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Abstract

The study of semi-leptonic B meson decays plays a crucial role in test-

ing the Standard Model (SM) of particle physics and exploring potential New

Physics (NP) effects. B meson consists of a heavy quark, b, and a light anti-

quark, q̄ (q = u, d, s). The heaviness of the b quark allows us to consider the

inverse of its mass, 1/mb, as a perturbative expansion parameter. The framework

that incorporates these 1/mb corrections treating the b quark as a heavy quark is

known as the Heavy Quark Effective Theory (HQET). Theoretical calculations

of B meson decay rates involve the effective weak Hamiltonian, combining short-

distance physics encoded in the Wilson coefficients with long-distance physics

captured in the matrix elements of operators. These matrix elements of opera-

tors are parametrized in terms of non-perturbative parameters like form factors,

which introduces theoretical uncertainties. Various observables have been con-

structed such as Lepton Flavor Universality (LFU) ratios (RK(∗) , RD(∗)) and

angular variables like P ′
i , aiming to minimize theoretical uncertainties and pro-

vide cleaner tests of the SM. While these observables exhibit deviations from SM

predictions, it is premature to attribute them to NP effects. Hence, it is crucial

to investigate possible overlooked theoretical contributions, like QED effects.

The thesis, devoted to a better understanding of the QED effects in

semi-leptonic B decays, is divided into three major parts. Firstly, the effects

of soft photon corrections on B → Kℓℓ are studied. The decay rate and the

ratio RK are found to depend on the maximum energy of the soft photon, kmax.

Extending such analysis to charged current modes, lead us to construct an ob-

servable, RV = |Vub|
|Vcb|

, that is theoretically clean and independent of kmax, which

is the second part of the thesis. Equality of RV calculated using inclusive and

exclusive measurements of CKM matrix elements establishes a correlation be-

tween the coefficients of two distinct sectors: b → u and b → c. In the third

part, the possibility of computing the non-perturbative parameters, λ1 and λ2,

is explored focusing on the inclusive decays of the B meson. The decay width of

B → Xuℓνℓγ is calculated in the framework of HQET employing the Cutkosky

cut method. The total decay rate for radiative mode is cast into a linear com-
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bination of non-perturbative parameters λ1 and λ2 similar to the non-radiative

one, which allows for the simultaneous determination of these parameters in a

definitive manner. This approach offers a complementary avenue for computing

the non-perturbative parameters in inclusive decays.

This then firmly establishes the importance of QED effects which are

often neglected or overlooked, and motivates inclusion of such effects in other

modes as well.

Keywords: B decays, QED effects, HQET,
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Chapter 1

Introduction

The fundamental goal of high-energy particle physics is to answer the question:

What are we made of at the very fundamental level? To address this question,

lots of experiments have been performed, and are being done currently and sev-

eral high-precision experiments are planned. The basic idea we have now is that

all the experiments of particle physics we have done can be explained by looking

at groups of particles interacting with each other through different forces. The

theory which ties all of this is known as the Standard Model (SM) of particle

physics (to be discussed in detail in Section-1.1). The SM describes the proper-

ties of all the elementary particles and three fundamental forces of nature namely

the strong, weak, and electromagnetic forces [1–3] (see also [4–6]). It does not

include the gravitational force. Though the SM has achieved great success in

explaining various experimentally observed phenomena, it is unable to explain

some of the phenomena of nature like dark matter and dark energy [7, 8], matter

antimatter asymmetry [9, 10], unification of forces [11, 12], neutrino masses [13,

14], stabilization of the electroweak scale [15–17], etc. Hence, it is clear that the

SM is not the end of the story.

It further leads to the question: How to look for new particles and

interactions which lie Beyond the Standard Model (BSM)? In principle, there

are two ways to detect BSM signatures, namely Direct Detection and Indirect

Detection.

Direct Detection: In collider experiments such as the Large Hadron

1



2 Chapter 1. Introduction

Collider (LHC), new particles may be produced and detected. However, the

limiting factor is the center of mass (c.o.m.) energy. If the particle’s mass

is higher than the c.o.m. energy, it can not be produced as a real particle.

However, it can exist as a virtual particle. The direct detection of Higgs is one

such example [18, 19].

Indirect Detection: In this scenario, the new particles appear as

quantum fluctuations at low energy due to microphysics at high energies. This

requires high accuracy from both theories as well as experiments. Experiments

such as LHCb follow this way to find new particles. The prediction of the top

quark at the B factory DORIS with ARGUS experiment is one such example

[20]. Theoretically, the rare decays of leptons and hadrons, as well as the related

observables such as asymmetries provide access to look for these indirect searches

with the help of Effective Field Theories (EFTs) [21] (discussed in Section-1.4).

Hence, precise theoretical predictions of physical observables are required for the

comparison between experimental measurements and the SM predictions.

In the pursuit of precise theoretical predictions, it is crucial to address

the theoretical uncertainties that arise from non-perturbative quantities in the

SM. Observables such as decay rates and physical parameters of the SM con-

tain these uncertainties, stemming from quantities like form factors and decay

constants that are difficult to compute precisely. To mitigate the impact of non-

perturbative uncertainties, alternative observables are constructed by combining

different measurable quantities. These include ratios of decay rates, such as

Lepton Flavor Universality (LFU) ratios (R
(∗)
K , R

(∗)
D ) as discussed in Chapter-3.

These ratios exhibit reduced sensitivity to form factors.

However, it is important to note that while LFU ratios and similar ob-

servables are less affected by hadronic uncertainties, they may still be subject to

the effects of QED, particularly those arising from soft photon emissions [22–27].

Soft photon effects can have a significant impact on precision calculations, as they

encompass enhancements from both low-energy and collinear photons emitted by

high-energy relativistic particles (Further details are provided in Chapter-2 ). In

particular, the collinear logs can produce corrections up to O(10%) [25].

This thesis delves into the significance of the soft photon corrections to
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the exclusive semi-leptonic processes through an analysis of IR properties of the

soft photon, and the radiative inclusive mode (where the photon is hard) via the

implementation of Effective Field Theory techniques (as outlined in Section-2).

To begin our exploration, we review the Standard Model of particle physics and

the theory of weak interactions in B physics, addressing the existing challenges

and proposing potential solutions.

1.1 The Standard Model

The Standard Model (SM) is a renormalizable Quantum Field Theory (QFT)

that describes elementary fields and their interactions through local gauge

groups, SU(3)C×SU(2)L×U(1)Y . The SU(3)C gauge group describes the strong

interactions, while the SU(2)L × U(1)Y gauge group describes the ElectroWeak

(EW) part of the SM.

The particle content of the SM consists of fermions with half-integer

spin and bosons with integer spin. Fermions are divided into quarks and leptons.

Quarks, carrying color charge, are organized into doublets of up-type (up (u),

charm (c), top (t)) and down-type (down (d), strange (s), bottom (b)) quarks

referred as generations. This organization is based on their increasing order of

masses. Quarks have electric charge, with up-type quarks having Q = 2/3 and

down-type quarks having Q = −1/3. Leptons include charged leptons (electron

(e), muon (µ), tau (τ) with Q = −1 and neutrinos (electron-neutrino (νe), muon-

neutrino (νµ), tau-neutrino (ντ )) that are electrically neutral. Neutrino masses,

although confirmed by experiments, are not present in the SM. For more infor-

mation refer to[14, 28]. Figure (1.1) which displays the SM particles with their

mass, charge, and spin.

In the SM, SU(2)L×U(1)Y gauge group exhibits the chiral nature which

plays an important role in describing the fundamental phenomena of Strong and

EW interactions, Spontaneous Symmetry Breaking (SSB), and Flavor Physics

(see [5, 29, 30] for more details). This chiral symmetry arises from the different

ways in which fields transform under the fundamental representations of SU(2)L.

Only fermions exhibit chirality, and they are classified as either left-handed or
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Figure 1.1: The matter content of the Standard Model [https://en.wikipedia.
org/wiki/Elementary_particle].

right-handed fields based on their transformations under SU(2)L. The process of

localizing a global symmetry and gauging it is a standard procedure in QFT[4, 31,

32]. It is used to introduce gauge fields and couplings in the Standard Model, as

well as interpret the interaction terms in the Lagrangian. Table-(1.1) provides a

detailed description of how the SM matter contents transform under each group.

Now, let us delve into the various sectors of the SM.

1.1.1 Strong sector

We will start by constructing the QCD Lagrangian, which is a result of localising

the global SU(3)C symmetry in the quark sector of the SM. The QCD Lagrangian

density is given by

LQCD = −1

4
Ga
µνG

µν a +
∑
f

ψ̄f (i /D −mf )ψf , (1.1)

where

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , and (1.2)

Dµ = ∂µ + igs
λa
2
Ga
µ (1.3)

https://en.wikipedia.org/wiki/Elementary_particle
https://en.wikipedia.org/wiki/Elementary_particle
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The SM particles (SU(3)C , SU(2)L, U(1)Y )

Fermions

eR (1,1,−1)

LL (1,2,−1/2)

uR (3,1, 2/3)

dR (3,1,−1/3)

QL (3,2, 1/6)

Gauge bosons

Ga
µ (8,1, 0)

W i
µ (1,3, 0)

Bµ (1,1, 0)

Higgs

ϕ (1,2, 1/2)

Table 1.1: Transformation properties of the particle content of the SM

are the gluon field strength tensor and covariant derivative, respectively. The

index a denotes the eight gluon fields, mf is the mass parameters, and f repre-

sents the quark flavors. Moreover, gs and λa are gauge coupling and Gell-Mann

matrices (explicit structures are provided in Appendix-A), respectively. The non-

Abelian nature of SU(3)C results in self-interactions between gluons, which leads

to both triple and quartic gluon terms that are absent in Abelian theories like

QED. Hence, the QED Lagrangian is analogous to the QCD Lagrangian, except

for the color indices and self-interactions among the photon fields. fabc = 0 in

QED.

Let us understand the behavior of coupling strength for QCD at high

energy. For illustration, consider the qq → qq scattering in the increasing order

of αs = g2s/4π (analogous to αem = e2/4π, the coupling strength in QED). The

Feynman diagrams to the leading and first sub-leading order in αs are shown in

Fig.(1.2). Other diagrams have been left since we are after the understanding

of the variation of coupling strength with scale; detailed calculations of these

diagrams and others can be seen in any textbook of QCD, such as [33]. The loop
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(a)
(b) (c)

Figure 1.2: qq → qq scattering: lowest order (left), quark loop (middle), and
gluon loop (right).

diagrams, due to integration up to infinite loop momenta, cause ultraviolet (UV)

divergences. However, QCD, like QED, is a renormalizable QFT. Therefore, all

UV divergences of the loop diagrams can be effectively removed by a redefinition

of the quark fields (ψf (x)) and gluon fields (Ga
µ(x)) in the Lagrangian, simul-

taneously redefining the coupling gs and quark masses mf . The residual finite

contributions introduce an additional dependence on scale µ (defined as renor-

malization scale), with respect to lowest order αs. The final outcome, adding

loops to lowest order diagram, is given by

αs(µ) =
αs(µ0)

1 + αs(µ0)
2π

β0 ln
µ
µ0

(1.4)

The coefficient β0 is given by

β0 = 11− 2

3
nf (1.5)

where nf represents the number of quark flavors considered in quark loops having

the masses smaller than the scales µ, & µ0 involved in Eq.(1.4). It is noted that

the gluon loop dominates. Further, since nf is at max 6, β0 is positive in the SM,

and therefore αs(µ) in Eq.(1.4) logarithmically decreases with growing energy

scale. It has dramatic consequences for the high-energy behaviors of perturbative

QCD (pQCD) which leads to the phenomena of asymptotic freedom.

Unlike QCD, QED predicts negative β0, which leads to the phenomena

of asymptotic sickness. Fig.(1.3) shows the qualitative picture of the running of

QCD and QED coupling strengths with energy. Further, at low energy around

µ = ΛQCD, denominator vanishes and, consequently αs(µ) → ∞. It is found

that pQCD breaks down at small energies. For example αs(M
2
Z) ∼ 0.12 whereas
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Figure 1.3: Qualitative behaviour of effective coupling strengths for QED (αem)
and QCD (αs).

αs(1 GeV
2) ∼ 0.5(±0.1) and further below αs(0.5 GeV

2) ∼ 0.6 to 1.2. Hence, the

quarks and gluons make transition to the nonperturbative region at µ = ΛQCD

due to confinement and form color-neutral bound states called hadrons. Note

that the experiments of particle physics (detectors) only see hadrons together

with leptons and photons. Hence the above qualitative picture can be formalized

by writing the S matrix for a decay rate. The probability amplitude for a decay

i→ f is

M(i→ f) ∼ ⟨f |Ŝ|i⟩ (1.6)

The final states i and f are hadrons. The operator Ŝ contains the interactions

vertices from the QCD lagrangian. This probability amplitude is an example of

a hadronic matrix element. This amplitude is then parametrized into combina-

tion of non perturbative objects such as form factors. Currently, the only first

principle method available to calculate these non-perturbative objects is lattice

QCD[34, 35]. The other available methods are chiral perturbation theory[36, 37],

Light cone sum rules[38, 39], etc. Further details on form factors are provided in

Section-1.3.

1.1.2 Electroweak Sector

Next we consider the electroweak (EW) sector (described by SU(2)L × U(1)Y

gauge group) of the SM. This sector includes all fermions (leptons and quarks) in
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the SM, and they transform non-trivially under SU(2)L × U(1)Y . The fermions

can be grouped as isospin-doublets (left-handed), ψL, which include all fermions

in the SM, and singlets (right handed), ψR, which include all the fermions except

neutrinos in the SM. The Lagrangian density of the EW sector is

LEW = −1

4
W a
µνW

µν a − 1

4
BµνB

µν +
∑
i

(
Q̄i
Li /DQ

i
L + L̄iLi /DL

i
L + ūiRi /Du

i
R

+d̄iRi /Dd
i
R + ēiRi /De

i
R

)
(1.7)

where,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gϵabcW b

µW
c
ν , (1.8)

Bµν = ∂µBν − ∂νBµ, (1.9)

DµψL = (∂µ + ig
σa
2
W a
µ + ig′Y Bµ)ψL, (1.10)

DµψR = (∂µ + ig′Y Bµ)ψR (1.11)

where the index a represents three gauge fields, σa: Pauli matrices. The fermionic

part of above Lagrangian is invariant under [U(3)]5 symmetry, and contains terms

describing the interactions between the gauge fields and the fermions. Unlike

QCD, there are no fermionic mass terms in the EW sector. Including such terms

would break gauge invariance and thus the SM fermions are massless unless there

is another mechanism at play to finally provide masses to the fermions.

1.1.2.1 Spontaneous Symmetry Breaking

Spontaneous Symmetry Breaking (SSB) is a key concept in the SM that addresses

the absence of massless matter fields observed in nature. The SU(2)L × U(1)Y

symmetry of the SM is spontaneously broken into U(1)Q through the introduc-

tion of a Higgs doublet, represented by the field ϕ(x) = (ϕ+, ϕ0)
T
. This SSB

mechanism gives mass to the W± and Z bosons. The Higgs doublet plays a

crucial role by transforming non-trivially under SU(2)L × U(1)Y with weak hy-

percharge Y = 1/2. The neutral component of the Higgs field develops a Vecuum
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Expectation Value (VEV), v such that

⟨0|ϕ|0⟩ = v/
√
2, v2 =

µ2

λ
(1.12)

which minimizes the Higgs potential of the SM, which is given by

V (|ϕ|2) = µ2ϕ2 + λϕ4. (1.13)

It is characterized by two parameters, µ2 < 0 and λ > 0. Further, the breakdown

SU(2)L × U(1)Y → U(1)Q results into the charge operator: Q = T3 + Y , which

leaves the Higgs VEV invariant, and thus U(1)Q remains unbroken.

Now, let us consider scalar part of EW Lagrangian

LEW = (Dµϕ)
†(Dµϕ)− V (|ϕ|2) (1.14)

where, Dµϕ = (∂µ + ig
σa
2
W a
µ + ig′Y Bµ)ϕ (1.15)

The relations between different couplings can be calculated as

tan θw =
g′

g
, e = g sin θw = g′ cos θw. (1.16)

where the parameter θw is the Weinberg angle. Further, gauge invariant mass

terms for the gauge bosons arise from mixed terms in covariant derivative where

one picks up a VEV from ϕ. It is given by

Dµ

0

v




†

Dµ

0

v

 ∼ m2
WW

+
µ W

−
µ +

1

2
m2
ZZµZ

µ (1.17)

it implies mW = gv
2
, mZ = gv

2 cos θ
, and mγ = 0. The mass of W boson then can

be equated to Fermi constant obtained from muon decay experiment to calculate

numerical value of VEV v, v = 246 GeV . Hence SSB implies relations between

mW , mZ , e, g, g
′ which can be tested experimentally. Let us now consider the

formalism for fermion mass generation.
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1.1.2.2 Yukawa interaction

In the SM, fermions acquire masses through the Yukawa interaction, which in-

volves the coupling of fermions to the Higgs field. The Lagrangian for the Yukawa

interaction is given by:

LY = −Q̄Lϕ
∗Y uuR − Q̄LϕY

ddR − L̄LϕY
eeR + h.c. (1.18)

It contains 3×3 Yukawa matrices, Y u,d,e, whose elements determine the strength

of the coupling between the Higgs field and the respective fermions. Further,

the Yukawa term breaks the [U(3)]5 symmetry of the LEW to [U(1)]4, resulting

into the conservation of accidental symmetries of the SM (which are the Baryon

number and three individual lepton numbers). These Yukawa matrices are di-

agonalized by bi-unitary transformations, which leave one of the matrices non-

diagonal. To diagonalize this term, an additional rotation of either of the quarks

is performed, resulting in the mass eigenstate basis. This mismatch between the

flavor and the mass eigenstates gives rise to the Cabibbo-Kobayashi-Maskawa

(CKM) matrix VCKM [40, 41], describing quark flavor mixing1. In Wolfenstein

parametrization [44], up to order O(λ3), it is given by

VCKM =


1 λ Aλ3(ρ+ iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1− λ2/2


(1.19)

There are other parametrizations as well, such as PDG and others [45]. The basis

where all Yukawa couplings are simultaneously diagonal is called mass eigenstate

basis.

mq =
vyq√
2
, mℓ =

vyℓ√
2

(1.20)

1In the SM, right-handed neutrinos are absent. Hence there is no mixing in the lepton
sector. If one considers the right-handed neutrinos as well, it will give rise to a similar flavor
rotation matrix known as Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [42, 43] for the
leptonic sector.
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We now understand the mechanism by which fermions get masses in the SM,

which also gives rise to the CKM matrix. The CKM matrix plays a crucial role

in processes involving flavor changes, such as weak decays. It represents the basis

of flavor physics. So let us understand the flavor structure of the SM.

1.2 Flavor Physics

We focus only on the quark sector of the flavor physics. Understanding the

dynamics of quarks and gluons at large distances is essential for accurately pre-

dicting weak decays. These decays provide valuable indirect information about

the interactions of quarks at a fundamental level. A challenging aspect of study-

ing weak decays is calculating the hadronic matrix elements. When investigating

weak decays, a fundamental question arises: ”Is there any evidence indicating

that the Standard Model is incomplete and requires the addition of new compo-

nents to explain the experimental data?” This question carries both curiosity and

hope. Unfortunately, to date, the answer remains negative. In this scenario, the

primary objective is to precisely determine the fundamental parameters involved

in these processes.

While the Standard Model encompasses 18 physical parameters2, the

quark flavor structure of the SM contains ten physical parameters (six quark

masses, three mixing angles, and one phase). The aim of experimental flavor

physics is to measure these parameters through various methods, ensuring con-

sistency and the potential for detecting the signature of new physics. It is worth

noting that the presence of a non-zero phase signifies CP violation in the the-

ory, where charge (C) and parity (P ) are discrete symmetries of the field theory

describing the SM.

To be more explicit, flavor physics consists of two types of processes:

flavor-conserving and flavor-changing processes. In the Standard Model, flavor-

conserving processes are induced by neutral currents mediated by the Z boson,

photon (γ), and gluon (g). On the other hand, flavor-changing processes are

2nine fermion masses including quarks and leptons, three couplings, two from the Higgs
sector, and four CKM parameters
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induced by both charged (W±) currents at the tree level and neutral currents at

the loop level. The explicit form of the neutral current (NC) interaction, which

is manifestly flavor diagonal in the Standard Model, is given by

JNCµ =
∑
i

f̄i

[ e

sin2 θw cos θw
Zµ(T3 i −Qi sin

2 θw) + eAµQi

]
fi. (1.21)

It is important to note that the NC interactions induced by the exchange of the

Z boson violate parity (P ) and charge conjugation (C) but conserve their com-

bination, CP , while, electromagnetic interactions conserve all three symmetries

separately: C, P , and CP . On the other hand, the explicit form of the charged

current, which only involves left-handed fermions, is given by

JCCµ =

(
ū c̄ t̄

)
L

γµVCKM


d

s

b


L

(1.22)

The charged current interactions possess a (V −A) structure, which means they

maximally violate parity (P ) and charge conjugation (C), while conserving elec-

tric charge, lepton number, and baryon number separately. Additionally, they vi-

olate CP due to the presence of a non-trivial phase in the CKM matrix (VCKM).

Moreover, the suppression of Flavor Changing Neutral Current (FCNC) tran-

sitions compared to Charged Current (CC) transitions can be understood by

simply looking at the branching ratios [45]

BR(B → Dℓνℓ) = 9.1%, BR(B0 → K0e+e−) = 1.6× 10−7 (1.23)

The FCNC processes are suppressed both by loop factors and CKM elements.

Therefore, they are referred to as rare decays.

Using the unitarity of the CKM matrix, the off-diagonal terms of

VCKMV
†
CKM follow

∑3
i=1 VidV

†
is = 0. There are six such relations, each repre-

senting a triangle in the complex plane known as a Unitarity Triangle (UT). The
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most significant UT is
∑

i VidV
†
ib = 0, as each term is approximately of the same

order O(λ3). This triangle is illustrated in Fig.(1.4). The db triangle represents

Figure 1.4: The unitarity triangle (db).

the unitarity constraints on b→ d transitions, which are FCNC processes in Bd

decays. Examples of such processes include Bd − B̄d mixing and rare B decays

such as Bd → K(∗)(ω)γ. These unitarity relations are tested by measuring the

angles of the triangle through asymmetries. The sides of the triangle can be

determined by studying CC and FCNC B transitions.

Another triangle with sides of similar order is the ut triangle, which can

also be measured in FCNC transitions involving t → u. The analogous FCNC

processes are T − T̄ mixing and decays such as T → D(∗)γ. However, due to the

fast decay top quark, it decays before hadronization [46]. On the other hand,

the b quark, being the second heaviest quark in the SM, first hadronizes into a

b hadron and then undergoes decay. In this thesis, the focus is on B mesons

and therefore, we restrict our reference to these only, though many of the broad

arguments apply to baryons containing a b-quark with obvious modifications.

Let us understand the B system and its decay briefly.

1.3 B decays

Mesons are composite structures of a quark, anti-quark and gluons. B mesons

contain one bottom (b) quark, which is the second heaviest quark observed in

nature, after the top (t) quark. The two extreme mass scales present in the flavor

sector of the SM are the weak scale, defined by the heaviest particles present in

the SM (such as the W , Z, and Higgs bosons, along with the top quark) and
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QCD scale (∼ 1 GeV ), where non-perturbative picture starts dominating. The

charm and the bottom mesons lie between these two extremes. The mass of the

charm meson is not too far from µ ∼ 1 GeV. Therefore, the non-perturbative

physics starts dominating. The mass of the B meson is roughly three times

the mass of the charmed meson and hence reasonably far from the QCD scale.

On the other hand, it is also far from the weak scale. This separation of scales

allows for the perturbative treatment of both weak and short-distance QCD

physics, which play a role in the decay processes of B mesons. While non-

perturbative physics related to the internal structure of hadrons still remains, it

can be separated (using Operator Product Expansion (OPE) [47]) and studied

independently from the perturbative physics. Thus, B physics provides a natural

laboratory for testing many aspects of the SM.

Due to its relatively large mass, the B meson exhibits a wide range of

decay modes, which can be broadly categorized into four types:

1. Pure leptonic decays: In these decays, the final state particles are leptons.

For example, B → µµ.

2. Pure hadronic decays: These decays involve final state composed of

hadrons. Uncertainties in these decays are primarily due to the dynam-

ics of hadronic interactions. An example is B → Kπ.

3. Semi-leptonic decays: In these decays, the final states consist of both

hadrons and leptons. The uncertainties associated with semi-leptonic de-

cays are comparatively lower. Examples include B → Kℓℓ and B →

D(π)ℓν.

4. Radiative decays: These decays involve radiation of hard photon. Exam-

ples include B → K∗γ, B → Xsγ, and B → µµγ.

By studying these various decay modes, we can gain insights into the properties

and interactions of B mesons, providing valuable tests of the Standard Model.

In this thesis, our main focus will be on the semi-leptonic decays of B

mesons. These decays include processes mediated by charged current (e.g., B →

D(π)ℓνℓ), as well as neutral current (e.g., B → K(π)ℓℓ). To calculate physical
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quantities such as decay rates, we employ the weak effective Hamiltonian[48, 49]

as a theoretical tool. The relevant piece of the effective Hamiltonian for charged

current transitions like b→ uℓν (or b→ cℓν) is given by

HCC
eff =

GF√
2
Vu(c)b(ū(c̄)γµPLb)(ν̄γ

µPLℓ). (1.24)

To gain a clearer understanding, let us consider an example of a semi-leptonic

decay, B → πℓνℓ. The scattering amplitude for this process is given by

M(B → πℓνℓ) =
GF√
2
Vub
(
ℓ̄Γµνℓ

)
⟨π|ūΓµb|B⟩ (1.25)

where Γµ = γµ(1 − γ5). Notably, only the vector current contributes to the

hadronic matrix element, while the axial current vanishes due to the parity in-

variance of QCD. Thus, the hadronic matrix element can be written as

⟨π|ūΓµb|B⟩ = ⟨π|ūγµb|B⟩ (1.26)

and can be decomposed into two independent kinematical structures multiplied

by two scalar invariant functions of q2 known as form factors:

⟨π(p2)|ūγµb|B(p1)⟩ = (p1 + p2)µf
+(q2) + (p1 − p2)µf

−(q2). (1.27)

Where f+ and f− are scalar quantities representing the form factors (further

details are discussed in Chapter-4). The kinematic region for the decay is char-

acterized by the momentum transfer squared, q2, which varies within the range:

m2
ℓ ≤ q2 ≤ (mB −mπ)

2 (1.28)

Up until now, we have discussed semi-leptonic decays that occur through flavor-

changing weak interactions involving virtual W boson exchange.

However, in addition to these decays, there is another type of semi-

leptonic decay, which is induced by flavor-changing neutral currents in the SM.

These FCNC decays originated from short-distance loop diagrams. A prominent
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example of this is the rare decay B → Kℓℓ which proceeds via b → sℓℓ quark

level process. The effective Hamiltonian for neutral current-induced processes

(for example, b→ s transition) is given by

Heff =
GF√
2
V ∗
tsVtb

10∑
i=1

Ci(µ)Oi(µ) (1.29)

where GF is the Fermi constant. V ∗
ts and Vtb are the CKM elements corresponding

to the used operator, Ci are the Wilson coefficients that can be determined using

perturbation theory, Oi are the operators, and µ is the scale that separates long-

distance physics from short-distance physics. Similar to the B → D(π)ℓνℓ decay

mode, the matrix elements of these operators can be parameterized in terms of

non-perturbative parameters such as form factors using Lorentz decomposition,

the state of the system, and the relevant operators (for the explicit structure

of the operators see Chapter-2, and for the form factor parametrization, see

Chapter-3).

Furthermore, it is important to note that the masses of heavy quarks,

such asmb andmc, are significantly larger than the non-perturbative scale ΛQCD,

and they follow the hierarchy mb ≫ mc ≫ ΛQCD. To understand the implica-

tions of these mass inequalities, it is advantageous to separate the heavy quarks

from the light quarks and gluons in the QCD Lagrangian. This separation is

achieved through the following expression:

LQCD = −1

4
Ga
µνG

µν a + Lu,d,s + Q̄(i /D −mQ)Q (1.30)

= Llight + Q̄(i /D −mQ)Q (1.31)

This formulation is valid in the limit asmc, mb approach infinity. Here, the quark

field Q represents either the b or c quark. The charm quark c can be called

heavy only with some reservations. Hence, when discussing the heavy quark

theory, the more appropriate one will be b quark [50]. Therefore, the heaviness

of the Q quark proves to be a useful expansion parameter for the description

for B meson. The techniques employed to calculate physical observables, such

as decay rates for inclusive decay modes, involve the non-relativistic expansion
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and OPE, together referred to as the Heavy Quark Expansion (HQE) [51, 52].

Further details regarding the HQE and its applications are provided in Chapter-2

and Chapter-5 respectively.

1.4 Effective Field Theories (EFTs)

Effective field theory (EFT) is a powerful tool in physics that simplifies the

complexity of a problem by focusing only on the DOF that are relevant to a

particular scale. This approach is based on the idea that considering only the

relevant DOF makes a problem more manageable. In QFT, this means that

we only include operators that are responsible for experimental observables and

describe the relevant light DOF. As a result, we can eliminate the degrees of

freedom that are not relevant to the problem we are studying, specifically heavy

particles with masses that are much larger than the energy scale associated with

the problem. This allows us to focus solely on the relevant degrees of freedom,

which makes the problem easier to handle (see [53–56]).

The heavy particles are said to be integrated out such that their effects

are still present through coupling constants and other parameters that change

with scale. By adding more operators to the theory, we can improve its accuracy,

but these operators must be guided by symmetry principles. The structure and

coefficients of these operators can provide valuable information about the heavy

particles that have been integrated out, as they can be fitted with experimental

data. This is a useful feature of effective field theories that allows us to make

accurate predictions without necessarily needing to know the details of the heavy

particles that have been integrated out.

Further, EFTs can be categorized into three types (borrowed from Ref.

[54]) based on the DOF included. The first kind involves only the fields that

contribute at the energy and momentum scale of the interaction. An example for

this is the beta decay which can be explained without mentioning the W-boson,

which is a heavy particle with a mass much larger than the energy scale of the

beta decay process. The second kind includes fields that no longer participate

in the dynamics but are still part of the Fock space. These fields are treated as



18 Chapter 1. Introduction

infinitely heavy and are stationary while lighter DOF bounce off them in elastic

collisions. An example of this is the system of heavy mesons, which includes a

heavy quark and all light DOF. In this case, the heavy quark acts as the source

of a chromomagnetic field, and its recoil can be ignored at leading order and

incorporated into subleading terms. The third type of EFT applies the second

kind of EFT approach selectively to the relevant components of the field that

can generate substantial momentum. In doing so, the momentum say in the z-

direction is integrated out, retaining only the components that produce particle

motion in the x and y directions. This approach has been effectively applied in

various situations, including the Soft Collinear Effective Theory (SCET).

In this thesis, we have explored the first two kinds of EFTs in various

phenomenological examples. The detailed methods are provided in Chapter 2.

1.5 Era of Precision

The physical parameters of Flavor Physics within the SM are known. However,

it is crucial to recognize the theoretical uncertainties involved, as highlighted in

the Introduction of this chapter. Despite our anticipation of discovering NP in

the realm of flavor physics, particularly in B physics, no evidence of NP has been

found so far. Nevertheless, there have been observations of certain discrepancies

in the data. One example is the violation of lepton flavor universality in the

charged current-induced decays (RD(∗)) with a deviation of approximately 3σ

from the SM prediction (for details on B physics anomalies, see[57, 58]). Fur-

thermore, inconsistencies exist in the measured values of CKM elements and the

angles of the unitarity triangle, including the differences between exclusive and

inclusive measurements of Vub and Vcb.

The most challenging aspect of some of these measurements lies in the

calculation of hadronic matrix elements for the relevant processes. The most

reliable methods available to compute the non-perturbative parameters, such as

form factors and decay constants, in the B system are Lattice QCD and Light

Cone Sum Rules. While there may be discrepancies, it is crucial to ensure that

all other sources of uncertainties have been taken into account. Specifically, one
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needs to consider the QED corrections due to soft photons.

In general, QED corrections can impact decay rate or other observables

due to two factors. The first is the soft factor, which includes terms like ln kmax,

where kmax represents the maximum energy of the soft photon. The second is

the hard collinear factor, which involves terms like lnmf , where mf denotes the

mass of the charged particle emitting the soft photon. Naively, these factors can

lead to both positive and negative modifications of the decay rate. Therefore, it

is essential to calculate the decay rate, considering the inclusion of soft photons,

before drawing any conclusions. More detailed information on the behaviour of

the soft photon and the cancellation mechanism for Infrared (IR) divergences, is

provided in Chapter-2.

Next, in the context of inclusiveB decays, precise predictions for observ-

able quantities require a first-principle calculation of non-perturbative parame-

ters. However, to date, there is no available first-principle method to calculate

these parameters. Therefore, it becomes necessary to compare different predic-

tions for these parameters in order to assess their consistency. Additionally, it is

desirable to explore alternative approaches that could simplify the calculation of

these parameters.

One approach to achieve this goal is to investigate a process that is

fundamentally different from the process under consideration but shares the same

non-perturbative parameters. This can be accomplished by studying processes

involving hard photons. The inclusion of a hard photon introduces a completely

new process and also provides the flexibility to explore various asymmetries.

We have used this approach to obtain the non-perturbative parameters λ1 and

λ2 involved in process B → Xuℓνℓ. The detailed information are provided in

Chapter-5.

Throughout this thesis, our aim will be to investigate the effects of soft

and hard photons and their distinct phenomenological implications on various

semi-leptonic B decays.
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1.6 Organisation of thesis

The organization of this thesis is as follows: In Chapter-2, we provide a detailed

discussion on the concept of infrared divergences in QED and an account of

effective field theories. We also explore the tools utilized in various problems.

In Chapter-3, we examine the impact of soft photons on the branching ratio of

B → Kℓℓ and the Lepton Flavor Universality (LFU) ratio RK . Chapter-4 in-

troduces a new observable, RV = |Vub|/|Vcb|, which demonstrates insensitivity to

theoretical uncertainties such as form factors and QED effects. We also observe

that despite discrepancies between inclusive and exclusive measurements of indi-

vidual CKM elements, the formed ratio, RV , is consistent within a 1σ range. It

provides more stringent constraints on the CKM elements. Chapter-5 delves into

a new, simple yet efficient, approach for computing non-perturbative parameters

in inclusive semileptonic charged current-induced B decays. Finally, in Chapter-

6, we conclude our findings and outline future research directions. Additionally,

this thesis includes three appendices. In Appendix-A, we collect all the useful

identities and definitions. In Appendix-B, we provide all the useful integrals in-

volved in the QED corrections. The Appendix-C covers the kinematics of three

and four body decays.



Chapter 2

Tools and techniques: Infrared

divergences and Effective Field

Theories (EFTs)

In this chapter, we will discuss the important tools and techniques used in this

thesis in calculating physical observables. The discussion will begin by consid-

ering infrared divergences due to soft photons that arise in the calculation of

scattering amplitudes and cross-sections, along with their physical interpreta-

tion. The concept of Effective Field Theories (EFTs) will then be introduced

as a powerful tool for making predictions at different energy scales. This will

include an exploration of the basic principles of EFTs and their application in

constructing low-energy effective Lagrangians. Finally, these concepts will be

applied to various decay rates of B mesons (see Chapters- 3-5).

2.1 Infrared Divergences

In reality, it is not possible to achieve the ideal conditions of infinite system

size and perfect measurement instruments. These limitations pose challenges

while using perturbation theory to define observables in particle decays, as they

can result in InfraRed (IR) divergences. These divergences can lead to issues in

perturbative calculations. IR-divergences are generally associated with massless

21
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particles, and there are two known mechanisms for enforcing massless particles.

The first is a spontaneously broken global symmetry that gives rise to massless

Goldstone bosons. The second is the gauge symmetry that protects the mass

of gauge bosons. However, in well-defined observables such as cross-sections or

decay rates, these IR divergences can be canceled out [59–61]. These cancella-

tion theorems are based on the first principles, such as unitarity. In the Flavor

Physics experiments, QED radiation is usually considered as background, and,

therefore can be removed using the Monte-Carlo tools like PHOTOS [62, 63]

or PHOTONS++ in SHERPA [64]. QED is also important in other contexts,

like initial state radiation in e+e− colliders [65]. Like QED, QCD also exhibits

IR divergences due to the emission of massless particles, the gluons, and it also

requires a cancellation mechanism to ensure that physical observables remain

unaffected by these divergences (for further details, see [33, 60, 61, 66]). While

we won’t go into the details, it is important to note that QCD is different from

QED because it has a mass scale parameter for observable hadronic spectrum

[33].

2.1.1 Understanding IR

To understand the concept of IR divergences better, we consider a quantity, say

M, calculated in perturbation theory using renormalization and effective field

theory. The perturbative coefficients in M have a scale dependence that is con-

trolled by Renormalization Group Equation (RGE). This ensures that physical

observables are independent of the artificially introduced boundary set by µ. The

general equation for this observable can be written as:

M
(Q
µ
, α(µ)

)
= M0

[
1 +

α(µ)

π
C1

(Q
µ

)
+
(α(µ)

π

)2
C2

(Q
µ

)
+ ...

]
(2.1)

Here, the scale dependence is denoted by the ratio of the momentum transfer Q

to the arbitrary scale µ, α(µ) is the running coupling constant, Ck

(
Q
µ

)
are the

coefficients calculated perturbatively and M0 is evaluated at tree level. RGE

ensures that the physical observables remain finite, preventing the occurrence of

UV divergences.
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Although renormalization is a powerful technique to handle infinities in

QFTs, it is not enough to remove the divergences completely [66, 67]. Particu-

larly, for theories with massless particles, the perturbative coefficients Ck(
Q
µ
), in

Eq.(2.1) describing a physical observable M may still exhibit integrals that di-

verge at large distances in coordinate space or low energies in momentum space.

This problem is known as the infrared catastrophe [68–70], and also arises when

calculating the probability of the emission of massless particles during a hard

scattering process. Its signature can be seen long before the development of

QFT in the analysis of electron scattering in a Coulomb field with additional

photon radiation [68, 71]. It was found that the frequency spectrum of emit-

ted photons exhibits a behavior described by dν/ν and is non-integrable at low

frequencies [72, 73].

In Ref.[59], Bloch and Nordsieck proposed a new approximation scheme,

now known as the eikonal approximation. The applicability of this approach is

limited only to the systems where the energy of the photon is much smaller com-

pared to the other energy scales involved, like the electron’s mass, momentum

transfer, etc. Additionally, it is assumed that the photon’s wavelength is signif-

icantly larger compared to the classical radius of the electron, i.e., Re = q2e/me.

Consequently, they proposed that perturbation theory, in powers of αem ∝ e2,

is no longer valid in the limit of soft photons and must be abandoned. Fur-

thermore, they showed that by employing this semi-classical approximation, i.e.,

the eikonal approximation, the result obtained for the average radiated energy

is the same as one would expect classically. However, this outcome is contingent

upon the emission of an infinite number of soft (or low-energy) photons. The

two complementary perspectives (following the approach of [66]) are considered

to address the underlying issues properly.

1. Well-defined observables

2. Finiteness of S-matrix

Let us briefly understand these two complementary perspectives one by one.
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Well-defined Observables

In a theory with massless particles, the first possible explanation for the prob-

lem of IR divergences is related to the true definition of an observable. In such

theories, scattering processes can yield particles with infinitesimal energy and

angular separation. However, all the physical detectors possess finite energy and

angular resolutions. It becomes then essential to incorporate the effects that

lie below the threshold of the detector to precisely calculate the observables,

such as cross-sections or decay rates. Theoretically, this is accomplished by em-

ploying Quantum Mechanics (QM), which requires the sum over all unobserved

configurations to account for the low energy and small angular resolution effects.

Finally, one expects finite results for the physical observable, which, therefore,

can be considered to be a measurable quantity.

In QCD, lnmq are typically incorporated into hadronic quantities like

distribution amplitudes, parton distribution functions, or jets through factoriza-

tion theorems. If it is not possible to absorb these terms, it indicates that the

variable is not infrared-safe for details on the IR problem of QCD, see [33, 66,

74–76]). While in QED, the question: What observables are well-defined for zero

lepton masses? led to the development of the Kinoshita-Lee-Nauenberg (KLN)

theorem [60, 61] (discussed later). This theorem represents the most inclusive

principle regarding the cancellation of infrared (IR) divergences.

Finiteness of S-matrix

The second perspective on the IR problem is that the asymptotic states have

been misidentified in constructing the quantum theory. In most S-matrix formu-

lations, it is often assumed that one can adiabatically turn off the interactions at

the large times. However, for theories involving massless particles, and infinite-

range interactions, the conventional assumption is not realistic. For example,

even in the asymptotic regime, high-energy electrons continue to emit and ab-

sorb photons. Choosing free Hamiltonian eigenstates as asymptotic states is

insufficient since they do not accurately represent the true physical states. Fur-

thermore, the traditional separation of the Hamiltonian into the free term and
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the interaction term is no longer appropriate as the interactions continue to exist

for early as well as late times. It is necessary to include asymptotic interactions as

an integral part of the Hamiltonian that will be treated exactly or diagonalized.

By acknowledging the importance of asymptotic interactions, choosing appro-

priate asymptotic states can improve the computation of physical observables,

allowing for well-defined scattering amplitudes even in the presence of massless

particles. This improvement can, in turn, rescue the S-matrix construction (this

idea is discussed in [77–79] in greater detail).

2.1.2 Physical implications: first perspective

To understand the physical implications of the first perspective on IR divergences,

we now examine the photon emission from one of the external fermion legs (a

similar example can be seen in [32, 33, 73]), as shown in Figure (2.1). The QED

Figure 2.1: Representative diagram for a single photon emission

Feynman rules provide an expression of the form:

Mγ = Qℓūγ
µ

/ℓ + /k +mℓ

(ℓ+ k)2 −m2
ℓ + iη

M0, (2.2)

where M0 accounts for the remaining part of the scattering process, including

possible virtual corrections. If the photon is emitted from the final state satisfying

k2 = 0 and ℓ2 = m2
ℓ , the denominator of the fermion propagator is simplified as

. . .

2ℓ.k + iη = EℓEk(1− β cos θℓk) + iη. (2.3)
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Here β = |ℓ|/Eℓ, Eℓ =
√

|ℓ|2 +m2
ℓ , Ek = |k|, and θℓk is the angle between the

charged fermion and photon. While the η prescription prevents a singularity, we

still anticipate two sources of enhancement:

• The soft photon limit, i.e., Ek → 0.

• The collinear limit, i.e. mℓ/Eℓ → 0 and θℓk → 0.

These enhancements are known as soft and collinear divergences, respectively.

In d = 4 space-time dimensions, they lead to logarithmic singularities of the

form lnmγ (mγ is the fictitious mass provided to the photon) and lnmℓ, respec-

tively. In certain regions of phase space, these divergences combine and lead to

soft-collinear divergences of the form lnmγ lnmℓ. For a finite lepton mass, the

collinear logarithm lnmℓ is a physical effect. It is referred to as a hard-collinear

log. Of course, physical observables have to be free of divergences. This can-

cellation of divergences is expected to be a consequence of some deep physical

principles which separate observable quantities from non-observable ones. There-

fore, it is important to understand and study the origin of these divergences and

the mechanism behind their cancellation. Now, the question one may ask is: Do

these enhancements, the soft and collinear, always turn into actual divergences?

It depends upon the observable computed, and the theory considered. The rea-

son behind these enhancements is clear: the fermion propagator approaches the

on-shell, i.e., (ℓ + k)2 = m2
ℓ , in limits (both soft and collinear) under consider-

ation. Hence, in our theory, The internal fermion carrying momentum ℓ + k is

treated to be a genuine physical state and can propagate over arbitrary distances

and durations.

The IR divergences are fundamentally related to the definition of a par-

ticle and the measurement process. It is difficult to distinguish a single electron

from an electron that emits a soft photon or a highly relativistic electron that

emits a photon at an infinitesimally small angle. The key to resolving this issue

lies in a careful assessment of what can be measured. It is related to the idea

of infinite space and infinite detector resolution as discussed in Section- 2.1. To

understand it in a better way, we may consider a situation where particles emit

low-energy photons or photons that travel in nearly the same direction as the
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emitting particle. The energy loss at the emission point is significantly reduced.

As a result, these types of photon emissions can occur over large distances and are

difficult to suppress. These phenomena i.e., the soft and the collinear emissions

of the photon, lead to what is commonly called the long-distance effects. If we

consider only the true IR divergences (only due to the soft emissions), excluding

collinear divergences, they can be effectively regulated by introducing an energy

scale, mγ.

Till this point, we have talked only about the real photon emission. We

also have to consider the Feynman diagram, where the emitted photon forms a

loop attaching to another charged particle. It is shown in Fig.(2.2). In this case,

Figure 2.2: Virtual correction due to a single photon

the denominator of the fermion propagator will have an additional k2 compared

to real emission. However, this contribution becomes insignificant compared to

ℓ · k when all the components of the photon momentum get smaller at the same

rate.To evaluate the contributions of loop integral and photon propagator, power

counting tools are required. However, even in the case of virtual corrections,

the emissions of soft and collinear particles can become significantly enhanced at

large distances and times. This enhancement exhibits the same divergence as ob-

served in real emissions. Both virtual corrections and real emissions are required

to account for the finite energy due to the soft photons and angle resolutions due

to the collinear photons. The incoherent addition of virtual corrections and real

emission is performed to construct a properly defined observable, where these

divergences cancel against each other.

In summary, the work of Block-Nordsiech puts light on the issue of the

infra-red divergences and highlights the mistakes one was making. The presence

of massless particles in a theory results in long-range interactions, leading to

unsuppressed emissions at late and early times. The traditional perturbation
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theory, which separates virtual corrections from undetected real emissions, be-

comes inadequate in such circumstances, rendering individual matrix elements

ill-defined. The solution involves introducing an infrared regulator in the form

of a particle mass. This regulator will eventually cancel in the physically defined

observable, such as decay rates.

It is apparent that the cancellation mechanism for soft divergences given

by [59] is effective only for the Abelian theories and is insufficient for QCD. In

QCD, summation over degenerate initial states is necessary to achieve a com-

plete cancellation of soft divergences. Further, non-Abelian theories face a more

significant challenge compared to Abelian theories when it comes to collinear

divergences. In Abelian theories like QED, collinear divergences can be regu-

lated by the masses of matter fields. However, in non-Abelian theories such

as QCD, collinear divergences persist even when matter fields have non-zero

masses. This is because interactions involving strictly massless particles, such as

the three-gluon vertex in QCD, unavoidably lead to collinear difficulties. Hence,

it is evident that a straightforward cancellation mechanism like the one in the

Bloch-Nordsieck analysis can not work in general. This is because the emission of

the collinear particle from the initial state changes the kinematics of the process

due to the presence of hard collinear logs, whereas, the virtual corrections do

not modify the kinematics. Thus, the cancellation of divergences is inevitably

disturbed. To see this properly, let us consider the case of electron scattering off

a heavy particle using photon exchange.

2.1.3 Example: e+e− → hadrons at high energy

In this section, we consider an example of an electron scattering off a heavy

particle via photon exchange to show the cancellation between the IR divergences

coming from the real photon emissions and the virtual corrections. Initially, we

examine this cancellation at the lowest order in αem and then generalize it to all

orders. Lastly, we demonstrate the exponentiation of the lowest-order outcome.

The heavy particle in this scenario acts as a source for an external photon field.

The bremsstrahlung diagrams that contribute to the real emission of the
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photon are shown in Fig.(2.3), while virtual correction diagrams contributing to

(a) (b)

Figure 2.3: Real emissions

this process are shown in Fig.(2.4). First, focusing on the real emission where an

(a) (b)

(c)

Figure 2.4: Virtual corrections: (a) Vertex correction, (b) self-energy corrections
to one fermion, and (c) self-energy corrections to another fermion

electron scatters off from a heavy particle causing its four-momentum to change

from ℓ to ℓ′ and emits a photon with momentum k. One can write the matrix

element as a sum of the Feynman diagrams shown in Fig.(2.3). Here, we will

assume that kµ is much smaller than qµ = (ℓ′−ℓ)µ. While expanding in powers of

k, i.e. the momentum of the soft photon, and considering only the leading term,

the matrix element simplifies significantly. At leading power in k, the matrix

element is given by

Mγ = Qℓ

(ℓ′.ϵ(k)
ℓ′.k

− ℓ.ϵ(k)

ℓ.k

)
M0, (2.4)

where Qℓ(= −e) is the electron charge.
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The leading order term for the radiative probability amplitude is gauge-

invariant. This property is independent of the spin of the emitting particle. It

can be seen that the radiative matrix element is singular for small k. Therefore,

the soft approximation for the total radiative cross-section can be formally con-

structed by factorizing the phase space at leading power in k and summing over

polarizations. The cross-section corresponding to the emission of a single soft

photon as a real particle is

σreal = σ0Ir
(m2

ℓ

q2
,
µ2

E2
k

)
. (2.5)

Here, σ0 is the cross-section for the non-radiative process, and Ir, the soft factor,

is defined as

Ir
(m2

ℓ

q2
,
µ2

E2
k

)
= −Q2

ℓ

∫
d3k

(2π)32Ek

( ℓ′µ
ℓ′.k

− ℓµ

ℓ.k

)( ℓ′µ
ℓ′.k

− ℓµ
ℓ.k

)
. (2.6)

The logarithmic nature of the divergence confirms our previous assump-

tion of retaining only the leading order in the soft expansion. Any higher-order

term would contribute to finite corrections. Additionally, we perform an inte-

gration over photon energy up to a maximum cutoff kmax
1, which represents the

maximum energy of the soft photon. Photons having energy, |k| < kmax, could

not be detected by the detector due to its resolution. Therefore, their effects must

be included in the calculation. The integral, in the dimensional regularization

(with D = 4− 2ϵ, and ϵ→ 0), is obtained as

Ir
(m2

ℓ

q2
,
µ2

E2
k

)
= −αem

π

1

ϵ

(4πµ2

k2max

)ϵ[(1− 2m2
ℓ/q

2

β

)
ln
(β + 1

β − 1

)
− 1
]
+O(ϵ0) (2.7)

where

β =
√

1− 4m2
ℓ/q

2 > 1. (2.8)

In the limit of large momentum transfer, −q2 → ∞, Eq.(2.7) can be simplified

1It is to be noted that Ek = kmax
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as

Ir
(m2

ℓ

q2
,
µ2

E2
k

)
=
αem
π

[
− 1

ϵ
ln
(−q2
m2
ℓ

)
+ ln

( k2max
4πµ2

)
ln
(−q2
m2
ℓ

)]
. (2.9)

The second term in the expression exhibits a Sudakov double-logarithmic en-

hancement. This enhancement arises from two logarithms: one logarithm origi-

nates from the soft scale represented by the resolution scale kmax, and the other

logarithm arises from the collinear scale, which becomes divergent in the limit

mℓ → 0. Now, we will see that these soft poles in ϵ will get canceled with the

divergences appearing in the virtual correction.

Virtual corrections pose a more complex challenge due to the presence

of ultraviolet divergences that necessitate renormalization. It is imperative to

ensure that the counter-terms used in the renormalization process eliminate any

residual infrared divergences. One approach to achieve this is through the uti-

lization of a minimal scheme. In QED, it is observed that both Zψ and Z1, i.e.,

the renormalization constant for the electron field and the vertex, respectively,

contain IR divergences in the mass-shell scheme. However, it is important to

note that these divergences cancel out in the scattering amplitude. This cancel-

lation is a consequence of the QED Ward identity. Now, we direct our attention

to the vertex correction diagrams depicted in Figure (2.4). This diagram will

give us the only remaining contribution, which is infrared-singular. A straight-

forward power-counting analysis reveals that only terms in which the numerator

does not contain any powers of the photon momentum can give rise to infrared

divergences. These divergences are logarithmic in nature. The mathematical

expression for the virtual correction part is

asoft = −e3µ3ϵ

∫
dDk

(2π)D
ū(ℓ′)γα(/ℓ′ +m)γµ(/ℓ +m)γαu(ℓ)

(k2 + iη)(k2 − 2ℓ′.k + iη)(k2 − 2ℓ.k + iη)
, (2.10)

where D is the space-time dimension. To generalize the calculation to higher

orders more easily, it is more informative to follow the same steps that were

taken for real emission diagrams on the integrand of the integral in Eq.(2.6),

instead of directly computing it. This involves neglecting k2 in the propagator
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of fermions and also employing the Dirac equation to simplify the numerator,

resulting in a single infrared pole in ϵ which could lead to a second infrared

catastrophe. Since the lowest-order matrix element factorizes, we can express it

as follows.

asoft = ie2µ2ϵM0

∫
dDk

(2π)D
ℓ.ℓ′

(k2 + iη)(−ℓ′.k + iη)(−ℓ.k + iη)
(2.11)

It is worth noting that the transition from Eq.(2.10) to Eq.(2.11) seems to have

introduced a new challenge: New divergences in the UV region, the region where

our approximation fails, seem to appear in the integral of Eq.(2.11). It is im-

portant to mention here that these UV divergences do not appear in the original

QED calculations, but instead, they are the characteristic divergences appearing

in the effective theory at low energy, which describes the IR sector of the QED.

We can introduce a UV regulator to deal with this singularity and concentrate

on the infrared pole.

In the on-shell scheme, the self-energy counterterm associated with the

Feynman diagrams shown in Fig.(2.4 (b)) and (2.4 (c)) is designed in such a way

that the combined effect of the diagrams and the counterterm results in zero

contribution on-shell. Hence, these graphs do not play any role in our calculation.

On the other hand, the vertex counterterm is determined by ensuring that the

renormalized vertex correction vanishes at q2 = 0, which corresponds to ℓ′ = ℓ in

our case. This condition can be imposed in the soft approximation by expressing

the vertex correction as:

(a+ aCT)soft = M0(
−iQ2

ℓµ
2ϵ

2
)

∫
dDk

(2π)D

( ℓ′µ

ℓ′.k + iη
− ℓµ

ℓ.k + iη

)2
. . . .

1

k2 + iη
(2.12)

= M0Iv.
(m2

ℓ

q2
,
µ2

q2

)
(2.13)

In the parenthesis, the terms depending on m2
ℓ provide the counterterms to the

self-energy corrections, whereas the cross term reflecting vertex corrections can

be simplified in terms of Eq.(2.11). It is to be noted that the above expression
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is gauge invariant, and it vanishes if ℓ′ = ℓ, which reflects the cancellation of the

self-energy and the vertex renormalization.

To directly compare Eq.(2.13) with Eq.(2.6), we observe that the real

part of the integral Iv is only significant when the photon is on its mass shell, i.e.,

k2 = 0. This can be deduced by examining the poles in the complex plane of Ek:

The two poles are associated with the fermions lines placed above and below the

real axis, respectively. The other two poles are associated with photon propaga-

tors placed below the real axis. Consequently, we can evaluate the integral by

closing the contour in the lower half-plane and selecting the residue of the photon

pole, which corresponds to the photon being on-shell. The resulting expression

now precisely matches the form of Eq.(2.9), except for two differences. Firstly,

there is an overall factor of −1/2 that needs to be accounted for. Secondly, the

threshold energy Ek in Eq.(2.9) should be replaced with an ultraviolet cutoff,√
−q2.

Iv
(m2

ℓ

q2
,
µ2

q2

)
= −1

2
Ir
(m2

ℓ

q2
,
µ2

−q2
)
. (2.14)

The physical cross-section is calculated by combining two contributions. First,

we consider the leading-order probability of emitting a soft photon that goes

undetected, which is given by the real-emission cross-section in Eq.(2.5). Second,

we include the virtual correction to the scattering process. The correction term

is directly proportional to the real part of Iv, multiplied by twice the tree-level

cross-section. The resulting expression for the observable, i.e., cross-section, is

σtot = σ0

[
1 + Ir

(m2
ℓ

q2
,
µ2

E2
k

)
+ 2Iv

(m2
ℓ

q2
,
µ2

q2

)]
(2.15)

Upon utilizing Eq.(2.14), it becomes evident that all singular terms cancel out, as

we have previously indicated, resulting in finite logarithmic terms. For−q2 → ∞,

the outcome is

σtot ∼ σ0

[
1− α

π
ln
( −q2

k2max

)
ln
(−q2
m2
ℓ

)
+O(α2)

]
(2.16)

The cancellation of all singular terms is evident from this equation. It leaves only
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finite logarithms. This expression exhibits a combination of a soft logarithm and

a collinear logarithm. The cancellation we observed is due to the fact that the di-

vergence in the loop integral arises exclusively from the on-shell configurations of

the virtual photon. This is consistent with the qualitative arguments presented

in Section-2.1.1, which identify infrared divergences as long-range phenomena.

Figure 2.5: Real emission of n soft photons in any possible order

Figure 2.6: Virtual corrections due to n soft photons

The use of power counting techniques gives us an initial understanding of two

crucial aspects of infrared enhancements, namely factorization, and exponentia-

tion. To understand this, let us consider the emission of n photons with momenta

{k1, ..., kn} and polarization vectors {ϵ1, ..., ϵn}. These photons are connected to

both outgoing and incoming electron lines carrying momentum ℓ′ and ℓ respec-

tively, as shown in Fig.(2.5) (we have followed [31, 32]). We observe that each

photon contributes an eikonal factor similar to Eq.(2.4). Consequently, the total

amplitude for emisssion of n soft photons, connected in any possible order to the

initial or final charged particle is obtained by summing up all such diagrams,
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and is given by:

M(n)
γ = Qn

ℓΠ
n
i=1

( ℓ′.ϵi
ℓ′.ki

− ℓ.ϵi
ℓ.ki

)
M0. (2.17)

Based on the analysis above, we can infer that soft divergences occur in real pho-

ton emission processes. One can notice that in the leading of photon momentum,

the eikonal current or soft factor is factored out from the rest of the matrix el-

ement. This factorization aligns with our understanding of soft divergences as

manifestations of long-distance phenomena. Further, due to the indistinguisha-

bility of n identical bosons, it is necessary to include a factor of 1/n! in the

phase-space integral. After summing over polarizations, the expression can be

simplified.

σ
(n)
real = σ0

∑
n

1

n!

[
Ir

(m2

q2
,
µ2

k2max

)]n
. (2.18)

The series in Eq.(2.18) can be summed over the number of soft photons n, which

leads to the exponentiation of the single-photon result, i.e.,

σ
(n)
real = σ0 exp

[
Ir

(m2

q2
,
µ2

E2
k

)]
. (2.19)

It is to be noted that the steps similar to the one shown above, which

lead to this expression, can be applied to the calculations of virtual corrections.

Still, the combinatorial factors need to be considered carefully. Soft divergences

are generated only by virtual photons that attach to external lines. For ver-

tex corrections, i.e., where photons connect the two-electron lines, the eikonal

identity in Eq.(2.13) can be utilized. This involves considering n such identity

contributing to the n-photon vertex correction. In addition, it also considers the

additional symmetry factor of 1/n! since interchanging the virtual photons with

each other does not change the diagram. Lastly, the sum over n is performed.

Self-energy corrections for every fermion line can be renormalized to vanish on-

shell, and the eikonal factor present in the vertex corrections takes the form of

Eq.(2.13) at q2 = 0 with the appropriate symmetry factor of 1/2. Therefore, in
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conclusion, one can say that the virtual corrections also exponentiate, i.e.,

σ
(n)
vir = σ0 exp

[
2Iv

(m2
ℓ

q2
,
µ2

q2

)]
(2.20)

By combining the real and virtual corrections, soft singularities have been can-

celed out. Further, one can note that this cancellation is replicated in all orders

in perturbation theory. Hence, the resulting expression is:

σtot = σ0 exp
[
Ir

(m2
ℓ

q2
,
µ2

E2
k

)
+ 2Iv

(m2
ℓ

q2
,
µ2

q2

)]
(2.21)

∼ σ0

[
1− α

π
ln
( −q2

k2max

)
ln
(−q2
m2
ℓ

)
+O(α2)

]
. (2.22)

Where the total cross-section, after combining real emissions and virtual cor-

rections and summing these perturbative expansions, is found to be finite and

well-behaved. Moreover, this cross-section exhibits the Sudakov behavior and

vanishes exponentially at large momentum transfer, q2, or for small threshold

energy kmax and fermion mass mℓ.

2.1.4 Physical implications: second perspective

While the cancellation of soft divergences in perturbation theory is observed

when summing transition rates over physically indistinguishable final states, the

general applicability of this mechanism remains uncertain and may be consid-

ered fortuitous. The Bloch-Nordsieck theorem, which explains this cancellation

in QED, is not applicable to non-abelian gauge theories [80–83], and therefore, a

more comprehensive understanding of the cancellation and its underlying physi-

cal mechanism is essential.

The KLN theorem provides a framework for the cancellation of infrared

singularities in theories with massless particles [60, 61, 84, 85]. It reveals that

these singularities arise from degenerate quantum states with identical energy.

However, the remarkable property is that these singularities cancel out when

transition decay rates are summed over the sets of initial and final degenerate
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quantum states. The schematic form of KLN theorem is given by

∑
i,f∈[Ek−mγ ,Ek+mγ ]

|⟨f |S|i⟩|2 = finite (2.23)

which relies on unitarity. Its proof involves the use of time-ordered perturbation

theory (for general proof see [66]).

Further, this theorem provides a practical solution to the infrared prob-

lem by enabling the construction of observable quantities with finite predictions,

order by order, in perturbation theory. In theories with massless particles, the

presence of infrared singularities arises due to the slow decrease of emission and

absorption probabilities at the distant past or the future. However, it does

not coincide with the basic assumption in the construction of the S-matrix,

which assumes that interactions become negligible at the very large distances

and times. To address this, the identification of long-distance interactions and

their reassignment to the free Hamiltonian, H0 allows for an improved descrip-

tion of asymptotic states. In general, the asymptotic states are made up of the

non-ineteracting particle states which is found to be inadequate to describe the

state for massless particles at distant past or future.

This approach provides a more precise characterization of asymptotic

states by considering them as eigenstates of the proper asymptotic Hamiltonian

rather than the free Hamiltonian, H0. These eigenstates, known as coherent

states, defines the S-matrix in a consistent way in theories involving the massless

particles. This concept was effectively explored in QED, with initial investiga-

tions found in Refs. [70, 77, 78], and a significant progress was made by Kulish

and Faddeev [79]. In their seminal paper, the interaction Hamiltotian is defined,

which is separable into the gauge invariant and the lorentz invariant Hilbert

space of coherent states. Further in this coherent state basis, the finite-ness of

the QED S matrix is shown to the all orders.

The interaction Hamiltonian for asymptotic time is given by

HI = HR +HA, (2.24)
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where HR and HA are regular and asymptotic Hamiltonian, respectively. They

are both defined for the large times. Using HA, the asymptotic Moller operators

are defined as (detailed construction of this can be seen in [86])

ΩA,± = lim
t→∞

T exp
{∫ 0

∓t
dtHA(t)

}
. (2.25)

This expression allows us to separate the log-distance contributions of the S-

matrix by writing

S = Ω†
A,−(Ek) Ω

†
R,−(Ek)ΩR,+(Ek)︸ ︷︷ ︸

SR

ΩA,+(Ek), (2.26)

where SR is a regular S-matrix. It is important to note that the regular Hamil-

tonian HR(t) does not generally commute with the asymptotic Hamiltonian. As

a result, the computation of the regular Moller operator involves commutator

terms and cannot be simply obtained by exponentiating HR(t). The absence

of infrared singularities in the regular S-matrix must therefore be verified us-

ing explicit definitions of the involved operators. With the above definition, the

regular S-matrix elements computed within the conventional Fock space do not

contain any IR divergences. More properly, the basis of the coherent states can

be defined as

|ℓ−,±⟩ = Ω†
A,±(Ek)|ℓ

−⟩. (2.27)

Here, the coherent state is defined by applying the Moller operator on a general

fock state |ℓ−⟩.

In the context of Abelian gauge theories, the soft limit or the low energy

limit provides a straightforward expression for the coherent state. The coherent

state is useful in establishing the S-matrix finiteness in perturbation theory. Also,

it can be used in the construction of the Hilbert space. This Hilbert space is

found to be separable and gauge invariant. In addition, it further includes the

gauge invariant subspace of the states having positive norms. In this way, the

issue of the soft particle (problem due to the long-distance interactions) in the
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context of Abelian gauge theory can be solved. However, the situation becomes

much more complicated for non-abelian theories because of inescapable collinear

divergences arising from the interactions among massless gluons (for eg., triple

and quartic gluon interactions).[87–91].

Other than the KLN approach, much effort has been dedicated to cal-

culating the all-order structure of IR singularities using the principles of fac-

torization and universality [92, 93]. These concepts apply to both amplitudes

and cross-sections. IR singularities arise from phenomena that occur far away

from the hard scattering center in terms of large times and distances. Conse-

quently, the singularity structure is expected to exhibit a significant degree of

independence from the specific characteristics of the short-distance process under

examination. This permits the identification of universal factors that account for

the singular behavior of the amplitude.

Hence, concretely via any method, in order to compute the corrections

of order O(α) for a decay process i → f , it is necessary to consider its radia-

tive counterpart i → f(γEk|mγ). In practice, the IR problem in QED is often

addressed by employing IR regularization techniques. One common approach

is to introduce a regulator mass, denoted as mγ, which allows for the control

of infrared divergences. After performing calculations with this regulator, the

final step involves taking the limit mγ → 0 to remove the regulator and obtain

physical observables, such as decay rates, that are free from IR divergences.

2.1.5 IR problems beyond point-like

The study of QED corrections to hadronic decays, including non-point-like ef-

fects, is still in its early stages. The analogy with the hydrogen atom, where

interactions between the electron, proton, and photons play a role, motivates

the investigation of photon interactions with neutral B-mesons consisting of b-

and d-valence quarks. The heavy-light nature of these mesons exhibits signifi-

cant effects, but this may induce various challenges. Addressing cancellations of

infrared divergences, which involve real radiation, goes beyond standard flavor

physics and intersects with the confinement at long distances.
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Some of the methods which can be utilized as continuum methods in-

clude Chiral perturbation theory, soft-collinear effective theory (SCET), and

heavy quark symmetry. Chiral perturbation theory is well-established in QED

[94, 95], however determining counterterms in this theory poses a challenge.

SCET has been applied to study the leptonic FCNC decay Bs → µ+µ−, where

the primary uncertainty arises from the QCD B-meson distribution amplitude

[96]. Hadronic decays like B → Kπ have also been investigated, but defining

charged light-meson distribution amplitudes is problematic[97]. So far, SCET has

only considered virtual contributions, with real radiation incorporated through

the universal soft-photon part. Heavy quark symmetry has provided constraints

in B → D(∗)ℓνℓ(γ) decays [98].

2.2 Effective Field Theories (EFTs)

In this section, we will explore the concept of Effective Field Theories (EFTs) in

detail as a powerful framework for understanding how physics at different energy

scales can be decoupled from each other [21, 54] (see also [55, 56, 99, 100]).

EFTs provide a systematic approach to incorporate the effects of higher energy

scales into calculations at lower energy scales, allowing for accurate and reliable

predictions.

An EFT organises the full theory description by lumping the effects of

high scale (≥ µ) physics in the effective couplings/strengths of operators (both

renormalizable as well as higher dimensional, non-renormalizable operators) built

from fields relevant at the scale µ. This thus provides a clear separation of

physics at different scales. Long-distance physics resides in the matrix elements

of the operators while the effective strengths of the operators (for higher dimen-

sional operators called the Wilson Coefficients (WCs)) encode the short-distance

physics [21, 54].

One of the key features of EFTs is the use of Renormalization Group

Equations (RGEs) to run the coefficients of the operators, i.e., the WCs, from

a high energy scale, say µ = M to the scale of the physical process of interest,

i.e., µ = m. This allows for the incorporation of large logarithms of the form
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αns log
n(M/µ), where αs is the strong coupling constant. These large logarithms

can arise in calculations involving high energy scales. By systematically account-

ing for these large logarithms, EFTs provide a reliable tool for describing physics

at different energy scales [48, 101].

In order to calculate the WCs, the low energy theory is matched onto

the full theory at the scale µ. This matching procedure ensures that the EFT

accurately represents the full theory in calculations at the lower energy scale,

taking into account the effects of the higher energy scales. This allows for a

consistent treatment of the physics at different energy scales.

Following [54], we categorized EFTs into three kinds. This categoriza-

tion mainly depends upon the DOF included. In the first kind, i.e., EFT-I, we

will discuss the effective low-energy theory of weak interactions. On the other

hand, in the second kind, i.e., EFT-II, we will discuss the EFT description of

the physics of a meson containing a heavy quark. The third kind involves the

description of objects having large momentum transfer but only in the fixed di-

rection. In this thesis, we will focus on the first two kinds of EFTs to obtain SM

predictions for exclusive and inclusive B decays. To appreciate the core features

of EFTs, we start with an example where we consider four Fermion interactions

as a limit of Yukawa interaction.

2.2.1 An example

The Lagrangian for the system having Yukawa interaction is given by:

LY = ψ̄(i/∂ −m)ψ − 1

2
(∂µϕ)(∂

µϕ)− 1

2
M2

ϕϕ
2 − gyψ̄ψϕ (2.28)

where ψ represents the fermion field, ϕ denotes the scalar field, m is the fermion

mass, Mϕ is the scalar mass, and gy is the coupling between the scalar field and

the fermions.

We consider the scenario where the experiment can probe the energy

scale, which is much lower than the mass of the scalar, Mϕ, i.e., µ ≪ Mϕ.

This sets the scale for the system. Further, Green’s function for the theory is
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computed from the generating functional, denoted as ZY , given by:

ZY = N

∫
[Dψ][Dϕ] exp

{
i

∫
d4xLY

}
(2.29)

where N represents a normalization constant, and [Dψ] and [Dϕ] denote the

functional measures for the fermion and the scalar field, respectively.

In this energy regime, only initial and final states involving fermions, ψ

can be considered, as the scalar field ϕ cannot be directly produced. Nevertheless,

even though the scalar field may not directly participate in the fermion scattering

processes, it can still contribute through off-shell propagation at the tree level

and quantum loop effects. Hence, the relevant physical DOF of our theory is the

fermion field, ψ. Now, one may ask the question: What happens if we integrate

out the scalar field, ϕ, from the theory? To calculate this, we perform a functional

integral with respect to ϕ in Eq.(2.29). To simplify the calculation, we introduce

a notation J(x) = −gψ̄ψ in Eq.(2.28) and obtain the Gaussian term for the

scalar field, which adds an extra term to the action. The resulting expression for

the partition function ZY becomes:

ZY = N

∫
[Dψ][Dϕ] exp

{
Sψ − 1

2

∫
d4x(ϕ(x)[−∂2 −M2

ϕ]ϕ(x))

−i
∫
d4xd4yJ(x)(−iDF (x− y))J(y)

}
(2.30)

= N ′
∫

[Dψ] exp
{
Sψ − i

∫
d4xd4yJ(x)(−iDF (x− y))J(y)

}
. (2.31)

Here, N ′ is a normalization constant given by N ′ = NDet(∂2 − M2
ϕ)

−1
2 , and

DF (x− y) is the position space propagator for the ϕ field and given by:

DF (x− y) =

∫
d4p

(2π)4
i

p2 −M2
ϕ + iϵ

e−ip.(x−y). (2.32)

In the limit of Mϕ → ∞, the non-local component of Eq.(2.31) can be expanded

as a series in powers of p2

M2
ϕ
. The leading contribution is the delta function:

DF (x− y) ∼ −i
M2

ϕ

δ4(x− y). (2.33)
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This contribution makes Eq.(2.31) local, and leads to an effective Lagrangian2:

Leff = Lψ +
J2

M2
ϕ

. (2.34)

where, Lψ = ψ̄i/∂ψ −mψ̄ψ, and J = −gψ̄ψ.

This effective Lagrangian correctly describes low-energy physics, specif-

ically the scattering of fermions with energies E ≪Mϕ. A crucial observation is

that for each order in 1/Mϕ, there exists a finite number of effective operators.

This has implications in two different scenarios; (1) In cases where we do not

know what lies beyond the energy scale, such as in the Standard Model. (2)

In cases where the UV completion of the model is known, but the degrees of

freedom in the IR modes are different, such as in Chiral Perturbation Theory.

It is important to emphasize that the effective Lagrangian, which re-

spects all the symmetries of the complete theory, is expected to reproduce the

same Green functions as the full theory. This suggests that by understanding

the power-counting behavior of subleading operators, one can write down the

most general set of operators respecting the symmetries of the full theory. Each

operator is accompanied by an unknown coefficient, which can be determined by

matching the results from the full theory to the effective theory. By employing

this approach, we can exchange the effects of heavy degrees of freedom for an

infinite number of local operators, where the contribution of each operator is

suppressed by inverse powers of the masses of the heavy particles.

To ensure the consistency of Effective Field Theories (EFTs), it is im-

portant to guarantee that quantum corrections arising from loop diagrams are

also suppressed by appropriate powers of the heavy scale. However, cutoff reg-

ularization is not suitable in this case as it disrupts power counting. In such

cases, a preferable approach is to utilize mass-independent regularization meth-

ods, such as dimensional regularization. In dimensional regularization, quadratic

divergences are absent, and the one-loop contributions are properly suppressed

by the heavy scale, as needed for consistency. Hence, it can be inferred that at

each order in 1/M , the effective field theory exhibits the behavior of a renor-

2We followed [54] for this example.
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malizable QFT. Next, we discuss both types of EFTs, EFT-I, and EFT-II, in

detail.

2.2.2 EFT I: Fermi theory for weak decays of mesons

We derived the four fermion interactions in the previous section. Now, we ap-

ply EFT to weak decays of those mesons, which are described by four fermion

(quarks) interactions, including QCD corrections. It is worth noting that in

the context of effective electroweak operators, the QCD corrections can often

have a significant impact, surpassing the contributions from power counting

terms, especially in the low-energy processes. For example, one can see that

the αs(µ) ≫ µ2/m2
W at, say, µ = mb. Hence, even two-loop perturbative QCD

corrections may contribute more than the electroweak effects, i.e., 1/m4
W . An-

other importance of QCD corrections is that they generate a new operator and

also employ the operator mixing when the scale is run down from O(mW ) to the

hadronic scale O(1 GeV ). These EFTs are powerful frameworks that allow us

to describe physics at both high and low energy scales. To set up the approach,

we divide our scale of the theory into three pieces:

1. At µ = O(mW ): Weak decays of hadrons are governed by the interaction

of quarks. αs at µ = mW is small, and perturbation theory is applicable.

2. 1GeV < µ < O(mW ): αs(µ) increases and this variation should be taken

into account. RGEs play an important role, and one encounters the sum-

mation of large logs.

3. µ ≤ O(1GeV ): Perturbation theory fails. One has to rely on the non-

perturbative theories as the confinement effects, which are responsible for

the binding of the quarks and gluons, will get into action.

The running of the scale is governed by RGEs. Once a threshold is crossed, the

particle with higher mass disappears from the theory, as we saw in Section-2.2.1.

The four fermion (quarks) interactions (q1 → q2q3q4) in the full theory

are mediated by electroweak W boson as shown in Fig.(2.7). At the leading

order in αs, dimension six operators are built from four quark fields, resulting
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in operators such as Q2 = (q̄α1Γµq
α
2 )(q̄

β
3Γµq

β
4 ), with α, β = 1, 2, 3 represent color

indices. Due to the color quantum numbers carried by gluons, perturbative

quantum chromodynamics (QCD) corrections give rise to additional operators

in the effective theory, such as Q1 = (q̄α1Γµq
β
2 )(q̄

β
3Γµq

α
4 ). The weak Hamiltonian

for these transitions is given by:

Heff =
4GF√

2
|VCKM ||V ∗

CKM |
(
C1(µ)Q1(µ) + C2(µ)Q2(µ)

)
, (2.35)

where µ is the scale that separates the contributions of the short-distance physics

(Ci) from the long-distance physics, i.e., matrix elements of Qi. Eq.(2.35) takes

the form of an operator product expansion (OPE). Switching off the QCD correc-

tions in Equation (2.35), the Wilson coefficients (WCs) are calculated as C2 = 1

and C1 = 0. Including QCD corrections, the WCs C1 and C2 can be calculated

using perturbation theory. The amplitude q1 → q2q3q4 in the full theory is

(a) (b) (c)

Figure 2.7: Feynman diagrams for q1 → q2q3q4 with QCD corrections in full
theory.

Afull =
(
1 + 2CF

αs
4π

(1
ϵ
+ ln

( µ2

−p2
)))

Q2 +
3

N

αs
4π

ln
(m2

W

−p2
)
Q2

−3
αs
4π

ln
(m2

W

−p2
)
Q1. (2.36)

In calculating this amplitude, one can choose all external momenta pi to be equal

and set all quark masses to zero. We will verify at the end that this has no impact

on the WCs, Ci. Further, the 1/ϵ divergence in above expression can be removed

by performing renormalization of the quark fields, but this is also not necessary

in computing Ci. Hence, we used the amputed Green function, and therefore the
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gluonic self energy corrections to the external leg are not included.

(a) (b) (c)

Figure 2.8: Feynman diagrams for effective theory of the process q1 → q2q3q4.

Next, the four fermion (quarks) interactions (q1 → q2q3q4) in the effec-

tive theory are shown in Fig.(2.8). The amplitude is given by

Aeff = C1Q1 + C2Q2. (2.37)

WhereQ1 andQ2 are the renormalized operators. The Feynman diagrams shown

in Fig.(2.8) provides the unrenormalized operators, which are given by,

Q(0)
1 =

(
1 + 2CF

αs
4π

(1
ϵ
+ ln

( µ2

−p2
)))

Q1 +
3

N

αs
4π

(1
ϵ
+ ln

( µ2

−p2
))
Q1

−3
αs
4π

(1
ϵ
+ ln

( µ2

−p2
))
Q2 (2.38)

Q(0)
2 =

(
1 + 2CF

αs
4π

(1
ϵ
+ ln

( µ2

−p2
)))

Q2 +
3

N

αs
4π

(1
ϵ
+ ln

( µ2

−p2
))
Q2

−3
αs
4π

(1
ϵ
+ ln

( µ2

−p2
))
Q1. (2.39)

It is to be noted that the operators, Q1 and Q2, present in the above expression

are unrenormalized. For the momenta and masses of the quarks we employ the

same assumption which is used in calculating Afull. In the above expressions,

one can observe that carrying out the quark field renormalization to remove the

divergence is not enough. It just removes divergences from the first terms of both

Q1 and Q2. To remove the left-over UV divergences, one has to renormalize the

composite object, known as operator renormalization. It is given by

Q
(0)
i = ZijQj, (2.40)
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where Zij is the 2 × 2 matrix. One can obtain the relation between the un-

renormalized Q(0)
i and the renormalized amputated amplitude, Qi, which is given

by

Q(0)
i = Z−2

q ZijQj. (2.41)

Where Z−2
q removes the first terms of both Q1 and Q2, and Zij remove the

remaining divergences. The explicit form of Zij is

Ẑ = 1 +
αs
4π

1

ϵ

3/N −3

−3 3/N

 . (2.42)

After carrying out the renormalization, one can perform matching. The expres-

sion for matching is given by3

Afull = Aeff = C1Q1 + C2Q2. (2.43)

It results into computation of C1 and C2:

C1(µ) = −3αs
4π

ln
(m2

W

µ2

)
, and (2.44)

C2(µ) = 1 +
3

N

αs
4π
ln
(m2

W

µ2

)
, (2.45)

respectively. It is to be noted that the infrared regulator, −p2, which was present

in Eq.(2.37) and (2.36), is absent here. Moreover, these corrections are not solely

proportional to Q2 but also involve Q1 and vice versa. It indicates that Q1 and

Q2 mix under renormalization. This mixing is an example of how the basis of

dimension six flavor-changing operators closes under renormalization, although it

does not rule out the possibility of other operators appearing. The framework of

EFTs encompasses all dimension six and dimension five operators to describe low-

energy non-leptonic transitions of quarks. It is important to consider the possible

3The operators Q1 and Q2 in Afull, do not require renormalization. Hence, Q1 = Q1 and
Q2 = Q2
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mixing of these new operators under QCD renormalization. While operators Q1

and Q2 may mix with other operators, vice-versa does not occur.

Weak decays consist of flavor change in the process, which is quantified

by ∆F . For example, ∆F = 1 is used to describe weak decays of F = b, c, and

s quarks. For these types of weak decays, other operator structures beyond Q1,

and Q2 arise in the SM. The penguin operator shown in Fig. (2.9) is one such

example. These operators can be classified as gluonic or electroweak penguins.

Further, we concentrate only on ∆b = 1 transition; in particular, b → s decays.

Figure 2.9: Feynman diagrams for penguin operators.

The general structure of effective Hamiltonian is

Heff =
4GF√

2

∑
q=u,c,t

λq

[
C1Q1 + C2Q2 +

∑
i=3,...,10

CiQi + C7γQ7γ + C8gQ8g

+C9VQ9V + C10AQ10A

]
+ h.c. (2.46)

where λq = V ∗
qbVqs denote the product of CKM matrix elements. For ∆b = 1

transition, the charged current operators: Q1 and Q2 are

Q1 = (q̄αbβ)V−A(s̄βqα)V−A, and

Q2 = (q̄αbα)V−A(s̄βqβ)V−A. (2.47)
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Furthermore, Q3,...,6, which are the gluonic operators are:

Q3 = (s̄b)V−A
∑
q

(q̄q)V−A,

Q4 = (s̄αbβ)V−A
∑
q

(q̄βqα)V−A,

Q5 = (s̄b)V−A
∑
q

(q̄q)V+A, and

Q6 = (s̄αbβ)V−A
∑
q

(q̄βqα)V+A. (2.48)

The electroweak penguin operators Q7,...,10 are given by

Q7 =
3eq
2

(s̄b)V−A
∑
q

(q̄q)V+A,

Q8 =
3eq
2

(s̄αbβ)V−A
∑
q

(q̄βqα)V+A,

Q9 =
3eq
2

(s̄b)V−A
∑
q

(q̄q)V−A, and

Q10 =
3eq
2

(s̄αbβ)V−A
∑
q

(q̄βqα)V−A. (2.49)

The two dipole operators are

Q7γ = − e

8π2
mb(s̄σµν(1− γ5)b)F

µν , and

Q8g = − e

8π2
mb(s̄σµν(1− γ5)b)G

µν . (2.50)

The field strength tensor is defined in Eq.(1.3). Further, if the process is semi-

leptonic like b→ sℓℓ, the other two operators are

Q9V =
e2q

16π2
(s̄b)V−A(ℓ̄ℓ)V , and

Q10A =
e2q

16π2
(s̄b)V−A(ℓ̄ℓ)A. (2.51)

With an example of four fermion interaction, we outlined the method

to compute the WCs for the operator. In any theory, the procedure remains

the same: First, these coefficients are typically calculated at leading order in
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QCD, followed by the renormalization group improved perturbation theory. The

only difference comes in the size of the basis of the operators. For details of

calculations, refer to [48, 101]. However, it is important to note that even after

resuming the logarithms, the WCs still exhibit scale dependence. Therefore,

matching beyond one loop is advantageous. Furthermore, it is important to

calculate the anomalous dimension beyond the leading order for consistency.

The next-to-leading order (NLO) calculation introduces new features, like the

final result is now dependent on the renormalization scheme, which is adopted

during the calculation. Further details of the calculation can be found in [48,

101].

2.2.3 EFT II: Heavy Quark Effective Theory

As discussed in Section- 1.4, the underlying physics of the system is crucial to

keep in mind when one derives an EFT. We are now interested in the bound states

of heavy and light particles, specifically the heavy b quark and light antiquarks

ū, d̄, s̄. The physics of these systems can be effectively studied in the rest frame

of B mesons. In the context of QCD, There are two characteristic energy scales

for the B meson. First, the heavy quark mass, i.e., mb ∼ 5 GeV, and second,

the energy scale associated with the non-perturbative physics, i.e., ΛQCD ∼ 300

MeV. It is noteworthy that the light DOF in this system are relativistic, having

energies and momenta at the order of ΛQCD. Hence, irrelevant degrees of freedom

can be integrated from the Lagrangian, resulting in an effective Lagrangian that

describes the physics of the bound system. This effective theory is commonly

known as Heavy Quark Effective Theory (HQET) and is particularly useful for

describing heavy hadrons. Before delving into HQET, let us understand the QM

of a heavy particle.

2.2.3.1 Quantum Mechanics of heavy particles

Let’s start by examining the case of relativistic QM (see [54, 102, 103]). Consider

a heavy spin-1/2 particle, denoted as Q, whose dynamics are governed by the
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Dirac equation:

(i/∂ −mQ)Q(x) = 0 (2.52)

Here, Q(x) and mQ represent the coordinate space wave function and the mass,

respectively, of the Dirac particle Q. In the rest frame of the heavy particle,

the wave function of the particle will be proportional to e−imQt. As a result, we

can redefine the wave function by separating the large mechanical part from it,

which can be expressed as:

Q(x) = e−imQtQ̃(x). (2.53)

Inserting this wave function back to the Eqn.(2.52), one get,

(i/∂ −mQ)Q(x) = (iγ0∂
0 −mQ)e

−imQtQ̃(x)

= −mQe
−imQt(1− γ0)Q̃(x) = 0 (2.54)

The above equation is similar to the projection operator acting on the spinor Q̃

P 0
−Q̃ = 0 (2.55)

The projection operator is defined by

P 0
± =

I ± γ0

2
, (2.56)

where I is a 4 × 4 unit matrix. The explicit form of projection is useful to see

the operation of it on the Dirac bi-spinor Q̃

P 0
+Q̃ =

Î 0̂

0̂ 0̂


ψ
χ

 =

ψ
0

 (2.57)
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And similarly for the P 0
−. The short-hand notations used for the two-component

spinors are

ψ =

ψ1

ψ2

 , and χ =

χ1

χ2

 . (2.58)

Since ψ describes positive energy degrees of freedom, the role of the projection

operator P 0
+ is to project out negative energy (anti-particle solution from the

theory).

Building upon the observation made in relativistic quantum mechanics,

we can now apply it to non-relativistic EFT. To do so, we first introduce a four-

velocity vector denoted as vµ. In the rest frame of the particle, the four-vector

v can be expressed as v = (1,
−→
0 ), such that v · x = t. By generalizing the Dirac

equation, we can describe the dynamics of a particle moving in a non-relativistic

frame of reference. In this scenario, the momentum of the particle, denoted as

pQ, can be expressed as:

pQ = mQv +Π. (2.59)

Here, Π represents the residual momentum, where |Π| ≪ mQ, indicating that

the particle is nearly at rest. The velocity of the particle is denoted as v, and we

impose the constraint v2 = 1 to ensure the particle is on-shell. Π accounts for

small deviations from the particle being exactly on-shell.

The formalism described above is particularly useful when the mass

scale of the particle under consideration is much larger than other scales involved

in the problem. The projection operator will get generalized to:

P v
± =

1± /v

2
(2.60)

With this formalism, we can now make a transition from QM of heavy particles

to QFT of heavy particles.
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2.2.3.2 QFT of heavy particles

We now make a transition to the discussion of fields that describe heavy particles.

Let us consider a field, Q(x), which represents a heavy fermion, such as the heavy

quark in the mesonic or the baryonic states. In this context, all the other quarks

are assumed to be light, with masses of the order ΛQCD. Such systems are often

referred to as the ”Hydrogen atoms of QCD” due to their similarity. In QCD

bound states, the mass scale of the heavy quark is significantly larger than any

other scale present in the system. It allows one to have an expansion in the

ratio, ΛQCD/mQ, despite the problem being highly non-perturbative in the QCD

coupling. The power counting in this system is dictated by its physics.

In the heavy quark limit, Q(x) essentially acts to be a static source

of chromomagnetic fields with its own dynamics considered to be negligible.

The kinetic energy of the heavy quark, quantified by K.E. = p2Q/2mQ, can be

represented by an operator that is suppressed by inverse powers of the heavy

quark mass. The power counting scheme involves counting the dimensions of

operators, where higher dimensions correspond to stronger suppression by the

heavy quark mass. The equations of motion for the heavy fermion field can be

derived from the standard Dirac Lagrangian,

L. = Q̄(x).(i /D −mQ).Q(x). (2.61)

In order to take the non-relativistic limit, similar to the example in relativistic

quantum mechanics discussed in the previous section, we can separate a large

mechanical part of the field Q(x) as follows:

Q(x) = e−imQv.xQ̃(x) = e−imQv.x
(
P v
+Q̃(x) + P v

−Q̃(x)
)

= e−imQv.x(hv(x) +Hv(x)) (2.62)

where we have labeled the fields hv and Hv according to their velocity, and used

the fact that P v
+ + P v

− = 1. By inserting the above equation into the Dirac
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Lagrangian, one obtain:

L = h̄vi /Dhv + H̄vi /DHv + 2mQH̄vHv + h̄vi /DHv + H̄vi /Dhv. (2.63)

By introducing two auxiliary fields, we can separate the fermion field into two

components, each with known solutions to the equations of motion. The La-

grangian then contains terms that mix these fields. To simplify the Lagrangian

and potentially diagonalize it, the gamma matrices in the initial terms can be

eliminated by employing projection operators on both the fields. This yields a

more streamlined Lagrangian, which can be expressed as follows:

L. = h̄v.i(v.D).hv − H̄v(iv.D − 2mQ)Hv + h̄vi /D⊥.Hv + H̄vi /D⊥hv, (2.64)

where we used the definition of a perpendicular component of any four-vector aµ

based on the condition a⊥.v = 0, given by

aµ⊥ = aµ − (a.v)vµ. (2.65)

One of the features of the Lagrangian in Eq.(2.64) is that it contains two fields:

The massless field, hv, and the heavy field, Hv. The mass of Hv turns out to

be 2mQ, which in the limit mQ → ∞ can therefore be considered as a field that

describes an infinitely heavy particle. Using a similar approach that is used in

the previous section, we can integrate out this degree of freedom from our theory.

The proper way to do so would involve writing an effective action in terms of the

functional integral and performing the integration. For the problem at hand, we

can simplify the process by using the equations of motion derived from Eq.(2.64)

and Eq.2.62).

The equations of motion are given by

(i /D −mQ)Q(x) = 0 =⇒ i /Dhv + (i /D − 2mQ)Hv = 0. (2.66)
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By applying the projection operator, one can simplify the expression as follows:

Hv =
1

2mQ + iv.D
i /D⊥hv (2.67)

where the inverse of the operator can be expanded using a Taylor series:

1

2mQ + iv.D
=

1

2mQ

∞∑
n=0

(−1)n
(iv.D
2mQ

)n
. (2.68)

The expansion mentioned is convergent, allowing us to derive an effective La-

grangian with increasing operator dimension. Using Eqn.(2.67) in Eqn.(2.64)

and utilizing the expression

i /D⊥i /D⊥ = (i /D⊥)
2 +

gs
2
σµνG

µν , (2.69)

one can derive the HQET Lagrangian up to 1/mQ as follows:

Leff = h̄vi(v.D)hv +
1

2mQ

h̄v(i /D⊥)
2hv + Cg

gs
4mQ

h̄vσµνG
µνhv

+O
( 1

m2
Q

)
. (2.70)

The HQET Lagrangian to order O (1/mQ) is given by Eq.(2.70). Remarkably, in

the limit mQ → ∞, only the first term survives, as evident from the Lagrangian.

It is noteworthy that this leading term does not contain any Dirac matrix, despite

being used to describe fermions. As a result, it enlarges the spin symmetry group

of the effective theory that results from HQET.

One observation is that field redefinitions are possible in HQET. We can

now derive the equations of motion for the light fields, hv and using Eq.(2.70),

yielding:

i(v.D)hv = − 1

2mQ

(
(i /D⊥)

2 + Cg
gs
2
σµνG

µν
)
hv. (2.71)

One can convince oneself that, in the above equation, the expression on the left

remains O(1), while the expression on the right is of higher order in 1/mQ. This

allows for a redefinition of the field hv such that certain terms in the Lagrangian
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can be absorbed into hv. The equations of motion are then modified by an

operator which contributes at the order higher in 1/mQ.

The technique of field redefinition in HQET can be illustrated with an

example where the terms of the form

L′ =
1

2mQ

h̄v(iv.D)hv. (2.72)

are absent. Although such operators should be allowed, they have not been

included in the Lagrangian because a field redefinition of the form

hv →
(
1− (iv.D)2

4mQ

)
hv (2.73)

remove L′ entirely from consideration through field redefinitions. One can apply

similar redefinitions for the field at higher orders in 1/mQ as well. As a result,

operators that are proportional to the lowest-order equation of motion do not

make practical contributions.

Another important observation is the manipulation of spin degrees of

freedom. We perform an infinitesimal spin rotation of the hv field, i.e.

hv → h′v = (1 + iα.S)hv (2.74)

where S is the fermion spin operators given by

Si =
1

2

σi 0

0 σi

 , [Si, Sj] = iϵijkSk. (2.75)

Since S commutes with γ0 and v.D contains no Dirac matrices, it follows that

∂L∞
eff . = .0 (2.76)

where L∞
eff is the effective Lagrangian at leading order in 1/mQ. The Lagrangian

L∞
eff obtained through the field redefinition technique exhibits an additional spin

symmetry given by a SU(2) group as the spin transformations belong to SU(2).
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This symmetry is absent in the original lagrangian given in Eq.(2.61) as it appears

as a consequence of spin transformations in L∞
eff .

In QCD flavor-changing interactions are absent, which any EFT of QCD

must respect. Till now, we have considered only one flavor of heavy quark.

In nature, there are several flavors of heavy quarks (top, bottom, and charm),

and thus, the total symmetry group of the HQET is enlarged. If Nf is the

number of heavy quarks, the total symmetry becomes SU(2Nf ). Because of

this property, HQET becomes a powerful tool for the computation of physical

properties involving heavy quark transitions. Furthermore, when examining the

symmetry-breaking (or 1/mQ suppressed) terms in the Lagrangian of Eq.(2.70),

it is illuminating to switch to a heavy quark rest frame. The first operator, i.e.,

Okin =
1

2mQ

h̄v(iv.D)2hv =⇒ 1

2mQ

h̄v(D)2hv, (2.77)

can be reinterpreted as representing the kinetic energy carried by the heavy quark

inside the hadron. Moreover, the second operator,

Omag =
gs

4mQ

h̄vσµνG
µνhv =⇒ − 1

mQ

h̄v(S.B)hv, (2.78)

can be understood as the interaction of the heavy quark with the chromomagnetic

field inside the heavy hadron. This provides physical insight into the meaning of

these terms in the Lagrangian.

The spin symmetry of the heavy quark Lagrangian has direct implica-

tions for the spectroscopy of meson states such as Bq and B
∗
q . These mesons are

composed of a heavy b̄ antiquark and a light u (or d or s) quark, with the only

distinction being the spin configuration of these quarks. The Bq meson has a

relative singlet spin state, while the B∗
q meson has a relative triplet spin state.

A crucial observation is that, in the heavy quark limit, the spin interaction in

HQET is subleading term in the expansion. As a result, the masses of these two

states become degenerate. This is consistent with experimental observations,

where the mass difference between B∗
q and Bq mesons is found to be small, with

a value of 45.0 ± 0.4 MeV This phenomenon is a consequence of the spin sym-
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metry in HQET and provides important insights into the spectroscopy of heavy

mesons (for details, see [50, 53, 54, 104]).

With this brief description of IR divergences and EFTs of type I and

II, we will now discuss their applications to exclusive and inclusive semi-leptonic

B meson decays in the remaining of the thesis.



Chapter 3

Soft photon effects in B → Kℓℓ

In this chapter, our main focus is on the decay modes B → Kℓ+ℓ−, which are

induced by the FCNC currents. We specifically calculate the impact of the soft

photon QED corrections on its branching ratio and RK (defined in Section- 3.1).

These corrections involve both virtual corrections, and contributions from the

emission of a single photon at O(αem). We further establish that the combi-

nation of these two corrections leads to a finite result, which is a consequence

of Bloch-Nordsieck theorem. Considering the significance of these decay modes

(such as the construction of LFU observable, RK), it is important to account for

these effects to establish its theoretical cleanliness. This chapter is based on the

findings of Ref. [26].

3.1 Introduction

As discussed in Chapter-1.1, the processes induced by FCNCs are considered

rare in the SM. Fig.(3.1) shows the Feynaman diagrams of B → Kℓ+ℓ− decay

mode for two different topologies (penguin and box). These decays, which are

both loop and CKM suppressed, offer a perfect opportunity to search for physics

beyond the SM. The quark level transition b→ sℓ+ℓ− has been significant in our

search for new physics. It not only helps us uncover new phenomena but also

enhances our understanding of the intricate interplay between the electroweak

and strong interactions. This transition is particularly relevant in studying the

purely leptonic decay channel Bs → ℓ+ℓ− as well as the exclusive semi-leptonic

59
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(a)
(b)

Figure 3.1: Feynaman diagrams of B → Kℓ+ℓ− for two different topologies: (a)
penguin (b) box.

channels B → K(∗)ℓ+ℓ− (for examples, see [96, 105–110]).

Regarding the theory behind these decays, precise calculations have

been carried out to improve our understanding of the involved form factors and

related issues [67, 111], while at the experimental front, more refined data have

indicated certain deviations from the expected results within the SM for the

branching ratios of B → Kℓ+ℓ− decays. Although these deviations are not yet

completely conclusive, they could be pointing towards the possibility of NP being

just around the corner. Nevertheless, reaching a clear and definitive conclusion

is somewhat obscured by uncertainties related to the behavior of particles within

hadrons and potential interference from distant effects such as remnants of char-

monium resonances [67, 111]. The search for precise tests of the SM using rare

decays and the exploration of NP has prompted the consideration of theoreti-

cally clean observables, also known as optimized observables in certain specific

contexts. The main idea is to consider or form observables, often in the form of

ratios, that are mostly unaffected by uncertainties related to hadrons, at least

within a chosen kinematic range.

The decay processes B → Kℓ+ℓ− provide a way to investigate LFU,

which examines whether the decays into electrons (ℓ = e) and muons (ℓ = µ)

occur with the same probability. In the SM, the universal interaction of the Z-

boson with leptons ensures this equality, accounting for the slight differences in

lepton masses. When we choose a specific kinematical range in the decay process,

such that the dilepton invariant mass is significantly larger than the mass of each
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individual lepton, we expect the ratio of the two measured branching ratios to

be very close to one. This ratio is commonly used as a reliable test to examine

LFU and, consequently, to assess the validity of the Standard Model [112, 113].

Rµe
K ≡

∫ 6GeV 2

1GeV 2 dq
2 dΓ(B

0→K0µ+µ−)
dq2∫ 6GeV 2

1GeV 2 dq2
dΓ(B0→K0e+e−)

dq2

(3.1)

Within SM, this ratio is unity and the very recent experiment result [114] is in

agreement with the SM within ∼ 1σ:

Rµe
K |exp = 0.949+0.042 +0.041

+0.022 −0.022 (3.2)

Previously, the inconsistency between theoretical predictions and ex-

perimental results provided a strong incentive to conduct more precise theo-

retical calculations before drawing conclusions about NP. Though, the current

experimental data aligns with the theoretical predictions, it is still important to

thoroughly examine all potential sources of uncertainties and other effects that

might impact theoretical predictions.

In terms of theory, the standard approach involves constructing an effec-

tive Hamiltonian by integrating out heavy degrees of freedom through the OPE.

This Hamiltonian is then evolved down to the scale of the b quark using RGEs.

Using the quark level operators b → sℓℓ, the calculations of physical hadronic

matrix elements are performed. This step introduces the concept of form factors,

which contribute to the uncertainties in the calculations, as mentioned earlier.

To mitigate these uncertainties, observables that are minimally affected by form

factors are considered. The effects of strong interactions, including both pertur-

bative and non-perturbative aspects, are incorporated through the use of RGEs

and form factors, respectively. Whether there are any additional effects that

could be significant, particularly the corrections due to QED, have not been

explicitly considered. Since charged particles are involved, the effects of soft

photons may be non-negligible and should be accounted for systematically. Such

corrections are found to be useful in the context of B-decays [22–25].
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3.2 Non-radiative B → Kℓ+ℓ−

The effective Hamiltonian (defined in Eq.(2.46)) relevant for describing the b→

sℓ+ℓ− transition reads [48, 49]

Heff = 4
GF√
2
V ∗
tsVtb

10∑
i=1

Ci(µ)Qi(µ) (3.3)

where all the operators are defined in Section-2.2. The operators Q7, Q9, and

Q10 are particularly important for this semi-leptonic process. The matrix el-

ements of these operators represent non-perturbative quantities, and they can

be parametrized in terms of form factors incorporating both Dirac and Lorentz

structures. The Wilson coefficients used in the calculation are: Ceff
7 = −0.319,

C9 = 4.228 and C10 = −4.410. Further, Ceff
9 is defined by [115]

Ceff
9 = C9.+ .Y pert(q2)

Y pert(q2) = h(q2,mc).

(
4

3
C1 + C2 + 6C3 + 60C5

)
− 1

2
h(q2,mb).

(
7C3 +

4

3
C4

+ 76C5 +
64

3
C6

)
− 1

2
h(q2, 0).

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)
+

4

3
C3 +

64

9
C5 +

64

27
C6 (3.4)

where

h(q2,mq) =
4

9
ln(

m2
q

µ2
) +

8

27
+

4

9
(
4m2

q

q2
)− 4

9
(2 +

4m2
q

q2
)

√∣∣∣∣4m2
q

q2
− 1

∣∣∣∣
− iπ

2
+ ln

1+

√
1− 4m2

q

q2√
4m2

q

q2

, if
4m2

q

q2
≤ 1

arctan

 1√
4m2

q

q2
−1

 , if
4m2

q

q2
< 1

(3.5)
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The probability amplitude for the decay mode B(pB) → K(pK)ℓ
+(p2)ℓ

−(p3) can

be written in the following form [107]

M0 =

(
GFαem|V ∗

tsVtb|
2
√
2π

)[
T 1
µ .(l̄γ

µl) + T 2
µ .(l̄γ

µγ5l)
]

(3.6)

=

(
GFαem|V ∗

tsVtb|
2
√
2π

)
(l̄ΓµAl).⊗ .HAµ(p, p

′).

where

ΓµA=1 = γµ, T1µ(pB, pK) = A′.pµ +B′.qµ (3.7)

and

ΓµA=2 = γµγ5, T2µ(pB, pK) = C ′.pµ +D′.qµ (3.8)

We have introduced the following momentum combinations: pµ = (pB + pK)µ

and qµ = (pB − pK)µ = (p2 + p3)µ. In the following analysis, two frequently

used kinematical invariant variables are s = p2 = (pB + pK)
2, and the dilepton

invariant mass squared, q2 ≡ (pB − pK)
2 = (p2 + p3)

2.

The remaining factors in the amplitude depend on the combinations of

the Wilson coefficients (Ceff
7 , Ceff

9 , and C10) and form factors (f+, f−, and fT ),

and are expressed as follows:

A′ = Ceff
9 f+(q

2) +
2mb

mK +mB

Ceff
7 fT (q

2),

B′ = Ceff
9 f−(q

2)− 2mb(mB −mK)

q2
Ceff

7 fT (q
2),

C ′ = C10f+(q
2), D′ = C10f−(q

2) (3.9)

Now, the non-radiative differential decay rate is calculated as:

d2Γ0(B → Kl+l−)

dq2ds
=

1

256π3m3
B

|M0(B → Kl+l−)|2 (3.10)
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where the explicit structure of the matrix element, M0, is:

M0(B → Kl+l−) =
GFα

2
√
2π
V ∗
tsVtb

[({
Ceff

9 f+ + Ceff
7

2fTmb

mB +mk

}
pµ

+

{
Ceff

9 f− − Ceff
7

2fTmb

q2
(mB −mk)

}
qµ

)(
l̄γµl

)
+ (C10f+p

µ + C10f−q
µ)
(
l̄γµγ5l

) ]
(3.11)

The form factors f+(q
2), f−(q

2) and fT (q
2) are parametrized as [110, 116]

fi(q
2). =

fi(0)

1− q2

m2
res,i

.

[
1 + b1i

(
z(q2)− z(0) +

1

2

(
z2(q2)− z2(0)

))
.

]

where, i = +, 0, T ;

f− = (f0 − f+)
m2
B −m2

K

q2

z(q2) is defined by

z(q2) =

√
τ+−q2−

√
τ+−τ0√

τ+−q2+
√
τ+−τ0

(3.12)

where

τ0 =
√
τ+
(√

τ+ −
√
τ+ − τ−

)
, τ± = (mB ±mK)

2 (3.13)

with fi(0) = {0.34, 0.34, 0.39}, b1i = {−2.1, −4.3, −2.2} and mres i =

{5.83, 5.37, 5.41} for i = (+, 0, T ), respectively.

3.3 QED Corrections to B → Kℓℓ

Now, let us shift our focus to the consideration of QED corrections. Fig.(3.2)

illustrates the diagrams involving photon emission where, × represents potential

emission points, including those from the B and K meson legs when charged.

These diagrams are computed assuming the mesons to be point-like and employ-
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ing scalar QED. Fig.(3.2b) is commonly known as the ”contact term” and arises

when the gauge invariance of QED is demanded. Another way to compute the

contact term is by assuming the mesonic level Lagrangian and following the min-

imal coupling prescription. This approach is discused in [117]. Fig.(3.3) shows

(a) X :photon emission (b) Contact term

Figure 3.2: Representative diagram for real photon emission

a set of representative diagrams that contribute to the virtual corrections. It is

evident from the figure that the diagrams incorporating photons from the contact

term are also accounted for to ensure the cancellation of infrared divergences and

to obtain a gauge invariant result. The photon momentum is denoted by k in

(a) (b) (c) (d)

Figure 3.3: Representative diagrams contributing to virtual corrections

the calculations below, and the polarization vector is denoted by ϵα(k). Let us

consider the general case where the charges of the B and K mesons are repre-

sented by QB and QK respectively. Since we are primarily concerned with lepton

number conserving processes, we will eventually impose QB = QK . However, for

the time being, we will keep them as general variables.
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3.3.1 Contact Term

Before performing explicit calculations for the virtual corrections and real emis-

sion contributions, it is necessary to address the contact term. To do so, let us

examine the emission of photons from different legs. The specific process under

investigation is B(pB) → K(pK)ℓ
+(p2)ℓ

−(p3)γ(k). For the mesons, scalar QED

is employed. Consequently, the matrix element for photon emission from the ex-

ternal legs, which is expressed in terms of quantities relevant to the non-radiative

decay, can be written as follows:

M̃ = −eϵα(k)ū(p2)ΓµA
(/p3 + /k)−ml

2p3.k
γαv(p3)⊗HAµ(pB, pK)

+ eϵα(k)ū(p2)γ
α
(/p2 + /k) +ml

2p2.k
ΓµAv(p3)⊗HAµ(pB, pK)

+ eQBϵα(k)
2pαB
2pB.k

ū(p2)Γ
µ
Av(p3)⊗HAµ(pB − k, pK)

− eQKϵα(k)
2pαK
2pK .k

ū(p2)Γ
µ
Av(p3)⊗HAµ(pB, pK + k) (3.14)

From the equation above, it is evident that when the photon is emitted from

one of the leptons, the momentum dependence of the hadronic component HAµ

retains the same form as in the non-radiative decay. However, in the case of

photon emission from the meson legs, the dependence is modified accordingly.

By considering the specific structure of HAµ, we can express the above equation

in a compact form:

M̃ = M0eϵα
∑
i

Qiηip
α
i

pi.k
+M ′(k) (3.15)

In the above equation, the momenta and charges of different particles are denoted

by pi and Qi respectively, while ηi takes the values + or − depending on whether

the particle is outgoing or incoming [118]. The termM0 represents the amplitude

for the process without photon emission. The first term in the equation corre-

sponds to the Low’s soft photon amplitude: M(a→ bγ(k))|k→0 = S⊗M(a→ b),

where S is the universal soft function that multiplies M0. It can be verified that

the Low’s term alone is gauge invariant. Computing this term is straightforward

as the hadronic contribution is the same as in the case of the non-radiative am-

plitude. The remaining part is denoted asM ′(k) and represents the non-infrared
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contribution. Unlike the Low’s term, which is of O(1/k), the terms in M ′(k) are

of O(k) and higher. We will now focus on evaluating M ′(k).

We can express M ′(k) as the sum of two contributions: M ′
lept, arising

from photon emission from the leptons, and M ′
mes, arising from photon emission

from the mesons. These contributions are given by:

M ′
lept = eϵα(k)

[
ū(p2)γ

α /k

2p2.k
ΓµAv(p3)− ū(p2)Γ

µ
A

/k

2p3.k
γαv(p3)

]
⊗HAµ(pB, pK)

(3.16)

and

M ′
mes = −eϵα(k)

[
QBαA

2pαB
2pB.k

+QKβA
2pαK
2pK .k

]
ū(p2)Γ

µ
Av(p3) kµ (3.17)

where αA = A′ + B′ or C ′ +D′ and βA = A′ − B′ or C ′ −D′ for A = 1, 2. We

have used the fact that the general structure of HAµ can be written as

HAµ(p, q) = XA pµ + YA qµ (3.18)

which allows us to incorporate the appropriate momentum dependence when an

additional photon is emitted.

Thus, the total contribution beyond Low’s soft photon contribution is

given by

M ′(k) =M ′
lept +M ′

mes (3.19)

The gauge invariance of M ′(k) can be verified by making the replacement ϵα →

kα. This replacement yields zero for M ′
lept, indicating its gauge invariance. On

the other hand, for M ′
mes, the replacement yields

M ′
mes|ϵα→kα = −e(QB +QK)ξAkµ [ū(p2)Γ

µ
Av(p3)] (3.20)

where ξA = A′(q2), (C ′(q2)) for A = 1(2).

This violation of gauge invariance indicates that a contribution should

be added to ensure gauge invariance of the full amplitude. The contribution is

a negative of the above quantity. This additional contribution takes the form
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of a contact term and can be incorporated into the effective Hamiltonian at the

hadronic level as follows:

HCT
eff = ieξA(QB +QK) [ū(p2)Γ

α
Av(p3)]Aα (3.21)

This contact term, shown in Fig.(3.2b), contributes to both the real emission

and virtual corrections and is of O(k). It should be noted that the contact term

is proportional to the sum of the charges QB and QK , and thus has no effect

when B and K are neutral.

Here, we would like to take a short detour and compare our method

of calculating the contact term with the one adopted in Ref.[117]. Our method

[26] of determining the contact terms differs from the approach adopted in [117].

In that work, a mesonic level Lagrangian with a specific operator structure is

assumed, and the contact terms are obtained by applying the minimal coupling

prescription ∂µ → ∂µ−ieAµ. In contrast, the contact terms obtained here include

effects from all operators contributing to this process. As a result, there may be

slight differences in the numerical values of the corrections compared to those in

[117]. However, there is generally good agreement between the two results.

After addressing the gauge invariance requirement by fixing the con-

tact term, our next step is to compute the O(αem) corrections. This involves

evaluating the rate of real photon emission and the virtual corrections to the

non-radiative amplitude at that order. We then square the amplitude, taking

into account the interference terms between the lowest order and O(αem) con-

tributions. Finally, to compare with experimental observations, we add these

two components incoherently. Our calculations closely follow the methodology

described in [73]. To handle the infrared divergences, we introduce a small mass

mγ = λ for the photon. This regularization takes care of IR divergences. While

the loop integrals are regularized using Dimensional Regularization.

3.3.2 Real Photon Emission

The total contribution to the amplitude of real photon emission in the process

B(pB) → K(pK)ℓ
+(p2)ℓ

−(p3)γ(k) is obtained by combining Low’s infrared (IR)
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terms, M ′(k), with the contribution from the contact term. At the level of decay

rate, we can express it as:

dΓreal = dΓ0(2αemB̃) + dΓ′ (3.22)

Here, dΓ0 represents the decay rate without photon emission, and the quantity

B̃ captures the IR contribution arising from Low’s term. It is given by:

B̃ =
1

8π2

∫
d3k√
k2 + λ2

(∑
i

Qiηip
α
i

pi.k

)2

(3.23)

We can observe that in the present case, the universal soft factor S is given by

the product of the photon polarization vector ϵα(k) and T̃α(k), which can be

expressed as:

T̃α(k) = − 2pαi ηi
2k.piηi

+
2pαj ηj

2k.pjηj

By utilizing charge conservation (
∑

iQiηi = 0), we can rewrite B̃ as:

B̃ =
1

8π2

∫ kmax

0

d3k√
k2 + λ2

∑
i ̸=j,i<j

QiQjηiηj

(
pαi
pi.k

−
pαj
pj.k

)2

(3.24)

Here, we have explicitly introduced kmax, representing the maximum photon

energy of the soft photon. The theoretical rate will therefore depend on the

chosen value of kmax. As evident from the above equation, the indices i and j

take values of i = 1, 2, 3 and j = 2, 3, 4, corresponding to the particles B, K, ℓ+,

and ℓ−, respectively.

The contribution of B̃ in the decay of the charged B meson consists of

six terms, given by:

B̃ = B̃BK + B̃Bl+ + B̃Bl− + B̃Kl+ + B̃Kl− + B̃l+l−

Upon integrating over k, B̃ can be expressed as (refer to Appendix-B for the
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encountered integrals during the calculation):

B̃ij =
QiQjηiηj

2π

{
ln

(
k2maxmimj

λ2EiEj

)
− pi.pj

2

[∫ 1

−1

dx

p2x
ln

(
k2max
E2
x

)
+

∫ 1

−1

dx

p2x
ln

(
p2x
λ2

)]}
(3.25)

To simplify the evaluation of the above integrals, we introduce the following

combinations as convenient parameterizations:

2px = (1 + x)pi + (1− x)pj

2Ex = (1 + x)Ei + (1− x)Ej

2p′x = (1 + x)piηi − (1− x)pjηj (3.26)

Here, pi,j represent the four-momenta, while Ei,j denote the energies of the par-

ticles. These relations yield:

p2x = (1 + x)2p2i + (1− x)2p2j + 2(1− x2)pi.pj

p
′2
x = (1 + x)2p2i + (1− x)2p2j − 2(1− x2)pi.pjηiηj (3.27)

The contribution to the decay rate that does not involve IR effects consists of

terms beyond the Low’s term in the amplitude, starting from order O(k) and

higher. These terms, along with the interference between the IR and non-IR

terms, contribute to the remaining terms in the decay rate. Upon investigation, it

is found that the squared non-IR terms have a negligible impact and are therefore

not considered in the analysis. However, the interference terms play a significant

role. These interference terms depend on the angle θ between the negatively

charged lepton and the photon. It is observed (as demonstrated below) that the

correction factor, denoted as ∆i (with i = e or µ), is highly sensitive to a lower

angular cut θcut for i = e due to the small mass of the electron. Conversely, for

the chosen values of kmax, there is minimal effect when i = µ.

3.3.3 Virtual Photon Corrections

There are three types of diagrams that contribute to virtual corrections: (a)

diagrams with a photon starting and ending at the same charged particle leg
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(see Fig.(3.3a)); (b) diagrams with a photon line connecting two different charged

particles (see Fig.(3.3b) and Fig.(3.3c)); (c) diagrams with a photon originating

from the effective vertex (contact term) and ending on a charged particle leg (see

Fig.(3.3d)).

Let us first examine the set of diagrams arising from the contact term,

specifically focusing on the case where the photon from the contact vertex at-

taches to the lepton leg. This contribution is canceled out by an equally opposite

diagram where the photon attaches to the anti-lepton leg. The other two dia-

grams, where the photon from the contact vertex ends at either the B or K leg,

can be evaluated straightforwardly. These diagrams exhibit UV divergences as

well as a finite part (MCT ). To eliminate or absorb these UV divergences sys-

tematically, additional higher-dimensional operators are required. It is important

to note that the motivation behind introducing the contact term was to ensure

gauge invariance of the real emission amplitude. Since this amplitude is of O(e),

the resulting contact term is also of the same order, involving only one photon. It

is possible, however, to have terms that vanish for on-shell photons but can con-

tribute to virtual corrections. When evaluating the virtual corrections, an extra

factor of e is introduced, making this correction of O(e2). From the perspec-

tive of an effective theory, operators corresponding to terms involving leptons,

B and K mesons, and two photons, such as the one depicted in Fig.(3.4), can

exist. These operators would give rise to diagrams similar to those shown on the

right side of Fig.(3.4). In dimensional regularization, scale-less integrals simply

evaluate to zero. To ensure consistency, it becomes necessary to include other

higher-dimensional operators at O(e), including derivative operators, up to the

given order. One possible approach is to begin with the effective Hamiltonian,

which includes the one-photon contact term, and then impose gauge invariance

on the two-photon emission amplitude. This process would determine the two-

photon contact term and potentially introduce additional terms corresponding

to higher-dimensional operators. However, it should be noted that there is no

guarantee that these terms will be completely determined, as their determina-

tion relies on the on-shellness of the two photons. Alternatively, following the

suggested prescription in [117], one can consider higher-dimensional derivative
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Figure 3.4: Two photon Contact Term. (Left) real emission (Right) Virtual
correction

operators and use minimal coupling to generate the required terms. However, it

is important to exercise caution, as the minimal coupling prescription may have

ambiguities [119]. Careful consideration should be given to fixing the structure

of such terms, while also acknowledging the possibility of multiple structures for

these terms 1. Perhaps a more suitable approach would involve starting with

quark-level operators and computing the matrix element, for example, using the

sum rule approach:

⟨K(pK)ℓ
+ℓ−γ(k)|(ℓ̄Γµℓ) (s̄Γ′

µb)|B(pB)⟩ ∝ ϵα
∫
d4xeik.x⟨K(pK)ℓ

+ℓ−|T
[
jemα (x)

(ℓ̄Γµℓ)(s̄Γ
′
µb)(0)

]
|B(pB)⟩

This matrix element generally consists of two types of terms: (i) photon emis-

sion from the leptons multiplied by the B to K matrix element, and (ii) photon

emission from the hadronic system. By employing the QED Ward identity, the

general structure of the hadronic tensor can be determined, and subsequently,

the new form factors can be evaluated or at least estimated within the factoriza-

tion approximation. This procedure can be repeated for the case of two-photon

emission. It is evident that evaluating these new matrix elements can become

quite challenging. Therefore, a separate analysis will be conducted, comparing

the results obtained from different approaches. Considering the complexities

involved, which are beyond the scope of this study, we opt to disregard the en-

countered UV divergences in the evaluation of diagrams involving the contact

term and incorporate only the finite parts in our calculation. Explicit numerical

tests confirm that these finite contributions are relatively insignificant and do

1The need to go beyond minimal coupling is also emphasized in [117].
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not significantly impact the precision of the overall computation.

Upon evaluating the remaining diagrams, the following expression is

obtained:

Mvirtual = M0

[
1 + αemB +

αem
2π

]
+MCT (3.28)

In this equation, the last term in the parentheses represents the magnetic

moment-like term, which is free from divergences. The quantity denoted as

B encompasses contributions from the self-energy and vertex corrections, given

by:

B =
i

8π3

∫
d4k

1

(k2 − λ2 + iϵ)

[ 4∑
i=1

Q2
i (2pi − k)2

(k2 − 2k.pi)2

−2
∑

i ̸=j,i<j

QiQjηiηj(2piηi − k).(2pjηj + k)

(k2 − 2k.piηi)(k2 + 2k.pjηj)

]
(3.29)

Using charge conservation
∑

iQiηi = 0, B can be rewritten as:

B =
−i
8π3

∫
d4k

1

(k2 − λ2 + iϵ)

∑
i ̸=j,i<j

QiQjηiηj

(
2pαi ηi − kα

k2 − 2k.piηi
+

2pαj ηj + kα

k2 + 2k.pjηj

)2

(3.30)

Here, i = 1, 2, 3 and j = 2, 3, 4, where the numbers 1, 2, 3, and 4 represent the

particles B, K, ℓ+, and ℓ−, respectively.

Now, in the case of B → Kℓ+ℓ−, where both the mesons and the leptons

are charged, a total of six diagrams contribute to B. These contributions can be

divided as follows:

B = BBK +BBl+ +BBl− +BKl+ +BKl− +Bl+l−

After integrating over k and employing Dimensional Regularization, the general

structure of Bij is calculated to be:

Bij =
−1

2π
QiQjηiηj

[
ln(

mimj

λ2
) +

1

4

∫ 1

−1

dxln(
p
′2
x

mimj

) +
pi.pjηiηj

2

∫ 1

−1

dx

p′2
x

ln(
p
′2
x

λ2
)

]
(3.31)

The relevant integrals encountered are collected in Appendix-B.
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3.3.4 Sommerfeld factor

We have also taken into account the Sommerfeld enhancement factor, also known

as the Coulomb factor, which arises from the difference in scattering between the

presence and absence of a potential [71]. This correction is a multiplicative factor

given by:

Ωc =
−2παem
βij

1

e
−2παem

βij − 1
(3.32)

Here, βij represents the relative velocity between the ith and jth particles and is

defined as:

βij =

√
1−

m2
im

2
j

(pi.pj)2
. (3.33)

3.3.5 Total O(αem) QED corrections

Now we can proceed to compute the decay rate up to O(αem):

dΓreal = dΓ0

(
1 + 2αemB̃ + 2αemB +

αem
π

)
Ωc (3.34)

Both B̃ and B (or equivalently B̃ij and Bij) depend on the fictitious photon

mass λ, which was introduced to regulate the IR divergences. It is expected

that the final result for the physical rate should be independent of λ. We define

Hij = Bij + B̃ij as follows:

Hij =
−QiQjηiηj

2π

[
− ln

(
k2max
EiEj

)
+

1

4

∫ 1

−1

dx ln

(
p
′2
x

mimj

)
+
pi.pjηiηj

2

∫ 1

−1

dx

p′2
x

ln

(
p
′2
x

λ2

)
+
pi.pj
2

∫ 1

−1

dx

p2x
ln

(
k2max
E2
x

)
+
pi.pj
2

∫ 1

−1

dx

p2x
ln

(
p2x
λ2

)]
(3.35)

where

p
′2
x = (1 + x)2p2i + (1− x)2p2j − 2(1− x2)pi.pjηiηj

p2x = (1 + x)2p2i + (1− x)2p2j + 2(1− x2)pi.pj



3.3. QED Corrections to B → Kℓℓ 75

We observe that for ηiηj = −1 (i.e., one incoming and one outgoing particle),

p
′2
x = p2x, leading to the cancellation of the λ2 term in Hij. In the other case

when ηiηj = 1 (both are either incoming or outgoing particles), changing x→ 1/x

leads to p
′2
x → p2x/x

2 and the final result is again independent of λ. (Note: Since

x ∈ (−1, 1), changing it to 1
x
leads to trouble at x = 0. We have verified that

the imaginary part of the quantity B corresponds to the Coulomb/Sommerfeld

factor. As we have explicitly considered this term, we only consider the real part

of B when evaluating the results.) This explicitly confirms that the physical rate

is independent of the IR regulator λ introduced in the intermediate steps of the

calculation, ensuring that it is free from IR divergences. This serves as a crucial

validation of the performed calculation.

The double differential decay rate up to O(αem), denoted by i = 0 or c

for neutral and charged B decay modes respectively, can be expressed as follows:

d2Γi

dsdq2
=

d2Γ0

dsdq2
(
1 + ∆i

)
(3.36)

Here, the correction factor ∆i is defined as

∆i =

(
d2Γi

dsdq2

)
(
d2Γ0

dsdq2

) − 1 (3.37)

The term ∆i includes corrections arising from both IR factors and non-IR factors

up to O(k) terms. We have explicitly verified that the contribution from O(k2)

terms is negligible and therefore disregarded in the analysis. Additionally, we

consider the shift in RKµe caused by the QED corrections, denoted as ∆i
RKµe ,

defined as follows:

∆i
RKµe = R0

Kµe

(
∆Γiµ
Γiµ

− ∆Γie
Γie

)
(3.38)

In the following discussion, we will delve into the impact of these QED correc-

tions.
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3.4 Results

The QED corrections, including both real and virtual contributions up to

O(αem), are represented by the quantity ∆i (refer to Eq. (4.34)). Here, i in-

dicates the neutral (i = 0) or charged (i = c) B decay modes. The electron

and muon channels are depicted in Fig.(3.5), illustrating the correction factors

for different choices of the maximum photon energy kmax of these soft photons

and the angular cut θcut. Notably, the correction factor for electrons is approxi-

mately three times larger than that for muons, with both factors being negative,

indicating a decrease in the decay rate. This difference primarily arises from the

significantly smaller electron mass compared to the muon mass, differing by ap-

proximately two orders of magnitude. Consequently, the QED corrections have

a more substantial impact on lighter particles, whereas the influence on heavier

charged particles is relatively diminished. A slight dependence on the chosen

photon energy cut, kmax, can be observed. Another noteworthy aspect is the

sensitivity to θcut, especially in the case of electrons. However, by selecting θcut

to be around a few degrees, this sensitivity essentially vanishes.

An important group of terms to consider are the IR terms that exhibit

a logarithmic dependence on the lepton mass, ln(ml). Figure (3.6) illustrates the

sensitivity to ml. The lower two curves correspond to the expected behavior for

electrons and muons, respectively, with a contribution of approximately 10% as

seen in ∆i. However, the blue curve represents the case where ml = 10−50 MeV,

and it is evident that the contribution is significantly larger. This contribution

will continue to increase as ml approaches zero. To address this issue, employ-

ing a small θcut in the range of a few degrees is effective. These ln(ml) terms

correspond to hard collinear logarithms, which have been proven to cancel out

rigorously. This agrees with [117]. It is worth noting that all other IR diver-

gences, including the ln2(ml) terms, are explicitly observed to cancel out when

the virtual corrections and real emission terms are combined.

Figure (3.7) illustrates the impact of QED effects on ∆i
Rµe

K
, as defined in

Eq. (3.38), for a θcut of 3
◦ as a function of q2. It is notable that the charged mode

is more affected due to the additional contributions from the contact term, which
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Figure 3.5: O(αem) corrections to neutral and charged B → Kℓℓ modes. Left:
electrons, Right: muons

is absent in the neutral mode due to its proportional dependence on (QB +QK).

The QED effects are significant, reaching approximately 20% for electrons (∼ 5%

for muons), resulting in an increase in ∆i
RKµe and subsequently in Rµe

K . However,

it should be emphasized that all the quantities are sensitive to the choice of kmax

and θcut. For kmax = 25 MeV, the shift in Rµe
K over the q2 range is approximately

20%. Nevertheless, as kmax is increased to 125 MeV, the shift decreases to about

10%. This outcome is expected, as with the increase in kmax, muons begin to

behave similarly to electrons, where both their masses (me and mµ) are much

smaller than kmax. Consequently, we have verified that in such cases, ∆i
Rµe

K

approaches zero.

In particular, choosing θcut ∼ few degrees and kmax ∼ 250 MeV, leads

to ∼ 5%, (positive) shift in Rµe
K :

∆
(c)

Rµe
K

= 5.34%, ∆
(0)

Rµe
K

= 7.43% (3.39)

The electron modes exhibit substantial QED corrections of approximately 20%,
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Figure 3.7: Shift in Rµe
K due to O(αem) QED effects

whereas the muon modes experience smaller corrections. We have also verified

that selecting different kmax values for muons and electrons alters the shift in

Rµe
K , resulting in a final value of Rµe

K , including the QED effects, deviating from

unity by a few percent. This observation is broadly consistent with [117]. The

two studies differ primarily in the treatment of the contact term(s), leading to

some numerical discrepancies, as well as in handling the ln(ml) terms and phase

space. Despite these dissimilarities, it is encouraging to observe that similar

conclusions are drawn regarding the physical quantities.

3.5 Discussion and Conclusions

We have performed the calculations of the O(αem) QED effects in the decay

process of B → Kℓ+ℓ−. These corrections have a negative impact, resulting in a

decrease in the decay rates. To ensure gauge invariance in the emission amplitude

of a single photon, we treated the mesons as point particles and utilized scalar
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QED. By doing so, we were able to determine the contact term. We proceeded

to calculate both the real and virtual QED effects. During the computation of

virtual corrections associated with the contact term, we encountered UV diver-

gences, which are expected to cancel out when considering higher-dimensional

terms like two-photon contact terms. However, for the present analysis, we took

a phenomenological perspective and neglected these divergences, focusing solely

on the finite terms. To regulate the IR divergences, we introduced a fictitious

photon mass, denoted as λ, as an IR regulator. Importantly, we have shown that

the physical differential decay rate remains independent of the chosen regulator

λ, thereby confirming the cancellation of the soft divergences.

The choice of the maximum soft photon energy, kmax, and the photon

angle relative to the charged lepton, θcut, has a notable impact on the physical

decay rate and the ratio of rates between muons and electrons. We also discussed

the significant influence of the ln(ml) terms, which can be mitigated by setting

θcut to a few degrees. In particular, the electron channels display corrections of

approximately 10-20%, while the corrections for muons, under the same kmax and

θcut conditions, are around 5%. With kmax ∼ 250 MeV, the corrections to the

lepton flavor universality ratio, Rµe
K , are roughly 5%. This correction appears

significant, especially considering that the observable Rµe
K is close to unity within

the standard model, disregarding these QED effects. Consequently, this would

further exacerbate the tension between theory and experimental observations.

However, caution is necessary. The reported 5% positive shift in Rµe
K is based

on the assumption of using the same kmax and θcut values for both electrons and

muons. Adjusting these parameters to match the actual experimental criteria

would lead to different outcomes.

In conclusion, the study highlights the significance of including QED

effects in B → Kℓ+ℓ− decays as a source of important corrections. While the

individual decay rates, especially for electrons, undergo substantial corrections,

it is crucial to consider appropriate experimental cuts that suit the specific ob-

servables. For instance, the lepton flavor universality ratio Rµe
K may experience

only minimal shifts of a few percent, contingent upon the chosen cuts. This em-

phasizes the need for meticulous attention when comparing experimental results
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with theoretical calculations. It should be noted that our study, along with the

findings of [117], does not fully address the issue of remaining UV divergences

and the computation of two-photon contact terms (as well as higher-dimensional

operators relevant to the matter), warranting further investigation in this direc-

tion. This is particularly important to ensure an unambiguous comparison with

experimental data, given that observables such as Rµe
K are considered highly re-

liable probes of the SM and potential indicators of NP beyond it.



Chapter 4

A Novel observable:
|Vub|
|Vcb|

In Chapter-3, we observed that the decay rate for B → Kℓℓγ, γ being soft,

and the LFU ratio RK show sensitivity to kmax (maximum energy of the soft

photon). On general grounds, similar corrections are expected for other modes

as well; both charged current and neutral current. This motivates us to search

for observables that exhibit minimal sensitivity to QED effect in addition to

non-perturbative parameters such as form factors. This chapter involves the

detailed study of one such observable, RV = |Vub|
|Vcb|

, which is found to be least

sensitive to the choice of form factors as well as QED corrections. Further, the

CKM elements Vub and Vcb individually show the tension between exclusive and

inclusive measurements but the ratio, RV , is found to be equal1. It then leads to

phenomenological applications, which we discuss in this chapter. This chapter is

based on the findings presented in [27].

4.1 Introduction

As discussed in Chapter 1, The Cabibbo-Kobayashi-Maskawa (CKM) matrix is

a fundamental component of the SM that describes the mixing of quark flavors.

It is a unitary matrix that relates the weak interaction eigenstates (flavor eigen-

states) to the mass eigenstates of quarks. The CKM matrix is characterized by

four independent parameters, which are fundamental in the SM. Consequently, a

1RV is constructed using the PDG values of exclusive and inclusive measurements of Vub

and Vcb. See Secttion-4.1 for details

81
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precise determination of the elements of the CKM matrix is of great significance,

both for confirming the validity of the SM and for exploring physics beyond it.

Exploring processes mediated by charged currents (CC) and neutral currents

(NC) is essential for this goal. Within the framework of the SM, CC processes

occur at the tree level, involving direct interactions between charged weak bosons

(W bosons) and fermions. In contrast, FCNC processes exclusively occur at the

loop level in the SM.

The decay of a B meson into a D or π meson at the quark level involves

the exchange of a virtual W boson, which then decays into a ℓ-νℓ pair. The

amplitudes of these semileptonic decays of B mesons are governed by the CKM

matrix elements |Vcb| and |Vub| for D and π decays, respectively. These CKM

elements represent the strengths of the flavor-changing weak interactions between

different generations of quarks and are fundamental parameters in the Standard

Model [120–122]. The amplitudes of these decays can be factorized into leptonic

and hadronic parts, allowing us to separate the hadronic uncertainties arising

from our limited understanding of strong interactions. These semileptonic decays

present valuable opportunities to measure the CKM elements |Vcb| and |Vub|. An

alternative approach to extract these CKM elements is through inclusive decays,

such as B → Xc,uℓνℓ [111, 123–126]. While there are other exclusive modes that

can be investigated, our discussion will primarily focus on the B → Dℓν and

B → πℓν decay modes.

Experimental measurements have revealed a notable difference of ap-

proximately 3σ for |Vcb| and 3.5σ for |Vub| between the inclusive and exclusive

measurements. These differences are commonly known as the |Vub| and |Vcb| puz-

zles, or the ”inclusive” versus ”exclusive” puzzles [124, 127, 128]. Now, whether

these discrepancies indicate hints of new physics or simply reflect the underes-

timation of theoretical and/or experimental uncertainties remains open2 [130].

The main source of theoretical uncertainties arises from the computation of non-

2A recent article by Belle [129] highlights the simultaneous measurement of inclusive and
exclusive |Vub|, which reduces the discrepancy to approximately 1.6σ. Though, it reduced
uncertainties but did not resolve the discrepancy completely. Also, the CKM element itself is
not free from QED effects. Therefore, the current status is not fully conclusive. In light of
this, the proposed observable RV remains a promising alternative in this context.
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perturbative quantities involved in the given decay modes and the application of

appropriate kinematical cuts.

Although significant progress has been made in reducing theoretical un-

certainties through the use of more precise form factors calculated using Light

Cone Sum Rules (LCSRs) and lattice QCD, completely eliminating these uncer-

tainties remains a formidable challenge with our current understanding of strong

interactions. As a result, a quest for observables where the impact of hadronic

uncertainties can be eliminated or significantly minimized is a natural step for-

ward. In this context, Various lepton flavor universality (LFU) ratios have been

proposed, such as RK(∗) and RD(∗) [131]. The ratio RK(∗) compares the branching

ratio of B → K(∗)µµ to that of B → K(∗)ee, while RD(∗) compares the branching

ratio of B → D(∗)τν to that of B → D(∗)µν.

To ensure the reliability of LFU ratios, in probing new physics, it is es-

sential to investigate the impact of soft photon corrections. While experimental

analyses incorporate some effects of soft photons using tools like the PHOTOS

Monte-Carlo generator [62, 63], certain contributions related to the hadron struc-

ture, interference between initial and final state emissions, and virtual corrections

are not fully accounted for by PHOTOS. Consequently, understanding the com-

plete dynamics, including these contributions, becomes crucial. Recent studies

have demonstrated that incorporating these effects reveals sensitivity of LFU

ratios to soft photon QED corrections [26], particularly when specific photon

energy and angular cuts are applied. This highlights the need to identify observ-

ables that exhibit reduced sensitivity to both hadronic uncertainties and QED

corrections arising from soft photons.

Experimentally the ratio of the CKM elements |Vub|
|Vcb|

is determined using

two different modes. Firstly, the baryonic modes Λob → pµ−ν̄µ and Λob → Λ+
c µ

−ν̄µ

yield |Vub|/|Vcb| = 0.083 ± 0.004 [132, 133]. Secondly, the mesonic modes Bo
s →

K−µ+νµ and Bo
s → D−

s µ
+νµ give |Vub|/|Vcb| = 0.095± 0.008 (0.061± 0.004) for

high q2 (for low q2) [134]. Interestingly, when considering the PDG values [45],

the ratio |Vub|
|Vcb|

obtained from exclusive determinations of |Vub| and |Vcb| exhibits

remarkable agreement with the ratio derived from their inclusive determinations.
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More specifically,

|Vub|
|Vcb|

∣∣∣high q2
excl

= 0.094± 0.005
|Vub|
|Vcb|

∣∣∣high q2
incl

= 0.101± 0.007. (4.1)

Intrigued and motivated by these findings, we consider the ratio RV = |Vub|
|Vcb|

, in

the present study. We demonstrate that the ratio RV receives negligible cor-

rections from soft photons and is also minimally influenced by choice of form

factors used for B → D and B → π transitions. It should be noted that the

experimental extractions mentioned earlier differ in the low- and high-q2 regions

due to variations in the employed form factors. This arises from the fact that

different approaches yield form factors with different accuracies in different q2

regions. Hence, it is crucial to carefully select the q2 range to ensure that the

observable is least affected by the choice of form factors. When we state that

RV is independent of form factor choice, we mean that it is less sensitive to the

form factors.

Considering these advantages, we propose the use of RV in phenomeno-

logical studies as it serves as a cleaner observable compared to conventional lepton

flavor universality ratios. Furthermore, it has greater potential for probing new

physics.

4.2 Non-radiative B → Pℓνℓ (P = D, π)

Let us consider the decay process B(pB,mB) → P (pP ,mP )ℓ(pl,ml)νℓ(pn, 0),

where P represents a pseudo-scalar meson such as D or π. The relevant Feynman

diagram is shown in Fig.(4.1). The second-order differential decay rate for this

process can be fully described by two independent Lorentz invariant variables:

y =
2pB.pl
m2
B

, and z =
2pB.pP
m2
B

. (4.2)

Alternatively, we can use the Mandelstam variables q2 = (pB − pP )
2 ≡ m2

B +

m2
P − 2pB · pP and sBℓ = (pB− pl)

2 ≡ m2
B +m2

l − 2pB · pl instead of y and z. The

matrix element for B → Pℓνℓ can be decomposed into the hadronic and leptonic
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Figure 4.1: Feynman diagram for B → D(π)ℓνℓ.

part as:

M0(B → Pℓνℓ) =
GF√
2
VqbHµLµ. (4.3)

Here, |Vqb| (where q = c, u) represents the CKM matrix element, and GF is

the Fermi constant. Lµ(= ℓ̄γµ(1− γ5)νℓ) and Hµ are the leptonic and hadronic

matrix elements, respectively. Hµ, can be expressed in terms of two form factors,

f+P and fP0 , which depend on the momentum transfer q2:

Hµ = (pB + pP )µ.f
P
+ + (pB − pP )µ.f

P
− (4.4)

where fP− =
m2

B−m2
P

q2
(fP0 − fP+ ). The computation of these form factors involves

various techniques like LCSRs and lattice QCD. However, as we shall see, the

choice of form factors does not significantly affect the determination of |Vub|
|Vcb|

(see

Sec- 4.4).

For the present purpose, we adopt a model-independent parametriza-

tion for B → Dℓνℓ and a z-expansion parametrization for B → πℓνℓ.

Next, the total decay width of the non-radiative process B → Pℓνℓ is

given by:

Γ0 =
mB

256π3

∫
dz

∫
dy |M0|2B→Pℓνℓ

, (4.5)

where |M0|2B→Pℓνℓ
=
G2
F

2
|Vqb|2

(
(fP0 )

2c1 + (fP+ )
2c2 + fP0 f

P
+ c3
)
, (4.6)
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and the coefficients ci (where i = 1, 2, 3) are calculated as:

c1 = −
4(m2

B −m2
P )

2m2
l

(
(z − 1)m2

B +m2
l −m2

P

)
(m2

P − (z − 1)m2
B)

2
,

c2 = − 4m2
B

(m2
P − (z − 1)m2

B)
2

[
− (z − 1)m4

B

(
m2
l (4y(z − 2) + 3z2 − 8z + 8)

+4m2
P (2y

2 + 2y(z − 2)− 3z + 3)
)
+m2

B(m
2
Pm

2
l (4y(z − 2) + 3z2 − 4z + 4)

+(z − 2)2m4
l + 4m4

P (y
2 + y(z − 2)− 3z + 3)) + 4(y − 1)(z − 1)2m6

B

(y + z − 1)− 4m2
Pm

2
l + 4m2

P

]
, and

c3 =
8m2

B(m
2
B −m2

P )m
2
l

(m2
P − (z − 1)m2

B)
2

[
(z − 1)m2

B(2y + z − 2)− (z − 2)m2
l

−m2
P (2y + z − 2)

]
. (4.7)

4.2.1 Form factors for B → P (= D, π)ℓνℓ

The form factors for the B → Dℓνℓ decay in the model-independent parametriza-

tion can be expressed as: (based on [122])

fD+ (q2) =
1√
r
[(1 + r)h+ − (1− r)h−] ,

fD− (q2) =
1√
r
[(1 + r)h− − (1− r)h+] , and

fD0 (q2) = fD+ (q2) +
1 + r2 − 2rw

1− r2
fD− (q2).

Here r = mD

mB
, w = pB .pD

mBmD
,

h+ = ξ

[
1 +

α

π

(
CV1 +

1 + w

2
(CV2 + CV3)

)
+ (ϵc − ϵb)L1

]
, and

h− = ξ

[
α

π

1 + w

2
(CV2 − CV3) + (ϵc − ϵb)L4

]



4.2. Non-radiative B → Pℓνℓ (P = D, π) 87

with z = mc

mb
, L1 = 0.72(w − 1), L4 = 0.24, ϵc = 0.1807, ϵb = 0.0522, ξ =

(
2

1+w

)2
,

CV1 =
1

6z(w − wz)

[
2(w + 1)

(
(3w − 1)z − z2 − 1

)
rw +

(
12z(wz − w)−

(z2 − 1) log z
)
+ 4z(w − wz)Ω

]
,

CV2 =
−1

6z2(w − wz)2
[ (

4w2 + 2w)z2 − (2w2 + 5w − 1)z − (w + 1)z3 + 2
)
rw

+z (2(z − 1)(wz − w)+)
]
,

CV3 =
1

6z(w − wz)2

[ (
(2w2 + 5w − 1)z2 − (4w2 + 2w)z − 2z3 + w + 1

)
rw

+
(
(3− 2w)z2 + (2− 4w)z + 1

)
log z + 2z(z − 1)(wz − w)

]
.

with rw = log(w+)√
w2−1

, wz =
1
2

(
z + 1

2

)
and

Ω =
w

2
√
w2 − 1

[
2Li2(1− w−z)− 2Li2(1− w+z) + Li2(1− w2

+)− Li2(1− w2
−)
]

−wrw log z + 1.

Here, w+ = w +
√
w2 − 1, w− = w −

√
w2 − 1.

For B → πℓνℓ, the form factors in the z-expansion parametrization are

expressed as,(based on [135]):

fπ+(q
2) =

f+(0)
π

1− q2

m2
B∗

{
1 +

N−1∑
k=1

bk
(
z(q2, t0)

k − z(0, t0)
k − (−1)N−K k

N

[
z(q2, t0)

N

−z(0, t0)N
])}

, and

fπ0 (q
2) = fπ0 (0)

{
1 +

N∑
k=1

b0k
(
z(q2, t0)

k − z(0, t0)
k
)}

.

Here, z(q2, t0) =

√
(mB +mπ)2 − q2 −

√
(mB +mπ)2 − t0√

(mB +mπ)2 − q2 +
√

(mB +mπ)2 − t0
, fπ0 (0) = fπ+(0) =

0.281, b1 = −1.62, b01 = −3.98 and t0 = (mB + mπ)
2 −

2
√
mBmπ

√
(mB +mπ)2 − q2. Importantly, these form factors are applicable

across the entire range of q2.

Now, let us discuss the impact of soft photon emission on this decay

width.
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4.3 Soft photon.QED corrections to B → Pℓνℓ

We consider two scenarios for the charge assignment of the particles involved in

the process: firstly, where the particle denoted as P is charged and the B meson

is neutral, and secondly, where the B meson is charged and P is neutral. The

computation of soft photon corrections in both cases follows a similar procedure,

with minor variations in the selection of kinematic variables. In this discussion,

our focus will be on the case of B− → P 0ℓ−ν̄ℓ, and we will highlight any necessary

distinctions for the case of B0 → P+ℓ−ν̄ℓ when relevant.

4.3.1 Real photon emissions

The Feynman diagrams depicting the real emission of photon are illustrated in

Figure (4.2). Assuming point-like mesons and utilizing scalar QED, the ampli-

tude for B → Pℓνℓγ with a soft photon can be expressed as the sum of eikonal

term (which is IR divergent) and an IR safe term.

MB→Pℓνℓγ = MIR +MNIR. (4.8)

Here, MIR = eϵαM0

(
− pαB
pB.k

+
pαl
pl.k

)
(4.9)

is the amplitude due to soft photon and the term in parenthesis is called the

(a) (b)

Figure 4.2: (a) Diagram illustrating real photon emission from one of the external
charged particles (denoted by ×). (b) Diagram representing the Contact Term
(CT) contribution.

universal soft factor. MNIR includes the contributions from the contact term
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and the residual term. Explicitly, the MNIR is given by

MNIR =
GF√
2
Vqb(Mres +MCT). (4.10)

Here,

Mres = eϵα(k)
[(
ū(pl)γ

α /k

2pl.k
Γµv(pn)

)
⊗Hµ(pB, pP )

+(fP+ + fP− )
pαB
pB.k

ū(pl)Γ
µv(pn) kµ

]
,

MCT = −eϵµ(k)(fP+ + fP− )ū(pl)Γ
µv(pn). (4.11)

The inclusion of the contact term is crucial to fix the gauge invariance of the

amplitude and is constructed following the procedure outlined in Chapter- 3. It

is noteworthy that the contact term is proportional to the charge of the meson

rather than the lepton. This implies that the leptonic contribution is gauge

invariant on its own, while the contact term is required to ensure gauge invariance

of the hadronic contribution. The contact term can be incorporated through an

effective term in the Hamiltonian at the hadronic level, expressed as follows:

HCT = −ie(fP+ − fP− ) [ū(pl)Γ
αv(pn)]Aαϕ

†
PϕB. (4.12)

It contributes to both real and virtual corrections. Taking into account the

contribution from the CT, the complete gauge-invariant amplitude for real soft

photon emission can be expressed as follows:

MB→Pℓνℓγ = eϵα(k)
[
M0

(
− pαB
pB.k

+
pαl
pl.k

)
+ ū(pl)

γα/k

2pl.k
Γµv(pn)Hµ

+ (fP+ + fP− )ū(pl)

(
pαB
pB.k

/k − γα
)
(1− γ5)v(pn)

]
. (4.13)

From Eqs. (4.9) and (4.10)

|MB→Pℓνℓγ|
2 = |MIR|2 + |Mres|2 + |MCT|2 + 2Re(M∗

IRMres)

+2Re(M∗
IRMCT) + 2Re(M∗

resMCT). (4.14)



90 Chapter 4. A Novel observable: |Vub|
|Vcb|

Numerically contributions from |Mres|2, |MCT|2, 2Re(M∗
IRMCT) and

2Re(M∗
resMCT) are found to be very small, typically less than 0.1%. There-

fore, we neglect these terms and focus only on the remaining terms for numerical

computations, as they provide significant contributions to the decay width.

Collinear divergences may arise during these computations. However,

the decay rate is less sensitive to collinear divergences when the final state con-

tains heavy leptons (ℓ being µ or τ),though it is still important to verify the

cancellation of these divergences. To achieve this, we consider the photon to be

inclusive and carefully choose the suitable set of kinematic variables.

4.3.1.1 Photon inclusive case

The total decay width for the process B → Pℓνℓγ, photon being inclusive, is

Γ|B→Pℓνℓγ =
1

2mB

∫
d3pP

(2π)32EP

∫
d3pl

(2π)32El

∫
d3pn

(2π)32Eν

∫
d3k

(2π)32Ek
(2π)4

δ4 (Q− pn − k) |M|2B→Pℓνℓγ
(4.15)

where Q = (pB − pD − pl).

The process B → Pℓνℓγ is a four-body process that includes B → Pℓνℓ as a
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Figure 4.3: (a) Dalitz plot displaying the phase space boundaries for the energies
of the muon (magenta) and the D0 meson (blue) in the decay B− → D0µ−νµ.
(b) Dalitz plot illustrating the phase space boundaries for the energies of the
muon (magenta) and the π0 meson (blue) in the decay B− → π0µ−νµ.

subset. This can be visualized using the Dalitz plots, as depicted in Figure (4.3).

The Dalitz plot exhibits a linear dependence on the decaying meson’s energy and
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a quadratic dependence on the lepton energy.

It is important to note that the delta function in Equation (4.15) en-

forces x ≥ 0, where x (≡ normalized total missing mass energy) is introduced as

x = Q2/m2
B. This introduces the step function Θ(x), which divides the phase

space into D3 (the three-body region) and D4−3 (the remaining region). This

division enables us to express the decay width as follows:

Γ|B→Pℓνℓγ =
m3

B

512π4

[ ∫
D3
dydz

∫ x+
0

dx+
∫
D4−3

dydz
∫ x+
x−

dx
] ∫

d3k
(2π)32Ek

∫
d3pn

(2π)32Eν

(2π)4δ4(Q− pn − k) |M|2B→Pℓνℓγ
. (4.16)

Real photon emission contributes to both the three-body region (D3) and the

four-body region (D4−3) of the phase space. Focusing on the first term of Equa-

tion (4.16), we obtain:

ΓD3|B→Pℓνℓγ =
m3
B

512π4

∫
D3

dydz

∫ x+

0

dx

∫
d3k

(2π)32Ek
(2π)4

δ(xm2
B − 2Q.k) |M|2B→Pℓνℓγ

(4.17)

with |M|2B→Pℓνℓγ
= |MIR|2 + 2Re(M∗

IRMres). (4.18)

The second-order differential decay rate, which is found to be independent of both

IR and collinear divergences when contributions from the virtual corrections are

properly considered, can be expressed as follows:

d2ΓD3

dydz
=

m3
B

256π3

αem
π

[
|M0|2 I0(y, z,m

2
γ)

+
G2
F |Vcb|2

2

∫ x+

0

dx
∑
m,n

Cm,nIm,n(x, y, z)
]

(4.19)

with Im,n =
1

8π

∫
d3pn
Eν

∫
d3k

Ek
δ4(Q− pn − k)

1

(pB.k)m(pl.k)n
, and(4.20)

I0 =

∫ x+

m2
γ/m

2
B

dx
[
2pB.plI1,1(x, y, z)−m2

BI2,0(x, y, z)

−m2
l I0,2(x, y, z)

]
. (4.21)

The integrals (I0, Im,n) and the coefficients Cm,n can be found in Appendix-B.

However, for practical purposes, it is more convenient to focus on the photon-
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exclusive case, which will be discussed in the next subsection.

4.3.1.2 Photon exclusive case

Now, let us consider the photon-exclusive case, where the maximum energy car-

ried by the soft photon is denoted as kmax. Following the procedure outlined in

chapter- 3, the second-order differential decay rate for B → Pℓνℓγ with a soft

photon can be expressed as:

d2Γreal

dydz
=
d2Γ0

dydz
(2αemB̃) +

d2Γ′

dydz
, (4.22)

d2Γ′

dydz
is IR finite. B̃ contains the IR divergences, and can be expressed as

B̃ =
−1

2π

{
ln

(
k2maxmBml

m2
γEBEℓ

)
− pB.pl

2

[∫ 1

−1

dt

p2t
ln

(
k2max

E2
t

)
+

∫ 1

−1

dt

p2t
ln

(
p2t
m2
γ

)]}
.

(4.23)

The overall negative sign in the aforementioned expression arises from the con-

servation of charge. To simplify the integration process, we introduce convenient

combinations of momenta denoted as Et and pt. These combinations are defined

as follows: 2pt = (1 + t)pB + (1− t)pl and 2Et = (1 + t)EB + (1− t)Eℓ. All the

integrals are listed in Appendix-B. Furthermore, we introduce a small fictitious

mass mγ for the photon, which serves as a regulator for IR effects.

The differential decay width in the photon exclusive case explicitly de-

pends on kmax. Experimental measurements are limited to photons with en-

ergies larger than kmax, so the theoretical decay rate is expected to vary with

kmax. In a similar manner to the photon-inclusive case, the decay width for the

photon-exclusive scenario includes a non-infrared (non-IR) contribution that en-

compasses terms beyond Low’s term. However, the significance of terms other

than the IR term and its interference with the residual term is negligible and

thus not explicitly presented. The interference terms are dependent on the angle

θ between the lepton and the photon. In the rest frame of the B meson, the

angle between the lepton and the neutrino is assumed to be isotropic, resulting

in M2
miss ∼ 2EνEγ, where Eν = mB − ED − Eℓ − Eγ.
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4.3.2 Virtual Photon Corrections

The virtual corrections include (1) the self-energy correction, where the photon

originates and terminates at the same charged line (Fig.(4.4a)); (2) the vertex

correction, where the photon connects two distinct charged lines (Fig.(4.4b));

and (3) the CT contribution, where the photon is emitted from the effective

vertex and terminates on a charged particle (Fig.(4.4c)). These corrections are

(a) (b) (c)

Figure 4.4: (a) self-energy correction to the lepton (a similar diagram for the
self-energy correction to the B meson), (b) vertex correction, and (c) virtual
correction due to the contact term (a similar diagram where the photon originates
from the contact term and interacts with the B meson).

applicable to both the photon-inclusive and photon-exclusive cases. Now, let’s

discuss these three contributions individually. We begin with the contribution

arising from the self-energy corrections for the charged lepton and the meson,

respectively (as shown in Fig.(4.4a)), which can be expressed as follows:

Ms =
M0

2
(δZℓ + δZB) (4.24)

where δZℓ and δZB represent the wave function renormalization for the charged

lepton and meson, respectively, and are given by

δZℓ =
αem
4π

[
2−B0(p

2
l , 0,m

2
l ) + 4m2

lB
′
0(p

2
l ,m

2
γ,m

2
l )
]
, and

δZB =
αem
4π

[
2B0(p

2
B, 0,m

2
l ) + 4m2

BB
′
0(p

2
B,m

2
γ,m

2
B)
]
. (4.25)

In the expression above, B0(p
2
a, 0,m

2
a) and B′

0(p
2
a,m

2
γ,m

2
a) (where a = ℓ(B))

represent the Passarino-Veltman functions associated with scalar two-point in-

tegrals and their derivatives. The explicit forms of these functions can be found

in Appendix-B. It is important to note that B′
0(p

2
a,m

2
γ,m

2
a) contains IR diver-
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gences, which are regulated by introducing a fictitious mass, mγ, for the photon.

Further, the vertex correction contribution (as shown in Fig.(4.4c)) is given by

Mvert =
αem
4π

ū(pl)
[(

− 2ml/pB − 2/pB/pℓ

)
C0(m

2
l ,m

2
B, q

2,m2
l ,m

2
γ ,m

2
B)−

(
ml/pB + /pB/pℓ

−2m2
B

)
C1(m

2
B, q

2,m2
l , 0,m

2
B,m

2
l )−

(
ml(/pℓ +ml) + 2/pB/pℓ − 4pB.pl

)
C2(m

2
B, q

2,m2
l , 0,m

2
B,m

2
l ) +B0(q

2,m2
B,m

2
l )− 2B0(m

2
l , 0,m

2
l )
](
(fp− + fp+)/pℓ

+2fp+/pP
)
(1− γ5)v(pn). (4.26)

In the equation above, Cr(m
2
l ,m

2
B, q

2,m2
l ,m

2
γ,m

2
B) (where r = 0, 1, 2) represent

the three-point Passarino-Veltman functions. Among these functions, C0 con-

tains the IR divergences, whereas the other two functions (C1 and C2) do not

exhibit IR divergences. Consequently, we set m2
γ = 0 in C1 and C2.

The virtual correction originating from the contact term contributes

through two diagrams: one where the photon terminates on the charged lepton

and another where it terminates on the charged meson leg. This contribution in-

troduces both ultraviolet (UV) divergences and a finite component. However, in

numerical calculations, we neglect the UV divergences and only take into account

the finite term. It has been observed that the finite term has a minimal impact

on the process and does not significantly affect the precision of the calculation.

Therefore, phenomenologically, the virtual corrections due to CT can be ignored.

At O(αem), the squared matrix element for the process B → Pℓνℓ,

incorporating contributions from Ms (self-energy correction) and Mvert (vertex

correction), is expressed as follows:

|M|2 = |M0|2 + 2Re(M∗
0Ms) + 2Re(M∗

0Mvert) (4.27)

+O(α2
em) (4.28)

with 2Re(M∗
0Ms) = |M0|2 (δZℓ + δZB), and
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2Re(M∗
0Mvert) =

αem
4π

[
|M0|2

(
2B0(q

2,m2
B,m

2
l )− 4B0(m

2
l , 0,m

2
l )− 4

(
(pB.pl)

+m2
B

)
C1(m

2
B, q

2,m2
l , 0,m

2
B,m

2
l )− 8(pB.pl)

C0(m
2
l ,m

2
B, q

2,m2
l ,m

2
γ,m

2
B)− 4m2

lC2(m
2
B, q

2,m2
l , 0,m

2
B,m

2
l )
)

+
(
(−4fp+(f

p
− + fp+)− 2(fp− + fp+)

2)(pB.pl)(pl.pn) + 4(fp+)
2m2

P

(pB.pn) + (pP .pn)(−4(fp− + fp+)f
p
+ − 4fp+(pB.pP )) + 4fp−f

p
+

(pB.pn)(pl.pP ) + (fp+ + fp−)
2m2

l (pB.pn) + 4(fp+)
2(pB.pn)(pl.pP )

)
C2(m

2
B, q

2,m2
l , 0,m

2
B,m

2
l )
]
, (4.29)

respectively. Hence, the differential decay width including the virtual QED cor-

rections reads as

d2Γvir

dydz
=
d2Γ0

dydz
(1 + 2αemB) +

d2Γ′
vir

dydz
. (4.30)

In this case, analogous to the non-radiative decay,
d2Γ′

vir

dydz
is free from infrared (IR)

divergences and includes the contributions arising from non-factorizable terms,

which involve combinations of form factors and momenta as presented in Eq.

(4.29). On the other hand, the factorizable correction factor, denoted as B,

exhibits IR divergences and can be expressed as follows:

B =
1

8π

[
2B0(q

2,m2
B,m

2
l )− 4B0(m

2
l , 0,m

2
l )− 4

(
(pB.pl) +m2

B

)
C1(m

2
B, q

2,m2
l , 0,m

2
B,m

2
l )− 8(pB.pl)C0(m

2
l ,m

2
B, q

2,m2
l ,m

2
γ,m

2
B)− 4m2

l

C2(m
2
B, q

2,m2
l , 0,m

2
B,m

2
l ) + 2−B0(p

2
l , 0,m

2
l ) + 4m2

lB
′
0(p

2
l ,m

2
γ,m

2
l )

+2B0(p
2
B, 0,m

2
l ) + 4m2

BB
′
0(p

2
B,m

2
γ,m

2
B)
]
. (4.31)

4.3.3 Total O(αem) QED corrections

By combining d2Γreal

dydz
and d2Γvir

dydz
, we obtain the second order differential rate for

the process B → Pℓνℓ at O(α), which includes both real and virtual soft photon

corrections. It can be expressed as follows:

d2ΓQED
ℓ

dydz
=
d2Γ0

dydz
(1 + 2αemH) +

d2Γ′

dydz
+
d2Γ′

vir

dydz
, (4.32)
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where H = B̃ + B. The individual quantities B̃ and B do depend on the IR

regulator mγ, but their sum, denoted as H, is independent of mγ. As a result,

the infrared divergences cancel out in the total differential decay rate. The IR

finite H is

H =
1

2π

[
− ln

(
k2max
EBEℓ

)
+
pB.pl
2

∫ 1

−1

dt

p2t

k2max
E2
t

+B0(q
2,m2

B,m
2
l )− 2B0(m

2
l , 0,m

2
l )

− 2
(
(pB.pl) +m2

B

)
C1(m

2
B, q

2,m2
l , 0,m

2
B,m

2
l )− 2m2

lC2(m
2
B, q

2,m2
l , 0,m

2
B,m

2
l )

− 3− 1

2
B0(p

2
l , 0,m

2
l ) +B0(p

2
B, 0,m

2
B)
]
. (4.33)

The terms d2Γ′

dydz
and

d2Γ′
vir

dydz
in Eq.(4.32) are free from IR divergences. Hence, the

total differential rate,
d2ΓQED

ℓ

dydz
, is IR safe. It can be simplified as

d2ΓQED
ℓ

dydz
=
d2Γ0

dydz

(
1 + ∆QED

ℓ

)
. (4.34)

In the above expression, the lepton ℓ can take values of µ or τ , and ∆QED
ℓ

represents the correction factor to the differential decay rate. This correction

factor includes terms up to O(k), where k denotes the photon energy. The

contribution from the O(k2) term is found to be small and has been neglected

in the numerical analysis.

Expressing the CKM matrix element |Vqb| without taking into account the QED

corrections can be done by following Equation (4.5).

|V 0
qb| =

√
Γexp
qb

G0
qb

. (4.35)

Here, Γexp
qb is the experimental decay width, and G0

qb is further defined as

G0
qb =

mB

256π3

G2
F

2

∫
dy

∫
dz|M0|2 (q = u/c). (4.36)
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Hence, the ratio of the CKM elements without taking into account the QED

corrections, R0
V , is

R0
V =

|V 0
ub|

|V 0
cb|

=

√
Γ0
ubG0

cb

Γ0
cbG0

ub

. (4.37)

Taus are more challenging to reconstruct, while electrons are highly sensitive to

soft photon corrections. Hence, it is advisable to choose final states involving

muons when extracting the CKM elements and their ratios. Focusing on muons

in the final states ensures that the collinear logarithms, represented by ∼ ln(mµ),

are the same for both B → π and B → D transitions.

Now, the QED correction factors for the CKM matrix element, Vqb, and

the ratio, RV , are defined as follows:

δQED
Vqb

=
|Vqb|
|V 0
qb|

− 1, and (4.38)

∆RV
= δQED

Vub
− δQED

Vcb
, (4.39)

respectively. Here, |Vqb| represents the CKM element that is determined by

incorporating the QED corrections up to O(αem). To ensure completeness, we

also consider the soft photon corrections to the ratio RP , which corresponds to

the ratio of the branching fractions between the τ and µ modes3. This correction

factor is given by

δRP
= R0

P

(∆QED
τ

Γ0
τ

−
∆QED
µ

Γ0
µ

)
(4.40)

where, ∆QED
τ and ∆QED

µ represent the correction factors for the τ and µ modes,

respectively.

3Experimentally, RP is defined by Rp = BR(B→Pτντ )
BR(B→Pℓνℓ)

, ℓ = µ, e we do not consider electron

here.
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4.4 Results

We investigate the soft photon corrections to the B → Pℓνℓ decay mode. Ex-

perimental analyses of this process employ two approaches:

1. The photon-inclusive approach, where the detection scheme focuses on the

charged mesons and leptons, while the neutrino and photon are not directly

detected.

2. The photon-exclusive approach, where the experiment is sensitive to the

final state photons.

In the inclusive case, the decay width is determined by fitting the observed

momenta of the charged mesons and leptons to the three-body kinematics. This

fitting process takes into account the possibility of zero or non-zero missing mass.

The total decay width is influenced by the range of maximum and minimum

values of the missing mass considered in the fitting procedure. However, in this

study, our focus is on the exclusive case, as we specifically aim to examine the

explicit impact of soft photons. Theoretically, since the soft photon is a fourth

particle, a portion of the four-body phase space (up to kmax) also contributes to

the decay width. Therefore, the total decay rate comprises contributions from

both the three-body phase space region and regions beyond it.

The emission of a soft photon contributes to both the inside and outside

regions of the Dalitz plot, as depicted in Figures 4.3(a) and 4.3(b). On the other

hand, virtual corrections only affect the inside region of the Dalitz plot. The

correction factor exhibits reduced sensitivity to phase space points outside the

Dalitz region primarily because of the involvement of heavy leptons (muon) in

the decay process. Nevertheless, this region remains important for studying long-

distance effects as the photon momentum approaches zero (k → 0), and it plays

a crucial role in enhancing precision. Additionally, exploring the dependence of

the decay width on the angle θ between the photon and the lepton enables the

examination of collinear divergences and their implications.

In our analysis, we have observed that the correction factor ∆QED
ℓ

(where ℓ can be either µ or τ) is not significantly affected by the cut on θ (de-
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noted as θcut) for both muons and taus, due to their heaviness. However, if we

were considering electrons in the final state, this dependence would be more pro-

nounced. Generally, the correction factor ∆QED
ℓ is larger for the muon channel

(approximately 3-5%) compared to the tau channel (almost negligible) in both

the B → D and B → π decay modes. To illustrate, at kmax = 100 MeV, the

B− → D0 (B0 → D+) mode experiences a QED shift of around 0.1% (approx-

imately -1%) for the tau mode while it is approximately -1.6% (approximately

-3.4%) for the muon mode. Figures 4.5(a) and 4.5(b) show the soft photon cor-
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Figure 4.5: Radiative corrections to the CKM elements |Vcb| and |Vub|, repre-
sented by the dashed line (δQEDVcb) and solid line (δQEDVub) respectively. These
corrections are plotted for different thresholds on the photon energy, kmax, in
the context of the decays (a) B0 → P+ (where P+ can be D+ or π+) and (b)
B− → P 0 (where P 0 can be D0 or π0) involving a muon (µ−) and a neutrino
(νµ).

rections to the CKM elements |Vcb| and |Vub| for the neutral and charged modes,

respectively. In the case of the charged mode, the corrections to both CKM

elements are nearly identical since the photon is emitted from the B-meson and

the lepton in both B → πℓνℓ and B → Dℓνℓ processes. However, for the neutral

mode, we observe some difference between the two curves due to the emission of

photons from π andD instead of the B-meson. Consequently, the mass difference

between π and D becomes a crucial factor in determining these differences.

We now turn our attention to studying the effects of soft photons on the

ratio of CKM elements, specifically denoted as RV = |Vub|
|Vcb|

. The correction factor

to this ratio, denoted as ∆RV
, is illustrated in Fig.(4.7) for both the neutral and

charged modes. It is noteworthy that the charged modes exhibit a negligible
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correction, whereas the neutral modes experience a very small correction on the

order of O(10−3). This distinction arises from the photon emission originating

from π as opposed to D in the neutral mode, as discussed earlier. Furthermore,

we investigate the dependence of the correction factor on the chosen maximum

photon energy, kmax. It is observed that the correction factor diminishes as kmax

increases, leading to the suppression of collinear and infrared effects (as illus-

trated in Fig.(4.7)). Similar trends have been reported in Ref.[23]. We have

∆
(n)
τ

(with (w/o) Coulomb)

∆
(n)
µ

(with (w/o) Coulomb)

Ref. [23] 1.7(−1.2) −1.2(−3.5)

Our results 1.7(−1.0) −1.1(−3.4)

Table 4.1: Comparison of the QED shifts (%) in the decay rate (for both tau
and muon modes) at kmax = 100 MeV with Ref. [23], considering the inclusion
(exclusion) of the extra Coulomb factor arising from the final-state charged par-
ticles (as considered in Ref. [23]).

found our results to be in full agreement with the findings of Ref. [23] (see Ta-

ble (4.1) for a comparative study). Fig.(4.6) displays the QED-corrected CKM
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Figure 4.6: Radiative corrections to the CKM elements |Vcb| and |Vub| (i.e.,
δQEDV cb (dashed) and δQEDV ub (solid)) for kmax = 100 MeV in the decay process
B0 → P+(= D+, π+)µ−νµ, considering the inclusion of the extra Coulomb factor
from the final-state charged particles (red) and not considering it (magenta).

elements |Vcb| and |Vub| for the neutral B mode, both with and without the addi-

tional Coulomb factor. The inclusion of this factor results in a reduction of QED

effects from approximately ∼ 3% to around ∼ 2%. It is worth emphasizing that
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while this factor does influence QED corrections to the individual CKM elements,

it has a negligible impact on the proposed observable RV , thus showcasing the

robustness of RV against various types of QED corrections.
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Figure 4.7: Radiative corrections to Vub/Vcb (i.e. ∆RV ) as a function of lepton
energy for the different tsoft photon maximum energy, kmax for (a) B0 → P+(=
D+, π+)µ−νµ and (b) B− → P 0(= D0, π0)µ−νµ.

(f
(I)
B→π; f

(I)
B→D) (f

(II)
B→π; f

(I)
B→D) (f

(I)
B→π; f

(II)
B→D) (f

(II)
B→π; f

(II)
B→D)

RV 0.091 0.093 0.091 0.093

Table 4.2: The ratio, RV obtained with the different choice of f
(A)
B→π and f

(A)
B→D

for the corresponding form factors.

We investigate the impact of different form factors used in the B → π

and B → D transitions on the sensitivity of RV . To investigate this, we consider

two sets of form factors: (I) the form factors utilized in the present analysis

(refer to Section-4.2.1 for details), and (II) the form factors derived from lattice
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analysis [127]. The impact of the form factor choice on RV is summarized in

Table (4.2). Our focus remains on the large q2 region, ensuring the reliability of

selected form factors and facilitating meaningful comparisons. The table clearly

reveals minimal influence resulting from the choice of form factors. Given the

resilience of RV against soft photon corrections and form factor variations, it

emerges as a promising observable.

Furthermore, we extend our investigation to encompass the effect of

soft photons on the LFU ratios, RP (=D,π) (illustrated in Fig.(4.8)). We observed

that the soft photons induce the corrections approximately 2% for kmax = 250

MeV in both ratios.
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Figure 4.8: Effects of radiative corrections on the ratio RP (with P = D
represented by the dashed line and P = π represented by the solid line) are
shown for various thresholds on the photon energy, kmax, in the decays (a)
B0 → P+(= D+, π+)ℓ−νℓ and (b) B− → P 0(= D0, π0)ℓ−νℓ.

4.4.1 Phenomenological application of RV

We have established the robustness of the ratio, RV , against the soft photon

corrections and the choice of form factors. To explore the possibility of probing

physics beyond the SM using RV , we focus on the potential impact of right-

handed currents in the quark sector as a form of NP. This NP scenario can be

described by an effective Hamiltonian given by:

HNP =
4GF√

2
Vqbc

q
R(ℓ̄γµPLν) (q̄γµPRb) , (4.41)
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where q = u, c, and cqR are the Wilson coefficients. The differential decay rate

for the exclusive process B → Pℓν̄ℓ can be expressed as

d2ΓB→Pℓν̄ℓ

dy
=
d2ΓB→Pℓν̄ℓ

dy

∣∣∣
SM

|1 + cqR|
2. (4.42)

For the inclusive case with mu/mb → 0, the differential decay rate is calculated

as

d2ΓB→Xqℓν̄ℓ

dy
= |1 + cqR|

2d
2ΓB→Xqℓν̄ℓ

dy

∣∣∣
SM

+ cqR
d2ΓB→Xqℓν̄ℓ

dy

∣∣∣
LR
. (4.43)

The explicit expressions of
d2ΓB→Xqℓν̄ℓ

dy

∣∣∣
SM,LR

is given by [136, 137]

dΓB→Xqℓνℓ

dy

∣∣∣
SM

=

(
2(y − 3)y2ρ3

(y − 1)3
− 6y2ρ2

(y − 1)2
− 6y2ρ+ 2(3− 2y)y2

)
+

(
4 (y2 − 5y + 10) ρ3y3

3(y − 1)5
+

2(5− 2y)ρ2y3

(y − 1)4
+

10y3

3

)
λ21
m2
b

+
(10y2 (y2 − 4y + 6) ρ3

(y − 1)4
− 18(y − 2)y2ρ2

(y − 1)3
+

12y2(2y − 3)ρ

(y − 1)2

+2y2(5y + 6)
)3λ22
m2
b

(4.44)

dΓB→Xqℓνℓ

dy

∣∣∣
LR

=
√
ρ

(
− 12ρ2y2

(y − 1)2
− 24ρy2

y − 1
− 12y2

)
+
√
ρ
(4(5− 2y)ρ2y3

(y − 1)4

+
4(5− 3y)ρy3

(y − 1)3

) λ21
m2
b

+
√
ρ
( 12ρy3

(y − 1)2
− 36(y − 2)ρ2y2

(y − 1)3

+
24(2y − 3)y2

y − 1

)3λ22
m2
b

. (4.45)

where ρ = mq/mb

Considering this NP, we can determine the CKM elements Vub and Vcb

by analyzing different decay modes of b → u and b → c transitions, including

both inclusive and exclusive decays. The values of these CKM elements, along

with their corresponding values in the absence of NP (V SM
qb ), are presented in

Table (4.3). The presence of NP effects also affects the observable RV . The

ratio of RNP
V to RSM

V is calculated for different combinations of channels and

summarized in Table 4.4. Equating the ratio RV obtained from inclusive and

exclusive determinations, as explained in Section 4.1, it is possible to derive
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Modes V NP
qb

Exclusive Decays

B → Dℓνℓ V NP
cb =

V
(SM)
cb

1+ccR

B → D∗ℓνℓ V NP
cb =

V
(SM)
cb

1−ccR

B → πℓνℓ V NP
ub =

V
(SM)
ub

1+cuR

B → ρℓνℓ V NP
ub =

V
(SM)
ub

1−cuR

Inclusive Decay
B → Xcℓνℓ Vcb =

Vcb(SM)
1−0.34ccR

B → Xuℓνℓ Vub = V
(SM)
ub (for mu ∼ 0)

Table 4.3: V NP
qb for various exclusive and inclusive B decay modes

B→Xu

B→Xc

B→π
B→D

B→π
B→D∗

B→ρ
B→D

B→ρ
B→D∗(

|Vub|
|Vcb|

)NP
/
(

|Vub|
|Vcb|

)
SM

1− 0.34ccR 1 + ccR − cuR 1− ccR − cuR 1 + ccR + cuR 1− ccR + cuR

Table 4.4: Ratio of RV in the NP to RV in the SM for inclusive B → Xu/Xc

modes and four different combination of exclusive B → π/D/ρ/D∗ modes

constraints on new physics. By equating the ratio calculated from the inclusive

modes (first column) to the ratio obtained from the exclusive modes, we derive

constraints on the parameter cuR as cuR ∈ [−1.34, 1.34]ccR. This demonstrates

the significant probing capability of RV in tightly correlating the strength of

right-handed up-quark interactions with the NP coupling of the charm quark.

Although this was a simple example, it is evident that the ratio, RV , possesses

similar probing power in the case of other NP modifications as well.

In the context of addressing the puzzles associated with Vcb and Vub in

a model-independent manner, it is common to treat the new physics couplings in

the two modes independently. However, it is important to note that in specific

models, this assumption may not hold true. Interestingly, the equality between

RV |incl and RV |excl allows for the establishment of simple relations between the

two couplings, even within a model-independent framework. This provides valu-

able insights and constraints on the interplay between new physics effects in

b→ u and b→ c transitions.
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As an additional phenomenological application, we aim to derive con-

straints on BR(Bc → τντ ) using BR(B → τντ ). The branching ratio of

B(Bc) → τντ in the considered NP model can be expressed as follows:

BR(B(Bc) → τντ ) = (1− 2c
u(c)
R )BR(B(Bc) → τντ )|SM (4.46)

where,

BR(B(Bc) → τντ )|SM = τB(Bc)

G2
FmB(Bc)m

2
τ

8π

(
1− m2

τ

m2
B(Bc)

)
f 2
B(Bc)|Vu(c)b|

2 (4.47)

with the decay constant for the B and Bc mesons as fB = 185 MeV and fBc = 434

MeV respectively. We can then use the experimentally measured branching ratio

BR(B → τντ )|exp = 1.09× 10−4 (reference) to determine the value of cuR. Using

this obtained value of cuR, the estimated branching ratio for Bc → τντ falls

within the range of [1.9 − 2.4]%. This value is well below the upper bound of

BR(Bc → τντ ) ≤ 30% as provided in [138]. If the branching ratio BR(Bc → τντ )

had exceeded this bound, it would have contradicted the new physics couplings.

This would have complicated not only the resolution of the Vcb puzzle but also

the Vub puzzle since the new physics effects in the up-type quarks are closely

related to those in the charm sector.

4.5 Discussion and Conclusions

The determinations of |Vcb| and |Vub| from exclusive and inclusive processes have

consistently exhibited discrepancies. However, it is challenging to attribute these

discrepancies confidently to BSM physics due to the involved hadronic uncertain-

ties and possible experimental issues/systematics. To explore potential sources

of uncertainty, we investigate the corrections due to soft photon in the deter-

mination of the CKM matrix elements |Vcb| and |Vub| in the decay processes

B → Pℓνℓ, where P represents D or π. Our findings reveal that these CKM

elements undergo a significant shift of approximately 3-4% due to the inclusion
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of QED corrections. To provide more specific information, when considering a

value of kmax = 100 MeV, we observed a correction of about 2.2% (3.5%) for the

charged B → D (π) mode, while the neutral B decay modes involving both D

and π experienced a correction of approximately 1.7%.

In our calculation of the decay width, we carefully incorporate radiative

corrections originating from both within and outside the Dalitz region, consider-

ing both the neutral and charged decay modes. The impact of these corrections is

primarily influenced by the chosen maximum photon energy, kmax, while exhibit-

ing minimal sensitivity to the lepton-photon angle. This characteristic renders

them largely free from collinear divergences. In the case of the neutral B mode,

we observe total QED corrections of approximately -3.4% and -1% for the muon

and tau channels, respectively, with kmax = 100 MeV. Although these correc-

tions are on the order of a few percent, they become significant when aiming for

sub-percent precision and necessitate careful consideration and inclusion in the

analysis.

To address the challenges posed by QED and hadronic uncertainties,

we propose utilizing the ratio of CKM elements, specifically RV = |Vub|
|Vcb|

, as an

observable with reduced sensitivity to these effects, making it a promising probe

of the SM. Notably, we observe that this ratio experiences minimal corrections

originating from soft photon QED effects. Moreover, we explicitly examine the

influence of form factor choices by exploring various parametrizations and op-

tions. Our investigation reveals that, when evaluated within a carefully selected

q2 range, this ratio remains largely unaffected by the choice of form factors. An-

other noteworthy finding is the remarkable agreement between the values of RV

obtained from exclusive and inclusive determinations. Consequently, while the

individual CKM elements exhibit complex behavior and are susceptible to QED

and hadronic effects, the ratio RV emerges as a resilient observable, exhibiting

practical insensitivity to such influences. The collective findings highlight the

remarkable usefulness of RV as an invaluable observable in our endeavors to test

the SM and search for physics beyond the SM. Not only does RV serve as a clean

observable, but the close agreement between inclusive and exclusive determina-

tions of RV enables us to equate the theoretically computed expressions for both
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cases. This equivalence establishes simple relationships between new physics

contributions in the b → u and b → c semileptonic modes. In conventional

approaches addressing the puzzles related to |Vcb| and |Vub|, the new physics

couplings in these two modes are typically treated independently. However, in

certain models, there may exist a connection between them. By establishing the

equality of RV |incl and RV |excl, we establish a direct link between these coupling

types, even in a model-independent framework. Such relationships can then be

carefully examined within specific models to identify frameworks that can suc-

cessfully address these puzzles.

Based on these findings, we are motivated to put forward the utilization

of RV as a valuable observable in our study of the SM and the quest for NP.

This includes its application in experimental investigations as well as in the

phenomenology.





Chapter 5

Radiative Inclusive B decays

In Chapter-3 and Chapter-4, we explored the impact of soft photon corrections

on B meson semi-leptonic decays and introduced a new observable that exhibits

robustness against theoretical uncertainties. In this chapter, we investigate how

the experimental determination of the total decay width for B → Xuℓνℓγ decay,

combined with the data on the total decay width for B → Xuℓνℓ, can aid in

determining the non-perturbative parameters λ1 and λ2. It is important to note

that the emitted photon in this context is a hard photon and should not be

considered as a soft photon correction to B → Xuℓνℓ. The content of this

chapter is based on the findings presented in Ref. [139].

5.1 Introduction

Chapter-1 and Chapter-2 discussed the intricate nature of B meson decays. De-

spite their complexity, these decays provide an ideal stage for precision studies

of the SM. This is primarily attributed to the involvement of multiple physical

scales. When considering theoretical cleanliness, inclusive decay modes are fa-

vored over exclusive ones, as highlighted in Chapter-4. This preference stems

from the difficulties involved in calculating transition form factors for exclusive

decays. In the case of B meson decays, an additional advantage arises from

the presence of a significant hard scale, mb, which greatly surpasses the char-

acteristic scale of QCD, ΛQCD. The significant separation of scales facilitates

perturbative calculations, which are made possible by the Heavy Quark Effec-

109



110 Chapter 5. Radiative Inclusive B decays

tive Theory (HQET) [50, 104]. The HQET systematically eliminates all the

heavy degrees of freedom except the b quarks since they are in the initial and

the final states.As a result, a systematic theoretical treatment can be employed

to accurately calculate the decay rates.

As noted in Ref.[54, 103, 140], for a single heavy particle (here, quark),

the non-relativistic Quantum Mechanical treatment, instead of QFT, can be

used. It is due to the following reasons: (i) The number of heavy quarks and

antiquarks are separately conserved. (ii) In the non-relativistic kinematics, the

process of QQ̄ pair creation is power suppressed since the virtuality of the in-

termediate state is of the order of 2mQ. (iii) Appearance of heavy quarks in

the loop is also suppressed since this effect is ∼ k2/m2
Q when the momentum

of gluon: k ≪ mQ. As a result, a full QFT treatment is not necessary for the

description of heavy quark, and a QM treatment is sufficient. This simplification

is a key aspect of the non-relativistic expansion. However, our interest lies in the

bound states such as B meson rather than a single heavy particle. Hence, QFT

treatment is necessary in this case since the light cloud represents a complicated

strongly-interacting system. Symmetry properties of heavy quarks are discussed

in Section-2.2.3.

Further, the OPE proves to be a powerful tool in the systematic treat-

ment of non-perturbative QCD effects. OPE enables the separation of effects

originating at short and long-distance scales. Specifically, in the context of a

heavy quark system, the OPE takes the form of a series expansion in powers of

ΛQCD

mb
[141–143] when combined with the theory of non-relativistic expansion.

The corrections to the leading term (mb → ∞) in the HQET are ex-

pected to be small in the high-energy region of the phase space. This region

allows for contributions from various hadronic states that satisfy the condition

m2
X → m2

q + #ΛQCDmb. Consequently, observables such as decay rates, which

average over these hadronic states, can be reliably predicted.
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5.2 Non-perturbative parameters: λ1 and λ2

In the HQET up toO(1/m2
b), the primary source of uncertainty in the predictions

of decay rates arises from the non-perturbative parameters λ1 and λ2. Through-

out this Chapter, we consistently work at O( 1
m2

b
) in HQET. These parameters

are defined as [53, 144]

λ1 =
1

2mHQ

⟨HQ|Q̄Π2Q|HQ⟩, (Π = iD), and (5.1)

3λ2 =
1

2mHQ

⟨HQ|Q̄
i

2
σµνG

µνQ|HQ⟩ (5.2)

where, D is covariant derivative, and |HQ⟩ represent the heavy meson states.

Physically, λ1 provides information about the average squared spatial momentum

of the heavy quark, while λ2 quantifies the strength of the color magnetic field

generated by the light cloud around the heavy quark’s position [51, 140].

Historically, the determination of the parameters λ1 and λ2 has relied

on QCD models [52, 145–147] and fitting them to experimental data [148–151].

In Ref.[152], the values of µ2
π and µ2

G in quenched lattice QCD are determined

using the NRQCD action, incorporating O( 1
mQ

) corrections for the heavy quark.

While they explicitly compute λ2, they do not calculate λ1 directly but instead

evaluate the difference of matrix elements using two distinct methods. It is worth

noting that these two methods yield different central values. Therefore, obtaining

unambiguous predictions for these parameters holds significant importance.

It should be noted that both B → Xcℓνℓ and B → Xuℓνℓ exhibit

similar decay signatures characterized by a high-momentum lepton, a hadronic

system, and undetected neutrino energy. Thus, distinguishing between these two

processes is challenging. Further, close to the lepton energy end point regions,

non-perturbative shape functions enter the description of the decay kinematics,

making predictions for the decay rates dependent on the precise modeling of these

shape functions. For the present, it is not necessary to distinguish between these

two modes at this level. Instead, we are exploring the possibility of determining

the non-perturbative parameters in an efficient manner. Considering modes with

similar cuts such as B → Xu(c)ℓνℓ together with B → Xu(c)ℓνℓγ may provide
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complementary information allowing to extract the non-perturbative parameters.

Further, the inclusion of a hard photon in the decay process introduces additional

degrees of freedom, such as the angle between the lepton and the photon. As an

example, the forward backward symmetry has been calculated (for details, see

section- 5.5). The complete angular analysis is left for future work.

In this chapter, we explore how the experimental determination of the

decay rate for the B → Xuℓνℓγ mode, in conjunction with the B → Xu/cℓνℓ

mode. It is worth reiterating that the emitted photon is a hard photon and the

process should not be thought of as soft photon correction to B → Xuℓνℓ. To this

order in 1/m2
b , both the decay widths of B → Xuℓνℓ and B → Xuℓνℓγ exhibit a

linear dependence on the parameters λ1 and λ2.

decay width ∼ A+Bλ1 + Cλ2. (5.3)

By considering the two modes, a simultaneous set of linear equations can be

formed. Thus, knowing or experimentally measuring one side of these equations

enables the unambiguous determination of λ1 and λ2. While we include terms

O((ΛQCD/mb)
2) in the HQET, it is tedious but straightforward to incorporate

higher-order terms as well. To mitigate uncertainties arising from the presence

of the CKM element (Vub), we propose to examine the ratio of the decay width

in different ranges of leptonic energy rather than directly working with the decay

width itself (refer to Section-5.5 for further details). Such ratios can be defined

as

R1 =

∫ 0.2

0
dy dΓγ

dy∫ 0.5

0
dy dΓγ

dy

and R2 =

∫ 0.5

0
dy dΓ

dy∫ 1

0
dy dΓ

dy

(5.4)

where y is the lepton energy expressed in dimensionless units. Here Γγ corre-

sponds to B → Xuℓνγ mode. We choose to calculate the decay rate using a

direct application of Cutkosky method applied to individual diagrams.
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5.3 An example: B → Xuℓνℓ

The weak Hamiltonian density for the inclusive semi-leptonic B meson decays

to final state containing a u quark (B → Xuℓνℓ) is given by

Hweak =
4GF√

2
Vub(ūγµPLb)(ℓ̄γ

µPLνℓ) (5.5)

where, GF and Vub are Fermi constant and CKM element, respectively. The

Figure 5.1: Representative Diagram of forward scattering for b→ uℓνℓ

process B → Xuℓνℓ involves the transition b → u and the sum over final state

mesons containing the u quark. To calculate the decay width for this inclusive

process, the forward scattering matrix element plays a crucial role. In Fig.(5.1),

the Feynman diagram illustrates the forward scattering matrix element of the

inclusive semi-leptonic decay B → Xuℓνℓ. The imaginary part of the forward

scattering matrix element, also known as the transition matrix element ⟨B|T̂ |B⟩,

is connected to the decay into an inclusive final state through the optical theorem.

It can be expressed as

Γ ∝ 1

2mB

Im
{
⟨B|T̂ (b→ u→ b)|B⟩

}
(5.6)

where the operator sandwiched in between the hadronic states is defined as a

forward scattering operator or transition operator. The explicit form of the

transition operator reads

T̂ µν(b→ u→ b) = i

∫
d4xe−iq.x

1

2mB

T{Jµ†w (x)Jνw(0)} (5.7)
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where T denotes the time ordered product and Jµw (= ūγµPLb) is the weak

current. Further, the differential decay rate for B → Xuℓνℓ process is given by

d3Γ

dq2dEℓdEν
=

1

4

∑
Xu

∑
spins

1

2mB

|⟨Xuℓν|Hweak|B⟩|2δ4(pB − pX − pl − pn)

= 2G2
F |Vub|2MµνLµν (5.8)

where q2 = (pl + pn)
2, Eℓ denotes energy of the lepton, and Eν represents the

neutrino energy. Moreover, the leptonic tensor, Lµν , is directly defined from the

electroweak Lagrangian. It is given by

Lµν = (ν̄ℓγµ(1− γ5)ℓ)(ℓ̄γν(1− γ5)ν) (5.9)

whereas the hadronic tensor, Mµν , is expressed in terms of matrix elements of

electroweak currents and given by

Mµν =
1

2mB

∑
Xu

⟨B|Jµ|Xu⟩⟨|Xu|Jν |B⟩δ4(pB − pX − pl − pn). (5.10)

The hadronic tensor (Mµν) is defined as the absorptive part of the matrix element

of the transition operator (i.e., Eq.(5.7)). Explicitly,

Mµν = −i Disc.(⟨B|T̂µν |B⟩) (5.11)

Instead of using the general parametrization of the hadronic tensor and rely-

ing on analytical properties, we directly compute the transition operator (T̂µν)

in conjunction with the leptonic tensor (Lµν) to determine the matrix element

involved in the inclusive semi-leptonic decay B → Xuℓνℓ. In the perturbative

expansion at the lowest order (i.e., in terms of αs), the amplitude at the quark

level (MNR) for the diagram shown in Fig.(5.1) can be expressed as

MNR =
i

(pb +Π− q)2 −m2
u + iϵ

b̄γνPL( /pb + /Π− /q +mb)γµPLbLµν (5.12)

The subscript ’NR’ denotes the non-radiative process, indicating that there is no

photon in the final state. Additionally, pb+Π represents the effective momentum
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of the b quark, where pb = mbv corresponds to the momentum of the heavy quark,

and Π accounts for the residual momentum of the heavy quark. Moreover, q

(given by q = pl + pn) is of the order of mb, while Π is of the order of ΛQCD.

Consequently, expanding MNR in powers of Π results in an expansion in terms

of ΛQCD
mb

. By expanding the denominator up to (
ΛQCD

mb
)2, we obtain:

1

(pb +Π− q)2 −m2
u

=
1

((pb − q)2 −m2
u)

[
1− 2(pb − q).Π+Π2

((pb − q)2 −m2
u)

+
2((pb −Π).Π)2

((pb − q)2 −m2
u))

2

]
(5.13)

The hadronic part of MNR is then sandwiched between the B meson states.

The obtained matrix elements are simplified as [53]

⟨B(v)|b̄γµb|B(v)⟩ = 2pµB

⟨B(v)|b̄γµΠτb|B(v)⟩ =
λ1 + 3λ2
3mb

(2gµτ − 5vµvτ )

⟨B(v)|b̄γµΠ(αΠβ)b|B(v)⟩ =
2λ1
3mb

(gαβ − vαvβ)vµ

⟨B(v)|b̄γµΠ2b|B(v)⟩ =
2λ1
mb

vµ (5.14)

Next, we calculate the imaginary part of the denominator,

1

((pb − q)2 −m2
u + iϵ)

→ (−2πi)δ((pb − q)2 −m2
u)Θ((p0b − q0)). (5.15)

Integrating over the neutrino energy, the double differential decay rate for B →
Xuℓνℓ mode is calculated as

d2Γ

dydq̂2
=

G2
F |Vub|2m5

b

96π3
y
[
6(1− q̂2

y
)(1− ρ− y + q̂2) + λ1

(
− 3 + 3ρ+ 4

q̂2

y
− 4ρ

q̂2

y
− 6q̂2

+4
(q̂2)2

y
− δ(z)

(
1− 2ρ+ ρ2 − 3y(1− ρ)− 3

q̂2

y
+ 2ρ

q̂2

y
+ ρ2

q̂2

y
+ 11q̂2 − 3ρq̂2

−3xq̂2 − 6
(q̂2)2

y
− 2ρ

(q̂2)2

y
+ 2(q̂2)2 +

(q̂2)3

y

)
+ δ′(z)(1− q̂2

y
)(1− ρ− y + q̂2)

(1− 2ρ+ ρ2 − 2q̂2 − 2ρq̂2 + (q̂2)2)
)
+ 3λ2

(
1− 5ρ+ 2

q̂2

y
+ 10ρ

q̂2

y
+ 10q̂2

(1− q̂2

y
)− δ(z)

(
− 1 + 6ρ− 5ρ2 + y(1− 5ρ) +

q̂2

y
(1− 2ρ) + 5ρ2

q̂2

y
+ q̂2

(1 + 15ρ) + 5yq̂2 − 2
(q̂2)2

y
− 10(1 + y)

(q̂2)2

y
+

(q̂2)3

y

))]
(5.16)



116 Chapter 5. Radiative Inclusive B decays

where y =
2Eℓ
mb

, q2 = (pl + pn)
2, q̂2 =

q2

m2
b

, ρ =
m2
u

m2
b

and z = 1− y − q̂2

y
+ q̂2 − ρ.

Eq. (5.16) is in perfect agreement with [52]. The lepton spectrum for B → Xuℓνℓ

in the limit ρ→ 0 is

dΓ

dy
= 2Γ0

[
y2(3− 2y)− λ1

m2
b

(
− 5

3
y3 +

1

6
δ(1− y) +

1

6
δ′(1− y)

)
− λ2

m2
b

(
− (6 + 5y)y2

+
11

2
δ(1− y)

)]
(5.17)

Here, we have Γ0 =
G2

F |Vub|2m5
b

192π3 . It is worth noting that the contribution from

the parton model, given by 2y2(3 − 2y), does not vanish at the endpoint. As a

result, delta functions and their derivatives appear in the lepton spectrum. Upon

integrating over the lepton energy, we obtain the total decay rate as follows:

Γ = Γ0

(
1 +

λ1
2m2

b

− 9
λ2
2m2

b

)
(5.18)

which has the same form as shown in Eq.(5.3).

5.4 Differential rate of B → Xuℓνℓγ

Now we calculate the differential rate for the B → Xuℓνℓγ mode. Fig.(5.2) illus-

trates all the Feynman diagrams1 contributing to the decay width of B → Xuℓνℓγ

at the leading order in perturbation theory. In the leading order (mb → ∞),

the decay width for the process B → Xuℓνℓγ is obtained from the partonic re-

sult, while the preasymptotic effects, i.e., the sub-leading contributions in the

HQET, are expressed in powers of
ΛQCD

mb
. Similar to Section-5.3, our focus lies

on the B → B forward scattering matrix element rather than the amplitude for

B → Xuℓνℓγ itself. The imaginary part of the amplitude depicted in Fig.(5.3)

is associated with the inclusive rate for the B → Xuℓνℓγ transition, as dictated

by the optical theorem. However, the B → Xuℓνℓγ process is significantly more

intricate compared to the B → Xuℓνℓ mode due to the presence of a photon

line between the charged quarks and leptons, as shown in Fig.(5.2). This im-

plies that certain diagrams, such as Figs.5.2b and 5.2c, do not readily separate

1We consider only those diagrams that, upon cutting the photon and u-quark lines, lead to
B → Xuℓνℓγ.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Feynman diagrams for B → Xuℓνℓγ.

into leptonic and hadronic components like in the B → Xuℓνℓ mode. Since the

hadronic part in some of the diagrams interacts with the leptonic part through

the photon, the calculation of the matrix element becomes more complex when

expressed in terms of invariant tensors and utilizing analytic properties of the

transition operator. Furthermore, in the present case, the transition tensor will

be a four-index object, with two indices for the weak currents and two for the

electromagnetic currents representing photon emission. Therefore, employing the

Cutkosky method directly to compute the matrix element is more straightfor-

ward. As we verified in the previous section, this method yields correct results

for the decay rate of the B → Xuℓνℓ mode.

The decay rate for the semi-leptonic inclusive process B → Xuℓνℓγ is

given by

Γγ =
(4GF√

2

)2
|Vub|2

1

2mB

∫
d3pl

(2π)32El

∫
d3pn

(2π)32Eν

∫
d4k

(2π)4
Im
[
⟨B|IMµνLµν |B⟩

]
(5.19)
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with IMµνLµν =
9∑

m=1

ImM(m)
µν Lµν(m) (5.20)

Here, M(m)
µν and L(m)

µν represent the Dirac structures for the quark and leptonic

parts, respectively, while Im includes the denominator part of the propagator.

further, m = 1, ..., 9 corresponds to Fig.(5.2a,...5.2i). In these expressions, k de-

notes the photon four-momentum, and pℓ(ν) represents the four-momentum of the

lepton (neutrino). We now present the explicit calculation of the forward scat-

tering operator for Fig.(5.2a), and the calculations for the other diagrams follow

a similar procedure which is provided below. The evaluation of the hadronic and

leptonic tensors requires computing M(m)
µν , L(m)

µν , and Im.

In the leading order of αs, the explicit forms of M(1)
µν , L(1)

µν , and I1 are:

M(1)
µν = 2(−igαβ)b̄γν

(
1− γ5

)
i
(
/pb + /Π− /q

)
(−ieQu)γ

αi
(
/pb + /Π− /k − /q +mu

)
(−ieQu)γ

βi
(
/pb + /Π− /q

)
γµ
(
1− γ5

)
b,

L(1)
µν =

(
ℓ̄γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)ℓ
)
, (5.21)

and

I1 = (k2 + iϵ)−1((pb +Π− q)2 −m2
u + iϵ)−1((pb +Π− q − k)2 −m2

u + iϵ)−1

((pb +Π− q)2 −m2
u + iϵ)−1 (5.22)

respectively. Similarly, we express the effective momentum of the b quark as

pb + Π. Expanding I1 in powers of Π allows us to obtain an expansion in terms

of
ΛQCD

mb
, which is analogous to the B → Xuℓνℓ mode. The explicit expression for

I1 up to O(Π2) is derived from Eq.(5.22) and is given as follows:

I1 =
1

k2((pb − q − k)2 −m2
u)

[ 1

(pu · k)2
− 2(pb − q).Π

(pu · k)3
− Π2

(pu · k)3
+

2((pb − q).Π)2

(pu · k)4
]

− 1

k2((pb − q − k)2 −m2
u)

2

[ 2pu · Π
(pu · k)2

− 4(pu · Π)(pb − q).Π

(pu · k)3
− Π2

(pu · k)2
]

+
1

k2((pb − q − k)2 −m2
u)

3

[2(pu · Π)2
(pu · k)2

]
(5.23)

Similar to Section-5.3, the Cutkosky method is exploited (see Fig.(5.3)) to calcu-
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late the imaginary part of the matrix element. Mathematically, this essentially

Figure 5.3: Representative diagram with explicit cut

replaces the cut propagator by a product of delta function and theta function

enforcing the positive energy condition. For example

1

((pb − q − k)2 −m2
u + iϵ)

→ (−2πi)δ((pb − q − k)2 −m2
u)Θ((p0b − q0 − k0)).

(5.24)

More generally one has the identity

− 1

π
Im
( 1

(pb − q − k)2 −m2
u

)n
=

(−1)(n−1)

(n− 1)!
δ(n−1)((pb − q − k)2 −m2

u), (5.25)

The superscript of the delta function indicates the (n − 1)th derivative with

respect to its argument. Handling terms involving derivatives of the delta func-

tion requires caution. The initial step involves applying integration by parts

to eliminate the derivatives from the delta function and transfer them to other

functions that multiply it. However, it is essential to handle the theta function

carefully during this process, as it determines the minimum value of the neutrino

energy, represented by Eν . Additional information regarding the kinematics can

be found in Appendix C.

Next, we proceed by combining the terms Mµν(1), Lµν(1), and I1 to

evaluate the imaginary part of the amplitude. Interestingly, our analysis reveals

that no new operators are generated beyond those already present in the decay

rate of the B → Xuℓνℓ process. All the relevant operators, up to dimension five,

are listed in Eq.(5.14).

It is evident that only I1 contributes to the imaginary part of the matrix

element. Thus, we provide an explicit expression for the matrix element based on
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the representation outlined in Eq.(5.23). Each square bracket contains terms with

expansions in Π up to the second order. The imaginary parts of the coefficients

in these square brackets contribute to the delta function and its derivatives. We

denote the forward scattering matrix element as

J1(n;α) = ⟨B(v)|Im{I1M(1)
µνL(1)

µν }|B(v)⟩(n;α). (5.26)

Here, n = 0, 1, 2 represents the expansion powers of Π, and α = a, c, d corre-

sponds to the square brackets in Eq.(5.23) in sequence. For instance, in J (0; a),

’0’ signifies the expansion in Π up to O(Π0), and ’a’ indicates the selection of

elements from the first square bracket of Eq.(5.23). We now provide explicit

expressions for each of the terms in I1, excluding the delta function or its deriva-

tives.

O(Π0) :

J1(0; a) =
−1

mb(pu · k)2
16(pb · pl)

(
(q2 +m2

b − 2(pb · q))(pn.(pb + k − q))

−2((pb − q) · k)(q − pb) · pn
)
(5.27)

O(Π) :

J1(1; a) =
−1

3m3
b(pu · k)3

64(λ1 + 3λ2)
(
2m2

b(pl · q) + (pb · pl)(3m2
b − 5(pb · q))

)((
q2 +m2

b

−2(pb · q)
)
(pn.(pb + k − q))− 2((pb − q) · k)(pn.q − pb · pn)

)
(5.28)

O(Π2) :

J1(2; a) =
1

3m3
b(pu · k)4

32λ1(pb · pl)
(
− 2(pu · k)2

(
m2
b(pn · k − 5(pn.q)) + (pb · pn)

(2(pb · (q + k)) + 3m2
b)
)
+
(
(q2 +m2

b − 2(pb · q))(pn.(pb + k − q))− 2(pb − q) · k

((pb − q) · pn)
)
((pb · q)2 +m2

b(3(pu · k)− q2)) + 4(pu · k)
(
m2
b((pl · pn)

(
2pb · (q + k)

−4(q · k)− 3q2
)
+ (pb · pn)(pb · q + 2(q · k + q2)) + 2q2(pn · k)) + (pb · q)

(
2(pn.q)

(pb · (q + k))− 2(pb · q)(pn · k) + (pb · pn)(q2 + 2(q · k)− 4pb · (q + k))
)
−m4

b(pn.q)
))

(5.29)

The combination J1(0; a)+J1(1; a)+J1(2; a) is multiplied by δ(k2)θ(k0)δ(((pb−
q−k)2−m2

u))θ((pb−q−k)0). Similarly, the terms arising from the second square
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brackets of Eq.(5.23) involving the hadronic and leptonic tensors (Eq.(5.21)) are

expanded in powers of Π. As this set of terms is multiplied by 1
((pb−q−k)2−m2

u)
2 ,

which represents the square of the propagator, the sum of these terms carries an

overall factor of δ(k2)θ(k0)δ′(((pb − q − k)2 −m2
u))θ((pb − q − k)0).

O(Π) :

J1(1; c) =
−1

3m3
b(pu · k)2

128(λ1 + 3λ2)
(
(m2

b + q2 − 2pb · q)((pb − q + k) · pn)− 2((pb − q) · k)

((pb − q) · pn)
)(

(pb · pl)(5pb · (q + k)− 3m2
b)− 2m2

b(pl · (q + k))
)

(5.30)

O(Π2) :

J1(2; c) =
−1

3m3
b(pu · k)3

128
(
λ1(pb · pl)

(
8((pu · k + pb · q)(pn.q)−−(2(pu · k) + pb · q)(pb · pn))

(pb · k)2 + 2
((

4(pn · k)(pu · k) + (7pu · k − 4k · q − 4q2)(pn.q) +
(
4(q · k)− 3(pu · k)

+4q2
)
(pb · pn)

)
m2

b − 2(pb · q)
(
(pn · k)(2(pu · k)− q2 + 2(pb · q)−m2

b) + (pn.q)

(2k · q − 4(pu · k) + q2 − 4(pb · q) +m2
b)
)
+ 2
(
2(q · k)(pu · k + pb · q) + (pu · k)

(
q2

−8(pb · q) +m2
b

)
+ (pb · q)(q2 − 4(pb · q) +m2

b)
)
(pb · pn))(pb · k) +

(
8(pb − pn).q

(k · q)2 + 2(2(3q2 − 2(q · pb) +m2
b)(pn.q − pb · pn) + pu · k(11(pb · pn)− 15(q · pn)))

(k · q) + 4q2(q2 − 2(pb · q)−m2
b)(pb − q) · pn + pu · k((2(pb · q)−m2

b)(7q − 3pb) · pn

+q2(11pb − 15q) · pn)
)
m2

b + 4(pb · q)
(
pb · qpn.q(2(pu − q) · k − q2 + 2pb · q −m2

b)

+(2(q · k)(pu · k + pb · q) + pu · k(q2 − 4pb · q +m2
b) + pb · q(q2 − 2pb · q +m2

b))(pb · pn)
)

+(pn · k)
(
4(q2 − 2pb · q +m2

b)((pb · q)2 − (q2 + k · q)m2
b) + (pu · k)

((
7q2 + 2pb · q

−m2
b

)
m2

b − 8(pb · q)2
))))

(5.31)

In a similar way, we then consider the imaginary part of the third square

bracket of Eq. (5.23) and combine it with Eq.(5.21). Explicitly the amplitude

expanded in powers of Π is

O(Π2) :

J1(2; d) =
1

3m3
b(pu · k)2

256λ1(pb · pl)
(
(−2pb · q +m2

b + q2)(pb + k − q) · pn − 2(pb − q) · k

(q − pb) · pn
)(

((q + k).pb)
2 −m2

b(2q · k + q2)
)
. (5.32)

Here, ‘d′ refers to the elements of the third square bracket of Eq. (5.23). More-

over, the J1(2; d) has a multiplicative factor of δ(k2)θ(k0)δ′′(((pb − q − k)2 −

m2
u))θ((pb − q − k)0).
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Next, combining all the amplitudes, the total forward matrix element

for Fig.5.2a is given by

⟨B|Im{I1M(1)
µνL(1)

µν |B}⟩ = δ(k2)θ(k0)
[
(J1(0; a) + J1(1; a) + J1(2; a))δ

(
(pb − q − k)2

−m2
u

)
+ (J1(1b) + J1(2b))δ

′((pb − q − k)2 −m2
u) +

(J1(2; c))δ
′′((pb − q − k)2 −m2

u)
]
θ((pb − q − k)0) (5.33)

Integration by parts is then used to simplify such expressions:

δ′(x)θ(x)f(x) = −δ(x)δ(x)f(x)− δ(x)θ(x)f ′(x), and (5.34)

δ′′(x)θ(x)f(x) = δ(x)δ′(x)f(x) + 2δ(x)δ(x)f ′(x) + δ(x) + θ(x)f ′′(x).(5.35)

These relations will be utilized for performing integrals over phase space. Like-

wise, the forward matrix elements for the remaining eight Feynman diagrams

depicted in Fig.(5.2) are computed. The relevant explicit expressions for M(m)
µν ,

L(m)
µν , and Im with m = 2, ...9 for all the Feynman diagrams are given by

1. Fig.(2(b)):

M(2)
µν = 2(−igαβ)b̄(−ieQb)γαi

(
/pb + /Π− /k +mb

)
γν(1− γ5)i

(
/pb + /Π− /k − /q +mu

)
γµ
(
1− γ5

)
b

L(2)
µν =

(
ℓ̄(−ieQℓ)γβi

(
/pl + /k +ml

)
γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)ℓ
)

(5.36)

I2 =
1

k2((pb − q − k)2 −m2
u)

[ −1

(pb · k)(pl · k)
− (pb − k).Π

(pl · k)(pb · k)2
− Π2

2(pl · k)(pb · k)2
−

((pb − k).Π)2

2(pl · k)(pb · k)3
]
− 1

k2((pb − q − k)2 −m2
u)

2

[ 2pu ·Π
(pl · k)(pb · k)

+
2(pu ·Π)(pb − k).Π

(pl · k)(pb · k)2

+
Π2

(pl · k)(pb · k)

]
− 1

k2((pb − q − k)2 −m2
u)

3

[ 2(pu ·Π)2

(pl · k)(pb · k)

]
(5.37)

O(Π0) :

J2(0; a) =
−1

mb(pb · k)(pl · k)
16
(
− 2(pb · pn)

(
2(pb · pl)2 + (pl · k)2 + pl · k(pb · q + pl · q −

3pb · pl)− (pb · k)(pl · k)− pb · pl(q · k − 2pb · k + 2pl · q)
)
+m2

b

(
pl · k((pb + q) · pn)

+pl · pn(pb · k − q · k − 2pl · k)− ((q − pb).pl)(pn · k + 2pl · pn)
)
− 2((pb · pl)(pn · k)

−(pb · k)(pl · pn))((q + k − pb).pl)
)

(5.38)
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O(Π) :

J2(1; a) =
−1

3m3
b(pb · k)2(pl · k)

32(λ1 + 3λ2)
(
2m2

b

(
pn · k

(
pb · pl(pl · q − 2q · k − 3pl · k)

−(pb · pl)2 + 2pl · k(pb · q + 2pl · k + 2pl · q)
)
+ pb · pn

(
6(pb · pl)2 − pb · pl

(7pl · k + 3q · k + 6pl · q) + pl · k(3pb · q + pl · (q + k))
))

+ (pb · k)2
(
10(pl · pn

(q + k − pb).pl) + pb · pn(pl · q − 2pb · pl) +m2
bpl · pn

)
+ pb · k

(
− 10pb · pn(

2(pb · pl)2 − pb · pl(3pl · k + q · k + 2pl · q) + pl · k(pb · q + (q + k).pl)
)
+m2

b(
pn · k(9pb − 5q).pl + pl · k(9pb − 12pl + q)− pl · pn(12(q − pb).pl + q · k)

−6pb · pn(q − 2pb).pl
)
− 10(pb · pl)(pn · k)

((
q + k − pb

)
.pl
)
− 3m4

b(pl · pn)
)

+m4
b

(
3(pb − q).pl((k + 2pl) · pn) + 3(q · k)(pl · pn)− 3(pl · k)(pn.(pb − 2pl + q))

+4pn · k
))

(5.39)

J2(1; c) =
1

3m3
b(pb · k)(pl · k)

128(λ1 + 3λ2)
(
m4

b

(
pn · k((q − 3pb).pl)− pl · k

((
4k + 5q +

3pb − 6pl
)
· pn
)
+ pl · pn(5k · q + 6pl · q − 6pb · pl)

)
+
(
2((4k + 2q + pb) · pn)(pl · k)2

+
(
2pn · k(2q · pb + 6q · pl − 3pb · pl) + 4pn.q((q − 2pb).pl) + 2q2(pb · pn)− 2

((
q +

7pb
)
.pl
)
pb · pn + pb · q((5q + 11pb − 6pl) · pn)− 4(q · k)(pl · pn)

)
pl · k + 4(pn.q)

(pb · pl)((pb − q).pl) + pn · k
(
4(q · pl)2 − 2(pb · pl)2 − pb · q((q − 5pb).pl)− 2pb · pl

(2k · q + q2 + pl · q)
)
− 2pb · pn

(
2q · pl((k + pl).q) + pb · pl((3k + 4pl).q)−

6(pb · pl)2
)
+ pl · pn

(
6pb · q((pb − q).pl) + k · q(4pb · pl − 4q · pl − 5q · pb)

))
m2

b + 10

q · pb
(
− (pn · k)(pb · pl)((k + q − pb).pl)− pb · pn

(
2(pb · pl)2 − pb · pl(k · q + 3k · pl

+2q · pl) + pl · k(k · pl + q · pb + q · pl)
))

+ (pb · k)2
(
m2

bpl · pn + 10((q − 2pb).pl)

(pb · pn) + ((k + q − pb).pl)(pl · pn)
)
+ pb · k

(
− 3(pl · pn)m4

b +
(
pn · k((9pb − q).pl)

+pl · k((q + pb) · pn) + pl · pn(2q2 + q · pb − 12k · pl − k · q)− 2((2q + pb + 6pl) · pn)

(q · pl) + 4pb · pl((q + 3pb + 3pl) · pn)
)
m2

b + 10
(
− (pn · k)(pb · pl)((k + q − pb).pl)

−pb · pn
(
(pl · k)2 + pl · k(q · pb + q · pl − 3pb · pl) + 2(pb · pl)2 − (q · pb)(q · pl)−

((
k −

2pb + 2pl
)
.q
))

+ ((k + q − pb).pl)(pb · q)(pl · pn)
)))

(5.40)

O(Π2) :

J2(2; a) =
1

3m3
b(pb · k)2(pl · k)

16λ1

((
3(pl · k)((q + pb) · pn)− 3pl · pn((3q + 10pl) · k)−

3pl · (q − pb)((k + 2pl) · pn)
)
m4

b − 2
(
pn · k((7k + 5q − 5pb).pl)(pb · pl) + pb · pn(

6(pb · pℓ)2 − 3pb · pl(k · q + 5k · pl + 2q · pl) + pl · k(7pl · k + 3pb · q + 5pl · q)
))
m2

b

+(pb · k)2
(
2pl · q((pb − pl) · pn)− 2pb · pl((2pb + pl) · pn)− pl · pn(3m2

b + 2pl · k)
)

+pb · k
(
3(pl · pn)m4

b − 4(pb · pn)m2
ℓm

2
b + 6((q − 2pb).pl)(pb · pn)m2

b −
(
k · q −

8q · pl + 8pb · pl
)
(pl · pn)m2

b + pb · pn
(
2(pl · k)2 − 4(pb · pl)2 + 2(q · k)(pb · pl) + 4

(pl · q)(pb · pl)
)
+ pn · k

(
2(pb.pl)((q + pb).pl)− ((q − 5pb).pl)m

2
b

)
+ pl · k

(((
q

+5pb + 12pl
)
· pn
)
m2

b + 2(pn · k)(pb · pl) + 2(pl · q − pb · q + 3pb · pl)(pb · pn)
)))

(5.41)
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J2(2; c) =
−1

3m3
b(pb · k)2(pl · k)

128λ1

(
m4

b

(
− k.(2q + 3pb)

(
k · pn((q − pb).pl)− k · pl

((
q +

pb
)
· pn
))

− pl · pn
(
2(k · q)2 + q · k(5pb · k + 4(k + q − pb).pl) + pb · k

((
10k + 10q

−6pb
)
.pl − 3pb · k

)))
+ 2
(
(pl · pn)(pb · k)3 + (pb · k)2

(
(pb · pν)(pl · (k + 5q)) + pl · pn

(7k · pl − q2 + q · pb + 7q · pl) + pb · pl((k + 2q − 6pb − 3pl) · pn)
)
+
(
− 7(pb · pn)

(pl · k)2 +
(
(pb · pn)(q2 − 4q · pb − 9q · pl) + pb · pl((15pb − 2q − 7k) · pn) + 2(pl · pn)

((k + pb).q)
)
pl · k + 2(q · pn)(pb · pl)(pb · pl − k · q − q · pl) + (pn · k)(pb · pl)(q2 − q · pb

−7q · pl + 5pb · pl)− 2(q · pl)2(pb · pn)− (pb · pl)(pb · pn)(6pb · pl − 3k · q − 12q · pl) +

2(pl · pn)((q · pb)(q · pl) + k · q
(
q · pb + q · pl − pb · pl

)
)
)
pb · k + 2k · q

(
− (pn · k)

((
k + q

−pb
)
.pl
)
(pb · pl)− pb · pn

(
2(pb · pl)2 − pb · pl(k · q + 3pl · k + 2q · pl) + pl · k

(
k · pl +

q.(pb + pl)
))))

m2
b − 4k · pb((k + q).pb)

(
− pb · pn(pl · k)2 − pl · k

(
(pn · k)(pb · pl) +

(q · pl)(pb · pn)− (pb · k)(pl · pn)
)
+ pb · pl

(
2pb · pn((k + pl).pb)− (k · pn)(q · pl)

)
+

(k · pb)(q · pl)(pl · pn)
))

(5.42)

J2(2; d) =
−1

3m3
b(pb · k)(pl · k)

256λ1

(
((q + k).pb)

2 −m2
b(2k · q + q2)

)(
− 2pb · pn

(
2(pb · pl)2 +

(pl · k)2 + pl · k(q.(pl + pb)− 3pb · pl)− (pb · k)(q · pl)− pb · pl(k · q + 2q · pl − 2k · pb)
)

+m2
b

(
k · pl((pb + q) · pn) + (pl · pn)((pb − 2pl − q) · k)− ((q − pb).pl)((k + 2pl) · pn)

)
−2(pb · pl)(k · pn)(−pb + k + q).pl + 2(k · pb)(pl · pn)((k + q − pb).pl)

)
(5.43)

2. Fig.(2(c)):

M(3)
µν = 2(−igαβ)b̄γν(1− γ5)i

(
/pb + /Π− /q − /k +mu

)
γµ
(
1− γ5

)
i
(
/pb + /Π− /k +mb

)
(−ieQb)γαb

L(3)
µν =

(
ℓ̄γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)(−ieQl)γαi
(
/pl + /k +ml

)
ℓ
)

(5.44)

I3 = I2 (5.45)

O(Π0) :

J3(0; a) =
1

mb(pb · k)(pl · k)
16
(
− (pb · pn)(pl · k)2 + pl · k

(
m2

b((pb − 2pl + q) · pn)− 2pb · pn

(−2pb · pl + q.(pb + pl))
)
−m2

b

(
(q · pl − pb · pl)(k · pn + 2pl · pn) + (k · q)(pl · pn)

)
+k · pb

(
pl · pn(2q · pl +m2

b) + 2pb · pn((q − 2pb).pl) +m2
ℓk · pn + k · pl

((
pl −

2k
)
· pn
))

+ 2pb · pl
(
pb · pn(k · q + 2q · pl − 2pb · pl)− (k · pn)(q · pl)

))
(5.46)
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O(Π) :

J3(1; a) =
−1

3m3
b(pb · k)2(pl · k)

32(λ1 + 3λ2)
(
(pb · k)2

(
5pl · k(2k · pn − pl · pn)− 5m2

ℓ(k · pn)

−10pb · pn((q − 2pb).pl)− pl · pn(10q · pl +m2
b)
)
+ pb · k

(
5(pb · pn)(pl · k)2 +m2

b(
pl · pn(k · q + 12q · pl − 6pb · pl) + 6pb · pn

(
q · pl − 2pb · pl

))
+ k · pl

(
m2

b

((
q − 9pl

+6k − 9pb
)
· pn
)
+ 15(pb · pl)(k · pn) + 10pb · pn(q.(pb + pl)− 2pb · pl)

)
+ k · pn(

5q · pl(2pb · pl +m2
b) + 3m2

b(m
2
ℓ − 3pb · pl)

)
− 10(pb · pl)(pb · pn)(−2pb · pl + k · q

+2q · pl) + 3m4
b(pl · pn)

)
+m2

b

(
− pn · k

(
4(pb · pl)2 + pb · pl(5k · pl − 4k · q + 2q · pl)

+4k · pl(q · pb + 2k · pl + 2q · pl)
)
+ pb · pn

(
(k · pl)2 − 2k · pl(3q · pb + q · pl − 4pb · pl)

+6pb · pl(k · q + 2q · pl − 2pb · pl)
)
+m2

b

(
k · pl((3pb − 2pl + q) · pn + 4k · pn)− 3

(q · pl − pb · pl)(k · pn + 2pl · pn)− 3(k · q)(pl · pn)
)))

(5.47)

J3(1; c) =
1

3m3
b(pb · k)(pl · k)

128(λ1 + 3λ2)
(
5(pb · k)2

(
k · pl((2k + 4q − 4pb − pl) · pn)−m2

ℓ

((k + 2q − 2pb) · pn) + 2pb · pl((pl − 2(k + q − pb)) · pn)
)
+
(
5(pb · pn)(pl · k)2 +(

3m2
b((pl + 4pb − 4q) · pn) + 10pb · pl((2q − 3pb) · pn) + 5q · pb((4q − 4pb − pl) · pn)

+k · pn(−6m2
b + 10q · pb + 15pb · pl)

)
pl · k +

(
2(q − pb) · pn(6m2

b − 5q · pb) + pn · k

(9m2
b − 5q · pb)

)
m2

ℓ + 2pb · pl
(
3m2

b((2q − 2pb − pl) · pn)− 10(q · pb + pb · pl)
(
q · pn

−pb · pn
)
+ 5(q · pb)(pl · pn) + k · pn

(
6m2

b − 10q · pb − 15pb · pl
)))

pb · k + 2m2
b

(
k · q

((k + 2q − 2pb) · pn) + 3((k + q − pb) · pn)(q · pb −m2
b)
)
m2

ℓ + 2pb · pl
(((

2q · pl +

3pb · pl
)
(3k · pn + 2q · pn − 2pb · pn) + k · q((4(k + q − pb)− 2pl) · pn)

)
m2

b − 5(q · pb)

(pb · pl)(3k · pn + 2q · pn − 2pb · pn)
)
+ pl · k

((
k · pn(7pb · pl − 6q · pl)− 8(q · pl)(q · pn)

+2(4q · pl + 5pb · pl)pb · pn + 2k · q
(
4pb · pn + pl · pn − 4q · pl − 2k · pn

))
m2

b + 5(q · pb)

(pb · pl)((3k + 4q − 6pb) · pn)
)
+ (pl · k)2

(
5pb · pn(m2

b + q · pb)− 2
(
4k · pn +

5q · pn
)
m2

b

))
(5.48)
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O(Π2) :

J3(2; a) =
1

3m3
b(pb · k)2(pl · k)

16λ1

(
(pb · k)2

(
−m2

ℓ(pn · k) + 2((q − 2pb).pl)(pb · pn) +

k · pl((2k − pl) · pn)− pl · pn(9m2
b + 2q · pl + 4pb · pl)

)
+
(
3(pl · pn)m4

b + (pb · pn)

m2
b(2m

2
ℓ + 6q · pl − 12pb · pl)−

(
k · q − 8q · pl + 2pb · pl

)
(pl · pn)m2

b +
(
(k · pl)2

−4(pb · pl)2 + 2(k · q)(pb · pl) + 4(q · pl)(pb · pl)
)
(pb · pn) + pl · k

(((
q + 2pb +

9pl
)
· pn
)
m2

b + 2(q · pl + 4pb · pl − q · pb)pb · pn + 3(pn · k)(pb · pl − 2m2
b)
)
+ pn · k(

3m2
bm

2
ℓ + q · pl(2pb · pl −m2

b) + 4pb · pl(2m2
b + pb · pl)

))
pb · k +m2

b

(
− 11

(pb · pn)(pl · k)2 +
(
m2

b((3q + 3pb − 10pl) · pn)− 17(k · pn)(pb · pl)− 2pb · pn
(
3q · pb

+5q · pl − 12pb · pl
))
pl · k + 3(k · q + 2q · pl − 2pb · pl)

(
2(pb · pl)(pb · pn)− (pl · pn)

m2
b

)
+ k · pn

(
pb · pl(3m2

b + 4pb · pl)− q · pl(3m2
b + 10pb · pl)

)))
(5.49)

J3(2; c) =
−1

3m3
b(pb · k)2(pl · k)

128
(
2
(
(2q · pn + k · pn)m2

l + k · pl (−2k · pn + pl · pn − 4q · pn)

+pb · pl (4pb · pn − 2pl · pn)
)
(k · pb)3 +

(
− 2 (pb · pn) (k · pl)2 + k · pl

((
28q · pn −

20 (pb · pn)− 3 (pl · pn)
)
m2

b +
(
22m2

b − 4q · pb − 6pb · pl
)
k · pn + 4pb · pl

(
pb · pn −

2q · pn
)
+ 2q · pb (pl · pn − 4q · pn)

)
+m2

l

((
− 11k · pn + 6pb · pn − 14q · pn

)
m2

b +

2q · pb (2q · pn + k · pn)
)
+ 4pb · pl ((pb · pl) (2pb · pn + k · pn) + q · pb (2pb · pn − pl · pn))

+2m2
b

(
2 (2q · pl − 5pb · pl) k · pn + 4q · pl (q · pn − pb · pn) + pb · pl

(
− 10q · pn + 6pb · pn

+3pl · pn
)))

(k · pb)2 + 2 (k · q)m2
b

(
pb · pn(k · pl)2 + 2m2

bm
2
l (−pb · pn + k · pn + q · pn)

−2(pb · pl)2
(
3k · pn + 2q · pn − 2pb · pn

)
+ (k · pl) (pb · pl) (3k · pn + 4q · pn − 6pb · pn)

)
+k · pb

( (
3m2

b − 2q · pb
)
(pb · pn) (k · pl)2 − 2m2

b

(
(3pb · pn − 5 (k · pn + q · pn))m2

b +

2q · pb (k · pn + q · pn) + k · q (2q · pn + k · pn − 2pb · pn)
)
m2

l + 2pb · pl
((
2pb · pn

(
3pb · pl

−2q · pl
)
+ (4q · pl − 13pb · pl) k · pn + 2 (2q · pl − 5pb · pl) q · pn + 2 (k · q)

(
pl · pn − 2

(−pb · pn + k · pn + q · pn)
))
m2

b + 2 (q · pb) (pb · pl) (2pb · pn + k · pn)
)
+ (k · pl)((

pb · pl (25k · pn + 28q · pn − 26pb · pn) + (k · q)
(
4k · pn + 8q · pn − 8 (pb · pn)− 2

(pl · pn)
))
m2

b − 2 (q · pb) (pb · pl) (3k · pn + 4q · pn − 2pb · pn)
)))

(5.50)

J3(2; d) =
1

3m3
b(pb · k)(pl · k)

256λ1

(
(k · pb + q · pb)2 −m2

b

(
2k · q + q2

) )(
− 2 (pb · pl)2

(
− 2

pb · pn + 3k · pn + 2q · pn
)
+ (pb · pn) (k · pl)2 + 2m2

bm
2
l (−pb · pn + k · pn + q · pn) +

k · pb
(
m2

l (2pb · pn − k · pn − 2q · pn) + (k · pl) (−4pb · pn + 2k · pn − pl · pn + 4q · pn)

+2 (pb · pl) (pl · pn − 2 (−pb · pn + k · pn + q · pn))
)
+ (pb · pl) (k · pl)

(
− 6pb · pn +

3k · pn + 4q · pn
))

(5.51)
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3. Fig.(2(d)):

M(4)
µν = b̄γν(1− γ5)i

(
/pb + /Π− /q − /k +mb

)
γµ
(
1− γ5

)
b

L(4)
µν = (−igαβ)

(
ℓ̄(−ieQl)γαi

(
/pl + /k +ml

)
γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)i
(
/pl + /k +ml

)
(−ieQl)γβℓ

)
(5.52)

I4 =
1

k2((pb − q − k)2 −m2
u)

[ 1

(pl · k)2
]
− 1

k2((pb − q − k)2 −m2
u)

2

[ 2pu ·Π
(pl · k)2

+
Π2

(pl · k)2
]

+
1

k2((pb − q − k)2 −m2
u)

3

[2(pu ·Π)2

(pl · k)2
]

(5.53)

O(Π0) :

J4(0; a) =
1

mb(pl · k)2
64pb · pn

(
k · pl(k · q − k · pb)−m2

ℓ(k · pl + k · q + q · pl − k · pb − pb · pl)
)

(5.54)

O(Π) :

J4(1; a) =
−1

3m3
b(pl · k)2

64(λ1 + 3λ2)
(
m2

ℓ(2m
2
b(k · pn + pl · pn)− 5pb · pn(k · pb + pb · pl))

+k · pl
(
5(k · pb)(pb · pn)− 2m2

bk · pn
))

(5.55)

J4(1; c) =
1

3m3
b(pl · k)2

512(λ1 + 3λ2)
(
m2

ℓ(k · pl + k · q + q · pl − k · pb − pb · pl)

+k · pl(k · pb − k · q)
)(
2m2

b(k · pn + q · pn) + pb · pn(3m2
b − 5(k · pb + q · pb))

)
(5.56)

O(Π2) :

J4(2; a) = 0 (5.57)

J4(2; c) =
−1

3m3
b(pl · k)2

256λ1

(
4pb · pn

(
m2

ℓ − k · pl
)
(k · pb)2 + 2k · pb

(
m2

ℓ

(
m2

b (k · pn + q · pn)

+pb · pn
(
2 (pb · pl + q · pb) + 3m2

b

))
− (pb · pn) (k · pl)

(
2q · pb + 3m2

b

)
−m2

bm
2
ℓ

(
k · pn

+q · pn
))

+m2
ℓ

(
m2

b

(
pb · pl (6pb · pn + k · pn + q · pn)− pb · pn

(
11 (k · pl + q · pl)

+12k · q
))

+ 4 (pb · pl) (pb · pn) (q.pb)
)
+m2

b

(
10 (k · q) (pb · pn) (k · pl) +m2

ℓ

(
(pb · pn)

(k · pl + 2k · q + q · pl)− (pb · pl) (k · pn + q · pn)
)))

(5.58)

J4(2; d) =
1

3m3
b(pl · k)2

1024λ1pb · pn
(
(k · pb + q · pb)2 −m2

b(2k · q + q2)
)(

m2
ℓ

(
− k · pb − pb · pl

+k · pl + k · q + q · pl
)
+ k · pl(k · pb − k · q)

)
(5.59)
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4. Fig.(2(e)):

M(5)
µν = (−igαβ)b̄(−ieQb)γ

αi
(
/pb + /Π− /k +mb

)
γν(1− γ5)i

(
/pb + /Π− /q − /k +mu

)
γµ
(
1− γ5

)
i
(
/pb + /Π− /k +mb

)
(−ieQb)γ

βb

L(5)
µν =

(
ℓ̄γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)γαℓ
)

(5.60)

I5 =
1

k2((pb − q − k)2 −m2
u)

[ 1

(pb · k)2
+

2(pb − k).Π

(pb · k)3
+

Π2

(pb · k)3
+

((pb − k).Π)2

(pb · k)4
]

+
1

k2((pb − q − k)2 −m2
u)

2

[−2pu ·Π
(pb · k)2

− 4(pu ·Π)(pb − k).Π

(pb · k)3
− Π2

(pb · k)2
]

+
1

k2((pb − q − k)2 −m2
u)

3

2(pu ·Π)2

(pb · k)2
(5.61)

O(Π0) :

J5(0; a) =
1

mb(pb · k)2
32
(
m2

b

(
k · pn(pb · pl − 2q · pl) + k · pl(pb · pn − 2k · pn)− pb · pl(q · pn)

+pb · pn(q · pl)
)
+ 2k · pb(k · pn)((k + q − pb).pl)

)
(5.62)

O(Π) :

J5(1; a) =
1

3m3
b(pb · k)3

128(λ1 + 3λ2)
(
10k · pn(k · pb)2((k + q − pb).pl) +m4

b

(
k · pn

(
8q · pl

−5pb · pl
)
+ k · pl((2q + 10k − 5pb) · pn) + 3pb · pl(q · pn)− 3pb · pn(q · pl)

)
+m2

b

pb · k
(
k · pn(11pb · pl − 16q · pl) + k · pl(pb · pn − 16k · pn)− 5pb · pl(q · pn) + pb · pn

(4pb · pl + q · pl)
))

(5.63)

J5(1; c) =
1

3m3
b(pb · k)2

256(λ1 + 3λ2)
(
m2

b

(
4pl · pn(k · pb)2 + k · pb

(
k · pn(11pb · pl − 16q · pl)

+k · pl
(
pb · pn − 4(4k · pn + q · pn)

)
− q · pn(pb · pl + 4q · pl) + pb · pn(4pb · pl + q · pl)

)
−4k · q(k · pn − pb · pn)((k + q − pb).pl) + q · pb

(
k · pn(pb · pl − 6q · pl) + k · pl

(
pb · pn

−6k · pn
)
− 5pb · pl(q · pn) + pb · pn(4pb · pl + q · pl)

))
+m4

b

(
5k · pn(2q · pl − pb · pl)

+k · pl((10k + 44q − 5pb) · pn) + q · pn(pb · pl + 4q · pl)− 5pb · pν(q · pl)
)
+ 10k · pb

(k · pn)(k · pb + q · pb)(k · pl + q · pl − pb · pl)
)

(5.64)
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O(Π2) :

J5(2; a) =
1

3m3
b(pb · k)3

64λ1

(
2k · pn(k · pb)2((pb + k + q).pl) +m4

b

(
k · pn(10q · pl − 7pb · pl)

+7k · pl(2k · pn − pb · pn)− 2k · pb(pl · pn) + 3pb · pl(q · pn)− 3(pb · pn)(q · pl)
)
+m2

b

k · pb
(
k · pn(7pb · pl − 12q · pl)− 8k · pl(pb · pn + 2k · pn) + 2k · pb(pl · pn)− pb · pl

(
q · pn

−13pb · pn
)
− 6pb · pn(q · pl)

))
(5.65)

J5(2; c) =
−1

3m3
b(pb · k)3

256λ1

(
4(k · pb + q · pb)(k · pb)2

(
2k · pn(k · pl + q · pl − pb · pl)− pb · pn

(k · pl)
)
+m4

b

(
4k · q

(
pb · pl(q · pn)− pb · pn(k · pl + q · pl)− pb · pl(k · pn) + 2q · pl

(k · pn)
)
+ k · pb

(
k · pn(pb · pl + 2q · pl) + k · pl(pb · pn − 2k · pn − 8q · pn) + q · pn

(7pb · pl − 4q · pl) + pb · pn(q · pl)
))

+ 2m2
bpb · k

(
2q · pb

(
pb · pn

((
q + 2k − 2pb

)
.pl
)

−2k · pn((q + k − pb).pl)
)
+ 2k · q

(
k · pn(pb · pl − 2q · pl) + pb · pl(pb · pn − q · pn)

−2k · pl(k · pn)
)
+ k · pb

(
k · pn(7pb · pl − 5q · pl) + k · pl(2pb · pn − 3k · pn + 4q · pn)

−4pb · pl(pb · pn) + 2q · pl(q · pn)
)))

(5.66)

J5(2; d) =
−1

3m3
b(pl · k)2

512λ1

(
(pb · k + pb · q)2 −m2

b(2k · q + q2)
)(
m2

b

(
pn · k(pb · pl − 2q · pl)

+k · pl(pb · pn − 2k · pn)− pb · pl(q · pn) + (pb · pn)(q.pℓ)
)
+ 2k · pb(k · pn)

(
k · pl

+q · pl − pb · pl
))

. (5.67)

5. Fig.(2(f)):

M(6)
µν = (−igαβ)b̄γν(1− γ5)i

(
/pb + /Π− /q − /k +mu

)
(−ieQu)γ

αi
(
/pb + /Π− /q +mu

)
γµ
(
1− γ5

)
b

L(6)
µν =

(
ℓ̄γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)i
(
/pl + /k +ml

)
(−ieQl)γβℓ

)
(5.68)

I6 = I7 =
1

k2((pb − q − k)2 −m2
u)

[ 1

(pu · k)(pl · k)
− (pb − q).Π

(pl · k)(pu · k)2
− Π2

2(pl · k)(pu · k)2

+
((pb − q).Π)2

2(pl · k)(pu · k)3
]
+

1

k2((pb − q − k)2 −m2
u)

2

[ −2pu ·Π
(pl · k)(pu · k)

+
2(pu ·Π)(pb − q).Π

(pl · k)(pu · k)2

− Π2

(pl · k)(pu · k)

]
+

1

k2((pb − q − k)2 −m2
u)

3

2(pu ·Π)2

(pl · k)(pu · k)
(5.69)
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O(Π0) :

J6(0; a) =
1

mb(pl · k)(pu · k)
32pb · pn

(
2(q · pl − pb · pl)

(
k · pl + k · q + q · pl − k · pb − pb · pl

)
−m2

ℓ

(
k · q +m2

b + q2 − k · pb − 2q · pb
))

(5.70)

O(Π) :

J6(1; a) =
1

3m3
b(pl · k)(k · pu)2

64(λ1 + 3λ2)
(
2m2

bq · pn + pb · pn(3m2
b − 5q · pb)

)(
2
(
q · pl −

pb · pl
)(
k · pl + k · q + q · pl − pb · pl − k · pb

)
−m2

ℓ(k · q + q2 +m2
b − k · pb − 2q · pb)

)
(5.71)

J6(1; c) =
1

3mb(pl · k)(pu · k)
256(λ1 + 3λ2)

(
m2

ℓ(k · q + q2 +m2
b − k · pb − 2q · pb)− 2(q · pl

−pb · pl)
(
k · pl + k · q + q · pl − k · pb − pb · pl

))(
pb · pn(5(k · q + q · pb)− 3m2

b)− 2m2
b

(k · pn + q · pn)
)

(5.72)

O(Π2) :

J6(2; a) =
1

3m3
b(pl · k)(pu · k)3

32λ1pb · pn
(
2k · pu

(
m2

ℓ(m
2
b(k · q + 2q2)− 2(q · pb)2) + 2(k · pl

+2q · pl − 2pb · pl)
(
(pb · pl)(q · pb)−m2

b(q · pl)
)
+ 2k · q

(
pb · pl(q · pb +m2

b)− 2m2
b

q · pl
)
+ k · pb

(
2m2

bq · pl + q · pb(2q · pl − 4pb · pl −m2
ℓ)
))

−
(
2(q · pl − pb · pl)

(
k · pl

+k · q + q · pl − k · pb − pb · pl
)
−m2

ℓ

(
k · q + q2 +m2

b − k · pb − 2q · pb
))(

(q · pb)2 +

m2
b(3k · pu − q2)

)
− 2(k · pu)2

(
m2

b(m
2
ℓ − 2k · pl) + 2pb · pl(k · pb + pb · pl)

))
(5.73)

J6(2; c) =
−1

3m3
b(pl · k)(pu · k)2

128λ1

(
m2

b(k · pu)(q · pn)(2(pb · pl)2 −m2
bpl · k + k · pl(q · pb)−

2(k · q)(pb · pl)− 3(k · pl)(pb · pl)− 4(q · pl)(pb · pl)) +m2
b(q · pl)2(pb · pn)

(
8k · q −

24k · pu + 8q2
)
+m2

b(pb · pl)2(pb · pn)
(
8k · q − 12k · pu + 8q2

)
+m2

bpb · pn
(
(pu · k)

(pl · k)(q · pb − 6pl · k − 8k · q − q2) +
))

(5.74)

J6(2; d) = − 1

3 (k · pl) (k · pu)2
128λ1

(
(q · pn) (k · pu)

(
− (k · pl)m4

b − 4 (q · pl) (pb · pl)m2
b

−2 (k · q) (pb · pl)m2
b − 3 (k · pl) (pb · pl)m2

b

)
+ (k · pu) (pb · pn)

(
− 24 (q · pl)2 m2

b

−12 (pb · pl)2 m2
b

)
+ q2 (pb · pn)m2

b

(
8 (q · pl)2 + 8 (pb · pl)2 − (k · pl) (k · pu)

)
+

8 (k · q) (pb · pn)m2
b

(
(q · pl)2 + (pb · pl)2 + (k · q + q2)q · pl

)
+ (q · pl) (pb · pn)m2

b(
8(q2 + k · q) (k · pl)− 6(4k · q + 5k · pl)k · pu

)
− 8 (pb · pn)m2

b

(
pb · pl

(
k · q + k · pl

+2q · pl
)
(q2 + k · q)− (6k · pl + 8k · q) (k · pl) (k · pu)

)
+ (k · pu)m2

b

(
q · pn

(
2 (pb · pl) 2

+(q · pb) (k · pl)
)
+ (q · pb) (k · pl) (pb · pn) +

(
19k · q + 26k · pl + 38q · pl + 2q2

+3k · q
)
(pb · pl) (pl · pn)

)
+
(
4
(( (

q2 + k · q + pb · q
)
m2

b + q · pb
(
q2 + k · q − 3q · pb

))
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m2
l − 2 (q · pl − pb · pl)

( (
q2 + k · q

)
m2

b + q · pb
(
k · q − pb · q + pl · q − pb · pl + k · pl

)))
(pb · pn) +

(
− (pl · pn) (q · pb)2 −m2

b

(
(k · pl + 2q · pl) (q · pn) + 6(2 (pb · pl) +m2

l )

(pb · pn)
)
+
(
(pb · pl)2 − (2q · pl + k · pl − 2pb · pl)m2

b

)
(k · pn) + 2(pb · pl +m2

b)

(pb · pl) (q · pn) + (pb · pn)
(
− 16 (pb · pl)2 + 8m2

b (k · pl) + 19m2
b (q · pl) + 7 (pb · pl)(

k · q + k · pl + 2q · pl
))

+ (q2 + 2k · q)m2
b (pl · pn) + (q · pb)

(
− 9 (pb · pn)m2

l +
(
7q · pl

+k · pl
)
(pb · pn) + (pb · pl) (2q · pn − 16 (pb · pn)− 3 (pl · pn))

))
(k · pu)

)
(k · pb)− 8

((q · pb)2 (q · pl)2 + (q · pb + 2k · pu) (q · pb) (pb · pl) 2) (pb · pn) +
(
− 4 (k · q)2 m2

b − 4(
q2 +m2

b − 2 (q · pb)
) (

q2m2
b − (q · pb) 2

)
+
(
− 4m4

b +
(
− 8q2 + 8 · pbq + 15k · pu

)
m2

b + 4 (q · pb)2
)
(k · q) + 6

(
m4

b + 2
(
q2 − q · pb

)
m2

b − (q · pb)2
)
(k · pu)

)
m2

l (pb · pn)

−8 (q · pb) 2 (q · pl) (pb · pn)
(
k · q + k · pl

)
+ 8 (q · pb)2 (pb · pl) (pb · pn)

(
k · q + k · pl +

2q · pl
)
− (k · pu) (pl · pn) (2 (q · pb) 2 (pb · pl) + (k · pb) 3) + (k · pb) 2

(
4 (q · pb)

(
−m2

l +

2q · pl − 2 (pb · pl)
)
(pb · pn) + (pb · pl) (k · pn) (k · pu) +

(
− 3 (pb · pn)m2

l +
(
7q · pl +

k · pl
)
(pb · pn)− 2 (q · pb) (pl · pn) + (pb · pl) (2q · pn − pl · pn − 16pb · pn)

)
k · pu

)
+
(
−

(k · pl)m4
b + pb · pl

(
q2 − 2k · pl + 2pb · pl − 3q · pl

)
m2

b +
(
(pb · pl) 2 +m2

bk · pl
)
q · pb

− (q · pb) 2 (pb · pl)
)
(k · pn) (k · pu) + (2 (pb · pl) (q · pn) + 7

(
k · q + k · pl + 2q · pl)pb · pn

)
(q · pb) (pb · pl) (k · pu)

)
(5.75)

6. Fig.(2(g)):

M(7)
µν = (−igαβ)b̄γν(1− γ5)i

(
/pb + /Π− /q +mu

)
(−ieQu)γ

αi
(
/pb + /Π− /q − /k +mu

)
γµ
(
1− γ5

)
b

L(7)
µν =

(
ℓ̄(−ieQl)γβi

(
/pl + /k +ml

)
γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)ℓ
)

(5.76)

I7 = I6 (5.77)

O(Π0) : J7(0; a) = J6(0; a) (5.78)

O(Π) : J7(1; a) = J6(1; a),J7(1; c) = J6(1; c) (5.79)

O(Π2) : J7(2; a) = J6(2; a), J7(2; c) = J6(2; c), J7(2; d) = J6(2; d) (5.80)
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7. Fig.(2(h)):

M(8)
µν = (−igαβ)b̄γν(1− γ5)i

(
/pb + /Π− /q +mu

)
(−ieQu)γ

αi
(
/pb + /Π− /q − /k

+mu

)
γµ
(
1− γ5

)
i
(
/pb + /Π− /k +mb

)
(−ieQb)γ

αb

L(8)
µν =

(
ℓ̄γµ(1− γ5)νℓ

) (
ν̄ℓγ

ν(1− γ5)ℓ
)

(5.81)

I8 =
1

k2((pb − q − k)2 −m2
u)

[ −1

(pu · k)(pb · k)
+

(pb − q).Π

(pb · k)(pu · k)2
− (pb − k).Π

(pb · k)2(pu · k)
+

Π2

2(pb · k)(pu · k)2
− Π2

2(pb · k)2(pu · k)
− ((pb − q).Π)2

2(pb · k)(pu · k)3
− ((pb − k).Π)2

2(pb · k)3(pu · k)
+

((pb − q).Π)((pb − k).Π)

(pu · k)2(pb · k)2
]
+

1

k2((pb − q − k)2 −m2
u)

2

[ 2pu ·Π
(pb · k)(pu · k)

−

2(pu ·Π)(pb − q).Π

(pb · k)(pu · k)2
+

2(pu ·Π)(pb − k).Π

(pb · k)2(pu · k)
+

Π2

(pb · k)(pu · k)

]
+

1

k2((pb − q − k)2 −m2
u)

3

−2(pu ·Π)2

(pb · k)(pu · k)
(5.82)

O(Π0) :

J8(0; a) =
1

mb (k.pb) (k.pu)
16
(
− 2 (pl · pn) (k.pb) 2 +m2

b

(
− (pl · pn)

(
− 2 (k · pb)− 2

(q · pb) + k · q + q2
)
− 2 (pb · pl) (q · pn) + 2 (q · pl) (pb · pn + q · pn)

)
+ (k · pn)(

(q · pl)
(
2 (q · pb)−m2

b

)
− (pb · pl)

(
− 2k · pb + 2k · q + q2

))
+ (k · pl)

(
2 (k · pn)(

q · pb −m2
b

)
− 2 (k.pb) (q · pn) + (pb · pn)

(
2 (k · pb)− q2

)
+m2

b (q · pn)
)
− 2

(k · pb) (pb · pn) (q · pl)− 2 (k · pb) (q · pl) (q · pn) + 2 (k.pb) (pb · pl) (q · pn) + 2 (k · q)

(pb · pn) (q · pl) + q2 (k.pb) (pl · pn) + 2 (k · q) (k.pb) (pl · pn)− 2 (k.pb) (q.pb) (pl · pn)

+m4
b (− (pl · pn))− 4 (pb · pn) (q.pb) (q · pl) + 2q2 (pb · pl) (pb · pn)

)
(5.83)

O(Π) :

J8(1; a) =
1

3m3
b (k.pb)

2
(k.pu)

2 16(λ1 + 3λ2)
(
2pl · pn(k · pb)3(5q · pb − 3m2

b) + (pb · k)2
(
6m4

b

(pl · pn) +m2
b

(
− 2q · pn(3k · pl + 7q · pl − 5pb · pl) + k · pn(4q · pl + 6pb · pl) + 6pb · pn

(k · pl − q · pl) + (2k · q + 8k · pu + 5q2 − 16q · pb)pl · pn
)
+ 10

(
− (k · pu − q · pb)

(
k · pl

+q · pl
)
q · pn − q · pb(q · pl − k · pl)(pb · pn)

)
+ 5
(
2(q · pb)2 − (2k · q + q2)q · pb + k · pu

(2k · q + q2)
)
pl · pn

)
+ pb · k

(
− 3(pl · pn)m6

b +m4
b

(
− 8(q · pn)(pb · pl) + 2q · pl

(
5q · pn

+4pb · pn
)
+ pl · pn

(
k · q − 6k · pu − 3q2 + 9q · pb

))
+m2

b

(
2q · pn

(
5(k · pu − q · pb)q · pl

+pb · pl(2k · q − 4k · pu + q2 + 3q · pb)
)
+ 2pb · pn

(
q · pl(5k · q + 2k · pu − q2 − 13q · pb)

+(5q2 − 2k · q)pb · pl
)
+ pl · pn

(
4(k · q)2 + k · q

(
2q2 − 15k · pu − 3q · pb

)
+ 3q · pb

(
q2 −

2q · pb
)
+ k · pu(8q · pb − 5q2)

))
+ 10pb · pn

(
q · pl(2(q · pb)2 + k · q(k · pu − q · pb))− q2

(q · pb)(pb · pl)
)
+ k · pn

(
− 7(q · pl)m4

b −m2
b

(
q · pl(4k · q + k · pu − 2q2 − 15q · pb)+
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pb · pl
(
6k · q + 2k · pu + 9q2 − 4q · pb

))
+ 5(k · pu − q · pb)

(
2(q · pb)(q · pl)− (2k · q + q2)

pb · pl
))

+ k · pl
(
3m4

b(q · pn − 2k · pn)−
(
4k · pn(2k · pu − q2 − 3q · pb) + q · pn

(
4k · q −

15k · pu + 2q2 + q · pb
)
+ pb · pn(5(2k · pu + q2)− 4k · q)

)
m2

b + 5
(
k · pu − q · pb

)(
2k · pn

(q · pb)− q2(pb · pn)
)))

+ (k · pu)m2
b

(
3(pb · pl)m4

b −m2
b

(
k · pn(q · pl − 2pb · pl)− 6

(q · pn)(pb · pl) + 6q · pl(q · pn + pb · pn)− 3(q2 − 2q · pb)pl · pn
)
−
(
2(q · pb)(q · pl)− q2

(pb · pl)
)
(k · pn − 6pb · pn) + k · q

(
3m2

b(pl · pn) + k · pn(14pb · pl − 8q · pl)− 2pb · pn
(
q · pl

+2pb · pl
))

+ k · pl
(
− 3m2

b(q · pn) + pb · pn
(
− 2m2

b + q2 + 4q · pb
)
+ 2k · pn

(
5m2

b + 2q2

−7q · pb
))))

(5.84)

J8(1; c) =
1

3
(
k · pb

)(
k · pu

)
mb

128
(
− 3
(
pl · pn

)
m6

b +
((
pl · pn

)(
− 3q2 + k · q + 9pb · q

)
+
(
3q · pl

+2pb · pl
)(
k · pn

)
+ 2
(
5q · pl + 4pb · pl

)(
q · pn

)
− 8
(
q · pl

)(
pb · pn

)
−
(
k · pl

)(
10k · pn +

3q · pn + 2pb · pn
))
m4

b +
(
− 2
(
k · pn

)(
q · pl

)
q2 − 3

(
k · pn

)(
pb · pl

)
q2 − 2

(
q · pn

)(
pb · pl

)
q2 + 2

(
q · pl

)(
pb · pn

)
q2 + 10

(
pb · pl

)(
pb · pn

)
q2 −

(
k · pn

)(
q · pb

)(
q · pl

)
− 10

(
q · pb

)
(
q · pn

)(
q · pl

)
− 4
(
k · pn

)(
q · pb

)(
pb · pl

)
− 26

(
q · pb

)(
q · pn

)(
pb · pl

)
− 4
(
k · q

)(
q · pl

)
(
k · pn

)
+ 4
(
k · q

)(
pb · pl

)(
k · pn

)
+ 6
(
k · q

)(
pb · pl

)(
q · pn

)
+ 4
(
k · q

)(
q · pl

)(
pb · pn

)
+ 6(

q · pb
)(
q · pl

)(
pb · pn

)
+
(
− 6
(
q · pb

)
2 + 2

(
k · q

)(
q2 + 2k · q

)
+ 3
(
q2 − k · q

)(
q · pb

))
(
pl · pn

)
+
(
k · pl

)((
q · pb

)(
20k · pn + 11q · pn + 4pb · pn

)
+
(
q2 + 2k · q

)(
2
(
q · pn

)
− 7(

pb · pn
))))

m2
b +

(
9
(
pl · pn

)
m4

b +
((
pl · pn

)(
8q2 + 7k · q − 22

(
q · pb

))
− 4
(
5q · pl +

4pb · pl
)(
q · pn

)
+ 16

(
q · pl

)(
pb · pn

))
m2

b +
(
− 11

(
q · pl

)
m2

b +
(
5q2 + 6m2

b

)(
pb · pl

)
+10

(
q · pb

)(
q · pl − pb · pl

))(
k · pn

)
+ 10

((
q · pb

)(
q · pl

)
−
(
k · q − 3

(
q · pb

))(
pb · pl

))
(
q · pn

)
− 10

((
pb · pl

)
q2 +

(
q · pb

)(
q · pl

))(
pb · pn

)
− 5
(
q2 + 2k · q − 2

(
q · pb

))(
q · pb

)
(
pl · pn

)
+
(
k · pl

)((
10k · pn + 14pb · pn + q · pn

)
m2

b + 5
(
q2 + 2k · q

)(
pb · pn

)
− 10(

q · pb
)(
k · pn + q · pn + pb · pn

)))(
k · pb

)
+ 10

(
k · pb

)
3
(
pl · pn

)
+
(
k · pb

)
2
(
− 16

(
pl · pn

)
m2

b − 5
(
q2 + 2k · q − 4

(
q · pb

))(
pl · pn

)
+ 10

(
−
(
pb · pn

)(
k · pl + q · pl

)
+
(
q · pl −

pb · pl
)(
k · pn

)
+
(
q · pl + pb · pl

)(
q · pn

)))
+ 5
(
q · pb

)((
pb · pl

)(
q2
(
k · pn − 2

(
pb · pn

))
−2
(
k · q − 2

(
q · pb

))(
q · pn

))
+
(
k · pl

)((
q2 + 2k · q

)(
pb · pn

)
− 2
(
q · pb

)(
k · pn +

q · pn
))))(

λ1 + 3λ2

)
(5.85)
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O(Π2) :

J8(2; a) =
1

3
(
k · pb

)
2
(
k · pu

)
3m3

b

16
(
2
(
k · pu

)
2
(
k · pb

)(
2
(
3q · pl + k · pl

)(
pb · pn

)
+
(
− 3m2

b

+4k · pb + 2q · pb
)(
pl · pn

)
− 2
(
pb · pl

)(
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8. Fig.(2(i)):
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−
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+
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+
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−
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5.5 Results

The kinematics of inclusive decays involve five distinct variables in the four-body

phase space. In addition to these variables, inclusive decays introduce an extra

variable, which is the invariant mass squared of the final state meson (p2X). This

variable is exchanged with q′2 (= (pl + pn + k)2), where pl, pn, and k represent

the momenta of the lepton, neutrino, and photon, respectively. The remaining

independent variables are the lepton energy y (= 2pb·pl
m2

B
), the energy of the hard

photon x (= 2pb·k
m2

B
), the neutrino energy, and three angles. All these variables are

defined in the rest frame of the B meson. A comprehensive description of the

kinematics can be found in Appendix-C.2.

In order to study the charged lepton spectrum for different x values,

we perform integration over all variables except y. This integration enables us

to obtain the differential decay rate as a function of the lepton energy (y) for

various photon energy values (x). The resulting differential decay rate, shown in

Fig. (5.4a), illustrates that as the photon energy decreases, the lepton energy end

point also shifts accordingly, in accordance with the kinematics of the process.

To provide a complete picture of the differential decay rate distribution,

we present the distribution for xmin = 0.3, corresponding to a minimum photon
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Figure 5.4: (a) Differential decay width of B → Xuµνµγ as a function of nor-
malized lepton energy, y, for various values of normalized photon energy, x. (b)
Differential decay width of B → Xuµνµγ as a function of normalized lepton en-
ergy (y) for a specific normalized photon energy (xmin = 0.3).

energy of kmin ∼ 0.8 GeV, as depicted in Fig.(5.4b). The plot illustrates that the

distribution reaches its endpoint at a kinematic boundary, which is expected to

be larger than that for xmin = 0.5, and is more inclined towards the non-radiative

case of B → Xuℓνℓ.

Furthermore, as an example of a potential additional observable, we

define the forward-backward asymmetry of the photon (differential), denoted as

AFB(y), with respect to the recoiling final state hadron.

AFB(y) =

∫ 1

0
dtd

2Γγ

dydt
−
∫ 0

−1
dtd

2Γγ

dydt∫ 1

−1
dtd

2Γγ

dydt

(5.97)

where t = cosθXγ is the angle between the outgoing photon and recoiling hadron

(X) in the rest frame of B meson. The forward-backward asymmetry is shown
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in Fig.(5.5) for λ1 = −0.2 and λ2 = 0.12.

xmin = 0.5

0.1 0.2 0.3 0.4 0.5

-1.00

-0.95

-0.90

-0.85

-0.80

-0.75

-0.70

y

A
(y
) F

B

Figure 5.5: Forward-backward asymmetry (AFB) as a function of lepton energy,
y.

Finally, Fig.(5.6) illustrates the differential decay rate as a function of

the normalized photon energy (x), revealing that as the photon energy decreases,

the decay rate exhibits behavior similar to that of the non-radiative mode.

It is important to highlight that the presence of infrared divergences

can be effectively removed by assigning a sufficiently large mass to the photon,

ensuring its hardness. To avoid contributions from mass singularities, we specif-

ically consider muons in the final state. Additionally, by implementing a lower

cutoff for the polar angle, we can eliminate any potential collinear singularities

that may arise.
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Figure 5.6: Differential decay rate of the B → Xuµνµγ decay mode as a function
of the photon energy (x).

In the case of B → Xuµνµγ, where the photon is hard, the total decay

width (Γγ) for the radiative mode is expected to be suppressed by O(αem) com-
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pared to the total decay width for B → Xuµνµ. To verify this expectation, we

calculate the ratio of the radiative decay width (Γγ) to the non-radiative decay

width (Γ). Our calculations reveal that this ratio is approximately 0.01 for pho-

tons with high energy around 1 GeV (xmin = 0.5), thus confirming the expected

suppression.

5.5.1 Determination of non-perturbative parameters

Having determined the decay width, we now present a simple and efficient method

for calculating the non-perturbative parameters λ1 and λ2. We find that using

ratios of decay widths, rather than the widths themselves, is more suitable as

it helps mitigate uncertainties arising from the CKM element Vub. Addition-

ally, these ratios yield simple expressions involving λ1 and λ2. By knowing the

experimentally measured values of R1 and R2, we can solve these two linear equa-

tions simultaneously to determine λ1 and λ2. The proposed ratios are given by

Eq.(5.4). Both the numerator and denominator of each ratio can be expressed

in form A + Bλ1 + Cλ2, allowing for a straightforward determination of the

non-perturbative parameters.

A+Bλ1 + Cλ2
A′ +B′λ1 + C ′λ2

= R1 (say) (5.98)

and similarly for R2. These equations form a system of two linear equations

in terms of λ1 and λ2. To demonstrate the case of obtaining λ1 and λ2 once

the suggested ratios are experimentally available, we obtain a value for R2 using

the known values of λ1 and λ2, and for R1 we use the decay rate for B →

Xuµνµγ is αem times the decay rate for B → Xuℓνℓ. With these values, we

can then numerically calculate the non-perturbative parameters λ1 and λ2. Our

results yield λ1 = −0.24 GeV 2 and λ2 = 0.15 GeV 2, which are consistent with

previously values reported in the literature [151, 153]: λ1 = −0.19± 0.10 GeV 2

and λ2 = 0.12 ± 0.01 GeV 2. This motivates the need for a measurement of

experimental measurement of the decay width of B → Xuℓνℓγ. As mentioned

earlier, our focus has been onO(1/m2
b) terms in the HQET. Thus we are primarily

sensitive to λ1 and λ2 (or µ
2
π and µ2

G). At higher orders, the expressions become
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dependent on additional non-perturbative parameters. Therefore, measurements

of the B → Xuℓνℓγ rate and the ratio R1 will be invaluable in simultaneously

and easily determining these parameters when combined with B → Xuℓνℓ data

and the ratio R2.

5.6 Discussion and Conclusion

To summarize, we have presented a methodology for determining the non-

perturbative parameters λ1 and λ2 in the inclusive decays of B mesons. Our

approach involves directly calculating the decay widths for the inclusive modes

B → Xuℓνℓ and B → Xuℓνℓγ using the Cutkosky method in conjunction

with the Heavy Quark Effective Theory (HQET), considering terms up to or-

der ((ΛQCDmb)
2). Due to the involvement of a hard photon in the radiative

mode B → Xuℓνℓγ, the tensorial structure of the amplitude becomes more com-

plex, with four indices compared to two for B → Xuℓνℓ. To properly account for

the analytic properties and evaluate the decay rate, we opted to directly compute

the relevant amplitude using the Cutkosky method, despite the associated com-

plications. We obtained the differential rate and forward-backward asymmetry

of the decay by integrating over the phase space variables for the four-body final

state. By varying the parameter xmin, which determines the photon hardness,

we investigated the behavior of the differential rate and asymmetry as functions

of lepton energy. Notably, we observed that the decay rate for the radiative

mode (B → Xuℓνℓγ) is approximately proportional to O(αem) times that of the

non-radiative mode (B → Xuℓνℓ) when the photon possesses sufficient hardness.

In the subsequent analysis, we constructed two ratios, namely R1 and

R2, by comparing the differential decay rates of the radiative and non-radiative

modes for different lepton energy ranges, specifically considering a photon energy

above a few times ΛQCD (approximately 500 MeV). Importantly, these ratios are

independent of the CKM element and provide a system of two linear equations

in λ1 and λ2. This enables a precise determination of these non-perturbative

parameters without any ambiguity.

To illustrate the applicability of our method, we have provided a simple
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example in Section-5.5.1 where we calculate the values of λ1 and λ2. Significantly,

our findings align with the previously reported values found in the literature,

thus providing consistency and validation. It is important to emphasize that,

at present, the radiative mode lacks experimental measurements. However, the

results of our study advocate for the necessity of precise measurements of the

radiative mode to further enhance our understanding of the process.

In the process of B → Xuℓνℓ, the differential rate for the free quark

decay exhibits a proportionality to 2y2(2y − 3), where y represents the lepton

energy in dimensionless unit in the rest frame of the B meson. This characteristic

highlights a distinction between the partonic and hadronic end points, occurring

at mb

2
and mB

2
, respectively. As a result, an end point region of approximately

Λ̄ = mB − mb emerges. To accurately account for this region, it is essential

to include an infinite number of terms in the heavy quark expansion. However,

this expansion, expressed in terms of Λ̄
mb

, introduces higher-order derivatives

of the delta function at each successive order, leading to the breakdown of the

Operator Product Expansion (OPE) and QCD perturbation theory in this region.

Consequently, to properly incorporate the end-point behavior, the decay rates

of B → Xuℓνℓ and B → Xsγ modes necessitate the introduction of the shape

function, which describes the distribution of the heavy quark.

In the radiative decay mode (B → Xuℓνℓγ), the presence of a hard

photon in the final state leads to a shift in the endpoint compared to the non-

radiative decay. Specifically, the partonic and hadronic endpoints are located at

mb

2
−xmin and

mB

2
−xmin, respectively. However, similar to the B → Xuℓνℓ mode,

the challenge posed by the disparity between partonic and hadronic endpoints

necessitates the inclusion of a shape function for an accurate treatment of this

process as well.

One potential approach is to consider a simplified form of the shape

function, such as (1 − y − x)ae(1+a)(x+y), which has been proposed for the non-

radiative decay mode in previous works [154, 155]. However, it is crucial to

investigate the validity of this form by explicitly calculating the shape function

specific to the radiative decay process and verifying its universality before draw-

ing conclusive statements. While the specific form of the shape function remains
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an open question that requires further investigation, the fundamental concept

that the radiative inclusive decay rate can facilitate a rapid determination of λ1

and λ2 remains unaffected.

To summarize, our proposed method provides a complementary ap-

proach for computing the non-perturbative parameters λ1 and λ2 in inclusive B

decays, with the condition that the experimental measurement of the decay rate

for the radiative mode B → Xuℓνℓγ is available.



Chapter 6

Summary and Future Work

In this chapter, we summarize the key findings and contributions of the thesis,

while also highlighting some important observations. Additionally, we outline

our future plans.

6.1 Summary

The B meson system consists of a heavy quark, denoted as b, and light degrees of

freedom. The mass of the b quark serves as a scale that incorporates the interplay

between perturbative and non-perturbative physics. The substantial mass of the

b quark has two fold advantage. The first advantage is that the B meson exhibits

a wide range of decay modes, including both charged and neutral current induced

processes. At low energy, it contains the observables such as the decay rates and

the CKM elements like Vub and Vcb often have higher theoretical uncertainties

due to the involvement of non-perturbative parameters such as form factors.

Computing these parameters with accuracy is challenging. On the other hand,

the observables, such as LFU ratios like RK(∗) , RD(∗) and the angular variables

like P ′
5, are constructed in a way that minimizes theoretical uncertainties. These

observables are designed to be less sensitive to the non-perturbative effects and

can provide cleaner tests of the SM. The main goal of constructing and studying

these observables is to check the consistency of the SM and explore the potential

presence of new physics phenomena.

The second advantage of the heaviness of the b quark’s mass is that

147
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it allows us to consider the inverse of its mass, 1/mb, as a perturbative expan-

sion parameter. In the limit of mb → ∞, the dynamics of the B meson decay

gets simplified and described solely in terms of the decay of the b quark itself.

However, in reality, the mass of the b quark is finite, necessitating the inclusion

of 1/mb corrections that play a crucial role. The framework that incorporates

these 1/mb corrections and treats the b quark as a heavy quark is known as the

Heavy Quark Expansion (HQE). In this expansion, the matrix elements contain

non-perturbative parameters that need to be computed (Chapter-5 provides de-

tailed discussions on the HQE and the computation of these non-perturbative

parameters).

Further, B meson decays either into exclusive or inclusive channels,

involve a combination of perturbative and non-perturbative contributions. While

the computation of the perturbative part is a time-consuming and challenging

task, we have a fair degree of control over it. However, the computation of non-

perturbative contributions presents a greater challenge. In exclusive decays, these

contributions manifest as decay constants and form factors, while in inclusive

decays, they appear as hadronic matrix elements of kinetic and chromomagnetic

operators up to O(1/mQ) in HQE, as well as shape functions. Unfortunately,

there is currently no rigorous first-principle method available to calculate these

non-perturbative quantities directly. One approach is to employ lattice QCD,

which comes with its own challenges, including heavy numerical computations

and limitations in controlling systematic uncertainties.

In light of these, the observables such as the LFU ratios, including

RK(∗) and RD(∗) , as well as angular optimized variables such as P ′
5 have gained

significance. These observables, except for the RK(∗) [114], have shown deviations

from the predictions of the SM, indicating the potential presence of NP phe-

nomena. Before concluding anything, it is important to check if any theoretical

contributions have been overlooked, particularly soft photon effects.

It motivated us to study the effects of soft photon corrections to

B → Kℓℓ. In our calculations, we treated the mesons as point-like particles

and employed scalar QED. To ensure gauge invariance of the matrix element, we

fixed the contact term. Further, we demonstrated that the differential decay rate
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remains independent of the IR regulator and collinear divergences by choosing

a cut in the photon angle with respect to the charged lepton, denoted as θcut.

An important finding of this investigation is the dependence of the decay rate

and the ratio RK on the maximum energy of the soft photon, represented as

kmax (which corresponds to the experimental detector threshold). For instance,

when kmax is set to 250MeV, exclusive emission of soft photons leads to positive

corrections of approximately 4% in RK (details in Chapter-3).

The dependence of the rate and the ratio RK on kmax leads us to ask

whether we can construct any observable that are theoretically clean and inde-

pendent of kmax. In this regard, we proposed an observable denoted as RV = |Vub|
|Vcb|

,

which exhibits a high degree of insensitivity to hadronic parameters and QED

effects. We demonstrated that the equality of RV calculated using inclusive and

exclusive measurements of CKM matrix elements establishes a correlation be-

tween the coefficients of two distinct sectors: b → u and b → c. Using this

correlation, we make a prediction for the branching ratio B(Bc → τντ ), which

aligns with the constraint provided by [156] (details are in Chapter-4).

Furthermore, we explored the possibility of computing the non-

perturbative parameters in a simple yet efficient manner. Specifically, we focused

on the inclusive decays of the B meson due to theoretical cleanliness. In this

regard, we calculated the decay width of B → Xuℓνℓγ using the framework of

HQET. We employed the Cutkosky cut method, including terms up to order

(
ΛQCD

mb
). During this computation, we made an interesting observation: no new

operators are generated in comparison to the non-radiative process B → Xuℓνℓ.

Hence, the total decay rate for the radiative mode resulted into the linear com-

bination of non-perturbative parameters λ1 and λ2 similar to the non-radiative

one. Consequently, the radiative case becomes particularly interesting, as it al-

lows for the simultaneous determination of both non-perturbative parameters λ1

and λ2 in a definitive manner (explicit definitions of λ1 and λ2 are provided in

Chapter-5). This approach offers a complementary avenue for computing the

non-perturbative parameters in inclusive decays.
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6.2 Future Work

For the future, our plan is to delve into the calculation of QED-corrected form

factors for semileptonic decays of B mesons. In a previous study [26], we treated

the mesons as point-like particles and computed the QED corrections based on

this assumption. However, it is crucial to acknowledge that mesons possess a

composite structure rather than being point-like particles like leptons. Moreover,

the transition between different mesons is effectively described by form factors,

which are functions of the momentum transfer squared. In the case of QED

radiative decays, this momentum transfer is not solely represented by q2, but also

involves (q+k)2, where k represents the momentum of the emitted photon. This

additional momentum carried by the photon is expected to play a significant role

in providing valuable insights into the decay of mesons, surpassing the limitations

of their point-like approximation. Therefore, our intention is to calculate the

QED-corrected form factors, specifically utilizing the Light Cone Sum Rules

(LCSR) method.

Additionally, we aim to explore the implications of considering the

charged meson as a dressed particle [157, 158] in the context of its semilep-

tonic decays. This approach goes beyond the point-like approximation and takes

into account the composite nature of the meson. By considering the meson as

a dressed particle, we expect to gain valuable insights into optimized observ-

ables and non-perturbative parameters associated with these decays. Further,

we are interested in investigating the impact of the dressed meson approach on

the computation of form factors. Incorporating the dressed nature of the meson

in the calculation of form factors could potentially yield new and improved re-

sults, providing a more accurate description of the decay processes. Moreover, we

anticipate that this dressed approach may offer insights into resolving the Con-

tact Term, which arises on demanding gauge invariance of the total amplitude

in semileptonic decays. The Contact Term is a challenging aspect to be handled

theoretically, and exploring the effects of the dressed meson on this term could

potentially shed light on its nature and behavior.

Apart from these, we are also interested in investigating the geometric
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viewpoint of the Standard Model Effective Field Theory (SMEFT). Ref.[159–161]

have focused on the scattering of bosons and fermions using geometric invariants,

such as field space curvature, and solving the renormalization group equations

for scalars at one loop, which simplifies calculations. It would be important

to generalize this approach to the case of fermions and investigate its potential

connections to phenomenology.





Appendix A

Essential definitions and

Identities

A.1 Essential definitions

1. The metric tensor and Levi-Civita pseudotensor:

gµ = gµ = diag(1,−1,−1,−1), ϵ0123 = −ϵ0123 = 1 (A.1)

2. Dirac matrices:

γµ = (γ0, γγγ), {γµ, γν} = 2gµν , γ5 = iγ0γ1γ2γ3 (A.2)

γ0 =

I 0

0 −I

 , γγγ =

 0 σσσ

−σσσ 0

 , γ5 =

0 I

I 0

 (A.3)

(γ0)2 = 1, (γi)2 = −1, (γ5)2 = 1 (A.4)

Where I and σσσ are 2× 2 identity and Pauli matrices.

3. Pauli matrices:

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 .
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4. Gell-Mann matrices λa (a = 1, ..., 8) are:

λ1 =


0 1 0

1 0 0

0 0 0


, λ2 =


0 −i 0

i 0 0

0 0 0


, λ3 =


1 0 0

0 −1 0

0 0 0


,

λ4 =


0 0 1

0 0 0

1 0 0


, λ5 =


0 0 −i

0 0 0

i 0 0


, λ6 =


0 0 0

0 0 1

0 1 0


,

λ7 =


0 0 0

0 0 −i

0 i 0


, λ8 =

1√
3


1 0 0

0 1 0

0 0 −2


.

A.2 Essential Identities

1. Dirac Identities

γµγ
µ = D, γµγαγ

µ = (2−D)γα, (A.5)

γµγαγβγ
µ = 4gαβ + (D − 4)γαγβ, (A.6)

γµγαγβγργ
µ = −2γργβγα − (D − 4)γαγβγρ, (A.7)

γµγν = gµν − iσµν (A.8)

γµγαγν = (gµαgνβ + gµβgαν − gµνgαβ)γ
β − iγ5ϵµανβγ

β (A.9)
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2. Dirac traces

Tr(γµγν) = 4gµν , (A.10)

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ), (A.11)

Tr(γµγνγαγβγ5) = 4iϵµναβ. (A.12)





Appendix B

Useful Integrals

B.1 Real photon emission

1. Photon inclusive case

∫ x+

0

dxI1,1 =
1

4m2
B

∫ 1

−1

dt
1

p2t
log

(
x2+p

2
t

m2
γE

2
t

)
+ non− IR,∫ x+

0

dxI2,0 =
1

2m4
B

log

(
x2+
m2
γ

)
+ non− IR, and∫ x+

0

dxI0,2 =
1

2m2
Bm

2
l

log

(
x2+
m2
γ

)
+ non− IR,

These integrals contribute to I0. Further, we list the coefficients , Cm,n

and the integrals, Im,n for {m,n} ∈ {−2, 2}, encountered in determination

of the differential decay width

C1,1 = 2xym4
B((−3f 2

− + 2f−f+ + f 2
+)m

2
l − 4f+m

2
B(f−y + f+)),

C1,−1 = 16f+m
2
B(f− − f+)(y + z), C−2,2 = 64f 2

+m
2
l ,

C−1,1 = −32f+
(
f+m

2
B(x+ 2y + z − 1)−m2

Pf+ − (f− − 2f+)m
2
l

)
,

C2,−1 = −16f+m
4
B(f− + f+) (2x+ y + z − 2) ,

C2,0 = 8xm4
B(f− + f+)

(
f+ym

2
B + (f− − f+)m

2
l

)
C−1,2 = −16f+m

2
l

(
m2
B(f−(x+ z − 1) + f+(−x+ 2y + z − 3))− (f− − f+)

(m2
P −m2

l )
)
,
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C1,0 = −4m2
B

[
− 2f+m

2
B

(
f−(3xy + 4x+ 4z − 4) + f+x(y + 4) + 2f+(y + 1)

(y + z − 2)
)
+ 8f−f+m

2
P +m2

l

(
f2
−(y + z − 2)− 2f−f+(y + z + 2)

+f2
+(y + z − 2)

)]
,

C0,1 = 4
[
m2
B

(
m2
l (f

2
−(x+ z − 1)− 2f−f+(3x+ 2y + z − 1) + f2

+(5x+ z + 3)
)

− 4f+m
4
B(f−y(x+ z − 1) + f+(x(y − 1) + 2y(z − 2)− z + 1)) + (f− + f+)

2

m2
l (m

2
l −m2

P )
]
,

C0,2 = 4xm2
Bm

2
l

[
2f+m

2
B(f−y − f+(y − 2)) + (f− − f+)

2m2
l

]
,

C0,0 = −16f+

[
m2
B(f−(x+ 2y + z − 1)− f+(x+ 4y + 3z − 1))− (f− − f+)

(−m2
P −m2

l )
]
,

I0,0 =
1

4
, I1,1 =

1

4

2

Q2(pB.pl)βBℓ
log

(
1 + βBℓ
1− βBℓ

)
,

I2,0 =
1

m2
BQ

2
, I1,0 =

1

4(pB.Q)βBQ
log

(
1 + βBQ
1− βBQ

)
,

I1,−1 =
1

4

(
pBpl : Q

(pB.Q)2β2
BQ

+
Q2(plQ : pB)

2(pB.Q)3β2
BQ

log

(
1 + βBQ
1− βBQ

))
,

I2,−1 =
1

4

( 2(plQ : pB)

m2
B(pB.Q)2β2

BQ

+
(pBpl : Q)

(pB.Q)3β3
BQ

log

(
1 + βBQ
1− βBQ

))
, and

I−2,2 =
1

4

[Q2(pBQ : pl)
2

m2
l (pl.Q)4β4

ℓQ

+
Q2(pBQ : pl)(pBpl : Q)

(pl.Q)5β5
ℓQ

log

(
1 + βℓQ
1− βℓQ

)
+

(pBpl : Q)2

(pl.Q)4β4
ℓQ

−
(pB.Q)2(pl.Q)2β2

BQβ
2
ℓQ − (pBpl : Q)2

2(pl.Q)4β4
ℓQ

(
2− 1

βℓQ
log

(
1 + βℓQ
1− βℓQ

))]
.

Here, βij =

√
1− m2

im
2
j

(pi.pj)2
, pipj : pk = (pi.pk)(pj .pk)−p2k(pi.pj) and Im,n(pi, pj) =

In,m(pj , pi). The integrals Im,n are found to be consistent with [162].

2. Photon exclusive case

∫ kmax

0

d3k

(k2 + λ2)1/2
1

(k.pi)2
= 2π

1

m2
i

ln

(
k2maxm

2
i

E2
i λ

2

)
(B.1)∫ kmax

0

d3k

(k2 + λ2)1/2
1

(k.pj)2
= 2π

1

m2
j

ln

(
k2maxm

2
j

E2
i λ

2

)
(B.2)∫ kmax

0

d3k

(
−→
k 2 + λ2)1/2

1

(k.pi)(k.pj)
= 2π

1

2

∫ 1

−1

dx

p2x
ln

(
k2maxp

2
x

E2
xλ

2

)
(B.3)
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B.2 Virtual Corrections

1. Integrals involved in the calculations

∫
d4k

(k2 − λ2)

1

(k2 − 2k.pjηj)2
=

−iπ2

2m2
j

ln

(
m2
j

λ2

)
(B.4)∫

d4k

(k2 − λ2)

1

(k2 − 2k.piηi)2
=

−iπ2

2m2
i

ln

(
m2
i

λ2

)
(B.5)

lim
λ→0

∫
d4k

(k2 − λ2)

1

(k2 − 2k.piηi)(k2 − 2k.pjηj)
=

−iπ2

4

∫ 1

−1

dx

p′2
x

ln

(
p
′2
x

λ2

)
(B.6)∫

d4k
1

(k2 − 2k.pjηj)2
= −iπ2 ln

(
m2
j

)
(B.7)∫

d4k
1

(k2 − 2k.piηi)(k2 − 2k.pjηj)
=

−iπ2

2

∫ 1

−1

dx ln
(
p
′2
x

)
(B.8)

2. Useful functions involved in the calculations

The scalar two-point and three-point Passarino-Veltman functions and

their derivatives, regulated by mγ and Λ for IR and UV regularization,

respectively, are given by:

B0(m
2
a, 0,m

2
a) = 2− ln

(
m2
a

Λ2

)
, and (B.9)

B0(q
2,m2

a,m
2
b) = −

∫ 1

0
du ln

−u(1− u)q2 + um2
b + (1− u)m2

a

Λ2
(B.10)

B′
0(m

2
i ,m

2
γ ,m

2
i ) =

−1

2m2
i

(
2 + ln

(
m2
γ

m2
i

))
(B.11)

C0(m
2
B,m

2
l , q

2,m2
B,m

2
γ ,m

2
l ) =

−1

4

∫ 1

−1
dt

1

p2t
ln

(
m2
γ

p2t

)
, (B.12)

C1(m
2
B,m

2
l , q

2,m2
B, 0,m

2
l ) =

1

2m2
l β

2

[
m2
l

(
B0[m

2
l , 0,m

2
l ]−B0[q

2,m2
l ,m

2
B]
)

− pB.pl

(
B0[m

2
B, 0,m

2
B]−B0[q

2,m2
l ,m

2
B]
)]

,(B.13)

C2(m
2
B,m

2
l , q

2,m2
B, 0,m

2
l ) =

−1

2m2
Bβ

2

[
pB.pl

(
B0[m

2
l , 0,m

2
l ]−B0[q

2,m2
l ,m

2
B]
)

+ p2B

(
B0[m

2
B, 0,m

2
B]−B0[q

2,m2
l ,m

2
B]
)]

, (B.14)
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respectively. Here, β = |pl|
Eℓ

represents the velocity of the charged lepton

in the rest frame B meson.



Appendix C

Kinematics of decay rate

C.1 Three body kinematics

It includes the kinematics for three body decays for both exclusive and inclusive

decay modes.

C.1.1 Exclusive decay modes

The kinematics for the three-body decay B → Pℓνℓ can be expressed in terms

of three Lorentz invariant kinematic variables: x, y, and z. These variables are

x =
Q2

m2
B

, y =
2pB.pl
m2
B

, z =
2pB.pP
m2
B

(C.1)

where Q2 = p2n = (pB − pD − pl)
2. It is worth noting that in the process

B → Pℓνℓ, the squared momentum transfer Q2 is zero due to the mass of the

neutrino. However, when considering the case of real emission of a photon (soft),

Q2 assumes a non-zero value and is defined as the missing mass (Q2 = (pn+k)
2).

The total decay rate for B → Pℓνℓ is

Γ0 =
mB

256π3

∫
dz

∫
dy |M|2B→Pℓνℓ

. (C.2)

It is observed that the final result is independent of the variable x, thereby

requiring only two independent Lorentz invariant kinematic variables, namely y

and z. The kinematic boundaries for these variables are given by: z− ≤ z ≤
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z+, and y− ≤ y ≤ y+

where, z± =

(2− y)(1 +
m2

P

m2
B
+

m2
l

m2
B
− y)±

√
y2 − 4

m2
l

m2
B
(1− m2

P

m2
B
+

m2
l

m2
B
− y)

2(1 +
m2

l

m2
B
− y)

,

y− = 2
√
rℓ, and y+ = 1−

m2
P

m2
B

+
m2
l

m2
B

.

C.1.2 Inclusive decay modes

Now, we consider the kinematics for the three-body inclusive decay mode

B → Xu/cℓνℓ. It consist of three independent variable where one extra vari-

able compared to exclusive decay mode is due to invariant mass squared for

decayed hadron (p2X). Here, we have traded p
2
X with q′2(= (pl+ pn)

2). The three

kinematical variables are Eℓ, Eν , and q
2 = (pl + pn)

2. The general form of triple

differential decay rate is given by

d3Γ

dq2dEℓdEν
=

∫
d4pl
(2π)4

2πδ(p2l −m2
l )θ(p

0
l )

∫
d4pn
(2π)4

2πδ(p2n)θ(p
0
n)δ(Eℓ − p0l )δ(Eν − p0n)

δ(q2 − (pl + pn)
2)

1

2mB

∑
X

|⟨Xu/cℓνℓ|M|B⟩|2(2π)4δ4(pB − q − px),

(C.3)

where

δ(q2 − (pl + pn)
2) = δ(q2 − 2EℓEν(1− cos θℓν)). (C.4)

Performing the delta functions and integrating over cos θℓν , the differential decay

width is

d3Γ

dq2dEℓdEν
=

1

4

1

2mB

∑
X

|⟨Xu/cℓνℓ|M|B⟩|2δ4(pB − q − pX − k), (C.5)

where θℓν is the angle between the lepton and neutrino. Further the delta

function with Π can be expanded in the power of Π. Explicitly, it is given by

δ
(
pb +Π− q

)2
= δ

(
pb − q

)2
+ 2Π.(pb − q)δ′

(
pb − q

)2
+Π2

(
δ′
(
pb − q

)2
+2(pb − q)2δ′′

(
pb − q

)2)
+ ... (C.6)
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Another important point to note is that the integration domain in Eν has a

boundary from below:

Eν ≥
q2 −m2

l

4Eℓ
. (C.7)

Therefore, it should be ensured that Eν does not cross the boundary. This is

enforced by introducing appropriate theta function in the integral. This plays an

important role in the integration of delta functions and their derivative present

in the differential rate d2Γ
dq2dEℓ

.

C.2 Four body kinematics

C.2.1 Exclusive decay modes:

The decay width for the process B → Pℓνℓγ is given in terms of ten Lorentz

invariant kinematic variables out of which five variables are independent and

they are choosen as x, y, z, pn and k. The four body decay region is divided into

two regions: D3 and D4−3. The decay width in these two regions is given by

ΓD3 |B→Pℓνℓγ =
m3
B

512π4

∫
D3

dydz

∫ x+

m2
γ

m2
B

dx

∫
d3pn

(2π)32Eν

∫
d3k

(2π)32Ek
(2π)4δ4 (Q− pn

− k) |M|2B→Pℓνℓγ
, and (C.8)

ΓD4−3 |B→Pℓνℓγ =
m3
B

512π4

∫
D4−3

dydz

∫ x+

x−

dx

∫
d3pn

(2π)32Eν

∫
d3k

(2π)32Ek
(2π)4δ4 (Q− pn

− k) |M|2B→Pℓνℓγ
, (C.9)

respectively. Here the kinematic boundaries for y and z in the region D4−3 are

z− = 2

√
m2
P

m2
B

, z+ =
(2− y)(1 +

m2
P

m2
B
+

m2
l

m2
B
− y)

2(1 +
m2

l

m2
B
− y)

−

√
y2 − 4

m2
l

m2
B
(1− m2

P

m2
B
+

m2
l

m2
B
− y)

2(1 +
m2

l

m2
B
− y)

,

y− = 2

√
m2
l

m2
B

, and y+ = 1−
m2
P

m2
B

+

m2
l

m2
B

1−
√

m2
P

m2
B

.
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C.2.2 Inclusive decay modes:

Lastly, we describe the kinematics involved in the inclusive decay for B →

Xu/cℓνℓγ. Typically, a four-body decay involves five independent kinematic vari-

ables. However, in the inclusive four-body decay, we have six independent vari-

ables, as we introduce an extra variable related to the squared invariant mass of

the decayed hadron, denoted as p2X . To simplify the analysis, we can instead use

q′2, which is defined as (pl+ pn+ k)
2, where pl, pn, and k represent the momenta

of the lepton, neutrino, and photon, respectively. The two Lorentz invariant

variables are defined as

y =
2pB.pl
m2
B

and x =
2pB.k

m2
B

(C.10)

The remaining three variables in the inclusive four-body decay are the neutrino

energy (Eν) and two angles: (a) θXγ, which represents the angle between the

recoiling hadron (X) and the hard photon, (b) θXℓ, which represents the angle

between the final state recoiling hadron (X) and the charged lepton. The triple

differential decay is given by

d3Γ

dq′2dEℓdEν
=

∫
d4pl
(2π)4

(2π)δ(p2l −m2
l )θ(p

0
l )

∫
d4pn
(2π)4

(2π)δ(p2n)θ(p
0
n)δ(Eℓ − p0l )

δ(Eν − p0n)δ(q
′2 − (q + k)2)

∫
d4k

(2π)4
1

k2((pb +Π− q − k)2 −m2
u)∑

X

|⟨Xu/cℓνℓγ|M|B⟩|2(2π)4δ4(pb − q′ − pX). (C.11)

Cutcosky method implies that

∫
d4k

(2π)4
→
∫

d4k

(2π)4

∫
d4pX
(2π)4

(2π)4δ4(pb − q − pX − k), (C.12)

and the propagator is replaced with delta functions. For example, in the

Fig.(5.3), propagators are

1

k2
→ −2πiδ(k2)θ(k0) (C.13)

1

((pb +Π− q − k)2 −m2
u)

→ −2πiδ(((pb +Π− q − k)2 −m2
u))θ((pb +Π− q − k)0).

(C.14)
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Incorporating the Cutkosky method, the differential decay width is

d3Γ

dq′2dEℓdEν
=

∫
d3pl
(2π)3

δ(p2l )θ(p
0
l )

∫
d3pn
(2π)3

δ(p2n)θ(p
0
n)δ(q

′2 − (q + k)2)∫
d4k

(2π)4
d4pX
(2π)4

(−2πi)δ(k2)θ(k0)(−2πi)δ((pb +Π− q − k)2 −m2
u)

(2π)4δ4(pb − q′ − pX)(2π)
4
∑
X

|⟨Xu/cℓνℓγ|M|B⟩|2

δ4(pB − q − pX − k)

= − 1

8π2
EℓEν

∫
d(cosθℓν)δ(q

′2 − (q + k)2)

∫
d3k

2Eγ
δ
(
(pB +Π− q − k)2

−m2
u

)∑
X

|⟨Xu/cℓνℓγ|M|B⟩|2δ4(pB − q − pX − k)

= − 1

8π2

∫
d3k

2Eγ
δ((pB +Π− q − k)2 −m2

u)
∑
X

|⟨Xu/cℓνℓγ|M|B⟩|2

δ4(pB − q − pX − k).

(C.15)

Similar to three-body decay, the expansion of the delta function in the power of

Π is given by

δ
(
pb +Π− q − k

)2
= δ

(
pb − q − k

)2
+ 2Π.(pb − q − k)δ′

(
pb − q − k

)2
+Π2

(
δ′
(
pb

−q − k
)2

+ 2(pb − q − k)2δ′′
(
pb − q − k

)2)
+ ... (C.16)

Another important point to note is that the integration domain in Eν has a

boundary from below:

Eν ≥
q′2 − 2q.k −m2

l

4Eℓ
. (C.17)

Therefore, it must be ensured that the neutrino energy (Eν) does not exceed

a certain boundary and that an appropriate theta function is introduced in the

integral. This theta function plays a crucial role in integrating the delta functions

and their derivatives present in the differential rate d2Γ
dq′2dEℓ

.
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