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Abstract

The study of “structuring light” entails the construction of optical beams according to

their fundamental characteristics. These characteristics include but are not limited to

intensity, phase, and polarization. Vector vortex beams are structured optical beams in

which the light has been modulated in all these degrees of freedom, making it possible

to exploit light’s inherent vectorial nature. Material processing, biomedical applica-

tions, and optical manipulation are just some of the many fields that have found a use

for vector vortex beams. Furthermore, such beams have recently been used to visual-

ize intricate mathematical concepts like the Hilbert hotel paradox, Möbius strips, and

Lissajous figures.

In the current thesis, we have theoretically and experimentally studied three dif-

ferent classes of vector vortex beams having intriguing features that can be useful for

various applications. First, we studied the Full Poincaré (FP) beams, a special class

of structured beams that contain all possible polarization states on the surface of the

Poincaré sphere. Such beams are readily created by linear optical techniques and,

more recently, by nonlinear optical processes. An inherent limitation in the nonlin-

ear generation of FP beams is the inability to achieve all polarization states coined as

coverage, due to modal size, polarization, and modal weighting changes during the

nonlinear conversion of the constituent modes. We have devised a simple technique to

control the coverage of FP beams, using second harmonic generation as an example,

from fully scalar (no coverage) to fully vectorial (full coverage). Our study confirms

the vectorial characteristics of the FP beams. It also reveals a balancing act between

mode order, modal nonlinear efficiency, and initial relative modal weights, all in close

agreement with that theoretically predicted.
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Using the same polarization coverage measurement technique, we have studied an-

other special class of beam known Poincaré Bessel beams (PBB), carrying polarization

singularities, nondiffraction, and self-healing properties. Using the mode transforma-

tion of FP beam in rectangular basis ideally carrying 100% polarization coverage of

polarization states represented on the surface of the Poincaré sphere, we observe the

PBB as the superposition of an infinite number of FP beams as each ring of PBB has

polarization coverage >75%. We also observe the resilience of PBB’s degree of po-

larization to perturbation. The polarization-ellipse orientation map of PBBs shows in-

finite series of C-point singularity pairs. The number of such infinite series is decided

by the number of C-point singularity pairs of FP beam. The dynamics of C-point

singularity pairs in the self-healing process show the generation of new C-point sin-

gularity pairs due to the beam obstruction, which annihilates with each other and also

with the intrinsic singularity pairs and eventually reconstitute the singularity pattern.

Such dynamics show an optical analogy of Hilbert’s Hotel type setting representing

mathematics of infinite sets.

Further, we have experimentally demonstrated the exact Hilbert’s Hotel transition

establishing the optical analogy of mathematics of infinite sets using the new types

of vector beams called fractional vector beams. Historically, infinity was long con-

sidered a vague concept – boundless, endless, larger than the largest – without any

quantifiable mathematical foundation. This view changed in the 1800s through the pi-

oneering work of Georg Cantor, showing that infinite sets follow their own seemingly

paradoxical mathematical rules. In 1924, David Hilbert highlighted the strangeness

of infinity through a thought experiment now referred to as the Hilbert Hotel paradox,

or simply Hilbert’s Hotel. The paradox describes an “fully” occupied imaginary hotel

having an infinite number of single-occupancy rooms, the manager can always find a

room for new guests by simply shifting current guests to the next highest room, leav-
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ing the first room vacant. The investigation of wavefield singularities has uncovered

the existence of a direct optical analogy to Hilbert’s thought experiment. Since then,

efforts have been made to investigate the properties of Hilbert’s Hotel by controlling

the dynamics of phase singularities in “fractional” order optical vortex beams. To take

such proposals to the next level and experimentally demonstrate Hilbert’s Hotel using

both phase and polarization singularities of optical fields. Using a multi-ramped spiral-

phase-plate and a supercontinuum source, we generated and controlled fractional order

vortex beams for the practical implementation of Hilbert’s Hotel in scalar and vector

vortex beams. Using a multi-ramped spiral-phase-plate, we show the possibility for

complicated transitions of the generalized Hilbert’s Hotel.

Our findings will be of value to the communities interested in nonlinear structured

light, particularly for vectorial nonlinear modal creators and detectors and control of

quantum hybrid entangled states, imaging in the presence of depolarizing surround-

ings, studying turbulent atmospheric channels, and in visualizing unusual mathemati-

cal concepts and also for fundamental and applied research.

Keywords: Structured beams, Vector beams, Nonlinear optics, second harmonic

generation, polarization optics, Mathematics of infinity, lasers, ultrafast lasers, light

modulators.





List of Publications

Journals

1. Evolution of C-point singularities and polarization coverage of Poincare-Bessel

beam in self-healing process, Subith Kumar, Anupam Pal, Arash Shiri, G. K.

Samanta, and Greg Gbur, Scientific Reports 14 , 16647 (2024).

2. Simple experimental realization of optical Hilbert Hotel using scalar and vector

fractional vortex beams (Cover page, Featured) , Subith Kumar, Anirban Ghosh,

Chahat Kaushik, Arash Shiri, Greg Gbur, Sudhir Sharma, and G. K. Samanta

APL Photonics 8, 066105 (2023).

3. Controlling the coverage of full Poincare beams through second-harmonic gen-

eration, Subith Kumar, Ravi K. Saripalli, Anirban Ghosh, Wagner T. Buono,

Andrew Forbes, and G.K. Samanta, Physical Review Applied 19, 034082 (2023)

Conference proceedings

1. Hilbert hotel realization using Poincare Bessel beam, Subith Kumar, Anupam

Pal, Arash Shiri, G. K. Samanta, and Greg Gbur, Frontiers in Optics, JTu5B. 15

2. Frequency-doubling characteristics of non-collinear Poincaré beams,Subith Ku-
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(h) LG0(r)êH +LG1(r)êV .The left and right ellipticity are represented

by red and blue ellipses. . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 The setup used for the generation of vortex beams from Spatial Light

Modulators (SLM). . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 (a) The schematic representation of Second-harmonic generation (b)

Virtual energy level diagram of Second harmonic generation . . . . . 33

2.11 (a) The variation of second harmonic efficiency with respect to phase

mismatch DkL/2 (b) Second harmonic efficiency with and without

phase matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Index ellipsoids for (a) positive and (b) negative uniaxial crystals. . . 36

2.13 An illustration showing the ideal phase matching condition for a neg-

ative uniaxial crystal with (a) Type I and (b) Type II configurations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.14 An illustration showing the periodic inversion of the sign of the non-

linear coefficient in a QPM nonlinear material by periodic poling. . . 38

3.1 measurement setup for Stokes polarization parameters. . . . . . . . . 42



LIST OF FIGURES xv

3.2 (a) Polarization distribution of a Poincaré beam with uniform polar-

ization distribution across the transverse plane. The axis is marked as

y and c to indicate the uniform increments of these parameters along

the x and y-axis. (b) Distribution of polarization states on Poincaré
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Chapter 1

Introduction

The invention of lasers has advanced science and technology very much ahead due to

their wide variety of applications, including material processing, information technol-

ogy, laser spectroscopy, photochemistry, medical diagnostics, and reaction dynamics.

The majority of these applications used the laser beam in the Gaussian spatial profile.

However, photons feature multiple degrees of freedom, such as wavelength/frequency,

amplitude, phase, time, polarization, and spatial structure. Therefore, manipulation of

different degrees of freedom of photons enhances the reach of lasers to the diversity

of light-based applications. While attention has been paid with time to manipulating

the standard physical parameters of light, the manipulation of the spatial structure of

the laser beam has attracted increasing interest. In fact, the tailoring of the spatial

structures of light beams resulted in new classes of special light beams with added fea-

tures. Some of the important spatial structured beams are vortex beams, Bessel beams,

Airy beams, hollow Gaussian beams, and so on. The optical vortices [1–3], having

phase singularities (phase dislocations) in the wavefront, carry vanishing intensity at

the singular point. Due to the screw-like (helical) phase structure around the point of

1
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singularity, such beams carry orbital angular momentum (OAM). The OAM associ-

ated with optical vortices is important for high-resolution microscopy [4–6], quantum

information [7–9], material processing [10, 11], particle micro-manipulation [12, 13]

and lithography [14, 15]. Similarly, the Bessel beams [16–19] and Airy beams [20–22]

form the new class of beams known as non-diffracting beams. The spatial structure of

such beams remains unchanged during beam propagation. These beams also have pe-

culiar self-healing properties. As a result, these beams retain their spatial structure after

beam obstruction, making them travel deeper in biological samples [23]. In addition to

the peculiar properties, like the Bessel beams, the Airy beams [20, 21] have additional

self-acceleration properties. Due to such unique properties, the Bessel and Airy beams

find many applications, including micro-particle manipulation [12, 24, 25], optically

mediated particle clearing [25, 26], long-distance communication [27–29], and nonlin-

ear frequency conversion [19, 30]. In addition to manipulating the spatial mode of the

Gaussian beams forming the scalar structured beams, one can use both the spatial mode

and the polarization degree of freedom of the light to form a new class of structured

beams known as vector beams with additional features. Unlike the scalar-structured

beams, which have the same polarization states, the vector beam shows different polar-

ization states in different local positions on the transverse plane. In fact, if the vector

beam is passed through a polarizer, a change in the angle of the polarizer will result

in different energy density distributions. Vector beams have attracted a great deal of

attention for their wide range of applications, such as microscopy imaging [5, 31],

quantum information [32–35], laser manipulation [36–38], and many more.

Conventionally, structured optical beams are generated through the spatial mode

conversion of a Gaussian laser beam using mode converters. Some of the very promi-

nent mode converters are the holographic techniques based on liquid crystal spatial

light modulators (SLMs) [39–41], spiral phase plates (SPPs) [42–45], q-plate [46–48],
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and cylindrical mode converters [49]. However, the availability of dynamic phase mod-

ulation and control makes the SLMs the preferred choice over other mode converters to

generate structured beams of any spatial features, including the Airy and Bessel beams.

However, the low damage threshold of the SLMs restricts their use for the generation

of structured beams with low output powers. On the other hand, many applications,

including nonlinear interactions, demand structured beams with high output powers.

For such applications, dielectric material-based mode converters such as SPPs, cubic

phase plates, and axicon are selected based on the type of structured beams. On the

other hand, the high-power vector vortex beams are conventionally generated through

the superposition of the scalar-structured beams with orthogonal polarization states us-

ing a polarization-based interferometer. For example, the collinear superposition of the

horizontal polarized scalar vortex (phase singular) beam of vortex order, +l, with the

vertical polarized scalar vortex beam of vortex order, �l, forms a vector vortex beam

of order, l. The propagation of this beam through a polarizer with a fast axis at an

arbitrary angle will result in an intensity pattern in the necklace form with the number

of petals twice the order of the constituent vortex. However, if one of the constituent

beams of the vector vortex beam is a Gaussian beam, it forms a new class of beam

known as the full Poincaré beam having both polarization and phase singularities. As

the name suggests, such beams carry all possible polarization states represented on the

surface of the Poincaré sphere. The increase in vortex order results in higher-order

full Poincaré beams. Even though it is theoretically possible to generate full Poincaré

beams to cover the entire surface of the Poincaré sphere, in practice, the polarization

coverage of these beams depends on various factors such as the relative intensity, size,

and divergence of the beams forming the full Poincaré beams. On the other hand,

there is no established method for estimating the practical polarization coverage of

such beams. Therefore, it is essential to devise a generalized method for estimating
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the polarization coverage of any vector beam. On the other hand, it is essential to

study the change in the polarization pattern/topology and the coverage of such a beam

in the light-matter interaction. Such a study is essential to take advantage of the spe-

cial features of the full Poincaré beams, such as smaller scintillation than comparable

beams of uniform polarization in the presence of atmospheric turbulence [50, 51], to

help in designing the optimum special polarization structured beams for such appli-

cations and also to study the physical processes manipulating the Poincaré beams on

the different parts of the Poincaré sphere [52]. On the other hand, scalar Bessel beams

have been extensively studied in the literature. In most cases, the spatial structure of

the Bessel beams has been used for any practical application. As polarization is an im-

portant degree of freedom of light, the addition of a polarization structure to the Bessel

beam will certainly enhance our fundamental understanding and also extend the reach

of such beams for future applications. The inclusion of a polarization pattern in the

Bessel beam can, in principle, be achieved through the generation of a full Poincaré

Bessel beam. Since the full Poincaré beams generated from vortex beams of order l

carry l pairs of positively and negatively charged C-point polarization singularities, and

the Bessel beams have concentric dark and bright rings of infinite spatial extend, one

can expect the generation of an infinite number of C-point singularity pairs. In recent

years, efforts have been made to use light beams to understand mathematical concepts.

One such example is the theoretical proposal on the realization of the Hilbert Hotel

paradox to understand the concept of infinity [53, 54] using the phase and polarization

singularities of fractional scalar and vector vortex beams. Therefore, the exploration

of the polarization pattern of full Poincaré beams with the possibility of having an in-

finite number of C-point singularity pairs might lead to the experimental realization of

the mathematical concept of infinite numbers. On the other hand, efforts have been

made for the experimental realization of such theoretical proposals using scalar vor-
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tex beams. However, there is no use of a fractional vector vortex beam to verify the

theoretical proposal of the Hilbert hotel paradox.

To address some of the important issues discussed above, in the current thesis, we

have performed various experiments to study vector vortex beams. We have devised a

new generalized method for the characterization of the full Poincaré beam to measure

the polarization coverage of such a beam on the surface of the Poincaré sphere. We

also experimentally verified the beam parameters influencing the polarization cover-

age of the vector beams. We also devised a simple technique to control the coverage

of full Poincaré beams, using second harmonic generation as an example, from fully

scalar (no coverage) to fully vectorial (full coverage). Using mode conversion of the

full Poincaré beam using an axicon, we have generated a new class of Poincaré Bessel

beam and studied its polarization self-healing characteristics. We observe the transfor-

mation of a full Poincaré beam of any number of C-point polarization singularity pairs

into a series of an infinite number of C-point polarization singularity pairs. In the self-

healing study, we observed that in addition to the polarization self-healing, a new set

of C-point polarization singularity pairs appeared at the beam-blocking point, which

subsequently replaced the existing C-point singularities. After the healing distance,

the beam returns to its initial C-point polarization singularity distribution, resembling

the Hilbert Hotel paradox. Finally, we have generated fractional scalar and vector vor-

tex beams from a fixed SPP and experimentally verified the theoretical proposal of the

Hilbert hotel paradox with both the phase and polarization singularities of the beams.

The current thesis, organized into seven chapters, deals with three topics: polariza-

tion optics, structured optical beams, and nonlinear optics. To give a better perspec-

tive on the fields, we have discussed the basic principles and theoretical framework

to understand polarization optics, structured optical beams, and nonlinear optical pro-
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cesses in the second chapter. The third chapter of the thesis presents the generation

and characterization of vector beams, especially the full Poincaré beam. While the

characterization of such beams is done through the study of their polarization struc-

ture, one of the interesting properties of the full Poincaré beams is their polarization

coverage. However, there is no standard and easy technique to evaluate polarization

coverage. We have presented a new technique to estimate the polarization coverage

of full Poincaré beams. The concept is presented in the third chapter. The ideal full

Poincaré beams contain all possible polarization states on the surface of the Poincaré

sphere. They are readily created by linear optical techniques and, more recently, by

nonlinear optical processes. An inherent limitation in the latter is the inability to

achieve all polarization states, coined coverage, due to modal size, polarization, and

modal weighting changes during the nonlinear conversion of the constituent modes.

In chapter four, we demonstrate a simple technique to control the coverage of full

Poincaré beams, using second harmonic generation as an example, from fully scalar

(no coverage) to fully vectorial (full coverage). We have also done a related theory

that confirms the experimental results for the vectorial characteristics of the generated

beams and the balancing act between mode order, modal nonlinear efficiency, and ini-

tial relative modal weights for the polarization coverage of the Full Poincaré. In the

fifth chapter, we have extended the full Poincaré to generate and characterize a new

class of beam called full Poincaré Bessel beams. The Bessel beams of all orders have

peculiar properties in terms of non-divergence and self-healing with beam propaga-

tion. Such properties of the Bessel beams have been well studied by monitoring the

intensity profile of the beams. In addition to the common properties of Bessel beams,

the full Poincaré Bessel beams have a polarization structure in the transverse plane.

Therefore, we have studied the non-divergence and self-healing properties of the beam

in polarization degrees of freedom. We have seen that the full Poincaré Bessel beam
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carries an infinite number of pairs of lemon and star polarization singularities. It is

also observed that the polarization singularities of the full Poincaré Bessel beam show

self-healing characteristics. We also observed that the self-healing of the polarization

singularity shows a resemblance to the Hilbert hotel paradox. In 1924, David Hilbert

highlighted the strangeness of infinity through a thought experiment now referred to

as the Hilbert Hotel paradox, or simply Hilbert’s Hotel. The investigation of wave-

field singularities has uncovered the existence of a direct optical analogy to Hilbert’s

thought experiment. Using a multi-ramped spiral-phase plate and a supercontinuum

source, we generated and controlled fractional-order vortex beams for the practical

implementation of Hilbert’s Hotel in scalar and vector vortex beams. Using a multi-

ramped spiral-phase plate, we show the possibility for complicated transitions of the

generalized Hilbert’s Hotel in sixth chapter. Finally, in chapter seven, we present a

future outlook on the work reported in the thesis.





Chapter 2

Fundamental principles

Polarization is one of the most important properties of light and has been known for

many centuries—the first observation of polarization credited to Erasmus Bartholinus.

In 1669, he noticed that when a ray of natural light goes through a calcite crystal, it

splits into two new beams of the same intensity. Christian Huygens soon after figured

out that the polarization of these two rays was different from each other. However, it

was not until 1803, when Young showed that light vibrates in a plane perpendicular

to its movement, this was linked to the fact that light is transverse. An officer in

the French army named Etienne-Louis Malus was in the Palais de Luxembourg in

Paris in 1808 when he made an important discovery. He looked at the sun’s reflection

on a window pane through a calcite crystal. Turning the calcite crystal, he saw that

the two images made by double refraction went out in turns. Malus told us about

this result, but he did not say why. A few years later, in 1812, Sir David Brewster

also looked into how light behaves when it bounces off the glass. He found that the

reflected light seen through a calcite crystal could be turned off at a certain angle of

incidence, called Brewster’s angle. Brewster did more research and found a simple

9
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link between what became known as the Brewster angle and the glass’s refraction

index. This work was even more important because it made it possible to measure the

index of refraction of optical glass by reflection instead of by refraction (transmission).

While Brewster was hard at work in Great Britain, Augustin Jean Fresnel was using the

Fresnel–Huygens integral to solve the problem of diffraction and give the wave theory

a solid theoretical base. In 1818, the Paris Academy of Science gave him a prize for

solving the diffraction problem. This was because his friend and colleague Dominique

Francois Arago proved that there was a small bright spot in the shadow of a small

circular disc, which Fresnel’s theory had predicted would happen. The wave theory got

even better when it was used to explain how polarized light moves through an optically

active medium. The wave theory of light became almost universally accepted because

of Fresnel’s and others’ work. In classical optics, the wave equation is used as a

hypothesis. It was accepted because it helped people understand and describe how light

moves, bends, interferes, and gets polarized. Also, the results of the calculations using

the wave equations were exactly the same as the results of the experiments. Before

James Clerk Maxwell’s electrodynamic theory and Heinrich Hertz’s experiments in

the second half of the 1800s, the wave equation did not have a solid experimental

basis. It is clear that the polarization state is related to the changes in the electric field

over time in the plane perpendicular to the propagation plane. Also, a wave is said to

be unpolarized if the electric field changes in time in a random way. On the other hand,

it is said to be polarized if it changes a certain way. The best way to begin the study of

the polarization of the light in the wave equation from Maxwell’s equation. The wave

equation for a light propagating in an isotropic medium can be written by a set of three

independent wave equations as follows,

—2Ui(r, t) =
1
v

∂Ui(r, t)
∂ t2 i = x,y,z (2.1)
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The optical field vector (electric field vector E or magnetic field vector H) in the

cylindrical coordinate system is represented by U(r,t), and the velocity of propaga-

tion is represented by v. When light propagates along the z direction, the transverse

components are Ux(r, t) and Uy(r, t), and the longitudinal component is Uz(r, t). Later

in 1818, after a series of experiments based on Young’s interference experiment us-

ing polarised light, Fresnel and Arago concluded with the absence of the longitudinal

component of light. So a most simplified solution for the Equation 2.1 for an optical

field propagating along the z-axis can be written as,

Ux(r, t) =U0x cos(A+dx) (2.2a)

Uy(r, t) =U0y cos(A+dy) (2.2b)

U0x and U0y are the maximum amplitudes, while A = wt +k.r is the propagation term

and dx and dy are the phases for each axis component. Because each component varies

with space and time, every point in space forms a resulting field as the instantaneous

vector sum of each component in the equations 2.2a and 2.2b during light propaga-

tion. The locus of the electric field vector at a given point can be derived [55] by

restructuring the equations 2.2a and 2.2b,

U2
x

U2
0x
+

U2
y

U2
0y
�2

Ux

U0x

Uy

U0y
cosd = sin2 d (2.3)

where,

d = dy �dx (2.4)

The equation 2.3 is identical to an ellipse equation; as a result, the locus of the
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electric field vector will propagate in the form of an ellipse commonly recognized as

polarisation ellipse as shown in Figure2.1. The product term UxUy results in a tilt

on the polarisation ellipse. The tilt is quantified by the angle between the x-axis and

the axis along the semi-major axis of the ellipse (x0) called ellipse orientation angle,

y . The other parameter for quantifying the polarisation ellipse is the ellipticity of

polarisation ellipse, c calculated by tan�1 b/a. The semi-major and semi-minor axes

of the polarization ellipse are a and b. Six commonly used special cases of polarisation

ellipses are depicted in Figure 2.1 b � g. In most situations, the light beams have

a uniform polarisation throughout the transverse plane. Since this often makes the

vector nature of the light insignificant. So the light beams are generally referred to as

scalar beams. There is another variant of optical beams where the polarisation of the

light varies all over the transverse plane. In such optical beams, the vector nature of the

optical field becomes significant and such beams are often referred to as vector beams.

Over the past years, many studies have been conducted to understand such beams’

fundamental properties. The study revealed a list of applications of vector beams such

as high numerical focusing [56], Enhanced beam stability while propagating through

turbulent mediums [51], optical manipulations [57] etc. For a better understanding of

vector beams, it is essential to characterize polarisation effectively. But for the optical

fields oscillating 1015 times every second, it is a very short interval to sufficiently

quantify the optical field for observing polarisation in real life. One of the best methods

for characterizing polarisation is by measuring stokes parameters.

2.1 Stokes parameters

Sir Gabriel Stokes solved the problem of characterizing polarization using the mag-

nitude and phase of the optical field during his studies on partially polarized light in

1852 [58]. Stokes figured out that light polarisation can be defined by four parameters,
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Figure 2.1: (a) polarisation ellipse, b-g: six special cases of polarisation ellipse;
(b) Left circular polarisation(LCP),(c) Right circular polarisation(RCP),(d) Horizon-
tal polarisation(H),(e) Vertical polarisation (V),(f) Diagonal polarisation (D), (g) Anti-
diagonal (A).

which can be calculated from the easily measurable intensity of light. The Stokes pa-

rameters for a monochromatic plane wave in terms of electric field (E) can be written

as,

S0 = ExE⇤
x +EyE⇤

y (2.5a)

S1 = ExE⇤
x �EyE⇤

y (2.5b)

S2 = ExE⇤
y +EyE⇤

x (2.5c)

S3 = i
�
ExE⇤

y �EyE⇤
x
�

(2.5d)

The parameter S0 is proportional to the intensity of the optical field. The hori-

zontal/vertical, diagonal/anti-diagonal, and left/right circular contributions in a given

polarization are represented by S1, S2, and S3. Further, the four parameters are related

by the expression,
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S2
0 � S2

1 +S2
2 +S2

3 (2.6)

The equal sign is valid for completely polarised light. The sum of the squares of

the Stokes parameters S1, S2, and S3 for a partially polarized light will be less than

the square S0. For a completely polarised light, all Stokes parameters vanish except

S0. The ratio between the right and left-hand sides of the equation 2.6 is known as the

Degree of polarisation (DoP). As the name suggests, the Degree of polarisation indi-

cates how much the light is polarised. The degree of polarization (DoP) of completely

polarized light is one; for unpolarized light, it is zero. The degree of polarization of

a partially polarized light ranges between 0 and 1. Further, the Stokes parameters S1,

S2, and S3 are related to the ellipse orientation (y) and ellipticity(c) by the following

relation:

S0 = I0 (2.7a)

S1 = IP cos2c cos2y (2.7b)

S2 = IP cos2c sin2y (2.7c)

S3 = IP sin2c (2.7d)

Here, I0 is the net intensity, and IP =
q

S2
1 +S2

2 +S2
3 denotes the polarised intensity

component of the beam. In the case of totally polarized light (I0 = IP), the relations

are as follows:
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S1 = S0 cos2c cos2y (2.8a)

S2 = S0 cos2c sin2y (2.8b)

S3 = S0 sin2c (2.8c)

From the above set of expressions, we can find the expression for the ellipse orientation

and ellipticity as,

2y = tan�1 S2

S1
(2.9a)

2c = sin�1 S3

S0
(2.9b)

For a completely polarised light, Eq. 2.6 becomes the equation of a sphere. As

a result the Stokes parameters S1, S2 and S3 can be geometrically represented as the

Cartesian coordinates of a point P on a Poincaré sphere with radius S0 as depicted in the

Figure 2.2. From the equation 2.8, it can also be understood that the double of ellipse

orientation (2y) and ellipticity (2c) form the other spherical coordinate of the point P.

In some of the special cases, e.g., when S1 = S0, all other Stokes parameters vanish,

and as a result, the Cartesian coordinate of the point P becomes (S0,0,0), representing

a horizontal polarization. Similarly, in the other special cases coordinates, (�S0,0,0),

(0,S0,0), (0,�S0,0), (0,0,S0), and (0,0,�S0) of the point P represents the vertical,

diagonal, anti-diagonal, left circular, and right circular polarisation respectively.

Poincaré sphere is a variation of the Bloch sphere in optics for visualizing polari-

sation. Similar to the Bloch sphere, the diametrically opposite points in the Poincaré
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Figure 2.2: Geometrical representation of polarization as a point on the surface of the
Poincaré sphere

sphere will be orthogonal. This makes any diagonally opposite polarisation can take

as the basis for representing any other polarization. For example, using the complex

representation a |Hi+b |V i, horizontal (H) and vertical (V) polarization (represented

by the points (S0,0,0), (�S0,0,0) in a Poincaré sphere) can be used to represent all

other polarizations. Here a and b are the complex coefficients for each polarisation

state and can be normalized as a2 +b 2 = 1. Figure 2.3 shows the Bloch sphere rep-

resentation of Poincare sphere in terms of commonly used three pairs of polarisation

states. This representation of points on the Poincaré sphere in terms of two orthogonal

polarisations is handy for visualizing different polarisation states.
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Figure 2.3: Bloch sphere representation of Poincare sphere in terms of (a)
Horizontal(|Hi)- Vertical(|V i), (b) Diagonal(|Di)- Anti-diagonal(|Ai), (c) Left
circular(|Li)- Right circular(|Ri) polarisation states.

2.2 Structured beams

Structured light beams are created by varying the intensity, phase, and polariza-

tion of a light beam. Most examples of structured light fields in the past have only

considered the scalar nature of the optical beams. That is, restructuring the phase and

intensity profiles of the light beams by neglecting or treating polarization as a free de-

gree of freedom in the design process. This estimation is essential for converting Eq.

2.1 into a scalar form, reducing the complexity of solving the wave equation. The solu-

tions for the wave equation mentioned in Eq. 2.2 are the most simplified solutions for

the wave equation that represents the hypothetical plane waves. In real-life situations,

such infinitely extended light beams are not possible. One of the most often used ap-

proximations for solving the wave equation is the paraxial wave approximation, which

reduces the wave equation into a much more easily solvable Helmholtz equation as

mentioned in the equation 2.10.

✓
∂ 2

∂x2 +
∂ 2

∂y2 +2ik
∂
∂ z

◆
U(x,y,z) = 0 (2.10)

The most simple solution for the paraxial equation is the solution in the form of a
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2D Gaussian function called the Gaussian beam. The Gaussian beam is the most stable

solution of the paraxial beam equation in the case of a laser cavity. The solution for

the paraxial equation in terms of the Gaussian equation is as follows,

UG(r) =U0e�iF(z)

2

4 1q
1+ z2/z2

0

eik(x2+y2)/2R(z)

3

5e�(x2+y2)/w2(z) (2.11)

where,U0 is the beam’s amplitude, z0 = pw2
0/l is the Rayleigh range, R(z) =

z+ z2
0/z is the wavefront curvature, w(z) = w0

q
1+ z2/z2

0 is the beam width at the

distance z and F(z) = arctan(z/z0) is the Gouy phase shift as the function of z. Even

though the Gaussian mode is the most stable mode of the laser cavity, some of the

other commonly known solutions for the paraxial equation, especially in the form

of special functions, attracted enormous scientific interest in the past decades due to

its vast range of applications. Some notable examples are Hermite-Gaussian beams,

Laguerre-Gaussian beams, Bessel beams, and Airy beams.

2.2.1 Hermite-Gaussian beams

Because of astigmatism introduced in the laser cavity, rectangular symmetric Hermite-

Gaussian beams are frequently formed in the laser cavity. The Hermite-Gaussian

beams are the solutions of the paraxial wave equation in the Cartesian coordinate sys-

tem. The equation for Hermite-Gaussian beams with order (m,n) can be written as,
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Figure 2.4: Intensity (first row) and Phase (second row) profile of the various Hermite
Gaussian modes with mode order m,n.
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here Hn and Hm are the mth and nth order Hermite polynomial . It needs to be

noted that when (m,n)= (0,0), the Hermite-Gaussian beams will become the Gaussian

beam. Figure 2.4 shows the intensity and phase profile for the different orders of

Hermite-Gaussian beams. orders

2.2.2 Laguerre-Gaussian beam

The vortex beams are the solutions for the equation 2.10 in the cylindrical coordi-

nates (r,f ,z). Vortex beams attracted great attention after Allen, and his colleagues

[1] discovered that such beams could carry orbital angular momentum. The complex

amplitude profile of the vortex beams is represented by ULG
lm and can be expressed with

the equation 2.13.
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ULG
l,m (r,f ,z) =U0
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� (2.13)

Similar to the Hermite-Gaussian beam, the above expression will form a complete

set of solutions for the paraxial wave equation 2.10. The Ll
m is the Laguerre-Gaussian

polynomial with azimuthal (l = ...,�2,�1,0,1,2, ...) and radial (m= 1,2,3...) indices

respectively. Similar to the Hermite-Gaussian beams, the lowest order of the Laguerre-

Gaussian beam will be the Gaussian beam. The Laguerre-Gaussian beam is circularly

symmetric because the intensity, which is a function of r and z but not of f , is pro-

portional to the absolute square of the amplitude mentioned in the equation 2.13. The

transverse intensity distribution of the LG beam takes on the form of a doughnut. In the

case of Laguerre-Gaussian beam with l 6= 0, the maximum value of intensity will be

at a radius of r =
p

| l | /2w(z), and it increases along with the propagation distance

z as similar to the divergence of Gaussian beam. This is clear in the intensity profile

depicted in the first row of figure 2.5 for l = �2 to 2. The most interesting properties

of the LG beams are related to the azimuthally varying phase term exp(ilf). From the

second row of the figure 2.5, it was clear that this most prominent phase will produce

a phase singularity (A point where the phase of the optical beam is undefined) at the

center surrounded by l number of phase winding. As a result, along the z direction,

the wavefront of the LG beam will form l distinct inter-winded helical (left-handed for

l > 0 and right-handed for l < 0) structure resulting in a corkscrew-like motion dur-

ing the beam propagation. This characteristic wavefront geometry forms a skew angle

between the pointing vector and the propagation direction and results in a rotational

motion of the pointing vector around the propagation direction. The skew angle of the
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Figure 2.5: Intensity (first row) and Phase (second row) profile of the LG beam for
topological order, l =�2 to 2.

wave vector with respect to the optical axis can be estimated as l/kr [59]. This imparts

an azimuthal component to the linear momentum flow of lh̄/r, resulting in an angular

momentum per photon of lh̄. In contrast, to spin angular momentum, which has only

two distinct states, spin up and spin down, orbital angular momentum has an infinite

number of orthogonal states corresponding to the integer values of l.

Due to their unique properties, LG beams have great application potential in many

fields. LG beam can be utilized for information coding, which can significantly im-

prove optical communication’s information capacity and security [60, 61]. In optical

tweezers, the unique phase distribution of LG beams can be used to capture and manip-

ulate particles to rotate [62, 63] . The distinctive ”doughnut” intensity distribution can

be used to improve imaging resolution in Stimulated Emission Depletion Microscopy

(STED) [5, 64]. Furthermore, LG beams have found important applications in gravi-

tational wave detection [65, 66] and quantum entanglement [67].
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2.2.3 Bessel beam

Bessel light beams are immune to diffraction, making them potentially an attractive

alternative to using Gaussian beams in several scenarios. Bessel beams are one of

the solutions to the paraxial equation in cylindrical coordinates [18, 68] diffraction,

making them. The following equation can describe the electric field of the Bessel

beam:

E(r,f ,z) = A0 exp(ikzz)Jn (krr)exp(±inf) (2.14)

where Jn is the nth order Bessel function, and kr and kz are the radial and longitudi-

nal wave-vector components of the free-space wave-vector, such that k =
q
(k2

z + k2
r ),

and r, f and z are the radial, azimuthal and longitudinal components respectively.

Bessel beams have a set of concentric ring structures, and the zeroth order has a central

maximum, whereas all the higher-order Bessel beams have zero intensity at the cen-

ter. All the higher-order Bessel beams have an orbital angular momentum and phase

singularity of charge l associated with the azimuthal phase term. The mathematical

Figure 2.6: (a) The generation of Bessel beam from an Axicon (b) Intensity profile of
Bessel beam



2.2. Structured beams 23

description of the Bessel beam shows an infinite number of rings; thus, an infinite area

would carry an infinite amount of power. Therefore, it is evident that in the labora-

tory, a ’quasi-Bessel beam,’ i.e., finite energy Bessel beam with finite energy, can be

realized, which possesses all the properties of the Bessel beam over a finite distance.

Figure 2.6 shows the generation of the Bessel beam using Axicon and Bessel

beam’s intensity profiles.

2.2.4 Airy beam

The Airy beam, unlike other paraxial beams, has the unusual characteristics of prop-

agating in a parabolic trajectory, self-healing, and non-divergence [20, 21]. An ideal

Airy beam propagates up to an infinite distance without spreading in the spatial profile;

however, it necessitates carrying infinite energy to exist. As a result, only finite-energy

airy beams can be produced experimentally while retaining all of their peculiar prop-

erties. The 1-D and 2-D Airy beams experience an acceleration transverse to their

propagation direction, resulting in the beam’s parabolic trajectory.

Like other non-diffractive beams, such as Bessel beams, the Airy beam regen-

erates after encountering an obstruction along its propagation [22]. An airy beam is

the interference of multiple waves with a cubic phase front; when an obstruction is

placed in the beam path, as long as some waves are able to pass the obstruction, the

waves can interfere beyond it and reconstruct the beam. These unique features of Airy

beams find application in particle acceleration[69], self-imaging[70], and light-sheet

microscopy[71]. The finite energy Airy beam along the propagation direction is de-

fined as,
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Figure 2.7: (a)2D Airy beam at propagation distance z = 0 and (b) its phase profile.

F(x ,s) = Ai
�
s� (x/2)2�exp

�
i(sx/2)� i

�
x 3/12

��
(2.15)

the transverse shift xd of the beam along the propagation direction z will be,

xd =
a

4k2x3
0
+qxz (2.16)

where k is the propagation constant, x0 is the arbitrary transverse scale and q is

the incident angle. Airy beams are generally generated by the Fourier transform of

a cubic phase imposed Gaussian beam [72, 73]. The transverse intensity profile of

two-dimensional Airy beams and its cross-sectional phase profile are shown in Figure

2.7.

2.2.5 Vector beams

In all of the structured beam examples we have talked about so far, the scalar nature

of the optical beam has been taken into account. But it was well understood that the
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electric and magnetic fields are vector quantities; hence, a direction is associated with

this quantity. At the start of this chapter, we discussed the vector properties of electro-

magnetic fields in great detail. From Maxwell’s equation, one can see that the electric

(E) and magnetic (B) fields are perpendicular to the wave vector (k). In the previ-

ous sections, we discussed some of the beams that can be generated from the spatial

manipulation of Electric field amplitude. Even though the electric and magnetic fields

magnitudes are restricted by Ex =�cBy and Ey = cBx for an optical beam propagating

along z direction. There are no restrictions involved between the x and y components

of the optical field. Hence, by carefully engineering the transverse electric or magnetic

field along with the previously discussed phase and amplitude, one can generate a new

class of optical beams with spatially varying polarization. The optical field’s vectorial

property is greatly considered in such optical beams. Hence this category of beams is

commonly known as ”vector beams.” Vector beams are also solutions of vector wave

equations having spatially inhomogeneous polarization states across the beam profile

[74]. Despite the fact that vector beams can be released as natural solutions to the

vectorial Helmholtz equation, they are frequently generated as coaxial superpositions

of orthogonal scalar fields with orthogonal polarization states as follows.

U(r) =Ui(r)eid1 êi+Uj(r)eid2 êj (2.17)

here, êi, êj can be any two orthogonal polarization pair such as horizontal-vertical

or right-left circular. Similarly, Ui and Uj can be any orthogonal spatial modes. The

d2 � d1 will be the relative phase difference between the spatial modes. Even though

the polarization degree of freedom is limited to two-dimensional space, the spatial

degree of freedom is infinite. In other words, since there are infinite ways to use

spatial modes, the set of vector beams also makes an infinite space. Some of the well-
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established examples of vector beams are given in figure 2.8.

Figure 2.8: Examples of vector beams generated from various coaxial super-
positions of the LG beams.(a) LG�1(r)êL + LG1(r)êR, (b) LG�1(r)êL � LG1(r)êR,
(c) LG0(r)êL + LG1(r)êR, (d) LG1(r)êL + LG0(r)êR, (e) LG1(r)êL + LG�1(r)êR, (f)
LG1(r)êL � LG�1(r)êR, (g) LG1(r)êH + LG�1(r)êV , (h) LG0(r)êH + LG1(r)êV .The
left and right ellipticity are represented by red and blue ellipses.

In recent years, vector beams have shown promising applications in many fields,

such as biomedical and clinical applications[75], ultra-sensitive polarimetry [76, 77],

mode division multiplexing[78], and better spectroscopy[79], laser machining[10], op-

tical trapping[80], high-resolution imaging [81]. Therefore, various methods have

been proposed to generate vector vortex beams, such as conical Brewster prism, inter-

ferometry, sub-wavelength gratings, laser intracavity devices, twisted nematic liquid

crystals, and metallic nanostructures.

2.3 Generation of structured beams

Spatial beam shaping techniques, encompassing active and passive methods, are

employed to precisely control the intensity, polarization and phase distribution of laser
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beams. Active methods, such as resonator engineering and intracavity element manip-

ulation, directly influence the beam within the laser cavity. Passive methods, including

spatial light modulators, phase plates, and diffractive optical elements, modify the

beam’s characteristics externally.

2.3.1 Spatial Light Modulators (SLMs)

Spatial light modulators (SLMs) have emerged as indispensable tools in modern optics,

offering precise control over the amplitude, phase, and polarization of light beams.

These devices have revolutionized various fields, from laser material processing to

quantum optics, by enabling the generation of complex optical patterns and effects.

SLMs operate by modulating the optical properties of light as it passes through

or reflects off the device. This modulation is achieved through various mechanisms,

including the use of microelectromechanical systems (MEMS) or liquid crystals. By

controlling the orientation of microscopic elements within the SLM, it is possible to in-

troduce phase shifts, amplitude variations, or polarization changes into the light beam.

For example, to generate optical vortices from a Gaussian beam, a forked grating is

used to imprint on the SLM, which results in the generation of optical vortices of re-

spective order, as shown in Figure.2.9

The ability to manipulate light in such a precise manner has opened up a vast array

of applications for SLMs. In laser material processing, SLMs can be used to create

custom beam profiles for tasks such as cutting, drilling, and engraving. In optical

communication, they can modulate light signals for high-speed data transmission. In

the realm of scientific research, SLMs have played a pivotal role in advancing our un-

derstanding of fundamental optical phenomena. They have been used to create optical

vortices, optical tweezers, and structured light fields, enabling novel experiments in
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Figure 2.9: The setup used for the generation of vortex beams from Spatial Light
Modulators (SLM).

fields such as quantum optics, microscopy, and biophotons.

As technology continues to evolve, SLMs are expected to play an even more sig-

nificant role in shaping the future of optics. Advancements in materials science, mi-

crofabrication, and control algorithms are paving the way for the development of more

efficient, versatile, and powerful SLMs.

2.3.2 Dielectric phase elements

Dielectric elements, known for their exceptional resistance to optical damage, are in-

dispensable tools for shaping coherent light sources. These elements, such as spiral

phase plates (SPPs) and cubic phase masks (CPMs), introduce specific phase varia-

tions to the input beam, resulting in the generation of structured beams with unique

properties. Their high damage threshold makes them particularly suitable for applica-

tions involving high-power lasers.

While dielectric elements offer remarkable advantages, they are often limited in
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their wavelength versatility. The refractive index of the dielectric material can vary

with wavelength, restricting the element’s effectiveness to a specific range. This limi-

tation can be particularly challenging when working with broadband or tunable lasers.

Spiral Phase Plates (SPP) are advanced Diffractive Optical Elements (DOE) that

twist a plane Gaussian beam into an optical vortex, offering unique applications. The

resulting intensity distribution has a dark central area and is therefore called a doughnut-

shaped beam. spiral phase plate is a unique optic, whose structure is composed entirely

of spiral or helical phase steps, whose purpose is to control the phase of the transmitted

beam. The topological charge, denoted in the literature as m, refers to the number of

2p cycles (i.e. “staircases”) etched around 360o turn of diffractive surface. One main

effect of a higher topological charge is an increase in the angular momentum of the

vortex beam by a factor of l. Another effect is the dimensions magnification of the

ring intensity pattern, by a factor of l.

2.4 Nonlinear optics

The study of phenomena that originate from altering a material system’s optical

properties by light is known as nonlinear optics. In most cases, only laser beams

are powerful enough to change a material system’s nonlinear optical characteristics

substantially. A material system’s response to an applied optical field depends nonlin-

early on the intensity of the applied optical field; hence, nonlinear optical phenomena

are called ”nonlinear” in this sense. For instance, the aspect of the atomic response

that scales quadratically with the strength of the applied optical field causes second-

harmonic production. As a result, the intensity of the light produced at the second-

harmonic frequency does tend to grow as the square of the laser light’s applied inten-

sity. To understand the effect of the optical field in the matter, let’s consider the wave



30 Chapter 2. Fundamental principles

equation for an optical beam propagating through a lossless dispersion-less medium in

terms of the electric field E [82],

—2E� 1
c2

∂ 2

∂ t2 E =
1

e0c2
∂ 2P
∂ t2 (2.18)

here P is the material polarisation quantified as the dipole moment per unit volume

produced by the optical field, and the e(1) is the relative permittivity of the medium. To

illustrate the optical nonlinearity, consider the dependence of a material system’s polar-

isation P(t) (the dipole moment per unit volume) on the applied optical field strength

E(t). Polarisation is crucial in describing nonlinear optical phenomena because a time-

varying polarisation can be the source of new electromagnetic field components. The

optical response in nonlinear optics can often be described by expressing the polarisa-

tion P(t) as a power series in the field strength E(t).

P(t) = e0

⇣
c(1)E(t)+c(2)E2(t)+c(3)E3(t)+ . . .

⌘
⌘ P(1)(t)+P(2)(t)+P(3)(t)+ . . .

(2.19)

here, c(1) is known as the linear susceptibility, and the higher-order coefficients

c(2) and c(3) are known as the second and third-order nonlinear optical susceptibili-

ties, respectively. Accordingly, we can refer to the terms P(1)(t) = e(1)0 E(t), P(2)(t) =

e(2)0 E2(t), and P(3)(t) = e(3)0 E3(t) as the first, second, and third order polarisation

terms. The same approach can also be applied to the higher-order terms; however,

observing the higher-order terms is challenging due to the magnitude of higher-order

susceptibilities. To comprehend this, we can make a simple order-of-magnitude esti-

mate of the size of these numbers in the typical scenario where the nonlinearity has

an electronic origin. In equation 2.19, the lowest-order correction term P(2) would
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be comparable to the linear response P(1) when the applied field amplitude E is of

the order of the specific atomic electric field strength Eat = e/(4pe0a2
0). where �e is

the electron’s charge, and a0 = 4pe0h̄2/me2 is the Bohr radius of the hydrogen atom

(here h̄ is Planck’s constant divided by 2p , and m is the electron’s mass). We can

numerically find that Eat = 5.14⇥1011V/m. Therefore, we anticipate that under non-

resonant excitation situations, the second-order susceptibility c(2) will have the form

c(1)/Eat . For condensed matter, c(1) is on the order of one; thus, we expect c(2) to

be on the order of 1/Eat , or that c(2) ⇡ 1.94⇥ 1012m/V . Similarly, we anticipate

c(3) to be on the same scale as c(1)/E2
at , which for condensed matter corresponds

to c(3) ⇡ 3.78⇥ 1024m2/V 2. Based on these values, it was evident that higher-order

terms were unfeasible in real life due to the low order of magnitude of the higher-order

susceptibility, which necessitated a sizeable optical field amplitude for witnessing such

phenomena. Besides that, second-order nonlinear optical interactions are only possible

in non-centrosymmetric crystals, i.e., crystals that lack inversion symmetry.

While considering the first nonlinear term of polarisation P, the second-order non-

linear process will lead to a series of nonlinear optical processes such as Second har-

monic generation (SHG), Sum frequency generation (SFG), Difference frequency gen-

eration (DFG), Optical rectification (OR), Optical parametric generation (OPG), Op-

tical parametric generation (OPO). Similarly, the higher-order terms also can produce

a series of optical processes. Since the third and higher-order nonlinear interactions

are out of the scope of this thesis, we are restricting our discussions to the examples of

second-order nonlinear interactions in the following session. Let us consider an optical

field with two distinct frequency components represented by

E(t) = E1e�iw1t +E2e�iw2t + c.c. (2.20)
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While applying this optical field equation into the second order term of the polarisation

equation mentioned in the equation 2.19, the term will result in

P(2)(t) =e0c(2)
h
E2

1 e�2iw1t +E2
2 e�2iw2t +2E1E2e�i(w1+w2)t

+2E1E⇤
2 e�i(w1�w2)t + c.c.

i
+2e0c(2) [E1E⇤

1 +E2E⇤
2 ]

(2.21)

From the above expression for the nonlinear polarisation, we can see the generation

of many new frequency terms. Each of the frequency components represents various

nonlinear optical interactions represented by their corresponding amplitude terms,

P(2w1) = e0c(2)E2
1 (SHG), (2.22a)

P(2w2) = e0c(2)E2
2 (SHG), (2.22b)

P(w1 +w2) = 2e0c(2)E1E2 (SFG), (2.22c)

P(w1 �w2) = 2e0c(2)E1E⇤
2 (DFG), (2.22d)

P(0) = 2e0c(2) (E1E⇤
1 +E2E⇤

2) (OR). (2.22e)

Although four distinct nonzero frequency components are present in the nonlinear

polarisation, only one of these will typically be present with considerable intensity in

the radiation generated by the nonlinear optical interaction. This behavior results from

the nonlinear polarisation’s inability to produce an output signal efficiently unless a

specific phase-matching condition is met. This criterion cannot usually be satisfied for

more than one frequency component of the nonlinear polarization. By adjusting the

input radiation’s polarisation and the nonlinear crystal’s orientation, frequency com-

ponents are frequently selected for radiation. A more detailed description of the phase

matching is presented in the later section.
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2.4.1 Second-harmonic generation

Second-harmonic generation can be described as the exchange of photons between

the different frequency components of the interacting optical field. During Second-

harmonic generation, an optical field with w frequency will be converted into the op-

tical beam with 2w frequency while propagating through the nonlinear medium as

shown in Figure 2.10 a. As depicted in Figure 2.10 b, a single quantum-mechanical

process results in the destruction of two photons with frequency w and the creation of

a photon with frequency 2w . The solid line in the 2.10 represents the atomic ground

state, whereas the dashed lines represent the virtual energy levels. The term ’virtual’

was coined since these levels are not energy eigen levels of the free atom. Instant rep-

resents the combined energy of one of the atom’s energy eigenstates and one or more

photons of the radiation field.

Figure 2.10: (a) The schematic representation of Second-harmonic generation (b) Vir-
tual energy level diagram of Second harmonic generation

Second harmonic generation is the first nonlinear interaction realized by convert-

ing a 694.3 nm optical wave generated from a Ruby laser into 347.2 nm by passing

through crystalline quartz in 1961 [83]. With the right experimental conditions, the

second-harmonic generation process can be so effective that almost all the power in

the incident beam with frequency w is turned into radiation with frequency w . The

higher efficiency of the second harmonic generation can be used to obtain the wave-
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lengths which are difficult to access with the laser gain mediums. One of the most

common examples is the second harmonic generation of 532nm using Nd: YAG laser,

which works at 1064 nm, or the second harmonic generation of Ti: sapphire laser,

which will enable 400 nm ultra-fast optical beams from 800 nm femtosecond pulses

which discussed in detail in chapter 4.

The Second-harmonic generation can be understood by considering a single fre-

quency (w1) in the electric field equation 2.20 for the calculation of the material po-

larisation mentioned in 2.21. By doing this, we will get a polarisation term (P (2w1))

oscillating with a frequency that double the input optical beams frequency (2w1) and

an amplitude mentioned in 2.22a. This polarization term will generate an electric field

E(2!1) in the medium resulting in the Second harmonic generation. More analyt-

ically, If we substitute the input pump electric field Ep = Ape�i(wpt+kpz) and second

order polarisation term P(2) = 2e0de f f E2
p in the wave equation mentioned in the Equa-

tion 2.18. We can derive the coupled electric field equation for the second harmonic

generation represented by,

dAw
dz

=
2iw2deff

kwc2 A2wA⇤
we�iDkz (2.23a)

dA2w
dz

=
2iw2deff

k2wc2 A2
weiDkz (2.23b)

here de f f is the effective second-order nonlinearity defined by c(2)/2 and the Dk

is the so-called phase matching condition defined by Dk = 2kw � k2w . A detailed

description of the phase-matching condition is given in the following section.
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2.4.2 Phase matching

The energy transfer between the frequency components in the second harmonic gen-

eration is governed by the coupled equation mentioned in the equation 2.23. From

the solutions of the equations 2.23, one can derive the intensity output of the second

harmonic generation for nonlinear crystal with length L as [82],

I3 =
4d2

effw2I2
wL2

e0n2
wn2wc3 sinc2

✓
DkL

2

◆
(2.24)

The parameters nw and n2w are the refractive indices for the crystal at w and 2w fre-

quencies. One of the noticeable points in the expression 2.24 is the term DkL/2 inside

the sinc function. From Figure 2.11, it is clear that a small variation in the DkL/2

term impacts a huge impact on the second harmonic efficiency. Hence it is essential

to make the DkL/2 term into zero. Since making the length of the crystal into zero is

realistically impossible, the only way to make the sinc function is by making the term

Dk into zero. This condition further makes sense when considering the conservation of

momentum during the parametric process. In the case of second harmonic generation,

the net momentum of the combining photons needs to be matched with the second

harmonic photons such that h̄k2w = h̄kw + h̄kw . So the slight rearrangement of the mo-

mentum conservation will give the perfect condition for phase matching. Hence, by

satisfying the phase-matching condition, we also satisfy the momentum conservation

condition, leading to maximum efficiency in the second harmonic generation. Bire-

fringent phase-matching and quasi-phase-matching are the two important techniques

to satisfy the phase-matching condition.



36 Chapter 2. Fundamental principles

Figure 2.11: (a) The variation of second harmonic efficiency with respect to phase
mismatch DkL/2 (b) Second harmonic efficiency with and without phase matching

Figure 2.12: Index ellipsoids for (a) positive and (b) negative uniaxial crystals.

Birefringent phase-matching

In the case of second harmonic generation, the perfect phase matching condition (Dk =

0) can be simplified further by matching the material’s refractive index (nw = n2w) at

the pump and second harmonic frequencies [82]. Normal dispersion, in which the

material’s refractive index increases with frequency, makes phase matching challeng-

ing in most circumstances. On the other hand, birefringence is the dependence of

the refractive index on the direction of propagation of optical radiation exhibited by
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certain materials. In this material, the refractive index of one of the polarizations

will change depending on the direction of propagation through the crystal. In con-

trast, the refractive index of the other polarization will stay the same, except along

the optic axis. Figure 2.12 shows the two different types of refractive index varia-

tions (a-positive, b-negative) in birefringent crystals. In such crystals, phase-matching

is achieved by choosing the propagation direction along the polarization of the second

harmonic wave, which provides it with the lower of the two possible refractive indices.

This option, for example, corresponds to the extraordinary polarization of a negative

uni-axial crystal, as shown in Figure 2.12. When it comes to the polarization of the

pump, birefringent phase-matching can be classified into two types: The first category

is that both pump photons have the same polarization, which is orthogonal to the sec-

ond harmonic beam. This first category is known as Type I phase-matching(2.13a).

The other possibility is both pump photons have different polarization, and the sec-

ond harmonic wave contains either one of the polarization known as the Type II phase

matching(2.13b).

Figure 2.13: An illustration showing the ideal phase matching condition for a negative
uniaxial crystal with (a) Type I and (b) Type II configurations
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Figure 2.14: An illustration showing the periodic inversion of the sign of the nonlinear
coefficient in a QPM nonlinear material by periodic poling.

Quasi phase-matching

Armstrong et al. [84] initially proposed the idea of using a method called quasi-phase-

matching (QPM) to accomplish birefringent phase-matching. As can be seen in Figure

2.14, QPM involves the periodic inversion of relative phase by switching the sign of

the nonlinear coefficient of the material. The QPM is often implemented by reversing

the sign of a nonlinear coefficient by periodic poling of a ferro-electric medium such

as lithium niobate [85, 86]. Figure 2.14 depicts a schematic of the sign reversal. In the

case of SHG, one can reduce destructive interference among second-harmonic wave

components produced at various points along the propagation path by switching the

sign of the nonlinear polarization at every Lc, and so retain power owing from the

fundamental to the second harmonic.This method is known as quasi-phase-matching

because it falls short of perfect phase-velocity matching between the fundamental and

second-harmonic waves.As shown in Figure 2.11b, in the case of QPM, the output

intensity increases gradually rather than in the case of perfect phase-matching.In quasi-

phase-matching, the nonlinear coefficient of the material is altered with the period

L = 2Lc. For an optimal duty factor of 50 %, the effective nonlinearity for the first

order grating is shown as[82],
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de f f =
2

pm
(2.25)

Although, in theory, QPM reduces the nonlinear coefficient for frequency conver-

sion processes, in practice, this is offset by the prospect of all interacting waves being

polarized in the same direction. This allows access to the greatest nonlinear tensor

element of the material, which is often an element in which both indices are equal,

denoted by the notation di j,(i = j). In the case of lithium niobate (LiNbO3), lithium

tantalate (LiTaO3), and potassium titanyl phosphate (KTiOPO4), d33 is the largest ten-

sor element. The primary benefit of QPM is that it may be used in materials with low

birefringence where BPM is not conceivable, and it can produce Non-critical phase

matching for any non-linear interaction allowed within the transparency range of the

material. Since all of the fields may be polarized parallel to one of the primary opti-

cal axes of the nonlinear crystal, the Poynting vector walk-off between the interacting

fields can be avoided if the non-critical phase matching configuration is used. In addi-

tion, the periodical poling technology permits the fabrication of multiple grating crys-

tals, which expands the phase-matching capability throughout the entire transparency

range of the nonlinear material.





Chapter 3

Generation and characterization of

vector beams

3.1 Vector beam generation

In the previous chapter, we discussed how light is structured in the intensity and

polarization domains. This chapter will go through the creation and characterization

of structured beams, particularly vector beams with both spin and orbital angular mo-

mentum. The vector vortex beam is generated through the spatial superposition of two

optical beams having orthogonal polarization and distinct spatial modes, as denoted by

the mathematical expression of equation 2.17. There are various generation techniques

for the vector beams developed by different research communities over the past years.

The generation methods initially utilized diffractive optics, which were created by the

community focused on laser beam shaping. These optics involve sub-wave-length

gratings that require the consideration of the vectorial nature of light. As a result, all

solutions are inherently vector solutions [87, 88]. Crystal-based techniques have also

41
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been developed for conical diffraction. The efficient generation of various vector states

of light has been observed through the exploitation of the propagation of light through

anisotropic crystals, as demonstrated in previous studies[89, 90]. It is evident that in

the process of tight focusing, scalar light will undergo a transformation into vector

light. The spin-orbit interactions are categorized into several approaches[91, 92].

3.2 Measurement of Stokes parameters

Figure 3.1: measurement setup for Stokes polarization parameters.

In this section, we will talk about how intensity profiles are used to measure the

Stokes polarization parameters. The Stokes parameter measurement setup consists

of an optical retarder or birefringent medium with a fast axis along the x-axis and a

polarizer held at an angle q with respect to the x-axis. A schematic diagram for the

setup is shown in Fig. 3.1. The retarder will introduce a relative phase difference d

between the x and y axes. For an input optical beam with the electric field, Ein =

Exei(wt+fx)x̂+Eyei(wt+fy)ŷ passing through this configuration, the output electric field
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can be calculated as Eout = Ex cosqei(wt+fx+d/2)x̂+Ey sinqei(wt+fy�d/2)ŷ. From this

electric field expression, the intensity output in terms of the optical retardance d and

the polarizer angle q will be,

I(q ,d ) = 1
2
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y
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(3.1)

The output intensity is a function of four Stokes parameters: S0, S1, S2, and S3.

So, we need at least four intensities to be able to figure out the four Stokes parameters.

For measuring these four intensity configurations, a quarter-wave plate (QWP) can be

used as the retarder with d = 90°, and the polarizer can be configured at the angles,

q = 0°,45°, and 90° to obtain the four intensities I (0�,0�), I (45�,0�), I (45�,0�) and

I (45�,90�). The four Stokes parameters can be calculated from this four intensity

profile using the set of equations given in 3.2

S0 = I (0�,0�)+ I (90�,0�) (3.2a)

S1 = I (0�,0�)� I (90�,0�) (3.2b)

S2 = 2I (45�,0�)� I (0�,0�)� I (90�,0�) (3.2c)

S3 = 2I (45�,90�)� I (0�,0�)� I (90�,0�) (3.2d)

For the characterization of the vector beams, we have recorded the intensity profiles

of the input beam with the above-mentioned QWP and polarizer combinations in a
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CCD-based camera. Later, the intensity data for each pixel is used to measure the

Stokes parameter for each pixel. These Stokes parameter distributions were later used

for the calculations of the spatial distributions of polarization ellipse orientation (y)

and ellipticity (c) using the relation presented by the Eq. 2.9. The MATLAB code

used for this calculation is given in Appendix A.

3.3 Measurement of polarization coverage

Estimation of the polarization states available in an optical vector beam or the po-

larization coverage is essential while utilizing such beams in real-life applications.

The straightforward way of estimating polarization coverage is by estimating the area

covered by all available polarization states on the Poincaré sphere. Even though the

method is a good way of visualizing polarization, it does not consider the fact that an

equal area near the pole can contain more polarization states than an equal area near

the equatorial region. Further, in real-life situations, it is cumbersome for the genera-

tion and detection of a continuous distribution of polarization states. The polarization

distribution of a practical Poincaré beam will be discrete. Since the discrete points

don’t have an area of their own, the only option will be to use a binning method. As

such the fundamental parameters of the polarization ellipse, ellipse orientation (y),

and ellipticity (c) can be utilized to bin the polarization states. The first step in calcu-

lating polarization coverage with the binning technique is to define a rectangle in a 2D

plane with axes,2y , and 2c , the spherical coordinates of Poincare’s sphere. In doing

so, one can project each point on the curved surface of the Poincaré sphere into the

2D plane without distortion as commonly observed during the projection of 3D into

2D plane. The length (2y 2 [0, p]) and breadth (c 2 [�p/4, +p/4]) of the rectangle

are then divided with n equal intervals along both axes, yielding a total of N0 = n⇥n

buckets. As a result, all polarization states fell into one of these buckets, and polar-
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ization coverage can be calculated as 100⇥N/N0 if each of the N buckets contains at

least one polarization state.

Figure 3.2: (a) Polarization distribution of a Poincaré beam with uniform polarization
distribution across the transverse plane. The axis is marked as y and c to indicate
the uniform increments of these parameters along the x and y-axis. (b) Distribution
of polarization states on Poincaré sphere. (c) Distribution of polarization states on
2y � 2c plane with the number of bins 32⇥ 32. (d) Distribution of the number of
points in the 2y �2c plane.

The optimization of the number of buckets N0 is a crucial part of this calculation.

The maximum acceptable number of the buckets N0 can be understood by an example

with a hypothetical beam with a uniform polarization distribution of 32⇥32 polariza-

tion states shown in Fig 3.2(a). Here the ellipse orientation (y) and ellipticity (c) is

varying uniformly along x and y axes, respectively. The polarization states of the beam
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is shown by the distribution on the Poincaré sphere using Fig. 3.2(b). It is evident from

Fig. 3.2(b) that the polarization distribution of the beam on the surface of the Poincaré

sphere is not uniform even though the beam carries a uniform distribution polarization.

Further, it is important to note that the concentration of polarization states is high near

the polar region in comparison to the concentration of polarization states in the equa-

torial region. As a result, an equal area near-equatorial region can contain less span of

polarization states compared to an equal area selected near the polar region. Therefore,

it is evident that simply calculating the area covered by the polarization states on the

Poincaré sphere is not sufficient for the exact evaluation of the polarization coverage

of any vector beams. On the other hand, these polarization states have a uniform dis-

tribution in the 2y �2c plane divided into N0 = n⇥n = 32⇥32 bins, as shown in Fig.

3.2(c). Figure 3.2(d) shows the histogram for the distribution of the number of points

in each bin. So from the above description, it is evident that the most fundamental way

of estimating the span of discrete polarisation distribution over the Poincaré sphere is

by calculating the coverage of polarization distribution in the 2y �2c plane.

The above-explained example is an ideal case for full coverage. In this example, a

bin size less than the total number of pixels in the beam will not change the polarization

coverage, on the other hand, a binning of more than the number of polarization will

lead to a case of oversampling hence a reduced polarization coverage. On the hand, the

selection N0 value can be made by matching it with the total number of pixels present

in the sample, the same as the maximum possible number of bins possible without

over-sampling. Unfortunately, in real-life scenarios, the polarization states may not

be uniformly distributed in the 2y � 2c plane. In such situations, the selection of

the highest possible number of bins will lead to under-sampling of the polarization

coverage. The best example for understanding under-sampling conditions is the case

of a scalar beam. Figure 3.3(a) is the polarization distribution of a scalar beam with a
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Figure 3.3: (a) Polarization distribution of a scalar beam with vertical polarization
across the transverse plane. (b) Distribution of polarization states on Poincaré sphere.
(c) Distribution of polarization states on 2y �2c plane with the number of bins 32⇥
32. (d) Distribution of the number of points in the 2y �2c plane in logarithmic scale.

uniform vertical polarization. In Fig. 3.3(b), we can see that all the polarization states

in the beam are concentrated in a single point on the surface of the Poincaré sphere.

Similarly, the single point on the 2y � 2c plane is shown in Fig. 3.3(c). As a result,

all the polarization states will be concentrated on a single bin as shown in Fig. 3.3(d),

and the coverage corresponding to the scalar beam completely depend on the choice

of a number of bins. For example, the selection of N0 as 1, 10, and 100 buckets will

give a polarization coverage of 100%, 10%, and 1%, respectively. In this case, we can

see that a very low value of N0 is not an acceptable choice. Therefore, it is imperative

to devise the right strategy to select the optimum value of N0. Throughout the thesis,
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we have considered the value of N0 to be the least count of the measured polarization.

The selected N0 value applied to measure the polarization coverage of different scalar

and vector beams has provided a sensible and consistent polarization coverage.



Chapter 4

Controlling the coverage of full

Poincaré beams

4.1 Introduction

Structured light, including Laguerre-Gauss (LG) modes of light that carry orbital

angular momentum (OAM), has been a fast-growing field in recent years due to access

to be able to use the spatially varying phase and space degree of freedom [93]. Another

popular degree of freedom, the polarization of the light beam, is a consequence of the

vectorial nature of the electromagnetic field. Light beams with space-varying polar-

ization distribution, known as Poincaré beams [93], can be constructed from a coaxial

superposition of orthogonally polarized fundamental Gaussian mode and an LG mode

[74, 94]. With the study of beams having a nontrivial distribution of polarization,

and by exploiting this vectorial nature of light, new dimensions have opened since its

interaction with matter is polarization sensitive. Such vector light shows promising

applications [74, 95, 96] in both classical and quantum contexts [97]. Notable vecto-
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rial structures of light are the Full Poincaré (FP) beams [94], which carry all possible

polarization states spanning over the entire surface of the Poincaré sphere. Since the

first demonstration [94], the FP beams have attracted a great deal of interest in various

science and technology applications. The inherent spatial distribution and the flattop

intensity distribution [98] of polarization states over the transverse plane make the FP

beam a good candidate for an on-demand polarization source. It is also well estab-

lished that the spin and orbital angular momentum of the light plays an important role

in material processing [10], biomedical applications [75], and optical manipulation

[12]. The spatial degree of freedom for choosing the spin-orbital angular momentum

in FP beams further enhances the usefulness of FP beams in similar applications. For

each of these applications, it is essential to properly quantify and control the polariza-

tion content of the optical beam at different wavelengths.

On the other hand, generating structured beams with space-varying polarization

can be challenging as it entails an amalgamation of beam shaping techniques, viz.

liquid crystals, spatial light modulators, etc., interferometric setups, and computer re-

sources and algorithms, that altogether make up a complex setup. This can impose

certain restrictions like, for example, while the FP beam, in theory, can carry all pos-

sible polarization states on the surface of the Poincaré sphere, in practice, due to the

finite beam size of the superposed beams, the generation of an FP beam with full polar-

ization coverage is difficult. Also, the direct generation straight from lasers [99–102]

has also been explored. In this regard, the modal description has been a useful tool to

describe newly formed structures [40]. However, this generation type is restricted in

the wavelength by the availability of gain media. Traditionally, FP beams are gener-

ated and controlled by linear optical elements. The nonlinear creation and control of

FP beams is a subject very much in its infancy [103].
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For the case of second harmonic generation (SHG), seminal works have revealed

the interesting effects of topological doubling [101, 104], algebra [105], and analysis

of the conversion of FP beams [106, 107]. Nowadays, in the forefront of this area is

the nonlinear behaviour of vector light [36], with recent works accessing frequency

up-conversion [37, 107–110] and down conversion [111], even in the quantum realm

[112].

However, an early aspect of SHG has not been taken into consideration when us-

ing FP beams: different optical modes have different conversion efficiencies. This has

been debated early in the field with seminal works using Bessel beams [19, 30, 113–

115], but the principle is the same, viz., a nonlinear process efficiency is proportional

to its intensity, which in turn is the average power over the area. The waist parame-

ter of a structured beam increases proportionally to the square root of its order [116],

increasing the minimum area achieved while focused and therefore decreasing conver-

sion efficiency. A consequence is that FP beams do not remain so, with the coverage

potentially increasing or decreasing depending on both beam and medium conditions.

In FP beams, the spatial and polarization degrees of freedom (DoFs) are coupled in

a non-separable manner, mimicking the phenomena of entanglement in quantum me-

chanics. This coupling will depend on the extent of spatial overlap of the orthogonal

polarization and modes. The use of FP beams for material processing [10] can be very

useful to be able to create complex structures and precise features by controlling the

polarization and modal distribution in the FP beams. Further, the second harmonic

generation of the FP beams opens up access to the exotic wavelengths [117] where the

direct structuring of the optical beams is difficult. Recent studies have shown that the

nonlinear upconversion is an effective method to tune the wavelength while maintain-

ing its quantum properties [118]. This points out the usefulness of nonlinear upconver-
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sion to quantum processes that use the polarization degree of freedom in cryptography

[119] or hybrid entanglement [120]. In view of the above applications, it is imperative

to study the polarization coverage and modal coverage of the generated FP beams. In

this work, we address this open problem and demonstrate a simple technique to con-

trol the coverage of FP beams, from fully scalar (no coverage) to fully vectorial (full

coverage). Using SHG in a single-pass dual-crystal geometry with various topologi-

cal charges as vectorial inputs, we show how the relative weightings and SHG effect

features such as singularities and L-lines, and analyze how the coverage is affected by

the change in beam sizes and different conversion efficiencies for the two constituting

modes of an FP beam. We reveal the balancing act between mode order, modal non-

linear efficiency, and initial relative modal weights, all in close agreement with that

theoretically predicted. To the best of our knowledge, this is the first comprehensive

quantitative study on the estimation and control of the accessible polarization states of

an FP beam.

4.2 Background and Concept

Full Poincaré beams are generated by the coaxial superposition of orthogonally

polarized Gaussian and Laguerre-Gaussian (LG) beams. The electric field expression

for the FP beam can be written as, E = a |EH , li+b |EV ,0i, Where the a and b are

normalized amplitude coefficients of the LG and Gaussian beams. For the theoretical

generation of FP beams, we have generated the transverse electric field distribution

of the horizontal (|EH , li) and vertical (|EV ,0i) components using the experimental

parameters in a two-dimensional array with the same size of the detector aperture

resolution. These transverse electric field expressions are further used in calculat-

ing the theoretical intensity profile for four different combinations of l/2 and l/4

wave-plates sufficient for the measurement of Stokes parameters. Stokes parameters,
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traditionally labeled as S0,S1,S2, and S3 on the axis of a Poincaré sphere, play a crucial

role in visualizing the unconventional polarization states of light beams. These four

parameters are sufficient for calculating the ellipse orientation (y = tan�1 S2/S1) and

ellipticity (c = sin�1 S3/S0) of the polarization ellipse in both experiment and theory.

To study polarization topology of the FP beam, we have studied the singularities

on the Stokes field. The Stokes fields are hypothetical complex fields constructed

from the Stokes parameters [121], described by S12 = S1 + iS2, S23 = S2 + iS3, and

S31 = S3 + iS1. The Stokes phases, the argument of the Stokes fields, can be calcu-

lated as fi j = tan�1 S j/Si, where, i, j = 1,2 and 3. Stokes vortices are the points in

the Stokes phase field with screw dislocation often quantified by charge si j (number

of 0� 2p phase winding around the dislocation). The Stokes phase s12 is used for

visualizing C-point polarization singularities, which are the points in the optical fields

where the orientation of the polarization ellipse is undefined. C-point singularities are

characterized by circular singularity indices Ic representing the number of complete 2p

rotations of polarization ellipse around the singularity point. Since the ellipse orienta-

tion is calculated by y =
1
2

tan�1 S2/S1, the circular singularity indices Ic and Stokes

vortex charge s12 are further related by s12 = 2Ic [121, 122]. The vortices s23 in the

Stokes field, S23, also known as the Poincaré field, represent the net orbital angular

momentum of the beam. The number of C-point singularity pairs in the FP beam is

the same as the vortex order s23 of the beam.

The coverage of the FP beam on Poincaré sphere is realized by the one-to-one

mapping of the polarization calculated in each of the pixels in the detector plane to

a point on the surface of the Poincaré sphere. The area then measures the coverage

covered by these points with respect to the total area of the Poincaré sphere. So the

coverage of FP on the surface of the Poincaré sphere can be considered as the net
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accessible polarization states available in an FP beam. A coverage of more than 75% of

the Poincaré sphere is deemed acceptable for many applications [123]. To understand

how these polarization states are generated in the detector plane, let us consider the

area where two beams with orthogonal polarizations are spatially overlapping. The

areas where the two orthogonally polarized beams do not overlap only contains their

respective polarization state. The diverging polarization states will only exist in the

space where these two beams are spatially superimposed, and their relative weights

and phases will dictate the polarization state at a given position. This spatial overlap

of the beams, however, decreases when considering the SHG of both beams. This can

be observed in Figure 1 and can be explained as follows. In the SHG process, while a

Gaussian beam generates another Gaussian with a smaller area, a Laguerre-Gaussian

(LG) beam also generates an LG beam, but with its intensity distribution further away

from the center and with a sharper drop in the intensity.

In Figure 4.1 (a), we illustrate the beam intensity profiles along the overlapping

region in black. If this area is projected in the radial direction, as in Figure 4.1 (b), it is

easier to see that the region decreases, particularly if considered a detection threshold

(a minimum total intensity required for practical purposes). For the case of a Gaussian

beam with right-circular polarization and an LG beam with left-circular polarization

composing the fundamental/pump wavelength, we have illustrated this effect in Figure

4.1 (c). Circular polarization states are found only in the regions where only one beam

has detectable intensity. All other polarization states are confined in between. A linear

polarization state can be found in a radial coordinate where both have equal intensi-

ties. In this case, for the fundamental beam, equal weights were used. However, this

balance is broken in SHG, where a Gaussian and an LG beam have different conver-

sion efficiencies. The region containing all polarization states decreases, meaning that

for a finite detection system, the total number of detectable states also decreases. In
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Figure 4.1: Spatial overlap and polarization. In (a), we illustrate how both constituent
spatial modes of FP beam change differently in size when used in SHG, changing the
total overlap area (depicted in black). A projection of both overlaps in the radial direc-
tion can be seen in (b). The region where the beams overlap can decrease even more
if the different mode efficiencies are considered, as depicted in (c). In (d), the relative
intensities of the fundamental wavelength beams are adjusted in order to maximize the
overlap area of SHG, taking into consideration the different modal efficiencies.

Figure 4.1 (d), we try to mitigate this effect by changing the relative intensities of the

fundamental wavelength in order to compensate the conversion efficiency and improve

the number of states in the SHG.

4.3 Experimental set-up

The schematic of the experimental setup is shown in Figure 4.2a. A Ti: Sapphire

laser delivering (pulses width 17 fs, repetition rate 80 MHz) average output power of

837 mW is used as the fundamental source. The output radiation has a wavelength of

55 nm centered at 810 nm. The combination of a l/2-plate (HWP1) and a polarizing
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Figure 4.2: (a) Experimental setup for SHG of FP beam. HWP1-4: l/2 plates; PBS1-
5: polarizing beam splitter cubes; SPP: spiral phase plate; QWP1-2: l/4 plates; M1-6:
mirrors; L1-2: lenses; S: wavelength separator; CCD: camera; dual-BIBO: nonlinear
crystal. Intensity profile of pump and SH FP beams.(b)The schematic diagram for the
FB beam generation inside the Mach-Zehnder interferometer

beam splitter (PBS1) cube is used to control laser power in the experiment. The second

l/2-plate (HWP2) controls the polarization of the input beam to the polarization-based

Mach-Zehnder interferometer (MZI) comprised of PBS2, PBS3, and a set of plane mir-

rors, M1-6. The delay stage matches the path lengths of the two arms of the MZI. A
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schismatic diagram for the generation of the FP beam is shown in Figure 4.2b. In the

MZI after PBS2, the input pump beam is split into ap |EH
p ,0i in the horizontal arm

and bp |EV
p ,0i in the vertical arm. After passing through the spiral phase plate (SPP),

the state will convert into ap |EH
p , li. Here lp is the order of the SPP. The horizontal

(H) polarized vortex beam and vertical (V) polarized Gaussian beam on recombination

on PBS3 produces [94] FP beam represented as Ep = ap |EH
p , lpi+bp |EV

p ,0i, where

ap and bp are the amplitude coefficient of the vortex beam and Gaussian beam, re-

spectively, and a2
p +b 2

p = 1. Using the SPPs of the phase winding corresponding to

vortex orders, lp = 1� 3, we generate FP beams of order up to 3. A pair of chirped

mirrors compensate stretching of the ultrafast FP beam resulting from the dispersion

of the optical components. The flip mirror directs the pump beam either to the sec-

ond harmonic (SH) setup or to the projective measurement setup comprised of l/4

plate (QWP1),l/2 plate (HWP3), PBS4, and CCD camera for polarization and Stokes

parameters. The lens L1 of focal length, f1 = 150 mm, is used to focus the pump

at the center of the dual-BIBO crystal, consisting of two contiguous BIBO crystals,

each having a thickness of 0.6 mm and an aperture of 1⇥ 1cm2 with an orthogonal

optic axis [120]. Both crystals are cut at an angle, q = 151.70 (f = 900) in the optical

yz-plane for type-I (e+e→o) phase-matching for the frequency-doubling of 810 nm

into 405 nm [107]. The unique geometry of the dual-BIBO crystal permits the single-

pass frequency-doubling of the orthogonally polarized components of the FP beam. A

lens, L2, of focal length f 2 = 100 mm, collimate the fundamental and SHG beams.

Subsequently, the polarization and Stokes parameters of the SH beam extracted from

the pump by the harmonic separator, S, are measured with the help of the projective

measurement [55] setup comprised of l/4 plate (QWP2), l/2 plate (HWP4), PBS5,

and the CCD camera. The inset of Figure 4.2 shows the typical intensity profile of the

pump and SH FP beams.
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4.4 Results

4.4.1 Polarization structure

To verify the pump FP beam, we have recorded the intensity distribution of the beam

using different combinations of the angles of QWP1 and HWP3 and calculated the

Stokes parameters, S1,S2, and S3. Using the Stokes parameters, we have calculated

the orientation (y) and ellipticity (c) [55] of the polarization ellipse with the results

shown in Figure. 4.3. As evident from Figure. 4.3(a), the transverse distribution of

polarization ellipse of pump beam of vortex order, lp =1, contains C-point polarization

singularity in the form of pair of lemon (see the black circle) and star (see the black

square) and a single L-line (green line) confirming the vortex order of the FP beam

to be lp = 1. To verify the experimental results, we have theoretically calculated the

polarization ellipse distribution of the pump FP beam. However, in the current exper-

iment, the Ti:Saphire laser produces the output beam in an elliptical Gaussian beam

spatial profile. While spatial filtering can easily transform the elliptical beam into a

high-quality Gaussian beam at the cost of overall laser power, the demand for higher

laser power for the SHG process restricted us from using any mode filtering. To ad-

dress such limitation and to find a close match with the experimental results, we have

modified the electric field equation of the FP beam to accommodate the ellipticity of

the laser beam as follows,

E = a |EH , li+b |EV ,0i

= ELG

 p
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Figure 4.3: (a) Experimental and (b) theoretical transverse polarization distribution
of the FP pump beam of vortex order |lp| = 1. The experimental parameters used
for the theoretical calculation are: beam widths, wxl = 1.2 mm, wyl = 1.3 mm, wx0
= 2.9 mm, wy0 = 5.3 mm, and the relative intensities, (a2

p, b 2
p ) = (0.75, 0.25). The

polarization distribution of the corresponding SHG of vortex order |lsh| = 2 is shown in
(c) Experimental and (d) theoretical using the experimental parameters, beam widths
wxl = 1.6 mm, wyl = 1.9 mm, wx0 = 1.7 mm, wy0 = 4 mm, and the relative intensities,
(a2

shg, b 2
shg) =(0.26, 0.74). Inset images are the magnified images of the lemon and star

(C-point) singularities highlighted by the black circle and square, respectively. The
background of the inset is the ellipse orientation and the green lines depict the L-lines.
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Here, ap and bp, the amplitude coefficient of the vortex beam and Gaussian beam,

respectively, and a2
p + b 2

p = 1, was calculated using the intensity profile of the con-

stituent beams and subsequently estimated the electric field amplitude terms ELG and EG.

The terms, rl =
q
(x/wxl)2 +(y/wyl)2 and r0 =

q
(x/wx0)2 +(y/wy0)2 represents the

asymmetry of the LG and Gaussian beams, having beam widths along x and y axis as

wxl , wyl , and wx0, wy0, respectively. All these parameters have been calculated using

the experimentally measured spatial profiles of the Gaussian and LG beams. These

electric field expressions are later utilized for calculating the Stokes parameters S1, S2,

and S3. The theoretically calculated polarization distribution of the pump (see Fig-

ure. 4.3(b)) contains a pair of C-point and single L-line singularities and is in close

agreement with the experimental results. The insets of Figure. 4.3 (a) and (b) show

the magnified images of the lemon and star singularities with ellipse orientation as

the background color map. The parameters used for the theoretical calculations are

mentioned in the caption.

Similarly, we have calculated the experimental and theoretical polarization dis-

tribution of the single-pass SHG of the pump beam of lp = 1. For the theoretical

simulation, the single pass efficiency of the dual crystal was calculated directly from

the intensity output of the individual Gaussian and LG beams. This indirect approach

opted to effectively account for various parameters that affect the efficiency of the

SHG apart from the nonlinear efficiency. Some of the major parameters are the slight

variation in the focal length of the Gaussian, and LG beams arise from the different

divergence during propagation. This slight focal change variation is essential since the
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thin crystal was used in the experiment. Further, to reduce the effect of this factor, we

have optimized the focal length of the focusing lens L1 to 150 mm at the cost of SHG

efficiency. The second factor that affects the SHG efficiency is the optimization that

emerges from simultaneously satisfying the critical phase matching of dual crystal.

Since each of the crystals in the dual crystal scheme required a pitch and yaw angle,

it is cumbersome to accommodate such parameters in the theoretical model but rela-

tively easy to optimize the experimental setup. From the relative intensity and beam

size obtained from the individual Gaussian and LG beam calculations, we have theo-

retically calculated the polarization distribution. As evident from the second raw, (c,

d) of Figure. 4.3, the polarization distribution (experimental, theoretical) of the SHG

beam contains two pairs of C-points and two L-lines, confirming the vortex order of

the SHG beam to be lsh = 2, twice that of the pump beam. Such observation confirms

the doubling of the OAM mode or the C-point and L-line singularities of the pump

beam in the SHG process [124]. The doubling of C-points (marked by black circle and

square) and L-line (green line) singularities in the SHG process can be understood as

follows. As reported previously [107], the dual BIBO crystal converts the pump beam

of the electric field, Ep = ap |EH
p , lpi+bp |EV

p ,0i into the SH beam of the electric field,

Esh = ash |EV
sh,2lpi+bsh |EH

sh,0i. Here, ash and bsh are the amplitude coefficients of

the vortex and Gaussian SH beams, respectively, governed by the conversion efficiency

of the individual beams. The relative phase due to the birefringence properties of the

crystal is controlled by the time delay between the orthogonal components of the pump

FP beam.

Further, using the FP beam of vortex order lp = 3, we have measured the Stokes pa-

rameters, S1,S2, and S3 for pump and corresponding SH beam, we have subsequently

calculated the Stokes phases, f12,f23, and f31. The results are shown in Figure. 4.4.

As evident from the first column of Figure. 4.4, the Stokes phase, f12 representing the
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Figure 4.4: Experimental Stokes phases, f12,f23, and f31 of the pump (first column)
and SHG (second column) FP beams. Theoretical Stokes phases, f12,f23, and f31 of
the pump (third column)and SHG (fourth column) FP beams. The dotted circle guides
to observe phase winding.

C-point singularity, contains three pairs of points marked by blue and red dots having

phase winding corresponding to the charge s12 = +1, star singularity, and s12 = �1,

lemon singularity, respectively. Using the formula s12 = 2Ic, the singularity indices

Ic of the C-points are found to be Ic =+1/2 and Ic =�1/2, respectively. The Stokes

phase, f23, of the FP beam, shows the azimuthal phase winding corresponding to the

vortex order, lp = 3 of the pump beam. Therefore, the vortex order of the FP beam can

be determined from the Stokes phase, f23. On the other hand, the Stokes phase, f31,

represents three pairs of singularities over a ring. The second column of Figure. 4.4

shows the Stokes phases, f12,f23, and f31 of the SHG beam of the FP beam of vortex
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order, lp = 3. As evident from the second column of Figure. 4.4, the Stokes phase,

f12, has six pairs (lemon, blue, and star, red) of C-point singularities with singularity

indices, Ic =+1/2 and Ic =�1/2, respectively, confirming the doubling of the C-point

singularities in the SHG process. On the other hand, the Stokes phase, f23, shows the

azimuthal phase winding corresponding to the vortex charge, s23 = lsh = 6, twice the

order of the pump vortex charge, lp = 3, of the FP beam owing to the OAM conserva-

tion in the nonlinear frequency doubling processes. Similarly, we observe six pairs of

singularities over a ring in the Stokes phase, f31, of the FP SHG beam. For supporting

the experimental results, we have performed the theoretical calculation for each of the

Stokes phases for the pump by accommodating the experimental parameters wxl = 1.2

mm, wyl = 1.7 mm, wx0 = 2.9 mm, wy0 = 2.5 mm and (a2
p, b 2

p ) = (0.75,0.25). Fur-

ther, for SHG, we have used the parameters wxl = 1.9 mm, wyl = 1.8 mm, wx0 = 0.9

mm, wy0 = 1.1 mm and (a2
shg, b 2

shg) = (0.35, 0.65) for calculating the Stokes phases of

SHG. The theoretically calculated Stokes phases of the pump and corresponding SHG

FP beam, as shown in the third and fourth columns of Figure. 4.4, respectively, are

in close agreement with the experimental results. From the results of Figure. 4.4, it

is evident that the polarization properties of the FP beams are conserved in nonlinear

processes, and the Stokes phases can be explored as important tools to characterize the

nonlinear optical processes.

To understand the dynamics of C-point singularities for different relative intensity

of the constituent modes. We have measured the Stokes parameters for both pump and

SHG beams while changing the relative intensities, a2
p and b 2

p = 1�a2
p of the vor-

tex and Gaussian beams, respectively, of the FP pump beam and calculate the Stokes

phase, f12, with the results shown in Figure. 4.5. As evident from the first row, (a-

e), of Figure. 4.5, the Stokes phase, f12, of the pump beam, maintains a uniform

phase distribution for (a2
p,b 2

p) = (0,1) and (1,0) due to the absence of orthogonal
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Figure 4.5: Variation of Stokes phase, f12, of (a-e) pump and (f-j) SH FP beam for
different combinations of (a2

p, b 2
p ).

polarization states. However, the distribution of the Stokes phase, f12, changes with

the combination of (a2
p,b 2

p) values showing the presence of three pairs of lemon and

star singularities for the (a2
p,b 2

p) = (0.5,0.5) and (0.75,0.25). The distribution of the

Stokes phase, f12, of the SHG beam, as shown in the second row, (f-j), of Figure. 4.5,

follows the Stokes phase distribution of the pump beam with six pairs of lemon and

star singularities for the (a2
p,b 2

p) = (0.5, 0.5) and (0.75,0.25). It is evident from the

first and second rows of Figure. 4.5 that the increase of a2
p (vortex beam intensity)

brings the singularity points (lemon and star) towards the center and finally annihilates

each other to form the uniform Stokes phase, f12 distribution.

4.4.2 Coverage

We have further studied the polarization coverage of the pump and corresponding SH

FP beams. Using the pump FP beam of order, lp = 3, and (a2
p,b 2

p) = (0.5, 0.5), we

have calculated the Stokes parameters of the pump and SHG beam and projected them

on the surface of the Poincaré sphere with the results shown in Figure. 4.6(a) and

Figure. 4.6(b), respectively. As evident from Figure. 4.6(a, b), the polarization states
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on the Poincaré sphere has a complicated distribution with void regions. Therefore, it

is not easy to estimate the polarization coverage of the FP beam using the conventional

area integration method [123]. As such, one can transform the 3D surface onto the 2D

plane and estimate the polarization coverage. However, in doing so, one has to make

the necessary correction to encounter the distortion effect commonly observed while

transforming the surface of a sphere into a flat plane, especially for the sections in the

pole region of the surface; a rectangle near the poles corresponds to a smaller area on

the sphere than a rectangle near the equator. On the other hand, each discrete point on

the surface of the Poincaré sphere represented by the Stokes parameters S1, S2, S3 in

Cartesian coordinates can also be represented by the ellipse orientation (y), ellipticity

(c), and Stokes parameter S0 in the spherical coordinates. Therefore, the polarization

states represented on the surface of the Poincaré sphere can also be represented in the

rectangular Cartesian coordinate by considering x,y axis as 2y and 2c with the limits

y 2 [0, p] and c 2 [�p/4, +p/4] respectively. In doing so, one can transform the

polarization states commonly depicted on the curved surface into a 2D plain surface.

However, the number of data points in a bucket does not contribute to the polariza-

tion coverage. Therefore, we have considered the bucket as full if the corresponding

polarization state is detected in one or more data points. Now, if the number of buckets

containing at least one point is N, then the polarization coverage of the beam can be

calculated as 100⇥N/N0. For a beam with 100% polarization coverage, N should be

equal to N0. However, proper selection of the number of buckets is very important.

For example, suppose we consider N to be small. In that case, the bucket size will be

large enough to cover the area not having any polarization state of the beam and over-

estimate the polarization coverage of the beam. On the other hand, if N is very large,

then the bucket size will be small and fewer buckets will carry a polarization state with

respect to the total number of buckets, thus underestimating the result. Therefore, to
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Figure 4.6: The Stokes parameters of (a) pump and (b) SH FP beams of pump vortex
order, lp = 3, are projected on the surface of the Poincaré sphere for (a2

p, b 2
p ) = (0.5,

0.5). Distribution of polarization states in 2y � 2c plane for (c) pump (d) SH FP
beams.

optimize the number of buckets, N, we locked the least count of the area measurement

to be 0.1%. Such a small value of the least count can be obtained by dividing the

areas of the square-shaped 2y � 2c plane by N = n⇥ n ⇠ 1000 buckets. Therefore,

we have considered n ⇠ 32 and measured the polarization coverage of the pump FP

beam of order, lp = 1,2,3, and 6 while varying the value of (a2
p,b 2

p). The results are

shown in Figure. 4.7(a). As evident from Figure. 4.7(a), the polarization coverage

of the FP beam of all orders lies in the range of 75� 95% for (a2
p,b 2

p) = (0.5,0.5)

and (0.75,0.25) and around 1% for (a2
p,b 2

p) = (0,1) and (1,0). The low coverage
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(⇠ 1%) can be attributed to the absence of both polarization states in the beam. On the

other hand, for (a2
p,b 2

p) = (0.25,0.75), the polarization coverage varies in the range of

20� 40% for all vortex orders indicating that in the presence of the azimuthal phase,

the relative intensity of the vortex beam plays the crucial role to the polarization cov-

erage of the FP beams. Using the experimental parameters, we have also calculated

the polarization coverage of the FP beam of different orders.

Figure 4.7: Variation of the polarization coverage (a) of the pump and (b) correspond-
ing SH Poincaré beams of different pump vortex orders for a different combination of
(a2

p, b 2
p ) values. Solid lines are theoretical results.

As evident from Figure. 4.7(a), the experimental polarization coverage represented

as dots on the plot lie very close to the theory, which is the lines in the plots for FP

beams of all orders. However, the small deviation in the experimental and theoretical

results can be attributed to the asymmetry in the spatial profiles of the experimental

beams. The maximum error for the polarization coverage measurement is the same as

the least count area, 0.1%, used in this study. We have also measured the polarization

coverage of the SHG FP beam for pump orders, lp = 1,2, and 3, for different values of

(a2
p,b 2

p) with results shown in Figure. 4.7(b). Interestingly, from Figure. 4.7(b), we

see that the best weightings for the fundamental field do not give optimal coverage for

all topological charges. For example, the relative weight of 0.25 has the best coverage

for lsh = 6, but this changes for relative weights of 0.75 where the best coverage is
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given for lsh = 4. When the relative weight is increased above 0.5, then we see a

decrease in SHG coverage. This indicates that the size mismatch between the SHG

vortex component and the Gaussian component bears a bigger influence. This size

mismatch comes from the fact that the SHG of the Gaussian component has a waist

resizing effect of a factor of the square root of 2, and this can be seen as a circle

getting shrunk, while the phase vortex component can be seen as a ring getting thinner.

Ultimately, this decreases the overlap between the modes and, thus, the accessible

states of polarization and coverage. A striking consequence is that, for topological

charge 6 and relative weightings 0.75, the fundamental beam is a FP beam as it is

above the threshold of 75% coverage, but if the same beam is generated through the

SHG of a FP beam of lp=3 with the same weights, it falls below the threshold of 75%,

no longer being considered a FP beam. When comparing the coverage of the pump and

SHG for the same alpha values, we note that while pump coverage increases for values

higher than 0.5, the SHG coverage decreases. This means that, counterintuitively,

by decreasing the coverage of the pump beam, it is possible to increase the coverage

for the SHG.Since the beam size of the Gaussian beam reduces and the LG beam size

increases during the SHG process, it is difficult to maintain the spatial overlap between

the two beams and generate the FP beam for the higher order. So, we note that for any

lower order modal combination of the FP beam, we are able to experimentally control

the coverage on the Poincaré sphere from 0 to 100% continuously by adjusting the

relative intensity between the two modes.

To observe the effect of the size of the constituting beams of the FP beam on the

polarization coverage, we varied the pump beam waist of the Gaussian beam (w0) from

2.1 mm to 3.6 mm and measured the pump polarization coverage while keeping the

annular width (FWHM) (w1) of the vortex beam of order l = 1 constant ( 3 mm) and

the a2 = 0.9. The results are shown in Figure. 4.8 (a). As expected, the polarization



4.4. Results 69

Figure 4.8: (a) Pump polarization coverage variation with relative FWHM of Gaussian
and vortex beams. (b) Variation of SHG efficiency with the vortex order of the FP
beams. (c) Variation of SH power (blue) and SH efficiency (brown) with the input
power of the FP beams of vortex order, lp = 1. (d) Dependence of SH power with the
square of the pump power. Lines are guides to the eyes.

coverage increases from 29.3% for w0/wl=0.7 to a maximum of 97.75% at w0/wl=1.2.

However, our numerical simulations (see Figure. 4.7(a)) show that the range of polar-

ization coverage as a function of beam width ratio decreases with the decrease in the

intensity ratio a2/b 2. Therefore, in our study, we have used the (a2 = 0.9, b 2 = 0.1)

to observe the higher control of the polarization coverage using the beam width ratio.

Unfortunately, under such intensity ratio a2/b 2, the conversion efficiency of the Gaus-

sian beam is so low that the FP beam becomes a scalar vortex beam. On the other hand,

optimization in the intensity ratio results in almost constant polarization coverage in

SHG with varying beam waist ratios. Therefore, a systematic study while consider-
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ing the conversion efficiency of the constituent beams is essential to observe the large

variation of the polarization coverage in the SHG process. We have also measured

the SHG efficiency of the FP pump beam of different orders with the results shown

in Figure. 4.8(b). As observed in Figure.8 (b), the single-pass SHG efficiency of the

FP beam decreases with the vortex order from 4.19% for lp = 0 (Gaussian beam with

diagonal polarization) to 0.32% for lp = 6 similar to the single-pass SHG of the vortex

beam [124] due to the increase of the dark core size with the vortex order. keeping

(a2
p,b 2

p) = (0.5,0.5), we have measured the power scaling of the FP beam of order,

lp = 1, with the results shown in Figure. 4.8(c). As evident from Figure. 4.8(c), the

output power and SH efficiency increase quadratic and linear, respectively, with the

pump power producing a maximum average output power of 18.3 mW at a single-pass

conversion efficiency as high as 2.19% without any sign of saturation. The linear vari-

ation of the SH power with the square of the pump power, as shown in Figure.8 (d),

further confirms the possibility of generating an SH FP beam of higher average power

with the increase of pump power.

4.5 Conclusion

In conclusion, we have studied the nonlinear generation of ultra-fast FP beams

while preserving the polarization characteristics of the pump FP beam and validated

our experimental findings with theory. The Stokes parameters and Stokes phases anal-

ysis reveal the conservation of C-points and L-lines singularities in nonlinear pro-

cesses. Even though beams having spatially varying polarization are being utilized in

a wide variety of applications, the effective measurement and control of the accessible

polarization state is not explored. In this work, we have devised a new method to esti-

mate the polarization coverage of the FP beam, which can be extended to any optical

beam with spatially varying polarization. Further, we show that the variation of the
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polarization coverage for different intensity weightage of the constituent beams con-

trols the available polarization state in an optical beam. We also showed that through

the second harmonic generation of the FP beam, we could further control the acces-

sible polarization while converting the beam into a new wavelength. The control of

accessible polarization states via nonlinear interaction can be effectively utilized in

applications that require short wavelengths without the requirement of any new optical

elements in the new wavelength. It is also interesting to note that the SHG FP beam

has the highest polarization coverage for equal weigthings between the beams in the

fundamental frequency. We have also devised a method to control the effective polar-

ization of FP beam through second harmonic generation, which will be a very useful

tool for applications demanding short wavelengths, which are widely accessed through

second harmonic generation. Additionally, it is observed in the literature that the FP

beams have smaller scintillation than comparable beams of uniform polarization in the

presence of atmospheric turbulence [50, 51]. The robustness of the FP beams against

atmospheric turbulence can further be understood by studying the change in the over-

all polarization coverage of such beams during free space propagation and helping to

design the optimum special polarization structured beams for such applications. The

current polarization coverage measurement technique can also be useful to study the

manipulation of Poincaré beams on the different parts of the Poincaré sphere [52].





Chapter 5

Generation and characterization of

self-healing properties of full Poincaré

Bessel beam

5.1 Introduction

Spatial structured optical beams, tailoring or shaping light beams in the spatial de-

gree of freedom, have attracted a great deal of attention recently due to their wide range

of applications, including optical manipulation [12, 57], micromachining [10, 11, 36],

imaging [5, 31], and optical communications [32, 125]. Typically the structured beams

are generated through the mode conversion of the Gaussian beams. Depending upon

the polarization modulation in the transverse plane of the beam, the structured beams

are termed as the scalar, polarization states are same, and vector, polarization states are

different, beams. One such widely used structured beams are optical vortices, which

manifest as a line of zero intensity around which the phase has a circulating or helical

73
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structure; the study of these and related singularities now form a field known as singu-

lar optics [126]. In a transverse plane, an optical vortex manifests as a point, and the

phase always changes by an integer multiple of 2p around the vortex; this multiple is

called the topological charge. The topological charge is generally a conserved quan-

tity and is usually only created or annihilated in pairs of equal and opposite charges.

On the other hand, the superposition of vortex beams of different orders in orthogonal

polarization states results in vector vortex beams. The full Poincaré beam is a spe-

cial class of vector vortex beams, ideally containing all polarization states that can be

present on the surface of the Poincaré sphere. As a result, such beams have smaller

scintillation than comparable beams of uniform polarization in the presence of atmo-

spheric turbulence [50, 51]. Recently, efforts have been made to find a general method

to estimate the polarization coverage and the parameters influencing the polarization

coverage of the Poincaré beam [44] to broaden the scope of such beams for different

applications [50, 51].

On the other hand, Bessel beams [127, 128], propagation invariant optical fields,

have found numerous applications in various areas of optics [129–132], owing to their

high intensity extended focus, finite beam width, nondiffractive propagation over con-

siderable distances, and self-healing properties behind obstacles. In addition to such

intrinsic properties, interest has grown to widen the scope of the Bessel beams by incor-

porating the polarization singularities through the generation of vector Bessel beams

[133, 134] to study quantum effects [135, 136], microscopy, and imaging [137, 138],

and turbulent media [50, 51, 139]. On the other hand, efforts have been made to in-

clude the ideally 100% polarization coverage of the Poincaré beam to the Bessel beam

through the generation of Poincaré Bessel beam [140, 141], and study their structure

and propagation characteristics. However, many exciting properties, such as the dy-

namics in the polarization pattern, changes in the degree of polarization, and polariza-
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tion coverage of the beam, especially in the self-healing process, are left unanswered.

In this paper, we report on the theoretical and experimental study of the polar-

ization characteristics of the Poincaré Bessel beam. Using an axicon, we have trans-

formed the Poincaré beam in the rectangular basis having polarization coverage >98%

into Poincaré Bessel beam. The study of polarization characteristics of the Poincaré

Bessel beam reveals exciting features, such as each ring of the Poincaré Bessel beam

behaving like the Poincaré beam with polarization coverage > 75%, self-healing of

the polarization structure, and degree-of-polarization is independent of the beam ob-

struction. Using the polarization ellipse orientation map having an infinite number of

C-point singularity pairs in the self-healing process, we study the dynamics of the C-

point singularities in the reconstruction process and the connections to the mathematics

of infinite sets.

5.2 Experimental details

The schematic experimental scheme for the generation and study of full Poincaré

Bessel beam is shown in Fig. 5.1. A continuous wave (cw), single-frequency, green

laser (Coherent, Verdi V10) providing maximum output power of 10 W in T EM00

spatial profile with M2 < 1.1 at 532 nm is used as the primary laser source. Operating

the laser at its maximum output power for reliable system performance, we have used a

power attenuator comprised of the combination of l/2 (HWP1) and a polarizing beam

splitter (PBS1) cube to control the laser power to the experiment. A pair of plano-

convex lenses, L1 and L2, of focal length, f1 = 50 mm and f2 = 200 mm, respectively,

placed in 2 f1-2 f2 configuration is used to expand the laser beam. The l/2 (HWP2)

plate is used to control the relative intensity between the two arms of the Mach-Zehnder

interferometer (MZI) configured with two plane mirrors, M1 and M2, and two PBSs,
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Figure 5.1: Experimental setup for the generation of Poincaré Bessel beam. HWP1-3:
l/2 plates; PBS1-4: polarizing beam splitter cubes; SPP: spiral phase plate; QWP1:
l/4 plate; M1-3: mirrors; L1-4: lenses

PBS2, and PBS3. The full Poincaré beam is generated [94] by placing the spiral phase

plate (SPP) in one of the arms (here between mirror, M2, and PBS3) of MZI. The SPP

has the transverse thickness variation corresponding to the phase variation of the vortex

order of l = 1. As a result, the vertical polarized Gaussian beam of the reflected arm

of MZI on propagation through the SPP and subsequent coaxial superposition with the

horizontal polarized Gaussian beam of the transmitted arm on the PBS3 produces the

full Poincaré beam with the electric field, a |H,0i+b |V, li. Here a and b satisfying

a2+b 2 = 1, are the relative amplitudes of the orthogonal polarization modes of the FP

beam. The H, and V are the horizontal and vertical polarization states of the constituent

beams, and l is the order of the vortex beam. The values of a and b , can be controlled

by varying the angle, q , of the HWP2 angle by a = cosq/2 and b = sinq/2. The

full Poincaré beam on propagation through the Axicon with an apex angle of 196o is
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transformed into a Poincaré Bessel beam. The Poincaré Bessel beam then expanded

with the second pair of plano-convex lenses, L3 and L4, of focal lengths of f3 = 50

mm and f4 = 300 mm, respectively in 2 f3-2 f4 imaging configuration. The polarization

state of the beam is characterized using the standard Stokes measurement technique

[55] with the help of a quarter-wave plate (QWP), HWP3, PBS4, and the CCD camera.

For the self-healing study, an obstacle (Block) made of a microscope cover slip with a

black dot of diameter 0.2 mm at the center is used in the experiment.

5.3 Results and discussion

5.3.1 Characteristics of Poincaré Bessel beam

First, we have characterized the polarization characteristics of the full Poincaré Bessel

beam generated through the mode transformation of the full Poincaré beam by the

axicon. The electric field of the full Poincaré beam at the output of the MZI having

SPP corresponding to vortex order, l, can be written as [94]

E = aU0
G(r,f)x̂+bUl

LG(r,f)ŷ

=U0

2

4a x̂+b
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e±ilf ŷ
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5
(5.1)

with x̂ and ŷ representing horizontal and vertical polarization, respectively. a and

b are the relative weights of the two orthogonal polarized beams, and a2 + b 2 = 1.

Here, Ul
LG, U0

G are the electric field amplitude of the vortex and Gaussian beams, re-

spectively. Further, the Gaussian electric field amplitude at the origin is represented by

U0. The parameters w, r, and f correspond to the beam waist, radial, and azimuthal

components of the beam. On propagation through the axicon, the input full Poincaré
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beam represented by Eq. (6.2) transformed into a Poincaré-Bessel beam; the superpo-

sition of orthogonal polarized Bessel beams of order same as the topological charge

or order of the respective orthogonal polarized beams of the input full Poincaré beam.

Therefore, the electric field of the Poincaré-Bessel beam can be represented as,

E = aU0
J (r,f)x̂+bUl

J(r,f)ŷ

=U0

h
aJ0 (krr) x̂+bJl (krr)e±ilf ŷ

i (5.2)

Here, J0 (krr) and Jl (krr) are 0th and lth order Bessel beams, respectively. The maxi-

mum electric field amplitude at the origin is represented by the constant U0. The radial

wave vector kr can be written in terms of the wave vector(k) and axicon apex angle(g)

and refractive index (n) as kr = k(n�1)cos(g).

Using the experimental parameters (diameter (FWHM) of Gaussian and vortex

beams of ⇠3.4 mm and ⇠6.8 mm, respectively, and their relative intensity weightage,

a/b = 1) in Eq. (6.2) and Eq. (6.3) and the theoretically calculated Stokes parame-

ters, we have calculated the orientation (y) and ellipticity (c) [55] of the polarization

ellipse of the input full Poincaré beam and corresponding Poincaré Bessel beams. The

results are shown in Fig. 5.2. As evident from Fig. 5.2(a), the transverse distribution

of the polarization ellipse of the input beam of vortex order, l =1, contains C-point po-

larization singularity in the form of a pair of lemon (see the white circle) and star (see

the yellow circle) and a single L-line confirming the vortex order of the full Poincaré

beam to be l = 1, same as our recent report [44]. For clear observation, we have mag-

nified the section of polarization singularities region as shown in the inset of Fig. 5.2.

Throughout the manuscript, we identify the white and yellow color circles as the lemon

and star polarization singularities, respectively, if otherwise presented. However, the

polarization distribution of the Poincaré Bessel beam, as shown in Fig. 5.2(b), shows
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Figure 5.2: Polarization distributions of (a) full Poincaré and (b) Poincaré Bessel
beams calculated using the experimental parameters in Eq. 6.2 and Eq. 6.3. The insets
are the magnified images of lemon and star polarization singularities marked by white
and yellow circles.

a very interesting pattern where each concentric circle contains a pair of lemons (see

the white circle) and stars (see the yellow circle) singularities. As the Bessel beam has

characteristic intensity distribution of concentric rings and infinite spatial extend, we

observe the Poincaré Bessel beam to carry infinite pairs of lemon and star singularities.

A careful observation of the polarization distribution indicates that each of the rings of

the Poincaré Bessel beam contains a large number of polarization states, and the same

polarization states are repeating in all the rings as if the Poincaré Bessel beam consists

of an infinite number of full Poincaré beams.

To confirm such interesting polarization characteristics of the experimentally gen-

erated Poincaré Bessel beam, we recorded the intensity distribution for different po-

larization projections (using the combination of l /4 and l /2 plates at different combi-

nations of the angles, the PBS). Using these intensity distributions, we have calculated

the Stokes parameters, S1,S2, and S3, and measure the orientation (y) and ellipticity

(c) of the polarization ellipse. The results are shown in Fig. 5.3. As evident from
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Figure 5.3: Experimentally measured polarization distribution of Poincaré Bessel
beam with (a) beam intensity and (b) ellipse orientation map at the background. The
red colour rings identify the characteristic rings of the Poincaré Bessel beams. The
rings are also marked integer numbers for further studies.

Fig. 5.3(a), the generated Poincaré Bessel beam has polarization distribution in close

agreement with the theoretical results (see Fig. 5.2(b)) with an infinite number of pairs

lemon and star singularities (one pair in each ring of the Bessel beam containing an

infinite number of concentric rings). As expected, the Poincaré Bessel beam gener-

ated by the full Poincaré beam has central intensity maxima, and each ring contains a

large number of polarization states. To get further perspective, we have recorded the

polarization ellipse orientation (0 - p) of the Poincaré Bessel beam along with the po-

larization distribution. The results are shown in Fig. 5.3(b). As evident from the Fig.

5.3(b), the ellipse orientation pattern of each ring (marked by red colour and identified

by the numbers 1, 2, 3....) has two singular points with opposite polarization ellipse

orientation (counterclockwise, star and clockwise, lemon directions) confirming the

presence of pair of polarization singularities in each ring and an infinite number of po-

larization singularity pairs in the transverse spatial distribution of the Poincaré Bessel

beam.
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Figure 5.4: The variation of polarization coverage of each ring of Poincaré Bessel
beam. Inset images show the polarization distribution of ring 1, ring 12, and the entire
Poincaré Bessel beam on the Poincaré sphere.

Using the method discussed in section 3.3, we have calculated the polarization

coverage of each ring of the Poincaré Bessel beam as marked in Fig. 5.3(b). The re-

sults are shown in Fig. 5.4. As evident from Fig. 5.4, the polarization coverage of

the first ring of the Poincaré Bessel beam is >75%. However, there is an increase in

polarization coverage with ring number, and finally, all rings have polarization cover-

age >97%. Although we expect to have the same polarization coverage in all rings,

however, relatively lower polarization coverage for the central ring of the Bessel beam

arises from the experimental imitations; the restriction in the number of useful camera

pixels in the measurement process arising from the lower spatial extent of the central

ring. The slightly lower polarization coverage for the second ring is due to the asym-
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metry in the central lobe of the first-order Bessel beam generated from the vortex. The

artifacts gradually die out with the increase in camera pixel numbers to accommodate

the increase in the spatial extent of the Bessel rings. Therefore, we observe the initial

increase of polarization coverage, which finally saturates, resulting in the same value

for all rings, as expected. For further support, we have calculated the area (number

of pixels) of vary from 4.8⇥ 10�2mm2 (2019) to 53.7⇥ 10�2mm2 (23633) for Ring

number 1 to Ring no. 12 of the Poincaré Bessel beam. However, as the coverage of

more than 75% of the Poincaré sphere is deemed acceptable as a full Poincaré beam

for many applications [123], we can safely say that each ring of the Poincaré Bessel

beam is a full Poincaré beam. We have also presented the polarization Poincaré sphere

of each ring of Poincaré Bessel beam as the inset of Fig. 5.4. As expected, the Poincaré

sphere, as evident from the inset of Fig. 5.4, gets populated with the number of points

for the Bessel beam rings away from the center without increasing the polarization

coverage substantially. Finally, the polarization coverage of the entire Poincaré Bessel

beam, as also seen from the inset of Fig. 5.4, is around 100% and contains a large

number of data points on the corresponding Poincaré sphere. Since the polarization

states present in each ring of the Poincaré Bessel beam covers the entire surface of

the Poincaré sphere, one can imagine the polarization coverage of the whole Poincaré

Bessel beam as the superposition of an infinite number of same polarization states

resulting the net polarization coverage same as the single ring. Such interesting prop-

erty of Poincaré Bessel beam supports the self-healing characteristics of polarization

coverage, the same as the intensity self-healing of the Bessel beam.

5.3.2 Self healing of Poincaré Bessel beam

Knowing the polarization characteristics, we have studied the intensity and polariza-

tion self-healing properties of the Poincaré Bessel beam. For the intensity self-healing
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study, we have recorded the intensity profile of the Bessel beam generated through

the Gaussian, scalar vortex of order, l = 1, and the full Poincaré beams as input to

the axicon. On the other hand, we have estimated the degree of polarization, ellipse

orientation, and ellipticity of the Poincaré Bessel beam using the Stokes parameters

calculated from the intensity profile of the Bessel beam recorded for different polar-

ization projections. The results are shown in Fig. 5.5. As expected, the zero-order

Bessel beam, first-order Bessel beams, and Poincaré Bessel beam, shown by the first,

second, and third columns of Fig. 5.5, respectively, have disturbed intensity distribu-

tion at the beam center resulting from the beam abstraction. However, all the beams

start regaining and maintaining their initial spatial intensity distribution after a propa-

gation distance of d = 10 cm with complete healing at d = 59 cm. To show the varia-

tion of the degree of polarization of the Poincaré Bessel beam during the self-healing

process, we have used the colour map with blue and yellow colours representing un-

polarized and perfectly polarized beams, respectively. The fourth column of Fig. 5.5

shows the polarization distribution in combination with the degree of polarization in

the background. As evident from the fourth column of Fig. 5.5, the abstraction, al-

though it disturbs the polarization distribution of the beam, has negligible or no impact

on the degree of polarization. The Poincaré Bessel beam maintains a high degree of

polarisation (⇡1) throughout its cross-section. On the other hand, the concentric ring

profile of the polarization distribution follows the same self-healing characteristics as

the beam’s intensity profile with propagation. To understand further the polarization

self-healing characteristics of the Poincaré Bessel beam, we have estimated the polar-

ization coverage of each ring along propagation distance. The results are shown by

colour chart in Fig. 5.6. The rows and columns of Fig. 5.6 represent the ring number

of propagation distance, respectively. It is evident from Fig. 5.6 all the rings before the

beam obstruction carry polarization coverage >84%, same as Fig. 5.4. As expected,
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Figure 5.5: Verification of self-healing characteristics of (first column) zero-order,
(second column) first-order, and (third column) Poincaré Bessel beam from the in-
tensity distribution of the beam along propagation. Observation of (fourth column)
polarization self-healing characteristics of the Poincaré Bessel beam.
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Figure 5.6: Variation of polarization coverage of different rings of the Poincaré Bessel
beam along propagation during the self-healing process. The lower polarization cov-
erage due to the beam obstruction is gradually moving in the outward direction during
the self-healing process.

the polarization coverage of the central ring is low due to beam obstruction, while the

polarization coverage of other rings remains unaffected. However, it is interesting to

observe that the disturbance in the polarization coverage of the beam gradually travels

away from the inner ring to the outer rings along the beam propagation and finally

regains high polarization coverage for all rings. This observation confirms that the

self-healing of the polarization coverage of the Poincaré Bessel beam occurs due to

the energy flow of the Bessel beam from the outward rings to the inside rings. We also

blocked the beam at various positions on the transverse plane and calculated the degree

of polarization and polarization distribution to understand the impact of beam block

sites on the self-healing process. We have selected obstructions of two sizes (circles

of diameter 0.7 mm and 0.5 mm) and positions. The results are shown in Fig. 5.7.
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As expected, in both cases, the degree of polarization, as shown by the background

color map to the polarization distribution of the Poincaré Bessel beam in Fig. 5.7, is

unperturbed to the beam obstruction.

On the other hand, it is observed from the first column of Fig. 5.7 that the beam

block, as identified by the black circle, disrupts the polarization distribution initially

at the locations it is placed. However, with beam propagation, it is observed from the

second row of Fig. 5.7 that the disturbance gradually spreads away from the disturbed

site. With further beam propagation, it is observed from the third row of Fig. 5.7 that

the disturbance appears on the diametrically opposite side of the beam before resetting

the effect beam block and returning to the initial polarization distribution. Like the

intensity self-healing of the Bessel beams, the current observation clearly indicates

that beam block size (much smaller than the beam size) and position does not have a

detrimental effect on the intensity and polarization self-healing characteristics of the

Poincaré Bessel beam.

5.3.3 Polarization singularities

Knowing the complete characteristics of the Poincaré Bessel beam in different de-

grees of freedom, including the intensity, polarization distribution, and degree of po-

larization, we have studied the effect of the C-point singularity of the beam in the

self-healing process. As presented in Fig. 5.3(a), the Poincaré Bessel beam carries

an infinite number of pairs of lemon and star singularities. To appreciate the obser-

vation and identify the C-points singularities, we have calculated the orientation of

the polarisation ellipse varying from 0� p with the results shown in Fig. 5.8. For

easy comprehension, we have identified the direction of ellipse orientation about the

singularity point by 0�p in the counterclockwise direction with the white circle rep-



5.3. Results and discussion 87

Figure 5.7: Dynamics of polarization distribution and degree of polarization of
Poincaré Bessel beam along propagation after the beam obstruction by two blocks
of different sizes and positions. Black circles and squares mark the position of polar-
ization disturbance for easy identification.
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resenting star singularity and clockwise direction with the black circle representing

lemon singularity. As expected, we observe the polarization ellipse orientation map of

Figure 5.8: Polarization ellipse orientation map of the Poincaré Bessel beam showing
the infinite series of C-point singularity pairs. The white and black circles identify
the star (polarisation ellipse varying from 0�p in the counterclockwise direction) and
lemon (polarisation ellipse varying from 0�p in the clockwise direction) singularities,
respectively. The insets show the polarization distribution and corresponding polarisa-
tion ellipse orientation at C-point singularities.

the Poincaré Bessel beam in the rectangular basis to contain a series of lemon and star

singularity pairs in each ring. As the ideal Bessel beams have infinite spatial extend

and thus an infinite number of rings, we can clearly confirm the generation of infinite

series of lemon and star polarization singularity pairs by transforming the full Poincaré

beam into Poincaré Bessel beam. The number of series is decided by the number of

polarization singularity pairs of the input full Poincaré beam or simply the order of the

vortex. Using higher order full Poincaré beam of vortex orders, l = 2, 3 and 4, we have

observed the resultant Poincaré Bessel beam to carry 2, 3 and 4 infinite series of lemon

and star polarization singularity pairs.
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Figure 5.9: Observation of dynamics of the infinite number of C-point singularity
pairs of the Poincaré Bessel beam along propagation after the beam obstruction. The
star and lemon C-point singularities of the initial beam are marked by white and black
dots, respectively. The newly formed star and lemon singularity pairs due to beam
obstruction are identified by white and black circles. The black rectangles mark the
annihilation of the old singularity with the new singularity.

Further, we have studied the dynamics of the c-point singularity of the Poincaré

Bessel beam in the self-healing process. Using the intensity distribution of the beam

for different projections along beam propagation, we have derived the polarization el-

lipse orientation map with the results shown in Fig. 5.9. As expected, the Poincaré

Bessel beam contained an infinite series of star and lemon polarization singularities

identified by the black and white dots in Fig. 5.9(a). As the star and lemon polariza-

tion singularities have singularity indices, Ic = +1/2 and Ic = -1/2, respectively, the net

topological charge of the polarization singularities in the Poincaré Bessel beam can be

considered to be zero. In the self-healing study, we purposefully adjusted the block

position so that it created an asymmetry in the total number of star and lemon singu-

larities. As evident from Fig. 5.9(b), the block has removed two stars and one lemon

singularity from the polarization ellipse orientation map at the center, confirming the

presence of asymmetry in the number of singularities right after the beam block. How-

ever, along beam propagation, as shown by Fig. 5.9(c-j), we observe exciting dynamics

of C-point singularities. The beam block-induced perturbation results in the produc-
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tion of an infinite number of new C-point singularity pairs, lemon, and star, marked by

black and white open circles (see Fig. 5.9(c-d)). Due to the limited spatial resolution

arising from the beam size and the pixel size of the CCD, we have marked a limited

number of new C-point singularity pairs and observed their propagation dynamics. It

is interesting to observe that the newly generated singularity pairs (black and white

open circles) annihilate with each other and also with the intrinsic singularity pairs

(black and white dots) with beam propagation (see Fig. 5.9 (e-i) and eventually take

over the original singularity pairs in the center (Fig. 5.9(j)). After the self-healing pro-

cess, it is interesting to observe that the Poincaré Bessel beam has an infinite number

of C-point singularity pairs resulting in the net topological charge of zero, the same

as the initial beam. However, after further beam propagation, the self-healed Poincaré

Bessel beam, as shown by Fig. 5.9(j), regains the position of the C-point singularity

and reproduces the polarization ellipse orientation map, the same as the initial beam

(see Fig. 5.9(a)). A close look at the dynamics of the Poincaré Bessel beam in the

self-healing process, especially the polarization ellipse orientation map of Fig. 5.9(a),

(b) and (j), we see the existence of an optical analogy to the mathematics of transfinite

numbers through the Hilbert’s Hotel like setting. To elaborate further, let’s consider the

polarization ellipse orientation map as Hilbert’s hotel, where the star singularity (black

dots) and lemon singularity (white dots) represent the rooms and guests, respectively.

From Fig. 5.9(a), it is evident that Hilbert’s hotel, having an infinite number of rooms,

is fully occupied by the guest, as the Poincaré Bessel beam carries an infinite number

of C-point singularity pairs. Using the beam block, we have created a situation (see

Fig. 5.9(b)) where the number of lemon singularities (white dot) is more than one than

the number of star singularities (black dots). This situation can be considered as if the

hotel is fully occupied, but an extra guest (white dot) has appeared for accommoda-

tion. Although we don’t see the exact transition as described in the famous lecture of
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the mathematician David Hilbert and demonstrated in optics [53, 54, 142, 143] dur-

ing the self-healing process of the Poincaré Bessel beam, however, at the end of the

self-healing process we do observe that the additional guest has been accommodated

in Hilbert’s hotel, making the hotel again fully occupied with a number of rooms (star

singularity) is equal to the number of guests (lemon singularity). However, during the

self-healing process, we see exciting features that can be used as optical analogies to

understand the rich mathematics of transfinite numbers.

5.4 Conclusion

In conclusion, we have experimentally studied the polarization characteristics of

the Poincaré Bessel beam in close agreement with the theoretical results. The use

of a Poincaré beam in a rectangular basis containing all polarization states covered

by the surface of the Poincaré sphere produces Poincaré Bessel beam with each ring

having polarization coverage >75%. Again the polarization coverage of the Poincaré

Bessel beam is the same or slightly higher than the polarization coverage of any of

the rings. Therefore, one can consider the Poincaré Bessel beam as the superposition

of an infinite number of Poincaré beams. Further, it is observed that the polarization

structure of the Poincaré Bessel beam shows self-healing characteristics like intensity

self-healing after being abstracted. We also observed the degree of polarization of the

beam has no impact on the beam obstruction. Using the polarization ellipse orientation

map, we observe the beam to carry an infinite number of C-point singularity (lemon

and star) pairs. The number of such infinite series is decided by the number of C-

point singularity (lemon and star) pairs present in the input full Poincaré beam. As the

number of C-point singularity pairs of the full Poincaré beam is equal to the vortex

order of the constituent superposed orthogonal polarized beams, one can generate any

number infinite series of C-point singularity (lemon and star) pairs by simply adjusting
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the vortex order. Using the single series of infinite numbers of C-point singularity

(lemon and star) pairs, we transition the dynamics of the C-point singularities in the

self-healing process and observe Hilbert’s hotel-like process addressing the connection

to the mathematics of infinite sets. The current study can, in principle, be used for

imaging objects even in the presence of depolarizing surroundings, studying turbulent

atmospheric channels for communication and rich mathematical concepts of transfinite

numbers.



Chapter 6

Experimental realization of Hilbert

Hotel using scalar and vector

fractional vortex beams

6.1 Introduction

The study of wavefield singularities in light, now referred to as singular optics

[144], has revealed many interesting phenomena and new applications. In scalar

waves, these singularities typically manifest as lines of zero intensity in three-dimensional

space around which the phase of the field has a circulating or helical structure, as first

demonstrated by Nye and Berry [145]; such structures are now referred to as optical

vortices. In a closed path around an optical vortex, the phase always changes by an

integer multiple of 2p; this multiple is referred to as the topological charge. In vec-

tor waves, singularities manifest as lines of circular polarization in three-dimensional

space, upon which the orientation of the major axis of the polarization ellipse is unde-

93
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fined; the typical form of these singularities are usually referred to as C-lines [60, 146].

In a closed path around a C-line, the orientation changes by a half-integer multiple of

2p , and this multiple is called the topological index. Phase and polarization singulari-

ties typically intersect a transverse plane of an optical beam at a point; for polarization,

we then refer to C-points.

Optical singularities have been considered for a number of applications due to their

unusual properties. Beams carrying a pure optical vortex on their central axis, such as

Laguerre-Gauss beams, possess a well-defined orbital angular momentum (OAM), and

this OAM has been used for the trapping and rotation of particles and creation of light-

driven micromachines [147]. Pure OAM states can be multiplexed and demultiplexed,

and there are numerous investigations in using an OAM basis to increase the data

transmission rate in optical communications [60, 148]. Both the topological charge of

vortices and the topological index of C-lines are stable under weak perturbations of the

wavefield, and typically only created or destroyed in equal and opposite pairs; because

of this, these structures have been studied as alternative information carriers in optical

communications [149].

One particularly surprising discovery to come from investigations of wavefield sin-

gularities is the existence of an optical analogy to the mathematics of transfinite num-

bers. In a famous lecture, mathematician David Hilbert introduced what is now known

as Hilbert’s Hotel to highlight how strange the mathematics of infinity would be in

a real-world setting; his description was later popularized by Gamow [150]. Hilbert

imagined a Hotel with a countably infinite number of rooms, numbered 1,2,3, . . ., all

occupied, so the Hotel has no vacancies. However, each guest can be asked to move

to the next highest room, making room 1 available, and this process can be repeated

indefinitely. Hilbert’s Hotel, therefore, simultaneously has no vacancies and an infinite
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number of vacancies.

Despite the paradoxical nature of Hilbert’s Hotel, it has now been recognized to

manifest in systems that possess wavefield singularities, with singularities of positive

and negative topological charge (or index) representing the “guests” and “rooms” of

the Hotel. The first hint of this behaviour was shown by Berry [151] in 2004, who no-

ticed that the creation of vortices by a fractional order spiral phase plate goes through

a state with an infinite number of vortex pairs when the effective order of the plate is

half-integer, with the topological charge of the field discontinuously changing at that

moment; his results were confirmed experimentally the same year [152]. In 2016, Gbur

[53] argued that this system violates the conservation of topological charge through

a mechanism directly analogous to Hilbert’s Hotel and shows that multi-ramp spiral

phase plates use the Hotel effect to create multiple vortices simultaneously. Further-

more, in 2017, Wang and Gbur [54] showed theoretically that novel Hotel effects could

be created with polarization singularities in vector beams. The creation of infinite pairs

of singularities in space is not the only way to realize Hilbert’s Hotel with OAM states;

in 2015, researchers demonstrated a version of Hilbert’s Hotel through multiplicative

mapping of OAM modes [153].

With such non-intuitive phenomena predicted, and the possibility of discovering

more unusual vortex phenomena related to transfinite mathematics, it is worthwhile to

have robust and versatile experimental techniques for testing these effects. Recently,

the optical vortex version of Hilbert’s Hotel for a single “room” was demonstrated

experimentally using a spatial light modulator (SLM) to produce the fractional vortex

states [143]. The SLM was encoded with the desired fractional order and illuminated

by a Gaussian beam to produce a fractional vortex beam. However, detailed investi-

gations of Hilbert’s Hotel require nearly continuous changes in the fractional vortex
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order, and despite the flexibility of SLMs in terms of dynamic phase modulation and

wide wavelength coverage, it would be advantageous to have methods of studying the

phenomenon that do not rely on their discrete nature. Furthermore, high-power vor-

tex beams used in many applications are typically generated using spiral phase plates

(SPPs), refractive elements that use a helical ramp structure to generate a vortex. If the

unusual effects of the optical Hilbert’s Hotel find practical application, having methods

of generating them using SPPs would be beneficial.

SPPs were originally designed to produce a beam with a specific topological charge

at a desired wavelength. Based on the design wavelength, l , and the target vortex

order, l, the maximum step height s is engineered in such a way that the incident

Gaussian beam acquires an azimuthal shift of 2pl. The vortex order of the beam is

related to the optical parameters by the formula,

l = [n(l )�1]s/l , (6.1)

where n(l ) is the wavelength-dependent refractive index of the material. As a result,

SPPs are very wavelength specific and will not generate an integer vortex beam of

order l for a laser wavelength away from the designed wavelength, l . This limitation

turns out to be an advantage for demonstrating Hilbert’s Hotel: from Eq. (6.1) it is

evident that one can continuously vary the effective vortex order of the SPP from l to

2l by varying the beam wavelength from l to l/2, with a small modification due to

the variation of refractive index with wavelength. Therefore, by simply changing the

wavelength of a Gaussian beam incident upon an SPP, one can easily generate vortex

beams that effectively have a continuously variable fractional charge.

In this work we introduce, a simple experimental technique for studying fractional

vortex effects, including not only the original vortex Hilbert’s Hotel but also its vector



6.2. Theoretical framework of Hilbert’s Hotel Evolution in fractional singularities 97

beam generalization. Using a double-ramp SPP having a step height corresponding to

the vortex order l = 2 at the designed wavelength of 1064 nm in a modified Mach-

Zehnder interferometer, and a supercontinuum laser tunable across 400-800 nm, we

have generated scalar and vector vortex beams with tunable fractional topological or-

der and verified several varieties of the optical Hilbert’s Hotel.

6.2 Theoretical framework of Hilbert’s Hotel Evolu-

tion in fractional singularities

Before describing the experiment, we briefly review the mathematics related to

fractional spiral phase plates for both scalar phase singularities and vector polarization

singularities. The results of these calculations are shown in Section 6.3 to compare

with experimental measurements.

6.2.1 Phase Singularities

A common method of generating a vortex beam is to illuminate a spiral phase plate

with a normally incident plane wave. As noted in the Introduction, a standard SPP

has a helical ramp structure that, for a given wavelength, produces a continuous phase

change 2pa in the azimuthal direction; we refer to a as the order of the SPP. Beams

produced by a SPP will always have an integer topological charge, regardless of whether

a is integer or fractional. For brevity, however, we will refer to a as the order of the

transmitted beam.

We first consider a unit amplitude scalar plane wave passing through a SPP with

integer order n and transmission function exp(inf). At a distance z from the phase

plate, the transmitted field can be determined by Fresnel diffraction, and is of the form



98
Chapter 6. Experimental realization of Hilbert Hotel using scalar and vector fractional

vortex beams

[151],
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where r = (r,f) denotes the position vector in the transverse plane, l and k denote the

wavelength and wave number of the beam, respectively, and Jn represents the nth order

Bessel function of the first kind.

Traditional SPPs have a single ramp along the azimuthal direction and a single

step discontinuity; we consider the more general case given by Gbur [53] of a SPP

with m ramps of equal azimuthal width jm = 2p/m, and overall fractional order a .

The transmission function of the SPP is given by

T (f) = exp[ia(f � pjm)], pjm  f  (p+1)jm, (6.3)

where p = 0,1,2, ...,m�1 and a can have any integer or fractional value.

To evaluate the propagation of a plane wave through this fractional SPP, we may

expand the transmission function of the multi-ramp fractional SPP in a Fourier series,

T (f) =
•

Â
n=�•

Cneinf , (6.4)

where the expansion coefficients are readily found to be of the form,

Cn =
i
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m�1

Â
p=0

e�ipnjm

"
1� eijm(a�n)

a �n

#
. (6.5)

Equation (6.4) expresses the transmission function of the fractional SPP as a super-
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position of integer SPP transmission functions. The fractional scalar vortex beam

Ua(r,f ,z) generated by the fractional SPP can then also be written as the superpo-

sition of integer order vortex beams with different amplitudes (expansion coefficients)

depending on the order a of the SPP,

Ua(r,f ,z) =
•

Â
n=�•

CnUn(r,f ,z). (6.6)

It was shown by Gbur that the net topological charge of the transmitted field in-

creases by integer multiples of m, and the transition happens when the fractional order

of the SPP is an odd multiple of m/2.

In our experiment, we have used a double ramp SPP (m = 2) with the fractional

order

a =
s
l

h
n(l )� m

2

i
, (6.7)

where n(l ) is the wavelength dependent refractive index of the BK7 glass, determined

by the empirical Sellmeier formula [154]. The maximum height difference in the SPP

is given by the relation

s =


ldld

n(ld)� m
2

�
, (6.8)

where ld and n(ld) are the vortex order and refractive index of the SPP at the

designed wavelength, ld = 1064 nm. By continuously modulating the wavelength of

the source, the optical path length difference the light experiences on transmission will

change and hence its output phase can change by fractional values of 2p , implying the

generation of fractional vortex beams of varying order.
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6.2.2 Polarization Singularities

According to Wang and Gbur [54], a similar mathematical method can be applied to

generating vector beams with an effective fractional topological index. In the exper-

iment described in Section 6.3, we superimpose a right-hand circularly (RHC) polar-

ized Gaussian beam with a left-hand circularly (LHC) polarized beam that has passed

through the fractional SPP. The output field may therefore be written in the form,

Ea(r,f) =Ua(r,f)ê++U0(r,f)ê�, (6.9)

where ê+ and ê� are the left- and right-handed circular polarization unit vectors, ê± =

x̂± iŷ. In Eq. (6.9), C-points can be readily identified as points where Ua(r,f) = 0,

resulting in a point of pure circular polarization. In terms of linear polarization, we

may write

Ea(r,f) = [Ua(r,f)+U0(r,f)] x̂+ i [Ua(r,f)�U0(r,f)] ŷ. (6.10)

We may then use Eq. (6.6) to express the fractional order field Ua(r,f) in terms

of integer order beams, as in the scalar case. The topological index of polarization

singularities is determined by the change of the phase Y of the Stokes vector[126]

S1 + iS2 in a closed loop around the singularity, where Y is given by

Y =
1
2

tan�1
✓

S2

S1

◆
,
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x �E2

y ,
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⇥
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(6.11)
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From Eq. (6.9) and the discussion of scalar phase singularities, we expect that the

total topological index will increase by 1 when the fractional order a = 1, with two

n = 1/2 polarization singularities created in the transition.

6.2.3 Topological charge and index

The topological charge t or index n of a singularity can be formally defined by the

expression,

t,n =
1

2p

I

C
—Y(r) ·dr (6.12)

where C is a closed path of integration around the singularity line and Y(r) is the phase

of the scalar field or the Stokes vector (orientation angle) for phase and polarization

singularities, respectively. For a scalar field, the topological charge t of an output field

corresponding to a fractional singularity a can be written in the simple form,

t = m⇥floor


a
m
+

1
2

�
, (6.13)

where “floor(x)” refers to the largest integer not exceeding x. Equation (6.13) implies

that jumps in topological charge of a scalar field can be achieved by modulating the

fractional order a of the SPP exhibiting Hilbert’s Hotel evolution of phase and polar-

ization singularities. From Eq. (6.9), we may conclude that every new scalar vortex in

Ua of unit topological charge produces a C-point of n = 1/2 topological index.

6.3 Experimental Setup

The schematic of the experimental setup for the realization of the Hilbert hotel is

shown in Fig. 6.1. A supercontinuum laser (NKT Photonics) producing unpolarized

radiation with an average power of 2 W tunable across 400 nm to 2200 nm is used
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Figure 6.1: Experimental setup for the observation of optical Hilbert Hotel in phase
and polarization. L1-2, Plano-convex lenses; WP1-2, Wollaston prisms; M1-7, di-
electric mirrors; l /2, half-wave plate; BS1-2, Beam splitter cubes; PBS1-2, Polarising
beam splitter cubes; SPP, Spiral phase plate of order 2; l /4, quarter-wave plate; CCD,
charge-coupled device camera.

as the primary laser for the experiment. Using a variable tunable filter, we tuned the

laser wavelength in the visible range across 400 nm to 800 nm with a minimum laser

bandwidth of 10 nm. The coherence length of the laser is calculated to be ⇠ 50 µm at

700 nm. Using a beam expander comprised of pair of plano-convex lenses L1 and L2

of focal lengths f 1 = 50 mm and f 2 = 300 mm, respectively, we have collimated the

Gaussian beam (T EM00 mode) of a diameter (full width at half maximum) of ⇠ 6 mm.

The Wollaston prism (WP1) with a polarization extinction ratio of 100000:1 is used to

extract the linear polarized beam corresponding to an average power of 10 mW for a

bandwidth of 10 nm across the tuning range. A l/2-plate is used to control the laser

power in the modified polarization Mach–Zehnder interferometer (MZI), comprised of

PBS1, PBS2, and a set of plane mirrors, M1-6. We used a delay line in one of the arms

in order to temporally overlap the two beams at the output of the MZI. A double-ramp

SPP made of BK7 glass having a topological charge of l = 2 at the designed wavelength



6.4. RESULTS AND DISCUSSION 103

of 1064 nm was kept in one arm of the MZI to generate a vector vortex beam.

The electric field at the output of the MZI can be written as

E1(r,f) = aUa(r,f)x̂+bU0(r,f)ŷ, (6.14)

with x̂ and ŷ representing horizontal and vertical polarization, respectively. However,

after propagation through the quarter wave-plate (l/4), the electric field of the vector

beam transformed into

E2(r,f) = aUa(r,f)ê++bU0(r,f)ê�, (6.15)

where again ê+ and ê� are again the unit vectors of left- and right circular polarization

of light, and a and b are the relative weights of the two orthogonally-polarized beams.

The set of elements l/4, l/2, and WP2 are used to measure the Stokes parameters

of the vector beam. On the other hand, to study the scalar fractional vortex beam,

we redesigned the MZI by replacing the PBS1 and PBS2 with 50:50 beam splitters,

BS1 and BS2, respectively. In such a configuration, the arm of the MZI having the

SPP generates a fractional vortex beam, while the second arm acts as the reference

Gaussian beam or planar wavefront for interference study.

6.4 RESULTS AND DISCUSSION

We discuss the scalar case first. Using the dispersion relations of N-BK7 glass

[154] in Eq. (6.7) for the double-ramped SPP (m = 2), we have calculated the effective

fractional order a of the SPP as a function of laser wavelength; the results are shown

in Fig. 6.2(a). As evident from the figure, the fractional order of the output beam

continuously changes from the integer order, a = 2 to a = 4 as the laser wavelength
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Figure 6.2: (a) Theoretical variation of the fractional order, a of the SPP as a function
of the laser wavelength. (Inset) Magnified section of the topological charge variation
near 712 nm and the intensity pattern of the beam after SPP at 1064, 712, and 539
nm. (b) Experimental variation of topological charge, l with wavelength showing step
jump near 712 nm. (Inset) Interference pattern showing the characteristic fork pattern
of the vortex beam at 800, 712, and 650 nm.

changes from 1064 nm to 539 nm. We have recorded the intensity profile of the out-

put beam at 1064 nm and 539 nm, as shown by the insets of Fig. 6.2(a), which have

the clear doughnut intensity profiles of integer vortices. By measuring the character-

istic fork intensity interference pattern of the doughnut beam with the reference plane

wavefront, we confirm the order of the generated vortex beam to be a = 2 and 4 at

1064 nm and 539 nm, respectively. However, according to Eq. (6.13), a transition of

the field topological charge should occur when the plate fractional order a = 3. There-

fore, we have magnified the wavelength range from 650 nm to 750 nm as shown by the

inset of Fig. 6.2(a), and find the required laser wavelength for a = 3 to be l = 712 nm.

Subsequently, we have observed the intensity profile of the beam, which is expected

and confirmed to carry two expected singular lines for a m = 2-step SPP.

To evaluate how the topological charge of the field changes with the variation of

wavelength, we recorded the intensity interference pattern of the output beam with the

reference beam and counted the net number of forks while varying the laser wave-
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length. The results are shown in Fig. 6.2(b). As expected from the theory and Ref.

[53], we observe the net number of forks (marked by white circles) of the interfer-

ogram of the vortex beam for the wavelength range from 1064 nm to 720 nm to be

two even as the intensity pattern of the vortex beam changes from doughnut shape to

carrying two low-intensity lines. Similarly, the net number of forks of the interfer-

ence pattern in the wavelength range 700 nm to 539 nm is four despite the change

of intensity pattern from carrying low-intensity lines to a doughnut shape. Therefore,

we can easily conclude the topological charge of the vortex beam to be l = 2 for the

wavelength range of 1064�720 nm and l = 4 for the wavelength range of 700�530

nm.

At the wavelength 712 nm, corresponding to a = 3, the interference pattern con-

tains an in principle infinite number of fork pairs representing vortex dipoles lying

along the two singular lines of the SPP, as predicted by Berry [151] and Gbur [53].

When an infinite number of dipoles are present, the topological charge of the field is

indeterminate. However, from Fig. 6.2(b), it is evident that the topological charge of

the vortex beam generated by two-step SPP has a two-step jump from l = 2 to l+m= 4

while the laser wavelength drops below 712 nm in agreement with Eq. (6.13).

These observations suggest the experimental realization of Hilbert’s Hotel. They

also demonstrate the simplicity and elegance of the overall experiment; it is very easy

to select any fractional order between l = 2 to l = 4 by adjusting the laser wavelength to

the SPP without moving any optical elements. However, due to the material dispersion

and the ultrafast nature of the laser, one needs to ensure the temporal overlap of the

beams of MZI using the delay stage. Such delay adjustment can be avoided using a

continuous-wave laser or laser of a broader pulse width.
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6.4.1 Scalar fractional vortex beam

To truly demonstrate Hilbert’s Hotel, however, we need to show the rearrangement of

positive and negative charge vortices in the manner that“rooms” and “guests” are rear-

ranged in Hilbert’s thought experiment. Therefore, we have focused our investigation

on the wavelength range 760 - 660 nm in the immediate neighbourhood of the wave-

length where the fractional order of the field makes the transition from order a = 2

to 4. The results are shown in Fig. 6.3. We have recorded the interference pattern of

the vortex beam for five different wavelengths, l = 760, 740, 712, 690, and 660 nm,

corresponding to the topological orders calculated from Fig. 6.2, of a = 2.8, 2.88, 3,

3.1, and 3.25 respectively, with the results shown first column of Fig. 6.3.

We observe two forks for l = 760 nm; however, the decrease in laser wavelength

to 740 nm results in the creation of fork pairs (upward and downward-opening fork-

shaped fringes) corresponding to vortex dipoles (marked by the green ellipses) in the

singular lines of low intensity. The series of fork pairs (marked by the green boxes)

extends in principle to infinity (here, restricted to the spatial extent of the beams) for

a laser wavelength of 712 nm. A further decrease in laser wavelength results in the

annihilation of the vortex dipoles, as evident from the reduction in the number of fork

pairs at 690 nm. Finally, it attains a net of four forks, corresponding to the topological

charge of 4 at 660 nm.

To understand and appreciate the creation and annihilation of the vortex dipole

while changing the laser wavelength to the SPP, we have extracted the phase of the

beam from the interference pattern by using Fourier spectrum analysis [155] of a non-

contour type fringe pattern. The results are shown in the second column of Fig. 6.3.

It is evident that the phase distribution of the vortex beam at 760 nm has two phase
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Figure 6.3: (a) Experimental interference pattern (first column) and corresponding
phase distribution extracted using Fourier spectrum analysis (second column), theoret-
ical interference pattern (third column), and corresponding phase distribution (fourth
column) of the fractional vortex generated for different laser wavelength. The unit fork
patterns are marked with white circles, and the dipoles are marked using green ovals
or rectangles. The clockwise and counterclockwise phase variations are marked by “-”
and “+” signs. (b) Illustration of vortex dynamics with the laser wavelength mimicking
Hilbert’s Hotel. The phase variation “+” and “-” are labelled by “room” and “guest”,
respectively.

singularities marked by “+”at the center of the beam with phase varying from 0 to

2p in the anticlockwise direction. The decrease in wavelength to 740 nm results in the

creation of a pair of vortices in the singular lines marked by “+” and “-” (phase varying

from 0 to 2p in the clockwise direction) on either side of the existing two vortices at
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the beam center. However, at 712 nm, corresponding to the topological order of a =

3, we see an increase in the creation of vortex pair extending away from the center of

the beam. Due to the finite size of the beam and the apertures of the CCD camera, we

have restricted our study to three pairs on either side of the beam center. In principle,

however, the number of pairs extends indefinitely, eventually becoming unmeasurable

in the low-intensity outskirts of the beam.

As predicted in Ref. [53], we experimentally observe each vortex to annihilate with

its opposite neighbour instead of the neighbour it was created with. We see this occur

starting at the laser wavelength of 690 nm, corresponding to fractional order a = 3.10,

and progressing towards the origin from the most distant points with further decrease of

laser wavelength (an increase of topological order away from a = 3), leaving four “+”

vortices at the center of the beam at a wavelength of 660 nm. Using the experimental

parameters in Eq. 6.6, we have simulated the interference fringes and extracted the

phase distribution with the results shown in the third and fourth columns of Fig. 6.3,

finding them in excellent agreement with the experimental results.

To make a clear relationship between the experimental results and Hilbert’s Hotel,

we have labelled the phase singularities marked by “+” and “-” as the “room” and

“guest” of the Hotel and illustrated the vortex dynamics using the phase distribution

of the beam with fractional order a = 3, 3.10 and 3.25. The results are shown in Fig.

6.3(b). As evident from Fig. 6.3(b), the phase distribution has two individual charges

at the center and a series of vortex pairs in the singular lines on either side of the beam

center for a = 3. Those vortex pairs created together are connected by arrows. Let us

ignore the unit charges (contained in the black box) present at the center of the beam

and focus on the vortex dipoles that mimic the situation of a fully occupied Hilbert

Hotel, i.e., • $ •. Due to the experimental constraint, we have restricted our study
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to three pairs of dipoles. However, for a = 3.10, we observe the annihilation of the

vortex dipole pairs of the series away from the beam center, leaving the first vortex

dipole and a unit charge “+” from the second pair. The existence of unit charge “+” of

the second pair and the increase of the separation of vortex charge “+” and “-” of the

first dipole confirm that the vortex charge “-” of each dipole has annihilated with the

vortex charge “+” of the next neighbouring dipole, i.e., the vortex charge “-” of Nth

dipole annihilates with vortex charge “+” of the (N+1)th dipole, as if the “guest” of one

“room” has moved to the adjacent “room”. Finally, for a = 3.25, we see that the vortex

charge “-” (“guest”) of the first dipole has annihilated with vortex charge “+” (”room”)

of the second dipole, leaving an extra vortex charge of “+” (”room”) on either side of

the beam mimicking the creation of two vacant “rooms” for the new “guests”, • $

2 + •, in the fully occupied Hilbert Hotel. This is, to the best of our knowledge, the

first demonstration of an optical Hilbert’s Hotel for a scalar field using a multi-ramp

SPP. It demonstrates that a multi-ramp SPP can in fact produce multiple new vortices

simultaneously, just as it is possible to open up multiple rooms in Hilbert’s Hotel by

asking each guest to move more than one room over.

6.4.2 Vector fractional vortex beam

We now turn to the case of Hilbert’s Hotel with polarization singularities in a vector

beam. It is known that the coaxial superposition of a vortex and a Gaussian beam,

with opposite circular polarizations, transforms the phase singularity of a scalar vortex

beam into a polarization singularity [94] of a vector vortex beam. Here the polariza-

tion singularities, or C-points, are the points on the vector beam where the polarization

ellipse is circular, and the orientation of the polarization ellipse is undefined. The

“star” and “lemon” singularities are popular C-point singularities where the polariza-

tion ellipse around the singularity point orientations from 0 - p in the clockwise and
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Figure 6.4: (a) Experimental (first column) and theoretical (second column) dynamics
of polarization singularity of fractional vector beam with laser wavelength. The po-
larization ellipse orientation (0 - p) about the singular point in the counterclockwise
and clockwise directions are identified by “+” and “-” respectively. (b) Illustration of
dynamics of polarization singularity, “+” (lemon) and “-” (star) with the laser wave-
length mimicking • $ •, to • $ 2 + •, transition of Hilbert Hotel.
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counterclockwise directions, respectively. We have observed the vector beam to carry

the “star” and “lemon” singularities in pairs and to carry topological charges of +1/2

and �1/2, respectively [142]. As a result, in 2017, Wang and Gbur [54] theoretically

demonstrated the Hilbert Hotel using polarization singularities in vector beams.

Building upon the simple experimental realization of Hilbert Hotel using fractional

scalar vortex beams, we have explored the experimental realization of Hilbert Hotel us-

ing polarization singularities. In the current experiment (see Fig. 6.1), the replacement

of BS1 and BS2 with PBS1 and PBS2 of the MZI results in the vector beam with an

electric field given by Eq. 6.14. Keeping a l/4 plate at +45� with respect to the hori-

zontal polarization, we have converted the vector vortex beam from a linear basis to a

circular basis with a generalized form represented by Eq. (6.15). Similar to the scalar

vortex study (see Fig. 6.3, we have adjusted the laser wavelength at 770, 740, 712, 690,

and 650 nm and recorded the beam intensity profile for four distinct configurations of

l/4 and l/2 plates, adequate for estimating the Stokes parameters of the polarisation

distribution [156].

Using these intensity distributions, we have calculated the ellipse orientation dis-

tribution with the help of Stoke’s parameters, S1 and S2, given by Eq. (6.11). The

results are shown in Fig. 6.4. As evident from the first column of Fig. 6.4(a), the po-

larization ellipse orientation map of fractional vector vortex in circular basis has two

lemon singularities denoted by “+” at the center of the beam for laser wavelength l

= 770 nm. However, for laser wavelength of l = 740 nm, we observe, in addition to

the initial lemons, the appearance of pairs of lemon and star singularities identified by

“+” and “-”, respectively, on either side of the beam center. The number of lemons

and stars keeps on increasing with the decrease of laser wavelength, in principle giv-

ing a countably infinite number of pairs extended away from the beam center for the
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laser wavelength of l = 712 nm corresponding to the topological order a = 3 of the

fractional vector beam of the two-step SPP.

However, as we further reduce the laser wavelength to 690 nm, we observe, sim-

ilar to the vortex pair annihilation of scalar fractional case as shown in Fig. 6.3, the

annihilation of star and lemon singularities; star of Nth pair annihilates with the lemon

of (N+1)th pair, leaving one pair of lemon and star and a single lemon singularity of

the adjacent pair on either side of the beam center. Finally, the star of the first pair

annihilates with the lemon of the second pair creating an extra lemon singularity on

either side of the beam center with a result of a total of four lemons, including the

initial lemons for the laser wavelength of l = 650 nm corresponding to a = 3.25.

Using the mathematical Eqs. (6.9), (6.11) and (6.15) and the experimental parame-

ters, we have calculated the evolution of polarization singularity of the fractional vector

beam as shown in the second column of Fig. 6.4(a) in close agreement with the ex-

perimental results. The evaluation of polarization singularities as summarized in Fig.

6.4(b) show the transition of • $ •, to • $ 2 + •, the transition of Hilbert Hotel.

Therefore, we have successfully observed the first experimental realization of more

general examples of Hilbert’s Hotel with polarization singularities in vector beams, as

predicted theoretically [54].

We have further studied the propagation characteristics of the polarization singu-

larity of the fractional vector vortex. In doing so, we measured the beam intensity

for different projections at different distances along the beam propagation for the laser

wavelength of l = 712 nm (a = 3) and extracted the ellipse orientation distribution.

The results are shown in Fig. 6.5. As evident from the first column of Fig. 6.5, the

ellipse orientation map contains the infinitely extended chain of polarization singular-

ities at the propagation of 35 cm measured from the MZI. On further propagation to a
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Figure 6.5: Experimental (first column) and theoretical (second column) evolution of
the polarization singularities chain of the fractional vector beam corresponding to a
topological order of a = 3 at 712 nm at three different propagation distances in free
space.

distance of 50 cm and 65 cm, we observe the positions and size of singularity change

significantly due to the beam divergence. However, the infinite polarization singularity

chains remain unchanged and preserve the signature of Hilbert’s Hotel. It is to be noted

that, due to the divergence of the finite beam, the infinite line of phase singularities at a

long propagation distance is lost in the low-intensity region of the beam tail. Using the

same experimental parameters, we have also simulated the propagation characteristics

of the infinite lines of polarization singularity chains as shown in the second column

of Fig. 6.5 in close agreement with the experimental results.
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6.5 Conclusions

We have demonstrated, to the best of our knowledge, the first experimental real-

ization of Hilbert’s Hotel using both fractional order scalar and vector beams with a

multi-ramp SPP. The generation of fractional scalar and vector vortex beams from a

fixed SPP by changing the laser wavelength through a filter makes the overall exper-

iment very simple, alignment-free, and easy to implement. While we have demon-

strated the proof of concept using a SPP of order l = 2, the current demonstration

reveals that the use of multi-ramp SPP can produce multiple new vortices simultane-

ously. The generation of such multiple vortices can open the possibility of verifying the

complicated transitions to prove the generalized Hilbert’s Hotel paradox. The generic

experimental scheme can also be useful for understanding the behaviour of complex

polarization-sensitive optical elements as required in many fields, including designing

novel devices, quantum communication, and sensing.



Chapter 7

Summary, and Outlook

In summary, we have devised a new method to estimate the polarization coverage of

any arbitrary vector vortex beams. Using the same method we estimated the polar-

ization coverage of the vector vortex beam and compared the experimental results in

close agreement with the theory.

In addition to the generation of full Poincaré (FP) beams using linear optical el-

ements such as spiral phase plate, polarization beam splitter, and waveplate, we also

explored the nonlinear generation of ultra-fast FP beams into a new wavelength while

preserving the polarization characteristics of the pump FP beam generated through the

linear optics. We have validated our experimental findings with theory. Using the

Stokes parameters and Stokes phases analysis, we observed the conservation of C-

points and L-lines singularities in nonlinear processes. We also explored the beam

parameters influencing the polarization coverage and found that different intensity

weightings of the constituent beams control the available polarization state in an opti-

cal beam. We also observed that in the second harmonic generation of the FP beam,
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one could control the accessible polarization and achieve the highest polarization cov-

erage for equal intensity weightings of the constituent beams of the fundamental fre-

quency.

Having full characterization of the FP beam, we generated the Poincaré-Bessel

beam and studied its polarization characteristics. Typically the peculiar characteris-

tics of Bessel beams in terms of non-divergence and self-healing are studied while

observing the intensity pattern of the beam. We have studied the polarization char-

acteristics of the Poincaré-Bessel beam. While the intensity profile of the new beam

maintains all characteristics of the Bessel beam, we observe the polarization struc-

ture of the Poincaré-Bessel beam to carry an infinite series of C-point singularity pairs

even though the input FP beam has a particular pair of C-point singularities based on

its vortex order. In the self-healing study, we observe the degree of polarization of the

Poincaré-Bessel beam remains unchanged with propagation despite beam obstruction.

The Stokes phase study of those beams during the self-healing process reveals the ap-

pearance of a new set of C-point singularity pairs at the disturbed section of the beam.

Further, with beam propagation, the new set of singularities replaces the existing C-

point singularity pairs. It retains the polarization distribution of the beam as the initial

after the healing length. Such healing processes of the C-point singularities of the

Poincaré-Bessel beam resemble with the mathematical concept of infinity as presented

by the Hilbert Hotel paradox.

Finally, using the fractional scalar and vector vortex beams, we have demonstrated

the experimental realization of Hilbert’s Hotel. We used a very simple experimental ar-

chitecture to generate the fractional scalar and vector vortex beams using a fixed SPP

and continuous wavelength tunable supercontinuum laser. While we have demon-

strated the proof of concept using a SPP of order l = 2, the current demonstration
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reveals that the use of multi-ramp SPP can produce multiple new vortices simultane-

ously. The generation of such multiple vortices can open the possibility of verifying the

complicated transitions to prove the generalized Hilbert’s Hotel paradox. The present

experimental scheme can also be useful for understanding the behaviour of complex

polarization-sensitive optical elements as required in many fields, including designing

novel devices, quantum communication, and sensing.

As a direction of future work, we would like to extend our new approach to ex-

perimentally measure the polarization coverage of any arbitrary vector beams. It is

observed in the literature that the FP beams have smaller scintillation than compara-

ble beams of uniform polarization in the presence of atmospheric turbulence [50, 51].

Therefore, one can study the robustness of the FP beams against atmospheric turbu-

lence by monitoring the polarization distribution and the change in the overall po-

larization coverage of such beams during free space propagation. Such a study can

be helpful in designing the optimum special polarization structured beams for long-

distance free-space classical and quantum communication. We have a plan to extend

our study for in-filed deployment of the FP beam. In the study of self-healing char-

acteristics of the Poincaré Bessel beam, we have blocked the beam and studied the

change in the polarization distribution with propagation. As a future study, we would

like to use a depolarizer and see the effect of the polarization pattern of the beam with

propagation. Since the Poincaré-Bessle beams have self-healing characteristics, we

can expect the ordering of the beam polarization pattern from the polarization scram-

bling due to the depolarizer. Although we have used a fractional vector vortex beam to

verify the Hilbert hotel paradox, we would like to use the higher-order vector vortex

beam for sensing applications. For example, the measurement of the optical activity

of sugar solution. The polarization projection of the vector vortex beam results in a

ring-shaped petal pattern with the number of petals twice the order of the vector vortex
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beam. However, the introduction of any relative phase between the constituent beams

of the vector vortex beam results in a shift in the petal pattern. One can estimate the

relative phase between the beams by measuring the shift of the intensity pattern. We

would like to use this beam to measure the concentration of sugar solution with high

accuracy.



Appendix A

MATLAB code for the measurement

of polarization distribution

Matlab code for estimating the polarization distribution and polarization coverage.

1 clc

2 clear

3 close all

4

5

6 cd data

7 n=0;

8 % Input parameters

9 crop=300;

10 x=499;
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11 y=789;

12 threshold=0;

13 map='y';

14 %% Reading images

15 Ia = importdata('p0_0001.ascii.csv');

16 Ib = importdata('p45_0001.ascii.csv');

17 Ic = importdata('p90_0001.ascii.csv');

18 Id = importdata('p45q90_0001.ascii.csv');

19

20 % Center selection

21 % figure, imshow(Ia,[]), colormap hot

22 % figure, imshow(Ic,[]), colormap hot

23 % prompt = 'What is the center X value? ';

24 % y=input(prompt);

25 % prompt = 'What is the center Y value? ';

26 % x=input(prompt);

27

28 %% Calculating parameters

29 % Cropping image

30 I1a = Ia(x-crop:x+crop,y-crop:y+crop);

31 I2b = Ib(x-crop:x+crop,y-crop:y+crop);

32 I3c = Ic(x-crop:x+crop,y-crop:y+crop);

33 I4d = Id(x-crop:x+crop,y-crop:y+crop);

34

35 I1=zeros(2*crop+1,2*crop+1);

36 I2=zeros(2*crop+1,2*crop+1);
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37 I3=zeros(2*crop+1,2*crop+1);

38 I4=zeros(2*crop+1,2*crop+1);

39

40 for j = 1:size(I1,1)

41 for i = 1:size(I1,2)

42 if 2*crop � sqrt((crop-i)ˆ2+(crop-j)ˆ2)

43 I1(i,j) = I1a(i,j);

44 I2(i,j) = I2b(i,j);

45 I3(i,j) = I3c(i,j);

46 I4(i,j) = I4d(i,j);

47 end

48 end

49 end

50 figure('NumberTitle', 'off', 'Name', ...

'Experiment Intensity');

51 subplot(2,2,1)

52 imshow(I1/max(max(I1+I3)),[]),colormap hot

53 colorbar

54 subplot(2,2,2)

55 imshow(I2/max(max(I1+I3)),[]),colormap hot

56 colorbar

57 subplot(2,2,3)

58 imshow(I3/max(max(I1+I3)),[]),colormap hot

59 colorbar

60 subplot(2,2,4)

61 imshow(I4/max(max(I1+I3)),[]),colormap hot
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62 colorbar

63 %% calculating the Stokes parameters

64 S0 = I1 + I3;

65 S1 = I1 - I3;

66 S2 = I2.*2-(I1+I3);

67 S3 = I4.*2-(I1+I3) ;

68 s0=sqrt((S1.ˆ2)+(S2.ˆ2)+(S3.ˆ2)) ;% normalized ...

Stokes factor

69

70

71 % Calculation of the normalized stokes parameters

72 NORMs1=zeros(size(s0,1),size(s0,2));

73 NORMs2=zeros(size(s0,1),size(s0,2));

74 NORMs3=zeros(size(s0,1),size(s0,2));

75 P=zeros(size(s0,1),size(s0,2));

76 thr=0.01*threshold*max(max(s0));

77 for j = 1:size(s0,1)

78 for k = 1:size(s0,2)

79 if s0(j,k)> thr

80 NORMs3(j,k) = ...

NORMs3(j,k)+(S3(j,k)/s0(j,k));

81 NORMs1(j,k) = ...

NORMs1(j,k)+(S1(j,k)/s0(j,k));

82 NORMs2(j,k) = ...

NORMs2(j,k)+(S2(j,k)/s0(j,k));

83 P(j,k) = P(j,k)+(s0(j,k)/S0(j,k));
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84 end

85 end

86 end

87

88

89 % figure('NumberTitle', 'off', 'Name', ' ...

Stokes parameters Experiment');

90 % subplot(2,2,1)

91 % imshow(NORMs1,[]),colormap winter

92 % colorbar

93 % subplot(2,2,2)

94 % imshow(NORMs2,[]),colormap winter

95 % colorbar

96 % subplot(2,2,3)

97 % imshow(NORMs3,[]),colormap winter

98 % colorbar

99 % subplot(2,2,4)

100 % imshow(s0,[]),colormap winter

101 % colorbar

102 % CALCULATING STOCKS PHASES

103

104 phi12=zeros(size(s0,1),size(s0,2));

105 phi23=zeros(size(s0,1),size(s0,2));

106 phi31=zeros(size(s0,1),size(s0,2));

107

108 for i=1:size(s0,1)
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109 for j=1:size(s0,2)

110 p1=angle(NORMs1(i,j)+1.i*NORMs2(i,j));

111 p2=angle(NORMs2(i,j)+1.i*NORMs3(i,j));

112 p3=angle(NORMs3(i,j)+1.i*NORMs1(i,j));

113 phi12(i,j)=phi12(i,j)+p1;

114 phi23(i,j)=phi23(i,j)+p2;

115 phi31(i,j)=phi31(i,j)+p3;

116 end

117 end

118

119

120

121 %% Calculationg Polarization elipse parameter

122 % calculating 'chi' ratio of semi major and ...

minor axis and the sense in which eliipse is ...

rotating

123

124 chi=zeros(size(s0,1),size(s0,2));

125

126 for i=1:size(s0,1)

127 for j=1:size(s0,2)

128 if s0(i,j)>0

129 q1=0.5.*asin(NORMs3(i,j));

130 chi(i,j)=chi(i,j)+q1;

131 end

132 end
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133 end

134

135 % calculating 'phi' the orientation of the ...

ellipse i.e. the angle made by major axis ...

with the X-axis

136

137 phi=zeros(size(s0,1),size(s0,2));

138

139 for i=1:size(s0,1)

140 for j=1:size(s0,2)

141 q2=.5*angle(NORMs1(i,j)+1.i*NORMs2(i,j));

142 if q2<0

143 q21=q2+pi;

144 else

145 q21=q2;

146 end

147 phi(i,j)=phi(i,j)+q21;

148 end

149 end

150

151 % Polarization map

152 if map == 'y'

153 back='i';

154 if back == 'h'

155 figure,imshow(I1,[]), colormap hot

156 elseif back == 'v'
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157 figure,imshow(I3,[]), colormap hot

158 elseif back == 'i'

159 colorMap1 = [linspace(0,1,256)', ...

zeros(256,1),zeros(256,1)];

160 figure,imshow(S0,[]), colormap(colorMap1)

161 elseif back == 'n'

162 figure,imshow(S0,[]), colormap white

163 elseif back == 'p'

164 figure,imshow(P,[]), colormap hot

165 elseif back == 'e'

166 figure,imshow(chi,[]), colormap summer

167 elseif back == 'o'

168 figure,imshow(phi,[]), colormap summer

169 elseif back == 's'

170 figure,imshow(phi12,[]), colormap summer

171 end

172

173 % averaging chi & phi

174 nom=33;

175 f=round(log2(size(chi,1)/nom));

176 avgfact = 15;

177 avchi=imresize(chi,1/avgfact,'nearest'); ...

%figure,imshow(rszI1,[0 max(max(rszI1))]);

178 avphi=imresize(phi,1/avgfact,'nearest'); ...

%figure,imshow(rszI2,[0 max(max(rszI2))]);

179 %
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180 % chosing the parametrs of ellipse; a, b, ...

size of ellipse, origin

181 a = ones(size(s0,1),size(s0,2)); % setting ...

the length of semi major axis =1

182 b=tan(avchi); % calulating the length of ...

semi minor axis

183 soe=avgfact*0.4; %size of ellipse

184

185 orign=avgfact/2;

186

187 % calculating the pol. ellipses and then ...

drawing them on the axes provided above

188 xp=0; yp=0; x0=0; y0=0; x=0; y=0;

189 for i=1:size(avchi,1)

190 for j=1:size(avchi,2)

191

192 theta=linspace(0,2*pi,500); ...

%genearating values for theta ...

to draw an

193 %ellipse using parametric form

194 xp=a(i,j).*cos(theta).*soe;

195 yp=b(i,j).*sin(theta).*soe;

196

197 x0=((i-1)*avgfact)+orign;

198 y0=(avgfact*(j-1))+orign; ...

%calculating the X and y coord. ...
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of center of an ellipse

199

200

201 x=x0+(xp.*sin(avphi(i,j))-yp*cos(avphi(i,j)));

202 y=y0+(xp.*cos(avphi(i,j))+yp*sin(avphi(i,j)));

203

204 if avchi(i,j)> 0

205 line(y,x,'color','g','linewidth',1.2);

206 end

207

208 if avchi(i,j)< 0

209 line(y,x,'color','w','linewidth',1.2);

210 end

211

212 if avchi(i,j)==0

213 line(y,x,'color','[.2 .2 .2 ...

]','linewidth',1.2,'linewidth',1.2);

214 end

215

216 end

217 end

218

219 axis on

220 end

221 %% Calculating final results

222 % Plotting poincare sphere
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223 Vs1 = reshape(NORMs1,[],1);

224 Vs2 = reshape(NORMs2,[],1);

225 Vs3 = reshape(NORMs3,[],1);

226

227 figure('NumberTitle', 'off', 'Name', 'Poincare ...

sphere Experiment');

228 sphere(100);

229 colormap gray

230 shading flat

231 hold

232 scatter3(Vs1,Vs2,Vs3,'.','b')

233 xlabel('S1')

234 ylabel('S2')

235 zlabel('S3')

236 hold off

237

238 % Calculating Polarization coverage

239 sample1=pi/(31);

240 sample2=2*pi/(31);

241 x =2* reshape(chi,[],1);

242 y =2* reshape(phi,[],1);

243 data = [x,y];

244 counts = ...

hist3(data,'Ctrs',{-0.5*pi:sample1:0.5*pi ...

0:sample2:2*pi});

245 out=nnz(counts);
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246 coverage=out*100/(size(counts,1)*size(counts,2));

247 plotx(n,1)=test;

248 ploty(n,1)=coverage;
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