancement in magnetic tension, which pushes

the nulls away from each other and increases the separation between the radial

3D and spiral null cf. panels (d)-(f).

Figure 4.19: The selected field lines (one blue, one red, and two green colors) are
plotted and advected with plasma flow to illustrate the magnetic reconnection in
spontaneous null generation. The field lines are moving with the plasma velocity
(panels (a)-(c)). Later, across panels (c) and (d), one of the two green field lines
is changes its connectivity and traverses through the left of the red and blue
field lines. Such change in connectivity is through magnetic reconnection. To
illustrate the developed structure clearly, the region marked by a rectangular box
has been zoomed in and shown in the inset of panel (d), in which the spine and
fan plane of radial and spiral null are marked by arrows.

To establish the reconnection, in Figure 4.19, selected field lines (one blue,

one red, and two in green color) are plotted and advected with plasma flow.

Across panels (c) and (d), one of two green field lines changes its connectivity

and traverses through the left of the red and blue field lines. Earlier, they were
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traversing through the right of blue and red field lines. Such change in connec-

tivity is through magnetic reconnection. The region marked by a rectangular

box has been zoomed in and shown in the inset of the panel (d) to identify the

topological features, such as the spine and fan plane of radial and spiral null,

which are marked by arrows.

Figure 4.20: Figure illustrates the details of a spontaneously generated null pair,
which also consists of a radial and spiral null. The field lines are drawn near the
radial (in green) and that of the spiral null (in red). The spine and fan plane of
both nulls are marked in the figure. The direction of fan field lines of radial null
is towards the null point and that of the spine field lines is directed away from
the null point making topological degree +1 whereas the spine field lines of spiral
null are directed towards the null point and directed away from the null point in
the fan plane resulting the topological degree −1. The net topological degree of
this pair is zero and the conservation of net topological is self-explanatory.

The selected pair also consists of a spiral null (in green) and a spiral null (in red),

the fan plane field lines of the spiral null are directed towards the null, making

topological degree: +1 and the field lines in the fan plane of the spiral null are
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directed away from the null constituting topological degree −1, shown in Figure

4.20. The net topological degree of the system is yet again constant and has

the value −1. The increase in separation in the span t ∈ {18.688, 19.2}s, can

be confirmed by Figure 4.21. Later, the separation between the nulls decreases

until the nulls annihilated at t = 20.32s. The decrease in separation can also be

confirmed by Figure 4.21.

Figure 4.21: This plot shows the variation in separation with time between nulls
of a spontaneously generated pair. The vertical axis represents the separation be-
tween the two nulls, and the horizontal axis represents the time (in seconds). The
nulls are being generated around t ≈ 18.688s with a separation. The separation
initially increases, followed by a decrease, ultimately leading to the annihilation
around t ≈ 20.35s. The spontaneous null pair shows a similar behavior as seen
in the case of primary null (see Fig.. 4.15).

The sequence of field line evolution leading to the annihilation is shown in

Figure 4.22 (panels (a)-(f)). The decrease in separation between the spiral null

and radial null is due to a reduction in the twist of the spiral null. To identify

the physical process behind this phenomenon, field lines are traced (panels (a)

to (b) of Figure 4.22) in time. The current density is plotted along with field

lines. The red field lines constitute the spine and fan plane of the spiral null.
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Figure 4.22: The snapshots of magnetic field lines illustrate the annihilation
of spontaneously generated null pairs. To identify the physical process behind
this phenomenon, field lines are traced (panels (a) to (b)) in time. The current
density near the nulls is shown using DVR of | J | / | B |. In panel (a), the red
field lines constitute the spine and fan plane of the spiral null, and the two green
field lines constitute the lower spine of the radial null traverses through the right
side of the spiral null. One of the two green field lines changes its connectivity,
belongs to the upper spine of the radial null, and traverse the left of the spiral
nulls (panel (b)). Such changes in connectivity are a telltale sign of magnetic
reconnection. The twist of the spiral null decreases with time, and consequently,
nulls come towards each other. This process continues until the nulls annihilate.
Panels (c)-(f) illustrate the null annihilation in which nulls are traced in time,
and the neighboring field lines are drawn near them. The nulls get annihilated at
t ≈ 20.320 s in pair as expected from the conservation of the topological degree
(panel (f)).
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Figure 4.23: The plot shows the variation in average magnetic tension span-
ning the time t ∈ {18.688, 20.304}s and normalized to its corresponding initial
value at t = 18.688 s. The average is over a subvolume of physical extent
{(−0.047π, 0.016π); (0.396π, 0.555π); (0.396π, 0.429π)} in x, y and z directions
constituting the spontaneously generated null pair. The vertical axis represents
the normalized average magnetic tension, and the horizontal axis represents the
time (in seconds). The increase and decrease of magnetic tension is visibly com-
patible with the corresponding change in inter-null separation of spontaneously
generated pair.

The two green field lines constituting the lower spine of the radial null traverse

through the right side of the spiral null, viz. panel (a). In panel (b), one of

the two green field lines changes its connectivity. It belongs to the upper spine

of the radial null and is located at the left of the spiral nulls. Such changes

in connectivity are a telltale sign of magnetic reconnection. The panels (c)-(f)

trace the null pair along with neighboring field lines. The untwisting of field lines

ultimately destroys the spiral null—simultaneously annihilating the null pair as

expected from the conservation of the topological degree (panel (f) of Figure

4.22). Similarly, the spontaneously generated nulls are also annihilated through

magnetic reconnection (not shown). Figure 4.23 plots the modulus of magnetic

tension with time in the range t ∈ {18.688, 20.304} s, averaged over a subvolume

of physical extent {(−0.047π, 0.016π); (0.396π, 0.555π); (0.396π, 0.429π)} in x,
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y and z directions. The increase and decrease of magnetic tension are visibly

compatible with the corresponding change in inter-null separation and in support

of the scenario proposed above.

Comparing our results to previous studies of 3D null creation and annihila-

tion, we emphasize (as discussed above) that the formation process of the pri-

mary null pairs is away from the central null and different from that presented

by Wyper & Pontin (2014): in that study the first additional nulls to be created

formed by a pitchfork bifurcation of the original null (within the current sheet)

and hypothesize that it is because of the outflow generated from reconnection in

the central current sheet and imposed flow. All such nulls are created in a “sym-

metry plane” in both cases. Following this, we found the spontaneous formation

of nulls outside of this symmetry plane. This is consistent with the results of

Wyper & Pontin (2014), who described the formation of additional nulls away

from the symmetry plane in what they called “secondary bifurcations”. Such

formation of additional nulls in the complex, evolving magnetic field close to

other nulls is expected based on theoretical expectations Albright (1999) and

here is explicitly demonstrated.

For completeness, the simulations are repeated in different resolutions: 32×

32 × 32, 96 × 96 × 96 and 128 × 128 × 128 over the same physical time span

of t ∈ {0, 20.4} s. Overall, the results are found to be similar, i.e., the spines

bend toward the fan planes and develop elbow shape with the evolution. Further

evolutions show the generation of the 3D nulls in pairs and subsequently moving

away from each other, resulting in an increase in the separation. The separation

between the two nulls decreased after the initial increase and continued until the

nulls were annihilated in pairs. Figure. 4.24 depicts the null points evolution

in 1283 resolution as an example. Panel (a) depicts the initial magnetic field

configuration (field lines are drawn in red) near a potential 3D null. Four sets of

auxiliary field lines (in Blue, Pink, Cyan, and Green) are drawn to demonstrate

the generation and annihilation of nulls with the evolution.
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Figure 4.24: The figure illustrates the evolution of magnetic configuration en-
closing a potential 3D null (panel (a)) in 1283 resolution. Four sets of auxiliary
field lines (in Blue, Pink, Cyan, and Green) are drawn to demonstrate the gen-
eration and annihilation of nulls. With the evolution, the auxiliary field lines
develop an elbow shape (panel (b)), and subsequently, a pair of 3D nulls, which
consists of radial and spiral 3D nulls, get generated (panel (c)) at t = 14.96s. As
they evolve, the separation between the nulls increases after their generation till
around t = 16.40s (panel (d)), and subsequently, starts decreasing (panel (e))
until their pairwise annihilation (panel (f)). The increase and decrease of mag-
netic tension is visibly compatible with the corresponding change in inter-null
separation of spontaneously generated pair

.
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The auxiliary field lines develop an elbow shape (panel (b)) with the evolution.

Subsequently, a 3D null pair consisting of radial and spiral 3D nulls gets gener-

ated (panel (c)) at t = 14.96s. Further, the separation between the nulls increases

with time after their generation, till around t = 16.40s (panel (d)), and starts

decreasing (panel (e)) until they get annihilated in pair (panel (f)). Interestingly,

a higher resolution run in an ILES delays magnetic reconnection. Correspond-

ingly, the generation and annihilation of both primary and spontaneous nulls got

slightly delayed (nulls were created at t = 14.54s in 643 whereas they get created

at around t = 14.96s in 1283 resolution), confirming further the role of mag-

netic reconnection in their genesis and destruction. Additionally, the topological

degree is found to be conserved at every instance for all the simulations.

4.3 Summary

Implicit Large Eddy Simulations are carried out to explore the dynamics of 3D

null generation and annihilation, along with the evolution of null pairs after

their generation. The novelty of the work lies in documenting the creation of

nulls away from the central null, which has been studied earlier. Further, spon-

taneously generated nulls have been identified in the simulation. The results

are important since contemporary research indicates abundant 3D nulls in na-

ture, particularly in the solar atmosphere. The extent of physical domain is

−π ≤ x ≤ π, −π ≤ y ≤ π, −π ≤ z ≤ π in Cartesian coordinates which mor-

phed on a computational grid of 64 × 64 × 64 resolution. In the simulation, a

current-free 3D null has been deformed through a prescribed initial sinusoidal

flow. The deformation of the spine pushes a set of auxiliary field lines to bend

and form elbow shapes. In the process, the magnetic energy is increased. The

kinetic energy increases initially but forms a peak as the flow gets arrested by

viscosity. The magnetic field lines are seen to slip over the fan plane, and further

deformation generates current sheets near the central null. Consequently, mag-

netic reconnections onset—flattening out the magnetic energy curve. The kinetic

energy gets increased, typical to magnetic reconnection. Further evolution from
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elbow shape structure generates two null pairs through reconnection of auxiliary

field lines while preserving the net topological degree. Notably, the preservation

of net topological degree is a stringent constraint that must be satisfied by the

generation and annihilation of 3D nulls. The model preserves this constraint

throughout the simulation, adding credibility to the computation. Each pair

of generated nulls consists of a radial null and a spiral null. During the evolu-

tion, the separation between the nulls increases, the increase being caused by an

enhancement in the twist of the spiral null—generating more magnetic tension

force. After reaching a maximal value, the separation decreases along with a

decrease in twist. The decrease continues until the involved primary null pair

annihilates, once again preserving the net topological degree. Astoundingly, the

simulation documents the spontaneous creation and annihilation of null pairs.

The pairs are found to consist of a radial null and a spiral null—as in the case of

the primary nulls, conserving the total topological degree. Field line dynamics

leading to the generation/annihilation of null pairs are analyzed extensively, and

the creation/annihilation is found to be due to magnetic reconnections. The field

line dynamics is similar to that of the primary null pairs, showing a decrease in

separation of the constituent nulls after an initial increase. The decrease ulti-

mately ends as the nulls annihilate. In the work presented in this chapter, a

tailored flow has been considered to initiate magnetic reconnection, which can

not be expected to present naturally in the solar active regions. It is then natural

to study the possibility of spontaneous null generation/annihilation in a realistic

system like the solar corona, which will be presented in the next chapter.





Chapter 5

Spontaneous generation and

annihilation of 3D magnetic nulls

in the solar atmosphere

5.1 Introduction

To achieve the objective, in this work, a novel approach is adopted by carrying

out a data-based ILES for a flaring active region where the initial coronal mag-

netic field is computed by extrapolating photospheric vector magnetogram data.

Additionally, solar active regions have complex magnetic topologies, suggesting

that the 3D nulls have similar complexity. Understanding this process is cru-

cial for insights into chromospheric and coronal heating. To explore the aim, a

new approach is adopted by employing a data-based ILES MHD simulation for

a flaring active region which hosted a C6.6 class flare on February 17, 2014. The

active region is chosen based on its proximity to the solar disk center, ensuring

minimal errors in the observed photospheric magnetic field, the constancy of the

photospheric magnetic flux across the active region during the flare, allowing

for a line-tied boundary condition to simplify simulations and the availability of

contemporary multiwavelength observations. Using the Non-Force Field extrap-

olation technique, the initial coronal magnetic field is obtained by extrapolating

photospheric vector magnetogram data. The resulting non-zero Lorentz force

121
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drives the plasma, generating initial dynamics, and the simulation focuses on

the part of the flare’s reconnection-dominated impulsive phase aligned with the

objectives.

The theory of 3D nulls is well-established, Sect. 2.4 discusses this in detail,

and the following properties are worth mentioning. Straightforward manipulation

of the ideal induction equation for an incompressible fluid shows

dB

dt
= 0, (5.1)

at the null point (Hornig & Schindler, 1996); the d/dt being the Lagrangian

derivative. Consequently, a 3D null maintains identity during evolution, enabling

its tracing in numerical simulations. Moreover, the net topological degree of a

system consisting of a number, N0, of nulls is defined by Greene (1992) and

Longcope (2005) as

D =
∑
N0

Sign (det(∇B|xN0
)), (5.2)

and remains conserved (Hornig & Schindler, 1996; Pontin & Priest, 2022) in any

evolution. Any credible simulation targeted to explore generation or annihilation

of nulls must satisfy this stringent conservation. Additionally, nulls that enter or

exit the computational domain need to be accounted for as they may seemingly

violate the conservation of topological degree.

The magnetic topology of 3D nulls can be put in perspective through a 3D

generalization of a two-dimensional (2D) separatrix: the line in 2D that segre-

gates magnetic field lines having separate connectivities. As could be expected,

in 3D, the separatrix lines get replaced by surfaces – called separatrix surfaces,

or just separatrices – separating sub-volumes having disjoint field line connectiv-

ities. To maintain different subvolumes connection-wise disjoint, the separatrices

need to be magnetic flux surfaces with only tangential field lines. Consequently,

if two such separatrices intersect, they intersect along a line having two mag-

netic nulls at the endpoints. This line is called a separator. The concept can

be straightforwardly applied to magnetic structures in the solar corona. Tradi-

tionally, such field line topologies are often realized in the solar corona when a



5.1. Introduction 123

parasitic polarity region emerges inside a larger opposite polarity region on the

photosphere. In such a case, the topological structure of a 3D null point defines

a dome-like separatrix, the fan, and two singular field lines, the spines, originat-

ing from the null point. With the onset of reconnection at the null, magnetic

field lines are transferred across the separatrices from one magnetic domain to

another (Pontin et al., 2013).

The organization of the chapter is as follows: Sect. 5.1.1 describes the extrap-

olation technique along with the rationale behind selecting the particular active

region and Sect. 5.1.2 summarizes the governing magnetohydrodynamic (MHD)

equations while briefly describing salient features of the numerical model. Sects.

5.1.3 and 5.2 are dedicated to numerical setup and simulation results respectively.

Sect. 5.3 summarizes the findings.

5.1.1 Non-Force Free Field Extrapolation of NOAA AR

11977

The C6.6 class eruptive flare that occurred on February 17, 2014, emanating

from active region NOAA AR11977 at heliographic coordinates S13W05, has

been chosen for analyses for three key reasons: (a) its proximity to the solar

disk center, which ensures minimal errors in the observed photospheric magnetic

field, (b) the photospheric magnetic flux integrated across the active region re-

mains approximately constant throughout the flare, allowing for the application

of a line-tied boundary condition to simplify simulations, (c) contemporary ob-

servations in multiwavelengths (Mitra & Joshi, 2021; Ibrahim et al., 2022). In

Fig. 5.1(a), the Geostationary Operational Environmental Satellite (GOES) soft

X-ray flux in the 1 − 8 Å channel is depicted over the duration of the flare.

The plot illustrates a gradual increase in intensity starting around 02 : 45 UT

(marked by a dashed vertical line), with the peak occurring at 03 : 04 UT (dash-

dot vertical line). Magnetic field line dynamics in the time interval from 02:48

to 02:56 UT, as indicated by the two solid blue vertical lines during the flare’s

ascending phase, is numerically explored here. Notably, panel (b) depicts the
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evolution of the horizontally averaged positive (solid line) and negative (dashed

line) photospheric magnetic flux obtained from the hmi.M45 series of the Helio-

seismic Magnetic Imager (SDO/HMI), as described by Schou et al. (2012) and

Scherrer et al. (2012). The flux plot covers approximately 13 minutes, commenc-

ing around 02 : 44 : 41 UT. The magnetic flux remains relatively stable during

the flare, with both positive and negative fluxes exhibiting relative changes well

within 1 %.
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Figure 5.1: Panel (a) depicts the Geostationary Operational Environmental
Satellite (GOES) soft X-ray flux over the duration of the flare in the 1 − 8
Åchannel. This graph illustrates a gradual increase in intensity starting around
02 : 45 UT (marked by the dashed vertical line), with the peak occurring at
03 : 04 UT (dash-dot vertical line). Our simulations cover the time range from
02:48 to 02:56 UT, as marked by two blue vertical solid lines during the rising
phase of the flare. The photospheric flux variation for approximately 13 min-
utes, starting from 02 : 44 : 41 UT, is shown in panel (b), where the solid line
represents positive flux and the dashed line represents negative flux.

The MHD simulation carried out here uses an extrapolated magnetic field

from a vector magnetogram as an initial magnetic field. For extrapolation, the

Active Region AR11977 at 02 : 48 : 00 UT on February 17, 2014 is selected

based on its prior analysis in terms of identifying the primary reconnection site

(Agarwal et al., 2022). The corresponding magnetogram is obtained from the

Helioseismic Magnetic Imager (HMI; Schou et al. (2012)) on board the Solar

Dynamic Observatory (SDO) and is taken from the ‘hmi.sharpcea720s’ data se-
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ries. This data series provides the magnetic field on a Cartesian grid, which

is initially remapped onto a Lambert cylindrical equal-area (CEA) projection

and then transformed into heliographic coordinates (Bobra et al., 2014). The

extrapolation utilizes a non-force-free field (NFFF) extrapolation model for the

magnetic field, B, obtained by minimization of total energy dissipation rate,

described in Bhattacharyya et al. (2007). The NFFF B obeys a double-curl

Beltrami equation for which a solution can be attempted by expressing it as

B = B1 +B2 +B3; ∇×Bi = αiBi, (5.3)

where i = 1, 2, 3 (Hu & Dasgupta, 2008; Hu et al., 2008). Here, each sub-field

Bi represents a linear force-free field (LFFF) characterized by specific constants

αi. Without a loss of generality, a selection α1 ̸= α3 and α2 = 0 can be made,

rendering B2 a potential field. Subsequently, an iterative approach is employed

to determine the optimal pair α = α1, α3, which finds the pair by minimizing the

average deviation between the observed (Bt) and the calculated (bt) transverse

field on the photospheric boundary. Effectively, the metric

En =

( M∑
i=1

|Bt,i − bt,i| × |Bt,i|
)/( M∑

i=1

|Bt,i|2
)
, (5.4)

whereM = N2 represents the total number of grid points on the transverse plane

is iteratively minimized (Prasad et al., 2018). To achieve an optimal value of En,

a corrector potential field to B2 is further derived from the difference transverse

field, i.e., Bt − bt, and added to the previous B2 in anticipation of an improved

match between the transverse fields, as measured by the En. The grid points are

weighted with respect to the strength of the observed transverse field to minimize

the contribution from the weaker fields (see Hu & Dasgupta (2008); Hu et al.

(2010), for further details).

To optimize computational cost while preserving the original magnetic mor-

phology, the magnetogram having dimension 896× 512 pixels is re-scaled to the

dimension 448 × 256 pixels in x and y -directions, respectively. The NFFF ex-
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trapolation is carried out on the re-scaled computational grid, which corresponds

to physical dimensions of ∼ 324.8Mm × 185.6Mm × 139.2Mm in the x, y, and

z directions, respectively, and variation of En with iteration number is shown

in the Figure 5.2. As expected, the overall field line morphology is found to be

identical to the one depicted in Agarwal et al. (2022). Notably, the re-scaling re-

duces the initial number of nulls. Nevertheless, such reductions are not expected

to affect the dynamics of null pair generation/annihilation through magnetic

reconnection—which is a dissipative process and is likely to be independent of

the initial condition, as suggested in Agarwal et al. (2022).

0 200 400 600 800 1000 1200 1400
Iterations (k)

30

35

40

45

50

55

No
rm

al
ize

d 
er

ro
r (

%
)

36.3

38.7

51.4

Figure 5.2: The plot illustrates the variation in minimized deviation (En) with
the number of iterations (k) for Non-Force Free Field extrapolation. This devi-
ation decreases monotonically and saturates approximately at ≈ 36.3% for 1500
iterations.

Panel (a) of Figure 5.3 illustrates direct volume rendering (DVR) of the

Lorentz force amplitude, showing it to be dominant at lower heights. To further

corroborate, the logarithmic variation of horizontally averaged Lorentz force with

pixel height z is shown in panel (b) of Figure 5.3, showing a decreasing trend.

Effectively, the NFFF model treats the corona as reasonably force-free, with
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non-zero magnetic forces being localized at the photosphere/lower heights, in

agreement with the general expectation of a force-free corona (Liu et al., 2020;

Yalim et al., 2020).

Figure 5.3: Panel (a) of the Figure depicts the direct volume rendering (DVR)
of the magnitude of Lorentz force, showing the presence of the Lorentz force at
lower heights. To further corroborate this observation, the logarithmic variation
in the horizontally averaged strength of Lorentz force with height (z) is shown in
panel (b). As expected, the logarithmic value of horizontally averaged Lorentz
force decreases with height. Notably, the Lorentz force density is non-zero near
the photosphere and nearly vanishes at coronal heights, similar to the typical
description of the solar corona.

5.1.2 Governing Equations and Numerical Model

The simulations are carried out using the magnetohydrodynamic numerical

model EULAG-MHD (Smolarkiewicz & Charbonneau, 2013), assuming the

plasma to be thermodynamically inactive, incompressible, and perfectly elec-

trically conducting. The dimensionless governing equations are

∂v

∂t
+ (v · ∇)v = −∇p+ (∇×B)×B+

1

RA
F

∇2v, (5.5)

∇ · v = 0, (5.6)

∂B

∂t
= ∇× (v×B), (5.7)

∇ ·B = 0, (5.8)
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achieved with

B → B

B0

,v → v

VA
, L→ L

L0

, t→ t

τa
, p→ p

ρ0V 2
A

, (5.9)

where RA
F = VAL

ν
is an effective fluid Reynolds number with VA as the Alfvén

speed and ν as the kinematic viscosity. The B0 and L0 are characteristic values of

the system under consideration whereas, ρ0 represents the constant mass density.

Although not strictly applicable in the solar corona, the incompressibility is

invoked in other works also (Dahlburg et al., 1991; Aulanier et al., 2005). The

details about the employed numerical model can be found in Sect. 3.4.2.

5.1.3 Numerical Setup

The active-region cutout is mapped on a grid having 448 × 256 × 192 pixels

resolved on a computational grid of x ∈ {−0.875, 0.875}, y ∈ {−0.5, 0.5}, and z

∈ {−0.375, 0.375} in a Cartesian coordinate system, spanning a physical domain

of 324.8Mm× 185.6Mm× 139.2Mm in x, y and z directions. The dimensionless

spatial step sizes are ∆x = ∆y = ∆z ≈ 0.0039 (≈ 725 km) and the dimensionless

time step is ∆t = 2 × 10−3 (≈ 1.936 s). The initial state is motionless (v = 0),

and the initial magnetic field is provided from the NFFF extrapolation. The

non-zero Lorentz force associated with the extrapolated field pushes the plasma

to generate dynamics. The mass density is set to ρ0 = 1. The effective fluid

Reynolds number is set to 5000, which is 5 times smaller than the coronal value

of ≈ 25000 (calculated using kinematic viscosity ν = 4 × 109 m2 s−1 in solar

corona, p. 791 of Aschwanden (2005)). Without any loss in generality, the

reduced RA
F can be realized as a reduction in computed Alfvén speed, VA|computed

≈ 0.14 × VA|corona. The Alfvén speeds are estimated with characteristic scales

Lcomputational = 139.2Mm for the computational domain and Lcorona = 100Mm for

typical corona. The results presented herein pertain to a run for 250∆t, which,

with τA ≈ 9.68 × 102s, correlates to an observation time of ≈ 8 minutes. The

interval is marked by the two vertical blue lines of goes X-ray flux curve during

ascending phase of the flare (Fig. 5.1). The reduced RA
F slows down the dynamics
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and does not affect the reconnection mechanism or its consequence, reducing the

computational costs and making data-based simulations computationally less

costly—realized by Jiang et al. (2016). Nevertheless, such reduction in Alfvén

speed will directly affect the wave dynamics, which is overlooked in this work in

favor of the reconnection dynamics.

5.2 Results

A modified trilinear null detection technique is used to detect magnetic nulls

which, now additionally provides the topological degree (TD) of the nulls as either

+1 or −1 based on the sign of the determinant of ∇B|null. In the simulation, the

overall number of nulls is found to decrease with time (see panel (a) of Figure

5.4). At the beginning (t = 0 s), around 4000 nulls are found to be primarily

located in the lower solar atmosphere, as depicted in panels (b) and (c) of Figure

5.4, with some also found in the higher solar atmosphere. Focus is set on the

generation/annihilation of three types of null pairs, selected a posteriori; based

on their traceability, diversity, and tractability of corresponding field lines that

reconnect. Throughout the simulation, many such generation and annihilation

processes of each type occur, as the total number of nulls varies, as shown in

Figure 5.4(a). In the remainder of this section, we describe one characteristic

example of each of the three types. The three pairs of nulls are positioned away

from the computational boundary and, as per their topology and dynamics, are

labeled as (i) radial-radial-pair, (ii) radial-spiral-pair-1, and (iii) radial-spiral-

pair-2; listed sequentially as per their generations. The dynamics of field lines

leading to the generation/annihilation of each pair are discussed below.
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Figure 5.4: The panel (a) illustrates the overall evolution of the number of nulls
over time. The vertical axis represents the number of nulls, while the horizontal
axis represents time (in seconds). As time progresses, the overall number of nulls
decreases. At t = 0s, there are approximately 4000 nulls are present, which are
distributed as depicted in panels (b) and (c) (panel (c) is from a different angle to
show the distribution). The size of the box is 324.8Mm, 185.6Mm and 139.2Mm
in x-, y- and z-direction respectively. The nulls are primarily located in the lower
solar atmosphere, with some also found in the higher solar atmosphere (refer to
panel (c)).

5.2.1 Radial-radial-pair

The use of the trilinear null detection technique provides coordinates of each null

along with their TD at each time step. The nulls’ coordinates at two consecutive

time steps are compared to segregate the new nulls from existing nulls at the

previous time step.
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Figure 5.5: The figure illustrates the evolution of radial nulls over time. Nulls
are traced in time, and field lines are drawn at their locations. The variation in
magnitude of current intensity (identified by the Direct Volume Render (DVR)
of | J | / | B |) is shown by the color bar. At t = 120.032s (panel (a)), nulls are
spontaneously created in pairs, and the trilinear null detection technique detects
them simultaneously. The generated null pair consists of two radial nulls and
are shown as radial null 1 and radial null 2 in the figure. It can be verified by
collapsing them into 2D, where they appear to be akin to X-type nulls (shown in
the inset of panel (a)). As the evolution continues, both radial nulls move away
from each other after their generation (see panels (a)-(f)).

Applying the procedure, a pair of nulls (marked as radial null 1 and null 2) having

coordinates {(116.045, 46.893, 5.632), (116.047, 46.893, 5.633)} Mm at t = 120.03

s are selected for analyses; depicted in Figure 5.5, Panel (a). The eigenvalues of
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the Jacobian matrix ∇B at each null are calculated at t = 120.03s. The eigen-

values of each null are found to be purely real, implying that the nulls are radial

nulls. The field lines are plotted near locations of the nulls for further visualiza-

tion. The pair consists of radial nulls as can be verified by collapsing them into

2D where they appear to be akin to X-type nulls (shown in the inset of panel

(a))—a property mentioned in Parnell et al. (1996); Liu et al. (2018); Liu et al.

(2019). The nulls are further traced in time, indicating they are getting spatially

separated with time. The cause of their separation is checked and found that it

is because of Lorentz force (not shown). To understand the field line dynamics

responsible for the generation of the nulls, two selected green and pink field lines

at t = 118.09s are shown in panel (a) of Fig. 5.6. The initial points of these

green and pink field lines are located away from the reconnection region and in

the ideal plasma region, allowing identification of reconnection (Schindler et al.,

1988; Priest et al., 2003; Knizhnik & Cabral-Pelletier, 2022), specifically at coor-

dinates (116.07, 47.05, 5.58)Mm for the green lines and (116.45, 46.80, 5.40)Mm

for the pink lines. The green field lines are connected from regions b to a and

regions d to e, whereas pink field lines are connected from region c to region d

(panel (a)). These field lines are traced over time and advected with plasma flow.

During their evolution, one of the two green field lines changes its connectivity

from regions b to a and connects regions b to d. Similarly, one out of the two pink

field lines also changed its connectivity from regions c to d and gets connected

from regions c to a. Such changes in the connectivity of field lines equate with the

basal definition of magnetic reconnection (Axford, 1984). Simultaneous to the

reconnection, the field line topology displays the formation of the radial-radial

null pair (marked by arrows in panel (b)), which is further corroborated by the

trilinear method. Notably, such radial-radial null pair generation was absent in

the earlier work by Maurya et al. (2023), hereafter referred to as the paper-I.

For details of topology, in Fig. 5.7, we present magnetic field lines at the near

neighborhood of the nulls. In the figure, the fan field lines (in green) of radial

null 1 are directed toward the null and are directed away from the null along the

spine of the null, making its topological degree +1.
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Figure 5.6: Magnetic field lines are traced in time and advected with plasma
flow. The evolution shows the creation of nulls in pairs, consisting of two radial
nulls marked as radial null 1 and radial null 2. The enhanced current intensity
is overlaid using the DVR tool in VAPOR. At t = 118.096s, two green field lines
connect from regions a to b and from e to d, while two pink field lines connect
from regions c to d (panel (a)). During the evolution, one pink field line changes
its connectivity from regions c to d and reconnects to regions c to a, and one
green field line also changes its connectivity from regions b to a to regions b to d
(panel (b)). Simultaneously, two radial nulls are created and marked by arrows
in panel (b). Such changes in the connectivity of field lines represent magnetic
reconnection.



134
Chapter 5. Spontaneous generation and annihilation of 3D magnetic nulls in

the solar atmosphere

Figure 5.7: The figure details the topological features of spontaneously generated
radial nulls at time t = 193.6s. Two radial nulls are generated simultaneously
and are marked by arrow as radial null 1 and radial null 2. Green and pink field
lines are drawn near the radial null 1 and radial null 2, respectively. The fan field
lines (in green) of radial null 1 are directed toward the null, making topological
degree +1, while the fan field lines (in pink) of radial null 2 are directed away
from the null, making topological degree −1.

The fan field lines (in pink) of radial null 2 are directed away from the null

resulting in its topological degree being −1.

The data-based simulation presents a unique opportunity to check if these

spontaneously generated nulls also contribute to footpoint brightening or not,

another novelty of this paper. A positive outcome will strengthen the idea that

such null point generation and subsequent reconnection can contribute to chro-

mospheric/coronal heating, a concept floated by Cheng et al. (2023). The re-

connections at the spontaneously developed null points are expected to generate

heat and accelerate particles that travel along the field lines constituting the fan

and spine, resulting in footpoint brightening as they enter denser plasma region
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(Wang & Liu, 2012). Relevantly, Figure 5.8 depicts such footpoint brightening

in the AIA 1600 Å channel because of slip reconnection. For demonstration, we

select a group of field lines constituting the spine and fan of null 2 (indicated as

‘null’). Notably, the fan has the typical dome-shaped structure identified with

3D null in various observations (Mason et al., 2019, 2021). Blue arrows point in

the direction of the local plasma flow. In the figure, the red field line, marked

by a white arrow at t = 197.47 s, and initially anchored at point ‘a’ (panel (a)),

changes its connectivity to point ‘b’ (panel (b)) with evolution. With further

evolution, the red line changes its connectivity from point ‘b’ and reconnects to

point ‘c’ and subsequently to point ‘d’ (refer to panels (c) and (d)). Importantly,

the local plasma flow direction differs from the field line motion—a trademark of

all magnetic reconnection in 3D (Priest et al., 2003; Aulanier et al., 2006, 2007).

The nulls are further traced in time spanning t ∈ {272.97, 342.67}s, and field

lines are drawn at nulls (Fig. 5.9). With the evolution, these spontaneously gen-

erated radial nulls approach each other and ultimately annihilate at t = 342.67s,

as nulls are absent in panel (f). These nulls are also not found in the trilinear

method and verified their annihilation. To understand the field line dynamics

leading to the pair annihilation, five selected green and pink field lines are drawn

in the ideal region, with initial points at the locations (116.14, 47.56, 4.37)Mm

and (116.49, 47.55, 4.34)Mm. The selected field lines are traced over time span-

ning t ∈ {309.76, 315.57}s as they are advected with plasma flow (Figure 5.10).

At t = 309.76s, green field lines are part of the fan plane and spine of radial

null 1, anchored to the region a and connected from regions d to a and regions

b to a, whereas pink field lines are part of the fan plane and spine of radial

null 2, anchored in region b and connected from regions c to b and regions b to

a (panel (a)). With the evolution, one green field line has changed its connec-

tivity from regions d to a to the regions d to c, and two pink field lines have

changed their connectivity from regions c to b to regions c to d and e (panel

(b)). With further evolution, green field lines become part of both the spines of

radial null 1, and a pink field line changes its connectivity from regions b to a

to regions b to c (panel (c)). In panel (d), a pink field line becomes part of the
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upper spine of radial null 2, and as a result, the radial nulls approach each other.

These changes in connectivity of field lines—magnetic reconnections—continue

until the radial nulls annihilate each other. Figure 5.11 depicts brightening in

AIA 1600 Å channel, co-spatial with footpoints of the reconnecting field lines

(marked by circles).

Figure 5.8: The figure depicts the footpoint brightening in the AIA 1600Åchannel
associated with slip reconnection. The spine and the fan plane of the radial null
(marked as ‘null’) are indicated by white arrows. Two sets of field lines drawn
near the radial null 2 demonstrate the foot point brightening associated with slip
reconnection. The plasma flow is plotted near the z = 0 plane and shown by blue
arrows. Notably, the red field line, marked by the white arrow at t = 197.47s,
is initially anchored to point ‘a’ (panel (a)) changes its connectivity from point
‘a’ to point ‘b’ through slip reconnection (plasma flow direction is different from
the field line motion), resulting in the associated brightening seen in panel (b).
Subsequently, the red field line changes its connectivity from point ‘b’ to point
‘c’ and then to point ‘d’ (refer to panels (c) and (d)). The overlaid AIA channel
has dimension approximately 32.63Mm× 63.80Mm in x and y, respectively.
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Figure 5.9: In this figure, the evolution of radial nulls is shown by tracing and
drawing field lines over time. The field lines (in green) are drawn near the radial
null 1, and field lines (in pink) are drawn at radial null 2. The spine and fan
plane of radial nulls are marked by arrows. With the evolution, radial nulls
are approaching each other (panels (a)-(e)) and ultimately get annihilated at
t = 342.672 s (panel (f)).

5.2.2 Radial-spiral-pair-1

In additional to the radial-radial pair generation, the simulation also shows
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the generation of other pairs. This subsection focuses on the generation and

annihilation of a radial-spiral null pair. The generation and annihilation mecha-

nism is similar to the ones presented in paper-I; here, only a brief description is

provided. The generation can be visualized by tracking magnetic structure in the

immediate vicinity of the null pair, shown in Fig. 5.12. The uniqueness in this

case is the role of a pre-existing null in annihilating the pair. For visualization,

magnetic field lines (in red) are drawn near the pre-existing null while sky-blue

and green field lines are drawn to facilitate demonstration of the null generations

(panel (a) of Fig. 5.12) and their evolution (subsequent panels). With evolution,

sky-blue and green field lines get elbow-shaped at around t = 160.69s, and an

enhancement in current intensity (identified in DVR of | J | / | B |) is seen

accordingly (panel (b)). At t = 164.56s, nulls in a pair comprising of a radial

and spiral null get spontaneously created (panel (c)). Across panels (c) and (d),

nulls are traced in time, and field lines are drawn at their near neighborhood,

depicting an increasing separation between the radial and spiral nulls with time.

The pair generation is due to reconnection, confirmed by advecting participating

field lines as in the previous case (not shown here).
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Figure 5.10: Field lines are traced in time and advected with plasma flow. Five
green and pink field lines are initially part of the spine and fan plane of radial
null 1 and radial null 2, respectively (panel (a)). With the evolution, the green
and pink field lines change their connectivity and get disconnected from the nulls.
Consequently, the nulls are approaching each other and ultimately annihilate
each other, as shown in Figure 5.9.
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Figure 5.11: The figure depicts foot point brightening (marked by circles)in the
AIA 1600 Åchannel associated with magnetic reconnection, which annihilates
the radial nulls. With the evolution (panels (a)-(d)), nulls are approaching each
other with a change in connectivity of field lines, and the corresponding foot-
point locations of field lines are co-spatial with the increased intensity in AIA
1600 Åfilter, emulating the telltale signs of magnetic reconnection. The over-
laid AIA channel has dimension approximately 32.63Mm× 63.80Mm in x and y,
respectively.
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Figure 5.12: The panels of the figure illustrate the generation of nulls in a pair
near a pre-existing 3D null. Magnetic field lines (in red) are drawn near the pre-
existing null (a null already present at t = 135.52s), while sky-blue and green field
lines are included to facilitate the generation of nulls at a later time (panel (a)).
With the evolution, the sky-blue and green field lines develop an elbow shape
at around t = 160.69 s, and an enhancement in current intensity (identified by
the Direct Volume Render of | J | / | B |), marked as ‘cs’, is seen accordingly
(panel (b)). In panel (c), a pair of nulls consisting of a radial and a spiral null is
generated at t = 164.56 s. Panels (c)-(d), spanning t ∈ 164.56, 178.11 s, depict
the tracing of nulls and the plotting of field lines. As the evolution progresses,
the radial and spiral nulls move away from each other after their generation,
whereas the spiral null of the generated pair approaches the pre-existing null

The topological degree of spontaneously generated nulls together with pre-

existing null are depicted in Figure 5.13. The fan field lines (in red) are drawn

near the location of the pre-existing null and are directed toward the null ren-

dering, its topological degree to be +1. The direction of the fan field lines (in

sky-blue) of radial null is toward the null point, resulting in a topological degree

of +1, whereas the fan field lines (in green) of spiral null are directed away from

the null point, resulting in a topological degree of −1. The net topological degree
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of the generated pair is zero, indicating its preservation during the formation of

the pair.

Figure 5.13: The figure illustrates the details of a pre-existing null along with
a spontaneously generated null pair, which consists of a radial null and a spiral
null at t = 178.11s. The field lines (in red) are drawn near the location of the
pre-existing null. The fan field lines are directed toward the null, resulting in a
topological degree of +1. Field lines drawn near the radial null (in sky blue) and
those of the spiral null (in green) are also shown. The spine and fan planes, along
with the topological degrees of both nulls, are marked in the figure. The direction
of the fan field lines of the radial null is toward the null point, and the spine field
lines are directed away from the null point, resulting in a topological degree
of +1. On the other hand, the spine field lines of the spiral null are directed
toward the null point in the fan plane and away from the null point, resulting in
a topological degree of −1. The net topological degree of this generated pair is
zero, and the spiral null gets annihilated with the pre-existing null (in a pair).
Therefore, the conservation of the net topological degree is self-explanatory.

The expected slip reconnection by the fan field lines (Pontin et al., 2013)

and the corresponding brightening in AIA 1600 Å channel can be inferred from

Fig. 5.14. Panels depict the footpoint brightening corresponding to the slip
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reconnection of fan field lines of the radial null of the spiral-radial null pair-1.

The radial null is marked as “null” and the local plasma flow is shown by blue

arrows. Initially, at t = 164.35 s, the green field line indicated by the white

arrow is anchored to point a (panel (a)). With the evolution, the footpoints of

the green field lines are changing their connectivity to points b and c (panel (b))

and subsequently to points d, e, f, and g due to slip reconnection. Importantly,

the local plasma flow direction differs from the field line motion—a trademark

of slip reconnection.

Figure 5.14: Panels depict the footpoint brightening corresponding to the slip
reconnection of fan field lines of the radial null of the spiral-radial null pair-1.
The radial null is marked as “null” and the local plasma flow shown by blue
arrows is plotted near the z = 0 plane. Initially, at t = 164.35 s, the green field
line indicated by the white arrow is anchored to point a (panel (a)). With the
evolution, the footpoints of the green field lines are changing their connectivity
to points b and c (panel (b)) and subsequently to points d, e, f, and g due
to slip reconnection. The overlaid AIA channel has dimension approximately
21.75Mm× 21.75Mm in x and y, respectively.
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Figure 5.15: Nulls are traced over time, and field lines are drawn near the lo-
cations of the nulls. Panels (a)-(d) of this figure illustrate the annihilation of a
spiral null and a pre-existing null. The spine and fan planes of the radial, spiral,
and pre-existing nulls are indicated by the arrows.

Figure 5.15 illustrates the evolution of spontaneously generated nulls together

with the pre-existing null. The nulls are traced in time, and field lines are drawn

near their locations. Across panels (a)-(d), the spiral null is receding away from

the radial null and approaches the pre-existing null. At t = 203.28s, the spi-

ral and pre-existing nulls are annihilated, and correspondingly, only the spon-

taneously generated radial null is present in panel (d)—independently verified

using the trilinear method. The cause of the null annihilation has been investi-

gated by advecting the relevant field lines (not shown here) and found to be due

to magnetic reconnection. The field line topology of the remaining radial null

is shown in Figure 5.16. Its topological degree is +1 as the fan field lines are

directed toward the null, in conformity with the conservation of the topological

degree.
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Figure 5.16: The figure illustrates the details of the radial null t = 203.28s, left
in the domain after the annihilation of the generated spiral null with the pre-
existing null. The fan field lines of the radial null point toward the null point,
while the spine field lines are directed away from the null point, resulting in a
topological degree of +1.

5.2.3 Radial-spiral-pair-2

This subsection emphasizes the generation and annihilation of the radial-spiral-

pair-2, where a radial-spiral null pair spontaneously generates and moves away

from each other after the generation (panels (a)-(d) of Figure 5.17) and subse-

quently annihilates. Magnetic reconnection is once again the cause of the pair

generation and annihilation—nevertheless, the uniqueness here is the conversion

of the spiral null into a radial null, which later annihilates with another spiral

null of a newly generated radial-spiral null pair. To highlight this uniqueness,

eigenvalues of the Jacobian matrix ∇B at the spiral null are calculated during

its evolution. The imaginary part of the eigenvalue is zero at t = 267.17s while

being non-zero earlier than that, implying the transition from spiral to radial.
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For further visualization, field lines are plotted near locations of the nulls. In

2D, a spiral null will appear as an “O” type, and a radial null will appear as an

“X” type null (Parnell et al., 1996; Liu et al., 2018; Liu et al., 2019). Panels (e)

and (f) depict such projections of the spiral null at t = 199.41s and t = 267.17s,

illustrating similar conversion from “O” to “X” type. The spine, fan plane, and

the topological degree of nulls at t = 199.41s are shown in Figure 5.18. The

fan field lines (in yellow) of the spiral null are directed toward the null point,

making its topological degree +1, whereas the spine field lines (in pink) of ra-

dial null are directed toward the null, resulting in a topological degree of −1.

Consequently, the net topological degree of this pair is zero, and the generation

is in congruence with the conservation of the net topological degree. Fig. 5.19

demonstrates the annihilation of the converted radial null along with the spiral

null of the newly generated radial-spiral null pair where the green field lines cor-

respond to the spiral null whereas the red field lines belong to the radial null.

Across panels (a)-(c), spanning the time t ∈ {267.17, 286.53}s, the radial null

of the radial-spiral-pair-2 and the spiral null of generated pair approach each

other and ultimately annihilate at t = 294.27s. Post annihilation, a radial null

remains in the system (panel (d)), and the conservation of net topological degree

is self-explanatory. The topological degree, spine, and fan plane of the radial

null and the spontaneously generated nulls are depicted in Fig. 5.20.
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Figure 5.17: The snapshots of the field lines represent the evolution of nulls as
they are traced over time. At t = 180.05 seconds, it is the first instance when
nulls in a pair first appear using the trilinear detection technique, and field lines
are drawn near their locations (panel (a)). These spontaneously generated nulls
are named radial-spiral-pair-2 and consist of a spiral null (in yellow) and a radial
null (in pink). As the evolution progresses, the spiral and radial nulls are moving
away from each other (panels (a)-(d)). The spiral null loses its spirality and
gets converted into a radial null; the conversion from spiral to radial null can be
verified by collapsing the null’s structure in 2D, where a spiral null will appear
as an “O” type and a radial null will appear as an “X” type null. Panels (e)
and (f) depict the 2D projections of the spiral null and converted radial null
at t = 199.41s and t = 267.17s, respectively. This illustration shows a similar
conversion from “O” to “X” type.
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Figure 5.18: The figure illustrates the topological details of spontaneously gen-
erated radial-spiral-pair-2 nulls at t = 199.41s. These nulls are generated in a
pair and consist of a spiral null (in yellow) and a radial null (in pink). The spine
field lines (in pink) of the radial null are directed toward the null point, resulting
in a topological degree of −1, while the fan field lines (in yellow) of the spiral
null are directed toward the null point, making a topological degree +1. The net
topological degree of this local system is zero, and hence, the overall topological
degree of the system remains unaffected by the generation of these new nulls.
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Figure 5.19: The figure illustrates the evolution of nulls over time. These nulls
are tracked as they evolve, and field lines are drawn at their locations. Yellow,
green, and red field lines are drawn near the radial null of the radial-spiral-pair-
2 null pair, the spiral null, and the radial null of a spontaneously generated
new null pair, respectively. The spontaneously generated new nulls are first
detected by the trilinear null detection technique at t = 267.17 seconds, and
the corresponding structure is shown in panel (a). As the evolution continues,
the spiral and radial nulls of the newly generated pair move away from each
other, while the radial null of the radial-spiral-pair-1 pair and the spiral null of
the newly generated null approach each other simultaneously (panels (a)-(c)),
ultimately resulting in annihilation around t = 294.27 s (marked by no null in
panel (d)). The pairwise annihilation does not affect the net topological degree
of the system. Consequently, one radial null, with a topological degree of +1, is
left in the system.
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Figure 5.20: The figure illustrates the topological details of spontaneously gener-
ated new nulls near the radial null of the radial-spiral-pair-2 pair at t = 274.91s.
These new nulls are generated in pairs and are marked by the arrows. The fan
field lines (in yellow) of the radial null of the radial-spiral-pair-1 pair are directed
toward the null point, resulting in a topological degree of +1. Meanwhile, the
fan field lines (in green) of the spiral null of the spontaneously generated new
pair are directed away from the null point, resulting in a topological degree of
−1. Lastly, the fan field lines (in red) of the radial null of the spontaneously
generated pair are directed toward the null point, making the topological degree
+1. Hence, spontaneous generation occurs in a pair, and the annihilation of the
radial null of the radial-spiral-pair-1 pair is with the spiral null of the generated
pair. Therefore, the net topological degree of the system remains unaffected by
the generation and annihilation of 3D nulls.

For completeness, Figure 5.21 illustrates changes in field line connectivity

during the annihilation. Two selected yellow and green field lines are traced

in time and advected with the plasma flow, preserving their uniqueness. At

t = 274.91s, initially, yellow field lines belong to the spine and fan plane of the

converted radial null, while green field lines are part of the spiral null (panel (a)).

With the evolution, one yellow field line changes its connectivity from regions

c to d to regions c to b and becomes part of the fan plane of the spiral null.

The two green field lines are changing their connectivity from regions b to a to

regions b to e (panel (b)). Subsequently, during the evolution, the yellow field
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line further changes its connectivity from regions b to c and gets connected from

regions b to e′ (panel (c)) and then from regions b to e′ to regions b to a′. Slip

reconnection and brightening in the AIA 1600Å channel similar to the other

pairs have also been found but are not shown here to avoid repetitions.

Figure 5.21: Magnetic field lines are traced over a time span of t ∈
274.912, 280.720 s and advected with plasma flow. This time span is selected
to investigate the dynamics of field lines responsible for annihilation. Four se-
lected field lines, two green and two yellow, are drawn to illustrate magnetic
reconnection. At t = 274.912 seconds, the two green field lines are part of the
spine and fan plane of the spiral null, connecting from region b to region a (panel
(a)), while the two yellow field lines are part of the upper and lower spine along
with the fan plane of the radial null, connecting regions c to d and b. As the
evolution progresses, the green field lines change their connectivity from region b
to region a to region b to e. Similarly, one yellow field line also changes its con-
nectivity from region c to d to region c to b (panel (b)). With further evolution,
one yellow field line changes its connectivity from region c to b to region e′ (panel
(c)), and then from region e′ to region b to region a′ to region b. These changes
in connectivity occur through magnetic reconnection, ultimately resulting in the
annihilation of nulls in a pair.
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5.3 Summary

This chapter establishes, for the first time, reconnection-assisted spontaneous

generation and annihilation of magnetic nulls in the solar atmosphere through

a combination of data-based Implicit Large Eddy simulation, a modified trilin-

ear null detection technique, and observation of collocated footpoint brightening

caused by these generated nulls through slip reconnection—a novel work. For

this purpose, magnetic field lines corresponding to Active Region AR11977 host-

ing a C-class flare on February 17, 2014, are selected. The magnetic field line

configuration just before the flare has been constructed with a non-force free ex-

trapolation of the photospheric magnetic field obtained from the HMI onboard

the SDO. The corresponding finite Lorentz force initiates the dynamics without

the requirement of any prescribed flow. Since this Lorentz force depends on the

photospheric magnetic field, it is inherent to the field line complexity of the ac-

tive region, and hence, the subsequent null generation can be envisaged to be

spontaneous in its true sense. The modified trilinear method sheds light on the

topological degree of a null, in addition to finding the location of a null— as

its predecessor. This new information makes it convenient to identify members

of a null pair and trace them in time. The physics of reconnection being scale

independent, these spontaneously generated nulls are further expected to exhibit

signatures analogous to observed 3D null-assisted solar flares, particularly the

footpoint brightening because of slip reconnection (Masson et al., 2009; Pontin

et al., 2013). Accordingly, it is attempted to look for the brightening and slip re-

connections associated with these spontaneously generated null points. Overall,

the article establishes the spontaneous generation of 3D nulls in the solar atmo-

sphere in a realistic scenario by carrying out a data-based numerical simulation

of the solar atmosphere and explores their observational implications.

The initial magnetic field is provided from by non-FFF extrapolation, and the

initial plasma flow is set to zero. The non-zero Lorentz force pushes the plasma

to generate initial dynamics. The simulation covers a fraction of the rising phase

of the flare, which is expected to be reconnection dominated. The magnetic
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field initially contains over a thousand null points, with this number varying

throughout the simulation as pair creation and annihilation processes occur. As

is expected from previous works, as the system relaxes towards an equilibrium

(due to the non-zero viscous damping), the overall number of nulls decreases.

Three particular null creation/annihilation events are selected for detailed study

and are representative of the many further events that occur within the domain.

One of these identifies that two radial nulls are spontaneously created and move

away from each other after their generation. The result is novel, as the creation

of radial nulls in pairs has not been studied in earlier works. The underlying

cause of their generation is magnetic reconnection, identified by advecting the

magnetic field lines while selecting seed points away from reconnection sites. The

spontaneously generated radial null exhibits the typical dome-shaped structure

of fan field lines, along with footpoint brightening in 1600 Å channel of AIA asso-

ciated with slip reconnection. With further evolution, both radial nulls approach

each other and spontaneously annihilate, the underlying cause being identified as

magnetic reconnection. The simulation also shows the spontaneous generation

of a pair of nulls, consisting of a spiral and a radial null with topological degrees

−1 and +1, respectively. This pair is spontaneously created near a pre-existing

3D null with a topological degree of +1. The spontaneously generated radial

null also exhibits the typical footpoint brightening corresponding to slip recon-

nection. With evolution, the spiral null moves away from the radial null while

simultaneously approaching the pre-existing null, ultimately resulting in their

annihilation. Here, the unique aspect of the finding is the spontaneous annihi-

lation of the generated spiral null with a pre-existing radial null, which has not

been explored in previous studies. During the evolution, another pair of nulls,

consisting of a spiral null and a radial null with topological degrees of +1 and

−1, respectively, get spontaneously created. The spiral and radial nulls move

away from each other after their generation, and the spiral null loses its spirality

as it evolves and transforms into a radial null, making this pair unique for study.

Another uniqueness here is that the annihilation of the converted radial null in-

volves another spiral null from a newly generated radial-spiral null pair. The
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newly generated spiral and radial null have topological degrees of −1 and +1,

respectively. By tracing the field lines in time, it was found that the magnetic

reconnection generates and annihilates the 3D null pairs. The generation and

annihilation of 3D nulls in all the above pairs maintain the conservation of net

topological degree, contributing to the credibility of the simulation. Magnetic

reconnection, identified as the underlying cause of the spontaneous generation

and annihilation of nulls, is noteworthy. The spontaneously generated nulls also

exhibit slip-reconnection, a phenomenon typically observed in a 3D null of the

solar atmosphere. The findings shed light on the underlying magnetic field line

dynamics governing 3D null generation, annihilation, and their evolution. In

each selected case, the field lines in the vicinity of the null are rooted in the pho-

tosphere near brightenings. Such brightenings may be produced by the impact of

non-thermal particles with the plasma of the lower solar atmosphere. Although

both previous studies have established spontaneous null generation through re-

connection, the initial magnetic field supported pre-existing nulls. A natural

question is then whether magnetic reconnection can generate 3D nulls from an

initial magnetic field with no such nulls. The plausibility of such a scenario will

be explored in the next work and presented in the next chapter, where the initial

magnetic field will be chaotic and devoid of any 3D null.



Chapter 6

Generation of 3D magnetic nulls

in an initially chaotic magnetic

field devoid of any nulls

6.1 Introduction

Toward the objective, the plausibility of such a scenario has been briefly ex-

plored in the simulation by Nayak et al. (2020), where the initial magnetic field

was chaotic and devoid of any 3D null. However, that study demonstrated the

generation of magnetic nulls; it failed to precisely identify their location, topolog-

ical degree, and nature (spiral or radial) using presently available standard tools

like the upgraded null detection technique. Moreover, a claim of magnetic re-

connection demonstrated by the change in field line connectivity requires strict

maintenance of the involved magnetic field lines, which was approximated in

Nayak et al. (2020) by keeping the initial point of field line integration constant

at every instant whereas a more precise requirement is to follow the reconnecting

field lines as they advect with plasma flow (in the ideal MHD region). For com-

pleteness, it is then indispensable to revisit those findings in the light of recent

understanding and tools developed and used in the previous two works and put

the idea of spontaneous generation of 3D nulls from an initially chaotic field de-

void of nulls on a firmer footing. Towards this aim, the following presents a brief

155
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discussion of the initial magnetic field. The field is constructed by superposing

two Arnold-Beltrami-Childress (ABC) fields Ram et al. (2014), each satisfying

the linear force-free equation

∇×B′ = λB′, (6.1)

having solution

B′
x = A sinλz + C cosλy, (6.2)

B′
y = B sinλx+ A cosλz, (6.3)

B′
z = C sinλy +B cosλx. (6.4)

and being represented as

B = B′
1 + d0B

′
2. (6.5)

The constant d0 relates the amplitudes of the two superposed fields. In Cartesian

coordinates the components of B are

Bx = A (sinλ1z + d0 sinλ2z) + C (cosλ1y + d0 cosλ2y) , (6.6)

By = B (sinλ1x+ d0 sinλ2x) + A (cosλ1z + d0 cosλ2z) , (6.7)

Bz = C (sinλ1y + d0 sinλ2y) +B (cosλ1x+ d0 cosλ2x) . (6.8)

Equation (6.1) is an eigenvalue equation of the Curl operator (∇×), eigenfunc-

tions of which form a complete orthonormal basis when eigenvalues λ are real

(Yoshida & Giga, 1990). Further simplification of (6.6) can be made by selecting

λ1 = −λ2 = λ, rendering

Bx = 0.5A sin z + 1.5C cos y, (6.9)

By = 0.5B sinx+ 1.5A cos z, (6.10)

Bz = 0.5C sin y + 1.5B cosx, (6.11)



6.2. Results 157

for the selection d0 = 0.5 and λ = 1. The resulting Lorentz force

(J×B)x = B2 sin 2x− 2AC sin y cos z, (6.12)

(J×B)y = C2 sin 2y − 2AB cosx sin z, (6.13)

(J×B)z = A2 sin 2z − 2BC sinx cos y, (6.14)

can be utilized to drive the plasma from an initial static state to develop dy-

namics. Importantly, the B is chaotic and a detailed discussion can be found

in Kumar et al. (2017) and Nayak et al. (2020). Also important is the relative

magnitudes of the constants A, B, and C. For instance, if A=B=1, an increasing

C makes the volume occupied by chaotic field larger—a conclusion derived in

Kumar et al. (2017), which can be used as a measure of chaoticity. For the sim-

ulations executed here, notable is the range 0 ≤ C ≤ 0.3142, for A = B = 1, for

which B is entirely devoid of any magnetic nulls. Consequently, using the B as

an initial condition provides the unique opportunity to explore null generation

from a state having no preexisting nulls—the objective of this communication,

along with understanding null dynamics in an environment of chaotic magnetic

field, left as a future exercise.

6.2 Results

The simulations are carried out using the magnetohydrodynamic numerical

model EULAG-MHD described in Sect. 3.4. The simulations have been per-

formed for the aforementioned field with C ∈ {0.15, 0.3} to explore null genera-

tions with an increase in chaoticity. The kinematic viscosity is set as ν = 0.010

cm2s−1, while the spatial and temporal grid increments are ∆x = ∆y = ∆z =

0.09973 cm along the x, y, z -axes, respectively and ∆t = 0.016 s, in CGS units.

Triply periodic boundary conditions are applied, and the grid having 64 × 64 ×

64 pixels resolved on a computational grid of x, y, z ∈ {−π, π} cm in a Carte-

sian coordinate system, mapping a physical dimension of (2π)3 cm3 to facilitate

magnetic reconnection while optimizing the computation costs. Each simula-
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tion spans a physical time of 32 s. Figure 6.1 plots the number of nulls with

time for different values of C, depicting an increase in the number of nulls at a

given instant and its maximal value over the temporal range with an increase in

chaoticity. Additionally, nulls appear earlier for larger values of C, precisely at

t = (31, 23, 9, 8)s for C = (0.15, 0.2, 0.25, 0.3). Interestingly, the null generation

for all C values is in bursts, most pronounced for C = 0.3, which shows three

identifiable peaks at t = {9.26, 16.18, 23.28} seconds. A possible reason can be a

sudden increase in chaoticity near the peaks, followed by its decrease.
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Figure 6.1: The plot shows an increase in the number of nulls at a given instant
and its maximal value over the temporal range with an increase in chaoticity.
The vertical axis represents the number of nulls, and the horizontal axis repre-
sents time. The plots in different colors (pink, blue, green, and red) represent
the variation in number of nulls for a particular value of the chaoticity (0.15,
0.20,0.25,0.30, respectively). Generation of nulls occur earlier in time as the
chaoticity C increases, i.e., t = (31, 23, 9, 8)s for C = (0.15, 0.20, 0.25, 0.30).

Figure 6.2 verifies this ansatz by following a local flux surface traversed by a

single field line for C = 0.3 in t ∈ {16.08, 16.29}s, spanning the second promi-

nent peak at t = 16.18s. Clearly, the surface loses its coherent structure as

the line becomes more volume-filling and hence chaotic. At t = 16.18s (Panel

(c)), which marks the second peak, the local flux surface is almost destroyed but
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reorganized itself at later times (panels (d) to (f)). It has been proposed that

the presence of chaotic field lines may promote the occurrence of magnetic re-

connection in fields without nulls Eyink et al. (2011); Boozer (2019), and in this

case, the increase in chaoticity is cotemporal with the generation of nulls and

with reconnection (see below). The causal link remains to be fully explored in

future investigations, along with the plausibility of the local flux surfaces being

attractors because of their repetitive destruction and reformation throughout the

simulation. The subsequent retrieval of the flux surface arrests this increase in

reconnection—-leading to a peak in the number of nulls. With no nulls entering

or leaving the computational domain while chaoticity being directly related to

the onset of current sheets (Kumar et al., 2017) and consequent reconnections,

the underlying mechanism for null pair generation can be attributed to these

reconnections. A comprehensive study of field line dynamics is carried out in de-

tail to explore the relation between reconnection and the formation/annihilation

of null pairs. For this purpose, the dynamics corresponding to C = 0.3 are

selected as the nulls are generated earlier in time and mostly away from the

boundaries of the computational domain, leading to their better tractability

over time. The focus is set on the nulls generated in a pair with coordinates

(x, y, z) ∈ {(0.166, 0.034, 0.101)π, (0.169, 0.034, 0.101)π}, at t = 8.27s—panel (a)

of Fig. 6.3 as it involves spiral-spiral pair generation and annihilation, hitherto

unexplored in YRD1 and YRD2. Additionally, the pair is created almost at the

beginning of the null pair generation, being third in the chronology. With the

experience gained from YRD1 and YRD2, the field lines are advected with the

plasma flow and traced in time to reveal the magnetic field line dynamics. For

this purpose, two sets of field lines (one in green and two in pink) having ini-

tial points at coordinates x, y, z ∈ {(0.359, 0.061, 0.235)π, (0.359, 0.061, 0.234)π},

away from the reconnection region are selected. The corresponding field lines

are advected with the plasma flow and are traced in time (Fig. 6.4) within a

subvolume ∈ {(0.266, 0.018, 0.159)π− (0.580, 0.207, 0.434)π}. This subvolume is

far away from the periodic boundaries of the computational domain necessary for

showing up in the chaotic field, so presumably, the selected field lines maintain
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their discreteness.

Figure 6.2: Panels depict a sudden increase in chaoticity near the second peaks
in number of nulls, followed by its decrease. The figure shows a local flux surface
traversed by a single field line for C = 0.3 in t ∈ {16.08, 16.29}s, spanning the
second prominent peak at t = 16.18. Panel (a) depicts a flux surface structure
drawn at t = 16.08s, and the traversing field line is almost perfectly tangential to
the surface and becomes part of the chaotic region with the evolution (panel (b)).
Subsequently, the surface loses its coherent structure as the field line becomes
more volume filling and hence chaotic. At t = 16.18s (Panel (c)), which marks
the second peak, the local flux surface is almost destroyed but reorganized itself
at later times (panels (d) to (f)).
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Figure 6.3: Figure depicts the evolution of nulls with time after their generation.
Nulls are traced in time, and field lines in green, pink, and red are drawn near the
spiral null 1 (SN1), spiral null 2 (SN2), and spiral null 3 (SN3), respectively.
The color bar in panels depicts the magnitude of the |J|/|B|, where J and B
represent current density and magnetic field. Panel (a) depicts the field lines
structure near the nulls at t = 8.27s when two spiral nulls (SN1, SN2) first
appear. With the evolution, SN1 and SN2 move away from each other (Panels
(b)-(e)), and SN1 changes its nature from a spiral to a radial null (panel (e)).
Subsequently, this radial null reverts back to a spiral null (panels (f)-(h)) and
eventually annihilates with a different spiral null 3 (SN3) formed in a distinct
null pair generation process (panel (j)).
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The figure is further overlaid with a probe depicting values of |J|/|B|, located

approximately at the reconnection plane identified from figure 6.3. All three

field lines (two pink and one green) are connected from region a to region b at

t = 8.21s (panel (a)). As depicted from panels (a)-(c), the green field line gets

more prominently elbow-shaped compared to the other two, along with becom-

ing co-spatial with the high-value region of |J|/|B|. Subsequently, across panels

(c) to (d), the green and one of the two pink field lines change their connectivity

from regions a to b to regions a to d and c, respectively, at t = 8.26s— a telltale

sign of magnetic reconnection. Importantly, this reconnection precedes the null

pair generation and indicates a causal connection between the two. Moreover,

an auxiliary simulation having 1283 grid resolution, mapping the same physical

domain, has been carried out. The result (not shown) confirms null pair gen-

erations getting delayed in time and with the onset of magnetic reconnection

being deferred because of the employed ILES spirit of the simulations, further

corroborates this causal connection.

The null pair is generated at t = 8.27s (panel (e)), their structure elaborated

in panel (f), along with changes in field line connectivity. In detail, the second

pink field line connects regions a to d instead of a to b, while the first pink field

line now connects a to d (c.f. panels (d)-(e)). An important further endeavor

would be to identify separators and investigate their role in reconnections oc-

curring in the post-null pair generation phase but left as a future exercise as

achieving the involved numerical technicality is challenging, and the exercise is

not within the central scope of this paper. Nevertheless, recent work by Parnell

(2024) in this direction is worth mentioning here as an example for setting up the

tone for future numerical simulations in this direction. The work demonstrates

the importance of intra- and inter-cluster separators in the context of clusters

of magnetic nulls and suggests that reconnection is not taking place in cluster—

which can further be explored in the context of pair production of magnetic

nulls.
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Figure 6.4: The figure illustrates the magnetic reconnections leading to the gen-
eration of two spiral nulls. Two pink and one green magnetic field lines are traced
in time from ideal plasma elements in the vicinity of the footpoint marked ‘a’.
The colorbar represents the same quantity |J|/|B| as mentioned in Fig. 6.3. At
t = 8.21s, all field lines connect from region a to region b (panel (a)). Subse-
quently (panels (a)-(c)), the green field line develops a more prominent elbow
shape, but connectivity remains unchanged. Across panels (c) and (d), a green
and one pink field line change connectivity—a telltale sign of reconnection. Sub-
sequently, the second pink field line also changes connectivity (panels (d)-(e)) and
generates two spiral nulls at t = 8.27s (panel (e)). The spontaneously generated
two spiral nulls are elaborated in panel (f).
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Figure 6.5: Figure depicts the topological details of the two spontaneously gen-
erated spiral nulls at t = 8.46s (panel (a)) and the null pair at t = 8.86s (panel
(b)). The fan field lines (in green) of spiral null 1 (SN1) are directed away from
the null, resulting in a topological degree of −1 (panels (a) and (b)), whereas
the fan field lines (in pink) of spiral null 2 (SN2) are directed towards the null,
making a topological degree +1. The fan plane field lines of spiral null 3 (SN3)
(in red) are directed towards the null point making topological degree +1 (panel
(b)). With time, these two nulls get annihilated.
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The eigenvalues of the Jacobian matrix ∇B at each null are calculated, and

it is found that the imaginary part of the eigenvalues is non-zero for each of

the two nulls, which are associated with the current along the spine of nulls.

Consequently, the fan field lines of each null become spiral due to non-zero current

along the spine; hence, both nulls are spiral nulls (hereafter referred to as SN1

and SN2, respectively). These nulls are traced in time, and field lines are drawn

from the close vicinity of the nulls, as shown in Figure 6.3. The nulls move

away from each other after their generation (c.f. panels (a)-(e)). The topological

details of the nulls are illustrated in Figure 6.5 (a). The fan field lines (in green)

of SN1 are directed away from the null, resulting in a topological degree of

−1, whereas the fan field lines (in pink) of SN2 are directed towards the null,

making a topological degree +1. The generation of nulls in pairs satisfies the

conservation of net topological degree. With further evolution, the imaginary

part of the eigenvalues of SN1 becomes zero, resulting in no current along the

spine, implying that the SN1 has lost its spirality and become a radial null and

remains radial until t = 8.85s. The average value of the current density (|J|)

in a subvolume enclosing that spiral null is calculated and found that it drops

by 0.6% of its value at t = 8.4s (the time at which null was spiral in nature).

Subsequently, at t = 8.86s, the imaginary part of the eigenvalues again becomes

non-zero, implying non-zero current along the spine, causing it to revert back

to a spiral null SN1 (Fig. 6.3). Accordingly, the average value of |J| in that

subvolume enclosing the null increased by 10%. Simultaneously, SN1 approaches

another spiral null (panels (f), (g)), which is one of the spiral-spiral null pair

generated earlier at t = 8.68s and marked as spiral null 3 (SN3) in Fig.6.3.

SN1, SN2, and SN3 are traced in time, and the green, pink, and red field lines

are drawn near SN1, SN2, and SN3, respectively (panels (f)-(g)). SN1 and

SN3 approach each other and ultimately annihilate pairwise (panels (h)-(j) of

Fig. 6.3). Similar to Figure 6.4, the annihilation coincides with a change in

global field line connectivity (not shown). The spine, fan plane, and topological

degree are depicted in Fig. 6.5 (b). The fan field lines (depicted in red) of SN3

are directed towards the null, making topological degree +1, and the fan field
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lines (in green) of SN1 are directed away from the null, resulting in a topological

degree −1. The conservation of net topological degree is self-explanatory.

6.3 Summary

This chapter presents the study of reconnection-assisted spontaneous genera-

tion/annihilation of 3D nulls with the analytically constructed initially chaotic

fields that do not contain any null—novelty of the work. The initial magnetic

fields have been derived by superposing two ABC fields, each satisfying the lin-

ear force-force condition. The updated trilinear 3D null detection technique has

been employed to locate the nulls and calculate their topological degrees and

nature (spiral or radial) based on eigenvalues. Further, to explore null genera-

tion/annihilation in more detail, the chaoticity is set at C = 0.3 as the generation

of nulls started earlier in time is selected. As an example of the null generation

process, a spontaneously generated pair of spiral nulls is selected. Interestingly,

one of the nulls changes its nature from spiral to radial with evolution. Subse-

quently, this radial null reverts back to a spiral null, which later annihilates with

a different spiral null formed in a distinct null pair generation process. It is al-

ready known that null generation and annihilation require local, non-ideal MHD

effects Hornig & Schindler (1996). To elucidate the global impact of the creation

and annihilation of nulls, the relevant magnetic field lines are traced in time and

advected with the plasma flow in the ideal region. It is found that the field lines

change their connectivity from one domain to a different domain—demonstrating

that the spontaneous generation (and annihilation) of 3D null point pairs leads

to a change in the global field topology. The study also demonstrates a direct

correlation between chaoticity levels and the number of null generations, with

higher chaoticity leading to earlier null creations and increased null count.



Chapter 7

Summary and Future Scopes

7.1 Summary

Magnetic topology is crucial for understanding how magnetic fields behave, espe-

cially in the solar corona, where magnetic reconnections are ubiquitous in nature

and cause transients like solar flares, coronal jets, bright points, and mass ejec-

tions. In 2D, reconnection can occur at O-type (elliptic) or X-type (hyperbolic)

nulls where the magnetic field vanishes. In three dimensions, reconnection takes

place at 3D nulls (where the magnetic field is zero) and separators; the curve

formed through the intersection of two fan planes. The magnetic field is non-

zero along separators, except at the endpoints. The spine and fan plane are the

structures associated with 3D magnetic null point. The spine is made of two

sets of field lines (directed toward/away from the null) bunched together and

oriented along an axis. These field lines further fan out on a plane—the fan

plane—containing the null.

Recent observations, theory, extrapolations, and simulations have shown that

3D magnetic nulls are present in the solar atmosphere and serve as preferential

sites for reconnections, resulting in coronal transients like solar flares, coronal

jets, bright points, and coronal mass ejections. Nevertheless, the generation of

3D nulls in the solar atmosphere is yet to be fully understood, a problem which

the thesis attempts to explore utilizing numerical means.

Toward this objective, spontaneous generation and annihilation of 3D mag-

167
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netic nulls in the solar atmosphere through a combination of MHD simulations, a

modified trilinear null detection technique, and observational data are explored

in the thesis. The study focuses on three primary scenarios: the dynamics of

the initial analytical magnetic field having a proper radial null, a realistic solar

atmosphere scenario using data from Active Region AR 11977 during a C-class

flare on February 17, 2014, and an initially chaotic magnetic field devoid of any

null. Notably, pre-existing 3D nulls are present in the first two cases.

The first study considered the initial analytical magnetic field having proper

radial 3D magnetic null. The magnetofluid is idealized as thermodynamically

inactive, implicitly dissipative, and viscid, with the physical domain and compu-

tational grid set in Cartesian coordinates. The pre-existing current-free 3D null

is deformed through a prescribed initial sinusoidal flow. This leads to the forma-

tion of current sheets and the onset of magnetic reconnections, generating a null

pair consisting of a radial and a spiral null. Importantly, the creation of nulls

is away from the central null—a new result. The subsequent evolution shows

the reconnection-assisted spontaneous generation of nulls—a novel finding, given

contemporary research indicating the presence of 3D nulls in nature, including

the solar atmosphere.

In the second scenario, the initial magnetic field is constructed by extrap-

olating the photospheric magnetic field obtained from the HMI on board the

SDO using a non-force-free extrapolation model. The simulation started with

an extrapolated magnetic field and covered a fraction of the rising phase of the

flare, dominated by magnetic reconnection. Initially, around four thousand nulls

are present, and the number of nulls decreases with time, probably due to an-

nihilation and nulls leaving the computational domain. The detailed analysis of

specific pairs showcases the creation of radial nulls, pairs of spiral and radial nulls

through reconnection, and transformations between various null types along with

their subsequent annihilations. The spontaneously generated nulls exhibit the

footpoint brightening of fan field lines due to slip reconnection, a phenomenon

typical to observed large-scale 3D nulls.

In the third scenario, magnetic fields are derived by superposing two linear
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force-free ABC fields. The simulations demonstrate a direct correlation between

the level of chaoticity and the number of nulls generated, with higher chaoticity

resulting in earlier and more frequent null creations. The updated trilinear null

detection technique enables the identification of null types, calculation of their

topological degrees, and distinction between spiral and radial nulls. The findings

highlight the generation of a spiral 3D null pair, which was not explored ear-

lier. It also highlights the null generation and annihilation, driven by magnetic

reconnection. Consequently, the global magnetic field topology changes as the

involved field lines alter their connectivity.

Overall, the work presented in the thesis establishes that magnetic reconnec-

tion is a key mechanism in the spontaneous generation and annihilation of 3D

nulls, influencing the global magnetic field topology. The findings are not only

interesting but also intriguing. In all three cases, magnetic reconnection creates

magnetic nulls, which, in turn, are also sites for magnetic reconnection. It is

then tempting to envisage a scenario where reconnections spontaneously gener-

ate 3D nulls, which sustain further reconnections—-a continuous process that

can explain the abundance of nulls in the solar atmosphere and contribute to

chromospheric and coronal heating.

7.2 Future Scopes

Based on the findings of this thesis, several avenues for future research emerge. A

critical next step is to investigate the energetics of spontaneous 3D null genera-

tion and annihilation processes. This involves quantifying the energy conversion

during magnetic reconnection and its implications for heating the solar corona

and chromosphere. Moreover, the fact that nulls being ordered entities, having

a well-defined spine and fan field lines, and their spontaneous creation suggests

them as possible self-organized structures. Further research in this direction will

have far-reaching consequences on the understanding of 3D nulls.

The plasma flow responsible for bringing field lines together to initiate the

magnetic reconnection and generate null will be explored. Understanding this
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inflow can provide insights into the conditions necessary for reconnection events

generating the nulls and their frequency in the solar atmosphere.

Another promising direction is to correlate particle acceleration with the null

generation/annihilation, as their interactions can lead to significant particle en-

ergization. Investigating the impact of null dynamics on space weather phenom-

ena, such as solar energetic particle events and geomagnetic storms, could also

enhance our understanding of their broader implications.

Contemporary research suggests that the reconnection is not occurring within

the null cluster and highlights the importance of intra- and inter-cluster separa-

tors in magnetic reconnection. An important future study would be the identi-

fication of separators and exploring their role in null pair generation and subse-

quent evolution.

Last but not the least, extending the study of 3D nulls to other astrophysical

contexts, such as the magnetospheres of planets and the interstellar medium, can

reveal the universality of these processes and their relevance beyond the solar

atmosphere. This cross-disciplinary approach can foster a more comprehensive

understanding of magnetic reconnection and its fundamental role in astrophysical

plasmas.
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