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Abstract

In an atomic system, parity-violation (PV) arises from two primary sources. The first

source is the neutral weak interactions between the atomic nucleus and electrons. The

second source is the electromagnetic interaction between electrons and a potentially

existing parity-violating nuclear anapole moment (NAM) within the nucleus. While the

concept of NAM is fundamental, its existence remains a subject of debate. The weak

interactions, mediated by the Z0 boson (and Z0-like bosons, if exist), are classified into

nuclear spin-independent (NSI) and nuclear spin-dependent (NSD) interactions, based

on whether the axial-vector and vector currents originate from the electron and nuclear

sectors, respectively, or vice versa.

To probe new physics, the study of PV in atomic systems has been one of the

principal tools over the past few decades. By combining high-precision measurements

with atomic many-body calculations of NSI PV observables, one can determine the

nuclear weak charge and compare it to the value predicted by the Standard Model (SM)

of particle physics. Any discrepancy between these values could indicate potential new

physics beyond the SM. The most precise data on atomic PV is currently derived from

the 6s 2S1/2 → 7s 2S1/2 transition in cesium (133Cs), with experimental and theoretical

accuracies reported at 0.35% [C. S. Wood et al., Science 275, 1759 (1997)] and 0.3%

[S. G. Porsev et al., Phys. Rev. D 82, 036008 (2010); V. A. Dzuba et al., Phys. Rev.

Lett. 109, 203003 (2012); B. K. Sahoo et al., Phys. Rev. D 103, L111303 (2021)],

respectively. Despite theoretical accuracies being claimed within 0.3%, the final values

show a 1% discrepancy across these studies. Moreover, the Core contribution due to

the occupied orbitals among these theoretical results varies by 200%. In this scenario a

detailed analysis is much needed to find out the reason behind such discrepancies among

various theoretical results. On the other hand, the primary goal of the NSD PV study is

to probe NAM. Unlike NSI PV, a few theoretical studies have been conducted for NSD

PV in atomic systems. One such system is 133Cs atom, in which NSD PV amplitudes

xxxiii



among various hyperfine levels for the 6s 2S1/2 → 7s 2S1/2 transition have been studied

[W. C. Haxton et al., Ann. Rev. Nuc. Part. Sc. 51, 261 (2001), V. V. Flambaum et al.,

Phys. Rev. C 56, 1641 (1997), W. R. Johnson et al., Phys. Rev. A 67, 062106 (2003)].

The atomic parameter corresponding to NAM, Ka, extracted from atomic calculations

by combining with the experiment is at 4σ variance with the nuclear calculations and

experiments. One of the possible reasons for the variance may be due to incomplete

inclusion of the electron correlation effects in the atomic many-body calculations.

In this thesis, we address these disparities regarding the NSI and NSD PV studies

from the point of view of atomic many-body calculations. We have applied various

many-body methods such as coupled-perturbed Dirac-Fock (CPDF), random phase

approximation (RPA), combined CPDF-RPA and relativistic coupled-cluster (RCC) to

study the NSI and NSD PV amplitudes in 133Cs. We analyze the connections among

these methods and how they incorporate electron correlation effects into the calculation.

There is a significant difference between the RCC result and the result calculated using

other methods mentioned above for the PV amplitudes. The reason is that the RCC

method incorporates all the correlation effects up to all-order, including those which

were neglected in other methods. We explain that the reason behind the mismatch of

the Core contributions among different NSI PV studies is due to improper classification

of Core and Valence contributions across different many-body methods. We also revise

the Ka value based on our RCC calculation for the NSD PV amplitudes in 133Cs.

Our study suggests that the reason for discrepancy between atomic and nuclear physics

results is not because of uncertainties associated with different many-body calculations,

but it could be either due to unknown systematic effects present in the experiment or

inappropriate approximations made in the nuclear calculations.
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Chapter 1

Introduction

S
ymmetry or invariance of the Hamiltonian describing a physical system is an

important concept in physics [1, 2, 3]. In general, symmetry exists when an oper-

ation preserves certain properties of the system. If a given process remains unchanged

under a particular operation, it is termed invariant under the associated symmetry

transformation. Symmetry transformations in physical systems can be categorized as

either continuous or discrete. For each symmetry transformation, there exists a unitary

operator [1], which carries all the information of the symmetry operation. Continu-

ous symmetries are associated with operations that have the concept of infinitesimal

transformation. For continuous symmetry transformation, the unitary operator cor-

responding to the symmetry is written as the exponential function. As an example of

continuous symmetry that differs infinitesimally from the identity transformation, the

operator R can be written as

R = I − iϵ

ℏ
G, (1.1)

where G is the hermitian generator of the symmetry operator and ϵ denotes an infin-

itesimal transformation. If the Hamiltonian of the system, H, is invariant under R, one

can write

R†HR = H. (1.2)
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Z
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−X

−Z

Parity

Transformation

Figure 1.1: Right-handed (RH) and Left-handed (LH) coordinate systems.

It is equivalent to

[G,H] = 0. (1.3)

This suggests that if the Hamiltonian of a system is invariant under continuous sym-

metry operation, then the generator of the operation is constant of the motion. This

remarkable theorem was discovered by the German mathematician Emmy Noether.

It states Every conservation principle corresponds to symmetry in nature [4]. For ex-

ample, translational symmetry results in the conservation of linear momentum, rota-

tional symmetry gives conservation of the angular momentum, and so on [5].

For discrete symmetries, there is no concept of infinitesimal transformation. The

transformation parameters are allowed to have only discrete finite values. Discrete

symmetries take the physical system from one distinct state to another. The three

discrete symmetries in physical studies are charge conjugation (C), parity (P), and

time-reversal (T). Some of these symmetries are violated in certain natural processes

[6]. In this thesis work, we focus on the violation of one such discrete symmetry:

P-symmetry.

1.1 Parity transformation

The parity operator P̂ , when applied to the coordinate system, changes the right-

handed (RH) system to the left-handed (LH) system as shown in Fig. 1.1. So the

2
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position vector under this transformation changes as

r⃗
P̂−→ −r⃗. (1.4)

Considering this, the effect of P operation on the wave function of the system is

P̂ |Ψ(r⃗)⟩ = |Ψ(−r⃗)⟩. (1.5)

Operating P̂ two times, the wave function reverts to its original state |Ψ(r⃗)⟩; i.e.

P̂ P̂ |Ψ(r⃗)⟩ = P̂ 2|Ψ(r⃗)⟩ = P̂ |Ψ(−r⃗)⟩ = |Ψ(r⃗)⟩. (1.6)

This implies that P̂ has two eigenvalues ±1; i.e.

P̂ |Ψ(r⃗)⟩ = |Ψ(−r⃗)⟩

= ±|Ψ(r⃗)⟩. (1.7)

The wave function with positive sign is known as even parity state and the one with a

negative sign is odd parity state. P̂ is a Hermitian operator since it has real eigenvalue,

i.e. P̂ † = P̂ . Also, P̂ 2 = I, this implies P̂ is a unitary operator. So under P operation

any operator O transforms as

O → P̂−1OP̂ .

If the system is invariant under parity transformation, then one can write that

P̂−1HP̂ = H. (1.8)

This gives

[H, P̂ ] = 0. (1.9)
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q q q q′ q q

e−e−e−νe− e−

γ W± Z0

Figure 1.2: Diagrammatic representation of electro-weak interactions among the ele-
mentary particles in the SM. Here q, q′ denote the quarks; e− and ν represent electron
and neutrino respectively.

As P̂ commutes with H, they can have a set of common eigenfunctions. This also

clearly implies that for the parity violation (PV), H does not commute with P̂ .

1.2 Origin of PV in atoms

According to the Standard Model (SM) of particle physics, matter consists of quarks

(q) and leptons. Their interactions are primarily governed by electromagnetic (em)

and weak forces. Photons (γ) mediate the em interaction, while the weak interaction

involves the exchange of heavy intermediate particles W± and Z0. The weak interaction

mediated by W± induces a change in charge among interacting particles, as W± are

charged particles. Feynman diagrams, illustrated in Fig. 1.2, depict these interactions

graphically. Within atoms or molecules, electrons and nucleons (proton and neutron)

can engage in interactions through the em and weak forces. The em interaction between

an electron and a proton, facilitated by photons, dominates and conserves parity. The

resulting wave functions in an atom possess specific angular momentum and parity.

Nevertheless, the weak interaction, propagated by the neutral Z0 boson, can also occur

between the nucleus and electron in an atom. Along with Z0 boson, there can be

other intermediate particles, namely Zd and Z ′, which can give rise to beyond the SM

(BSM) physics, which is shown in Fig. 1.3 [7, 8]. This weak interaction leads to mixing
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.

Figure 1.3: Diagrammatic representations of electro-weak interactions between nucleons
and electrons present in an atomic system. Here, p and n denote proton and neutron,
respectively.

between states of opposite parity. Since the magnitude of this effect is relatively small,

it can be treated perturbatively. The experimental observation of these consequences

poses significant challenges, but after years of concerted efforts, several groups have

successfully detected this phenomenon [9, 10, 11, 12, 13].

Another source of PV in atomic systems is from the nuclear anapole moment (NAM)

[14, 15]. The notion of the NAM was introduced by the Soviet physicist Yakov B.

Zel’dovich. This P-odd, T-even moment of the nucleus arises due to the presence

of weak interactions between nucleons. It interacts with atomic electrons close to the

nucleus and gives rise to PV. Although the effect of NAM is smaller than that of neutral

weak current interaction, atomic experiments probing PV are sensitive to both effects

[14].

1.3 Parity violating electric dipole transition

To understand PV in atomic systems, it is imperative to know about the parity selection

rules. For two parity eigenstates |Ψα⟩ and |Ψβ⟩ with eigenvalues being εα and εβ

5
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(εα,β = ±1), respectively, it can be shown that

⟨Ψα|r⃗|Ψβ⟩ = 0 (1.10)

unless εα = −εβ. In other words, the P-odd operator r⃗ connects states of opposite

parities. So, according to the parity selection rules, electric dipole transition (E1) is

forbidden between two atomic states with the same parity. However, because of the

weak interaction present in the atoms, states with opposite parities mix with each other,

resulting in finite transition amplitude between states with the same parity. The mag-

nitude of this transition is typically of the order of 1 part in 1012 [14, 16]. One can

measure this parity violating electric dipole amplitude (E1PV ) by taking interference

between E1PV amplitude with another em transition amplitude, namely electric quad-

rupole (E2) and magnetic dipole (M1) or induced electric dipole (E1induced) [9, 10, 13].

1.4 Parity violating Hamiltonian

As mentioned earlier, PV in an atom arises mainly due to the weak interactions between

the electrons and the nucleus. The corresponding PV Hamiltonian in an atomic system

can be constructed using bilinear covariants

HPV =
GF

2
√

2

∑
i=p,n

[
J⃗ i
µV · J⃗µ

eA + J⃗ i
µA · J⃗µ

eV

]
(1.11)

= HNSI
PV +HNSD

PV , (1.12)

where GF (= 2.22 × 10−14 atomic units (a.u.)) is the Fermi coupling constant. ‘i’

can be either p or n denoting proton or neutron respectively. J⃗ i
µ , J⃗µ

e are the nucleon

and electron current respectively. As the weak interaction violates P but conserves

T symmetry, the Hamiltonian has to be written as the product of axial and vector

currents. HPV can be further written as the sum of nuclear spin-independent (NSI)

and nuclear spin-dependent (NSD) Hamiltonians.
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For the NSI component, the Hamiltonian takes the form [17, 18, 19]

HNSI
PV =

GF

2
√

2

∫
d3re 2

∑
i=p,n

∫
d3ri

[
C1iψ̄iγµψi · ψ̄eγµγ5ψe

]
δ (r⃗i − r⃗e) , (1.13)

where C1i is the electron-nucleon coupling co-efficient for the NSI component. r⃗e and

r⃗i denote the electronic and nuclear coordinates respectively. ψe and ψi correspond to

the electronic and nuclear wave functions respectively. Since ψ̄ = ψ†γ0, we get

HNSI
PV =

GF

2
√

2

∫
d3re 2

∑
i=p,n

∫
d3ri

[
C1iψ

†
iγ0γµψi · ψ†

eγ0γµγ5ψe

]
δ (r⃗i − r⃗e) . (1.14)

Neglecting the off-diagonal terms from the above summation whose contributions would

be very small [19], we get

HNSI
PV =

GF

2
√

2

∫
d3reψ

†
eγ5ψe 2

∑
i=p,n

∫
d3riC1iψ

†
iψiδ (r⃗i − r⃗e) . (1.15)

The summation over the nuclear wave functions yields the number densities of the

proton and neutron, which are given by

∑
p

ψ†
pψp = Zρp(r), (1.16)

and ∑
n

ψ†
nψn = Nρn(r), (1.17)

where Z and N denote the number of protons and neutrons respectively. ρp and ρn are

the nucleon densities for protons and neutrons respectively which are normalized; i.e.

∫
dr ρp,n 4πr2 = 1. (1.18)
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So one can write

HNSI
PV =

GF

2
√

2

∫
d3reψ

†
eγ5ψe

∑
i=p,n

∫
d3ri2

[
C1pψ

†
pψp

]
δ (r⃗p − r⃗e)

+C1nψ
†
nψn

]
δ (r⃗n − r⃗e)

]
. (1.19)

Assuming the nucleon densities coincide; i.e. ρp = ρn = ρ, the above equation gives

HNSI
PV =

GF

2
√

2

∫
d3reψ

†
eγ5ψe2 [C1pZ + C1nN ] ρ(r)

=
GF

2
√

2
QWγ5ρ(r), (1.20)

where we define QW = 2 [C1pZ + C1nN ] and is known as nuclear weak charge. In similar

fashion HNSD
PV can be written as

HNSD
PV =

GF

2
√

2

∫
d3re 2

∑
i=p,n

∫
d3ri

[
C2iψ̄iγµγ5ψi · ψ̄eγµψe

]
δ(r⃗i − r⃗e)

=
GF

2
√

2

∫
d3re 2

∑
i=p,n

∫
d3riC2i

[
ψ̄iγ0γ5ψiψ̄eγ0ψe

+ ψ̄iγrγ5ψi · ψ̄eγrψe

]
δ(r⃗i − r⃗e). (1.21)

Here C2i is the electron-nucleon coupling co-efficient for the NSD component. Substi-

tuting ψ̄ = ψ†γ0 and using properties of gamma matrices the above equation reduces

to

HNSD
PV =

GF

2
√

2

∫
d3re

∑
i=p,n

∫
d3ri2C2i

[
ψ†
iγ5ψiψ

†
eψe

+ ψ†
i α⃗

Dγ5ψi · ψ†
eα⃗

Dψe

]
δ(r⃗i − r⃗e). (1.22)

Here α⃗D is the Dirac matrix. Since γ5 is of the order of v/c and can be neglected, the

8
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above equation yields

HNSD
PV =

GF

2
√

2

∫
d3re

∑
i=p,n

∫
d3ri2C2iψ

†
i Σ⃗ψi · ψ†

eα⃗
Dψeδ(r⃗i − r⃗e), (1.23)

where we have used the relation α⃗Dγ5 = Σ⃗; Σ⃗ is the four component spinor. Now

integrating over nuclear coordinates, we get a quantity that is proportional to the

nuclear spin I⃗. A constant of proportionality can be defined such that

∑
i=p,n

C2i|Σ⃗|δ(r⃗i − r⃗e) = KNSD ρ(r),

where KNSD is called the weak magnetic moment of the nucleus for the neutral weak

current. Therefore, the NSD component of the PV Hamiltonian yields the form

HNSD
PV =

GF√
2
KNSD α⃗D · I⃗ρ(r). (1.24)

As NAM arises because of weak interaction among nucleons, it contributes to the NSD

PV. So using the same notation for the total NSD PV Hamiltonian, which arises from

NAM and neutral current, we can write

HNSD
PV =

GF√
2
KW α⃗D · I⃗ρ(r) =

GF√
2
KW I⃗(1) · K⃗(1). (1.25)

Here K⃗(1) is the electronic component of HNSD
PV and KW is the total weak magnetic

moment. KW depends on the contributions from both NAM and NSD components of

electron-nucleus weak interaction, which can be expressed as

KW = Ka +KNSD, (1.26)

where Ka denotes contribution from the NAM interaction.

9
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1.5 Probing new physics

With progress in high-precision experimental techniques and theoretical methodologies,

atomic physics assumes a crucial role in the exploration of new physics. Precision in

both atomic and high-energy experiments yields distinct sensitivities to new physics

models, thus offering complementary testing approaches. Atomic measurements explore

energies surpassing the presently attainable in high-energy facilities. For example, the

study of PV or electric dipole moment in atoms puts limits on the BSM models such as

supersymmetry, multi-Higgs model, etc. [14]. As mentioned earlier, it is only possible

to measure the interference of E1PV and some other forbidden em transition amplitude

(E2, M1 or E1induced). The measured quantity can be represented as

(E1PV ⊗Xem)expt

Xem
= A

(
E1PV

A

)theory

, (1.27)

where Xem denotes E2, M1 or E1induced and A denotes either QW or KW values. Xem

has to be measured or calculated. To extract precise values of QW or KW from the Eq.

1.27, one needs to know all the factors (E1PV ⊗Xem)expt, Xem and
(
E1PV

A

)theory
very

accurately. The combination of experimental measurements and theoretical computa-

tions of atomic PV enables the extraction of QW , KW values, which characterize NSI

and NSD interactions.

The extraction of QW has important implications for BSM physics. One can express

the deviation of this quantity from its SM value as

∆QW = QW −QSM
W , (1.28)

where the SM value of QW at the tree level is given by

QSM
W = −N + Z(1 − 4sin2θW ). (1.29)

10
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Here θW is the Weinberg mixing angle. After the inclusion of radiative corrections [20]

QSM
W = −0.9793N + (0.9793 − 3.8968 sin2θW )Z. (1.30)

From this ∆QW one can put limit to the mass of an extra heavy Z ′ boson using the

following equation [21, 22]

∆QW ≈ 0.4(Z + 2N)
M2

Z0
cos2θW

M2
Z′

. (1.31)

It is possible to parameterize ∆QW in terms of isospin conserving (S) and breaking (T )

parameters as follows [22]

∆QW = Z(−0.0145 S + 0.011 T ) −N (0.00782 T ). (1.32)

One can use the above equation to constrain the S parameter by taking T = 0 [14, 22].

Essentially, the collective precision of the experiment and the associated theory must

reach at least sub-one percent to scrutinize BSM physics effectively. One can also

probe new physics from the NSD PV studies. For example, NAM can be used to probe

hadronic PV inside the nucleus and also put a limit to the nucleon-meson coupling

coefficients [23]. Although NAM is a fundamental property of the nucleus, its existence

is still under debate. By combining experiment and theory one can extract KW and

then Ka to probe NAM.

1.6 Theoretical procedure to calculate E1PV

From a theoretical point of view, it is important to calculate E1PV accurately to probe

BSM physics. We explain the procedure for calculating this quantity below. The atomic

Hamiltonian of the system will contain in addition the PV Hamiltonian HPV and hence
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the eigenfunctions will become states of mixed parities given by

|ΨF
n ⟩ = |Ψ(0),F

n ⟩ + |Ψ(1),F
n ⟩, (1.33)

where |Ψ(0),F
n ⟩ is the zeroth-order wave function in the hyperfine coordinate and can be

expressed as |Ψ(0),F
n ⟩ = |(IJ)FMF ⟩. |Ψ(1),F

n ⟩ is the first-order perturbed wave function

and can be written as sum-over zeroth-order unperturbed eigenfunctions as

|Ψ(1),F
n ⟩ =

∑
n ̸=n′

|Ψ(0),F
n′ ⟩⟨Ψ

(0),F
n′ |HPV |Ψ(0),F

n ⟩
E

(0),F
n − E

(0),F
n′

. (1.34)

As HPV is odd parity operator, the perturbed |Ψ(1),F
n ⟩ and the unperturbed wave

function |Ψ(0),F
n ⟩ are of opposite parities. These PV admixtures allow non-zero E1

transition between states originally of the same parity (|Ψi⟩ and |Ψf⟩) given by

E1PV =
⟨ΨF

f |D|ΨF
i ⟩√

⟨ΨF
f |ΨF

f ⟩⟨ΨF
i |ΨF

i ⟩

≃
⟨Ψ(0),F

f |D|Ψ(1),F
i ⟩ + ⟨Ψ(1),F

f |D|Ψ(0),F
i ⟩√

⟨Ψ(0),F
f |Ψ(0),F

f ⟩⟨Ψ(0),F
i |Ψ(0),F

i ⟩
, (1.35)

where D is the E1 operator. E1PV can be written in terms of parity eigenstates as

E1PV =
1√

⟨Ψ(0),F
f |Ψ(0),F

f ⟩⟨Ψ(0),F
i |Ψ(0),F

i ⟩

[∑
n ̸=i

⟨Ψ(0),F
f |D|Ψ(0),F

n ⟩⟨Ψ(0),F
n |HPV |Ψ(0),F

i ⟩
(E

(0),F
i − E

(0),F
n )

+
∑
m̸=f

⟨Ψ(0),F
f |HPV |Ψ(0),F

m ⟩⟨Ψ(0),F
m |D|Ψ(0),F

i ⟩
(E

(0),F
f − E

(0),F
m )

]
, (1.36)

where n and m are the intermediate states. Dealing with wave functions of hy-

perfine levels is quite challenging. To consider only the electronic coordinates, We

make an approximation that the electronic and nuclear coordinates are decoupled, i.e.,

|(IJ)FMF ⟩ = |IMI ; JMJ⟩. As the NSI PV Hamiltonian does not depend on nuclear

12
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Figure 1.4: A flowchart describing the history and current status of PV studies in
atomic systems.

spin, the decoupling of electronic and nuclear coordinates is quite easy in comparison

to the NSD PV Hamiltonian, as HNSD
PV depends on nuclear spin. Later in the thesis,

we discuss in detail the decoupling procedure for PV calculation.

1.7 A brief history of PV in atomic systems

In this section, we discuss the historical trajectory of PV study in atomic systems. Illus-

trated in Figure 1.4, we present a timeline outlining the evolution of this phenomenon.

Understanding PV proved challenging initially. The first inkling that parity conserva-

tion might not hold universally emerged in the early 1950s with the perplexing beha-

vior of kaons, identified today as spin-0 particles and viewed as bound quark-antiquark

states. This puzzle arose when the kaon decayed into either two pions or three pions,

resulting in two distinct final states with opposite parities [16]. In a groundbreaking

analysis in 1956, Lee and Yang proposed that the resolution to this puzzle lay in re-

cognizing that P-symmetry is not conserved in this process [24]. Subsequent to the

discovery of PV in nuclear beta decay [25], Yakov B. Zel’dovich proposed optical rota-

tion experiments in atoms to measure atomic PV (APV) as a low-energy test for the

SM [26]. Unfortunately, his focus was primarily on hydrogen atom, where PV effects

13
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Table 1.1: Accuracy in measurements and calculations of PV effects in various atomic
systems.

Atomic Transition Accuracy in Accuracy in
System Experiment Theory

133Cs [5p6]6S1/2→[5p6]7S1/2 0.35% [13] ∼ 0.3% [38, 39]

205Tl [6s2]6P1/2→[6s2]6P3/2 ∼ 1% [10] ∼ 3% [40, 41]

205Tl [6s2]6P1/2→[6s2]7P1/2 − ∼ 5% [40]

208Pb 6p2, J=0→6p2, J=1 ∼ 1% [11] ∼ 8% [42]

209Bi 6p3, J=3/2→6p3, J=3/2 ∼ 2% [12] ∼ 11% [42]

209Bi 6p3, J=3/2→6p3, J=5/2 ∼ 9% [34] ∼ 15% [44]

137Ba+ [5p6]6S1/2→[4d10]5D3/2 − ∼ 1% [45]

174Yb [6s2]→[6s5d], J=1 ∼ 0.5% [37] ∼ 10% [46]

171Yb+ [4f 14]6S1/2 → [4f 14]5D3/2 − ∼ 5% [47]

223Fr [6p6]7S1/2→[6p6]8S1/2 − ∼ 1% [48]

226Ra+ 7s 2S1/2→ 6d 2D3/2 − ∼ 1% [49]

are very small. However, Bouchiat et al. later demonstrated that PV effects increase

proportionally to Z3 [27, 28]. This revelation catalyzed the study of PV, reigniting

physicists’ interest in exploring PV effects in heavy atoms. The first signal of PV in

atoms was observed in 1978 at Novosibirsk in an optical rotation experiment with bis-

muth (Bi). Presently, APV has been measured in cesium (133Cs) [13, 29, 30, 31, 32],

bismuth (209Bi) [12, 33, 34], lead (208Pb) [11, 35, 36], thallium (205,203Tl) [9, 10], and

ytterbium (174Yb) [37].

As previously mentioned, we need experimental measurements and atomic structure

calculations to extract new physics from the PV studies. Currently, 133Cs holds the best

theoretical accuracy at about 0.3% [38, 39]. The theoretical uncertainty associated with

205Tl stands at approximately 3% for the 6P1/2 − 6P3/2 transition [40, 41] and is even

higher, around 5%, for the 6P1/2 − 7P1/2 transition [40]. Moving on to other elements,

the theoretical accuracy reaches approximately 8% for 208Pb [42], 11% to 15% for 209Bi
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[42, 43, 44], 1% for singly charged barium ion (137Ba+) [45], 10% for 174Yb [46], 5% for

171Yb+ [47], 1% for Francium (223Fr) [48] and about 1% for singly charge radium ion

(226Ra+) [49]. In Table 1.1, the accuracy of various measurements and calculations has

been presented. This table clearly shows that 133Cs has the most precise experimental

value for the APV amplitude. Since high-precision experimental results are essential

for making predictions about BSM physics, 133Cs is the ideal choice. The remarkable

precision in determining the QW from the 133Cs atom positions it as a crucial system

for low-energy tests of the SM, rendering it one of the most effective tools for exploring

new physics. Furthermore, the measurements of PV in 133Cs have introduced a novel

avenue for investigating PV within the nucleus, specifically the NAM.

There is a rich history of calculating the E1NSI
PV amplitude for the 6s 2S1/2−7s 2S1/2

transition in 133Cs, employing various state-of-the-art relativistic atomic many-body

theories at different levels of approximation. In the early stages, Dzuba et al. [50, 51]

utilized the time-dependent Hartree-Fock (TDHF) method in their calculations. Simul-

taneously, Mårtensson [52] applied the combined coupled-perturbed Dirac-Hartree-Fock

(CPDF) method and random-phase approximation (RPA), collectively known as the

CPDF-RPA method, to explore the impact of core-polarization (CP) effects on E1NSI
PV .

While technically equivalent, Mårtensson also presented intermediate-level results using

approximations at the Dirac-Hartree-Fock (DHF), CPDF, and RPA methods, explicitly

detailing contributions from double-core-polarization (DCP) effects.

Blundell et al. [53] subsequently utilized a linearized version of the relativistic

coupled-cluster (RCC) method in the singles and doubles excitation approximation

(SD method) to estimate the E1NSI
PV amplitude for the mentioned transition . They

employed a sum-over-states approach, assessing matrix elements of the E1 operator and

the PV interaction Hamiltonian for transitions involving np 2P1/2 intermediate states

(referred to as the “Main” contribution) with the principal quantum number n = 6−9.

Additionally, the method used the E1 matrix elements and magnetic dipole hyperfine

structure constants to evaluate the uncertainty of E1NSI
PV . Uncertainties from energies

were addressed using experimental values, while contributions from core orbitals (the
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“Core” contribution) and higher np 2P1/2 intermediate states (the “Tail” contribution)

were estimated through lower-order methods.

Following these efforts, Dzuba et al. [54] refined their TDHF method calculation

by including correlation contributions through Brückner orbitals (BO), terming the

approach RPA+BO method . Subsequent works introduced higher-order contributions

from the Breit, lower-order QED, and neutron skin effects through various studies, aim-

ing for a more precise E1NSI
PV value to extract the BSM physics [43, 55, 56, 57, 58, 59, 60].

It is important to note that these higher-order effects were estimated through differ-

ent many-body methods without considering correlations among themselves. Shortly

after these theoretical results, RCC theory with singles and doubles approximation

(RCCSD method) was employed to treat both em and PV interactions on an equal

footing [48, 61].

For the NSD PV study, experiments had been conducted only for 133Cs and 205Tl

among different hyperfine levels of the 6S1/2−7S1/2 and 6P1/2−6P3/2 transitions respect-

ively [9, 10, 13]. The accuracy of the 133Cs experiment was about 15% but for 205Tl, the

uncertainty of the experimental result was greater than the central value itself. Simil-

arly, for the theoretical calculation, very little effort had been put in. In one of the early

calculations, Flambaum and Dzuba et al. [40, 62] had used the DHF+BO method to

estimate the E1NSD
PV values between different hyperfine levels of the 6s 2S1/2 → 7s 2S1/2

transition of 133Cs. Subsequently, Johnson et al. [63] employed RPA to calculate these

amplitudes by incorporating electron correlation effects due to CP effects to all-order.

However, they neglected the effects of DCP. Later Safronova employed the SD method

to estimate E1NSD
PV for the above transition in 133Cs [64].

1.8 Current status of APV and motivation

Since the early 2000s, the predominant source of theoretical uncertainty in determining

the E1NSI
PV amplitude of 133Cs has been the inherent challenge of solving the fundamental

many-body problem in atomic structure. A decade ago, Porsev et al. [38] improved
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the sum-over-states result of Blundell et al. by incorporating non-linear terms from

the RCCSD method into their SD method and introducing valence triple excitations

(CCSDvT method). They claimed an accuracy of approximately 0.27% for the E1NSI
PV

amplitude of the 6s 2S1/2 − 7s 2S1/2 transition in 133Cs. However, the estimation of

Core and Tail contributions still involved a combination of many-body methods without

explicit specification of the considered physical effects.

In a subsequent attempt to refine the calculated E1NSI
PV value, Dzuba et al. [65]

determined the Core and Tail contributions using their TDHF approach, excluding

DCP contributions, following a similar approach to their earlier works [50, 51]. They

used the Main contribution from the calculation of Porsev et al. This calculation

yielded a Core contribution with an opposite sign compared to that reported by Porsev

et al. In 2013, Roberts et al. [66] separately reported the DCP contribution, presenting

results slightly different from Mårtensson [52]. The discrepancy in the sign of the Core

contribution between Dzuba et al. and Porsev et al. prompted criticism in two papers

[67, 68], leading to a call for further investigation into different correlation contributions

to E1NSI
PV from a first-principle approach.

In 2021, Sahoo et al. [39] improved their calculation of the E1NSI
PV amplitude by

implementing the singles, doubles, and triples approximation (RCCSDT method) to

both the unperturbed and perturbed wave functions and utilizing a substantially larger

set of basis functions. They explicitly presented the Core and Valence (Main and Tail

combined) contributions. The Core contribution in this approach aligned with their

earlier RCCSD results [48, 61], and was close to the reported values of Blundell et al.

[53] and Porsev et al. [38]. However, in a Comment, Roberts and Ginges advocated

for an opposite sign of the Core contribution, providing intermediate results from their

RPA+BO method [69]. Additionally, Tan et al. [70] estimated the combined Core and

Tail contributions to the E1NSI
PV amplitude using mixed-parity orbitals through RPA

and supported the value reported in Ref. [38]. This sign issue has been demonstrated

in Table 1.2 quantitatively.

Addressing the issue of the sign problem with the Core contribution to the E1NSI
PV
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Table 1.2: Contribution to E1NSI
PV for the 6S1/2 − 7S1/2 transition in 133Cs in

10−11i(−QW/N)|e|a0, a0 being Bohr radius. The Core contribution has been color-
coded blue, whereas the Main contribution from Ref. [38] has been shown in red.

Reference Core Main Tail Total Method

Porsev et al., 2010 −0.0020 0.8823 0.0195 0.8998 CCSDvT, sum-over state method,
“Blend of many-body methods”

0.0018 0.8711 0.0238 0.8967 TDHF+BO
Dzuba et al., 2012

0.0018 0.8823 0.0238 0.9079 Main from Porsev et al., 2010

Sahoo et al., 2021 −0.0018 0.8594∗ 0.0391 0.8967 RCCSDT

Tan et al., 2022 - - - 0.89034 P-mixed RPA

*Contribution from 9P1/2 state included in Tail part.

amplitude in 133Cs is crucial. Furthermore, the basis for dividing the net E1NSI
PV res-

ult into Core, Main, Tail, DCP, etc., contributions in an approach should be precisely

defined. Understanding missing physical effects in a method compared to others is

essential, particularly when a combination of methods is employed to estimate these

contributions individually. Misinterpretation or misrepresentation of these contribu-

tions can have repercussions when used to infer BSM physics.

As mentioned in the earlier section one of the main reasons to study NSD PV is to

probe NAM. Unlike NSI PV studies, very little effort has been put into exploring the

NSD PV effects in atomic systems. Though a finite value of NAM in 133Cs has been

inferred by combining the measured E1NSD
PV amplitude with the earlier calculations,

the inferred value is at variance with the results of the shell model and the nucleon-

nucleon scattering experiments [71, 72]. The value of NAM for 133Cs extracted from

atomic calculation is about 4σ away from nuclear result [14]. Furthermore, the nuclear

parameter extracted from this value is inconsistent with that of 205Tl [14]. There

could be various reasons for this discrepancy like incomplete correlation in the atomic

calculations, error in the atomic experiment, or incomplete nuclear model. In order

to probe NAM, it is crucial to address the inconsistency between atomic and nuclear
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results.

1.9 Objective of the thesis

One of the primary focuses of this study is to resolve the sign discrepancy associated

with the Core contributions to the E1NSI
PV calculations of the 6s 2S1/2 − 7s 2S1/2 trans-

ition in 133Cs. This work aims at highlighting the limitations of the sum-over-states

approach and elucidate the reasons behind the discrepancies between the Core contri-

butions of Porsev et al. [38] and Dzuba et al. [65]. By exploring different procedures

within a general many-body framework for evaluating E1NSI
PV amplitudes in atomic

systems, demonstrating how the definition of the Core contribution can vary across

these procedures. This study also extends this analysis to the E1NSI
PV amplitude of the

6s 2S1/2 − 5d 2D3/2 transition in 133Cs. The key motivation for including the S −D3/2

transition of Cs in the discussion is that this analysis is expected to improve the preci-

sion of its E1NSI
PV amplitude, a crucial requirement for ongoing experiments [73, 74]. In

this study we implement the ab initio RCCSD method to determine E1NSD
PV for 133Cs.

As mentioned above, the earlier calculations for NSD PV involve the use of lower-order

many-body methods. Many contributions like DCP, wave function normalization, and

contributions from non-linear terms have been neglected in those methods. Neglecting

these correlation contributions can be a possible reason for the inconsistency between

the atomic and nuclear results for estimating the NAM. This study focuses on and tries

to validate the results and discover the reasons behind the discrepancies mentioned

among the NAM values from different studies.

1.10 Outline of the thesis

Chapter 1: The initial chapter of this thesis explores various aspects of PV. It com-

mences by exploring the discrete parity transformation and dives into the origins of

PV in atoms. The chapter then explores the effective form of the PV Hamiltonian,
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elucidating the crucial quantities, namely QW and KW , which are to be extracted to

investigate new physics. The chapter concludes with an exploration of the historical

context of measurements and calculations related to PV, offering insights into the cur-

rent status and challenges faced by the scientific community in this field. Finally, the

motivation behind the theoretical work undertaken in this study is articulated.

Chapter 2: We explore essential tools aimed at simplifying the computational

procedures for diverse physical properties in atomic systems. This chapter begins by

discussing the challenges faced in multi-electron atomic systems. It then explores the

scientific methods used to address these issues. In this context, we introduce mathemat-

ical formulations and a corresponding diagrammatic method, represented by Goldstone

diagrams. This chapter serves as a foundational step towards comprehending the func-

tioning of many-body methods.

Chapter 3: We present the relativistic many-body perturbation (RMBPT) theory

for atomic systems. Then, we discuss the RPA method, illustrating its connection

with the RMBPT method. The chapter explores the RCC method for closed-shell and

one-valence atomic systems, detailing how RCC incorporates correlation effects into

calculations up to all-orders. We also present the results for E1 matrix elements of Cs

using the RMBPT, RPA, and RCC methods.

Chapter 4: In this chapter, we explore the electric dipole polarizability of closed-

shell atomic systems Cs+ and zinc as the case study. We examine the RMBPT, RPA,

and RCCSD methods and their formulations for polarizability calculations. We then

discuss the result for dipole polarizability using these many-body methods. We also

compare our results with the available theoretical and experimental results to validate

our calculations.

Chapter 5: We explore different many-body methods for evaluating the NSI PV

amplitude. We begin by outlining the general methodology to calculate NSI PV

amplitude using both the sum-over-state approach and the ab initio approach. Sub-

sequently, we illustrate various equivalent expressions for the PV amplitude evaluation

20



Section 1.10. Outline of the thesis

and demonstrate how different methods use them. Additionally, we discuss how the

definition of Core and Valence contributions are not unique and vary depending on

the choice of perturbation procedure. Subsequently, we offer an explicit discussion re-

garding the contributions from Core and Valence correlations across varied many-body

methodologies and elucidate their redistribution.

Chapter 6: In this chapter, we investigate the scalar, axial, and tensor polarizab-

ilities of the hyperfine levels of the ground state of 133Cs atom, examining both static

and dynamic polarizabilities. We present contributions from all Core and Valence inter-

mediate states, explaining their significance in improving the accuracy of calculations.

Additionally, we discuss the underlying reasons for the discrepancies between theoretical

and experimental results for polarizability.

Chapter 7: This chapter presents the calculation of the NSD PV amplitude among

different hyperfine levels of 6S1/2 − 7S1/2 transition in 133Cs atom. In this chapter, we

have discussed an alternative formulation of the PV Hamiltonian to include the DCP

effect in the calculation and also implement the RCCSD method to study the NSD PV.

We also provide a revised value for the NAM in 133Cs atom.

Chapter 8: In this chapter, we conclude the thesis. The chapter begins with

summarizing the work. We also discuss the possible future works and their implications.
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Chapter 2

Essential Tools and Techniques in

Atomic Many-Body Methods

A
pplicability of quantum many-body methods spans across diverse branches of

physics, such as atomic physics, molecular physics, nuclear physics, and con-

densed matter physics. This chapter focuses on quantum many-body methods within

the context of atomic physics. When dealing with atoms containing two or more elec-

trons, exact solutions to the Schrödinger equation become unattainable. Therefore,

many-body methods become essential to obtain accurate wave functions for determin-

ing atomic properties [1, 2, 3]. Accurate calculations of atomic properties, particularly

for studying phenomena like PV, lifetimes, and polarizabilities, necessitate the use of

reliable many-body methods. To achieve precision in calculations, employing adequate

quantum many-body methods within a relativistic framework is imperative. However,

adopting a covariant form of the relativistic Hamiltonian for atomic property calcu-

lations proves impractical due to its complexity, making it unsolvable. Consequently,

a pragmatic approach involves utilizing the Dirac Hamiltonian and a non-relativistic

form for nuclear potential and electron-electron interactions in defining the total atomic

Hamiltonian, facilitating the determination of atomic spectroscopic properties. Given

the inherent complexity of solving the equation of motion (EOM) for a system with in-
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teractions between two electrons, Coulomb interactions within an atomic system, pose

a formidable challenge. Consequently, we resort to approximated many-body meth-

ods in our analyses. Starting with a mean-field approximation in the Hartree-Fock

(HF) (referred to as DHF in the relativistic form) procedure, we treat Coulomb inter-

actions among electrons as an average potential. Subsequently, residual interactions

are addressed through many-body methods. In practical applications of many-body

methods, essential tools are required to streamline the computational tasks involved in

determining properties within atomic systems. The field theory widely acknowledges

the efficacy of second quantized formulations, normal order forms, and Wick’s theorem,

among others, as they facilitate simplified calculations and improve the understand-

ing of various physical processes [4]. Additionally, the use of Feynman-like diagrams

provides a more straightforward and realistic approach to comprehending these pro-

cesses [4, 5]. This chapter introduces and defines these mathematical tools along with

a corresponding diagrammatic approach, known as the Goldstone diagrams [1, 2, 3],

which applies to both occupied and unoccupied electron states. The interaction forces

within atomic systems find expressions in terms of these mechanisms. We explore these

tools for constructing single-particle wave functions, whereby the matrix elements of

interaction operators can be expressed separately in radial integrals and angular factors

of the single-particle orbitals [6, 7, 8, 9].

2.1 Atomic Hamiltonian

Let us consider an atom of Ne number of electrons. The total Hamiltonian of the atom

can, then, be written as

Htot = TN(R⃗) + Te(r⃗) + VeN(r⃗, R⃗) + Vee(r⃗)

=
P 2

2M
+

Ne∑
i=1

p2i
2me

−
∑
i

Ze2

|R⃗− r⃗i|
+

1

2

∑
i ̸=j

e2

|r⃗i − r⃗j|
, (2.1)
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Nucleus

 

 

 

Figure 2.1: Electronic coordinate system taking nucleus as the origin. r⃗i and r⃗j are the
position vectors for i and jth electrons (e−) respectively and rij denotes the distance
between them.

where the first two terms are the kinetic energy operators of the nucleus and electrons,

respectively, the third term corresponds to the electron-nucleus Coulomb interactions,

and the last term involves the electron-electron repulsive Coulomb interactions. In

Eq. 2.1, P and pi denote the momentum operators of the nucleus and ith electron,

respectively, andM andme are the masses of nucleus and electron, respectively. Nuclear

coordinates are defined as R⃗, and electronic coordinates are given as r⃗.

The Hamiltonian in Eq. 2.1 satisfies the Schrödinger equation

Htot|Ψ(r⃗, R⃗)⟩ = Etot|Ψ(r⃗, R⃗)⟩, (2.2)

where the wave function |Ψ(r⃗, R⃗)⟩ carries information about the nucleus and electrons of

the atom. Since we are interested only in electronic properties in this study, we decouple

electronic and nuclear wave functions. The basic idea behind this approximation lies

in the fact that the nucleus is heavier than the electrons by three orders of magnitude.

Consequently, we treat the nuclear positions as effectively fixed, and the nuclear wave

functions are considered highly localized around the nuclear coordinate. This can be
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utilized by using the quasi-separable ansätz

|Ψ⟩ = |ΨN(R⃗)⟩ ⊗ |Ψe(r⃗)⟩ ≡ |ΨN(R⃗)⟩ |Ψe(r⃗)⟩. (2.3)

Under this approximation, the kinetic energy term TN(R⃗) can be neglected as it is

smaller than Te(r⃗) by a factor M
me

. Hence, after taking the atomic nucleus as our origin

as shown in Fig. 2.1, the electronic Hamiltonian takes the form

He(r⃗) = Te(r⃗) + VeN(r⃗) + Vee(r⃗)

=
Ne∑
i=1

p2i
2me

−
∑
i

Ze2

|r⃗i|
+

1

2

∑
i ̸=j

e2

|r⃗i − r⃗j|
, (2.4)

which follows the electronic Schrödinger equation

He|Ψe(r⃗)⟩ = Ee|Ψe(r⃗)⟩, (2.5)

where Ee is the eigenvalue of He. To incorporate relativistic effects, we have to con-

sider the Dirac Hamiltonian. In 1928, Paul Dirac introduced the Dirac equation which

is consistent with both quantum mechanics and special relativity. Dirac equation suc-

cessfully describes the properties of spin 1/2 finite mass particles (electrons, quarks).

The Dirac Hamiltonian for an atomic system under Coulomb potential (in a.u.) is

HDC =
∑
i

[
c α⃗D

i · p⃗i + (βD
i − 1)c2 + V nuc

i

]
+

1

2

∑
i ̸=j

1

rij
, (2.6)

where HDC is the Dirac-Coulomb (DC) Hamiltonian, c is the velocity of light, and βD

is another four component Dirac matrix. α⃗D and βD can be expressed in matrix form

as

α⃗D
k =

 0 σ⃗k

σ⃗k 0

 and βD =

I 0

0 −I

 , (2.7)
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where σk is the kth Pauli spin matrix. A single particle orbital |ψ⟩ can be written as a

four-component one-particle wave function [10]

ψ(r⃗) =
1

r

 Pnκ(r)χκmj
(θ, ϕ)

iQnκ(r)χ−κmj
(θ, ϕ)

 , (2.8)

where Pnκ(r) and Qnκ(r) correspond to the large and small components of the single

particle orbital wave function, respectively. κ = −a(j + 1
2
) is the relativistic quantum

number, where a = 2(j − l) = ±1 serves as a sign factor. j and mj are total and azi-

muthal angular momentum quantum numbers, respectively, and l is the orbital angular

momentum quantum number. The spin angular function χκm(θ, ϕ) is given by

χκmj
(θ, ϕ) =

1√
2l + 1


a
√
l + 1

2
+ amj Y

mj−1/2
l (θ, ϕ)

√
l + 1

2
− amj Y

mj+1/2
l (θ, ϕ)

 . (2.9)

When a = 1, i.e., j = l + 1/2,

χκmj
(θ, ϕ) =

1√
2l + 1


√
l +mj + 1

2
Y

mj−1/2
l (θ, ϕ)

√
l −mj + 1

2
Y

mj+1/2
l (θ, ϕ)

 . (2.10)

When a = −1, i.e., j = l − 1/2,

χκmj
(θ, ϕ) =

1√
2l + 1


−
√
l −mj + 1

2
Y

mj−1/2
l (θ, ϕ)

√
l +mj + 1

2
Y

mj+1/2
l (θ, ϕ)

 . (2.11)
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2.2 Electronic wave function and second quantiza-

tion

Electrons are fermions; they follow Fermi-Dirac statistics. For non-interacting electrons

the total electronic wave function |Ψ⟩ (dropping the subscript ‘e’) for an atom is a Slater

determinant. In this case, the total electronic wave function is composed of different

single electron orbital with dimension of the determinant as Ne ×Ne; i.e.

Ψ =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r⃗1) ψ1(r⃗2) · · · ψ1(r⃗Ne)

ψ2(r⃗1) ψ2(r⃗2) · · · ψ2(r⃗Ne)
...

. . .
...

ψNe(r⃗1) ψNe(r⃗2) · · · ψNe(r⃗Ne)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.12)

The factor 1√
Ne!

is the normalization factor. The above Slater determinant is denoted

for convenient use by [1]

|Ψ⟩ = |{abc · · · up to Ne number of index}⟩. (2.13)

By treating |Ψ⟩ as the reference state, an excited state can be defined as

|Ψpq···
ab···⟩ = a†pa

†
qabaa|{abc · · · up to Ne number of index}⟩

= |{pqc · · · up to Ne number of index}⟩. (2.14)

a†i represents the creation of electron i, whereas ai represents the annihilation of electron

i with respect |Ψ⟩. Therefore in the above expression, |Ψp,q,···
a,b,···⟩ denotes a determinant for

which the single occupied orbital ‘a’ is replaced by the virtual orbital ‘p’ and so on. We

categorize electrons within atomic systems based on their locations into three distinct

types: occupied (referred to as holes or core), unoccupied (referred to as particles),

and general electrons. This classification is facilitated by the second quantization form-
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alism, allowing us to distinguish and perform algebraic operations on these different

electron types. In our notation, we denote occupied electrons by subscripts with letters

a, b, c, d, ..., unoccupied (virtual) electrons by subscripts p, q, r, s, ..., and general elec-

trons by subscripts i, j, k, l, ..., providing a clear representation for the various electron

categories. We can express all physical operators in terms of these creation and anni-

hilation operators [1, 3]. In the second quantization formalism, a one-body operator

(F ) can be expressed

F =
Ne∑
i

f(r⃗i) =
∑
j,l

⟨j|f |l⟩a†jal. (2.15)

Similarly, a two-body operator (G) can take the form as

G =
Ne∑
i<j

g(r⃗i, r⃗j) =
1

2

∑
k,l,m,n

⟨kl|g|mn⟩a†ka†laman. (2.16)

Let’s discuss the matrix element of any general one and two-body operators, which

encompass both radial and angular momentum factors. Given the computational chal-

lenges associated with handling the mj components of the total angular momentum j,

our approach involves isolating the mj dependent factors during the calculation, focus-

ing solely on the remaining magnitudes. Specific transitions to distinct mj states can

then be addressed in the final stages of the calculations. This can be done with the

help of the Wigner-Eckart theorem, which tells a one-body operator of rank ‘k’ (fk
q )in

a single particle representation can be expressed as [1, 6, 7, 10],

⟨jmj|fk
q |j′mj′⟩ = (−1)j−mj

 j k j′

−mj q mj′

 ⟨j||fk||j′⟩, (2.17)

where ⟨j||fk||j′⟩ is called the reduced matrix element and is independent of mj compon-

ent and the quantity in () is called 3j symbol. Similarly, one can use the Wigner-Eckart

theorem for a two-body operator. Before using the Wigner-Eckart theorem, we use the

coupling factor to write a two-body operator as a product of two spherical tensors as
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follows [11, 12]

g(r⃗1, r⃗2) =
∑
k

gk(r1, r2)
[
T k(1).Uk(2)

]0
0
. (2.18)

gk(r1, r2) is the radial part of the integral with rank k dependency. Now in terms of the

reduced matrix element we can write [12, 13]

⟨jajb|g(r⃗1, r⃗2)|jcjd⟩ =
∑
k

(−1)(ja−ma+jb−mb+k−q)

 ja k jc

−ma q mc


×

 jb k jd

−mb −q md

Rk(jajbjcjd), (2.19)

where Rk is given by

Rk(jajbjcjd) = (−1)k⟨ja||T k||jc⟩⟨jb||Uk||jd⟩. (2.20)

2.3 Challenges with multi-electron atomic system

Recalling from the earlier section the electronic Hamiltonian for an atom with Ne num-

ber of electrons can be written as (dropping the subscript)

H =
Ne∑
i=1

[
c α⃗D · p⃗+ (βD − 1)c2 + V nuc

i

]
︸ ︷︷ ︸

h1(r⃗i)

+
1

2

∑
i ̸=j

1

rij︸︷︷︸
h2(r⃗i,r⃗j)

=
Ne∑
i=1

h1(r⃗i) +
1

2

∑
i ̸=j

h2(r⃗i, r⃗j), (2.21)

where h1 and h2 represent the one-body and two-body terms, respectively, with r⃗is being

the generalised coordinates and rij is distance between two electrons. To calculate the

energy due to the Hamiltonian in Eq. 2.21, we need to evaluate the following expectation
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value

⟨Ψ|H|Ψ⟩ = ⟨Ψ|
∑
i

h1(r⃗i)|Ψ⟩ + ⟨Ψ|1
2

∑
i ̸=j

h2(r⃗i, r⃗j)|Ψ⟩ = E⟨Ψ|Ψ⟩. (2.22)

As mentioned earlier, electrons are fermions, for non-interacting electrons the total

electronic wave function |Ψ⟩ for an atom is a Slater determinant. To evaluate the

one-body integral ⟨Ψ|∑i h1(r⃗i)|Ψ⟩ and the two-body integral ⟨Ψ|1
2

∑
i ̸=j h2(r⃗i, r⃗j)|Ψ⟩ in

Eq. 2.22, there exists a convenient tool to simplify the integrals containing the Slater

determinant wave functions to sum of integrals involving individual orbitals. These set

of rules are called Slater-Condon (SC) rules [1, 14, 15] and are outlined below.

(i) For any general one-body operator F in an N particle system defined as a sum

of individual operators, F =
∑N

i=1 f(r⃗i), it can follow

(a) ⟨Ψ|
∑
i

f(r⃗i)|Ψ⟩ =
∑
a

⟨ψa|f(r⃗i)|ψa⟩,

(b) ⟨Ψp
a|
∑
i

f(r⃗i)|Ψ⟩ = ⟨ψp|f(r⃗i)|ψa⟩

and (c) ⟨Ψp,q,···
a,b,···|

∑
i

f(r⃗i)|Ψ⟩ = 0. (2.23)

(ii) For any general two-body operator G in an N particle system, defined as G =

1
2

∑
i ̸=j g(r⃗i, r⃗j), we have

(a) ⟨Ψ|1
2

∑
i ̸=j

g(r⃗i, r⃗j)|Ψ⟩ =
1

2

∑
a,b

[
⟨ψa(1)ψb(2)|g(r⃗1, r⃗2)|ψa(1)ψb(2)⟩

−⟨ψb(1)ψa(2)|g(r⃗1, r⃗2)|ψa(1)ψb(2)⟩
]
,

(b) ⟨Ψp
a|

1

2

∑
i ̸=j

g(r⃗i, r⃗j)|Ψ⟩ =
∑
b

[
⟨ψp(1)ψb(2)|g(r⃗1, r⃗2)|ψa(1)ψb(2)⟩

−⟨ψb(1)ψp(2)|g(r⃗1, r⃗2)|ψa(1)ψb(2)⟩
]
,

(c) ⟨Ψp,q
a,b|

1

2

∑
i ̸=j

g(r⃗i, r⃗j)|Ψ⟩ = ⟨ψp(1)ψq(2)|g(r⃗1, r⃗2)|ψa(1)ψb(2)⟩

−⟨ψq(1)ψp(2)|g(r⃗1, r⃗2)|ψa(1)ψb(2)⟩
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and (2.24)

(d) ⟨Ψp,q,···
a,b,···|

1

2

∑
i ̸=j

g(r⃗1, r⃗2)|Ψ⟩ = 0. (2.25)

Applying the SC rules in Eq. 2.22, the integral takes the form

⟨Ψ|
∑
i

h1(r⃗i) +
1

2

∑
i ̸=j

h2(r⃗i, r⃗j)|Ψ⟩ =
∑
i

⟨ψi|h1|ψi⟩ +
1

2

∑
i,j

[
⟨ψiψj|h2|ψiψj⟩

−⟨ψjψi|h2|ψiψj⟩
]

=
∑
i

ϵi⟨ψi|ψi⟩, (2.26)

where ϵi is single particle orbital energy. For the ith electron, the above equation takes

the form

h1|ψi⟩ +
1

2

∑
j

[
⟨ψj|h2|ψj⟩|ψi⟩ − ⟨ψi|h2|ψj⟩|ψj⟩

]
= ϵi|ψi⟩. (2.27)

As can be inferred from the above equation, to solve for ith electron we need to know

orbital wave functions for all the other electrons. Further, solving Eq. 2.27 iteratively

does not guarantee to yield the ground state energy. Here comes the necessity to apply

the variational principle to Eq. 2.27 in order to obtain the ground state energy. In the

next section, we shall introduce the variational principle and the variational method to

obtain the ground state wave function and energy of the multi-electron atomic system.

2.4 Variational method

The variational method is useful for estimating the upper bound value for the ground

state eigenenergy of a system whose Hamiltonian is known, but its eigenvalues and

eigenstates are not known [16]. Assume that H is the Hamiltonian of a system and

|Ψ0⟩ is its exact but unknown ground state wave function. Then

H|Ψ0⟩ = E0|Ψ0⟩, (2.28)
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where E0 is the exact ground state energy of the system and it is given by

E0 =
⟨Ψ0|H|Ψ0⟩
⟨Ψ0|Ψ0⟩

. (2.29)

If |Φ0⟩ is an arbitrary wave function and E is the corresponding energy

E =
⟨Φ0|H|Φ0⟩
⟨Φ0|Φ0⟩

, (2.30)

then the variational principle states that E ≥ E0.

Proof: As the exact unknown eigenfunctions (|Ψn⟩) form a complete set, the ap-

proximate state can be written in terms of linear combination of them

|Φ0⟩ =
∑
n

Cn|Ψn⟩, (2.31)

with H|Ψn⟩ = En|Ψn⟩. Assume that the eigenfunctions are orthonormalized; i.e.

⟨Ψm|Ψn⟩ = δmn.

The normalization of |Φ0⟩ leads to

⟨Φ0|Φ0⟩ = 1

⇒
∑
m,n

C∗
mCn ⟨Ψm|Ψn⟩︸ ︷︷ ︸

δmn

= 1

⇒
∑
n

|C2
n| = 1. (2.32)

The expectation value of the Hamiltonian in the approximate state is

⟨Φ0|H|Φ0⟩ = E =
∑
m,n

C∗
mCn⟨Ψm|H|Ψn⟩

=
∑
m,n

C∗
mCnEn ⟨Ψm|Ψn⟩︸ ︷︷ ︸

δmn

=
∑
n

En|C2
n|. (2.33)
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But, by definition, the energy of the ground state (E0) is the lowest. Therefore, E0 ≤
En. Using this in Eq. 2.33 we get

⟨Φ0|H|Φ0⟩ =
∑
n

En|C2
n| ≥ E0

∑
n

|C2
n|︸ ︷︷ ︸

=1

⇒ ⟨Φ0|H|Φ0⟩ ≥ E0. (2.34)

2.5 Mean-field model

The variational approach we follow differs from minimizing energy coefficients asso-

ciated with wave functions; instead, we minimize with respect to the wave functions

directly. We consider the total trial electronic wave function Φ0 to be

Φ0 =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r⃗1) ϕ1(r⃗2) · · · ϕ1(r⃗Ne)

ϕ2(r⃗1) ϕ2(r⃗2) · · · ϕ2(r⃗Ne)
...

. . .
...

ϕNe(r⃗1) ϕNe(r⃗2) · · · ϕNe(r⃗Ne)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.35)

In this approach, we assume that the functional differentiation of the expectation value

of the Hamiltonian H due to any infinitesimal change in single particle orbital |ϕ⟩ is

zero; i.e.,

For |ϕk⟩ → |ϕk⟩ + δ|ϕk⟩, δ⟨Φ0|H|Φ0⟩ = 0. (2.36)

Moreover, we constraint that the |ϕi⟩’s would remain orthogonal throughout the

process of minimization

⟨ϕi|ϕj⟩ = δij. (2.37)

If both the conditions in Eqs. 2.36 and 2.37 are satisfied, we can connect the two
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equations through Lagrange’s undetermined multipliers (λij)

δF = δ

[
⟨Φ0|H|Φ0⟩ −

∑
ij

λij(⟨ϕi|ϕj⟩ − δij)

]
= 0. (2.38)

⇒ δ

[
⟨Φ0|

∑
i

h1(r⃗i) +
1

2

∑
i ̸=j

h2(r⃗i, r⃗j)|Φ0⟩ −
∑
ij

λij(⟨ϕi|ϕj⟩ − δij)

]
= 0. (2.39)

In Eq. 2.38, we set F = ⟨Φ0|H|Φ0⟩ −
∑

ij λij(⟨ϕi|ϕj⟩ − δij). It is evident from Eq. 2.39

that the number of Lagrange’s undetermined multipliers is N2
e . We demand that the

first-order derivatives of Eq. 2.39 with respect to all the λij’s vanish. At first, we shall

look at the variation of the one-body term in Eq. 2.39 due to any infinitesimal change

in orbital |ϕk⟩; i.e.

δ⟨Φ0|
∑
i

h1(r⃗i)|Φ0⟩ = δ

[∑
i

⟨ϕi|h1(r⃗i)|ϕi⟩
]

(2.40)

= ⟨δϕk|h1(r⃗i)|ϕk⟩ + ⟨ϕk|h1(r⃗i)|δϕk⟩ (2.41)

= ⟨δϕk|h1(r⃗i)|ϕk⟩ + ⟨δϕk|h1(r⃗i)|ϕk⟩∗, (2.42)

where the symbol ‘*’ in the second term is used to denote hermitian conjugate (h.c.).

Similarly, the variation of the two-body term in Eq. 2.39 can also be simplified as

δ⟨Φ0|
1

2

∑
i ̸=j

h2(r⃗i, r⃗j)|Φ0⟩ = δ
1

2

∑
i ̸=j

[
⟨ϕiϕj|h2|ϕiϕj⟩ − ⟨ϕjϕi|h2|ϕiϕj⟩

]
=

1

2

∑
i

[
⟨ϕiδϕk|h2|ϕiϕk⟩ + ⟨ϕiϕk|h2|ϕiδϕk⟩ − ⟨δϕkϕi|h2|ϕiϕk⟩

−⟨ϕkϕi|h2|ϕiδϕk⟩
]

+
1

2

∑
j

[
⟨δϕkϕj|h2|ϕkϕj⟩ + ⟨ϕkϕj|h2|δϕkϕj⟩

−⟨ϕjδϕk|h2|ϕkϕj⟩ − ⟨ϕjϕk|h2|δϕkϕj⟩
]
. (2.43)

Utilizing the following identity

⟨ϕ1ϕ2|O|ϕ3ϕ4⟩ = ⟨ϕ2ϕ1|O|ϕ4ϕ3⟩
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in Eq 2.43 for any two-body hermitian operator O, we get

δ⟨Φ0|
1

2

∑
i ̸=j

h2(r⃗i, r⃗j)|Φ0⟩ =
∑
i

[
⟨ϕiδϕk|h2|ϕiϕk⟩ + ⟨ϕiδϕk|h2|ϕiϕk⟩

−⟨δϕkϕi|h2|ϕiϕk⟩ − ⟨δϕkϕi|h2|ϕkϕi⟩
]
, (2.44)

where we exploited the dummy nature of the indices i and j in Eq. 2.44. Combining

Eqs. 2.42 and 2.44, we can write

δF = ⟨δϕk|h1|ϕk⟩ + ⟨δϕk|h1|ϕk⟩∗

+
∑
i

[
⟨ϕiδϕk|h2|ϕiϕk⟩ + ⟨ϕiδϕk|h2|ϕiϕk⟩∗ − ⟨δϕkϕi|h2|ϕiϕk⟩ − ⟨δϕkϕi|h2|ϕiϕk⟩∗

]
−
∑
i

[
λik⟨δϕk|ϕi⟩∗ + λki⟨δϕk|ϕi⟩

]
. (2.45)

Now, we shall evaluate the variation of F with respect to ϕ∗
k; i.e.

δF

δϕ∗
k

= h1|ϕk(r⃗1)⟩ +
∑
i

[〈
ϕi(r⃗2)|h2|ϕi(r⃗2)

〉
|ϕk(r⃗1)

〉
−
〈
ϕi(r⃗2)|h2|ϕk(r⃗2)

〉
|ϕi(r⃗1)

〉]
−

∑
i

λki|ϕi(r⃗1)
〉

= 0, (2.46)

which can be written as

[h1 + (Jk −Kk)] |ϕk⟩ =
∑
i

λki|ϕi⟩, (2.47)

where the Ji is the direct term and Ki is the exchange term and defined as

Jk|ϕk(r⃗1)⟩ =
∑
i

〈
ϕi(r⃗2)|h2|ϕi(r⃗2)

〉
|ϕk(r⃗1)⟩ (2.48)

and

Kk|ϕk(r⃗1)⟩ =
∑
i

〈
ϕi(r⃗2)|h2|ϕk(r⃗2)

〉
|ϕi(r⃗1)⟩. (2.49)

From Eq. 2.48, it is evident that the direct term is the classical Coulomb interaction
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averaged over ϕi and the exchange term is an integral operator with no classical analog

and is a result of the antisymmetric nature of the wave function.

The left-hand side of Eq. 2.47 is called the Fock operator, Fk = h1 + (Jk − Kk).

Then Eq. 2.47 takes the form

Fkϕk =
∑
i

λkiϕi. (2.50)

Several solutions to Eq. (2.50) are possible for different choices of λki. However, we

have the liberty to focus on those values of λki which satisfy the following condition

λki = δkiϵk, (2.51)

where ϵk is a new Lagrange’s multiplier. With this special choice of λki, Eq. 2.50

assumes the following form

Fkϕk = ϵkϕk. (2.52)

Eq. 2.52 is called the HF equation where ϵks are the eigenvalues of the Fock operator.

Following the Dirac notation Eq. 2.52 can be written for ith electron as

h1|ϕi⟩ +
∑
j

[
⟨ϕj|h2|ϕj⟩|ϕi⟩ − ⟨ϕi|h2|ϕj⟩|ϕj⟩

]
= ϵi|ϕi⟩. (2.53)

A comparison between Eq. 2.27 and Eq. 2.53 reveals a similarity in mathematical form,

differing only by a factor of ‘half’. However, the fundamental distinction lies in their

philosophical origins. Eq. 2.53 is derived using the variation principle, ensuring that

the energy value obtained from this equation satisfies the variational condition.
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2.6 The DHF method

As mentioned earlier, we have to consider the DC Hamiltonian to include relativistic

effects. However, due to the presence of the two-body interaction term, it is not possible

to exactly solve the eigenvalue equation. Therefore, we approximate this electron-

electron interaction based on the earlier discussions. Using the variational principle

and mean-field approach, we define a central potential UDHF (r), commonly known as

the DHF potential. Following Eq. 2.53, the mean-filed potential of the ground state;

UDHF =
∑

i uDHF (r⃗i) is defined by

uDHF |ϕi⟩ =
∑
a

[
⟨ϕa|h2|ϕa⟩|ϕi⟩ − ⟨ϕa|h2|ϕi⟩|ϕa⟩

]
. (2.54)

Introducing this mean-field potential allows us to decompose the total electronic Hamilto-

nian as

H = HDHF + Vres, (2.55)

where

HDHF =
∑
i

[
c α⃗D

i · p⃗i + (βD
i − 1)c2 + V nuc

i + uDHF (r⃗i)
]

(2.56)

and the residual interaction is given by

Vres =
∑
i>j

1

rij
−
∑
i

uDHF (r⃗i). (2.57)

In a more compact form, the DHF Hamiltonian is expressed as

HDHF =
∑
i

[
h1(r⃗i) + uDHF (r⃗i)

]
=

∑
i

fi, (2.58)

where fi is basically the single particle DHF operator. Since the DHF potential is ef-

fectively a one-body operator, so one can generate the single-particle orbitals by solving
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Solve for all the single
orbitals s for h1

operator.

Calculate the uDHF
using

the s.

Solve for all the single
orbitals s for

 f operator.

Tolerance condition
satisfies ?

Solution for the f
operator has been

calculated.

NO

YES

Figure 2.2: Flowchart for the iterative scheme used in the DHF method.

the following equation

fi|ϕi⟩ =
[
h1(r⃗i) + uDHF (r⃗i)

]
|ϕi⟩ = ϵi|ϕi⟩. (2.59)

In solving the above equation, we first generate single particle orbitals for the h1 oper-

ator and then use that to calculate the average field (UDHF ) and then solve the eigen-

value Eq. 2.59 way until self-consistency is reached. The flowchart of this procedure is

shown pictorially in Fig. 2.2.

2.7 Basis function expansion

In atomic and molecular computations, the single-particle orbitals are typically con-

structed as linear combinations of known functions [17, 18]. Mathematically, any set

of functions that satisfies the completeness theorem can be used as basis functions. In

this current investigation, the computations are conducted using Gaussian-type orbitals
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(GTOs)

ϕi(r) =
∑
l

Cl,iηl,i(r). (2.60)

In this expression, the Cl,i coefficients correspond to the basis set expansion, and the

radial part of the GTOs takes the form ηl,i(r) = Nrle−αir
2
, where l = 0, 1, 2, · · · de-

notes the symmetries s, p, d, · · · respectively and N is the normalization constant. The

exponents αis are determined by the relation

αi = α0β
i−1, (2.61)

where α0 and β serve as parameters determined by the basis size and the specific atomic

system chosen. This parametric relation is known as the even-tempering condition in

many-body calculations [19]. In the relativistic framework the large and small compon-

ents of ϕi(r⃗) are expressed in terms of the GTOs as

ϕi(r⃗) =
1

r

 Pi(r)χκm(θ, ϕ)

iQi(r)χ−κm(θ, ϕ)

 =
1

r

 ∑
l CL

l,iη
L
l,i(r)χκm(θ, ϕ)

i
∑

l CS
l,iη

S
l,i(r)χ−κm(θ, ϕ)

 , (2.62)

where CL
l,i and CS

l,i are the coefficient of expansion for large and small components of the

DHF orbital. In our case, the GTOs are given by

ηLl,i = NLrle−αir
2

,

and ηSl,i = NS

[
d

dr
+
κ

r

]
ηLl,i. (2.63)

In general, one can express the eigenvalue equation for the DHF operator in terms of

the GTOs as

∑
l

⟨ηm,i|h1|ηl,i⟩Cl,i +
∑
l

∑
a

Cl,i
[
⟨ηm,iϕa|h2|ηl,iϕa⟩ − ⟨ηm,iϕa|h2|ϕaηl,i⟩

]
= ϵi

∑
l

Cl,i⟨ηm,i|ηl,i⟩.
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=⇒
∑
l

Fm,lCl,i = ϵi
∑
l

⟨ηm,i|ηl,i⟩Cl,i, (2.64)

where Fm,l can be inferred from the left side of the above equation. In a compact

notation, the above equation can be written as

FC = ϵSC, (2.65)

where S is the overlap matrix whose elements are constructed by ⟨ηm,i|ηl,i⟩. The above

equation can be transformed to a symmetric form [20]

FS−1/2S1/2C = ϵS−1/2S1/2C.

=⇒ S−1/2FS−1/2S1/2C = ϵS−1/2S−1/2S1/2C.

=⇒ F̃ C̃ = ϵC̃. (2.66)

These are the transformed Roothaan equations which can be solved for C̃ by diagonal-

izing F̃ .

2.8 Diagrammatic representations of orbitals and

interactions

In many-electron theory, it is more convenient to deal with Ne-electron reference state

|Φ0⟩, rather than the vacuum state |0⟩ [1, 2, 3]. Consequently, we introduce the concept

of normal ordering for a string of operators with respect to the reference state |Φ0⟩,
commonly known as the Fermi vacuum. The single-electron states occupied in |Φ0⟩
are known as the hole or core states, and those unoccupied are referred to as particle

states as shown pictorially in Fig. 2.3. When an annihilation operator aa acts on |Φ0⟩
then a hole is created, whereas when a creation operator a†p acts on |Φ0⟩, a particle is

created. So the string of operators a†paa when acts on |Φ0⟩, it gives a single electron

excitation from core states to particle states. In order to include only those terms
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Single electron excitation

Particle states
(unoccupied)

Core states
(occupied)

Fermi vacuum

particle

hole

Figure 2.3: Graphical representation of particle and core states separated by Fermi
vacuum. The black balls represent occupied states and the white balls represent un-
occupied states. We have also shown a single electron excitation from core states to
particle states by the arrow.

which correspond to real excitation, we use the normal ordering. A string of second

quantized operators is said to be in normal ordered form if all the annihilation operators

lie right to all creation operators. We represent the normal ordered form of the string

of operators by the notation {}. Now, one can define the basic formula for the Wick’s

contraction between the creation and annihilation operators by adopting the normal

ordering technique with respect to the reference |Φ0⟩ [21]. The only non-zero contraction

takes place only when the particle annihilation operator present left to the particle

creation operators as follows

︷︸︸︷
apa

†
q = apa

†
q − {apa†q} = apa

†
q + a†qap = δpq. (2.67)

Similarly, for the core orbitals, one can write the non-zero Wick’s contraction as

︷︸︸︷
a†aab = a†aab − {a†aab} = a†aab + aba

†
a = δab. (2.68)

All the other combinations essentially will give rise to zero. Graphically, we can

represent general operators in normal ordered form. Diagrammatically, orbitals are
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hole creation

hole annihilation

particle creation

particle annihilation

Reference state

aa

a†a
ap

a†p

Figure 2.4: Diagrammatic representation of hole and particle creation and annihilation.
Hole lines are denoted with downward arrows, and particle lines are denoted with
upward arrows.

represented by solid arrows where a downward going arrow represents a core (hole)

orbital and the upward arrow represents a particle orbital. The Graphical representation

of the particle-hole formalism is shown in Fig. 2.4. One can use normal ordering to

express the Hamiltonian in terms of the reference state |Φ0⟩. In terms of the second

quantization operator, the electronic Hamiltonian can be expressed as

H = ⟨Φ0|H|Φo⟩ + FN + VN , (2.69)

where the subscript N denotes the normal ordering. FN and VN are the one-body

and two-body terms resulting from the Wick’s contraction. The possible diagrams are

shown in Fig. 2.5. The term ⟨Φ0|H|Φo⟩ is a scalar quantity, and it is called the DHF

energy, EDHF , or the self-consistent field energy ESCF . Invoking Eq. 2.55, one can

show that

EDHF = ⟨Φ0|H|Φ0⟩

= ⟨Φ0|HDHF + Vres|Φo⟩

= ⟨Φ0|HDHF |Φo⟩ + ⟨Φ0|Vres|Φo⟩

= E0 + E(1). (2.70)
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FN

VN

p

q

a

b

ap
p a

p

q

a

b

p

q

r

s

a

b

c

d

p

q

ar

a

b

ap

q

p

ra

a

b pc

ap

b q

ap
bq

a p
qb

Figure 2.5: Graphical representations of normal-ordered one-body and two-body inter-
actions operator.

So, the DHF energy is the sum of the eigenenergy of HDHF and the first-order correction

due to Vres.

2.9 Electron correlation effects

The DHF method incorporates a portion of electron-electron interactions into the mean-

field approach but omits a significant chunk of dynamic electron correlation effects in its

calculations. Essentially, the DHF method addresses the interaction between electrons

in an averaged manner rather than an actual one. When striving for precise estimations

of spectroscopic properties, in atomic systems, it becomes evident that the overlooked

residual Coulomb interactions play a crucial role. As mentioned in the earlier section,

the actual Hamiltonian can be written as,

H = HDHF + Vres. (2.71)
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DHF method does not account for Vres, which is a part of the actual Hamiltonian. The

physical effects that arise due to the residual Coulomb interactions are referred to as

electron correlation effects, which are beyond the reach of the mean-field calculations.

The Vres can be expressed as

Vres =
1

2

∑
ijkl

a†ia
†
jalak⟨ϕiϕj|h2|ϕkϕl⟩ −

∑
ij

a†iaj⟨ϕi|uDHF |ϕj⟩. (2.72)

With the use of normal ordering of second quantization operators, Vres can be divided

into normal ordered zero-, one- and two-body parts, i.e.

Vres = V0 + V1 + V2, (2.73)

where

V0 =
1

2

core∑
ab

[⟨ϕaϕb|h2|ϕaϕb⟩ − ⟨ϕaϕb|h2|ϕbϕa⟩] +
core∑
a

⟨ϕa| − uDHF |ϕa⟩, (2.74)

V1 =
∑
ij

{
a†iaj

}
⟨ϕi|v|ϕj⟩, (2.75)

and

V2 =
1

2

∑
ijkl

{
a†ia

†
jalak

}
⟨ϕiϕj|h2|ϕkϕl⟩. (2.76)

The matrix element ⟨ϕi|v|ϕj⟩ can be expressed as

⟨ϕi|v|ϕj⟩ =
∑
a

[⟨ϕiϕa|h2|ϕjϕa⟩ − ⟨ϕaϕi|h2|ϕjϕa⟩] + ⟨ϕi| − uDHF |ϕj⟩. (2.77)

It can be shown that the effective potential v in the V1 part vanishes in the DHF

method. In this case, the correction in the actual state due to Vres comes from only the

V2 parts [1]. The actual energy of a state can be obtained using the equation

H|Ψ⟩ = E|Ψ⟩, (2.78)

51



Chapter 2 : Essential Tools and Techniques in Atomic Many-Body Methods

where |Ψ⟩ is the total wave function of the many-body system. The actual quantity

that is calculated using many-body methods is ∆Ecorr = E−EDHF , defined as the cor-

relation energy. EDHF can be evaluated with the knowledge of the DHF wave function.

The commonly employed many-body methods for atomic calculations are the RMBPT,

RCC, relativistic configuration interaction (RCI), multiconfiguration DHF (MCDHF)

method, etc.

2.10 Summary

In this chapter, we have explored essential tools designed to simplify computational

procedures for studying multi-electronic atomic systems. We began by addressing the

inherent challenges posed by electron-electron repulsion terms in such systems. Due

to presence of this two-body interaction term, one cannot solve the wave function of

the multi-electronic atomic systems exactly. To solve this issue, we have replaced this

two-body Coulombic repulsion potential with effective one-body DHF potential. The

difference between the exact interaction and mean-field DHF interaction is defined as

the Vres. This Vres term is addressed by many-body methods. In practical applications

of many-body methods, essential tools are required to streamline the computational

tasks involved in determining properties within atomic systems. In this context, we

present the second-order quantization operator, normal ordering and Goldstone dia-

gram. These tools provide a framework as well as a visual representation of interaction

terms and correlations, facilitating the understanding of the many-body calculations.
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Chapter 3

Many-Body Methods: Integrating

Electronic Correlation Effects

T
he DHF method neglects the electron correlation effects that originate from the

residual term Vres [1, 2]. Consequently, the application of many-body theory

becomes imperative for accurate calculations of any atomic property. To incorporate the

electron correlation effects, various relativistic many-body methods, such as RMBPT

[3, 4, 5, 6], RPA [7, 8, 9, 10, 11], RCC [12, 13, 14], RCI [15, 16, 17], MCDHF [18, 19, 20]

etc. have been utilized by various groups. As we will be using the RCC method to

study the PV effects in 133Cs atom, it is judicious that we first explore how the RCC

method incorporates electron correlation effects into the calculation. In this context,

we explore various many-body methods, namely, RMBPT, RPA, and RCC, and draw

connections between these methods. This exercise will not only be useful to build a

theoretical understanding of atomic calculation but also be helpful to support accuracy

estimation for our RCC results that we are going to discuss later. A simple diagram

depicting the general process of atomic property calculation is shown in Fig. 3.1.
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Select atomic system

Choose basis
function

Calculate DHF
potential and
construct the

reference state

Second quantization
formulation

Goldstone diagram
approach

Generate excitation
from reference state

Include correlations
through a many-body

method 

RMBPT

RPA

RCC

Calculation of atomic
property

DHF method

RCI

MCDHF

Figure 3.1: A flowchart depicting the procedure of atomic many-body calculation.

3.1 The RMBPT method

The RMBPT method offers a framework for addressing electron correlation effects

within multi-electron systems, achieved through systematic expansions of energies and

wave functions in successive orders [1, 2]. Herein, we discuss the Rayleigh-Schrödinger

perturbation theory in the wave operator formalism. As outlined in the preceding

chapter, we typically decompose the total Hamiltonian H into a mean-field component

HDHF and a residual part Vres using the DHF method.
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Table 3.1: A comparative description of the RMBPT method formalism for the closed-
shell and one-valence open-shell atomic systems. |Ψc⟩ and |Ψv⟩ are the exact wave
function of the total Hamiltonian H. Ωc represents the wave operator accounting for
electron correlations only from the core orbitals, while Ωv takes care of correlations from
all electrons, including the valence electron. The subscript ‘linked’ means that only the
linked diagrams will contribute to the wave operator [1]. The subscript ‘2’ in Ω

(1)
2c and

Ω
(1)
2v corresponds to double excitation. a, b, p, q, r and v are the single electron orbitals

(i.e., |a⟩ ≡ |ϕa⟩, |p⟩ ≡ |ϕp⟩, and so on) and ϵa, ϵb, ϵp, ϵq, ϵr and ϵv are the corresponding
single particle orbital energies, respectively.

Parameter Closed-shell One-valence

Model
space

Pc = |Φc⟩⟨Φc| Pv = |Φv⟩⟨Φv|

Orthogonal
space

Qc =
∑

I ̸=c |ΦI⟩⟨ΦI | Qv =
∑

I ̸=v |ΦI⟩⟨ΦI |

Wave
operator

|Ψc⟩ = Ωc|Φc⟩ |Ψv⟩ = Ωv|Φv⟩,
Ωv = Ωc + Ωv

Bloch
equation

[Ωc, HDHF ]Pc = [QcVresΩcPc]linked [Ωv, HDHF ]Pv = [QvVres(Ωc + Ωv)Pv

−ΩvPvVres(Ωc + Ωv)Pv]linked

First-
order
wave
operator

Ω
(1)
2c = 1

2

∑
abpq a

†
pa

†
qabaa

⟨pq|h2|ab⟩
ϵa+ϵb−ϵp−ϵq

Ω
(1)
2v =

∑
q,a,r a

†
qa

†
raaav

⟨qr|h2|va⟩
ϵv+ϵa−ϵq−ϵr

For an atomic system, we define |Φα⟩ as the DHF wave function

HDHF |Φα⟩ = Eα|Φα⟩ (3.1)

with Eα as the corresponding eigen energy. We treat this |Φα⟩ and Eα as the zeroth-

order wave function and energy, respectively. In this context, we divide the whole

Hilbert space into two subspaces, which are generally known as model space (Pα) and

the orthogonal space (Qα) as described below

Pα = |Φα⟩⟨Φα| (3.2)
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and

Qα =
∑
I ̸=α

|ΦI⟩⟨ΦI |, (3.3)

where |ΦI⟩s are also the eigenfunctions of HDHF with energies EI . As HDHF is her-

mitian, its eigenfunctions follow the completeness theorem i.e.

Pα +Qα =
∑
I

|ΦI⟩⟨ΦI | = I. (3.4)

As Pα and Qα spans over the Hilbert space, the exact wave function |Ψα⟩ of total

Hamiltonian H can be written as linear combinations of |Φα⟩ and |ΦI⟩s. In wave

operator formalism, we introduce a wave operator Ωα as follows

|Ψα⟩ = Ωα|Φα⟩. (3.5)

This wave operator Ωα generates excitations from the zeroth-order state |Φα⟩ by operat-

ing the second quantization operator, thus constructing the Qα space. The perturbative

expansion of the wave operator has the form

Ωα = 1 + Ω(1)
α + Ω(2)

α + · · · = 1 + χα, (3.6)

where χα = Ω
(1)
α + Ω

(2)
α + · · · is called the correlation operator and the superscripts

indicate the order of correction. The amplitude of the wave operator can be derived

from the Bloch’s equation [1] given by

[Ωα, HDHF ]Pα = QαVresΩαP − χαPαVresΩαPα. (3.7)

Now, we discuss this RMBPT method in the context of closed-shell and one-valence

open-shell atomic systems. We define |Φc⟩ as the zeroth-order wave function or the ref-

erence state for closed-shell atomic system and for one-valence atom |Φv⟩. To compute
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a p b q

Ω
(1)
2c

v

q a r

Ω
(1)
2v

Figure 3.2: Diagrammatic representations of the Ω
(1)
2c and Ω

(1)
2v operators. The dotted

line represents the Vres interaction term. The double arrow represents the valence
orbital v.

the |Φv⟩, we first solve for the closed-core reference state |Φc⟩ in the V Ne−1 potential

(Ne being the number of electrons) formalism. Subsequently, ground state or excited

state configurations can be constructed by attaching an additional electron to |Φc⟩, i.e.,

|Φv⟩ = a†v|Φc⟩, where a†v represents the addition of the valence orbital designated by v.

The reason to choose V Ne−1 potential formalism is to be consistent with the various

earlier works. Before discussing how one can calculate transitional matrix elements in

the RMBPT method, we have given a general description of the method in the context

of closed-shell and one-valence atomic systems in Table 3.1. We show the corresponding

Goldstone diagrams for Ω
(1)
2c and Ω

(1)
2v in Fig. 3.2.

3.1.1 Calculation of transition matrix element

In this subsection, we will demonstrate the procedure for computing matrix elements

within the RMBPT method, starting from the DHF approximation. Our focus is spe-

cifically on atoms containing a single valence electron. For an arbitrary one-body op-

erator O, the transition matrix element between the final (f) and initial (i) states at

the DHF level is given by

O(1)
fi = ⟨Φf |O|Φi⟩. (3.8)
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f

i

O

Figure 3.3: Zeroth-order transition matrix element of a general one-body operator O.

This is also referred to as the zeroth-order matrix element. In a one-valence system,

the states |Φi/f⟩ can be expressed as |Φi/f⟩ = a†i/f |Φc⟩. Utilizing this, we can simplify

the above equation

O(1)
fi = ⟨Φf |O|Φi⟩

= ⟨Φc|afOa†i |Φc⟩

= ⟨Φc|af
∑
l,m

a†lam⟨l|o|m⟩a†i |Φc⟩ (Using Eq. 2.15)

= ⟨Φc|Φc⟩⟨f |o|i⟩

= ⟨f |o|i⟩ = ofi. (3.9)

Here ‘o’ is the single-electron operator. We can readily utilize the single-particle DHF

orbitals to compute the zeroth-order matrix element. The diagrammatic representation

of the zeroth-order matrix element is shown in Fig. 3.3. However, we need to employ

the wave operator to incorporate correlation into the calculation. The second-order

corrected transition element is expressed as

O(2)
fi =

⟨Ψf |O|Ψi⟩
N

(2)
fi

=
⟨Φf |(1 + Ω

†(1)
c + Ω

†(1)
f )O(1 + Ω

(1)
c + Ω

(1)
i )|Φi⟩

N
(2)
fi

=
⟨Φf |O|Φi⟩ + ⟨Φf |OΩ

(1)
i |Φi⟩ + ⟨Φf |Ω†(1)

f O|Φi⟩
N

(2)
fi

. (3.10)
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Here, N
(2)
fi =

√
N

(2)
f N

(2)
i with N

(2)
f and N

(2)
i are the normalization factors for the final

and initial states respectively at the level of second-order perturbation. It is defined as

N
(2)
v = ⟨Φv|(1 + Ω

†(1)
c + Ω

†(1)
v )(1 + Ω

(1)
c + Ω

(1)
v )|Φv⟩. The initial term in the numerator

in the preceding equation corresponds to the zeroth-order element. The second-order

correction arising from correlation stems from the last two terms. Fig. 3.4 illustrates all

the Goldstone diagrams corresponding to second-order correction of the matrix element

of the operator O. The third-order corrected transition matrix element will be

O(3)
fi =

⟨Ψf |O|Ψi⟩
N

(3)
fi

=
⟨Φf |(1 + Ω

†(1)
c + Ω

†(1)
f + +Ω

†(2)
c + Ω

†(2)
f )O(1 + Ω

(1)
c + Ω

(1)
i + Ω

(2)
c + Ω

(2)
i )|Φi⟩

N
(3)
fi

=
1

N
(3)
fi

[
⟨Φf |O +

second−order︷ ︸︸ ︷
OΩ

(1)
i + Ω

†(1)
f O + Ω(2)†

c O + OΩ(2)
c + Ω(1)†

c OΩ
(1)
i +

third−order

Ω
(1)†
f OΩ(1)

c + Ω
(2)†
f O + OΩ

(2)
i + Ω(1)†

c OΩ(1)
c + Ω

(1)†
f OΩ

(1)
i |Φi⟩

]
. (3.11)

N
(3)
fi corresponds to the third-order normalization factor. In a similar fashion, one can

get the corrections from the fourth order, fifth order, and so on to account for higher-

order correlation effects in the calculation. However, including higher-order corrections

in this approach comes with a very high computational cost. We will discuss the third-

and higher-order corrections in the coming sections.

3.2 RPA

Despite the RMBPT method’s formulation spanning over five decades, there remains a

limited understanding of convergence of the RMBPT results as one progresses to higher

orders. Moreover, a notable challenge arises when advancing beyond the second order,

as a multitude of terms are generated, posing difficulties in computation. This is where

the RPA proves invaluable. RPA terms naturally align with the second-order RMBPT
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O

O O

O
f

i

f f f f

i
i i

p p

p
p

a a

a a

(i) (ii) (iii) (iv)

Figure 3.4: Diagrammatic representation of the second-order matrix element correction
to the calculation of property denoted by a one-body operator O.

(RMBPT(2)) terms, and we iteratively evaluate their contributions up to infinite order

[7]. However, there are other terms that emerge in the third-order RMBPT theory

(RMBPT(3)), which are also grouped accordingly. The third-order correction for matrix

element can be categorized as O(RPA+3) = ORPA+OBO+OSR+ONorm. [9, 10, 21, 22, 23]

Here, ‘BO’ represents Brückner orbitals, ‘SR’ denotes structural radiation terms, and

‘Norm’ stands for normalization.

3.2.1 Formulation of RPA

Recalling the previous discussions from the RMBPT method, we can write the second-

order corrected to the matrix element

O(2)
fi = ⟨Φf |O|Φi⟩ + ⟨Φf |OΩ

(1)
i |Φi⟩ + ⟨Φf |Ω†(1)

f O|Φi⟩

= ofi +
∑
pa

oap
[
⟨fp|h2|ia⟩ − ⟨fp|h2|ai⟩

]
ϵi + ϵa − ϵf − ϵp

+
∑
pa

[
⟨fa|h2|ip⟩ − ⟨fa|h2|pi⟩

]
opa

ϵf + ϵa − ϵi − ϵp
.

(3.12)

The second and third terms correspond to the diagrams (i) and (ii), respectively, in Fig.

3.4, and the fourth and fifth terms correspond to the diagrams (iii) and (iv), respectively.

In the RPA method, the effects of this particular class of diagrams from the RMBPT(2)

method are included to all-order. In doing so, we can define a new operator ΩRPA that
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= + + + +
a p

a a aap p p p

ΩRPA
pa

qqq bbb

+

a p

q
b

a p

q
b

a p

q b
+

r c

r c

+ · · ·

Figure 3.5: Diagrammatic representation of the RPA wave operator ΩRPA
pa . The double

line in the diagram implies that through the iterative scheme, the CP effects are included
to all-orders.

includes correlation effects into the matrix elements from core states to virtual states

to all-order. This wave operator can be evaluated using the following equations

ΩRPA
pa = ΩRPA(0)

pa +
∞∑
k=1

∑
bq

⟨pb|h2|aq⟩ − ⟨pb|h2|qa⟩
ϵb − ϵq + ϵf − ϵi

Ω
RPA(k−1)
qb (3.13)

+
∑
bq

Ω
RPA(k−1)†
bq

⟨pq|h2|ab⟩ − ⟨pq|h2|ba⟩
ϵb − ϵq + ϵi − ϵf

,

where Ω
RPA(0)
pa is the zeroth-order matrix element opa. We use Eq. 3.13 to calculate

the RPA wave operator iteratively. We present the diagrammatic representation of

the RPA operator in 3.5. Once ΩRPA has been calculated, one can use the following

equation to calculate the matrix element in the RPA method

ORPA
fi = ofi + ⟨Φf |ΩRPA†

Ω
(1)
i |Φi⟩ + ⟨Φf |Ω†(1)

f ΩRPA|Φi⟩. (3.14)
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ΩRPA†
ap

ΩRPA
pa ΩRPA

pa

ΩRPA†
ap

f

i

f f f f

i
i i

p p

p
p

a a

a a

Figure 3.6: Diagrammatic representation of the all-order RPA diagrams. One can note
the strong resemblance between the RPA and RMBPT(2) diagrams.

The RPA diagrams are illustrated in Fig. 3.6. Now we explain how RPA includes

higher-order diagrams to the matrix elements calculation using a few examples. In Fig.

3.7, we have shown a diagram and its breakdown in terms of the RPA and RMBPT(3)

wave operators. In the RPA method it is coming through Ω
†(1)
f ΩRPA

pa . We can express

this in terms of the single electron orbitals as follows

Diagram (i) =
∑
apbq

⟨fa|h2|ip⟩⟨pq|h2|ab⟩⟨b|o|q⟩
(ϵa − ϵp + ϵf − ϵi)(ϵb − ϵq + ϵi − ϵf )

. (3.15)

But in the RMBPT method, this particular Goldstone diagram can come in two ways:

(a) Ω
(1)†
2f OΩ

(1)
2c and (b) OΩ

(2)
2i . In single orbitals, these can be written as

Diagram (ii) =
∑
apbq

⟨fa|h2|ip⟩⟨pq|h2|ab⟩⟨b|o|q⟩
(ϵa + ϵb − ϵp − ϵq)(ϵf + ϵa − ϵi − ϵp)

(3.16)

and

Diagram (iii) =
∑
apbq

⟨fa|h2|ip⟩⟨pq|h2|ab⟩⟨b|o|q⟩
(ϵa + ϵb − ϵp − ϵq)(ϵi + ϵb − ϵf − ϵq)

. (3.17)
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Ω
(1)
2c

Ω
(1)†
2f

Ω
(2)
2i

f
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O
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(iii)

f

i

q
b

O

a

p

f

i

a
p

q b

O

RPA RMBPT

ΩRPA
pa

Figure 3.7: Equivalence between RPA and RMBPT: the shown RPA diagram effectively
corresponds to two RMBPT(3) diagrams.

Now, adding diagram (ii) and diagram (iii), we get

Diagram (ii)+ Diagram (iii) =
∑
apbq

⟨fa|h2|ip⟩⟨pq|h2|ab⟩⟨b|o|q⟩

×
[

1

(ϵa + ϵb − ϵp − ϵq)(ϵf + ϵa − ϵi − ϵp)

+
1

(ϵa + ϵb − ϵp − ϵq)(ϵi + ϵb − ϵf − ϵq)

]
=

∑
apbq

⟨fa|h2|ip⟩⟨pq|h2|ab⟩⟨b|o|q⟩
(ϵa − ϵp + ϵf − ϵi)(ϵb − ϵq + ϵi − ϵf )

= Diagram (i). (3.18)

So, this particular diagram from RPA corresponds to two RMBPT diagrams. We

have shown another example in Fig. 3.8. This diagram contributes to the third-order

correction of the matrix element. In terms of single electron orbitals, we can write

Diagram (iv) = Diagram (v) =
∑
apbq

⟨fa|h2|ip⟩⟨pb|h2|aq⟩⟨q|o|b⟩
(ϵa − ϵp + ϵf − ϵi)(ϵb − ϵq + ϵf − ϵi)

. (3.19)
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i

f
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O

ΩRPA
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Ω
(2)†
2f

RPA RMBPT

(iv) (v)

Figure 3.8: Equivalence between RPA and RMBPT: This particular RPA diagram
corresponds to one RMBPT(3) diagram.

So, this RPA diagram corresponds to one RMBPT(3) diagram. These RPA diagrams,

as shown in Fig. 3.6, bear a strong resemblance to the RMBPT(2) diagrams, but RPA

incorporates correlation from these types of diagrams up to all-orders. There are other

types of correlation effects, like BO and SR, that appear in third- and higher-order

perturbation methods, but RPA is unable to capture them. To improve calculation, it

is imperative to include these contributions. In the following part, we will discuss those

diagrams that emerge in the RMBPT(3) method.

3.2.2 Correlation from BO

BO accounts for the pair-correlation (PC) effects, which refer to the distortion of the

electron cloud surrounding the core electrons due to the interaction with the valence

electrons [21, 22]. The diagrams shown in Fig. 3.9, along with their exchange diagrams,

contribute to the third-order corrections to the transition matrix element. These BO

diagrams come from the terms OΩ
(2)
1i and Ω

(2)†
1f O. We can express these diagrams in

terms of the single electron orbitals
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Figure 3.9: Direct diagrams of BO corrections to the transition matrix element. Dia-
grams (i) and (ii) correspond to the OΩ

(2)
1i term, whereas (iii) and (iv) correspond to

the Ω
(2)†
1f O term.

Diagram (i) = ⟨Φf |OΩ
(2)
1i |Φi⟩ = −

∑
abm,p ̸=i

⟨f |o|p⟩⟨pm|h2|ab⟩⟨ab|h2|im⟩
(ϵi − ϵp)(ϵa + ϵb − ϵp − ϵm)

,

Diagram (ii) = ⟨Φf |OΩ
(2)
1i |Φi⟩ =

∑
pbm,q ̸=i

⟨f |o|q⟩⟨qb|h2|pm⟩⟨pm|h2|ib⟩
(ϵi − ϵq)(ϵi + ϵb − ϵp − ϵm)

,

Diagram (iii) = ⟨Φf |Ω(2)†
1f O|Φi⟩ = −

∑
abm,p ̸=i

⟨fm|h2|ab⟩⟨ab|h2|pm⟩⟨p|o|i⟩
(ϵf − ϵp)(ϵa + ϵb − ϵp − ϵm)

and

Diagram (iv) = ⟨Φf |Ω(2)†
1f O|Φi⟩ =

∑
pbm,q ̸=i

⟨fb|h2|pm⟩⟨pm|h2|qb⟩⟨q|o|i⟩
(ϵf − ϵq)(ϵf + ϵb − ϵp − ϵm)

.(3.20)

3.2.3 Correlation from SR

The SR terms account for the correlation effects due to virtual states. The virtual

states are not true energy levels in the sense that as they are high-energy states, they

are only mathematically considered for completeness to include the correlation in the

electronic energy levels. We have presented the SR terms and their corresponding wave

operators in Table 3.2. In terms of the single-particle orbitals, we can express these
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Table 3.2: A description of the SR terms in terms of their corresponding wave operators.
There are a total of 36 terms contributing to the SR correlation, including both direct
and exchange terms.

Correlation type Wave operator No. of terms Diagrammatic representation

SR

⟨Φf |OΩ
(2)
2i |Φi⟩ 12 see Fig. 3.10

⟨Φf |Ω(2)†
2f O|Φi⟩ 12 see Fig. 3.11

⟨Φf |Ω(1)†
2f OΩ

(1)†
2i |Φi⟩ 6 see Fig. 3.12

⟨Φf |Ω(1)†
2c OΩ

(1)†
2c |Φi⟩ 6 see Fig. 3.12

terms as

Diagram (i) = ⟨Φf |OΩ
(2)
2i |Φi⟩ =

∑
stra

⟨fr|h2|st⟩⟨a|o|r⟩⟨st|h2|ia⟩
(ϵi + ϵa − ϵs − ϵt)(ϵi + ϵa − ϵr − ϵf )

,

Diagram (ii) = ⟨Φf |OΩ
(2)
2i |Φi⟩ = −

∑
srab

⟨sf |h2|ba⟩⟨b|o|r⟩⟨ar|h2|is⟩
(ϵi + ϵb − ϵr − ϵf )(ϵa + ϵb − ϵs − ϵf )

,

Diagram (iii) = ⟨Φf |OΩ
(2)
2i |Φi⟩ = −

∑
srab

⟨sf |h2|ab⟩⟨b|o|r⟩⟨ar|h2|si⟩
(ϵi + ϵb − ϵr − ϵf )(ϵa + ϵb − ϵs − ϵf )

,

Diagram (iv) = ⟨Φf |OΩ
(2)
2i |Φi⟩ = −

∑
srab

⟨af |h2|sb⟩⟨b|o|r⟩⟨sr|h2|ai⟩
(ϵi + ϵb − ϵr − ϵf )(ϵi + ϵa − ϵs − ϵr)

,

Diagram (v) = ⟨Φf |OΩ
(2)
2i |Φi⟩ = −

∑
srab

⟨af |h2|bs⟩⟨b|o|r⟩⟨sr|h2|ia⟩
(ϵi + ϵb − ϵr − ϵf )(ϵi + ϵa − ϵs − ϵr)

,

Diagram (vi) = ⟨Φf |OΩ
(2)
2i |Φi⟩ =

∑
rabg

⟨rf |h2|ab⟩⟨g|o|r⟩⟨ab|h2|gi⟩
(ϵa + ϵb − ϵr − ϵf )(ϵi + ϵg − ϵr − ϵf )

,

Diagram (vii) = ⟨Φf |Ω(2)†
2f O|Φi⟩ =

∑
stra

⟨af |h2|sr⟩⟨t|o|a⟩⟨sr|h2|ti⟩
(ϵf + ϵa − ϵi − ϵt)(ϵf + ϵa − ϵr − ϵs)

,

Diagram (viii) = ⟨Φf |Ω(2)†
2f O|Φi⟩ = −

∑
srab

⟨fa|h2|rs⟩⟨s|o|b⟩⟨rb|h2|ia⟩
(ϵf + ϵb − ϵi − ϵs)(ϵf + ϵa − ϵr − ϵs)

,
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Figure 3.10: Direct diagrams of the SR correlations that appear via ⟨Φf |OΩ
(2)
2i |Φi⟩.

Diagram (ix) = ⟨Φf |Ω(2)†
2f O|Φi⟩ = −

∑
srab

⟨fa|h2|rs⟩⟨r|o|b⟩⟨sb|h2|ai⟩
(ϵf + ϵb − ϵi − ϵr)(ϵf + ϵa − ϵr − ϵs)

,

Diagram (x) = ⟨Φf |Ω(2)†
2f O|Φi⟩ = −

∑
srab

⟨sf |h2|ar⟩⟨r|o|b⟩⟨ab|h2|si⟩
(ϵa + ϵb − ϵi − ϵs)(ϵf + ϵb − ϵi − ϵr)

,

Diagram (xi) = ⟨Φf |Ω(2)†
2f O|Φi⟩ = −

∑
srab

⟨fs|h2|ar⟩⟨r|o|b⟩⟨ab|h2|is⟩
(ϵa + ϵb − ϵi − ϵs)(ϵf + ϵb − ϵi − ϵr)

,

Diagram (xii) = ⟨Φf |Ω(2)†
2f O|Φi⟩ =

∑
abgr

⟨gf |h2|ab⟩⟨r|o|g⟩⟨ab|h2|ri⟩
(ϵa + ϵb − ϵi − ϵr)(ϵf + ϵg − ϵi − ϵr)

,

Diagram (xiii) = ⟨Φf |Ω(1)†
2f OΩ

(1)†
2i |Φi⟩ =

∑
stra

⟨fa|h2|ts⟩⟨t|o|r⟩⟨sr|h2|ai⟩
(ϵf + ϵa − ϵs − ϵt)(ϵi + ϵa − ϵr − ϵs)

,

Diagram (xiv) = ⟨Φf |Ω(1)†
2f OΩ

(1)†
2i |Φi⟩ =

∑
stra

⟨fa|h2|rt⟩⟨t|o|s⟩⟨sr|h2|ai⟩
(ϵf + ϵa − ϵr − ϵt)(ϵi + ϵa − ϵr − ϵs)

,

Diagram (xv) = ⟨Φf |Ω(1)†
2f OΩ

(1)†
2i |Φi⟩ = −

∑
srab

⟨fb|h2|rs⟩⟨a|o|b⟩⟨sr|h2|ai⟩
(ϵf + ϵb − ϵs − ϵr)(ϵi + ϵa − ϵr − ϵs)

,

Diagram (xvi) = ⟨Φf |Ω(1)†
2c OΩ

(1)†
2c |Φi⟩ = −

∑
srab

⟨fr|h2|ba⟩⟨s|o|r⟩⟨ba|h2|is⟩
(ϵa + ϵb − ϵf − ϵr)(ϵa + ϵb − ϵi − ϵs)

,

Diagram (xvii) = ⟨Φf |Ω(1)†
2c OΩ

(1)†
2c |Φi⟩ =

∑
rabg

⟨fr|h2|bg⟩⟨g|o|a⟩⟨ba|h2|ir⟩
(ϵa + ϵb − ϵi − ϵr)(ϵb + ϵg − ϵf − ϵr)
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Figure 3.11: Direct diagrams of the SR correlations that correspond to the
⟨Φf |Ω(2)†

2f O|Φi⟩ term.

and

Diagram (xviii) = ⟨Φf |Ω(1)†
2c OΩ

(1)†
2c |Φi⟩ =

∑
rabg

⟨fr|h2|ab⟩⟨a|o|g⟩⟨gb|h2|ir⟩
(ϵa + ϵb − ϵf − ϵr)(ϵb + ϵg − ϵi − ϵr)

.

(3.21)

One can observe that the typical energy denominator for the BO term resembles (ϵi −
ϵp)(ϵa+ϵb−ϵp−ϵm), while that for the SR term resembles (ϵf+ϵb−ϵs−ϵr)(ϵi+ϵa−ϵr−ϵs).
Consequently, as long as the energy differences between core and valence states exceed

the energy differences between different valence states, the BO terms will dominate over

the SR terms [9].

3.2.4 Normalization correction

We must include the normalization factor to determine precise transition matrix ele-

ment. The contribution from the normalization factor can be computed using the
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Figure 3.12: Direct diagrams of the SR correlation that appear through
⟨Φf |Ω(1)†

2f OΩ
(1)†
2i |Φi⟩ and ⟨Φf |Ω(1)†

2c OΩ
(1)†
2c |Φi⟩ terms. The first three diagrams corres-

pond to the first term and the last three diagrams correspond to the later term.

following formula

ONorm =

[⟨Ψf |O|Ψi⟩√
NiNf

− ⟨Ψf |O|Ψi⟩
]
. (3.22)

We then add this correction to the ⟨Ψf |O|Ψi⟩ calculation to present the final results.

One important thing to note is that all these different correlation contributions from BO

and SR have been taken into calculation through the RMBPT(3) method. To include

all-order contributions, we need a higher-order many-body method which we are going

to discuss next.

3.3 The RCC Theory

The RCC method has gained considerable attention for accurately incorporating elec-

tron correlation effects in various many-body systems, including nuclear, atomic, mo-
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Table 3.3: A comparative description of the RCCSD method formalism for closed-
shell and one-valence atomic systems. The operator, T , is applied only to excite the
core electrons, and Sv corresponds to excitations that include the valence sector. The
subscripts (‘1’ and ‘2’) in T and Sv operators correspond to the level of excitation. HN

is the normal ordered Hamiltonian. Here, ‘conn’ stands for the connected terms and
‘op’ corresponds to the open part in HNe

T contraction. The term ∆Ev is known as the
electron attachment energy or the electron affinity of the valence electron v. ‘*’ denotes
excited configuration with respect to |Φc⟩ or |Φv⟩ for closed-shell or one-valence atomic
system respectively.

Parameter Closed-shell One-valence

Ansatz |Ψc⟩ = eT |Φc⟩ |Ψv⟩ = eT{1 + Sv}|Φv⟩

Cluster Operator Ωc = eT Ωc = eT ; Ωv = eTSv

T = T1 + T2 Sv = S1v + S2v

Diagrammatic see Fig. 3.13 see Fig. 3.14
representation

Correlation ∆Ecorr = ⟨Φc|(HNe
T )conn|Φc⟩ ∆Ev = ⟨Φv|(HNe

T )op{1 + Sv}|Φv⟩
energy

Amplitude
determining ⟨Φ∗

c |(HNe
T )conn|Φc⟩ = 0 ⟨Φ∗

v|(HNe
T )op{1 + Sv}|Φv⟩ = ∆Ev⟨Φ∗

v|Sv|Φv⟩
equation

lecular, and solid-state systems. It is often hailed as the gold standard of many-body

theory due to its efficacy [1, 2, 25]. In contrast to other all-order quantum many-body

methods like RCI and MCDHF, the fundamental appeal of this theory lies in its in-

trinsic properties of size extensivity and size consistency [2]. These characteristics stem

from its basis as a purely linked diagram theory, ensuring accurate scaling relative to

the total number of particles within a system. As mentioned earlier, the main focus of

this chapter is to establish a connection between lower-order methods like RMBPT or

RPA and the RCC method in order to examine how accurately RCC methods include

all the contributions that appear in these methods up to all-orders. Before explicitly
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T1 T2

a p a p b q

Figure 3.13: Goldstone diagrammatic representations of the T1 and T2 operators.

showing that, we briefly present an outline for the formulation of the RCC theory for

closed-shell and one-valence open-shell atomic systems, just like it was defined for the

RMBPT method. The current discourse on the RCC method revolves around a single

reference function |Φα⟩. In order to establish the equivalence between all-order RMBPT

and RCC, we rewrite Eqs. 3.5 and 3.6 (dropping the subscript α)

|Ψ⟩ = Ω|Φ⟩. (3.23)

and

Ω = 1 + Ω(1) + +Ω(2) + · · · + Ω(∞). (3.24)

Now, in terms of level of excitation, we can again segregate as follows

Ω(1) = Ω
(1)
1 + Ω

(1)
2 + · · · + Ω

(1)
Ne
,

Ω(2) = Ω
(2)
1 + Ω

(2)
2 + · · · + Ω

(2)
Ne
,

...

and

Ω(∞) = Ω
(∞)
1 + Ω

(∞)
2 + · · · + Ω

(∞)
Ne

. (3.25)

Note the difference between Ωn and Ω(n). Ωn corresponds to the n-tuple excitation and

Ω(n) corresponds to the n-th order perturbation. In the RCC theory, the wave operator
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Figure 3.14: Goldstone diagrammatic representation of the S1v and S2v operators.

takes the exponential ansatz

|Ψ⟩ = eT |Φ⟩. (3.26)

So,

Ω = eT = 1 + T +
T 2

2!
+
T 3

3!
+ · · · . (3.27)

T is called excitation operator or cluster operator. Depending upon the level of excit-

ation from the reference state, we can write

T = T1 + T2 + T3 + · · · + TNe . (3.28)

So, using the above equations, we can write

Ω1 = Ω
(1)
1 + · · · + Ω

(∞)
1 = T1,

Ω2 = Ω
(1)
2 + · · · + Ω

(∞)
2 = T2 +

T 2
1

2!
,

Ω3 = Ω
(1)
3 + · · · + Ω

(∞)
3 = T3 + T1T2 +

T 3
1

3!
,

...

and so on. (3.29)

In the RCC method, when calculating T1, all single excitations contributing up to

infinite-order perturbation are accounted for. This principle extends to T2, T3, and

so forth. Another important thing to note here is that although T1 corresponds to

single excitation, one can generate higher-order excitations through non-linear terms of
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T1, as T 2
1 corresponds to double excitation. Consequently, the RCC wave function for

a many-electron atom encompasses the effects of electron correlation up to all-orders

[24, 25, 26, 27, 28, 29, 30, 31]. We have presented a general description of the RCCSD

method in Table 3.3 for closed-shell and one-valence atomic systems.

3.3.1 Calculation of transition matrix element

By changing the valence orbital ‘v’ we can get two states |Ψi⟩ and |Ψf⟩. Once we get

these two states, the matrix element or the expectation value of an operator O between

these states can be evaluated using the following expression

ORCC
fi =

⟨Ψf |O|Ψi⟩√
⟨Ψf |Ψf⟩⟨Ψi|Ψi⟩

=
⟨Φf |{1 + S†

f}eT
†OeT{1 + Si}|Φi⟩

⟨Φf |{1 + S†
f}eT †eT{1 + Si}|Φi⟩

=
⟨Φf |{1 + S†

f}Ō{1 + Si}|Φi⟩
⟨Φf |{1 + S†

f}N̄{1 + Si}|Φi⟩
. (3.30)

Here, Ō = eT
†OeT and N̄ = eT

†
eT . Several key Goldstone diagrams for the matrix ele-

ment calculation are depicted in Fig. 3.15. If one compares the RCC diagrams with the

RMBPT or the RPA method, one can see that the contribution from various RMBPT

and RPA diagrams have been considered in the RCC diagrams. In Fig. 3.16, we have

presented the breakdown of a few RCCSD diagrams in terms of RMBPT terms. As can

be seen, terms like OΩ
(2)
1c , Ω

(1)†
2c OΩ

(1)
2c have already been considered in the Ō term in

RCCSD method. Further, the contribution from BO and SR diagrams are coming from

the ŌS1i, S1f†ŌS1i, terms. Again, terms like ŌS2i captures the RPA contributions. So,

the RCCSD method does not only include correlations from all these terms, but contri-

butions from these terms have been made to all-orders, unlike the previously discussed

methods. In order to show the superiority of the RCC method over RPA and RMBPT

methods, we present the E1 matrix elements for different transitions in 133Cs atom,

obtained using different many-body methods, in Table 3.4. Additionally, we present a
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Ō
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Figure 3.15: A few important matrix elements evaluating diagrams at the RCCSD level.

comparison in the same table with experimental values [32, 33, 34, 35, 36, 37]. When

we compare our RCCSD results with experimental data, they align better with the

measured values than the RMBPT(2) and RPA+BO+SR+Norm results. This superi-

ority originates from the RCC method’s more rigorous inclusion of electron correlation

effects, as discussed previously.
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Figure 3.16: Breakdown of a few RCCSD property diagrams in terms of RMBPT
diagrams. Below each diagram, the corresponding RMBPT terms have been mentioned.

3.4 Summary

In this chapter, we have discussed various many-body methods, including RMBPT,

RPA, and RCC methods, and their incorporation of correlation effects from Vres. We

have demonstrated that RMBPT(2) includes contributions from CP effects up to one-

order, while the RPA method accounts for CP effects up to all-orders. Despite RPA’s

superiority over RMBPT(2), it neglects PC effects and contributions from SR terms
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Table 3.4: Reduced E1 matrix elements in a.u. of 133Cs atom from various many-body
methods. We also compare our values with the experimental results.

Method Transition For E1

6P1/2 − 6S 7P1/2 − 6S 8P1/2 − 6S 9P1/2 − 6S 7S − 6P1/2 7S − 7P1/2 7S − 8P1/2 7S − 9P1/2

DHF 5.2777 0.3717 0.1321 −0.0687 −4.4131 11.0121 0.9336 −0.3938

RMBPT(2) 4.9043 0.2225 0.0394 −0.0048 −4.4393 10.8914 0.8747 −0.3541

RPA 4.9747 0.2382 0.0489 −0.0128 −4.4499 10.9244 0.8818 −0.3584

RPA+BO 4.4103 0.3274 0.1015 −0.0426 −4.3481 10.0986 1.0200 −0.4214

RPA+BO+SR 4.4488 0.3460 0.1134 −0.0509 −4.3387 10.1007 1.0257 −0.4254

RPA+BO+SR+Norm. 4.3990 0.3430 0.1124 −0.0505 −4.3175 10.0823 1.0236 −0.4247

RCCSD 4.5487 0.3006 0.0914 −0.0388 −4.2500 10.2967 0.9492 −0.3867

Experiment 4.5097(74)[32] 0.2825(20) [34] 4.233(22)[36] 10.308(15)[37]
4.5012(26) [33] 0.27810(45)[35]

that appear at the RMBPT(3) level. Furthermore, we have shown that the RCC method

includes all these RPA and non-RPA correlation terms up to all-orders, as well as the

correlation between RPA and non-RPA contributions. Finally, we have compared the

E1 matrix elements calculated using these methods with available experimental values

for the 133Cs atom. The agreement of the RCC results with the experimental data

demonstrates the superiority of the RCC method over the others.
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Chapter 4

Electric Dipole Polarizability of

Closed-Shell Atomic Systems

I
n the previous chapter, we have shown that the RCC method encapsulates all the

correlation effects that appear in the RMBPT and RPA methods up to all-orders.

In this chapter, we go one step further and introduce another perturbation along with

Vres into the calculation. Herein, we present electric dipole polarizability (αd) value for

the ground state of singly charged Cs cation (Cs+) and neutral zinc atom (Zn) due to

the second-order dipole interaction. The aim of this chapter is to analyze the correlation

trend of various many-body methods, namely RMBPT, RPA, and RCC for closed-shell

atomic systems. We have chosen Zn alongside Cs+ for this study because the static αd

value of the ground state of Zn has been accurately measured [1], whereas there are no

experimental values available of αd for Cs+. Further, various theoretical calculations

based on sophisticated many-body methods are available for the Zn [1, 2, 3, 4, 5, 6]. This

calculation of αd will be helpful to demonstrate the validity of a theoretical approach

by reproducing the experimental result. This polarizability calculation will be able to

provide insights into the behavior of electron correlation effects in different many-body

methods in the context of the calculation of perturbed properties. This will be helpful

in supporting the accuracy of our calculations for PV studies.
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4.1 Theory of static polarizability

Atomic orbitals are spherically symmetric, but their electric charge distribution can be

deformed by stray electric fields [7, 8]. In the ground state of a closed-shell atomic

system, the first-order energy shift due to a weak electric field is zero, and the primary

contributions to the energy shifts come from second-order effects onwards [9]. These

contributions are typically expressed as powers of the electric field strength and in terms

of electric polarizabilities, which depend on the atomic state but are independent of the

applied electric field strength [7]. In the presence of a weak electric field E(r) with

strength E0, the ground state energy level of an atomic system can be expressed in the

perturbative approach as [1, 9, 10]

Ec = E(0)
c + E(1)

c + E(2)
c + · · ·

= E(0)
c − 1

2
αdE2

0 + · · · . (4.1)

Here E
(0)
c is the ground state energy level and E

(n)
c denotes nth order correction to the

energy. The first-order energy shift to the ground state is E
(1)
c = 0.

As the αd value corresponds to second-order energy correction, we can evaluate this

using perturbative analysis as [11]

αd = − 2

⟨Ψ(0)
c | Ψ

(0)
c ⟩

∑
k ̸=c

|⟨Ψ(0)
c |D|Ψ(0)

k ⟩|2

E
(0)
c − E

(0)
k

. (4.2)

As mentioned in the earlier chapter, D is the electric dipole operator. |Ψ(0)
k ⟩ and E

(0)
k

are the atomic wave functions and energies of the free atomic system, respectively, with

k representing the level of a state. Since it is impractical to evaluate the complete set

of |Ψ(0)
k ⟩ for the evaluation of the above quantity, it can be determined conveniently by

expressing as [12, 13, 14]

αd = 2
⟨Ψ(0)

c |D|Ψ(d,1)
c ⟩

⟨Ψ(0)
c |Ψ(0)

c ⟩
, (4.3)
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where the first-order wave functions are defined as

|Ψ(d,1)
c ⟩ =

∑
n̸=c

|Ψ(0)
n ⟩⟨Ψ

(0)
c |D|Ψ(0)

n ⟩
E

(0)
c − E

(0)
n

. (4.4)

Therefore, contributions from all the intermediate states in the sum-over-states to αd

can be accounted through the first-order wave function by determining it as the solution

of the following inhomogeneous equation

(H − E(0)
c )|Ψ(d,1)

c ⟩ = −D|Ψ(0)
c ⟩ (4.5)

in the ab initio framework with the electronic Hamiltonian H. In the approximation of

|Ψ(d)
c ⟩ ≈ |Ψ(0)

c ⟩ + |Ψ(d,1)
c ⟩, it follows from the above expression

αd =
⟨Ψ(d)

c |D|Ψ(d)
c ⟩

⟨Ψ(d)
c |Ψ(d)

c ⟩
≡ ⟨D⟩. (4.6)

Here |Ψ(d)
c ⟩ is the modified atomic wave function under the presence of D operator. So

the dipole polarizability can be written as the expectation value of D in the modified

atomic wave function.

4.2 Methodology

We start our calculation with the DHF method. Using DHF wave functions, we can

evaluate the αd value in the mean-field approach as

αd = 2⟨Φc|D|Φ(d,1)
c ⟩, (4.7)
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where |Φ(d,1)
c ⟩ is the first-order perturbed wave function with respect to |Φc⟩. We can

express these wave functions as

|Φ(d,1)
c ⟩ =

∑
I ̸=c

|ΦI⟩
⟨ΦI |D|Φc⟩
Ec − EI

, (4.8)

where |ΦI⟩ are the intermediate states with mean-field energies EI . In the DHF method,

the contribution from the Vres term has been neglected. To incorporate correlation

effects, we first define unperturbed and perturbed wave functions as

|Ψ(0)
c ⟩ = Ω(0)

c |Φc⟩

and

|Ψ(d,1)
c ⟩ = Ω(d,1)

c |Φc⟩. (4.9)

In the RMBPT method Ω
(0)
c and Ω

(d,1)
c are expressed [4, 15, 16, 17]

Ω(0)
c = Ω(0,0)

c + Ω(1,0)
c + Ω(2,0)

c + · · · (4.10)

and

Ω(d,1)
c = Ω(0,1)

c + Ω(1,1)
c + Ω(2,1)

c + · · · , (4.11)

where Ω
(0,0)
c = 1 and Ω

(n,m)
c denotes inclusion of nth and mth order of Vres and D

operators in the calculations. As mentioned in the last chapter, in the RMBPT method,

the amplitudes of these wave operators can be determined using the generalized Bloch’s

equation. The Bloch equation for the unperturbed wave operator is given in the last

chapter. For first-order perturbed wave operator we can write[4, 15, 17]

[Ω(d,1)
c , HDHF ]Pc = (DΩ(0)

c + VresΩ
(d,1)
c )Pc. (4.12)
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To understand how electron correlation effects propagate from the lower-order level

to the higher-order level of perturbation in the determination of polarizabilities, we

consider one- and two-orders of Vres in the RMBPT(2) and RMBPT(3) method re-

spectively, and estimate αd value. The expression of polarizability in the RMBPT(3)

method is given by

αd =
2

N
〈

Φc|
[
Ω(0,0)

c + Ω(1,0)
c + Ω(2,0)

c

]†
D
[
Ω(0,1)

c + Ω(1,1)
c + Ω(2,1)

c

]
|Φc

〉
=

2

N
〈

Φc|DΩ(0,1)
c +DΩ(1,1)

c +DΩ(2,1)
c + Ω(1,0)†

c DΩ(0,1)
c + Ω(2,0)†

c DΩ(0,1)
c

+Ω(1,0)†

c DΩ(1,1)
c |Φc

〉
, (4.13)

where N is the normalization constant. One can easily write the above expression for

the RMBPT(2) method, by discarding terms DΩ
(2,1)
c ,Ω

(2,0)†
c DΩ

(0,1)
c and Ω

(1,0)†
c DΩ

(1,1)
c .

The RMBPT(2) and RMBPT(3) methods capture correlation effects up to finite order.

In the RPA, one can capture the CP effects to all-orders in a very simple manner by

extending the DHF expression. In RPA, the modified single particle DHF Hamiltonian

for ith orbital fd
i = fi + λd can be written as

fd
i |̃i⟩ = ϵ̃i |̃i⟩ (4.14)

where the tilde symbol denotes the solution for fd. Now expanding |̃i⟩ = |i⟩ + λ|id⟩ +

O(λ2) from Eq. 4.14 and retaining terms that are linear in λ, we can get

(fi − ϵi)|id⟩ = −d|i⟩ − udi |i⟩, (4.15)

where

udi |i⟩ =
Ne∑
b

[
⟨b|h2|b⟩|id⟩ − ⟨b|h2|id⟩|b⟩

+⟨bd|h2|b⟩|v⟩ − ⟨bd|h2|i⟩|b⟩
]
. (4.16)
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Both Eqs. 4.15 and 4.16 are solved iteratively to obtain the self-consistent solutions

to account for CP effects up to all-orders. To make a comparison with the RMBPT

method, we define wave operator Ωd,RPA
c =

∑∞
k=1

∑
a,p Ω

(k,1)
a,p . The amplitude of this

operator is given by

Ω(k,1)
a,p = Ωp

a +
∑
b,q

( [⟨pb|h2|aq⟩ − ⟨pb|h2|qa⟩]
ϵa − ϵp

Ω
(k−1,1)
b,q

+Ω
(k−1,1)†

b,q

[⟨pq|h2|ab⟩ − ⟨pq|h2|ba⟩]
ϵa − ϵp

)
(4.17)

To compute the amplitude of the above operator, we set Ω
(0,1)
a,p ≈ Ωp

a = ⟨p|d|a⟩
ϵa−ϵp

a†paa in

the beginning to initiate the iteration procedure from k = 1. We can present the RPA

expression for αd using the wave operators as

αd = 2⟨Φc|DΩd,RPA
c |Φc⟩. (4.18)

The limitation of this method is that it incorporates CP effects only through singly

excited configurations. Additionally, it approximates the bra state using the DHF wave

function Φc, and it does not account for PC effects. In order to capture the RPA as

well as all-order contributions from the non-RPA effects, we have to consider the RCC

method [4, 17, 18]. In this work, we used the linear response RCC theory to estimate

the polarizability values. We consider that the interaction operator D is a part of the

atomic Hamiltonian and the total atomic Hamiltonian is given by

HD
at = H + λD, (4.19)

where λ is introduced to keep track of the order of D in the calculations. The atomic

wave function |Ψ(d)
c ⟩ of the above Hamiltonian in the RCC theory can be given by

|Ψ(d)
c ⟩ = eT̃ |Φ(d)

c ⟩ = eT |Φc⟩, (4.20)

88



Section 4.2. Methodology

where |Φ(d)
c ⟩ represents the modified DHF wave function constructed in the presence

of D with the corresponding electron excitation operator T̃ due to both Vres and D,

while T is also the electron excitation operator due to both Vres and D but considering

excitations from |Φc⟩. The expectation value of D can be written as

⟨D⟩ =
⟨Ψ(d)

c |D|Ψ(d)
c ⟩

⟨Ψ(d)
c |Ψ(d)

c ⟩

=
⟨Φc|eT †

DeT |Φc⟩
⟨Φc|eT †eT |Φc⟩

. (4.21)

Following Refs. [19, 20], the above expression yields

⟨D⟩ = ⟨Φc|eT
†
DeT |Φc⟩conn, (4.22)

Now expanding T in powers of λ as

T = T (0) + λT (d,1) + O(λ2) (4.23)

and retaining terms linear in λ in Eq. 4.21 we get

⟨D⟩ = 2
⟨Φc|eT (0)†

DeT
(0)
T (d,1)|Φc⟩

⟨Φc|eT (0)†eT (0) |Φc⟩
. (4.24)

Similarly expanding the cluster operator T in Eq. 4.22, it gives

⟨D⟩ = 2⟨Φc|eT
(0)†
DeT

(0)

T (d,1)|Φc⟩conn. (4.25)

Eqs. 4.24 and 4.25 are mathematically equivalent. Consequently following Eq. 4.6,

the polarizability can be calculated using the expectation value evaluation approach in

RCC theory as

αd = 2⟨Φc|eT
(0)†
DeT

(0)

T (d,1)|Φc⟩conn. (4.26)
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Table 4.1: Calculated static dipole (αd) polarizability values (in a.u.) of Zn and Cs+

using different many-body methods in the relativistic framework.

Method Zn Cs+

This work

DHF 37.29 16.79
RMBPT(2) 43.50 13.70
RMBPT(3) 38.68 12.25
RPA 50.81 15.77
RCCSD 40.32 15.99

The amplitudes for the unperturbed operator T (0) are obtained by solving the usual

RCC theory equations, as mentioned in the previous chapter. The first-order perturbed

RCC operator amplitudes are determined as

⟨Φ∗
c |(HeT

(0)

)connT
(d,1)|Φc⟩ = −⟨Φ∗

c |(DeT
(0)

)conn|Φc⟩. (4.27)

4.3 Results and Discussion

In Table 4.1, we present the results for αd value for Zn and Cs+ obtained from our

DHF, RMBPT(2), RMBPT(3), RPA and RCCSD methods. The correlation trends of

the αd values across different many-body methods are illustrated in Fig. 4.1. As shown

in the table and figure, the value of αd for neutral Zn atom increases in the RMBPT(2)

method compared to the DHF method and then decreases again in the RMBPT(3)

method. The RMBPT(2) method includes the lowest-order RPA terms, while the

RMBPT(3) method incorporates the lowest-order non-RPA terms. The trend indicates

that the RPA and non-RPA terms contribute with opposite signs in Zn, leading to

a cancellation between these terms. This pattern is further confirmed by the RPA

and RCCSD results. The RPA, which captures CP effects up to all-orders, produces

a large value for αd, whereas the RCCSD results are closer to the RMBPT(3) values.

Subtracting the DHF values from the RCCSD results reveals that the difference is small

for αd. This suggests that the CP effects increase the magnitudes of αd, while other
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Figure 4.1: Ratios of dipole polarizability value of Zn and Cs+ from different many-
body methods and their DHF values.

correlation effects contribute with opposite signs at the all-order perturbation level.

The correlation trend αd in Cs+ ion is quite different. The value of αd decreases in

RMBPT(2) and then again in RMBPT(3) level compared to the DHF method. This

suggests that the RPA and non-RPA terms contribute with the same sign for Cs+ at

lower order. In the RPA and RCCSD methods, the value of αd increases again. The

difference between the RCCSD and the DHF results is very small, suggesting there is

a large cancellation among different correlation terms.

To better understand the RCCSD values, we present the results from individual

terms in Table 4.2. In this table, we also compare the corresponding contributions to

αd of Zn from the RCCSD method previously reported in Refs. [4, 5]. Comparing the

individual RCC term values from the earlier calculations [4, 5] with ours, we observe

differences in the trends of various terms. The trends in our work are similar to those in

Ref. [4] due to the identical implementation procedure of the RCC method. We utilized

a much larger basis set with 40, 39, 38, 37, 36, and 35 GTOs for the s, p, d, f , g, and

h orbitals, respectively, whereas Ref. [4] used only 35 GTOs for each symmetry up to

g orbitals. When comparing the correlation trends through the individual RCC terms

of Ref. [5] with our calculations, we find that the difference in the result from DT
(1)
1
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Table 4.2: Comparison of contributions to αd (in a.u.) of Zn and Cs+ from various
RCCSD terms. We also compare the corresponding contributions from previously re-
ported calculations using the RCCSD method for αd of the Zn atom. Here, Norm
denotes the difference between the contributions after and before normalizing the wave
function with a normalization factor. NA stands for not applicable and Nonlin corres-
ponds to the contributions from nonlinear terms.

Zn Cs+

Term Ref.
[5]

Ref.
[4]

Ours Term Ours

DT
(1)
1 22.795 21.906 23.793 DT

(1)
1 8.790

T
(1)†

1 D 22.795 21.906 23.793 T
(1)†

1 D 8.790

T
(0)†

1 DT
(1)
1 −0.951 −1.229 −1.336 T

(0)†

1 DT
(1)
1 −0.091

T
(1)†

1 DT
(0)
1 −0.951 −1.229 −1.336 T

(1)†

1 DT
(0)
1 −0.091

T
(1)†

1 DT
(0)
2 −0.925 −2.643 −2.794 T

(1)†

1 DT
(0)
2 −1.014

T
(0)†

2 DT
(1)
1 −0.925 −2.643 −2.794 T

(0)
2 DT

(1)
1 −1.014

T
(0)†

1 DT
(1)
2 0.041 NA 0.072 T

(0)†

1 DT
(1)
2 0.016

T
(1)†

2 DT
(0)
1 0.041 NA 0.072 T

(1)†

2 DT
(0)
1 0.016

T
(0)†

2 DT
(1)
2 0.673 1.024 1.025 T

(0)†

2 DT
(1)
2 0.262

T
(1)†

2 DT
(0)
2 0.673 1.024 1.025 T

(1)†

2 DT
(0)
2 0.262

Nonlin NA 0.551 −1.200 Nonlin 0.064
Norm −4.086 0.0 0.0 Norm 0.0

(along with its c.c. term) is small, but there are substantial differences among other

RCC terms. Notably, the contribution from the normalization of the wave function

(denoted as ‘Norm’ in Table 4.2) in Ref. [5] is quite large, even larger than the net

correlation contributions (the difference between our DHF and final RCCSD results).

Given this, we believe that implementing RCC theory, where only the connected terms

are retained and the Norm factor does not appear in Eq. 4.22, is more credible. Unlike

Zn, the αd value for Cs+ was not previously evaluated using the linear response RCC

theory. Therefore, we could not compare the contributions from our RCC terms with

any earlier study.

We compare our RCCSD values for αd with previously published results in Table
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Table 4.3: Comparative table for αd value (in a.u.) from different calculations using
various many-body methods, experiments and scaling procedures.

Atomic system Value Method Reference

Zn 40.32(71) RCCSD This work
38.8(8) Expt.+extrapol. [1]
42.79 CCSD [1]
41.69 CCSD(T) [1]

39.2(8) CCSD(T)+scaling [1]
41.83 CCSD [2]
39.27 RCCSD [2]
40.55 CCSD(T) [2]
38.01 RCCSD(T) [2]
41.6 CCSD [3]
39.02 CCSD∗ [3]
40.39 CCSD(T) [3]
37.86 CCSD(T)∗ [3]

38.666(96) CCSDpT [4]
38.72 PRCC [5]
38.76 PRCC(T) [5]
35.33 MCDHF+scaling [6]
38.92 Expt.+fitting [21]

Cs+ 15.99(10) RCCSD This work
15.81 RPA [22]
15.8 RPA [23]

∗After considering quasi-relativistic corrections.

4.3. The RCCSD values are listed with the estimated uncertainties derived from our cal-

culations. These uncertainties take into account contributions from higher-order Breit

and QED interactions that were not taken into account in the many-body methods, as

well as extrapolated contributions from higher-lying basis functions that were left out.

Errors from extrapolated basis functions and relativistic effects are analyzed using the

RMBPT and RPA methods. Results from the CC and RCC methods are presented

using both the CCSD method and the CCSD method with contributions from partial

triple excitations (CCSD(T)), along with their relativistic versions. The experimental

value of αd for Zn was measured using the Michelson twin interferometer technique
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[1]. This value was later revised by fitting the data with improved numerical analyses

[21]. There is approximately a 4% difference between our RCCSD values for αd and the

experimental value. Although our RMBPT(3) value for αd is much closer to the ex-

perimental value, it is important to note that the RMBPT(3) method does not include

correlations as rigorously as the RCCSD method. Furthermore, the convergence of the

RMBPT(3) value is not guaranteed. Therefore, we recommend the RCCSD results

over the RMBPT(3) values. The latest calculation of αd for Zn uses a sum-over-states

approach, combining only a few E1 matrix elements from the MCDHF method with

experimental energies while estimating the remaining contributions using lower-order

methods. This approach shows poor agreement with the experimental result [6]. The

calculations reported in Refs. [4, 5] are equivalent to our RCCSD method, while those

in Refs. [1, 2, 3] are based on the Finite Field approach using the non-relativistic CC

method. Overall, there seems to be good agreement among all these calculations. It

is noteworthy that in order to quote more accurate values, Refs. [1, 2, 3] have used

scaled values. In the same table, we compare our RCCSD value for αd for Cs+. Our

result agrees well with the values that have been previously reported. This comparison

proves that our implementation of the RCCSD method is correct and it is more capable

of capturing the electron correlation effects than lower-order methods.

4.4 Summary

We have employed the RCC theory to determine the electric dipole polarizability of the

Cs+ ion. In V Ne−1 potential formalism, Cs+ ion is the starting point of our calculation

for the parity-violating amplitude in 133Cs atom. By this polarizability result, we

can assess the potential of our RCC method in determining the wave functions of the

closed-shell Cs+ ion. Since the experimental value of αd for Cs+ is not available in the

literature, we have used another closed-shell atom, Zn, as a case study. Electric dipole

polarizability of the ground state of Zn has been experimentally measured, providing

a reliable benchmark for our theoretical methods. We have also presented values from
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lower-order RMBPT(2), RMBPT(3), and RPA methods. We have compared our results

with the earlier recommended values from various calculations. Our results from the

RCC theory at the singles and doubles approximation match well with earlier reported

values. This reinforces the validity of our computational approach and confirms that

our implementation of the RCCSD method is accurate.
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Chapter 5

Unraveling NSI PV Amplitude

Calculation in 133Cs

E
arlier in the thesis, we have discussed the significance of precise calculations

of the E1NSI
PV amplitude in testing the SM of particle physics. Consequently,

numerous calculations have been conducted on a range of atomic systems [1, 2, 3,

4, 5, 6, 7, 8]. The most accurate calculations thus far have been performed for the

6s 2S1/2 − 7s 2S1/2 transition in the 133Cs atom [9, 10, 11, 12]. However, controversies

persist among these results. One of such high-precision calculations was carried out

by Porsev et al. in 2010. They used the CCSDvT method to estimate the Main

contributions, whereas the Core and Tail contributions were calculated through a blend

of the many-body methods [9]. Later Dzuba et al. [10] refined the Core and Tail

contributions of E1NSI
PV value using the TDHF+BO method. They used the Main

contribution from the calculation of Porsev et al. This calculation yielded an opposite

sign for the Core contribution to that of Porsev’s. Both the studies claimed to achieve

an accuracy below 0.5%, but their final results differ by 1%. Later Sahoo et al. [12]

implemented the RCCSDT method to study E1NSI
PV in 133Cs. The Core contribution in

this approach aligned with Porsev’s calculation. In this scenario, in order to test the

SM and probe BSM physics it is necessary to find out the reason behind such disparity
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among various high-precision studies. In this chapter, we are going to unravel the

reason for these discrepancies. The objective of this chapter is to develop theoretical

insights aimed at resolving the sign discrepancy in the Core contribution among different

studies while shedding light on the constraints of the sum-over-states approach. Herein

we have also discussed diverse methodologies within a general many-body framework for

computing E1NSI
PV amplitude, illustrating how different many-body methods incorporate

the correlation effects into the E1NSI
PV calculation.

5.1 Evaluation Procedures of E1NSIPV

In the presence NSI PV, the net atomic Hamiltonian is given by

Hat = H +HNSI
PV = H + λHW , (5.1)

where H contains contributions from em interactions and HW is defined in order to

treat λ = GF

2
√
2

as a small parameter to include contributions from HNSI
PV perturbatively

through many-body methods. Using the wave functions of Hat, we determine E1NSI
PV of

a transition between states |Ψi⟩ and |Ψf⟩ as

E1NSI
PV =

⟨Ψf |D|Ψi⟩√
⟨Ψf |Ψf⟩⟨Ψi|Ψi⟩

, (5.2)

Following previous calculations of E1NSI
PV amplitude in 133Cs, where atomic wave func-

tions were determined by using the V Ne−1 potential, we generate both the ground and

excited states of the 133Cs atom using the Fock-space formalism. The reason for ad-

opting this same formalism is to maintain consistency across various works, ensuring

that the description of different correlation effects and the comparison of results remain

coherent. For the same reason, we consider the wave functions to be in the electronic

state |JMJ⟩. Both |Ψi⟩ and |Ψf⟩ can be obtained by solving the EOM for Hat. How-

ever, parity cannot be considered a good quantum number for Hat. Consequently, it
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(a) (b) (c) (d)

i i i i

f f f f

a a
p p

D

D

D

D

HW

HW

HW

HW

Figure 5.1: Goldstone diagrams representing Core (a and b) and Valence (c and d)
contributions to E1NSI

PV in the V Ne−1 DHF potential of a one-valence atomic system.
The operator D is shown with a curly line and HW is shown in a line with a bullet
point.

will relax one degree of freedom in describing atomic states, significantly increasing

computational demands. As mentioned earlier in the thesis, the strength of HNSI
PV is

about one part of 1012 in comparison to H. Hence, it is only judicious to include contri-

butions from H as much as possible in determining the aforementioned wave functions

with available computational resources and account only for the first-order effect due

to HNSI
PV . Thus, we express atomic wave function |Ψv⟩ of a general state with valence

orbital v as

|Ψv⟩ = |Ψ(0)
v ⟩ + |Ψ(1)

v ⟩. (5.3)

We have absorbed λ in |Ψ(1)
v ⟩. Substituting Eq. 5.3 in Eq. 5.2, we get

E1NSI
PV ≃

[
⟨Ψ(0)

f |D|Ψ(1)
i ⟩

Nif

+
⟨Ψ(1)

f |D|Ψ(0)
i ⟩

Nif

]
, (5.4)

where normalization factor Nif =
√
NfNi with Nv = ⟨Ψ(0)

v |Ψ(0)
v ⟩. The contribution

from the first term is referred to as the initial perturbed state contribution, whereas

the contribution from the second term is referred to as the final perturbed state con-

tribution in the above expression. In order to treat both the em and weak interaction
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Hamiltonians on an equal footing and consider correlations between them, solutions of

the unperturbed and first-order perturbed wave functions should satisfy

H|Ψ(0)
v ⟩ = E(0)

v |Ψ(0)
v ⟩ (5.5)

and

(H − E(0)
v )|Ψ(1)

v ⟩ = (E(1)
v −HW )|Ψ(0)

v ⟩, (5.6)

respectively, where E
(1)
v = 0 as HW is odd parity operator. We can express |Ψ(0)

v ⟩ and

|Ψ(1)
v ⟩ using the wave operator formalism

|Ψ(0)
v ⟩ = Ωv(0)|Φv⟩

= (Ω(0)
c + Ω(0)

v )|Φv⟩, (5.7)

and

|Ψ(1)
v ⟩ = Ωv(1)|Φv⟩

= (Ω(1)
c + Ω(1)

v )|Φv⟩, (5.8)

where Ω
(0)
c and Ω

(0)
v are the zeroth-order waver operator and Ω

(1)
c and Ω

(1)
v are the

first-order perturbed wave operators. Substituting the wave operators, Eq. 5.4 can be

expressed as

E1NSI
PV =

⟨Φf |(Ω(0)
c + Ω

(0)
f )†D(Ω

(1)
c + Ω

(1)
i )|Φi⟩

Nif

+
⟨Φf |(Ω(1)

c + Ω
(1)
f )†D(Ω

(1)
c + Ω

(1)
i )|Φi⟩

Nif

=
⟨Φc|af (Ω

(0)
c + Ω

(0)
f )†D(Ω

(1)
c + Ω

(1)
i )a†i |Φc⟩

Nif

+
⟨Φc|af (Ω

(1)
c + Ω

(1)
f )†D(Ω

(1)
c + Ω

(1)
i )a†i |Φc⟩

Nif
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=
⟨Φc|af [Ω

(0)†
c DΩ

(1)
c + Ω

(1)†
c DΩ

(0)
c ]a†i |Φc⟩

Nif

+
⟨Φc|af [Ω

(0)†
f DΩ

(1)
c + Ω

(1)†
f DΩ

(0)
c ]a†i |Φc⟩

Nif

+
⟨Φc|af [Ω

(0)†
c DΩ

(1)
i + Ω

(1)†
c DΩ

(0)
i ]a†i |Φc⟩

Nif

+
⟨Φc|af [Ω

(0)†
f DΩ

(1)
i + Ω

(1)†
f DΩ

(0)
i ]a†i |Φc⟩

Nif

. (5.9)

In the above expression, the contribution from the first term belongs to the “Core” cor-

relation contribution, while the rest is termed as the “Valence” correlation contribution.

5.1.1 Sum-over-states approach

In the sum-over-states approach, the first-order wave function of a general state can be

expressed as

|Ψ(1)
v ⟩ =

∑
I ̸=v

|Ψ(0)
I ⟩⟨Ψ

(0)
I |HW |Ψ(0)

v ⟩
(E

(0)
v − E

(0)
I )

, (5.10)

where |Ψ(0)
I ⟩ are the zeroth-order intermediate states and E

(0)
n is the unperturbed energy

of the nth level. Thus, Eq. 5.4 can be written as

E1NSI
PV =

∑
I ̸=i

⟨Ψ(0)
f |D|Ψ(0)

I ⟩⟨Ψ(0)
I |HW |Ψ(0)

i ⟩
(E

(0)
i − E

(0)
I )

+
∑
I ̸=f

⟨Ψ(0)
f |HW |Ψ(0)

I ⟩⟨Ψ(0)
I |D|Ψ(0)

i ⟩
(E

(0)
f − E

(0)
I )

. (5.11)

Correlations among the H and HW that appear through Eq. 5.6 are omitted in the

above expression. Further, there could be a conflict between the definitions of using

Core, Main, and Tail contributions to E1NSI
PV with the definitions used in various first-

principle based calculations. To understand how Core, Main, and Tail contributions
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xiv) (xvi)

(xvii) (xviii) (xix) (xx)

(xxi) (xxii) (xxiii) (xxiv)

(xxv) (xxvi) (xxvii) (xxviii)

(xxix) (xxx) (xxxi) (xxxii)

(xxxiii) (xxxiv) (xxxv) (xxxvi)

(xxxvii) (xxxviii) (xxxix) (xL)

Figure 5.2: A few important electron correlation contributing diagrams to E1NSI
PV in

the RMBPT(3) method.
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have been defined in Ref. [9], we follow the work of Blundell et al. [13] where these terms

were used for the first time in the context of estimating E1NSI
PV . Division of the total

E1NSI
PV value in this calculation was made as “Main”, “Core” and “Tail” contributions

based on the assumption that |Ψ(0)
i ⟩, |Ψ(0)

f ⟩ and |Ψ(0)
I ⟩ can be expressed using only single

Slater determinants like in the DHF method. Thus, the intermediate states |Ψ(0)
I ⟩ are

considered to have only the np 2P1/2 configurations for the 6s 2S1/2−7s 2S1/2 transition.

In such assumption, the Core (C), Main (V ) and Tail (T ) contributions to the E1NSI
PV

amplitude of the above transition in 133Cs were estimated as

E1NSI
PV (C) =

∑
n≤5

⟨7S1/2|D|nP1/2⟩⟨nP1/2|HW |6S1/2⟩
(E

(0)
6S1/2

− E
(0)
nP1/2

)

+
∑
n≤5

⟨7S1/2|HW |nP1/2⟩⟨nP1/2|D|6S1/2⟩
(E

(0)
7S1/2

− E
(0)
nP1/2

)
, (5.12)

E1NSI
PV (V ) =

∑
n=6−9

⟨7S1/2|D|nP1/2⟩⟨nP1/2|HW |6S1/2⟩
(E

(0)
6S1/2

− E
(0)
nP1/2

)

+
∑

n=6−9

⟨7S1/2|HW |nP1/2⟩⟨nP1/2|D|6S1/2⟩
(E

(0)
7S1/2

− E
(0)
nP1/2

)
(5.13)

and

E1NSI
PV (T ) =

∑
n≥10

⟨7S1/2|D|nP1/2⟩⟨nP1/2|HW |6S1/2⟩
(E

(0)
6S1/2

− E
(0)
nP1/2

)

+
∑
n≥10

⟨7S1/2|HW |nP1/2⟩⟨nP1/2|D|6S1/2⟩
(E

(0)
7S1/2

− E
(0)
nP1/2

)
, (5.14)

respectively. However, wave functions of multi-electron atomic systems are determ-

ined through a many-body method by expressing as a linear combination of many

Slater determinants which can differ by either single or multiple excitations from the

reference state. Consequently, contributions from cross-terms involving other Slater de-

terminants, e.g., excited configuration 5p56s7s of the intermediate state, cannot appear

through the above breakup. One of such contributions is referred to as DCP effects

which arise through the CPDF-RPA (or TDHF) method as described in the works of
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Mårtensson [14] and Roberts [11, 15]. There are other contributions also that appear

through the first-principle approach of the RCC method [16], which are neither part of

BO contributions nor the CPDF-RPA method. These contributions are not negligible

and call for an appropriate many-body method to account for their contributions at

par with the np 2P1/2 intermediate states. This argument can be understood better

with the following explanations. In the 133Cs atom, the low-lying excited states have a

common core [5p6] and differ by only a valence orbital. Thus, the DHF wave functions

of these states can be expressed as |ΦI⟩ = a†I |Φc⟩ and the exact wave functions can be

defined as

|Ψ(0)
I ⟩ = ΩI(0)|ΦI⟩

= (Ω(0)
c + Ω

(0)
I )|ΦI⟩. (5.15)

Using these wave operators, we can express Eq. 5.11 as

E1NSI
PV =

∑
I ̸=i

⟨Φc|af (Ω
(0)
c + Ω

(0)
f )†D(Ω

(0)
c + Ω

(0)
I )a†I |Φc⟩

Nif

× ⟨Φc|aI(Ω(0)
c + Ω

(0)
I )†HW (Ω

(0)
c + Ω

(0)
i )a†i |Φc⟩

(E
(0)
i − E

(0)
I )

+
∑
I ̸=f

⟨Φc|af (Ω
(0)
c + Ω

(0)
f )†HW (Ω

(0)
c + Ω

(0)
I )a†I |Φc⟩

Nif

× ⟨Φc|aI(Ω(0)
c + Ω

(0)
I )†D(Ω

(0)
c + Ω

(0)
i )a†i |Φc⟩

(E
(0)
f − E

(0)
I )

. (5.16)

Since the wave operators include linear combinations of configurations describing one-

hole–one-particle, two-hole–two-particle, etc. excitations, it is evident that the higher-

level excited configurations contributing to the intermediate states cannot be included

in a sum-over-states approach.
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

...

Figure 5.3: A few representative DCP diagrams from the RMBPT(3) method.

5.1.2 First-principle approach

Based on the above discussion, it is clear that in order to estimate the E1NSI
PV amp-

litudes accurately, it is imperative to use first principle approaches that account for

contributions from all possible intermediate configurations. One can use either Eq.

5.4 or Eq. 5.9 for this purpose. In the former case, it is desirable to solve both Eqs.

5.5 and 5.6, while for the later approach, one needs to solve Bloch’s equations for the

unperturbed and perturbed wave operators. The amplitude solving Bloch’s equations

for the unperturbed operators Ω
(0)
c and Ω

(0)
v have been discussed earlier. The Bloch’s

equations for the first-order perturbed wave operators can be given by

[Ω(1)
c , HDHF ]Pc = (HWΩ(0)

c + VresΩ
(1)
c )Pc (5.17)

and

[Ω(1)
v , HDHF ]Pv = [HW (Ω(0)

c + Ω(0)
v ) + Vres(Ω

(1)
c + Ω(1)

v )Pv

−Ω(1)
v E(0)

v . (5.18)
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Now, we attempt to formulate several all-order methods, namely CPDF, RPA, CPDF-

RPA, and RCC, using the wave operators. This would be helpful to make one-to-one

connections among these methods, which will be beneficial in explaining the reason why

there is a sign mismatch between the Core contributions to E1NSI
PV for the 6s 2S1/2 −

7s 2S1/2 transition in the 133Cs atom [9, 10, 12].

We can rewrite Eq. 5.4 as

E1NSI
PV =

⟨Ψ(0)
f |HW |Ψ̃(1)

i ⟩
Nif

+
⟨Ψ̃(1)

f |HW |Ψ(0)
i ⟩

Nif

. (5.19)

This can be equivalently expressed by either

E1NSI
PV =

⟨Ψ(0)
f |D|Ψ(1)

i ⟩
Nif

+
⟨Ψ(0)

f |HW |Ψ̃(1)
i ⟩

Nif

(5.20)

or

E1NSI
PV =

⟨Ψ̃(1)
f |HW |Ψ(0)

i ⟩
Nif

+
⟨Ψ(1)

f |D|Ψ(0)
i ⟩

Nif

. (5.21)

In the above expressions, we define

|Ψ̃(1)
i ⟩ =

∑
I ̸=f

|Ψ(0)
I ⟩ ⟨Ψ(0)

I |D|Ψ(0)
i ⟩

(E
(0)
i − E

(0)
I + ω)

(5.22)

and

|Ψ̃(1)
f ⟩ =

∑
I ̸=i

|Ψ(0)
I ⟩

⟨Ψ(0)
I |D|Ψ(0)

f ⟩
(E

(0)
f − E

(0)
I − ω)

(5.23)

with ω = E
(0)
f − E

(0)
i is the excitation energy between the initial and final states. It

implies that Eqs. 5.4, 5.19, 5.20 and 5.21 are mathematically equivalent in an exact

many-body method. Thus, any of these expressions can be used in the determination

of the E1NSI
PV amplitude. We shall demonstrate later that the CPDF, RPA, CPDF-
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RPA, and RCC methods use different formulas, as mentioned above. So, it is crucial

to understand their relations and classifications of individual correlation contributions

through the above methods. Since the level of approximations made to the unperturbed

and perturbed wave functions are not same in these methods, it is obvious to guess that

results from these methods can be very different unless electron correlation effects in

an atomic system are negligibly small. It is also unclear whether classifications of Core

and Tail contributions in these methods are uniquely defined or not. To understand the

above points, let’s find out the Core contributions from Eqs. 5.4 and 5.19 by expressing

the perturbed wave function due to the D operator in terms of wave operators as

|Ψ̃(1)
v ⟩ = (Ω̃(1)

c + Ω̃(1)
v )|Φv⟩. (5.24)

With this, the Core contributing terms in both HW and D perturbing approaches are

given by

E1NSI
PV (C) =

⟨Φc|af [Ω
(0)†
c DΩ

(1)
c + Ω

(1)†
c DΩ

(0)
c ]a†i |Φc⟩

Nif

(5.25)

and

E1NSI
PV (C) =

⟨Φc|af [Ω̃
(1)†
c HWΩ

(0)
c + Ω

(0)†
c HW Ω̃

(1)
c ]a†i |Φc⟩

Nif

. (5.26)

It can be shown that the Core contributions arising through the wave operators Ω
(1)
c

and Ω̃
(1)
c can be different. Similar arguments also hold for the Tail contributions arising

through the perturbed valence operators Ω
(1)
v and Ω̃

(1)
v . To get better inside of this

argument, we can rewrite the sum-over-states formula given by Eq. 5.16 as

E1NSI
PV =

∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
c Ω

(0)†
c HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
c Ω

(0)†
c HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)
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+
∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
c Ω

(0)†
c HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
c Ω

(0)†
c HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
I Ω

(0)†
I HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
I Ω

(0)†
I HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
I Ω

(0)†
I HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
I Ω

(0)†
I HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
I Ω

(0)†
c HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
I Ω

(0)†
c HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
I Ω

(0)†
c HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
I Ω

(0)†
c HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
c Ω

(0)†
I HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
c Ω

(0)†
I HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
c DΩ

(0)
c Ω

(0)†
I HWΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=i

⟨Φc|afΩ
(0)†
f DΩ

(0)
c Ω

(0)†
I HWΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
f − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
c Ω

(0)†
c DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)
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+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HWΩ

(0)
c Ω

(0)†
c DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
c Ω

(0)†
c DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HWΩ

(0)
c Ω

(0)†
c DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
I Ω

(0)†
I DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HWΩ

(0)
I Ω

(0)†
I DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
I Ω

(0)†
I DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HWΩ

(0)
I Ω

(0)†
I DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
I Ω

(0)†
c DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HWΩ

(0)
I Ω

(0)†
c DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
I Ω

(0)†
c DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HWΩ

(0)
I Ω

(0)†
c DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
c Ω

(0)†
I DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HWΩ

(0)
c Ω

(0)†
I DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
c HWΩ

(0)
c Ω

(0)†
I DΩ

(0)
i a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

+
∑
I ̸=f

⟨Φc|afΩ
(0)†
f HW c

(0)Ω
(0)†
I DΩ

(0)
c a†i |Φc⟩

Nif (E
(0)
i − E

(0)
I − ω)

(5.27)
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Figure 5.4: A few typical Goldstone diagrams of the RMBPT(3) method. It demon-

strates how Valence contributions through Ω
(1,1)†
v D in the RMBPT(3)W method cor-

respond to Core contributions through (a) Ω
(1,0)†
c HW Ω̃

(0,1)
c and (b) HW Ω̃

(1,1)
c in the

RMBPT(3)D method.

Both Eqs. 5.16 and 5.27 are equal, but they are written differently. These equations

are nothing but the expanded forms of Eqs. 5.9 and 5.19 respectively. However, dif-

ferent terms are rearranged to place them under the categories of Core and Valence

contributing terms in the respective formulas. Thus, we may now outline findings from

the above discussions as follows

1. It is noteworthy that in the evaluation of E1NSI
PV , both the HW and D operators

can be treated as perturbation. Thus, in an approximated method where cor-

relation effects through both these operators are not incorporated equivalently,

distinctions of “Core” and “Valence” contributions to E1NSI
PV cannot be defined

uniquely. As a consequence, estimating both the “Core” and “Valence” contribu-

tions using a blend of many-body methods could mislead the final result.

2. Numerical stability to the calculation of E1NSI
PV can be verified by evaluating
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expressions given by Eqs. 5.4, 5.19 and 5.20 simultaneously though it can be a

strenuous procedure.

3. Scaling wave functions for estimating a part of contribution or using the exper-

imental value of ω in an approximated method may not always imply that the

result is improved. Rather, it could introduce further errors or numerical instabil-

ity to the calculation.

The last point mentioned above can be understood through the following discussion.

Let’s use the experimental value for ω (shown as ωex) to define the first-order perturbed

wave functions due to the D operator

|Ψ̃(1)
i ⟩ =

∑
I ̸=f

|Ψ(0)
I ⟩ ⟨Ψ(0)

I |D|Ψ(0)
i ⟩

(E
(0)
i − E

(0)
I + ωex)

(5.28)

and

|Ψ̃(1)
f ⟩ =

∑
I ̸=i

|Ψ(0)
I ⟩

⟨Ψ(0)
I |D|Ψ(0)

f ⟩
(E

(0)
f − E

(0)
I − ωex)

. (5.29)

Substituting these wave functions in Eq. 5.11, the sum-over-states expression for E1NSI
PV

can be given by

E1NSI
PV =

∑
I ̸=i

⟨Ψ(0)
f |D|Ψ(0)

I ⟩⟨Ψ(0)
I |HW |Ψ(0)

i ⟩
Nif (E

(0)
i − E

(0)
I − δω)

+
∑
I ̸=f

⟨Ψ(0)
f |HW |Ψ(0)

I ⟩⟨Ψ(0)
I |D|Ψ(0)

i ⟩
Nif (E

(0)
f − E

(0)
I + δω)

, (5.30)

where δω = ωex − ω, with ω being the theoretical value, cannot be zero when ω is

obtained using a particular many-body method. As can be seen, the introduction of

ωex value affects contributions from the initial and final perturbed terms differently,

leading to inconsistency in the evaluation of E1NSI
PV . This can be better expressed
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Figure 5.5: Goldstone diagrams contributing to amplitude determining equation of
ΩCPDF

c . Through an iterative scheme, these effects are included to all-orders.

through the following inequalities in an approximated many-body method

E1NSI
PV =

⟨Ψ(0)
f |D|Ψ(1)

i ⟩
Nif

+
⟨Ψ(1)

f |D|Ψ(0)
i ⟩

Nif

̸=
⟨Ψ(0)

f |HW |Ψ̃(1)
i ⟩

Nif

+
⟨Ψ̃(1)

f |HW |Ψ(0)
i ⟩

Nif

̸=
⟨Ψ(0)

f |D|Ψ(1)
i ⟩

Nif

+
⟨Ψ(0)

f |HW |Ψ̃(1)
i ⟩

Nif

̸=
⟨Ψ̃(1)

f |HW |Ψ(0)
i ⟩

Nif

+
⟨Ψ(1)

f |D|Ψ(0)
i ⟩

Nif

. (5.31)

5.2 Many-body methods of E1NSIPV

The primary objective of the NSI PV study is to estimate the E1NSI
PV amplitude with

sub-one percent accuracy from the standpoint of atomic many-body theory. Due to

the complexities involved in considering various contributions, the calculation typically

proceeds in multiple stages. The predominant contribution from H stems from electron

correlation effects due to Coulomb interactions in the presence of PV interactions, while

corrections from the Breit and QED interactions are treated separately. The corrections

because of Breit and QED interactions on E1NSI
PV are minor; their estimated corrections
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are generally consistent across different studies [3, 5, 8, 16, 17, 18, 19, 20]. Thus, our

focus here is primarily on discussions involving the DC Hamiltonian for determining

wave functions. Furthermore, our aim is to illustrate how various many-body methods

incorporate the electron correlation effect into the calculation. This will help us to

identify contributions that may arise from a specific many-body method but could

be overlooked by another method. This exercise will pave the path to achieve highly

accurate calculations of the E1NSI
PV amplitudes in 133Cs by understanding the roles of

Core and Valence correlations in these quantities. Starting with the DHF method, we

discuss the calculations of E1NSI
PV amplitudes in 133Cs using the various many-body

methods, namely RMBPT, CPDF, RPA, CPDF-RPA, and RCC.

5.2.1 DHF method

Using wave functions from the DHF method, we can evaluate the E1NSI
PV amplitude in

the mean-field approach as

E1NSI
PV = ⟨Φf |D|Φ(1)

i ⟩ + ⟨Φ(1)
f |D|Φi⟩, (5.32)

where |Φ(1)
n=i,f⟩ is the first-order perturbed wave function with respect to |Φn=i,f⟩. We

can express these wave functions as

|Φ(1)
n ⟩ =

∑
I

|ΦI⟩
⟨ΦI |HW |Φn⟩

En − EI
, (5.33)

where |ΦI⟩ are the intermediate states with mean-field energies EI . Substituting this

expression above, it yields

E1NSI
PV =

∑
I ̸=i

⟨Φf |D|ΦI⟩⟨ΦI |HW |Φi⟩
Ei − EI

+
∑
I ̸=f

⟨Φf |HW |ΦI⟩⟨ΦI |D|Φi⟩
Ef − EI

. (5.34)
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Using HW =
∑

i hw(ri) and D =
∑

i d(ri), and following the Slater-Condon rules, it

gives

E1NSI
PV =

∑
a

⟨f |d|a⟩⟨a|hw|i⟩
ϵi − ϵa

+
∑
a

⟨f |hw|a⟩⟨a|d|i⟩
ϵf − ϵa

+
∑
p ̸=i

⟨f |d|p⟩⟨p|hw|i⟩
ϵi − ϵp

+
∑
p ̸=f

⟨f |hw|p⟩⟨p|d|i⟩
ϵf − ϵp

, (5.35)

where |k = a, p⟩ denotes kth single particle DHF orbital with energy ϵk. Contributions

arising from the first two terms of the above expression are referred to as the lowest-

order Core contributions while contributions from the later two terms are said to be

Valence contributions that include the lowest-orders to both Main and Tail parts. In

terms of wave operators, the DHF expression for E1NSI
PV can be given by

E1NSI
PV = ⟨Φf |DΩi(0,1)|Φi⟩ + ⟨Φf |Ωf(0,1)†D|Φi⟩ (5.36)

where Ωv(0,1) = Ω
(0,1)
c + Ω

(0,1)
v and Ω

(0,1)
c → Ω

(0,1)
1c =

∑
a,p

⟨p|hw|a⟩
ϵa−ϵp

a†paa ≡ ∑
a,p Ωp

a and

Ω
(0,1)
v → Ω

(0,1)
1v =

∑
p
⟨p|hw|v⟩
ϵv−ϵp

a†pav ≡ ∑
p Ωp

v. Representing the wave operators in terms

of the Goldstone diagrams, we show the Core and Valence contributions to E1NSI
PV in

Fig. 5.1. Figs. 5.1 (a) and (b) correspond to Core contributing terms, while Figs. 5.1

(c) and (d) correspond to Valence contributing terms here.

5.2.2 RMBPT method

We employ the RMBPT method to estimate contributions only up to the third-order

of perturbation (RMBPT(3) method) by considering two orders of Vres and one order

of HW ; i.e., the net Hamiltonian is expressed as

Hat = HDHF + λ1Vres + λ2HW , (5.37)
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Figure 5.6: Diagrams denoting amplitude solving equation for ΩCPDF
v . These core-

polarization effects are included to all-orders in the CPDF method.
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Figure 5.7: Property diagrams of the CPDF method. These diagrams are similar to
the DHF method, but the HW operators of the DHF diagrams are replaced by ΩCPDF

c

and ΩCPDF
v .

where λ1 and λ2 are parameters introduced to count orders of Vres and HW in the

calculation. Here, we can calculate either the matrix element of D after perturbing

wave functions by HW or the matrix element of HW after perturbing wave functions by

D. We employ both approaches for two main reasons. Firstly, it helps in identifying

lower-order contribution terms to the CPDF and RPA methods, facilitating a clearer

understanding of their inclusion through the RCC method. Secondly, it offers insight

into the classification of Core and Valence contributions. Amplitudes of the perturbed

wave operators due to HW can be evaluated by

[Ω(k,1)
c , HDHF ]Pc = QcHWΩ(k,0)

c Pc +QcVresΩ
(k−1,1)
c Pc, (5.38)
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and

[Ω(k,1)
v , HDHF ]Pv = QvVres(Ω

(k−1,1)
c + Ω(k−1,1)

v )Pv

+QvHW (Ω(k,0)
c + Ω(k,0)

v )Pv

−
k−1∑
m=1

Ω(k−m,1)
v E(m,0)

v . (5.39)

For the case of considering D as the perturbating operator, Eqs. 5.38 and 5.39 can

be again used to solve amplitudes of the Ω̃
(1)
c , Ω̃

(1)
i and Ω̃

(1)
f operators in the RMBPT

methods by replacing Ωp
a/v by Ωp+

a/v = ⟨p|d|a⟩
ϵa/v−ϵp−ω

a†paa/v and Ωp†
a/v by complex conjugate of

Ωp−
a/v = ⟨p|d|v⟩

ϵa/v−ϵp+ω
a†paa/v. This follows, the nth-order E1NSI

PV expression as

E1NSI
PV =

1∑n−1
l=0 N

l
if

[ n∑
k=0

(
⟨Φf |(Ω(n−k,0)

c + Ω
(n−k,0)
f )†D

(Ω(k,1)
c + Ω

(k,1)
i )

)
|Φi⟩ +

n∑
k=0

(
⟨Φf |(Ω(k,1)

c

+Ω
(k,1)
f )†D(Ω(n−k,0)

c + Ω
(n−k,0)
i

)
|Φi⟩)

]
, (5.40)

whereHW is considered in the perturbation with N k
if = [(

∑
l⟨Φf |(Ω(k−l,0)

c +Ω
(k−l,0)
f )†(Ω

(l,0)
c +

Ω
(l,0)
f )|Φf⟩)(

∑
m⟨Φi|(Ω(k−m,0)

c + Ω
(k−m,0)
i )†(Ω

(m,0)
c + Ω

(m,0)
i )|Φi⟩)]1/2. In the case of D as

perturbation, it yields

E1NSI
PV =

1∑n−1
l=0 N

l
if

[ n∑
k=0

(
⟨Φf |(Ω(n−k,0)

c + Ω
(n−k,0)
f )†HW

(Ω̃(k,1)
c + Ω̃

(k,1)
i )

)
|Φi⟩ +

n∑
k=0

(
⟨Φf |(Ω̃(k,1)

c

+Ω̃
(k,1)
f )†HW (Ω(n−k,0)

c + Ω
(n−k,0)
i

)
|Φi⟩)

]
. (5.41)

In Fig. 5.2, we show the important correlation contributing Goldstone diagrams to

E1NSI
PV arising through the RMBPT(3) method. It should be noted that the lowest-

order diagrams of the RMBPT(3) method are the same as the diagrams corresponding
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Figure 5.8: Graphical representation of Ω±
c and its expansion in terms of lower-order

perturbative method.

to the DHF method, and they are not shown here. In Fig. 5.3, we show a few DCP

diagrams that arise in the RMBPT method. Since both Eqs. 5.40 and 5.41 are equi-

valent at a given level of approximation; the Goldstone diagrams are identical in both

cases. Thus, the Core and Valence contributions arising through both expressions can

be distinguished and quoted separately by adopting the definitions of the respective

wave operators. This would help us identify lower-order Core and Valence correlation

contributions to the CPDF, RPA, CPDF-RPA, and RCC methods that will be discussed

next. In order to distinguish results while presenting from both the approaches, we use

the notations RMBPT(3)W and RMBPT(3)D in place of RMBPT(3) for the cases with

HW as the perturbation and with D as the perturbation respectively. We consider a few

Goldstone diagrams in Fig. 5.4 that represent Valence (Main and Tail) contributions in

the RMBPT(3)W method to demonstrate how they turn to Core contributing diagrams

in the RMBPT(3)D method.

5.2.3 CPDF method

We now extend the E1NSI
PV calculation to all-orders in a very simple manner by ex-

tending the DHF expression and with much less computational effort compared to the

RMBPT(3) method. This can be derived by starting with the DHF expression, given
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by

E1NSI
PV = ⟨f |d|i(1)⟩ + ⟨f (1)|d|i⟩, (5.42)

where

|k(1)⟩ =
∑
I ̸=k

|I⟩⟨I|hw|k⟩
ϵk − ϵI

. (5.43)

In the CPDF method, the first-order perturbed single particle orbital |k(1)⟩ is obtained

by including CP effects due to Vres to all-orders (denoted by |kPV ⟩) by defining an

effective potential in the presence of hw. To arrive at this expression, we consider the

net Hamiltonian Hint to define the modified single-particle DHF Hamiltonian fPV
v =

fv + λ2hw and potential as

fPV
v |ṽ⟩ = ϵ̃v|ṽ⟩ (5.44)

and

ũv =
Ne∑
b

[
⟨b̃|hbv2 |b̃⟩|ṽ⟩ − ⟨b̃|hbv2 |ṽ⟩|b̃⟩

]
, (5.45)

where the tilde symbol denotes solution for Hint in place of H. Now expanding |ṽ⟩ =

|v⟩ + λ2|vPV ⟩ + O(λ22) from Eq. 5.44 and retaining terms that are linear in λ2, we can

get

(fv − ϵv)|vPV ⟩ = −hw|v⟩ − uPV
v |v⟩, (5.46)

where

uPV
v |v⟩ =

Ne∑
b

[
⟨b|h2|b⟩|vPV ⟩ − ⟨b|h2|vPV ⟩|b⟩

+⟨bPV |h2|b⟩|v⟩ − ⟨bPV |h2|v⟩|b⟩
]
. (5.47)
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Both Eqs. 5.46 and 5.47 are solved iteratively to obtain the self-consistent solutions to

account for CP effects to all-orders. Using the above modified orbitals, E1NSI
PV can be

evaluated as

E1NSI
PV = ⟨f |d|iPV ⟩ + ⟨fPV |d|i⟩. (5.48)

To make one-to-one comparison between contributions arising through the CPDF method

and lower-order terms of the RMBPT(3) method, we can present the CPDF expression

for E1NSI
PV using the wave operators as

E1NSI
PV = ⟨Φf |DΩi,CPDF |Φi⟩ + ⟨Φf |Ωf,CPDF †D|Φi⟩, (5.49)

where Ωv,CPDF = ΩCPDF
c + ΩCPDF

v =
∑∞

k=1

[∑
a,p Ω

(k,1)
a,p +

∑
p Ω

(k,1)
v,p

]
. Amplitudes of

these operators are given by

Ω(k,1)
a,p = Ωp

a +
∑
b,q

( [⟨pb|h2|aq⟩ − ⟨pb|h2|qa⟩]
ϵa − ϵp

Ω
(k−1,1)
b,q

+Ω
(k−1,1)†

b,q

[⟨pq|h2|ab⟩ − ⟨pq|h2|ba⟩]
ϵa − ϵp

)
(5.50)

and

Ω(k,1)
v,p = Ωp

v +
∑
b,q

( [⟨pb|h2|vq⟩ − ⟨pb|h2|qv⟩]
ϵv − ϵp

Ω
(k−1,1)
b,q

+Ω
(k−1,1)†

b,q

[⟨pq|h2|vb⟩ − ⟨pq|h2|bv⟩]
ϵv − ϵp

)
, (5.51)

To compute amplitude of the above operators, we set Ω
(0,1)
a,p ≈ Ωp

a and Ω
(0,1)
v,p ≈ Ωp

v in

the beginning to initiate the iteration procedure from k = 1. As can be followed here,

only the effective singly excited configurations are contributing through the Ωv,CPDF

operators. Thus, it completely misses out PC contributions. The Goldstone diagrams

that contribute to the amplitudes of ΩCPDF
c are shown in Fig. 5.5. Similarly, the
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+
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Figure 5.9: Graphical representation of Ω±
v and its expansion in terms of lower-order

perturbative method.

Goldstone diagrams contributing to the amplitudes of ΩCPDF
v are shown in Fig. 5.6.

Using these operators, we show the final Goldstone diagrams that contribute to E1NSI
PV

in Fig. 5.7. By analyzing these diagrams in terms of the Goldstone diagrams shown

in Figs. 5.5 and 5.6, it is easy to follow how the CP effects are included to all-orders

through the CPDF method.

5.2.4 RPA method

The CPDF method captures correlation effects in the first-order wave functions only

through the HW operator but completely misses out on the correlation effects in the

unperturbed state that arise through the D operator. The CPDF method is formulated

based on Eq. 5.4. Therefore, proceeding with a similar manner based on Eq. 5.19, it can

lead to capturing CP effects through the D operator, and the RPA is formulated exactly

on the same line. To derive the RPA expression, we consider the net Hamiltonian H±
int =

H+λ3D∓ω to define the modified single particle DHF Hamiltonian f±
v = fv +λ3d∓ω.

Proceeding in similar manner we can get

(fv − ϵv ∓ ω)|v±⟩ = −d|v⟩ − u±i |v⟩, (5.52)
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where

u±v |v⟩ =
Ne∑
b

[
⟨b|h2|b⟩|v±⟩ − ⟨b|h2|v±⟩|b⟩

+⟨b∓|h2|b⟩|v⟩ − ⟨b∓|h2|v⟩|b⟩
]
. (5.53)

Here also both Eqs. 5.52 and 5.53 are solved iteratively to obtain the self-consistent

solutions. Using the above D operator modified orbitals, E1NSI
PV can be evaluated as

E1NSI
PV = ⟨Φf |HWΩi,+|Φi⟩ + ⟨Φf |Ωf,−†HW |Φi⟩, (5.54)

where Ωv,± = Ω±
c + Ω±

v =
∑∞

k=1

[∑
a,p Ω

±(k,1)
a,p +

∑
p Ω

±(k,1)
v,p

]
. Amplitudes of these oper-

ators are given by

Ω±(k,1)
a,p = Ωp±

a +
∑
b,q

( [⟨pb|h2|aq⟩ − ⟨pb|h2|qa⟩]
ϵa − ϵp ± ω

Ω
±(k−1,1)
b,q

+Ω
∓(k−1,1)†

b,q

[⟨pq|h2|ab⟩ − ⟨pq|h2|ba⟩]
ϵa − ϵp ± ω

)
(5.55)

and

Ω±(k,1)
v,p = Ωp±

v +
∑
b,q

( [⟨pb|h2|vq⟩ − ⟨pb|h2|qv⟩]
ϵv − ϵp ± ω

Ω
±(k−1,1)
b,q

+Ω
∓(k−1,1)†

b,q

[⟨pq|h2|vb⟩ − ⟨pq|h2|bv⟩]
ϵv − ϵp ± ω

)
, (5.56)

where we assume Ω
±(0,1)
a,p ≈ Ωp±

a and Ω
±(0,1)
v,p ≈ Ωp±

v initially for the iteration procedure.

We also intend to mention here is that in Eqs. 5.55 and 5.56 , ω value can be used

from the experiment while in the ab initio framework it is taken from the DHF method.

Following the explanation in the previous section, it is obvious that the RPA wave

operators will pick up CP correlations through the D operator to all-orders. Again

based on the classification adopted in this thesis, the Goldstone diagrams contributing

to the amplitude determining equation for Core operator are shown in Fig. 5.8, while
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Ω−†
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HW

Figure 5.10: Property contributing diagrams of the RPA. These diagrams are similar
to the CPDF diagrams, but the core-polarization effects are included through the D
operator instead of HW .

the diagrams contributing to the amplitudes of the Valence operator are shown in Fig.

5.9. Using the above operators, we show the final Goldstone diagrams that contribute

to E1NSI
PV of RPA in Fig. 5.10. By analyzing these diagrams in terms of the Goldstone

diagrams shown in Figs. 5.8 and 5.9, it can be followed how the CP effects are included

through D to all-orders through the RPA. Though the number of Goldstone diagrams

that appear in the RPA and the CPDF method are same, it can be noticed here that

the Core correlations (excluding DHF contributions) arising in the RPA are distinctly

different than those that appear via the CPDF method.

5.2.5 CPDF-RPA method

The CPDF method and the RPA include CP effects only through the first-order per-

turbed wave functions, but the unperturbed wave functions in both cases are used from

the DHF method. In order to achieve CP effects through both states, it is necessary to

include the HW and D operators as perturbations. Keeping in view of the above, we

define the total Hamiltonian as

Ht = H + λ2HW + λ3D

≡ Hint + λ3D. (5.57)
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Treating both the HW and D operators perturbatively, the exact atomic wave function

(|Ψv⟩) of Ht can be expressed as

|Ψv⟩ = |Ψ(0,0)
v ⟩ + λ2|Ψ(1,0)

v ⟩ + λ3|Ψ̃(0,1)
v ⟩

+λ2λ3|Ψ(1,1)
v ⟩ + · · · . (5.58)

|Ψ(m,n)
v ⟩ represents consideration of m orders of HW and n orders of D in the atomic

wave function |Ψv⟩ of H. In the wave operator formalism, it is given by

Ωv|Φv⟩ = Ω(0,0)
v |Φv⟩ + λ2Ω

(1,0)
v |Φv⟩ + λ3Ω̃

(0,1)
v |Φv⟩

+λ2λ3Ω
(1,1)
v |Φv⟩ + · · · , (5.59)

where superscripts denote the same meaning as above. In this case, we can determine

the E1NSI
PV amplitude as the transition amplitude ofO ≡ λ2HW +λ3D between the initial

perturbed state to the final unperturbed state or between the initial unperturbed state

to the final perturbed state (see Eqs. 5.20 and 5.21). i.e.

E1NSI
PV = ⟨Ψ(0,0)

f |Ψ(1,1)
i ⟩ + ⟨Ψ(0,0)

f |D|Ψ(1,0)
i ⟩

+⟨Ψ(0,0)
f |HW |Ψ̃(0,1)

i ⟩

= ⟨Φf |Ω(0,0)†
f Ω

(1,1)
i |Φi⟩ + ⟨Φf |Ω(0,0)†

f DΩ
(1,0)
i |Φi⟩

+⟨Φf |Ω(0,0)†
f HW Ω̃

(0,1)
i |Φi⟩ (5.60)

or

E1NSI
PV = ⟨Ψ(1,1)

f |Ψ(0,0)
i ⟩ + ⟨Ψ(1,0)

f |D|Ψ(0,0)
i ⟩

+⟨Ψ̃(0,1)
f |HW |Ψ(0,0)

i ⟩

= ⟨Φf |Ω(1,1)†
f Ω

(0,0)
i |Φi⟩ + ⟨Φf |Ω(1,0)†

f DΩ
(0,0)
i |Φi⟩

+⟨Φf |Ω̃(0,1)†
f HWΩ

(0,0)
i |Φi⟩, (5.61)
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keeping terms that are of the order of λ2λ3. Note that in this approach, both HW and

D operators are treated symmetrically. Thus, definitions of both Core and Valence

contributions to E1NSI
PV will be identical for both Eqs. 5.60 and 5.61. Also, it would

be judicious to use both expressions to verify numerical uncertainty in the final result.

However, if ωex (some earlier studies have done it through the scaling procedure) is

used, then the results from both these equations may not agree with each other due

to inconsistencies in the treatment of the intermediate states through these equations.

We start by writing the modified single particle Hamiltonian for the corresponding

Hamiltonian Ht = Hint + λ3D in the CPDF-RPA method as fPV±
v = fPV

v + λ3d ∓ ω.

It follows

fPV±
v |v⟩ = ϵv|v⟩ (5.62)

and

uv =
Ne∑
b

[
⟨b|h2|b⟩|v⟩ − ⟨b|h2|v⟩|b⟩

]
, (5.63)

where the bar symbol denotes solution for Ht. By expanding, we get |v⟩ = |vPV ⟩ +

λ3|vPV±⟩ + O(λ23). It gives

(fPV
v − ϵPV

v ∓ ω)|vPV±⟩ = −d|vPV ⟩ − uPV (1)
v |vPV ⟩, (5.64)

where

uPV (1)
v |vPV ⟩ =

Ne∑
b

[
⟨bPV |h2|bPV ⟩|vPV±⟩ −⟨bPV |h2|vPV±⟩|bPV ⟩

+⟨bPV |h2|bPV ⟩|vPV±⟩ −⟨bPV |h2|vPV±⟩|bPV ⟩
]
. (5.65)

Further expanding Eqs. 5.64 and 5.65, and retaining terms of the order of λ2λ3 we get

(fv − ϵv ∓ ω)|vPV±⟩ = −d|vPV ⟩ − u±v |vPV ⟩ − hw|v±⟩
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−uPV
v |v±⟩ − uPV±

v |v⟩, (5.66)

where

uPV±
v |v⟩ =

Ne∑
b

[
⟨b∓|h2|bPV ⟩|v⟩ −⟨b∓|h2|v⟩|bPV ⟩

+⟨bPV |h2|b±⟩|v⟩ −⟨bPV |h2|v⟩|b±⟩

+⟨b|h2|bPV±⟩|v⟩ −⟨b|h2|v⟩|bPV±⟩

+⟨bPV∓|h2|b⟩|v⟩ −⟨bPV∓|h2|v⟩|b⟩
]
. (5.67)

It can be further noted that in the CPDF method, the perturbed core DHF orbital

(|aPV ⟩) is orthogonal to the unperturbed core orbital (|a⟩), and the same is also true

in the RPA. i.e. ⟨a|aPV ⟩ = 0 and ⟨a|a±⟩ = 0. However, ⟨a|aPV±⟩ ≠ 0 in the CPDF-

RPA method [14]. This necessitates to use the orthogonalized core orbitals (|ao±⟩) by

imposing the condition

|ao±⟩ = |aPV±⟩ −
∑
b

|b⟩⟨b|aPV±⟩. (5.68)

In Fig. 5.11, we show the Goldstone diagrams contributing to the determination of

the |aPV±⟩ and also the extra diagrams that are subtracted to obtain |ao±⟩.

Following the general formula given by Eq. 5.60, we can write

E1NSI
PV = ⟨f |d+ u+i |iPV ⟩ + ⟨f |hw + uPV

i |i+⟩ + ⟨f |uPV+
i |i⟩

= ⟨Φf |DΩi,CPDF |Φi⟩ + ⟨Φf |HWΩi,+|Φi⟩

+⟨Φf |ΩCPDF+|Φi⟩. (5.69)

Similarly, using the formula given by Eq. 5.61 we can get

E1NSI
PV = ⟨fPV |d+ u+i |i⟩ + ⟨f−|hw + uPV

i |i⟩ + ⟨f |uPV−
f |i⟩

= ⟨fPV |d+ u+i |i⟩ + ⟨f−|hw + uPV
i |i⟩ + ⟨f |uPV+

i |i⟩
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Figure 5.11: Goldstone diagrams representing terms of Eq. (5.66) representing the
uPV± term that gives rise to DCP contributions in the CPDF-RPA method. Diagrams
from (ix) to (xvi) along with their exchanges are coming due to the implementation of
the orthogonalization condition.

= ⟨Φf |Ωf,CPDF †D|Φi⟩ + ⟨Φf |Ωf−†HW |Φi⟩

+⟨Φf |Ωf,CPDF−|Φi⟩. (5.70)

In the above expressions, we define

ΩCPDF+ =
∑
i,j

(⟨f |u+i |iPV ⟩ + ⟨f |uPV
i |i+⟩

+⟨f |uPV+
i |i⟩)a†jai (5.71)

and

ΩCPDF− =
∑
i,j

(⟨fPV |u−f |i⟩ + ⟨f−|uPV
f |i⟩

+⟨f |uPV−
f |i⟩)a†jai. (5.72)

It is noteworthy that some literature works omit the contribution from ⟨f |uPV+
i |i⟩
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(vi) (vii) (viii) (ix)

(x) (xi) (xii) (xiii)

(xiv) (xv) (xvi)

...

D

Figure 5.12: Goldstone diagrams contributing to the E1NSI
PV amplitude in the CPDF-

RPA method.

in the CPDF-RPA method, with their contributions separately labeled as ‘DCP’ effects

[10, 11]. In Fig. 5.12, we present the diagrams contributing to E1NSI
PV in the CPDF-RPA

method, including the DCP effect. The CPDF-RPA method offers several advantages.

It captures CP effects to all-orders, treats both the HW and D operators equally, and

includes DCP effects that the CPDF method or RPA misses. However, it overlooks nu-

merous non-CP effects, such as PC contributions and correlations among CP and PC

effects, in determining E1NSI
PV . Additionally, the method manually incorporates the or-

thogonalization of perturbed occupied orbitals, lacking natural handling of this process.

Some earlier calculations using the CPDF-RPA method neglected contributions from

the DCP effects (see Ref. [11]). We denote those contributions as the CPDF-RPA*.

Although we express the CPDF, RPA, and CPDF-RPA methods using wave operators,

they cannot be derived using Bloch’s prescription. We have done this to establish a con-

nection among the many-body methods. Consequently, these methods simply extend
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Figure 5.13: Goldstone diagrams showing breakdown of the T (1) operators in terms of
lower-order perturbative excitations.

the DHF method and cannot account for effects neglected in generating single-particle

orbitals. For example, the effects of V Ne , V Ne−1, V Ne−2 potentials used in determining

wave functions via the Bloch equation, are managed through an effective Hamiltonian

like Heff = PvVresΩ
(0)
v Pv, which appears in solving the amplitude of Ω

(0)
v . However,

the wave operator amplitude solving equations in the CPDF, RPA, and CPDF-RPA

methods remains the same. Thus, the interaction of valence electrons neglected in the

construction of the DHF potential (inactive valence orbital) is not rectified through

these methods as in the RMBPT method. The RCC method will effectively address all

these limitations of the CPDF-RPA method.

5.2.6 RCC method

Compared to the CPDF, RPA, and CPDF-RPA methods, implementation and compu-

tational efforts in the RCC method are extensively complex and expensive [21, 22, 23,

24]. But the RCC method not only accounts for correlations through both the HW and
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Figure 5.14: Goldstone diagrams showing breakdown of the S
(1)
v operators in terms of

lower-order perturbative excitations.

D operators to all-orders, but it also takes care of other shortcomings of the CPDF-

RPA method. All CPDF-RPA effects, along with other effects like PC, inter-correlations

among CP and PC effects, corrections due to choice of V Ne−1 DHF potential approx-

imation, etc., are sub-summed within our RCC method. Here, we will consider the

RCCSD method to demonstrate how it captures correlations of previously mentioned

methods, including the appearance of orthogonalization of perturbed core orbitals in a

natural fashion, all-order PC, DCP effects, and normalization of wave functions, etc.,

compared to a mixed many-body method. Since all these effects are present within the

RCC theory and the wave functions are obtained through iterative scheme, all of these

effects are inter-correlated. To evaluate E1NSI
PV , we need to express the RCC operators

in terms of both the unperturbed and first-order perturbed operators. We have three

different options to obtain the E1NSI
PV amplitude in the RCC theory framework. First,

by adopting the approach similar to the CPDF method, in which HW is considered as

external perturbation. Second, by treating D as the external perturbative operator as
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in the RPA. The third approach would be along the lines of the CPDF-RPA method,

in which both the HW and D operators can be treated as external perturbations. The

implementation of the third approach would be more challenging and computationally

very expensive as it will demand storing amplitudes of four different types of perturbed

RCC operators instead of storing only one type of perturbed amplitudes in the first

case and two types in the second case. Among the first two approaches, computational

efforts are almost similar, but implementation-wise, considering HW as perturbation

will be more natural and is easier to deal with its angular momentum couplings owing

to its scalar form. Moreover, amplitudes of the perturbed operators due to HW will

converge faster than when D is treated as perturbation. Again, if needed, we can use

experimental energies in the first approach to get semi-empirical results, which isn’t

possible in the second approach due to previously discussed reasons. .Therefore, we use

the first approach to estimate the E1NSI
PV value.

We expand the T and Sv operators by treating HW as the perturbation to separate

out the solutions for the unperturbed and the first-order wave functions by expressing

T = T (0) + λ2T
(1) (5.73)

and

Sv = S(0)
v + λ2S

(1)
v , (5.74)

where the superscript meanings are same as specified earlier. This yields

|Ψ(0)
v ⟩ = (Ω(0)

c + Ω(0)
v )|Φv⟩ (5.75)

and

|Ψ(1)
v ⟩ = (Ω(1)

c + Ω(1)
v )|Φv⟩ (5.76)

with the definitions Ω
(1)
c = eT

(0)
T (1) and Ω

(1)
v = eT

(0)
{
T (1)S

(0)
v + S

(1)
v

}
. The unper-
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Figure 5.15: A few important E1NSI
PV evaluating diagrams in the RCCSD method.

turbed operator amplitudes are obtained by solving the usual RCC theory equations,

as mentioned earlier. The first-order perturbed RCC operator amplitudes are determ-

ined as

⟨Φ∗
c |(HeT

(0)

)connT
(1)|Φc⟩ = −⟨Φ∗

c |(HW e
T (0)

)conn|Φc⟩ (5.77)

and

⟨Φ∗
v|[(HeT

(0)

)conn − E(0)
v ]S(1)

v |Φv⟩ = −⟨Φ∗
v|[(HW e

T (0)

)conn

+(HeT
(0)

)connT
(1)]{1 + S(0)

v }|Φv⟩ (5.78)

As can be seen, the exact calculated energy also enters into the amplitude determining

equation of S
(1)
v because of the V Ne−1 potential. This is one of the advantages of the

RCC method over the CPDF-RPA method. In Figs. 5.13 and 5.14 we show some of the
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Figure 5.16: Breakdown of few RCCSD property diagrams in terms of lower-order
RMBPT diagrams.

important Goldstone diagrams contributing to the T
(1)
1 , T

(1)
2 , S

(1)
1v and S

(1)
2v amplitudes.

These diagrams can be compared with the CPDF-RPA wave operator amplitude de-

termining diagrams in order to understand how they are embedded within the RCC

operators irrespective of the fact that denominators in the RCC method will contain

the exact energy of the state instead of the DHF energy in the CPDF-RPA method.

The E1NSI
PV expression between the states |Ψi⟩ and |Ψf⟩ in the RCC theory is given

by

E1NSI
PV =

⟨Φf |{S(1)†
f + (S

(0)†
f + 1)T (1)†}D̄{1 + S

(0)
i }|Φi⟩

⟨Φf |{S(0)†
f + 1}N̄{1 + S

(0)
i }|Φi⟩

+
⟨Φf |{S(0)†

f + 1}D̄{T (1)(1 + S
(0)
i ) + S

(1)
i }|Φi⟩

⟨Φf |{S(0)†
f + 1}N̄{1 + S

(0)
i }|Φi⟩

, (5.79)

where D̄ = eT
(0)+

DeT
(0)

and N̄ = eT
(0)+

eT
(0)

. Unlike the CPDF, RPA and CPDF-RPA

methods, normalization factors appear explicitly in the RCC expression. Using the

wave operator notations, one can easily identify which RCC terms contribute to the
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Figure 5.17: Relating Core contributing diagrams from (i) DΩ
(1,1)
c of the RMBPT(3)W

method and (ii)HW Ω̃
(1,1)
c of the RMBPT(3)D method to the Core contributing diagrams

in the CPDF-RPA method. The former remains as a Core contributing diagram while
the later turns out to be a Valence contributing diagram in the RCCSD method.

Core and Valence correlations in the evaluation of E1NSI
PV . It means basically, any term

is connected either with the Sn=i,f
(0/1) operators or with their complex conjugate oper-

ators will be a part of the Valence correlation; otherwise, they will belong to the Core

correlation. It can be further clarified that the definitions of Core and Valence correla-

tion contributions to E1NSI
PV in our RCC theory are in line with the RMBPT(3)W and

CPDF methods and different than the RMBPT(3)D, RPA and CPDF-RPA methods.

In Fig. 5.15, we show a few important contributing Goldstone diagrams from the RCC

method to Core and Valence correlations. Also, for better understanding, the Goldstone

diagrams of the RCCSD method are further demonstrated as the sum of lower-order

Goldstone diagrams of the RMBPT(3) method in Fig. 5.16. From these relations, it

can be followed that the RCC method includes correlation effects from CP, PC, and

DCP to all-orders. It is also obvious from the above diagrams that orthogonalization

to core orbitals and extra DCP contributions also appear in a natural manner in our

RCC theory.

At this point, we would like to demonstrate how some of the lower-order Core contribut-
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ing diagrams of the RMBPT(3)W and RMBPT(3)D methods propagate to CPDF-RPA

and RCCSD methods. For this purpose, we consider each representing diagram from

the RMBPT(3)W and RMBPT(3)D methods as shown in Fig. 5.17 (i) and (ii), respect-

ively. As can be seen from these figures, a Core contributing diagram from the DΩ
(1,1)
c

term of the RMBPT(3)W method propagates as DΩCPDF
c in the CPDF-RPA method

and as DT
(1)
1 in the RCCSD method. Since T

(1)
1 contains both CP and PC effects to

all-orders, the Core contributions estimated using the RCCSD method are more rigor-

ous than the CPDF-RPA method. Returning to the Core contributing diagram from

the HW Ω̃
(1,1)
c term of the RMBPT(3)D method, it becomes a part of the Core contrib-

uting term HWΩ+
c of the CPDF-RPA method. However, this is embedded within the

S
(1)†
2f D term of the RCCSD method representing a part of the Valence correlation. This

implies that the definitions of Core and Valence contributing terms in the considered

CPDF-RPA and RCCSD methods are not unique and depend on how one chooses the

perturbation operator.

5.3 Results and Discussions

After establishing a theoretical understanding of various many-body methods, here we

discuss the results obtained from these diverse methods. As mentioned in the Intro-

duction, Porsev et al. [9] claimed an accuracy of about 0.27% for the E1NSI
PV amplitude

of the 6s 2S1/2 − 7s 2S1/2 transition in 133Cs. However, the estimation of Core and Tail

contributions still relied on a combination of many-body methods without specifying

the precise physical effects considered in their evaluation. We collectively refer to these

two contributions as the X-factor in this study. In an effort to improve the accuracy of

the computed E1NSI
PV value, Dzuba et al. [10] assessed the X-factor contributions using

their TDHF approach, revealing an opposite sign for the Core contribution compared

to that reported by Porsev. To understand the source of this discrepancy, we have

calculated E1NSI
PV for the aforementioned transition using various many-body methods.

We have also illustrated the similarities and differences among various contributions to
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Table 5.1: Excitation energies (in cm−1) of the low-lying states of 133Cs from the RCCSD
method. Energies are compared with the experimental values. We also present HW (in
units of 10−11i(−QW/N)|e|a0) matrix elements from various many-body method. N is
the neutron number.

Transition Excitation Energy HW amplitude

RCCSD Experiment [26] RCCSD
6P1/2-6S −11243.93 −11178.27 −1.2541
7P1/2-6S −21838.93 −21765.35 −0.7135
8P1/2-6S −25787.48 −25708.83 −0.4808
9P1/2-6S −27735.96 −27637.00 0.3471
7S-6P1/2 7352.53 7357.26 0.6067
7S-7P1/2 −3242.47 −3229.82 0.3445
7S-8P1/2 −7191.02 −7173.31 0.2320
7S-9P1/2 −9139.50 −9101.47 −0.1674

E1NSI
PV across these methods. To ensure the accuracy of our calculations, we validate

our E1NSI
PV values from the DHF, CPDF, RPA, and CPDF-RPA methods by comparing

them with earlier reported values by Mårtensson [14]. We also present the result of the

E1NSI
PV value for the 6S−5D3/2 transition in 133Cs to address a comment by Roberts and

Ginges in Ref. [25], where they discuss the agreement of the sign of Core contribution

to the E1NSI
PV value of an S −D transition reported earlier using the RCCSD method

[24], while noting a sign difference for the 6S − 7S transition in 133Cs.

5.3.1 Excitation energies and matrix elements

Before presenting results for E1NSI
PV , in Table 5.1, we provide the excitation energies of

some of the lower-lying valence orbitals of the 133Cs atom. Additionally, we compare

our RCCSD results with available experimental data [26]. We also showcase the HW

matrix elements obtained using the RCCSD methods. The RCCSD method matrix

elements for the E1 operator have already been presented in Table 3.4.
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5.3.2 Results for E1NSI
PV amplitude

In Table 5.2, we present the E1NSI
PV values for the 6S − 7S and 6S − 5D3/2 transitions

in 133Cs using the DC Hamiltonian derived from various methods, including the DHF

method. The values highlighted in bold font in this table are claimed to be accurate

within 0.5% by earlier studies. Nevertheless, a detailed examination reveals discrepan-

cies of up to 1% among some values, suggesting potential issues with the estimation of

accuracy in these calculations that call for further investigation. Results obtained from

the sum-over-states approach, denoted as ‘Sum-over’ in the table, utilize scaled E1 mat-

rix elements and energies from the CCSDvT method to estimate the Main contribution

of E1NSI
PV for the 6S−7S transition, while the X-factor is derived using a combination of

many-body methods [9]. In another study [10], the same ‘Main’ contribution is adopted

from Ref. [9], but Core and Tail contributions to the X-factor are estimated using the

CPDF-RPA* method, referred to as RPA in the original paper, with PC effects estim-

ated using the BO-correlation method. The results from these RPA+BO methods are

listed under ‘Mixed-states’ in the table. The significant discrepancies observed in both

sets of results stem from the X-factors estimated in Refs [9, 10]. If the total X-factors

had been consistent between the two works but individual contributions had varied,

then the discrepancy in the results could have been attributed to the distribution of

contributions under the Core and Valence correlations in the approaches in both stud-

ies. However, the substantial differences observed between the X-factors for the 6S−7S

transition do not support such an explanation.

To investigate the origin of the significant discrepancies observed in various studies,

we first examine the Main contribution to the 6S − 7S transition using properties

calculated from our RCCSD method within the sum-over-states approach. We utilize

the E1 matrix elements and energies from our calculations, as well as experimental data

[26, 27, 28, 29, 30]. Table 5.3 presents the estimated Main contributions to E1NSI
PV for the

6S− 7S transition, categorized as follows: (a) results from ab initio calculations for E1

matrix elements and energies, (b) using experimental E1 values with calculated energies,
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Table 5.2: E1NSI
PV values, in units 10−11i(−QW/N)|e|a0, of the 6s 2S1/2 − 7s 2S1/2 and

6s 2S1/2−5d 2D3/2 transitions in 133Cs from DC Hamiltonian reported by various works.
The methods labeled as ‘Sum-over’ and ‘Mixed’ are derived using the sum-over-states
approach and mixed many-body methods, respectively. Results highlighted in bold font
are asserted to have an accuracy within 0.5% accuracy.

Method This work Others This work Others

6s 2S1/2 − 7s 2S1/2 6s 2S1/2 − 5d 2D3/2

DHF 0.7375 0.736 [14] −2.3933
RMBPT(3)W 1.0902 −2.4639
CPDF 0.9226 0.924 [14] −2.7989
RPA 0.7094 0.707 [14] −2.2362
CPDF-RPA∗ 0.8876 0.8914 [10] −3.1665 −3.80 [11]

0.8923† [10]
0.907 [11]

CPDF-RPA 0.8859 0.886 [14] −3.1071 −3.70 [31]
0.9041 [8]

RCCSD 0.8964 0.8961 [12] −3.5641 −3.210[32]
RCCSDT 0.8967 [12]
Sum-over 0.9053 [9] −3.76 [33]

0.8998† [9]
Mixed-states 0.8967 [10] −3.62 [33]

0.8938† [10]
0.9083‡ [10]

†Note: Scaled value.
‡Scaled value + borrowed contribution from Ref. [9].

(c) ab initio E1 values with experimental energies, and (d) employing experimental

values for both the E1 matrix elements and energies. This analysis reveals that the

result from (b) is larger than (a), while results from (c) and (d) are lower than (a). Thus,

it suggests that the accuracy of energies in a given method influences the results more

than the E1 matrix elements. Later, we explicitly demonstrate that using experimental

energy alone of the initial or final state in first-principle calculations introduces errors

to the E1NSI
PV estimation.

Now, we compare our calculation with earlier results in order to find the reason
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Table 5.3: Estimated ‘Main’ contributions to the E1NSI
PV values, in units

10−11i(−QW/N)|e|a0, of the 6s 2S1/2−7s 2S1/2 transition in 133Cs using matrix elements
involving np 2P1/2 intermediate states in the sum-over-states approach. Four cases are
being considered: (a) ab initio result in which calculated values from Table 5.1 and 3.4
are used; (b) replacing calculated E1 matrix elements by their experimental values; (c)
retaining calculated E1 matrix elements and using experimental energies; and (d) using
experimental values for both E1 matrix elements and energies.

Approach ⟨7S|D|6SPV ⟩ ⟨7SPV |D|6S⟩ Total
(a) −0.4461 1.3171 0.8710
(b) −0.4373 1.3121 0.8748
(c) −0.4522 1.3156 0.8634
(d) −0.4434 1.3106 0.8672

for getting the opposite sign for the Core contribution for 6S − 7S transition in 133Cs.

Subtracting the ab initio value of Main from the final RCCSD result, we find the X-

factor for E1NSI
PV of the 6S−7S transition to be 0.0254, compared to 0.0175 and 0.0256

reported in Refs. [9] and [10], respectively, in units of 10−11i(−QW/N)|e|a0. This shows

a significant difference between the X-factor of Ref. [9] and our work, while the values

nearly agree between Ref. [10] and our findings. Given the sign difference between the

Core contribution from Ref. [10] and the RCCSD value this analysis implies that the

discrepancy is primarily due to different definitions used for the Core contribution in

both studies. To illustrate numerically how the definition of Core contribution changes

depending on the chosen approach to estimate E1NSI
PV , we present the Core and Valence

contributions separately for the 6S − 7S and 6S − 5D3/2 transitions using both the

RMBPT(3)W and RMBPT(3)D approaches in Table 5.4. For the purpose of demon-

strating how the appearance of Heff in the wave function determining equation due to

the choice of V Ne−1 modifies the result, we provide RMBPT(3) outcomes considering

the effect of Heff (denoted as (a) in the table) and replacing it with the DHF energy, as

done in the CPDF-RPA method (results indicated as (b) in the table). It is evident that

the Core and Valence contributions from both the RMBPT(3)W and RMBPT(3)D ap-

proaches yield different results, while the final outcomes from both methods are nearly
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Table 5.4: Core and Valence correlation contributions to the E1NSI
PV values, in units

10−11i(−QW/N)|e|a0, for the 6s 2S1/2 − 7s 2S1/2 and 6s 2S1/2 − 5d 2D3/2 transitions
in 133Cs from the RMBPT(3)W and RMBPT(3)D approaches. Results (a) considering
Heff effect due to V Ne−1 potential and (b) using DHF orbital energies are shown for
comparison.

Approach RMBPT(3)W RMBPT(3)D

Core Valence Core Valence
6s 2S1/2 − 7s 2S1/2

(a) −0.00205 1.09220 −0.00003 1.24290
(b) −0.00206 0.43938 −0.00031 0.43763

6s 2S1/2 − 5d 2D3/2

(a) −0.16391 −2.30000 −0.12208 −2.55427
(b) −0.18267 −3.97004 −0.12513 −4.02758

similar. Additionally, significant changes in the results for both transitions are observed

when Heff is considered in the wave function-solving equation compared to when it is

not.

To further investigate the discrepancies in the X-factors reported in various studies,

we delineate the Core and Valence contributions to the E1NSI
PV values separately for both

the 6S−7S and 6S−5D3/2 transitions through first-principle calculations in Table 5.5.

Examination of the table reveals that the signs of Core contributions to E1NSI
PV for

both transitions, obtained from the DHF method and various many-body methods at a

given level of approximation, are consistent across different research groups. To further

validate our results, we compare the Core and Valence contributions to the 6S − 7S

transition in Table 5.6 from both the initial and final perturbed states using the DHF,

CPDF, RPA, and CPDF-RPA* methods with values reported in a Comment by Roberts

and Ginges [25] and by Mårtensson [14]. We find reasonably good agreement between

our results and the earlier estimations. This consistency suggests that there are no

issues with the implementation of these theories in our calculations.

We have shown the definition of Core and Valence contributions are not unique

and change depending upon the choice of perturbation operator. However, the exact
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Table 5.5: Ab initio contributions to Core and Valence parts of the E1NSI
PV values, in

units 10−11i(−QW/N)|e|a0, for the 6s 2S1/2−7s 2S1/2 and 6s 2S1/2−5d 2D3/2 transitions
in 133Cs from different methods considered in this work using the DC Hamiltonian.
Available results from previous calculations are also given for comparison.

Method This work Others

Core Valence Core Valence

6s 2S1/2 − 7s 2S1/2

DHF −0.00173 0.73923 −0.00174[25]
RMBPT(3)W −0.00205 1.09220
RMBPT(3)D −0.00003 1.24290
CPDF −0.00199 0.92454 −0.00201 [25]
RPA 0.00028 0.70912
CPDF-RPA∗ 0.00169 0.88591 0.00170 [25]
CPDF-RPA 0.00169 0.88421
RCCSD −0.00197 0.89840 −0.0019 [12] 0.8980 [12]

6s 2S1/2 − 5d 2D3/2

DHF −0.11684 −2.27646
RMBPT(3)W −0.16391 −2.3000
RMBPT(3)D −0.12208 −2.55427
CPDF −0.19122 −2.60768
RPA −0.12037 −2.11585
CPDF-RPA∗ −0.20786 −2.95860
CPDF-RPA −0.20786 −2.89923
RCCSD −0.14745 −3.41667

reason for the discrepancy in the sign of the Core contribution to E1NSI
PV for the 6S−7S

transition in 133Cs between Ref. [9] and Ref. [10] remains unclear as Ref. [9] does not

explicitly mention the exact method(s) used for its estimation. By comparing the signs

of Core contributions from various methods employed in our study, we infer that Ref.

[9] likely estimates the Core contribution by treating HW as the perturbation. In such

a case, the Tail contributions to E1NSI
PV for the 6S − 7S transition in 133Cs from Refs.

[9] and [12], as well as from our RCCSD results, should closely align with each other.
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Table 5.6: Comparison of contributions from the initial and final perturbed states to
E1NSI

PV of the 6s 2S1/2 − 7s 2S1/2 transition of 133Cs, in units 10−11i(−QW/N)|e|a0, at
different levels of approximation between the present work and that are reported in
Refs. [14, 25].

Method ⟨7SPNC |D|6S⟩ ⟨7S|D|6SPNC⟩

Ours Ref. [14] Ours Ref. [14]

Total contribution
DHF 1.01168 1.010 −0.27418 −0.274
CPDF 1.26664 1.267 −0.34409 −0.344
RPA 1.02557 1.023 −0.31617 −0.316
CPDF-RPA* 1.27910 1.279 −0.39150 −0.391

Ours Ref. [25] Ours Ref. [25]

Core contribution
DHF −0.02638 −0.02645 0.02465 0.02472
CPDF −0.04298 −0.04319 0.04099 0.04119
RPA −0.03536 0.03564
CPDF-RPA* −0.05794 −0.05822 0.05963 0.05992

Valence contribution
DHF 1.03806 −0.29883
CPDF 1.30962 −0.38508
RPA 1.06094 −0.35181
CPDF-RPA* 1.33704 −0.45113

The notable differences in the X-factors reported in Ref. [9] and our work indicate

that the former work underestimates the Tail contribution. It should be noted that

the Tail contributions are estimated without using sum-over-states approach, so the

difference in these values is mainly due to different levels of approximation made in the

many-body methods employed for their estimations. Now, let’s explore the reason why

Roberts and Ginges obtained the same sign for the Core contribution to E1NSI
PV of the

7S − 6D3/2 transition in Ra+ using their RPA+BO method as reported in the RCC

method in Ref. [24]. Since the correlation trends for E1NSI
PV of the nS − (n − 1)D3/2
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transitions are comparable in Cs and Ra+, where n represents the ground state prin-

cipal quantum number of each system, we can elucidate this point by analyzing the

Core contributions to E1NSI
PV of the 6S − 5D3/2 transition from different methods and

comparing their trends with the 6S − 7S transition of 133Cs. Upon examining these

contributions from Table 5.5, it becomes evident that there is an order of magnitude

difference in the Core contribution to the 6S−7S transition between the RMBPT(3)W

and RMBPT(3)D methods, whereas there is a change in sign between these results from

the CPDF method and the RPA. However, the disparities between the Core contribu-

tions from the RMBPT(3)W and RMBPT(3)D methods in the 6S − 5D3/2 transition

are minor, and there is no difference in sign between the CPDF and RPA results.

These trends can be rationalized as follows: In the 6S − 7S transition, the wave func-

tions of both associated states exhibit significant overlap with the nucleus, while in the

6S − 5D3/2 transition, only the wave function of the ground state demonstrates sub-

stantial overlap with the nucleus. Consequently, strong CP effects contribute through

both states in the former case. Additionally, the contribution from individual diagrams

of the CPDF-RPA method is almost comparable in the 6S − 7S transition, whereas

selective diagrams predominantly contribute in the 6S − 5D3/2 transition. Since CP

effects induced by the D operator are stronger and exhibit opposite signs compared to

those induced by HW , the net Core contributions in the S − S and S −D transitions

behave differently in the CPDF method and RPA, and this discrepancy extends to the

CPDF-RPA*/CPDF-RPA method. As Core and Valence contributions are essentially

redistributed in the CPDF-RPA* and RCCSD methods, the difference between the final

values in Refs. [10] and [12], as well as in the present work, is minimal in the 6S − 7S

transition, while it is slightly noticeable in the 6S− 5D3/2 transition (refer to Table 5.2

for the comparison of results from the Mixed-states and RCCSD methods).

We can estimate the DCP contributions from our calculations by taking the dif-

ferences between the results from the CPDF-RPA* and CPDF-RPA methods. This

difference for the 6S−7S transition from our work is compared with the corresponding

values from Refs. [14] and [11]. Through this comparison, we observe better agreement
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between our result and Mårtensson than with Roberts. Our final CPDF-RPA result

also aligns more closely with Ref. [14] than with Ref. [11]. It is worth noting that the

CPDF-RPA* results in Refs. [10] and [25] are also scaled using ωex = 0.0844 a. u. As

explained in the preceding section, we have theoretically justified why such an approach

could introduce errors in determining E1NSI
PV values. To illustrate this numerically, we

provide results for both the 6S − 7S and 6S − 5D3/2 transitions from the CPDF-RPA

method using Eqs. 5.69 and 5.70 in Table 5.7. We present these values using ω, ωex,

and also ωex with experimental energies (Eexpt
i,f ) of the 6S, 7S, and 5D3/2 states. Upon

comparing these results, an intriguing trend emerges. When both ω and energies of the

atomic states are considered either from theory or experiment the results from both Eqs.

5.69 and 5.70 match each other. Otherwise, significant discrepancies arise in the results

from these two equations. In methods like RMBPT, RPA, or CPDF-RPA, it is feasible

to use ωex and experimental energies of the initial and final states concurrently in the

E1NSI
PV evaluation. However, in more complex methods like the RCC method, one must

choose between using ωex or ωex with the experimental energy of only the valence state

(whose perturbed state wave function is evaluated). Since the energies of the double

and triple excited configurations appear in the denominator of the RCC theory, their

experimental energies cannot be employed in the wave function determining equations.

Aligning this understanding with the above finding, it’s evident that scaling the wave

function using only the experimental energy of the valence state may not always yield

accurate results; instead, it could introduce additional errors to the calculation. As elu-

cidated in the earlier sections, this aspect can be theoretically grasped using Eq. 5.30.

Nonetheless, it is noteworthy from Table 5.7 that our result with the ωex value from the

CPDF-RPA* method doesn’t correspond with the respective results from Refs. [10, 25]

for the 6S− 7S transition. Regrettably, we are unable to discern the underlying reason

for this discrepancy, although the results with the theoretical ω value from both works

agree quite well.

In Table 5.8, we present the E1NSI
PV values for the 6S−7S and 6S−5D3/2 transitions

in 133Cs, focusing on individual RCCSD terms to provide a quantitative understanding
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of the preceding discussion. By leveraging definitions of the T and Sv RCC excitation

operators, we categorize the results into Core and Valence correlation contributions.

By subtracting the Core contributions of the DHF method from the contributions of

the D̄T
(1)
1 and its complex conjugate (c.c.) term, the net Core correlation contribu-

tions to E1NSI
PV in the RCCSD method can be inferred. Similarly by subtracting the

Valence contributions of the DHF method from the D̄S
(1)
1i + S

(1)†
1f D̄ terms and adding

contributions from other Valence correlation contributing terms, we can get the net

Valence correlation contributions to E1NSI
PV in the RCCSD method. The Core correla-

tions arising through D̄T
(1)
1 and c.c. terms encompass contributions from both singly

and doubly excited configurations. By analysing the RMBPT(3)W diagrams contribut-

ing to the T
(1)
1 amplitude determining equation shown in Fig. 5.13, it can be understood

that the D̄T
(1)
1 and c.c. terms contain the Core contributions of the CPDF method,

PC contributions of the RMBPT(3) method to all-orders and many more. However,

they do not include Core contributions arising through the RPA and some contributions

from the CPDF-RPA method. Likewise, the Valence correlation contributions from the

CPDF method, RPA, and CPDF-RPA* method are included through the D̄S
(1)
1i +S

(1)†
1f D̄

terms in the RCCSD method. Additionally, they encompass contributions from the

BO-correlation technique and beyond. However, numerous correlation contributions

to E1NSI
PV arise through other RCCSD terms, such as D̄S

(1)
2i , D̄T

(1)
1/2S

(0)
1/2i, T

(1)†
1/2 D̄S

(0)
1/2i,

such terms but replacing S
(0/1)
1/2i operators with S

(0/1)†
1/2f , S

(0)†
1/2fD̄S

(1)
1/2i, S

(1)†
1/2fD̄S

(1)
1/2i etc.

These contributions are not present in the CPDF-RPA* method, and many of them

cannot be considered part of the BO-correlation method. Additionally, corrections

to the entire correlation contributions, including those from the CPDF-RPA method

due to wave function normalization (given as ‘Norm’), are quoted separately in the

table and found to be significant. The most prominent DCP contributions are ab-

sorbed through the D̄S
(1)
2i + S

(1)†
2f D̄ terms in the RCCSD method, which also include

some Core contributions from the CPDF-RPA method (like the ones appears in the

RPA). Moreover, non-linear terms like D̄T
(1)
1/2S

(0)
2i , T

(1)†
2 D̄S

(0)
1i , and their counterparts

encompass additional Valence correlation contributions beyond the combined scope of
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CPDF-RPA and BO-correlation methods. In Table 5.8, we provide contributions to

E1NSI
PV for the 6S− 7S and 6S− 5D3/2 transitions from the RCCSD terms using scaled

S
(0)
v and S

(1)
v amplitudes. We demonstrate the variation in results when scaling both

the unperturbed and perturbed wave functions independently by: (a) Scaling only the

amplitudes of the S
(0)
v operators. (b) Scaling amplitudes of both the S

(0)
v and S

(1)
v

operators. Significant differences are observed between both the scaled results. It is

important to note that scaling the T (0/1) amplitudes is not appropriate as the orbitals

used for their determination encounter the V Ne potential, unlike the amplitude determ-

ining equations for the S
(0/1)
v operators, where orbitals encounter the V Ne−1 potential.

Thus, substituting the ωex value in the estimation of Core contribution may not be

theoretically sound. Moreover, we can only substitute the energy of the valence state

from outside in the wave function solving equations, while energies of the intermediate

states are implicitly generated in the RCC theory. Consequently, evaluating the E1NSI
PV

amplitudes through the scaling procedure using the RCC method may introduce nu-

merical errors to the calculations. Nevertheless, comparing the semi-empirical results

obtained by using experimental energies with the ab initio values of E1NSI
PV for both the

6S−7S and 6S−5D3/2 transitions reveals significant differences. These differences can

be minimized by including higher-level excitations in the RCC theory. However, these

higher-level excitations will not only improve the energy values but also alter the matrix

elements of the HW and D operators. As demonstrated by Sahoo et al. [12, 35], inclu-

sion of triple excitations in the RCC theory modifies the energies and matrix elements

of the HW and D operators in a manner that the E1NSI
PV values from the RCCSD and

RCCSDT methods remain nearly unchanged. Consequently, we cannot argue that the

scaled E1NSI
PV values are more accurate than the ab initio values in the RCCSD method

approximation. For completeness, we also estimate QW using the ab initio value of

E1NSI
PV for the 6S → 7S transition. By combining this with the experimental values for

vector polarizability (β) from Ref. [36] and for the NSI PV amplitude ratio E1NSI
PV /β

from Ref. [37], we obtain QW = −73.74.
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5.4 Summary

We have investigated roles of Core and Valence correlation effects in the calculations

of E1NSI
PV amplitudes of the 6S → 7S and 6S → 5D3/2 transitions in 133Cs by using

a variety of relativistic many-body methods at different levels of approximation, such

as RPMBT(3), CPDF, RPA, combined CPDF-RPA and RCCSD methods. Through

this analysis, we have addressed a longstanding issue regarding the opposite signs of

the Core correlation contribution to the E1NSI
PV amplitude of the 6S → 7S transition

in 133Cs. We have shown that the definition of Core and Valence contribution is not

unique and depends on the choice of perturbation operator. In Porsev and Dzuba’s

calculation, different operators were chosen as perturbations, so the value of the Core

contribution was different. Further we have also analyzed results from the sum-over-

states approach and first-principles calculations using the RCCSD method to identify

missing contributions in the former approach. The inclusion of these missing contri-

butions through the combined CPDF-RPA method was compared with the RCCSD

method. This comparison demonstrated that the first-principle approach using RCC

theory incorporates electron correlation effects more rigorously than the other methods

mentioned above for the evaluation of E1NSI
PV amplitude in the 133Cs atom.
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Table 5.7: Contributions to Core and Valence parts from different terms to E1NSI
PV

of the 6s 2S1/2 − 7s 2S1/2 and 6s 2S1/2 − 5d 2D3/2 transitions in 133Cs, in units
10−11i(−QW/N)|e|a0 from Eqs. 5.69 and 5.70 of the CPDF-RPA method, which are
quoted under ‘Expression a’ and ‘Expression b’ respectively. Results are given using
the calculated ω value, ωex and ωex with the experimental energies of the initial and
final states (denoted by Eexpt

i,f ).

Contribution Expression a Expression b

6s 2S1/2 − 7s 2S1/2

⟨7s|hw|6s+⟩ ⟨7s|uPV
6s |6s+⟩ Total ⟨7sPV |d|6s⟩ ⟨7sPV |u+6s|6s⟩ Total

Core (ω) −0.0357 −0.02257 −0.05794 −0.04299 −0.01495 −0.05794
Valence (ω) 1.06094 0.27610 1.33704 1.30962 0.02742 1.33704

Core (ωex) −0.03464 −0.02211 −0.05675 −0.04299 −0.01458 −0.05757
Valence (ωex) −0.19464 −0.04598 −0.24062 1.30962 0.02743 1.33705

Core (Eexpt
i,f ) −0.03546 −0.02283 −0.05829 −0.04331 −0.01498 −0.05829

Valence (Eexpt
i,f ) 1.21721 0.31956 1.53677 1.53384 0.00293 1.53677

⟨7s|d|6sPV ⟩ ⟨7s|u+6s|6sPV ⟩ Total ⟨7s−|hw|6s⟩ ⟨7s−|uPV
6s |6s⟩ Total

Core (ω) 0.04099 0.01864 0.05963 0.03564 0.023399 0.05963
Valence (ω) −0.38508 −0.06605 −0.45113 −0.35181 −0.09932 −0.45113

Core (ωex) 0.04099 0.01915 0.06014 0.03651 0.02458 0.06109
Valence (ωex) −0.38508 −0.06644 −0.45152 −0.17081 −0.05022 −0.22103

Core (Eexpt
i,f ) 0.04210 0.01999 0.06209 0.03686 0.02523 0.06209

Valence (Eexpt
i,f ) −0.12128 −0.05800 −0.17928 −0.13743 −0.04185 −0.17928

6s 2S1/2 − 5d 2D3/2

⟨5d3/2|hw|6s+⟩ ⟨5d3/2|uPV
6s |6s+⟩ Total ⟨5dPV

3/2 |d|6s⟩ ⟨5dPV
3/2 |u+6s|6s⟩ Total

Core (ω) 0.0 −0.00616 −0.00616 −0.00451 −0.00165 −0.00616
Valence (ω) 0.0 −0.27386 −0.27386 −0.27878 0.00492 −0.27386

Core (ωex) 0.0 −0.00612 −0.0612 −0.00451 −0.00164 −0.00615
Valence (ωex) 0.0 −0.23287 −0.23287 −0.27878 0.00493 −0.27385

Core (Eexpt
i,f ) 0.0 −0.00628 −0.00628 −0.00459 −0.001087 −0.00628

Valence (Eexpt
i,f ) 0.0 −0.83936 −0.83936 −0.87962 0.04028 −0.83936

⟨5d3/2|d|6sPV ⟩ ⟨5d3/2|u+6s|6sPV ⟩ Total ⟨5d−3/2|hw|6s⟩ ⟨5d−3/2|uPV
6s |6s⟩ Total

Core (ω) −0.19574 −0.00596 −0.20170 −0.12037 −0.08133 −0.20170
Valence (ω) −2.88646 0.20172 −2.68474 −2.11585 −0.56889 −2.68474

Core (ωex) −0.19574 −0.00636 −0.20210 −0.12109 −0.08182 −0.20291
Valence (ωex) −2.88646 0.20201 −2.68445 −1.94829 −0.52407 −2.47236

Core (Eexpt
i,f ) −0.20110 −0.00744 −0.20854 −0.12363 −0.08491 −0.20854

Valence(Eexpt
i,f ) −2.02306 0.16022 −1.86284 −1.46451 −0.39833 −1.86284
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Table 5.8: First-principle calculated E1NSI
PV values (in −i(QW/N)|e|a0 × 10−11) of the

6s 2S1/2 − 7s 2S1/2 and 6s 2S1/2 − 5d 2D3/2 transitions in 133Cs from different terms of
the RCCSD method. Both ab initio and scaled values are given for comparison. We
have used two different types of scaling: (a) only scaling amplitudes of the unperturbed

S
(0)
v operators and (b) scaling amplitudes of both the S

(0)
v and S

(1)
v operators. Here,

contributions under ‘Norm’ represents the difference between the contributions after
and before normalizing the RCCSD wave functions. ‘Others’ denotes contributions
from those RCCSD terms that are not shown explicitly in this table.

RCC term 6s2S1/2 − 7s 2S1/2 6s 2S1/2 − 5d 2D3/2

Ab initio Scaled-a Scaled-b Ab initio Scaled-a Scaled-b

Core contribution

DT
(1)
1 −0.04161 −0.04161 −0.04161 −0.00062 −0.00062 −0.00062

T
(1)†
1 D 0.03964 0.03964 0.03964 −0.17132 −0.17132 −0.17132

Others −0.00005 −0.00005 −0.00005 0.01757 0.01757 0.01757
Norm 0.00005 0.00005 0.00005 0.00692 0.00670 0.00670

Valence contribution

DS
(1)
1i −0.19363 −0.19363 −0.19688 −2.96310 −2.96310 −2.97589

S
(1)†
1f D 1.80382 1.80382 1.80263 −0.89993 −0.89993 −1.30760

S
(0)†
1f DS

(1)
1i −0.23184 −0.23187 −0.23297 −0.06863 −0.06548 −0.06487

S
(1)†
1f DS

(0)
1i −0.41826 −0.41895 −0.41942 0.10487 0.10502 0.14626

DS
(1)
2i −0.00039 −0.00039 −0.00039 0.00107 0.00107 0.00108

S
(1)†
2f D 0.00033 0.00033 0.00033 −0.00023 −0.00023 −0.00023

Others −0.04040 −0.04222 −0.04025 0.24888 0.24806 0.27704
Norm −0.02122 −0.01942 −0.02110 0.16040 0.15505 0.15309

Total 0.89643 0.89570 0.88998 −3.56412 −3.56721 −3.91879
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Chapter 6

Hyperfine Interaction Induced

Electric Dipole Polarizability in

133Cs

B
erfore studying NSD PV in 133Cs atom, it is judicious to check the potential

of the method to produce accurate results. In Chapter 4, we verified that the

RCC method is better than the lower-order methods like RMBPT and RPA by calcu-

lating second-order electric dipole polarizability for closed-core atomic systems. In this

chapter, we are extending this exercise by trying to calculate the E1 polarizabilities

(αF,MF
) of the F = 3 and F = 4 hyperfine levels of the ground state in 133Cs. There are

two primary reasons for choosing this property. First, like NSD PV amplitude, αF,MF

depends on the wave function of the hyperfine level. Considering correction up to first-

order from NSD parity-violating interaction, we can express the NSD PV amplitude

between initial (i) and final (f) state as

E1NSD
PV = ⟨Ψ(0),F

f |D|Ψ(1),F
i ⟩ + ⟨Ψ(1),F

f |D|Ψ(0),F
i ⟩

=
∑
I ̸=i

⟨Ψ(0),F
f |D|Ψ(0),F

I ⟩⟨Ψ(0),F
I |HNSD

PV |Ψ(0),F
i ⟩

E
(0),F
i − E

(0),F
I
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+
∑
I ̸=f

⟨Ψ(0),F
f |HNSD

PV |Ψ(0),F
I ⟩⟨Ψ(0),F

I |D|Ψ(0),F
i ⟩

E
(0),F
f − E

(0),F
I

, (6.1)

where |Ψ(0),F
v ⟩ is the wave function of the hyperfine level due to em interaction which can

be expressed as |Ψ(0),F
v ⟩ = |(IJ)FMF ⟩ and E

(0),F
v is the corresponding energy. |Ψ(1),F

v ⟩
is the first-order perturbed wave function. In a similar way, the expression for the αF,MF

can be written as

αF,MF
= ⟨Ψ(0),F

v |D|Ψ(1),F
v ⟩ + ⟨Ψ(1),F

v |D|Ψ(0),F
v ⟩

=
∑
I ̸=v

⟨Ψ(0),F
v |D|Ψ(0),F

I ⟩⟨Ψ(0),F
I |D|Ψ(0),F

v ⟩
E

(0),F
v − E

(0),F
I

+
∑
I ̸=v

⟨Ψ(0),F
v |D|Ψ(0),F

I ⟩⟨Ψ(0),F
I |D|Ψ(0),F

v ⟩
E

(0),F
v − E

(0),F
I

. (6.2)

The expressions for E1NSD
PV and αF,MF

exhibit notable similarities. In case of E1NSD
PV ,

the electronic component of the NSD PV Hamiltonian, K(1), is a rank one operator.

Similarly, for αF,MF
the perturbed operator, D, is a rank one operator. This suggests

that the angular momentum coupling for E1NSD
PV and αF,MF

calculations will be sim-

ilar. Further, calculation of αF,MF
depends on the magnetic dipole hyperfine interaction,

which originates in the nucleus. The electronic component of this interaction is also

a rank one operator. Secondly, our primary objective is to probe KW by combining

theoretical and experimental results for the NSD PV amplitude. As we are treating

KW as an unknown quantity, we cannot compare our calculated value of E1NSD
PV with

the experimental result. In this scenario, calculation of the polarizability of the hyper-

fine level of 133Cs will be useful to support the accuracy of our NSD PV calculations.

As there are experimental and various theoretical results available for αF,MF
, we can

compare our polarizability results with the earlier studies and assess the potential of

our method.
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Figure 6.1: Goldstone diagrams representing the DHF contributions to the second-order
E1 polarizability. The horizontal line represents the E1 operator D.

6.1 Prelude of earlier calculations

Beyond going verifying the precision of our NSD PV results, the accurate determ-

ination of these polarizability values is also important for high-precision experiments

like atomic clocks, atom trapping and quantum computers [1, 2, 3, 4, 5, 6, 7]. The

polarizability of the hyperfine levels of the ground state in the 133Cs atom has been

studied by a number of research groups [8, 9, 10, 11, 12, 13, 14]. Nonetheless, there

exist disparities of around 10% across the calculated results for the differential static

scalar E1 polarizability values estimated using various methods. Variations observed

in various experimental results [15, 16, 17, 18, 19] exacerbate this discrepancy even

more. Subsequently, it was claimed that these inconsistencies could be attributed to

the neglected contributions of intermediate continuum states in certain calculations

[13]. A similar disparity is observed for the tensor component of αF,MF
between the

theoretical and experimental results [20, 21, 22]. There exists roughly a 30% deviation

between the experimental value and the theoretical result for the F = 4 level [23, 24].

More research on these quantities is necessary, given the significant differences in the

scalar and tensor components of the static αF,MF
values. We perform analyses of the

static and dynamic αF,MF
values of the hyperfine levels of the ground state in the 133Cs

atom at two wavelengths (λ = 2πc/ω with the speed of light c and angular frequency
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ω), namely 936 nm and 1064 nm. We have chosen λ = 936 nm value as it is in close

alignment with the magic wavelength [25, 26] for the 6S1/2 - 6P3/2transition, which is

used for cooling of the 133Cs atoms. As high-power laser is not available at 936 nm, we

choose the λ = 1064 nm ytterbium-doped fiber laser, which provides more than 50W

of power.

6.2 Theory of dynamic polarizability

A uniform oscillating electric field with angular frequency ω at a given time t is given

by

E⃗L(ω, t) =
1

2
|E0|ε⃗e−iωt +

1

2
|E0|ε⃗eiωt, (6.3)

where |E0| denotes the strength of the field and ε⃗ is the degree of polarization. The

interaction Hamiltonian can be written as

Hint = −E⃗L(ω, t) · D⃗

= −|E0|
2

[
ε⃗ · D⃗e−iωt + ε⃗∗ · D⃗eiωt

]
. (6.4)

The leading non-vanishing second-order energy shift in power of |E0| in a hyperfine level

|FMF ⟩ can be given by

∆Elight = −1

2
αF,MF

(ω)E2
L(ω), (6.5)

where αF,MF
(ω) is known as the dynamic E1 polarizability. For ω = 0, it corresponds

to the static E1 polarizability. αF,MF
(ω) can be evaluated as expectation value of an

effective operator

D
(2)
eff =

[
ε⃗∗ · D⃗R+

F ε⃗ · D⃗ + ε⃗ · D⃗R−
F ε⃗

∗ · D⃗
]
, (6.6)
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Figure 6.2: Diagrammatic representation of the top contribution to the third-order
hyperfine interaction induced E1 polarizability. In addition to two interactions by the
E1 operator D (represented by a horizontal line), each diagram includes a hyperfine

interaction T
(1)
J (represented by a curly line).

where R±
F are the resolvent operators, given by

R±
F =

∑
F ′,MF ′

|F ′MF ′⟩⟨F ′MF ′ |
EF − EF ′ ± ω

. (6.7)

Polarization vectors can be separated from the electronic operators in Eq. 6.6 by

expressing

ε⃗∗ · D⃗R±
F ε⃗ · D⃗ =

∑
L=0,1,2

(−1)L (ε⃗∗ ⊗ ε⃗)L ·
(
D⃗ ⊗R±

F D⃗
)L

. (6.8)

Thus, the effective operator can be written as

D
(2)
eff =

∑
L=0,1,2

(−1)L (ε⃗∗ ⊗ ε⃗)L ·
[(
D⃗ ⊗R+

F D⃗
)L

+(−1)L
(
D⃗ ⊗R−

F D⃗
)L

]
, (6.9)
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Figure 6.3: Diagrammatic representation of the center part of the third-order hyperfine
interaction induced E1 polarizability. All notations are the same as the previous figure.

using which, we get the polarizability as

αF,MF
= −⟨FMF |D(2)

eff |FMF ⟩

= −
∑

L=0,1,2

L∑
Q=−L

(−1)L−Q (ε⃗∗ ⊗ ε⃗)LQ

×⟨FMF |
(
D⃗ ⊗R+

F D⃗
)L

Q

+(−1)L⟨FMF |
(
D⃗ ⊗R−

F D⃗
)L

Q
|FMF ⟩. (6.10)

Using the polarization dependent factors, we can rewrite the aforementioned expression

as

αF,MF
= αS

F + AMF

2F
cos θkα

A
F

+
3M2

F − F (F + 1)

F (2F − 1)

3 cos2 θp − 1

2
αT
F , (6.11)
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where A indicates the degree of polarization, θp is the polarization angle, and θk is

the angle between the quantization axis and the wave vector. Furthermore, the scalar,

axial-vector, and tensor components of αF,MF
, which are MF independent, are denoted

by the terms αS
F , αA

F , and αT
F and are given by

αS
F (ω) = − 1

3(2F + 1)

∑
F ′

|⟨F ||D||F ′⟩|2

×
[

1

EF − EF ′ + ω
+

1

EF − EF ′ − ω

]
, (6.12)

αA
F (ω) = −

√
6F

(F + 1)(2F + 1)

∑
F ′

(−1)F+F ′+1

×

 F 1 F

1 F ′ 1

 |⟨F ||D||F ′⟩|2

×
[

1

EF − EF ′ + ω
− 1

EF − EF ′ − ω

]
, (6.13)

and

αT
F (ω) = 2

√
5F (2F − 1)

6(F + 1)(2F + 3)(2F + 1)

×(−1)F+F ′+1

 F 2 F

1 F ′ 1

 |⟨F ||D||F ′⟩|2

×
[

1

EF − EF ′ + ω
+

1

EF − EF ′ − ω

]
. (6.14)

It is exhausting to deal with the wave functions in the hyperfine coordinate sys-

tem. In order to deal with this, we can approximate the |FMF ⟩ levels with a good

approximation considering up to the first-order perturbation as

|FMF ⟩ = |IMI ; JMJ⟩ +
∑

J ′,MJ′

|IMI ; J
′MJ ′⟩⟨IMI ; J

′MJ ′ |Hhf |IMI ; JMJ⟩
EJ − EJ ′

,(6.15)

where I is the nuclear spin with azimuthal component MI and J is the total angular
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(i) (ii) (iii)

D
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Figure 6.4: Diagrammatic representation of the normalization part of the third-order
hyperfine interaction induced E1 polarizability.

momentum of the atomic state with azimuthal component MJ . The scalar hyperfine

interaction Hamiltonian is denoted by Hhf , which can be defined as

Hhf =
∑
k

T
(k)
J · T (k)

I , (6.16)

where the electronic and nuclear components of Hhf with rank k of the multipole

expansion are defined as T
(k)
J and T

(k)
I , respectively, with k = 1, 3, 5 · · · indicating

contributions from the magnetic multipoles and k = 2, 4, 6 · · · indicating contributions

from the electric multipoles. Since the contributions of the other multipoles to these

quantities are negligibly small, we only take into account the dominant k = 1 term

in the calculation corresponding to the M1 hyperfine interaction for the purposes of

this study [22, 23]. The ⟨IMI ; J
′MJ ′ |Hhf |IMI ; JMJ⟩ matrix element can, then, be

evaluated using the relation

⟨IMI ; J
′MJ ′|T (1)

J · T (1)
I |IMI ; JMJ⟩ = (−1)I+J+F

J ′ J 1

I I F


× ⟨J ′||T(1)

J ||J⟩⟨I||T(1)
I ||I⟩, (6.17)
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Table 6.1: Calculated values of the second-order static and dynamic E1 polarizabilities
(in a.u.) of the ground state of the Cs atom. Wavelengths are in nm.

Method αS
6S values αA

6S values
λ = ∞ λ = 936 λ = 1064 λ = 936 λ = 1064

This work
DHF 662.6 −2303.2 7945.1 −459.7 20772.2
RCCSD 404.8 2684.0 1138.7 −1300.8 −196.8
RCCSDT 400.0 3094.3 1164.4 −1819.3 −206.3
Final 401.0(6) 3022.1(40) 1170.8(16) −1599.5(59)−201.8(18)

Others
Theory [14] 400.80(97)
Theory [31] 399.8
Theory [32] 403.9
Theory [33] 399.9(1.9)
Experiment [30] 401.00(6)

in which the nuclear coordinate part is converted to a factor as

⟨I||T(1)
I ||I⟩ =

√
I(I + 1)(2I + 1)gIµN , (6.18)

with gI = µI/I for the M1 moment µI and nuclear Bohr magnetron µN . After substi-

tuting all the relations, we can express αS
F , αA

F and αT
F components as

αS
F = α

S(2,0)
F + α

S(2,1)
F , (6.19)

αA
F = α

A(2,0)
F + α

A(2,1)
F , (6.20)

and

αT
F = α

T (2,0)
F + α

T (2,1)
F , (6.21)
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Table 6.2: Magnetic dipole hyperfine interaction induced E1 polarizabilities (in 10−10

Hz/(V/m)2) of the hyperfine levels of the ground state of 133Cs at various wavelengths
(λ). Wavelengths are in nm. The unit Hz/(V/m)2 can be converted into a.u. by
multiplying 0.401878046 ×108.

F = 3 F = 4
Quantity Method λ = ∞ λ = 936 λ = 1064 λ = ∞ λ = 936 λ = 1064

α
S(2,1)
F DHF −3.1420 −49.5027 −2381.2965 2.4423 38.5007 1852.1969

RCCSD −2.5706 −153.5968 −26.5174 1.9993 119.4880 8.3956
RCCSDT −2.5586 −225.2741 −25.3313 1.9898 175.2118 19.6881
Final −2.559(11) −201.1(17) −25.3(13) 1.990(10) 156.4(14) 19.7(10)

TDHF+BO [23] −2.5419 1.9770
RCICP [14] −34.248(7) −29.598(7)

α
A(2,1)
F DHF 0.0 8.6958 561.5658 0.0 9.0179 582.5113

RCCSD 0.0 −132.2379 −9.0495 0.0 −137.1366 −9.2136
RCCSDT 0.0 −238.6758 −11.0932 0.0 −247.5169 −11.5043
Final 0.0 −185.59(51)−9.70(7) 0.0 −192.47(53)−10.06(7)

α
T (2,1)
F DHF 0.0344 0.4310 25.8040 −0.0639 −0.8044 −48.1693

RCCSD 0.0183 6.0153 0.4561 −0.0339 −11.2287 −0.8888
RCCSDT 0.0188 10.4966 0.5508 −0.0350 −19.5937 −1.0279
Final 0.0185(8) 8.482(16) 0.5084(21) −0.0342(15)−15.834(30)−0.9487(39)

TDHF+BO [23] 0.0141 −0.0262
RCICP [14] 0.03051(6) −0.05703(11)
Semi-empirical [21] −0.0372(25)
Experiment [24] −0.0334(2)stat(25)syst

where α
S/A/T (m,n)
F means the components are including m-orders of E1 interactions and

n-orders of M1 hyperfine interactions, respectively. The hyperfine interaction independ-

ent components can be estimated by using the relations

α
S(2,0)
F (ω) = − 1

3(2J + 1)

∑
J ′

|⟨J ||D||J ′⟩|2

×
[

1

EJ − EJ ′ + ω
+

1

EJ − EJ ′ − ω

]

≡ αS
J (ω), (6.22)
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α
A(2,0)
F (ω) = −

√
6F (2F + 1)

(F + 1)

 J F I

F J 1


×
∑
J ′

(−1)F+J ′+I+2J

 1 1 1

J J J ′


×
[ |⟨J ||D||J ′⟩|2
EJ − EJ ′ + ω

− |⟨J ||D||J ′⟩|2
EJ − EJ ′ − ω

]

=

√
F (2F + 1)(J + 1)(2J + 1)

J(F + 1)

×(−1)I+J+F+1

 J F I

F J 1

αA
J (ω), (6.23)

and

α
T (2,0)
F (ω) = −

√
20F (2F − 1)(2F + 1)

6(F + 1)(2F + 3)

 J F I

F J 2


×
∑
J ′

(−1)I+F+J ′+2J

 1 1 2

J J J ′


×
[ |⟨J ||D||J ′⟩|2
EJ − EJ ′ + ω

+
|⟨J ||D||J ′⟩|2
EJ − EJ ′ − ω

]

= −
√

(J + 1)(2J + 3)(2J + 1)F (2F − 1)

J(2J − 1)(F + 1)(2F + 3)(2F + 1)

×(2F + 1)(−1)I+J+F+1

 J F I

F J 2


× αT

J (ω), (6.24)

where αS
J , αA

J and αT
J are the components of atomic state E1 polarizabilities. It can

be followed from the selection rules that αT
J will not contribute to the states with
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J < 3/2. Proceeding in the similar manner, we can express hyperfine interaction

induced polarizability [13, 27]

α
K(2,1)
F (ω) = WK

F

[
2TK

F (ω) + CK
F (ω) +RK

F (ω)
]
, (6.25)

where the symbol K denotes scalar, axial-vector, and tensor components for the integer

values K = 0, 1 and 2, respectively, as used below. Each component is further divided

into contributions from three different terms defined as top (TK
F ), center (CK

F ), and

residual (or normalization) (RK
F ) that are expressed as

TK
F (ω) =

√
(2K + 1)I(I + 1)(2I + 1)gIµN

×
∑
J ′,J ′′

{
I I 1

J J ′′ F

}{
K J ′′ J

I F F

}

×
{
K J ′′ J

J ′ 1 1

}
(−1)J+J” ⟨J ||T(1)

J ||J ′′⟩⟨J ′′||D||J ′⟩⟨J ′||D||J⟩
(EJ − EJ ′′)

×
[

1

(EJ − EJ ′ + ω)
+

(−1)K

(EJ − EJ ′ − ω)

]
, (6.26)

CK
F (ω) =

√
(2K + 1)I(I + 1)(2I + 1)gIµN

×
∑
J ′,J ′′

∑
L

{ F K F

J 1 J ′′

I 1 L

}{ I J F

1 J ′ J ′′

I 1 L

}

× (−1)I+K−F+J⟨J ||D||J ′′⟩⟨J ′′||T(1)
J ||J ′⟩⟨J ′||D||J⟩

×
[

1

(EJ − EJ ′ + ω)(EJ − EJ ′′ + ω)

+
(−1)K

(EJ − EJ ′ − ω)(EJ − EJ ′′ − ω)

]
, (6.27)
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and

RK
F (ω) =

√
(2K + 1)I(I + 1)(2I + 1)gIµN

×
∑
J ′

{
I I 1

J J F

}{
K J J

I F F

}{
K J J

J ′ 1 1

}
× (−1)(J+J ′+1)⟨J ||T(1)

J ||J⟩|⟨J ||D||J ′⟩|2

×
[

1

(EJ − EJ ′ + ω)2
+

(−1)K

(EJ − EJ ′ − ω)2

]
. (6.28)

Also, the pre-angular factors are given by

W S
F =

√
(2F + 1)

3
, (6.29)

WA
F = −

√
2F (2F + 1)

(F + 1)
, (6.30)

and

W T
F = −

√
2F (2F − 1)(2F + 1)

3(F + 1)(2F + 3)
. (6.31)

6.3 Approaches for calculation

As can be inferred from the above discussion, in order to obtain an accurate estimate

of the αF values in 133Cs, a large set of matrix elements of the D and T
(1)
J operators is

required. We start our calculation by considering the V Ne−1 potential (Ne denotes the

number of electrons) in the DHF method to produce as many bound states as possible

with a common core [5p6] but differing by a valence orbital v in 133Cs. The DHF wave

functions of the interested states can be expressed as

|Φv⟩ = a†v|Φc⟩, (6.32)
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Table 6.3: The presently calculated the second-order static and dynamic atomic E1
polarizabilities (in a.u.) of the ground state of Cs atom. E1 matrix elements used in
the estimation of ‘Main’ contributions are given explicitly, where values shown with
superscript ‘a’ are calculated using the RCCSDT method.

Transition E1 matrix element αS
6S values αA

6S values
λ = ∞ λ = 936 nm λ = 1064 nm λ = 936 nm λ = 1064 nm

Main
6S1/2 − 6P1/2 4.5067(40)a 132.93 1536.35 453.54 −2936.77 −762.65
6S1/2 − 6P3/2 6.3403(64) [34] 250.67 1467.97 699.66 1336.78 560.48
6S1/2 − 7P1/2 0.27810(45) [35] 0.26 0.34 0.32 −0.34 −0.28
6S1/2 − 7P3/2 0.57417(57) [35] 1.10 1.44 1.35 0.70 0.58
6S1/2 − 8P1/2 0.0824(10)a 0.02 0.02 0.02 −0.02 −0.02
6S1/2 − 8P3/2 0.2294(15)a 0.15 0.18 0.17 0.08 0.06
6S1/2 − 9P1/2 0.0424(15)a 0.01 0.01 0.01 −0.01 ∼ 0.0
6S1/2 − 9P3/2 0.1268(11)a 0.04 0.05 0.05 0.02 0.02
Total 385.2(6) 3006.4(40) 1155.1(16) −1599.5(59) −201.8(18)
Tail 0.20 0.14 0.14 0.005 0.004
Core-valence −0.35(5) −0.35(5) −0.35(5) −0.01(1) −0.01(1)
Core 15.99(10) 15.9(1) 15.9(1) 0.0 0.0

where |Φc⟩ is the DHF wave function of the closed-core [5p6]. Using these wave func-

tions, the dominant part of the αS
J (ω) and αA

J (ω) values of the ground state of 133Cs

atom can be determined. We show Goldstone diagrams of the DHF contributions for

αS
J (ω) and αA

J (ω) in Fig. 6.1. As D is a one-body operator, only the intermediate

states represented by single orbital excitations contribute to the DHF diagrams. These

diagrams correspond to Figs. 6.1 (i), (ii) and (iii), respectively, and can therefore be

categorized as core, core-valence, and valence orbital contributions. To improve these

calculations for accurate E1 polarizability estimations, electron correlation effects res-

ulting from other configurations overlooked by the DHF method must be incorporated.

We also plan to reduce computational uncertainties by using the highly accurate ex-

perimental energies from the NIST database [28]. Similarly, whenever possible, we

use very precise values for the E1 matrix elements, either from theory or experiments.

First, we apply the RCC method to evaluate these E1 matrix elements. We use the
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experimental results whenever we discover that they are more accurately available than

our RCC results. It should be highlighted, though, the experimental E1 values lack the

sign information that is necessary to determine the E1 polarizabilities that are induced

by hyperfine interactions. Thus, we apply our computed E1 matrix elements to assign

the sign to the experimentally determined E1 values. Again, we identify the valence

contributions from low-lying bound states as the “Main” contributions to differentiate

them in the analyses, while the contributions from high-lying continuum orbitals to the

valence contributions are estimated using lower-order methods and reported as “Tail”

contributions.

With the previously described strategy, only the valence contributions to αS
J (ω) and

αA
J (ω) can be improved because the RCC method can only evaluate the E1 matrix

elements involving the bound excited states. However, the correlation contributions to

the core and core-valence Goldstone diagrams, represented as Figs. 6.1 (i) and (ii), that

involve core excitations must be derived from first-principle calculations. To assess the

core and core-valence contributions to αS
J (ω) and αA

J (ω), we have used RPA. In both

cases, we rewrite the expressions for both αS
J (ω) and αA

J (ω) as

αK
J = ⟨Φc|D|Φ(∞,1)+

c ⟩ + ⟨Φc|D|Φ(∞,1)−
c ⟩, (6.33)

where K stands either for S (scalar) or for A (axial-vector) and |Φ(∞,1)±
c ⟩ are the per-

turbation wave functions with respect to the DHF wave function |Φc⟩ for ±ω values at

the energy denominator. CP effects to all-orders and one order of external dipole inter-

action are present in these perturbative wave functions. Note that the corresponding

angular factors for the scalar and axial-vector components are included in the above

expression but are not displayed explicitly.

The ground state of 133Cs has an experimentally determined αS
J (0) value. Therefore,

comparing our calculation with the experimental result will help in validating our cal-

culations for the dynamic values of αS
J (ω) and αA

J (ω). Additionally, the test would be

helpful in identifying third-order polarizabilities induced by hyperfine interaction. We
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Table 6.4: Some of the important matrix elements (in a.u.) of the T
(1)
J operator of

133Cs. Numbers appearing as a[b] mean a × 10b. See the text for explanation of how
the experimental values for the off-diagonal matrix elements are inferred.

Transition RCCSDT
method

Experiment

6S1/2-6S1/2 5.817[−7] 5.797[−7] [36]
6S1/2-7S1/2 2.859[−7] 2.825[−7] [36, 37]
6S1/2-8S1/2 1.795[−7] 1.790[−7] [36, 38]
6S1/2-5D3/2 −1.674[−8]
6S1/2-6D3/2 8.770[−9]
6P1/2-6P1/2 7.341[−8] 7.364[−8] [39]
6P1/2-7P1/2 4.143[−8] 4.187[−8] [39, 40]
6P1/2-8P1/2 2.759[−8] 2.821[−8] [39, 41]
6P1/2-7P1/2 4.143[−8]
6P1/2-9P1/2 −1.968[−8]
6P1/2-6P3/2 −4.394[−9]
6P1/2-7P3/2 −2.572[−9]
7P1/2-7P1/2 2.371[−8] 2.381[−8] [40]
7P1/2-8P1/2 1.567[−8] 1.606[−8] [40, 41]
7P1/2-9P1/2 −11.177[−9]
7P1/2-6P3/2 −2.402[−9]
7P1/2-7P3/2 −1.417[−9]
8P1/2-8P1/2 10.595[−9] 10.840[−9] [41]
8P1/2-9P1/2 −7.446[−9]
8P1/2-6P3/2 −1.610[−9]
8P1/2-7P3/2 −9.460[−10]
9P1/2-9P1/2 5.313[−9]
6P3/2-6P3/2 3.874[−8]
6P3/2-7P3/2 2.214[−8]
6P3/2-8P3/2 1.500[−8]
7P3/2-7P3/2 12.648[−9]

show all contributions to the DHF values of α
S/A/T (2,1)
F for the top, center, and normal-

ization contributions, respectively, in Figs. 6.2, 6.3 and 6.4, using Goldstone diagrams.

Although these contributions to αF,MF
are much smaller than the second-order contri-

butions, it is more difficult to evaluate them accurately. We designate contributions

from Fig. 6.2 (i) and (ii) together as core, (iii) as core-core, (iv) as core-valence, (v)
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Table 6.5: Breakdown of our calculated α
S(2,1)
F , α

A(2,1)
F and α

T (2,1)
F values for the F = 3

and F = 4 levels of 133Cs in terms of the valence, valence-core, core-valence, core-
core and core contributions. Results are given for both the static and dynamic E1
polarizabilities (in 10−10 Hz/(V/m)2).

F = 3 F = 4
Polarizability Contribution λ = ∞ λ = 936 nm λ = 1064 nm λ = ∞ λ = 936 nm λ = 1064 nm

α
S(2,1)
F Valence −2.5584 −201.0945 −25.3858 1.9904 156.4064 19.7445

Valence-Core −0.0016 −0.0032 0.0601 0.0013 0.0025 −0.0467

Core-Valence 0.0010 −0.0040 0.0402 −0.0008 0.0031 −0.0313

Core-Core −0.0009 −0.0009 −0.0009 0.0007 ∼ 0.0 0.0007

Core 0.0010 0.0010 0.0010 −0.0015 −0.0015 −0.0015

α
A(2,1)
F Valence 0.0 −185.6502 −9.6217 0.0 −192.5270 −9.9781

Valence-Core 0.0 0.0317 −0.0258 0.0 0.0329 −0.0268

Core-Valence 0.0 0.0265 −0.0548 0.0 0.0275 −0.0569

Core-Core 0.0 ∼ 0.0 ∼ 0.0 0.0 ∼ 0.0 ∼ 0.0

Core 0.0 ∼ 0.0 ∼ 0.0 0.0 ∼ 0.0 ∼ 0.0

α
T (2,1)
F Valence 0.0165 8.4872 0.5794 −0.0308 −15.8428 −1.0815

Valence-Core 0.0010 −0.0024 −0.0355 −0.0017 0.0045 0.0664

Core-Valence 0.0010 −0.0024 −0.0355 −0.0017 0.0045 0.0664

Core-Core ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0

Core ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0 ∼ 0.0

as valence-core and (vi) as valence contributions to make the various contributions to

these quantities easier to understand. Diagrams in Fig. 6.3 have been divided similarly

because of the striking similarities between 6.2 and 6.3. As in the case of the second-

order E1 polarizabilities, diagram (i) is designated as core, diagram (ii) as valence-core

and diagram (iii) as valence contributions in Fig. 6.4.

To estimate the valence contributions to TK, CK, and RK, we use similar procedures

of evaluating the second-order E1 polarizabilities. A large number of matrix elements

involving the S1/2, P1/2;3/2, and D3/2 states are needed to estimate the valence con-

tribution to TK, as Fig. 6.2 shows. The evaluation of TK requires knowledge of the

correct signs for the E1 and T
(1)
J matrix elements, unlike the second-order polarizabilit-

ies. E1 matrix elements for transitions from the ground state to the P1/2;3/2 states and

T
(1)
J matrix elements for transitions between the P1/2;3/2 states are needed to evaluate
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(a) (b) (c)

Figure 6.5: Demonstration of contributions from two different combinations of inter-
mediate states (J ′ and J ′′) to the (a) top, (b) center and (c) normalization parts of the

static α
S(2,1)
F value of the F = 3 level of 133Cs. States with subscript − symbol in the

figure represent the lower angular momentum state of a fine-structure partner; i.e. P
means P1/2 and D denotes D3/2, while P and D stand for the P3/2 and D5/2 states
respectively.

the valence contribution to CK in accordance with the parity and angular momentum

selection rules. The valence contribution evaluation of RK requires the same E1 mat-

rix elements as in the case of the second-order E1 polarizabilities, in addition to the

expectation value of T
(1)
J in the ground state.

To achieve high accuracy in the third-order E1 polarizability calculations, reasonable

consideration of the core, core-core, core-valence, and valence-core contributions to

TK and CK is necessary. The methods previously discussed for the second-order E1

polarizabilities are applied to determine the core and valence-core contributions to

RK. The core, core-core, core-valence and valence-core contributions to TK and CK

require extremely careful estimation, in contrast to RK. The core contributions to

these quantities necessitate matrix elements involving the core-core, core-virtual and

virtual-virtual orbitals, as Figs. 6.2 and 6.3 indicate. It is clear that similar sets

of matrix elements are needed for assessments of the core-valence and valence-core

contributions. However, due to different angular momentum selection rules in both

the expressions, different sets of core and virtual orbitals are involved in determining
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(a) (b)

Figure 6.6: Contributions from different combinations of intermediate states (J ′ and

J ′′) to the (a) top and (b) center parts of the static α
T (2,1)
F value of the F = 3 level of

133Cs. The notation is same as in the previous figure.

the core and valence contributions to TK and CK. Depending on how accurate they

are, matrix elements between the bound states are either taken from the RCC theory

or from experiments. Whenever possible, we also use the experimental energies in the

denominator; if not, the calculated energies are used. The DHF method provides the E1

matrix elements between the core orbitals, while RPA provides the necessary elements

between the virtual and core orbitals.

6.4 Results and Discussion

The αS
J , αA

J , α
S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F values of the 6S state of 133Cs at various

wavelengths are shown in Tables 6.1 and 6.2. For these assessments, we have utilized

gI = 0.737885714 with I = 7/2 from Ref. [29]. We have provided ab initio results from

the DHF, RCCSD, and RCCSDT methods in the tables to understand the significance

of the correlation effects and sensitivity of the results due to the use of the calculated

and experimental energies. However, we provide our final recommended values from

the semi-empirical approach. The recommended results, displayed in bold font in the

tables, are compared with the experimental data that is currently available and a few
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earlier computations from the literature. These tables show that the DHF values and

the RCCSD results differ significantly from one another. This implies that the elec-

tron correlations are important for accurately determining both the second-order and

third-order E1 polarizabilities. These differences are more prominent in the dynamic

E1 polarizabilities. In fact, sign differences exist between the DHF and RCCSD values

from the atomic polarizabilities, suggesting that these quantities exhibit large correl-

ation contributions. Upon closely examining the DHF and RCCSD results, we find

that the energy denominators are primarily responsible for the significant variations

in these results. This explains why the use of experimental energies leads to notice-

ably better results. There are still significant differences between the RCCSDT and

semi-empirical values for the dynamic polarizabilities, even though differences between

the ab initio results and the semi-empirical values decrease when correlation effects

through triple excitations are included in the calculations. Given that providing exact

values for the E1 polarizabilities is our goal, the semi-empirical results are recommen-

ded for their future applications. We would like to make it clear at this point that the

core, core-valence, and valence-core contributions are estimated from our calculations,

while only the valence contributions are improved through the semi-empirical approach.

Therefore, by incorporating higher-order correlation effects in the computation of the

core, core-core, core-valence, and valence-core contributions, the calculated results can

still be made more accurate. However, the semi-empirical values we quoted in Tables

6.1 and 6.2 have uncertainties that stem from the usual orders of magnitudes of these

overlooked contributions.

Our recommended values agree perfectly with the measurements, as shown by a

comparison of the static αS
J and α

T (2,1)
F values with their experimental results [24, 30].

Our value is very close to the experimental result compared to the previous calculations

of the static αS
J values reported in Refs. [14, 31, 32, 33]. This is because, we have

used a large number of precisely estimated E1 matrix elements from the most recent

measurements [34, 35]. We anticipate that these results will also indicate the accuracy of

our other calculated values, which include the dynamic polarizabilities at wavelengths of
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Table 6.6: The ‘Main’ contributions of T (ω), C(ω) and R(ω) to the α
S(2,1)
F , α

A(2,1)
F ,

α
T (2,1)
F values of the F = 3 and F = 4 hyperfine levels of the ground state of 133Cs at

different wavelengths. All values are in a.u..

λ = ∞ λ = 936 nm λ = 1064 nm

Contribution α
S(2,1)
F α

A(2,1)
F α

T (2,1)
F α

S(2,1)
F α

A(2,1)
F α

T (2,1)
F α

S(2,1)
F α

A(2,1)
F α

T (2,1)
F

For F = 3 level

T (ω) −0.00121 0.0 0.00002 −0.00976 0.00145 0.00020 −0.00376 0.00012 0.00006

C(ω) 0.00001 0.0 −0.00009 −0.01137 0.03754 −0.02486 −0.00031 0.00367 −0.00180

R(ω) −0.00376 0.0 0.0 −0.49459 0.18917 0.0 −0.05755 0.00794 0.0

For F = 4 level

T (ω) 0.00083 0.0 −0.00003 0.00670 0.00127 −0.00029 0.00258 0.00010 −0.00009

C(ω) −0.00001 0.0 0.00013 0.00780 0.03325 0.03703 0.00021 0.00325 0.00268

R(ω) 0.00258 0.0 0.0 0.33926 0.16752 0.0 0.03948 0.00703 0.0

936 and 1064 nm. For the F = 3 and F = 4 levels, we were unable to find experimental

results for α
S(2,1)
F and α

A(2,1)
F to compare directly with our estimated values. However,

the results for α
S(2,1)
F agree reasonably with the calculation reported in Ref. [23], but

they differ significantly for α
T (2,1)
F . The authors of Ref. [23] used the BOs to estimate

PC contributions and the combined TDHF+BO method to account for CP effects to

all-orders. As discussed in the earlier chapters, PC and all RPA effects are implicitly

included in the RCC method. We have found another semi-empirical calculation in

which the values of α
S(2,1)
F and α

T (2,1)
F were calculated by the authors using the combined

RCI and CP (RCICP) method [14]. Interestingly, there are notable differences between

our computed results and theirs. We also found another semi-empirical result for α
T (2,1)
F

for the F = 4 level [21]. In this calculation, the statistical Thomas-Fermi potential

approach was used, and some of the matrix elements were scaled with experimental data.

This approach resulted in an overestimated α
T (2,1)
F value compared to the experimental

result and also differs from our calculation.

After discussing the final results, we want to examine each contribution to the
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polarizability result and how it affects the accuracy of the second- and third-order E1

polarizabilities. Table 6.3 lists intermediate contributions to both αS
J (ω) and αA

J (ω) at

various ω (λ) values. The E1 matrix elements of numerous significant transitions that

contribute significantly to the valence part are listed; these are referred to as the “Main”

elements. Refs. [34, 35] report precise measurements of lifetime or E1 polarizability in

various atomic states, from which many of these E1 matrix elements are taken; others

are derived from the current RCCSDT method. The “Tail” contributions to the valence

part from the high-lying virtual states are estimated by using the E1 matrix elements

from the DHF method and energies from the NIST database. RPA is used to estimate

the contributions of the core and core-valence. It demonstrates that the accurate E1

matrix elements of the 6s 2S1/2 → 6p 2P1/2;3/2 transitions and core contribution are the

primary determinants of the precise estimate of the second-order E1 polarizabilities.

Nonetheless, it is also crucial to take into account the contributions made by the E1

matrix elements of the 6s 2S1/2 → 7p 2P1/2;3/2 transitions in order to increase the

accuracy of the results.

Next, we talk about the contributions of α
S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F to the F = 3 and

F = 4 hyperfine levels at various wavelengths. These calculations necessitate a large

set of E1 and T
(1)
J matrix elements, as was indicated in the previous section. Table 6.3

already provides a list of some of the dominantly contributing E1 matrix elements used

in these computations. Many T
(1)
J matrix elements that are crucial for evaluating α

S(2,1)
F ,

α
A(2,1)
F , and α

T (2,1)
F are listed in Table 6.4. With a few exceptions, where we use the

exact values from the experiments [36, 37, 38, 39, 40, 41], the majority of these results

are obtained using the RCCSDT method. Some of the off-diagonal matrix elements are

estimated from the experimental values by using the relation

⟨Jf ||T (1)
J ||Ji⟩ ≃

√
⟨Jf ||T (1)

J ||Jf⟩⟨Ji||T (1)
J ||Ji⟩. (6.34)

We have also used the energies from the NIST database [28] in order to minimize

uncertainties in the calculations.
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In accordance with the discussion in the preceding section, these quantities are

estimated by dividing their contributions into TK, CK, and RK. Moreover, there are

contributions from the core, core-core, core-valence, valence-core, and valence in each

of these. The individual contributions to the α
S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F values obtained

by adding them from TK, CK, and RK separately are shown in Table 6.5. These

contributions come from the core, core-core, core-valence, valence-core, and valence

parts. Table 6.5 clearly indicates that the valence contributions dominate the final

values, while the contributions from the core, core-core, core-valence, and valence-core

parts are small in α
S(2,1)
F and α

A(2,1)
F . Notably, contributions to the tensor polarizabilities

from the valence-core or core-valence correlations are non-negligible. The static α
T (2,1)
F

value of the F = 4 level in 133Cs has an experimental result available, which we plan to

analyze in terms of various correlation contributions. Whereas the central value of the

experimental result is −3.34×10−12 Hz/(V/m)2 [24], Table 6.5 indicates that the valence

contribution to this quantity from our calculation is −3.08 × 10−12 Hz/(V/m)2. After

ignoring their uncertainties, there is a discrepancy of approximately 8% between the two

values. Minimizing uncertainty due to systematic effects in the measurement of α
T (2,1)
F

would be extremely difficult, so it is important to figure out the roles of other physical

contributions to the theoretical result in order to carry out future measurements more

precisely. According to our analysis, the valence-core and core-valence contributions to

the static α
T (2,1)
F value of the F = 4 level are quite significant, whereas the core and core-

core contributions are negligibly small. The table shows that when these contributions

are taken into account, the difference between the theoretical and experimental value

drops to 2%. It is noteworthy that the contributions of valence-core and core-valence to

the dynamic α
T (2,1)
F values at λ = 936 nm and λ = 1064 nm are remarkably insignificant

in comparison to their respective valence contributions.

In contrast with the second-order E1 polarizabilities, the intermediate states’ con-

tributions are more difficult to show because their formulas have two summations (Eqs.

6.26 and 6.27). To demonstrate the significance of the contributions from different in-

termediate states, we, however, used an alternative approach. Three-dimensional plots
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of contributions from two distinct sets of intermediate states to the valence parts of

TK, CK, and RK to the static α
S(2,1)
F and α

T (2,1)
F values are shown in Figs. 6.5 and

6.6, respectively. They are only displayed as a representative case for the F = 3 level.

These figures demonstrate that the third-order E1 polarizabilities are primarily caused

by matrix elements of a few selective transitions involving combinations of a few se-

lective intermediate states. Acquiring this knowledge is crucial to further increasing

the precision of these quantities. The intermediate states 7S1/2 and 6P1/2,3/2 contribute

most to the top, center, and normalization parts of α
S(2,1)
F , as Fig. 6.5 makes it appar-

ent. As Fig. 6.6 shows, significant contributions to the top and center parts of α
T (2,1)
F

originate from 5D3/2 and 6P1/2,3/2 states. Based on the sums of total contributions

from all possible intermediate states in Table 6.6, we present the Main contributions

to both static and dynamic TK, CK, and RK values of α
S(2,1)
F , α

A(2,1)
F , and α

T (2,1)
F . As

can be seen from the table, the RK component exhibits the dominant contribution to

α
S(2,1)
F followed by TK and then the CK component. For α

A(2,1)
F also RK contribution

dominates, followed by the CK part. In the case of α
T (2,1)
F , the leading contribution

comes from the CK part, while the RK component is zero. We compare our calculated

Stark shift coefficient, ks = −1
2

(
α
S(2,1)
F=4 − α

S(2,1)
F=3

)
, with the previously reported values

in Table 6.7. The table shows that our result, −2.274(10) × 10−10 Hz/(V/m)2, is in

good agreement with the most accurate measurement that has been found thus far,

−2.271(4) × 10−10 Hz/(V/m)2 in Ref. [15]. The values in Refs. [16] and [17] also

agree with it. On the other hand, it significantly differs from other measurements later

reported in Refs. [18, 19]. We are unable to shed light on the differences between the

experimental results. However, we have looked closely at and discussed the variations

found in the theoretical outcomes. Our results are as accurate as the calculated value

given in Ref. [13]; in comparison to other theoretical works [8, 9, 10, 11, 12, 14, 23],

our result agrees better with the experiment [15]. Furthermore, our DHF value of

−2.792×10−10 Hz/(V/m)2 of ks agrees with the DHF value −2.799×10−10 Hz/(V/m)2

of Ref. [13]. Again, the authors of Ref. [13] have discovered that the continuum (Tail)

contributes significantly to ks. In this work, we also independently confirm this result
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Table 6.7: Summary of the ks value from different theoretical and experimental works
in units of 10−10 Hz/(V/m)2.

Reference ks value

This work −2.274(10)
Theory [8] −1.97(9)
Theory [9] −2.06(1)
Theory [10] −2.281(4)
Theory [11] −2.28
Theory [12] −2.26(2)
Theory [13] −2.271(8)
Theory [14] −2.324(5)
Theory [23] −2.26(2)

Experiment [15] −2.271(4)
Experiment [16] −2.25(5)
Experiment [17] −2.20(26)*
Experiment [18] −1.89(12)*
Experiment [19] −2.05(4)

* ks calculated from BBR shift measurement.

and confirm that the ks value equals −2.085 × 10−10 Hz/(V/m)2 in the absence of the

Tail contribution. By examining the different contributions listed in Tables 6.5 and 6.6,

one can explicitly infer these Tail contributions from our calculations to the hyperfine

interaction induced E1 polarizabilities. These tables show that the Tail contribution

to ks is 8% of the total contribution and that this part is primarily responsible for the

largest uncertainty in our final ks value.

6.5 Summary

In this chapter, we have conducted a detailed analysis of the electric dipole polarizability

of the hyperfine levels of the ground state of 133Cs using the RCC method. We have

presented both the second-order atomic and third-order hyperfine interaction induced

polarizability values. Our static values for both the second-order and third-order electric
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dipole polarizabilities align well with the available experimental results. Additionally,

we have identified the reasons for the discrepancies among experimental and earlier

theoretical values for ks and α
T (2,1)
F . Previous studies overlooked the contributions from

core and high-lying continuum orbitals. We have found that the contributions from

these orbitals are significant, and their inclusion is necessary for precise calculation of

polarizability values. This study also proves the superiority of the RCC theory over

other methods like TDHF+BO and RCICP used in earlier studies. Given that methods

similar to TDHF+BO were previously used to estimate the NSD PV amplitude in 133Cs,

our RCC calculations are expected to improve the result for E1NSD
PV .
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Chapter 7

RCC calculations of NSD PV in

133Cs

T
he primary goal of studying NSD PV is to probe the NAM, a fundamental prop-

erty of atomic nucleus. The NAM originates due to the presence of weak inter-

action among the nucleons. Although NAM is theoretically predicted, its existence is

still under debate. The NAM value extracted in 133Cs by combing high-precision PV

measurements for the 6s 2S1/2- 7s 2S1/2 transition [1] with atomic many-body calcu-

lations is at variance with the results from the nuclear shell model calculations and

the nucleon-nucleon scattering experiments [2, 3, 4]. This discrepancy between atomic

and nuclear results could be due to either (i) incomplete correlation in atomic many-

body calculations, (ii) unknown systematic effects in the atomic experiment, or (iii)

inappropriate approximations in nuclear calculations.

In this chapter, we focus on the first possibility. Herein we use various atomic

many-body methods to calculate the NSD PV amplitudes among different hyperfine

levels of the 6s 2S1/2 → 7s 2S1/2 transition in 133Cs. As mentioned earlier in Chapter

1, very few theoretical studies have been carried out to estimate the NAM in 133Cs

[2, 5, 6, 7]. In one of the early calculations, Flambaum and Dzuba et al. [5, 6] used

the combined DHF and BO method to estimate the E1NSD
PV values between different
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hyperfine levels of the 6s 2S1/2 → 7s 2S1/2 transition in 133Cs. Subsequently, Johnson et

al. [7] employed RPA to compute these amplitudes through the inclusion of CP effect

up to all-order. As we have already shown in the earlier chapters of the thesis, DHF or

RPA cannot incorporate many correlation effects like PC and DCP. Thus, it is necessary

to calculate the E1NSD
PV amplitudes in 133Cs more accurately by including the correlation

effects that were omitted earlier. Herein, we estimate the E1NSD
PV amplitudes among

different hyperfine levels of the 6s 2S1/2 and 7s 2S1/2 states using the RCC theory,

which captures these effects comprehensively. Further, to validate our analysis, we also

present results from the DHF, CPDF, RPA, and CPDF-RPA methods.

7.1 Theory

Recalling Eq. 1.25, we can write the NSD PV Hamiltonian

HNSD
PV =

GF√
2
KW α⃗D · I⃗ρ(r). (7.1)

One thing to note here is that the magnitude of KW depends on the contributions from

both NAM and NSD interactions within an atomic nucleus. As KW is the quantity to

be inferred by combining measurement with atomic calculation, we express the above

Hamiltonian as

HNSD
PV = KWH

NSD, (7.2)

so that calculations can be performed using HNSD. Again, to simplify the calculations

using the electronic component, we can express HNSD, separating electronic and nuclear

components, as

HNSD =
GF√

2
I⃗(1) · K⃗(1), (7.3)
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where K⃗(1) is the electronic component. Following the same approach as NSI PV

amplitude calculation, we express |Ψv⟩F as

|Ψv⟩F ≃ |ΨF,(0)
v ⟩ +KW |ΨF,(1)

v ⟩, (7.4)

where |ΨF,(0)
v ⟩ is the hyperfine level wave function due to em interactions and |ΨF,(1)

v ⟩
is the first correction due to HNSD. One important thing to note is that while KW

may not be small, HNSD
PV is very small compared to the em interactions in the atomic

systems. Therefore, KW in the perturbative analysis does not indicate the strength

of the interaction; rather, it simply indicates the order of perturbation. Keeping this

in mind, the E1NSD
PV between two hyperfine levels |Ψf⟩F ≡ |(IJf )FfMf⟩ and |Ψi⟩F ≡

|(IJi)FiMi⟩, can be expressed using the Wigner-Eckart theorem as

E1NSD
PV = (−1)Ff−Mf

 Ff 1 Fi

−Mf Mf −Mi Mi

× ⟨Ff ||DNSD
PV ||Fi⟩, (7.5)

where ⟨Ff ||DNSD
PV ||Fi⟩ is the reduced matrix element and DNSD

PV is the PV interaction

induced E1 operator. From atomic calculation point of view, the actual quantity of

interest from is XNSD
PV = ⟨Ff ||DNSD

PV ||Fi⟩/KW . In the sum-over-states approach, we can

write XNSD
PV as

XNSD
PV =

∑
n̸=i

⟨Ff ||D||Fn⟩⟨Fn||HNSD||Fi⟩
NF (E

(0)
Fi

− E
(0)
Fn

)
+
∑
n̸=f

⟨Ff ||HNSD||Fn⟩⟨Fn||D||Fi⟩
NF (E

(0)
Ff

− E
(0)
Fn

)

≃
∑
n̸=i

⟨Ff ||D||Fn⟩⟨Fn||HNSD||Fi⟩
NF (E

(0)
i − E

(0)
n )

+
∑
n̸=f

⟨Ff ||HNSD||Fn⟩⟨Fn||D||Fi⟩
NF (E

(0)
f − E

(0)
n )

,(7.6)

where E
(0)
Fn

and E
(0)
n are the hyperfine and atomic energy values of the nth state, respect-

ively, and NF =
√
⟨Ψ(0)

f |Ψ(0)
f ⟩F ⟨Ψ(0)

i |Ψ(0)
i ⟩F is the normalization factor of the hyperfine

levels. However, dealing with the wave functions in the hyperfine coordinate system is
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challenging. To address this, we express the |(IJ)FMF ⟩ levels in perturbation series as

|(IJ)FMF ⟩ = |II; JMJ⟩ +
∑

J ′,MJ′

|II; J ′MJ ′⟩

×⟨II; J ′MJ ′|Hhf |II; JMJ⟩
EJ − EJ ′

+ · · · . (7.7)

Here Hhf is the hyperfine interaction Hamiltonian. In this work, we consider only the

first term |II; JMJ⟩. Using this approximation and substituting the following relations

[8]

⟨(I, Jn)Fn,Mn|K⃗(1) · I⃗|(I, Ji)Fi,Mi⟩ = δFn,Fi
δMn,Mi

× (−1)I+Fi+Ji
√
I(I + 1)(2I + 1)

×

Jn Ji 1

I I Fi

 ⟨Jn||K(1)||Ji⟩ (7.8)

and

⟨(I, Jf )Ff ,Mf |D|(I, Jn)Fn,Mn⟩ =
√

(2Ff + 1)(2Fn + 1) × (−1)Ff−Mf

 Ff 1 Fn

−Mf q Mn


×(−1)I+Fn+Jf+1

Jn Jf 1

Ff Fn I

 ⟨Jf ||D||Jn⟩ (7.9)

in Eq. 7.6, it gives

XNSD
PV = C

[∑
n̸=i

Jn Ji 1

I I Fi


Jn Jf 1

Ff Fi I

 (−1)(Jf−Ji+1)

× ⟨Jf ||D||Jn⟩⟨Jn||K(1)||Ji⟩
E

(0)
i − E

(0)
n

+
∑
n̸=f

Jn Jf 1

I I Ff


Jn Ji 1

Fi Ff I

 (−1)(Ff−Fi+1)

× ⟨Jf ||K(1)||Jn⟩⟨Jn||D||Ji⟩
E

(0)
f − E

(0)
n

]
, (7.10)
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where C = GF√
2

√
I(I + 1)(2I + 1)(2Ff + 1)(2Fi + 1) .

We can express XNSD
PV in terms of the final state (|Ψf⟩) and initial state (|Ψi⟩) atomic

wave functions, as

XNSD
PV =

1

N ⟨Ψ(0)
f |D̃f |Ψ(1)

i ⟩ + ⟨Ψ(1)
f |D̃i|Ψ(0)

i ⟩, (7.11)

where N =
√

⟨Ψ(0)
f |Ψ(0)

f ⟩⟨Ψ(0)
i |Ψ(0)

i ⟩ is the normalization factor of the atomic wave

functions, D̃i and D̃f are the effective E1 operators which are explicitly given by

D̃i = (−1)(Ff−Fi+1)
∑
n

⟨Jn||D||Ji⟩ ×

Jn Jf 1

I I Ff


Jn Ji 1

Fi Ff I

 (7.12)

and

D̃f = (−1)(Jf−Ji+1)
∑
n

⟨Jf ||D||Jn⟩ ×

Jn Ji 1

I I Fi


Jn Jf 1

Ff Fi I

 . (7.13)

Alternatively, following the discussion for E1NSI
PV in earlier chapter, we can express

XNSD
PV amplitude between the states |Ψf⟩ and |Ψi⟩ as the second-order correction by

considering D as an additional perturbation i.e.

XNSD
PV ≃ ⟨Ψ(0,0)

f |D|Ψ(1,0)
i ⟩ + ⟨Ψ(0,0)

f |K(1)|Ψ(0,1)
i ⟩

+⟨Ψ(0,0)
f |Ψ(1,1)

i ⟩, (7.14)

in which the superscripts (m,n) denotes m orders of K(1) and n orders of D. Eq. 7.6

is used in the RPA, CPDF and CPDF-RPA methods without considering the DCP

effects. However, the DCP effects can be estimated in the CPDF-RPA method through

the last term of Eq. 7.14. For the RCC theory, the DCP effects can be included by

either adopting Eq. 7.6 or Eq. 7.14. As it is not convenient to determine the second-

order perturbed wave function, |Ψ(1,1)
i ⟩, using the formula given by Eq. 7.10, we give
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here a more generic formula for XNSD
PV using the tensor product relations [8, 9] as

XNSD
PV = C

∑
k=0,1,2

(2k + 1)

[∑
n̸=i


Jf Ji k

I I 1

Ff Fi 1


Jf k Ji

1 Jn 1


× (−1)(Jf+Ji+1) ⟨Jf ||D||Jn⟩⟨Jn||K(1)||Ji⟩

E
(0)
i − E

(0)
n

+
∑
n̸=f


I I 1

Jf Ji k

Ff Fi 1


Jf k Ji

1 Jn 1


× (−1)(2Jf+Ff−Fi+1) ⟨Jf ||K(1)||Jn⟩⟨Jn||D||Ji⟩

E
(0)
f − E

(0)
n

]
. (7.15)

It can be shown that both Eqs. 7.10 and 7.15 are equivalent. However, in Eq. 7.15, Fi,

Ff and Jn are not coupled through either 6j- or 9j-symbols as in the case for Eq. 7.10.

This helps to implement the above expression in the CPDF-RPA method to compute

XNSD
PV . D and K

(1)
can be defined as

D = (−1)(Jf+Ji+1)
∑

k=0,1,2

(2k + 1)
∑
n


Jf Ji k

I I 1

Ff Fi 1


Jf k Ji

1 Jn 1

 ⟨Jf ||D||Jn⟩

(7.16)

and

K
(1)

= (−1)(2Jf+Ff−Fi+1)
∑

k=0,1,2

(2k + 1)
∑
n


I I 1

Jf Ji k

Ff Fi 1


Jf k Ji

1 Jn 1

 ⟨Jf ||K(1)||Jn⟩.

(7.17)
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Table 7.1: Estimated XNSD
PV values of the hyperfine transitions (Ff − Fi) among all

possible hyperfine levels Ff and Fi of the 7s 2S1/2 and 6s 2S1/2 states, respectively, in
133Cs from different methods. All the values are given in the units of iea0KW × 10−12.
We also compare these values with the values reported in previous works at different
levels of approximation in the many-body method.

Method 3 − 3 3 − 4 4 − 3 4 − 4

This work

DHF 1.9029 5.4663 4.7337 2.1665
CPDF 2.3345 7.0455 6.1470 2.6579
RPA 1.8305 5.6738 4.9689 2.0842
CPDF-RPA* 2.2456 7.2348 6.3707 2.5564
CPDF-RPA 2.0139 6.9891 6.2142 2.2928
RCCSD 2.3344 7.3943 6.4958 2.6575

Other works

DHF [7] 1.908 5.481 4.746 2.173

DHF [10] 2.011 5.774 5.000 2.289

RPA [7] 2.249 7.299 6.432 2.560

PRCC† [10] 2.274 6.313 5.446 2.589

SD [11] 7.948 7.057

†The PRCC method of Ref. [10] is same as our RCCSD method.

As the matrix elements of both the K(1) and D operators and all the coupling angular

factors are taken into account in the evaluation of |Ψ(1,1)
i ⟩, any additional effective

operator has not been defined for estimating XNSD
PV . We have implemented CPDF,

RPA, CPDF-RPA and RCC methods to evaluate XNSD
PV . Because of the rank of the

K(1) operator, the angular momentum coupling scheme for NSD PV is very complicated

compared to NSI PV.

7.2 Results and Discussions

We present our results for XNSD
PV amplitudes between the F = 3 and F = 4 hyperfine

levels of the 6s 2S1/2 → 7s 2S1/2 transition in the 133Cs atom in Table 7.1 using the DHF,
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Figure 7.1: XNSD
PV values for the Ff −Fi transitions of the 7s 2S1/2(Ff ) and 6s 2S1/2(Fi)

states in 133Cs from different methods. The plotted values are presented in the same
units as in Table 7.1.

CPDF, RPA, CPDF-RPA*, CPDF-RPA and RCCSD methods. The table shows that

the value of the XNSD
PV values in the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 transitions

are smaller compared to the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions. In the

same table, we also compare our results with earlier reported values in the literature

[7, 10, 11]. We can conclude that CP effects arising through the K(1) are significantly

stronger than those arising through the E1 operator by comparing the results obtained

from the CPDF and RPA methods. Interestingly this correlation trend is more peculiar

in the CPDF-RPA* method, in which results between the Fi = 3 → Ff = 4 and

Fi = 4 → Ff = 3 hyperfine levels are larger than the CPDF values while they are

smaller for the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 hyperfine levels compared to the

CPDF values. So from these results, it would not be clearly argued that the CP effects

through the E1 operator always contribute with an opposite sign than the K(1) operator.

Just like earlier in the case of the NSI PV study, the difference between CPDF-RPA*
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and CPDF-RPA corresponds to DCP contribution. From the table, we can see that the

DCP contributions are quite significant, and they reduce the values of XNSD
PV obtained

using the CPDF-RPA* method. The results from the RCCSD method are seen to be

larger than the CPDF-RPA method. As we have shown in the earlier chapter, the RCC

method includes all correlation contributions from the CPDF-RPA method as well as

contributions from PC effects and correlations among CP and PC effects to all-orders.

Although results from the CPDF-RPA* and RCCSD methods appear to be very similar,

one has to note that the RCCSD method includes DCP effects, whereas the CPDF-

RPA* method does not. This suggests that the contributions from the PC effects play

an important role in accurate determination of XNSD
PV values and cannot be neglected.

To gauge the magnitudes of the XNSD
PV values quantitatively for the transitions between

different hyperfine levels, we plot these values in Fig. 7.1.

As can be seen in Table 7.1, our calculations at the DHF level agree quite well with

the calculations carried out in Ref. [7] but differ a little bit from Ref. [10]. A careful

comparison shows the RPA values of Ref. [7] match well with our CPDF-RPA* results.

From this analysis, we can assume that the RPA method of Ref. [7] is not exactly

the same as our RPA method; rather, it considers the combined results from both the

RPA and CPDF methods. However, it appears that in Ref. [7], DCP contributions

were not included in the calculation. The calculations in Ref. [11] based on a sum-over-

states approach in which E1 and K(1) matrix elements of a few low-lying transitions are

explicitly evaluated using the linearized RCC theory (referred to as ‘SD’ in the original

paper) and experimental energy values were used. Limitations of the sum-over-states

approach have already been discussed in earlier chapter. The differences between the

sum-over-states SD and ab initio RCCSD results could be attributed to the DCP effects

and contributions from the Core and Tail contributions. The comparison between the

results from the PRCC method of Ref. [10] and the RCCSD method of the present

work shows large differences. This could be due to two reasons: the use of different

size basis functions and the difference in the implementation of the method. Although

GTOs are used in both works, different sets of parameters are being considered. Since
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Table 7.2: The Core and Valence contributions to the XNSD
PV values in all the considered

transitions among all possible hyperfine levels Ff and Fi of the 7s 2S1/2 and 6s 2S1/2

states, respectively, in 133Cs from different methods. Same units as in Table 7.1 are
used here.

Method Ff Fi Core Valence

DHF 3 3 −0.0046 1.9075
3 4 −0.2031 5.6693
4 3 −0.2014 4.9350
4 4 −0.0051 2.1717

CPDF 3 3 −0.0049 2.3394
3 4 −0.4417 7.4872
4 3 −0.4396 6.5866
4 4 −0.0056 2.6635

RPA 3 3 0.0007 1.8298
3 4 −0.2814 5.9552
4 3 −0.2821 5.2510
4 4 0.0007 2.0835

CPDF-RPA* 3 3 0.0039 2.2417
3 4 −0.6181 7.8529
4 3 −0.6195 6.9902
4 4 0.0039 2.5525

CPDF-RPA 3 3 0.0039 2.0100
3 4 −0.6181 7.6072
4 3 −0.6195 6.8337
4 4 0.0039 2.2889

RCCSD 3 3 −0.0047 2.3392
3 4 −0.3458 7.7401
4 3 −0.3441 6.8399
4 4 −0.0052 2.6627

our calculations at the DHF level agree with those of Ref. [7], we can presume that

our basis functions are good enough for accurate estimation of XNSD
PV . It should be

noted that Ref. [7] uses B-spline polynomials as basis functions. From the point of

view of the method, both the PRCC and RCCSD methods are the singles and doubles
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approximated RCC theory and obtain results in the first principle approach. However,

the implementation procedures of these methods in Ref. [10] and in our work differ

in dealing with the angular momentum couplings between the nuclear and electronic

components. Following procedures adopted by other groups, we decouple nuclear and

electronic angular factors and carry out calculations only on the electronic coordinate

by expressing nuclear angular factors as prefactors. However, in Ref. [10], both the

nuclear and electronic couplings are included together. We reproduced the CPDF-RPA

method’s results using the corresponding terms from the RCCSD method to ensure

proper implementation of our approach. Additionally, we thoroughly investigated any

additional contributions that resulted from the RCCSD method over the CPDF-RPA

method. Based on this analysis, we conclude that our RCCSD calculations are more

reliable.

In order to understand the roles of the Core and Valence correlation contributions

in the evaluation of XNSD
PV , we showcase both these contributions from each method

in Table 7.2. This table reveals an interesting phenomenon: the Valence contributions

to the Fi = 4 → Ff = 4 and Fi = 3 → Ff = 3 transitions differ greatly, whereas

the Core contributions to both transitions are comparable. The Fi = 3 → Ff = 4

and Fi = 4 → Ff = 3 transitions exhibit similar behaviour. This suggests that the

resemblance of Core contributions to these transitions is not due to their angular and

radial factors but rather represents an odd behavior of the property under investigation.

Another interesting trend is that in contrast to the RPA, CPDF-RPA*, and CPDF-

RPA methods, the signs of the Core contributions in the DHF, CPDF, and RCCSD

are opposite for the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 transitions, but they are

the same for the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions. This implies

that the Core contributions resulting from the CPDF-RPA* (or combined CPDF-RPA)

approach are not equal to the total of the individual Core contributions from the CPDF

and RPA methods taken together. From the analyses of the Valence contributions, we

can see that, while their magnitudes vary greatly between methods, we do not find

any sign differences among their values for any of the hyperfine transitions at different
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(a) Ff = 3 → Fi = 3 (b) Ff = 3 → Fi = 4

(c) Ff = 4 → Fi = 3 (d) Ff = 4 → Fi = 4

Figure 7.2: Ratios of the calculated XNSD
PV values for the Ff − Fi transitions of the

7s 2S1/2 and 6s 2S1/2 states, respectively, in 133Cs from different methods with respect
to their DHF values.

levels of approximation in the methods. Compared to the Fi = 3 → Ff = 4 and

Fi = 4 → Ff = 3 transitions, the differences in values obtained from the DHF method

and other methods for the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 transitions are

comparatively smaller.

In order to gain a more quantitative understanding of the role of electron correla-

tion effects in each many-body method, we plot the XNSD
PV values from each method

with respect to the DHF values (by taking ratio of each calculation with respect to
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Table 7.3: Comparison of contributions from the initial and final perturbed states to
XNSD

PV among all possible hyperfine levels of the 7s 2S1/2(Ff ) − 6s 2S1/2(Fi) transition
in 133Cs at different methods, in units of iea0KW × 10−12.

Method Ff Fi ⟨7S(0)|D̃f |6S(1)⟩ ⟨7S(1)|D̃i|6S(0)⟩ Total

DHF 3 3 −0.7077 2.6106 1.9029
3 4 0.9513 4.5150 5.4663
4 3 1.2236 3.5101 4.7337
4 4 −0.8057 2.9722 2.1665

CPDF 3 3 −0.8673 3.2018 2.3345
3 4 1.2201 5.8254 7.0455
4 3 1.5540 4.5930 6.1470
4 4 −0.9873 3.6452 2.6579

RPA 3 3 −0.8158 2.6463 1.8305
3 4 1.0969 4.5769 5.6738
4 3 1.4108 3.5581 4.9689
4 4 −0.9289 3.0131 2.0842

CPDF-RPA* 3 3 −0.9901 3.2357 2.2456
3 4 1.3688 5.8660 7.2348
4 3 1.7504 4.6203 6.3707
4 4 −1.1277 3.6841 2.5564

CPDF-RPA 3 3 −0.9677 2.9816 2.0139
3 4 1.3163 5.6728 6.9891
4 3 1.6894 4.5248 6.2142
4 4 −1.1018 3.3946 2.2928

RCCSD 3 3 −0.9807 3.3151 2.3344
3 4 1.4815 5.9128 7.3943
4 3 1.8590 4.6367 6.4958
4 4 −1.1169 3.7744 2.6575

the corresponding DHF value) for each transition between the hyperfine levels in Fig.

7.2. As the figure clearly indicates, the correlation trends in the estimation of Core

and Valence contributions at various approximations of the method differ. The net
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magnitude of Core contribution is small, but they are pronounced in the estimation

of Valence contribution. Because of this, results from previous reports that used a

sum-over-states approach in which only the Valence contributions are estimated with

greater rigor appear to be fairly accurate. Upon closer examination of the figure, it

can be inferred that the CPDF-RPA method yields the largest correlation effects when

compared to the other methods. In the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4

transitions, the CPDF method includes the smallest amount of correlation effects while

in the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions the RPA method accounts

for the smallest amount of correlation effects. Interestingly, even though the RCCSD

method includes all effects included by the CPDF, RPA, and CPDF-RPA methods,

the correlation effects arising through this method are the second smallest in all trans-

itions. Thus, it implies that the PC effects that are absent from the other methods and

included in the RCCSD method contribute nearly equally, albeit in opposite directions.

In Table 7.3, we present results from both the initial and final perturbed states

separately for all the hyperfine level transitions using the methods employed in this

work. As shown in the table, the final perturbed states predominantly contribute

more than the initial perturbed states across all transitions, regardless of whether the

K(1) or E1 operator is used as the perturbation. This trend is notably similar to

the evaluation of the E1NSI
PV amplitude of the 6s 2S1/2 − 7s 2S1/2 transition in 133Cs.

Additionally, we observe that contributions to XNSD
PV from the initial and final states

in the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 transitions have opposite signs, whereas

they have the same sign in the Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions,

resulting in an enhancement in the final result. We also analyze the contributions of the

individual RCCSD terms to the XNSD
PV values in Table 7.4. Like in E1NSI

PV , contributions

arising through D̄T
(1)
1 and its c.c. term correspond to the Core contributions, and the

rest of the terms offer the Valence contributions. Upon closely examining the above

table, it is evident that the corrections from D̄T
(1)
1 and its c.c. term cancels in the

Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 transitions, whereas they add up in the
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Table 7.4: Contributions from different RCC terms to the XNSD
PV values (in units

iea0KW × 10−12) of the 7s 2S1/2(Ff ) − 6s 2S1/2(Fi) transitions in 133Cs. Here, con-
tributions given under ‘Norm’ represent the corrections to results due to normalization
factors of the wave functions. In this table D denotes only the effective one-body part
of eT

(0)†
DeT

(0)
. Contributions from other non-linear terms of the RCCSD method are

given together under “Others”.

RCC term 3 − 3 3 − 4 4 − 3 4 − 4

D̄T
(1)
1 −0.1029 −0.1981 −0.1585 −0.1169

T
(1)†
1 D̄ 0.0983 −0.1501 −0.1879 0.1120

D̄S
(1)
1i −0.4487 0.6832 0.8561 −0.5110

S
(1)†
1f D̄ 4.5384 8.0486 6.3017 5.1674

S
(0)†
1f D̄S

(1)
1i −0.5575 0.8032 1.0178 −0.6349

S
(1)†
1f D̄S

(0)
1i −1.0339 −1.8588 −1.4609 −1.1770

D̄S
(1)
2i −0.0577 0.1179 0.1403 −0.0658

S
(1)†
2f D̄ −0.0077 0.0273 0.0304 −0.0087

Others −0.0389 0.0947 0.1090 −0.0452
Norm −0.0549 −0.1736 −0.1522 −0.0624

Total 2.3344 7.3943 6.4958 2.6575

Fi = 3 → Ff = 4 and Fi = 4 → Ff = 3 transitions. The contribution from the D̄S
(1)
1i

and S
(1)†
1f D̄ terms likewise exhibits a similar pattern. By drawing parallels to the E1NSI

PV

calculation, it is evident that the RCCSD method includes all correlation contributions

from the CPDF-RPA method and also includes PC and other non-RPA contributions

that were not included in the CPDF-RPA method.

Now, to improve the accuracy of the XNSD
PV calculation, we first separate the Main

contribution and the rest from our RCCSD calculation. Earlier results obtained using

the sum-over-states approach estimated contributions from Core and Tail using lower-

order methods without accounting for DCP. By dividing the RCCSD results into Main

and the rest, the latter part corresponds to Core, DCP and Tail contributions together,

thus improving accuracy over previous calculations. Next, we aim to improve the

accuracy of the Main contribution obtained through the first-principle approach. In the

previous calculations using the sum-over-states approach [11], the np 2P1/2;3/2 (with n =
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Table 7.5: Calculated reduced K(1) matrix elements (in iKW × 10−12) of the low-lying
states of 133Cs using the RCCSD method. These values have been used to estimate the
‘Main’ contributions to the XNSD

PV amplitudes.

Transition K(1) amplitudes
6P1/2 − 6S1/2 −2.0914
7P1/2 − 6S1/2 −1.1801
8P1/2 − 6S1/2 −0.7930
9P1/2 − 6S1/2 0.5717
6P3/2 − 6S1/2 0.0370
7P3/2 − 6S1/2 0.0213
8P3/2 − 6S1/2 0.0141
9P3/2 − 6S1/2 0.0101
7S1/2 − 6P1/2 1.0348
7S1/2 − 7P1/2 0.5837
7S1/2 − 8P1/2 0.3917
7S1/2 − 9P1/2 −0.2823
7S1/2 − 6P3/2 0.0167
7S1/2 − 7P3/2 0.0094
7S1/2 − 8P3/2 0.0067
7S1/2 − 9P3/2 0.0050

6−9) intermediate bound states were used to estimate XNSD
PV . To maintain consistency

with these calculations, we also consider these intermediate states to estimate the Main

contributions to XNSD
PV . We first calculate the Main contribution using the calculated

E1 matrix elements and energies from the RCCSD method. Then, we replace the

calculated E1 matrix elements and energies with precisely known experimental values

[12, 13, 14, 15, 16, 17, 18]. In Table 7.5, we have presented a list of the K(1) matrix

elements from the RCCSD method. Since obtaining very accurate values of XNSD
PV is

our primary goal, we use the sum-over-states approach to replace the ab initio Main

contributions with the semi-empirical values. We give contributions to the XNSD
PV of

different transitions involving the hyperfine levels of the 6s 2S1/2 and 7s 2S1/2 states

from the ab initio and semi-empirical calculations in Table 7.6. Figure 7.3 illustrates

the individual contributions from the np 2P1/2,3/2 (n = 6 − 9) states to the Main

contribution, highlighting their significance. The plots indicate that among all the

bound states considered, the 6P1/2 and 7P1/2 states are the primary contributors to
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Table 7.6: Estimated ‘Main’ Contributions to the XNSD
PV values, in units of iea0KW ×

10−12, of the 7s 2S1/2(Ff ) − 6s 2S1/2(Fi) transitions in 133Cs using matrix elements
involving the np 2P1/2,3/2 (n = 6 − 9) intermediate states from the RCCSD method
in the sum-over-states approach. The values given by ab initio results. These values
obtained after replacing some of the calculated E1 matrix elements and energies by
their precisely known experimental values are given under semi-empirical results. These
values are estimated for the initial perturbed and final perturbed states separately, then
the final values are given after adding both the contributions.

Ff Fi ⟨7S(0)|D̃f |6S(1)⟩ ⟨7S(1)|D̃i|6S(0)⟩ Total
Ab initio results

3 3 −1.1389 3.3557 2.2168
3 4 1.6080 6.0009 7.6089
4 3 2.0464 4.7093 6.7557
4 4 −1.2967 3.8206 2.5239

Semi-empirical results

3 3 −1.1391 3.3376 2.1985
3 4 1.6078 5.9681 7.5759
4 3 2.0463 4.6834 6.7297
4 4 −1.2969 3.8000 2.5031

the Main contributions in all transitions, while contributions from the nP3/2 states are

minimal. In the Fi = 3 → Ff = 3 and Fi = 4 → Ff = 4 transitions, the 6P1/2 state

contributes with opposite signs for the initial and final perturbed states, resulting in

the 7P1/2 state being the dominant contributor. Conversely, in the Fi = 3 → Ff = 4

and Fi = 4 → Ff = 3 transitions, the 6P1/2 state contributes with the same sign for

both the initial and final perturbed states, making it the dominant contributor over the

7P1/2 state. Additionally, there are significant cancellations among contributions from

the intermediate states to both the initial and final perturbed states in all transitions.

These cancellations are particularly strong in the initial perturbed state, explaining

why contributions from the initial perturbed states are much smaller than those from

the final perturbed states.

In Table 7.7, we present the recommended values for the Main, Core, DCP, and Tail

contributions XNSD
PV , in units iea0KW × 10−12, as well as their estimated uncertainties
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(a) Ff = 3 − Fi = 3 transition (b) Ff = 3 − Fi = 4 transition

(c) Ff = 4 − Fi = 3 transition (d) Ff = 4 − Fi = 4 transition

Figure 7.3: Contributions from different intermediate states to the XNSD
PV values for

different 7s 2S1/2(Ff )−6s 2S1/2(Fi) transitions in 133Cs. P denotes P1/2, and P denotes
the P3/2 state.

for all possible transitions among the hyperfine levels of the 6s 2S1/2 and 7s 2S1/2 states

in 133Cs by adopting the procedure discussed above. As the DCP and Tail contributions

in our RCCSD method cannot be readily disengaged, they are presented collectively

in the above table as DCP+Tail. The primary source of uncertainty in the Main

contributions arises from the E1 matrix elements used in the experiments. Given the

computational complexity of performing such analyses with the RCCSD method, we

used the CPDF-RPA method to estimate uncertainties for the Core and DCP+Tail
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Table 7.7: The final recommended Main, Core, DCP+Tail, Breit and QED contribu-
tions to the XNSD

PV values (in units of iea0KW ×10−12) of the 7s 2S1/2(Ff )−6s 2S1/2(Fi)
transitions in 133Cs. Uncertainties are quoted within the parentheses.

Ff Fi Main Core DCP+Tail +Breit +QED Total
3 3 2.1985(52) −0.0047(2) 0.122(3) −0.008 −0.008 2.300(6)
3 4 7.5759(73) −0.3458(18) 0.131(2) −0.008 −0.026 7.327(8)
4 3 6.7297(88) −0.3441(18) 0.084(1) −0.005 −0.023 6.442(9)
4 4 2.5031(56) −0.0052(3) 0.139(3) −0.009 −0.009 2.619(6)

contributions. We repeated the calculations by taking large sizes basis functions in the

CPDF-RPA method with different combinations of high-lying s and p orbitals. From

the variations in the XNSD
PV values, we assigned uncertainties to the Core and DCP+Tail

contributions. We also included Breit and QED corrections using the RCCSD method

to improve the accuracy of our results.

If we consider the next-order correction to |(IJ)FMF ⟩ by the hyperfine interaction

Hamiltonian, there can be another NSD contribution to E1PV due to the hyperfine-

induced NSI interaction. As the contribution of this quantity is comparatively small,

we neglect this correction in the present work. In Ref. [1], the quantity that was

measured was the differential value of the NSD contribution to E1PV . It was extracted

by carrying out PV measurements between the 6s 2S1/2(Fi = 3) → 7s 2S1/2(Ff = 4)

transition and between the 6s 2S1/2(Fi = 4) → 7s 2S1/2(Ff = 3) transition in 133Cs.

By assuming the net NSD contribution to E1PV arises only from E1NSD
PV then we can

express the differential E1NSD
PV value between the above hyperfine levels Fi and Ff as

[7]

δE1NSD
PV = KW

[(XNSD
PV

AFf ,Fi

)Ff ,Fi

−
(XNSD

PV

AFi,Ff

)Fi,Ff
]
, (7.18)

where subscript and superscript Ff , Fi notations used in the above expression denote
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Table 7.8: Numerical results for α and β values for 6S-7S transition in 133Cs in a.u. We
have used the experimental value of α

β
= 9.905(11) from Ref. [21]. The error in the

results is calculated from the uncertainty in the E1 matrix elements.

Method α β
From α

β
Direct

This work
Ab initio −280.13 28.28 27.23

Semi-empirical −268.33(21) 27.09(4) 27.05(29)

Others
Sum-over-states [17] −268.82(30) 27.139(42) 27.01(23)

Sum-over-states [23] −266.31(23) 26.887(38) 27.023(114)

Experiment [19] 27.043(36)

the hyperfine levels for the transition Ff → Fi and

AFfFi
= (−1)Jf+Fi+I+1

√
6(2Fi + 1)(2Ff + 1)

Ff Fi 1

Ji Jf I

 .

In Ref. [1], the actual measured quantity is δE1NSD
PV /β = −0.077(11) mV/cm,

where β represents the vector polarizability of the 6s 2S1/2 → 7s 2S1/2 transition in

133Cs. We infer KW = 0.117(16) by combining our calculated XNSD
PV values with the

measurement of δE1NSD
PV /β, using the recently reported value β = 27.043(36) a.u. from

Ref. [19]. Moreover, it produces Ka = 0.103(16) by substituting KNSD = 0.0140 from

a nuclear model calculation [20]. Refs. [7] and [20] report values for Ka that are in

good agreement with this.

7.2.1 Calculation for vector polarizability

It is clear from above that to estimate E1NSD
PV from the measurements of Ref. [1], it

is necessary to know β. In the last three decades, various groups have tried different

approaches to calculate the β value of 133Cs for the 6s 2S1/2 → 7s2S1/2 transition.

One method involves calculating the scalar polarizability α for the 6s 2S1/2 → 7s2S1/2

transition and then using the ratio α
β

[21] to determine β. The other way to estimate
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Section 7.2. Results and Discussions

the vector polarziablity β for the 6s 2S1/2 → 7s2S1/2 transition is from the ratio
M1hf

β
,

where M1hf is the hyperfine induced magnetic dipole transition between 6S and 7S

state. Recently, Toh et al. [17] published their most accurate determination of β. They

adopted the value of α
β

and used the sum-over-states method to calculate α. Their

calculation of α was carried out using experimentally and theoretically determined E1

matrix elements and energies. Their calculated values for α and β were −268.82(30) and

27.139(42) a.u., respectively. Although the uncertainties of their calculation approach

that of earlier calculation of Dzuba et al. [22] where they estimate β, using the
M1hf

β

ratio, to be 26.957(43)expt(27)theory a.u., their central values differ by 0.7%. In order to

improve the calculation of α and β, the latest calculation was done by Tan et al. [23].

The value of α they obtained is −266.31(23) a.u. Using the α
β

ratio, they estimated

β to be 26.887(38) a.u. Their results are in good agreement with those of Dzuba et

al. [22], apparently resolving the discrepancies between the two methods of calculating

β. But, recently, Quirk et al. [19] experimentally measured the β to be 27.043(36)

a.u. One thing to note is that, in both Refs. [17, 23], only the ‘Main’ contribution has

been calculated with high precision, while the Core-Valence and Tail parts have been

estimated using lower-order many-body methods like RPA or DHF. In this scenario,

additional investigations are needed to bring all of these values into better agreement.

Based on the discussion in the previous chapter, the expression for the α and β can be

written as [23]

α =
1√

6
√

3(2Ji + 1)

∑
Jn

(−1)(Ji−Jn)⟨Jf ||D||Jn⟩⟨Jn||D||Ji⟩

×
(

1

EJf − EJn

+
1

EJi − EJn

)
(7.19)

and

β = −1

2

∑
Jn

Jf Ji 1

1 1 Jn

 ⟨Jf ||D||Jn⟩⟨Jn||D||Ji⟩

×
(

1

EJf − EJn

− 1

EJi − EJn

)
. (7.20)
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Table 7.9: Breakdown of the semi-empirical results for α and β in terms of individual
contribution. The results are in a.u.

Quantity Core-Valence Main Tail+DCP
α 0.247 -268.358 -0.220

β 0.002 27.204 -0.151

Here, we have used the same procedure to estimate α and β as we did in the calcu-

lation of XNSD
PV . First, we calculate the α and β by the ab initio RCCSD method;

then, we replace the ‘Main’ contribution from the np 2P1/2,3/2 (n = 6 − 9) states with

the semi-empirical value. We present the results in Table 7.8. The primary reason

behind the difference between our semi-empirical and ab initio results is the use of

experimental energy and E1 matrix elements to estimate the Main part in the former

approach. One can improve the ab initio results by considering corrections from triple

excitations in the RCC method. In the same table, we also compare our results with

the recent calculations. As can be seen, our semi-empirical calculations agree well with

the experimental value in comparison with the others. This is because we have used

the RCCSD method to estimate the contribution from core and high-lying orbitals.

We also present a breakdown of the semi-empirical results in Table. 7.9. As the table

indicates, to achieve high precision, it is necessary to estimate contributions from Core,

Tail and DCP correlation.

7.3 Summary

In this chapter, we have presented the results of NSD PV amplitudes among different

hyperfine levels of the 6s 2S1/2 → 7s 2S1/2 transition in 133Cs. To investigate the role

of electron correlation effects, we have employed various many-body methods such as

CPDF, RPA, CPDF-RPA and RCCSD. We found that the DCP contributions that

were previously omitted in earlier studies are significant, contributing 3 to 12% to the

NSD PV amplitudes across different hyperfine levels. We have also analyzed contribu-

tions from core and valence orbitals, demonstrating that contributions from core and
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high-lying valence orbitals are crucial for precise determination of XNSD
PV . Given that

the RCC method incorporates all types of correlation effects from lower-order methods,

we consider our RCC results to be reliable. We further improved the accuracy of our

RCC results using precise E1 amplitudes and energies from experiments in sum-over-

states approach. Finally, by combining our calculation with measurement in 133Cs, we

have revised the limit on the magnitude of nucleon-nucleon parity-violating coupling

constant. Our study indicates that the discrepancy between atomic and nuclear physics

results is not due to uncertainties in different many-body calculations but may instead

result from unknown systematic effects in the experiment or inappropriate approxima-

tions made in the nuclear calculations. Furthermore, we have also presented the scalar

and vector transition polarizabilities using the RCCSD method. Our calculation for

vector polarizability matches the recent experimental value.

207



Chapter 7 : RCC calculations of NSD PV in 133Cs

208



Bibliography

[1] C. S. Wood et al., Science 275, 1759 (1997).

[2] W. C. Haxton and C. E. Wieman, Ann. Rev. Nuc. Part. Sc. 51, 261 (2001).

[3] W. S. Wilburn and J. D. Bowman, Phys. Rev. C 57, 3425 (1998).

[4] J. S. M. Ginges and V. V. Flambaum, Phys. Rep. 397, 63 (2004).

[5] V. V. Flambaum and D. W. Murray, Phys. Rev. C 56, 1641 (1997).

[6] V. A. Dzuba, V. V. Flambaum, P.G. Silvestrov and O. P. Sushkov, J. Phys. B 20

3297 (1987).

[7] W. R. Johnson, M. S. Safronova and U. I. Safronova Phys. Rev. A 67, 062106

(2003).

[8] I. Lindgren and J. Morrison, Atomic Many-Body Theory, edited by G. Ecker, P.

Lambropoulos, and H. Walther, Springer-Verlag, Berlin (1985).

[9] D. A. Varshalovich, A.N. Moskalev, and V. K. Khersonskii, Quantum Theory Of

Angular Momentum, World Scientific Publishing Company, Singapore (1989).

[10] B. K. Mani and D. Angom, arXiv:1104.3473 (2011) (Unpublished).

[11] M. S. Safronova et al., Nuc. Phys. A 827, 411 (2009).

[12] C. Amiot, O. Dulieu, R. F. Gutterres and F. Masnou Seeuws, Phys. Rev. A 66,

052506 (2002).

209



Chapter 7 : RCC calculations of NSD PV in 133Cs

[13] A. Damitz, G. Toh, E. Putney, C. E. Tanner and D. S. Elliott, Phys. Rev. A 99,

062510 (2019).

[14] D. C. Morton, Astrophys. J., Suppl. Ser. 130, 403 (2000).

[15] L. Young, W. T. Hill, S. J. Sibener, S. D. Price, C. E. Tanner, C. E. Wieman and

S. R. Leone, Phys. Rev. A 50 2174 (1994).

[16] G. Toh, A. Damitz, N. Glotzbach, J. Quirk, I. C. Stevenson, J. Choi, M. S. Safro-

nova and D. S. Elliott, Phys. Rev. A 99, 032504 (2019).

[17] G. Toh, A. Damitz, C. E. Tanner, W. R. Johnson and D. S. Elliott, Phys. Rev.

Lett. 123, 073002 (2019).

[18] A. Kramida, Yu. Ralchenko, J. Reader and NIST ASD Team, NIST Atomic Spec-

tra Database (ver. 5.6.1) (National Institute of Standards and Technology, Gaith-

ersburg, MD, (2018).

[19] Jonah A. Quirk, Aidan Jacobsen, Amy Damitz, Carol E. Tanner and D. S. Elliott,

Phys. Rev. Lett. 132, 233201 (2024).

[20] W. C. Haxton, C. -P. Liu and M. J. Ramsey-Musolf, Phys. Rev. Lett. 86, 5247

(2001).

[21] D. Cho, C. S. Wood, S. C. Bennett, J. L. Roberts, and C. E. Wieman, Phys. Rev.

A 55, 1007 (1997).

[22] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 62, 052101 (2000).

[23] H. B. Tran Tan, D. Xiao, and A. Derevianko, Phys. Rev. A 108, 022808 (2023).

210



Chapter 8

Summary and Future Directions

I
n the past two decades, numerous high-precision atomic calculations have been

reported for NSI parity violating amplitude for the 6S − 7S transition in 133Cs.

Despite the accuracy of these calculations being within 0.5%, there exists a discrepancy

of approximately 1% among the final results from these studies. This inconsistency

is further aggravated due to the opposite signs of the Core contributions in different

NSI PV studies [1, 2, 3, 4]. Discrepancy exists in the results of NSD PV studies also.

The results from atomic studies conflict with those from nuclear physics, necessitating

a rigorous analysis of the NSD PV calculations [5, 6, 7]. In this study, we attempted

to address these two issues by developing the earlier employed methods by different

groups and analyzing their relations with the RCC methods as discussed in the previous

chapters. This chapter summarises the steps undertaken to address the issues and

outlines all the findings from the calculations carried out under this thesis. In the

end, we conclude the work and provide future directions to improve the study further

wherever possible.

8.1 Thesis summary

We commenced our work by introducing the fundamental tools of atomic many-body

theory in Chapter 2. In the same chapter, second quantization operator, the Goldstone
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diagram, and normal ordering have been discussed. Additionally, we introduced the

DHF method and defined the residual interaction Vres. Subsequently, in Chapter 3, we

examined various many-body theories, namely RMBPT, RPA, and RCCSD, and how

these methods incorporate the correlation effects from Vres. The RPA method includes

CP effects up to all-orders but neglects the PC effects and contributions from the SR

terms that appear at the RMBPT(3) level. Furthermore, it has been shown that the

RCCSD method includes all these RPA and non-RPA correlation effects simultaneously

up to all-orders. We also compared the E1 matrix elements calculated from these

methods with the available experimental values for 133Cs atom. The RCCSD results

are in good agreement with the measured values, establishing it as significantly superior

to the RMBPT and RPA methods. In Chapter 4, we investigated the electric dipole

polarizability of the closed-shell atomic systems Zn and Cs+. Numerous theoretical and

experimental studies have been conducted on Zn’s electric dipole polarizability, making

it an ideal candidate for a case study to validate the accuracy of our calculations.

Various methods such as RMBPT(2), RMBPT(3), RPA, and RCCSD have been used

to calculate the αd of the ground state of Cs+ and Zn. Our calculations match well

with the previously reported values.

After checking the implementation and potential of the RCCSD method, we ad-

dressed the aforementioned issue regarding the amplitude of NSI PV for the 6S − 7S

transition in 133Cs in Chapter 5. In this chapter, we explored various many-body

methods, such as CPDF, RPA, CPDF-RPA, and RCCSD, which have been used in

previous literature to study NSI PV. To examine the propagation of correlation in the

Core and Valence contributions at an intermediate level, we also analyzed the results

from RPMBT(3)W and RPMBT(3)D methods. The CPDF, RPMBT(3)W , and RCCSD

methods treat the PV operator HW as perturbation, whereas the RPA, RPMBT(3)D,

and CPDF-RPA methods treat D as the perturbative operator. We explicitly showed

that the definition of the Core and Valence contributions varies depending on the choice

of the perturbative operator. Only at the DHF level one can uniquely identify the Core

and Valence correlation. As previous studies employed various methods to investigate
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the NSI PV amplitude for the 6S − 7S transition, the reported Core contributions

differed. We also examined the utilization of experimental energy in ab initio theory.

Our findings indicate that the use of experimental energy does not necessarily improve

the precision of the calculations and may, in fact, introduce additional errors. Further-

more, importance of non-RPA contributions, such as DCP, which was omitted in earlier

studies, has been demonstrated. We also showed that the RCCSD method effectively

incorporates these contributions.

Before examining the NSD PV in 133Cs, we first studied the electric dipole polar-

izability of the hyperfine levels of the ground state of the 133Cs atom in Chapter 6.

In this Chapter, we investigated both static and dynamic polarizabilities. We have

also compared our results with previously reported experimental and theoretical stud-

ies. There were discrepancies among the experimental and theoretical values for the

scalar Stark shift coefficient ks and the tensor polarizability in earlier studies. We iden-

tified the source of these discrepancies as the neglect of contributions from the core

and high-lying orbitals in the earlier studies. Previous studies primarily focused on

the contributions from the low-lying valence orbitals. We showed that the contribu-

tions from core and continuum orbitals must be considered to estimate polarizability

values accurately. In Chapter 7, the NSD PV amplitude of the 6S − 7S transition in

133Cs has been explored. We employed several many-body methods within a relativistic

framework, including CPDF, RPA, CPDF-RPA, and RCCSD to investigate the various

roles of correlation effects in the calculations. Additionally, we analyzed results from

the sum-over-states approach and first-principle calculations. We have also compared

our RCCSD results with those from other methods. This comparison revealed that the

RCCSD method incorporates electron correlation effects more rigorously than the other

methods mentioned above when evaluating parity-violating electric dipole amplitudes

in the 133Cs atom. We have also revised the value of the NAM in 133Cs. Furthermore,

we presented the scalar and vector transition polarizabilities using the RCCSD method.

Our calculation for vector polarizability matches the recent experimental value.
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8.2 Novelty of the thesis

The key findings of the thesis are enumerated below

• The definition of Core and Valence contributions varies based on the choice of

the perturbative operator in the many-body method. This variability explains

the discrepancy in Core contributions reported by different groups in the study

of NSI PV for the 6S − 7S transition in 133Cs. Therefore, comparing individual

Core or Valence contributions across different methods may not be appropriate.

Thus, it is better to compare the final results.

• As shown in Chapter 5, using experimental energy in ab initio method like CPDF-

RPA may not always improve the accuracy of calculations. Improper use of

experimental energy values would lead to numerical instability in the results and

introduce additional errors.

• As discussed in Chapters 6 and 7, while the contribution from low-lying valence

orbitals is dominant in polarizability and PV amplitude calculations, the contribu-

tions from core and high-lying valence orbitals should not be neglected. Ignoring

these contributions could lead to inaccurate results.

• It can now be concluded, based on the work conducted in this thesis, that the

mismatch between atomic and nuclear results for NSD PV amplitude in 133Cs is

not due to the uncertainties associated with the atomic many-body calculations.

To resolve this issue, additional APV experiments and theoretical studies are

necessary.

The findings of this thesis will pave the path for improving the accuracy and precision

of future atomic physics calculations.
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8.3 Future directions

One of the main drawbacks of the current RCCSD method is the presence of non-

terminating series in property calculating expressions like Eqs. 4.26 and 5.79. Truncat-

ing this series after finite terms may lead to inaccuracy in the calculations. Addition-

ally, the RCCSD method does not comply with the Hellmann-Feynman theorem [8]. A

simple solution to these problems at the same level of approximation would be to use the

relativistic normal coupled-cluster (RNCC) theory [9, 10, 11, 12]. The RNCC method

has several advantages over the RCC method, such as: (i) it avoids non-terminating

series in property calculation, (ii) it adheres to the Hellmann-Feynman theorem, (iii)

the normalization constant is unity, and (iv) it is derivable from the variational principle.

Here, we are going to discuss the brief formulation of the RNCC theory in the single

and double excitation approximation (RNCCSD) for the closed-shell atomic system.

We are also going to present the RNCCSD results for αd of neutral Zn atom. First,

we want to make it clear that we will approach in the same manner from Eq. 4.19 of

RCC theory. In the RNCC theory the ket state |Ψ(d)
c ⟩ is expressed as the ordinary RCC

theory, but in place of ⟨Ψ(d)
c | a new bra state ⟨Ψ̃(d)

c | is defined such that both ⟨Ψ(d)
c |

and ⟨Ψ̃(d)
c | have the same eigenvalue for HD

at and it satisfies the biorthogonal condition

[9, 10, 11, 12, 13]

⟨Ψ̃(d)
c |Ψ(d)

c ⟩ = 1. (8.1)

The bra state in the RNCC method is expressed as

⟨Ψ̃(d)
c | = ⟨Φc|(1 + Λ)e−T , (8.2)

with a de-excitation operator Λ. It then follows that

⟨Ψ̃(d)
c |Ψ(d)

c ⟩ = ⟨Φc|(1 + Λ)e−T eT |Φc⟩ = ⟨Φc|Φc⟩ = 1. (8.3)
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Table 8.1: Calculated static αd value in a.u. of Zn using the RNCCSD method.

Method αd

RNCCSD 38.99(31)

It is imperative to impose the condition

⟨Φc|ΛH̄D
at |Φc⟩ = 0, (8.4)

to ensure that both ⟨Ψ(d)
c | and ⟨Ψ̃(d)

c | have the same eigenvalue for HD
at . One can see that

H̄D
at = e−THD

ate
T = (HD

ate
T )conn is a terminating series. So the amplitude determining

equation for the Λ operator can be written as

⟨Φc|ΛH̄D
at |Φ∗

c⟩ = 0, (8.5)

where |Φ∗
c⟩ is an excited state determinant with respect to |Φc⟩. Now, adopting the

perturbative approach, we can expand

Λ = Λ(0) + λΛ(d,1) + O(λ2). (8.6)

Consequently, the RNCC expressions for αd can be expressed as

αd = ⟨Φc|
(
1 + Λ(0)

)
D̃T (d,1) + Λ(d,1)D̃|Φc⟩, (8.7)

where D̃ = (DeT
(0)

)conn is a terminating series. We present the RNCCSD result for αd

in Table 8.1. Comparing the RNCCSD value for αd with the previously reported values

in Table 4.3 shows that the RNCCSD value agrees more closely with the experimental

result than the RCCSD value. Therefore, implementing the RNCC method for one-

valence atomic systems will greatly improve the precision of atomic calculations.

This approach is also applicable to APV calculations. Extending beyond RCC with

single and double excitations would require reformulating computational techniques
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to calculate the cluster amplitudes. A simpler approach for improving the accuracy of

atomic calculations is to implement the RNCC method, which offers certain advantages

over the standard RCC method. Obtaining more accurate bounds on the weak interac-

tion parameter requires extremely high-precision APV experiments on other transitions

in 133Cs and in different atoms. On the experimental side, advanced techniques like

trapping atoms in a two-dimensional optical lattice with each site optimized for PV

detection [14, 15] could potentially surpass the accuracy achieved by Wood et al [16].

A promising transition for high-precision measurement in the 6S − 5D3/2 transition of

133Cs, where the PV amplitude is approximately four times larger than the 6S − 7S

transition. This approach of using an optical lattice with optimized detection points

is broadly applicable and not specific to any one species, making it effective for other

alkali atoms like Fr as well [15, 17]. Additionally, there is improvement in the direct

measurement of the nuclear anapole moment using Raman interactions [18, 19]. Precise

atomic calculation can help reduce uncertainty in this sector.
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