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Foreword 

Collisions of electrons with atoms and molecules provide a unique diagnostic 
probe of the fundamental interactions of many-electron systems and are the basic 
physical processes that determine the behavior of ionized gases, ranging from 
those created for plasma processing technologies to the plasma existing in the 
early universe after the first few seconds. Early experiments on electron colli­
sions played a central role in the development of quantum mechanics. The 
demonstration of diffraction of electron beams by gases confirmed the quantum 
mechanical duality of waves and particles and measurements of the energy losses 
in electron collisions in gases established the discrete nature of the energy level 
structure of atoms and molecules. 

To understand and to predict quantitatively the behavior of ionized gases 
produced by electrical discharges in lighting systems and by lightning or created 
in fusion plasmas or found in astrophysical environments requires development 
of the theory of electron collisions and the construction of mathematical methods 
that enable reliable calculations of the critical collision parameters identified by 
the theory. Experiments provide essential benchmarks to test the reliability of the 
theoretical concepts and calculations but cannot hope to produce the vast array 
of collision data that enter into plasma modeling. 

Photon interactions are of equal importance both for the fundamental infor­
mation uncovered by studies of the effects of radiation on atoms and molecules 
and because many kinds of plasma are created by the absorption of photons and 
reveal their properties through the emission of photons. 

Professor Satya Khare has made many notable contributions to the theory 
of electron and photon collisions with atoms and molecules and in this book he 
presents a systematic unified introduction to the still evolving theory that is 
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viii Foreword 

needed to interpret the wide range of physical phenomena that occur when elec­
trons and photons collide with atoms and molecules. 

Alexander Dalgarno F. R. S. 
Phillips Professor of Astronomy 

Harvard University 
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Preface 

The present book deals with nonrelativistic quantum mechanical theories for the 
collision of microprojectiles with potential fields, atoms, and molecules. The 
spinless particles, the electrons (with occasional reference to its antiparticle i.e., 
positron), and the photons are taken as projectiles. This introductory book is the 
outgrowth of lectures I delivered at Meerut University, the University of Western 
Ontario, London, Ontario and Wayne State University in Detroit. It contains a lot 
of new information and refers to many papers published in the 21"1 century. The 
prerequisites for understanding this material are introductory courses in atomic 
physics and quantum mechanics. 

An attempt has been made to develop the subject matter in a very system­
atic manner. The basics of collision physics are introduced in Chapter 1. As the 
physical state of a free particle changes in a collision, in Chapter 2 we discuss 
the motion of a free particle highlighting its characteristics such as energy, 
momentum, and wave function along with its partial wave expansion in terms of 
its angular momentum. This is followed in Chapter 3 by a discussion of the colli­
sion of a spinless particle with a potential field. To facilitate our understanding 
of the effect of open inelastic channels on elastic scattering in the case of 
electron-atom collisions (Chapters 7 and 8) we have considered a complex 
absorption potential field. Thus the concept of the absorption cross section is 
introduced and it is shown that the optical theorem is a consequence of the 
conservation of incident flux. The various approximate methods for evaluating 
scattering amplitude using integral and differential approaches are described. 

In Chapter 4 the spinless particle is replaced by an electron. With the use 
of nonrelativistic theory, the spin-orbit interaction potential is obtained and with 
its help spin-flip scattering is discussed. Readers are introduced to the concept of 
polarized electrons, and the impossibility of their production by a Stern-Gerlach 
type of experiment is demonstrated. With the help of the density matrix the polar­
ization of unpolarized electrons due to scattering and the scattering parameters 
are discussed. The measurements of the Shermann function and the degree of 
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x Preface 

polarization of an electron beam by a Mott detector are described. In Chapter 5 
collision between two particles has been considered. It is shown that the two­
body collision is equivalent to the collision of a single body with a potential field. 
Thus all the methods developed earlier become applicable. For identical parti­
cles, the symmetry condition imposed on the wave function of the system gives 
the exchange scattering along with the direct scattering. Collisions between two 
bosons and two fermions are discussed. 

In Chapter 6, collision of photons with multielectron atoms is dealt with. 
Expressions for the excitation and ionization cross sections and the Einstein's A 
and B coefficients are obtained. The concept of polarized photons in terms of 
their spins and the spin states of photons are discussed. The Stokes parameters, 
which are required to completely determine the polarization of a mixed photon 
beam is introduced. The density matrix and I( a), the intensity of the transmitted 
beam when a mixed beam of intensity I moving along the z-axis is passed through 
a Nicol prism, whose axis of complete transmission makes an angle a with 
the x-axis, are given in terms of the Stokes parameters and I. The theory of 
the production of polarized electrons by photoionization of unpolarized atoms by 
circularly polarized light (Fano effect) is described. 

Chapters 7 and 8 deal with the collision of electrons with atoms. In Chapter 
7 a number of approximate methods derived from the integral approach are 
described. It is shown that the various approximate methods are obtained by 
taking different approximate forms of the exact free-particle Green's function. 
The relationship between photon and electron impact collisions is highlighted. 
The recent successful method I developed for inner-shell ionization is presented. 
The next chapter deals with the approximate methods obtained from the differ­
ential approach. The origins of the static field, local exchange, polarization, and 
absorption potentials are explained. The usefulness of reducing a many-body 
problem to a one-body problem with the help of an optical potential and the con­
struction of the optical potential are discussed. The spin-orbit potential is also 
included to obtain polarization S, T, and U parameters for atoms. The electron 
impact excitation of atoms using the electron-photon delayed coincidence tech­
nique is described. The usefulness of the Stokes parameters (described in Chapter 
6) in that technique to study collision dynamics is discussed. In both chapters the 
theoretical results obtained with the help of the different approximate methods 
are compared with the experimental results for a good number of atoms. 

In Chapter 9 the collision of electrons with multicenter molecules is 
considered. It is a formidable problem. Its reduction to tractable forms, which 
yield reasonable results, is described. Application of, e.g., the first Born, the 
second Born, and the modified Glauber approximations are discussed. Recently 
developed models to evaluate ionization (including dissociative ionization) 
cross sections of molecules that are due to electron impact are given. The inde­
pendent-atom model and its modifications such as the modified additivity rule, 
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Preface xi 

and single-center charge density method, which utilize the differential approach, 
are also discussed. The theoretical results are compared with the available exper­
imental data to demonstrate the usefulness of the various approximate methods. 

References are cited in the text and a set of problems is provided after each 
chapter. 

I acknowledge the benefit I derived from fruitful discussions with my 
colleagues and students at the universities mentioned above. I am indebted to my 
teacher and mentor, Prof. A. Dalgarno, who has kindly written the foreword for 
this book. Useful discussions and correspondence with Professors A. Dalgarno, 
K. L. Joshipura, K. C. Mathur, W. J. Meath, R. Srivastava, A. N. Tripathi, and 
1. M. Wadhera and Drs. A. K. Bhatia and A. Temkin are gratefully acknowledged. 
Invaluable help has been provided to me by my children, Vandana, Seema, Arun, 
and Jaydeep and my student Manoj in the preparation of this manuscript. I 
heartily thank all of them. Thanks are also due to Mr. Ravi Jain and Mr. R. R. 
Verma for their typing services and to Mr. Chandra Prakash Rastogi for prepar­
ing all the diagrams. Above all, I would like to acknowledge the help received 
from my wife, Pushpa, to whom this volume is dedicated. 

I sincerely hope that this book will be useful to students and young workers 
in the field of atomic collisions. Suggestions and criticisms are welcome. 

S. P. Khare 
Meerut 
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1 

Basics of Collisions 

1.1 1ntroduction 

A collision is basically an interaction between two or more systems, each 
containing one or more particles. In a collision process, two particles or systems 
approach each other from a big distance, interact (collide) for a short time, and 
then separate again. The interaction time is very short in comparison with the 
time for which the system (formed by the colliding partners) can be observed. 
During the collision a large force acts between the colliding partners and the post­
collision state is different than the precollision state. From a study of these two 
states it should be possible to learn about the nature of interaction between the 
colliding partners. Collision techniques have been successfully employed to learn 
about the internal structure of the microparticles and the nature of interactions 
between different microparticles. For collisions involving macroparticles, the 
associated de Broglie wavelengths are very small in comparison to the size of 
the particles, so classical mechanics can be employed to describe such collisions. 
However, for the microscopic objects, the de Broglie wavelengths are large, so 
classical mechanics becomes inadequate and must be replaced by quantum 
mechanics. In the collision of microscopic objects, the concept of physical con­
tact between the colliding partners becomes irrelevant. 

1.2 Collision Cross Section 

One of the most important parameters in collision physics is the collision 
cross section. A schematic diagram for the measurement of the collision cross 
section is shown in Fig. 1.1. A well-collimated beam A of monoenergetic parti­
cles falls on a thin scattering chamber C that contains n number of B targets. Due 
to collisions, some of the projectiles are scattered in all possible directions around 
C and a few of them are detected by the detector D. The distances SC and CD 

1 

orders@himanshubook.com



2 Chapter 1 

5 

A-----------+~--

c 

FIGURE 1.1 Schematic diagram for the scattering of projectiles A by the targets B. 

are several orders of magnitude greater than the sizes of the projectiles and the 
targets. The experiment is carried out under steady state conditions; i.e., the flux 
F of the projectiles and the number of scattered particles detected by D per unit 
time are independent of time. 

Let the detector D be in the direction (O,f/J) with respect to the direction of 
the projectiles and at a distance r from the chamber C. If D makes a solid angle 
dD with C, then the number of particles MY reaching the detector per unit time 
is proportional to F, n, and dD. Denoting the constant of proportionality by I( O,f/J), 
we have 

MY = I(O,f/J)FndD (1.2.1) 

The quantity I( O,f/J) is known as the differential cross section and is expressed in 
terms of area/steradian. I(O,f/J)dD, is equal to the number of particles scattered in 
the direction (O,f/J), in the solid angle dD per unit time per unit incident flux per 
target. An integration of the differential cross section over the solid angle yields 
the integrated (also known as total) cross section G. Hence 

" 2" 

G = f f I(O,f/J) sinO dO df/J (1.2.2) 
o 0 

This is equal to the total number of particles scattered in all possible directions 
per unit flux per unit time per target. In many cases, owing to cylindrical sym­
metry I(O,f/J) is independent of f/J and we have 
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Basics of Collisions 3 

" 
(J = 21r f 1(8) sin 8 d8 (1.2.3) 

o 

The momentum transfer cross section (Jm is also obtained by integrating I(8,f/J) 
but with a weight factor (1 - cos8). Hence, with axial symmetry, 

" 
(Jm = 21tJ I(8)(1-cos8)sin8 d8 (1.2.4) 

o 

Now, unit flux means one projectile per unit area per unit time; hence (J is the 
cross-sectional area that a target presents to the direction of the incident beam. 
Similarly, I(8,f/J)dD is the effective area of the target, which deflects the projec­
tiles in the solid angle dQ(8,f/J). Equation (1.2.1) assumes that the projectiles and 
targets do not interact among themselves and that one projectile collides with 
only one target. This is possible only for small values of F and n, however, and 
for more accuracy in the measurements of m, the values of F and n should be 
large. Hence, one is required to choose optimum values of F and n. 

1.3 Types of Collisions 

Since we are examining collisions under steady state conditions, the total 
energy Er of the whole system remains conserved. Broadly speaking we have 
two types of collisions: (i) elastic and (ii) inelastic. 

1.3.1 Elastic Collisions 

In an elastic collision between a projectile A and a target B, the internal 
structures (the potential energies) of A and B do not change. We represent it by 

A+B~A+B (1.3.1) 

with 

(1.3.2) 

and (1.3.3) 

where KA and VA are the kinetic and the potential energies, respectively, of the 
projectile A before the collision. Due to the collision they change to K~ and V~, 

respectively. KB, VB, K~, and V~ are similar quantities for the target B. 
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Use of Eq. (1.3.3) in (1.3.2) yields 

(1.3.4) 

i.e., along with Er in an elastic collision, the total kinetic energy is also con­
served. If in such a collision, A loses L1K kinetic energy then B gains the same 
amount of kinetic energy. The reaction 

e+H(Is) -H+ H(Is) (1.3.5) 

where H(ls) represents a hydrogen atom in its ground state and e is an electron, is 
an example of an elastic collision. The hydrogen atom continues to be in the 
ground state after the collision. If the relative energy of the electron with respect 
to the atom is E, then in the collision the electron loses approximately 2mEIM of 
its kinetic energy, where m and M are the masses of the electron and the hydrogen 
atom, respectively (see Problem 1.9). This energy is taken up by the hydrogen 
atom and its kinetic energy increases by that amount. The well-known Rayleigh 
scattering is another example of an elastic collision between photons and atoms. 

1.3.2 Inelastic Collisions 

In an inelastic collision the internal energy of at least one of the colliding 
partners changes. The collision 

A+B~A+B* (1.3.6) 

is an example of an inelastic collision. The asterisk on B indicates that it is an 
excited atom, and V~ is greater than VB. The reverse of (1.3.6), in which B* is de­
excited to B, is also an inelastic collision. However, in this case the potential 
energy is converted into kinetic energy. Such collisions are also known as super­
elastic collisions. In the inelastic collision 

e+ H(ls) ~ e+ H(2p) (1.3.7) 

the electron loses kinetic energy equal to E2p -- E19' where En is the eigenenergy of 
the nth state of the hydrogen atom. A hydrogen atom can also be excited from 
its ground state to its 2p state by a photon. However, the energy of the photon 
must be equal to E2p -- EI.. which means that photoexcitation, unlike electron 
impact excitation, is a resonant process. 

Raman scattering, 

(1.3.8) 
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where h is Planck's constant, is also a photoexcitation, but it is not a resonant 
process; here the photon of the frequency VI is completely absorbed and a new 
photon of frequency V2 is produced. Furthermore, the postcollision de-excitation 
of M* to M produces a line of frequency VI - V2. This line is a characteristic line 
of the molecule and does not depend upon VI. A change in VI also changes V2, 

such that VI - V2 remains the same. The collision 

A*+B~A+B* (1.3.9) 

is also an inelastic collision. However, here A' loses its potential energy, 
which is utilized to excite B to B*. The law of conservation of energy requires 
that 

(1.3.10) 

which is an example of the resonant transfer of energy. 
In all the inelastic collisions discussed so far, the atomic particles make 

transitions from one bound state to another bound state. These are called 
bound-bound transitions. However, in the collision 

(1.3.11) 

the initially bound atomic electron goes to a continuum state. Hence, such an 
inelastic collision represents a bound-free transition. Here the atom A is ionized 
by a positron and a free electron is produced. For this reaction to proceed, the 
initial kinetic energy of the positron must be greater than the ionization poten­
tial 1 of the target A. If in the collision, the positron loses energy W, then 

W=I+Ee (1.3.12) 

where Ee is the kinetic energy of the ejected electron. W can vary continuously 
from 1 to E. In the photoionization 

(1.3.13) 

and 

hv =1 +Ee (1.3.14) 

Thus knowledge of hv and e., can be utilized to determine the ioniza­
tion potential of the target atom. This is the basic principle of photoelectron 
spectroscopy. 
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It is also possible that the energy required to ionize B may come from the 
excited atom A*: 

(1.3.15) 

For example, a metastable helium atom on collision with a sodium atom may 
ionize the latter with simultaneous de-excitation of itself: 

(1.3.16) 

Two metastable helium atoms He(23S1), one with MJ= 1 and another MJ= 0, may 
collide with one another to produce a ground state helium atom He(21So), a 
helium ion, and a free electron: 

which is known as the Penning ionization. The reaction 

(1.3.18) 

involving electron (charge) transfer from A to B is another example of an inelas­
tic collision. The atom B* may be in the ground or excited state. Such collisions 
are known as rearrangement collisions. 

1.4 The Total Cross Section 

When an incident beam A collides with targets B, in general, there are both 
elastic and inelastic collisions. Every excited state of the target, having excita­
tion energy Eex :::; E, constitutes an open channel. The elastic channel is always 
an open one. Since there are an infinite number of eigenstates in an atomic target 
there are infinite number of channels (closed + open). Each channel has its own 
differential I(8,cp) and integrated ac cross sections. The total collision cross 
section is defined by 

(1.4.1) 

The symbol S signifies that we sum over the open discrete channels and integrate 
over the open continuum (say, ionizing) channels. In a collision the momentum 
of the projectile changes from tlkj to tlkj and the projectile is removed from its 
initial channel kj • Hence, the total collision cross section aT can be determined 
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FIGURE 1.2 Measurement of the total cross section C1T by a transmission experiment. 

by carrying out a transmission experiment. In such an experiment, shown 
schematically in Fig. 1.2, a beam of monoenergetic particles is allowed to pass 
through a collision chamber C. The intensities of the beam before and after the 
passage through C are measured. Let these intensities be 10 and I; then accord­
ing to Beart's law, 

(1.4.2) 

where no is the number density of the targets in the chamber C whose length is 
I. From the above relation 

1 (/0) (]T =-In -
nol 1 

(1.4.3) 

1.5 Applications of Collision Cross Sections 

Cross sections for collisions between projectiles such as photons, electrons, 
and protons with various atoms and molecules find their applications in a number 
of fields, including astrophysics, space physics, plasma physics, fusion, lasers, 
radiation physics, mass spectrometry, chemical reactions, and biological science. 
Due to collisions the atoms are excited. After a short interval (equal to their life­
time), these excited atoms decay to their low-lying states and emit characteristic 
electromagnetic radiation. Most of astrophysics is based on interpretation of the 
spectra of radiation reaching earth from outer space. In our own upper atmos­
phere, this radiation produces fluorescence, known as day or night air glow. 
During magnetic storms, a large number of charged particles reach the earth's 
magnetic poles and excite atmospheric gases. Their de-excitation produces a 
bright glow called aurora. Measurements of the collision cross sections and 
their theoretical evaluation have greatly increased our knowledge of microparti­
c1es. For example, in the famous Rutherford scattering experiment, an analysis 
of the differential cross sections led Rutherford to conclude that all the positive 
charges of an atom are concentrated in a very small space, which we now know 
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as the nucleus, and that a large empty space in the atom is available for the move­
ment of the electrons. Similarly, the study of inelastic collisions of photons with 
molecules (Raman scattering) has enabled us to determine rotational and vibra­
tional structures even of homonuclear molecules. 

In this energy-hungry world there is a concentrated effort to harness the 
fusion process for the purpose of obtaining a virtually limitless and relatively 
noncontaminating energy source. Research on controlled thermonuclear reactions 
also requires knowledge of thousands of atomic collision cross sections. Colli­
sion cross sections are also required in the monitoring of energy deposition by 
incident particles in medical applications. Photoionization cross sections control 
the temperature of corona. The formation of the ionic layers in our upper atmos­
phere is also due to collision processes. Thus atomic collisions playa very impor­
tant role in our day-to-day life. For more information on the application of 
collision cross sections see Massey et al. (1969), Christophorou (1971), Fliescher 
et al. (1975), Dalgarno (1979), and Lindinger and Howorka (1985). 

1.6 Laboratory and Center-oj-Mass Systems 

Collision cross sections are measured in laboratories, where the targets are 
at rest and the projectiles move. However, it is more convenient to calculate the 
cross sections in the center-of-mass frarne of reference, in which the center of 
mass of the system (projectile plus target) is always at rest. In such a frame, 
before the collision both the projectile and the target move toward center of mass 
(CM) and after the collision, both move away from the CM in such a way that 
the CM is always at rest. As expected, the value of the differential cross section 
h(8L,q,L), measured in the laboratory frame of reference, is different from 
1c(8c,q,c), calculated in the CM frame. In order to compare experiment with 
theory it is necessary to find a relation between h(8L,q,L) and 1c(8c,q,c). 

Figure 1.3( a) shows a collision between two particles of masses rnA and rnB 
in the laboratory frame of reference (LF). Before the collision, the projectile A 
of mass rnA, moves toward the target B (mass rnB) with velocity CA' Since B is at 
rest, the CM of the system also moves toward B with velocity VCM = rnACA/ 
(rnA + rnB) . After the collision, the projectile is scattered in the direction (8L,q,d 
with velocity C~ and the target recoils in some other direction. The same colli­
sion as seen in the CM frame of reference is shown in Fig. l.3(b). Before the 
collision rnA and rnB move toward each other with velocities and VA and VB, 
respectively. After the collision the projectile is scattered in the direction (8c,q,c) 
with velocity ~. Since in this frame CM is always at rest, after the collision the 
target moves in a direction opposite to that of the projectile. The vector relation­
ship between the different velocities is shown in Fig. 1.3(c). 
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VCM 
~ 

M 

(b) 

VCM 

(c) 
FIGURE 1.3 Collision of two particles A and B: (a) in the laboratory frame, (b) in the CM frame, 

(c) vector relationship between C~ and VCM, and V~. 
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Now 

Equating their z components we get 

c~ coslh = VCM + V; cos9c 

Similarly by equating the x and y components we get 

and 

Thus we obtain 

where 

II sin9c 
tan UL = --"-­

cos9c+a 

Chapter 1 

0·6.1) 

(1.6.2) 

(1.6.3) 

(1.6.4) 

(1.6.5) 

(1.6.6) 

In the laboratory frame, the number of projectiles scattered in the direc­
tion (9L,q,L), in solid angle dD( 9L,q,L) is proportional to h( 9L,q,L)dD( 9L,q,L)' The 
same quantity in the eM frame is proportional to Ic(9c,q,ddD(9c,q,c). Hence, by 
definition 

or 

(1.6.7) 

because f/JL= f/Jc. From (1.6.5), 

(1.6.8) 
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where Ji = cos 8e, so 

(1.6.9) 

and 

( 2 )3/2 
I (8 11.) = 1+ 2Jia + a I (8 11.) 

L L,,!, 11 + Jial e e,,!, 
(1.6.10) 

In the above equation the mod value of 1 + acos8e is taken to keep h(8L,cfJd 
always positive. Equation (1.6.5) shows that for a < 1, 8L increases from 0 to 1r 

as 8e increases from 0 to 1r. However, for a= 1, we obtain fA = 8d2. Thus as 8e 
increases from 0 to 1r the laboratory angle 8L increases only from 0 to 1r/2, i.e., 
no particle is scattered in the backward hemisphere in the laboratory, and in this 
case (1.6.10) reduces to 

(1.6.11) 

with 

(1.6.12) 

For a> 1, 8L = 0 at 8e = 0 and increases with 8e, but reaches a maximum value 
of sin-lOla) for 8e = cos-I(-lIa). A further increase in 8e decreases 8L and at 
8e = 1r, 8L = O. As far as the total cross sections Ch and eTe are concerned, they 
depend on the total number of particles scattered in the whole space. These 
numbers are the same in both frames of reference, and we have eTL = eTe. 

The initial kinetic energy of the system in the L frame is 

(1.6.13) 

The initial and the final kinetic energies in the frame are given by 

(1.6.14) 

and 

(K) ~ V'2 ~ V,2 
f e = 2 rnA A + 2 rnB 8 (1.6.15) 
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respectively. We also have 

(1.6.16) 

Hence, (1.6.14) changes to 

(1.6.17) 

where M = mA + mB. Similarly, 

(1.6.18) 

We also have 

(1.6.19) 

and 

(1.6.20) 

So that (1.6.19) reduces to 

(1.6.21) 

Equating (1.6.17) and (1.6.21), we get 

(1.6.22) 

Suppose owing to collision the kinetic energy of the system changes by till; then 

or 

[
till ]1/2 

V; = VA 1 + (K;)c ( 1.6.23) 

where we have used (1.6.17) and (1.6.18). Putting (1.6.22) and (1.6.23) into 
(1.6.6), we obtain 
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(1.6.24) 

If !ill is positive, i.e., if the reaction is exothermic, then a collision is always 
possible. However, for endothermic reactions (negative values of !ill) the colli­
sion is physically possible only of (K;)c ~ I !ill I. Hence, l!illl is the threshold of 
the reaction in the eM frame. To obtain the value of the !ill in the L frame we 
use (1.6.20) and (1.6.21) and replace (Kj)c by l!illl in (1.6.21). Thus we get 

(1.6.25) 

where 1!illIL = f mA c1 is the threshold energy in the L frame with CA as the thresh­
old velocity of the projectile in the same frame. Equation (1.6.24) shows that for 
mB » mA, a is very small. So that from (1.6.5) we get OL = Oc and I(Oc,cp) = 
I(Oc,cp), i.e., there is hardly any difference in the results obtained in the eM and 
L frames. 

For elastic scattering, !ill = 0 and (Kj)c = (Kf)c and from 0.6.24), a = m~mB' 
Further, from (1.6.14) to (1.6.18) ~ = VA and ~ = VB, i.e., in elastic collisions 
the speeds of the particles in the eM frame do not change. 

Questions and Problems 

1.1 Distinguish among elastic, inelastic, and superelastic collisions. Describe 
briefly various types of inelastic collisions. 

1.2 An electron with an energy of 12.5eV is scattered by a ground state hydro­
gen atom. What is the highest possible principal quantum number n of the atom 
after the collision? If the energy of the incident electron is raised to 50eV what 
are the possible values of the energy of the electron ejected from the atom? 

1.3 What is Penning ionization? A metastable helium atom in the 23S1 state, 
having thermal energy, collides with a ground state lithium atom and an electron 
is ejected. If the ionization potential of the lithium atom is 5.37 e V, find the energy 
of the ejected electron in e V. The energy of the excitation of the metastable helium 
atom is 5.985 x 106m-1 

1.4 In a pure rotational Raman scattering a hydrogen molecule is excited from 
the j = 0 to the j = 2 rotational level by light of 6 x 10-7 m wavelength. If the 
internuclear distance of the hydrogen molecule is 0.741 x 1O-lO m, find the wave­
length of the scattered radiation. 
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1.5 A deuteron is elastically scattered by a stationary helium atom. The angle of 
scattering in the CM frame is 60°. Find the scattering angle in the laboratory 
frame. 

1.6 Calculate the maximum angle of scattering in the laboratory frame for elastic 
scattering of deuterons by stationary hydrogen atoms. 

1.7 Prove that for mA > mB the maximum value of OLis sin-lOla) and that it 
occurs for Oc= cos-I(-l/a). 

1.8 The threshold of excitation of the hydrogen atoms is t Rydberg. What should 
be the minimum energy and velocity of a proton so that it can excite the atom? 

1.9 A structureless particle A of mass mA and energy E collides with a station­
ary particle B of mass mB. Show that the energy transferred from A to B in the 
CM frame is zero but that in the L frame it is given by 

where Oc is the angle of scattering in the CM frame. 

1.10 If in the above problem the particle A recoils in the backward direction in 
the laboratory frame, i.e., OL = fr, show that the energy of the recoiled particle is 
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Motion of a Free Microparticle 

2.1 Introduction 

In a two-body collision, two free particles approach each other from a big 
distance, interact with one another for a brief period of time, and then separate 
again, moving far away from one another. For a proper understanding of this 
collision process, we start with a study of the motion of a free particle. The 
changes in the characteristics of a free particle as a result of an interaction 
(collision) are considered in the next chapter. Since microparticles are involved, 
in atomic collisions, we need quantum mechanics for our study. 

In this chapter we shall also discuss a number of special mathematical func­
tions that are employed to represent a free particle. 

2.2 Energy and Linear Momentum of a Free Particle 

According to classical mechanics, a free particle of mass m moves on a 
straight line with a constant linear momentum p and kinetic energy E (=p2I2m), 
the potential energy being zero. For well-defined p and E the uncertainties IIp 
and fill are zero. Hence, according to the Heisenberg uncertainty principle, 

(2.2.1) 

where h is the Planck's constant divided by 2rc, the uncertainties in the position 
x and the time t will be infinite, i.e., such a particle cannot be localized in space 
and time. Thus in quantum mechanics a straight-line trajectory for a free 
particle does not make any sense and definite values of p and E cannot be 
assigned. 

Fortunately, in atomic collision experiments (see Fig.l.l) the uncertainty 
in the position of the projectile is equal to the width of the slit S, which is larger 

15 
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than the de Broglie wavelength of the projectile by many orders of magnitude. 
Hence, a very small value of flp can satisfy (2.2.1). Further, as the experiment is 
carried out under steady state conditions, a very long time becomes available to 
measure the energy of the projectiles, and as M can also be quite small, single 
values of p and E may be assigned to a microparticie. 

2.3 Wave Function of a Free Particle 

Let lI'k(r, t) be the wave function of a free particle having linear momen­
tum Iik and mass m. The magnitude of k is equal to 21f/)., where A. is the de 
Broglie wavelength of the object. In the nonrelativistic domain, lI'k is the solu­
tion of the following time-dependent SchrOdinger equation: 

(2.3.1) 

where the Hamiltonian operator H is equal to -It/2m times the Laplacian 
operator V2• Under steady state conditions the energy E is a constant of motion 
and 'Pir, t) can be factored as 

(2.3.2) 

Putting (2.3.2) into (2.3.1) we find that the space wave function lI'k(r) satisfies 
the following time-independent Schrodinger equation: 

(2.3.3) 

or 

(2.3.4) 

It is easy to see that the solution of the above equation is 

(2.3.5) 

where A is the normalization constant. A solution of (2.3.3) is possible for all real 
values of the eigenenergy E, which varies in a continuous manner, and lI'ir) are 
continuum eigenfunctions. The wave given by (2.3.5) propagates in the direction 
of k and its wave fronts are the planes perpendicular to k, so these waves are 
known as plane waves. 
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According to the probabilistic concept of Born, the probability of finding 
the object at (r, t) in the elementary volume dr is given by 

(2.3.6) 

Using (2.3.2) in the above equation gives 

(2.3.7) 

Thus dP is independent of time. This is expected because the state represented 
by (2.3.5) is a steady state. To obtain the value of the normalization constant A 
one is required to integrate (2.3.7) over the whole space and equate the result to 
1, because the probability of finding the particle in the whole space is unity. 
However, it is evident from (2.3.5) and (2.3.7) that JdP is infinite. Hence, the 
continuum wave functions cannot be normalized in this way. They are un­
normalizable wave functions, but for the quantitative calculation, we have to use 
normalized wave functions. 

2.4 Normalization of Plane Waves 

The following two types of normalization of plane waves are employed: 

(a) Box Normalization 

In box normalization it is assumed that the particle is confined to a cubical 
box of length L. Due to this confinement, 'Pir) vanishes at the edges of the box. 
Under such a condition, k does not vary in a continuous manner but takes dis­
crete values given by 

(2.4.1) 

where nx, ny, and nz are integers (positive as well as negative), but the three 
are not zero simultaneously. The above procedure yields A = L-312• Using this 
normalization we carry out the calculations and finally obtain the limit of the cal­
culated quantity as L -+ 00. 

(b) The Dirac Delta Function Normalization 

The one-dimensional Dirac delta function 8 is defined by 

orders@himanshubook.com



18 Chapter 2 

t5(Z - z') = 0, if Z:t z' (2.4.2a) 

= 00 if z=z 
, 

(2.4.2b) , 

and 

+~ 

f t5(z - z')dz' = 1 

or 

+~ 

f f(z')t5(z - z')dz' = f(z) (2.4.2c) 

provided that z lies in the range of z'. Because of (2.4.2b) it should be understood 
that the Dirac delta function has significance only as part of an integrand and 
never as an end result. It finds its application in the form of (2.4.2c). 

One of the useful representations of the delta function is 

t5(k - k') = _1 7 ei(k-k')x dx 
2n~ 

1. sina(k-k') 
= Im----'----'-

a-->~ n(k -k') 
(2.4.3) 

The function given by the right-hand side of the above equation satisfies (2.4.2). 
Now 

(2.4.4) 

Using (2.4.3) in (2.4.4) we get 

f ",i (r )"'k'(r )dr = AA* (2n)3 t5(k - k') (2.4.5) 

where t5(k - k') is the three-dimensional Dirac delta function. Hence, a Dirac 
delta function normalized plane wave is represented by 

(2.4.6) 

where A is assumed to be real, which satisfies the orthogonality relation (2.4.5). 
The above wave function is subjected to k (wave vector) normalization. We can 
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also have plane waves subjected to p (momentum) normalization. This is given 
by 

(2.4.7) 

For a one-dimensional motion, the energy-normalized plane wave is given by 

(2.4.8) 

We note that whereas If!k(r) is dimensionless, the wave functions If!ir) and If!E(r) 
have dimensions. We shall continue to represent a plane wave by (2.3.5) but shall 
take A = (2nr3/2 whenever required. We also have 

J If!: (r')1f! k (r)dk = _1_ J eik.(r-r') dk 
(2n)3 

= t5(r -r') (2.4.9) 

Thus the wave function If!k(r) also satisfies closure relation (2.4.9). These func­
tions are eigenfunctions of the Hermitian operator _\72 with eigenvalue k? and 
form a complete set. In quantum mechanics, a member of a complete set is 
regarded as a basis vector in a multidimensional Hilbert space. Like the three 
basis vectors i, J, and k, the basis vectors If!k(r), If!K(r), etc. are orthonormal. 
Furthermore, just as we can write 

(2.4.10) 

where ai etc are expansion coefficients, similarly we have 

(2.4.11) 

The expansion coefficient ak is the projection of the vector x(r) over If!(r) in an 
infinite dimensional Hilbert space and is given by 

(2.4.12) 

In the derivation of the above equation, (2.4.5) has been utilized. We further 
obtain 
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or 

f x* (r)x(r )dr = f f f aka:lfIk (r)lfI: (r)dkdk' dr 

= If aka:S(k -k')dkdk' 

Chapter 2 

(2.4.13) 

It is evident from the above equation that just as x(r) is the wave function of the 
object in r space, similarly ak is the wave function of the same object in k space. 
Equation (2.4.12) shows that ak is simply the Fourier transform of x(r). Thus an 
object has different wave functions (representations) in different spaces. 

2.5 Dirac's Bra and Ket Notation 

Dirac invented an extremely compact notation to represent state functions 
and state vectors. In this notation the function Xa(r) is represented by a ket la} 
and its Hermitian adjoint state x~(r) by a bra {al. This notation also gives rise to 
compact representation of the integrals. For example, the following equality 

f "': {r )'" b {r )dr = [f "': (r)", a {r )dr r (2.5.1) 

in Dirac's notation is written as 

(a I b) = (b I a)* (2.5.2) 

The bra {al and the ket Ib} are abstract "bra" and "ket" state vectors in the bra 
and ket spaces, respectively. The names bra and ket come from the word bracket. 
Although bra and ket spaces are different they are related by (2.5.1). These 
abstract vectors can be utilized to obtain wave functions in different representa­
tions. For example, if an object is represented by the abstract vector IlfI} , its wave 
function in the position representation is given by {rllfl} = lfI(r). The complex 
conjugate of lfI, i.e., lfI*(r) is equal to {lfIlr}. Further, if la} are eigenkets of an 
Hermitian operator they form a complete set. 

Thus, 

(2.5.3) 
a 

and 

(2.5.4) 
a 
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Assuming la} to be discrete, we get 

(a'la) = oaa' (2.5.5) 

where oaa' is the Kronecker delta and is 1 for a = a' and 0 for a * a'. Hence, from 
(2.5.3) Ca = (ai'll) and equation (2.5.3) takes the form 

(2.5.6) 
a 

The operator I a}{a I is known as the projection operator because it projects out 
of I",}, the eigenket la}. The above equation also shows that 

Lla}(al=1 (2.5.7) 
a 

If the eigenkets Ir} vary in a continuous manner, then (2.5.5) and (2.5.7) change 
to 

(r'lr) = o(r -r') (2.5.8) 

and 

jlr}(rldr =1 (2.5.9) 

respectively. In the bra and ket notation 

(2.5.10) 

but 

jlk}(kldk = 1 

Hence, 

(2.5Ua) 

Thus we again obtain (2.4.9). If k varies in a discrete manner the integra­
tion of (2.5. 11 a) changes to a summation. Replacing k by a summation index n, 
we have from the above equation 

(2.511b) 
n 

orders@himanshubook.com



22 Chapter 2 

where IJ'n(r) are the members of a complete set. Furthermore, if in a complete 
set n varies in a discrete manner up to a certain term and beyond that it varies in 
a continuous manner (e.g., the complete sets formed by the eigenstates of atoms), 
then (2.5.lla) modifies to 

For atoms, 'l'n(r) and 'l'k(r) represent their bound and ionized states, respectively. 
The kinetic energy of the ejected electron due to ionization is RT(la~, where R 
is the Rydberg energy and ao is the first Bohr radius. The symbol S represents 
summation over the discrete states and integration over the continuum states. As 
Dirac's notation is so compact we shall use it quite often. 

2.6 Partial Wave Expansion of Plane Waves 

For the plane wave given by (2.3.5), k· r = krcos8. Hence, the wave func­
tion 'l'k(r) is independent of the angle cfJ and can be expanded in terms of a com­
plete set having the polar angle 8 as a variable. The Legendre polynomial Pt( cos 8) 
with the positive integer 1 (including 0) represents such a complete set, which 
satisfies the following differential equation (Arfken, 1968): 

(2.6.1) 

where J1 = cos 8. Hence, PI(J1) are eigenfunctions of the Hermitian operator 
dldJ1[(1- p?)dldJ1] with the eigenvalues -1(1 + 1). Their orthogonality and closure 
relation are given by 

+1 2 
J P'(J1)IHJ1)dJ1 = -( -) O//, 
-1 21+ 1 

and 

~ 21 + 1 . 
L-P'(J1)P'(J1') = 0(J1- J1') = 0(8 -8')/sm8 
1=0 2 

respectively. The first few PI (J1) for small values of 1 are given by 

Po(J1) =1 

~ (J1) = + (3J12 -1) 

P4 (J1) =i(35J14 -30J12 +3) 

Po(J1) = J1 

IHJ1)=+(5J12 -3J1) 

IHJ1)=i(63J1 5 -70p? + 15J1) 

(2.6.2) 

(2.6.3) 

(2.6.4) 
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A partial wave expansion of the plane wave in terms of PI (/1) is taken as 

~ 

lfh(r) = Aeikr/L =AL~RIo(k,r)lHJl) (2.6.5) 
1=0 

where AI are the coefficients of expansion and Rio (k,r) is the radial wave func­
tion of the [th component of the plane wave. The subscript 0 indicates that the 
particle is free. In the above equation k is taken as the axis of reference and 
8(= COS-IJl) is the angle between k and r. 

In spherical polar coordinates 

(2.6.6) 

where L2, the square of the angular momentum operator L, is 

2 2{ a [( 2) a ] 1 a2 } L =-1'1 - I-Jl - +----
aJl aJl 1-Jl2 at/J2 

(2.6.7) 

From Eqs. (2.6.7) and (2.6.1) we get 

(2.6.8) 

which shows that the Legendre polynomials are the eigenfunctions of the 
operator L2 with eigenvalues 1(1 + 1)/t. Using (2.6.5), (2.6.6), and (2.6.8) in 
(2.3.4) gives the following differential equation for the radial wave function: 

(2.6.9) 

Let us define Z(kr) = (kr)1I2Rlo(kr); then (2.6.9) changes to 

(2.6.10) 

The above equation is the differential equation for the Bessel function JI+I12(kr) 
of the order I + 1 (Arfken, 1968). This Bessel function is employed to define the 
following two linearly independent spherical Bessel functions: 

(2.6.11) 
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and 

(2.6.12) 

The latter is known as the Neumann function. At small values of x we have 

Xl 
jl(x) ~ (21 1)" (2.6.13) 

x ..... o + .. 

and 

nl(x) ~-
(21-1)!! 

(2.6.14) 
x ..... o XI+1 

where (21 + 1)!! = 1·3·5 ... (21 - 1). (21 + 1). The above equations show that 
j!..x) are regular but nl(x) are irregular at the origin. For large values of x, the 
above functions are given by 

1 
nl(x) ~ --cos(x-ltr/2) 

x---too x 

The first three j!..x) and nl(x) at all the values of x are given by: 

. () sinx 10 x =-­
x 

. () sinx cos x 
11 x =-----

x2 X 

no (x) = _ cos x 
x 

() ( cosx sinx) 
nl x =- --+--

x2 x 

(2.6.15) 

(2.6.16) 

.() (3 1). 3 12 x = --- smx--cosx 
x3 x x 2 

n2(x) = -(~-.!.)cosx-~sinx 
x3 x x 2 

(2.6.17) 

In general RIo(x) is a linear combination of jlx) and nlx). Hence, 

(2.6.18) 

Since Rlo(x) is the radial wave function of an object, it has to be finite everywhere, 
but nlx) diverges at the origin, so hi in (2.6.18) has to be zero at x = O. Since the 
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particle is free, the form of Rlo(x) will not change with x, and hi is zero for all 
values of x. 

Putting (2.6.18) in (2.6.5) and- absorbing al in AI, we get 

1f!k(r) = iLAdl(kr)~(,u) (2.6.19) 
I 

To evaluate the value of the expansion coefficient Al we multiply (2.6.19) by 
Pr(,u) and integrate over ,u. This gives 

H H 

f eikr/l ~,(,u)d,u = LAdl(kr) f ~,(,u)Pt(,u)d,u (2.6.20) 
-1 1-1 

Integration of the left-hand side by parts and the use of the orthogonality rela­
tion for Pl,u) gives 

1 [ikr ()]+1 1 +f1 ikr [d~'(,u)] 2 . ( ) -. - e Jl~,,u -1 --. - e Jl -- d,u =-, -Ark kr (2.6.21) 
lkr lkr -1 d,u 2t + 1 

As the second term on the left-hand side is of the order of r-2, at large r we get 

(2.6.22) 

Equating the coefficients of eilcr on both the sides yields 

Al = (21 + 1)eil"/2 = il (21 + 1) (2.6.23) 

Hence, the partial wave expansion of a plane wave is given by 
~ 

1f!k(r) = A L e(21 + l)jl(kr)~(,u) (2.6.24) 
1=0 

~ 1 
~ ALil(2t+1)-sin(kr-t1r/2)~(,u) 
r-->~ 1=0 kr 

(2.6.25) 

Each partial wave has a well-defined angular momentum, characterized by the 
quantum number t. 

2.7 Spherical Harmonics 

In the expansion given by (2.6.24) the reference axis is along the k axis. If 
we remove this condition the plane wave also becomes a function of the polar 
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angle !p. Thus instead of Pte.]l) we require a complete set that depends on 8 as 
well as on !p. Such a complete set is provided by the spherical harmonics Y Im( fJ, !P), 
where the magnetic quantum number m is an integer and varies from -I to +1 in 
steps of 1. Hence, for a given I there are (21 + 1) spherical harmonics. Like 
the Legendre polynomials, spherical harmonics are also eigenfunctions of the 
operator L2 [given by (2.6.7)] with the same eigenvalues, i.e., l(l + 1)1t. They are 
also eigenfunctions of Lz with eigenvalues mn. Their orthogonality and closure 
relations are given by 

n2n 

f f yt! (8, !P)Yt'm' (8, !P) sin d8 dIP = OIl'Omm' (2.7.1) 
o 0 

and 

(2.7.2) 

For a given I we also have 

+1 

L Yt! (8, !P)YIm (8',q,') = 0(!P = !P') (2.7.3) 
m=-I 

Normalized Ylm(8.!p) are given by 

y; (8 "') = K[(21 + 1) (l_lml)!]1/2 Rlml( 8) imtIJ 
1m ,'I' 4n (l +Iml)! 1 cos e (2.7.4) 

where K = (_1)m for m > 0 and K = 1 for m::;; O. The associated Legendre poly­
nomials p'lml (cos8) are the solutions of 

(2.7.5) 

It is easy to see that p'lml (p,) reduces to P1(j.l) for m = o. 
The first few Y1m(8.!P) are given by: 

Yoo = (4~ )1/2 ( 
5 )1/2 

Y20 = - (3cos2 8 -1) 
16n 

( 3 )1/2 

lIo = 4n cos8 ( 15 )1/2 
. 

1'2±1 = + 8n sin 8 cos8e±'q, 

( 3 )1/2
• . 

lI±1 = + 8n sm 8e±'q, ( 
15 )1/2 

Y = - sin 2 8e±2iI/J 
2±2 32n 

(2.7.6) 
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According to the addition theorem, if (} is the angle between r and k, 
then 

41t' +1 * A 

p,(cos(})=- L llm(r)llm(k) 
21+ 1 m=-I 

Putting this equation into (2.6.24), we get 

1f!k(r) = A41t'L Li1jl(kr)1l:(f).l'/m(k) 
1 m 

(2.7.7) 

(2.7.8) 

In the next chapter we shall examine the changes in 'Pk(r) and its partial 
waves given by (2.6.25) when a microparticle collides (is scattered) with (by) a 
potential field. Those changes will be used to obtain the differential and inte­
grated cross sections. 

Questions and Problems 

2.1 Define the Dirac delta function and show that 

. 1 [(x_a)2] 
o(x - a) = Lim r=- exp 2 

1 .... 0 1-v21t' 21 

2.2 Prove the following relations for the Dirac delta function 

(a) xO(x)=O 

(b) o(ax) = o (x)//a/ for a"# 0 

(c) xo'(x) = -o(x) 

where 0' is the differential of 0 

1 
(d) 0(x2 -a2 )=/2a/[0(x-a)+0(x+a)] for a"#O 

2.3 Verify the relations (2.4.7) and (2.4.8). 

2.4 (a) Show that for a projection operator P 

p2=P 

(b) A 3 X 3 matrix is given by [~ ~ ~J 
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Find the value of a and b so that this matrix represents a projector operator. Show 
that with the proper values of a and b this operator projects a three-dimensional 

veewr (} a tw~dllnensional subspare ID give m 
2.5 Write the matrix element Hk/ in the Dirac bra and ket notation. Show that H 
is a diagonal matrix if Ik} and II} are eigenkets of H. On the other hand, if In} are 
eigenkets of H instead of Ik} and II}, then 

Hk/ = Se.{kln}{nl/} 
• 

where e. are the eigenvalues of the kets In}. Give a physical interpretation of the 
term {nlk}. 

2.6 Use the expressions for P4{J1) and P5(Jl) given by. (2.6.4) and evaluate the 
required integrals to show that 

{Ps (Jl)IPs (Jl)} = fi and (Ps(Jl)I~(Jl)} = 0 

2.7 A function l/f(r) when expanded in the complete set of Ncos6) is given by 

",(r) = 1>/R/(r)11 (cos 6) 
/=0 

Asymptotically, 

and R/(r) ~ cos1Jd/(kr)-sin1J/n/(kr) 
r .... ~ 

where 6 is the angle between k and r. Show that A/= i/ (21 + 1) eiT//. 

2.8 Prove the following recurrence relation for the Legendre polynomials: 

lPt(Jl) = (2/-1)JlI1-1 (Jl) -(/-1)11-2 (Jl) 

2.9 (a) If (6htPI) and (~,cfJ2) are two different directions in spherical polar 
coordinates and 6 is the angle between these two directions, prove the addition 
theorem 

orders@himanshubook.com



Motion of a Free Microparticle 

(b) Use the addition theorem to show that 

where r< is smaller than rl and rz and r> is greater than rl and r2. 

2.10 Evaluate the transition amplitude (If/I(r)lzllf/2(r)) where 

3/2 

If/I(r) = 2L:) exp(-zrjao)Yoo(r) and 
n 

29 
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3 

Collision of a Free Particle with 
a Potential Field 

3.1 Introduction 

In the previous chapter we discussed the motion of a free particle. Now we 
consider the collision (scattering) of a free particle with (by) a potential field. In 
the presence of a potential, Eq. (2.3.3) changes to (Burke, 1977) 

(3.1.1) 

where V(r) is the potential energy of the particle. In the asymptotic region, where 
V(r) = 0, (3.1.1) admits two solutions. One is the plane wave given by (2.3.5) 
and the other is either a spherically outgoing wave exp(ikr) or a spherically 
incoming wave exp(-ikr) havingj{8, qJ)lr as its amplitude. The polar coordinates 
of the scattered particle measured from the center of the field are given by (r, 8, 
qJ), and j{ 8, qJ) is the scattering amplitude. Taking a linear combination of both 
solutions, the wave function of the scattered particle in the asymptotic region is 
given by 

(3.1.2) 

where + and - denote the outgoing and incoming solutions, respectively. We shall 
consider only the outgoing solution and drop the superscript ±. It is easy to verify 
that up to the order of lIr for any arbitrary form ofj{8, qJ), Aj{8, qJ)exp(ikr)lr is 
a solution of (3.1.1) in the region where V(r) = O. Hence, for (3.1.2) to be valid, 
V(r) should fall faster than r-2 in the asymptotic region. Now we proceed to derive 

31 
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a relation between the differential cross section 1(8, cp), a quantity measured by 
the experimentalists, and the scattering amplitude fi. 8, cp), which is calculated by 
the theoreticians. To achieve this we first consider the continuity equation and its 
relationship with the collision cross section. 

3.2 Continuity Equation and Cross Section 

The differential equation for \fI*(r), the complex conjugate of \fI(r) , as 
obtained from (3.1.1) is given by 

[- ;: \7 2 + v* (r}]\fI* (r) = E\fI* (r) (3.2.1) 

Now we multiply (3.1.1) by \fI*(r) and (3.2.1) by \fI(r) from the left and subtract 
the former from the latter to get 

(3.2.2) 

We take V = VR - iV[, where VR and VI are the real and imaginary parts of the 
complex potential. This substitution reduces (3.2.2) to 

(3.2.3) 

or 

(3.2.4) 

where the probability current density c(r) is equal to 

(3.2.5) 

Hence, c(r) is a flux vector and its radial component c(r)· r is given by 

c(r}· r = Re(~",* ~",) 
mr ar (3.2.6) 
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To compute c(r)· r we use 1fI as given by (3.1.2). Thus c(r)· r is the sum of 
three terms. The first term, cl...r)· r, is due to the plane wave, the second, co· r, 
is due to the outgoing spherical wave, and the third, Cin(r)· T, arises due to the 
interference between the plane and spherical waves. These terms are given by 

c/·r=vAA* cosO (3.2.7) 

Co ·r=vAA* If~~)12 +0(:3) (3.2.8) 

ein· r = Re[ AA* v( f~Q) eikr(I-cos9) + f*;.Q) e-ikr(l-cos9) COSO)] + o( :2) (3.2.9) 

Equation (3.2.9) shows that at oblique angles (O:t; 0) and large r, Cin· r oscillates 
very rapidly as a function of r. Furthermore, due to collimating slits in any exper­
imental arrangement (see Fig. 1.1), the contribution of the incident beam to 
c(r)· r in the oblique direction is also negligibly small. Thus for O:t; 0, we take 
the outgoing flux equal to Co· r. 

Suppose the detector, which is at a distance r from the scattering center, 
makes a solid angle dQ with the center. Then !lN, the number of particles 
entering into the detector D per unit time is given by 

(3.2.10) 

The incidence flux F is 

or 

F=AA*v 

Hence, from (1.2.1) with n = 1 and (3.2.8) and (3.2.10), we get 

1(0, qJ)dQ = If(Qi dQ (3.2.11) 

The integrated cross section is obtained by integrating (3.2.11) over the angles 0 
and qJ. Since for atomic collisions it yields the elastic cross section, we shall 
denote it by Geh where 
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(3.2.12) 

Let us now integrate (3.2.4) over the volume and use Green's theorem on 
the first term. Thus we get 

(3.2.13) 

The first term of the above equation is the net number of particles leaving the 
surface of a sphere of radius r per unit time. It is not equal to zero but is equal 
to the negative of the second term. Hence, in the scattering of a beam by a 
complex potential, a certain number of particles are absorbed, Le., there is a sink, 
owing to the fact that we have taken V = VR - iV/o whereas V = VR + iVI would 
have produced a source. The incident beam provides the particles, which are 
scattered and absorbed. For a real potential, the second term is zero and the par­
ticles are conserved. In this case there are no sources or sinks for the particles, 
i.e., there is neither creation nor absorption of particles but the incident beam 
provides the scattered particles. Now in (3.2.13) we replace c(r)·,. by its three 
components and obtain 

r2 f cdd.Q+ r2 f co·,.d.Q+ r2 f cin.,.d.Q+i f ~llI'l2 dr = 0 (3.2.14) 

It can be shown (Joachain, 1987) that 

(3.2.15) 

where CD is an infinitesimal solid angle around the forward direction. As noted 
earlier, Cin·" does not contribute in other directions. Using (3.2.7), (3.2.8), and 
(3.2.15) in (3.2.14), we get 

or 

2 1 f 2 4n 
(Jel+---* ~llI'l dr=-Im!(O=O) 

Ii vAA k 
(3.2.17) 

Since the second term is due to absorption, we denote it by (Jab, the absorption 
cross section. Then the total cross section (Jr is given by 

orders@himanshubook.com



Collision of a Free Particle with a Potential Field 35 

(3.2.18) 

The above equation, known as the optical theorem, is a direct consequence of 
the conservation of the particles. For a real potential it reduces to 

(3.2.19) 

Obviously, <Tel as obtained from (3.2.18) is different from that given by (3.2.19) 
even for the same VR• As a matter of fact, the difference between the two repre­
sents the effect of absorption on the elastic scattering. In atomic collisions, we 
have a number of inelastic channels apart from the elastic channel and, in general, 
elastic and inelastic collisions take place simultaneously. Hence, to take into 
account the effect of the inelastic processes on the elastic cross section, we use 
a model complex interaction potential. The complex potential should be such that 
<Tab is equal to the sum of all the inelastic cross sections. 

3.3 Relationship between the Scattering Amplitude and 
the Scattered Wave Function 

Equation (3.2.11) shows that we need.f{8, qJ) to calculate 1(8, qJ). In this 
section we derive a relationship between.f{8, qJ) and 1I'Hr). We rewrite (3.1.1) as 

(3.3.1) 

where the reduced interaction potential U(r) is equal to (2m11l2)V(r) and has the 
dimension C 2• The above equation is an inhomogeneous differential equation. 
The corresponding integral equation for the outgoing scattered wave 1I't(r) is 
given by 

1I':(r) = qJk(r) + f Go(r, r')U(r')1I':(r')dr' (3.3.2) 

where ((Jk(r) is the solution of (3.3.1) when U(r) = 0; i.e., it is identical to the 
plane wave Aeik." given by (2.3.5). The above integral equation is known as the 
Lippmann-Schwinger equation and in symbolic form is written as 

(3.3.3) 

The free-particle Green's function GO satisfies the following differential 
equation: 
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(\7 2 +k2 )Go(r, r') = o(r -r') (3.3.4) 

and has the solution 

1 eiklr-r'l 

Go(r, r') = - 41l' It -r'l (3.3.5) 

Its integral representation is given by 

1 ik'· (r-r') 

Go(r,r')=---3 lim J,: 2 • dk' 
(21l') £--+0+ k - k -ze 

(3.3.6) 

= -lim f Ik')(k'i dk' 
£--+0+ kl2 - k2 - ie 

(3.3.7) 

where, in Dirac's notation, 

(3.3.8) 

Now, 

1/2 r·r { 2 ')1/2 
Ir-r'l =(r2 -2r·r' +r'2) "" 1-7 for large r. 

Hence, 

I 'I A, r-r ""r-r'r+'" (3.3.9) 

where r is a unit vector in the direction of the scattered particle. To evaluate the 
phase term of GO at large r, we take the first two terms of (3.3.9), but for the 
amplitude, Ir - r'l is taken as r. Then (3.3.5) reduces to 

I -iki'·,' 

G+(') e ikr o r,r - ----e 
H~ 41l' r 

(3.3.10) 

The final momentum vector kf is equal to kr, whereas the initial momentum 
vector is k i• Putting (3.3.10) into (3.3.2), we get 

(3.3.11) 
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Comparing (3.3.11) with (3.1.2), we obtain 

fee, qJ) = __ 1_ fe -ikj"'U(r )If/k+ (r )dr 
4nA I 

or, in bra and ket notation, 

(3.3.12) 

where we have taken (q>ktlr) = A*e-1k!", and A = (2nr312• The termjjiiO, 1'1') rep­
resents the scattering amplitude for the scattering of the particle from the initial 
state i to the final state f Equation (3.3.12) may be rewritten as 

(3.3.13) 

where the transition matrix element from the initial state Iki ) to the final state 
Ik f) is given by 

(3.3.14) 

Equation (3.3.12) shows that to calculatej(O, 1'1') and, hence, 1(0,1'1') and cr, we 
must have If/t,(r) in the region where U(r) is nonzero. On the other hand, (3.1.2) 
shows that to calculatej(O, 1'1') we need the asymptotic value of ",t,(r). These two 
equations have given rise to two different approaches, namely the integral and 
differential approaches, to evaluate j( 0, 1'1'). 

3.4 The Integral Approach 

In the integral approach, the Lippmann-Schwinger equation, given by 
(3.3.2) or (3.3.3), is solved for If/t,(r) by the iterative method. In these equations, 
the second term represents the distortion of the initial wave function If/dr) by 
U(r). For convenience we represent the initial wave by "'o(r). The distorted part 
of the wave function is given by 

If/ aCr) = f Go (r, r') U(r')lf/~ (r')d r' (3.4.1) 

The above equation is solved by iteration. We replace ",t,(r') in this equation 
by the initial wave function If/o(r'), which is the zeroth-order solution of the 
Lippmann-Schwinger integral equation. This gives the first-order correction to 

If/o(r) and is equal to 
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l/h (r) = f GHr, r')U(r')"'o(r')dr' (3.4.2) 

A replacement of ",:'(r') by "'I(r') in (3.4.1) yields the second-order correction 
to "'o(r): 

"'2 (r) = f GHr, r')U(r')"'1 (r')dr' 

Use of (3.4.2) in (3.4.3) gives 

"'2 (r) = f f G~(r, r')U(r')G~(r', r")U(r")"'o(r")dr'dr" 

Symbolically, 

2 "'2 = G~UG~U",o = (G~U) "'0 
Hence, in general, 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

where n is a positive integer. Adding all the corrections, we obtain the following 
series: 

"'~ = "'0 + "'1 + "'2 + ... + '" n + ... 

= i(GtjU)·-I",o 
.:1 

We may also write 

where 

(;+ = G(j + ~u~ + G(jUG(jU~ + ... 

(3.4.7) 

(3.4.8) 

(3.4.9) 

is the full Green's function. The series given by (3.4.7) is known as the Born 
series for the scattered wave function ",;'(r). The use of this series in (3.3.12) 
gives 

f/l(8, cp) = -2rc2 ( CPktlUI ~(GtjU)n-l",o) 
= fBI + lB2 + lB3 + ... + lBn + ... (3.4.10) 
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where the nth Born term is given by 

(3.4.11) 

The nth Born scattering amplitude is the sum of the first n terms of the Born 
series given by (3.4.10). Hence, 

n 

fBn = I,iBP (3.4.12) 
p:J 

By our definition the first Born term and the first Born scattering ampli­
tude are the same. We also note that except for fBIo all the Born terms involve the 
reduced interaction energy more than once and hence represent multiple scatter­
ing terms. For example, the second Born term 

iB2 (k" k;) = -2rr2 J CPt, (r )U(r )G(j (r, r')U(r')lf/ ° (r')drdr' (3.4.13) 

involves U twice, and hence is a double scattering term. It is interesting to 
visualize i B2 due to the following processes: The incident wave If/o(r') interacts 
with the potential at r' and is converted into a new wave given by U(r')lf/o(r'). 
This wave is propagated to r by the Green's function propagator GQ(r, r'). Since 
r' is any point in the space, the wave function of the object at r is given by 
IG(j(r, r)U(r')lf/o(r')dr'. This object at r interacts again with U to become 

U(r) J G(j (r,r')U(r')lf/o (r')dr' 

Now, to obtain the probability amplitude of finding the object in the final state, 
f, we take the overlap of If/kf(r) with the above wave function. Again r can be 
anywhere in space; hence, the resultant expression is integrated over r and we 
get (3.4.13). Using (3.3.7) in (3.4.13), we get 

(3.4.14) 

The above equation can be represented by a simple Feynman diagram, shown in 
Fig. 3.1, which can be interpreted as follows. The object in the initial state Ik;) 
collides with U and goes to an intermediate state Ik). This intermediate state again 
collides with U and goes to the final state Ik,}. Although in the steady state 
the final energy of the system must be equal to its initial energy, in the interme­
diate processes such as Ik";) ~ Ik) or Ik) ~ Ik, ), the energy need not be conserved. 
Hence, there are an infinite number of intermediate states. To include contribu-
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FIGURE 3.1 Feynman diagram for the second Born scattering term. 

tions from all the intermediate states, equation (3.4.14) involves integra­
tion over k. 

Let us now put 11ft; as given by (3.3.2) into (3.3.12). This gives 

(3.4.15) 

Putting the integral expression of G6 from (3.3.7) into the above equation, we get 

or 

The above equation is known as the Fredholm integral equation, and can also be 
employed to generate the Born series. It can be shown that the Born series con­
verges for a repulsive potential. It also converges for an attractive potential pro­
vided that the potential field does not support any bound state. 

In principle, j(kj, ki) can be calculated correct to any order. However, with 
an increase in n the difficulties in the evaluation of J Bn increase rapidly. In most 
cases calculations are limited to fBi and f B2, which we consider now. 

3.5 The First Born Approximation 

The first Born approximation (FBA) is the simplest but one of the most 
celebrated approximations of collision theory. Almost all the investigations start 
from the FBA, which is given by 

(3.5.1) 
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Hence, it completely neglects the distortion of the incident wave by the inter­
acting potential. Let us represent the change in the momentum vector of the 
incident particle due to collision by K; then 

(3.5.2) 

For elastic scattering Iki I = Ik t I = k; hence, 

K = 2ksin(9/2) (3.5.3) 

where 9 is the scattering angle. Using plane waves for the initial and final states 
and (3.5.2) in (3.5.1), we get 

fBl(K)= __ l feiK.rU(r)dr 
4n 

(3.5.4) 

where we have taken A = (2nr312• It is useful to note some of the characteristics 
of the FBA. First of all, (3.5.4) shows that fBI depends only on K(= ki - kt) and 
not on k i and kt individually. Secondly,fBI(K) is simply the Fourier transform of 
the reduced interaction energy U(r}. Furthermore, due to the oscillation of the 
phase term exp(iK·r} with r, the contributions of the integrand to the integral 
from the different regions of r are positive as well as negative. However, in the 
forward direction K = O. Hence, the contributions fro~ all the different regions 
of r are in phase and add up. Thus fBI(O} is a maximum. With an increase in K 
the cancellation starts andfBI(K) falls with K. 

To proceed further, let us assume that the interaction potential is spheri­
cally symmetric (central); then U(r} is equal to U(r} and it does not depend upon 
the polar coordinates of r. Taking K as the reference axis and integrating over 
the polar coordinate cp, we get 

(3.5.5) 

where J1 is cos 9, 9 being the angle between K and r. Integration over J1 yields 

fBI (K) = - ~ f sin(Kr)U(r)rdr (3.5.6) 

Any further evaluation of fBI requires knowledge of U(r}. Let us take 
the interaction potential to be a screened Coulomb (Yukawa) potential given 
by 
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Ur=---e () 2m( ze2
) -itr 

li 2 r 
(3.5.7) 

where ;t is the screening parameter and e is the electronic charge. Then 

fBI (K) = ~ j sin(Kr)e-ilr dr 
Ka 

where a = li2/Zme2• To evaluate (3.5.8) we note that 

~ ~ , 
j sin(Kr)e-ilr rndr = Imje-r(it-UOrndr = 1m n. 
o 0 (;t - iK)n+1 

where 1m F(x) is the imaginary part of F(x). 
Hence, 

and 

(3.5.8) 

(3.5.9) 

(3.5.10) 

(3.5.11) 

Figure 3.2 shows IBI(Ka) as a function of Ka for Aa = 1. It is evident that IBI(Ka) 
falls monotonically with an increase in Ka. We also note that for a real interac­
tion potential,fBJ is purely real. Now, since from (3.5.3) 

KdK = Ji2 sin 8d8 (3.5.12) 

We get from (1.2.2) 

2k 

BI 2ft j () 
Gel =-2 IBI K KdK 

k 0 
(3.5.13) 

With the help of (3.5.11) we get 

BI 16ft 
Gel = ;t2a2(4k 2 +A,2) (3.5.14) 

If we consider a pure Coulomb interaction, then ;t = 0 and 
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FBA 

3 

2 

1 

o 3 
Ka 

FIGURE 3.2 Variation of the differential cross section with Ka in the first Born approximation for 
the scattering of a particle by a screened Coulomb potential with All = 1. 

or 

4 
I Bl (K)=-4-2 

Ka 

(3.5.15) 

orders@himanshubook.com



44 Chapter 3 

Thus the differential cross section diverges in the forward direction and ~l also 
tends to infinity. It should be noted that (3.5.15) is the Rutherford scattering 
formula for the scattering of electrons by a nucleus of charge Ze. 

Validity of the First Born Approximation. Since the FBA neglects distor­
tion of the plane wave, it is expected to be valid for 1'1'1(0)1/1'1'0(0)1((1. We have 
taken r = 0 because the correction to 'l'o(r) is expected to be largest at the origin. 
Now 

'l'1«r» = f Go(r,r')U(r')'I'o(r')dr'/'I'o(r) 
'1'0 r 

(3.5.16) 

Using (3.3.5) at r = 0 and taking U(r') to be spherically symmetric, we get 

(0) 1 ~+I 
'1'1 ( ) = --f f exp(ik r')U(r')r' exp(ik r'Jl)dJl dr' 
'1'0 0 2 0-1 

or 

1'1'1(0)1 =_1 If~ U(r)(e2ikr -1)dr l 
1'1'0(0)1 2k 0 

(3.5.17) 

Hence, for the FBA to be valid we should have 

_1 II U(r)(e2ikr -1))((1 
2k 0 '1 (3.5.18) 

Thus the FBA, given by (3.5.1), is a weak potential approximation whose 
validity in the nonrelativistic domain increases with an increase in the projec­
tile's energy. Since for a real potential fBI is purely real, it does not satisfy the 
optical theorem. 

3.6 The Second Born Approximation 

From (3.4.17) we get for the second Born term 

Again taking U(r) as given by (3.5.7), i.e., Yukawa potential, we get 
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(3.6.2) 

where K, = k' - k" K2 = k i - k', and the expression for fBi is taken from (3.5.10). 
The above integral is evaluated using Dalitz's technique (Joachain, 1987) and 
we get 

1B2(k" k i ) = Re 1B2(k" k i )+iIm1B2(k"ki ) 

where the real part is 

and the imaginary part is given by 

Im1B2(k" ki )=_2_ln[[A4 +k2(4A2 +K2)]l/2 +kK] 
Ka2 [A4 +e(4A2 + K2)]l/2 -kK 

1 
x --------.:-

[A4 +k2(4A2 + K2)]'/2 
(3.6.4) 

The above equation shows that 182 is complex. This is true for all the higher 
Born terms. All of them partially include the effect of the distortion of the plane 
wave. Furthermore, using the optical theorem with f 82, we get 

(3.6.5) 

which is equal to ~ll. Hence, the second Born term satisfies the optical theorem. 
Similarly, it can be shown that 

or 

(3.6.6) 

orders@himanshubook.com



46 Chapter 3 

3.7 The Schwinger Variational Principle 

Let us go back to (3.3.12). If instead of the outgoing waves we consider 
the incoming waves, then (3.3.12) changes to 

(3.7.1) 

where the incoming scattered wave in the final channel, as given by the 
Lippmann-Schwinger equation, is 

(3.7.2) 

The use of the above equation in (3.3.12) yields a third expression for f(O, rp), 
which given by 

(3.7.3) 

All the above three forms off given by (3.3.12), (3.7.1), and (3.7.3) combine to 
yield 

The scattering amplitude given by Eq. (3.7.4) is still exact but, as shown 
below, in addition [f] is also stationary with respect to any arbitrary variation of 
either I'I'~) or ('I'kti- The above equation is known as the bilinear form of the 
Schwinger variational principle. A variation of I'I'~) yields 

(3.7.5) 

Now from (3.7.2) 

Hence, c5[f] is equal to zero. Similarly we can show that [f] is stationary with 
respect to any arbitrary variation of ('I'kr I. 

Let us now replace I'I'~) and ('Ilk, I by the trial wave functions I'I'~), = al'l'~ ) 
and ('I'k,l, = b('I'k, I, where a and b are variational parameters. Then equating 
d[f]/Ja and d[f]/ab to zero, we obtain 

b = {rpk, IUI'I'~ } 
{'Ilk, Iu - UG6 UI'I'~ } 

(3.7.6a) 
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and 

(3.7.6b) 

Hence, 

(3.7.7) 

The above equation gives the exact scattering amplitude as a fraction. We now 
approximate IVI~) and (Vlkl I by 

IVI~)= ~(GOUtlpk;) and (Vlk/l= ~(rpkfI(GOUt-1 
Then, 

or 

(3.7.8) 

where, I, m, n, and p are integers andfHi is the ith Born scattering amplitude. For 
n = p = 1, we get 

[ E ] _ fBlfBl 
Jll - -

fBl - fB2 

3.8 The Eikonal Approximation 

(3.7.9) 

In the previous section we obtained a Born series for Vlt(r). However, eval­
uation of the higher Born terms is very difficult. In this section we discuss the 
eikonal approximation, which gives VlHr) in a closed form involving a one­
dimensional integral with the reduced interaction potential energy U as the inte­
grand. The eikonal approximation assumes that the potential energy changes very 
slowly and, hence, the local momentum {2m[E - V(r)]} 1/2 is practically constant 
over many de Broglie wavelengths of the projectile. Under the above condition, 
it is justified to take 
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(3.8.1) 

Now we rewrite (3.3.6) as 

(3.8.2) 

where 

R=r-r' (3.8.3) 

and e ~ O. We put p = k - k i in Eq. (3.8.2) to get 

(3.8.4) 

Putting (3.8.1), (3.8.3), and (3.8.4) into (3.3.2), we obtain the following integral 
equation 

ip·R 

q>(r) = 1- (2Jr r3 J 2 e . U(r - R)q>(r - R)dpdR 
p +2p·k; -IE 

(3.8.5) 

Since Uq> is a slowly varying function and eip·R is an oscillating function, 
the major contribution to the above integral comes from small values of p. Hence, 
we neglect p2 in comparison to 2p . k i and take 

ip·R -3J e q>(r) = 1- (21r) . U(r - R)q>(r - R)dpdR 
2p·k; -Ie 

(3.8.6) 

or 

(3.8.7) 

where the linearized Green's function is given by 

iIc;·R ip·R 

GOL(R)=-~J e . dp 
(21r) 2p·ki -IE 

. 1 +00 . 1 +00 . 1 +00 e;P'z 
= _e,k;.R - J e'Pxx dpx - J e,Pyr dPr x - J . dpz (3.8.8) 

21r _ 21r _ 21r _ 2pzk; -IE 

orders@himanshubook.com



Collision of a Free Particle with a Potential Field 49 

with k j as the z-axis. Integration over Px and py yields 

The pz integral has a pole on the imaginary axis at pz = iel2kj • Hence, by 
the Cauchy theorem, 

(3.8.9) 

where 8(Z) is the step function. Thus ~L(R) propagates only along the forward 
direction of the z-axis. Putting (3.8.9) into (3.8.7), we obtain 

cp(r) = 1-_i j U(x, y, z - Z)CP(x, y, z - Z)dZ 
2kj 0 

A change of the variable to z' yields 

• Z 

cp(r) = 1-_I f U(x, y, z')CP(x, y, z')dz' 2kj _ 

The solution to (3.8.10) is given by 

cp(r) = exp[- 2~j 1 U(x, y, Z')dZ'] 

To verify it we note that 

dcp(r) i [d fZ ,] --=--cp(r) - U(x,y,z,)dz 
dz 2kj dz_ 

(3.8.10) 

i ()[fZ dU(x,y,z')d' U( )d(z) U( )d(-OO)] = __ £n r z + x y z -- x y -00 --

2k ." dz "dz' , dz , -
i 

= --cp(r)U(r) 
2kj 

Now integration over z from -00 to z" yields 

. z' 

cp(z") = q,(-oo) - 2~. f U(x, y, z)cp(x, y, z)dz 
'-
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Since tf>(-oo) = 1, the above equation gives (3.8.10). Hence, in the eikonal approx­
imation, the outgoing scattered wave function is given by 

l{f£(r) = AexP[iki.r __ i_ J U(x, y, z')dZ'] 
2ki _ 

(3.8.11) 

It is evident from the above equation that l{fE<r) differs from the plane wave 
only by a phase term and like the plane wave this also does not satisfy the proper 
asymptotic condition (3.1.2). The eikonal approximation assumes that propaga­
tion is in the forward direction. 

Now we use If/rlr) in (3.3.12) to obtain the scattering amplitude in the 
eikonal approximation. With A = (2nr312 we get 

1 f iK'r [i fZ ] !E(8, cp) = -- dre U(r)exp -- U(x, y, z')dz' 
4n 2ki _ 

(3.8.12) 

This differs from!B1 given by (3.5.4) only by a phase term, which shows that the 
FBA takes the exponential term of (3.8.12) equal to unity. This can be satisfied 
only by assuming the potential to be weak and/or E to be high. The phase inte­
gral of (3.8.12) is to be evaluated along the z(kj)-axis. However, we know that 
initially the projectile moves along z direction but after the scattering it moves 
along the direction of k/. Hence, to be more realistic, we integrate along OD (see 
Fig. 3.3), which is the bisector of the angle between k i and k/. For the potential 
(elastic) scattering, OD is perpendicular to K. 

Using the cylindrical coordinate system r = b + ZZ, where b is a two­
dimensional vector on the x-y plane and Z is a unit vector along OD, in 
(3.8.12), we get 

1 - [ . Z ] !E(k/,k;)=- 4nf db 1 dzeiK-bU(b,z)exp - dk 1 U(b,z')dz' (3.8.13) 

because K· z = O. Now let us take 

I(z) = exp[ - ;k 1 U(b, Z')dZ'] 

Then 

dI(z) = _~ I(Z)[J .E:...U(b, z')dz' +U(b, z/(z) -U(b, -00) d(-OO)] 
dz 2k _dz dz dz 

i = - 2k I(z)U(b, z) 
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FIGURE 3.3 In the eikonal approximation the path of integration is taken along OD, which is 
perpendicular to K. 

Hence, 

Ji (k k) - ik Jdb iK·b dI(Z) d 
E t, i - - 27r e dz Z 

= -~ J db eiK-b {exp(i;(b, k)] -I} 
27r 

where the phase; is given by 

1 ..... 
;(b, k) = - 2k L U(b, z)dz 

(3.8.14) 

(3.8.15) 

For a cylindrically symmetric potential U(b, z) = U(b, z); i.e., U is inde­
pendent of the polar angle cp (angle between K and b). Under the above condi­
tion (3.8.14) reduces 

Hence, finally, 

~ 

fE(kt , k;) = -ik J Jo(Kb)[exp(i;)-I]b db (3.8.16) 
o 

where Jo(x) is the zeroth-order Bessel function. We note that for a spherically 
symmetrical potential, the expression for fBI given by (3.5.6) involves only a one­
dimensional integral. But for a cylindrically symmetrical potential, fE given by 
(3.8.16) involves a two-dimensional integral, one over Z, to evaluate the phase 
~, and the other over b. However, fBI is correct only up to first order in the 
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interaction, whereas IE includes all orders of interaction. Hence, the eikonal 
approximation should be regarded as superior to the FBA. It may also be noted 
thatlBI depends only upon K, whereas IE depends upon K and kj • 

Let us now examine whether the eikonal approximation satisfies the optical 
theorem. In the forward direction K = 0 and Jo(O) = 1. Hence, 

IE(8 = 0) = -ik J (ei~ -l)bdb 

Therefore, according to the optical theorem, 

41r 
ael =TIm / d8 =0) 

= -41r J bdb(cos ~-1) (3.8.17) 

From (3.2.12), (3.5.13), and (3.8.16), we also have 

ael = 21r J J (-ik)Jo(Kb)(ej~ -1)bdb J (ik)Jo(Kb')(e-j~ -1)b'db' Kk~K (3.8.18) 

Now using a closure relation for the Bessel functions we get 

(3.8.19) 

Putting (3.8.19) into (3.8.18) and taking ~ to be real, we obtain 

or 

ael = 41r J bdb(1-cos~) (3.8.20) 

The above equation is identical to (3.8.17). Thus the eikonal approximation 
satisfies the optical theorem. In this respect also it is superior to the FBA, which 
does not satisfy optical theorem. 

An expansion of f!~ in the powers of i~ gives the eikonal series 

IE = LiEn (3.8.21) 
n=1 

where the nth eikonal term from (3.8.14) is given by 
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'i 'n-I k 1 J db iK·b]:n 
JEn =z -- e., 

2n n! 

The first eikonal term (same as the first eikonal amplitude) is given by 

or 

fEI(K)= __ l JeiK"U(r)dr 
4n 

S3 

(3.8.22) 

(3.8.23) 

because K is perpendicular to z. A comparison of (3.8.23) and (3.5.4) shows that 
for Z perpendicular to K, the fEI is identically equal to fBI. However, the higher 
eikonal terms as given by (3.8.22) are alternately imaginary and real. For 
example, for real interaction potential, j E2 is imaginary, whereas j E3 is real. On 
the other hand, all the higher Born terms are complex. 

3.9 The Differential Approach 

In the differential approach, the differential equation (3.1.1) is solved 
subject to two boundary conditions. Since it is a three-dimensional differential 
equation, in the general case its solution is quite difficult. However, for a central 
potential VCr) the angular momentum of the each partial wave is a constant of 
motion and, like a plane wave, ",ti(r) can also be expanded in terms of PtCJl). 
Such a partial wave expansion is given by 

"'ki(r) = ALAtRk)P'(Jl) (3.9.1) 
t 

where At are the coefficients of expansion and Rt(r) satisfies the following one­
dimensional differential equation: 

(3.9.2) 

As expected, for U(r) = 0 Eq. (3.9.2) reduces to Eq. (2.6.9). Hence, in the asymp­
totic region, where U(r) is zero, Rt(r) is given by 

Rt(r) - adt(kr)+btnt(kr) (3.9.3) 
r~oo 
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provided U(r) falls faster than r-2 at large values of r. Due to the presence of U(r) 
in (3.9.2) the coefficient hi is not zero, and the above equation constitutes one of 
the boundary conditions imposed on R,(r). Near the origin the terms IC- and U(r) 
are small in comparison to 1(1 + 1yr2. Hence, (3.9.2) is satisfied with R, = r'. Thus 
the second boundary condition is 

(3.9.4) 

Now we choose Q, = cos 111 and hi = -sin 11" which yields 

(3.9.5) 

The above choice of Q, and hi ensures that for U(r) = 0, as required, (3.9.5) reduces 
to (2.6.15). We have taken hi with a negative sign so that the phase 111 will be 
positive for an attractive potential field. The use of (3.9.5) in (3.9.1) gives 

(3.9.6) 

or 

(3.9.7) 

An alternative expression for IIIMr) at large r is given by (3.1.2). In this 
equation we take 

~ 

j(O, cp) = Lc,/H,u) (3.9.8) 
1=0 

and use (2.6.25) and (3.9.8) in (3.1.2) to get 

Equating the coefficients of e-ikr in (3.9.7) and (3.9.9), we get 

(3.9.10) 
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Similarly, a comparison of the coefficients of eikr in the same two equations with 
(3.9.10) yields 

Hence, 

21 + 1 (2im 1) 
CI = 2ik e -

= L 1.(21 + l)ei1J1 sin 111f1(cos e) 
1 k 

Furthermore, from (3.9.1) and (3.9.10) 

(3.9.11) 

(3.9.12) 

(3.9.13) 

(3.9.14) 

The above equation constitutes the partial wave expansion of the scattered 
wave in terms of the Legendre polynomials and the radial wave function. Such 
an expansion is possible only for the central potentials. It is easy to see that in 
the asymptotic region, (3.9.14) goes to (2.6.24) for 111= O. Hence, we conclude 
that the effect of the potential scattering is to shift the phase of the lth incident 
partial wave by an angle 111' Therefore, 111 is known as the phas shift. The scat­
tering by a central potential does not change the value of I. For 111= 0, the scat­
tering amplitude fi 8) reduces to zero; i.e., there is no scattering. Hence, 111 carries 
the signature of the collision. 

To evaluate 11/, we consider Rlkr) at two large values of r, and divide one 
by the other to get 

R1(klj) _ Mkr,.)- tan 11ln/(klj) 

R1(kr2) - Mkr2) - tan 11lnl(kr2) 

The above equation yields 

To eliminate the first-order differential from (3.9.2), we take 

(3.9.15) 
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which yields 

The boundary conditions (3.9.4) and (3.9.5) now change to 

!t(r) - r l+1 

' .... 0 

and 

!t(r) - !..sin(kr-In/2+1]I) 
,-->00 k 

Chapter 3 

(3.9.16) 

(3.9.17) 

(3.9.18) 

In most cases numerical methods are employed to solve the differential equation 
(3.9.17) and obtain the value of !t(r) at large r, and thus 1]1 are calculated with 
the help of (3.9.16) and (3.9.15). Due to the presence of the centrifugal term 
l(l + 1)/,-2 in (3.9.17), in general, the value of 1]1 falls with an increase in I. At 
low impact energies the zeroth-order phase shift 110 dominates. 

From (3.2.12) and (3.9.12) we get 

O"el = ~ L(21+1)(I-SI)(I-St) 
k 1 

n ~ 2 
="2 ~(21+1)1(1-SI)1 

k 1 

where the scattering matrix element SI is defined by 

Hence, 

I-S/ 
tan 1]/ =i-­

I+S1 

(3.9.19) 

(3.9.20) 

(3.9.21) 

To obtain an expression for the absorption cross section in terms of the 
scattering matrix element S/ we note that according to (3.2.13), (3.2.17), and 
(3.2.18), for large r, 
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<Tab =_r2 Jc(r).rd.Q/(VAA*) (3.9.22) 

and from (3.2.6) 

Using (3.9.14) for 1/1, we get 

J 1/1* aa 1/Id.Q = 4nA~* 2,(21 + 1)ei('ll-IJi) sin(kr-ln/2 +11t) 
r kr / 

x COS(kr-ln/2+ 11I)+Q) ) 

Similarly, 

f a 4nAA* ~ {1JI-IJ?) . / 
1/1 -a lfI* d.Q = 2 L.i (21 + 1)e sm(kr -In 2 + 111) 

r kr / 

x cos(kr-ln/2+11t)+O( :3 ) 
Hence, 

(3.9.23) 

Using (3.9.12) and the optical theorem, we obtain 

2n~ 
<Tr =-2 L.i(21+1)[I-Re(SI)] 

k / 
(3.9.24) 

It is easy to verify that the sum of <Tel and <Tab is equal to <Tr. 
The scattering matrix S, whose elements are Str, is a diagonal 

matrix. Hence, sst (where st is the adjoint of S) is also a diagonal matrix with 
the elements e2i(IJ,-1J~). Now, for a real potential 11/ = 111 and <Tab = O. For such a 
potential sst is a unit matrix, which confirms the conservation of particles. We 
also get 

(3.9.25) 
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where the partial cross section O't is given by 

Hence, 

4n 
O't ~ -2 (21 + 1) 

k 

Chapter 3 

(3.9.26) 

(3.9.27) 

The above equation is a statement of the theorem of maximum cross section. 
Equations (3.2.11) and (3.9.13) show that the structure in the differential cross 
section is due to 1 > O. In general, the stronger the potential field, the more struc­
ture in the curve of I( 0) vs. O. Furthermore, 

1(0) = ~ L L(21 + lX2/' + l}?ilJle-ilJl' sin1]1 sin1]I'~(cosO)Pr(cosO) 
k t I' 

Hence, the cross terms for the different values of 1 and l' contribute to 1(9). But 
(3.9.25) and (3.9.26) show that the cross terms do not contribute to O'e1. This is a 
consequence of the orthogonality of Pt(jl). 

At low incident energies the scattering is dominated by the lower partial 
waves. At very low energies we may assume that only the 1 = 0 partial wave is 
of significance. Then, from (3.9.25) and (3.9.26), 

4n . 2 
0' e1 = -2 sm 1]0 

k 
(3.9.28) 

In general, the ratio 1]rJk as k ~ 0 tends to a finite limit equal to -as, where as 
is known as the scattering length. Hence, 

1. (tan 1]0) as=-lm --
k-->O k 

(3.9.29) 

Thus, from (3.9.28), 

(3.9.30) 

For the repulsive potential, 1]0 tends to zero, as k tends to zero. However, for the 
attractive potential, according to Levinson's theorem, 

orders@himanshubook.com



Collision of a Free Particle with a Potential Field 

110 = ~ fl1C 
k--+O 

S9 

(3.9.31) 

where the integer n represents the number of bound states that the potential can 
support. A study of the square well potential (see Sec. 3.10.2) shows that the 
number of bound states it can support depends upon its depth. For a shallow well, 
110 ~ 0 as k ~ O. With an increase in its depth, a situation will arise when it is 
able to support one bound state. For that depth, 110 ~ 1C as k ~ O. In between we 
encounter a depth for which 110 = rrl2. For this value of the phase shift, as will 
tend toward infinity and so will the cross section. Such a phenomenon is known 
as resonance. 

3.10 Scattering by a Hard Sphere and a Three-Dimensional 
Potential Well 

3.10.1 Hard Sphere 

Let us now apply the method of partial waves to the collision of a particle 
with a hard sphere of radius R and infinite mass. Since outside the sphere U(r) 
= 0, the radial wave function is given by 

Furthermore, 

~(r)=O, for r5.R 

Hence, at r = R we get 

(3.10.1) 

In the limit of zero energy only the I = 0 partial wave contributes, and from the 
above equation 

tan 110 = - tan(kR) 

or 

110= -kR 

Hence, we get 
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(3.10.2) 

The above value is four times the geometrical area of the sphere. In the high­
energy limit, where a large number of the partial waves contribute, Oi reduces to 
21CR2• 

3.10.2 Three-Dimensional Potential Well 

Let us now consider the scattering of a particle of mass m, energy E, and 
momentum lik by a three-dimensional potential well of depth -Vo and width b. 
The SchrOdinger equations describing the system are 

(3.10.3) 

and 

(3.l0.4) 

where 

(3.10.5) 

In general the radial wave function of the lth partial wave is a linear combina­
tion of j/(r) and n/(r). Further, it has to be finite everywhere. Hence, R!n(r) 
cannot contain n/(r) because the Neumann function diverges at r = o. Therefore, 
we take 

(3.10.6) 

and 

(3.10.7) 

where 1}/ is the phase shift for the lth partial wave. Now R!n(r) and R~Ul(r) and 
their first derivatives are to be continuous r = b. Hence, 

A/ = 1 dR{n{f3r) I = 1 dR~ut{kr)1 
R{n{f3r) dr r=h R~Ul{kr) dr r=h 

(3.10.8) 

or 
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AI = /3j!(/3b) = k[j!(kb) - tan 11ln;(kb )] 
jl(/3b) jl(kb)-tan11lnl(kb) 

(3.10.9) 

where the prime denotes differentiation with respect to x = /3r or kr. From the 
above equation we get 

(3.10.10) 

For small k, with the help of (2.6.13) and (2.6.14), we get 

(kb )21+1 1- Alb 
tan 1] = -:--~-'------'-

I (21 + 1)!!(2/-1)!! 1+ 1 + Alb 
(3.10.11) 

Thus for I;::: 1, tan 111 goes to zero faster than~; hence 0'1 as obtained from (3.9.26) 
for I;::: 1 is zero at k = O. However, for I = 0, 

(3.10.12) 

Hence, for k ~ 0, tan 110 also tends to zero provided Aob '# -1. Now from (3.10.9) 
and (2.6.17) 

Ao =/3cot/3b-l/b (3.10.13) 

Hence, 

sin 110 :::: tan 110 = -kb(l- tan /3b / /3 b) 

and 

(3.10.14) 

which is finite even at k = O. 
Equation (3.10.11) shows that at 1+ 1 + Alb = 0, 1]1 goes to (2n + l)1TI2, 

where n is an integer. Hence, the cross section 0; assumes its maximum value. 
In such a situation, the Ith partial wave is said to be in resonance with the 
scattering well. The value of the resonance energy E, depends upon 1, m, b, and 

Vo- If E is close to E, then the total elastic cross section Gel = rGI is controlled 
I 

only by the Ith partial wave, and we have 
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(3.10.15) 

The above equation is known as the one-level Breit-Wigner formula. The energy 
E', and r are known as are the position and the width of the resonance. 

For I = 0 the resonance occurs at 

pb = (2n+ l)n/2 

For E « Vo the above equation gives 

( ) 2 2 2 
Vob 2 = 2n + 1 n tz 

8m 
(3.10.16) 

As expected, each value of n corresponds to a resonance and the appearance 
of a new bound state. At each resonance the potential produces a large 
distortion in the wave function of the incident particle and so a large amount of 
scattering. 

3.11 Integral Equation/or R/(r) and tan 11/ 

We expand lJIk,(r) and tPk,(r) in the complete set of spherical harmonics 
and put the expansion into the Lippmann-Schwinger equation given by (3.3.2) 
to get 

L C/mR/(r)l;! (r)l'/m (ki ) = 41t4 Li/ j/(kr)l'/! (r)l'/m (ki ) 

~ ~ 

+J G;(r,r')U(r')lJI~(r')dr' (3.11.1) 

Now 

Gt(r, r') = Lgt(r, r')l'/m (r')yt! (r) 
/m 

with 

where hF) is a first -order Hankel function and is equal to j/ + into 
The second term on the right hand side of (3.11.1) takes the form 
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L J gj(r, r')l/m (r')l/! (r)U(r')L Cl'm,R/(r') X l/;:',(r')l/'m' (ki )r,2dr'dn' 
1m I'm' 

= LJ gj(r, r')l/!(r)U(r')C/mRk')l/m(ki )r'2dr' (3.11.2) 
/m 

Use of (3.11.2) in (3.11.1) yields 

(3.11.3) 

where C/m, being independent of m, is replaced by Ct. Expressing gi(r, I) in terms 
of j/ and hPj in the second term of (3.11.3), reduces it to 

~ 

-ik J j/ (kr< )hi ll (kr »U(r')R/ (r')r,2dr' 
o 

r ~ 

= -ik J j/ (kr')h?) (kr)U(r')R/ (r')r,2dr' - ik J j/ (kr)hi ll (kr')U(r')R/ (r')r,2dr' 
o 

In the limit of large r the second term of the above equation goes to zero and the 
upper limit of integration in the first term goes to 00. Hence, we obtain 

R/(r) ~ jl(kr)[41t4.!..- - ikJ~ j/(kr')U(r')R/(r')r'2dr'] 
r--+~ C/ 0 

+nl(krl k! j/(kr')U(r')R/(r')r'2dr'] 

A comparison of the above equation with 

gives 

and 

R/(r) ~ j/(kr) - tan 1'1/n/(kr) 
r~ 

~ 

tan I'll = -k J j/(kr)U(r)~(r)r2dr 
o 

i141t4. 
C/=--­

l-itan 1'1/ 

(3.11.4) 

(3.11.5) 

(3.11.6) 
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Putting (3.11.6) into (3.11.3) we get 

~ 

R/(r) = j/(kr)(I - itan 11/) - ik f j/(kr<)[j/(kr<) + in/(kr<)] x V(r')R/(r')r'2dr' 
o 

Finally, with the use of (3.11.5), we obtain 

(3.11.7) 

where Glr, I) = kjAkr<)n/(kr». 
Equations (3.11.5) and (3.11.7) are the integral representations of the phase 

shift 11/ and the radial wave function R/(r), respectively. Both ofthese also depend 
upon k. 

In the first Born approximation R/(r) = H.kr). Hence, in the FBA (3.11.5) 
and (3.11.7) reduce to, respectively, 

~ 

tan 11fl = -k f [j/(kr)]2 V(r)r2dr (3.11.8) 
o 

and 

(3.11.9) 

3.12 The Distorted Wave Born Approximation 

Sometimes it is convenient to break: V into two parts and take V = VI + V2. 
This procedure is quite useful if the scattered wave function due to VI can be 
obtained exactly and V2 can be treated as a perturbation. The Lippmann­
Schwinger equation in the bra form due to VI alone is given by 

or 

(3.12.1) 

Putting the above equation into (3.3.12), we get 

Now from (3.3.2) 
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Hence, 

fli «(), qJ) = -27r2 ( If/al IUIlf/~) + 27r2( If/al IUdlf/~) - 27r2(lf/lkl lullqJk;) 

= -27r2 (If/lkl IUtlqJk,) - 27r2 (If/lk! IU21lf/~) (3.12.2) 

This equation is still exact. However, If/t(r) cannot be detenruned exactly for UI 
+ U2. Hence, in the distorted wave Born approximation lfIk, is replaced by lfI'tk,(r), 
and we get 

(3.12.3) 

The first term on the right-hand side is the exact scattering amplitude for a par­
ticle due to potential VI and the second term is the matrix element of U2 due to 
distorted outgoing scattered wave If/ik, and distorted incoming scattering wave 
If/lkl' both distorted by UI • Asymptotically, If/ik, is the sum of the plane wave CPk, 
and the spherically outgoing wave eik'ir. On the other hand, asymptotically, If/lk! 
is the sum of the plane wave C/J,q and the spherically incoming wave e-ik'/r. 

If both UI and U2 are spherically symmetric thenffwBA(9) can be expanded 
in the partial waves and we finally obtain (Schiff, 1968) 

f%WBA«(}) = f;X«(}) + ff~I«(}) 

- fC21 + 1)1l (cos (})j U2 [Rl(r) - jl(kr)]r2dr (3.12.4) 
1=0 0 

where j"x is the exact scattering amplitude due to UI and fBI is the first Born 
scattering amplitude due to U2• Rlr) is the radial wave function due to UI.The 
above equation is valid only if U2 falls faster than 1Ir at large r. 

3.13 The Critical Points 

It is found that for a strong interaction potential the differential cross sec­
tions (DCS) possess deep minima. Such minima exist at one or more impact 
energy and scattering angle. A small change in either causes an increase in the 
DCS. Such impact energies and scattering angles are known as critical energies 
(Ee) and critical angles «(}e), respectively, and we have 

d2I(E'(})1 -0 
dEd(} E=Ec,(i=(Jc 

(3.13.1) 
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FIGURE 3.4 The vanal10n of the real R(Ei) and imaginary I(Ei) parts of the scattering 
amplitudes for the scattering of electrons by a potential at different energies Ei• 

For a theoretical determination of the critical points, Khare and Raj (1980) have 
suggested the following simple method. Since I(E, e) is very small at (Eo ee) we 
take I(Eo ee) = 0 without introducing any significant error. Now, 

I=lfl+lfl (3.13.2) 

wherefR andJi are the real and imaginary parts of the scattering amplitude. Hence, 
at (Eo ec> we have fR = Ji= O. To determine Ee and ee, the values of fR(E, ()) and 
HE, e) are generated by the numerical solution of the differential equation 
(3.9.17). In Fig. 3.4 they are represented by R(E;) and I(E;), respectively, and are 
plotted as functions of e. The interaction curve ABeD of R(E;) and I(E;) is 
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obtained, as shown in the figure. The intersection of the curve ABeD with O-axis 
yields the critical angle Oe. 

Near the critical point the variation of 0 withj';(= fR= II) can be given by 

0= ali +bf/ +c (3.13.3) 

Hence, we require li at three impact energies to determine Oe. Similarly, Ee is 
determined from the equation 

E=eli+gf/+h (3.13.4) 

3.14 The Hulthen-Kohn Variational Principle 

We have already discussed [in Sec. (3.7)] the Schwinger variational 
method, which employs an integral approach. With trial· wave functions this 
method gives variationally correct scattering amplitudes. Variational methods 
based on the differential approach have also been developed. As we have seen, 
in this approach one is required to solve the differential equation (3.9.2) with 
proper boundary conditions to obtain exact phase shifts 1J{ and thus the exact 
scattering amplitude. However, we may start with a trial radial functionff(r) and 
a trial phase shift 1]{ and employ a variational technique to obtain a better phase 
shift 1]f and a better radial functionjt(r). 

In the Hulthen-Kohn variational method the exact radial function Ji'(r) and 
trial radial functionff(r) are subjected to following boundary conditions: 

H(O) = 1/(0) = 0 (3.14.1) 

H(r) ~ sin(kr-Itr/2+1]f) (3.14.2) r......, 

and 

I/(r) ~ sin(kr-Itr/2 + 1]f) (3.14.3) r......, 

The boundary condition (3.14.1) is consistent with (3.9.4) but (3.14.2) and 
(3.14.3) are slightly different from (3.9.5). The latter are obtained by adopting a 
different normalization. Let us now assume that 

I/(r) = H(r)+o[.fi(r)] (3.14.4) 

and 
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(3.14.5) 

where O[fi(r)] and &'1]/) are infinitesimal quantities. Hence, from (3.l4.l) and 
(3.14.4), 

O[.fi(O)] = 0 (3.14.6) 

With the help of (3.14.2) to (3.l4.5), we get 

o[.fi(r)] ~ cos(kr-ln/2 + T]i)o(1]/) (3.l4.7) 
r .... ~ 

Now we define a functional: 

~ 

Q/ = J .fi(r)I1.fi(r)dr (3.l4.8) 
o 

where the operator p/ is given by 

d2 2 l(l + 1) 11 =-+k ----U(r) 
dr2 r2 

(3.l4.9) 

Hence, 

I1H =Q{ =0 (3.l4.1O) 

and 
~ 

Q{ = J {H(r) + o[.fi(r)]}I1{H(r) + o[.fi(r)]}dr 
o 

~ ~ ~ 

= Q{ + J o[.fi(r)]I1Hdr+J o[.fi(r)]l1o[.fi(r)]dr+ J Hl1o[.fi(r)]dr (3.l4.11) 
000 

The first two terms are zero and the third term is of second order. Hence, up to 
first order, 

~ 

o(Q/) = Qf -Q{ = J H(r)l1o[J(r)]dr (3.14.12) 
o 

Using Green's theorem or carrying out partial integration, we get 

~ d 2 ~ d 2 J H(r)-2 o[.fi(r)]dr = J o[.fi(r)]-2 H(r)dr-ko(1]/) (3.14.13) 
o dr 0 dr 
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Then, (3.14.12) and (3.14.13) give 

O(Q/) = -ko(rt/) (3.14.14) 

or 

(3.14.15) 

Thus up to first order Q/+ krtl is a stationary quantity. According to this variational 
principle, which was propounded by Hulthen (1944, 1948), up to first order, 

Q{ + krt1 - Qf - krtf = 0 (3.14.16) 

Since Q{ = 0, we start from a trial radial wave function.fi(r), which obeys (3.14.1) 
and (3.14.2), and a trial phase shift rtf, and get a better phase shift rtf from 
(3.14.16): 

1 
rtf = rtf + - Qf 

k 
(3.14.17) 

To obtain rtf, we take.fi( CJ, C2, ••• , Cm rtf), which depends upon (n + 1) 
parameters given by Cj and rtf. This is used to calculate Q, from (3.14.8). 
The calculated Q, is made stationary with respect to Cj and rtf by imposing the 
conditions 

and 

aQ, =0 
aCj 

(i = 1, 2, ... , n) 

aQ, =0 
act 

(3.14.18) 

(3.14.19) 

The resulting (n + 1) equations are solved to obtain variationally correct Cj and 
rtf and thus variationally correct !t(r), QIo and phase shift rtf are calculated. This 
method was developed by Kohn (1948). 

Instead of determining rtf we can obtain (tan rtl by changing (3.14.2) and 
(3.14.3) to 

fi',1 ~ sin(kr-ln/2)+ (tan rt,)e,1 cos(kr-ln/2) (3.14.20) 
r-->~ 

Proceeding as before, we now get 
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(3.14.21) 

Partial differentiation of 8, with respect to the variational parameter Cj gives 
(3.14.18), but instead of (3.14.19) we get 

(3.14.22) 

Solutions of (3.14.19) and (3.14.22) give variationally correct Q, and (tan 11,)' and 
thus (tan 11l [from (3.14.21)]. 

Equation (3.14.21) can be extended to obtain a variational principle for the 
scattering length as. For the zeroth partial wave this equation gives 

(3.14.23) 

We define 

(3.14.24) 

Taking the limit of (3.14.23) as k ~ 0, we get 

~ 

a~ =a~ - J N(r)PoN(r)dr (3.14.25) 
o 

Now 18 is expressed as a function of variational parameters Cj and as. This 
gives 

~=O 
dCj 

(3.14.26) 

and 

~=O 
d(a~) 

(3.14.27) 

where 

~ 

1= a1-J N(r)PoN(r)dr (3.14.28) 
0 
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The value of the variational parameters Ci and a~ are determined from (3.14.26) 
and (3.14.27), and thus a better value of the scattering length is obtained from 
(3.14.25). 

It should be noted that although l1f differs from the exact phase shift l1f by 
a second-order quantity, it is not possible to make a definite statement as to 
whether the difference (l1f -11/) is negative or positive. Thus l1f does not provide 
a bound to the phase shifts, not does (tan l1l. Hence, in this respect the varia­
tional principles of scattering theory are inferior to the Rayleigh-Ritz variational 
principle, which provides an upper bound to the eigenenergy of bound states. 
However, it has been shown by Rosenberg et al. (1960) that a~ provides an upper 
bound to the scattering length, provided that the interaction potential is too weak 
to support negative energy states. 

3.15 The Atomic Units 

In atomic physics quite often atomic units are employed. Here the length 
is expressed in the units of ao and the unit of energy is taken to be 1 Hartree, 
which is equal to e2/ao, i.e., 2 Rydbergs. In these units Ii = m = e = ao = 1. Equa­
tion (3.1.1) written in atomic units becomes 

(3.15.1) 

Sometimes the unit of energy is taken to be 1 Rydberg, instead of 2 Rydbergs. 
Then the above equation changes to 

(3.15.2) 

In equations written in atomic units all the quantities are dimensionless. However, 
we shall continue to write equations in terms of Ii, m, e, and aQ. 

Questions and Problems 

3.1 Show that for the interaction potentials that fall faster than r-2 in the asymp­
totic region,flO, qJ)eikr/r satisfies Eq. (3.1.1). 

3.2 An electron of energy 54eV is scattered by an absorptive complex potential. 
The forward scattering amplitude is equal to (2 + iO.5)ao, where ao is the first 
Bohr radius. Calculate the differential cross section in the forward direction and 
the total collision cross section. 
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3.3 A particle of mass m is scattered by a potential field, which is given by -
Zfl[(l/r) + (Zlao)]e-aZr/''o. Obtain the scattering amplitude in the first Born approx­
imation. Also obtain the ratio of the differential cross sections in the forward and 
backward directions. 

3.4 Use the first Born approximation to show that the integrated cross section 
for the scattering of a particle by a Coulomb field is infinite. 

3.5 According to Simpson's rule for numerical integration 

xo+nh h J f(x)dx ='3{J(xo)+4[f(xo +h)+ f(xo +3h)+ ... + f{xo +n-lh)] 
xo 

+2[J(xo +2h)+ f(xo +4h)+ ... + f{xo +n-2h)]+ f(xo +nh)} 

where n is an even positive integer. Use the above equation along with (3.5.11) 
and (3.5.13) to evaluate a:l in the units of 1fa2 for All = 1. Take k = 2.5 and n = 
20. Compare your result with that obtained from (3.5.14). 

3.6 According to the trapezoidal rule for numerical integration 

xo+nh h J f(x)dx ='2{f(xo +h)+2[j(xo +h)+ f(xo +2h)+ .. · 
xo 

+ f{xo +n -2h)+ f{xo +n -lh)]+ f(xo +nh)} 

where n is a positive integer. Use this rule also to evaluate the above cross section 
with the same values of ka and n. Comment on the accuracy of this rule vis-a­
vis Simpson's rule. 

3.7 On the both sides of (3.4.17) the exact scattering amplitudefis approximated 
by AlB!. where A. is a complex number. Obtain the real and imaginary parts of A. 
in terms of fBi and the real and imaginary parts of 1 B2. Further, show that in the 
above approximation 

Compare the above expression with the Born series for fBi» 1B2' 

3.8 Point out the main differences between the Born and the eikonal series. 
Out of the first Born and the eikonal approximations, which one is superior and 
why? 
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3.9 Discuss the concept of phase shift. Why, in general, does the value of the 
phase shift decrease with an increase in l? 

3.10 For a particle scattered by a central potential, the values of the first three 
phase shifts, in radians, are rio = 1.960, 111 = 0.453, and 112 = 0.112. Obtain the 
values of J( 8) and plot a graph of J( (J) vs. 8. Also calculate the partial and inte­
grated cross sections. 
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Collision of Electrons with a 
Potential 

4.1 Introduction 

The methods developed in the previous chapter are applicable to the colli­
sion (scattering) of electrons with (by) a potential provided we assume that an 
electron is a spinless particle. However, an electron is a spin-t particle and 
possesses magnetic moment p. The coupling of the spin angular momentum S 
with the orbital angular momentum L of the electron produces a new term in 
the Hamiltonian of the system. The potential energy of the electron changes 
from V(r) to Ve~r) = V(r) + Vso(r), where Vso(r) is the additional potential 
energy due to spin-orbit coupling. Hence, the phase shift, 111 as obtained from 
(3.9.15), changes. This additional term depends upon three quantum numbersj, 
I, and s. However, s is always t. Hence, we represent the phase shift by 11j,1' Not 
only are the 11j,1 different from the 111 (obtained with Vso = 0), but one value of 1 
gives two phase shifts corresponding to j = 1 ± t. In such collisions ml and ms 
need not be separately conserved, but their sum, i.e., mj' is a constant of motion. 
Hence, 

(4.1.1) 

Since ms = it, it is possible that in the collision an incident electron with ms = 
+ t may flip its spin and appear with ms = -t after the collision. Thus, due to the 
spin-orbit interaction, we have following two types of collisions: 

(4.1.2) 

75 
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and 

(4.1.3) 

In (4.1.2) tlms = tlm/ = 0 but in (4.1.3) tlms = 1; hence, tlm/ = -1. The fonner is 
the direct collision while the latter is known as the spin-flip collision. 

4.2 Spin-Orbit Interaction Potential 

Suppose an electron is moving in a potential field with a velocity v and the 
potential produces an electrical field E at the position of electron. Then, in the 
rest frame of the electron, a magnetic field B equal to (v x E)/c is produced. This 
magnetic field B interacts with the magnetic moment jl[= -eS/(mc)] of the elec­
tron to produce a new term in the Hamiltonian. This tenn is given by 

e 
Hso =-jl·B=---S·(E xp) 

m2c2 

where p is the linear momentum of the electron. For a central potential 

E =_~ dyer) r 
er dr 

Hence, in a frame in which the electron is at rest, 

1 dV 
Vso(r) = Hso = -2 -2 -(S· L) 

m c r dr 

(4.2.1) 

(4.2.2) 

(4.2.3a) 

If we calculate Vso(r) with the proper Lorentz transfonnation for the field in a 
frame in which the electron is moving, then Vso(r) given by the above equation 
is reduced by a factor of 2. Thus, finally, 

1 dV 
Vso(r) = 2 2 (S . L) 

2m c r dr 
(4.2.3b) 

Now, 

Hence, 

(4.2.4) 
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FIGURE 4.1 Electron ensembles: (a) Polarized, (b) unpolarized, (c) unpolarized, and (d) partially 
polarized. 

As Vso is usually small in comparison to V(r), it is neglected in many investiga­
tions, but in this chapter its effect will be taken into consideration. 

4.3 Ensemble of Polarized Electrons 

Before considering the scattering of electrons by a potential V(r) + Vso(r), 
a familiarization with the concept of the ensemble and the beam of polarized 
electrons is quite useful. If in an ensemble of N electrons, the spin vectors of all 
the electrons point in the same direction (Fig. 4.1a), the ensemble is said to be 
fully polarized. In this case all the electrons are in the same spin state and the 
ensemble is said to be in a pure spin state. On the other hand, if the spins of half 
of the electrons point in one direction and the other half in the opposite direction 
(Fig. 4.1b), then the ensemble is completely unpolarized. An ensemble of elec­
trons is also completely unpolarized if its spin vectors are distributed equally in 
all possible directions (Fig. 4.1c). Figure 4.1d depicts an ensemble of partially 
polarized electrons. The degree of polarization P is defined by 

p_ Ni -NJ, _ Ni -NJ, 
- Ni +NJ, - N (4.3.1) 

where Ni and NJ, are the number of electrons having their spin up (ms = +-t) and 

down (ms = - t), respectively. For Ni = N the ensemble is fully polarized (P = 1) 
and for Ni = NI2 it is completely unpolarized (P = 0). For any other value of 
Ni the ensemble is· partially polarized. For Ni < NI2 the degree of polarization 
is negative. In conclusion, an ensemble (or a beam) of electrons is said to be 
polarized if its spins have a preferential orientation such that there exists a direc­
tion for which the two spin states (i and J,) with respect to quantization axis are 
not equally populated. It should be noted that due to the uncertainty principle, 
the vector S is not stationary in the space. If we say that S is in the z direction, 
we mean that S is somewhere on a cone in such a way that its component along 
the z-axis is N2 and lsi =..Jfn [see Eq. (4.3.9)]. 
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The spin wave function X of an electron in a pure spin state is represented 
by a vector in a two-dimensional Hilbert space. Taking a and f3 to be two basis 
vectors we have 

x=aa+bf3 (4.3.2) 

The a and f3 correspond to ms = +~ and -~ states, respectively, and are repre­
sented by two component spinors: 

a=(~) and f3 =(~) (4.3.3) 

It is easy to verify that 

(al a) = (f31 f3) = 1 and (alf3) =0 (4.3.4) 

Thus we get 

(4.3.5) 

For a normalized X 

(X I X) = lal2 + Ibl2 = 1 (4.3.6) 

The spin angular momentum S is defined by 

S = ~1i<1 (4.3.7) 

where (J is the Pauli spin operator. Its three components are 

<1x =(0 1), <1y =(0 -i), and <1, =(1 0) 
1 0 i 0 0 -1 

(4.3.8) 

With the above equation, it is easy to verify that 

and (4.3.9) 

Furthermore, 

orders@himanshubook.com



ColHsion of Electrons with a Potential 79 

x 

FIGURE 4.2 The polar angles of the spin wave vectors X are (8, 1/1). 

Hence, X is not an eigenfunction of Sz. However, if Sx is the component of S in 
the spin direction of X then we should have 

SX-l.1iX X -2 (4.3.10) 

To verify the above equation let us take (9, iP) to be in the spin direction 
of X and e as a unit vector along (9, iP); then with the help of (4.3.7) and (4.3.8), 

(4.3.11) 

Assuming (4.3.10) to be correct and using (4.3.11), we get 

For nontrivial values of a and b we have 
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which yields 

which is certainly correct, and thus, (4.3.10) is verified. Now from 

we have 

b l-ez -=--
a ex -iey 

(4.3.12) 

Furthermore ex = sin (kos cp, ey = sin lkos cp, and ez = cos O. Hence, 

b 1-cosO (ll/2) i" -= . = tan u e~ 
a sinO e-,II 

(4.3.13) 

For a normalized X we take 

b = sin(Oj2)eil/l and a =cos(Oj2) (4.3.14) 

For a 100% polarized ensemble the polarization vector P is the expectation value 
of the Pauli operator (1. Thus, 

P =(xl(1lx) 

Using (4.3.5) for X and (4.3.8) for (1, we obtain 

l'x = (a* b*{:) = a* b + b* a = sinO cosO 

Py = (a* b*{~:) = i(ab*-a* b) = sinO sincp 

p. =(a*b*{~b)=laI2 -lbl2 =cosO 

As expected p2 = 1. 
The density matrix p is defined by 

(4.3.15) 

(4.3.16) 
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p =Ix ><xl = (:)<a* b*) 

or 

=(aa* ab*) 
p ba* bb* 

(4.3.17) 

We note that 

tr a -tr -P. ( aa* ab*)(1 0 ) 
P Z - ba* bb* 0 -1 - Z 

Similar relations hold for the x and y components. Hence, 

P = tr(pa) (4.3.18) 

Eqs. (4.3.16) and (4.3.17) give 

l. 1 (1+P. Px -jPy) P=2(1+P·a)=- . 
2 Px+lPy I-p' 

(4.3.19) 

Let us now consider an ensemble of electrons obtained by mixing a number 
of pure states, represented by IXi). Suppose the jth component of the mixture has 
Ni electrons and its polarization vector is Pi. Since IXi) is a pure state IPil = 1, 
but in the mixture Pi and Pj have different directions. The polarization vector of 
the mixture is 

where N = L Ni • Hence, 
i 

1 
P=- '" NP N~ II 

I 

1 
p2 =P·P=-"'''' NN·P .p. N 2 LJLJ I J I J 

I I 

= _1 ('" N~ + '" '" N N. P . P.) N 2 LJ I LJ LJ I J I J 
i i j",l 

(4.3.20) 
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Since Pi' Pj is less than unity we get 

(4.3.21) 

i.e., the degree of polarization of the mixture is less than unity. Equation (4.3.19) 
is also valid for a mixture. This gives trp = I, but 

2 1 (I+ Pz trp = ..... tr 
4 Px +ip, 

= +(1 + P2 ) 

Px -iP,)2 
I-Pz 

(4.3.22) 

is less than unity because P is less than one. Thus we conclude that for a pure 
spin state P = 1, and trp = trrl' = 1 but for a mixture P < 1 and trrl' < trp. 

For a 100% polarized beam in the z direction (4.3.19) yields 

p =(~ ~) (4.3.23) 

Similarly for a completely unpolarized beam <Pct = Py = Pz = 0), we have 

1 (1 0) 
P='2o 1 

(4.3.24) 

If a partially polarized beam is polarized in the z direction with the degree of 
polarization P then Pz = P and Px = Py = O. Hence, from (4.3.19) 

=.!.(1 + PO) 
P 2 0 I-P 

=.!.(1_p)(1 0)+ Jl 0) 
2 0 1 r~O 0 

(4.3.25) 

According to the above equation, a partially polarized beam can be considered 
as being made up of a totally polarized beam and a completely unpolarized 
beam mixed in the ratio P: (1 - P). It is to ~e noted that the addition of density 
matrices is an incoherent addition. We may write (4.3.24) as 

1 (1 0) 1 (0 0) 
P='2o 0 +'2 0 1 

(4.3.26) 
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where the first term is the density matrix of a fully polarized ensemble in the +z 
direction, whereas the second also represents a fully polarized ensemble but in 
the -z direction. An incoherent addition of the two terms with the same weight 
factor t results in a completely unpolarized ensemble. On the other hand, a co­
herent addition (addition of the amplitudes of the two oppositely polarized 
states) produces a new fully polarized state. For example, addition of two fully 
polarized states in the +z and -z directions, represented by 

(~) and (~) 
respectively, gives rise to 

(4.3.27) 

A comparison of the above equation with (4.3.5) shows that the former equation 
represents a fully polarized state with a = b = 1I-V2 or 8 = 1CI2 and cp = O. 

4.4 Direct and Spin-Flip Scattering Amplitudes 

Let us consider the scattering of the spin-up electrons by a central poten­
tial V(r). Due to the spin-orbit interaction we have direct and spin-flip scatter­
ings, represented by (4.1.1) and (4.1.2), respectively. The wave function of the 
system satisfies the following differential equation: 

[ 2 2 ( ) 1 1 dU(r) (2 2 2)] ( ) V +k -U r ------ J -L -S '" r,s =0 
4m2c2 r dr 

(4.4.1) 

where U(r) = 2mV(r)/If. In the scattering mj = t is a constant of motion. Hence, 

for a given I, after the scattering, ms = t and ml = 0 for direct scattering and 

ms = -t and ml = 1 for spin-flip scattering. Furthermore, for each I, j has two 

values given by I ± 1. We expand lfI(r, s) in terms of a complete set represented 

by Yj,I,s,mj" For mj = t and s = t this function (Mott and Massey, 1965) is given by 

(4.4.2) 

where C1.sU, mj, me, ms) are Clebsch--Gordon coefficients, given by 
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( 1. 1. 1.) _ (1. 1. .1) _ [( )/( )]1/2 CI,I/2/+ 2 '2,0'2 -C/,1/2/-2'2,1'-2 - 1+1 2/+1 

(4.4.3) 

Hence, 

/ 1/2 / 1/2 Y/+I/2,/,J,1/2 = [(I + 1) (21 + 1)] flo a + [I (21 + 1)] fliP (4.4.4a) 

and 

/ 1/2 / 1/2 
YI-I/2,/,J,1/2 = -[1 (21 + 1)] flo a + [(l + 1) (21 + 1)] fnP (4.4.4b) 

It is obvious that the YI±II2,/,s,112 are eigenfunctions L2 and 51. By using the relation 

(4.4.5) 

it can be shown that the above functions are eigenfunctions of }2 as well with 
eigenvaluesj(j + 1)1t. Now the expansion of 1JI{r, s) in the complete set of Yj,f,s,ll2, 

similar to (3.9.14), is given by 

/+1/2 
'I'(r,s)=AI/(4n)I/\2/+1i/2 L Rj,/(r)exp(i1]jJ) 

i j=I/-1/21 

x C/,JU, + ,0, +)Yj,l,J,1/2U\S) (4.4.6) 

The radial function Rj,e(r) is the solution of the following one-dimensional 
differential equation: 

where A"F [j(j + 1) -1(1 + 1) - s(s + 1)], and Rj,/(r) satisfies the following bound­
ary conditions: 

(4.4.8a) 

and 

(4.4.8b) 
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The phase shift 1]j,1 depends upon bothj and I. Using (4.4.8b) in (4.4.6), we 
get 

A..fii 't" .1 1/2 1~2 • 1. 1. i'lo 
If/(r,s) ~ -.-£oJz (21 + 1) ~ CI,s(}, 2 ,0, 2}YjJ,s,I/2e r__ lkr I i=IH/21 

x {exp[i(kr-ln/2 + 1]jJ)] -exp[-i(kr-ln/2 + 1]j,l)]} (4.4.9) 

For electron-potential scattering, with ms = t, Eq. (3.1.2) modifies to 

(4.4.10) 

where we have considered only outgoing scattered waves. The asymptotic 
expression for A exp(ik·r)a is easily obtained for (4.4.9) by taking 1]j,1 = O. Use 
of this expression and (4.4.9) in (4.4.10) gives 

..fii 1/2 1+1/2 
f(O,cp)=-. Lil (21+1) L exp(-iln/2)CI,,{j,t,0,t) 

lk I j=II-1/2/ 

x Ym/2,1/2[exp(2i1]l,j -1)] (4.4.11) 

Now using (4.4.3) and (4.4.4a) in the above equation, we obtain 

f(O,CP) = f(O)a+ g(O)eilP f3 (4.4.12) 

where 

f(O) = ~ i {(Z + 1)[exp(2i1]1+1/2J) -1]+ l[exp(2i1]1-1/2J) -l]}~(cosO) (4.4.13) 
2lk 1=0 

and 

1 w 

g(O) = -. L[exp(2i1]I-I/2J) -exp(2i1]I+1/2J)]~I(cosO) 
2zk 1=1 

(4.4.14) 

For the electron-atom collision dV(r)/dr is quite large near the origin; hence 
the maximum contribution to g(8) comes from the 1= 1 partial wave (the 1=0 
partial wave does not contribute to g( (/) because [. s = 0 for this 1). With the 
increase of 1, 1]/-112,/ approaches 1]1+112,1' Hence, the contribution of the higher partial 
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waves to g( 9) rapidly decreases. A relatively larger number of partial waves con­
tribute to J( 9), so J( 9) as a function of 0 exhibits more structure in comparison to 
that shown by g(9). As the incident spin wave function is a, thenJ(O), being asso­
ciated with a, is known as the direct scattering amplitude. The association of g( 0) 
with the spin-down wave function 13 shows that in the scattering some of the 
electrons flipped their spin from a to p. Hence, g(9) is said to be the spin-flip 
scattering amplitude. Due to the spin-orbit interaction, the phase shifts 1]1-In.,1 

and 1]1+112,1 are different from each other, and g(9) is nonzero. At large r, for the 
incident beam polarized upward (+z), the scattered part of the wave function is 
a two-component spinor and is given by 

(4.4.15) 

Similarly for an incident electron beam polarized in -z (spin-down) direc­
tion, the scattered wave at large r is 

1fI (J,) - A -(-g(o)e-i~) eikr 

sc - 1(0) r 
(4.4.16) 

The differential cross sections for the two polarization directions are given by 

l(i,J,) = [j* (0) ± g* (0) exp(=Ficp)] ( 1(0)(.) 
±g(O)exp ±lcp) 

Thus 

Ii = IJ, = 1(6) = 11(6)12 + Ig(ot (4.4.17) 

Further, due to cylindrical symmetry, both Ii and IJ, are independent of cpo A com­
pletely unpolarized beam is a mixture of two completely polarized beams (polar­
ized in opposite directions) and the differential cross sections for each half is 
given by (4.4.17). The sum divided by 2 is again equal to IJ(9)1 2 + Ig(O)l2. Thus 
(4.4.17) also gives the DeS for a completely unpolarized beam. 

The scattered wave at any r is given by 
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To eliminate the first-order derivative from (4.4.7), we take Ru(r) = IJ,r)/r, and 
thus obtain the diffeIl!ntial equation for 1i,1: 

(4.4.19) 

where the values of A"I are I and -(I + 1), corresponding to j = I ± 1, respectively. 
As discussed in Chapter 3, Eq. (4.4.19) is solved numerically and the phase shifts 
1'J/±I/2, are obtained from the asymptotic values of lilr). 

It may be noted that the spin of an electron is due to the relativistic effect. 
Hence, it is more appropriate to start from the Dirac scattering equation (Mott 
and Massey, 1965) rather than the SchrOdinger scattering equation. However, in 
the energy range of our interest the results obtained from these two equations do 
not differ significantly. 

The Scattering Matrix and Left-Right Asymmetry 

Let us assume that the incident electron beam is polarized in the (0', qI) 
direction; then the initial spinor is given by 

(4.4.20) 

where a = cos(0'/2) and b = sin(0'/2)eW• As discussed in the previous sec­
tion, due to scattering, both the a and the f3 components of X change, and the 
scattered wave function is 

(4.4.21a) 

or 

(4.4.21b) 

or 

=( I, -ge-i~)(a) 
ge/~ I b 

(4.4.21c) 

or 

X'=sx (4.4.21d) 
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where the scattering matrix is defined by 

Similarly, the initial density matrix p changes to 

and the DeS is given by 

or 

I(O,(p) Jaf - ge-illbl2 +Ibf + geillal2 

lal2 +lbl2 

1(0 iii) = trp' 
,'1' trp 

Using (4.3.19) and (4.4.23) in the above equation, we get 

1(0,q,) = ttr{S(1 + p. O')st} 

Since trp = 1 Eq. (4.4.26) yields 

or 

= 1(0)( 1. -is(O)e-ill ) 
is(O)e'll 1 

Chapter 4 

(4.4.22) 

(4.4.23) 

(4.4.24) 

(4.4.25) 

(4.4.26) 

(4.4.27) 

where 1(0) is given by (4.4.17) and the Sherman function S( 0) is defined by . 

S(O) = i (jg* - f*g) 
1(0) 

= -2Im(jg*)/I(O) 

(4.4.28) 

(4.4.29) 
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Thus the Sherman function is a real quantity. Using (4.3.19) and (4.4.27) in 
(4.4.26) and noting that the trace is independent of the order of the matrices we 
obtain 

where 

[ ( I -is(e)e-i¢)( 1+ p.z Px - iPy)] l(e,cp)=1tr l(e) '¢ 
is(e)e' 1 Px + lPy 1- ~ 

= l(e) tr(bll b12 ) 

2 b21 b22 

bll = 1 + ~ - is(e)e -i¢ (Px + iPy) 

b12 = Px -iPy -is(e)e-i¢(1-~) 

b21 = is( e)ei¢ (1 + ~) + Px + iPy 

b22 = 1-~ + is(e)ei¢ (px - iPy ) 

(4.4.30) 

(4.4.31) 

Let PI be the component of the polarization vector P in the x-y plane with 
Px and Pyas its components. Then Px = Plcos tjf and Py = PI sin tjf, where cpt is the 
angle between P, and Px• Hence, from (4.4.30) and (4.4.31), we get 

l(e,cp) = l(e)[l- S(e)p, sin(cp - cpt)] 

Assuming P, to be in the direction of the x-axis, we have 

l(e, cp) = l(e)[l- S(e)p, sin cp] 

The asymmetry parameter is defined by 

A _ l(e,3n/2) - l(e,n/2) 
- l(e,3n/2) + l(e,n/2) 

II (e) - lr(e) 
= 

Me)+lr(e) 

(4.4.32) 

(4.4.33) 

(4.4.34) 

where liC (}) and Ir( e) are the DeS for the scattering at an angle e to the left and 
to the right, respectively. From (4.4.33) we get 

A = S(e)p, (4.4.35) 

Hence, the Sherman function is also known as the analyzing power or asym­
metry function. 

orders@himanshubook.com



90 Chapter 4 

+ 
"" -& .. 
d> ...., 
~ - <t> 

0 1800 3600 

FIGURE 4.3 The left-right asymmetry due to scattering of polarized electrons by a potential. 

It is evident from (4.4.32) that for a given value of 8, 

1(8,cp)* 1(8,n+cp) 

This inequality is known as the left-right asymmetry. It arises only if the inci­
dent beam is polarized (even partially) and the polarization vector P has a nonzero 
transverse component Pt. If P is in the direction of k; then Pt = 0 and 1(8, cp) = 
I( 8), in agreement with (4.4.17). For the positive S( 8) a plot of /( 8, cp) with cp is 
shown in Fig. 4.3. 

Figure 4.3 shows that at cp = 0, n, and 2n, 1(8, cp) = 1(8). Its maximum and 
minimum values, at cp= 37d2 and 7d2, are given by 1(8)[1 ± S(8)Pt] , respectively. 
Thus we see that the Sherman function plays an important role in determining 
the magnitude of the left-right asymmetry. To put (4.4.33) in a form that is inde­
pendent of the choice of the coordinate system, we take a unit vector ;, perpen­
dicular to the plane of scattering (a plane formed by the vectors k; and kj ). Let 
the polar angles of ;, be 8' and qt. Since ;'·k; = 0 we have 8' = 7rl2, and the polar 
coordinates of ;, are (cos qt, sin qt, 0). It is also perpendicular to kj • Hence, 

;,. kj = (coscp',sincp',O)· (sin 8 cos cp, sin 8sincp,cos8) = 0 (4.4.36) 

Thus we obtain qt = 7rl2 + cp and the polar coordinates of ;, are (-sin cp, cos cp, 0). 
Since Pt = Px we have 

p.;' = (J~, O,~)· (-sincp, coscp,O) = -P, sincp (4.4.37) 

Thus (4.4.33) reduces to 
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1(9,cp) = 1(9)[1 + S(9)P· n] (4.4.38) 

4.5 The Change in the Polarization Vector P Due to Scattering 

Let an electron beam having a polarization vector P be scattered by a potential. 
The polarization vector P' for a unnormalized scattered beam, with the help of 
(4.3.18), is given by 

P' = tr(p'a}/trp' = tr(SpSta)/tr(Spst) 

Using (4.3.19), we get 

where bij are given by (4.4.31) and e" etc. are unit vectors. Hence, 

P' = [blleZ +b12 (ex +iey }+b21 (ex -iey )-b22eZ ] 

bll +b22 

The above equation simplifies to 

P' = [P ." + S(9}]n + T(9'!tP - (P . m,,] + U(9)(" x P) 
1 + P ·"S(9) 

where S( fJ) is the Sherman function and 

T(9} = 1/12 -Il and U(9} = Ig*+ f* g 

1/12 + Il 1/12 + Il 

(4.5.1) 

(4.5.2) 

(4.5.3) 

(4.5.4) 

(4.5.5) 

Hence, T( fJ) ::;; 1 and 'fl + U2 + S2 = 1. For g( fJ) = 0 we have S( fJ) = U( fJ) = 0, 
T( fJ) = 1 and P' = P. Thus the change in the polarization vector is due to the 
spin-orbit interaction. If the initial beam is unpolarized, then P = 0 and 

P' =S(9}n (4.5.6) 
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Therefore an initially unpolarized beam gets partially polarized due to 
scattering, and the polarization vector P' is perpendicular to the plane of scatter­
ing. The magnitude of P' is equal to the Sherman function S( 8). Thus in the 
scattering of a polarized beam the Sherman function determines the extent of 
the left-right asymmetry, and in the scattering of an unpolarized beam, it gives 
the degree of polarization of the scattered beam. Hence, 

S(8) _ li(8) - 1-1-(8) _ Ni - N-1-
- li(8) + 1-1-(8) - Ni + N-1-

Thus the Sherman function is also equal to the difference in the fractions of the spin­
up and spin-down electrons. At the critical angle 8e (see Sec. 3.13) differential cross 
section Ion = Ii + 1-1- has a deep and sharp minimum. Near this region, but on the 
opposite side of 8n Ii and 1-1- also have deep and sharp minima. Thus the scattered 
electrons are highly upward polarized at the scattering angle where 1-1- is minimum. 
Similarly, at the scattering angle where Ii has its minimum, the scattered electrons 
are highly downward polarized. Thus S( 8) changes its sign in that region. 

For a better physical understanding let us take 

(4.5.7) 

where Pn is along nand Pp is in the plane of scattering. Using (4.5.7) in (4.5.4) 
gives 

P' = [p" + S(8)]n + T(8)Pp + U(8)(n x Pp) 

1 + P"S(8) 
(4.5.8) 

A comparison of (4.5.7) and (4.5.8) shows that P has only two components 
Pn and Pp but P' has three components. The component Pn changes to 

The component Pp reduces to 

p.' = p" + S(8) n 
n 1 + P"S(8) 

P' = T(8)Pp 
p 1 + P"S(8) 

(4.5.9) 

(4.5.10) 

and a new component, perpendicular to the directions of nand Pp , is produced, 
whose magnitude is equal to U(8)\Pp\/[1 + PnS(8)] =Ps, say, as shown in Fig. 4.4. 
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FIGURE 4.4 .Scattering of the partially polarized electrons by a potential: (a) Pp and p. are the 
components of the initial polarization vector P in the scattering plane OABC and perpen­
dicular to the scattering plane, respectively. (b) The numerators of the three components of P' are TPp, 

p. + S( 8) Ii, and U(ii x Pp). The denominator (not shown) of all the three terms is (l + p.S). 

We find that Pp not only changes in magnitude but is also rotated by an 
angle a in the plane of the scattering such that tan a = U( 9)IT( 9). Since n, Pp and 
(12 x Pp) are mutually perpendicular we have 

IP'12 = [p" +S(9)]2 + [T2(9)+U2(9)]P; 

[1 + P"S(9)]2 
(4.5.11) 

If the initial beam is 100% polarized then IPI = 1 and P; = 1 - p;. Then from 
(4.5.11) 

p'2 = P; +2P"S(9)+S2(9)+(I- p"2)[T2(9) + U2(9)] 

[1 + P"S(9)]2 

Using the relation S2 + r2 + U2 = 1 we get 

IP'f =1 

(4.5.12) 

(4.5.13) 

Hence, there is no change in the magnitude of the polarization vector but the 
directions of P and P' are different. However, for Pp = 0, the incident beam has 
only a transverse component, and (4.5.9) and (4.5.10) yield 
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pi = [P,. +S(8)]" 
1 + P,.S(8) 

Chapter 4 

(4.5.14) 

In this case the directions of P and P' are the same but the magnitudes are different. 
The spin-flip also takes place in electron-atom collisions. If we confine 

ourselves to spinless atoms and consider only elastic scattering, spin-flip is due 
solely to the spin-orbit interaction. In a perfect experiment one would like to 
determine module III and I g I and phases Yt and ~ of the scattering amplitudes I 
and g. Thus we require a set of four observables, which is provided by J( 8), S( 8), 
T(8), and U(8). However, due to the relation r + U2 + S2 = 1, the four observ­
abIes are not independent of each other. Thus we can determine only three 
quantities namely If I, Igl, and lPrel = Yt - ~. This is consistent with a concept of 
quantum mechanics, according to which an analysis of the scattered wave cannot 
determine the absolute values of the phases. From (4.4.28) and (4.5.5), S( 8) and 
U( 8) are proportional to sin lPrel and cos C/Jreh respectively, so for unambiguous 
values of lPrel both S( 8) and U( 8) are required. 

4.6 Measurement of the Sherman Function 

To measure S(8), Eqs. (4.4.38) and (4.5.1) are utilized and a double scattering 
experiment is performed. A monoenergetic beam of unpolarized electrons of 
energy E is scattered by the material whose Sherman function is to be measured. 
The scattered beam traveling in the direction (81, C/JI) is allowed to be scattered 
for a second time by a second specimen identical to the first, and the differential 
cross section in the directions «(h., C/J2) and «(h., C/J2 + n) are measured. By the first 
scattering, the scattered beam gets partially polarized and the polarization vector 
is given by P = S(81)~. The differential cross section for the scattered beam in 
the second scattering is given by 

Now for C/JI = 0 we get 

Hence, for C/J2 = 0 and C/J2 = n we have 

(4.6.1) 

For (h. = 81 = 8, say, we obtain 
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1(0,0)-/(0,7r) =S2(0) 
1(0,0)+ 1(0,7r) 

9S 

(4.6.2) 

Thus measuring I( 0, 0) and 1(0, 7r) of an electron beam, that is first con­
verted into a partially polarized beam, we can determine the value of the Sherman 
function S(9) of the chosen material. Usually to measure the left-right asymme­
try [i.e., 1(0, cp) and 1(0, 7r)], a Mott detector is employed. Its Sherman function 
S(1200) at E = 120keV and ° = 120° has been determined with great accuracy. 
To use this detector, the beam obtained by the first scattering at 0, is accelerated 
to E = 120keV and allowed to fallon the Mott detector. Then 1(120°, 0°) and 
1(120°, 180°) are measured. For these measurements (4.6.1) reduces to 

(4.6.3) 

Since S(1200) is already known S(E, 0\) is evaluated. A change in E and OJ, yields 
values of S(E, 0\) at different values of E and 0\. The Mott detector also mea­
sures the degree of polarization of a partially polarized beam with the help of 
(4.4.38). Since this equation contains only PI' before scattering, the polarization 
vector P is to be rotated in the direction of it (Kesseler, 1985). These detectors 
have been calibrated with an accuracy of 0.3% and are capable of detecting 
polarization as low as 10-3 (Mayer, 1995). 

If P of the incident electron beam is known, then (4.4.38) can be utilized 
to determine S(9) of a given material. 1(0, cp) is measured when P and it are 
parallel to each other. Then the direction of P (or Ii) is reversed so that P and Ii 
are anti parallel. The Des is again measured. If we denote these cross sections 
by I(i) and I( J..), from (4.4.38) it is easy to obtain 

A= I(i)-/(J..) =PS 
l(i)+/(i) 

(4.6.4) 

and since P is already known, we now have the value of the Sherman function. 
Usually this method is more accurate than the double scattering method described 
earlier. 

Questions and Problems 

4.1 Take electronic charge e in the unit of (Joule· meter)\12 and calculate the value 
of the Bohr magneton in the unit that contains Joules and meters. 
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4.2 An electron having I as its orbital angular momentum quantum number 
moves in a central potential and its potential energy is given by 

where r is the distance of the electron from the center of the force, e is electronic 
charge, and Z and ao are constant. Show that the electric and magnetic fields 
acting on the electron are 

r (2Zr)( 1 2Z 2Z2) E = -e-exp -- 2'+-+-2-r ao r aor ao 

e 1 (2ZrX 1 2Z 2Z2) B=--exp -- 2'+-+-2- L 
me r ao r aor ao 

where L is the orbital angular momentum of the electron and e is the velocity of 
light. 

4.3 In the above problem obtain both values of the spin-orbit interaction energy 
Voa , corresponding to j = I ± t, and show that for a p electron (I = 1) one value 
is double the other but has the opposite sign. 

4.4 In an ensemble of 6 x 103 electrons, 70% of them are polarized upward and 
rest are unpolarized. A measurement is made for the electrons polarized down­
ward. What will be their number? 

4.5 An electron beam is fully polarized in the x direction. Show that the spin 
wave function of the electrons is equal to the linear superposition of the spin 
wave functions polarized in +z and -z directions having equal amplitude. Use 
the density matrix method to verify that Py = Pz = 0 and Px = 1. 

4.6 An electron beam polarized in the z direction is mixed incoherently with 
another beam polarized in they direction. If the intensity of the former beam is 
double that of the latter, obtain the density matrix p of the mixed beam and show 
that 

trp2 <trp 

Express p in the digonalized form as well. 

orders@himanshubook.com



Collision of Electrons with a Potential 97 

4.7 Show that Y/Oa is not an eigenfunction of the operator J2 but that 

( 1+ 1 )1/2 (I )1/2 
._- Y; a+ -- Y; 
21 + 1 10 21 + 1 IJ3 

is an eigenfunction and that its eigenvalue is j(j + 1) If. 

4.8 Give a physical explanation for the reason that the I = 0 partial wave does 
not contribute to the spin-flip scattering amplitude g and that the maximum con­
tribution to g usually comes from the I = 1 partial wave. 

4.9 Verify Eq. (4.5.4). 

4.10 A 60% polarized beam in the y direction is traveling in the z direction. It 
is scattered by a potential and the differential cross section /(8, c{J) is measured 
in the x-z direction. Now the polarization vector P of the incident beam is 
reversed and the differential cross section is measured again in the same direc­
tion. If the latter cross section is 20% more than the former, calculate the value 
of the Sherman function. 
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Collision between Two Particles 

5.1 Introduction 

In the first chapter we briefly considered a collision between two particles 
A and B and obtained a relationship between the differential cross sections in the 
center-of-mass frame and in the laboratory frame. However, to obtain the scat­
tering amplitude we have to know the nature of the interaction between the two 
particles. In this chapter we obtain the scattering amplitudes for collisions 
between an incident particle A and a target B under the following different con­
ditions: (1) A and B are distinguishable from each other. (2) A and B are identi­
cal but follow classical mechanics; hence, they can be distinguished by their 
trajectories. (3) A and B are identical and are either bosons (follow Bose­
Einstien statistics) or fennions (follow Fenni-Dirac statistics). For the bosons, 
the total wave function (including spins) of the system is symmetric, i.e., the 
wave function is unchanged on the exchange of A and B. On the other hand, for 
the fennions, the total wave function is anti symmetric and changes its sign on 
the exchange of A and B. 

5.2 Reduction of the Two-Particle Problem 

A collision between A and B is obviously a two-particle problem. However, 
if the interaction between A and B depends only upon their relative coordinates 
then, like the problem of the hydrogen atom, the present problem can also be 
decomposed into two one-body problems. 

Under steady state conditions, If/(rAh}, the space part of the wave 
function of the system, satisfies the following time-independent Schrodinger 
equation: 

99 
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(5.2.1) 

where rA and rB are the coordinates of A and B, respectively, the potential energy 
has been assumed to depend only upon the relative coordinate rA - rB, and Er 
is the total energy of the system. To decompose (5.2.1) into two one-body 
SchrOdinger equations, we denote the coordinates of the center of mass and the 
relative coordinates by Rand r, respectively. Then 

R = mArA + mBrB 

mA+mB 
and (5.2.2) 

The use of (5.2.2) in (5.2.1), just as was done for the hydrogen atom problem, 
yields two differential equations. We take 

lJf(R,r) = cp(R)lJf(r) 

and put it into (5.2.1) along with (5.2.2). Thus we get 

and 

1'12 
--V~cp(R) = (Er - E)cp(R) 

2M 

(5.2.3) 

(5.2.4) 

(5.2.5) 

where M = mA + mB and J1 = mAmJM is the reduced mass of the system. It is 
evident that (5.2.4) describes the motion of a single free particle of mass M. 
Hence, its solution is a plane wave given by 

cp(R) = __ 1_eiK.R 

(2n)3/2 
(5.2.6) 

Equation (5.2.5) describes the motion of a fictitious particle of mass J1 in the 
center-of-mass frame. Its potential energy is VCr). Thus to study the collision 
between two particles, we have to solve the one-body equation given by (5.2.5). 

Let A and B be elementary particles (we consider a particle to be elemen­
tary whose structure in a given physical situation can be ignored) and consider 
their collisions under the three different conditions mentioned in Sec. 5.1. 
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5.3 Collision between Two Distinguishable Particles 

If V(r) is central and falls faster than 1Ir at large values of r, then the 
scattering amplitude ft8e,tPe) and the differential cross section I(8e,tPe) for the 
scattering of the particle A can be calculated by using the different integral 
and differential approaches discussed in Chapter 3. To compare the theory with 
experiment, (1.6.10) can be utilized to obtain I( 8L,C/h), the differential cross 
section in the laboratory frame, from the calculated I(8e,tPe). 

However, for charged elementary particles having charges Zte and Z2e, 

respectively, V(r) = ZtZ2e2/r. This interaction is Coulombic, and even at large r 

V(r) does not fall faster than 1Ir. In this case the solution of (5.2.5) is a Coulomb 
wave. At large values of r the Coulomb wave function is given by 

lfI e ~ A exp{i[kz + r In(kr)(l- cos8)]}{1 + r 2 /[ikr(l- cos8)]} 
Ir-zl .... ~ 

+A !c~8) exp{i[kr-r ln(2kr)]}{1+(1+ir)2 /[ikr(1-cos8)]} (5.3.1) 

.f (8)=- ex (2i(J )exp{-ir ln[sin2 (8/2)]} 
Je r p 0 2ksin2(8/2) 

(5.3.2) 

and (Jo = argIU + in. It should be noted that the above relation does not hold 
for 8 = 0, in which case I r - z I cannot tend to infinity. It is also evident that 
(5.3.1) does not reduce to (3.1.2). However, as the differences are mainly in the 
phases, f d 8) is still defined as the scattering amplitude, and the differential cross 
section in the CM frame is 

(5.3.3) 

The above equation is identical to the formula derived by Rutherford with 
the help of classical mechanics, which bears his name. Since I( 8e) diverges at 
8e= 0, the integrated cross section is infinite. 

5.4 Collision between Two Identical Classical Particles 

In the CM frame, A and B will always move in opposite directions. 
According to (5.2.2), an exchange of A and B will change r to -r. Let us place 
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(0) ( b) 

FIGURE 5.1 Collision of two identical particles A and B in the center-of-mass frame: (a) shows 
direct scattering, and (b) represents exchange scattering. 

a detector D in the eM frame to detect those particles that are scattered in the 
direction (Be,cf1C) with respect to the initial direction of A, as shown by Fig. 5.1(a). 

Now, B will recoil in the opposite direction, i.e., it will move in the direc­
tion (n - Be, n + cf1c). Hence, the detector will detect particle B when A is 
scattered in the direction (n - Be, n + cf1e). Since A and B are indistinguishable, 
the detector detects A-like particles for two sets of scattering angles for A; namely 
(Oc,(pd and (n - Oe, n + f/Jd. However, as A and B are classical particles, they 
can be distinguished by their trajectories in spite of being identical. Hence, the 
effective differential cross section will be the sum of the differential cross sec­
tions obtained by the direct and exchange processes, represented by Figs. 5.I(a) 
and (b), respectively. Thus 

(5.4.1) 

The first term in the above equation is due to the direct scattering of A, 
whereas the second corresponds to the situation in which B is detected by 
the detector, i.e., A is exchanged by B and A itself is scattered in the direction 
(n - Be, n + cf1c). 

5.5 Collision between Two Identical Bosons 

As mentioned in Sec. 5.1, the total wave function of a system consisting 
of bosons is symmetric and so does not change when two of its bosons are 
exchanged. Let us consider a collision between two spinless identical bosons. 
Now rnA = rnB and tp(r) of (5.2.5) denotes the wave function of a particle of mass 
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Jl in the eM frame. Exchange of two bosons means r ~ -r. Hence, if v(r) is the 
wave function of the system, we must have v(r) = v( -r). To achieve this, we take 

v(r) = ",(r) + "'( -r ) (S.S.1) 

where lfJ{r) is the solution of (S.2.S). 
Let us assume that the interaction between the two bosons depends only 

upon r, which falls faster than lIr at large r; then from (3.1.2) and (S.S.1), 

(S.S.2) 

Hence, the differential cross section for the scattering of two identical bosons is 
given by 

(S.S.3) 

Again,ft ge,(pd is the scattering amplitude for the process when the incident boson 
is detected by the detector and the other is scattered by (1r - ge, 1r + l/Jd; while 
ft1r - ge, 1r + l/Jd is the scattering amplitude for the process when the incident 
boson is scattered by (1r - ge, 1r + l/Je) and the target boson enters the detector. 
Using the notation of (S.4.1), we get 

I(ge,l/Jd = I AlJc,l/Jd+ Iex (1r-ge, 1r+l/Jd 

+ 2Re[f(Be,l/Jd/*(1r -Be, 1r+l/JdJ (5.5.4) 

For central potentials, I(Be,l/Jd is independent of l/Je and (S.S.4) reduces to 

I(Be) = Id (Be) + lex (1r - Be) + 2Re[f(Be)/* (1r - Be)] (S.S.S) 

Quite oftenft1r- Be) is denoted by g(9e) and so we also have 

(S.5.6) 

A comparison of (S.4.1) with (S.S.S) shows that the latter equation has an extra 
term, which arises from the interference of the direct and exchange scattering 
amplitudes. This term is due to the coherent addition of the direct and exchange 
scattering amplitudes, whereas in (S.4.1) the amplitudes are added in an inco­
herent manner. It should be noted that the normalization of v(r) is taken in such 
a way that if the interference term is neglected (S.S.6) reduces to the classical 
equation (S.4.1). 
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For a Coulomb potential equal to ZIZ2e-1r, lfI{r) is a Coulomb wave (given 
by 5.3.1) andfdOd is given by (5.3.2). Hence, from (5.5.6) we obtain 

1(0 ) = ( e2/4E)2IeXP{-2iYln[Sin(Oe/2)]} + exp{-2iyln[cos(Oe/2)]}12 
e Z1Z2 sin 2 (Oe /2) cos2 (Oe /2) 

(5.5.7) 

or 

o 2/4E 2[ 1 1 2cos{2y In[tan(Oe/2)]}] 
1( d=(ZIZ2e ) sin4(Oe/2) + cOS4(Oe/2) + sin2(Oe/2)cOs2(Oe/2) 

(5.5.8) 

The above equation represents the Mott scattering formula for the Coulomb 
scattering between two identical bosons. 

5.6 Collision between Two Eelectrons 

The collision between two electrons is once again equivalent to the 
scattering of a particle of mass Jl by a central potential in the center-of-mass 
frame. Since electrons are fermions with s = t, the spins S of the particle of mass 
Jl are 1 and 0, with Ms = 1, 0, -1 and 0, respectively. The corresponding four 
spin wave functions are given by: 

S 

1 

1 

o 

Ms 
1 

0 

-1 

0 

Wave function 
a(A)a(B) 

~[a(A)jJ(B) + a(B)jJ(A)] 

jJ(A)jJ(B) 

~ [a(A)jJ(B) - a(B)jJ(A)] (5.6.1) 

It is easy to verify that all of the above four wave functions are orthonormal and 
are eigenfunctions of the operators S2 and S., with eigenvalues S(S + 1) If and 
Mll, respectively. 

The first three spin wave functions given by (5.6.1) are symmetric with 
respect to the exchange of A and B. The corresponding triplet space wave func­
tion is given by 
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VI (r) = lfI(r) -1fI( -r) (5.6.2) 

and the singlet wave function corresponding to S = 0 and Ms = 0 is given by 

(5.6.3) 

For the central potentials, differential cross sections are independent of cp. Hence, 
as before, the triplet and singlet differential cross sections are given by 

(5.6.4) 

For completely unpolarized beams of electrons the weight factors of the triplet 
and singlet states are i and i, respectively. Hence, 

(5.6.5) 

or 

(5.6.6) 

The interaction between the two electrons is Coulombic; hence, as before, fi OC) 
is given by (5.3.2) with r= e2J.11ltk. Further, g( Oc> is given by the same equation 
but with Oc being replaced by n - Oc. Thus we get 

Ils(Oc) = (e2/4E)2[ 1 + 1 =+= 2Cos{2rln[tan(Oc/2)]}] 
, sin4(Oc/2) COS4(OC/2) sin2(Oc/2)cos2(Ocl2) 

(5.6.7) 

It is interesting to note that I( Oc> as given by (5.5.8) and IIi Oc> as given by 
(5.6.7) are symmetric about Oc = 7rl2. In all three cases the effect of the inter­
ference term is most pronounced at Oc = 1CI2 and becomes more and more 
noticeable as the value of r increases. Since the scattering angle OL in the labo­
ratory frame is half of Oc for mA = mH, the symmetry in the laboratory frame is 
at OL = 1CI4 . 

Finally it should be noted that to obtain the total scattering cross section 
G, the DCS given by (5.4.1), (5.5.6), and (5,6.4) is to be integrated over Oc from 
o to n. However, the limits of integration should be from ° to 1CI2 to avoid double 
counting as they cover the counting of both the projectiles and target particles. 
Since the DCS diverges at Oc = 0, G is infinite in all three cases. 
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Questions and Problems 

[Note: Neglect relativistic effects in all the following problems.] 

5.1 a-particles having 2 MeV energy are scattered elastically by stationary lead 
nuclei. If the angle of scattering in the CM frame is 30°, what is the differential 
cross section in the L frame? 

5.2 A proton of lOkeV energy collides elastically with a stationary a-particle in 
the laboratory. The angle of scattering in the CM frame is 60°. Calculate the real 
and imaginary parts of the scattering amplitude and the differential cross section 
in the CM frame. 

5.3 An a-particle of energy 4keV collides with a stationary a-particle and is 
scattered by 22,50 in the L frame. Calculate the magnitudes of the direct and 
exchange scatterings in the CM frame and the differential cross section in the L 
frame. 

5.4 Electrons of 5keV energy collide with stationary electrons in the L frame. 
For the scattering angle of 60° in the L frame, calculate the differential cross sec­
tions in the same frame under following conditions: (a) The projectile and target 
electrons have same spins. (b) The spins of the projectile electrons are opposite 
to those of the target electrons. (c) The spins of the projectile and the target elec­
trons are random. 

5.5 Consider the elastic scattering between two electrons in the CM frame. Take 
the initial wave function of the system as 

where the ({>ki(ri) are plane waves. The final wave function is also given by the 
above equation, with kJ and k2 being replaced by k~ and k~, respectively. Obtain 
the direct and exchange scattering amplitudes in the CM frame and show 

g(8d = fin-8d 

where 8c is the angle of scattering in the CM frame. 
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Collision of Photons with Atoms 

6.1 Introduction 

A knowledge of the cross sections for photon-induced processes is of 
importance in a number of fields, including dosimetry, radiation therapy, and 
health physics; space physics and chemistry; laser physics; environmental pro­
tection; fusion; plasmas; radiation-induced decomposition; and electron and 
X-ray microscopy (Brion, 1985). Photoionization cross sections control the tem­
perature of the solar corona and are needed to determine the rate of ionization in 
the ionosphere. The existence of the ionic layers in our upper atmosphere is 
partially due to the interaction of photons with the atmospheric gases. Hence, it 
is appropriate to devote a chapter to the collision of photons with atomic systems. 
We shall see later that such a study is also helpful in the discussion of the 
collision of electrons with atomic systems. 

A collision between a photon and an atom can be elastic as well as inelas­
tic. Rayleigh and Thomson scattering are examples of elastic collisions, where 
the incident and the scattered photons have the same energy. Excitation and 
ionization of atoms by photons, e.g., Raman scattering are examples of the 
inelastic collisions. A molecule may also dissociate due to photon impact. 

6.2 Photons and Electromagnetic Waves 

According to the quantum theory of fields, every field is associated with 
a particle of finite mass and spin. Following the same general features, the 
quantum mechanical excitation of electromagnetic waves of angular frequency 
m gives rise to photons of energy E = lim and momentum !PI = liaie or their 
integral multiples. The spin of a particle can be defined as the angular momen­
tum it possesses in its rest frame. However, for a photon, the relativistic 
relation 
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(6.2.1) 

and the relations between E, !PI, and m, given above, show that m, the rest mass of 
a photon, is zero. As a matter of fact there is no frame in which a photon is at rest. 
In all frames, in vacuum, a photon moves with the velocity of light c. Thus, the 
spin of a photon needs a different definition, and we shall come back to it. 

To develop a quantum mechanical theory for collisions between photons 
and atomic systems, Maxwell's equations have to be quantized, but, we shall con­
tinue to use them. In most situations they are not a bad approximation because 
even for weak electromagnetic (EM) fields of wavelength A, the number of 
photons in a volume A,3 is very large. Hence, the number can be treated as a con­
tinuous variable. Under such a condition a semiclassical theory, in which the EM 
field is described by Maxwell's equations and the atomic system is treated 
quantum mechanically, should be adequate. In such a theory the EM field dis­
turbs the atomic system but it is assumed that the latter, even by its emission or 
absorption of a photon, does not disturb the field. Obviously, this assumption is 
valid when there are a large number of photons in the field, so the stimulated 
emission and absorption of photons can be successfully described by semi­
classical theory. However, spontaneous emission takes place even in vacuum (no 
photons in the field). In such a situation it is incorrect to neglect the disturbance 
of the field by the atomic system. Nevertheless, it is possible to obtain an expres­
sion for the transition rate for spontaneous emission using the transition rates for 
absorption and stimulated emission and Planck's formula for blackbody radia­
tion without resorting to a full quantum treatment. 

6.3 The Electromagnetic Field in Free Space 

Maxwell's equations for the EM field are given in terms of the electric field 
E and the magnetic field B. The vectors E and B are perpendicular to each other 
and also to the momentum vector k. With proper gauge transformations, E and 
B, in free space, are expressed in terms of a vector potential A by the following 
equations (Schiff, 1968): 

B=VxA 

The vector potential A satisfies 

E=-.!. aA 
c at (6.3.1) 

(6.3.2) 
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and obeys the transversality condition 

V·A=O (6.3.3) 

For a linearly polarized monochromatic plane wave, the solution of (6.3.2) 
is given by 

(6.3.4) 

where E is the polarization unit vector and is perpendicular to the direction of 
propagation. Since k = -iV, the solution (6.3.4) automatically satisfies (6.3.3). 
For such a wave, the energy flux (intensity) is given by 

6.4 Excitation and De-Excitation of Atoms Due to 
the Electromagnetic Field 

(6.3.5) 

Let us consider a one-electron atom. In a stationary state it satisfies the 
following time-independent SchrOdinger equation: 

(6.4.1) 

where Vo and Eo are the eigenfunction and eigenenergy of the Hamiltonian Ho, 

respectively. At time t = 0, we put this atom under the EM field represented by 
(6.3.4). This field causes the Hamiltonian to change to 

1 / 2 H=-(p-eA e) +V(r) 
2m 

e e2 2 
=Ho--A'p+--IAI +V(r) 

me 2me2 
(6.4.2) 

where we have used the fact that the operator p acts on every object on its right 
and from (6.3.3) (p ·A) = O. Thus the Hamiltonian, given by (6.4.2), contains new 
time-dependent terms, which perturb the atom. This perturbation gives rise to the 
possibility that the atom makes a transition from its initial state Vo to a new state, 
say, vq• Up to first order the perturbation is 

orders@himanshubook.com



110 

, e 
H =--A·p 

me 

Chapter 6 

(6.4.3) 

According to first-order time-dependent perturbation theory, the transition 
probability amplitude aq(t) for finding the atom in the stationary state Vq after a 
time t is given by (Schiff, 1968) 

(6.4.4) 

where roqO = (Eq - Eo)ln. Using (6.4.3) and (6.4.4) and integrating over t' we get 

(6.4.5) 

with 

e 'k Y = -Aoe' 'r E'P (6.4.6) 
me 

The above equation shows that the probability of finding the atom in the 
state Iq) is appreciable only when the denominator in one of the two terms of 
(6.4.5) is practically equal to zero. The first term dominates when Eq - Eo :::: nro 
and represents the absorption of a quantum nro by an atom from the field 
by which the atom makes a transition from the lower state IO} to an excited state 
Iq}. Similarly, the second term is of importance when Eq - Eo :::: -nro and it rep­
resents a process in which the atom makes a transition from an excited state lo} 
to a lower state Iq} by emitting a photon, due to the presence of other similar 
photons (stimulated emission). There is no interference between the two terms, 
and the two processes (absorption and stimulated emission) can be treated 
independently. 

Let us concentrate on the excitation of an atom due to absorption of a 
photon from the field. Equation (6.4.5) shows that the excitation probability is 
given by 

(6.4.7) 

where YqO = (qIYIO). Now if we plot sin2[(roqO - ro)tl2]/[(roqO - ro)tI2]2 as a func­
tion of (roqO - ro) we get the curve shown in the Fig. 6.1. The maximum value of 
sin2[(roqO - ro)tI2]/[(roqO - ro)]2 is fl4 at roqO = ro and it goes to zero at roqO - ro = 
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FIGURE 6.1 Variation of [sin(coqa - co)t/21/[(coqa - co)t/21 2 with COqa - co. 

±2TC/t. Thus the area of the main loop is proportional to t, and so the transition 
probability when COqO - co ranges from -2TC/t to +2TC/t is also proportional to t. 
Hence, the transition probability per unit time W~ will be independent of time. 
Let us assume that t is quite large; then from the definition of the Dirac delta 
function 

(6.4.8) 

Hence, 

(6.4.9) 
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In this equation either COqO or co can be treated as a variable. We shall con­
sider both cases. Let us first take COqO as a variable by assuming that the final state 
is made up of a group of states having eigenenergies very close to Eq and that these 
eigenenergies vary in a continuous manner. In other words, the final state Iq) is 
assumed to have a width. This assumption is quite appropriate because of the 
uncertainty principle and the broadening of the spectral lines due to temperature, 
pressure, and collisions. Let p(Eq)dEq represent the number of the final states with 
P(Eq) as the number of states per unit energy range. Then, for the whole group, 

(6.4.10) 

Neglecting the variation of Y qO with Eq within the group, we obtain 

(6.4.11) 

The above relation has been found so useful that it is known as the Fermi's 
Golden Rule 2. 

Let us now consider the second case, in which co is treated as a variable. 
We assume that the EM wave is not strictly monochromatic but has a width dco. 
Then, from (6.3.5), 

2 21rC lAo I =-2 I(co)dco 
CO 

(6.4.12) 

where I(co) is the intensity of the wave per unit frequency range. Using (6.4.12) 
in (6.4.9), we get 

(6.4.13) 

where X = YIAo. Integration over co yields 

(6.4.14) 

The transition probability per unit time per atom divided by the incident photon 
flux gives the photo cross section per photon. Hence, the excitation (absorption) 
cross section is given by 
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ex W;O'liro 
(j ----qO - F (6.4.15) 

where F is the energy flux of the EM field and the energy of each photon is liro. 
Using (6.3.5) for F, the relationship Y = XAo and (6.4.11) for W~, we obtain 

ex 41r2c Ix 12 ( ) 
(jqO =-- qO P Eq 

roqo 
(6.4.16) 

6.5 The Electric Dipole Approximation 

Since the interaction between the EM field and the atom takes place over 
the area of the atom, the interaction length is of the order of the radius of the 
atom. Furthermore, for excitation or de-excitation to take place, the energy of the 
photons should be equal to the energy spacing between the two corresponding 
atomic levels. Hence, between the n and m levels of a hydrogenic atom we have 

Thus liro:::: t!e2lao and k :::: Z2fll1icao. The radius of the atom can be approx­
imated by ariZ; hence jk·rl :::: Za, where the fine-structure constant a = (flllic) is 
equal to 1~7. Now 

iIe., l.k (ik·r)2 
e = +z ·r+--+··· 

2! 
(6.5.1) 

Since jk·rl is quite small for light atoms (small Z), for most cases we may 
replace eile" occurring in XqO by its first term (dipole term), i.e., by unity. Hence 
in the dipole approximation, (6.4.14) reduces to 

(6.5.2) 

The matrix element (p)qO involves a momentum (or velocity) operator and, is thus 
known as the velocity form of the matrix element. However, it is more conve­
nient to use the length form ofthe matrix element given by (r)qO. For the atomic 
system whose eigenfunctions are known exactly(such as a hydrogenic atom), an 
exact conversion of (p)qO into (r)qO is possible. To achieve this let us consider 
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[r, Ho] = [r, p2 /2m+ V(r}] = _1 [r, p2] = iliE. 
2m m 

Hence 

iii 
(ql[r, Ho]IO) = -(qlpIO) (6.5.3) 

m 

Furthermore, 

(qlrHo - HorlO) = (eo - eq )(qlrIO) (6.5.4) 

Equating (6.5.3) to (6.5.4), we get 

(qlpIO) = immqo(qlrIO) (6.5.5) 

Hence, in the dipole approximation 

(6.5.6) 

For a given polarization direction the vector (qlrIO) makes all possible 
angles with the polarization vector E. Hence, taking all the directions into con­
sideration, we have to obtain an average value of W~. Let Jl be the cosine of the 
angle between e and (qlrIO). Now, the average value of Jl2 is t. Finally, 

(6.5.7) 

(6.5.8) 

because irqi = 31xql Similarly, it is easy to show that the excitation (absorp­
tion) cross section in the dipole approximation is given by 

(6.5.9) 

6.6 The Einstein B and A Coefficients 

The Einstein B coefficient is obtained by dividing the transition rate given 
by (6.5.7) by the energy density of the radiation per unit angular frequency u(m) 

= J(myc. Hence, BqO for a transition from 10} to Iq} is given by 
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(6.6.1) 

It is evident that BOq, the Einstein B coefficient for stimulated emission, is equal 
to that for absorption. However, if 10) and Iq} states are go- and gq-fold degen­
erate, then goBqO = gqBOq. 

To obtain an expression for the Einstein A coefficient (transition rate for 
spontaneous emission) we take an ensemble of atoms in statistical equilibrium at 
a temperature T and consider transitions between two quantum states 10} and Iq}. 
Let No and Nq be the number of atoms in the 10) and Iq} states, respectively. 
Equating the number of atoms going fromlO)to Iq} per unit time by absorbing radi­
ation to the number of atoms making the transition from Iq} to 10) per unit time by 
stimulated and spontaneous radiation we get 

Since NINo = glgo exp (-1iOJqOlkT), where k is Bolzmann's constant and 

Bqo/Boq =gq/go 

We .get from (6.6.2) 

(6.6.2) 

(6.6.3) 

Further, according to the Planck's blackbody formula, the energy density of 
radiation per unit angular frequency at thermal equilibrium is given by 

(6.6.4) 

Hence, putting (6.6.4) into (6.6.3) at OJ = OJqO, we obtain 

(6.6.5) 

It is interesting to see that the ratio AlB is independent of e, m, and the 
matrix element r qO. In order that the stimulated emissions may dominate over the 
spontaneous emissions, OJqO should be small. Based on this observation the first 
amplifier MASER (microwave amplification by stimulated emission of radiation) 
used OJqO in the microwave region. Now with improved techniques we have X­
ray lasers and even free-electron lasers. Using (6.6.1) in (6.6.5), we finally obtain 
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(6.6.6) 

6.7 Dipole Selection Rules 

It is evident from (6.5.7) and (6.6.6.) that in the dipole approximation an 
atom will radiate or absorb EM waves only if the matrix element (qlrIO) is 
nonzero. The operator 

r = (i sinO cosqJ + J sinO cosqJ + k cosO}r 

is an odd-parity operator with 1= 1 and ml = 0, ±l. Therefore, for a nonzero value 
of the matrix element ('" n'l'm'l' !rl", nlml) we must have 

(1) ~l = ±1 

and 

(2) ~l = 0, ±1 (6.7.1) 

which are the dipole selection rules. Rule 1 shows that the initial and final atomic 
states have to be of opposite parity. This is known as the Laporte rule. Since the 
operator r has no effect on the spin wave functions, the spin quantum numbers 
s and ms remain conserved in the dipole transition. Hence, for the quantum 
numbers j and mj we have the following selection rules: 

(3) ~j = 0, ±l 

(4) ~j = 0, ±1 

For a multielectron atom, (an atom with a number of charged particles, the 
interactions among which cannot be neglected) the selection rules are based on 
the quantum numbers J, L, and S of the whole atom. Quantum electrodynamics 
shows that the Laporte rule and rule 1 are still valid. In addition, we have 

(5) ~J = 0, ±1 but not from 0 to 0 

(6) ~M = 0, ±l 

(7) M=O 

(8) ~L = 0, ±1 but not from 0 to 0 (6.7.2) 
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All those transitions that obey the dipole selection rules are said to be 
allowed transitions, while the rest of them are known as forbidden transitions. 
The matrix element (qleiko, e·pIO) for forbidden transitions may have nonzero 
values when higher terms of the expansion of eiko" given by (6.5.1), are taken into 
account. For example, a transition from 32D,. to 12s,. is a forbidden transition but 
the matrix element (32D,,,Iik·rI12s) is nonzero. Transitions that take place due to 
the operator (ik·r) are known as electric quadrupole transitions. Similarly, we 
have transitions due to the higher electric poles as well as to magnetic interac­
tions. They are all examples of forbidden transitions and their intensities are much 
lower than those of electric dipole transitions. 

For those excited states that decay by electric dipole transition, the inverse 
of the Einstein A coefficient gives their lifetime f. The excited states, which do 
not decay by a dipole transition, have a much longer lifetime and are known as 
metastable states. 

A transition from a state s (I = 0) to another s state cannot take place even 
when the full operator eiko'e·p is taken into account. To verify the above state­
ment let us take e in the x direction; then the above operator reduces to ei(k,y+k,Z)px. 
The term ei(k,y+/c,Z) is of even parity whereas Px is of odd parity with respect to a 
reflection about the x-axis. Hence, the integrand is of odd parity and the inte­
gration yields zero. Such transitions are said to be strictly forbidden. For example, 
a transition from 22 s,. to 12 S'" is a strictly forbidden transition. Consequently, the 
metastable state 22S,. has a very long lifetime compared to the lifetime of the 2\. 
state. The metastable state 2\. decays to the ground state by the second-order 
perturbation term IAI2e2/(2mc2), occurring in (6.4.2). Such a transition emits two 
photons. The angular frequencies COj and ll>.2 of the emitted photons satisfy the 
relation 

Thus a large number of combinations of COj and llJ2 are possible. 

6.8 Spin and Spin States of Photons 

We have noted that the angular momentum of a particle in its rest frame 
is its spin angular momentum. However, the above definition fails for the photon 
because it has no rest frame. Hence, we adopt alternative procedures. 

According to the dipole transition selection rules, the emission or absorp­
tion of a photon by an atomic system changes the orbital angular momentum of 
the system by one unit. To conserve the angular momentum, the same degree of 
change must occur in the radiation field. In the dipole approximation, the varia­
tion in the EM field vector potential A with direction over the atomic size has 
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been neglected by assuming it to be spherically symmetric. This field remains 
spherically symmetric even after the emission (or absorption) of a photon. Hence, 
the orbital angular momentum released by the atomic system becomes the inter­
nal (spin) angular momentum of the emitted photon. Thus the spin angular 
momentum of a photon is 1'1. When a photon is absorbed its spin angular momen­
tum of one unit increases the orbital angular momentum of the atomic electron 
that makes the transition from one atomic orbital to another. 

We also note that e of (6.3.4) transforms like a vector. Hence, 
following the general theory of angular momenta we associate one unit of the 
angular momentum with it. Let us take k along the z-axis. Since e is perpendic­
ular to the direction of propagation k, we can have two linearly polarized waves 
having polarization vectors ex and Ey, which are perpendicular to each other as 
well as to k. Linear combinations of ex and ey give rise to two linearly indepen­
dent circularly polarized waves. The circularly polarized vectors are given by 

(6.8.1) 

The change in e due to infinitesimal rotation &p about the k-axis is given by 

(6.8.2) 

The above equation shows that the components of the spin associated with e along 
the k-axis are m = ±l. Hence, we again find that the spin angular momentum of 
a photon is Ii. However, its z component ms has only two values given by ±Ii. 
The third component ms = 0 does not exist because e·k = 0 and the rest mass of 
the photons is zero. Thus the quantum mechanical excitation of the radiation field 
are photons having zero rest mass, spin s = 1, and ms = ±1. The quantum number 
ms represents helicity of the state of the photons. A photon beam of a definite 
helicity corresponds to circularly polarized light. We shall refer to the light of 
positive helicity (ms = +1) as right-handed circularly polarized light. A left­
handed circularly polarized light has negative helicity (ms = -1). 

To discuss the spin states of the photons let us once again consider a mono­
chromatic plane EM wave, polarized in the x direction. According to (6.3.4), it 
is given by 

(6.8.3) 

We combine the above wave with another monochromatic plane wave having the 
same frequency and wave vector with amplitude Aob but polarized in the y direc­
tion and differing from (6.8.3) by a definite phase ~. The resultant wave is also 
polarized and its unit polarization vector is given by 
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(6.8.4) 

with 

(6.8.5) 

If we take a = cos a and b = sin a, then (6.8.5) is automatically satisfied and 
(6.8.4) reduces to 

(6.8.6) 

which is a vector in a two-dimensional vector space with ex and Ey as two basis 
vectors. Hence, we represent a photon state having a polarization vector E( a) by 

(6.8.7) 

Since le(a)}, lex}, and ley} are state vectors in a two-dimensional vector space, 
they can be represented by two-component spinors, involving a and b. To obtain 
the values of a and b let us use (6.8.1), according to which 

(6.8.8) 

and 

(6.8.9) 

where the photon states le+}andle_} correspond to the helicity +1 and -1, 
respectively. Hence, like the spin-up and spin-down electron states (see 4.3.3), 
we have 

and (6.8.10) 

Thus we get 

and (6.8.11) 

Putting the above equation into (6.8.7), we get 
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lea} = _1_(-COS a + i sin a~j6) == (aa) 
..fi cos a + i sin ae,{j ba 

(6.8.12) 

Similar to an electron beam, a beam of photons having all the photons in 
the same state of polarization is fully polarized and its polarization properties 
can be described by a single polarization vector, say, e(a). The state (6.8.12) is 
said to be a pure state. If we mix two or more fully polarized beams that do not 
have definite phase relationships, a mixture is obtained. To describe the polar­
ization properties of a mixed beam we consider its density matrix operator, 
defined by 

(6.8.13) 

where Ij is the intensity of the /' pure component of the mixed beam and 

(6.8.14) 

With the help of the above equation, we get from (6.8.13) 

(6.8.15) 

Since lej} is a normalized ket 

(6.8.16) 

The above normalization of the mixed photon beam is different from the 
normalization of a mixed electron beam, where we have tr p = 1. For the mixed 
photon beam 

(6.8.17) 

Only for the pure photon beams is tr {i = P. 
Since aj and bj are complex, in general, it takes four independent 

parameters to completely determine the polarization state of a mixed beam: I, 
1110 112, and 113' The 1]; are known as the Stokes parameters and are defined as 
follows: 

orders@himanshubook.com



Collision of Photons with Atoms 121 

(6.8.I8a) 

(6.8.18b) 

and 

(6.8.18c) 

where J( a) is the intensity of the transmitted light when a mixed light beam of 
intensity J moving along the z-axis is passed through a Nicol prism whose axis 
of complete transmission makes an angle a with the x-axis. J+ (L) is the inten­
sity of the transmitted light when the mixed beam is passed through a filter which 
fully transmits photons of helicity + 1 (-1). The intensity J( a) for the mixed beam 
is given by 

J(a) = (e(a)lple(a)) (6.8.19) 

Using (6.8.10) and (6.8.15), we get from the above equation 

and L =P22 (6.8.20) 

Similarly, using (6.8.12) and (6.8.15) in (6.8.19) gives 

(6.8.21) 

For I) = 0 and a = 0 we have ao = -11-./2 and bo = 1/-./2. Hence, 

(6.8.22) 

Similarly, 

(6.8.23) 

(6.8.24) 
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and 

1(135°) = t (Pn + ip12 - ip21 + P22) (6.8.25) 

With the help of above equations, we obtain 

i 
111 = i(P21 - P12) (6.8.26) 

I 
1]2 = i(Pn - P22) (6.8.27) 

and 

I 
1]3 = --(PI2 + P21) (6.8.28) 

1 

where 

1 = trp = Pn + P22 (6.8.29) 

Further, 

1 
Pn = 2(1 + 1]2) (6.8.30) 

P12 =.!..( -1]3 + i1]l) 
2 

(6.8.31) 

1 . 
P21 =2(-1]3 -11]1) (6.8.32) 

1 
P22 = 2 (1-1]2 ) (6.8.33) 

Thus, 

I( 1+1]2 P=-
2 -i1]1 -1]3 

i1]1 -1]3 ) 
1-1]2 

(6.8.34) 

and 
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(6.8.35) 

Now for a mixed beam tr p2 < F Hence, 

(6.8.36) 

Sometimes the Stokes parameters are also represented by Ph P2, and P3 with the 
relations p) = 1]3, P2 = 1]10 and P3 = 1]2 (Kesseler, 1991). 

The degree of polarization of the beam P satisfies 

(6.8.37) 

and, as expected, for a partially polarized (mixed) beam P < 1. Using (6.8.12) 
and the expressions for Pij in (6.8.21), we get 

l(a, 8) = f(1 + 1]2 sin2a sin8 + 1]3 cos2a + 1]) sin2a cos8) (6.8.38) 

6.9 Optical Oscillator Strength 

The optical oscillator strength r for a transition from 10) to I q) atomic states 
due to EM waves, in the length form, is defined by 

(6.9.1) 

where fq{) is the excitation energy and R is the Rydberg energy; j,J; is a dimen­
sionless quantity and is related to the strength of the transition from the 10) state 
to the Iq) state. It is positive for excitation and negative for the de-excitation. Due 
to the length operator x, Eq. (6.9.1) gives the length form of the optical oscilla­
tor strength. It can be converted into the velocity form by using (6.5.5) in (6.9.1). 
This gives 

To obtain f':/s in the acceleration form we consider 

(ql[Ho, Px110) = (ql[p2 /2m+ V(r) , Px]lo) 

= (qIV(r)px - pxV(r)IO) 

(6.9.2) 
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Since 

we get 

(q\[Ho, Px1\0) = -(q\(px V)\O) = i1i(q\dV/ dx\O) 

We also have 

Hence, in the acceleration form 

For the exact atomic wave function we have 

-foL _ -foV _ -foA 
JqO - JqO - JqO 

Chapter 6 

(6.9.3) 

(6.9.4) 

However, it is only for the hydrogen atom that exact atomic wave functions are 
known. With approximate wave functions the calculated values of the f:a in the 
three different forms are found to be different. The magnitude of the differences 
among the three values indicates the inaccuracy of the employed approximate 
wave functions: the smaller the differences, the better the wave functions. It is 
evident from (6.9.1), that f:a is nonzero only for optically allowed transitions. 
For the excited 2p state of a hydrogen-like atom having m = 0, ±l, it is easy to 
show that 

(6.9.5) 

The optical oscillator strength for a transition from the Is to the np state is 
given by 

8 7( 2 )( )2n-6 /,0 _ 2 Enp,ls 1 n n -1 n-l 
np,ls - 3 R Z2 (n + 1)2n+6 

(6.9.6) 

Let us sumf:a over all the final states \q). To obtain the value of S f:a for a one-
electron atom we note that q 
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Hence, 

(ol[x, [x, HonlO) = 2Eo(0Ix210) - 2(0InHoxI0) 

= 2Eo S(Olxlq)(qlxIO) - 2S(0Ixlq)(qIHoxI0) 
q q 

where the Iq) form a complete set and we have used Slq)(ql = l. Hence, 
q 

(Ol[x, [x, Ho]]IO) = 2S(Eo -Eq )I(0Ixlq)12 

q 

We also have (Ol[x, [x, Ho]]IO) = (Ol[x, iii Px/ m]IO) 

Ii 
=--

m 

Equating (6.9.9) to (6.9.10), we get 

or 

Similarly for an N-electron atom we get 

SI;o =N 
q 
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(6.9.7) 

(6.9.8) 

(6.9.9) 

(6.9.10) 

(6.9.11) 

(6.9.12) 

(6.9.13) 

This important equation is known as the Thomas-Reiche-Kuhn sum rule. 

6.10 Photo ionization of Atoms 

So far we have discussed the excitation and de-excitation of an atom due 
to photon impact from one discrete state 10) to another discrete state Iq). Since 
the initial and final states are bound states these collisions give rise to 
bound-bound transitions. In this section we extend our study to those collisions 
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in which the final state is a continuum state and consider ionization of an atom 
by photon impact. We represent the collision by 

(6.10.1) 

and the energy of the ejected electron is 

(6.10.2) 

where W = hv and I is the ionization potential of the atom. For reaction (6.10.1) 
the photon can have all values of the energy W greater than 1. 

For a given ejected energy Eb the ionized electron can come out in all pos­
sible directions. Hence, when (6.5.9) is extended to ionization, the cross section 
for a given Ek becomes a differential with respect to the direction. Thus 

(6.10.3) 

where Gph(W) is the photoionization cross section of the atom for the photon 
energy W. To obtain an expression for the density of states P(Ek), we consider the 
ejected electron in a box of length L: 

k =(21r)n 
x L x 

where nx is an integer. The number of states when kx varies between kx and 
kx + dkx is given by 

Hence, in three dimensions, the number of states between Ek and Ek + dEk is equal 
to (U21r)3dkxdkydkz. Thus 

where (e, q» is the direction of the vector k with respect to some chosen axis. 
Now, 
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Hence; 

3 

p(ek) = (.£) m: sinOdOdqJ 
21r Ii 

127 

(6.10.4) 

We employ the Dirac delta function normalization for plane waves as well 
as for other continuum waves, such as Coulomb waves. For a box normalized 
plane wave the normalization constant A is C 3/2• This changes to (21rr3/2 for a 
delta function normalized plane wave. Hence, P(ek) with the above normaliza­
tion is obtained by replacing L by 21r in (6.10.4). With this replacement we get 
from (6.10.3) 

(6.10.5) 

To evaluate the above matrix element for a plane wave it is more convenient to 
take the matrix element in the velocity form. Hence, the use of (6.5.5) gives 

(6.10.6) 

Taking 

(6.10.7) 

we get 

(6.10.8) 

Hence, 

(6.10.9) 

Noting that 

kx = ksinOcosqJ 
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and 

we finally obtain 

(6.10.10) 

It is evident from (6.10.1) that the ejected electron moves in the field of 
the ion A+. Hence, a better wave function for the ejected electron is a Coulomb 
wave instead of a plane wave. A partial wave expansion of the Coulomb wave 
is given by (Joachain, 1987) 

Vk(r) = LRI(kr)l'/!(r)Ytm(k) (6.10.11) 
I,m 

with the radial wave function 

RI(kr) =..fi{iie exp(-ny /2~r(1 + 1 + ir~eikr(kd 21 exp(iGI)/(21 + 1)! 

x 1f)(l+1+ir,21+2,-2ikr) (6.10.12) 

where r= Zlkao and the Coulomb phase shift OJ = argr(l + 1 + ir). T(x) and IFI 

are the gamma function and the hypergeometric series, respectively. Let us first 
consider the angular integration over the direction of r. Now 

x = (2n/3)1/2 r[Yt,-1 (r) - Ytl (r)] 

and 

LJ l'/!(r)l'/m(kXYt,-I(r)-Ytl(r)]di = Yt,-l(k)-Ytl(k) 
I,m 

Hence, in (6.10.11), only 1=1 and ml = ±1 terms are to be considered. It is easy 
to see, with the help of the above equation, that 

(6.10.13) 
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where 

(6.10.14) 

From (6.10.5) after integration over ilk> we get 

(6.10.15) 

Evaluation of the radical integral AOk finally gives (Saksena, 1994) 

210 m Z6a3 
O'ph(W) = -n2 0 

3 e (Z2 +k2ag)5 

exp(-4/atan-t a)[1-exp(-2n/a)t (6.10.16) 

where a = 1tr= kaotZ (not to be confused with the fine-structure constant). 
Just as we extended (6.5.9) to get the differential photoionization cross 

section, we can extend (6.9.1) to obtain the differential oscillator strength for the 
bound-to-continuum transitions. Replacing excitation energy EqO in (6.9.1) by 
the photon energy W = lim and taking dk = ~dkdilko we obtain the differential 
oscillator strength per unit energy range 

To simplify the notation we drop the superscript 0 on f 
Now, 

Hence, 

kdk = (m/1i 2 )dW 

df = kmm fix 12 dQ 
dW Rlia~ kO k 

A comparison of (6.10.5) and (6.10.18) gives 

df lie 
-dW- = 2 2 20'ph(W) 

41l'Raoe 

(6.10.17) 

(6.10.18) 

(6.10.19) 
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If we express O'ph(W) in megabarns (l0-18 cm2) and dfldW in eV-1 then 

(6.10.20) 

Putting (6.10.16) into (6.10.19), we get 

As the ionization potential energy for I of the ground state of the hydrogenic atom 
is Z2R and W = 1(1 + a2), the above equation changes to 

df 27 1 (4 1)[ (21r)]-1 1-= exp --tan- a l-exp--
dW 3 (1+a2)4 a a 

(6.10.22) 

6.11 K-Shell Photoionization of Atoms 

So far we have considered the photoionization of the ground state of a one­
electron atom. It can be extended to K-shell photoionization of multielectron 
atoms, which contain two K-shell electrons along with other electrons in higher 
shells. Since these K-electrons are tightly bound, we may represent each of 
them by 

(6.11.1) 

where due to inner screening Zs < Z. We may take Zs = Z - s with the screen­
ing parameter s = 0.3, as derived by Slater (1930). Further, the matrix element 
(klxIO) receives a large contribution from the small values of x, where the replace­
ment of Z by Zs in the expression of a Coulomb wave function is also justified. 
However, due to external screening, the experimental ionization potentiallK of 
the atom is less than Is = Z;R. Thus the ratio p = IJls is less than unity and its 
value increases with an increase in Z. Since there is no screening in a hydrogen 
atom, p = 1. Now we modify the definition of a and take a = 8ar/Z" where 82aBR 
is the apparent energy of the ejected electron. Hence, 

For W less than I" a2 as well as 82 are negative. At the threshold of photoion­
ization W = IK, So a2 is negative for h ~ W ~ Is. Incorporating the above changes 
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and noting that the K-shell contains two electrons, the K-shell photoionization 
cross section, with the help of (6.10.19) and (6.10.21), is given by 

(6.11.2) 

where 

for a2 < 0 (6.11.4) 

In the derivation of (6.11.4) the relation 

In(x+iy) = t In{x2 + l)+itan-1(y/ x) (6.11.5) 

has been utilized and the value of the nonnalization constant [1 - exp(-2nla)] 
is taken to be unity. 

Equation (6.11.2) shows that Isuk> as a function of a2 is the same for all 
the atoms. It represents a universal curve for K-shell photoionization (Khare et 
aI., 1992). Figure 6.2 compares I,dPdW = dpda2, obtained with the help of 
(6.10.19) and (6.11.2), with the tabulated values ofVeigele (1973) for a number 
of atoms. Good agreement between the universal curve and the data of Veigele 
is noted for low values of a2• However, at higher values of a2, particularly for 
the heavier atoms, the curve lies below the data. This indicates the need for a 
better wave function to represent the ejected electron and the inclusion of the rel­
ativistic effect. 

6.12 The F ana Effect 

So far we have considered photoionization of unpolarized atoms by 
unpolarized light. Ejected electrons are also unpolarized. However, if we take 
polarized alkali metals in their ground state with Ms = t then photoionization 
by unpolarized light produces polarized electrons with Ms = t. Fano (1969) 
predicted that electrons produced by photoionization of unpolarized atoms by 
circularly polarized light would also be partially polarized. Since it is much 
easier to produce polarized light than it is to produce polarized atoms, the 
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FIGURE 6.2 Curve showing the variation of dJlda2 with a 2 in the hydrogenic approximation. The 
values of dJ/da2, obtained from the table of Veigele (1973) for different atoms, are as follows: X, 
carbon; 0, argon; 0, nickIe; d, silver; 'f', gold. Reproduced from "A scaling relation for K-shell 
photoionization cross sections of atoms" S. P. Khare, V. Saksena, and S. P. Ojha, J. Phys. B 25, 
2001, 1992, with permission from lOP, Publishing Ltd., UK. 

Fano's prediction was found to be interesting. The very next year Kessler and 
Lorenz (1970) produced polarized electrons experimentally by photoionizing 
ground state alkali metals by circularly polarized light and named the phenom­
enon the Fano effect. In this section we discuss the theory of the Fano effect 
briefly. 

Let us consider the photoionization of alkali metals from their ground state 
e S1/2). Since the atoms are unpolarized, half of them have Mj = + t and for the other 
half, Mj = - t. The dipole operator for the photoionization is e· T, where e is a unit 
polarization vector for linearly polarized light. For right-handed circularly polar­
ized light, the operator changes to (e(1) + ie(2»). T, where e(1) and e(2) are two lin­
early independent unit polarization vectors. If z is the direction of propagation of 
the light, the dipole operator for right-handed circularly polarized light is (x + iy) 
= -...J(81r13)Ynr. Hence, during the ionization, the photon having s = j = mj = 1 gives 
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up one unit of angular momentum to the ejected photoelectron. Initially the alkali 
atoms are in the state 2SI/2,±II2' Therefore the produced photoelectrons, due to the 
photoionization of the alkali atoms by a right-handed circularly polarized light, 
are in states 2P312,3/2, 2P3/2,I12, and 2PI12,II2' For photoelectrons with m; = f the colli­
sion can be represented by 

Nae SI/2,1/2,1 = Mj = Ms = t)+ hv{j = mj = 1) 

--+ Na+(1So)+e(2 ~/2,3/2'j' = m; =f, m; = 1, m; = t) (6.12.1) 

Thus the spin-up sodium atoms on being ionized produce only spin-up 
photoelectrons. Hence, (6.12.1) represents direct collisions. However, the photo­
ionization of the spin-down sodium atoms (Ms = - t) produces photoelectrons 
having m; = t. For such collisions the following four combinations are possible: 

., mf m; J 
1- 1 -.1. (a) 2 2 
.1 1 _.1 (b) (6.12.2) 
2 2 

1- 0 .1 (c) 2 2 

.1. 0 .1. (d) 2 2 

It is evident that in (a) and (b) m~ of the photoelectrons is same as that of the 
initial sodium atom, i.e., - t. Hence, they also represent direct collisions. 
However, for (c) and (d) the spin of the photoelectrons is +t, different from the 
spin of the sodium atom, which was -t. Thus (c) and (d) represent spin-flip 
collisions. Like (6.12.1), for reaction (d) we have 

NaeSI/2,-1/2,J=t,~ =Ms =-t)+hv{j=mj =1) 

--+ Na+(1 So) + e(2 Pt/2,t/2, j' = m; = m; = t) (6.12.3) 

Because of the spin-flip collisions, represented by (c) and (d), the produced 
photoelectrons are partially polarized. A similar effect takes place if we consider 
left-handed circularly polarized light. 

Let us now proceed to calculate the degree of polarization of the photo­
electrons. For (6.12.1), the wave function of the initial system is given by 
R(r)Y ooa and that of the ejected electron is R3(r)YU a, where a represents a spin­
up electron and Rlr) is the radical function with j' = f. Hence, the transition 
matrix element is 
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or 

(6.12.4) 

where 

(6.12.5) 

For the ejected electron havingj' = 1 and mj = t, the wave function is obtained 
by taking a linear combination of (a) and (c) of (6.12.2). The matrix element for 
such a transition is 

a2 = (R3(r)(CaliJ/3 + Cclloa)I-.J8n!3rlltIR(r)Yoof3) 

= -.jfcA3 = -~ A3 (6.12.6) 

where the Ci are the Clebsch-Gordon coefficients, and their values are obtained 
from (4.4.3) by taking 1= 1. Thus Ca = -Cd = 1I~3 and Cb = C = ~. {3 repre­
sents a spin-down electron. Similarly for (b) and (d), j' = t, m j = t and 

(6.12.7) 

where Rt(r) is the radial wave function of the electron havingj' = t and 

At = (RJ (r)lrlR{r») (6.12.8) 

The electrons produced by the four reactions of (6.12.2) cannot be distin­
guished from one another (all of them have mj = m~ + m~ = t). Hence, the wave 
function of the system is obtained by taking a linear superposition of all four 
combinations: 

Xt/2 = [a2 R3(r)Cclio + a3RtCdllo]a 

+[a2R3{r)Call J + a3RJCb llt1{3 (6.12.9) 

The number of photoelectrons with m; = t and m j = t is proportional to square of 
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The difference between R3 and RI is due to the spin-orbit interaction and is small; 
hence, we take (R/RI ) = 1 in the above relation and obtain 

(6.12.10) 

where NIdi) is the number of spin-up electrons. Similarly NI12( J..), the number 
of spin-down photoelectrons (with m: = -t, m; = t), is 

(6.12.11) 

All the electrons produced in the collisions represented by (6.12.1) are spin-up 
electrons but with m; = f. Hence, 

Therefore the degree of polarization P of the ejected photoelectron is 

or 

P = (a2 Cc +a3Cd )2 +ar -(a2Ca +a3Cb)2 

(a2Cb +a3Cd )2 +ar + (a2Ca +a3Cb)2 

Putting the values of ai and Ci into (6.12.14), we obtain 

P= 9Af +2(AI -A3)2 -(A3 +2AI)2 

9Af +2(AI _A3)2 +(A3 +2AI)2 

(6.12.12) 

(6.12.13) 

(6.12.14) 

(6.12.15) 

As expected, the numerator of Eq. (6.12.15) vanishes for A I = A3, showing 
no spin flip in the photoionization. However, for A3 = -2Ah the degree of polar­
ization P is unity, Le., the ejected electrons are 100% polarized. The values of Al 
and A3 depend upon the wavelength of the circularly polarized light. For the 
sodium atom A = 2900 x 1O-lO m produces a very high degree of polarization 
(Kessler, 1985). We note that the degree of polarization is nonzero only because 
Al :;a!:A3• These matrix elements are different only because of the spin-orbit inter­
action occurring in the photoelectrons. We have already seen in Sec. 4.5 that 
polarization of an unpolarized beam of electrons that is the result of its being 
scattered by a potential is also due to the interaction between the spin and orbital 
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angular momenta of the incident electron. Hence, in both these phenomena the 
spin-orbit interaction is responsible for the spin flip. 

The Fano effect has been utilized in the construction of sources of polar­
ized electrons. GaAs is the most widely used source and the polarization vector 
of its photoelectrons coincides with the axis of the circularly polarized visible 
light beam. The degree of the polarization P of the photoelectrons is about 30 to 
40% and the photocurrent is of the order of pA (Kesseler, 1985, 1991). Recently, 
strained GaAs crystals have given P as high as 0.9 (Maruyama et aI., 1992). 

Questions and Problems 

6.1 Calculate the lifetime of the 2P excited state of the hydrogen atom. 

6.2 The resonance angular frequency (iJ2P-2S for the lithium atom is 2.81 x 
1015 Hz. In the thermal equilibrium at T = 4000° K the number of atoms in 2P and 
2S states is NI and N2, respectively. Obtain the value of the ratio NIIN2 and the 
value of the energy density of radiation per unit angular frequency U«(iJ2P-2S)' 

6.3 Gaseous lithium atoms are in thermal eqUilibrium with its surrounding EM 
waves. Find the temperature at which the probabilities of induced and spon­
taneous radiations are equal for the 2P - 2S transition. Take IDu>-2S = 2.81 x 
1015 Hz. 

6.4 Using (6.8.10) as the basis vectors, express the photon state lep} as a 
two-component spinor. The polarization vector of the state lep} makes an angle 
p with the x-axis. Also obtain the density matrix pp. Take p = 0°, 45°, 90° and 
135°. 

6.5 Consider a linearly polarized light beam of intensity I propagating along the 
z direction. Its photons are represented by (6.8.12) with fixed values of a and O. 
Show that the Stokes parameters are given by 

T/J = sin2a coso, 1h = sin2a coso, and 113 = cos2a 

Show also that 

p=i( l+sin2asino iSin2acosO-COS2a) 
2 -isin2acoso-cos2a I-sin2asino 

and 
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6.6 In the interaction of EM waves with an atomic system, the quadrupole 
operator is (ik· r)(e·p). Take k and the unit vector f parallel to the z- and x-axis, 
respectively, and show that 

ik km 
(ql(ik·r)(f·p)ls) = 2 (qILyls) - V;(fq - fs)(qlxzls} 

where Ly is the y component of the orbital angular momentum, m is the mass 
of the electron, and Iq} and Is} are the eigenkets of the unperturbed atomic 
Hamiltonian with eigenvalues fq and fn respectively. Show also that for the 
second term to be nonzero the two atomic states must differ by two units of orbital 
angular momentum. 

6.7 Show that the optical oscillator strength for 3p - Is excitation of the 
hydrogen atom is 0.0791 and that this is about 0.19 times the oscillator strength 
for 2p - Is excitation. 

6.8 Verify Eq. (6.10.16). 

6.9 Using the theory given in Sec. 6.11 obtain the value of the continuum optical 
oscillator strength df/dWat the threshold of the K-shell ionization of a silver atom. 
Take Z = 47 and h = 25.52keY. 

6.10 Using the theory discussed in Sec. 6.12 show that the photoelectrons 
produced by the photoionization of unpolarized ground state alkali atoms by a 
linearly polarized light are unpolarized. 
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Collision of Electrons with Atoms: 
The Integral Approach 

7.1 Introduction 

In the Chapter 3 the collision of a free particle with a potential was dis­
cussed. In this chapter we take an electron as a projectile and replace the 
potential by an atom. The projectile is still a structureless particle but the atom, 
as a target, is a composite particle having a nucleus and a number of electrons. 
Thus the electron-atom collision is a many-body problem. Even the electron­
hydrogen-atom collision is a three-body problem. Due to the many-body nature 
of the electron-atom system, an exact evaluation of the electron-atom collision 
cross section is not yet possible. In this chapter we shall consider a number of 
approximate methods based on the integral approach. To start with, both the 
electron and the atom are considered to be spinless particles. The exchange scat­
tering due to the spin of the particles is discussed later on. Since atoms have a 
structure, the collisions can be elastic as well as inelastic. 

7.2 The Basic Equations 

Let us consider the collision of an electron with a neutral atom, having Z 
electrons, in a frame of reference in which the nucleus is at rest. We assume 
that the center of mass of the system coincides with the nucleus. Thus we neglect 
the small difference between the rest mass of the electron m and its reduced 
mass 11. In the steady state the above system is described by the following time­
independent SchrOdinger equation: 

(7.2.1) 

139 
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where r is the coordinate of the incident electron and X represents the collec­
tive coordinates of all the atomic electrons. "'ki,i is the eigenfunction of the 
Hamiltonian H with Eki,i as its eigenenergy. We further take 

H=He+HA + V (7.2.2) 

with 

(7.2.3) 

(7.2.4) 

(7.2.5) 

and 
(7.2.6) 

In the above equations cf>kn(r) and vn(X) represent the free electron and the atom 
and are the eigenfunctions of the Hamiltonians He and HA, respectively. The cor­
responding eigenenergies are 1i2k~l2m and em and V is the interaction energy. 

The conversion of the SchrOdinger equation (7.2.1) into the Lippmann­
Schwinger integral equation for the outgoing scattered wave gives [similar to 
(3.3.2)] 

"'kU(r, X) = cf>ki(r)vi(X) 

+ f Go(r, X; r', X') U(r', X')"';;j(r', X')dr'dX' (7.2.7) 

where Gt is the free-particle Green's function for the noninteracting projectile 
and the target. Analogous to (3.3.7), Gt is given by 

(7.2.8) 

where Ikq) and I n) are the intermediate states of the projectile and the target, 
respectively, and k~ - k~ = (Ei - E,,)2mll'? As before, the reduced interaction 
energy U is 2mVlfi2. A generalization of (3.3.12) for an electron-atom collision 
gives 

(7.2.9) 
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Equation (3.3.13) modifies to 

(7.2.10) 

with the transition matrix element equal to 

(7.2.11) 

and the T operator being defined by 

(7.2.12) 

The Born series of lfIki,i' like that of lfIki [see (3.4.7)], is given by 

lfIt,i = i (GtiUf-1q,ki (r)vi (X) (7.2.13) 
n=l 

Putting (7.2.13) into (7.2.9) yields 

(7.2.14) 

where 

P= I, (GoUr-1 

n=l 

We may interpret the above equation by visualizing that the initial object, re­
presented by l/>rci(r)v;(X), is converted into a new object by the operator UP. This 
new object is a vector in Hilbert space whose basis vectors are I/>rcl(r)vlx). The 
integral (7.2.14) gives the projection of the new object on the basis vector 
l/>rcir)viX). Hence, the integral is proportional to the transition probability ampli­
tude for the transition of the object from its state Iki' i) to a new state Ikj' j). 
As pointed out in the Chapter 3, the original object is changed into a new 
object due to multiple interactions of the object with the interaction potential 
(energy) V. 

Similar to the Born series for potential scattering we also have the Born 
series for electron-atom scattering, given by (3.4.10); but now the nth Born 
term is 

(7.2.15) 
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As before, the nth Born scattering amplitude is given by (3.4.12). Taking n = 1 
in (7.2.15) we get the first Born amplitude: 

(7.2.16) 

Putting (7.2.7) into (7.2.9) we get 

Now using (7.2.8) in (7.2.17), we get 

(7.2.18) 

The above equation is known as the Fredholm integral equation. We shall con­
sider its application to the electron-atom collision later on. 

The differential cross section for the transition of an atom from the I i) to 
the Ij) state as a result of its collision with an electron is given by 

(7.2.19) 

The above equation is slightly different from (3.2.11) because in electron-atom 
collisions there is also inelastic scattering. In such a collision the flux of the 
scattered particles going to the detector with momentum flkj is proportional to 
kj' whereas the incident flux is proportional to ki. The change in the momentum 
vector K due to scattering is given by (3.5.2), but 

(2 2 )1/2 K= ki +kj -2kikjcosO (7.2.20) 

Thus 

KdK = kikj sinOdO (7.2.21a) 

and 

dQ = KdK df/J/kikj (7.2.21b) 

where 0 and f/J are the scattering angles. For a system having cylindrical sym­
metry, the scattering amplitude does not depend upon f/J. Then 
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21r Kmax 2 

(J" =- J 11'''1 KdK 
J' e' J}I 

J Kmin 

where 

and Eji is the excitation energy. For E » Eji' 

and 

2 4E 2 
Kmax = -2 = 4ki 

Rao 

143 

(7.2.22) 

(7.2.23) 

(7.2.24a) 

(7.2.24b) 

For elastic scattering Eji = 0; hence, in this case Kmin is zero and Kmax is 2ki• 

7.3 The First Born Approximation 

It is evident from (7.2.16) that in the first Born approximation (FBA) effects 
due to distortions in the wave functions of the projectile and the target are 
completely neglected. Hence, as noted in Sec.3.5, the FBA is a weak potential 
approximation. 

Let us now proceed to obtainfii in the FBA. Putting plane waves for (rlki) 

and (rlkj) into (7.2.16), we obtain 

(7.3.1) 

For a neutral atom having Z electrons 

U(r,X)=- --+L-2( Z z 1 ) 
ao r 1=llr-r/l 

(7.3.2) 

where rl represents the coordinates of the lth atomic electron. Using the Bethe 
integral 

J 'K 1 41r 'K e' 'r_-dr=-e' 'I) 

Ir-r/l K2 
(7.3.3) 
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in (7.3.1) along with (7.3.2) and noting that Vj is orthogonal to Vi, we get 

£.BI (K) = _2_ [Z8 .. - F,..] 
JJI K2ao JI JI 

(7.3.4) 

where the form factor Fji is defined by 

(7.3.5) 

The form factor arises due to the scattering of the incident electron by the 
atomic electrons. On the other hand, the first tenn Z~i in (7.3.4) is due to the 
projectile-nucleus interaction. For elastic scattering 

f'.!1I (K) = _2_(Z - K) 
Jil K2 II ao 

(7.3.6) 

and the fonn factor Fii depends upon the charge density p = Iv;(,X)1 2• From (7.3.1) 
we also have 

(7.3.7) 

where 

(7.3.8) 

is the average value of U for a fixed value of r. In the evaluation of USF the pro­
jectile is frozen or made static at r. Hence, USF is known as the reduced static 
potential of the atom and the electron-atom collision is reduced to the scattering 
of the electrons by a static potential. 

For inelastic collisions, (7.3.4) reduces to 

BI() 2 jji K = --K2 Fji 
ao 

(7.3.9) 

The above equation shows that in the FBA the nucleus does not play any role in 
the electron impact excitation of the atom from Ii) to U). Use of (7.3.4) and (7.3.5) 
in (7.2.22) gives the integrated cross section C1ji in the FBA. This is independent 
of the sign of the charge of the incident particle. Since positrons and electrons 
have the same mass, spin, and magnitude of charge, the collision cross sections 
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due to electrons and positrons are identical in the FBA. Thus the FBA cannot 
distinguish between matter-matter (atom-electron) and the matter-antimatter 
(atom-positron) interactions. 

From (7.2.22) and (7.3.9) the integrated inelastic cross sections summed 
over all the excited states is given by 

Neglecting the dependence of K~x.min on j we take 

To evaluate ~IFji I we note that for a one-electron atom 
) 

and SIj)(j1 = 1 Hence, 
j 

eiK 
0 x Ii) = ~Ij) Fji 

) 

Converting (7.3.12) into a bra equation, we get 

(ile-iKox = ~ Fji(jl 
) 

Hence, 

~IFjiI2 = (iii) = 1 
) 

So that, 

SIFjl =l-lfi 
j¢i 

and 

(7.3.10) 

(7.3.11) 

(7.3.12) 

(7.3.13) 

(7.3.14) 
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(7.3.15) 

Thus with the help of the charge density of the I i) state the total inelastic cross 
section in the FBA can be evaluated. 

Bethe (1930), extended the concept of the optical oscillator strength to elec­
tron-atom collisions and defined the generalized oscillator strength (GOS), for 
j:;:. i, as 

(7.3.16) 

This is also a dimensionless quantity and for optically allowed transitions 
f~(K = 0) is equal to the optical oscillator strengthr. As expected, for optically 
forbidden transitionsf~(K = 0) is zero. The term.tJI(K) also obeys the Thomas­
Reiche-Kuhn sum rule at each K, i.e., for an atom having N electrons, 

(7.3.17) 

Let us prove the above relation for a one-electron atom. We take K along 
the x-axis and obtain 

(7.3.18) 

Further, 

(7.3.19) 

and 

(7.3.20) 

Hence, with the help of (7.3.18) to (7.3.20), we get 

(7.3.21) 

Now we mUltiply the above equation by (ile-iKxli) from the left, sum over all the 
values of j, and use Slj)(il = I to obtain 

j 
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(7.3.22) 

As P is an odd-parity operator, (ilpli) = O. Furthermore, (/1 i) = 1, so that 

(7.3.23) 

Similarly, we get (7.3.17) for an N-electron atom. 

7.3.1 Elastic Scattering in the FEA 

Let us investigate elastic collisions of electrons with some simple atoms 
such as hydrogen and helium in the FBA. We take the atoms in their ground 
states. For the hydrogen atom, from (7.3.6), 

(7.3.24) 

Keeping our future convenience in mind, we represent the hydrogen atom by the 
hydrogen-like wave function given by (6.11.1). This yields 

(7.3.25) 

Hence, in the FBA 

(7.3.26) 

Thus for Zs = 1 the differential cross section in the forward direction (K = 0) is 
a5 and it falls monotonically with the increase in Kao. At large values of Kao the 
differential cross section varies as r. Using (7.3.25) in (7.2.22) and carrying 
out the required integration over K, we get Geh the total elastic cross section: 

(7.3.27) 

Hence, for large E, <1e1'" 77d3(kiZs)2 and it falls as E-1. 
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For the helium atom, Z = 2 and it has two electrons. We represent its ground 
state (11 So) by 

(7.3.28) 

Each vCr) is given by (6.11.1). The value of Zs as obtained from the variational 
principle is -N (Schiff, 1968). This value is between 1 and 2 and indicates that 
the nucleus is partially shielded from each electron by the other electron. For 
(7.3.28), the form factor is given by 

(7.3.29) 

and is double (7.3.25). The differential cross section for the helium atom with 
(6.11.1) and (7.3.29) is 

(7.3.30) 

In the forward direction, 

4 
I~I(O) = Z; aJ = 0.4933aJ (7.3.31) 

For the next atom in the periodic table Z = 3, its ground state electronic 
configuration is li2s, and the ground state term is 2SI/2. Hence, its Hartree wave 
function is given by 

(7.3.32) 

where both VI and V2 are Is orbitals and V3 is a 2s orbital. Suitable values of the 
exponential parameters Z' and Z' are obtained by the Hartree self-consistent field 
method (Weissbluth, 1978). In this case 

(7.3.33) 

In a similar manner, the elastic collision of electrons with a multielectron atom 
can be investigated in the FBA. 

Figures 7.1(a) to Cd) show the differential cross sections for the elastic 
scattering of electrons by the ground states of H, He, Ne, and Ar in the FBA as 
obtained by Shobha (1972). The wave functions taken by her were the same as 
employed by Khare and Moiseiwitsch (1965) for the He atom and by Khare and 

orders@himanshubook.com



Collision of Electrons with Atoms: The Integral Approach 

...... 
&..: 

(/) 
...... 

NO 
0 

H 

-2 
10 

103 

H 
-F8A 

149 

FIGURE 7.1(a) Curve showing the variation of the differential cross section [(in if,ISr) with Kao 
for elastic scattering of electrons by hydrogen atoms in the first Born approximation. 0 and X 
represent the experimental data of Williams (1975) for E equal to 200 and 680eV, respectively. 

Shobha (1974) for Ne and AI atoms. Experimental data for one or two investi­
gations are also shown for comparison. For the lightest atom, namely the H atom, 
the agreement between theory and experiment is satisfactory even at 200 e V, 
although the theory has a tendency to underestimate the cross sections at smaller 
values of Kao. At 650eY, the agreement between theory and experiment is quite 
good over the whole range of Kao. 

We also observe a similar trend for the He atom. At 500eV the agreement 
between theory and experiment is better than at 200 e V. This shows that the experi­
mental cross sections, plotted as a function of Kao, are not independent of E, as 
demanded by the FBA. Although there is qualitative agreement between theory 
and experiment, the underestimation of the cross sections at 200eV by the FBA 
is clear, particularly at small values of Kao. 
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FIGURE 7.1(b) Same as Fig. 7.1(a) but for the helium atom. 0 and X represent the experi­
mental data of Jansen et al. (1976) at 200 and 500eV. respectively. !:::. and \I represent the data of 
Se,thuraman et al. (1974) for the same energies. 

Figures 7.1(c) and (d) show that for heavier atoms the FBA overestimates 
the cross sections over most of the range of Kao by an appreciable amount. There 
is not even qualitative agreement between the FBA cross sections and the experi­
mental data. This shows that the effects due to the distortions in the wave func­
tions of the projectile and the target by the atomic field and the Coulomb field 
of the incident electron (neglected by the FBA) are quite large. These distortions 
should be included in the theory to obtain better agreement with the experimen­
tal data. We shall consider these distortions in Sec. 7.7 and in Chapter 8. 

orders@himanshubook.com



Collision of Electrons with Atoms: The Integral Approach 151 

As expected, the accuracy of the FBA increases with E. Hence, at high E 
a comparison between the FBA cross sections, obtained with the Hartree-Fock 
(Weissbluth, 1978) target wave functions (which do not include correlation) and 
the experimental data yields information about the correlation between the atomic 
electrons. 

7.3.2 Inelastic Scattering in the FBA 

For the excitation of the hydrogen atom from the Is to the 2s state we 
employ hydrogen-like wave functions and readily find that 

101 

Ne 
-FBA 

X 

100 0 
X 

0 X 

A X 
6 

~ 101 ...... 6 66 6 
..: '\l 
en '\l 
..... '\] 

NO 
0 --M 

102 

FIGURE 7.1(c) Same as Fig. 7.I(a) but for the neon atom. D and X represent the experimental data 
of Jansen et al. (1976) at 200 and 500 e V, respectively. l:,. and \l represent the data of Gupta and Rees 
(1975a) for the same energies. 

orders@himanshubook.com



152 Chapter 7 

1'; 

0 Ar 

101 
X -FBA 

OX 

X 

0 

100 
X -~ 0 

l/) 
.§ X ..... 

NO 6. 6. a 6.<:fl .... 
'il 

161 6. 

6. 6. 'il 

6. 
6. 

-2 
10 

Kao 

FIGURE 7.1(d) Same as Fig. 7.1(a) but for the argon atom. 0 and X represent the experimental 
data of Jansen et al. (1976) at 100 and 500eV, respectively. /:; represents the data of Gupta and Rees 
(l975b) for lOOeV and \l that of Dubois and Rudd (1975) for 500eY. 

(7.3.34) 

Using (7.3.34) in (7.3.4), with the help of (7.2.19) and (7.3.9), we obtain the 
differential cross section as 

(7.3.35) 
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For K = 0 we have 

k 219 2 

I (K-O)-.2!.-~ 
2s,ls - - k 312 Z4 

Is s 

(7.3.36) 

At large K the differential cross section falls as K-12 in contrast with the Is-Is 
elastic scattering, where the fall is proportional to K-4. The generalized oscilla­
tor strength for the above transition is given by 

(7.3.37) 

As expected tis.ls(K) ~ 0 at K = 0 because a Is ~ 2s transition is optically 
forbidden. 

Let us now consider the excitation of a hydrogen atom from the Is to 2p 
states. As the final state is now a p state (l = 1), we have ml = 0, ±l and there are 
three final states. However, we choose K to be along the z-axis. Then the form 
factor F2p.ls is finite only for ml = 0, and with a hydrogen-like wave function it 
is given by 

• 7 r;;- Z; Kao 
Fip.ls = z3 x 2 '" 2 3 

(9Z; +4K2a6) 
(7.3.38) 

The use of the above equation yields the differential cross section 

(7.3.39) 

and the generalized oscillator strength is 

(7.3.40) 

Equation (7.3.39) shows that 12p.ls ~ 00 at K = O. This is a general feature of all 
optically allowed transitions. However, for inelastic collisions K is never zero. 
Even in the forward direction it is finite. At large K the differential cross section 
falls as [(""14. This fall is faster than that for elastic scattering and the Is-2s exci­
tation. Figure 7.2 shows the variation of the energy-independent quantities 
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FIGURE 7.2 Variation of (k1/kj)lj,I,(in a'r/Sr), the differential cross section multiplied by the weight 
factor k1/kj, with Kao for the ground state of the hydrogen atom due to electron impact in the FBA, 
The final states represented by j are the Is, 2s, and 2p states of the atom, 

(kdk)Ij,ls (for j = Is, 2s, and 2p) with Kao in the FBA. From the figure we not 
that for small values of Kao, the reduced differential cross section (k1/k)hls is 
largest for the 2p excitation and those for the elastic scattering and the 2s exci­
tation are almost the same. All three curves fall with Kao, but the rate of fall is 
fastest for the 2p state and slowest for elastic scattering. As a result, for large 
values of Kao, elastic scattering dominates. 

In Fig. 7.3 the variations of the GaS with InQ (where Q = Ray<'2 is the 
recoil energy) are shown for the ls-2s and ls-2p excitations. The figure shows 
that fg"ls is much larger than ft,ls for all values of Q. At Q = 0, flp,ls is finite 
(equal to the optical oscillator strength) and falls monotonically with the increase 
in Q. On the other hand, frs,ls = 0 at Q = O. It increases with the increase in Q, 
reaches a peak, and then falls with further increase in Q. 
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The generalized oscillator strength for 11s)~1 nlm/) summed over all the 
allowed values of m/ and I for a hydrogenic atom is given by (Wadehra and Khare, 
1993) 

-as -, 
0·3 

0·2 

0·1 

o 
LnQ 

2 

(7.3.41) 

FIGURE 7.3 Variation of the generalized oscillator strength for the 2s and 2p states for the hydrogen 
atom with Q (= Ra6J(2). 
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Hence, for n = 2, 

I'G + I'G _ 215 f ex Z: 
J2p,1s J2.,ls - R / 5 

(9Z; +4Q R) 
(7.3.42) 

As expected the above equation agrees with the sum of (7.3.37) and (7.3.40). 
In terms of the GDS and the recoil energy Q the integrated inelastic cross 

section in the FBA is given by 

4 R 2 R lnQ+ 

(Jj; = ~- f tY(Q)d(ln Q) 
E f ex lnQ_ 

(7.3.43) 

where Q+._ are Ra~ times K~,min' which are given by (7.2.23). Hence, 

217Rz8 2 
• 7rllO [( 2 / )-5 (2 / )-5] (J2s). = 5E 9Zs +4Q_ R - 9Z. +4Q+ R (7.3.44) 

At large E the minimum value of Q is close to zero and Q+ is quite large. Hence, 
asymptotically, 

(7.3.45) 

Thus like (Jeh the excitation cross section (J2s,1s also falls as £;1 at large E. 
Let us consider optically allowed transitions. Figure 7.3 shows that for such 

transitions a large contribution to CIj; comes from small values of Q. In that region 
the jJ;(Q) are nearly equal to the fff. We replace jJ;(Q) by fft in (7.3.43) and choose 
the upper limit of integration to be Q in such a way that the resultant cross section 

(7.3.46) 

is the same as that given by (7.3.43), i.e., 

It is evident from the above equation that an evaluation of Q requires the 
distribution of fJ;(Q) as a function of Q. At large E, the minimum value of Q is 
approximately equal to E;x/4E. Hence, asymptotically, 
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(7.3.47) 

where cex(= 4Qle;x) is known as the Bethe collision parameter. The cross 
section given by (7.3.47) is referred to as the Bethe or the Bethe-Bom cross 
section. It gives reasonable values at large E. A plot of UjiE vs. In E, known 
as the Bethe plot, is a straight line. Using experimental values of Uji at large 
E, we can determine the value of the collision parameter Cex and fii from the 
Bethe plot. 

Equation (7.3.47) shows that for optically allowed transitions, Uji falls as 
E"I In E at large E. On the other hand, Gel and Uji for optically forbidden transi­
tions fall as E"I. Hence, at large E, the optically allowed transitions dominate. It 
is easy to see that in the Bethe-Bom approximation 

(7.3.48) 

Figure 7.4 shows the variation of the total FBA cross section Uji for the 
excitation of the ground state hydrogen atom due to electron impact, with E in 
the intermediate energy range. The final states are Is, 2s, and 2p. The figure shows 
that for all values of E the optically allowed excitation cross section GZp,Is is the 
largest and the optically forbidden cross section G2s,Is is the smallest. The elastic 
cross section GIs,ls lies in between. 

7.4 Effect of Electron Spin on Collisions 

So far in this chapter the spin of the electrons has not been taken into 
account. Since electrons are fermions, the atomic wave function as well as the 
wave function of the system (atom plus incident electron), including spins, must 
be anti symmetric with respect to the exchange of any two electrons. Hence, we 
should have 

v(rlo SI; r2, S2;'" ;ri' Sj; ... ; rzsz) 

= -v(r;, Si; r2, S2;'" ;r)o SI;"'; rzsz) (7.4.1) 

Similar equations are satisfied by the wave function of the system having Z + I 
electrons. A single determinant wave function satisfying the above property is 
given by 
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FIGURE 7.4 Variation of Oji with the energy E of the incident electron: Oji are the total cross sections 
in the FBA for a transition from i = Is to j = Is, 2s, and 2p states of the hydrogen atom due to electron 
impact. 

XI(r)'SI) Xl (r2, S2) Xl (r" Sz) 

I X2(rto Sl) 
lfI=.JZ! 

X2(r2, S2) X2(rz, sz) 
(7.4.2) 

xz(rtoSI) Xz (r2 , S2) xz(r" sz) 

where the Xi are single electron orbitals. The above determinant not only satis­
fies (7.4.1), but also obeys the Pauli exclusion principle. If any two atomic 
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orbitals are identical, i.e., Xi = Xj, then If! vanishes. Hence, no two electrons can 
have the same quantum numbers, which is the Pauli exclusion principle. 

Let us consider the collision of an electron with a one-electron atom. Then, 
according to (7.4.2), the initial and final wave functions of the system are given 
by 

(7.4.3 a) 

and 

where chi and chi are the space orbitals of the projectile before and after the 
collision. The corresponding spin orbitals are T/ and T/'. Similarly, Vi and Vj are 
the space orbitals of the target before and after the collision, respectively. The 
corresponding spin orbitals are X and X'. With the above anti symmetrized wave 
function, (7.2.10) and (7.2.11) give 

Use of (7.4.3a) and (7.4.3b) in (7.4.4) gives 

jj; = - 4::m ±[(if\ (rj)T/'(I)vj(r2)x'(2)ITIq,ki (rl)T/(I)v;(r2)x(2)) 

+ (q,kj (r2)T/'(2)vj(rl)x'(1)ITIq,ki (r2)T/(2)v;(rl)x(1)) 

- (q,kj (rj )T/'(1)v j (r2) x'(2)ITIq,ki (r2 )T/(2)v; (rj) x(1)) 

(7.4.4) 

- (q,kj (r2)T/'(2)vj(rl)X'(I)ITIq,ki (rl)T/(l)v;(r2)x(2))] (7.4.5) 

In the first matrix element of the above equation electron 1 is free and 2 is bound 
before as well as after the scattering. Similarly, in the second term, electron 2 is 
always free and 1 is always bound. On the other hand, in the third term, initially 
electron 1 is free but after the scattering it becomes a bound electron. Similarly, 
electron 2, which was bound before the scattering, becomes free after the 
scattering. The same is true for the fourth term, where the electron switches over 
from the bound (free) to free (bound) orbital. Hence, the first and second terms 
of (7.4.5) represent direct scattering while the third and fourth terms represent 
exchange scattering. 
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Since the T operator does not operate on spin wave functions, we have from 
(7.4.5) 

h; = t IAkj , k;)[(11'(1)x'(2)111(1)x(2» + (11'(2)X'(I)I11(2)X(1)] 

-~ lex (kjo k;)[(11'(1)x'(2)111(2)x(1» + (11'(2)x'(1)I11(1)x(2)] (7.4.6) 

where the direct scattering amplitude is 

(7.4.7a) 

and the exchange scattering amplitude is given by 

(7.4.7b) 

To evaluate terms like (11'lx), we consider collisions of the spin-up elec­
trons with the unpolarized one-electron atoms A. The ensemble of unpolarized 
atoms is equivalent to a mixture of 50% of A i and 50% of AJ. atoms. Hence, we 
have the following three types of collisions 

ei + AJ. ---+ ei + AJ. (7.4.8) 

ei +AJ. ---+ eJ. +Ai (7.4.9) 

ei +Ai ---+ ei +Ai (7.4.10) 

The corresponding spin wave functions for the above collisions are given 
by 

Equation 
(7.4.8) 
(7.4.9) 
(7.4.10) 

11 
a 
a 
a 

x 
{j 
{j 
a 

11' 
a 
{j 
a 

Putting the above spin functions into (7.4.7), we obtain 

h;(kjok;) = IAkjok;) for{7.4.8) 

= -lex (kjo k;) for{7.4.9) 

f I 
=(fd -lex) for{7.4.10) 

(7.4.11) 
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Hence, (7.4.8) and (7.4.9) represent the direct and exchange collisions, respec­
tively. Equation (7.4.10) contains fd as well as !ex; hence, it represents mixed 
collisions. The differential cross sections for (7.4.8) to (7.4.10) for elastic colli­
sions are tlfl, tl!exI2, and tlfd - !eJ, respectively. Hence, the differential cross 
section for the sum of the above three types of collisions for elastic scattering is 

(7.4.12) 

The factor 1 on the right-hand side is due to the fact that only half of the atoms 
participate in each type of collision given by (7.4.8) to (7.4.10). It is easy to see 
that (7.4.12) is also the differential cross section for collisions of spin-down elec­
trons with unpolarized atoms. Even for collisions of unpolarized electrons with 
unpolarized atoms the differential cross section is given by (7.4.l2) because only 
50% of the incident electrons will be involved in the collisions given by (7.4.8) 
to (7.4.10). Hence, the cross section with e i electrons will be only one-half that 
given by (7.4.12). The other half will be contributed by eJ. incident electrons. 
Thus the sum of the two will again be equal to that given by (7.4.12). This equa­
tion can also be written as 

(7.4.13) 

where the exchange scattering amplitude is represented by g(= !ex). 
The above equation can also be obtained from the following simple con­

sideration. Since the system (e + A) has two electrons it will have four types of 
spin wave functions given by (5.6.1). Of these four wave functions three are sym­
metric. Hence, the corresponding space wave function has to be anti symmetric , 
and the scattering amplitude will be fd - g. Similarly for the fourth antisymmet­
ric spin wave function, with a symmetric spatial wave function, the scattering 
amplitude will be fd + g. Since the weight factors for the symmetric and anti­
symmetric spin wave functions are i and i, respectively, we get (7.4.13). This 
equation with kj = kj is the same as (5.6.6), obtained for the collision between 
two unpolarized beams of electrons. However, the expressions for fd and g in the 
two cases are different. For electron-atom inelastic collisions (7.4.13) is multi­
plied by k/k j • 

In Chapter 4, while discussing the collision of a free electron with a poten­
tial, we came across the spin-flip process. But the reason for this process in these 
two cases is different. In the collisions now being discussed spin-flip takes place 
because in the system we have two electrons having opposite spins. Loosely, we 
may say that in the collision the incident electron becomes bound and the atomic 
electron with opposite spin becomes free, which is detected by the detector. In 
reaction (7.4.9), the spin-orbit interaction is not considered. Ms and ML of the 
system are separately conserved, i.e., f1Ms = f1ML = O. On the other hand, the 
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spin-flip process, discussed in Chapter 4, is due to the spin-orbit interaction of 
the same electron. No second electron is present but the presence of the poten­
tial makes the spin-orbit interaction possible. In this case spin-flip changes Ilms 
by one unit and this is compensated by a corresponding change in m/ in such a 
manner that Ilms + Ilm/ = O. Hence, mj remains unchanged. 

The scattering matrix S( 6) is a 4 x 4 matrix. Since without the spin-orbit 
interaction Ms(= msl + ms2) is equal to M~(= m:l + m:2), S(lJ) for the reactions 
(7.4.8) to (7.4.10) is a diagonal matrix, whose rows and columns are given by 
(M~, m:h m:2) and (Ms, msh ms2), respectively. The matrix is 

M' s 

~ 
2 

o ~ 
2 

o -~ 
2 

-1 -~ 
2 

Ms 1 0 0 -1 

[
/-g 

S(8) = ~ (7.4.14) 

This 4 x 4 matrix breaks up into three submatrices of dimensions (1 xl), 
(2 x 2), and (1 x 1). We also have 

(7.4.15) 

where the outer product of the two Pauli matrices is 

(7.4.16) 

For the collision of an electron with a helium atom the system has three 
electrons. Hence, there will be three spatial and three spin orbitals. The anti­
symmetric wave function of the system will have 9 terms, so the T matrix will 
have 81 terms. However, the position is considerably simplified if we confine 
ourselves to elastic scattering of the electrons by the ground state of the helium 
atom. Since the helium atom will be in the singlet state after the scattering, the 
incident electron can be exchanged only with the atomic electron that has the 
identical spin. The spin wave function of these two electrons, considered together, 
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will be symmetric; hence, we are required to have an anti symmetric combination 
of the scattering amplitude, which will be fd - g. 

For a perfect experiment, as discussed in the Sec. 4.5, we have to deter­
mine If~, Igl, and their relative phase cfJrel' To obtain these quantities, the unpo­
larized electrons are scattered by the unpolarized atoms and the differential 
cross sections Iun are measured. This is followed by scattering of the partially 
polarized spin-up electrons, having Pe as their degree of polarization, by un­
polarized atoms. In this experiment P; and P~, the degrees of polarization of the 
scattered electrons and the recoiled atoms, are measured. Now, (7.4.9) shows 
that the cross section for the spin-flip process is ~gl2Pe and the cross section 
for those collisions, in which spins do not change, from (7.4.8) and (7.4.10), 
is -¥ltl + ltd - gI2)Pe. In the incident beam the fraction of unpolarized 
electrons is (1 - Pe). Half of them behave as a electrons and the other half as 
f3 electrons. Therefore, the differential cross section for detecting scattered a 
electrons is 

(7.4.17) 

Similarly, for detecting f3 electrons, 

I ,l,=tp.ll +t(1-P')Iun (7.4.18) 

As expected 

Iun = Ii + I.!. (7.4.19) 

By definition, the degree of polarization of the scattered electrons is 

, Ii-I.!. 
P.=---

Iun 
(7.4.20) 

Using (7.4.17) to (7.4.19) in (7.4.20), we get 

(7.4.21) 

The above equation shows that P; is less than Pe. Thus the incident beam is par­
tially depolarized by the exchange process but at the same time the recoiled atoms 
are partially polarized. In reaction (7.4.9), the atom flips its spin. The degree of 
polarization of the recoiled atoms, obtained from (7.4.8) to (7.4.10), is 

(7.4.22) 
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Hence, 

(7.4.23) 

and 

(7.4.24) 

We takeid = lf~exp(i}1) and g = Iglexp(i}'2). Hence, from (7.4.24) 

(7.4.25) 

We can also obtain COS(CPrel) by determining the asymmetry parameter A(8), is 
defined by 

A(8) _ I(i -1.) - I(ii) 
- I(i -1.)+ I(ii) 

(7.4.26) 

where I(ii) and I(i -1.) are the cross sections for the parallel and antiparallel ori­
entations of the spins of the electrons and the atoms. Use of (7.4.8) to (7.4.13) 
gives 

A(8) = idg* + !J*g )fdllglcos(CPrel) = I!J + i-lid - i 
2L"n Iun lid + i + 31id - i 

(7.4.27) 

In general when Pe and PA are neither parallel nor antiparallel we have (Kesseler, 
1985, 1991) 

(7.4.28) 

A number of measurements of A(8) have been made (see Baum et aI., 1985, 
1988a,b; Fletcher et aI., 1985; and Kesseler, 1991). 

It is evident that the above measurements yield only cos( <Prel) and not the 
unambiguous CPrel. To obtain this quantity let us consider P: the degree of polar­
ization of the scattered electrons, given by (Kesseler, 1991) 

[J.' = (I-Iii /Iun )PA +(I-li /Iun )Pe +i(f~ g - idg*)(P, x PA)/(2L"n) 
e 1- A(8)Pe . PA 

(7.4.29) 
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From the above equation (P:)no the component of P: perpendicular both to Pe and 
PA, is 

(7.4.30) 

where f is the angle between p. and P A. Thus a measurement of (P:)n yields sin( tPrel) 
and knowing cos( tPrel) and sin( tPrel) an unambiguous value of tPrel is obtained. Instead 
of measuring (P:)n one may measure (PDn. The relationship of P~ with 1/12, Ig12, Pe, 
andPA is obtained by interchanging Pe andPA in (7.4.29). Thus 

Such experiments have been performed for elastic scattering, excitation, and ion­
ization collisions (see McClelland et aI., 1985, 1987; Baum et aI., 1985, 1988a,b; 
and Kesseler, 1985, 1991). 

It may be noted that Igl can also be obtained by the scattering of partially 
polarized electrons by unpolarized atoms. In this case P: from (7.4.29) is 

(7.4.32) 

Hence, a measurement of P: enables us to determine Igl. 
Let us consider (7.4.29) under two extreme cases: (a) g = 0 and (b)/= O. 

For (a) Iun = III and A( 8) = O. Hence, P: = Pe. This clearly shows that exchange 
is necessary for polarization transfer. For (b) we have Iun = Igl2 and A(8) = O. 
Hence, P: = PA• This is due to the fact that in a pure exchange scattering all the 
scattered electrons come from the target. 

PA and P~ are measured with a Stem-Gerlach polarimeter. A schematic 
arrangement of the apparatus, which is kept under ultrahigh vacuum, is shown 
in Fig. 7.5. The neutral atomic beam passes through a highly inhomogeneous 
magnetic field B produced by specially designed pole tips. Let the atomic beam 
be moving along the x direction with a velocity v. In Fig. 7.5(a) the plane of the 
paper is the x-z plane. If we look into the atomic beam the cross section of the 
apparatus is shown in Fig. 7.5(b). 

Due to electronic spin the neutral atom behaves like a tiny magnet and has 
a magnetic moment Jl. This Jl interacts with the magnetic field B and a force Fz 

acts on the atom. The magnitude of F, is given by 
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'Z 

L;j;~ 
(0 ) ( b) 

FIGURE 7.5 The Stern-Gerlach experiment with free atoms having S = 1. The atomic beam travels 
along the x-axis and the inhomogeneous magnetic field is directed along the z-axis. 

aBz 
F: =J1cos8-

z dZ (7.4.33) 

where 8 is the angle between J1 and z. Suppose the atoms are under the influence 
of the magnetic field for a time I. Then the deflection z of the atoms is given by 

(7.4.34) 

where M is the mass of the atom. If the magnetic field acts on the atoms over a 
length L then 1 = Ltv and 

(7.4.35) 

For a one-electron atom the quantum mechanical values of cos 8 are only 
±l. These two values correspond to ms = ±t, respectively. Thus the neutral 
atomic beam splits into two fully polarized atomic beams. 

If we perform the Stem-Gerlach experiment with the electrons, then M in 
(7.4.35) is replaced by m, the mass of the electron, and J1z = J1cos8 =±tne/mc. 
Hence, the angular separation of the two electron beams is 

/ 1 ne 1 aBz 2 
X=2z L=----I 

2c m2 L az (7.4.36) 

As electrons are charged particles, the Lorentz force also acts on them. The z 
component of the Lorentz force is epxB/mc, so the angular deflection due to this 
force is 
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(7.4.37) 

The incident electron beam moving in the x direction will have a certain 
cross section. Let its width in the y and z directions be L\y and L\z, respectively. 
Due to L\y, cP will range from cP to cP + L\cP. The value of L\cP as obtained from 
(7.4.37) is 

(7.4.38) 

The magnetic field B satisfies 

Since B does not vary with x we have 

(7.4.39) 

Hence in magnitude 

(7.4.40) 

(7.4.41) 

where, using the uncertainty principle, we have taken L\y = 1iI/¥Jr To define a 
beam we must have Px » /¥Jy. Therefore L\<I» » X. Thus the spread of the elec­
tron beam is much greater than the separation produced by the inhomogeneous 
magnetic field. Therefore we conclude that due to the Lorentz force the 
Stem-Gerlach apparatus cannot be employed to produce polarized electrons 
from the unpolarized electron beam. For the same reason we cannot use the 
Stem-Gerlach experiment to measure Pe and P:. The polarization of the electron 
is measured, as discussed in Sec. 4.6, by the Mott detector. 

7.5 The First-Order Exchange Amplitude 

A replacement of the T operator in (7.4.7b) by the interaction energy 
operator V yields the exchange scattering amplitude g in the Born-Oppenheimer 
approximation. In this approximation g is correct up to first order and for the 
one-electron atom it is given by 
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(7.5.1) 

However, the Born-Oppenheimer approximation is not found to be a successful 
approximation, as it suffers from the following defects: 

1. If V is replaced by V + C, where C is a constant, the value of g changes. 
This is physically incorrect, because a constant potential produces zero 
force so the scattering amplitude should not change. 

2. The value of g also depends upon the projectile-nucleus interaction 
-Zlrl. This again seems to be incorrect because the exchange only takes 
place between identical particles. Hence, the nucleus is not expected to play 
any role in a first-order approximation. 

3. The above approximation also suffers from the post-prior discrepancy. 
Before the collision, the interaction potential energy is given by 

In the collision electrons 1 and 2 are exchanged. Hence, after the 
collision 

It is evident that VB '¢ VA and that they give different values of g. 

4. If we break g into partial waves, i.e., g = r.glo then it is found that OJ 
I 

due to the Ith partial wave becomes greater than 4n(21 + 1 )/k;. Thus this 
approximation violates the partial cross section theorem [see (3.9.27)]. 

The primary reason behind the above defects is the fact that the initial 
wave function exp(ik j ·rl)v,{r2) is not orthogonal to the final wave function 
exp(ikj · r2)vlrl). A number of attempts have been made to remove these defects. 

One of the more successful such attempts was made by Ochkur (1964), 
who expanded g given by (7.5.1) in the power of kjl and retained only the leading 
term, which behaves as kj2. It is found that the term -Ze2/r2 gives a contribution 
that falls faster than kj2. Thus it is neglected. The electron-electron interaction 
gives 

(7.5.2) 

The Fourier transform of 1Ir12 is given by 
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(7.5.3) 

Putting q = k i + p into the above equation we get 

(7.5.4) 

The term eip.r12 oscillates with p. Thus the major contribution to the above inte­
gral comes from the small values of p. Hence, at high energies p2 + 2ki ·p is 
neglected in comparison to k;, and (7.5.4) reduces to 

(7.5.5) 

Putting (7.5.5) into (7.5.2) and integrating over T2, we get 

(7.5.6) 

The above equation gives the exchange scattering amplitude in the Ochkur 
approximation. It is correct up to k;2 and is free from the post-prior discrepancy. 
Further, a constant added to V yields an additional scattering amplitude that falls 
faster than k;2 and so it is also neglected. In a good number of cases the values 
of goc are found to be reasonable. Hence, it has been employed at all energies. 
It is easy to see that for inelastic electron-hydrogen atom collisions 

(7.5.7) 

Use of the above equation in (7.4.13) shows that up to first order in the interac­
tion, the differential cross section for the inelastic collisions of electrons with the 
hydrogen atom correct up to k;2 is given by 

(7.5.8) 

Hence, the integrated cross section in the Bom-Ochkur approximation is 

(7.5.9) 
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where the exchange factor is 

(7.5.10) 

Similarly, for the singlet-singlet excitation of the helium atom we have 

(7.5.11) 

A factor of two appears in the denominator because out of the two atomic elec­
trons only one has the same spin as the incident electron. 

7.6 Ionization of Atoms in the First Born Approximation 

A single ionizing collision of an electron with an atom A can be repre­
sented by 

e +A ~ e +A+ + e (7.6.1) 

Thus in the final channel we have two free electrons. Further, for a given E, the 
ionization cross section a; of atoms is fivefold differential: twofold with respect 
to the scattering angles (8, l/J), another twofold with respect to the direction (8e, l/Je) 
of the ejected electron, and onefold with respect to the energy Ee of the ejected 
electron. The energy Ee varies continuously from zero to E -I, / being the ioniza­
tion potential of the atom. Owing to the above reasons, a quantum mechanical 
evaluation of OJ is quite involved. Most of the calculations are limited to the FBA 
and semiempirical methods based on classical binary encounter theory (Grizinski, 
1965a,b,c), the FBA, and the Ochkur approximations (Younger and Mark, 1985). 

For an ionizing collision, the generalized oscillator strength for a bound­
bound transition is to be modified for a bound-free transition. This can be 
achieved by replacing Eex in (7.3.16) by W, the energy lost by the incident elec­
tron in the ionizing collision, and the matrix element I (Jl eiK'1 i)12 by I (kl eik'1 i)1 2dk, 
where Ik) represents the ejected electron and lik is its momentum. Thus (7.3.16) 
changes to 

(7.6.2) 

To simplify the notation the superscript G of the continuum generalized oscilla­
tor strength df (eGOS) is dropped. We note that for a given K, df is a dimen­
sionless quantity but it is threefold differential. Now, 
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W=ee+[=Rayc.+[ 

Hence, 

dW = 2Raliatk 

Using the above equation in (7.6.2) and integrating over the direction of the 
ejected electron, we get 

(7.6.3) 

The above equation gives the CGOS per unit energy loss. Using the ground state 
hydrogenic wave function, given by (6.11.1), for the initial state and the Coulomb 
wave for the continuum state, we evaluate the transition matrix element and after 
somewhat lengthy algebra obtain (Mott and Massey, 1965; Khare et aI., 1993; 
Saksena, 1994) 

[ df(W, Q) = df(a2, 1J2) 
s dW da2 

= 27(1+a2)[(1+a2)/3+f32]3 F(f32,a2) 

[1 + 2(a2 + f32)+(a 2 - f3 2n 
where Is = Z~R, a = kaolZ .. f3 = KaoIZs, W = IsO + a2), and 

F(f32, a 2) = exp{ - ~ arctan[2a/(l + 132 _a2)]} 

{1-exp( - 2: )r1 
for a2 2: 0 

We also note that the recoil energy Q = f32Z~R. 

(7.6.4) 

(7.6.5) 

For a one-electron atom, Zs = Z and a2 is always positive. Figure 7.6 shows 
the variation of d.f(al, f32)/da2 for the hydrogen atom as a function of Inf32 
for a2 = 0.1025 (W = 15eV) and 2.675 (W = 50eV), respectively. The ionizing 
collisions corresponding to small values of a 2 or W (curve A) are known as soft 

orders@himanshubook.com



172 

-1 
10 

-3 
10 

10 
-4 

Chapter 7 

A 
H 

-2 2 

FIGURE 7.6 Variation of the scaled continuum generalized oscillator strength dj(a'/f32)/da2 with 
In {f for a hydrogen atom due to electron impact. Curves A and B correspond to the energy loss of 
15 and 50eV, respectively, by the incident electrons. 

collisions, whereas those involving large values of a2 are said to be hard colli­
sions. We note that curves A and B of the figure are similar to the curves for 2p 
and 2s, respectively, of Fig. 7.3. 

The above similarity indicates that soft collisions are due to dipole inter­
action and that hard collisions involve forbidden transitions. The peak in curve 
B is known as the Bethe peak, and the locus of the Bethe peaks corresponding 
to different values of W gives rise to the Bethe ridge. As an approximation, the 
ionization cross section due to hard collisions is evaluated by considering colli­
sions between two free electrons (Sec. 5.6). As discussed in Sec. 6.11, Eq. (7.6.4) 
can also be utilized to calculate K-shell electron impact ionization of multielec­
tron atoms. In this case Zs = Z - 0.3, W = Ra602 + Is, a = fuc/Zs, and IK < Is. 
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Hence, a 2 will be negative for h < W < Is and (7.6.6) is to be used for F(f32, a 2). 
Further, as there are two K-shell electrons, (7.6.4) is to be multiplied by 2. It is 
evident from the above equation that the scaled continuum generalized oscilla­
tor strength df(a2, f32)/da2 is the same function of a 2 and 132 for all the atoms. 
Hence, df(a2, f32)/da2 generates a universal Bethe surface when plotted as a func­
tion of a2 and 132 (Kbare et aI., 1993). 

Equation (7.6.4) can also be derived by extending (7.3.41) to the con­
tinuum states. For the K-shell excitation of a multielectron atom, (7.3.41) gives 

(7.6.7) 

To make a transition from the nth bound state to the continuum state we replace 
Eex by W. This shows that n in the above equation is to be replaced by ita. With 
the above changes fn,lS becomes a differential quantity and for K-shell ionization 
it is given by 

(7.6.8) 

because with dn = 1 

Further, 

and 
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Hence, (7.6.8) reduces to 

Is df~Q) =df(a2,{J2)/da2 

28(1 +a 2)[1(1 +a2)+ (J2] = 3 3F(a2,{J2) 
[1 +2({J2 +a2)+({J2 -a2n 

(7.6.9) 

where 

(7.6.10) 

For negative values of ct, the above equation changes to 

(7.6.11) 

Let us consider positive values of a2• For this case 

I [O+ia)2+{J2] I [l+iX] 2· -1 n = n -- = I tan x 
(l-ia)2 +(J2 l-ix 

(7.6.12) 

where 

(7.6.13) 

Putting (7.6.12) and (7.6.13) into (7.6.10), we obtain 

(7.6.14) 

We note that (7.6.9) is twice (7.6.4). The factor of 2 is again due to the fact 
that there are two K-shell electrons in multielectron atoms. However, for a 2 > 0 
(7.6.14) differs from (7.6.5) by the normalization factor 1 - exp(-21l1a) of 
the Coulomb wave because the bound state wave functions are normalized 
to unity. 
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7.6.1 The Total Ionization Cross Section 

Let us now discuss the evaluation of the total ionization cross section in 
the plane wave Born approximation (PWBA). We start from (7.3.10), which is 
for the excitation from the I i) to the Ii) state. In this equation Eex is replaced by 
W andfj;(Q) by df(W, Q)ldWand is integrated over W from I to Wmax• Thus, with 
the help of (7.3.16), the total ionization cross section is 

(7.6.15) 

where the maximum and minimum values of the recoil energy are given by 

(7.6.16) 

The maximum value of the energy loss Wmax in the PWBA is equal to the inci­
dent energy E. In the plane wave Bom-Ochkur approximation (7.6.15) modifies 
to 

(7.6.17) 

where the exchange factor as obtained from (7.5.10) is 

(7.6.18) 

In exchange scattering the bound electron is exchanged with the incident 
electron. The two electrons (ejected and scattered) are indistinguishable. Hence, 
out of the two free electrons the faster one is taken to be the scattered electron. 
Therefore the maximum energy of the ejected electron is taken to be (E - /)/2. 
Thus with exchange the value of Wmax is (E -/)/2 + 1= (E + /)/2. 

7.6.2 The Coulomb Correction 

In the PWBA the O'j as given by (7.6.15) are identical for electron and 
positron impacts. However, there is no exchange scattering in the positron impact. 
Hence, for positrons Fex = 1 and Wmax = E. Thus the O'j as obtained from (7.6.17) 
are different for the two particles. However, in general, the theoretical ionization 
cross sections obtained from (7.6.17) do not agree with the experimental data. 

An important effect, which should be included in the theory for the calcu­
lation of the collision cross section, is the distortion of the plane waves by the 

orders@himanshubook.com



176 Chapter 7 

atomic field. Thus the higher Born terms, discussed in Chapter 3, have to be eval­
uated. A simple way to include such an effect within the PWBA and PWBA­
Exchange has been proposed by Hippler (1990). The atomic field accelerates the 
incident electrons but decelerates the positrons. Hence, at the instant of the ion­
izing collision, the effective kinetic energy of the projectile is different from the 
incident energy. On the assumption that the acceleration or deceleration takes 
place only via the Coulomb field of the bare nucleus, the effective distance reff 

at which the ionization takes place is given by 

~ 

f Rnl (r)rRnl (r)r2dr 
T+,_ 

r.ff = -'-'-~ ------ (7.6.19) 

f Rnl (r)Rnl (r)r2dr 

where Rnl(r) is the radial function of the initial atomic state and r_ is the small­
est distance at which the incident positron, after being decelerated by the nucleus, 
has sufficient energy to knock out an atomic electron; r+ is the similarly defined 
quantity for the electron impact. However, since electrons are accelerated, r+ = 
0, whereas r_ satisfies the following relation: 

Z'e2 

E---=Inl r_ 

Hippler (1990) fixed the value of Z' by taking 

Z'2R 
I nl =-2-

n 

For a hydrogen-like atom, (7.6.19) gives 

ao 3n2 -1(1 + 1) 
1: -
err - 2Z' 1 + F.ix) 

(7.6.20) 

(7.6.21) 

(7.6.22) 

where x = 2Z'r_/ao For the electron impact Fnl(x) is zero but for positron impact 
it is given by (Khare and Wadehra, 1996) 

x 3 1 
Fl.(x)= 3 2 2 2 + x+x 
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and 

(7.6.23) 

At reff the instant kinetic energy of the projectile is 

E' = E± Z'e2 = E± hInl 

roff 1+F",(x) 
(7.6.24) 

where + and - correspond to the electron and positron impacts, respectively. It 
can be easily shown that the value of h for the K(12S112) shell and Ll(22S1I2) sub­
shell is 1 but for the L2(22P1l2) and L3(22P3d subshells its value is ~. 

To include the Coulomb correction, E in (7.6.15) and (7.6.17) is replaced 
by E'. For the positron impact W max in (7.6.15) is replaced by E' but for the elec­
tron impact Wmax remains (E + Inl)12 in (7.6.17) to avoid nonphysical ionization. 

Khare et al. (1993) employed the Coulomb and exchange corrected PWBA 
to calculate Oi for the K-shell ionization of a number of atoms. At low E their 
theoretical cross sections are in satisfactory agreement with the experimental data 
but at high E the theory underestimates the cross sections. One of the reasons 
for this deficiency is the nonrelativistic nature of the theory. For the inner shells 
the ionization potentials are quite high, so relativistic effects become important. 
However, it is not essential to solve the Dirac equation. Khare et al. (1994a,b) 
have shown that a suitable modification of (7.6.17) gives good values of 0; over 
a wide energy range. According to the well-known relativistic equation, the total 
energy En including the rest mass energy of the projectile, is given by (6.2.1). 
Before the collision Pi = liki and ET = E' + mc2• During the collision the projec­
tile loses an energy W. Hence, Pj = likj and ET = E' - W + mc2 • With the help of 
the above equations we get 

(7.6.25) 

and 

(7.6.26) 

Since Q± = Raij(ki ± ki we get 
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Q± = _I -2 [.J E'{E' + 2mc2 ) ± .J (E' - WXE' - W + 2mc2 ) f (7.6.27) 
2mc 

Further, for the incident energy E 

(7.6.28) 

Thus with the Coulomb correction, 

(7.6.29) 

We also define E, = mv2J2 and replace E by E, in (7.6.15). 
To obtain OJ corrected for exchange, Coulomb, and relativistic effects in 

the PWBA, Khare and Wadehra (1995, 1996) employed (7.6.15) for positron 
impacts and (7.6.17) and (7.6.18) for electron impacts. In these equations they 
took E' and Q± given by (7.6.24) and (7.6.27), respectively, and E was replaced 
by E,. Their calculated inner-shell ionization cross sections are in good agree­
ment with a number of experimental data (see Fig. 7.7) and also with the theo­
retical cross sections of Scofield (1978), who solved the Dirac equation, up to 
about 0.2MeY. For still higher E the above method underestimates the cross sec­
tions. To understand the reason for this failure let us consider the electromag­
netic interaction between the projectile and the atomic electrons. This interaction 
can be subdivided into two terms (Fano, 1963). In the Coulomb gauge represen­
tation, one term is the unretarded static Coulomb interaction given by e2/r12. The 
Fourier transform of this interaction is given by (7.5.3), and each Fourier com­
ponent having wave vector K transfers a momentum flK from the incident elec­
tron to the bound electron in the direction of K. Hence, it is known as the 
longitudinal interaction, and is of importance at all velocities. Only this part is 
included in (7.6.15) and (7.6.17). The other part is the interaction through emis­
sion and absorption of virtual photons. The atomic electron absorbs a virtual 
photon of momentum flK emitted by the projectile. Thus through this interaction 
a momentum of flK is also transferred from the projectile to the atomic electron. 
Since the photon field is perpendicular to K, this is known as the transverse inter­
action, and its ionization cross section is given by (Fano, 1963). 

(7.6.30) 

where };f is equal to the total dipole matrix squared, measured in the units of a~. 
It is given by 
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M2 = jax R df(W, 0) dW 

Inl W dW 
(7.6.31) 

The cross section 0; is of importance only at ultrahigh velocities, where Wmax ~ 

00. Further, the longitudinal and transverse interactions are of different parities 
(Fano, 1963). Hence, the total ionization cross section in the modified PWBA is 

(7.6.32) 

where Oi is given by (7.6.17) with the Coulomb and the relativistic corrections 
as discussed above. 

Khare and Wadehra (1995, 1996) have calculated Oi for the K-shell and 
three L-subshells of a number of atoms due to electron as well as positron impacts 
over an energy range varying from Inl to 1 GeV. For the K-shell the expression 
for dj{W, Q)ldWas given by (7.6.4) is utilized. Holt (1969) has derived expres­
sions for the continuum matrix elements for the three L-subshells of the hydro­
gen atom. The same are converted for hydrogen-like atoms by replacing K and 
k by K1Zs and k1Zs, respectively. The scaled generalized oscillator strengths for 
the three L-subshells are given by (Khare et aI., 1995) 

[df (a2,{J2)] = 212(I+a2 ) 5 F(a2,{J2) 

d(a2) L3 9[1+2({J2 +a2)+({J2 - a2n 

and 

x [27{J8 - 36{J6(1 + a 2) + 6{J4(19 - 6a2 - a 4) + 

(4/5){J2(107 + 98a2 + 15a4 )(1 + a 2) + (11 + 3a2)(1 + a2n, 
(7.6.33) 

(7.6.34) 

[df (a\{J2)] = 211(I+a2) 

da L1 3[1+2(a2+{J2)+({J2-a2)2f 

x [3{J1O - {J8(32 + lla2 ) + 2{J6(41 + 36a2 + 7a4) 

+ 2{J4(10 - 31a2 - 20a4 - 3a6) 

+ t {J2(47 - 47a2 - 35a4 - 5a 6 )(1 + a 2) 

+ (4 + a 2)(1 + a 2)4]F(a2, {J2) (7.6.35) 
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where 

and 

F(a 2 ,132 ) =exp{- ; arctan[(2a)/(f3 2 + l-a 2 )]} 

[l-exp(-4n/a)t for a2 >0 

F(a2, 132) = exp[ __ 2 -lJ 132 + 1- a 2 + 2..J-a2)] 
..J-a2 1\132 +1-a2 -2..J-a2 

for a 2 < 0 

Chapter 7 

(7.6.36) 

(7.6.37) 

where for L-subshells a = 28arJZs and 13 = 2KarJZs. The relationship (7.6.34) is 
due to the fact that 22P3/2 has four electrons, whereas 22PI1/2 has only two. It is 
also evident from (7.6.33) to (7.6.37) that the scaled eGOS are independent of 
Zs. Hence, they are the same functions of a2 and 132 for all atoms. This provides 
a scaling relation for the eGOS and we obtain a universal Bethe surface for L­
shell ionization similar to that for K-shell ionization given by (7.6.9). According 
to Slater (1930), the value of the screening parameter s occurring in Zs = Z - s 
for the L-subshell is 4.15. 

The eGOS given by the above equations reduces to the optical oscillator 
strength in the limit 132 ~ O. Hence, for the three L-subshells 

and 

where 

and 

[dJ(a 2
; 0)] = .!.[dJ(a 2

; 0)] 
da L2 2 da L3 

F(a 2 , 0) = exp{ -(8ja)arctana][I- exp(-4nja)t 

for a 2 > 0 

(7.6.38) 

(7.6.39) 

(7.6.40) 

(7.6.41) 
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(7.6.42) 

7.6.3 The Bom-Bethe Ionization Cross Section 

Using (7.6.15), we obtain the total ionization cross section OJ due to 
longitudinal interaction: 

211\n -
U, = 41raoR r.!i df{W, 0) In(JL)dW 

Er . I W dW Q-
(7.6.43) 

where df(W, O)/dW is the continuum optical oscillator strength per unit energy 
range for the energy loss Wand 

- [ 1 InQ+ df(W, Q) 1 
Q =Q_exp (df(W,O)/dW),L_ dW dOnQ) (7.6.44) 

Equation (7.6.43) is also expressed as 

(7.6.45) 

where M2 is given by (7.6.31) and 

(7.6.46) 

It is rather difficult to determine the value of Q. Hence Cj, known as the 
Bethe collision parameter, is usually determined with the help of the experimental 
Oi available at high E. The term urB is the Bethe-Bom cross section and it 
includes only longitudinal interaction. Its value is controlled by the dipole inter­
action. Another Bethe collision parameter bnl for the ionization of the (nl)­
subshell is defined by 

bnl =.!!!L wr 1 df{W, 0) dW 
Zn/0W dW 

(7.6.47a) 

where Znl is the number of electrons in the (nl) subshell of the atom. A com­
parison of (7.6.46) with (7.6.31) gives 
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and 

b =~M2 
nl Z R 

nl 

Chapter 7 

(7.6.47b) 

(7.6.48) 

for the (nl)-subshell. A plot of y = [O'nlnIEA4JrR2a~nl)] vs. lnE,gives a straight 
line. This plot is known as the Fano plot. The slope of the line yields bnl and the 
intersection of the line with the y-axis yields bnllnenl. Thus using the experimen­
tal data for O'nl, available at large E, the Bethe parameters can be determined. 

Using (6.10.19) and (7.6.31) in (7.6.45), we obtain the Born-Bethe ion­
ization cross section O'~B in terms of the photoionization cross section O'ph(W): 

BB _ \\ISmax dn(W) (W)dW 
O'nl - ~Ph 

Inl 

(7.6.49) 

where 

(7.6.50) 

is the number of photons of energy W per unit energy. Thus the interaction of an 
incident electron of energy E with the atomic electron through the UrJ2 term is 
equivalent to the production of photons whose energy W varies continuously, 
having E as its maximum value. All the photons having W > Inl ionize the atom. 
These virtual photons have their polarization vectors parallel to K. Hence, 
(7.6.49) gives the ionization cross section due to longitudinal interaction. 

Khare and his associates (1995, 1996) have calculated total ionization 
cross sections due to electron and positron impacts for the K-shell and three L­
subshells (Ll, L2, and L3) for a number of atoms. They have employed the plane 
wave Born approximation with corrections for exchange and Coulomb and 
relati vistic effects. Along with the longitudinal interaction, the contribution of the 
transverse interaction to the ionization cross section given by (7.6.30) is also 
included. The energy of the projectile has been varied from Inl to 1 GeY. Their 
results for the K-shell of silver are shown in Fig. 7.7. It is evident from the figure 
that at low impact energies a( = 0'1 + 0'1) is practically equal to 0'1' However, at 
higher values of E, 0' increases with E, whereas 0'1 tends to be constant. A 
significant difference between 0' and 0'1 demonstrates the importance of the 
transverse interaction at ultrahigh energies. We also noted very good agreement 
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FIGURE 7.7 Variation of the K-shell ionization cross sections of the silver atom with electron 
impact energy E. Curves A and B represent ~ and (~ + ~), respectively, calculated by Khare and 
Wadehra (1995). Their Bom-Bethe cross sections cf3B are shown by curve C. Curve D represents the 
theoretical cross sections of Scofield (1978) and the solid circles with error bars show the 
experimental data compiled by Long et al. (1990). Reproduced from UK-shell ionization of atoms by 
electron impact," S. P. Khare and 1. M. Wadehra, Phys. Lett. A 198: 212, 1995, with permission from 
Elsevier Science. 

between aand dlB [obtained from (7.6.53)] for E > 1 MeV. The figure also shows 
a highly satisfactory agreement between the cross sections of Khare and associ­
ates and those obtained by Scofield (1978) at high E. Finally, a comparison of a 
with the experimental cross sections (compiled by Long et aI., 1990) shows that 
near the threshold of ionization as well as at ultrarelativistic energies the agree­
ment between the two sets of values is quite good. The theory nicely reproduces 
the positions of the maximum and minimum in the cross-section curves observed 
by the experimentalists. For intermediate energies there are considerable differ­
ences among the cross sections obtained by different experimental investigators. 
Khare and Wadehra (1995, 1996) have obtained similar results for a number of 
other atoms. Figure 7.8 compares the theoretical cross sections for the Ll-, L2-, 
and L3-suhshells of gold for electron impact with a number of experimental data. 

The agreement between the theoretical cross sections of Khare and 
Wadehra (1996) and the experimental data is good. Similar results for K-shell 
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FIGURE 7.8 Variation of LJ-, L2-, and L3- subshell ionization cross sections of the gold atom with 
energy E of electrons. Theory: - Khare and Wadehra (1996); _ _ _ _ _ Scofield (1978). 
Experimental: D, Davis (\972);", Palinkas and Schlenk (1980); X, Shima et al. (1981); 0 Schneider 
et al. (1993). Reproduced from "K-, L-, and M-shell ionization of atoms by electron and positron 
impact," S. P. Khare and J. M. Wadehra, Can. 1. Phys. 74: 376, 1996, with permission from NRC 
Research Press, Canada. 

and L-subshells ionization for a number of other atoms are obtained by Khare 
and Wadehra. Khare and his associates (1993, 1995) have also determined the 
values of the collision parameters for the K-shell and three L-subshells. Their 
values are shown in Tables 7.1 and 7.2 along with the values of Pnl = (In/Is). It is 
found that whereas bnl decreases with Z Cnlnl increases. Khare and Wadehra (1995, 
1996) have shown that bnl and In(cnlnl) can be fitted to the following equations: 
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Table 7.1 Value of PK and the Bethe Parameters bK and cKIK 

for K-Shell Ionization of Atoms in the Plane Wave Born 
Approximation (Khare et aI., 1993) 

Atom PK bK cKIK 

C 0.644 0.600 6.57 
N 0.659 0.577 7.21 
0 0.660 0.576 7.30 
Ne 0.678 0.551 8.13 
Al 0.711 0.507 10.1 
Ar 0.751 0.463 13.1 
Ni 0.798 0.418 18.1 
Ag 0.860 0.368 28.1 
Au 0.958 0.306 59.3 
H 1.00 0.283 83.0 

185 

Table 7.2 Values of PLi and the Bethe Parameters bLi and culLi for the L-Subshells (i = 1, 
2,3) of Atoms in the Plane Wave Born Approximation (Khare et aI., 1995) 

Atom PL3 bu CUIL.l Pu bL2 culu PLl bLl cLl/Ll 

Cu 0.447 0.683 7.76 0.457 0.654 8.67 0.523 0.426 16.1 
Ag 0.537 0.480 21.4 0.565 0.433 30.5 0.606 0.365 23.3 
Sn 0.590 0.397 41.0 0.642 0.335 83.3 0.680 0.323 33.0 
Au 0.626 0.353 62.7 0.721 0.265 246 0.753 0.288 46.4 
Bi 0.635 0.343 69.9 0.743 0.249 340 0.775 0.278 51.5 
H 1.0 0.133 58500 1.0 0.133 58500 1.0 0.206 233 

bnl =ap;;t (7.6.51) 

and 

In(cn/1nl) = ao + alPn/ + a2P;/ (7.6.52) 

The values of a, m, 00, aJ, and ~ for different subshells are shown in Table 7.3. 
With the parameters given by (7.6.51) and (7.6.52), the Bom-Bethe cross section, 
including the transverse component, is 

Table 7.3 Values of a, m, and a; for Various Subshells 

Subshell a m al a2 a3 
K 0.285 1.70 -9.58 26.4 -13.50 
LI 0.220 1.00 1.26 1.87 2.04 
L2 0.158 1.80 -1.24 4.17 7.19 
L3 0.153 1.54 -1.42 5.08 6.05 
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(7.6.53) 

As already pointed out, the ionization cross section due to hard collisions 
is quite often obtained by considering the collision between two free electrons, 
one moving with energy E and the other at rest. At high E the differential cross 
section for the transfer of energy e from the moving electron to the static elec­
tron is given by 

daj = 47rll6R2 1 

de E e2 

which is the Rutherford scattering formula. 
Considering the two electrons as indistinguishable, 

included by Mott and the above equation changes to 

daj 47rll6R2 [ 1 1 1] 
de = E il- e(E-e) + (E_e)2 

(7.6.54) 

the exchange was 

(7.6.55) 

To apply (7.6.54) and (7.6.55) to the electron impact ionization of atoms 
one may regard e as the energy of the ejected electron. However, the minimum 
value of e is zero. Thus the above equations, which diverge at e = 0, cannot be 
utilized to obtain aj. Hence, the Mott formula for an N-electron atom is modified 
to (see Kim and Rudd, 1994) 

(7.6.56) 

The integration of Eq. (7.6.56) over W from I to (E + /)/2 with e = W - I gives 

(7.6.57) 

which is the Mott ionization cross section for hard collisions. 

7.7 The Second-Order Scattering Term 

To obtain the second, Born scattering term 1fl2, we need the first-order 
correction 1Jf1 to the initial wave function of the system. This is given by 
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"'I(r, X) = J GO(r, X; r', X') U(r', X')qJki (r')Vi (X')dr'dX' (7.7.1) 

Using (7.2.8) for Go, we get 

( X) -I' SJ qJkq(r)vp(X)qJ~(r')v;(X') "'I r, - 1m 
£-->0 p k; - k; + ie 

x U(r', X')qJki (r')vi (X')dr'dX'dkq (7.7.2) 

It is evident from the above equation that the intermediate atomic states 
Vp are needed to include the distortion of the initial target wave function Vi. 

Similarly, to represent a distorted plane wave we require the plane waves ({)kq(r) 
of the intermediate states. Substitution of (7.2.8) in (7.2.15) with n = 1 yields 

iB2 _ 2 2}' SJ (k j , jlUllcq, p)(kq, plUllci, i)dk 
Ji" -- '" 1m 

J' e .... O p k; -k; +ie q 
(7.7.3) 

As shown in the Fig. 7.9, the second Born term is a double scattering term. It 
should be noted that the intermediate states Ikq, p) do not conserve energy, i.e., 
Ep + Rk~5 t:: ei + Rkfd5, although 

Ikq> 

FIGURE 7.9 Feynman diagram for the second Born amplitude for the scattering of electrons 
by atoms. 
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(7.7.4) 

For a given value of p the condition k~ = k; represents a pole in (7.7.3). This is 
shifted to k~ + iE with the help of an infinitesimal quantity E. 

The expression for the second Born term 182 (we simplify the notation of 
1f to 182) involves a summation over all the bound target states, integration over 
the continuum target states, and integration over all the projectile states. Hence, 
an exact evaluation of 182, either analytically or numerically, is an involved 
problem (see Ermolaev and Walters, 1979 and Walters, 1985). Like 182 in 
particle-potential scattering, 182 in the electron-atom scattering is also a complex 
quantity. At high energies and small K, Re 182 and 1m 182 vary as k;l and 
k;llnk;, respectively. 

A number of attempts have been made to evaluate 182 approximately. 
Massey and Mohr (1934) were the first to do so. They took Ep = E; and thereby 
k~ = k7. Thus the denominator of (7.7.3) becomes independent of p. Using the 
closure relation 

S(X!p}(p!X'} = o(X - X') (7.7.5) 
p 

and integrating over X' with the help ofthe delta function we obtain from (7.7.3) 
in the Massey-Mohr approximation: 

(7.7.6) 

where 1 B2P denotes the second-order scattering term for the scattering of the pro­
jectile by an atom whose electrons are frozen at X. Afterward 182P is unfolded 
between the atomic states !i) and Ij) to obtain 182M. It is clear from (7.7.6) that 
the intermediate atomic states do not appear in the Massey-Mohr approximation. 
Hence, this approximation completely neglects the effects due to distortion of the 
target wave function. Since it assumes excitation energies to be zero (Ep = E;) the 
imaginary part of 182M diverges in the forward direction for S to S (I; = 0 to Ij = 
0) excitations. This divergence is due to the absence of any P (l = 1) state in 
the evaluation of the scattering term. Furthermore, Re 182M (0) at large E goes 
as ki2 instead of k;-l. 

To a great extent the above discrepancies in the Massey-Mohr approxi­
mation were removed by Holt and Moiseiwitsch (1968), who proposed a sim­
plified second Born approximation (SSBA), in which the first few terms of (7.7.3) 
are evaluated exactly and for the rest k~ is replaced by k7 - N(Ra~), where Ll is 
taken to be the mean excitation energy. The closure is now applied to such terms. 
Thus in the SSBA 
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(7.7.7) 

The SSBA has been one of the most popular methods of evaluating the second 
Born term. The choice of L1 is not unique. Ermolaev and Walters (1979) have dis­
cussed the various options. 

In many investigations L1 is so chosen that it reproduces the exact value of 
the dipole polarizability CXtt of the target in the closure approximation. We know 
that 

(7.7.8) 

where Z is the projection of X on the z-axis. If Ep - Ei is replaced by L1 then ii, 
the dipole polarizability in the closure approximation, is given by 

_ 2{ile2 z2li} 2 

a = --'-''-----'-'-
L1 

(7.7.9) 

The integral in the numerator can be easily evaluated. Hence, one takes 

L1 = 2{ile2Z2 Ii} (7.7.10) 
ad 

where CXtt is the experimental value of the dipole polarizability. Jhanwar and 
Khare (1975) derived the value of L1 by comparing the total inelastic collision 
cross section Oin(E) obtained in the first Born approximation with that given by 
the sum rule of Inokuti et al. (1967). Such a procedure gives 

L1 = Rexp[L(-I)/S(-l)] (7.7.11) 

where 

S(-I) = S f; (7.7.12) 
p Eqi 
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and 

L( -1) = S f;; In( Eqi ) 

q Eqi R 
(7.7.13) 

Using (6.9.1) for hi in (7.7.12), we get 

1 
S( -1) = -2 (ijx 2 Ii) 

Rao 
(7.7.14) 

Thus S( -1) is the ground state property of the target and L( -1) may be computed 
directly from the optical oscillator strength distribution. Hence .1 as obtained 
from (7.7.11) is not an adjustable parameter. 

The DeS, which includes fBI and 1 B2, is given by 

(7.7.15) 

Khare and Shobha (1970, 1971) have suggested a plane wave approxima­
tion to evaluate IB2. In this approximation k~ in (7.7.3) is replaced by kf, and the 
denominator of (7.7.3) thus becomes independent of q. Using the relation 

(7.7.16) 

we get from (7.7.3) 

(7.7.17) 

where the second-order reduced interaction potential energy is 

u = s' (jlUlp }(pIUli) 
ad P k; -k? (7.7.18) 

The dash over the summation indicates that p ::F- i and j. It is evident from the 
above equation that Ipw is the first Born scattering amplitude due to the second­
order polarization potential: 

This approximation completely neglects the effects due to the distortion of the 
wave function of the projectile, but does include the distortion of the target wave 
function up to first order. The incident electron at r produces an electric field and 
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induces electric multipoles in the atom; i.e., the atom is polarized. This polarized 
atom produces a polarization potential at r. Thus Vad (r) is the second-order polar­
ization potential Vdp (r). Since in (7.7.17) the projectile is represented by a plane 
wave, this approximation is referred to as the plane wave approximation. In the 
derivation of U.d (r) it is assumed that the projectile is stationary at r. Hence, Vdp 

(r) is the adiabatic polarization potential. 
To include the nonadiabatic effects we approximate k~ by - V'~ (Khare and 

Wadehra, 1989) in the denominator of (7.7.3) and take 

1 

V'~+k? 
". k; -k? - (k; _k?)2 

Using the above equation in (7.7.3), we get 

(7.7.19) 

(7.7.20) 

where the nonadiabatic term Un•p, in its Hermitian form, is given by (Jhanwar et 
aI., 1975) 

Unap = s' V',(jIUlp)· V' , (pIUli) 
(k; _kl)2 

(7.7.21) 

Let us evaluate the asymptotic form of Vdp (r) for elastic scattering. For the 
hydrogen atom the interaction energy is 

e2 e2 
V(r)=--+-­

r Ir-Xl 

Hence, for large values of r the dipole part of V(r) is given by 

Putting (7.7.23) into (7.7.18), we obtain 

(7.7.22) 

(7.7.23) 

(7.7.24) 
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Now using (7.7.8) yields 

(7.7.25) 

For the interaction potential Vdp given by the above equation, the zeroth­
order phase shift at small values of kj is given by (O'Malley et ai., 1961; 
Martyneko et ai., 1963) 

nad 2 4adas 3 ( ) (3) tan 110 = -askj - -3- kj - -3--kj In kjao + 0 k 
ao ao 

(7.7.26) 

where as is the scattering length. This equation shows that at low incident 
energies tan 110 goes to zero at 

(7.7.27) 

Hence, at the above kj the cross section becomes a minimum for negative as' pro­
vided that the contribution of the higher partial waves is small. For the above 
potential we also have 

(7.7.28) 

Hence, tan 111 vanishes at 

(7.7.29) 

Thus the experimental value of kj at the next minimum, corresponding to 1= 1, 
allows an evaluation of AI. 

In the FBA 

(7.7.30) 

As the evaluation of 11fl for large values of I by (7.7.30) becomes quite time­
consuming, it may be replaced by the semiclassical phase shifts given by (LaBhan 
and Callaway, 1969) 

(7.7.31) 
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In the above equation ro is equal to (I + O.5)/ki • For small values of ki and Vdp = 
-attf!2I2r4, the phase shift in the FBA is given by 

tan T]Bl = rradk? for 1 > 0 
I (21 + 3)(21 + 1)(2/-l)ao 

(7.7.32) 

The inclusion of the quadrupole term in the expansion of V(r) in the inverse 
power of r gives 

(7.7.33) 

where lXq is the quadrupole polarizability of the atom. The above equations also 
hold true for multielectron atoms. A similar treatment for the nonadiabatic polar-
ization potential gives ' 

(7.7.34) 

where f3h is the dipole nonadiabatic coefficient of the target (Klienmann et al., 
1968), is given by 

(7.7.35) 

This coefficient is a measure of the inability of the electric dipole induced in the 
atom to follow the motion of the incident electron. Hence, up to r--6 the reduced 
interaction polarization energy Upoh which includes both adiabatic and nonadia­
batic components, is given by 

(7.7.36) 

The above potential does not depend explicitly on the energy of the inci­
dent electron and diverges at the origin. Hence, Jhanwar and Khare (1976) pro­
posed a spherically symmetric and energy-dependent Buckingham-type dynamic 
polarization potential. Their potential is given by 

(7.7.37) 
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where d is energy-dependent cut-off parameter, which increases with the incident 
energy. Hence, for large energies Udp (r) becomes negligible. This is correct phys­
ically because a high-velocity incident electron does not have sufficient time to 
polarize the atom. Further, for small values of r, the dipole and the quadrupole 
part of (7.7.37) vary as ? and r4, respectively, and tend to zero at the origin. To 
obtain d we follow Jhanwarand Khare (1975). Using (7.7.37) in (7.7.17) and 
evaluating the integral, we obtain the second-order scattering term in the plane 
wave approximation: 

jpW(K)=~{ad(3-Kd) + 5aq2 [1+Kd-~(Kd)2 + * (Kd)3]}exp(-Kd) 
4dao 4 64d 

(7.7.38) 

At large E the cut-off parameter d is large. Hence, in the forward direction 

The above value is equated to that obtained by Byron and Joachain (1974a,b) 
for the polarized part of the optical Born scattering amplitude in the eikonal 
approximation. Assuming a to be equal to ad, the above comparison gives 

d = 0.75 kja; R 
L1 

(7.7.39) 

It should be noted that the term I ImfB21 2 in (7.7.15) is of fourth order in the 
interaction potential. The termfBl Re j B3 is of the same order but is not included 
in (7.7.15). Hence, to be consistent, the term IImfB212 is neglected in the plane 
wave approximation. Thus the differential cross section, including exchange, for 
the elastic scattering of an electron by a hydrogen atom is given by 

Ipw(8,fP)=~(JBl-g)(JBl-g+2jpw) 

+{(JBl +g)(JBl +g+2jpw) 

For a helium atom we have 

(7.7.40) 

(7.7.41) 

Jhanwar and Khare (1976) employed the above equation to calculate the 
DeS for e-He elastic scattering for E varying from 100 to l000eV. In Fig. 7.10 
the DeS at 200eV obtained by them are shown along with the experimental data 
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FIGURE 7.10 Variation of the elastic differential cross sections of the helium atom due to 200-eV 
electrons in the plane wave approximation (Jhanwar and Khare, 1976). Experimental data: ., 
Bromberg (1969, 1974) and X. Crooks and Rudd (1972). The experimental cross sections of 
Selhuraman et ai. (1974) and Jansen et ai. (1976) (not shown) are quite close to those of 
Bromberg et ai. 

of Jansen et al. (1976), Bromberg (1969, 1974), and Sethuraman et al. (1974). It 
is found that the FBA-Ochkur approximation underestimates the cross sections 
at small scattering angles. The inclusion of the polarization effects by 1 pw greatly 
improves the agreement between theory and experiment. Jhanwar and Khare have 
noted that for E ~ 200 e V their cross sections are within 10% of the experimental 
values. This indicates the suitability of the dynamic polarization potential given 
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by (7.7.37). This is a long-range potential and is quite important for small-angle 
scattering. However, lpw is purely real, so it cannot be employed to obtain the 
total collision cross sections through the optical theorem. 

The plane wave approximation at intermediate and high E has been suc­
cessful for the hydrogen atom (Jhanwar et al., 1975) as well as the hydrogen mol­
ecule (Gupta and Khare, 1978). However, it overestimates the cross sections for 
heavier atoms such as neon and argon (Jhanwar et aI., 1978; Khare and Kumar, 
1978). Hence, it may be concluded that at intermediate E the distortion of the 
incident plane wave by the atomic field of the light atoms can be ignored but that 
it becomes quite important for the heavier atoms. 

7.8 Higher-Order Scattering Terms 

A consideration of higher-order Born terms shows that asymptotically they 
fall faster than fBI and 182. For example, for small values of K, Re 1 B3 falls as k;2 
and ImlB3 as k;3 for elastic scattering. Hence, for intermediate and high impact 
energies (E ~ 50eV), the first two terms of the Born series are expected to be 
sufficient to yield good collision cross sections. However, quite often even for 
E ~ 50eV it is noted that the cross sections obtained withfBt. 182, and the first­
order exchange amplitude g do not agree with experimental data. Furthermore, 
sometimes the contribution of the second term to the cross section is quite signif­
icant. Both of these observations indicate the need for including the higher terms 
of the Born series. The evaluation of higher Born terms is extremely difficult. 
Hence, a number of attempts have been made to evaluate them in an approximate 
manner and obtain scattering amplitudes correct for all orders of interaction. One 
such approximation is the Glauber approximation, which we shall discuss now. 

7.B.1 The Glauber Approximation 

The Glauber approximation (Glauber, 1959) is an extension of the eikonal 
approximation of the potential scattering to many-body scattering. In many ways 
it is similar to the Massey-Mohr approximation. Both these approximations take 
k~ = kl in the expression of Green's function and use closure, followed by the 
integration over X'. Thus, like the Massey-Mohr approximation, the Glauber 
approximation (GA) also completely neglects the distortion of the target wave 
function. In this approximation the scattering amplitude is 

where "'iT, X) is the wave function of the projectile in the eikonal approxima­
tion due to a target frozen at X. Thus in the Glauber approximation 
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(7.8.1) 

where fiX) is the scattering amplitude for the projectile in the eikonal approxi­
mation due to a frozen target. It is given by (3.8.16) but now the eikonal phase 
also depends upon X. The similarity between (7.7.6) and (7.8.1) is quite evident. 
However, whereas 1 PW and 182M are of second order, the eikonal scattering ampli­
tude fiX) and fa include interaction of all orders. The Glauber approximation 
suffers from the same discrepancies noted earlier for the Massey-Mohr approx­
imation. It also completely neglects the distortion of the target wave function and, 
hence, fa for the elastic scattering also diverges in the forward direction. 

Like the Born and the eikonal series we also have the Glauber series. The 
nth Gluaber term is given by 

(7.8.2) 

The nth eikonal scattering term lE.(X) for a fixed value of X is given by (3.8.24), 
but now U and the eikonal phase S, given by (3.8.15), also depend upon X. We 
have already seen that lEn is alternatively purely real and imaginary; hence, the 
1 Gn follow the same trend. A detailed comparison between lEn and 1 Gn was made 
by Byron and 10achain (1973a, b, 1977a) 

7.8.2 The Eikonal Born Series 

Since the elastic scattering amplitude fa diverges in the forward direction, 
the Glauber approximation cannot be employed to obtain the integrated elastic 
cross section CTel and the total collision cross section CTT. However, even at inter­
mediate energies, scattering terms higher than second order are required to 
explain the experimental data. At the same time evaluation of 183, 184, etc., is 
very difficult. It is relatively easier to evaluate 1 G3, 1 G4, etc. Hence, quite often 
the higher-order terms are included through 1 Gn. 

A careful analysis of 1 G2 (0 = 0) [see (7.8.15)] shows that the divergence 
of fan is due to its second term 1 G2> which is purely imaginary but agrees very 
nicely with 1m 182 for intermediate and large values of K even for low values of 
E. A similar agreement is expected between 1 G3 and Re 183. Both of them are 
finite at all K and fall as k;2 for large E. Hence, Byron and 10achain (1973a,b) 
proposed the eikonal Born series (EBS) method, in which the direct scattering 
amplitude is given by 

IEBS = fBl + 182 + lG3 (7.8.3) 

Not only isfEBs free from the divergence at K = 0 but it also includes distortion 
of the target wave function up to first order through 182. Asymptotically, the 
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above scattering amplitude is correct up to ki2• The exchange scattering ampli­
tude g in the Ochkur approximation also falls as ki2• Hence, the DeS in the EBS 
method for electron-hydrogen-atom scattering is given by 

(7.8.4) 

7.8.3 The Modified Glauber Approximation 

In the EBS method the scattering amplitude is truncated at the order of 
ki2, which seems quite arbitrary. It is desirable to include higher-order terms. 
Such a scattering amplitude is given by the modified Glauber approximation 
(MGA), proposed by Byron and Joachain (1975) (see also Gien, 1976)./G -1G2 
is free from the divergence and includes terms of all orders except second order. 
To include the term of this order as well 1 B2 is added to fa - 102. Thus in the 
MGA the direct scattering amplitude is given by 

(7.8.5) 

Like fEBS the amplitude fMG is also free of divergence and includes the effects due 
to polarization of the target through the real part of 1B2. A comparison of (7.8.3) 
and (7.8.5) shows that 

~ 

fMG = /EBS + L1an (7.8.6) 
n=4 

Hence, the MGA should be regarded as a better approximation in comparison 
with the EBS method. 

Since 1 an is real for odd values of n and imaginary for even values of n, 
we may write 

fMG = Re fMG + ilm 1MG 

= Re 1B2 + ~ 1an + { 1m 1B2 + ~ 1an ) (7.8.7) 

where the integers n and n' increase by two units, i.e., n = 1, 3, 5, ... and n' = 
4, 6, 8, ... , etc. If we consider positron scattering, all the odd terms of the Glauber 
and Born series change their sign but the even terms do not. Hence, 

Ref~=-Ref~+2Re12 (7.8.8) 

and 
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1m f~G = 1m fMG (7.8.9) 

where the f~G are the scattering amplitudes for the positron and the electron 
impacts, respectively. In the absence of exchange, the differential cross sections 
IMG (e, cp) for the positron and the electron impact are related by 

IMG = IMG - 4 Re fMG Re liz + 4(Re liz) 
Z 

(7.8.10) 

It has been noted (Gien, 1977a,b) that for the elastic scattering of electrons by a 
hydrogen atom, Re fMG and Re 1 BZ are rather large in the intermediate energy 
range. Hence, I~G is much smaller than IMG. The total collision cross section 
crr depends only on 1m lMG (K = 0), so according to (7.8.9), the two total cross 
sections cr;·- are identical. 

The inclusion of the exchange scattering amplitude g, obtained through the 
Ochkur approximation in (7.8.7), changes only the real part of the scattering 
amplitude for the electron impact. Hence, Eqs. (7.8.8) and (7.8.10) are modified 
but (7.8.9) does not change and we still have cr~ = crr. Thus as far as the total 
collision cross sections are concerned the modified Glauber approximation does 
not differentiate between electron and positron impacts. 

Let us now consider elastic scattering of the electrons and positrons in the 
Glauber approximation by a hydrogenic atom, represented by 

~3 

Vj(r) = - exp( -Ar) 
8Ir 

(7.8.11) 

where A = 2Z1ao. For small values of the momentum transfer K we have (Jhanwar 
et aI., 1982a) 

4ik l ( K Z ) i1] ] fdK) - --; 1]zln -Z +11]2 +-.-+1(1]) 
K-.O A A 1-11] 

(7.8.12) 

where 

1(1]) = f[(-i~)m]Z . f[(-i1])m]Z 
m~l m. l+m-l1] m~Z m! I-m 

(7.8.l3) 

and 1] = -qlkjao; q = ±1 correspond to positron and electron scattering, respec­
tively; (a)m is the Pochchammer symbol and is equal to 

(a)m = a(l + a)(2 +a)··· (m -1 +a) = rca + m)/ rca) (7.8.l4) 

with (a)o = 1. An expansion of Ja(K) in powers of 1] yields 
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I' () 4k;11 4ik; 2[1 (K2) 1] O( 3) 
JG K - ----11 n - +- + 11 

K .... O)} A? A? 2 
(7.8.15) 

As expected, the first term of the above equation is purely real and represents the 
first Born (Glauber) term. The second term, which is purely imaginary, is j G2. It 
diverges logarithmically in the forward direction. The rest of the terms contain­
ing higher powers of 11 are free from divergence. Hence, the divergence of IG(O) 
is due to its second term, so in the forward direction, 

- 4ik; [ i11 2 ] 10<0)-102(0) = -""'12 -.-+211 +J(11) 
I\. l-l11 

(7.8.16) 

A number of studies have been carried out using the modified Glauber approxi­
mation to investigate collisions of charged particles with various atoms and mol­
ecules (see Khare and Vijaishri, 1988). 

7.8.4 The Unitarized Eikonal Born Series 

To obtain (3.8.6) from (3.8.5) we have taken 

1 1 
= 

If we include the next term of the expansion we get 

1 1 p2 
= 

p2+2p·k;-ie 2p·k;-ie (2p.k;-ie)2 

(7.8.17) 

(7.8.18) 

The second term of the above equation gives rise to the Wallace phase correc­
tion to the eikonal phase (b, k;, X) represented by (3.8.15) (Wallace, 1973). This 
correction changes (7.8.1) to 

(7.8.19) 

where 

lEW (X) = 2k~f dbexp(iK .b){exp[i(k;aot(b,k;,X) 

-3 
+i(k;ao) (w(b,k;,X)]-l} (7.8.20) 

Like /G, the Wallace scattering amplitude, fw can also be expanded in a series. 
However, difficulties arise in the evaluation of the Wallace terms jwn (with 
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n ~ 4) of the electron-atom scattering amplitude. This led Byron et al. (1982) to 
define the unitarized eikonal Born series in the following manner: 

- - -
fUEBS = fw - fW2 + fB2 (7.8.21) 

where jw is again obtained from (7.8.19), except that in the evaluation offEw (X) 
the phase term exp[i(k.aor3~W<b, k;, X)] in (7.8.20) is replaced by 1 + i(k.aor3 

~W<b, ki' X). Byron et al. (1985) have utilized the DEBS method to obtain the 
cross sections for the elastic and inelastic scattering of electrons and positrons 
by atomic hydrogen at intermediate and high energies. Their results for the elastic 
scattering are shown in Table 7.5. 

7.8.5 The Schwinger Variational Principle and the Fredholm 
Integral Equation 

Equation (3.7.8) for the scattering amplitude [(P.] is valid for the scattering of 
charged particles by atoms and molecules provided that we use (7.2.15), instead 
of (3.4.11) for lB •. In this section we give an alternative derivation of (3.7.8). 
For electron-atom scattering in which the atom makes a transition from Vi(X) to 
viX), the Fredholm integral equation (3.4.17) becomes 

f ji(k. k)= I"ji(k. k.)+_I_sJfJ~(kj,k)ri(k,ki)dk 
l' I JB J" 2 2 k2 k2 . Tem -m-le 

(7.8.22) 

where ji(k, ki) is the exact scattering amplitude for the transition from the initial 
state Ii, k;) to the intermediate state 1m, k). Iterating the above equation p times 
we obtain 

f ji(k. k.) = I"ji (k. k.)+_I_ SJ IJ;(kj,k)ri(k,ki) dk 
J' I J B P J' I 2 2 k2 k2 . Te m - m -Ie 

(7.8.23) 

where l~~ is the pUt Born term and fCp is the scattering amplitude in the pUt Born 
approximation. We note that (7.8.23) is exact. To obtain an approximate solution 
we take 

(7.8.24) 

for all values of m (including m = i and j), where n is an integer and Ap,. is a 
complex multiplying factor. Putting (7.8.24) into (7.8.23), we obtain 

(7.8.25) 
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Taking m = j and k = kj in (7.8.24), we obtain 

(7.8.26) 

Both the above equations are approximate solutions of the exact equation 
(7.8.23). Equating them we get 

(7.8.27) 

Use of (7.8.27) in either (7.8.25) or (7.8.26) yields (3.7.8). As expected, for p = 
n = 1 we get [fll], given by (3.7.9). For n = 1 and p = 2 we have 

(7.8.28) 

Khare and Lata (1984, 1985) replaced Re 1 B3 with 1 G3 and neglected 1m 
1 B3, which falls faster than kj- 2• Thus for the direct scattering amplitude they took 

(7.8.29) 

To calculate fd we require fBI, 1 B2, and 1 G3. The expression for fBI is well known, 
and 1 B2 is calculated in the SSBA of Holt and Moiseiwitsch (1968). 1 G2 and 
1G3 for hydrogenic atoms are as follows (Yates, 1974): 

(7.8.30) 

and 

(7.8.31) 

where 

for x <1 

for x> 1 (7.8.32) 
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and X = KIA.. As expected, (7.8.30) tends to the second term of (7.8.15) for small 
values of K. 

Khare and Lata (1984, 1985) employed the Ochkur approximation to obtain 
g. They calculated the real part ofthe forward elastic scattering amplitudes, total 
collision cross sections (with the help of the optical theorem), and differential 
cross sections for the elastic scattering of electrons and positrons by hydrogen 
and helium atoms and hydrogen molecules. For e-H collisions the real and 
imaginary parts of the forward scattering amplitude are given by (Gerjoy and 
Krall, 1960) 

Re f(E, 0) = Re[JAE, 0) - t g(E, 0)] (7.8.33) 

and 

Imf(E, 0) = Im[JAE, 0) - t g(E, 0)] (7.8.34) 

On the other hand, for helium, 

Re f(E, 0) = Re[JAE, 0) - g(E, 0)] (7.8.35) 

and 

Imf(E, 0) = Im[JAE, 0) - g(E, 0)] (7.8.36) 

Since in the Ochkur approximation the exchange scattering amplitude g is real, 
we have 

Imf(E, 0) = ImfAE, 0) (7.8.37) 

Das and his associates (Das and Biswas, 1980, 1981; Das and Saba, 1981) 
took n = p = 1 in (7.8.27) and thus obtained 

(7.8.38) 

They then rationalized the above equation and integrated the numerator and 
denominator over all the scattering angles to obtain 

ReA.lI = J[ - 2 - 2] 
(fBi - Re fB2) + (1m fB2) dQ 

J fBI (fBi - Re 1B2 )dQ 
(7.8.39) 
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Table 7.4(a) The Differential Cross Section I( 8) (in 10-21 m2/Sr) for the Elastic Collision 
of 100-eV Electrons with Hydrogen Atom" 

(I (deg) Theory Experiment 

UEBS SVP MGA EBS V W 

0 2.3 + 1 b 2.32 + 1 2.32 + 1 

10 6.7 6.38 6.38 6.74 
20 2.4 2.35 2.42 2.48 3.27 3.08 

30 1.0 1.08 1.11 1.11 1.47 1.42 

40 4.8 - 1 5.34 - 1 5.46 - 1 5.42 - 1 7.19 - 1 8.06 -1 

60 1.5 - 1 1.60 - 1 1.63 - 1 1.69 - 1 2.07 - 1 2.02 -1 

80 6.4 -2 6.30- 2 6.44 - 2 7.19 - 2 8.93 - 1 8.26 - 2 

100 3.4 -2 3.39 - 2 3.22 - 2 3.97 - 2 4.53 - 2 4.34 - 2 

120 2.2 -2 1.90 - 2 1.99 - 2 2.64 - 2 2.99 - 2 2.57 - 2 
140 1.7 - 2 1.35 - 2 1.40 - 2 2.02 - 2 1.82 - 2 

160 1.4 - 2 1.11 - 2 1.16 - 2 1.74 - 2 
180 1.3 - 2 1.04 - 2 1.09 - 2 1.66 - 2 

'SVP, MGA, and EBS, Lata (1984). In the SVP method n = 1 and p = 2 were taken; UEBS, Byron et al. (1982, 
1985); W, Williams (1975); V, van Wingerden et aI. (1977). 

b A(±B) '" A x 10"'. 

and 

1m An = J[ - 2 - 2 
(fBI -RefB2) +(ImfB2) ]dD 

(7.8.40) 

Thus in the Das method, we get from (7.8.25) 

fd = fBI +(ReAll + ilmAll)(Re JB2 +ilmJB2) (7.8.41) 

where ReAn and ImAlI are given by (7.8.39) and (7.8.40), respectively. Since 
fBI for e- and e+ scattering are of opposite signs, ReAli, lmAlI, and thus fd are 
different for the electron and positron collisions. 

Tables 7.4 to 7.9 show theoretical differential cross sections 1(9) and total 
collision cross sections GT obtained by Khare and associates, loachain and asso­
ciates, and Dewangan and Walters in the intermediate energy range for the 
collision of electrons and positrons with hydrogen and helium atoms. These 
investigators have employed different theoretical methods. Experimental data are 
also given for comparison. According to the tables I( 9) and GT in the EBS method 
are higher than those obtained in the MGA, the SVP, and the UEBS methods. 
This shows that the effect of the higher-order terms (n > 3) is to reduce the cross 
sections. The differences between the cross sections obtained by the latter three 
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Table 7.4(b) Same as Table 7.4(a) but for 200eV 

(1 (deg) Theory Experiment 

UBES SVP MGA EBS V W 

0 1.6 + 1 1.54 + 1 1.54 + 1 
10 3.1 3.36 3.02 3.05 
20 1.1 1.09 1.10 1.11 1.61 1.17 
30 4.2 - 1 4.23 - 1 4.25 - 1 4.25 - 1 5.60 - 1 4.81 - 1 
40 1.7 - 1 1.80 - 1 1.81 - 1 1.83 - 2 2.16 - 1 1.98 - 1 
60 4.5 - 2 4.56 - 2 4.65 - 2 4.84 - 2 6.63 - 2 5.23 - 1 
80 1.8 - 2 1.71 - 2 1.75 - 2 1.93 - 2 2.80 - 2 2.40 - 2 
100 9.0-3 8.42 - 2 8.73 - 2 1.00 - 2 1.15 - 2 1.15 - 2 
120 5.6- 3 5.09 - 3 5.32 - 3 6.41 - 3 7.61 - 3 
140 3.9 -3 3.64 - 3 3.86 - 3 4.79 - 3 4.98 - 3 
160 3.4 - 3 2.97 - 3 3.16 - 3 4.00 - 3 
180 3.1 - 3 2.80 - 3 2.97 - 3 3.78 - 3 

approximations are small: ur{e-) and ur{e+) are identical in the EBS and MGA 
methods, and they are nearly the same in the SVP and the UEBS methods. 

We see a qualitative agreement between the theoretical results and the 
experimental data but, in general, the theoretical methods have a tendency 
to underestimate the cross sections. According to the experimental data of 
Kauppila et al. (1981), ur{e-) and ur{e+) for the helium atom are very nearly the 
same for E ~ 200eV. However, these two cross sections obtained theoretically 
by Byron and Ioachain (1977b) in the optical model (OM) and Dewangan and 

Table 7.4(c) Same as Table 7.4(a) but for 400eV 

(1 (deg) Theory Experiment 

UBES SVP MGA EBS W 

0 1.09 + 1 1.07 + 1 1.07 + 1 
10 1.75 1.74 1.75 1.75 
20 4.67 - 1 4.76 - 1 4.64 -1 4.64 - 1 5.48 - 1 
30 1.41 - 1 1.43 - 1 1.44 - 1 1.44 - 1 1.73 - 1 
40 5.26 - 2 5.29 - 2 5.32 - 2 5.37 - 2 5.76 - 2 
60 1.23 - 2 1.22 - 2 1.24 - 2 1.28 - 2 1.23 - 2 

80 4.53 - 3 4.51 - 3 4.59 - 3 4.84 - 3 4.39 - 3 
100 2.25 - 3 2.22 - 3 2.30 - 3 2.49 - 3 2.56 - 3 
120 1.37 - 3 1.34 - 3 1.40 - 3 1.54 - 3 1.69 - 3 
140 9.85 - 4 9.71 - 4 1.02 - 3 1.14 - 3 1.42 - 3 
160 8.14 - 4 8.00 - 4 8.42 - 4 9.49 - 4 
180 7.64 - 4 7.53 - 4 7.92 - 4 8.95 - 4 
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Table 7.S Same as 7.4(a) but for Positron Collisions at 
E = 100 and 200eV 

/1 (deg) UBES SVP MGA EBS 

E= l00eV 
0 6.4 7.22 
10 2.7 3.02 2.85 3.22 
20 1.2 1.22 1.17 1.26 
30 5.6-1 5.54 - 1 5.12 - 1 5.34 - 1 
40 2.7 - 1 2.73 - 1 2.43 - 1 2.55 - I 
60 7.8 - 2 8.70 - 2 7.47 - 2 8.81 - 2 
80 3.0- 2 3.75 - 2 3.30 - 2 4.51 - 2 
100 1.6 - 2 2.02 - 2 1.84 - 2 2.85 - 2 
120 1.0 - 2 1.29 - 2 1.21 - 2 2.09 - 2 
140 7.3 - 3 1.07 - 2 9.51 - 3 1.70 - 2 
160 6.2 - 3 7.84 - 3 7.75 - 3 1.51 - 2 
180 5.9 - 3 7.44 - 3 7.36 - 3 1.45 - 2 

/1 (deg) UBES SVP MGA EBS 

E= 200eV 
0 4.5 4.90 4.90 
10 2.0 2.06 2.03 2.09 
20 7.8 - 1 7.67 - 1 7.53 - 1 7.58 - 1 
30 3.1 - 1 2.97 - 1 2.85 - 1 2.88 - 1 
40 1.3 - 1 1.28 - 1 1.23 - 1 1.25 - 1 
60 3.4 - 2 3.44 - 2 3.30 - 2 3.58 - 2 
80 1.3 - 2 1.35 - 2 1.32 - 2 1.51 - 2 
100 6.4 - 3 6.86 - 3 6.80- 3 8.28 - 3 
120 3.9 - 3 4.23 - 3 4.25 - 3 5.46 - 3 
140 2.8 - 3 3.05 - 3 3.13 - 3 4.17 - 3 
160 2.4- 3 2.52 - 3 2.57 - 3 3.50 - 3 
180 2.3 - 3 2.37 - 3 2.43 - 3 3.30 - 3 

Table 7.6 Total Collision Cross Section or (in 10-21 m2) for 
the Collision of Electrons and Positron with Hydrogen 

Atoms· 

E(eV) UBES SVP MGA EBS H 

e - e+ e- e+ e-'+ e-'+ e-

50 27.4 27.9 28.3 33.2 28.8 
100 19.7 19.1 18.9 19.1 19.2 20.6 19.2 
200 11.8 11.7 11.7 11.7 11.7 12.1 11.7 
300 8.68 8.59 8.20 8.20 8.56 8.73 8.56 
400 6.86 6.83 6.80 6.80 6.80 6.91 6.80 
500 5.68 5.68 5.68 5.74 

aUEBS, Byron et al. (1982, 1985); SVP, Khare and Prakash (1985); MGA 
and EBS, Jhanwar et aI. (1982a); H, de Heer et aI. (1977). 
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Table 7.7(a) The Differential Cross Section 1(8) (in 1O-21m2/ 

Sr) for the Elastic Collision of lOO-eV Electrons with 
Helium Atoms· 

9 (deg) Theory Experiment 

SVP EBS SR KV J 

0 9.82 12.18 
10 5.99 7.67 6.88 4.76 
20 3.22 3.95 3.76 2.61 
30 1.77 2.01 1.58 2.07 1.54 
40 1.04 1.10 9.37 - 1 1.28 9.23 - 1 
60 4.11 - 1 4.11 - 1 3.81 - 1 6.01 - 1 
80 1.87 - 1 2.05 - 1 2.00-1 3.29 - 1 
100 1.03 - 1 1.32 - I 1.42 - 1 2.20 - 1 
120 6.46 - 2 1.00 - 1 1.17 - I 1.72 - 1 
140 4.65 - 2 8.60 - 2 1.07 - I 1.43 - I 
160 3.83 - 2 
180 3.58 - 2 

• SVp, Khare and Lata (1985) with n = 1 and p = 2; J, Jansen et aI. (1976); 
SR, Sethuraman et al. (1974); KV, Kurepa and Vuskovic (1975). 

Walters (1977) in the distorted wave second Born approximation (DWSBA) con­
tinue to differ even at the higher impact energies. 

We conclude this chapter by noting that, in principle, the scattering ampli­
tude correct to any order in the interaction potential can be evaluated. However, 
the higher Born terms are very difficult to calculate. Hence, as we have seen, 
practically all the methods employ only the first and second Born terms. The 

Table 7.7(b) Same as Table 7.7(a) but for 200eY. B Represents Experimental Data of 
Bromberg (1974) 

9 (deg) Theory Experiment 

SVP EBS SR KV J B 

0 7.64 8.85 
10 3.33 3.75 3.45 3.02 3.13 
20 1.53 1.64 1.61 1.48 1.47 
30 7.78 - 1 8.06 - I 7.36 - I 8.18 - I 7.86 - I 7.72 - I 
40 4.14 - 1 4.31 - 1 4.39 - 1 4.52 - 1 4.23 - 1 4.25 - 1 
60 1.38 - I 1.52 - I 1.51 - 1 1.61 - I 1.56 - I 
80 5.71 - 2 7.2 - 2 6.91 - 2 7.6 -2 7.36 - 2 
100 2.88 - 2 4.4 - 2 3.90 - 2 4.5 - 2 4.06 - 2 
120 1.75 - 2 3.2 - 2 2.74 - 2 3.4 -2 
140 1.25 - 2 2.6- 2 1.90 - 2 2.8 -2 
160 1.02 - 2 
180 9.54 - 3 
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Table 7.7(c) Same as Table 7.7(a) but for 500eV. EBS Values are taken from Lata (1984) 
and 0 Represents Experimental Data of Oda et a1. (1972) 

9 (deg) Theory Experiment 

SVP EBS SR J B 0 

0 5.37 5.66 
10 1.59 1.62 1.54 1.61 1.64 
20 6.27 - 1 6.32 - 1 6.27 - 1 6.32 - 1 6.38 - 1 
30 2.50 - 1 2.54 - 1 2.63 - 1 2.61 - 1 2.56 - 1 2.58 - 1 
40 1.09 - 1 1.12 - 1 1.16 - 1 1.15 - 1 1.15 - 1 1.20 - 1 
60 3.19 - 2 3.11 - 2 3.16 - 2 3.25 - 2 
80 1.07 - 2 1.34 - 2 1.07 - 2 1.25 - 2 1.33 - 2 
100 5.26 - 3 7.36 - 3 4.98 - 3 6.44 - 3 5.88 - 3 
120 3.16 - 3 4.87 - 3 2.60 - 3 2.55 - 3 
140 2.25 - 3 3.72 - 3 2.04 - 3 
160 1.85 - 3 3.19 - 3 
180 1.73 - 3 3.02 - 3 

higher tenns are evaluated through the Glauber approximation, which completely 
neglects the effects due to the distortion of the target wave function. Thus the 
EBS method~ the MGA, the UEBS, etc., consider the effect due to the distortion 
of the target wave function only up to the second order through j 82. Joachain 
(1990) has reviewed some of these methods. 

At low impact energies the distortion of the target wave function becomes 
quite significant. Hence, none of the methods discussed in the present chapter are 

Table 7.8 The Differential Cross Section 1(8) (in 1O-21m2/Sr) 
for the Elastic Collision of Positrons with Helium Atoms· 

9 (deg) E= l00eV E= 200eV 

SVP EBS SVP EBS 

0 1.75 3.47 1.67 2.19 
10 1.21 2.20 1.26 1.45 
20 7.44 - 1 1.21 6.91 - 1 7.22 - 1 
30 4.42 - 1 6.46 - 1 3.55 - 1 3.50 - 1 
40 2.63 - 1 3.72 - 1 1.88 - 1 1.85 - 1 
60 1.02 - 1 1.97 - 1 6.42 - 2 7.86 - 2 
80 5.01 - 2 1.65 - 1 2.91 - 2 5.01 - 2 
100 2.99 - 2 1.52 - 1 1.60 - 2 3.75 - 2 
120 2.08 - 2 1.42 - 1 1.04 - 2 3.05 - 2 
140 1.62 - 2 1.33 - 1 7.67 - 3 2.66 - 2 
160 1.39 - 2 1.28 - 1 6.41 - 3 2.45 - 2 
180 1.33 - 2 1.26 - 1 6.04 - 3 8.00 - 3 

• SVP and EBS represent theoretical cross sections of Khare and Lata (1985), 
obtained in the Schwinger variational principle and the eikonal Born series 
methods, respectively. 
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Table 7.9 (a) The Total Collision Cross Section crT (in 10-21 m2) for e-'+-He Collisionsa 

(a) Theoretical results 

E (eV) SVP EBS MGA DWSBA OM 

e-'+ e-'+ e-'+ e - e+ e - e+ 

50 10.4 16.5 7.11 
80 10.5 14.4 10.1 
100 9,88 12.8 9.88 15.3 10.6 17.2 11.1 
200 7.05 8.09 7.25 8.95 7.42 9.43 7.50 
300 5.46 5.99 5.57 6.49 5.71 6.66 5.74 
400 4.48 4.79 4,56 5.12 4.67 5.21 4,67 
500 3.81 4.03 3.86 4.25 3.95 4.31 3.97 
700 2.94 3.08 2.97 3.22 3.05 3.25 
1000 2.21 2.29 2.24 2.37 2.29 

'SVP and EBS, Khare and Lata (\985); MGA, Ihanwar et aI. (1982a); DWSBA, Dewangan and Walters (\977); 
OM, Byron and loachain (\ 977b). 

(b) Experimental data 

E (eV) Brenton et al. Twomey et al. Dalba et al. Blaauw et al. Kauppila 
(1977) (1977) (1980) (1980) et al. (1981) 

e+ e+ e - e - e e+ 

50 Il.l 10.6 17.3 17,3 11.2 
(at 4geV) 

80 12.5 
100 9.15 9.40 11.6 11.1 11.1 10.2 
200 7.22 6.41 7.64 7.22 7.14 7.00 
300 5.71 4.76 5.65 5.54 5.46 5.40 
400 4.66 3.86 4.51 4.59 4.53 4,53 
500 3.69 3.86 3.78 3,78 3.81 3.83 
700 2.91 2.63 2.83 2.91 
1000 2.10 8.68 - 1 2,07 

suitable at low E, as they give reasonable results only at intermediate and high 
energies. A crude lower limit for these methods may be taken as 50eY. This limit 
moves to higher values of E as the nuclear charge of the target increases. 

Questions and Problems 

7.1 The helium atom in its ground state is represented by 

with 

orders@himanshubook.com



210 

Table 7.10 The Real Part of the Forward Scattering Ampli­
tude for the Elastic Scattering of Electron by Hydrogen 

Atom in the EBS Method (Lata, 1984) 

E(eV) fi (} = 0) (in ao) 

50 3.106 
100 2.394 
200 1.937 
300 1.747 
400 1.638 
500 1.565 

Chapter 7 

The variational parameters Z and C are equal to 1.4558 and 0.6, respectively. 
Show that N2 is equal to 0.7012Iag. 

7.2 Use the above wave function for the helium atom to obtain an expression 
for the scattering amplitude fBI(K) in the FBA for the elastic scattering of 200-
eV electrons by a helium atom. Show that the values offBl(I() in the forward and 
backward directions are 0.7879ao and 6.592 x 1O-2ao, respectively. 

7.3 Use (7.7.10) to calculate L1 (in Rydberg units) for the hydrogen atom. Take 
ad = 4.5a~. 

7.4 Derive (7.7.38) and use it with (7.7.39) to obtain jpw(K) in the forward 
and backward directions for the scattering of 200-eV electrons by helium atoms. 
For this atom ad = 1.395a~, aq = 2.327ag, and L1 = 35.373eV. Also calculate the 
values of 11 + fdP(8)/fBMJ)1 2 for both directions. Take the values of fBl«(J) from 
problem 2. Comment on the importance of the polarization potential in 
electron-atom collisions. 

7.5 Represent the space part of the helium atom by the following wave functions 

and 

where vCr) are one-electron hydrogenic orbitals. Use the above wave functions 
to derive an expression for the differential cross section I(K) dK in the FBA for 
the excitation of the helium atom from IISo to 21So due to electron impact. 
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7.6 Derive an expression for the generalized oscillator strength for the excita­
tion of the helium atom from 11So to 21Pl (ML = 0) due to electron impact. Rep­
resent the helium atom by the same wave function as taken in problem 5 but 
replace the vzsCr) orbital with the vZp (m = 0) orbital. From the derived GOS obtain 
the optical oscillator strength and compare it with (6.9.5). 

7.7 Derive (7.6.4) and check the values of df(cr, {J2)/d(cr) given in Fig. 7.6 for 
W= 15eY. 

7.8 Helium atoms are excited from 11So to 23p (Ms = 1) by polarized electrons 
having ms = 1. Show that this is not possible in the FBA. Obtain an expression 
for the scattering amplitude for this excitation in the Ochkur approximation. Rep­
resent the helium atom, in the initial and final states, by a suitable combination 
of the hydrogenic orbitals with proper symmetrization. 

7.9 Compare and contrast the Born series with the Glauber series. Derive 
(7.8.12) and (7.8.15). Of the FBA and the EBS method, which one is expected 
to give better results. Give reasons for your answer. 

7.10 Use (7.8.33) and (7.8.34) along with Tables 7.6 and 7.10 to calculate ldO) 
for the elastic scattering of electrons by hydrogen atoms in the EBS approxima­
tion. With the help of the calculated values of lBlO) and (3.7.8) obtain [fnp] 
and, hence, CJr for p = n = 1 in the energy range 50 to 500eY. Compare your cal­
culated values with those given in Table 7.6 and comment. 
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Collision of Electrons with Atoms: 
The Differential Approach 

8.i introduction 

In the last chapter we discussed the integral approach to study 
electron-atom collisions. These methods are suitable only at intermediate and 
high energies. At low impact energies the distortion of the wave functions of the 
target and the projectile due to the interaction potential becomes quite important. 
To take a proper account of this distortion we have to solve the SchrOdinger 
differential equation. Quite often, even in the intermediate energy range, the 
differential approach is used to explain the experimental data. 

As pointed out earlier, an electron-atom collision is a many-body problem, 
and an exact solution of the Schrodinger differential equation is not yet possible. 
In this chapter we shall develop a number of approximate methods to solve this 
differential equation and obtain the phase shifts. These phase shifts are used to 
obtain the scattering amplitudes and the differential, integrated, and total colli­
sion cross sections. 

8.2 The Basic Differential Equation 

Let us consider the collision of an electron with an atom having Z elec­
trons. As discussed earlier, electrons are fermions so the atomic wave functions 
as well as the wave function of the system (atom + incident electron) must be 
anti symmetric with respect to the exchange of any two electrons. Under steady 
state conditions the system satisfies the following time-independent Schrodinger 
equation: 

H lJ!(r, s; X, S) = ETlJ!(r, s; X, S) (8.2.1) 

213 
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where r and s are the space and spin coordinates of the incident electron, respec­
tively. The space and spin coordinates of all the atomic electrons are represented 
by X and S, respectively. The total energy Er is a conserved quantity. To start 
with, we ignore the anti symmetrization condition of the wave function (i.e., 
neglect the exchange) and also the influence of the spin on the collision. Then 
(8.2.1) reduces to (7.2.1), and (7.2.2) to (7.2.6) are also satisfied. 

To solve (7.2.1), we expand 'P (r, X) in a complete set formed by the eigen­
functions vn(X) of the atom. Hence, 

",{r, X) = SF,. (r)v n (X) (8.2.2) 
n 

where the expansion coefficient Fir) is the wave function of the scattered elec­
tron when the atom is in its nth excited state. Fir) is different from the plane 
wave l/J"n(r) due to the presence of the interaction energy V [given by (7.2.6)] in 
the Hamiltonian of the system. We use (8.2.1) and (7.2.5) in (8.2.2) and obtain 

or 

(8.2.3) 

We now multiply (8.2.3.) by v;(X) from the left and integrate over X. Using the 
orthogonal property of vn(X), we get 

or 

(8.2.4) 

It is evident from the above equation that Fir) is different from a plane wave 
due to the presence of the interaction energy V. Further to obtain Fir) we must 
know Fn(r) for all possible values of r. Since the target has an infinite number of 
eigenstates,(8.2.4) represents an infinite number of coupled differential equations. 
Thus finding an exact solution of Fp(r) is an impossible task. 
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To investigate elastic scattering we reduce the many-body problem to 
a one-body problem by assuming the existence of an optical potential defined 
by 

Vop(r)F;(r) = S(i!vln)F,.(r) (8.2.5) 
n 

where Vi(X) is the initial atomic state. Putting(8.2.5) into(8.2.4) we get the 
following one-body differential equation: 

(8.2.6) 

where the reduced optical interaction energy Uop(r) is equal to 2mVop(r)/tf. Equa­
tion (8.2.6) describes the scattering of an electron of mass m (much smaller than 
the mass of target) by the optical potential. In general, in the absence of exchange 
symmetry, the optical potential is noncentral, energy dependent, and complex. 
The inclusion of exchange symmetry makes it nonlocal as well. Its construction 
in an exact form is again an impossible task. Hence, quite often an approximate 
spherically symmetric form of Uop(r) is utilized and the one-body differential 
equation given by (8.2.6) is solved by following the method discussed in Chapter 
3 under the boundary conditions (3.9.4) and (3.9.5) to find the elastic scattering 
phase shifts 111. The scattering amplitudes and the differential and integrated cross 
sections are obtained from these phase shifts. The total collision cross section (Jr 

is also arrived at by using the optical theorem. We note once again that (Jel is 
different from (Jr only if Uop(r) is complex. In that case the phase shifts are also 
complex and (3.9.19), (3.9.23), and (3.9.24) are utilized to get (Jet. the absorption 
cross section (Jab, and (Jr, respectively. 

Let us now discuss some of the approximate differential approaches to 
obtain Fp(r). 

8.3 The Static Field Approximation 

In the static field approximation (SFA), all the matrix elements Vin occur­
ring in (8.2.5) are assumed to be zero except Vii. Thus coupling of the initial target 
state I i) to all other target states, given by I n), is neglected. Hence, (8.2.6) reduces 
to 

(8.3.1) 

For an atom, having Z electrons the interaction energy V is given by (7.2.6). 
Hence, 
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2m (I Ze2 
Z e2 I) Usp(r) = Ujj(r) =-2 i--+L-I _ Ii 

h r 1=1 r rl 
(8.3.2) 

Thus the reduced interaction energy Usp in the SPA is equal to the average value 
of the interaction potential energy multiplied by 2m/If. In this case the optical 
potential is equal to the static potential. To evaluate Usp(r) let us represent the 
target wave function v;(X) in the Hartree self-consistent field approximation and 
take 

Z 

v;(X) = 1C qJq(rq) 
q=1 

(8.3.3) 

where the one-electron atomic orbitals <j>q{rq) are orthonormal. They are the solu­
tions of the coupled Hartree self-consistent field equations, 

where 

(8.3.4) 

With the help of the above equations we obtain 

(8.3.5) 

The term Usp(r) is very simple in form. It behaves like -Z/r at short distances 
and falls off exponentially beyond a distance of the order of the size of the atom. 
Thus the static potential is a short-range potential. At short distances the static 
potential is quite strong. Hence, it plays a very important role in large-angle 
scattering. The SPA includes the effect of the distortion of the projectile's wave 
function in the evaluation of the collision cross sections to all orders of the inter­
action potential. However, it completely neglects the effects due to the distortion 
of the target wave function, the exchange symmetry, and the loss of flux due 
to simultaneous inelastic scattering (absorption effect). In general, the static 
potential is real and spherically symmetrical; hence, the method of partial waves 
discussed in Sec. 3.9 becomes applicable to calculate 1'11, 1(8), and Gel. 

Now 
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(8.3.6) 

and 

Using the above two equations in (8.3.5) we get for the electron-atom 
scattering 

(8.3.8) 

where for the electron-atom collision ttlme2 has been replaced by ao. Let us eval­
uate USF(r) for the ground state of hydrogenic atoms. The atom is represented by 
only one orbital, given by (6.11.1). Since Vi(X) = <Pl(rl) is spherically symmetric, 
the second term of (8.3.8) is zero and 

We use the standard integral 

(8.3.9) 

in the above equation to evaluate it and put the result in (8.3.8) to get 

(8.3.10) 

As expected USF is real. It falls exponentially at large values of and goes to -00 

at the origin. The negative sign of (8.3.10) shows that the interaction between 
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Table 8.1 Values of the Parameters Required in (8.3.12) for a Few Light Atoms (Strand 
and Bonham, 1964) 

Atom ayl ayZ a.ll all bYI byZ b~l bll 

C 1.3391 -0.3391 1.7315 13.713 -2.7379 -2.0444 4.718 8.333 
N 1.3521 -0.3521 2.0249 15.700 -3.0744 -2.3369 5.671 9.960 
0 1.2806 -0.2806 2.2376 18.263 -3.0715 -1.9710 6.803 11.548 
Fe 1.2538 -0.2538 2.4796 20.644 -3.2697 -1.8073 7.971 13.392 
N 1.2464 -0.2464 2.7385 22.850 -3.5467 -1.7746 9.129 15.381 

the projectile and the target in the SFA is attractive. Hence, the phase shifts are 
positive and real. They are obtained by solving (3.9.17) under the boundary con­
ditions (3.9.18) with U(r) = USF' 

The helium atom in its ground state can be represented by 

(8.3.11) 

where qJi(r) is again given by (6.11.1). But the value of Z .. as obtained from the 
variational principle, is 1.27. Hence, with (8.3.11), the static potential for the 
ground state of the helium atom is twice that of (8.3.10) but with Z. = 1.27. 
The static field of any multielectron atom can be obtained without much diffi­
culty. Using Hartree-Fock target wave functions (see Weissbluth, 1978), Strand 
and Bonham (1964) have shown that Ujj(r) for the ground state of an atom with 
2 ~ Z ~ 18 is given by 

(8.3.12) 

The values of the parameters a')i' a;.;, brj, and byj for a few atoms, as given by 
Strand and Bonham (1964), are shown in Table 8.1. 

8.4 The Two-State Approximation 

Let us consider collision of electrons with a hypothetical atom that has only 
two eigenstates Vi(X) and Vj(X), Under these circumstances, (8.2.4) gives rise to 
two coupled differential equations: 

(8.4.1) 

and 
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(8.4.2) 

If initially the atom was in the ith state, then Fi(r) is the wave function of the elas­
tically scattered electron and Fj(r) is the wave function of that scattered electron 
which during collision has excited the atom from the jth to the l state. As before, 
asymptotically, Fi(r) is a linear combination of a plane wave and an outgoing 
spherical wave. However, Fir), which is created by the collision, is represented 
asymptotically only by an outgoing spherical wave. Hence, 

Fi(r) - A[eiki.r + eikir f;;((),CP)] 
r~1X) r 

(8.4.3) 

and 

(8.4.4) 

The DeS for the elastic and the inelastic collisions are given by Ihil 2 and k/ki 
Ihil 2, respectively. For the spherically symmetric Vii, Vij, and ~i' the method of 
the partial waves is employed and two coupled equations for the initial and final 
states are solved simultaneously to obtain the required cross sections. 

Let us consider collisions where the incident energy E is less than the exci­
tation energy t:ex = t:j - t:j • In this situation real excitation is not possible and F/r) 
given by (S.4.4) must go to zero as r ~ 00. This can be achieved by replacing kj 

by i)1j' where j = ";-1, )1j is a real positive quantity and 

(8.4.5) 

Here the jth channel is open and jth channel is closed. To examine the effect of 
the jth channel on the elastic scattering we approximate \12 by -~i and neglect 
the term ~jFj in (8.4.2). Thus, approximately, 

2m ~i(r) 
Fj(r)=- 2 2 2 Fi(r) 

Ii ki +)1j 
(8.4.6) 

Putting (8.4.6) into (8.4.1), we obtain 

[V2 + k? - Usp(r) - Upol (r )]F;(r) = 0 (S.4.7) 
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Upolr) is the second-order reduced polarization potential. It is given by 

(8.4.8) 

and is always negative. Since Upolr) is independent of E, (ttI2m)Upol(r) is known 
as the reduced adiabatic polarization potential energy. In the dipole approxima­
tion it is equal to the l term of (7.7.24). Due to the presence of the closed jth 
channel the electric field of the incident electron induces multipoles in the target 
atom, i.e., the atom is polarized. Hence, the real polarization potential is due to 
the virtual excitations of the atom. 

For electron-atom collisions both USF and Upol are attractive but for positron 
scattering USF is repulsive while Upol is attractive. Hence, they oppose each other. 

For E ) Bex the elastic and the inelastic scattering take place simultaneously. 
As before, the electric field of the incident electron will polarize the atom. Fur­
thermore, due to real excitations, some of the electrons will leave the ith channel 
and appear in the jth channel with energy E - Bex and momentum tikj • Hence, the 
second-order potential will now be complex. The real part Vpoh which is due to 
virtual excitations, is the polarization potential. The imaginary part V.b is due to 
real excitations and is known as the absorption potential. Hence, now 

Vop (r) = VSF + Vpol + iV.b (8.4.9) 

where V.b is real. To investigate the elastic scattering one is now required to solve 
(8.2.6) with Uop(r) = (2mltt) Vop(r). This approximation for the elastic scattering 
is known as the static field-polarization-absorption approximation (SFPAA). 
Both Vpol and V.b are of second order. However, the former is of long range 
whereas the latter is of short range. Due to their presence the Des are changed 
by a substantial amount. 

Since in our present model there is only one inelastic channel, a.b is equal 
to Oinel. We note that V.b, which arises due to inelastic scattering, affects elastic 
scattering by its presence in Voir). In other words, the effect of the inelastic 
scattering on the elastic scattering is governed by V.b• 

8.4.1 Resonance in Elastic Scattering 

Let us again consider the case when E is less than Bex. Equation (8.4.2) then 
changes to 

(8.4.10) 
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If Ujj is strong and attractive then for certain values of A? we have 

(8.4.11) 

with 

(8.4.12) 

For negative values of A? the eigenfunctions X represent bound states. Let such 
values of A? be E" E2, ••• , En . ... At these incident energies the incident elec­
tron gets attached to the target and forms a complex. This complex exists for a 
brief period and then decays again into the initial state of the target and a free­
electron of energy E. Near the energy E" E2, ••• , En ... due to the formation of 
bound states the elastic cross sections become quite large and give rise to reso­
nances. These are known as the Feshbach resonances and have been experimen­
tally observed in electron-atom collisions. For the resonances to occur the 
incident energy E should be less than but close to £ex. 

Let us consider collisions between electrons and the ground state (ls) 
hydrogen atom. The excitation of the atom is possible only if E > 1O.204eV. 
Below this energy is the region of pure elastic collisions. As discussed above, for 
E slightly less than 1O.204eV, doubly excited state 11** (2s, nl) may be formed 
at some specified energies. The eigenenergies of these bound states are embed­
ded into the continuum states of l1(ls, E), consisting of H(ls) and a free elec­
tron of energy E. The doubly excited states of H- are unstable and decay into 
H(ls) and e(E). This decay represents a transition from a bound to a continuum 
state. However, such transitions are radiationless, occur at specified energies, and 
produce Feshbach resonances. The doubly excited states of H- are known as 
autoionizing states. O'Malley and Geltman (1965) have calculated eight autoion­
izing states of 11** lying between 9.559 and 1O.203eV. Three such states are 
shown in Fig. 8.1. 

The elastic scattering of electrons by a helium ion also produces reso­
nances. The reaction is 

./f He+(1s)+e 
e+He+(1s) ~ He**(2s, 2p) ~ 

He*(1s,2p)+hv 
(8.4.13) 

In this case we have an additional decay channel corresponding to the produc­
tion of a neutral singly excited helium atom and a photon. However, the proba­
bility of autoionization is much higher than that of radiative decay. This is 
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FIGURE S.l Three autoionizing states A, B, and C of H lying between 9.559 and 1O.204eV. 
The energies of A, B, and C, as calculated by O'Malley and Geltman (1965), are 9.559, 9.127, and 
1O.14geV, respectively. 

confirmed by the observation that the spectral line has a width much greater than 
expected for a radiati ve emission line. 

The electron-helium collision process can also form doubly excited states 
of helium: 

e+He --+ e+He** (8.4.14) 

The formation of these doubly excited states produces resonances in the energy 
loss spectrum of the incident electron. Silvermann and Lassetre (1964) and 
Simpson (1964) detected two peaks in the energy loss spectrum of 500-e V elec­
trons scattered by helium at 60.0 and 63.5eV above the ground state of helium. 
These experiments confirmed the existence of doubly excited helium atoms that 
decay by autoionization. Burke (1968) discussed the theory of resonances, and 
experimental details are provided by Golden (1978). 

We have discussed resonances between the first two states of atoms. Such 
resonances have also been noticed below the excitation threshold of n = 3, 4, 
... excited states. 

8.4.2 Weak Coupling 

Let us consider the situation when Ujj and Ujj are large but the coupling 
terms Uij and Uji are small. Then, approximately, (8.4.1) and (8.4.2) reduce to 

(8.4.15) 
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and 

(8.4.16) 

respectively, the excitation of the atom taking place due to the coupling term 
Uir)Flr). The asymptotic solution of (8.4.16) is given by 

;kjr 

Fj(r) - _2n2_e -fUj;(r')F;(r')Xj(r',n-e)dr' 
r~oo r 

(8.4.17) 

where Xj is the solution of the following homogeneous equation: 

(8.4.18) 

For the scattering angles «(J, cp) the angle e is given by 

cos e = cos (J cos (J' + sin e sin e' cos( l/J -l/J') (8.4.19) 

In this approximation the differential cross section is (Mott and Massey, 1965) 

() kj 4( m )2 Ij; e,cp dQ = -16n 2" 
k; Ii 

x If V(r', X)v;(X)vj(X)F;(r', (J')Xj(r', n - e)dr'dXI2 (8.4.20) 

If we represent F; and Xi by plane waves, the above equation gives the DeS in 
the first Born approximation. Equation (8.4.15) shows that F; represents the 
motion in the mean field of the initial state but that Xj is due to the mean field of 
the excited state. This method is known as the distorted wave method. 

8.5 The Static Field and Polarization Approximation 

For atoms having an infinite number of eigenstates, (8.4.8) is modified to 

(8.5.1) 

where j '" i. This equation can also be obtained using first-order time­
independent perturbation theory. According to this theory, for an atom A 
perturbed by a first-order perturbing potential V, we have (Schiff, 1968) 
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(8.5.2) 

(8.5.3) 

(8.5.4) 

where HA is the unperturbed Hamiltonian of the atom with eigenenergy fi and 
eigenfunction Vi; vi,2 are first- and second-order corrections to the eigenfunction; 
and similarly £),2 correspond to first- and second-order corrections to the eigen­
energy f;. 

It is easy to verify that if we replace Vi,2 by Vi,2 + c).2Vi , in the left-hand sides 
of (8.5.3) and (8.5.4), where d,2 are arbitrary multiplying factors, these equa­
tions do not change. Hence, this process does not affect the evaluation of the vi·2 

in terms of their lower-order wave functions. We choose c}-2 in such a way that 
the Vi,2 are orthogonal to Vi' Now from (8.5.3) 

Hence, 

f) = {ilVli} (8.5.5) 

Similarly from (8.5.4) 

f1 = (ilVlv)} (8.5.6) 

where we have used (i I vb = O. To obtain an expression for vi we expand it in 
terms of a complete set formed by Vj and take 

v1 =Sa·v· 
I j#-i]] 

(8.5.7) 

The termj = i is excluded because vi is orthogonal to Vi' Using the above equa­
tion in (8.5.3) and the orthogonality relation, we get 

Hence, 

(jlVli) 
aj=--­

fj -fi 
(8.5.8) 

(8.5.9) 
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and 

(8.5.10) 

A comparison of the above equation with (8.5.1) shows that ef is the second­
order polarization energy. 

Let us now consider the polarization of a ground state hydrogen atom by 
a slowly moving incident electron. We assume that the electron is moving so 
slowly that as far as the polarization is concerned it can be regarded as station­
ary at r (adiabatic approximation). Hence, the perturbing potential is due only to 
the potential energy of the incident electron and is given by 

e2 e2 2 ~ ~ 
V(r, X) = --+-, -, = e L t:;:J Pt (cos 8) 

r r -X 1=1 r> 
(8.5.11) 

where 8 is the angle between r and X, the position vector of the atomic electron. 
For a meaningful concept of the polarization of the atom by the incident electron 
we should have r > X. Hence, 

~ Xl 
V(r, X) = e2 L t:;:J Pt(cos8) 

1=1 r 
(8.5.12) 

With the above form of V and the spherically symmetrical ground state wave 
function Vi, it is easy to see that the matrix element Vji will be zero if Vj is also 
spherically symmetric. Hence, in an expansion of v/ [given by (8.5.9)] in the 
complete set of Plcos 8) we exclude the 1=0 term and take 

~ 

v} = Lfi(r, X)Pt(cos8) (8.5.13) 
1=1 

Putting the above equation into (8.5.3), we obtain 

(8.5.14) 

In the above equation we use (2.6.6), (2.6.8), and (2.6.2) to get 

( d2 2 d 1(1 + 1) 2 1 ) 2X I 

-+-----+--- fi(r, X) =--Vi(X) 
dX 2 X dx X2 aoX aZ rl+1ao 

(8.5.15) 
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The solution of the above differential equation is (Stemheimer, 1954; Dalgamo 
and Lewis, 1955) 

Hence, 

1 (a Xl XI+1 ) 
Ji(r,X)=-~ T+ 1+1 Vj(X) 

= 1 (a Xl XI+I } v)(r, X) = - L t,:] _0_+_ I (cos8)vj (X) 
1;1 r I 1+1 

Thus from (8.5.6) 

(8.5.16) 

(8.5.17) 

It should be noted that in the evaluation of (il vi vi) we have taken the range 
of X from 0 to 00. But at the same time r is taken to be greater than X. Hence, 
t?;, given by (8.5.17), is its asymptotic value. The dipole (l = 1) component of 
t?; is 

( 2) ad 
Ej dp -') --4 aoR 

r-too r 
(8.5.18) 

because the dipole polarizability ad of the hydrogen atom is 4.5a6 and the 
Rydberg energy R is e2/2ao. As expected, the above equation agrees with the first 
term of (7.7.33). Since (8.5.18) diverges at r = 0, various empirical forms of 
Vdp(r) , which go to (8.5.18) asymptotically and reduce to zero at the origin, are 
utilized in the calculations. One such form is given by (7.7.37). 

In the static field-polarization approximation (SFPA), the optical potential 
is the sum of the spherically symmetric static field and the polarization potential. 
The radial equation in this approximation is 

( d2 2 1(1+1)) 
-2 +k -USF(r)-UpOI(r)--2- fi(r) = 0 
dr r 

(8.5.19) 

To obtain phase shifts the above equation is solved numerically under the bound­
ary conditions given by (3.9.18). In many calculations Upolr), given by (7.7.37), 
has been utilized. The calculated phase shifts are employed to obtain the differ­
ential cross sections and the integrated elastic cross sections O"el in the SFPA. For 
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real USF and Upol the phase shifts are also real. Hence, the total collision cross 
section GT obtained by the application of the optical theorem is equal to Gel. 

So far we have considered only the unsymmetrized wave functions. Thus 
the exchange effect is neglected. This effect will be considered in the next section. 

8.6 The Static Field and Exchange Approximation 

We take '1' of (8.2.1) in a completely anti symmetric form as demanded by 
Fermi-Dirac statistics. For simplicity we consider scattering of the electrons 
by the hydrogen atom and take the space part of the wave function of the system 
e+H as 

(8.6.1) 

It is evident that tp+ is symmetric with respect to the exchange of the incident 
electron and the atomic electron. Hence, the spin wave function associated with 
tp+ must be antisymmetric. Similarl '1'- is antisymmetric; hence, the associated 
spin wave function will be symmetric. Since for a two-electron system there are 
three symmetric spin wave functions and only one anti symmetric spin wave func­
tion [see (5.6.1)], p± describes singlet and triplet scattering, respectively. Now 
with the help of (8.2.1) and, (8.2.2), from (8.6.1) we obtain 

(8.6.2) 

Multiplying both the sides by vt(r2) and integrating over r2 yields 

(8.6.3) 

where the kernel kpn is equal to 

(8.6.4) 

Equation (8.6.3) represents an infinite number of coupled integro-differential 
equations and obtaining their exact solutions is again impossible. A comparison 
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of this equation with (8.2.4) shows that the symmetry consideration has added 
one more term to the differential equation in which the coordinates of the two 
electrons are exchanged: the exchange term. To evaluate Fp at rj we require Fn 

at all possible value of r2. Thus it is nonlocal in nature. 
Let us go back to the one-state approximation. We replace p by the initial 

channel i and neglect all the terms in (8.6.3) for which n ¢ i. The resultant 
equation 

(8.6.5) 

with 

(8.6.6) 

is the scattering equations in the static field exchange approximation (SFEA). A 
partial wave expansion of F;(rj) given by 

(8.6.7) 

yields the following one-dimensional differential equation for the rh partial wave 

[ d2 2 () l(l + 1)] ± - 2m J / ( ) ± ( ) 
-2 +ki -Uii lj ---2 - qJi/ =+-2 /(ii lj,r2 qJi/ r2 dr2 
dr lj h 

(8.6.8) 

with 

(8.6.9) 

In the above derivation it is assumed that the atom is in the S(L = 0) state, 
which is certainly true for the ground state of the hydrogen atom. Equation (8.6.8) 
is solved numerically for qJ~ under the boundary conditions 

qJff(lj = 0) = 0 

and 
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(8.6.10) 

The phase shifts 11~ are utilized in (3.9.13) to obtain the scattering amplitudes 
~l(J). Considering the relative weight of the singlet and triplet spin states, the 
differential cross section for elastic scattering of electrons by unpolarized ground 
state hydrogen atoms is given by 

(8.6.11) 

In Fig. 8.2 the phase shifts 10 and Ttl are shown as functions of the inci­
dent energy E. Ttl is found to be zero at E = O. On the other hand, at this energy 
both 11~ are equal to n. This value is in accordance with the Lavinson theorem, 
given by (3.9.31), because W has only one bound state. Thus as expected, the 
SFEA is superior to the SFA. With the increase in E the phase shift 11~F increases, 
attains a maximum, and then falls with further increase in E. In contrast, both 11~ 
continuously decrease with an increase in E. 110 is greater than 110 and 118F lies 
between the two for E greater than about 40 e V. At large E the three curves merge 
into one another. This shows that the exchange effect is of importance at low E. 
Physically, the probability of exchange is also expected to be appreciable 
for those velocities of the incident electron that are of the same order as the 
velocity of the atomic electron. 

8.6.1 Local Exchange Potential 

To obtain a solution of an integro-differential equation is much more 
difficult than to solve a differential equation, so there have been a number of 
attempts to convert (8.6.5) into 

(8.6.12) 

with V:x(rJ as a local exchange term. For a spherically symmetrical potential, 
the above differential equation is reduced to a one-dimensional equation [similar 
to (8.6.8)] but with the additional local term V:x(rj). These equations are solved 
numerically and the 11T are obtained. 

We follow the treatment of Vanderpoorten (1975) to obtain local V:x' Let 
us define 
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FIGURE 8.2 Variation of the I = 0 phase shift 7)0 for elastic scattering of a electrons of a hydrogen 
atom with the impact energy E. Curve A represents phase shifts in the static field approximation. 
Singlet and triplet phase shifts in the static field-exchange approximation are represented by the 
curves B and C, respectively. 

Since the functions v;(r2) and Fj(r2) represent, respectively, bound and con­
tinuum states, of the same Hamiltonian, they should be orthogonal to each other. 
Hence, 

(8.6.13) 

Now taking Fj(r2) = Fj(rl - rd and using the Taylor's expansion, we get 

Similarly, 

2 
(-rI2'V F) 

F;(r2) = F;(rl) + (-r12,VF)F;(rj) + 2! F;(r;)+'" 

=exp(-r12'V F)F;(rj) 
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Hence, 

(8.6.14) 

On the assumption that Vj is a much smoother function of rl than Fj , we neglect 
the gradient V. in (8.6.14). Thus, 

(8.6.15) 

Using (8.6.12) we approximate 'V? by Ujj(rl) + u:. (rl) - kTin the above equation 
and obtain the following quadratic equation for lP.x: 

+ ( ) _ 87re2m 1 ( )12 1 
Ue..rl =+----;;2"Vj rl U··() u±( )-k~ 

II ,,'i+ex'i I 

(8.6.16) 

Solving the above equation under the physical condition lP.x (rl) ~ 0 as kj ~ 00, 

we get 

(8.6.17) 

At large kj the reduced local exchange potential energy tends to 

(8.6.18) 

In the first Born approximation (8.6.18) gives the Ochkur exchange amplitude. 
Hence, (lt12m) lP.x(rl) is known as the Ochkur exchange potential (energy). 

For multielectron atoms the (8.6.17) modifies to (Riley and Truhlar, 1975) 

(8.6.19) 
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where 

2 _ 8ir e2 h2 ~ N 1 12 a-£.. iVi 
m i=1 

Chapter 8 

(8.6.20) 

In the above equation no is the number of different single-particle spatial states 
Vi occupied in the target. Ni is a positive or negative constant depending on the 
state of the target. For example, for targets with doubly occupied spatial orbitals, 
N · .1 

i IS + 2" 

8.6.2 The Polarized Orbital Method 

Temkin and Lemkin (1961) considered polarization of the atom along with 
the exchange and the static field interactions in the investigation of elastic 
scattering of electrons by hydrogen atoms. The incident energy E was taken to 
be less than Eex so that no real excitation of the atom is possible but the atom is 
polarized due to virtual excitations. They employed the adiabatic one-state 
approximation and considered the distortion of the target wave function by the 
incident electron only up to first order. Thus, in their method, which is known as 
the polarized orbital method (POM), the wave function of the system (H + e) for 
singlet and triplet scattering is given by 

(8.6.21) 

where Vpol is the dipole (l = 1) term of v;, given by (8.5.16), and F is the wave 
function of the scattered electron. Due to the presence of Vpol in (8.6.21), the 
scattering equation (8.6.5) modifies to 

(V 2 +k2 )F±(r) = [USF(r) + Upo1(r, X)]F±(r) 

"+ ~~ j[1C(r, X)+1Cep (r, X)]F±(X)dX (8.6.22) 

where Upo1 is the reduced second-order dipole polarization interaction energy and 
the kernel ~p arises due to exchange and polarization. Upo1(r) is evaluated from 
the dipole term of (8.5.6) but the upper limit of X is taken to be r. Hence, 

Using (8.3.9), we finally obtain 
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(8.6.23) 

where the dipole polarizability is equal to 4.5ao3 and 

() 4 (5 9 4 3 27 2 27 27) p r =- y +-y +9y +-y +-y+-
27 2 2 2 4 

(8.6.24) 

In the above equation y is equal to rlao. Since USF and Upol are spherically 
symmetric, a partial wave expansion is carried out and the phase shifts 1JT for 
each partial wave are obtained by numerical integration of the resulting integro­
differential equation. Temkin and Lemkin (1961) considered I = 0, 1, and 2 
and varied kao from 0 to 0.8. A comparison of the scattering lengths as and the 
phase shifts obtained in the POM and SFE approximations shows appreciable 
differences. For example the values of a~ in the SFE approximation are 8.lOao 
and 2.36ao, respectively. They change to 5.7ao and 1.7ao, respectively, when cal­
culated in the POM. The latter values are quite close to the variational values of 
Schwartz (1961), which are regarded as almost exact. Similarly at kao = 0.75, the 
values of 11~ (in radians), in the SFEA, are -0.0176 and 0.0555, respectively. The 
corresponding values given by the POM are 0.0627 and 0.112. As expected, 
the relative change in 111 increases with t. Since the higher values of t contribute 
significantly to the DeS in the forward direction, the polarization potential play 
an important role in the evaluation of the DeS at small scattering angles. It is 
noted that the effect of ~p on the phase shifts is quite small. In the exchange­
adiabatic approximation /Cep is neglected. 

One of the early calculations to investigate the effect of the polarization 
potential on differential cross sections for elastic scattering of electrons by helium 
atoms in the intermediate energy range was carried out by Khare and Moise­
witsch (1965). They solved the radial equation (8.5.19) under the proper bound­
ary conditions numerically and thus obtained 1JSFP, the phase shifts in the static 
field and polarization approximation. To obtain USF they represented the helium 
atom by the following wave function of Green et al. (1954): 

(8.6.25) 

with 

cf>(r) = N[exp(-zr) + cexp(-2zr)] (8.6.26) 

where N is the normalization constant, and the variational parameters Z and c are 
equal to 1.4558 and 0.6, respectively. The polarization potential UpOI(r) is given 
by (8.6.23) but with 
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and exp(-2r/ao) of (8.6.23) being replaced by exp(-2Zr/ao). The cut-off parame­
ter Z is taken to be same as that given by the variational method in (8.6.26), i.e., 
1.4558. The dipole polarizability of the helium atom is 1.39a& (Stemheimer, 
1957). Khare and Moiseiwitsch (1965) included the effect of exchange in the 
following approximate manner. For I = 0 and 1 they took 1JSFE evaluated by Morse 
and Allis (1933) from the exact numerical solution of the appropriate static 
field-exchange integro-differential equation. To this phase shift (1JSFP - 1JSF) was 
added to obtain the approximate value of 1JSFPE, the phase shift in the static field­
polarization-exchange approximation. The phase shifts 1JSF in the static field 
alone was again obtained from (8.5.19) with Upol = O. For the higher partial waves 
(l ~ 1) the effect of exchange was included through the first-order exchange 
approximation of Bell and Moiseiwitch (1963). The calculation of Khare 
and Moisewitsch clearly demonstrated that, as expected, the inclusion of the 
polarization potential sharply increases the DeS at small scattering angles and 
gives much better agreement between theory and experiment. 

In a number of investigations carried out in the intermediate energy range 
following one-channel differential equation: 

[ d22 +k2 -USF(r)-UpOl(r)-U~x(r)-l(l:l)]fi(r)=o 
dr r 

(8.6.28) 

with the local exchange potential ~x(r) being solved to obtain the DeS and ael 

for multi electron atoms. 
At low impact energies only the I = 0 partial wave is of importance. If 

Vop(r) is so strong that at E = Eo, 1Jo is equal to 1t, then ao from (3.9.26) is zero. 
Since al ( I > 0 ) is negligible, ael at Eo is quite small. Hence, a curve of ael vs. 
E shows a dip at Eo. This dip in the cross section at small E is known as the 
Ramsauer-Townsend effect and has been observed for a number of targets. 
For Ar, Kr, and Xe the dips are observed at E = 0.37eV, O.60eV, and O.65eV, 
respectively. 

Temkin (1962) developed a nonadiabatic model for the S partial wave (the 
orbital angular momentum L of the electron-hydrogen atom system being zero). 
The initial investigations employing the above model were carried out in the 
elastic, inelastic, and ionization energy domains of the hydrogen atom (Temkin, 
1962; Kyle and Temkin, 1964). However, these investigations faced severe 
rounding off problem. Poet (1978) overcame this difficulty by using a very fine 
energy grid and obtained a resonant structure for kao < 1. Since then this model 
is known as the Temkin-Poet model. Bhatia et al. (1993) developed an ab initio 
method to calculate ael and aT for S wave e-H scattering. They considered kao 
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up to 2 and thus also included the ionization domain. Their cross sections are in 
excellent agreement with the more accurate cross sections of Callaway and Oza 
(1984). Recently Temkin et al. (1998a,b), extended the Temkin-Poet model for 
L > 0 partial waves. The approximation developed by these authors is known 
as the generalized exchange approximation (GEA). This approximation gives 
resonances, differentiates between singlet and triplet scattering for all L, and 
contains inelastic and ionization channels. 

8.7 The Static Field, Exchange, Polarization, 
and Absorption Approximation 

In the state field, exchange, polarization, and absorption approximation 
(SFPEAA) a complex optical potential given by 

(8.7.1) 

is used. These four potentials approximately account for the dynamics of the 
collision process. All the components ofVop(r) are taken in the spherically sym­
metric form and the method of partial waves is utilized to obtain the phase shifts. 
Due to complex Vop(r), the phase shifts are also complex and the real and 
imaginary parts of the scattering matrix SI are given by 

ReSI = exp(-2/Jt)cos(2at) 

ImSt =exp(-2/Jt)sin(2at) 

where the complex phase shift 11t = CXt + i/Jt. 

(8.7.2) 

(8.7.3) 

The construction of the absorption potential is not straightforward. One of 
the guiding factors is that Vop should yield (JT in agreement with the experimen­
tal data. A number of Vab have been proposed. According to McCarthy et al. 
(1977) 

(8.7.4) 

where Vt(r) is the single-orbital radial wave function. Summation over I includes 
only those single-particle states that contribute most to the ionization cross 
section of the atom. For example, for the argon atom McCarthy et al. (1977) 
considered only the 3p orbitals. According to Furness and McCarthy (1973), 
the inclusion of the 3s orbital produces only slight modification in the shape of 

orders@himanshubook.com



236 Chapter 8 

the absorption potential curve, and the cross sections are not very sensitive to the 
shape. 

Another absorption potential has been proposed by Reitan (1981). To 
construct this potential, the target wave functions are given in terms of the 
exponential density functions fitted to the statistical Thomas-Fermi distribution. 
With such density functions the absorption potential is given by 

where 

r Zl/3 
t=--­

O.8853ao' 

(8.7.5) 

(8.7.6) 

(8.7.7) 

and aj is the one-term fit to the Thomas-Fermi distribution. Ko and Kj are 
modified Bessel functions. 

A third absorption potential is the nonempirical potential derived from a 
quasi-free scattering model by Staszewska et al. (1983); it is given by 

(8.7.8) 

with 

kF = [3n2 p(r)]1/3 

Aj = 5k]a6R/ .1, A2 = -k]{5k? - 3k;)ao/(k? - kJ,)2 
2H(y)y5/2 

A3 = 2' y=(1/RX(2k;-kna5R + L1] 
(k? - k~) ati 

x = [(k? - k~)a5R + .1]/ R (8.7.9) 
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where H(x) and H(y) are Heavyside unit step functions and Tloc is the total kinetic 
energy. 

Comparison of Theoretical and Experimental Crosssection 

Let us consider the results obtained by the application of the above approxi­
mations to investigate the elastic scattering of electrons and positrons by the inert 
gases neon and argon. Jhanwar et al. (1978) used the SP, SFP, and SFPE approxima­
tions to investigate electron-neon elastic collisions. Khare and Kumar (1978) 
employed the SP and SFPE approximations for electron-argon collisions. Lata 
(1984) added the absorption potential of Reitan [given by (8.7.5)] to the real poten­
tial of Ihanwar et al. to investigate the electron-neon collision. The same absorption 
potential was added by Khare et al. (1986) to the real potential of Khare and Kumar 
(1978) for electron-argon collisions. In all the above investigations the energy of the 
projectile was varied from 100 to l000eV and the targets were represented by the 
Hartree wave functions given by Sheorey (1969). Ihanwar et al. and Khare and 
Kumar employed the local exchange potential given by (8.6.19) with VSF being 
replaced by VSF + Vdp' To evaluate Vdp, they used (7.7.37) with d given by (7.7.39) and 
solved (8.2.6) with Vap = VSI + Vex + Vdp for the first M partial waves for a reasonably 
high value of M. The higher partial waves (l > M) are effectively due to the long-range 
potential and are small. Hence, their contribution was included through the FBA. 

Thus in the investigations of Jhanwar et al. (1978), 

1 M 
1(8) = - 2,(21 + l)ej 'll sin 1]/1l (cos 8) + Id~1(8) 

kj /:0 

-.! f(2/+1)1]f11l(cos8) 
kj /:0 

(8.7.1 0) 

where Iii and 71f1 are due to a long-range polarization potential in the FBA. 
The theoretical differential cross sections for the elastic scattering of 100-

eV electrons by neon and argon atoms are shown in the Pigs. 8.3 and 8.4. The 
theoretical results of Byron and Ioachain (1977b) and Ioachain et al. (1977), who 
employed an optical model (OM) with complex potential, are also included. The 
experimental data are shown for comparison. The failure of the plane wave 
approximation (which is quite evident from the figures) shows the importance of 
the distortion of the wave function of the projectile. This distortion, to all orders, 
is included in the SPA but it completely neglects the distortion of the target (polar­
ization effect). Due to this shortcoming, the SPA underestimates 1(8) at low 8. In 
the backward direction (large 8) agreement between the SPA cross sections and 
the experimental data is satisfactory. Por electron-neon scattering 1(8) in the SPA 
falls to a deep minimum, which is partially supported by the experimental data. 
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FIGURE 8.3 Differential cross sections for lOO-eV electrons elastically scattered by neon atoms. 
Curves A, B, and P are obtained in SF, SFPE, and PW (Jhanwar et aI., 1978) approximations, 
respectively. Curve J represent cross sections obtained by Byron and Joachain (1977b) with an OM 
complex potentiaL Experimental data, ., Gupta and Rees (1975a); ., Williams and Crowe (1975); 
X, Jansen et aL (1976). Reproduced from "Elastic scattering of electrons on Ne atom at intermediate 
energies," Jhanwar, B. L., Khare S. P., and Kumar Jr. A, J. Physics B 11,887,1978, with pennission 
from the Institute of Physics Publishing Ltd. (U.K.). The curve J was added. 
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Table 8.2 Total Elastic Cross Sections ael (in 10-21 m2) for Electron (Positron)-Neon 
Scattering. The Numbers within the Brackets are for Positron Impact, Calculated by 

Lata (1984) 

E(eV) Theory Experiment 

SF SFPE SFPEA OM DWSBA de Heer Jansen 
Jhanwar et al. Lata Byron and Dewangan· et aI. et aI. 

(1978) (1984) Joachian and Walters (1979) (1976) 
(I 977b) (1977) 

100 16.7 36.3 16.7 18.0 24.4 23.8 
(4.22) 

150 12.5 24.4 14.3 17.3 16.2 
(4.13) 

200 10.6 17.5 12.0 12.2 15.4 14.0 14.0 
(3.60) 

300 8.54 11.5 8.53 9.67 11.5 11.2 10.7 
(3.87) 

400 7.33 8.95 6.95 8.18 9.41 8.97 8.98 
(3.78) 

500 6.49 7.50 6.07 7.21 8.09 7.61 7.70 
(3.69) 

750 5.09 5.57 4.75 6.24 
(3.25) 

1000 4.23 4.50 3.96 5.01 4.48 4.98 
(2.90) 

On the other hand, for the electron-argon system the theoretical minimum at 
9 "'" 125° is in accordance with the experimental data. The figures show that for 
neon the inclusion of Vex and Vdp increases the values of J( 8) at all angles. For 
the argon atom J( 8) also increases with the inclusion of this potential, except near 
the minimum, where a decrease in J( 9) is noted. The agreement with the SFPEA 
cross section is good at low 9 but at the higher values of 9, the theory overesti­
mates the cross sections. The OM results of 10achain et al. are also in good accord 
with the experimental data at low 9 but underestimation is noted at higher values 
of 9. According to Table 8.2 inclusion of Vex and Vdp potentials with VSF increases 
the value of ael. With the increase of E the importance of Vex and Vdp decreases. 
The inclusion of Vab decreases the cross sections for both the atoms. 

According to Table 8.2 inclusion of Vex and Vdp potentials with VSF increases 
the value of CTel' With an increase in E the importance of Vex and Vdp decreases. Tables 
8.2 and 8.3 show that the inclusion of Vab decreases cross sections for both atoms. 

The decrease in CTe" due to the inclusion of Vab, is found to be valid even 
at energies just above the threshold of the formation of positronium (Brown and 
Humperston, 1985). The OM cross sections are slightly higher than those of Lata 
(1984) and Khare et al. (1986). The cross sections in the distorted wave second 
Born approximation (DWSBA) of Dewangan and Walters (1977) are still higher. 
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FIGURE 8.4 Same as Fig. 8.3 but for argon atoms. The theoretical curves A, B, and P are in the 
SF, SFPE, and PW approximations (Khare and Kumar, 1978), respectively. Curve J represents cross 
section of Joachain et aI. (1977) obtained with an OM complex potential. Experimental data: _, 
Gupta and Rees (1975b); ., Dubois and Rudd (1975); 0, Williams and Willis (1975);..1, Vuskovic 
and Kurepa (1976); X, Jansen et al. (1976). Reproduced from "Elastic scattering of electrons by argon 
atoms," Khare and Kumar Pramana 10, 63, 1978, with permission from the Indian Academy 
of Sciences. 

In general the Gel in SFPEA and those given by the OM potential are lower than 
the experimental data. The underestimation by the theories decreases with an 
increase in E. 

Tables 8.4 to 8.7 compare theoretical GT with the experimental data. For 
the neon atom GT in the SFPEA are lower than those given by the OM potential 
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Table 8.3 Total Elastic Cross Sections (Jel (in 10-21 m2) for Electron (Positron)-Argon 

Scattering. The Numbers within the Brackets Are for Positron Impact, Calculated by Lata 

(1984) 

E (eV) Theory Experiment 

SFPA SFPEA OM Duboi Jansen et al. de Heer et al. 
Khare-Kumar Khare et al. Joachain et al. and Rudd (1976) (1979) 

(1978) (1986) (1977) (1975) 

100 64.3 34.3 42.6 42.6 38.1 48.5 
(16.6) (15.7) 

150 43.8 25.8 33.6 37.9 
(18.4) (14.8) 

200 34.5 21.6 30.2 28.8 30.2 32.0 
(18.5) (14.3) 

300 26.2 17.8 24.6 25.6 24.6 
(17.5) (13.5) 

400 22.0 15.7 21.4 22.4 21.1 
(16.2) (12.7) 

500 19.3 14.4 19.2 20.0 18.8 
(14.9) (11.9) 

750 12.2 14.9 
(10.5) 

1000 12.9 10.7 13.2 12.7 
(10.9) (9.23) 

and the DWSBA. The agreement between the theoretical and the experimental 
cross sections is fairly good for E greater than about 300eV (see Table 8.4). For 
the argon atom the SFPEA cross sections are greater than the OM cross sec­
tions at low E but the reverse is the case at the higher E (see Table 8.5). The 
theoretical cross sections are again in fair accord with the experimental data for 

Table 8.4 Total Collision Cross Sections (Jr (in 10-21 m2) for Electron-Neon Scattering 

E (eV) Theory Experiment 

OM DWSBA SFPEA de Heer et al. Wagenaar Kauppila et al. 
Byron and Dewangan- Lata (1979) and de Heer (1981) 
Joachain Walters (1984) (1980) 
(I 977b) (1977) 

100 39.7 34.4 32.6 30.2 29.6 
150 29.5 25.9 25.9 25.2 
200 27.0 27.3 26.6 23.3 23.2 22.3 
300 21.1 21.4 18.4 18.6 18.6 17.9 
400 17.6 17.8 15.0 15.4 15.8 15.3 
500 15.2 15.3 12.7 13.4 13.8 13.4 
750 9.23 
1000 9.49 7.21 8.26 
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Table 8.5 Total Collision Cross Sections crT (in 10-21 m2) for Electron-Argon Scattering 

E(eV) Theory Experiment 

SFPEA OM de Heer et aI. Wagenaar Kauppila et aI. 
Khare et al. loachain et al. (1979) and de Heer (1981) 

(1986) (1977) (1980) 

100 95.3 93.2 82.7 81.2 76.7 
150 76.7 69.3 68.9 63.4 
200 64.4 64.4 59.8 58.6 56.1 
300 48.7 50.9 47.0 47.9 46.0 
400 39.2 43.1 39.9 40.9 38.4 
500 32.9 37.5 35.0 35.9 32.9 
750 23.6 28.0 
1000 18.6 24.2 22.2 

E;::: 200 e V. The total collision cross sections for collisions of positrons with neon 
and argon atoms are shown in Tables 8.6 and 8.7, respectively. The agreement 
between the theoretical cross sections and the experimental data is fairly good 
over the whole energy range (100-I000eV). 

The SFP approximation has been employed by Raj (1981) and Kaushik 
et al. (1983) to obtain critical points for a number of light atoms. These values 
are shown in Table 8.8 along with the theoretical values of Pon and Berrington 
(1981), who employed the R-matrix method, and the experimental data of Kollath 
and Lucas (1979), Register et al. (1980), and Menedez et al. (1980) for the neon 
atom. The 8e obtained by Raj (1981) are slightly lower than those reported by 
Khare and Raj (1980) in the SPA. However, the Ee of Raj are substantially lower 
than those given by Khare and Raj. The values of Raj for neon are in fairly good 
agreement with other theoretical values and the experimental data. Table 8.8 also 

Table 8.6 Total Collision Cross Sections crT (in 10-21 m2) for Positron-Neon Scattering 

E(eV) Theory Experiment 

SFPEA OM DWSBA Kauppila Brenton Coleman Tsai 
Lata Byron and Dewangan et aI. et al. et al. et aI. 

(1984) loachain and Walters (1981) (1978) (1976) (1976) 
(1977b) (1977) 

100 18.1 23.6 19.1 18.0 19.8 18.3 
150 16.3 17.8 17.1 16.4 
200 14.5 18.9 19.3 16.7 16.2 14.9 15.7 
300 12.7 15.9 16.4 14.1 10.2 
400 11.1 13.9 14.2 12.2 12.5 9.23 
500 9.76 13.2 12.5 10.8 5.98 
750 7.47 
1000 5.98 8.18 6.59 

orders@himanshubook.com



Collision of Electrons with Atoms: The Differential Approach 243 

Table 8.7 Total Collision Cross Sections aT (in 10-21 m2) for Positron-Argon Scattering 

E(eV) Theory Experiment 

OM SFPEA Tsai et al. Brenton et al. Griffith- KauppiJa et aI. 
Joachain et al. Khare et aI. (1976) (1978) HeyJand (1981) 

(1977) (1986) (1978) 

100 63.8 70.3 61.2 65.9 62.8 
150 60.8 53.7 54.4 53.6 
200 49.5 53.2 46.7 50.0 42.6 48.9 
300 41.7 41.8 38.7 36.0 39.8 
400 36.4 34.2 39.7 25.5 34.5 
500 32.4 29.0 31.3 24.6 29.7 
750 21.1 16.7 
1000 16.8 20.6 21.6 

shows that the value of the critical energy Ee increases with Z. This observation 
is in accordance with the prediction of Buhring (1968). The number of sets of 
the critical points (Ee, Oe) also increases with Z. For example 3, 8, and 12 sets 
are reported for elastic scattering of electrons by argon (Z = 18), xenon (Z = 54), 
and mergury (Z = 80), respectively (Walker, 1971; Lucas and Liedike, 1975; 
Lucas, 1979). 

Khare et ai. (1983) employed the SFPEA to calculate differential and inte­
grated elastic cross sections for elastic scattering of electrons and positrons by 
magnesium (a closed-shell atom) in the intermediate energy range (10 to 500eV). 
Their DeS are only in moderate agreement with the experimental data of 
Williams and Trajmar (1978) but agree fairly well with the theoretical values of 
Gregory and Fink (1974), who solved the Dirac equation for energies varying 

Table 8.8 Critical Energy (Ee) and Critical Angles (8e) for the Elastic Scattering of 
Electrons by Light Atoms 

Atom Ec (eV) 9c (deg) Reference 

Be 5.8 94.8 Kaushik et al. [Theo., 1983] 
C 17.49 97.63 Raj [Theo., 1981] 
N 26.8 97.5 Raj [Theo., 1981] 
0 35.59 98.65 Raj [Theo., 1981] 
F 45.2 99.73 Raj [Theo., 1981] 
Ne 58.85 99.62 Raj [Theo., 1981] 
Ne 64 103.6 Fon and Berrington [Theo., 1981] 
Ne 73.7 ± 1.0 103.0 ± 0.5 Kollath and Lucas [Expt., 1979] 
Ne 62.5 ± 3 101.5 ± 1.5 Register et al. [Expt., 1980] 
Ne 64 ± 1 102 ± 0.5 Menedez et al. [Expt. 1980] 
Ca 37.3 72.24 Khare et al. [Theo., 1985] 
Ca 39.7 141.38 Khare et aI. [Theo., 1985] 
Ca 137.8 120.94 Khare et aI. [Theo., 1985] 
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Table 8.9 Total Elastic Cross Sections (in 10-20 m2) for eO' -Mg Scattering in the SFPE 
Approximation 

E (eV) 

10 
20 
40 
50 
100 
200 
300 
400 
500 

Khare et al. 
(1983) SFPE 

55.6 
29.3 
9.95 
7.90 
4.80 
3.11 
2.38 
1.96 
1.68 

e--Mg 

Theory 

Fabrikant 
(1980) CCA 

25.5 
12.3 

e+-Mg 

Experiment Theory 

Williams and Khare et al. 

Trajmar (1978) (1983) SFPE 

29.0 9.81 
16.0 5.20 
6.60 4.44 

3.48 
2.45 
1.93 
1.62 
1.40 

from l00eV to 2KeV. The total'elastic cross sections obtained by Khare et al. 
(1983) for electron and positron scattering are shown in Table 8.9 along with the 
experimental data of Williams and Trajmar (1978) and the theoretical values of 
Fabrikant (1980), for the electron-magnesium system. For electron scattering, 
the results of Khare et al. overestimate the cross sections, whereas Fabrikant's 
results underestimate them. It may be noted that the main contribution to O'el 

comes from the small-angle region, where extrapolation has been employed by 
Williams and Trajmar to obtain experimental O'el' As expected, O'el(e+) is smaller 
than O'ele-), and with the increase in E the two cross sections come closer to 
each other. 

Khare et al. (1985) investigated elastic scattering of electrons and positrons 
by calcium, which is also a closed-shell atom but relatively heavy (Z = 20). They 
obtained the DCS, O'eh and critical points in the SFA and SFPEA. For electrons 
they also included spin-orbit interactions through (4.2.4) in their optical poten­
tial and obtained If I , Igl. the relative phase lPrel between f and g, and the para­
meters S( e) and T( e) in the energy range 10-500 e V. They obtained three sets of 
the critical points (En ec)' These are also shown in Table 8.8. In Fig. 8.5 the vari­
ation in the parameters S( e), T( e), U( 8), and lPrel( e) with the scattering angle e, 
as obtained by Khare et al. at the critical energy 39.7 e V, is shown. For this energy 
the critical angle is 141.40 • It is evident from the figure that all four parameters 
undergo drastic change near the critical energy. For e slightly less than ec the 
value of S( e) is close to -0.3, which shows that the scattered electrons are nearly 
30% polarized with ms = -3' For () slightly greater than ()c the scattered electrons 

are about 20% polarized but with ms = +3' As discussed in Chapter 4, such 
behavior accords with expectations. 
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Figure 8.6 shows the variations of If I and Igl with E [obtained by Khare 
et al. (1985)] at critical angles 6e for energies close to Ee. It may be noted that at 
6e = 141.38° and 120.94°, the spin-flip scattering amplitude Igl becomes greater 
than the corresponding If I at Ee. Since g arises solely from the spin-orbit 
coupling it may be concluded that the spin-orbit interaction completely domi­
nates the scattering at the critical points, and so cannot be ignored in the region 
close to them. 

In Table 8.10 CTel(e±) for the calcium atom, obtained by Khare et al. (1985), 
are shown. As expected CTel(e-) is greater than CTel{e+). Even at 500eV, the differ­
ence between the two-cross sections is noticeable. This indicates that the energy 
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FIGURE 8.5 Variation of S( 9), T( 9), U( 9), and !Prel( 9) with the scattering angle (J for the elastic 
scattering of 39.7-eV (critical energy) electrons by calcium atoms near the critical angle 
«(Jc = 141.38°), as obtained by Khare et al. (1985). 

orders@himanshubook.com



246 ChapterS 

IJ E F G 

It I If I 

100 

0 
0 

.f -1 
10 

01 

~ ~ 
Igl Igi 

c 
0 -2 

10 .... 

103 

I I ~I 
50 100 10 50 10010 50 100 ISO 

ENERGY (in QV) 

FIGURE 8.6 Variation of the direct and spin-flip scattering amplitudes If I and I gl vs. incident electron 
energy corresponding to the scattering angles 77.24° (E), 141.38° (F), and 120.94° (0). Reproduced 
from "Elastic scattering of electrons and positrons by Ca atom," S. P. Khare, A. Kumar, and Vijaishri, 
J. Phys. B 18, 1827, 1985, with permission from the Institute of Physics, Publishing Ltd., UK. 

Table 8.10 Total Elastic Cross Sections (in 1O-2°m2) for 
e-'+-Ca Scattering in the SF and SFPE Approximations 

(Khare et al. 1985) 

E (eV) Electron Positron 

SF SFPE SF SFPE 

10 25,6 84,9 16.3 39,56 
20 19,7 38,9 13,3 11.94 
30 15,1 22.5 11,5 8.17 
40 12.9 16,8 10.3 7,81 
50 11.5 14,0 9.38 7,67 
75 9.41 10.6 7.85 7,04 

100 8.15 8.90 6.86 6.39 
150 6,58 6.96 
200 5.62 5,85 4.88 4.79 
250 4.97 5.13 
300 4.49 4,61 3.96 3.93 
400 3.82 3.89 3.39 
500 3.36 3.41 3.01 
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region in which (jel(e-) is not equal to (jel(e+) increases with Z. It also shows that 
the lowest energy at which the FBA becomes applicable increases with Z. 

Using one-channel approximation, a good number of other investigations 
for the scattering of electrons by different atoms have been carried out. Real as 
well as complex optical potentials are employed and the elastic DCS, (jelo (jm, (jr, 

and the polarization parameters S, T, and U have been evaluated (see McEachran 
and Stauffer, 1986; Nahar and Wadehra 1991; Yuan and Zhang, 1990a,b, 1991, 
1992; Szmytkowski, 1991; Szmytkowski and Sienkiewicz, 1993, 1994; Kumar 
et aI., 1994, 1995; Sienkiewicz and Baylis, 1997; Jain and Tripathi, 1997, etc.). 

Recently, Dom et al. (1998) have used the relativistic Schrodinger equa­
tion with a complex potential to calculate the spin polarization for the xenon 
atom. Neerja et al. (2000) have also employed a complex optical potential with 
the relativistic Dirac equation to calculate the elastic DCS, (jelo (jm, (jr, and the 
polarization parameters S, T, and U for the scattering of electrons by ytterbium, 
radon, and radium atoms in the energy range 2.0-500eV. Both these calculations 
show that the absorption potential must be included in the relativistic description 
for accurate prediction of the S, T, and U parameters. Further, the (jel of Neerja 
et al. are always found to be smaller than (j;lo the elastic integrated cross section 
with Vab = O. But (j;1 is smaller than the sum (jel + (jab' These observations are in 
agreement with those of Lata (1984) and Khare et al. (1986) for neon and argon 
atoms, respectively. 

The one-channel approximation with a complex optical potential described 
above is found to be reasonable at intermediate and high energies, but becomes 
unsatisfactory at low E. Further, it cannot yield individual excitation cross sec­
tions. 

8.8 The Distorted Wave Born Approximation 

The DWBA discussed in Sec. 3.12 for potential scattering has been 
extended to electron-atom collisions. Using (3.3.13) and (3.3.14) in (3.12.2) and 
extending the resulting equation to the electron-atom collision, we find that the 
transition matrix element ~i for the excitation of an atom from Vi(X) to viX) due 
to electron impact in the DWBA is given by 

(8.8.1) 

where A is the anti symmetrization operator to account for the electron exchange. 
xt is the wave function of the system (electron + atom) distorted by the poten­
tial Vii in the initial channel. It is the solution of the differential equation 

(8.8.2) 
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and satisfies outgoing boundary conditions. The distorted wave Xi in the final 
channel also satisfies (8.8.2) but it obeys incoming boundary conditions, and the 
distortion potential is taken to be Vlf. The total interaction potential V = Vii + V2i 

= Vlf+ V2f is given by (7.2.6). The other symbols occurring in (8.8.1) and (8.8.2) 
are the same as in (7.2.2) to (7.2.5). The choice of VIi(Vlf) is not unique, Vii may 
or may not be equal to Vlf, but they are taken to be functions only of r. Since the 
wave function Xi for excitation (j "# i) is orthogonal to Jli(X), the matrix element 
1}M,i for a final magnetic substate jM is 

(8.8.3) 

Now, for an atom having Z electrons, 

(8.8.4) 

where SiU) is the initial (final) state spin wave function of the system and r<-) 
satisfies 

(8.8.5) 

The reduced distortion interaction energy Uil,]) is taken to be spherically sym­
metrical and the method of partial waves is employed to obtain ~-). The atomic 
orbitals Jli(X) and J'jM(X) are represented by Hartree-Fock wave functions. Thus 
xlOAb and TJMi for the spin state S of the system are determined with the help of 
(8.8.4) and (8.8.3), respectively. Extending (3.3.13) to the atomic excitation, we 
get 

(8.8.6) 

To obtain the differential cross section ~Mi' we sum IJiLil2 over all the final spin 
states and average them over the initial spin states of the system. This gives 

(8.8.7) 

If we do not consider the different final magnetic states separately the differen­
tial cross Iji is 
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(8.8.8) 

The general form of DWBA theory has been described by several investigators 
(see Lahmam-Bennani 1991 and Whelan et ai. 1993). This approximation has 
been extensively utilized to calculate individual excitation cross sections of atoms 
due to electron and positron impacts and to study the collision dynamics (see 
Madison, 1979; Beijers et aI., 1987; Bartschet and Madison, 1988; Purohit and 
Mathur, 1993; and Srivastava, 1998, and the references given therein). The use­
fulness of the DWBA can be tested by comparing the theoretical IjMi and Iji with 
the experimental data. It is found that the DWBA gives reasonable cross sections 
at intermediate and high impact energies but is not satisfactory at low values of 
E. For such investigations one is required to solve coupled integro-differential 
equations, which is discussed in the next section. 

8.9 The Close-Coupling Approximation 

The close-coupling approximation (CCA) is particularly suited to low­
energy electron-atom collisions. In this approximation the ground state and a few 
lower excited states are explicitly included and the coupled integro-differential 
equations given by (8.6.2) are solved to obtain elastic and inelastic scattering 
cross sections. For example, for e-H collisions one may include five atomic states 
Is, 2s, 2Pm (m = 0, ±l). To improve the accuracy of the calculation the number 
of states may be increased. A 14-state close-coupling calculation includes Is, 2s, 
2Pm (m = 0, ±l), 3s, 3Pm (m = 0, ±l), and 3dm (m = 0, ±l, ±2) eigenstates. Reso­
nances, discussed in Sec. 8.4.1, are obtained in the CCA. However, the conver­
gence of the results with an increase in the number of atomic states is slow. 
Hence, to include the effect of the higher excited states of the target, pseudostates 
are employed. These pseudostates are supposed to mimic the effect of the higher 
excited target states and the continuum states, which are not explicitly included. 
Three pseudostates with 1=0, 1, and 2 were used by Burke et al. (1969). Two 
pseudo states ~p and ~d for the hydrogen atom were given by Damburg and 
Karule (1967). Similarly, Matese and Oberoi (1971) proposed three pseudostates 
~ .. ~P' and ~d. These two sets of normalized pseudo states are given by 

(8.9.1) 

(8.9.2) 

(8.9.3) 
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where the normalized v.(r) and v;(r) orbitals are 

v~(r) = Ns exp( -asr/ ao)Yoo(r) (8.9.4) 

and 

(8.9.5) 

For p orbitals m = 0, ±l and for d orbitals m = 0, ±1, ±2. The 4 makes ~pm(r) 
orthogonal to V2pm(r). Similarly, Als and ~ ensure that ~s(r) is orthogonal to v\s(r) 
and v2s(r). According to Matese and Oberoi (1971) as = 0.802, lXp = 1.450, Ap = 
0.356, and ad = 1.803. Burke et al. used only 3p and 3d pseudostates with lXp = 
ad = 1, Ap = t, and Ad = ~. If the pseudostate channels are open they produce their 
own resonances, which are not real. 

A more general form of the expansion of the antisymmetrized wave func­
tion of the system contains: (1) a limited number of target eigenstates, (2) a 
number of pseudostates, and (3) a set of quadratically integrable functions 
(Burke, 1985; Joachain, 1990). If we neglect (2) and (3) we recover the close­
coupling approximation. The coupled integro-differential equations obtained 
from the above wave function of the system have given rise to the R-matrix 
method (Burke et aI., 1971; Burke, 1987), linear algebraic equations (Seaton, 
1974), the noniterative integral equations method (Smith and Henry, 1973a,b), 
and the matrix variational method (Nesbet, 1980). Burke and Eissener (1983), 
have reviewed these methods. Recent progress in close-coupling calculations has 
been discussed by Bartschet (1993). Ghosh et al. (1990) and Walters et al. (1995) 
describe theoretical calculations of positron collisions with atoms. All these 
methods are quite useful at low impact energies and have been utilized to obtain 
individual excitation cross sections and to study collision dynamics. 

B.iO Electron impact Excitation of Atoms: The Electron-Photon 
Delayed Coincidence Technique 

We have already seen in Sec. 4.5 that for the scattering of the unpolarized 
electrons by a potential field a measurement of 1(9) gives the sum Ifl2 + Igl2 and 
separate values off and g cannot be obtained. Furthermore, usually Ifl2 is quite 
large in comparison of Ig12. Thus a measurement of 1(9) does not yield informa­
tion about the weak spin-orbit interaction. Hence, polarized electrons are 
employed and observable I( 9), S( 8), T( 9), and U( 9) are measured to obtain the 
values of If I, Igl, and lPrel. Similarly, in the Sec. 7.4, it has been shown that for 
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the elastic scattering of electrons by atoms four different observables are mea­
sured to bring out the importance of the exchange interaction. A comparison of 
the values of the observables with the calculated values provides a more sensi­
tive test of any proposed theoretical model. 

Due to electron impact an atom B can be excited to B*. After a time r (life­
time of B*), the atom is de-excited. In the radiative decay, in which B* returns to 
B, the energy hv of the produced photon is equal to the excitation energy Eex(B*): 

(8.10.1) 

where (Op, tPp) is the direction of the emitted photon, and after the collision the 
electron is scattered in the direction (0, tP). A measurement of the frequency v 
helps in the identification of the excited state B*. Since a typical collision time 
is of the order of 10-14 sec, and the life time of B* for dipole transition decay is 
of order of 10-9 sec, the excitation and the decay can be treated as independent 
processes. 

Up to about 1970 experimentalists were observing either the scattered elec­
trons or the light emitted by excited atoms. The measurements with the scattered 
electrons yield 1(0) and O"ex. However, to obtain absolute cross sections a non­
trivial normalization procedure is required. We can measure In( OM), the intensity 
of light emitted by the atom in the direction of the magic angle OM [see Eq. 
(8.10.2) below]. Alternatively In<ll) and In(J.), the intensities of the emitted light 
with polarization vectors parallel and perpendicular to the direction of the inci­
dent electrons, respectively, are measured. 

The above measurements are not enough to throw sufficient light on the 
collision dynamics. In inelastic collisions there are a number of final channels. 
The energy differences between some of the exited states are so small that it is 
very difficult to measure I( 0) for each channel separately. For an excited state of 
orbital angular momentum L there are (2L + I) magnetic sublevels. In the absence 
of any external perturbation these sublevels are degenerate. Hence, the scattered 
electrons, which have excited different magnetic sublevels, cannot be separated 
from each other by an electron energy spectrometer. Thus a measurement of I( 0) 
gives only an average value of the excitation cross sections over the different 
magnetic sublevels. 

On the other hand, from the measurements of In(il) and In(J.) we obtain for 
the electric dipole radiation 

l(ll)_~ I-Pcos20p 
n.up - O"ex----"'-

4n 3-P 
(8.10.2) 
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where In( Op) is the intensity of the light emitted by the excited atoms in the direc­
tion Op and the degree of polarization of the emitted light is 

p = In(ll) - In(.l) 
In(ll) + In(.l) 

(8.10.3) 

It is evident from (8.10.2) that for cos2 Op = t, In( Op) is independent of the degree 
of polarization P. The angles that satisfy the above condition, known as the magic 
angles, are 54.7° and 125.3°. Hence, a measurement of In(8p ) at a magic angle 
yields the value of O"'X. This is to be corrected if the excited level B* is populated 
by other excited states, (cascade effect). Furthermore, due to the anisotropic 
nature of the excitation process the different magnetic sublevels are unequally 
populated. For example, if we consider the excitation of ground state helium lIS 
to the 21p state then due to unequal population 0"0, the total cross section for M 
= 0, is not equal to O"j, the total cross section for M = 1. However, due to sym­
metry 0"1 = O"-jo Hence, the degree of polarization P of the light traveling per­
pendicular to the incident beam direction is also given by 

P= 0"0-(0"1 +0"-1) = 0"0- 20"1 

0"0+(0"1+0"-1) 0"0+ 20"1 
(8.10.4) 

Thus a measurement of P does provide information about the difference between 
0"0 and 0"1. However, this information is an average over all the directions of the 
scattered electrons. 

From the above brief discussion it is evident that more observables are 
needed for a better understanding of the collision dynamics and for testing the 
proposed theoretical models at a more fundamental level. 

A new technique to investigate excitation of helium atoms to the 21p state 
was employed by Eminyan et al. (1973, 1974). In this technique the electrons 
scattered in the direction (0, cp) and the photons emitted by the excited atoms in 
the direction (Op, cpp) are observed in delayed coincidence. The measured coin­
cidence signal corresponds to the electron-photon pairs arising from a single 
collision event. Hence, the excited atoms B*, which produce photons in the direc­
tion of (8p, cpp) on de-excitation, having been excited by those electrons that were 
scattered in the direction of (0, cp) after the collision, form a select ensemble of 
atoms. An analysis, discussed below, of the electrons and the photons, detected 
in the delayed coincidence, provides valuable information about the charge cloud 
of the excited atom, its direction of alignment in space, the angular momentum 
transferred from the incident electron to the atom, and the coherence of the exci­
tation during the collision. A comparison of the experimental data produced by 
this technique with the theoretical results also tests any theoretical model at the 
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most fundamental level. Thus the electron-photon coincidence technique gave 
birth to a new era in atomic collision physics. 

Let us consider the excitation of atoms from the S (L = 0, M = 0) state to 
P (L = 1, M = 0, ±l) states. We assume that the spin-orbit and spin-spin inter­
actions are negligible and that the scattering process can be described in the LS 
coupling scheme. With the above assumptions and noting that the excitation and 
the decay of the excited atoms are independent processes, we represent each 
excited atom by a single vector Ilf/). We expand Ilf/) in terms of the basis vectors 
ILM) with L = 1 and M = 0, ±1. This gives 

+1 

Ilf/) = L IMIIM) (8.10.5) 
M=-I 

where the expansion coefficients 1M characterize the excitation of the magnetic 
sublevel 11M). The density matrix p, which completely describes the excited state 
IlfI}, is given by 

[ 
IJi 12 Ji/ri 

p= Jilt Iii 
I-di I-dri 

Jil-i 1 
fol-i 
I/-l 

The IlfI} is normalized in such a manner that the relations 

(8.10.6) 

(8.10.7) 

are satisfied, where 1M is the differential cross section for the magnetic sublevel 
11M). From (8.10.4) to (8.10.6), we get 

(If/Ilf/) = tr p = LIM = I (8.10.8) 
M 

where I is the differential cross section summed over the three values of M. The 
matrix p has nine terms. However, as it is a Hermitian matrix, the number of 
independent parameters reduces from nine to six. These six parameters can be 
obtained by determining 1M' Since 1M are complex we have three I/MI and three 
phases XM' We also assume that the spin does not play any role in the collisions. 
Hence, the excited states possess positive reflection symmetry about the scatter­
ing plane. Thus 
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iI = -f-I (8.10.9) 

The above condition further reduces the number of the independent parameters 
from six to four, namely 1101, liIl, IXol. and IXII. The quantum mechanics gives 
the wave function lJI with an uncertain phase. Hence, if we take fo to be real, then 
XI (which we shall now denote by X) is the phase difference between fo and fl' 
Thus finally only three independent parameters are required to determine all the 
terms of the matrix p and the characteristics of the excited state. 

Eminyan et a1. (1974) chose the three parameters to be I, A, and X. The first 
two have already been defined. The third parameter A is defined by 

(8.10.10) 

where 10 is given by (8.10.7) with M = O. Using the definitions of I, X, and A, it 
is easy to show that 

1 Re(Joj;*) 
cosX = 

I [0.5A(1- A)t 
(8.10.11) 

Out of the three parameters I can be determined by observing the scattered elec­
trons alone. On the other hand, the two remaining parameters are connected with 
the interference of fo and flo and thus with the off-diagonal elements of p. The 
determination of A and X has been the primary aim of electron-photon coinci­
dence experiments (Blum and Kleinpoppen, 1979). If we measure only the 
photons without observing the scattered electrons, the direction of the incident 
electrons becomes an axis of symmetry and all the off-diagonal elements of p 
become identically zero. In such a case the excitation is incoherent. Hence, for 
coherent excitation of the magnetic sublevels the excitations process must be not 
axially symmetric. 

To determine A and X, two types of experimental studies have been done: 
(a) angular correlation measurements and (b) polarization correlation measure­
ments. In both the photons produced by the decay of the excited atom, traveling 
in the direction (Op, cpp), are detected in coincidence with the electrons scattered 
in the direction (0, cp). A photon detector, which is sensitive only to the polar­
ization E, measures the intensity In(e, Op, cpp) of the radiation. Theoretically 
In( E, Op, cpp) is calculated through the dipole matrix element (lJIl e· riO), where 
10) represents the initial state of the atom. For the decay of the nIp excited atom, 
In(e, Op, cpp) emitted into a solid angle dQ is given by (Slevin, 1984): 

In = C{+(I- A)(1 + cos2 Op - sin2 Op cos 2cpp) 

+ Asin 2 Op + [A(I- A)]1/2 cos X sin 20p coscpp} (8.10.12) 
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o 
Electron scattering angle,geCdeg) 

FIGURE 8.7 Variation of (a) A and (b) Ixl with electron scattering angle for the excitation of 
helium atoms from the 11So to the 21p state by 80-eV electrons. Experiment: 0, Slevin et al. 
(1980); \1, Hollywood et al. (1979); D, Steph and Golden (1980). Theory: ... Madison 1979 (from 
Sutcliffe et aI., 1978); ____ , Thomas et al. (1977); ._._., Catalan and Roberts (1979); __ , Scott and 
McDowell (1976). Reproduced from "Coherence in inelastic low-energy electron scattering," 
1. Slevin, Rep. Prog. Phys. 47,461, 1984, with permission from the Institute of Physics Publishing 
Ltd., UK. 

where, 

(8.10.13) 

with K as the decay constant. For a given E, e, and cp the parameters A and X are 
fixed. Hence, in the angular correlation measurement experiment the values of 
In(ep, cpp) for the various values of (ep, cpp) but for a fixed value of (e, cp) are mea­
sured. The experimental data are fitted to (8.10.12) and the values of A and cos 
X are obtained. The first successful experiment of this type was performed by 
Erninyan et al. (1974) for the excitation of helium from the I ISO to the 21p state 
due to electron impact. In Fig. 8.7 the experimental values of A and I xl, obtained 
by Erninyan et al. and other experimental groups, at E = 80eV are shown as 
functions of the scattering angle e. These values are compared with various 
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FIGURE S.7 (continued) 

theoretical results. None of the theoretical models is found to be satisfactory for 
all three parameters 1(8), A, and Ixi. However, at 24eV the experimental data of 
Crowe et al. (1983) for A and Ixl are in very good agreement with the five-state 
R-matrix calculation of Burke and Williams (1977). Since these experiments 
yield cos X, the sign of X cannot be determined. 

In the polarization correlation measurement experiments the values of the 
Stokes parameters lb, 112, and 113, defined by (6.8.18), are also determined. The 
coincidence experiment is carried out in the scattering frame in which the direc­
tion of the incident electron is the z-axis and the electron detector is placed in 
the x-z plane. The photon detector is usually fixed at (9p, t/Jp). 

For such an experimental arrangement we have 

In(9p,t/Jp )111 = C{-A.(I- A) cos 9p sin2t/Jp - 2[A(1- A)]I/2 cos xsin9p sint/Jp} 

(8.10.14) 
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(8.10.15) 

and 

In(Op,cpp }Th = -C{t(I - ).)[sin 2 Op - (1 + cos 2 Op )cos 2cpp] - ).sin 2 Op 

-[).(1- ).)f/2 cos X sin 20p coscpp} (8.10.16) 

Hence, for Op = CPP = 1iI2, from (8.10.12) we have In = C and from (8.10.14) to 
(8.10.16) we obtain 

1/2 
7'/t=-2[).(I-).)] cosx (8.10.17) 

712 = 2[).(I - ).)f/2 sin X (8.10.18) 

and 

7h =1-n (8.10.19) 

Thus measurement of the Stokes parameters not only yields the value of ). but 
also gives unambiguous values of X through cos X and sin X. For these measure­
ments the photon detector is placed on the y-axis and a Nicol prism is kept 
between the excited atom and the detector in such a way that the complete trans­
mission axis of the prism makes an angle a with the x-axis, as shown in Fig. 8.8. 
The transmitted photons are detected in coincidence with the scattered electrons. 
The intensity of the detected signal In(a) for a = 0 and 90° gives 1J3' 

Similarly with a = 45° and 135° we get 1J1' To obtain 1J2 the Nicol prism 
is replaced by a filter that fully transmits photons of helicity + 1 (-1). Now mea­
sured In(+) and In( -) yield 1J2 through (6.8.18b).1t is easy to verify from (8.10.17) 
to (8.10.19) that 

( 2 2 2)1/2 
P = 1JI + 1J2 + 1J3 = 1 (8.10.20) 

i.e., the radiation is completely coherent (fully polarized), in agreement with the 
assumption made in the beginning. 

The polarization correlation measurement experiment is difficult for the 
21p state because the emitted radiation lies in the ultraviolet. However Tan 
et al. (1977) succeeded in performing such an experiment. Their results are in 
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FIGURE 8.8 Schematic diagram for the measurement of the Stokes parameters to obtain A and 
X parameters for the inelastic scattering of electrons by atoms. The electron detector A is in the 
scattering (x-z) plane and the photon detector B is perpendicular to the x-z plane. The scattered 
electrons in the direction of (9, tP) are detected in coincidence with photons emitted in the direction 
of (rr/2, rr/2) by the network C. The axis of the complete transmission of the Nicol prism (NPA) makes 
an angle a with the x-axis. 

agreement with those obtained by the angular correlation experiment. This shows 
that the two methods are equivalent. But the angular correlation gives lxi, 
whereas the polarization correlation gives X itself. 

In the collision frame the population of the excited atom can be described 
by an alignment tensor A and an orientation vector o. The nonzero components 
of A and 0 for an S to P transition are given by (Morgan and McDowell, 1975, 
1977; Mathur, 1998) 

(8.10.21) 

(8.10.22) 

(8.10.23) 

and 

(8.10.24) 
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Hence 

(8.10.25) 

The above equation shows that for a given value of A, the extent to which the 
final atomic excited P state is oriented depends upon the value of X. Thus 0 1- is 
directly related to the dynamics of the collision process. 

Since the pioneer work of Eminyan et al., the coincidence technique has 
been applied to a large number of atoms and their alignment and orientation para­
meters have been determined. Furthermore, most of the methods discussed in 
Chapter 7 and in this chapter have been applied to determine these parameters 
theoretically. A comparison of the experimental data with the theoretical results 
tests the various theoretical models at the most fundamental level. Anderson 
et al. (1988), Slevin and Chwirot (1990), and Becker et al. (1992) have reviewed 
this field extensively. Recently Verma and Srivastava (1998) and Mathur (1998) 
have successfully employed the DWBA to obtain alignment and orientation para­
meters for the various transitions occurring in a number of atoms. These two 
papers may be consulted for references to other recent investigations. 

Hertel and Stoll (1974, 1978) developed an experimental technique in 
which reaction (8.10.1) proceedes in the opposite direction. In this process the 
atoms B are excited to a selective excited state B* by a suitable laser. These 
excited atoms collide with a monoenergetic beam of electrons of energy E. Due 
to superelastic collisions the atoms B* are de-excited to B and the scattered elec­
trons acquire kinetic energy equal to E + €ex. The first experiment using polar­
ized electrons and atoms for superelastic scattering of electrons from laser excited 
atoms was performed by McClelland et al. (1986). A suitable theoretical method 
for the analysis of such an experiment has been developed by Hertel et al. (1987). 

Questions and Problems 

8.1 Why is it not possible to calculate the exact scattering amplitude even for 
the elastic scattering of electrons by ground state hydrogen atom? 13-eVelec­
trons are scattered by ground state hydrogen atoms. How many channels, includ­
ing the degenerate channels, are open and how many are closed? Calculate the 
minimum energy of the scattered electrons. 

8.2 What is the static field approximation? Justify its name and derive an expres­
sion for the static field for the elastic scattering of electrons by the ground state 
helium atom. Show that it is of short range. Represent the helium atom by the 
wave function given in the problem 7.1. 
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8.3 Use the expression of the static field derived in the previous problem and 
obtain/BI(K) for the scattering of electrons by this field in the FBA. Verify that 
the expression/BI(K) so obtained is identical to that obtained from (7.3.6) for the 
helium atom. 

8.4 Justify the following statement: "The polarization potential in electron-atom 
scattering is due to virtual transitions whereas the absorption potential arises due 
to real transitions." 

8.5 Discuss the phenomenon of resonance in electron-atom collisions. Differ­
entiate between the Feshbach and the shape resonance. 

8.6 The following table gives the phase shifts in the static field (SF) and the static 
plus dipole polarization (SFP) approximations for the scattering of 1()(}-eV elec­
trons by helium atoms. Calculate the differential cross sections Isp(K) and IsFP(K) 
for the forward direction and the integrated elastic cross section CTel' How does 
the difference [ISEP(K) - Isp(K)] change with an increase in K? Explain your 
answer. 

Phase shifts 1]/ (in radians) 

SF SFP 

0 0.941 1.022 

0.256 0.347 

2 0.080 0.146 

3 0.027 0.072 

4 0.010 0.039 

8.7 Use (8.6.l8) to calculate U:.(r) (in ai)2) for the elastic scattering of 200-eV 
electrons by ground state hydrogen atoms. Plot them as functions of rlao and 
compare them with Usp(r). 

8.8 Using (8.9.1), (8.9.4), and as = 0.802 calculate the values of Ns, AI .. lz .. and 

N3S' 

8.9 Discuss two theoretical methods that employ partial waves to calculate the 
excitation cross sections of the individual excited channels. 

8.l0 In a polarization correlation measurement experiment using an electron­
photon delayed coincidence technique, helium atoms were excited by 40-e V 
electrons to the 21p state. The experiment was carried out in a scattering frame 
in which the incident electrons were moving along the z-axis and the scattered 
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electrons were detected in the x-z plane. The photon detector was on the y-axis. 
For a 16° scattering angle the values of the A. and Ixl parameters were 0.70 and 
0.53 rad, respectively. Calculate the values of the Stokes parameters 1110 112, and 
113 and show that the emitted radiation was completely coherent. 
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Collision of Electrons with 
Molecules 

9.1 Introduction 

Collision of electrons and molecules represents a more complex problem 
than electron-atom collisions. The reason for this complexity is easy to under­
stand. A molecule is usually defined as a group of atoms held together by valence 
forces. We may regard even the unstable systems of atomic nuclei and electrons 
as molecules. Thus, whereas atoms have only one center (nucleus), molecules 
are essentially multicenter objects. Due to the motion of the nuclei, molecules 
possess additional degrees of freedom. The motion of the electrons gives rise to 
quantized electronic states and the motion of the nuclei produces vibrational and 
rotational states. These two motions are not independent of each other but to a 
good approximation they can be separated from one another (see Sec. 9.2). Each 
electronic state has a number of vibrational states and each vibrational state con­
tains a number of rotational states. Thus the energy spectra of molecules are much 
more complex than the atomic spectra. 

Heteronuclear diatomic molecules and a large number of polyatomic 
molecules do not have a center of symmetry. This gives rise to a noncentral inter­
action between the molecular target and the incident electron. Hence, drastic 
assumptions are required if we wish to use the method of partial waves, discussed 
in the previous chapter, to analyze electron-molecule collisions. Further, in such 
collisions, dissociative channels also exist. Due to these complexities it is not 
surprising that there are fewer theoretical studies of electron-molecule collisions 
than of the electron-atom scattering. 

In this chapter we shall briefly discuss the collision of electrons with a 
few diatomic and polyatomic molecules mainly at intermediate and high impact 
energies. For studies of low-energy collisions employing more sophisticated 
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approximations, readers are referred to reviews by Lane (1980), Shimamura and 
Takayanagi (1984), Gianturco and Jain (1986), Morrison (1988), Burke (1993), 
and Gianturco (1995). Since the hydrogen molecule is the simplest neutral 
molecule, quite often we shall use it to develop various approximate methods 
for electron-molecule collisions. 

9.2 The Born-Oppenheimer Approximation and 
the Franck-Condon Principle 

To evaluate the scattering amplitude for electron-molecule collisions we 
need the molecular wave functions. An ab-initio evaluation of a molecular wave 
function is an impossible task. However, great simplification is introduced if we 
note that the nuclei are much heavier than the electrons. Hence, in a molecule, 
the motion of the electrons is much faster than that of the nuclei. Thus to a first 
approximation we may consider the motion of the electrons in a space having 
fixed-nuclei. This fixed-nuclei approximation leads to the Born-Oppenheimer 
approximation (BOA) (not to be confused with the exchange Born-Oppenheimer 
approximation discussed in Sec. 7 .5). According to the BOA, the quantum 
mechanical wave function of the molecule, If/, is equal to the product of cPn and 
Vi, where <I>n depends only upon the coordinates of the nuclei and the electronic 
wave function Vi satisfies 

(9.2.1) 

The first term of the above equation is the kinetic energy operator of the molec­
ular electrons, Vne is the interaction energy between the molecular nuclei and the 
electrons and Vee is the electron-electron interaction energy. This equation is 
solved for fixed nuclei, so that in the expression for the eigenenergy eiR), the 
coordinates of the nuclei enter as parameters. For a diatomic molecule, eiR) 
depends upon the internuclear distance R. A typical variation of eiR) with R for 
a stable state G of a molecule is shown in Fig. 9.1. The binding energy of 
the molecule is approximately equal to ej at R = Ro, where Ro is the equilibrium 
internuclear distance. The variation of ei R) with R for another electronic state 
E is shown in the same figure. Since the curve for this state has no minimum it 
is an unstable state. A molecule in this state automatically dissociates into its 
constituent atoms. The curves G, E, etc. are known as the potential energy func­
tions. To obtain the wave function of the nuclei, their motions are considered in 
the potential energy eiR) This approximation is known as the adiabatic nuclei 
approximation, and the SchrOdinger equation for the motion of the nuclei is 
given by 

orders@himanshubook.com



Collision of Electrons with Molecules 265 

(9.2.2) 

where Mp is the mass of the pth nucleus, Von is the nuclear-nuclear interaction 
energy, and ET is the total energy of the molecule. 

For a diatomic molecule Eq. (9.2.2) is for two particles. This may again be 
reduced to two one-body equations. For spherically symmetric Von we have 

(9.2.3) 

where (8, qJ) are the polar coordinates of the internuclear axis relative to a space­
fixed axis. Hence, in the BOA, the molecular wave function is the product of the 
electronic, vibrational, and rotational wave functions. In the electronic wave 
function the intermolecular distance R enters as a parameter. 

When a molecule makes a transition from one electronic state to another 
the vibrational and rotational states also change. Again due to the large mass of 
a nucleus as compared to that of electron, during the transition the nuclei 
hardly move. Hence, the internuclear distances in the initial and final states 
immediately after the transition do not differ from one another by any significant 
amount. The Franck-Condon principle assumes that in the transition from 
one electronic state, say, G, to another, say, E, the internuclear distance does not 
change, i.e., the transition is vertical with Ra = RE• This principle plays a useful 
role in analysis of molecular spectra. 

+ .... 
t3 a ~---;;=-----=====;;;;;; 

FIGURE.9.1 Variation of the electronic energy Ee1(R) with the internuclear distance R for a diatomic 
molecule. G and E are stable and unstable states of the molecule, respectively. 
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9.3 Electronic Excitation of Molecules 

Let us consider the excitation of a diatomic molecule from its initial state 
liv JM) to its final state liv' J'M') due to electron impact. We represent the initial 
and final electronic states by Ii} and Ii), respectively. From (7.2.11) the transition 
matrix element for the above excitation is given by 

jV J'M' ( ." 'I 11,· ) 1ivJM = kj}v J M T IAjlvJM (9.3.l) 

The value of kj will be different for different final rotational states. However, the 
energy differences among various rotational states are usually quite small in com­
parison to Ji 2kJ 12m. Hence, we neglect the variation of kj with J'M' and sum 

l1it~~M' 12 over all the final rotational states. We also average the sum over the 
initial rotational states IJM). Using the closure relationship 

L X;M,(R) XJ'M'(R') = O(R - R') (9.3.2) 
J'M' 

we get 

where the rotational states X are spherical harmonics. Since the number of rota­
tional states for a given J is (2J + 1), the average value is given by 

(~I jIlJ'M'12) 1 flrl jll12 2 ). ~ 1ivJM = - V 1iv R dR sm8Rd8R di/JR 
J'M' av 4n 

(9.3.3) 

where (~, If'R) are the polar angles of the internuclear axis with respect to an axis 
fixed in space. The electronic transition matrix element is 

jv' ('II) 1iv =v1jjV (9.3.4a) 

and 

(9.3.4b) 

where Iji is a function of the vector R but the vibrational wave function q>., 
depends only upon the scalar R. The electronic wave functions vary slowly 
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with R but ICPv(R)j2 is a maximum at R = Ro, the initial equilibrium nuclear 
separation. Hence, the transition matrix element ~i may be evaluated only at 
R = Ro. This yields 

(~I jVI'M'12) 1 f 2 • L.J T;vIM av = - l~i(Ro)1 smO dO dcp Pvv 
I'M' 4n 

(9.3.5) 

where now (0, 11') are the polar coordinates of Ro. The Franck-Condon factor Pv'v 

is defined by 

(9.3.6) 

Under the above assumptions, using (7.2.10) we get 

(9.3.7) 

where 

(9.3.8) 

The target wave functions depend upon IRo I and the reduced interaction energy 
is a function of Ro. 

lf we further assume that kj is independent of the final vibrational states, 
the differential cross sections summed over all the final rotational and vibrational 
states and averaged over the initial rotational states are given by 

- kj 1 f 2 (A) 
lji = k. 4n 1/;;1 dQ Ro 

I 

because 

9.4 Electronic Wave Functions and States of 
Diatomic Molecules 

(9.3.9) 

(9.3.10) 

To evaluate ~i we require the electronic wave functions of the molecule. 
A multi electron molecular wave function is constructed from a set of molecular 
orbitals. A molecular orbital is a function of the coordinates of a single electron. 
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Thus a molecular orbital multiplied by a spin wave function (a or f3) is known 
as the molecular spinor and, according to the Pauli exclusion principle, a mole­
cular spinor cannot have more than one electron. However, it can extend to any 
number of atoms of the molecule and reflects the molecule's basic symmetry. The 
electronic states of a diatomic molecule are represented by the symbol 2S+l A, 
where S denotes the spin of the molecule and A = 0, ±I, ±2, etc., correspond to 
l:, n, A, etc., electronic states of the molecule. Further we have r and l:- states. 
The wave function of r state does not change when the wave function is reflected 
in a plane containing an internuclear axis whereas the wave function of the l:­
state changes its sign in the above operation. In addition, homonuclear diatomic 
molecules have a center of symmetry (middle point of the internuclear axis). 
When the electronic wave function of such a molecule is inverted about the center 
of symmetry then it either does or does not change its sign. The states that remain 
unchanged are said to be gerade states and are designated by the symbol g. For 
example, we may have l:;, l:;, ng, Ag, etc., states. The states that change their 
sign in the above operation are known as ungerade states and are associated with 
the symbol u. We have l::, l:~, nu, Au, etc., states. This type of symmetry does 
not exist for heteronuclear molecules. 

Let us consider the following two electronic space wave functions for the 
H2 molecule 

(9.4.1) 

where N± are the normalization constants and A and B represent two nuclei of 
the molecule. The atomic orbitals are given by (6.10.7). It is evident from (9.4.1) 
that if we exchange 1 and 2, v+ does not change while v_ does change its sign. 
Hence, the v± are associated with the anti symmetric (singlet) and symmetric 
(triplet) spin wave functions, respectively. Further, the orbitals represented by f/JA 
are f/JB spherically symmetric, so the v± are l:(A = 0) states. 

Let us now reflect electrons I and 2 in a plane containing the internuclear 
axis AB. It is evident from Fig. 9.2 that riA = rl'A and riB = rl'B. Similar relation­
ships are true for the second electron. Hence, both the v± remain unchanged in 
the above operation, and both have + symmetry. Now we invert 1 and 2 about 
the center of symmetry O. Considering the equilateral triangles MIO and MI'O 
(in Fig. 9.3) we find that riA = rl'B' A similar relationship also holds for the other 
coordinates. Hence, on inversion, 

(9.4.2) 

Thus v: = v+ but v~ = -v_. All the above considerations show that the elec­
tronic states v± are Il:; and 3l::, respectively. 
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FIGURE 9.2 Reflection of the coordinates of electrons of a diatomic molecule about a plane 
containing an internuclear axis AB. 

We now proceed to evaluate the nonnalization constants N±. From (9.4.1) 
and (9.4.2), we obtain 

(9.4.3) 

where the overlap integral 

(9.4.4) 

A-----:~---8 

FIGURE 9.3 Inversion of the coordinates of electrons of a diatomic molecule about the center of 
symmetry O. 
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with i = 1 or 2. Using (6.10.7) and dropping the i, we get 

(9.4.5) 

To evaluate the above integral we employ spheroidal coordinates (A, 11, cp); A and 
11 are given by 

and (9.4.6) 

The polar angle cP is the same as defined in the spherical polar coordinate system. 
It is easy to see that in the space A and 11 vary from 1 to 00 and from -1 to +1, 
respectively. The volume element in this system is (R3/8)(A2 - 1l2)dAdlldcp. 
Hence, from (9.4.6), 

(9.4.7) 

Integration over 11 and cp gives 

s = ~(ZR/ ao)3 j e-ZAR/ ao (A2 -t)dA 
1 

(9.4.8) 

Using (8.3.9), we get 

S = exp(-ZR/aoll+ ZR/ao +t(ZR/aon (9.4.9) 

Hence, from (9.4.3), 

(9.4.10) 

As R ~ 0 we get a single-center object having two protons and two electrons, 
which is a helium atom that does not have any neutrons and so is unstable. 
However, helium is referred to as the united atom limit (UAL) of H2• In this limit 
CPA (i) = CPB (0. Hence v_ vanishes identically, and for v+, S = 1 and N+ = 1/"'./2. On 
the other hand, as R ~ 00 we get S = 0 and N± = 1 and both states, given by 
(9.4.1), dissociate into two ground state hydrogen atoms, which thus represent 
the separated atom limit (SAL) of H2• 

It is evident from (9.4.1) that v± (rl> r2) are two-center wave functions. In 
collision investigations sometimes it is more convenient to employ single-center 
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wave functions. Here the middle point of the internuclear axis is taken as the 
origin and the polar coordinates of the electrons and the nuclei are taken with 
respect to this origin. A set of simple one-center wave functions for the ground 
and excited states of the H2 molecule are given by Huzinaga (1957). These wave 
functions were successfully utilized by Khare (1966a,b, 1967) to investigate 
the excitation of the hydrogen molecule to the singlet and triplet excited states 
due to electron impact. Huzinaga's ground state one-center wave function is 
given by 

vo(X, IsO"}.:;) = ~ [cp~ (r,)£p~ut(r2) + cp~ut(r,)£p~ (r2) 

+C2cpPr(r, )£PPr(r2)] 

where, in atomic units, 

with 

cp~(r) = C3[N(1, ~,)e-~lryoo +oN(4, ~2)r3e-~r Yoo 

+AN(4, ~2)r3e-~r12o] 

cpPr(r) = N(2, Z)re-Zr 1'\o 

(2xr1/2 

N(n, x) = 1/2 
[(2n)!] 

(9.4.11) 

(9.4.12) 

(9.4.13) 

(9.4.14) 

(9.4.15) 

In atomic units the values of the various parameters are C, = 0.99560365, C2 = 
-0.09366858, C3 = 0.489949475, (, = 1.1, <5 = 0.524208, (2 = 4.3, A = 0.273048, 
Z = 1.6, and 11, = 0.8. The energy of the ground state H2 molecute obtained from 
the above wave function is in close agreement with that obtained from the two­
center wave function of Kolos and Roothan (1960). Huzinaga represented the 
singlet and triplet excited states of H2 by 

(9.4.16) 

The plus sign in the above equation corresponds to the singlet states while the 
minus sign is for the triplet states. The excited states considered by Khare 
(1966a,b, 1967) are B(2pO"r.t), C(2pn'IIu), D(3pn'IIu), a(2s0'3r.;), b(2p0'3r.t) 
and c(2p1t"3II.). For these states 
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q>~(r) = PIN(I, a)exp(-ar)Yoo + P2N(4, fj)r3 exp(-pr)Yoo 

+P3N(4, fj)r3 exp(-pr)12o 

Chapter 9 

(9.4.17) 

with PI = 0.761157, P2 = 0.253422, P3 = 0.110674, a = 1.1, and p = 4.3 (all in 
a.u.). q>~ut(r) for different states are: 

q>~ut (r) = N(2, 71~)rexp(-71~r)1'\o (9.4.18) 

(9.4.19) 

(9.4.20) 

and 

(9.4.21) 

The variational values of 712 at Ro(=1.4ao) in a.u. are 71~ = 0.520, 712 = 0.436, 
71f= 0.338, 71~ = 0.886, and 71~ = 0.566 (Khare, 1967). Several other single-center 
wave functions for H2 are available (see, e.g., Carter et al., 1958; Joy and Parr, 
1958; Hayes, 1967). 

9.5 Elastic Collision of Electrons with the Ground State 
Hydrogen Molecule 

Let us consider the integral approach and start with the simplest approxi­
mation, namely the FBA. In this approximation (9.3.8) for elastic scattering 
reduces to 

BI() (TC e)2( .1 1 1 Iii Ro =-4m h kj,z-IRA-rl-IRB-rl 

+--+--k i 1 1 1 ) 

Irl - rl "2 - rl " (9.5.1) 

where r, RA , RB, rio and r2 are the coordinates of the incident electron, nuclei A 
and B, and the molecular electrons, respectively, with respect to 0, the mid point 
of the internuclear axis AB (see Fig. 9.1). Representing the incident and scattered 
electrons by the normalized plane wave and integrating over r, we get 
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(9.5.2) 

Since 01 i} = 1. Now taking 

flo 
RA =-RB =-

2 

in the above equation we get 

fBI(R) = K; [cos(K.R/2)-(ileiK·'tli}] 
ao 

(9.5.3) 

To simplify the notation the subscript of Ro has been dropped and the equilib­
rium internuclear distance is represented by R. 

Use of (9.4.1) and (9.4.5) in (9.5.3) and integration over r2 gives 

fBI(R) = K; {cos(K-R/2)-N;!2 J eiK"tdrl 
ao 

x [ltpAot +ltpB(1)f + 2StpA (I)tpB (I)]} (9.5.4) 

We use (6.11.1) for tpA and tpB and integrate over rl This gives 

(9.5.5) 

where the variational parameter Zs is replaced by Z and the overlap integral I is 
given by 

(9.5.6) 

The evaluation of I is rather difficult. Let us first consider (9.5.5) in the separated 
atom limit of H2, i.e., S = 0 and N+ = 1.Then 

(9.5.7) 

= 2fH(Z)cos(K-R/2) (9.5.8) 

where fH(Z) is the scattering amplitude in the FBA for the elastic scattering 
of electrons by a hydrogenic atom having a charge Z[Sec. (7.3.1)]. Since the 

orders@himanshubook.com



274 Chapter 9 

molecule rotates in space, the polar angle 6 of the internuclear axis R, with respect 
to a fixed K, varies from 0 to n. Hence, the DeS is averaged over 6, which gives 

+1 

IH2 (R) = 2IH (Z) f cos2 (KRpJ2)dJL (9.5.9) 
-I 

where JL = cos 6 and IH(Z) is given by (7.3.26). Evaluation of the above integral 
gives 

(9.5.10) 

It may again be noted that the above equation gives the DeS averaged over 
all the initial rotational states and summed over all the final rotational and vibra­
tional states in the separated atom limit for the elastic scattering of electrons by 
the ground state of the hydrogen atom. 

It is evident that IH2 oscillates with K. The amplitude of the oscillation 
decreases with K. In the forward direction IH2 is 4Mz), but at large K it is equal 
to 2Mz). Thus in the forward direction the scattering amplitudesf~z) from each 
atom are added (coherent addition), whereas for large K the differential cross sec­
tions Mz) are added (incoherent addition) to yield 1Hz• With the help of (7.3.26) 
and (7.3.30), we also get from (9.5.10) 

- ( sin(KR») 
IH2 (R)=t IHe (Z) 1+ KR (9.5.11) 

where IHe (Z) is the differential cross section of the helium atom having the same 
Z. Epuation (9.5.10) clearly shows the diffraction of the de Broglie wave of the 
incident electrons by the two-center hydrogen molecule. Variational calculation 
for the V+(1II:;) state has given Z = 1.166 and R = 1.404ao. 

Khare and Moisewitsch (1965) examined the effect of the overlap term on 
IH2 They represented the molecule in the separable form 

v+(rl, r2) = u(rl )u(r2) (9.5.12) 

with 

u(r) = N[q>(rA) + q>(rB)] (9.5.13) 

and 

q>(r) = e-Zr/"o / a~2 (9.5.14) 
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Thus we get 

N~ = Z3 
21t'(1 +S) 

(9.5.15) 

where S is given by (9.4.9). To evaluate the overlap integral I, given by (9.5.6), 
Khare and Moiseiwitsch expanded the plane wave in the spheroidal coordinates 
and finally obtained 

- 8 sinKR 321t'N2Z [ { }

2 

IH =-- 1+-- 1-
2 K4aJ ( KR) (K2aJ + 4z2)2 

6 I 

2 4(R) ~ (-1) [ ()]2 +41t' N - £... --(-) MOl C 
ao I(even) AOl C 

(9.5.16) 

where 

~ 

MOl (C) = f jeOl (C, A)[{A? - t)do(C/Oi) - fsd2(C/0l)]e-ARz/aodA (9.5.17) 

and 

(9.5.18) 

where n is an even integer, C = + KR, andjeO/ are the spheroidal functions defined 
by Morse and Feshbach (1953). The differential cross section 1Hz has been eval­
uated using the tables of the spheroidal wave functions compiled by Stratton et 
al. (1956). In the separated atom limit the first term of (9.5.16) goes to (9.5.10) 
(which we now denote by Is). The second and third terms of (9.5.16) arise due 
to overlap. According to Khare and Moiseiwitsch, the ratio 1Hz / Is as a function 
of C lies between 1 ± 0.04. Hence, the separated atom is a satisfactory approxi­
mation for 1Hz• Liu and Smith (1973) and Ford and Browne (1973) employed 
accurate two-center wave functions to investigate elastic e - H2 scattering in 
FBA. Their results are not too much different from those obtained by Khare and 
Moiseiwitsch. 

It may be noted that in (9.5.14) the value of Z is 1.193 and not 1, which 
accounts for the valence bond effect. In the case of a diatomic molecule, the 
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formation of a bond between two atoms tends to localize the electron densities 
between the atoms and changes the effective size of the molecule compared to 
the collection of noninteracting atoms arranged in the same geometrical config­
uration. The result is usually a decrease in the cross section below that expected 
for the free (independent) atom model. The differential cross section for H2 in 
the independent atom model (lAM) is given by (9.5.10) with Z = 1 At high E the 
difference between l~: and l~ arises due to molecular binding effects. !J.Neh 

defined by 

(9.5.19) 

was measured experimentally at E = 25 ke V by Ulsh et al. (1974). Hence, a com­
parison of the theoretical values of !J.Nel with the experimental data gives an idea 
of the accuracy of the molecular wave function. 

Gupta and Khare (1978) employed the 57-term single-center wave func­
tion of Hayes (1967) for the ground state of H2 to calculate IH2 in the FBA. The 
use of spherical harmonics associated with the single-center wave function allows 
evaluation of all the integrals analytically. 

Figure 9.4 compares the experimental data for!J.Nel (Ulsh et aI., 1974) with 
the theoretical results of Liu and Smith (1973) (with a two-center wave function) 
and Gupta and Khare. Although the experimental accuracy is poor, it can be seen 
from the figure that the theoretical calculations are in agreement with the exper­
imental data. This also shows the suitability of one-center wave functions for 
the calculation of the differential and the total cross sections for the scattering 
of electrons by hydrogen molecules. However, the FBA, which completely 
neglects the distortion of the projectile and the target wave function and the 
exchange effect, is not found to be satisfactory for complex molecules even at 
the intermediate energies. 

9.5.1 The Plane Wave Approximation 

In the plane wave approximation (discussed in Sec. 7.7) the summed elastic 
differential cross section (sum of pure elastic and rotational excitations) is given 
by 

(9.5.20) 

where the first Born scattering amplitude fBI is given by (9.5.8). The exchange 
scattering amplitude g in the Ochkur approximation is 

(9.5.21) 
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FIGURE 9.4 Variation of MYel with respect to K (in lIA). A-Gupta and Khare (1978) with the 
Hayes (1967) wave function, B-Liu and Smith (1973) with Davidson and Jones (1962) wave 
function. 0 are experimental data of U1sh et al. (1974). Reproduced from "Elastic scattering of 
electrons by molecular hydrogen for incident energies 100-2000eV," P. Gupta and S. P. Khare, J. 
Chern. Phys. 68,2193, 1978, with permission from the American Institute of Physics, USA. 

and the second-order scattering amplitude !dp, due to the dynamic polarization 
potential Vdp, is 

(9.5.22) 

Gupta and Khare (1978) employed the 57-term single-center wave function of 
Hayes (1967) to evaluate!B! and g. They extended VdP' given by (7.7.37), to e-H2 
scattering and took 
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e2 [ -3 -3 Vdp(r) = -2 ad r2 (r2 +d2) +a~r2(r2 +d2) Pz(cosf)) 

+aqr4 (r2 +d2t] (9.5.23) 

where ad is the mean dipole polarizability and a~ is a measure of the anisotropy 
of the polarizability, 

(9.5.24) 

and 

(9.5.25) 

where az and ax are the dipole polarizabilities of the hydrogen molecule along 
the internuclear axis and perpendicular to the axis, respectively, and e is the angle 
between rand R. The energy-dependent cut-off parameter is given by (7.7.39). 
Using the values of Kolos and Wolnicwicz (1965) for az and lXx, one gets ad = 
5.18a6 and a~ = 1.20a6. These values along with aq = 17.27ab are utilized by 
Gupta and Khare to evaluate Jdp and IH2 ' Their theoretical cross sections in the 
energy range 100 to 2000eV are in good agreement with the absolute experi­
mental differential cross sections of van Wingerden et al. (1977). Curve B of 
Fig. 9.5 shows that the FBA seriously underestimates the cross sections at small 
scattering angles. The inclusion of the exchange and the polarization gives DCS 
(curve A) that are in good agreement with the experimental data over the whole 
angular range. A substantial increase in IH2 at small scattering angles is due to 
fdP' This is expected because the static field is a short-range potential, whereas 
Vdp(r) is a long-range potential. As already noted, in the plane wave approxima­
tion the distortion of the projectile's wave function is completely neglected 
and the distortion of the target wave function is included only up to the first 
order. To a certain extent these defects are removed in the modified Glauber 
approximation. 

9.5.2 The Modified Glauber Approximation 

In the modified glauber approximation (MGA) the scattering amplitude fMG 
is given by (7.8.5). This may also be written as 

= 

fMG = fBi + 182 + L1cn (9.5.26) 
n~3 

The evaluation of i82 and icnfor e-H2 elastic scattering is an involved task. 
However, we have seen that in the separated atom limit 
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FIGURE 9.5 Differential scattering cross sections for 200-eV electrons scattered elastically by 
hydrogen molecules. Curve A, cross sections of Gupta and Khare (1978) in the plane wave 
approximation with the Hayes wave function. Curve B, cross sections in the FBA with the same wave 
function. Curve C also includes nonadiabatic correction [see (7.7.34)]. 0 and. are the experimental 
data of van Wingerden et al. (1977) and Fink et al. (1975) (as renormalized by van Wingerden et al.). 
Reproduced from the reference given in Fig. 9.4, with permission from the American Institute 
of Physics, USA. 
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f~~(Z) = 2cos(K·R/2)f~1(Z) = cos(K·R/2)f~~ (9.5.27) 

where f~~ (Z) is the scattering amplitude in the FBA for the elastic scattering of 
electrons by the united atom limit of the hydrogen molecule, i.e., a helium atom 
having same Z as a hydrogen molecule. To obtain 1B2 Jhanwar et al. (1982b) 
represented the hydrogen molecule by the following simple but fairly accurate 
two-center wave function: 

(9.5.28) 

where the gerade and ungerade orbitals are given by 

(9.5.29) 

The atomic orbitals qJ(rj)are represented by (6.11.1) with Z. = Z and 

1 
N2 =---

g,u 2(1 ± S) (9.5.30) 

For R = 1.4ao the variational parameters Z and Care 1.2005 and -0.5814, respec­
tively. The normalization constant N is equal to (1 + C2)112. In the united atom 
limit (9.5.28) reduces to 

(9.5.31) 

The reduced interaction potential energy U of the system is given by 

(9.5.32) 

with 

(9.5.33) 

and 

UB(r2)=2.( __ 1_+_1_) 
ao Ir-RBI lr-r21 

(9.5.34) 

Putting (9.5.33) and (9.5.34) into (7.7.3), we get 

(9.5.35) 
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where 

(9.5.36) 

and 

(9.5.37) 

The expressions forfBB andfBA are similar. BothfAA andfAB are double-scattering 
terms, butfAA represents the scattering process in which the incident electron is 
scattered twice by the same atom A, whereas in fAB the incident electron is first 
scattered by atom B and then by atom A. The evaluation of fAA, hB, etc., is quite 
difficult even for a simple diatomic molecule such as H2• An approximate 
evaluation was carried out by Jhanwar et al. (1982b), who obtained 

(9.5.38) 

where j~;(Z) is the second Born scattering term for an object represented by 
(9.5.31). They assumed a similar relationship betweenj~; andj~~ (Z) for n ~ 3 
and took 

(9.5.39) 

or 

(9.5.40) 

The termjf. (Z) was evaluated in the closure approximation with Z = 1.2005 and 
Ll = 29.3geV by Jhanwar et al. (1982b). To include exchange they employed the 
Glauber-Ochkur (GO) exchange approximation and took 

g~ = cos(K.R/2)g~~(Z) (9.5.41) 

The expression for g~(Z) was derived by following Dewangan (1976) and 
Khayrallah (1976). Finally in the separated atom limit we get 

(9.5.42) 
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Furthermore, the imaginary parts of the forward amplitudes of IfWeG(Z) - gW,o(Z)1 
and I fW,G(Z) I yield total scattering cross sections through the optical theorem for 
electron and positron impacts, respectively. 

Jhanwar et al. (1982b) calculated iH2 (8) for incident energies varying 
from 50 to 1000eV. Their theoretical cross sections are in fair agreement 
with the experimental data for E;?: l00eV. At 50eV the theory overestimates the 
cross sections, which is not unexpected because the Glauber approximation 
is a high-energy approximation. In Table 9.1, IH2 obtained in different 
approximations at E = 200eV is compared with the experimental data. In the 
FBA and PWA, the one-center wave functions of Joy and Parr (1958) 
was employed while calculations in EBS and MGA were performed with the 
two-center wave function of Weinbaum (1933). The experimental data in the last 
three rows are as renormalized by van Wingerden et al. As expected, the FBA 
underestimates the cross sections at low K. The agreement between the cross sec­
tions obtained in the MGA and the experimental data is good over the whole 
angular range. 

The total collision cross sections aT are shown in Table 9.2. Theoretical 
values of Jhanwar et al. (1982b) for electron as well as positron scattering are in 
good agreement with the experimental data. The table also shows that the ratios 
arCe+ )/arCe-) are close to unity, theoretically as well as experimentally. The 
theoretical values are always less than or equal to unity, whereas the experimental 

Table 9.1 Differential Cross Sections (in 1O~21 m2) for the Elastic Scattering of 200-eV 
Electrons by Hydrogen Molecules 

(J Theory Experiment 
(deg.) FBA PWA EBS MGA van Fink Llyod Williams 

Khare and Khare Jhanwar Wingerden et al. et al. (1969) 
Shobha and Lata et al. et al. (1977) (1975) (1974) 

(1972, 1974) (1985) (l982b) 

5 5.20 11.7 13.2 12.9 14.0 15.2 
10 4.11 6.69 6.66 6.66 7.02 7.08 
15 2.85 3.83 3.72 3.81 3.89 
20 1.84 2.21 2.10 2.21 2.24 2.18 1.41 1.81 
25 1.13 1.28 1.19 1.28 
30 0.680 0.753 0.680 0.725 0.772 0.713 0.680 
40 0.263 0.288 0.252 0.260 0.282 0.256 0.263 0.285 
50 0.127 0.138 0.126 0.119 0.133 0.139 0.152 0.136 
60 0.078 0.084 0.086 0.083 0.081 0.083 
70 0.055 0.059 0.069 0.071 0.058 0.054 0.059 

80 0.039 0.041 0.058 0.040 0.040 0.042 
90 0.028 0.029 0.029 0.028 0.036 
100 0.020 0.021 0.039 0.021 0.025 0.022 
120 0.011 0.012 0.013 
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Table 9.2 Total Collisional Cross Sections (in 1O-2°m2) for e±-H2 Scattering 

E(eV) Theory Experiment 

EBS MGA Charlton van Hoffman et aI. 
Khare and Jhanwar et al. et al. Wingerden (1982) 

Lata (1982b) (1980) et al. (1980) 
(1985) 

e" e - e+ e+ e - e e+ 

100 3.22 2.68 2.64 2.96 2.52 2.56 2.68 
150 2.36 2.09 2.08 2.10 2.00 1.98 
200 1.88 1.71 1.71 1.61 1.69 1.71 
300 1.35 1.27 1.26 1.29 1.22 1.27 1.27 
400 1.06 1.01 1.01 1.06 0.965 1.04 0.999 
500 0.880 0.845 0.845 0.831 0.870 0.859 
700 0.668 0.641 0.641 0.638 
1000 0.487 0.476 0.476 

values, up to 300eV, as obtained from the data of Hoffmann et al. (1982), are 
always greater than or equal to unity. 

9.6 Excitation of the Hydrogen Molecule 

Since the ground state of the hydrogen molecule is a singlet state, its exci­
tation to the higher singlet state proceeds via direct as well as exchange scatter­
ing. However, excitations from the singlet to triplet states are possible only 
through exchange scattering. 

For singlet-to-singlet excitations the Ochkur exchange scattering amplitude 
gj;, as for the helium atom, is given by 

(9.6.1) 

Hence, in the Bom-Ochkur approximation (9.3.9) modifies to 

( 2 )2 - kj 1 K 2 ~ [ .. =--f 1-- I.tl d.Q(R) 
JI k; 4Jt' 2k? IJ 

(9.6.2) 

From (7.3.4) and (7.3.5) we have 

(9.6.3) 
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Khare (1966a,b) employed single-center wave functions given by (9.4.11) to 
(9.4.21) to evaluate the differential cross sections, generalized oscillator 
strengths, and integrated cross sections for the excitation of the hydrogen mole­
cule from the ground state X(1SO";L;) to B(2pO"iL:), C(2pniIIu), and D(3pniIIu) 
states in the first Bom-Ochkur approximation. A sum of the excitation cross 
sections to Band C electronic states obtained by Khare (1966a) is compared with 
the experimental data of Geiger (1964) at 25keV in Fig. 9.6. The agreement 
between theory and experiment is satisfactory. For the D electronic state the 
optical strength of Khare (1966b) is also in good agreement with the experimental 
value of Geiger (1964) and the theoretical value of Mulliken and Reike (1941). 
Khare (1968) employed single-center wave functions to obtain photoionization 
cross sections of the hydrogen molecule. Here again the agreement between 
the theoretical optical oscillator strength and the corresponding experimental 
data is found to be satisfactory. Such agreement indicates the suitability 
of the single-center wave functions for bound-to-bound and bound-to-free 
transitions. 

For singlet-triplet excitations, the direct scattering amplitude is zero and 
the exchange scattering amplitude gji in the Bom-Oppenheimer approximation 
is given by 

(9.6.4) 

where 

(9.6.5) 

The factor -J3 is due to the fact that the excited state consists of three degener­
ate excited states having Ms = 1,0, and -1. In the Ochkur approximation, which 
is correct up to kiz, the nuclear terms and 1IIr - rzi are dropped because their 
contributions fall faster than kiz, and 111 r - rd is approximated by 4m5(r - ri)lk; 
[see Eq. (7.5.5)]. Hence, in the above approximation, with Dirac delta function 
normalized plane waves, we get 

(9.6.6) 

Khare and Moiseiwitsch (1966) have investigated the excitation of the 
ground state v(X1sa1L;) of the hydrogen molecule to its lowest triplet state 
v(b2pa3L~) due to electron impact. They took 
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FIGURE 9.6 Differential cross sections for elastic scattering of 25-ke V electrons that excite the 
ground state hydrogen molecule to Band C electronic states. A, Khare (l966a); B, Roscoe (1941); 
0, experimental points of Geiger (1964). Reproduced from "Excitation of hydrogen molecule by 
electron impact," S. P. Khare, Phys. Rev. 149, 33, 1966, with permission from the American Institute 
of Physics, USA. 

(9.6.7) 

and 

(9.6.8) 
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with cfJi.j given by (6.11.1) having nuclear charges Zi and~, respectively. Using 
(9.6.7) and (9.6.8) in (9.6.6) and proceeding to large values of R (separated atom 
limit of the molecule), we get 

gji = - k~ (tpj(r)ltpi(r)}[(tpj(rlA)leiK.r1Itpi(rlA») 
i ao 

-(tpj (rlB)leiKrt Itpi(rlB»)] (9.6.9) 

2i../3 . / . = --2-sm(K-R 2)(tpj(r)ltpi(r )}(tpj (r)le,K.rltpi (r») 
ki ao 

(9.6.10) 

Evaluating the values of (qJj(r) I tpi(r» and (qJj(r) I eiK.rl tpi(r» with the help of (9.6.7) 
and (9.6.9) we get 

gji = sin(K . R/2)gJi (9.6.11) 

where 

, 128../3i (ZiZj)3 1 

gji = - klao [(Zi + Zj)2 + K2aijf (Zi + ZJ (9.6.12) 

Finally averaging over the orientations of the molecular axis, the average differ­
ential excitation cross section for the excitation of the molecule from the ground 
state to the triplet excited state ber.!) is given by 

(9.6.13) 

The integration of (9.6.13) over the scattering angles gives the total excitation 
cross section. Since bCr.:) is a repulsive state, after the excitation the hydrogen 
molecule dissociates into two ground state hydrogen atoms. Khare (1967) 
also employed the Ochkur approximation but used the single-center wave func­
tions given by (9.4.11) to (9.4.20) to calculate the total cross section for the 
excitation of the hydrogen molecule from the ground state Xer.;) to the triplet 
a(2scfr.;), b(2pa3r.:), and c(2pn3nu) electronic states due to electron impact. 
All three excited states are unstable and dissociate into two hydrogen atoms. 
The cross sections obtained by Khare (1967) for the sum of all three states are 
shown in Fig. 9.7. The cross-section curve shows a sharp maximum close to the 
threshold of the excitation and then falls off quite rapidly with the increase 
in impact energy. For high impact energies, the cross sections fall as ~3. The 
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FIGURE 9.7 Cross sections for the dissociation of the ground state hydrogen molecule due to 
singlet-triplet excitation produced by electron impact. Curve A gives the theoretical cross sections 
of Khare (1967) and curve B gives the experimental values of Corrigan (1965). Reproduced from 
"Excitation of hydrogen molecule by electron impact: III. Singlet-triplet excitation," S. P. Khare, 
Phys. Rev. 157, 107, 1967, with permission from the American Institute of Physics, USA. 

cross section for the excitation to the bCl:~) state has the largest value; hence, 
this excitation dominates in the dissociation of the H2 molecule. It was pointed 
out by Cartwright and Kupperman (1967) that the cross sections obtained by 
the Ochkur approximation are sensitive to the wave functions of the H2 mole­
cule. Chung and Lin (1978) also employed the FBA to investigate excitation of 
H2 molecules. 

9.7 Ionization of Molecules 

In Sec.7.6 we discussed the ionization of atoms and noted the difficulties 
associated with the calculation of ionization cross sections. Replacement of the 
atom by a molecule further complicates the investigation. Due to the multicen­
tered nature of the target the differential cross section is eightfold differential 
(Champion et aI., 2001). Even in the FBA, one is obliged to generate continuum 
generalized oscillator strengths (CGOS), which is a difficult task for molecules. 
Hence, a number of semiempirical and semiclassical formulas for ionization cross 
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sections have been proposed. Such methods formulated till the early 1980s 
are discussed by Younger and Mark (1985). Recently Deutsch et al. (2000a) 
reviewed the methods developed by Khare and his associates, Kim and his 
associates, and Deutsch and his associates. In this section we shall describe these 
methods briefly. 

9.7.1 The Kim and Rudd Model 

Kim and Rudd (1994) started with the Mott differential cross section 
for the collision between two free electrons, one at rest and the other moving 
with an energy E. Let in the collision energy e be transferred from the moving 
electron to the other electron. The Mott differential cross section for the 
above collision is given by (7.6.56). If we take t = EI/, co = ell, and replace 
du/de by the symbol I~t,co), the above equation reduces to a symmetrized form, 
given by 

IM(t,co)=- LF,,(t) +--S2 {II} 
I "=1 (co + 1)" (t - co)" 

(9.7.1) 

where 

(9.7.2) 

with R being the Rydberg energy. With exchange, the maximum value of co is 
(t - 1)/2. Hence, the Mott ionization cross section is 

2 (t-l)j2 {II} 
UM(t) = SL f F,,(t) + dco 

"=1 0 (co + 1)" (t - co)" 
2 I-I 

= SL f F,,(t) 1 dco 
"=1 0 (co + 1)" 

= S[Jii(t)lnt + F;(1-1/t)] (9.7.3) 

For soft collisions (Bethe term), Kim and Rudd employed the Bom-Bethe 
approximation and took 

I (E W) = 4naJR2 1 df(W,O)ln(E/I) 
B, E W dW 

= ~ 1 df(CO,O)ln(t) 
NI t(co + 1) dco 

(9.7.5) 
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Hence, on integration over w the total Bethe cross section is given by 

(9.7.6) 

where 

1 (1-1)/2 1 di(m, 0) 
D(t)=- f dm 

n 0 m+1 dm 
(9.7.7) 

To combine (9.7.3) and (9.7.6), they obtained the total stopping power cross 
section from (9.7.1) and (9.7.5) and equated it to the Born-Bethe stopping power 
cross section at large t. This gives 

where 

Ni lnt lnt 
t(ln2)F;(t) + F;(t}lnt + -- = 2-

N t t 

Ni = J diem, 0) dm 
o dm 

(9.7.8) 

(9.7.9) 

They then took F2 = alt and compared the coefficient of In tit on the two sides of 
(9.7.8), obtaining 

Thus, finally 

s 
= -{D(t)lnt + (2 - Nil NXI-1lt -lntl(t + I)]} 

t 

(9.7.10) 

(9.7.11) 

As expected the above equation overestimates the cross sections at low t. To 
remove this deficiency Kim and Rudd included the effect of the velocity distri­
bution of the bound electrons of the target on the ionization process through the 
binary encounter theory (Grizinski, 1965a,b,c). According to this theory, t occur­
ring outside the square bracket of (9.7.11) changes to t + u + I, with u being the 
ratio of the average kinetic energy V of the bound electron of the ith molecular 
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orbital and Ii. Thus in the binary encounter dipole (BED) model of Kim and Rudd, 
the total ionization cross section for the ith molecular orbital is given by 

(Ji =(JKMD+(JKBD (9.7.12) 

where (JKMD and (JKBD are the Mott (hard collision) and the Bethe (soft collision) 
cross sections, respectively, in the BED model of Kim and Rudd. These cross 
sections are given by 

S 
(JKMD = (2-N;/N)[1-1/t-lnt/(t+1)] 

t+u+l 
(9.7.13) 

and 

S 
(JKBD = D(t)lnt 

t+u+l 
(9.7.14) 

A summation over all the molecular orbitals gives the total ionization cross 
sections Lio;. 

For H, He, Ne, and H2 Kim and Rudd used the experimental values of 
dj(W,O)ldW, compiled and recommended by Berkowitz(l979), and represented 
them by the following power series: 

df(W,O) =.!. ±an(.!...-)n 
dW I n=! W 

(9.7.15) 

The values of am U, and I as given by these authors for H, He, and H2 are shown 
in Table 9.3. Recently Kim et al. (2000) utilized dj(W,O)ldW for helium atoms 
obtained by the relativistic random-phase approximation (Johnson and Lin, 1979; 
Johnson and Cheng, 1979). These values are also represented by (9.7.15). The 
new coefficients an are also given in the same table. With these new coefficients 
they have obtained excellent agreement between their theoretical 0; and the 
experimental data for the above targets. 

For complex molecular targets, Kim and Rudd proposed a simpler binary 
encounter-Bethe (BEB) model. In this model COOS is given by 

df(W,O) N;l 
=-

dW W2 

or 

df(OJ,O) Ni 
(9.7.16) = 

dOJ 2 
(OJ + 1) 
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Table 9.3 The Values of I, U, and an for H, He and H2a 

H* He* He** H2* 

I (eV) 13.6057 24.59 24.587 15.43 
U(eV) 13.6057 39.51 39.51 25.68 
al 0 0 0 0 
a2 -2.2473 (-2) 0 0 0 
a3 1.1775 1.2178(1) 8.24012 1.1262 
a4 -4.6264 (-1) -2.9585 (1) -10.4769 6.3982 
as 8.9064 (-2) 3.1251 (1) 3.96496 -7.8055 
a6 0 -1.2175 (1) -0.0445976 2.1440 
a7 0 0 0 0 

• a(b) = a x JOb, * Kim and Rudd (1994), •• Kim et al. (2000). 

The symmetrized forms of Mt,m) and D(t) in the BEB model are given by 

s {II] IB(t,m) = - F3(t 3 + 3 

I (m + 1) (t - m) 

and 

N JU-1lf2 [ 1 1] D(t) = -' + dm 
N 0 (m + 1)3 (t _ m)3 

where F3(t) = N;I(t + u + 1). On integration of the equation for D(t) we get 

1 N / D(t)=--' (1-1 t2 ) 
2N 

(9.7.17) 

Now the total ionization cross section 0; is given by 

(9.7.18) 

In the BEB model of Kim and Rudd, with N; = N, the Mott cross section is given 
by 

s ( lint) 
CTKMB= t+u+l 1-(- t+l (9.7.19) 

and the Bethe cross section is 

CTKBB = (s ) (1- ~)Int 
2t+u+l t 

(9.7.20) 
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Using their BEB model Kim and his associates (Kim and Rudd, 1994; Hwang et 
al., 1996; Kim et al., 1997; Ali et al., 1997; Nishimura et al., 1999) have calcu­
lated LjO'j for a good number of molecules. They varied E from Ij to 1 ke V 
(20keV in some cases). The values of V obtained by Hwang et al. (1996) are 
shown in Table 9.4. For most of the molecules their cross sections are in good 
agreement with the experimental data. They have noted that much of the success 
of their model is due to the replacement of t by teft = t + u + 1, as required by the 
BE theory. This change in t may also be justified by considering the increase in 
the initial kinetic energy E of the incident electron by V + I due to the attractive 
field of the target before it collides with a bound electron. 

9.7.2 The Saksena Model 

Saksena and Kushwaha (1996) started from the FBA, which includes 
longitudinal as well as transverse interactions. At relativistic energies the total 
ionization cross section is given by the sum of (7.6.15) and (7.6.30). Hence, 

O'j = 47rQ5R {J IT !!... df(W, Q) d(lnQ)dW - M2[ln(1- 132) + f32l} (9.7.21) 
E, I InQ_ W dW 

where E, = 112 mv2, v being the velocity of the incident electron. The presence of 
the eGOS in the above equation makes the evaluation of 0; for the molecules 
difficult. On the other hand, the COOS are available for a number of molecules 
(Zeiss et al., 1975, 1977; Berkowitz, 1979; Gallagher et al., 1988). Using 
the semiphenomenological relation of Mayol and Salvat (1990), Saksena and 
Kushwaha expressed the eGOS in terms of the COOS, which 

df(W,Q) = df(W, O) O(W _ Q) + h(Q}O(W _ Q) 
dW dW 

(9.7.22) 

where 0 and 8 are the step function and Dirac delta function, respectively, and 

h(Q) = fQ df(W', 0) dW' 
dW' 

I 

Putting (9.7.22) into (9.7.21) and integrating over Q we get 

O'j = 47rQ5R2 {1{J.- df(W,O) In(~) + h(~)}dW 
E, I W dW Q- W 

_ :2 [In(l- 13 2 ) + f32l} 

(9.7.23) 

(9.7.24) 
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Table 9.4 Values of I, U, and N for Different Molecular 
Orbitals of Some Diatomic and Polyatomic Molecules 

(Hwang et aI., 1996) 

Molecule Molecular orbital I (eV) U(eV) N 

H2 10"g 15.43 25.68 2 

N2 30"g 15.58 54.91 2 
10. 17.07 44.30 4 
20u 21.00 63.18 2 
20g 41.72 71.13 2 

CO 50 14.01 42.26 2 
In 17.66 54.30 4 
40 21.92 73.18 2 
30 41.92 79.63 2 

O2 Ing 12.07 84.88 2 
30g 19.79 71.84 2 
lOu 19.64 59.89 4 
20"u 29.82 90.92 2 
20g 46.19 79.73 2 

Cll. 1t2 12.51 25.96 6 
2a1 25.73 33.05 2 

NH3 3al 10.16 43.25 2 
Ie 17.19 35.62 4 

H2O 1bl 12.61 61.91 2 
3al 15.57 59.52 2 
1b2 19.83 48.36 2 
2a1 36.88 70.71 2 

C2H6 leg 11.52 28.17 4 
3alg 13.90 32.78 2 
leu 16.31 24.42 4 
2a2u 22.99 33.60 2 
2alg 27.75 34.37 2 

CO2 109 13.77 64.43 4 
Inu 19.70 49.97 4 
302u 20.27 71.56 2 
40lg 21.62 74.66 2 
202. 40.60 78.38 2 
30lg 42.04 75.72 2 
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In the energy range 0.1 to 2.7 MeV, Reike and Prepejchal (1972) measured 
OJ for a number of molecules and "expressed their cross sections by 

A comparison of (9.7.24) and (9.7.25) yields 

where 

E R 
CRP = C~ + f -2 h(W)dW 

/W 

C' = fE R df(W, O) lj ~)dW 
RP / W dW 1\ fJ2Q_ 

(9.7.25) 

(9.7.26) 

(9.7.27) 

Using the available theoretical and experimental values of COOS, Saksena and 
Kushwaha have calculated C'RP and CRP for a number of molecules in the MeV 
region, In this energy region CRP is independent of E and there is hardly any 
difference between the values of C'RP and CRP' The theoretical values of CRP, 

obtained by Saksena and Kushwaha at 1 MeV, are shown in Table 9.5 along with 
the experimental data of Reike and Prepejchal. For most of the molecules the two 

Table 9.5 The Parameter CRP' Defined by (9.7.26) and 
(9.7.27), for Molecules 

Molecule Theory Experiment 
Saksena and Reike and 
Kushwaha, Prepejchal 

(1996) (1972) 

7.60 8.12 
34.56 34.84 
41.41 38.84 
40.77 35.14 
29.49 32.26 
60.68 42.19 
54.11 55.92 
37.62 34.86 
82.46 

154.88 
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sets of values of CRP do not differ by more than 10%. Such an agreement between 
theory and experiment shows the appropriateness of (9.7.22). 

Equation (9.7.24) may also be written as 

where the Bethe and the Mott cross sections are given by 

and 

Asymptotically, 

where 

C1B = 4na5R 1 ~ df(W, O) IJ ~)dW 
E, 1 W dW l\Q_ 

C1 = 4na5R2 IE h(W) dW 
M E w2 

, 1 

4na5R 2 
C1B = --M In(CBE,) 

E, 

M2In(C E ) = JE .!!... d/(W, O) IJ ~)dW 
B, 1 W dW l\Q_ 

Using (9.7.25) to (9.7.29), we also get 

- 4na5R (C' M21 fJ2) C1B--- RP+ n 
E, 

Equating (9.7.31a) to (9.731b), we obtain 

Hence, 

C~p = M2In(CBEo) 

= M2[ln(Eo/ R) + In(CBR)] 

(9.7.28) 

(9.7.29) 

(9.7.30) 

(9.7.31a) 

(9.7.32) 

(9.7.31b) 

(9.7.33) 
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where Eo is half of the rest mass energy of the electron. Since ErJR is much greater 
than CBR, we have 

(9.7.34) 

This value of C'~M2 is close to those obtained from the experimental data of 
Reike and Prepejchal. 

Saksena et al. (1997a) have used (9.7.24) to calculate O'j for a number of 
molecules in the energy range 1 ke V to 3 MeV. They employed the theoretical 
and experimental values of dfiW,O)ldW available for the whole molecule 
(summed over all the molecular orbitals) provided by Zeiss et al. (1975, 1977) 
and Gallagher et al. (1988). Thus they obtained Ljo;. Their results for H2, N2, O2, 

and H20 molecules in the energy range 0.1 to 3MeV are shown in Fig. 9.8. A 
comparison between the theoretical results and the experimental cross sections 
of Reike and Prepejchal (1972) shows excellent agreement. Figure 9.9 compares 
the theoretical cross sections of Saksena et al. at lower energies (1 to 20 ke V) 
with the experimental data of Schram et al. (1965) and Shutten et al. (1966). The 
agreement between theory and experiment is again quite good. With such nice 
agreements it may be concluded that the representation of the eGOS in terms of 
the COOS through (9.7.22) is satisfactory for the evaluation of O'j. 

At E < 1 ke V, the contributions of the transverse interaction and the rela­
tivistic effect become negligibly small. But the effect of exchange should be 
included in the evaluation of 0;. Saksena et al. (1997b) included the effect through 
the Ochkur approximation. They neglected (T" replaced Er by E in (9.7.21), and 
multiplied its integrand by Fex(E,Q) (given by 7.6.18). Further, it is well known 
that the FBA overestimates 0; at low E, so they also multiplied the integrand of 
(9.7.21) by an energy-dependent empirical factor (1 - WIE). 

The Bethe and Mott differential cross sections, as modified by Saksena 
et al. (1997b) for E < 1 keY, are integrated over Q, which gives 

_ 4naJR2 (E+I)/2 1 df(W, O) ( W)[ { W) 
O'B - f - 1-- I -

E lWdW E Q _ 

_ (W - Q-) + _1_(W2 - Q~)JdW 
E 2E2 

(9.7.35) 

and 

4naJR2 (E+I)/2 (1 1 1 ) 
O'M = f h(W)(I- W/E ---+- dW 

E W2 WEE2 
I 

(9.7.36) 

where Q_ is given by the nonrelativistic equation (7.6.16), and heW) by (9.7.23) 
with the upper limit equal to W. 

orders@himanshubook.com



Collision of Electrons with Molecules 

1 

-N 
E 

N 
~ 0 -X -'0-

·1 ·2 '5 
E{MeV) 

1 2 

297 

3 

FIGURE 9.8 Total ionization cross sections of H2, N2, O2, and H20 due to electron impact in the 
energy range 0.1 to 3 MeV. Solid curves show the theoretical cross sections of Saksena et al. (1997a) 
and the open circles are the experimental data of Reike and Prepejchal (1972). Reproduced from 
"Electron impact ionization of molecules at high energies," V. Saksena, M. S. Kushwaha, and 
S. P. Khare, Int. J. Mass Spectrom. Ion Proc. 171, Ll, 1997, with permission from Elsevier 
Science. 
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FIGURE 9.9 Total ionization cross sections of H2, N2, O2, and H20 due to electron impact in the 
energy range 1 to 20keY. The solid and dashed curves show the theoretical cross sections of Saksena 
et al. (1997a) and Kim and Rudd (1994), respectively. V and ~ are the experimental cross sections 
of Schram et al. (1965) and Shutter et aI. (1966), respectively. Reproduced from "Electron impact 
ionization of atoms and molecules," S. P. Khare and S. Tomar, in: Trends in Atomic and 
Molecular Physics, eds. K. K. Sud and U. N. Upadhayaya, p. IlO, 1999. 
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FIGURE 9.10 Total ionization cross sections of Nz due to electron impact. Theoretical: ___ , 
Saksena et al. (1977b); - - -, Khare and Meath formula (1987), and -'-'-, Margreiter et al. (1990). 
Experimental: 0, Rapp and Englander-Golden (1965); V, Schram et al. (1965, 1966); 0, Tate and 
Smith (1932); ., Krishnakumar and Srivastava (1990). Reproduced from "Ionization cross sections 
of molecules due to electron impact," V. Saksena, M. S. Kushwaha, and S. P. Khare. 
Physica 8233, 201, 1997, with permission from Elsevier Science. 

Saksena et al. (1977b) used (9.7.35) and (9.7.36) to calculate 0; (= O'M + 
O'B) for H2, N2, O2, NH3, H20, and CO2 in the energy range I to 1 ke V. Their results 
for N2 and O2 are compared with the experimental data in Figs. 9.10 and 9.11. 
In general, the agreement between theory and experiment is good for E greater 
than about 50 e V. At lower E the theory underestimates the cross sections. Similar 
agreement has been obtained for the other molecules except for H2• For this mol­
ecule the Saksena model is found to underestimate the cross sections over prac­
tically the whole energy region. The Saksena model has also been applied to 
obtain the dissociative cross sections (Saksena et aI., 1997b). Their results, shown 
as the ratio of the dissociative cross section O'd to O'i along with the experimental 
data, are shown in Fig. 9.12. The agreement between theory and experiment 
is again satisfactory. They have concluded that their model is quite satisfactory 
for E ~ 300eV. For energies between 50 and 300eV it overestimates the cross 
sections slightly, but for E < 50eV it underestimates them for most of the mole­
cules. This shows that at low E the correction introduced by the empirical factor 
(1 - WIE) is not adequate. 
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FIGURE 9.11 Same as Fig. 9.10 but for O2 •• are the experimental cross sections of Krishnakumar 
and Srivastava (1992). Reproduced from the same source given in Fig. 9.10. with permission 
from Elsevier Science. 

It should be noted that the Saksena model does not require a prior knowl­
edge of the collision parameter CB and the mixing parameter fQ. which were 
needed in the methods proposed by Jain and Khare (1976) and Khare and Meath 
(1987). 

9.7.3 The Khare model 

Khare et al. (1999) have incorporated useful features of the Kim and Rudd 
in the Saksena model to remove the deficiency of the latter at low E. They 
removed the empirical factor (1 - WIE) and replaced E (which exist outside the 
of integral) by E, + U + I in (9.7.35) and (9.7.36). They also neglected exchange 
in the soft collisions. Thus in the Khare's BED model the Bethe and the Mott 
cross sections are given by 

(9.7.37) 
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and 

41ra~R2 (E+I)/2 {Ill) 
(JKHMD = f h(W ---+- dW 

Er + U + I I W2 WE E2 
(9.7.38) 

respectively. In this model Oi for the ith molecular orbital is given by 

(9.7.39) 

where (Jt is obtained from (7.6.30). Following Kim and Rudd, Khare and his asso­
ciates also represented df(W,O)ldW by (9.7.16) in their BEB model. Thus 

0'5 

0'3 

0·1 
0·2 

~ 
" 0·1 
'd' 

0·2 

0·1 

0·0 
10 

+ 
NH2CNHJ1. 

• 

+ 
OH CH20) 

+ 

O+ CC02) 

x x 

h(W) = N(l- IjW) 

100 
ECeV) 

(9.7.40) 

-t + + 

1000 

FIGURE 9.12 The variation of the ratio (1,/U; with electron impact energy for a polyatomic molecule. 
Solid curves are the theoretical ratios of Saksena et aI. (1997b). Experimental values: e, .1, and V 
for Nm ions are from Rao and Srivastava (1992), Crowe and McConkey (1977), and Bederski et al. 
(1980), respectively. For OW ions + and 0 are from Rao et al. (1995) and Schutten et al. (1966), 
respectively. For 0+ ion X are from Orient and Srivastava (1987) and .1 are obtained by taking (1d 

from Crowe and McConkey and U; from Rapp and Englander-Golden (1965). Reproduced from the 
same source given in Fig. 9.10, with permission from Elsevier Science. 
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S/3 E 1 {W) 
(JKHBB = f-31 - dW 

E, +U+I 1 W Q-
(9.7.41) 

and 

S/2 (E+IJ/2 [1 1 1 ] 
(JKHMD = f (l-I/W) ---+- dW 

E, + U + 1 1 W2 WE E2 
(9.7.42) 

In the nonrelativistic region integration over Win (9.7.42) gives 

We may write (Khare et al. 2000) 

(JKHMB = (JKMB + (J' (9.7.44) 

where 

It is found that 0' is negative at all the values of t and asymptotically it is half 
of (JKMB' Hence, OirnMD is always less than (JKMB and at large values of t we have 
(JKHMD = t(JKMB' 

We may also write (9.7.41) as 

(9.7.46) 

where in the nonrelativistic region (JKBB is given by (9.7.20) and 

E 

" S f11{W)d (J- --W 
- t + u + 1 1 W3 Q-

(9.7.47) 

To compare 0' with 0" it is desirable to have an analytical expression for 0" as 
well. On the assumption that a large contribution to the above integral comes 
from the small values of W, Khare et al. (2000) expanded (1 - W/E)112 for W « 
E and from (7.6.16) obtained an approximate value of Q_: 

(9.7.48) 
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Putting (9.7.47) into (9.7.48) and evaluating the integral we get 

(9.7.49) 

The subscript A on d' indicates that we have taken an approximate expression 
for Q_, given by (9.7.48). The above equation shows that ~ is always positive, 
so O'KHBB > OirnB' Defining 

0' KHTB = 0' KHBB + 0' KHMB 

and 

0' KTB = 0' KBB + 0' KMB (9.7.50) 

we get for the ratio 

A = O'KHTB = 1 + 0" + 0''' 

0' KTB 0' KTB 
(9.7.51) 

In Table 9.6 AA (with approximate O'~) is shown as a function of t. It can 
be seen that for t ;;:: 5 the ratio AA, which depends only upon t, does not differ 
from unity by more than 10%. High values of AA for t < 5 are due to the use of 
the approximate expression for Q_. Khare et al. (2000) employed (7.6.16) for Q_ 
and recalculated A as obtained from (9.7.51). These new values of A lie between 
1 ± 0.03. Hence, although the derivations of the expression for O'KHTB and O'KBB 

Table 9.6 Ratios II.A and II. as Functions of t for Any 
Molecular Orbital (Khare et aI., 2000) 

AA A 
1.5 1.64 0.97 
2.0 1.37 1.01 
3.0 U8 1.01 
4.0 1.11 1.00 
5.0 1.07 1.00 
6.0 1.05 1.00 
8.0 1.03 0.99 
10.0 1.02 0.99 
20.0 1.00 0.99 
40.0 0.99 0.98 
60.0 0.99 0.98 
80.0 0.98 0.98 
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look quite different, in effect in the BEB model the O'KHBB differ from O'KBB by 
d'. Further, nearly the whole of d' is added to O'KHMB to obtain O'KMB, so OiarrB 

and O'KTB are nearly equal at every E and for each molecular orbital. The BED 
model of Khare et al. does not involve the Bethe stopping power cross sections, 
which also include discrete excitations. 

Khare et al. (1999) calculated the total ionization cross section OJ for the 
Cf4 molecule for impact energy E varying from the ionization threshold to 3 
Me V in their BED and BEB models as well as the cross sections in the Saksena 
model for comparison. The ionization of the two outermost orbitals of C~, 
namely, 1/2 and 2al were considered. The contribution of the third orbital to OJ 
is negligibly small owing to its high ionization potential (290.7 eV). Variations 
in O'KHBEB, O'KHMEB, O'KBEB, and O'KMEB with E for the orbital (1t2) of methane are 
shown in Fig. 9.13. It is evident that O'KHBEB is always greater than OirnEB, but the 
opposite is true for O'KHMEB and O'KMEB' However, OKIITB is always very close to 
O'KTB' The reason for this closeness has already been discussed. 

In Fig. 9.14 the variations of O'KHTD and OiarrB with E in the energy range 
10 e V to 20 ke V are shown along with the theoretical cross sections Grs obtained 

4·0 

3·0 

- 2·0 
NO 

a 
~ -0" 

1·0 

E{eV) 
FIGURE 9.13 Variation ofionization cross sections of the orbital (1t2) of methane with electron energy 
E in the BEB model. Curves A, B, and T are the cross sections O"KHBEB, O"KHMEB, and O"K!ITB, respectively, 
calculated by Khare et al. (1999). Curves C, D, and X are the cross sections of Kim et al. (1997). Repro­
duced from "Electron impact ionization of methane," S. P. Khare, M. K. Sharma, and S. Tomar, J. Phys. 
B 32, 3147,1999, with permission from the Institute of Physics Publishing, Ltd., Ltd., UK. 
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FIGURE 9.14 Total ionization cross sections of methane due to electron impact in the energy range 
lOeV to 20keV. The solid and dashed curves show O'KHID and OKHTB, respectively, of Khare et aI. 
(1999), ... are the cross sections obtained by Khare et al. (1999), using the Saksena model. e, 0, 
A, and X are the experimental cross sections of Rapp and Englander-Golden (1965), Orient and 
Srivastava (1987), Djuric et al. (1991), and Adamczyk et al. (1966), respectively. Reproduced from 
the source given in Fig. 9.13, with permission from the Institute of Physics Publishing, Ltd., UK. 

in the Saksena model and the experimental data. As expected O'KHTB is always 
greater than O'KHBB. However, the difference between the two is not more than 
10%, which shows that the soft collisions dominate over the hard collisions. The 
cross sections CJrs given by the Saksena model are in good accord with O'KHTD for 
E greater than about 40 e V. However, at lower impact energies, the O'KHTD are 
greater than the O'KHTS and give better agreement with the experimental data. Thus 
the main shortcoming of the Saksena model, i.e., its underestimation at low E, 
has been overcome in the Khare model. Figure 9.15 shows the values of O'KHTD 

for E ranging from 0.1 to 3 MeV. Their comparison with the experimental data 
of Reike and Prepejchal (1972) shows good agreement between theory and exper­
iment. The values of M2 and CRP obtained by Khare et al. are about 7 and 9% 
lower than the corresponding experimental values. Thus it may be concluded that 
the Khare model, obtained by making slight modifications in the Saksena model, 
is satisfactory for the calculation of 0; of the molecules for impact energy varying 
from the threshold potential to a few MeV. 
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FIGURE 9.15 Total ionization cross section of methane due to electron impact in the energy range 
0.1 to 2MeV. The solid curve represents theoretical cross sections obtained by Khare et al. (1999) 
their BED model and 0 are the experimental data of Reike and Prepejchal (1972). Reproduced 
from the same source given in Fig. 9.13, with permission from the Institute of Physics Publishing, 
Ltd., UK. 

9.7.4 The Deutsch and Mark Model 

Deutsch and Mark (1987) modified the classical formula of Grizinski 
(1965a, b, c) for the atomic ionization cross section and represented it by 

C1 = LgnJ1Cr;,Nnt/(t) (9.7.52) 
n/ 

where r;/ is the mean square radius of the (n,l) subshell of the atom, which has 
Nnl number of electrons. The functionf(t) is given by 

(9.7.53) 

The parameters a, b, c, and d have different values for S-, p-, d-, andf- electrons 
and are given by Deutsch et al. (2000a). The weight factors gn/ depend on the 
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quantum numbers n and 1 and on the ionization energy ]nl. Margreiter et al. (1990) 
found that the product gnlnl is independent of the nuclear charge Z for completely 
filled subshells. They also extended (9.7.52) to molecules (Margreiter et aI., 1990; 
Deutsch et aI., 1994). In their method the ionization cross section of each mole­
cular orbital is expressed in terms of the appropriate atomic weight factor g~(nl), 
effective occupation number Nl(nI)' mean square atomic ratio d(nl), and function 
f~(nl)(t), where A denotes the various constituent atoms of the molecule under 
investigation (Deutsch et aI., 2000a). A Mulliken population analysis is carried 
out to obtain the values of ~(nl), but that does not always result in a unique rep­
resentation of the molecular orbitals in terms of the atomic orbitals of the con­
stituent atoms. For example, the three outermost molecular shells of H20 have 
been represented by four different atomic basis sets, which give rise to signifi­
cantly different ionization cross sections for its three molecular orbitals (Deutsch 
et aI., 2000a). The application of the Deutsch and Mark model (DM) model to 
31 molecules and radicals has been discussed by Deutsch et ai. (2000a). The DM 
model has been also applied to small clusters (Margreiter et aI., 1994; Deutsch 
et aI., 2000a). Recently the DM model was used by Deutsch et ai. (2000b) to 
examine isomer effects in the total ionization cross section of cyclopropane and 
propane (C3H6). Although the theoretical cross sections are in satisfactory agree­
ment with the experimental data (Nishimura and Tawara, 1994), the model could 
not reproduce the slight isomer effect obtained experimentally. This model has 
also been applied to the dimers S2, F2, Br2, 12, and C2; trimers 0 3 and C3; and 
fullerenes C60 and C70 (Deutsch et aI., 2000c). Absolute electron impact ioniza­
tion cross sections of several other molecules such as AIO, AI20, WOx (x = 1-3), 
N02, BF, HX (X = F, Cl, Br, I), TMS (tetramethylsilane), HMDSO (hexam­
ethyldisiloxane), TEOS (tetraethoxysilane) have been obtained by the DM model 
(Deutsch et aI., 2001; Probst et aI., 2001). 

9.8 The Differential Approach for 
Electron - Molecule 
Collisions 

Molecules are multicenter objects and the optical potential for the scattering 
of electrons by molecules, even in the SFA, is noncentrai. Hence, the 
partial wave method discussed in the last chapter for the scattering of electrons by 
atoms is not appropriate for electron-molecule scattering. At intermediate 
and high energies, with a large number of open channels, the application of 
the close-coupling method becomes almost impossible, even with present day 
supercomputers, so such investigations have only been carried out at low impact 
energies (Lane, 1980; Shimamura and Takayanagi, 1984; Gianturco and Jain, 
1986; Burke, 1987; Morrison, 1988; Gianturco,1995). In a number of 
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investigations at intennediate and high energies, spherically symmetric optical 
potentials have been employed and the method of partial waves was used to obtain 
collision cross sections. A few such investigations are discussed in the present 
section. 

Let us first consider the scattering of electrons by a potential that is sepa­
rable in the spheroidal coordinate system. To obtain the phase shifts we have to 
expand the plane wave Fo(r) and the wave function of the scattered electrons F(r) 
in (A, /1, cp) coordinates. The expansion of the plane wave is given by 

Fo(r) = (2nr3 LamISml(C, cos6o)Sm/(C, /1)fml(C, A) cos m(cp -CPo) (9.8.1) 
I,m 

where ami are the expansion coefficients. The Sml are spheroidal harmonics and 
are the solutions of the following differential equation: 

d [,"2 ) d ] [ 22m2] - \fL -I -Sml + Ami +C /1 --2- Sml =0 
d/1 d/1 /1 -1 

(9.8.2) 

The parameter C is equal to k;R12 and (~, fAJ) are the polar angles of the inter­
nuclear axis R with respect to the vector k i • As R tends to zero, the spheroidal 
functions Sml(C, /1) reduce to the associated Legendre polynomials plm'(cos 8). For 
large values of A the functionfml(C, A) is given by 

fml(C, A) - ~sin[AC-t(m+l)n] 
.<--C/I, 

(9.8.3) 

It is interesting to compare (9.8.1), (9.8.2), and (9.8.3) with (2.6.24), (2.6.1), and 
(2.6.15), respectively. 

It should be noted that the interaction of the incident electron with the 
molecule changes Fo(r) to F(r). If the reduced interaction potential energy is 
approximated by 

F(A) 
U(r) = A2 2 

-/1 
(9.8.4) 

then the expansion of F(r) is given by 

I m 

(9.8.5) 

Now the phase shift l1i depends upon I as well as on m. The function Tml satis­
fies the following one-dimensional differential equation: 
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At large A we have 

(9.8.7) 

and (3.1.2) modifies to 

(9.8.8) 

The scattering amplitude is given by 

I(JI, qJ; 80 , qJo) = -~-2, 2,amt(-lt+l [exp(2i1];) -1] 
2lkj m 1 

xSml(C, Cos 80 )Sml (C, JI)cosm(qJ -lPo) (9.8.9) 

Thus the simple form of the scattering amplitude given by (3.9.13) changes to a 
more complicated expression because the interaction potential is not spherically 
symmetric. The scattering amplitude given by (9.8.9) is in the fixed-nuclei 
approximation. For a nonvibrating (Le., with a fixed IRI) but rotating molecule, 
the averaged differential cross section is given by 

- 1 f 2 • I(J1, qJ) = - 1/(J1, qJ; 80 , qJo~ sm80 d80 dlPo 
4n 

(9.8.10) 

and the total elastic cross section crel is obtained by integrating lover JI and qJ. 
The partial cross sections also depend upon I as well as m, and the crel is given 
by (Stier, 1932; Fisk, 1936): 

(9.8.11) 

where the partial cross sections are given by 

4n (2 ~ ). 2 m 
(JIm = -2 - Uom SIn 1]1 

k j 

(9.8.12) 
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A comparison of (9,8.11) and (9.8.12) with (3.9.25) and (3.9.26) again shows the 
difference due to the replacement of a spherically symmetric potential by a non­
central potential. However, as with a central potential, here too all the phase shifts 
except 1l~ go to zero as k; ~ 0 and 

O'el ~ 0'00 = 4na; 
kj->O 

where as is the scattering length. 

9.8.1 The Independent Atom Model 

(9.8.13) 

As molecules are diatomic or polyatomic objects, it is tempting to investi­
gate electron-molecule scattering by replacing the molecule by its constituent 
atoms. In a number of simple investigations to obtain the DCS for a molecule, 
the following two approximations were employed: 

1. Linear combination of atomic differential cross sections (LCADCS). 

2. Linear combination of atomic scattering amplitudes (LCASA). 

In the LCADCS, the molecular differential cross section fJ.,8) for a molecule 
having N atoms is given by 

M 

1M (8, cp) = IJa(8, cp) (9.8.14) 
a=! 

where Ia< 8, cp) is the differential cross section for the scattering of the incident 
electron by the ath atom of the molecule. The above equation follows the addi­
tivity rule (AR) at the macroscopic level. In this approximation we represent fJ., 8, 
cp) by fAR( 8, cp). On the other hand, in the LCASA, known as the independent 
atom model (lAM), the molecular scattering amplitude fMC 8) is taken as a linear 
combination of the atomic scattering amplitude Ia( 8): 

N 

fM(8) = JiAM(8) = LCafa(8) (9.8.15) 
a=! 

where Ca are the expansion coefficients and are determined in the following 
manner. 

Let the incident electrons traveling in the z direction with momentum lik; 
be scattered in the direction (8, cp) and the final momentum be likf' Now, 
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asymptotically, the scattered wave due to the ath atom with the ith nucleus at the 
origin, is given by 

(9.8.16) 

where rand ra are the coordinates of the point of observation P and the ath 
nucleus, respectively (see Fig. 9.16). If we had taken 0 as the center, the plane 
wave would have been Aeikj", so to write the above equation in the same form 
we multiply it by eikj". and get 

(9.8.17) 

Since r» ri the above equation reduces to 

(9.8.18) 

Comparing (9.8.15) for the ath with (9.8.18) we obtain 

(9.8.19) 

Thus the expansion coefficients are only phase terms. Finally, the molecular 
differential cross section in the lAM for elastic scattering is given by 

p 

a 

FIGURE 9.16 Scattering of electrons by two atomic centers a and b. 
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IIAM = Lfa*(8, qJ)Ji,(8, qJ)eiKo(lb-ra) 
a.b 

=/AR + Lfa*(8,qJ)fb(8,qJ)eiKo(lb-ra) (9.8.20) 
a*b 

We note from (9.8.20) that to obtain IAR' the differential cross sections la are added 
(incoherent addition), but that to obtain IIAM, the scattering amplitudes fa multi­
plied by a phase vector eikora are added (coherent addition). Thus in the lAM inter­
ference of scattering waves originating from the different atoms is taken into 
account and the geometry of the molecule enters into the calculation through the 
internuclear axis R. These features are neglected in the addivity rule. Both these 
approximations assume that: 

1. Each atom scatters independently. 

2. Any redistribution of atomic electrons due to molecular binding is 
unimportant, so that each atom scatters as if it were free. 

3. Multiple scattering within the molecule is negligible. 

For the above assumptions to be valid the de Broglie wavelength of the incident 
electron should be small in comparison to the inner atomic distances. Hence, both 
approximations are high-energy approximations. Equation (9.8.20) is for a fixed 
nuclear axis. Since the molecule rotates, IIAM (8, qJ) is averaged over all the ori­
entations of the molecular axis. We choose K as the axis of reference, integrate 
(9.8.20) over all possible orientations of R, and divide the result by 41t" to get the 
average value of the molecular differential cross section. Thus 

(9.8.21) 

The fa are usually obtained by using the partial wave method with some suitable 
optical potential, as discussed in the Chapter 8. 

Jain and Khare (1977) investigated the elastic scattering of electrons by 
the ground state hydrogen molecule in lAM. However, to take account 
of valence-bond distortion they took a hydrogenic atom with Z = 1.193 instead 
of a hydrogen atom (Z = 1). Hence, from (9.8.21), 

(9.8.22) 

They solved the radical Schr6dinger equation due to a central optical potential. 
The optical potential was taken as the sum of a static field, a local exchange 
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Table 9.7 Comparison of the RatiosA = 1~~PIIN' (Z = 1.193) 
with fiKR) = 2(1 + sin KRlKR) for the Elastic Scattering of 

lOO-eV Electrons by the Hydrogen Molecule 

8 (deg) A f(KR) 8 (deg) A f(KR) 

5 4.31 3.96 70 1.36 1.57 
10 4.39 3.86 80 1.38 1.60 
20 3.53 3.47 90 1.48 1.71 
30 2.82 2.94 100 1.62 1.85 
40 2.23 2.40 110 1.70 1.98 
50 1.58 1.96 120 1.80 2.09 
60 1.47 1.68 130 1.87 2.16 

potential with Z = 1.193, and an energy-ependent polarization potential. To 
compare their results with the experimental data they obtained the ratios it = IW, I 
IN'. (Z = 1.193), where IW, is the experimental DeS for hydrogen molecules. 
These ratios are compared withj(KR) = 2(1 + sinKR I KR). Jain and Khare used 
the experimental values of van Wingerden et al. (1977) for 9 S 50° and those of 
Fink et al. (1975) (renormalized by van Wingerden et al.) for I~~. Their values of 
it at 100eV are shown in Table 9.7 along withj(KR). The table shows that the 
differences between the ratio it andj(KR) are less than 15% at all angles except 
50°, where the difference is about 20%. These differences are close to the accu­
racy of the experimental data for IH, We also note oscillations both in it and.f(KR) 
as a function of 9; these are due to the diffraction of the electron waves by the 
two-center molecular object. 

To include the effect of the vibration of the molecule on the DeS we take 

(9.8.23) 

where the function Pab(R) is the probability that the two nuclei are separated by 
a distance R. A suitable expression for Pab(R) is given by Kuchitsu and Bartell 
(1961). Equation (9.8.23) has been utilized by Khare and Raj (1979) to investi­
gate the elastic scattering of electrons by the heteronuclear eo molecule. Assum­
ing that the vibrational distribution function of the molecule is harmonic, we get 
from (9.8.23) 

lco(9) = Id9) + 10 (9) + [fc* (9)fo(9) + fd9)f; (9)] 

xexp(-tl; K2){sin(K(R -I; / R)]/ KR} (9.8.24) 

where Ie is the mean vibrational amplitude. Khare and Raj (1979) employed the 
partial wave method to calculatefc(9) andfo(9). The optical potentials were taken 
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to be the sum of the static potential and an energy-dependent polarization poten­
tial Vdp(r). For the static potential, Strand and Bonham's (1964) equation [Eq. 
(8.3.12)] was utilized and Vdp(r) was represented by Eq. (7.7.37). Their results 
for E = 300eV are shown in Fig. 9.17 along with the experimental data of 
Bromberg (1970). The agreement between theory and experiment is satisfactory. 
For a better comparison the ratio A = leo / (Ie + 10 ) for E = 400eV is shown as 
a function of (J in Fig. 9.18. 

The experimental points in Fig. 9.18 have been obtained by dividing exper­
imentalleo by the theoretical values of Ie plus 10 , In this figure the shape of the 
theoretical curve is in very good agreement with the experimental data. Almost 
all the maxima and minima are faithfully reproduced by the theory. Quantita­
tively, the theory overestimates the value of A for (J greater than about 10°. Similar 
investigations have been carried out by Raj (1991a,b) and Khare and Raj (1982) 
for O2, CO2, and CF4 molecules. 

The above investigations do not include exchange and absorption effects. 
These two effects were included by Khare et al. (1994c) in the elastic scattering 
of electrons by the CF4 molecule at intermediate energies. They employed Vex(r), 
given by Riley and Truhlar (1976). For the imaginary part of the optical poten­
tial Vabs(r), they employed the nonempirical expression derived from a quasi-free 
scattering model by Staszewska et al. (1983). 

The theoretical cross sections of Raj (1991a) and Khare et al. (1994c) for 
E = 200 and 300eV are shown in Fig. 9.19 along with the experimental data of 
Sakae et al. (1989). The figure shows that the two theoretical curves have almost 
the same nature but the agreement between theory and experiment improves 
significantly when the exchange and absorption effects are included. However, 
at higher energies the values of the theoretical cross sections are lower than the 
experimental data [see Fig. 3 of Khare et al. (1994c)]. 

Recently Raj and Kumar (2001) pointed out that in general the absorption 
potential of Staszewska et al. (1983) underestimates the elastic DCS at inter­
mediate and large scattering angles. Further, the underestimation becomes worse 
with the increase in E. Such behavior is contrary to expectation. Underestima­
tion has also been noted for the integrated elastic cross section CTel and the momen­
tum cross section CTm• To improve the agreement between theory and experiment 
Raj and Kumar (2001) divided the absorption potential of Staszewska et al. 
(1983) [given by (8.7.8)] by k. They used this modified absorption potential in 
their lAM calculation to obtain the DCS, CTeb and CTm for the elastic scattering of 
electrons by O2 molecules in the energy range from 300 to 1000 e V. Their cross 
sections with the modified absorption potential are in much better agreement 
with experimental data (see Figs. l(a) to (d) and Table 1 of their paper). It may 
be noted that these methods neglect multiple scattering within the molecule. 
A method to include these scattering terms was provided by Hayashi and 
Kuchitshu (1976). 
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ANGLE OF SCATTERING (jn deg.) 

FIGURE 9.17 Differential cross sections for the elastic scattering of 300-eV electrons from a CO 
molecule obtained by Raj (1981) in the independent atom model. For atoms, the FBA (curve A), the 
PWA (curve B), and the SFPA (curve C) were employed .• represents the experimental data of 
Bromberg (1970). 
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FIGURE 9.18 Variation of the ratio A = lco(8)I(lC<8) + 10Ul» at 400eV. For the solid curve Ic(8), 
10(8), and lco(8) are theoretiCal. For .,IC(8) and 10(8) are theoretical but lco(8) are the experimental 
data of Dubois and Rudd (1976). All the theoretical cross sections were obtained by Raj (1981). 

To obtain the total collision cross section (JT> the optical theorem is utilized. 
For this we require the imaginary part of the elastic scattering amplitUde in the 
forward direction. In this direction exp(iK· rj)f;( 9, lp) is equal to Ji( 9). Thus the 
total cross section (JT> obtained by the addivity rule (AR) and from the indepen­
dent atom model (lAM) are the same. 

The AR approach and its modifications were used by Joshipura and his 
associates (Joshipura and Patel, 1994, 1996; Joshipura and Vinodkumar 
(1997a,b); Joshipura (1998); Joshipura and Vinodkumar (1999); Joshipura et al. 
(1999,2001) for a good number of molecules and radicals for electron energies 
varying from about 20eV to a few keY. They started with the atomic charge 
density to construct all three short-range potentials, namely the static potential 
VSF, the local exchange potential Ve .. and the absorption potential Vab• For Vex the 
Hara free-electron gas model was employed and for Vab Eq. (8.7.8), derived by 
Staszewska et al. (1983), was used. For E > lOOeV, (7.7.37) or only its dipole 
part represented the long-range polarization potential Vpo1' At lower impact 
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energies, (7.7.37) overestimates Vpob so it was replaced by the correlation polar­
ization potential (Padial and Norcross, 1983). The sum of all four potentials was 
the complex optical potential Vop(r). Complex phase shifts 1J1 for various values 
of I were obtained for this potential, and from (3.2.18) and (3.9.13) for the jth 
atom of the molecule we have 

--.L. 
tn 

No 
a -

. 41t' 
crf =-lmj·(8=O) k2 } 

= 4~ 1m L(21 + l)exp(i 1Jil) sin l1il 
k I 

300eV 

x 
101 __ ...L-""",,-~---I_..!....-...I-""""'--..L---' 

o 20 40 60 80 10012.0 140 160 180 

SCATTERING ANGLE (deg.) 

FIGURE 9.19 Angular dependence of the differential cross section for e-CF4 elastic scattering at 
2()()- and 300-e V impact energies. Theory: solid curve, Khare et al. (1994c); broken curve, Raj 
(199Ia). Experiment: open circles, Sakae et al. (1989); crosses, extrapolated data. Reproduced from 
"Absorption effects in the elastic scattering of electrons by the CF4 molecule at intermediate 
energies," S.P. Khare, D. Raj and P. Sinha, J. Phys. B 27, 2569, 1994, with permission from the 
Institute of Physics Publishing, Ltd., UK. 

orders@himanshubook.com



318 Chapter 9 

Finally, for the molecule 

The values of of for a few molecules studied by Joshipura and his associates are 
given in Table 9.8. Sun et al. (1994), Jiang et al. (1995), and Liu and Sun (1996) 
also employed the AR approach. 

9.8.2 Modified Additivity Rule 

It should be noted that both in the AR and the lAM, atomic polarizabili­
ties are employed in the construction of the long-range polarization potential. 
Quite often the polarizabilities of the constituent atoms are quite different from 
the molecular polarizability. For example, the average spherical dipole polariz­
ability of the CO molecule is 13.l7a~, whereas the polarizabilities of the free 
atoms C and 0 are 14.17a~ and 5.2aij, respectively. Thus the polarization effect 
is not adequately treated in the AR and in the lAM. This effect contributes sig­
nificantly in the forward direction, which is used to evaluate ar. Hence, Joshipura 
and Patel (1996) proposed the modified additivity rule (MAR), in which the 
spherical part of the electron-molecule interaction is taken as 

(9.8.25) 

where the short-range interaction potential VSR is 

(9.8.26) 

and V~R is the sum of the static field, exchange, and absorption potentials for the 
jth atom of the molecule. The long-range potential VLR is due to the polarization 
of the molecule. Joshipura and Patel took only the dipole part of the polarization 
potential given by (7.7.37) for VLR, with CXtt as the average spherically symmetric 
dipole polarizability of the molecule. Using the partial wave method the imagi­
nary parts of the elastic scattering amplitudes one obtains fSR( () = 0) due to V~R 
and ffJ/.( () = 0) due to VLR• These amplitudes are converted into a? and a~ol with 
the help of the optical theorem. Finally in the MAR, the total collision cross 
section for the scattering of electrons by the spherically symmetric potential of 
the molecule is given by 

(9.8.27) 
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It should be noted that above equation considers only the spherical part of 
the interaction. At the low impact energies the rotational excitation of heteronu­
clear molecules, involving the permanent dipole moment, becomes important. 
For example, Jain (1988) found that for NH3 the rotational excitation cross section 
O"O~l from J = 0 to J = 1 is about 17% of the measured cross section O"r at 
lOOeV. Joshipura and his associates included this dipole contribution in (9.8.27) 
through the FBA. Due to the dipole moment D, the asymptotic dipole potential 
is equal to -D·rlr. For this potential, the excitation cross section 0"~1 in the 
FBAis 

(9.8.28) 

This contribution is added to (9.8.27). Hence, for polar molecules the total cross 
section, in MAR, is given by 

~ j pol 
O"r = £..JO"r +O"r +O"O~I (9.8.29) 

We note that O"~ is due to the constituent atoms but O"rl and O"O~l depend upon 
the molecular properties such as dipole polarizability, dipole moment, and ion­
ization potential. Thus the MAR is a better model than the AR, and it has been 
applied by Joshipura and his associates to a number of molecules. Some of these 
results are shown in Table 9.8 and will be discussed further on. 

9.8.3 The Single-Center Charge Density Method 

Jain (1986, 1987, 1988) employed the spherical complex-optical potential 
(SCOP) to calculate O"el and O"ab in the intermediate- and high-energy range for 
electron-molecule collisions. Encouraged by its success Jain and Baluja (1992) 
extended it to many polar as well as nonpolar molecules. They considered those 
molecules for which the molecular wave functions are available at the 
Hartre-Fock level. Using these wave functions the charge density p(r) was 
obtained and utilized to construct the static field, local exchange, polarization, 
and absorption potentials. The sum of these four potentials constituted the optical 
potential. Due to the multicenter nature of the molecules their Vop(r) was non­
spherical. Jain and Baluja expanded Voir) around the center of mass of the mol­
ecule and considered only the spherical term of the expansion. With this complex 
spherical interaction potential, the scattering matrix SI for each partial wave was 
obtained. Finally (3.9.19), (3.9.23), and (3.9.24) were used to find 0":10 O"!b, and 
O"h respectively. They employed the FBA to include the contribution of the dipole 
and quadrupole terms obtained in the multipole expansion of Vop(r). The cross 
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sections 0'0 ..... 1 and O'o ..... z due to anisotropic dipole and quadrupole terms were added 
incoherently to O'T to get O'T' Thus 

(9.8.30) 

For polar molecules the contribution of the anisotropic terms becomes quite 
important for E < 100eY. Hence, the incoherent addition is likely to introduce 
error in O'T at low energies. The SCOP method has been applied to Hz. Liz. 
HF, Cf4, Nz, CO, CzHz, HCN, Oz, HCI, HzS, PH3, SiH4, and CO2 molecules 
in the energy range from 10 e V to 5 ke V. The results will be discussed a little 
later. 

Kumar et al. (1995) and Jain and Tripathi (1997) followed the procedure 
of Jain et al. (1991) to investigate the scattering of electrons by GeH4 (germane) 
and SiH4 (silane) molecules, respectively. They also employed the molecular 
charge density, which was obtained by using nonrelativistic multicenter molec­
ular wave functions at the Hartree-Fock level, to construct their spherically sym­
metric VSF,vex,Vpoi. and VabPotentials. However, as they solved the Dirac equation 
instead of the nonrelativistic Schrodinger equation, the spin-orbit interaction was 
automatically included. They calculated the elastic DCS, O'ei. O'm (the momentum 
cross section), and O'T for the energy of an incident electron ranging from a few 
to several hundred eY. For the heavier Gef4 molecule they took Vab = O. Thus 
for this molecule their O'el and O'T are equal. They also obtained the polarization 
parameters P, T, and U. 

Figure 9.20 shows the theoretical elastic DCS of electrons scattered by 
GeH4 0btained by Kumar et al. (1995), by Jain et al. (1991) in their SFPE model, 
and by Dillon et al. (1993) with their continuum multiple scattering (CMS) 
model, along with the experimental data. It is evident from the figure that the 
theoretical cross sections of Dillon et al. are in best agreement with the experi­
mental data. The agreement between the theoretical cross sections of Kumar 
et al. and the experimental data is also quite satisfactory. However, these cross 
sections differ strongly from the CMS cross sections in the backward direction. 
The SFPE model of Jain et al. (1991) is found to underestimate the cross sec­
tions over most of the angular range. Their model does not include the spin-Drbit 
interaction. Its inclusion by Kumar et al. has improved the agreement between 
theory and experiment. The theoretical curves of P, T, and U obtained by Kumar 
et al. also exhibit structure, which is in accord with expectations. 

Kumar et al. (1995) have compared their DCS, P, T, and U of GeH4 with 
those of the Ge atom and isoelectronic Kr atom. They noted that their Gef4 
results are close to those of the Ge atom but differ significantly from those of the 
isoelectronic Kr atom. From their observations they concluded that for the heavy 
molecule GeH4 the four hydrogen atoms hardly contribute to the scattering 
process. 

orders@himanshubook.com



Collision of Electrons with Molecules 321 

103 -fa 
10 .... 

102 )( 

~ 

en 
C"oI' 

E - 101 
c 
0 

'';; 
u • III .. 100 
III 
0 
~ 
u ... 
0 

10-1 :.: 
c 
~ • .... . . ... .... . - : C 

30 60 90 120 150 180 

Scattering angle (deg.) 

FIGURE 9.20 Differential cross section for elastic scattering of electrons from the Ge~ molecule 
at IOOeV. Calculations: -- Kumar et aI. (1995); .... , SFPE results from Jain et al. (1991), 
- - - - eMS results from Dillon et al. (1993). Experiment: e, Dillon et al. (1993). Reproduced from 
"Spin polarization and cross sections of electrons elastically scattered from germane molecules," 
P. Kumar, A. K. Jain, and A. N. Tripathi, J. Phys. B 28, L387, 1995, with permission from the Institute 
of Physics Publishing, Ltd., UK. 

The results obtained by Jain and Tripathi (1997), Tanaka et al. (1990) and 
Jain (1987) for SilL molecule are similar to those for the GelL molecule. 
However, for the relatively lighter molecule SiH4, the four covalent hydrogen 
bonds introduce additional features into the DeS and polarization parameters 
(Jain and Tripathi, 1997). 

The single-center method was also utilized by Joshipura and Vinodkumar 
(1997a), but they started with the atomic charge density rather than the 
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molecular charge density to calculate Gr for HF, OH, NH, and CH hydrides, 
which are highly reactive molecules. Following Watson (1958) they expanded 
the charge density of the hydrogen atom about the nucleus of the heavier atom. 
To take an approximate account of the valence bond effect they represented the 
hydrogen atom by (6.11.1) with Zs= ...JIM, where IMis the ionization potential of 
the molecule in Rydberg units. The spherical part of the expanded charge density 
/JH(r; Z" R) was added to the charge density of the heavier atom A to obtain the 
molecular charge density p~r; Z" R). Thus 

(9.8.31) 

where R is the internuclear distance. This charge density was utilized to construct 
the spherically symmetric and real static field, the local exchange potential, and 
the imaginary (absorption) potential. For E > l00eV the polarization potential 
was represented by the dipole part of (7.7.37) with the molecular dipole polariz­
ability. At lower energies an independent correlation polarization potential (Jiang 
et al., 1995) was used. The sum of the above four potentials was their spherically 
symmetric optical potential. With this potential the method of partial waves was 
used to obtain G}. To this cross section GlHh obtained in the FBA, was added to 
get Gr: 

(9.8.32) 

Joshipura and Vinodkumar (1997 a) used the above SC method to calculate Gr for 
HF, OH, NH, and CH molecules in the energy range 3~2000eV. Their results 
are shown in Table 9.8. 

Joshipura and Vinodkumar (1999) modified their SC method for molecules 
having two heavy atoms A and B and a number of light atoms for example 
AH.BHm. In such cases the molecule is divided into two groups. For the above 
molecule, AH. and BHm are taken as the two groups. Now the charge densities 
of the n hydrogen atoms are expanded about the atom A and those of m hydro­
gen atoms are expanded about the atom B. Then from (9.8.31), 

(9.8.33a) 

and 

(9.8.33b) 

where RA- H and RB- H are the bond lengths for A-H and B-H combinations, respec­
tively. The bond length RA- B is usually greater than RA- H and RB- H, which may be 
different from each other. Now using the SC approach Gr (AHn) and Gr (BHm) 
are calculated. Finally, following the MAR approach we get 
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(9.8.34) 

Since this method combines the MAR and the SC approaches, it is known as the 
MAR-SC approach. Joshipura and Vinodkumar (1999) have employed the MAR 
as well as the MAR-SC methods to obtain (Jr for C2H2, and C2H4, and CH3X 
molecules (X = CH3, NH2, OH, and F) due to electron impact in the energy range 
from 30 to 1000eY. Their values are shown in Table 9.8. It may be noted that 
for CH3X molecules n is always 3 but m = 3,2, 1, and 0 for CH3, NH3, OH, and 
F groups, respectively. 

In both the above methods PH, in (9.8.31) and (9.8.33) is the charge density 
of a free hydrogen atom. However, in the formation of the molecular covalent 
bond A-H there is a readjustment of the electronic charge. To take this readjust­
ment into account Joshipura et al. (1999) modified (9.8.33) to 

(9.8.35) 

where 

fA = 1 + nN(H, A)/ N(A) (9.8.36) 

and 

fH = 1- N(H, A)/ N(H) (9.8.37) 

where N(A) and N(H) are the number of electrons in the free atoms A and H, 
respectively, and N(H, A) is the number of electrons transferred from each hydro­
gen atom to atom A. It is easy to verify thatfA andfH, given by (9.8.33), ensure 
the conservation of electrons in the molecule. N(H, A) have been tabulated 
by Bader (1990) for a number of atoms. Using this MAR-SCCT (modified addi­
tivity rule-single center-charge transfer) approach. Joshipura et al. (1999) calcu­
lated (Jr for C~, SiH4, F2, H2S, and C2H6 molecules. Some of their cross sections 
are shown in Table 9.8. 

Let us now consider Table 9.8, where the (Jr obtained by the AR, MAR, 
SC, AR-SC, MAR-SCCT, and SCOP methods are shown in the energy range 
l00-lOooeY. Representative experimental cross sections are also shown for com­
parison. The table shows that for O2, N2, CO, and CO2 molecules the (Jr (AR) are 
smaller than the (Jr (SCOP) and closer to the experimental data. However, for 
Si~, C~ and HF molecules the (Jr (AR) are greater than the (Jr (SCOP). For 
Si~ the SCOP method yields better cross sections. But for CH4, at E = 100 and 
300eV the (Jr (Exp.) lie between the (Jr (SCOP) and the (Jr (AR) and at E = 500 
and 700 e V, the (jr (AR) are closer to the experimental data. No experimental data 
exists for the HF molecule. 
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A comparison between (IT and (AR) and (IT (MAR) is possible for the CO, 
NO, N02, CO2, NH3, CH4, C2H2, CH30H, C2~' CH3F, HF, OH, CH, and NH 
molecules. For all of them the (IT (MAR) are less than the (IT (AR) at low values 
of the impact energy but are practically the same at high E. It is also to be noted 
that for almost all the molecules, the (IT (MAR) are closer to the experimental 
data in comparison of to the (IT (AR). This shows that the effect replacing the 
atomic polarizabilities by the molecular polarizability reduces the value of (IT 

and, in general, yields better agreement with experiment. Thus out of 
the AR, MAR, and SCOP methods, the MAR method seems to give best cross 
sections. 

Let us now compare (IT (MAR) with (IT (MAR-SC). Values for these two 
sets of the cross sections are available for C2H2, CH30H, C2~' CH3F, and 
CH3NH2. In all these cases we find that the (IT (MAR-SC) are smaller than the 
(IT (MAR). For all the molecules, with the exception of C2H4 and CH30H, the (IT 

(MAR-SC) are in better agreement with the experimental data in comparison 
with the (IT (MAR). It is noted that in a molecule such as C2H6, where the C-C 
bond length is appreciably greater than the C-H bond length the MAR-SC 
method is quite successful. Thus for the energy range covered in Table 9.8 we 
may conclude that, in general, the overestimation of the cross sections by the 
different theoretical method decreases as we move from the AR method to the 
MAR method and then to the MAR-SC method. 

Joshipura et al. (1999) have calculated (IT for C~, Si~, F2, H2S, and C2H2 

molecules in their MAR-SCCT model. As already discussed, this model con­
siders partial charge transfer from the hydrogen atom to the heavier atom of the 
molecule during the formation of the molecular bonds. A comparison of the (IT 

(MAR) and (IT(MAR-SCCT) shows that the use of single-center charge density 
with charge transfer reduces the cross sections and gives better agreement with 
the experimental data. 

9.8.4 The Two-Parameter Fit for the Total Collision Cross Section O"T 

Trajmar et al. (1983), Christophorou (1984), Stein and Kauppila (1986), 
Sueoka (1987), Szmytkowski (1989), and Jain and Baluja (1992) have sum­
marized the experimental data on electron-molecule systems. Recently 
Szmytkowski et al. (1997) and Karwasz et al. (1999) measured (IT for a number 
of molecules. For quite some time there have been attempts to correlate (IT with 
some microscopic target properties. Floeder et al. (1985) measured (IT for a series 
of hydrocarbons and showed that for E between 100 and 400eV the cross section 
increases linearly with the number of molecular electrons. This correlation was 
supported by Jain and Baluja (1992), who calculated (IT for a large number 
of molecules using their SCOP method. According to this correlation (IT for 
isoelectronic molecules should be the same for any given energy in the 
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Table 9.8 Total Collision Cross Sections for crT (in 10-20 m2) for the Scattering of 
Electrons by Molecules 

(a) 

E(eV) O2 N2 CN C2 

Theory Expt.c Theory Expt. Theory Theory 

AR" scapi> AR" scopl> AR" AR" 

100 9.84 14.59 8.57 10.28 13.49 8.64d 10.87 11.46 
300 5.12 6.87 5.14 5.08 6.03 4.86d 5.3 5.52 
500 3.62 4.82 3.66 3.42 4.18 3.46d 3.62 3.82 
700 2.86 3.72 2.88 2.66 3.20 2.76c 2.8 2.94 
1000 2.22 2.77 2.10 2.02 2.36 2.10' 2.11 2.2 

(b) 

E(eV) CO NO 

Theory Expt,l Theory Expt.c 

AR" MAR' scopl> AR" MAR' 

100 10.65 9.95 13.91 9.01 10.06 8.89 8.46 
300 5.32 5.27 6.22 4.85 5.1 4.91 5.18 
500 3.72 3.72 4.32 3.56 3.52 3.52 5.60 
700 2.9 3.31 2.8 2.76 
1000 2.21 2.21 2.45 2.2 2.12 2.12 2.11 

(c) 

E(eV) N02 CO2 

Theory Expt! Theory Expt. 

AR" MAR' AR" MAR' SCOpl> 

100 14.98 13.35 11.9 15.57 14.45 19.74 12.9' 
300 7.66 7.42 7.2 7.88 7.77 10.58 7.128 
500 5.33 5.35 5.28 5.53 5.56 7.34 5.168 5.12h 
700 4.19 4.19 4.2 4.33 4.33 5.64 4.05h 
1000 3.23 3.23 3.2 3.32 3.32 4.20 3.16h 

(d) 

E(eV) Sif4 NH3 

Theory EXp.k Theory EXp.k 

ARi MAR-SCcri SCOpb AW MAR' 

100 16.51 16.75 12.80 14.70 11.26 9.57 8.54 
300 7.62 8.45 6.32 7.92 5.09 4.32 4.25 
500 5.11 5.89 4.36 5.50 3.39 2.89 2.94 
700 3.76 4.60 3.40 4.14 2.59 2.19 2.20 
1000 2.61 1.96 1.56 1.61 

( Continued) 
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(e) 

E(eV) C~ C2H6 

Theory Exp." Theory Exp.o 

ARi MARm MAR-SCCTi SCOpb MARm 

100 H.40 10.6 9.38 7.75 9.00 16.32 15.4 
300 5.02 4.7 4.89 3.85 4.76 7.44 lOS 
500 3.22 3.2 3.46 2.61 3.18 4.90 9.26++ 

700 2.33 2.47 2.72 1.99 3.13 3.86 

(0 
E(eV) H2O H2S 

Theory Theory 

AR MAR-scm MARm SCOpb 

100 9.0 7.63 10.51 11.03 
300 4.26 3.46 5.16 5.55 
500 2.93 2.42 3.62 3.94 

700 2.27 1.90 2.87 3.10 
1000 1.71 1.42 2.3 2.40 

(g) 

E(eV) C2H2 CH30H 

Theory Exp.' Theory Exp.o 

AR' MAR' MAR'-SC scopb AR' MAR' MAR'-SC 

100 13.18 12.95 11.82 15.58 9.3 14.16 13.87 13.22 12.4 
300 6.33 6.3 5.56 7.21 5.3 6.83 6.79 6.52 8.81+ 

500 4.31 4.32 3.76 4.89 4.69 4.68 4.48 7.55++ 
700 3.32 3.32 2.9 3.71 3.62 3.62 3.50 
1000 2.49 2.50 2.2 2.72 2.73 2.73 2.H 

(h) 

E(eV) C2~ CH3F 

Theory Exp.P Theory Exp.q 

AR' MAR' MAR'-SC Jiang et ali AR' MAR' MAR'-SC 

100 15.24 14.78 14.32 8.18 17.18 13.72 H.8 11.6 H.8 
300 7.096 7.06 6.708 4.06 7.96 6.409 5.76 5.74 
500 4.784 4.78 4.556 2.76 5.20 4.45 3.98 3.98 
700 3.664 3.66 3.538 2.1 3.82 3.46 3.1 3.09 
1000 2.732 2.73 2.628 1.5 2.49 2.59 2.33 2.33 

(i) 

E(eV) HF OH CH 

Theory Theory Theory 

AR' MAR' SC' scopb AR' MAR' SC' AR' SC' 
(with anistropic terms) 

100 6.82 5.76 5.59 5.96 6.39 5.46 6.22 7.47 6.95 
300 3.36 2.84 2.86 3.07 3.37 2.89 3.05 3.64 3.27 
500 2.35 1.88 1.90 2.16 2.40 2.06 2.14 2.49 2.20 
700 1.84 1.55 1.57 1.70 1.89 1.63 1.67 1.93 1.68 
1000 1.39 1.19 - 1.20 1.30 1.45 1.28 1.27 1.45 1.25 
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G) 
E(eV) 

100 
300 
500 
700 
1000 

+at 200eV ++at 250eV . 

AR' 

6.51 
3.30 
2.30 
1.79 
1.35 

Table 9.8 (Continued) 

NH 
Theory 

MAR' 

6.33 
3.04 
2.07 
1.6 
1.20 

327 

se' 
5.40 
2.80 
1.94 
1.52 
1.11 

• Joshipura. and Patel (1994); b Jain and Baluja (1992); 'Dalba et aI. (1980); "Hoffman et aI. (1982); • Joshipura and 
Patel (1996); lZecca et aI. (1995); 'Szmytkowski et aI. (1987); "Garcia and Manero (1996); i Jiang et al. (1995); 

iJoshipura et aI. (1999); 'Zecca et al. (1992); 'Kwan et al. (1983); mJoshipura (1998); 'Zecca et aI. (1991); 
·Szmytkowski and Krystofowicz (1995); 'Sueoka and Morl (1986); 'Krystofowicz and Szmytkowski (1995); 
, Joshipura and Vinodkumar (1999); 'Sueoka and Morl (1989). 

intermediate energy range. Szmytkowski (1989) analyzed (Jr due to electron and 
positron bombardments at 50 and l00eV for a large number of atoms and mol­
ecules. He observed that at a given energy, (Jr of targets with higher dipole polar­
izability are higher. Szmytkowski and his associates measured (Jr for 18 electron 
targets including Ar, H2S, CH3F, C2H6, CH3NH2, CH30H (Szmytkowski 
and Maciago, 1986; Krzystofowicz and Szmytkowski, 1995; Szmytkowski and 
Krzystofowicz, 1995). All these targets are isoelectronic. Szmytkowski and 
Krzystofowicz observed that even for intermediate energies, targets of higher 
polarizability have higher values of (Jr. Correlation of (Jr with the diamagnetic 
susceptibility (Szmytkowski, 1989) has also been noted. Furthermore, it is well 
known that at intermediate and high energies (Jr decreases with an increase in 
the impact energy E. 

Zecca and his associates (Zecca et aI., 1992; Karwasz et aI., 1993) tried to 
parametrize (Jr. They noted that (Jr measured in their laboratory in the energy 
range 100-4000eV can be reproduced within the experimental error at incident 
energy E by the following equation: 

( (Jo 

(Jr E) = 1 +(Jo E/b (9.8.38) 

where (Jo and b are two adjustable parameters for each target. It is evident from 
the above equation that (Jo is equal to (Jr (E) at E = 0 and that in the asymptotic 
region (Jr (E) varies linearly with E-1, with b as the slope of the straight line. 
It was also observed that (Jr depends upon the dipole polarizability of the 
molecule. According to Joshipura (1998) (Jr varies as ...J(a/E) and the constant of 
proportionality depends upon the size of the molecule. Karwasz et al. (1999) 
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examined the variation of (IT with ~ a for 20 molecules. They noted that the 
parameter (Io could be well approximated by the expression 

( -Ja ) 2 
(Io = 20 a~2 -1 ao (9.8.39) 

Thus using the known values of a given in the CRC Handbook of Chemistry and 
Physics (Ed. Lide, 1990) the value of (Io can be obtained. To determine the value 
of b, occurring in (9.8.38), Karawasz et al. started with the following additivity 
relation: 

(9.8.40) 

where the molecule A/BnCm contains I, m, and n number of A, B, and C atoms, 
respectively. The above relation along with the experimental values of (IT of the 
molecules were employed to determine b for atoms. For example the experi­
mental values of (IT for H2 were used in (9.8.38) to obtain b(H2)' From (9.8.40), 
b(H) is equal to 0.Sb(H2)' Thus b(H) is determined; b(C14) is obtained with 
the help of the experimental values of (IT (CH4). To obtain b for the carbon atom 
following relation is employed: 

b( C) = b( CH4 ) - 4b(H) 

A similar procedure has been used to determine b for other atoms. Table 9.9 
shows the values of b derived by Karwasz et al. (1999) for a few atoms. 

These values of b were then used in (9.8.40) to determine b for the 
molecule of interest. For example, 

b( CH3Cl) = b( C) + 3b(H) + b( Cl) 

Table 9.9 Semiemperical Values of Atomic Cross-Section 
Parameter b (in Units of 1O-20 m2keV) Derived by Karwasz 

et al. (1999) 

Atom b 

H 0.22 
C l.Ol 
F 1.38 
Si 2.57 
S 2.94 
Cl 3.20 
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Using Table 9.9 we get b(CH3Cl) equal to 4.87 x 1O-20 m2keV. Using the known 
value of a in (9.8.39), we can obtain the value of 0"0 for the molecule. Finally 
the calculated values of 0"0 and b are put into (9.8.38) and O"r for the molecule at 
a particular energy E can be determined. Karwasz et al. have remarked that their 
model produces the experimental values of O"r fairly well, better than those given 
by the theory of Jiang et al. (1995). 

A way to include the effects of molecular geometry in the calculation of 
O"r for linear molecules has been proposed by Jiang et al. (1997a, and b). 
Zecca et al. (1999) expressed O"r in term of the atomic cross sections O"A by the 
relation 

(9.8.41) 

where kA is the energy-dependent expansion coefficient. Its value depends upon 
the geometry of the molecule and it goes to unity at high values of E. Thus at 
high E the method of Zecca et al. gives the same molecular cross section as 
obtained by use of the AR. For diatomic molecules the following three cases have 
been considered: the two atoms are (i) completely separate, (ii) partially overlap, 
(iii) completely overlap. For all the three cases the procedure to obtain kA has 
been given. This geometrical AR model is found to give fairly good values of O"r 

for the linear molecules NO, N20, and CO2 for energies as low as 50eV. Using 
this model Zecca et al. have also calculated O"r for N02 (a bent molecule) and 
CH4• 

We conclude this chapter with by noting that for the light molecules the 
AR method gives reasonable molecular cross sections for E ~ lOOeY. The geo­
metrical AR, MAR, SCOP, SC, MAR-SC, and MAR-SCCT models are con­
ceptually better than the AR, but they all overestimate O"r at lower energies. For 
the heavier molecule one is required to consider still higher values of E to get 
satisfactory results using these methods. A lot more effort is needed to calculate 
reliable molecular cross sections at low impact energies. 

Questions and Problems 

9.1 (a) Why is it more difficult to calculate cross sections for electron-molecule 
collisions in comparison with those for electron-atom collisions? 

(b) What is the Born-Oppenheimer approximation? Discuss its utility and 
validity in the construction of the molecular wave functions? 

9.2 Differentiate among: (a) I: and n states; (b) gerade and ungerade states; (c) 
+ and - states for a diatomic molecule. 
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9.3 Pauling and Wilson (1935) represented the ground state of the hydrogen 
molecule in a separate form and took 

where vCr) = N[exp(-ZrA) + exp(-ZrB)] are one-electron normalized orbitals 
and extend to both nuclei A and B. The variational principle gives Z = 
1.193aol and the internuclear distance RAB = 1.33ao. Show that vCr) represents a 
L state and that 

2 Z3 -1 
N =-(1+S) 

2n 

Show also that the overlap integral is 

Further show that in the separated atom limit of the hydrogen molecule the static 
potential for e-H2 elastic scattering is 

where V~ (H, Z) and V~t (H, Z) are the static potential for the scattering of elec­
trons by hydrogenic atoms situated at A and B, respectively. 

9.4 One center wave function of Carter et al. (1958) for the ground state hydro­
gen molecule is given by 

with normalized vCr) as 

N 
vCr) = -J1i [exp(-qr) + p(1 + sr)exp(-tqr)] 

where q = 1.0837ao1, p = -0.4585, s = 1.196ao1, and t = 4.1524. Derive an expres­
sion for N2 and calculate its value. 

9.5 List all the assumptions that are made in the derivations of (9.3.9) and 
(9.5.10) and discuss their validity. 

9.6 Take again for the hydrogen molecule 
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and assume that one-center normalized molecular vCr) are spherically symmet­
ric. Using the above wave function for H2 show that the averaged differential 
cross section i(H2) for the elastic scattering of electrons by hydrogen molecule 
in the FBA is 

i(H2) = ~[.!.(1 + sinKR)_4J sin(KR/2) + J2] 
K4a5 2 KR KR 

where J = (v(r )le iKr Iv(r») and R is the internuclear distance. Further show that 
i(H2) is finite in the forward direction. 

9.7 In the independent atom model (lAM) the elastic differential cross section 
i(H2) is given by (9.8.23). To include exchange in IH we consider triplet and singlet 
scatterings for the e-H system [see Eq. (7.4.17)]. Show that to give iH2 in terms of 
IH(Z), it is physically incorrect to include singlet scattering in IH(Z). Further con­
sider the united atom limit of H2 to show that a proper form of fH(Z) is 

where fd and g are the direct- and exchange-scattering amplitudes, respectively, 
for elastic scattering of electrons by a hydro genic atom. Hence, in the lAM 

- / 2( sinKR) IH2 =2lfd -g 21 l+KR 

9.8 Using (9.7.7), (9.7.9), and (9.7.15) derive expressions for D(t) and Ni in terms 
of the coefficients an. Further, take the values of an from Table 9.3 and show that 
for the H2 molecule 

and 

D(t)=0.3856-~(0.3754+ 3.199 _ 6.24~ + 2.85~) 
(t+ 1) t + 1 (t+ 1) (t + 1) 

Calculate the ionization cross section 0; for H2 due to electron impact in the BED 
model of Kim and Rudd (1944) for t varying from 1 to 20. Compare your cross 
sections with the experimental data of Rapp and Englander-Golden (1965). 
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9.9 Compare the MAR-SC (modified additivity rule-single-center) approach of 
Joshipura and Vinodkumar (1999) with the SCOP (single-center optical poten­
tial) approach of Jain and Baluja (1992). Point out their similarities and differ­
ences. Why do these approaches fail at low impact energies? 

9.10 Using dipole polarizabilities and the total collision cross sections for H2, 

CH4, and HF molecules, how will you obtain the parameter b, occurring in 
(9.5.38), for H, C, and F atoms. 

Use the values of b given in the Table 9.9 and the dipole polarizability 
(equal to 3.29 x lO-30 m3) of the CH3F molecule to calculate (JT for this molecule 
due to electron impact in energy range l00-1000eY. Compare your results with 
those given in Table 9.8(h). 
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