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Preface

Over the past fifty years, the thermodynamics of strongly interacting matter has
become a profound and challenging area of modern physics, both in theory and
in experiment. Statistical quantum chromodynamics, through analytical as well as
numerical studies, provides the main theoretical tool; in experiment, high energy
nuclear collisions are the key for extensive laboratory investigations. The field is
therefore an area of overlap between statistical, particle and nuclear physics, con-
ceptually and in the methods of investigation used.

Many young people are today starting their scientific research in this field and so
there is a need for a general introduction, emphasizing in particular the basic con-
cepts and ideas. That is the aim of this book, to explain why we are doing what we
are doing. It is not meant to compete with several recent textbooks, which should be
consulted to obtain the technical tools of the trade. I want to concentrate here more
on the development of the underlying ideas, which I think have given the field a very
unique flavor. Moreover, I will concentrate mainly on equilibrium thermodynamics.
Nuclear collisions certainly involve non-equilibrium aspects, from thermalization to
hydrodynamic flow. But before we can understand these, we will have to understand
the striking new features already present in equilibrium.

The general plan of the book is the following. We first introduce the fundamental
ideas of strong interaction thermodynamics (Chap. 1) and then summarize the main
concepts and methods used in the study of complex systems (Chap. 2). After these
general preliminaries, we present some models, i.e., simplified phenomenological
pictures, leading to critical behavior in hadronic matter and to hadron-quark phase
transitions (Chaps. 3 and 4). Given such a conceptual basis, we can then turn to
finite temperature lattice QCD and to the results obtained in computer simulation
studies of the lattice formulation (Chap. 5). Complementary to this, we clarify the
relation of the resulting critical behavior to symmetry breaking/restoration in QCD
(Chap. 6). In Chap. 7, an extension of our considerations to strongly interacting
matter at finite baryon density provides the basis for the study of the QCD phase
diagram. Following this, we investigate in some detail the main features of a new
state of matter, the quark-gluon plasma (Chap. 8). This completes our presentation
of bulk equilibrium thermodynamics, although quite a few very interesting aspects
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viii Preface

have not been dealt with in much detail; in particular, the regime of large baryon
density has only been considered quite briefly. But this simply reflects the present
state of our knowledge in that area.

Following this more general part of the book, we turn to some specific features
which arise when nuclear collisions are considered as a tool for the experimental
study of QCD thermodynamics. In Chap. 9, we introduce the conceptual basis for
this endeavor; following this, we briefly survey the main probes proposed to inves-
tigate the properties of the medium produced in such collisions. Finally, the last
two chapters deal with hadron production in high energy collisions—a topic which,
more than fifty years ago, started the intimate relation between strong interaction
physics and thermodynamics.

Since our field is so multifaceted, I thought it would be helpful to keep the dif-
ferent chapters as much as possible self-contained, so that a reader could turn to a
given topic without having to read in detail all previous chapters. This necessarily
implies some repetition, for which I hope for indulgence.

This book is based on three sets of comprehensive lectures, held at the University
of Bielefeld in 1995/96, at the Instituto Superior Técnico (IST) in Lisbon in 2002/03,
and again at Bielefeld in 2010/11. In addition, it has benefitted much from extensive
lectures at a number of schools, organized by CCAST, CERN, Dubna, Frascati,
VECC, and others. The course of the years, I think, had a very healthy influence in
placing things into some perspective. Let us see what the next years will bring. In
the meantime, I hope that what is presented here may help in showing future young
researchers that ours is a field with much promise, within and beyond its topical
frontiers.

A considerable part of the book was written and edited during two long stays at
the IST in Lisbon, made possible by a grant of the Calouste Gulbenkian Foundation.
I want to take this opportunity to express my sincere gratitude to Jorge Dias de Deus
and João Seixas for their kind hospitality there and to the Gulbenkian Foundation
for their generous support.

Next, it is my great pleasure to thank my colleagues for all the help I have
received over the years in my attempts to understand this fascinating chapter of
physics. My gratitude goes first and foremost to my long-time fellow searchers
(whose conclusions may and often do, of course, differ from mine). On the the-
ory side, I thank Rolf Baier, Jürgen Engels, Rajiv Gavai, Sourendu Gupta, Keijo
Kajantie, Frithjof Karsch, Dima Kharzeev, Edwin Laermann, Tetsuo Matsui, Larry
McLerran, David Miller, Krzysztof Redlich, Vesa Ruuskanen, Esko Suhonen, Bob
Thews, Ramona Vogt and Xin-Nian Wang; more recently, crucial help came from
Paolo Castorina and Olaf Kaczmarek. On the experimental side, Francesco Becat-
tini, Peter Braun-Munzinger, Louis Kluberg, Carlos Lourenço, Jürgen Schukraft,
Johanna Stachel and Reinhard Stock have been essential in my search for under-
standing, and they have moreover made sure that the experimental consequences
of whatever theoretical “Hirngespinst” were never ignored or forgotten. This list of
names is necessarily incomplete, and I want to express my gratitude also to all the
others who have helped me so much.

Furthermore, sincere thanks go to Frithjof Karsch, David Miller and Krzysztof
Redlich for a careful reading of parts of the draft, and especially to Carlos Lourenço,
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who read and corrected the entire manuscript with great care. This has certainly
helped much in eliminating many wrong and ambiguous formulations; what remains
faulty is obviously my responsibility.

Someone once said that being a “normal” person married to a physicist is like
being deaf and married to a musician. I dedicate this book to my wife for bearing
with me during all those endless hours of unheard music.

Helmut SatzBielefeld, Germany
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Chapter 1
The Analysis of Dense Matter

So there must be an ultimate limit to bodies, beyond perception
by our senses. This limit is without parts, is the smallest possible
thing. It can never exist by itself, but only as primordial part of a
larger body, from which no force can tear it loose.

Titus Lucretius Carus: De rerum natura,
liber primus 599, ∼ 55 B.C.

What is matter made of? The search for its ultimate constituents has always inspired
the imagination. Since antiquity, man has tried to explain the composite macroscopic
world in terms of indivisible building blocks on a microscopic scale. Beneath the
complexity and irregularity which surround us, we hope to find a hidden world of
greater simplicity, in which primordial parts move according to basic laws. This
idea turned out to be fruitful beyond all expectations, so that today we find it natural
to derive the properties of matter from the dynamics which govern the interaction
between some fundamental building blocks.

The analysis of matter thus traditionally begins by asking

• What are the ultimate constituents of matter?
• What are the basic forces between these constituents?

Once we understand the elementary systems and their interactions, we can then ask

• What are the possible states of matter?
• How do transitions between these states occur?

Only in rather recent years has this order of things been put to question. Basic fea-
tures in the collective behavior of many interacting constituents—of “matter”—may
well involve general aspects independent of both the nature of the constituents and
of the form of their interactions. Today we are witnessing the emergence of a gen-
uinely new field of physics, the study of complex systems, in which general laws
governing collective features dominate over the nature of individual constituents
and their interactions.

H. Satz, Extreme States of Matter in Strong Interaction Physics,
Lecture Notes in Physics 841, DOI 10.1007/978-3-642-23908-3_1,
© Springer-Verlag Berlin Heidelberg 2012
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2 1 The Analysis of Dense Matter

We want to present here a combination of the more traditional approach, based
on the interaction of the fundamental building blocks in strong interaction physics,
and the new aspects of collective behavior in complex systems, as encountered in the
study of criticality and involving concepts such as spontaneous symmetry breaking,
percolation, self-similarity and self-organization.

During the past hundred years, our ideas about the nature of the ultimate con-
stituents of matter have undergone a number of changes. Atoms were found to
be divisible into electrons and nuclei. Nuclei in turn consist of protons and neu-
trons, bound by strong, short-range forces. With the advent of the basic theory of
strong interactions, quantum chromodynamics (QCD) [1], has come the conviction
that nucleons—and more generally, all strongly interacting particles (hadrons)—are
bound states of quarks [2, 3]. An account of all observed hadron states requires the
six quark species (or flavors) of QCD, denoted as u, d , c, s, b and t for up, down,
strange, charm, bottom and top. They are point-like and cannot exist by themselves;
they are confined to “their” hadron by a binding potential increasing linearly with
quark separation. Hence an infinite amount of energy would be needed to isolate
a quark; it is not possible to “split” a hadron into its quark constituents. We are
thus closer than ever before to the picture which seemed natural to Lucretius two
thousand years ago.

It is of course possible to go on dividing. This has in fact been proposed, with
“preons” as subconstituents of quarks and leptons [4, 5], but so far without great res-
onance; for some recent work, however, see [6]. In any case, in the quark substruc-
ture of the strongly interacting particles we encounter for the first time in modern
physics the concept of basic constituents without an individual physical existence.
So, in a way, we have arrived at the end of the line. The elementary particles in
strong interaction physics, the mesons and baryons, remain elementary in the sense
that they are the smallest entities which can exist by themselves, as single particle
states in the physical vacuum. They have, however, become composite in the sense
that they are bound states of quarks, bound so strongly “that no force can tear them
loose.”

The electromagnetic force holds nuclei and electrons together to form atoms.
The nuclei themselves are bound states of nucleons, bound by the much stronger
nuclear force. The discovery of radioactivity brought in a much weaker interaction,
and gravity is the fourth and weakest force. The formulation of a “theory” for each
of these four forces provided the fundamental challenge for more than a century, and
the last decades have now seen attempts to unify the results. Electromagnetic and
weak interaction theories are united as the electroweak theory [7–9], which together
with QCD forms the “standard model” [10]. The different interaction sectors were
found to entail quite a number of specific constituents. Besides the quarks forming
the bulk of the observable matter of our universe, and the gluons which mediate
their interaction, we have, according to our present state of knowledge, as further
constituents of the electroweak interaction leptons, photons, heavy vector bosons
(B = Z0,W

±) and the scalar Higgs boson H . A conservative count (no antiparti-
cles, etc.) thus leads to the sixteen species of constituents of the standard model
shown in Table 1.1; gravitation is not yet in the game, waiting for a “theory of ev-
erything”.
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Table 1.1 The basic constituents of the standard model

u c t g

d s b γ

νe νμ ντ B

e μ τ H

We underline here once more that the quarks (and the gluons as well), in contrast
to all others in this table, cannot exist as isolated physical entities. As color-carrying
constituents, they remain “confined” to the proximity of other quarks and gluons,
close enough so that they can neutralize each other to form colorless spatial regions
of hadronic size.

The second major question, addressing the possible states of matter, leads to
problems which go beyond the level of elementary interactions. In ancient times they
had earth, water, air and fire, as proposed by Empedokles about 450 B.C., and about
a century later, Aristotle added the void as a “fifth” state, the “quintessence”. The
resulting “phase diagram” is illustrated in Fig. 1.1. A very similar scheme had been
proposed in Buddhist and Hindu philosophies, where in particular it was noted that
the void (“akasa”) is what provides space and thus room for all extended substances.
It should be noted that the mentioned “states” were then really taken as “forms of
matter”; they were not considered as aggregates of many components. This “statis-
tical” part of the story came into play only when the thinking about forms of matter
was combined with the ideas of atomism, introduced by Democritos at about the
same time.

Fig. 1.1 The four states of matter in antiquity, fire, air, water and earth, embedded in the
“quintessential” void

The general scheme of antiquity—solid, liquid, gas and plasma, embedded in a
void—has survived until today, although now we have in addition also insulators,
conductors and superconductors, fluids and superfluids, ferromagnets, spin glasses,
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gelatines and many more distinct states. In almost all these cases, the knowledge of
the elementary interaction neither predicts nor specifies the structure of the possible
complex states of many constituents.

We expect things to become even more complicated, when we consider the transi-
tions between the various different states. Recent developments show, however, that
this is not necessarily true. On one hand, there are phase transitions of different or-
ders depending on the singular behavior of the partition function, specified in terms
of the respective dynamics and the corresponding symmetries, as well as percolation
transitions signalling cluster formation and the onset of large-scale connected pat-
terns. On the other hand, self-similarity, scaling and renormalization concepts lead
to a universal description of critical phenomena, to a large extent independent of
the underlying elementary dynamics. Critical exponents define universality classes
which contain quite different interaction forms. Complex systems thus open up new
and more general directions in physics.

What happens to matter when we increase its density beyond that encountered
in the world around us? Ever since the Big Bang, our universe has been expanding.
We thus live in a world of steadily decreasing density. If we could reverse time and
let the film run backwards, what kind of matter would we find? The range of den-
sities we encounter in the “observable” world spans over forty orders of magnitude
(see Fig. 1.2), from an average taken over the entire present universe, 1 nucleon/m3,
to that inside a heavy nucleus, 1044 nucleons/m3. Within this range, we have some
understanding based on experimental information. What happens to matter at still
higher densities? That is one of the main topics of this book.

Fig. 1.2 Matter densities in the universe

The high-density limit is, in a way, the many-body counterpart of the high-energy
limit of two-body interactions. By colliding two particles at ever higher energies,
we study their structure at ever smaller scales. But that is only part of the story:
at each scale, we have collective phenomena in many-body systems as well as the
dynamic laws of two-body interactions. And while high-energy collisions probe
the dynamics in the short distance limit, high-density studies are needed to test the
thermodynamics resulting from this short distance dynamics.

What are the consequences of the quark infrastructure of elementary particles for
the behavior of matter at extreme density? That will be one of our basic questions,
and we shall try to answer it on various levels of theoretical and experimental un-
derstanding. To get a first idea, let us begin with a very simple picture. If nucleons,
with their given spatial extension, were both elementary and incompressible, then a
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state of close packing would constitute the high density limit of matter (Fig. 1.3). If,
on the other hand, nucleons are really composite (bound states of point-like quarks),
then with increasing density they will start to overlap, until eventually we reach a
state in which each quark finds within its immediate vicinity a considerable number
of other quarks. It has no way to identify which of these had been its partners in a
specific nucleon at some previous state of lower density. Beyond a certain point, the
concept of a hadron thus loses its meaning [11], and we are quite naturally led from
nuclear matter to a medium whose basic constituents are unbound quarks.

At first glance, it may seem that in the transition from nuclear matter to quark
matter we have ignored the confining forces which bind quarks to form hadrons.
However, confinement is a long-range feature, which prevents us from isolating a
single quark. In the high density situation of Fig. 1.3c, each quark finds very close
to it many others and is far from being isolated. The short-range aspect of dense
matter thus appears to make confinement disappear.

Fig. 1.3 Schematic view of increasing density, from atomic (a) to nuclear (b) and then to quark
matter (c)

To understand this better, we recall the effect of a dense medium on electric
forces. In a vacuum, two electric charges e0 interact through the Coulomb potential

Ve(r)∼
{
e2

0

r

}
, (1.1)

where r denotes the separation distance. In a dense environment of many other
charges, the potential becomes screened,

V (r)∼
{
e2

0

r

}
exp

{−r/rD(n)}; (1.2)

where rD(n) is the Debye screening radius; it is a property of the medium and
decreases as the charge density n increases. Thus the potential between two test
charges a fixed distance apart becomes weaker with increasing density. This occurs
because the other charges in the medium cluster around the two test charges and
partially neutralize them, thus reducing the effect of the test charge interaction—
its range becomes shorter. If instead of the test charges, we place a bound state—
e.g., a hydrogen atom—into such a medium, then the screening radius rD will, with
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increasing density, eventually fall below the binding radius rB of the atom. Once
rD � rB , the effective force between proton and electron has become so short-
ranged that the two can no longer bind. Thus insulating matter, consisting of bound
electric charges, will at sufficiently high density become conducting: it will undergo
a Mott transition [12], in which charge screening dissolves the binding of the con-
stituents. This leads us to a new state of matter: in addition to solid, liquid, and gas
we now have the plasma, a macroscopic system of unbound charged constituents.
Again, this is not so different from the picture of the world held in antiquity, with
its four “states of matter” earth, water, air and fire.

The interaction of quarks in QCD is also based on an intrinsic charge, the “color”;
a quark can exist in one of three different color states (“red, green, blue”). Just
as electric charges interact through electrodynamic forces, color charges interact
through chromodynamic forces. The main conceptual difference between electro-
dynamics and chromodynamics lies in the nature of the fields mediating the inter-
action. Two interacting electrons exchange photons, and these quanta of the electro-
dynamic field carry no intrinsic charge. Similarly, two interacting quarks exchange
gluons, the quanta of the chromodynamic field; but these now carry an intrinsic
color charge of their own. A gluon can change a red quark into a blue one, so that
it has to be “blue-antired”, and so on. Because of their intrinsic charge, the gluons,
in contrast to photons, can interact directly with each other as well as with quarks.
It is this (non-Abelian) gluon-gluon interaction that makes the difference between
electrodynamic and chromodynamic forces. The lines of force radiate spherically
from an electric charge, leading to the Coulomb potential as solution of the three-
dimensional Laplace equation, while the lines of force radiating from a color charge
interact with each other and contract into a string (Fig. 1.4). The resulting one-
dimensional Laplace equation has as solution a potential increasing linearly with
separation distance r [13],

Vq(r)∼ r; (1.3)

providing an effective quark confinement.

Fig. 1.4 Lines of force between electric charges (a) and between color charges (b)
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Hadrons are color-neutral bound states of colored quarks, and dilute hadronic
matter is a color insulator. At a sufficiently high density of color charges, however,
we expect color screening to set in, and the resulting exponential damping of the
binding force will remove all long-range effects, for the confining potential of the
form (1.3) as well as for the Coulomb potential (1.1). We shall return to the relation
of quark deconfinement and color screening in much more detail later on; here we
only note the general idea [14] that color screening will eventually transform a color
insulator into a color conductor, turning hadronic matter into a quark plasma. The
transition from insulator to conductor by charge screening in atomic physics is a
collective effect, and we thus also expect something like a phase transition at the
point of plasma formation in QCD.

Besides deconfinement, i.e., the decoupling of quark binding by color screening,
we expect a further transition to occur with increasing density. When atomic matter
is transformed from an insulator into a conductor, the effective mass of the conduc-
tion electrons undergoes a change. In the insulator, the mass of the electrons in the
atoms which make up the material is just the physical electron mass. In the conduct-
ing phase, however, the electrons acquire an effective “in-medium” mass different
from the actual physical mass. The other conducting electrons, the periodic field of
the charged ions and the lattice vibrations combine to produce a mean background
field quite different from the vacuum. As a result, the unbound conduction electrons
in the metal obtain an effective mass different from the one they have in vacuum.
In a similar way, the effective mass of the quarks is expected to change between
the confined and deconfined phases. When they are confined in hadrons, the ba-
sic quarks acquire through “dressing” with gluons an effective “constituent quark”
mass of about 300 MeV: this is about 1/3 of the proton mass or about 1/2 of the
ρ meson mass (the pion has a more complex character, to which we shall return
later on). On the other hand, the basic quarks in the Lagrangian of QCD are almost
massless. This must mean that the mass of the constituent quarks in the confined
phase is generated spontaneously, through the confinement interaction itself. Hence
it is likely that when deconfinement occurs, this additional mass is “lost” and the
quarks revert to the intrinsic mass they have in the Lagrangian.

A shift in the effective quark mass is thus a further transition to look for as the
density of strongly interacting matter is increased. Massless fermions—the limiting
case of the light quarks in the Lagrangian—possess chiral symmetry: they can be
decomposed into independent left- and right-handed massless spin one-half parti-
cles, whereas in the case of massive fermions, these two “handed” components are
mixed. Therefore, in the limit of vanishing quark mass, the confinement interaction
must lead to a spontaneous breaking of this symmetry, which should be restored
in the deconfined phase. For this reason, the mass shift transition in QCD is often
referred to as chiral symmetry restoration.

With increasing density, we thus expect critical behavior to occur in strongly in-
teracting matter, leading to deconfinement and chiral symmetry restoration. In the
study of such phase transitions and of critical phenomena in general, thermody-
namics really goes beyond dynamics. In dynamical theories, we deal with isolated
systems, and when we combine many such systems to form bulk matter, the cor-
relations between distant constituents generally remain weak. But at critical points
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the constituents act in a highly collective fashion; the entire macroscopic system
becomes correlated, and, as a result, very small parameter changes can produce dra-
matic changes of state. Water changes little between 50 and 0.5°C; but decreasing
the temperature half a degree more turns it into ice. It is this new feature—collective
action leading to singular behavior for bulk systems—that makes the study of crit-
ical phenomena so interesting. Much of the attention in strong interaction thermo-
dynamics is thus centered on the different aspects of the transition from hadronic
matter to the quark-gluon plasma.

As we have seen, this transformation is expected to take place once the density
of matter has become high enough. Let us have a look at the actual density val-
ues involved and see how they compare to those of conventional condensed matter
physics. The lowest density we encounter in nature is that of interstellar space, with
about one nucleon per cubic meter; this is also the average density of our present
universe. In air at sea level, we already have 1026 nucleons/m3, and in dense atomic
matter, such as iron, the density increases to about 1031 nucleons/m3. Normal nu-
clear matter—the material a heavy nucleus is made of—contains 0.17 nucleons/fm3,
i.e., about 1044 nucleons/m3. Statistical QCD suggests, as we shall see later
on, that the transition to quark matter should take place for densities of around
2–3 hadrons/fm3, or some 2–3 × 1045 hadrons/m3. The regime we want to consider
here thus exceeds the density of normal nuclear matter by an order of magnitude
or more. Such densities existed in the universe shortly after the Big Bang; hence
our subject is the thermodynamics of primordial matter, of the state of our universe
before hadron formation occurred.

For the universe, the end of the quark matter era was the birth of the vacuum. In
quark matter, quarks are deconfined simply because they can never get far enough
away from other quarks and antiquarks to test the long range confining feature of the
interquark forces. The space between quarks is therefore not empty; it is more like
the interior of a nucleon or meson. One cannot remove quarks and antiquarks and
still have the same interquark space. Only when quark matter becomes sufficiently
dilute to force quarks and antiquarks to combine to nucleons and mesons, there ap-
pears between these hadrons truly empty space, space which can become arbitrarily
big without having to change: the physical vacuum.

In non-relativistic physics, a density increase is generally related to compression.
In the relativistic regime of high energy strong interactions, however, an energy
input will lead to the production of further hadrons and thus also to a particle density
increase. So to obtain higher densities, we can either increase the net baryon number
density (the number of nucleons minus that of antinucleons, per unit volume), which
for cold nuclear matter would just mean compression, or we can “heat” the system,
so that collisions between its constituents produce further hadrons. The possible
phases of strongly interacting matter thus have to be displayed in a phase diagram
as function of its temperature T and its overall baryon density nB . The latter is
generally specified by the corresponding baryochemical potential μ.

With this in mind, let us now return to the fate of the quarks after deconfine-
ment. When the hadrons are dissolved into their quark constituents, the liberated and
hence now colored quarks could still interact with gluons to retain a non-vanishing
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effective mass, i.e., remain massive constituent quarks [15]. This would mean that
deconfinement and chiral symmetry restoration do not coincide, since the remaining
quark mass implies a continuation of chiral symmetry breaking. We shall see later
on that, at least for low baryon density, this does not seem to occur: in that region of
QCD, the onset of conductivity coincides with the mass shift of the constituents, just
as it does in QED. However, the region of high baryon density and low temperature
remains even today the terra incognita of QCD, whose possible structure continues
to inspire much speculation.

On the one hand, here the liberated quarks might retain their mass for a certain
range of baryon density, which would lead to a phase of unbound massive quarks.
It is even conceivable that the quark triplets in nucleons, once deconfined, choose
to recombine into massive colored quark pairs, locally bound bosonic “diquarks”.
Hence the massive quark phase could exhibit a structure similar to hadronic matter,
with massive quarks as the ground state and diquarks as higher excitations [16].

On the other hand, diquarks are bosons, and, as such, at very low temperature
they can form a Bose condensate. In atomic physics this happens when conduction
electrons in a low temperature medium couple to form bosonic Cooper pairs; these
condense and thus lead to superconductivity. So diquarks could play the role of
Cooper pairs in QCD and condense into a color superconductor. The possibility of
such color superconductivity has been studied in recent years in considerable detail
[17–19].

Putting these concepts together, we obtain a speculative phase diagram of
strongly interacting matter which shows a four-phase structure, with one confined
and three deconfined states, as illustrated in Fig. 1.5. Along the μ axis, for T = 0,
we are compressing cold nuclear matter; for μ= 0, along the T axis, we are heat-
ing matter of vanishing overall baryon density, containing mesons together with
an equal number of baryons and antibaryons. For low T and μ, we have hadronic
matter as confined phase. Then deconfinement sets in, resulting at high tempera-
tures in a phase consisting of unbound colored quarks and gluons, the quark-gluon
plasma. For increasing baryon density at low temperatures, again we will eventually
reach color deconfinement. But now the liberated quarks may retain their mass for
a while, and they can moreover form colored bosonic diquarks; at very low temper-
ature, these diquarks could condense to form a color superconductor. Heating such
a superconductor would melt the condensate, just as it does for a normal supercon-
ductor, and we recover either the massive quark phase or the quark-gluon plasma,
both as normal color conductors. The determination of the corresponding “critical”
curves, i.e., of the values Tc and μc for which the different transitions take place, is
one of the main topics of statistical QCD, and we shall return to it in detail in the
next chapters. We have written “critical” in quotation marks, since it has turned out
that the transitions in question do not necessarily correspond to singular behavior
of the partition function, even though thermodynamic observables quite generally
show a very rapid change at some “pseudo-critical” point. The actual nature of the
transition is thus another aspect to which we have to return in detail.

We have already noted that quark matter made up the early universe. Since dense
nuclear matter forms the interior of neutron stars, it is also conceivable that such
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Fig. 1.5 A speculative phase diagram for strongly interacting matter

stars have quark cores. So far, however, the observed features of neutron stars seem
to be accountable without invoking quark matter formation. The big bang was long
ago, and neutron stars are far away. Is there some way to study strong interaction
thermodynamics here and now? Can we create a quark plasma in the laboratory?
The rapid growth which the field has experienced in the past two decades was to
a very large extent stimulated by the idea that high energy nuclear collisions will
produce droplets of strongly interacting matter—droplets large enough and long-
lived enough to allow a study of the predictions which QCD makes for macroscopic
systems. Moreover, it is expected that the conditions provided in these interactions
will suffice for quark plasma formation. Hence the study of matter under extreme
conditions has today a strong and multi-faceted experimental side; this, in turn, has
stimulated much of the subsequent theoretical developments.

The relevant experiments were initially denoted as ultra-relativistic nucleus-
nucleus collisions; they are often also called heavy ion collisions, though not quite
correctly: an ion fully stripped of its electrons is a nucleus. The studies began at
Brookhaven National Laboratory (BNL) near New York and at the European Or-
ganisation for Nuclear Research (CERN) in Geneva around 1986/87. The first col-
lisions had light nuclei (oxygen, silicon, sulphur) hitting heavy targets (gold, ura-
nium), since light ions could be dealt with using injectors already existing at BNL
and CERN. The successful analysis of these experiments provided the basis and
motivation for the construction of new injectors of truly heavy nuclei, gold at BNL
and lead at CERN; they came into operation in the middle 1990s. These early fixed
target experiments were carried out at a center of mass energy of around 5 GeV per
nucleon-nucleon collision at the BNL-AGS and around 20 GeV at the CERN-SPS.
At the turn of the millennium, the first dedicated nuclear accelerator, the Relativistic
Heavy Ion Collider RHIC, started taking data at BNL, with a center of mass energy
a factor ten higher, at 200 GeV per nucleon-nucleon collision. And at present, the
Large Hadron Collider LHC at CERN is beginning to provide data with yet another
factor of ten higher center-of-mass energy, eventually going up to 5500 GeV, or
5.5 TeV, for nuclear collisions.
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The work of the different experimental groups working at these facilities has
provided an immense wealth of data, and there is little doubt today that in such
collisions comparatively large systems are formed, of higher energy density than
ever before studied in the laboratory. The detailed analyses of the results have also
shown, that a number of new features arise which go well beyond standard thermo-
dynamics. Questions of non-equilibrium aspects, of thermalization, evolution and
expansion, cooling, flow and many more make a direct application of equilibrium
strong interaction thermodynamics anything but straightforward. Any attempt to in-
clude these topics here in a comprehensive way seems beyond the scope of the book,
and moreover our views here are still so much “under construction” that I simply
would not dare to try. My aim is rather to present as clearly and comprehensively as
possible the concepts, methods and results of the equilibrium thermodynamics ob-
tained from QCD as the basic theory. These certainly must form the ultimate basis
also for the motivation and the understanding of nuclear collision results. In the final
three chapters, I then shall address some of the more general problems which arise
when one tries to use high energy collisions as a tool to produce a strongly inter-
acting medium. For me, the basic question is whether the systems produced in such
collisions are something we can call matter, in the sense of the word used in sta-
tistical physics. For further forages into this new terrain, I refer to several excellent
textbooks [20–25].
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Chapter 2
The Physics of Complex Systems

Great fleas have little fleas
Upon their backs to bite ’em.
And little fleas have lesser fleas,
And so ad infinitum.
And the great fleas themselves, in turn,
Have greater fleas to go on,
While these again have greater still,
And greater still, and so on.

Augustus de Morgan (1801–1871)
(paraphrasing Jonathan Swift)

In the first section of this chapter, we summarize the basic concepts of critical behav-
ior in thermodynamics, using the simplest spin system (Ising model) as illustration.
In the second section, we discuss the geometric critical behavior obtained in the
formation of clusters of diverging size (percolation).

2.1 Critical Behavior in Thermodynamics

Phase transitions are common everyday occurrences. We are all familiar with the
evaporation or the freezing of water, the melting of ice. We know that also metals can
melt, that iron can be magnetized, that certain conductors become superconducting
at low temperature. Nevertheless, phase transitions have for a long time remained
difficult, if not impossible, to treat in physics, because they deal with complex sys-
tems which cannot be reduced to a sum of more elementary ones. The ‘divide and
conquer’ method so successful in most other branches of physics breaks down here,
so that new forms of analysis were needed. These were developed only in the past
fifty years or so, on a conceptual and analytical level (renormalization group theory)
as well as in numerical studies (computer simulation), which really became effective
only with the advent of high-performance computers. It thus seems worthwhile to
spend a little time on the basics of critical behavior in complex systems. For a more
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extensive treatment of this topic, several excellent textbooks and surveys are now
available; see, e.g., [1–5].

At the transition point, a macroscopic system realizes, so to speak, just how big
it is, and hence it refuses to be treated there as just a sum of little systems. For most
conditions, a given constituent of a thermodynamic system is correlated only to that
of a comparatively small number of other, nearby constituents. At the point of a
continuous phase transition, however, it becomes aware of all others; the correla-
tion length reaches the size of the system and hence diverges in the thermodynamic
limit, for an infinite system. In the case of a first order phase transition, there are
discontinuities at the critical point. The basic feature of all critical phenomena is
thus the singular or discontinuous behavior of observables. When water evaporates,
the specific volume of the liquid increases in a discontinuous fashion at the boil-
ing point: the temperature remains constant at T = Tc until all of the medium has
turned into steam, thus resulting in a first order (or discontinuous) transition with
a mixed phase of liquid and steam bubbles (see Fig. 2.1a). The onset of ferromag-
netism provides an example of a second order (or continuous) transition: here the
average value of the spin, the magnetization m(T ), remains identically zero up to
the Curie point T = Tc, and for T > Tc, it is non-zero, either up or down. Hence
m(T ) undergoes non-analytic behavior at Tc, and higher derivatives, such as the
magnetic susceptibility χ , diverge there (see Fig. 2.1b).

Fig. 2.1 Critical behavior for liquid-gas (a) and magnetization (b) transitions

Another, complementary approach starts from the observation that a solid has a
periodic structure, a certain microscopic order, which is lost when it melts. Similarly,
the magnetic state of a ferromagnet is due to its aligned spins; above the Curie point,
this alignment disappears. Thus there also seems to be an inherent relation between
critical behavior and changes in order or symmetry.

To consider critical behavior in more detail, we turn to what has become the
‘falling apple’ experience in statistical physics, the Ising model [6]. On each of the
Nd sites on a d-dimensional lattice, one has spins si = ±1 for all i = 1, . . . ,Nd . For
d = 2, one specific configuration is illustrated in Fig. 2.2. Between any two next-
neighbor spins, there is an interaction specified by J sisi+1. It is obviously possible
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to extend this model to include further, more long-range interactions, or have non-
uniform couplings Ji,j , but we shall here restrict ourselves to the original uniform
next neighbor version of the model.

Fig. 2.2 A two-dimensional Ising model configuration on a 5 × 5 lattice

In the presence of an external field H , the Hamiltonian H of the Ising model is
given by

H = −J
∑
{i,j}

sisj −H
∑
i

si; (2.1)

we recall that the sum in the first term runs over next neighbors only. With J > 0,
the energy of the system is lower if spins are aligned among themselves (sisj = 1);
it is also lowest if the spins align themselves with the external field H .

For H = 0, the system has a discrete, global symmetry: flipping all spins,

si → −si ∀i, (2.2)

leaves H invariant. It does not remain invariant, however, under the local transfor-
mation si → −si for some fixed i only. The transformation (2.2) is discrete, because
we only allow si = ±1 → si = ∓1, and not for example a continuous change in
the value of |si |. The two transformations si → si and si → −si form the discrete
group Z2, and hence one says that the Ising model is Z2-symmetric. The introduc-
tion of an external fieldH tends to align the spins in its direction and thereby breaks
this symmetry.

The thermal properties of the system are specified by the partition function

Z(T ,H,N)=
Nd∏
i=1

∑
si=±1

exp{−βH} =
Nd∏
i=1

∑
si=±1

exp

{
βJ

nn∑
i,j

sisj + βH
∑
i

si

}
,

(2.3)

where β−1 = T denotes the temperature of the system. SinceZ(β,H = 0) preserves
the Z2-symmetry of the Hamiltonian H(β,H = 0), the same holds for all quantities
obtained from it, such as the energy density

ε(β,H = 0)≡ −
(
∂ lnZ(β,H)

∂β

)
H=0

. (2.4)

It is thus tempting to ask if also the actual state of the system retains this symmetry
at all temperatures. Now the two-dimensional Ising model is exactly solvable, as
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shown by Onsager in 1944 [7], and we know therefore that this is not the case. At
sufficiently high temperatures, the average state of the system shares the symmetry
of the partition function: there is disorder, with on the average as many up as down
spins. However, at

T = Tc = β−1
c = 2 J

ln[1 + √
2] , (2.5)

where J is the coupling strength in Eq. (2.1), spontaneous symmetry breaking oc-
curs: below Tc, there is at least partial order, on the average there are either more up
or more down spins. The system chooses one of these two possibilities, and the Z2
invariance of the partition function only means that both are equally likely.

Once spontaneous symmetry breaking has taken place, we need an additional
parameter to specify the state of the system, to tell us whether it chose up or down.
This is provided by the average value of the spin, calculated over the entire lattice;
it serves as order parameter,

m(T ,N)= 1

Z(T ,N)

Nd∏
i=1

∑
i

[∑
i si

Nd

]
exp

{
βJ

nn∑
i,j

sisj

}
(2.6)

which is not invariant under spin flips, since for si → −si ∀i = 1, . . . ,Nd , we have

m(T ,N)→ −m(T ,N). (2.7)

As a consequence, its average must vanish when the state itself is symmetric,

m(T )

{= 0 for the symmetric disordered state,

	= 0 for the ordered state with spontaneously broken symmetry.
(2.8)

As mentioned, the Z2-symmetry of H(T ,H = 0) and Z(T ,H = 0) makes the up
and down directions of the magnetization equally likely; below Tc, the system
choses one or the other, making m(T ,H = 0) 	= 0. In the presence of an external
field H 	= 0, the magnetization never vanishes, m(T ,H 	= 0) 	= 0, indicating that
the Z2 symmetry now is always broken. The overall pattern for m(T ,H) is illus-
trated in Fig. 2.3.

In the thermodynamic limit N → ∞, the magnetization m(T ) is therefore not
analytic; at T = Tc , it is continuous, but it does not vary ‘smoothly’ with T , it has a
‘kink’, as seen in Fig. 2.1b:

m(T )

{∼ (Tc − T )β ∀T < Tc
= 0 ∀T > Tc.

(2.9)

This non-analytic or singular behavior is governed by the critical exponent β , which
specifies how m(T ) vanishes for T → Tc .

Other thermal observables of the system also exhibit singular behavior. Let us
define the (Gibbs) free energy as

F(T ,H)= −T logZ(T ,H) (2.10)

and as dimensionless measures of the temperature and the external field

t = T − Tc
Tc

h= H

T
. (2.11)
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Fig. 2.3 Magnetization in the Ising model without and with external field H

We then obtain as critical behavior for the specific heat

CH(t, h= 0)= T 2
(
∂2F

∂T 2

)
h=0

∼ |t |−α, (2.12)

for the spontaneous magnetization already discussed above

m(t,h= 0)= 1

Nd

(
∂F

∂h

)
h=0

∼ |t | β with t < 0, (2.13)

for the susceptibility shown in Fig. 2.1b

χT (t, h= 0)=
(
∂m

∂h

)
H=0

∼ |t |−γ , (2.14)

and for the magnetization on the critical isotherm

m(t = 0, h)= 1

Nd

(
∂F

∂h

)
t=0

∼ h1/δ, (2.15)

defining the set α, β , γ , δ of global critical exponents, which specify the critical
behavior of the system as a whole. In addition to these global exponents, one also
considers two local ones, defined in terms of the correlation function �(r) between
two spins separated by a distance r . A rather general form for �(r) is given by

�(r, t)∼ e−r/ξ

rp
, (2.16)

where ξ is the correlation length, with the exponents ν and η defined by

ξ ∼ |t |−ν (2.17)

for t → 0 and

p ≡ d − 2 + η, (2.18)

at t = 0, i.e., when only the power-law part of the correlation function � remains.
The correlation length ξ specifies how far spins can ‘see’ each other, and at the
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critical point, it becomes infinite. In other words, for t 	= 0, the correlation length
is finite and provides a dimensional scale, beyond which spins do not know of each
other; hence the system can be decomposed into a sum of independent subsystems
of size ∼ ξ2, or more generally ξd for systems of d space dimensions. At t = 0,
ξ diverges, there is no more scale, all spins are correlated, and hence the system
cannot be split into independent subsystems. The critical exponent η is related to
the fractal behavior at the critical point; it corresponds to the fact that the surface of
a correlation domain in a d-dimensional space has a dimension larger than d − 1.

The relation between the correlation function and the free energy F(t, h) is best
seen in the case of the Ising model. In the exponent of the partition function, we
have a term h

∑
i si ; the derivative of F(t, h) with respect to H at H = 0 gives us

the spontaneous magnetization. If we now replace this by local field interactions,∑
i hisi , then we can write the magnetization as

m(t,h= 0)=
∑
i

mi(t, h= 0)= 1

Nd

∑
i

(
∂F

∂hi

)
hi=0

. (2.19)

The second derivative leads to

〈sisj 〉 = 1

Nd

(
∂2F

∂hi∂hj

)
hi=hj=0

. (2.20)

From this, we can define the connected correlation function

�i,j (t, h= 0)= 〈sisj 〉 − 〈si〉〈sj 〉; (2.21)

it provides a measure of the interaction between two spins at sites i and j . Averaging
�i,j over all lattice configurations with fixed separation i − j = r then leads to
�(r; t).

Why does criticality result in singular behavior of the thermodynamic observ-
ables? The answer for the thermal systems we have studied so far is given by the
fact that the phase transition is determined by the onset of spontaneous symmetry
breaking, which is an “either-or” phenomenon, not something smooth or gradual.
You cannot break symmetry “a little”. Equivalently, the correlation length diverges,
since now every spin is connected to all others.

There are several reasons why critical exponents are an extremely fruitful way of
addressing critical behavior. In condensed matter physics, they describe observables
in the vicinity of Tc , where the singular part tends to dominate and hence is most
readily measurable. Such measurements resulted in the remarkable observation that
the behavior of quite different systems, with quite different critical temperatures, can
nevertheless be described in terms of the same critical exponents. That suggested
that these exponents are of a more universal nature. This conjecture was supported
by a number of relations between the exponents, obtained through rather general
thermodynamic considerations. Such “scaling laws” have in the past four decades
found a theoretical basis in renormalization group theory [8, 9].

The basic idea of scaling and renormalization is that sufficiently near the critical
point of a continuous transition, the only relevant scale is the correlation length,
which diverges for t → 0. It is therefore the dimensional scale in terms of which we
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should express all the observables which show singular behavior, and that will then
automatically relate critical exponents. To illustrate this, consider the correlation
function of two spins on the critical isotherm. On one hand, from Eqs. (2.16)–(2.18),
it will vanish at large distances as r2−d−η for t → 0; on the other hand, it then
becomes the product of two spin averages, m2. We thus have

r2−d−η ∼m2 ∼ |t |2β, (2.22)

and if we now set r ∼ ξ ∼ |t |−ν , we obtain with

β = ν(d + η− 2)/2 (2.23)

one of the mentioned relations between critical exponents. In a similar manner, one
finds three further relations,

νd = (2 − α), (2.24)

γ = ν(2 − η), (2.25)

βδ = ν(2 + d − η)/2, (2.26)

so that, given the space dimension d , apparently only two of the six exponents α,
β , γ , δ, η and ν remain as independent quantities. Since all the thermodynamic
observables also depend on two variables, the temperature t and the external field h,
this does not seem accidental, and renormalization group theory shows that it is not.

Imagine that we change the basic length scale R of our system from R to bR,
where b is a constant factor. If we want the physics to remain invariant under such
scale changes, then both t and h will have to change accordingly. We thus require
that the transformation

r → r ′ = b r (2.27)

leads to corresponding transformations

t → t ′ = byt t and h→ h′ = byhh, (2.28)

with some constant exponents yt and yh. Consider then a thermodynamic function
�(t,h). The function� will itself have a certain dimension RdF , where dF depends
on the quantity considered. Our scale invariance condition thus becomes

�(t,h)= b−dF �
(
t ′, h′)= b−dF �

(
byt t, byhh

)
. (2.29)

For the correlation length ξ at zero field we have ξ ∼ |t |−ν , which with

ξ(t)= b ξ(byt t), (2.30)

leads to

yt = 1/ν. (2.31)

In a similar way one obtains

yh = d − β/ν. (2.32)

With the help of the relations mentioned above, all other exponents can be expressed
in terms of yt and yh as well; we leave this as an exercise. The critical behavior of the
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system is therefore completely determined by these two scaling exponents required
for temperature and external field.

To illustrate what we have just discussed, we return to the two-dimensional Ising
model, which, as mentioned, can be solved exactly [7]. The resulting critical expo-
nents are listed in Table 2.1; the specific heat diverges logarithmically at t = 0, so
that the corresponding critical exponent formally becomes zero. It is readily verified
that the exponents satisfy the scaling relations (2.23)–(2.26) and that they lead to the
basic exponents yt and yh also listed in the table.

Table 2.1 Critical exponents for the d = 2 Ising model

α β γ δ η ν yt yh

0 (log) 1/8 7/4 15 1/4 1 1 15/8

The symmetry properties of the underlying dynamics thus simplify considerably
the classification of the critical behavior of different systems. No matter what their
nature is (magnetic systems, fluid systems, gauge theories), if they have a continuous
phase transition, two critical exponents determine the behavior in the vicinity of the
transition point. If these two are the same for two systems, then the critical behavior
of these systems is the same. The universality we had encountered above can thus
be made quite precise, and one in fact defines as a universality class the set of all
systems with the same critical exponents. In contrast, the value of the transition
temperature is not at all universal—it depends on the details of the dynamics and
even on the lattice geometry (e.g., square vs. triangular).

Let us summarize these results. Thermodynamic critical behavior (for simplic-
ity, for continuous transitions) means an onset of spontaneous symmetry breaking,
which leads to singular behavior of the partition function and hence of thermody-
namic observables. Characteristic critical exponents then define universality classes
of different systems sharing the same critical behavior.

2.2 Cluster Formation and Percolation

The critical behavior we have discussed so far was determined by the dynamics
and the resulting symmetry of the interacting many-body system. For constituents
which have an intrinsic scale, be it as spatial size or through an interaction range,
there is a more general geometric form of critical behavior: the formation of infinite
connected clusters or networks. The transition of such a system from a disconnected
to a connected medium is denoted as percolation. For introductions to this topic, see
[1–5]; more complete presentations are given in [10–12].

For the simplest example of percolation, we turn once again to the two-
dimensional square lattice and treat it as a board for a game like Go. We place stones
on randomly chosen sites and consider the size of the clusters formed by adjacent
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occupied sites. Such clusters are said to percolate if they connect two opposite sides.
In Fig. 2.4, we show two configurations on an R2 lattice with R = 9. In (a), the oc-
cupied sites form only isolated clusters, while in (b) the cluster consisting of filled
circles spans the system: there is percolation. The density of occupied sites, i.e., the
number of occupied sites N divided by the lattice size, n≡N/R2, determines when
percolation starts; this critical percolation density np is defined in the limit of both
N and R becoming infinite. For some simple cases, it can be calculated analytically;
otherwise, it has to be determined through numerical studies. Site percolation on a
two-dimensional square lattice leads to np = 0.59±0.01 [13]. In other words, when
somewhat more than half the sites are occupied, there is percolation.

Fig. 2.4 Site cluster configurations on a 9 × 9 lattice

Another interesting alternative is to establish random connections (bonds) be-
tween adjacent sites, as shown in Fig. 2.5. If these bonds were metallic and we
introduce a voltage difference between opposite sides, then current will begin to
flow at the percolation point. In contrast to the site percolation case, this bond per-
colation problem in two dimensions is exactly solvable, and the critical percolation
density is np = 1/2 [13, 14].

Fig. 2.5 Bond cluster configurations on a 9 × 9 lattice

To show that percolation does not require a discrete lattice basis, we turn to the
continuum percolation of disks in two dimensions, sometimes poetically referred
to as “lilies on a pond” (see Fig. 2.6). Here one distributes small disks of area a =
πr2 randomly on a large surface A= πR2, R� r , with overlap allowed. With an
increasing number of disks, clusters begin to form. If the large surface were water
and the small disks floating water lilies: how many lilies are needed for a cluster to
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connect the opposite sides, so that an ant could walk across the pond without getting
its feet wet? GivenN disks, the disk density is n=N/A. Clearly, the average cluster
S(n) size will increase with n, and there will be a critical value np at which the
cluster spans the pond.

Fig. 2.6 Lilies on a pond

The critical density for the onset of continuum percolation has been determined
in numerical studies for a variety of different systems. In two dimensions, disks
percolate [13] at

np = ηp

πr2
� 1.13

πr2
, (2.33)

i.e., when we have a little more than one disk per unit area. Because of overlap, at
this point the pond is not yet covered completely by lilies. In fact, one can show
quite generally (for all space dimensions) that the “filling factor” [15]

φp = 1 − exp{−ηp} (2.34)

gives the fraction of the area covered by discs or of the volume covered by spheres;
the percolation threshold ηp of course does depend on the space dimension. Hence
for our present case, d = 2, at percolation only 68% of A is filled, 32% remains
empty. We therefore emphasize that np is the average overall density for the onset
of percolation. The density in the largest and hence percolating cluster at this point
must evidently be equal to or larger than np/0.68 � 1.66/πr2; numerical studies
show [16]

ncl
p = ηcl

p

πr2
� 1.72

πr2
. (2.35)

In two dimensions, we moreover have a special situation: when our ant can walk
across, a ship can no longer cross the pond, and vice versa. This “fence effect” no
longer holds for d > 2.

For d = 3, the critical density for the percolation spheres is [13]

np = ηp

(4π/3)r3
� 0.34

(4π/3)r3
, (2.36)

with r denoting the radius of the little spheres now taking the place of the small
disks we had for d = 2. At the critical point in three dimensions, Eq. (2.34) now
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indicates that only 29% of space is covered by overlapping spheres, while 71%
remains empty, and here both spheres and empty space form infinite connected net-
works. The density ncl

p of the largest cluster of spheres at the percolation point must
also be much larger than 0.34/V0; in fact, we must have ncl

p ≥ np/0.29 � 1.2/V0.
For any dimension, we can thus specify the onset point of percolation in two

distinct ways: globally, by giving the critical overall density, or locally, by specifying
the critical density of the largest cluster at the percolation point [16]. Both ηp(d)
and ηcl

p (d) depend on the dimension of the underlying space. Since the number of
nearest neighbors increases with d , ηp decreases, because there are now more ways
of making connections; as a result, one obtains

lim
d→∞ηp(d)= 0. (2.37)

In other words, the higher the dimension, the more dilute is the system at the per-
colation point. To estimate the density of the percolating cluster, we use the filling
factor, dividing the percolation density by the fraction of occupied space,

ncl
p ∼ np

φp
= ηp

V0(d)

1

1 − ε−ηp . (2.38)

This gives us

lim
d→∞η

cl
p (d)= 1 (2.39)

in the limit of large dimensionality. So in this limit, continuum systems reduce to
what we had on the lattice: one constituent per intrinsic volume makes a percolating
cluster.

For d = 3, if we continue to increase the density of spheres, we reach a second
critical point at the overall density n̄p � 1.24/[(4π/3)r3], at which the vacuum
stops to form an infinite network: now 71% of space is covered by spheres, and for
n > n̄c, only isolated vacuum bubbles remain. A characteristic feature of percolation
in d ≥ 3 dimensions is thus the existence of two percolation thresholds. The first
(often called “wet”) is the percolation of occupied sites or bonds, or of spheres in
the continuum case. The second (“dry”) refers to the percolation of empty sites or
bonds, or the percolation of empty space in the continuum form. For np < n < n̄p ,
there is percolation for both occupied and empty space. Living creatures benefit
much from this feature, since it allows both nerves and blood vessels to span the
entire body without crossing each other.

The striking feature in all percolation phenomena is that the cluster size does not
grow monotonically with the density of constituents; it grows in a very sudden way,
as illustrated in Fig. 2.7 for the two-dimensional disk case. As n approaches some
“critical value” nc, S(n) suddenly becomes large enough to span the pond. In fact,
in the limit N → ∞ and A→ ∞ at constant n, both S(n) and dS(n)/dn diverge
for n→ nc: we have percolation as a geometric form of critical behavior.

As in the case of thermal phase transitions, there are many well-known every-
day examples of transitions of percolation nature: the gelatinization involved in the
making of pudding or the boiling of an egg, the onset of conductivity in random
networks (sometimes compared to an “ant in a labyrinth”), and many others [10].
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Fig. 2.7 Cluster size vs. density

Instead of spontaneous symmetry breaking, the essential feature now is the spon-
taneous onset of global connectivity, the transition from disconnected to connected
large-scale systems. And again, the singular behavior arises because connection is
also an “either-or” phenomenon: you cannot connect things “a little”.

To specify the functional form of the critical behavior involved, we consider the
probability P(n) that a given constituent (site, bond or disk) is in the infinite cluster.
Then

P(n)

{= 0 for all n < nc

∼ (n− nc)β for n→ nc from above

}
(2.40)

constitutes the order parameter for percolation and vanishes for n→ nc from above
as specified by the critical exponent β . The average cluster size (excluding the infi-
nite cluster for n > nc) diverges as

S̃(n)� |n− nc|−γ (2.41)

and corresponds to the susceptibility in thermodynamic systems. Other observables
as well show singular behavior specified by critical exponents, so that we can define
universality classes also for geometric critical behavior [10, 13]. And again, for a
given space dimension d , a variety of different systems, including the site, bond and
continuum percolation cases mentioned here, lead to the same exponents, connected
by scaling relations. For d = 2, these are again analytically calculable, and we list
them in Table 2.2. For their precise definition, we refer to the listed general refer-
ences [1, 11, 13]; α, β and γ characterize the behavior of the moments of the cluster
size distribution. The basic exponents for percolation are the one governing the clus-
ter size divergence, ν, and another, the dimension df , determining the “surface” of
the diverging cluster,

df = d − β

ν
. (2.42)

The latter gives for d = 2 the value df = 91/48 � 1.9 for the perimeter, instead of
the geometric result ds = 1, so that the size of the clusters is fractally increased.
This is a reflection of the fact that at the critical point, the “coast line” becomes
scale invariant, having the same structure for all resolution scales. It never becomes
smooth and so it always remains of a higher dimension.
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Table 2.2 Critical exponents for d = 2 percolation

α β γ δ ν df

−2/3 5/36 43/18 91/5 4/3 91/48

We have here discussed percolation assuming randomly distributed constituents
(sites, bonds, disks or spheres); however, the form of the distribution law is not es-
sential for the approach as such—one can as well study percolation using a thermo-
dynamic distribution function, or any other distribution pattern for the constituents.

A perhaps more crucial aspect is the definition of what one calls a cluster. To
illustrate the point, let us look in a little more detail at the relation between thermal
and geometric critical behavior. This question has been a challenge to statistical
physics for a long time; already in 1939 Frenkel [17] suggested that domain fusion
and spontaneous symmetry breaking should define the same transition temperature.
The point was taken up again later [18], and finally resolved for simple spin models
[19–21]. We therefore return briefly to the d = 2 Ising model and consider clusters
and cluster growth for spins whose distribution is governed by the Ising partition
function. In the case of vanishing external field, H = 0, it was found that defining
a cluster simply as a set of adjacent up or down spins did not lead to the correct
thermodynamics. The problem is that thermodynamic clusters consist of correlated
constituents, while geometrically, some uncorrelated spins may just happen to point
in the same direction. So the “actual” dynamical cluster size has to be smaller than
that determined by simple geometric distributions; one has to introduce correlations.

The difficulty was overcome for spin systems by showing that it is possible to
define clusters by combination of site occupations with bond couplings, which then
allowed a correct account of the Ising dynamics [19, 20]. Once this is done, the per-
colation of spin clusters and the onset of magnetization are just two different ways
of formulating the same transition phenomenon; they lead to identical results for the
critical behavior, both for the critical exponents and for the critical temperature.

Fig. 2.8 Ising model percolation
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For H 	= 0, there is no more thermal transition: the magnetization never vanishes
(see Fig. 2.3), the symmetry is always broken and the partition function analytic
[22]. Nevertheless, the spin cluster percolation transition persists between high and
low T for all values ofH . The vanishing of the percolation order parameter as func-
tion of H,T thus defines a geometric transition line Tp(H), the ‘Kertész line’ [23]
(see Fig. 2.8). Hence percolation and the resulting divergence of cluster variables
can occur even when the partition function is non-singular. In other words, the set
of all geometric transitions is more general and contains much more than just the
conventional thermal phase transitions: there are more critical phenomena in nature
than the partition function knows of.

Summarizing percolation, we note that it corresponds to the onset of infinite clus-
ter formation, leading to singular behavior of geometric observables. This behavior
is specified through critical exponents defining universality classes.

2.3 Conclusions

We have discussed two types of transitions between different states of many-body
systems. Thermodynamic phase transitions are generally related to a change of sym-
metry (spontaneous symmetry breaking), which in the large volume limit leads to
singular behavior of the partition function. Geometric critical behavior (percola-
tion) occurs at the point of formation of infinite connected systems; in the large
volume limit, it can, but need not result in a non-analytic partition function. A gen-
eral scheme of critical behavior, including both these types, seems to be still lacking.
It might be that singularities in sub-leading terms of the partition function (surface
tension contributions) provide key to the needed generalization [24].
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Chapter 3
The Limits of Hadron Physics

Wer bist denn du, der du nicht weißt,
daß Phantásien grenzenlos ist?

Michael Ende, Die unendliche Geschichte

[But who are you, if you do not know
that Phantásia has no limits?

Michael Ende, The Never-Ending Story]

Here we show that very general aspects of strong interaction physics, such as the
intrinsic size of hadrons or the abundant production of resonances of ever increasing
masses, can lead to a breakdown of the resulting thermodynamics above a certain
temperature. This had inspired Hagedorn to propose an ultimate temperature for
hadron physics; today, we interpret it as the first hint for a phase transition to a new
state of matter.

3.1 Introduction

In the last chapter, we saw that critical behavior, signalling the transition of a system
from one state to another, is generally associated with a discontinuous or singular
functional form of some physical observable. Given a complete dynamical theory, it
might be possible to derive the complete equation of state, including all phase transi-
tions. But even if we only have an incomplete picture of the fundamental dynamics,
we can still look for singular or discontinuous behavior indicating the limit of a
certain state of matter. To pass beyond such a singularity, we would then in general
need further information about the underlying dynamics. Even without any knowl-
edge of the quark substructure of hadrons, we can thus look for critical behavior of
strongly interacting matter, making use only of some phenomenological description
of hadronic interactions. Indications for such behavior were in fact found well be-
fore QCD had been developed; they have in many ways formed our thinking about
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dense matter and help us in understanding the results of QCD calculations. We shall
therefore start by looking at critical features in hadron physics.

The beginning of statistical hadron physics is marked by three papers. In 1950,
Fermi [1] considered an ideal gas of pointlike hadrons. A year later, Pomeranchuk
[2] noted the effect of finite hadronic size in limiting the density of such a hadronic
medium. Then in 1965, Hagedorn [3, 4] introduced resonance formation as the es-
sential phenomenological input from strong interaction dynamics. Soon afterwards,
the dual resonance model [5–7] provided dynamical support for the role of reso-
nances in determining the interaction. The resulting resonance patterns were found
to lead to an upper limit for the temperature of hadronic matter [8]; we now consider
this to be the transition point to the quark-gluon plasma [9]. By correctly selecting
the relevant features of hadron physics, Pomeranchuk and Hagedorn had discovered
that the concept of hadronic matter breaks down above a certain temperature. Let us
consider these limits of hadron physics.

3.2 The Hadronic Size

In the context of strong interaction physics, Pomeranchuk [2] seems to have been
the first to note a rather general limiting feature for media consisting of spatially
extensive constituents. For an ideal gas of N identical hadrons, each of which has
an intrinsic volume V0, conceptual difficulties arise once the density n = N/V of
the system exceeds n = 1/V0; V denotes the overall system size. In the case of
hadrons composed of quarks, we had already noted this problem in Chap. 1, but it
persists in general. If the hadrons have a repulsive hard core, they will refuse to be
compressed to arbitrarily high densities; a state of dense packing will be the limit.
But even before that, one encounters a so-called “jamming” transition, separating a
medium of freely roaming constituents from a state where they mutually block each
other and thus restrict the mobility. We shall return to this situation in Chap. 7. If the
hadrons are fully permeable, then we eventually have arbitrarily many pions in the
characteristic volume of a single pion. To avoid this difficulty, Pomeranchuk argued
that a hadron gas makes sense only as long as there is at least sufficient volume to
give one V0 to each hadron. We thus obtain

nc � 1

V0
= 3

4πR3
h

(3.1)

as the upper limit for the density of hadronic matter.
The partition function for an ideal gas of identical (point-like or fully permeable)

hadrons (“pions”) of mass m0, is given by

lnZ0(T ,V )= V

(2π)3

∫
d3p exp

{−
√
p2 +m2

0/T
}

= V Tm2
0

2π2
K2(m0/T ), (3.2)
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whereK2(x) is the modified Bessel function of the second kind (the Hankel function
of pure imaginary argument). From this, the density is obtained through

n(T )=
(
∂ lnZ0(T ,V )

∂V

)
T

. (3.3)

We want to apply the bound (3.1) to determine the limit on the temperature; for this,
we have to relate Rh and m0. Following the idea of Yukawa, the range of the strong
force is generally taken to be determined by the lowest mass, so that Rh � 1/m0.
Inserting this into Eq. (3.1), the limiting temperature is obtained as the solution of
the equation n(Tc)= nc, or(

Tc

m0

)
K2(m0/Tc)= 3π

2
, (3.4)

giving Tc � 1.4m0. Using the pion mass, this leads to Tc � 190 GeV, a value quite
compatible with what is found today in the thermodynamics based on QCD. In view
of the simplistic “derivation” of Eq. (3.1), that is perhaps even surprising. It would
seem more reasonable to use percolation arguments to determine the limit, and we
shall turn to such an approach in the next chapter.

3.3 The Hadronic Resonance Spectrum

The most important observation in particle physics in the 1960s was that the num-
ber of different species of so-called elementary particles, hadrons and hadronic reso-
nances, seemed to grow without limit. Hadron-hadron collisions produced more and
more resonant hadronic states of increasing masses. This phenomenon triggered two
different theoretical approaches.

The more traditional idea, following the classical atomistic reduction as pursued
since antiquity, proposed that there must be a smaller number of more elementary
objects, which then bind to form the observed hadrons as composite states. This
approach, as we know today, ultimately led to the quark model and to quantum
chromodynamics as the fundamental theory of strong interactions; it thus proved
once more to be most successful.

A second, truly novel approach asked what such an increase of states would lead
to in the thermodynamics of strongly interacting matter [3, 4]. Both the question and
its answer, the existence of an ultimate temperature of hadronic matter, are due to
Hagedorn. We know today that strong interaction thermodynamics leads to a transi-
tion in which hadronic matter turns into a plasma of deconfined quarks and gluons.
Statistical QCD describes this quantitatively and provides a detailed description of
the limits of confinement. Let us see here how it comes about based on only hadron
dynamics.

Most of the stable hadrons observed in high energy collision experiments are the
decay products, often through decay chains, of more massive resonant states. The
quark infrastructure of hadrons provides an understanding of these resonances as
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higher excitations of the basic qq̄ or qqq bound states, and in fact the wealth of
measured states can be accounted for in terms of the predicted excitations.

With higher mass, the observed resonances generally become broader, and so
empirically there is a limit to how far up in mass we can determine a resonance
structure. Nevertheless, in view of color confinement and the negative outcome of
all free quark searches, it seems not unreasonable to assume that the excitation spec-
trum will continue indefinitely, even though overlap will wash out peaks and make
the spectrum look more and more smooth with increasing mass. Hence it is natural
to ask how the number ρ(m) of degenerate states for a resonance of given mass m
depends on m.

In the low mass regime, we observe that increasing m increases ρ(m); for fixed
internal quantum numbers (isospin, baryon number, strangeness, etc.), such an in-
crease arises simply from the (2J + 1) spin degeneracy for states of higher angular
momenta. It is in fact observed that resonances of angular momentum J follow a
Regge pattern

α′m2
J − α0 = J ; J = 0,1,2,3, . . . , (3.5)

where α0 specifies the ground state and the universal Regge slope α′ � 1 GeV−2 the
growth rate. Moreover, higher mass states can decay into lower mass states, and if
we were to count these as degenerate states of the same resonance, this would lead
to a further, even stronger increase of ρ(m).

It therefore seems natural to ask for a guiding principle to determine ρ(m) as
function of m for all m. There exist two quite distinct approaches for this: the sta-
tistical bootstrap model [3, 4] and the dual resonance model [5–7]. Fortunately they
provide essentially the same answer—presumably because both are based on the
idea of a partition problem of self-similar structure. This means that a given entity is
subdivided into smaller entities, and these in turn into still smaller, and so on, with
the same composition law at each step.

3.3.1 Partitioning Integers

In our specific case, we thus consider a resonance of large mass m, decaying into
n lighter states m1,m2, . . . ,mn, each of which again decays into lighter states, and
so on (see Fig. 3.1 for the case n= 3). Self-similarity means that the decay vertex
V (m;m1, . . . ,mn), determining the branching pattern, has the same functional form
at each step. An example of a pattern not of this type would be a decay in which the
first step leads to 21 = 2 “children”, each of which then produces 22 = 4, those again
23 = 8, and so on. In this case, counting the number of decay products would allow
a specification of the decay generation, with 2n “children” for the nth generation.
Self-similar patterns are the same for each generation. We will begin by considering
a simple and exactly solvable case of such a branching pattern, which will turn out
to be quite relevant for our problem.
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Fig. 3.1 Self-similar decay or composition chain

Consider the number p(n) of ordered partitions of an integer n into integers [10].
To illustrate: for n= 3, we have the ordered partitions 3, 2+1, 1+2, 1+1+1, so that

p(n= 3)= 4 = 2n−1. (3.6)

Similarly, n= 4 gives the partitions 4, 3+1, 2+2, 2+1+1, 1+3, 1+2+1, 1+1+2,
1+1+1+1, leading to

p(n= 4)= 8 = 2n−1. (3.7)

This solution can be shown to hold in fact for all n [10], i.e.,

p(n)= 2n−1 = 1

2
exp{n ln 2}. (3.8)

This is a self-similar form: it specifies the number of ordered ways of partitioning
any integer into integers, independent of its value, and it grows exponentially with n.

We can obtain this result also by solving what is referred to as a “bootstrap equa-
tion” for a function ρ(n) of an integer n≥ 2,

ρ(n)=
n∑
k=2

1

k!
k∏
i=1

ρ(ni)δ

(∑
i

ni − n
)
. (3.9)

This is a way to impose self-similarity, by requiring ρ(n) to consist of an arbitrary
number of objects of the same structure, ρ(ni), with 1 ≤ ni < n. The name “boot-
strap” refers to the idea that the form of ρ is determined without a further external
input; it pulls itself out of Eq. (3.9) just as the legendary Baron Münchhausen ex-
tracted himself out of a swamp by pulling on his own bootstraps. The solution is
ρ(n)= zp(n), with a normalization z determined by

exp(z/2)− 1 − z= 0, (3.10)

giving z� 2.51. This illustrates in a particularly simple case the relation between a
bootstrap equation and a partition problem.

The calculation of the number q(n) of unordered partitions of an integer n (i.e.,
not counting permutations, so that for n= 3 we have only three instead of four pos-
sibilities: 3, 2+1, 1+1+1) is more difficult and can be solved only asymptotically
[11]; it leads to

q(n)= 1

4
√

3n
exp{π√2n/3}

[
1 +O

(
ln n

n1/4

)]
(3.11)
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and will play a role in our subsequent considerations of the dual resonance
model.

3.3.2 The Statistical Bootstrap Model

The first calculation of a self-similar resonance spectrum was given by the statistical
bootstrap model of Hagedorn [3, 4], who had assumed that “fireballs consist of
fireballs, which consist of fireballs, and so on. . .”. The defining equation for ρ(m)
thus is

ρ(m,V0)= δ(m−m0)+
∑
N

1

N !
[
V0

(2π)3

]N−1 ∫ N∏
i=1

[
dmi ρ(mi) d

3pi
]

× δ4
(∑

i

pi − p
)
, (3.12)

where m0 is the lowest hadron mass, presumably the pion, and V0 = 4πr3
0/3 speci-

fies the composition volume determined by the range r0 of the strong interaction. It
can be solved analytically [12], giving an exponential growth,

ρ(m,V0)∼m−3εm/TH , (3.13)

with the coefficient TH determined as solution of the equation

(m0r0)
3
(

2

3π

)(
TH

m0

)
K2(m0/TH )= 2 ln 2 − 1, (3.14)

in terms of two parameters r0 and m0. Here again K2(x) is the Hankel function of
pure imaginary argument. Hagedorn had assumed that the interaction range r0 is
specified with the inverse pion mass as scale, r0 � 1/m0. This leads to

TH � 150 MeV (3.15)

for the coefficient governing the exponential increase. It should be emphasized,
however, that this is just one possible way to proceed. In the limitm0 → 0, Eq. (3.14)
gives

TH =
[

3π

4
(2 ln 2 − 1)

]1/3 1

r0
(3.16)

where r0 as above denotes the range of strong interactions. With r0 � 1 fm, we then
have

TH � 195 MeV. (3.17)

From this it is evident that the exponential increase persists in the limit of vanishing
ground state mass; in fact, its coefficient is only weakly dependent on m0, provided
the strong interaction range r0 is kept fixed.
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3.3.3 The Dual Resonance Model

The most complete description of hadron interactions is provided by the dual res-
onance model [5–7], which assumes that the analytical structure of the scattering
amplitude can in all channels be determined as the sum over all relevant resonances
given by the Regge pattern (3.5). For the direct (s) channel of two incident hadrons,
this is illustrated in Fig. 3.2, where the intermediate sum refers to all allowed res-
onance states and the final sum to the different possible decay channels. Extending
this description to multiparticle reactions requires that each resonance of mass m,
as defined by a Regge trajectory

α′m2 − α0 = n, n= 1,2, . . . , (3.18)

has a degeneracy determined by the unordered number of partitionings of n. Hence
we obtain from Eq. (3.11) that [14]

ρ(m)�
(√

2

m

)(
1

6

)5/4 1

[α′m2]3/4
exp

{
2π

(
2α′/3

)1/2
m
}
. (3.19)

We again have an exponential increase, but now determined by the resonance growth
rate α′, instead of the interaction range r0 of the bootstrap model. Numerically, with
α′ = 1 GeV−2, one finds

TV = 1/
[
2π

(
2α′/3

)1/2]� 195 MeV (3.20)

for the coefficient governing the exponential increase of the level density ρ(m).

Fig. 3.2 Scattering amplitude as sum over resonances [5–7]

The dual resonance model is closely related to the string model [13], in which the
different oscillation modes of strings correspond to the different resonance states,
and the string tension σ , with

σ = 1

2πα′ , (3.21)

replaces the Regge slope α′. Both models have been formulated also for dimensions
d higher than four, and this is found to lead to a slight decrease of the coefficient TV ,
with values as low as 150 MeV for d = 7 [14].
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3.4 The Ideal Resonance Gas

From the previous considerations, we conclude that a self-similar resonance pat-
tern leads to an exponential growth of the resulting spectrum, with a coefficient
TH � TV � 150–200 MeV. What effect does this have on the thermodynamics of
an ideal gas of such resonances?

We begin by recalling the partition function for a relativistic ideal gas of identical
point-like particles of massm0, enclosed in a volume V at a temperature T . We shall
be concerned with comparatively high temperatures and therefore adopt Boltzmann
statistics. The grand canonical partition function is then defined as

Z0(T ,V )=
∞∑
N=2

1

N !
{

1

(2π)3

∫
V

d3x

∫
d3p exp

{−
√
p2 +m2

0 /T
}}N

, (3.22)

which becomes

Z0(T ,V )� exp

{
V

(2π)3

∫
d3p exp

{−
√
p2 +m2

0/T
}}= exp

{
V

(2π)3
φ0(T )

}
.

(3.23)

Here the ground state momentum factor is

φ0(T )≡
∫
d3p exp

{−
√
p2 +m2

0/T
}= 4πTm2

0K2(m0/T ). (3.24)

For small values of the argument, i.e., for temperatures high enough to neglect the
mass, the Hankel function becomes

K2(x)= 2

x2

[
1 +O(x2)]. (3.25)

Using this and

P(T )= 1

V
T lnZ(T ,V )� 1

π2
T 4, (3.26)

we get the familiar Stefan-Boltzmann form for the pressure of an ideal gas. The
logarithmic derivative of Eq. (3.22) with respect to T −1 yields the energy density of
an ideal gas,

ε(T )= −1

V

(
∂ lnZ(T ,V )

∂(1/T )

)
V

= T 2
(
∂ lnZ(T ,V )

∂T

)
V

� 3

π2
T 4; (3.27)

the corresponding particle density is

n(T )=
(
∂ lnZ(T ,V )

∂V

)
T

� 1

π2
T 3 (3.28)

and

ω� 3T (3.29)

gives the average energy per particle. Hence an increase of the energy density of the
system has three consequences: it leads to
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• a higher temperature,
• more constituents, and
• more energetic constituents.

We now want to modify this ideal gas form to include the most important feature of
strong interaction physics: the abundant formation of resonances in hadron-hadron
interactions.

In statistical physics, there is a simple way to do this [15, 16]: one considers an
ideal gas whose constituents are not only the basic particles of mass m0, but also
all possible resonances of different masses m they can form. The relative statistical
weights ρ(m) of the different constituents thus introduced have to be provided by
some compositional or dynamical input. Any interaction between the basic particles
is in this way removed at the expense of an increase in the number of different
constituents. Crucial for this procedure is the specific form of the relative resonance
weights.

The partition function for a relativistic ideal gas of point-like constituents of dif-
ferent masses m, contained in a volume V at a temperature T , is given by

Z(T ,V )= exp

{
V

(2π)3

∫ ∞

mo

dm ρ(m)

∫
d3p e−

√
p2+m2/T

}

= exp

{
V T

2π2

∫ ∞

mo

dm ρ(m)m2K2(m/T )

}
. (3.30)

Here m0 is the stable lowest mass particle (“pion”), and we have again taken Boltz-
mann statistics. The form (3.30) corresponds to a system of constituents without
intrinsic discrete degrees of freedom (such as charge, isospin, or baryon number),
which could lead to conserved quantum numbers. Different resonances are thus dis-
tinguished only by their masses. The function ρ(m), the resonance level density,
determines the relative statistical weights of the different constituents. If we take

ρ(m)= δ(m−m0), (3.31)

we recover the ideal gas form (3.22) for one type of particle only. The presence
of further resonance states with masses m > m0 reflects the effect of the interac-
tion, and the level density ρ(m) should in principle be provided by the underlying
dynamics.

We have seen above that self-similar models, based on resonance composition
[3, 4] or on resonance dynamics [5–7], lead to a resonance spectrum growing expo-
nentially with mass

ρ(m)∼m−aebm, (3.32)

where b−1 � 0.15–0.20 GeV is determined by the basic empirical parameters of
hadron physics (hadronic interaction range or Regge slope).

While the exponential increase in m arises quite generally from the underlying
self-similar partition problem, the power a of the polynomial factor is found to de-
pend on the details of the approach. In particular, it turns out to be proportional to
the space dimension of the partition problem [14, 17]. What then are the thermody-
namic consequences of such a level density?
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If we have a relativistic gas of only one type of particle as in Eq. (3.22), then
an increase of energy density ε was seen to produce an increase of both the num-
ber of constituents and of their kinetic energy. The increase of the kinetic energy
is reflected by a rising temperature; eventually it results in the Stefan-Boltzmann
behavior ε ∼ T 4. Together with the corresponding number density n∼ T 3, this im-
plies that the energy per constituent grows linearly with temperature, ε/n ∼ T . If,
on the other hand, we have an exponentially rising level density, then any increase
in energy density is strongly favored to go into the formation of heavy resonances,
which have the highest statistical weight. We thus expect that the level density (3.32)
will lead to a much slower increase of ε with temperature. Let us consider this in
more detail.

Inserting the level density (3.32) into the partition function (3.30) yields

lnZ(T ,V )∼ V T
∫ ∞

m0

dm m2−aebmK2(m/T ). (3.33)

Using the asymptotic form of Kn(x) for large argument,

Kn(x)=
(
π

2x

)1/2

e−x
[
1 +O(n2/x

)]
, (3.34)

we obtain

lnZ(T ,V )∼ V T 3/2
∫ ∞

m0

dm m(3/2)−aem(b−(1/T )). (3.35)

For T > 1/b, this expression clearly diverges; in other words, TH = 1/b constitutes
an upper bound for the temperature which a resonance gas can attain. The detailed
behavior of the system at T = TH depends on the power a in Eq. (3.32). From
Eq. (3.35), the energy density becomes

ε(T )∼ V T 7/2
∫ ∞

m0

dm m(5/2)−aem(b−(1/T )), (3.36)

while

CV (T )=
(
∂ε

∂T

)
V

∼ V T 3/2
∫ ∞

m0

dm m(7/2)−aem(b−(1/T )) (3.37)

gives the specific heat at constant volume.
For a = 3, the partition function itself exists at TH , but the energy density ε(T )

diverges there, as illustrated in Fig. 3.3. In such a case, only an infinite energy den-
sity would bring the system to the temperature TH . Hagedorn, using the analytical
solution [12] with a = 3, therefore concluded that TH ∼ 0.15 GeV would be the
ultimate temperature of all matter [3, 4]. The physical reason for such behavior is
evident: the dramatically rising number of high mass resonances effectively absorbs
any energy put into the system and thereby prevents a further increase in temper-
ature. The different particle number degrees of freedom simply overwhelm their
kinetic counterparts.

Ten years later, however, Cabibbo and Parisi [9] pointed out that the basis for
this conclusion was the power a rather than the exponential increase inm. The latter
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Fig. 3.3 Energy density ε(T ) and specific heat Cv(T ) of a Hagedorn-type resonance gas

certainly makes TH a critical temperature in the sense that some derivative of lnZ
with respect to T will diverge as T → TH . But for a > 7/2, also the energy density
remains finite at TH , and hence values higher than εH ≡ ε(TH ) could perfectly well
exist and lead to temperatures higher than TH . For example, with a = 4, ε(TH )
is finite, but the specific heat CV (T ) diverges at TH as (TH − T )−1/2, while for
a = 5, even the specific heat remains finite at TH . The cases a = 4 and 5 are also
shown in Fig. 3.3. The singular behavior obtained for different powers a can in
fact be studied in terms of the usual critical exponents (see Chap. 2), specifying the
behavior of the thermodynamic observables at the critical point T = TH [17]. The
critical structure of the system defined by Eq. (3.35) is discussed in more detail in
the Appendix.

In general, matter can thus exist for T > TH ; it is only the specific form of
hadronic level density (3.32) which ceases to be meaningful at TH . The system
can undergo a phase transition there into a new state of matter, in which a par-
tition function based on Eq. (3.32) is no longer valid. Quantum chromodynamics
today tells us that this new state, beyond the limit of hadron thermodynamics, is a
plasma of deconfined quarks, and the critical temperature TH is the deconfinement
point.

We have seen here that an exponentially growing mass spectrum ρ(m) ∼
exp(bm) leads to a singular structure of the partition function and hence to criti-
cal thermodynamic behavior at TH = 1/b. It should be emphasized that this was
obtained for pointlike or permeable hadrons. If the hadrons have an intrinsic hard-
core volume not accessible to other hadrons, then this leads to an excluded volume
effect in the partition function. In the particular case that the hard-core size of a
resonance grows linearly with its mass, the singularity associated to the exponential
resonance growth can no longer be reached [18]. In other words, the box is now
“full” before the temperature can attain the value TH = 1/b.
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3.5 The Speed of Sound in a Resonance Gas

We conclude this chapter with an interesting consequence of the critical behavior in
hadronic matter as T → TH [19]. The speed of sound in a gas at constant volume is
defined as

c2
s =

(
∂P

∂ε

)
V

=
(
∂P

∂T

)
V

/(
∂ε

∂T

)
V

= s(T )

CV (T )
, (3.38)

where s = (ε + P)/T = (∂P/∂T )V denotes the entropy density of the system and
CV (T ) the specific heat at constant volume. For the ideal gas of pointlike “pions”
of mass m0, this leads to

1

c2
s

= 3 + m0
2K2(m0/T )

4T 2K2(m0/T )+m0TK1(m0/T )
(3.39)

for the speed of sound. Making use of the small argument limit of the Hankel func-
tion,

Kn(x)= 2n−1(n− 1)!
xn

[
1 −O(x2)], (3.40)

shows that for T → ∞, we get c2
s → 1/3. The large argument limit (3.34) shows

that for T → 0, c2
s vanishes linearly with T . The overall behavior for such a pion

gas is shown in Fig. 3.4. For a Hagedorn resonance gas with a = 4 in the spectrum
(3.32), the specific heat diverges at TH , while the entropy density remains finite.
Hence now the speed of sound vanishes at TH . This is another facet of the reduction
of kinetic energy in a gas when more and more resonance states come into play:
as we approach the limit of hadronic matter, the medium becomes increasingly in-
ert.

Fig. 3.4 The speed of sound in an ideal pion gas compared to that in an ideal Hagedorn resonance
gas (a = 4)

To obtain an explicit form of the speed of sound in a Hagedorn gas, we
parametrize the resonance spectrum (3.32) with a = 4 as

ρ(m)= δ(m−m0)+Am−4 exp{m/Tc}θ(m− 2m0), (3.41)
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where the constant A determines the normalization of the resonance contributions
relative to the ground state “pion”. Using this form, we obtain

1

c2
s

=
(

3 + 1

2π2T s(T )

[
3m4

0K2(m0/T )+A
∫ ∞

2m0

dm exp{m/Tc}K2(m/T )

])
,

(3.42)

with

s0(T )= 3m2
0T

2π2

[
4K2(m0/T )+

(
m0

T

)
K1(m0/T )

]
(3.43)

and

s(T )= s0(T )+ AT

2π2

∫ ∞

2m0

dm m−2 exp{m/Tc}
[

4K2(m/T )+
(
m

T

)
K1(m/T )

]

(3.44)

for the entropy density of the pion gas and the Hagedorn gas, respectively. Eval-
uating this expression leads to the resonance gas form of c2

s shown in Fig. 3.4, in
comparison with the corresponding pion gas result. The normalization A was here
fixed by specifying the energy density at T = TH .

It should be emphasized that the singular behavior we have considered here is
a direct consequence of the exponentially rising level density ρ(m). It is of course
possible to study an ideal resonance gas for which ρ(m) grows slower, and this is in
fact the case in the resonance gas codes based on the states listed in the Particle Data
Group compilation (we shall return to such models in Chap. 11). For example, the
spin degeneracy alone will lead to ρ(m)∼m2, and such a system will never show
critical behavior. The exponential increase arises only if we count all possible decay
channels as degenerate states.

3.6 Conclusions

Hadron thermodynamics, based on phenomenological hadron dynamics, defines its
own limits. It does so without any information about the quark infrastructure of
hadrons. The intrinsic size of hadrons or self-similar dynamics of hadronic reso-
nance formation result in critical behavior at some temperature TH .

Since hadron thermodynamics provides its own limits, it cannot tell us what hap-
pens beyond these limits. To study the high density state of matter, we have to in-
troduce new dynamics governing that state. In the next chapter, we will therefore
consider simple models providing a two-phase structure of strongly interacting mat-
ter.
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Appendix: The Critical Structure of the Hagedorn Gas

Using the large argument form of the Hankel function, the partition function for an
ideal resonance gas with an exponential mass spectrum ρ(m) ∼ m−b exp{m/TH }
(“Hagedorn gas”) can be written as

lnZ(T )= c0V (Tm0)
3/2

∫ ∞

1
dx x3/2−b exp{−xτ } = V (Tm0)

3/2F(τ), (3.45)

where x =m/m0,

τ ≡m0

(
1

T
− 1

TH

)
=m0

TH − T
T TH

, (3.46)

c0 is a dimensionless constant, and

F(τ)≡
∫ ∞

1
dx x3/2−b exp{−xτ } (3.47)

a dimensionless function of τ . As above, m0 denotes the ground state hadron
(“pion”), and to assure a finite pressure and energy density at T = TH , we choose
b > 7/2. In that case, both F(0) and its first derivative are finite at τ = 0, with

F(0)= 1

b− 5/2
,

(
dF

dτ

)
τ=0

= − 1

b− 7/2
. (3.48)

The second derivative, however, becomes for 9/2> b > 7/2(
d2F

dτ 2

)
=
∫ ∞

1
dx x−(b−7/2) exp{−xτ } = τ−(9/2−b)�(b− 5/2, τ ), (3.49)

where �(r, τ ) denotes the incomplete Gamma function. At the critical point τ = 0,
this gives �(b−5/2,0)= �(b−5/2), so that d2F/dτ 2 diverges there as τ−(9/2−b),
and all higher derivatives diverge with correspondingly higher powers. Since τ in-
creases when T decreases, all odd derivatives with respect to τ introduce a minus
sign compared to derivatives with respect to T . Hence F(T ) and all its derivatives
with respect to T are positive.

As a result, for 9/2> b > 7/2, pressure and energy density are finite and positive
at TH , and approaching TH , both have positive gradients. The specific heat and all
higher derivatives diverge at TH , the specific heat

CV ∼ τ−α (3.50)

with the critical exponent 0< α = (9/2 − b) < 1. For a discussion of further critical
exponents for the Hagedorn resonance gas, see [17].
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Chapter 4
From Hadrons to Quarks

The time has come, the walrus said,
to talk of many things:
of shoes, and ships, and sealing wax,
of cabbages, and kings,
and why the sea is boiling hot,
and whether pigs have wings.

Lewis Carrol, Through the Looking Glass

In this chapter, we look at some simple models to illustrate how a phase transition
from hadronic matter to a quark-gluon plasma can occur. First we determine when
hadrons start forming clusters which can be considered as quark matter. After con-
sidering the thermodynamics of an ideal hadron gas and of an ideal quark-gluon
medium, we introduce bag pressure and baryon repulsion as interaction features
to specify under which conditions strongly interacting matter prefers to consist of
hadrons and when it wants to turn into a plasma of unbound quarks and gluons.
Finally we show that also a simple string model yields localized hadrons at low
density, while at high density color charges can move around freely by changing
partners. In all cases, very basic physical notions are found to lead to a two-phase
structure of matter.

4.1 Cluster Formation in Strongly Interacting Matter

Hadrons are extended objects, but they are composed of quark constituents. We had
argued in Chap. 1 (see Fig. 1.2) that hadronic matter should turn into quark matter
once the hadronic constituents begin to overlap sufficiently. At what density does
that happen? We had seen in Chap. 2 that this is a question of quite general nature,
answered by percolation theory.

For our specific problem, hadron clustering, we consider the percolation of
spheres of size V0 in three-dimensional space, allowing overlap of the different
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spheres [1]; here V0 = (4π/3)r3
0 is the volume of a hadron and r0 � 0.8 fm its

radius. Numerical studies [2], as mentioned, show that hadron percolation occurs at
the critical density

nh � 0.34

V0
� 0.16 fm3. (4.1)

Beyond this density, the overlapping hadrons form a connected medium spanning
the system. However, because of the overlap, most of space is at this point still
empty. To quantify this, we recall Eq. (2.34), which tells us that 71% of space re-
mains empty. Hence the density inside the percolating cluster is much higher and
with the result

ncl
c � 1.5

V0
� 0.70 fm−3, (4.2)

we have on the average three hadrons in the volume of two. This local density is al-
most three times standard nuclear matter density, and it is therefore indeed tempting
to consider such clusters as the expected new form of strongly interacting matter.

Such dense matter begins to appear when the overall density has reached the
value (4.1). As the overall density is increased further, the remaining fraction of
empty space decreases from its percolation value of 71%, until at the second “dry”
percolation point, for

nv � 1.24

V0
� 0.58 fm3, (4.3)

the vacuum is reduced to 29% of space. However, now there exist no longer any
connected paths of hadronic size, i.e., a hadron could not freely move from one side
of the box to the other. In Fig. 4.1, we illustrate the configurations corresponding to
Eqs. (4.1) and (4.3), projecting the three-dimensional case onto two dimensions.

Fig. 4.1 Schematic illustration of the onset of hadron percolation (a) and the disappearance of
vacuum percolation (b)

The density region

nh � 0.16 fm3 ≤ n≤ nv � 0.58 fm3 (4.4)
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is thus something like a geometric “mixed” phase. If we consider the connected
(percolating) cluster at nh as the first occurrence of a deconfined quark-gluon plasma
formed through hadron fusion, then with increasing density more and more of space
becomes “colored”, until at nv the physical vacuum makes its last appearance as a
large-scale feature.

4.2 Ideal Quark-Gluon Plasma and Ideal Hadron Gas

In QCD, the basic units of matter are spin one-half quarks, coming in three intrinsic
color degrees of freedom; in other words, quarks can take on three different values
of the fundamental charge of the strong interaction. Hadrons are color-neutral bound
states of these quarks. The quark baryon number is 1/3, so that mesons are quark-
antiquark pairs and baryons three quark bound states. To account for all further ob-
served intrinsic quantum numbers of hadrons—commonly denoted as strangeness,
charm, bottom and top—we need in addition six flavor degrees of freedom. Each
quark thus has a color label α = 1,2,3 (the red, green and blue of Chap. 1) and a
flavor label f = 1,2, . . . ,6. The quarks of the different flavors are usually denoted
by u (up), d (down), s (strange), c (charm), b (bottom), and t (top). Including an-
tiquarks and the two spin orientations, this gives us a total of 2 × 2 × 3 × 6 = 72
possible quark degrees of freedom.

To obtain correctly the measured mass values of all hadronic states, it is neces-
sary to associate different rest mass values to the different flavors of quarks. The
masses of the usual hadrons arise essentially from the kinetic energy of their almost
massless quark constituents; but for the heavy quark resonances discovered in the
last thirty years, this does not work. To give an example: the lowest vector meson
state constructed from u and d quarks, the ρ meson, has a rest mass of 0.77 GeV,
while the lowest charmonium vector meson J/ψ , made up of a cc̄ pair, has a mass
of 3.1 GeV. All mass differences can be accommodated if we give the light u and
d quarks small masses (10 MeV or less), but much larger masses to the other quark
flavors. For the s quark we need a mass around 0.15 GeV, for the c quark 1.5 GeV,
and for the b quark 4.5 GeV. Note that these mass values are parameters determined
through hadron spectroscopy; they are not measurable quantities. The t quark was
first discovered not so long ago and is very much heavier still, around 180 GeV.
The occurrence of such non-vanishing quark masses is certainly a flaw in the beauty
of QCD, since they have to be put in as outside parameters; in an ideal theory of
strong interactions, all hadron masses would arise as “binding energies” of mass-
less quarks, without the need of further dimensional parameters. The conventional
hadrons, made up of almost massless u’s and d’s, come quite close to this. But
the fact that quarks actually are not massless and that they are required to exist
in six different flavors, of different masses, can certainly not be understood within
strong interaction physics. The theory unifying strong and electroweak forces, the
“standard model”, does determine the specific decay modes of the different hadron
species; but even there the origin of the different masses so far remains an open
question.
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Because of the hierarchy of quark masses, we can for the purpose of thermody-
namics very often restrict ourselves to just u and d quarks. The statistical weight
determined by the Boltzmann factor, exp(−mq/T ), gives for the temperature range
of greatest interest, up to about 0.2 GeV, a strange quark contribution of still about
50%, while c quarks are already below the 0.1% level. It is of course unproblematic
to include more quark species; however, for simplicity we shall here consider for
the moment only u and d , which we shall treat as massless. This then leaves us with
12 thermodynamically equivalent quark degrees of freedom, plus 12 more for the
antiquarks.

We had already noted that the interaction between quarks is in QCD mediated by
gluons—massless vector fields, the counterpart of the photons in quantum electro-
dynamics (QED). In contrast to the electrically neutral photons, however, the gluons
carry an intrinsic color charge; this allows a quark of a given color to be transformed
into another color by emission of a single gluon. To achieve this, there are eight dif-
ferent gluonic color states. Since gluons, with the transverse polarization of massless
vector fields, have two spin orientations, we get in total 2 × 8 = 16 gluon degrees of
freedom. Together with the 24 “massless” quark and antiquark states (72 if we in-
clude all flavors), this completes our set of fundamental QCD constituents for strong
interaction thermodynamics.

In the limit of high density, we expect that the screening of the color charge
will turn strongly interacting matter into a gas of non-interacting colored quarks
and gluons, i.e., into an ideal quark-gluon plasma. The thermodynamics of such a
system is quite simple, as we shall now see. The basis for the calculation of all
thermodynamic observables is the partition function

Z(T ,μ,V )≡ Tr
{
e−(H−μN)/T }. (4.5)

Here T , μ and V denote the temperature, the “chemical” potential for the overall
baryon number and the volume of the system, respectively; H is the Hamiltonian,
N the operator for the net baryon number (number of baryons minus that of an-
tibaryons). The trace is to be carried out over all physical states possible inside the
volume V . In terms of the Gibbs potential Z(T ,μ,V ), the basic thermodynamic
observables are defined by

P = 1

V
(T lnZ) (4.6)

for the pressure,

S =
(
∂(T lnZ)

∂T

)
μ,V

(4.7)

for the entropy, and

NB =
(
∂ (T lnZ)

∂μ

)
T ,V

(4.8)

for the net quark baryon number. In terms of these quantities,

E = −PV + ST +μNB (4.9)

gives the overall internal energy of the system.
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For an ideal gas of vanishing overall baryon number density, μ= 0, the partition
function (4.5) can be calculated in the limit of m� T (see Appendix), giving

lnZB(T ,V )= π2

90
V T 3

[
1 − 15

4π2

(
m

T

)2

+O((m/T )4)
]

(4.10)

for bosons and

lnZF (T ,V )= 7

8

π2

90
V T 3

[
1 − 30

7π2

(
m

T

)2

+O((m/T )4)
]
. (4.11)

for fermions. Using these results, we can define

lnZ(T ,V )= db lnZB(T ,V )+ 2df lnZF (T ,V ) (4.12)

as the overall partition function of the ideal quark-gluon plasma at μ = 0; here db
and df denote the internal degrees of freedom for gluons and quarks/antiquarks,
respectively; the factor 2df in Eq. (4.12) takes into account that for μ = 0 quarks
and antiquarks contribute the same. With the two transverse spin degrees of freedom
for massless gluons, color SU(3) gives db = 2 × (N2

c − 1)= 2 × 8 = 16. Retaining
only the nearly massless u and d quarks, we have df = 2 × (Nf = 2)× (Nc = 3)=
12 (spin, flavor, color). The high temperature limit (m/T → 0) thus gives for the
Stefan-Boltzmann form of the QCD partition function

lnZq(T ,V )=
(

37π2

90

)
V T 3. (4.13)

With this we obtain

Pq = 37π2

90
T 4 � 4T 4 (4.14)

for the pressure,

εq = 37π2

30
T 4 � 12T 4 (4.15)

for the energy density, and hence

sq = 148π2

90
T 3 � 16T 3 (4.16)

for the entropy density sq = εq+P . If strongly interacting matter at sufficiently high
temperatures indeed becomes an ideal gas of quarks and gluons, then these results
give the asymptotic values of the corresponding thermodynamic observables.

At this point, let us note two features which hold in general for any ideal gas
of massless constituents and without conserved intrinsic quantum numbers. A very
useful quantity (and hence one to be encountered again many times) is the interac-
tion measure �(T )≡ (ε − 3P)/T 4. Using Eqs. (4.14) and (4.15), we find

�(T )= ε − 3P

T 4
= 0 (4.17)
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as a consequence of the absence of interactions for the massless constituents in the
system. From the grand canonical partition function (4.20) we can also obtain the
average density n of constituents,

n=
(
∂ lnZ

∂V

)
T ,μ=0

(4.18)

which in fact is just equal to (P/T ). As a result, the specific entropy, i.e., the entropy
per constituent, becomes

S

N
= s

n
= 4 (4.19)

for an ideal gas of massless constituents.
For μ 	= 0, but given massless, non-interacting bosons and fermions, Eq. (4.5)

can again be evaluated in closed form (see e.g. [3]), leading to

T lnZ(T ,μq,V )=
(
N2
c − 1

)(π2V T 4

45

)

+NfNc
(
V

6

)[(
7π2T 4

30

)
+μ2

qT
2 +

(
μ4
q

2π2

)]
, (4.20)

with Nc and Nf for the number of color and flavor degrees of freedom, as above.
Note that μq now denotes the baryochemical potential for quarks, i.e., of con-
stituents of baryon number 1/3. The density of strongly interacting matter, given
by n(T ,μq)= lnZ(T ,μq,V )/V , can thus be increased either through heating (in-
creasing T ) or through compression (increasing μq ).

After having considered the case μq = 0, we now turn to the other extreme, bary-
onic matter at T = 0. The system then contains no gluons and (choosing μq > 0) no
antiquarks. Hence we get

Pq = 1

2π2
μ4
q (4.21)

for the pressure,

εq = 3

2π2
μ4
q (4.22)

for the energy density, and

nq = 2

π2
μ3
q (4.23)

for the quark density; since quarks have a baryon number of 1/3, this gives

n
q
B = 2

3π2
μ3
q (4.24)

for the net baryon number density nqB = nq/3 of cold quark matter. The entropy
vanishes for T = 0. Equations (4.21)–(4.24) provide the basic thermodynamic ob-
servables for large μq , if cold nuclear matter at sufficiently high density becomes
quark matter.
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So far, we have treated strongly interacting matter at very high density, where
color screening was expected to produce a system of non-interacting quarks and glu-
ons. With decreasing density, i.e., for lower T and/or μq , the interaction between the
basic constituents of QCD becomes stronger, eventually hadron formation sets in,
and at sufficiently low densities, we expect to find a rather dilute and hence weakly
interacting gas of hadrons. For the low density limit, we thus need the thermody-
namics of an ideal hadron gas. Let us therefore now also consider the two extreme
cases, μ= 0 (meson gas) and T = 0 (cold nuclear gas), for this state of matter.

The partition function for an ideal gas of mesons is obtained immediately from
Eq. (4.20), if we consider only pions and assume that the temperature is high enough
to neglect the pion mass. We then have df = 0 and db = 3, corresponding to the
three pionic charge states, and obtain

Pπ = π2

30
T 4 � 1

3
T 4, (4.25)

sπ = 4π2

30
T 3 � 4

3
T 3, (4.26)

επ = π2

10
T 4 � T 4 (4.27)

for the pressure, the entropy density and the energy density of a pion gas, respec-
tively. Equations (4.25)–(4.27), together with (4.14)–(4.15), give us the expected
low and high temperature limits of strongly interacting matter at μ= 0; corrections
for finite constituent masses are in both cases obtainable through Eqs. (4.10)/(4.11).
The main observation to be made here is that if with increasing temperature the
system passes from a dilute pion gas to a dense ideal quark-gluon plasma, the quan-
tities P/T 4, s/T 3 and ε/T 4 grow by approximately a factor twelve. This just re-
flects the difference in the number of intrinsic degrees of freedom of the respective
constituents in the two limiting situations, with three different intrinsic pion states
and 37 effective degrees of freedom in a quark-gluon plasma containing massless
quarks and antiquarks of two different flavors.

For a system of nucleons at T = 0, but of a density high enough to neglect the
mass of the nucleons, we can again use Eq. (4.20) to obtain the relevant thermo-
dynamical quantities. With protons and neutrons of two spin orientations each, we
get

Pn = 1

6π2
μ4 (4.28)

for the pressure, and

εn = 1

2π2
μ4 (4.29)

for the energy density; the entropy again vanishes, while

nB = 2

3π2
μ3 (4.30)
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gives the net baryon number density. In Eqs. (4.28)–(4.30), the baryochemical po-
tential μ refers to the nucleons: it corresponds to the energy necessary to bring one
additional nucleon into the system. Since a nucleon consists of three quarks, we
have μ= 3μq in terms of the quark baryochemical potential μq .

The corresponding expressions for a non-vanishing nucleon mass M can also be
given in closed form (see [3]); in particular, we obtain

nB =
(

2

3π2

)(
μ2 −M2)3/2 (4.31)

for the baryon density of a cold nucleon gas, and

Pn =
(

1

6π2

){[
1 −

(
M2

μ2

)]1/2[
1 −

(
5

2

)(
M2

μ2

)]

+
(

3

2

)(
M

μ

)4

ln

[(
μ

M

)(
1 +

[
1 − M2

μ2

]1/2)]}
μ4 (4.32)

for the corresponding pressure.

4.3 Confinement and Bag Pressure

So far we have considered the thermodynamics of an ideal quark-gluon plasma
and of an ideal hadron gas, i.e., neglecting in both cases any possible interac-
tion. Now we know from general thermodynamic stability conditions that—given
a choice—a system will always be in that state for which the thermodynamic po-
tential � ≡ −T lnZ has a minimum; equivalently, it chooses the state of highest
pressure. How do the two states which we had looked at compare in this respect?
From Eqs. (3.17) and (3.27) we find at all temperatures

Pq

Pπ
� 12 (4.33)

for the ratio of pressures of the plasma with respect to the pion gas. This would
seem to indicate an intrinsic instability of conventional hadronic matter, in favor of
a quark-gluon plasma. Apparently there must be some essential interaction feature
which assures the existence of our hadronic world at conventional densities.1

It is the difference between the physical vacuum and the ground state in the de-
confined phase which constitutes this crucial missing feature. We had already noted
in Chap. 1 that the lowest possible state in deconfined QCD matter is in fact not

1It is a priori not impossible that quark matter might indeed be the thermodynamically stable form,
making our present universe just a metastable bubble in the true vacuum. The production of even a
drop of quark matter could then trigger the transition to the stable ground state. This would make
the attempt to create quark matter by nuclear collisions a most risky enterprise: we would not
be around to see the successful outcome. Fortunately, rate estimates of nucleus-nucleus collisions
based on cosmic ray studies indicate [4] that such collisions must have taken place sporadically in
the history of the universe, apparently without having disturbed the vacuum.
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the physical vacuum, in which only color-neutral objects can exist [5]. The bag
model of hadrons [6] provides a particularly good illustration of this feature and
introduces in a qualitative way some aspects we will later encounter again in sta-
tistical QCD. Let us therefore have a look at this model. It considers hadrons as
small bubbles—bags—within which an otherwise non-interacting quark-antiquark
pair or three quark system is confined. The confinement force is represented as a
pressure B , which the physical vacuum exerts on the region containing the quarks.
For a static hadron, this pressure must be just compensated by that of the quarks on
the bag surface. The rest mass Mn of a hadron therefore consists of two parts:

Mh = BVh + np0 =
(

4πR3
h

3

)
B + 2n

Rh
. (4.34)

Here the first term is the energy of the empty bag, which is just the difference in
energy density between physical vacuum and lowest state of QCD; V = 4πR3

n/3 is
the bag volume. The second term gives the kinetic energy npo of n massless quarks
and/or antiquarks, with p2

o − p2 = 0. By the uncertainty relation, |p| ∼ 1/Rh; the
factor 2 in Eq. (4.34) comes from the wave function of a quark inside a spherical
bag. Requiring the rest mass of the hadron to have a minimum (which is equivalent
to making bag pressure and kinetic energy of the quarks compensate each other),
we set

dMh

dRh
= 0 (4.35)

and thus get

Rh =
(
n

2πB

)1/4

. (4.36)

For a nucleon n= 3 and for a meson n= 2, so that we immediately obtain from this
the ratio of nucleon to meson radii,(

Rn

Rm

)
=
(

3

2

)1/4

� 1.11. (4.37)

Inserting Eq. (4.36) into (4.34), we find

Mh =
(

4πR3
h

3

)
B + (

4πR3
h

)
B

= 4

(
4πR3

n

3

)
B = 8

3

(
2πn3B

)1/4
, (4.38)

so that the mass of a hadron consists of three parts quark kinetic energy and one part
bag energy. As counterpart to the universal bag pressure B , Eq. (4.38) gives us

εh ≡
(
Mh

Vh

)
= 4B (4.39)

as the universal energy density of hadrons. From Eq. (4.38) we further obtain(
Mn

Mm

)
=
(

3

2

)3/4

� 1.36 (4.40)
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for the ratio of nucleon to meson mass. The bigger mass of the nucleon is accompa-
nied by a bigger radius (see Eq. (4.37)), so that the energy density of nucleons and
mesons is the same, as given by Eq. (4.39).

We note here that the ratios of nucleon to meson mass, Eq. (4.40), and of the
corresponding radii, Eq. (4.37), are given as absolute numbers, independent of the
value of B . Since the bag pressure is not really an observable quantity, this is a very
reasonable feature of the bag model—a feature which, as we shall see later on, is
a reflection of the fact that QCD does not contain any dimensional parameters and
hence predicts only ratios of observables.

Concerning the predicted numerical values of masses and radii, we have to note
that the bag model presented here is the very simplest form—it provides just one
type of baryon (a generic nucleon) and one type of meson (a generic ρ meson).
From Eq. (4.38) we get 1.36 for the ratio of nucleon to rho mass; experimentally
it is only 1.23. An even greater discrepancy arises for the (dimensionless) product
of nucleon mass and radius. From Eqs. (4.36) and (4.38), it is 8.0; the experimen-
tal value (averaging over nucleon and �(1236) mass) is around 5. Equation (4.36)
can be used to estimate the bag pressure; with 0.85 fm for the nucleon radius, we
obtain B1/4 � 0.2 GeV. The resulting “nucleon” mass is 1.9 GeV, while the exper-
imental average over nucleon and delta states is 1.2 GeV. The inclusion of angular
momentum effects, perturbative quark-quark interactions, etc., improves the model
and adds the fine structure necessary to get the level splitting for the observed nu-
cleon and meson states (see e.g. [7]). However, it can never provide a value of the
pion mass as low as the actual one; the reason for this is that the pion is only in
part a quark-antiquark bound state. Its “other” origin, as a Goldstone boson asso-
ciated to the approximate chiral symmetry of QCD, tends to make it massless, and
the observed value is a combination of both origins. We shall return to this topic in
Chap. 6.

The bag pressure thus plays an important role in obtaining a reasonable phe-
nomenological description of much of the hadron spectrum. If we really want to
compare the thermodynamics of non-interacting quarks and gluons with that of an
ideal meson gas, we also have to include the effect of the physical vacuum on the
plasma. Using the bag model, this means that the partition function of the quark-
gluon plasma system, Eq. (4.5), has to be replaced by

T lnZB(T ,μ,V )≡ T lnZq(T ,μ,V )−BV, (4.41)

taking into account the bag pressure B . This gives us

PB = Pq −B = 37π2

90
T 4 −B � 4T 4 −B (4.42)

instead of Eq. (4.14), thus reducing the “outward” kinetic quark-gluon pressure by
an “inward” pressure of the physical vacuum on the quark-gluon medium. The en-
ergy density now becomes

εB � 37π2

30
T 4 +B � 12T 4 +B, (4.43)
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instead of Eq. (4.16); the entropy density remains unchanged by such vacuum struc-
ture corrections. We also note that, with a finite difference between the physical
vacuum and the ground state of the deconfined matter phase, the high temperature
limits stay the same.

The comparison of pressures for quark-gluon plasma and pion gas at finite tem-
peratures looks quite different, once the bag pressure is included. In Fig. 4.2, we
show PB , from Eq. (4.42), and Pπ , from Eq. (4.25), as a function of T 4. At low
temperatures, the pion gas now gives the higher pressure; then there is a cross-over
when the two pressures become equal, at

Tc =
(

45

17π2

)1/4

B1/4 � 0.72B1/4, (4.44)

and after that, the quark-gluon plasma dominates. In terms of a bag model of
hadrons, we have for T < Tc isolated bags, i.e., hadrons, in which quarks and gluons
are confined to a restricted volume. For T > Tc, these bags fuse together into one
big bag in which quarks and gluons can move around freely [8].

Fig. 4.2 Pressure of an ideal gas of massless pions (Pπ ) compared to that of an ideal quark-gluon
plasma without (Pq ) and with (PB ) bag pressure

Since a physical system will aways choose the state of highest pressure, we ar-
rive at a two-state picture of mesonic matter. It arises from the competition of two
effects: the confining pressure of the physical vacuum reduces the pressure of the
quark-gluon state relative to that of a pion system, the higher number of intrinsic
degrees of freedom enhances it. At low temperatures, the first effect wins, at high
temperatures the second, and in between, we have—by construction—a first order
phase transition. To obtain a value for Tc in physical units, we have to relate B to
the hadron masses or radii. From Eq. (4.44) we get

Tc � 0.14 GeV, (4.45)

using B1/4 � 0.2 GeV obtained from a nucleon radius of 0.85 fm. This value of the
critical temperature is not at all unreasonable; it agrees quite well with the Hagedorn
temperature found in Chap. 2, and we shall later on get very similar results from
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Fig. 4.3 Energy density and pressure in an ideal gas model with bag pressure

statistical QCD. It is in fact surprising that the simplest form of the bag model does
so well on this.

The resulting behavior of the energy density is shown in Fig. 4.3. By construc-
tion, the transition is here of first order: at Tc, the energy density increases abruptly
by the latent heat of deconfinement, �ε. Using Eq. (4.44), its value is found to be

�ε = εqg(Tc)− επ (Tc)= 4B, (4.46)

so that it is determined completely by the bag pressure measuring the level differ-
ence between the physical and the colored quark-gluon vacuum.

The quantity�= (ε−3P)/T 4 was already introduced above as interaction mea-
sure; it is the trace of the energy-momentum tensor, and for an ideal gas of massless
constituents, it generally vanishes, as seen in Eqs. (4.14) and (4.15). However, in-
troducing the bag pressure as interaction effect into our model of the ideal plasma
of massless quarks and gluons, we find for T ≥ Tc

�= ε − 3P

T 4
= 4B

T 4
, (4.47)

again specified by the bag pressure and not zero. This is related to the so-called
trace anomaly and indicates the dynamical generation of a dimensional scale; we
shall return to it later on.

4.4 Nucleon Repulsion and Excluded Volume

What happens when the density of cold nuclear matter is increased, i.e., what is the
phase structure as a function of μ at T = 0? Let us first compare the pressures (4.21)
and (4.28). Making use of μn = 3μq , we find

Pq

Pn
= 1

27
. (4.48)
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Since the pressure of the confined state of nucleons far exceeds that of cold quark
matter, we should now expect nuclear matter to be the limiting high density state.
By using Eq. (4.28), we have neglected the nucleon mass, and that is for low values
of μn certainly not a good approximation. By using Eq. (4.21), we have also not
taken the bag pressure into account, again something not reasonable for low μq . But
inclusion of the nucleon mass or of the bag pressure does not change the asymptotic
result: for μ→ ∞, the nuclear matter phase always wins. The reason for this is
quite clear: at T = 0, the pressure is just the Fermi pressure for the ground state
of spin one-half particles, both for quarks and for nucleons. In the case of a quark
system, we can divide this pressure among 2 × 3 Fermi seas, corresponding to the
three quark color states of u and d quarks, and this leads at fixed μq = μn/3 to a
lower value than found for the nucleon system with the two Fermi seas of protons
and neutrons. In this case, the smaller number of degrees of freedom of the hadronic
state thus turns out to be an advantage.

Since we do expect that the system will be in a quark phase at sufficiently high
density [9, 10], we must again be ignoring some important interaction effect, and
such an effect indeed exists: in contrast to mesons, which attract each other to form
resonances, nucleons strongly repel each other at short distances, and this dynamical
repulsion must be included in our description [11]. In Eq. (4.28) we had assumed
that nucleons are arbitrarily compressible; Eq. (4.30) shows that the number of nu-
cleons per unit volume diverges when μn → ∞. Let us see what happens if we
give an intrinsic hard core volume Vhc to a nucleon. We first want to consider the
qualitative features of introducing nuclear repulsion and therefore again neglect the
mass of the nucleon. For N point-like nucleons, the hard core amounts to reducing
the available volume from V to (V −NVE), where VE is the effective volume per
nucleon in a state of random close packing. For spherical nucleons, this is found to
be VE � 2Vhc [12]. With such a restriction, the nucleon density is modified

Nb

V
→ NB

V −NBVE = nB

1 − nBVE = nb (4.49)

and hence we obtain

nB(μ)= nb(μ)

1 + nb(μ)VE (4.50)

for the density nB(μ) of hard-core nucleons in terms of the corresponding expres-
sion nb(μ) for point-like constituents. From Eq. (4.50) we see that now nB → 1/VE
when the density of point-like nucleons diverges, so that we never get more than one
nucleon per effective excluded volume. The corresponding expression for the pres-
sure becomes

PB = Pb

1 + nbVE . (4.51)

Equations (4.49) and (4.51) imply that the pressure of hard-core nucleons grows
less strongly with μ than that of point-like nucleons, due to the vanishing of the
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exclusion factor 1/(1 + nbVE). Using the ideal gas forms at T = 0 (see Eqs. (4.28)
and (4.30)) we obtain from Eqs. (4.50) and (4.51) for large μ

PB � μ

4VE
(4.52)

instead of Eq. (4.28). The pressure of a system of hard-core nucleons now falls for
large μ below that of the quark plasma. We thus get again a change of regimes: at
low density, the pressure is greater for the hadronic state and at high density for the
quark state. Hence the system will undergo a transition from nuclear matter to quark
plasma at the value of μ for which

PB(μ)= Pq(μ/3), (4.53)

and the presence of nuclear repulsion prevents a return to a hadronic state at high
pressure.

We note at this point that the derivation of the effect of a hard-core in a grand-
canonical treatment was in fact heuristic and only approximative. A correct treat-
ment [13] leads in addition to a shift of the baryochemical potential,

μ→ μB = μ− PB(μ)VE, (4.54)

which becomes approximately equal to μ only in the limit of small excluded vol-
ume VE → 0. In general, all nucleon observables become functions of the shifted
variable (4.54), such as Pb(μB) or nb(μB).

Moreover, for a detailed view of the transition region, our considerations up
to now are insufficient because we have neglected both the nucleon mass on the
hadronic side and the bag pressure in the quark state. Including the nucleon massM ,
we get on the hadronic side the baryon density

nB(μ)=
[(

3π2

2
(
μ2
B −M2

)3/2

)
+ VE

]−1

(4.55)

and a corresponding pressure PB(μ) specified by Eqs. (4.32) and (4.51). On the
quark matter side, the pressure becomes

PQ = 1

2π2
μ4
q −B = 1

2π2

(
μ

3

)4

−B, (4.56)

adding the effect of the bag pressure to Eq. (4.21). To determine the transition point,
we now have to equate the two pressures,

PB(μ)= Pb(μB)

1 + nb(μB)VE = 1

2π2

(
μ

3

)4

−B = PQ(μ), (4.57)

with μB given as a function of μ by Eq. (4.54). The solution of this equation gives
us the critical baryochemical potential μc(VE,B,M) for the transition from bary-
onic to quark matter at T = 0. The resulting functional behavior is schematically
illustrated in Fig. 4.4.

The pressure of nuclear matter vanishes for μ≤M ; hence the quark matter pres-
sure must satisfy Pq ≤ 0 in that region. This requires B1/4 ≥ M/[3(2π2)1/4] �
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Fig. 4.4 Transition between nuclear matter with hard core repulsion and quark matter with bag
pressure, at T = 0

0.15 GeV, which is in accord with spectroscopic estimates of the bag pressure.
The actual transition point depends quite sensitively on the values of the bag pres-
sure and the hard core. To illustrate, we choose Rb = 0.4 fm and hence get an ex-
cluded volume VE = 0.54 fm3; random dense packing thus implies a nucleon den-
sity ndp

R � 1.9 fm−3 or more than ten times standard nuclear density. In our two
phase picture, however, this limit is never reached, since at the value of μn deter-
mined by the equality of baryonic and quark pressures, Eqs. (4.57) and (4.56), the
system turns into quark matter. We shall return in Chap. 7 to a further discussion of
the detailed deconfinement pattern for baryonic matter.

4.5 Strings and Flip-Flop

In the bag model, the confining force binding quarks to hadrons was represented as
an effect of the physical vacuum on the quark system. The string model provides an
alternative picture of confinement, in terms of a potential increasing linearly with in-
terquark separation, as in Eq. (1.3). As simplest case we consider a confined quark-
antiquark system, i.e., a generic meson; its energy is given by [14]

Mh = 2σRh +
(

3

Rh

)
. (4.58)

Here Rh is the radius of the meson, so that d = 2Rh is the distance between quark
and antiquark; σ is the string tension, i.e., the confining force, which we assume to
be constant. The second term corresponds, as in the bag model counterpart (4.34),
to the kinetic energy 2p0 of quark and antiquark, and is as above obtained by the
uncertainty relation from the energy p0 ∼ 1/R of a massless quark. The constant
in the relation between p and R is again model-dependent; we have here used the
form p = 3/2R for a three-dimensional quantum oscillator. Minimizing the energy
as in Sect. 3.4, we get

Rh =
(

3

2σ

)1/2

(4.59)
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for the meson radius and

Mh = 2
√

6σ (4.60)

for its mass. Once more we thus have a model building extended hadrons from
pointlike massless quarks; these hadrons again have an intrinsic size and mass de-
termined by a force exerted on the quarks. Here it is the string tension σ , in Sect. 3.4
it was the bag pressure B; either determines radius and mass of the hadron.

Let us now look at the thermodynamics of such string-like hadrons [15, 16]. In
comparing a quark-gluon system confined by bag pressure to an ideal hadron gas, we
had from the outset two phases; the requirement of minimal free energy (maximal
pressure) allowed nature to choose which it preferred in what region. Here we have
a system with one given kind of string dynamics, and we want to ask whether it
behaves differently at different densities. Why should it?

The total energy E of a system of N quarks and antiquarks, coupled by a string
potential, is

E =
2N∑
i=1

pi + σ
N∑
i=1

di, (4.61)

where the first term gives the kinetic and the second the potential energy; di denotes
the distance between quark and antiquark in the ith pair, and pi is the absolute value
of the ith constituent, quark or antiquark. We want to consider the grand canonical
average of this energy, 〈E〉, for a system contained in a volume V at temperature T .
To be in thermal equilibrium, the system arranges itself in such a way that 〈E〉 is
minimal, which makes the nearest quarks and antiquarks combine into pairs in order
to reduce the potential energy. In determining this minimum, however, we have to
take the uncertainty principle into account, which forbids small pairs of low rela-
tive quark-antiquark momenta. Hence to reduce the potential energy through almost
pointlike pairs, we must have very energetic constituents, and this in turn in a grand
canonical system means high temperatures and densities. So in the high temperature
limit, we expect an ideal gas of essentially free constituents, since the high density
makes the potential energy negligible compared to the kinetic. At low temperatures,
on the other hand, both the number of constituents and their momenta decrease, and
so the crucial aspect is to minimize the potential energy. As a result, the favored con-
figurations consist of isolated quark-antiquark pairs, whose minimum size is given
by Eq. (4.59)—i.e., of the “hadrons” of the string model.

Two qualitatively different states of matter thus seem to appear quite naturally
from string dynamics. We have suppressed, however, an interesting question con-
cerning the high temperature state: since the potential between paired quarks and an-
tiquarks never vanishes (for a constant string tension σ ), how can these constituents
move freely through the system and in particular get away from their respective
bound-state partners? The answer is known as “flip-flop” mechanism and brings us
back to the picture discussed in Chap. 1. At high density, each quark will find in
its immediate vicinity a number of antiquarks, all about equally far away and each
coupled to some quark of its choice. Since all separation distances are about equal,
a rearrangement of bindings (see Fig. 4.5) does not change the energy of the system
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and hence is equally probable. By a succession of flips from one partner to the next,
with associated flops on the part of the partners, any given constituent can thus move
freely throughout the medium.

Fig. 4.5 String gas at low density (a) and for two different high density configurations (b) and (c)
obtained through flip-flop

While a system of quark-antiquark pairs thus does change its qualitative features
between low and high temperature, it is not obvious that such a change corresponds
to critical behavior. The analogy to percolation theory leads one to expect this, and
numerical studies indeed always show at least a very rapid cross-over, for specific
systems even a discontinuity [16].

4.6 Conclusions

We saw that very simple models based on extended hadrons made up of quark
constituents can lead to a phase transition from hadronic matter to a quark-gluon
plasma. The underlying reasons were:

• In percolation theory, the onset of hadron connectivity leads to the formation of
clusters of dense strongly interacting matter, which eventually cover all space,
leading to the disappearance of the physical vacuum.

• In the bag model, bag pressure makes the pion gas the dominant phase at low tem-
perature, while at high temperature the quark-gluon phase with its higher number
of intrinsic degrees of freedom is favored.

• At zero temperature, cold nuclear matter has a higher Fermi pressure than cold
quark matter, but the baryon repulsion between nucleons makes the quark state
take over at high density.

• In the string model, there is pairing into isolated hadronic bound states at low
density, while at high density the change of partners allows free quark flow even
for non-zero string tension.

Let us now see to what extent these phenomenological features can be derived from
what we believe is the real basis of strong interaction thermodynamics: statistical
QCD.
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Appendix: Bose and Fermi Gas Partition Functions

The partition function for an ideal gas of particles of mass m at temperature T in a
volume V is given by [17]

lnZs(T ,V )= −s V
2π2

∫ ∞

0
dpp2 ln

[
1 − s exp

(−
√
p2 +m2/T

)]
, (4.62)

with s = +1 for bosons, s = −1 for fermions. For simplicity we assume in both
cases no internal degrees of freedom. Expanding the logarithm as a power series,
we obtain

lnZs(T ,V )= s V
2π2

∞∑
n=1

1

n

∫ ∞

0
dpp2(s exp

(−
√
p2 +m2/T

))n; (4.63)

the first term in this sum constitutes the Boltzmann limit. The momentum integration
can be carried out to give

lnZs(T ,V )= s m
2V T

2π2

∞∑
n=1

sn

n2
K2(nm/T ), (4.64)

where K2(x) is the modified Hankel function of second order. In the limit x→ 0, it
becomes

K2(x)= 2

x2

[
1 + x2

4
+O(x4)]. (4.65)

Inserting this into Eq. (4.64), we get

lnZs(T ,V )= s V T
3

π2

[ ∞∑
n=1

sn

n4
+ 1

4

(
m

T

)2 ∞∑
n=1

sn

n2
+O((m/T )4)

]
. (4.66)

The sums in Eq. (4.66) are Riemann zeta functions [18]:

ζ(r)=
∞∑
n=1

1

nr
(4.67)

and

(
1 − 2(1−r))ζ(r)=

∞∑
n=1

(−1)n+1

nr
. (4.68)

In particular, we have

∞∑
n=1

1

n4
= ζ(4)= π4

90
, (4.69)

∞∑
n=1

(−1)n+1

n4
= (

1 − 2−3)ζ(4)= 7

8

π4

90
, (4.70)
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∞∑
n=1

1

n2
= ζ(2)= π2

6
, (4.71)

∞∑
n=1

(−1)n+1

n2
= (

1 − 2−1)ζ(2)= 1

2

π2

6
. (4.72)

Inserting this into Eq. (4.66) gives as leading terms

lnZB(T ,V )= π2

90
V T 3

[
1 − 15

4π2

(
m

T

)2

+O((m/T )4)
]

(4.73)

for the partition function for bosons and

lnZF (T ,V )= 7

8

π2

90
V T 3

[
1 − 30

7π2

(
m

T

)2

+O((m/T )4)
]

(4.74)

for fermions. In both cases, the first term is the Stefan-Boltzmann limit. Comparing
Eq. (4.66) with (4.73), we see that the numerical coefficient of the bosonic partition
function in the limit m→ 0 is π2/90 � 0.1097 for correct Bose-Einstein statistics,
while it becomes 1/π2 � 0.1013 in the Stefan-Boltzmann limit. This provides the
justification for using the latter form whenever m� T .
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Chapter 5
Statistical QCD

El universo (que otros llaman la biblioteca) – es ilimitado y
periódico. Si un eterno viajero le atravesara en qualquier
dirección, comprobaria al cabo de los siglos que los mismos
volúmenes se repiten en el mismo desorden (que, repetido, seria
un orden: el Orden).

Jorge Luis Borges, La Biblioteca de Babel

[The universe (which others call the library) – is unlimited and
periodic. If an eternal voyager were to traverse it in any
direction, he would find, after many centuries, that the same
volumes are repeated in the same disorder (which, since
repeated, would be an order: order itself).

Jorge Luis Borges, The Library of Babel]

We now come to the basic theoretical problem: given QCD as strong interaction
dynamics, derive strong interaction thermodynamics. After looking at some essential
features of chromodynamics, we develop statistical QCD at finite temperature in the
lattice formulation and discuss how it can be evaluated by computer simulation. We
then use this method to study the thermodynamics of strongly interacting matter at
vanishing baryon number density.

5.1 The Gauge Field Theory of Strong Interactions

Quantum chromodynamics describes the interaction of quarks and gluons. It does
so in the form of a gauge field theory very similar to quantum electrodynamics
(QED), which deals with the interaction of electrons and photons. In both cases we
have spin one-half matter fields (electrons or quarks) interacting by exchange of
massless vector gauge fields (photons or gluons). In QCD, however, the intrinsic
color charge is associated with the non-Abelian gauge group SU(3), in place of the
Abelian group U(1) for the electric charge of QED. As a consequence, there are
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quarks of three different color charge states (e.g. red, blue and green), and the cor-
responding antiquarks; the gluons, which transform according to the adjoint repre-
sentation of SU(3), carry eight charges (3 × 3 combinations of the type red/anti-red,
red/anti-blue, etc., with the unitarity restriction UU+ = 1 removing one combi-
nation). In contrast, QED contains only one charged fermion and its antiparticle,
together with uncharged photons. The intrinsic charge of the gauge field is the cru-
cial difference between QCD and QED, where photons carry no charge. It allows
direct interactions between gluons, whereas photons cannot interact without inter-
mediate electrons. The direct gluon interaction contracts the lines of force between
two color sources into a “flux tube” or “string” (see Fig. 1.4). As a consequence,
the three-dimensional Poisson equation, which in non-relativistic QED leads to the
Coulomb potential V ∼ 1/r , now effectively becomes one-dimensional, with the
confining form V ∼ r as solution.

The Lagrangian density defining QCD is

L = −1

4
FaμνF

μν
a −

∑
f

ψ̄αf

[
iδαβγ

μ∂μ − g

2
(λa)αβγ

μAaμ

]
ψ
β
f , (5.1)

with

Faμν = (
∂μA

a
ν − ∂νAaμ − gf abcAbμAcν

)
. (5.2)

HereAaμ denotes the gluon vector field of color a (a = 1,2, . . . ,8) and ψαf the quark
spinor field of color α (α = 1,2,3) and flavor f . All indices are summed over the
relevant ranges. The structure functions f abc are fixed by the color gauge group,
whose generators we denote by λa ; they satisfy the commutation relation

[λa,λb] = if cabλc. (5.3)

The generators λa are eight 3×3 matrices in color space, generally denoted as Gell-
Mann matrices; they are the SU(3) generalization of the three 2 × 2 Pauli matrices
for SU(2). If we would set all f abc = 0, the Lagrangian density (5.1) would reduce to
that of QED; it is just the last term in Eq. (5.2) which provides the self-interaction
among the gluons. In Fig. 5.1, we compare some Feynman graphs for the interaction
of the charged constituents in QED and QCD to illustrate this effect. We note that
the gluons are “flavor-blind”; their coupling to quarks does not depend on the quark
flavor.

Fig. 5.1 Lowest order Feynman diagrams in QED (a) and QCD (b, c)

Here and in the following we restrict ourselves to the effectively massless u and
d quarks, which give us all mesons and baryons without further intrinsic quantum
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numbers (such as strangeness, charm, etc.). Hence the Lagrangian (5.1) contains no
mass term. Strange quarks and quarks of still “higher” flavors not only have a non-
negligible mass, but they also have to be formed in quark-antiquark pairs, in order
to conserve the further intrinsic quantum numbers. Because of this, they are ther-
modynamically somewhat (strange) or considerably (charm and beauty) suppressed
at temperatures up to and including the transition region.

The presence of Nf quark species with non-vanishing masses mf would add a
term

Lm =
Nf∑
f=1

mf ψ̄
α
f ψα,f (5.4)

to Eq. (5.1); note that since quark masses are connected to physical observables
(hadron masses), they are “color-blind”. Since ψ̄ψ is related to the quark mass, it
can be used to check if the state in which the system finds itself modifies the quark
mass. Even for mf = 0 in the Lagrangian, it is still possible that the system is in
a specific state which makes 〈ψ̄ψ〉 	= 0. In this case, we speak of the spontaneous
generation of an effective quark mass: massless gluons “dress” massless quarks such
as to give them a non-vanishing effective mass. We will return to this phenomenon
later on, when we consider the spontaneous breaking and restoration of chiral sym-
metry. We should note here, however, that with the Lagrangian (5.1) containing only
massless quarks we are considering an idealized world, in which e.g. pions are also
massless. To obtain the real physical world with experimentally observed hadron
masses, a term of the form (5.4) must be added to (5.1), with mf 	= 0 for all quark
flavors.

The Lagrangian (5.1)/(5.2) determines all of strong interaction dynamics in terms
of one dimensionless coupling constant, g. It therefore cannot provide us with a
dimensional scale, and so QCD predicts only the ratios of physical quantities—
it does not give the absolute value of any observable in terms of physical units.
How can we then obtain an experimentally useful prediction for the deconfinement
temperature or for the energy density necessary for the formation of a quark-gluon
plasma?

In QCD, all hadrons are color-neutral bound states of three quarks or of a quark-
antiquark pair, and as the fundamental theory of strong interactions, QCD must
predict the ratios of all hadron masses as well as the ratios of these masses to other
observables, such as the deconfinement temperature. In addition to Tc , we therefore
have to calculate as well some hadron mass whose value is known in physical units.
From the calculated ratio of temperature and hadron mass, we then get Tc in MeV.
Crucial for this prediction is thus the precision of the hadron mass calculations in-
volved, and these can of course be tested through comparison with the known hadron
mass ratios. At present, tuning of the quark mass in extensive hadron mass studies,
including virtual quark loops (see e.g. [1, 2]) lead to masses for both mesons and
baryons which converge to the known experimental values.

In addition to hadron spectroscopy, QCD must also describe hadronic scattering
processes. The successful application of perturbative QCD to hard scattering pro-
cesses at large momentum transfer was in fact decisive in establishing it as the basic
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theory for strong interactions, and tests of the theory in high energy experiments
have confirmed this with remarkable precision (see e.g. [3]). On the other hand, it
must be noted that little is known today about any direct quantitative applications of
QCD to non-perturbative hadronic scattering processes.

Given the Lagrangian density (5.1), the formulation of statistical QCD becomes,
at least in principle, a well-defined problem. We have to calculate the partition func-
tion

Z(β,V )= Tr exp{−βE}, (5.5)

with the Hamiltonian E determined from L; we have here assumed a vanishing
baryon number density, i.e., the same number of baryons as of antibaryons. In the
trace, we have to sum over all physical states accessible to a system within a spatial
volume V ; β−1 = T denotes the physical temperature. Once Z(β,V ) is obtained,
we can calculate all thermodynamical observables in the usual fashion. Thus

P = 1

V
T lnZ (5.6)

leads to the pressure, while differentiating with respect to the inverse temperature

ε = (−1/V )

(
∂ lnZ

∂β

)
V

(5.7)

gives the energy density.
But how can these expressions actually be evaluated? After all, we are faced with

a relativistic, interacting quantum field theory. In QED, we encounter divergences
both for small (infrared) and for large (ultraviolet) momenta, and as a result, we have
to renormalize in order to get finite results. We therefore expect that renormaliza-
tion will be necessary for QCD as well. But there is a further, more serious, problem.
The standard evaluation method for QED—perturbation theory—is not applicable
to the study of critical behavior, because long range correlations and multi-particle
interactions are of crucial importance here, and we thus cannot assume interaction
terms to be small. We therefore need a new approach to the solution of a relativis-
tic quantum field theory—a non-perturbative regularization scheme. So far, there is
only one method available which fulfills these requirements: the lattice formulation
introduced by K. Wilson [4]. It gives us the thermodynamic observables, such as the
energy density (5.7) or the pressure (5.6), in a form that can be evaluated numeri-
cally. Let us see how this form is attained and how it can be evaluated by computer
simulation [5, 6]; this is of course a topic on its own, so we refer to [7–9] for more
detailed presentations.

5.2 Lattice QCD at Finite Temperature

The lattice formulation of statistical QCD is obtained in four steps. First we replace
the usual Hamiltonian form (5.5) of the partition function by an equivalent form in
terms of a Euclidean path integral. This means that instead of summing over all the
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possible many-particle states (in the trace of Eq. (5.5)), we sum over all possible
field configurations of the system. Any quantum mechanical partition function can
be expressed in this way as a functional integral over field configurations [10]. For
a field theory such as QED or QCD, the partition function then becomes [11]

ZE(β,V )=
∫

DADψDψ̄ exp

{
−
∫
V

d3x

∫ β

0
dτ LE(A,ψ, ψ̄)

}
. (5.8)

Here the vector fields for the gluons are defined as

Aμ = (1/2)
8∑
a=1

λaA
a
μ (5.9)

and thus are also 3 × 3 matrices in color space. This form involves directly the (Eu-
clidean) Lagrangian density defining the theory; we do not have to calculate first
the Hamiltonian H needed in the form (5.5), and by integrating over field config-
urations, we do not have to project onto the allowed physical states in the trace
(5.5). The spatial integration in the exponent of Eq. (5.8) is performed over the en-
tire volume V of the system; in the thermodynamic limit it becomes infinite. The
time component x0 is “rotated” to become pure imaginary, τ = ix0, thus turning
the Minkowski manifold, on which the fields A and ψ are originally defined, into a
Euclidean space. The integration over τ in Eq. (5.8) runs over a finite slice whose
thickness is determined by the temperature T = β−1 of the system. The finite tem-
perature behavior of the partition function in the Euclidean form thus becomes a
finite size effect in the imaginary time direction. In the thermodynamic limit (in-
finite volume), the integration over space and temperature extends to infinity only
for T → 0. Equation (5.8) is derived from the trace form (5.5). As a consequence,
vector fields have to be periodic and spinor fields antiperiodic at the boundaries of
the imaginary time integration.

The idea of temperature as imaginary time might seem curious at first sight. Feyn-
man’s basic idea was that the time evolution of, e.g., a single quantum mechanical
spin variable s = ±1,

. . . ,+1,+1,−1,+1,−1,−1,−1,+1,+1,−1, . . .

has the same structure as a one-dimensional linear chain of spins at some tempera-
ture β−1. The time evolution of the single spin is governed by the factor exp{−iH t},
where H denotes the relevant Hamiltonian, while the temperature dependence is
given by exp{−βH }. This suggests the relation β = it between inverse temperature
and imaginary time.

Next, the Euclidean (x, τ ) manifold is replaced by a discrete lattice, with Nσ
points and spacing aσ in each space direction, and with Nτ points and spacing aτ
for the τ axis. The overall space volume thus becomes V = (Nσ aσ )3 and the inverse
temperature β =Nτaτ . The spinor quark fields ψ and ψ̄ are defined on each of the
N3
σNτ lattice sites. To assure the gauge invariance of the formulation, the gauge

fields A must, however, be defined on the links connecting each pair of adjacent
lattice sites; we shall return to this point in just a moment. Clearly the lattice thus
introduced can only be an intermediate step; the results we really want are those of
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continuum QCD. In the end we will thus have to extrapolate all lattice results to the
continuum limit defined by Nσ → ∞, aσ → 0 and Nτ → ∞, aτ → 0, with V and
β held constant.

In the third step, the gluon fields are replaced, through a “change of variables”,
by the corresponding gauge group variables,

Uij = exp−
[
ig(xi − xj )μAμ

(
xi + xj

2

)]
, (5.10)

with xi and xj denoting two adjacent lattice sites; thus Uij is an SU(3) matrix as-
signed to the link between these two sites. The integration over the fields A now
becomes one over U , i.e., over the eight real “Euler” angles needed to specify an
SU(3) matrix.

After these three steps, the QCD partition function on the lattice is given by

Z
(
Nσ ,Nτ ;g2)=

∫ ∏
sites

dψdψ̄
∏
links

dUij exp
{−S(ψ, ψ̄,U)}. (5.11)

The action S in Eq. (5.11) has the form

S = SG + SQ, (5.12)

where SG describes the purely gluonic part (the integral over the first term of
Eq. (5.1)), while SQ comes from the interaction of quarks and gluons (the integral
over the second term of Eq. (5.1)). Let us look at each in some detail.

The gluon action SG corresponds to the pure gauge field term FaμνF
μν
a in the

Lagrangian density (5.1). Wilson’s form for SG is

SG = 6

g2
σ

aτ

aσ

∑
Pσ

(
1 − 1

3
Re TrUijUjkU

+
kl U

+
li

)
(5.13)

+ 6

g2
τ

aσ

aτ

∑
Pτ

(
1 − 1

3
Re TrUijUjkU

+
kl U

+
li

)
. (5.14)

It contains two distinct coupling parameters gτ and gσ ; these are necessary in or-
der to treat the spatial and temporal lattice spacings aτ and aσ as independent
variables—which we have to do to differentiate with respect to temperature and
volume, as in Eqs. (5.7) and (5.6). Once this differentiation is carried out, we can
set aτ = aσ ≡ a; we then also recover one “isotropic” coupling gτ = gσ ≡ g. As al-
ready mentioned, the color SU(3)matrices Uij “live” on links connecting the lattice
sites i and j . The products occurring in Eq. (5.14) correspond to those of matrices
on the smallest closed path on the lattice.

The form (5.14) of the gluonic action actually corresponds to that of a gauge
invariant Ising model [12]. In the usual Ising model, the Hamiltonian is a sum over
the interactions of spins on nearest-neighbor sites (i, j),

HI = −J
∑
(i,j)

sisj , (5.15)

where si = ±1 and J measures the strength of the interaction. HI is invariant un-
der the global transformation si → −si for all i; it does not remain so under the
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gauge-like local transformation si → −si for only one fixed i, leaving all other si
unchanged. However, if the spins are associated to the links between sites, rather
than to sites, then the product of the four spins around a closed path containing site
i does remain invariant if we flip the spins on all links touching site i, since two
spins in the product change signs (Fig. 5.2). In this way, Wegner formulated a gauge
invariant form for the Ising model [12]: spins live on links instead of sites, and next-
neighbor products sisj are replaced by the products sisj sksl of the four spins on the
links around the smallest closed path on the lattice,

HW = −J
∑
(i,j,k,l)

sisj sksl . (5.16)

The smallest loops on the lattice are generally called “plaquettes”. In Eq. (5.14), the
spin variables si are generalized to the SU(3) color group matrices U , and hence
a plaquette now is expressed in terms of four such matrices associated to adjacent
links on the lattice. In addition, the lattice has now become four-dimensional, and so
the two terms in Eq. (5.14) correspond to summations over plaquettes in space-space
and space-time planes, respectively. Just as the action (5.16) is invariant under local
spin flips, the form (5.14) is invariant under gauge transformations Uij → ViUijV

+
j ,

with V ∈ SU(3).

Fig. 5.2 Spins on links forming a plaquette

The quark action SQ has the schematic form

SQ =
∑
f

ψ̄fQf (U)ψf , (5.17)

where Q is a matrix connecting the quark fields ψ(x) and ψ̄(x) over all lattice
points x; it therefore is of size Nc ×Nf [NτNσ ×NτNσ ]. The matrix Q has to be
specified in terms of the SU(3) color group elements Ui,j living on the lattice links
connecting the sites on which the quark fields are defined. One possible form forQ
was proposed by Wilson; it is given by

SQ =
∑
f

ψ̄f (1 − κM)ψf , (5.18)

where the interaction matrix M coupling quarks through gluons depends on the
direction of the link on which the gluon “lives”,

Mμ,nm = (1 − γμ)Unmδn,m−μ̂ + (1 + γμ)U+
mnδn,m+μ̂. (5.19)
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Here μ̂ is a unit vector along the lattice link in the μ-direction. At finite tempera-
ture, the quark-gluon coupling strength κ , the so-called “hopping parameter”, also
depends on the link direction, just as the gluon coupling g in Eq. (5.14). The expres-
sion κM is a short-hand notation for

κM ≡ κτM0 + κσ
3∑
μ=1

Mμ. (5.20)

As before, the hopping parameter also reduces to one variable for aτ = aσ = a:
κτ = κσ ≡ κ . The basic Lagrangian in Eq. (5.1) contains only one coupling g; the
appearance of a separate coupling κ in Eq. (4.15) is a consequence of the quark
mass. Thus for mq → 0, κ must be expressible in terms of g. For massless quarks
we have in fact [13]

κ(g)= 1

8

[
1 + 0.11g2 +O(g4)] (5.21)

in the limit of small g. At the finite values of g in actual calculations, the relation
may be more complex, however.

The form (5.17), inserted into Eq. (5.11), gives us something like an exponential
quadratic form in the fields ψ and ψ̄ ; the simplicity is disturbed “only” by the fact
that these fields are non-commuting Grassmann variables. Nevertheless, as fourth
and final step in obtaining the lattice formulation of QCD, the integration can be
carried out [14]; for Nf quarks of equal mass this results in the partition function

Z
(
Nσ ,Nτ ;g2)=

∫ ∏
links

dU
[
detQ(U)

]Nf exp
{−SG(U)}. (5.22)

We recall that Q(U) connects the fields ψ and ψ̄ over the whole lattice, so that it
is of dimension Nc[(N3

σNτ )× (N3
σNτ ). The evaluation of the determinant of such

a large matrix turns out to be one of the main technical problems in the numerical
evaluation of lattice QCD. Exponentiating the determinant, we obtain

Z
(
Nσ ,Nτ ;g2)=

∫ ∏
links

dU exp
{−[

SG(U)+ S̃Q(U)
]}
, (5.23)

where S̃Q = −Nf {ln(detQ)} corresponds to an effective quark action defined in
terms of the fermion matrix Q (see Eq. (5.22)); this presupposes that detQ is real
and positive, which is generally the case for systems containing quarks and anti-
quarks in equal numbers, i.e., for vanishing baryon number density.

With Eqs. (5.14), (5.18) and (5.22)/(5.23), we have a completely defined lattice
formulation of the QCD partition function. It gives us Z(Nτ ,Nσ , aτ ;aσ , gτ , gσ ;
κτ , κσ ), but not all variables are independent. To obtain the desired physical parti-
tion function Z(β,V ) and from this the resulting thermodynamic observables, we
first carry out the differentiations such as needed in Eqs. (5.7) and (5.6), and then
set aτ = aσ = a, gτ = gσ = g, κτ = κσ = κ . We must now relate the “isotropic”
coupling g to the “isotropic” lattice spacing a; then V = (Nσ a)3 and β−1 = Nτa
give us Z(β,V ) from Z(Nτ ,Nσ ,g, κ). The necessary relation between coupling



5.2 Lattice QCD at Finite Temperature 73

and lattice spacing is obtained through the following reasoning. We want our lat-
tice formulation to provide results which are independent of the specific lattice used
in the evaluation; in particular, they should not depend on lattice size and lattice
spacing. To achieve this, we must change the coupling strength g when we change
the lattice spacing a. In general, renormalization group theory assures us that we
have lattice independence around g = 0, provided g and a are related through the
Callan-Symanzik equation

a
dg(a)

da
= β(g), (5.24)

where β(g) is a function of g only. In the limit g → 0, β(g) can be determined
perturbatively, and the Callan-Symanzik equation can then be solved. The result is
a�L =R0(g), with

R0(g)≡ exp

{
− 4π2

(33 − 2Nf )

(
6

g2

)

+ (459 − 57Nf )

(33 − 2Nf )2
ln

[
8π2

(33 − 2Nf )

(
6

g2

)]}
; (5.25)

here �L is an integration constant of dimension (length)−1. In quantitative studies,
we must make sure that at the coupling values used, this solution (for g → 0) is
already justified; otherwise we have to resort to non-perturbative methods to de-
termine β(g) [15]. Once the relation between a and g is established, we have the
physical partition function Z(β,V ) in terms of temperature T = β−1 = 1/(Nτa)
and volume V = (Nσ a)

3 from the lattice form Z(Nτ ,Nσ ,g) for given Nτ , Nσ ,
and g, with κ(g) determined by Eq. (5.21).

All physical quantities calculated in this way are given in units of the lattice
scale �L. As already mentioned, the starting Lagrangian (5.1) contains no dimen-
sional parameter, and hence�L is arbitrary. We can thus either calculate dimension-
less ratios of observables, so that the �L’s cancel in numerator and denominator, or
calculate a measured quantity, such as the proton mass or the critical temperature
for deconfinement, and then use this to obtain a scale �L in physical units.

To illustrate this procedure, we note that the inversion of Eq. (5.25) gives in
leading order the customary form

αs(T )≡ g2

4π
� 6π

(33 − 2Nf ) ln(1/a�L)

= 6π

(33 − 2Nf )[ln(T /Tc)+ ln(Tc/�T )] (5.26)

of the “running” strong interaction coupling αs(T ) as function of temperature. Here
we fix the scale factor�T =�L/Nτ by determining in a given lattice calculation the
critical temperature Tc = 1/Nτa in lattice units and then insert its value in physical
units.

To what extent is the lattice formulation just described equivalent to the contin-
uum form of statistical QCD? By letting a = (xi − xj ) go to zero everywhere, we
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do indeed recover the continuum formulation. The converse is not true, however;
neither the gluon action SG in Eq. (5.14) nor the quark action SQ in Eq. (4.15) are
unique. Various other forms have been considered, and they all give the same con-
tinuum limit. In fact, we can use this freedom and try to find forms for which finite
cut-off effects are particularly small (“improved actions” [17]). All physical results
should of course be independent of the specific choice of action, and finite tempera-
ture thermodynamics provides a particularly sensitive test of this “universality”. So
far, it appears to be well satisfied.

The quark action leads to some additional problems. If we simply put the quarks
on the lattice by associating a spinor field ψ with each lattice site, then the deriva-
tive in the Lagrangian (4.1) leads to the appearance of sixteen degenerate fermions
per flavor [18–20]. To avoid this “species doubling”, the quark action (5.19) is cho-
sen such as to give fifteen of these quarks a mass m which becomes infinite in
the continuum limit g → 0, so that they then no longer contribute. Such a proce-
dure, however, has more than just esthetic difficulties. The continuum Lagrangian
(4.1) with massless quarks is invariant under chiral transformations: the four-spinors
describing massless fermions can be decomposed into two independent left-handed
and right-handed two-spinors. This chiral symmetry is explicitly broken by Wilson’s
lattice formulation (5.18), to be recovered only in the continuum limit. It can more-
over be shown [21] that any lattice formulation of a theory with quarks leads either
to species doubling or to non-local derivatives, if it is to preserve chiral symmetry.
To avoid species doubling in a local theory, one thus has to break chiral symme-
try at finite lattice spacing. Because of these difficulties, the choice of action is to
some extent governed by the problem under consideration and by technical features
of the evaluation. An often employed alternative to the Wilson form uses “stag-
gered fermions” [19, 20]. Here the four components of the spinor are distributed
over different adjacent sites of a hypercube on the lattice, which reduces the num-
ber of additional species. Moreover, it retains at least part of the chiral symmetry of
the continuum Lagrangian (4.1). After integrating out the spinor fields, the Kogut-
Susskind formulation also leads to the partition function (5.22), but with a different
form for the fermion determinant. More recently, still other forms of the quark ac-
tion have been considered [22–24]. This of course makes it all the more important
to check that different formulations lead to the same physical predictions.

5.3 Lattice QCD at Finite Baryon Number Density

In Eq. (5.8), we had expressed the QCD partition function as a functional integral

ZE(β,V )=
∫

DADψDψ̄ exp
{−S(A,ψ, ψ̄,β)} (5.27)

with a weight determined by the QCD action

S(A,ψ, ψ̄,β)= −
∫
V

d3x

∫ β

0
dτ L(A,ψ, ψ̄). (5.28)
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The (inverse) temperature β thus enters as the limit for the integration over the imag-
inary time. This formulation corresponds to a grand canonical system of vanishing
overall charge and baryon number density, i.e., both electric and baryonic charges
of the quarks add up to zero. If we want to consider a system of non-zero baryon
number density, in which the total number of quarks minus that of antiquarks does
not vanish, the Lagrangian L in Eq. (5.28) has to be modified correspondingly. In
statistical mechanics, the Boltzmann factor exp−βH becomes

exp
{−β(H−μN )}, (5.29)

where H is the Hamiltonian and N the net conserved charge number. For our case,
this means that the action (5.28) now becomes

S(A,ψ, ψ̄,β)= −
∫
V

d3x

∫ β

0
dτ

{
L(A,ψ, ψ̄)−μNb(ψ, ψ̄)

}
(5.30)

with

Nb = ψ̄γ0ψ (5.31)

denoting the overall baryon number density (quarks minus antiquarks) and μ the
associated baryochemical potential. In Hamiltonian statistical mechanics, tempera-
ture and chemical potential enter in a very similar fashion, essentially as Lagrangian
multipliers assuring that on the average energy and charge quantum number are
conserved. In contrast, in the functional integral formulation this “symmetry” is re-
moved, with the temperature becoming an integration limit. We will see below that
this feature leads to serious difficulties for the numerical evaluation of all observ-
ables at non-zero μ.

5.4 The Computer Simulation of Gauge Field Thermodynamics

With Eq. (5.23), we have formulated the QCD partition function on the lattice. How
can we now actually evaluate this function and calculate the physical observables
of interest? To introduce the basic idea of the evaluation procedure, computer simu-
lation [5, 6], let us first look at a simplified case, the thermodynamics of pure gauge
theory. We thus consider a system of gluons only, without any real or virtual quarks.
Since gluons can interact directly, they can form bound states (“glueballs” or glu-
onium states) and undergo a transition from a gluonium gas to one of deconfined
gluons. This simplified world is therefore far from trivial—in contrast to the corre-
sponding system in QED, a gas of photons, which in the absence of electrons cannot
interact. As we shall see later on, pure gauge field thermodynamics in fact provides
a particularly transparent illustration of deconfinement physics.

Without quarks, the partition function (5.11) on the lattice becomes

Z
(
Nσ ,Nτ ;aτ /aσ ;g2

σ , g
2
τ

)=
∫ ∏

links

dUij exp
{−SG(U)}, (5.32)
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with SG(U) given by Eq. (5.14). To calculate from this the energy density (5.7) on a
lattice of fixed size, we have to differentiate lnZ with respect to β ∼ aτ . This leads
to

ε/T 4 = 18N4
τ

[
g−2(P̄σ − P̄τ )+ c′σ (P̄ − P̄σ )+ c′τ (P̄ − P̄τ )

]
. (5.33)

The corresponding form for the pressure is obtained by differentiation with respect
to V ∼ a3

σ and yields

P/T 4 = ε/3T 4 − 6N4
τ a

(
dg−2

da

)
[P̄τ + P̄σ − 2P̄ ]. (5.34)

Here P̄σ and P̄τ denote the lattice averages of space-space and space-time
plaquettes, i.e.,

P̄σ = (
3N3

σNτZ
)−1

∫ ∏
links

dUij exp
[−SG(U)]

[∑
Pσ

(
1 − 1

Nc
Re TrUUU+U+

)]
,

(5.35)

and similarly for P̄τ . The anisotropy constants c′σ and c′τ in Eq. (5.33) arise from
the differentiation of the couplings gσ and gτ with respect to aτ . In the perturbative
limit, they can be calculated explicitly [25]. The energy density (5.33) is normalized
to zero at T = 0 by subtracting from the lattice derivative of lnZ(Nσ ,Nτ ) the zero
temperature form obtained from lnZ(Nσ ,Nτ =Nσ ). This leads in Eqs. (5.33) and
(5.34) to the “symmetric” plaquette averages P̄ , calculated on a N4

σ lattice, which
for large Nσ is a good approximation of the zero temperature case. Since ε/T 4 is
entirely given in terms of differences of plaquette averages, it is clear that it vanishes
as T → 0, where Nσ =Nτ makes all plaquette averages equal.

After performing the differentiations necessary to obtain ε, we set aσ = aτ ,
which in turn gives gσ = gτ = g, and with this the forms shown in Eqs. (5.33)/(5.34).
As noted before, the energy density is thus entirely determined in terms of plaquette
averages, i.e., of lattice averages of four adjacent gauge group elements U around
the smallest closed loop in the lattice. This is the gauge theory equivalent of the con-
ventional Ising model, where the energy density involves the lattice average of the
product of two adjacent spins. In both cases, the energy density is thus determined
in terms of local quantities—lattice averages of products of two or four adjacent lat-
tice variables. Such short-distance observables are therefore much easier to calculate
than potentials or correlation functions, which involve the behavior of r → ∞.

To evaluate the energy density (and other such thermodynamic observables) in
gauge field thermodynamics, we now have to find a way to calculate the plaquette
averages. This problem is of course structurally very similar to the evaluation of
corresponding quantities in the study of spin systems; let us therefore return once
more to the Ising model to have a first look at the idea of computer simulation, and
then consider how it can be applied to gauge field theory.
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In the Ising model, the energy of the system for a given configuration is given
by the Hamiltonian (5.15). We want to calculate lattice averages of thermodynamic
observables of the type

〈O〉 =
∑

{si=±1} exp[−βHI ]O({si})∑
{si=±1} exp[−βHI ] , (5.36)

with β = 1/T . The summations here run over all configurations, i.e., over all sets
of N spin values, such as s1 = +1, s2 = +1, s3 = −1, . . . , sN = −1. Defining the
configuration probability P({si}),

P
({si})≡ exp[−βHI ]∑

{si } exp[−βHI ] , (5.37)

we can rewrite this as

〈O〉 =
∑
{si }
P
({si})O({si}) (5.38)

and thus consider it as an average of O({si}) over configurations weighted with
the probabilities 0< P({si}) < 1. The actual evaluation by Monte Carlo computer
simulation is now carried out with the help of the so-called Metropolis algorithm
[26]. We create on the computer a specific configuration {si} on a lattice of N3 sites,
e.g., si = 1 ∀i. Starting from this configuration, we go through the entire lattice
site by site. Since the spin at a given site can take on two equally possible values,
we generate at each i a random number 0 < n ≤ 1, and if n ≤ 0.5, we retain the
spin assignment si at that site; otherwise, we flip si → −si . If this procedure leads
to a new configuration {s′i}, we ask whether the ratio of configuration probabilities
P({s′i})/P ({si}) is greater or smaller than a randomly chosen number 0 ≤ r ≤ 1. If
it is greater, we discard the old configuration in favor of the new one; if it is smaller,
we retain the old one. Applying this procedure once to all lattice sites, i.e., taking
one “trip” through the whole lattice, is generally called a “sweep” or an “iteration”.
After sufficiently many iterations, we attain “equilibrium”: further iterations do not
lead to any systematic changes, neither in the average of P({si}) over the lattice, nor
in that of any observable we wish to “measure”. At this point, we generate as large
as possible a number of “equilibrium” configurations, and these (not the “transient”
configurations leading to equilibrium) we use to calculate, or rather measure, the
observables of interest. Starting from the given microscopic dynamics, Monte Carlo
simulation thus consists of three steps:

• from some given initial configuration, we randomly generate new configurations
until P({si}) is maximized, i.e., equilibrium is attained;

• we now generate a large number of different equilibrium configurations of the
system;

• we then calculate the value of any observable of interest on each of these config-
urations and average over all configurations.

Note that the third step in general means first calculating the lattice average (e.g.,
of a plaquette) on a given configuration and then averaging this over all available
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equilibrium configurations. In other words, we create a stationary world according
to the given dynamics, and on the different possible configurations of this world we
“measure” our observables, just as an experimentalist measures them in the “real”
world. If the underlying dynamics is correct, the two worlds, and thus also the two
sets of results for the observables, must agree.

It is quite straightforward now to extend this method from the Ising model to
gauge field theory. The variables which determine a given configuration now are the
SU(3) gauge group matrices Ui,j , instead of the spins in the Ising model, and they
“live” on links between two adjacent sites i, j , and not on the sites themselves. In
the Ising model, to average over all configurations meant summing over si = ±1 for
all si ; in SU(3) gauge theory, we have to “sum” over all the possible matrices Ui,j—
which here means integrating over the eight Euler angles necessary to characterize
such a matrix. Thus Eq. (5.37) is now replaced by

〈O〉 =
∫ ∏

links

dUi,j P
({Ui,j })O({Ui,j }), (5.39)

where

P
({Ui,j })≡ exp[−SG({Ui,j })]∫ ∏

links dUi,j exp[−SG({Ui,j })] (5.40)

and dUi,j denotes the mentioned integration (including the correct weight measure)
over the eight angles specifying the matrix Ui,j .

To carry out such a Monte Carlo procedure, we again start from a given
configuration—for example, Ui,j = 1 ∀i, j , and then proceed with our trip through
the lattice: at each link, we pick at random new values for the eight angles and re-
tain them if P({U ′})/P ({U}) is larger than some random number between 0 and 1;
otherwise we discard them. After attaining equilibrium, we again generate a large
number of configurations to be used for the actual “measurement” of the observables
of interest.

The procedure we have just sketched remains the same also for full QCD, includ-
ing quarks. In this case, however, we have to evaluate for each configuration at each
lattice point the determinant of the fermion matrix, whose size is proportional to that
of the entire lattice. This of course complicates the calculations considerably, and
so many studies began with simplified cases, such as pure gauge theory thermody-
namics (no quarks) or QCD in the “quenched” (or “valence quark”) approximation.
In the latter, one neglects the fermion determinant, setting detQ= 1, but retains any
quark variables in the observable operator O . It can be shown that this corresponds
to all virtual quark contributions. For many aspects, such simpler versions already
give the correct qualitative picture; but to reach this conclusion, we need the results
of full QCD with dynamical quarks. Moreover, there are features which do depend
on the presence of virtual quarks, in particular the value of the threshold tempera-
ture for deconfinement. So the ultimate goal will always be the large-scale study of
thermodynamics based on full QCD.

Before turning to the results so far obtained in the computer simulation of QCD
thermodynamics, we have to point out one rather serious technical limitation of
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the method. We had seen that a crucial element in getting to equilibrium lattice
configurations is the existence of a configuration probability 0 < P(U) < 1 as a
weight to determine if the new configuration is closer to equilibrium than the old.
In pure gauge theory, P(U)∼ exp{−SG(U)} was determined by the gluonic action
SG(U). In full QCD, we have instead P(U) ∼ exp{−[SG(U) + SQ(U)]}, where
SQ = −Nf ln(detQ)} is the exponentiated fermion determinant in Eq. (5.22). This
exponentiation makes sense only if the determinant is positive, and unfortunately
this is true only in the case of vanishing overall baryon number density, i.e., for
systems containing an equal number of quarks and antiquarks. For non-zero baryon
number density, or equivalently, for non-vanishing baryonic chemical potential μ,
the determinant becomes complex [27, 28], and although the integral with the imag-
inary part as weight vanishes, the remaining real part is no longer positive-definite.
The standard Metropolis procedure for getting to equilibrium from some given start-
ing configuration therefore breaks down: we do not have a weight any more to tell
us which way to evolve. Clearly this is only a technical difficulty—it is not the
simulation method as such which breaks down, but only the specific procedure for
producing equilibrium configurations. Hence there were numerous attempts to over-
come this difficulty, but only very recently first results on QCD thermodynamics at
finite baryon density have been put forward [29–32], and it is not really clear yet
how to provide an error estimate of the method nor specify out to what baryon den-
sity the results can be trusted. We will later summarize the present state of these
studies, but it should be kept in mind that all results so far remain preliminary.

5.5 The Deconfinement of Quarks and Gluons

In this section, we summarize the present status of deconfinement in QCD thermo-
dynamics at vanishing baryon number density. As in the previous section, we shall
start with pure gauge theory and then extend our considerations to full QCD.

5.5.1 SU(3) Gauge Theory

The first lattice results on gauge field thermodynamics appeared over thirty years
ago; they actually considered a model simplified still further, SU(2) gauge theory.
In this case, one has only three Euler angles to specify an SU(2) matrix, in contrast
to the eight Euler angles of SU(3), and this reduced the computational effort suf-
ficiently to allow calculations on the computers available at that time. Even then,
the results were obtained on quite small lattices [33, 34]. Today, detailed studies
provide us with the continuum limit for the equation of state for SU(3) gauge the-
ory, obtained by extrapolating the results of calculations on different lattice sizes
[35, 36]. In contrast to previous simulations, they also do not rely on the perturba-
tive limit for the relation between lattice spacing a and coupling g. In place of the
perturbative solution (5.25) of the Callan-Symanzik equation (5.24), one determines
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a more general R(g) by requiring some calculated physical observable to remain in-
variant under changes of g in the actual range of couplings used. Together with
the requirement R(g)→ R0(g) for g → 0, this allows a numerical determination
of β(g) in the non-perturbative region. In Fig. 5.3, we show the behavior obtained
for the energy density ε as function of the temperature. The calculations [35, 36]
were performed on lattices of size 163 × 4 and 323 ×Nτ , with Nτ = 6 and 8, and
then extrapolated to the continuum limit Nσ → ∞, Nτ → ∞. Looking at this en-
ergy density and remembering the patterns found in Chap. 3, we see quite clearly
a sudden transition from a low temperature regime with a small number of degrees
of freedom to a high temperature phase with many more degrees of freedom. The
low-temperature system should here be a gas of quite massive glueballs, the high-
temperature state one of deconfined gluons. Detailed studies show a two state signal
at the transition point [37, 38], so that we have a first order transition. We define as
critical temperature Tc the value of T at the discontinuity and use this value as scale
in Fig. 5.3. In the continuum limit, the latent heat of the transition is �ε � 2T 4

c , so
that in spite of the rapid increase of ε, the system does not jump directly all the way
up to the Stefan-Boltzmann limit,

ε = 8π2

15
T 4 � 5.3T 4, (5.41)

obtained from Eq. (4.13). At T/Tc � 1.5–2, it has come to within some 15–20%
of this limit; but a further temperature increase leads only to a very slow increase
of ε. Even at T/Tc � 5, a discrepancy of nearly 10% remains. Recent studies [39]
find that above this region, the thermodynamics approaches a limit which can be
described through modified perturbative calculations; we will come back to this in
Chap. 8.

Fig. 5.3 Energy density and pressure in SU(3) gauge theory [35, 36]

We now return to the issue of color deconfinement. So far, we have identified
the point of discontinuity in ε as the transition point for the corresponding phase
change. The justification for this is that at Tc , the energy density quickly increases
from a low hadronic value toward the number of degrees of freedom of an ideal gas
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of gluons of three colors and two spin orientations. The confinement status can also
be tested in another way: by considering the dependence of the binding of a static
quark-antiquark pair QQ̄ on the distance of separation [40–42]; by static we here
mean that both quark and antiquark are very heavy. We imagine such a pair put into
our SU(3) gluon gas and consider the correlation function

�(r,T )≡ exp
{−FQ(r,T )/T }, (5.42)

where FQ(r,T ) is the free energy of the pair at a separation r . At T = 0, this free
energy is usually parametrized in the form [43, 44]

FQ(r,T = 0)= σr − α

r
, (5.43)

where σ is the string tension and the second term takes into account short distance
Coulomb-like interactions and large distance transverse string vibrations; for the
latter, one has the universal form α = π/12 [43–45]. For 0 < T < Tc, this form is
expected to remain valid, but both the string tension σ and the Coulombic coupling
α will now become temperature dependent. In particular, it is generally argued that
σ(Tc)= 0 signals the onset of deconfinement. However, for T > Tc it is in fact not
quite correct to assume that F(r,T ) vanishes at large distances [46]. The free en-
ergy FQ(r,T ) specifies the contribution of the two static charges introduced into
the medium, i.e., it is the difference in free energy between a system with a static
QQ̄ pair and one without it. But even above deconfinement, at some T > Tc, two
static color charges separated arbitrarily far will still polarize the gluonic medium
in their immediate surrounding, and this will make the system different from one
without such charges. The result is an effective dressing Q(r,T ), whose value de-
pends on the range of the polarization effect. Hence we extend Eq. (5.43) to finite
temperatures as

FQ(r,T )� σ(T )r − α(T )

r
+ 2Q(r,T ). (5.44)

The polarization term Q(r,T ) vanishes for small r , since the two static quarks then
neutralize each other in color charge and are not seen by the medium. With increas-
ing r , Q(r,T ) increases, until in the large distance limit it becomes the polariza-
tion cloud of a single quark. Given the form (5.44), it is now possible to consider
σ(T ≥ Tc)= 0. The resulting free energy for different temperatures is illustrated in
Fig. 5.4. From Eqs. (5.42)/(5.44) we can conclude that

�(T )≡ lim
r→∞�(r,T ) (5.45)

will signal the onset of deconfinement in the form

�(T )=
{

0 for T ≤ Tc
exp{−2Q(T )/T }> 0 for T > Tc

}
, (5.46)

with Q(T ) defined as the large distance limit of Q(r,T ). We thus find that �(T )
constitutes a deconfinement order parameter in the sense of statistical mechanics,
much like the magnetization m(T ) in the Ising model.
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Fig. 5.4 Free energy of a static QQ̄ pair in SU(3) gauge theory

On the lattice, the correlation function �(r,T ) can be expressed [40–42] in terms
of the so-called Polyakov loop,

L(r)≡ 1

3
Tr

Nτ∏
τ=1

Ur,τ , (5.47)

where r denotes some spatial lattice site on a time-plane labeled by τ . The product
in Eq. (5.47) runs overNτ matrices U on links along a time axis passing through the
site r . In terms of the notation Ui,j used above, Ur,τ thus is the matrix associated
to the link from xi = (�r, τ ) to xj = (�r, τ + 1). Because of the periodicity, the gluon
fields at τ = 0 and τ = β are equal, making L(x) a closed loop and hence gauge
invariant. It can be shown to correspond to a static quark at site x, so that

�(r,T )∼ ∣∣〈L(0)L+(r)
〉∣∣ (5.48)

leads to the desired correlation function. More precisely, |〈L(0)L+(r)〉| specifies
the free energy FQ(r,T ) of a static quark-antiquark pair at temperature T and sep-
aration r , up to a lattice-size dependent renormalization c(g,Nτ ),

− ln
∣∣〈L(0)L+(r)

〉∣∣= c+ FQ(r,T )

T
. (5.49)

To determine c(T ), we note that at very short distances, for rT � 1, there will not be
any temperature-dependent modifications of the interquark potential. In this region
of r , the Coulomb term α(T = 0)/r will thus provide the dominant contribution to
V (r,T ) in Eq. (5.44) and can be used to define a correctly normalized Polyakov
loop [46].

We now want to study on the lattice the behavior of |〈L(0)L+(r)〉| in the limit of
large quark-antiquark separation, and hence define

lim
r→∞

∣∣〈L(0)L+(r)
〉∣∣≡ L(T )2 exp

{
c(g,Nτ )

}
(5.50)

to determine the onset of deconfinement. The renormalization by exp{c(g,Nτ )} re-
moves the lattice size dependence of the Polyakov loop expectation value. In Fig. 5.5
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we show the behavior of the renormalized L(T ) in pure SU(3) gauge theory. It van-
ishes for T ≤ Tc and then becomes finite in a discontinuous fashion at the same
temperature Tc at which ε(T ) showed a jump, and it thus confirms that T = Tc
indeed signals the deconfinement point.

Fig. 5.5 Renormalized Polyakov loop in SU(3) gauge theory

We will return to the deconfinement transition and its relation to spontaneous
symmetry breaking in the next chapter. But we do want to note the actual value of
the transition temperature. As already mentioned, to this end we have to fix a lattice
scale in physical units, by comparing some calculated observable to its measured
value. Now pure SU(3) gauge theory of course does not correspond to any real
physical world; one therefore generally uses the string tension as scale, retaining
its “physical” value. The deconfinement temperature in pure SU(3) gauge theory is
then found to be [47]

Tc = (0.640 ± 0.015)
√
σ ; (5.51)

it is obtained by a detailed analysis using different forms of the lattice action and
different lattice sizes to reach the continuum limit. If we use the value

√
σ �

470 ± 10 MeV, as presently obtained in (2 + 1) flavor QCD [50–53], this leads
to a deconfinement temperature of about 300 MeV.

5.5.2 Full QCD

Let us now turn to the thermodynamics of full QCD, beginning with several caveats
which are fortunately being removed with the improved performance of computing
facilities. As already indicated, we have to choose a specific lattice formulation for
the quarks, and each form has its problems [21]. Today, one has quite extensive cal-
culations using different lattice actions, and the agreement of the results provides a
good estimate of their precision. A further problem of the computer simulation is
that it requires non-vanishing quark masses, and the smaller these masses are, the
longer the simulation takes. Early calculations had therefore used quite large u and d
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quark masses. This has rather significant repercussions in the calculation of hadron
masses; in particular, it resulted in too large a value for the pion mass. In turn, corre-
sponding uncertainties could arise in the results for Tc in physical units. Finally we
note that the mentioned time-consuming evaluation of the fermion determinant in
full QCD calculations at present results in worse statistics and smaller temperature
ranges than were reached in pure SU(3) gauge theory. Hence an extrapolation of the
results to the continuum limit, based on a number of different lattice sizes, is only
now being carried out.

To illustrate the general behavior pattern, we show in Fig. 5.6 some older results
for the energy densities obtained in full QCD with different numbers of quark flavors
[16], together with the corresponding Stefan-Boltzmann limits,

ε/T 4 =
{
(37/30)π2 � 12 for Nf = 2

(47.5/30)π2 � 16 for Nf = 3

}
. (5.52)

They are shown as function of T/Tc; we shall return shortly to the determination
of Tc used here. Figure 5.6 shows that again in a very narrow temperature interval
there is a rapid increase from the low values of hadronic matter to much higher
values approaching the ideal quark-gluon plasma limit. Deconfinement thus remains
clearly evident also in full QCD.

Fig. 5.6 Energy density in full QCD with different numbers of dynamical quarks [16]

As already mentioned, in these studies the masses of the light quarks were not as
low as required for a correct pion mass. At present, we have several evaluations of
full QCD based on one heavy and two light quark species, and in these studies, the
light quark mass is tuned such as to approach the correct pion mass. Such studies
can then begin to address the two essential questions: how should the critical point
for deconfinement be defined, and what is its actual value in physical units?

In the case of pure gauge theory, we had established deconfinement as a genuine
phase transition, with L(T ) as order parameter vanishing for T ≤ Tc and non-zero
above Tc. For this, it was crucial that below Tc the potential between two static
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quarks diverged in the large distance limit, causing L(T ) to vanish. In full QCD, in
the presence of light quarks, this is no longer the case. Once the free energy FQ(r)
become sufficient to excite a quark-antiquark pair from the vacuum, it becomes en-
ergetically favorable to produce such a pair and have the constituent quark combine
with the static antiquark, the constituent antiquark with the static quark. The result
is that we now have two “light-heavy” mesons, something like aDD̄ or BB̄ system,
and these mesons can be separated arbitrarily far without any energy expenditure.
Taking the light quarks to be massless, the required energy is that needed to “dress”
both the light and the heavy quarks, i.e., about 300 MeV per quark. In other words,
for FQ(r)� 4Mq � 1.2 GeV, the string connecting the static quark to the static an-
tiquark “breaks”. This occurs already for a static pair in vacuum, and hence becomes
even easier at finite temperature. As a result, the free energy F(r,T ) now has the
form shown in Fig. 5.7.

Fig. 5.7 Free energy of a static QQ̄ pair in full QCD

Since in full QCD, string breaking prevents FQ(r,T ) from diverging for r → ∞
at any temperature, L(T ) does not vanish below Tc. It continues, however, to vary
sharply (even discontinuously for Nf ≥ 3 and vanishing quark masses) at the in-
flection point of the energy density, even though it now remains finite for T < Tc .
A rough estimate of the behavior in the confinement regime can be obtained by
setting FQ(r,T )� 4Mq in the Polyakov loop,

L2(T )� exp−{4Mq/T }, T ≤ Tc, (5.53)

instead of having it vanish there, as in pure gauge theory. In the deconfinement
region, there remain only the polarization effects around the two static quarks, caus-
ing a sharp increase of L(T ) as we approach the transition point. We thus get the
schematic pattern shown in Fig. 5.8. The resulting susceptibility, i.e., the temper-
ature derivative of L(T ), shows a pronounced peak at a “critical” temperature Tc .
Taking into account the “inversion” of the temperature variable between spin and
gauge theories, the behavior of L(T ) here is quite similar to that found in the Ising
model in the presence of a small magnetic field.
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Fig. 5.8 Schematic view of the Polyakov loop and its temperature derivative in full QCD

For quite some time, deconfinement and the corresponding critical or pseudo-
critical temperature were in fact defined in terms of the position of the peak in the
temperature derivative of L(T ); the value of Tc used in Fig. 5.6 was determined
this way. In some cases, such a definition is evidently correct: thus, for a first order
transition at T = Tc , all observables show some form of discontinuous behavior at
that temperature. However, we shall see in the next chapter that deconfinement is
more naturally specified through the temperature variation of the energy density,
i.e., the specific heat CV (T )= (∂ε/∂T )V . It can be written as

Cv(T )

T 3
= 4

ε(T )

T 4
+ T

(
∂(ε/T 4)

∂T

)
v

; (5.54)

in the high temperature limit, we thus get Cv(T )/T 3 → 4ε(T )/T 4. In Fig. 5.9, we
show a schematic view of recent results for the energy density in the (2 + 1) flavor
case, based on almost physical quark masses (mq/ms = 0.05 for the ratio of light
to strange quark) [48, 49]. As already indicated, finite temperature lattice studies
require a further calculation to fix the result in physical units. One can thus calculate
a specific hadron mass in lattice units and fix the latter through the experimental
mass value. At present, one generally uses the mass splitting in heavy quark bound
states (charmonia or bottomonia) for this purpose, since it is very precisely known
[50–53]. The scale in Fig. 5.9 is obtained in this fashion. For the moment, we define
the peak position of the specific heat shown in this figure to be the deconfinement
point, and thus obtain

Tc � 160 ± 15 MeV. (5.55)

It turns out that also this definition has its problems, and we will have to modify it
somewhat. Nevertheless, a striking feature of statistical QCD is that the modification
of definitions has remarkably little effect on the actual value of the “transition” point.

In the following chapter we shall address the symmetry aspects of the hadron-
quark transition, in pure gauge theory as well as in full QCD. We will show that in
the limit of massless quarks, chiral symmetry restoration provides us with a well-
defined transition and a corresponding order parameter.
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Fig. 5.9 Energy density and specific heat in full QCD [48, 49]

5.6 Conclusions

We saw how statistical QCD can be formulated on the lattice, leading to a partition
function quite similar to that of a generalized spin system. The resulting thermo-
dynamics can therefore be obtained numerically through computer simulation. This
evaluation gives in particular

• a sharp transition in energy density, from a confined hadronic phase with few
degrees of freedom to a deconfined plasma with many;

• for pure SU(3) gauge theory, well-defined critical behavior (first order phase tran-
sition), for full QCD a very rapid change in behavior allowing an approximate
determination of the transition point;

• a transition temperature decreasing from 300 MeV for SU(3) gauge theory to
160 MeV for the physically most interesting case of QCD with two light (or two
light plus one heavy) quark flavors.

We will now turn to the connection of critical behavior in statistical QCD to un-
derlying symmetries, and we shall also try to understand the connection between
deconfinement and chiral symmetry restoration.
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Chapter 6
Broken Symmetries

Seht ihr den Mond dort stehen?
Er ist nur halb zu sehen,
und ist doch rund und schön!
So sind wohl manche Sachen,
die wir getrost belachen,
weil unsre Augen sie nicht sehn.

Matthias Claudius, Sämmtliche Werke des
Wandsbecker Bothen (1774)

[Do you see the moon up there?
Only half of it is visible,
and yet it is round and beautiful.
Quite a few things are like that,
and we joke about them,
because our eyes cannot see them.

Matthias Claudius, Complete Works of the
Messenger from Wandsbeck (1774)]

Recalling the relation between critical behavior and spontaneous symmetry break-
ing, we show that deconfinement in SU(N) gauge theory is based on the breaking
of a global ZN symmetry. Next we turn to the chiral symmetry of the QCD La-
grangian in case of massless quarks and discuss the spontaneous breaking and even-
tual restoration of this symmetry. We then consider the relation of the two kinds
of symmetry breaking in determining the transition behavior as well as the general
transition pattern as a function of the input quark masses.

6.1 Symmetry Breaking and Critical Behavior

In Chap. 2 we had seen that critical behavior in thermodynamics is quite generally
related to the onset of spontaneous breaking of a global symmetry of the system.
In the Ising model, the self-organized alignment of spins is an example of this: the

H. Satz, Extreme States of Matter in Strong Interaction Physics,
Lecture Notes in Physics 841, DOI 10.1007/978-3-642-23908-3_6,
© Springer-Verlag Berlin Heidelberg 2012
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system finds itself in a stable thermodynamic state which breaks a global symme-
try of its own Hamiltonian. The quantity we had used to establish this symmetry
breaking, the order parameter m(T ), vanishes when the state of the system shares
the symmetry of the Hamiltonian, and it becomes non-zero when the symmetry is
broken. In the latter case, it is evident that an additional parameter (besides T ) is
necessary to specify the state of the system, since for a given T < Tc there exist two
different but equally probable possibilities. It is the order parameter which plays this
role; it defines the phase in which the system finds itself, disordered or ordered, and
if ordered, up or down. In the vicinity of phase transition, the order parameter is
therefore a particularly important thermodynamic quantity.

Concerning “order”: in the case of the Ising model, disordered spin configura-
tions lead to m = 0, while any configuration with some degree of order leads to a
non-vanishing m. Hence here m 	= 0 does in fact mean that the corresponding phase
is at least partially ordered. But the term order parameter is used quite generally
for a function which defines the phase structure of a system by vanishing in a cer-
tain temperature range and remaining non-zero in another—even when there is no
immediate relation to order or disorder. A familiar example is the liquid-gas tran-
sition, where the order parameter is defined as the difference of the densities in the
two states, �ρ ≡ ρL − ρG. For T < Tc, the densities of the two states differ, so that
�ρ 	= 0; above Tc , there is no longer any difference and hence �ρ = 0.

Returning to the Ising model, we note another relation between order and sponta-
neous symmetry breaking. If the external magnetic fieldH is not zero, the spins will
always be partially aligned, so thatm(T ,H) never vanishes forH 	= 0 (see Fig. 2.2).
The Z2 symmetry of the Hamiltonian is now broken explicitly by the presence of
H 	= 0. If we gradually reduce the strength of the external field, what does m(T ,H)
do in the limit H → 0? It becomes evident that one can understand spontaneous
symmetry breaking as the limiting case of explicit symmetry breaking, as seen in
the relation

m(T ,H = 0)= lim
H→0

{
lim
N→∞

T

N2

(
∂ lnZ

∂H

)}
. (6.1)

Spontaneous symmetry breaking can thus also be interpreted as an order enforced
by a self-organized field, created by the system without any “outside help”.

In the case of continuous phase transitions, we had seen that critical exponents
determine the behavior in the vicinity of the transition point and thereby define
as universality class the set of all systems with the same critical exponents. We
shall see shortly that this allows us to predict in statistical QCD the behavior at
color deconfinement or at chiral symmetry restoration in terms of the magnetization
pattern in spin models.

It would of course be nice to have a similar classification scheme for discontinu-
ous (first order) transitions; unfortunately this is at present still lacking. So far, one
can only say that all first order transitions in systems of a given spatial dimension
approach the thermodynamic limit in the same way, i.e., show the same finite-size
scaling behavior.

Before we begin to apply these general considerations to the specific critical
behavior encountered in QCD, let us see what happens when we extend them to
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the case of continuous global transformations. We had seen that a discrete global
symmetry, specifically the up-down invariance under the Z2 group transformations,
led to the possibility of spontaneous symmetry breaking when the system had to
choose between two equivalent lowest energy configurations which individually
break the symmetry. In case of invariance under Z3 transformations, there are three
such equivalent states, corresponding to the spin orientations si = exp{ni(2π/3)},
with n = 0,1,2. For general ZN , there are N degenerate configurations, and as
N → ∞, the number of degenerate states of different symmetry becomes infinite.
For continuous symmetry groups, we thus get a continuum of equivalent configu-
rations, and at this point, the mode of symmetry breaking changes. The system, in
addition to choosing one out of a continuum of equivalent states rotated relative to
each other, in order to indicate its symmetry breaking, develops a wave consisting
of a superposition of these states, travelling through the medium. In spin systems
with a continuous global symmetry, it is thus the presence of such spin waves which
signal spontaneously broken symmetry, not a specific symmetry-breaking (“up” or
“down”) state. The development of a massless excitation as consequence of a spon-
taneously broken continuous symmetry is not restricted to spin systems, however;
another familiar example are the sound waves (phonons) in crystals as a result of
the breaking of the continuous translation invariance of a fluid. In general, the ex-
cited states formed through the spontaneous breaking of a continuous symmetry are
referred to as Goldstone excitations [1]. We shall see further down that in an ideal
world of strong interactions only, pions are the Goldstone excitations caused by the
breaking of the continuous chiral symmetry of the QCD Lagrangian with massless
quarks.

6.2 The Deconfinement Transition

In Chap. 5, we had considered the correlation function for a static quark-antiquark
pair in a purely gluonic medium of temperature T ,

�(r,T )∼ ∣∣〈L(0)L+(r)
〉∣∣∼ exp

{−FQQ̄(r, T )/T }, (6.2)

and argued that for r → ∞ this gave 〈L(T )〉 � exp{−FQ/T }, with FQ = FQQ̄(r =
∞, T )/2 denoting the energy of an isolated quark. In a confining medium, FQ be-
comes infinite; if color screening leads to deconfinement, the range of the potential
between static quark and antiquark becomes finite, and with it FQ. We thus obtained
for the temperature dependence of the Polyakov loop expectation value

〈
L(T )

〉=
{

0 for T ≤ Tc
exp{−FQ/T }> 0 for T > Tc

}
, (6.3)

with Tc denoting the deconfinement temperature. Therefore the functional form of
〈L(T )〉 is very similar to that of the magnetization m(T ) for a spin system. At first
sight it seems surprising that m(T ) vanishes at high, 〈L(T )〉 at low temperatures.
The common feature, however, is that both systems are in the ordered phase at high
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density. For the gluon gas, that is at high temperature; for the spin system, increasing
the density is equivalent to increasing the coefficientK in the Hamiltonian (2.1), and
that in turn is the same as decreasing the temperature.

The behavior of 〈L(T )〉 describes only the potential between two static, i.e., in-
finitely heavy quarks Q and Q̄ in a gluonic medium. We had seen in Sect. 5.5.2
that it breaks down if the medium contains light (“dynamical”) quarks q and q̄ ,
since string breaking through formation of a pair of light-heavy hadrons Qq̄ and
Q̄q now allows the test quarks to be separated without expending any further en-
ergy. The linear rise of the potential is thus stopped at this point, and 〈L(T )〉 now
becomes non-zero also in the confinement regime, as shown in Fig. 5.8. Comparing
the behavior of 〈L(T )〉 in the cases with and without dynamical quarks to the mag-
netization effect in the Ising model, i.e., comparing Figs. 5.8 and 5.5 to Fig. 2.2, it
becomes evident that the inverse mass of dynamical quarks in the theory must play
a role similar to that of the external field in the Ising model. We shall address this
aspect in the last section of this chapter.

Here we now return to pure SU(N) gauge theory, determined by the Wilson
action (see Eq. (5.14))

S ∼
∑{

1 − 1

N
Re TrUUU+U+

}
. (6.4)

It remains invariant under the gauge transformations

Ur,τ → Vr,τUr,τ V
+
r,τ+1, (6.5)

where Ur,τ is an SU(N) matrix “living” on the link from site (r.τ ) to site (r, τ + 1),
and Vr,τ the SU(N) gauge transformation associated to site (r, τ ). The periodicity
requirement A(r, τ = 0)= A(r, τ = Nτ ) for the gauge fields imposes a periodicity
on the gauge transformations as well, with

Vr,τ=0 = Vr,τ=Nτ ∀r, (6.6)

assuring the invariance of the trace in Eq. (6.4). However, the trace in Eq. (6.4) re-
mains in fact invariant for an even more general periodicity condition. If we require

Vx,τ=0 = CNVx,τ=Nτ ∀x, (6.7)

then all loops in space-time planes—and only those are affected by conditions
(6.6)/(6.7)—contain a factor CN from going “up” in time and a factor C+

N from
going down. If CN commutes with all elements of SU(N), we can bring the two
together and use CNC

+
N = 1. Thus the action remains invariant for the more gen-

eral periodicity condition (6.7), with CN ∈ ZN ⊂ SU(N), where ZN is the center
of SU(N), i.e., the subgroup consisting of those elements of SU(N) which com-
mute with all others. As we saw above, Z2 consists of ±1 only, while Z3 consists of
exp{ni(2π/3)}, n= 1,2,3. We thus note that pure SU(N) gauge theory is invariant
under global transformations belonging to the center ZN ⊂ SU(N).

As in the case of the Ising model, this invariance of the theory need not be shared
by the actual state of the system. To check possible spontaneous symmetry breaking
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in SU(N) gauge field thermodynamics, we note that under the center ZN transfor-
mations just considered, the Polyakov loop operator (see Eq. (5.47))

LN(r)≡ 1

N
Tr

Nτ∏
τ=1

Ur,τ , (6.8)

does not remain invariant: it is a closed loop only by periodicity and hence contains
only one factor CN , so that transformation (6.7) results in

LN(r)→ CNLN(r) ∀r. (6.9)

Hence 〈L(T )〉 constitutes the order parameter for ZN symmetry in SU(N) gauge
theory; it vanishes when the state shares the symmetry of the Lagrangian, it becomes
non-zero when that symmetry is spontaneously broken [4–6].

It is thus evident that there is much similarity between the Polyakov loops in
gauge theory and the spins in the Ising model. In the latter, we have at each lattice
site a spin which takes on a certain value (±1); in gauge theory, we have instead
at each spatial lattice site a Polyakov loop with a certain value. In both cases, the
average over the lattice tells us if the global ZN symmetry of the theory is broken
or not.

Starting from this similarity, one might try to change variables in the partition
function (5.32) from the Uij to the Li plus whatever remains to be integrated over.
For SU(2) gauge theory [2] this leads to a partition function of a structure very much
like that of the Ising model. Continuing in this vein, Svetitsky and Yaffe [3] have
conjectured that the critical behavior of an SU(N) gauge theory at deconfinement
is in the same universality class as the order-disorder transition in the correspond-
ing ZN spin theory of the same spatial dimension. The conjecture consists of two
statements, depending on the nature of the transition.

• If the ZN spin system shows a discontinuous (first order) transition, then also the
corresponding SU(N) gauge theory is expected to lead to a first order deconfine-
ment transition.

• If the corresponding ZN and the SU(N) transitions are both continuous, then
they will be in the same universality class, i.e., they will be governed by the same
critical exponents.

In accord with the conjecture, the deconfinement transition in SU(3) gauge theory in
three space dimensions is found to be of first order [7, 8], just as the corresponding
order-disordered transition in Z3 spin theory (the so-called three-state Potts model)
is of first order. The agreement continues to higher N , where both spin and gauge
theories lead to first order transitions. The form of the order-disorder transition in
ZN spin systems is given in Fig. 6.1 as a function of N and of the space dimen-
sion d [9].

For N = 2, both spin and gauge theory show continuous transitions. The
Svetitsky-Yaffe conjecture thus predicts the critical exponents in SU(2) gauge the-
ory to be those of the Ising model. This prediction has been tested in consider-
able detail, extrapolating results from finite lattice size studies to infinite volume
[10]. We see in Table 6.1 that the conjecture is indeed very well satisfied. The last
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Fig. 6.1 Transition structure of ZN spin systems in d space dimensions; circles denote continuous,
squares discontinuous transitions

line in this table provides an additional independent check of the scaling relation
(γ + 2β)/ν = 3 obtained for d = 3 by combination of Eqs. (2.23) and (2.26).

The deconfinement transition thus seems well understood in pure SU(N) gauge
theory: we can define color deconfinement as the spontaneous breaking of the global
ZN center symmetry. The deconfinement transition is thus structurally related to the
disorder-order transitions in ZN spin systems, and the Svetitsky-Yaffe conjecture
specifying the details of this relation is well satisfied.

Table 6.1 Critical exponents for the Ising model and SU(2) gauge theory in three space dimen-
sions

Exponent Ising SU(2)

yt 1.590 ± 0.002 1.587 ± 0.027

yh 2.482 ± 0.007 2.475 ± 0.008

(γ + 2β)/ν 3.006 ± 0.018 2.994 ± 0.021

In full QCD, the presence of dynamical quarks explicitly breaks the ZN sym-
metry. However, as we have seen in the last chapter, the Polyakov loop expecta-
tion value nevertheless remains small up to a certain temperature; it then increases
rapidly in a very narrow temperature interval, which coincides with that in which
the energy density suddenly increases. In other words, some almost critical behav-
ior seems to persist even in the limit of light quarks. We shall later on return to the
possible origin of this behavior.

6.3 Chiral Symmetry Restoration

The quark and gluon fields of QCD define a quantum number or “index” space of
color, flavor, charge and baryon number, in addition to the usual vector and spinor
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spaces determined by Poincaré invariance. The breaking of the global center ZN
symmetry just discussed as a basis for deconfinement dealt with transformations of
gluon fields in color space. Gluons are flavor-blind, i.e., they interact the same way
with all species of quarks, as well as with their different electric charge and baryon
number states. This separates the quark and the gluon spaces of internal quantum
numbers, and the symmetries to be considered in this section arise in the quark space
of flavor, charge and baryon number.

The u and d quarks, with masses below 10 MeV, are very much lighter than
the four other species. In the transition regime, they therefore play the dominant
role as the quark constituents in QCD thermodynamics, with heavier quarks sup-
pressed by the requirement of pair production (to conserve, e.g., strangeness) and
their correspondingly smaller Boltzmann factors. At high temperatures, however,
this u − d predominance will weaken and at least strange quarks will come into
play. At this point, we are concerned with the transition region and will therefore
restrict ourselves for the time being to the two basic flavors. In the Lagrangian (see
Eqs. (5.1)/(5.9)),

L = −1

4
FμνF

μν −
∑
f

{
ψ̄f γμ

(
i∂μ + gAμ)ψf −mf ψ̄f ψf

}
, (6.10)

the quark four-spinors ψu and ψd then form a vector in a two-dimensional flavor
space,

ψ =
(
ψu
ψd

)
≡
(
u

d

)
; (6.11)

we have here suppressed all other indices. Note that the operator D ≡ (iγ μ∂μ +
gγ μAμ) is flavor-blind. Consider now continuous unitary transformations V ∈ U(2)
in the mentioned flavor space, acting on the two-component vector, ψ →ψ ′ = Vψ ,

ψ =
(
u

d

)
→ψ ′ =

(
u′

d ′

)
= V

(
u

d

)
= Vψ. (6.12)

Which transformations of this type leave the Lagrangian L invariant? That depends,
as we shall see, on the quark masses. Multiples of the unit matrix, V = eiα1, quite
generally do not affect L. Invariance under continuous transformations leads to con-
served quantum numbers, as a consequence of the Noether theorem. The invariance
under U(1) transformations ψ → eiαψ assures baryon number conservation, keep-
ing the total baryon balance (baryons minus antibaryons) fixed. The remaining trans-
formations of U(2)/U(1)= SU(2) in general do not leave L invariant; this becomes
immediately evident if we rewrite the mass term as∑

f

mf ψ̄f ψf =muūu+mdd̄d

= 1

2
(mu +md)(ūu+ d̄d)+ 1

2
(mu −md)(ūu− d̄d). (6.13)

The last term destroys invariance under rotations in u− d space; hence we get in-
variance under flavor SU(2) only if mu = md , i.e., for equal quark masses. The
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conserved quantity in this case is the isospin: for equal quark masses, the hadrons
built out of u and d quarks form isospin multiplets, and in all reactions the over-
all isospin is conserved. The invariance of L under U(1)× SU(2) transformations
u− d in flavor space thus provides the isospin structure of the observed hadrons as
well as baryon number conservation. What it does not tell us is why the pion mass,
in comparison to that of other u− d meson states, is so small. This is where chiral
invariance enters.

For massless quarks, the four-spinors can be decomposed into two two-spinors,
corresponding to left- and right-handed massless fermions; Lorentz transformations
do not mix these different helicity states. We can therefore subdivide the two-
dimensional flavor space into two subspaces, one of left- and one of right-handed
states, respectively. Each of these is again two-dimensional (for Nf = 2), and in it
we can then again consider rotations, such as

ψ ′
L = VLψL, with ψL =

(
uL

dL

)
and V ∈ SU(2), (6.14)

and similarly for right-handed states. For massless quarks, the Lagrangian remains
invariant under this additional symmetry group. To see that, we introduce the pro-
jection operators

PR = 1

2
(1 + γ5), PL = 1

2
(1 − γ5), (6.15)

where γ5 = γ0γ1γ2γ3 anticommutes with the Dirac matrices γμ, γ5γμ = −γμγ5.
The operators (6.15) satisfy

PR + PL = 1; P 2
L = PL; P 2

R = PR; PRPL = PLPR = 0; γμPR = γμPL.
(6.16)

In terms of the projection operators and the state ψ of Eq. (6.11), we define

ψL = PLψ, ψR = PRψ, (6.17)

and hence get

ψ̄L = ψ̄PR, ψ̄R = ψ̄PL. (6.18)

Using these relations, we find

ψ̄γμψ = ψ̄LγμψL + ψ̄RγμψR, (6.19)

so that rotations in the L-part of flavor space only leave the term ψ̄Dψ of the La-
grangian (5.38) invariant. On the other hand,

ψ̄ψ = ψ̄RψL + ψ̄LψR, (6.20)

so that the mass term, as expected, will not remain invariant: the Lagrangian L has
the additional chiral symmetry only for massless quarks.

In that case, L still has a further axial U(1) symmetry, obtained by the gauge
transformation VA = exp{iγ5α}; it corresponds to independent phase transforma-
tions of the left- and right-handed parts of ψ .



6.3 Chiral Symmetry Restoration 97

We thus find a hierarchy of symmetries. L is always invariant under U(1) trans-
formations assuring baryon number conservation. If mu = md , we have in ad-
dition isospin conservation, obtained from the invariance under SU(2)isospin. If
mu = md = 0, L is furthermore invariant under SU(2)chiral and UA(1), so that in
this case the full symmetry group of L becomes

U(1)baryon × U(1)A × SU(2)L × SU(2)R, (6.21)

or, equivalently,

U(1)V × U(1)A × SU(2)V × SU(2)A, (6.22)

where the subscripts V and A refer to vector and axial vector operations in flavor
space. Generalizing the result to Nf flavors, we obtain the group

SU(Nf )L × SU(Nf )R ∼ SU(Nf )V × SU(Nf )A; (6.23)

it is generally denoted as the chiral symmetry group; it is the product of rotations in
left-handed flavor space and rotations in right-handed flavor space. It is equivalent
to that obtained as a product of independent rotations of vectors and axial vectors.

The conservation of baryon number and isospin, predicted by the invariance of
L under U(1)baryon × SU(2)V , is well satisfied in nature; deviations with respect to
isospin conservation are of the size of the difference between proton and neutron
masses. The invariance under SU(2)A, on the other hand, would require an axial
vector partner of each isospin multiplet, e.g., a negative parity nucleon state. This
is not observed, indicating that this symmetry must be spontaneously broken in
the hadronic state of matter. The axial symmetry UA(1) is also broken, because
of the two-gluon anomaly of the axial vector current [11, 12], leading to a non-
conservation of the axial quark charge.

Since SU(2)A is a continuous global symmetry, its breaking implies an associated
isospin triplet of Goldstone excitations—the pion. In other words: while the vacuum
state |0〉 is invariant under vector operations in flavor space,

IV |0〉 = 0, (6.24)

this is not the case for axial vector operations

IA|0〉 = |G〉 	= 0. (6.25)

The pion thus becomes the massless particle associated to the axial isovector G.
Such a massless state exists, strictly speaking, only for massless u and d quarks. In
the real world, the actual pion has a mass, mu and md are not zero, and hence the
chiral symmetry of L is explicitly broken; the picture of pions as Goldstone particles
can therefore be only approximate. Nevertheless, we see how a light axial isovector
state appears in QCD as consequence of the spontaneous breaking of the chiral sym-
metry of the Lagrangian. The pion thus plays a special role among the hadrons: in
an idealized QCD of vanishing quark masses, we have conventional hadrons (vector
mesons, nucleons) which are quark-antiquark bound states, and pions, which are
massless Goldstone excitations. At deconfinement, the quark-antiquark binding is
dissolved, so that the conventional hadrons “melt”. The pions, however, would still
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persist beyond this point, unless chiral symmetry is also restored here. A measure of
chiral symmetry breaking is provided by the effective quark mass term 〈ψ̄ψ〉; when
it does not vanish, the chiral symmetry of the Lagrangian is spontaneously broken.
Let us now consider the critical behavior associated to chiral symmetry breaking
and restoration; for a more extensive discussion of chiral quark dynamics and the
chiral phase transition, see e.g. [13, 14].

The transformation group SU(2) is specified by three real parameters; it is lo-
cally isomorphic to the group O(3) of rotations in a three-dimensional space, so
the three parameters correspond to the three Euler angles. The flavor symmetry
group SU(2)V × SU(2)A is parametrized in terms of six real parameters, three for
each SU(2) factor; it is locally isomorphic to the group O(4) of rotations in a four-
dimensional space. Based on this, Pisarski and Wilczek conjectured [15, 16] that the
critical behavior of chiral symmetry restoration in QCD with two species of mass-
less quarks and that at the order-disorder point of an O(4) symmetric spin model
lie in the same universality class. This relation makes sense only if chiral symmetry
restoration in two flavor QCD is a continuous transition, and, as we shall see shortly,
that does seem to be the case. This provides a universality relation of direct physi-
cal relevance, in contrast to the relation between ZN symmetry and deconfinement,
where only the (unphysical) SU(2) gauge theory provided a continuous transition in
three space dimensions. The extension of chiral symmetry to more than two mass-
less quark species (e.g., ms = 0 as well as mu and md ) leads to SU(N)V × SU(N)A
and hence to O(2N) symmetric spin systems; both show first order transitions.

The chiral order parameter in QCD is defined by

〈ψ̄ψ〉 = T

V

(
∂ lnZ(T ,mq)

∂mq

)
mq=0

, (6.26)

where mq denotes the quark mass. The calculation of 〈ψ̄ψ〉 at finite temperature
requires both additive and multiplicative renormalizations; for details, see [17]. We
normalize it here to its value at T = 0, where in the limit mq → 0, chiral sym-
metry is spontaneously broken, and denote the resulting condensate as K(T ). The
behavior obtained for the case of two light (u,d) and one heavy (s) quarks is shown
schematically in Fig. 6.2. To determine the resulting critical temperature in the limit
of vanishing light quark masses, we can differentiate K(T ) either with respect to
temperature or with respect to quark mass. The first leads to the “mixed” suscepti-
bility

χTq (T )=
(
∂K(T )

∂T

)
mq

∼
(
∂

∂T

(
∂ lnZ

∂mq

)
T

)
mq

, (6.27)

which (see Chap. 2) should diverge as |t |−(1−β) for t → 0, with t = (T − Tc)/Tc;
the corresponding behavior in our case is included in Fig. 6.2. The second gives the
chiral susceptibility

χmq (T )=
(
∂K(T )

∂mq

)
T

=
(
∂2 lnZ(T ,mq)

∂m2
q

)
T

, (6.28)
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Fig. 6.2 The temperature dependence of the renormalized chiral condensate K(T ) and of the
corresponding susceptibility [17]

with a divergence as m(1/δ)−1
q on the critical isotherm T = Tc . Either could be used

to locate the most rapid temperature change of the condensate and thus define the
critical point. In actual lattice studies, for technical reasons the chiral susceptibility
(6.28) is used and the resulting temperature is then employed here as scale.

To specify the resulting critical temperature in physical units, one should have

• calculations on different size lattice, allowing an extrapolation to the continuum
limit; and

• calculations providing the continuum limit of a measured observable, allowing
the gauging of the lattice scale in physical units.

Such studies have been performed by different groups, and the outcome appears to
be converging to a value of

Tχ = 160 ± 10 MeV (6.29)

for the critical temperature of chiral symmetry restoration in the limit mu,d → 0 of
Nf = 2 + 1 QCD [18–21].

Given these results, we can return to the universality conjecture of Pisarski and
Wilczek, which predicts chiral symmetry restoration to be in the universality class
of three-dimensional O(4) spin theory, just as the Svetitsky-Yaffe conjecture related
deconfinement in SU(2) gauge theory to the Ising model. The critical exponents
for the O(4) system are listed in Table 6.2 [22]. A direct comparison with those
of two-flavor QCD encounters several problems, however. In early work [23], it
was found that while the magnetic chiral exponent yh agrees very well with its
predicted value, the thermal exponent yt appears to be about 50% larger than its
O(4) prediction, though in both cases with considerable error. One difficulty is the
fact that the exponent of the specific heat, α, is negative for O(4), so that the specific
heat does not diverge at Tc , but only shows a cusp. As a consequence, the regular part
of Cv plays a considerable role there and can modify the temperature dependence.
A second aspect to be kept in mind is that the lattice formulation of the quark fields
breaks the O(4) symmetry to an effective O(2) symmetry; the full O(4) is recovered
only in the continuum limit. The problem is further complicated by the fact that the
exponents in the two cases are quite similar. Finally, even now the lattice studies of
full QCD are not nearly as precise as they are for pure SU(N) gauge theory, so that



100 6 Broken Symmetries

Table 6.2 Critical exponents for the O(4) spin system

α β γ δ ν yt yh

−0.2 0.38 1.5 4.8 0.76 0.45 0.83

a determination of the critical behavior in a perhaps very small region around Tc
remains difficult for the moment.

As alternative approach [24], one has therefore compared the observed behavior,
e.g. of the chiral condensate and susceptibilities derived from it, to the scaling func-
tions in the critical region, using the O(4) or O(2) exponents. The crucial variables
are the reduced temperature t = (T − Tc)/Tc and the “external field” h = mq/Tc;
the latter is here effectively determined by the quark mass, since mq → 0 leads to
a chirally symmetric Lagrangian. In Chap. 2 we have seen that the order parameter
M(t,h) should scale for t = 0 as

M(t = 0, h)=
(
∂Fs(t, h)

∂h

)
t=0

= h1/δfG(z), (6.30)

where Fs(t, h) is the singular part of the free energy. The scaling function fG(z),
with z= t/h1/βδ , can be determined in the corresponding spin class, and the expo-
nents β and δ are known (for O(4), see Table 6.2). The so-called magnetic equation
of state (6.30) has been analyzed in QCD with two light quark flavors, making use
of

M(t,h)∼ 〈ψ̄ψ〉(t, h) (6.31)

as the relevant chiral order parameter. It is found to agree well with the O(4)/O(2)
predictions [25], so that also the Pisarski-Wilczek conjecture appears to be satisfied
for QCD.

6.4 Quark Mass and Transition Structure

We now want to consider how the transition is affected when the mass values for the
different quark flavors are varied.

• When mq → ∞ for all quark flavors, QCD reduces to pure SU(N) gauge theory,
which is invariant under a global ZN symmetry. Hence the critical behavior of
SU(N) gauge theory is in the same universality class as that of ZN spin theory
(the N -state Potts model): both are due to the spontaneous symmetry breaking of
a global ZN symmetry [3]. In accord with this, the critical exponents in SU(2)
gauge theory are identical to those of the Ising model, and for SU(3) gauge theory,
the first order transition of the corresponding Potts model is recovered.

• When mq = 0 for all quark flavors, the Lagrangian is chirally symmetric, so that
we now have a phase transition corresponding to chiral symmetry restoration.
For three massless quark flavors, the transition is again of first order. It remains
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of this form for a range of strange quark mass values, until at a certainm=mtri
s , it

becomes of second order; the case of two massless quarks is thus also continuous.

In Fig. 6.3, the corresponding overall transition pattern is shown, with mu, md
and ms denoting the mass values for the three quark flavors. Let us look in detail at
what this means.

Fig. 6.3 Finite temperature phase structure for three quark flavors

Consider the case of the first order transition in pure gauge theory, located in the
upper right-hand corner of Fig. 6.3. With no quarks present, the Polyakov loop is
a genuine order parameter, vanishing for T ≤ Tc and finite for T > Tc; at T = Tc ,
L(T ) has a discontinuity (see Fig. 5.5). When quarks of large but finite mass are
introduced, this discontinuity does not disappear immediately; it does so only when
mq falls below a certain value mcq . We thus obtain a finite region of discontinuous
first order behavior, bounded by a line of second order transitions. For still lower
quark masses the Polyakov loop continues to vary rapidly in a certain narrow tem-
perature range, but it shows no more singular behavior (we ignore the chiral region
for the moment). This is generally referred to a “rapid cross-over”.

A similar pattern emerges when we start at the lower left-hand corner. There now
is a first order chiral transition when all three quark flavors are massless, and the
resulting discontinuity in χ(T ) persists for a while as the quark masses become fi-
nite. And again the resulting region is bounded by a line of second order transitions.
Between the two first-order regions with their second-order boundaries there is no
genuine thermal critical behavior, but “only” the rapid cross-over already mentioned
above. On the other hand, for mu = md = 0, there is a range in the strange quark
mass, mtri

s ≤ ms ≤ ∞, for which the transition is again of second order, up to a
two-flavor point mu =md = 0, ms = ∞.

Let us comment briefly on the different second order transitions in Fig. 6.3. Those
bounding a region of first order transitions are generally believed to be (and some-
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times shown to be) in the universality class of the three-dimensional Ising model
[26, 27]. There does not seem to be any proof of this behavior; it may be related to
the “yes-no” nature of the Z2 symmetry. The two-flavor second-order point (the up-
per left-hand corner) has been conjectured to be in the O(4) universality class [15],
as mentioned above, and this behavior is expected to persist for values ms ≥ mtri

s .
The point mu =md = 0,ms =mtri

s in the diagram thus becomes a tri-critical point,
at which there is a “meeting” of O(4), Z2 and first order critical behavior.

The location of the actual “physical point”, realized in nature for two light u and
d quarks and a heavier s quark, has been under study for quite some time. It is now
generally thought to be in the cross-over region.

6.5 Deconfinement and Chiral Symmetry Restoration

We have seen that there are two bona fide phase transitions in finite temperature
QCD at vanishing baryochemical potential. Formq = ∞,L(T ) provides a true order
parameter which specifies the temperature range 0 ≤ T ≤ Tc in which the Z3 sym-
metry of the Lagrangian is present, implying confinement, and the range T > Tc ,
with spontaneously broken Z3 symmetry and hence deconfinement. For mq = 0,
the chiral condensate defines a range 0 ≤ T ≤ Tχ in which the chiral symmetry
of the Lagrangian is spontaneously broken (quarks acquire an effective dynamical
mass), and one for T > Tχ in which 〈ψψ̄〉(T ) = 0, so that the chiral symmetry is
restored. Hence here 〈ψψ̄〉(T ) is a true order parameter.

In the real world, the (light) quark mass is small but finite: 0 < mq <∞. This
means that the string breaks for all temperatures, even for T = 0, so that L(T ) never
vanishes. On the other hand, withmq 	= 0, the chiral symmetry of LQCD is explicitly
broken, so that 〈ψψ̄〉 never vanishes. The temperature behavior of 〈ψ̄ψ〉 is shown
in Fig. 6.4 together with that of the corresponding Polyakov loop, both for small but
finite quark masses [23]. These are rather old results, and we shall return shortly to
more recent developments. We show them here simply to illustrate that the average
Polyakov loop and the chiral condensate vary rapidly at the same temperature, at
which, as we saw in Fig. 5.6, also the energy density undergoes a rapid variation.
To underline the point, we also show the corresponding susceptibilities χL(T ) and
χm(T ), obtained by differentiating the corresponding order parameters with respect
to the temperature. Note that these results, as all other mentioned lattice results, are
obtained for vanishing baryon number density, i.e., for an equal number of baryons
and antibaryons. The coincidence of the peaks in Fig. 6.4 was in most earlier studies
interpreted as the coincidence of deconfinement and chiral symmetry restoration at
vanishing baryon number density.

In the past few years, the situation concerning the relation between the two ex-
pected critical phenomena has become somewhat more clarified. It is found that the
peak in the chiral susceptibility indeed increases with decreasing quark mass, indi-
cating a divergence in the chiral limitmq → 0, which is in accord with the predicted
exponents in the two-flavor case. The behavior of 〈ψψ̄〉(T ) thus appears to be a
genuine reflection of chiral symmetry restoration, and hence it is an indicator of the
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Fig. 6.4 The temperature dependence of the Polyakov loop L and the chiral condensate ψψ̄ , as
well as of the corresponding susceptibilities [23]

corresponding transition temperature Tχ even for small but finite quark masses. The
average Polyakov loop, on the other hand, does not seem to show singular behavior
for mq → 0. This suggests some reconsideration of what deconfinement and chiral
symmetry restoration conceptually imply.

At a critical point (for the sake of discussion, let us consider a continuous tran-
sition), all thermodynamic observables obtained through derivatives of the partition
function must show non-analytic behavior. In other words, derivatives of sufficiently
high order will diverge. The chiral condensate is the derivative of Z(T ,mq) with re-
spect to quark mass and hence it shows critical behavior in the chiral limit. The
Polyakov loop operator is not present in the QCD action, neither in full QCD nor in
pure gauge theory. It can, however, be added as “external” field; observables are then
evaluated for a vanishing coupling of this field. In pure gauge theory, this external
field breaks the ZN symmetry of the proper Lagrangian and hence the average value
of L(T ) serves as order parameter. In particular, the intrinsic critical behavior of the
theory is reflected in a non-analytic behavior of L(T ) as well as in that of the energy
density, the specific heat, etc. In full QCD, in the presence of dynamical quarks, the
quark mass termm2

q〈ψψ̄〉(T ) acts as the external field breaking the chiral symmetry,
so that the derivative with respect to mq at mq = 0 serves as the corresponding or-
der parameter. On the other hand, here the ZN symmetry is explicitly broken by the
presence of the quarks, even in the absence of a Polyakov loop external field. Hence
adding such a term does not change the ZN symmetry properties, and so L(T ) can
no longer be used as genuine order parameter for deconfinement. It is presently not
known if it nevertheless reflects the singular behavior of the partition function in the
chiral limit. It does continue to change rapidly at the chiral restoration temperature;
this can perhaps be interpreted as an effect of the medium on the external field. In
the next subsection, we shall elaborate a little on this possibility [29, 30]. In any
case, the rapid variation of L(T ) indicates a sudden change in the screening pattern
seen by quarks in the transition from below to above Tχ . It therefore makes sense
to ask for a more general way of specifying deconfinement and chiral symmetry as
distinct phenomena, and to check whether in a given theory they coincide.
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Deconfinement is basically the transition from bound to unbound quark con-
stituents, from a state of color-neutral hadrons to one of colored quarks. Chiral
symmetry restoration is the transition from a state of massive “dressed” constituent
quarks to one of massless current quarks. These two phenomena need not coincide,
and there exist theories in which they do not, for quarks in the adjoint, rather than the
fundamental color group representation [31, 32]. In this case, deconfinement occurs
at a much lower temperature than chiral symmetry restoration, i.e., deconfinement
leads to a state of colored massive “dressed” quarks. The basic indications of the
two phenomena are therefore

• a sudden change in the number of degrees of freedom, from bound to unbound
color, for deconfinement, and

• a sudden change in the effective quark mass, from finite to zero, for chiral sym-
metry restoration.

The relevant measure in the first case is the entropy density s(T ,mq), in the
second the chiral condensate; we had denoted the normalized form of the latter
as K(T ,mq). If the system shows one common critical point in the chiral limit
mq → 0, both s(T ,0) and K(T ,0) should be inherently singular at T = Tc . The
vanishing of the constituent quark mass at the deconfinement point implies that here
gluons are deconfined as well as quarks, so that the entropy density increases cor-
respondingly. This appears to be the behavior found for Nf = 2 QCD in the chiral
limit at zero baryon density. If the system would have two transitions, with dis-
tinct deconfinement and chiral symmetry restoration, the entropy density would not
immediately increase to the value of ideal quarks and gluons; some of the gluons
are “needed” to dress the quarks. If this removes most of them, the entropy density
would first increase at T = Tdec towards the ideal quark limit,

sq/T
3 � 21

4

3

π2

30

[
1 − 15

7π2

(
Mq

T

)2]
(6.32)

with the gluons still confined to the constituent quark mass Mq It is not known
what effect this transition would have on the chiral condensateK(T ). Subsequently,
when the quarks melt, at T = Tχ ,K(T )would vanish and the entropy density would
increase further toward the ideal quark-gluon plasma limit

sqg/T
3 = (16 + 21)

4

3

π2

30
. (6.33)

The two cases are illustrated in Fig. 6.5. The two-step scenario would in general lead
to different critical exponents for the different transitions, so that it is indeed possi-
ble to consider distinct deconfinement and chiral symmetry restoration transitions.
A behavior of the second type will be discussed in more detail in Chap. 7, since
it remains a possible scenario for the deconfined medium at large baryon number
density.

In Fig. 6.6 we show schematically recent results for the entropy density in the
physical case of one heavy and two light quark flavors, with masses tuned to approx-
imate the physical hadron masses [17]. It is seen here that the entropy density also
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Fig. 6.5 Deconfinement and chiral symmetry restoration for one (left) and two (right) distinct
transitions

Fig. 6.6 The temperature variation of the entropy density and its derivative as a function of the
temperature, for QCD with Nf = 2 + 1 and almost physical quark masses [17, 33]

shows its greatest change at the chiral critical temperature Tχ = 160 ± 10 MeV, de-
termined above (see Eq. (6.29)). At this point there is a pronounced peak in the cor-
responding susceptibility, which is essentially the specific heat. Present results thus
indicate that for the physical situation, (2 + 1) flavor QCD, we do in fact have one
transition, at which both deconfinement and chiral symmetry restoration occur in
the “cross-over” sense discussed: the actual singular behavior of all thermodynamic
observables will occur at a unique “chiral” temperature defined from K(T ,mq) in
the limit mu,d → 0.

We have here used the chiral definition of the temperature, since a more detailed
study of the critical behavior of the entropy density in the chiral limit of Nf = 2
QCD encounters one further difficulty. As seen in Table 6.2, the exponent α for the
specific heat CV (t) is negative and hence does not produce a divergence. For this, a
derivative of one order more is required, and such studies are in progress.
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At this point, a comment seems in order on the “schematic” Figs. 5.9, 6.2 and 6.6,
shown for the energy density, the chiral condensate and the entropy density for the
case ofNf = 2+1 QCD. These studies have been and are being performed with dif-
ferent lattice actions, for different lattice sizes, and for different quark mass values.
While initially there were some 10% differences in the results obtained, at present
they appear to converge to the unique critical temperature of about 160 MeV, in the
chiral limit mu,d → 0. The curves shown in the mentioned figures are meant to in-
dicate the general behavior presently observed; they are an interpolation of different
results and should not be taken as correctly showing quantitative details.

6.6 Does Chiral Symmetry Restoration Drive Deconfinement?

In this section, we want to consider in some more detail a speculative answer to why
the Polyakov loop continues to vary rapidly at the temperature of chiral symmetry
restoration.

In the confined phase of pure gauge theory, we have L(T ) = 0; the Polyakov
loop as generalized spin is disordered, so that the state of the system shares the Z3
symmetry of the Lagrangian. Deconfinement then corresponds to ordering through
spontaneous breaking of this Z3 symmetry, making L 	= 0. In going to full QCD,
the introduction of dynamical quarks effectively brings in an external field H(mq),
which in principle could order L in a temperature range where it was previously
disordered. Since this field is not present for mq → ∞, H must be inversely pro-
portional to mq for large quark masses. On the other hand, since L(T ) shows a rapid
variation signalling an onset of deconfinement even in the chiral limit, the relation
between H and mq must be different for mq → 0. We therefore conjecture [28–30]
that H is determined by the effective constituent quark mass Mq , setting

H ∼ 1

mq + c〈ψψ̄〉 , (6.34)

since the value ofMq is determined by the amount of chiral symmetry breaking and
hence by the chiral condensate. From Eq. (6.34) we obtain

• for mq → ∞, H → 0, with deconfinement at T∞
c ;

• for mq → 0,

〈ψψ̄〉 =
{

large, H small, L disordered, for T ≤ Tχ ;

small, H large, L ordered, for T > Tχ .
(6.35)

In full QCD, it is thus the onset of chiral symmetry restoration that drives the onset
of deconfinement, by ordering the Polyakov loop at a temperature value below the
point of spontaneous symmetry breaking. In Fig. 6.7 we compare the behavior of
L(T ) in pure gauge theory to that in the chiral limit of QCD. In both cases, we
have a rapid variation at some temperature Tc . This variation is for mQ → ∞ due
to the spontaneous breaking of the Z3 symmetry of the Lagrangian at T = T∞

c ; for
mq → 0, the Lagrangian retains at low temperatures an approximate Z3 symmetry
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Fig. 6.7 Temperature dependence of the Polyakov loop in the chiral and the pure gauge theory
limits

which is explicitly broken at Tχ by an external field becoming strong when the chiral
condensate vanishes. For this reason, the peaks in the Polyakov loop and the chiral
susceptibility coincide and we have Tχ = Tc < T∞

c .
A quantitative test of this picture could be obtained from finite temperature lattice

QCD. It is clear that in the chiral limit mq → 0, the chiral susceptibilities (deriva-
tives of the chiral condensate 〈ψψ̄〉) will diverge at T = Tχ . If deconfinement is in-
deed driven by chiral symmetry restoration, i.e., if L(T ,mq)= L(H(T ),mq) with
H(T )=H(〈ψψ̄〉(T )) as given in Eq. (6.34), then also the Polyakov loop suscepti-
bilities (derivatives of L) must diverge in the chiral limit. Preliminary lattice studies
support this picture. In Fig. 6.8 we see that the peaks in the Polyakov loop suscepti-
bilities as a function of the effective temperature increase as mq decreases. Further
lattice calculations for smaller mq (which requires larger lattices) would certainly
be helpful; in particular, the chiral limit mq → 0 in the case Nf = 3 should result in
discontinuous behavior also for the Polyakov loop and its derivatives.

Fig. 6.8 The Polyakov loop susceptibilities with respect to temperature χLκ (left) and to quark
mass χLm (right) as function of the temperature variable κ = 6/g2 for different quark masses [30]
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6.7 Percolation and Rapid Cross-over

In the quark mass range 0 < mq < ∞, neither the Polyakov loop nor the chiral
condensate constitute genuine order parameters, since both are non-zero at all finite
temperatures. Nevertheless, in the first-order regions, the discontinuity in the order
parameter still persists, until it finally vanishes on a boundary line of second order
transitions. Between the boundary lines in Fig. 6.3 we have what was referred to
as rapid cross-over. It does not correspond to thermal critical behavior in a strict
mathematical sense, but nevertheless all thermodynamic variables vary quite sharply
at some pseudo-critical temperature (see e.g., Fig. 6.4).

We believe that a deeper understanding of the behavior along this pseudo-critical
“transition” line could come from a study of cluster percolation. In Sect. 2.2, we
had seen that for spin systems without an external field, the thermal magnetiza-
tion transition can be equivalently described as thermal transition or as percolation
transition of suitably defined clusters [34–36]. One can thus characterize the Curie
point of a spin system either as the point where, with decreasing temperature, spon-
taneous symmetry breaking sets in, or as the point where the size of suitably bonded
like-spin clusters diverges.

In Sect. 2.2, we had also noted that in the presence of a finite external field H ,
there is no more thermal critical behavior; for the 2d Ising model, as illustration,
the partition function now is analytic. In a corresponding cluster description, how-
ever, the percolation transition continues to persist as geometric critical behavior
for all H . The critical indices now become those of random percolation and hence
differ from the thermal (magnetization) indices. For the 3d three-state Potts model
(with a global Z3 symmetry instead of the Z2 symmetry of the Ising model) the
transition for H = 0 is of first order, so that turning on the field does not immedi-
ately remove the discontinuity. The resulting phase diagram is shown on the left of
Fig. 6.9; here the dashed line, the so-called Kertész line [37], is defined as the line of
the geometric critical behavior obtained from cluster percolation. The phase on the
low temperature side of the Kertész line contains percolating clusters, the high tem-
perature phase does not. Comparing this result to the T −mq diagram of two-flavor
QCD, one is tempted to speculate that deconfinement for 0<mq <∞ corresponds
to the Kertész line of QCD [38]. This would maintain a relation of deconfinement to
critical behavior for all mq , but in general this would be geometric critical behavior.
First studies have shown that in pure gauge theory, one can in fact describe decon-
finement through Polyakov loop percolation [39–41]. It would indeed be interesting
to see if this can be extended to full QCD, and if deconfinement in the most gen-
eral sense is indeed a geometric critical phenomenon, related to percolation, which
only for some specific parameter values also leads to thermal critical behavior. The
crucial feature in this context is the correct definition of what is to be considered a
cluster, given a specific dynamics basis. This was already the essential point in the
percolation formulation of spin systems, and in QCD the possibility of longer range
interactions (not just next neighbors) enhances the problem.
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Fig. 6.9 Phase structure of the 3-state Potts model (left) and two-flavor (right) QCD

6.8 Conclusions

We have surveyed the general description of critical behavior in terms of sponta-
neous symmetry breaking and then applied this formalism to deconfinement and
chiral symmetry restoration. In particular, we have seen that

• in pure SU(N) gauge theory, deconfinement can be associated to the spontaneous
breaking of a global center ZN symmetry; in full QCD with massless quarks,
the invariance of the Lagrangian under the chiral group SU(N)V × SU(N)A is
spontaneously broken in the hadronic phase.

• In both cases, conjectures relate the critical behavior in gauge theories with that
in spin models. The Svetitsky-Yaffe conjecture relating the critical exponents in
SU(2) gauge theory with those of the Ising model was found to be well supported
by numerical studies. The Pisarski-Wilczek conjecture connecting chiral symme-
try restoration in two-flavor QCD with that in the O(4) spin models now is also
in accord with recent lattice studies based on scaling function behavior.

• In full QCD at vanishing baryon number density, deconfinement is signalled by a
rapid increase of the entropy density towards its ideal quark-gluon plasma limit.
The most rapid increase occurs at the same temperature as that defined by the peak
in the susceptibility of the chiral condensate, so that the two critical phenomena
here appear to coincide.

• The persistence of almost-critical behavior in the “rapid cross-over region” could
be a reflection of a cluster percolation transition, which remains present even
when the partition function becomes analytic.

There thus exists a rather well-developed theory of strong interaction thermodynam-
ics for systems of vanishing overall baryon density. A number of interesting open
questions remain, to be sure, but the overall picture has become quite clear: above a
critical or quasi-critical temperature, strongly interacting matter at μ= 0 finds itself
in a new, deconfined state. The next thing to ask is what will happen if we intro-
duce the baryon number density as a further variable of strongly interacting matter.
We had already sketched some first answers in Chap. 1, and we will now, in the
following chapter, return in more detail to the structure of the QCD phase diagram.
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Chapter 7
The QCD Phase Diagram

And God said, Let the waters under the heaven be gathered
together unto one place, and let the dry land appear: and it
was so.

The Bible, Genesis/1. Mose

In this chapter, we turn to the phase structure of strongly interacting matter as a
function of finite baryon density. We first discuss the different limiting forms for
mesonic and baryonic matter, and elaborate the resulting phase pattern. Next, we
consider the possible phase structure at low temperature and high baryon density,
where deconfinement and chiral symmetry restoration need not coincide. Following
this, we survey results obtained on the basis of the Nambu–Jona-Lasinio model, and
we conclude with a discussion of the present status of finite density lattice QCD.

7.1 States of Matter in QCD: A Second Look

The essential features of hadron structure are color confinement and spontaneous
chiral symmetry breaking. The former binds colored quarks interacting through col-
ored gluons to color-neutral hadrons. The latter brings in pions as Goldstone bosons
and gives the essentially massless quarks in the QCD Lagrangian a dynamically gen-
erated effective mass. We had already noted that both features will come to an end
when hadronic matter is brought to sufficiently high temperatures and/or baryon
densities. A priori, they need not end simultaneously; however, rather basic argu-
ments suggest that chiral symmetry restoration occurs either together with or after
color deconfinement [1].

In principle, QCD could thus lead to a three-state phase structure as a function of
the temperature T and the baryochemical potential μ, as shown in Fig. 7.1 [2]. In
such a scenario, color deconfinement would result in a plasma of massive “dressed”
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Fig. 7.1 Three-state scenario of QCD matter [2]

quarks; the only role of gluons in this state would be to dynamically generate the
effective quark mass, maintaining spontaneous chiral symmetry breaking. At still
higher T and/or μ, this gluonic dressing of the quarks would then “evaporate” or
“melt”, leading to a plasma of deconfined massless quarks and gluons: the conven-
tional QGP, with restored chiral symmetry. Evidently, this view of things ignores the
possibility of bosonic diquark binding and condensation as well as that of the color
superconductivity states which could result as a consequence (see Fig. 1.5); but we
shall return to these aspects later on.

The possible existence of a phase of quarks with a dynamically generated ef-
fective mass has been considered quite often [2–10], and in recent years, finite
temperature lattice QCD investigations have provided an impressive amount of fur-
ther information which could be used in determining the properties of constituent
quarks [11–14]. However, as we saw in the last chapter, lattice studies at μ = 0
have shown that there deconfinement and chiral symmetry restoration in fact co-
incide [15]. This is in accord with a scenario in which the constituent quark mass
is a polarization cloud excited by the quark in the surrounding gluonic medium.
With increasing temperature, this cloud melts away and at Tc, it has “evaporated”,
leaving pointlike quarks and gluons. In this region, there thus remains only one tran-
sition, the simultaneous onset of color deconfinement and chiral symmetry restora-
tion. However, since the melting of the effective quark mass is a consequence of
the hot gluonic environment, it is not at all evident that such behavior also oc-
curs at low T and large μ. In that region, an intermediate plasma of massive
quarks thus appears quite conceivable, separating hadronic matter from quark-gluon
plasma [16].

In the next section, we first return to the limits of hadronic matter, already dis-
cussed in Chap. 3. Here we will in particular study in some detail the different limits
for mesonic and baryonic matter. Following this, we consider constituent quarks and
a possible deconfined phase in which chiral symmetry remains broken. After these
rather phenomenological considerations, we summarize some more theoretical pro-
posals for the QCD phase diagram, together with first numerical results from finite
density lattice QCD. In the final section, we briefly return to diquarks and color
superconductivity.
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7.2 Interaction Regimes of Hadronic Matter

At low temperature and density, hadronic matter consists of interacting mesons
and baryons. Increasing either temperature or baryon density eventually drives the
system towards limits beyond which a description in terms of interacting hadrons
breaks down. Since the dominant interactions in a dense meson gas are quite differ-
ent from those in a dense baryon system, these limits are also of different nature. As
a result, the boundary curve of the hadronic matter regime in Fig. 7.1 is expected to
correspond to different transition patterns at low and high μ. Let us therefore begin
by looking at the underlying interaction dynamics and its thermodynamic conse-
quences.

All hadrons experience short-range attractive interactions. For systems of several
mesons, or for systems of one baryon plus mesons, this leads to abundant resonance
formation, with two pions combining to make a ρ, or a pion and a nucleon making
a �, to cite just two examples. The size of these resonances is, as far as we can
determine, essentially of the common hadronic scale of about 1 fm; multihadron
resonances do not seem to become significantly larger in size. Nevertheless, larger
clusters of mesonic matter are certainly possible, and since there is no indication
of any repulsion between mesons, such clusters allow arbitrarily much overlap be-
tween constituents. The interactions in multiple baryon systems are also strongly
attractive at separation distances of about 1 fm; but for distances below 0.5 fm, they
become strongly repulsive. The former is what makes nuclei, the latter (together
with Coulomb and Fermi repulsion) prevents them from collapsing. The repulsion
between a proton and a neutron shows a purely baryonic “hard-core” effect and
is connected neither to Coulomb repulsion nor to Pauli blocking of nucleons. As a
consequence, the volume of a nucleus grows linearly with the sum of its protons and
neutrons. We thus expect a dominantly attractive resonance interaction in the region
of low baryon density, while at higher baryon density in addition baryon repulsion
comes into play. These features alone already provide some first hints of the phase
diagram of strongly interacting matter.

Since both mesons and baryons have an intrinsic spatial size of about 1 fm, the
formation of percolating clusters provides a natural limit to the hadronic form of
strongly interacting matter [16–19]. Increasing the density eventually leads to a
medium in which the distance between a quark constituent from one hadron and an
antiquark from another (using mesonic matter as example) is equal to or less than
the typical hadronic size, so that defining specific quark-antiquark pairs as hadrons
ceases to make any sense. We had already discussed this in the Introduction, and we
illustrate it here once more in a schematic form in Fig. 7.2.

In a baryon-rich medium, an increase of density of hard-core nucleons moreover
leads to “jamming”, i.e., a restriction in the mobility of the nucleons [20, 21], see
Fig. 7.3. This is a genuine critical phenomenon, with the accessible volume as an
order parameter. Up to a certain density nj , a given nucleon can move anywhere
in the overall volume, while for nB ≥ nj , its range of mobility abruptly becomes
finite. The resulting “gas-liquid” transition has been studied extensively in nuclear
physics; it results in a first-order transition line starting at μ= μj , T = 0 and ending
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Fig. 7.2 Transition from confined (left) to deconfined (right) matter

Fig. 7.3 States of matter for hard core baryons: full mobility (a), “jammed” (b); liquid-gas transi-
tion in nuclear matter (c)

in a second order point at finite temperature (see Fig. 7.3c). It separates a low density
“nucleon gas” from a higher density “nucleon liquid”; we shall here not address
this nuclear matter phase structure any further. Turning to the high density form of
nuclear matter, beyond the liquid-gas transition, we note that there the mobility of
nucleons is restricted, but the percolation limit is not yet attained.

At very high baryon density nB(T ), the pressure of a gas of nucleons can be cal-
culated, taking into account the reduction of the accessible volume; it will approach
the Clausius form

P(T )= P0(T )

1 − nB(T )Ve , (7.1)

where P0 denotes the pressure of pointlike nucleons, and Ve the effective excluded
volume. The pressure of hard-core nucleons diverges when the density nB(T ) ap-
proaches 1/Ve, the random dense packing limit.1 But here as well we reach eventu-
ally the formation of a percolating medium [22], in which the overall quark density
is too high to define individual nucleons, because any given quark “sees” numerous

1The close packing limit of spheres, achieved in the orderly packing of oranges in a supermarket
display, is not reached when the density of a medium of randomly distributed spheres is increased.
This instead leads to the lower “random packing limit” 1/Ve [23], specified by the hard core
volume Vhc < Ve .
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others within reach. We thus consider the limit of confinement in the T −μ diagram
of strongly interacting matter to be defined in general by the percolation of the rel-
evant hadron species in the given region [16]. It should be emphasized that such a
percolation limit is a well-defined geometric form of critical behavior, specified by
critical exponents and corresponding universality classes, just as found for thermal
critical behavior; see Chap. 2. The essential difference is that geometric singulari-
ties (formation of infinite clusters) do not necessarily imply non-analytic behavior
for the partition function.

In general, we then have a percolation limit of overlapping mesons for increasing
temperature at low baryon density, and a baryonic hard core percolation limit at low
temperatures and high baryon density. The two resulting regimes in the T −μ plane
are schematically illustrated in Fig. 7.4.

Fig. 7.4 Limits of hadronic matter

Let us estimate some transition parameter values. At μ= 0, the percolation den-
sity for permeable hadrons (mesons and low density baryons) of size V = 4πR3

h/3
is found to be (see Chap. 2)

ndec
M � 1.2

Vh
� 0.6 fm−3, (7.2)

with Rh � 0.8 fm for the hadron radius. This is the density of the largest cluster at
the onset of percolation, or, equivalently, the density at which the medium no longer
allows a spanning vacuum. The corresponding temperature can be obtained once
the hadronic medium is specified. At low baryon density, resonance formation is the
dominant interaction, and this can be taken into account by replacing the interacting
medium of pions and nucleons by an ideal gas of all observed resonance states
[24, 25]. For such an ideal gas one finds as deconfinement temperature [16]

Tdec � 180 MeV, (7.3)

which agrees well with the value presently obtained in finite temperature lattice
QCD. Assuming mesons to be the dominant constituents, the density (7.2) implies

dMq � 1

n
1/3
M

� 1.2 fm, (7.4)
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for the average separation between quarks and/or antiquarks at the deconfinement
point.

At the other extreme, for T = 0, we have to consider the percolation of nucleons
with a hard core [16, 22]. Assuming a hard core radius Rhc =Rh/2, one obtains for
the critical density

ndec
B � 2

Vh
� 0.9 fm−3 � 5n0, (7.5)

a value about 30% higher than that for permeable hadrons, as consequence of the
baryon repulsion; n0 � 0.17 fm−3 denotes standard nuclear density. The value (7.5)
can be used to obtain the percolation value of the baryochemical potential, using
the excluded volume approach mentioned above to account for the repulsion in the
determination of the density as function of μ (see Sect. 4.4). As result, one obtains

μdec � 1.1 GeV (7.6)

as deconfinement point for μ. The separation between quarks at this point becomes

dBq � 1

n
1/3
B

� 1.0 fm, (7.7)

slightly less than at T = 0, due to the higher density. We note that since μ ≥M ,
where M denotes the nucleon mass, this leaves as function of μ a rather small
window

M ≤ μ≤ 1.2M (7.8)

for the range of confined baryonic matter at T = 0. This window contains essentially
all strongly interacting matter in the real world, from nuclei to neutron stars. The
corresponding density range runs from standard nuclear matter to the deconfinement
value (7.5) of about 5n0.

We thus confirm through percolation arguments that color deconfinement is ex-
pected to set in at hadron densities for which in general the quark constituents are
separated by about 1 fm. At this point, any partitioning into hadrons becomes mean-
ingless, and we have a medium of deconfined quarks.

The percolation picture also gives some indications about the nature of the dif-
ferent limits for hadronic matter. The percolation of permeable hadrons is in general
not a thermal phase transition; it could thus correspond to a rapid cross-over [26].
Nevertheless, given specific dynamics, it can also result in singular behavior of the
partition function [27–29]. Hadronic size alone does not suffice to decide the is-
sue, and the form of the restoration of chiral symmetry was seen to depend on Nf
(see Sect. 6.5). In the case of hard core percolation, the connection to thermody-
namic critical behavior is more evident [22]. If a system of hard-core constituents is
subjected to a density-dependent negative background potential (the attractive nu-
clear interaction), first order critical behavior appears. A classical case is the van der
Waals equation. The pressure in our hard core medium is given by Eq. (7.1), and the
density n of the hard core constituents by

n(T ,μ)= n0(T ,μ)

1 + n0(T ,μ)Ve
, (7.9)
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where the subscript 0 again refers to point-like constituents. In addition to the short-
range repulsion, the forces between nucleons at a range of about 1 fm are strongly
attractive, as already noted: this attraction is what allows the formation of nuclei.
In the equation of state, it causes a reduction of the pressure, due to a decrease of
the momentum of the nucleons and to a decrease in the number of nucleons hitting
the surface of the volume. The attraction is thus generally argued to depend on n2

B ,
leading to the well-known van der Waals equation

P(T )= P0(T )

1 − nB(T )Ve − an2
B(T ), (7.10)

where a is a constant measuring the strength of the attractive nucleon-nucleon inter-
action. In this case, we have a first order phase transition ending in a second order
critical point, specified by the parameters a and Ve . We have included such an end
point in Fig. 7.4, although its position so far remains open.

7.3 Constituent Quarks and Constituent Quark Plasma

A region of particular interest in Fig. 7.4 is that below the mesonic limit, but be-
yond the baryon boundary. Here matter is deconfined and thus cannot consists of
baryons, so the binding of quarks to color-singlet triplets must be dissolved. On
the other hand, quarks could still retain their gluonic dressing, leading to a plasma
of deconfined but massive quarks. Thus here deconfinement and chiral symmetry
restoration need not coincide. Let us look at this “terra incognita” in more detail
[30]; it is (presently) accessible neither to lattice calculations nor to experiment, so
it provides a tempting ground for speculation.

There are two different regimes for the quark infrastructure of hadrons, depend-
ing how we probe. Relatively hard probes, such as deep inelastic lepton-hadron
scattering or hadron-hadron interactions at large momentum transfer, lead to mass-
less pointlike quarks and gluons. In this regime, the parton model with hadronic
quark and gluon distribution functions provides a suitable description. On the other
hand, soft interactions, as seen in minimum bias proton-proton or pion-proton in-
teractions, suggest that mesons/nucleons consist of two/three “constituent” quarks
having a size of about 0.3 fm and a mass of about 0.3–0.4 GeV. Here many features
are well accounted for by the additive quark model [31–33]. We can thus imagine
that inside a hadron, a quark polarizes the gluon medium in which it is held through
color confinement, and the resulting gluon cloud forms the constituent quark mass
Mq [34, 35].

This picture is today found to be quite compatible with heavy quark correlation
studies in finite temperature lattice QCD at vanishing baryon density. By evaluating
Polyakov loop correlations in a QCD medium of two or three light quark flavors
below deconfinement (T < Tc), one obtains the free energy F(r,T ) as a function of
the quark separation distance r . In the low temperature limit, F(r,T = 0) saturates
beyond a separation of r � 1.5 fm, converging to the value F(∞, T = 0) � 1.2 ±
0.1 GeV [11]. This result is quite universal; it is obtained by separating a heavy
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quark-antiquark pair, where the separation requires the formation of a light qq̄ pair
to assure color neutrality. It is obtained as well also if we separate a heavy quark-
quark pair, where the formation of a light antiquark-antiquark pair is necessary [12].
Moreover, it is reached for any color channel (singlet or octet for QQ̄, antitriplet
or sextet for QQ). The large r behavior of all these cases coincides. To create an
isolated heavy-light system, we thus need a gluonic energy input Fg , with

F(∞, T = 0)= 2Fg � 1.2 GeV. (7.11)

This result can also be checked experimentally, comparing the mass values of the
open charm and open bottom mesons to those of the charm and bottom quarks. This
yields

MD −mc = Fg = 0.60 ± 0.10 GeV,

MB −mb = Fg = 0.53 ± 0.15 GeV, (7.12)

using the relevant mass values as given by the PDG listing [36],2 and thus confirms
that the resulting value does not depend on the quark source mass. The sizes of the
heavy-light mesons are expected to be of hadronic scale, so that a gluonic polariza-
tion system of spatial extent makes sense.

Light-light quark systems are also in accord with such a value of Fg , giving
reasonable estimates of the vector meson masses, for both non-strange and strange
ground states, as well as for the different ground state baryon masses. In the case
of hadrons containing strange quarks, the relevant number of strange quark masses
(ms � 100 MeV) has to be added, with

Mρ � Fg, MK∗ � Fg +ms (7.13)

as illustration.
What is the meaning of Fg? One possible and rather widely accepted interpre-

tation is that it is the “mass” or the energy content of the gluonic string connecting
quark and antiquark. With

Fg � σRh � 0.6–0.8 GeV (7.14)

and using
√
σ = 0.4 GeV and Rh = 0.8–1.0 fm, this does lead to the correct value

of Fg , at least in the case of mesons; baryons are not so easily dealt with.
We want to consider here instead an alternative scenario in which Fg is the sum

of the gluonic dressing masses of two constituent quarks. Then both mesons and
baryons can be treated on equal footing, giving us

Mq = Fg

2
+mq → 0.3–0.4 GeV, (7.15)

where mq denotes the bare quark mass; the last term thus corresponds to the light
quark limit. We emphasize that the constituent quarks retain their intrinsic quantum
numbers; the gluon cloud thus is color-neutral and without any spin.

2For mc , we use the MS value at scale 2 GeV, which agrees with that found in potential model
studies; for mb , we use instead the 1S value, which is closer to that found in potential model
studies than the MS value at scale 2 GeV.
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Such an interpretation is, as noted, supported by the additive quark model
[31–33]. In a collision energy range of about

√
s � 5–20 GeV, in which hard pro-

cesses do not yet play a significant role, the total cross sections for proton-proton
and pion-proton collisions are given as

σpp = 3 × 3σqq � 38 mb, σπp = 2 × 3σqq � 25 mb. (7.16)

The predicted ratio 3/2 between proton and pion projectiles is seen to be in accord
with the data; moreover, σpp = πR2

h leads to Rh � 0.9 fm for the hadronic radius.
Using Eq. (7.16) and σqq = πR2

q , we obtain

σqq � 3.3 mb →Rq � 0.33 fm (7.17)

for the corresponding constituent quark sizes in the case of light bare quarks; we
return to the more general case ofmq � 0 shortly. A similar constituent quark radius
was also obtained through partonic arguments [35].

As mentioned, we consider the constituent quark to be made up of the bare quark
and the gluonic polarization cloud surrounding it. This means that as we move a
distance r away from the pointlike quark, we find an effective quark mass Meff

q (r),
depending on how much of the cloud we include at a given r . String breaking limits
the size of the cloud, so that beyond r0 � 0.3 fm, the cloud mass saturates, with
the constituent quark mass Mq as saturation limit. The resulting behavior [3, 4] is
illustrated in Fig. 7.5, with Rh � 1 fm denoting the radius of color confinement.

Fig. 7.5 Effective quark mass Meff
q (r) as seen from a distance r [3, 4]

The conceptual scenario just discussed is supported by perturbative QCD esti-
mates [37]. In the chiral limit (mq → 0), the effective quark massMeff

q (r) at scale r
is determined by the (non-perturbative) chiral condensate 〈ψ̄ψ〉 and renormalization
factors,

Meff
q (r)= 4g2(r)r2

[
g2(r)

g2(r0)

]−d 〈
ψ̄ψ(r0)

〉
, (7.18)

where r0 denotes a reference point for the determination of 〈ψ̄ψ(r0)〉; it is some-
thing like the meeting point of perturbative and non-perturbative regimes. For the
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case of massless quarks with Nc = 3, Nf = 3, the anomalous dimension is d = 4/9,
and

g2(r)= 16π2

9

1

ln[1/(r2�2
QCD)]

(7.19)

is the running coupling at scale r . The constituent quark mass Mq is defined as
the solution of Eq. (7.18) at the scale r = 1/2Mq [37]. This allows us to rewrite
Eq. (7.18) in the form

Meff
q (r)=Mq

[
4M2

q r
2][g2(1/2Mq)

g2(r)

]d−1

, (7.20)

showing how the effective quark mass decreases at short distances r < 1/2Mq , start-
ing from the constituent quark value. The value itself is determined by the non-
perturbative chiral condensate at some reference point r0. From Eq. (7.20) we have

M3
q

〈ψ̄ψ(r0)〉
=
(

16π2

9

)(
ln
[
1/
(
r2

0�
2
QCD

)])−4/9(ln[4M2
q /�

2
QCD

])−5/9
. (7.21)

As reference scale we use r0 = 1/2Mq , since that is where the perturbative evolution
stops and the non-perturbative regime starts. We thus obtain

M3
q

〈ψ̄ψ(r0)〉
= 16π2

9

1

ln(4M2
q /�

2
QCD)

, (7.22)

showing that the constituent quark mass indeed provides a scale parameter for chiral
symmetry breaking. To get an estimate for its value, we use �QCD = 0.2 GeV and
〈ψ̄ψ(r0)〉1/3 = 0.2 GeV; this yields as solution of Eq. (7.22) Mq = 375 MeV; the
corresponding constituent quark radius becomes Rq = r0 = 0.26 fm. At the point
r0 = 1/2Mq , Eq. (7.19) gives for the strong coupling

αs(r0)= g2(r0)

4π
� 0.5; (7.23)

we have assumed a perturbative evolution in r up to this point, which may be sub-
ject to some doubt. The value (7.23) is in approximate agreement with the value
obtained in static quark lattice studies [38], which indicate, however, remaining
non-perturbative contributions at this r . Nevertheless, it seems remarkable that the
results agree rather well with the estimates obtained above from lattice calculations
as well as from experiment.

The constituent quark radius is thus found to be Rq = 1/2Mq in the chiral limit.
More generally, we then expect

Rq � 1

2(Mq +mq), (7.24)

leading to a decrease in size with increasing bare mass. This is in accord with the
decreasing cross sections for the interaction of strange or charm mesons [39].
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The effective constituent quark mass is thus determined by the size and energy
density of the gluon cloud, or equivalently, by the chiral condensate value in the non-
perturbative region. How do these quantities change with temperature in a hadronic
medium at vanishing baryon density?

This can again be deduced from heavy quark correlation studies as a function of
the temperature of the medium. They show that the effective mass of the gluon cloud
of an isolated static color charge (obtained by separating a static QQ̄ pair), starting
from confinement values around 300 MeV, drops sharply at T � Tc [15]. This is
accompanied by a corresponding drop of the screening radius. We thus expect the
effective quark mass to show the temperature dependence illustrated in Fig. 7.6.

Fig. 7.6 Constituent quark mass Mq(T ) (left) and chiral condensate 〈ψ̄ψ(T )〉 (right) as function
of temperature T

Complementary to this, the temperature dependence of the chiral condensate is
determined directly in finite temperature lattice QCD. Its behavior is also shown
in Fig. 7.6; at the deconfinement point, the chiral condensate vanishes as well, as
discussed in the previous chapter. This is in accord with the idea that at the decon-
finement point, the gluon cloud around the given quark has essentially evaporated.

These considerations show that there are two distinct ways to reach chiral sym-
metry restoration. On the one hand, even for an interquark distance 2Rh well
above 2Rq , a sufficiently hot medium will through gluon screening cause the ef-
fective quark mass to vanish, as shown in Fig. 7.6. On the other hand, when a cold
medium becomes so dense that the average interquark distance is 2Rq or less, the
quarks form a connected cluster containing pointlike bare quarks.

We note in passing that the two scales, Rh and Rq , have also been considered as
the quark and gluon confinement scales, respectively. This implies that color-neutral
hadrons have size Rh, whereas color-neutral glueballs have the much smaller intrin-
sic size Rq , and the spatial ground state glueball size is indeed in most calculations
found to be about Rq � 0.3 fm.

Percolation arguments thus suggest that also at T = 0, color deconfinement sets
in at hadron densities for which in general the quark constituents are separated by
about 1 fm. At this density, any partitioning into hadrons becomes meaningless,
and we have a medium of deconfined quarks of mass Mq � 0.4 GeV and size
r0 � 0.3 fm, separated by a distance r � 1 fm > r0. Hence at low temperatures
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in the density range corresponding to r0 ≤ r ≤ 1 fm, the quarks can retain their ef-
fective constituent mass, so that the deconfined medium now is a plasma of quarks
of finite mass and spatial extent, with continued chiral symmetry breaking. A suf-
ficient further increase in density will eventually lead to overlap and percolation of
the constituent quarks. We assume that beyond this percolation point, chiral sym-
metry is effectively restored. Let us see what density the above obtained value of Rq
leads to.

At T = 0, the density for a system of quarks of mass Mq is given by

nq(μq)= 2

π2

(
μ2
q −M2

q

)3/2
, (7.25)

with μq = μ/3 for the quark chemical potential. The percolation condition for
quarks of radius Rq (see Eq. (7.2)),

nch
q = 1.2

(4πR3
q/3)

� 0.29

R3
q

, (7.26)

then defines the onset of chiral symmetry restoration. With Rq � 0.3 fm, we obtain

nch
B � 3.5 fm−3 � 3.9ndec

B � 20n0, (7.27)

indicating that the baryon density threshold for chiral symmetry restoration is about
four times higher than that for color deconfinement. The corresponding value for the
baryochemical potential is found to be μch

B � 2.2 GeV, to be compared to μdec
B �

1.1 GeV. Using the μ counterpart of the two-loop form (7.19), the strong coupling
αs has now dropped to the value αs(μch

c ) � 0.5. The resulting phase structure is
schematically illustrated in Fig. 7.7.

Fig. 7.7 Phase structure of strongly interacting matter

Our considerations thus suggest the existence of a plasma of massive deconfined
quarks between the hadronic matter state and the quark-gluon plasma. In this state,
quarks are deconfined; gluons, however, are “bound” into the constituent quark mass
and thus remain in a sense confined. The quark dressing is made up of gluons which
form a color-neutral cloud, so that the massive quarks retain their fundamental color
state as well as their other intrinsic quantum numbers. The effective degrees of free-
dom in the resulting quark plasma thus are just those of massive quarks. Its lower
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limit in baryon density is defined by the onset of vacuum formation, forcing the
quarks to bind into color neutral nucleons. The corresponding high density limit
is given by the percolation point of the (spatially extended) quarks, beyond which
there is a connected medium containing bare quarks and gluons. Finally, increasing
the temperature at fixed μ leads here, just as in the hadronic phase, to an evaporation
of the gluonic dressing of the quarks and thus to a restoration of chiral symmetry.

The constituent quarks in the deconfined medium will in general be interact-
ing with each other. Of particular interest here is the presence of a qq attraction,
which at sufficiently low temperatures could lead to the formation of bound col-
ored bosonic qq states (“diquarks”). Baryons have in fact often been considered in
terms of two quarks bound in a color antitriplet state, which then in turn binds with
the remaining quark to form a color singlet. For T � 0, extensive studies have ad-
dressed the formation of QCD Cooper pairs; their condensation would then lead to
a color superconductor [40]. In contrast to electromagnetic superconductors, where
only the global background field (phonons) of the medium can result in a binding of
electrons into Cooper pairs, we have in QCD a local qq color antitriplet attraction,
provided by gluon exchange. Hence diquarks could here exist as local “particle”
bound states and not just as momentum state pairs of undefined spatial separation.
The thermodynamics of a medium of such “localizable” diquarks was in fact con-
sidered some time ago [41–43].3 Moreover, heavy quark studies [12] indicate that
the interquark potential for a color antitriplet QQ pair in a deconfined medium is
attractive and essentially identical to that for a color singlet QQ̄ pair.

The resulting picture of the new medium thus parallels somewhat that of hadronic
matter at μ� 0, where resonance interactions lead to a gas of basic hadrons (pions
and nucleons) plus their resonance excitations. Here we have instead a gas of ba-
sic constituent quarks, together with the diquark excitations formed through their
interaction.4 The essential difference is that the basic “particles” now are massive
colored fermions, which can exist only in the colored background field provided by
a sufficiently dense strongly interacting medium.

An interesting open aspect of a massive quark phase is the role of pions. As long
as chiral symmetry remains broken, pions will be present as Goldstone bosons, even
though their hadronic features as qq̄ states of standard hadronic size no longer exist.

We have argued that nuclear matter, with color confinement and chiral symmetry
breaking, is separated from the canonical plasma of massless quarks (plus some
gluons and antiquarks at T 	= 0) by an intermediate phase of massive quarks as basic
constituents. Recent arguments dealing with strongly interacting matter in the large
Nc limit have introduced “quarkyonic” matter as an intermediate phase [44, 45].
The relation of these considerations to our scenario remains an interesting, though
still rather open question. We comment here only briefly and refer to Ref. [30] for
further comparisons.

3It should be noted, however, that possible observable consequences (H-dibaryon, diquark contri-
butions to hadronic structure functions from deep inelastic scattering) in the low baryon density
region have not been found.
4We restrict ourselves here to diquarks. In principle, the formation of multi-quark clusters seems
also conceivable.
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The limit of large Nc results in several rather drastic modifications of the phase
diagram. The state of color deconfinement and chiral symmetry restoration becomes
a gluon plasma, since the gluonic degrees of freedom (N2

c − 1) dominate of the Nc
quark states. The baryon density in the hadronic regime is given by

nB ∼ exp
{
(μ−M)/T }, (7.28)

where M again denotes the nucleon mass. Since both M and μ are linear in Nc,
the nuclear matter region is in the large Nc limit contracted to μ =M , so that the
hadronic regime becomes purely mesonic. The resulting phase diagram thus fea-
tures mesonic matter for T ≤ Tc , μ<M , and a gluon plasma for T ≥ Tc and all μ.
The remaining section, with T ≤ Tc and μ ≥ M , is the regime of the proposed
quarkyonic matter. Its effective color degrees of freedom are dceff ∼ Nc and it has
non-vanishing baryon density; it must thus consist of deconfined quarks and con-
fined gluons, either as quark dressing or as glueballs.

7.4 The Nambu–Jona-Lasinio Model

The phase diagram according to QCD is obviously one of the central topics of strong
interaction thermodynamics, and hence over the years it has been addressed in many
studies. Nevertheless, there exists so far no firm theoretical basis. The phase and
transition structure is inherently non-perturbative, and the only ab initio tool we
have in that domain is lattice QCD. Unfortunately, as we had already pointed out
in Chap. 6, the canonical method for evaluating lattice QCD, numerical simulation
based on Monte Carlo techniques, breaks down for finite baryon density. For this
reason, much of what is presently discussed for the QCD phase structure is based on
effective field theory models, in particular on the Nambu–Jona-Lasinio (NJL) model
[46, 47], its application to QCD [48–50] and its further extensions [51–59]. The
basic idea here is to model the Lagrangian of QCD by one in which the interaction
is given in terms of quarks alone.

The Nambu–Jona-Lasinio model, as applied in QCD, addresses the chiral prop-
erties of quark interactions.5 The QCD Lagrangian (5.1)/(5.2) is replaced by

LNJL = ψ̄(iγ μ∂μ −mq
)
ψ +G{(ψ̄ψ)2 + (ψ̄iγ5ψ)

2}, (7.29)

where we have suppressed the color and flavor indices. It contains no gluon fields;
the interaction between quarks is instead assumed to be described by a point-like
chirally symmetric four-fermion term. As a consequence, it contains neither color
confinement nor asymptotic freedom. The interaction term is just the bilinear form
ψ̄ψ leading to the chiral condensate and its chiral transform, rendering the sum in-
variant under chiral transformations. More recently, there have been attempts to add
confinement features a posteriori [55–59]. The constantG is of dimension (mass)−2

and thus brings in the hadronic scale through an adjustable parameter.

5The model was initially proposed for meson-nucleon interactions and then extended to QCD, with
quarks replacing nucleons.
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The interesting feature for our considerations is that the interaction in Eq. (7.29)
leads to a dynamically generated effective or constituent quark massMq , determined
by the “gap equation”

Mq =mq + 4NcNfGMq

∫
d3p

(2π)3
1√

p2 +M2
q

. (7.30)

Its non-trivial solution leads to an effective mass Mq much larger than the current
quark mass mq , so that Eq. (7.30) indeed specifies the gap Mq −mq between the
effective and the current quark mass. The integral in Eq. (7.30) is in turn related to
the chiral condensate, with

〈ψ̄ψ〉 = −2NcMq

∫
d3p

(2π)3
1√

p2 +M2
q

, (7.31)

per flavor degree of freedom, giving

Mq =mq − 2GNf 〈ψ̄ψ〉. (7.32)

This expression is evidently the NJL counterpart of the perturbative constituent
quark mass obtained in Eq. (7.18). This becomes even more explicit in the evaluation
of Mq and 〈ψ̄ψ〉. The integrals in Eqs. (7.30) and (7.31) are ultra-violet divergent
and have to be regularized. This is generally achieved by introducing a momentum
cut-off |p| ≤ �, and the removal of the large momenta effectively corresponds to
the elimination of the short-distance region which was described perturbatively in
Eq. (7.18). The formulation of the NJL model thus contains three open parameters,
the bare quark mass mq , the dimensionful coupling constant G, and the cut-off �.
On the other hand, the value of the chiral condensate, together with that of the bare
quark mass mq , must satisfy the Gell-Mann–Oakes–Renner relation [62]

f 2
πm

2
π = −mq〈ψ̄ψ〉. (7.33)

Hence, given the pion decay constant, fπ � 90 MeV, the pion mass, mπ �
140 MeV, and the vacuum chiral condensate per flavor degree of freedom,
〈ψ̄ψ〉1/3 � 250 MeV, the three open quantities G, � and mq can be determined.6

For the noted parameter values, one finds [54] G � 5 GeV−2, � � 0.65 GeV and
mq � 10 MeV, leading toMq � 320 MeV as constituent quark mass, quite in accord
with what we found above.

At finite temperature and density, the gap equation (7.30) becomes

Mq(T ,μ)=mq + 4NcNfG
∫

d3p

(2π)3
Mq

E

(
1 −N+

q (T ,μ)−N−
q (T ,μ)

)
, (7.34)

where

N±
q = 1

1 + exp{E ±μ}/T (7.35)

6Note that Eq. (7.30) is a self-consistency relation for Mq , and thus it need not have a solution for
all parameter values, nor need the solution be unique.
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specifies the quark/antiquark occupation numbers, with E =
√
p2 +M2

q . Using

these,

nq(T ,μ)= 2NcNf

∫
d3p

(2π)3
Mq√
p2 +M2

q

(
N+
q (T ,μ)−N−

q (T ,μ)
)
, (7.36)

gives the overall quark number density nq(T ,μ). In vacuum, for T = μ = 0,
N±
q = 0, so that Eq. (7.34) reduces to (7.30). For increasing T and/or μ, the weight

factor (1 − N+
q (T ,μ) − N−

q (T ,μ)) decreases, and so does Mq . In particular, in
the chiral limit mq → 0, the gap equation has solutions only for temperatures
T ≤ 200 MeV at μ= 0 and for baryon densities ρB ≤ 2ρ0 at T = 0, with ρB = 3nq
and ρ0 � 0.17 fm−3 for standard nuclear matter density [51–54]. These points thus
specify the onset of chiral symmetry restoration in the NJL model; the two limiting
cases are illustrated in Fig. 7.8.

Fig. 7.8 Constituent quark mass at μ= 0 as a function of the temperature (a), and at T = 0 as a
function of the baryon density (b); both figures are for the chiral limit mq = 0

The general phase boundary in the chiral limit is given by [54]

μ2 +
(
π2

3

)
T 2 =�2

(
1 − π2

G�2NcNf

)
(7.37)

and illustrated in Fig. 7.9a. Using expression (4.20), we can translate the baryochem-
ical potential into the baryon density ρb = 3nq and thus obtain the corresponding
phase diagram as function of T and ρb; it is shown in Fig. 7.9b. The increase of the
critical baryon density with T , starting from the T = 0 limit, is an effect of Fermi
statistics: for T 	= 0, the occupation of momenta above the limiting T = 0 Fermi
momentum becomes possible.

From Eq. (7.34) it follows that in the chiral limit mq → 0 the constituent quark
mass, and thus (see Eq. (7.32)) also the chiral condensate, vanish outside the region
defined by Eq. (7.37). In this limit, the NJL model thus leads to a two-state phase
structure defined by the vanishing of the chiral order parameter 〈ψ̄ψ〉. At low T

and/or μ, the system is in a “hadronic” phase of broken chiral symmetry, in which
the quarks have a finite, dynamically generated effective mass; beyond the phase
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Fig. 7.9 Phase boundary for the NJL model in the chiral limit, (a) as a function of temperature
and baryochemical potential, and (b) as a function of temperature and baryon density

boundary specified by 〈ψ̄ψ〉, it is in a “quark” phase, in which chiral symmetry is
restored and the effective quark mass is zero.

The chiral order parameter 〈ψ̄ψ〉 vanishes smoothly along the entire phase
boundary in T and μ. This seems to suggest a second-order chiral phase transi-
tion everywhere. More detailed studies [48–50] show, however, that this need not be
so. The crucial point is that the self-consistency nature of the gap equation allows
more than one solution for a given set of parameters; in particularMq = 0 is always
a trivial solution. To determine the order of the transition, the grand thermodynamic
potential per volume V ,

�(T ,μ)= −T
V

ln Tr exp

(
− 1

T

)∫
d3x {H−μNB} (7.38)

has to be evaluated in terms of T and μ as a function of the effective quark massMq ;
here the trace is over all physical states. The system will then choose the state of
lowest �, and as long as the choice is unique, the transition is continuous. For the
actual calculations, see e.g. Refs. [48–54]; here we only indicate the main result,
which is illustrated in Fig. 7.10 for the specific choice of parameters already noted
above, but in the chiral limit mq = 0. For μ = 0, we have at low temperatures a
unique minimum of �, defining the constituent quark mass Mq � 320 MeV. With
increasing T , the maximum at Mq = 0 decreases, and at a specific T = Tch, the
maximum is gone and the minimum is at Mq = 0. It remains there for all higher T .
As a result, for μ= 0 the chiral restoration transition is continuous (second-order).
For T = 0, the result for low μ is similar, the thermodynamic potential has again
a well-defined minimum at Mq(0) � 320 MeV. Here, however, with increasing μ
a further relative minimum develops at Mq = 0, and at some μch, the value of the
potential at the two minimum points becomes equal. The presence of two equal
minima corresponds to a discontinuity in Mq and hence also in 〈ψ̄ψ〉, leading to
the conclusion [48–50] that in the chiral limit at T = 0, the NJL model predicts
a first-order phase transition at μ = μch. The two limiting cases are illustrated in
Fig. 7.10. For the result as a function of baryon density, it is assumed that the lower
density corresponds to the vacuum density value of Mq , the upper one to the chiral
restoration value Mq = 0 [51–53].
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Fig. 7.10 Thermodynamic potential as function of the constituent quark massMq (a) for different
values of T at μ= 0 and (b) for different μ at T = 0

Increasing the temperature will weaken the first-order transition, until it eventu-
ally ends in a second-order critical point T = T ∗, μ= μ∗. For values of μ below μ∗,
the thermodynamic potential has a unique minimum, and so the transition is from
then on continuous. As a result of these considerations, Fig. 7.8 has a fine structure
schematically illustrated in Fig. 7.11. At low T , a first-order transition separates
the phases of broken and restored chiral symmetry, which terminates at a critical
point, beyond which the transition is of second-order. The position of the critical
end point is very much dependent on the details of the model, the number of flavors
and the parameters chosen. Moreover, for physical quark masses, chiral symmetry is
broken explicitly, so that now Mq and chiral condensate never vanish exactly. This
implies that continuous transitions will be washed out; there is no longer any sin-
gular behavior of thermodynamic observables, only a possible “rapid cross-over”
of regimes. The first-order transition, however, will persist for a range of (small)
quark masses, since the discontinuity cannot disappear instantaneously when mq is
“turned on”.

Fig. 7.11 NJL phase structure (a) as function of T and μ, solid line: continuous transition, dashed
line: first-order transition; (b) as function of T and baryon density relative to standard nuclear
density

We note that this conclusion is quite similar to the one obtained in our con-
ceptual considerations above. There, the short-range nuclear repulsion in baryonic
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matter, competing with a longer-range nuclear attraction, led to a Van der Waals sce-
nario and hence to a first order percolation transition. In contrast, meson percolation
provides in general only a geometric transition and hence no singular behavior for
thermodynamic quantities.

For the interpretation of the NJL-model results, a caveat seems appropriate. As
mentioned, the model contains neither gluons nor confinement, and, at least for in-
creasing temperature at μ = 0, that is a rather drastic approximation. The gluon
interactions lead to a string tension, and this in turn provides color confinement.
Screening of the gluon interaction at higher temperatures in turn results in color
deconfinement. It is thus rather remarkable that all these features can somehow be
approximated by a chirally symmetric four-fermion interaction alone. And in par-
ticular, it is evident that such a description cannot lead to different forms of chiral
behavior at μ = 0 and T = 0, as we had considered in Sect. 7.3. The mentioned
extensions of the NJL model to include confinement features [55–59] are patterned
according to the lattice results at μ= 0 and thus by construction cannot result in a
qualitatively different behavior at T = 0.

The result of these considerations is thus that in the case of two light and one
heavy quark species, the phase diagram has the structure shown in Fig. 7.12 [60, 61].
We concentrate here on the regions of confinement and deconfinement, ignoring for
the moment the possibilities of a massive quark plasma and a colored diquark state.
The diagram shows a non-singular “cross-over” region for 0 ≤ μ < μcrit, a critical
point (continuous transition) at μcrit, and then a line of first order transitions down
to T = 0,μc. It is evidently of great interest to check in lattice simulations whether
this picture is correct.

Fig. 7.12 Expected QCD phase structure for one heavy and two light quarks

7.5 QCD at Finite Baryon Density

Given the various model proposals for the phase diagram of QCD as function of
temperature and baryon density, the interest in ab initio QCD calculations became
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more and more intensive, in spite of the known difficulties. Could one find evidence
for a critical point at some μ and T , at which the “rapid cross-over” would terminate
in a critical point and then turn into a discontinuous transition?

The basic problem for lattice evaluations of finite baryon density QCD is that
the weight P(U) ∼ (detQ)Nf in the integral (5.39)/(5.40) is no longer positive-
definite, since the Fermion determinantQ becomes complex when μ 	= 0. The stan-
dard Metropolis procedure for reaching equilibrium configurations is thus no longer
applicable, so that some new approach is required.

First such attempts have appeared in the past few years.

• In the reweighting method [63], the lattice configurations are calculated at μ= 0
and extended to finite μ with the help of the ratios of the fermion determinants at
μ= 0 and μ> 0, which are then used to establish the weight of a given configu-
ration.

• Using analytic continuation [64, 65], the calculations are performed for imagi-
nary μ and then analytically continued to real values.

• In the power series approach [66], the fermion determinant is expanded in powers
of μ/T and the resulting expressions are evaluated term by term.

In all schemes, one obtains an extension from μ= 0 to small but finite μ. Applied
to the (2 + 1) flavor case, the results obtained by the different methods applied to
the (2 + 1) flavor case were initially all consistent with the phase diagram shown in
Fig. 7.12.7 The position of the critical end-point of the line of first order transition
depends on the position of the physical point in the mu,d −ms plane, see Fig. 6.3.
Thus the cross-over region disappears and the critical point moves to μ = 0 for
mu,s = 0, ms >mtri

s . The expected general phase structure in the three-dimensional
space defined by mu.d , ms and μ is outlined in [68].

All methods so far have in common at least two basic short-comings. They start
from μ = 0 calculations and then extend these in some approximative way. This
does not really permit a quantitative error determination for the results obtained.
Moreover, in view of the more or less analytic extension procedure used, it appears
likely that they will fail when a critical point is reached. Whether such a failure is
indicative of the existence of such a point is not evident; but it certainly prevents a
study in the region of large μ and low T .

To consider the situation in some detail, we use the power series approach. In
order to address the critical behavior of QCD at finite temperature and finite baryon
density, we recall the general pattern discussed in Chap. 2 for spin systems. The
thermodynamic potential �(T ,H)= T lnZ(T ,H), depends on two variables:

• a “temperature” T , which describes the energy dependence of the undisturbed
system and which for H = 0 leaves �(T ,0) invariant under the symmetry in
question;

7Recent studies based on analytic continuation [67] have modified the conclusions of this approach:
they do not indicate critical behavior for any value of μ and thus suggest for the (2 + 1) case a
cross-over behavior in the entire T −μ plane.
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• an “external field” H , which shows the reaction of the system to an outside inter-
vention breaking this symmetry.

In the case of QCD at finite baryon density, the “temperature” variable becomes
two-dimensional, with T and μ as variables, while the quark massmq plays the role
of the external field [69–71]; for simplicity, we restrict ourselves for the moment to
the case of two light quark flavors, where in the chiral limit the transition at μ= 0
is second order and presumably in the universality class of the three-dimensional
O(4) spin system. Instead of a critical point, we now get a critical line in the T −μ
plane, and in the vicinity of this line, the temperature variable is in leading order
near μ= 0 given by

τ = 1

t0

[(
T − Tc(μ)
Tc(μ)

)
+ κ

(
μ

T

)2]
= 1

t0

[
t + κμ̄2] (7.39)

where κ gives the relative position in the plane and t0 the scale. For spin systems, we
had τ = t = (T −Tc)/T as variable for the critical behavior; Eq. (7.39) extends this
to finite μ. The baryochemical potential enters through the fugacity in the form μ̄≡
μ/T , and the dependence is quadratic, since the system is invariant under baryon-
antibaryon interchange. As external field variable, we have

h= 1

h0

mq

Tc
; (7.40)

in view of the open scale parameter h0, the normalization by Tc is arbitrary.
The thermodynamics of the system can now be derived from the pressure

P(t, μ̄,mq)= (T /V ) lnZ(t, μ̄,mq) (7.41)

as the basic function. Suppressing the mq dependence for the moment and setting
t0 = 1, we obtain at fixed μ

ε(t, μ̄)= (t + 1)

(
∂P

∂t

)
μ̄

− P(t, μ̄) (7.42)

for the energy density and

CV (t, μ̄)= t + 1

Tc

(
∂2P

∂t2

)
μ̄

(7.43)

for the specific heat. Similarly, we obtain

nB(t, μ̄)= 1

Tc

(
∂P

∂μ̄

)
t

= 1

Tc

(
∂P

∂τ

)
μ̄

(
∂τ

∂μ̄

)
t

= 2κμ̄

Tc

(
∂P

∂τ

)
μ̄

= 2κμ̄
s(t, μ̄)

(t + 1)
(7.44)

for the net baryon density, which vanishes for μ= 0; here s = (ε + P)/T denotes
the entropy density. The baryon-number susceptibility is given by

χB(t, μ̄)= 1

Tc

(
∂nB(t, μ̄)

∂μ̄

)
t

= 2κ

T 2
c

[(
∂P

∂τ

)
μ̄

+ 2κμ̄2
(
∂2P

∂τ 2

)
μ̄

]
; (7.45)
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with χ(t, μ̄) = 〈n2
B〉 − 〈nB〉2, it determines the fluctuations of the baryon number

density. Considering the expansion around μ̄= 0 we thus find

χB(t, μ̄)= 2κ

T 2
c

[
s(t,0)

(t + 1)
+ 2κμ̄2 Tc

(t + 1)
Cv(t,0)

]
; (7.46)

i.e., at μ= 0, the baryonic susceptibility is essentially given by the entropy density,
and with increasing μ, there is an additional term determined by the specific heat.
For a second order transition, CV (T ) is expected to diverge at T = Tc; in the specific
case of O(4) symmetry, the corresponding exponent is negative (see Table 6.2 in
Chap. 6), so that it only has a cusp-like peak there. For a rapid cross-over, there will
also only be a pronounced peak.

The behavior of χB(t,μ) has been studied extensively in (2 + 1) flavor QCD
[72]. In Fig. 7.13, we show results based on a second order Taylor expansion in μ
[68]. It is seen that χB(T ,μ) for μ = 0 indeed shows the form expected for the
entropy density, and with increasing μ, a peak develops at T = Tc.

Fig. 7.13 Baryon number susceptibility in two-flavor QCD [72]

We see from Eq. (7.45) that the baryon susceptibility, i.e., second order derivative
of P(t, μ̄) with respect to μ̄, leads to a form containing the second order derivative
with respect to t ; this is a consequence of the general variable structure (7.39). Con-
sider then the higher order moments,

χnB(t, μ̄)=
1

T
(n−1)
c

(
∂nP (t, μ̄)

∂μ̄n

)
t

; (7.47)

for n= 1, they give the baryon density, for n= 2 the baryon number susceptibility.
Their general structure is such that at μ= 0 they vanish for odd n, while even n lead
to higher derivatives of P with respect to t . For n= 2, χ(2)B gives at μ= 0 the first
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derivative, n = 4 the second (i.e., the specific heat), and n = 6 the third. With the
form

P(t,0)∼ (t − 1)(2−α) (7.48)

for the critical part of the pressure, this means in the case of O(4) universality (neg-
ative critical exponent α � −0.2) that the specific heat has a finite peak, while all
(even) moments for n ≥ 6 diverge at T = Tc and μ = 0 [73, 74]. In other words,
the T − μ structure implies even at μ = 0 a specific form for the moments of the
baryon number distribution. If such moments can be studied experimentally with
sufficient precision, this will provide a possible quantitative test of statistical QCD
(see Chap. 11 for more details).

In closing, we note that the dependence on the variable which we have so far
suppressed, the quark mass mq , can provide further information on the extension to
finite μ. The derivative of P with respect to mq defines the chiral condensate

〈�̄�〉 ∼
(
∂P

∂mq

)
t,μ̄

. (7.49)

The first derivative of 〈�̄�〉 with respect to μ̄ vanishes at μ̄ = 0, as all odd such
derivatives, due to the baryon symmetry. The second derivative, however, remains
finite and is proportional to κ , again in the same way as found above (see Eq. (7.45)).
It can thus be used to determine κ in lattice studies, leading to first estimates κ �
0.06. From Eq. (7.39) we have

Tc(μ)

Tc
= 1 − κ

(
μ

T

)2

; (7.50)

hence the critical curve in the T − μ plane has a very small downward curvature
starting from μ= 0 [71].

7.6 Conclusions

The phase structure of strongly interacting matter at finite baryon density remains
today still largely a terra incognita. In the confined region at low baryon density, we
have mainly mesonic matter, with resonance-dominated interactions. At high baryon
density, nucleons attract each other at large and repel each other at short distance;
the former leads to the formation of nuclei, the latter to their size growing with the
number of nucleons. The different interactions in different baryon density regions
will presumably also result in different deconfinement transition patterns. Rather
general arguments suggest that the transition is of first order at low temperature and
high baryon density. What follows “on the other side” of this transition is presently
one of the main playgrounds for theorists in this field. Our favorite version features
a deconfined state of broken chiral symmetry, i.e., a plasma of colored massive
quarks; their masses will then melt at much higher density, to eventually restore
chiral symmetry.
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Chapter 8
The Quark-Gluon Plasma

Hic sunt leones
[Here there are lions]

Warning of unchartered territories
on old Roman maps

In this chapter, we summarize the main properties of the quark-gluon plasma at
vanishing overall baryon number density, as so far obtained in finite temperature
lattice studies. The defining plasma property, charge screening, will be addressed
by studying the effect of introducing test charges into the medium. Subsequently,
we note that in a temperature range up to several Tc, the plasma exhibits strong,
non-perturbative interaction effects, which can be described in terms of an ideal gas
of massive quasi-particles.

8.1 Introduction

Perhaps the most striking result of strong interaction thermodynamics, as it is ob-
tained with QCD as dynamical basis, is the existence of a new state of matter,
a plasma of deconfined quarks and gluons. In the hadronic state, the colored quarks
and gluons couple such as to form color-neutral bound states, mesons and baryons,
and hadronic matter is made up of these as constituents. In the quark-gluon plasma
(QGP), the specific color-neutralizing binding is dissolved, so that the medium now
consists of colored constituents: it is a plasma. This does not imply the existence of
isolated quarks, which would of course violate color confinement. The constituents
of the QGP can exist with “open” color only because they always find in their im-
mediate surroundings many other colored constituents, so that we never encounter
a spatially isolated colored object.

The fundamental property of a medium of unbound electric charges is charge
screening. With increasing density, the presence of many other charges effectively
reduces the intrinsic dynamical range of the Coulomb force. Each charge is through
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polarization surrounded by a cloud of net opposite charge, thereby reducing its inter-
action range. We expect the same in a plasma of colored constituents, and so color
screening will be our first topic. Subsequently we note that the deconfinement of
quarks and gluons in the QGP, i.e., the fact that they are no longer being restricted
to color-neutral groupings, does not mean that they do not interact. Only in the limit
of very high temperature can we expect that asymptotic freedom, i.e., the vanishing
of the running coupling constant αs of strong interaction physics, leads to an ideal
gas of quarks and gluons. We shall see that such an “ideal” situation is achieved at
best at temperatures which are truly extreme. At all temperature values of present
interest both to theoretical and experimental studies, the QGP is very much an inter-
acting medium, and the nature of these interactions is the next topic to be addressed.

8.2 Color Charge Screening and String Breaking

The screening properties of a given medium can be tested by introducing a test
charge into the medium, thus producing polarization effects. This phenomenon is of
quite general nature in statistical physics, where it is treated in Debye-Hückel the-
ory [1]. Screening effects will in turn also modify the interaction between a given
pair of charges in the medium. In finite temperature QCD, this can be studied by
considering the behavior of a heavy quark-antiquark (QQ̄) pair placed in hot de-
confined medium.

In vacuum, such a QQ̄ pair is connected by a gluonic flux tube or string. If we
try to pull the pair apart, the string will break when the separation energy surpasses
that needed to create a light qq̄ pair, which then produces two heavy-light mesons;
these can be pulled apart without requiring any further energy (see Fig. 8.1). String
breaking is not exactly color screening, although its effect for the QQ̄ pair is quite
similar, since the newly formed light q̄ “screens” the Q from its former partner Q̄,
and vice versa. But it requires an energy input to bring a virtual qq̄ pair from its
Dirac sea on-shell, and so string breaking measures effectively the sea level of the
vacuum, or of the confined medium at temperature T . In a hot deconfined medium,
we have unbound color charges, without any outside energy input; nevertheless, the
presence of such charges will modify the QQ̄ binding, and these modifications can
provide information both about the medium and about the in-medium behavior of
heavy quark bound states (“quarkonia”).

The free energy of a staticQQ̄ pair at zero temperature can be described in terms
of the so-called “Cornell” potential [2, 3],

F(r,T = 0)� σr − α

r
, (8.1)

where r is theQQ̄ separation, σ the string tension and α the color coupling. The first
term accounts for the formation of the string between the Q and the Q̄ when they
are pulled apart. The string free energy thus increases linearly with the separation
of the Q̄Q, and the string tension is generally assumed to have a universal value
σ � 0.2 GeV2 = 1 GeV/fm. The second term accounts for the Coulomb interaction
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Fig. 8.1 Schematic view of string breaking for a static QQ̄ pair

between the static charges as well as for transverse string oscillations. String theory
predicts α = π/12, and this value is found to agree with lattice studies until the
separation becomes so small that asymptotic freedom renders any string picture
inapplicable.

The increase of the free energy F(r,T = 0) with r eventually comes to a crucial
point r0, beyond which it is energetically favorable for the string to break into two
light-heavy mesons (D,B) rather than stretching further (see Fig. 8.1). This leads
to a behavior of the form illustrated on the left of Fig. 8.2: After the string breaks
at r0, the free energy remains constant for all separations r larger than r0. Since
string breaking occurs when a light qq̄ pair is excited out of the vacuum, it should
be a medium effect, independent of the static quarks being pulled apart. This can in
fact be tested by looking at the mass of light-heavy quark meson states. For charm
quarks, the value of the free energy F(r0, T = 0) at this point is determined by

2MD = 2mc + F(r0, T = 0), (8.2)

where MD denotes the mass (MD � 1.9 GeV) of the lowest open charm me-
son, the D. One can write a similar equation for the bottomonium system, with

Fig. 8.2 Schematic view of the temperature dependence of the in-medium free energy F(r,T )
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MB � 5.3 GeV. Rearranging the terms and using the quark mass values from
quarkonium spectroscopy (mc � 1.3 GeV, mb � 4.5 GeV), this leads to

F(r0, T = 0)� 2(MD −mc)� 2(MB −mb)� 1.2 GeV. (8.3)

The fact that the two quarkonium systems with very different quark masses lead to
the same value of F(r0, T = 0) indicates that string breaking is indeed a property of
the medium, here the vacuum, not of the heavy quarks. It specifies the energy needed
to excite a pair of light quarks from the virtual sea in the vacuum and provide the
gluonic “dressing” for both light and heavy quarks. The resulting F(r0, T = 0)/4 �
300 MeV per quark agrees well with the usual constituent quark mass.1 With the
universal string tension σ � 0.2 GeV2, we obtain in turn a universal string breaking
length

r0 � F(r0, T = 0)

σ
� 1.2 fm. (8.4)

This result is also in accord with light hadron sizes as confinement radii.
This phenomenological description of QQ̄ binding in vacuum provides a good

starting point for in-medium studies. We now consider a static quark-antiquark pair
in a QCD medium of temperature T and consider the difference in free energy
between a medium with and one without a static QQ̄ pair; that gives us what we
had above called “the free energy of the static pair”.

Up to the deconfinement point, the string breaking must produce a color-neutral
pair, and at finite temperature, this does not necessarily require the excitation of
a (dressed) qq̄ pair from the vacuum. The presence of further light-light mesons,
in addition to the heavy quark pair, allows a re-arrangement of the coupling, as
shown in Fig. 8.3. This constitutes an additional effective screening mechanism for
the interquark potential, and near the deconfinement point, when the in-medium
hadron density increases rapidly, it makes the QQ̄ separation much easier than at
low temperature. Hence the large distance limit F(r → ∞, T ) decreases sharply as
T → Tc.

Fig. 8.3 In-medium string breaking through recoupling

1The two heavy quarks in the QQ̄ pair at short distance do not have such a dressing, see the
discussion in Sect. 7.3.
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Beyond Tc, we have a colored medium with genuine color screening, which we
can try to describe in terms of a color screening radius rD(T ) or mass μ(T ) =
1/rD(T ). We can determine this either operationally as the value of r at which the
free energy becomes r-independent, or in the framework of a charge screening the-
ory of the Debye-Hückel type. For this, the basic input is a potential with a given r
dependence, e.g., ∼ ra , acting in a d-dimensional space. The familiar case of elec-
tric Debye screening has a = −1, d = 3 and leads to the well-known form already
shown in the introduction,

Fe−m(r, T )� −e2
0

[
1

r
exp{−μr} +μ

]
; (8.5)

the T -dependence is contained in μ(T ), and the last term assures that at in-
finite distance, the correct limit −e2

0μ is obtained for a pair of opposite color
charges [1]. Here we want the corresponding screening function for the confining
part of Eq. (8.1), i.e., for a = +1. For d = 1, the result is the so-called Schwinger
form and describes screening in one-dimensional electrodynamics,

F̃s(r, T )= σr
{

1 − exp{−μr}
μr

}
, (8.6)

which already shows a behavior of the form seen in Fig. 8.2 (left), with V (∞, T )=
σ/μ for the constant large distance limit. In the more realistic d = 3 case, we have
instead [4]

Fs(r, T )= σ

μ

[
�(1/4)

23/2�(3/4)
−

√
μr

23/4�(3/4)
K1/4

[
(μr)2

]]
. (8.7)

The first term again gives the constant value for r → ∞, while the second, through
the modified Hankel function, gives a Gaussian cut-off, instead of the exponential
in Eq. (8.6). To see how adequate such a screening model is, we compare the free
energy

F(r,T )= Fs(r, T )+ Fw(r, T ) (8.8)

to lattice calculations in two-flavor QCD [5, 6]. In the first term, we use σ =
0.2 GeV2 and α = π/12, and the second term is the Coulomb form (8.5) with
the strong coupling α replacing e2

0. As shown in Fig. 8.4 (left), the resulting func-
tional description is excellent [7]; the only remaining parameter, the screening mass
μ(T ), is shown in Fig. 8.4 (right), including also the values obtained for T = 0
and in the confinement region. We see that μ indeed increases rapidly at Tc, indi-
cating a sharp drop in the effective range of the binding force. At high tempera-
tures, μ approaches the linear behavior expected from perturbation theory [8, 9].
The quark-gluon plasma thus indeed shows the color screening pattern given in the
usual Debye-Hückel screening theory. The linear increase of μ(T ) with T implies
that for sufficiently high temperatures, only Fw(r, T ) survives; this is the form ob-
tained in a weak-coupling (perturbative) limit of QCD.

From Eqs. (8.7) and (8.8) we obtain as large r limit of the free energy

F(T )≡ F(∞, T )� σ

μ(T )
− αμ(T ), (8.9)
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Fig. 8.4 Screening fits to the QQ̄ free energy F(r,T ) for T ≥ Tc (left), and the corresponding
screening mass μ(T ) (right) [7]

and such a functional behavior is indeed found in lattice studies, as illustrated in
Fig. 8.5, where F(T ) is shown out to much higher temperatures then in Fig. 8.2.
For sufficiently high T , F(∞, T ) approaches the conformal limit linear in T , mod-
ified by the running coupling. It is clear from this, however, that one cannot simply
consider F(∞, T ) as the mass of two dressed color charges at infinite distance,
since above a certain T , it becomes negative.

Fig. 8.5 Temperature dependence of the large distance limit of the free energy of a staticQQ̄ pair

To understand this behavior, we recall the thermodynamic relation between free
energy F , internal energy U and entropy S,

F(T )=U(T )− T S(T ). (8.10)

As mentioned, all thermodynamic quantities under consideration here always give
the differences induced by the presence of theQQ̄ pair, i.e., they measure the differ-
ence found for the system with and without the pair. The free energy thus contains
not only the effective mass acquired by the separated color charges through polar-
ization, but it also measures the change in the entropy of the medium induced by
the presence of the charges. In particular, the negative high temperature limit of the
free energy is essentially determined by the entropy effect, assuming the change in
internal energy due to the QQ̄ pair to be positive.
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Fig. 8.6 The r-dependence of weak-coupling (left) and strong-coupling (right) behavior of ther-
modynamic observables

To study this in more detail, we consider separately the r-dependence of the
string term and the Coulomb term; they are illustrated in Fig. 8.6. In the weak-
coupling form Fw , it is seen that the pair can be separated with no change in internal
energy; the work done on the QQ̄ pair is simply converted into entropy. For the
strong-coupling form Fs , in contrast, the separation work and the entropy increase
are equal but additive, leading to a corresponding change in internal energy. The
effect of screening is thus quite different in the strong coupling region Tc ≤ T ≤
3–5Tc and in the weak-coupling high temperature limit.

8.3 Interaction Regimes of the Plasma

In Chap. 5 it was shown that when strongly interacting matter is brought close to
the deconfinement temperature, its energy density changes quite abruptly, increasing
from a low hadronic value to the much higher one for a medium consisting of quarks
and gluons. The amount by which it changes is just the latent heat of deconfinement.

In Fig. 8.7, we show a schematic view of the energy density and the pressure
around Tc , as obtained in pure gauge theory as well as in full QCD. In the transi-
tion region just above Tc, the pressure increases towards its Stefan-Boltzmann limit
much more slowly than the energy density. In Chap. 3 we had already seen a similar
effect on the hadronic side, where strong resonance interactions caused the energy
density to increase more rapidly than the pressure. The resulting interaction effects
are indicated quite clearly by the interaction measure �(T ) ≡ (ε − 3P)/T 4 [10],
which vanishes for an ideal gas of massless constituents (see Eq. (4.17)); in contrast,
in all lattice studies it remains quite sizeable up to T/Tc � 3–5. And even at very
high temperature, when ε/T 4 does approach 3P/T 4, the Stefan-Boltzmann limit is
not yet reached, so that some form of interaction must still persist in that region.

The nature of these interaction effects has been the subject of much interest and
speculation. Let us try to address the topic in a systematic fashion. The schematic
picture shown in Fig. 8.7 indicates that the temperature variation of �(T ) defines
three relatively distinct interaction regimes of the medium. In the “critical region”
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Fig. 8.7 Schematic view of energy density and pressure (a) and of the interaction measure (b) in
the deconfined medium; in (a), SB denotes the Stefan-Boltzmann limit

around Tc, there is a very sharp increase of �(T ). It then peaks, and above a tem-
perature Tp � 1.1Tc, there is a “strongly interacting plasma” region, in which �(T )
decreases quite rapidly. Finally, for T � 5Tc, the decrease becomes much slower as
we enter the “weakly interacting plasma” regime. The justification of this nomen-
clature will become clear shortly.

The critical region is most easily identified in the case of pure SU(2) gauge the-
ory, where it is defined by the critical behavior of the Z2 universality class and
the corresponding critical exponents. The singular parts of the pressure and of the
energy density in the plasma state, i.e., for t ≡ (T − Tc)/Tc ≥ 0, are given by

Psing = cT 4t2−α, εsing = 3cT 4
{
t2−α + 2 − α

3
(t + 1)t1−α

}
, (8.11)

where c is a constant; in addition, both quantities have non-singular contributions
remaining at Tc. From Eq. (8.11) it follows that the specific heat Cv = (∂ε/∂T )V
diverges at Tc as Cv ∼ t−α ; the critical exponent α = 0.11 is the same as that for
the three-dimensional Ising model. In the critical region of the gluon plasma, the
interaction measure thus has the singular form

�(t)−�(1)= (2 − α)c(t + 1)t1−α, (8.12)

where the constant term �(1) removes the non-singular parts of energy density
and pressure remaining at Tc. The behavior predicted by Eq. (8.12) is well con-
firmed by lattice studies [10], though in a very narrow window above Tc, as shown
in Fig. 8.8.

We see that increasing the temperature 10% above Tc leads to an increase of the
interaction measure by about a factor three. As already noted, this increase is due to
the fact that in the critical region, the energy density increases much more strongly
than the pressure. For large T , the two converge, and so there must be some point
Tp where the two exchange roles: above Tp , the pressure grows more strongly than
the energy density. We have illustrated this schematically in Fig. 8.7; the effect of
the “interchange” is the peak observed in �(T ).
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Fig. 8.8 The interaction measure for SU(2) gauge theory in the critical region, comparing lattice
calculations (�lat, dashed line) to the form (8.12) obtained for the Z2 universality class (�th, solid
line)

As already noted, the form (8.12) holds only in a very narrow temperature range
above Tc; in particular, it does not reproduce the peak observed for �(T ) at Tp .
Instead, it continues to increase further, with a turnover at very much higher tem-
perature. Hence the decrease of �(T ) in the range above Tp must have some other
origin.

Beyond the peak at Tp , in the region of rapidly decreasing �(T ), we have a
“strongly interacting plasma”, whose behavior, as we shall see, is definitely of non-
perturbative nature. Eventually, at high enough temperature, asymptotic freedom
could be expected to result in a “weakly interacting plasma”, in which the behavior
of �(T ) is given by perturbation theory. Before discussing this further, we summa-
rize in Fig. 8.9 the results obtained for the interaction measure in lattice studies of
pure SU(N) gauge theory [11–14] and of full QCD [15, 16]. In the case of pure
gauge theory, the interaction measure is found to scale with the gluonic degrees of

Fig. 8.9 Interaction measure for SU(N) gauge theory [13, 14], scaled by N2 − 1 (left), and for
full QCD [15], with Nf = 2,2 + 1,3 (right)
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freedom, so that �(T )/(N2 − 1) leads to a unique curve down to the onset of the
critical region.

8.4 Weak Coupling Approaches

In leading order perturbation theory, the interaction measure for pure SU(N) gauge
theory is given by [12, 17]

�pert = (N2 − 1)

288

11N2

12π2
g4(T ), (8.13)

with

g2(T )= 24π2

11N ln(T /�T )
. (8.14)

The perturbative interaction measure thus shows the observed scaling in N2 − 1
just mentioned, assuming Ng2 is kept constant. In Eq. (8.13), �T defines the lattice
scale, which in the mentioned SU(3) lattice studies [11] was found to be determined
by Tc/�T = 7.16 ± 0.25. In this case, we thus obtain

�pert = 11

48π2
g4 = 4π2

33

1

{ln[7.16(T /Tc)]}2
� 1.2

{ln[7.16(T /Tc)]}2
. (8.15)

At T/Tc = 3, we thus have �pert � 0.13, which is still about a factor 3 below the
(continuum extrapolated) lattice result �lat � 0.4. Hence at this temperature, lead-
ing order perturbation theory cannot yet reproduce the plasma interaction. Neverthe-
less, we have here αs = g2/4π � 0.19 for the strong coupling αs , so that in principle
perturbation theory seems to be applicable, and we could expect that at somewhat
higher temperatures, above T/Tc � 5–10, the perturbative form might account for
the lattice result.

The evaluation of higher order perturbative terms has, however, shown that this
is not the case. Divergences in finite temperature field theory limit calculations to
a finite order in the coupling g [18, 19]; for the pressure, the limit is O(g5), and
calculations of such corrections have now been extended to this order [20, 21]. In
Fig. 8.10 we show the result of expansions in different order gn for energy and
pressure in SU(3) gauge theory, normalized to the Stefan-Boltzmann limit [22].
It is seen that in the temperature region of interest here, T ≤ 10Tc, the different
orders lead to strong fluctuations; the final form, up to and including O(g5), still
considerably undershoots the lattice results.

Moreover, for an understanding of the interaction effects, a comparison of lattice
and perturbation theory results for the pressure is in fact quite misleading, since
the major part of the pressure is given by the ideal gas component. To concentrate
on just the interaction effects, we return to the interaction measure �(T ), and here
perturbation theory breaks down completely. The two-loop form for SU(3) gauge
theory,

�pert =
(

99

12π2

)[
1

36
g4 − 1

6π
g5
]
, (8.16)
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Fig. 8.10 Perturbative expansions of the pressure in SU(3) gauge theory [22], compared to the
finite temperature lattice results [11]

remains negative until g2 � 0.27, which, with the two-loop form of the coupling
(see Eqs. (5.24)/(5.25)),

g−2 = 11

8π2
ln(T /�T )+ 51

88π2
ln
[
2 ln(T /�T )

]
, (8.17)

requires inconceivably high temperatures, above 106Tc. We conclude that the inter-
action of the plasma in the region of interest here, up to some 10Tc, must definitely
require some non-perturbative features.

This situation has triggered numerous efforts to modify the perturbative treat-
ment. In one approach [22], the O(g6) term is evaluated by a non-perturbative scale
determination, using lattice results for the magnetic screening. Another possibility
is given by including sums over certain graph classes, thus effectively shifting the
point about which the perturbation expansion is performed [23–28]. In particular,
this is studied for the terms dominating at high temperature (hard thermal loops,
HTL) and leads to a much improved convergence of the perturbation series. Both
approaches have in common

• a rather good description of the pressure for high temperatures, but
• the range below about 5Tc is still not accessible, generally leading to interaction

measures which are far too small or even negative.
• Moreover, the strong order-by-order fluctuations raise some doubts that the last

order considered is really close to a “final” result.

To illustrate this, we show on the left side of Fig. 8.11 the behavior obtained with the
help of a partially non-perturbativeO(g6) term [22], and on the right side the corre-
sponding results from modified HTL calculations [24, 25], in both cases compared
to the form obtained in SU(3) lattice QCD. The latter shows for �(T ) a decrease
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Fig. 8.11 (T /Tc)
2�(T ) as predicted in a systematic effective perturbation theory (left) [22] and

in HTL resummed perturbation theory (right) [24, 25], compared to the continuum extrapolation
of lattice studies [12]

as 1/T 2, so that T 2�(T ) becomes approximately constant above Tc. We see in
Fig. 8.11 that in leading order (LO) and next-to-leading order (NLO) the breakdown
of perturbation theory persists also in a HTL approach, and even the inclusion of a
partially non-perturbative NNLO contribution cannot reproduce the lattice result,
neither in magnitude nor in functional form.

The convergence of lattice data toward a weak-coupling limit thus remains a
rather open issue. Recent lattice studies based on rather small volumes [29] have
extended the temperature range in SU(3) gauge theory up to above 100Tc, and as
seen in Fig. 8.12, one finds that higher order perturbative results (with a fitted g6

contribution [22]) approach the lattice curve.

Fig. 8.12 Continuum extrapolation of small volume lattice results for the trace anomaly (solid
curve) compared to O(g6) perturbative calculation [29]

We have here considered pure gauge theory. In recent studies of QCD with one
heavy and two light quarks it was shown that in HTL resummed perturbation theory,
the agreement with lattice data can be extended down to about 2Tc [30]; below that,
critical behavior sets in. Moreover, effective field theory studies contain an intrinsic
renormalization scale, and variations of this scale lead to a rather wide band of
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predictions. This, however, can never produce the drop of the interaction measure
as T approaches the critical point.

In general, the breakdown observed in any perturbative treatment as we enter the
transition region is of course not surprising. Critical or even pseudo-critical behavior
with an increasing correlation range is simply not a perturbative phenomenon. We
therefore have to find a non-perturbative approach to address the behavior of the
plasma in this region.

8.5 Bag Pressure and Gluon Condensate

We had seen in Chap. 4 that one way to implement confinement in an ideal gas
picture was to introduce a bag pressure, measuring the “level difference” between
the physical vacuum and the ground state in the colored world of QCD. To the ideal
gas partition function Z0(T ,V ) a bag term was added,

T lnZB(T ,V )= T lnZ0(T ,V )−BV (8.18)

and this simulates a form of interaction [31], as best seen by the resulting interaction
measure,

�(T )= 4B

T 4
. (8.19)

We want to check here to what extent this is a viable description of the QGP inter-
action in the region above Tc.

The thermal expectation value of the trace of the energy-momentum tensor,
〈�μμ〉 = ε − 3P , is related to the gluon condensate, i.e., to the expectation value
of the gluon term in the QCD Lagrangian [32],

G2 ≡ β(g)

2g3
GaμνG

μν
a = 11Nc

96π2
GaμνG

μν
a , (8.20)

where Gaμν = gFaμν is given by the gluon field of color a in the QCD Lagrangian.
The last term of Eq. (8.20) is obtained using the leading order perturbative beta
function,

β(g)= 11Nc
48π2

g3 +O(g5). (8.21)

The value of 〈G2〉 = G2
0 at T = 0 has been estimated numerically, with G2

0 =
0.012±0.006 GeV4 as “canonical” value [33]. In both analytical and lattice studies,
ε − 3P is normalized to zero at T = 0, so that〈

�μμ
〉= ε − 3P =G2

0 −G2
T , (8.22)

whereG2
T is the temperature-dependent gluon condensate. In the temperature range

below Tc, we expect G2
T =G2

0, so that ε − 3P = 0. If the gluon condensate melts
above Tc, the interaction measure becomes

ε − 3P

T 4
= G2

0

T 4
, (8.23)
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so that B =G2
0/4 relates bag pressure and gluon condensate. The value for the latter

given above leads to a bag pressure B1/4 � 230 ± 30 MeV, which is in reasonable
agreement with that obtained from hadron spectroscopy as given by the bag model.

The color summation in Eq. (8.20) runs over the N2 − 1 gluonic color degrees of
freedom, so that we can write

G2 = 11Ng2

96π2

〈
FaμνF

μν
a

〉= 11Ng2

96π2

(
N2 − 1

)〈
F̄μνF̄

μν
〉
, (8.24)

where 〈F̄μνF̄ μν〉 denotes the gluon field contribution per color degree of freedom.
The scaling of the interaction measure in N2 − 1 observed for different SU(N)
theories is thus in accord with the bag model dependence, if we keep g2N constant.

If we assume that G2
T = 0 for T ≥ Tc, we obtain for the interaction measure

�(T )= G2
0

T 4
= G2

0

T 4
c

(
Tc

T

)4

� 2.3

(T /Tc)4
, (8.25)

using Tc � 0.27 GeV for the SU(3) deconfinement temperature. The lattice data are
found to decrease more slowly and are in fact in accord with a 1/T 2 dependence.
We therefore compare in Fig. 8.13 the results for T 2�(T ) given by the lattice and
by the bag model forms. The bag model naturally cannot account for the struc-
ture immediately around Tc (the rise to the peak of �(T )), but it also fails in the
temperature region above Tc . There exist different and quite interesting attempts to
correct the T -dependence in that region [34–37], including also a combination of
bag model and weak coupling expansion; none of these, however, can address the
critical behavior.

Fig. 8.13 The temperature variation of �(T )(T /Tc)2 obtained from the bag pressure, compared
to the corresponding lattice data [12]

8.6 The Quasi-particle Approach

There thus remains the task to find a non-perturbative approach which takes into
account the critical features arising in the temperature region in the range above Tc ,
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as they were obtained in lattice studies. To illustrate one such possibility, we stay in
pure SU(3) gauge theory, where an extrapolation to the continuum limit is available
[12]. The basis for our considerations here is the study of an ideal gas of constituents
(“quasi-particles”) having dynamically or thermally generated masses [38–41]. The
behavior of an ideal gas of such massive gluon modes provides automatically the
observed N2

c scaling and also leads to other features in accord with the functional
behavior found in SU(N) gauge theories. Let us consider this in more detail.

The partition function of an ideal gas of constituents of mass m(T ) is in the
Boltzmann limit for SU(N) gauge theory given by

lnZ(T )= (N2 − 1)V

2π2

∫ ∞

0
dpp2 exp

(
− 1

T

√
p2 +m2

)

= (N2 − 1)V Tm2

2π2
K2(m/T ), (8.26)

where Ki(x) denotes the Hankel function of ith order and imaginary argument. The
resulting pressure becomes

P(T )= T
(
∂ lnZ

∂V

)
T

= (N2 − 1)T

2π2

∫ ∞

0
dpp2 exp

(
− 1

T

√
p2 +m2

)

= (N2 − 1)T 2m2

2π2
K2(m/T ) (8.27)

while the energy density is found to be

ε(T )= T 2

V

(
∂ lnZ(T )

∂T

)
V

= (N2 − 1)

2π2

∫ ∞

0
dp p2 exp

(
− 1

T

√
p2 +m2

)

×
{√
p2 +m2 − T m√

p2 +m2

(
dm

dT

)}

= (N2 − 1)m2T 2

2π2

{
3K2(m/T )+

[
m

T
−
(
dm

dT

)]
K1(m/T )

}
. (8.28)

In these expressions, we have maintained two spin degrees of freedom for the “mas-
sive” gluons; we return to this point shortly. Both energy density and pressure thus
fall below the Stefan-Boltzmann limit, as is illustrated in Fig. 8.7; the lattice results
for the SU(3) case were shown in Fig. 5.3. The resulting interaction measure is
given by

�= (N2 − 1)

2π2

∫ ∞

0
dpp2 exp

(
− 1

T

√
p2 +m2

)

×
{√
p2 +m2 − 3T − T m√

p2 +m2

(
dm

dT

)}
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= (N2 − 1)m2

2π2T 2

[
m

T
−
(
dm

dT

)]
K1(m/T ). (8.29)

If m is Nc-independent, the scaling in N2 − 1 is evident. Moreover, if the effective
mass m is linear in T , as in any conformal theory, �(T ) vanishes. Given a running
coupling, with m= g(T )T , we get

�(T )= (N2 − 1)m2

2π2T 2
T

(
dg

dT

)
. (8.30)

We note, however, that such a “naive” quasi-particle description with finite
masses seems to encounter a conceptual problem. Physical constituents of non-
vanishing mass should have three, rather than two spin degrees of freedom, since
a longitudinal polarization is excluded only for massless particles. The resulting
changes in all thermodynamic quantities—e.g., the increase of the ideal gas energy
density ε/T 4 (see Eq. (5.41)) from 8π2/15 to 12π2/15—are definitely in disagree-
ment with the observed high-temperature lattice results. A simple shift to massive
gluons thus cannot satisfactorily explain the interactions apparently still present in
the high temperature gluon gas. More generally, a gauge invariant theory does not
allow massive physical gluons; the mechanism leading to effective thermal masses
must thus be more subtle. The mentioned modified HTL perturbation theory ap-
proach, in which each order already includes some aspects of gluon dressing, not
only leads to a rather rapid convergence of the expansion; in addition, the contri-
bution of longitudinal gluons vanishes in the limit g → 0, so that one also obtains
the right number of degrees of freedom for the Stefan-Boltzmann form [26–28].
Moreover, it has recently been argued [42] that massive gluons should in fact be
transversely polarized, since two massless gluons cannot combine to form a lon-
gitudinally polarized massive gluon [43]. It thus seems justified to use the thermal
mass scenario outlined above to address the temperature behavior of the quark-gluon
plasma.

The form of the effective mass entering in a quasi-particle approach description
has been an enigma for quite some time. At sufficiently high temperature, T re-
mains as the only scale, so that there we expect m ∼ T . From perturbation theory
one obtains in leading order for SU(N) gauge theory a thermal screening mass
∼Ng(T )T /3, but in view of the above mentioned difficulties, it seems best to leave
the proportionality open. As we approach the critical point, perturbation theory in
whatever form ceases to be applicable. We now have a medium of strongly inter-
acting gluons, and the range of the forces between them becomes larger and larger
as we approach the critical point. This range is governed by the correlation length,
or in other words, by the distance up to which a given color charge can “see” other
color charges. This distance is the QCD counterpart of the Debye screening radius
in QED; we write it as rD(T ) = 1/μ(T ), where μ(T ) denotes the corresponding
screening mass. It corresponds to the shift from 1/k2 to 1/(k2 + μ2) experienced
by the gluon propagator due to the presence of the medium.
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The perhaps simplest view thus is to consider as mass of the quasi-gluon in the
strongly coupled region the energy contained in a volume Vcor of the size defined
by the correlation range,

mcrit(T )∼ ε(T )Vcor(T ). (8.31)

In the case of a continuous transition, the critical part of the energy density becomes

ε ∼ (t − 1)1−α, (8.32)

where t = T/Tc, and α is the critical exponent for the specific heat. The correlation
volume (for three space dimensions) can be written as

Vcor = 4π
∫
dr r2�(r,T ), (8.33)

where

�(r,T )∼ exp−{r/ξ(T )}
r1−η , ξ(T )∼ (t − 1)−ν (8.34)

specifies the correlation function � in terms of the critical exponents ν for the cor-
relation length ξ(T ) and η for the anomalous dimension. Combining these expres-
sions, we have

mcrit(T )∼ (t − 1)1−α−2ν−η; (8.35)

for SU(2) gauge theory in three space dimensions, the exponents are given by the
corresponding exponents of the 3d Ising model, α ∼ 0.11, ν � 0.63, η� 0.04, sug-
gesting

mcrit(T )∼ (t − 1)−0.41. (8.36)

This form is correct only very near the critical point t = 1; for large temperatures,
ξ(t)∼ t , so that the overall form expected for the mass of the quasi-gluon becomes

m(t)� a(t − 1)−0.41 + bt, (8.37)

where a and b are constants. The resulting behavior is illustrated in Fig. 8.14 (left).
It would certainly be of interest to apply this form in an analysis of the thermody-
namics of SU(2) gauge theory; unfortunately, there seem to exist no lattice studies
allowing an extrapolation to the continuum. Older studies of ε(T ) and P(T ) in
terms of a gluon mass m(T ) did in fact lead to the form shown in Fig. 8.14 [38].

For SU(3), the transition is of first order, so that all quantities remain finite at Tc
and an equivalent form cannot be given. Nevertheless, in all cases we have a strong
increase of both ε(T ) and μ(T ) in some range above Tc , and so we shall main-
tain the functional dependence (8.35)/(8.36) with an open exponent c. The resulting
quasi-particle mass is thus expected to have the form

m(T )= a

(t − 1)c
+ bt, (8.38)

with constants a, b, c.
Using this mass, we now determine the parameters a, b, c by calculating �(T )

from Eq. (8.29) and the energy density from Eq. (8.28). The resulting mass is shown
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Fig. 8.14 Expected behavior of the effective quasi-particle massm(t) in SU(2) gauge theory (left),
and as obtained from a fit of lattice data in SU(3) gauge theory (right)

in Fig. 8.14 (right). The fits to interaction measure and energy density are given in
Fig. 8.15 and are seen to reproduce both quantities very well. We can thus conclude
that the gluon plasma in SU(3) gauge theory in the temperature region above Tc
indeed behaves like a medium of quasi-particles with masses generated through
non-perturbative thermal effects.

Fig. 8.15 Interaction measure (left) and energy density (right) for SU(3) gauge theory, compared
to a quasi-particle description

The same approach can now be used to address the corresponding problem in
two-flavor QCD, using the energy density and the screening mass obtained in lattice
studies to determine the quasi-particle mass, and then evaluate the interaction mea-
sure. In this case, the lattice results are not yet of the same degree of precision, but
the general pattern remains the same as for SU(3) gauge theory.

8.7 The Speed of Sound in the QGP

In the hadronic resonance gas study of Chap. 3, we had seen that the speed of sound
drops to zero at the critical point defined by the limit of hadronic matter. It does so
because any further energy increase goes into making more massive resonances, not
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into momentum and pressure. On the deconfined side, in the quasi-particle approach
just discussed, the behavior is very similar. As we lower the plasma temperature
towards the confinement point, the increase of the quasi-particle mass has the same
effect. Seen the other way around, a temperature increase above Tc lowers the mass
and thus provides more momentum and pressure, causing an increase in the speed
of sound.

More specifically, the speed of sound, defined as

c2
s =

(
∂p

∂ε

)
V

= s(T )

CV (T )
, (8.39)

vanishes at Tc for a continuous transition, because the specific heat CV (T ) diverges
there, while the entropy density s(T ) remains finite. In the ideal gas limit, s(T )�
4c0T

3 and CV (T )� 12T 3, so that c2
s → 1/3. For the temperature-dependent mass

(8.38), the speed of sound can be evaluated numerically, using Eqs. (8.17) and
(8.18). It is found [41] that the behavior obtained in such a quasi-particle approach
agrees very well with that found in SU(3) lattice calculations.

Fig. 8.16 The speed of sound in strongly interacting matter

A similar behavior arises in full QCD, with dynamical quarks. For two massless
quark flavors, the specific heat will diverge; otherwise, it will only increase strongly
near the cross-over temperature Tc. The general pattern for the speed of sound, both
below and above Tc, thus has the form shown in Fig. 8.16. As mentioned above, the
dip is on both sides a consequence of the mass increase as the temperature becomes
(almost) critical.
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Chapter 9
The Little Bang

Si parva licet componere magnis.

Publius Virgilius Maro, Georgica IV, ∼ 30 B.C.

[If it is allowed to compare the small with the large.

Virgil, on bee-keeping vs. cattle-raising]

Here we give a short general introduction to the experimental study of strongly
interacting matter. After briefly noting applications in cosmology and astrophysics,
we turn to the use of high energy nuclear collisions as a tool for such an endeavor.
Following a discussion of the conceptual basis, we present the parton basis of high
energy nuclear collisions and its limitation through saturation.

9.1 Applying Strong Interaction Thermodynamics

We had already mentioned in the Introduction that the topic of this book deals with
a rather esoteric subject: dense strongly interacting matter, i.e., matter of a density
beyond that found in heavy nuclei, and in particular the quark-gluon plasma. Such a
medium of deconfined quarks and gluons must have been one of the states through
which our universe passed in its evolution from the big bang to the present, and
quark matter could exist in the core of neutron stars. The great interest this subject
holds in today’s physics research, however, is to a very large extent based on the
hope, the expectation, the certainty (which of these, is in the eye of the beholder)
that we will be able to study strongly interacting matter in the laboratory, under
controlled conditions, using high energy nuclear collisions. Moreover, increasing
the collision energy is expected to increase the initial energy density of the produced
matter, so that at sufficiently high energy, we reach the realm of deconfinement and
of the quark-gluon plasma. Before turning to nuclear collisions, we briefly comment
on the cosmological and astrophysical connections.

The expansion of our universe is described in terms of the Hubble “constant”
H(t); it is a constant only in space, but varies with time. It relates the velocity of
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a distant galaxy to its position and thus measures the expansion time. The conserva-
tion of kinetic expansion and gravitational potential energy requires

H 2(t)= 8π

3
Gε(t), (9.1)

whereG is the gravitation constant and ε(t) the cosmic mass density. The expansion
time is thus given by

texp = 1

H(t)
=
√

3

8πGε(t)
. (9.2)

Considering the instant of the big bang as starting point, we can determine
the time needed to reach, on a cosmic level, the deconfinement energy density
ε � 1 GeV/fm3. With the value G= 6.708 × 10−39 GeV−2, it is found to be

texp � 10−5 s, (9.3)

so that in its first ten microseconds, our universe was in a deconfined state (“quark
era”). Only at the end of this era hadrons formed, and there appeared for the first
time the background for today’s complex cosmic structure, the physical vacuum.

A neutron star is one final evolution stage of sufficiently heavy stars (black holes
are the other). In a gigantic supernova explosion, the star collapses from a state
of atomic to one of nuclear density. It has a mass of more than 1.5 solar masses,
with a radius of around 10 km. Its density varies from about (1/3)n0 in the crust
to 2–3n0 in the core, where n0 � 0.17 fm−3 denotes standard nuclear density. The
pressure of the collapse has, through inverse beta-decay (p + e− → n+ ν), turned
all constituents into neutrons, releasing energy by neutrino radiation. The neutrons
are contracted by gravitation, while the exclusion principle provides stability. It is
not known if the deep core of such a star reaches conditions which make a state
of deconfined quarks energetically favorable. On one hand, one does not have re-
liable theoretical predictions, since so far finite density lattice studies are restricted
to very low baryon density. On the other hand, there are also no clear cut empirical
signatures known, which could be used to identify a neutron star with a quark core.

9.2 High Energy Collisions and the Vapor Trail

Normal nuclear matter consists of nucleons of mass 0.94 GeV and has, as just noted,
a density of 0.17 nucleons/fm3; hence its average energy density is 0.16 GeV/fm3.
How can we surpass this value? In a high energy proton-proton collision, the two
colliding nucleons do not just stop each other, even if they hit “head-on”; instead,
they pass through each other. The reason for this is essentially their finite size [1].
A nucleon has a spatial extension of about 1 fm, and in a nucleon-nucleon collision
it therefore takes a certain time τ0 before the entire nucleon knows that it hit some-
thing. Consider a fixed-target experiment, in which a proton beam hits a stationary
proton target. In the rest-frame of the projectile, we have τ0 � 1 fm for the time
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required to pass the information about the collision from one side to the other. In the
rest frame of the target, this time is dilated to

t0 = τ0

(
P0

m

)
� τ0

(√
s

2m

)
, (9.4)

where P0 = √
P2 +m2 denotes the energy of the projectile, P its momentum, m its

mass, and
√
s the center-of-mass collision energy. For large

√
s, the time in the

target frame t0 � 1 fm, so that the projectile has long left the region of the target
nucleon before it fully realizes that it was hit.

Hence the colliding nucleons pass through each other, and after the little bang
of the collision, they leave behind a “vapor trail” of deposited energy, of disturbed
vacuum. It consists of droplets of deposited energy, some almost at rest in the overall
center of mass, and then faster and faster droplets moving along the trail, up to the
excited target and projectile fragments (see Fig. 9.1).

Fig. 9.1 A head-on nucleon-nucleon collision at high energy, as seen in the overall center-of-mass
system; top: before, bottom: after the collision

In a boost-invariant picture of such collisions [2], all droplets far enough away
in rapidity from the target or projectile regime will be very similar; each will, in
its own rest frame, contain a certain amount of deposited energy. Each droplet ex-
pands, cools and eventually materializes by forming a number of hadrons of differ-
ent species. At a center-of-mass collision energy

√
s and at mid-rapidity, one has on

the average per droplet (dNh/dy)0 mesons of about 0.5 GeV energy each. We can
now “let the film run backwards” and note that initially, this energy was contained
in a volume of roughly hadronic size (rh � 1 fm). The average initial energy density
thus must have been

εpp �
(
dNh

dy

)
0

{
0.5 GeV

(4π/3)(1 fm)3

}
� 0.12

(
dNh

dy

)
0

[
GeV/fm3]. (9.5)

For
√
s = 20 GeV, one observes (dNh/dy)0 � 3, leading to εpp � 0.36 GeV/fm3,

which is about twice that of standard nuclear matter. One might here argue that the
interaction region in the center of mass frame is Lorentz-contracted in the longitudi-
nal direction, so that instead of a sphere of radius 1 fm, one should consider a much
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thinner pancake, which would lead to correspondingly higher energy densities. For
very “early” phenomena, this may well be correct; but if we consider hadronic con-
sequences of the collision, which take a typical hadronic time to form, a longitudinal
extension of about 1 fm is reasonable. Hence in their local rest system, the droplets
can presumably be taken as spherical of radius 1 fm. However, a viable possibility to
increase the relevant energy density is to select nucleon collisions with higher than
average multiplicity. In this case, more energy is deposited in fewer droplets, and for
these droplets, εpp will increase correspondingly. In p̄ − p collisions at the CERN
p̄−p collider (with a center of mass energy

√
s = 550 GeV), or at the FNAL Teva-

tron (with
√
s = 1800 GeV), reactions have been studied with more than twenty

secondaries per unit rapidity [3, 4]; this corresponds to an energy density of more
than 2 GeV/fm3. It is thus indeed possible to produce in the laboratory energy den-
sities of an order of magnitude beyond that of standard nuclear matter. However, we
can reach these high densities in elementary nucleon collisions only by considering
comparatively rare events of much higher than average multiplicity, and the initial
volume of the system remains only that of a single hadron—hardly large enough for
hadron thermodynamics.

Let us now look at a high energy head-on collision of two identical heavy nu-
clei of mass number A; the geometry of the process is schematically illustrated in
Fig. 9.2. In the overall center-of-mass system, the Lorentz contraction of the nu-
clei forces all the nucleons contained in a tube of hadronic radius (1 fm) along the
beam axis to interact in essentially the same space-time region. Integrating over the
transverse collision area, we find on the average for each nucleus

NA � 3

4

[
2RAπ(1 fm)2

]
n0 �A1/3 (9.6)

nucleons in this tube, with RA = 1.14A1/3 fm denoting the radius of a nucleus of
mass number A; n0 � 0.17 fm−3 is again standard nuclear density, and the factor
3/4 comes from averaging over the nuclear profile for a central nucleus-nucleus

Fig. 9.2 A head-on nucleus-nucleus collision at high energy, as seen in the overall center-of-mass
system
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collision. Such a collision will therefore lead to the superposition of about A1/3

nucleon-nucleon interactions, resulting in an average initial energy density [2]

εAA � 0.14A1/3
(
dNh

dy

)
0
, (9.7)

which for heavy nuclei (A� 200) and
√
s = 20 GeV leads to about 2.5 GeV/fm3 in

a typical central collision. Moreover, the overall interaction region has now become
of nuclear size. This means a transverse nuclear area of πR2

A; in the longitudinal
direction, the initial interaction region is at high energies Lorentz-contracted to a
thickness of about a fermi (as mentioned above, this is needed for the formation
of any hadronic collision products). For a head-on collision of two heavy nuclei
we thus obtain an initial volume of about 170 fm3, decidedly larger than a typical
hadronic volume.

As function of energy, one finds roughly (dNh/dy)0 � ln
√
s for the multiplicity

of produced hadrons; the resulting behavior of the energy density is illustrated in
Fig. 9.3, with indications for AA collisions at the top collision energy of the past
and present nuclear collision facilities. These numbers give us only a first, rather
conservative idea of what we can expect in nuclear collision experiments. It thus ap-
pears not unreasonable to hope that high energy nuclear collisions will bring within
our reach the direct experimental study of strongly interacting matter, and if the es-
timates are correct, the state of this matter when it is initially formed should be a
quark-gluon plasma. Let us now consider in some more detail how the formation of
the collision medium could occur.

Fig. 9.3 Average initial energy density as a function of collision energy, for central AA collisions
with A� 200

9.3 Parton Interactions and Thermalization

The quark infrastructure of hadrons implies that what really happens in a high en-
ergy hadron-hadron collision is an interaction between the sub-hadronic constituents
of target and projectile. These are for mesons a quark-antiquark pair, for baryons a
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three quark state, and for both there are in addition gluons to achieve the binding.
These gluons, in turn, lead to a sea of fluctuating quark-antiquark pairs. A simple
hadron thus becomes a rather complex entity, consisting of the quarks which deter-
mine its quantum numbers, i.e., of the valence quarks, of the gluons and of their
quark-antiquark fluctuations, the “sea” quarks. All three types together are denoted
as partons, and the momentum of an incident hadron is shared among all of its par-
tonic constituents. This partonic substructure is not a “static” feature, in the way an
atom consists of A=Np +Nn protons and neutrons forming a nucleus surrounded
by Np electrons. Rather, it is a description of the interaction of an energetic hadron
with a probe, and the parton substructure of the hadron depends both on the resolu-
tion of the probe and on the momentum of the hadron. In other words, a fixed probe
“sees” in a specific hadron a different parton content at different momenta of the
hadron.

Inelastic lepton-hadron scattering allows us to determine experimentally how
many partons of each species there are in a hadron, and how much of its energy
is carried by each species of parton. In such reactions, an energetic (virtual) photon
hits the hadron, and if the wavelength of the photon is short enough, it sees not the
hadron as a whole, but rather one of its partonic constituents (see Fig. 9.4).

Fig. 9.4 Deep inelastic lepton-hadron scattering

The resulting data therefore allows us to specify how the hadron’s momentum
P � √

s/2 is distributed among the partons. The relevant quantity here is the par-
ton distribution function, fi(x), which specifies the number of partons of species
i carrying a fraction xmin < x < 1 of the incident momentum of the hadron. Here
xmin ��QCD/

√
s specifies the low-momentum bound for constituents. Things must

add up, of course, so that the different fi have to satisfy the energy conservation sum
rule ∑

i

∫
dx xfi(x)= 1, (9.8)

where the sum runs over gluons, valence and sea quarks. Corresponding relations
hold for the conservation of electric charge and of baryon number. A generic illus-
tration of the parton substructure of a proton is shown in Fig. 9.5. We note that the
valence quarks provide the dominant contribution for partons carrying a sizeable
fraction of the hadron momentum. On the other hand, for increasing hadron energy√
s there is an ever increasing number of soft gluons, so that at low x a hadron

consists mainly of gluons.
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Fig. 9.5 Schematic parton distribution xf (x) for protons, as a function of parton fractional mo-
mentum x

An incident energetic hadron thus is “really” a beam of partons. Besides their
longitudinal momentum, determined by how much of the hadron momentum they
carry, they also have an intrinsic transverse momentum kT . By the uncertainty rela-
tion, this means that they have a transverse size rT ∼ 1/kT , so that a cut through the
transverse plane of an incoming hadron looks like a set of small discs of different
sizes distributed over a larger disc of hadronic size (Fig. 9.6).

Fig. 9.6 Parton distribution in the transverse plane of an incident hadron

Probing the discs in this picture is possible only if the photon used has a suf-
ficiently short wave length. This implies that photons of squared four-momentum
Q2 can only “see” the partons of transverse momentum k2

T ≤ Q2, i.e., of a size
r2
T ≥ 1/Q2. So the parton distribution function introduced above is really a function

of two variables,

fi
(
x,Q2)=

∫ Q2

�2
QCD

dk2
T fi

(
x, k2

T

)
(9.9)

obtained by integrating over the transverse momentum distribution of the partons up
to the maximum value accessible to photons with resolution Q2. The lower limit of
kT is determined by the basic scale �QCD of QCD.

When such a beam of partons hits a target, the interaction can cause each parton
to split into further partons. This branching is clearly reminiscent of the resonance
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Fig. 9.7 Parton evolution

evolution patterns discussed above, and the formal basis is in fact very similar. We
had found there that the splitting of a hadronic resonance or fireball into further such
objects is determined by the number of partitions p(n) of an integer n, leading to

p(n)∼ exp{a√n}, (9.10)

with constant a. Here one finds that the number of partons grows as

fi(y, q)∼ exp
{
2
√
αs(q)yq

}
, (9.11)

where y = ln(1/x) and q = ln(Q2/Q2
0) measure the incident parton energy and

the inverse transverse parton size, respectively. In addition, the coupling parameter
αs(q) specifies the interaction strength. The parton distribution function (9.11) is
the solution of the so-called DGLAP equation1

∂2fi(y, q)

∂y∂q
= αs(q)fi(y, q), (9.12)

which specifies the evolution of the partons in the collision. Closer inspection of
the solution (9.11) shows that decreasing either the average transverse partonic size
(1/Q2) or increasing the collision energy (1/x) increases the corresponding number
of partons. Increasing q at fixed y leads to more partons of smaller and smaller size
(DGLAP evolution), while increasing y at fixed q leads to more partons of the same
average size (BFKL evolution2); the different cases are illustrated in Fig. 9.7.

Returning now to nucleus-nucleus collisions, we have a “beam” of partons of
the different species colliding with another such beam. In the interactions, branch-
ing further increases the number of partons, particularly of gluons, and the Lorentz
contraction of the colliding nuclei will cause collisions of partons from different
nucleon-nucleon interactions to overlap. It is this dense partonic system which is
expected to equilibrate and thus produce a thermal partonic medium, the quark-
gluon plasma. Starting from the non-equilibrium configuration of the two colliding

1Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [5–7].
2Balitsky-Fadin-Kuraev-Lipatov [8–10].
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nuclei, the evolution of the collision is thus assumed to have the form illustrated
in Fig. 9.8. After the collision, there is a short pre-equilibrium stage, in which the
primary partons of the colliding nuclei interact, multiply and eventually thermalize
to form a quark-gluon plasma. This then expands, cools and hadronizes to form the
observed hadronic secondaries.

Fig. 9.8 Expected evolution of a nuclear collision

Clearly an essential assumption for quark-gluon plasma formation in such a sce-
nario is that the initially incident collinear parton beams in the collision multiply and
eventually form a locally thermalized medium, i.e., create bubbles of quarks and glu-
ons in some kind of thermal equilibrium state. One such possibility is provided by
partonic interactions on a perturbative scale: numerous well-defined partons interact
sufficiently often to form kinetically an equilibrated system, where the interactions
include elastic (2 → 2) scattering as well as branching (1 → 2) and fusion (2 → 1).
This is the “classical” point of view, which initiated the various programs for high
energy nuclear collision experiments. The crucial question here is if the “droplets”
of quarks and gluons formed in nuclear collisions live long enough to thermalize—
or, in other words, what is the thermalization time, compared to the expansion time
of the formed medium? This topic has been addressed for many years, both concep-
tually [11–13] and through numerical codes [14–17]. The main results are:

• In the initial stages, gluons dominate; they multiply and thermalize very rapidly,
arriving at an isotropic momentum distribution after times of the order of 0.3 fm.

• The evolution of the quark distributions takes longer, since the relevant interaction
cross sections are smaller by a factor 2–3, due to color coefficients.

More recent work [18] has confirmed the crucial role of the gluons and concluded
that in the early stage, the primary, relatively hard gluons produce many soft gluons,
which quickly thermalize, and the resulting heat bath then draws energy from the
remaining hard gluons, leading eventually to full thermalization.
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As mentioned before, the work just discussed assumes that the thermalizing
medium consists of independent, perturbatively treated partons. This assumption,
as we shall see, is not tenable at sufficiently high energies and/or large nuclei; let us
now turn to this problem.

9.4 Parton Percolation and Saturation

The distribution of the partonic constituents in the initial state of a high energy nu-
clear collision is given by a superposition of the corresponding distributions inside
the nucleons of the colliding nuclei. Here it should be kept in mind that for nucleons
inside nuclei the distributions will be modified, compared to those in single nucle-
ons, because already the presence of other nucleons affects the partonic structure of
a given nucleon (“shadowing” or “antishadowing”). Nevertheless, the general pic-
ture in the transverse plane is similar to that for colliding hadrons, except that for
an A−A interaction at the same collision energy, the parton density is now much
higher (Fig. 9.6). The density of partons increases further with

√
s, and at some crit-

ical point, parton percolation must occur [19–21] and a “global” color connection
set in (see Fig. 9.9). In the resulting “condensate”, the partons are expected to lose
their independent existence and well-defined origin. In other words, at this point
the parton model as such presumably should break down, become ill-defined. The
evolution schemes mentioned above, DGLAP and BFKL, apply only in a relatively
dilute medium, in which the concept of a parton remains meaningful.

Fig. 9.9 Parton distribution in the transverse plane of an incident nucleus

The geometric considerations leading to parton percolation are in fact signals of
a more fundamental problem. It can be shown [22–24] that the total cross-section
for hadron-hadron scattering cannot increase arbitrarily fast with collision energy√
s. General physics principles, i.e., probability conservation (unitarity), causality

and relativistic invariance, lead to the Froissart bound

σ(s)≤ (ln s)2. (9.13)

This limit had originally been conjectured by Heisenberg [22] on phenomenologi-
cal grounds and was subsequently proved in quantum field theory by Froissart and
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Martin [23, 24]. The BFKL evolution, however, leads with parton distributions of
the form (9.11) to a number of partons growing at fixed transverse area 1/Q2 as
fi ∼ expA

√
y. Since y ∼ ln s, the total area of interacting partons increases for

large s as

exp{A√
ln s}> ln2 s. (9.14)

The number of partons can therefore not continue to grow according to the BFKL
evolution in the limit of small x—this would violate the Froissart bound.

An end to the conventional parton considerations thus seems quite reasonable
on very basic grounds. This does not tell us, however, how to describe the new
medium formed of dense, overlapping partons. This topic, which we introduced
through parton percolation, was initially addressed by allowing a non-linear parton
fusion correction to the perturbative DGLAP/BFKL treatment [25, 26]. So the final
state now presents a competition between the two opposing processes, and as a
result, Eq. (9.12) becomes correspondingly modified and acquires a non-linear term
[25, 26]; for gluons, this has the form

∂2fi(z, q)

∂z∂q
= αs(q)fi(z, q)

[
1 − αs(q)

R2Q2
fi(z, q)

]
, (9.15)

where ∼ f 2
i describes the fusion of two into one. Here 1/Q2 ∼ r2 specifies the

transverse parton size, and R2 that of the nucleus; hence the square bracket vanishes
when

fi(z, q)

R2
� 1

αs(q)r2
, (9.16)

i.e., when the sum of all parton areas is just that of the nucleus, taking into account
interaction effects through αs(q). At this point, the parton density stops increasing—
the medium is saturated. This is essentially a percolation condition, see Sect. 2.2.
Whichever approach we take, percolation or the balance of splitting and fusion,
there will be a region in the y, q plane in which the concept of individual partons is
no longer meaningful. We illustrate this in Fig. 9.10.

In recent years, such partonic connectivity or saturation, and the properties of a
connected pre-thermal primary state (“color glass condensate”) have attracted much
attention and led to a much better understanding of the initial state of high energy
collisions [27, 28]. This is by now a topic on its own, and a detailed treatment is
obviously beyond the scope of this book; moreover, there are quite a number of
excellent surveys [29–31]. We want to present here only the basic ideas and their
implications on the fundamental problem of how to produce a thermalized quark-
gluon plasma in nuclear collisions.

9.5 Color Glass Condensate and Glasma

Looking at an incident hadron or nucleus, we see a dense beams of partons. Keeping
our resolution constant, but increasing the collision energy, means increasing the
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Fig. 9.10 Parton saturation

parton density, eventually leading to a percolation or saturation limit, in which the
many colored partons combine to form some new non-perturbative medium. The
system beyond this point contains many overlapping partons; we can picture its
formation as a plate, onto which more and more drops of liquid are deposited, until
the drops finally condense to a large connected domain of liquid. The new medium
formed by the fusion of the colored drops is thus a kind of “colored condensate”.

In the center of mass system, the partons of the incident hadrons or nu-
clei are contained in a Lorentz-contracted sphere of longitudinal thickness D =
(2mh/

√
s)2Rh, which in the high energy limit becomes effectively a thin pancake.

The passage time τ0 of the two collision partners thus becomes arbitrarily short; if
we assume Rh ∼ 1/mh, we have

τ0 ∼ 1√
s
. (9.17)

The soft gluon has a momentum k, and through the uncertainty relation this leads to
a formation time scale

τg ∼ 1

k
(9.18)

for the gluon evolution. Equivalently, we have in the target rest frame a finite passage
time given by the target size, while the formation time of the gluon

√
s/k ∼ 1/x (and

thus its coherence length) diverges in the high energy limit. During the interaction
time (9.17), the gluon thus appears frozen (“ordered”), while on the much larger
formation time scale (9.18), it evolves (becomes “disordered”). Media endowed with
such different order states at different time scales are generally referred to as glasses,
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appearing as solid on a short and as liquid on a long time scale. This has led to the
name color glass condensate for the saturated small x parton medium.

The gluons in the saturated medium no longer appear as independent partons;
instead, they act coherently and therefore form classical fields. The sources of these
fields are the hard initial partons, which through splitting lead to the abundant soft
gluons. Because of their large momenta kq ∼ √

s, their time scale is also short and
so they can be considered as “static” in time. Since the incident hadrons are essen-
tially contracted to discs orthogonal to the collision axis, the color fields are in the
corresponding (two-dimensional) transverse plane (see Fig. 9.11 (left)).

In the collision itself, the two color field discs combine, and as the two hadrons
separate, additional longitudinal color fields are formed, so that we now have a
medium consisting of three dimensional classical color fields. This state, imme-
diately after the collision, has been referred to as a “glasma”. It expands in an
anisotropic (mainly longitudinal) fashion (see Fig. 9.11 (right)), and when it has
become sufficiently dilute, independent quarks and gluons are possible: the quark-
gluon plasma appears.

Fig. 9.11 Color glass condensate (left) and glasma (right)

The scenario proposed by the color glass condensate approach thus addresses
hadronic or nuclear collisions in a regime in which the conventional parton model
leads to saturation, so that an independent parton description must break down. The
incident hadrons are now no longer considered as “beams of (independent) par-
tons”, but rather as two-dimensional discs of frozen classical color fields. In the col-
lision and the subsequent expansion, the combined new color fields become three-
dimensional and expand, eventually leading to quark-gluon plasma formation.

In summary: the parton model itself leads to two distinct regimes of nuclear col-
lisions. For sufficiently low parton density and transverse size, in the pre-saturation
regime, the conventional parton picture is applicable and parton thermalization can
lead to QGP formation. Beyond the saturation point, be it through sufficiently high
collision energy or large A, a thermalization of independent partons does not make
sense. Here a possible new approach is given by the color glass condensate and its
evolution to a glasma, which eventually also leads to a QGP.
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Chapter 10
Probing the Quark-Gluon Plasma

Look, it cannot be seen – it is beyond form.
Listen, it cannot be heard – it is beyond sound.
Grasp, it cannot be held – it is beyond touch.

Lao Tzu, Tao Te Ching 14, ∼ 600 B.C.

Assuming that high energy collisions of two heavy nuclei results in the formation
of a quark-gluon plasma, we want to consider in this section some possible probes
which can provide information about its structure and its thermodynamic proper-
ties. In particular, we address hadronic and electromagnetic radiation, quarkonium
dissociation and jet quenching.

10.1 Tools to Probe

Let us begin in a very general way. If we want to probe the internal structure of
a system of overall linear size L, we need a probe of intrinsic linear dimension
(e.g., wave length) λ < L, so that it can see if there is a substructure. If the medium
is made up of many building blocks of size a < L, we need in fact a probe with
λ < a, so that it can resolve the elements of the substructure. What does that mean
in QCD? The basic scale of strong interactions is�QCD � 1 fm, the size of a hadron,
so that any probe should have a wavelength not larger than this scale. If we want to
reach sub-hadronic structures, λ must be correspondingly smaller, and if we want to
probe the hot quark-gluon plasma, temperature becomes the relevant scale, so that
λ < 1/T .

This gives us some hints of possible probes. If we want to test the source size for
hadron emission in nuclear collisions, with heavy and hence large nuclei, hadrons
themselves are a reasonable tool: they measure things in hadronic scales. As we
shall see, they are also very suitable to study the hadronization transition; this will
be dealt with in detail in Chaps. 11 and 12.

H. Satz, Extreme States of Matter in Strong Interaction Physics,
Lecture Notes in Physics 841, DOI 10.1007/978-3-642-23908-3_10,
© Springer-Verlag Berlin Heidelberg 2012
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If we want to go below this scale, into the genuine plasma regime, the wave-
length has to become shorter, to obtain the counterpart of X-rays for the matter to
be studied. This leaves us with three possibilities.

To test the substructure of hadrons, we need (real or virtual) photons of a
wavelength much shorter than �QCD, i.e., we have to resort to deep inelastic
lepton-hadron scattering. To probe a hot quark-gluon plasma, we need wavelengths
λ < 1/T , so that we have to consider high pT photons or high mass dilepton pairs
(Drell-Yan production).

The hard scattering of hadrons at large momentum transfer is generally due to
gluon exchange, so that such processes involve quark-gluon interactions within the
hadron. As a result, an energetic parton is emitted in the transverse direction, even-
tually hadronizing to form a jet. In nuclear collisions, the parton has to traverse the
hot quark-gluon plasma they form, so that here the in-medium modification of jet
production provides a probe.

The heavy quark resonances J/ψ and ϒ have binding energies much larger than
�QCD and radii much smaller than 1/�QCD; they therefore provide a quite novel
probe, surpassing the usual technique of “looking” with photons or gluons. The large
quark mass brings a perturbative calculation of quarkonium production in hadronic
interactions within reach, and the modification of quarkonium formation in the pres-
ence of a hot quark-gluon plasma can in principle be studied in statistical QCD.

The specific question we want to address here is how to determine the state and
the properties of a macroscopic (i.e., super-hadronic) volume of hot QCD matter in
equilibrium and of zero overall baryon number density, by studying specific observ-
able processes. We will assume that we are provided with such a system with the
help of (for simplicity central, i.e., head-on) nucleus-nucleus collisions, and that we
can vary its energy density by varying the collision energy. What physical phenom-
ena will allow us to “measure” the temperature or other thermodynamic properties
of the medium thus produced (see Fig. 10.1), and what changes will we observe
when the energy density is varied?

Fig. 10.1 Schematic view of a nuclear collision

This problem is evidently a simplified version of that presented in any real experi-
mental study of strongly interacting media in nuclear collisions. In that case, one has
to consider in addition a variety of specific collision features, such as the structure
of the initial state, its evolution in time, the onset of equilibration, inhomogeneities,
and much more. These are features which arise when we try to “make matter” in
a high energy heavy ion collision. We shall return to some of these aspects, but in
general, we shall assume that the matter to be studied is already “made”.
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As we have just seen, there are several “tools” we can use to study the unknown
medium, which we assume to be situated in a physical vacuum environment:

• hadronic radiation,
• electromagnetic radiation,
• dissociation of quarkonium states,
• energy loss of passing hard jets.

As mentioned, we assume the system under consideration to be in overall thermal
equilibrium and to evolve adiabatically in time.

10.2 Hadronic Radiation and Source Size

Any medium is, by definition, hotter than its environment (the vacuum) and hence
emits radiation. An outside observer will detect the emission of thermal hadrons,
predominantly light mesons; these, however, cannot exist in the interior of a hot
QGP and hence must be formed through hadronization at the cooler surface, or more
generally, when the medium has cooled down to the hadronization temperature.
Such radiation will therefore carry information only about the hadronization stage
of the medium; but in doing so, it can tell us something about two features which
are absolutely crucial to the entire concept of producing strongly interacting matter
through nuclear collisions.

• The formation of hadrons should occur at the hadronization temperature deter-
mined in statistical QCD studies, i.e., at about 160 MeV for systems of negligible
overall baryon density. The hadronization temperature plays a crucial role for
both the relative abundances of the hadron species (“hadrochemistry”) and for
their momenta (see caveat below).

• If an increase of collision energy results in an increase of the initial energy density
of the thermal medium, i.e., if it produces a hotter QGP, the medium must expand
more in order to cool down to the hadronization point. The source size for hadron
emission must therefore increase with collision energy.

The first point will be dealt with in detail in the next chapter, where we will
see that hadron abundances in high energy collisions indeed lead to a universal
hadronization temperature of the expected value; this is evidently one of the most
important results of the entire experimental study so far. The second raises the ques-
tion of determining the source size for hadron emission, and that is what we want to
address here.

Before turning to this, a caveat seems appropriate. We are here considering global
equilibrium aspects only. If the medium evolves from hot QGP to the hadronic stage
through hydrodynamic expansion, the momenta of the emitted hadrons will reflect
a collective overall flow in addition to the thermal hadronization momentum, and
for non-central collisions there will furthermore be directed flow, depending on the
orientation of the pressure gradient. Such flow components in turn do depend on
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the initial energy density of the medium, i.e., of the hot QGP. Hadron momentum
spectra could thus provide indirect information also about the pre-hadronic stages.

The determination of source sizes through radiation measurements is a classi-
cal problem of astronomy, where it is needed to measure the size of stars. The
key to its solution was found in 1956 by the astronomers R. Hanbury-Brown and
R.Q. Twiss [1]; the application of the resulting “HBT” technique in particle or nu-
clear physics is based on an interference of two identical particles [2], emitted from
an extended source and measured simultaneously in two separate detectors. The ge-
ometry is illustrated in Fig. 10.2. The particles are emitted at points x1 and x2, with
momenta k1 and k2, and measured at detectors situated at points A and B .

Fig. 10.2 HBT geometry lay-out

Since the particles are by assumption identical, A cannot specify whether its
particle came from x1 or x2, and the same for B . Hence the corresponding amplitude
must be symmetrized (bosons) or antisymmetrized (fermions), depending on the
statistics of the observed particles. Moreover, the emission is taken to be incoherent,
i.e., with random relative phases. The wave function for the process is then given by

A(k1, k2)= 1√
2

[
exp

{
ik1(xA − x1)+ ik2(xB − x2)

}

± exp
{
ik1(xA − x2)+ ik2(xB − x1)

}]; (10.1)

this leads to the detection rate

P(k1, k2)=
∣∣A(k1, k2)

∣∣2 = 1 ± cos
[
(k1 − k2)(x1 − x2)

]
. (10.2)

The simultaneous measurement of two identical bosons or fermions (most studies
use bosons, since pions are the most abundantly produced hadrons) of similar mo-
menta is thus enhanced due to interference effects and, for known �k = (k1 − k2),
allows the determination of the source size R = (x1 − x2). Obviously, this is only a
very schematic description of the actual HBT analysis; for more details, see [3].

The HBT technique was in fact employed in nuclear collision studies from the
very start of the experiments [3]. Correlations were measured for various collision
energies in the three space directions, generally taken along the beam axis (“longi-
tudinal”), orthogonal to the beam axis and along the momentum of the two bosons
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(“out”), and orthogonal to both of these (“side”). The resulting source volume is
formed by multiplying the three distinct source dimensions, and it did not seem to
show the expected well-defined growth, particularly in the high energy region. This
“HBT puzzle” was finally resolved by the recent advent of data at very high energy
[4], taken in the first nuclear collision studies at the Large Hadron Collider (LHC)
at CERN. In Fig. 10.3, the source volume is shown for central heavy nuclear colli-
sions (Pb − Pb and Au − Au) at various energies. As seen there, the new LHC point
now does establish the expected linear increase with the average hadron multiplicity
(see Eq. (9.7)) and hence with the conjectured initial energy density. One essential
feature for the use of nuclear collisions for QGP formation is thus now established.

Fig. 10.3 HBT results for source sizes V =RoutRsideRlong as a function of the average multiplicity
at the given energy [4]

10.3 Electromagnetic Radiation

The hot medium emits electromagnetic radiation into the vacuum, i.e., it radiates
photons and dileptons (e+e− or μ+μ− pairs). These are formed either by the inter-
action of quarks and/or gluons, or by quark-antiquark annihilation (see Fig. 10.4).
Since the photons and leptons interact only electromagnetically, they will, once they
are formed, leave the medium without any further strong interaction effects. Hence
their spectra provide information about the state of the medium at the space-time
point where they were formed. Photons and dileptons thus provide in principle an
excellent probe of the hot QGP [5–8].

The application of these probes is, however, not so simple, since there are com-
peting production processes, and the evolution stage of the specific production pro-
cess enters as a crucial element. Before any thermal medium is formed, at the very
early stages of the collision, hard primary partonic interactions can lead to Drell-Yan
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Fig. 10.4 Dilepton production through qq̄ annihilation (left) and photon production through glu-
onic Compton scattering (right)

lepton pair production or prompt hard photon emission. These are also formed by
quark-quark annihilation or quark-gluon interaction, i.e., by processes of the same
nature as those in the thermal medium. In contrast, however, the parton distributions
are now determined by the initial state of the collision partners, not by a produced
thermal system. Furthermore, the produced hot medium evolves in time, from QGP
to hadronic matter, and electromagnetic signals can be formed also at later evolution
stages. The task of making electromagnetic radiation a viable tool for evolving me-
dia is therefore the identification of the hot “thermal” radiation emitted by the QGP
in a definite stage, after the hard primary and before the soft hadronic emission. Let
us consider this in a little more detail.

To calculate the mass spectrum of dileptons emitted from a hot QGP, the cross-
section σ(qq̄ → μ+μ−) for quark-antiquark annihilation (see Fig. 10.4) has to be
convoluted with thermal quark and antiquark momentum distributions

f (kq/T )∼ exp
{−|kq |/T

}
, (10.3)

where kq is the three-momentum of the (massless) quark and T the temperature of
the medium. We thus obtain for the production rate

dN

dM
∼
∫
d3kqf (kq) d

3kq̄f (kq̄ )σ
(
qq̄ → μ+μ−), (10.4)

where M is the invariant mass of the dilepton. The convolution leads to the
schematic result

dN

dM
∼ exp{−M/T }, (10.5)

so that a measurement of a thermal dilepton spectrum provides the temperature of
the medium. As already indicated, the medium undergoes an evolution and cools
down; the observed dileptons originate from all stages, so that a temperature mea-
surement is not straight-forward and will in general depend on the evolution pattern.
In addition, there is the mentioned competing production of non-thermal dileptons
through hard primary Drell-Yan production.

For photon production, the situation is similar. Here the dominant partonic inter-
action is a gluonic Compton effect, as illustrated in Fig. 10.4 (right). The thermal
rate is now given by a convolution of a thermal quark with thermal gluon distri-
bution, integrating over the perturbative Compton cross section σ(qg → qγ ). The
result is

dN

dω
∼ exp{−ω/T }, (10.6)
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Fig. 10.5 Sources of photon emission in nuclear collisions

where ω denotes the absolute value of the momentum of the emitted photon. Here
again the basic problem of electromagnetic probes arises: the thermal photons orig-
inate from all evolution stages and are in competition with those from non-thermal
sources, in particular from early “prompt” hard photons and from late soft photons
originating in pion decay (π0 → e+ e− γ , π0 → γ γ ). The situation is schemati-
cally illustrated in Fig. 10.5; the crucial question thus is if it is possible to locate a
“window” for the observation of thermal photons from the QGP.

A recent analysis of data from the PHENIX experiment at the Relativistic Heavy
Ion Collider (RHIC), Brookhaven National Laboratory, has given first indications
that this may be feasible. In Au − Au collisions at

√
s = 200 GeV, they find an

“anomalous” excess of photons between Dalitz decay and prompt photons [9]; the
resulting spectrum leads to a temperature T = 221 ± 19(stat.) ± 19(syst.) MeV,
above the expected deconfinement value. It is obviously desirable to improve the
precision of this result and to find corresponding data with higher T at the LHC, in
order to establish a definite conclusion.

10.4 Quarkonium Dissociation

The quark-gluon plasma consists by definition of deconfined and hence colored glu-
ons, quarks and anti-quarks. One of the essential features of any plasma is charge
screening, which for electromagnetic interactions reduces the long-range Coulomb
potential in vacuum to a much shorter range screened in-medium form,

e2

r
→ e2

r
exp{−μr}, (10.7)

where μ is the screening mass specifying the Debye or screening radius rD = 1/μ.
In a plasma of color-charged constituents, one expects a similar behavior, and this is
indeed observed in lattice studies, as discussed in Chap. 8: in the QGP just above Tc ,
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μ increases much more than linearly (see Fig. 8.4), and hence rD decreases cor-
respondingly. Asymptotically, perturbation theory suggests μ� g(T )T , with g(T )
for the temperature-dependent strong coupling. The range of strong interactions thus
shows a striking in-medium decrease with increasing temperature.

Quarkonia are a special kind of hadrons, bound states of a heavy quark and
its antiquark. They are thus pairs of charm (mc � 1.3 GeV) or bottom (mb �
4.7 GeV) quarks. The large quark mass makes possible a spectroscopy based on
non-relativistic potential theory [11]. Hence the Schrödinger equation{

2mc − 1

mc
∇2 + V (r)

}
�i(r)=Mi�i(r), (10.8)

using the “Cornell” form for the confining potential [12, 13]

V (r)= σr − α

r
, (10.9)

in terms of the string tension σ � 0.2 GeV2 and the gauge coupling α � π/12,
determines the masses Mi and the radii ri of the different charmonium and bot-
tomonium states. The results are summarized in Table 10.1 and are seen to give a
good account of quarkonium spectroscopy, with an uncertainty of less than 1% in
the mass determination �M =Mexp −Mth for all (spin-averaged) states.

Table 10.1 Quarkonium spectroscopy in non-relativistic potential theory [10]

State J/ψ χc ψ ′ ϒ χb ϒ ′ χ ′
b ϒ ′′

exp. mass [GeV] 3.07 3.53 3.68 9.46 9.99 10.02 10.26 10.36

�M [GeV] 0.02 −0.03 0.03 0.06 −0.06 −0.06 −0.08 −0.07

�E [GeV] 0.64 0.20 0.05 1.10 0.67 0.54 0.31 0.20

radius [fm] 0.25 0.36 0.45 0.14 0.22 0.28 0.34 0.39

For the ground state J/ψ , the binding energy �E = 2MD − MJ/ψ is about
0.6 GeV; here MD denotes the mass of the lowest open charm (light-heavy cq̄)
meson. Thus �E is for the J/ψ much larger than the typical hadronic scale
�∼ 0.2 GeV, and with a radius rJ/ψ of about 0.25 fm, the J/ψ is also much smaller
than the typical hadron, with rh � 1 fm. For the bottomonium ground state ϒ , both
�E and r move even further away from the hadronic scales. The fate of heavy quark
bound states in a quark-gluon plasma depends on the size of the color screening ra-
dius rD in comparison to the quarkonium radius rQ: if rD � rQ, the medium does
not really affect the heavy quark binding. Once rD � rQ, however, the two heavy
quarks cannot “see” each other any more and hence the bound state will melt [14].
It is therefore expected that quarkonia will survive in a quark-gluon plasma through
some range of temperatures above Tc , and then dissociate once T becomes large
enough.

The higher excited quarkonium states are less tightly bound and hence larger, al-
though their binding energies are in general still greater and their radii smaller than
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those of the usual light quark hadrons. Take the charmonium spectrum as example:
the radius of the J/ψ(1S) is about 0.25 fm, that of the χ(1P) about 0.36 fm, and that
of the ψ ′(2S) 0.45 fm. Since melting sets in when the screening radius reaches the
binding radius, we expect that the different charmonium states have different “melt-
ing temperatures” in a quark-gluon plasma. To illustrate how these temperatures
can be determined, we consider the Schrödinger equation (10.8) with a screened
potential. The simplest form for such a potential is given by [15]

V (r,T )= σr
{

1 − e−μr
μr

}
− α

r
e−μr = σ

μ

{
1 − e−μr}− α

r
e−μr, (10.10)

replacing the vacuum form (10.9). Hereμ(T ) now denotes the color screening mass;
for μ= 0, the vacuum form is recovered, and for large r , the potential reaches a fi-
nite value, V (r,T )→ σ/μ, which corresponds to two separated quarks in a decon-
fined medium, surrounded by gluon polarization clouds. For each quarkonium state
i the resulting Schrödinger equation provides the dissociation value μi ; for μ<μi ,
there exists a bound state, while for μ ≥ μi , it has become dissociated. Given the
temperature dependence of the screening mass, the dissociation mass μi then de-
termines the corresponding dissociation temperature Ti . Hence a spectral analysis
based on in-medium quarkonium dissociation should provide a QGP thermometer
[15, 16]; see Fig. 10.6.

Fig. 10.6 Charmonia as thermometer

The calculation of the dissociation points for the different states, just illustrated
on the basis of a simplistic screened potential, has been pursued both in more real-
istic potential theory and through direct lattice studies [17–20]. In both approaches,
there are presently still ambiguities; we give an indicative summary in Table 10.2,
but emphasize that here work is still in progress.

The dissociation of quarkonium states in a deconfined medium, as compared to
their survival in hadronic matter, can also be considered on a more dynamical level,
using the J/ψ as example. The J/ψ is a hadron with characteristic short-distance
features; in particular, rather hard gluons are necessary to resolve or dissociate it,
making such a dissociation accessible to perturbative calculations. J/ψ collisions
with ordinary hadrons made up of the usual u, d and s quarks thus probe the lo-
cal partonic structure of these ‘light’ hadrons, not their global hadronic aspects,
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Table 10.2 Quarkonium dissociation temperatures Td in units of the deconfinement tempera-
ture Tc [17, 18]

State J/ψ(1S) χc(1P) ψ ′ ϒ χb ϒ ′ χ ′
b ϒ ′′

Td/Tc 2.0 1.2 1.1 > 4.0 1.8 1.6 1.2 1.2

such as mass or size. It is for this reason that J/ψ’s can be used as a confine-
ment/deconfinement probe.

This can be illustrated by a simple example. Consider an ideal pion gas as
a confined medium. The momentum spectrum of pions has the Boltzmann form
f (p) ∼ exp−(|p|/T ), giving the pions an average momentum 〈|p|〉 = 3T . With
the pionic gluon distribution function xg(x)∼ (1 − x)3, where x = k/p denotes the
fraction of the pion momentum carried by a gluon, the average momenta of gluons
confined to pions becomes 〈|k|〉conf � 0.6T . (10.11)

On the other hand, an ideal QGP as prototype of a deconfined medium gives the glu-
ons themselves the Boltzmann distribution f (k)∼ exp−(|k|/T ) and hence average
momenta 〈|k|〉deconf = 3T . (10.12)

Deconfinement thus results in a hardening of the gluon momentum distribution.
More generally speaking, the onset of deconfinement will lead to parton distribution
functions which are different from those in vacuum, as determined by deep inelas-
tic scattering experiments. Since hard gluons are needed to resolve and dissociate
J/ψ ’s, one can use J/ψ’s to probe the in-medium gluon hardness and hence the
confinement status of the medium.

These qualitative considerations can be put on a solid theoretical basis provided
by short-distance QCD [21–24]. In Fig. 10.7 we show the relevant diagram for the
calculation of the inelastic J/ψ-hadron cross section, as obtained in the operator
product expansion framework (essentially a multipole expansion for the charmo-
nium quark-antiquark system). The upper part of the figure shows J/ψ dissociation
by gluon interaction; the cross section for this process,

σg−J/ψ ∼ (k −�Eψ)3/2k−5, (10.13)

constitutes the QCD analogue of the photo-effect. Convoluting the J/ψ gluon-
dissociation with the gluon distribution in an incident meson, xg(x)� 0.5(1 − x)3,
we obtain

σh−J/ψ � σgeom(1 − λ0/λ)
5.5 (10.14)

for the inelastic J/ψ-hadron cross section, with λ� (s−M2
ψ)/Mψ and λ0 � (Mh+

�Eψ ); again s denotes the squared J/ψ-hadron collision energy. In Eq. (10.14),
σgeom � πr2

ψ � 2–3 mb is the geometric cross section attained at high collision
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Fig. 10.7 J/ψ dissociation by hadron interaction

energies with the mentioned gluon distribution. In the threshold region and for rel-
atively low collision energies, σh−J/ψ is very strongly damped because of the sup-
pression (1 − x)3 of hard gluons in mesons, which leads to the factor (1 − λ0/λ)

5.5

in Eq. (10.14). In Fig. 10.8, we compare the cross sections for J/ψ dissociation by
gluons (“gluo-effect”) and by mesons, as given by Eqs. (10.13) and (10.14). Gluon
dissociation shows the typical photo-effect form, vanishing until the gluon momen-
tum k passes the binding energy �Eψ ; it peaks just a little later and then vanishes
again when sufficiently hard gluons just pass through the much larger charmonium
bound states. In contrast, the J/ψ-meson cross section remains negligibly small
until rather high hadron momenta (3–4 GeV). In a thermal medium, such momenta
correspond to temperatures of more than 1 GeV. Hence confined media in the tem-
perature range of a few hundred MeV are essentially transparent to J/ψ’s, while
deconfined media of the same temperatures very effectively dissociate them and
thus are J/ψ -opaque. Similar considerations can of course be applied to the higher
excited charmonium or the bottomonium states.

Fig. 10.8 J/ψ dissociation by gluons and by pions; k denotes the momentum of the projectile
incident on a stationary J/ψ
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Fig. 10.9 Charm quark production through gluon fusion in pp collisions

To obtain an observable probe, we thus have to study quarkonium production in
nuclear collisions. The initial step, the production of heavy quark pairs in nucleon-
nucleon collisions, is a hard process which (with some grains of salt) is theoretically
calculable [25, 26]. At high energies, it is dominantly given by gluon fusion (see
Fig. 10.9), leading to the production of a colored cc̄ or bb̄ pair. A certain (very
small) fraction fi of these pairs subsequently neutralizes its color in the field of
the interaction and binds to form quarkonium state i (see Fig. 10.10). This color
neutralization is no longer perturbatively calculable, at least not for the production of
quarkonia at low transverse momentum. An operationally viable road to prediction
is to measure these fractions at some collision energy; since they are found to be
energy-independent, this “color evaporation model” [27–30] has in fact predicted
the production rates very well at all energies so far.

Fig. 10.10 J/ψ hadroproduction

The extension of such a model to nucleus-nucleus collisions encounters a number
of obstacles. The gluon distribution functions needed to calculate the QQ̄ produc-
tion are modified in nuclei (“shadowing”, “energy loss”). This initial state effect can
be quantified by studying the process in p −A collisions and thus determining the
effect of cold nuclear matter on the production process. The same is true for pos-
sible final state modifications, due to absorption of the produced quarkonia in the
passing nuclear media of target and projectile. If and when these “normal” effects
are taken into account, one can study the remaining “anomalous” suppression. The
most efficient way of removing normal effects is to consider the ratios of hidden
to open charm or bottom production, since initial state modifications then largely
cancel out [31].

From what was said above, the survival probability for a given quarkonium state
depends on its size and binding energy. Hence the excited states will be dissolved at
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a lower initial energy density than the more tightly-bound ground states. In actual
production, however, one encounters “feed-down”: only a fraction (about 60%) of
the observed J/ψ is a directly produced (1S) state, the remainder is due to the
decay of excited states, with about 30% from χ(1P) and 10% from ψ ′(2S) decay
[32–34]. A similar decay pattern arises forϒ production. The decay processes occur
far outside the produced medium, so that the medium affects the excited states.
As a result, the formation of a hot deconfined medium in nuclear collisions will
produce a sequential quarkonium suppression pattern, as illustrated in Fig. 10.11 for
J/ψ production. Increasing the energy density of the QGP above deconfinement
first leads to ψ ′ dissociation, removing those J/ψ’s which otherwise would have
come from ψ ′ decays. Next the χ melts, and only for a sufficiently hot medium also
the direct J/ψ ’s disappear. For the bottomonium states, a similar pattern will hold;
it is included in Fig. 10.11, also with vacuum feed-down fractions [26].

Fig. 10.11 Sequential quarkonium suppression

It is evident that a corresponding spectral analysis of nucleus-nucleus data is
quite complex. Nevertheless, it has already produced quite promising results, lead-
ing to an anomalous J/ψ suppression of about 40–50% for central collisions in
the energy range

√
s = 17–200 GeV [35–37]. Experiments at the CERN-SPS mea-

sured Pb − Pb and In− In collisions at a c.m.s. energy
√
s � 17 GeV; subsequently,

the collision energy was increased to
√
s = 200 GeV at the BNL-RHIC. Once cold

nuclear matter effects were taken into account, this energy increase did not signifi-
cantly increase the J/ψ suppression [38]. The present status is shown in Fig. 10.12,
combining the results from SPS and RHIC experiments. It shows the J/ψ produc-
tion rate, normalized to the scaled result for cold nuclear matter effects, as obtained
from p−A collisions at CERN and d −A collisions at BNL. The observed behav-
ior is in accord with the suppression of the excited states χ and ψ ′ and the survival
of the directly produced J/ψ(1S) [39]. To complete the picture, one would need to
find the suppression onset for the latter at the LHC, ideally accompanied by direct
χ and ψ ′ measurements.

At the LHC, it is moreover within reach to also determine the corresponding
behavior for the bottomonium states. First results have just appeared [40], and they
indicate a very similar behavior, as seen in Fig. 10.13.
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Fig. 10.12 J/ψ suppression in nucleus-nucleus collisions [38]

• The production of the exited bottomonium states ϒ(2S) and ϒ(3S) in Pb − Pb
collisions shows a suppression of about 70%, compared to that in p−p collisions.

• The ϒ(1S) production in Pb−Pb collisions itself is reduced by about 40%, com-
pared to the scaled results from pp interactions.

As indicated in Fig. 10.11, about 50% of theϒ(1S) rate measured in p−p collisions
is due to feed-down from the higher excited states [41]. If the suppression of the
ϒ(2S) and ϒ(3S) is indicative for the fate of all excited states (i.e., also for the
χb(1P) and χb(2P)), then the suppression of the feed-down sources in Pb − Pb
collisions accounts for the observed reduction of ϒ(1S) production. In other words,
it would indicate that the direct ϒ(1S) production is essentially not modified by the
presence of the medium produced in nuclear collisions at the LHC. It would require
still higher temperatures to achieve that (see Table 10.2).

Once lattice studies give reliable quarkonium dissociation thresholds, such a pro-
gram would allow a direct comparison between QCD calculations and nuclear col-
lision data.

We close this subsection with an interesting twist to the story. The mentioned
hard production of cc̄ pairs can, in nuclear collisions of very high energy, lead to
a medium containing an overabundance of charm quarks, i.e., more than would be
found in a QGP at full thermal equilibrium. If charmonium production occurs only
through the primary hard process, with a given fraction fi forming charmonium
state i, this does not affect the scenario just discussed. If, however, in the cooler
plasma at the hadronization point there exists a possible “statistical” J/ψ formation
process, with rates determined solely by the numbers of c and c̄ present, then the
suppression of the charmonia initially formed in individual nucleon-nucleon colli-
sions becomes irrelevant. The large total number of available charm quarks, from
unbound pair production and from charmonium dissociation, will in this case by
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Fig. 10.13 Bottomonium production in pp (left) and Pb − Pb (right) collisions, as measured by
the CMS collaboration at CERN-LHC [40]

regeneration at the hadronization point lead to more charmonia than obtained in
primary production [42–45]. Since the cc̄ production rate at a given collision en-
ergy increases with centrality, such a mechanism would also lead to an increase
of J/ψ production with centrality, in contrast to what is presently observed, up to
RHIC energy (see Fig. 10.12).

The modification due to such an effect is illustrated schematically in Fig. 10.14.
On the left, we show the J/ψ survival probability, as obtained once non-QGP initial
and final state effects have been taken into account. From a theoretical point of view,
a more suitable measure is the ratio of J/ψ production relative to that of open charm
[31], as shown on the left of Fig. 10.14. Sequential suppression removes charmonia
from the total cc̄ production, while statistical regeneration adds further charmonium
states, and in the ratio to open charm, initial state effects such as shadowing or parton
energy loss will effectively cancel out. The determination of final state effects due
to the presence of cold nuclear matter will, however, require pA experiments.

Fig. 10.14 Sequential J/ψ suppression vs. statistical regeneration
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Statistical regeneration would eliminate the possibility of a direct comparison of
nuclear collision data with QCD predictions for charmonium dissociation. For such
a comparison, one would then have to turn to bottomonium states, where formation
through recombination appears unlikely. On the other hand, statistical J/ψ forma-
tion would provide clear evidence for full thermalization, including even the heavier
charm quarks. Incidentally, in Fig. 10.14 we have shown the sequential suppression
rate remaining non-zero even above the threshold for direct J/ψ dissociation. The
reason is that at the edge of the interaction region, production can still take place
without being affected by the hot medium in the core region. We shall return to this
“corona effect” in Sect. 10.6.

10.5 Jet Quenching

Another possible hard probe is provided by the study of jets in nucleus-nucleus col-
lisions, consisting of one or more hadrons with very high momentum transverse to
the collision axis. These are formed initially by a very energetic parton, quark or
gluon, produced in the early hard collision stages and emitted in the transverse di-
rection. Given a QGP formation time of about 1 fm, the nascent jet will pass through
several fermi of hot deconfined matter before it escapes the interaction region and
eventually hadronizes. How much energy it has lost when it finally emerges will tell
us something about the density of the medium [46–49]. In particular, the density
in a quark-gluon plasma is by an order of magnitude or more higher than that of a
confined hadronic medium, and so the energy loss of a fast passing color charge is
expected to be correspondingly higher as well. Let us consider this in more detail.

An electric charge, passing through matter containing other bound or unbound
charges, loses energy by scattering. For charges of low incident energyE, the energy
loss is largely due to ionization of the target matter. For sufficiently high energies,
the incident charge scatters directly on the charges in matter and as a result radiates
photons of average energy ω ∼ E. Per unit length of matter, the ‘radiative’ energy
loss due to successive scatterings is thus proportional to the incident energy,

−dE
dz

∼E. (10.15)

This probabilistic picture of independent successive scatterings breaks down at
very high incident energies [50–52]. The squared amplitude for n scatterings now
no longer factorizes into n interactions; instead, there is destructive interference,
which for a regular medium (crystal) leads to a complete cancellation of all photon
emission except for the first and last of the n photons. This Landau-Pomeranchuk-
Migdal (LPM) effect greatly reduces the radiative energy loss.

The physics of the LPM effect is clearly relevant in calculating the energy loss
for fast color charges in QCD media. These media are not regular crystals, so that
the cancellation becomes only partial. Let us consider the effect here in a heuristic
fashion; for details of the actual calculations, see [48, 49, 53–55, 57]. The time tc
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Fig. 10.15 Gluon emission after scattering

needed for the emission of a gluon after the scattering of a quark (see Fig. 10.15) is
given by

tc = 1√
P 2

E√
P 2

= E

2P ′k
, (10.16)

in the rest frame of the scattering center, where P 2 measures how far the intermedi-
ate quark state is off-shell; on-shell quarks and gluons are assumed to be massless,
and E/

√
P 2 is the γ -factor between the lab frame and the proper frame of the in-

termediate quark. For gluons with kL � kT , we thus get

tc � ω

k2
T

. (10.17)

If the passing color charge can interact with several scattering centers during the
formation time of a gluon, the corresponding amplitudes interfere destructively, so
that in effect after the passage of n centers over the coherence length zc , only one
gluon is emitted, in contrast to the emission of n gluons in the incoherent regime.
Nevertheless, in both cases each scattering leads to a kT -kick of the charge, so that
after a random walk past n centers, k2

T ∼ n. Hence

k2
T � μ2 zc

λ
, (10.18)

where λ is the mean free path of the charge in the medium, so that zc/λ > 1 counts
the number of scatterings. At each scattering, the transverse kick received is mea-
sured by the mass of the gluon exchanged between the charge and the scattering
center, i.e., by the screening mass μ of the medium. From Eq. (10.17) we have

zc � ω

k2
T

, (10.19)

so that the formation length in a medium characterized by μ and λ becomes

zc �
√
λ

μ2
ω. (10.20)

For Eq. (10.20) to be valid, the mean free path has to be larger than the interaction
range of the centers, i.e., λ > μ−1.

The energy loss of the passing color charge is now determined by the relative
scales of the process. If λ > zc, we have incoherence, while for λ < zc there is co-
herent scattering with destructive interference. In both cases, we have assumed that
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the thickness L of the medium is larger than all other scales. When the coherence
length reaches the size of the system, zc = L, effectively only one gluon can be
emitted. This defines a critical thickness Lc(E)= (Eλ/μ2)1/2 at fixed incident en-
ergy E, or equivalently a critical energy Ec = μ2L2/λ for fixed thickness L; for
L>Lc, there is bulk LPM-behavior, below Lc there are finite-size corrections.

Fig. 10.16 Energy loss in incoherent and coherent interactions

We are thus left with three regimes for radiative energy loss. In case of incoher-
ence, zc < μ−1, there is the classical radiative loss

−dE
dz

� 3αs
π

E

λ
, (10.21)

where αs is the strong coupling. In the coherent region, λ > zc , the energy loss is
given by the LPM bulk expression when L>Lc [48, 53–55],

−dE
dz

� 3αs
π

√
μ2E

λ
. (10.22)

The resulting reduction in the radiative energy loss dE/dz is illustrated in
Fig. 10.16. Note that in earlier estimates the energy loss due to interactions of the
gluon cloud accompanying the passing color charge had been neglected [47, 57];
this led to a considerably smaller energy loss, proportional to lnE instead of

√
E.

Finally, in a medium of thickness L<Lc, there is less scattering and hence still less
energy loss. Equation (10.22) can be rewritten as

−dE
dz

� 3αs
π

μ2

λ
Lc(E), (10.23)

and for L<Lc, this leads to

−dE
dz

� 3αs
π

μ2

λ
L (10.24)

as the energy loss in finite size media with L ≤ Lc. The resulting variation of the
radiative energy loss with the thickness of the medium is shown in Fig. 10.17, with
saturated (i.e., bulk) LPM behavior setting in for L≥ Lc.
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Fig. 10.17 Energy loss in coherent interactions as function of the thickness L of the medium

Equation (10.24) has been used to compare the energy loss in a deconfined
medium of temperature T = 0.25 GeV to that in cold nuclear matter of standard
density [58]. For the traversal of a medium of 10 fm thickness, estimates give for
the total energy loss

�E =
∫ 10 fm

0 fm
dz
dE

dz
(10.25)

in a quark-gluon plasma

−�Eqgp � 30 GeV, (10.26)

corresponding to an average loss of 3 GeV/fm. In contrast, cold nuclear matter leads
to

−�Ecnm � 2 GeV (10.27)

and hence an average loss of 0.2 GeV/fm. A deconfined medium thus leads to a very
much higher rate of jet quenching than confined hadronic matter, as had in fact been
suggested quite some time ago [46–49].

The advent of the RHIC at Brookhaven National Laboratory has made jet pro-
duction in nuclear collisions experimentally feasible, and today a wealth of data
exists. Clear evidence for jet quenching is found in an analysis of the azimuthal
correlation structure in jet production. In p − p collisions, a jet is determined by
a pion (or other hadron) of very large transverse momentum, and this is generally
found to be balanced by another high transverse momentum particle in the opposite
direction. If in A− A collisions the primary hard partonic process occurs near the
edge of the interaction region, the balancing “away-side” jet has to traverse most of
the newly formed hot and dense medium and is expected to be quenched. This in
turn should lead to enhanced soft hadron production as momentum balance. Both
cases are schematically illustrated in Fig. 10.18.

The azimuthal distribution of jet production was studied at RHIC in p−p, d−Au
and Au − Au collisions at

√
s = 200 GeV. Defining the azimuthal angle of the hard-

est hadron as zero (“near-side”), one clearly observes in both p − p and d − Au
collisions the balancing “away-side” jet at 180 degrees. In d − Au collisions, the jet
does encounter a medium, but since this is normal (confined) nuclear matter, it is
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Fig. 10.18 Jet production in p− p (left) and A−A (right) collisions

not significantly affected. On the other hand, in Au − Au collisions the jet on the
opposite side is strongly suppressed [59–61]. The result is illustrated in Fig. 10.19,
showing the azimuthal distribution of hadrons of transverse momenta above 5 GeV.

Fig. 10.19 Azimuthal distribution of hadrons with transverse momenta above 5 GeV in p − p,
d − Au and A−A collisions [59–61]

Corroborating evidence for jet quenching is obtained by considering directly the
transverse momentum spectra of the hard hadrons in p − p and A− A collisions.
Since jet production is a hard process, it is expected to scale with the number of pri-
mary collisions, as already found for the production of heavy quark pairs (previous
subsection). A check for this is provided by hard photon spectra. Since the produced
photons escape from the interaction region without any (strong) in-medium interac-
tions, the spectra in central A− Au interactions should coincide with those from the
corresponding p − p reaction, multiplied by the effective number of collisions. In
Fig. 10.20, the ratio

RAA = (dN/dkT )AA

Ncoll(dN/dkT )pp
(10.28)

is shown for photon production in central Au − Au vs. p − p collisions and seen
to be compatible with unity for kT ≥ 3–5 GeV [62]. Also shown in that figure is
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the corresponding ratio for π0 production; it is seen to be reduced by almost a
factor of five, indicating strong jet quenching. This factor is in agreement with total
quenching in the central interaction region and survival only in the surface shell [74].
The amount of quenching remains the same also for other hadrons, indicating that
it is indeed the initially produced hard parton that is being quenched on its passage
through the medium.

Fig. 10.20 Transverse momentum distributions of photons and hadrons in Au − Au collisions at√
s = 200 GeV, normalized to the p− p distributions scaled by the number of collisions [62]

Numerous other features of jet production were studied at RHIC and described
in terms of QCD-based models; for more details, see e.g. [63]. They all indicate that
high energy nuclear collisions indeed produce a very dense and very strongly inter-
acting medium. Hopefully the advent of further data from the LHC will eventually
also lead to a quantitative comparison with ab initio QCD calculations.

10.6 The Corona Effect

We have seen that two prominent signatures of QGP production in nucleus-nucleus
collisions are jet quenching and quarkonium dissociation. For an infinite interaction
volume, the suppression would in both cases be complete. In actual experiments,
however, there are collisions at the rim of the interaction region (see Fig. 10.21),
and these will be little or not at all affected by the central core of the medium.
This so-called corona effect [64–73] will assure that even at the highest collision
energies jets and quarkonia are still being produced. The azimuthal jet distributions
mentioned in the previous section provide an example of such a situation: the away-
side jet is effectively suppressed, if the near-side jet is produced at the surface of the
interaction region. Evidently the role of the corona, relative to the overall interaction
area, increases with peripherality; the most peripheral collisions are effectively just
nucleon-nucleon interactions.
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Fig. 10.21 Corona effect for decreasing centrality

The jet and quarkonium production rates as a function of the centrality of the
collision should thus be determined by the variation with impact parameter of the
ratio surface to volume. Moreover, since the primary production processes of jets
and heavy quark pairs are both hard partonic interactions, they will depend on the
number of collisions and thus lead to a very similar centrality dependence.

Geometric considerations lead to RS/V � 0.17 [74] for central collisions, and
this is found to agree well with the jet quenching observed for central Au − Au
collisions at RHIC (see Fig. 10.20). If the origin of the surviving jets is indeed the
corona, this fraction should remain the same also at higher energies, modulo slight
possible modifications of the corona dimension.

In the case of J/ψ suppression, the feed-down from B production has to be
taken into account in addition. Even if direct primary charmonium production is
completely suppressed, the decay products from B → J/ψ + x will still be present,
though conceivably not in scaled p − p rates, but reduced due to nuclear modifi-
cations of parton distribution functions. Simple scaling of p − p rates would lead
to about 15–20% J/ψ production due to B decay; this applies at low transverse
momenta, since the importance of B feed-down increases with pT . The feed-down
must be added to the corona production, which leads to about 30–40% for the re-
maining central J/ψ production rate, assuming total suppression in the core of the
interaction region.
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Chapter 11
The Fireball Paradigm

Es wurde schon vor längerer Zeit geschlossen, daß bei einem
sehr energiereichen Stoß eines Kernteilchens auf ein anderes
viele Mesonen mit einem Schlag erzeugt werden können.

Werner Heisenberg, Zeitschrift für Physik 126 (1949) 569

[It was concluded quite some time ago that in an energetic
collision of one nuclear particle with another, many mesons
could be created with one bang.

Werner Heisenberg]

In this chapter we show how multihadron production can be related to thermody-
namical considerations. Following a general introduction to the topic, we discuss
the statistical hadronization model, in which each species is produced according
to its phase space weight, and show that this leads to a universal hadronization
temperature found in e+e− annihilation as well as in hadron-hadron and nucleus-
nucleus collisions. In the final part we address deviations from a universal statistical
hadronization description.

11.1 Statistical Multihadron Production

Multiparticle production in high energy collisions of strongly interacting particles
has fascinated physicists for well over half a century. As predicted by Heisenberg
[1], the little bang of such collisions produces with increasing energy an ever grow-
ing number of mesons and baryons of different quantum states, and from the begin-
ning, the large numbers were a challenge to describe these reactions by collective or
statistical approaches. It was tempting to go even further, to imagine that what they
produced were really droplets of strongly interacting matter, thus providing a means
to access in the laboratory the thermodynamics of strong interaction physics.

The main features observed in high energy collisions are the multiplicity, i.e., the
number of produced particles as a function of the collision energy, the momentum
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spectra of the particles, their correlations, and the relative abundances of the differ-
ent species. These then are also the basic quantities which any theoretical framework
has to provide.

The first statistical treatment was formulated by Fermi [2]. He assumed that the
collision deposits a great amount of energy in a small spatial region around the
colliding particles, and that the energy of this fireball is then distributed among the
various observable degrees of freedom, the emitted mesons and nucleons, according
to statistical laws. The derivation of the model is summarized in Appendix 11.A,
where we show that the description of the production process is determined by the
grand canonical phase space volume Q(E,V ) of a gas of non-interacting hadrons;
here E denotes the collision energy in the center of mass of the colliding particles,
and V the interaction volume. This phase space volume was to be calculated with
whatever constraints are imposed by conservation laws (charge, baryon number,
etc.).

The main features obtained from Fermi’s model are:

• a multiplicity n(E)∼E3/4 growing as a power of E;
• isotropic production of secondary particles; and
• average secondary momenta 〈|p|〉 ∼E1/4 also increasing as a power of E.

Modified versions of the model [3, 4] lead to slightly changed powers, but the basic
features remain. The available collision energy is equidistributed among the isotrop-
ically emitted secondaries; any increase of E goes partially into making more sec-
ondaries and partially into making each constituent more energetic.

Experimental data showed that with increasing collision energy, this picture be-
came untenable for two main reasons:

• in a nucleon-nucleon collision, the incident nucleons always retained a consider-
able fraction of the collision energy (“leading particle effect”);

• the secondaries were not emitted isotropically; their average transverse momenta
(orthogonal to the collision axis) reached a constant value, independent of the
incident energy, while the average longitudinal momenta increased with E.

Clearly this meant that not all information about the initial state was lost in the
collision; the reaction retained a memory both of the conserved quantum numbers
of the incident particles and of the collision axis. Fermi had already suggested that
the spatial volume, as seen in the overall center-of-mass system, should be Lorentz-
contracted along the collision axis. However, as long as there is no interrelation
between the momenta and the coordinates of the secondaries, this does not produce
anisotropic particle production.

A collective scenario for producing such an anisotropy was the hydrodynami-
cal model proposed by Landau [5] soon afterwards. He assumed that the medium
created in the collision was a fluid contained in the interaction region and which
subsequently expanded according to hydrodynamics. For a fluid, the increase of
pressure due to the Lorentz-contraction along the collision axis leads to a stronger
flow in that direction. The resulting secondaries thus have larger longitudinal than
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transverse momenta; however, the leading particle effect, being of a more micro-
scopic nature, does not arise in such a description, if it is based on one compressed
fluid.

Looked at from another point of view, the combination of the anisotropic sec-
ondary momentum distributions and the leading particle effect seemed to indicate
that at high energy the incident nucleons could not fully stop each other. Instead,
they seemed to “pass through” one another, losing only part of their energy in the
process. This “transparency” was subsequently explained by Gribov [6] as a conse-
quence of hadronic size and the finite speed of information transmission.

It thus became evident that high energy collisions could not be understood in
terms of the formation of one fireball, in the sense of a single isotropic energy de-
posit into a small spatial volume. The collision instead seems more like the passage
of an energetic charge through a medium, leaving behind a condensation trail of
smaller fireballs superimposed along the collision axis. Each of these bubbles could
now in principle have the phase space structure envisioned by Fermi, and if one at-
tributes the conserved baryon numbers to the fastest bubbles in each direction, the
scenario would also provide the leading particle effect.

While this does bring in the desired longitudinal momentum growth, the energy
of each bubble could also still increase, and this in turn results in an energy depen-
dence (albeit weaker) also for the average transverse momenta. The basic puzzle of
the field or, looked at in a more positive way, the most important hint provided by
nature, was the constancy of the average transverse momenta pT of the secondaries.
Making this even more tantalizing was the observation that while different species
of secondaries led to different (energy-independent) transverse momentum distribu-
tions, the transverse energies (also called transverse masses) mit appeared to follow
one universal pattern, with

dNi

dmit
∼ exp

{−λmit}, mit =
√(
pit
)2 +m2

i (11.1)

describing the functional form of the distribution of all species i of different masses
mi in terms of one universal parameter λ.

The first explanation of this universality was proposed by Hagedorn [7, 8], based
on the resonance structure governing the interaction of the different hadron species
(see Chap. 3). Experiment had shown that multiparticle production with increasing
energy did not simply produce a shower of many pions, kaons and nucleons. Instead,
it led to the production of more and different excited resonant states which decayed
strongly into less excited states and finally into the ground state hadrons. Starting in
the 1960s, an ever growing number of such hadronic resonances were discovered,
and today the standard compilation [9] lists hundreds of them. The main theoretical
approaches to resonance composition laws were studied in Chap. 3, based on parti-
tioning and self-similarity. The number of states ρ(m) of a resonance of mass m, its
“degeneracy”, is then given as the number of different composition patterns. This
led to an exponential growth of ρ(m),

ρ(m)∼ma exp{bm}; (11.2)
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while the power a depends on the details of the partition problem, the coefficient b
was expressed in terms of fundamental features of strong interaction physics, such
as hadronic size, the range of the strong force, or the Regge resonance pattern.

At this stage then, experiment had shown several basic deviations from Fermi’s
original fireball picture. The assumption of a completely random production process
failed: the system retained some information of the initial state, secondary particle
distributions were different in directions along and orthogonal to the collisions axis,
and there were leading particles carrying a baryon number. Moreover, the emitted pi-
ons, kaons and nucleons, had gone through some intermediate interactive stage, with
resonance formation and decay as the dominant process. The first of these features,
anisotropy and leading particles, could be accounted for through a superposition of
fireballs, using initial state dynamical information as input.

To solve the resonance problem, Hagedorn invoked a result first obtained by
Beth and Uhlenbeck [10] and subsequently generalized by Dashen, Ma and Bern-
stein [11]. They had argued that if the interaction of a gas of constituents is indeed
dominated by resonance formation, then one can replace the interacting system of
elementary particles by a non-interacting system of all possible resonances. The rel-
evant phase space for the states of multiparticle production would thus be that of an
ideal resonance gas, with an exponentially growing resonance mass spectrum, and
contained in an interaction volume V0.

We have shown in Chap. 3 that the grand-canonical partition function Z(T ,V0)

of such a resonance gas diverges for

T > TH = 1

b
, (11.3)

so TH becomes an upper bound on the temperature. Increasing the energy of such
a system does not increase the momentum of the secondaries and hence its temper-
ature; instead, it leads to more species of more massive hadrons. As a result, the
momentum spectra now have the form (11.1); the experimentally observed univer-
sal transverse mass pattern with a parameter λ is thus accounted for as the universal
limiting temperature of an ideal resonance gas. This indeed agreed quite well with
the observed transverse energy spectra. The energy-dependent and unbounded lon-
gitudinal momenta, on the other hand, arise from the superposition of an energy-
dependent number of such Hagedorn-type fireballs.

In the previous chapters, we have seen that today the Hagedorn tempera-
ture is essentially interpreted as the critical point associated to the confine-
ment/deconfinement transition, when approached from the confined hadronic side.
In a parton model picture, the initial state of any hadronic collisions consists of
beams of partons moving and colliding in the longitudinal (beam) direction. Their
interaction leads to momentum loss and eventually to a hadronization of the par-
tons. This occurs in the form of the Bjorken “inside-outside” cascade [12], with the
slowest parton clusters hadronizing first. Conceptually, this provides the basis for
the superposition of fireballs moving at different rapidities, as a phenomenological
picture of high energy multihadron production.
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11.2 The Abundance of the Species

For an ideal resonance gas, the universal temperature TH determines not only the
momentum spectra, but also the relative abundances of the different species. At a
fixed temperature, a heavy meson is less likely to be present than a lighter one. In
other words, the ratio of species i to j is predicted as the ratio of the corresponding
phase space weights,

Ni

Nj
�
(
mi

mj

)2
K2(mi/TH )

K2(mj/TH )
�
(
mi

mj

)3/2

exp
{−(mi −mj)/TH }. (11.4)

Hence, if high energy collision results are specified simply by the pure phase space
of a resonance gas, they should also lead to corresponding production ratios. Let us
consider this in more detail.

The statistical hadronization model assumes that hadronization in high energy
collisions is a universal process proceeding through the formation of multiple col-
orless massive clusters, or fireballs, of finite spacial extension and fixed tempera-
ture TH . These clusters are assumed to decay into hadrons according to a purely
statistical law: every multi-hadron state of the fireball phase space defined by its
mass, volume and charges is equally probable. The mass distribution and the dis-
tribution of charges (electric, baryonic and strange) among the clusters and their
(fluctuating) number are, however, in principle determined in the prior dynamical
stage of the process, which determines how fireballs are emitted along the collision
axis.

Hence one would seem to need this dynamical information in order to make def-
inite quantitative predictions to be compared with data. Nevertheless, for Lorentz-
invariant quantities such as multiplicities, one can introduce a simplifying assump-
tion and thereby obtain a simple analytical expression in terms of the temperature.
The key point is to assume that the distribution of masses and charges among clus-
ters is again purely statistical [13–15], so that, as far as the calculation of multi-
plicities is concerned, the set of many clusters becomes equivalent, on the average,
to one large cluster (an equivalent global cluster) whose volume is the sum of the
individual proper cluster volumes and whose charge is the sum of cluster charges
(and thus the conserved charge of the initial colliding system). In such a framework,
the global cluster can be hadronized on the basis of statistical equilibrium.

We shall consider this here for a system without conserved charges; the exact
conservation of general “charges” (baryon number, strangeness, electric charge,
isospin, etc.) has been solved [16–18] and will be summarized in Appendix 11.B.
For the application of this more general formalism to species abundance data, we
refer to [19, 20]. The primary multiplicity of a hadron species i due to fireball decay
in the Boltzmann limit of phase space is then given by

〈ni〉 = diγ νis
V Tm2

i

2π2
K2(mi/TH ), (11.5)

where di specifies the degeneracy of species i and V the overall production volume
(the sum of all fireballs). In abundance ratios, V cancels out, so it is a parameter
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needed only for absolute multiplicities.1 We denote 〈ni〉 as primary multiplicity,
since all heavier resonances will still decay into lighter ones, so that the actually
observed multiplicities are obtained from (11.5) by

〈ni〉 = 〈ni〉primary +
∑
k

〈nk〉Br(k→ i), (11.6)

summing over the various branching ratios Br as measured. The final pion multi-
plicity, for example, is in fact several times larger than the primary one.

Special note should be given to the parameter γs , which was introduced some-
what ad hoc [21] in order to achieve a general reduction in the production of hadrons
containing strange quarks. One had observed that in elementary hadron collisions
and in e+e− annihilation, fewer kaons, φ’s, �’s , �’s, �’s, etc., were produced than
predicted by phase space alone. On the other hand, it was found that one reduction
parameter γs per strange quark contained in the hadron could account quite univer-
sally for the entire observed strangeness suppression, with γs � 0.6. To illustrate,
the multiplicity of kaons according to Eq. (11.5) is multiplied by a factor γs , that
of φ’s by γ 2

s , for �’s by γ 3
s , and similarly for baryons; in each case this reduces

the corresponding production rate in comparison to that of hadrons of a compa-
rable mass but containing only u,d quarks. The origin of the factor γs has been
discussed extensively, though without definite conclusion. One possibility might
be a reduction of strange quark formation in the hadronization process, due to the
larger strange quark mass. And in fact, exp{ms/TH } � 0.6, usingms � 80 MeV and
TH � 170 MeV. On the other hand, in nucleus-nucleus collisions the suppression is
essentially removed, as we shall see shortly. This suggests local charge conservation
as origin [22]. In elementary collisions, with a comparably small number of hadrons
containing strange quarks, the formation of a strange quark has to be compensated
locally, and this leads to a reduced production rate [23]. In nuclear collisions, the
much larger amount of strangeness allows compensation by strange quarks from
different parent collisions and thus weakens or removes the local conservation con-
straints. Yet another alternative [24] will be discussed in the next chapter.

The other parameter in Eq. (11.5), apart from the temperature, is the degener-
acy di . We have noted above and discussed in detail in Chap. 3 how theoretical
modelling based on self-similarity and/or partitioning led to a degeneracy exp{bm}
increasing exponentially in mass (see Eq. (11.1)). Such an increase in turn leads to
a critical point TH = 1/b, limiting hadron thermodynamics to T ≤ TH . A more em-
pirical alternative is the physical resonance gas, in which the resonance spectrum is
taken to consist of the actually measured and tabulated resonances, with only their
spin and isospin degeneracy taken into account. This approach is obviously limited
in resonance mass, since little is known about states above 2.5 to 3.0 GeV. With an
upper limit in resonance mass, the partition function is analytic and hence there is no
critical point; the energy density and all higher derivatives remain finite for all val-
ues of the temperature, also those above a Hagedorn TH . As far as the measurable
abundances are concerned, the missing high mass states do not play a significant

1This is no longer correct in the presence of exactly conserved charges, see Appendix 11.B.
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role: including all excited states up to 2.0 GeV covers almost all of the feed-down
sources for pions, for example, since the higher mass states are strongly suppressed,
form� TH . Studies comparing species abundances with cuts at 1.5 or 2.0 GeV thus
show very little difference. The measured low mass hadron states follow a Regge
pattern and thus produce the correct beginning of the limiting temperature pattern.
The contribution of the “missing” high mass states is essentially limited to the en-
ergy density or the speed of sound in a very narrow region around TH , as shown in
Chap. 3.

If the basic assumption of statistical hadronization—the equivalence of interact-
ing hadron gas and ideal resonance gas—is indeed correct, the abundances of the
species can thus be used to determine the hadronization temperature. Surprisingly,
this approach has turned out to be correct far beyond all expectations. Over the past
years, the resulting predictions were tested in a variety of collision configurations,
from e+e− annihilation [13, 25–27] over p− p/p− p̄ [19, 28] to nucleus-nucleus
collisions [29–34]. With some caveats to be elaborated, they were found to provide
a most remarkable account of what is observed, both of species abundances and,
where applicable, of transverse momentum spectra [13]. Moreover, the temperature
obtained for high energy experiments turned out to be quite universal, always ly-
ing around 160–180 MeV, i.e., in a range which partitioning arguments as well as
studies of critical phenomena in QCD had pre- and postdicted.

To illustrate, we show in Table 11.1 the production rates measured [35–41] for
18 different hadron species in proton-proton collisions at a center-of-mass energy
of 200 GeV;2 they are shown together with the fit rates obtained in the statistical
model for a temperature TH = 170.1 ± 3.5 MeV [28]. The fit was made with exact
baryon number and strangeness conservation, implemented (see Appendix 11.B) in
a description of the form of Eqs. (11.5)/(11.6). The overall χ2 per degree of freedom
is 1.11, showing that the fit is indeed quite good. We should, however, remember that
the statistical hadronization model is an average description of hadron emission, and
sufficiently precise data must eventually show deviations.

Next we compare in Table 11.2 the results of the mentioned pp data to those
from other initial state configurations (e+e− and A−A) at high collision energies.
To start from a comparable basis, we have restricted the data set in all three reaction
channels as far as possible to the same 12 long-lived hadron species; the rates for
short-lived and hence broader resonances are in general more difficult to measure.
We see that all channels indeed appear to converge to a hadronization temperature
value of about 160–170 MeV.

Combining the results from e+e− annihilation, elementary hadron-hadron inter-
actions and nucleus-nucleus collisions at different high energies leads to one of the
truly striking observations in high energy strong interaction physics: the existence
of a universal hadronization temperature TH . An overall view of this result is given
in Fig. 11.1.

2The data are taken in a unit interval at midrapidity. In principle, statistical hadronization applies
to full (4π ) production rates; at high energies, however, the rapidity distributions are sufficiently
flat to allow midrapidity studies.
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Table 11.1 Measured and fitted hadron abundances in pp collisions at 200 GeV [28]; the data are
from the STAR experiment at BNL-RHIC [35–41]

Particle Measurement (E) Relative error Model (M) (M − E)/E (%)

π+ 1.44 ± 0.11 0.076 1.403 −2.62

π− 1.42 ± 0.11 0.077 1.384 −2.59

K+ 0.150 ± 0.013 0.087 0.152 1.48

K− 0.145 ± 0.013 0.090 0.146 0.68

p 0.138 ± 0.012 0.087 0.149 7.42

p̄ 0.113 ± 0.010 0.088 0.1120 5.56

φ 0.0180 ± 0.0029 0.16 0.01130 −59.3

� 0.0436 ± 0.0041 0.094 0.04348 −0.28

�̄ 0.0398 ± 0.0038 0.095 0.03686 −7.96

�− 0.0026 ± 0.00092 0.35 0.003070 15.3

�̄+ 0.0029 ± 0.00104 0.36 0.002728 −6.29

�+ �̄ 0.00034 ± 0.00019 0.56 0.0005712 40.5

K0
S 0.134 ± 0.011 0.082 0.147 9.5

ρ0 0.259 ± 0.039 0.15 0.1861 −28.1

(K∗0 + K̄∗0)/2 0.0508 ± 0.0063 0.12 0.05151 1.4

 ∗+ + ∗− 0.0107 ± 0.00146 0.14 0.01028 −3.9

 ̄∗+ +  ̄∗− 0.0089 ± 0.00126 0.14 0.008650 −2.8

�(1520)+ �̄(1520) 0.0069 ± 0.0011 0.16 0.00561 −18.7

Table 11.2 Fit results for a set of 12 long-lived particles in high energy pp, Au−Au and e+e−
collisions [28]

Collision pp e+e− Au−Au
CMS energy [GeV] 200 91.25 200

Temperature [MeV] 169.8 ± 4.2 164.7 ± 0.9 168.5 ± 4.0

Average relative deviation data vs. fit [%] 12.5 9.4 11.7

Strangeness suppression γs 0.57 ± 0.03 0.66 ± 0.01 0.93 ± 0.04

On the theoretical side, this suggests that there must be an underlying universal
production mechanism, i.e., that the hadronization temperature is indeed determined
by or closely related to the confinement/deconfinement transition of strongly inter-
acting matter. On the experimental side, it leads to the remarkable prediction that
the relative hadron abundances produced in high energy collisions become with in-
creasing energy independent of the collision energy. One can thus predict such ratios
with considerable confidence for the experiments at the CERN-LHC [42].

Nevertheless, one important feature distinguishes elementary from nuclear inter-
actions. It is seen in Table 11.2 that the strangeness suppression observed in ele-
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Fig. 11.1 Hadronization temperatures obtained for various initial collision configurations at dif-
ferent (high) energies

mentary reactions has essentially disappeared in nucleus-nucleus collisions. We had
mentioned this already above—the suppression factor γs is now compatible with
unity, and whatever deviations remain, can be understood as arising from “corona”
interactions, i.e., collisions at the edge of the nuclei, which do not really experience
the nuclear medium [43]. The fully thermal behavior of strange hadrons in the hot
medium produced in central nuclear collisions is indeed a first indication for col-
lective features present in such interactions. For its further understanding, it will be
very helpful to see if pp collisions at the very much higher energies of the CERN-
LHC, with much higher absolute strange hadron production rates, will also show a
γs approaching unity.

A further point to note is that while in elementary collisions we had to imple-
ment an exact conservation of baryon number and strangeness, in nucleus-nucleus
collisions both “charges” are present in sufficiently large numbers to allow a grand-
canonical treatment. This means that the rate for a species of strangeness Si , baryon
number Bi and charge Qi , again in the Boltzmann limit, is now given by

〈ni〉 = diγ νis
V Tm2

i

π2
K2(mi/TH ) sinh

{
(SiμS +BiμB +QiμQ)/T

}; (11.7)

note that 〈ni〉 specifies the net overall number of species i, e.g., the number of
baryons minus that of antibaryons, etc. The chemical potentials μS,μB and μQ are
then fixed such that the overall strangeness is zero and the overall baryon number
and charge are those of the incident nuclei. At mid-rapidity, for sufficiently large
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energies all three tend to zero, since the nuclear remnants are concentrated in the
fragmentation regions at large rapidity.

11.3 The Hadronic Resonance Gas and Its Limits

We have seen that the abundance of the species produced in high energy collisions
is reproduced very well by the statistical hadronization model, and that the resulting
temperature, for small or vanishing baryon number, is in accord with the critical
temperature obtained in statistical QCD. One may therefore ask if also other ther-
modynamic features of such a hadronic resonance system agree with the behavior
found in lattice studies of the confined medium. The starting point for such a model
of strongly interacting matter below Tc is the free energy density

f (T ,μS,μB,μQ)= T 4

π2

∑
i

di

(
mi

T 2

)
K2(mi/T )

× cosh
{
(SiμS +BiμB +Qiμq)/T

}
, (11.8)

in the Boltzmann limit and for γs = 1; as above, the sum is over all physical res-
onances with their observed degeneracy di . All other thermodynamic variables are
obtained as derivatives of this function with respect to T ,μS,μB and μQ. We want
to show here that any agreement between the resulting hadronic resonance gas ther-
modynamics and statistical QCD will break down once the system gets close enough
to the critical point in T and μ. There are several aspects to this issue.

First of all, as we have already noted at the end of Chap. 3, critical behavior is
obtained in an ideal resonance gas only if the degeneracy grows exponentially in
mass. Since the physical resonance gas is based on the observed species and their
spin-isospin degeneracy, it will lead to thermodynamic observables which exist for
all temperatures and, with the form (11.8), also for all chemical potential values. In
other words, it does not provide critical behavior, even if the mass range is extended
beyond the presently used range. This has lead to considering an exponential exten-
sion of the actual physical resonance spectrum [44]. However, the critical exponents
for such a Hagedorn spectrum have been determined [45], and they do not agree
with the critical exponents of the O(4) universality class, proposed for the chiral
limit of two-flavor QCD.

Next, the present formulation of the resonance gas at finite baryochemical poten-
tial does not allow critical behavior in μB [46]. Neglecting strangeness and charge,
we obtain from Eq. (11.8) for the moments

χnB ∼ ∂nf (T ,μB)

∂μn
(11.9)

a form which at μB = 0 vanishes for all odd n and give the analytic functions

χnB(T ,μB = 0)= T 4−n

π2

∑
i

di

(
mi

T 2

)
K2(mi/T ) (11.10)
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for even n. In contrast, the corresponding moments in the chiral limit of two-flavor
QCD are found to diverge at T = Tc and μB = 0 for n ≥ 6, as a consequence of
chiral symmetry restoration (see Sect. 7.5).

It is thus evident that the hadronic resonance gas as conventionally formulated
does not give any critical behavior in T , and if extended in the Hagedorn form,
it gives a different universality class than chiral QCD. Moreover, by simply intro-
ducing the baryon number dependence through grand-canonical fugacities for each
species, one cannot arrive at an interrelated T − μ singular functional form, as ob-
tained in statistical QCD. In other words, the present hadronic resonance gas formu-
lation does not lead to T −μ phase boundary, and in the actual critical region, it can
therefore not correctly describe chiral QCD. However, for μB � 0, this region may
be very small, as we saw illustrated above (see Fig. 8.8 and the corresponding dis-
cussion), so that for many purposes the resonance gas can lead to a very reasonable
description.

Furthermore, in closing this section, we note that for physical quark masses, there
is at μ= 0 only a “rapid cross-over” and not the critical behavior of the chiral limit
of QCD. It is presently under investigation to what extent the cross-over retains the
limiting critical features [47].

11.4 Dynamical Effects

Finally, we return to the role of collision dynamics in the statistical hadronization
picture. The basic statistical assumption had removed all such effects for the de-
termination of species abundances, by invoking an equivalent global cluster. There
are, however, cases where dynamics plays a crucial role, which has to be taken into
account correctly before attempting a statistical description.

One case is given by e+e− annihilation. This process leads to the formation of an
intermediate vector boson state (γ, Z0), which then decays into a quark-antiquark
pair (see Fig. 11.2); these primary quarks subsequently hadronize. The relative rates
of the different initial quark states u,d, s, c, b are determined by electroweak theory
as a function of the annihilation energy; at

√
s = 91.25 GeV, one obtains for the

relative rates Ru+d � 40%, Rs � 20%, Rc � 20%, and Rb � 20%. This means in
particular that 40% of the resulting events contain a charm or bottom quark pair,
which is far more than would be statistically expected. In contrast to strange quark
production, that of heavy flavors is thus enhanced in e+e− annihilation, and this

Fig. 11.2 qq̄ production through e+e− annihilation, with qi ∼ u,d, s, c, b
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enhancement has to be correctly included as a function of the annihilation energy.
The relative rates of open heavy flavor hadrons can then be described by statistical
considerations, and it turns out that this indeed works very well, with the same
TH as observed for light hadrons [26]. The fraction of primary charm and bottom
quarks must, however, be fixed from electroweak dynamics. What thus appears to be
universal is the hadronization of quarks, not their initial production rates. We return
to the production of heavy flavor bound states (quarkonia) shortly.

Heavy flavor production in pp and nucleus-nucleus collisions shows a similar
effect. It is a hard partonic interaction process (see Fig. 10.9 for charm production),
for which the rate can be calculated in perturbative QCD; it grows power-like with
energy and thus more rapidly than the logarithmic multiplicity dependence found
for usual hadrons. In contrast to the relative abundances of light hadrons, which
become energy independent for large

√
s, the relative rates of heavy to light flavor

hadrons continue to grow with energy. To cite an example: the total cc̄ cross-section
grows from

√
s = 20 to 40 GeV by a factor 10, while the light hadron multiplicity

increases by only 20%. Hadronic heavy flavor production thus also originates from
a dynamical process which cannot be accounted for in any statistical scenario. Here
again, however, we can proceed as above: the overall heavy flavor production is cal-
culated in perturbative QCD, but given this rate, the relative channels into which it
goes is described by the statistical model. The resulting predictions for the differ-
ent open charm or bottom states also here agree very well with the measured rates,
with the same universal TH . This confirms the conclusion reached above: once the
quarks are produced, their subsequent hadronization is universal, with one and the
same temperature for all.

The final point in this section is the only exception to universal hadronization,
the production of quarkonia. In elementary hadron collisions, such as in pp, gluon
fusion leads to the perturbative production of a heavy quark pair; consider charm
as example (see Fig. 10.9). In most cases, the c and the c̄ separate and eventu-
ally hadronize; the resulting hadron species show the mentioned statistical relative
abundances. In a small fraction of such events, however, the almost pointlike cc̄ pair
forms a bound charmonium state, such as J/ψ , ψ ′ or χc . Of the total open charm
production in pp collisions, about 1% result in J/ψ formation; this holds true at
all collision energies. Although this fraction is small, it is still considerably larger
(by almost an order of magnitude) than what one would expect from a statistical
hadronization of the available charm quarks. In e+e− annihilation, the situation ap-
pears similar. Here the bulk of charmonium production is due to the decay of open
bottom mesons arising from the primary bb̄ pair. All estimates of the remaining
“prompt” production lead to rates far above statistical predictions [48].

On the other hand, quarkonium binding can be described very well by poten-
tial models [49, 50] and by non-relativistic QCD applied to heavy quarks [51, 52].
In particular, these studies predict that the relative rates of S-wave states, e.g., of
J/ψ and ψ ′, are given by the ratio of their wave-functions at the origin [53],

〈N(ψ ′)〉
〈N(J/ψ)〉 � |φψ ′(0)|2

|φJ/ψ(0)|2 � 0.25. (11.11)
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This is in good agreement with all corresponding pp production data over a wide
range of energies [54]. In contrast again, statistical hadronization, Eq. (11.5), pre-
dicts a ratio which is a factor 5 lower.

Quarkonium binding thus seems to be per se a dynamical process, described by
the very early and very short-range interaction between two heavy quarks. In ele-
mentary interactions, such as pp or e+e−, it appears as unrelated to the much later
and longer range hadronization process, which leads to the statistical species abun-
dances. This conclusion remains valid also if one allows the overall fraction of heavy
quarks to be dynamically determined. Although the relative open charm/bottom
states then are indeed statistically distributed, based on the universal hadroniza-
tion temperature, the abundances of quarkonium states do not follow any statistical
pattern.

An interesting proposal suggests that this situation changes in high energy
nucleus-nucleus collisions [55–57]. As discussed in Chap. 9, the formation of a
hot quark-gluon plasma in such interactions is expected to melt charmonia [58]. But
once these primary charmonia have disappeared, one may ask if at hadronization
there could not be a new, secondary statistical charmonium formation process, in
which randomly meeting c and c̄ quarks combine to a charmonium state. At lower
energies, the charm production rate is not large enough to allow measurable char-
monium rates through such statistical hadronization; in other words, charmonium
formation through the “statistical” combination of a c from one primary nucleon-
nucleon collision with a c̄ from another is negligible. Due to the rapid growth of
cc̄ the production cross section with energy, the chance of a given charm quark to
“meet” a charm antiquark from “different parents” increases, and for nuclear colli-
sions at LHC energies, one would expect considerably more charm quarks than the
statistically predicted fraction. The basis of this effect is that the hard charm produc-
tion rate grows with the number ∼N2 of nucleon-nucleon collisions, while that of
light hadrons is essentially determined by the number ∼ 2N of participant nucleons;
here N denotes the number of nucleons in each of the colliding nuclei. If this initial
charm excess survives the subsequent evolution of the produced medium, the en-
hancement will cause the ratio between open charm hadrons and light hadrons grow
from below to above the statistical value, as illustrated schematically in Fig. 11.3
for the ratio of D+ to π+ meson production.

Fig. 11.3 The ratio of D+ to π+ in hadronic collisions, as function of the collision energy
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At hadronization, the medium will then be over-saturated with charm quarks. If
the only condition for charmonium formation is the fractional abundance of charm
and anti-charm quarks relative to light quarks, simple quark combination will lead
to more charmonium formation than present in a proton-proton collision. In other
words, if for proton-proton collisions one finds a ratio R0(J/ψ/cc̄) for hidden to
open charm production, then in nucleus-nucleus collisions, one should observe a
ratio RA(J/ψ/cc̄)�NcR0(J/ψ/cc̄), where Nc scales the pp value by the number
of collisions in A− A. This enhancement, which has been estimated to be up to a
factor 10, is due to charmonium formation by constituents from different nucleon-
nucleon collisions.

If, on the other hand, charmonium formation retains the dynamical features ob-
served in pp interactions, such as extremely short-distance binding only under suit-
able kinematic constraints, then statistical charmonium formation seems unlikely in
the hadronizing medium, in which constituents are separated typically by about one
fermi and move randomly relative to each other. The charmonium production ex-
periments in nucleus-nucleus collisions at the LHC will hopefully clarify this point.

11.5 Conclusions

The success of the statistical hadronization model in reproducing the species abun-
dances and in determining a universal hadronization temperature is undoubtedly one
of the milestones in high energy multihadron production. On the other hand, it has
also brought up an equally profound question. While nuclear collisions, with many
superimposed nucleon-nucleon collisions, could perhaps be considered as a truly
statistical system, e+e− interactions with as little as 2 or 3 hadrons per unit rapidity
nevertheless fulfill the predictions just as well. How and why do these states reach
something like “thermal equilibrium”? And what determines the universal tempera-
ture? Is there some common origin of all statistical multihadron production, which
applies to e+e− as well as to hadronic and nuclear collisions? Heisenberg had noted
that the many secondaries are created in “one bang”, and Hagedorn thought that they
do not somehow attain equilibrium, but that instead “they must be born in equilib-
rium”. A first, rather vague answer to this basic question was given by the idea
that any high energy collision in strong interaction physics leads to color charges
traversing the vacuum, which thereby is disturbed and recovers from this such as to
maximize entropy. The specific nature of the passing charges is irrelevant in this—
it is the disturbed vacuum which leads to the statistical emission of hadrons. But
this does not tell us what the emission temperature is. We shall return to a more
quantitative version of such a scenario in the next chapter.

Appendix 11.A: Scattering Matrix and Phase Space

The probability for the production of N particles in the collision of two incident
hadrons of four-momenta q1 and q2 is determined by



11.A Scattering Matrix and Phase Space 209

PN(W)∼
∫
d3p1

2p10
. . .
d3pN

2pN0
δ(4)

(∑
pi − q1 − q2

)∣∣〈p1 . . . pN |S|q1q2〉
∣∣2,
(11.12)

where W 2 = (q1 + q2)
2 is the (squared) center-of-mass collision energy and

p1, . . . , pN are the four-momenta of the final hadrons. For simplicity, we assume
here for the time being only one species of identical scalar hadrons of mass m0 and
neglect any effects of quantum statistics. The unitary scattering matrix S maps the
initial state onto the final state. The Fermi model [2] is obtained by assuming that
the squared S-matrix element is proportional to the probability of finding theN final
hadrons as free particles inside a spatial volume V ,

∣∣〈p1 . . . pN |S|q1q2〉
∣∣2 ∼

∫
V

d3x1 . . . d
3xN

N∏
1

∣∣�pi (xi )
∣∣2. (11.13)

With plane wave states

�pi (xi )=
√

2pi0
(2π)3

exp{ipixi} (11.14)

for the final hadrons we obtain the standard form for the relativisticN -particle phase
space volume,

QN(W,V )=
[
V0

(2π)2

]N ∫
d3p1 . . . d

3pNδ
(3)
(∑

pi − P
)
δ
(∑

pi0 −E
)
,

(11.15)

withW 2 =E2 − P2 for the invariant center of mass energy of the system. The delta
functions project the N -particle state onto fixed total energy E and momentum P .
The production probability can then be expressed in terms of the phase space volume
QN(W) as

PN(W,V )= QN(W,V )

Q(W,V )
, (11.16)

where the normalization Q(W) is given by the sum over all states at fixed energy
and volume

Q(W,V )=
∑ 1

N !QN(W,V ), (11.17)

assuming, as mentioned, that all particles are identical.
The Laplace transforms of QN(W) and Q(W) are just the canonical and grand

canonical partition functions of an ideal gas in the Boltzmann limit,

ZN(T ,V )=
∫
d3P dW QN(W,V ) exp{−W/T } � [

V z(T )
]N (11.18)

and

Z(T ,V )=
∫
d3PdW Q(W,V ) exp{−W/T }

=
∑
N

1

N !ZN(T ,V )� exp
{
V z(T )

}
, (11.19)
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with

z(T )= m2T

2π2
K2(m/T ); (11.20)

here K2(x) is the Hankel function of purely imaginary argument. For small x,
K2(x)� (2/x2), so that for high temperatures

lnZ(T ,V )� V T 3

π2
. (11.21)

This can be used to invert the Laplace transform (11.19), leading to [4]

lnQ(W,V )�
[
VW 3

27π2

]1/4

. (11.22)

Hence the average multiplicity

〈N〉 = V
(
∂ lnQ

∂V

)
W

� 1

4

[
VW 3

27π2

]1/4

(11.23)

increases as W 3/4, so that the average energy per secondary grows as W 1/4.

Appendix 11.B: Exact Charge Conservation

The phase space integral (11.15) specifies the totality of allowed states consisting
of a fixed number N of constituents, subject to the conservation of overall energy
and momentum and contained in a volume V . The corresponding partition func-
tion (11.17) then provides the grand canonical sum over all N -body states, with the
temperature T determining the average overall energy; the effect of momentum con-
servation actually becomes asymptotically negligible [23]. Quantum-mechanically,
we write the grand canonical partition function as

Z(T ,V )= Tr
[
exp{−H/T }]=

∑
N

TrN
[
exp{−H/T }], (11.24)

where the trace runs over all possible N -particle states and H denotes the Hamil-
tonian. In the grand canonical framework, the conservation of a discrete charge Q
(for simplicity, we restrict ourselves to only one additive conserved charge) is taken
into account through fugacities exp{−μQ}, with Q for the charge operator and μ
for the corresponding chemical potential,

Z(T ,V,μ)= Tr
[
exp

{−(H−μQ)/T }]. (11.25)

For illustration, consider a system containing particles of charge zero and mass m0,
together with particles of charge ±1 and a common mass m1. The grand canonical
partition function then becomes

lnZ(T ,V,μ)= V [z0 + z1
(
eμ/T + e−μ/T )]

= V [z0 + 2z1 cosh(μ/T )
]
, (11.26)
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and the average charge density q = 〈Q〉/V is given by

〈q〉 = T ∂ lnZ(T ,V,μ)

∂μ
= 2z1 sinh(μ/T ), (11.27)

with

zi = di m
2
i T

2π2
K2(mi/T ), i = 0,1 (11.28)

for the weight factor of a single particle of mass mi and degeneracy di , in the Boltz-
mann limit. For a system of vanishing average charge density, Eq. (11.27) thus im-
plies μ= 0, and from Eq. (11.26) we see that the system contains an equal number
of positive and negative particles, in addition to the neutral ones. We thus have

lnZ(T ,V,μ= 0)= V [z0 + 2z1] (11.29)

for the corresponding grand canonical partition function.
Such a grand canonical formulation provides a correct description of the system

only if it contains sufficiently many charged particles, so that fluctuations can be
neglected. If there are only very few such particles, charge conservation has to be
implemented exactly, not on the average. One thus has to “project” out the section of
phase space associated to a fixed quantum number. We define the partition function
at fixed Q as

ZQ(T ,V )= TrQ
[
exp

{−(H/T )}]= Tr
[
exp

{−(H/T )}PQ], (11.30)

where PQ is the corresponding projection operator onto a fixed charge Q [14, 16–
18]. The partition function ZQ(T ,V ) is thus a sum over all possible N = 2,3, . . .
particle clusters of fixed total chargeQ. Using it, the grand canonical partition func-
tion (11.17) can be “re-organized”, i.e., rewritten as a sum overQ instead of as sum
over N ,

Z(T ,V,μ)=
Q=+∞∑
Q=−∞

ZQ(T ,V )λ
Q, (11.31)

where

λ= exp{μ/T } (11.32)

is the corresponding fugacity. Each term in the sum (11.31) is grand-canonical in
terms of particle number, but canonical in charge. The series (11.31) can be inverted
to obtain the partition function ZQ(T ,V ) at fixed charge Q, using the Cauchy for-
mula. The result is

ZQ(T ,V )= 1

2π

∫ −π

−π
dφ e−iQφZ̃(T ,V,φ), (11.33)

with the function Z̃(T ,V,φ) obtained from the grand canonical partition function
Z(T ,V,μ) by a Wick rotation μs/T → iφ, so that λ→ exp{iφ}.

For our system containing charges 0,±1, we thus obtain

ZQ(T ,V )= 1

2π

∫ π

−π
dφ e−iQφeV [z0+2z1 cosφ], (11.34)
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so that the “charge-canonical” partition function for exactly vanishing overall charge
Q= 0 becomes

Z0(T ,V )= 1

2π
eV z0

∫ π

−π
dφ e2V z1 cosφ = 1

π
eV z0I0(2V z1), (11.35)

where I0(x) is the Bessel function of purely imaginary argument. From this we get

lnZ0(T ,V )= V
[
z0 + 1

V
ln I0(2V z1)

]
. (11.36)

Comparing Eq. (11.32) to the grand canonical form (11.26), we see that the exact
conservation of charge leads to the replacement

z1 → 1

V
ln I0(2V z1). (11.37)

Since for large argument

I0(x)= ex√
2πx

[
1 +O(1/x)], (11.38)

the two forms become identical in the large volume limit, as expected. For small V ,
corresponding to small particle numbers, the contribution of the charged particles
is suppressed relative to that of the neutral particles, if the overall charge is fixed
to zero. It can be shown, in fact, that the canonical (c) and grand canonical (gc)
densities nQ of particles of charge Q are related by [14]

ncQ � ngcQ
{
IQ(2V zQ)

I0(2V zQ)

}
. (11.39)

This relation is approximate, since it neglects the possibility of multiply-charged
states; the role of these is addressed in [14]. Since I1(x)/I0(x)→ 1 for x → ∞,
exact charge conservation leads to an effective charge suppression by a factor ap-
proaching unity in the large volume limit. Since the volume V is determined by the
overall multiplicity, which in turn grows with the collision energy, the suppression
of the form (11.39) disappears with increasing

√
s.

The formalism just sketched for the case of an Abelian (additive) charge 0,±1
can be extended to several Abelian as well as non-Abelian charges [14, 16–18];
for details, we refer to the cited works. We note here only that while exact baryon
number conservation does lead to the correct non-strange abundances in elemen-
tary hadron-hadron collisions and in e+e− annihilation, the strangeness reduction
obtained through exact strangeness conservation is not sufficient to account for the
reduced strange particle production observed in these reactions. This requires an ad-
ditional suppression, as given, e.g., by the suppression factor γs applied per strange
quark in the hadron in question, as discussed above.
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Chapter 12
The Event Horizon of Confinement

God does play dice, but He sometimes throws them where they
can’t be seen.

Stephen Hawking

Color confinement constitutes for quarks and gluons something like an event hori-
zon which they can never cross. Signals transmitted to the outside world from inside
such a horizon cannot contain information and must thus be of thermal nature. In
this chapter, we consider multihadron production in high energy collisions as the
QCD counterpart of Hawking-Unruh radiation, encountered in black holes and for
accelerated observers. This is shown to provide a common, “non-kinetic” origin for
thermal multihadron production.

12.1 Black Holes and Event Horizons

The one feature which makes quantum chromodynamics basically different from
all other atomistic theories is that its fundamental constituents, quarks and gluons,
are colored, and by color confinement they are not allowed to exist as individual
entities in the world we can observe. It is not that we cannot register their effects;
but a single quark or gluon can never be observed as an isolated object, in contrast
to a single proton or electron, for example.

When color confinement was first proposed, it seemed natural to recall the only
other case where things remain in principle beyond our reach: black holes. A black
hole is the final stage of a neutron star after gravitational collapse [1]. It has a mass
M concentrated in such a small volume that the resulting gravitational field confines
all matter and even photons to remain inside the “event horizon” R of the system:
no causal connection with the outside world is possible.

Could it be that a hadron, containing colored constituents that cannot get out,
is something like a black hole of strong interaction physics? In general relativity,
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forces are assumed to modify the underlying space-time manifold. The space-time
metric of this manifold is given by

ds2 = g0 dt
2 − g−1

0 dr2 − d2�, (12.1)

with r and � specifying the spatial part, and t the time; for flat space, we have
g0 = 1. The event horizon of a (spherical) black hole is determined by the point at
which this metric is so deformed that space and time interchange, i.e., the point at
which g0 = 0. For gravitation, the Einstein equations give

g0 =
(

1 − 2GM

r

)
, (12.2)

which leads to the Schwarzschild radius of a black hole,

R = 2GM, (12.3)

where G� 6.7 × 10−39 GeV−2 is the gravitational constant and M the mass of the
system.

It is therefore instructive to consider the Schwarzschild radius of a typical hadron,
assuming a mass m∼ 1 GeV,

Rhad
g � 1.3 × 10−38 GeV−1 � 2.7 × 10−39 fm. (12.4)

To become a gravitational black hole, the mass of the hadron would thus have to
be compressed into a volume more than 10100 times smaller than its actual volume
(with a radius of about 1 fm). On the other hand, if instead we increase the in-
teraction strength from gravitation to strong interaction [2], we gain in the resulting
“strong” Schwarzschild radius Rhad

s a factor αs/Gm2, where αs is the dimensionless
strong coupling and Gm2 the corresponding dimensionless gravitational coupling
for the case in question. This leads to

Rhad
s � 2αs

m
(12.5)

which for the limiting value of the strong coupling [3], αs � 3, gives Rhad
s = 1.2 fm.

In other words, the confinement radius of a hadron is about the size of its “strong”
Schwarzschild radius, so that we could picture quark confinement as the strong inter-
action version of the gravitational confinement in black holes [2, 4]. In this chapter,
we want to show that the analogy between gravitational and color confinement can
in fact lead to other interesting consequences.

At this point it is of interest to note that the event horizon can be specified also
for more general black holes than the Schwarzschild type just considered. The only
properties black holes are allowed to have, besides mass, are charge and spin. Both
tend to reduce the event radius obtained through gravity alone. An overall charge
results in Coulomb repulsion, an overall spin in centrifugal force. Both counteract
the attraction by gravity and thus lower the event horizon. In particular, one finds
[1]

RRN =GM(
1 +

√
1 − (

Q2/GM2
))

(12.6)
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for the so-called Reissner-Nordström black hole having an overall charge Q. It is
seen that forQ2 =GM2, the radius of the event horizon is reduced by a factor two,
compared to an uncharged black hole.

To prove that QCD leads to a color event horizon implies proving color confine-
ment and hence is a million dollar project.1 In the case of gravitation, the solution of
the Einstein equations provides the metric coefficient g0 (Eq. (12.2)). Another case
is electrodynamics in a non-linear background field, where the motion of photons
can be restricted to a compact region of space [5]. There it is shown that an effective
Lagrangian L(F ), depending on a background field F = FμνFμν , leads to a metric

g0 = L′ − 4FL′′, (12.7)

where the primes indicate the first and second derivatives of L with respect to F .
Thus g0 = 0 here defines the compact spatial region of the theory, i.e., the coun-
terpart of a black hole. QCD is an inherently non-linear theory, with the physical
vacuum playing the role of the medium [6]. Here one can also formulate an effec-
tive Lagrangian depending on a Yang-Mills background field [7–10],

LQCD(F )= 1

4
ε(F )FμνF

μν, (12.8)

where ε(F ) denotes the dielectric parameter of the medium; it is the F -dependence
of ε(F ) which makes the vacuum non-linear. The problem is that the solution of the
metric relation g0(F )= 0, with g0 given by Eq. (12.7), requires a non-perturbative
calculation of ε(F ). So far, only a perturbative solution exists, which does suggest
an event horizon [11, 12].

12.2 Accelerated Frames and Unruh Radiation

Starting from the basic concept of a black hole, studies in the course of the past
decades have led to a unification of a number of seemingly different phenomena.
First, Hawking had shown that black holes do send signals to the outside world:
quantum fluctuations just outside the Schwarzschild surface (or, equivalently, tun-
nelling through that surface from inside the black hole) result in the emission of
thermal radiation [13]. Unruh then found that, more generally, an observer in a ref-
erence frame undergoing constant acceleration would see the physical vacuum as a
thermal medium of a temperature determined by the acceleration [14]. The equiva-
lence principle between gravity and accelerated frames made the Hawking radiation
a special case of that obtained by Unruh. More recently, it was furthermore noted
that the Schwinger mechanism [15] for particle production in a strong electric field
is in fact also very closely related to Unruh radiation [16–20]. It therefore seems
quite possible that “thermal” multiparticle production in strong interaction physics

1The Clay Mathematics Institute, Cambridge MA, USA, has posted a list of Millennium Problems,
whose solutions will in each case be awarded with a million dollar prize; problem no. 7 is the proof
on color confinement in Yang-Mills Theory.
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Fig. 12.1 Hyperbolic motion of a mass m in uniform acceleration a

is yet another instance of such radiation, with the acceleration and hence the tem-
perature determined by the string tension confining color charges [12]. Let us look
at these different aspects in more detail, beginning with the idea of Unruh radiation.

Assume that we have a mass m travelling through vacuum with a uniform accel-
eration a. The classical equation of motion then is

d

dt

mv√
1 − v2

= F (12.9)

where v = dx/dt is the velocity, F =ma the force acting on m, and we have taken
c= 1. Its solution has the hyperbolic form [21], with τ denoting the proper time,

x = 1

a
coshaτ, t = 1

a
sinhaτ, (12.10)

which is illustrated in Fig. 12.1a for the boundary conditions t = −∞, x = +∞ and
t = ∞, x = ∞. There thus exists a part of the world, a hidden region bounded by
an “event horizon” x = t , which m can never reach as long as it maintains its accel-
eration. Similarly, no observer in the hidden region can ever communicate with m.

As the mass passes through the vacuum, a part of its acceleration energy can
be used to excite on-shell one of the ever-present virtual vacuum fluctuations. In
Fig. 12.1b, this is illustrated for an e+e− fluctuation: the e+ is absorbed by a de-
tector on m, while the e− disappears beyond the event horizon. An equivalent way
of describing this phenomenon is to note that an e−, emitted from m, by quantum
tunnelling through the event horizon reaches the hidden region. Such behavior is to-
day called “quantum entanglement” (Einstein-Podolsky-Rosen effect [22, 23]): an
observer on m measuring the e+ has only incomplete information, since the e− has
disappeared beyond the event horizon and is thus forever gone. The same holds for
an observer in the hidden region, who can never access the e+. Because of this prin-
cipal lack of complete information, either observer can only see thermal radiation,
unable to transmit an information-carrying signal across the horizon. As a conse-
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quence, the observer on m sees the physical vacuum as a thermal medium, a heat
bath of electrons, of the Unruh temperature

TU = �a

2πc
. (12.11)

Correspondingly, an observer in the hidden region registers the passage of m by
measuring radiation of the same temperature. We have here explicitly included c
and �, which otherwise are taken to be unity; they show that the phenomenon is a
relativistic quantum effect, which would disappear for c→ ∞ or �→ 0.

We can now use this formalism to derive the temperature of Hawking radiation.
For acceleration due to gravity, the force is given by

F =ma =GMm
R2

, (12.12)

so that the acceleration becomes

a = GM

R2
= 1

4GM
; (12.13)

for the last step, we have made use of the fact that the horizon of the black hole is
defined by the vanishing of g0, leading to the Schwarzschild radius (12.3). Inserting
this into the Unruh formula (12.11) gives

TBH(M)= 1

8πGM
, (12.14)

the temperature for Hawking radiation from a black hole. This result can be ex-
tended to the case of a Reissner-Nordström black hole with an overall charge Q;
Eq. (12.12) has to be modified to include the Coulomb force [1]. In this way one
obtains

TBH(M,Q)= TBH(M,0)

{
4
√

1 − (Q2/GM2)

(1 +√
1 − (Q2/GM2))2

}
(12.15)

for the Hawking temperature T (M,Q) as a function of mass M and charge Q.
For Q= 0, it is seen to reduce to the temperature of the Schwarzschild black hole,
while for Q2 = GM2 (denoted as extremal Reissner-Nordström black hole), the
temperature vanishes. As a result, we obtain here a “phase diagram” in T and Q2

which is quite similar to that found in Chap. 7 for strongly interacting matter as
function of T and baryochemical potential μ; it is illustrated in Fig. 12.2. For further
discussion of this “duality”, see [12]; it evidently raises a rather general interesting
question: is there a relation between critical behavior and the existence of an event
horizon? For some work in this context, see [24].

Another example of Unruh radiation is given by the Schwinger mechanism for
pair production [15]. Here the basic observation is that in a strong electric field E , the
physical vacuum becomes unstable against pair production: when the local energy
density becomes larger than the mass of an electron-positron pair, the field energy
brings such a pair on-shell, out of the vacuum sea. The probability for this is given
by

P(m,E)∼ exp
{−πm2/eE

}
, (12.16)
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Fig. 12.2 Radiation temperature for a charged black hole

where e is the charge of the electron. With the equation of motion

F = eE = (m/2)a, (12.17)

where m/2 is the reduced mass of an electron in the pair, we obtain as Unruh tem-
perature

TU = a

2π
= eE
πm

, (12.18)

which with

P(m,E)∼ exp{−m/TU } (12.19)

gives the Schwinger form (12.16). For more elaborate discussion of the Schwinger
mechanism as Unruh effect, see [16–20].

In summary: an event horizon does not allow information transfer across it. It can
only be passed by quantum tunnelling, leading to stochastic radiation on the other
side [25, 26]. We now want to apply this formalism to hadron production in strong
interaction.

12.3 Pair Production in e+e− Annihilation

As starting point, we consider e+e− annihilation into hadrons at cms energy
√
s. In

lowest order, the resulting virtual photon couples to a color-singlet quark-antiquark
pair,

e+e− → γ ∗ → qq̄; (12.20)

see Fig. 12.3. The qq̄ pair will subsequently produce the multihadron final state in
the form of two hadronic jets.

The primary qq̄ pair flies apart, but because of color confinement it remains
subject to a binding force which increase with separation. Describing this in terms
of a classical string, specified by a string tension σ , provides a constant confining
force and thus results in hyperbolic motion of the type discussed in the previous
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Fig. 12.3 Quark pair production in e+e− annihilation

section [27]. At t = 0, the q and q̄ separate with an initial velocity v0 = p/p0, where
p is the momentum and p0 = (p2 +m2)1/2 � √

s/2 the energy of the primary q or
q̄ in the overall cms; m specifies the effective quark mass. The qq̄ pair is bound by
the string potential

V = σx, (12.21)

defined by the string tension σ and the qq̄ separation distance x. The classical event
horizon can be defined as the value x = x∗ for which the initial kinetic energy be-
comes equal to the potential energy, i.e., when

m√
1 − v2

0

= σx∗. (12.22)

We thus get

x∗ = p0 −m
σ

�
√
s

2mσ
, (12.23)

which allows the q and the q̄ to separate arbitrarily far, provided the initial energy
was high enough; the classical horizon grows with

√
s, as illustrated in Fig. 12.4.

This clearly violates color confinement; what went wrong?

Fig. 12.4 Classical and quantum horizons in qq̄ separation

Our mistake was to treat the quantum system qq̄ in classical terms; in quantum
field theory, the background medium of the qq̄ contains virtual qq̄ pairs, and hence
it is not possible to increase the potential energy of a given qq̄ state beyond the
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threshold value necessary to bring such a virtual qq̄ pair on-shell. In QED, as we
had just seen in the previous section, the presence of a strong electric field leads to
the production of electron-positron pairs. In QCD, we expect a similar effect when
the string tension exceeds the pair production limit, i.e., when

σx > 2m (12.24)

where m again specifies the effective quark mass. Beyond this point, it becomes
energetically favorable to produce a further qq̄ pair and start two new string con-
figurations, rather than to continue stretching the primary string (see Fig. 12.3b).
This acts like a quantum event horizon x∗

q � 2m/σ , which becomes operative long
before the classical turning point is ever reached; in Fig. 12.4 we compare the two
event horizons. Moreover, the allowed separation distance for our qq̄ pair, the color
confinement radius rq = x∗

q/2 �m/σ , now no longer depends on the initial energy
of the primary quarks. Let us look at the resulting hadron production cascade for
e+e− annihilation in more detail.

The hadronization of the jets formed by the primary quark and antiquark is be-
lieved to proceed in the form of a self-similar cascade [28, 29]. Initially, we have
the separating primary qq̄ pair,

γ → [qq̄] (12.25)

where the square brackets indicate color neutrality. When the energy of the string
connecting the pair becomes large enough, a further color-neutral pair q1q̄1 is ex-
cited from the vacuum by two-gluon exchange (see Fig. 12.5),

γ → [
q[q̄1q1]q̄

]
. (12.26)

The q̄1 now screens the primary q from its original partner q̄ , with an analogous
effect for the q1 and the primary antiquark. Although the new pair is at rest in the
overall cms, each of its constituents has a transverse momentum kT determined,
through the uncertainty relation, by the transverse dimension rT of the “flux tube”
resulting from the connecting string. To estimate the qq̄ separation distance at the
point of pair production, we need to include this transverse momentum in the effec-
tive quark mass in Eq. (12.24). The thickness of the flux tube connecting the qq̄ pair
is in string theory given by [30]

r2
T = 2

πσ

K∑
k=0

1

2k+ 1
, (12.27)

whereK is the string length in units of an intrinsic vibration measure. Lattice studies
[31] show that for strings in the range of 1–2 fm, the first string excitation dominates,
so that we have

rT �
√

2

πσ
. (12.28)

Higher excitations lead to a greater thickness and eventually to a divergence (the
“roughening” transition). From the uncertainty relation we then have

kT �
√
πσ

2
. (12.29)
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When this transverse momentum is included in Eq. (12.24), we obtain for the pair
production separation xQ

σxq = 2
√
m2
q + k2

T ⇒ xq � 2

σ

√
m2
q + (πσ/2)�

√
2π

σ
� 1 fm, (12.30)

with σ = 0.2 GeV2 and m2
q � σ for the bare quark mass.

Fig. 12.5 Secondary quark pair production in e+e− annihilation

Once the new pair is present, we have a color-neutral system qq̄1q1q̄ , and in
principle it could now separate into to color neutral pairs qq̄1 and q̄q1, flying apart.
To form two eventual hadrons [qq̄1] and [q̄q1], the force between the q and the q̄1

would have to accelerate the latter from (longitudinal) rest to about half the momen-
tum of the former, and correspondingly for the [q̄q1]. On the left side of Fig. 12.5,
we thus have a constantly accelerating quark, the q̄1, and a constantly decelerating
quark, the primary q; an analogous situation holds on the right.

To separate the two pairs qq̄1 and q̄q1, the string potential corresponding to the
color confinement of the newly formed q1q̄1 pair has to be overcome—the primary
string so far is not yet “broken”. To break the binding of the new pair, the q1 has
to tunnel through the barrier of the confining potential provided by the q̄1, and vice
versa. Now the longitudinal force of the q on the q̄1, and of the q̄ on the q1, results
in a longitudinal acceleration and ordering of q1 and q̄1. When (see Fig. 12.6)

σx(q1q̄1)= 2
√
m2
q + k2

T , (12.31)

the q̄1 reaches its q1q̄1 horizon; equivalently, the new string qq̄1 reaches the energy
needed to produce a further pair q2q̄2. The q̄2 screens the primary q from the q1 and
forms a new string qq̄2. At this point, the original string is broken, and the remaining
pair q̄1q2 forms a color neutral bound state which is emitted as Hawking-Unruh
radiation in the form of a hadron, with the relative weights of the different possible
states governed by the corresponding Unruh temperature. The resulting pattern is
schematically illustrated in Fig. 12.6.

To determine the temperature of the hadronic Hawking radiation, we note that
the produced antiquark q̄1 is accelerated by the primary quark q because of the
string tension σ ; similarly the q̄2, and so on along the cascade. Hence the anti-
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Fig. 12.6 String breaking through qq̄ pair production

quark acceleration (as well as the quark acceleration along the primary q̄ direction)
becomes

aq = σ

wq
= σ√

m2
q + k2

q

, (12.32)

where wq = (m2
q + k2

q)
1/2 is the effective mass of the produced quark or antiquark,

with mq for the bare quark mass and kq the associated quark momentum due to the
spatial uncertainty. Since the string breaks for xq given by Eq. (12.30), the uncer-
tainty relation kq � 1/xq gives

wq =
√
m2
q + [

σ 2/
(
4m2

q + 2πσ
)]

(12.33)

for the effective quark mass. The resulting Unruh temperature is thus given by

Tq � σ

2πwq
�
√
σ

r2π
, (12.34)

where in the last term we have assumed a negligible bare quark mass. For the canon-
ical string tension range, σ � 0.16–0.20 GeV2, this leads to

Tq � 160–180 MeV (12.35)

for the hadronic Unruh temperature. Note that, for a given string tension, this is a
parameter-free prediction of the temperature governing hadron production in e+e−
annihilation. It agrees well with the hadronization temperature determined in the
lattice evaluation of statistical QCD.

A given step in the evolution of the hadronization cascade of a primary quark
or antiquark produced in e+e− annihilation thus involves several distinct phenom-
ena. The color field created by the separating q and q̄ produces a further pair q1q̄1
and then provides an acceleration of the q1, increasing its longitudinal momentum.
When it reaches the q1q̄1 confinement horizon, still another pair q2q̄2 is excited; the
state q̄1q2 is emitted as a hadron, the q̄2 forms together with the primary q a new
flux tube. This pattern thus step by step increases the longitudinal momentum of the
“accompanying” q̄i as well as that of the emitted hadron. This, together with the
energy of the produced pairs, causes a corresponding deceleration of the primary
quarks q and q̄ , in order to maintain overall energy conservation. In Fig. 12.7, we
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Fig. 12.7 Quark acceleration and hadronization world lines

show the world line given by the acceleration q̄i → q̄i+1 (qi → qi+1) and that of the
formation threshold of the hadrons q̄iqi+1 and the corresponding antiparticles.

The energy loss and deceleration of the primary quark q in this self-similar cas-
cade, together with the acceleration of the accompanying partner q̄i from the suc-
cessive pairs, brings q and q̄i closer and closer to each other in momentum, from an
initial separation qq̄1 of

√
s/2, until they finally are combined into a hadron and the

cascade is ended. The resulting pattern is shown in Fig. 12.8.

Fig. 12.8 Hadronization in e+e− annihilation

The number of emitted hadrons, the multiplicity ν(s), follows quite naturally
from the picture presented here. The classical string length, in the absence of quan-
tum pair formation, is given by the classical turning point determined in Eq. (12.23).
The thickness of a flux tube of such an “overstretched” string is known [30]; from
Eq. (12.27) we get

R2
T = 2

πσ

K∑
k=0

1

2k+ 1
� 2

πσ
ln 2K, (12.36)

where K is the string length. From Eq. (12.23) we thus get

R2
T � 2

πσ
ln

√
s (12.37)

for the flux tube thickness in the case of the classical string length. In parton lan-
guage, the logarithmic growth of the transverse hadron size is due to parton random
walk (“Gribov diffusion” [32]); this phenomenon is responsible for diffraction cone
shrinkage in high-energy hadron scattering.
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Because of pair production, the string breaks whenever it is stretched to the length
xq given in Eq. (12.30); its thickness rT at this point is given by Eq. (12.27). The
multiplicity can thus be estimated by the ratio of the corresponding classical to
quantum transverse flux tube areas,

ν(s)∼ R2
T

r2
T

∼ ln
√
s, (12.38)

and is found to grow logarithmically with the e+e− annihilation energy, as is ob-
served experimentally over a considerable range.

We note here that in our argumentation we have neglected parton evolution,
which can cause the emitted radiation (e.g., q̄1q2 in Fig. 12.6) to start another cas-
cade of the same type. Such evolution effects result eventually in a stronger increase
of the multiplicity. The hadronization mechanism discussed here does not affect the
formation of hard processes at early times (e.g., multiple jet production), which is
responsible for an additional growth of the measured multiplicity.

A further effect we have not taken into account here is parton saturation. At suf-
ficiently high energy, stronger color fields can lead to gluon saturation and thus to a
higher temperature determined by the saturation momentum [33, 34]. The resulting
system then first expands and subsequently hadronizes at the universal temperature
determined by the string tension.

The hadronic Unruh temperature given by Eq. (12.34) contains a dependence on
the bare quark mass; we have so far neglected this, assumingmq � √

σ � 400 MeV.
Such an assumption is reasonable for u and d quarks, but not really for strange
quarks, with a mass of around 100 MeV. If we retain the quark mass dependence,
the Unruh radiation of a meson containing one strange (s) and one non-strange (q)
quark is determined by the average acceleration

āqs = wqaq +wsas
wq +ws = 2σ

wq +ws , (12.39)

where wq and ws are the corresponding effective masses. From this the Unruh tem-
perature of a strange meson is given by

Tqs � σ

π(wq +ws) . (12.40)

Similarly, the temperature of a φ meson, consisting of a ss̄ pair, becomes

T (ss)� σ

2πws
. (12.41)

For typical values σ � 0.2 GeV2 and ms � 0.1 GeV, this leads to temperatures

Tqq = 178 MeV, Tqs = 167 MeV, Tss = 157 MeV. (12.42)

The relative abundance of a given species is determined by its hadronization tem-
perature (see Chap. 11); e.g., schematically

N(qq)∼ exp
{−m(qq)/Tqq}, N(ss)∼ exp

{−m(ss)/Tss}. (12.43)
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The decrease of the temperature for mesons containing strange quarks thus corre-
sponds to an effective suppression of such states, compared to those containing only
light quarks, and it was shown [35] that this mechanism can in fact account for
the strangeness suppression observed in elementary collisions. In a description of
hadronization as Unruh radiation, there thus is no longer any need for an ad hoc
strangeness suppression factor, introduced in the usual resonance gas analysis (see
Chap. 11).

This line of argument can be extended to strange baryons as well, leading to
altogether five different Unruh temperatures, depending on the strangeness content
of the hadron in question. These temperatures are, however, given in terms of only
two “parameters”, the string tension σ and the strange quark mass ms . Since these
two are both determined in various other contexts [36–42] and can be taken as given,
the resulting description is again parameter-free. The strange quark mass is presently
listed asms = 0.095±0.025 GeV [36], and the string tension average as σ = 0.19±
0.02 GeV2 [37–42]. Fits of hadron production data in e+e− annihilation covering
all presently available energies, from

√
s = 14 to 190 GeV, have shown that these

values indeed reproduce very well the observed abundances [35].

12.4 Hadronic Collisions

Up to now, we have considered hadron production in e+e− annihilation, in which
the virtual photon produces a confined colored qq̄ pair as a “colorless hole”. Turn-
ing now to hadron-hadron collisions, we note that here two incident colorless holes
fuse to form a new system of the same kind, as schematically illustrated in Fig. 12.9.
Again the resulting string or strong color field produces a sequence of qq̄ pairs of
increasing cms momentum, leading to the well-known multiperipheral hadropro-
duction cascade shown in Fig. 12.10. We recall here the comments made above
concerning parton evolution and saturation; in hadronic collisions as well, these
phenomena will affect the multiplicity, but not the relative abundances.

Fig. 12.9 “Colorless hole” structure in e+e− annihilation (a) and hadronic collisions (b)

In the case of nucleus-nucleus collisions, we have a superposition of many such
tunnelling cascades, with possible interference. In principle, the dense medium con-
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Fig. 12.10 Hadronization in hadron-hadron collisions

sisting of Hawking-Unruh radiation from the different cascades can lead to rear-
rangement of quarks, so that a final hadron can consist of a quark from one cascade
and an antiquark from another, as illustrated in Fig. 12.11. Such a rearrangement is
a quantum-mechanical interference effect, occurring on short space and time scales;
hadronic interactions, if they occur, set in when the medium is much more dilute,
allowing hadronic scales to become operative.

12.5 Strange Particle Production

Through multiple interference of this kind, the differences between hadronization
temperatures will be removed, leading to one final temperature. As a result, there
now is no more suppression of strange hadron production—all hadrons are produced
according to phase space at one universal temperature.

Fig. 12.11 Hadron formation in elementary (left) and in nucleus-nucleus (right) collisions

Since the axes of the different cascades will be slightly shifted in a random way
by the interactions, this will also lead to a broadening of the transverse momentum
distributions of the emitted hadrons [43]; this effect is illustrated in Fig. 12.12.
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Fig. 12.12 Transverse momentum broadening in nuclear collisions

12.6 Stochastic Thermalization

In statistical mechanics, a basic topic is the evolution of a system of many degrees
of freedom from non-equilibrium to equilibrium. Starting from a non-equilibrium
initial state of low entropy, the system is assumed to evolve as a function of time
through collisions to a time-independent equilibrium state of maximum entropy. In
other words, the system loses the information about its initial state through a se-
quence of collisions and thus becomes thermalized. In this sense, thermalization in
nuclear collisions was studied as the transition from an initial state of two collid-
ing beams of “parallel” partons to a final state in which these partons have locally
isotropic distributions. This “kinetic” thermalization requires a sufficient density of
constituents, sufficiently large interaction cross sections, and an amount of time suf-
ficient for equilibration.

From such a point of view, the observation of thermal hadron production in high
energy collisions, in particular in e+e− and pp interactions, is a puzzle: how could
these systems ever “have reached” thermalization? Already Hagedorn [44–46] had
therefore concluded that the emitted hadrons were “born in equilibrium”. Even given
an exponentially increasing resonance mass spectrum, it remained totally unclear
why collisions should result in a thermal system.

Hawking-Unruh radiation provides a stochastic rather than kinetic approach to
equilibrium, with a randomization essentially provided by the quantum physics of
the Einstein-Podolsky-Rosen effect. The barrier to information transfer presented by
the event horizon requires that the resulting radiation states excited from the vacuum
are distributed according to maximum entropy, with a temperature determined by
the strength of the “confining” field. In other words, the produced state is selected at
random from the set of all states corresponding to this temperature. The ensemble
of all produced hadrons then results in the same equilibrium distribution as would
be obtained in hadronic matter by kinetic equilibration.

We thus encounter here something like an ergodic equivalence principle. In gen-
eral relativity, the effects of gravitation and acceleration become equivalent; a given
observer cannot distinguish a gravitational attraction from an accelerating reference
frame. Here, in a similar way, the observer cannot tell whether the observed equi-
librium was attained by stochastic selection or by kinetic thermalization.

In the case of a very high energy collision with a high average multiplicity, al-
ready one event can provide such equilibrium; because of the interruption of infor-
mation transfer at each of the successive quantum color horizons, there is no phase
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relation between two successive production steps in a given event. The destruction
of memory, which in kinetic equilibration is achieved through sufficiently many
successive collisions, is here automatically provided by the tunnelling process.

So the thermal hadronic final state in high energy collisions is not reached
through a kinetic process; it is rather provided by successively throwing dice. This
origin of thermal hadron production moreover also provides an explanation for the
observation that the hadronization temperature in collision processes is the same as
that found for the hadronization of a quark-gluon plasma in statistical QCD. In such
a medium as well, hadronization occurs when cooling and expansion “threaten” to
separate a given quark from any possible antiquark partner by more than the canon-
ical hadronic distance. Through dilution all the colored quarks thus are forced to
reach their event horizons, leading to hadronic Unruh radiation. In other words,
what we observe in high energy collisions is simply a specific case of the general
phenomenon causing the hadronization of a colored medium.

12.7 Conclusions

We have shown that quantum tunnelling through the color confinement horizon
leads to thermal hadron production in the form of Hawking-Unruh radiation. In
particular, this implies:

• The radiation temperature Tq is determined by the force of color deconfinement,
giving (for light quarks)

Tq �
√
σ

2π
, (12.44)

in terms of the string tension σ . For strange quarks, the larger quark mass ms
leads to a slightly reduced temperature; this accounts for the strangeness suppres-
sion observed in elementary collisions. In nuclear collisions, these temperature
differences are reduced by interference effects between different radiation cas-
cades.

• The multiplicity ν(s) of the produced hadrons is approximately given by the in-
crease of the flux tube thickness with string length, leading to

ν(s)� ln
√
s, (12.45)

where
√
s denotes the center-of-mass collision energy. Parton evolution and gluon

saturation will, however, increase this multiplicity, as will early hard production.
The universality of the resulting abundances is, however, not affected.

• In statistical QCD, thermal equilibrium is reached kinetically from an initial non-
equilibrium state, with memory destruction through successive interactions of the
constituents. In high energy collisions, tunnelling prohibits information transfer
and hence leads to stochastic production, so that we have a thermal distribution
from the outset.
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Chapter 13
Outlook

Et le géographe, ayant ouvert son registre, tailla son crayon. On
note d’abord au crayon les récrits des explorateurs. On attend,
pour noter a l’encre, que l’explorateur ait fourni des preuves.

Antoine de Saint-Exupéry, Le Petit Prince

[And the geographer opened his register and sharpened his
pencil. One first writes down in pencil the stories of the
explorers. Before writing them in ink, one waits until the
explorer has furnished proofs.

Antoine de Saint-Exupéry, The Little Prince]

Strong interaction thermodynamics, based on quantum chromodynamics as funda-
mental interaction theory, predicts the quark-gluon plasma as a new state of matter.
This prediction is in nature similar to that of the existence of Bose-Einstein con-
densates or of black holes. Given QCD as basic theory, the existence of the QGP
follows. To theory, the challenge is to determine as many features of this new state
as possible. This is quite a particular challenge, since we are dealing with a rela-
tivistic quantum field theory in a regime where, clearly, the interaction cannot be
addressed by perturbative techniques. So far, the computer simulation of the lattice
formulation appears to be the only viable approach for ab initio calculations in the
temperature range of interest to possible experimental applications. Fortunately, the
development of ever more powerful and more efficient computing facilities makes
the continuum extrapolation even for full QCD only a matter of time. Complemen-
tary progress in analytic studies should then lead to a meeting of numerical with
perturbative approaches. In any case, for the interpretation of the results, accompa-
nying model or “effective” theory studies have so far been indispensable, and they
may well remain so.

Experimentally, the obvious challenge is to produce and study the predicted new
state of matter in the laboratory. Also here we have quite a novel challenge. What
exactly is the quark-gluon plasma from an empirical point of view? Given the def-
inition and the specification of essential properties by statistical QCD: what can
and must be measured in order to claim that the QGP was indeed formed in the
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nuclear collisions studied? And moreover, experiments can observe unexpected fea-
tures which statistical QCD then a posteriori finds to be specific properties of the
QGP. So the search for the QGP in the laboratory obviously requires intensive com-
plementary theoretical and experimental efforts. It should be kept in mind, however,
that the problem cannot be solved by defining the results of high energy nuclear
collision experiments per se as QGP production, however novel they might be.

The observable phenomena discussed in this book, hadronic and electromagnetic
radiation, quarkonium dissociation and jet quenching, can, in principle, provide cru-
cial information on the nature of the QGP; but they might also arise from more
mundane initial state as well as pre-thermal or confined final state sources. So the
identification of measured features as due to QGP formation is clearly a difficult
task. It is perhaps of some consolation that the Bose-Einstein condensate was pre-
dicted in 1924 and first observed experimentally in 1995. We may well need more
patience.

The straight-forward “canonical” approach would be to measure, if possible, spe-
cific features which have been calculated in statistical QCD. Quantum chromody-
namics itself was established in this way, by showing that hard scattering processes
and the associated running coupling agree with the calculations of perturbative
QCD. A conceivable example of this type was discussed in Chap. 10: the disso-
ciation of quarkonia. The dissociation temperatures and energy densities of up to
ten different charmonium and bottomonium states can, in principle, be determined
theoretically, although so far, this determination is far from conclusive. Through
the dependence of quarkonium production on centrality and on collision energy, it
seems feasible to determine the energy densities at which the different states are
dissolved. Do they match with the theoretical dissociation points? Obviously, it is
a primary task to obtain for other probes similar relations between experiment and
QCD calculations.

Undoubtedly it can be said today that the QGP search by means of nuclear colli-
sion experiments has led to the observation of various novel features and the creation
of an environment hotter and denser than ever before. A variety of phenomenolog-
ical considerations suggest that, indeed, QGP formation provides a common expla-
nation. But except for one observation, we have so far not yet reached the point of
directly matching data with QCD calculations. The forthcoming experiments at the
CERN-LHC are thus accompanied by great hopes and expectations.

The one feature which has emerged over the years in high energy hadron in-
teractions is the existence of a universal hadronization temperature, which in fact
coincides with the confinement/deconfinement temperature calculated in statisti-
cal QCD. The relative abundances of the hadron species produced in all high
energy collisions are in agreement with a resonance-gas temperature of about
160–170 MeV. As mentioned in Chap. 12, the observation of this fact in elemen-
tary collisions cannot be easily accommodated in a kinetic thermalization scenario.
On the other hand, it may well point to a universal hadronization mechanism, which
becomes operative whenever quarks are forced to separate beyond a confinement
distance. In elementary collisions, this occurs dynamically, in parton cascades; in
a hot QGP, it occurs thermally, when the medium expands, cools off and the con-
stituents are forced to separate in a way to retain color neutrality. Nucleus-nucleus
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collisions could, in principle, follow either or both of the two routes. In any case,
at present the quantitative empirical information we can compare to QCD calcula-
tions concerns the end of the new state of matter. It specifies the parameter at which
the unknown pre-hadronic world turns into our conventional world of color-neutral
hadrons in a physical vacuum.

And so for the time being, the challenge remains, concerning an unambiguous
experimental determination and study of the quark-gluon plasma itself. We have
numerous promising and exciting indications pointing “in the right direction”, but
we still have to identify that measurable phenomenon which can also be calculated
in and compared to statistical QCD studies. Besides this, there are at least two fur-
ther, more theoretical challenges.

At low or vanishing baryon density, lattice studies give us the temperature-
dependence of the energy density, the specific heat, and other thermodynamic ob-
servables above deconfinement. It is not clear, however, what the origin of the
observed behavior is. Eventually some form of effective field theory should hold,
but in the critical region, up to 2Tc or more, they must fail. What mechanism domi-
nates there? In the critical regime below Tc , resonance formation appears to provide
a reasonable conceptual picture of what is happening. Above Tc , we don’t yet have
a corresponding scenario.

On the “other side”, at high baryon density and low temperatures, all descriptions
remain speculative. Do deconfinement and chiral symmetry restoration still coincide
there, or do we have a plasma of massive colored quarks? And a major possible state,
the color superconductor in its various forms, has not been addressed here at all. So
the high temperature part of the world for which we do have quite a bit of insight—
that may be just the tip of iceberg, with all the cold dense “underwater” matter
not accessible to our present standard tools. Is it really impossible to formulate an
ab initio scheme for non-perturbative QCD calculations at low temperature and high
baryon density?

So we can conclude that this field of physics, addressing complex systems in the
realm of strong interactions, combines the most interesting features of statistical,
nuclear and particle physics—and it still presents to the ingenuity and skill of the
coming generations a large and conceptually important set of open questions.
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