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Abstract

Solar eruptive events such as flares and Coronal Mass Ejections (CMEs) are the

sudden explosive events on the Sun that release a tremendous amount of energy.

These events are believed to be the manifestations of the magnetic reconnection

process, which converts magnetic energy into heat, kinetic energy of the plasma,

and fast acceleration of charged particles. Further, reconnection changes the con-

nectivity of magnetic field lines, causing a rearrangement of the magnetic topology.

Notably, the release of magnetic energy during such events is expected to relax

the overall magnetic field configuration to a terminal state characterized by lesser

magnetic energy. As a consequence, it is realized that these events merit interest

from a fundamental perspective, namely self-organization in magnetized plasmas,

also known as plasma relaxation.

Self-organization is the spontaneous and preferential evolution of a dynamical

system toward states that exhibit some form of long-range ordering. Such kind of

systems are governed by nonlinear partial differential equations with dissipation.

Notably, the magnetized plasma in the solar corona is approximated to be governed

by the equations of magnetohydrodynamics (MHD), which are nonlinear, implying

that an investigation from the perspective of plasma relaxation is reasonable. The

self-organized states are nearly independent of the system’s initial configuration.

Furthermore, the long-range order is always accompanied by short-range disorder,

which is associated with the fact that in presence of dissipation, the ideal integrals

of motion (e.g. magnetic energy, magnetic helicity) are not conserved and decay at

different rates. This decay at different rates gives a way to formulate a variational

problem, where a minimization of the fastest decaying quantity while treating

slower decaying quantities as invariants determines a relaxed state. In the above

background, the resulting lower magnetic energy state after eruptive events can be

viewed in connection with the relaxed states that are obtained using variational

method. In particular, the thesis explores the realization of force-free states that

are analytically obtained by a constrained minimization of the magnetic energy

with magnetic helicity as an invariant.

To achieve the above goals, data-based MHD simulations of various flares are

carried out using the EULAG-MHD numerical model. The simulations employ a
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magnetic field extrapolated using the measured photospheric magnetic field as an

initial condition. Importantly, the extrapolation models are broadly classified into

force-free and non-force-free, depending on whether the allowed Lorentz force is

analytically zero or not at the bottom boundary. It is then imperative to study

the influence of different extrapolation models on the simulated dynamics. Toward

such an exploration, data-based MHD simulations of a GOES C6.6 flare in active

region NOAA 11977 are carried out using three different initial conditions, each

constituted by a suitable pair of initial magnetic and velocity fields. The relevant

magnetic fields are constructed from non-force-free field (NFFF) and nonlinear

force-free field (NLFFF) extrapolations. A morphological comparison on the global

scale and particularly for selected topologies, such as a magnetic null point and a

hyperbolic flux tube (HFT) suggests that similar magnetic field line structures are

reproducible in both models, although the extent of agreement between the two

varies. In all simulations, the dissipated magnetic energy and changes in field line

connection for the null point and HFT configurations are found to be similar. In

addition, a null point topology is found to appear spontaneously near the HFT in

all the cases. The results suggest that the magnetofluid dynamics and the details

of reconnection are nearly independent of the chosen initial conditions. Therefore,

both the extrapolation techniques can be suitable for data-based simulations. The

near-independence is a signature of self-organization, which further motivates an

exploration of magnetic relaxation in eruptive events.

Consequently, data-based MHD simulation of a GOES M1.3 flare hosted by

active region NOAA 12253 is carried out. The investigation of extrapolated NFFF

in conjunction with the observed evolution of the flare reveals a HFT overlying

the observed brightenings. The overall simulation shows signatures of relaxation.

For a detailed analysis, three distinct sub-volumes are considered. The analysis

focuses on the magnetic field line dynamics along with time evolution of physically

relevant quantities like magnetic energy, current density, twist, and gradients in

magnetic field. An approximate estimation of the Poynting flux and numerical

diffusion is carried out to understand their role in governing the dynamics in sub-

volumes. The force-free aspect of the magnetic field is explored numerically by

analyzing the temporal evolution of angular alignment between the magnetic field
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and current density. In the terminal state, none of the sub-volumes is seen to reach

a force-free state, thus remaining in non-equilibrium, suggesting the possibility of

further relaxation. It is concluded that the extent of relaxation depends on the

efficacy and duration of reconnection, and hence on the energetics and time span

of the flare.

Toward such exploration, data-based MHD simulations of three energetically

different flares, namely GOES B6.4, C4.0, and M1.1 are carried out. The NFFF

extrapolation identifies magnetic null points for the B6.4 and C4.0 flares, and a

HFT for the M1.1 flare as primary reconnection sites. The simulated evolution of

the magnetofluid exhibits reconnection at these sites, which is exemplified by the

slipping reconnection in the null point topology of the B6.4 flare. An estimation

of the dissipated magnetic energy amounts to nearly 7%, 16.8%, and 33% of the

available free magnetic energy in the simulation of B6.4, C4.0, and M1.1 flares.

The angle between the current density and the magnetic field at the reconnection

site decreases by 75.92◦ , 41.37◦, and 40.13◦, respectively, implying an increase in

the alignment, indicating magnetic relaxation. The amount of dissipated magnetic

energy in the simulated dynamics of each flare is in concurrence with the general

energy relation between the classes of chosen flares. Furthermore, the increase in

alignment at the reconnection sites suggests the occurrence of magnetic relaxation

locally.

Overall, the thesis aims to explore eruptive events from the perspective of self-

organization and magnetic relaxation using data-based MHD simulations of flares.

It is found that solar transients exhibit signatures of self-organization and conse-

quently of magnetic relaxation. However, the relaxation is not enough to reach a

force-free state.

Keywords: Solar Flares, Solar magnetic fields, Magnetic reconnection, Magne-

tohydrodynamics, Self-organization, Plasma relaxation, Magnetic relaxation, and

Numerical simulations.
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Chapter 1

Solar Eruptive Events: Manifestations of

Magnetic Reconnection

1.1 Introduction

The long-standing interest in studying the Sun originates from its fundamental

role in sustaining life on the Earth and serving as an astrophysical laboratory

for investigating many physical processes. In this regard, the magnetic field of

the Sun, which threads its way from the interior of the Sun into the outer solar

atmosphere (Solanki et al., 2006), plays an important role. To quote E. N. Parker,

“If it were not for its variable magnetic field, the Sun would have been a rather

uninteresting star”(Low, 1996). The solar magnetic field gives rise to various

features and dynamical activities that vary over a wide range of spatial (e.g., a

few hundred kilometers to several mega meters) and temporal (e.g., minutes to

several years) scales. One example is a sudden and explosive release of magnetic

energy in the form of transient events like solar flares and Coronal Mass Ejections

(CMEs), which are casually referred to as eruptive phenomena (Priest, 2014).

Solar flares are the sudden and localized brightenings observed over a temporal

scale of minutes to hours (Benz, 2017). The observed brightening exhibits emission

in multiple wavelengths across the electromagnetic spectrum, broadly categorized

into radio, visible, soft X-rays (SXR), hard X-rays (HXR), extreme ultraviolet

(EUV), and gamma-rays. Solar flares vary in strength depending on the total

amount of released energy, which typically ranges between 1023 − 1032 erg (Benz,

2017). The brightenings during a solar flare can be visualized using imaging obser-

1
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vations of the Sun. As an example, observations of the last decade’s strongest flare

from some of the EUV wavelength channels of the Atmospheric Imaging Assembly

(AIA) instrument (Lemen et al., 2012) onboard the Solar Dynamics Observatory

(SDO; Pesnell et al., 2012) are analyzed to depict the corresponding brightening in

figure 1.1. The constructed images correspond to the peak time of SXR emission.

Notably, solar flares are often accompanied by an expulsion of magnetized plasma

Figure 1.1: Imaging observations of a solar flare in 131 Å, 171 Å, and 304 Å by
SDO/AIA on September 6, 2017.

in the form of coronal mass ejection, which is considered a major driver of space

weather.

Coronal Mass Ejections are the sudden release of magnetized plasma into the

heliosphere. Typically, CMEs have a mass of 1011−1012 kg and speed in the range

of 400 − 1000 km/s, resulting in a kinetic energy of up to 1025 Joules (Howard,

2011). The routine observations of CMEs are carried out in white light using a

coronagraph, which artificially blocks the intense photospheric disk for imaging the

solar corona (Stix, 2002). The photospheric light scattered off the free electrons in

the plasma of CME highlights its morphological structure against the background

of the low-density solar corona in the two-dimensional images. For example, the

observations of a CME associated with the flare discussed in figure 1.1 are used

to construct figure 1.2, which depicts the CME evolution with time. The red disk

in the figure corresponds to the area blocked by the coronagraph, while the white

ring represents the surface of the Sun. Importantly, CMEs are considered to be

the eruptions of magnetic flux ropes (MFRs), where a MFR is defined as a bundle

of helically twisted magnetic field lines (MFLs) that wind around a common axis

(Priest, 2014; Vourlidas, 2014).

The release of magnetic energy in eruptive events leads to a basic expectation
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Figure 1.2: White light imaging observations of a Coronal Mass Ejection (CME)
by the LASCO instrument onboard the SOHO satellite on September 6, 2017.

that the magnetic field should relax to a state having lesser magnetic energy. As a

consequence, it is realized that solar transients merit interest from a fundamental

perspective, namely self-organization in magnetized plasmas (Ortolani & Schnack,

1993), which is also known as plasma relaxation. The process of self-organization

refers to the spontaneous and preferential evolution of a system toward states that

exhibit some form of long-range ordering. Such systems are governed by nonlinear

partial differential equations with dissipation. Relevantly, the magnetized plasma

in the solar corona is governed by the equations of magnetohydrodynamics (MHD),

which are nonlinear.

The properties of a self-organized state are nearly independent of the system’s

initial configuration (Hasegawa, 1985). Further, the long-range ordering is always

accompanied by short-range disorder, which is associated with the fact that in

the presence of dissipation, the ideal integrals of motion, like the magnetic energy

and the magnetic helicity, are not conserved but decay at different rates. This

gives a way to formulate a variational problem, where minimization of the fastest

decaying quantity while treating slower decaying quantities as invariants deter-

mines a self-organized or relaxed state. In this background, the resulting lower
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magnetic energy state after solar transients can be viewed in connection with the

relaxed states obtained using the variational method. In this regard, notable are

the states obtained by Woltjer (1958) and Taylor (1974) where magnetic energy

is minimized (more details in chapter 5), which directly relates to the lowering of

magnetic energy during transients. Consequently, an investigation from the per-

spective of plasma relaxation is theoretically intriguing. Further, the abundance

of solar observations and the inherent complexity of the solar magnetic field make

transients a suitable testbed to explore relaxation in nature.

The release of magnetic energy during solar transients in the form of thermal

and non-thermal emissions (Aschwanden, 2019) implies that a dissipative process

is involved. In this regard, the general consensus is that transients are manifesta-

tions of magnetic reconnection, which changes the connectivity of magnetic field

lines along with the conversion of magnetic energy into heat, bulk kinetic energy,

and fast acceleration of charged particles (Li et al., 2021). Therefore, for studying

relaxation in solar transients, it is imperative to understand the above-mentioned

implications of reconnection in detail. Such an exploration provides insights into

the underlying physics of eruptive events, which is not only of fundamental interest

from the viewpoint of relaxation but also of practical significance considering the

potential space-weather effects of these events. Since, the solar coronal plasma

is generally approximated to be governed by the equations of MHD, the follow-

ing section discusses the MHD theory of reconnection to introduce the relevant

concepts.

1.2 MHD Theory of Magnetic Reconnection

In the magnetohydrodynamics description, plasma is treated as a single conducting

fluid, hereafter referred to as a magnetofluid. The governing equations couple the

Maxwell’s equations of electromagnetism with those of hydrodynamics. The MHD

description is valid at large length and time scales, i.e. when l� Ri and τ � Ω−1
i ,

where Ri and Ωi denote the ion-gyroradius and ion-gyrofrequency (Goedbloed &

Poedts, 2004).
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1.2.1 MHD Equations

In a non-relativistic approximation, the standard MHD equations in MKS units

are as follows

1. Conservation of momentum

ρ
Dv

Dt
= −∇p+

1

µ0

(∇×B)×B− ρg , (1.1)

where ρ ≡ density, D/Dt ≡ Lagrangian derivative, v ≡ velocity, p ≡ kinetic

pressure, B ≡ magnetic field, and g ≡ gravitational acceleration.

2. Conservation of mass
∂ρ

∂t
+∇ · (ρv) = 0 , (1.2)

which for an incompressible fluid is equivalent to Dρ/Dt = 0, meaning that

in a frame co-moving with the magnetofluid, density is constant.

3. Magnetic induction equation

∂B

∂t
= ∇× (v ×B) + η∇2B , (1.3)

where η ≡ magnetic diffusivity and is assumed to be spatially constant for

simplicity. The terms on the right represent the advection and diffusion of

the magnetic field. An order of magnitude calculation for their ratio defines

a dimensionless quantity, known as the magnetic Reynolds number, given by

Rm = V0L0/η, where L0 denotes the length scale of magnetic field variability

and V0 is the typical speed of magnetofluid. Importantly, Rm measures the

strength of the coupling between the magnetic field and plasma flow (Priest,

2014).

4. Energy equation
d

dt

(
p

ργ

)
= 0 , (1.4)

where γ is the ratio of specific heats at constant pressure and volume. This

equation assumes the plasma to be thermally isolated. Notably, other forms

of energy equation are also possible (Priest, 2014).
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The above equations constitute a set of eight nonlinear partial differential equations

in the variables v(r, t), B(r, t), ρ(r, t), and p(r, t). In MHD, these are the primary

variables, while E and J are secondary variables, determined from the following

1. Ampere’s Law

∇×B = µ0J , (1.5)

where µ0 ≡ permeability of vacuum.

2. Ohm’s Law

E + v ×B = σ−1J . (1.6)

where σ ≡ electrical conductivity.

In addition, the solenoidality of the magnetic field (∇·B = 0) serves as a condition

on the initial values, which, once satisfied, remains so for all times. In the following,

two important limits of MHD, namely the ideal and resistive MHD are discussed,

which will serve to lay down the background for discussing magnetic reconnection.

1.2.2 Background For Magnetic Reconnection

For an almost perfectly conducting fluid such as the solar corona (Aschwanden,

2005), the typical values L0 ' 106 m, V0 ' 104 m s−1, and η ' 1 m2 s−1 (Priest &

Forbes, 2000; Priest, 2014) give Rm = 1010 � 1, which implies that the advection

dominates over diffusion, also known as the ideal MHD limit. In ideal MHD, the

magnetic flux remains conserved, also known as the Alfvén’s flux-freezing theorem

(Alfvén, 1942). This further leads to the magnetic field line conservation, meaning

that the connectivity of plasma parcels with respect to the magnetic field lines is

preserved. A way to envisage this is to write equation 1.3 in the ideal MHD limit

and expand ∇× (v ×B), which gives

∂B

∂t
+ (v · ∇)B = (B · ∇)v−B(∇ · v) , (1.7)

where ∇ ·B = 0. Then, using equation 1.2

D

Dt

(
B

ρ

)
=

(
B

ρ
· ∇
)

v . (1.8)



1.2. MHD Theory of Magnetic Reconnection 7

Further, for an infinitesimal length element dl along any magnetic field line, the

condition dl×B = 0 holds true, which leads to

D

Dt

(
dl× B

ρ

)
=

D

Dt
dl×

(
B

ρ

)
+ dl× D

Dt

(
B

ρ

)
= 0 . (1.9)

Using equation 1.8 and vector algebraic manipulations

[
D

Dt
dl− (dl · ∇)v

]
× B

ρ
= 0 , (1.10)

which is true for any arbitrary displacement, if

D

Dt
dl− (dl · ∇)v = 0 . (1.11)

Since, the structure of equations 1.8 and 1.11 is identical, it follows that if dl and

B/ρ are initially parallel, they remain so for all subsequent times. In other words,

the magnetofluid evolution is such that the plasma parcels remain stuck with the

magnetic field lines and vice versa, as realized in figure 1.3.

Figure 1.3: A schematic representation of magnetic field line conservation. The
plasma parcels on magnetic field line at time t1 will remain on the same magnetic
field line at time t2. The blue circles and the solid black arrows represent plasma
parcels and magnetic field lines, respectively.
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The resistive MHD limit is typically characterized by Rm . 1, which implies that

diffusion dominates over advection. Notably, this can occur at small length scales

in the system. An order of magnitude estimate of the diffusion term gives the time

scale (τD) of magnetic field diffusion as τD = L2
0/η, which is equal to nearly 3×104

years for L0 ' 106 m in the solar corona. This is to be expected because at large

length scales, advection dominates diffusion. However, using a typical time scale

of transients (say τD = 5 minutes), the length scale L0 ' 20 m, indicating that the

occurrence of solar transients is associated with small length scales and hence the

resistive MHD limit. In effect, both the limits are important for the occurrence of

solar transients. The advection of magnetic field lines at large-scales results in the

generation of small-scales. Consequently, the diffusion of field lines sets the stage

for magnetic reconnection and hence, solar transients.

Further, from Ampere’s law, it is apparent that O(J) ∝ L−1
0 , suggesting that

small-scales are characterized by an enhancement of current density. Therefore, the

ohmic heating, given by σ−1|J|2 is non-negligible, which plays an important role in

converting some of the magnetic energy to heat during reconnection (Priest, 2016;

Zweibel & Yamada, 2016). In resistive MHD limit, the conservation of magnetic

flux breaks down. Further, the connectivity between plasma parcels and magnetic

field lines can change, which forms the basis of magnetic reconnection (Schindler

et al., 1988; Hesse & Schindler, 1988; Birn & Priest, 2007), as discussed in the next

section.

1.2.3 Concepts of Magnetic Reconnection

The notion of magnetic reconnection originated during the mid-twentieth in the

attempts to find a mechanism that explains the observed particle acceleration

during flares and the structure of the magnetosphere (Giovanelli, 1946; Hoyle, 1949;

Dungey, 1953, 1961). Since then, there has been much progress in reconnection

research regarding its definition, conditions for occurrence, type of reconnection,

preferential magnetic configurations associated with an enhancement of current

density at small length scales, and conversion of magnetic energy to other forms

(Yamada et al., 2010; Zweibel & Yamada, 2016; Hesse & Cassak, 2020; Li et al.,

2021; Pontin & Priest, 2022).
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The theory of general magnetic reconnection (GMR), proposed in the landmark

paper by Schindler et al. (1988), defines a change in the connectivity of plasma

parcels with the magnetic field lines due to a localized (at small length scales)

breakdown of flux-freezing condition as reconnection. In other words, the con-

nection between plasma parcels and field lines in the sense of magnetic field line

conservation breaks down, as illustrated in figure 1.4. The plasma parcels A and

B are considered to be connected to the same magnetic field line l at time t1.

If the magnetic field line l passes through a localized diffusion region at time t2,

the connectivity changes such that at time instant t3, A and B are attached to

magnetic field lines l1 and l2, respectively.

Figure 1.4: A schematic representation of change in connection of plasma parcels
with respect to magnetic field lines. The magnetic field line l connected to plasma
parcels A and B passes through a localized diffusion region, which changes the
connectivity of A to l1 and that of B to l2, respectively.

Notably, the definition is independent of any particular magnetic topology, making

it more general compared to earlier definitions by Vasyliunas (1975) and Sonnerup

et al. (1984) that require an identification of topologies such as separatrices and

separators, which may not always exist, or their identification might be non-trivial

(Schindler et al., 1988; Birn et al., 1997). The definition proposed in the theory of
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GMR is extremely helpful because a visualization of the changes in the connectivity

of magnetic field lines serves as an indicator of magnetic reconnection. As a result,

the works presented in this thesis identify the sudden changes in the connectivity

of magnetic field lines to determine the occurrence of magnetic reconnection.

In GMR theory (Schindler et al., 1988; Hesse & Schindler, 1988), the condition

for the breaking of magnetic connection between the plasma parcels and field lines

is given by B× (∇×N) = 0 in the localized diffusion region, where N corresponds

to any form of nonidealness or deviation from the ideal Ohms’s law. In the case of

resistive MHD, N = σ−1J or equivalently E + v ×B = σ−1J, but other forms of

N, such as due to pressure tensor and Hall term may also be relevant (Schindler

et al., 1988; Birn & Priest, 2007; Khomenko, 2020), particularly at small length

scales. Nevertheless, resistive MHD suffices to capture the essence of reconnection

process and model the large-scale macroscopic properties (Priest, 2014).

Further, GMR theory classifies reconnection into two broad categories, namely

the (a) Zero-B and (b) Finite-B reconnection, depending on whether the magnetic

field vanishes (B = 0) at some point inside DR or remains nonzero (B 6= 0) in DR,

where DR denotes the localized diffusion region. In Finite-B, there exist two cases,

namely (a) local and (b) global, where local means that the plasma parcel changes

its connectivity while passing through DR, and global means that the plasma parcel

changes its connectivity but always remains outside the diffusion region DR during

reconnection. Notably, figure 1.4 depicts global reconnection. In the GMR theory,

if the integral

∫
E||ds 6= 0, reconnection is global, otherwise it is local (Hesse &

Schindler, 1988), where E|| is the electric field component parallel to the magnetic

field line, ds is an infinitesimal length element along the field line, and the integral is

carried out over DR. The formal developments of GMR theory and the progress in

understanding three-dimensional (3D) reconnection have established

∫
E||ds 6= 0

over DR as the necessary and sufficient condition for 3D reconnection (Priest, 2014;

Pontin & Priest, 2022). It is worth mentioning that the notion of zero-B is relevant

for only two-dimensional (2D) models of reconnection (Büchner, 1999) because in

such a scenario, E ·B = 0 and hence, E|| = 0, making the above described integral

constraint inapplicable. Importantly, the process of magnetic reconnection in 2D

and 3D are different in terms of preferential sites where localized diffusion regions
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occur and how field lines change connectivity. In the following, these aspects are

discussed in the light of MHD theory and general magnetic reconnection. Further,

the discussion naturally elaborates on the meaning of separatrices and separators

mentioned earlier in the context of defining magnetic reconnection.

1.2.4 Two-Dimensional (2D) Magnetic Reconnection

In two-dimensions, reconnection occurs at a X-type magnetic null point or X-point.

A magnetic null point is the location where magnetic field vanishes or B = 0. The

X-point has a hyperbolic magnetic field configuration, such as Bx = y and By = x.

The corresponding magnetic field lines can be obtained by integrating dl×B = 0,

giving y2 − x2 = constant, which represents a rectangular hyperbola (Priest &

Forbes, 2000). The X-point geometry is shown in figure 1.5, where the solid black

Figure 1.5: A schematic representation of X-type null point in hyperbolic magnetic
configuration, constituted by the blue, pink, red, and yellow color magnetic field
lines (MFLs). The solid black lines are asymptotes of hyperbola and are known as
separatrices. The MFLs with arrows denote the direction of magnetic field lines
in that connectivity domain.

lines are asymptotes (y = ±x) of the hyperbola. These asymptotes are known

as separatrix curves or separatrices for X-point geometry. In general, separatrices

exist between topologically distinct connectivity domains or equivalently, when
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the mapping of magnetic field lines (MFLs) has a discontinuity (Priest & Forbes,

2000; Priest, 2014). In figure 1.5, each set of MFLs in the blue, pink, red, and

yellow colors represents a connectivity domain because, in any given domain, all

the field lines share a common source and sink (Pariat, 2020).

Notably, in the above example, J = 0, giving Lorentz force J ×B = 0, which

implies that the configuration is in equilibrium. However, there can be situations

where J 6= 0 and J×B 6= 0, such as for Bx = y and By = 2x, giving J = k̂ and J×

B = −2xî + yĵ. This implies that there exists a finite electric field perpendicular

to the plane and that the X-point geometry is not in equilibrium. As a result, the

X-point collapses to form a current sheet (Priest & Forbes, 2000), defined as the

singular current layer along a surface across which there is a jump in the tangential

component of the magnetic field (Priest & Forbes, 2000; Pontin & Hornig, 2020). In

the context of current sheet formation, it is worthwhile mentioning that according

to the Parker’s magnetostatic theorem (Parker, 1994), current sheets can develop

spontaneously when equilibrium magnetic fields are subjected to an arbitrary small

perturbation, such as by boundary motion (e.g., photospheric driving). Therefore,

there is a possibility of steep magnetic field gradient between topologically distinct

domains, making separatrices favorable sites for current sheet formation (Lapenta

et al., 2015; Pariat, 2020). Importantly, the current sheet serves the role of a

localized diffusion region, which is necessary for reconnection.

The X-point gained importance as a reconnection site when Giovanelli (1946)

and Hoyle (1949) suggested that particle acceleration and heating can occur at the

X-point. Further, Dungey (1953) suggested that field lines can break and rejoin

inside the current sheet, leading to the standard picture of magnetic reconnection

at the X-point discussed below.

1.2.4.1 Magnetic Reconnection at X-type Null Point

The process of magnetic reconnection at the X-point can be understood from the

previous example of Bx = y and By = 2x. The corresponding X-point geometry is

shown in figure 1.6. Since, (J×B)x = −2xî, an inward flow along the x -direction

will bring the red and blue MFLs toward the X-point, as shown in panel (a) for

field lines AB and CD, respectively. Consequently, a current sheet is formed and
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a part of these MFLs gets dragged into it. The part inside the current sheet

diffuses out of the plasma parcels because its velocity differs from the rest of the

magnetic field line lying outside the diffusion region. On reaching the X-point,

the field lines AB and CD break, and the broken segment of each field line rejoins

perfectly with that of other field line (Priest et al., 2003) to form new field lines

AC and BD, as shown in panel (b) with pink and yellow colors. Subsequently,

Figure 1.6: A schematic representation of reconnection at the X-type null point.
Panels (a) and (b) show the magnetic configuration before and after reconnection.
The green and orange arrows depict the direction of inward and outward flow. The
circles in blue color represent plasma parcels. The black lines are the separatrices.
In panel (a), field lines AB and CD, shown in red and blue color along with the
direction of magnetic field, move toward the X-point. Similarly, panel (b) shows
field lines AC and BD moving away from the X-point in pink and yellow colors.

the new MFLs are carried away from the X-point by an outward flow along the

y-direction due to (J×B)y = yĵ. As a result, the plasma parcels, attached initially

to AB and CD, move across the separatrices and get connected to AC and BD,

respectively. Notably, the flow of plasma across separatrices was considered by

Vasyliunas (1975) as the definition of reconnection. Further, since the magnetic

field vanishes inside the current sheet at X-point, the reconnection at X-point

is classified as zero-B. The above picture of reconnection at the X-point is only

qualitative. The first quantitative model of 2D reconnection was given by Sweet

(1958) and Parker (1957), popularly known as the Sweet-Parker model, which is

discussed in the following.
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1.2.4.2 The Sweet-Parker Model

The Sweet-Parker model is a steady state reconnection model, where the plasma is

assumed to be incompressible and pressure gradient force is neglected. The model

considers a current sheet of length 2L and width 2l between oppositely directed

magnetic field lines, as shown in figure 1.7. The blue and red MFLs are pushed

Figure 1.7: Sweet-Parker reconnection. The grey box shows the current sheet or
the diffusion region DR. The blue and red arrows show direction of magnetic field
lines. The green and orange arrows depict direction of plasma inflow and outflow.

toward the diffusion region DR with a speed Vi and after reconnection, they exit

with speed Vo. Then, the problem statement is to estimate Vi and Vo, which is done

using an order of magnitude analysis of the MHD equations. In the steady state,

∂tv = ∂tρ = ∂tB = 0 and under the assumption of incompressibility, equation 1.2

for mass conservation gives v · ∇ρ = 0, implying uniform density. Then, since the

rate at which mass enters and leaves DR should be same, it implies that

2× (2L× ρ× Vi) = 2× (2l × ρ× Vo)⇒ LVi = lV0 . (1.12)

Subsequently, from magnetic induction equation, ∇ × (v × B) = −η∇2B, which

means that the diffusion is balanced by advection, giving

ViBi/l = ηBi/l
2 ⇒ Vi = η/l , (1.13)
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where Bi is the strength of the magnetic field entering DR. Further, equation 1.1

for conservation of momentum becomes ρ(v · ∇)v = J×B, giving

ρV 2
0 /L = BiBo/µ0l , (1.14)

where Bo is the strength of the magnetic field leaving DR. Finally, ∇ · B = 0

implies that Bi/L = Bo/l, which gives V0 from equation 1.14 as

V0 =
Bi√
µ0ρ

= VA , (1.15)

where VA is the Alfvén speed. Also, using equations 1.12 and 1.13, Vi is obtained

as

Vi =
VA√
S
, (1.16)

where S = LVA/η is the Lundquist number (Priest, 2014). An important result of

the Sweet-Parker model is the dimensionless reconnection rate, given by

Mi =
Vi
VA

=
1√
S
, (1.17)

where Mi is also known as the inflow Alfvén Mach number (Priest & Forbes, 2000).

In solar corona, L ' 106 m, VA = 106 m s−1, and η ' 1 m2 s−1, giving Mi ' 10−6,

which is way too small to explain the observed time scale of solar flares. Therefore,

theories for fast reconnection emerged, such as the Petschek mechanism (Petschek,

1964), inclusion of the Hall effect (Bhattacharjee et al., 2003; Bora et al., 2021),

and role of turbulence (Lazarian et al., 2012), but fast reconnection remains an

active area of research.

The concepts of two-dimensional reconnection are invaluable, but the realistic

magnetic geometries are inherently three-dimensional. Therefore, it is imperative

to understand the 3D reconnection, which is the subject matter of the next section.

The discussion is tailored according to the works carried out in this thesis.

1.2.5 Three-Dimensional (3D) Magnetic Reconnection

In three-dimensions, reconnection can occur at 3D null point (B = 0) configuration

and also at magnetic geometries where B 6= 0, namely the quasi-separatrix layer
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(QSL) and hyperbolic flux tube (HFT). Importantly, unlike the X-type null point,

where change of connection occurs only when field lines reconnect at the X-point,

3D reconnection occurs in the whole diffusion region DR and magnetic field lines

change their connectivity continuously as long as they are passing through DR.

The localization of DR around the above-mentioned 3D magnetic features satisfies

E ·B 6= 0, implying that the three-dimensional reconnection is finite-B type even

though E ·B = 0 at the null point itself (Priest et al., 2003; Priest, 2014; Pontin

& Priest, 2022). In particular, when a magnetic field line AB enters DR, it splits

into two field lines, both of which flip, as illustrated in figure 1.8. Before entering

Figure 1.8: Schematic of magnetic flipping (a) The magnetic field line AB (blue)
before entering into the diffusion region DR (grey) (b) The splitting of AB after
entering into DR. The red and pink color dashed lines represent the segments of
new field lines. On the side containing footpoints A or B, the velocity of field lines
wA = wB = v (local plasma velocity), while inside DR and outside of DR on the
other side, wA 6= v and wB 6= v.

the diffusion region, both footpoints move with the local plasma velocity v, as

shown in the first panel. However, after entering into DR, the field line AB splits

into two field lines. The segment of each field line lying outside DR on the side

of A and B moves with velocity v but the remaining segments of each field line

(both inside DR and outside of DR on the other side) do not move with plasma

velocity, as depicted in the second panel. This is known as magnetic flipping (Priest

et al., 2003) and was first proposed by Priest & Forbes (1992) as a mechanism of
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reconnection in the absence of magnetic null points. Further, flipping is referred to

as slipping or slip-running reconnection (Aulanier et al., 2006; Pariat et al., 2006),

particularly in the context of eruptive events on the Sun (Schmieder et al., 2009;

Pontin et al., 2013; Dud́ık et al., 2016). Importantly, slip-running reconnection is a

common feature of 3D reconnection and manifests at all the magnetic geometries,

i.e., null points, QSL, and HFT. In view of wA 6= v as characteristic of flipping,

the directions of plasma flow and footpoint movement of field lines are compared

to identify slip-running reconnection in the works presented in this thesis. In the

following, the details of magnetic configuration pertaining to 3D null points, QSL,

and HFT are discussed.

1.2.5.1 3D Null Point

The simplest magnetic configuration of a 3D null point is Bx = ±x, By = ±y, and

Bz = ∓2z, where the null point (B = 0) is situated at the origin. Its field lines are

depicted in figure 1.9 and are given by the intersection of y = C1x and z = C2x
2

surfaces, where C1, C2 are constants. A linear analysis of the magnetic structure

around a 3D null (Parnell et al., 1996) identifies a fan surface and spine in the

geometry constituted by the field lines. Also, there are two distinct connectivity

domains, each having its own spine and fan surface. These domains are separated

by a separatrix surface, across which the mapping of field lines is discontinuous.

In figure 1.9, the two connectivity domains are shown by the set of red and yellow

MFLs, lying above and below the z = 0 plane.

In the above example, spine is along the z-direction and the fan surface is along

the xy-plane at z = 0. Further, from Bz = ∓2z, it is seen that the spine field lines

can either be directed toward null point or away from it, which leads to the notion

of positive or negative null point, respectively (Pontin & Priest, 2022). In the near

vicinity of null point, spine spreads to form a two-dimensional surface of field lines,

namely the fan surface. The direction of field lines in the fan surface is governed

by the components Bx = ±x and By = ±y, respectively. Notably, a 3D null is not

the generalization of X-type null because it has only two connectivity domains, as

compared to four in the X-type (Pariat, 2020).

In solar corona, a common 3D null point configuration is the one with separatrix
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Figure 1.9: Magnetic configuration of a 3D null point. The set of red and yellow
magnetic field lines represent two separate connectivity domains, each with its own
spine and fan surface. The grey plane depicts the separatrix surface, and the red,
green, and blue arrows denote the x-, y-, and z-directions.

dome in which the fan surface closes down on the photosphere (Priest, 2014; Pontin

& Priest, 2022), as shown in figure 1.10. In general, this kind of geometry manifests

when a magnetic polarity is surrounded by an opposite polarity (Mason et al., 2019)

and are often associated with circular ribbon flares (Sun et al., 2013; Prasad et al.,

2018; Joshi et al., 2021).

In 3D, an intersection of two separatrix surfaces results in a one-dimensional

topological structure, namely the separator (Maurya et al., 2024). It may occur

when the fan surfaces of two null points intersect, in which case, the separator joins

one null point to another (Priest, 2014). Interestingly, if the X-point geometry is

extended along the direction perpendicular to plane of X-point while maintaining

invariance, the X-point transforms into the X-line. The obtained magnetic geom-

etry is called 2.5-dimensional and the X-line denotes a separator (Birn & Priest,

2007). Notably, presence of an electric field along the separator was considered by

Sonnerup et al. (1984) as a necessary condition for reconnection.
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Figure 1.10: Magnetic configuration of 3D null point having separatrix dome.
The yellow circle represents null point location. The + and − symbols represent
positive and negative magnetic polarities. The field lines in red are inside the dome
and closed, while those in blue are outside the dome and point upward.

1.2.5.2 QSL and HFT

The mapping of magnetic field lines is discontinuous across the separatrix surface in

3D nulls, as described earlier. However, in QSL and HFT, the stringent condition

of discontinuity is weakened to very strong gradients in magnetic field line mapping

such that it remains continuous (Priest, 2014; Pariat, 2020; Pontin & Priest, 2022).

The concept of QSL was first introduced by Demoulin et al. (1996) and later, the

formal definition was given by Titov et al. (2002) and further developed in Titov

(2007) using a mathematical description of field line mapping. Further, Titov et al.

(2002) showed that in a quadrupolar magnetic geometry, two QSLs can intersect

to form a HFT. Importantly, magnetic flipping in QSL is believed to account for

the observed displacement of EUV and SXR brightenings in the chromosphere and

transition region (Démoulin, 2006; Pariat et al., 2006; Aulanier et al., 2006, 2011).

In the following, important aspects and results of the formalism given by Titov

et al. (2002) are discussed to arrive at the configuration of QSL and HFT.

Consider a positive (+) and negative (−) polarity on the photosphere, located
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at rp (x+, y+) and rn (x−, y−), respectively. The mapping of field line connecting

these polarities is defined from rp to rn, given by X−(rp) = x− and Y−(rp) = y−,

leading to a Jacobian matrix of the differential elements as

D =

∂X−/∂x+ ∂X−/∂y+

∂Y−/∂x+ ∂Y−/∂y+

 ≡
a b

c d

 , (1.18)

which describes the mapping locally. The geometrical implication of D is seen by

mapping an orthonormal vector basis (Â+, B̂+), located in the region of positive

polarity. The result is a non-orthonormal basis in general, given by ~A− = DÂ+ =

λ1Â− and ~B− = DB̂+ = λ2B̂−, where λ1 = | ~A−| and λ2 = | ~B−|, respectively. The

ratio λ1/λ2 uniquely characterizes the mapping and is given by

λ1

λ2

=
Q

2
+

√
Q2

4
− 1 , (1.19)

where Q = (λ2
1 +λ2

2)/λ1λ2 is equal to the ratio of diagonal length squared and area

of the rectangle spanned by ~A− and ~B− vectors. The rectangle is shown in figure

1.11, comprised of green and cyan color regions. Notably, from equation 1.19, it

Figure 1.11: Schematic of magnetic connectivity. The field lines in blue connect
the region of positive to negative polarity. The black arrows represent the vector
basis (Â+, B̂+) and ( ~A−, ~B−) in these two regions. The polygons in red, green, and
cyan together constitute the circle, ellipse, and rectangle spanned by the vector
basis. The Σ plane represents the photosphere (see text for more details).
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is seen that λ1/λ2 ' Q for Q� 1, which suggests that the Q value measures the

extent of gradient in magnetic field line mapping.

For example, the footpoints of blue MFLs at the diametric ends of the circle

in figure 1.11 are 2 units apart, where 1 unit = |Â| = |B̂|. The field lines get

mapped to an ellipse, which changes the separation between footpoints to nearly

8 units. In the circle, λ1 = λ2 = 1 unit, giving Q = 2, while in the ellipse, λ1 = 4

units, λ2 = 0.5 units, which gives Q = 8.125. The circle gets squashed to an

ellipse, hence Q is also called the squashing degree. Importantly, if a flux tube is

envisaged between the circle and ellipse, the resulting layer-like flux tube is called

a QSL when Q � 2 (Titov et al., 2002; Pontin & Priest, 2022). In the limit of

Q → ∞, the extent of squashing is such that the ellipse becomes a separatrix

and in 3D, a separatrix surface, which is the regime of discontinuity in mapping.

Using conservation of magnetic flux in a flux tube, it is readily seen that λ1λ2 =

Bn,+/Bn,−, where Bn,+ and Bn,− are the vertical components of magnetic field at

the positive and negative polarity. Further, the elements of D matrix are related

to λ1 and λ2 as λ2
1 + λ2

2 = a2 + b2 + c2 + d2, which results in

Q =
a2 + b2 + c2 + d2

Bn,+/Bn,−
, (1.20)

which is used to estimate the squashing degree and typically, Q ' 104−108 (Titov

et al., 2002; Aulanier et al., 2006; Liu et al., 2016b).

In the above, a region of positive polarity (circle) is mapped to another region

of negative polarity (ellipse), defining a QSL. In more complex configurations, such

as the quadrupolar geometry constituted by two bipolar groups of sunspots, there

can be two intersecting QSL, which results in a hyperbolic flux tube. A HFT

consists of four quasi-connectivity domains (Aulanier et al., 2006; Zhao et al.,

2014), which are separated by a X-type cross section in the middle, as depicted in

figure 1.12. This X-type region is favorable for the development of large current

density and, hence, reconnection.

As mentioned earlier, the magnetic energy is converted to other forms during

reconnection. It is then instructive to consider the temporal evolution of magnetic

energy, as discussed in the following section.
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Figure 1.12: Schematic representation of a hyperbolic flux tube (HFT), showing its
cross-section. The + and − symbols denote regions of positive (blue) and negative
(pink) polarities at the photosphere, separated by the inversion line. The yellow
strip corresponds to very high Q value, and red arrows depict the direction of
magnetic field lines in the HFT (adapted from Titov et al., 2002).

1.2.6 Temporal Evolution of Magnetic Energy

In the framework of resistive MHD, the rate of change in the volume integrated

magnetic energy Wm is given by (Yeates, 2020)

dWm

dt
= −

∫
V

v · (J×B) d3x− η
∫
V

|J|2 d3x− 1

µ0

∮
S

(E×B) · n̂d2x , (1.21)

where V is the volume of integration, S is the surface area bounded by V , and n̂

denotes the direction of an infinitesimal area vector. The first term corresponds to

the work done by the Lorentz force, which can increase or decrease Wm. The result

is a conversion of magnetic energy to kinetic energy or vice-versa. The second term

always decreases Wm by ohmic dissipation and the energy is irrecoverably lost from

the system as heat. The third term represents Poynting flux, which is the amount

of energy transported across the volume V per unit time. The energy either enters

or leaves the volume, which depends on the direction of Poynting vector S = E×B.

Interestingly, if only the ideal contribution of E + v×B = ηJ is considered, then



1.3. Standard Reconnection Model of Flares 23

Eideal = −v ×B and the corresponding surface integral can be written as

1

µ0

∮
S

(Eideal×B) · n̂d2x =
1

µ0

∮
S

|Bt|2vn · n̂d2x− 1

µ0

∮
S

(vt ·Bt)Bn · n̂d2x , (1.22)

where the subscripts t and n stand for tangential and normal components to the

surface S. The first term in 1.22 measures to the advection of flux, meaning that

field lines simply enter or leave V , while the second term is due to the transverse

motion at the surface S, which can twist the field lines (Kusano et al., 2002). In

summary, for any given volume of integration, magnetic energy can get converted

into kinetic energy, dissipate in the form of heat, and change due to Poynting flux.

Notably, the overall decrease of magnetic energy in solar transients is central to

the relaxation of the magnetofluid. In order to realize such a decrease in magnetic

energy from equation 1.21, it is essential to understand the interplay of the right-

hand side terms at both local and global length scales. Here, local and global are

used in the sense of smaller and larger volumes of integration only and do not refer

to any characteristic length scales of the physical system.

For completeness, the following section describes the standard flare model to

illustrate the association between magnetic reconnection and eruptive events. The

model is two-dimensional but provides a reasonable explanation for the evolution

of an erupting magnetic flux rope accompanied by a two-ribbon flare and CME.

1.3 Standard Reconnection Model of Flares

The origin of the standard flare model lies in the early works of Carmichael (1964),

Sturrock (1966), Hirayama (1974), and Kopp & Pneuman (1976), thus earning

the acronym CSHKP, which is derived from their initials. The CSHKP model

assumes a pre-existing magnetic flux rope containing prominence material (Priest

& Forbes, 2002; Priest, 2014), as shown by the MFR cross-section in panel (a) of

figure 1.13. Initially, the flux rope begins to erupt (for details of flux-rope eruption

mechanisms, see Chen, 2011; Howard, 2011) and rises upward, which decreases the

magnetic pressure below the MFR. Consequently, the surrounding magnetic loop

gets pinched and due to the magnetic pressure gradient force, a plasma flow is

established along the horizontal direction (Benz, 2017), as shown in panel (b) of
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figure 1.13. The oppositely directed magnetic field lines of the loop move toward

each other, forming a X-point geometry and thus, a current sheet. As a result, the

reconnection process ensues, resulting in heating, plasma outflow, and acceleration

of particles. The accelerated particles initially lose some of the energy by the thin-

target bremsstrahlung mechanism, leading to the observed hard X-ray source in

the solar corona (Masuda et al., 1994).

Figure 1.13: Schematic representation of the standard reconnection model of flares.
Panel (a): Equilibrium magnetic configuration containing a magnetic flux rope
with prominence material Panel (b): The eruption of MFR leads to reconnection
below it and heated chromospheric plasma fills the magnetic loops Panel (c): The
rising MFR causes repeated reconnection, which creates new hot loops, while the
earlier loops begin to cool and drain (adapted from Priest, 2014).

Also, the particles gyrate along the magnetic field lines of the cusp-shaped loop

formed after reconnection, and move toward the cool and denser chromosphere at

nearly relativistic speeds. The gyration results in an enhancement of radio emis-

sion. On colliding with the chromosphere, thick-target bremsstrahlung occurs and

emission in hard X-ray is observed at footpoints of the loop (Brown, 1971; Hudson,

1972). Further, footpoint emission is observed in Hα and EUV wavelengths in the

form of elongated bright regions, known as flare ribbons or Hα ribbons, which

trace the base of a magnetic arcade (Benz, 2017). In the process, chromospheric

plasma is heated and an upflow of plasma fills the loop, making them visible in

soft X-rays. This is also known as chromospheric evaporation. Notably, the rising
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MFR causes the X-point to move upwards, leading to further reconnection in outer

loops. As a result, new hot loops are created, while the old loops begin to cool,

draining the plasma downwards (Priest, 2014), as shown in panel (c) figure 1.13.

It also leads to an increase in the separation between Hα ribbons and transition of

cusp-shaped loops to being rounded. Importantly, if the MFR erupts completely,

it eventually leads to a coronal mass ejection.

Figure 1.14: Imaging observations of a flare on September 10, 2017 by SDO/AIA in
171 Å (top), 211 Å (middle), and 131 Å (bottom). The arrows indicate prominence
material (blue), the flux rope (green), current sheet (red), magnetic arcade (pink),
and the cusp-shaped loop (white), respectively (adapted from Yan et al., 2018).

Contextually, a solar flare on September 10, 2017, investigated in Yan et al. (2018)

is an apt example of the agreement between the model and observations. The

imaging observations in 171 Å, 211 Å, and 131 Å by SDO/AIA (Lemen et al., 2012)

are depicted in the top, middle, and bottom rows of figure 1.14, respectively. The
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arrows mark the prominence material (blue), the flux rope (green), current sheet

(red), magnetic arcade (pink), and the cusp-shaped loop (white), respectively. It is

important to keep in mind that the CSHKP model is only two-dimensional, while

in a realistic scenario, the reconnection is inherently three-dimensional and much

more complex.

1.4 Objective and Outline of the Thesis

Solar transients such as flares and CME are sudden explosive events in which the

magnetic energy gets released as heat, bulk kinetic energy, and fast acceleration of

charged particles by the magnetic reconnection process. The release of this energy

is expected to relax the magnetic field to a state characterized by lesser magnetic

energy. This lowering of the magnetic energy is only one of the various aspects of

a transient activity. The other aspects may include their observational signatures,

effect on space-weather, thermodynamics, morphological structure, and evolution.

However, focusing on the decrease in magnetic energy allows the realization that

solar transients merit exploration from the perspective of a general physical process

known as self-organization. The occurrence of self-organization in various systems,

such as economic, biological, robotic, chemical, and magnetized plasmas, reflects

its inherent generality. Consequently, an investigation in the general framework of

self-organization renders an impression of universality to the physics of transients,

which is both tantalizing and theoretically interesting. Importantly, the systems

that exhibit self-organization evolve toward certain preferred states. These states

are nearly independent of the initial conditions and are often described by using

a variational formulation. In the context of magnetized plasma as a system, such

states are called relaxed states. Therefore, it is natural to consider the feasibility of

analytically obtained relaxed states in the post-transient state of the magnetofluid.

Furthermore, given that the amount of released magnetic energy depends on the

strength of transient activity, the extent of relaxation is expected to vary, which

naturally adds on as a next step in the course of the investigations described above.

Notably, regarding such objectives, it is crucial to understand the implications of

magnetic reconnection on the magnetofluid dynamics, with sudden changes in the

connectivity of magnetic field lines and energetics of the system being of particular
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significance. To achieve the above goals, data-based simulations are executed for

various solar flares. The simulations employ an extrapolated magnetic field as an

initial condition, where extrapolation refers to the modeling of magnetic field in the

solar atmosphere. Then, in combination with solar observations, such data-based

simulations are a powerful tool to explore relaxation in solar transients, which is

the subject matter of this thesis, organized into a total of nine chapters. A brief

description of each chapter is given below.

Chapter 1: Solar Eruptive Events: Manifestations of Magnetic Reconnection

This chapter lays down the premise of the thesis, which is to investigate the erup-

tive events from the perspective of self-organization and plasma relaxation using

data-based simulations. In this regard, the magnetohydrodynamics (MHD) de-

scription of the plasma and details of magnetic reconnection in 2D and 3D are

presented. Further, to illustrate the application of reconnection, the standard

model of flares is discussed.

Chapter 2: Solar Observations and Modeling of Magnetic Fields in the Solar

Atmosphere

This chapter presents the details of solar observations from the GOES satellite,

AIA and HMI instruments of the SDO satellite. This is followed by magnetic field

extrapolation techniques, namely the potential field, linear force-free field (LFFF),

nonlinear force-free field (NLFFF), and non-force-free field (NFFF) models. The

thesis work uses only NLFFF and NFFF because they can quantitatively account

for the amount of magnetic energy released during transients.

Chapter 3: Numerical Model for MHD Simulations: EULAG-MHD

The simulation of transients necessitates the preservation of flux-freezing condition

to high fidelity, except at the sites where reconnection occurs. For this purpose, the

EULAG-MHD numerical model is used. In the absence of any physical diffusion

term, the ILES (Implicit Large Eddy Simulations) property of the EULAG-MHD

model renders the magnetic reconnections to be numerically assisted but minimizes

the computational cost. This chapter presents the theoretical background and the
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implementation aspects of the EULAG-MHD numerical model.

Chapter 4: Examples of MHD Simulations: Magnetic Flux Ropes

In this chapter, two MHD simulations initiated from analytical magnetic fields

are discussed to illustrate the implications of reconnection and to exemplify the

signatures of relaxation. The examples pertain to the formation and evolution of

magnetic flux ropes (MFRs), which is crucial in understanding the dynamics of

eruptive events like coronal mass ejections. Importantly, this chapter serves as a

prelude to the exploration of relaxation in transients.

Chapter 5: Concepts of Plasma Relaxation

This chapter presents a detailed exposition on the subject of self-organization and

plasma relaxation. In particular, relaxed states obtained by minimizing magnetic

energy (referred to as magnetic relaxation) like Woltjer’s state and Taylor’s state

are discussed. A review of earlier studies exploring relaxation in the solar plasma

is presented. Since, these studies are based on theoretical arguments, observations,

and numerical simulations employing analytical magnetic fields only, they fail to

capture the field line complexity of an active region, which motivates an exploration

of relaxation in data-based simulations.

Chapter 6: Effects of Initial Conditions on Magnetic Reconnection

This chapter explores three data-based simulations of a flare from the perspective

that self-organized states are nearly independent of the initial configuration. For

this purpose, three relevant initial conditions are generated using the NLFFF and

NFFF extrapolations, followed by the corresponding simulations. A comprehensive

analysis of the extrapolated magnetic fields is carried out. The three simulations

are compared for global energetics, changes in the field line connectivity, and the

spontaneous appearance and disappearance of a magnetic null to draw conclusions.

The results are found to be in accordance with the expectation, suggesting a near

independence with respect to the initial conditions, which further motivates an

exploration of the magnetofluid dynamics and relaxation.
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Chapter 7: Study of Reconnection Dynamics and Magnetic Relaxation

This chapter explores data-based simulation of a flare with particular focus on

the magnetofluid dynamics and magnetic relaxation. For this purpose, the spatio-

temporal evolution of magnetic energy, current density, twist, and gradients in

magnetic field is analyzed for three different sub-volumes of integration within

the computational box. The chapter focuses on understanding the energetics by

investigating field line dynamics, numerical diffusion, and the Poynting flux. The

angular alignment between current density and magnetic field is also explored to

determine the extent of magnetic relaxation. The simulation is found to exhibit

signatures of magnetic relaxation but does not reach a force-free state. The chapter

concludes that flare energetics and its duration may have a bearing on the extent

of relaxation, which motivates the work carried out in the next chapter.

Chapter 8: Study on the Extent of Magnetic Relaxation

This chapter explores data-based simulations of three energetically different solar

flares, identified as B6.4, C4.0, and M1.1 in the GOES classification scheme. The

NFFF extrapolation is carried out to identify the reconnection site in each case.

The estimation of dissipated magnetic energy from simulations is found to be in

concurrence with the general energy relation between the classes of chosen flares.

Further, although the analysis of angular alignment between current density and

magnetic field suggests a localized relaxation in each case, the result could not be

understood from the perspective of extent of relaxation. An interesting finding of

the work is a parameter based on the analysis of reconnection morphologies that

may have applications in predicting the strength of solar flares.

Chapter 9: Thesis Summary and Future Prospects

This chapter presents the summary of the carried out work, focusing on the major

findings of the thesis. Further scope for the future work is also discussed.





Chapter 2

Solar Observations and Modeling of

Magnetic Fields in the Solar Atmosphere

2.1 Introduction

The electromagnetic radiations emitted from the Sun, particularly during the solar

transients, prove to be an important means of investigating the physical processes

occurring across different spatial and temporal scales on the Sun. In other words,

photons carry a wealth of information regarding the dynamics of transients and

magnetic field of the Sun, both of which are indispensable in understanding solar

phenomena. In general, both ground-based and space-based observations are used.

Notably, space-based observatories are not restricted by the Earth’s atmosphere,

which typically allows only the visible, infrared, and radio wavelengths to reach

the Earth’s surface (Aschwanden, 2005). Consequently, the Sun can be observed

across the full range of emissions in different wavelengths almost uninterruptedly

from space. In this thesis work, the solar observational data from the space-based

Geostationary Operational Environmental Satellite (GOES) and Solar Dynamics

Observatory (SDO) are used. In particular, the imaging observations are used to

understand the spatio-temporal evolution of the transient activity and magnetic

field measurements are utilized for the purpose of modeling the magnetic field in

the solar atmosphere. Notably, only the photospheric magnetic field is measured

routinely, giving all the magnetic field components in the form of a two-dimensional

map known as vector magnetogram. Therefore, the modeling of the magnetic field

is necessary to investigate and visualize the magnetic field structures in the solar

31
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atmosphere. The modeling procedure using measured photospheric magnetograms

as boundary condition is referred to as the magnetic field extrapolation. The use of

an extrapolated magnetic field allows a comparison of magnetic field configurations

(e.g. magnetic loops) with the observed emission structures, such as the coronal

loops. Further, it helps to determine an association, if any, between the preferential

reconnection sites (e.g. 3D null point, QSL, HFT) and the solar transients.

The first method for magnetic field extrapolation was suggested by Schmidt

(1964). Since then, the desire to model the solar magnetic field accurately has led

to development of many other methods for extrapolation. The extrapolations can

be used to model both the global magnetic field of the Sun and the localized active

region magnetic fields. The two are typically carried out using the spherical and

Cartesian coordinate systems, respectively. The models are broadly classified into

force-free and non-force-free, depending on whether the associated Lorentz force

is zero or not at the bottom boundary. In the following, starting with GOES and

SDO observations, techniques for magnetic field extrapolation in localized regions

are presented while briefly highlighting the global magnetic field models.

2.2 Geostationary Operational Environmental

Satellite (GOES)

The GOES satellite (Donnelly et al., 1977; Reep & Knizhnik, 2019) whose data has

been used in this thesis is only one of the many GOES satellites. These are built

and launched by the National Aeronautics and Space Administration (NASA) but

operated and managed by the National Oceanic and Atmospheric Administration

(NOAA). Since 1975, there have been a total of 18 GOES satellites, many of which

are now decommissioned. In this thesis, data from GOES-15 (also known as GOES-

P) satellite is used, which was launched on 4 March, 2010. It recorded its first and

last data in September, 2010, and March, 2020, respectively. Although the GOES

satellites contain a suite of instruments, the X-ray sensor (XRS) is of particular

importance because its measurements define the standard X-ray classification of

solar flares. The incoming flux of soft X-rays is measured in two bandpasses by the

XRS, namely the short channel (0.5− 4 Å) and the long channel (1− 8 Å), which

approximately corresponds to the energy ranges of 3 − 25 keV and 1.5 − 12 keV,
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respectively. Subsequently, the X-ray irradiance is calculated and reported in the

physical units of W m−2. The classification of the magnitude and duration of flares

is defined by the NOAA’s Space Weather Prediction Center (SWPC) by using the

one minute average of X-ray operational irradiance in the 1− 8 Å channel at the

peak time of a flare. The resulting scheme classifies flares into five categories,

namely the A, B, C, M, and X, where each differs by an order of magnitude,

ranging from 10−8 W m−2 for A-class to 10−4 W m−2 for X-class, respectively. The

letters are further numbered, meaning that a M5 flare has the peak soft X-ray

irradiance of 5 × 10−5 W m−2 and similarly for other classes (Chamberlin et al.,

2009). The estimation of flare time duration is based on the following. The start

time is the first minute of steep monotonic increase in 1 − 8 Å flux while the end

time is when the flux level decays to a point halfway between the maximum and

pre-flare value. The GOES measurements serve to provide information about the

intensity of flares, their start, peak, and end times, the duration of both impulsive

and gradual phases of flares, and the temporal evolution of soft X-ray intensity.

All of this information is valuable for conducting a preliminary investigation. For

further analysis, imaging observations in multiple wavelengths and magnetic field

measurements at the photosphere are acquired from the instruments of SDO, as

discussed in the following.

2.3 Solar Dynamics Observatory (SDO)

The SDO (Pesnell et al., 2012) is the first space-weather mission under NASA’s

Living With a Star (LWS) program. It was launched on 11 February, 2010 and be-

gan its scientific operations on 1 May, 2010. It moves in a circular geosynchronous

orbit of 36,000 km altitude and 28◦ inclination. The primary goal of SDO is to aid

in understanding of the solar magnetic field and prediction of the solar activity. For

this purpose, there are three instruments onboard SDO, namely the Atmospheric

Imaging Assembly (AIA), Extreme Ultraviolet Variability Experiment (EVE), and

Helioseismic and Magnetic Imager (HMI). It daily transmits approximately 1.5 TB

of scientific data to the ground, showcasing the immense scale and capacity of the

satellite. In this thesis, the data from only AIA and HMI instruments of SDO

have been used, as discussed below.
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Channel Primary ion(s) Region of atmosphere Char. log(T)

4500 Å continuum photosphere 3.7
1700 Å continuum photosphere 3.7
304 Å He II chromosphere, transition region 4.7
1600 Å C IV + continuum transition region, upper photosphere 5.0
171 Å Fe IX quiet corona, upper transition region 5.8
193 Å Fe XII, XXIV corona and hot flare plasma 6.2, 7.3
211 Å Fe XIV active region corona 6.3
335 Å Fe XVI active region corona 6.4
94 Å Fe XVIII flaring corona 6.8
131 Å Fe VIII, XXI transition region, flaring corona 5.6,7.0

Table 2.1: Different channels of AIA centered on specific lines and corresponding
regions of the solar atmosphere with different characteristic temperatures (Lemen
et al., 2012)

2.3.1 Atmospheric Imaging Assembly (AIA)

The imaging observations of the Sun in different wavelengths reveal the structuring

of solar atmosphere. Further, continual progress in development of high resolution

imaging instruments paves the way to discovery of new solar features, such as the

recently found campfires (Berghmans et al., 2021). Also, imaging observations

at high temporal resolution allow for a detailed investigation of the dynamical

processes occurring over small time scales, particularly transient phenomena such

as solar flares. Contextually, the AIA (Lemen et al., 2012) instrument provides

full-disk images of the Sun in multiple wavelength channels simultaneously. The

1.5-arcsec spatial resolution (0.6-arcsec pixel size) and 12-second temporal resolu-

tion of AIA allow it to capture a large number of concurrent high-resolution images

of the solar corona and transition region up to 0.5 R� above the solar limb. It

consists of four telescopes that are optimized to observe emissions from the transi-

tion region and solar corona. Each telescope has a 41-arcmin field-of-view (FOV)

and 4096×4096 CCDs. In totality, AIA makes measurement in 10 wavelengths, of

which seven are in extreme ultraviolet (EUV), two are in ultraviolet (UV), and one

in optical. Table 2.1 summarizes the details of spectral lines, the corresponding

ions, region of the solar atmosphere, and the characteristic temperature in log scale.

In this thesis work, the wavelength channels used for the observational analysis of

solar flares are (a) 1600 Å, which has a temporal cadence of 24 seconds and delin-
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eates flare ribbons (Liu et al., 2016a). It is also associated with plasma heating in

the lower atmosphere during flares (b) 304 Å, which images filaments/prominences

(Mierla et al., 2022) and prominence-corona transition region (c) 94 Å, and 131 Å,

which measure emission from extremely hot plasma produced in flaring regions

of solar corona. The imaging observations reveal the spatio-temporal evolution of

solar transients, thus helping in gaining insights into the underlying physical pro-

cesses. Since, the solar magnetic field plays a primary role in the manifestation of

features like sunspots, flares, prominences, and CMEs, its measurement is essen-

tial for a comprehensive understanding of solar phenomena. Relevantly, the HMI

instrument onboard SDO measures the photospheric magnetic field as discussed

in the following.

2.3.2 Helioseismic and Magnetic Imager (HMI)

In principle, the entire solar atmosphere is magnetized but the measurements of

magnetic field are made routinely for photosphere only (Solanki et al., 2006), using

the principle of Zeeman effect (Zeeman, 1897). This is so because in comparison

to chromosphere and solar corona, photospheric magnetic field is stronger, plasma

density is higher (leading to stronger intensity of emission and hence better signal),

and temperature is lower, which implies low thermal broadening (Cargill, 2009;

Stenflo, 2013). The Zeeman effect refers to splitting of atomic energy levels in the

presence of magnetic field. As a result, the atomic spectral line splits into different

polarized components in accordance with the allowed transitions. The wavelength

of the component lines is shifted (∆λ) from the central wavelength (λ0), which is

given by (Borrero et al., 2011)

∆λ = ±4.77× 1010geff |B|2λ0 , (2.1)

where geff is the Landé g-factor, ∆λ is in mÅ,λ0 in Å, and |B| in Gauss. The HMI

instrument (Schou et al., 2012; Scherrer et al., 2012) employs Fe I 6173.33 Å line

(geff = 2.5), which is magnetically sensitive. The polarization state of the signals

is measured in the form of Stokes vector (I, Q, U , and V ), whose inversion using

the VFISV (Very Fast Inversion of the Stokes Vector) code (Borrero et al., 2011)
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provides the required magnetic field vector.

The Helioseismic Magnetic Imager (HMI) onboard SDO began operations in

May 2010 and since then, it has been continuously observing the entire visible disk

of the Sun. It consists of two 40962-pixel CCD cameras, namely LoS/Doppler and

vector cameras, which record full-disk images of the Sun at arcsecond-resolution

(0.5-arcsec pixel size) every 3.75 seconds (Hoeksema et al., 2014). The LoS camera

measures right and left circular polarization, each at six wavelengths within a 76

mÅ band centered around the Fe I 6173.33 Å line. It records a 12-filtergram set

in 45 seconds. Similarly, the vector camera measures six polarization states (four

linear and two circular), completing a 36-filtergram set in 135 seconds. The HMI

data is categorized into (a) Level 0−raw HMI images (b) Level 1−data corrected for

various instrumental effects (c) Level 1.5−HMI observables, computed using Level

1 data (Couvidat et al., 2016). The HMI employs two processing pipelines, namely

LoS and Vector pipelines to produce the observables. Both of them compute the

line-of-sight (LoS) Dopplergram, LoS magnetogram, and continuum intensity at a

cadence of 45 and 720 seconds, respectively. The vector pipeline also computes the

Stokes polarization vector (Couvidat et al., 2016). In addition to these observables,

some higher-level data products such as vector magnetic field maps (Hoeksema

et al., 2014) and active region patches (Bobra et al., 2014) are also produced.

In this thesis, the hmi.sharp cea 720s (Bobra et al., 2014) data series from

SDO/HMI is used, where CEA refers to the Cylindrical Equal Area (Calabretta

& Greisen, 2002) projection to obtain the vector magnetic field corresponding to

the photospheric surface. The magnetic field components on the photosphere are

obtained as Br, Bp, and Bt, which satisfy (a) Bz=Br (r; radial), (b) Bx=Bp (p;

poloidal), and (c) By=−Bt (t; toroidal) in a Cartesian coordinate system. In the

following, techniques of magnetic field extrapolation are presented, starting with

force-free modeling.

2.4 Force-Free Modeling

The theoretical framework underlying the force-free modeling relies on the slow

evolution of magnetic field structures in the solar corona (Sakurai, 1989, Priest,

2014). Relevantly, coronal features such as active region loops, arcades, sigmoids,



2.4. Force-Free Modeling 37

and helmet streamers evolve slowly and are considered to be nearly stationary

or quasi-stationary structures (Gary, 1989, Aschwanden, 2005, Priest, 2014). The

formal analysis of this can be made by comparing the order of terms in the equation

of motion

ρ
dv

dt
= −∇p+ J×B− ρg , (2.2)

where all the symbols have their usual meaning. The order comparison of left hand

side term with the three forcing terms on the right hand side yields |v|2
/
c2
s, |v|2

/
V 2
A ,

and |v|
/√

2gL0, where cs, VA, and
√

2gL0 denote the characteristic sound speed,

Alfvén speed, and gravitational free-fall speed of the magnetized plasma system

under consideration. The slow evolution of magnetic structures is encoded within

the requirement that the plasma flow speed |v| � cs, VA, and
√

2gL0, implying

that equation 2.2 can be approximated to be in an equilibrium, which satisfies the

condition of magnetohydrostatic balance (Neukirch, 2005, Priest, 2014), given by

∇p− J×B + ρg = 0 . (2.3)

Since, the magnetic field plays a key role in the structuring of the solar corona,

it is informative to compare the order of Lorentz force with pressure gradient and

gravitational forces. For this purpose, it is instructive to rewrite equation 2.3 in its

dimensionless form. A substitution of the normalized variables, namely p′ → p

p0

,

ρ′ → ρ

ρ0

, r′ → r

L0

, g′ → g

g0

, B′ → B

B0

, and J′ → J

J0

in equation 2.3 gives

−β
2
∇′p′ + J′ ×B′ +

β

2

L0

H
ρ′g′ = 0 , (2.4)

where β = p0

(
B2

0

2µ0

)−1

denotes the plasma beta parameter, defined as the ratio

of kinetic pressure to magnetic pressure, while H =
p0

ρ0g0

refers to pressure scale-

height, which is the distance over which the kinetic pressure decreases by a factor

of e (Priest, 2014). In order to compare the relative magnitude of forcing terms in

equation 2.4, an estimate of plasma β in the solar corona is crucial. Contextually,

Gary (2001) took observational constraints into account and devised an empirical

mathematical formulation to model the variation of magnetic field and kinetic
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pressure with height. The resulting plasma β plot is depicted in figure 2.1, which

indicates the presence of a region in solar atmosphere for which β � 1. Within

this region, magnetic force dominates over the hydrodynamic forces, which can be

understood by realizing that β can be rewritten as β ∼ c2
s/V

2
A ≈ 0.01� 1 for the

typical values cs ≈ 100 km s−1 and VA ≈ 1000 km s−1 (Aschwanden, 2005, Priest,

2014) in the solar corona. The low-β value along with a typical L0 = 10 Mm and

H = 100 Mm for solar corona implies that the first and third terms of equation

2.4 can be dropped. This leads to a null Lorentz force or a force-free equilibrium,

described by

J×B = 0 , (2.5)

where the normalized variables have been replaced with dimensional dynamical

variables for convenience. Equation 2.5 implies that the magnetic pressure force

and the magnetic tension force balance each other, as following

J×B = −∇
(
B2

2

)
+ (B · ∇)B = 0 . (2.6)

In the non-trivial case, current density is parallel to magnetic field. Consequently,

equation 2.5 implies that

∇×B = α(r) B , (2.7)

where the proportionality constant α(r) is a position dependent scalar function.

Further, the divergence of equation 2.7 on both sides along with the solenoidaility

of magnetic field leads to the condition

∇α(r) ·B = 0 . (2.8)

The mathematical structure of equations 2.7 and 2.8 withholds many interesting

properties, some of which are mentioned below. Importantly, these are nonlinear

partial differential equations and the force-free fields generally do not satisfy the

superposition principle (Marsh, 1996). Equation 2.7 implies that α(r) ∼ J·B/|B|2,

which suggests that α(r) is closely associated with field line topology (Parker, 2012)

and representative of twist in magnetic field lines (Berger & Prior, 2006). Further,
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Figure 2.1: The variation of plasma β parameter with height; from Gary (2001).
The left and right boundaries of the shaded region correspond to a sunspot and
plage region having field strengths of 2500 G and 150 G, respectively. SXT refers
to the observational data from the soft X-ray telescope mounted on the Yohkoh
space-satellite.

from equation 2.8, it is readily seen that α(r) is constant along a magnetic field

line (Marsh, 1996, Priest, 2014). The generic procedure to solve these equations

is to construct a well defined boundary value problem (BVP) and an investigation

regarding the existence and uniqueness of solutions (Molodenskii, 1969, Bineau,

1972, Molodensky, 1974, Aly, 1984, Aly, 1989, Boulmezaoud & Amari, 2000, Amari

et al., 2006). However, owing to the nonlinearity, it is difficult to solve the equations

analytically (Inoue, 2016, Wiegelmann & Sakurai, 2021). Nevertheless, simplified

force-free solutions can be derived from equation 2.7 for α(r) = 0 and α(r) = α0,

giving the so-called potential and linear force-free magnetic fields, respectively. In

the following, the extrapolation models based on these solutions and the general

nonlinear force-free magnetic field are discussed.
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2.4.1 Potential Field Extrapolation

The earliest extrapolation model was developed by assuming current-free magnetic

fields in the solar atmosphere (Schmidt, 1964, Semel, 1967), which is equivalent to

untwisted field lines (α(r) = 0). The resulting model equations are given by

J = ∇×B = 0⇒ B = −∇Φ , (2.9)

∇ ·B = 0⇒ ∇2Φ = 0 , (2.10)

where Φ is a scalar function. Equation 2.10 represents a second-order linear partial

differential equation, namely the Laplace equation and can be solved in Cartesian

(spherical) geometry for local (global) magnetic field modeling. Importantly, it is

well-known that any solution to Laplace equation is unique, provided it satisfies the

boundary conditions. Relevantly, the line-of-sight magnetic field serves to impose

a Neumann boundary condition on Φ at the photospheric surface (z = 0), given

by

Bz(x, y)
∣∣
z=0

= −∂Φ(r)

∂z

∣∣∣∣∣
z=0

, (2.11)

which along with the requirement that |B| → 0 as z → ∞ leads to a well posed

and straightforward boundary value problem with unique solution. Broadly, there

are two approaches to solve the Laplace equation for potential field extrapolation,

namely the Green’s function method (Schmidt, 1964, Semel, 1967, Sakurai, 1982)

and Fourier expansion (Hagyard & Teuber, 1978, Priest, 2014). Since, the gradient

is a linear differential operator, the Green’s function (Ohtaka, 2003) is obtained

easily from the relations

Φ(r) =

∫
G(r, x′, y′)Bz(x

′, y′)dx′, dy′ , (2.12)

∇G(r, x′, y′) = δ3(r− r′) , (2.13)

where r = (x, y, z), r′ = (x′, y′), δ3(r−r′) is the Dirac delta function, and G(r, x′, y′)

is the required Green’s function. The solution of G(r, x′, y′) from equation 2.13

is substituted into 2.12 to compute Φ(r), and hence the magnetic field. In the

Fourier expansion method, the measured line-of-sight magnetic field is expressed
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in terms of Fourier components (Riley et al., 2002, Priest, 2014), which allows an

estimation of the scalar potential Φ as follows

Bz(x, y)
∣∣
z=0

=
∑
k

Bke
ik·r , Φ =

∑
k

Bk
eik·r

k
e−kz , (2.14)

where k = (kx, ky), r = (x, y), k =
√
k2
x + k2

y, and Bk are the Fourier coefficients.

The factor e−kz accounts for the decaying magnetic field strength with height.

An inverse Fourier transform of Bz(x, y) allows to determine Bk, and hence the

scalar potential Φ and magnetic field. Notably, the counterparts of above methods

in spherical coordinates for global modeling of the solar corona (Schatten, 1968,

1969, Altschuler & Newkirk, 1969, Sakurai, 1982) constitute the now well-known

Potential Field Source Surface (PFSS) model (Mackay & Yeates, 2012). Basically,

the boundary conditions are modified as

Br(R�, θ, φ) = −∂Φ(r)

∂r

∣∣∣∣∣
r=R�

,
∂Φ(r)

∂θ

∣∣∣∣∣
r=Rs

= 0,
∂Φ(r)

∂φ

∣∣∣∣∣
r=Rs

= 0 , (2.15)

where Br(R�, θ, φ) is the photospheric line-of-sight magnetic field obtained from

synoptic magnetograms (Nikolić, 2019; Li et al., 2021). The extrapolation is carried

out in the region corresponding to R� ≤ r ≤ Rs, where Rs (source surface) is the

distance at which the magnetic field is assumed radial to account for the stretching

of magnetic field lines by the solar wind. To illustrate, an extrapolation is carried

out using the PFSS model and shown in figure 2.2. The potential field provides a

first-order estimate of magnetic field in the solar corona. However, because of the

current-free nature, it does not account for the free energy required to drive the

transients. Consequently, potential fields are not suitable to model active regions,

which may contain highly sheared and twisted magnetic field lines. Nevertheless,

owing to the uniqueness of solution and ease of calculation, it is an indispensable

tool for magnetic field modeling.

2.4.2 Linear Force-Free Field Extrapolation

In contrast to potential field, the linear force-free field (LFFF) extrapolation model

incorporates finite currents in the system by considering a position independent
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Figure 2.2: Global magnetic field of the Sun, extrapolated from PFSS model on
October 1, 2014, 18:03 UT. The open (closed) magnetic field lines are shown by
pink (black) colors.

α(r) in equation 2.7. Formally, this is described by

∇×B = α0B , (2.16)

where α0 is a constant, identical for every magnetic field line. The current density

is field-aligned, thus complying with the force-free condition. LFFF is the simplest

non-trivial (J 6= 0) solution in the force-free modeling domain. The curl of equation

2.16 on both the sides along with the divergence-free condition on magnetic field

gives the vector Helmholtz equation in magnetic field

∇2B = −α2
0B , (2.17)
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whose general solution has been described in Chandrasekhar & Kendall (1957).

It is solvable in both Cartesian (spherical) geometries for local (global) modeling.

As in the case of potential field, there exists a Green’s function approach (Chiu &

Hilton, 1977, Seehafer, 1978) and a Fourier expansion based method (Nakagawa &

Raadu, 1972, Alissandrakis, 1981) for linear force-free field extrapolation. Some of

the aspects associated with the formulation of boundary value problem, the nature

and uniqueness of solutions, can be understood easily in the framework of Fourier

transforms (Alissandrakis, 1981, Gary, 1989). The Fourier transform of equation

2.16 leads to the following system of equations
α0 −k −i2πv

k α0 i2πu

i2πv −i2πu α0



B̃x

B̃y

B̃z

 = 0 , (2.18)

where B̃(u, v, z) = F{B(x, y, z)}, satisfying the relation B̃(u, v, z) = e−kzB̃(u, v, 0).

The solution exists if the determinant of coefficient matrix in equation 2.18 is zero,

which gives the result

k2 = 4π2(u2 + v2)− α2
0 ⇒ k = ±

√
4π2q2 − α2

0 , (2.19)

where k is either real (imaginary) depending on |α0| <
2π

L0

(
>

2π

L0

)
for a given

|α0|, as shown in figure 2.3. For real k, only the positive root is considered, other-

wise e−kz blows up but for imaginary k, the general solution is a linear combination

of the two roots. The two cases correspond to the so-called small-scale and large-

scale solutions, respectively. Importantly, only small-scale solutions are physically

meaningful because their energy content is finite. In contrast to this, the large-scale

solutions are oscillatory in nature and the energy integral diverges (Alissandrakis,

1981, Gary, 1989). Further, the large-scale solutions cannot be specified uniquely

unless the measurements of transverse magnetic field are available (Chiu & Hilton,

1977). Notably, the length scale L0 being fixed by the size of magnetogram, the

restrictions on α0 are unphysical (Neukirch, 2005). Thus, for the purpose of appli-

cation, while large-scale solutions may not be relevant, in case of small-scale, there

is a range |α0| <
2π

L0

, for which physical solutions can be found. In practice, the
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Figure 2.3: Illustration of real (imaginary) k regions in the Fourier space (u, v).
In the shaded area enclosed by blue and pink curves, k is real, but imaginary for
the area bounded by blue curve and origin of the plot. The red and pink curves
represent the maximum α0 and maximum frequency allowed in the Fourier space.
This figure is adapted from Gary (1989).

value of α0 can be fixed by using observations. The simplest method is to estimate

the vertical current density component from measurements of transverse magnetic

field, which is followed by computation of α0 as follows

Jz = (∂xBy − ∂yBx)/µ0 , (2.20)

α0(x, y) = µ0
Jz
Bz

. (2.21)

Other methods derive the best fit for α0 by comparing the projection of magnetic

field configurations with chromospheric and coronal observations (Carcedo et al.,

2003, Gosain et al., 2014). These calculations have revealed that a constant α0 is

not sufficient to model the magnetic field of an active region at different heights,

thus limiting the usage of LFFF modeling. Consequently, nonlinear force-free field

extrapolation is required, as discussed in the following.
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2.4.3 Nonlinear Force-Free Field Extrapolation

In this case, the scalar function α(r) is position dependent and hence, need not

to be identical for each magnetic field line. Therefore, the extrapolated magnetic

field satisfies

∇×B = α(r) B , (2.22)

∇ ·B = 0 . (2.23)

Toward obtaining a solution, many numerical approaches (reviewed in Inoue, 2016,

Wiegelmann et al., 2017) have been proposed. In this thesis, a NLFFF model based

on an optimization procedure is used. The model was first proposed by Wheatland

et al. (2000) and later developed in Wiegelmann & Neukirch (2002), 2004, 2006,

2010, 2012. In this method, an explicit estimation of α(r) on the bottom boundary

is not required to specify the boundary condition. This is advantageous because the

calculation of α(r) requires measurement of the transverse magnetic field, which

contains more error than the line-of-sight magnetic field. Further, more errors are

introduced for areas of low |Bz| (e.g. PIL), as evident from equation 2.21. In

the optimization scheme, a functional in minimized iteratively. Chronologically,

Wiegelmann (2004) defined the functional (L) as

L =

∫
V

w(r)

[
1

|B|2
|(∇×B)×B|2 + |∇ ·B|2

]
d3x , (2.24)

where w(r) is a weight function, while the first and second terms inside the brackets

correspond to the Lorentz force and divergence of the magnetic field, respectively.

Since, magnetic field measurements can be specified for bottom boundary alone,

the influence of lateral and top boundaries should be minimal. This is accomplished

by replacing these boundaries with boundary layers, where w(r) changes smoothly

from w(r) = 1 at the beginning of layer to w(r) = 0 at the edge of computational

box (Wiegelmann, 2004). To initiate the iterative procedure, the initial magnetic

field within the functional is chosen to be potential, which is also used to prescribe

the side and top boundaries. For an iteration parameter t, minimization follows
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from

1

2

dL

dt
= −

∫
V

∂B

∂t
· F̃ d3x−

∫
S

∂B

∂t
· G̃ d2x , (2.25)

∂B

∂t
= µF̃ , (2.26)

where F̃ = F̃(w,B) and G̃ = G̃(w,B), as derived in Wiegelmann (2004). Notably,

the surface integral vanishes for the given magnetic field on boundaries, while 2.26

ensures that L decreases monotonically. Being a force-free model, the application

of above formalism to the nonlinear force-free field (NLFFF) extrapolation would

ideally require a vector magnetic field measured at the base of solar corona, where

β � 1. However, the routine availability of only photospheric magnetograms

makes the procedure slightly involved. Other than the challenges in measurement

such as the 180◦ ambiguity (Metcalf, 1994), higher error in transverse component

than the line-of-sight component (Wiegelmann & Sakurai, 2021), the magnetic field

at the photosphere is not consistent with the force-free assumption. Consequently,

by imposing the boundary integral relations obtained by Aly (1989) at the bottom

boundary, Wiegelmann et al. (2006) defined some dimensionless quantities, namely

the flux balance (εflux), the net force balance (εforce), and the net torque balance

(εtorque) to quantify the suitability of a magnetogram with force-free modeling as

follows

εflux =

∫
S

Bz∫
S

∣∣∣Bz

∣∣∣ , εforce =

∣∣∣ ∫
S

BxBz

∣∣∣+
∣∣∣ ∫

S

ByBz

∣∣∣+
∣∣∣ ∫

S

[
(B2

x +B2
y)−B2

z

] ∣∣∣∫
S

|B|2
,

εtorque =

∣∣∣ ∫
S

x
[
(B2

x +B2
y)−B2

z

] ∣∣∣+
∣∣∣ ∫

S

y
[
(B2

x +B2
y)−B2

z

] ∣∣∣+
∣∣∣ ∫

S

yBxBz − xByBz

∣∣∣∫
S

|B|2
√
x2 + y2

,

where the integral is over the magnetogram. In principle, these parameters should

be zero but for measured magnetograms, it is not possible. However, if their

value is low (< 0.1), the boundary conditions are considered sufficiently force-

free and can be used directly, as done for SDO/HMI data in Wiegelmann et al.

(2012). Unfortunately, many photospheric vector field measurements are not able
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to meet this criterion in the sense that εforce and εtorque are larger than about

0.1. The high plasma beta in photosphere naturally causes finite forces and torque,

making direct use of the measured magnetogram as boundary condition unfeasible.

Consequently, a preprocessing procedure (Wiegelmann et al., 2006) is employed

to modify the lower boundary conditions as compared to observations. A 2D-

functional Lp is defined as

Lp = µ1L1 + µ2L2 + µ3L3 + µ4L4 , (2.27)

where the individual terms Li=1,4 are

L1 =

(∑
p

BxBz

)2

+

(∑
p

ByBz

)2

+

(∑
p

B2
z −B2

x −B2
y

)2
 , (2.28)

L2 =

(∑
p

x
(
B2
z −B2

x −B2
y

))2

+

(∑
p

y
(
B2
z −B2

x −B2
y

))2
 (2.29)

+

(∑
p

(yBxBz − xByBz)

)2
 ,

L3 =

[∑
p

(Bx −Bobs
x )2 +

∑
p

(By −Bobs
y )2 +

∑
p

(Bz −Bobs
z )2

]
, (2.30)

L4 =

[∑
p

{
(∇2Bx)

2 + (∇2By)
2 + (∇2Bz)

2
}]

, (2.31)

and µi are weight factors, Bobs is the observed magnetic field at the photosphere,

and summation is over all the grid nodes of bottom boundary. The first two terms

represent force balance and torque balance conditions, respectively. The L3 term

measures deviation between the preprocessed and observed magnetic field, while

L4 corresponds to smoothing, which aims to minimize the computational cost by

averaging out small-scale features. Therefore, the goal is to minimize Lp such that

all the individual terms are made small simultaneously, if possible. The resulting

preprocessed magnetogram is relabeled as Bobs for convenience, and can be used as

the boundary condition for extrapolation. The functional defined in Wiegelmann
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(2004) was extended by Wiegelmann & Inhester (2010) to account for measurement

errors and regions lacking observational data. The modified functional is given by

L =

∫
V

wf
|(∇×B)×B|2

B2
d3x+

∫
V

wd|∇ ·B|2d3x+

ν

∫
S

(B−Bobs) ·W(x, y) · (B−Bobs)d2S , (2.32)

where wf and wd are weight functions toward the lateral and top boundaries of the

computational box. The newly added surface integral term is evaluated only over

the bottom boundary. In this term, W(x, y) is a diagonal matrix, whose elements

(wlos, wtrans, wtrans) are inversely proportional to local measurement error and ν

is a Lagrange multiplier. Typically, wlos = 1, while wtrans are small and positive,

but in regions of poor signal-to-noise ratio, wtrans = 0. In this definition, the

bottom boundary is also allowed to relax during the iterative procedure, whose

extent is determined by ν value. A smaller value implies slower injection of Bobs,

which allows more time for relaxation toward a force-free state. This extrapolation

procedure has also been extended to spherical coordinates for global modeling in

the works of Wiegelmann (2007), Tadesse et al. (2009, 2011, 2014), Koumtzis &

Wiegelmann (2023).

The extrapolated nonlinear force-free field effectively captures the twist of the

magnetic structures and accounts for the magnetic energy released during solar

transients. Notably, the existence of various methods for NLFFF modeling makes

it necessary to compare their relative performance. The studies by Schrijver et al.

(2006), 2008, De Rosa et al. (2009), 2015 present a comparison of models, high-

lighting the differences and similarities. Another way of extrapolating the coronal

magnetic field is the non-force-free model, described in the following.

2.5 Non-Force-Free Field Extrapolation

In non-force-free field (NFFF) model, the Lorentz force J×B 6= 0 at the bottom

boundary. A rationale for the NFFF extrapolation can be given from dimensional

analysis of the ratio of Lorentz force and rate of change of momentum (see 2.2),
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leading to
|J×B|∣∣∣ρdv

dt

∣∣∣ ∼
B2

ρ|v|2
∼ B2

ρ|vth|2
|vth|2

|v|2
∼ 1

β

|vth|2

|v|2
, (2.33)

where vth is the thermal velocity. Since, the typical flow speed and thermal velocity

at the photosphere are of the order 1 km s−1 (Vekstein, 2016, Khlystova & Toriumi,

2017), the expression is simplified as

|J×B|∣∣∣ρdv

dt

∣∣∣ ∼
1

β
. (2.34)

Since, β ≈ 1 on the photosphere, equation 2.34 yields

|J×B| ∼
∣∣∣ρdv

dt

∣∣∣ , (2.35)

which suggests that the non-zero Lorentz force at the photosphere can act as a

driver for photospheric motions. Consequently, the modeling of this finite Lorentz

force into an extrapolation model is relevant and necessary. Further, due to higher

plasma beta in the lower atmosphere, the non-magnetic forces cannot be neglected

in comparison to the Lorentz force. One way of doing so is to solve the equation 2.3

numerically, which is contextually referred to as the magnetohydrostatic (MHS)

extrapolation (Wiegelmann et al., 2017, Miyoshi et al., 2020, Zhu et al., 2022, Yu

et al., 2023). In this thesis work, the NFFF model developed by Bhattacharyya

& Janaki (2004) has been employed. Its theoretical structure follows from an

investigation of relaxed states in a driven system using the principle of Minimum

Dissipation Rate (MDR) and two-fluid description of the plasma. The notion of

relaxed states is discussed in chapter 5, while a detailed formalism of the model

can be found in Bhattacharyya & Janaki (2004) and the references therein. For the

purpose of this thesis, only the implementation aspects of the model are outlined

here. Essentially, an inhomogeneous double curl Beltrami equation given by

∇× (∇×B) + a∇×B + bB = ∇φ , (2.36)

is solved to obtain the magnetic field, where a, b are constants and φ is a scalar

potential function. Bhattacharyya et al. (2007) derived an analytical solution from
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2.36 to model the magnetic arcade structures in the solar corona.

Using the curl operator on both sides of equation 2.36 gives a homogenous

equation

∇× [∇× (∇×B)] + a∇× (∇×B) + b∇×B = 0 . (2.37)

The same can also be realized by writing the magnetic field vector as B = B′+
∇φ
b

,

which gives

∇× (∇×B′) + a∇×B′ + bB′ = 0 . (2.38)

Notably, equations 2.37 and 2.38 are equivalent, as discussed below. The solution

of 2.37 is given by

B =
3∑
i=1

Bi , (2.39)

where Bi are the Chandrasekhar-Kendall eigenfunctions (Chandrasekhar & Kendall,

1957), satisfying the eigenvalue equation

∇×Bi = αiBi , (2.40)

where αi are the real eigenvalues and Bi form a complete set of orthonormal

vectors (Yoshida & Giga, 1990). Using equations 2.39 and 2.40 in equation 2.37,

it is seen that
3∑
i=1

αi
(
α2
i + aαi + b

)
Bi = 0, which implies that one of the αi = 0,

thus corresponding to a potential field. Since, (∇φ)/b is also a potential field, the

proposed equivalency is established (Hu & Dasgupta, 2008). Thus, a superposition

of two linear force-free fields with a potential magnetic field gives the required non-

force-free solution. The numerical approach for non-force-free field extrapolation

has been outlined in Hu et al. (2010). In the following, the stepwise methodology

and procedure are described. From 2.39, the curl operations result in the following

set of equations

B = B1 + B2 + B3 , (2.41)

∇×B = α1B1 + α2B2 + α3B3 , (2.42)

∇× (∇×B) = α2
1B1 + α2

2B2 + α2
3B3 , (2.43)
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which can be condensed into a matrix form, given by
B

∇×B

∇× (∇×B)

 =


1 1 1

α1 α2 α3

α2
1 α2

2 α2
3




B1

B2

B3

 = V


B1

B2

B3

 ,

where V is said to be the Vandermonde matrix having elements αi−1
j for i, j =

1, 2, 3, and α3 = 0 (Hu & Dasgupta, 2008). Now, the constituent fields may be

expressed as 
B1

B2

B3

 = V−1


B

∇×B

∇× (∇×B)

 . (2.44)

Now, as evident from the term ∇× (∇×B) in the right-hand column of equation

2.44, double derivatives are required for calculation. In the context of the solar

corona, this translates into the requirement of two layers of magnetogram in the

solar atmosphere. This criterion is not often met because routine observations of

the magnetic field are available only for the photosphere and hence only one layer

of magnetogram is possible. In order to get around this problem, the potential

magnetic field is initially set to zero, thus leading to

B = B1 + B2 , (2.45)

where B1 and B2 are linear force-free fields. Then, the z components of B1 and

B2 at the bottom boundary can be obtained by taking the curl of equation 2.45,

as follows

(∇×Bobs)z = α1B1,z + α2B2,z ,

(∇×Bobs)z = α1B1,z + α2(Bobs
z −B1,z) ,

B1,z =
1

α1 − α2

[
(∇×Bobs)z − α2B

obs
z

]
, (2.46)

B2,z =
1

α2 − α1

[
(∇×Bobs)z − α1B

obs
z

]
, (2.47)

where Bobs refers to the magnetic field of vector magnetogram. Subsequently, for
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a given choice of α1 and α2, linear force-free field solver can be used to extrapolate

the constituent fields, namely B1 and B2. The next step is to find an optimal

pair of αi by minimizing the average normalized deviation of the magnetogram

transverse field (Bobs
t ) and extrapolated transverse field (Bt), quantified as

En =
M∑
i=1

(
|Bobs

t,i −Bt,i| × |Bobs
t,i |
)
/

M∑
i=1

|Bobs
t,i | , (2.48)

where M = N2 is the total number of grid points on the bottom boundary plane.

The state of minimum error corresponds to the optimized pair (α1, α2). Hu et al.

(2010) introduced further improvements in the extrapolation procedure. The po-

tential magnetic field B3 is decomposed as

B3 = B
(0)
3 + B

(1)
3 + B

(2)
3 + ........+ B

(k)
3 , (2.49)

where B
(0)
3 = 0 corresponds to the initial choice of no potential field. Now, using

Bt = B1t + B2t + B
(k)
3t , the transverse difference 4bt = Bobs

t − Bt is utilized to

estimate the z -component of B
(k+1)
3 (Venkatakrishnan & Gary, 1989), as follows

B
(k+1)
3z = F−1

[
ivF(4by) + iuF(4bx)√

(u2 + v2)

]
, (2.50)

where F(F−1) denote the Fourier(inverse Fourier) transforms with u and v as

frequency domain variables. Subsequently, an estimation of transverse component

B
(k+1)
3t is carried out by idealizing a periodic boundary condition. Afterwards, En

is estimated,4bt is calculated, and the whole procedure is repeated until the value

of En approximately saturates with the number of iterations, making the solution

unique. Importantly, the procedure alters the bottom boundary and a correlation

with the original magnetogram is necessary to check for the accuracy.

2.6 Summary

The chapter focuses on the importance of multi-wavelength observations, magnetic

field measurements, and modeling of magnetic field in the solar atmosphere for the

exploration of eruptive events. In this regard, measurements of the soft X-ray flux
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from the GOES satellite, imaging observations from SDO/AIA, and photospheric

magnetic field measurements from SDO/HMI are presented. Further, for modeling

of magnetic field, force-free field and non-force-free field extrapolation models are

discussed. The extrapolation of magnetic field in the solar atmosphere is essential

from the perspective of investigating the magnetic structures (e.g. coronal loops,

magnetic flux ropes, sheared arcades) and reconnection sites such as the magnetic

null points, quasi-separatrix layers, and hyperbolic flux tubes. However, in order

to explore the dynamical evolution of magnetic field with time and to compare

that with the spatio-temporal evolution of a transient activity in detail, numerical

simulations are required. In this regard, the next chapter discusses the framework

of the numerical model employed for carrying out the simulations presented in this

thesis.





Chapter 3

Numerical Model for MHD Simulations:

EULAG-MHD

3.1 Introduction

The implications of magnetic reconnection during a solar transient can be explored

by solving the MHD equations with suitable initial conditions. Contextually, the

process of solving the MHD equations numerically using an extrapolated magnetic

field as the initial condition refers to a data-based MHD simulation. In this regard,

the focus of this chapter is to outline the framework of the numerical model used

for carrying out the data-based simulations presented in the thesis. Relevantly, it is

informative to envisage the momentum balance and magnetic induction equations

as transport equations. The form of a transport equation follows straightforwardly

from the Navier-Stokes equation for a fluid parcel (Choudhuri, 1998), given by

∂v

∂t
+ (v · ∇)v = Rv , (3.1)

where v represents plasma flow and Rv represents the forces acting on the plasma

parcel. Similarly, the transport of any scalar field ϕ by the motion of the fluid is

given by
∂ϕ

∂t
+ (v · ∇)ϕ = Rϕ . (3.2)

Notably, the transported quantity can also be a vector field, such as the magnetic

field B, transported by the plasma flow v in a magnetized plasma. It may be seen

55
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that the induction equation can also be written as

∂B

∂t
+ (v · ∇)B = RB , (3.3)

which represents the transport of magnetic field. Since, plasma flow and magnetic

field are the primary variables in MHD, the employed numerical model must solve

the transport equations. Importantly, the physical variables and their derivatives

need to be discretized on a grid for the numerical solution. To develop these ideas

further, figure 3.1 shows a two-dimensional grid, which may be used to visualize the

discretized form of derivatives appearing in the transport equation. The Taylor’s

expansion of the scalar field ϕ can be expressed as

ϕi+1,j = ϕi,j +
∂ϕ

∂x

∣∣∣∣∣
i,j

∆x+
1

2!

∂2ϕ

∂x2

∣∣∣∣∣
i,j

∆x2 + ... and (3.4)

ϕi−1,j = ϕi,j −
∂ϕ

∂x

∣∣∣∣∣
i,j

∆x+
1

2!

∂2ϕ

∂x2

∣∣∣∣∣
i,j

∆x2 − ... , (3.5)

which can be used to obtain the first-order derivative of ϕ in the following forms

∂ϕ

∂x

∣∣∣∣∣
i,j

=
ϕi+1,j − ϕi,j

∆x
+O(∆x) or (3.6)

∂ϕ

∂x

∣∣∣∣∣
i,j

=
ϕi+1,j − ϕi−1,j

2∆x
+O(∆x2) . (3.7)

The distinction between equations 3.6 and 3.7 is important because the former is

only first-order accurate while the latter is second-order accurate. The downside

of this higher order accuracy is the presence of spurious oscillations in the solution,

also known as dispersion error (Wendt, 1992). Furthermore, the absence of even

derivatives in equation 3.7 on the right hand side amounts to lack of numerical

diffusion, which is essential for the stability of solution (Wendt, 1992). These ideas

are discussed later in greater detail.

Importantly, owing to the high electrical conductivity of coronal plasma, the

flux-freezing condition is satisfied everywhere except at small length scales where
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Figure 3.1: A two-dimensional numerical grid, where the ith and jth labels refer to
the x and y−axis, respectively. The blue circles denote the centroid of grid cells,
while the pink lines mark the edges of grid cells.

the diffusion of magnetic field dominates. Consequently, the numerical simulation

of solar transients requires the model to account for the breakdown of flux-freezing

condition at small length scales, but to maintain it when away from the localized

diffusion region. The inclusion of such disparate physical conditions necessitates a

minimization of numerical diffusion and dispersion errors away from the regions of

high gradients in magnetic field. For this purpose, the solar MHD variant of the

well-established EULAG (Eulerian/semi-Lagrangian fluid solver) model is used in

this thesis. Notably, the Eulerian approach estimates changes in system variables

at fixed points in space while in a Lagrangian scheme, the focus is on calculating

particle trajectories (Smolarkiewicz & Charbonneau, 2013). A combination of the

two methods results in a semi-Lagrangian fluid solver, where a Eulerian grid is

employed but the equations come from a Lagrangian perspective (Smolarkiewicz

& Pudykiewicz, 1992).

The EULAG model was developed to solve the fluid equations pertaining to

the geophysical atmosphere and oceans (Prusa et al., 2008). Subsequently, solar

MHD was incorporated (Smolarkiewicz & Charbonneau, 2013; Charbonneau &
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Smolarkiewicz, 2013) into the model to simulate the solar convection process, thus

earning the moniker EULAG-MHD. The operational core of EULAG-MHD is its

advection scheme MPDATA (Smolarkiewicz, 1983, 1984; Smolarkiewicz & Clark,

1986) or the Multidimensional Positive Definite Advection Transport Algorithm

(reviewed in Smolarkiewicz & Margolin, 1998; Smolarkiewicz & Margolin, 2001;

Smolarkiewicz, 2006). Here, the meaning of positive definite is to preserve the sign

of advected variable. The simplest example is density, which is a positive quantity

by nature and hence, should not become negative during simulation. However, it

does not mean that the algorithm is not applicable to negative definite variables

(Smolarkiewicz & Clark, 1986). Importantly, the scheme achieves a second-order

accuracy in space and time with low numerical diffusion. However, this does not

mitigate the dispersion errors completely. To do so, Smolarkiewicz & Grabowski

(1990) introduced a nonoscillatory scheme, which preserves the local monotone

character of the transported field.

In the context of simulating reconnection, notable is the proven effectiveness

of EULAG-MHD to model the effects of dissipative length scales. Basically, the

turbulent flows contain eddies of varying sizes and for numerical simulation of such

flows, it is usually not feasible to resolve all the eddies and hence their energy. In

the conventional Large Eddy Simulation (LES) approach, this situation is tackled

by scale-separation, wherein the dynamics of unresolved smallest eddies is taken

into account by subgrid scale (SGS) closure models (Grinstein & Drikakis, 2007;

Grinstein et al., 2007). In contrast to this, by virtue of being a nonoscillatory finite

volume (NFV) scheme, EULAG-MHD can accommodate the effect of small-scales

without resorting to the SGS modeling. This property of not requiring the subgrid

scale models for simulation of turbulent flows is known as the implicit turbulence

modeling (Margolin & Rider, 2002; Margolin et al., 2002; Margolin et al., 2006)

and further as Implicit Large Eddy Simulations (ILES; Grinstein et al., 2007), as

discussed in the following section.

The physical realizability of the simulations with EULAG-MHD has been well

investigated and documented (Margolin et al., 2002, 2006; Smolarkiewicz et al.,

2007). In the context of solar and stellar physics, global MHD simulations of turbu-

lent stellar interiors and solar convection (Passos & Charbonneau, 2014; Strugarek
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et al., 2016; Beaudoin et al., 2018; Monteiro et al., 2023), simulations of current

sheet formation (Bhattacharyya et al., 2010; Kumar et al., 2015, 2017), recent in-

clusion of the Hall magnetohydrodynamics within the EULAG-MHD model (Bora

et al., 2021, 2022, 2023), and data-based simulations of solar transients (Prasad

et al., 2017, 2018; Nayak et al., 2019; Kumar et al., 2022; Prasad et al., 2023) serve

to highlight the applicability and relevancy of the numerical framework. In the fol-

lowing sections, starting with the MPDATA scheme, the details of EULAG-MHD

model are discussed in detail.

3.2 The Advection Solver: MPDATA Scheme

As mentioned earlier, the central theme of the numerical model are the methods

for solving the transport equations. In this regard, the notion of discretization was

introduced (see figure 3.1). Earlier, the scalar function ϕ was expressed in discrete

form (see equations 3.4 and 3.5) but to present the working principle of MPDATA

scheme, discretization of the transport equation itself is required. Chronologically,

the formulation of MPDATA was carried out in Smolarkiewicz (1983), followed

by further developments in multiple notable works such as Smolarkiewicz (1984);

Smolarkiewicz & Clark (1986); Smolarkiewicz & Grabowski (1990); Smolarkiewicz

(1991); Smolarkiewicz & Margolin (1993); Smolarkiewicz & Charbonneau (2013).

In the following, the simplest case of a one-dimensional transport equation for an

incompressible fluid is considered (Smolarkiewicz, 1983) to fix the ideas.

3.2.1 Working Principle of MPDATA Scheme

In the absence of any external forcing and Euler equation limit (inviscid flow),

the Navier-Stokes equation devolves into the advection equation of a nondiffusive

quantity. Then, in an incompressible fluid, the resulting one-dimensional equation

for a scalar function ϕ is given by

∂tϕ+ ∂x(uϕ) = 0 , (3.8)

where u is the velocity component along x−axis. The discretization of the above

equation involves an upwind differencing method, where the direction of fluid flow
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dictates further formulation. To understand this, consider figure 3.2, which shows

a one-dimensional numerical grid along with the instances of fluid flow to the right

(u > 0) and left (u < 0), respectively. For u > 0, the preference is given to cell

centroids on the left, while for u < 0, the centroids on the right are given priority,

i.e.

Figure 3.2: A one-dimensional numerical grid, where the ith label refers to the
x−axis. The blue circles denote the cell centroid, while the pink lines mark the
cell edges. The labels u > 0 and u < 0 signify the direction of fluid flow toward
right and left, respectively.

ϕi+ 1
2

=

ϕi, u > 0 ,

ϕi+1, u < 0 ,

(3.9)

and

ϕi− 1
2

=

ϕi−1, u > 0 ,

ϕi, u < 0 .

(3.10)

Since, the estimated ϕ at cell centroid and cell edge are same, accuracy is reduced

in exchange for stability. We will return to this aspect later but for now, consider

the discretized form of equation 3.8, given by

ϕn+1
i − ϕni

∆t
+
ui+ 1

2
ϕn
i+ 1

2

− ui− 1
2
ϕn
i− 1

2

∆x
= 0 , (3.11)

where the label n corresponds to the temporal variable. In other words, ϕn+1
i refers

to the solution at grid point (tn+1, xi) with ∆t = tn+1 − tn and ∆x = xi+ 1
2
− xi− 1

2

being the temporal and spatial increments, respectively. The two cases of opposing
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fluid flow directions can be condensed into a unified description as

ϕn+1
i = ϕni −

∆t

2∆x

[
ϕni

(
ui+ 1

2
+ | ui+ 1

2
|
)

+ ϕni+1

(
ui+ 1

2
− | ui+ 1

2
|
)]

+
∆t

2∆x

[
ϕni

(
ui− 1

2
− | ui− 1

2
|
)

+ ϕni−1

(
ui− 1

2
+ | ui− 1

2
|
)]

. (3.12)

Defining U±
i+ 1

2

=
∆t

2∆x

(
ui+ 1

2
± | ui+ 1

2
|
)

and U±
i− 1

2

=
∆t

2∆x

(
ui− 1

2
± | ui− 1

2
|
)

, ϕn+1
i

may be expressed as

ϕn+1
i = ϕni −

(
ϕni U

+
i+ 1

2

+ ϕni+1U
−
i+ 1

2

)
+
(
ϕni U

−
i− 1

2

+ ϕni−1U
+
i− 1

2

)
, (3.13)

which can be recasted into a flux form, given by

ϕn+1
i = ϕni −

{
F
(
ϕni , ϕ

n
i+1, Ui+ 1

2

)
− F

(
ϕni−1, ϕ

n
i , Ui− 1

2

)}
. (3.14)

The flux function F can be compactly written as

F (ϕl, ϕr, U) ≡ U+ϕl + U−ϕr , (3.15)

where (l, r) ≡ (i, i+ 1) or (i− 1, i) and for u ≡ ui± 1
2
, U = U+ + U− =

u∆t

∆x
is the

local Courant number (Smolarkiewicz & Margolin, 1998). The estimate of ϕ given

by equation 3.14 is also referred to as the donor cell approximation. The concept

of positive definite in MPDATA can be understood now in more detail, as follows.

Using a periodic solution of the form ϕ ∝ eik(x−ut) in equation 3.12 leads to

e−iku∆t = 1− ∆t

∆x

[
|u|+ eik∆x

(
u− |u|

2

)
− e−ik∆x

(
u+ |u|

2

)]
, (3.16)

which can be written as

e−iku∆t = 1− ∆t

∆x

[
|u|+ u

(
eik∆x − e−ik∆x

2

)
− |u|

(
eik∆x + e−ik∆x

2

)]
, (3.17)

e−iku∆t = 1− ∆t

∆x

[
|u| − |u|cos(k∆x) + iusin(k∆x)

]
. (3.18)
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The stability of solution necessitates |e−iku∆t| ≤ 1, which may be seen to translate

into the requirement∣∣∣∣∆t∆x
usin(k∆x)

∣∣∣∣ ≤ 1⇒ ∆t

∆x
|u| · |sin(k∆x)| ≤ 1 . (3.19)

Therefore, the criterion max|sin(k∆x)| = 1 implies that the stability condition in

donor cell scheme for every time step has the form

max

(
∆t|u|
∆x

)
≤ 1 , (3.20)

which ensures the positive definite behavior of the advected variable (see equation

3.12). The preceding analysis completes the stability aspect of the upwind scheme,

as described earlier. However, being only first-order accurate (both in space and

time), the amount of numerical diffusion is large. The properties associated with

diffusion are brought to the surface by what is known as the modified equation

analysis (MEA; Margolin et al., 2006). It utilizes the Taylor’s expansion to identify

the partial differential equation whose solution closely approximates the solution of

numerical algorithm. The Taylor’s expansion of ϕ upto second-order about (n, i)

are given by

ϕn+1
i = ϕni +

∂ϕi
∂t

∣∣∣∣∣
n

∆t+
1

2!

∂2ϕi
∂t2

∣∣∣∣∣
n

(∆t)2 + ... , (3.21)

ϕni±1 = ϕni ±
∂ϕn

∂x

∣∣∣∣∣
i

∆x+
1

2!

∂2ϕn

∂x2

∣∣∣∣∣
i

(∆x)2 + ... . (3.22)

Further, for the simpler case of u = const., the second-order derivative of ϕ with

respect to time can be represented as

∂2ϕ

∂t2
=

∂

∂t

(
∂ϕ

∂t

)
=

∂

∂x

∂x

∂t

[
− ∂

∂x
(uϕ)

]
=

∂

∂x

(
u2∂φ

∂x

)
. (3.23)

The substitution of these equations in 3.12 leads to

∂ϕi
∂t

∣∣∣∣∣
n

= − ∂

∂x
(uϕn)

∣∣∣∣∣
i

+
∂

∂x

[
1

2

(
|u|∆x− u2∆t

) ∂ϕn
∂x

] ∣∣∣∣∣
i

, (3.24)
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which approximates an advection-diffusion equation (Wendt, 1992) given by

∂ϕ

∂t
+
∂(uϕ)

∂x
=

∂

∂x

(
D
∂ϕ

∂x

)
, (3.25)

where, the diffusion coefficient D = 0.5 (|u|∆x−u2∆t) is guaranteed to be positive

from the stability condition, which ensures the well-posedness of equation 3.24 in

terms of an advection-diffusion problem. On closer inspection, it may be realized

that the foundation of diffusion in the numerical algorithm is contained within the

second-order (even derivative) truncation term. Further, while diffusion is crucial

for stability, too much of it runs the risk of underestimating the solution. Hence,

it needs to be minimized. For this purpose, Smolarkiewicz (1983) developed an

ingenious numerical trick based on the idea that solutions of the diffusion equation

are reversible in time. Its formulation emphasizes on the diffusive component as

∂ϕ?

∂t
=

∂

∂x

(
D
∂ϕ?

∂x

)
= − ∂

∂x
(udϕ

?) , (3.26)

where, ϕ? is the solution corresponding to advection, ud = −D
ϕ?
∂ϕ?

∂x
is termed as

the diffusion velocity. Subsequently, an anti-diffusion velocity defined as ũ = −ud,

results in the advection equation

∂tϕ
? − ∂x(ũϕ?) = 0 , (3.27)

which can be dealt with using a donor cell scheme. The modified scheme is then

a two-step process, given by

ϕ?i = ϕni −

{
F
(
ϕni , ϕ

n
i+1, Ui+ 1

2

)
− F

(
ϕni−1, ϕ

n
i , Ui− 1

2

)}
, (3.28)

ϕn+1
i = ϕ?i −

{
F
(
ϕ?i , ϕ

?
i+1, Ũi+ 1

2

)
− F

(
ϕ?i−1, ϕ

?
i , Ũi− 1

2

)}
, (3.29)

where, as earlier, Ũ±
i+ 1

2

=
∆t

2∆x

(
ũi+ 1

2
± | ũi+ 1

2
|
)

and Ũ±
i− 1

2

=
∆t

2∆x

(
ũi− 1

2
± | ũi− 1

2
|
)

,

Ũ = Ũ+ + Ũ−. Further, using the fact that ũ = −ud =
D

ϕ?
∂xϕ

? and the relations
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∂xϕ
? =

ϕ?i+1 − ϕ?i
∆x

, ϕ? =
ϕ?i+1 + ϕ?i

2

ũi± 1
2

=
ϕ?i+1 − ϕ?i
ϕ?i+1 + ϕ?i

[
∆x
∣∣ui± 1

2

∣∣−∆tu2
i± 1

2

∆x

]
. (3.30)

The estimate of ϕn+1
i given by 3.29 preserves the sign and is second-order accurate

in space and time, as evident by the consideration of second-order derivatives in

equations 3.21 and 3.22. Now, in the following, extensions of MPDATA to cases

of more than one dimension and u 6= const. are discussed.

3.2.2 Multidimensional MPDATA Scheme

The development of multidimensional MPDATA scheme is quite straightforward.

In order to highlight the essential features, a two-dimensional case is considered

in the following. Then, the advection equation is given by

∂tϕ+ ∂x(uϕ) + ∂y(vϕ) = 0 , (3.31)

where u and v are the velocities in x and y−directions. The corresponding donor

cell approximation is then

ϕn+1
i,j = ϕni,j −

{
F
(
ϕni,j, ϕ

n
i+1,j, Ui+ 1

2
,j

)
− F

(
ϕni−1,j, ϕ

n
i,j, Ui− 1

2
,j

)}

−

{
F
(
ϕni,j, ϕ

n
i,j+1, Vi,j+ 1

2

)
− F

(
ϕni,j−1, ϕ

n
i,j, Vi,j− 1

2

)}
. (3.32)

Importantly, the modified equation analysis in this case introduces an additional

term as follows

∂2ϕ

∂t2
=

∂

∂t

(
∂ϕ

∂t

)
= − ∂

∂t

[
u
∂ϕ

∂x
+ v

∂ϕ

∂y

]
=

[
u
∂

∂x
+ v

∂

∂y

] [
u
∂ϕ

∂x
+ v

∂ϕ

∂y

]
,

=
∂

∂x

(
u2∂ϕ

∂x

)
+

∂

∂y

(
v2∂ϕ

∂y

)
+ 2uv

∂2ϕ

∂x∂y
. (3.33)
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The last term in eq. 3.33 corresponds to a cross term, which arises as a consequence

of more than one dimension. It ultimately leads to the following

∂ϕi,j
∂t

∣∣∣∣∣
n

= − ∂

∂x
(uϕn)

∣∣∣∣∣
i,j

− ∂

∂y
(vϕn)

∣∣∣∣∣
i,j

+
∂

∂x

[
1

2

(
|u|∆x− u2∆t

) ∂ϕn
∂x

] ∣∣∣∣∣
i,j

+
∂

∂y

[
1

2

(
|v|∆y − v2∆t

) ∂ϕn
∂y

] ∣∣∣∣∣
i,j

− uv ∂
2ϕ

∂x∂y

∣∣∣∣∣
i,j

∆t , (3.34)

which can be easily seen to approximate

∂ϕ

∂t
+
∂(uϕ)

∂x
+
∂(vϕ)

∂y
=

∂

∂x

(
Dx

∂ϕ

∂x

)
+

∂

∂y

(
Dy

∂ϕ

∂y

)
− uv ∂

2ϕ

∂x∂y
∆t , (3.35)

where Dx and Dy are the diffusion coefficients. Notably, the right hand side of eq.

3.35 can be written as

∂

∂x

[
1

ϕ

(
Dx

∂ϕ

∂x
− uv

2

∂ϕ

∂y
∆t

)
ϕ

]
+

∂

∂y

[
1

ϕ

(
Dy

∂ϕ

∂y
− uv

2

∂ϕ

∂x
∆t

)
ϕ

]
, (3.36)

thus yielding a formulation in terms of diffusion velocity, given by

∂ϕ?

∂t
= − ∂

∂x
(uxdϕ

?)− ∂

∂y
(uydϕ

?) , (3.37)

with anti-diffusion velocities being ũx = −uxd =
1

ϕ?

[
Dx

∂ϕ?

∂x
− uv

2

∂ϕ?

∂y
∆t

]
and

ũy = −uyd =
1

ϕ?

[
Dy

∂ϕ?

∂y
− uv

2

∂ϕ?

∂x
∆t

]
. The evaluation of the first component of

ũx, i.e., ũx
1

=
1

ϕ?

[
Dx

∂ϕ?

∂x

]
has been discussed earlier in equation 3.30 and now

for the second component (denoted by ũx
2

), note that

ũx
2

= −0.5∆t
uv

ϕ?
∂ϕ?

∂y

∣∣∣∣∣
i+ 1

2
,j

, (3.38)

which utilizes the following Taylor’s expansions for simplification

ϕ?i,j+1 = ϕ?
i+ 1

2
,j
− ∂ϕ?

∂x

∣∣∣∣∣
i+ 1

2
,j

∆x

2
+
∂ϕ?

∂y

∣∣∣∣∣
i+ 1

2
,j

∆y + ... , (3.39)
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ϕ?i,j−1 = ϕ?
i+ 1

2
,j
− ∂ϕ?

∂x

∣∣∣∣∣
i+ 1

2
,j

∆x

2
− ∂ϕ?

∂y

∣∣∣∣∣
i+ 1

2
,j

∆y + ... , (3.40)

ϕ?i+1,j+1 = ϕ?
i+ 1

2
,j

+
∂ϕ?

∂x

∣∣∣∣∣
i+ 1

2
,j

∆x

2
+
∂ϕ?

∂y

∣∣∣∣∣
i+ 1

2
,j

∆y + ... , (3.41)

ϕ?i+1,j−1 = ϕ?
i+ 1

2
,j

+
∂ϕ?

∂x

∣∣∣∣∣
i+ 1

2
,j

∆x

2
− ∂ϕ?

∂y

∣∣∣∣∣
i+ 1

2
,j

∆y + ... . (3.42)

The addition of equations 3.39 to 3.42 and the algebraic operation [3.39-3.40]+[3.41-

3.42] give

ϕ?
i+ 1

2
,j

=
1

4

[
ϕ?i,j+1 + ϕ?i,j−1 + ϕ?i+1,j+1 + ϕ?i+1,j−1

]
, (3.43)

∂ϕ?

∂y

∣∣∣∣∣
i+ 1

2
,j

=
1

4∆y

[
ϕ?i,j+1 − ϕ?i,j−1 + ϕ?i+1,j+1 − ϕ?i+1,j−1

]
, (3.44)

which when substituted back in equation 3.38 gives

ũx
2

= −0.5∆t
ui+ 1

2
,jvi+ 1

2
,j

∆y

[
ϕ?i,j+1 − ϕ?i,j−1 + ϕ?i+1,j+1 − ϕ?i+1,j−1

ϕ?i,j+1 + ϕ?i,j−1 + ϕ?i+1,j+1 + ϕ?i+1,j−1

]
. (3.45)

Now, the results can be generalized to any number of dimensions. The advection

equation for M -dimensional space can be written as

∂ϕ

∂t
+

M∑
k=1

∂

∂xk
(ukϕ) = 0 , (3.46)

where xk and uk refer to the coordinate and velocity along the dimension k, which

gives the donor cell scheme as

ϕn+1

˜
i = ϕn

˜
i −

M∑
k=1

{
F
(
ϕn

˜
i , ϕ

n

˜
i+

˜
k, U

˜
i+ 1

2˜
k

)
− F

(
ϕn

˜
i−

˜
k, ϕ

n

˜
i , U

˜
i− 1

2˜
k

)}
, (3.47)

where
˜
i is an M -dimensional vector and defines the point on numerical grid where

the solution of advected variable is desired. Similarly,
˜
k refers to the unity vector

along the kth direction. The MEA analysis of this leads to the following generalized
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result

∂ϕ
˜
i

∂t

∣∣∣∣∣
n

= −
M∑
k=1

∂

∂xk
(ukϕn)

∣∣∣∣∣̃
i

+
M∑
k=1

∂

∂xk

[
1

2

(
|uk|∆xk − (uk)2∆t

) ∂ϕn
∂xk

] ∣∣∣∣∣̃
i

−
M∑
k=1

∂

∂xk

[
M∑

k′=1,k 6=k′
0.5∆tukuk

′ ∂ϕn

∂xk′

] ∣∣∣∣∣̃
i

, (3.48)

where the 0.5 in last term is to avoid double counting (see equations 3.24 and 3.34

for reference). In a similar manner, it is easy to generalize the expression of the

anti-diffusion velocity (see equations 3.30 and 3.45 for reference) as

ũk

˜
i+ 1

2˜
k

=
ϕ?

˜
i+

˜
k − ϕ?

˜
i

ϕ?
˜
i+

˜
k + ϕ?

˜
i

[
∆xk

∣∣uk
˜
i± 1

2˜
k

∣∣−∆t(uk)2

˜
i± 1

2˜
k

∆xk

]
− 0.5∆t

M∑
k′=1,k 6=k′

uk

˜
i± 1

2˜
k
uk
′

˜
i± 1

2 ˜
k′

∆xk′

×

[
ϕ?

˜
i+

˜
k′ − ϕ?

˜
i−

˜
k′ + ϕ?

˜
i+

˜
k+

˜
k′ − ϕ?

˜
i+

˜
k−

˜
k′

ϕ?
˜
i+

˜
k′ + ϕ?

˜
i−

˜
k′ + ϕ?

˜
i+

˜
k+

˜
k′ + ϕ?

˜
i+

˜
k−

˜
k′

]
. (3.49)

So far, the case of constant uk has been considered for analysis. In the following,

the cases of space and time dependent velocity fields are discussed. Using the case

of one-dimensional advection equation, the second-order time derivative of ϕ is

∂2ϕ

∂t2
=

∂

∂t

(
∂ϕ

∂t

)
=

∂

∂x

∂x

∂t

[
− ∂

∂x
(uϕ)

]
=

∂

∂x

[
u
∂

∂x
(uϕ)

]

=
∂

∂x

[
u
∂u

∂x
ϕ

]
+

∂

∂x

[
u2∂ϕ

∂x

]
, (3.50)

where the first term appears due to space dependence of velocity. Similarly, in the

case of time dependence

∂2ϕ

∂t2
=

∂

∂t

(
∂ϕ

∂t

)
=

∂

∂t

[
− ∂

∂x
(uϕ)

]
= − ∂

∂x

[
∂

∂t
(uϕ)

]
= − ∂

∂x

[
∂u

∂t
ϕ

]
+
∂

∂x

[
u
∂

∂x
(uϕ)

]

− ∂

∂x

[
∂u

∂t
ϕ

]
+

∂

∂x

[
u
∂

∂x
(uϕ)

]
= − ∂

∂x

[
∂u

∂t
ϕ

]
+

∂

∂x

[
u2∂ϕ

∂x

]
, (3.51)

where the first term arises due to time dependence. Consequently, in the case of

more than one dimension, the modified equation analysis includes additional terms
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of the form

∂ϕ
˜
i

∂t

∣∣∣∣∣
n

= ...−
M∑
k=1

∂

∂xk

[
0.5∆t

(
uk

M∑
k′=1

∂uk
′

∂xk′

)
ϕn

] ∣∣∣∣∣̃
i

+
M∑
k=1

∂

∂xk

[
0.5∆t

∂uk

∂t
ϕn
] ∣∣∣∣∣̃

i

,

(3.52)

where the ... refers to equation 3.48. These functional dependencies of the velocity

field alter the expression of anti-diffusion velocity also. Importantly, for the case

of time dependence, the expression for anti-diffusion velocity is as follows

ũk

˜
i+ 1

2˜
k

= ...+
M∑
k=1

0.5∆t
∂uk

∂t

∣∣∣∣∣̃
i+ 1

2˜
k

, (3.53)

where the ... refers to equation 3.49. The use of equation 3.53 to minimize temporal

truncation error introduces higher order numerical diffusion, which is contradic-

tory to the objective of improving the accuracy (Smolarkiewicz & Clark, 1986).

Hence, to resolve this, the temporal positioning of u and ϕ (see equation 3.46) are

decoupled as

ϕn+1 − ϕn

∆t
= −

M∑
k=1

∂

∂xk

 n+ 1
2

ukϕ n

 , (3.54)

where the circles highlight the decoupling of temporal labels. Then, using Taylor’s

series expansions up to second-order given by

ϕn+1 = ϕn + ∆t
∂ϕ

∂t

∣∣∣∣
n

− 0.5∇ ·
[
∂u

∂t
ϕ

]
∆t2 + 0.5∇ ·

[
u∇ · (uϕ)

]
∆t2 , (3.55)

un+ 1
2 = un +

1

2
∆t
∂u

∂t

∣∣∣∣∣
n

+O(∆t2) , (3.56)

where both u and ∇ are M -dimensional, the modified equation analysis results in

the following generalized equation

∂ϕ

∂t
+∇ · (uϕ) = −0.5∆t∇ ·

[
(u.∇ϕ)u + uϕ(∇ · u)

]
+O(∆t2) , (3.57)

where the O(∆t) truncation error is eliminated. In the generalized case of a forcing

term R, the Taylor’s expansion given by

Rn+ 1
2 = Rn + 0.5∆t∇ · (uR)

∣∣
n

+O(∆t2) , (3.58)
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can be used to obtain

∂ϕ

∂t
+∇· (uϕ) = R− 0.5∆t∇·

[
(u.∇ϕ)u + uϕ(∇·u)

]
+ 0.5∆t∇· (uR) +O(∆t2) .

(3.59)

Notably, in equation 3.59, the first-order truncation error associated with R is not

compensated. Smolarkiewicz (1991) suggested to subtract the donor cell scheme

approximation of the term 0.5∆t∇·(uR) from the right hand side of equation 3.59

to achieve second-order accuracy, represented by

ϕn+1

˜
i = ϕn

˜
i +R

n+ 1
2

˜
i ∆t−AII

˜
i

[
ϕn,Un+ 1

2

]
−AI

˜
i

[
0.5∆tRn

˜
i ,U

n

]
, (3.60)

where AII
˜
i and AI

˜
i are advective flux-divergence operators from second and first-

order accurate dissipative advection schemes (Smolarkiewicz, 1991; Smolarkiewicz

& Margolin, 1993). Also, U refers to theM -dimensional vector of the local Courant

numbers. Furthermore, the assumption R
n+ 1

2

˜
i =

1

2

[
Rn

˜
i +Rn+1

˜
i

]
and the freedom

to take Courant number at n+ 1
2

than n (Smolarkiewicz & Margolin, 1993) gives

ϕn+1

˜
i = DII

˜
i

[
ϕn

˜
i ,U

n+ 1
2

]
+DI

˜
i

[
0.5∆tRn

˜
i ,U

n+ 1
2

]
+Rn+1

˜
i

∆t

2
, (3.61)

where, DII
˜
i and DI

˜
i denote the second-order and first-order accurate advection

schemes (Smolarkiewicz & Margolin, 1993). Lastly, benefiting from the MPDATA

scheme, both DII
˜
i and DI

˜
i can be placed under the same roof, giving

ϕn+1

˜
i = MPDATA

[
ϕn

˜
i + 0.5∆tRn

˜
i ,U

n+ 1
2 ,
]

+Rn+1

˜
i

∆t

2
. (3.62)

Notably, the estimation of velocities at the time stamp n+ 1
2

utilizes interpolation

or extrapolation (not to be confused with magnetic field extrapolation) schemes

such that the second-order accuracy is maintained. Some examples are

n+ 1
2uk

˜
i+ 1

2˜
k

= 0.5
[
nuk

˜
i+ 1

2˜
k

+ n+1uk

˜
i+ 1

2˜
k

]
, (3.63)

n+ 1
2uk

˜
i+ 1

2˜
k

= 0.5
[
3(nuk

˜
i+ 1

2˜
k
)− n−1uk

˜
i+ 1

2˜
k

]
. (3.64)
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For the subtleties involved in a particular choice of un+ 1
2 , readers are referred

to (Smolarkiewicz & Clark, 1986). In the following, details of the nonoscillatory

option are presented to complete the description of MPDATA scheme.

3.2.3 Nonoscillatory Feature of MPDATA Scheme

The nonoscillatory feature of MPDATA scheme works to control the unphysical

oscillations in the solution, which might appear due to an overestimation of flux

terms. This is also referred to as the preservation of monotonicity of the advected

variable. In MPDATA scheme, this is achieved by implementing the flux-corrected

transport (FCT) methodology (Boris & Book, 1973; Book et al., 1975; Boris &

Book, 1976). The basic principle of this can be understood by writing the advection

algorithm for ϕ as

ϕn+1

˜
i = ϕn

˜
i −

M∑
k=1

[
FHk

˜
i+ 1

2˜
k
− FHk

˜
i− 1

2˜
k

]
, (3.65)

where FHk

˜
i± 1

2˜
k

refers to any high order flux term (Smolarkiewicz & Grabowski,

1990). Importantly, this can be decomposed as FHk

˜
i± 1

2˜
k

= FLk

˜
i± 1

2˜
k

+Ak

˜
i± 1

2˜
k
, where

FLk

˜
i± 1

2˜
k

and Ak

˜
i± 1

2˜
k

have the sense of a low order flux term and residual flux which

serves to correct at least the first-order truncation error. This leads to the result

ϕn+1

˜
i = Φn+1

˜
i −

M∑
k=1

[
Ak

˜
i+ 1

2˜
k
− Ak

˜
i− 1

2˜
k

]
, (3.66)

where Φn+1

˜
i is the solution from lower order scheme. The monotonicity of ϕ, given

by ϕmax

˜
i ≥ Φn+1

˜
i ≥ ϕmin

˜
i is then obtained by limiting the residual flux as

Ãk

˜
i+ 1

2˜
k

= Ck

˜
i+ 1

2˜
k
Ak

˜
i+ 1

2˜
k
, (3.67)

where the coefficients Ck

˜
i+ 1

2˜
k

satisfy 0 ≤ Ck

˜
i+ 1

2˜
k
≤ 1. Further, the determination

of the limiting values ϕmax

˜
i and ϕmin

˜
i allows the estimation of maximum possible

residual flux so that there is no overestimation. In order to conclude the discussion

of MPDATA scheme, the aspects of its application in the context of Implicit Large

Eddy Simulations (ILES) are described in the following section.
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3.2.4 ILES using MPDATA Scheme

As mentioned earlier, the implication of ILES is the modeling of small-scale effects

by the inherent dissipative character of the numerical model. Further, the foregoing

discussion of the MPDATA scheme has revealed the association between truncation

errors and diffusion of the advected variable. Consequently, the question pertaining

to the physical justification of numerical diffusion in modeling of turbulent flows is

natural. It turns out that the rationale for using the nonoscillatory finite volume

(NFV) algorithms such as MPDATA emerges from their accurate approximation

of the equations that govern the dynamics of finite fluid volumes (Margolin et al.,

2002, 2006; Margolin et al., 2006). Contextually, note that the equations governing

the dynamics of an infinitesimal point and a finite volume are not same (Margolin &

Rider, 2002). However, the latter may be derived from spatial (∆x) and temporal

(∆t) averaging of the point equations. This leads to nonlinear dispersion terms

in finite volume equations (Margolin & Rider, 2002). The resemblance of these

terms with truncation terms obtained during the MEA analysis of the MPDATA

scheme or any other NFV algorithm in general, provides the required physical

justification. The dissipation in ILES approach is adaptive, meaning that it does

not simply add in to the physical dissipation (Margolin et al., 2006). Importantly,

the length scales involved in averaging reflect the length scale of observer in the

sense of numerical resolution allowed by the computational grid. Therefore, the

finite volume equations and hence the NFV algorithms are practical and realistic

descriptions (Margolin et al., 2006). In the context of simulating solar transients

with ILES approach, note that the small length scales or the under-resolved scales

are recognized as the locations of magnetic reconnection. The controlled numerical

dissipation of the MPDATA scheme relates to the diffusion term (η∇2B) of the

magnetic induction equation. This leads to the onset of magnetic reconnections

that are consistent and collocated with the reconnection sites. In a nutshell, the

MPDATA scheme and it’s ILES property are central to the numerical simulation

of solar transients, which are manifestations of magnetic reconnection. In the

following, the algorithm of EULAG-MHD is described, which gives more insight

into the step-wise procedure used to solve the MHD equations.
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3.3 Algorithm of the EULAG-MHD

As discussed earlier, it is important to visualize the MHD equations as transport

equations. In this regard, equations 3.1 and 3.3 were only indicative and now,

the required formalism is presented in more detail. The EULAG-MHD framework

solves� the MHD equations in a non-rotating Cartesian coordinate system for an

incompressible magnetofluid with zero physical resistivity. The momentum balance

equation, given by

ρ0

[
∂v

∂t
+ (v · ∇)v

]
= J×B−∇p+ µ∇2v , (3.68)

where ρ0 and µ denote a constant mass density and the dynamic viscosity, can be

written as

∂v

∂t
+ (v · ∇)v =

1

ρ0

[
(B · ∇)B−∇

(
B2

2
+ p

)
+ µ∇2v

]
,

∂v

∂t
+∇ · (vv) =

1

ρ0

(B · ∇)B−∇φ+ ν∇2v ,

∂v

∂t
+∇ · (vv) = Rv , (3.69)

where Rv = −∇φ+
1

ρ0

(B · ∇)B + Fν with φ as density normalized total pressure

and Fν as the viscous drag force. All the other symbols have their usual meaning.

Consequently, equations 3.3 and 3.69, along with the conditions of incompressible

plasma flow and solenoidality of magnetic field, give

∂tv +∇ · (vv) = Rv , (3.70)

∂tB +∇ · (vB) = RB , (3.71)

∇ · v = 0 , (3.72)

∇ ·B = 0 , (3.73)

which represent the set of equations solved by the EULAG-MHD for simulation of

solar transients. Importantly, to reduce the extent of nonlinearities posed by the

MHD equations and to simplify the model problem, the EULAG-MHD framework

�EULAG-MHD code can use either CGS, MKS, or dimensionless units
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utilizes the anelastic approximation (Lantz & Fan, 1999; Prusa & Smolarkiewicz,

2003; Smolarkiewicz & Charbonneau, 2013). In this, the perturbations of density

appear in the buoyancy term (∝ ρg) only, which serves to remove the sound waves

from physical description. Consequently, the requirement of high time resolution

to track the sound waves is relaxed. Thus, the computational effort is minimized.

Notably, the approximation allows density to have spatial dependence, which helps

to include stratification without resorting to compressibility. There exists another

important facet of EULAG, namely the formulation of governing equations in a

transformed time-dependent generalized curvilinear coordinates, given by

(t̄, x̄) ≡ (t, F (t,x)) , (3.74)

where the domain of physical problem, i.e. (t,x), is assumed to be stationary

and orthogonal, but it does not need to be Cartesian. Since, the extrapolation

of magnetic field is done for localized regions in Cartesian geometry, the physical

domain is Cartesian and it remains so for all times, i.e., (t̄, x̄) ≡ (t,x). Note that

the formulation of EULAG-MHD in generalized coordinates requires an extensive

tensorial exposition of the MHD equations (Smolarkiewicz & Charbonneau, 2013).

In the following, the details of EULAG-MHD are presented in Cartesian domain.

The discussion utilizes original notations of Smolarkiewicz & Charbonneau (2013)

to maintain homogeneity with the contemporary literature. It is easy to see that

equations 3.70 and 3.71 can be jointly written as

∂Ψ

∂t
+∇ · (vΨ) = R, (3.75)

where Ψ = {v,B}T and R = {Rv,RB}T . Consequently, the numerical solutions

of Ψ (see equation 3.62) have the form (Smolarkiewicz & Charbonneau, 2013)

Ψn+1

˜
i = MPDATA

[
Ψn

˜
i + 0.5∆tRn

˜
i ,U

n+ 1
2

]
+ 0.5∆tRn+1

˜
i ≡ Ψ̂

˜
i + 0.5∆tRn+1

˜
i .

(3.76)

From a numerical standpoint, an auxiliary term −∇φ? is added to right hand

side of equation 3.71 to enforce the solenoidality of magnetic field. Similarly, the

pressure φ is utilized to keep plasma flow solenoidal. Notably, under the anelastic
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approximation, the algorithm given by 3.76 is implicit for Ψ = {v,B}T , φ?, φ.

Here, the connotation of implicit differs from the one used in Implicit LES. It refers

to implicit finite-difference scheme of discretization (Wendt, 1992). Importantly, to

incorporate the nonlinearities posed by the set of MHD equations while preserving

the structure EULAG template, Smolarkiewicz & Charbonneau (2013) anticipated

Ψn+1,q

˜
i = Ψ̂

˜
i + 0.5δtLΨ

∣∣n+1,q

˜
i

+ 0.5δtN(Ψ)
∣∣n+1,q−1

˜
i

− 0.5δt∇Φ
∣∣n+1,q

˜
i

, (3.77)

where the forcing R is sum of a linear term LΨ, a nonlinear part of forcing, i.e.,

N(Ψ), and a potential term −∇Φ with Φ ≡ (φ, φ, φ, φ?, φ?, φ?). The index q =

1, 2, ..,m numbers the fixed point iterations. The expression in 3.77 is implicit with

respect to the forcing terms LΨ and −∇Φ. To obtain a closed-form expression

for Ψ
˜
i
n+1,q, algebraic manipulation leads to

[
I− 0.5δtL

]
Ψn+1,q

˜
i =

(
Ψ̂ + 0.5δtN(Ψ)

∣∣n+1,q−1 − 0.5δt∇Φ
∣∣n+1,q

)
˜
i
, (3.78)

which gives

Ψn+1,q

˜
i =

[
I− 0.5δtL

]−1
(

ˆ̂
Ψ− 0.5δt∇Φ

∣∣n+1,q
)

˜
i
, (3.79)

where the explicit element is modified to

ˆ̂
Ψ

˜
i ≡ Ψ̂

˜
i + 0.5δtN(Ψ)

∣∣n+1,q−1

˜
i

, (3.80)

with explicit referring to the explicit finite-difference scheme (Wendt, 1992). The

divergence of equation 3.79 along with ∇·v = ∇·B = 0 generates elliptic Poisson

equations for φ and φ?, which are solved by generalized conjugate residual (GCR)

algorithm (Eisenstat et al., 1983; Eisenstat, 1983; Smolarkiewicz & Margolin, 1994;

Smolarkiewicz et al., 1997). Subsequently, the time updated Ψ can be obtained.

In EULAG-MHD, the iterations corresponding to the GCR algorithm and those

in equation 3.77 are called “inner” and “outer”, respectively. The convergence of

outer iterations is controlled by the model time step, while being monitored by

the convergence of inner iterations in the GCR solver (Smolarkiewicz & Szmelter,

2009, 2011). The solution is updated upon the completion of outer iterations.

For the next time step, implicit forcing becomes RIn+1

˜
i =

2

δt
(Ψn+1

˜
i − ˆ̂

Ψ
˜
i). The
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explicit forcing denoted by N(Ψ) is evaluated from updated solution as REn+1

˜
i =

RE
˜
i(Ψ

n+1). The total forcing Rn+1

˜
i = RIn+1

˜
i + REn+1

˜
i is then used in argument

of the MPDATA operator in equation 3.76. This completes the description of

EULAG-MHD algorithm and now, the implementation of algorithm in the context

of magnetohydrodynamics is presented.

3.3.1 Implementation of EULAG-MHD Algorithm

As mentioned earlier, there are two types of iterations, namely the “inner” and

“outer’. An outer iteration consists of a “hydrodynamic” and a “magnetic” block.

In essence, the hydrodynamic block emulates the standard EULAG solution of

hydrodynamical equations (Prusa et al., 2008). In this block, the magnetic field

is treated as supplementary input and the elliptic equation for φ is solved to

return the final updated velocity. This is then used in the magnetic block, where

induction equation is solved to obtain the final magnetic field through the solution

of elliptic equation for φ∗. The sequence of steps executed at each outer iteration

for integration of equations 3.70 to 3.73 are discussed below in detail. In order

to keep the expressions uncluttered, the superscript n + 1 is dropped. In the

first step, magnetic field Bq−1/2 is estimated implicitly through inversion of the

induction equation

B
q−1/2

˜
i = B̂

˜
i + 0.5δt

[
Bq−1/2 · ∇vq−1 −Bq−1/2tr{∇vq−1}

]
˜
i
, (3.81)

which is subsequently utilized to obtain

vq

˜
i = v̂

˜
i +

0.5δt

ρ0µ0

∇ ·BB
∣∣q−1/2

˜
i

− 0.5δt∇φ
∣∣q
˜
i
. (3.82)

Notably, this can be expressed in a closed form

vq

˜
i = ˆ̂v

˜
i − 0.5δt∇φ

∣∣q
˜
i
, (3.83)

which, on imposing the condition of incompressible plasma flow, leads to

∇ ·
[
ˆ̂v

˜
i − 0.5δt∇φ

∣∣q
˜
i

]
= 0 , (3.84)
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thus yielding the elliptic equation for total pressure φ. Thereafter, the solution of

equation 3.84 is used to calculate the required solenoidal velocity (Smolarkiewicz

& Margolin, 1997). Using this velocity, the magnetic block calculates

B
q−1/4

˜
i = B̂

˜
i + 0.5δt

[
Bq−1/4 · ∇vq −Bq−1/4tr{∇vq}

]
˜
i
, (3.85)

where q−1/4 stands for the calculation at a quarter of iteration. Then, the solution

of induction equation is given by

Bq

˜
i = B̂

˜
i + 0.5δt∇ ·Bq−1/4vq

∣∣̃
i
− 0.5δt∇φ?

∣∣q
˜
i
. (3.86)

The final updated magnetic field B is estimated from equation 3.86 by imposing

the solenoidality condition and solving the elliptic equation for φ?. In the following,

the practical implementation of the EULAG-MHD model for numerical simulation

of solar transients is described.

3.4 MHD Simulation of Solar Transients

The numerical simulation of solar transients requires magnetic reconnection to be

localized at the plausible sites, while allowing for the condition of flux-freezing

to hold good elsewhere. For the simulations presented in this thesis, the coro-

nal plasma is idealized to be thermodynamically inactive, incompressible mag-

netofluid. The governing dimensionless MHD equations are

∂v

∂t
+ (v · ∇)v = −∇p+ (∇×B)×B +

1

RA
F

∇2v, (3.87)

∂B

∂t
= ∇× (v ×B), (3.88)

∇ · v = 0, (3.89)

∇ ·B = 0, (3.90)

where RA
F = (VAL)/ν is an effective fluid Reynolds number with VA as the Alfvén

speed and ν as the kinematic viscosity. Hereafter, RA
F is referred as fluid Reynolds

number to keep the terminology uncluttered. The normalization used to obtain

the dimensionless equations are listed below
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B→ B

B0

,v→ v

VA
, L→ L

L0

, t→ t

τa
, p→ p

ρ0V 2
A

. (3.91)

In general, B0 and L0 are characteristic values of the system under consideration.

The factor τa = L0/VA represents the Alfvénic transit time and the Alfvén speed

is given by VA = B0/
√

4πρ0, where ρ0 denotes the constant mass density. Further,

the boundary conditions are set to keep the vertical components of magnetic field

and velocity field constant at each of the boundaries of computational box. The

incompressibility condition is applied on the integral form of momentum equation

to generate an elliptic boundary value problem for the pressure, as described in

section 3.3.1. Similarly, to keep B solenoidal, an auxiliary potential is added to the

induction equation and an identical procedure is invoked. As discussed earlier, the

presented simulations are executed by delegating magnetic diffusion entirely to the

dissipative property of MPDATA, rendering magnetic reconnections to be solely

numerical. Therefore, the effective numerical implementation of the induction

equation by EULAG-MHD is

∂B

∂t
= ∇× (v ×B) + DB , (3.92)

where, DB represents the numerical magnetic diffusion, rendering reconnections

to be solely numerically assisted. Although this turns out to be advantageous, a

cautious approach is required in analyzing and extracting results from the simu-

lated dynamics. Being localized and intermittent, the magnetic reconnection in the

spirit of ILES minimizes the computational effort, while tending to maximize the

effective Reynolds number of simulations (Waite & Smolarkiewicz, 2008). How-

ever, the absence of physical diffusivity makes it impossible to accurately identify

the relation between electric field and current density—–rendering a precise esti-

mation of magnetic Reynolds number unfeasible. Being intermittent in space and

time, quantification of this numerical dissipation is strictly meaningful only in the

spectral space where, analogous to the eddy viscosity of explicit subgrid-scale mod-

els for turbulent flows, it only acts on the shortest modes admissible on the grid

(Domaradzki et al., 2003), particularly near steep gradients in simulated fields.



78 Chapter 3. Numerical Model for MHD Simulations: EULAG-MHD

3.5 Summary

The data-based numerical simulations of the solar transients should account for the

breakdown of flux-freezing condition at small-length scales but should maintain it

when away from the reconnection region. The EULAG-MHD model meets these

criterion to high fidelity and owing to the ILES property, computational cost is

also minimized. The model utilizes a MPDATA scheme, which essentially relies

on iterative application of the upwind differencing to reduce numerical diffusion

and to make the solution second-order accurate in space and time. Further, the

nonoscillatory option of MPDATA serves to ensure that there are no unphysical

oscillations. In regard with the MPDATA scheme, its mathematical formalism has

been presented and physicality of numerical dissipation inherent to MPDATA or

any other NFV algorithm is discussed. Lastly, the algorithm of EULAG-MHD and

its implementation in the context of data-based simulations is presented.

To illustrate the application of EULAG-MHD model, the following chapter

presents examples of MHD simulations that are initiated from analytical magnetic

field configurations rather than an extrapolated magnetic field. Such simulations

are comparatively easier to analyze and investigate because the magnetic geometry

is well-organized and can be tailored as required. However, it should be kept in

mind that these are idealized scenarios and may not reflect the realistic magnetic

configurations, which are generally much more complex. The simulations focus on

the formation of magnetic flux rope and their evolution, an investigation of which

is important for a comprehensive understanding of eruptive events.



Chapter 4

Examples of MHD Simulations:

Magnetic Flux Ropes

4.1 Introduction

As discussed in chapter 1, magnetic flux rope is a bundle of helically twisted mag-

netic field lines (MFLs) that wind around a common axis. The twisted MFLs

represent regions of strong currents and facilitate the storage of magnetic energy.

According to the standard model of flares (see section 1.3), their upward ascension

triggers reconnection and hence, MFRs play an important role in eruptive events.

Consequently, the formation mechanism and evolution of MFRs is an active area

of research. Broadly, MFRs can appear in the solar atmosphere in two ways. In

the first mechanism, a pre-existing MFR below the photospheric surface emerges

into the atmosphere due to magnetic buoyancy (Fan, 2001; Fan & Gibson, 2003;

Manchester et al., 2004; Fan, 2010, 2021). In the other method, a MFR forms in

the solar atmosphere by magnetic reconnection in sheared magnetic arcades (Van

Ballegooijen & Martens, 1989; Moore et al., 2001; Amari et al., 2003; Aulanier

et al., 2010; Amari et al., 2014). The examples of MHD simulations discussed in

this chapter pertain to the second mechanism, exploring MFR formation and evo-

lution due to reconnection in a bipolar sheared arcade and a quadrupolar magnetic

geometry. The two cases are discussed separately in the following.
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4.2 Example-I: Bipolar Sheared Arcade

The magnetic configuration of a three-dimensional bipolar sheared arcade (K Bora,

Satyam Agarwal, Sanjay Kumar, & R Bhattacharyya, 2023) can be constructed

as B∗ = B + a0B
′
, where the components of B are

Bx = az sin(axx) exp (−azz/s0) , (4.1)

By = ay sin (axx) exp (−azz/s0) , (4.2)

Bz = s0ax cos (axx) exp (−azz/s0) , (4.3)

and the components of the B
′

are

B′x = (sinx cos y − cosx sin y) exp (−z/s0) , (4.4)

B′y = −(cosx sin y + sinx cos y) exp (−z/s0) , (4.5)

B′z = 2s0 sinx sin y exp (−z/s0) . (4.6)

The initial magnetic configuration along with the direction of resulting Lorentz

force is shown in figure 4.1, where the value of constants are ax = 1, az = 0.9, ay =√
a2
x − a2

z, a0 = 0.5, and s0 = 6. Importantly, the Lorentz force decreases sharply

with height, tending toward zero at the top of computational box. Therefore, the

magnetic configuration is relevant to solar magnetic fields, where the solar corona

is believed to be in nearly force-free state, as discussed in chapter 2.

The simulation is carried out using the EULAG-MHD model with a physical

domain of extent {0, 2π}, {0, 2π}, {0, 8π}, which is mapped on a numerical grid of

64×64×128 voxels along the x, y, and z directions, where a voxel represents a value

on a regular grid in the 3D space. The normal component of velocity is set to be

zero at the bottom boundary while the horizontal components evolve in accordance

with the MHD equations. As a result, the used boundary conditions mimic the line-

tying effect (Jiang et al., 2021). The time duration of the simulation is 7000×∆t×

τA = 11.2τA, where ∆t = 16×10−4 (see paper for more details on simulation setup).

Notably, there are two polarity inversion lines (PILs) and the arcade configuration

is symmetric about each of the PILs, implying that it is sufficient to investigate

the magnetofluid dynamics in only half of the computational box. In the absence

https://iopscience.iop.org/article/10.1088/1402-4896/acd3bb
https://iopscience.iop.org/article/10.1088/1402-4896/acd3bb
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Figure 4.1: Initial 3D sheared magnetic field lines (red) and Lorentz force vectors
(yellow) around the sigmoid-shaped polarity inversion line (PIL). The bottom
boundary shows the Bz map in grayscale. The red, green, and blue arrows in each
panel represent the x, y, and z-axis of the Cartesian system.

of any initial plasma flow (v = 0), the Lorentz force corresponding to B∗ triggers

the evolution of magnetofluid, causing shearing motion and reconnection between

field lines of the arcade configuration. Consequently, the field lines change their

connectivity and form a magnetic flux rope, as depicted in figure 4.2�. The twisted

MFLs of the rope are most evident in panel (d) at t = 1.60τA. Importantly, this

example of flux rope formation serves to illustrate the implication of reconnection

pertaining to changes in the connection of magnetic field lines. Similarly, from the

perspective of energetics, |B|2 is decreases monotonically as shown in panel (a) of

figure 4.3, implying lowering of the magnetic energy and hence, relaxation of the

magnetofluid. Notably, the initial Lorentz force that triggers the system dynamics

is due to the arcade geometry. Therefore, the evolution of the arcade configuration

while undergoing magnetic reconnections will modify the Lorentz force. In order

to quantify the changes in the Lorentz force, the temporal variation of alignment

�The magnetic field line plots throughout the thesis are visualized using the VAPOR software,
discussed in appendix A with all the relevant details, including other functionalities like DVR,
barb, isosurface and slice rendering.
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Figure 4.2: Magnetic flux rope formation due to reconnection between field lines
of sheared magnetic arcade. The bottom boundary shows the Bz map in grayscale.
The red, green, and blue arrows in each panel represent the x, y, and z-axis of the
Cartesian system.

between J and B is computed. The alignment (θ) is defined (Wheatland et al.,

2000) as

θ = sin−1σj, σj =

∑
i |J|iσi∑
i |J|i

, σi =
|J×B|i
|J|i × |B|i

, (4.7)

where i runs over all the voxels in the computational box. The θ value decreases

by approximately 15◦ as shown in panel (b) of figure 4.3, which implies that the

magnetic configuration tends toward a force-free equilibrium.

4.3 Example-II: Quadrupolar Magnetic Configuration

The observations of solar flares suggest an association of some flaring events with a

quadrupolar magnetic configuration (Nishio et al., 1997; Sun et al., 2012; Kawabata

et al., 2017; Chintzoglou et al., 2017; Mitra et al., 2022). Therefore, investigations

of the quadrupolar geomtry regarding magnetic topology, energy storage and flux

rope formation (Hudson & Wheatland, 1999; Régnier, 2012; Fang & Fan, 2015;

Syntelis et al., 2019) have been carried out. However, not many studies have been
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Figure 4.3: Temporal evolution of the (a) volume integrated magnetic energy (b)
angular alignment (θ).

conducted to explore the formation and evolution of flux ropes in a quadrupolar

geometry. The following example describes such a study (Sanjay Kumar, Avijeet

Prasad, Sushree S Nayak, Satyam Agarwal, & R Bhattacharyya, 2023), where the

initial magnetic field is given by

Bx = 0.5

[
α0 sin (x) cos (y)− k0 cos (x) sin (y)

]
exp

(
−k0z

s0

)
, (4.8)

By = −0.5

[
α0 cos (x) sin (y) + k0 sin (x) cos (y)

]
exp

(
−k0z

s0

)
, (4.9)

Bz = s0 sin (x) sin (y) exp

(
−k0z

s0

)
, (4.10)

where α0, k0 and s0 are constants, with k0 =
√

2− α0
2. The field B is specified in

the positive half-space (z ≥ 0) of a Cartesian domain, periodic along the lateral

directions (ranging from 0 to 2π in x and y) and open along the vertical direction

(ranging from 0 to 6π in z). Notably, the field B supports a non-zero Lorentz force

(if s0 6= 1), which triggers the simulation from a motionless state (v = 0). To have

an optimal Lorentz force, s0 is chosen to be s0 = 6. Notably, B satisfies the linear

force-free equation ∇×B = α0B (see equation 2.16) for s0 = 1, where α0 is related

to the twist of field lines. The choice α0 = 1 gives sufficiently twisted initial MFLs

and implies high k0, which leads to a steep exponential decay of the initial Lorentz

force with height, as depicted in figure 4.4. Panel (a) shows a DVR (see appendix

A) of the Lorentz force density inside the computational domain, while panel (b)

https://iopscience.iop.org/article/10.1088/1361-6587/acdd1d
https://iopscience.iop.org/article/10.1088/1361-6587/acdd1d
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|JxB|

(a) (b)

Figure 4.4: Panel (a): DVR plot showing distribution of the initial Lorentz force in
the computational box. Panel (b): Magnitude variation of horizontally averaged
Lorentz force with height in normalized units.

plots the variation of horizontally averaged Lorentz force with height, exhibiting a

sharp decrease. Therefore, as in the example of sheared arcade discussed earlier,

the quadrupolar geometry is also relevant to solar corona, which is considered to

be force-free under low plasma-β approximation, while the photosphere (β ∼ 1)

is expected to be non-force-free due to the convective driving (Gary, 2001). The

initial magnetic geometry is shown in figure 4.5, where the bottom boundary is

overlaid with the map of Bz. Panel (a) depicts the magnetic field lines connecting

the regions of positive (P1, P2) to negative (N1, N2) polarity. The polarities are

marked in panel (b) along with the polarity inversion lines (PILs) corresponding

to the different opposite polarities (P1, N1), (P1, N2), (P2, N1), and (P2, N2)

in white lines. Noticeably, the opposite polarities satisfy mirror symmetry across

the PILs. Because of the mirror symmetry, the initial magnetic field supports

an X-line (see section 1.2.5.1) located at (x, y)=(π, π) along z−axis, shown in

panel (c) with pink color. Panel (d) shows the top view of initial field, which

reveals the quadrupolar configuration immediately. Since, the computational box

is periodic along x and y, additional X-lines exist at boundaries (not shown) at

(x, y)=(0, 0), (0, π), (0, 2π), (π, 0), (2π, 0), (π, 2π), (2π, π), and (2π, 2π) along the

z−axis. The initial magnetic geometry with two positive and negative polarities

resembles the observed quadrupolar configurations at the solar surface (Kawabata
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(a) (b)

(c) (d)

Bz

y

x

z

P1

P2

N2

N1

Figure 4.5: Quadrupolar magnetic configuration overlaid with Bz contours at the
bottom boundary. Panel (a) plots the MFLs connecting the positive (P1, P2) to
negative (N1, N2) polarities, which are marked in panel (b) and are separated by
the PILs shown as white lines. Panel (c) shows the existence of a X-line (pink) at
(x, y) = (π, π) along the z−axis inside the domain, while panel (d) depicts the top
view of the configuration.

et al., 2017; Mitra et al., 2022). However, in the absence of mirror symmetry and

periodicity, the observed configurations exhibit a more complex magnetic field line

topology. The EULAG-MHD model is employed for the simulation, where the grid

size corresponds to 128 × 128 × 384 along the x, y, and z−axis. The simulations

are carried out for RA
F = 200 and RA

F = 100 with time duration of 4000×∆t×τA =

128τA (equivalent to writing 128 seconds), where ∆t = 32× 10−3. The process of

flux rope formation is depicted for RA
F = 200 in figure 4.6, showing two bipolar

magnetic loops at t = 0 along the PIL separating P1 and N2. The Lorentz force,

shown by grey arrows, pushes the two complementary anti-parallel field lines of
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t=0s(a) (b) t=6.4s

|J|/|B|

(c) t=7.6s (d) t=9.6s

Figure 4.6: Early phase of the MFL dynamics for two sets of bipolar loops situated
over the PIL between polarities P1 and N2. The Lorentz force is shown in grey
arrows and |J|/|B| is plotted on y-constant planes. The Lorentz force brings
oppositely directed MFLs in proximity, evident by increase in |J|/|B| values. The
evolution leads to repeated reconnections and formation of a flux rope over the
PIL.

loops toward each other. Consequently, small-scales are generated (quantified by

an increase in |J|/|B| ∝ L−1)�, which onsets reconnection, leading to formation of

flux rope. A similar process along all the four PILs generates four MFRs. The legs

of these flux ropes approach the X-line and MFRs start to reconnect, developing

complex magnetic structure around the X-line, notable at (x, y) = (π, π). As

the reconnections repeat, more and more flux is sucked into the central region,

which shapes the resulting magnetic structure and finally leads to a non-uniform

ascension of the magnetic flux ropes. The above-described dynamics is visualized

in figure 4.7, showing the top view of all the four MFRs and complex structuring

of field lines around the X-line due to reconnection between them. Importantly,

�The slice rendering of |J|/|B| is plotted on y−constant planes.
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y

x

(a) t=0s
(b)

t=9.6s

(c)
t=12.8s

(d)
t=25.6s

Figure 4.7: The zoomed-in top view of the MHD evolution of the magnetic field
lines near the X-line inside the computational domain. Reconnections of the flux
ropes at the X-line are evident—leading to the formation of complex magnetic
structures.

Figure 4.8: Temporal evolution of the (a) volume integrated magnetic energy in
normalized units (b) angular alignment (θ).

as in the case of sheared arcade, the temporal variation of magnetic energy for

RA
F = 100 in figure 4.8 shows an overall decrease in magnetic energy. Further, the
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θ value decreases by approximately 31◦, implying that the magnetic configuration

tends toward a force-free equilibrium.

4.4 Summary

The chapter presents two examples of MHD simulations initiated from idealized

analytical magnetic fields using the EULAG-MHD numerical model. The examples

pertain to the formation and evolution of magnetic flux ropes in 3D bipolar sheared

arcade and quadrupolar magnetic configurations.

In both the cases, the variation of the Lorentz force with height is in accordance

with the typical plasma-β value in the photosphere and force-free region of the solar

corona. This suggests that the considered analytical configurations are of relevance

in the context of solar magnetic fields, even though the realistic magnetic fields

can be much more complex.

Importantly, even though the primary focus of the presented MHD simulations

is to explore flux rope formation and its evolution, an unrelated but interesting

aspect of these simulations is noteworthy, as discussed in the following. Despite the

differences in the initial magnetic topology and the nitty-gritty of the magnetofluid

dynamics, there exist certain commonalities. For instance, reconnection between

the set of bipolar loops leads to change in connection of field lines and hence,

formation of a magnetic flux rope. Further, the volume integrated magnetic energy

decreases, indicating relaxation of the magnetofluid in the sense of reaching toward

a lower magnetic energy state. Lastly, the increase in angular alignment between

current density and magnetic field suggests that the magnetic configurations tend

to evolve toward a force-free equilibrium.

The above-described commonalities are tell-tale signatures of self-organization

and plasma relaxation. In particular, the lowering of magnetic energy and increase

in the angular alignment point toward magnetic relaxation (Woltjer, 1958; Taylor,

1974), which associates directly with the release of magnetic energy during solar

transients. Consequently, the discussed examples of MHD simulations serve as a

pivotal point in motivating an exploration of relaxation in solar transients using

data-based simulations, which corresponds to a more realistic scenario. With this

objective in mind, the following chapter discusses the concept of self-organization
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and plasma relaxation, particularly the Woltjer (1958) and Taylor (1974) states.





Chapter 5

Concepts of Plasma Relaxation

“I owe my interest in the subject of plasma relaxation to the thesis

of my supervisor Prof. Ramit Bhattacharyya”

Satyam Agarwal

5.1 Introduction

It is observed that many dynamical systems whose time evolution is governed by

nonlinear partial differential equations with dissipation, evolve spontaneously and

preferentially to a state that shows some form of long-range ordering, also known

as self-organization (Ortolani & Schnack, 1993). In all cases, long-range ordering

in one physical variable is accompanied by short-range disorder in other variables,

which ensures that the overall entropy increases and therefore, the second law of

thermodynamics is not violated. The short-range disorder is associated with the

formation of complex coherent structures, characterized by an increased efficiency

of dissipation around them (Veltri et al., 2009). Importantly, this autonomously

achieved or self-organized state is independent of the way the system was prepared

and is predominantly insensitive to any local perturbations (Hasegawa, 1985). In

systems exhibiting self-organization, ideal integrals of motion are conserved in the

absence of dissipation but decay at different rates when dissipation is taken into

account. This is believed to be essential for self-organization and is known as the

selective decay principle (Matthaeus & Montgomery, 1980), which compares the

decay rates of two or more variables in the presence of dissipation. Consequently,

the self-organized state can be determined by a constrained minimization of the
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fastest decaying variable, while treating the slower decaying variables as invariants.

Contextually, the ordering in one or more parameters (invariants) is maintained at

the cost of disorder in another parameter (minimizer) so that the overall entropy

of the system increases. Notably, in magnetized plasmas, self-organization is also

referred to as plasma relaxation, wherein the magnetofluid relaxes toward a state

of minimum energy, while preserving appropriate physical variables. Contextually,

the self-organized states are also known as relaxed states. The early application

of constrained minimization to magnetized plasma considered magnetic energy as

the minimizer (Woltjer, 1958; Taylor, 1974) and magnetic helicity as an invariant.

The resulting relaxed states are distinguished as outcomes of magnetic relaxation,

as discussed in the following.

5.2 Magnetic Helicity and Woltjer’s Relaxed State

Consider the infinite set of integrals, first defined by Woltjer (1958) as

Hl =

∫
Vl

A ·B d3x , l = 0, 1, 2, ......,∞ (5.1)

where Vl is the volume of the lth flux tube and Hl is called the magnetic helicity

of the flux tube. It is a measure of magnetic topology and arises from the internal

structuring of flux tube (i.e. twist and kink) as well as external relations between

flux tubes, such as linking and knotting (Berger & Field, 1984). Importantly, for

a perfectly conducting plasma, Woltjer (1958) showed that dHl/dt = 0, implying

that the magnetic helicity Hl is an invariant. Further, Woltjer (1958) carried out

minimization of the magnetic energy of a flux tube keeping its magnetic helicity

invariant to look for a relaxed state. The resulting functional Fl and its first order

variation are given by

Fl =
1

2µ0

∫
Vl

|B|2 d3x− αl
∫
Vl

A ·B d3x (5.2)

δFl =
1

µ0

∫
Vl

B · δB d3x− αl
∫
Vl

(δA ·B + A · δB) d3x , (5.3)
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where αl is the Lagrange multiplier for lth flux tube. Using simple vector algebra

and δFl = 0 for minimum energy configuration, the following can be written

0 =

∫
V

δA · (J− 2αlB) d3x+
1

µ0

∮
S

δA · [(B− αlA)× n̂] d2x , (5.4)

which gives J = 2αlB for arbitrary variation of δA within the volume if δA|S = 0

or δA × n̂|S = 0 is set as the boundary condition. Further, the constants can be

absorbed within the multiplier αl, giving

∇×B = αlB , (5.5)

which describes the Woltjer’s relaxed state (Woltjer, 1958). Since, the number of

flux tubes are infinite, there will be infinite number of Lagrange multipliers, one

for each flux tube. Consequently, α becomes space-dependent and a generalized

version of equation 5.5 can be written as

∇×B = α(r)B . (5.6)

The solenoidality of magnetic field leads to the result

∇α(r) ·B = 0 , (5.7)

which implies that α is constant along a flux tube. Together, these two equations

represents a nonlinear force-free field (see section 2.4.3) and are used to describe

various physical systems including the solar corona. Notably, during the relaxation

process, αl remains constant for a flux tube, which implies that the relaxed state

depends on initial conditions or how the system was prepared. However, this is in

contradiction with the properties of a self-organized state. Therefore, ideal MHD

over-determines the evolution of a magnetofluid system and a smaller number of

invariants is desirable. A way to do so was proposed by Taylor (1974), as discussed

in the following.
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5.3 Taylor’s Theory of Relaxation

In the presence of resistivity, dHl/dt 6= 0 and is given by

dHl

dt
= −2σ−1

∫
V

J ·B d3x , (5.8)

where σ−1 is assumed spatially constant and A×n̂|S = 0 is the boundary condition.

The implication is that Hl are no longer invariants and decay at a rate proportional

to the resistivity (Ortolani & Schnack, 1993). The primary effect of this resistivity

is to allow reconnection between flux tubes, as discussed in the first chapter. The

field lines lose their identities and hence, αl does not remain a constant anymore.

Based on this result, Taylor (1974) conjectured that in a slightly resistive plasma

bounded by perfectly conducting walls, the global magnetic helicity defined by

H =

∫
V

A ·B d3x (5.9)

will remain approximately invariant (Taylor, 1974, 1986, 2000), where the integral

is carried out over the entire plasma volume. The rationale put forward by Taylor

(1974) was that the changes in B due to reconnection are very small and therefore,

the sum of Hl over all flux tubes will be nearly constant. Moreover, the integrand

A ·B will get redistributed among field lines but not destroyed. The reconnection

between flux tubes is believed to homogenize α(r) and plasma pressure, implying

that the Taylor’s state is characterized by uniform pressure. The approximate

invariance of H is meaningful in the context of relaxed state when its decay rate

is much smaller as compared to that of magnetic energy (Wm). For this purpose,

note that |J| ∝ |B|/L, implying that at small-scales, |J · B| � |J|2, which gives

(Browning, 1988) ∣∣∣∣dHdt
∣∣∣∣ ∝ |J ·B| � ∣∣∣∣dWm

dt

∣∣∣∣ ∝ |J|2 , (5.10)

which suggests that the selective decay principle is applicable. Consequently, the

constrained minimization of magnetic energy while treating the global magnetic

helicity as invariant leads to a relaxed state. Then, for a static zero-beta plasma
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having no internal energy, the relaxed state is given by

∇×B = α0B , (5.11)

where α0 is the Lagrange’s undetermined multiplier. This represents a linear force-

free field (see section 2.4.2) configuration. It is worth mentioning that while dissi-

pation is central in obtaining the Taylor’s state, resistivity does not enter explicitly

into variational formulation (Ortolani & Schnack, 1993). Further, the theory is

appropriate for isolated systems only. A general proof of the Taylor’s conjecture

can be found in Faraco & Lindberg (2020) and Faraco et al. (2022).

5.4 Additional Remarks on Relaxed States

In the post-Taylor period, studies on relaxation focused on various minimizers,

invariants, and new principles to obtain the relaxed states. The Woltjer and Taylor

states focus only on the magnetic properties of plasma and do not include other

variables like the plasma flow, kinetic pressure, or dissipation rates. Inclusions of

these variables are possible within the framework of two-fluid description of the

plasma. Further, due to its inherent generality over MHD and natural flow-field

coupling, the two-fluid formalism is preferable. The two-fluid approach generally

includes plasma flow in the minimizer, while the invariants are either generalized

helicities (Steinhauer & Ishida, 1997), their derivatives (Bhattacharyya & Janaki,

2004), and can even include total (magnetic+kinetic) energy (Yoshida & Mahajan,

2002). The relaxed states are always flow-coupled, i.e the magnetic field and flow

are interrelated.

It is also of interest to note that Yeates et al. (2010) proposed the existence

of an additional constraint along with magnetic helicity, namely the topological

degree of field line mapping (also see Yeates et al., 2015, Yeates et al., 2021) to

obtain relaxed states. The relaxed states turned out to be either linear force-free

field or nonlinear force-free field depending on the topological degree. Lastly, as

mentioned in chapter 2, the principle of minimum dissipate rate (MDR) is used

in a two-fluid formalism to obtain the non-force-free field as relaxed state. The

fundamental idea behind the MDR principle is that during an irreversible process,



96 Chapter 5. Concepts of Plasma Relaxation

a system evolves naturally to those states (or relaxed states) in which the energy

dissipation rate is minimum. A simple example is that of ohmic conductors, where

E = ρJ and the steady state is given by ∂tB = 0⇒ ∇×E = ∇× (ρJ) = 0, which

can be obtained from MDR principle also. The energy dissipation rate is given by

R =

∫
V

ρ|J|2 d3x . (5.12)

where ρ = σ−1 denotes resistivity. Using ∇× B = µ0J and some vector algebra,

the first-order variation in R can be written as

δR = 2

∫
V

δB · (∇× ρJ) d3x+ 2

∮
S

δB · (ρJ× n̂) d2x . (5.13)

which gives the required result ∇× (ρJ) = 0 for arbitrary variation of δB within

the volume if δB|S = 0 or J× n̂|S = 0 is set as the boundary condition. Relevantly,

in accordance with the selective decay principle, Bhattacharyya & Janaki (2004)

chose total dissipation rate (ohmic and viscous) as the minimizer and generalized

helicity dissipation rates (for ion and electron fluid) as invariants to obtain a non-

force-free field as the MDR relaxed state.

5.5 Brief Survey of Studies on Relaxation in Solar Plasma

One of the essential characteristics of magnetic relaxation process is the decrease

of magnetic energy through reconnection. Consequently, the concepts of magnetic

relaxation can be carried over and applied to the solar plasma, where reconnection

manifests in the form of eruptive events. Importantly, when viewed in conjunction

with the extrapolated magnetic fields described in chapter 2, the relaxed states

discussed in this chapter seem to be relevant in the context of solar magnetic field.

Such a connection further encourages the exploration of relaxation in the solar

plasma.

In the following, a brief survey of studies on relaxation in the solar plasma is

presented. Norman & Heyvaerts (1983) carried out an order of magnitude analysis

to compare the rate of helicity decay with that of the magnetic energy. They argued

that the final state of a solar flare is a linear force-free field, where the constant α

is determined by the boundary conditions. Importantly, they assumed the effect
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of slow photospheric driving and conversion of magnetic energy to bulk kinetic

energy as negligible. Heyvaerts & Priest (1984) applied Taylor’s theory to arrive

at a theory of coronal heating via dissipation of DC currents and to conclude that

reconnection is a viable mechanism for it. In a 3D MHD simulation, Kusano et al.

(1994) investigated the reconnection between magnetic loops and found that the

decay of energy is faster than helicity. Further, they found spontaneous generation

of magnetic dips, which are favorable sites for prominence condensation (Gibson,

2018). The formation of such structures due to reconnection is essentially similar

to that of MFR formation discussed in chapter 5, and illustrates the occurrence of

long-range ordering. The simulation by Amari & Luciani (2000) employed bipolar

potential fields driven by a 2D velocity field imposed at the bottom boundary. The

terminal state was found to be far from a constant-α field. Contrarily, Browning

et al. (2008) and Hood et al. (2009) investigated the nanoflare heating model

by following the development of kink instability in coronal loops and the relaxed

state was found to be consistent with a linear force-free configuration. Pontin et al.

(2011) found the terminal state of relaxation to be nearly nonlinear force-free in 3D

resistive MHD simulation of braided magnetic fields. In resistive MHD simulation

of a solar coronal jet, Pariat et al. (2015) analyzed the evolution of helicity for

several gauge choices and found it to be nearly conserved. Robinson et al. (2023)

explored the formation of a magnetic flux rope in MHD simulation of the Quiet

Sun, where disordered low-lying coronal field lines undergo multiple small-scale

reconnections. The authors recognized the process as self-organization, where an

inverse cascade of helicity occurs and the system tends toward Taylor relaxation.

Along with the theoretical studies and numerical simulations employing analytical

magnetic fields, investigations using observations have also been carried out. For

example, Nandy et al. (2003) analyzed several flare-productive active regions and

found their time evolution to be tending toward a linear force-free state. Murray

et al. (2013) investigated the pre-flare and post-flare coronal magnetic fields in

active region NOAA 10953 and determined the post-flare configuration to be closer

to linear force-free field. Recently, Liu et al. (2023) found some evidence for Taylor

relaxation in increased homogenization of α(r) for multiple X-class flares.
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5.6 Summary

This chapter presents the concept of self-organization and plasma relaxation. The

self-organized or relaxed state is nearly independent of how the system is configured

initially. A relaxed state can be determined by a variational formulation based on

the selective decay principle. In particular, the chapter focuses on the Woltjer and

Taylor states, which represent force-free magnetic field configurations.

Notably, the variational principle determines a relaxed state but fails to provide

any understanding of the involved physical process or dynamics of the system. In

other words, the details of the relaxation mechanism are not known. For example,

Taylor’s theory conjectures occurrence of reconnection for relaxation to the linear

force-free field state but does not give information on aspects such as the type of

reconnection, how it occurs, quantitative estimate on decrease in magnetic energy,

and energetics of the magnetofluid system at local and global scales.

Consequently, investigating the system dynamics is of paramount importance

in understanding the relaxation process. In the context of solar plasma, exploration

of relaxation has been carried out earlier using theoretical arguments, observations,

and numerical simulations employing analytical magnetic fields. However, they do

not account for the actual field line complexity of an actual active region. For this

purpose, data-based MHD simulations in combination with the multi-wavelength

observations are required to explore the implications of 3D magnetic reconnection

on the magnetofluid dynamics and relaxation. As a first step in this direction, the

aspect pertaining to independence of relaxed state with respect to initial conditions

is explored in the next chapter using data-based MHD simulations of a solar flare.



Chapter 6

Effects of Initial Conditions on Magnetic

Reconnection

6.1 Introduction

The data-based MHD simulations of solar transients use an extrapolated magnetic

field as initial condition. Since, it is possible to construct the solar magnetic field

using different extrapolation models (see chapter 2), suitable combinations of the

extrapolated magnetic fields with velocity fields can be made to generate relevant

initial conditions for the data-based simulations. Consequently, the independence

aspect of a self-organized state with respect to the initial configuration of system

can be investigated. For this purpose, it is crucial to explore the effects of initial

conditions on the implications of reconnection such as changes in the connectivity

of magnetic field lines and energetics. Notably, reconnection dissipates magnetic

energy as heat, which is lost irrecoverably from the system. As a result, a parallel

can be drawn with the dissipative dynamics of a system governed by classical

mechanics. Conceptually, the analogy infers the post-reconnection dynamics to be

relatively insensitive to the initial condition as, presumably, dissipation erases the

memory of a system. The inference can have strong implications in the data-based

simulation of transients because it raises the expectation that simulations having

analogous initial MFL morphologies can yield similar reconnection. The problem

statement is then to explore the effect of different initial conditions on reconnection

in data-based MHD simulations. Noticeably, this may also complement the studies

that compare the relative performance of various extrapolation models to address

99
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their credibility in reproducing the observed solar magnetic field (Schrijver et al.,

2008, Duan et al., 2017, Warren et al., 2018).

Toward such an exploration, the two most widely used approaches for modeling

of active region magnetic fields are considered, namely the nonlinear force-free field

(NLFFF) and the non-force-free field (NFFF) extrapolation. The rationale behind

employing these models is as following. The NLFFF model based on the principle

of weighted optimization (see chapter 2) is widely accepted in the contemporary

research. The choice seems to be appropriate because NLFFF can account for the

amount of released free magnetic energy during eruptive events (Wiegelmann &

Sakurai, 2021). Further, previous works have shown the capability of this NLFFF

scheme to adequately reproduce coronal loops (Warren et al., 2018), magnetic flux

rope structures (Mitra et al., 2020), and complex magnetic topologies like magnetic

null points and QSLs (Zhao et al., 2014, Joshi et al., 2021). Importantly, being

force-free, the numerical implementation allows for residual Lorentz force because

of the unavoidable numerical errors. Therefore, following Inoue et al. (2016), this

residual force is used as a perturbation to initiate one of the simulations.

The NFFF extrapolation model based on Minimum Dissipation Rate principle

(see chapter 2), gains its importance from an implicit presence of non-zero Lorentz

force at the bottom boundary which can drive the plasma dynamics. Some of the

earlier works that have confirmed the efficacy of NFFF model in exploring several

scenarios of observational interest include magnetic field lines evolution leading to

solar flares and blowout jets (Prasad et al., 2018, Nayak et al., 2019, Nayak et al.,

2021) along with the development of current sheets around null points (Kumar &

Bhattacharyya, 2016) and QSLs (Kumar et al., 2021).

The overall workflow selects an active region hosting a flare, extrapolates the

magnetic field using the two approaches, and uses them as input for simulations.

The simulation results are then compared to draw conclusions. In the following,

the details of active region and the chosen solar flare for this study are presented.

6.2 Active Region and Flare Event

For the purpose of this study, the choice of flare is guided only to the extent that

the associated active region is in accordance with the requirements of magnetic
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field extrapolation and boundary conditions employed in the MHD simulation.

Consequently, a C6.6 class flare on 2014 February 17 from active region NOAA

11977 with heliographic coordinates S13W05 is selected. The reason for this choice

follows from (a) nearly disk-centered positioning of the active region, which per-

tains to low measurement error in photospheric vector magnetic field and also

minimizes the projection effects due to finite curvature of the photospheric surface

(Venkatakrishnan et al., 1988). Both the effects combinedly reduce error during

magnetic field extrapolation (b) minimal changes during the course of the flare in

the photospheric magnetic flux integrated over the active region, which complies

with the condition Bz=const. at the bottom boundary, used in the MHD simu-

lation. The panel (a) in figure 6.1 depicts the GOES soft X-ray flux during the
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Figure 6.1: (a) GOES soft X-ray flux for one hour period starting at 02:30 UT in
1-8 Å channel. The dashed black line marks the rising phase at ∼ 02:45 UT and
the dashed-dot line marks the peak time of the flare. (b) Photospheric flux during
one hour period starting from 02:30 UT where the solid line denotes positive flux
and the dashed line denotes negative flux.

course of the flare in the 1-8 Å channel, revealing a gradual rise in intensity around

∼ 02:45 UT, peaking at 03:04 UT. The panel (b) in figure 6.1 shows the evolu-

tion of horizontally averaged positive (solid) and negative (dashed) photospheric

magnetic flux obtained from hmi.M 45 series of HMI for a duration of ∼ 1 hr,

starting around 02:30 UT. The magnetic flux is reasonably constant during the

flare, the relative changes for both positive and negative fluxes being well within

1 %. In figure 6.2 the temporal evolution of the flaring event in 131 Å channel of
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AIA for a duration of ∼ 35 m, starting around 02:45 UT is illustrated. Panels (b),

(c), and (f) mark the approximate spatial locations of brightenings identified at

different instances during the flare as b1, b2, b3, and b4, respectively. Notably, a

Figure 6.2: Snapshots from the temporal evolution of active region NOAA 11977
in Extreme Ultraviolet (131 Å ) channel of SDO/AIA, starting around 02:45 UT.
Panels (b), (c), and (f) mark the brightenings b1, b2, b3, and b4 identified during
the course of flare. Panel (e) highlights the lasso structure that describes the
overall flaring configuration. Panel (g) and panel (h) correspond to the peak time
and termination time of the flare.

lasso structure is recognized, visible in panel (e), which prominently displays the

overall geometry of the flaring region. After identifying the spatial locations of

the observed brightenings, measurements of the photospheric magnetic field (vec-

tor magnetograms) are employed in order to extrapolate the magnetic field. The

details of extrapolation are presented below.

6.3 Details of Magnetic Field Extrapolation

The magnetic field is extrapolated at 02:48:00 UT, using the hmi.sharp cea 720s

data series of HMI, which offers the advantage that the measured magnetic field is

corrected for projection and foreshortening effects. The dimensions of the SHARP

series data for active region NOAA 11977 is 906×540 pixels, which is equivalent to

328.4 Mm×195.7 Mm. In the context of force-free modeling or nonlinear force-free

extrapolation model, recall that the photospheric vector field measurements are

generally not force-free because of high plasma-β. A quantification of this is made
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by the parameters εflux, εforce, and εtorque (see section 2.4.3). If their values are

low (below about 0.1) the boundary conditions are considered sufficiently force-

free. However, the used SHARP data amounts to εflux ∼ 0.2326, εforce ∼ 0.1590,

and εtorque ∼ 0.1690, respectively. Consequently, the preprocessing procedure is

applied, giving εflux ∼ 0.2466, εforce ∼ 0.0005, and εtorque ∼ 0.0015, respectively.

This preprocessed magnetogram is used as the boundary condition for 3D NLFFF

modeling. The values of the parameters used in the extrapolation are specified in

table 6.1. The extrapolation is carried out with a bottom boundary grid of 896

× 528 voxels and the vertical extent of 272 voxels. In physical lengths the size

is ∼ 324.8 Mm × 191.4 Mm × 98.6 Mm. For the purpose of quantitative and

µ1 µ2 µ3 µ4 wf wd ν wlos wtrans

1 1 0.01 0.01 1 1 0.001 1 BT/max(BT)

Table 6.1: Summary of the parameters used in the NLFFF extrapolation.

morphological comparison, the non-force-free extrapolation is also carried out on

the same computational grid of 896 × 528 × 272 voxels as in the NLFFF case.

Importantly, the Lorentz force at the photosphere is non-zero for the NFFF but

decays sharply with height. In the present case, the values are ∈ [5.8%, 0.04%] of

its photospheric value for height ∈ [3.2, 98.6] Mm, thus making it approximately

force-free at the coronal heights. The variation of En (see equation 2.48) along

with the number of iterations is depicted in figure 6.3, documenting a difference of

34.5% between the extrapolated and measured transverse magnetic fields. Since,

two extrapolation models are being used, it is important to evaluate the goodness of

respective extrapolated magnetic fields and also to analyze the differences between

the nonlinear and non-force-free magnetic fields, as discussed in the following.

6.4 Analysis of Extrapolated Magnetic Fields

Following Wheatland et al. (2000), the quality or the goodness of the extrapolated

fields is determined by evaluating the averaged fractional flux error, given by

〈fi〉 =

〈
(∇.B)i4Vi

BiAi

〉
, (6.1)
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Figure 6.3: Minimized deviation (En) vs. number of iterations for NFFF extrap-
olation, which decreases monotonically and saturates approximately at ∼ 34.5%
for 1500 iterations.

where Ai is the surface area of the volume element 4Vi, and by computing the

alignment θ = sin−1σj (see equation 4.7). The values are listed in table 6.2. The

Model 〈fi〉 σj sin−1σj
NFFF 1.11× 10−5 0.9123 65.83◦

NLFFF 2.89× 10−4 0.1491 8.58◦

Table 6.2: Averaged fractional flux error (〈fi〉) and current weighted average of
the sine of the angle between the current density and the magnetic field (σj) for
NFFF and NLFFF extrapolations.

order of 〈fi〉 in NFFF (∼ 10−5) and NLFFF (∼ 10−4) suggests that the extrapolated

fields satisfy the divergence-free condition to an acceptable extent. The θ values

which measure the departure from force-free condition turn out to be ∼ 65.83◦ for

NFFF and ∼ 8.58◦ for NLFFF, respectively. In the case of force-free modeling, a

numerical value of θ < 10◦ is usually considered acceptable. Relevantly, panels (a)

and (b) in figure 6.4 plot the variation of horizontally averaged θ (denoted by θH
av)

for NFFF and NLFFF. At lower heights, the large (> 50◦) values of θH
av in NFFF

and small (< 20◦) values in NLFFF seem to be in accordance with the model



6.4. Analysis of Extrapolated Magnetic Fields 105

Figure 6.4: The variation of horizontally averaged θ (denoted by θH
av) with height

for (a) NFFF and (b) NLFFF

definitions. However, the increase in θH
av with height suggests that in the higher

layers of solar atmosphere, the models are not force-free (J × B = 0) from the

viewpoint of alignment between current density and magnetic field. Therefore, to

gain more insight, panels (a) and (b) in figure 6.5 plot the logarithmic variation

of horizontally averaged |B|, |J|, and |J×B| with height in normalized units. As

expected, all the variables decrease monotonically with height, albeit the curves

are steeper for the NLFFF extrapolation. Therefore, the decrease in Lorentz force

with height is presumably governed by the decay in magnitude of current density

and magnetic field. On the other hand, the increase of θH
av with height could be

due to field lines becoming more potential, which are characterized analytically by

zero current density and low twist. Further, in a numerical implementation, there

are always residual numerical currents which are randomly oriented (particularly

for the potential field where J = 0) and can lead to high values of θH
av. In the next

section, the quantitative and morphological differences between the nonlinear and

non-force-free extrapolated magnetic fields are presented.

6.4.1 Quantitative Differences

To explore the deviation of BNFFF from BNLFFF, the angle (Θ) between the two

magnetic fields is evaluated in each voxel of the computational domain. Panel (a)

of figure 6.6 shows that the histogram plot of Θ peaks in the range 25◦ ≤ Θ ≤ 30◦.
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Figure 6.5: Panels (a) and (b) show the variation of horizontally averaged magnetic
field (X = B), current density (X = J), and Lorentz force (X = L) with height
on log scale for NFFF and NLFFF models. The normalization is done using the
maximum value.

Also, it is found that Θ ≤ 40◦ for ∼ 80 % of the voxels. The difference between the

two extrapolated fields is further investigated by computing the following metric

in every voxel

d =

3∑
i=1

(
Bi

NLFFF −Bi
NFFF

)2

|BNLFFF| × |BNFFF|
, (6.2)

where Bi
NLFFF(i = x, y, z) and Bi

NFFF(i = x, y, z) denote the ith component of

nonlinear force-free field and non-force-free field, respectively. The corresponding

histogram plot is shown in panel (b) of figure 6.6 and the maximum value of d is

found to be dmax ∼ 500 but d ≤ 10 for ∼ 99.9 % of the voxels in the computational

volume. For further exploration, vector magnetograms are used to compute the

difference between the measured (|BO

T|, |B
O

LOS|) and extrapolated (|BM

T |, |B
M

LOS|)

magnetic fields at the bottom boundary. The subscripts “T” and “LOS” refer to

the transverse and line-of-sight components of the magnetic field. Panels (c) and

(d) in figure 6.6 plot the histogram distribution of |BO

T|−|B
M

T | and |BO

LOS|−|B
M

LOS|,

respectively. It is seen that for the transverse component, the representative curves

are almost overlapping, implying nearly identical distribution for the two models.

However, NFFF (red) shows a relatively higher peak as compared to NLFFF (blue),

suggesting that a greater fraction of voxels satisfy the condition |BO

T| − |B
M

T | ≈ 0
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Figure 6.6: Panels (a) and (b) Histogram plot for the distribution of angle (Θ) and
difference metric (d) inside the computational domain with bin size of 5◦ and one
unit, respectively Panels (c) and (d) Distribution of difference between measured
and extrapolated transverse (|BO

T|−|B
M

T |) and line-of-sight (|BO

LOS|−|B
M

LOS|) fields
on the bottom boundary for NFFF (red) and NLFFF (blue). The sub-panel in
(d) shows the zoomed-in view of distribution for −20 ≤ |BO

LOS| − |B
M

LOS| ≤ 20,
highlighting the central peak in NLFFF in comparison to NFFF. Total refers to
the fraction of voxels that lie within the range of values defined along x-axis.

in NFFF extrapolation. For the line-of-sight magnetic field, the distribution for

NLFFF is broad, peaking at ∼ 3 % (sub-panel in (d)) while for NFFF, it is narrow,

peaking at ∼ 50 %, centered at |BO

LOS| − |B
M

LOS| ≈ 0. This suggests that the

NFFF performs better than NLFFF for line-of-sight field. The differences in the

above distributions can also be understood in terms of a scatter plot where the

Pearson correlation coefficient (R) is estimated, as shown in panels (a) to (d) of
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Figure 6.7: The correlation between extrapolated and measured magnetic fields
on the bottom boundary using scatter plot for (a) Transverse component of NFFF
field, (b) Transverse component of NLFFF field, (c) line-of-sight component of
NFFF field, (d) line-of-sight component of NLFFF field.

figure 6.7. The values RNFFF = {0.9226, 0.9995} and RNLFFF = {0.8878, 0.9663}

indicate that NFFF has a better correlation to the measured line-of-sight and

transverse magnetic fields. Notably, the correlation between B
NFFF

LOS and B
O

LOS is

not exactly identical because a Hanning window is employed in the NFFF model,

which smoothens the magnetic field values near the edges of the magnetogram to

zero via a cosine function to ensure periodic boundaries. Consequently, the two

data sets do not match perfectly, leading to a deviation of data points from the

straight line. In order to explore the differences between the two extrapolated

fields further, the variations of Θ and d as a function of distance from the location

of magnetic null points is investigated. The null points in both the extrapolated
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fields are detected by using the trilinear method (Haynes & Parnell, 2007), which is

discussed briefly in Appendix B. For a particular null point, the results are depicted

in figure 6.8 and it is seen that both the parameters decrease with distance. This
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Figure 6.8: Example of the variation of averaged angular deviation, Θ (left) and
the averaged difference metric d (right) as a function of distance from the location
of detected magnetic null point in NFFF.

result points toward the possibility that regions of maximal difference between the

extrapolated fields could be in the near neighborhood of magnetic nulls. In order

to confirm this, a detailed statistical analysis involving multiple active regions is

required. Since the source of energy release during eruptive events is the stored

free magnetic energy, it is noted that the extrapolated magnetic field configuration

in the NFFF model has more free magnetic energy compared to the extrapolated

NLFFF i.e., EF(NFFF) ∼ 1.94×1032 erg and EF(NLFFF) ∼ 4.34×1031 erg, where

EF denotes the total free magnetic energy inside the computational domain. This

implies that EF(NFFF) ∼ 5 × EF(NLFFF). Presumably, the difference is due to

a combined effect of the faster decay of magnetic field with height in the NLFFF

and higher average twist in the NFFF, where the volume averaged twist amounts

to 0.56 and 7.87 for nonlinear and non-force-free models, respectively.

6.4.2 Morphological Differences

To explore the morphological differences between the two extrapolation models, the

overall lasso geometry is considered first. The magnetic field lines (MFLs) at the
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large length scales, overlying the lasso geometry are considered to be the indicator

of magnetic field configuration on the global scales, as shown in panels (a) and (b)

of figure 6.9 for the NFFF and NLFFF models, respectively. There are two sets

of magnetic field lines, namely the high-lying (yellow) and low-lying (red) MFLs.

One of the footpoints of these MFLs trace the lasso boundary while the other end

of these MFLs are rooted within the area enclosed by the boundary. The overall

magnetic configuration in both models is aptly described by the description that

MFLs emerging from the noose of lasso are directed toward the knot and further

extend to the handle of the lasso. Following Liu et al. (2016b), squashing degree

is calculated� and it is found that in the near vicinity of b2 and b4, the footpoints

of red and yellow MFLs map the region of high lnQ∼ 10, thus indicating the

possibility of slipping reconnections at large length scales. Notably, the squashing

degree map for NLFFF appears to be smudged as compared to the NFFF, which

is presumably due to the pre-processing procedure adopted in the NLFFF model.

To explore the flare dynamics in more detail, an investigation for the reconnection

sites at smaller length scales is carried out. From preliminary MHD simulations,

it is found that multiple reconnection events spread over the spatial extent of the

lasso. Understandably, it is a non-trivial task to categorize all the reconnection

sites in terms of their importance with respect to the observations. Consequently,

further analysis is narrowed down to topological structures which are cospatial

with the observed brightenings. The structures of interest are a hyperbolic flux

tube (HFT) in the vicinity of b2, characterized by large squashing degree, and

a magnetic null point in the near neighborhood of b3. Using trilinear method,

the null point in NFFF extrapolation is found to be at x = 588, y = 147 and z

= 18 while the same null point is detected at x = 579, y = 153 and z = 13 in

NLFFF extrapolation; in voxel units. In order to illustrate various features of the

null point geometry, three positive and a negative polarity are defined as shown

in panels (a) and (b) of figure 6.10 for NFFF and NLFFF models, respectively.

The polarities are labeled as P1,P2,P3, and N1 in NFFF while in NLFFF by

the corresponding primed variables. Notice that P′1 is highlighted in red, the

significance of which will be explained shortly. As shown in panel (a) of figure 6.11

�The used code is available at http://staff.ustc.edu.cn/∼rliu/qfactor.html

http://staff.ustc.edu.cn/~rliu/qfactor.html
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Figure 6.9: Panels (a) and (b): Top side view of the global MFL morphology in
NFFF and NLFFF modeling. Two sets (red and yellow) of magnetic field lines are
overlaid on the line-of-sight magnetogram along with the lasso structure identified
in the 131 Å channel of SDO/AIA at 02:59:56 UT (figure 6.2). The regions of high
gradient in magnetic field line connectivity are shown using the map of calculated
squashing degree (lnQ) distribution on the bottom boundary, with the coded color
table. The red, green and blue arrows mark the x, y and z-axis, respectively.
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Figure 6.10: Panels (a) and (b) Distribution of |BM

LOS| over the photospheric bound-
ary in non-force-free and nonlinear force-free modeling. The images are scaled for
|BM

LOS| ≤ 1000 G in (a) |BM

LOS| ≤ 1500 G in (b). The yellow box enclosing polarities
P1,P2,P3, and N1 in (a) and the corresponding primed polarities in (b) constitute
the null point topology. The magnetic polarities P4 and N2 within the blue box
along with distributed polarities (P and N) in (a) and the corresponding primed
polarities in (b) comprise the HFT geometry. The additional polarity N3(N′3) in
(a) and (b) will be used to describe the field-line dynamics at HFT during the sim-
ulated evolution. The regions within the yellow and blue boxes are scaled further
for enhanced visibility.

for the non-force-free field, the magnetic field lines originating from P1,P2, and P3

terminate at N1, thus constituting the dome-shaped fan surface (red MFLs) and
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the lower spine (S1) of the null while the white MFLs, originating from P1,P2,

and P3, extend into the corona forming the upper spine (S2) of null. For nonlinear

Figure 6.11: Panels (a) and (b): Magnetic null point topology in non-force-free and
nonlinear force-free extrapolation models, depicting the dome-shaped fan surface
(red), lower spine (red ; S1) and upper spine (white; S2). The sub-panels in (a)
and (b) highlight the null point location (yellow). Panels (c) and (d): Hyperbolic
flux tube morphology in NFFF and NLFFF extrapolation models along with lnQ
distribution in plane perpendicular to bottom boundary.

force-free field, panel (b) depicts a similar magnetic null point morphology with an

identifiable fan surface, upper and lower spines. Despite the apparent similarity of

null point topology as obtained in the two models, a crucial difference regarding

the relevance of P′1 is noted. It is seen that there is no recognizable magnetic

field line connectivity between the polarities P′1 and N′1. This particular difference

could be due to the preprocessing adopted in NLFFF modeling, thus effectively

destroying the connectivity of P′1 with respect to N′1.

The magnetic field lines constituting the hyperbolic flux tube can be cate-

gorically separated into four distinct quasi-connectivity domains such that the

field lines inside each domain share similar field line connectivity. To specify the

domains, magnetic polarities are defined manually as P4(P′4), N2(N′2), and two
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extended regions of distributed positive and negative polarities - P(P′) and N(N′)

as shown in panels (a) and (b) of figure 6.10 for NFFF and NLFFF, respectively.

Four different sets of magnetic field lines (green, yellow, blue and red) compris-

ing the HFT morphology in NFFF are depicted in panel (c) of figure 6.11, where

each set of MFL represents a quasi-connectivity domain. The HFT configuration

contains two intersecting QSLs, as follows. The green and blue MFLs originating

from P4 constitute a QSL whose footpoints terminate at N2 and N, respectively.

Another QSL is defined by the set of red and yellow MFLs, which originate from

P and terminating at N2 and N. Similarly, for the nonlinear force-free field, a

similar morphology is obtained, as shown in panel (d) of figure 6.11 but with two

subtle differences. Comparison of panels (c) and (d) reveals that the counterpart

of green MFLs (in NFFF) is not found in NLFFF, which could be due to the

weaker correlation of the nonlinear force-free field with observed line-of-sight mag-

netic field. Further, it is seen that the terminating footpoints of yellow and blue

MFLs are more scattered in NLFFF, extending more towards the handle of lasso.

The map of calculated squashing degree in the plane perpendicular to the bottom

boundary reveals a characteristic X-shape for the distributed lnQ (∼ 10) values

in both the models, thus supporting our interpretation of the MFL morphology.

Importantly, an additional negative polarity N3(N′3) is marked, whose significance

will be explained later in the context of simulated evolution. For the chosen null

point and HFT, the effect of such similarities and differences on the process of

magnetic reconnection is explored with simulated evolution of the magnetofluid,

as described in the following sections.

6.5 The MHD Simulation and its Analysis

The EULAG-MHD model is employed to execute the simulation. The boundaries

are kept open, meaning that the net flux through the boundaries is constant. In

order to optimize the computational cost, the active region cutout is remapped

on a coarser grid having 448 × 256 × 192 voxels, resolved on a computational

grid of x ∈ [−0.875, 0.875], y ∈ [−0.5, 0.5] and z ∈ [−0.375, 0.375] in a Cartesian

coordinate system. The spatial step sizes are ∆x = ∆y = ∆z ≈ 0.0039 (or, ≈ 725

km), while the time step is ∆t = 2×10−3. Further, the fluid Reynolds number is set
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to 5000, which is five times smaller than the coronal value of ≈ 25000. The coronal

value is calculated using kinematic viscosity, ν = 4 × 109 m2s−1 (Aschwanden,

2005, p.791) in the solar corona. The reduced RA
F can be interpreted as a smaller

computed Alfvén speed where VA|sim. ≈ 0.14 × VA|corona. The Alfvén speeds are

estimated with 139.2 Mm (the active region scale) as the characteristic scale for

the computational domain and 100 Mm for the typical corona. The simulation

time is 1000∆t, which approximately equals to an observation time of 33 minutes.

Importantly, although the coronal plasma with a reduced fluid Reynolds number

is not realistic, the choice does not affect the changes in field line connectivity

because of reconnection, but only the rate of evolution. Additionally, it saves

computational cost, as demonstrated by Jiang et al. (2016).

Three distinct simulations (hereafter referred as S1, S2 and S3), starting from

different choices of initial configuration have been carried out. All the simulations

are initiated by utilizing the vector magnetogram measured at 02:48:00 UT. The

reduction in resolution is checked to have no effects on the identified topological

structures. Simulation S1 takes NFFF as the input magnetic field with non zero

Lorentz force in the computational volume, initialized from a motionless state or

with zero external flow. Initially, the Lorentz force pushes the plasma to generate

dynamics. In simulation S2, the NLFFF is driven only by the residual Lorentz

force due to numerical deviation from its analytical value of exact zero. For the

simulation S3, a perturbative flow is imposed to S2, derived from the 100th timestep

of S1. For brevity, hereafter the three initial conditions are referred to as S1 ≡

{BNFFF,0}, S2 ≡ {BNLFFF,0} and S3 ≡ {BNLFFF,vpert}.

With these simulations, the underlying magnetic reconnection at the magnetic

null point and at the hyperbolic flux tube (HFT) is explored. Importantly, in all

the simulations, magnetic null point generation and annihilation (the null is named

as transient null or TN) is found in near neighborhood of the HFT. The presence

of this magnetic null point (TN) is confirmed by using the trilinear method of null

point detection. The null point coordinates (voxel units) are shown in table 6.3.

The next section details the simulation results.
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S1 S2 S3

x 247 259 259
y 144 155 157
z 1 4 6

Table 6.3: Coordinates of the transient magnetic null point as detected in S1, S2

and S3 by the trilinear method of null point detection.

6.5.1 Global Energetics

The global-scale dynamics is investigated in the simulations by exploring the time

evolution of volume integrated magnetic, free magnetic, kinetic and total (magnetic

+ kinetic) energies; depicted in panels (a), (b), (c), and (d) of figure 6.12. The

solid, dotted and dashed lines correspond to simulations S1, S2, and S3. Panels (a)

and (b) establish a similar behavior of magnetic and free magnetic energies in all

the three simulations—exhibiting continuous decrease with time and plots being

parallel to each other; albeit starting from different initial values. Noticeably,

the plots for simulations S2 and S3 overlap, being almost indistinguishable. The

free energies at the initial states are 2.65 × 1032 ergs in S1 and 8.8 × 1031 ergs in

S2 and S3. The changes in free energies over the simulation, covering the flare

duration, are of the order 4.46× 1031 in S1 and 3.33× 1031 ergs in the other two—

presumably consistent with the range of upper C-class to M-class flares (Rempel

et al., 2021). Interestingly, the decrease in total magnetic energy (panel (a)) in

all three simulations are approximately equal. For S1 the decrease is 5.76% while

5.58% in S2 and S3, agreeing with the idea put forward in the beginning of this

chapter. Moreover, the residual magnetic energy after relaxation is still much

higher than the potential energy (∼ 5.09 × 1032 ergs), hence the active region, in

principle, can still produce additional flares. Contrary to the free magnetic energy,

the variation of the kinetic energy with time shows different behavior for S1 when

compared to S2 or S3. For the simulation initiated with NFFF, the Lorentz force

is not balanced entirely over the simulation period and the kinetic energy exhibits

an increasing profile throughout the simulation time. Furthermore, notable is the

change in slope of the kinetic energy plot for S1 at two distinct points (marked

by dashed blue lines) in panel (c)—first at 4 min. (≡02:52:00 UT) and the second

one at nearly 12 min (≡03:00:00 UT), which agrees approximately with instances

of the observed brightenings, depicted in panels (b) and (c) of figure 6.2. For the
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Figure 6.12: Panels (a), (b), (c), and (d) depict the time evolution of magnetic
energy, free magnetic energy, kinetic energy and total energy (magnetic + kinetic)
for simulations S1 (solid line), S2 (dotted line) and S3 (dashed line) respectively.
The x and y axis represent time (minutes) and energy (ergs) in physical units.
The dashed blue lines correspond to instances of change in slope of kinetic energy
profile for S1.

simulations S2 and S3 which are initiated with NLFFF, the magnetofluid relaxes to

an approximate steady state (in kinetic energy), as evident from panel (c). In the

initial phase, kinetic energy in S3 is higher than S2, which is due to the imposed

perturbative flow. The sum of magnetic and kinetic energies in all the simulations

behave similarly and decreases monotonously with time, as shown in panel (d). In

the following, investigation of changes in field line connectivity due to reconnection

at the null point and HFT are discussed.
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6.5.2 Magnetic Null Point

In the left column of figure 6.13, the evolution of various MFLs constituting the

Figure 6.13: Snapshots from the simulated evolution of magnetic field lines in null
point topology for S1 (left column), S2 (middle column) and S3 (right column).
The second row depicts the first instance of magnetic reconnection at the null
point location while the third row corresponds to the loss of lower spine. The
cospatiality of the observed brightening b3 and the null point topology can be seen
from the overlaid line-of-sight magnetogram from SDO/HMI at 02:48 UT along
with an image of flaring region from SDO/AIA in 131 Å channel at 02:59:56 UT
on the bottom boundary.

fan surface (red) and spine structures (white) for S1 is depicted. From the selected

field lines, the first instance of magnetic reconnection at null point location is

found to occur at t = 270 (∼ 8m54s≡ 02:56:54 UT), as shown in panel (b), where

one of the red MFL constituting the lower spine (S1) changes its connectivity from

photospheric boundary to that of an open field line. During this time window, the
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fan plane is seen to exhibit slipping reconnection, which traces the brightening b3,

thus correlating well with the observed temporal sequence of b3 (panels (c) and

(d) in figure 6.2). The reconnection at the null point and slipping reconnections

continue until about t = 500 (∼ 16m30s≡ 03:04:30 UT), where the lower spine

(S1) is missing. This suggests that all the red magnetic field lines forming the

lower spine have reconnected at the null point. Coincidentally, the corresponding

time agrees precisely with the peak time of flare≡ 03:04:08 UT. Toward the end of

simulation S1, small circular motions along the footpoints of red and white MFLs

constituting the fan plane relax the overall magnetic field configuration in local

neighborhood of the null point. Panel (d) in figure 6.13 depicts the final state of

simulated null point topology at t = 1000 (∼ 33m≡ 03:21:00 UT), characterized

by open magnetic field lines emerging from P1, P2, and P3. Simulations utilizing

the nonlinear force-free field as input magnetic field, S2 and S3 are analyzed and

selective instances from the field line evolution in null point topology are presented

in the middle (S2) and right (S3) columns of figure 6.13. As seen in panels (f) and

(j), the first instance of magnetic reconnection at the null point location occurs at

t = 180 in S2, while in S3, the same occurs at t = 150, presumably due to presence

of finite perturbative flow. Notably, the reconnection in S2 occurs earlier than in

S1, which may be accredited to the fact that the null point topology in the two

extrapolation models are similar and not identical. As more and more magnetic

field lines reconnect at the null point, the lower spine is lost at t = 530 in S2 and

at t = 510 in S3, as shown in Panels (g) and (k), respectively. Interestingly, the

lower spine is seen to disappear in all the simulations, nearly around the same

time instance. In close correspondence with simulation S1, the final state in S2

and S3, at t = 1000 is also identified by open magnetic field lines emerging from

P′2 and P′3, as shown in Panels (h) and (l), respectively. For all the simulations,

various changes in the magnetic field line connectivity due to reconnection at the

null point topology, are summarized in table 6.4.

6.5.3 Hyperbolic Flux Tube

The magnetic field line dynamics at the location of hyperbolic flux tube (HFT)

is complex, exhibiting multiple reconnection events for each set of magnetic field
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Before reconnection After reconnection
S1 P1, P2, P3 → N1 P1, P2, P3 → open
S2 P′2, P′3 → N′1 P′2, P′3 → open
S3 P′2, P′3 → N′1 P′2, P′3 → open

Table 6.4: Summary of the footpoint mapping, before and after reconnection,
corresponding to the magnetic null point topology for simulations S1, S2 and S3.

lines. To simplify the analysis, rather than considering the overall dynamics at

the HFT, each MFL set is considered separately. Further, due to absence of green

field lines in the nonlinear force-free field extrapolation, only yellow, red and blue

MFLs are considered for comparison across the three simulations. Also, due to the

frequent changes associated with field line connectivity during reconnection, the

analysis is limited to the peak time of flare, which corresponds to t = 500 in the

simulated evolution. The relation between simulated time and peak time of flare

is estimated by calculating the time in seconds corresponding to one unit time

step in the numerical simulations (∼ 19.8s). The reconnection assisted changes in

connectivity of yellow MFLs during the simulated evolution are depicted in figure

6.14 for S1 (left column), S2 (middle column), and S3 (right column) simulations.

Panels (a), (d), and (g) show the initial geometrical configuration, characterized by

field line mapping between the polarity pairs (P,N) for S1 and (P′,N′) for the other

two simulations. The MHD evolution of plasma leads to magnetic reconnection.

The resulting sequence of changes in field line connectivity are divided into three

distinct parts. First, a few of the selected field lines change their mapping from

N to N3 in S1, as shown by panel (b) at t = 310 and from N′ to N′3 in S2 and

S3, as shown by panels (e) and (h) at t = 230 and t = 180 respectively (table

6.5). Interestingly, reconnection in S2 occurs earlier than in S1, similar to what

was found in the null point topology also. Second, the connectivity changes in

reverse order, i.e. from N3 to N for S1 and from N′3 to N′ for simulations S2 and

S3, as depicted by panels (c), (f), and (i) at t = 500. The aforementioned changes

can be summarized to follow N(N′) → N3(N′3) → N(N′) (table 6.5) for all the

initial conditions. Third, some field lines, rooted in the N(N′) polarities exhibit

slipping reconnection in all the three simulations, which leads to a small shift in

the footpoints across regions (pink patches at bottom boundary) of high squashing

degree (lnQ∼10). The slipping motions partially map the brightenings b2 and b4,
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Figure 6.14: Snapshots from the simulated evolution of yellow magnetic field lines
in hyperbolic flux tube (HFT) morphology for S1 (left column), S2 (middle column)
and S3 (right column). The first row depicts initial field line configuration, second
row shows the change in footpoint mapping from N(N′)→ N3(N′3) while the third
row corresponds to the change N3(N′3)→ N(N′). To analyze the associated slipping
reconnection, the distribution of lnQ is shown on the bottom boundary with the
same color coding as in figure 6.9. The cospatiality of observed brightening b2 with
the HFT can be seen from the overlaid line-of-sight magnetogram from SDO/HMI
at 02:48 UT along with an image of AR11977 from SDO/AIA in 131 Å channel
at 02:59:56 UT on the bottom boundary.

thus contributing toward the observed transient activity.

Next, the dynamics of the red colored MFL set is explored, as illustrated in

figure 6.15. The MFLs follow a sequence of complex changes owing to a combined

effect of reconnection and advection. The initial morphology for the three initial

fields are shown in panels (a), (d), and (g) of the same figure. The morphologies

are characterized by field line connectivity between the polarity pairs (P,N2) for

S1 and (P′,N′2) for the other two initial fields. As the reconnection ensues, some

of the field line change their footpoint mapping from N2 to N in S1, as shown

in panel (b) at t = 10 and from N′2 to N′ in S2 and S3, as depicted in panels

(e) and (h) at t = 50 and t = 40, respectively (table 6.5). Following this, small

changes facilitated by advection occur, causing some minor but identifiable shift in
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Figure 6.15: Snapshots from the simulated evolution of red magnetic field lines in
hyperbolic flux tube (HFT) morphology for S1 (left column), S2 (middle column)
and S3 (right column). The first row depicts initial field line configuration, second
row shows the change in footpoint mapping from N2(N′2) → N(N′) while the
third row corresponds to the final morphological arrangement, post advection. To
analyze the associated slipping reconnection, the distribution of lnQ is shown at
the bottom boundary with the same color coding as in figure 6.9. The cospatiality
of observed brightening b2 with the HFT can be seen from the overlaid line-of-sight
magnetogram from SDO/HMI at 02:48 UT along with an image of AR11977 from
SDO/AIA in 131 Å channel at 02:59:56 UT on the bottom boundary.

footpoint connectivity from N2(N′2) toward N3(N′3), across all the simulations. The

advection is distinguished from slipping reconnection based on the continuity of

field line movement over the photospheric boundary and low value of the squashing

degree in that region. Subsequently, another occurrence of reconnection produces a

change in connectivity toward the polarity N in S1, as shown in panel (c) at t = 460

and toward N′ in simulations S2 and S3, as shown in panels (f) and (i) at t = 390

and t = 370 respectively. The changes in connectivity of the red MFLs because of

reconnection can be summarized into the sequence N2(N′2)→ N(N′)→ advection

→ N(N′), which is preserved in all the simulations. Further, slipping reconnection

in the P(P′) region during the course of evolution is found to contribute in the

observed brightening b2.
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Finally, the field line dynamics in the set of blue magnetic field lines is explored.

Particularly, for this set of MFLs, slipping reconnections dominate the simulated

evolution. The initial magnetic field line configuration at t = 0 is depicted in

figure 6.16, identified by field line connectivity between the polarity pairs (P4,N)

for S1 and (P′4,N
′) for the other two simulations, as shown in panels (a), (d), and

(g) respectively. As the slipping reconnection sets in, the initial configuration is

Figure 6.16: Snapshots from the simulated evolution of blue magnetic field lines in
hyperbolic flux tube (HFT) morphology for S1 (left column), S2 (middle column)
and S3 (right column). The first row depicts initial field line configuration, second
row shows the change in footpoint mapping from P4(P′4)→ P(P′) due to slipping
reconnection while the third row represents the final morphological structure. To
analyze the associated slipping reconnection, the distribution of lnQ is shown on
the bottom boundary with the same color coding as in figure 6.9. The cospatiality
of observed brightening b2 with the HFT can be seen from the overlaid line-of-sight
magnetogram from SDO/HMI at 02:48 UT along with an image of AR11977 from
SDO/AIA in 131 Å channel at 02:59:56 UT on the bottom boundary.

transformed. The first significant change is noted where the footpoint mapping of a

few magnetic field lines change from P4 to P in S1, as shown in panel (b) at t = 210

and from P′4 to P′ in simulations S2 and S3, as depicted in the corresponding panels

(e) and (h) at t = 140 and t = 120 (table 6.5). The final morphological organization

of the blue MFLs at t = 500 is characterized by the field line connectivity between
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the polarity pair (P,N) in simulation S1, as shown in panel (c) while the same

mapping between polarity pair (P′,N′) is found in simulations S2 and S3 at t =

560, as shown in panels (f) and (i). Additionally, blue MFLs exhibit slipping

reconnection in the P(P′) region, thus tracing the region of observed brightening

b2. Importantly, the sequence of change P4(P′4)→ P(P′) remains identical across

all the simulations.

t = 0 t = t1 t = t2
Yellow

S1 P→ N (10) P→ N (6) t = 310 P→ N (9)
P→ N3 (4) t = 310 P→ N3 (1)

S2 P′ → N′ (10) P′ → N′ (2) t = 230 P′ → N′ (6)
P′ → N′3 (8) t = 230 P′ → N′3 (4)

S3 P′ → N′ (10) P′ → N′ (5) t = 180 P′ → N′ (6)
P′ → N′3 (5) t = 180 P′ → N′3 (4)

Red
S1 P→ N2 (15) P→ N (1) t = 10 P→ N (1) t = 470

P→ N2 (14) t = 10 P→ N2 (7) t = 470
P→ N3 (6) t = 470
P4 → N3 (1) t = 470

S2 P′ → N′2 (15) P′ → N′ (2) t = 50 P′ → N′ (3) t = 390
P′ → N′2 (13) t = 50 P′ → N′2 (6) t = 390

P′ → N′3 (6) t = 390
S3 P′ → N′2 (15) P′ → N′ (1) t = 40 P′ → N′ (3) t = 370

P′ → N′2 (14) t = 40 P′ → N′2 (6) t = 370
P′ → N′3 (6) t = 370

Blue
S1 P4 → N (10) P4 → N (6) t = 210 P→ N (10) t = 500

P→ N (4) t = 210
S2 P′4 → N′ (10) P′4 → N′ (5) t = 140 P′ → N′ (10) t = 560

P′ → N′ (5) t = 140
S3 P′4 → N′ (10) P′4 → N′ (5) t = 120 P′ → N′ (10) t = 560

P′ → N′ (5) t = 120

Table 6.5: Summary of the footpoint mapping corresponding to yellow, red and
blue magnetic field lines in the hyperbolic flux tube morphology for simulations
S1, S2, and S3. The round brackets denote the precise number of selected magnetic
field lines between the specified polarities while the arrows indicate direction of
field line. The left (t = 0), middle (t = t1) and right (t = t2) columns represent the
initial state, first and second instances of significant changes in the connectivity of
field lines. Note that t1 and t2 are variable depending on the set of magnetic field
line under consideration.
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6.5.4 Transient Magnetic Null

Astoundingly, all the three simulations show generation of a magnetic null point in

the near neighborhood of the HFT. The analysis of null point generation is carried

out by following two different sets of green and purple MFLs during their evolution.

The evolution for simulations S1, S2, and S3 is shown in the left, middle and right

columns of figure 6.17. At t = 0, there is no identifiable magnetic null point, as

Figure 6.17: Snapshots from the simulated evolution of selected green and purple
magnetic field lines to capture the generation of magnetic null in time for S1 (left
column), S2 (middle column) and S3 (right column). The first row depicts the
initial field line configuration when there is no magnetic null point, second row
corresponds to the instance of null point appearance while the last row captures
the disappearance of null point. The bottom boundary is overlaid with line-of-
sight magnetogram from SDO/HMI at 02:48 UT along with an image of AR11977
from SDO/AIA in 131 Å channel at 02:59:56 UT.

shown in panels (a), (d), and (g). The null appears at t = 110 in S1 as shown in

panel (b), while in the other two simulations, null point generates at t = 400 and

t = 300, as depicted in panels (e) and (h) respectively. The null is detected with

the same trilinear method as used earlier. Interestingly, the null point is located in

close proximity of the HFT (near b2) across all the simulations. Subsequently, all
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the three nulls corresponding to the three simulations disappear, as shown in panels

(c), (f), and (i), thus prompting the terminology of a transient null. Interestingly,

the MFLs constituting the fan plane of the transient nulls contribute toward the

observed brightening b2. To capture the associated reconnection process, which

occurs in a small time window due to the transient property of the null point, the

field line configuration is analyzed slightly before the instance of the null point

appearance (panels (a), (d), and (g) of figure 6.18) for the three simulations. The

Figure 6.18: Snapshots from the simulated evolution of selected green and purple
magnetic field lines to illustrate the contribution of transient magnetic null in the
observed brightening b2, as shown in panel (a), for S1 (left column), S2 (middle
column) and S3 (right column). The first row shows initial field line configuration,
just before the instance of null point generation. The red circle indicates the region
of interest in terms of observed brightening while the black arrows represent the
flow velocity vectors. Second row highlights the footpoint movement of fan plane,
which does not follow the direction of plasma flow (black arrows). The third row
depicts the instance where null point is lost in time. The bottom boundary is
overlaid with line-of-sight magnetogram from SDO/HMI at 02:48 UT along with
an image of AR11977 from SDO/AIA in 131 Å channel at 02:59:56 UT.

emphasis here is on the field lines whose footpoints are enclosed by the red circle

that has been overlaid on a section of the observed brightening b2. During a very

small time span, centered at the instance of null point generation, the footpoints of
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the fan planes break the flux freezing condition and do not move in the direction of

the plasma flow (shown in black arrows). The footpoints of the fan plane move in

the leftward direction while the plasma flow vectors are in the rightward direction,

as evident in panel (b) at t = 110 for S1, and in panels (e) and (h) at t = 400 and

t = 300 for the other two simulations. Such slippage of MFLs from the plasma flow

are indicative of slipping reconnection, thus contributing toward the brightening

b2. Further along the simulated evolution, the null point disappears, as shown in

panels (c), (f), and (i) for the three simulations.

6.6 Summary

The chapter explores the independence aspect of self-organized states with respect

to the initial conditions in data-based MHD simulations of a solar flare. For this

purpose, three different initial conditions are generated using the non-force-free

field (NFFF) and nonlinear force-free field (NLFFF) extrapolations. The analysis

of quantitative and morphological differences between the extrapolated magnetic

field indicates that the two are nearly similar. The investigation reveals complex

magnetic structures having plausible reconnection topologies to be co-spatial with

the observed flare brightenings. In particular, QSLs constitute the magnetic field

configuration at large-scale while at relatively smaller-scales, a magnetic null point

and hyperbolic flux tube are found to be the primary reconnection sites. Notably,

these structures are reproduced in both the extrapolated fields, although the extent

of agreement between the two varies.

The comparison of the three simulations for changes in the magnetic field line

connectivity due to reconnection at the magnetic null point and HFT morphologies

indicate a near similarity, except for the differences in time scale of these changes.

The differences in timing are expected because the initial Lorentz force and the

initial plasma flow vary across the three simulations. Further, from the perspective

of energetics, the temporal evolution of volume integrated magnetic, free magnetic,

and total energy suggests near independence of the MHD evolution with respect

to the initial conditions in presence of reconnection. The order of dissipated free

magnetic energy (∼ 1031 ergs) and percentage decrement in total magnetic energy

(∼ 5.5 %) are also nearly similar across all the simulations. Notably, the order is
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presumably consistent with the range of upper C-class to M-class solar flares, thus

providing credence to the carried out data-based simulations.

In addition to the near similarity of energetics and changes in connectivity of

magnetic field lines, a magnetic null (referred to as the transient null) is found to

appear and disappear spontaneously near the HFT in all simulations. Moreover,

the footpoints of the field lines constituting the fan plane of this transient null are

co-spatial with brightening b2 and exhibit slipping reconnection in all simulations,

suggesting that the transient null contributes to the flare brightening and has an

observable signature. Such generation of null point configuration indicates that

the field line evolution is nearly independent of the initial conditions. Further, the

results suggest that transient structures should be accounted for a comprehensive

analysis of the observed brightenings in the solar corona.

The similarity of results across the three simulations suggests the magnetofluid

dynamics to be nearly independent of the initial conditions, which is in accordance

with the principle of self-organization. Further, the appearance and disappearance

of the transient null and its contribution to the observed brightening b2 indicate

formation of a complex coherent structure at small-scale having increased efficiency

of dissipation, which is also representative of self-organization. From a pragmatic

viewpoint, the results lead to the conclusion that both the extrapolations can be

used as valid initial conditions in data-based simulations. Since, the inference is

based on the study of a single active region using idealized numerical simulations,

more such numerical experiments are required to arrive at a statistically significant

conclusion. Nevertheless, the results on signatures of self-organization in this study

are encouraging enough to explore relaxation further using data-based simulations.

Consequently, the following chapter presents a detailed study of the magnetofluid

dynamics, energetics at local and global scales, and extent of magnetic relaxation

in data-based MHD simulation of a solar flare.



Chapter 7

Study of Reconnection Dynamics and

Magnetic Relaxation

7.1 Introduction

The release of magnetic energy in solar transients is expected to relax the magnetic

configuration to a lower energy state. As a result, from the perspective of exploring

relaxation in transients, the relaxed states obtained by minimizing magnetic energy

draw immediate attention. Relevantly, the Woltjer and Taylor states representing

force-free magnetic field are of interest. Toward exploring the realization of these

states and understanding the magnetofluid dynamics for a transient, the following

subtleties need to be considered. In Taylor’s theory, the magnetized plasma system

is assumed to be isolated and bounded by perfectly conducting walls. However,

the solar corona is an open system and driven continuously by the photospheric

motion. Therefore, there are no conducting walls to define the volume in which

relaxation occurs (Browning & Lazarian, 2013). Further, since the reconnection

is localized, even if a volume with open boundaries is defined, not all the field

lines within the volume will reconnect, which might affect the homogenization of

α(r) and plasma pressure. Notably, the generation of small-scales (quantified by

|J|/|B|) is necessary to onset the magnetic reconnection and hence, the observed

transient activity. Consequently, it is reasonable to expect that the end state of

the transient will be characterized by a lower |J|/|B|, implying its decrease over

the course of event. From the viewpoint of relaxation also, the magnetofluid will

tend toward an equilibrium having lower magnetic energy, presumably simplifying

129
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the field line complexity and minimizing the magnetic field gradient. In the above

backdrop, data-based MHD simulation of a solar flare is carried out to understand

the dynamics in presence of reconnection and to investigate magnetic relaxation.

The following section presents the details of active region and the solar flare chosen

for this study.

7.2 Active Region and Flare

In principle, any flare may be chosen to study relaxation, but to identify a flare

that is favorable for such exploration; two additional criteria are employed along

with those in the previous chapter. First, since the decay of magnetic energy

is a prime signature of relaxation, the flare should be GOES M-class or higher

because they are considered to release significantly large amounts of magnetic

energy. Second, the post-flare phase should not be associated with any other

major flaring activity so that the magnetic energy buildup and decay phases are

sharp and clear. With these constraints in mind, the AR NOAA 12253 with

heliographic coordinates S05E01 on January 4, 2015 is selected. It hosts a GOES

M1.3 class flare of net duration 35 minutes (min.), having start, peak, and end

time as 15:18 UT, 15:36 UT, and 15:53 UT, respectively. Importantly, in the

post-flare phase, there is no flaring activity for the next six hours. Along with

the above-mentioned criterion, the selected AR is checked to comply with the

condition Bz = const. at the bottom boundary, used in the MHD simulation. This

translates into the requirement that during the course of flaring activity, the total

relative change in magnetic flux (integrated over the bottom boundary) is minimal.

To evaluate this, line-of-sight magnetograms from hmi.M 45 series of HMI with

temporal cadence of 45 seconds are employed. The original magnetogram (panel

(a) in figure 7.1) having dimensions of 4096×4096 in pixel units is CEA projected

and cropped to match the pre-defined dimensions of HARP active region patch

(Hoeksema et al., 2014) for AR NOAA 12253, which is 877×445 in pixel units

(panel (b) in figure 7.1). Using these, it is found that over a period of 72 min.,

starting from 15:00 UT up to 16:12 UT, relative changes in positive and negative

flux with respect to their initial values are 0.36 % and 0.42 %, respectively. The

evolution of the flare is explored by using observations from 1600 Å and 304 Å
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Figure 7.1: (a) The line-of-sight magnetogram at 15:12 UT on 04 January, 2015,
from SDO/HMI. The corresponding dimensions in pixel units are 4096×4096 (b)
CEA projected and cropped magnetogram (based on HARP active region patch)
at 15:12 UT, having dimensions 877× 445 in pixel units for AR NOAA 12253.
Both the figures are scaled to represent magnetic field strength within ± 1000
Gauss, with black patches representing the negative polarity and white patches
representing the positive polarity.

channels of AIA. In figure 7.2, panel (a) depicts the location of a brightening

(labeled B1) during the beginning of flare. The location is relevant because it might

host a potential reconnection site and hence, merits attention. The subsequent

evolution reveals multiple brightenings during the flare peak (labeled B2), as shown

in panel (b). Notably, in the observations of 304 Å channel, the presence of a

dome-shaped structure is found, whose spatial extent is marked by the yellow

colored box in panel (c). A zoomed in view of this boxed region with better

image contrast is given in panel (e). The panel highlights the approximate edges

(drawn manually) of the structure by yellow lines. These lines depict multiple

connections between the central location C and the traced, approximately circular

periphery. Further, the line toward the right of C indicates the association of dome

structure with magnetic morphology in rest of the active region. The lines are in

agreement with the expected two dimensional projection of a dome structure. As

the flare progresses, the complete spatial extent of the brightening is revealed,

where specific chromospheric flare ribbons are recognizable as marked in panel (d)

by white arrows. Therefore, in observations, the brightenings B1, B2 and the dome-
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shaped structure are identified to be of significance and hence, merit investigation

of associated magnetic field line morphologies for an understanding of their role in

the flaring activity and relaxation process.

Figure 7.2: Snapshots from observations of the solar flare in 1600 Å and 304 Å
channels of SDO/AIA. Panels (a) and (b) reveal the brightening locations in 1600 Å
during the beginning and peak phases of flare, marked by B1 and B2. Panels (c) and
(d) highlight the initial configuration of the identified dome-shaped structure and
chromospheric flare ribbons during the peak phase of flare. A zoomed in image
of the boxed region in panel (c) is presented in panel (e) with enhanced image
contrast. The yellow color lines represent the manual tracing of the structure,
while C labels the central location, where all the lines meet.



7.3. Details of Magnetic Field Extrapolation 133

7.3 Details of Magnetic Field Extrapolation

In this study, non-force-free field (NFFF) extrapolation is carried out using the

vector magnetogram at 15:12 UT from the hmi.sharp cea 720s series of SDO/HMI

as bottom boundary. The magnetogram dimensions are 877×445 pixels (≈ 317.91

Mm×161.31 Mm). As in the case of previous study, the magnetogram is suitably

cropped and scaled to new dimensions of 216×110 pixels (≈ 313.2 Mm×159.5

Mm) to save the computational cost of simulation. The extrapolation is carried

out in the computational box defined by 216×110×110 voxels. The cropping and

scaling procedures render the relative changes in positive and negative magnetic

fluxes to be 0.02 % and 0.84 %, respectively, which suggests that such processing

has not altered the original magnetogram in any significant way and that the

resultant magnetogram approximately satisfies the condition Bz = const. used in

the MHD simulation. The robustness of extrapolated magnetic field is evaluated

by computing the following parameters. First, the angle θ (see equation 4.7) is

estimated, being equal to θ = 63.73◦, which is expected because the model is

non-force-free. Second, a modified definition of the averaged fractional flux error

(see equation 6.1) given by Gilchrist et al. (2020) is employed to quantify the

solenoidality of the magnetic field. It is defined as

〈|fd|〉 =

〈∫
∂Si

B · dS∫
Si
|B|dV

〉
, (7.1)

where ∂Si represents the surface area of any voxel and Si it’s volume. The value

is calculated to be 3.366× 10−9, which is numerically small enough to justify the

divergence-free property of the extrapolated magnetic field. Lastly, the ratio of

total magnetic energy with respect to the total potential state energy, denoted

by ENFFF/EP is estimated. The ratio sheds light on the capability of model to

account for energy released during the transient phenomenon and turns out to be

1.305, implying that the extrapolated magnetic field has ≈ 30.5% more energy

than the potential field. Quantitatively, the amount of the available free magnetic

energy is 5.6 × 1031 ergs, which is presumably enough to power a GOES M-class

flare (Rempel et al., 2021).
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7.4 Morphological Investigation

The extrapolated non-force-free field is explored to look for the potential sites of

magnetic reconnection by focusing on brightenings B1 and B2, and the dome-shape

structure. Cospatial with B1, a HFT is found, as shown in figure 7.3. Panel (a) of

the figure shows magnetic field line linkage of the HFT configuration, constituted

by the four quasi-connectivity domains in blue, yellow, pink, and red colors. These

domains comprise of two intersecting QSLs, one by blue and yellow MFLs and the

other by pink and red MFLs. Notably, these configurations are preferred sites for

reconnection and hence are of interest. Panel (a) shows the ln Q map in a plane

perpendicular to the bottom boundary and crossing through the HFT morphology,

where Q is the squashing degree. For lnQ≥ 8, the characteristic X-shape along

the HFT is found, which further confirms the interpretation of HFT morphology.

Similarly, in panel (b), regions of high gradient at the bottom boundary are seen

to be nearly cospatial with B2, thus suggesting a plausible scenario for slipping

reconnection. In particular, as evident from panels (c) and (d), the footpoints

of yellow MFLs lie on the boundary of dome, while those at one end of pink

MFLs partially cover the periphery of the dome. The presence of high gradients

in footpoint mapping of the MFLs is indicative of slippage, which can possibly

explain parts of brightening B2 and chromospheric flare ribbons. The robustness

of the extrapolated magnetic field and association of the HFT with observations

suggest that the extrapolated NFFF can be reliably utilized as an input for the

MHD simulation.

7.5 The MHD Simulation and its Analysis

The EULAG-MHD model is employed to execute the simulation. The bound-

aries are kept open, meaning that the net flux through the boundaries is constant.

The simulation is initiated from a static state (initial plasma flow is zero) us-

ing the extrapolated NFFF, having dimensions 216×110×110, which is mapped

on a computational grid of x∈ [-0.981,0.981], y∈ [-0.5,0.5], and z ∈ [-0.5,0.5] in a

Cartesian coordinate system. The spatial step sizes are ∆x= ∆ y= ∆ z≈ 0.0091

(≡ 1450 km), while the time step is ∆ t= 2×10−4 (≡ 0.2544 sec). Using the
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Figure 7.3: Regions of high squashing degree and morphology of the hyperbolic
flux tube (HFT). Panels (a), (b) and panels (c), (d) are overlaid with observations
in 1600 Å and 304 Å channel of SDO/AIA at the bottom boundary, corresponding
to the same time instants as in Figure 7.2. In all the panels, the map of squashing
degree ln Q is given with color table. In panel (a), the map is perpendicular to
the bottom boundary, crossing through the HFT, while in panels (b), (c) and (d),
the ln Q map is in the plane of the bottom boundary. Panel (a) shows HFT from
a side view, while panels (c) and (d) show HFT from a top-down view. Panels
(a) and (c) use a zoomed-in viewpoint while panels (b) and (d) use a zoomed-out
viewpoint. In panel (c), the dome-shaped structure is marked with a white color
box.

typical values in the solar corona, Lcor. = 100 Mm, VA|cor. = 1000 km s−1, and

kinematic viscosity νcor. = 4×109 m2 s−1, the corresponding fluid Reynolds number

turns out to be RA
F |cor. = 25,000. However, in the numerical setup for simulation,

RA
F |sim. = 5000≡ 0.2×RA

F |cor., which can be envisaged as a smaller Alfvén speed

VA|sim.≈ 0.125×VA|cor. for Lsim. = 110× 1450 km = 159.5 Mm. The total time of

simulation in physical units is equivalent to nt×∆t× (Lsim./VA|sim.) ≈ 63.6 min.,

where nt = 15000. Toward understanding the implications of reconnection in the

magnetofluid dynamics, attention is paid to the temporal evolution of magnetic

energy, current density, twist parameter, and gradients in the magnetic field. The
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corresponding grid averaged values of these quantities are defined as

WV
av =

1

N
×

N−1∑
i=0

|B|2i , (7.2)

|J|Vav =
1

N
×

N−1∑
i=0

|J|2i , (7.3)

|Γ|Vav =
1

N
×

N−1∑
i=0

∣∣∣∣(J ·B)i

/
|B|2i

∣∣∣∣ , (7.4)

(|J|/|B|)V
av =

1

N
×

N−1∑
i=0

√
|J|2i
|B|2i

, (7.5)

where, i denotes the voxel index and the volume V encloses the volume of interest.

WV
av, |J|Vav, and |Γ|Vav measure the grid averaged magnetic energy, current density,

and twist, whereas (|J|/|B|)V
av quantifies the gradient of magnetic field. Toward

exploring the magnetofluid dynamics at the global scale, where global refers to

the full computational box, panel (a) of figure 7.4 plots the temporal evolution

of WV
av. The continuous decrease of magnetic energy is in alignment with the

possibility of magnetic relaxation through reconnection. To support this idea

Figure 7.4: Temporal evolution of grid averaged parameters (a) Magnetic energy
(WV

av) (b) Twist (|Γ|Vav) (c) Gradient in magnetic field ((|J|/|B|)V
av). The origin of

time scale maps from 15:12 UT.

further, panel (b) of the same figure plots |Γ|Vav, showing that the average twist

decreases up to ≈ 40 minutes, followed by a rise. The initial decay is in conformity

with the scenario of magnetic reconnection being responsible for the untwisting of

global field structure (Wilmot-Smith et al., 2010) and reducing the complexity of

magnetic field lines. This scenario is further reinforced by a similar variation of

(|J|/|B|)V
av shown in panel (c) because reconnection is expected to smooth out steep

field gradients (see Appendix C). Notably, the rise in both |Γ|Vav and (|J|/|B|)V
av
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toward the end of simulation is due to a current enhancement localized near the top

of the computational domain—addressed later in the chapter. Since, reconnection

changes the connectivity of magnetic field lines, their dynamics merits attention.

As mentioned earlier, defining a relaxation volume having perfectly conducting

walls is not possible for an open system like the solar corona. Consequently, the

computational volume is partitioned into three sub-volumes that are considered to

define the volume of interest for exploring magnetic relaxation. These sub-volumes

are interpreted in the context of investigating the dynamics at local scales whereas

the full computational box associates with the global scale. The spatial location

and extent of the sub-volumes are summarized in table 7.1.

Xoff Yoff Zoff Xsize Ysize Zsize

S1 102 56 0 8 10 5
S2 80 50 0 60 30 20
S3 70 20 0 70 60 110

Table 7.1: The offset and extent (in voxels) for sub-volumes of interest (Si, i=1,2,3)
in x, y, and z directions

The selection of sub-volumes focuses on the hyperbolic flux tube (HFT) as the

principal reconnection site and on the observed extent of brightenings in the active

region, as depicted in figure 7.5. The two-dimensional projections of sub-volumes

S1, S2, and S3 are shown in cyan, green, and yellow color boxes. Sub-volume S1

encloses brightening B1 and is centered on the X-region of HFT, thus consisting

of those regions where the development of strongest current layers is possible.

S2 encloses the HFT morphology that envelops B1 and partly B2 such that the

field line connectivities of depicted MFLs (see figure 7.3) are contained within

S2. Lastly, S3 covers the complete spatial extent of the observed brightening (see

figure 7.2) and full vertical height of the computational box. The following sections

analyze the magnetofluid evolution in each of the sub-volumes.

7.5.1 Sub-volume S1

The time evolution of WV
av, |J|Vav, |Γ|Vav, and (|J|/|B|)V

av is depicted in panels (a), (b),

(c), and (d) of figure 7.6, respectively. To understand their dynamical evolution,

the time duration of numerical simulation is partitioned into five phases, denoted

by P
(i)
1 , where, i = 1, 2, ..., 5. Notably, the composition of S1 has five layers along
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Figure 7.5: Visual representation of sub-volumes S1, S2, and S3. The hyperbolic
flux tube (HFT) configuration, overlaid with the vertical component of magnetic
field and observation of the flaring event in 304 Å channel of SDO/AIA at 15:35:52
UT is shown. A zoomed-in viewpoint is used, corresponding to a cutout of 150×90
pixels. The extent and spatial position of sub-volumes S1, S2, and S3 are marked
by the cyan, green, and yellow colored boxes. The arrows indicate the extent
of sub-volumes along the z-direction and are drawn in proportion to the actual
vertical sizes of sub-volumes given in table 7.1.

the vertical direction, denoted by z0 = 0, 1, ..., 4, and the contribution of each layer

in the shaping of parameter profile is examined. For each layer, grid average of

magnetic energy (WH
av), current density (|J|Hav), and twist (|Γ|Hav) is calculated over

different z = z0 layers, each having N = 8×10 voxels along the x and y directions.

It is found that WV
av increases initially up to phase P1

(4), followed by a continuous

decay during P1
(5). Notably, the profile of WH

av in all the layers is qualitatively

similar to WV
av, as evident from panel (a) in figure 7.7. Contrarily, as may be seen

from panels (b) and (c) of figure 7.7, the same is not true for |J|Vav and |Γ|Vav—an

explanation for which is presented below.

Owing to z0 = 0, 1, |J|Vav decreases sharply in the beginning phase P1
(1). During

the rising phase P1
(2), while all the layers exhibit similar profile, only z0 = 2, 3, 4

contribute most significantly because the X-region of HFT exists at these heights,

which is a prominent site for development of strong currents. Lastly, from phase
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Figure 7.6: Time evolution of grid averaged (a) magnetic energy (WV
av) (b) current

density (|J|Vav) (c) twist parameter(|Γ|Vav), and (d) (|J|/|B|)V
av in sub-volume S1,

during phases P
(1)
1 (marked by the black arrow), P

(2)
1 , P

(3)
1 , P

(4)
1 , and P

(5)
1 , respec-

tively. The dashed lines in blue, green, orange, and red colors separate the different
phases in each of the profiles. The origin of the time scale maps to 15:12 UT.

P1
(3) to P1

(5), there is an overall decrease in |J|Vav, again due to z0 = 2, 3, 4 along

with some wiggling—predominantly due to z0 = 0, 1, 2. The |Γ|Vav profile during

phases P1
(1) and P1

(2) is shaped by z0 = 0, 1. The decline during P1
(3) is attributed

to z0 = 2, 3, 4, while the evolution in P1
(4) and P1

(5) is strongly determined by the

bottom two layers, i.e., z0 = 0, 1. The pronounced effect of the bottom two layers

could be because the magnetic structures near the bottom boundary are not well

resolved due to the rescaling of magnetic field during extrapolation. Consequently,

the dynamics in near neighborhood of the X-region of HFT leads to fluctuations
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Figure 7.7: Time evolution of horizontally grid averaged (a) magnetic energy (WH
av)

(b) current density (|J|Hav) and (c) twist parameter(|Γ|Hav) in sub-volume S1. Similar
to figure 7.6, the dashed lines in blue, green, orange, and red colors separate the
different phases. The solid lines plot the respective quantities for z = z0 layers as
labeled in panel (a). The origin of the time scale maps to 15:12 UT.

in the profile of JV
av and |Γ|Vav, which do not smooth out due to the small size of

sub-volume S1. Lastly, it is seen that the evolution of (|J|/|B|)V
av is qualitatively

similar to |Γ|Vav profile. The quantitative changes in the grid-averaged parameters

P
(1)
1 P

(2)
1 P

(3)
1 P

(4)
1 P

(5)
1 Net

WV
av +0.004 +0.170 +0.266 +0.188 -0.188 +0.440

|J|Vav -2.123 +10.660 -4.048 +0.427 -2.430 +2.486

|Γ|Vav -3.914 -1.644 -14.079 +0.544 +2.514 -16.580

(|J|/|B|)V
av -12.957 +0.392 -21.705 -5.667 +2.598 -37.340

Table 7.2: Summary of the quantitative changes in grid averaged profiles of mag-
netic energy (WV

av), current density (|J|Vav), twist parameter(|Γ|Vav), and magnetic

field gradient ((|J|/|B|)V
av) for sub-volume S1, during phases P

(1)
1 , P

(2)
1 , P

(3)
1 , P

(4)
1 ,

and P
(5)
1 , respectively. The positive and negative values indicate the rising and

declining phases, while the net value in the rightmost column tells about the dif-
ference between terminal and initial states.

during each of the phases are summarized in table 7.2 and the rightmost column

reveals that the net magnetic energy and current density have increased while

the overall twist and gradients have reduced in sub-volume S1. The evolution of

magnetic field line dynamics, as shown in panels (a) and (b) of Figure 7.8, reveals

that the field lines change their connectivity as soon as the simulation is initiated.

The change in connectivity occurs because of reconnection at the X-region of

HFT. With reconnection being known to dissipate magnetic energy, the increase

of WV
av demands additional analysis. In this regard, it is realized that magnetic
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Figure 7.8: Panels (a) and (b): Illustration of changes in the field line connectivity
of yellow, blue, and red MFLs due to reconnection at the X-region of HFT config-
uration. The red colored box marks the edges of S1 while the bottom boundary is
overlaid with an image in 304 Å channel of SDO/AIA

energy in a sub-volume can change because of an interplay between dissipation,

Poynting flux, and the work done by the Lorentz force. With field line twist

decreasing, the energy may increase if the net energy flux entering the sub-volume

S1 supersedes the energy dissipation at the X-region of the HFT. Such an analysis

requires estimations of Poynting flux and dissipation to high accuracy, which is

presently beyond the scope of the work carried out in this thesis. Nevertheless, an

attempt is made toward a coarse estimation. A variable |D| is defined as

|D|i =

∣∣∣∣∂Bi

∂t
−∇× (vi ×Bi)

∣∣∣∣. (7.6)

to approximate the DB in equation (3.92), indicating when and where non-ideal

effects can be important, where i denotes the voxel index. Due to the ILES nature

of the computation, only the ideal contribution of electric field (see section 1.2.6)

is used. Then, from equation 1.22, it can be realized that the Poynting flux across

the bounding surface (B) of a sub-volume can be written as

SB
av =

1

N
×

N−1∑
i=0

(
|Bt

i|2vni − (Bt
i · vti)Bn

i

)
·∆a, (7.7)

where N has usual meaning, n and t mark the normal and tangential components

to the area element vector denoted by ∆a, respectively. Notably, vz remains zero

at the bottom boundary throughout the computation because of the employed

boundary condition and the initial static state. Consequently, only the second
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term contributes to the Poynting flux through the bottom boundary. In figure 7.9,

panel (a) plots the two-dimensional data planes of temporally averaged (averaged

over the total computation time) |D| extracted from its 3D data volume, using

the slice renderer function of VAPOR (see Appendix A) and |D| is found to line

in the range |D| ∈ {0.01, 0.11}. Notably, |D| is largest in the neighborhood of

the X-region of HFT depicted in panel (a) of figure 7.8 and decreases away from

it. The panel (b) plots SB
av. A positive value of SB

av indicates outflow of magnetic

energy whereas negative value means energy influx. Straightforwardly, the plot

Figure 7.9: (a) Two-dimensional data planes of temporally averaged |D| at three
different heights in sub-volume S1. The mapping of data values is shown in the
color bar. (b) Temporal evolution of SB

av for sub-volume S1. The dashed lines in
blue, green, orange, and red colors separate the different phases. The origin of the
time scale maps to 15:12 UT.

shows an outward energy flux up to P
(2)
1 , followed mostly by an inward energy flux

up to P
(4)
1 , except for a brief time duration in P

(3)
1 . In the range P

(5)
1 , the energy

flux is again outward. A comparison with magnetic energy evolution (panel (a),

figure 7.6) shows the direction of energy fluxes to be overall consistent with energy

variations for the phases P
(3)
1 , P

(4)
1 , and P

(5)
1 but in complete disagreement for P

(2)
1

and briefly for P
(3)
1 . An absolute reasoning for this disagreement is not viable

within the employed framework of the EULAG-MHD model.

7.5.2 Sub-volume S2

The evolution of WV
av, |J|Vav, |Γ|Vav, and (|J|/|B|)V

av for S2 are presented in panels

(a), (b), (c), and (d) of figure 7.10. Again, five phases are considered, denoted by

P
(i)
2 , where, i = 1, 2, ..., 5. Notably, these phases are not the same as in sub-volume



7.5. The MHD Simulation and its Analysis 143

Figure 7.10: Time evolution of grid averaged (a) magnetic energy (WV
av) (b) current

density (|J|Vav) (c) twist parameter(|Γ|Vav), and (d) (|J|/|B|)V
av in sub-volume S2,

during phases P
(1)
2 (marked by the black arrow), P

(2)
2 , P

(3)
2 , P

(4)
2 , and P

(5)
2 (also

marked by black arrow), respectively. The dashed lines in blue, green, orange, and
red colors separate the different phases in each of the profiles. The origin of the
time scale maps to 15:12 UT.

S1 and are chosen in accordance with the dynamics of S2 itself. In phases P
(1)
2

and P
(2)
2 , WV

av, |Γ|Vav, and (|J|/|B|)V
av exhibit a sharp decline. Similar behavior is

observed during P
(1)
2 for |J|Vav. Subsequently, over the span P

(3)
2 to P

(5)
2 , there is an

overall increase in WV
av and |Γ|Vav, and similarly in |J|Vav from P

(2)
2 to P

(5)
2 . However,

(|J|/|B|)V
av decreases almost continuously. The quantitative changes corresponding

to different phases are summarized in table 7.3 from which, a comparison of the

terminal and initial states of the simulation reveals that the net magnetic energy

in S2 increases, while the other parameters decrease. The exploration of dynamics
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P
(1)
2 P

(2)
2 P

(3)
2 P

(4)
2 P

(5)
2 Net

WV
av -0.054 -0.069 +0.048 +0.140 +0.018 +0.083

|J|Vav -1.172 +0.532 -0.313 +0.286 -0.174 -0.841

|Γ|Vav -1.074 -0.521 +0.142 +0.300 -0.148 -1.301

(|J|/|B|)V
av -2.387 -0.866 -0.876 -0.408 -0.120 -4.657

Table 7.3: Summary of the quantitative changes in grid averaged profiles of mag-
netic energy (WV

av), current density (|J|Vav), twist parameter(|Γ|Vav), and magnetic

field gradient ((|J|/|B|)V
av) for sub-volume S2, during phases P

(1)
2 , P

(2)
2 , P

(3)
2 , P

(4)
2 ,

and P
(5)
2 , respectively. The positive and negative values indicate the rising and

declining phases, while the net value in the rightmost column tells about the dif-
ference between terminal and initial states.

reveals that each layer (each havingN = 60×30 voxels along the x and y directions)

along the vertical direction of computational box (denoted by z0 = 0, 1, ..., 19) has

nearly similar profile for magnetic energy, while for |J|Vav and |Γ|Vav, this is not true.

The sharp decline in |J|Vav during phase P
(1)
2 is predominantly caused by z0 = 0, 1.

The rising phase P
(2)
2 has contributions from the layers z0 = 2 to 9, dominantly

from z0 = 2, 3, 4, and maximum from z0 = 3. Similarly, the declining P
(3)
2 phase

is shaped by layers z0 = 0 to 4 but the most significant role is played by layers

z0 = 1, 2, 3, while the maximum contribution arises from z0 = 2. In the later phase,

i.e. P
(4)
2 , |J|Vav increases again because of z0 = 11 to 19. Notably, during P

(4)
2 , the

layers z0 = 2 to 10 display declining values of current density, thus suggesting that

while current density decreases in lower layers, the overall phase is governed by the

dynamical evolution in higher layers. Lastly, in the concluding phase P
(5)
2 , layers

from z0 = 0 to 15 exhibit decrease of current density, thus resulting in an overall

decay.

The |Γ|Vav profile reveals sharp decline during phases P
(1)
2 and P

(2)
2 , primarily due

to initial five to six layers (z0 = 0 to 5) but as in the case of |J|Vav, the bottom two

layers z0 = 0, 1 determine the overall profile. The subsequent rising phases P
(3)
2 and

P
(4)
2 are seen to be governed by layers z0 = 8 to 19 and z0 = 12 to 19, respectively.

Notably, during these two phases, the lower layers, identified by z0 = 0 to 7 and

z0 = 0 to 11 show lowering of twist over time. This behavior is reminiscent of |J|Vav

during P
(4)
2 . In the end phase P

(5)
2 , all except the top four layers, show lowering of

twist, thus resulting in an overall decaying profile. During the early phases, i.e., up

to P
(3)
2 for |J|Vav and P

(2)
2 for |Γ|Vav, the lower layers (z0 = 0, 1, ..., 5) of sub-volume S2
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are seen to be playing the major role in determining the evolution of grid averaged

parameters. This is due to the fact that the non-ideal region (the X-region of

HFT) is within the first five layers of bottom boundary. Since S2 contains S1, the

reconnection at X-region plays an important role during the beginning phase of

WV
av. Moreover, the energy reduction has added contribution from other sources

as S2 covers the observed brightening B2 as well. An instance of this possibility

is explored using the anticipated slipping reconnection in yellow and pink MFLs

constituting the observed dome structure. Panels (a) and (b) in Figure 7.11 depict

a situation where sudden flipping of three selective magnetic field lines occurs,

which implies slipping reconnection. For easy identification, the footpoints of the

three field lines are marked with black, white, and red colored circles. The increase

Figure 7.11: Panels (a) and (b): Illustration of sudden shift in the footpoints of
yellow and pink magnetic field lines within the sub-volume S2 due to slipping
reconnection. Panel (a) highlights the initial footpoints of three selective MFLs in
black, white, and red colored circles. Panel (b) depicts the sudden movement of
these footpoints, which is not along the direction of plasma flow (shown in white
arrows). The bottom boundary is overlaid with squashing degree map and an
image in 304 Å channel of SDO/AIA.

in twist from P
(3)
2 to P

(5)
2 is in accordance with the magnetic energy increase. To

gain further insight, figure 7.12 plots the time averaged deviation |D| and Poynting

flux in panels (a) and (b), respectively. In S2 |D| ∈ {0.0, 0.05}, which is smaller

compared to that in S1 (marked by the black colored box in panel (a)), signifying

larger values of |D| to be localized at S1. The Poynting flux is positive for most of

the P
(2)
2 , which is in conformity with the energy decay. For phases P

(3)
2 to P

(5)
2 , the

Poynting flux is negative, which can further be visualized from figure Figure 7.13,

where a portion of green field lines are pushed completely inside S2 (red colored

box). The corresponding energy influx along with the increment in twist seems to
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overwhelm dissipation, thus resulting in the observed energy increase.

Figure 7.12: (a) Two-dimensional data planes of temporally averaged |D| at two
different heights in sub-volume S2. The mapping of data values is shown in the
color bar. The black box marks the sub-volume S1 (b) Temporal evolution of SB

av

for sub-volume S2. The dashed lines in blue, green, orange, and red colors separate
the different phases. The origin of the time scale maps to 15:12 UT.

Figure 7.13: Panels (a) and (b): Illustration of magnetic flux transfer within the
sub-volume S2. The field lines comprising the HFT are shown, along with an
additional set of green colored MFLs, which are pushed completely inside the sub-
volume S2 during simulation. The red colored box marks the edges of S2 while the
bottom boundary is overlaid with an image in 304 Å channel of SDO/AIA.

7.5.3 Sub-volume S3

The sub-volume S3 encompasses the complete extent of the observed brightening.

For convenience, the evolution in S3 is investigated in five phases, defined by

P
(i)
3 , where, i = 1, 2, ..., 5. The temporal evolution of the grid averaged parameters

is shown in Figure 7.14. Panel (a) reveals that S3 exhibits continuous decrease

in WV
av up to P

(4)
3 , which is in close agreement with the end time of the flare.

Such uninterrupted decrement is a prime signature of relaxation in the considered
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Figure 7.14: Time evolution of grid averaged (a) magnetic energy (WV
av) (b) cur-

rent density (|J|Vav) (c) twist parameter(|Γ|Vav), and (d) (|J|/|B|)V
av in sub-volume

S3 during phases P
(1)
3 (marked by the black arrow), P

(2)
3 , P

(3)
3 , P

(4)
3 , and P

(5)
3 , re-

spectively. The dashed lines in blue, green, orange, and red colors separate the
different phases in each of the profiles. The origin of the time scale maps to 15:12
UT.

volume. From panel (b), it is seen that after an initial drop, |J|Vav peaks at 15:27

UT, subsequently followed by a declining profile. Panel (c) indicates that |Γ|Vav

decays up to 15:39 UT, which nearly corresponds to the peak time of the flare. This

suggests lowering of overall twist and hence a simplification of field line complexity,

which further complements the interpretation of relaxation within the sub-volume.

In the later phase, there is an increase in twist while the magnetic field gradient

(panel (d)) is seen to be declining continuously with very small increment toward

the end of simulation. Overall, the volume averaged MHD evolution in S3 is similar
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to the overall simulated dynamics. The quantitative changes associated with the

grid averaged profiles are summarized in table 7.4. Notably, in this sub-volume,

the terminal state is characterized by a reduced value of all the parameters, i.e.

magnetic energy, current density, twist, and magnetic field gradients.

P
(1)
3 P

(2)
3 P

(3)
3 P

(4)
3 P

(5)
3 Net

WV
av -0.005 -0.019 -0.008 -0.003 +0.003 -0.033

|J|Vav -0.185 +0.151 -0.087 -0.044 -0.027 -0.192

|Γ|Vav -0.151 -0.086 -0.020 +0.081 +0.107 -0.069

(|J|/|B|)V
av -0.373 -0.374 -0.112 -0.052 +0.113 -0.800

Table 7.4: Summary of the quantitative changes in grid averaged profiles of mag-
netic energy (WV

av), current density (|J|Vav), twist parameter(|Γ|Vav), and magnetic

field gradient ((|J|/|B|)V
av) for sub-volume S3, during phases P

(1)
3 , P

(2)
3 , P

(3)
3 , P

(4)
3 ,

and P
(5)
3 , respectively. The positive and negative values indicate the rising and

declining phases, while the net value in the rightmost column tells about the dif-
ference between terminal and initial states.

Notably, sub-volume S3 spans the full extent of observed brightenings and the

full vertical extent of the computational box. Therefore, toward understanding

the magnetofluid dynamics in S3 more comprehensively, WH
av, |J|Hav, and |Γ|Hav are

analyzed, where the grid averages are carried out over different z = z0 layers, each

having N = 70× 60 voxels along the x and y directions, respectively.

Figure 7.15 shows the temporal profile of WH
av for some of the selected layers. In

phase P
(1)
3 , all the layers exhibit decreasing WH

av with significant contribution from

z0 = 0, 1, 2, thus leading to declining WV
av. Further, as exemplified in panels (a)

and (b), the subsequent phases are characterized by an increasing WH
av for z0 = 0

to 3 in P
(2)
3 , z0 = 1 to 10 in P

(3)
3 , z0 = 0 to 14 in P

(4)
3 , and z0 = 0 to 17 in P

(5)
3 ,

respectively. Notably, the evolution of WH
av differs by an order of magnitude in the

two panels. The remaining layers during these phases exhibit declining WH
av, as

evident from panels (b), (c), and (d). In effect then, owing to their larger number,

these remaining layers dominate the profile evolution of WV
av during phases P

(2)
3 ,

P
(3)
3 , and P

(4)
3 . However, in the end phase, the dynamics in z0 = 0 to 17 takes

control, thus leading to increasing WV
av during P

(5)
3 . Due to larger volume of S3,

the resulting WV
av profile is jointly governed by both larger (smaller) decrements

in the lower (higher) layers. However, for S2, whose vertical extent is restricted

to z0 = 19, layers from panel (a) and partly from panel (b) can be envisaged to
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Figure 7.15: Time evolution of WH
av for sub-volume S3 at different z = z0 layers,

shown by the black, magenta, cyan, and indigo color solid lines. The labels indicate
the chosen z0 value in each panel. The different phases P

(i)
3 , where i = 0, 1, ..., 5,

are marked only in panel (a) to avoid clutter, while the dashed lines separating
the phases are marked in each of the panels. The y-scale in panels (b), (c), and
(d) differs by an order of magnitude (10−1) than in panel (a). The origin of time
on x-axis maps to 15:12 UT.

jointly reproduce an initial fall, followed by continuous rise.

Subsequently, the behavior of |J|Hav is explored, as shown in figure 7.16. During

P
(1)
3 , other than the top two, all layers exhibit decreasing |J|Hav, thereby causing

the sharp decline of JV
av in this phase. The dominant role is played by the bottom

layers z0 = 0, 1, as may be seen from panel (a). In the next two phases, the process

of current formation and dissipation within the HFT governs the evolution. The

increase in JV
av during P

(2)
3 is essentially due to the increasing |J|Hav in layers z0 = 2
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Figure 7.16: Time evolution of |J|Hav for sub-volume S3 at different z = z0 layers,
shown by the black, magenta, cyan, and indigo color solid lines. The labels indicate
the chosen z0 value in each panel. The different phases P

(i)
3 , where i = 0, 1, ..., 5,

are marked only in panel (a) to avoid clutter, while the dashed lines separating
the phases are marked in each of the panels. The origin of time on x-axis maps to
15:12 UT.

to 11, as depicted in panels (a) and (b). Similarly, the decreasing |J|Hav in z0 = 0 to

7 causes the decline of JV
av during phase P

(3)
3 despite the increasing |J|Hav in z0 = 8

to 20. In the remaining two phases P
(4)
3 and P

(5)
3 , the segregation of any dominant

contribution from z = z0 layers was found to be difficult. Nevertheless, the profile

of JV
av is understood from the finding that |J|Hav decreases significantly in layers

z0 = 23 to 107 and z0 = 26 to 109, respectively, as evident from panels (c) and

(d). Interestingly, the two topmost layers reveal an abrupt increase in |J|Hav, an

understanding of which requires investigation of field line dynamics.
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Figure 7.17: Time evolution of |Γ|Hav for sub-volume S3 at different z = z0 layers,
shown by the black, magenta, cyan, and indigo color solid lines. The labels indicate
the chosen z0 value in each panel. The different phases P

(i)
3 , where i = 0, 1, ..., 5,

are marked only in panel (a) to avoid clutter, while the dashed lines separating
the phases are marked in each of the panels. The origin of time on x-axis maps to
15:12 UT.

Lastly, the behavior of |Γ|Hav is explored, as depicted in figure 7.17. Panels (a) and

(b) reveal that |Γ|Hav decreases for z0 = 0 to 11 and increases for z0 = 3 to 16 during

phases P
(1)
3 and P

(2)
3 , respectively. However, |Γ|Vav declines during both the phases

due to the dominating decrease of |Γ|Hav in the bottom layers, i.e. z0 = 0, 1, 2. A

similar behavior is observed for phase P
(3)
3 , where the fall of |Γ|Hav in z0 = 0 to

7 dominates the rise of |Γ|Hav in z0 = 8 to 23. The increase of |Γ|Vav during P
(4)
3

is seen to be consequence of dynamics in z0 = 11 to 16 (panel (b)) and z0 = 20

to 32 (panel (c)). In the concluding phase P
(5)
3 , |Γ|Vav increases further owing to
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increasing |Γ|Hav in z0 = 14 to 20 (panel (b)) and the abrupt increase of |Γ|Hav in the

topmost layers, namely z0 = 107, 108, 109 (panel (d)). The underlying reason for

this abrupt rise may be understood from figure 7.18. Panel (a) depicts blue MFLs

Figure 7.18: Illustration of magnetic field line dynamics responsible for abrupt rise
of JH

av and |Γ|Hav in the top two layers of the computational box. The blue MFLs
and red arrows in panel (a) depict the bipolar potential field lines and direction of
Lorentz force in the beginning of simulation. Panel (b) depicts the deformation in
MFLs due to action of Lorentz force over the course of simulation. The bottom
boundary is overlaid with image in 304 Å channel of SDO/AIA.

which constitute the bipolar loops, while the red arrows show direction of Lorentz

force around the topmost region of computational box. As evident from panel (b),

the converging force pushes magnetic field lines toward each other, which leads to

stressing of the configuration. Notably, it is not clear whether the disconnected

MFLs in panel (b) are a consequence of reconnection or movement of field lines

outward from the box. Such a discontinuity results in a large gradient and hence

sudden rise in |J|Hav and |Γ|Hav.

Figure 7.19 plots slice rendering of time averaged |D| along with the Poynting

flux. The |D| ∈ {0, 0.003}, which is one and two orders less than its values

in S2 and S1 (marked in panel (a) with arrows), respectively. Comparison of

|D| in all the three sub-volumes indicates localization of maximal |D| at S1 and

specifically, at the neighborhood of the X-region—the primary reconnection site.

Such localization of |D| is compatible with the general idea of ILES. On an average

the Poynting flux is ≈ 30% of its value for S2 and is predominantly negative,

implying energy influx. As a consequence, the decrease in magnetic energy can

be attributed to the overall decrease in twist conjointly with non-ideal effects,

contributed primarily from S1 and further augmented by slipping reconnections in
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S2.

Figure 7.19: (a) Two-dimensional data planes of temporally averaged |D| at dif-
ferent heights in sub-volume S3. The mapping of data values is shown in the color
bar. The black boxes mark the sub-volumes S1 and S2 (b) Temporal evolution
of SB

av for sub-volume S3. The dashed lines in blue, green, orange, and red colors
separate the different phases. The origin of the time scale maps to 15:12 UT.

7.5.4 Extent of Magnetic Relaxation

As describe earlier, force-free states are characterized by the field aligned current

density. Further, due to the unavailability of a suitable methodology for magnetic

helicity estimation, the angle between J and B serves as a useful proxy to explore

the extent of magnetic relaxation. Consequently, histograms of angle (θ) between

J and B are compared at the beginning and end of the simulation for each of the

sub-volumes. Notably, the θ plots in figure 7.20 utilize the transformation 180◦−θ

to map θ ≥ 90◦ in the range 0◦ ≤ θ ≤ 90◦.

Figure 7.20: Distribution of angles between current density (J) and magnetic field
vectors (B) in sub-volumes S1, S2, and S3 at the beginning (blue) and end (red)
of simulation.
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Panels (a) and (b) for sub-volumes S1 and S2 reveal wide distributions of θ that

extend over the entire range of angles for both the time instants. On the other

hand, panel (c) for S3 shows comparatively narrow distributions peaking around

90◦. This is presumably because of the fact that S3 spans the full vertical extent

of the computational box and the variation of θ along height in non-force-free

extrapolation model exhibits an increasing trend up to 90◦, as exemplified in the

previous chapter (see figure 6.4). Due to small size of S1 and hence limited number

of voxels, any trend in the variation of θ with time could not be identified except

that the distribution is wide, which does not support the presence of field aligned

current in terminal state. However, careful comparison of the blue and red pro-

files in panels (b) and (c) suggests that during simulation, fraction of voxels with

θ ≥ 60◦ in S2 and S3 decrease, which is estimated to be 20% and 24%, respectively.

This suggests that the magnetic configuration tends to relax toward a force-free

state. However, in the present simulation, neither the wide distribution in S2 nor

the narrow distribution centered around θ = 90◦ in S3 support a strictly field

aligned current density. Therefore, the terminal state of the simulation remains in

non-equilibrium, suggesting that further magnetic relaxation is possible. To check

this, another simulation whose time duration is twice than that of the original one

is carried out. It is then found that when integrated over the whole computational

domain, the grid averaged angle drops by 5.7◦ (64.32◦ to 58.62◦) as compared

to 4.3◦ (64.32◦ to 60.01◦) in the original simulation, validating the possibility of

further relaxation. Furthermore, since the distribution of the scalar function α

distinguishes between the nonlinear and linear force-free states, the time evolution

of the twist parameter (Γ) for each of the sub-volumes is investigated, as shown in

figure 7.21. The red and the blue colors represent the negative and positive values

of Γ. It is found that at the initial time instant, the distribution is dominated

by positive Γ for each sub-volume, as shown in panels (a),(c), and (e). As the

simulation progresses, negative Γ begins to increase and terminal state consists of

both positively and negatively signed values, implying that a linear force-free state

is not attained. Another noteworthy aspect is the progressively increasing inter-

mixing of the blue and red colors, exhibiting gradual fragmentation into smaller

structures, as evident from panels (d) and (f). Such fragmentation is indicative of
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development of turbulence (e.g. Pontin et al., 2011, also see Veltri et al., 2009) but

since, a quantitative investigation regarding the extent of developed turbulence is

presently beyond the scope of this work, it is difficult to comment on this aspect

further.

Figure 7.21: Direct Volume Rendering (DVR) of the twist parameter (Γ) for sub-
volumes S1, S2, and S3 at the initial and terminal state of numerical simulation.
The blue and red colors represent positive and negative values of Γ.

7.6 Summary

The chapter explores magnetofluid dynamics, energetics at local and global scales,

and extent of magnetic relaxation in data-based MHD simulation of a solar flare.

In particular, the study investigates changes in connectivity of field lines, evolution
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of magnetic energy, and angular alignment between J and B. The observations

of flare reveal the associated brightening (marked B1 and B2), chromospheric flare

ribbons, and a dome-shaped structure. The extrapolated non-force-free field at

15:12 UT identifies a HFT, which is envisaged to be the primary reconnection site

because of its spatial correlation with the brightenings. Toward understanding the

implications of reconnection on the magnetofluid dynamics, temporal evolution of

the grid-averaged magnetic energy (WV
av), current density (|J|Vav), twist parameter

(|Γ|Vav), and gradients in the magnetic field ((|J|/|B|)V
av) is considered.

At the global scale (referring to the full computational domain), WV
av, |Γ|Vav, and

(|J|/|B|)V
av decrease with time, indicating simplification of the field line complexity

and occurrence of magnetic relaxation. For a detailed analysis, three sub-volumes

of interest are identified within the computational domain, namely S1, S2, and

S3. These sub-volumes are interpreted in the context of local scales because their

size is relatively smaller as compared to the computational box. S1 is centered

on the X-region of the HFT, S2 encloses the HFT configuration, and S3 covers

the full spatial extent of observed flaring region. To investigate the dynamics, the

simulation time is partitioned into five phases, labeled by P
(i)
1 , P

(i)
2 , and P

(i)
3 (where

i = 1, 2, ..., 5) for each sub-volumes.

In all the sub-volumes, final values of |Γ|Vav and (|J|/|B|)V
av are smaller than

their initial values, indicating a reduction in both twist and field gradient, which

is consistent with the scenario of relaxation. Further, common to all sub-volumes,

a sudden drop in |J|Vav during the initial phase is governed prominently by layers

adjacent to the bottom boundary, indicating a possible boundary condition effect.

Importantly, while the magnetic energy decreases monotonically at global scale,

the same is not true for sub-volumes. Since, lowering of magnetic energy is a prime

signature of relaxation, investigation of energetics at the local scales is necessary.

For this purpose, numerical dissipation is approximated by |D| (equation 7.6) and

the Poynting flux is estimated using the ideal contribution of electric field (equation

7.7). Subsequently, their properties are explored in each sub-volume.

The largest values of |D| are found to be localized at S1, particularly coinciding

with the X-region of HFT, which is harmonious with the spirit of ILES. Further,

the magnetic energy evolution in S1 is in conformity with physical expectations,
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apart from the phase P1
(2) and briefly in P1

(3). The disagreement could be due

to a failure of idealized Ohm’s law, implying that the induction equation in its

ideal limit is not satisfied. Similar analyses have been carried out to explore

energy variations in S2 and S3 also. In S2, the energy influx along with increase

in twist from phase P
(3)
2 onward overwhelms dissipation, thus resulting in the

observed energy increase from P2
(3) to P2

(5). The decrease in magnetic energy in

S3 is found to be due to non-ideal effects primarily localized in S1. Therefore, to

numerically realize the observed release of magnetic energy during transients and

hence magnetic relaxation, the size of the chosen relaxation volume needs to be

large enough such that the energy transfer due to Poynting flux is small.

In order to estimate the extent of relaxation, the angle (θ) between J and B at

every voxel is calculated. When integrated over the whole computational domain,

the grid averaged angle drops by 4.3◦, implying that the magnetic configuration

tends to relax toward a force-free state. Furthermore, the changes in θ distribution

over the course of simulation are not very clear for S1 due to its small size. In S2

and S3, the peak of θ distribution becomes smaller, as realized from the decrease

in fraction of voxels having θ ≥ 60◦. The decrease in higher values of θ indicates

increase in alignment between current density and magnetic field.

In tandem, the above results indicate an ongoing magnetic relaxation and also

reveal the importance of understanding the magnetofluid dynamics at both the

local and global scales. The temporal evolution of the θ distribution between J and

B suggests that although there is magnetic relaxation, but it is not enough to reach

a force-free state. The terminal state of the simulation remains in non-equilibrium,

suggesting the possibility for further relaxation. To further contemplate, magnetic

reconnection being localized in the flaring regions, the redistribution of helicity

might be restricted only to the nearby surroundings. Under such circumstances,

invariance of helicity is non-trivial and a complete field alignment of current density

may not be achieved. Overall, the simulation suggests that a solar flare induced

magnetic relaxation is not complete and in this regard, an exploration of magnetic

relaxation in energetically different flares merits attention, which forms the subject

matter of the next chapter.





Chapter 8

Study on the Extent of Magnetic

Relaxation

8.1 Introduction

In the previous two chapters, the study of relaxation using data-based simulations

of solar flares has revealed some interesting results. In particular, chapter 6 shows

that the aspects pertaining to reconnection such as changes in the connectivity

of field lines, amount of the dissipated free magnetic energy, and the spontaneous

generation of complex coherent structures at small-scales (e.g. null point topology)

are nearly independent of the initial conditions. Subsequently, in chapter 7, the

detailed investigation of the magnetofluid dynamics at both local and global scales

demonstrates that the evolution of magnetic energy and other related quantities

like current density, twist, and gradients in magnetic field depend on the size

of volume chosen for studying magnetic relaxation. Importantly, the increase in

angular alignment between the current density and magnetic field indicates that

in presence of magnetic reconnections, the magnetic configuration tends to relax

toward a force-free state but the relaxation is not complete. As a result, this opens

up the possibility for further research in this direction, particularly an exploration

of magnetic relaxation in energetically different flares. It also homogenizes the

difference in selection of flare class for studying magnetic relaxation. This chapter

presents the results of such an investigation, where data-based MHD simulations of

three flares are analyzed and compared. In the next section, details of the chosen

solar flares are discussed.

159
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8.2 The Selected Solar Flares

In this study, three energetically different flares are selected, identified as B6.4,

C4.0, and M1.1 flares in the GOES classification scheme. The details of the flares

are summarized in table 8.1. Notably, the peak soft X-ray intensities of flares differ

GOES Date Active Start Time Peak Time End Time
flare class Region (GOES) (GOES) (GOES)

B6.4 30/04/14 12047 13:36 13:39 13:41
C4.0 12/12/14 12234 14:35 14:40 14:42
M1.1 12/06/14 12089 19:56 20:03 20:05

Table 8.1: Details of the flares describing GOES class, date of the flare, active
region, start, peak, and end time of flares as recorded by the GOES satellite

by an order of magnitude, making them energetically different. The observations

of flares in the extreme ultraviolet (EUV: 94, 131, 304 Å) and UV (1600 Å) channels

of the AIA reveal the spatio-temporal evolution of flares and intensity of emission

in each of the wavelengths. Panels (a)-(c) in figure 8.1 plot the AIA light curves

Figure 8.1: Panels (a)-(c): Light curves for each flare in 94, 131, 304 , and 1600 Å
wavelength channels of SDO/AIA. The vertical bars in each panel denote the
rise, peak, and end time of intensity enhancement for each of the wavelengths.
Panels (d)-(f) depict the observations of flare morphology in 304 Å for the GOES
B6.4, C4.0, and M1.1 flares. The white boxes delineate the extent of observed
brightenings.
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(time variation of intensity) in data number (DN) units. The rise, peak, and end

time of intensity enhancement for each of the wavelengths are marked by vertical

bars in each panel. In each flare, the maximum emission is found to occur in the

304 Å channel. Consequently, panels (d)-(f) show a magnified view of the flare

morphologies near their peak time in 304 Å. The intensity of emission across the

chosen wavelength channels are compared with respect to the B6.4 flare by defining

the ratio R = I/I0, where I represents intensity of emission integrated over the

flare duration for the C4.0 and M1.1 flares, while I0 corresponds to the B6.4 flare.

The values of R are given in table 8.2, which indicate that the emissions are in

accordance with expectation, being maximum for the M1.1 flare and minimum for

the B6.4 flare.

GOES R = I/I0

flare class 94 Å 131 Å 304 Å 1600 Å

C4.0 5.98 3.32 1.40 1.26
M1.1 49.45 23.71 9.39 6.67

Table 8.2: The values of ratio R comparing the intensity of emission in flares
across the chosen wavelengths with respect to the B6.4 flare

8.3 Details of Magnetic Field Extrapolations

To identify the magnetic configurations where reconnection occurs in each of these

flares, NFFF extrapolation model is used. The photospheric vector magnetograms

from hmi.sharp cea 720s data series of HMI are used as the bottom boundary. An

overlay of extrapolated magnetic field lines over flare brightenings observed in the

304 Å channel identifies magnetic null points (detected using trilinear method) for

the B6.4 and C4.0 flares, and a HFT for the M1.1 flare as primary reconnection

morphologies. Figure 8.2 depicts this cospatiality of the magnetic field lines with

the region of observed brightenings. The time and computational box size for the

carried out extrapolations are summarized in table 8.3. Further, the precise spatial

location of null points and approximate position of the X-region in HFT are also

mentioned along with the corresponding magnetic field strength. Importantly, the

energy released during flares is some fraction of the available free magnetic energy

(W free
m ), estimated as W free

m = WNFFF
m − W pot.

m , where WNFFF
m and W pot.

m denote
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Figure 8.2: Panels (a) and (b) delineate the magnetic null point topology consti-
tuted by the fan (pink) surfaces and spines (yellow) in B6.4 and C4.0 flares. Panel
(c) depicts the HFT in M1.1 flare, where the four quasi-connectivity domains are
shown in pink, yellow, red, and cyan colors. The bottom boundary in each panel is
overlaid with the SDO/AIA observation near peak time of flares and the vertical
magnetic field along with its corresponding color bar at the time of extrapolation.

the volume integrated magnetic energies of the extrapolated NFFF and potential

magnetic field, respectively. The last column of table 8.3 lists the available W free
m

for each case, suggesting that the extrapolated magnetic fields for B6.4 and M1.1

flares correspond to maximum and minimum free magnetic energy. Notably, the

amount of available W free
m does not correlate directly with the amount of released

energy in a transient.

GOES Time Dimensions x y z |B| W free
m

flare (voxel units) (Gauss) (erg)

B6.4 13:24 400× 250× 250 274 185 9 0.00088 5.1×1031

C4.0 14:24 608× 196× 196 198 183 28 0.00021 3.3×1031

M1.1 19:48 400× 200× 200 188 118 25 20 2.0×1031

Table 8.3: Set-up for magnetic field extrapolations, position (voxel units) of the
detected magnetic nulls in B6.4 and C4.0 flares and of the X-region in HFT along
with the corresponding magnetic field strength, and total free magnetic energy.

8.4 The MHD Simulations and their Analysis

The EULAG-MHD model is employed for the simulation, where B0 = 2000 Gauss,

RA
F = 5000, VA = 0.2 Mm/s, and simulation time step ∆ t = 10−3 are kept same

for all simulations. The total simulation time is chosen such that it encompasses

the time interval between the time of extrapolated magnetic field and the end time

of flare. These are approximately equal to 17 m, 18 m, and 17 m (m ≡ minutes)

for the B6.4, C4.0, and M1.1 flares. Consequently, the simulation times are 2.6

τA, 3.4 τA, and 3.3 τA, being nearly equal to 19.63 m, 20.13 m, and 19.94 m in
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physical units. The simulations are carried out at the resolution of HMI data and

are initiated from a motionless state (zero plasma velocity), where the Lorentz

force resulting from the NFFF extrapolation model drives the dynamics. In the

previous two chapters, open boundary condition was used along all the directions,

which is presumably standard for open systems like the solar corona. However, re-

alizing that broadly, the solar magnetic field decays significantly along the vertical

direction only and that the primary reconnection sites are usually situated away

from the lateral boundaries, the use of periodic boundary conditions is considered

to be a viable option. Consequently, the lateral boundaries are kept periodic while

the top and bottom boundaries are treated as open in the present study. Notably,

the simulation set-up (defined by B0, R
A
F ,∆ t) is kept identical across all simula-

tions to ensure that magnetic relaxation in each case is determined solely by flare

energetic and is not affected by possible numerical effects such as grid resolution

and the rate of simulated magnetofluid evolution.

The investigation of the magnetofluid dynamics in each simulation reveals that

the magnetic field lines (MFLs) constituting the primary reconnection morphology

undergo a sudden change in connectivity, and hence reconnection. As an example,

the snapshots in panels (a)-(c) of figure 8.3 illustrate the MFLs undergoing slipping

reconnection in the null point topology, which accounts for part of the brightening

observed during the spatio-temporal evolution of the GOES B6.4 flare in 304 Å

channel. For clear presentation, a magnetic field line is isolated in the fan surface

of null point topology with black color. A comparison of its footpoint position in

panels (a) and (c) reveals that the movement of the footpoint is not in the direction

of plasma flow (shown by white arrows), implying slipping reconnection. Further,

this result is augmented by estimating the squashing degree, which is standardly

used to investigate slipping reconnection in QSLs. Its plot as lnQ at the bottom

boundary reveals the footpoint movement to be localized within the well-defined

strip having lnQ ≤ 1.5, which provides additional support to the interpretation.

Importantly, magnetic reconnection is expected to dissipate the magnetic energy

and relax the magnetofluid. Therefore, an estimation of this dissipated energy is

carried out to compare the extent of relaxation across the three simulations. For

this purpose, equation 3.92 is used to write the rate of change in magnetic energy
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(in usual notations) as,

Figure 8.3: Panels (a)-(c): Snapshots from the simulated dynamics of GOES B6.4
flare at 0, 0.63 τA, and 0.93 τA. The black color field line in the fan surface of null
illustrates slipping reconnection, white arrows depict the direction of plasma flow.
The bottom boundary shows observation of flare brightening at 13:39:46 UT in
304 Å channel and map of lnQ along with its color table.

dWm

dt
= −

∫
V

v · (j×B) d3x+
1

µ0

∫
S

(v ×B)×B · n̂ d2x

+
1

µ0

∫
V

B ·DB d3x , (8.1)

where the first term represents the work done by the Lorentz force on magnetofluid,

second term denotes the ideal contribution of the Poynting flux, and the third term

corresponds to the numerical dissipation. To simplify the notations, hereafter the

combination of first two terms is written as dW I
m/dt and the third term is written

as dWD
m /dt, where I and D refer to “ideal” and “dissipation”, respectively. The

computation of WD
m for each simulation is carried out in three different volumes

of integration to avoid any selection bias. The volumes are denoted by ViX, where

i = 1, 2, 3 and X = B,C,M for the B6.4, C4.0, and M1.1 solar flares. The chosen

volumes enclose the reconnection morphologies symmetrically along the transverse

(xy−plane) direction as exemplified in panel (a) of figure 8.4 for the null point

topology in B6.4 flare. For a meaningful comparison, the size of volumes (for any

i in ViB, ViC, ViM) is kept nearly identical.

The estimation of WD
m averaged over all the integration volumes reveals that

the fraction of dissipated free magnetic energy is approximately 7%, 16.8%, and

33% for the B6.4, C4.0, and M1.0 flares, indicating that the magnetic configuration

in the end of simulations remains substantially non-potential. Contextually, panel

(b) of Fig. 8.4 depicts a null point topology (red and yellow MFLs), detected at
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Figure 8.4: Panel (a): ViB for i = 1, 2, 3, where red, green, and blue arrows depict
x, y, and z−direction. Panel (b): The red and yellow MFLs constitute a null point
topology at t = 2.6τA in simulation for B6.4 flare. The blue MFLs correspond to
extrapolated potential field at the same time.

the end time of simulation (t = 2.6τA) for B6.4 flare. However, in the extrapolated

potential field (blue MFLs) at the same time, no such null point is found, implying

a topological difference. Figure 8.5 plots W I
m (solid line) and Wm (dashed line),

while table 8.4 summarizes the net WD
m in each simulation. Notably Wm is always

less than W I
m, which is to be expected as reconnection dissipates the magnetic

energy as heat, which is lost irrecoverably from the system. Further, in all volumes,

Figure 8.5: Panels (a)-(c): The temporal evolution of W I
m (solid line) and Wm

(dashed line) for different volumes of integration (ViX) in simulation of GOES
B6.4, C4.0, and M1.1 flares. The sub-panels show a magnified view of W I

m to
illustrate the qualitative changes in its profile. Panels (d)-(f): The variation of θ
as a function of distance from the location of reconnection site.
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WD
m is minimum for ViB, followed by ViC and ViM, indicating that the results are

in agreement with the expectation that GOES B6.4 flare will dissipate minimum

magnetic energy, followed by the GOES C4.0 and M1.1 flares. Importantly, WD
m

is two orders less when calculated in a volume devoid of any reconnection site,

adding credibility to the ILES nature of simulation.

Size ∆W Size ∆W

V1B : 100× 100× 250 0.645 V2B : 120× 120× 250 1.25
V3B : 150× 120× 250 1.77
V1C : 136× 108× 196 2.40 V2C : 172× 108× 196 2.48
V3C : 212× 108× 196 2.46
V1M : 137× 92× 200 2.63 V2M : 150× 120× 200 3.47
V3M : 170× 130× 200 3.73

Table 8.4: Size of the chosen volumes of integration (ViX) and the corresponding
net WD

m (in units of 1030 erg) in each simulation.

Further exploration of the magnetic relaxation focuses on the angular alignment

between J and B at the reconnection site itself rather than the full computational

box as in previous chapters. The rationale for this approach is that reconnection

being localized, a global impact on the angular alignment is improbable. In this

regard, the variation of θ as a function of distance from the non-ideal region (i.e.

null point/X-region of HFT) is quantified. For this purpose, seven (the number is

restricted by the height of null point in the B6.4 flare) symmetric cubical shells are

envisaged about the reconnection sites such that the dimension of (i + 1)th shell

is larger than the ith shell by exactly two voxels along each of the directions in

Cartesian geometry. Subsequently, θ is averaged over each shell and with θ at the

reconnection site, figure 8.5 plots the variation of θ with distance at the beginning

of simulation (black) and at the time instant (red) which amounts to maximum

alignment. The decrease in θ at the reconnection site is found to be 75.92◦, 41.37◦,

and 40.13◦ in simulations of the B6.4, C4.0, and M1.1 flares. The decrease implies

an increase in the alignment, which suggests a localized occurrence of the magnetic

relaxation. Notably, except in the case of M1.1 flare, θ is approximately constant

with distance, which is presumably due to the extended X-region of HFT not being

as localized as a null point.

In addition to the investigation of relaxation in the MHD simulations, another

interesting result is obtained from the analysis of magnetic configurations which
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constitute the primary reconnection morphologies With A = Nx × Ny being the

transverse (xy-plane) extent (corresponds to the white boxes shown in panels (d)-

(f) of figure 8.1) of the reconnection sites in voxel units, H being the height of null

points/X-region of HFT in voxel units, and (|B|) representing the magnetic field

strength in near neighborhood of the reconnection site, a quantityRX = A×H×|B|

is constructed, where X has the same connotation as in ViX. Then, the ratios

RC/RB = 5.28 and RM/RB = 20.26 are found to be in close agreement with the

ratio of measured GOES soft X-ray intensities at peak time of flares, denoted and

given by IC/IB = 6.25 and IM/IB = 17.18. The calculations pertaining to this

analysis are summarized in table 8.5. While this agreement could be coincidental

Nx Ny A H |B| RX

B6.4 64 54 3456 9 10 311040
C4.0 136 108 14688 28 4 1645056
M1.1 137 92 12604 25 20 6302000

Table 8.5: Details of RX = A×H × |B| estimation

and the exact values of RC/RB or RM/RB may depend on a precise estimation

of A and |B|, it nevertheless suggests that RX may have the utility of being an

indicator in predicting the GOES class of solar flares.

8.5 Summary

The chapter explores magnetic relaxation using data-based MHD simulations of

three energetically different flares, identified as B6.4, C4.0, and M1.1 in the GOES

scheme. An observational analysis of the solar flares in 94, 131, 304, and 1600 Å

channels of SDO/AIA reveals the spatio-temporal evolution of flares. The intensity

of emission in each wavelength agrees with the expectation that the total amount

of released energy should be maximum for the M1.1 flare and minimum for the

B6.4 flare. A non-force-free field extrapolation of the photospheric magnetic field

identifies magnetic null point topologies as the primary reconnection sites overlying

the observed brightenings in B6.4 and C4.0 flares. Similarly, a hyperbolic flux tube

(HFT) is found for M1.1 flare. The magnetofluid dynamics exhibits reconnection

in the spirit of ILES at the identified reconnection sites. Toward investigating the

extent of magnetic relaxation, it is found that approximately 7%, 16.8%, and 33%
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of the available free magnetic energy is dissipated because of numerical dissipation

in the simulation of B6.4, C4.0, and M1.1 flares. Therefore, from the perspective

of decrease in the magnetic energy due to reconnection, the extent of magnetic

relaxation is maximum for the M1.1 flare and minimum for the B6.4 flare. However,

although the increase in angular alignment between current density and magnetic

field at the reconnection site indicates a localized magnetic relaxation in each case,

an interpretation of this result in the context of relaxation extent across the chosen

energetically different flares is found to be non-trivial. A part of the reasoning for

this is that maximum alignment occurs for the B6.4 flare and minimum for the

M1.1 flare, which seems counter-intuitive. Further, since this result is based on a

study of only three flares, it is not appropriate to stretch its scope for concluding

anything significant regarding extent of magnetic relaxation. The preceding note

winds up the works carried out in this thesis toward exploring relaxation in solar

transients. The next chapter summarizes this thesis and outlines a few prospects

for further investigations in the future.



Chapter 9

Thesis Summary and Future Prospects

9.1 Summary

Solar eruptive events like flares and Coronal Mass Ejections (CMEs) are believed to

be the manifestations of magnetic reconnection—a fundamental process known to

occur in both naturally occurring and laboratory plasmas. Broadly, the importance

of studying these events emerges in the context of their possible harmful impact on

space-based and ground-based technologies. However, in this thesis, the scientific

curiosity is motivated from the fundamental perspective of self-organization in

magnetized plasmas, also known as plasma relaxation.

Relevantly, during eruptive events, a large amount of energy gets released by

the process of reconnection, which converts magnetic energy into heat, bulk kinetic

energy of the plasma, and particle acceleration. The decrease in magnetic energy

is expected to relax the overall magnetic field configuration to a state having lesser

magnetic energy. Consequently, it is realized that this state of lesser energy can be

viewed in association with the relaxed states obtained theoretically using principles

of self-organization. In particular, the thesis focuses on magnetically relaxed states

that are obtained by a constrained minimization of magnetic energy while keeping

magnetic helicity as an invariant. Specifically, the relevant relaxed states are the

Woltjer and Taylor states, which are also known as force-free states because of the

field aligned current density giving zero Lorentz force.

Importantly, previous studies exploring relaxation for the case of solar plasma

have been based on either observations or numerical experiments employing simple

analytical magnetic fields as an initial condition. In this context, examples of MHD

169
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simulations exploring the formation and evolution of magnetic flux ropes in a 3D

bipolar sheared arcade and a quadrupolar magnetic geometry are presented. The

simulations exemplify the changes in connectivity of magnetic field lines because

of reconnection, which leads to the flux rope formation. Further, the simulations

exhibit decreasing magnetic energy and the magnetic configurations tend to evolve

toward a force-free state, both of which are are realized to be the signatures of a

magnetic relaxation process. However, to account for the field complexity of an

actual active region, data-based simulations in combination with an analysis of

observations are required to explore the implications of reconnection in eruptive

events and its consequences on relaxation of the magnetofluid.

The thesis work focuses on MHD simulations of flares in which, an extrapolated

magnetic field is employed as an initial condition. The photospheric magnetogram

data from SDO/HMI are used for magnetic field extrapolations. The extrapolated

magnetic field is analyzed in combination with the observations from SDO/AIA

to identify the magnetic configurations where reconnection might occur, such as

magnetic null point, quasi-separatrix layer (QSL), and hyperbolic flux tube (HFT).

Further, the simulated dynamics is compared with the observed spatio-temporal

evolution of flares to add further credibility. Such data-based MHD simulations

are carried out in this thesis using the EULAG-MHD numerical model.

Noticeably, the need to model the solar magnetic field accurately has led to

the development of various extrapolation models. Consequently, it is important to

investigate their effect on the simulated dynamics of a solar transient. Since, the

reconnection process is dissipative, it is expected that the changes in connectivity

of field lines and the dissipated magnetic energy might be relatively insensitive

to the initial conditions. Further, such an expectation also aligns with the fact

that relaxed states are nearly independent of the system’s initial configuration.

Toward such an exploration, data-based MHD simulations of a GOES C6.6 flare

in active region NOAA 11977 are carried out using three different conditions, where

an initial condition is constituted by a pair of initial magnetic and velocity fields.

The initial magnetic fields are generated using the non-force-free field (NFFF) and

nonlinear force-free field (NLFFF) extrapolations. The NFFF initiates simulation

S1, NLFFF is used for S2, and in S3, an external flow is provided to the initial
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NLFFF, keeping the strength of the perturbation small. The crucial findings of

this study are listed below.

1. A quantitative and morphological comparison of the two extrapolated fields

reveals that they are nearly similar. Both the models reproduce similar field

line structures, although the extent of agreement between the two varies. In

particular, a lasso shaped magnetic configuration is identified on the global

scale while a magnetic null point configuration and a hyperbolic flux tube

(HFT) are found to be cospatial with the observed flare brightening.

2. The analysis of the simulated dynamics reveals that the order of dissipated

free magnetic energy is nearly similar (5.5%) across the simulations. Further,

the changes in field line connectivity corresponding to the null point and HFT

configurations are nearly similar.

3. The study finds spontaneous appearance and disappearance of a 3D magnetic

null (referred to as the transient null) near the HFT in all the simulations.

Importantly, the field line constituting the fan plane of this null are found to

exhibit slipping reconnection, thus contributing to the observed brightening.

4. The study also finds that the evolution of kinetic energy, time instants at

which reconnection occurs in the null point and HFT configurations, and the

timing of transient null appearance and disappearance vary across the three

simulations. This is presumably due to a dependence on the strength of the

initial Lorentz force and plasma flow that drive the dynamics.

Overall, the near similarity of changes in the dissipated magnetic energy, changes

in the field line connectivity, and spontaneous appearance and disappearance of

the transient null across the simulations suggest near independence with respect

to the initial conditions. Therefore, both NFFF and NLFFF extrapolations can be

used as valid initial conditions for data-based simulations. Further, it is concluded

that the simulations exhibit signatures of a self-organization process, which further

motivates an investigation of the magnetofluid dynamics and magnetic relaxation

in eruptive events. For this purpose, a data-based simulation of a GOES M1.3 flare

in active region NOAA 12253 is carried out. The NFFF extrapolation identifies a
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HFT overlying the observed flare brightening. Toward understanding the dynamics

of magnetofluid, attention is focused on the spatio-temporal evolution of magnetic

energy, current density, twist, and magnetic field gradients in the full simulation

box as well as in three different sub-volumes inside the box. The sub-volume S1 is

centered on the X-region of HFT, S2 encloses the HFT morphology, and S3 covers

the complete spatial extent of the observed brightening and full vertical height of

the computational box. Notably, the size of S3 is largest and that of S1 is smallest.

Notably, an approximate estimation of the Poynting flux and numerical diffusion

inherent to EULAG-MHD is also carried out to understand their role in governing

the dynamics within the sub-volumes. Importantly, due to the unavailability of a

suitable methodology for magnetic helicity estimation, its decay rate with that of

the magnetic energy could not be compared. Therefore, the consequence of helicity

conservation, namely the force-free aspect of the magnetic field is investigated by

analyzing the temporal evolution of angular alignment between the magnetic field

and current density. The important results of this study are summarized below.

1. The grid-averaged magnetic energy for the full computational box decreases

monotonically, which suggests an ongoing magnetic relaxation. In addition,

the initial decrease of twist and magnetic field gradient further reinforces the

scenario of reconnection assisted relaxation.

2. Similar analysis reveals that the twist and magnetic field gradients exhibit an

overall decrement in each sub-volume, which is consistent with the scenario

of relaxation. The magnetic energy profile in S1 and S2 is primarily governed

by the Poynting flux. In regard with S3, it is found that the largest values of

numerical diffusion are localized in S1, particularly at the X-region of HFT,

which is in harmony with the spirit of ILES. Additionally, since the Poynting

flux through S3 is small, it is concluded that the magnetic energy profile in

S3 is governed by non-ideal effects, contributed primarily from S1 and further

augmented by slipping reconnections in S2.

3. The grid-averaged angle between current density and magnetic field decreases

by 4.3◦ (from 64.32◦ to 60.01◦), which implies an increase in the alignment.

Overall, the simulation exhibits signatures of magnetic relaxation but the relax-
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ation is not enough to reach a force-free state. The terminal state of the simulation

remains in non-equilibrium, suggesting the possibility for further relaxation, which

also indicates that the extent of a solar flare induced magnetic relaxation may have

a dependency on the flare energetics and its duration. Consequently, data-based

simulations of three energetically different flares, namely GOES B6.4, C4.0, and

M1.1 are explored. The NFFF extrapolation identifies magnetic null points for

the B6.4 and C4.0 flares, and a HFT for the M1.1 flare as primary reconnection

morphologies. The analysis of these sites and of the simulated dynamics leads to

the following important results

1. An estimation of the magnetic energy dissipated due to the non-ideal effects

(numerical diffusion in the simulation) amounts to approximately 7%, 16.8%,

and 33% of the available free magnetic energy for the B6.4, C4.0, and M1.1

flares. In physical units, it is equivalent to 1.18, 2.45, and 3.33 (×1030) erg,

respectively. Therefore, the result is in concurrence with the general energy

relation between the classes of chosen flares.

2. The maximum decrease in the angle between current density and magnetic

field at the reconnection site in each case is found to be 75.92◦, 41.37◦, and

40.13◦ in simulations of the B6.4, C4.0, and M1.1 flares, implying an increase

in alignment, indicating magnetic relaxation. However, this result could not

be understood from the perspective of extent of relaxation.

3. An interesting finding of the work is a parameter based on the analysis

of reconnection morphologies that may have applications in predicting the

strength of solar flares.

The inference of the thesis may be summarized as follows. Solar transients exhibit

signatures of a self-organization process and consequently of magnetic relaxation.

From the perspective of magnetic energy decrease, the extent of such relaxation is

directly proportional to the amount of energy release during transients. However,

from the evolution of angular alignment with time, it is inferred that in general, a

force-free state is not achieved. The thesis work suggests that in order to further

understand the relaxation process in transients, it is imperative to investigate the

interconnection between the small-scale and large-scale magnetofluid dynamics.
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9.2 Future Prospects

The works carried out in this thesis investigate solar transients from the perspective

of self-organization and magnetic relaxation using data-based MHD simulations.

For further exploration in this direction, future works will focus on

1. Calculating the relative magnetic helicity (HR) and its rate of decay, where

HR represents the gauge invariant definition of helicity for open systems (e.g.

solar corona) that are open to magnetic flux penetration. Consequently, the

dissipation of helicity due to reconnection and the changes due to Poynting

flux can be estimated separately. From these calculations, a comparison of

the magnetic energy and helicity decay rates can be made, which will help

to gain further insights into the dynamics of sub-volumes and to understand

magnetic relaxation in solar transients.

2. Exploring the effects of increasing the number of reconnection regions on

the extent of magnetic relaxation. For this purpose, MHD simulations using

both analytical and extrapolated magnetic fields will be carried out. For the

data-based simulations, the focus will be on small-scale reconnection events,

such as the recently discovered campfires. The rationale for focusing on such

events is their expected ubiquity, which will presumably increase the number

of reconnection regions within the simulation box.

The analysis of reconnection morphologies in extrapolated non-force-free fields has

identified a quantity (denoted by RX) in the thesis work that may have application

in predicting the strength of solar flares. Since, the parameter may have potential

space-weather applications, the work will be extended to

1. Perform a statistical investigation where non-force-free field extrapolations

will be carried out for a large sample of flares. The target will be to identify

the relevant reconnection morphologies in each case, calculate RX , and check

its validity. If found true, it will be tantalizing to look for the physical cause

that explains the qualitative association between the quantity RX and the

amount of energy released during a flare.
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The Visualization Tool - VAPOR

A visualization tool plays an important role in extracting meaningful information

from the extrapolated magnetic field data. For this purpose, the Visualization and

Analysis Platform for Ocean, Atmosphere, and Solar Researchers (VAPOR), has

been used in this thesis. It was developed and is maintained by the National Center

for Atmospheric Research’s (NCAR) Computational and Information Systems Lab.

Li et al. (2019) provides a detailed description of the VAPOR package. Here, only

those functionalities are discussed that are relevant for the interpretation of results

presented in this thesis. There are six different kinds of data visualization methods,

also known as renderers in VAPOR. These are the Barb, Direct Volume Rendering

(DVR), Flow, Isosurface, Image, and Slice renderers, respectively.

The Barb feature plots arrows, which indicate the direction of vector fields at

any given point. The DVR control allows an inspection of three-dimensional scalar

variables by a color mapping of its values (Kaufman & Mueller, 2005). An opacity

option can be adjusted for transparency, thus revealing the distribution at varying

depths inside the volume. The Flow renderer employs a fourth order Runge-Kutta

scheme (Press et al., 2007) to integrate equation dl × B = 0 for obtaining the

magnetic field lines. The field lines can be colored, which helps to distinguish

between the different topological domains. The Isosurface option renders a surface

of constant value within a region of space. Using Image renderer, it is possible

to import the multi-wavelength observations of transients as 2D images, which is

very helpful in identifying the spatial association of magnetic structures with the

transients. Lastly, the Slice control allows an extraction of 2D data plane from a

3D variable. This is very useful in depicting the distribution of magnetic polarities
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at the bottom boundary by using the extrapolated vertical magnetic field.



Appendix B

Trilinear Method of Magnetic Null Point

Detection

The magnetic field extrapolation procedure in Cartesian geometry produces a 3D

data cube for each of the components. In other words, Bi = Bi(N1,N2,N3), where

i = x, y, and z, while N1,N2, and N3 are the number of voxels along the respective

directions. A voxel represents a value on a regular grid in 3D space. In order to

trace magnetic field lines, it is crucial to have information about the magnetic field

at sub-grid scales, i.e. the scales below that of the voxel. For the purpose, often

trilinear interpolation is used. The described null detection algorithm (Haynes &

Parnell, 2007) utilizes such interpolation to locate magnetic null points at sub-grid

scales.

The first step of the method is reduction, where voxels which cannot have a

null point are eliminated. This is accomplished by using the fact that Bi = 0 at a

null point for each i and that trilinear interpolation forces the sub-grid scale values

to lie within the minimum and maximum of Bi at corners of cell. Consequently, if

any Bi has same sign at every corner, the voxel is removed from further analysis.

The second step is referred to as analysis, which identifies the intersection of

curves represented by Bi = Bj = 0 and Bk 6= 0 with the boundaries of voxel. The

resulting end points on the boundary for each curve must have opposite signs in

the third component to ensure the presence of a null point.

In the last step, null points are located precisely by using a 3D Newton-Raphson

177



178 Chapter B. Trilinear Method of Magnetic Null Point Detection

scheme (Press et al., 2007), as follows

rn+1 = rn −
B(rn)

∇B
∣∣
rn

, (B.1)

where rn refers to the initial guess, which is taken either at the center or corner of

voxel.



Appendix C

Effect of Magnetic Reconnection on the

Magnetic Field Gradient

The magnetic field gradient is quantified by |J|/|B|. Consequently, the temporal

evolution of |J|/|B| in the presence of magnetic reconnection can be explored using

a straightforward time derivative, given by

∂

∂t

(
|J|
|B|

)
=

1

2

[
1

|J|2
∂|J|2

∂t
− 1

|B|2
∂|B|2

∂t

]
×
(
|J|
|B|

)
. (C.1)

Since, the interest lies in exploring the effect of reconnection, an isolated system is

considered to exclude contributions from the Poynting flux. As a result, equation

1.21 suggests that
∂|B|2

∂t
∝ −η|J|2 − v · (J×B) , (C.2)

which implies that equation C.1 can be written as

∂

∂t

(
|J|
|B|

)
∝ 1

2

[
1

|J|2
∂|J|2

∂t
+ η
|J|2

|B|2
+A

]
×
(
|J|
|B|

)
, (C.3)

where A denotes the term arising from v · (J × B). Subsequently, Ampere’s law

and magnetic induction equation can be used to write

∂|J|2

∂t
∝ 2J ·

(
∇× ∂B

∂t

)
= −2ηJ · (∇×∇× J) + 2J ·

[
∇×∇× (v×B)

]
, (C.4)

which leads to the following equation

∂

∂t

(
|J|
|B|

)
∝ 1

2

[
−2η

J · (∇×∇× J)

|J|2
+ η
|J|2

|B|2
+A

]
×
(
|J|
|B|

)
, (C.5)
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where the second term of equation C.4 is subsumed into A because the focus is on

reconnection, which is due to the resistive term only. Using an order of estimate

for the first term, the final equation is

∂

∂t

(
|J|
|B|

)
∝ 1

2

[
−2η
|J|2

|B|2
+ η
|J|2

|B|2
+A

]
×
(
|J|
|B|

)
, (C.6)

which gives the result

∂

∂t

(
|J|
|B|

)
∝ 1

2

[
−η |J|

2

|B|2
+A

]
×
(
|J|
|B|

)
. (C.7)

The negative sign in the first term inside the square brackets serves to show that

reconnection leads to decrease in the magnetic field gradient over time.
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