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Foreword

Collisions of electrons with atoms and molecules provide a unique diagnostic
probe of the fundamental interactions of many-electron systems and are the basic
physical processes that determine the behavior of ionized gases, ranging from
those created for plasma processing technologies to the plasma existing in the
early universe after the first few seconds. Early experiments on electron colli-
sions played a central role in the development of quantum mechanics. The
demonstration of diffraction of electron beams by gases confirmed the quantum
mechanical duality of waves and particles and measurements of the energy losses
in electron collisions in gases established the discrete nature of the energy level
structure of atoms and molecules.

To understand and to predict quantitatively the behavior of ionized gases
produced by electrical discharges in lighting systems and by lightning or created
in fusion plasmas or found in astrophysical environments requires development
of the theory of electron collisions and the construction of mathematical methods
that enable reliable calculations of the critical collision parameters identified by
the theory. Experiments provide essential benchmarks to test the reliability of the
theoretical concepts and calculations but cannot hope to produce the vast array
of collision data that enter into plasma modeling.

Photon interactions are of equal importance both for the fundamental infor-
mation uncovered by studies of the effects of radiation on atoms and molecules
and because many kinds of plasma are created by the absorption of photons and
reveal their properties through the emission of photons.

Professor Satya Khare has made many notable contributions to the theory
of electron and photon collisions with atoms and molecules and in this book he
presents a systematic unified introduction to the still evolving theory that is

vii
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viii Foreword

needed to interpret the wide range of physical phenomena that occur when elec-
trons and photons collide with atoms and molecules.

Alexander Dalgarno F. R. S.

Phillips Professor of Astronomy
Harvard University
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Preface

The present book deals with nonrelativistic quantum mechanical theories for the
collision of microprojectiles with potential fields, atoms, and molecules. The
spinless particles, the electrons (with occasional reference to its antiparticle i.e.,
positron), and the photons are taken as projectiles. This introductory book is the
outgrowth of lectures I delivered at Meerut University, the University of Western
Ontario, London, Ontario and Wayne State University in Detroit. It contains a lot
of new information and refers to many papers published in the 21* century. The
prerequisites for understanding this material are introductory courses in atomic
physics and quantum mechanics.

An attempt has been made to develop the subject matter in a very system-
atic manner. The basics of collision physics are introduced in Chapter 1. As the
physical state of a free particle changes in a collision, in Chapter 2 we discuss
the motion of a free particle highlighting its characteristics such as energy,
momentum, and wave function along with its partial wave expansion in terms of
its angular momentum. This is followed in Chapter 3 by a discussion of the colli-
sion of a spinless particle with a potential field. To facilitate our understanding
of the effect of open inelastic channels on elastic scattering in the case of
electron—atom collisions (Chapters 7 and 8) we have considered a complex
absorption potential field. Thus the concept of the absorption cross section is
introduced and it is shown that the optical theorem is a consequence of the
conservation of incident flux. The various approximate methods for evaluating
scattering amplitude using integral and differential approaches are described.

In Chapter 4 the spinless particle is replaced by an electron. With the use
of nonrelativistic theory, the spin-orbit interaction potential is obtained and with
its help spin-flip scattering is discussed. Readers are introduced to the concept of
polarized electrons, and the impossibility of their production by a Stern—Gerlach
type of experiment is demonstrated. With the help of the density matrix the polar-
ization of unpolarized electrons due to scattering and the scattering parameters
are discussed. The measurements of the Shermann function and the degree of
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X Preface

polarization of an electron beam by a Mott detector are described. In Chapter 5
collision between two particles has been considered. It is shown that the two-
body collision is equivalent to the collision of a single body with a potential field.
Thus all the methods developed earlier become applicable. For identical parti-
cles, the symmetry condition imposed on the wave function of the system gives
the exchange scattering along with the direct scattering. Collisions between two
bosons and two fermions are discussed.

In Chapter 6, collision of photons with multielectron atoms is dealt with.
Expressions for the excitation and ionization cross sections and the Einstein’s A
and B coefficients are obtained. The concept of polarized photons in terms of
their spins and the spin states of photons are discussed. The Stokes parameters,
which are required to completely determine the polarization of a mixed photon
beam is introduced. The density matrix and I(c), the intensity of the transmitted
beam when a mixed beam of intensity / moving along the z-axis is passed through
a Nicol prism, whose axis of complete transmission makes an angle o with
the x-axis, are given in terms of the Stokes parameters and /. The theory of
the production of polarized electrons by photoionization of unpolarized atoms by
circularly polarized light (Fano effect) is described.

Chapters 7 and 8 deal with the collision of electrons with atoms. In Chapter
7 a number of approximate methods derived from the integral approach are
described. It is shown that the various approximate methods are obtained by
taking different approximate forms of the exact free-particle Green’s function.
The relationship between photon and electron impact collisions is highlighted.
The recent successful method I developed for inner-shell ionization is presented.
The next chapter deals with the approximate methods obtained from the differ-
ential approach. The origins of the static field, local exchange, polarization, and
absorption potentials are explained. The usefulness of reducing a many-body
problem to a one-body problem with the help of an optical potential and the con-
struction of the optical potential are discussed. The spin—orbit potential is also
included to obtain polarization S, T, and U parameters for atoms. The electron
impact excitation of atoms using the electron—photon delayed coincidence tech-
nique is described. The usefulness of the Stokes parameters (described in Chapter
6) in that technique to study collision dynamics is discussed. In both chapters the
theoretical results obtained with the help of the different approximate methods
are compared with the experimental results for a good number of atoms.

In Chapter 9 the collision of electrons with multicenter molecules is
considered. It is a formidable problem. Its reduction to tractable forms, which
yield reasonable results, is described. Application of, e.g., the first Born, the
second Born, and the modified Glauber approximations are discussed. Recently
developed models to evaluate ionization (including dissociative ionization)
cross sections of molecules that are due to electron impact are given. The inde-
pendent-atom model and its modifications such as the modified additivity rule,
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Preface xi

and single-center charge density method, which utilize the differential approach,
are also discussed. The theoretical results are compared with the available exper-
imental data to demonstrate the usefulness of the various approximate methods.

References are cited in the text and a set of problems is provided after each
chapter.

I acknowledge the benefit 1 derived from fruitful discussions with my
colleagues and students at the universities mentioned above. I am indebted to my
teacher and mentor, Prof. A. Dalgarno, who has kindly written the foreword for
this book. Useful discussions and correspondence with Professors A. Dalgarno,
K. L. Joshipura, K. C. Mathur, W. J. Meath, R. Srivastava, A. N. Tripathi, and
J. M. Wadhera and Drs. A. K. Bhatia and A. Temkin are gratefully acknowledged.
Invaluable help has been provided to me by my children, Vandana, Seema, Arun,
and Jaydeep and my student Manoj in the preparation of this manuscript. I
heartily thank all of them. Thanks are also due to Mr. Ravi Jain and Mr. R. R.
Verma for their typing services and to Mr. Chandra Prakash Rastogi for prepar-
ing all the diagrams. Above all, I would like to acknowledge the help received
from my wife, Pushpa, to whom this volume is dedicated.

I sincerely hope that this book will be useful to students and young workers
in the field of atomic collisions. Suggestions and criticisms are welcome.

S. P. Khare
Meerut
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1

Basics of Collisions

1.1 Introduction

A collision is basically an interaction between two or more systems, each
containing one or more particles. In a collision process, two particles or systems
approach each other from a big distance, interact (collide) for a short time, and
then separate again. The interaction time is very short in comparison with the
time for which the system (formed by the colliding partners) can be observed.
During the collision a large force acts between the colliding partners and the post-
collision state is different than the precollision state. From a study of these two
states it should be possible to learn about the nature of interaction between the
colliding partners. Collision techniques have been successfully employed to learn
about the internal structure of the microparticles and the nature of interactions
between different microparticles. For collisions involving macroparticles, the
associated de Broglie wavelengths are very small in comparison to the size of
the particles, so classical mechanics can be employed to describe such collisions.
However, for the microscopic objects, the de Broglie wavelengths are large, so
classical mechanics becomes inadequate and must be replaced by quantum
mechanics. In the collision of microscopic objects, the concept of physical con-
tact between the colliding partners becomes irrelevant.

1.2 Collision Cross Section

One of the most important parameters in collision physics is the collision
cross section. A schematic diagram for the measurement of the collision cross
section is shown in Fig. 1.1. A well-collimated beam A of monoenergetic parti-
cles falls on a thin scattering chamber C that contains n number of B targets. Due
to collisions, some of the projectiles are scattered in all possible directions around
C and a few of them are detected by the detector D. The distances SC and CD
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2 Chapter 1

S

FIGURE 1.1 Schematic diagram for the scattering of projectiles A by the targets B.

are several orders of magnitude greater than the sizes of the projectiles and the
targets. The experiment is carried out under steady state conditions; i.e., the flux
F of the projectiles and the number of scattered particles detected by D per unit
time are independent of time.

Let the detector D be in the direction (6,¢) with respect to the direction of
the projectiles and at a distance r from the chamber C. If D makes a solid angle
d€2 with C, then the number of particles AN reaching the detector per unit time
is proportional to F, n, and d€2. Denoting the constant of proportionality by 1(6,9),
we have

AN = 1(6,¢)Fnds2 (12.1)

The quantity 1(6,¢) is known as the differential cross section and is expressed in
terms of area/steradian. 1(6,¢)d(2, is equal to the number of particles scattered in
the direction (8,9), in the solid angle d€2 per unit time per unit incident flux per
target. An integration of the differential cross section over the solid angle yields
the integrated (also known as total) cross section 0. Hence

1(6,9) sin@ d@ d¢ (122)

qQ
1l

O ey N

o'——.:

This is equal to the total number of particles scattered in all possible directions
per unit flux per unit time per target. In many cases, owing to cylindrical sym-
metry 1(6,9) is independent of ¢ and we have
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Basics of Collisions 3

=21 j 1(6)sin @ d6 (1.2.3)
0

The momentum transfer cross section o, is also obtained by integrating 1(6,¢)
but with a weight factor (1 — cos6). Hence, with axial symmetry,

O, = 27:]1(9)(1 —cos8)sin@ do (1.2.4)
0

Now, unit flux means one projectile per unit area per unit time; hence o is the
cross-sectional area that a target presents to the direction of the incident beam.
Similarly, 1(6,¢)dQ2 is the effective area of the target, which deflects the projec-
tiles in the solid angle d€X6,¢). Equation (1.2.1) assumes that the projectiles and
targets do not interact among themselves and that one projectile collides with
only one target. This is possible only for small values of F and n, however, and
for more accuracy in the measurements of AN, the values of F and n should be
large. Hence, one is required to choose optimum values of F and n.

1.3 Types of Collisions

Since we are examining collisions under steady state conditions, the total
energy E; of the whole system remains conserved. Broadly speaking we have
two types of collisions: (i) elastic and (ii) inelastic.

1.3.1 Elastic Collisions

In an elastic collision between a projectile A and a target B, the internal
structures (the potential energies) of A and B do not change. We represent it by

A+B—>A+B (1.3.1)

with
Er=K,+V,+Kg+Vs =K1+ Vi +K;+Vj (1.3.2)
Vi=Vy, and V=V (1.3.3)

where K, and V, are the kinetic and the potential energies, respectively, of the
projectile A before the collision. Due to the collision they change to K; and V,
respectively. Kp, Vg, Kz, and Vj are similar quantities for the target B.
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4 Chapter 1

Use of Eq. (1.3.3) in (1.3.2) yields
KT=KA +KB =K,,1+Kl,; (134)

i.e., along with E7 in an elastic collision, the total kinetic energy is also con-
served. If in such a collision, A loses AK kinetic energy then B gains the same
amount of kinetic energy. The reaction

e+H(ls) = e+ H(ls) (1.3.5)

where H(ls) represents a hydrogen atom in its ground state and e is an electron, is
an example of an elastic collision. The hydrogen atom continues to be in the
ground state after the collision. If the relative energy of the electron with respect
to the atom is E, then in the collision the electron loses approximately 2mE/M of
its kinetic energy, where m and M are the masses of the electron and the hydrogen
atom, respectively (see Problem 1.9). This energy is taken up by the hydrogen
atom and its kinetic energy increases by that amount. The well-known Rayleigh
scattering is another example of an elastic collision between photons and atoms.

1.3.2  Inelastic Collisions

In an inelastic collision the internal energy of at least one of the colliding
partners changes. The collision

A+B— A+B* (1.3.6)

is an example of an inelastic collision. The asterisk on B indicates that it is an
excited atom, and Vj is greater than V The reverse of (1.3.6), in which B” is de-
excited to B, is also an inelastic collision. However, in this case the potential
energy is converted into kinetic energy. Such collisions are also known as super-
elastic collisions. In the inelastic collision

e+H(ls) > e+H(2p) (1.3.7)

the electron loses kinetic energy equal to &, - &, where &, is the eigenenergy of
the nth state of the hydrogen atom. A hydrogen atom can also be excited from
its ground state to its 2p state by a photon. However, the energy of the photon
must be equal to &, — &,, which means that photoexcitation, unlike electron
impact excitation, is a resonant process.

Raman scattering,

hvi+M — hv, + M* (1.3.8)
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Basics of Collisions 5

where £ is Planck’s constant, is also a photoexcitation, but it is not a resonant
process; here the photon of the frequency v, is completely absorbed and a new
photon of frequency »; is produced. Furthermore, the postcollision de-excitation
of M to M produces a line of frequency v, — »,. This line is a characteristic line
of the molecule and does not depend upon v;. A change in v, also changes »,,
such that »; — v, remains the same. The collision

A*+B—> A+ B* (1.39)

is also an inelastic collision. However, here A" loses its potential energy,
which is utilized to excite B to B". The law of conservation of energy requires
that

Epr+EB =€, +Ep: (1.3.10)
which is an example of the resonant transfer of energy.
In all the inelastic collisions discussed so far, the atomic particles make

transitions from one bound state to another bound state. These are called
bound-bound transitions. However, in the collision

A+e" 5 A" +e +e' (1.3.11)
the initially bound atomic electron goes to a continuum state. Hence, such an
inelastic collision represents a bound—free transition. Here the atom A is ionized
by a positron and a free electron is produced. For this reaction to proceed, the
initial kinetic energy of the positron must be greater than the ionization poten-
tial 7 of the target A. If in the collision, the positron loses energy W, then

W=1I+e, (1.3.12)

where ¢, is the kinetic energy of the ejected electron. W can vary continuously
from [ to E. In the photoionization

hw+A—-> A" +e (1.3.13)

and
hv=I+eg, (1.3.14)
Thus knowledge of hv and € can be utilized to determine the ioniza-

tion potential of the target atom. This is the basic principle of photoelectron
spectroscopy.
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6 Chapter 1

It is also possible that the energy required to ionize B may come from the
excited atom A*:

A*+B—> A+B +e (1.3.15)

For example, a metastable helium atom on collision with a sodium atom may
ionize the latter with simultaneous de-excitation of itself:

He*(235,)+Na — He(1'S;)+ Na* +e (1.3.16)

Two metastable helium atoms He(2°S,), one with M, = 1 and another M; =0, may
collide with one another to produce a ground state helium atom He(2'Sy), a
helium ion, and a free electron:

He*(2°S,,M, =1)+He*(2°S;,M, =0) > He(1'S;) +He*+e  (1.3.17)
which is known as the Penning ionization. The reaction
A+B" > A" +B* (1.3.18)

involving electron (charge) transfer from A to B is another example of an inelas-
tic collision. The atom B* may be in the ground or excited state. Such collisions
are known as rearrangement collisions.

1.4 The Total Cross Section

When an incident beam A collides with targets B, in general, there are both
elastic and inelastic collisions. Every excited state of the target, having excita-
tion energy &, < E, constitutes an open channel. The elastic channel is always
an open one. Since there are an infinite number of eigenstates in an atomic target
there are infinite number of channels (closed + open). Each channel has its own
differential 1(6,¢) and integrated o, cross sections. The total collision cross
section is defined by

or=Soc =§j1C(9,¢)dQ (14.1)

The symbol S signifies that we sum over the open discrete channels and integrate
over the open continuum (say, ionizing) channels. In a collision the momentum
of the projectile changes from 7k; to 7k, and the projectile is removed from its
initial channel k;. Hence, the total collision cross section 0y can be determined
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FIGURE 1.2 Measurement of the total cross section oy by a transmission experiment.

by carrying out a transmission experiment. In such an experiment, shown
schematically in Fig. 1.2, a beam of monoenergetic particles is allowed to pass
through a collision chamber C. The intensities of the beam before and after the
passage through C are measured. Let these intensities be I, and I; then accord-
ing to Beart’s law,

1= IO eXp("n()lO'T) (142)

where ny is the number density of the targets in the chamber C whose length is
1. From the above relation

1 Iy

Or =mln(7) (1.4.3)

1.5 Applications of Collision Cross Sections

Cross sections for collisions between projectiles such as photons, electrons,
and protons with various atoms and molecules find their applications in a number
of fields, including astrophysics, space physics, plasma physics, fusion, lasers,
radiation physics, mass spectrometry, chemical reactions, and biological science.
Due to collisions the atoms are excited. After a short interval (equal to their life-
time), these excited atoms decay to their low-lying states and emit characteristic
electromagnetic radiation. Most of astrophysics is based on interpretation of the
spectra of radiation reaching earth from outer space. In our own upper atmos-
phere, this radiation produces fluorescence, known as day or night air glow.
During magnetic storms, a large number of charged particles reach the earth’s
magnetic poles and excite atmospheric gases. Their de-excitation produces a
bright glow called aurora. Measurements of the collision cross sections and
their theoretical evaluation have greatly increased our knowledge of microparti-
cles. For example, in the famous Rutherford scattering experiment, an analysis
of the differential cross sections led Rutherford to conclude that all the positive
charges of an atom are concentrated in a very small space, which we now know
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as the nucleus, and that a large empty space in the atom is available for the move-
ment of the electrons. Similarly, the study of inelastic collisions of photons with
molecules (Raman scattering) has enabled us to determine rotational and vibra-
tional structures even of homonuclear molecules.

In this energy-hungry world there is a concentrated effort to harness the
fusion process for the purpose of obtaining a virtually limitless and relatively
noncontaminating energy source. Research on controlled thermonuclear reactions
also requires knowledge of thousands of atomic collision cross sections. Colli-
sion cross sections are also required in the monitoring of energy deposition by
incident particles in medical applications. Photoionization cross sections control
the temperature of corona. The formation of the ionic layers in our upper atmos-
phere is also due to collision processes. Thus atomic collisions play a very impor-
tant role in our day-to-day life. For more information on the application of
collision cross sections see Massey et al. (1969), Christophorou (1971), Fliescher
et al. (1975), Dalgarno (1979), and Lindinger and Howorka (1985).

1.6 Laboratory and Center-of-Mass Systems

Collision cross sections are measured in laboratories, where the targets are
at rest and the projectiles move. However, it is more convenient to calculate the
cross sections in the center-of-mass frame of reference, in which the center of
mass of the system (projectile plus target) is always at rest. In such a frame,
before the collision both the projectile and the target move toward center of mass
(CM) and after the collision, both move away from the CM in such a way that
the CM is always at rest. As expected, the value of the differential cross section
I,(6;,¢,), measured in the laboratory frame of reference, is different from
1(6c,¢c), calculated in the CM frame. In order to compare experiment with
theory it is necessary to find a relation between 7,(6,,¢,) and I{0.,¢c).

Figure 1.3(a) shows a collision between two particles of masses m, and mjp
in the laboratory frame of reference (LF). Before the collision, the projectile A
of mass m,, moves toward the target B (mass mg) with velocity C,. Since B is at
rest, the CM of the system also moves toward B with velocity Vey = m,C,/
(m, + mp) . After the collision, the projectile is scattered in the direction (6,,¢;)
with velocity C; and the target recoils in some other direction. The same colli-
sion as seen in the CM frame of reference is shown in Fig. 1.3(b). Before the
collision m, and mz move toward each other with velocities and V, and V5,
respectively. After the collision the projectile is scattered in the direction (8¢,c)
with velocity V. Since in this frame CM is always at rest, after the collision the
target moves in a direction opposite to that of the projectile. The vector relation-
ship between the different velocities is shown in Fig. 1.3(c).
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FIGURE 1.3 Collision of two particles A and B: (a) in the laboratory frame, (b) in the CM frame,
(c) vector relationship between Cj and V¢, and V7.
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Now
Ci=Veu+Vi (1.6.1)
Equating their z components we get
CicosB; =Voy +V, cosO¢ (1.6.2)

Similarly by equating the x and y components we get

V,sinB. = C;sinf, (1.6.3)
and
¢c =0, (1.6.4)
Thus we obtain
tan@, = E% (1.6.5)
where
o =Veu/ Vi (1.6.6)

In the laboratory frame, the number of projectiles scattered in the direc-
tion (6;,4,), in solid angle d€X(6,,¢,) is proportional to I;(6,¢;)d$X6,,¢,). The
same quantity in the CM frame is proportional to I(6.,¢.)d€X 6.,¢c). Hence, by
definition

1.(0.,¢.)d, = Ic(6c,9c)dS2c
or
1,(0,,¢.)d(cos8,) = I-(6¢,pc)d(cos ) (1.6.7)
because ¢, = ¢¢. From (1.6.5),

o+

cosf; = (1.6.8)

(1+2;wc+ocz)l/2
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where 1 = cos O, so

d(cosHL)=( I+ po o du (1.6.9)
1+2ua+a
and
14+ 200 + o 2
IL(eL,¢)=(—|f;l;|-)—lc(ec,¢) (1.6.10)

In the above equation the mod value of 1 + ¢cosf. is taken to keep I;(6,,¢,)
always positive. Equation (1.6.5) shows that for a < 1, 6, increases from 0 to 7
as 0. increases from 0 to 7. However, for o= 1, we obtain 6, = 6,/2. Thus as 6,
increases from 0 to 7 the laboratory angle 6; increases only from 0 to 7172, i.e.,
no particle is scattered in the backward hemisphere in the laboratory, and in this
case (1.6.10) reduces to

1,(6.,¢) = 4cos(6c/2)1c(0c,9) (1.6.11)

with
0, =6:/2 (1.6.12)
For a > 1, 6, =0 at 8. = 0 and increases with 6., but reaches a maximum value
of sin"'(1/¢¥) for 8. = cos™(=1/a). A further increase in 6. decreases 6, and at
6- = m, 6, = 0. As far as the total cross sections 0, and o are concerned, they
depend on the total number of particles scattered in the whole space. These

numbers are the same in both frames of reference, and we have o, = o¢.
The initial kinetic energy of the system in the L frame is

(Ki), =+m,C} (1.6.13)
The initial and the final kinetic energies in the frame are given by
(K¢ =1m Vi +1mpV; (1.6.14)
and

(Kf)c=';‘mAVA,2+';'mBVB,2 (1.6.15)
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respectively. We also have
myVy+mgVy =m, Vi +mpVz =0 (1.6.16)

Hence, (1.6.14) changes to
(K)o = L(ma[/ms)MV} (1.6.17)

where M = m, + mp. Similarly,

(K7) =3 (ms/mp)MV,? (1.6.18)
We also have
(K)o =1m,Ci - I MVéy (1.6.19)
and
maCa = MVey (1.6.20)

So that (1.6.19) reduces to
(Ki)e =1(ms/ma) MV (1.6.21)
Equating (1.6.17) and (1.6.21), we get
Vew =my[mgV, (1.6.22)
Suppose owing to collision the kinetic energy of the system changes by AE; then
(K)o =(K)c +AE

or

1/2
AE ] (1.6.23)

Vi=V,| 1+
A A[ (Ki)c

where we have used (1.6.17) and (1.6.18). Putting (1.6.22) and (1.6.23) into
(1.6.6), we obtain
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-1/2

o ="2[1+AE/(K,),] (1.6.24)
mp

If AE is positive, i.e., if the reaction is exothermic, then a collision is always
possible. However, for endothermic reactions (negative values of AE) the colli-
sion is physically possible only of (K;)c = |AE|. Hence, |AE| is the threshold of
the reaction in the CM frame. To obtain the value of the AE in the L frame we
use (1.6.20) and (1.6.21) and replace (K;)c by |AE| in (1.6.21). Thus we get

my +mpg

|AE, = |AE], (16.25)

B

where |AE|, =1m,C3 is the threshold energy in the L frame with C, as the thresh-
old velocity of the projectile in the same frame. Equation (1.6.24) shows that for
mg >> m,, o is very small. So that from (1.6.5) we get 6, = 6 and 1(6.,¢) =
1(6,9), i.e., there is hardly any difference in the results obtained in the CM and
L frames.

For elastic scattering, AE = 0 and (K;)c = (Ky)c and from (1.6.24), a = m,/mp.
Further, from (1.6.14) to (1.6.18) V; = V, and V; = V3 i.e., in elastic collisions
the speeds of the particles in the CM frame do not change.

Questions and Problems

1.1 Distinguish among elastic, inelastic, and superelastic collisions. Describe
briefly various types of inelastic collisions.

1.2 An electron with an energy of 12.5eV is scattered by a ground state hydro-
gen atom. What is the highest possible principal quantum number n of the atom
after the collision? If the energy of the incident electron is raised to 50eV what
are the possible values of the energy of the electron ejected from the atom?

1.3 What is Penning jonization? A metastable helium atom in the 235; state,
having thermal energy, collides with a ground state lithium atom and an electron
is ejected. If the ionization potential of the lithium atom is 5.37 eV, find the energy
of the ejected electron in eV. The energy of the excitation of the metastable helium
atom is 5.985 x 10m™

1.4 In a pure rotational Raman scattering a hydrogen molecule is excited from
the j = 0 to the j = 2 rotational level by light of 6 X 107 m wavelength. If the
internuclear distance of the hydrogen molecule is 0.741 X 107'°m, find the wave-
length of the scattered radiation.
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1.5 A deuteron is elastically scattered by a stationary helium atom. The angle of
scattering in the CM frame is 60°. Find the scattering angle in the laboratory
frame.

1.6 Calculate the maximum angle of scattering in the laboratory frame for elastic
scattering of deuterons by stationary hydrogen atoms.

1.7 Prove that for m, > mjp the maximum value of 8, is sin”'(1/¢) and that it
occurs for 8.= cos™(-1/q).

1.8 The threshold of excitation of the hydrogen atoms is 3 Rydberg. What should
be the minimum energy and velocity of a proton so that it can excite the atom?

1.9 A structureless particle A of mass m, and energy E collides with a station-
ary particle B of mass mp. Show that the energy transferred from A to B in the
CM frame is zero but that in the L frame it is given by

2
AE = —m—Ami;(l —cosOc)E

(my +mg)

where 0. is the angle of scattering in the CM frame.

1.10 If in the above problem the particle A recoils in the backward direction in
the laboratory frame, i.e., 6, = 7, show that the energy of the recoiled particle is

E, =(——-——-m" — T )2E

my +mpg
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Motion of a Free Microparticle

2.1 Introduction

In a two-body collision, two free particles approach each other from a big
distance, interact with one another for a brief period of time, and then separate
again, moving far away from one another. For a proper understanding of this
collision process, we start with a study of the motion of a free particle. The
changes in the characteristics of a free particle as a result of an interaction
(collision) are considered in the next chapter. Since microparticles are involved,
in atomic collisions, we need quantum mechanics for our study.

In this chapter we shall also discuss a number of special mathematical func-
tions that are employed to represent a free particle.

2.2 Energy and Linear Momentum of a Free Particle

According to classical mechanics, a free particle of mass m moves on a
straight line with a constant linear momentum p and kinetic energy E (=p*/2m),
the potential energy being zero. For well-defined p and E the uncertainties Ap
and AE are zero. Hence, according to the Heisenberg uncertainty principle,

AxAp = AEAt =k (2.2.1)

where 7 is the Planck’s constant divided by 2, the uncertainties in the position
x and the time ¢ will be infinite, i.e., such a particle cannot be localized in space
and time. Thus in quantum mechanics a straight-line trajectory for a free
particle does not make any sense and definite values of p and E cannot be
assigned.

Fortunately, in atomic collision experiments (see Fig.1.1) the uncertainty
in the position of the projectile is equal to the width of the slit S, which is larger

15
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than the de Broglie wavelength of the projectile by many orders of magnitude.
Hence, a very small value of Ap can satisfy (2.2.1). Further, as the experiment is
carried out under steady state conditions, a very long time becomes available to
measure the energy of the projectiles, and as AE can also be quite small, single
values of p and E may be assigned to a microparticle.

2.3 Wave Function of a Free Particle

Let yy(r, 1) be the wave function of a free particle having linear momen-
tum 7k and mass m. The magnitude of k is equal to 27/A, where A4 is the de
Broglie wavelength of the object. In the nonrelativistic domain, y; is the solu-
tion of the following time-dependent Schrodinger equation:

iha‘f'k(",t)

E =HY(r,1) 23.1)

where the Hamiltonian operator H is equal to —#%/2m times the Laplacian
operator V2. Under steady state conditions the energy E is a constant of motion
and W (r, 1) can be factored as

¥ (r,t) =y, (r)exp(-iEt/h) (2.3.2)

Putting (2.3.2) into (2.3.1) we find that the space wave function y,(r) satisfies
the following time-independent Schrddinger equation:

hZ
—Z_‘VZWk(r)-:EII/k(r) (233)
m

or
(V2+k3)y,(r)=0 234

It is easy to see that the solution of the above equation is
yi(r) = Ae™’ 2.3.5)

where A is the normalization constant. A solution of (2.3.3) is possible for all real
values of the eigenenergy E, which varies in a continuous manner, and y,(r) are
continuum eigenfunctions. The wave given by (2.3.5) propagates in the direction
of k and its wave fronts are the planes perpendicular to k, so these waves are
known as plane waves.
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According to the probabilistic concept of Born, the probability of finding
the object at (r, 7) in the elementary volume dr is given by

dP =¥ (r,)¥:(r,0)dr (2.3.6)
Using (2.3.2) in the above equation gives
dP =y} ()y(r)dr 2.3.7)

Thus dP is independent of time. This is expected because the state represented
by (2.3.5) is a steady state. To obtain the value of the normalization constant A
one is required to integrate (2.3.7) over the whole space and equate the result to
1, because the probability of finding the particle in the whole space is unity.
However, it is evident from (2.3.5) and (2.3.7) that IdP is infinite. Hence, the
continuum wave functions cannot be normalized in this way. They are un-
normalizable wave functions, but for the quantitative calculation, we have to use
normalized wave functions.

2.4  Normalization of Plane Waves

The following two types of normalization of plane waves are employed:
(a) Box Normalization

In box normalization it is assumed that the particle is confined to a cubical
box of length L. Due to this confinement, ¥(r) vanishes at the edges of the box.
Under such a condition, k& does not vary in a continuous manner but takes dis-

crete values given by

2r 2r 2
k=Ln, k="En, and k =—n, 2.4.1)
L L L

where n,, n,, and n, are integers (positive as well as negative), but the three
are not zero simultaneously. The above procedure yields A = L™”, Using this
normalization we carry out the calculations and finally obtain the limit of the cal-
culated quantity as L — oo,

(b) The Dirac Delta Function Normalization

The one-dimensional Dirac delta function 6 is defined by
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6(z-2)=0, if z#Z7 (2.4.2a)
=co, if z=7 (2.4.2b)
and
J. 0(z-7)dz =1
or

[ 78(e-)de = £ (2420)

provided that z lies in the range of 7’. Because of (2.4.2b) it should be understood
that the Dirac delta function has significance only as part of an integrand and
never as an end result. It finds its application in the form of (2.4.2c).

One of the useful representations of the delta function is

- 1 T i(k-k")x
Sk -k’ _2—£ dx

—lim sina(k —k")

= -1 (24.3)

The function given by the right-hand side of the above equation satisfies (2.4.2).
Now

(Wi e )dr = A9 dr (2.4.4)
Using (2.4.3) in (2.4.4) we get
(Wi (r)dr = Aa*2n)’ 5k - k') (2.4.5)

where 6(k — k’) is the three-dimensional Dirac delta function. Hence, a Dirac
delta function normalized plane wave is represented by

1 A
Wk (r) = (27[)3/2 etk-r (246)

where A is assumed to be real, which satisfies the orthogonality relation (2.4.5).
The above wave function is subjected to k (wave vector) normalization. We can
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also have plane waves subjected to p (momentum) normalization. This is given
by

e/ 24.7)

y,(r)= o nh)3/2

For a one-dimensional motion, the energy-normalized plane wave is given by

1/4
ye(r)= ( ) etk (2.4.8)

2n*E

We note that whereas ;(r) is dimensionless, the wave functions ,(r) and yg(r)
have dimensions. We shall continue to represent a plane wave by (2.3.5) but shall
take A = (271)™* whenever required. We also have

eik-(r-r')dk

, 1
[wi )k =——
()
=6(r-r") (2.4.9)
Thus the wave function y(r) also satisfies closure relation (2.4.9). These func-
tions are eigenfunctions of the Hermitian operator —V? with eigenvalue k* and
form a complete set. In quantum mechanics, a member of a complete set is
regarded as a basis vector in a multidimensional Hilbert space. Like the three

basis vectors i, ] and k the basis vectors ¥i(r), w(r), etc. are orthonormal.
Furthermore, just as we can write

f(r)=aii +a;j +ak 2.4.10)
where g; etc are expansion coefficients, similarly we have
20)= [ay(r)dk 2.4.11)

The expansion coefficient g, is the projection of the vector y(r) over y(r) in an
infinite dimensional Hilbert space and is given by

a, = [yl ()x@)dr 2.4.12)

In the derivation of the above equation, (2.4.5) has been utilized. We further
obtain
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[ 2 Og@dr = [ [ [aady i )y ) dkak dr
= ”akafft‘i(k —k")dkdk’

or

[l dr = fla.f’ dk (24.13)

It is evident from the above equation that just as y(r) is the wave function of the
object in r space, similarly g, is the wave function of the same object in k space.
Equation (2.4.12) shows that g, is simply the Fourier transform of y(r). Thus an
object has different wave functions (representations) in different spaces.

2.5 Dirac’s Bra and Ket Notation

Dirac invented an extremely compact notation to represent state functions
and state vectors. In this notation the function y,(r) is represented by a ket |a)
and its Hermitian adjoint state y(r) by a bra (a|. This notation also gives rise to
compact representation of the integrals. For example, the following equality

k
Jwiew,@)dr = U v, (N, (r)dr] @25.1)
in Dirac’s notation is written as
(alb)=(b|a)* (2.5.2)

The bra {(a| and the ket |b) are abstract “bra” and “ket” state vectors in the bra
and ket spaces, respectively. The names bra and ket come from the word bracket.
Although bra and ket spaces are different they are related by (2.5.1). These
abstract vectors can be utilized to obtain wave functions in different representa-
tions. For example, if an object is represented by the abstract vector ), its wave
function in the position representation is given by (rly)=w(r). The complex
conjugate of y, i.e., Y*(r) is equal to (ylr). Further, if |g) are eigenkets of an
Hermitian operator they form a complete set.
Thus,

)= c.la) (2.5.3)
and

(wl=Y (alcx (2.5.4)
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Assuming |a) to be discrete, we get
(d'la) =8 2.5.5)

where §,,is the Kronecker delta and is 1 for a = a’ and 0 for a # a@’. Hence, from
(2.5.3) ¢, ={a|¥) and equation (2.5.3) takes the form

ly)= laXaly) @56

The operator |a){a| is known as the projection operator because it projects out
of [y), the eigenket |a). The above equation also shows that

Y la)al=1 2.5.7)

If the eigenkets |r) vary in a continuous manner, then (2.5.5) and (2.5.7) change
to

(r'lry=06@r-r") (2.5.8)
and

[irXrldr =1 (2.5.9)

respectively. In the bra and ket notation

Jwi@ i = [ (rlieXkir)ak 2.5.10)
but
[k Xkl dle =1
Hence,
[wEe Wi r)dk=(rlry=6(r-r') (2.511a)

Thus we again obtain (2.4.9). If k varies in a discrete manner the integra-
tion of (2.5.11a) changes to a summation. Replacing k by a summation index n,
we have from the above equation

DWW ) =8(r-r) (2.511b)
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where ¥,(r) are the members of a complete set. Furthermore, if in a complete
set n varies in a discrete manner up to a certain term and beyond that it varies in
a continuous manner (e.g., the complete sets formed by the eigenstates of atoms),
then (2.5.11a) modifies to

Syr W)+ Wi W rdk =Sy () =8E -r) @25.110)

For atoms, ,(r) and y;(r) represent their bound and ionized states, respectively.
The kinetic energy of the ejected electron due to ionization is Rk’aj, where R
is the Rydberg energy and a, is the first Bohr radius. The symbol S represents
summation over the discrete states and integration over the continuum states. As
Dirac’s notation is so compact we shall use it quite often.

2.6 Partial Wave Expansion of Plane Waves

For the plane wave given by (2.3.5), k-r = krcos6. Hence, the wave func-
tion W(r) is independent of the angle ¢ and can be expanded in terms of a com-
plete set having the polar angle @ as a variable. The Legendre polynomial P/(cos6)
with the positive integer / (including 0) represents such a complete set, which
satisfies the following differential equation (Arfken, 1968):

d .4 __
;ﬁ[a—u ) du]B(u)— +1R) 26.1)

where y = cos6. Hence, P(u) are eigenfunctions of the Hermitian operator
dldu[(1 — p?)d/du) with the eigenvalues ~I(! + 1). Their orthogonality and closure
relation are given by

f RWP (Wdu = —— &, 262)

2
(21+1)
and

21+1 .
z—+P(u )B(p)=6(u—u)=80-6)/sind (2.6.3)

respectively. The first few P, (i) for small values of / are given by

R(p)=1 P(u)=p
P(u)=5(3u* -1) Py(u) =5 (517 - 3u)
Py(u)=5(35u* =30u> +3)  P(u)=5(63p° 701> +15u)  (2.64)
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A partial wave expansion of the plane wave in terms of P,{u) is taken as

¥ (r) = Ae™ =AY AR, (k,r)B(1) (2.6.5)

=0

where A, are the coefficients of expansion and R, (k,r) is the radial wave func-
tion of the I* component of the plane wave. The subscript 0 indicates that the
particle is free. In the above equation k is taken as the axis of reference and
0(= cos™'p) is the angle between k and r.

In spherical polar coordinates

viol? ( 21)_ Lp (2.6.6)

P or r ar) nir?

where L?, the square of the angular momentum operator L, is

2 i[ e _3_] _L__az_}
h { " (1-u?) 51 T 9 (2.6.7)

From Egs. (2.6.7) and (2.6.1) we get

L2

LR(u) =1I+Dr*B(u) (2.6.8)

which shows that the Legendre polynomials are the eigenfunctions of the
operator L* with eigenvalues (I + 1)#’. Using (2.6.5), (2.6.6), and (2.6.8) in
(2.3.4) gives the following differential equation for the radial wave function:

1d(,d I(I+1)
[;;g;(r“d—r)%z— 2 ]Rlo(k,r)=0 (2.69)

Let us define Z(kr) = (kr)"’R, (kr); then (2.6.9) changes to
[r’d—2+ri+k2r2—(l+i)2}z(k rn=0 (2.6.10)
dar* dr 2 ’ e

The above equation is the differential equation for the Bessel function Ji,,(kr)
of the order / +1 (Arfken, 1968). This Bessel function is employed to define the
following two linearly independent spherical Bessel functions:

1/2
Jix)= (‘2”;) Jia(x) (2.6.11)
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and

1/2
n,(x)=(—1)’”(2”—x) (%) (2.6.12)

The latter is known as the Neumann function. At small values of x we have

i
ix)— X

2.6.13
=0 (21+1)! ( )
and

() = — (-1

1+1

(2.6.14)
X

x-0

where 2/ + D!' =1-3-5... (2] - 1)-(2] + 1). The above equations show that
Jix) are regular but n(x) are irregular at the origin. For large values of x, the
above functions are given by

1.
ji(x) > —sin(x - in/2)
X0 X

(2.6.15)
1
ny(x) = ——cos(x - Ir/2) (2.6.16)
xo00 X
The first three j(x) and n(x) at all the values of x are given by:
. sin x
Jolx)=——
X

COsXx
’lo(x) ==

. sinx COSx
N (x)=

cosx sinx
- n(x) = —( + )
X

x2 2

X X
. 3 1Y), 3 3 1 .
J(x)=| = ——|sinx——cosx ny(x) =~ — —— |cosx——;sinx
2 x X X x

X

(2.6.17)
In general R,(x) is a linear combination of j(x) and n,(x). Hence,

Ry, (x) = a,,(x) + byny(x) (2.6.18)
Since R, (x) is the radial wave function of an object, it has to be finite everywhere,
but n,(x) diverges at the origin, so b, in (2.6.18) has to be zero at x = 0. Since the
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particle is free, the form of R, (x) will not change with x, and b, is zero for all
values of x.
Putting (2.6.18) in (2.6.5) and absorbing g, in A,, we get

ve(r) =AY, Aji(kn)P (1) (2.6.19)
)

To evaluate the value of the expansion coefficient A, we multiply (2.6.19) by
Py(11) and integrate over y. This gives

+1

+1
J. e AMEITE 2 Aji (kr)f P ()P (u)dp (2.6.20)
! |

-1

Integration of the left-hand side by parts and the use of the orthogonality rela-
tion for P,(u) gives

1 a 1 [dp,,(u)] 2.
—|[e™P -— ™ d = Apjr(k 2.6.
el B WL = [ 7| S0 = s i) @621

As the second term on the left-hand side is of the order of 72, at large r we get

1
ikr

) . A1, i
[etkr _(_l)le—zkr] - _m_ilﬂc_r(ex(kr—m/z) _ e—t(kr—ln/Z)) (2.6.22)

Equating the coefficients of ¢ on both the sides yields
A =QL+1)e"? =i'21+1) (2.6.23)

Hence, the partial wave expansion of a plane wave is given by

wi(r) =AY, i'(21+1)j(kr)R(p) (2.6.24)
I=0
> Aii’(2l+ I);lr-sin(kr ~In/2)B(u) (2.6.25)
r—oo 1=0

Each partial wave has a well-defined angular momentum, characterized by the
quantum number /.

2.7 Spherical Harmonics

In the expansion given by (2.6.24) the reference axis is along the k axis. If
we remove this condition the plane wave also becomes a function of the polar
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angle ¢. Thus instead of P,(u) we require a complete set that depends on 8 as
well as on ¢. Such a complete set is provided by the spherical harmonics Y,,(0,¢),
where the magnetic quantum number m is an integer and varies from —/ to +/ in
steps of 1. Hence, for a given [ there are (2] + 1) spherical harmonics. Like
the Legendre polynomials, spherical harmonics are also eigenfunctions of the
operator L? [given by (2.6.7)] with the same eigenvalues, i.e., [(I + 1) 2. They are
also eigenfunctions of L, with eigenvalues m#. Their orthogonality and closure
relations are given by

2n

[ ] 1n(6,60)%:,:(6,0)sin 6 d = 81 Sy @7.1)
00
and
h o0-0Y0(p—-¢"
DY Yn(6,0)Y.(6',9) _36-6)30-¢) 2.7.2)
T sin@
For a given [ we also have
+1
Y. 4 (6,0)Y,, (6", = 8(9 = ¢") (2.7.3)
m=—1
Normalized Y,,(6,¢) are given by
_ J@i+) (1—|m|)!]‘/ ® el gy ind
Y,.(0,0)=K [ i Qe P"™(cosH)e 2.74)

where K = (-1)" for m > 0 and K = 1 for m < 0. The associated Legendre poly-
nomials P! (cos6) are the solutions of

m2

1-p?

{%[(1— Y’ 2%]+z(1+1)—

}Pz'”‘(u)=0 2.1.5)

It is easy to see that g (u) reduces to Pu) for m = 0.
The first few Y,,(6,¢) are given by:
Yy = (—5—) (3cos’ @ -1)
2~ 16n

o= 57)
0=
¥ 4
12 12

3 15 )
Yo = (—) cosf You = 1(—) sin 0 cos@ e
4r 87

1/2 1/2

1/2 1/2

3 . ; 15 . ;
Yin = ?(——) sinfe™ Y., = (———) sin? § e (2.7.6)
8 32r
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According to the addition theorem, if @ is the angle between r and k,
then

4 +1 R "
B(cos8) = El—f—l > ln@Yin(k) @.7.7)

m=-{

Putting this equation into (2.6.24), we get

Wi ()= A4m Y, 3 it ji(kr) Yo (F) i () (2.7.8)
I m

In the next chapter we shall examine the changes in ¥, (r) and its partial
waves given by (2.6.25) when a microparticle collides (is scattered) with (by) a
potential field. Those changes will be used to obtain the differential and inte-
grated cross sections.

Questions and Problems

2.1 Define the Dirac delta function and show that

. 1 (x—a)2
=)=t CXP{_ 2P }

2.2 Prove the following relations for the Dirac delta function

(a) x6(x)=0
(b) 8(ax)=6(x)/lal for a#0
(c) x6'(x)=-6(x)

where &’ is the differential of &

(d) &(x? —a2)=éa[5(x—a)+6(x+a)] for a#0
2.3 Verify the relations (2.4.7) and (2.4.8).
2.4 (a) Show that for a projection operator P
P’=P
a 00
(b) A3 x3 matrix is given by |0 0 O
0 0 b
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Find the value of a and b so that this matrix represents a projector operator. Show
that with the proper values of a and b this operator projects a three-dimensional
x x

vector | y |on a two-dimensional subspace to give | 0 |.

Z 4

2.5 Write the matrix element H,; in the Dirac bra and ket notation. Show that H
is a diagonal matrix if |k) and |I) are eigenkets of H. On the other hand, if |n) are
eigenkets of H instead of |k) and [), then

Hy = §£n(k|n)(n|l)

where &, are the eigenvalues of the kets |n). Give a physical interpretation of the
term {njk).

2.6 Use the expressions for Py(it) and Ps(i) given by.(2.6.4) and evaluate the
required integrals to show that

(R(WIPW)=% and (A(WIPu)=0

2.7 A function y(r) when expanded in the complete set of P(cos6) is given by

y(r)= i AR/ (r)P(cos6)

Asymptotically,
y(r)—e* + 16) e and R/(r) = cosnj,(kr)~sinnn (kr)
r—oo r r—o

where 0 is the angle between k and r. Show that A,= i (2] + 1) €™,

2.8 Prove the following recurrence relation for the Legendre polynomials:

IB(u) = (21 =D P () - (I -1) P, (1)

2.9 (a) If (6,,¢,) and (6,,¢,) are two different directions in spherical polar
coordinates and 6 is the angle between these two directions, prove the addition
theorem

an
P,(cosf))=2—l+—1 Yin(61,01)Ym(02,82)

m=-1
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(b) Use the addition theorem to show that

1 > & 41 1 % n .
= 7 Y (1) Vi
In—n| =20+ ()Y (32)

where r. is smaller than r; and r; and r. is greater than r; and r.

2.10 Evaluate the transition amplitude {y,(r)lzly,(r)) where

3/2
vi(r)= 2(—;:) exp(—zrfa))Yy(F) and  w,(r)= z A, exp(ik,r)
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3

Collision of a Free Particle with
a Potential Field

3.1 Introduction

In the previous chapter we discussed the motion of a free particle. Now we
consider the collision (scattering) of a free particle with (by) a potential field. In
the presence of a potential, Eq. (2.3.3) changes to (Burke, 1977)

[_ﬁvz + V(r)]l[/(r) - Ey(r) @3.11)
2m

where V(r) is the potential energy of the particle. In the asymptotic region, where
V(r) = 0, (3.1.1) admits two solutions. One is the plane wave given by (2.3.5)
and the other is either a spherically outgoing wave exp(ikr) or a spherically
incoming wave exp(—ikr) having {0, @)/r as its amplitude. The polar coordinates
of the scattered particle measured from the center of the field are given by (r, 6,
@), and f(B, ) is the scattering amplitude. Taking a linear combination of both
solutions, the wave function of the scattered particle in the asymptotic region is
given by

f(e; (p) eiikr] (312)

vi(r) ~ A[e”‘"+

where + and — denote the outgoing and incoming solutions, respectively. We shall
consider only the outgoing solution and drop the superscript *. It is easy to verify
that up to the order of 1/r for any arbitrary form of (6, ¢), Af(6, @)exp(ikr)/r is
a solution of (3.1.1) in the region where V(r) = 0. Hence, for (3.1.2) to be valid,
V(r) should fall faster than 2 in the asymptotic region. Now we proceed to derive

3
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a relation between the differential cross section (8, @), a quantity measured by
the experimentalists, and the scattering amplitude f(8, ¢), which is calculated by
the theoreticians. To achieve this we first consider the continuity equation and its
relationship with the collision cross section.

3.2 Continuity Equation and Cross Section

The differential equation for y*(r), the complex conjugate of y(r), as
obtained from (3.1.1) is given by

[—fiv2+v* (r)]u/*(r)=Et//* ") 62D
m

Now we multiply (3.1.1) by w*(r) and (3.2.1) by y(r) from the left and subtract
the former from the latter to get

h2
~ VYT -y VR Tyt -y Yy =0 (3.22)

We take V = Vi — iV}, where Vi and V; are the real and imaginary parts of the
complex potential. This substitution reduces (3.2.2) to

2

%V‘(W*VII/-WVW*)+21'VI‘I/*V’=O 3.2.3)

or
2 2
Ve(r)+ m Vilwl =0 (3.2.4)
where the probability current density ¢(r) is equal to
h *
c(r)=Re| —y*Vy (3.2.5)
mi
Hence, ¢(r) is a flux vector and its radial component ¢(r)- r is given by

o(r)-F = Re(l v iq/) (3.2.6)
mi ar
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To compute ¢(r)- r we use  as given by (3.1.2). Thus ¢(r) - r is the sum of
three terms. The first term, ¢(r)- r, is due to the plane wave, the second, ¢y F,
is due to the outgoing spherical wave, and the third, ¢;(r)- F, arises due to the
interference between the plane and spherical waves. These terms are given by

¢;-F=VAA* cosf (3.2.7)
2
¢y -F =VAA* U—@'—m(%) (3.2.8)
r r
%
Cin* r= Re|:AA* v(_}f(_!)_) eikr(l—cosO) + I_L'Q__)e—ikr(l—cosﬂ) cos 0]} + O(Lz) (329)
r r r

Equation (3.2.9) shows that at oblique angles (8 # 0) and large r, ¢;,- F oscillates
very rapidly as a function of r. Furthermore, due to collimating slits in any exper-
imental arrangement (see Fig. 1.1), the contribution of the incident beam to
¢(r)- r in the oblique direction is also negligibly small. Thus for 8 # 0, we take
the outgoing flux equal to ¢y r.

Suppose the detector, which is at a distance r from the scattering center,
makes a solid angle dQ with the center. Then AN, the number of particles
entering into the detector D per unit time is given by

AN =¢y- FridQ (3.2.10)

The incidence flux F is

or
F=AA*y
Hence, from (1.2.1) with n = 1 and (3.2.8) and (3.2.10), we get
16, 9)d2=|f(Q) dQ (3.2.11)

The integrated cross section is obtained by integrating (3.2.11) over the angles
and ¢. Since for atomic collisions it yields the elastic cross section, we shall
denote it by o,;, where
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ou=] f(@fde (3.2.12)

Let us now integrate (3.2.4) over the volume and use Green’s theorem on
the first term. Thus we get

r*[e(r)- r‘d9+-2h- [VilyFar=0 (3.2.13)

The first term of the above equation is the net number of particles leaving the
surface of a sphere of radius r per unit time. It is not equal to zero but is equal
to the negative of the second term. Hence, in the scattering of a beam by a
complex potential, a certain number of particles are absorbed, i.e., there is a sink,
owing to the fact that we have taken V = Vi — iV,, whereas V = V; + iV, would
have produced a source. The incident beam provides the particles, which are
scattered and absorbed. For a real potential, the second term is zero and the par-
ticles are conserved. In this case there are no sources or sinks for the particles,
i.e., there is neither creation nor absorption of particles but the incident beam
provides the scattered particles. Now in (3.2.13) we replace ¢(r)- F by its three
components and obtain

r*[e/fdQ+r [eyfdQ+ r2jcm-fd9+%jv,|w|2dr =0 (32.14)

It can be shown (Joachain, 1987) that

1 [ c-FdQ=—4mAan* 2 imfe=0) (3.2.15)
5 m

where dQ is an infinitesimal solid angle around the forward direction. As noted
earlier, ¢;,- ¥ does not contribute in other directions. Using (3.2.7), (3.2.8), and
(3.2.15) in (3.2.14), we get

wA* [|A(@ aQ-4nax" Lim f6=0)+2 [VlyTdr =0 (216
or
2 1 2 4n
061+E;A7;J-Vl|l[/| dr =-k—Imf(9=0) (3.2.17)

Since the second term is due to absorption, we denote it by o, the absorption
cross section. Then the total cross section oy is given by
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4
Or=0q+04 =7”Im #(6=0) (3.2.18)

The above equation, known as the optical theorem, is a direct consequence of
the conservation of the particles. For a real potential it reduces to

Ca =47”Imf(9=0) (3.2.19)

Obviously, o, as obtained from (3.2.18) is different from that given by (3.2.19)
even for the same Vi. As a matter of fact, the difference between the two repre-
sents the effect of absorption on the elastic scattering. In atomic collisions, we
have a number of inelastic channels apart from the elastic channel and, in general,
elastic and inelastic collisions take place simultaneously. Hence, to take into
account the effect of the inelastic processes on the elastic cross section, we use
a model complex interaction potential. The complex potential should be such that
Oy is equal to the sum of all the inelastic cross sections.

3.3 Relationship between the Scattering Amplitude and
the Scattered Wave Function

Equation (3.2.11) shows that we need f(6, ) to calculate (8, ¢). In this
section we derive a relationship between f(6, ¢) and w(r). We rewrite (3.1.1) as

(V2 + &)y (r) =Ur)y(r) (3.3.1)
where the reduced interaction potential U(r) is equal to (2m/#*)V(r) and has the
dimension L. The above equation is an inhomogeneous differential equation.
The corresponding integral equation for the outgoing scattered wave yi(r) is

given by

vt () =)+ [ G, UG )i (r)dr’ (332)
where @(r) is the solution of (3.3.1) when U(r) = 0; i.e., it is identical to the

plane wave Ae*", given by (2.3.5). The above integral equation is known as the
Lippmann--Schwinger equation and in symbolic form is written as

=+ GUy* (3.33)

The free-particle Green's function Gj satisfies the following differential
equation:
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(V2 +k2)Gi(r,r)=8(r-r) (3.34)
and has the solution
eiklr—r'l
Gir,r)y=————— 335

Its integral representation is given by

eik (r-r’)

Gi(r,r')=- lim dk’ 3.3.6
0( ) (2”)3 e—->0+J.k’2"k2—i8 ( )
. kXK,
i el 330
where, in Dirac’s notation,
1 )
k= @n)” e = i(r) (3.3.8)
Now,
N
r=rl=(r* -2r-r'+ r’z)l/Zz r{l - 2r2r ) for large r.
r
Hence,
r=r'|=r—rr'+--- (3.3.9)

where 7 is a unit vector in the direction of the scattered particle. To evaluate the
phase term of Gj at large r, we take the first two terms of (3.3.9), but for the
amplitude, |r —r’} is taken as r. Then (3.3.5) reduces to

1 e-—ikf~r’

Gi(r,r’) ~ ——
b r) ~ =

et (3.3.10)

The final momentum vector k; is equal to kr, whereas the initial momentum
vector is k;. Putting (3.3.10) into (3.3.2), we get

ikr
+ € —ikf.y’ ’ + ’ ’
Vi) - o) - [ U y; (r)dr (3.3.11)
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Comparing (3.3.11) with (3.1.2), we obtain

1
4rA

£, 9)=—— [ Uy} (r)dr

or, in bra and ket notation,

[36,0) = 21 (0w, Uy} ) (3.3.12)

where we have taken (@, Ir) = A*e™7 and A = 2132, The term 76, @) rep-
resents the scattering amplitude for the scattering of the particle from the initial
state i to the final state f. Equation (3.3.12) may be rewritten as

4m*m
fi= Y T; (3.3.13)

where the transition matrix element from the initial state |k;) to the final state
lk;) is given by

Ty = (o Viw;) (3.3.14)

Equation (3.3.12) shows that to calculate {6, ¢) and, hence, I(6, @) and o, we
must have y;(r) in the region where U(r) is nonzero. On the other hand, (3.1.2)
shows that to calculate f(6, @) we need the asymptotic value of y;(r). These two
equations have given rise to two different approaches, namely the integral and
differential approaches, to evaluate 6, ).

3.4 The Integral Approach

In the integral approach, the Lippmann-Schwinger equation, given by
(3.3.2) or (3.3.3), is solved for y;(r) by the iterative method. In these equations,
the second term represents the distortion of the initial wave function y,(r) by
U(r). For convenience we represent the initial wave by W(r). The distorted part
of the wave function is given by

va(r) =[G, UG Y ()’ (34.1)
The above equation is solved by iteration. We replace w{(r’) in this equation
by the initial wave function y(r’), which is the zeroth-order solution of the

Lippmann—Schwinger integral equation. This gives the first-order correction to
W(r) and is equal to
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vi() = [Gilr, UG yo(r)ar’ (3.42)

A replacement of w(r") by w,(r') in (3.4.1) yields the second-order correction
to Wo(r):

va(r) = [ Gy r, Y UG Wy (r')dr” (3.43)
Use of (3.4.2) in (3.4.3) gives
va(r)= ”Gg(r, r YU’ )Gs(r’,r" )UYW o(r”)dr'dr” (34.4)
Symbolically,
v, = GLUGEUW, =(GU) wo (3.4.5)
Hence, in general,
¥, =(G3U) ¥ = GiUY,.. (3.4.6)

where n is a positive integer. Adding all the corrections, we obtain the following
series:

u/;' =Yty +Y Y,

=Y (G50)" yo (3.4.7)
=1
We may also write
Vi =¥+ G Uy, (3.4.8)
where
G* = Gy + GyUG + GiUGGUGE + - - - (3.4.9)

is the full Green’s function. The series given by (3.4.7) is known as the Born
series for the scattered wave function yi(r). The use of this series in (3.3.12)
gives

f30,0)= '2”2<(Pkf % i(GEU)H lV0>

n=1

= fart fart fasteoot fontoo (3.4.10)
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where the nth Born term is given by

Fon =210, U1 (GV) " ) 34.11)

The nth Born scattering amplitude is the sum of the first n terms of the Born
series given by (3.4.10). Hence,

fon = fap (3.4.12)

p=l

By our definition the first Born term and the first Born scattering ampli-
tude are the same. We also note that except for f3,, all the Born terms involve the
reduced interaction energy more than once and hence represent multiple scatter-
ing terms. For example, the second Born term

Foalhs k) = =272 [ 0 (UGS (r, UG o' )drdr”  (3.4.13)

involves U twice, and hence is a double scattering term. It is interesting to
visualize fg, due to the following processes: The incident wave y,(r’) interacts
with the potential at " and is converted into a new wave given by U(r)wy(r').
This wave is propagated to r by the Green’s function propagator Gi(r, r’). Since
r’ is any point in the space, the wave function of the object at r is given by
Gy, rYU(r)w(r")dr'. This object at r interacts again with U to become

U |G, r UG yo(r')dr’

Now, to obtain the probability amplitude of finding the object in the final state,
f, we take the overlap of y(r) with the above wave function. Again r can be
anywhere in space; hence, the resultant expression is integrated over r and we
get (3.4.13). Using (3.3.7) in (3.4.13), we get

Jinlhy, k) =27 lim (g lU) =—— (KUY (3414)
The above equation can be represented by a simple Feynman diagram, shown in
Fig. 3.1, which can be interpreted as follows. The object in the initial state |k;)
collides with U and goes to an intermediate state |k). This intermediate state again
collides with U and goes to the final state |k;). Although in the steady state
the final energy of the system must be equal to its initial energy, in the interme-
diate processes such as [k;) — k) or [k) — |k ), the energy need not be conserved.
Hence, there are an infinite number of intermediate states. To include contribu-
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U

k>
Ikj>U

Ike=>

FIGURE 3.1 Feynman diagram for the second Born scattering term.

tions from all the intermediate states, equation (3.4.14) involves integra-
tion over k.
Let us now put yy; as given by (3.3.2) into (3.3.12). This gives

[y, k)= fu(ky, ki) =27 @i, (UGS Uly; ) (3.4.15)

Putting the integral expression of G from (3.3.7) into the above equation, we get

1 +
[y, ki) = for(ky, k;) — 27r2j(<pk, IUIk)m(klulw,q Ydk (3.4.16)

or

f ey k) = fnlhy, o) = jfm(kf, e/ kodk 3417

The above equation is known as the Fredholm integral equation, and can also be
employed to generate the Born series. It can be shown that the Born series con-
verges for a repulsive potential. It also converges for an attractive potential pro-
vided that the potential field does not support any bound state.

In principle, fik;, k;) can be calculated correct to any order. However, with
an increase in n the difficulties in the evaluation of f, increase rapidly. In most
cases calculations are limited to f3, and fz, which we consider now.

3.5 The First Born Approximation
The first Born approximation (FBA) is the simplest but one of the most
celebrated approximations of coilision theory. Almost all the investigations start

from the FBA, which is given by

far =21, Ulpy, ) (3.5.1)
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Hence, it completely neglects the distortion of the incident wave by the inter-
acting potential. Let us represent the change in the momentum vector of the
incident particle due to collision by K; then

K=k -k (352)
For elastic scattering |k;|=|k|= k; hence,
K =2ksin(6/2) (3.5.3)

where 6 is the scattering angle. Using plane waves for the initial and final states
and (3.5.2) in (3.5.1), we get

1 ¢
fa(K)= —I;Jle'K"U(r)dr (3.54)

where we have taken A = (27)>. It is useful to note some of the characteristics
of the FBA. First of all, (3.5.4) shows that fz; depends only on K(= k; — k;) and
not on k; and k; individually. Secondly, f3;(K) is simply the Fourier transform of
the reduced interaction energy U(r). Furthermore, due to the oscillation of the
phase term exp(iK-r) with r, the contributions of the integrand to the integral
from the different regions of r are positive as well as negative. However, in the
forward direction K = 0. Hence, the contributions from all the different regions
of r are in phase and add up. Thus f3(0) is a maximum. With an increase in K
the cancellation starts and f3(K) falls with K.

To proceed further, let us assume that the interaction potential is spheri-
cally symmetric (central); then U(r) is equal to U(r) and it does not depend upon
the polar coordinates of r. Taking K as the reference axis and integrating over
the polar coordinate ¢, we get

o0 +]

1 4
fuu(K) === [ [ " U () drdp (35.5)
0-1
where U is cos 8, 8 being the angle between K and r. Integration over y yields
1
forlK) == [sin(KnU(r)rdr (3.5.6)

Any further evaluation of f3 requires knowledge of U(r). Let us take
the interaction potential to be a screened Coulomb (Yukawa) potential given
by
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2m( Ze*) ,,
U(r)=—h7(—-7—)e & (3.5.7)

where A is the screening parameter and e is the electronic charge. Then

oK)= [sin(Krle-¥dr (358)

where a = #*/Zme*. To evaluate (3.5.8) we note that

o - . |
[sin(kne¥rdr=Im [e®®prgr = Im———  (3.59)
0 0 A—i
where Im F(x) is the imaginary part of F(x).
Hence,
2 1
K)=— 3.5.10
fulK) == (35.10)
and
4 2
Im(K)=——;a—7 (3.5.11)
[(Ka)® +(1a)’]

Figure 3.2 shows I5(Ka) as a function of Ka for Aa = 1. It is evident that Ip,(Ka)
falls monotonically with an increase in Ka. We also note that for a real interac-
tion potential, f3; is purely real. Now, since from (3.5.3)

KdK = K*sin 046 (3.5.12)
We get from (1.2.2)
2 2k
ol = k—’f [ n(k)KaK (3.5.13)
0

With the help of (3.5.11) we get

B 167
O S R 4K+ ) G219

If we consider a pure Coulomb interaction, then A = 0 and
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FIGURE 3.2 Variation of the differential cross section with Ka in the first Born approximation for
the scattering of a particle by a screened Coulomb potential with Aa = 1.

4
IBl(K):W

or

Zme* )2 cosec*(6/2)

1131(9)=( n i

(3.5.15)
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Thus the differential cross section diverges in the forward direction and 62 also
tends to infinity. It should be noted that (3.5.15) is the Rutherford scattering
formula for the scattering of electrons by a nucleus of charge Ze.

Validity of the First Born Approximation. Since the FBA neglects distor-
tion of the plane wave, it is expected to be valid for |y, (0)|/|yo(0)|{{ 1. We have
taken r = 0 because the correction to y(r) is expected to be largest at the origin.
Now

vi(r)
Vo(r)

= [Gir, PIUE W [yor) (35.16)

Using (3.3.5) at r = 0 and taking U(r") to be spherically symmetric, we get

Wl (0) 1 i . s N7 . ’ ’
=——| | exp(ik r'YU(r")r exp(ik r’u)du dr
v(0) 5 _Ul p p Hal
or
.0 117 ;
=—||U(@r)(e** -1)dr (3.5.17
o0~ 26V =
Hence, for the FBA to be valid we should have
1 T tkr
= _([U(r)(e“ —l)dr'((l (3.5.18)

Thus the FBA, given by (3.5.1), is a weak potential approximation whose
validity in the nonrelativistic domain increases with an increase in the projec-
tile’s energy. Since for a real potential fz, is purely real, it does not satisfy the
optical theorem.

3.6 The Second Born Approximation

From (3.4.17) we get for the second Born term

T 1 ’ 1 ’ ’
ok, )= =55 [ fnlley, K)o ' k™ (B6.1)

Again taking U(r) as given by (3.5.7), i.e., Yukawa potential, we get
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) 12 1 1 1
k , ki ==
Foalks, ki) j1(12+,12 kP —k'* +ie K} + X

= &' (362)

where K, =k’ — k;, K, = k; — k’, and the expression for f3, is taken from (3.5.10).

The above integral is evaluated using Dalitz’s technique (Joachain, 1987) and
we get

fsz(kf,ki)=RefBz(kf, ki)“'ilmflsz(kf,ki)

where the real part is

4 1 AK

-1

Ref-BZ(kf’ki)= X tan
Ka® 34 +k2(422 + K2)" A2t +k2(422 + K2))"
(3.6.3)
and the imaginary part is given by
4, 120492 N

1m ok, k)= 22 | @R+ K )]1/2 +kK

Ka™ |[A*+k2(422 +K?)] —kK
X L 3.6.4)

[ +K2(42 +K 2)]1/2

The above equation shows that f 2 i1s complex. This is true for all the higher
Born terms. All of them partially include the effect of the distortion of the plane
wave. Furthermore, using the optical theorem with f,, we get

167

= .6.5
2o (B +487) (363

4 .
o= %ImeZ(ki,ki) =

which is equal to 0. Hence, the second Born term satisfies the optical theorem.
Similarly, it can be shown that

o8 (E)= j‘rkilm[fsz(kh k;) +.]-CB3(kia k)]
or

oEB(E)-oc8Y(E)= %Im fe3(0=0) etc. (3.6.6)
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3.7 The Schwinger Variational Principle

Let us go back to (3.3.12). If instead of the outgoing waves we consider
the incoming waves, then (3.3.12) changes to

16, 0) = -21*(yi, Ulpy,) (37.1)

where the incoming scattered wave in the final channel, as given by the
Lippmann-Schwinger equation, is

(wigl= {0y |+ (v UGS (3.7.2)

The use of the above equation in (3.3.12) yields a third expression for f(6, ¢),
which given by

£3(6,9) = 2n*{yi, U -UGtUl; ) (3.1.3)

All the above three forms of f given by (3.3.12), (3.7.1), and (3.7.3) combine to
yield

[£1==22 (v, Ulp )+ (0, [Ulw; ) + 27wy [U - UG§UN ) (3.7.4)

The scattering amplitude given by Eq. (3.7.4) is still exact but, as shown
below, in addition [f] is also stationary with respect to any arbitrary variation of
either Il//;') or (wy, |. The above equation is known as the bilinear form of the
Schwinger variational principle. A variation of Il//,f) yields

8[f1=-2m*[{o\, lUIBY; ) —(vi, IU - UGEUISY; )] (3.1.5)

Now from (3.7.2)
(0 IU =y (U -UGSU)

Hence, 9] f] is equal to zero. Similarly we can show that [f] is stationary with
respect to any arbitrary variation of (1//{,].

Let us now replace Il//,: Yand (l//;,| by the trial wave functions |'I/}Z ), = al‘l’:,-)
and (1//; . |[ =b(y;,|, where a and b are variational parameters. Then equating

d[f)/da and d[ f1/db to zero, we obtain

- ((Pkf IUIW):)
(wilU-UGUly; )

(3.7.6a)
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and
U0
v |<gk—f Iucl:(pakglwz,.) (3.7.6b)
Hence,
(] = a2 WiVl Yo, U} -

(wi lU-UGsUy;)

The above equation gives the exact scattering amplitude as a fraction. We now
approximate |y} ) and (y;, | by

" 3 2 .
W =30 o) s (vil=SokGir™
1=1

m=1

Then,

pran

fmtf et -+ ‘(fsm + foee +"'+fsﬁ)

[fpn]=

or

pran

[fp"]= pr +an —me

(3.7.8)

where, [, m, n, and p are integers and f3; is the ith Born scattering amplitude. For
n=p=1, we get

__fufn
[ful= o T (3.7.9)

3.8 The Eikonal Approximation

In the previous section we obtained a Born series for yi(r). However, eval-
uation of the higher Born terms is very difficult. In this section we discuss the
eikonal approximation, which gives yi(r) in a closed form involving a one-
dimensional integral with the reduced interaction potential energy U as the inte-
grand. The eikonal approximation assumes that the potential energy changes very
slowly and, hence, the local momentum {2m[E — V(r)]}'* is practically constant
over many de Broglie wavelengths of the projectile. Under the above condition,
it is justified to take
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Vi (r)= ¢, (Ne(r) (3.8.1)
Now we rewrite (3.3.6) as
3 eik~Re—ik,'-Reik,'-R
Gy(R)=-(2 ——dk 3.8.2
sR=-0m) " [=r (38.2)
where
R=r-r (3.8.3)

and € - 0. We put p =k — k; in Eq. (3.8.2) to get

3 i eip-R
G{(R)=-(2m) 3€k' lemdp (3.8.4)

Putting (3.8.1), (3.8.3), and (3.8.4) into (3.3.2), we obtain the following integral
equation

_ ip-R
o(r)=1-2n)" m(r —Ro(r—RdpdR  (385)

Since Ug is a slowly varying function and ¢”® is an oscillating function,
the major contribution to the above integral comes from small values of p. Hence,
we neglect p? in comparison to 2p -k; and take

o(r)=1~(27)" j ————U(r R)o(r - R)dpdR (3.8.6)

or
o(r) =1+ [GiL(R)e™* *U(r - R)p(r - R)AR (3.8.7)
where the linearized Green’s function is given by

iki-R ip-R

e e
d
@n)’ J2p-k,» —ie P

Gor, (R) ==

too zpzz

I 1
=—ghik _—_ [ goXgy | giBYy X— —-——d (3.8.8)
o ;‘;e ap 2r I Pr J. J 2p.k; —ie Pz
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with k; as the z-axis. Integration over py and py yields

lpzZ

. 17
5.(R) = e R5(X)5(Y) —
Giu(R) =~ *8(X)8(¥) - j2 yamLd

The p; integral has a pole on the imaginary axis at p; = i€/2k;. Hence, by
the Cauchy theorem,

GEL(R)=—%e"""R6(X)6(Y)9(Z) (3.8.9)

where &(Z) is the step function. Thus Gy (R) propagates only along the forward
direction of the z-axis. Putting (3.8.9) into (3.8.7), we obtain

;=
o(r)=1-—[U(x,y,2-2)p(x, y, 2~ 2)dZ
2k Y
A change of the variable to 7’ yields
i [ ’ ’ ’
o) =1~ [ Ulx,y, (s, y. 2 )de (38.10)

The solution to (3.8.10) is given by

o(r)= exp[————- I Ulx,y,2)d7’ }

To verify it we note that
do(r) i d §
—_ = - — | Ulx, y, 2")dz’
dz 2k, (P(r)|:dZ". (x Y Z) ¢ :'

d(z)

d ’+U(xs Y, Z)——U(x’ y9'—°°)
dz

dU(x, y,7")
=___ ()[J._—d_z_—

d(==)
dz

= —;j;«p(rw(r)

Now integration over z from —eo to z” yields

(p(Z”) = ¢(—°°) - —2—’lk_ I U(X, Y Z)(P(X, Y, Z)dZ
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Since ¢(—) =1, the above equation gives (3.8.10). Hence, in the eikonal approx-
imation, the outgoing scattered wave function is given by

vi(r)= Aexp[ik,. r —?lk— f Ulx,y, z’)dz’} (3.8.11)

It is evident from the above equation that y(r) differs from the plane wave
only by a phase term and like the plane wave this also does not satisfy the proper
asymptotic condition (3.1.2). The eikonal approximation assumes that propaga-
tion is in the forward direction.

Now we use Wi(r) in (3.3.12) to obtain the scattering amplitude in the
eikonal approximation. With A = 2m)™? we get

1 iKr [ z
f=(8, (p):—Z;Idre . U(r)exp[—alk—iLU(x, v, z’)dz’] (3.8.12)

This differs from f3, given by (3.5.4) only by a phase term, which shows that the
FBA takes the exponential term of (3.8.12) equal to unity. This can be satisfied
only by assuming the potential to be weak and/or E to be high. The phase inte-
gral of (3.8.12) is to be evaluated along the z(k;)-axis. However, we know that
initially the projectile moves along z direction but after the scattering it moves
along the direction of k;. Hence, to be more realistic, we integrate along OD (see
Fig. 3.3), which is the bisector of the angle between k; and k. For the potential
(elastic) scattering, OD is perpendicular to K.

Using the cylindrical coordinate system r = b + zz, where b is a two-
dimensional vector on the x-y plane and Z is a unit vector along OD, in
(3.8.12), we get

- 1 T iK-b l f ’ ’
fE(kf,ki)——Z;Jdb_J;dze U(b,z)exp{—ﬁiU(b,z)dz} (3.8.13)

because K-z = 0. Now let us take

i N
Iz) = exp[—-z-; i U, 2)dz ]
Then

diz) i tid. o, a@ o d(=)
_?iz—_—zkl(Z)udzU(b’Z)dz +U(b, 2) & U, )dz]

=_2ik 1QU(b, 2)
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K¢ K

0

Ki

FIGURE 3.3 In the eikonal approximation the path of integration is taken along OD, which is

perpendicular to K.
Hence,
Folley, k) =—X [dbe? di)
B 2 dz
=_2i"7; [db e fexplié e, k)] -1} (38.14)
where the phase & is given by
SRS b 8.

For a cylindrically symmetric potential U(b, z) = U(b, z2); i.e., U is inde-
pendent of the polar angle ¢ (angle between K and b). Under the above condi-
tion (3.8.14) reduces

lk ¥ iKbcos. .
Felkiyeg) == j j bdbdpe™ > {expli&(b, k)] -1}

Hence, finally,

felks, k)= —ikT Jo(Kb)exp(i&)-1]b db (3.8.16)

where Jy(x) is the zeroth-order Bessel function. We note that for a spherically
symmetrical potential, the expression for f3; given by (3.5.6) involves only a one-
dimensional integral. But for a cylindrically symmetrical potential, f; given by
(3.8.16) involves a two-dimensional integral, one over z, to evaluate the phase
&, and the other over b. However, f3, is correct only up to first order in the
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interaction, whereas f; includes all orders of interaction. Hence, the eikonal
approximation should be regarded as superior to the FBA. It may also be noted
that fz; depends only upon K, whereas fr depends upon X and k.

Let us now examine whether the eikonal approximation satisfies the optical
theorem. In the forward direction K = 0 and J4(0) = 1. Hence,

fe(®=0)=—ik[(e* ~1)bdb

Therefore, according to the optical theorem,

0a =221 (6 =0)
= ~4n [ bdb(cos £-1) (3.8.17)

From (3.2.12), (3.5.13), and (3.8.16), we also have

0 =27 [ [ (<ik)Mo(Kb)(e® ~ Dodb | (ik)o(Kb'Ne ™" - l)b’db’Kk# (3.8.18)
Now using a closure relation for the Bessel functions we get
[0 (KD) o (KD")K dK = 5(17; b) (3.8.19)
Putting (3.8.19) into (3.8.18) and taking & to be real, we obtain
Ou =21 bdb(e® ~1)(e™ ~1)
or
Ga =47 [ bdb(l - cost) (3.8.20)

The above equation is identical to (3.8.17). Thus the eikonal approximation
satisfies the optical theorem. In this respect also it is superior to the FBA, which
does not satisfy optical theorem.

An expansion of €“ in the powers of i€ gives the eikonal series

fe=2 fen (3.8.21)
n=1

where the nth eikonal term from (3.8.14) is given by
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F en— k 1 iK-b gn
Fon =i lﬂajdbe’“’é (3.8.22)

The first eikonal term (same as the first eikonal amplitude) is given by

k K U(b,z)
fo = _Z—EJ.dbe K "J.(—l)—irdz
or
1.
fer(K) =~ [ % Ulr)dr (3.8.23)

because K is perpendicular to Z. A comparison of (3.8.23) and (3.5.4) shows that
for Z perpendicular to K, the f5; is identically equal to f3;. However, the higher
eikonal terms as given by (3.8.22) are alternately imaginary and real. For
example, for real interaction potential, f, is imaginary, whereas feis real. On
the other hand, all the higher Born terms are complex.

3.9 The Differential Approach

In the differential approach, the differential equation (3.1.1) is solved
subject to two boundary conditions. Since it is a three-dimensional differential
equation, in the general case its solution is quite difficult. However, for a central
potential V() the angular momentum of the each partial wave is a constant of
motion and, like a plane wave, Wi(r) can also be expanded in terms of P,(u).
Such a partial wave expansion is given by

vi(r) =AY AR("R (W) (3.9.1)

where A, are the coefficients of expansion and R/(r) satisfies the following one-
dimensional differential equation:

[L i(,z _d_) PEEIN TN G l)]Rz(kr) =0 (39.2)

r2dr\’ dr r?

As expected, for U(r) =0 Eq. (3.9.2) reduces to Eq. (2.6.9). Hence, in the asymp-
totic region, where U(r) is zero, R(r) is given by

R,(r)r:ma,j,(kr)+bln,(kr) (393)
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provided U(r) falls faster than 2 at large values of r. Due to the presence of U(r)
in (3.9.2) the coefficient b, is not zero, and the above equation constitutes one of
the boundary conditions imposed on R/(r). Near the origin the terms k¥* and U(r)
are small in comparison to I(/ + 1)//*. Hence, (3.9.2) is satisfied with R, = r'. Thus
the second boundary condition is

R(r) ~ 1 (3.9.4)
Now we choose a,= cos 1;and b,= —sin1),, which yields
|
R(r) ~ -k—sm(kr—l7r/2 +11) (3.9.5)
r—o K1

The above choice of g, and b, ensures that for U(r) =0, as required, (3.9.5) reduces
to (2.6.15). We have taken b, with a negative sign so that the phase 1, will be
positive for an attractive potential field. The use of (3.9.5) in (3.9.1) gives

wii(r) ~ AZ A Esm(kr—m/z +m)R(u) (3.9.6)
or
llll: (r) - zz_Ak_(ex(kr—ln/2+m) _ e—i(kr—ln/2+m))B(#) (397)
2" =0

An alternative expression for yj,(r) at large r is given by (3.1.2). In this
equation we take

f6,9)= iCtB(IJ) (3.9.8)
1=0

and use (2.6.25) and (3.9.8) in (3.1.2) to get

i'(2l +1) r g-ilz[2 _ =ik yiln[2 e
lr Iur, iKr lﬂ P +A P
i e )R (1) gcl (u)

v, () ~ AZ (3.9.9)

Equating the coefficients of ¢™ in (3.9.7) and (3.9.9), we get

A =i (2l +1)e™ (3.9.10)
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Similarly, a comparison of the coefficients of e

(3.9.10) yields

in the same two equations with

¢ =%i%1-(e2""' -1) 3.9.11)
Hence,
— 2+ )
@)= 22—.(6’2"" -DA(w) (3.9.12)
= 2ik
_ z-i-(zz +1)e™ sinmB(cos 6) (39.13)
l

Furthermore, from (3.9.1) and (3.9.10)

wii(r)= AY,i'21+1)e™ R (kr)P(cos 6) (3.9.14)
1

The above equation constitutes the partial wave expansion of the scattered
wave in terms of the Legendre polynomials and the radial wave function. Such
an expansion is possible only for the central potentials. It is easy to see that in
the asymptotic region, (3.9.14) goes to (2.6.24) for n;= 0. Hence, we conclude
that the effect of the potential scattering is to shift the phase of the Ith incident
partial wave by an angle 7),. Therefore, 7, is known as the phas shift. The scat-
tering by a central potential does not change the value of I. For 1,= 0, the scat-
tering amplitude f{6) reduces to zero; i.e., there is no scattering. Hence, 7, carries
the signature of the collision.

To evaluate 1);, we consider Ri(kr) at two large values of r, and divide one
by the other to get

R, (kr) - Ji(kn) —tan nm, (kn)
Riknr)  ji(kry)—tanmm (kr)

The above equation yields

_ Ri(kny) ji(kni) = Ri(kri) jy (k)

t =
AT =R e (k) — Ro(kr (k)

(3.9.15)

To eliminate the first-order differential from (3.9.2), we take
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Ri(kr) = Ju(D) (3.9.16)
r
which yields
d* I(I+1)
[272*"2 ‘U(r)———rz—]ﬁk(r) =0 (3.9.17)
The boundary conditions (3.9.4) and (3.9.5) now change to
fi7) =
and
1.
fitr) ~ ;sm(kr—m/Z +1) (3.9.18)

In most cases numerical methods are employed to solve the differential equation
(3.9.17) and obtain the value of fi(r) at large r, and thus 7, are calculated with
the help of (3.9.16) and (3.9.15). Due to the presence of the centrifugal term
I(I + 1)/7 in (3.9.17), in general, the value of 7), falls with an increase in . At
low impact energies the zeroth-order phase shift 1, dominates.

From (3.2.12) and (3.9.12) we get

o= %2(21 +A-5)1-57)
1
T 2
= k—2§l:(21 +D|1- )] (3.9.19)

where the scattering matrix element §; is defined by

S, = &M (3.9.20)
Hence,
1-8
t =j— 3.9.21
ann, =i 115, ( )

To obtain an expression for the absorption cross section in terms of the
scattering matrix element S; we note that according to (3.2.13), (3.2.17), and
(3.2.18), for large r,
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Gy = —r2jc(r)-fdg/(vAA*) (3.9.22)

and from (3.2.6)
c(r)-f——ri—( J J )
"\ oV VY

Using (3.9.14) for v, we get

%
JI[/* aiwd.(z = 4”AA 2(2l+1)e ") sin(kr I/ 2+ 1)
;
x cos(kr —Im/2+m,)+ 0(—13—)
;
Similarly,
fwaiw*dﬂ = 4”AA 2(21 De (e )sin(kr—lrt/2+n,)
r
1
x cos(kr ~izf2+ )+ 0(7)
-
Hence,

Our = %Z(zn D(1-ls[) (39.23)
[

Using (3.9.12) and the optical theorem, we obtain
2r
or =27 2,21+ Dl1-Re(s)] (3.9.24)
1

It is easy to verify that the sum of ¢, and g, is equal to oy

The scattering matrix S, whose elements are Sy, is a diagonal
matrix. Hence, SS* (where S'is the adjoint of S) is also a diagonal matrix with
the elements ¢*™". Now, for a real potential 1,= n* and oy, = 0. For such a
potential SS is a unit matrix, which confirms the conservation of particles. We
also get

67 =0u=.0, (3.9.25)
)
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where the partial cross section g; is given by
o, =;t—’2[(21+1)sin2 n, (3.9.26)
Hence,
o, s:—f(21+1) 3.9.27)

The above equation is a statement of the theorem of maximum cross section.
Equations (3.2.11) and (3.9.13) show that the structure in the differential cross
section is due to [ > 0. In general, the stronger the potential field, the more struc-
ture in the curve of 1(6) vs. 6. Furthermore,

1 o
16) = o Y 1+ 120 + De™e™ sin), sinm, A(cos B)P; (cos6)
[ 4

Hence, the cross terms for the different values of [ and !’ contribute to 1(6). But
(3.9.25) and (3.9.26) show that the cross terms do not contribute to ¢,,. This is a
consequence of the orthogonality of P(1).

At low incident energies the scattering is dominated by the lower partial
waves. At very low energies we may assume that only the [ = 0 partial wave is
of significance. Then, from (3.9.25) and (3.9.26),

4
o = ;’}snﬁ o (3.9.28)

In general, the ratio ny/k as k — 0 tends to a finite limit equal to —as, where a;
is known as the scattering length. Hence,

ag = —lim(m) (3.9.29)

k-0 k

Thus, from (3.9.28),

_Am a3k’

Ou = —————= =414}
TR V1+ak? s

(3.9.30)

For the repulsive potential, 1, tends to zero, as k tends to zero. However, for the
attractive potential, according to Levinson’s theorem,
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o= Zm" (3.9.31)
where the integer n represents the number of bound states that the potential can
support. A study of the square well potential (see Sec. 3.10.2) shows that the
number of bound states it can support depends upon its depth. For a shallow well,
Mo— 0 as k — 0. With an increase in its depth, a situation will arise when it is
able to support one bound state. For that depth, 17, — 7 as kK — 0. In between we
encounter a depth for which n,= /2. For this value of the phase shift, as; will

tend toward infinity and so will the cross section. Such a phenomenon is known
as resonance.

3.10 Scattering by a Hard Sphere and a Three-Dimensional
Potential Well

3.10.1 Hard Sphere

Let us now apply the method of partial waves to the collision of a particle
with a hard sphere of radius R and infinite mass. Since outside the sphere U(r)
= 0, the radial wave function is given by

R/(r) = ji(kr)—tannn(kr), for r=R

Furthermore,
R(r)=0, for r<R
Hence, at r = R we get
tanm, = j, kR)/n,(kR) (3.10.1)

In the limit of zero energy only the [ = O partial wave contributes, and from the
above equation

tann, =~tan(kR)
or
M= —kR

Hence, we get
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0= 47k (3.10.2)

The above value is four times the geometrical area of the sphere. In the high-
energy limit, where a large number of the partial waves contribute, ¢; reduces to
27R%,

3.10.2 Three-Dimensional Potential Well

Let us now consider the scattering of a particle of mass m, energy E, and
momentum ik by a three-dimensional potential well of depth —V, and width b.
The Schrédinger equations describing the system are

(V2+B)yi(r)=0 for 0<r<b (3.10.3)
and
(V2 + k)W (r)=0 for r2b (3.10.4)
where
p? =%1-(E+ V) (3.10.5)

In general the radial wave function of the Ith partial wave is a linear combina-
tion of j(r) and n(r). Further, it has to be finite everywhere. Hence, RL(r)
cannot contain n,(r) because the Neumann function diverges at r = 0. Therefore,
we take

Ri.(r)=Aji(Br) (3.10.6)
and
R...(r) = B[ j(kr) — tann;n, (kr)) (3.10.7)

where 7, is the phase shift for the Ith partial wave. Now R!(r) and R.,(r) and
their first derivatives are to be continuous r = b. Hence,

1 dRBY| 1 dRL(k)|
RL(B) dr | RLkn dr |,

A (3.10.8)

or
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A = Bii(Bb) _ kLji(kb) - tan myni(kb)]

= = 3.109
i) ju(kb) —tan m(kb) (3.109)

where the prime denotes differentiation with respect to x = fr or kr. From the
above equation we get

_ kjikb) ~ Auji(kb)

tann, = 3.10.10
M i) = 2 (kD) ¢ )
For small k, with the help of (2.6.13) and (2.6.14), we get
2041
tan, = &) [=Ab (3.10.11)

QI+NQRI-DN I+1+ A0

Thus for [ > 1, tan 1), goes to zero faster than k*; hence 0, as obtained from (3.9.26)
for [ > 1 is zero at k = 0. However, for [ =0,

_ —kb* 2,
T 1+ Agb

anTty (3.10.12)

Hence, for k — 0, tan 1), also tends to zero provided Agb # —1. Now from (3.10.9)
and (2.6.17)

Ao =Bcot Bb—1/b (3.10.13)

Hence,
sinT) ~ tan 1, = -kb(1 - tan 8b/ Bb)

and

0, = 4nb*(1—tan Bb/Bb)° (3.10.14)

which is finite even at k = 0.

Equation (3.10.11) shows that at [ + 1 + Ab =0, 1, goes to (2n + )72,
where n is an integer. Hence, the cross section o; assumes its maximum value.
In such a situation, the /th partial wave is said to be in resonance with the
scattering well. The value of the resonance energy E depends upon /, m, b, and

Vo If E is close to E} then the total elastic cross section ¢ = 20, is controlled
!

only by the lth partial wave, and we have
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4 r
G~ 01 =2 Q4 ) ————— (3.10.15)
k 4E-E!) +T1?

The above equation is known as the one-level Breit-Wigner formula. The energy
E! and T are known as are the position and the width of the resonance.
For [ = 0 the resonance occurs at

Bb=Q2n+1)zn/2
For E {{ V, the above equation gives

., (Qn+1)'7m

Vob
0 8m

(3.10.16)

As expected, each value of n corresponds to a resonance and the appearance
of a new bound state. At each resonance the potential produces a large
distortion in the wave function of the incident particle and so a large amount of
scattering.

3.11 Integral Equation for R(r) and tann,
We expand w3 (r) and ¢(r) in the complete set of spherical harmonics
and put the expansion into the Lippmann-Schwinger equation given by (3.3.2)
to get
2. Cin R Yo (F) Yo (k) = 47A Y i1y (er Y () Yo ()
im im
+HGs e, U W) (3111)

Now

GS(r,r) =Y. gt (r, 1Yo (F) Yok (7)
Im

with
gl+ (r, r,) = —ikjl (kr<)hl(l)(kr>)

where h{" is a first-order Hankel function and is equal to j,+ in,.
The second term on the right hand side of (3.11.1) takes the form
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3 [ 8, P GOVEAUC)E, ot R) X B Ve () 2"
Im 'm’

=Y. [ & (. AU Cn R ) Y )1 r” (3.112)
Im

Use of (3.11.2) in (3.11.1) yields

LY
R(r) =" Jékr) anA+ [ gt (r, PYUG)R( ) dr’ (3.11.3)

I

where C,,, being independent of m, is replaced by C,. Expressing gi(r, ') in terms
of j, and K" in the second term of (3.11.3), reduces it to

=ik [ i (kr Y (ke U ()R (r*)r2dr
0
= =ik [ i (kr " (kYU )R (') 2y = ik [ o (k)b (kYU ()R (") r
0 r

In the limit of large r the second term of the above equation goes to zero and the
upper limit of integration in the first term goes to . Hence, we obtain

.[ 0
R(r) > ji (kr)|:47rA —ZE- - ikf JitkrYU(r')R, (r')r’zdr’]
r=300 . 0

+n (kr)[kj JikrU(r)R, (r’)r’zdr’} (3.114)
0

A comparison of the above equation with

R(r) r'_ijl (kr)—tanmn, (kr)

gives
tan7, =~k [ j(kUIR (r)rdr (3.11.5)
0
and
i'4mA
C= m (3.11.6)
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Putting (3.11.6) into (3.11.3) we get
R(r) = julkn)(1 = itan ) = ik | (ki (ki) + im(kr )] X UG OR()r dr”
0

Finally, with the use of (3.11.5), we obtain
R/(r) = ji(kr) +IGz(r, ()R (r)r'dr’ (3.11.7)
where G(r, r') = kj(kr)nfkr.).
Equations (3.11.5) and (3.11.7) are the integral representations of the phase
shift 77; and the radial wave function R/(r), respectively. Both of these also depend
upon k.

In the first Born approximation R(r) = jikr). Hence, in the FBA (3.11.5)
and (3.11.7) reduce to, respectively,

tannf =k [[ji(kn)] U(Irdr (3.11.8)
0

and

RE'() = ji(kn) + [ Gi(r, P UG jilhr Y 2’ (3.11.9)

3.12 The Distorted Wave Born Approximation
Sometimes it is convenient to break U into two parts and take U = U, + U,.
This procedure is quite useful if the scattered wave function due to U, can be

obtained exactly and U, can be treated as a perturbation. The Lippmann—
Schwinger equation in the bra form due to U, alone is given by

(Wi, | = (@u, | +{wii, [ UGS
or
(o 1=k, | = (wii, | UGS (3.12.1)
Putting the above equation into (3.3.12), we get
116, 0) =27 (wii, WUl )+ 27 (wii, [UG Ul )

Now from (3.3.2)
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GiUl; ) =lwi ) o)
Hence,

16, 9) =2y, Uly; )+ 20 (wii, Ul ) - 2w, Ul )
= 21w, Uiy ) - 27 (wris, Ul ) (3.12.2)

This equation is still exact. However, y}(r) cannot be determined exactly for U,
+ U,. Hence, in the distorted wave Born approximation 3, is replaced by yi,(r),
and we get

FPVP6, 0) = 20 (wii, [Uhlow, ) - 27 (wi U by, ) (3.12.3)

The first term on the right-hand side is the exact scattering amplitude for a par-
ticle due to potential V, and the second term is the matrix element of U, due to
distorted outgoing scattered wave 7, and distorted incoming scattering wave
Vi, both distorted by U,;. Asymptotically, i is the sum of the plane wave ¢,
and the spherically outgoing wave ¢"/r. On the other hand, asymptotically, W7,
is the sum of the plane wave ¢, and the spherically incoming wave e™'/r.

If both U, and U, are spherically symmetric then f7**(6) can be expanded
in the partial waves and we finally obtain (Schiff, 1968)

FPVA(6) = £7(0)+ £7'(0)

—i (21 +1)P,(cos 9)} U[R* () - jRk))dr  (3.12.4)

1=0 0

where f* is the exact scattering amplitude due to U; and f*' is the first Born
scattering amplitude due to U,. R(r) is the radial wave function due to U,.The
above equation is valid only if U, falls faster than 1/r at large r.

3.13 The Critical Points

It is found that for a strong interaction potential the differential cross sec-
tions (DCS) possess deep minima. Such minima exist at one or more impact
energy and scattering angle. A small change in either causes an increase in the
DCS. Such impact energies and scattering angles are known as critical energies
(E,) and critical angles (8,), respectively, and we have

d*I(E, )

=0 131
dEdO |-, om0, (13D
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NGLE OF SCATTERING O

SCATTERING AMPLITUDE
o

FIGURE 3.4 The variation of the real R(E) and imaginary I(E;) parts of the scattering
amplitudes for the scattering of electrons by a potential at different energies E,.

For a theoretical determination of the critical points, Khare and Raj (1980) have

suggested the following simple method. Since I(E, ) is very small at (E,, 8,) we
take I(E,, 6,) = 0 without introducing any significant error. Now,

2 2

1=l +Ifil (3.132)

where f; and f; are the real and imaginary parts of the scattering amplitude. Hence,

at (E,, 6,) we have fy=f;,= 0. To determine E, and 6,, the values of fi(E, 6) and

f{E, 6) are generated by the numerical solution of the differential equation

(3.9.17). In Fig. 3.4 they are represented by R(E;) and I(E}), respectively, and are

plotted as functions of 6. The interaction curve ABCD of R(E) and I(E)) is
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obtained, as shown in the figure. The intersection of the curve ABCD with 6-axis
yields the critical angle 6,.
Near the critical point the variation of 8 with fi(= fr=f) can be given by

0 =af, +bf* +c (3.13.3)

Hence, we require f; at three impact energies to determine 6,. Similarly, E, is
determined from the equation

E=ef +gf*+h (3.134)

3.14 The Hulthen—Kohn Variational Principle

We have already discussed [in Sec. (3.7)] the Schwinger variational
method, which employs an integral approach. With trial wave functions this
method gives variationally correct scattering amplitudes. Variational methods
based on the differential approach have also been developed. As we have seen,
in this approach one is required to solve the differential equation (3.9.2) with
proper boundary conditions to obtain exact phase shifts 7/ and thus the exact
scattering amplitude. However, we may start with a trial radial function f/(r) and
a trial phase shift 7/ and employ a variational technique to obtain a better phase
shift nf and a better radial function f7(r).

In the Hulthen-Kohn variational method the exact radial function ff(r) and
trial radial function f{(r) are subjected to following boundary conditions:

fc0)=£(0)=0 (3.14.1)
fe(r) - sin(kr—Im/2+1f) (3.14.2)

and
£(r) = sin(kr ~ /2 + 7)) (3.14.3)

The boundary condition (3.14.1) is consistent with (3.9.4) but (3.14.2) and
(3.14.3) are slightly different from (3.9.5). The latter are obtained by adopting a
different normalization. Let us now assume that

fi(r)= fe(r)+6[/i(] (3.14.4)

and
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ni =ni +6(n,) (3.14.5)

where O[f(r)] and &1),) are infinitesimal quantities. Hence, from (3.14.1) and
(3.14.4),

8[£(0)]=0 (3.14.6)
With the help of (3.14.2) to (3.14.5), we get

8L£i(M) > coslkr—im/2-+17)8(n,) (3.14.7)
Now we define a functional:
0, = [ (DB fi(r)dr (3.14.8)
0

where the operator P, is given by

d? 1(1+1)
p=‘ 422
T r?

-U(r) (3.14.9)

Hence,
Bff =07 =0 (3.14.10)
and

0! = [{ () + SLAOMRLL )+ SLACNbdr
0

= 0 + [SLAMIRLedr +[ S AMIPSLA(PMr + [ f2RSL Al (3.14.1D)
0 0 0

The first two terms are zero and the third term is of second order. Hence, up to
first order,

8(0)=0i -0f = [ fr (DRSLF(r)ldr (3.14.12)
0
Using Green’s theorem or carrying out partial integration, we get

o 2 o 2
[ 55561 ldr = [SLA o £ (dr—kS(n)  (B.14.13)
0 dr 0 dr
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Then, (3.14.12) and (3.14.13) give

0(Q)) = —ké(n,) (3.14.14)

or
0(Q +kn)=0 (3.14.15)

Thus up to first order Q,+ k1), is a stationary quantity. According to this variational
principle, which was propounded by Hulthen (1944, 1948), up to first order,

Of +knf —Qf —=kn; =0 (3.14.16)

Since Qf =0, we start from a trial radial wave function f/(r), which obeys (3.14.1)
and (3.14.2), and a trial phase shift 7j, and get a better phase shift 7} from
(3.14.16):

1
n=ni +;Q} (3.14.17)

To obtain 71/, we take f{(C, C,, . . ., C,, 1), which depends upon (n + 1)
parameters given by C; and 7. This is used to calculate Q, from (3.14.8).
The calculated Q, is made stationary with respect to C; and 7f by imposing the
conditions

0 . .
3¢, =0 (i=12,...,n) (3.14.18)
and
a0
= =0
aC (3.14.19)

The resulting (n + 1) equations are solved to obtain variationally correct C; and
7! and thus variationally correct £,(r), Q,, and phase shift )/ are calculated. This
method was developed by Kohn (1948).

Instead of determining 7)/ we can obtain (tan 17,) by changing (3.14.2) and
(3.14.3) to

£ = sin(kr = Im/2)+(tann)" cos(kr=in/2)  (3.14.20)

Proceeding as before, we now get
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(tanm)’ = (tann,)’ +71<-Q, (3.14.21)

Partial differentiation of 6, with respect to the variational parameter C; gives
(3.14.18), but instead of (3.14.19) we get

90,
—=—k 3.1422
d(tanmn,) ( )
Solutions of (3.14.19) and (3.14.22) give variationally correct Q, and (tan 17)' and
thus (tan7,)’ [from (3.14.21)).

Equation (3.14.21) can be extended to obtain a variational principle for the
scattering length ag. For the zeroth partial wave this equation gives

b t et t
_tann; __tanm, _Jfo(r)l,0 folr) 4 (3.14.23)
k k 0 kK k
We define
. 1
fo(r)= lkln(;1|:—-];ﬁf(k, r):| (3.14.24)
Taking the limit of (3.14.23) as k — 0, we get
a} =at ~ [ fy (VP i (Ndr (3.14.25)
0

Now f§ is expressed as a function of variational parameters C; and as. This
gives

ol
ECT = (3.14.26)
and
ol
=0 3.14.27
2(a}) (31427
where
I=at - fy (VPSS (dr (3.14.28)
0
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The value of the variational parameters C; and ag are determined from (3.14.26)
and (3.14.27), and thus a better value of the scattering length is obtained from
(3.14.25).

It should be noted that although n? differs from the exact phase shift 7f by
a second-order quantity, it is not possible to make a definite statement as to
whether the difference (1)f — 7f) is negative or positive. Thus 1/ does not provide
a bound to the phase shifts, not does (tan7,)’. Hence, in this respect the varia-
tional principles of scattering theory are inferior to the Rayleigh—Ritz variational
principle, which provides an upper bound to the eigenenergy of bound states.
However, it has been shown by Rosenberg et al. (1960) that a? provides an upper
bound to the scattering length, provided that the interaction potential is too weak
to support negative energy states.

3.15 The Atomic Units

In atomic physics quite often atomic units are employed. Here the length
is expressed in the units of a, and the unit of energy is taken to be 1 Hartree,
which is equal to €%/ay, i.e., 2 Rydbergs. In these units # =m = e = ay = 1. Equa-
tion (3.1.1) written in atomic units becomes

[V2+k2 =2V(r)y(r)=0 (3.15.1)

Sometimes the unit of energy is taken to be 1 Rydberg, instead of 2 Rydbergs.
Then the above equation changes to

[VZ+k> = V(r)ly(r)=0 (3.15.2)

In equations written in atomic units all the quantities are dimensionless. However,
we shall continue to write equations in terms of #, m, e, and a,.

Questions and Problems

3.1 Show that for the interaction potentials that fall faster than 2 in the asymp-
totic region, (6, @)e*’/r satisfies Eq. (3.1.1).

3.2 An electron of energy 54 eV is scattered by an absorptive complex potential.
The forward scattering amplitude is equal to (2 + i0.5)a,, where ay is the first
Bohr radius. Calculate the differential cross section in the forward direction and
the total collision cross section.
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3.3 A particle of mass m is scattered by a potential field, which is given by —
Ze*[(1/r) + (Z/ag)}e”*%"™. Obtain the scattering amplitude in the first Born approx-
imation. Also obtain the ratio of the differential cross sections in the forward and
backward directions.

3.4 Use the first Born approximation to show that the integrated cross section
for the scattering of a particle by a Coulomb field is infinite.

3.5 According to Simpson’s rule for numerical integration

xQ+nh I

j f(x)dx =§{f(xo)+4[f(x0 +h)+ f(x+3h)+ -+ f(xo +n~1h)]

x0

+2[ F(xg +20)+ F(xo +4R)+ ..+ fxo +n—2R)]+ Fxo +nh)}

where n is an even positive integer. Use the above equation along with (3.5.11)
and (3.5.13) to evaluate o2 in the units of 7a*for Aa=1. Take k=2.5and n =
20. Compare your result with that obtained from (3.5.14).

3.6 According to the trapezoidal rule for numerical integration

x0+nh

j f(x)dx = —{ £t +h)+2[f(xo + 1)+ f(xo +2h)+--
+f(x0 +n— 2h) +flxo+n- 1h)] + f(xo +nh)}

where n is a positive integer. Use this rule also to evaluate the above cross section
with the same values of ka and n. Comment on the accuracy of this rule vis-a-
vis Simpson’s rule.

3.7 On the both sides of (3.4.17) the exact scattering amplitude fis approximated
by Afsi, where A is a complex number. Obtain the real and imaginary parts of A
in terms of f3; and the real and imaginary parts of fg. Further, show that in the
above approximation

_fa

[f] f fBZ

Compare the above expression with the Born series for f3, )) fa

3.8 Point out the main differences between the Born and the eikonal series.
Out of the first Born and the eikonal approximations, which one is superior and
why?
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3.9 Discuss the concept of phase shift. Why, in general, does the value of the
phase shift decrease with an increase in [?

3.10 For a particle scattered by a central potential, the values of the first three
phase shifts, in radians, are ny= 1.960, n; = 0.453, and 7, = 0.112. Obtain the
values of /(6) and plot a graph of I(0) vs. 6. Also calculate the partial and inte-
grated cross sections.
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Collision of Electrons with a
Potential

4.1 Introduction

The methods developed in the previous chapter are applicable to the colli-
sion (scattering) of electrons with (by) a potential provided we assume that an
electron is a spinless particle. However, an electron is a spin-1 particle and
possesses magnetic moment i. The coupling of the spin angular momentum §
with the orbital angular momentum L of the electron produces a new term in
the Hamiltonian of the system. The potential energy of the electron changes
from V(r) to V(r) = V(r) + Vso(r), where Vso(r) is the additional potential
energy due to spin—orbit coupling. Hence, the phase shift, 17, as obtained from
(3.9.15), changes. This additional term depends upon three quantum numbers j,
I, and s. However, s is always 1. Hence, we represent the phase shift by 7;,. Not
only are the 7);; different from the 1), (obtained with Vgo = 0), but one value of /
gives two phase shifts corresponding to j = I £ . In such collisions m; and m,
need not be separately conserved, but their sum, i.e., m, is a constant of motion.
Hence,

Am; = Am;+Am; =0 4.1.1)

Since mg = i—%, it is possible that in the collision an incident electron with m, =

+ 1 may flip its spin and appear with m; = —L after the collision. Thus, due to the
spin—orbit interaction, we have following two types of collisions:

€T+ Ver(r) > €T + Vige (r) 4.12)

75
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and
eT+ V(N> el+ V() 4.1.3)

In (4.1.2) Am, = Am; = 0 but in (4.1.3) Am, = 1; hence, Am; = —1. The former is
the direct collision while the latter is known as the spin-flip collision.

4.2 Spin-Orbit Interaction Potential

Suppose an electron is moving in a potential field with a velocity v and the
potential produces an electrical field E at the position of electron. Then, in the
rest frame of the electron, a magnetic field B equal to (v X E)/c is produced. This
magnetic field B interacts with the magnetic moment p[= —eS/(mc)] of the elec-
tron to produce a new term in the Hamiltonian. This term is given by

e
m2c2

Hso ——-—[,l‘B-——— S(Exp) (421)

where p is the linear momentum of the electron. For a central potential

1dv
p- L4V, (42.2)
er dr
Hence, in a frame in which the electron is at rest,
1 dv
Vso(r) = Hso =——5———(S- L) (4.2.3a)
m°c’r dr

If we calculate Vso(r) with the proper Lorentz transformation for the field in a
frame in which the electron is moving, then Vgo(r) given by the above equation
is reduced by a factor of 2. Thus, finally,

1 dv
Vi =——F—(S-L 4.2.3b
so(r) ymicr dr ( ) ( )
Now,
J2=*+S*+2L-S
Hence,
1 4dv

\% = (J? - [*-§* 424
so(r) amicir dr( ) ( )
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”(l) ]([i)l i[)é I(Il)

FIGURE 4.1 Electron ensembles: (a) Polarized, (b) unpolarized, (¢) unpolarized, and (d) partially
polarized.

As Vg is usually small in comparison to V(r), it is neglected in many investiga-
tions, but in this chapter its effect will be taken into consideration.

4.3 Ensemble of Polarized Electrons

Before considering the scattering of electrons by a potential V(r) + V, (),
a familiarization with the concept of the ensemble and the beam of polarized
electrons is quite useful. If in an ensemble of N electrons, the spin vectors of all
the electrons point in the same direction (Fig. 4.1a), the ensemble is said to be
fully polarized. In this case all the electrons are in the same spin state and the
ensemble is said to be in a pure spin state. On the other hand, if the spins of half
of the electrons point in one direction and the other half in the opposite direction
(Fig. 4.1b), then the ensemble is completely unpolarized. An ensemble of elec-
trons is also completely unpolarized if its spin vectors are distributed equally in
all possible directions (Fig. 4.1c). Figure 4.1d depicts an ensemble of partially
polarized electrons. The degree of polarization P is defined by

NT-Nl NT-NL

P=tinl™ " w

4.3.1)

where NT and N{ are the number of electrons having their spin up (m, = +1) and
down (m, = — %), respectively. For NT = N the ensemble is fully polarized (P = 1)
and for NT = N/2 it is completely unpolarized (P = 0). For any other value of
NT the ensemble is partially polarized. For NT < N/2 the degree of polarization
is negative. In conclusion, an ensemble (or a beam) of electrons is said to be
polarized if its spins have a preferential orientation such that there exists a direc-
tion for which the two spin states (T and 1) with respect to quantization axis are
not equally populated. It should be noted that due to the uncertainty principle,
the vector S is not stationary in the space. If we say that S is in the z direction,
we mean that § is somewhere on a cone in such a way that its component along
the z-axis is #/2 and | S| = «/;h [see Eq. (4.3.9)].
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The spin wave function y of an electron in a pure spin state is represented
by a vector in a two-dimensional Hilbert space. Taking & and f3 to be two basis
vectors we have

x=aa+bp (432)

The o and B correspond to m, = +} and - states, respectively, and are repre-
sented by two component spinors:

a=((1)) and [3=((1)) 433)

It is easy to verify that
(alay=(BIf)=1 and (a|B)=0 4.3.4)

Thus we get

) s

For a normalized ¥
(x\2)=lal* +lol =1 43.6)
The spin angular momentum S is defined by
S=+ho 437

where ¢ is the Pauli spin operator. Its three components are

01 0 —i 10
a,,:( ) c;y:(_ l), and c;z:( ) 4.3.8)
10 i 0 0 -1

With the above equation, it is easy to verify that

S{Z)=i%h(;) and S(Z) =%h2(3) (4.3.9)

Furthermore,
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Y A E—

FIGURE 4.2 The polar angles of the spin wave vectors y are (6, ¢).

1 0 a
Sy=aS,| |+bS, =ih( )
x=a (o) (1) 2\ -b

Hence, y is not an eigenfunction of S,. However, if S, is the component of S in
the spin direction of y then we should have

S x=3hx (4.3.10)

To verify the above equation let us take (6, ¢) to be in the spin direction
of ¥ and € as a unit vector along (8, ¢); then with the help of (4.3.7) and (4.3.8),

S, =8-e

=lh( € "X"ey) (4.3.11)

2 .
e.+ie, —e,

Assuming (4.3.10) to be correct and using (4.3.11), we get

( (e,-Da (e, —iey)b)

(e, +ie,)a —(e,+1)b
For nontrivial values of a and b we have

e.—1 ‘e, —ie,
e, +ie, —(e,+1)
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which yields
1-(e2+el+e2)=0
which is certainly correct, and thus, (4.3.10) is verified. Now from
(ex =Da+(e, —ie,)b=0

we have

Furthermore e, = sin 8cos ¢, e, = sin fcos ¢, and e, = cos 6. Hence,

== tan(6/2)e"

_b_ 1-cos@
a sinfe™

For a normalized y we take

b =sin(6/2)e" and a=cos(6/2)

Chapter 4

(4.3.12)

4.3.13)

(4.3.14)

For a 100% polarized ensemble the polarization vector P is the expectation value

of the Pauli operator 6. Thus,

P=(xlolx)

Using (4.3.5) for x and (4.3.8) for o, we obtain

b
P, =(a*b*)( )=a*b+b*a =sinf cosf
a
—ib

P = (a* b*)(
a

) =i(ab*—a*b) =sin 0 sin ¢

a )=Ia|2 —Ibf' =cos6
b

-

As expected P* = 1.
The density matrix p is defined by

orders@himanshubook.com

(4.3.15)

(4.3.16)




Collision of Electrons with a Potential 81

p=lx><xl=(2)(a* b*)

or

aa* ab*
p= T 4.3.17)

We note that

(aa* ab*)(l 0 )
tr po, =tr =P,
ba* bb*/\0 -1

Similar relations hold for the x and y components. Hence,

P=tr(po) (4.3.18)

Eqgs. (4.3.16) and (4.3.17) give

(4.3.19)

1( 1+, P,-iP
p=%(1+P-o)=5( ”)

P.+iP, 1-P,

Let us now consider an ensemble of electrons obtained by mixing a number
of pure states, represented by | ;). Suppose the i component of the mixture has
N; electrons and its polarization vector is P,. Since |y;) is a pure state |P;| = 1,
but in the mixture P; and P; have different directions. The polarization vector of
the mixture is

P= —[%,—EN,-B (4.3.20)

where N = Z N;. Hence,
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Since P;-P; is less than unity we get
1 2
P-P<F(ZN,) =1 4.3.21)

i.e., the degree of polarization of the mixture is less than unity. Equation (4.3.19)
is also valid for a mixture. This gives trp = 1, but

. 2
trp2=ltr( l+f)z Rr_ll))')
*\P+iP, 1-P,
=1(1+P%) (4.3.22)

is less than unity because P is less than one. Thus we conclude that for a pure
spin state P = 1, and trp = trp> = 1 but for a mixture P < 1 and trp” < trp.
For a 100% polarized beam in the z direction (4.3.19) yields

10
= 43.
P (o o) @329

Similarly for a completely unpolarized beam (P, = P, = P, = 0), we have

11 0
= 4324
p 2(0 1) (4.3.24)

If a partially polarized beam is polarized in the z direction with the degree of
polarization P then P, = P and P, = P, = 0. Hence, from (4.3.19)

__1_(1+P 0 )
P=30 0 1-p
1 1 0y (10
'E(I—P)(o 1)+P(0 o) @32

According to the above equation, a partially polarized beam can be considered
as being made up of a totally polarized beam and a completely unpolarized
beam mixed in the ratio P:(1 — P). It is to be noted that the addition of density
matrices is an incoherent addition. We may write (4.3.24) as

1/1 O 1/0 O
=— += 4326
P 2[0 o) 2(0 1) (4.3.20)
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where the first term is the density matrix of a fully polarized ensemble in the +z
direction, whereas the second also represents a fully polarized ensemble but in
the —z direction. An incoherent addition of the two terms with the same weight
factor 1 results in a completely unpolarized ensemble. On the other hand, a co-
herent addition (addition of the amplitudes of the two oppositely polarized
states) produces a new fully polarized state. For example, addition of two fully
polarized states in the +z and —z directions, represented by

(o) = ()

respectively, gives rise to

1 (1) 10\ 11
7_5(0)+T2(1)=_«/7(1) @.3.27)

A comparison of the above equation with (4.3.5) shows that the former equation
represents a fully polarized state with a = b = 1/N2 or 6= /2 and ¢ = 0.

4.4 Direct and Spin-Flip Scattering Amplitudes

Let us consider the scattering of the spin-up electrons by a central poten-
tial V(r). Due to the spin-orbit interaction we have direct and spin-flip scatter-
ings, represented by (4.1.1) and (4.1.2), respectively. The wave function of the
system satisfies the following differential equation:

[vz 2 —U(r) - —t L AU
Am?

2 r dr (Jz—LZ—SZ)}w(r,s)=0 4.4.1)

where U(r) = 2mV(r)/ 2. In the scattering m; = + is a constant of motion. Hence,
for a given [, after the scattering, m, = 1 and m; = 0 for direct scattering and
m, = —% and m; = 1 for spin-flip scattering. Furthermore, for each /, j has two
values given by / £ 1. We expand yAr, §) in terms of a complete set represented
by ¥js.sm. For m; = -;-and s = -;—this function (Mott and Massey, 1965) is given by

Yisayz =Cup (j,%,O,J{)Yloa +Ciyp (]','ZL,I,—'%')Yuﬂ (4.4.2)

where C;,(j, m;, mg, m,) are Clebsch-Gordon coefficients, given by

orders@himanshubook.com



84 Chapter 4

Cop(1+1,2,0,5) = Cua(i-1,2,1, -1 = [+ /@1 + 1))

297290

1/2

Cop+4,1,1,-3)=-Cypl~1,1,0,5) =1/ 21 +1)] (4.4.3)
Hence,

1/2

Sissa =+ D@D Yoo+ @1+ D] 1 @4da)

and

Virsse = =111V Yoa + [+ D/@1+ D17 ¥,B (4.4.4b)

It is obvious that the yy,,.1, are eigenfunctions L? and S* By using the relation
J=r+S§*+n(L,0,+L,0,+L.0;) (4.4.5)

it can be shown that the above functions are eigenfunctions of J? as well with

eigenvalues j(j + 1) 7. Now the expansion of y(r, s) in the complete set of y; ¢ 1,
similar to (3.9.14), is given by

w(r,s) = AZ;’(47[)1/2(2I+1)1/2 ZI/ R, (rexplin,,)
j=i-1/2|

X Cl,s(jv?y ai)yj,l,s,l/Z(ns) (44-6)

The radial function R, (r) is the solution of the following one-dimensional
differential equation:

1d/(, d) l(l+1) n ldU(r)]
il [ el —U(r) - = R, =0 (447
|:r2 dr(r dr ") 4Ame? A rodr |7 ( )

where A, = [j(j+ 1) = I(I + 1) — s(s + 1)], and R; (r) satisfies the following bound-
ary conditions:

Ry (r) = r (4.4.8a)
and
R;,(r) > Zl—sin(kr - 171:/2 +M;) (4.4.8b)
r—yoe r
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The phase shift 7;; depends upon both j and I. Using (4.4.8b) in (4.4.6), we
get

A\/; ' 2 1+1/2 ‘ i
W(rvs) r:ze lk_rzll(21+ 1) 2 Cl,s(.]9%103_;—)yj.lys,l/ze s
!

j=t-1/2|

x {expli(kr —Ir/2+m;,)] - exp[-ilkr — Im/2 +n;,)]} (4.4.9)
For electron—potential scattering, with m; = %, Eq. (3.1.2) modifies to

eikr

vi(r,s) - A[e"‘”a +

f(9,¢)} (4.4.10)

r

where we have considered only outgoing scattered waves. The asymptotic
expression for A exp(ik-r)« is easily obtained for (4.4.9) by taking 7;; = 0. Use
of this expression and (4.4.9) in (4.4.10) gives

+1/2

f(9,¢)=ii—1§2i’(21+1)1/2 Y expl(-iln/2)C,(j,1,0,3)

i j=li-1/2|

X yj1y2y2lexpQin; - 1) (44.11)
Now using (4.4.3) and (4.4.4a) in the above equation, we obtain

1(6,9)= f(B)a + g(6)e” B (4.4.12)

where
f(9)=—;—k;{m1)[eXP(2inz+1/z.z)—1]+l[eXp(Zinz-x/z,z)—1]}3(0080) @413
and

20)= ﬁ ; [exp(2imsy1) ~exp ity 1B (cos6) 44.14)

For the electron-atom collision dV(r)/dr is quite large near the origin; hence
the maximum contribution to g(6) comes from the [ = 1 partial wave (the [ =0
partial wave does not contribute to g(6) because I-s = 0 for this /). With the
increase of /, 1,1, approaches 1,1, Hence, the contribution of the higher partial
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waves to g(6) rapidly decreases. A relatively larger number of partial waves con-
tribute to f{6), so f(6) as a function of 0 exhibits more structure in comparison to
that shown by g(0). As the incident spin wave function is ¢, then f{0), being asso-
ciated with ¢, is known as the direct scattering amplitude. The association of g(6)
with the spin-down wave function 8 shows that in the scattering some of the
electrons flipped their spin from « to . Hence, g(6) is said to be the spin-flip
scattering amplitude. Due to the spin—orbit interaction, the phase shifts 77,1,
and 1y, are different from each other, and g(6) is nonzero. At large r, for the
incident beam polarized upward (+z), the scattered part of the wave function is
a two-component spinor and is given by

N )e—k— (4.4.15)

Y (T) = A(g(e)e"p .

Similarly for an incident electron beam polarized in —z (spin-down) direc-
tion, the scattered wave at large r is

TROE A('g;‘z:)_w )e—:— (4.4.16)

The differential cross sections for the two polarization directions are given by

(=170 s @epro , O]
Thus
T=1=10)=|f6) +|s6)’ 4.4.17)

Further, due to cylindrical symmetry, both IT and Il are independent of . A com-
pletely unpolarized beam is a mixture of two completely polarized beams (polar-
ized in opposite directions) and the differential cross sections for each half is
given by (4.4.17). The sum divided by 2 is again equal to [{6)|> + | g(6)|. Thus
(4.4.17) also gives the DCS for a completely unpolarized beam.

The scattered wave at any r is given by

141/2

vselr,9)=4m" Y Y 1@+ 65,0y,

1jei-1/2|

x [exp(in; )R;,(r) = ji(kr)] (4.4.18)
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To eliminate the first-order derivative from (4.4.7), we take R, (r) = f;(r)/r, and
thus obtain the differential equation for f;;:

d? R*A; 1dU®r) 1(1+1)
L N o e/ TR
l:dr2 " dmict r dr r?

:|fj,,(r) =0 4.4.19)

where the values of A, are  and —(I + 1), corresponding to j = I + 1, respectively.
As discussed in Chapter 3, Eq. (4.4.19) is solved numerically and the phase shifts
M2, are obtained from the asymptotic values of f;(r).

It may be noted that the spin of an electron is due to the relativistic effect.
Hence, it is more appropriate to start from the Dirac scattering equation (Mott
and Massey, 1965) rather than the Schrodinger scattering equation. However, in
the energy range of our interest the results obtained from these two equations do
not differ significantly.

The Scattering Matrix and Left-Right Asymmetry

Let us assume that the incident electron beam is polarized in the (6’, ¢)
direction; then the initial spinor is given by

) e

where a = cos(6’/2) and b = sin(8’/2)e"’. As discussed in the previous sec-
tion, due to scattering, both the o and the § components of y change, and the
scattered wave function is

Z'=a(g£¢)+b(_g;-i¢) (4.4.21a)

or
= (af —bge ™®)or +(age® +bf)B (4.4.21b)

or
U R

or
¥ =S 4.4.21d)
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where the scattering matrix is defined by

g9
S=(gf; , g; ) (4.4.22)

Similarly, the initial density matrix p changes to
p'=x " =Sxx'St =5pS’ (4.4.23)
and the DCS is given by

|af —ge""’bl2 +|bf +ge’""a|2

1(6,0) = (4.4.24)
laf* +pf”
or
1(0,0) = 1P (4.4.25)
trp
Using (4.3.19) and (4.4.23) in the above equation, we get
100,0) = %tr{S(l +P-0)S'} (4.4.26)
Since trp = 1 Eq. (4.4.26) yields
ssg[ A7 +lgf (fg*—gf*)e“"’)
; 2 2
(frg—fzMe’ 1" +lg
or
— ~i¢
= 1(9)( I -iSe)e ) (4.4.27)
iS(9)e" 1

where I(6) is given by (4.4.17) and the Sherman function S(6) is defined by

_ . (fzg*=f*g)
5(6) = S (4.4.28)
=-2Im(fg*)/16) (4.4.29)
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Thus the Sherman function is a real quantity. Using (4.3.19) and (4.4.27) in
(4.4.26) and noting that the trace is independent of the order of the matrices we
obtain

1(9’ ¢) = %tr[l(@)( 1 —iS(e)e'w )( 1+ PZ P, - le)]

iS(6)e" 1 P +iP, 1-P,
b, b
= 1(—92&( " ”) (4.4.30)
2 b21 b22

where

bll = 1 + Pz —iS(e)e—m(Px + l}’y)

by = P, —iP, =iS(@)e (1~ P)

by =iS(6)e®(1+P,)+ P, +iP,

by, =1- P, +iS(8)e" (P, —iP,) (4.4.31)
Let P, be the component of the polarization vector P in the x—y plane with

P, and P, as its components. Then P, = P,cos ¢/ and P, = P,sin ¢/, where ¢’ is the
angle between P, and P,. Hence, from (4.4.30) and (4.4.31), we get

1(0,0) = 1(6)[1-S(O) P, sin(¢ — ¢")] (44.32)
Assuming P, to be in the direction of the x-axis, we have
1(6,0) = 1(0)[1- S(B)P, sin 9] (4.4.33)
The asymmetry parameter is defined by

_1(8,37/2)-1(6,7/2)
©10,3m/2)+1(6,7/2)
_1(6)-1(6)
T L(9)+1,(6)

(4.4.34)

where I,(6) and 1(6) are the DCS for the scattering at an angle 6 to the left and
to the right, respectively. From (4.4.33) we get

A=S@O)P (4.4.35)

Hence, the Sherman function is also known as the analyzing power or asym-
metry function.
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/N

¢
0 180° 360

, Ie.9) +

FIGURE 4.3 The left-right asymmetry due to scattering of polarized electrons by a potential.

It is evident from (4.4.32) that for a given value of 6,
10,0)# 10, +¢)

This inequality is known as the left-right asymmetry. It arises only if the inci-
dent beam is polarized (even partially) and the polarization vector P has a nonzero
transverse component P,. If P is in the direction of k; then P, = 0 and I(6, ¢) =
1(6), in agreement with (4.4.17). For the positive S(6) a plot of I(6, ¢) with ¢ is
shown in Fig. 4.3.

Figure 4.3 shows that at ¢ =0, &, and 2, 1(6, ¢) = I(6). Its maximum and
minimum values, at ¢ = 32/2 and /2, are given by I(6)[1 £ S(O)P|], respectively.
Thus we see that the Sherman function plays an important role in determining
the magnitude of the left-right asymmetry. To put (4.4.33) in a form that is inde-
pendent of the choice of the coordinate system, we take a unit vector n perpen-
dicular to the plane of scattering (a plane formed by the vectors k; and k;). Let
the polar angles of 7 be 6" and ¢'. Since n-k; =0 we have 8’ = /2, and the polar
coordinates of 7 are (cos ¢, sin¢’, 0). It is also perpendicular to k;. Hence,

n-k; =(cos¢’,sing’,0)- (sinBcos¢,sin@sing,cosf) =0  (4.4.36)

Thus we obtain ¢’ = /2 + ¢ and the polar coordinates of 7 are (—sin @, cos ¢, 0).
Since P, = P, we have

P-n=(P,0,P) (~sing, cos¢,0) =~P,sin ¢ 4.4.37)

Thus (4.4.33) reduces to
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1(6,¢) = 1(0)[1+ S(O)P - n] (4.4.38)

4.5 The Change in the Polarization Vector P Due to Scattering

Let an electron beam having a polarization vector P be scattered by a potential.
The polarization vector P’ for a unnormalized scattered beam, with the help of
(4.3.18), is given by

P’ =tr(p’o)/trp’ = tr(SpS'e)/tr(SpsT) 4.5.1)

Using (4.3.19), we get

P’ =u[S1+P-0)S'o}/uw{SA+P-0)S']

tr[(bll b12 )( éz éx ) iéy )]
by bp\e, +ie, —é,

= 45.2)
by + by
where b are given by (4.4.31) and ¢, etc. are unit vectors. Hence,
bpe,+by(e, +ie,)+by (e, —ie,)—bne }
P’ =[ : 2 : < (4.5.3)
by + by,
The above equation simplifies to
pre [P-a+SO)ln+TOP -A(P -]+ U@)n x P) 45.4)
1+ P -nS(0)
where S(0) is the Sherman function and
2 2 % %
- +
r0)= 8 g )-8 (4.5.5)

- T2
A" +gf I +lel’
Hence, T(6) < 1 and T> + U* + §* = 1. For g(6) = 0 we have S(6) = U(6) = 0,
T(6) = 1 and P’ = P. Thus the change in the polarization vector is due to the

spin-orbit interaction. If the initial beam is unpolarized, then P = 0 and

P’ =50)n (4.5.6)
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Therefore an initially unpolarized beam gets partially polarized due to
scattering, and the polarization vector P’ is perpendicular to the plane of scatter-
ing. The magnitude of P’ is equal to the Sherman function S(6). Thus in the
scattering of a polarized beam the Sherman function determines the extent of
the left-right asymmetry, and in the scattering of an unpolarized beam, it gives
the degree of polarization of the scattered beam. Hence,

_1M@-1e) NT-N
"M@+ H®) NT+NL

S(6)

Thus the Sherman function is also equal to the difference in the fractions of the spin-
up and spin-down electrons. At the critical angle 6, (see Sec. 3.13) differential cross
section I, = IT + I{ has a deep and sharp minimum. Near this region, but on the
opposite side of 6., IT and Il also have deep and sharp minima. Thus the scattered
electrons are highly upward polarized at the scattering angle where I is minimum.
Similarly, at the scattering angle where IT has its minimum, the scattered electrons
are highly downward polarized. Thus S(6) changes its sign in that region.
For a better physical understanding let us take

P=P, +P, (4.5.7)

where P, is along nand P, is in the plane of scattering. Using (4.5.7) in (4.5.4)
gives

_ [P, +S(O)]n+T(O)P, +UB)1 X P,)

P/
1+ P,.S(6)

(4.5.8)

A comparison of (4.5.7) and (4.5.8) shows that P has only two components
P, and P, but P’ has three components. The component P, changes to

b, +5) .
) = —— 459
+BS0)" @39)
The component P, reduces to
T(0)P,
) = ————— 4.5.10
7 14+P.SO) ( )

and a new component, perpendicular to the directions of nand P, is produced,
whose magnitude is equal to U(6)| P,,I /[1 + P,S(8)] = Pg, say, as shown in Fig. 4.4.
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(a) (b)

FIGURE 4.4 Scattering of the partially polarized electrons by a potential: (a) P, and P, are the

components of the initial polarization vector P in the scattering plane OABC and perpen-

dicular to the scattering plane, respectively. (b) The numerators of the three components of P’ are TP,,
P, + 5(6) n, and U(# x P,). The denominator (not shown) of all the three terms is (1 + P,S).

We find that P, not only changes in magnitude but is also rotated by an
angle o in the plane of the scattering such that tan &= U(6)/T(6). Since n, P, and
(nx P,) are mutually perpendicular we have

P, +S(0)] +[T%(6)+ U*(0)]P?
[1+ RSO

P = (45.11)

If the initial beam is 100% polarized then | P| = 1 and P2= 1 — P2 Then from
4.5.11)

_ P2+2BS0)+5(0)+(1- P)T*(6) + U*(6)]

P : (4.5.12)
[1+P.S5(0)]
Using the relation $* + T* + U* = 1 we get
P =1 (4.5.13)

Hence, there is no change in the magnitude of the polarization vector but the
directions of P and P’ are different. However, for P, = 0, the incident beam has
only a transverse component, and (4.5.9) and (4.5.10) yield
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LA ] (4.5.14)
1+ P,5(6)
In this case the directions of P and P’ are the same but the magnitudes are different.
The spin-flip also takes place in electron—atom collisions. If we confine
ourselves to spinless atoms and consider only elastic scattering, spin-flip is due
solely to the spin—orbit interaction. In a perfect experiment one would like to
determine module |f| and |g| and phases % and 7 of the scattering amplitudes f
and g. Thus we require a set of four observables, which is provided by 1(8), S(6),
T(0), and U(6). However, due to the relation 7> + U* + S* = 1, the four observ-
ables are not independent of each other. Thus we can determine only three
quantities namely |f], |gl, and ¢; = 71 — . This is consistent with a concept of
quantum mechanics, according to which an analysis of the scattered wave cannot
determine the absolute values of the phases. From (4.4.28) and (4.5.5), S(6) and
U(O) are proportional to sin @, and cos ¢, respectively, so for unambiguous
values of ¢, both S(8) and U(0) are required.

4.6 Measurement of the Sherman Function

To measure S(6), Eqgs. (4.4.38) and (4.5.1) are utilized and a double scattering
experiment is performed. A monoenergetic beam of unpolarized electrons of
energy E is scattered by the material whose Sherman function is to be measured.
The scattered beam traveling in the direction (8, ¢,) is allowed to be scattered
for a second time by a second specimen identical to the first, and the differential
cross section in the directions (6, ¢,) and (6,, ¢, + ) are measured. By the first
scattering, the scattered beam gets partially polarized and the polarization vector
is given by P = S(6,)n,. The differential cross section for the scattered beam in
the second scattering is given by

1(0,,0,) = 1(6,)[1+ S(6,)S(0, ), - m, ]
Now for ¢, = 0 we get

1(6,,4,) = 1(6,)[1 + 5(6,)S(6) cos 9, ]
Hence, for ¢, = 0 and ¢, = 7 we have

1(9250)_1(927”)

10,.0)7 16, 1) 8256 4.6.1)

For 8, = 6, = 6, say, we obtain
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16,0)-10,7) ,
16.0)106.7) 5%(0) 4.6.2)

Thus measuring I(6, 0) and (6, m) of an electron beam, that is first con-
verted into a partially polarized beam, we can determine the value of the Sherman
function S(6) of the chosen material. Usually to measure the left-right asymme-
try [i.e., I(6, ¢) and I(6, m)], a Mott detector is employed. Its Sherman function
$(120°) at E = 120keV and 8 = 120° has been determined with great accuracy.
To use this detector, the beam obtained by the first scattering at 6, is accelerated
to £ = 120keV and allowed to fall on the Mott detector. Then 1(120°, 0°) and
1(120°, 180°) are measured. For these measurements (4.6.1) reduces to

1(120°, 0°) - 1(120°, 180°)
1(120°,0°) + 1(120°,180°)

=5(6,)- 5(120°) (4.6.3)

Since S(120°) is already known S(E, ) is evaluated. A change in E and 0,, yields
values of S(E, 6,) at different values of E and 6,. The Mott detector also mea-
sures the degree of polarization of a partially polarized beam with the help of
(4.4.38). Since this equation contains only P, before scattering, the polarization
vector P is to be rotated in the direction of 7 (Kesseler, 1985). These detectors
have been calibrated with an accuracy of 0.3% and are capable of detecting
polarization as low as 107 (Mayer, 1995).

If P of the incident electron beam is known, then (4.4.38) can be utilized
to determine S(6) of a given material. I(6, ¢) is measured when P and n are
parallel to each other. Then the direction of P (or 1) is reversed so that P and 7
are antiparallel. The DCS is again measured. If we denote these cross sections
by I(T) and I(}), from (4.4.38) it is easy to obtain

_IM-1d)
A= —I (T) 77 (T) =PS 4.6.4)

and since P is already known, we now have the value of the Sherman function.
Usually this method is more accurate than the double scattering method described
earlier.

Questions and Problems

4.1 Take electronic charge e in the unit of (Joule - meter)"” and calculate the value

of the Bohr magneton in the unit that contains Joules and meters.
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4.2 An electron having [ as its orbital angular momentum quantum number
moves in a central potential and its potential energy is given by

V(r)=—e? G + az)exp(—2Zr/ ap)
0

where r is the distance of the electron from the center of the force, e is electronic
charge, and Z and a, are constant. Show that the electric and magnetic fields
acting on the electron are

r 2Zr\( 1 2Z 27°
r r

[/ aogr ap

2

mcr

where L is the orbital angular momentum of the electron and c is the velocity of
light.

4.3 In the above problem obtain both values of the spin—orbit interaction energy
Vior corresponding to j =1 £ 4, 4 and show that for a p electron (I = 1) one value
is double the other but has the opposite sign.

4.4 In an ensemble of 6 x 10° electrons, 70% of them are polarized upward and
rest are unpolarized. A measurement is made for the electrons polarized down-
ward. What will be their number?

4.5 An electron beam is fully polarized in the x direction. Show that the spin
wave function of the electrons is equal to the linear superposition of the spin
wave functions polarized in +z and —z directions having equal amplitude. Use
the density matrix method to verify that P,=P, =0 and P, = 1.

4.6 An electron beam polarized in the z direction is mixed incoherently with
another beam polarized in the y direction. If the intensity of the former beam is
double that of the latter, obtain the density matrix p of the mixed beam and show
that

trp? <trp

Express p in the digonalized form as well.
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4.7 Show that Yo is not an eigenfunction of the operator J* but that

1/2 1/2
1+1 l
—| Yo+ —] VY,
(21+1) o (21+1) WP

is an eigenfunction and that its eigenvalue is j(j + 1) 7.

4.8 Give a physical explanation for the reason that the / = 0 partial wave does
not contribute to the spin-flip scattering amplitude g and that the maximum con-
tribution to g usually comes from the [ = 1 partial wave.

4.9 Verify Eq. (4.54).

4.10 A 60% polarized beam in the y direction is traveling in the z direction. It
is scattered by a potential and the differential cross section /(6, ¢) is measured
in the x—z direction. Now the polarization vector P of the incident beam is
reversed and the differential cross section is measured again in the same direc-
tion. If the latter cross section is 20% more than the former, calculate the value
of the Sherman function.
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Collision between Two Particles

5.1 Introduction

In the first chapter we briefly considered a collision between two particles
A and B and obtained a relationship between the differential cross sections in the
center-of-mass frame and in the laboratory frame. However, to obtain the scat-
tering amplitude we have to know the nature of the interaction between the two
particles. In this chapter we obtain the scattering amplitudes for coilisions
between an incident particle A and a target B under the following different con-
ditions: (1) A and B are distinguishable from each other. (2) A and B are identi-
cal but follow classical mechanics; hence, they can be distinguished by their
trajectories. (3) A and B are identical and are either bosons (follow Bose-
Einstien statistics) or fermions (follow Fermi—Dirac statistics). For the bosons,
the total wave function (including spins) of the system is symmetric, i.e., the
wave function is unchanged on the exchange of A and B. On the other hand, for
the fermions, the total wave function is antisymmetric and changes its sign on
the exchange of A and B.

5.2 Reduction of the Two-Particle Problem

A collision between A and B is obviously a two-particle problem. However,
if the interaction between A and B depends only upon their relative coordinates
then, like the problem of the hydrogen atom, the present problem can also be
decomposed into two one-body problems.

Under steady state conditions, y(r,rz), the space part of the wave
function of the system, satisfies the following time-independent Schrodinger
equation:

99
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Vi-

n? n*
l:_ 2mA 2mB

V%s"'v("A—’B)}W(TA,'B)=ETW("AJB) (5.2.1)

where r, and rzare the coordinates of A and B, respectively, the potential energy
has been assumed to depend only upon the relative coordinate r, — r, and E;
is the total energy of the system. To decompose (5.2.1) into two one-body
Schrédinger equations, we denote the coordinates of the center of mass and the
relative coordinates by R and r, respectively. Then

My +mplp

R and r=ry—rg 5.2.2)

my+mp

The use of (5.2.2) in (5.2.1), just as was done for the hydrogen atom problem,
yields two differential equations. We take

y(R,r)=9(R)y(r) (5.2.3)

and put it into (5.2.1) along with (5.2.2). Thus we get

h? ) _
~ 2o Vig(R) = (Er - EN(R) (524)
and

——Z;Vzw(r) FVEWE) = Eyr) (5:2.5)

where M = my+ mp and U = mymp/M is the reduced mass of the system. It is
evident that (5.2.4) describes the motion of a single free particle of mass M.
Hence, its solution is a plane wave given by

1 iK'-R
¢(R) = —Ez—;);,z—e (5.2.6)

Equation (5.2.5) describes the motion of a fictitious particle of mass  in the
center-of-mass frame. Its potential energy is V(r). Thus to study the collision
between two particles, we have to solve the one-body equation given by (5.2.5).

Let A and B be elementary particles (we consider a particle to be elemen-
tary whose structure in a given physical situation can be ignored) and consider
their collisions under the three different conditions mentioned in Sec. 5.1.
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5.3 Collision between Two Distinguishable Particles

If V(r) is central and falls faster than 1//* at large values of r, then the
scattering amplitude f(6c,0¢c) and the differential cross section I(8,¢c) for the
scattering of the particle A can be calculated by using the different integral
and differential approaches discussed in Chapter 3. To compare the theory with
experiment, (1.6.10) can be utilized to obtain 1(6,,4,), the differential cross
section in the laboratory frame, from the calculated (6., ¢c).

However, for charged elementary particles having charges zie and ze,
respectively, V(r) = z1z,¢”/r. This interaction is Coulombic, and even at large r
V(r) does not fall faster than 1/72. In this case the solution of (5.2.5) is a Coulomb
wave. At large values of r the Coulomb wave function is given by

we — Aexplilkz+y In(kr)(1-cos)H1+y?/[ikr(1 - cos6)]}

|r—z|—

+A &exp{i[kr -y ln(2kr)]}{1 +(+iy)’ [Jikr(1 - cos 6)]} (3.1

r

where y= Uz,z,¢*/ ik, and

exp{-iy In[sin?(6/2)]}
2ksin?(6/2)

fc(8)=-yexp(io,) (5.3.2)

and ¢, = argI{1 + i}). It should be noted that the above relation does not hold
for 6 = 0, in which case |r — z| cannot tend to infinity. It is also evident that
(5.3.1) does not reduce to (3.1.2). However, as the differences are mainly in the
phases, f-(0) is still defined as the scattering amplitude, and the differential cross
section in the CM frame is

10c) =Ifel” =[nz.e* [4Esin® (0. /2)] (5.3.3)

The above equation is identical to the formula derived by Rutherford with
the help of classical mechanics, which bears his name. Since 1(6;) diverges at
6-= 0, the integrated cross section is infinite.

5.4 Collision between Two Identical Classical Particles

In the CM frame, A and B will always move in opposite directions.
According to (5.2.2), an exchange of A and B will change r to —r. Let us place
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waA

(a) (b)

FIGURE 5.1 Collision of two identical particles A and B in the center-of-mass frame: (a) shows
direct scattering, and (b) represents exchange scattering.

a detector D in the CM frame to detect those particles that are scattered in the
direction (6,¢¢) with respect to the initial direction of A, as shown by Fig. 5.1(a).

Now, B will recoil in the opposite direction, i.e., it will move in the direc-
tion (x — 6, m + ¢c). Hence, the detector will detect particle B when A is
scattered in the direction (7 — 6, m + ¢¢). Since A and B are indistinguishable,
the detector detects A-like particles for two sets of scattering angles for A; namely
(6c,9c) and (7 — 8., m + ¢c). However, as A and B are classical particles, they
can be distinguished by their trajectories in spite of being identical. Hence, the
effective differential cross section will be the sum of the differential cross sec-
tions obtained by the direct and exchange processes, represented by Figs. 5.1(a)
and (b), respectively. Thus

10c,0c) =1,(0c,0c)+ I (T —O0c, m+ ¢c) 54.1)

The first term in the above equation is due to the direct scattering of A,
whereas the second corresponds to the situation in which B is detected by
the detector, i.e., A is exchanged by B and A itself is scattered in the direction
(- 6, T+ ¢o).

5.5 Collision between Two Identical Bosons

As mentioned in Sec. 5.1, the total wave function of a system consisting
of bosons is symmetric and so does not change when two of its bosons are
exchanged. Let us consider a collision between two spinless identical bosons.
Now my, = mg and y(r) of (5.2.5) denotes the wave function of a particle of mass
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1 in the CM frame. Exchange of two bosons means r — —r. Hence, if w(r) is the
wave function of the system, we must have v(r) = v(-r). To achieve this, we take

v(r)=y(r)+y(-r) (5.5.1)

where y(r) is the solution of (5.2.5).
Let us assume that the interaction between the two bosons depends only
upon r, which falls faster than 1//* at large r; then from (3.1.2) and (5.5.1),

eikr

wr) - A{ei"" +e7*r 4

r—ee

£, 00)+ f(T—6c,m + ¢c>1} (5.52)

r

Hence, the differential cross section for the scattering of two identical bosons is
given by

10c,0c) =|fBc,0c)+ f(m -6, +0c) (5.5.3)

Again, f{0.,0.) is the scattering amplitude for the process when the incident boson
is detected by the detector and the other is scattered by (7w — 6., &+ ¢.); while
fm— 6, m+ @) is the scattering amplitude for the process when the incident
boson is scattered by (7 — 6., T+ ¢c) and the target boson enters the detector.
Using the notation of (5.4.1), we get

1(Bc,0c)=14(0c,0c)+ Ix(T—Oc, T+ ¢c)
+2Re[f(Bc,¢c)f*(m—Oc, w+¢c)] (5.5.4)

For central potentials, I(6¢,¢c) is independent of ¢ and (5.5.4) reduces to
1c) = 14(8c) + Ly (m ~Oc) + 2Re[ f(Bc) f* (m — 6)] (5.5.5)
Quite often fir — B;) is denoted by g(6¢) and so we also have
106c) =|f(@c) +1g8cl” +2Rel f(Bc)g* (8c)] (5.5.6)

A comparison of (5.4.1) with (5.5.5) shows that the latter equation has an extra
term, which arises from the interference of the direct and exchange scattering
amplitudes. This term is due to the coherent addition of the direct and exchange
scattering amplitudes, whereas in (5.4.1) the amplitudes are added in an inco-
herent manner. It should be noted that the normalization of v(r) is taken in such
a way that if the interference term is neglected (5.5.6) reduces to the classical
equation (5.4.1).
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For a Coulomb potential equal to z,z,¢%/r, Y(r) is a Coulomb wave (given
by 5.3.1) and f(6) is given by (5.3.2). Hence, from (5.5.6) we obtain

100) = (2122 /4 E)zieXP{—2iyln[sin(9c /2l N exp{-2iyIn[cos(8. /][

sin?(8¢/2) cos®(6¢/2) |
(557
or
3 ) 2 1 1 2cos{2y In[tan(8/2)]}
10c) = (@2e?/4E) Lnﬁ(ae 72) " cos*0c/2) | sin?(Bc/2)cos*(6c2) ]
(5.5.8)

The above equation represents the Mott scattering formula for the Coulomb
scattering between two identical bosons.

5.6 Collision between Two Eelectrons

The collision between two electrons is once again equivalent to the
scattering of a particle of mass i by a central potential in the center-of-mass
frame. Since electrons are fermions with s = 1, the spins S of the particle of mass
pare 1 and 0, with M, = 1, 0, —1 and 0, respectively. The corresponding four
spin wave functions are given by:

S Mg Wave function

1 1 a(A)a(B)

I 0 %{a(A)ﬁ(B)m(B)ﬂ(A)J

1 -1 BA)B(B)

0 0 TlaBB)-aBBA]  G6)

It is easy to verify that all of the above four wave functions are orthonormal and
are eigenfunctions of the operators §* and S,, with eigenvalues S(S + 1)# and
MR, respectively.

The first three spin wave functions given by (5.6.1) are symmetric with
respect to the exchange of A and B. The corresponding triplet space wave func-
tion is given by
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vi(r)=y(r)-y(-r) (5.6.2)
and the singlet wave function corresponding to § = 0 and Ms = 0 is given by
vi(r)=y(r)+y(-r) (5.6.3)

For the central potentials, differential cross sections are independent of ¢. Hence,
as before, the triplet and singlet differential cross sections are given by

1,.(0c)=[f6c) F f(m-6.) (5.6.4)

For completely unpolarized beams of electrons the weight factors of the triplet
and singlet states are % and 1, respectively. Hence,

I(Gc)=%1,(9c)+i-1s(ﬂc) (5.6.5)

or

=2|£(0c) -8B +11£(Bc)+5(6c ) (5.6.6)

The interaction between the two electrons is Coulombic; hence, as before, f{6c)
is given by (5.3.2) with y= e*w/#’k. Further, g(6,) is given by the same equation
but with . being replaced by x — 6. Thus we get

o 2 1 1 _ 2cos{2yIn[tan(6./2)]}
1is(0c) = (€*/4E) [sin“(()c/Z) * cos*(6¢/2) i sin(0¢/2)cos?(6/2) ]
5.6.7)

It is interesting to note that I(6) as given by (5.5.8) and /,,(6;) as given by
(5.6.7) are symmetric about 8= /2. In all three cases the effect of the inter-
ference term is most pronounced at 6. = m2 and becomes more and more
noticeable as the value of yincreases. Since the scattering angle 6, in the labo-
ratory frame is half of 6, for m, = mg, the symmetry in the laboratory frame is
at 6, =m4 .

Finally it should be noted that to obtain the total scattering cross section
o, the DCS given by (5.4.1), (5.5.6), and (5.6.4) is to be integrated over 8, from
0 to 7. However, the limits of integration should be from 0 to 772 to avoid double
counting as they cover the counting of both the projectiles and target particles.
Since the DCS diverges at 6, = 0, o is infinite in all three cases.
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Questions and Problems

[Note: Neglect relativistic effects in all the following problems.]

5.1 o-particles having 2MeV energy are scattered elastically by stationary lead
nuclei. If the angle of scattering in the CM frame is 30°, what is the differential
cross section in the L frame?

5.2 A proton of 10keV energy collides elastically with a stationary a-particle in
the laboratory. The angle of scattering in the CM frame is 60°. Calculate the real
and imaginary parts of the scattering amplitude and the differential cross section
in the CM frame.

5.3 An a-particle of energy 4keV collides with a stationary o-particle and is
scattered by 22.5° in the L frame. Calculate the magnitudes of the direct and
exchange scatterings in the CM frame and the differential cross section in the L
frame.

5.4 Electrons of 5keV energy collide with stationary electrons in the L frame.
For the scattering angle of 60° in the L frame, calculate the differential cross sec-
tions in the same frame under following conditions: (a) The projectile and target
electrons have same spins. (b) The spins of the projectile electrons are opposite
to those of the target electrons. (c) The spins of the projectile and the target elec-
trons are random. '

5.5 Consider the elastic scattering between two electrons in the CM frame. Take
the initial wave function of the system as

viln,n)= :/Lj'[(pkl(rl)(PkZ(rz)+ I GYRAGY)

where the ¢,(r;) are plane waves. The final wave function is also given by the
above equation, with k, and k, being replaced by k{ and k;, respectively. Obtain
the direct and exchange scattering amplitudes in the CM frame and show

8(6c) = fy(m-6c)

where 6 is the angle of scattering in the CM frame.
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Collision of Photons with Atoms

6.1 Introduction

A knowledge of the cross sections for photon-induced processes is of
importance in a number of fields, including dosimetry, radiation therapy, and
health physics; space physics and chemistry; laser physics; environmental pro-
tection; fusion; plasmas; radiation-induced decomposition; and electron and
X-ray microscopy (Brion, 1985). Photoionization cross sections control the tem-
perature of the solar corona and are needed to determine the rate of ionization in
the ionosphere. The existence of the ionic layers in our upper atmosphere is
partially due to the interaction of photons with the atmospheric gases. Hence, it
is appropriate to devote a chapter to the collision of photons with atomic systems.
We shall see later that such a study is also helpful in the discussion of the
collision of electrons with atomic systems.

A collision between a photon and an atom can be elastic as well as inelas-
tic. Rayleigh and Thomson scattering are examples of elastic collisions, where
the incident and the scattered photons have the same energy. Excitation and
ionization of atoms by photons, e.g., Raman scattering are examples of the
inelastic collisions. A molecule may also dissociate due to photon impact.

6.2 Photons and Electromagnetic Waves

According to the quantum theory of fields, every field is associated with
a particle of finite mass and spin. Following the same general features, the
quantum mechanical excitation of electromagnetic waves of angular frequency
o gives rise to photons of energy E = /i and momentum |p| = Aa¥c or their
integral multiples. The spin of a particle can be defined as the angular momen-
tum it possesses in its rest frame. However, for a photon, the relativistic
relation

107
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E*=m*c* +p*c? (6.2.1)

and the relations between E, |p|, and ®, given above, show that m, the rest mass of
a photon, is zero. As a matter of fact there is no frame in which a photon is at rest.
In all frames, in vacuum, a photon moves with the velocity of light c¢. Thus, the
spin of a photon needs a different definition, and we shall come back to it.

To develop a quantum mechanical theory for collisions between photons
and atomic systems, Maxwell’s equations have to be quantized, but, we shall con-
tinue to use them. In most situations they are not a bad approximation because
even for weak electromagnetic (EM) fields of wavelength A the number of
photons in a volume A* is very large. Hence, the number can be treated as a con-
tinuous variable. Under such a condition a semiclassical theory, in which the EM
field is described by Maxwell’s equations and the atomic system is treated
quantum mechanically, should be adequate. In such a theory the EM field dis-
turbs the atomic system but it is assumed that the latter, even by its emission or
absorption of a photon, does not disturb the field. Obviously, this assumption is
valid when there are a large number of photons in the field, so the stimulated
emission and absorption of photons can be successfully described by semi-
classical theory. However, spontaneous emission takes place even in vacuum (no
photons in the field). In such a situation it is incorrect to neglect the disturbance
of the field by the atomic system. Nevertheless, it is possible to obtain an expres-
sion for the transition rate for spontaneous emission using the transition rates for
absorption and stimulated emission and Planck’s formula for blackbody radia-
tion without resorting to a full quantum treatment.

6.3 The Electromagnetic Field in Free Space

Maxwell’s equations for the EM field are given in terms of the electric field
E and the magnetic field B. The vectors E and B are perpendicular to each other
and also to the momentum vector k. With proper gauge transformations, E and
B, in free space, are expressed in terms of a vector potential A by the following
equations (Schiff, 1968):

1 JA

B=VxA E=-—— 6.3.1
c dt ( )
The vector potential A satisfies
2 2
via-ZALRE 632)

c
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and obeys the transversality condition
V-A=0 (6.3.3)

For a linearly polarized monochromatic plane wave, the solution of (6.3.2)
is given by

A= Agee 700 4 Afge ) (6.3.4)
where € is the polarization unit vector and is perpendicular to the direction of

propagation. Since k = —iV, the solution (6.3.4) automatically satisfies (6.3.3).
For such a wave, the energy flux (intensity) is given by

2
_ A
2rc

F 6.3.5)

6.4 Excitation and De-Excitation of Atoms Due to
the Electromagnetic Field

Let us consider a one-electron atom. In a stationary state it satisfies the
following time-independent Schrédinger equation:

2
Hovo = [L + V(r)]v0 = €ovo (6.4.1)
2m

where v, and & are the eigenfunction and eigenenergy of the Hamiltonian Hj,
respectively. At time ¢ = 0, we put this atom under the EM field represented by
(6.3.4). This field causes the Hamiltonian to change to

H=——(p—-eAlc) +V(r)
2m

€2

A +V(r) (6.4.2)

=Ho—_e—A'P+ >
mc mc

where we have used the fact that the operator p acts on every object on its right
and from (6.3.3) (p-A) = 0. Thus the Hamiltonian, given by (6.4.2), contains new
time-dependent terms, which perturb the atom. This perturbation gives rise to the
possibility that the atom makes a transition from its initial state v, to a new state,
say, v,. Up to first order the perturbation is
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H=--Ap (6.4.3)
mc

According to first-order time-dependent perturbation theory, the transition
probability amplitude a,(r) for finding the atom in the stationary state v, after a
time ¢ is given by (Schiff, 1968)

a,(t) =% j (qH'()|0)> e dr’ (6.4.4)
! 0

where @y = (g, — &)/h. Using (6.4.3) and (6.4.4) and integrating over ¢ we get

1 l_ei(wqo—m)t . l_e—i(ﬂ)q0+w)l
a,(t) = —| {g|Y|0) ———— + (¢|Y'|0) ———— 6.4.5
=30 ) )
with
€ ik-r
Y=—Ap""ep (6.4.6)
mc

The above equation shows that the probability of finding the atom in the
state |q) is appreciable only when the denominator in one of the two terms of
(6.4.5) is practically equal to zero. The first term dominates when ¢, — & = I
and represents the absorption of a quantum Aw by an atom from the field
by which the atom makes a transition from the lower state |0) to an excited state
|g). Similarly, the second term is of importance when €, — & = —h® and it rep-
resents a process in which the atom makes a transition from an excited state 10)
to a lower state |g) by emitting a photon, due to the presence of other similar
photons (stimulated emission). There is no interference between the two terms,
and the two processes (absorption and stimulated emission) can be treated
independently.

Let us concentrate on the excitation of an atom due to absorption of a
photon from the field. Equation (6.4.5) shows that the excitation probability is
given by

2 sin2[(@,0 — @)t/2) 64.7)

2 4
lag* (0) =77

qu _w)
where Y,y =(g|Y|0). Now if we plot sin’[(@, — @)t/2)/[(w, — ®)!/2]* as a func-

tion of (@, — w) we get the curve shown in the Fig. 6.1. The maximum value of
sin’[(@y,0 — W)2)/[(w — W) is £/4 at W =  and it goes to zero at Wy — W =
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[{Sin(wqo-w) t/2 }/{(wq/o—w )tlz}]
o
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|
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FIGURE 6.1 Variation of [sin(w, — o)t/2)/[(w, — 0)/2]* with 0 — .

+2x/t. Thus the area of the main loop is proportional to ¢, and so the transition
probability when @, — @ ranges from —2n/t to +27/t is also proportional to 1.
Hence, the transition probability per unit time Wg; will be independent of time.
Let us assume that ¢ is quite large; then from the definition of the Dirac delta

function

i sin2[(@,0 —®)t/2] _m
e (qu - a))z 2

O, — ) (6.4.8)

Hence,

1, .2 2&m
=l = Ml 800 ~0) (649)
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In this equation either @, or @ can be treated as a variable. We shall con-
sider both cases. Let us first take @, as a variable by assuming that the final state
is made up of a group of states having eigenenergies very close to €, and that these
eigenenergies vary in a continuous manner. In other words, the final state |g) is
assumed to have a width. This assumption is quite appropriate because of the
uncertainty principle and the broadening of the spectral lines due to temperature,
pressure, and collisions. Let p(&,)de, represent the number of the final states with
p(g,) as the number of states per unit energy range. Then, for the whole group,

W = .[ WioP(€,)de,

r
=== [l e, )(er,0 ~ )d(e2,0) (6.4.10)
Neglecting the variation of Y, with &, within the group, we obtain

Wi = | ol PLE,) 6.4.11)

The above relation has been found so useful that it is known as the Fermi’s
Golden Rule 2.

Let us now consider the second case, in which @ is treated as a variable.
We assume that the EM wave is not strictly monochromatic but has a width do.
Then, from (6.3.5),

4| =E—C-I(w)dw (6.4.12)

where /() is the intensity of the wave per unit frequency range. Using (6.4.12)
in (6.4.9), we get

dwg = 4” 2 Iqul H@)8(w,0 - ®)dw (6.4.13)

where X = Y/A,. Integration over @ yields

4mc
0 == ey, 2 [qul I(®g) (6.4.14)

The transition probability per unit time per atom divided by the incident photon
flux gives the photo cross section per photon. Hence, the excitation (absorption)
cross section is given by
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Wiho
0% = q‘; (6.4.15)

where F is the energy flux of the EM field and the energy of each photon is ho.
Using (6.3.5) for F, the relationship ¥ = XA, and (6.4.11) for Wi, we obtain

Og = I ol p (6.4.16)

6.5 The Electric Dipole Approximation

Since the interaction between the EM field and the atom takes place over
the area of the atom, the interaction length is of the order of the radius of the
atom. Furthermore, for excitation or de-excitation to take place, the energy of the
photons should be equal to the energy spacing between the two corresponding
atomic levels. Hence, between the n and m levels of a hydrogenic atom we have

Zzez( 1 1 )
ho=22{ = - —
200 n2 m2

Thus 7w = Z*¢*/ay and k = Z’¢*/ hica,. The radius of the atom can be approx-
imated by ay/Z; hence |k-r| = Zet, where the fine-structure constant o = (e fic) is

equal to 13—7 Now

(ik-r)’ N

e*r =1+ikr+
2

(6.5.1)

Since |k-r| is quite small for light atoms (small Z), for most cases we may
replace *" occurring in X, by its first term (dipole term), i.e., by unity. Hence
in the dipole approximation, (6.4.14) reduces to

4rte?
5 = ————le<{qlplo} I(g0) (6.5.2)
ha)qom) c

The matrix element (p), involves a momentum (or velocity) operator and, is thus
known as the velocity form of the matrix element. However, it is more conve-
nient to use the length form of the matrix element given by (r),. For the atomic
system whose eigenfunctions are known exactly(such as a hydrogenic atom), an
exact conversion of (p)y into (r), is possible. To achieve this let us consider
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Ir, Hol=[r, p/2m+ V(P =——1r, p*] = in L
2m m
Hence
ih
<q1[r,Ho1|o>=’;<q|p|o> (6.5.3)

Furthermore,
{qlrH, — Horl0) = (€, — €, Xqlrl0) (6.5.4)
Equating (6.5.3) to (6.5.4), we get
(glpl0) = imw ,{qlr0) (6.5.5)

Hence, in the dipole approximation

7T2€2

h2c

exX __
q0 =

le<glrlo)’ I(®,0) (6.5.6)

For a given polarization direction the vector {(gjr|0) makes all possible
angles with the polarization vector £ Hence, taking all the directions into con-
sideration, we have to obtain an average value of W. Let ut be the cosine of the
angle between € and (g|r|0). Now, the average value of y* is 1. Finally,

4r%e’
= = 3—#6—1(wq0)|<q|r|o>|2 (6.5.7)
4’ )
= 1(@40)x 40! (6.5.8)

2 2 . I
because |r,o| =3lx,0l". Similarly, it is easy to show that the excitation (absorp-
tion) cross section in the dipole approximation is given by

g =47 2haa)q0|xq0|2p(gq) (6.5.9)

6.6 The Einstein B and A Coefficients

The Einstein B coefficient is obtained by dividing the transition rate given
by (6.5.7) by the energy density of the radiation per unit angular frequency u(®)
= I(w)/c. Hence, B, for a transition from |0) to |g) is given by
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4m’e? 2
By = W‘((Ilf o)l (6.6.1)

It is evident that By, the Einstein B coefficient for stimulated emission, is equal
to that for absorption. However, if |0) and |g) states are go- and g,-fold degen-
erate, then goB,o = g,Bo,.

To obtain an expression for the Einstein A coefficient (transition rate for
spontaneous emission) we take an ensemble of atoms in statistical equilibrium at
a temperature 7 and consider transitions between two quantum states |0) and |g).
Let Ny and N, be the number of atoms in the |0) and |q) states, respectively.
Equating the number of atoms going from |0)to |g) per unit time by absorbing radi-
ation to the number of atoms making the transition from |g) to |0) per unit time by
stimulated and spontaneous radiation we get

NoB,ou(®) = N,[By,u(®) + Ay, | (6.6.2)
Since N/Ny = g,/80 €xp (—hwy/kT), where k is Bolzmann’s constant and

BqO/BOq = gq/gO

We get from (6.6.2)

Aoy =E2 (T _1)u(w)B, (6.6.3)

84

Further, according to the Planck’s blackbody formula, the energy density of
radiation per unit angular frequency at thermal equilibrium is given by

ww)= h (6.6.4)
n2cexp(ho/kT) -1] -
Hence, putting (6.6.4) into (6.6.3) at @ = @, we obtain
hago . g _ hog
Aog = 25 B’ = s Boa (6.6.5)

It is interesting to see that the ratio A/B is independent of e, m, and the
matrix element r. In order that the stimulated emissions may dominate over the
spontaneous emissions, @, should be small. Based on this observation the first
amplifier MASER (microwave amplification by stimulated emission of radiation)
used @, in the microwave region. Now with improved techniques we have X-
ray lasers and even free-electron lasers. Using (6.6.1) in (6.6.5), we finally obtain
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4¢*
0 oy & (6.6.6)

M= 3hc3 8

6.7 Dipole Selection Rules

It is evident from (6.5.7) and (6.6.6.) that in the dipole approximation an
atom will radiate or absorb EM waves only if the matrix element (glr|0) is
nonzero. The operator

r =(i sinf cosg+ j sinf cosp+k cosd)r

is an odd-parity operator with / = 1 and m, = 0, £1. Therefore, for a nonzero value
of the matrix element (W, IFWm) We must have

() Al=
and
2) Am; =0, £1 (6.7.1)

which are the dipole selection rules. Rule 1 shows that the initial and final atomic
states have to be of opposite parity. This is known as the Laporte rule. Since the
operator r has no effect on the spin wave functions, the spin quantum numbers
s and m, remain conserved in the dipole transition. Hence, for the quantum
numbers j and m; we have the following selection rules:

(3) Aj=0, £1
(4) Am;=0, %1

For a multielectron atom, (an atom with a number of charged particles, the
interactions among which cannot be neglected) the selection rules are based on
the quantum numbers J, L, and S of the whole atom. Quantum electrodynamics
shows that the Laporte rule and rule 1 are still valid. In addition, we have

(5) AJ =0, =1 but not from 0 to 0

(6) AM =0, 1
(7 AS=0
(8) AL =0, £1 but not from 0 to 0 (6.7.2)
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All those transitions that obey the dipole selection rules are said to be
allowed transitions, while the rest of them are known as forbidden transitions.
The matrix element {gle*"&-p|0) for forbidden transitions may have nonzero
values when higher terms of the expansion of ¢*”, given by (6.5.1), are taken into
account. For example, a transition from 3%,  to 1%, is a forbidden transition but
the matrix element (3%, Jik-r|1%,) is nonzero. Transitions that take place due to
the operator (ik-r) are known as electric quadrupole transitions. Similarly, we
have transitions due to the higher electric poles as well as to magnetic interac-
tions. They are all examples of forbidden transitions and their intensities are much
lower than those of electric dipole transitions.

For those excited states that decay by electric dipole transition, the inverse
of the Einstein A coefficient gives their lifetime 7. The excited states, which do
not decay by a dipole transition, have a much longer lifetime and are known as
metastable states.

A transition from a state s (I = 0) to another s state cannot take place even
when the full operator e*"¢-p is taken into account. To verify the above state-
ment let us take € in the x direction; then the above operator reduces to e®*?p,,
The term e‘**9 is of even parity whereas p, is of odd parity with respect to a
reflection about the x-axis. Hence, the integrand is of odd parity and the inte-
gration yields zero. Such transitions are said to be strictly forbidden. For example,
a transition from 2% _to 1% is a strictly forbidden transition. Consequently, the
metastable state 2°_has a very long lifetime compared to the lifetime of the 2%5
state. The metastable state 2%;_decays to the ground state by the second-order
perturbation term |A[’e?/(2mc?), occurring in (6.4.2). Such a transition emits two
photons. The angular frequencies @; and @, of the emitted photons satisfy the
relation

o, +@,) =€(2%s,) - e(Psy)

Thus a large number of combinations of @, and @, are possible.

6.8 Spin and Spin States of Photons

We have noted that the angular momentum of a particle in its rest frame
is its spin angular momentum. However, the above definition fails for the photon
because it has no rest frame. Hence, we adopt alternative procedures.

According to the dipole transition selection rules, the emission or absorp-
tion of a photon by an atomic system changes the orbital angular momentum of
the system by one unit. To conserve the angular momentum, the same degree of
change must occur in the radiation field. In the dipole approximation, the varia-
tion in the EM field vector potential A with direction over the atomic size has

orders@himanshubook.com



118 Chapter 6

been neglected by assuming it to be spherically symmetric. This field remains
spherically symmetric even after the emission (or absorption) of a photon. Hence,
the orbital angular momentum released by the atomic system becomes the inter-
nal (spin) angular momentum of the emitted photon. Thus the spin angular
momentum of a photon is #. When a photon is absorbed its spin angular momen-
tum of one unit increases the orbital angular momentum of the atomic electron
that makes the transition from one atomic orbital to another.

We also note that & of (6.3.4) transforms like a vector. Hence,
following the general theory of angular momenta we associate one unit of the
angular momentum with it. Let us take k along the z-axis. Since € is perpendic-
ular to the direction of propagation k, we can have two linearly polarized waves
having polarization vectors &, and €, which are perpendicular to each other as
well as to k. Linear combinations of &, and &, give rise to two linearly indepen-
dent circularly polarized waves. The circularly polarized vectors are given by

—“—1——( tig,) 6.8.1
ei—+6ex_zey (6.8.1)

The change in € due to infinitesimal rotation 6¢ about the k-axis is given by
Oe; = Fidge. (6.8.2)

The above equation shows that the components of the spin associated with galong
the k-axis are m = 1. Hence, we again find that the spin angular momentum of
a photon is #. However, its z component m, has only two values given by *#.
The third component m, = 0 does not exist because €:-k = 0 and the rest mass of
the photons is zero. Thus the quantum mechanical excitation of the radiation field
are photons having zero rest mass, spin s = 1, and m, = 1. The quantum number
m; represents helicity of the state of the photons. A photon beam of a definite
helicity corresponds to circularly polarized light. We shall refer to the light of
positive helicity (m; = +1) as right-handed circularly polarized light. A left-
handed circularly polarized light has negative helicity (m, = —1).

To discuss the spin states of the photons let us once again consider a mono-
chromatic plane EM wave, polarized in the x direction. According to (6.3.4), it
is given by

A = Agag ) (6.8.3)
We combine the above wave with another monochromatic plane wave having the
same frequency and wave vector with amplitude A¢b but polarized in the y direc-

tion and differing from (6.8.3) by a definite phase 6. The resultant wave is also
polarized and its unit polarization vector is given by
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£ =ae, +be,e® (6.8.4)
with
lal +lpl" =1 (6.8.5)

If we take a = cosa and b = sinq, then (6.8.5) is automatically satisfied and
(6.8.4) reduces to

e(@) = cos e, +sinae, e (6.8.6)

which is a vector in a two-dimensional vector space with &, and &, as two basis
vectors. Hence, we represent a photon state having a polarization vector () by

le(@)) = cosale, ) +sinae?|e, ) (6.8.7)
Since |e(a)), |€,), and |€,) are state vectors in a two-dimensional vector space,

they can be represented by two-component spinors, involving a and b. To obtain
the values of a and b let us use (6.8.1), according to which

1

&)= —7—2—(I8+>—|6_>) (6.8.8)
and

€y) =—4%(Ie+)+|e_)) (6.8.9)

where the photon states |€,)and |e_) correspond to the helicity +1 and -1,
respectively. Hence, like the spin-up and spin-down electron states (see 4.3.3),

we have
1 0
) we?) e
Thus we get
1 (-1 i(1
lex)=7§-(l) and Iey)=T2(1) (6.8.11)

Putting the above equation into (6.8.7), we get
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—cosa+i5inaei5)=(“a) (6.8.12)

1
et =5 incet)
V2 \ cosa+isinoe® by

Similar to an electron beam, a beam of photons having all the photons in
the same state of polarization is fully polarized and its polarization properties
can be described by a single polarization vector, say, (). The state (6.8.12) is
said to be a pure state. If we mix two or more fully polarized beams that do not
have definite phase relationships, a mixture is obtained. To describe the polar-
ization properties of a mixed beam we consider its density matrix operator,
defined by

p=Y,Lle; el (6.8.13)
j
where I; is the intensity of the j* pure component of the mixed beam and
|e,~)=(a") (6.8.14)
b;

With the help of the above equation, we get from (6.8.13)
2
pu  Ppr la;I”  a;b}
p=( )= I~[ (6.8.15)
P Pn ; ' arb; ijlz

Since |¢;) is a normalized ket

wp=Y I;=1 (6.8.16)
j

The above normalization of the mixed photon beam is different from the
normalization of a mixed electron beam, where we have trp = 1. For the mixed
photon beam

wp? <(trp)’ (6.8.17)

Only for the pure photon beams is trp” = I,

Since a; and b; are complex, in general, it takes four independent
parameters to completely determine the polarization state of a mixed beam: I,
T, T, and 7;. The 7; are known as the Stokes parameters and are defined as
follows:
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7, = 1(45°) - 1(135°)

1 . (6.8.18a)
- ;’- (6.8.18b)

and
|2 10°) - 160%) (6.8.18¢)

I

where I(@) is the intensity of the transmitted light when a mixed light beam of
intensity / moving along the z-axis is passed through a Nicol prism whose axis
of complete transmission makes an angle o with the x-axis. I, (L) is the inten-
sity of the transmitted light when the mixed beam is passed through a filter which
fully transmits photons of helicity +1 (-1). The intensity /(c) for the mixed beam
is given by

(@) = (e(a)lple(a) (6.8.19)
Using (6.8.10) and (6.8.15), we get from the above equation
IL=py and I =py (6.8.20)
Similarly, using (6.8.12) and (6.8.15) in (6.8.19) gives
1(@) = pulaa]” + Proaibe + Puaabi + prlbal (6.821)

For §=0 and & =0 we have ay = —1/v2 and b, = 1/¥2. Hence,

10)=3(p11 = pr2 = puu + p22) (6.8.22)

Similarly,
1(45°) =1 (py —ipyy +ips +ip2) (6.8.23)
1090°) =1(pyy + ppy + ot + ) (6.8.24)
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and

1(135°) = %(Pn +ipi2 —ipa + Pxn) (6.8.25)

With the help of above equations, we obtain

= %(le ~pr2) (6.8.26)
1
h= 7([)11 -pn) 6.8.27)
and
1
N = —7(p12 +p2) (6.8.28)
where
I=trp=py+pn (6.8.29)
Further,
1
pu= 5(1+n2) (6.8.30)
1 ,
P = E(—ns +im,) (6.8.31)
1 .
Pu = '2'(—713 —im) (6.8.32)
1
pn = 5(1 ~1,) (6.8.33)
Thus,
- 1( bem. - im "”3) (6.8.34)
2\-iqi-n3  1-m,
and

orders@himanshubook.com



Collision of Photons with Atoms 123

12
trp® =—-(1+ 07 +15 +175) (6.8.35)

Now for a mixed beam tr p* < I°. Hence,
413 +15 <1 (6.8.36)

Sometimes the Stokes parameters are also represented by P,, P, and P; with the
relations P, = 155, P, = 1y, and P; = 1), (Kesseler, 1991).
The degree of polarization of the beam P satisfies

P>=P}+P;+P;} 6.8.37)

and, as expected, for a partially polarized (mixed) beam P < 1. Using (6.8.12)
and the expressions for p; in (6.8.21), we get

Ko, )= %(l +1), sin20sind +1; cos 2a + 1, sin 20 cosd)  (6.8.38)

6.9 Optical Oscillator Strength

The optical oscillator strength f° for a transition from |0} to |g) atomic states
due to EM waves, in the length form, is defined by

€, 1
[ = %";;I(qlxloxz (6.9.1)
0

where &, is the excitation energy and R is the Rydberg energy; f5 is a dimen-
sionless quantity and is related to the strength of the transition from the |0) state
to the |g) state. It is positive for excitation and negative for the de-excitation. Due
to the length operator x, Eq. (6.9.1) gives the length form of the optical oscilla-
tor strength. It can be converted into the velocity form by using (6.5.5) in (6.9.1).
This gives

2

q0

Kqlp.lo)* (6.9.2)

oV _
Joo =
To obtain £ in the acceleration form we consider

(qllHo, p 10} ={qllp?/2m + V(r), p.]O)
={qlV(r)p, — p.V(r)|0)
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Since
PV ()Y =yp,V(r)+V(r)p.y
we get
(gl Ho, p.J0} = ~(gl(p.V)0) = ifgldV/dx{0)
We also have

(gl Ho, p:10) = £,0(qlp:|0)

Hence, in the acceleration form

4Ra0

q0

fa ==="Aqlav/axioy’ (6.9.3)

For the exact atomic wave function we have
fio =1y =13 (6.9.4)

However, it is only for the hydrogen atom that exact atomic wave functions are
known. With approximate wave functions the calculated values of the f in the
three different forms are found to be different. The magnitude of the differences
among the three values indicates the inaccuracy of the employed approximate
wave functions: the smaller the differences, the better the wave functions. It is
evident from (6.9.1), that f is nonzero only for optically allowed transitions.
For the excited 2p state of a hydrogen-like atom having m = 0, %1, it is easy to
show that

2% g, 1
Joots =75 30 R ?

(6.9.5)

The optical oscillator strength for a transition from the 1s to the np state is
given by

2n-6

2 Epis 1 n'(n? =1)(n-1)
R 22 (n+1)2n+6

fnp s = (696)

Let us sum fg over all the final states |g). To obtain the value of S fqo for a one-
electron atom we note that
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[x,[x, Hyll= x*Hy — 2xHox + Hpx? (6.9.7)
Hence,

(Ol[x, [x, Ho 110) = 2¢, <0lx 2 '0) —2(0lnH,x|0)
=2g, §<0|xlq)(qlx|0) -2 §(0Ix|q)(quox|0) (6.9.8)

where the |g) form a complete set and we have used S|g){g|=1. Hence,
q

(Ol [x, Holl0) =2(eo -, KOlxlg)’ (6.9.9)

We also have (O|[x, [x, Ho J0) = (Ol[x, i# p. /m]I0)

h
=—— (6.9.10)
m
Equating (6.9.9) to (6.9.10), we get
2 h
S,0[0lxlg)” == (6.9.11)
q 2m
or
Sfa =1 (6.9.12)
q
Similarly for an N-electron atom we get
Sfio=N (6.9.13)
q

This important equation is known as the Thomas—Reiche—Kuhn sum rule.

6.10 Photoionization of Atoms

So far we have discussed the excitation and de-excitation of an atom due
to photon impact from one discrete state |0) to another discrete state |g). Since
the initial and final states -are bound states these collisions give rise to
bound-bound transitions. In this section we extend our study to those collisions
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in which the final state is a continuum state and consider ionization of an atom
by photon impact. We represent the collision by

h+A—>A"+e (6.10.1)

and the energy of the ejected electron is

h2k?
2m

£ = W-1I (6.10.2)

where W = hv and I is the ionization potential of the atom. For reaction (6.10.1)
the photon can have all values of the energy W greater than L

For a given ejected energy &, the ionized electron can come out in all pos-
sible directions. Hence, when (6.5.9) is extended to ionization, the cross section
for a given g becomes a differential with respect to the direction. Thus

dO'ph(W) = 4ﬂ2hawk0|xk()l2 p(&‘k) (6 103)

where 0,,(W) is the photoionization cross section of the atom for the photon
energy W. To obtain an expression for the density of states p(&;), we consider the
ejected electron in a box of length L:

k.= (E)nx
L

where n, is an integer. The number of states when k, varies between k, and
k, + dk, is given by

L
dn, =| — ldk,
" (Zn)

Hence, in three dimensions, the number of states between & and & + dég, is equal

to (L/27)’dk,dk,dk,. Thus

3
ple)de, = (EL;) kdk sinfdfde

where (0, ¢) is the direction of the vector k with respect to some chosen axis.
Now,

R’k

dé‘k =—1dk
m
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Hence,

LY mk
P(Ek)=(?7;) —ﬁg—smeded(p (6.10.4)

We employ the Dirac delta function normalization for plane waves as well
as for other continuum waves, such as Coulomb waves. For a box normalized
plane wave the normalization constant A is L2 This changes to (27)>? for a
delta function normalized plane wave. Hence, p(g,) with the above normaliza-
tion is obtained by replacing L by 27 in (6.10.4). With this replacement we get
from (6.10.3)

4 2
do (@) =—:—awkm|xk0|2dﬂ,, (6.10.5)

To evaluate the above matrix element for a plane wave it is more convenient to
take the matrix element in the velocity form. Hence, the use of (6.5.5) gives

Anlok
do (W) =———=kp.JO) 4
A ohkk?
=%|(klo)|2d9k (6.10.6)
Taking
vo(r) = (28 /7a3) " &7l (6.10.7)
we get
32
2 z
(kloy = —22)_Z_ - (6.10.8)
n(Z* +k*a?)
Hence,
5.3
op(0) = L% __[i240, (6.109)
mo (22 + k)
Noting that

k, =ksin@cos@
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and
J.sin2 Ocos’@sind0de = 4n/3
we finally obtain

1287 onk® Z°a}
3 mo (724 k2a3)

Om(w)= (6.10.10)

It is evident from (6.10.1) that the ejected electron moves in the field of
the ion A*. Hence, a better wave function for the ejected electron is a Coulomb
wave instead of a plane wave. A partial wave expansion of the Coulomb wave
is given by (Joachain, 1987)

ve(r)= Y RV i (K) (6.10.11)
I,m

with the radial wave function

Ri(kr) = V2] i exp(—my [T (L +1+ iy)e™ (kr) 2' exp (ic,)/ 1 + 1)
x R +1+iy,2l+2,-2ikr) (6.10.12)

where y= Z/ka, and the Coulomb phase shift ;= argl'(! + 1 + iy). I'(x) and ,F,
are the gamma function and the hypergeometric series, respectively. Let us first
consider the angular integration over the direction of r. Now

2=/ Y LR - 4P

and

~

Y [ GOV RNV 1 F) = Y PF = Vi y() - Yo (R)
I,m

Hence, in (6.10.11), only [ = 1 and m, = %1 terms are to be considered. It is easy
to see, with the help of the above equation, that

[ Kelxlo)’ a3, =2/A0el” (6.10.13)
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where
A =21 [3[ R(kr)rvo (r)rdr (6.10.14)

From (6.10.5) after integration over £2;, we get

8mle’whkm Iz

om(W)= > |Aos (6.10.15)
h‘c
Evaluation of the radical integral Ay, finally gives (Saksena, 1994)
210 Z6 3
Op(W)=—m 228
37 (2 +ka})
exp(-4/octan™ @)1 —exp(=2x/at)]” (6.10.16)

where « = 1/y= kay/Z (not to be confused with the fine-structure constant).

Just as we extended (6.5.9) to get the differential photoionization cross
section, we can extend (6.9.1) to obtain the differential oscillator strength for the
bound-to-continuum transitions. Replacing excitation energy € in (6.9.1) by
the photon energy W = Aw and taking dk = k*dkd€2,, we obtain the differential
oscillator strength per unit energy range

d ho k2 ( dk
=7 el (@101

To simplify the notation we drop the superscript o on f.
Now,

kdk = (m/n?)dwW

Hence,
— | ol de2 (6.10.18)

A comparison of (6.10.5) and (6.10.18) gives

4 __ ke

aw —mﬁph(W) (6.10.19)
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If we express (W) in megabarns (108 cm?) and df/dW in eV then

daf O n(Mb)
dW(eV )——109.75 (6.10.20)

Putting (6.10.16) into (6.10.19), we get

df 2 A 4 2 \T
i =——&/———————exp(——tan‘la)[l—exp(—l)] (6.10.21)
dW 3 R* (72 4 k2q2) o a

As the ionization potential energy for I of the ground state of the hydrogenic atom
is Z’R and W = I(1 + o), the above equation changes to

df 27 1 ( 4 ) )I: ( 27[)}-1
—=— - - -— 6.10.22
w3 (1+a2)4 exp atan o ) 1—-exp 2 ( 22)

6.11 K-Shell Photoionization of Atoms

So far we have considered the photoionization of the ground state of a one-
electron atom. It can be extended to K-shell photoionization of multielectron
atoms, which contain two K-shell electrons along with other electrons in higher
shells. Since these K-electrons are tightly bound, we may represent each of
them by

vo(r) =vZ [nade %l 6.11.1)

where due to inner screening Z; < Z. We may take Z; = Z — s with the screen-
ing parameter s = 0.3, as derived by Slater (1930). Further, the matrix element
(k|x|0) receives a large contribution from the small values of x, where the replace-
ment of Z by Z; in the expression of a Coulomb wave function is also justified.
However, due to external screening, the experimental ionization potential Iy of
the atom is less than I, = Z2R. Thus the ratio p = I/, is less than unity and its
value increases with an increase in Z. Since there is no screening in a hydrogen
atom, p = 1. Now we modify the definition of ¢ and take o= 8ay/Z,, where 6°a}
is the apparent energy of the ejected electron. Hence,

W=1I,+8%aR=I(1+0a?)

For W less than I,, & as well as 87 are negative. At the threshold of photoion-
ization W= I, So o? is negative for Iy < W < I. Incorporating the above changes
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and noting that the K-shell contains two electrons, the K-shell photoionization
cross section, with the help of (6.10.19) and (6.10.21), is given by

2° n’he? 1

Fla?) (6.11.2)

where

-1

F(a2)=exp(—%tan“a)[l—exp(——zai)] for a*>0 (6.11.3)

2 1+(-a2)” ]} 2
=expy-— ln[ for a*<0 (6.11.4)
{ (a2 l1-(-a?)”

In the derivation of (6.11.4) the relation
In(x+iy) =4In(x? +y?)+itan " (y/x) (6.11.5)

has been utilized and the value of the normalization constant [1 — exp(-27/a)]
is taken to be unity.

Equation (6.11.2) shows that I,0;, as a function of ¢ is the same for all
the atoms. It represents a universal curve for K-shell photoionization (Khare et
al., 1992). Figure 6.2 compares IdfldW = dfida?®, obtained with the help of
(6.10.19) and (6.11.2), with the tabulated values of Veigele (1973) for a number
of atoms. Good agreement between the universal curve and the data of Veigele
is noted for low values of a®>. However, at higher values of a?, particularly for
the heavier atoms, the curve lies below the data. This indicates the need for a
better wave function to represent the ejected electron and the inclusion of the rel-
ativistic effect.

6.12 The Fano Effect

So far we have considered photoionization of unpolarized atoms by
unpolarized light. Ejected electrons are also unpolarized. However, if we take
polarized alkali metals in their ground state with M, = 1 then photoionization
by unpolarized light produces polarized electrons with M, = 1. Fano (1969)
predicted that electrons produced by photoionization of unpolarized atoms by
circularly polarized light would also be partially polarized. Since it is much
easier to produce polarized light than it is to produce polarized atoms, the
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df /7dot2

FIGURE 6.2 Curve showing the variation of dffda” with o in the hydrogenic approximation. The
values of dffda®, obtained from the table of Veigele (1973) for different atoms, are as follows: X,
carbon; O, argon; 0, nickle; A, silver; V¥, gold. Reproduced from “A scaling relation for K-shell
photoionization cross sections of atoms” S. P. Khare, V. Saksena, and S. P. Ojha, J. Phys. B 25,
2001, 1992, with permission from IOP, Publishing Ltd., UK.

Fano’s prediction was found to be interesting. The very next year Kessler and
Lorenz (1970) produced polarized electrons experimentally by photoionizing
ground state alkali metals by circularly polarized light and named the phenom-
enon the Fano effect. In this section we discuss the theory of the Fano effect
briefly.

Let us consider the photoionization of alkali metals from their ground state
(2S,). Since the atoms are unpolarized, half of them have M; = +3 Land for the other
half, M;=— 1. The dipole operator for the photoionization is £ r where £is a unit
polarization vector for linearly polarized light. For right-handed circularly polar-
ized light, the operator changes to (€ + ig®)-r, where £ and £ are two lin-
early independent unit polarization vectors. If z is the direction of propagation of
the light, the dipole operator for right-handed circularly polarized light is (x + iy)
=-\(873)Yy;r. Hence, during the ionization, the photon having s =j=m;= 1 gives
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up one unit of angular momentum to the ejected photoelectron. Initially the alkali
atoms are in the state 2S,,,.,,. Therefore the produced photoelectrons, due to the
photoionization of the alkali atoms by a right-handed circularly polarized light,
are in states *Py; 3, *Py.1, and *Pyy, 1. For photoelectrons with m] = 2 the colli-
sion can be represented by

Na(251/2,1/2,~]=1wj =M, =%)+hv(j=mj =1)

- Na+(150)+e(21)3/2,3/23j’ =m; =%7 ml’ = 19 m; = %) (6'12'1)

Thus the spin-up sodium atoms on being ionized produce only spin-up
photoelectrons. Hence, (6.12.1) represents direct collisions. However, the photo-
ionization of the spin-down sodium atoms (M, = —1) produces photoelectrons
having m; = L. For such collisions the following four combinations are possible:

iomi om

11 -t @

11— (6.122)
10 1 (o

7 0 7 @

It is evident that in (a) and (b) m; of the photoelectrons is same as that of the
initial sodium atom, i.e., —1. Hence, they also represent direct collisions.
However, for (c) and (d) the spin of the photoelectrons is +1, different from the
spin of the sodium atom, which was —JZ-. Thus (c) and (d) represent spin-flip
collisions. Like (6.12.1), for reaction (d) we have

Na('Sys yp, J =1, M; =M, =—1)+v(j =m; =1)
— Na*('S)+e(*Bo,y20 j' =mj =m; =1) (6.12.3)

Because of the spin-flip collisions, represented by (c) and (d), the produced
photoelectrons are partially polarized. A similar effect takes place if we consider
left-handed circularly polarized light.

Let us now proceed to calculate the degree of polarization of the photo-
electrons. For (6.12.1), the wave function of the initial system is given by
R(r)Yyo and that of the ejected electron is Ry(r)Y; @, where o represents a spin-
up electron and Ry(r) is the radical function with j* = a} Hence, the transition
matrix element is

ar = (Ra(r) Y 0| —V8m/3rY;, |R(r) Yopr)
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or

a =24, (6.12.4)

where
A; = (Ry(IriR(r) (6.12.5)
For the ejected electron having j’ = 4 and mj = 1, the wave function is obtained

by taking a linear combination of (a) and (c) of (6.12.2). The matrix element for
such a transition is

a, = <R3(r)(CaYllﬂ + CCY10(X)|—V87L'} 3"Y]1|R(")Yooﬁ)

o)
=—V2C,4, = __32. A, (6.12.6)

where the C; are the Clebsch—Gordon coefficients, and their values are obtained
from (4.4.3) by taking / = 1. Thus C, =-C, = 13 and C,=C.= E B repre-
sents a spin-down electron. Similarly for (b) and (d), /' = 4 mj= 1and

as = (Rl(r)(Canﬁ +Cy Yloa)l—V 871'} 3"Y11|R(V)Yooﬂ>

2
=_J§_chl =——3—A1 (6.12.7)

where R\(r) is the radial wave function of the electron having j’ = 1 and
A =(R(n)|rR(r)) (6.12.8)
The electrons produced by the four reactions of (6.12.2) cannot be distin-
guished from one another (all of them have m; = m;+ m{ = 1). Hence, the wave

function of the system is obtained by taking a linear superposition of all four
combinations:

X2 = [, R (r)C. Yo + a3 R Cy Yyl
+Ha, Ry (r)C Y + asR G131 1B (6.12.9)

The number of photoelectrons with n; = 1and mj= L is proportional to square of

([a2R;(r)C. + a3 Ri () Calottiollaz Ry (r)C. + a3 Ry (r) Cy 1 Yp0x)
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The difference between R; and R, is due to the spin—orbit interaction and is small;
hence, we take (Ry/R,) = 1 in the above relation and obtain

Nyp(D <@, C. +asCy )’ (6.12.10)

where N,,Z(T) is the number of spin-up electrons. Similarly Nm(l), the number
of spin-down photoelectrons (with m; = -1, m;= 1), is

N () < [(@:C, + ;G ) (6.12.11)

All the electrons produced in the collisions represented by (6.12.1) are spin-up
electrons but with m; = % Hence,

2
Ny, (T) oc |ay| (6.12.12)
Therefore the degree of polarization P of the ejected photoelectron is

_ Ny, (T) + Ny (T) - Nij2 (l)

NN+ Ny, M+ Ny () ©12.13)
or
. (@:C. +a;Cy) +a? ~(@,C, +a:Cy)’ 6.12.14)
(@G, +a:Cy)’ +a? +(a:C, +a,C,)
Putting the values of g; and C; into (6.12.14), we obtain
p_ A H2A - A) —(A+24) 6.1215)

9A2 +2(A, - A)’ +(A; +24,)

As expected, the numerator of Eq. (6.12.15) vanishes for A, = A, showing
no spin flip in the photoionization. However, for A; = —2A,, the degree of polar-
ization P is unity, i.e., the ejected electrons are 100% polarized. The values of A,
and A; depend upon the wavelength of the circularly polarized light. For the
sodium atom A = 2900 X 10™"°m produces a very high degree of polarization
(Kessler, 1985). We note that the degree of polarization is nonzero only because
A, # A;. These matrix elements are different only because of the spin—orbit inter-
action occurring in the photoelectrons. We have already seen in Sec. 4.5 that
polarization of an unpolarized beam of electrons that is the result of its being
scattered by a potential is also due to the interaction between the spin and orbital
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angular momenta of the incident electron. Hence, in both these phenomena the
spin—orbit interaction is responsible for the spin flip.

The Fano effect has been utilized in the construction of sources of polar-
ized electrons. GaAs is the most widely used source and the polarization vector
of its photoelectrons coincides with the axis of the circularly polarized visible
light beam. The degree of the polarization P of the photoelectrons is about 30 to
40% and the photocurrent is of the order of uA (Kesseler, 1985, 1991). Recently,
strained GaAs crystals have given P as high as 0.9 (Maruyama et al., 1992).

Questions and Problems

6.1 Calculate the lifetime of the 2P excited state of the hydrogen atom.

6.2 The resonance angular frequency ®,p ,s for the lithium atom is 2.81 %
10"*Hz. In the thermal equilibrium at 7 = 4000°K the number of atoms in 2P and
28§ states is N, and N,, respectively. Obtain the value of the ratio Ni/N, and the
value of the energy density of radiation per unit angular frequency u(@.p_ss).

6.3 Gaseous lithium atoms are in thermal equilibrium with its surrounding EM
waves. Find the temperature at which the probabilities of induced and spon-
taneous radiations are equal for the 2P — 2§ transition. Take @,p.55 = 2.81 X
10" Hz.

6.4 Using (6.8.10) as the basis vectors, express the photon state |e5) as a
two-component spinor. The polarization vector of the state |€5) makes an angle
B with the x-axis. Also obtain the density matrix p;. Take = 0°, 45°, 90° and
135°.

6.5 Consider a linearly polarized light beam of intensity / propagating along the
z direction. Its photons are represented by (6.8.12) with fixed values of o and 6.
Show that the Stokes parameters are given by

M =sin2acosd, 1, =sin2acosd, and 15 = cos2o

Show also that

3 1( 1+ sin2asind isin2o cosé — cos 205)
2\ —isin2a cosd — cos 20 1-sin2osiné
and
u_p2 - 12
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6.6 In the interaction of EM waves with an atomic system, the quadrupole
operator is (ik-r)(€-p). Take k and the unit vector € parallel to the z- and x-axis,
respectively, and show that

(dlhre-p)) = 3 alL )~ e, e Xabek)

where L, is the y component of the orbital angular momentum, m is the mass
of the electron, and |g) and |s) are the eigenkets of the unperturbed atomic
Hamiltonian with eigenvalues €, and &, respectively. Show also that for the
second term to be nonzero the two atomic states must differ by two units of orbital
angular momentum.

6.7 Show that the optical oscillator strength for 3p — ls excitation of the
hydrogen atom is 0.0791 and that this is about 0.19 times the oscillator strength
for 2p — 1s excitation.

6.8 Verify Eq. (6.10.16).

6.9 Using the theory given in Sec. 6.11 obtain the value of the continuum optical
oscillator strength dfildW at the threshold of the K-shell ionization of a silver atom.
Take Z =47 and Iy = 25.52keV.

6.10 Using the theory discussed in Sec. 6.12 show that the photoelectrons
produced by the photoionization of unpolarized ground state alkali atoms by a
linearly polarized light are unpolarized.
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Collision of Electrons with Atoms:
The Integral Approach

7.1 Introduction

In the Chapter 3 the collision of a free particle with a potential was dis-
cussed. In this chapter we take an electron as a projectile and replace the
potential by an atom. The projectile is still a structureless particle but the atom,
as a target, is a composite particle having a nucleus and a number of electrons.
Thus the electron—atom collision is a many-body problem. Even the electron—
hydrogen-atom collision is a three-body problem. Due to the many-body nature
of the electron—atom system, an exact evaluation of the electron—atom collision
cross section is not yet possible. In this chapter we shall consider a number of
approximate methods based on the integral approach. To start with, both the
electron and the atom are considered to be spinless particles. The exchange scat-
tering due to the spin of the particles is discussed later on. Since atoms have a
structure, the collisions can be elastic as well as inelastic.

7.2 The Basic Equations

Let us consider the collision of an electron with a neutral atom, having Z
electrons, in a frame of reference in which the nucleus is at rest. We assume
that the center of mass of the system coincides with the nucleus. Thus we neglect
the small difference between the rest mass of the electron m and its reduced
mass L. In the steady state the above system is described by the following time-
independent Schrédinger equation:

Hyy(r,X) = Ey W, (r, X) (7.2.1)

139
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where r is the coordinate of the incident electron and X represents the collec-
tive coordinates of all the atomic electrons. y4;; is the eigenfunction of the
Hamiltonian H with E;;; as its eigenenergy. We further take

H=H,+H,+V (7.2.2)
with
hzk,f
He(pkn (r) = —¢kn (r) (723)
2m
HAvn(X) = 8nvn(X) (724)
Rk}
Ekrm =€t (725)
2m
and 2z 2
Ze e
V=——+ (7.2.6)
r zz:‘ Ir—n|

In the above equations ¢,(r) and v,(X) represent the free electron and the atom
and are the eigenfunctions of the Hamiltonians H, and H,, respectively. The cor-
responding eigenenergies are 7#%2/2m and &,, and V is the interaction energy.

The conversion of the Schridinger equation (7.2.1) into the Lippmann—
Schwinger integral equation for the outgoing scattered wave gives [similar to
(3.3.2)]

vii(r, X) =g (rvi(X)
+[ G, X; ', XV UG, X Wi, X)dr'dx” (1277)

where G{ is the free-particle Green’s function for the noninteracting projectile
and the target. Analogous to (3.3.7), G§ is given by

Gs =tims KoKkl

7.2.8
e>0nd k2 —kZ+ig 728

q

where |k,) and |n) are the intermediate states of the projectile and the target,
respectively, and k2 — k? = (& — &,)2m/h*. As before, the reduced interaction
energy U is 2mV/h*. A generalization of (3.3.12) for an electron-atom collision
gives

Filkj ki) = =2 (g, v, Uik ) (7.2.9)
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Equation (3.3.13) modifies to

An?
ﬁi(k,-,k,-)=——-h2—mT,-,-(k,~,k,») (7.2.10)

with the transition matrix element equal to

Ti(k;, ki) = (0, viITIow, vi) (7.2.11)

and the T operator being defined by

Tlowi, vi)= Vi) (7.2.12)

The Born series of yy;,, like that of wy; [see (3.4.7)], is given by

oo

v =2 (G; U)" 3 (r)vi(X) (7.2.13)

n=1

Putting (7.2.13) into (7.2.9) yields
ﬂi(kj,ki)=—2”2(¢kj, leUP|¢ki, Vi) (7.2.14)

where
P=Y(GiU)"
n=1

We may interpret the above equation by visualizing that the initial object, re-
presented by ¢ (r)v{X), is converted into a new object by the operator UP. This
new object is a vector in Hilbert space whose basis vectors are ¢, (r)v/(X). The
integral (7.2.14) gives the projection of the new object on the basis vector
&(r)v(X). Hence, the integral is proportional to the transition probability ampli-
tude for the transition of the object from its state |k;, i) to a new state |k, j).
As pointed out in the Chapter 3, the original object is changed into a new
object due to multiple interactions of the object with the interaction potential
(energy) V.

Similar to the Born series for potential scattering we also have the Born
series for electron—atom scattering, given by (3.4.10); but now the nth Born
term is

_j?"(k,', k)= "271'2<¢kj, vj|U(G6'U)H

O Vi) (7.2.15)
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As before, the nth Born scattering amplitude is given by (3.4.12). Taking n = 1
in (7.2.15) we get the first Born amplitude:

[ K, ki) = =27 (0w, vilUlpwi, vi) (7.2.16)
Putting (7.2.7) into (7.2.9) we get

filk;, ki) = =21 (y;, vilUlpwi, vi) = 279w, v;UGS Ulyii;)  (1.2.17)

Now using (7.2.8) in (7.2.17), we get

1 .
fji(kj,ki)=fjxm(kj,ki)‘i?flsl_f)l(}_’.fjfl(kj,kq)

1
X———— ni k ’ki dk 7218
k}-k3+ief(" Ik, 7219

The above equation is known as the Fredholm integral equation. We shall con-
sider its application to the electron-atom collision later on.

The differential cross section for the transition of an atom from the |i) to
the |j) state as a result of its collision with an electron is given by

I],(k],k,)d.Q=kj/k, If:"lzdg (72.19)

The above equation is slightly different from (3.2.11) because in electron—atom
collisions there is also inelastic scattering. In such a collision the flux of the
scattered particles going to the detector with momentum #k; is proportional to
k;, whereas the incident flux is proportional to ;. The change in the momentum
vector K due to scattering is given by (3.5.2), but

K =(k? +K2 - 2kik; cos)"” (7.2.20)
Thus
KdK =kk;sin0de (7.2.21a)
and
dQ=KdK do/kk; (7.2.21b)

where 0 and ¢ are the scattering angles. For a system having cylindrical sym-
metry, the scattering amplitude does not depend upon ¢. Then
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Kmax

2r
oy="7 | UilKaK (1.222)
i Kmin
where
1
Kr%xax,min =F(2E"£ﬁ iZ‘V E(E—gﬁ)) (7223)
ay

and &; is the excitation energy. For E >> g,

4E
Kiox =— =4k} (7.2.24a)
Ra()
and
K2 =€%/(4Ra3E) (7.2.24b)

For elastic scattering &; = 0; hence, in this case Ky, is zero and K, is 2k,

7.3 The First Born Approximation

It is evident from (7.2.16) that in the first Born approximation (FBA) effects
due to distortions in the wave functions of the projectile and the target are
completely neglected. Hence, as noted in Sec.3.5, the FBA is a weak potential
approximation.

Let us now proceed to obtain f; in the FBA. Putting plane waves for {r|k;)
and (r|k;) into (7.2.16), we obtain

FP Uy k) = —;%;Je”‘"v}k(X)U(r, X)vi(X)drdX (73.1)

For a neutral atom having Z electrons

2( 2 & 1
U(r,X)=——(——r—+z ) (7.3.2)

(2% I=1 Ir - r|

where r; represents the coordinates of the /th atomic electron. Using the Bethe
integral

. AT
[er L g =27 s (1.3.3)
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in (7.3.1) along with (7.3.2) and noting that v; is orthogonal to v;, we get

2
K2a0

FE(K) = (26, - F;] (7.34)

where the form factor Fj; is defined by

F}i(K) = <Vj(X)

Y4
. exp(iK - 1)
=1

V; (X)> (1.3.5)

The form factor arises due to the scattering of the incident electron by the
atomic electrons. On the other hand, the first term Zg; in (7.3.4) is due to the
projectile-nucleus interaction. For elastic scattering

2
Kzao

(K= (Z-F) (7.3.6)

and the form factor F; depends upon the charge density p = |v(X)|> From (7.3.1)
we also have

[P(K)= —%fe”‘"USF (r)ar (7.3.7)

where
Use(r) = {v,|Ulv;) (7.3.8)

is the average value of U for a fixed value of r. In the evaluation of Ug the pro-
jectile is frozen or made static at r. Hence, U is known as the reduced static
potential of the atom and the electron—atom collision is reduced to the scattering
of the electrons by a static potential.

For inelastic collisions, (7.3.4) reduces to

2
fil'(K)= —Ez-a—Fﬁ (7.3.9)
0

The above equation shows that in the FBA the nucleus does not play any role in
the electron impact excitation of the atom from |2) to | /). Use of (7.3.4) and (7.3.5)
in (7.2.22) gives the integrated cross section 0j; in the FBA. This is independent
of the sign of the charge of the incident particle. Since positrons and electrons
have the same mass, spin, and magnitude of charge, the collision cross sections
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due to electrons and positrons are identical in the FBA. Thus the FBA cannot
distinguish between matter—matter (atom—electron) and the matter—-antimatter
(atom—positron) interactions.

From (7.2.22) and (7.3.9) the integrated inelastic cross sections summed
over all the excited states is given by

F;
ol =—n j' L ik
]#1 kaom

Neglecting the dependence of K2, m» ON j we take

(K at) max
S O' 4T J‘ | ]zl
j#i ki2 2

o In (K2 2)m1n]

e d[in(K?a3)] (7.3.10)

To evaluate S|F;| we note that for a one-electron atom
j

1le™ i) =l j)Fi (7.3.11)

and S|j}jl=1 Hence,
J
™ X|i)= S|j)F; (7.3.12)
J

Converting (7.3.12) into a bra equation, we get

(ile”®* =S F;(j (7.3.13)
J
Hence,
2 .
SIEF =) =1
So that,
IR =1-|R (1.3.14)
Jj#i
and
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sof="2 [ (-IEf)alnk @)/ (ka)  (13.15)

Thus with the help of the charge density of the |i) state the total inelastic cross
section in the FBA can be evaluated.

Bethe (1930), extended the concept of the optical oscillator strength to elec-
tron—atom collisions and defined the generalized oscillator strength (GOS), for
j#i,as

Eex 1 2
——|F:(K)|

f}i (K)= R K ay

(7.3.16)

This is also a dimensionless quantity and for optically allowed transitions
fS%K = 0) is equal to the optical oscillator strength f°. As expected, for optically
forbidden transitions fﬁ(K = () is zero. The term f(K) also obeys the Thomas—
Reiche-Kuhn sum rule at each K, i.e., for an atom having N electrons,

SFE(K)=N (7.3.17)
J

Let us prove the above relation for a one-electron atom. We take K along
the x-axis and obtain

[e*, H]= —%(ei"‘p+pei"‘) (1.3.18)
Further,
(ilpe™ i) = n{jIKe™ i) +{jle™ pli) (7.3.19)
and
(ille™, H]li) = (&: — &; X jle™ ) (1.3.20)

Hence, with the help of (7.3.18) to (7.3.20), we get
o iKx|: hK o iKx A iKx|:
(&: —&;)jle™li) = =5 —(2{le pli)+ AK(jle™[i)) (13.21)

Now we multiply the above equation by (il **|j) from the left, sum over all the
values of j, and use S|j)jl=1 to obtain
J
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| iKels hK . "
Ste e Ok = -2 Ak 0.322)
As p is an odd-parity operator, {i|p|i) = 0. Furthermore, {i|i) = 1, so that

2m
PR lORs WE(K) =1 (7.3.23)

Similarly, we get (7.3.17) for an N-electron atom.

7.3.1 Elastic Scattering in the FBA

Let us investigate elastic collisions of electrons with some simple atoms
such as hydrogen and helium in the FBA. We take the atoms in their ground
states. For the hydrogen atom, from (7.3.6),

efn (kj ’ kz) = _—22—_[1 - (vi(X)IeiK- lel(X»] (7324)
K dy

Keeping our future convenience in mind, we represent the hydrogen atom by the
hydrogen-like wave function given by (6.11.1). This yields

) 162}
(™ i) = —— (7.3.25)
(42 + K*aj)
Hence, in the FBA
2 2 2 2)2
1B (Kao) =|£2' (Kao )| = 44582, +K'aj) (1.3.26)

4z +Ka)

Thus for Z; = 1 the differential cross section in the forward direction (K = 0) is
aj and it falls monotonically with the increase in Kay. At large values of Ka, the
differential cross section varies as K. Using (7.3.25) in (7.2.22) and carrying
out the required integration over K, we get 0y, the total elastic cross section:

4 2
Tkiay)' +1822 (ki) +122¢
o, =tio) (k) na} (7.3.27)

372 [Zsz + (kiao)2 ]3

Hence, for large E, oy ~ 7a/3(k.Z,)* and it falls as £,

orders@himanshubook.com



148 Chapter 7

For the helium atom, Z =2 and it has two electrons. We represent its ground
state (1'S,) by

wr, ry) = vi(r)v(ry) (7.3.28)
Each v(r) is given by (6.11.1). The value of Z; as obtained from the variational
principle is & (Schiff, 1968). This value is between 1 and 2 and indicates that

the nucleus is partially shielded from each electron by the other electron. For
(7.3.28), the form factor is given by

E; =2(v(r)le™ "|v(r)) (7.3.29)

and is double (7.3.25). The differential cross section for the helium atom with
(6.11.1) and (7.3.29) is

16a2(822 + K2a?)’
1 (Kay) = 10882 "f) (7.3.30)
(4z2+Ka})
In the forward direction,
B1 4 2 2
Iel (0) = ?ao = 0.4933610 (7331)

s

For the next atom in the periodic table Z = 3, its ground state electronic
configuration is 1s*2s, and the ground state term is 2S;,. Hence, its Hartree wave
function is given by

vy, ry, rs) = vi(n)va(n)vs(rs) (7.3.32)

where both v, and v, are 1s orbitals and v, is a 2s orbital. Suitable values of the
exponential parameters Z’ and Z” are obtained by the Hartree self-consistent field
method (Weissbluth, 1978). In this case

E; = 2(n(N)|e™ "y () + (w3 (r)le™® " |v3(r)) (7.3.33)

In a similar manner, the elastic collision of electrons with a multielectron atom
can be investigated in the FBA.

Figures 7.1(a) to (d) show the differential cross sections for the elastic
scattering of electrons by the ground states of H, He, Ne, and Ar in the FBA as
obtained by Shobha (1972). The wave functions taken by her were the same as
employed by Khare and Moiseiwitsch (1965) for the He atom and by Khare and

orders@himanshubook.com



Collision of Electrons with Atoms: The Integral Approach 149

1% 1 I L i !

Kag

FIGURE 7.1(a) Curve showing the variation of the differential cross section K(in a3/Sr) with Ka,
for elastic scattering of electrons by hydrogen atoms in the first Born approximation. [0 and X
represent the experimental data of Williams (1975) for E equal to 200 and 680eV, respectively.

Shobha (1974) for Ne and Ar atoms. Experimental data for one or two investi-
gations are also shown for comparison. For the lightest atom, namely the H atom,
the agreement between theory and experiment is satisfactory even at 200eV,
although the theory has a tendency to underestimate the cross sections at smaller
values of Kay. At 650V, the agreement between theory and experiment is quite
good over the whole range of Kay.

We also observe a similar trend for the He atom. At 500eV the agreement
between theory and experiment is better than at 200eV. This shows that the experi-
mental cross sections, plotted as a function of Kay, are not independent of E, as
demanded by the FBA. Although there is qualitative agreement between theory
and experiment, the underestimation of the cross sections at 200eV by the FBA
is clear, particularly at small values of Ka,.
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He
u! -FBA

KGo

FIGURE 7.1(b) Same as Fig. 7.1(a) but for the helium atom. O and X represent the experi-
mental data of Jansen et al. (1976) at 200 and 500 eV, respectively. A and V represent the data of
Sethuraman et al. (1974) for the same energies.

Figures 7.1(c) and (d) show that for heavier atoms the FBA overestimates
the cross sections over most of the range of Ka, by an appreciable amount. There
is not even qualitative agreement between the FBA cross sections and the experi-
mental data. This shows that the effects due to the distortions in the wave func-
tions of the projectile and the target by the atomic field and the Coulomb field
of the incident electron (neglected by the FBA) are quite large. These distortions
should be included in the theory to obtain better agreement with the experimen-
tal data. We shall consider these distortions in Sec. 7.7 and in Chapter 8.
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As expected, the accuracy of the FBA increases with E. Hence, at high E
a comparison between the FBA cross sections, obtained with the Hartree-Fock
(Weissbluth, 1978) target wave functions (which do not include correlation) and
the experimental data yields information about the correlation between the atomic
electrons.

7.3.2 Inelastic Scattering in the FBA

For the excitation of the hydrogen atom from the 1s to the 2s state we
employ hydrogen-like wave functions and readily find that

10! ra

I(a2/sr)

107 —

163 ] | L L1 ! |
A

D
@

Kae

FIGURE 7.1(c) Same as Fig. 7.1(a) but for the neon atom. [J and X represent the experimental data
of Jansen et al. (1976) at 200 and 500 eV, respectively. A and V represent the data of Gupta and Rees
(1975a) for the same energies.

orders@himanshubook.com



152 Chapter 7

I(a2/sr.)

=2 | | 1 | 1 | ] 1
10 2 4 § 8
Kﬂo

FIGURE 7.1(d) Same as Fig. 7.1(a) but for the argon atom. (0 and X represent the experimental
data of Jansen et al. (1976) at 100 and 500 eV, respectively. A represents the data of Gupta and Rees
(1975b) for 100€V and V that of Dubois and Rudd (1975) for S00eV.

222 7} (Ka,)’

Bs,ls (Ka()) = 3
(972 +4K%a})

(1.3.34)
Using (7.3.34) in (7.3.4), with the help of (7.2.19) and (7.3.9), we obtain the
differential cross section as

ka vz
: ——2———6a§ (7.3.35)
kis (922 + 4K2a2)

I2s,1x(Ka0) =
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For K = 0 we have

19
k2s 2 ao

IZs ls(K O) k 312 Z4

(7.3.36)

At large K the differential cross section falls as K™ in contrast with the 1s-1s
elastic scattering, where the fall is proportional to K™, The generalized oscilla-
tor strength for the above transition is given by

3215719k}
fiis(Kag) =——— (7.3.37)
(92 +4K’aj)

As expected f51(K) — 0 at K = 0 because a 1s — 2s transition is optlcally
forbidden.

Let us now consider the excitation of a hydrogen atom from the 1s to 2p
states. As the final state is now a p state (I = 1), we have m; =0, £1 and there are
three final states. However, we choose K to be along the z-axis. Then the form
factor F,;, is finite only for m;, = 0, and with a hydrogen-like wave function it
is given by

5
By =i3%x2742 _ ZKa (7.3.38)

(922 +4K°a})’
The use of the above equation yields the differential cross section

k2p 21732 ZSIO

bpis=7— (7.3.39)
"k K292 +4K7a)’
and the generalized oscillator strength is
21333 Zslz
figps = —————— (7.3.40)
(922 +4K’a})

Equation (7.3.39) shows that I,,;; — o at K = 0. This is a general feature of all
optically allowed transitions. However, for inelastic collisions K is never zero.
Even in the forward direction it is finite. At large K the differential cross section
falls as K" This fall is faster than that for elastic scattering and the 1s-2s exci-
tation. Figure 7.2 shows the variation of the energy-independent quantities
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k1s/kj Ij,‘ls(ag/Sr.)

FIGURE 7.2 Variation of (k,/k)I;,(in a3/Sr), the differential cross section multiplied by the weight
factor k;/k;, with Ka, for the ground state of the hydrogen atom due to electron impact in the FBA.
The final states represented by j are the 1s, 2s, and 2p states of the atom.

(ki/k)I;15 (for j = 1s, 2s, and 2p) with Kaq in the FBA. From the figure we not
that for small values of Ka,, the reduced differential cross section (ki/k;)I;; is
largest for the 2p excitation and those for the elastic scattering and the 2s exci-
tation are almost the same. All three curves fall with Kay, but the rate of fall is
fastest for the 2p state and slowest for elastic scattering. As a result, for large
values of Kay, elastic scattering dominates.

In Fig. 7.3 the variations of the GOS with InQ (where Q = Ra3K® is the
recoil energy) are shown for the 1s-2s and 1s—2p excitations. The figure shows
that f5,,, is much larger than f3,,, for all values of Q. At Q =0, f%,, is finite
(equal to the optical oscillator strength) and falls monotonically with the increase
in Q. On the other hand, f%,, = 0 at Q = 0. It increases with the increase in Q,
reaches a peak, and then falls with further increase in Q.
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The generalized oscillator strength for | 1s)—)|nlm;) summed over all the

allowed values of m, and [ for a hydrogenic atom is given by (Wadehra and Khare,
1993)

2Be.n an:|
nls = = 1 n2 -1
f 1 12""4 nlmy 1s RZz l: ( ) ZszR

[(n=1)" +n2Q/ ZER]H

(1.3.41)

[(n+1)? +n2Q/ZfR]n+3

Q)

0 | ] | | | !
-2 0 2

ln@

FIGURE 7.3 Variation of the generalized oscillator strength for the 2s and 2p states for the hydrogen
atom with Q (= Ra3K®).
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Hence, for n = 2,

8
Lex Z;

fow+ =2 =
’ R (972 +49/R)

(7.3.42)

As expected the above equation agrees with the sum of (7.3.37) and (7.3.40).
In terms of the GOS and the recoil energy Q the integrated inelastic cross
section in the FBA is given by

an+
o, = g“" [ #£@d(nQ) (7.3.43)
eX Ing_

where Q, _ are Raj times K2, min, Which are given by (7.2.23). Hence,

17 8
o2s,ls_2—R—Z—”“i[(9z2+4Q /R -(9Z2 +40./R)|  (1.3.44)

At large E the minimum value of Q is close to zero and Q, is quite large. Hence,
asymptotically,

128(2\°R 1 _,
Crp=——| = | == ma 7.3.45
T a4

Thus like 0y, the excitation cross section 0y, also falls as E™' at large E.

Let us consider optically allowed transitions. Figure 7.3 shows that for such
transitions a large contribution to ¢; comes from small values of Q. In that region
the f§(Q) are nearly equal to the f§. We replace f§(Q) by f; in (7.3.43) and choose
the upper limit of integration to be Q in such a way that the resultant cross section

4AmaiR

O = ke, f,,l(Q/Q) (7.3.46)

is the same as that given by (7.3.43), i.e.,

InQ:
0= Q-eXp[l [ re (Q)d(an)]
f]' InQ.

It is evident from the above equation that an evaluation of Q requires the
distribution of f§(Q) as a function of Q. At large E, the minimum value of Q is
approximately equal to €2/4E. Hence, asymptotically,
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AnaiR?
O'j,' =
Ee,,

fi In(cE) (7.3.47)

where c.(= 4Q/€2) is known as the Bethe collision parameter. The cross
section given by (7.3.47) is referred to as the Bethe or the Bethe~Born cross
section. It gives reasonable values at large E. A plot of G;E vs. In E, known
as the Bethe plot, is a straight line. Using experimental values of o at large
E, we can determine the value of the collision parameter c,, and f;; from the
Bethe plot.

Equation (7.3.47) shows that for optically allowed transitions, oj; falls as
E™' In E at large E. On the other hand, o, and o; for optically forbidden transi-
tions fall as E™'. Hence, at large E, the optically allowed transitions dominate. It
is easy to see that in the Bethe—-Born approximation

10
128(2Y R
o.2p,1s = Zf (_3-) Eln(cexE)mg (7348)

Figure 7.4 shows the variation of the total FBA cross section oy for the
excitation of the ground state hydrogen atom due to electron impact, with E in
the intermediate energy range. The final states are 1s, 2s, and 2p. The figure shows
that for all values of E the optically allowed excitation cross section G,; is the
largest and the optically forbidden cross section 0y, 1, is the smallest. The elastic
cross section Oy, lies in between.

7.4  Effect of Electron Spin on Collisions

So far in this chapter the spin of the electrons has not been taken into
account. Since electrons are fermions, the atomic wave function as well as the
wave function of the system (atom plus incident electron), including spins, must
be antisymmetric with respect to the exchange of any two electrons. Hence, we
should have

v(r, S50, 805 .. 30, 85 .. S TLS,)

==Wr, 8512, 825 .. 3R, 815 TS,) (7.4.1)

Similar equations are satisfied by the wave function of the system having Z + 1

electrons. A single determinant wave function satisfying the above property is
given by
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FIGURE 7.4 Variation of o; with the energy E of the incident electron: o; are the total cross sections
in the FBA for a transition from i = 1s to j = 1, 2s, and 2p states of the hydrogen atom due to electron
impact.

xi(rn,8)  x(n,s,) x(r,,s,)

1 o) xnn,s) ... x(r,s,)
=— 74.2
NG (74.2)

xz(rlssl) xz(r29s2) xz(rz,sz)

where the x; are single electron orbitals. The above determinant not only satis-
fies (7.4.1), but also obeys the Pauli exclusion principle. If any two atomic
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orbitals are identical, i.e., x; = x;, then y vanishes. Hence, no two electrons can
have the same quantum numbers, which is the Pauli exclusion principle.

Let us consider the collision of an electron with a one-electron atom. Then,
according to (7.4.2), the initial and final wave functions of the system are given
by

Vi, =%{¢k,. ()@ -6, W) 0] (743a)

and

Wy, = %[d)k,. (' Wy, ()1 (2) -0, ()’ Q@)v;(n)x’ )] (7.4.3b)

where ¢, and ¢, are the space orbitals of the projectile before and after the
collision. The corresponding spin orbitals are 17 and 7. Similarly, v; and v; are
the space orbitals of the target before and after the collision, respectively. The
corresponding spin orbitals are y and y’. With the above antisymmetrized wave
function, (7.2.10) and (7.2.11) give

an*m
fi === Wyl ) (14.4)

Use of (7.4.3a) and (7.4.3b) in (7.4.4) gives

47°m 1

fi=- _h2— _2' [<¢kj (n )n'(l)vj (r, )Z,(2)|T|¢k,- (r)n(v,(r )Z(2)>
+(0y, ()7 Qv;(n) 2" WITI,, ()i () 1 (1))
= (s, )’ Wv; () 2" ITI,, (r)N)vi(R) £ (1)
= {8y, (r)N' Qv (r) 2" WITI,, (r)MWvi(r2) 2 (2))] (14.5)

In the first matrix element of the above equation electron 1 is free and 2 is bound
before as well as after the scattering. Similarly, in the second term, electron 2 is
always free and 1 is always bound. On the other hand, in the third term, initially
electron 1 is free but after the scattering it becomes a bound electron. Similarly,
electron 2, which was bound before the scattering, becomes free after the
scattering. The same is true for the fourth term, where the electron switches over
from the bound (free) to free (bound) orbital. Hence, the first and second terms
of (7.4.5) represent direct scattering while the third and fourth terms represent
exchange scattering.
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Since the T operator does not operate on spin wave functions, we have from
(74.5)

fi =% falkj, k)M W 2" @) x(2) + (' (2)x"Din(2) 2 (D]
=3 fou Uy, kD (D" @) x D) + (') DI x(2)] - (74.6)

where the direct scattering amplitude is

Ja (kj k)= —M;_zm[((ij (r)v;(r, )|T’¢ki (r)vi(ry ))] (7.4.7a)

and the exchange scattering amplitude is given by

An’m

Joulkys i) = === [{y, (1), (T, ( )vi )] (7.4.b)

To evaluate terms like (1’| ¥), we consider collisions of the spin-up elec-
trons with the unpolarized one-electron atoms A. The ensemble of unpolarized
atoms is equivalent to a mixture of 50% of AT and 50% of Al atoms. Hence, we
have the following three types of coilisions

el +Al - el +4l (7.4.8)
el +Al s el +AT (7.4.9)
el +AT = eT + AT (7.4.10)

The corresponding spin wave functions for the above collisions are given
by

Equation n X n ¥
(7.4.8) a B a B
(74.9) o B B o (74.11)
(7.4.10) a a o o

Putting the above spin functions into (7.4.7), we obtain

fji(kj,ki)=fd(kj,k,-) for (7.4.8)
=—f.(k;, k;) for (7.4.9)
(fa = fex) for (7.4.10)
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Hence, (7.4.8) and (7.4.9) represent the direct and exchange collisions, respec-
tively. Equation (7.4.10) contains f; as well as f,,; hence, it represents mixed
collisions. The differential cross sections for (7.4.8) to (7.4.10) for elastic colli-
sions are 1| fdlz, L|£.,[ and 2Hfa - fex|2, respectively. Hence, the differential cross
section for the sum of the above three types of collisions for elastic scattering is

1k, k) = (£l +1fual” +12 = ful”) (74.12)

The factor 1 on the right-hand side is due to the fact that only half of the atoms
participate in each type of collision given by (7.4.8) to (7.4.10). It is easy to see
that (7.4.12) is also the differential cross section for collisions of spin-down elec-
trons with unpolarized atoms. Even for collisions of unpolarized electrons with
unpolarized atoms the differential cross section is given by (7.4.12) because only
50% of the incident electrons will be involved in the collisions given by (7.4.8)
to (7.4.10). Hence, the cross section with eT electrons will be only one-half that
given by (7.4.12). The other half will be contributed by el incident electrons.
Thus the sum of the two will again be equal to that given by (7.4.12). This equa-
tion can also be written as

Lik; k) =21f, — g +L1fs + gl° (7.4.13)

where the exchange scattering amplitude is represented by g(= f;,).

The above equation can also be obtained from the following simple con-
sideration. Since the system (e + A) has two electrons it will have four types of
spin wave functions given by (5.6.1). Of these four wave functions three are sym-
metric. Hence, the corresponding space wave function has to be antisymmetric,
and the scattering amplitude will be f; — g. Similarly for the fourth antisymmet-
ric spin wave function, with a symmetric spatial wave function, the scattering
amplitude will be f; + g. Since the weight factors for the symmetric and anti-
symmetric spin wave functions are 2 and 1, respectively, we get (7.4.13). This
equation with k; = k; is the same as (5.6.6), obtained for the collision between
two unpolarized beams of electrons. However, the expressions for f; and g in the
two cases are different. For electron—atom inelastic collisions (7.4.13) is multi-
plied by k;/k;.

In Chapter 4, while discussing the collision of a free electron with a poten-
tial, we came across the spin-flip process. But the reason for this process in these
two cases is different. In the collisions now being discussed spin-flip takes place
because in the system we have two electrons having opposite spins. Loosely, we
may say that in the collision the incident electron becomes bound and the atomic
electron with opposite spin becomes free, which is detected by the detector. In
reaction (7.4.9), the spin—orbit interaction is not considered. Mg and M, of the
system are separately conserved, i.e., AMy = AM; = 0. On the other hand, the
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spin-flip process, discussed in Chapter 4, is due to the spin—orbit interaction of
the same electron. No second electron is present but the presence of the poten-
tial makes the spin—orbit interaction possible. In this case spin-flip changes Am;
by one unit and this is compensated by a corresponding change in m;, in such a
manner that Am, + Am; = 0. Hence, m; remains unchanged.

The scattering matrix S(6) is a 4 X 4 matrix. Since without the spin—orbit
interaction My(= m,; + my,) is equal to Mg(= m;; + mg,), S(6) for the reactions
(7.4.8) to (7.4.10) is a diagonal matrix, whose rows and columns are given by
(Mg, mg,, mg) and (Mg, my;, my,), respectively. The matrix is

M, 1 0 0 -l
N
me 3 3 3 73
M, my m
Ll f-g 0 0 0
0 £ 0
0 i -1 s@= fo-s (7.4.14)
0 -+ 4 oo
I 0 0 0 f-g
2 2

This 4 X 4 matrix breaks up into three submatrices of dimensions (1 X 1),
(2 x2), and (1 x 1). We also have

5(6) = f(6)—1(1+0,®05,)g(6) (7.4.15)
where the outer product of the two Pauli matrices is

0,80, =0,80,, +0,,80,, +0,80,,

10 0 0
|01 20 (7.4.16)
0 2 -10
00 0 1

For the collision of an electron with a helium atom the system has three
electrons. Hence, there will be three spatial and three spin orbitals. The anti-
symmetric wave function of the system will have 9 terms, so the T matrix will
have 81 terms. However, the position is considerably simplified if we confine
ourselves to elastic scattering of the electrons by the ground state of the helium
atom. Since the helium atom will be in the singlet state after the scattering, the
incident electron can be exchanged only with the atomic electron that has the
identical spin. The spin wave function of these two electrons, considered together,
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will be symmetric; hence, we are required to have an antisymmetric combination
of the scattering amplitude, which will be f; — g.

For a perfect experiment, as discussed in the Sec. 4.5, we have to deter-
mine |f{, |g|, and their relative phase ¢,,. To obtain these quantities, the unpo-
larized electrons are scattered by the unpolarized atoms and the differential
cross sections I, are measured. This is followed by scattering of the partially
polarized spin-up electrons, having P, as their degree of polarization, by un-
polarized atoms. In this experiment P, and P, the degrees of polarization of the
scattered electrons and the recoiled atoms, are measured. Now, (7.4.9) shows
that the cross section for the spin-flip process is 4|g|?P, and the cross section
for those collisions, in which spins do not change, from (7.4.8) and (7.4.10),
is Xf4* + |fy - g»P.. In the incident beam the fraction of unpolarized
electrons is (1 — P,). Half of them behave as ¢ electrons and the other half as
B electrons. Therefore, the differential cross section for detecting scattered o
electrons is

2
1T =PR[HAL +L1f o [+40-P)L, (7.4.17)

Similarly, for detecting S electrons,
1L=1Plgl +1(1-P)L, (7.4.18)

As expected
Lo=1T+ 1 (7.4.19)

By definition, the degree of polarization of the scattered electrons is

IT-1
Y= ! (7.4.20)
Iun
Using (7.4.17) to (7.4.19) in (7.4.20), we get
lel’ =1.(1-F/P) (7.4.21)

The above equation shows that P, is less than P,. Thus the incident beam is par-
tially depolarized by the exchange process but at the same time the recoiled atoms
are partially polarized. In reaction (7.4.9), the atom flips its spin. The degree of
polarization of the recoiled atoms, obtained from (7.4.8) to (7.4.10), is

P =P(-I5l /1.,) (74.22)
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Hence,
\fil’ = L,(-Pi/P) (7.4.23)
and
\fu =&l = L (B4 /P, (7.4.24)
We take f; = |f{exp(iy1) and g = |glexp(i}s). Hence, from (7.4.24)

1-(P/+P)/P,
[a-P;/P)1-P/P)]

cos(@r) = cos(y; —¥2) = (1.4.25)

1/2

We can also obtain cos(¢,;) by determining the asymmetry parameter A(6), is
defined by

1T ~1(T)

SOOI

(7.4.26)

where I(TT) and I(Ti) are the cross sections for the parallel and antiparallel ori-
entations of the spins of the electrons and the atoms. Use of (7.4.8) to (7.4.13)
gives

2
fig* + g _[follglcos@e) _ Ifa+el —Ifs g
2
2L, L fa+el +3fu-gl

AB) = (7.4.27)

In general when P, and P, are neither parallel nor antiparallel we have (Kesseler,
1985, 1991)

1(0)=1,,[1-A(O)P. - P,] (7.4.28)

A number of measurements of A(6) have been made (see Baum et al., 1985,
1988a,b; Fletcher et al., 1985; and Kesseler, 1991).

It is evident that the above measurements yield only cos(¢.;) and not the
unambiguous ¢,.. To obtain this quantity let us consider P; the degree of polar-
ization of the scattered electrons, given by (Kesseler, 1991)

(11 /1)y + (116 /1 P +i(F 3 8~ fug*) (B X P)/(2Loa)
1-AQ)P. - P,

,—~

€

(71.4.29)
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From the above equation (P;),, the component of P; perpendicular both to P, and
P, is

®) =i (f¥g— fag*)P.P,sin¢’
o 2Iun (1 - A(e)PePA cos ¢’)
- |f:llglsin(@ ) P Py sin ¢’
Iun (1 - A(G)PePA COS¢’)

(7.4.30)

where ¢’ is the angle between P, and P,.. Thus a measurement of (P;), yields sin(¢,)
and knowing cos(@,) and sin(¢,;) an unambiguous value of ¢, is obtained. Instead
of measuring (P?), one may measure (P;),. The relationship of P; with | f|2, |g|%, P.,
and P, is obtained by interchanging P, and P, in (7.4.29). Thus

(1=1£iF /1 )P+ (116l /1 )Py ~ (£ 38 - fig*)/21,0)P. P4
1-A@)P. - P,

(7.4.31)

Such experiments have been performed for elastic scattering, excitation, and ion-
ization collisions (see McClelland et al., 1985, 1987; Baum et al., 1985, 1988a,b;
and Kesseler, 1985, 1991).

It may be noted that |g| can also be obtained by the scattering of partially
polarized electrons by unpolarized atoms. In this case P; from (7.4.29) is

P/ =(1-lgf' /1. )P. (14.32)

Hence, a measurement of P, enables us to determine |g|.

Let us consider (7.4.29) under two extreme cases: (a) g =0 and (b) f= 0.
For (a) I, =|f]* and A(6) = 0. Hence, P = P,. This clearly shows that exchange
is necessary for polarization transfer. For (b) we have I, = |g|* and A(6) = 0.
Hence, P, = P,. This is due to the fact that in a pure exchange scattering all the
scattered electrons come from the target.

P, and P are measured with a Stern-Gerlach polarimeter. A schematic
arrangement of the apparatus, which is kept under ultrahigh vacuum, is shown
in Fig. 7.5. The neutral atomic beam passes through a highly inhomogeneous
magnetic field B produced by specially designed pole tips. Let the atomic beam
be moving along the x direction with a velocity v. In Fig. 7.5(a) the plane of the
paper is the x—z plane. If we look into the atomic beam the cross section of the
apparatus is shown in Fig. 7.5(b).

Due to electronic spin the neutral atom behaves like a tiny magnet and has
a magnetic moment y. This u interacts with the magnetic field B and a force F,
acts on the atom. The magnitude of F, is given by
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z

b

12 b

(a) (b)

FIGURE 7.5 The Stern-Gerlach experiment with free atoms having S = % The atomic beam travels
along the x-axis and the inhomogeneous magnetic field is directed along the z-axis.

B,
% (7.4.33)

where 6 is the angle between g and z. Suppose the atoms are under the influence
of the magnetic field for a time 7. Then the deflection z of the atoms is given by

z=1(F /M) (7.4.34)

where M is the mass of the atom. If the magnetic field acts on the atoms over a
length L then ¢ = L/v and

233

“cose(L/ a2 (7.4.35)

For a one-electron atom the quantum mechanical values of cos 8 are only
+1. These two values correspond to m, =1, respectively. Thus the neutral
atomic beam splits into two fully polarized atomic beams.

If we perform the Stern—Gerlach experiment with the electrons, then M in
(7.4.35) is replaced by m, the mass of the electron, and u, = jicos@ = +Lhe/me.

Hence, the angular separation of the two electron beams is

(7.4.36)

As electrons are charged particles, the Lorentz force also acts on them. The z
component of the Lorentz force is ep,B,/mc, so the angular deflection due to this
force is
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B,t*
= % (1.4.37)

The incident electron beam moving in the x direction will have a certain
cross section. Let its width in the y and z directions be Ay and Az, respectively.
Due to Ay, @ will range from @ to @ + A®. The value of A as obtained from
(7.4.37) is

ep.t> 0B,
O=——-—=A 7.4.38
2m2cL dy Y ( )

The magnetic field B satisfies
V-B=0B,/dz+0dB,[dy+3B,[dx=0

Since B does not vary with x we have

dB,/dz=~dB,[dy (7.4.39)
Hence in magnitude
epit> 0B,
=LA 7.4.40
2m?cL dz Y ( )
1/ A® =1/(p.Ay)~ Ap, [ p. (7.4.41)

where, using the uncertainty principle, we have taken Ay = h/Ap,. To define a
beam we must have p, >> Ap,. Therefore AQ >> y. Thus the spread of the elec-
tron beam is much greater than the separation produced by the inhomogeneous
magnetic field. Therefore we conclude that due to the Lorentz force the
Stern—Gerlach apparatus cannot be employed to produce polarized electrons
from the unpolarized electron beam. For the same reason we cannot use the
Stern-Gerlach experiment to measure P, and P,. The polarization of the electron
is measured, as discussed in Sec. 4.6, by the Mott detector.

7.5 The First-Order Exchange Amplitude

A replacement of the T operator in (7.4.7b) by the interaction energy
operator V yields the exchange scattering amplitude g in the Born—-Oppenheimer
approximation. In this approximation g is correct up to first order and for the
one-electron atom it is given by
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m J' —ikjra

gu=-—7 e vi(n)V(n,n)e™ v, (r)drdr, (15.1)

However, the Born—Oppenheimer approximation is not found to be a successful
approximation, as it suffers from the following defects:

1. If Vis replaced by V + C, where C is a constant, the value of g changes.
This is physically incorrect, because a constant potential produces zero
force so the scattering amplitude should not change.

2. The value of g also depends upon the projectile—nucleus interaction
—Z/r,. This again seems to be incorrect because the exchange only takes
place between identical particles. Hence, the nucleus is not expected to play
any role in a first-order approximation.

3. The above approximation also suffers from the post-prior discrepancy.
Before the collision, the interaction potential energy is given by

VB =_Ze2/r1 +€2/r12

In the collision electrons 1 and 2 are exchanged. Hence, after the
collision

V, ==Z&*[r+e*/n;

It is evident that V, # V, and that they give different values of g.
4. If we break g into partial waves, i.e., g = )l:g,, then it is found that g

due to the Ith partial wave becomes greater than 41(21 + 1)/k}. Thus this
approximation violates the partial cross section theorem [see (3.9.27)].

The primary reason behind the above defects is the fact that the initial
wave function exp(ik;-r)v{ry) is not orthogonal to the final wave function
exp(ik;-ry)v{r;). A number of attempts have been made to remove these defects.

One of the more successful such attempts was made by Ochkur (1964),
who expanded g given by (7.5.1) in the power of k' and retained only the leading
term, which behaves as k;2. It is found that the term —Ze*/r, gives a contribution
that falls faster than ;2. Thus it is neglected. The electron—electron interaction
gives

me?
2nh?

—ikj- |
gi= [ ¥ () —e*v,(rydndr, (75.2)
h2

The Fourier transform of 1/ry, is given by
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1 1 eirr(rrrz)

np 2m’ q

dq (7.5.3)

Putting g = k; + p into the above equation we get

iki-ri2 eiq~r12

1 e
ne 2wt Jki2+p2+2ki-pdp

(7.5.4)

The term ¢*" oscillates with p. Thus the major contribution to the above inte-
gral comes from the small values of p. Hence, at high energies p* + 2k;-p is
neglected in comparison to k7, and (7.5.4) reduces to

1 4rm
—=-I;2—5("1 —rz)CXP(iki ) (7.5.5)

712 i
Putting (7.5.5) into (7.5.2) and integrating over r,, we get

2
ki2a0

8oc =~

iKn
e v n)an (7.5.6)

The above equation gives the exchange scattering amplitude in the Ochkur
approximation. It is correct up to k;* and is free from the post-prior discrepancy.
Further, a constant added to V yields an additional scattering amplitude that falls
faster than & and so it is also neglected. In a good number of cases the values
of goc are found to be reasonable. Hence, it has been employed at all energies.
It is easy to see that for inelastic electron-hydrogen atom collisions

KZ
gl = 7 (7.5.7)

H
k?

Use of the above equation in (7.4.13) shows that up to first order in the interac-
tion, the differential cross section for the inelastic collisions of electrons with the
hydrogen atom correct up to k;* is given by

k.
Li(ki, k;) =k—{| FE, k) (1= K2R+ K[k (7.5.8)

Hence, the integrated cross section in the Born—Ochkur approximation is

21 Fne
Oi =73 | 178 Eu(K, kDK dK (7.5.9)

' Kmin
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where the exchange factor is
Fo=1-K*[k} +K*[k} (7.5.10)
Similarly, for the singlet—singlet excitation of the helium atom we have

2
K Bl

gﬁ’f:z—k}— He

(7.5.11)

A factor of two appears in the denominator because out of the two atomic elec-
trons only one has the same spin as the incident electron.

7.6 lonization of Atoms in the First Born Approximation

A single ionizing collision of an electron with an atom A can be repre-
sented by

e+A—>et+At+e (7.6.1)

Thus in the final channel we have two free electrons. Further, for a given E, the
ionization cross section o; of atoms is fivefold differential: twofold with respect
to the scattering angles (0, ¢), another twofold with respect to the direction (8,, ¢,)
of the ejected electron, and onefold with respect to the energy &, of the ejected
electron. The energy &, varies continuously from zero to E — I, I being the ioniza-
tion potential of the atom. Owing to the above reasons, a quantum mechanical
evaluation of g; is quite involved. Most of the calculations are limited to the FBA
and semiempirical methods based on classical binary encounter theory (Grizinski,
1965a,b,c), the FBA, and the Ochkur approximations (Younger and Mark, 1985).

For an ionizing collision, the generalized oscillator strength for a bound-
bound transition is to be modified for a bound—free transition. This can be
achieved by replacing &, in (7.3.16) by W, the energy lost by the incident elec-
tron in the ionizing collision, and the matrix element |{jlei)|? by | (k| e""|i)|*dk,
where | k) represents the ejected electron and 7k is its momentum. Thus (7.3.16)
changes to

Kkl i) dk (7.6.2)

w1
df =—
fR

K?a?
To simplify the notation the superscript G of the continuum generalized oscilla-

tor strength df (CGOS) is dropped. We note that for a given K, df is a dimen-
sionless quantity but it is threefold differential. Now,
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W=¢g +1=Ra3k*+1
Hence,
dW = 2Ra3kdk

Using the above equation in (7.6.2) and integrating over the direction of the
ejected electron, we get

df(W, K*) ir
y o —2R2 o 2j|(k|e'< I (7.6.3)

The above equation gives the CGOS per unit energy loss. Using the ground state
hydrogenic wave function, given by (6.11.1), for the initial state and the Coulomb
wave for the continuum state, we evaluate the transition matrix element and after
somewhat lengthy algebra obtain (Mott and Massey, 1965; Khare et al., 1993;
Saksena, 1994)

[ V.0 _ dfe’, B*)
toaw do’
__2(+ed)[(1+a?)/3+p%]

[1+2(e2 + B+ (@2 - B2

where Is = Z2R, a = kay/Z,, B= KaJZ,, W = I(1 + o), and

F(B?, 0?) (7.6.4)

F(B*, o*)= exp{—%arctan[za/(l +p% - az)]}

{1 - exp(—%)} fora’*=>0 (7.6.5)

2
1 i +[1 +(—a2)1/2]
=expy— In >

o)™ g fi- (o)

fora?<0 (7.6.6)

We also note that the recoil energy Q = f*Z2R.

For a one-electron atom, Zs = Z and ¢* is always positive. Figure 7.6 shows
the variation of df(e*, B?)/da* for the hydrogen atom as a function of Inf3?
for a® = 0.1025 (W = 15eV) and 2.675 (W = 50eV), respectively. The ionizing
collisions corresponding to small values of & or W (curve A) are known as soft
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~ ! ] I | ] |

0
ln ﬁz

FIGURE 7.6 Variation of the scaled continuum generalized oscillator strength df(a/[?)/da* with
In # for a hydrogen atom due to electron impact. Curves A and B correspond to the energy loss of
15 and 50eV, respectively, by the incident electrons.

collisions, whereas those involving large values of o are said to be hard colli-
sions. We note that curves A and B of the figure are similar to the curves for 2p
and 2s, respectively, of Fig. 7.3.

The above similarity indicates that soft collisions are due to dipole inter-
action and that hard collisions involve forbidden transitions. The peak in curve
B is known as the Bethe peak, and the locus of the Bethe peaks corresponding
to different values of W gives rise to the Bethe ridge. As an approximation, the
ionization cross section due 10 hard collisions is evaluated by considering colli-
sions between two free electrons (Sec. 5.6). As discussed in Sec. 6.11, Eq. (7.6.4)
can also be utilized to calculate K-shell electron impact ionization of multielec-
tron atoms. In this case Z; = Z — 0.3, W = Ra3é* + I, a = day/Zs, and I < I;.
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Hence, & will be negative for Iy < W < Iy and (7.6.6) is to be used for F(?, o).
Further, as there are two K-shell electrons, (7.6.4) is to be multiplied by 2. It is
evident from the above equation that the scaled continuum generalized oscilla-
tor strength df(a?, B?)/do? is the same function of & and 8 for all the atoms.
Hence, df (o, B*)/da® generates a universal Bethe surface when plotted as a func-
tion of & and 8* (Khare et al., 1993).

Equation (7.6.4) can also be derived by extending (7.3.41) to the con-
tinuum states. For the K-shell excitation of a multielectron atom, (7.3.41) gives

[a=1/ny +82]”
[y 4]

e, [l . @2
fn,ls(Q)=—R;‘27n 3[3(1—1/" )+B ]

(7.6.7)

To make a transition from the nth bound state to the continuum state we replace
&, by W. This shows that n in the above equation is to be replaced by i/a. With
the above changes f, ;s becomes a differential quantity and for K-shell ionization
it is given by

RV PV
RZ? ————df(d“;",Q) =2%(1+o?)[L(1+ 052)+[32]———————[[(1 +ie) :ﬂ ]]3
(1-iet)” + B2
A ifa
X{(Hia) +ﬂ2] ‘ i
(I—ic) + B° (7.68)
because with dn = 1
dW = RZ!d(a*) — - RZfd(iz) = 2R3Z‘2
n n
Further,
(1 . )2 2]—3
[——iﬁx—+—ﬂ-—3 = [1+2([i2 +a)+(p? —052)2]_3
[(l—ioc)2 +,62]
and

|:(1+i(1)z +ﬂ2 j|i/a _ exp[i]n( (1+ia): +'[J’2 J:|
(1-ic)" +p? a \(I-ia) +p?
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Hence, (7.6.8) reduces to

df (W, Q)

I
dw

=df (a?, B*)/da’
281+a?)i(1+a?)+p7]

) [1+2(ﬁ2 +a’)+(p? —052)2]3

Flo?,B?)  (169)

where

Fat, ft)= exp{imw

> :| for a®=0 (7.6.10)
@ (1-ia) +p*

For negative values of ¢, the above equation changes to

-1 [1 +(—052)1/2]2 + p?

F(o?, B*)=exp —=In (7.6.11)
’ /2 2
(-a?) [1—(—(12)1/2] +ﬁ2
Let us consider positive values of . For this case
. 8\2 2 .
| {40 +B7 ) ln[H’,x] =2itan™' x (7.6.12)
(1-ia)’ + B> 1-ix
where
200
=— 7.6.13
AT B? ( )
Putting (7.6.12) and (7.6.13) into (7.6.10), we obtain
2 20
F(a?, B?) = exp[—;arctan(mﬂ (7.6.14)

We note that (7.6.9) is twice (7.6.4). The factor of 2 is again due to the fact
that there are two K-shell electrons in multielectron atoms. However, for o> > 0
(7.6.14) differs from (7.6.5) by the normalization factor 1 — exp(-2#/c)) of
the Coulomb wave because the bound state wave functions are normalized
to unity.
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7.6.1 The Total Ionization Cross Section

Let us now discuss the evaluation of the total ionization cross section in
the plane wave Born approximation (PWBA). We start from (7.3.10), which is
for the excitation from the |i) to the |j) state. In this equation &,, is replaced by
W and f(Q) by df(W, @Q)/dW and is integrated over W from I to W,,,. Thus, with
the help of (7.3.16), the total ionization cross section is

e f”df(W ,0)
Wb, dw

2 Wmax
4” Ra j G208 0 @)aw (1.6.15)
1

where the maximum and minimum values of the recoil energy are given by
0. =(E +JE-W) (7.6.16)

The maximum value of the energy loss W, in the PWBA is equal to the inci-
dent energy E. In the plane wave Born—Ochkur approximation (7.6.15) modifies
to

47TR2 2 Wmax In Qs 1 df(W Q)

E 3 W aw

0; = ———F(E,Q)d(InQ)dW  (7.6.17)

where the exchange factor as obtained from (7.5.10) is
F.(E,Q)=1-Q/E+Q*/E? (7.6.18)

In exchange scattering the bound electron is exchanged with the incident
electron. The two electrons (ejected and scattered) are indistinguishable. Hence,
out of the two free electrons the faster one is taken to be the scattered electron.
Therefore the maximum energy of the ejected electron is taken to be (E — I)/2.
Thus with exchange the value of Wy, is (E = D/2 + 1= (E + I)/2.

7.6.2 The Coulomb Correction

In the PWBA the o; as given by (7.6.15) are identical for electron and
positron impacts. However, there is no exchange scattering in the positron impact.
Hence, for positrons F,, = 1 and W, = E. Thus the ¢; as obtained from (7.6.17)
are different for the two particles. However, in general, the theoretical ionization
cross sections obtained from (7.6.17) do not agree with the experimental data.

An important effect, which should be included in the theory for the calcu-
lation of the collision cross section, is the distortion of the plane waves by the
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atomic field. Thus the higher Born terms, discussed in Chapter 3, have to be eval-
uated. A simple way to include such an effect within the PWBA and PWBA-
Exchange has been proposed by Hippler (1990). The atomic field accelerates the
incident electrons but decelerates the positrons. Hence, at the instant of the ion-
izing collision, the effective kinetic energy of the projectile is different from the
incident energy. On the assumption that the acceleration or deceleration takes
place only via the Coulomb field of the bare nucleus, the effective distance r
at which the ionization takes place is given by

TR,,, (") rR,(r)ridr

[

Fit == (7.6.19)

[ Ru(IRu(r)rdr

[

where R,(r) is the radial function of the initial atomic state and r_ is the small-
est distance at which the incident positron, after being decelerated by the nucleus,
has sufficient energy to knock out an atomic electron; r, is the similarly defined
quantity for the electron impact. However, since electrons are accelerated, r, =
0, whereas r_ satisfies the following relation:
1,2
E-2¢ (7.6.20)

Hippler (1990) fixed the value of Z’ by taking

72
Iy= z 2R (7.6.21)
n
For a hydrogen-like atom, (7.6.19) gives
2 —_—
L . L) (7.6.22)

27" 1+F,(x)

where x = 2Z'r_la, For the electron impact F,(x) is zero but for positron impact
it is given by (Khare and Wadehra, 1996)

X3 1
R()=%—"
1) 3 242x4x2

x (8-5x+x?)
B ()= 85t e)
6 8+8x+4x"+x
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and

x° 1
F,(x)=— 7.6.23
(1) =33 (24+24x+12x% +4x° +x*) (7:623)
At r; the instant kinetic energy of the projectile is
’,2
E=p+Zl gy M (7.6.24)
et 1+ Fy(x)

where + and — correspond to the electron and positron impacts, respectively. It
can be easily shown that the value of & for the K(1%5,,) shell and L1(22S,,,) sub-
shell is £ but for the L2(2°P,,) and L3(2°Py,) subshells its value is £.

To include the Coulomb correction, E in (7.6.15) and (7.6.17) is replaced
by E’. For the positron impact Wy, in (7.6.15) is replaced by E’ but for the elec-
tron impact W, remains (E + 1,))/2 in (7.6.17) to avoid nonphysical ionization.

Khare et al. (1993) employed the Coulomb and exchange corrected PWBA
to calculate o; for the K-shell ionization of a number of atoms. At low E their
theoretical cross sections are in satisfactory agreement with the experimental data
but at high E the theory underestimates the cross sections. One of the reasons
for this deficiency is the nonrelativistic nature of the theory. For the inner shells
the ionization potentials are quite high, so relativistic effects become important.
However, it is not essential to solve the Dirac equation. Khare et al. (1994a,b)
have shown that a suitable modification of (7.6.17) gives good values of o; over
a wide energy range. According to the well-known relativistic equation, the total
energy Er, including the rest mass energy of the projectile, is given by (6.2.1).
Before the collision p; = 7ik; and Er = E' + mc”. During the collision the projec-
tile loses an energy W. Hence, p; = 7ik; and Er = E' — W + mc® . With the help of
the above equations we get

1 1/2
ki =—[(E"+me?)’ —mc?] (7.6.25)
hc
and
1 1/2
Ky =—[(E" =W +mc)’ —m?c*] (7.6.26)
he

Since Q, = Raj(k; * k)* we get
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0. = 2_1;[J EE +2m) t(E - WYE —W+2m)] (7.627)
mc

Further, for the incident energy E

m 2

E+mc? =:/—1——2/—2—C (7.6.28)
-v¢/c
Thus with the Coulomb correction,
v=c1- ———;—— (7.6.29)
(1+ E'[mc?)’ '

We also define E, = mv*/2 and replace E by E, in (7.6.15).

To obtain o; corrected for exchange, Coulomb, and relativistic effects in
the PWBA, Khare and Wadehra (1995, 1996) employed (7.6.15) for positron
impacts and (7.6.17) and (7.6.18) for electron impacts. In these equations they
took E” and Q. given by (7.6.24) and (7.6.27), respectively, and E was replaced
by E,. Their calculated inner-shell ionization cross sections are in good agree-
ment with a number of experimental data (see Fig. 7.7) and also with the theo-
retical cross sections of Scofield (1978), who solved the Dirac equation, up to
about 0.2 MeV. For still higher E the above method underestimates the cross sec-
tions. To understand the reason for this failure let us consider the electromag-
netic interaction between the projectile and the atomic electrons. This interaction
can be subdivided into two terms (Fano, 1963). In the Coulomb gauge represen-
tation, one term is the unretarded static Coulomb interaction given by €*/ry,. The
Fourier transform of this interaction is given by (7.5.3), and each Fourier com-
ponent having wave vector K transfers a momentum 7K from the incident elec-
tron to the bound electron in the direction of K. Hence, it is known as the
longitudinal interaction, and is of importance at all velocities. Only this part is
included in (7.6.15) and (7.6.17). The other part is the interaction through emis-
sion and absorption of virtual photons. The atomic electron absorbs a virtual
photon of momentum #K emitted by the projectile. Thus through this interaction
a momentum of %K is also transferred from the projectile to the atomic electron.
Since the photon field is perpendicular to K, this is known as the transverse inter-
action, and its ionization cross section is given by (Fano, 1963).

4

2
————SmozR M?[In(1-v*/c?)+v?[c?] (7.6.30)

where M? is equal to the total dipole matrix squared, measured in the units of aj.
It is given by
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W
" R df(W,0)

M= [ =gy (1.6.31)
,{ W aw

The cross section ¢, is of importance only at ultrahigh velocities, where W,,,, —
oo, Further, the longitudinal and transverse interactions are of different parities
(Fano, 1963). Hence, the total ionization cross section in the modified PWBA is

0;=0;+ G, (7.6.32)

where ¢ is given by (7.6.17) with the Coulomb and the relativistic corrections
as discussed above.

Khare and Wadehra (1995, 1996) have calculated o; for the K-shell and
three L-subshells of a number of atoms due to electron as well as positron impacts
over an energy range varying from I, to 1GeV. For the K-shell the expression
for dfiW, Q)/dW as given by (7.6.4) is utilized. Holt (1969) has derived expres-
sions for the continuum matrix elements for the three L-subshells of the hydro-
gen atom. The same are converted for hydrogen-like atoms by replacing K and
k by K/Zs and k/Zs, respectively. The scaled generalized oscillator strengths for
the three L-subshells are given by (Khare et al., 1995)

[df(az, ,BZ)L _ 22 (1+a?) Fla?, )

da?) - 9[1+2(B2 +(Z2)+(/32 _a2)2]5
x[27B% -36B%(1+®) + 6B (19 - 60> —a*) +
(4/5)B*(107 + 980> + 150 Y1 + 0*)+ (11 + 3> 1 + 02 |

(7.6.33)
df(az,ﬂz)] _l[df(az,ﬁz)]
[—_daZ Lz—z i . (7.6.34)
and
[df(az,ﬂz)] _ 21+ a?)
do* 1,

3[1 +2(? + B2)+(B° ~a2)2]5

x[3B81 - B3(32 + 11x?) + 285 (41 + 36a* + Tor*)
+28*(10-31a* - 20* - 3a%)

+1B*(47- 470 - 350" - 50 )1 + ?)

+(@+a?)i+e?) |F?, B) (7.6.35)

orders@himanshubook.com



180 Chapter 7
where
Flo?,B*)= eXp{—garctan[(zoc)/(ﬁ2 +1-o? )]}

[1-exp(~4m/a)] for a?>0 (1.6.36)

and

2 12 2
F(az,B2)=exp[— 2_, B +1-02+2v-0 H
V-2 T\ B +1-a? -24-a?
for a*<0 (7.6.37)

where for L-subshells a = 2day/Zs and B = 2Kay/Zs. The relationship (7.6.34) is
due to the fact that 2°Py, has four electrons, whereas 2°P/,, has only two. It is
also evident from (7.6.33) to (7.6.37) that the scaled CGOS are independent of
Zs. Hence, they are the same functions of a and §* for all atoms. This provides
a scaling relation for the CGOS and we obtain a universal Bethe surface for L-
shell ionization similar to that for K-shell ionization given by (7.6.9). According
to Slater (1930), the value of the screening parameter s occurring in Zg=Z ~ s
for the L-subshell is 4.15.

The CGOS given by the above equations reduces to the optical oscillator
strength in the limit ﬁ2 — 0. Hence, for the three L-subshells

2 2 2
[df("‘;(’)] 2201430 b ) (7.6.38)
de” 13 9(1+a?)
a0 _ifate’0] rom
do? |, 2| da* 1
and
2 11 2
[df(“;o)] J2a) py2 ) (7.6.40)
da” I 3(1+a?)
where
F(a?, 0) = exp[—(8/a)arctan ][ 1 — exp(—47/ o)’
for a®>>0 (7.6.41)
and
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)
F(a2,0)=exp{—4_221 iiw/_zz )] for a*<0 (7.6.42)

7.6.3 The Born—Bethe Ionization Cross Section

Using (7.6.15), we obtain the total ionization cross section ¢; due to
longitudinal interaction:

o=

4malR er R df(W, 0) (Q )dW (71.6.43)

E, 4 W dw

where df(W, 0)/dW is the continuum optical oscillator strength per unit energy
range for the energy loss W and

InQ:
J-0 [ 1 df(W, Q)

C=C-R G w,ofam )~ aw

d(n Q):| (7.6.44)

Equation (7.6.43) is also expressed as

4
OB = ”g"R M In(c,E,) (1.6.45)

r

where M? is given by (7.6.31) and

Winax
M*In(cE)= | — R dfW,0)
W aw

1

——=In(Q/Q.)aw (7.6.46)

It is rather difficult to determine the value of Q. Hence c;, known as the
Bethe collision parameter, is usually determined with the help of the experimental
o; available at high E. The term o}® is the Bethe-Born cross section and it
includes only longitudinal interaction. Its value is controlled by the dipole inter-
action. Another Bethe collision parameter b, for the ionization of the (nl)-
subshell is defined by

L, " 1 df(W,0)

bnl =
Z, W daw

dw (7.6.47a)

)

where Z, is the number of electrons in the (nl) subshell of the atom. A com-
parison of (7.6.46) with (7.6.31) gives
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by = Ly (7.6.47b)
Z.R

and

AnRat Z,
ol = an I’bnzln(can,) (1.6.48)

nl

for the (nl)-subshell. A plot of y = [0,l,.E,/(4nR*a3Z,)] vs. InE, gives a straight
line. This plot is known as the Fano plot. The slope of the line yields b, and the
intersection of the line with the y-axis yields b,lInc,. Thus using the experimen-
tal data for o, available at large E, the Bethe parameters can be determined.
Using (6.10.19) and (7.6.31) in (7.6.45), we obtain the Born-Bethe ion-
ization cross section 0° in terms of the photoionization cross section G,,(W):

Wmax
BB - %M(W)dw (7.6.49)

Int

where

dn(W) 1 ch1 1
= (e, E, 7.6.50
W 2 a E w k) (7.6.50)

is the number of photons of energy W per unit energy. Thus the interaction of an
incident electron of energy E with the atomic electron through the 1/ry, term is
equivalent to the production of photons whose energy W varies continuously,
having E as its maximum value. All the photons having W > I, ionize the atom.
These virtual photons have their polarization vectors parallel to K. Hence,
(7.6.49) gives the ionization cross section due to longitudinal interaction.
Khare and his associates (1995, 1996) have calculated total ionization
cross sections due to electron and positron impacts for the K-shell and three L-
subshells (L1, L2, and L3) for a number of atoms. They have employed the plane
wave Born approximation with corrections for exchange and Coulomb and
relativistic effects. Along with the longitudinal interaction, the contribution of the
transverse interaction to the ionization cross section given by (7.6.30) is also
included. The energy of the projectile has been varied from I, to 1GeV. Their
results for the K-shell of silver are shown in Fig. 7.7. It is evident from the figure
that at low impact energies o(= 0, + 0,) is practically equal to o, However, at
higher values of E, ¢ increases with E, whereas o tends to be constant. A
significant difference between ¢ and o; demonstrates the importance of the
transverse interaction at ultrahigh energies. We also noted very good agreement
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FIGURE 7.7 Variation of the K-shell ionization cross sections of the silver atom with electron
impact energy E. Curves A and B represent 0, and (0; + 7)), respectively, calculated by Khare and
Wadehra (1995). Their Born-Bethe cross sections 6®® are shown by curve C. Curve D represents the
theoretical cross sections of Scofield (1978) and the solid circles with error bars show the
experimental data compiled by Long et al. (1990). Reproduced from “K-shell ionization of atoms by
electron impact,” S. P. Khare and J. M. Wadehra, Phys. Lett. A 198: 212, 1995, with permission from
Elsevier Science.

between oand 6°® [obtained from (7.6.53)] for E > 1 MeV. The figure also shows
a highly satisfactory agreement between the cross sections of Khare and associ-
ates and those obtained by Scofield (1978) at high E. Finally, a comparison of &
with the experimental cross sections (compiled by Long et al., 1990) shows that
near the threshold of ionization as well as at ultrarelativistic energies the agree-
ment between the two sets of values is quite good. The theory nicely reproduces
the positions of the maximum and minimum in the cross-section curves observed
by the experimentalists. For intermediate energies there are considerable differ-
ences among the cross sections obtained by different experimental investigators.
Khare and Wadehra (1995, 1996) have obtained similar results for a number of
other atoms. Figure 7.8 compares the theoretical cross sections for the L1-, L2-,
and L3-subshells of gold for electron impact with a number of experimental data.

The agreement between the theoretical cross sections of Khare and
Wadehra (1996) and the experimental data is good. Similar results for K-shell
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FIGURE 7.8 Variation of L1-, L2-, and L3- subshell ionization cross sections of the gold atom with
energy E of electrons. Theory: —— Khare and Wadehra (1996); -—--- Scofield (1978).
Experimental: [J, Davis (1972); &, Palinkas and Schlenk (1980); X, Shima et al. (1981); O Schneider
et al. (1993). Reproduced from “K-, L-, and M-shell ionization of atoms by electron and positron
impact,” S. P. Khare and J. M. Wadehra, Can. J. Phys. 74: 376, 1996, with permission from NRC
Research Press, Canada.

and L-subshells ionization for a number of other atoms are obtained by Khare
and Wadehra. Khare and his associates (1993, 1995) have also determined the
values of the collision parameters for the K-shell and three L-subshells. Their
values are shown in Tables 7.1 and 7.2 along with the values of p,, = (I/I5). It is
found that whereas b,; decreases with Z c,l,; increases. Khare and Wadehra (1995,
1996) have shown that b, and In(c,/,) can be fitted to the following equations:
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Table 7.1 Value of px and the Bethe Parameters by and cxly
for K-Shell Ionization of Atoms in the Plane Wave Born
Approximation (Khare et al., 1993)

Atom Dk by cxlx
C 0.644 0.600 6.57
N 0.659 0.577 7.21
(6] 0.660 0.576 7.30
Ne 0.678 0.551 8.13
Al 0.711 0.507 10.1
Ar 0.751 0.463 13.1
Ni 0.798 0418 18.1
Ag 0.860 0.368 28.1
Au 0.958 0.306 59.3
H 1.00 0.283 83.0

Table 7.2 Values of p;; and the Bethe Parameters b;; and c;;l;; for the L-Subshells (i = 1,
2, 3) of Atoms in the Plane Wave Born Approximation (Khare et al., 1995)

Atom Pr3 bis cnl §4%) 125 cnln Pui by el
Cu 0447  0.683 7.76 0457 0.654 8.67 0523 0426 16.1
Ag 0.537  0.480 214 0.565 0.433 30.5 0.606  0.365 233
Sn 0.590  0.397 41.0 0.642 0335 83.3 0.680 0.323 33.0
Au 0.626 0.353 62.7 0.721  0.265 246 0.753  0.288 46.4
Bi 0.635 0343 69.9 0.743  0.249 340 0775 0.278 51.5
H 1.0 0.133 58500 1.0 0.133 58500 1.0 0206 233
by = apy™ (7.6.51)
and
ln(C,,lIm) =0y +a1p,,, +a2p,f, (7652)

The values of o, m, o4, ¢, and o, for different subshells are shown in Table 7.3.
With the parameters given by (7.6.51) and (7.6.52), the Born—Bethe cross section,
including the transverse component, is

Table 7.3 Values of a, m, and ; for Various Subshells

Subshell a m o [ o

K 0.285 1.70 -9.58 26.4 -13.50
L1 0.220 1.00 1.26 1.87 2.04
L2 0.158 1.80 -1.24 4.17 7.19
L3 0.153 1.54 -1.42 5.08 6.05
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Amal R?
o =-ﬁ—ap"" nl[al + 0l + 03 i +ln(Er/1nI)
rinl
—In(1=v*/c?)-v*/c?] (7.6.53)

As already pointed out, the ionization cross section due to hard collisions
is quite often obtained by considering the collision between two free electrons,
one moving with energy E and the other at rest. At high E the differential cross
section for the transfer of energy € from the moving electron to the static elec-
tron is given by

do; 4malR* 1
i ”“g = (7.6.54)

which is the Rutherford scattering formula.
Considering the two electrons as indistinguishable, the exchange was
included by Mott and the above equation changes to

2 p2
do; _4mpR7|1 1 1 (7.6.55)
de E |& eE-¢) (E-¢)

To apply (7.6.54) and (7.6.55) to the electron impact ionization of atoms
one may regard € as the energy of the ejected electron. However, the minimum
value of € is zero. Thus the above equations, which diverge at € = 0, cannot be
utilized to obtain o;. Hence, the Mott formula for an N-electron atom is modified
to (see Kim and Rudd, 1994)

2p2
do, 4mpRN| 1 1 1 (7.6.56)
dw E W? W(E-¢) (E—g)

The integration of Eq. (7.6.56) over W from I to (E + I)/2 with ¢ = W — I gives

I E (E+I)

(7.6.57)

i —_

ot 47m3R2N[1 1 ln(E/I)]
>

which is the Mott ionization cross section for hard collisions.

7.7 The Second-Order Scattering Term

To obtain the second, Born scattering term f5, we need the first-order

correction ¥, to the initial wave function of the system. This is given by
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i, X) = [Gi (r, X; ', X) UG, X (r (X )dr'dX” (1.1.1)

Using (7.2.8) for Gg, we get

s Piy (r)vp X)@iy (r)vp (X"
2 kX +ie
xU(r', X )(pk,-(r’)vi(X "Ydr'dX dk, (7112

v, (r, X)=lim

&0 p

It is evident from the above equation that the intermediate atomic states
v, are needed to include the distortion of the initial target wave function v
Similarly, to represent a distorted plane wave we require the plane waves @, (r)
of the intermediate states. Substitution of (7.2.8) in (7.2.15) with n = 1 yields

k;, iUV, pXky, plUMK:, i
752~ o7%lim J‘(,Jl ey, pXkg, pIU:, D) &, (773)

&0 p k2 —k} +ie
As shown in the Fig. 7.9, the second Born term is a double scattering term. It

should be noted that the intermediate states |k,, p) do not conserve energy, i.e.,
&, + Rk2aj # € + Rklaj, although

j>
ij>

| 4‘ A kq>

Iki>
>

FIGURE 7.9 Feynman diagram for the second Born amplitude for the scattering of electrons
by atoms.
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&, + Rkla} = € + Rklay = € + Rkaj (7.7.4)

For a given value of p the condition k2 = k2 represents a pole in (7.7.3). This is
shifted to k3 + ie with the help of an infinitesimal quantity &.

The expression for the second Born term f, (we simplify the notation of

f21t0 fy,) involves a summation over all the bound target states, integration over

the continuum target states, and integration over all the projectile states. Hence,
an exact evaluation of fjg, either analytically or numerically, is an involved
problem (see Ermolaev and Walters, 1979 and Walters, 1985). Like f’Bz in
particle-potential scattering, f g, in the electron—atom scattering is also a complex
quantity. At high energies and small K, Re fy, and Im fj, vary as k' and
k;'Ink;, respectively.

A number of attempts have been made to evaluate fz approximately.
Massey and Mohr (1934) were the first to do so. They took g, = ¢; and thereby
k% = k% Thus the denominator of (7.7.3) becomes independent of p. Using the
closure relation

gﬂﬁ@ﬂ?=&X—X3 (17.5)

and integrating over X" with the help of the delta function we obtain from (7.7.3)
in the Massey—Mohr approximation:

fazM =<jlfB2P(kj’ki’X)li> (7.7.6)

where f mp denotes the second-order scattering term for the scattering of the pro-
jectile by an atom whose electrons are frozen at X. Afterward J_’sz is unfolded
between the atomic states |i) and |j) to obtain fpyu. It is clear from (7.7.6) that
the intermediate atomic states do not appear in the Massey—Mohr approximation.
Hence, this approximation completely neglects the effects due to distortion of the
target wave function. Since it assumes excitation energies to be zero (¢, = ) the
imaginary part of f gy, diverges in the forward direction for S to S (/;= 0 to =
0) excitations. This divergence is due to the absence of any P (/ = 1) state in
the evaluation of the scattering term. Furthermore, Re f s (0) at large E goes
as k;? instead of k;.

To a great extent the above discrepancies in the Massey—Mohr approxi-
mation were removed by Holt and Moiseiwitsch (1968), who proposed a sim-
plified second Born approximation (SSBA), in which the first few terms of (7.7.3)
are evaluated exactly and for the rest k3 is replaced by k7 — A/(Raj), where A is
taken to be the mean excitation energy. The closure is now applied to such terms.
Thus in the SSBA
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q

_ I s k .
fst =272 ZJ. (k]’ ]lUqu, pxp, q,|U|k,, l>dk
=1

- kX -k +ie
kUK, Yk, |UIK:
_2”2<j“ 2(_]|2 !—q)( ql 2| ) qul>
ki —k; A(Rad) +ig
! L g
ey I {k;, jlUk,, pXp, k Ulk;, i)

k? —k2 — Af(Ra) +ie

dk, (1.1.7)

p=1

The SSBA has been one of the most popular methods of evaluating the second
Born term. The choice of A is not unique. Ermolaev and Walters (1979) have dis-
cussed the various options.

In many investigations A is so chosen that it reproduces the exact value of
the dipole polarizability ¢ of the target in the closure approximation. We know
that

2
o
0, =28 K pleZli)|
roEp—E (7.7.8)

where Z is the projection of X on the z-axis. If €, — & is replaced by A then @,
the dipole polarizability in the closure approximation, is given by

_ Aile*z?iy’
g = 2727 (7.7.9)
A
The integral in the numerator can be easily evaluated. Hence, one takes
2 » 2Z2 B
2= 22 (7.7.10)
oy

where @ is the experimental value of the dipole polarizability. Jhanwar and
Khare (1975) derived the value of A by comparing the total inelastic collision
cross section G;,(E) obtained in the first Born approximation with that given by
the sum rule of Inokuti et al. (1967). Such a procedure gives

A= Rexp[L(-1)/S(-1)] (7.7.11)
where
S(-1) = sli (1.7.12)
p gqi
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and

L=1)= sfiln(fqi) (7.7.13)
q Eqi R

Using (6.9.1) for f7; in (7.7.12), we get

s(=1) =R—l;(i]x2|i) (7.7.14)

ap

Thus S(-1) is the ground state property of the target and L(—1) may be computed
directly from the optical oscillator strength distribution. Hence A as obtained
from (7.7.11) is not an adjustable parameter.

The DCS, which includes fy, and f4, is given by

10,9)=ful +2fnRe fra +(Re fr) +(Im fr)'  (7.7.15)
Khare and Shobha (1970, 1971) have suggested a plane wave approxima-

tion to evaluate fg,. In this approximation kZin (7.7.3) is replaced by k7, and the
denominator of (7.7.3) thus becomes independent of g. Using the relation

e, Y e, =1 (7.7.16)
we get from (7.7.3)
Fow =2k |U k) (1.7.17)
where the second-order reduced interaction potential energy is

_ o UlUIpXplUL)

U,
T K-k

(7.7.18)

The dash over the summation indicates that p # i and j. It is evident from the
above equation that fpy, is the first Born scattering amplitude due to the second-
order polarization potential:

Ve == U

2m

This approximation completely neglects the effects due to the distortion of the
wave function of the projectile, but does include the distortion of the target wave
function up to first order. The incident electron at r produces an electric field and
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induces electric multipoles in the atom; i.e., the atom is polarized. This polarized
atom produces a polarization potential at r. Thus V4 (r) is the second-order polar-
ization potential Vy, (r). Since in (7.7.17) the projectile is represented by a plane
wave, this approximation is referred to as the plane wave approximation. In the
derivation of Uy (r) it is assumed that the projectile is stationary at r. Hence, Vj,
(r) is the adiabatic polarization potential.

To include the nonadiabatic effects we approximate k by —V?2 (Khare and
Wadehra, 1989) in the denominator of (7.7.3) and take

1 1
K24+V2 K2 kP + V2 k7
1 V24 k?
e L (7.7.19)
p N (k‘, '—k,' )
Using the above equation in (7.7.3), we get
Fow = =22k |Usp + U Ik ) (1.7.20)

where the nonadiabatic term U, in its Hermitian form, is given by (Jhanwar et
al., 1975)

(k2 —k2)’

Unp =S (1.7.21)

Let us evaluate the asymptotic form of Vj, (r) for elastic scattering. For the
hydrogen atom the interaction energy is

e &
Vir)=——+—— 7.71.22
Hence, for large values of r the dipole part of V(r) is given by
e2
V(r) ~ 5Z (7.7.23)
r00
Putting (7.7.23) into (7.7.18), we obtain
2
o Z . 2
Voo (r) ~ _S'Me_ (177.24)

roee 8_/_81 r4
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Now using (7.7.8) yields

‘o R
Va(r) ~ = ezr‘*d =- O:;’a" (7.7.25)

For the interaction potential V,, given by the above equation, the zeroth-
order phase shift at small values of k; is given by (O’Malley et al., 1961;
Martyneko et al., 1963)

4
tann = ~a.k — b k2 - 224% 51 ag) + OK?) (1.7.26)
300 300

where a, is the scattering length. This equation shows that at low incident
energies tan 1, goes to zero at

3a,a,
o,

ki = (7.1.27)

Hence, at the above k; the cross section becomes a minimum for negative a,, pro-
vided that the contribution of the higher partial waves is small. For the above
potential we also have

2
tan1), = KT | pk? + 0 (7.7.28)
1500

Hence, tan 1, vanishes at
k; = —may [15a04, (7.7.29)

Thus the experimental value of ; at the next minimum, corresponding to [ = 1,
allows an evaluation of A;.
In the FBA

oo

tansi” ="Rk; [ Vi ALV dr (7.730)

2
20

As the evaluation of 17! for large values of I by (7.7.30) becomes quite time-
consuming, it may be replaced by the semiclassical phase shifts given by (LaBhan
and Callaway, 1969)

Trv;
1 jr dp(r)dr

M= 4k alR

e (7.7.31)
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In the above equation ry is equal to (/ + 0.5)/k;. For small values of k; and Vg, =
—0,¢*/27", the phase shift in the FBA is given by

o k?
t Bl — dnNi
AN = A2+ D2l Dag

for >0 (7.1.32)

The inclusion of the quadrupole term in the expansion of V(r) in the inverse
power of r gives

(04
Vap (r) ~ - Rao(%'+—r61) (1.7.33)

where @, is the quadrupole polarizability of the atom. The above equations also
hold true for multielectron atoms. A similar treatment for the nonadiabatic polar-
ization potential gives

6
Vaap (1) - % Ra, (7.7.34)

where f,, is the dipole nonadiabatic coefficient of the target (Klienmann et al.,
1968), is given by

. @z, )
e'aqsS——m——
/ (& "Sj)

Bi= (7.7.35)

This coefficient is a measure of the inability of the electric dipole induced in the
atom to follow the motion of the incident electron. Hence, up to ° the reduced
interaction polarization energy U,,, which includes both adiabatic and nonadia-
batic components, is given by

Upo(r) ~ - i(gi + ﬂiﬂl) (1.1.36)

roe g\ rt ré

The above potential does not depend explicitly on the energy of the inci-
dent electron and diverges at the origin. Hence, Jhanwar and Khare (1976) pro-
posed a spherically symmetric and energy-dependent Buckingham-type dynamic
polarization potential. Their potential is given by

2 4
o,r o,r
d + q ]

(r? +d2)3 (r* +d2)5

Vip(r) = "Rao|: (7.7.37)
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where d is energy-dependent cut-off parameter, which increases with the incident
energy. Hence, for large energies Uy, (r) becomes negligible. This is correct phys-
ically because a high-velocity incident electron does not have sufficient time to
polarize the atom. Further, for small values of r, the dipole and the quadrupole
part of (7.7.37) vary as r* and r*, respectively, and tend to zero at the origin. To
obtain d we follow Jhanwar and Khare (1975). Using (7.7.37) in (7.7.17) and
evaluating the integral, we obtain the second-order scattering term in the plane
wave approximation:

- _n [o,3-Kd) Sa,
(k)= - {

2 3
e Iy [1+ Kd - 2(Kd)" + (Kd) ]} exp(—Kd)
(7.7.38)

At large E the cut-off parameter d is large. Hence, in the forward direction

z 3na,
v 16da,

The above value is equated to that obtained by Byron and Joachain (1974a,b)
for the polarized part of the optical Born scattering amplitude in the eikonal
approximation. Assuming 0 to be equal to o, the above comparison gives

. 2
d= 0.755i‘3A"—R (7.7.39)

It should be noted that the term |Im f3,|? in (7.7.15) is of fourth order in the
interaction potential. The term f3 Re f 3 1s of the same order but is not included
in (7.7.15). Hence, to be consistent, the term |Im f3,|? is neglected in the plane
wave approximation. Thus the differential cross section, including exchange, for
the elastic scattering of an electron by a hydrogen atom is given by

Liw (0, 0) =2 (o — &) fmn —8+ 2fow)
+4(fo + ) for + 8+ 2 fow) (7.7.40)

For a helium atom we have

Iow (6, 0) = (fa1 — 8)(fm —g+2fpw) (7.7.41)

Jhanwar and Khare (1976) employed the above equation to calculate the
DCS for e-He elastic scattering for E varying from 100 to 1000eV. In Fig. 7.10
the DCS at 200eV obtained by them are shown along with the experimental data
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FIGURE 7.10 Variation of the elastic differential cross sections of the helium atom due to 200-eV
electrons in the plane wave approximation (Jhanwar and Khare, 1976). Experimental data: @,
Bromberg (1969, 1974) and X, Crooks and Rudd (1972). The experimental cross sections of
Sethuraman et al. (1974) and Jansen et al. (1976) (not shown) are quite close to those of
Bromberg et al.

of Jansen et al. (1976), Bromberg (1969, 1974), and Sethuraman et al. (1974). It
is found that the FBA—Ochkur approximation underestimates the cross sections
at small scattering angles. The inclusion of the polarization effects by fpy greatly
improves the agreement between theory and experiment. Jhanwar and Khare have
noted that for E > 200eV their cross sections are within 10% of the experimental
values. This indicates the suitability of the dynamic polarization potential given
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by (7.7.37). This is a long-range potential and is quite important for small-angle
scattering. However, fpw is purely real, so it cannot be employed to obtain the
total collision cross sections through the optical theorem.

The plane wave approximation at intermediate and high E has been suc-
cessful for the hydrogen atom (Jhanwar et al., 1975) as well as the hydrogen mol-
ecule (Gupta and Khare, 1978). However, it overestimates the cross sections for
heavier atoms such as neon and argon (Jhanwar et al., 1978; Khare and Kumar,
1978). Hence, it may be concluded that at intermediate E the distortion of the
incident plane wave by the atomic field of the light atoms can be ignored but that
it becomes quite important for the heavier atoms.

7.8 Higher-Order Scattering Terms

A consideration of higher-order Born terms shows that asymptotically they
fall faster than fz, and f m. For example, for small values of K, Re f s falls as k72
and Im £, as k7 for elastic scattering. Hence, for intermediate and high impact
energies (E = 50eV), the first two terms of the Born series are expected to be
sufficient to yield good collision cross sections. However, quite often even for
E 2 50¢eV it is noted that the cross sections obtained with fj,, f g, and the first-
order exchange amplitude g do not agree with experimental data. Furthermore,
sometimes the contribution of the second term to the cross section is quite signif-
icant. Both of these observations indicate the need for including the higher terms
of the Born series. The evaluation of higher Born terms is extremely difficuit.
Hence, a number of attempts have been made to evaluate them in an approximate
manner and obtain scattering amplitudes correct for all orders of interaction. One
such approximation is the Glauber approximation, which we shall discuss now.

7.8.1 The Glauber Approximation

The Glauber approximation (Glauber, 1959) is an extension of the eikonal
approximation of the potential scattering to many-body scattering. In many ways
it is similar to the Massey—Mohr approximation. Both these approximations take
kf, = k? in the expression of Green’s function and use closure, followed by the
integration over X’. Thus, like the Massey—Mohr approximation, the Glauber
approximation (GA) also completely neglects the distortion of the target wave
function. In this approximation the scattering amplitude is

faa = =27 @y, (r)v; XU, Xy, (r, X)vi(r))

where y,(r, X) is the wave function of the projectile in the eikonal approxima-
tion due to a target frozen at X. Thus in the Glauber approximation
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Joa =(v; (Xl fe(Xvi (X)) (7.8.1)

where f(X) is the scattering amplitude for the projectile in the eikonal approxi-
mation due to a frozen target. It is given by (3.8.16) but now the eikonal phase
also depends upon X. The 51m11ar1ty between (7.7.6) and (7.8.1) is quite evident.
However, whereas fpy and f gy are of second order, the eikonal scattering ampli-
tude fr(X) and f; include interaction of all orders. The Glauber approximation
suffers from the same discrepancies noted earlier for the Massey-Mohr approx-
imation. It also completely neglects the distortion of the target wave function and,
hence, f; for the elastic scattering also diverges in the forward direction.

Like the Born and the eikonal series we also have the Glauber series. The
n™ Gluaber term is given by

fon = (Vj(X)IJ;En(X)M(X)) (7.8.2)

The n™ eikonal scattering term f,(X) for a fixed value of X is given by (3.8.24),
but now U and the eikonal phase ¢, given by (3.8.15), also depend upon X. We
have already seen that fy, is alternatively purely real and i imaginary; hence, the
fa follow the same trend. A detailed comparison between f e and fg, was made
by Byron and Joachain (1973a, b, 1977a)

7.8.2 The Eikonal Born Series

Since the elastic scattering amplitude f; diverges in the forward direction,
the Glauber approximation cannot be employed to obtain the integrated elastic
cross section oy and the total collision cross section or. However, even at inter-
mediate energies, scattering terms higher than second order are required to
explain the experimental data. At the same time evaluation of fg;, fp, etc.,
very difficult. It is relatively easier to evaluate fgs, f g etc. Hence, quite often
the higher-order terms are included through fg,.

A careful analysis of sz (8 =0) [see (7.8.15)] shows that the divergence
of fz, is due to its second term fg,, which is purely imaginary but agrees very
nicely with Im £, for intermediate and large values of K even for low values of
E. A similar agreement is expected between fg; and Re fg,. Both of them are
finite at all K and fall as k;2 for large E. Hence, Byron and Joachain (1973a,b)
proposed the eikonal Born series (EBS) method, in which the direct scattering
amplitude is given by

fens = far + fo2 + fos (7.8.3)

Not only is fys free from the divergence at K = 0 but it also includes distortion
of the target wave function up to first order through f5,. Asymptotically, the
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above scattering amplitude is correct up to k% The exchange scattering ampli-
tude g in the Ochkur approximation also falls as k;2. Hence, the DCS in the EBS
method for electron-hydrogen-atom scattering is given by

Ieps(8) = %leBS - g|2 +%|fEBS +gl2 (7.8.4)

7.8.3  The Modified Glauber Approximation

In the EBS method the scattering amplitude is truncated at the order of
k72, which seems quite arbitrary. It is desirable to include higher-order terms.
Such a scattering amplitude is given by the modified Glauber approximation
(MGA), proposed by Byron and Joachain (1975) (see also Gien, 1976). f; — sz
is free from the divergence and includes terms of all orders except second order.
To include the term of this order as well fg, is added to f; — fg. Thus in the
MGA the direct scattering amplitude is given by

fve = fo —fcz +f32 (7.8.5)

Like feps the amplitude fyg is also free of divergence and includes the effects due
to polarization of the target through the real part of fp,. A comparison of (7.8.3)
and (7.8.5) shows that

v = fess +2fcn (7.8.6)
n=4

Hence, the MGA should be regarded as a better approximation in comparison
with the EBS method.

Since f, is real for odd values of n and imaginary for even values of n,
we may write

Sfvc =Re fue +iImeG

=Re jzsz +if-cn +i(Im]752 + i fan) (7.8.7)

n’=4

where the integers n and n’ increase by two units, ie,n=1,3,5,...and n’ =
4,6,8, ..., etc. If we consider positron scattering, all the odd terms of the Glauber
and Born series change their sign but the even terms do not. Hence,

Re fiic =—Re fuc +2Re fz, (7.8.8)

and
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Im fig =Im fyg (7.8.9)

where the fyig are the scattering amplitudes for the positron and the electron
impacts, respectively. In the absence of exchange, the differential cross sections
Ivc (6, @) for the positron and the electron impact are related by

It = I —4Re fiag Re fi +4(Re f)’ (7.8.10)

It has been noted (Gien, 1977a,b) that for the elastic scattering of electrons by a
hydrogen atom, Re fyg and Re fg, are rather large in the intermediate energy
range. Hence, I is much smaller than Iys. The total collision cross section
or depends only on Im fMG (K = 0), so according to (7.8.9), the two total cross
sections o7~ are identical.

The inclusion of the exchange scattering amplitude g, obtained through the
Ochkur approximation in (7.8.7), changes only the real part of the scattering
amplitude for the electron impact. Hence, Eqgs. (7.8.8) and (7.8.10) are modified
but (7.8.9) does not change and we still have 67 = 07. Thus as far as the total
collision cross sections are concerned the modified Glauber approximation does
not differentiate between electron and positron impacts.

Let us now consider elastic scattering of the electrons and positrons in the
Glauber approximation by a hydrogenic atom, represented by

\/7
vi(r)= = exp(—Ar) (7.8.11)

where A = 2Z/a,. For small values of the momentum transfer K we have (Jhanwar
et al., 1982a)

4ik [, (K*Y 5,  in
fG(K)K:o__/V—[n ln( I )+2n +1_m+J(n) (7.8.12)

where

Jm) =i[(_m)”] 1 i[(_m)"’] l—lm (7.8.13)

m! l+m~-in Z0 m

and 1 = —qlkay; g = £1 correspond to positron and electron scattering, respec-
tively; (a),, is the Pochchammer symbol and is equal to

(@), =a(l+a)2+a)---(m~1+a)=T'(a+m)/I(a) (7.8.14)

with (@), = 1. An expansion of f;(K) in powers of 7 yields
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Ak _dik o[, (K*) 1 3
fG(K)K:0 Rl n [ln( e )+2}+0(n ) (7.8.15)

As expected, the first term of the above equation is purely real and represents the
first Born (Glauber) term. The second term, which is purely imaginary, is f- o It
diverges logarithmically in the forward direction. The rest of the terms contain-
ing higher powers of 71 are free from divergence. Hence, the divergence of f(0)
is due to its second term, so in the forward direction,

£(0) = fonl0) = —%[%wnz +J(n)] (7.8.16)

A number of studies have been carried out using the modified Glauber approxi-
mation to investigate collisions of charged particles with various atoms and mol-
ecules (see Khare and Vijaishri, 1988).

7.8.4 The Unitarized Eikonal Born Series
To obtain (3.8.6) from (3.8.5) we have taken

! I : (7.8.17)
p*+2p-k,—ie 2p-k,—ie
If we include the next term of the expansion we get
2
! ! P (7.8.18)

pr+2p -k, —ie =2p'ki—i€_(2p-k,~—i€)2

The second term of the above equation gives rise to the Wallace phase correc-
tion to the eikonal phase { (b, k;, X) represented by (3.8.15) (Wallace, 1973). This
correction changes (7.8.1) to

Sw(k;, k) = (il few (X)) (7.8.19)

where

few(X) = 2k—7'nJ. db exp(iK - b){exp[i(k,-ao)_lé‘ b, ki, X)
+i(kiao)  Cw (b, ki, X)1-1} (7.8.20)

Like f, the Wallace scattering amplitude, fy can also be expanded in a series.
However, difficulties arise in the evaluation of the Wallace terms fy, (with
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n 2 4) of the electron—atom scattering amplitude. This led Byron et al. (1982) to
define the unitarized eikonal Born series in the following manner:

JSuess =]~CW"];W2 +J~c32 (7.8.21)

where f w is again obtained from (7.8.19), except that in the evaluation of fzy (X)
the phase term expli(kiao) >Cw(b, k;, X)] in (7.8.20) is replaced by 1 + i(kap)™
Cwb, k;, X). Byron et al. (1985) have utilized the UEBS method to obtain the
cross sections for the elastic and inelastic scattering of electrons and positrons
by atomic hydrogen at intermediate and high energies. Their results for the elastic
scattering are shown in Table 7.5.

7.8.5 The Schwinger Variational Principle and the Fredholm
Integral Equation

Equation (3.7.8) for the scattering amplitude [f,,] is valid for the scattering of
charged particles by atoms and molecules provided that we use (7.2.15), instead
of (3.4.11) for fB,,. In this section we give an alternative derivation of (3.7.8).
For electron—atom scattering in which the atom makes a transition from v(X) to
v(X), the Fredholm integral equation (3.4.17) becomes

1 jf vk, k) f™ (K, ki)

fﬁ(kj’ki)=f8ﬁ(kj’ki)+ “K2—ie

dk (7.8.22)

where f™(k, k;) is the exact scattering amplitude for the transition from the initial
state |4, k;) to the intermediate state |m, k). Iterating the above equation p times
we obtain

SJ‘f (k,,k)f""(k k)

fik;, k)= f (k,,k) T

(7.8.23)

where f is the p™ Born term and f4, is the scattering amplitude in the p" Born
approximation. We note that (7.8.23) is exact. To obtain an approximate solution
we take

ik, k) =2, . faik, k;) (7.8.24)

for all values of m (including m = i and j), where n is an integer and A,, is a
complex multiplying factor. Putting (7.8.24) into (7.8.23), we obtain

fﬁ(kjaki)=fl§’;+lp n(‘fBj:pH) +f(p+2)+ f (p+n))
= szl;"')“p n(f B(p+n) ) (7.8.25)
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Taking m = j and k = k; in (7.8.24), we obtain
fjl(k]7k1)=)'p,nfl§’:t(kj7 kl) (7.8.26)

Both the above equations are approximate solutions of the exact equation
(7.8.23). Equating them we get

fiy

T i ji _ gii
Bn + pr B(p+n)

(7.8.27)

p.n

Use of (7.8.27) in either (7.8.25) or (7.8.26) yields (3.7.8). As expected, for p =
n=1 we get [fi], given by (3.7.9). For n =1 and p = 2 we have

- fBlfB_Z
[fi] T (1.8.28)

_ Khare and Lata (1984, 1985) replaced Re f 53 With f’G3 and neglected Im
f 3, which falls faster than ;% Thus for the direct scattering amplitude they took

fi= Soife
=

o= Jos (7.8.29)
To ca}culate f1 we require fg, ]_‘ 52, and f c3- The expression for fp, is well known,
and fp is calculated in the SSBA of Holt and Moiseiwitsch (1968). f, and
f 3 for hydrogenic atoms are as follows (Yates, 1974):

—ia? 2 2 2 _ w2
;i 4(K +2/12) ( 21(12) 2 Kz) 7830
ki (K2+)1,2) K*+ A (12+K2)
and
3 4 2\ )
: __ 4 13(}6 )[(Hx)] n
TR ¥ ox = -24 8
fG3 2k,'3)~2 x3 ax 1+x2 4/ In X + 3 (X) (7831)
where

2 = (. 2\
A(x)=2(lnx)2+%+2-(—x7)— forx<1
n

n=1

n2

o< 2\"
I e for x>1 (7.832)
n=1
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and x = K/A. As expected, (7.8.30) tends to the second term of (7.8.15) for small
values of K.

Khare and Lata (1984, 1985) employed the Ochkur approximation to obtain
g. They calculated the real part of the forward elastic scattering amplitudes, total
collision cross sections (with the help of the optical theorem), and differential
cross sections for the elastic scattering of electrons and positrons by hydrogen
and helium atoms and hydrogen molecules. For e-H collisions the real and
imaginary parts of the forward scattering amplitude are given by (Gerjoy and
Krall, 1960)

Re f(E, 0) =Re[f,(E, 0)- 1 g(E, 0)] (7.8.33)
and

Im f(E, 0) =Im[ f,(E, 0) - 1 g(E, 0)] (7.8.34)
On the other hand, for helium,

Re f(E,0) =Relf,(E, 0)- g(E, 0)] (7.8.35)
and

Im f(E, 0) = Im[f,(E, 0) - g(E, 0)] (7.8.36)

Since in the Ochkur approximation the exchange scattering amplitude g is real,
we have

Im f(E,0) =Im f,(E, 0) (7.8.37)

Das and his associates (Das and Biswas, 1980, 1981; Das and Saha, 1981)
took n=p =1 in (7.8.27) and thus obtained

fn
Ay = - 7.8.38
! fo— [ ( )

They then rationalized the above equation and integrated the numerator and
denominator over all the scattering angles to obtain

me(fm —Resz)d-Q

Rel; =
o “(fm—Ref52)2+(lmf32)2]d9

(7.8.39)
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Table 7.4(a) The Differential Cross Section 1(8) (in 10~'m%Sr) for the Elastic Collision
of 100-eV Electrons with Hydrogen Atom*

6 (deg) Theory Experiment
UEBS Svp MGA EBS Vv W
0 23+1° 232+1 —_ 232+1 — —
10 6.7 6.38 6.38 6.74 — —
20 24 2.35 242 2.48 3.27 3.08
30 1.0 1.08 1.11 L1 1.47 1.42
40 48 -1 534 -1 546 -1 542 -1 7.19-1 8.06 -1
60 1.5-1 1.60 - 1 1.63-1 1.69 -1 207-1 202-1
80 64 -2 6.30 -2 6.44 -2 7.19-2 893 -1 8.26-2
100 34-2 339-2 322-2 397 -2 453 -2 434 -2
120 22-2 190 -2 199 -2 2.64-2 299 -2 257-2
140 1.7-2 1.35-2 1.40-2 2.02-2 — 1.82-2
160 14-2 1.11-2 1.16 -2 1.74 -2 — —
180 13-2 1.04-2 1.09 -2 1.66 -2 — —

2SVP, MGA, and EBS, Lata (1984). In the SVP method n = 1 and p = 2 were taken; UEBS, Byron et al. (1982,
1985); W, Williams (1975); V, van Wingerden et al. (1977).
bA(*B) = A x 10*2,

and

J‘fm Im fnzdg

Im 2,11 = PR - 2 (7840)
J[(fm -Re fg) +(Im f3) ]dQ
Thus in the Das method, we get from (7.8.25)
fd = fBl +(Re A«n +l.ImA«1[)(Re fyz +l.Ime2) (7841)

where ReA;; and ImA;; are given by (7.8.39) and (7.8.40), respectively. Since
fa for €™ and e* scattering are of opposite signs, ReA,;, ImA,;;, and thus f; are
different for the electron and positron collisions.

Tables 7.4 to 7.9 show theoretical differential cross sections /(8) and total
collision cross sections o7 obtained by Khare and associates, Joachain and asso-
ciates, and Dewangan and Walters in the intermediate energy range for the
collision of electrons and positrons with hydrogen and helium atoms. These
investigators have employed different theoretical methods. Experimental data are
also given for comparison. According to the tables /(6) and o7 in the EBS method
are higher than those obtained in the MGA, the SVP, and the UEBS methods.
This shows that the effect of the higher-order terms (n > 3) is to reduce the cross
sections. The differences between the cross sections obtained by the latter three
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Table 7.4(b) Same as Table 7.4(a) but for 200eV
6 (deg) Theory Experiment
UBES SVP MGA EBS v w
0 1.6+1 1.54 + 1 — 1.54 + 1 — —
10 3.1 3.36 3.02 3.05 — —
20 1.1 1.09 1.10 1.11 1.61 1.17
30 42-1 423 -1 425-1 4251 5.60-1 481 -1
40 1.7-1 1.80 - 1 1.81 -1 1.83-2 216 -1 1.98 - 1
60 45-2 4.56 -2 465-2 484-2 6.63 -2 523-1
80 1.8-2 1.71-2 1.75-2 1.93-2 2.80-2 240-2
100 9.0-3 842 -2 8.73-2 1.00 -2 1.15-2 1.15-2
120 56-3 5.09-3 532-3 6.41-3 — 7.61 -3
140 39-3 3.64-3 386 -3 4.79-3 — 498 -3
160 34-3 297-3 3.16-3 400-3 — —
180 31-3 2.80-3 297-3 3.78-3 — —

approximations are small: oy(¢”) and oy{¢") are identical in the EBS and MGA
methods, and they are nearly the same in the SVP and the UEBS methods.

We see a qualitative agreement between the theoretical results and the

experimental data but, in general, the theoretical methods have a tendency
to underestimate the cross sections. According to the experimental data of
Kauppila et al. (1981), o{(¢") and o{(e*) for the helium atom are very nearly the
same for £ > 200eV. However, these two cross sections obtained theoretically
by Byron and Joachain (1977b) in the optical model (OM) and Dewangan and

Table 7.4(c) Same as Table 7.4(a) but for 400eV

6 (deg) Theory Experiment
UBES Svp MGA EBS W
0 1.09+1 1.07+1 — 1.07 +1 —
10 1.75 1.74 1.75 1.75 —
20 467-1 476-1 464-1 464-1 548-1
30 141-1 143-1 144-1 144-1 1.73-1
40 526-2 529-2 532-2 537-2 576-2
60 123-2 122-2 124-2 128-2 123-2
80 453-3 451-3 459-3 484-3 439-3
100 225-3 222-3 230-3 249-3 256-3
120 137-3 134-3 140-3 154-3 169-3
140 985-4 971-4 102-3 114-3 142-3
160 814-4 800-4 842-4 949-4 —
180 764-4 753-4 792-4 895-4 —
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Table 7.5 Same as 7.4(a) but for Positron Collisions at
E =100 and 200eV

0 (deg) UBES SVP MGA EBS
E =100eV

0 6.4 7.22 — —
10 2.7 3.02 2.85 322
20 1.2 1.22 1.17 1.26
30 56-1 5541 512-1 534-1
40 27-1 273-1 243 -1 255-1
60 78-2 8702 747-2 8.81 -2
80 30-2 375-2 3.30-2 4.51 -2
100 1.6 -2 202-2 1.84 -2 2.85-2
120 1.0-2 1.29-2 1.21-2 209-2
140 73-3 1.07-2 9.51-3 1.70 -2
160 62-3 7.84 -3 775-3 1.51 -2
180 59-3 744 -3 736 -3 1452
0 (deg) UBES SVP MGA EBS
E =200eV

0 4.5 4.90 — 4.90
10 2.0 2.06 2.03 2.09
20 78-1 7.67 -1 753-1 7.58 -1
30 31-1 297-1 285-1 288 -1
40 13-1 1.28 -1 123-1 125-1
60 34-2 344 -2 330-2 3.58 -2
80 1.3-2 135-2 132-2 1.51 -2
100 64-3 6.86 -3 6.80-3 8.28-3
120 39-3 423-3 425-3 546 -3
140 28-3 305-3 3133 4.17 -3
160 24-3 2.52-3 257-3 350-3
180 23-3 237-3 243 -3 330-3

Table 7.6 Total Collision Cross Section 67 (in 102! m?) for
the Collision of Electrons and Positron with Hydrogen

Atoms*

E (eV) UBES SVP MGA EBS H

e et e et e et e
50 — — 274 279 283 332 288
100 197 191 189 191 192 206 192
200 11.8 11.7 11.7 11.7 11.7 12.1 11.7
300 8.68 8.59 8.20 8.20 8.56 8.73 8.56
400 68 683 680 680 680 691 680
500 — — 5.68 5.68 5.68 5.74 _

“UEBS, Byron et al. (1982, 1985); SVP, Khare and Prakash (1985); MGA
and EBS, Jhanwar et al. (1982a); H, de Heer et al. (1977).
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Table 7.7(a) The Differential Cross Section /(8) (in 10>'m?%
Sr) for the Elastic Collision of 100-eV Electrons with

Helium Atoms®

6 (deg) Theory Experiment

Svp EBS SR KV J
0 9.82 12.18 — —
10 5.99 7.67 — 6.88 4.76
20 322 3.95 — 3.76 2.61
30 1.77 2.01 1.58 2,07 1.54
40 1.04 .10 937-1 1.28 923 -1
60 411-1 411-1 381-1 601-1 —
80 187-1 205-1 200-1 329-1 —
100 1.03-1 132-1 142-1 220-1 —
120 646-2 100-1 117-1 172-1 —
140 465-2 860-2 107-1 143-1 —
160 383-2 — — — —
180 3.58-2 — — — —

“SVP, Khare and Lata (1985) with n = 1 and p = 2; J, Jansen et al. (1976);

SR, Sethuraman et al. (1974); KV, Kurepa and Vuskovic (1975).
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Walters (1977) in the distorted wave second Born approximation (DWSBA) con-
tinue to differ even at the higher impact energies.

We conclude this chapter by noting that, in principle, the scattering ampli-

tude correct to any order in the interaction potential can be evaluated. However,
the higher Born terms are very difficult to calculate. Hence, as we have seen,
practically all the methods employ only the first and second Born terms. The

Table 7.7(b) Same as Table 7.7(a) but for 200eV. B Represents Experimental Data of

Bromberg (1974)

6 (deg) Theory Experiment

SVP EBS SR KV J B
0 7.64 8.85 — — — —
10 3.33 3.75 — 3.45 3.02 3.13
20 1.53 1.64 — 1.61 1.48 147
30 778 -1 8.06 -1 736-1 8.18 -1 7.86 -1 772 -1
40 414 -1 431-1 439 -1 452 -1 423 -1 425-1
60 1.38 -1 1.52-1 1.51-1 1.61 -1 — 1.56 -1
80 571-2 72-2 691 -2 7.6-2 — 7.36 -2
100 2.88 -2 44 -2 3.90-2 45-2 — 4.06 ~2
120 1.75-2 32-2 274-2 34-2 — —
140 1.25-2 26-2 190-2 28-2 — —
160 1.02 -2 — — — — —
180 9.54 -3 — — — —
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Table 7.7(c) Same as Table 7.7(a) but for 500¢V. EBS Values are taken from Lata (1984)
and O Represents Experimental Data of Oda et al. (1972)

0 (deg) Theory Experiment
Svp EBS SR J B 0

0 5.37 5.66 — — — —
10 1.59 1.62 — 1.54 1.61 1.64
20 6.27 -1 6321 — 6.27-1 632-1 6.38~1
30 250-1 254 -1 263-1 261-1 256-1 258 -1
40 1.09 -1 1.12-1 1.16 -1 1.15-1 1.15-1 120-1
60 — 319-2 3.11-2 — 316 -2 325-2
80 1.07-2 1.34 -2 1.07-2 — 1.25-2 133-2
100 526-3 736-3 498 -3 — 6.44 -3 588-3
120 316-3 487-3 2.60-3 — — 255-3
140 225-3 372-3 2.04 -3 — — —
160 185-3 319-3 — — — —
180 1.73 -3 3.02-3 — — — —

higher terms are evaluated through the Glauber approximation, which completely
neglects the effects due to the distortion of the target wave function. Thus the
EBS method, the MGA, the UEBS, etc., consider the effect due to the distortion
of the target wave function only up to the second order through f3. Joachain
(1990) has reviewed some of these methods.

At low impact energies the distortion of the target wave function becomes
quite significant. Hence, none of the methods discussed in the present chapter are

Table 7.8 The Differential Cross Section 1(6) (in 10~!m%Sr)
for the Elastic Collision of Positrons with Helium Atoms®

6 (deg) E=100eV E =200eV

SvP EBS SVP EBS
0 1.75 3.47 1.67 2.19
10 1.21 2.20 1.26 1.45
20 744 -1 1.21 691-1 722-1
30 442 -1 6.46 - 1 355-1 350-1
40 263-1 372-1 1.88 -1 1.85-1
60 1.02-1 197 -1 642-2 7.86 -2
80 5.01-2 1.65-1 291-2 5.01-2
100 299 -2 1.52 ~ 1 1.60 -2 375-2
120 2.08 -2 142 -1 1.04 -2 3.05-2
140 1.62 -2 133-1 7.67-3 2.66 -2
160 1.39 -2 1.28~1 641 -3 245 -2
180 133 -2 1.26 - 1 6.04 -3 8.00 -3

“SVP and EBS represent theoretical cross sections of Khare and Lata (1985),
obtained in the Schwinger variational principle and the eikonal Born series
methods, respectively.
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Table 7.9 (a) The Total Collision Cross Section 67 (in1072' m?) for ¢*—He Collisions®

(a) Theoretical results

E (eV) Svp EBS MGA DWSBA oM

et e e e e e e
50 104 16.5 7.11 — — — —
80 10.5 144 10.1 — — — —
100 9.88 12.8 9.88 153 10.6 17.2 11.1
200 7.05 8.09 7.25 8.95 742 9.43 7.50
300 5.46 5.99 5.57 6.49 5.71 6.66 5.74
400 448 4.79 4.56 5.12 4.67 5.21 4.67
500 3.81 4.03 3.86 4.25 3.95 4.31 3.97
700 294 3.08 297 322 3.05 3.25 —
1000 221 2.29 224 237 229 — —

“SVP and EBS, Khare and Lata (1985); MGA, Jhanwar et al. (1982a); DWSBA, Dewangan and Walters (1977);
OM, Byron and Joachain (1977b).

(b) Experimental data

E (eV) Brenton et al. Twomey et al. Dalba et al. Blaauw et al. Kauppila
(1977) (1977) (1980) (1980) et al. (1981)
e e e e e e
50 11.1 10.6 — 17.3 17.3 11.2
(at 49¢eV)
80 — — — 12.5 — —
100 9.15 9.40 11.6 11.1 11.1 10.2
200 7.22 6.41 7.64 7.22 7.14 7.00
300 571 4.76 5.65 5.54 5.46 5.40
400 4.66 3.86 4.51 4.59 453 4.53
500 3.69 3.86 3.78 3.78 3.81 3.83
700 291 2.63 2.83 291 — —
1000 2.10 8.68 -1 2.07 — — —

suitable at low E, as they give reasonable results only at intermediate and high
energies. A crude lower limit for these methods may be taken as 50eV. This limit
moves to higher values of E as the nuclear charge of the target increases.

Questions and Problems

7.1 The helium atom in its ground state is represented by

with

v(ry, r3) = v(r)v(r;)
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Table 7.10 The Real Part of the Forward Scattering Ampli-
tude for the Elastic Scattering of Electron by Hydrogen
Atom in the EBS Method (Lata, 1984)

E (eV) L6=0) (in ay)
50 3.106
100 2.394
200 1.937
300 1.747
400 1.638
500 1.565

W(r) = N(e %1% + ce2%1%)

The variational parameters Z and C are equal to 1.4558 and 0.6, respectively.
Show that N? is equal to 0.7012/aj.

7.2 Use the above wave function for the helium atom to obtain an expression
for the scattering amplitude f3,(K) in the FBA for the elastic scattering of 200-
eV electrons by a helium atom. Show that the values of f3,(K) in the forward and
backward directions are 0.7879a, and 6.592 x 107ay, respectively.

7.3 Use (7.7.10) to calculate A (in Rydberg units) for the hydrogen atom. Take
Oy = 4.503.

7.4 Derive (7.7.38) and use it with (7.7.39) to obtain fpw(K) in the forward
and backward directions for the scattering of 200-eV electrons by helium atoms.
For this atom ¢ = 1.39543, o, = 2.327a3, and A = 35.373eV. Also calculate the
values of |1 + ]‘,,,,(9)/]‘,31(9)|2 for both directions. Take the values of f3(68) from
problem 2. Comment on the importance of the polarization potential in
electron—-atom collisions.

7.5 Represent the space part of the helium atom by the following wave functions

v(1'So) = vis(r2)vis ()

and

w2'Ss,) = %Z[v“(rz)vh(ra) g5y

where v(r) are one-electron hydrogenic orbitals. Use the above wave functions
to derive an expression for the differential cross section I(K) dK in the FBA for
the excitation of the helium atom from 1'S, to 2'S, due to electron impact.
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7.6 Derive an expression for the generalized oscillator strength for the excita-
tion of the helium atom from 1'S, to 2'P, (M, = 0) due to electron impact. Rep-
resent the helium atom by the same wave function as taken in problem 5 but
replace the v,(r) orbital with the v,, (m = 0) orbital. From the derived GOS obtain
the optical oscillator strength and compare it with (6.9.5).

7.7 Derive (7.6.4) and check the values of dfie?, f*)/d(c?) given in Fig. 7.6 for
W=15eV.

7.8 Helium atoms are excited from 1'S; to 2°P (M = 1) by polarized electrons
having m, = 1. Show that this is not possible in the FBA. Obtain an expression
for the scattering amplitude for this excitation in the Ochkur approximation. Rep-
resent the helium atom, in the initial and final states, by a suitable combination
of the hydrogenic orbitals with proper symmetrization.

7.9 Compare and contrast the Born series with the Glauber series. Derive
(7.8.12) and (7.8.15). Of the FBA and the EBS method, which one is expected
to give better results. Give reasons for your answer.

7.10 Use (7.8.33) and (7.8.34) along with Tables 7.6 and 7.10 to calculate J_‘ 2(0)
for the elastic scattering of electrons by hydrogen atoms in the EBS approxima-
tion. With the help of the calculated values of f 5(0) and (3.7.8) obtain [f,,]
and, hence, oy for p=n =1 in the energy range 50 to 500eV. Compare your cal-
culated values with those given in Table 7.6 and comment.
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Collision of Electrons with Atoms:
The Differential Approach

8.1 Introduction

In the last chapter we discussed the integral approach to study
electron—atom collisions. These methods are suitable only at intermediate and
high energies. At low impact energies the distortion of the wave functions of the
target and the projectile due to the interaction potential becomes quite important.
To take a proper account of this distortion we have to solve the Schrodinger
differential equation. Quite often, even in the intermediate energy range, the
differential approach is used to explain the experimental data.

As pointed out earlier, an electron—-atom collision is a many-body problem,
and an exact solution of the Schrodinger differential equation is not yet possible.
In this chapter we shall develop a number of approximate methods to solve this
differential equation and obtain the phase shifts. These phase shifts are used to
obtain the scattering amplitudes and the differential, integrated, and total colli-
sion cross sections.

8.2 The Basic Differential Equation

Let us consider the collision of an electron with an atom having Z elec-
trons. As discussed earlier, electrons are fermions so the atomic wave functions
as well as the wave function of the system (atom + incident electron) must be
antisymmetric with respect to the exchange of any two electrons. Under steady
state conditions the system satisfies the following time-independent Schrédinger
equation:

Hy(r,s; X,8) = Ey(r,s; X, S) (8.2.1)

213

orders@himanshubook.com



214 Chapter 8

where r and s are the space and spin coordinates of the incident electron, respec-
tively. The space and spin coordinates of all the atomic electrons are represented
by X and S, respectively. The total energy Er is a conserved quantity. To start
with, we ignore the antisymmetrization condition of the wave function (i.e.,
neglect the exchange) and also the influence of the spin on the collision. Then
(8.2.1) reduces to (7.2.1), and (7.2.2) to (7.2.6) are also satisfied.

To solve (7.2.1), we expand ¥ (r, X) in a complete set formed by the eigen-
functions v,(X) of the atom. Hence,

y(r,X)=SF,(rv,(X) (8.2.2)

where the expansion coefficient F,(r) is the wave function of the scattered elec-
tron when the atom is in its n™ excited state. F,(r) is different from the plane
wave @,(r) due to the presence of the interaction energy V [given by (7.2.6)] in
the Hamiltonian of the system. We use (8.2.1) and (7.2.5) in (8.2.2) and obtain

h2k?
S(es +V -+ Ho)F (rwa (X) = s(sn +2—n;]a(r)vn(x>
or
h2k?
S(V+H,)E,(rw,(X)=S§ 2mn F,(rv.(X) (8.2.3)

We now multiply (8.2.3.) by v,(X) from the left and integrate over X. Using the
orthogonal property of v,(X), we get

-h—ZVZF,,(r) +S j' v(X)WV(r, X)v,(X)dX F,(r)= ﬁng,,(r)
2m n 2m

or

2
(V2 + ), ()=~ S(pIVIm)Es () (8:2.4)

It is evident from the above equation that F,(r) is different from a plane wave
due to the presence of the interaction energy V. Further to obtain F,(r) we must
know F,(r) for all possible values of r. Since the target has an infinite number of
eigenstates,(8.2.4) represents an infinite number of coupled differential equations.
Thus finding an exact solution of F,(r) is an impossible task.
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To investigate elastic scattering we reduce the many-body problem to
a one-body problem by assuming the existence of an optical potential defined
by

Voo (r)E(r) = S(i|VIn)F, (r) (8.2.5)

where v(X) is the initial atomic state. Putting(8.2.5) into(8.2.4) we get the
following one-body differential equation:

[V2+k? -U,,(r)]E(r)=0 (8.2.6)

where the reduced optical interaction energy U,,(r) is equal to 2mV,,(r)/#. Equa-
tion (8.2.6) describes the scattering of an electron of mass m (much smaller than
the mass of target) by the optical potential. In general, in the absence of exchange
symmetry, the optical potential is noncentral, energy dependent, and complex.
The inclusion of exchange symmetry makes it nonlocal as well. Its construction
in an exact form is again an impossible task. Hence, quite often an approximate
spherically symmetric form of U,(r) is utilized and the one-body differential
equation given by (8.2.6) is solved by following the method discussed in Chapter
3 under the boundary conditions (3.9.4) and (3.9.5) to find the elastic scattering
phase shifts ). The scattering amplitudes and the differential and integrated cross
sections are obtained from these phase shifts. The total collision cross section oy
is also arrived at by using the optical theorem. We note once again that o is
different from oy only if U,,(r) is complex. In that case the phase shifts are also
complex and (3.9.19), (3.9.23), and (3.9.24) are utilized to get gy, the absorption
cross section Oy, and Oy, respectively.

Let us now discuss some of the approximate differential approaches to
obtain Fi(r).

8.3 The Static Field Approximation

In the static field approximation (SFA), all the matrix elements V,, occur-
ring in (8.2.5) are assumed to be zero except V. Thus coupling of the initial target
state | i) to all other target states, given by | n), is neglected. Hence, (8.2.6) reduces
to

[V2+k2 - Use(r)]F(r) =0 (8.3.1)

For an atom, having Z electrons the interaction energy V is given by (7.2.6).
Hence,
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Use(r) =U;(r) = < ‘

z> (8.3.2)

Ir n

Thus the reduced interaction energy Usg in the SFA is equal to the average value
of the interaction potential energy multiplied by 2m/#”. In this case the optical
potential is equal to the static potential. To evaluate Us(r) let us represent the
target wave function v,(X) in the Hartree self-consistent field approximation and
take

zZ
v,~(X)=q7£1(pq(rq) (8.3.3)

where the one-electron atomic orbitals @ (r,) are orthonormal. They are the solu-
tions of the coupled Hartree self-consistent field equations,

(Hq _eiq)q)q(rq) =0

where

2
H,= __h_m zJ‘|(Pk(rk)| (8.3.4)

k#q Irk

With the help of the above equations we obtain

Usp(r)—z P Zjlq’"(r ) (8.3.5)

g=1

The term Ugp(r) is very simple in form. It behaves like —Z/r at short distances
and falls off exponentially beyond a distance of the order of the size of the atom.
Thus the static potential is a short-range potential. At short distances the static
potential is quite strong. Hence, it plays a very important role in large-angle
scattering. The SFA includes the effect of the distortion of the projectile’s wave
function in the evaluation of the collision cross sections to all orders of the inter-
action potential. However, it completely neglects the effects due to the distortion
of the target wave function, the exchange symmetry, and the loss of flux due
to simultancous inelastic scattering (absorption effect). In general, the static
potential is real and spherically symmetrical; hence, the method of partial waves
discussed in Sec. 3.9 becomes applicable to calculate 71, I(6), and o,
Now
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oo 4]
2 2 Tt I — Y (P (F,) (8.3.6)
=1

|r r, llll+1

m=-

and

prq(r) <pq(r)dr=—+Tf<pq(r( )(Dq(r )r2dr,dQ, (8.3.7)

Using the above two equations in (8.3.5) we get for the electron—-atom
scattering

Use(r) == Zjl(pq (—1+ )/d r,dQ,

0q1,

+l

2&E y
—22 “ 20+ 1I|‘Pq(rq i 7+1th(r)Yzm( r,)dr, (8.3.8)
Qo =1 121

where for the electron—atom collision #/me” has been replaced by a,. Let us eval-
uate Usg(r) for the ground state of hydrogenic atoms. The atom is represented by
only one orbital, given by (6.11.1). Since v(X) = ¢,(r,) is spherically symmetric,
the second term of (8.3.8) is zero and

473 %
flfpl(rl)l (——+ )n dndQ, = e—zzsrn/ao(_l+i)rlzdﬁ
a . r

We use the standard integral

b [ 1.1 é
[rerdr=-""0 A (8.3.9)
’ )'n+ ps ! ,
in the above equation to evaluate it and put the result in (8.3.8) to get
2(1 Z
Usp(r)=—_(_+_s)exp(—2Zxr/a()) (83.10)
Ay \r Qo

As expected Usg is real. It falls exponentially at large values of and goes to —o
at the origin. The negative sign of (8.3.10) shows that the interaction between
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Table 8.1 Values of the Parameters Required in (8.3.12) for a Few Light Atoms (Strand
and Bonham, 1964)

Atom ay ay ay azp by, by, by b,

C 1.3391 -0.3391 1.7315 13713 27379  -2.0444 4718 8.333
N 1.3521 -0.3521 2.0249 15700  -3.0744 23369 5.671 9.960
0 1.2806  -0.2806  2.2376 18263  -3.0715 -19710 6.803 11.548
Fe 1.2538  -02538 24796  20.644 32697 -1.8073 7971 13.392
N 1.2464 -0.2464 2.7385 22.850 -3.5467 -1.7746 9.129 15.381

the projectile and the target in the SFA is attractive. Hence, the phase shifts are
positive and real. They are obtained by solving (3.9.17) under the boundary con-
ditions (3.9.18) with U(r) = Usy.

The helium atom in its ground state can be represented by

vin, r)=@(r)e.(r,) (8.3.11)

where @(r) is again given by (6.11.1). But the value of Z, as obtained from the
variational principle, is 1.27. Hence, with (8.3.11), the static potential for the
ground state of the helium atom is twice that of (8.3.10) but with Z, = 1.27.
The static field of any multielectron atom can be obtained without much diffi-
culty. Using Hartree—Fock target wave functions (see Weissbluth, 1978), Strand
and Bonham (1964) have shown that U(r) for the ground state of an atom with
2 <£Z £ 18 is given by

Ugs(r) = —4—Z[i ay, exp(—ayr/ap)+

agr

2
: wa'exp(“bljr/ao ):| (8.3.12)
0 j=1

i=1 Qo j=

The values of the parameters ay, ay, by, and by, for a few atoms, as given by
Strand and Bonham (1964), are shown in Table 8.1.

8.4 The Two-State Approximation

Let us consider collision of electrons with a hypothetical atom that has only
two eigenstates v(X) and v,(X). Under these circumstances, (8.2.4) gives rise to
two coupled differential equations:

(VZ+k.-2)F.-(r)=2h—’2”[v.-,-(r)ﬁ(r)+v,-j<r)f;(r>1 84.1)

and
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(v? +k})F,-<r)=—2);1’§[vji<r)ﬁ(r)+v,,-<r>ﬁ(r)1 (8.4.2)

If initially the atom was in the i state, then Fi(r) is the wave function of the elas-
tically scattered electron and Fi(r) is the wave function of that scattered electron
which during collision has excited the atom from the i to the j" state. As before,
asymptotically, F(r) is a linear combination of a plane wave and an outgoing
spherical wave. However, F(r), which is created by the collision, is represented
asymptotically only by an outgoing spherical wave. Hence,

eik,-r

E(r) = A[e”""’ +— fi (Q‘P)} (8.4.3)

r

and

ikir

E(r) ~ A"’Tf,-i(e,«p) (8.4.4)

r—eo

The DCS for the elastic and the inelastic collisions are given by |f;|* and k/k;
| £:I?, respectively. For the spherically symmetric V, Vj;, and V;, the method of
the partial waves is employed and two coupled equations for the initial and final
states are solved simultaneously to obtain the required cross sections.

Let us consider collisions where the incident energy E is less than the exci-
tation energy £, = & — &. In this situation real excitation is not possible and F;(r)
given by (8.4.4) must go to zero as r — . This can be achieved by replacing &;

by iu;, where i = V-1, l4; is a real positive quantity and

2m
57 o mh =pj =k (8.4.5)

Here the i channel is open and j® channel is closed. To examine the effect of
the /" channel on the elastic scattering we approximate V2 by —k% and neglect
the term V,F; in (8.4.2). Thus, approximately,

2m V.(r)
in=-2 0
he ki +uy

E(r) (8.4.6)

Putting (8.4.6) into (8.4.1), we obtain

[V2 +k2 = Use(r) = Upo (N)]E(r) =0 (8.4.7)
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U,(r) is the second-order reduced polarization potential. It is given by

U= (2 Vel 2m i
pa(r) = W) KR+ut R og-g
i J '

2
I

(8.4.8)

and is always negative. Since U, (r) is independent of E, (hz/2m)Upol(r) is known
as the reduced adiabatic polarization potential energy. In the dipole approxima-
tion it is equal to the j® term of (7.7.24). Due to the presence of the closed j*
channel the electric field of the incident electron induces multipoles in the target
atom, i.e., the atom is polarized. Hence, the real polarization potential is due to
the virtual excitations of the atom.

For electron-atom collisions both Ugz and U, are attractive but for positron
scattering Us is repulsive while U, is attractive. Hence, they oppose each other.

For E ) &, the elastic and the inelastic scattering take place simultaneously.
As before, the electric field of the incident electron will polarize the atom. Fur-
thermore, due to real excitations, some of the electrons will leave the i channel
and appear in the /" channel with energy E — &, and momentum #k;. Hence, the
second-order potential will now be complex. The real part V,,,, which is due to
virtual excitations, is the polarization potential. The imaginary part V,, is due to
real excitations and is known as the absorption potential. Hence, now

Vop(r) = Vs + Voot + Vi (8.4.9)

where V,, is real. To investigate the elastic scattering one is now required to solve
(8.2.6) with U,y (r) = 2m/ ?) Vop(r). This approximation for the elastic scattering
is known as the static field-polarization-absorption approximation (SFPAA).
Both V,, and V,, are of second order. However, the former is of long range
whereas the latter is of short range. Due to their presence the DCS are changed
by a substantial amount.

Since in our present model there is only one inelastic channel, &, is equal
to G,,. We note that V,,, which arises due to inelastic scattering, affects elastic
scattering by its presence in V,(r). In other words, the effect of the inelastic
scattering on the elastic scattering is governed by V.

8.4.1 Resonance in Elastic Scattering

Let us again consider the case when E is less than &,. Equation (8.4.2) then
changes to

[V? —uj -U;1F(r) = UE(r) (8.4.10)
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If U; is strong and attractive then for certain values of A* we have
Hy=Xy (8.4.11)
with
H=-1[2mV?+V; (8.4.12)

For negative values of A? the eigenfunctions y represent bound states. Let such
values of A’ be E|, E,, . .., E,. ... At these incident energies the incident elec-
tron gets attached to the target and forms a complex. This complex exists for a
brief period and then decays again into the initial state of the target and a free-
electron of energy E. Near the energy E,, E,, . . ., E, . . . due to the formation of
bound states the elastic cross sections become quite large and give rise to reso-
nances. These are known as the Feshbach resonances and have been experimen-
tally observed in electron-atom collisions. For the resonances to occur the
incident energy E should be less than but close to .

Let us consider collisions between electrons and the ground state (1s)
hydrogen atom. The excitation of the atom is possible only if E > 10.204¢V.
Below this energy is the region of pure elastic collisions. As discussed above, for
E slightly less than 10.204 eV, doubly excited state H ** (2s, nl) may be formed
at some specified energies. The eigenenergies of these bound states are embed-
ded into the continuum states of H(1s, E), consisting of H(1s) and a free elec-
tron of energy E. The doubly excited states of H™ are unstable and decay into
H(ls) and e(E). This decay represents a transition from a bound to a continuum
state. However, such transitions are radiationless, occur at specified energies, and
produce Feshbach resonances. The doubly excited states of H™ are known as
autoionizing states. O’Malley and Geltman (1965) have calculated eight autoion-
izing states of H** lying between 9.559 and 10.203eV. Three such states are
shown in Fig. 8.1.

The elastic scattering of electrons by a helium ion also produces reso-
nances. The reaction is

He*(1s)+e

8.4.13
He*(1s,2p)+ hv ( )

e+He*(1s) » He**(2s,2p) <

In this case we have an additional decay channel corresponding to the produc-
tion of a neutral singly excited helium atom and a photon. However, the proba-
bility of autoionization is much higher than that of radiative decay. This is
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FIGURE 8.1 Three autoionizing states A, B, and C of H lying between 9.559 and 10.204eV.
The energies of A, B, and C, as calculated by O’Malley and Geltman (1965), are 9.559, 9.127, and
10.149¢V, respectively.

confirmed by the observation that the spectral line has a width much greater than
expected for a radiative emission line.

The electron-helium collision process can also form doubly excited states
of helium:

e+He — e+ He** (8.4.14)

The formation of these doubly excited states produces resonances in the energy
loss spectrum of the incident electron. Silvermann and Lassetre (1964) and
Simpson (1964) detected two peaks in the energy loss spectrum of 500-eV elec-
trons scattered by helium at 60.0 and 63.5¢V above the ground state of helium.
These experiments confirmed the existence of doubly excited helium atoms that
decay by autoionization. Burke (1968) discussed the theory of resonances, and
experimental details are provided by Golden (1978).

We have discussed resonances between the first two states of atoms. Such
resonances have also been noticed below the excitation threshold of n = 3, 4,
... excited states.

84.2 Weak Coupling

Let us consider the situation when U, and Uj are large but the coupling
terms Uj; and Uj; are small. Then, approximately, (8.4.1) and (8.4.2) reduce to

[V2+kf -U;)E(r)=0 (8.4.15)
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and
[V2+k} -U;|F(r)=U;(r)E(r) (8.4.16)

respectively, the excitation of the atom taking place due to the coupling term
U(r)F(r). The asymptotic solution of (8.4.16) is given by

tk,r
F(r) ~ -2r?

F—po00

jU,, (r)E)y,(r' m-O)dr’ (8.4.17)

where ; is the solution of the following homogeneous equation:
(V2+k2-U;)x,; =0 (8.4.18)
For the scattering angles (8, ¢) the angle @ is given by
cosO = cosf cos @’ +sinBsin @’ cos(p — ¢’) (8.4.19)

In this approximation the differential cross section is (Mott and Massey, 1965)

k; mY’
1;(6,9)dQ = Z:—l&:“(;;)
x|[ V', Xvi(X W, (XOFG,0) 2, (', n-O)dr'ax|  (8.4.20)

If we represent F; and y; by plane waves, the above equation gives the DCS in
the first Born approximation. Equation (8.4.15) shows that F; represents the
motion in the mean field of the initial state but that y; is due to the mean field of
the excited state. This method is known as the distorted wave method.

8.5 The Static Field and Polarization Approximation

For atoms having an infinite number of eigenstates, (8.4.8) is modified to

o V)l i

U =
po h2j8—€

8.5.1)

where j # i. This equation can also be obtained using first-order time-
independent perturbation theory. According to this theory, for an atom A
perturbed by a first-order perturbing potential V, we have (Schiff, 1968)
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(Hy-€)v; =0 (8.5.2)
(HA —gi)yll. = (g} _V)Vi (853)
(HA —'8,')1/,'2 = (8,2 - V)V} +£i2V,' (8.5.4)

where H, is the unperturbed Hamiltonian of the atom with eigenenergy & and
eigenfunction v;; v} are first- and second-order corrections to the eigenfunction;
and similarly €7 correspond to first- and second-order corrections to the eigen-
energy &

It is easy to verify that if we replace v}* by v}” + c!?v,, in the left-hand sides
of (8.5.3) and (8.5.4), where c}* are arbitrary multiplying factors, these equa-
tions do not change. Hence, this process does not affect the evaluation of the v}
in terms of their lower-order wave functions. We choose ¢} in such a way that
the v} are orthogonal to v;. Now from (8.5.3)

(ilHA ~&lvi)=(ile - Vli)
Hence,
& =iVl (8.5.5)
Similarly from (8.5.4)
e} =(ilvpp}) (8.5.6)

where we have used {i|v}) = 0. To obtain an expression for v} we expand it in
terms of a complete set formed by v; and take

V= Sap, (8.5.7)

j#i

The term j = i is excluded because v} is orthogonal to v;. Using the above equa-
tion in (8.5.3) and the orthogonality relation, we get

. L) (8.5.8)
£ —§
Hence,
vi=S MVj (8.5.9)
j#1 &; —£j

orders@himanshubook.com



Collision of Electrons with Atoms: The Differential Approach 225

and

2
8'2 = S |V}t|

€ —E;

(8.5.10)

A comparison of the above equation with (8.5.1) shows that € is the second-
order polarization energy.

Let us now consider the polarization of a ground state hydrogen atom by
a slowly moving incident electron. We assume that the electron is moving so
slowly that as far as the polarization is concerned it can be regarded as station-
ary at r (adiabatic approximation). Hence, the perturbing potential is due only to
the potential energy of the incident electron and is given by

2 2

4

where 0 is the angle between r and X, the position vector of the atomic electron.
For a meaningful concept of the polarization of the atom by the incident electron
we should have r > X. Hence,

Xl
rl+1

Vir, X)=¢'S X Bicos6) (8.5.12)
=1

With the above form of V and the spherically symmetrical ground state wave
function v, it is easy to see that the matrix element V;; will be zero if v; is also
spherically symmetric. Hence, in an expansion of v;' [given by (8.5.9)] in the
complete set of P,(cos 8) we exclude the [ =0 term and take

vi= fi(r, X)R(cosh) (8.5.13)
1=1
Putting the above equation into (8.5.3), we obtain

i(—ﬁvz—-}z——e)f(r X)PR(cos6) = (el -V (X)  (85.14)

o\ 2m

In the above equation we use (2.6.6), (2.6.8), and (2.6.2) to get

l

)ﬁ( X)= 2 o —(X) (85.15)

0

+
dx* Xdx X? aoX a;

(dz 2.d I(I+1)
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The solution of the above differential equation is (Sternheimer, 1954; Dalgarno
and Lewis, 1955)

702 25+ 0 )
Hence,
vi(r, X) = —i ,lﬂ (“"Xl o2 - )P,(cose)v,-(X) (8.5.16)
ar l I+1
Thus from (8.5.6)

8‘2 = _eZE (l +2)(2l+ 1)! aglﬂ

=y 121+1 r21+2

(8.5.17)

It should be noted that in the evaluation of {i|V|v;) we have taken the range
of X from 0 to . But at the same time r is taken to be greater than X. Hence,

&, given by (8.5.17), is its asymptotic value. The dipole (! = 1) component of
eis

€), - -2 aR (8.5.18)
o, . rt

because the dipole polarizability ¢, of the hydrogen atom is 4.5a; and the
Rydberg energy R is €%/2a,. As expected, the above equation agrees with the first
term of (7.7.33). Since (8.5.18) diverges at r = 0, various empirical forms of
Vip(r), which go to (8.5.18) asymptotically and reduce to zero at the origin, are
utilized in the calculations. One such form is given by (7.7.37).

In the static field-polarization approximation (SFPA), the optical potential
is the sum of the spherically symmetric static field and the polarization potential.
The radial equation in this approximation is

(%*’3 _USF(,)_UM(,)_IUTJ;I_))J,[(,) =0 (8.5.19)

To obtain phase shifts the above equation is solved numerically under the bound-
ary conditions given by (3.9.18). In many calculations U(r), given by (7.7.37),
has been utilized. The calculated phase shifts are employed to obtain the differ-
ential cross sections and the integrated elastic cross sections o, in the SFPA. For
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real Uge and Uy, the phase shifts are also real. Hence, the total collision cross
section oy obtained by the application of the optical theorem is equal to o,

So far we have considered only the unsymmetrized wave functions. Thus
the exchange effect is neglected. This effect will be considered in the next section.

8.6 The Static Field and Exchange Approximation

We take Y of (8.2.1) in a completely antisymmetric form as demanded by
Fermi-Dirac statistics. For simplicity we consider scattering of the electrons
by the hydrogen atom and take the space part of the wave function of the system
e+ H as

yi(n,n)=S[E Ry, ) £ B, n)] (8.6.1)

It is evident that ¥* is symmetric with respect to the exchange of the incident
electron and the atomic electron. Hence, the spin wave function associated with
¥* must be antisymmetric. Similarl ¥~ is antisymmetric; hence, the associated
spin wave function will be symmetric. Since for a two-electron system there are
three symmetric spin wave functions and only one antisymmetric spin wave func-
tion [see (5.6.1)], ¥* describes singlet and triplet scattering, respectively. Now
with the help of (8.2.1) and, (8.2.2), from (8.6.1) we obtain

h2 2 2
s(——V%—-e—+"——ET+en)nf(n)vn<rz)
n\ 2m noon
2 2 2
=:Ls(——h-—vg S L g, +£,,)E,*(r2)v,,(r1) (8.6.2)
n\ 2m o h

Multiplying both the sides by v$(r,) and integrating over r, yields
V2 R)FE ) = 8| Uy () () T 22 VEE(r)dr: 8.6.3
( l+ p) 4 (rl —n pn(rl) n (rl + h2 J.Kpn(rl,rZ n (rZ) 2 ( g )

where the kernel &, is equal to
* e’
Kpn(r17r2)=yp(r2)(ET—sp_gn__r_')vn(rl) (864)

12

Equation (8.6.3) represents an infinite number of coupled integro-differential
equations and obtaining their exact solutions is again impossible. A comparison
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of this equation with (8.2.4) shows that the symmetry consideration has added
one more term to the differential equation in which the coordinates of the two
electrons are exchanged: the exchange term. To evaluate F), at r; we require F,
at all possible value of r,. Thus it is nonlocal in nature.

Let us go back to the one-state approximation. We replace p by the initial
channel i and neglect all the terms in (8.6.3) for which n # i. The resultant
equation

+ + —2m +
(Vi +k2)F(n) =Uuy(n)E*(n) ¥ ‘ﬁ';‘J.Ki.‘("l, ry)F(ry)dr, (8.6.5)
with

2
Ki(r,r)=v](r )(ET -2¢ —f—)v;(r,) (8.6.6)

12

is the scattering equations in the static field exchange approximation (SFEA). A
partial wave expansion of F;(r;) given by

i ()

Fi(n)= 21’(21+1)e"’" sinni 20 B(cose) (8.6.7)

yields the following one-dimensional differential equation for the [ partial wave

d? 1(1+1
[';1—2_+k2 Uu(rl) (r )i|¢ _‘[Ku(’i’ rZ)(Pd (rZ)er (868)
1
with
4
Ki(n,n)= El_'ir_l'ﬁrZVi(’i)Vi(’i)(ET ~2¢,—e*rl [r*) (8.6.9)

In the above derivation it is assumed that the atom is in the S(L = 0) state,
which is certainly true for the ground state of the hydrogen atom. Equation (8.6.8)
is solved numerically for @ under the boundary conditions

@i(n=0)=0

and
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1
0i(n) ~ k—sin(kir]—lzr/2+n,%) (8.6.10)

r—>

The phase shifts 7 are utilized in (3.9.13) to obtain the scattering amplitudes
f#(6). Considering the relative weight of the singlet and triplet spin states, the
differential cross section for elastic scattering of electrons by unpolarized ground
state hydrogen atoms is given by
1,0 =2|r- @) +1lr* @O (8.6.11)
In Fig. 8.2 the phase shifts 7j5 and 73" are shown as functions of the inci-
dent energy E. 177" is found to be zero at E = 0. On the other hand, at this energy
both 75 are equal to 7. This value is in accordance with the Lavinson theorem,
given by (3.9.31), because H™ has only one bound state. Thus as expected, the
SFEA is superior to the SFA. With the increase in E the phase shift 775 increases,
attains a maximum, and then falls with further increase in E. In contrast, both 15
continuously decrease with an increase in E. 1, is greater than 1 and 1g" lies
between the two for E greater than about 40eV. At large E the three curves merge
into one another. This shows that the exchange effect is of importance at low E.
Physically, the probability of exchange is also expected to be appreciable
for those velocities of the incident electron that are of the same order as the
velocity of the atomic electron.

8.6.1 Local Exchange Potential

To obtain a solution of an integro-differential equation is much more
difficult than to solve a differential equation, so there have been a number of
attempts to convert (8.6.5) into

[V%"l'kiz_USF(rl)_U;(rl)]Ei(rl)=0 (8.6.12)

with Ug(r)) as a local exchange term. For a spherically symmetrical potential,
the above differential equation is reduced to a one-dimensional equation [similar
to (8.6.8)] but with the additional local term UZ(r,). These equations are solved
numerically and the 1] are obtained.
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