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Preface to the Second Edition

The first edition of this book was issued by 2005, with the objective of pro-
viding basic tools for beginning graduate students interested in numerical
relativity research. The size of the numerical relativity community has expe-
rienced a significant increase since then, due to the scientific breakthroughs
in binary black hole simulations which started precisely by autumn 2005 with
the famous Pretorius work. Perhaps this has contributed to exhaust the first
printed edition in a couple of years.

This second edition provides the opportunity to include important new
developments that have arisen since 2005, which we detail below. It will also
be the opportunity to respond to the continuing shift in the community scien-
tific objectives, by incorporating a new chapter on relativistic hydrodynamics
and magnetohydrodynamics. We have tried to keep the focus on basic tools
and formalisms, with most numerical applications being able to run in a sin-
gle PC. But proper reference is also made to more advanced developments,
requiring much larger computational resources.

Here is the list of the main changes and additions:

• In the first edition, there was no description of any harmonic formal-
ism whatsoever. It was justified because this approach was not a main-
stream one in 3D numerical relativity applications at that time. But things
changed suddenly when Pretorius result happened to be precisely in a gen-
eralized harmonic formulation. The leading groups immediately tried to
follow the same way, with diverse results. Today, both BSSN and general-
ized harmonic formulations are first-rank options in current binary black
hole simulations. This material has been added as a new section at the
end of the first chapter, dealing with the structure of the field equations.
The important point of the mutual relationship between the harmonic and
Z4 evolution formalisms is discussed in the third chapter, in a new sec-
tion dealing with covariant formulations. Moreover, it has been possible
recently to match numerical results with analytical approximations (in har-
monic coordinates) for black hole simulations. This is why we include also

vii



viii Preface to the Second Edition

at the end of the first chapter a concise account of approximate solution
methods, which were just mentioned in the first edition.

• The Z4 formalism was used for deriving by mid-2005 (when the first edi-
tion was yet in print) some convenient damping terms for the energy–
momentum constraints, together with their translation into the general-
ized harmonic framework. These new damping terms, which were actually
incorporated in Pretorius work, are properly introduced in Chap. 3. Also,
the ordering constraints arising in the passage from a second-order to a
first-order (in space) system deserve a enhanced discussion in Chap. 4,
in particular, the ordering constraints related with the shift derivatives,
which were overlooked in the first edition. They have later shown their
importance in the passage from the second-order generalized harmonic
formalisms to their first-order version, with the inclusion of specific damp-
ing terms.

• We have added a new chapter dealing with non-vacuum spacetimes. It
starts with the scalar field case, which has been considered as a candidate
for modeling dark matter. Then we follow with sections on electromag-
netic fields and on relativistic hydrodynamics. This sets the basis for the
magnetohydrodynamics section, where we consider the general case, even
beyond the ideal MHD one. This is a deliberate choice, as we feel that new
important developments will come precisely in this area, contributing to
the full explanation of many puzzling astrophysical observations.

• Concerning numerical tools, finite-volume methods should be still con-
sidered, with a view on hydrodynamical simulations. In the first edition,
however, an upwind-biased variant was proposed, which required using the
full eigenvector decomposition. This is not the mainstream practice today,
specially in MHD applications, where the expressions for the eigenvectors
get really complicated. The community is rather moving toward centered
flux formulae, much more cost-efficient. In the case of the spacetime evo-
lution, where just smooth solutions are expected, some finite-differences
versions of these methods can be used with a minimal computational cost,
keeping most of the robustness of the original finite-volume algorithms.
Numerical methods are now included in a new specific chapter. These new
tools allow for long-term black hole simulations even in normal coordi-
nates, as described in Chap. 6.

Palma de Mallorca, Carles Bona
February 2009 Carlos Palenzuela Luque

Carles Bona Casas



Preface to the First Edition

We got involved with numerical relativity under very different circumstances.
For one of us (CB) it dates from about 1987, when the current Laser-
Interferometer Gravitational Wave Observatories were just promising pro-
posals. It was during a visit to Paris, at the Institut Henri Poincaré, where
some colleagues were pushing the VIRGO proposal with such a contagious
enthusiasm that I actually decided to reorient my career. The goal was to be
ready, armed with a reliable numerical code, when the first detection data
would arrive.

Allowing for my experience with the 3+1 formalism at that time, I started
working on singularity-avoidant gauge conditions. Soon, I became interested
in hyperbolic evolution formalisms. When trying to get some practical appli-
cations, I turned upon numerical algorithms (a really big step for a theoreti-
cally oriented guy) and black hole initial data. More recently, I got interested
in boundary conditions and, closing the circle, again in gauge conditions. The
problem is that a reliable code needs all these ingredients working fine at the
same time. It is like an orchestra, where strings, woodwinds, brass, and per-
cussion must play together in a harmonic way: a violin virtuoso, no matter
how good, cannot play Vivaldi’s Four Seasons by himself.

During that time, I have got many Ph.D. students. The most recent one is
the other of us (CP). All of them started with some specific topic, but they
needed a basic knowledge of all the remaining ones: you cannot work on the
saxo part unless you know what the bass is supposed to play at the same
time.

This is where this book can be of a great help. Imagine a beginning grad-
uate student armed just with a home PC. Imagine that the objective is to
build a working numerical code for simple black hole applications. The book
should provide him or her with a basic insight on the most relevant aspects
of numerical relativity in the first place. But this is not enough, the book
should also provide reliable and compatible choices for every component: evo-
lution system, gauge, initial and boundary conditions, even for the numerical
algorithms.

ix



x Preface to the First Edition

This pragmatical orientation may cause this book to be seen as biased.
But the idea was not to get a compendium of the excellent work that has
been made on numerical relativity during these years. The idea is rather to
present a well-founded and convenient way for a beginner to get into the field.
He or she will quickly discover everything else.

The structure of the book reflects the peculiarities of numerical relativity
research:

• It is strongly rooted in theory. Einstein’s relativity is a general covariant
theory. This means that we are building at the same time the solution and
the coordinate system, a unique fact among physical theories. This point is
stressed in the first chapter, which could be omitted by more experienced
readers.

• It turns the theory upside down. General covariance implies that no specific
coordinate is more special that the others, at least not a priori. But this
is at odds with the way humans and computers usually model things: as
functions (of space) that evolve in time. The second chapter is devoted to
the evolution (or 3+1) formalism, which reconciles general relativity with
our everyday perception of reality, in which time plays such a distinct role.

• It is a fertile domain, even from the theoretical point of view. The structure
of Einstein’s equations allows many ways of building well-posed evolution
formalisms. Chapter 3 is devoted to those which are of first order in time
but second order in space. Chapter 4 is devoted instead to those which are
of first order both in time and in space. In both cases, suitable numerical
algorithms are provided, although the most advanced ones apply mainly
to the fully first-order case.

• It is challenging. The last sections of Chaps. 5 and 6 contain front-edge
developments on constraint-preserving boundary conditions and gauge
pathologies, respectively.1 These are very active research topics, where
new developments will soon improve the ones presented here. The prudent
reader is encouraged to look for updates of these front-edge parts in the
current scientific literature.

A final word. Numerical relativity is not a matter of brute force. Just a
PC, not a supercomputer, is required to perform the tests and applications
proposed here. Numerical relativity is instead a matter of insight. Let the
wisdom be with you.

Palma de Mallorca, Carles Bona
January 2005 Carlos Palenzuela Luque

1 Note to the second edition. The chapter numbers here correspond to the first edition. In
this second edition, these tentative developments have been either removed or replaced by
other material. This fact confirms the prediction we made in this first Preface.
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Chapter 1

The 4D Spacetime

1.1 Spacetime geometry

Physics theories are made by building mathematical models that correspond
to physical systems. General relativity, the physical theory of gravitation,
models spacetime in a geometrical way: as a 4D manifold. The concept of
manifold is just a generalization to the multidimensional case of the usual
concept of a 2D surface. This will allow us to apply the well-known tools of
differential geometry, the branch of mathematics which describes surfaces, to
the study of spacetime geometry.

An extra complication comes from the fact that general relativity laws are
formulated in a completely general coordinate system (this justifies the term
‘General’ Relativity). Special relativity, instead, makes use of inertial refer-
ence frames, where the formulation of the physical laws is greatly simplified.
This means that one has to learn how to distinguish between the genuine
features of spacetime geometry and the misleading effects coming from ar-
bitrary choices of the coordinate system. This is where the curvature tensor
will play a central role, as we will see in what follows.

1.1.1 The metric

We know from differential geometry that the most basic object in the space-
time geometrical description is the line element. In the case of surfaces, the
line element tells us the length dl corresponding to an infinitesimal displace-
ment between two points, which can be related by an infinitesimal change
of the local coordinates xk on the surface. In the case of the spacetime, the
concept of length has to be generalized in order to include also displacements
in time (which is usually taken to be the ‘zero’ coordinate, x0 ≡ ct). This
generalization is known as the ‘interval’ ds, which can be expressed in local
coordinates as

Bona, C. et al.: The 4D Spacetime. Lect. Notes Phys. 783, 1–24 (2009)
DOI 10.1007/978-3-642-01164-1 1 c© Springer-Verlag Berlin Heidelberg 2009



2 1 The 4D Spacetime

ds2 = gμνdxμdxν (μ, ν = 0, 1, 2, 3) . (1.1)

We can easily see from (1.1) that the tensor gμν is going to play a central
role. In the theory of surfaces, it has been usually called ‘the first fundamental
form.’ In general relativity it is more modestly called ‘the metric’ in order to
emphasize its use as a tool to measure space and time intervals. The metric
components can be displayed as a 4 × 4 matrix. This matrix is symmetric
by construction (1.1), so that only 10 of the 16 coefficients are independent.
Computing these 10 independent coefficients in a given spacetime domain is
the goal of most numerical relativity calculations.

The metric tensor gμν is the basic field describing spacetime. One would
need to introduce extra fields only if one wants to take into account non-
gravitational interactions, like the electromagnetic or the hydrodynamical
ones, but the gravitational interaction, as far as we know, can be fully de-
scribed by the metric.

1.1.2 General covariance

The most interesting property of the line element (1.1) is that it is invariant
under generic (smooth) changes of the spacetime coordinates, namely

xμ = Fμ(xν′
). (1.2)

This is because the values of space or time intervals are independent of
the coordinate system one is using for labeling spacetime points. This means
that the components of the metric must change in a suitable way in order to
compensate the changes of the differential coefficients dxμ in (1.1),

gμ′ν′ = gμν
∂xμ

∂xμ′
∂xν

∂xν′ . (1.3)

We will say then that the metric transforms in a covariant way or, more
briefly, that it behaves as a covariant tensor field under the general coordinate
transformations (1.2).

The general covariance (1.3) of the metric means that, without altering
the properties of spacetime, one can choose specific coordinate systems that
enforce some interesting conditions on the metric coefficients. One can choose
for instance any given (regular) spacetime point P and devise a coordinate
system such that

gμ′ν′ |P = diag{−c2,+1,+1,+1} ∂ρ′ gμ′ν′ |P = 0 (1.4)
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(local inertial coordinate system at P). This means that special relativity
holds true locally (in the strongest sense: a single point at a time), and it will
also be of great help in shortening some proofs by removing the complication
of having to deal with arbitrary coordinate systems.

At this point, we must notice some ambiguity which affects the very mean-
ing of the term ‘solution.’ In the geometrical approach, one solution corre-
sponds to one spacetime, so that metric coefficients that can be related by
the covariant transformation (1.3) are supposed to describe the same metric,
considered as a geometrical object, independent of the coordinate system.
In this sense, we can see how in exact solutions books (see for instance [1])
different forms of the same metric appear, as discovered by different authors.
In the differential equations approach, however, the term solution applies
to every set of metric components that actually verifies the field equations,
even if there could be some symmetry (coordinate or ‘gauge’) transformation
relating one of these ‘solutions’ to another.

This is by no way a mere philosophical distinction. If general relativity
has to be (as it is) general covariant, then the field equations must have two
related properties:

• The equations must be unable to fully determine all the metric coeffi-
cients. Otherwise there would be no place for the four degrees of freedom
corresponding to the general covariant coordinate (gauge) transformations
(1.3).

• The equations must not prescribe any way of choosing the four spacetime
coordinates. Otherwise there will be preferred coordinate systems and gen-
eral covariance would be broken.

But in numerical relativity there is no way of getting a solution without
computing the values of every metric component. This means that we must
complete the differential system obtained from the field equations, by pre-
scribing suitable coordinate conditions, before any numerical calculation can
be made. The mathematical properties of the resulting complete system will
of course depend on this choice of the coordinate gauge. We will come back
to this point later.

1.1.3 Covariant derivatives

The very concept of derivative intrinsically involves the comparison of field
values at neighboring points. The prize one has to pay for using arbitrary
coordinate systems is that one can no longer compare just field components
at different points: one must also compensate for the changes of the coordinate
basis when going from one point to another. In this way we can interpret the
two contributions that arise when computing the covariant derivative of a
vector field:
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∇μvν = ∂μvν + Γ ν
ρμvρ. (1.5)

The first term corresponds to the ordinary partial derivatives of the field
components, whereas the second one takes into account the variation of the
coordinate basis used for computing these components. The Γ symbols in
(1.5) are known as ‘connection coefficients’ because they actually allow to
compare fields at neighboring points.

The covariant derivative of tensors with ‘downstairs’ indices contains con-
nection terms with the opposite sign (‘downstairs’ components correspond to
the dual basis). In the case of the metric, for instance, one has

∇ρgμν = ∂ρgμν − Γ σ
ρμgσν − Γ σ

ρνgμσ (1.6)

(notice that every additional index needs its own connection term).
The connection coefficients Γ ρ

μν are not tensor fields. They transform under
a general coordinate transformation (1.2) in the following way:

Γ ρ′

μ′ν′ =
∂xρ′

∂xρ

[
Γ ρ

μν

∂xμ

∂xμ′
∂xν

∂xν′ +
∂2xρ

∂xμ′∂xν′

]
. (1.7)

The additional second derivative terms appearing in (1.7) compensate ex-
actly the analogous terms arising in the transformation of the partial deriva-
tive contributions in (1.5) and (1.6), so that the covariant derivative of a
tensor field is again a tensor field. Notice, however, that the extra second
derivatives terms in (1.7) are symmetric in the lower indices. This means
that the antisymmetric combinations

Γ ρ
[μν] ≡

1
2

(Γ ρ
μν − Γ ρ

νμ) (1.8)

correspond to the components of a tensor field (torsion tensor), because the
antisymmetric part of the second derivative terms in (1.7) actually vanishes.

Coming back to the metric tensor, let us remember that one can define
at any fixed point P a locally inertial coordinate system in such a way that
both conditions in (1.4) hold true. It is natural to assume that the connection
coefficients should also vanish in the local inertial system at P, in order to
make sure that special relativity is fully recovered locally. These conditions
imply that, in the local inertial coordinate system at P

• The torsion (1.8) vanishes
Γ ρ

[μν] = 0 . (1.9)

• The metric is preserved by covariant differentiation

∇ρgμν = 0 . (1.10)
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Notice that both (1.9) and (1.10) are tensor equations. And the vanishing
of any tensor quantity in a local inertial system implies that it must actually
vanish in any other coordinate system. This fact, allowing for (1.6), provides
a very useful expression for the connection coefficients in terms of the first
derivatives of the metric components:

Γ σ
μν =

1
2

gσρ[∂μgρν + ∂νgμρ − ∂ρgμν ] (1.11)

(Christoffel symbols), where we have noted with ‘upstairs’ indices the com-
ponents of the inverse matrix of the metric, namely

gμρgρν = δμ
ν . (1.12)

1.1.4 Curvature

Up to this point, all we have said could perfectly apply to the special relativ-
ity (Minkowski) spacetime. All the complications with covariant derivatives
and connection coefficients could arise just from using non-inertial coordinate
systems. Minkowski spacetime is said to be flat because a further specializa-
tion of the local inertial coordinate system can make the metric form (1.4)
to apply for all spacetime points P simultaneously.

In general relativity, in contrast, gravity is seen as the effect of spacetime
curvature. So one must distinguish between the intrinsic effects of curvature
(gravitation) and the sort of ‘inertia forces’ arising from weird choices of co-
ordinate systems. Here again, this is a very well-known problem from surface
theory. The curvature of a surface can be represented by its curvature tensor
(Riemann tensor, as it is known in general relativity), which can be defined
as follows:

(∇ρ∇σ −∇σ∇ρ) vμ = Rμ
νρσvν , (1.13)

so that it can be interpreted as a measure of the non-commutativity of (covari-
ant) derivatives: a property that characterizes true curved spacetimes. The
Riemann tensor Rμ

νρσ defined by (1.13) can be explicitly computed, allowing
for (1.5), in terms of the connection coefficients:

Rμ
νρσ = ∂ρΓ

μ
σν − ∂σΓμ

ρν + Γμ
ρλΓλ

σν − Γμ
σλΓλ

ρν . (1.14)

It is clear from (1.14) that in a flat spacetime, where there exists a co-
ordinate system in which all connection coefficients vanish everywhere, the
curvature tensor is zero, namely

Rμ
νρσ = 0, (1.15)
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and, like any other tensor equation, it holds in any other coordinate system.
Conversely, if the tensor condition (1.15) does not hold, then (1.14) tells us
that there cannot be any coordinate system in which all connection coeffi-
cients vanish everywhere and the manifold considered is not flat. It follows
that (1.15) is a necessary and sufficient condition for a given spacetime to
be flat. So finally we have one intrinsic and straightforward way to distin-
guish between genuine curved spaces and flat spaces ‘disguised’ in arbitrary
coordinate systems.

1.1.5 Symmetries of the curvature tensor

Riemann curvature tensor is a four-index object. In 4D spacetime, this could
lead up to 44 = 256 components. Of course there are algebraic symmetries
that contribute to reduce the number of its independent components. Part of
these symmetries can be directly obtained from the generic definition (1.14),
which holds for arbitrary connection coefficients. The remaining ones come
from taking into account the relationship (1.11) between the connection co-
efficients and the metric tensor. We have summarized them in Table 1.1.

Table 1.1 Algebraic symmetries of the curvature tensor.

Generic case symmetries Metric connection (1.11)

Rμ
νρσ = −Rμ

νσρ Rμνρσ = −Rνμρσ

Rμ
νρσ + Rμ

ρσν + Rμ
σνρ = 0 Rμνρσ = Rρσμν

But, even taking all these symmetries into account, one has still 20 al-
gebraically independent components to deal with. One can easily realize,
however, that lower rank tensors can be obtained by index contraction from
the Riemann tensor. Allowing for the algebraic symmetries, there is only
one independent way of contracting a pair of indices of the curvature tensor,
namely

Rμν ≡ Rλ
μλν , (1.16)

which is known as ‘Ricci tensor’ in general relativity. It follows from the
algebraic properties of the Riemann tensor that (1.16) is symmetric in its
two indices, so it has only 10 independent components. Contracting again in
the same way, one can get the Ricci scalar

R ≡ Rλ
λ = Rρσ

ρσ. (1.17)

The Ricci tensor (1.16) and the Ricci scalar (1.17) play a major role when
trying to relate curvature with the energy content of spacetime. In 3D man-
ifolds, the Ricci tensor allows to obtain algebraically all the components of
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the curvature tensor (both of them have only six independent components).
In the 4D case this is no longer possible: the importance of the Ricci tensor
comes instead from the Bianchi identities,

∇λRμ
νρσ + ∇ρR

μ
νσλ + ∇σRμ

νλρ = 0, (1.18)

which can be obtained directly from (1.14). One can contract two pairs of
indices in (1.18) in order to get the following ‘contracted Bianchi identity’
for the Ricci tensor

∇μ

[
Rμν − R

2
gμν

]
= 0, (1.19)

which can be interpreted as a covariant conservation law for the combination

Gμν ≡ Rμν − R

2
gμν , (1.20)

which is known as the Einstein tensor. We will see the importance of the
identity (1.19) in what follows.

1.2 General covariant field equations

General relativity is a metric theory of gravitation. This means that the
physical effects of gravitation are identified with the geometrical effects of
spacetime curvature. We have seen in the previous section how to describe
spacetime curvature in a general covariant way, so that there are no preferred
coordinate systems. In this section, we will see how to incorporate the effect of
matter and non-gravitational fields. We will need first to generalize their spe-
cial relativity description, which is made in terms of inertial reference frames,
to general coordinate systems. Then, we will see how the energy content of
these fields can be used as a source of spacetime curvature in Einstein’s the-
ory and the complexity of the resulting field equations, which motivates the
use of some approximation techniques. Numerical approximations are singled
out as the general purpose ones, without any underlying physical assumption
which could restrict its domain of applicability.

1.2.1 The stress–energy tensor

In special relativity, the energy content of both matter and fields is described
by a symmetric tensor Tμν (stress–energy tensor). For instance, in the case of
an ideal fluid, where one neglects heat transfer, viscosity, and non-isotropic
pressure effects, the stress–energy tensor can be written as
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Tμν = μ uμuν + p (gμν + uμuν), (1.21)

where uμ is the fluid four-velocity

uμ = γ (1,v) (1.22)

(we are using geometrized units, so that c = 1), and μ and p are, respectively,
the energy density and the isotropic pressure of the fluid in the comoving
reference frame (v = 0), where the stress–energy tensor could be written as

Tμν = diag(μ, p , p , p ), (1.23)

so that one can read directly the stress (isotropic pressure in this case) con-
tribution in the space components and the energy contribution in the time
component. The neglection of heat transfer implies that there cannot be mo-
mentum contributions in the comoving frame.

Energy and momentum conservation in special relativity is translated into
a conservation law for Tμν , which can be written in differential form as

∂νTμν = 0. (1.24)

In the ideal fluid case (1.21), one can easily recover from (1.24) (the special
relativistic versions of) the continuity equation and the Euler equation for
ideal fluids. But (1.24) is a basic conservation law, valid in the general case,
not just for the ideal fluid one. It is then natural to generalize (1.24) as

∇νTμν = 0, (1.25)

so that one gets a general covariant law with the right special relativistic
limit. And one is ready now to incorporate the stress–energy tensor into the
general relativity framework.

1.2.2 Einstein’s field equations

The general covariant conservation laws of both the Einstein and the stress–
energy tensors ((1.19) and (1.25)) provide good candidates to relate curvature
with the spacetime energy content. General relativity, Einstein’s theory of
Gravitation, is obtained when one imposes the direct relationship (Einstein’s
field equations):

Gμν = 8π Tμν , (1.26)

where the 8π factor comes out from the Newtonian gravitation limit (we are
using here geometrical units so that both the gravitational constant G and
light speed c are equal to unity).
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We can read (1.26) from right to left, concluding that matter or any kind
of physical field acts as a gravitational source which determines the local
geometry of spacetime. In this sense, solving (1.26) as the field equations will
amount to determine the metric corresponding to a given matter and energy
distribution.

But, conversely, we can also read (1.26) from left to right, noticing that the
physical conservation law (1.25) can now be understood as mere consequence
of (1.26) if one allows for the Bianchi identities (1.19). This means that the
motion of matter under the action of gravitation is also governed by Ein-
stein’s equations. For instance, if we consider a dust-like test matter content,
that is, an ideal fluid of incoherent (zero pressure) particles which is insen-
sitive to any interaction other than gravitation, it follows from (1.21) and
(1.25) that

uν∇νuμ = 0. (1.27)

The equation of motion (1.27) amounts to imposing that the test particles
move along the geodesic lines of spacetime geometry:

d2xμ

dλ2
+ Γμ

ρσ

dxρ

dλ

dxσ

dλ
= 0. (1.28)

Geodesic lines are the natural generalization of straight lines for curved
spacetime (lines whose tangent vector is constant, and minimal length lines
also).

If, according to Newton’s first law, straight spacetime lines correspond to
the inertial motion of free particles, Eq. (1.27) can be interpreted as stat-
ing that test particles in a gravitational field are also in inertial motion, but
following the ‘straight lines’ (geodesics) of the curved spacetime geometry.
Gravitation is not considered then just as one more interaction, like electro-
magnetism or nuclear forces, but it is identified with spacetime curvature.

Coming back to the field equations (1.26), the Bianchi identities (1.19)
allow us to write

∇0(G0ν − 8π T 0ν) + ∇k(Gkν − 8π T kν) = 0 (k = 1, 2, 3) , (1.29)

where latin indices will refer to space coordinates. This means that the subset
of four Einstein’s equations with at least one time component, namely

G0ν = 8π T 0ν , (1.30)

are first integrals of the system. These ‘energy–momentum first integrals’
get preserved forever provided that the remaining six equations hold true
everywhere (you can prove it first for the three space components in (1.30)
and, allowing for the result, complete then the proof for the time component).
This confirms that only 6 of the 10 Einstein field equations are actually
independent, so that the equations do not contain enough information to
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determine all of the 10 independent metric coefficients, as expected from the
general covariance of the theory (see Sect. 1.1.2). We will be more precise
about that point in the next chapter.

1.2.3 Structure of the field equations

From now on, we will look at Einstein’s equations as a set of differential equa-
tions that one must solve for the spacetime metric once the energy content
of spacetime is known. It is more convenient for this purpose to write (1.26)
in the equivalent form

Rμν = 8π (Tμν − 1
2

Tλ
λ gμν), (1.31)

that is, allowing for (1.14) and (1.16),

∂ρΓ
ρ
μν − ∂μΓ ρ

ρν + Γ ρ
ρλΓλ

μν − Γ ρ
λμΓλ

ρν = 8π (Tμν − 1
2

Tλ
λ gμν), (1.32)

where we must remember the dependence of the connection coefficients on
the metric (1.11), namely

Γ σ
μν =

1
2

gσρ[∂μgρν + ∂νgμρ − ∂ρgμν ]. (1.33)

It is clear that (1.32) is a non-linear system of second-order differential
equations on the metric tensor. This means that generic solutions must have
continuous first derivatives (metric coefficients must be smooth). This point is
important when one tries to build up composite solutions, covering different
regions of spacetime, by matching local solutions which hold only on one
of such regions. This is a very common situation in local field theories, like
electromagnetism, where different solutions are obtained for the ‘interior’
region, inside the charge distribution, and the ‘exterior’ or outside one. In the
general relativity case, the matching conditions for the composite solution to
be valid amount to the continuity of the metric tensor and its first partial
derivatives.

A closer look at (1.32) allows one to notice that the ‘principal part’
(the terms containing the highest order derivatives) can be put into flux-
conservative form, that is, as a four-divergence, namely

∂ρ[Γ ρ
μν − δρ

μΓ σ
σν ]. (1.34)

This means that one can interpret (1.32) as a system of balance laws, like
in fluid dynamics, with the principal part terms (1.34) describing transport
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and the remaining ones acting as sources. The right-hand-side terms, given by
the stress–energy tensor, would describe sources of non-gravitational nature
whereas the quadratic terms on the left-hand side

Γ ρ
ρλΓλ

μν − Γ ρ
λμΓλ

ρν (1.35)

would describe the action of the gravitational field itself, acting as its own
source.

One must be very careful, however, with this physical interpretation, be-
cause the splitting of the left-hand-side terms is not unique. Notice for in-
stance that

Γ ρ
ρμ =

1
2

gσρ∂μgσρ = ∂μln(
√

g), (1.36)

where g stands here for the absolute value of the determinant of the metric.
This allows to rearrange terms in (1.32) so that the principal part can be
written as

1
√

g
∂ρ[

√
g (Γ ρ

μν − δρ
μΓ σ

σν)], (1.37)

and the remaining quadratic terms are now

Γ ρ
ρμΓ σ

σν − Γ ρ
λμΓλ

ρν , (1.38)

instead of (1.34) and (1.35), respectively.
On the other hand, from the numerical relativity point of view, the bal-

ance law structure of (1.32) is a blessing, because one can benefit from the
experience and results from a much more mature field: computational fluid
dynamics (CFD). This does not mean that all CFD techniques will work fine
when applied directly to numerical relativity, but at least one has a very good
guidance, based on years of research. We will take advantage of this fact in
our numerical simulations.

For instance, one can notice that the flux-conservative structure of the
principal part of the equations allows ‘weak solutions.’ In the case of general
relativity, this means that the metric could have first partial derivatives which
are just piecewise continuous. Derivatives across the discontinuity surfaces
would lead to Dirac delta terms, so that the requirement that such delta
terms cancel out exactly in the field equations (1.31), when interpreted in the
sense of distributions, provides the time evolution of these surfaces. It follows
that the discontinuity surfaces (gravitational shock waves) must propagate
with light speed.

The use we are making of the term ‘shock waves’ is just inspired in fluid
dynamics, but is not fully justified here. This is because the principal part
of our Eq. (1.32) does not contain products of the connection coefficients
with their derivatives so that, in the case of weak solutions, the Dirac delta
terms appear always multiplied by continuous factors. This is in contrast with
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the usual situation in fluid dynamics, where the principal part of the Euler
equation contains convective terms of the form

vk∇kvi, (1.39)

so that discontinuities in the fluid speed v lead to Dirac delta terms with
discontinuous coefficients.

Equations that, like Euler equation, contain the kind of stronger non-
linearities in the principal part are said to be ‘genuine non-linear’ whereas
equations that, like Einstein’s equations, do not contain them are said to
be ‘linearly degenerate.’ This is not a mere terminological distinction. In the
genuine non-linear case, shocks can develop even from smooth initial data and
their propagation speed can be either higher or lower than the characteristic
speed (sound speed in fluid dynamics, where one can get either supersonic
or subsonic waves). In the linearly degenerate case, in contrast, discontinu-
ities can never arise from smooth initial data and their propagation speed is
always the characteristic one (light speed in general relativity). In the fluid
dynamics language, these are just ‘contact discontinuities’ instead of genuine
shocks.

This discussion seems to suggest that Einstein’s equations are in some
sense easier than Euler or Navier–Stokes equations for fluid dynamics. This
is true only if we look at the non-linearities of these equations from the
qualitative point of view. But the situation is completely reversed if we
look at it from the quantitative point of view. Remember that the ba-
sic quantities in (1.31) are not the connection coefficients, but the met-
ric tensor. And notice that the metric derivatives in the expression (1.33)
are always multiplied by the coefficients gρσ of the inverse matrix of the
metric.

Every such coefficient is computed as the adjoint of the corresponding met-
ric component (6 terms) divided by the metric determinant (24 terms). Every
index contraction involves the 10 components of the inverse metric, that is,
60 terms (plus the 24 terms denominator). Now, two index contractions are
required in the quadratic contributions

Γ ρ
λμΓλ

ρν (1.40)

in (1.35). For every fixed value of μ and ν, we can expand (1.40) in terms
of first metric derivatives: five such double contractions appear. This makes
5× 602 = 18,000 terms (denominators apart) per equation, that is, 1.8× 105

terms for (the principal part of) the whole system (1.26).
A similar estimate of the remaining contributions (including second deriva-

tives and matter terms) can raise the count up to about 2.3× 105 in the full
general case (if one multiplies everything by the square of the metric deter-
minant in order to remove all denominators). These quarter-of-million terms
provide one of the reasons why Einstein’s equations deserve their reputation
as possibly the hardest ones in their class.



1.3 Einstein’s equations solutions 13

1.3 Einstein’s equations solutions

1.3.1 Symmetries: Lie derivatives

A useful strategy for simplifying the field equations system is to focus on
particular solutions with some kind of symmetry. It is well known that, by
adapting the coordinate system to a given symmetry of the solution, one can
usually reduce the number of relevant coordinates. For instance, in the case
of axial symmetry, one can take the azimuthal angle φ to be one of the four
spacetime coordinates so that in this adapted coordinate system one has

∂φgμν = 0, (1.41)

and the field equations can then be written in a simpler form.
As a consequence of (1.41), all the geometrical objects that, like the cur-

vature tensor, can be derived from the metric without further inputs must
share the same symmetry, namely

∂φRμ
νρσ = 0. (1.42)

Then, allowing for Einstein’s field equations (1.31), all the physical quan-
tities that can be computed, without further input, from the stress–energy
tensor and the metric must also share the same symmetry. In the ideal fluid
case (1.21), for instance, one has

∂φ τ = ∂φ p = 0 , ∂φ uμ = 0, (1.43)

so that any dependence on the azimuthal angle φ disappears (φ is an ‘ignor-
able’ coordinate).

From the group-theoretical point of view, we can identify φ with the pa-
rameter labeling a continuous group of transformations (rotations around
one axis in this case), which is usually known as a ‘Lie group.’ These trans-
formations can be interpreted as mapping every spacetime point P into a
continuous set of points, one for every value of φ. This set of image points of
a single one P defines an orbit of the group. When the mapping is continuous,
this orbit is a curve on the manifold and one can compute its tangent vector
field ξ, which is known as the group generator. For instance, the vector field
ξ that generates axial symmetry gets a trivial form in the adapted coordinate
system, namely

ξμ = δμ
(φ). (1.44)

These group-theoretical considerations will help us in generalizing expres-
sions like (1.41), (1.42), (1.43), and (1.44), which are valid only in the adapted
coordinate system, to a general one, in keeping with the general covariance
of the theory. The standard recipe of changing partial derivatives into co-
variant ones will not work here, because the basic equation (1.41) would be
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transformed in that way into an identity, valid for any spacetime independent
of its symmetry properties.

The right generalization is based on the fact that the group orbits fill out
spacetime: every point P is contained into its own orbit. This implies that one
can just compare any tensor at P with its image under an infinitesimal trans-
formation of the Lie group, in order to define a derivative (Lie derivative).
Notice that this definition does not imply that the continuous transforma-
tions we are using should be symmetry transformations: the concepts of group
orbits and generators are valid for any continuous group of transformations,
not just for symmetry groups.

In the case of scalar quantities, the Lie derivative along the vector ξ reduces
to the directional derivative. For instance, the first two equations in (1.43)
can be written in a generic coordinate system as

Lξ τ ≡ ξμ∂μ τ = 0 , Lξ p = 0. (1.45)

In the case of vector quantities, like in the last equation in (1.43), an extra
term appears, namely

Lξ uμ ≡ ξρ∂ρ uμ − uρ∂ρ ξμ = 0 . (1.46)

Notice that one could replace partial derivatives by covariant ones in (1.46)
without altering the result: this is a tensor expression, valid in a general
coordinate system. The same can be done with the original equation (1.41),
namely

Lξ gμν ≡ ξρ∂ρ gμν + gμρ ∂νξρ + gρν ∂μξρ = 0 , (1.47)

where a correction term appears for every index, following the pattern of co-
variant derivatives, but with the opposite sign. As a consequence, expression
(1.47) gets a simpler form:

Lξ gμν ≡ ∇μξν + ∇νξμ = 0 , (1.48)

which is known as the Killing equation. Any solution ξ of the Killing equation
is known as a Killing vector field and can be interpreted as the generator of
a one-parameter group of isometry transformations (symmetries).

Remember that for a general coordinate transformation the metric coef-
ficients transform in the covariant way (1.3). Isometry transformations are
the particular cases such that the final coefficients happen to be identical to
the original ones, revealing some symmetry of spacetime. Tensors transform
in a covariant way under any change of coordinates, but they are invariant
only under isometry transformations. In the case of the curvature tensor, for
instance, this fact translates into the generic coordinate system version of
(1.42), namely

Lξ Rμ
νρσ = 0 , (1.49)

which must hold for every Killing vector ξ.
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1.3.2 Exact solutions

Symmetry considerations are of great help in order to find exact solutions of
Einstein’s field equations (1.26). Although hundreds of particular solutions
have been found (see [1] for an excellent compendium), and are still being
found today, only those with a high degree of symmetry are being widely
used to build astrophysical or cosmological models.

Let us consider for instance the standard cosmological models. A six-
parameter symmetry group is assumed, so that the orbit of any given space-
time point P is a spatial hypersurface. The 6D symmetry group can be
described as consisting of a 3D subgroup of rotations (which will leave the
origin point O invariant), plus three more independent generators mapping
the origin O into any other point of the same hypersurface. From the physical
point of view, we can just say that spacetime is spatially homogeneous and
isotropic (cosmological principle).

As this is the maximum degree of symmetry for a 3D manifold, it follows
from a classical theorem that the spatial hypersurfaces must be of constant
curvature. One can also align the time axis with the normal vectors to these
space hypersurfaces. Putting together all these results, it follows that the line
element with such maximum degree of spatial symmetry can be written as

− dt2 + R(t)2
(

dr2

√
1 − k r2

+ r2 dΩ2

)
(1.50)

(Friedman–Robertson–Walker metrics, FRW in what follows), where R(t) is
an arbitrary function and the parameter k can be

k = +1 , −1 , 0 , (1.51)

corresponding, respectively, to positive, negative, or zero curvature of the
space hypersurfaces. As commented in the former subsection, all the quan-
tities obtained from the metric without further input must share its sym-
metries. This means that the stress–energy tensor of the FRW metrics cor-
responds to an ideal fluid (1.21) with uniform energy density and pressure
distribution

τ = τ(t) p = p (t) . (1.52)

The particular expressions for both the energy density τ and the pressure p
will depend of course on the specific expression for the ‘cosmological radius’
R(t) that is being used.

Another widely used solution, the Schwarzschild line element, describes a
static and spherically symmetric spacetime. From the group-theoretical point
of view, it can be obtained by imposing a 4D group of symmetries. One of
the group generators is supposed to describe time translations, so that we
can use an adapted time coordinate in which all metric components are time
independent. Also, as in the previous case, the group contains a 3D subgroup
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of rotations around an origin point O, so that any given point P is mapped
into any other point belonging to the same spherical surface with center at O.

The use of the term ‘spherical surface’ here is fully justified because a three-
parameter subgroup is the maximum degree of symmetry for a 2D surface.
These surfaces must then be of constant curvature, which is assumed to be
positive in the spherical case. One can even define the Schwarzschild radial
coordinate r so that the area S of such spherical surfaces is precisely

S = 4πr2 . (1.53)

The term ‘area radius’ can be used then for this radial coordinate, which
is uniquely defined in the spherically symmetric case. The corresponding
vacuum metric is then given by

− (1 − 2M/r) dt2 +
dr2

1 − 2M/r
+ r2 dΩ2 , (1.54)

where M is an arbitrary parameter (Schwarzschild mass). The Schwarzschild
metric (1.54) can be used to describe spacetime in the vicinity of an isolated
spherical body of mass M .

Let us remember at this point that we are talking here about local solu-
tions. Schwarzschild spacetime, for instance, cannot be properly described as
static inside the ‘horizon surface’ at

r = 2M (1.55)

(Schwarzschild radius). The lines labeled by the t coordinate can no longer
be interpreted as time lines due to the change of sign of the corresponding
coefficient in (1.54). However, one can always build up a composite metric
by matching a suitable interior (non-vacuum) metric to the exterior region of
(1.54), outside the Schwarzschild radius. The interior metric itself need not be
static: one could even use a FRW metric corresponding to pressureless fluid
(dust) to model the spherical collapse of an isolated dust ball (Oppenheimer–
Schneider collapse).

The same idea works backward: one can consider the Schwarzschild metric
(1.54) as describing a spherical void in an expanding FRW dust universe. If
the FRW metrics are homogeneous, one can get an arbitrary distribution
of non-overlapping voids in this way. This is known as the Einstein–Strauss
‘Swiss cheese’ model, in which the static local metrics are compatible with
the overall cosmological evolution.

1.3.3 Analytical and numerical approximations

Symmetry considerations can be of great help for building exact models of
simple configurations. These simplified models can even serve as a guide for
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describing systems departing from the given symmetry by some amount: one
can consider these symmetry deviations as a perturbation of the exact model.
But more complex configurations, like the ones commonly encountered in
astrophysics, with a lot of details to be accounted for, can be very far from
any symmetry, so that perturbations around a symmetric background could
not be used in a consistent way. This is why one can consider using some
other approximation scheme in order to handle such more realistic models up
to the required accuracy level.

The weak-field approximation scheme consists in replacing the exact line
element by some perturbation series starting with the Minkowski metric of
special relativity. The adimensional quotient M/R is used as the perturba-
tion parameter, where M is the typical mass of the objects considered and
R the typical distance of the configuration. This approach works fine in as-
trophysical scenarios involving ordinary stars, like our Sun, where

M = 1.47 km , R = 7 × 105 km , (1.56)

and even in the vicinity of a neutron star (R = 10 km for the same mass).
It can also be combined with the slow motion approximation scheme, where
V/c is the adimensional parameter, V being the typical speed of the problem.

But all these schemes fail in the most extreme scenarios, where one has
both strong fields and high speeds: supernova explosions, matter accretion
into a black hole or the late stages of a binary system, when the two orbiting
bodies merge into a single compact object. These are not just curiosities that
can be left aside from our research agenda. On the contrary, these astrophys-
ical configurations are very good candidates as gravitational wave sources.
This is because the effects on Earth of gravitational waves coming from deep
space are so tiny that one needs something really dramatic at the source
(strong fields evolving really fast) in order to have a chance, even a small
one, for detecting it. You can see [2] and [3] for an overview of the current
interferometer and resonant (bar or sphere) detection facilities, respectively.

This is where numerical relativity comes into play. Numerical approxima-
tions do not rely on the smallness of physical parameters that could prevent
to apply it to some otherwise interesting physical situations. The approxima-
tion here consist in a discretization process. Any function f is replaced by a
finite set of values

f(t) → {f (n)} (n = 1, . . . , N) . (1.57)

The term discretization comes precisely from the fact that the continuous set
of values of f is replaced by a discrete (and finite) set of N numbers. The
adimensional parameter related to the order of the numerical approximation
is just 1/N , independently of the physics of the problem. This is why one can
apply numerical approximations to any physical situations, without having
to restrict oneself to any particular dynamical regime.
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The discrete set of values {f (n)} can be constructed in different ways,
depending on the particular numerical approach which is being used:

• In the spectral methods approach, the values f (n) correspond to the coeffi-
cients of the development of the function f in a series of some specific set
of basis functions {φ(n)}, namely

f =
N∑
1

f (n)φ(n) . (1.58)

• In the finite volume approach, the values f (n) correspond rather to the
integrals of the function f over a set of finite domains with volume Vn,
namely

f (n) =
∫

Vn

f dV . (1.59)

Notice that it can be formally considered as a particular case of the
spectral methods approach by choosing the basis functions φ(n) to be zero
outside the corresponding volume Vn.

• In the finite difference approach, the continuous spacetime itself is replaced
by a lattice of points (numerical grid). The values f (n) are just the values
of the function f for this discrete set of grid points. In the case of the time
dependence, for instance, one has

f (n)(t) = f(tn) . (1.60)

This can be formally interpreted as the limit case of the finite elements
approach when the volumes Vn tend to zero, so that the set of (normalized)
basis functions {φ(n)} tends to a set of Dirac delta functions.

Although all these approaches are currently used to deal with the space
variables, time evolution in numerical relativity is usually dealt with finite
differences (1.60). This can be interpreted as describing spacetime by a series
of snapshots, step by step, like in a movie film. In the following section, we
will see how to reformulate the field equations in order to keep with this
description.

1.4 Harmonic formalism

Soon after Einstein’s 1915 general relativity paper, the mathematical struc-
ture of the field equations (1.26) was closely investigated. The works of De
Donder [4, 5] and Lanczos [6, 7] singled out a particular coordinate gauge in
which this structure gets greatly simplified, taking the form of a generalized
wave equation. These were later called ‘harmonic coordinates’ after the work
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of Fock [8] and were considered for a while to be the preferred coordinate
system for interpreting general relativity results.

It was actually by using harmonic coordinates that the existence and
uniqueness of (vacuum) Einstein’s equations solutions was first proven by
Choquet [9, 10]. General covariance was then invoked a posteriori in order to
extend this important result to other coordinate systems.

1.4.1 The relaxed system

As we have commented in Sect. 1.2.3, the second derivative terms in Einstein’s
field equations (1.26) can be arranged in many different ways. Let us consider
here the particular form [4–8]

1
2

gρσ∂2
ρσ gμν − ∂(μΓν) = −Γ ρ

μνΓρ (1.61)

+ gρσgλτ [∂λgμρ ∂τgνσ − Γμρλ Γνστ ] − 8 π (Tμν − T

2
gμν) ,

where indices inside round brackets are symmetrized and we have noted by
Γμ the contracted gamma quantity, namely

Γμ ≡ gρσ Γμ
ρσ = −1/

√
g ∂ν(

√
g gμν). (1.62)

Note that we are considering here the system (1.61) for ‘downstairs’ metric
components, although the analogous version for ‘upstairs’ components (gμν)
could be used as an alternative starting point [8].

As we will see below, we can now make use of coordinate freedom, by
imposing the four supplementary conditions:

Γμ = 0 (μ = 0, 1, 2, 3) . (1.63)

It follows that the original field equations can be written in the form

gρσ∂2
ρσ gμν = 2 gρσgλτ [∂λgμρ ∂τgνσ−Γμρλ Γνστ ]−16 π (Tμν−

T

2
gμν) , (1.64)

so that the principal part (second derivative terms) has got the form of a
generalized wave equation. In the vacuum case, we get then

gρσ∂2
ρσ gμν = Hμν(g, ∂g) (1.65)

where Hμν is quadratic in the metric first derivatives. This fact is crucial in
analytical approximation developments, as we will see below.

The simple structure (1.65) of the relaxed system allows to prove that it
is well-posed [9, 10]. By a well-posed system, we mean
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• that a solution exists for regular initial data
• that it is unique
• that it depends continuously on the initial data

By a solution here we mean the full set of 10 metric components. This im-
plies that we have completely lost the coordinate gauge freedom: the relaxed
system (1.64) provides one independent (second-order) evolution equation for
every single metric component.

At this point, we should realize that the ‘relaxed system’ (1.64) is different
from that of the original field equations, unless the ‘harmonic constraints’
condition (1.63) is additionally enforced. We use here the term constraint
because (1.63) is a first-order condition that can (or not) be fulfilled by the
solutions of the second-order system (1.64). Let us state this more explicitly:

• Any solution of Einstein’s equations (1.61) can be written in harmonic
coordinates, so that (1.63) is fulfilled. In this way we get always a solution
of the relaxed system (1.64).

• The converse is not true. When the relaxed system is not general covariant,
we have no extra freedom to enforce the additional condition (1.63) on
generic solutions of (1.64), which cannot then be certified as true Einstein’s
solutions.

It follows that the solution space of the relaxed system is larger than the
one containing just true Einstein’s solutions in harmonic coordinates.

The hard part in the existence and uniqueness proof [9, 10] was precisely
to show that the first-order harmonic constraints (1.63) are actually first inte-
grals of the second-order relaxed system (1.64). This proved that (harmonic)
Einstein’s solutions constitute a well-defined subset of the solution space of
(1.64): the one that can be obtained from the subset of initial data verifying
the harmonic constraints (1.63). When the relaxed system is well-posed, we
get in particular existence, uniqueness, and continuous dependence on the
(constrained) initial data for the subspace of Einstein’s solutions as a result.

1.4.2 Analytical and numerical applications

The harmonic formalism has been widely used in analytical approximation
developments. This is because of the simple structure (1.65) of the relaxed
system. Just as an example, let us assume for instance that the metric admits
a post-Minkowskian perturbation development, namely

hμν = ημν + hμν
(1) + hμν

(2) + · · · , (1.66)

where hμν stands for the ‘densitized’ upstairs metric components, namely

hμν ≡ √
g gμν , (1.67)
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so that, allowing for (1.62), the harmonic constraints get the simple form

∂ν(hμν) = 0 . (1.68)

We have considered in the previous section the gμν version (1.65) of the
relaxed system. An equivalent hμν version can also be obtained [8], which is
more useful in this context, namely

hρσ∂2
ρσ hμν = Mμν(h, ∂h) . (1.69)

We can then substitute the development (1.66) into the principal part:

(ηρσ + hρσ
(1) + · · · ) ∂2

ρσ [hμν
(1) + hμν

(2) + · · · ] = Mμν(h, ∂h) . (1.70)

The fact that Mμν is quadratic in the metric derivatives allows to put
(1.70) in recursive form. For any given perturbation order, we can write then

�hμν
(n+1) = Nμν(h(r), ∂h(s)) r, s ≤ n , (1.71)

where the box operator here stands for the flat-space d’Alembert operator,
namely

� ≡ ηρσ ∂2
ρσ . (1.72)

The resulting inhomogeneous wave equation (1.71) can then be integrated by
standard Green function methods upto the required order.

Let us remember at this point that we started from the relaxed system
(1.64), which is not equivalent to the original field equations (1.61). In the
analytical perturbation framework, this translates into the fact that fulfilling
the harmonic constraints (1.63) at the nth level does not imply the same thing
at the next level. The fact that (1.63) is a first integral of the relaxed system,
however, ensures that the integration constants we get when inverting (1.71)
can be always adjusted in order to enforce the harmonic constraints at the
required order, that is,

∂ν(hμν
(n+1)) = 0. (1.73)

This adjustment of the harmonic constraints must be done at every order in
the approximation development (1.66).

The relaxed system (1.64) is also very useful in numerical approxima-
tions. The usual practice is using explicit time-discretization algorithms. This
means that the metric coefficients are computed at a given time slice, assum-
ing that one knows their values at the previous ones. But again fulfilling
the harmonic constraints (1.63) is not granted. Moreover, in numerical ap-
proximations one has no adjustable integration constants: the computer just
provides specific numerical values. This means that numerical errors do make
the contracted Christoffel symbols obtained from the relaxed system to de-
part from their assumed harmonic (zero) value, that is,
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(relaxed)Γμ �= 0 . (1.74)

One can use then the non-zero values (1.74) for monitoring the quality of
the numerical simulation. We will discuss further this ‘free evolution’ (un-
constrained) approach in Chap. 3.

1.4.3 Harmonic coordinates

The term ‘harmonic coordinates’ comes from the way in which the harmonic
constraints (1.63) can be related with the coordinate gauge. Let us consider
a set of four independent harmonic functions f(a), that is,

� f(a) = 0 (a = 0, 1, 2, 3) , (1.75)

where the box stands now for the general relativistic wave operator, namely

� f ≡ gμν∇μ∇ν f = 1/
√

g ∂μ [
√

g gμν∂ν f ] . (1.76)

The solutions of (1.75) can be expressed of course in terms of the chosen
(generic) spacetime coordinate system. Let us now use these four harmonic
functions f(a) to set up a new coordinate system, by taking

xμ ≡ δμ
(a)f(a) . (1.77)

In this ‘harmonic’ coordinate system we will have, allowing for (1.75),

1/
√

g ∂μ [
√

g gμν ] = −Γ ν = 0 , (1.78)

and the constraints (1.63) are verified as a result.
Note also that (1.63) is not a vector equation, as it follows from the trans-

formation properties (1.7). Apart from linear transformations, there is not
much coordinate freedom left in harmonic coordinates. This can be a problem
in some cases. In order to illustrate this point, we will consider for instance
a generic spherically symmetric line element, namely

ds2 = −α2 dt2 + X2 dr2 + Y 2 [dθ2 + sin2(θ) dϕ2] , (1.79)

where all the metric functions (α, X, Y ) depend only on (t, r). In this case,
one gets

Γ ϕ = 0 , Γ θ = −cot(θ)
Y 2

�= 0 , (1.80)

so that spherical coordinates happen to be incompatible with the harmonicity
(1.75).
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This simple example shows that more coordinate freedom would be wel-
come, provided that we do not lose the benefits of the harmonic formulation.
Let us perform a general coordinate transformation, starting from a harmonic
coordinates system. Allowing for (1.7), we will get after some algebra

Γ ρ′
= gμ′ν′

[
∂xρ′

∂xρ

∂2xρ

∂xμ′∂xν′ ] = −gμν [
∂2xρ′

∂xμ∂xν
] = −�xρ′

. (1.81)

By replacing this expression for Γ ′ into Einstein’s field equations (1.61),
we get the ‘generalized harmonic system’ [11]

1
2

gρσ∂2
ρσ gμν + ∂(μHν) − Γ ρ

μνHρ (1.82)

= gρσgλτ [∂λgμρ ∂τgνσ − Γμρλ Γνστ ] − 8 π (Tμν − T

2
gμν) ,

where we have dropped the primes, and the ‘gauge sources’ Hμ are defined
as

Hμ(x, g) ≡ −Γμ , (1.83)

with Γμ given by (1.81). The term ‘gauge sources’ comes from the fact that
the coordinate functions are defined now by the inhomogeneous wave equa-
tion

� f(a) = H(a) (a = 0, 1, 2, 3) , (1.84)

instead of (1.75).
Allowing for (1.80), the generalized harmonic condition (1.84) is good

enough to cover our spherical symmetry example (1.79). Also, if the gauge
sources can be prescribed without involving metric derivatives, the extra
terms in (1.82) do not belong to the principal part. One can then show that
the generalized system is well-posed [11] in the same way as before.

It is currently stated that the generalized harmonic system (1.82) is able
to deal with generic gauge choices. This is true in the following sense:

• Any coordinate system can be locally related with a harmonic system. The
explicit expression of these harmonic coordinates can be actually obtained
by solving the general relativistic wave equations (1.75).

• Knowing the explicit transformation, one can always compute the corre-
sponding gauge sources from (1.81).

But in practical applications coordinate systems are not usually defined by
their relationship with harmonic coordinates. Moreover, in numerical simula-
tions one is usually trying to compute metrics that are not known in advance.
One would like to choose a priori coordinate conditions in a way that could
ensure some desired property of the solution. This is hard to do by dealing
with gauge sources. We will see other ways to do this in the next chapter.
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Chapter 2

The Evolution Formalism

2.1 Space plus time decomposition

The general covariant approach to general relativity is not adapted to our
experience from everyday life. The most intuitive concept is not that of space-
time geometry, but rather that of a time succession of space geometries. This
‘flowing geometries’ picture could be easily put into the computer, by dis-
cretizing the time coordinate, in the same way that the continuous time flow
of the real life is coded in terms of a discrete set of photograms in a movie.

In this sense, we can say that general relativity theory, when compared
with other physical theories like electromagnetism, has been built upside
down. In Maxwell theory one starts with the everyday concepts of electric
charges, currents, electric and magnetic fields. One can then write down a
(quite involved) set of field equations, Maxwell equations, that can be easily
interpreted by any observer. Only later some ‘hidden symmetry’ (Lorentz
invariance) of the solution space is recognized, and this allows to rewrite
Maxwell equations in a Lorentz-covariant form. But the price to pay is gluing
charges and currents on one side, and electric and magnetic fields on the
other, into new 4D objects that obscure the direct relation to experience the
original (3D) pieces.

In general relativity, we have started from the top, at the 4D level, so we
must go downhill, in the opposite sense:

• by selecting a specific (but generic) time coordinate;
• by decomposing every 4D object (metric, Ricci, and stress–energy tensors)

into more intuitive 3D pieces;
• by writing down the (much more complicated) field equations that trans-

late the manifestly covariant ones (1.26) in terms of these 3D pieces.

General covariance will then become a hidden feature of the resulting
‘3+1 equations.’ The equations themselves will no longer be covariant under
a general coordinate transformation. But, as the solution space is not being
modified by the decomposition, general coordinate transformations will still

Bona, C. et al.: The Evolution Formalism. Lect. Notes Phys. 783, 25–48 (2009)
DOI 10.1007/978-3-642-01164-1 2 c© Springer-Verlag Berlin Heidelberg 2009
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map solutions into solutions (as it happens with Lorentz transformations in
Maxwell equations). The underlying invariance of the equations under gen-
eral coordinate transformations is then preserved when performing the 3+1
decomposition. General covariant 4D equations just show up this invariance
in an explicit way.

2.1.1 A prelude: Maxwell equations

Maxwell equations are usually written as

∇ · E = 4πq, (2.1)
∇ · B = 0, (2.2)

−∂t E + ∇× B = 4πJ , (2.3)
∂t B + ∇× E = 0, (2.4)

where it is clear that the charge and current densities, q and J , act as the
sources of the electric and magnetic fields, E and B. We assume here for
simplicity the vanishing of both the electric and magnetic susceptibilities, so
that D = E and B = H.

The second pair of equations (2.3) and (2.4) can be interpreted as provid-
ing a complete set of time evolution equations for the electric and magnetic
fields (evolution system), whereas the first two equations (2.1) and (2.2) do
not contain time derivatives and can be interpreted then as constraints. A
straightforward calculation shows that these constraints are first integrals of
the evolution system, as a consequence of the charge continuity equation:

∂t q + ∇ · J = 0 . (2.5)

Now, we can start joining pieces. The charge and current densities can be
combined to form a four-vector Iμ,

Iμ ≡ (q, J) . (2.6)

The electric and magnetic fields can be combined in turn to form an anti-
symmetric tensor, namely

Fμν ≡
(

0 −Ej

Ei Fij

)
, Fij ≡ εijkBk (2.7)

(electromagnetic field tensor).
The pair (2.1) and (2.3) of Maxwell equations can then be written in the

manifestly covariant form

∇ν Fμν = 4π Iμ , (2.8)
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whereas the other pair (2.2) and (2.4) can be written as

∇ρ Fμν + ∇μ Fνρ + ∇ν Fρμ = 0 . (2.9)

Note that, allowing for the antisymmetry of the electromagnetic tensor,
the four-divergence of (2.8) leads immediately to the covariant version of the
charge continuity equation (2.5), namely

∇μIμ = 0 . (2.10)

This strongly reminds the general relativity situation, where Einstein’s
equations (1.26), allowing for the Bianchi identities (1.19), lead to the con-
servation of the stress–energy tensor.

2.1.2 Spacetime synchronization

Coming back to the general relativity case, the 3+1 spacetime decomposition
is based on two main geometrical elements:

• The first one is the choice of a synchronization. This amounts to foliate
spacetime by a family of spacelike hypersurfaces, so that any spacetime

Fig. 2.1 The time slicing and one possible time lines, with some light cones drawn in
order to show the causal character. The specific time line shown here starts being timelike,
then changes to spacelike. The only requirement on time lines is that they cannot be
tangent to the spacelike slices: they must ‘thread’ them. Note that, in this way, the slicing
provides a natural choice of the affine parameter along time lines.
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point belongs to one (and only one) slice. This geometrical construction
can be easily achieved by selecting a regular spacetime function

φ(xμ), (2.11)

such that the level hypersurfaces of φ (defined by φ = const) provide the
desired foliation. In order to consider φ as a local time coordinate, we must
make sure that the resulting slicing is spacelike, namely

gμν∂μφ ∂νφ < 0 . (2.12)

Every single slice can be considered as a 3D manifold. It is clear that
curves on this manifold are also spacetime curves and therefore the space-
time metric can be directly used for measuring lengths on any 3D slice. In
that way, the 3D metric γij on every slice is induced by the spacetime met-
ric gμν . The overall picture can be easily understood by fully identifying
the function φ with our time coordinate, that is,

φ(xμ) ≡ t , ∂μφ = δ(0)
μ , (2.13)

so that the 3D line element

dl2 = γij dxidxk (i, j = 1, 2, 3) (2.14)

can be obtained from the 4D one by restricting it to the constant time
surfaces, namely

γij = gij . (2.15)

• The second ingredient is the choice of a congruence of time lines. The
simplest way is to get it as the integral curves of the system

dxμ

dλ
= ξμ , (2.16)

so that the congruence is fully determined by the choice of the field of
its tangent vectors ξμ. The affine parameter λ in (2.16) can be chosen to
match the spacetime synchronization by imposing

ξμ∂μφ = 1 . (2.17)

Note that (2.17) is a very mild condition. It just requires that the time
lines are not tangent to the constant time slices. It does not even demand
the time lines to be timelike, in contrast with the stronger requirement
(2.12) for the time slices (see Fig. 2.1).

Again, the meaning of (2.17) is more transparent if we use φ as the local
time coordinate, that is (2.13),

ξμ = δμ
(0) , (2.18)



2.1 Space plus time decomposition 29

Fig. 2.2 Two different time foliations of the same spacetime. We see on the left a geodesic
slicing. Coordinate time (represented by the continuous level lines) flows here homoge-
neously with the proper time along normal (dashed) lines, meaning that the lapse function
is constant in this case. A coordinate singularity, the focusing of normal lines, is going to
form in a finite coordinate time. We show in the right side a lapse function α such that
proper time evolution slows down in the central region, while keeping a more uniform rate
elsewhere. The dashed lines represent just the same freely falling observers, which are no
longer normal to the constant time slices. This lapse-related degree of freedom will be of
great help in numerical simulations of gravitational collapse, where we will like to slow
down the proper time rate in the regions where a singularity is going to form (singularity
avoidance).

so that the time lines equation (2.16) can be trivially integrated

x0 = t xi = constant. (2.19)

We will focus first on the analysis of the time slicing. To do this, we will
use normal coordinates, so that the time lines are chosen to be normal to
the constant time slices. In this way we refrain from using the three extra
degrees of freedom that would allow us to freely choose the tangent vector
field ξ. Here we will not use any other ingredient than the slicing itself: we
are restricting ourselves in this way to the simplest choice

ξμ ∼ ∂μφ , (2.20)

or, in local adapted coordinates (2.13),

g0i = 0 (2.21)

(normal coordinates). The line element can then be written, allowing for
(2.15) and (2.21), as

ds2 = −α2dt2 + γij dxidxj , (2.22)
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where the factor α relates the coordinate time t with the proper time τ
along the (normal) time lines:

dτ = α dt . (2.23)

This means that the factor α (lapse function) gives us the rate at which
proper time is elapsed along the normal lines (the time lines in normal
coordinates).
Note that the lapse function can take different values at different spacetime
points. This means that the amount of proper time elapsed when going
from one slice to another can depend on the location. On the contrary,
the amount of elapsed coordinate time is, by construction, independent of
the space location. The particular case in which the lapse function α is
constant corresponds to the geodesic slicing (see Fig. 2.2); the name will
be justified in the next subsection. The combination of geodesic slicing
plus normal space coordinates is known as the Gauss coordinate system.

2.1.3 The Eulerian observers

As stated before, in normal coordinates the congruence of time lines is pro-
vided by the slicing itself. We can view this congruence as the world lines of
a field of observers which are at rest with respect to the spacetime synchro-
nization (Eulerian observers). Their four-velocity field uμ coincides, up to a
sign, with the field of unit normals nμ to the constant time slices

nμ = α ∂μφ gμνnμnν = −1 . (2.24)

The relative sign comes from the normalization condition (2.17), that is,

uμ = −nμ uμnμ = 1 . (2.25)

In normal adapted coordinates, we have

uμ =
1
α

δμ
(0) , nμ = α δ(0)

μ , (2.26)

so that the tangent vector field u points forward in time.
The motion of any set of observers, represented by a congruence of time

lines, can be decomposed into different kinematical pieces, namely

∇μuν = −uμu̇ν + ωμν + χμν , (2.27)

where every piece describes a different feature of the motion:

• Acceleration, described by the four-vector

u̇μ ≡ uρ∇ρuμ . (2.28)
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It is the only non-trivial projection of (2.27) along uμ.
• Vorticity, described by the antisymmetric tensor ωμν . It is the antisym-

metric part of the projection of (2.27) orthogonal to uμ (ωμνuν = 0).
• Deformation, described by the symmetric tensor χμν . It is the symmetric

part of the projection of (2.27) orthogonal to uμ (χμνuν = 0). It can be
further decomposed into its trace, the expansion scalar

θ ≡ tr(χ) , (2.29)

and its traceless part, the shear tensor

σμν = χμν − θ

3
(gμν + uμuν) . (2.30)

In the case of the Eulerian observers, there is no vorticity because, by con-
struction, they are orthogonal to the constant time hypersurfaces. Their mo-
tion is then characterized only by the acceleration vector and the deformation
tensor. In adapted normal coordinates, allowing for (2.26), the acceleration
vector is given by

u̇μ = (0, ∂i lnα) , (2.31)

so that the choice of a constant lapse corresponds to the inertial motion (free
fall) of the Eulerian observers (this justifies the term ‘geodesic slicing’ we
used in the previous subsection for the α = constant case).

The deformation tensor of the Eulerian observers consists also of space
components only when written in adapted normal coordinates, namely,

χμν =
(

0 0
0 −Kij

)
. (2.32)

The 3D symmetric tensor Kij in (2.32) is known as the extrinsic curvature of
the slicing, whereas the minus sign in (2.32) arises from the sign convention
(2.25).

The extrinsic curvature can be easily computed from (2.27). In normal
adapted coordinates (2.26), we have

Kij = − 1
2α

∂t γij . (2.33)

Notice that Kij admits then a double interpretation:

• From the time lines point of view, it provides the deformation χμν of the
congruence of normal lines, as it follows from (2.27) and (2.32).

• From the slices point of view, it provides, up to a one half-factor, the Lie
derivative of the induced metric γij along the field of unit normals nμ,
as it follows from (2.26) and (2.33), and the space components of the 4D
identity

Ln(gμν) = ∇μnν + ∇νnμ . (2.34)
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Of course, these two points of view are equivalent, because the congruence
of normal lines can be obtained from the slicing in a one-to-one way.

2.2 Einstein’s equations decomposition

2.2.1 The 3+1 form of the field equations

Let us summarize the results of the previous section:

• We have decomposed the 4D line element into the 3+1 normal form (2.22),
where the distinct geometrical meaning of the lapse function α and the
induced metric γij has been pointed out. This is analogous to decompose
the electromagnetic tensor into its electric and magnetic field components.

• Einstein’s field equations, contrary to Maxwell ones, are of second order.
This means that one needs also to decompose the first derivatives of the
4D metric. We have started doing so in the previous subsection, where we
have identified the pieces describing either the acceleration or the deforma-
tion tensor of the Eulerian observers (the lapse gradient and the extrinsic
curvature Kij of the slices). The remaining first derivatives can be easily
computed in terms of the pieces we have got (see Table 2.1, where the full
set of connection coefficients is displayed).

Table 2.1 The 3+1 decomposition of the 4D connection coefficients. Notice that the
symbol Γ̂ μ

ρσ stands for the connection coefficients of the 4D metric, whereas in what
follows we will note as Γ k

ij the connection coefficients of the induced 3D metric γij .

Γ̂ 0
00 = ∂t ln(α) Γ̂ k

00 = αγkj∂j α

Γ̂ 0
i0 = ∂i ln(α) Γ̂ k

i0 = −αγkjKij

Γ̂ 0
ij = −1/α Kij Γ̂ k

ij = Γ k
ij

We have then for the moment a complete decomposition of the ‘left-hand
side’ of the field equations. The corresponding decomposition of the source
terms is just the well-known decomposition of the 4D stress–energy tensor
Tμν into parts which are either longitudinal (aligned with nμ), transverse
(orthogonal to nμ), or of a mixed type, namely

• The energy density
τ ≡ Tμνnμnν (2.35)

• The momentum density

Si ≡ Tμ
i nμ (2.36)
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• The stress tensor
Sij ≡ Tij , (2.37)

whose names arise from the physical interpretation that can be made from
the point of view of the Eulerian observers.

Now we are in a position to translate the 4D field equations (1.26) in terms
of the 3+1 quantities. We will reproduce here for clarity the equivalent (1.31)
equations in terms of the 4D connection coefficients, so that we can apply
the results of Table 2.1 in a straightforward way:

∂ρΓ̂
ρ
μν − ∂μΓ̂ ρ

ρν + Γ̂ ρ
ρλΓ̂λ

μν − Γ̂ ρ
λμΓ̂λ

ρν = 8π (Tμν − 1
2

Tλ
λ gμν). (2.38)

The space components of (2.38) can then be written, after some algebra,
as

1
α

∂tKij = − 1
α

∇iαj + Rij − 2K2
ij + trK Kij − 8π [Sij −

1
2

(trS − τ) γij ] ,

(2.39)
where the covariant derivatives and the Ricci tensor on the right-hand side
are the ones obtained by considering every slice as a single 3D surface with
metric γij (traces are taken with the inverse matrix γij). The same can be
done with the mixed (0i) components, namely

0 = ∇j (Ki
j − trK δi

j) − 8π Si , (2.40)

where we get a first surprise: no time derivative appears on the left-hand side.
The remaining component of (2.38), the (00) one, leads in turn to

1
α

∂t trK = − 1
α

	α + tr(K2) + 4π (trS + τ) . (2.41)

This is also surprising, because the time derivative of the trace of Kij can
be obtained also from the space components equation (2.39). If we do so, we
get by substituting the result into (2.41),

0 = tr R + (tr K)2 − tr(K2) − 16π τ , (2.42)

where again no time derivative appears, like in (2.40).

2.2.2 3+1 Covariance

General covariance is lost when decomposing the 4D field equations (2.38)
into their 3+1 pieces ((2.39), (2.40), and (2.42)). If the solution space has
not been changed in the process, general coordinate transformations still map
solutions into solutions: the underlying invariance of the theory is intact. The
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4D, general covariant version (2.38) just makes this underlying invariance
manifest.

This does not mean, however, that covariance is completely lost. A closer
look to the right-hand-side terms of the 3+1 system (2.39), (2.40), (2.41), and
(2.42) shows that they are actually covariant under general space coordinate
transformations

yi = F i(xj , t) , (2.43)

which preserve the geometry of every single slice. They are also unchanged
under an arbitrary time coordinate rescaling

t′ = G(t) , (2.44)

which affects just the labeling of the slices, but not the slicing itself. We will
call in what follows ‘3+1 covariance’ the covariance under the restricted set
of slicing-preserving coordinate transformations (2.43) and (2.44).

The 3+1 covariance of the right-hand sides of the system (2.39), (2.40),
(2.41), and (2.42) follows from the fact that they are composed of two kinds
of geometrical objects:

• 3D tensors, like the metric γij or the Ricci tensor Rij , which are intrinsi-
cally defined by the geometry of the slices, when considered as individual
manifolds;

• pieces which can be obtained from 4D tensors by using the field of unit
normals nμ, which is intrinsically given by the slicing. This is the case of
the three-acceleration ∂i lnα, the deformation (extrinsic curvature) Kij ,
and the different projections of the stress–energy tensor.

This means that, in spite of the fact that we have used normal coordinates
in their derivation, Eqs. (2.40) and (2.42) keep true in a generic coordinate
system. Before getting a similar conclusion about the tensor equation (2.39),
which contains a time derivative, let us consider the case of the simpler scalar
equation (2.41). We know from the previous arguments that the right-hand
side term will behave as a 3+1 scalar. We will consider now the transformation
properties of the time derivative in the left-hand side step by step:

• It transforms under (2.43) as
(

∂ trK

∂ t

)
x=const

=
(

∂ trK

∂ t

)
y=const

− βk

(
∂ trK

∂ yk

)
t=const

, (2.45)

where we have introduced the shift βk:

βk(y, t) ≡
(

∂ yk

∂ xr

)(
∂ xr

∂ t

)
y=const

. (2.46)

• Concerning the time rescaling (2.44), let us notice that the lapse function
is not a 3+1 scalar. It follows from its very definition (2.22) that it will
transform instead as



2.2 Einstein’s equations decomposition 35

α′ = α

(
∂ t

∂ t′

)
, (2.47)

so that the combination
1
α

∂t (2.48)

is preserved. Note that the rescaling factor in (2.47) is independent of the
space coordinates, so that the three-acceleration ∂i lnα transforms as a
3+1 vector, as expected.

Putting these results together, it follows that the generic coordinate form
of Eq. (2.41) can be obtained from their expression in normal coordinates by
the following replacement:

1
α

∂t trK → 1
α

(∂t − βk∂k) trK . (2.49)

The 3+1 covariance of the resulting expression is clear if we notice that it
has the intrinsic meaning of ‘taking the proper time derivative of trK along
the normal lines,’ no matter what is our coordinate system. The same idea
can lead to the corresponding generalization of the tensor equation (2.39), or
any other in 3+1 form, by using as a rule of thumb the generic replacement

1
α

∂t → 1
α

(∂t − Lβ) . (2.50)

2.2.3 Generic space coordinates

It follows from the previous considerations that the full set of Einstein’s field
equations can be decomposed in a generic coordinate system as follows:

1
α

(∂t − Lβ) γij = −2Kij (2.51)

1
α

(∂t − Lβ) Kij = − 1
α

∇i αj + Rij − 2K2
ij + trK Kij (2.52)

− 8π [Sij −
1
2

(trS − τ) γij ]

0 = ∇j (Ki
j − trK δi

j) − 8π Si (2.53)
0 = tr R + (tr K)2 − tr(K2) − 16π τ . (2.54)

A simpler version, in Gauss coordinates (α = 1, β = 0), was obtained by
Darmois [1]. The normal coordinates version (2.39), (2.40), (2.41), and (2.42)
is due to Lichnerowicz [2]. It was extended to the general case, although in the
tetrad formalism, by Choquet-Bruhat [3]. See [4] for an interesting historical
review.
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Table 2.2 Same as Table 2.1 for the generic coordinates case. The symbol ∇ stands here
for the covariant derivative with respect to the induced metric γij .

Γ̂ 0
00 = (∂tα + βkαk − Kijβiβj)/α Γ̂ 0

i0 = (∂i α − Kijβj)/α

Γ̂ k
00 = γkj [∂tβj + α αj − 1/2 ∂j(γrsβrβs)] − βkΓ̂ 0

00 Γ̂ k
ij = Γ k

ij − βkΓ̂ 0
ij

Γ̂ k
i0 = −α K k

i + ∇iβ
k − βkΓ̂ 0

i0 Γ̂ 0
ij = −1/α Kij

Let us note, however, that 3+1 decompositions became popular from the
work of Arnowitt, Deser, and Misner (ADM) about the Hamiltonian formal-
ism [5], and they are often referred to as ADM equations for that reason,
although the version appearing in [5] is an equivalent system in which the
extrinsic curvature Kij is replaced by the ‘conjugate momentum’ combination

Πij = Kij − trK γij (2.55)

as a basic dynamical object. We will refer instead to (2.51), (2.52), (2.53),
and (2.54) as the 3+1 field equations, emphasizing in this way the purely
geometrical aspects of this approach.

The time-dependent space coordinates transformation (2.43), when ap-
plied to the line element (2.22), transforms it to the general form

ds2 = −α2dt2 + γij (dyi + βidt) (dyj + βjdt) , (2.56)

where it is clear that the new time lines y = constant are no longer orthogonal
to the constant time slices (see Fig. 2.3). The decomposition (2.56) is actu-
ally the most general one, where the four-coordinate degrees of freedom are
represented by the lapse α and the shift βk, whereas the normal coordinates
form (2.22) is recovered only in the vanishing shift case.

Using a non-zero shift is certainly a complication. For instance, the inverse
matrix of the 4D metric is given by

ĝ00 = − 1
α2

, ĝ0i =
1
α2

βi , ĝij = γij − 1
α2

βi βj , (2.57)

and the connection coefficients contain now much more terms (see Table 2.2).
There are physical situations, however, in which a non-zero shift can be

very convenient, for instance:

• When rotation is an important overall feature (spinning black holes, bi-
nary systems, etc.). If we want to adapt our time lines to rotate with
the bodies, then we cannot avoid vorticity and normal coordinates can no
longer be used. The shift choice will be then dictated by the overall motion
of our system, so that our space coordinates will rotate with the bodies
(co-rotating coordinates).
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βidt

αdt

t+dt

t
γijKij

Fig. 2.3 Starting from a given time slice, we show the normal line (dashed) and the time
line (continuous) passing through a given point. The lapse function provides the amount
of proper time elapsed when moving to the next time slice along the normal lines. The
shift measures the deviation between these normal lines and the actual time lines in the
process.

• When one needs to use spacelike (‘tachyon’) time lines. As discussed before,
this is allowed provided that the constant time slices remain spacelike. But
one cannot have both things in normal coordinates: the squared norm of
the vector ξμ = δμ

0 , tangent to the time lines, is given by

ξ · ξ = −α2 + γrs βrβs , (2.58)

so that one would need a superluminal shift to do the job, namely

|β| > α . (2.59)

The use of a superluminal shift is mandatory if we want to move a black
hole across the numerical domain [6]. This is not just a curiosity: it is rather
the cornerstone in the ‘moving puncture’ approach, currently used in binary
black hole simulations [7, 8]. It can also be very useful when performing
numerical simulations in the vicinity of a black hole, if we want to prevent
the horizon from growing too fast, enclosing all of our numerical grid before
we have enough time to properly study the exterior region [9–11]. This is
also a key ingredient in current binary black hole simulations based on the
generalized harmonic formalism [12].
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2.3 The evolution system

2.3.1 Evolution and constraints

The 3+1 decomposition (2.51), (2.52), (2.53), and (2.54) splits Einstein’s field
equations into two subsets of equations of a different kind:

• Evolution equations. These govern the time evolution of the basic dy-
namical fields {γij , Kij}, that is, (2.51) and

(∂t − Lβ) Kij = −∇i αj + α [Rij − 2K2
ij + trK Kij ]

− 8πα [Sij −
1
2

(trS − τ) γij ] , (2.60)

where, as stated before, no evolution equation is provided for any of the
kinematical (coordinate gauge) fields {α , βi}.

• Energy and momentum constraints. These are constraints on the
extrinsic curvature components Kij and their space derivatives:

E ≡ 1
2

[ tr R + (tr K)2 − tr(K2) ] − 8π τ = 0 (2.61)

Mi ≡ ∇j (Ki
j − trK δi

j) − 8π Si = 0 . (2.62)

The names of energy and momentum correspond to the matter terms
appearing in each equation.

Note that we can always re-combine the equations, leading to different
partitions of the full system. The constraint subset (2.61) and (2.62), however,
can be univocally characterized as the one in which no time derivative of Kij

appears. This is not the case of the evolution subset: the one we have got
in (2.60) will be called ‘ Ricci evolution system,’ because it corresponds to
the space components of the 4D Ricci tensor, as it was obtained in (2.39).
One can use the energy constraint (2.61) to cancel out the energy density τ
contribution in (2.60), so that the evolution subsystem will consist now in
(2.51) plus

(∂t − Lβ) Kij = −∇i αj + α [Rij − 2K2
ij + trK Kij − 8π Sij ] (2.63)

−α

4
[ tr R + (tr K)2 − tr(K2) − 16π trS ] γij .

The subset (2.51) and (2.63) will be called Einstein evolution system,
because it can be obtained from the space components of the 4D Einstein
tensor, as can be easily seen from the matter terms appearing there. Al-
though the Ricci and the Einstein evolution systems are not equivalent when
considered independently, the complete set formed by any of them plus the
energy and momentum constraints is the same one, the individual equations
being just combined in different ways. We will make use of this recombination
freedom in what follows.
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2.3.2 Constraints conservation

A first look at the 3+1 version ((2.60), (2.61), and (2.62)) of the field equa-
tions shows its strong resemblance to the non-covariant form ((2.1), (2.2),
(2.3), and (2.4)) of Maxwell equations, where there is also a subset of evolu-
tion equations ((2.3) and (2.4)) for the basic dynamical fields {E, B} and a
subset of constraints ((2.1) and (2.2)) on their space derivatives. The ques-
tion arises whether the time derivative of the constraints, allowing for the
evolution equations, would lead to new constraints. In the case of Maxwell
equations, one can easily verify that this is not the case by taking the time
derivatives of (2.1) and (2.2) and using both the evolution equations (2.3)
and (2.4) and the charge conservation equation (2.5). This means that the
constraints are first integrals of the full evolution system: they are preserved
during time evolution. The 4D version of Maxwell equations (2.8) and (2.9)
gives us the key to understand this result: both sides are conserved. The
left-hand side is conserved by the antisymmetry of the electromagnetic field
tensor Fμν , whereas the conservation of the right-hand side amounts to that
of the charge-current four-vector Jμ (2.10).

In the case of the Einstein equations, the straightforward procedure of
taking the time derivatives of the constraints (2.61) and (2.62) and then
using the evolution equations (2.60) is impractical, even using an algebraic
computing program. One can, however, take advantage of the lesson learned
in the Maxwell case and look instead to the 4D form of the field equations
(1.26), where again we find that both sides are conserved. The Einstein tensor
Gμν on the left-hand side is conserved due to the contracted Bianchi identities
(1.19), whereas the conservation of the right-hand side amounts to that of
the stress–energy tensor Tμν (1.25). This is the idea that we advanced in the
previous chapter, when discussing (1.29).

We will address here this point in more detail. Let us start by deriving
the 3+1 version of (1.25). The most convenient way is to follow the standard
procedure, that is,

• by computing it first in normal coordinates;
• by expressing the results in terms of 3+1 covariant quantities;
• by using then the standard replacement (2.50) to get the general expres-

sion, valid in any coordinate system.

We give just the final result for the stress–energy tensor conservation:

1
α

(∂t − Lβ) τ + ∇j Sj = τ trK − 2Sj ∂j lnα + Kij Sij (2.64)

1
α

(∂t − Lβ) Si + ∇j S j
i = Si trK − S j

i ∂j lnα − τ ∂i lnα , (2.65)

which is the 3+1 version of the general covariant equation (1.25) (remember
that all the indices are raised and lowered here with the induced metric γij).
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In the same way, we can also translate into the 3+1 language the corre-
sponding conservation equation (1.29) for the difference between the left-hand
side and the right-hand side of Einstein’s field equations. Allowing for (2.61)
and (2.62), we get

1
α

(∂t − Lβ) E + ∇j Mj = E trK − 2Mj ∂j lnα + Kij Pij (2.66)

1
α

(∂t − Lβ) Mi + ∇j P j
i = Mi trK − P j

i ∂j lnα − E ∂i lnα , (2.67)

where we have noted
Pij ≡ Gij − 8π Tij . (2.68)

Now we can see how any eventual deviation from the energy and momen-
tum constraints { E ,Mi} would propagate, assuming that the time evolution
is given by the Einstein system (2.63):

Pij = 0 (2.69)
1
α

(∂t − Lβ) E + ∇j Mj = E trK − 2Mj ∂j lnα (2.70)

1
α

(∂t − Lβ) Mi = Mi trK − E ∂i lnα . (2.71)

The corresponding result for the Ricci evolution equation (2.60) can be
obtained in an analogous way, by substituting the corresponding condition

Pij = E γij (2.72)

into the full system (2.66) and (2.67). Independent of the choice, the resulting
expression will be a linear homogeneous system on { E ,Mi}, so that our
statement that the vanishing of such quantities provides a set of first integrals
of the evolution equations holds true, as anticipated from the 4D version
(1.29).

2.3.3 Evolution strategies

The structure of the 3+1 field equations (2.60), (2.61), and (2.62) is so sim-
ilar to that of the Maxwell equations (2.1), (2.2), (2.3), and (2.4) that one
can get some inspiration for the equation-solving strategies in electromag-
netism in order to do the same in the gravitational case. One can start by
solving the constraint equations (2.61) and (2.62) to compute up to four of
the six dynamical degrees of freedom (represented here by the components of
the extrinsic curvature Kij). When the constraints are first integrals of the
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evolution system, the evolution equations (2.60) can be used later for com-
puting the two remaining dynamical degrees of freedom.

This ‘constrained evolution’ approach is specially convenient in astrophys-
ical scenarios where the general relativistic effects can be described as lower
order corrections to the Newtonian gravity ones. This is because Newtonian
gravity is completely analogous to electrostatics, in the sense that the time
evolution of the fields is not provided by the equations. The constraints (2.61)
and (2.62) contain then all the Newtonian effects whereas genuine relativis-
tic effects, like the field dynamics leading to gravitational waves, must be
found instead in the evolution subset (2.60). One could say that the con-
straints contain all the dynamical degrees of freedom, apart from the two of
them corresponding to gravitational radiation and the ones related with the
coordinate gauge freedom, as we will justify later.

From the numerical relativity point of view, the constrained evolution
approach, although it can be useful to deal with specific physical situations,
is not very convenient for building a general purpose code. There are many
reasons for this:

• Constraint equations (2.61) and (2.62) are of elliptic type (exemplified
by the Laplace equation). This means that particular solutions are of a
non-local nature: they depend strongly on boundary conditions and any
local perturbation spreads immediately all over the numerical domain.
Spectral methods are specially suited for elliptic equations: they allow to
put the outer boundary very far away, even at infinity, where one can set
up very reliable boundary conditions, and they usually provide smooth and
accurate solutions without consuming too much computational resources.

• Evolution equations (2.60), on the contrary, are more close to the hy-
perbolic type (exemplified by the wave equation), in the sense that local
perturbations propagate over the numerical domain with some finite char-
acteristic speed. This allows the appearance of non-smooth profiles, even
weak solutions, that are hard to deal with using spectral methods. Either
finite difference or finite volume methods are most commonly used with
hyperbolic equations, excepting the cases in which only smooth profiles
are expected to appear.

• There is no generic way of algebraically splitting the dynamical degrees
of freedom in order to single out the ones corresponding to gravitational
radiation. As we will see in the next section, such an algebraic splitting
can only be done if one knows in advance the gravitational waves propa-
gation direction. This could be the case in highly symmetrical cases: the
gravitational radiation degrees of freedom can be actually neglected in the
spherical case, so that the radial direction could be used in problems with
approximate spherical symmetry. But there is no such rule for the generic
case that could be used in a general purpose numerical code.

The obvious alternative to the constrained evolution approach is to use
just the six evolution equations (2.60) to compute everything. The constraints
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(2.61) and (2.62) could be enforced just on the initial and boundary data,
because they are first integrals of the evolution system and this would be
enough to ensure their validity inside the computational domain. The con-
straints provide just a quality check of the calculations. One can even add
some ‘damping terms,’ devised for minimizing constraint violations [13]. This
approach, named ‘free evolution’ [14], continues to be by far the most com-
monly used in numerical relativity codes, usually implemented with either fi-
nite differences or finite elements discretization. This approach has very deep
theoretical and practical implications, which will be discussed thoroughly in
the next chapter.

2.4 Gravitational waves degrees of freedom

Gravitational waves constitute one of the most outstanding predictions of
Einstein’s general relativity. One can derive it by standard methods, in the
same way as electromagnetic radiation can be derived from Maxwell’s equa-
tions. The simplest way is to study small field perturbations around a fixed
background, along the lines discussed in Sect. 1.4.2. Relativity textbooks
usually assume the harmonic gauge, taking the relaxed system (1.65) as the
starting point. This is a little bit misleading, because in that way all metric
components seem to generate waves, propagating with light speed. Both the
harmonic constraints and the residual gauge freedom must be used in order
to isolate the true (just two) gravitational wave degrees of freedom.

We will rather follow here a 3+1 approach, so that both the gauge effects
and the constraint degrees of freedom are more easily identified. In this way,
we will also gain some insight on the structure of the field equations.

2.4.1 Linearized field equations

Let us come back to the full set (evolution plus constraints) of 3+1 equations
(2.51), (2.52), (2.53), and (2.54). To avoid coordinate complications, we will
choose here Gauss coordinates, that is, normal coordinates (zero shift) and
Geodesic slicing (with α = 1), so that

ds2 = −dt2 + γ ij dxi dxj . (2.73)

As discussed in the previous chapter, any metric can be written down at a
given spacetime point P in a locally inertial coordinate system such that the
first derivatives of the metric coefficients vanish at P. Then, as we can get as
close as we want to P, we can safely split the space metric in (2.73) into two
components:
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• An Euclidean (flat) background of the form

α(0) = 1 , γ
(0)
ij = δij . (2.74)

• A linear perturbation which, when superimposed to the background, allows
one to recover the full metric

δγij = γij − γ
(0)
ij . (2.75)

For further convenience, we will relax here the geodesic slicing condition,
allowing also for linear perturbations of the lapse function, namely

δα = α − α(0). (2.76)

Of course, if the extrinsic curvature can be obtained from the first time
derivative of the space metric, one must have for consistency

K
(0)
ij = 0 , δKij = Kij . (2.77)

We can substitute the perturbations (2.75), (2.76), and (2.77) into the 3+1
equations (2.51), (2.52), (2.53), and (2.54) for the vacuum case. We get, up
to the linear order

∂t (δγij) = −2 (δKij) (2.78)
∂t (δKij) = −∂2

ij (δα) + δRij (2.79)
0 = δrs[∂r (δKsi) − ∂i (δKrs)] (2.80)
0 = tr (δR) , (2.81)

where the trace is computed with the flat background metric (2.74) and the
linear order expression for the Ricci tensor is given by

δRij = −1
2

δrs[∂2
rs(δγij) + ∂2

ij(δγrs) − ∂2
ir(δγjs) − ∂2

jr(δγis)] . (2.82)

2.4.2 Plane-wave analysis

In order to fully analyze the linear system ((2.78), (2.79), (2.80), and (2.81)),
it is convenient to Fourier transform the local perturbation and look at
the behavior of a generic plane-wave component, propagating along a given
direction ni, namely

δα = ei ω·x a(ω, t) (2.83)
δγij = ei ω·x hij(ω, t) (2.84)
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δKij = ei ω·x kij(ω, t) , (2.85)

where ωk = ω nk, δ ij ni nj = 1.
Now we can translate the partial differential equations system (2.78),

(2.79), (2.80), and (2.81) into the following ordinary differential equations
system:

∂t hij = −2 kij (2.86)
∂t kij = ω2/2 [hij − ni hnj − nj hni + (tr h + 2 a)ni nj ] (2.87)

0 = kni − ni tr k (2.88)
0 = tr h − hnn , (2.89)

where the symbol n replacing an index means contraction with ni. It is then
useful to decompose the Fourier modes into longitudinal (aligned with the
propagation direction ni) and transverse components (tangent to the wave-
fronts, which are the surfaces orthogonal to ni). One gets then three different
types of modes, according to their time evolution:

• Three static modes, as we get from (2.88):

∂t (hni − ni tr h) = −2 (kni − ni tr k) = 0. (2.90)

• One gauge mode, whose evolution is fully determined by lapse perturba-
tions,

∂t tr h = −2 tr k , ∂t tr k = ω2 a , (2.91)

where we have used (2.89).
• Two wave modes, oscillating with the Fourier frequency ω,

∂t h⊥⊥ = −2 k⊥⊥ , ∂t k⊥⊥ = ω2/2 h⊥⊥ , (2.92)

where the symbol ⊥ replacing an index means the projection orthogonal
to ni. There are only two independent modes in (2.92), because the trace
part vanishes if we allow for (2.89), that is,

tr (h⊥⊥) = tr h − hnn = 0 . (2.93)

This static mode was already included in (2.90).
Let us focus in the gauge mode (2.91) for a while. In the Gauss coordi-

nate system no lapse perturbations are allowed (a = 0). This means that the
equations allow then for a linear growth of the trace tr h of the metric pertur-
bation, which corresponds to the linear term of the space metric determinant,
namely

γ ≡ det(γij) � 1 + ei ω·x (tr h + · · · ), (2.94)

so that the first equation in (2.91) corresponds to the evolution of the space
volume element

√
γ
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∂t
√

γ = −α tr K, (2.95)

and the linear gauge mode corresponds then to an overall expansion (or
collapse) of the space metric. This is one of the main reasons why geodesic
slicing is not suitable for numerical simulations, because discretization errors
coupled with the gauge mode can produce an artificial linear growing which is
easily amplified by the non-linear terms, leading to a numerical blowup. This
is why we have relaxed this condition to allow for generic gauge perturbations.

A much suitable choice in this context would be instead the ‘maximal
slicing’ condition [15],

tr K = 0 , (2.96)

which ensures that the gauge modes are also static (∂t tr h = 0). The time
evolution of tr K is given by (2.41), so that the maximal slicing condition is
preserved if and only if the lapse function verifies the consistency condition

1
α

	α = tr(K2) + 4π (trS + τ) , (2.97)

which reduces to the Laplace equation, up to the linear order, in the vacuum
case.

Maximal slicing has been widely used in numerical relativity codes [16–18],
leading to smooth and stable lapse profiles at the cost of solving the elliptic
(Laplace-like) equation (2.97) at every time step. In the non-vacuum case,
(2.97) reduces at the linear order to the Poisson-like equation

	(δα) = 4π ρ , (2.98)

where we have considered the mass density ρ as the first-order contribution to
the energy density τ (this amounts to considering kinetic and pressure effects
as higher order terms). This is precisely the field equation in Newtonian
gravity

	φ = 4π ρ , (2.99)

which determines the gravitational potential φ for a given mass distribution.
It follows that the lapse perturbation δα can be identified with the grav-

itational potential φ in the Newtonian limit. This is consistent if we define
the Newtonian limit by the following two conditions:

• We consider perturbations of the Minkowski background up to the linear
order.

• We ignore any evolution effect (apart from the ones produced by the
motion of the sources): this means neglecting gravitational waves, but also
enforcing maximal slicing, as we have seen.

This explains why the maximal slicing condition (2.97) is so effective in
providing smooth lapse profiles, independently of the riddles produced by
time evolution in other field components.
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2.4.3 Gravitational waves and gauge effects

Let us summarize now some results from the previous analysis. If we use
normal coordinates with maximal slicing, then, up to the linear order, the
only dynamical effects on every Fourier component are the ones described by
the two transverse traceless degrees of freedom given by

∂t < h⊥⊥ >= −2 < k⊥⊥ > , ∂t < k⊥⊥ >= ω2/2 < h⊥⊥ > , (2.100)

where we have noted by < · · · > the traceless part, for instance,

< k⊥⊥ >≡ k⊥⊥ − 1
2

tr (k⊥⊥) δ⊥⊥ . (2.101)

Equations (2.100) imply that the dynamical behavior of the selected
Fourier component can be described as the one of a plane wave propagat-
ing with the speed of light along the selected direction ni, that is,

δ Kij ∼ ei ω(n·x± t) . (2.102)

From the physical point of view, it follows that gravitational waves should
be transverse and traceless and should propagate with light speed. One could
wonder whether the fact that gravitational radiation consists of two degrees
of freedom could be anticipated by the following naive balance: six compo-
nents in Kij minus four constraints give precisely two ‘gravitational radiation’
components.

The fallacy in this argument can be easily discovered if one tries to apply
it to Maxwell equations (2.1), (2.2), (2.3), and (2.4). There we have six com-
ponents in the electric and magnetic fields, minus two constraints, so that
four components are left. But electromagnetic radiation has only one degree
of freedom. This means that there are non-radiative dynamical contributions
to the electromagnetic field that contribute to the linear order. The true bal-
ance should read six electromagnetic field components minus two constraints
give four dynamical degrees of freedom, but only one of them is of a radiative
type. In Einstein’s equations, instead, non-radiative dynamical effects do not
show up at the linear order, where we just find gravitational radiation, aside
from eventual gauge effects.

We have found one such gauge effect: the linear mode (2.91) that appears
when using geodesic slicing. Another kind of gauge effect would show up when
the time coordinate is given by a harmonic function (harmonic slicing), that
is,

�x0 = 0 ←→ Γ̂ 0 = 0 . (2.103)

In normal coordinates (zero shift), this amounts to

∂t (α/
√

γ) = 0 . (2.104)
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The gauge perturbation δα is then dynamically related with the space
volume perturbation. In Fourier space we have

∂t (a − tr h) = 0, (2.105)

and the gauge mode (2.91) can be written as

∂t a = −tr k , ∂t tr k = ω2 a , (2.106)

which reproduces the same propagation behavior as that of gravitational
waves

δα ∼ ei ω(n·x± t) . (2.107)

These ‘gauge waves’ do not describe any physical effect: they are rather
an artifact of the gauge choice. We have introduced the harmonic slicing here
mainly for two reasons:

• It provides an oscillatory gauge behavior that is between the linear one
of geodesic slicing and the static one of maximal slicing. We will use a
generalization of this condition in the next chapter in order to obtain
hyperbolic evolution systems with a view to numerical simulations.

• The direct relationship (2.103) between the lapse function and the space
volume element can be used to avoid collapse singularities in numerical
simulations of black hole spacetimes (singularity avoidance, see Fig. 2.2).
As we will see later, however, the singularity avoidance behavior of the
harmonic slicing gauge is just marginal, so that some stronger singularity-
avoidant condition is required for these extreme gravitational collapse sce-
narios.
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Chapter 3

Free Evolution

3.1 The free evolution framework

3.1.1 The ADM system

As we mentioned in the previous chapter, the ‘free evolution’ approach is by
far the most commonly used today in numerical relativity codes. It consists
in using just the evolution equations to compute the full set of dynamical
quantities (γij ,Kij). We have seen that the subset of evolution equations
is not unique: evolution equations can be modified by adding constraints in
many different ways. This implies that we must distinguish among different
versions of free evolution, depending on the particular variant of the evolution
equation which is selected in each case. The first choice is to take just the
space components of the 4D Ricci tensor, namely

(∂t − Lβ) γij = −2α Kij (3.1)
(∂t − Lβ) Kij = −∇i αj + α [Rij − 2K2

ij + trK Kij ]

−8πα [Sij −
1
2

(trS − τ) γij ] (3.2)

(ADM evolution system).
The constraints are not enforced during evolution, although one can use

the differences

E ≡ 1
2

[ tr R + (tr K)2 − tr(K2) ] − 8π τ = 0 (3.3)

Mi ≡ ∇j (Ki
j − trK δi

j) − 8π Si = 0 (3.4)

as error indicators in order to monitor the quality of the numerical simula-
tions.

Bona, C. et al.: Free Evolution. Lect. Notes Phys. 783, 49–77 (2009)
DOI 10.1007/978-3-642-01164-1 3 c© Springer-Verlag Berlin Heidelberg 2009
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The consistency of the free evolution approach relies in the fact that
energy and momentum constraints are first integrals of the evolution sys-
tem. In the previous chapter, we derived this result (2.66) and (2.67) from
the conservation of both the Einstein and the stress–energy tensors. In the
specific case of the ADM system (3.1) and (3.2), allowing for (2.72), we get
the ‘subsidiary system’

1
α

(∂t − Lβ) E + ∇j Mj = 2 E trK − 2Mj ∂j lnα (3.5)

1
α

(∂t − Lβ) Mi + ∇i E = Mi trK − 2 E ∂i lnα , (3.6)

so that it is clear again that Einstein’s solutions will be recovered if and only
if the initial data verify

E = 0 M = 0 . (3.7)

In numerical simulations, however, one must allow for the errors which
are inherent to any approximation. This is why we are interested in using a
well-posed evolution system. By this we mean that small perturbations of the
initial data should not carry us too far away from the original solution, as we
have already discussed in Sect. 1.4.1. A well-posed evolution system implies
the stability of the solutions at the continuum level, which is a necessary
condition for the stability of numerical solutions. In this way, we could ensure
that violations of the constraints (3.7) arising during numerical evolution
would not grow too fast, so that the numerical solution would be a consistent
approximation to the exact Einstein’s equations solution, to the required
accuracy level.

Note that the same considerations apply mutatis mutandis to the harmonic
constraints preservation by the relaxed evolution system (1.64), which is well-
posed by construction, as its principal part (1.65) consists of an uncoupled
set of general relativistic wave equations.

3.1.2 Extended solution space

Let us analyze the situation in more detail. It is clear that the free evolution
approach implies using an extended solution space, even at the continuum
level: less equations to be fulfilled means more solutions. As a consequence,
Einstein’s solutions span just a subset of some extended solution space. This
subset is characterized by the conditions (3.7), which amount to enforce
energy and momentum constraints. This is fully consistent because the sub-
sidiary system (3.5) and (3.6) ensures that the constraints (3.7) are preserved,
so that every true Einstein’s solution remains so during time evolution. As
a consequence, there is a clear-cut separation between the original solutions
and the extended ones.
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The situation is depicted in Fig. 3.1. The fact that the ADM system (3.1)
and (3.2) be well-posed would ensure the stability of the extended set so-
lutions (represented as a rectangle). But true Einstein’s solutions, being a
subset of the extended ones, would also be stable as a result. This means
that they would remain inside their constrained subset (represented as a
circle). Note also that the extension is not unique: we could choose (2.63)
(Einstein evolution system) instead of (3.2) (Ricci evolution system) for the
time evolution of the extrinsic curvature, and we would get as a result a
different extension of Einstein’s original solution space.

A

A' 

B

B'

Fig. 3.1 The original Einstein’s equations solution space is represented by a circle, which
is contained into the rectangle representing the extended solution space of the ADM free
evolution system. The dashed rectangle represents a different extension of the original
solution space. Stability of the ADM solutions would mean that the computed solutions
would not drift far away from the exact ones during time evolution. Then, ADM-extended
solutions (point A, for instance) would still be solutions after some time, to the required
level of accuracy (they will not drift outside the rectangle). This would imply also that
true Einstein’s equations solutions (point B, for instance) would remain true solutions, to
the required level of accuracy (they will not drift outside the circle). The circular dotted
lines show the effect of a general coordinate transformation, represented here as a mapping
of point A into point A′, which is outside the ADM-extended solution space. Point B is
mapped instead into B′, which still represents a true solution.

From a different point of view, we must remark that the extended solu-
tion space is no longer invariant under general coordinate transformations.
Remember that the complete 3 + 1 version of Einstein’s equations has the
same solution space of the 4D version. This means that a general coordinate
transformation maps solutions into solutions, in spite of the fact that the
equations themselves are covariant only under the restricted set of transfor-
mations (2.43) and (2.44) (3 + 1 covariance).

The ADM system is still 3 + 1 covariant, but remember again that we
have obtained it by keeping only the space components of the 4D equa-
tions and neglecting the remaining ones. This way we have broken the un-
derlying invariance of (the full set of) Einstein’s equations, so that general
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coordinate transformations will no longer map extended solutions into solu-
tions, as depicted in Fig. 3.1.

3.1.3 Plane-wave analysis

Let us now apply to the ADM system (3.1) and (3.2) the plane-wave analysis,
as we did in the previous chapter for the complete 3 + 1 system. But we will
first generalize it with a view to further applications:

• The uniform background will be allowed now to take (constant) values
different from the Minkowski ones, that is,

ds2 = −α 2
0 dt2 + γ0

ij dxi dxj . (3.8)

This means that index raising and lowering will be made using γ0
ij , which

can now be different from δij . As a consequence, light rays propagating
in the background along a given direction ni travel with coordinate speed
(space interval versus coordinate time interval)

dxi

dt
= ±α0 ni . (3.9)

• The Fourier components of the linear perturbations will be rescaled as
follows:

δα = ei ω·x a(ω, t) (3.10)
δγij = ei ω·x hij(ω, t) (3.11)
δKij = (iω) ei ω·x kij(ω, t) , (3.12)

where we must notice the iω factor in the last definition. This is because
we will look for wave propagation behavior along the chosen direction ni,
that is,

ei ω(n·x− v t) , (3.13)

so that the iω factor arises from (3.1) defining the extrinsic curvature in
terms of the metric.

• The harmonic slicing condition (2.103) will be generalized to

∂t ln α = −α f tr K (3.14)

(generalized harmonic slicing [1]), where f is an extra arbitrary factor,
so that geodesic slicing is recovered for f = 0 and the original harmonic
slicing condition is recovered for f = 1.
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One can now substitute the perturbations (3.10), (3.11), and (3.12) into the
linearized ADM system plus the coordinate condition (3.14). This is straight-
forward if one allows for the expression (2.82) for the 3D Ricci tensor pertur-
bations. In the vacuum case, one gets

∂t (a/α0) = −iωα0 f tr k (3.15)
∂t hij = −2 iωα0 kij (3.16)
∂t kij = −iωα0/2 [hij − ni hnj − nj hni + (tr h + 2 a/α0)ni nj ] (3.17)

and we will write down this linear system in matrix form:

∂t u = −i ω Au , (3.18)

where u is the array of (the Fourier components of the) perturbations:

u = (a , hij , kij) . (3.19)

The geometric properties of the matrix A (characteristic matrix) are ob-
viously related with the dynamics of the perturbations:

• The eigenvectors of A describe modes evolving in time as plane waves
(3.13), provided that their corresponding eigenvalues are real. Notice, how-
ever, that every physical mode will affect some component of both the met-
ric and its time derivative (the extrinsic curvature), so that it will consist
of two eigenvectors.

• Every (real) eigenvalue provides the propagation speed v of the corre-
sponding characteristic mode (characteristic speeds).

The fact that one has a complete set of eigenvectors corresponding to real
eigenvalues is important from the physical point of view, because it means
that all the modes are wavelike, so that they keep bounded during time
evolution. A first-order system verifying this would be said to be ‘strongly
hyperbolic’ (or just ‘hyperbolic,’ see for instance [2]). The systems we are con-
sidering here are of a mixed type: first order in time, but second order in space.
This is why we will coin the term ‘pseudo-hyperbolic’ for mixed-order systems
with this property. Also, we will use the term ‘weakly pseudo-hyperbolic’ in
this context when all the eigenvalues are real, but the characteristic matrix A
cannot be fully diagonalized, so that the set of eigenvectors is not complete
(the analogous of weak hyperbolicity for fully first-order systems).

In the case of the ADM system, the characteristic matrix can easily be
put into a block-diagonal form. One gets from (3.10), (3.11), and (3.12) three
uncoupled sectors, containing different types of terms:

• The transverse sector, given by

∂t h⊥⊥ = −2 iωα0 k⊥⊥ , ∂t k⊥⊥ = −iωα0/2 h⊥⊥ , (3.20)
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which consists of six degenerate eigenvectors with light speed v = ±α0 as
their characteristic speed.

• The mixed sector, given by

∂t hn⊥ = −2 iωα0 kn⊥ , ∂t kn⊥ = 0 , (3.21)

which consists in a 4D degenerate box with zero as the common eigenvalue,
but only two eigenvectors (kn⊥), so that the other two (hn⊥) can grow
linearly with time.

• The gauge sector, given by

∂t tr h = −2 iωα0 tr k , (3.22)
∂t (a/α0) = −iωα0 f tr k , (3.23)

∂t tr k = −iωα0 a , (3.24)

which can be fully diagonalized in the generic case, with eigenvalues zero
and v = ±

√
f α0 (gauge speed). The only exception is the f = 0 case,

which corresponds to geodesic slicing: the gauge sector cannot be fully
diagonalized and therefore non-oscillatory growing modes appear, as dis-
cussed in the previous chapter.

It follows that the ADM system can be at most weakly pseudo-hyperbolic,
when the gauge parameter f is non-negative. But the mixed sector shows
that, independent of gauge considerations, the system cannot be pseudo-
hyperbolic in the strong sense: the linear growing modes in the mixed sector
cannot be avoided. This is in contrast with what we got for the full Einstein
system, where either the maximal or the harmonic slicing conditions allowed
us to dispose of such annoying modes. This is the price one pays for neglecting
the constraints in the free evolution approach. We will see in the next section
how high this price can be in numerical simulations and, in the following
ones, how one can modify the ADM system (3.1) and (3.2) in order to obtain
free evolution pseudo-hyperbolic systems more suitable for building numerical
codes.

Could we conclude that the ADM system (3.1) and (3.2) is well posed?
Well, it is just a matter of definition. In the mathematical literature, the
concept of ‘perturbations growing not too fast’ is defined in a weak way, so
that polynomial growth is admissible [2]. In this sense, the linear modes we
have found are not a problem and the ADM system could be well-posed in this
weak sense. But we could adopt on physical grounds a stronger requirement
so that ‘perturbations growing not too fast’ is replaced by ‘perturbations
having an upper bound’ and the ADM system cannot be well posed in this
strong sense.
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3.2 Robust stability test-bed

In this section, we will perform a simple numerical test-bed [3] in order to
check out the results of the previous section. The idea is to start from ini-
tial data consisting of a flat background (Minkowski metric) plus a random
perturbation in every dynamical field. The initial level of the random noise
must be small enough to make sure that we are testing just the linear regime,
allowing even for the cumulative effects during the time elapsed in the simu-
lation. One should see then a linear growth of the noise level when using the
weakly pseudo-hyperbolic ADM system, in contrast with the constant noise
level one should get when using any of the pseudo-hyperbolic systems which
will be discussed in the following sections.

Besides its use as a cross-check of analytical calculations, the robust sta-
bility test-bed can also be useful in two other ways:

• As a direct check of the pseudo-hyperbolic character of a given system,
when the analytical calculations are hard to perform. This means using a
well-known numerical algorithm, so that any eventual problem will come
from the evolution system.

• As a tool for tuning the numerical methods: fixing the time resolution
or other adjustable parameters in order to keep stability by avoiding at
the same time adding too much numerical dissipation. This means that
one is dealing with a well-known strongly hyperbolic system, so that any
eventual problem will come from the numerical algorithm.

We will take advantage of both complementary approaches in what follows.
But let us first introduce what we consider to be the simplest discretization
method, which will be used in our test-bed simulations.

3.2.1 Finite differences

Testing the (pseudo-)hyperbolic character of a given evolution system can be
done with very simple numerical algorithms, which one can find in standard
books (see for instance [4]). The simplest choice is provided by finite difference
methods. The continuous spacetime foliation is approximated by a series of
specific time slices, labeled by a time index n. In addition, every space slice,
corresponding to a given instant, will be approximated as a 3D grid. The grid
nodes will be labeled by a set of three space indices (i, j, k), one for every
coordinate axis. The field values will then be represented by the 4D array

u(n)
i, j, k = u(tn, xi, yj , zk) . (3.25)
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The quality of this approximation is governed by the size of the time and
space intervals, namely

Δt , Δx , Δy , Δz , (3.26)

where we are assuming for simplicity that the numerical grid nodes are evenly
spaced along every direction.

The space (resp. time) derivatives can be discretized in many ways. For
the partial x derivative, for instance, we can take the one-sided differences

D+
x (u) ≡ (u(n)

i+1, j, k−u
(n)
i, j, k)/Δx D−

x (u) ≡ (u(n)
i, j, k−u

(n)
i−1, j, k)/Δx . (3.27)

We can see from a Taylor development that both approximations (3.27) are
just first-order accurate, when the leading error is given by the second deriva-
tive term (quadratic in Δx).

We can get second-order accuracy for the partial derivatives easily by using
centered differences, namely

∂x u ∼ D0
x(u) =

1
2

[D+
x (u) + D−

x (u)] . (3.28)

This ‘centering’ strategy can also be applied to second partial derivatives
in order to get again the required second-order accuracy (third-order leading
error term), namely

∂xx u ∼ D+
x D−

x (u) ∂xy u ∼ D0
xD0

y(u) . (3.29)

Note that the finite-difference operators (3.27) do commute, like their con-
tinuum partial derivative counterparts.

Numerical grids are obviously of a finite size, so that they must begin
and end at some point along every direction. For these boundary points,
one can no longer use expressions like (3.28) or (3.29), which would require
neighbor nodes which may not exist at the outermost grid points. As we are
not interested in boundary effects for the moment, we will assume here that
our grid has periodic boundaries along every axis (from the geometrical point
of view, this implies the topology of a three-torus). Allowing for this, we will
assume that the last two nodes at the end of any axis are identical to the
first two ones at the beginning, and vice versa. For instance (dropping the
time labels for simplicity)

uN, j, k = u2, j, k , u1, j, k = uN−1, j, k , (3.30)

so that the centered expressions for the first and second partial derivatives
(3.28) and (3.29) are applied only for i = 2, . . . , N−1, whereas (3.30) provides
the required values at the boundary points i = 1, N . We are aware that,
in most numerical relativity applications, periodic boundary conditions like
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(3.30) would not be consistent with the physics of the problem. But for the
moment we are planning to deal just with some test-bed problems, where
periodic boundaries could be assumed consistently, in order to focus on the
numerical treatment of the generic (interior) points.

In the finite difference approach, the set of grid points needed to discretize
space derivatives at a given point P is named as ‘the stencil.’ The stencil
provides the numerical domain of dependence of the selected point P. This
means that any perturbation at one of the stencil points will change the
computed value at P after a single time step. We can even define the numerical
propagation speed as

vi
num =

sΔxi

Δt
, (3.31)

where s stands here for the stencil size, that is, the maximum number of
stencil points besides P along any direction. For instance, we can have s = 1
when using the second derivative expressions (3.29), but one could choose
instead

∂xx u ∼ (D0
x)2(u) , (3.32)

which would imply at least s = 2 (the actual value will depend on the specific
numerical algorithm).

From the physical point of view, when our system describes propagation
with some characteristic speeds, the field values at P are causally determined
by the values inside the past half-cone with vertex at P, whose slope is given
by (the inverse of) the largest characteristic speed of the system. This pro-
vides the physical domain of dependence of P. In our case, the largest char-
acteristic speed is either light speed v = α0 or the gauge speed v =

√
f α0

(usually f > 1, so that gauge speed is actually the largest one).
As seen in Fig. 3.2, depending on the size of the time step Δt, the physical

domain of dependence of P can or cannot be fully contained in the numerical
domain of dependence. Consistency requires that the numerical domain of
dependence should contain every point that can have a physical influence on
P. Otherwise the numerical solution is not allowing for the causal behavior
of the dynamical system and this will lead to numerical instabilities, which is
the only way our numerical algorithm has to escape from converging to the
physical solution.

A necessary condition for numerical stability will be then the Courant
condition, stating that the largest characteristic speed vmax along every given
direction ni cannot exceed the corresponding numerical speed,

vmax < ni vi
num . (3.33)

For instance, let us consider the x direction and let us assume f ≥ 1; the
Courant condition (3.33) provides then an upper limit for the numerical time
step, namely

Δt <
sΔx

α0

√
f γ xx

0

. (3.34)
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In numerical simulations, the time step limit (3.34) must be checked dy-
namically, at the beginning of every time step. It must be checked at every
grid point and along every axis, keeping always the most restrictive upper
bound on the time interval. An extra safety factor is also included, so that the
upper bound gets even more restrictive. This supplementary factor is usually
adjusted by trial and error, either in order to avoid an excess of numerical
dissipation or to suppress other unexpected instabilities.

3.2.2 Numerical results

Let us now proceed to the numerical simulation. We will set up a cubic
grid of ‘only’ 50 points along every axis, with periodic boundary conditions.
Although we have 503 points, the job can be done easily by using a standard
personal computer, even a laptop. Space resolution is not an issue here (we
will evolve just noise), so that the number of points could be reduced as
needed: for instance, we could take advantage of the periodic boundaries
condition to set up instead a ‘channel’ of 50 × 8 × 8 points if we want a
quicker response.

We will measure time in ‘crossing time’ units. This signifies the time it
would take for a light ray to make a full trip across the numerical grid. We
will choose our time step to be

dt = 0.03 dx . (3.35)

Notice that the light speed value is one in the background (Minkowski)
metric, so that the Courant condition (3.34) would allow us to take a time

P

jj–1 j+1j–2

tn

tn+1

Fig. 3.2 The numerical domain of dependence of a point P in a finite difference grid is
limited by dashed lines, whose slope is the inverse of the numerical propagation speed (a
three-point stencil, s = 1, is assumed here). The physical domain of dependence of P is
represented as a cone (white or gray), whose slope is the inverse of the largest characteristic
speed along the given axis. The Courant stability condition is fulfilled when the physical
domain of dependence is fully contained into the numerical one (white cone). The converse
case (gray cone), violating the Courant condition, would lead to numerical instabilities.
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Fig. 3.3 The maximum of (the absolute value of) trK is plotted against the number of
crossing times in a logarithmic scale. The initial level of random noise remains constant
during the evolution in the case of any of the pseudo-hyperbolic systems that we will
describe in what follows (the Z4 one is shown here). In the case of the ADM free evolution
system, which is only weakly pseudo-hyperbolic, a linear growth is detected up to the point
where the code crashes. The label ADM-1 corresponds to a numerical simulation using a
fully first-order version of the ADM system, which will be introduced in the next chapter.

step even 10 times larger. But we prefer to be extremely cautious here about
introducing too much numerical dissipation which could artificially lower the
noise level, masking the true properties of the evolution system.

We have plotted in Fig. 3.3 our results for the standard harmonic case
(f = 1). We see the expected linear growth of the ADM system. Notice the
catastrophic exponential growth after some 150 crossing times, revealing a
non-linear instability. We will limit ourselves to discussing the linear regime
as a test for the wave propagation properties of the system. In this sense, the
linear growth of the ADM plot in Fig. 3.3 confirms the weakly hyperbolic
character of the ADM system.

The Z4 system, which will be introduced later in this chapter, shows in-
stead the constant behavior which one would expect from a strongly pseudo-
hyperbolic system. The same qualitative behavior is shown by the BSSN
system that will also be introduced later.

Let us briefly discuss the role of numerical dissipation. Every discrete al-
gorithm is just an approximation to the exact equations. Discretization error
terms can be classified into two main categories:

• Dispersion errors, which affect the propagation speeds. They come from
odd-order truncation error terms.

• Dissipation errors, which affect the growth of perturbations. They come
from even-order truncation error terms.
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The wrong sign in the dominant dissipation error terms (perturbations
explosion) leads to unstable numerical codes. The right sign there leads to
stable codes, at the price of some amount of dissipation. The more accurate
the numerical algorithm is, the less numerical dissipation (and dispersion) it
contains.

From this point of view, a good deal is provided by third-order-accurate
algorithms. This ensures that propagation speeds are correctly represented
(fifth-order dispersion error), and the dominant truncation error is repre-
sented by a small (fourth-order) dissipation term. We have actually used a
third-order Runge–Kutta algorithm for the time evolution in our robust sta-
bility test results, as shown in Fig. 3.3. These methods will be explained in
more detail in Chap. 5.

3.3 Pseudo-hyperbolic systems

Allowing for the performance of the ADM system in the robust stability
test-bed, one can wonder that it was the evolution system of reference until
the beginning of the 1990s. Poor resolution, as a consequence of the avail-
able computing resources, combined with the use of dissipative numerical
methods, masked the weakly stable nature of the formalism (see for instance
Fig. 3.4). Also, the linear growing modes (3.21) only show up in truly multidi-
mensional situations. Free evolution with the ADM system was the approach
actually used by the main numerical relativity groups in the long way from
the pioneering spherically symmetric (1D) or axially symmetric (2D) numer-
ical codes [5–7] toward the fully 3D simulations that are routinely performed
today.

3.3.1 Extra dynamical fields

Looking for a better alternative, one can take advantage of the 4D Ricci tensor
decomposition (1.61) in order to apply it to its 3D counterpart. The standard
expression of the 3D Ricci tensor in terms of the connection coefficients

Rij = ∂kΓ k
ij − ∂iΓ

k
kj + Γ k

krΓ
r
ij − Γ k

riΓ
r
kj (3.36)

can then be rewritten, by reordering the second partial derivatives, as

Rij = γrs [−1
2

∂2
rsγij + ∂(iΓj)rs − Γ k

ij Γkrs

+ γkl (∂kγir ∂lγjs − Γirk Γjsl) ] (3.37)

(De Donder–Fock decomposition) [8–12].
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Fig. 3.4 Same as in the previous figure, but replacing the third-order Runge–Kutta time-
evolution algorithm by a second-order predictor–corrector one (ICN). Numerical dissipation
is severely distorting the plots, by masking the linear growth in the ADM case and dra-
matically reducing the initial noise level in the pseudo-hyperbolic case. Notice that both
dt and dx are the same as in the previous figure, and we are using also the same space
discretization algorithm: only the time evolution method has changed.

The second derivative terms in (3.37) are now the sum of the Laplacian of
the space metric components plus the symmetrized partial derivatives of the
3D contracted gamma combination

Γi = γrsΓirs , (3.38)

in the same way as in the 4D version (1.61). The Laplacian term is wel-
come if one wants to get the expected oscillatory behavior for the linear
perturbations. One could be tempted to obtain now the analogous of the
relaxed system (1.64), by demanding the vanishing of the quantities (3.38).
This would amount to getting 3D harmonic coordinates on every constant
time slice. This is actually a very specific choice of the space coordinates,
which should then be preserved by time evolution. We will not follow that
way, because we prefer to keep our coordinate freedom as longer as possible.
Therefore, we must adopt another strategy, devised for working in a generic
coordinate system.

The crucial point is to consider instead the quantities Γi as the compo-
nents of a new dynamical field, no longer related with the metric derivatives
through (3.38). To be consistent with this interpretation, one must provide
an independent evolution equation for this ‘extra’ field. And this can be
done if we allow for the fact that the momentum constraint (3.4) contains
space derivatives of the extrinsic curvature, which can be seen itself as a time
derivative of the space metric. One can then switch the order of space and
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time derivatives in (3.4), by rewriting it as a first-order evolution equation
for Γi [13]. Alternatively, one can express it as a much simpler evolution
equation of the combination

Vi =
1
2

(Γ k
ki − Γi ) , (3.39)

which is directly related with Γi [1]. An equivalent version will be discussed
in more detail later in this chapter.

Let us write down here the linearized version of the resulting ‘Bona–Massó’
system in order to see its structure in a more transparent way (normal coor-
dinates):

∂t (δγij) = −2αo (δKij) (3.40)
∂t (δKij) = −∂2

ij (δα) + αo (δRij) (3.41)
∂t (δVi) = 0 , (3.42)

where the linear perturbation of the Ricci tensor is now given by

δRij = −1
2

γ rs
o [ ∂2

rs(δγij) − ∂2
ij(δγrs) ] − ∂i (δVj) − ∂j (δVi) . (3.43)

Note that the perturbations of the extra field Vi are considered here to be
independent of the metric and gauge perturbations, so that their evolution
equation (3.42) is a genuine part of the free evolution system. This does not

Fig. 3.5 The error in the apparent horizon mass of a spherically symmetric black hole
is plotted against time. The analytical result is known to be time independent. The term
FOFCH, for ‘first-order flux-conservative hyperbolic,’ refers here to a 1D code based on (the
first-order version of) the Bona–Massó formalism [1]. The use of advanced CFD techniques,
which require a full set of characteristic eigenvectors, when combined with the use of robust
slicing conditions, allows to continue the black hole evolution ‘forever,’ provided that the

boundary conditions are set in a suitable way.
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mean that the momentum constraint (3.4) has disappeared. It has only been
transformed into the algebraic form (3.39), that is,

Vi =
1
2

γ rs[ ∂i (γrs) − ∂r (γis) ] , (3.44)

which can still be used to monitor the quality of the simulation.
The Bona–Massó evolution system was first obtained in the context of

fully first-order systems, which we will discuss in the next chapter. In the
first (1992) paper [13], it was shown to be hyperbolic in that context for the
harmonic slicing case. This result was later extended to the generalized har-
monic case [1], which includes the robust slicing conditions currently used at
that time to deal with spherically symmetric black holes. It opened the way to
the use in the numerical relativity context of the ‘shock-capturing’ algorithms
currently used in computational fluid dynamics (CFD). These advanced tech-
niques, which we will describe in Chap. 5, produced a breakthrough in the
state-of-the-art numerical black hole simulations, as shown in Fig 3.5.

3.3.2 The BSSN system

The key idea of the Bona-Massó system, that is transforming the momentum
constraint into an evolution equation for some extra fields, was yet in some
earlier works by the group of Nakamura [14, 15]. A more elaborated version
led to the formalism introduced later by Shibata and Nakamura [16], much
widely known after the work of Baumgarte and Shapiro [17] (BSSN system).
The metric coefficients γij are there expressed in terms of a conformal metric:

γ̃ij = e−4 φ γij (3.45)

with unit determinant, so that

e4 φ = γ1/3 = [det(γij)]1/3. (3.46)

The second fundamental form Kij is also decomposed into its trace and
trace-free components, namely

K = γij Kij (3.47)

Ãij = e−4 φ (Kij −
1
3

K γij) . (3.48)

The conformal decomposition (3.45) allows one to compute easily the con-
nection coefficients of the conformal metric in terms of the original ones,
namely

Γ̃ k
ij = Γ k

ij − 2 [ δk
iφj + δk

jφi − φkγij ] , (3.49)
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so that one can split the 3D Ricci tensor appearing in the ADM evolution
equations (3.2) into the corresponding Ricci tensor of the conformal metric
plus some space derivatives of the conformal factor:

Rij = R̃ij − 2 ∇̃iφj + 4φiφj − γ̃ij γ̃rs(2 ∇̃rφs + 4φrφs) . (3.50)

The extra field in the BSSN formalism is provided by the contracted con-
formal connection, that is,

Γ̃ i = γ̃rsΓ̃ i
rs = −γ̃ij

,j , (3.51)

which can be related with the extra fields (3.39) of the Bona–Massó formalism
as follows:

Vi = −1
2

γ̃ijΓ̃
j + 4φj , (3.52)

so that the conformal Ricci tensor can be finally written as

R̃ij =
1
2

γ̃rs [−∂2
rsγ̃ij + 4 Γ̃ k

r(i Γ̃j)ks + 2 Γ̃ k
ri Γ̃ksj ]

+ γ̃k(i ∂j)Γ̃
k + Γ̃ k Γ̃(ij)k . (3.53)

The full list of BSSN-independent dynamical fields is then given (in the
zero shift case) by

u = {α, φ, γ̃ij , K, Ãij , Γ̃ i} . (3.54)

Up to now, the formulas (3.45) to (3.52) just provide a recombination
of the basic dynamical fields, but no new equations. The main differences
between the BSSN and the Bona–Massó evolution systems are

• The evolution equation for the trace K of the extrinsic curvature in the
BSSN case is not the one that would follow from taking the trace of the
evolution equation of Kij in a straightforward way. One must use instead
the energy constraint to transform the trace equation, before doing all the
replacements, into

∂t K = −	α + α [ tr(K2) + 4π (trS + τ) ] . (3.55)

This is another instance of the use of the energy constraint to modify the
free evolution system: we did the same in the previous chapter, where we
compared the ‘Ricci’ evolution system (2.60) with the ‘Einstein’ one (2.63).
We will see in the following section how to do it in a more systematic way.

• The conformal decomposition, as used in the BSSN formalism, generates
new constraints. It follows from (3.45), (3.46), (3.47), and (3.48) that

det( γ̃ ) = 1 , tr Ã = 0 . (3.56)
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These algebraic constraints can be very useful for monitoring numerical
errors. The current practice is to ‘correct’ these errors by rescaling γ̃ij and
resetting the trace of Ãij to zero from time to time during the calculation,
even after every single time step. This ‘semi-constrained’ approach can affect
convergence tests, where the rate of convergence that one could expect from
the discretization algorithm can differ from the actual results.

3.3.3 Plane-wave analysis

Now we can proceed to perform the plane-wave analysis that we introduced
for the ADM system at the beginning of this chapter. We will do it just for
the Bona–Massó case in order to avoid the complications associated with
the conformal decomposition. Remember that this decomposition, as well as
the selection of one or the other of the related quantities (3.52) as the ex-
tra field, is only a rearrangement of the dynamical quantities, so that the
intrinsic properties of the evolution system remain unchanged. This means
that our results will apply also to the BSSN system, with only a minor dif-
ference in the gauge sector, due to the use of the modified equation (3.55)
for tr K.

Let us start then from the linearized system (3.40), (3.41), and (3.42).
The Fourier components of the dynamical perturbations will be written as
follows:

δα = ei ω·x a(ω, t) (3.57)
δγij = ei ω·x hij(ω, t) (3.58)
δKij = (iω) ei ω·x kij(ω, t) (3.59)
δVk = (iω) ei ω·x vk(ω, t) , (3.60)

where we have scaled the Fourier coefficients of Vk with the same iω factor
as the Kij ones.

We can now substitute (3.57), (3.58), (3.59), and (3.60) into the linear
system (3.40), (3.41), and (3.42) plus (the linear version of) the coordinate
condition (3.14) in order to get the time evolution equations for the array of
the Fourier-transformed perturbations,

u = (a , hij , kij , vk) . (3.61)

Note that we must now use the expression (3.43) instead of (2.82) for the
3D Ricci tensor perturbations. In the vacuum case, we get

∂t (a/α0) = −iωα0 f tr k (3.62)
∂t hij = −2 iωα0 kij (3.63)
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∂t kij = −iωα0/2 [hij + 2(ni vj + nj vi) + (2a/α0 − tr h)ni nj ] (3.64)
∂t vk = 0 . (3.65)

In order to write down the characteristic matrix, it is convenient to rear-
range the dynamical fields array (3.61) in a way that clearly separates the
transverse, longitudinal, and gauge sectors, as we did in the ADM case:

u = (h⊥⊥ , k⊥⊥ , hn⊥ , kn⊥ , v⊥ , trh , trk , a/α0 , vn) . (3.66)

The characteristic matrix is given in this basis in a simple block-diagonal
form

A = α0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
1/2 0

0 2 0
1/2 0 1
0 0 0

0 2 0
0 0 1 2
0 f 0 0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.67)

(the values not shown are zero), so it follows that

• The eigenvalues (propagation speeds) are either zero (static modes, like
the (3.65) ones), or the background metric light speed ±α0, or the ‘gauge
speed’ ±

√
f α0. The requirement of real propagation speeds amounts then

to the condition f ≥ 0 on the gauge parameter f .
• A complete set of eigenvectors can be obtained in the generic case, with

the only exception of geodesic slicing (f = 0), where gauge speed vanishes
leading to an extra degeneracy which prevents putting A in full diagonal
form.

We can conclude that the Bona–Massó system is pseudo-hyperbolic for all
the generalized harmonic slicing cases for which

f > 0 . (3.68)

The same is true for the BSSN system, where only minor changes appear
in the corresponding characteristic matrix when compared with (3.67). The
main one arises from the choice of the evolution equation (3.55) for tr K, and
it amounts to the vanishing of the 2α0 coefficient in the last column (gauge
sector). Therefore, it does not affect either the values of the propagation
speeds or the completeness of the set of eigenvectors.
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3.4 Covariant formulations

The second-order pseudo-hyperbolic formalisms we have discussed here rep-
resent an improvement over the free evolution ADM system, both at the theo-
retical and at the numerical applications level, where the pseudo-hyperbolicity
property ensures the absence of growing modes in linear perturbations. This
fact has proven to be very useful in 3D numerical black hole simulations, us-
ing either the Bona–Massó [18] or the BSSN formalisms [19, 20]. In the BSSN
case, the combined use of the ‘gamma-driver’ shift prescription [21] (devised
to freeze the Γ̃ i evolution) and the ‘moving punctures’ approach [22, 23] has
allowed to perform long-term simulations of binary black holes systems.

These formalisms, however, share two drawbacks:

• Energy and momentum constraints are treated in a different way. Energy
constraint is treated like in the ADM case, by relaxing it during time evolu-
tion. Momentum constraint, instead, is considered to provide the evolution
equation for some extra dynamical field (Vi or Γ̃ i, respectively).

• These extra dynamical quantities have no tensor behavior: neither Vi nor
Γ̃ i transforms as three vectors under general space coordinates transfor-
mations.

The second point was later corrected, leading to the three-covariant Z3
formalism [24], which will be discussed below. But the first point clearly
suggests that all these are just intermediate steps toward more advanced
formalisms, in which the energy constraint is not left aside and the supple-
mentary dynamical quantities have a well-defined four-tensor character. All
these requirements are fulfilled by the ‘Z4 formalism’ [25, 26], which we will
present in what follows.

3.4.1 The Z4 formalism

The field equations in the Z4 formalism can be written in a general covariant
form at the 4D level, namely

Rμν + ∇μZν + ∇νZμ = 8π (Tμν − 1
2

T gμν) , (3.69)

where the ‘zero’ four-vector Zμ plays the role of the supplementary quantity,
so that the full set of dynamical fields consists of the pair

{gμν , Zμ} . (3.70)

Here again, the solution space of the original Einstein’s equations is ex-
tended by introducing the extra dynamical quantity Zμ. The solutions of the
original field equations can of course be recovered by imposing the vanishing
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of the additional terms, namely

∇μZν + ∇νZμ = 0, (3.71)

which is the Killing equation. For a generic spacetime, the only solution of
this equation is the trivial one:

Zμ = 0 . (3.72)

The four components of this algebraic condition will play the role of the
energy–momentum constraints, as we will see later. One can even use the
evolving values of Zμ during a numerical simulation as a good general co-
variant indicator of the quality of the approximation. Note that, in contrast
with the precedent formalisms, the extended solution space is also general co-
variant, so that a generic 4D coordinate transformation maps solutions into
solutions for both the original Einstein’s equations and the Z4 extended ones
(3.69) (see Fig. 3.6).

A

A' 

B' 

B 

Fig. 3.6 The original Einstein’s equations solution space is represented by the inner circle,
which is contained into the outer circle representing the extended solution space of the Z4
system. The plot shows the effect of a general coordinate transformation, represented here
as a mapping with circular dotted lines. Points A, representing a Z4-extended solution, and
B, representing a true Einstein’s solution, are mapped into A′ and B′, which still represent
either a Z4-extended solution or a true Einstein solution, respectively. This is in contrast
with the behavior shown in Fig. 3.1 for the ADM system, reflecting the lack of invariance
of the ADM-extended solution space.

The time evolution of the algebraic constraint (3.72) can be obtained by
taking the four-divergence of the field equations (3.69) and allowing for the
conservation of both the Einstein tensor Gμν and the stress–energy tensor
Tμν , that is,
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∇ν [∇μZν + ∇νZμ − (∇ρZ
ρ) gμν ] = 0 . (3.73)

After a straightforward calculation, one gets the equivalent form

� Zμ + RμνZν = 0 , (3.74)

which plays here the role of the subsidiary system (3.5) and (3.6). It is of
second order in Zμ, so that the vanishing of both Zμ and its first time deriva-
tives is needed at the initial slice if we want the algebraic constraint (3.72) to
be preserved during time evolution. As we will see below, the vanishing of the
first derivatives of Zμ amounts to imposing the original energy and momen-
tum constraints. This means that the initial data set leading to true Einstein’s
solutions must consist in an initial metric gμν verifying the usual energy and
momentum constraints plus a zero initial value for the four-vector Zμ.

3.4.2 The generalized harmonic formalism

It is interesting to note at this point that the generalized harmonic system
(1.82) and the Z4 system (3.69) can be related by defining the ‘gauge sources’
Hμ as

Hμ = −Γμ − 2Zμ , (3.75)

instead of (1.83).
From the generalized formalism approach, the specification of the gauge

sources Hμ is fully equivalent to the specification of the quantity Zμ in (3.75).
In particular, the relaxed system (1.64) is obtained when imposing

Zμ = −1
2

Γμ (Hμ = 0) . (3.76)

In this context, it is clear that the harmonic constraints (1.63) amount to
the algebraic constraints (3.72), that is,

Γμ = 0 ⇔ Zμ = 0 . (3.77)

This equivalence provides a nice alternative proof of the fact that the
harmonic constraints are first integrals of the relaxed system. We give here
just an outline:

• The relaxed system (1.64) is precisely the Z4 system for the choice (3.76).
• The vanishing of Zμ implies the fulfillment of the harmonic constraints

(1.63).
• Any four-vector Zμ satisfying the Z4 system must satisfy the subsidiary

system (3.74).
• The vanishing of Zμ is a first integral of the subsidiary system (3.74).
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The preceding arguments could suggest that the Z4 system is just another
version of the generalized harmonic formalism. This would be true only if
the Zμ vector is treated as a gauge source that should be specified by some
additional prescription. But in the Z4 approach Zμ is rather an independent
dynamical field, defined just by its evolution equations, which are given by
the covariant evolution system (3.69).

Let us note, however, that, in some recent generalized harmonic formula-
tions, the gauge sources are also considered as independent dynamical fields
(see for instance [27]). In these cases, the formal equivalence with the Z4 for-
malism is enhanced. Equation (3.75) provides the relationship between the
supplementary dynamical fields of the two formulations.

3.4.3 Constraint-violation control

As we will see below, the algebraic constraints (3.72) amount to the stan-
dard energy–momentum constraints (2.61) and (2.62). The fact that these
constraints get an algebraic form means that the supplementary dynamical
fields Zμ can be used as a quality control, providing a quantitative measure
of the energy–momentum constraints violation. The subsidiary system (3.73)
is actually providing the time evolution of these constraints violations.

Let us note at this point that the Z4 system is of mixed order: second order
in the metric but first order in Zμ. The subsidiary system (3.73) is instead
of second order in Zμ. We can use then the Z4 field equations to replace the
Ricci tensor in (3.74). The principal part of the resulting system

� Zμ = [∇μZν + ∇νZμ − 8π (Tμν − 1
2

T gμν) ]Zν (3.78)

is just a relativistic wave equation, and it follows that energy–momentum
constraints violations do actually propagate with light speed.

At first sight, this can seem satisfactory, meaning that small constraint
violations arising from poor initial data, boundary conditions, or just nu-
merical truncation errors will propagate out of the computational domain,
provided that suitable outflow conditions are set up at the outer boundary.
Assuming a consistent approach and good numerical resolution, constraint
violations would be just a transient problem, not affecting long-term results.
But this is actually not the case in black hole simulations: constraints vio-
lations cannot escape from the interior region because this would require a
superluminal propagation speed. This can cause these deviations to cumulate
and grow inside the horizon, unless we excise the interior region and set a
constraint-preserving outflow condition at the resulting inner boundary.

An interesting alternative is to introduce some constraint-damping terms
in the field equations, so that extended solutions are driven toward true
Einstein’s solutions. This idea (‘lambda system,’ see [28]) can be easily
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implemented in the Z4 framework, because of the algebraic nature of the con-
straints (3.72). Following [29], we will modify the original Z4 system (3.69)
in the following way:

Gμν +∇μZν +∇νZμ−∇ρZ
ρ gμν +κ1(nμZν +nνZμ+κ2 nρZ

ρ gμν ) = 8π Tμν ,
(3.79)

where κ1 and κ2 are free parameters and nμ is the unit normal to the time
slices.

The explicit use of the quantity nμ in the field equations (3.79) provides a
privileged time slicing, in which its space components vanish: ni = 0 (the time
component value would depend on the slicing parametrization). This can be
surprising, as far as we are modifying a four-covariant system. But driving to
zero the Zμ values is not a time-symmetric operation, and breaking the time
symmetry of the equations requires using such privileged time coordinate.
We will see in the following section that the extra terms in (3.79) provide
damping terms on the Zμ evolution equations, just as required.

As a final remark, let us note that the close relationship between the Z4
and the generalized harmonic system, as described in the preceding subsec-
tion, allows one to adapt easily the extra damping terms from (3.79) to the
generalized harmonic context (see [29] for details). This mechanism was used
successfully by Pretorius in his pioneering binary black hole simulations [27].

3.5 The Z4 evolution system

3.5.1 3 + 1 Decomposition

The extended field equations (3.79) can be written in the equivalent 3 + 1
form (Z4 evolution system) [25]

(∂t − Lβ) γij = −2α Kij (3.80)
(∂t − Lβ) Kij = −∇iαj + α [Rij + ∇iZj + ∇jZi

−2K2
ij + (trK − 2Θ)Kij − κ1(1 + κ2)Θ γij ]

−8πα [Sij −
1
2

(trS − τ) γij ] (3.81)

(∂t − Lβ) Θ =
α

2
[ tr R + 2∇kZk + (trK − 2Θ) trK − tr(K2)

−2Zkαk/α − κ1(2 + κ2)Θ − 16π τ ] (3.82)
(∂t − Lβ) Zi = α [∇j (Ki

j − δi
jtrK) + ∂iΘ

−2Ki
j Zj − Θ αi/α − κ1Zi − 8π Si ], (3.83)

where Θ stands for the projection of the four-vector Zμ along the unit normal
nμ to the constant time hypersurfaces, namely
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Θ ≡ nμZμ = α Z0 . (3.84)

In the 3+1 form (3.80), (3.81), (3.82), and (3.83), it is evident that the Z4
evolution system consists just in evolution equations. The constraints (3.72)
that can be translated into

Θ = 0, Zi = 0 (3.85)

are algebraic, so that the full set of field equations (3.79) is actually used
during evolution. Equations (3.82) and (3.83) govern the evolution of the
Zμ pieces, and we can see there the additional damping terms, devised for
driving the generalized solutions toward true Einstein’s solutions, provided
that they get the right signs, namely [29]

κ1 > 0, κ2 > −1 . (3.86)

This is in contrast to the ADM formalism [30], which can be recovered
from (3.80), (3.81), (3.82), and (3.83) by imposing (3.85). The first two equa-
tions (3.80) and (3.81) would transform into the ADM free evolution system,
whereas the last two equations (3.82) and (3.83) would transform into the
standard energy and momentum constraints, that is,

tr R + tr2K − tr(K2) = 16π τ (3.87)
∇j (Ki

j − δi
jtrK) = 8π Si . (3.88)

These constraints are not enforced in the free evolution approach, and no
mechanism is available for driving generalized solutions toward true Einstein’s
solutions in the ADM case. The same result holds for both the Bona–Massó
and the BSSN formalisms, where the energy constraint (3.87) was still not
enforced, although the momentum constraint was treated in a way which
anticipated (3.83), as we will see later.

The appearance of the new dynamical quantity Θ, which behaves as a
scalar under general space coordinate transformations, allows one to general-
ize the time slicing condition (3.14) by adding a linear coupling with Θ, that
is,

∂t ln α = −fα (tr K − mΘ) . (3.89)

The new gauge parameter m arising here is by no means superfluous,
even if it does not change anything for true Einstein’s solutions, where Θ
vanishes. The non-trivial parameter value m = 2 will be required to get a
pseudo-hyperbolic system in the standard harmonic case (f = 1), as we will
see below.
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3.5.2 Plane-wave analysis

Let us consider the linearized version of the Z4 system (3.80), (3.81), (3.82),
and (3.83) in order to study the propagation of a plane wave in a stationary
and homogeneous background (zero shift):

δ γij = ei ω·x hij(ω, t) (3.90)
δ α = ei ω·x a(ω, t) (3.91)

δ Kij = (i ω) ei ω·x kij(ω, t) (3.92)
δ Θ = (i ω) ei ω·x θ(ω, t) (3.93)

δ Zk = (i ω) ei ω·x zk(ω, t) . (3.94)

We shall switch off the damping parameters here (by setting κ1 = 0) in
order to focus the analysis on the wave propagation properties.

The time evolution of the Fourier coefficients is given by

∂thij = −2 (i ω) α0 kij (3.95)
∂t(a/α0) = −(i ω) α0 f [ tr k − m θ ] (3.96)

∂tθ = −1
2

(i ω) α0 [ tr h − hnn − 2 zn ] (3.97)

∂tzi = −(i ω) α0 [ni (tr k − θ) − kni ] (3.98)

∂tkij = −1
2

(i ω) α0 λij , (3.99)

where we have noted

λij ≡ hij + ni nj (tr h + 2 a/α0) − ni (hnj + 2 zj) − nj (hni + 2 zi), (3.100)

and where the symbol n replacing an index means the contraction with the
unit vector ni.

In order to write down the characteristic matrix, it is convenient to rear-
range the dynamical fields array in a way that clearly separates the transverse,
longitudinal, and gauge sectors, as we did before:

u = (h⊥⊥ , k⊥⊥ , hn⊥ , kn⊥ , z⊥ , trh , trk , a/α0 , θ , vn) , (3.101)

where the symbol ⊥ replacing an index means the projection orthogonal to
ni and we have used the shorthand

vn =
1
2

(tr h − hnn) − zn . (3.102)

The characteristic matrix of the Z4 evolution system is then given in this
basis in the simple block-diagonal form:
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A = α0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2
1/2 0

0 2 0
0 0 −1
0 −1 0

0 2 0
0 0 1 0 −2
0 f 0 −mf 0

0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.103)

A simple inspection of this matrix, by comparing it with (3.67), shows that

• A new sector appears (energy sector) at the lower right corner, involving
the pair of Fourier coefficients:

(θ , vn) . (3.104)

The corresponding eigenvalues are given by the background metric light
speed ±α0. There is a non-trivial coupling between the energy and the
gauge sectors.

• The eigenvalues (propagation speeds) are either zero, or the background
metric light speed, or the ‘gauge speed’ ±

√
f α0. The requirement of real

propagation speeds amounts again to the condition f ≥ 0 on the gauge
parameter f .

• A complete set of eigenvectors can be obtained in the generic case, with
the only exceptions of geodesic slicing (f = 0), where gauge speed vanishes,
and the standard harmonic case (f = 1), where gauge speed coincides with
light speed. In both cases the extra degeneracy is a problem, although in
the second one we can still put A in full diagonal form when m = 2.

We can conclude that the Z4 evolution system (3.69) is strongly pseudo-
hyperbolic for all the generalized harmonic slicing cases for which

f > 0 , m = 2 if f = 1 , (3.105)

so that we can confirm the relevance of the new gauge parameter m in the
generalized harmonic condition (3.89).

The role of the additional linear terms appearing in (3.79) can be studied
by including them in the linear perturbation analysis. The resulting propa-
gation speeds will get an imaginary part, describing damping instead of just
propagation. We refer the reader to [29] for details. Let us just note here that
the transverse traceless sector, which is common to (3.67) and (3.103), is un-
affected by the damping terms in (3.79). This means that the damping terms
are not affecting gravitational waves propagation. The energy–momentum
constraints degrees of freedom are affected instead in a way that depends on
the specific choice of the damping parameters κ1, κ2.



3.5 The Z4 evolution system 75

3.5.3 Symmetry breaking

We will address now the question of the relationship of the Z4 system with
the precedent ones. To this end, let us consider the following recombination
of the dynamical fields:

K̃ij ≡ Kij −
n

2
Θ γij , (3.106)

so that the Z4 system (3.80), (3.81), (3.82), and (3.83) can be written in a
one-parameter family of equivalent forms just by replacing everywhere

Kij → K̃ij +
n

2
Θ γij . (3.107)

These kinds of transformations leave invariant the solution space of the sys-
tem (it is actually the same system expressed in a different basis of dynamical
fields).

But suppose now that we want to enforce the first algebraic constraint in
(3.85), that is,

Θ = 0 . (3.108)

This amounts to suppress the Θ field as a dynamical quantity. If this
suppression is made after the replacement (3.107), one gets a one-parameter
family of non-equivalent extended systems with only the three components
of the vector Zi as supplementary quantities (Z3 evolution systems [24]),
namely

(∂t − Lβ) γij = −2α Kij (3.109)
(∂t − Lβ)Kij = −∇i αj + α [Rij + ∇iZj + ∇jZi (3.110)

−2K2
ij + trK Kij ] − 8πα [Sij −

1
2

(trS − τ) γij ]

− n

4
α [ tr R + 2∇kZk + tr2K − tr(K2) − 2Zkαk/α − 16π τ ] γij

(∂t − Lβ)Zi = α [∇j (Ki
j − δi

j trK) − 2Ki
jZj − κ1 Zi − 8π Si ], (3.111)

where we have suppressed the tilde over Kij , allowing for the vanishing of Θ.
Concerning the gauge prescription (3.89), we have from (3.106)

trK = trK̃ − 3n

2
Θ . (3.112)

This means that the gauge dynamics derived in the Z3 framework from

∂t ln α = −fα tr K̃ (3.113)

would actually correspond to the one derived in the Z4 context from (3.89),
provided that we take
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m =
3n

2
. (3.114)

The recombination symmetry (3.107) of the original Z4 system (3.80),
(3.81), (3.82), and (3.83) is broken in the transition to the Z3 one (3.109),
(3.110), and (3.111), which is produced by the vanishing of the Θ parame-
ter. This ‘symmetry breaking’ means that any two different choices of the n
parameter in the family of Z3 evolution systems (3.109), (3.110), and (3.111)
are not mutually equivalent: their solution spaces are different, even at the
linear order.

The Bona–Massó system [13] can be easily recovered from the n = 0 case
in (3.109), (3.110), and (3.111). The extra quantities Vi can be obtained from
the vector Zi as follows:

Vi =
1
2

γ rs[ ∂i (γrs) − ∂r (γis) ] − Zi , (3.115)

so that the evolution equation for Vi can be computed in a straightforward
way. Notice that, contrary to what happened with Vi, the ‘zero’ vector Zi

behaves as a three vector under general space coordinate transformations.
This difference is clearly reflected in the relationship (3.115) between these
two quantities.

The BSSN system [16, 17] can also be recovered (not so easily) from the
n = 4/3 (m = 2) case in (3.109), (3.110), and (3.111). To do this, the Z3
system must be decomposed into trace and trace-free parts

e4 φ = γ1/3 , γ̃ij = e−4 φ γij (3.116)

K = γij Kij , Ãij = e−4 φ (Kij −
1
3

K γij) (3.117)

Γ̃i = −γ̃ik γ̃kj
,j + 2 Zi (3.118)

in order to follow the correspondence with BSSN more closely.
It must be pointed out, however, that one does not get in this way the

original BSSN system. There is actually one difference in the lower order
terms: only the principal parts are equivalent. The difference is (apart from
the linear damping term) in the term of the form

+
n

2
Zkαk γij (3.119)

in the evolution equation (3.110), which is missing in the original BSSN
system [17]. This lower order term is needed for consistency with the general
covariant equations (3.69).

We have seen how both the Bona–Massó and BSSN systems can be ob-
tained from the more general Z4 formalism. The equivalence transformation
(3.106) plays the crucial role because suppressing the Θ field (3.108) produces
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a sort of symmetry breaking: different values of the parameter n will lead to
evolution systems that can no longer be transformed into one another once
the set of dynamical fields is reduced by the vanishing of Θ.

We will extend this idea to the remaining supplementary quantity Zi in
the next chapter. Let us just note here that setting Zi = 0 in the Z3 evo-
lution system (3.109), (3.110), and (3.111) leads to a one-parameter family
of non-equivalent free-evolution ADM systems. We can easily identify the
n = 0 case as the ‘Ricci evolution system’ (2.60) and the n = 1 case as the
‘Einstein evolution system’ (2.63) that we introduced as separate options in
the previous chapter.
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Chapter 4

First-Order Hyperbolic Systems

From the mathematical point of view, the mixed-type systems (first order in
time, second order in space) that we have considered in the previous chap-
ter are associated with the parabolic type of equations. The prototype could
be the Navier–Stokes equation of fluid dynamics, where second-order space
derivatives appear in the viscosity terms. Parabolic equations are not the
ones usually associated with causal propagation phenomena, where a finite
propagation speed can be derived in a natural way from the governing equa-
tions.

Causal propagation is more easily described instead by systems of equa-
tions of hyperbolic type. The prototype is either the (second-order) wave
equation, or the (first-order) Euler equations of fluid dynamics, where vis-
cosity terms are not taken into account. The fact that computational fluid
dynamics (CFD) deals mainly with hyperbolic first-order systems has stim-
ulated the research on these systems, leading to interesting developments in
applied mathematics, both at the theoretical and at the computational level.
In order to take advantage of these advanced developments, it is convenient
to express the mixed-type numerical relativity systems in a purely first-order
form.

4.1 First-order versions of second-order systems

4.1.1 Introducing extra first-order quantities

A first-order version of the Z4 evolution system (3.80), (3.81), (3.82), and
(3.83) can be obtained in the standard way by considering the first space
derivatives:

Ak ≡ ∂k lnα, Bk
i ≡ ∂k βi, Dkij ≡ 1

2
∂kγij (4.1)

Bona, C. et al.: First-Order Hyperbolic Systems. Lect. Notes Phys. 783, 79–108 (2009)
DOI 10.1007/978-3-642-01164-1 4 c© Springer-Verlag Berlin Heidelberg 2009
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as independent dynamical quantities. This means that we must provide evo-
lution equations for the new quantities (4.1). We will consider in this first
section just normal coordinates (zero shift) for simplicity. The extra compli-
cations arising in the shift case will be addressed later in this chapter.

The standard way is just to realize that (4.1) are partial space derivatives
of the metric components, so that the time derivatives of (4.1) will be mixed
second derivatives of these coefficients. By reversing the order of space and
time derivatives, one gets (normal coordinates)

∂tAk + ∂k[ α Q ] = 0 , (4.2)
∂tDkij + ∂k[ α Kij ] = 0 , (4.3)

where we have introduced the time derivative quantity

Q ≡ −1/α ∂t lnα , (4.4)

which will of course depend on the time slicing condition. The choice (3.89)
would correspond to

Q = f (tr K − m Θ) . (4.5)

Note that the new quantities Ak behave like the components of a 3+1
vector under general coordinate transformation, but the components Dkij do
not transform in a covariant way. The full set of dynamical fields can be given
by

u = {α, γij , Kij , Ak, Dkij , Θ, Zk} (4.6)

(38 independent fields).
Note also that the new quantities must be computed now through their

evolution equations (4.2) and (4.3). The original definitions (4.1) are now
considered rather as constraints, namely

Ak ≡ Ak − ∂k lnα = 0 (4.7)

Dkij ≡ Dkij −
1
2

∂kγij = 0 . (4.8)

These new first-order constraints are first integrals of the evolution equa-
tions (4.2) and (4.3), so that it is enough to enforce them on the initial data.
It follows that the first-order versions will have a larger set of constraints
than the original second-order systems. This is a complication, from both
the theoretical and the computational point of view, as we will see in what
follows.

Let us just remark that we can mimic here with the first-order constraints
(4.7) and (4.8) the strategy adopted with the energy–momentum constraints
in the previous chapter. Some ‘ad hoc’ damping terms can be added, devised
to diminish first-order constraints violations, namely
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∂tAk + ∂k[ α Q ] = −ηAk (4.9)
∂tDkij + ∂k[ α Kij ] = −ηDkij , (4.10)

where the new damping coefficient η must be positive, as we will see below.
These damping coefficients can be assumed either to be constant or to

include an α factor, depending whether we want the damping to act in coor-
dinate time or in proper time, respectively.

4.1.2 Ordering ambiguities

The first complication related with the first-order constraints is the ordering
ambiguities of second space derivatives. We can combine the space derivatives
of the first equation in (4.1) to get an ordering constraint for Ak, namely

Cij ≡ ∂i Aj − ∂j Ai = ∂i Aj − ∂j Ai = 0 . (4.11)

The fact that the ordering constraint (4.11) does not hold identically pro-
duces an ambiguity in the ordering of the second derivatives of the lapse,
appearing in the evolution equation (3.81) for Kij . This ordering ambiguity
can be easily solved by taking the symmetric combination

∇i dj α =
1
2
[∇i(α Aj) + ∇j(α Ai) ] , (4.12)

which is the only one that preserves the symmetric character of Kij .
We can get in the same way an ordering constraint for Dkij , namely

Crsij ≡ ∂r Dsij − ∂s Drij = ∂r Dsij − ∂s Drij = 0 . (4.13)

When this ordering constraint does not hold identically, this produces
again an ordering ambiguity in (3.81), where second space derivatives of the
metric appear through the Ricci tensor Rij .

But this time the ambiguity cannot be resolved by invoking the symmetric
character of Kij . On one side, we can get the standard Ricci decomposition

(+)Rij = ∂k Γ k
ij − ∂i Γ k

kj + Γ r
rkΓ k

ij − Γ k
riΓ

r
kj , (4.14)

where Γkij stands now for

Γkij ≡ Dijk + Djik − Dkij . (4.15)

On the other hand, we can get the De Donder–Fock [1–5] decomposition

(−)Rij = −∂k Dk
ij + ∂(i Γj)k

k − 2Dr
rkDkij

+ 4Drs
iDrsj − ΓirsΓj

rs − ΓrijΓ
rk

k (4.16)
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which is the preferred one in both the Bona–Massó and the BSSN systems,
as discussed in Sect. 3.3.

There is no fundamental reason to prefer either the (4.14) or the (4.16)
ordering. This is why we will consider an arbitrary combination of both cases,
namely

Rij =
1 + ζ

2
(+)Rij +

1 − ζ

2
(−)Rij , (4.17)

where we have introduced the ordering parameter ζ so that the choice
ζ = +1 corresponds to the standard ordering (4.14), whereas the opposite
choice ζ = −1 corresponds to the alternative one (4.16). The intermediate
value ζ = 0 corresponds to the symmetrization of all second space derivatives.

Let us note at this point that the time evolution of the ordering constraints
can be easily computed if we allow for the first-order equations (4.9) and
(4.10), namely

∂t Cij = −η Cij ∂t Crsij = −η Crsij (4.18)

so we can see the role of the first-order damping coefficient, which will drive
the ordering constraints toward zero (provided that η > 0 ).

4.1.3 First-order Z4 system (normal coordinates)

Now we are in a position to write down the first-order version of the Z4
evolution system (3.80), (3.81), (3.82), and (3.83) (normal coordinates)

∂t α = −α2 Q (4.19)
∂t γij = −2α Kij (4.20)
∂t Kij = −∇iαj + α [Rij + ∇iZj + ∇jZi

−2K2
ij + (trK − 2Θ)Kij − κ1(1 + κ2)Θ γij ]

−8πα [Sij −
1
2

(trS − τ) γij ] (4.21)

∂tAk = − ∂k[ α Q − η lnα ] − η Ak (4.22)
∂tDkij = − ∂k[ α Kij − η γij ] − η Dkij (4.23)

∂t Θ =
α

2
[ tr R + 2∇kZk + (trK − 2Θ) trK − tr(K2)

−2Zk Ak − κ1(2 + κ2) Θ − 16π τ ] (4.24)
∂t Zi = α [∇j (Ki

j − δj
i trK) + ∂i Θ

−2Ki
j Zj − Θ Ai − κ1Zi − 8π Si ] (4.25)

where the second derivative terms in (4.21) must be replaced by (4.12) and
(4.17) and the quantity Q in (4.19) and (4.22) can be obtained from any
algebraic condition of the form (4.5).
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The propagation properties of a first-order system like (4.19), (4.20),
(4.21), (4.22), (4.23), (4.24), and (4.25) are given by the principal part terms,
that is, the ones containing partial derivatives. It is then interesting for fur-
ther purposes to write down the principal part of (4.19), (4.20), (4.21), (4.22),
(4.23), (4.24), and (4.25) in an explicit way

∂t α = · · · (4.26)

∂t γij = · · · (4.27)

∂t Θ + ∂k [α (Dk − Ek − Zk) ] = · · · (4.28)

∂t Zi + ∂k [α ( δk
i (trK − Θ) − Kk

i ) ] = · · · (4.29)

∂t Ak + ∂k [α f (trK − mΘ) − η lnα ] = · · · (4.30)

∂t Dkij + ∂k [α Kij − η γij ] = · · · (4.31)

∂t Kij + ∂k [α λk
ij ] = · · · , (4.32)

where the dots stand for terms not containing derivatives and we have noted
for short

Di ≡ D k
ik , Ei ≡ D k

ki , (4.33)

λk
ij ≡ Dk

ij +
1
2

δk
i (Aj + Dj − 2Ej − 2Zj) +

1
2

δk
j (Ai + Di − 2Ei − 2Zi)

−1 + ζ

2
(D k

ij + D k
ji − δk

i Ej − δk
j Ei) . (4.34)

Note that there is no ordering ambiguity in the evolution equation (4.28)
for Θ. This is because the trace of the ζ -dependent terms in (4.34) vanishes
identically. One has the full set of 38 evolution equations for the 38 fields
in (4.6), containing f and m as gauge parameters, ζ as ordering parameter,
and the κ and η damping parameters for energy–momentum and first-order
constraints, respectively.

4.1.4 Symmetry breaking: the KST system

We have obtained in the previous sections the first-order version (4.19),
(4.20), (4.21), (4.22), (4.23), (4.24), and (4.25) of the Z4 system by assuming
the standard evolution equations (4.22) and (4.23) for the first-order quan-
tities (4.1). But this is not the only way of getting a first-order version of
a second-order system. Kidder, Scheel, and Teukolsky obtained a first-order
version of the original ADM system by combining the energy and momentum
constraints with the first-order evolution equations (KST system [6]).
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The original KST system assumed a direct power-law relationship between
the lapse and the space volume element (‘densitized’ lapse). This system has
been extended by Sarbach and Tiglio [7] in order to include the wide class of
generalized harmonic conditions that we are considering here, in which the
lapse is an independent quantity which must be computed from its evolution
equation (‘dynamical’ lapse). In what follows we will use the term ‘KST
system’ to refer also to this generalization.

We will recover here the KST system from the Z4 one by a symmetry
breaking mechanism, along the lines sketched in Sect. 3.5.3. Let us consider
as a starting point the principal part (4.26), (4.27), (4.28), (4.29), (4.30),
(4.31), and (4.32), dropping here the damping terms for simplicity. We will
follow a two-step ‘ symmetry breaking’ process, namely

1. Recombining the dynamical fields Kij , Dkij with Θ and Zi in a linear way,

K̃ij = Kij −
n

2
Θ γij , (4.35)

dkij = 2Dkij + η γk(iZj) + χ Zk γij , (4.36)

where we have used the notation of [6], replacing only their parameter γ
by −n/2 for consistency with the definition (3.106) in Sect. 3.5.3.

2. Suppressing both θ and Zi as dynamical fields, namely

Θ = 0 , Zi = 0 . (4.37)

Note that the linear combinations (4.35) and (4.36) are generic in the sense
that they are the most general linear combinations that preserve the tensor
character of the dynamical fields under linear coordinate transformations (re-
member that the D’s components are not covariant under general coordinate
transformations).

In that way, the principal part (4.27), (4.28), (4.29), (4.30), (4.31), and
(4.32) becomes

∂t α = · · · (4.38)
∂t γij = · · · (4.39)

∂t Ak + ∂k [ α f tr K̃ ] = 0 (4.40)
∂t dkij + ∂r[ α { 2 δr

k K̃ij − χ (K̃r
k − δr

k tr K̃) γij

+η γk(i(K̃r
j) − δr

j)tr K̃)} ] = · · · (4.41)

∂t K̃ij + ∂k [ α λk
ij ] = · · · (4.42)

for the reduced set of 34 dynamical fields

u = {α, γij , K̃ij , Ak, dkij } , (4.43)
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where λk
ij stands now for

2 λk
ij ≡ dk

ij −
n

4
(dkr

r − dr
rk) γij

+
1 + ζ

2
(dij

k + dji
k) − 1 − ζ

2
(δk

i drj
r + δk

j dri
r)

+ δk
j (Ai +

1
2

dir
r) + δk

i (Aj +
1
2

djr
r) . (4.44)

This provides the ‘dynamical lapse’ version [7] of the KST evolution sys-
tem. In order to recover the original ‘densitized lapse’ version, one must in
addition integrate explicitly the dynamical relationship (4.5) between the
lapse and the volume element (remember that now Θ = 0). It can be easily
done in the case

f = 2 σ = constant, (4.45)

namely
∂t (αγ−σ) = 0, (4.46)

so that the value of α can be defined in terms of the space volume element√
γ for every initial condition. The same thing can be done with their space

derivatives, so that we can take

Ai ≡ σ dir
r , (4.47)

and the set of dynamical fields is then further reduced to

u = { γij , Kij , dkij }. (4.48)

The principal part of the evolution system is then given by (we suppress
the tildes over the Kij)

∂t γij = · · · (4.49)
∂t dkij + ∂r[ α{ 2 δr

k Kij − χ (Kk
r − δr

k tr K) γij

+ η γk(i(Kr
j) − δr

j)tr K) } ] = · · · (4.50)

∂t Kij + ∂k [ α λk
ij ] = · · · (4.51)

with

2λk
ij ≡ dk

ij −
n

4
(dkr

r − dr
rk) γij +

1 + 2σ
2

(δk
i dj r

r + δk
j dir

r)

− 1 − ζ

2
(δk

i dr
rj + δk

j dr
ri) +

1 + ζ

2
(dij

k + dj i
k), (4.52)

which corresponds precisely to (the principal part of) the original KST sys-
tem [6].
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Note that we have lost in the process the second gauge parameter m, and
the first one f has been replaced by σ. On the other hand, we have kept the
ordering parameter ζ and we have got one extra energy-constraint parameter
n and two extra momentum constraint parameters χ and η.

4.2 Hyperbolic systems

We have seen in Sect. 3.1.3 how to study the propagation properties of the
field equations by means of the plane-wave analysis. This is a very general,
physically sound method which provides consistent results, independent of
the way we manage to write down the equations.

Now we will see still another method: the hyperbolicity analysis, which
is currently used in the mathematical literature for first-order systems [8]
and can then be applied to the first-order form of our evolution equations.
Contrary to the plane-wave analysis, the hyperbolicity analysis takes into
account just the principal part of the system: the terms containing the higher
derivatives for every dynamical field. This prevents a consistent treatment of
the linear damping terms, which will be switched off in this section. We will
see then that the quasilinear nature of Einstein’s field equations leads to a
full coincidence of the results obtained by these two methods.

4.2.1 Weak and strong hyperbolicity

Hyperbolic first-order systems have been proposed for numerical relativity
applications since the seminal work of Y. Choquet-Bruhat and T. Ruggeri
[9]. In all of them, the original ADM system [10] is modified by using the
constraints in one or the other way. This includes the Bona–Massó system [11,
12], the KST one [6, 7], the generalized harmonic one [13, 14] and some
others [15–19], even taking additional derivatives in some cases [20, 21] (but
see [22, 23] for a completely different approach). The first-order version of
the BSSN system (NOR system [24]) has been also analyzed from this point
of view.

We will consider here a generic first-order system, although the specific
developments will be carried out for the first-order version (4.19), (4.20),
(4.21), (4.22), (4.23), (4.24), and (4.25) of the Z4 system [25]. For the purposes
of our analysis, we will need to deal only with the principal part, that is, the
one containing first derivatives of the basic fields u. We will write then our
first-order system in the form

∂t u + Ak ∂k u = 0 , (4.53)

where Ak is the ‘characteristic’ matrix along the k axis.
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Let us consider now a generic space direction, given by the unit vector n.
We will study the following eigenvalue problem

(An − v I) u = 0 , (4.54)

where the matrix An = nkAk will be called again the characteristic matrix
along the direction n. Their eigenvalues v will be the corresponding ‘charac-
teristic speeds.’

We will say that the first-order system (4.53) is

• Strongly hyperbolic if, for every direction n, all the characteristic speeds
are real and the characteristic matrix can be put into full diagonal form
(there is a complete set of eigenvectors).

• Weakly hyperbolic if, for every direction n, all the characteristic speeds
are real but, at least for some direction, the characteristic matrix cannot
be fully diagonalized.

These definitions coincide with the strong and weak pseudo-hyperbolicity,
respectively, that were introduced in Sect. 3.1.3, when applied to the ho-
mogeneous first-order system (4.53). By this we mean that, in the linear
approximation, the dynamics described by (the principal part of) a strongly
hyperbolic system is just linear wave propagation along the selected direction,
with the characteristic speed as the wave speed.

Hyperbolic systems can be shown, with some additional smoothness as-
sumptions [8], to have a well-posed initial-value problem. This implies the
stability of the solutions at the continuum level, which is a necessary condi-
tion for the stability of numerical solutions. We have seen in Sect. 3.2 that
strong hyperbolicity is actually required to get stability at the numerical level.
We will see in the following chapter how this property is also important in
order to apply some advanced numerical methods from computational fluid
dynamics.

Before going further in that direction, let us solve the eigenvalue problem
for the first-order version (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), and
(4.25) of the Z4 system. Let us note first that the principal terms of the
evolution equations (4.26) and (4.27) for the metric coefficients are trivial, so
that we can restrict ourselves to the reduced set of 31 dynamical fields

u = {Kij , Ak, Dkij , Θ, Zk} , (4.55)

which can be considered as evolving linearly in a non-homogeneous back-
ground provided by the metric coefficients α, γij . Let us also introduce the
first-order version of the Bona–Massó quantity (3.115)

Vk = Dk − Ek − Zk (4.56)

as an auxiliary variable which will prove very useful for the analysis.
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The spectral decomposition of the characteristic matrix An provides the
following list of eigenfields:

• Standing eigenfields (zero characteristic speed):

A⊥, D⊥ij , Ak − fDk + f mVk (4.57)

(17 independent fields), where the symbol ⊥ replacing an index means the
projection orthogonal to ni, for instance

D⊥ij ≡ (δ r
k − nknr)Drij . (4.58)

• Light-cone eigenfields (local characteristic speed ±α):

L ±
ij ≡ [Kij − ninj trK ] ± [λn

ij − ninj trλn ] (4.59)

E± ≡ θ ± V n (4.60)

(12 independent fields), where the symbol n replacing the index means the
contraction with ni, for instance

λn
ij ≡ nkλk

ij . (4.61)

• Gauge eigenfields (characteristic speed ±α
√

f). In the generic, non-
degenerate case (f �= 1), we get

G± ≡
√

f [ tr K − μ Θ ] ± [ An + (2 − μ) V n ] , (4.62)

where we have written for short

μ =
f m − 2
f − 1

. (4.63)

In the degenerate case f = 1, one must have m = 2, as discussed
below, and the extra degeneracy allows any value of the parameter μ in
the combination (4.62). The corresponding eigenfields can be chosen to be,
for instance,

[ tr K ] ± [ An + 2 V n ] . (4.64)

From the list ((4.57), (4.58), (4.59), (4.60), (4.61), and (4.62)) of eigenvec-
tors and their corresponding eigenvalues, we can easily conclude that

• All the characteristic speeds are real (the system is at least weakly hyper-
bolic) if and only if f ≥ 0.

• In the case f = 0, the two components of the gauge pair G± are not
independent, so that the total number of independent eigenfields is 30
instead of the 31 ones required for strong hyperbolicity.

• The case f = 1 (harmonic case) is special:



4.2 Hyperbolic systems 89

– If m �= 2, then the gauge pair G± cannot be fully decoupled from the
pair E±, so that one has only 29 independent eigenfields.

– If m = 2, then these pairs can be decoupled in many ways, due to the
degeneracy of the gauge and light eigenfields. The pair (4.64) is just
one of such choices. One recovers then the full set of 31 independent
eigenfields (strong hyperbolicity).

• The first-order Z4 system described by (4.19), (4.20), (4.21), (4.22), (4.23),
(4.24), and (4.25) is strongly hyperbolic in all the remaining cases (f > 0,
f �= 1).

4.2.2 1D Energy estimates

In order to gain some further insight, let us focus for the moment in the one-
dimensional (1D) case. There is only one space direction and then just one
characteristic matrix. Let us assume strong hyperbolicity, so that the corre-
sponding left eigenvectors actually provide a complete basis of the dynamical
fields space,

w = {wr } r, s = 1, . . . , n , (4.65)

where n is the number of independent dynamical fields.
We have found these eigenfields by inspection in the preceding subsection,

due to the simple structure of the Z4 first-order system in normal coordinates.
This is not always so simple, as we will see for instance in the magnetohy-
drodynamics (MHD) case. A more systematic way is to relate the eigenfields
w with the original fields u by

wr =
∑

s

Lrs us , (4.66)

where the coefficients

(Lr1 , . . . , Lrn ) r = 1, . . . , n (4.67)

are the left eigenvectors of the characteristic matrix.
In the linear approximation, we can assume that the diagonalization ma-

trix L is constant, so that the original system (4.53) can be written in the
basis w as a set of uncoupled advection equations, namely

∂t wr + λr ∂x wr = 0 r = 1, . . . , n . (4.68)

It follows that, in the linear regime, the dynamics can be described as a
superposition of simple waves, propagating with the characteristic speeds, in
full concordance with the plane-wave analysis results.
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Remember that the full diagonalization of the characteristic matrix is not
possible in the weakly hyperbolic case. A prototype example could be the
two-component system

∂t

(
u
v

)
+

(
λ a
0 λ

)
∂x

(
u
v

)
= 0 . (4.69)

There is just one independent eigenfield (v), and the evolution of the re-
maining component u contains a linearly growing mode, namely

u(x, t) = f(x − λt) − a t v′(x − λt) . (4.70)

These polynomial modes (linear in this simple example) are easily detected
by the robust stability test, as described in Sect. 3.2.

Coming back to the strong hyperbolicity case, we can introduce a positive-
definite quadratic form in the space of dynamical fields:

E =
∑

r

(wr)2 (4.71)

(energy metric). We will consider the ‘energy estimate’ E, obtained as the
integrated value of E over the computational domain

E =
∫ b

a

E dx =
∑

r

∫ b

a

(wr)2 dx . (4.72)

Allowing for the uncoupled evolution equations (4.68), we can obtain the
time evolution of this estimate as

∂t E = −2
∑

r

λr

∫ b

a

wr (∂xwr) dx = −
[∑

r

λr(wr)2
]b

a

. (4.73)

This means that, in the linear approximation, the ‘energy estimate’ E is
conserved, apart from boundary term contributions. We will assume for the
moment that the boundary is far from the dynamical region (or, alternatively,
periodic boundary conditions) so that the boundary term contribution can
be ignored here: it will be discussed properly later in this chapter.

The conservation of the energy estimate provides a direct way to show that
the system under consideration is well-posed. If every dynamical field at every
grid point contributes to the energy estimate E (which is positive definite,
so that there can no be cancellations of any kind), this means that the value
of any specific dynamical field cannot grow without bound. This was already
implicit in the evolution equations (4.68), but the energy estimate allows to
focus the analysis in a single quantity, the energy metric, which is much more
convenient than dealing with the full characteristic decomposition.
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Note, however, that the energy metric (4.71) is far from being unique.
To begin with, the characteristic eigenfields wr are just defined up to an
arbitrary factor. Moreover, when some characteristic speeds coincide, the
linear degeneracy of the corresponding eigenspace produces non-equivalent
quadratic forms which could be used as alternative starting points, leading
to different energy estimates. There are also other more general choices, as
we will see in what follows.

4.2.3 Symmetric-hyperbolic systems

Let us go back to the multidimensional case, to the linear system

∂t u + Ak ∂k u = 0 , (4.74)

where we will assume again that the characteristic matrices Ak have con-
stant coefficients in the linear approximation. This system will be said to
be symmetric-hyperbolic if there exists a basis of dynamical fields u such
that, for every space direction n, the corresponding characteristic matrix is
symmetric, that is,

nkAk
rs = nkAk

sr ∀n . (4.75)

It is clear that any symmetric-hyperbolic system must be also strongly
hyperbolic: every real symmetric matrix can be fully diagonalized and all
the corresponding eigenvalues are real. The converse is not true: there are as
many characteristic matrices as space directions and the requirement that all
of them must be symmetric when expressed in a given basis is not trivial.

Let us restrict ourselves here to symmetric-hyperbolic systems. Let u be
one basis in which the symmetry requirement (4.75) is fulfilled. We will then
define the energy metric to be

E =
∑

r

(ur)2 . (4.76)

Now some comments are in order:

• In the 1D case, using the basis of eigenfields w ensures that the (only) char-
acteristic matrix is in diagonal form (that is symmetric, of course). This
means that symmetric hyperbolicity is equivalent to strong hyperbolicity
in the 1D case.

• In the 3D case, there is no common basis of eigenvectors for the characteris-
tic matrices along different directions (unless all these matrices commute).
This means that the basis fields u are not eigenvectors in the generic case.

• This suggests a supplementary freedom in choosing the basis vectors for
the energy metric: any combination of the form
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ur =
∑

s

Rrsws , (4.77)

where R is any orthogonal matrix, will work, as far as the symmetry of
a matrix is preserved under orthogonal transformations. Note that the
resulting fields ur will not be eigenvectors in the generic case.

Now we can proceed along the same lines as in the 1D case. We will consider
again the energy estimate, obtained by integrating E over the computational
domain

E =
∫

E dV =
∑

r

∫
(ur)2 dV . (4.78)

Its time variation is given by (we are using the symmetry requirement
here)

∂t E = −2
∑
rs

Ak
rs

∫
ur ∂kus dV = −

∮ ∑
rs

nkAk
rs urus dS , (4.79)

where the surface integral is over the boundary of the computational domain.
Note that we need only one characteristic matrix at a time in order to com-
pute the last integral: the one corresponding to the normal direction n to the
given boundary surface, that is,

An = nkAk . (4.80)

This means that energy estimates can be useful for devising boundary
conditions for multidimensional symmetric-hyperbolic systems in the same
way as in the 1D case, as we will discuss later in this chapter.

Let us recall here that symmetric hyperbolicity implies strong hyperbol-
icity, but not vice versa. Symmetric hyperbolicity is not required in order to
get a well-posed system in the context of the pure initial data problem. The
advantage of this stronger requirement is rather that the knowledge of the
energy estimates can provide useful clues for devising additional conditions,
for instance in the context of the mixed initial-boundary problem. But note
also that this could be in conflict with other requirements, like the current
prescriptions for singularity-avoidant coordinates. We will regard then sym-
metric hyperbolicity just as a bonus, not such a strict requirement as strong
hyperbolicity.

A simple example of a symmetric-hyperbolic system in normal coordinates
is provided by the first-order version (4.19), (4.20), (4.21), (4.22), (4.23),
(4.24), and (4.25) of the Z4 system in the harmonic slicing case (f = 1, m =
2), for the choice ζ = −1 of the ordering parameter [26]. The energy metric
can be chosen to be

E = KijK
ij + λkijλ

kij + Θ2 + VkV k , (4.81)
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but a ‘constant’ term of the form

(Ak − Dk + 2Vk) (Ak − Dk + 2V k) , (4.82)

containing just fields with zero characteristic speed, could also be added.
Note that, as discussed before, the quadratic form (4.81) is built with simple
combinations of the basic dynamical fields, without requiring the explicit use
of any characteristic basis.

4.3 Generic space coordinates

4.3.1 First-order fields

Let us now consider the general case, beyond the normal coordinates pre-
scription. This amounts to considering the generic shift case, so that the
shift-related first-order constraint in (4.1), namely

Bk
i ≡ Bk

i − ∂k βi = 0 , (4.83)

will play an outstanding role.
The first decision to take is how to translate the evolution equations for

the metric components. Let us consider for instance (3.80), namely

(∂t − Lβ) γij = −2α Kij . (4.84)

At first sight, one could be tempted to write it in the most direct way, as
(3.80), namely

(∂t − βk ∂k) γij − γik ∂jβ
k − γkj ∂iβ

k = −2α Kij . (4.85)

This is not a good idea, because space derivatives of the metric coefficients
(βk and γij in this case) would appear explicitly in the equations. In this way,
we could no longer consider these coefficients as a sort of kinematical back-
ground, unaffected by space discretization errors, the first-order quantities
(Kij , Dkij , . . . ) being the truly dynamical degrees of freedom. From this
point of view, the rule of thumb should be using the constraints (4.7), (4.8),
and (4.83) to replace systematically the metric space derivatives. The only ex-
ceptions could be those required by keeping the equations in flux-conservative
form, as we will see later, or by the damping terms that we have seen before.

We will express then (4.84) in the more convenient form

∂t γij = 2βkDkij + Bij + Bj i − 2α Kij , (4.86)

where we have noted
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Bki = γij Bk
j . (4.87)

The evolution equations for the remaining metric coefficients will be given
then by

∂t α = α βkAk − α2 Q , ∂t βi = βk Bk
i − α Qi , (4.88)

where the quantities (Q, Qi) must be provided by the coordinate gauge pre-
scription.

Note that replacing Bk
i by the corresponding shift derivative in (4.88)

would introduce a truly non-linear behavior, similar to that of the Euler (or
Burgers) equations. As we will see in the next chapter, this can be a source of
numerical problems. This was actually the reason why the initial first-order
versions of the generalized harmonic formalism [13] were replaced by the most
recent ones, like [14], where more general combinations of (4.84) and (4.86)
are considered in order to obtain a better behaved system.

The same logic applies to the evolution equations (4.2) and (4.3) of the
space-derivatives quantities. The most direct translation could be (we switch
off the damping terms for the moment)

∂t Ak + ∂k [−βrAr + α Q ] = 0 , (4.89)
∂t Bk

i + ∂k [−βrBr
i + α Qi ] = 0 , (4.90)

∂t Dkij + ∂k [−βrDrij + α Qij ] = 0 , (4.91)

where we have noted for short

Qij ≡ Kij −
1
2α

(Bij + Bj i) . (4.92)

But, again, this may not be a good idea. Note that the transverse derivative
components in (4.89), (4.90), and (4.91), namely

A⊥ , B⊥
i , D⊥ij , (4.93)

do propagate along the time lines (zero characteristic speed). This is a com-
plication, when the main dynamical fields will propagate instead along light
cones. Time lines can cross the local light cone in simulations involving super-
luminal regions and the resulting propagation speed degeneracy could prevent
the full diagonalization of the characteristic matrix (weak hyperbolicity).

A safer alternative is using (4.83) plus the shift ordering constraint

Crs
i ≡ ∂r Bs

i − ∂s Br
i = ∂r Bs

i − ∂s Br
i = 0 (4.94)

for transforming the evolution equations (4.89), (4.90), and (4.91) into

∂tAk + ∂l[−βl Ak + δl
k α Q] = Bk

l Al − trB Ak (4.95)
∂tBk

i + ∂l[−βl Bk
i + δl

k α Qi] = Bk
l Bl

i − trB Bk
i (4.96)

∂tDkij + ∂l[−βlDkij + δl
k α Qij ] = Bk

l Dlij − trB Dkij . (4.97)
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In this way, the transverse derivatives components (4.93) will propagate
along the normal lines (characteristic speed −β), which of course cannot
cross the local light cone for a spacelike constant-time hypersurface.

Some remarks are in order at this point:

• We realize here that using the ordering constraints can actually affect
the characteristic speeds and the hyperbolicity of the first-order evolution
system. This is a feature of the shift case: as we have seen in Sect. 4.2.1, the
ordering parameter ζ just affected the computation of the eigenvectors,
not the eigenvalues. Only when demanding the stronger requirement of
symmetric hyperbolicity a particular value (ζ = −1) was preferred.

• These results can be actually confirmed by the plane-wave analysis, pro-
vided that we treat consistently Bk

i as independent quantities. We should
consider again a constant background (with a non-zero shift this time). The
(quadratic) right-hand-side terms in (4.95), (4.96), and (4.97) will not be
taken into account in the linear approximation. This can seem unphysical,
but it is the right way for analyzing the behavior of our first-order system
under generic perturbations arising from numerical truncation errors.

Let us finally analyze the resulting evolution equations for the first-order
constraints. We will consider first the lapse-derivatives constraint (4.7). Al-
lowing for (4.95), we get

∂t Ak − βr (∂r Ak − ∂k Ar) = Bk
r Ar − Br

r Ak . (4.98)

The hyperbolicity of the subsidiary evolution equation (4.98) can be an-
alyzed by displaying the normal and transverse components of the principal
part along any space direction n, namely

∂t An − β⊥ (∂n A⊥) = 0 (4.99)
∂t A⊥ − βn (∂n A⊥) = 0 , (4.100)

with eigenvalues (0, −βn), which is just weakly hyperbolic in the fully de-
generate case, that is, for any space direction orthogonal to the shift vector.

This fact explains the importance of adding constraint damping terms to
(4.95), namely

∂tAk + ∂l[−βlAk + δl
k α Q ] = Bk

l Al − trB Ak − ηAk , (4.101)

so that the damping term −ηAk will appear as a result in the subsidiary
system also. The linearly growing constraint-violation modes arising from
the degenerate coupling in (4.99) will be kept then under control by these
(exponential) damping terms. The same argument applies mutatis mutandis
to the remaining first-order constraints Bk

i, Dkij .
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4.3.2 Generalized harmonic formulations

As a first example of strongly hyperbolic formalism with dynamical shift
prescription, we will consider here the first-order versions of the generalized
harmonic formalism (1.82), namely

1
2

gρσ∂2
ρσ gμν + ∂(μHν) − Γ ρ

μνHρ (4.102)

= gρσgλτ [ ∂λgμρ ∂τgνσ − Γμρλ Γνστ ] − 8π (Tμν − T

2
gμν) .

Let us just remember that the coordinate gauge choice here amounts to
the prescription of the gauge sources Hμ. Notice that we are not considering
here any constraint-damping terms.

We will consider for simplicity the cases in which the principal part of the
evolution system is just a set of scalar wave equations, that is,

gρσ∂2
ρσ gμν = · · · (4.103)

This simplification can be obtained in many different ways:

• The gauge sources Hμ can be given by some kinematical prescription.
This prescription can involve the metric coefficients, but not their first
derivatives. For instance, in the standard harmonic case, we get Hμ = 0.

• The gauge sources can be considered to be independent dynamical fields.
Additional evolution equations must then be prescribed for these fields,
which must be at least of second order in Hμ, so that the first-derivative
terms in (4.102) do not belong to the principal part. For instance, we can
take

�Hμ = · · · . (4.104)

• A combination of the two mechanisms described above. We can take for
instance [27]

Hi = 0 , �Hn = · · · , (4.105)

where Hn ≡ nμHμ is the projection orthogonal to the constant time slices.

The simple structure of (4.103) suggests using here a simplified 3+1 de-
composition, in which every single metric component is dealt with as an
independent function. The first metric derivatives will be decomposed then
in the following way:

Dkμν ≡ ∂k gμν (4.106)

Qμν ≡ nρ∂ρ gμν = − 1
α

(∂t − βk∂k) gμν , (4.107)

where we have dropped some 1/2 factors, so that the space components Dkij

do not coincide with the ones previously considered in the standard 3+1
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framework. The second-order evolution equations (4.103) can then be trans-
lated into the first-order system

∂t gμν = βkDkμν − α Qμν (4.108)
(∂t − βk∂k) Qμν + α ∂k(γkjDj μν) = · · · (4.109)

Considering just the principal part, we can assume here again that the
first-derivatives dynamical fields (Qμν , Dkμν) propagate in an inhomogeneous
background defined by the metric coefficients gμν .

Some evolution equations must now be prescribed for the space derivatives
quantities Dkμν . For the reasons explained in the preceding subsection, we
will take

∂tDkμν + ∂l[−βlDkμν + δl
k α Qμν ] = Bk

l Dlμν − trB Dkμν . (4.110)

In this way, the characteristic fields of the first-order harmonic system
(4.109) and (4.110) associated with any given space direction n can be de-
composed into two sets:

• The transverse derivatives D⊥μν , propagating along the normal lines
(characteristic speed −βn).

• The light-cone eigenfields, given by the pairs

Qμν ± Dnμν , (4.111)

with characteristic speed −βn ± α, respectively.

Here again, the index n means the projection along the selected space
direction, whereas the index ⊥ stands for the orthogonal projection. It is then
evident that we have a complete set of eigenfields, so that the system (4.109)
and (4.110) is strongly hyperbolic. Moreover, it is symmetric hyperbolic, with
the quadratic form

E ≡
∑
μν

[Qμν Qμν + γkr Dkμν Drμν ] (4.112)

providing a simple energy estimate.
The propagation of the associated first-order constraints (4.106), namely

Dkμν ≡ Dkμν − ∂k gμν = 0, (4.113)

will be given, allowing for (4.110), by

∂t Dkμν − βr (∂r Dkμν − ∂k Drμν) = Bk
r Drμν − Br

r Dkμν . (4.114)



98 4 First-Order Hyperbolic Systems

As discussed before, the subsidiary system (4.114) is just weakly hyperbolic
along any space direction n orthogonal to the shift vector (such that βn = 0).
Here again, constraint-damping terms may be added to (4.110), namely

∂tDkμν +∂l[−βlDkμν +δl
k α Qμν ] = Bk

l Dlμν−trB Dkμν−καDkμν , (4.115)

so that the linearly growing constraint-violation modes arising from the prin-
cipal part in (4.114) can be kept under control (we have set here η = κα).

Note, however, that the addition of the last term in (4.115) is affecting
the principal part. The symmetric-hyperbolic character of the generalized
harmonic system is lost in the process. This can be cured by adding a corre-
sponding term in the evolution equation (4.109). The final equation can be
written as (see [28] for more details):

∂t Qμν = βk ∂kQμν − α γij∂iDj μν − α (∂μHν + ∂νHμ − 2Γρμν Hρ)
+ 2α (γijDiμρDj ν

ρ − QμρQν
ρ − ΓμρσΓν

ρσ)

− α

2
nρnσQρσQμν + α γijDiμνQj ρn

ρ − 16π α (Tμν − T

2
gμν)

+ κβk(Dkμν − ∂k gμν) (4.116)

4.3.3 First-order Z4 formalism

As a second example, let us consider the first-order version of the Z4 system
(3.80), (3.81), (3.82), and (3.83) in the general case, beyond the normal co-
ordinates expressions (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), and (4.25).
For further convenience, we will express it in a balance law form, so that the
principal part is flux conservative, namely

∂t u + ∂kFk(u) = S(u) . (4.117)

The evolution equations for the metric coefficients (4.86) and (4.88) and for
the space derivatives quantities (4.95), (4.96), and (4.97) are in the required
form (4.117). Concerning the remaining equations, we have

F k[Kij ] = −βk Kij + α λk
ij (4.118)

F k [Θ] = −βk Θ + α V k (4.119)
F k[Zi] = −βk Zi + α (δk

i (trK − Θ) − Kk
i ) (4.120)

+ζ ′ (Bi
k − δk

i trB) ,

where we keep using the shorthand (4.56), and
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λk
ij ≡ Dk

ij +
1
2

δk
i (Aj − Dj + 2Vj) +

1
2

δk
j (Ai − Di + 2Vi)

−1 + ζ

2
(D k

ij + D k
ji − δk

i Ej − δk
j Ei) . (4.121)

Note that we have introduced in (4.120) an extra term, with a second
ordering parameter ζ ′ , which will contribute to the flux divergence in (4.117)
only through the violations of the shift-related constraints Bk

i.
The source terms S(u) do not belong to the principal part and will be

displayed later. Let us focus for the moment on the hyperbolicity analysis, by
selecting a specific space direction n, so that the corresponding characteristic
matrix is

An =
∂ Fn

∂ u
. (4.122)

We get the following eigenfields, independently of the gauge choice, in
(4.88):

• Transverse derivatives: A⊥ , B⊥
i , D⊥ij , propagating along the normal

lines (characteristic speed −βn ).
• Light-cone eigenfields, given by the pairs

Fn[Dn⊥⊥ ] ± Fn[K⊥⊥ ] (4.123)
−Fn[Z⊥ ] ± Fn[Kn⊥ ] (4.124)

Fn[Vn ] ± Fn[Θ ], (4.125)

with characteristic speed −βn ± α , respectively.

We cannot complete the analysis without specifying the lapse and shift
prescriptions (4.88). In the spirit of the 3+1 formalism, the time slicing (lapse
choice) is independent of the choice of space coordinates or, equivalently, the
time lines (shift choice). Let us assume for the moment that we keep the
singularity-avoidant lapse prescription (4.5), namely

Q = f (tr K − 2 Θ) , (4.126)

where we have chosen the second gauge parameter m = 2 here just for
simplicity. We get in this way the lapse-related eigenfields

Fn[An ] ±
√

f Fn[Q ], (4.127)

with characteristic speed −βn ±
√

fα , respectively (gauge speed). The har-
monic slicing case is recovered by taking f = 1 .

There still remain some dynamical fields ( trD , Dnn⊥ , trB , Bn⊥) which
depend on the shift prescription. Dynamical shift conditions have been con-
sidered in the literature, either by an algebraic prescription of Qi [29–31],
or by providing an independent evolution equation for this quantity, like
the ‘gamma-driver ’ condition [32, 33], which is currently used in the BSSN
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framework. Let us remark here that the shift prescription determines the be-
havior of the congruence of time lines, so that coordinate singularities (like
shell crossing) can originate from inappropriate shift choices.

We will stay safe here, by considering the harmonic shift prescription,
namely

Qi = α (Ai − Di + 2Vi) . (4.128)

The term ‘harmonic shift’ comes from the fact that this condition amounts
to (the space part of) the prescription (3.76), which ensures the vanishing of
the gauge sources components Hi . Condition (4.128) completes the dynami-
cal system and allows to identify the shift-related eigenfields:

Fn[Bni ] ± Fn[Qi ], (4.129)

with characteristic speed −βn ± α , respectively.
Allowing for these results, it follows that the full system is strongly hy-

perbolic for these specific gauge choices. Modifying the selected shift or lapse
conditions, however, would require a new scrutiny of the characteristic cones
generated by (4.129) or (4.127), respectively.

We give finally for completeness the source terms matching the fluxes
displayed in (4.118), (4.119), and (4.119):

S(Kij) = −Kij trB + Kik Bj
k + Kjk Bi

k (4.130)

+ α { 1
2

(1 + ξ) [−Ak Γ k
ij +

1
2
(Ai Dj + Aj Di) ]

+
1
2

(1 − ξ) [Ak Dk
ij −

1
2
{Aj (2Ei − Di) + Ai (2Ej − Dj)}

+ 2 (Dir
m Dr

mj + Djr
m Dr

mi) − 2Ek (Dij
k + Dji

k) ]
+ (Dk + Ak − 2Zk)Γ k

ij − Γ k
mj Γm

ki − (Ai Zj + Aj Zi)

− 2Kk
i Kkj + (trK − 2Θ)Kij } − 8π α [Sij −

1
2

(trS − τ) γij ]

S(Zi) = −Zi trB + Zk Bi
k − 8π α Si (4.131)

+ α [Ai(trK − 2Θ) − AkKk
i − Kk

rΓ
r
ki + Kk

i(Dk − 2Zk) ]

S(Θ) = −Θ trB +
α

2
[ 2Ak (Dk − Ek − 2Zk) + Dk

rs Γ k
rs − Dk(Dk − 2Zk)

− Kk
r Kr

k + trK (trK − 2Θ)] − 8π α τ . (4.132)

4.4 Boundary conditions

Most numerical relativity simulations are devised to approximate the time
evolution of the dynamical fields starting from data given on an initial time
slice: the general relativistic Cauchy or initial-value problem (IVP). The



4.4 Boundary conditions 101

theoretical formalisms we have described so far are built with the objec-
tive of getting a well-posed Cauchy problem. This ensures, at the continuum
level, that the solution is unique and depends smoothly on the initial data. A
well-posed Cauchy problem is also a necessary condition for the existence of
stable numerical algorithms that transpose the same property at the discrete
level: the time evolution of the selected initial data must provide a sound ap-
proximation to the corresponding solution (the accuracy must improve with
increasing numerical resolution).

The numerical applications we have presented up to now were dealing just
with periodic solutions. This means that we could identify the first points of
the numerical grid with the last ones along every axis: from the continuum
point of view, our computational arena has the topology of a three-torus.
In this way, there is no genuine ‘first’ or ‘last’ point: we can always rotate
the torus along one symmetry axis, so that the chosen point gets surrounded
by the number of neighbors required for a given computational stencil. As a
consequence, only initial data are required to produce a solution, both at the
continuum and the discrete levels.

In physical applications, however, we will rarely find this three-torus topol-
ogy. Three-dimensional finite difference grids usually start at some point and
end at some other one along every axis, and this fact poses a serious problem
both at the continuum and at the discrete level:

• From the discrete point of view, the numerical stencil that is being used for
the ‘interior’ points needs to be modified at end points, or even at next-to-
end points, where the required number of neighbors is not available inside
the numerical grid.

• From the continuum point of view, the computational domain has a bor-
der, so that information can cross it in both senses. Of course, incom-
ing information cannot be obtained from inside, so it must be specified
through additional conditions. These ‘boundary conditions’ are relevant
to the well-posedness of the system: the pure initial-value problem is then
transformed into a initial boundary problem (IBVP).

4.4.1 Algebraic boundary conditions

In order to clarify these points, let us focus for the moment in the one-
dimensional (1D) case. We see in Fig. 4.1 the domain of dependence of a
boundary point P, displayed as a shaded cone. It is clear that the regions
outside the numerical grid do have causal influence on P, so that extra phys-
ical information is required at the boundary. From the numerical point of
view, the stencil at P must be one-sided (like the one displayed as a dotted
triangle) instead of the centered stencil discussed before: this means that the
discretization algorithm must be changed at P.
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P
tn+1

tn

NN–1

wout win

Fig. 4.1 The domain of dependency of a given boundary point P is shown as a gray
cone. The outgoing components wout are contained into the left half-cone, so that their
values can be computed consistently by using a one-sided (upwind) stencil. The ingoing
components win belong instead to the right half-cone, which is outside the numerical grid:
they must be provided by the boundary conditions.

To be more specific, let us consider a 1D strongly-hyperbolic flux-conservative
system (we neglect source terms for the moment)

∂t u + ∂x F = 0 . (4.133)

The characteristic matrix
A =

∂F
∂u

(4.134)

can be fully diagonalized and the set of dynamical fields u can then be de-
composed in the basis of eigenfields w given by (4.66).

We will classify the characteristic eigenfields into two subsets:

• Incoming eigenfields {win
r }: the ones with characteristic speed pointing

inside the computational region (λr < 0).
• Outgoing eigenfields {wout

r }: the ones with characteristic speed pointing
outside the computational region, or tangent to the boundary (λr ≥ 0).

To justify the use of the ‘incoming’ and ‘outgoing’ terms, let us consider
again the simplest case, when the characteristic matrix (4.134) has constant
coefficients. Then, the original system (4.133) can be decoupled into a set of
independent advection equations (4.68) for the characteristic fields, so that
the propagation behavior is like the one shown in Fig. 4.1. Simple causality
considerations lead then to the two main requirements for physically sound
boundary conditions:
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• Boundary conditions must provide the values of all the incoming eigen-
fields. Otherwise we will lose the uniqueness of the solution (not enough
information is given) and this will result in numerical instabilities.

• Boundary conditions must not restrict the values of the outgoing eigen-
fields. This is because the domain of dependence of these fields is fully
contained into the computational region, so that their values are com-
pletely determined by inside information. Any further condition would be
either redundant or inconsistent.

The prototype of a boundary condition verifying these two main require-
ments is provided by the simple algebraic relationship

w in
r =

∑
s

Mrs w out
s + Cr , (4.135)

where the coefficients Mrs and Cr are independent of the dynamical fields.
We will explore algebraic conditions (4.135) in more detail in what follows.

4.4.2 Energy methods

We have shown in Sect. 4.2.2 how to obtain an energy estimate E for any
1D strongly hyperbolic system. The time evolution of such estimate is given
by (4.73). A closer look suggests the following decomposition in terms of
incoming and outgoing eigenfields:

∂t E = −
[∑

r

λin
r (win

r )2 +
∑

s

λout
s (wout

s )2
]b

a

, (4.136)

where a and b are the limits of the computational domain.
It is clear that the outgoing terms contribution goes in the right sense

( ∂t E ≤ 0 ), whereas incoming terms contribute instead in the wrong one
( ∂t E > 0 ) because their characteristic speed is positive at the first point a
and negative at the last point b.

Now we are in a position to analyze the effect of different choices in the
generic boundary condition (4.135):

• The most conservative one would be to suppress all the incoming fields at
the boundaries, that is,

win
s = 0 ∀s (4.137)

(maximally dissipative boundary condition). In this case it is clear that
the energy estimate E will diminish with time at the maximum rate.

• The next safe choice would be to relate every incoming field at the bound-
ary with an outgoing one, grouped by pairs, that is,
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win
s = σ wout

r , (4.138)

so that the corresponding terms in the sum (4.136) can be grouped as

(λout
r + σ2λin

s ) (wout
r )2 , (4.139)

which will have the right sign provided that the ‘reflection coefficient’ σ is
small enough, that is,

λout
r + σ2λin

s ≥ 0 . (4.140)

• An interesting particular case of the former one is when the corresponding
outgoing speed λout

r is zero. Then, there is no ‘small enough’ non-trivial
choice of σ that could verify (4.140). One has instead the contribution

σ2λin
s (wout

r )2 , (4.141)

which goes always with the wrong sign. Notice, however, that this term
is constant in time (λout

r is actually zero), so that it will produce a linear
increase of the energy estimate E in the worst case.

• As an alternative, one could just specify the incoming fields at the bound-
aries in terms of some given functions, namely

win
s = Cs(t) , (4.142)

so that a convenient upper bound for the growth of the energy estimate can
be obtained by a suitable choice of the functions Cs(t) at the boundaries.

Any of the above conditions is strong enough in the 1D case, so that this
‘energy method’ can be used for proving that the IBVP is well-posed, as was
the corresponding IVP, for any strongly hyperbolic system.

In the multidimensional case, however, the corresponding energy estimates
(4.78) can be obtained just for symmetric-hyperbolic systems: strong hyper-
bolicity is not enough. We have seen in Sect. 4.2.3 how to get an energy
estimate in the symmetric-hyperbolic case, which time variation is given
by (4.79) in terms of a surface integral over the boundary of the compu-
tational domain. As discussed in Sect. 4.2.2, the term appearing in each
surface integral is a scalar with respect to the orthogonal transformations
(4.77). This scalar can be computed in the basis of characteristic fields as-
sociated with the normal n to the boundary surface. Note that the out-
ward unit normal n at the boundary must be defined at corner points
(see Fig. 4.2).

The corresponding characteristic matrix An will take the diagonal form:

An = diag({λin
r }, {λout

s }) , (4.143)
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Fig. 4.2 The outward normal to the boundaries of a 2D grid are shown. A normal direction
must be chosen at corner points. Note that the decomposition into incoming and outgoing
eigenfields is direction dependent, so that there are physical ‘in’ and ‘out’ modes along
every direction, not just normal to the boundary surface.

so that one finally gets the same kind of result than in the 1D case

∂t E = −
∮ [ ∑

r

λin
r (win

r )2 +
∑

s

λout
s (wout

s )2
]

dS . (4.144)

This means that the energy method can be applied to devise boundary
conditions for multidimensional symmetric-hyperbolic systems in the same
way as in the 1D case, as discussed before. Some words of caution are conve-
nient at this point:

• Energy estimates can provide sufficient conditions for a well-posed IBVP
in the symmetric-hyperbolic case. But, if the energy metric is not unique,
the resulting conditions may not be necessary.

• The arguments presented here apply just to the continuum level. Sufficient
conditions at the discrete level will follow only if the numerical algorithm
is able to preserve the integration-by-parts rule, which plays a key role in
these developments. This restricts the choice of discrete algorithms, both
at the interior points and at the boundary ones (see for instance [34]).

• The results presented here hold only for pure flux-conservative systems
(no source terms) and for the linearized case, where the coefficients of the
characteristic matrices are constant. None of these requirements is fulfilled
in numerical relativity applications: one must then use energy estimates
just as a guideline. The stability of the resulting boundary conditions can
be rather checked numerically, as we will see below.
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4.4.3 Robust stability test

Let us go back here to the robust stability test. We will use again a small
(203 nodes) numerical grid. The centered algorithm we used in Sect. 3.2
will still be applied to the interior points. But this time, with non-periodic
boundary conditions, we will use also one-sided finite difference algorithms to
compute (a first estimate of) the field values at every boundary surface. To be
more specific, the centered discretization D0 for the space derivative will be
replaced at the first (resp. the last) grid point by the one-sided discretization
D− (resp. D+ ).

As it is well known [35], these ‘upwind’ algorithms are unstable for the in-
coming modes. This will not be a problem, because we will use the algebraic
boundary conditions (4.138) for replacing a posteriori the values of precisely
those incoming modes. Only the outgoing modes, for which the upwind algo-
rithms are stable, will contribute then to the final boundary values.

We will choose for this test the (strongly hyperbolic) Z4 system in normal
coordinates. This is in order to get advantage of the zero shift case, where the
characteristic lines corresponding to transverse space derivatives are tangent
to the selected boundary. In all cases we will take f = 1, m = 2 for the gauge
parameters. In this way, we can cover the symmetric-hyperbolic case ζ = −1
and the plain strongly hyperbolic cases for any other values of the ordering
parameter.

Starting with the symmetric-hyperbolic case, we see in Fig. 4.3 the time
evolution of ‖trK‖∞, that is the maximum of the absolute value of trK,
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Fig. 4.3 Time evolution of the maximum of the absolute value of trK, which is one of
the main contributions to the energy estimate. For the maximally dissipative case σ = 0,

the expected decreasing is clearly seen. The unexpected decreasing of the σ = ±1 case is
due to numerical dissipation, caused by the use of the first-order upwind algorithm at the
boundary points.
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Fig. 4.4 Same as Fig. 4.3 for different values of ζ and σ. The plots in the left panel
correspond to different choices of the ordering parameter in the maximally dissipative case
(σ = 0). It follows that the ζ = +1 choice of the ordering parameter is unstable. Conversely,
the plots in the right panel correspond to different values of the reflection coefficients in
the symmetric ordering case (ζ = 0). The extreme choices σ = ±1 are unstable, while
other choices, closer to the maximally dissipative one, still work.

which is one of the main contributions to the energy estimate (4.81). For
the maximally dissipative choice σ = 0, the expected decreasing is clearly
seen. The case σ = ±1 deserves a further comment, because every non-zero
eigenvalue appears twice, with different signs (zero shift case), that is,

λin = −λout , (4.145)

so that the resulting terms (4.139) do not contribute to the energy decreasing
when σ2 = 1. Then, a constant value of the energy estimate would be ex-
pected at the continuum level. There are two alternative ways of explaining
the observed decreasing when σ = ±1 in Fig. 4.3:

• As the effect of the non-linear source terms and/or the non-constant co-
efficients in the characteristic matrices involved. This could also explain
the different behavior of the σ = +1 and the σ = −1 cases. This is very
unlikely, because the noise level we are using here is so low that non-linear
contributions can be safely neglected.

• As the effect of numerical dissipation. This does not come from the nu-
merical algorithm used at interior points, which does not show so much
dissipation (see for instance Fig. 3.3). This must be due instead to the use
of the first-order upwind method, which is known to be highly dissipative,
at the boundary points.

We can check now the plain strongly-hyperbolic case. As explained before,
the only change will be to consider different values of the ordering parameter
ζ, so that the evolution system is just strongly hyperbolic, but not symmetric
hyperbolic. We show again in Fig. 4.4 the time evolution of the maximum of
the absolute value of trK.

In the maximally dissipative case (left panel), we see that the choice ζ = +1
of the ordering parameter is unstable, whereas the two other choices ζ = 0 ,−1
are stable and behave in the same way. This provides a counterexample for
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the common belief that maximally dissipative boundary conditions ‘should
always work.’ In the (strongly hyperbolic) ζ = 0 case, shown in the right
panel, we see that the ‘extreme’ values σ = ±1 of the reflection coefficients
lead to code crashing, whereas other choices, closer to the maximally dissi-
pative one σ = 0, work fine, showing the same decreasing behavior as in the
symmetric-hyperbolic case.
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Chapter 5

Numerical Methods

A numerical relativity code consists in two main ingredients: the evolution
system and the discretization algorithm. Up to now, we have focused in the
evolution formalism. The strong hyperbolicity requirement is a requisite for
a well-posed system at the continuum level. Also, the subsidiary system, gov-
erning constraint deviations, has been studied at the continuum level, where
we have seen how the subset of true Einstein’s solutions can become an at-
tractor for extended (constraint-violating) solutions.

But all these interesting properties are not guaranteed at the discrete level,
unless we implement a suitable numerical algorithm. There is no unique pre-
scription providing an optimal choice in all cases. If we consider just spacetime
evolution, the smoothness of the metric coefficients allows using either finite
difference or spectral methods. Finite differencing is systematically used in
numerical relativity for time discretization and it is also the mainstream op-
tion for space discretization. We will discuss this approach in the first section.

The case of matter evolution is different. Fluid dynamics is a genuine
non-linear domain, where one can get shock propagation arising even from
smooth initial data. In this framework, the mainstream option for the space
discretization is using finite volume methods, in many variants, as we will
discuss in the following sections, including many standard numerical tests
from computational fluid dynamics (CFD).

Moreover, both in the finite difference and the finite volume approaches,
we are forced to deal at the discrete level with a finite numerical mesh. This
usually requires implementing some boundary conditions, which must be con-
sistent at the continuum level and stable at the numerical one. These issues
will be discussed at the end of the chapter, including some numerical stability
tests.

Bona, C. et al.: Numerical Methods. Lect. Notes Phys. 783, 109–142 (2009)
DOI 10.1007/978-3-642-01164-1 5 c© Springer-Verlag Berlin Heidelberg 2009
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5.1 Finite difference methods

An elementary introduction to finite differencing has been already included in
Sect. 3.2.1, in the context of the robust stability test. We will provide here a
more complete treatment, by following the method-of-lines (MoL) approach,
which allows to separate the space and time-discretization processes. The
current practice is using finite differences for the time discretization, even in
cases in which the space discretization is dealt with a finite volume approach.

5.1.1 Accuracy and stability

Let us start by considering the one-dimensional (1D) advection equation

∂t u + λ∂x u = 0 . (5.1)

This can provide a good 1D prototype, as we have seen in the previous
chapter how the dynamics of (the principal part of) any strongly hyperbolic
system can be understood as the superposition of one advection equation for
every characteristic field.

The simplest finite difference algorithm for (5.1) is given by

D+
t u + λD0

x u = 0 , (5.2)

where we keep using the notations introduced in Sect. 3.2.1 for the differences
operators D . In this case

D+
t u = (u(n+1)

i − u
(n)
i )/Δt (5.3)

D0
x u = (u(n)

i+1 − u
(n)
i−1)/(2Δx) , (5.4)

that is, the Euler (forward) time step in time combined with the centered
space differencing (FTCS algorithm):

u
(n+1)
i = u

(n)
i − λΔt D0

x u(n) . (5.5)

We can check the accuracy of the discretization procedure by a standard
Taylor development around un

i , namely

D+
t u ∼ ∂t u +

1
2

Δt ∂2
tt u + · · · (5.6)

D0
x u ∼ ∂x u +

1
6

(Δx)2 ∂3
xxx u + · · · . (5.7)

It follows that the FTCS algorithm (5.5) is second-order accurate in
space (third-derivative leading error), but just first-order accurate (second-
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derivative leading error) in time. Note that these orders refer to the accuracy
of the solutions: the accuracy in the first derivatives (5.6) and (5.7) is actually
reduced by one order. Note also that we can use the advection equation (5.1)
in order to relate space and time derivatives. It is clear then that the leading
error is given by

1
2

Δt ∂2
tt u ⇔ λ2

2
Δt ∂2

xx u. (5.8)

We can interpret then that the discrete scheme (5.2) is approximating
rather the modified equation

∂t u + λ∂x u = −λ2

2
Δt ∂2

xx u (5.9)

(modified equation approach). An elementary Fourier analysis, considering a
single mode of the form

u = ξ(t) Sin(x − λ t) (5.10)

shows that the extra term in (5.9) is of a dissipative type, but with the wrong
sign. It describes an explosive behavior, with an exponential growth of the
mode amplitude ξ(t). It follows that the simple Euler step discretization (5.3)
is unstable, no matter how small we take the time step.

This elementary Fourier analysis actually shows that even-derivatives lead-
ing error terms amount to numerical dissipation, which can either smooth
out or blow up the numerical solution, depending on the sign in the modi-
fied equation. Odd-derivatives leading error terms, on the contrary, amount
to numerical dispersion, affecting the propagation speed. We can see this by
assuming for a moment that the space discretization leading error (5.7) is the
dominant one. The modified equation would read then

∂t u + λ∂x u = −1
6

λ (Δx)2 ∂3
xxx u . (5.11)

For a single Fourier mode (5.10), this can be reduced to the modified
advection equation

∂t u + λ (1 − 1
6

Δx2) ∂x u = 0 , (5.12)

which amounts to a second-order error in the propagation speed.
Coming back to the time derivative discretization, it is clear that a stable

method can be obtained by taking rather

D−
t u + λD0

x u = 0 , (5.13)
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so that the numerical dissipation gets the right sign in the modified equation.
This would lead to the BTCS (bakward-in-time, centered-in-space) algorithm,
namely

u
(n+1)
i + λΔt D0

x u(n+1) = u
(n)
i . (5.14)

This is an implicit algorithm, in the sense that the individual values at
the next time level can only be obtained after some matrix-inversion process
involving the whole computational mesh. This is numerically too expensive
in multidimensional applications, so that explicit methods are currently pre-
ferred.

Stable explicit methods, like the Lax–Wendroff [1] or the Mac–Cormack
ones [2] can be obtained by modifying the space discretization in order to get
extra dissipative terms that cancel out the unstable contribution for the for-
ward time discretization (5.3). The resulting second-order-accurate schemes
can be found in standard books [3]. But the need to balance the time and
space discretization is a complication when going beyond second-order accu-
racy. This is why we prefer to adopt a more powerful strategy, as described
in the next section.

5.1.2 The method of lines

The method of lines (MoL) [4] is the generic name of a family of discretiza-
tion methods in which time and space variables are dealt with separately.
This is in keeping with the 3+1 framework, where the natural way of time
discretization is by finite differences whereas one would like to keep all the
options open for space discretization: finite differences, finite volume, or even
spectral methods.

To illustrate the idea, let us consider a ‘semi-discrete’ system in which
only the time coordinate is discretized, whereas space derivatives are kept
at the continuum level. The evolution of the array u of dynamical fields is
written as

∂t u = S , (5.15)

where the right-hand-side array S contains the remaining terms in the evo-
lution equations, including the space derivative ones. In this way, we are dis-
guising in (5.15) the original system of partial differential equations (PDE)
as a system of ordinary differential equations (ODE), assuming that we will
manage to compute the right-hand-side term S at every time level, but ig-
noring for the moment the details.

This ‘black box’ approach allows us to apply the well-known ODE dis-
cretization techniques to get the required time resolution, using the Euler
step (forward time difference)

u(n+1) = u(n) + Δt S(tn,u(n)) (5.16)
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as the basic building block for advanced multi-step methods, like the modified-
midpoint or Runge–Kutta algorithms [3].

A simple Runge–Kutta algorithm would read for instance

S(n) = S(tn,u(n)) (5.17)

u∗ = u(n) + Δt S(n) (5.18)

u(n+1) =
1
2

u(n) +
1
2

u∗ +
Δt

2
S∗ , (5.19)

which is second-order accurate. We have seen in the past section how those
second-order methods provide just first-order accurate propagation speeds
(second-order error in λ). This is why we recommend using at least third-
order accurate algorithms for time evolution. In the simulations presented in
Sect. 3.2, the following third-order Runge–Kutta algorithm [5] was actually
used:

u∗ = u(n) + ΔtS(n) (5.20)

u∗∗ =
3
4

u(n) +
1
4

u∗ +
Δt

4
S∗ (5.21)

u(n+1) =
1
3

u(n) +
2
3

u∗∗ +
2
3

Δt S∗∗ . (5.22)

Note that increasing the accuracy order comes at the price of increasing
the number of intermediate steps. Also, for a given accuracy order, there are
different Runge–Kutta algorithms, which are devised either for minimizing
the number of operations or for maximizing the time step Δt allowed by
the stability condition (corresponding to the Courant condition discussed in
Sect. 3.2). The specific versions (5.19) and (5.22) have been rather selected for
the sake of robustness. Note that the positivity of all coefficients means that
the final result is a convex combination of successive Euler steps. These are
called ‘strong stability preserving’ (SSP) algorithms, because the (strong)
stability of the Euler step would be inherited by the complete multi-step
method. Of course, the stability of the Euler step will depend on the selected
space discretization, as we will discuss in what follows.

5.1.3 Artificial dissipation

Let us now focus on the space discretization part, and more specifically in the
finite differences method. We will start by the simple semi-discrete algorithm
for the advection equation (5.1):

∂t u + λD0
x u = 0 . (5.23)
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Note that here the approach is just the opposite one. The black box is the
time derivative term, which we will consider at the continuum (exact) level.
Only the space part is now discretized.

We know from our previous analysis that the centered space discretiza-
tion in (5.23) is second-order accurate. Moreover, the left–right symmetry
of centered algorithms cancels out all even-order derivatives in the Taylor
development. It means that the semi-discrete algorithm (5.23) is free of any
numerical dissipation. This can be acceptable in simple problems, because
(as we actually did in the simulations in Sect. 3.2) the dissipation coming
from the (stable) time discretization (5.22) will ensure the stability of the
combined, fully discrete, numerical schemes.

More robust algorithms are, however, required when dealing with steep-
gradient profiles or when some spurious numerical modes need to be kept
under control. The obvious alternative is to add an ‘artificial dissipation’
term to (5.23), inspired by our previous ‘modified equation’ analysis, which
will provide the required stability, independent of the time discretization.
The algorithm (5.23) uses a three-point stencil, so adding a second derivative
term is the obvious choice, that is,

∂t u + λD0
x u − η Δx D+

x D−
x u = 0 , (5.24)

where the dissipation coefficient η must be positive. Note that, as the mag-
nitude of η is not determined, the Δx power in the dissipation term is only
relevant if one keeps the same dissipation coefficient, independent of the res-
olution (see also [6]).

The improved robustness of the semi-discrete algorithm (5.24) comes, how-
ever, with an unacceptable accuracy loss, when we get a second-order (dissipa-
tive) error. Robust high-accuracy algorithms can be nevertheless constructed
by following the same pattern:

• Start with the 2s-accurate centered difference operator C2s for the first
derivative (stencil size s, that is, 2s + 1 points). This can be obtained in
a standard way, by combining centered first derivatives of different space
intervals, namely

C2s = 2
s∑

k=1

(−1)k−1( s ! )2

( s + k )! ( s − k )!
D0

(kx). (5.25)

• Add a dissipative term of order 2s, so that the resulting algorithm

∂t uj = −λ C2suj + (−1)s−1η (Δx)2s−1(D+
x D−

x )s uj (5.26)

is (2s − 1)-order accurate in the solutions (2s − 2 in the first derivatives).

The case s = 1 ( C2 = D0 ) corresponds to the first-order accurate algo-
rithm (5.24). In numerical relativity applications, a good cost-efficiency ratio
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is rather provided by the third-order accurate case s = 2 (five-points stencil),
as we will see later in this chapter.

The artificial dissipation algorithms (5.26) can be easily generalized to
systems. In the flux-conservative case

∂t u + ∂x F = 0 , (5.27)

we will have for every component

∂t uj = −C2sFj + (−1)s−1η (Δx)2s−1(D+
x D−

x )s uj . (5.28)

We prefer rather to use a variant of this, which will be justified later in
the finite volume context, namely

∂t uj = −C2sFj + (−1)s−1 b (Δx)2s−1(D+
x D−

x )s−1 D+
x [λM D−

x uj ] , (5.29)

where we have noted here

λM = max (λj , λj−1) . (5.30)

and λj is the local spectral radius of the system (the maximum characteristic
speed).

All these artificial dissipation algorithms can be generalized to the multidi-
mensional case in a straightforward way, by considering one space direction at
a time, so that no cross derivatives appear in the dissipation terms. The spec-
tral radius appearing in (5.29) must correspond to the characteristic matrix
along every selected direction. The algorithm (5.29) has shown its robustness
even in demanding CFD tests, with interacting shocks in multidimensional
cases [7]. We will present just some simple cases in the finite volume section
in this chapter.

5.1.4 The gauge waves test-bed

Now we will test the finite differences algorithms presented in this chap-
ter in a very peculiar situation: Minkowski spacetime endowed with a non-
conventional gauge condition. To understand what we mean by this, let us
start from Minkowski metric in the standard inertial coordinate system

ds2 = −dt2 + dx2 + dy2 + dz2 , (5.31)

and perform a general conformal transformation in the 2D sector spanned by
the t, x coordinates, namely

ds2 = H2(t, x) (−dt2 + dx2) + dy2 + dz2 , (5.32)
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where H(t, x) is an arbitrary function and the (t, x) labels refer now to the
transformed coordinates.

We can simulate here propagation along the x axis (in the positive sense,
for instance), by taking

H(t, x) = h(x − t) (5.33)

(notice that light speed along the x axis is still v = 1 in the transformed
coordinates). The exact time evolution can then be easily obtained from any
given initial profile

H(0, x) = h(x) . (5.34)

Note that (5.33) implies

α = h , Kxx = h′ , Ax = h′/h , Dxxx = hh′ . (5.35)

The term ‘gauge waves’ is justified by the propagation behavior (5.33) and
the fact that the only non-trivial eigenfields belong to the gauge sector (4.64).
Note that the metric form (5.32) corresponds to a harmonic slicing condition
(f = 1), so that we must also have m = 2 to ensure strong hyperbolicity.
The ordering parameter ζ is irrelevant here because only the x derivatives
provide non-trivial contributions. Note also that in this particular case the
normal space coordinates are also harmonic coordinates. This is why that
particular line element has been included in a battery of cross-comparison
test-beds, suitable for most of the current evolution formalisms (‘apples with
apples’ campaign, see [8, 9]).

We will consider for this test the ‘gauge waves’ line element with the
following profile:

H = 1 − A sin( 2π(x − t) ) , (5.36)

so that the resulting metric is periodic and we can identify for instance the
points −0.5 and 0.5 on the x axis. This allows to set up periodic boundary
conditions in numerical simulations, so that the initial profile keeps turning
around along the x direction. One can in this way test the long-term effect
of these gauge perturbations.

According to the cross-comparison results [9], the linear regime (small
amplitude, A = 0.01) poses no serious challenge to most numerical relativity
codes (with the outstanding exception of the BSSN case, see for instance
[10]). Allowing for this fact, we will focus in the medium and big amplitude
cases (A = 0.1 and A = 0.5, respectively), in order to test the non-linear
regime. Our simulations will take place in a ‘numerical simulation channel’
of 200 × 8 × 8 grid points, with periodic boundary conditions along every
axis. We are using here the first-order version of the Z4 system (4.19), (4.20),
(4.21), (4.22), (4.23), (4.24), and (4.25) and the finite differences algorithm
(5.29), with s = 2 (third order) and a dissipation parameter b = 1/12; this
value will be justified later in the finite volume context.

The results of the numerical simulations are displayed in Fig. 5.1 for the
H function (the γxx metric component). The left panel shows the medium
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Fig. 5.1 Gauge waves simulation with periodic boundary conditions and sinusoidal initial
data for the γxx metric component. The left panel corresponds to the medium amplitude
case A = 0.1. After 1000 round trips, the evolved profile (cross marks) nearly overlaps the
initial one (continuous line), which corresponds also with the exact solution. The right
panel corresponds to the same simulation for the big amplitude case A = 0.5. We see the
combination of a slight decrease in the mean value plus some amplitude damping.

amplitude case A = 0.1. Only a small amount of numerical dissipation is
barely visible, even after 1000 round trips: the third-order-accurate finite-
difference method gets rid of the dominant dispersion error. For comparison,
let us recall that the corresponding BSSN simulation crashes before 100 round
trips [11]. The right panel shows the same thing for the large amplitude case
A = 0.5, well inside the non-linear regime. We see some amplitude damping
after 1000 round trips, together with a slight decrease of the mean value
of the lapse. These Z4 results are at the same quality level than the ones
reported in the ‘apples with apples’ web page [9] for the flux-conservative
generalized harmonic code Abigail, which is remarkable for a test running in
strictly harmonic coordinates.

5.2 Finite volume methods

The finite difference methods presented in the previous sections assume the
validity of the Taylor development of the physical solution. Only in this case
we can talk about accuracy order in a rigorous sense. This is physically sound
only when dealing with highly smooth solutions, like the ones verifying Ein-
stein’s field equations, except for the particular cases consisting in two or
more matched spacetime domains (composite solutions). The matching con-
ditions require just the continuity of the metric and its first derivatives: no
consistent Taylor development is possible at the matching hypersurface, and
finite-difference methods can get problems there as a result.

The situation is much worse in genuine non-linear fields, like in fluid dy-
namics, where shock discontinuities can arise even from very smooth initial
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data. This poses a stronger challenge, both at the continuum and at the dis-
crete level. Computational fluid dynamics (CFD) is mainly based on finite
volume methods, which can deal with these generalized (weak) solutions at
the prize of a higher computational cost. We will see first some theoretical de-
velopments that justify the arising of those weak solutions and then a variety
of numerical approaches that are currently being used in CFD.

5.2.1 Systems of balance laws

We have seen in Sect. 1.2.3 how Einstein’s field equations can be interpreted
as a system of balance laws. In the previous chapter, we have written the
evolution equations in first-order form, like the ones appearing in the fluid
dynamics domain. Now we are in a position to take full advantage of this
analogy, both from the theoretical and from the practical point of view.

The principal part (4.26), (4.27), (4.28), (4.29), (4.30), (4.31), and (4.32)
of the first-order Z4 system is in flux-conservative form. The same is true for
the KST system (4.49), (4.50), and (4.51) and the generalized harmonic one.
This means that the time evolution of the array u of dynamical fields can be
written in the form

∂t u + ∂k Fk = · · · , (5.37)

where the flux terms Fk depend algebraically on the fields, but not on their
derivatives:

Fk = Fk(u, xj , t) . (5.38)

If one takes into account the full system, not just the principal part, one
gets the full balance law form:

∂t u + ∂k Fk = S , (5.39)

where the source terms S do not contain any derivative,

S = S(u, xj , t) , (5.40)

so that they do not contribute to the principal part.
The terms ‘fluxes’ and ‘sources’ come from the hydrodynamical analogous

of the system (5.39). We can integrate term by term the differential system
(5.39) over a given domain V in coordinate space in order to get the integral
form of the balance law:

∂t [
∫

u dV ] +
∮

Fk dSk =
∫

S dV , (5.41)

where we have applied Gauss theorem and Sk stands for the boundary sur-
face element along the coordinate direction xk. The hydrodynamical analogy
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suggests to interpret u as a sort of density so that the rate of change of the
integrated quantity ū defined as

ū ≡
∫

u dV (5.42)

depends on the integrated effect of the sources inside V

S̄ ≡
∫

S dV (5.43)

and on the fluxes across every boundary Sk of V , namely
∮

Fk dSk . (5.44)

The balance law form (5.39) is specially suited for the MoL discretization,
as described in Sect. 5.1.2. This is because in the method of lines there is a
clear-cut separation between space and time discretization. As a consequence,
the source terms contribute in a trivial way to the space discretization. The
non-trivial contribution comes just from the flux-conservative part (5.37).

The integral version (5.41) provides then a useful way of getting a finite
volume discretization of the first-order system (5.39). The space discretization
can be obtained directly from

∂t ū +
∮

Fk dSk = S̄ , (5.45)

so that the evaluation of partial space derivatives has been replaced by that
of surface integrals of the flux terms.

The finite volume mesh can be obtained as the dual of the finite differences
grid, so that the elementary cells are centered on every grid node and their
interfaces correspond to the intermediate points between neighbor nodes, as
is displayed in Fig. 5.2 (only two space dimensions are shown for clarity).

Alternatively, a finite differences discretization can be directly obtained
from the differential version (5.39). The resulting semi-discrete system would
be given by

∂t u = S − 1
Δx

[Fx
i+1/2 − Fx

i−1/2] −
1

Δy
[Fy

j+1/2 − Fy
j−1/2]

− 1
Δz

[Fz
k+1/2 − Fz

k−1/2] . (5.46)

Every way of computing the interface fluxes in terms of the values of the
fields at the grid nodes will lead to a specific numerical algorithm.
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Fig. 5.2 The finite volume grid consists in a mesh of elementary cells, which can be
interpreted as the dual of the finite differences grid (solid lines). The elementary cells,
shown as gray squares, are centered around the corresponding nodes, shown here as small
dots. The flux terms are evaluated at the interfaces (dotted lines), which are placed halfway
between neighbor nodes.

5.2.2 Weak solutions

As stated in Sect. 1.2.3, there are composite solutions in which the metric
coefficients can have piecewise continuous first derivatives. In first-order sys-
tems, these first derivatives are included in the array u of basic dynamical
quantities (4.6). This means that the partial derivatives in the differential
version (5.39) of the evolution system are not well defined.

To remedy this, one can complete the integration process leading from
(5.39) to (5.45) by integrating also in time, that is,

ū(Δt) − ū(0) +
∮

F̄k dSk =
∫ Δt

0

S̄ dt , (5.47)

where we have noted

F̄k =
∫ Δt

0

Fk dt , (5.48)

so that no partial derivative appears in this integral version of the evolution
system. Every solution of the differential version (5.39) is a smooth solution
of the integral version (5.47). Conversely, there are solutions of the integral
version (5.47) (weak solutions) which are not smooth.
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Fig. 5.3 An elementary cell is built in order to analyze the propagation of a discontinuity
wavefront (in gray), which is entering by the lower left corner and propagating along the
direction n (only two space dimensions are shown for clarity). The displacements of the
discontinuity points along the x and y axes are labeled by a and b, respectively, whereas the
wavefront displacement is labeled by d. The dynamical fields are supposed to be piecewise
constant, with values uR and uL ahead and behind the wavefront, respectively.

The differential version (5.39) does not hold for weak solutions, unless we
interpret it in terms of distributions. In this case, the piecewise continuous
first derivatives can be described by using step functions on the surface of
discontinuity. Derivatives across this surface, like the ones appearing on the
left-hand side of (5.39), lead to singular Dirac delta terms in the equations.
Cancellation of these singular terms will fix the propagation speeds of the
discontinuities wavefronts, as we will see below.

We will go here one step further, by computing explicitly these propagation
speeds. We will consider then a piecewise continuous solution in which the
first derivatives are discontinuous across a wavefront surface propagating with
coordinate speed v (see Fig. 5.3 for details). As we are interested only in the
singular terms, we will make the following simplifications:

• The metric coefficients are supposed to be continuous.
• The source terms will be ignored, because they contain at most piecewise

continuous contributions, but no Dirac delta singularities.
• The remaining dynamical fields in (4.6), corresponding to metric first

derivatives, will be taken to be piecewise constant. The values ahead the
wavefront are noted uR, whereas the values behind it will be noted uL.

This model problem is the general relativistic analogous of the well-known
Riemann problem in fluid dynamics [12].
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With these simplifying assumptions, we can easily evaluate the integral
balance law (5.47) for the elementary cell shown in Fig. 5.3:

• For the density terms, we have

ū(Δt) − ū(0) = −a b

2
(uR − uL) . (5.49)

• The flux terms balance gives in turn (two directions only)
∮

F̄k dSk =
Δt

2
[ b (Fx

R − Fx
L) + a (Fy

R − Fy
L) ] . (5.50)

• The final balance can be written then as

d

a
(Fx

R − Fx
L) +

d

b
(Fy

R − Fy
L) = v (uR − uL) , (5.51)

where v = d/Δ t is the wavefront propagation speed.

It is easy to see from Fig. 5.3 that the coefficients in the left-hand side of
(5.51) are precisely the components of the unit normal n to the wavefront.
This means that we can put our final balance into its final form, valid for the
generic three-dimensional case:

nk (Fk
R − Fk

L) = v (uR − uL) . (5.52)

These jump conditions are the general relativistic analogous of the well-
known Rankine–Hugoniot conditions of fluid dynamics [12]. These equations
govern the propagation of shocks or any other kind of discontinuities across
the fluid. In the general relativity case, they provide in addition matching
conditions for composite metrics.

Note that, for non-linear flux terms, the shock propagation speed v, as de-
rived from (5.52), does not coincide with the characteristic speed λ. Physical
shocks are formed when characteristic lines cross, so that we have

λL > v > λR . (5.53)

When the information propagates along characteristic lines, this crossing
produces a multivalued solution which is physically realized as a discontin-
uous wavefront. In the CFD language, the ‘entropy condition’ (5.53) means
that the shock is supersonic as seen from behind, but subsonic when seen
from the rear. We will see some examples of this genuine non-linear behavior
at the end of this chapter.

On the contrary, Einstein’s field equations are quasilinear. This means that
we can express the flux terms in the form
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Fk = Ak u , (5.54)

where the matrices Ak are continuous across the wavefronts because they
depend on the metric coefficients, but not on their derivatives. Therefore, the
jump conditions (5.52) can be written as a linear eigenvalue problem, namely

(An − v I) (u+ − u−) = 0 , (5.55)

where the matrix An = nkAk is the characteristic matrix along the direction
n. The eigenvectors of the characteristic matrix correspond to combinations
of the dynamical fields that may have discontinuity surfaces with normal n.
The corresponding eigenvalues (characteristic speeds) provide the physical
propagation speeds, so that

λL = v = λR . (5.56)

These are called ‘contact discontinuities,’ and we have seen that these are
the only ones allowed in quasilinear flux-conservative systems.

5.2.3 Flux formulae

The very existence of discontinuous solutions is a challenge for numerical al-
gorithms. Let us go back to the flux-conservative semi-discrete system (5.46).
The key point is to compute the interface fluxes Fj+1/2. A simple algorithm
is obtained by using a plain average for the interface fluxes, namely

F x
i+1/2 = (F x

i + F x
i+1)/2 , (5.57)

and the same way for the remaining directions. This amounts to discretize
the flux derivative in (5.46) as

D0
x F x

i , (5.58)

so that the resulting method is second-order accurate in space.
But if we want to allow for weak solutions, plain averages are not always

the best option. Moreover, we can talk about the order of accuracy just
in the formal sense, as the eventual discontinuities break down any Taylor
development argument. We rather need a more general ‘flux formula’

F x
i+1/2 = f(uL, uR) , (5.59)

where uL (resp. uR) can be either ui (resp. ui+1) or any better estimation of
the values on both sides of the cell interface.
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5.2.3.1 Riemann-solver methods

An inspiring idea was proposed in the pioneering work of Godunov [13]. The
point is to consider the numerical jump between the left and right predictions
in (5.59) as a true physical discontinuity. One can obtain the physical solution
to that ‘Riemann problem’ by enforcing the ‘Rankine–Hugoniot’ matching
conditions (5.52) and then getting the interface flux from the physical solu-
tion. In this way, the flux formula (5.59) becomes a ‘Riemann solver,’ because
it requires the exact solution of the corresponding Riemann problem.

The explicit form of this exact solution is known in some important CFD
cases. But in the generic case one must recourse to approximate Riemann
solvers, obtained usually from the linearized version of the equations (see for
instance [14]). The main lines of the procedure for a generic strongly hyper-
bolic system would be as follows (we are computing here the F x components):

• Decompose the system into its characteristic components (4.66). In the
linearized case, we will get an advection equation for every eigenfield:

∂t w + ∂x [λ w] = 0 . (5.60)

• Take the upwind values of the characteristic fields at the interface, namely

wi+1/2 =
{

wL (λ > 0)
wR (λ < 0) . (5.61)

• Recover the values of the dynamical fields at the interface ui+1/2 from
the characteristic ones and then take

F x
i+1/2 = F x(ui+1/2) . (5.62)

This approximate Riemann-solver approach is actually a complicated pro-
cess. Note for instance that the diagonalization is done at the grid points, but
the recovery of the original fields is done at the cell interfaces. In the generic
case, neither the diagonalization matrices nor the eigenvalues are constant,
so this requires extra assumptions or averaging prescriptions. Moreover, the
use of an approximate Riemann solver may introduce artificial (unphysical)
shocks, where the entropy condition (5.53) is violated.

Riemann-solver methods have been common practice in CFD since decades.
They were adapted to the numerical relativity context in early times [15],
for dealing with the spherically symmetric (1D) black hole case. They are
still considered as an option in relativistic hydrodynamics codes (see for in-
stance [16]), but their use in 3D black hole simulations has been limited by
the computational cost of performing the characteristic decomposition of the
evolution system at every single interface.
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5.2.3.2 Centered methods

More recently, much simpler alternatives have been proposed, which require
just the knowledge of the characteristic speeds, not the full characteristic
decomposition. They can be applied then directly to the primitive dynamical
fields u and are called ‘Centered methods,’ in contrast to the upwind-biased
prescriptions (5.61). Some of these methods have already been implemented
in relativistic hydrodynamics codes [17].

Maybe the simplest choice is the local Lax–Friedrichs (LLF) flux for-
mula [18]

f(uL , uR) =
1
2

[ FL + FR + λM (uL − uR) ] , (5.63)

where the coefficient λM is an upper-bound estimate of the spectral radius of
the dynamical system (the absolute value of the biggest characteristic speed),
namely

λM = max( |λL| , |λR| ) , (5.64)

λ being the values of the characteristic speeds.
The centered formula (5.63) can be understood as the plain average (5.57)

plus some additional λ-terms. In the simplest case, when the left and right
values are given by the nearest-neighbor estimates, the semi-discrete scheme
corresponding to (5.63) can be written in the simple form as

∂t uj = −D0
x Fj + 1/2ΔxD+

x [λM D−
x uj ] , (5.65)

which corresponds to the lowest order (s = 1) finite-difference formula (5.29)
with b = 1/2. We see then that the supplementary terms in (5.63) play the
role of a numerical dissipation. In this sense, a much more dissipative choice
would be

λM =
Δx

Δt
, (5.66)

which corresponds to (a generalization of) the original Lax–Friedrichs algo-
rithm [3].

A not-so-simple alternative to (5.63) is given by the HLL formula [19]:

f(uL , uR) =
1
2

[FL+FR+
λ+ + λ−
λ+ − λ−

(FL−FR)+
λ+ − λ−

2
(uL−uR) ] , (5.67)

where we have noted

λ+ = max(λL, λR, 0) λ− = min(λL, λR, 0). (5.68)

The HLL formula is currently used in relativistic hydrodynamics simula-
tions [17], as it is less dissipative than the LLF one.
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5.2.4 High-resolution methods

The flux formulae presented in the previous subsection require the knowledge
of some left and right predictions for the dynamical field values at every cell
interface. In the finite volume approach, however, we just have average values
ū over the whole cell. Obtaining interface values from these averages requires
to assume some specific profile for the dynamical fields u.

The simplest assumption is that of a piecewise-constant profile, as shown
in Fig. 5.4. Note that a discontinuity appears at every interface, where the
values uL are obtained from the previous cell and the values uR are obtained
instead from the next cell. To be more specific, at the i + 1/2 interface one
gets

uL = ui uR = ui+1. (5.69)

These one-sided predictions provide the simplest (lowest order) predictions
for any specific choice of flux formula.

ii–2 i–1 i+1 i+2

Fig. 5.4 Flat (piecewise constant) reconstruction from the average values of the dynamical
fields. The averages coincide with the values at the grid nodes (gray circles). Numerical
discontinuities appear at every interface (dotted lines) between the left and right values
(arrows and dots, respectively).

In order to verify the properties of the resulting algorithms, we will con-
sider also the simplest LLF formula (5.63). Moreover, as (the principal part
of) any strongly hyperbolic system amounts to a set of advection equations,
we will consider here just one of these advection equations with a generic
characteristic speed v. The corresponding flux will be given then by

F (u) = v u (5.70)

(we will consider for the moment only one space direction).
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Let us apply to this simple case the piecewise-constant reconstruction
(5.69). The corresponding discretization can be obtained by replacing the
prescriptions (5.63) and (5.69) into the general expression (5.46). The result
is the linear three-point algorithm:

un+1
i = un

i +
Δt

2Δx
[ (λM

i+1/2 − vi+1)un
i+1

+ (λM
i−1/2 + vi−1)un

i−1 − (λM
i+1/2 + λM

i−1/2) un
i ] . (5.71)

Allowing for the fact that λM is chosen at every interface as the abso-
lute value of the maximum speed on both sides, we can see that all the un

coefficients are positive provided that the Courant stability condition

λM Δt

Δx
≤ 1 (5.72)

is satisfied everywhere. Note, however, that a more restrictive condition would
be obtained in the three-dimensional case, where we must add up in (5.71)
the contributions from every space direction.

The positivity of all the coefficients means that values un+1 provided by
the algorithm (5.71) for the next time level are just weighted averages of
the values un for the current time level. The stability of the algorithm is
ensured, as a blowup can never be obtained just by averaging the field val-
ues. Moreover, it is easy to show that the positivity property implies that a
monotonic profile will remain monotonic, so spurious oscillations cannot ap-
pear (‘monotonicity preserving’ see for instance [12]). The positivity property
implies then some strong form of stability. In the MoL approach, this strong
stability is preserved by time-evolution algorithms with positive coefficients,
like (5.22). That is the reason for the term ‘strong-stability-preserving’ (SSP)
algorithms.

From the accuracy point of view, however, the algorithm (5.71) is dis-
appointing: just first-order accurate. This is because of the crude (piece-
wise constant) reconstruction which leads to the interface predictions (5.69).
‘High-resolution’ methods can be built by assuming instead a piecewise-linear
reconstruction of the interface values, as shown in Fig. 5.5), that is,

uL = ui +
1
4

(ui+1 − ui−1) (5.73)

uR = ui+1 −
1
4

(ui+2 − ui) , (5.74)

which will ensure second-order spatial accuracy. There is a price to pay for
this: as we can see in Fig. 5.5, the linear reconstruction does not preserve the
monotonicity of the dynamical fields. This will cause spurious oscillations in
the numerical results, as we will see later.

Note that this monotonicity breaking can occur only when the slope that
is being used for the reconstruction of a given field u gets at least twice as
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i +2i+1ii–1i–2

Fig. 5.5 Same as in the previous figure, but now for a piecewise linear reconstruction.
Numerical discontinuities appear again at every interface between the left and right values.
Note that the original function was monotonically decreasing: all the slopes are negative.
In this linear reconstruction, however, both the left interface values (at i − 3/2 ) and the
right interface ones (at i + 3/2 ) show local extreme values that break the monotonicity of
the original function.

large as any of the left- or right-sided slopes:

ΔL
i ≡ (ui − ui−1) , ΔR

i ≡ (ui+1 − ui) (5.75)

(see Fig. 5.5). Otherwise, the predictions at a given interface are always
bounded between the neighbor node values so that monotonicity of the node
values would imply that of the interface ones. In our case, we have chosen
the average

ΔC
i ≡ (ΔL

i + ΔR
i )/2 = (ui+1 − ui−1)/2 (5.76)

(centered slope).
A simple calculation shows that, in this case, the monotonicity breaking

can occur only if one of the left and right slopes (5.75) at a given point is at
least three times larger than the other. This gives a more precise sense to the
‘steep gradient’ notion in the centered slopes case. In CFD terms, this is a
‘compression factor’ of three, which is quite acceptable. It is unlikely that we
find steeper profiles when dealing with smooth solutions, provided that we
use a numerical grid with the required resolution. But this can be a problem
in at least two scenarios:

• When one is dealing with piecewise continuous solutions, where the dis-
continuities appear independent of the space resolution. This is the case of
weak solutions, currently arising in hydrodynamics and MHD simulations.

• When one is dealing with (smooth) solutions that get steep gradients at
specific locations during evolution. This is actually the case in black hole
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simulations when one uses singularity-avoidant slicing conditions, as we
will see in the next chapter.

The natural way to remedy this is to enforce that both (left and right)
interface predictions are in the interval limited by the corresponding left
and right point values (interwinding requirement). A monotonicity-preserving
algorithm can be obtained then by using the non-linear ‘monotonic centered’
(MC) slope reconstruction [20]

ΔMC ≡ minmod( 2ΔL , ΔC , 2ΔR ) , (5.77)

instead of the linear average (5.76). The minmod function is defined as fol-
lows:

• If all the arguments have the same sign, then it selects the one with smaller
absolute value.

• If one of the arguments has different sign than the others, then it is zero.

In this way, the slopes are limited in order to avoid spurious oscillations.
The rule is that interface values must lie between their neighbor node values
(see Fig. 5.6). There is an extra amount of numerical dissipation at the ex-
treme points (where space accuracy is reduced just to first order), but this is
common to most of the ‘High-resolution methods’ that are currently used in
CFD. The particular reconstruction we have presented here belongs to the
class of ‘slope-limiter’ methods, as described in [12, 14]. When combined with
a specific Riemann solver, it is known as MUSCL method [21] (for monotonic
upstream centered limiter). The MUSCL method is currently implemented
in relativistic hydrodynamics 3D simulations (see for instance [22]).

i+2i+1ii–1i–2

Fig. 5.6 Same as in the previous figure, but using the monotonic-centered reconstruction.
Note that the interface values are bounded now between the neighbor nodes, so that
monotonicity is preserved both for the left values (arrows) and for the right ones (dots) at
every interface (dotted lines).
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5.2.5 The modified flux approach

The ‘high-resolution’ methods that we have seen up to now are based on a
linear reconstruction of the dynamical fields. In a uniform grid, this allows
to identify the cell averages with the central (node) values, as we have done
implicitly in the previous sections. The step to ‘very high-resolution’ meth-
ods, that is, increasing accuracy beyond second order in space, would require
a non-linear cell reconstruction, like in ‘piecewise parabolic’ (PPM) meth-
ods [23]. Then, identifying averages with node values is no longer possible
and the resulting schemes are more complicated.

An alternative approach is to compute directly the interface fluxes. The
starting point can be any lowest order flux hj+1/2, derived from one of the
flux formulae described in Sect. 5.2.3. The idea is to compute the required
flux Fj+1/2 by adding some correction terms

Fj+1/2 = hj+1/2 + dfj+1/2 , (5.78)

which are devised for improving the accuracy of the algorithm (modified flux
approach [24]). The flux corrections (5.78) can be obtained by combining
one-sided contributions from the neighbor nodes, namely

df+
j+1/2 = Fj+1 − hj+1/2, df−

j+1/2 = hj+1/2 − Fj . (5.79)

Among the different implementations of this approach in CFD, we will
choose here that of Osher and Chakrabarthy [25, 26], given by

dfj+1/2 =
s−1∑

k=−s+1

(
cs

k df−
j+k+1/2 + ds

k df+
j+k+1/2

)
, (5.80)

where

ds
k = νs

k − (−1)k b

(
2s − 2

k + s − 1

)
, cs

k = −ds
−k (5.81)

( b is here an arbitrary parameter), and

νs
0 = 1/2 , νs

k = −νs
−k (k �= 0) (5.82)

νs
s−1 = (−1)s−1

[
s

(
2s
s

)]−1

(s > 1) (5.83)

νs+1
k = νs

k + (−1)k k

s

(
2s

s − k

)[
(s + 1)

(
2s + 2
s + 1

)]−1

. (5.84)

For the simpler non-trivial cases we have (decreasing k order)

d 2
k =

{
b − 1

12
,
1
2
− 2 b, b +

1
12

}
(5.85)
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d3
k =

{
1
60

− b, 4 b − 7
60

,
1
2
− 6 b, 4 b +

7
60

,− 1
60

− b

}
. (5.86)

We have seen in the previous section how the positivity property of lowest
order flux formulae is lost in high-accuracy algorithms and how it can be
restored by using ‘slope limiters’ of the form (5.77), at the price of losing
accuracy where the limiters actually modify the slope values. In this modified
flux context, this is done rather by limiting the flux corrections df± . To be
more specific, every flux correction contribution to (5.80) must be replaced
by

d̃f± k

j+k+1/2 = minmod ( df±
j+k+1/2, c df±

j+1/2, c df±
j−1/2 ) , (5.87)

where c is some compression factor. A sufficient condition for positivity is
given then by [7]

1 + d s
−1 − d s

0 + c
∑
k �=0

min ( d s
k−1 − d s

k , 0 ) ≥ 0 , (5.88)

plus the following restriction on the time step (1D case):

λj
Δt

Δx
[ d s

−1 − d s
0 + c

∑
k �=0

max ( d s
k−1 − d s

k , 0 ) ] ≤ 1/2 , (5.89)

where we have assumed d s
k = 0 when |k| ≥ s.

Allowing for (5.88), for the third-order-accurate algorithm (s = 2), the
maximum compression factor is obtained for [7]

b =
1
12

, cmax = 5 , (5.90)

whereas for the fifth-order-accurate case (s = 2), one gets the optimal value

b =
2
75

, cmax =
265
83

, (5.91)

which is still larger than the corresponding value of 3 for the MC slope
limiter (5.77) in the (second-order) MUSCL scheme.

The compression factor (5.90) obtained for the optimal value of the dis-
sipation parameter is surprisingly high. This means that the flux-correction
limiters (5.87) would have no effect for smooth monotonic solutions, unless
we get a poor resolution. This fact suggests the possibility of switching off
those flux limiters in some scenarios, like spacetime evolution, in which weak
solutions are not expected to arise.

We must remember here that any lowest order flux hj+1/2 can still be
selected among the ones described in Sect. 5.2.3. Let us choose for simplicity
the local Lax–Friedrichs flux (5.63). The flux differences (5.79) in this case
get the simple form
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df±
j−1/2 = 1/2 [Fj − Fj−1 ± λM (uj − uj−1) ] . (5.92)

In the ‘unlimited’ case, the corresponding development provides the flux-
conservative form of the semi-discrete algorithm

∂tuj = −C2sFj + (−1)s−1 b (Δx)2s−1Ds
+Ds−1

− (λM D−uj) , (5.93)

which is 2s − 1 order accurate in space, with a stencil of 2s + 1 points. This
is actually the algorithm (5.29) that we introduced in the finite-differences
context. We will call these numerical schemes FDOC, for ‘finite-difference
Osher–Chakrabarthy’. We will use the third-order-accurate FDOC algorithm
(5.93), with the optimal parameters (5.90) as a default for spacetime evolution
and even as an option for matter evolution, as we will see in the next section.

Let us remark also that the choices (5.90) and (5.91) are optimal for a
generic choice of the lowest order TVD flux. In the LLF case, however, it is
clear that the spectral radius can be multiplied by a global magnifying factor
K > 1. Allowing for the finite-difference form (5.93) of the unlimited version,
magnifying λ amounts to magnify b , that is,

(b, K λ) ⇔ (K b, λ) . (5.94)

It follows that the values of the compression factor bmax obtained in the
previous section must be interpreted just as lower-bound estimates. In par-
ticular, the equivalence (5.94) implies that any compression factor bound ob-
tained for a particular value b0 applies as well to all values b > b0. This agrees
with the interpretation of the second term in (5.93) as modeling numerical
dissipation. On the other hand, this dissipation term is actually introducing
the main truncation error. We will use then in what follows the b values
in (5.90) and (5.91), which are still optimal in the sense that they provide
the lower numerical error compatible with the highest lower bound for the
compression parameter.

5.3 Simple CFD tests

We will present here some simple tests, currently used in the CFD domain.
We will go from the simplest linear case up to the complex non-linear MHD
systems. We will test in all cases both the finite differences FDOC algorithm
and an implementation of the MUSCL type, with the LLF flux formula and
the MC slope limiter. In this way, we can compare the accuracy of the FDOC
scheme with the robustness of the MUSCL one, where the slope limiters get
rid of any spurious oscillations at the price of some local accuracy loss.
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5.3.1 Advection equation

Let us start by the scalar advection equation:

∂t u + λ ∂x u = 0 (λ constant). (5.95)

This is the simplest linear case, but it allows to test the propagation of
arbitrary initial profiles, containing jump discontinuities and corner points,
departing from smoothness in many different ways. This is the case of the
Balsara–Shu profile [27], which will be evolved with periodic boundary con-
ditions.

Let us show first, in Fig. 5.7, the results of the MUSCL reconstruction
method, with the MC slope limiter (5.77). In this simple case, all the reported
flux formulae are equivalent. Note that no spurious oscillations appear, due
to the positivity of the resulting scheme. To be more precise, we can define
in this simple case the total variation (TV) of the solution as

TV (u) =
∑

j

|uj − uj−1| . (5.96)

In the case of systems, the total variation is defined as the sum of the
total variation of the components. The MUSCL scheme is total-variation-
diminishing (TVD), meaning that TV (u) does not increase during numeri-
cal evolution. It is obvious that TVD schemes cannot develop spurious os-
cillations: monotonic initial data preserve their monotonicity during time
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Fig. 5.7 Advection of the Balsara-Shu profile in a numerical mesh of 400 points. A MUSCL
scheme is used with the MC slope limiter. The results are compared with the initial profile
(dotted line) after a single round trip. No spurious oscillations appear, although the effect
of numerical dissipation is clearly visible, both at the peaks and in the corners roundoff.



134 5 Numerical Methods

–0.1
0

 0.2

 0.4

 0.6

 0.8

1

 1.1

–1 –0.5 0  0.5 1

–0.1

0

 0.2

 0.4

 0.6

 0.8

1

 1.1

–1 –0.5 0  0.5 1

Fig. 5.8 Same as the previous figure, but now for using FDOC algorithms, with either
third-order (upper panel) or fifth-order (lower panel) accuracy.

evolution. Moreover, the TVD property can be seen as a strong form of sta-
bility: any blowup of the numerical solution is excluded, as it would increase
the total variation.

We show in Fig. 5.8 the corresponding numerical result for the FDOC
algorithm, either for the third-order formula (s = 2, b = 1/12) or for the
fifth-order one (s = 3, b = 2/75). The smooth regions are described cor-
rectly: even the height of the two regular maxima is not reduced too much by
dissipation, as expected for an unlimited algorithm with at most fourth-order
dissipation. There is a slight smearing of the jump slopes, as usual for contact
discontinuities, which gets smaller with higher resolution.

Concerning monotonicity, it is clear that the total variation of the initial
profile has increased by the riddles besides the corner points and, more vis-
ibly, near the jump discontinuities. We can see in the lower panel that one
additional riddle appears at every side of the critical points, due to the larger
(seven-point) stencil. On the other hand, we have checked that the total vari-
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Fig. 5.9 Advection equation (FDOC case). Time evolution of the total variation. The
horizontal axis corresponds to the exact solution: TV (u) = 8. From top to bottom: s = 3
scheme with 400 points, s = 2 scheme with 800 points, and s = 2 scheme with 400 points.
After the initial increase, which depends on the selected method, TV tends to diminish.
Increasing resolution just reduces the diminishing rate.

ation is bounded for this fixed time, independently of the space resolution or
the time step size, that is,

TV (u) ≤ B , (5.97)

where the upper bound B is independent of the resolution, but could depend
on the elapsed time.

This statement can be verified by plotting, as we do in Fig. 5.9, the time
evolution of TV (u) for the FDOC case. In all cases, a sudden initial increase
is followed by a clear diminishing pattern. These numerical results indicate
that the bound on the total variation is actually time independent, beyond
the weaker TVB requirement.

Even if we were ready to relax the stronger TVD requirement, keeping
the bound (5.97) is important from the theoretical point of view. One major
advantage of total-variation-bounded (TVB) schemes is that the numerical
solutions converge locally (in L1 norm) to a weak solution of (the integral ver-
sion of) the evolution equation. If an additional entropy condition is satisfied,
then the proposed scheme is convergent (see for instance [12]).

5.3.2 Burgers equation

Burgers equation provides a simple example of a genuinely non-linear scalar
equation:

∂t u +
1
2

∂x (u2) = 0 . (5.98)
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Fig. 5.10 Burgers equation: evolution of an initial sinus profile. The numerical solution
(point values) is plotted versus the exact solution (continuous line), for the FDOC and
the MUSCL schemes (left and right panels, respectively), with a 100 points resolution.

The exact solution of this differential equation can be given in parametric
form as

u = h(p) p = x − ut , (5.99)

where h(x) is any initial profile. For instance, we can consider

h(x) = sin(
xπ

5
) , (5.100)

which is a smooth, even analytical, profile. Note that the characteristic speed
is u itself, so that characteristic lines converge at the origin. Allowing for
(5.99), we see that the solution uniqueness is lost for t > 10/π, meaning that
characteristic lines start crossing.

A true shock develops as a result from these smooth initial data, which
propagates, allowing for the Rankine–Hugoniot condition (5.52), with the
shock speed

v = (uR + uL)/2 . (5.101)

For the symmetric initial data (5.100), this gives v = 0, meaning that the
shock will stay fixed at the origin. We plot in Fig. 5.10 the numerical solution
values versus (the principal branch of) the exact solution, at a time where the
shock has fully developed. We compare the FDOC and the MUSCL results
(left and right panels, respectively). In the MUSCL case, the TVD property
is preserved at the price of some extra dissipation near the shock, where the
slope limiters are doing their job. On the contrary, in the FDOC case, we can
see again some spurious oscillations which affect mainly the points directly
connected with the shock.

These conclusions are fully confirmed by a second simulation, obtained by
adding a constant term to the previous initial profile, that is,

h(x) =
1
2

+ sin(
xπ

5
) , (5.102)
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Fig. 5.11 Same as in the previous figure, but now for a moving sinus initial profile. The
numerical solution (point values) is plotted versus the exact solution (continuous line) for
100 points resolution and for the FDOC and the MUSCL schemes (left and right panels,
respectively).

with periodic boundary conditions. We can see in Fig. 5.11 that a shock again
develops, but it does no longer stand fixed: it propagates to the right. The
plots shown correspond to t = 7.

Note that the Burgers differential equation (5.10) can also be written as

∂t u + u ∂x (u) = 0 , (5.103)

suggesting that the ‘sonic points’ (u = 0) should stay fixed during evolution.
This is not actually the case, as the shock is propagating through all the
domain with a non-vanishing speed given by (5.101). This is because weak
solutions are not solutions of the differential equation. Weak solutions obey
instead the integral form of the equations, which can be derived from the
flux-conservative form (5.98), rather that from (5.103).

5.3.3 Euler equations: Sod test

Euler equations for fluid dynamics are a convenient arena for testing the
proposed schemes beyond the scalar case. In the ideal gas case, we can check
the numerical results against well-known exact solutions containing shocks,
contact discontinuities, and rarefaction waves.

We will deal first with the classical Sod shock-tube test [28] with a standard
200 points resolution. The tube is filled with an ideal gas, initially at rest,
with two different homogeneous states separated by a wall. The left and right
initial states are characterized by the following values of density and pressure:

ρL = pL = 1.0 ρR = pR = 0.125 . (5.104)
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The local characteristic speed is given by

λ = v ± cs cs =
√

γ
p

ρ
, (5.105)

where v is the fluid speed and cs is the sound speed (we take the adiabatic
index γ = 1.4, corresponding to air).

Let us remove the wall at t = 0 and follow the fluid evolution. We plot in
Fig. 5.12 the gas density profile at a time when there is still some fluid on both
sides unaffected by the wall removal. At the left of the initial wall position (at
x = 0.5 ), we see a rarefaction wave moving with negative speed. The term
rarefaction means that the density is diminishing as the wave propagates.
The term ‘rarefaction fan’ is also currently used, because characteristic lines
are diverging there like the sticks of a folding fan. As a consequence, no shock
appears on the left-hand side. Note that the fluid is moving rightward there,
as it follows from the velocity plots in Fig. 5.13.

The situation is just the opposite on the right-hand side, where characteris-
tic lines converge and a shock is generated as a result. This right-propagating
shock is specially visible as the only discontinuity in the speed profile (see
Fig. 5.13). An intermediate constant-speed stage is formed, and we can see
a second discontinuity in the density plots. This is a contact discontinuity,
which propagates with the positive sound speed in (5.105): an ‘acoustic wave.’

Concerning the numerical results, we see that both the rarefaction wave
and the shock are perfectly resolved, whereas the contact discontinuity is
smeared out in both cases. Resolving contact discontinuities is always a chal-
lenge for numerical schemes based on centered flux formulae: dealing with
the exact solution (Riemann solver) would of course improve this, at a much
higher computational cost. In the FDOC case, we see some overshots just
besides the shock, specially visible in the speed profile, where the jump is
much higher. Concerning the MUSCL scheme, the overshots are avoided at
the price of some extra numerical dissipation, which can be seen in the rar-
efaction wave and at the contact discontinuity (density profile).

5.3.4 MHD equations: Orszag–Tang vortex

As a simple multi-dimensional example, let us consider here the Orszag-Tang
vortex problem [29]. This is a well-known model problem for testing the
transition to supersonic magnetohydrodynamical (MHD) turbulence and has
become a common test of numerical MHD codes in two dimensions.

A barotropic fluid (with adiabatic index γ = 5/3 ) is considered in a doubly
periodic domain, with uniform density ρ and pressure p . A velocity vortex
given by v = (− sin y, sin x) is superimposed on the initial data with a mag-
netic field B = (− sin y, sin 2x), describing magnetic islands with half the
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Fig. 5.12 Sod shock-tube problem. Density profile for the FDOC and the MUSCL schemes
(upper and lower panels, respectively). From left to right, we see the left initial state, a
rarefaction wave, two constant-density intermediate states connected by a contact discon-
tinuity, a shock, and the right initial state.

horizontal wavelength of the velocity roll. As a result, the magnetic field and
the flow velocity differ in their modal structures along one spatial direction.

In Fig. 5.14 the temperature, T = p /ρ, is represented at a given time
instant (t = 3.14). The figure clearly shows how the dynamics is an intricate
interplay of shock formation and collision. The FDOC numerical scheme,
with s = 2 and b = 1/12, seems to handle the Orszag-Tang problem quite
well.

In Fig. 5.15 we plot the results for the same problem using a MUSCL-type
second-order scheme built from an approximate Riemann solver of the Roe-
type and the MC limiter. The results with both methods are qualitatively
very similar. The overshots in the FDOC case can be seen as very thin lines
(white or dark) profiling the temperature contrasts. The greater dissipation
in the MUSCL case can be seen instead as smoothing these contrasts.
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Fig. 5.13 Same as the previous figure, but for the speed profiles. Sod shock-tube problem.
The FDOC and the MUSCL results are shown (left and right panels, respectively). Note
that the fluid is moving everywhere to the right, toward the lower density region. Note
also that the fluid speed is constant across the contact discontinuity, which is not visible
here.

Fig. 5.14 Temperature at t = 3.14 in the Orszag-Tang vortex test problem. In this
simulation, the third-order FDOC scheme has been used with a numerical grid of 200×200
mesh points.
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Fig. 5.15 Same as in the previous figure, but now for a second-order MUSCL scheme
built from the Roe-type solver and the MC limiter.
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Chapter 6

Black Hole Simulations

The essential ingredients of a numerical relativity code are the evolution
formalism and the numerical scheme. We have already discussed a couple of
well-tested evolution formalisms: the generalized harmonic one and Z4, from
which BSSN can be derived by symmetry breaking. We have also presented a
robust, cost-efficient, finite-difference scheme (FDOC), which is able to evolve
smooth solutions, and a more sophisticated alternative (MUSCL), suitable
for weak solutions.

Black hole simulations, however, still represent some challenge for numer-
ical relativity codes. This is because of the nature of the geometry that we
are trying to model. Singularities can arise even at the initial data. Also,
specific mechanisms must be implemented in order to prevent the time lines
of the reference observers to fall inside the hole or, from the reciprocal point
of view, the black hole to grow up to the boundary of our numerical domain.
Singularity-avoidant gauge conditions are of some help, but at the price of
severely deforming the time slices geometry. In some cases, this goes beyond
the limits allowed by our numerical resolution. The main alternative, dynam-
ically excising the interior region, is also challenging. We will discuss these
topics in this chapter at the basic level, although the reader is referred to
the current research reviews for more elaborate developments (see for in-
stance [1, 2]).

6.1 Black Hole initial data

In order to start a numerical simulation, we must provide the initial values of
every dynamical field (we assume here that we are using a first-order evolution
system). As we are trying to get a true Einstein solution, these initial data
cannot be prescribed arbitrarily: the initial values of (γij , Kij) must verify
the energy and momentum constraints:

Bona, C. et al.: Black Hole Simulations. Lect. Notes Phys. 783, 143–170 (2009)
DOI 10.1007/978-3-642-01164-1 6 c© Springer-Verlag Berlin Heidelberg 2009
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E ≡ 1
2

[ tr R + (tr K)2 − tr(K2) ] − τ = 0 (6.1)

Mi ≡ ∇j (Ki
j − trK δi

j) − Si = 0 . (6.2)

This is true even if we are using the Z4 formalism, where we must also
impose

Θ = 0 , Zi = 0 (6.3)

on the initial slice. The algebraic conditions (6.3) are not first integrals of
the Z4 evolution system (4.19), (4.20), (4.21), (4.22), (4.23), (4.24), and
(4.25). Therefore, the vanishing of the first time derivative of (6.3) must
also be imposed on the initial slice and, allowing for (4.24) and (4.25) this
amounts precisely to the energy and momentum constraints (6.1) and (6.2).
The second-order subsidiary equation (3.74) ensures that no further condi-
tions are required on the initial data in order to recover a true Einstein
solution.

The easiest (but tricky) way of solving the initial data constraints (6.1)
and (6.2) is just to take a t = constant slice of a known exact solution of Ein-
stein’s field equations. The simplest black hole initial data can be obtained
from the Schwarzschild line element. Let us start for simplicity by consider-
ing the normal coordinates case (zero shift). The ‘Schwarzschild coordinates’
expression (1.54) can be replaced by the ‘isotropic coordinates’ version:

−
(

ρ − M/2
ρ + M/2

)2

dt2 +
(

1 +
M

2ρ

)4

δij dxidxj , (6.4)

which is better suited for the 3D case.
We note a number of features that can then be extrapolated from (6.4) to

other (simple) sets of black hole initial data:

• It is a vacuum solution. This is good for testing just the geometrical sector
of the numerical codes, independent of the hydrodynamical sector, where
matter quantities should be computed from their own evolution equations.

• It is initially at rest (time-symmetric initial data), that is,

Kij |t=0 = 0 . (6.5)

This means that the momentum constraint (6.2) automatically holds
true. The energy constraint (6.1) gets then the simpler form

tr R = 0. (6.6)

• The space metric γij is conformally flat (conformal to the Euclidean
metric). This can be used in order to further simplify (6.6), as we will see
in what follows.



6.1 Black Hole initial data 145

• The space metric contains a singularity. This is the origin of the main
complications we will face in this chapter, and this is why black hole simula-
tions deserve a special treatment. In the Schwarzschild case, the singularity
is located at the origin

ρ = 0 , (6.7)

where the space metric in (6.4) diverges. Note that the line element (6.4)
has also a coordinate singularity (vanishing of the lapse), which corre-
sponds to the apparent horizon (6.10), as we will see below.

• There is an apparent horizon. It can be defined as the two-surface where
outgoing light rays have zero expansion, that is,

θ = ∇k nk + Kij ninj − trK = 0 , (6.8)

where n is here the outgoing unit normal to this two-surface (the wave-
front). Quite surprisingly, only the dynamical field values at a given time
slice are needed in order to locate the apparent horizon (which is a local,
slicing-dependent feature). It follows from (6.8) that, for time-symmetric
initial data, apparent horizons are also minimal surfaces (surfaces of
minimal area), that is,

∇knk = 0 . (6.9)

In the Schwarzschild case, it is natural to consider spherical wavefronts.
Allowing for (6.4) and (6.9), the apparent horizon on the initial slice is the
sphere given by

ρ = M/2 , (6.10)

which corresponds to r = 2M in Schwarzschild coordinates.

In order to provide a geometrical interpretation of these features, we will
analyze in more detail the Schwarzschild space metric in (6.4). Let us consider
for instance the geometry of a plane passing through the origin. The 2D metric
for this plane can be written in polar coordinates as

dσ2 =
(

1 +
M

2ρ

)4

[ dρ2 + ρ2dϕ2 ] . (6.11)

The line element (6.11) can also be considered as the metric of some 2D
surface in the 3D Euclidean space. In this way, the geometry of the original
plane in the Schwarzschild (curved) space is ‘embedded’ in Euclidean space,
which is more familiar to everyone.

We have plotted in Fig. 6.1 the surface with metric (6.11) in flat space.
Quite surprisingly, the singularity at ρ = 0 arises from the fact that the
‘center’ (ρ = 0) really corresponds to a spherical surface at space infinity.
There is a minimal surface (corresponding to the minimal circle in the figure)
at ρ = M/2, so that lower values of ρ lead back to circles of greater area. This
minimal surface (the ‘throat’ in Fig. 6.1) coincides also with the location of
the apparent horizon in the initial (time-symmetric) slice, as it follows by



146 6 Black Hole Simulations

comparing (6.8) with (6.9). The overall image is a sort of ‘wormhole,’ where
the interior geometry is just a replica of the exterior one.

6.1.1 Conformal metric decomposition

The fact that the space metric in (6.4), namely

(
1 +

M

2ρ

)4

δij , (6.12)

is conformally flat suggests to consider the conformal decomposition of a
generic 3D metric:

γij = e2U γ̂ij , (6.13)

where γ̂ij is a given conformal metric (the Euclidean one in the Schwarzschild
case).

The connection coefficients of the original and the conformal space metric
are related by

Γ k
ij = Γ̂ k

ij + δk
i Uj + δk

j Ui − Ukγ̂ij . (6.14)

Fig. 6.1 Embedding of the Schwarzschild space metric as a ordinary surface in Euclidean
spacetime. It is the revolution surface obtained from a horizontal parabola with vertex at
the Schwarzschild radius (ρ = M/2 in isotropic coordinates). Radial lines beginning at
infinity in the upper side come to the center, but reach a minimal circle at ρ = M/2 (the
locus of the parabola vertices, seen as a ‘throat’ in the plot) and then go back by the lower
side again to infinity. The singularity comes precisely from the counterintuitive fact that
ρ = 0 is not actually the center point, but it corresponds instead to a spherical surface

placed at spatial infinity.
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It follows that the corresponding Ricci tensors verify

Rij = R̂ij − ∇̂iUj + Ui Uj − (∇̂kUk + UkUk) γ̂ij , (6.15)

where the conformal metric is used in all index contractions. The correspond-
ing relationship between both Ricci scalars is then

tr R = t̂r R̂ − 4 ∇̂kUk − 2UkUk . (6.16)

When the conformal metric γ̂ij is flat, that is,

R̂ij = 0 , (6.17)

it is convenient to express the conformal factor in (6.13) in the form

e2U = Ψ4 , (6.18)

so that the vacuum time-symmetric energy and momentum constraints reduce
to the Laplace equation on Ψ [3]:

	̂ Ψ = 0 . (6.19)

By a suitable choice of the space coordinates on the initial slice, one can al-
ways assume that the flat conformal metric takes the Euclidean form, namely

γ̂ij = δij . (6.20)

The spherically symmetric solutions of (6.19) can then be obtained from

∂ρ [ ρ2 Ψρ ] = 0 , (6.21)

so that one gets the Schwarzschild conformal factor in (6.12) as a result.

6.1.2 Singular initial data: punctured black holes

We will consider here a class of initial data which is common to many black
hole simulations:

• Time-symmetric, conformally flat initial slice, that is,

Kij |t=0 = 0 , γij |t=0 = Ψ4δij , (6.22)

where Ψ is a solution of (6.19).
• Gauss initial gauge

α |t=0 = 1 , βi |t=0 = 0 . (6.23)
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• No extra fields on the initial slice. In the Z4 formalism, for instance,

Θ |t=0 = 0 , Zi |t=0 = 0 . (6.24)

The problem of getting consistent initial data leading to true Einstein’s
solutions is then reduced to finding solutions of the 3D Laplace equation
(6.19) in the conformal Euclidean space.

This is exactly the same equation as that of the electrostatic potential in
vacuum. We know that any non-trivial electrostatic potential is generated
by some charge distribution. This means that the solutions Ψ of the vacuum
Laplace equation will usually contain singularities, corresponding to the lo-
cation of point charges acting as sources. We have already seen this in the
Schwarzschild case: the ‘potential’

Ψ = 1 +
M

2ρ
(6.25)

can be interpreted in electrostatic terms as a trivial (constant) contribution
plus a Coulomb term at the origin.

It follows from these considerations that the Schwarzschild case is a good
representative of black hole initial data, in the sense that ‘puncture’ singu-
larities appear in the initial metric through the conformal factor Ψ [4, 5] (the
term ‘puncture’ is actually suggested by the embedded geometry diagram in
Fig. 6.1). Dealing with these singularities in numerical simulations is then
the very first challenge.

The ‘punctured black holes’ approach was originally devised in the frame-
work of the BSSN formalism. The initial (singular) conformal factor

e2U = Ψ4 |t=0 (6.26)

was entered analytically into the code, so that only the (non-singular) dy-
namical deviations were actually computed numerically [6]. The conformal
metric γ̂ij was then evolved by starting from the regular initial data

γ̂ij |t=0 = δij . (6.27)

In summary, the singular contributions were computed analytically and
the regular ones numerically.

This clever approach has an inherent drawback: The singular term con-
tributions are always there, as they are included analytically in the modified
evolution equations. This fact prevented for years getting long-term simula-
tions of orbiting black holes. The 2005 breakthrough in this field was actually
made by a completely different approach: excision in the generalized harmonic
formalism [7].
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Just after this, the ‘moving punctures’ approach (a modification of the
original one) allowed the same kind of success for BSSN simulations without
excision [8, 9]. The idea was just to evolve everything numerically, even the
singular terms. The numerical grid was arranged so that the initial singular-
ities did not sit on any of the numerical nodes. Artificial dissipation was in
charge for smoothing the numerical solution, so that the singularities ‘leak
out’ through the finite difference mesh after a number of iterations.

Of course, it is difficult to get a rigorous concept of convergence in this way
(the true continuum solution is singular). One can interpret that a ‘numerical
migration’ has taken place from a singular solution to a regular one, to which
the numerical values are actually converging. Although this approach has
shown to be extremely successful from the practical point of view, some
doubts can arise about the physics that has just ‘leaked out’ through the
mesh. This is why other approaches, dealing with regular initial data, deserve
to be considered.

6.1.3 Regular initial data

One can wonder whether it is possible at all to start a black hole simula-
tion with regular initial data. The idea is to take advantage of the ‘one-way
membrane’ paradigm: no physically meaningful information can get out from
the horizon in a (classical) black hole. This means that one can modify the
geometry of the interior region without affecting the exterior one, provided
that it is done in a consistent way. One can use this idea to get rid of the
initial singularities, as we will see below.

To be more precise, a number of comments are in order:

• The one-way membrane is not the apparent horizon (a local feature), but
the event horizon, which can be defined as the boundary of the region
which has no causal effect at infinity. This is a non-local feature (requires
information from all future slices) although it can be computed numeri-
cally [10, 11]. However, as far as we know, the apparent horizon is interior
to the event horizon, so that a safer strategy is to restrict any change to
the interior of the apparent horizon, which can be easily located at any
time slice.

• Gauge speed can be higher than light speed. This means that gauge modes
can cross the horizon in both directions. However, this is not against the
one-way membrane idea, because gauge conditions are not part of the field
equations nor carry any physically relevant information: one can choose
them in quite an arbitrary way. Gauge modifications inside the horizon
can then be regarded just as one more way of determining the coordinate
conditions.

• The stability of the numerical code requires that the numerical speed (3.31)
be higher than the physical speed. It follows that numerical errors prop-
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agate faster than light and, then, they can also cross the horizon in both
directions. Any change whatsoever in the interior region must then be con-
sistent and accurate if one wants the get a physically sound solution for
the black hole exterior region.

6.1.3.1 Stuffed black holes

Regular initial data can easily be obtained from ‘composite’ space geometries.
The idea comes once more from the electrostatic analogy suggested by (6.19),
which we will write here in the non-vacuum case as

	̂ Ψ = −1
4

τ Ψ5 . (6.28)

It is well known that the external (Coulomb) field of a spherical charge
distribution is the same as the one generated by a point charge. In the same
way, the exterior Schwarzschild geometry is the same as the one generated
by a interior matter distribution with the same total mass.

The key point is to match the Schwarzschild exterior space metric with
a (non-singular) interior space metric corresponding to some matter distri-
bution (‘stuffed’ black holes). Although it has been done previously for the
dust case [12], we prefer to consider here the scalar field case, as it has shown
more robustness in long-term simulations [7, 13]. The field equations read in
this case

Rμν = 8π (∂μΦ) (∂νΦ) , (6.29)

so that the 3+1 decomposition of the energy–momentum tensor is given by

τ = 1/2 (Φn
2 + γklΦk Φl) , Si = Φn Φi , (6.30)

Sij = Φi Φj + 1/2 (Φn
2 − γklΦk Φl) γij , (6.31)

where Φn stands for the normal time derivative

(∂t − βk ∂k) Φ = −α Φn , (6.32)

and Φi for the partial space derivative of Φ.
The stress–energy conservation amounts to the evolution equation for the

scalar field, which is just the scalar wave equation. In the 3+1 language, it
translates into the flux-conservative form:

∂t [
√

γ Φn ] + ∂k [
√

γ (−βkΦn + α γkjΦj) ] = 0 . (6.33)

A fully first-order system may be obtained by considering the space deriva-
tives Φi as independent dynamical fields, along the lines discussed in Chap. 4.
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Concerning the initial data, we must solve the energy–momentum con-
straints (6.1) and (6.2). In the time-symmetric case, this amounts to

R = 16π τ , Si = Φn Φi = 0 . (6.34)

The momentum constraint can be satisfied by taking Φ (and then Φi) to
be zero everywhere on the initial time slice.

We will keep considering the conformally flat line element (6.4), so that
the energy constraint can still be written as (6.28). But we will assume a
variable mass profile m = m(ρ), with a constant mass value m = M for the
black hole exterior, so that (6.28) will be satisfied with τ = 0 there. In the
interior region, however, the energy constraint will translate instead into the
equation

m′′ = −2πρ (Φn)2 (1 +
m

2ρ
)5 , (6.35)

which can be interpreted as providing the initial Φn value for any convex
(m′′ ≤ 0) mass profile. Of course, some regularity conditions both at the
center and at the matching point (ρ = M/2) must be assumed. Allowing for
(6.35), we must have

m = m′′ = 0 (ρ = 0)
m = M, m′ = m′′ = 0 (ρ = M/2) .

For instance, a simple profile verifying these conditions is given by

m(ρ) = 4ρ − 4/M [ ρ2 + (M/2π)2 sin2(2πρ/M) ] . (6.36)

Note that, allowing for (6.35), the matching conditions ensure just the
continuity of Φn , not its smoothness. This can cause some numerical error,
as we are evolving Φn through the differential equation (6.33) with finite
difference methods. If this is a problem, we can demand the vanishing of
additional derivatives of the mass function m(ρ), both at the origin and at
the matching point.

6.1.3.2 Free Black Holes

An even simpler alternative is possible in the framework of the Z4 formalism
(but see [14] for a recent implementation of the same idea in the BSSN
context). In this case, the energy and momentum constraint violations are
represented by the supplementary dynamical fields:

Zμ ⇔ (Θ, Zk) . (6.37)
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Fig. 6.2 Plot of a conformal factor Ψ providing time-symmetric conformally flat initial
data for a free Schwarzschild black hole. Values on the x axis correspond to the isotropic
radial coordinate ρ, measured in units of M . The singular expression (6.25) in the interior
region (dotted line) is replaced by a regular one (continuous line), corresponding to (6.36).
The mass profile is also shown in the figure (at a bigger scale). Both expressions coincide in
the exterior (constant mass) region. Note that the matching is very smooth at the apparent
horizon (ρ = M/2).

When non-zero values of these fields can be evolved without problems,
we can conclude that the Z4 formalism is tolerant to energy and momentum
constraint violations.

Moreover, we know that both Θ and Zk can be computed from light-
cone eigenfields, with light speed as characteristic speed. It follows that non-
zero values of these supplementary fields in the initial data would propagate
along light cones. In the region exterior to the black hole, the outgoing part
will reach the outer boundary and leave out the computational domain. The
incoming part will instead cross the horizon, entering the interior region.
As nothing traveling with light speed can get out of the black hole interior,
non-zero values of Θ and Zk will cumulate there.

Playing again with the idea that the interior region has no causal physical
influence on the exterior one, we can devise a simple way of obtaining regular
initial data without either using excision or stuffing:

• Use the physical initial data (the ones verifying the energy and momentum
constraints) in the exterior region.

• Forget about the energy and momentum constraints in the interior region
(free black holes). Just take there any regular and smooth extension of the
exterior geometry.

This approach is different from that of the matching problem (finding a
suitable interior solution for a given exterior three-metric), which was that
of the previous section. Here, one just extends smoothly the exterior geom-
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etry without imposing any constraint on the interior part. Only regularity
conditions must be required.

Note, however, that removing the matter content without changing the
metric can be interpreted as adding some matter counterterms which cancel
out the physical ones. Of course, these extra matter terms are unphysical
(carrying negative energy density, for instance). The resulting simulations
can show some counterintuitive behavior as a result: gravitational collapse
being stopped locally at the interior, and so on. This approach must be taken
then with a lot of caution.

6.1.3.3 Black Hole excision

Another way of getting black hole regular initial data is to excise any region,
interior to some apparent horizons, that contains singular points [15]. This
means that we are setting inner boundaries on our computational grid and
suitable boundary conditions must be provided there. The problem with inner
boundary conditions is that they should hold in the strong-field high-speed
region. This is in contrast with outer boundary conditions, which could in
principle be placed in the weak-field zone, making things much easier.

One interesting possibility is to place the inner boundaries at minimal sur-
faces (the throat in Fig. 6.1). In the wormhole geometries we are considering,
the interior region is just a replica of the exterior one. This is not so surprising
if one remembers that the Laplace equation (6.19) is the one currently used
in electrostatics, where the method of images provides precisely this kind of
mirror-like solutions. In the Schwarzschild case, the inversion transformation

ρ ←→ M2

4ρ
(6.38)

leaves the spacetime metric (6.4) invariant.
The discrete mirror-like symmetry (6.38) allows one to set up ‘virtual

points’ near the inner boundary by using just physical information from the
grid nodes, without any extra input or assumption. After all, every point
inside the throat is identical to another one outside, both related by (6.38).
In the spherically symmetric case, this provides a nice way of excising the
singular region which has been used successfully in (1D) black hole simula-
tions [16–18].

In the generic 3D case, however, inner boundaries are not usually placed at
the throats. The most common choice is to place the inner boundaries close
to the (expanding) apparent horizon [19]. In contrast with the fixed throat
location, apparent horizons are usually expanding with time. Inner bound-
aries are then forced to move during evolution, departing from their initial
location at the throat. This makes the whole issue much more complicated.
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An alternative approach to the excision boundary problem is the use of
a different representation of the Schwarzschild line element. Instead of the
isotropic form (6.4) of the line element, we can get back the original radial
Schwarzschild coordinate r , but with a different time slicing, namely

t = t + 2M ln | r

2M
− 1| , (6.39)

so that the metric gets the Eddington–Finkelstein form:

gμν = ημν +
2M

r
lμlν , lμ = (1,

x

r
,
y

r
,
z

r
) . (6.40)

The corresponding 3+1 decomposition is given by

gij = δij +
2M

r

xi

r

xj

r
, (6.41)

α2 =
(

1 +
2M

r

)−1

, βi =
2M

r

xi

r
, (6.42)

so that the extrinsic curvature reads

α Kij =
2M

r2
[ δij −

(
2 +

M

r

)
xi

r

xj

r
] . (6.43)

Initial data can be constructed directly from the previous expressions. The
energy–momentum constraints (6.1) and (6.2) will be automatically satisfied,
as far as (6.40) is an exact vacuum solution. The only singular point will be
the origin. But note that the causal character of time lines in (6.40) is given
by the sign of

g00 = −1 +
2M

r
, (6.44)

so that they become spacelike in the black hole interior (r < 2M in these
coordinates). This means that all characteristic speeds will have the same
(inward) sign at the interior.

One can take advantage of this fact by setting up an excision boundary
fully inside the horizon and devising one-sided numerical algorithms which
do not require any information from the excised points (see for instance [20]).
The stability of this ‘excision without boundary’ numerical approach relies
on the fact that all the characteristic speeds have actually the same sign,
pointing to the excised region, outside the computational domain. Of course,
one must switch to the standard centered algorithms at the points outside
the horizon, where the propagation speeds get different signs.

This excision-without-boundary approach is actually the method of choice
in black hole simulations based on the generalized harmonic formalism
[7, 20, 21]. In some cases, it is combined with a scalar field stuffing of the initial
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data [22]. Initial data for multiple black holes can also be constructed, even
if we no longer have an exact solution at our disposal (see for instance [23]).

6.2 Dynamical time slicing

One can wonder why to choose black hole regular initial data if singularities
will appear anyway during time evolution. This is a good point. In the stuffed
black hole case, for instance, the interior region is filled with matter, which
will collapse by its own gravity to a singularity in a finite amount of proper
time.

Collapse singularities arise when two nearby, but different, time lines (the
world lines of two different Eulerian observers) meet at the very same point.
Then, the proper distance between these time lines, which are labeled with
different space coordinates, vanishes. This means that the space metric is no
longer invertible there (the space volume element

√
γ vanishes). Of course,

this would be fatal for a numerical simulation, which will crash when trying
to compute the (divergent) components of the inverse space metric.

This behavior is generic in black hole spacetimes. Remember that the ap-
parent horizon is defined as the surface for which the expansion of a outgoing
congruence of light rays vanishes (6.8). This expansion is then negative in-
side the apparent horizon, meaning that even outgoing light rays are actually
collapsing. As far as the time slices are spacelike hypersurfaces, their normal
lines (the world lines of the Eulerian observers) are timelike, that is, interior
to the local light cones. It follows that the expansion (2.29) of the Eulerian
observers must also be negative, that is,

θ < 0 ⇔ trK > 0 (6.45)

inside the apparent horizon, so that the normal lines are actually collapsing.

6.2.1 Singularity avoidance

We have seen in Sect. 2.1.2 how coordinate time (the time label that our
computer is using when proceeding from one time slice to the next) is related
with proper time through the lapse function α. The idea is to slow down
the evolution, by choosing smaller values of α, in the regions that are going
to collapse, whereas keep constant values of α in the outer regions, where
information about the collapse can actually be recovered. The sequence of
time slices would then cover most of the outer region, while keeping safely
away from the singularity which is going to form inside the black hole.
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Let us be more precise. Let us choose the normal time line corresponding
to any fixed point x0 on the initial slice (normal coordinates). Let us suppose
now that this time line is going to meet a collapse singularity in a finite
amount of proper time, that is,

√
γ → 0 for τ → τS . (6.46)

The coordinate time elapsed in the process is then given by

Δt =
∫ τS

0

dτ ′

α
. (6.47)

A necessary condition for the singularity to be avoided is that (6.47) be
an improper integral, because the result is the coordinate time at which the
singularity will actually occur. This means that the lapse function α should
‘collapse’ to zero, that is,

α → 0 for τ → τL ≤ τS . (6.48)

Otherwise, it is clear that the singularity will be attained in a finite amount
of coordinate time.

We will assume for the moment that the lapse collapses precisely at the
singular point, that is,

τL = τS (6.49)

(the case τL < τS will be considered in the next section). In this case,

singularity avoidance is achieved if and only if the improper integral (6.47)
diverges, so that the singularity is not attained in a finite amount of coordi-
nate time. We can put this condition in an equivalent differential form: the
improper integral (6.47) will diverge if and only if the proper time derivative
of the lapse does have a finite value at the singularity, namely

∂τ α |τ=τS
= lim

(
α

τ − τS

)
< ∞ . (6.50)

We can check this condition for the class of generalized harmonic slicing
conditions (3.89) that we are considering here,

∂τ α = −fα tr K (6.51)

(remember that Θ = 0 for true Einstein’s solutions), which we know leads to
strongly hyperbolic evolution systems for f > 0. It follows that singularity
avoidance will be achieved in our case if and only if

fα tr K |τ=τS
< ∞ . (6.52)



6.2 Dynamical time slicing 157

We can still refine a little bit more our analysis by assuming that

∂τ
√

γ < ∞ . (6.53)

This means that we are dealing with just ordinary collapse singularities
(‘focusing singularities’ in [24]) and not with stronger ones in which the space
volume element could vanish suddenly, at an infinite proper time rate. It fol-
lows that, for generalized harmonic slicing, singularity avoidance is achieved
if and only if either there is a limit surface or

fα
√

γ
< ∞ . (6.54)

Simple examples of singularity avoidance are provided by the choice f =
n (constant). In this case condition (6.51) can easily be integrated to give

α/α0 = (γ/γ0)n/2 , (6.55)

so that the lapse is collapsing precisely at the singular point, where the space
volume element is vanishing (no limit surface appears). Allowing for (6.54),
the singularity will not be reached in a finite amount of coordinate time if
and only if

n ≥ 1 . (6.56)

The case n = 1 corresponds to the original harmonic slicing condition,
which verifies (6.56) marginally. This is why it usually requires the excision
of the region close to the singularity in black hole numerical simulations.

6.2.2 Limit surfaces

A popular choice in black hole numerical simulations is given by the gen-
eralized ‘1+log’ slicing condition f = n/α. Condition (6.51) can easily be
integrated again to give

α − α0 =
n

2
ln(γ/γ0) , (6.57)

which justifies the ‘1+log’ name (the initial lapse is usually taken to be one).
Note that the lapse collapses here even before the singular point is reached,
at a surface defined by

γ = γL ≡ γ0 exp (−2α0

n
) > 0 . (6.58)

Note that for the n = 2 case, which is currently used in numerical simula-
tions with α0 = 1, we get a residual volume-element ratio

√
γL/γ0 of about



158 6 Black Hole Simulations

60%, meaning that the lapse vanishes when the gravitational collapse is still
far from its final stage.

This is a first example of a limit surface. It occurs when and where the
lapse collapse occurs before the metric collapse, that is,

τL < τS . (6.59)

The final slice is then bounded away from the singularity, so that we can
assume that both the space metric and the extrinsic curvature are regular
tensors there. It follows that condition (6.54) can be replaced by

fα |α=0 < ∞ , (6.60)

implying that the limit surface will not be reached in a finite amount of
coordinate time.

Hitting the limit surface, however, would not be a big problem, provided
one avoids crossing the line and running into negative lapse values. Anyway,
one must be very careful in order to avoid the divergence of some gauge-
related quantities that could crash the numerical simulations:

• By rescaling some dynamical fields. The ordinary space derivative of the
lapse

ak ≡ α Ak (6.61)

could be used instead of the logarithmic one Ak. Also, the rescaled gauge
factor

f̃ = fα2 (6.62)

could be used instead of the original one, and so on.
• By implementing some mechanism in the numerical code that avoids run-

ning into negative lapse values. The idea is to freeze the evolution of the
set u of dynamical fields once the limit surface has been reached.

A completely different example of slicing condition leading to a limit sur-
face is provided by the maximal slicing condition (2.96), that is,

trK = − ∂τ ln(
√

γ) = 0 , (6.63)

so that the space volume element is not even allowed to depart from its initial
value. In the Schwarzschild case, maximal slicing is known to produce a limit
surface given by [25]

r = rL ≡ 3M/2 > 0 , (6.64)

where r is the Schwarzschild ‘radial’ coordinate, which is actually a time
coordinate inside the horizon (r = 2M), so that (6.64) corresponds to a
regular space-like hypersurface, bounded away from the r = 0 singularity.

We have seen that, when using maximal slicing, the lapse function must
be computed by solving an elliptic differential equation (2.97), and this is
why we have not considered it in the context of the hyperbolic evolution
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formalisms that appeared in the 1990s. Before these dates, maximal slicing
was currently used in numerical simulations [26, 27] mainly because of its
excellent singularity avoidance properties. It was actually the slicing of choice
in the first 3D colliding black hole simulations [16].

6.2.3 Gauge pathologies

One can wonder whether singularity-avoidant slicing conditions can have
some unwanted side effects. From the theoretical point of view, it is clear
that the direct relationship (6.51) between (the proper time variations of)
the lapse and the volume element will be helpful in the collapse scenario
(6.45), where the lapse diminishes in response to the positivity of trK.

But, conversely, this will make the lapse function to increase in the zones
which, for any reason, are expanding so that trK becomes negative. We will
have then a sort of ‘runaway’ solution, with the time slicing accelerating
precisely in the expanding regions. The lapse could grow then without limit,
leading to a blowup.

One could wonder about how this blowup can arise in strongly hyperbolic
systems, where the principal part can be expressed locally as a set of ad-
vection equations (4.68). The answer is precisely in the non-principal terms,
which should be added in the right-hand side of the characteristic evolution
equations, namely

∂t wr + λr ∂x wr = qr(ws) , (6.65)

where the characteristic source terms qr are quadratic in the eigenfields w.
The case of the gauge eigenfields (4.62) has been studied in 1D cases: gauge
blowups can arise unless the condition [28, 29]

f = 1 +
const
α2

(6.66)

is satisfied. Note that, allowing for the regularity requirement (6.60), condi-
tion (6.66) can only be satisfied in the harmonic slicing case (f = 1). This
confirms that gauge blowups can actually occur in the generic singularity
avoidance case, where f > 1.

As explained before, this behavior is generic in an expanding scenario
(trK < 0), where a singularity avoidance condition is clearly a bad choice.
But that blowup can arise even in collapse scenarios, where numerical errors
can produce (spurious) negative values of trK. A remedy for this could be
the introduction of some ‘offset value’ K0 > 0 in the lapse evolution equation
(6.51), for instance,

∂t ln α = −fα (tr K + K0) , (6.67)
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so that the lapse will keep collapsing for tr K > −K0 . Of course, the offset
value must be small enough to prevent the lapse collapse in the nearly static
regions, where trK ∼ 0 .

6.3 Numerical Black Hole milestones

We will present in this section the results of applying the techniques discussed
so far to black hole simulations. The idea is to choose a simple example
and to follow it in a step-by-step way. We will therefore avoid unnecessary
complications and go directly to the hearth of the problem, where much
insight can be gained. The natural choice is that of a single Schwarzschild
black hole, because it is the simpler one that shows the first difficulties that we
will encounter in generic black hole simulations. We will also choose normal
coordinates (zero shift). This apparently simple choice turns out to be a tough
challenge from the numerical point of view, as we will see in what follows.

There are some decisions to take at the very beginning. These are our
choices:

• Evolution system: The flux-conservative first-order version of the Z4
system, as detailed in Sect. 4.3.3.

• Numerical algorithm: The method of lines, with a third-order Runge–
Kutta algorithm for the time discretization and the finite differences
FDOC formula (5.93) for the space discretization.

• Boundary conditions: Maximally dissipative algebraic conditions at the
outer boundaries, as described in Sect. 4.4.2.

• Initial data: Stuffed black hole initial data, with the scalar field given by
(6.36).

• Coordinate conditions: Singularity-avoidant slicing, given by the alge-
braic condition (4.5), with zero shift. We keep all options open for the
values of the gauge parameters f and m.

6.3.1 Short-term simulations

In keeping with the philosophy of this book, we will restrict ourselves to
modest size simulations that can be performed in any personal computer.
If we consider a single processor, which can usually address up to 2 Gb of
memory, this implies using small numerical grids of, let us say, 803 nodes and
being ready for overnight calculations in the worst case. Slightly larger grids
can be used in today’s multiple processor PCs, but then one must be able
to do parallel computing. The Cactus computational toolkit [30] can provide
some help by taking care of the required programming infrastructure.
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Even if we are using cartesian 3D coordinates for a spherically symmetric
problem, we can take advantage of some discrete space symmetries. The ini-
tial data are mirror symmetric across every coordinate plane. This reflection
symmetry is preserved by the evolution equations, and this allows us to com-
pute just over one octant of the spacetime domain. To illustrate how it can
be done, let us focus for instance on the mirror symmetry across the z plane:

• We must classify every dynamical field as being either even or odd under
the transformation

z ←→ − z . (6.68)

• We can then replace the negative z region of the numerical grid by a single
layer (or two, depending on the stencil) of mirror points.

• The dynamical field values at these mirror points are defined to be the
same ones as the corresponding ones in the corresponding layer of the
positive z region: the sign of the odd fields is just reversed.

Octant symmetry allows us to double space resolution (that is, a factor
8 in memory space) for a given grid size. In our case, we will put the outer
boundary at about ρ = 10M , which is definitely too close, in order to get a
reasonable resolution, that is,

Δx = Δy = Δz = 0.1M . (6.69)

Notice that a value of 10M along the coordinate axes means about 14.4M
along the cube diagonals, which is the cut that we will show, unless otherwise
stated, in the figures that follow. This will be enough to begin with.

6.3.1.1 Lapse collapse and landing (0–5M)

The first stages of the simulation show a collapse of the space volume ele-
ment which, allowing for the singularity avoidance properties of the gauge
conditions discussed in this chapter, translates itself into a collapse of the
lapse function α. This lapse collapse can be slower or faster, depending on
our choice of gauge parameters.

We show in Fig. 6.3 the lapse collapse for two choices of the gauge parame-
ter f , with and without limit surface (f = 2/α and f = 2 , respectively). We
have taken the second gauge parameter m = 2 in both cases. The pattern
is very similar: a fast collapse at the beginning (the lines shown are evenly
spaced in time), followed by a slowing down and eventually ‘landing’ very
close to a zero value in the innermost region, which means that the dynamics
gets locally frozen there.

This is the first milestone in a black hole simulation. We have not shown
the equivalent results for the harmonic slicing case because our code crashed
before reaching that point. Notice that this was just the limit case at which
the slicing still should manage to avoid the singularity at the continuum
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Fig. 6.3 Lapse collapse for different slicing conditions: the lapse values are shown every
0.5M . The left panel corresponds to the f = 2 slicing, which has no limit surface. The
right panel shows the same thing for the f = 2/α slicing, which does have a limit surface.
The lapse collapses faster here, getting very close to zero in the innermost region, as it can
be seen in the last plot (t = 5M).
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Fig. 6.4 Plots of Kxx (solid line) and trK (dotted line) along the x axis, corresponding
to the f = 2/α slicing at t = 6M . Negative values of Kxx correspond to the increasing of
γxx, that is, a radial stretching of the time slice. Notice that this is compatible with an
overall collapse pattern, as shown by the positivity of trK: the radial stretching is then
compensated by the collapse along the angular directions. Slice stretching is at the origin
of an increasing lack of resolution which challenges the numerical algorithms.

level. In our case, numerical errors make the code to cross the line and the
singularity is not avoided at the discrete level. Of course, different numerical
algorithms could make numerical errors go into the opposite sense. But we
will try to avoid here this kind of ‘fine tuning’, following instead more robust
alternatives when available.

6.3.1.2 Slice stretching (4–20M)

Let us continue with the simulation, keeping an eye on the behavior of the
extrinsic curvature, as shown in Fig. 6.4.
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We see that trK is positive at that time (about 6M in our case), so that
we have an overall collapse pattern. But if we look at a radial component
(Kxx along the x direction for instance), we see that radial directions are
actually expanding. The geometrical meaning of this behavior can be better
understood by looking at the wormhole embedding diagram in Fig. 6.1. The
radial expansion can be interpreted as the ‘stretching’ of the throat by pulling
up from the top. This stretching is accompanied by the shrinking of the throat
perimeter (the spherical surface area in the 3D case). The total effect on the
space volume element is that of a highly inhomogeneous collapse. The radial
expansion is at the origin of the lack of resolution that poses serious challenges
to standard numerical algorithms.

We can see in Fig. 6.5 how a ‘collapse front ’ is formed in, with a steep
slope in the lapse profile. The same happens with trK, which can grow very
quickly in the regions that are collapsing while keeping very low values in
the neighboring ones. The resulting slope contrast can be more or less severe,
depending on the selected slicing condition. When there is no limit surface,
like in the f = 2 case, we can get short of resolution. Spurious oscillations
can arise, even with our FDOC numerical method, leading to a code crash
(remember that we can get very close to the singularity in those cases). The
limit surface cases (f = 1/α, f = 2/α) are of course safer, because (small)
numerical oscillations cannot drive us to the singularity. As we can see in the
figure, the higher gauge-speed case (f = 2/α) leads to a smoother profile,
suitable for low-resolution simulations.

This is the second milestone we find in black hole simulations: getting rid
of any spurious oscillations due to slice stretching. The way we have done it
(at least in the limit surface cases), by using the FDOC algorithm, is by no
means unique. In the f = 2/α case, the slopes contrast is not so dramatic and
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Fig. 6.5 Plots of the lapse profiles at t = 10M for choices of the main gauge parameter,
corresponding to different gauge speeds. The case f = 2/α (solid line) shows a smoother
profile than f = 1/α (dotted line).
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similar results are actually achieved in current black hole simulations just by
adding higher order dissipative terms to a standard numerical algorithm [31].
Note, however, that slice stretching is a real dynamical feature that is still
there, independent of the numerical algorithm one is using.

6.3.1.3 Lapse rebound (10–30M)

Let us see again what happens when allowing our simulations to proceed for
a longer time (the precise value will depend both on the gauge and on the
ordering parameter choices).

To monitor what is going on, let us take a look at Fig. 6.6, where we
have plotted the same quantities as in Fig. 6.4. As a word of caution, let
us remember that the lapse in the innermost region is already collapsed, so
that the dynamics is frozen there. This means that the features we see in
the innermost region in Fig. 6.6 correspond to an earlier stage (measured in
proper time) than what we see around ρ = 3M , which is the region we are
going to analyze now.

Contrary to what appeared in Fig. 6.4, we see here that trK is negative,
so we have an overall expansion pattern of the space volume element, namely

(∂t − Lβ) ln(
√

γ ) = −α trK > 0 . (6.70)

At the continuum level (Θ = 0), this would cause an increasing of the
lapse, which is driven by the equation

(∂t − Lβ) ln(α ) = −α f (trK − mΘ) , (6.71)
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Fig. 6.6 Same as Fig. 6.4, but now for t = 15M . The dynamics in the innermost region is
frozen (the lapse is fully collapsed there). In the region around 3M , however, trK (dotted
line) becomes also negative, corresponding to a global expansion pattern. Note that the
lapse collapse pattern is ensured by the positivity of the trK − 2Θ values (solid line).
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which could grow out of control, leading to a runaway solution. The singular-
ity avoidance of the slicing condition (6.71) works against us in an expanding
scenario, where trK > 0 , as discussed in Sect. 6.2.3.

One can wonder why this rebound problem is not an issue in standard
BSSN simulations. In order to explain this, remember that the BSSN evo-
lution equation for trK corresponds to the Z4 evolution equation for the
combination trK − 2Θ (this is actually why we took the second gauge pa-
rameter m = 2 in our simulations). This means that we may circumvent the
rebound problem by making use of the energy–constraint violations in the
black hole interior, which contribute to non-trivial Θ values. In our case, with
the field equations solved consistently everywhere, this is done automatically
by choosing m = 2.

This should work fine both for the stuffing and the punctures approaches.
Note, however, that this will not be the case in the free black hole approach.
Suppressing artificially the matter sources in the field equations amounts to
adding some ‘negative energy ’ counterterms that can reverse the sign of Θ
there. Negative values of m may be required in this case.

6.3.1.4 Boundary conditions (30M and beyond)

Let us see once more what happens when allowing our simulations to proceed
for an even longer time. We see in Fig. 6.7 that the lapse rebound does not
show up. What we see is the collapse of the whole computational region,
which ends up completely inside the apparent horizon. At this point, one
must remember that the lapse function provides the scale factor between
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Fig. 6.7 Same as Fig. 6.5, but now running up to 50M (coordinate time at the outer
boundary). The plots are shown now with a larger time interval in order to get a clearer
picture. The whole computational region gets inside the black hole horizon.
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coordinate and proper time: the lapse collapse in the outermost region in
Fig. 6.7 means that proper time gets frozen there slightly above 40M , whereas
coordinate time goes till 50M and beyond.

When one reaches this point, two opposite thoughts come to mind:

• A positive one: the proposed calculation has been completed. The main
obstacles (spurious oscillations, gauge problems) have been passed. The
boundary conditions (algebraic ones, remember) are doing a good job,
even if the outer boundary is placed definitely too close, at ρ = 10M . So,
it is an achievement.

• A negative one: even if one could evolve the black hole simulation further,
this would be of no value for extracting any physical consequence for the
outside geometry. We have reached the limit of our (modest) computa-
tional resources.

6.3.2 Long-term simulations

As scientists, however, we will always try to overcome our limits. There is a
number of ways in which we could do that in this case:

• Getting more computational resources. We can switch from our mod-
est PC to a bigger computer, maybe just a PC cluster. This will allow to
put the outer boundary farther away, so that we can model even black hole
collisions and predict the waveforms of the resulting gravitational radia-
tion. This is a limited improvement, however. Every factor 2 in resolution
means a factor 23 in the number of nodes in a 3D grid (this means eight
times the original memory requirements). Moreover, if one is using explicit
finite differences methods, there is an extra doubling on the number of re-
quired time steps, allowing for the Courant condition. This amounts to a
16 factor in the required computing power.

• Implementing even better numerical methods. In the CFD arsenal,
we can find for instance multi-patch and adaptive mesh refinement (AMR)
methods [32, 33]. Instead of a homogeneous numerical grid, multi-patch
methods make use of different coordinate patches (each one with its own
adapted grid) to cover the computational region. AMR methods go even
farther, by dynamically increasing (or decreasing) the grid resolution ex-
actly where it is needed. These advanced techniques are devised in order
to optimize the available computational resources at the cost of an extra
load on the numerical algorithm.

• Distorting the space slices. Instead of adapting the numerical grid, like
in the AMR methods, one could just adapt the space coordinate system
(and keep a simple, homogenous grid). This can be done by a simple coor-
dinate transformation. The coordinate position of our boundary can even
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correspond to space infinity [34]. This ‘fisheye transformation’ idea [35, 36]
has been actually implemented in black hole simulations.

• Taking advantage of the shift degrees of freedom. This means pro-
viding a dynamical shift choice that drives grid points to the places where
more resolution is needed [37–39]. Also, in black hole simulations, one ex-
pects the spacetime going through a highly dynamical transient phase,
then approaching a quasi-stationary final stage. Coordinate choices in
which the time lines tend to follow the corresponding ‘quasi-Killing’ vector
would be of a great help in these cases [40].

Let us consider here a combination of the first and third options mentioned
above. Appealing to the space coordinates freedom, we will switch to some
logarithmic coordinates, as defined by

ρ = L sinh(R/L) , (6.72)

where R is the new radial coordinate and L some length scale factor. We
will perform a 2003 points simulation: this will require 32 nodes of a clus-
ter working for days just for us. We have performed a long-term numerical
simulation for the f = 2/α case, with L = 1.5M , so that our boundary,
placed at R = 20M in these logarithmic coordinates, corresponds to about
ρ = 463.000M in the original isotropic coordinates. In this way, as shown in
Fig. 6.8, the collapse front is safely away from the boundary, even at very late
times. We stopped our code at t = 1000M , without any sign of instability.

These results provide a new benchmark for numerical relativity codes: a
long-term simulation of a single black hole, without excision, in normal coor-
dinates (zero shift). Moreover, it shows that a non-trivial shift prescription
is not a requisite for code stability in black hole simulations. From the nu-
merical point of view, it is an excellent example of what can be done with a
single numerical grid.

6.3.3 Further developments

Beyond the basic developments presented in this chapter, in which we have
consider a single black hole evolution, there is the obvious next step: a binary
black hole (BBH) system. The study of the late orbital stage of BBH systems
is of particular interest, because they are among the most likely sources to
be detected by the current gravitational wave observatories [41] and by the
space-based project LISA [42].

Initial data for BBH systems in quasi-circular orbits can be obtained in
many ways [1]:

• In the punctures approach, one can take advantage of the linearity of (6.19)
by just adding different punctures (Brill–Lindquist data) [43, 44]. The mo-
mentum and spin of every puncture can be incorporated by means of a
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Fig. 6.8 Plot of the lapse function for a single BH at t = 1000M in normal coordinates.
Only 1 of every 10 points is shown along each direction. The third-order accurate FDOC
algorithm has been used with b = 1/12 and a space resolution h = 0.1M . The profile is
steep, but smooth: no sign of instability appears. Small riddles, barely visible on the top
of the collapse front, signal some lack of resolution because of the logarithmic character of
the grid. The dynamical zone is safely away from the boundaries.

non-vanishing extrinsic curvature [45]. Finally, the data can be compacti-
fied in the interior asymptotically flat region [6].

• In the excision approach, one can take advantage of the invariance of
the Kerr–Schild data under boost transformations [46]. This allows to use
them in a (boosted) superposed form as a initial guess for a constraint-
solving process. The amount of constraint violations is usually so small that
even the unconstrained data can be used as a starting point for numerical
simulations [47].

• With the goal of getting astrophysically realistic initial data, the sec-
ond post-Newtonian approximation has been considered as a starting
point [48, 49]. The resulting initial data can be shown to agree with the
exact solutions of the constraint equations, modulo a coordinate transfor-
mation, up to the required post-Newtonian order [50].

BBH simulations are very demanding from the computational point of
view. On the one hand, one must resolve the steep gradients near the indi-
vidual BH horizons, typically requiring resolutions of (at least) 0.1M . On the
other hand, the calculation of accurate waveforms requires to extract waves
at sufficient large radii, ideally in the wave zone. This implies using compu-
tational grids at least two orders of magnitude larger than the radius of a
single BH. With the current computational power, this can only be achieved
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by using some form of mesh refinement, including the implementation of some
kind of ‘fisheye’ space coordinates, as discussed in the previous section.

The first major breakthrough in BBH numerical simulations was reported
in [51]. Using a careful choice of co-rotating shift and excision, they where
able to evolve a BBH for a full quasi-circular orbit. However, it was not pos-
sible to extract the merger waveform. The first fully numerical evaluation of
the waveform from a BBH was reported by Pretorius [7]. By using the gen-
eralized harmonic framework, combined with special numerical techniques,
he evolved a system in which two scalar fields collapsed to form individual
BH’s, which then formed a merging elliptical binary. These results were im-
mediately followed by analogous developments in the BSSN framework [8, 9],
leading to the ‘moving punctures’ approach.

The accuracy of this approach allows to address some relevant astrophysi-
cal issues, like the radiation of linear and angular momentum by unequal mass
systems, including the gravitational radiation recoil (kick) on the remnant ob-
ject [52, 53]. In parallel, the joint effort toward gravitational wave detection
continues. Current BBH signal templates come from the post-Newtonian ap-
proximation, focusing on the inspiral phase. More recently, hybrid templates
are being produced, incorporating numerical relativity results for the merger
phase. This allows a cross-validation between analytical and numerical results
in the transition regime from the inspiral to the merger phase (see for instance
[54] and references therein). This can be done now for many mass ratios and
spin configurations. And old bet has been won by numerical relativists: our
templates are ready, waiting for signal detection by experimentalists.
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6. S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606 (1997). 148, 168
7. F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005). 148, 150, 154, 169
8. M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. 96,

111101 (2006). 149, 169
9. J. G. Baker et al., Phys. Rev. Lett. 96, 111102 (2006). 149, 169

10. P. Anninos et al., Phys. Rev. Lett. 74, 630 (1995). 149
11. J. Libson et al., Phys. Rev. D53, 4335 (1996). 149
12. A. Arbona et al., Phys. Rev. D57, 2397 (1998). 150
13. D. Alic, C. Bona and C. Bona-Casas, Phys. Rev. D (2009). ArXiv:0811.1691 150
14. D. Brown et al., Phys. Rev. D76, 081503(R) (2007). 151

15. J. Thornburg, Class. Quan. Grav. 4, (1987). 153
16. P. Anninos et al., Phys. Rev. Lett. 71, 2851 (1993). 153, 159



170 6 Black Hole Simulations
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Chapter 7

Matter Spacetimes

Up to now we have been considering mainly vacuum spacetimes. Although
this has been useful to understand the dynamics of Einstein equations, most
of the realistic scenarios involve some kind of matter. For instance, at large
scales we have cosmological models, based on the isotropic distribution of
dust (i.e., non-interacting particles). At intermediate scales there are galaxy
models for dark matter, which has been modeled by using either dust or
scalar fields. A small-scale approach would include all types of astrophysical
compact objects and the dynamics related to them; binary star evolution,
core collapse, accretion disks, etc.

Einstein’s theory describes how the spacetime is deformed by the matter
and how the matter moves over this curved spacetime. The evolution of the
spacetime is given by the Einstein field equations and, allowing for the Bianchi
identities, this implies that the evolution of matter must comply with the
conservation of the stress–energy tensor

∇νTμν = 0. (7.1)

In addition to these equations, which only ensure the conservation of en-
ergy and momentum, the matter evolution may be subject to other physical
restrictions. For instance, if the matter is made of baryons, and if it is neither
created nor destroyed, then it must conserve also baryon density. Another ex-
ample comes from electromagnetic fields, since Maxwell equations cannot be
fully derived from the four conditions (7.1) and must be imposed separately.
We will address properly these points in this chapter.

We are going to consider some standard stress–energy tensors describing
different types of matter. Some of these matter models allow stationary stable
solutions which can describe several astrophysical scenarios. We will start by
the simplest one, composed of scalar fields, which can be used as a model for
dark matter in galaxies. We will follow with the electromagnetic fields, where
simple models can be considered as a preliminary step for further develop-
ments. Later we will consider perfect fluids, which reproduce the expected
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behavior of astrophysical plasmas in most types of stars. Finally, the Maxwell
equations are coupled to the fluid by means of the MHD approximation, pro-
viding a general framework for studying magnetized (neutron) stars.

7.1 Scalar fields

Probably one of the simplest fluids one can imagine is the one composed by
a scalar field. For later convenience we will consider a complex scalar field
Φ , which obeys a generalized wave equation in a curved background, under
the effect of some potential V ( |Φ| ) . This system is commonly known as
the (generalized) Klein–Gordon equation, and it allows for stable configura-
tions when the dispersive character of the wave equation is balanced by the
gravitational attraction. These regular solutions are called boson stars and
describe a family of self-gravitating scalar field configurations within general
relativity. One can in this way consider strongly gravitating compact star
spacetimes without the worries associated with weak solutions, such as shock
fronts and discontinuities in the fluid variables. This makes boson stars a very
useful probe of strong-field general relativity.

7.1.1 The Klein–Gordon equation

The dynamics of a complex scalar field in a curved spacetime is described by
the following stress–energy tensor

Tμν =
1
2

[
∇μΦ ∇νΦ + ∇μΦ ∇νΦ

]
− 1

2
gμν

[
∇λΦ ∇λΦ + V

(
|Φ|2

) ]
(7.2)

where Φ is the scalar field, Φ its complex conjugate, and V ( |Φ|2 ) a potential
depending only on |Φ|2. When the scalar field is real then Φ = Φ and this
stress–energy tensor can be written in a simpler way, as we did in the previous
chapter. Note also that for scalar quantities ∇μΦ = ∂μΦ.

In the complex case, one can take advantage of the conserved current

Jμ =
i

2
gμν

[
Φ ∇νΦ − Φ ∇νΦ

]
, (7.3)

which verifies the divergence equation

∇μJμ =
1
√

g
∂μ[

√
gJμ ] = 0 , (7.4)

which ensures the conservation of the density N ≡ Jμnμ. The correspond-
ing charge (i.e., the space volume integral of N) can be interpreted as the
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boson particle number [1]. These results can also by obtained by applying the
Noether theorem to the invariance of the stress–energy tensor under phase
shifts of the scalar field: N would then be the associated Noether charge
density.

The evolution equations for the scalar field can be obtained by taking the
divergence of this stress–energy tensor. The resulting system is known as the
(generalized) Klein–Gordon equations, which can be written as

�Φ =
dV

d|Φ|2 Φ . (7.5)

From now on we will consider for simplicity the free field case, where the
potential takes the simple form

V ( |Φ |2 ) = m2 |Φ |2 , (7.6)

with m a parameter that can be identified with the bare mass of the field
theory, although it has units of inverse length. Dimensionless units would
amount to fix this mass value to unity.

For a numerical implementation, it is also useful to reduce (7.5) to a fully
first-order system, along the lines discussed in Chap. 5. The reduction in
time is achieved by introducing new independent variables related to the
time derivatives of the fields. We define

Π ≡ nμ ∂μΦ , (7.7)

where we are using here again the unit normal nμ to the time slices. The
evolution of Π is now given by (the first-order form of) the KG equations
(7.5), while the evolution of Φ is simply given in terms of Π by the definition
(7.7).

The reduction to first order in space is made as usual, by introducing new
independent variables encoding the first space derivatives as

Di ≡ ∂iΦ. (7.8)

The equations of motion for this first-order quantity can be obtained along
the lines discussed in Chap. 4. Notice that one encounters in this way ‘first-
order constraints’, namely

Ci ≡ Di − ∂iΦ = 0 , (7.9)

which must be satisfied for a consistent solution. At this point the resulting
first-order system is described by the evolution equations for the array of
fields {Φ,Π,Di}, together with the first-order constraints (7.9).

We can take advantage here of the results we presented for the generalized
harmonic system in Sect. 4.3.2. The full first-order reduction of the Klein–
Gordon equations can be written then as
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∂tΦ = βkDk − α Π (7.10)
∂tΠ − βk∂kΠ = −α γij∂iDj − κβk (∂kΦ − Dk) (7.11)

− α

2
Π(nμnνQμν) + αγij Di(nμQj μ) + α Γμ Φμ + α m2 Φ

∂tDi − βk∂kDi = −α ∂iΠ + α κ (∂iΦ − Di) (7.12)

+
α

2
Π(nμnνDiμν) − α γjkDk(nμDijμ),

where κ is the damping parameter for the first-order constraints (7.9).
Equations (7.10), (7.11), and (7.12) constitute the Klein–Gordon (KG) sys-
tem in our implementation.

The characteristic decomposition, along any given space direction nk, for
the KG system (7.10), (7.11), and (7.12) is given by the following eigenmodes:

Φ ( speed 0 )
D⊥ ≡ Di − Dn ni ( speed −βn )

w(±) ≡ Π − κ Φ ± Dn ( speed −βn ± α ),
(7.13)

where again the index n indicates contraction with the (unit) vector nk.
Thus the incoming modes at the outer boundary are given by w− and D⊥,
where βn > 0.

7.1.2 Boson stars initial data

As discussed before, the boson star is a stationary solution of the Einstein–
Klein–Gordon equations, where the dispersive character of the scalar field
is balanced with the gravitational attraction. We will restrict ourselves to
the simplest case, which is obtained by assuming spherical symmetry, so
the initial data for the boson star can be computed with a 1D code. The
resulting solution can be easily written then in 3D cartesian-like coordinates.
This 1D solution can be obtained from the following ansatz for the scalar
field:

Φ(t, r) = φ (r) e−iωt. (7.14)

With this assumption, our goal is then to find the amplitude φ (r), the
frequency ω, and the metric coefficients, such that the spacetime generated
by this matter configuration is static.

The procedure gets a simpler formulation in Schwarzschild coordinates
[2, 3]. The line element then takes the form

ds2 = −α (r)2 dt2 + a (r)2 dr2 + r2dΩ2. (7.15)
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The equilibrium conditions in this coordinate system are then given by

a′ =
a

2

{
−a2 − 1

r
+ 4πr

[(
ω2

α2
+ m2

)
a2φ2 + φ′ 2

]}
,

α′ =
α

2

{
a2 − 1

r
+ 4πr

[(
ω2

α2
− m2

)
a2φ2 + φ′ 2

]}
, (7.16)

φ′′ = −
(
1 + a2 − 4πr2a2m2φ2

) φ′

r
−

(
ω2

α2
− m2

)
φ a2 ,

where the primes denote differentiation with respect to r. In order to obtain a
physically consistent solution, we will impose the following boundary condi-
tions, which guarantee both regularity at the origin and asymptotic flatness:

a (0) = 1, φ′ (0) = 0, α′ (0) = 0, (7.17)
lim

r→∞
a (r) = 1, lim

r→∞
φ (r) = 0, lim

r→∞
α (r) = 1 . (7.18)

Note that these asymptotic conditions replace the corresponding ones for
ordinary stars, where the star radius is defined by the vanishing of pressure.
In boson stars one cannot expect such pressure vanishing, since the scalar
field decays exponentially up to infinity: the star radius is rather defined by
the surface containing a significative percentage of the mass–energy, let us
say, 95%. We are using here the mass function, which can be defined for any
spherically symmetric spacetime as

2M = Y [1 − gμν∂μY ∂νY ] , (7.19)

where Y is the area radius. In Schwarzschild coordinates, Y = r, we have

M(r) =
r

2
(1 − 1/a2) . (7.20)

This function gives the value of the total mass enclosed in a sphere of
radius Y in the given spacetime [4].

For a given value of the central amplitude φ (0) = φc those equilibrium
equations and boundary conditions only admit solutions for a discrete set of
ω values. This is a sort of eigenvalue problem, where both the eigenfunction
and its eigenvalue must be determined at the same time. In our particular
case, we are interested on the fundamental (lowest frequency) solution, where
the scalar field profile contains no nodes.

The problem is solved by integrating from r = 0 outward using a second-
order shooting method (see for instance [5]), aiming for a monotonically de-
creasing φ(r) lower than some threshold at r = rmax. The system is integrated
for an arbitrary initial value of the lapse (α(0) = 1 for instance) and with
an initial guess for ω, and the iterations proceed until the value φ(rmax) gets
below the given threshold. After all the equations are solved, the lapse is
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rescaled in order to obtain a function which asymptotes to 1 at infinity.1 The
same rescaling must of course be performed with the frequency ω.

Once the solution is computed in this coordinate system a change of co-
ordinates is performed to isotropic ones:

ds2 = −α2 (ρ) dt2 + ψ4 (ρ)
(
dρ2 + ρ2dΩ2

)
. (7.21)

In these coordinates the extension to three dimensions is direct since the
space part is explicitly conformally flat, that is,

dρ2 + ρ2dΩ2 ↔ δij dxidxj . (7.22)

The values of the radial functions in the cartesian grid can be computed
numerically, as in [6]. We can obtain in this way initial data for gμν and φ,
the rest of the fields for the 3D code are chosen as follows: Qμν = 0, Π from
the ansatz (7.14), and the space derivatives Diμν and Di from the first-order
constraints (7.8). This completely defines the initial data for a boson star.

The potential (7.6) leads to the so-called miniboson stars, because achiev-
able (stable) configurations have small masses. More general terms can be
included, such as the λ |φ|4 self-interaction term introduced in [7], leading
to heavier boson stars which have masses and sizes more relevant to astro-
physical applications. The mass diagrams are plotted in Fig. 7.1. On the left
panel, the mass is shown as a function of the scalar field at the origin φc. The
stable branch is the region located on the left side of the curve, satisfying

∂M

∂φc
≥ 0. (7.23)
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Fig. 7.1 The mass of the boson star as a function of the central value of the scalar field
(left panel) and of the radius (right panel). The maximum stable mass is at M = 0.633.
The stable branch is at the left (resp. right) side of the maximum in the left (resp. right)
panel

1 This can be done because of the linearity of the lapse equation (7.16), assuming that ω

scales with α.
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Boson star configurations on this branch are stable against small pertur-
bations. On the right panel in Fig. 7.1 the mass is shown instead as a function
of the radius. On the stable branch (here at the right of the maximum), we
can see that heavier boson stars have a smaller radius since the gravitational
attraction is larger, compressing the scalar field, being balanced only by its
dispersive character and the quadratic potential. Notice that the difference
on the radius between two stars with a factor 2–3 in the mass can be of one
order of magnitude or even more.

Boson star configurations in the opposite branch are unstable against small
perturbations. The final state will depend on the binding energy of the sys-
tem, which is defined as

Ebinding = M − Nm, (7.24)

where N is the number of bosons given by the Noether charge. If the binding
energy is positive, the boson star will disperse some scalar field and may
decay to a configuration on the stable branch, while it will collapse to a black
hole in the other case.

The profile of the boson star used for evolution in the next section is shown
here as an example. The scalar field, the lapse, and the metric components
are shown in Fig. 7.2.
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Fig. 7.2 Profiles of the scalar field, the lapse, and the metric coefficients (in Schwarzschild
and isotropic coordinates) for a boson star in the stable branch.
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7.1.3 Evolution of a single boson star

We will perform here single boson star evolution simulations, as a first step
to the study of more complex systems. We begin with initial data describing
a star with the central value of the scalar field amplitude being φc = 0.01.
This star has total mass M1D = 0.361 and radius R95 = 13, well inside the
stable branch of solutions. The corresponding frequency is ω1D = 0.976.

We will use the generalized harmonic system for the time evolution. Note
at this point that we are trying to model a static equilibrium solution. Our
time coordinate can be adapted to the associated Killing vector, getting a
harmonic slicing as a result. This can be checked easily in normal coordinates,
where the harmonicity of the time coordinate is given by

�x0 ↔ ∂t(α/
√

γ) = 0 . (7.25)

Concerning the space coordinates, however, there is a conflict between the
harmonicity condition and the staticity one, which would amount in this case
to consider normal coordinates, orthogonal to the time Killing vector. Put
in another way, the gauge sources corresponding to our initial data verify
(normal coordinates)

H0 = 0 , Hi = Hi(0, x) �= 0 . (7.26)

In view of this conflict, we will consider two options for performing the
evolution:

• Keeping the staticity requirement. Static gauge source functions Ha(x)
must be added, keeping the initial values (7.26), which will then hold for
all times.

• Enforcing strictly harmonic conditions (Hμ = 0). In this case there will
be a fictitious evolution of the system due to the choice of non-adapted
coordinates. This will be useful in order to test the ability of the har-
monic coordinate condition for adapting itself to the physical problem un-
der consideration. This will be important for more complicated non-static
problems, like the binary boson star case.

The evolution of an isolated star is performed for these two different coor-
dinate systems. The values of a scalar quantity should agree at the center of
symmetry for both the harmonic and the normal (static) coordinates. This
implies that the scalar field should have the same local oscillatory behav-
ior (7.14) at r = 0 in both coordinate systems. This is indeed the case and
is illustrated in Fig. 7.3, where we plot the value at the origin of (the real
part of) the scalar field, displaying the expected oscillatory behavior with a
frequency ω = 0.96±0.03. This is in very good agreement with the frequency
obtained from the 1D initial data.
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Some coordinate effects do arise, however. As discussed above, we get
some non-trivial coordinate-induced dynamics since we are not adopting a
coordinate system in which the spacetime is explicitly static. This effect can
be seen in Fig. 7.4 where the evolution of the maximum of gxx as a function
of coordinate time t for three different resolutions is displayed. As is evident
in the figure, there is an initial transient variation of the metric coefficient,
which later approaches a constant value.

7.2 Electromagnetic fields

A number of fascinating phenomena are mediated by electromagnetic fields
and their interaction with other physical processes in a given gravitational
field source. This interaction may significantly affect the dynamics of the
source, which can produce radiation that could be detected far away.

The evolution of the magnetic fields is given by the Maxwell equations,
which can be written in terms of either the vector potential or the electro-
magnetic fields themselves. We will review in this section both alternatives,
paying special attention to the treatment of the constraints and the hyper-
bolicity of the equations. Notice that, in the context of general relativity,

Fig. 7.3 Phase oscillation of the real part of the scalar field at the center, up to t = 50, for
the resolution Δx = 0.25. The continuous line indicates the analytically expected value,
the crosses show the numerical solution values for the static coordinates, and the circles
show the same for the harmonic coordinates.
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Fig. 7.4 L∞ norm of gxx versus time for solution obtained employing the harmonic
coordinates condition. The figure displays the simulation results for three different base
resolutions Δx = { 0.25, 0.375, 0.50} . After a short transient behavior, we get convergence
toward a constant value.

Maxwell equations must be satisfied in addition to the energy and momen-
tum conservation.

7.2.1 Maxwell equations

Maxwell equations can be written in general covariant form as

∇ν Fμν = 4πI μ, (7.27)
∇ν

∗Fμν = 0, (7.28)

where Fμν is the Maxwell tensor of the electromagnetic field, ∗Fμν is the
Faraday tensor, and Iμ is the electric current four-vector. Since Fμν is anti-
symmetric, the four-divergence of (7.27) leads to the current conservation

∇μI μ = 0. (7.29)

When both the electric and magnetic susceptibilities of the medium vanish,
like in vacuum or in a highly ionized plasma, the Faraday tensor is simply
the dual of the Maxwell one, that is,
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∗Fμν =
1
2

εμναβ Fαβ , Fμν = −1
2

εμναβ ∗Fαβ , (7.30)

where εμναβ is the Levi–Civita pseudotensor of the spacetime, which can be
written in terms of the four-indices Levi–Civita symbol ημναβ as

εμναβ =
1
√

g
ημναβ . (7.31)

Allowing for (7.30), the homogeneous equation (7.28) can be written in
terms of the Maxwell tensor Fμν , namely

∇μFνα + ∇αFμν + ∇νFαμ = 0. (7.32)

In the special relativity case, we can recover in this way the formulae previ-
ously discussed in Chap. 2.

There are several ways to represent Maxwell equations. Here we will con-
sider the main ones: the vector potential form and the electromagnetic field
system.

7.2.2 Electromagnetic potential

The Maxwell tensor can be written in terms of a four-vector potential Aμ,

Fμν = ∇μAν −∇νAμ. (7.33)

The homogeneous Maxwell equation (7.32) holds then identically, allowing for
the Bianchi identities of the Riemann tensor. The only non-trivial equation
is then the inhomogeneous one,

∇νFμν = ∇ν(∇μAν −∇νAμ) = 4πIμ , (7.34)

which can also be written as

∇ν∇νAμ −∇μ(∇νAν) − Rν
μAν = −4πIμ , (7.35)

where we have just changed the ordering of covariant derivatives in (7.34).
Note that, allowing for the antisymmetry of the Maxwell tensor and the

conservation equation (7.29), we can write

∇0 (∇νF 0ν − 4π I 0) + ∇k(∇νF kν − 4π I k) = 0 (k = 1, 2, 3) , (7.36)

where latin indices refer to space coordinates. This means that the time
component of (7.34), namely
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∇νF 0ν = ∇i(∇0Ai −∇iA0) = 4πI 0, (7.37)

is a first integral of the full system (7.34). Equation (7.37) is actually a
constraint equation. It follows from (7.36) that, as in the Einstein equations
case, this constraint will be preserved by the evolution system provided that
it is satisfied by the initial data.

This constraint implies a gauge freedom, meaning that the evolution of
electromagnetic potential Aμ is not fully determined. This gauge freedom
is evident from the fact that the electromagnetic field expression (7.33) is
unchanged by the replacement

Aμ → Aμ + ∂μ Λ , (7.38)

where Λ is an arbitrary function. We can choose this function such that the
resulting electromagnetic potential verifies

∇μAμ = 0 (7.39)

(Lorentz gauge). Equations (7.35) get then the ‘harmonic’ form

∇ν∇νAμ = 8π [T ν
μ − T

2
δν

μ ]Aν − 4πIμ , (7.40)

where we have used Einstein’s field equations.
The inhomogeneous (vector) wave equation (7.40) provides a symmetric-

hyperbolic evolution system for the electromagnetic potential, for any given
spacetime. The Lorentz gauge condition (7.39) is the analogous of the har-
monic constraints in the harmonic formulation of Einstein’s equations. It will
be satisfied at the continuum level, although numerical evolution can produce
constraint violations.

We can take these deviations into account by extending the solution space,
as we did in Chap. 3 with the gravitational field equations. Let us consider
the following extended Maxwell equations:

∇ν(Fμν − gμν Ψ) = 4πIμ + κnμΨ, (7.41)

where we have introduced the ‘gauge source’ Ψ ≡ ∇μAμ and nμ is here again
the normal to the t = const hypersurfaces. The evolution equation for Ψ is
given by the time component of (7.41). The standard Maxwell equations in
the Lorentz gauge are recovered when Ψ = 0.

Also, by taking the covariant divergence of (7.41) and imposing the conser-
vation of the current, we obtain the following subsidiary evolution equation
for the gauge source:

�Ψ = −κ∇μ(nμΨ). (7.42)
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This equation implies that any gauge-constraint deviation Ψ will propagate
with light speed and will be damped by the extra κ terms in (7.41).

7.2.3 The electromagnetic fields

Although the potential vector formulation is very elegant, in most cases it is
more intuitive to work with the standard electric and magnetic fields. In this
case it is more convenient to decompose the Faraday tensor as

Fμν = tμEν − tνEμ + εμναβ Bα tβ (7.43)
∗Fμν = tμBν − tνBμ − εμναβ Eα tβ (7.44)

where tμ = −nμ is the unit time vector associated to a generic normal ob-
server. The vectors Eμ and Bμ are the electric and magnetic fields measured
by this observer. Both fields are purely spatial (i.e., Eμtμ = Bμtμ = 0).

Note that the electric and magnetic fields depend strongly on the observer.
For instance, a moving charged particle produces a measurable electric and
magnetic field for most of the observers. On the other hand, an observer co-
moving with the particle will measure only an electric field, since the particle
is at rest with respect to him. There are, however, some scalars constructed
from the Maxwell and Faraday tensors, which are then independent of the
observer. The simplest ones are just quadratic combinations, namely

∗FμνFμν = 4EμBμ, FμνFμν = 2(B2 − E2). (7.45)

On the other hand, the electric current Iμ can be decomposed into its 3+1
components, namely

q ≡ nνIν , J i = I i, (7.46)

where q and J i are the charge density and current, respectively, as observed
by the normal observer. Current conservation (7.29) can be expressed in the
3+1 form as

(∂t − Lβ) q + ∇i(αJ i) = α q trK, (7.47)

where the space metric γij must be used for covariant derivatives and index
raising. We can write it in flux-conservative form, that is,

∂t [
√

γ q ] + ∂i [
√

γ (−βi q + αJ i) ] = 0. (7.48)
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Note that a prescription for the space components J i is necessary in order to
close the system. This relation, which is commonly known as the Ohm’s law,
will be discussed in detail later in this chapter.

Let us consider from the very beginning the extended Maxwell equations

∇μ(Fμν + gμνΨ) = −4πIν − κnνΨ (7.49)
∇μ(∗Fμν + gμνφ) = −κnνφ, (7.50)

so that the two extra scalar fields Ψ and φ play the same role as the four-
vector Zμ in the Z4 formalism, as discussed in Chap. 3. We will use the
techniques described there in order to write down the 3+1 version of (7.49)
and (7.50) in terms of the space components of the electromagnetic fields.
We can proceed as usual (in normal coordinates first, then extending to the
shift case), getting the final 3+1 expressions:

(∂t − Lβ)Ei − εijk∇j(αBk ) + α γij∇j Ψ = α trK Ei − 4παJ i (7.51)
(∂t − Lβ)Bi + εijk∇j(αEk ) + α γij∇j φ = α trK Bi (7.52)
(∂t − Lβ)Ψ + α∇iE

i = 4πα q − ακΨ (7.53)
(∂t − Lβ)φ + α∇iB

i = −ακφ . (7.54)

Note that the standard Maxwell equations in a curved background are
recovered for Ψ = φ = 0. The Ψ and φ scalars can then be considered as the
normal time integrals of the standard divergence constraints

∇iE
i = 4πq, ∇iB

i = 0. (7.55)

The subsidiary conditions, like (7.42), ensure that the constraints will
propagate with light speed and that they will be damped during the evo-
lution.

Another important difference between the standard and the extended
Maxwell equations arises when considering the characteristic structure. The
spectral decomposition of the system (7.51), (7.52), (7.53), and (7.54), with
respect to a direction given by a normalized spatial vector n, belonging to the
ordered orthonormal triad {l,m,n}, provides the following list of eigenfields:

• Constraint eigenfields. They involve the extra scalar fields and the lon-
gitudinal vector components, namely

Ψ ± En, φ ± Bn, (7.56)

where the symbol {l,m, n} replacing an index means the projection along
the corresponding vector.

• Light eigenfields. These modes represent the physical electromagnetic
waves, which are perpendicular to the direction of propagation n:

El ± Bm, Em ∓ Bl. (7.57)
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The extended evolution system is fully degenerate, so that the local char-
acteristic speed is −βn ± α in all cases.

7.2.4 The electromagnetic stress–energy tensor

The stress–energy tensor for the electromagnetic fields is given in terms of
the Maxwell tensor

Tμν =
1
4π

[
Fμ

λ Fνλ − 1
2

gμν FλσFλσ

]
. (7.58)

After some algebra the 3+1 components of the stress–energy tensor can
be obtained in terms of the electric and magnetic fields, that is,

4π τ =
1
2
(E2 + B2), 4π Si = εijkEjBk, (7.59)

4π Sij = −EiEj − BiBj +
1
2

γij (E2 + B2), (7.60)

where E2 ≡ EkEk and B2 ≡ BkBk. The scalar component τ can be identified
with the energy density of the electromagnetic field and the energy flux Si is
the Poynting vector.

The conservation of the stress–energy tensor leads to evolution equations
for both the energy density and the Poynting flux. The same equations can be
obtained directly from Maxwell equations. Notice, however, that the opposite
is not true: Maxwell equations do not follow from energy and momentum
conservation. The divergence of the EM stress–energy tensor (7.58), allowing
for the Maxwell equations, leads to

∇νTμν = −FμνI ν . (7.61)

This result is not inconsistent with the conservation of the energy and
momentum. When there are only electromagnetic fields without sources (i.e.,
I ν = 0) we get strict conservation. The presence of an electric current im-
plies that there is a charged fluid and there can be transfers of energy and
momentum between the EM fields and the fluid, so only the total stress–
energy tensor (field plus fluid) is conserved. We will see this in detail in the
magnetohydrodynamics section.

7.3 Hydrodynamics

Many astrophysical objects in the universe can be described by a fluid approx-
imation, where each fluid element contains a large number of either particles
or molecules. In this approach, only averaged thermodynamical quantities are
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necessary in order to describe these fluid elements, whose dynamics is pro-
vided by the conservation of mass, energy, and momentum. In this section
we will study the simplest fluid model (i.e. the perfect fluid) which becomes
a good approximation for many astrophysical situations.

7.3.1 Perfect fluids

The stress–energy tensor for a perfect fluid (i.e., neglecting non-adiabatic
effects like viscosity and heat transfer) is given by

Tμν = [ ρ(1 + ε) + p ] uμuν + p gμν . (7.62)

Let us explain in detail each quantity in this expression. The rest mass
density ρ is the density of the fluid measured by a comoving observer. It
contributes to the total energy density of the fluid μ in the local rest frame,
which contains also other terms coming from the internal degrees of freedom
of the particles,

μ = ρ (1 + ε), (7.63)

where the (specific) internal energy ε accounts for the thermal energy, the
binding energy, etc. The pressure p is given by an equation of state as a
function of the rest mass density and the internal energy. The equation of
state characterizes the type of fluid which is being considered. We can also
compute the enthalpy h, namely

h = μ + p = ρ (1 + ε) + p. (7.64)

It is important to stress that the set of thermodynamic quantities {ρ, ε, p}
are all defined in the rest frame of the fluid element, although in general we
will use an Eulerian perspective, where the coordinates are not tied to the
flow of the fluid. Therefore, we will need the fluid four-velocity uμ to describe
how the fluid moves with respect to the Eulerian observers. The four-velocity
follows the usual normalization relation:

uμuμ = −W 2 + γij uiuj = −1, (7.65)

where we have introduced here the 3+1 four-velocity components:

W ≡ nμuμ = α u0, ui. (7.66)

In general, it is more useful to deal with the three-velocity vector vi, namely



7.3 Hydrodynamics 187

ui = Wvi, W = ( 1 − γij vivj )−1/2 , (7.67)

so that we can recognize W as the general relativistic Lorentz factor. The
set of fluid variables U = ( ρ, ε, p, vi ) provides the primitive quantities de-
scribing the state of a perfect fluid.

In addition to the conservation of energy and momentum, when there is
neither creation nor destruction of particles, the fluid must conserve also the
total number of baryons. This law is expressed in terms of the baryon number
density Jμ = ρuμ and is written as

∇μJμ = 0, (7.68)

which is just the relativistic generalization of the conservation of mass.

7.3.1.1 Conservation laws

The first law of thermodynamics states that the total energy is preserved. In
the case of a simple fluid, we can write it in the form

dU = δQ − p dV, (7.69)

where U is the total internal energy and Q is the heat added to the fluid. For
reversible processes, we have

δQ = TdS, (7.70)

where S is the entropy of the fluid. All these thermodynamic quantities are
defined in the fluid’s rest frame. The second law of thermodynamics

uμ∇μS ≥ 0 (7.71)

states that the entropy can increase, although it is conserved along flow lines
when the fluid is in thermal equilibrium. Entropy does change, for instance,
when shocks appear due to the genuine non-linearity of the fluid evolution
equations. This increase in entropy due to shocks is associated with the trans-
fer of energy of bulk motion into internal energy (i.e., heat).

In our approach, we will consider a fixed reference volume, so that the first
law for reversible processes will be written as

dε = Tds +
p

ρ2
dρ , (7.72)

where ε and s are the internal energy and entropy densities, respectively.
In order to capture properly the weak solutions (including shocks) of

the non-linear equations, it is important to write them in local conserva-
tion law form. We have seen in Chap. 4 how this leads to the required



188 7 Matter Spacetimes

Rankine–Hugoniot (jump) conditions across discontinuities. Let us start
with the simplest equation. Baryon conservation can be written in flux-
conservative form by using the standard 3+1 decomposition, namely

∂t(
√

γ D) + ∂j [
√

γ D (α vj − βj) ] = 0, (7.73)

where we have defined the conserved quantity D ≡ nμJμ = ρW , which is the
baryon mass density measured by the Eulerian observers.

The matter stress–energy tensor conservation (7.62) can be put also in
3+1 form, as we did in Chap. 2. This can actually be expressed as a system
of balance laws for the energy and momentum densities, namely

∂t(
√

γ τ) + ∂j [
√

γ (αSj − βjτ) ] =
√

γ [ α SijKij − Sj∂jα ] (7.74)

∂t(
√

γ Si) + ∂j [
√

γ (αSj
i − βjSi) ] =

√
γ [ α ΓjkiS

jk + Sj ∂iβ
j − τ ∂iα ], (7.75)

where the projections of the stress–energy tensor for the perfect fluid can be
written in a compact form by using the fluid velocity and the enthalpy,

τ = hW 2 − p , Si = hW 2vi , Sij = hW 2 vivj + p γij . (7.76)

In summary, the evolution of the flux-conserved quantities V = (D, τ, Si )
comes from the baryon number conservation (7.73) and the energy and mo-
mentum conservation (7.74) and (7.75). Note that these quantities are strictly
conserved only in the special relativistic case (in cartesian coordinates). The
energy–momentum equations contain geometric source terms in curved space-
times.

An equation of state (EOS) is required in order to recover the physical
or primitive variables U = ( ρ, ε, p, vi ) from the conserved quantities. The
inversion from conserved to primitive variables can involve transcendental
equations, depending on the particular EOS, so this process requires special
attention. We will discuss further this point later in this chapter.

7.3.1.2 The characteristic structure

The characteristic structure, as defined by the linearization approach [8], has
been studied extensively by Anile [9] in the local rest frame and generalized
to any other frame in [10] for the special relativistic case and in [11] for full
GR. The long list of eigenvectors, given in these references, does not provide
much more insight on the system dynamics, so we will only show here the
explicit expression of the eigenvalues. As usual, we shall select a specific space
direction and the symbol n replacing an index means the projection along
the corresponding unit vector ni.We get:

• three material waves, with propagation speed

− βn + αvn (7.77)
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• two acoustic waves, with propagation speed

− βn +
α

1 − v2c2s
[ (1 − c2s)vn ± cs

√
(1 − v2) [ (1 − v2c2s) − (1 − c2s)v2

n ] ] , (7.78)

where cs is the sound speed.

The sound speed is the (special relativistic) characteristic speed for a pres-
sure (resp. density) perturbation in the local frame comoving with the fluid.
This characteristic speed is obtained by linearizing the evolution equations.
It is just a function of the equation of state, namely

c2
s =

(
∂p

∂μ

)
s

, (7.79)

or, in terms of ρ and ε derivatives,

h c2
s = ρ

(
∂p

∂ρ

)
ε

+
p

ρ

(
∂p

∂ε

)
ρ

. (7.80)

7.3.2 The equation of state

The equation of state (EOS) provides a connection between the microscopic
properties of the particles and the thermodynamic quantities of the fluid
associated with them. In particular, the equation of state relates the pressure
in the fluid with two independent quantities, like the rest mass density and
the internal energy density

p = p (ρ, ε), (7.81)

so it provides the matter behavior in a particular thermodynamic state. In
general the EOS is calculated from sophisticated nuclear physics models of
cold plasma. Although these tabulated EOS are more realistic, they are too
complicated for simple calculations, so we will describe some simpler EOS
which can be written in closed form.

A very common closed-form EOS is the polytropic one,

p = K(s)ρΓ , (7.82)

which corresponds to a non-interacting, degenerate matter. The ‘poly-
tropic constant’ K(s) depends on the entropy and Γ is the adiabatic index
(we use capital letters in the GR context to avoid confusion with the space
metric determinant). For instance, relativistic ideal fermion gases (such as
the degenerate relativistic electron gas in white dwarfs) are reasonably well
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described by a polytropic EOS with Γ = 4/3. When the temperature of the
star is far below its Fermi temperature, it can be considered to be at T = 0
(i.e., a ‘cold’ star). The degenerate matter dynamics in these configurations
can be well modeled as an adiabatic flow with a constant K.

The internal energy ε is given by the first law of thermodynamics (7.72)
for adiabatic processes (δQ = 0), which can be integrated to obtain

ε =
1

Γ − 1
KρΓ−1 =

p

ρ (Γ − 1)
, (7.83)

where we have imposed that the internal energy tends to zero in the limit
ρ → 0. The relation (7.83) is the relativistic version of the ideal gas law
(Boyle’s law). With the adiabatic assumption, (7.82) and (7.83) represent a
barotropic fluid where the pressure is just a function of the density. Note,
however, that the adiabatic index Γ can depend on the dynamical regime
given by ρ and ε ; stiffer fluids have larger Γ and result in more compact
stellar configurations. Comparing the observations of neutron stars with the
equilibrium solutions obtained with polytropic EOS, we get a good agreement
on masses and radius for Γ = 2 (although the state-of-art computation of
EOS nuclear matter seems to indicate larger values [12]).

One of the most serious drawbacks of the polytropic EOS is that, although
(7.82) is a good approximation for a ‘cold’ star, there are processes, like the
merger of stars or accretion from a disk, which can increase enormously the
temperature and a simple polytrope will not provide a physical description.
For those cases, it is usual to discard (7.82) and consider just (7.83) as the
ideal gas EOS in the form

p = (Γ − 1) ρ ε , (7.84)

which allows fluid heating due to shocks.
A more realistic EOS in closed form can be obtained by a combination

of the polytropic EOS to describe the cold part and an ideal EOS for the
thermal one, allowing for heating due to the shocks. The hybrid EOS is given
by

p = KρΓ + (Γth − 1) ρ εth, (7.85)

with an adiabatic thermal index Γth that can be different from the adiabatic
cold index Γ . The internal energy can be split into a thermal and a cold part,

ε = εth + εcold. (7.86)

The total internal energy ε can be obtained from the evolution of the
conserved quantities, while the cold part is described by (7.83), leading to
the explicit expression,
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p = K
Γ − Γth

Γ − 1
ρΓ + (Γth − 1) ρ ε . (7.87)

Notice that this approach can be generalized in order to use a collection
of continuous piecewise polytropes in the hybrid EOS, allowing an accurate
matching with any realistic tabulated EOS.

7.3.2.1 The transformation from conserved to primitive quantities

As was commented previously, the conversion from conserved quantities to
primitive ones is a complicated process which depends on the particular form
of the EOS. In simple cases it involves solving fourth-order algebraic equa-
tions, but it becomes a trascendental equation in the generic case. For effi-
ciency and generality, it is usually solved numerically, by using for instance
a Newton–Raphson method [5]. Here we detail the inversion for the hybrid
EOS (7.85), since it reduces to either the polytropic or the ideal gas EOS for
suitable choices of (K, Γth). Let us remind here the definition of the conserved
quantities:

D = Wρ , Si = hW 2vi , τ = hW 2 − p. (7.88)

We will solve for the combination x ≡ hW 2. We can express the speed in
terms of the momentum Si, getting the following relationships:

vi = Si/x , W 2 =
x2

x2 − SiSi
. (7.89)

We can start by using the hybrid EOS (7.85) for expressing the enthalpy
as

h = ρ +
Γ

Γ − 1
KρΓ + Γth ρ εth (7.90)

and repeat the same process for the energy density in (7.88), namely

τ = ρW 2 + [
W 2Γ

Γ − 1
− 1]KρΓ + [1 + Γth(W 2 − 1)] ρ εth . (7.91)

Now, the non-polytropic internal energy term ρ εth can be eliminated, get-
ting the final equation:

τ = [1 − (Γth − 1)
ΓthW 2

]x +
Γth − 1
ΓthW

D +
Γth − Γ

Γth(Γ − 1)
K

(
D

W

)Γ

. (7.92)

The physical solution is obtained for a value x = xsol such that (7.92) holds
true. One can start with an initial guess for x, usually the value obtained in
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the previous timestep and proceed by iteration, until the required condition
(7.92) is satisfied.

7.3.3 Neutron stars

Neutron stars can be modeled by a perfect fluid with a stiff equation of state.
As in the case of the boson stars, we consider spherically symmetric static
solutions of the Einstein equations coupled to the hydrodynamic ones. Let
us consider the line element in Schwarzschild coordinates

ds2 = −α2 (r) dt2 + a2 (r) dr2 + r2 dΩ2. (7.93)

The mass function (7.19) in this case takes the simple expression

m(r) =
r

2
(1 − 1/a2), (7.94)

which accounts for the mass at a given radius.
Einstein’s field equations can be reduced in this case (where both the

fluid and the geometry are spherically symmetric and static) to the Tolman–
Oppenheimer–Volkoff (TOV) equilibrium equations,

m′ = 4πr2μ (7.95)

p ′ = − (μ + p )(m + 4πr3p )
r(r − 2m)

(7.96)

(lnα)′ =
(m + 4πr3p )
r(r − 2m)

, (7.97)

which require the prescription of some EOS in order to obtain the matter
density ρ. As discussed before, the polytropic EOS

p = KρΓ (7.98)

provides a good description for a cold star with Γ = 2. In geometrized units
(G = c = 1), the constant K sets the length scale of the system, so we can
set K = 1 to get adimensional units. With these choices we can integrate
the TOV equations from the origin up to the surface of the star, which is
defined as the radius where the pressure vanishes. The metric functions are
continued past the star’s radius by matching to the Schwarzschild solution
with a mass given by

m(r) = Mstar (r ≥ Rstar) . (7.99)

The solutions are very similar to those obtained for boson stars. For a
given value of the central density ρc = ρo (0) these equations can be solved
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Fig. 7.5 Total mass of the neutron star as a function of either the central density value
(left panel) or the radius (right panel). The maximum stable mass, for K = 1 and Γ = 2,
is at M = 0.164. The stable branch is at the left (resp. right) side of the maximum in the
left (resp. right) panel.

by integrating from r = 0 outward using a standard ODE integrator. The
regularity conditions at the origin require taking

m(0) = 0 , (lnα)′ = 0 ⇔ p ′ = 0 . (7.100)

The lapse needs here again to be rescaled after the integration in order to
match the Schwarzschild solution at the surface of the star. Once the solution
is computed in this coordinate system, a change of coordinates is performed
to isotropic ones:

ds2 = α2 (r̃) dt2 + ψ4 (r̃)
(
dr̃2 + r̃2dΩ2

)
(7.101)

(we use here r̃ instead of ρ to avoid confusion with the matter density).
The diagrams of the neutron stars are very similar qualitatively to the

boson star ones, as we can see in Fig. 7.5. The matter density takes here the
role of the scalar field in Fig. 7.3. On the left panel, we show the mass as a
function of the central density ρc. The stable branch is located here on the
left of the allowed maximum mass, satisfying

∂M

∂ρc
≥ 0 . (7.102)

The neutron star configurations on this branch are stable against small
perturbations, while the ones on the opposite branch are unstable. The final
state can be either a neutron star in the stable branch or a black hole.

The profile of the neutron star used for evolution in the next section is
shown here as an example. The density and the conformal factor are shown
in Fig. 7.6.
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Fig. 7.6 Profiles of the density and the conformal factor, in isotropic coordinates, for a
neutron star in the stable branch.

7.3.3.1 Evolution of single neutron star

A standard test involving the TOV solution is to accurately reproduce the
known radial oscillation modes of the star. While the TOV solution is spher-
ically symmetric and static, discretization effects act as small perturbations
that excite the normal modes of the star.

The initial data for this test consist of a Γ = 2 polytrope, which can be
obtained by solving the system introduced in detail in the previous section.
The star, in the geometrized units with K = 1, has a mass of M = 0.14, an
area radius R = 0.958, and central rest mass density ρc = 0.128. We evolve
the data in a dynamic spacetime for different resolutions. Figure 7.7 shows
ρc plotted as a function of time for three resolutions: 32, 64, and 128 points
across the star. As expected, both the amplitude oscillations and the overall
drift in ρc actually converge with resolution. This is important both as a
code test and as an indication of the resolution necessary to capture some
dynamics of stellar interiors. The data in Fig. 7.7 were generated using a
third-order accurate method. We found that first- and second-order methods
were more diffusive, resulting in larger drifts in ρc. Consequently, it was more
difficult to reproduce the radial pulsation modes of the star using these lower
order methods. Owing to the computational costs of these simulations, the
higher resolution runs were not evolved up to the same end time.

To confirm that the code reproduces the expected physical behavior, we
examine the radial pulsations of the star. The modes are calculated from
the oscillations in ρc, and the extracted frequencies (obtained by performing
the Fourier transform) are shown in Table 7.1. These oscillation modes can
be compared to the known radial perturbation modes [13], and the frequen-
cies are in excellent agreement. These validations are a stringent test of our
computational methods and give us considerable confidence that our code
accurately reproduces the physics of these systems.
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Fig. 7.7 This figure shows oscillations in the central rest mass density ρc for the evolution
of a single TOV star at three different resolutions: 32, 64, and 128 points across the star.
The initial data are for a star of mass M = 0.14, area radius 0.958, central rest mass
density ρc = 0.128, Γ = 2, and K = 1. While ρc increases noticeably for the coarsest
resolution run, it eventually stabilizes at a higher value, giving a stable configuration.

Table 7.1 Comparison of small radial pulsation frequencies for a neutron star, evolved
using the 3D GRHD code, with the linear perturbation modes [13]. The polytrope is
constructed for Γ = 2 and K = 1.

Mode 3D GRHD code Perturbation results Relative difference
(kHz) (kHz) (%)

F 14.01 14.42 2.88
H1 39.59 39.55 0.1
H2 59.89 59.16 1.2
H3 76.94 77.76 1.1

7.4 Magnetohydrodynamics

An effective description of a fluid in the presence of electromagnetic fields
can be made by considering three different sets of equations governing, re-
spectively, the electromagnetic fields, the fluid variables, and the coupling be-
tween them. In particular, the electromagnetic part can be described via the
Maxwell equations, while the conservation of mass, energy and momentum
can be used to express the evolution of the fluid variables. Finally, Ohm’s
law, whose exact form depends on the microscopic properties of the fluid,
expresses the coupling between the electromagnetic fields and the fluid vari-
ables. In what follows we consider these three sets of equations and discuss
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how they lead to the resistive MHD description, which can be reduced either
to the ideal MHD or to the force-free limit.

7.4.1 The MHD evolution equations

Let us assume that the perfect fluid and the electromagnetic fields are mini-
mally coupled, so there are no mixed terms and the total stress–energy tensor
can be obtained just by addition

Tμν = Tμν
(fluid) + Tμν

(em), (7.103)

which can be written explicitly as

Tμν = [ ρ(1 + ε) + p ] uμuν + p gμν +
1
4π

[Fμ
λ Fνλ − 1

2
gμν FλαFλα]. (7.104)

The physical system is now described by the hydrodynamic and the elec-
tromagnetic physical fields U = ( ρ, p, ε, vi, Ei, Bi, q ). The evolution equa-
tions for the electromagnetic fields are given by the Maxwell equations (7.27)
and (7.32) and the conservation of charge (7.29), while the fluid fields are
still governed by the conservation of the total energy–momentum (7.1) and
baryonic number (7.68). Allowing for the result (7.61) for the electromagnetic
part, we get

∇νTμν = 0 → ∇νTμν
(fluid) = −∇νTμν

(em) = FμνIν . (7.105)

In this form it is evident that, as far as the current Iν does not contain
derivatives of the physical fields, the electromagnetic fields and the fluid evo-
lutions are decoupled in the principal part: they interact only through source
terms. This has some implications:

• The fluid contains the charges which produce the current Iν , so the con-
ducting fluid is the source of the Maxwell equations. An effective relation
between the charged fluid and the current (the Ohm’s law) will be dis-
cussed below.

• The EM field produces a (4D) Lorentz force FμνIν on the charges of
the fluid. The time component gives an extra source (the Joule heating)
to the energy equation, while the space components (the Lorentz force)
contribute to the fluid motion through the momentum equation.

In addition to the stress–energy conservation, it is also convenient to write
the Maxwell equations in balance law form. The full system of equations
describing a conducting fluid in the presence of electromagnetic fields is then
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∂t(
√

γ Bi) + ∂k[−βk√γ Bi + αεikj√γ Ej ] =
−√

γ Bk(∂kβi) − α
√

γ γij∂jφ (7.106)
∂t(

√
γ Ei) + ∂k[−βk√γ Ei − αεikj√γ Bj ] =

−√
γ Ek(∂kβi) − α

√
γ γij∂jΨ − 4πα

√
γ J i (7.107)

∂tφ + ∂k[−βkφ + αBk ] =
−φ (∂kβk) + Bk(∂kα) − αΓ i

kiB
k − ακφ (7.108)

∂tΨ + ∂k[−βkΨ + αEk ] =
−Ψ (∂kβk) + Ek(∂kα) − αΓ i

kiE
k + 4παq − ακΨ (7.109)

∂t(
√

γ q) + ∂k[−βk√γ q + α
√

γ Jk ] = 0 (7.110)
∂t(

√
γ D) + ∂k[

√
γ D (αvk − βk) ] = 0 (7.111)

∂t(
√

γ τ) + ∂k[
√

γ (αSk − βkτ) ] =
√

γ [αSijKij − Sj∂jα ] (7.112)

∂t(
√

γ Si) + ∂k[
√

γ (αSk
i − βkSi) ] =

√
γ [αΓ j

ikSk
j + Sj ∂iβ

j − τ∂iα ],(7.113)

where the components of the total stress–energy tensor are computed as the
linear superposition of the fluid and Maxwell ones, namely

τ = hW 2 − p +
1
8π

(E2 + B2), (7.114)

Si = hW 2vi +
1
4π

εijk EjBk, (7.115)

Sij = p γij + hW 2 vivj +
1
4π

[−EiEj − BiBj +
1
2

γij (E2 + B2)]. (7.116)

It is interesting to stress that the conversion procedure from conserved to
primitive variables described in Sect. 7.3.2.1 can still be used by subtracting
the electromagnetic part, i.e.,

τ → τ − 1
8π

(E2 + B2), (7.117)

Si → Si −
1
4π

εijk EjBk, (7.118)

which is already known from the Maxwell equations.

7.4.2 Generalized Ohm’s law

As mentioned above, Maxwell equations are coupled to the fluid ones by
means of the electromagnetic current four-vector Iμ, its explicit form depend-
ing in general on the electromagnetic fields and on the local fluid properties,
measured in the local comoving frame. For this reason, it is convenient to
introduce the electric and magnetic fields measured by an observer moving
with the fluid speed uμ, namely
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eμ ≡ Fμνuν , bμ ≡ ∗Fμνuν (7.119)

(here again each one has only three independent components since eμuμ =
bμuμ = 0).

Allowing for (7.43) and (7.44), these comoving fields can be easily related
with the ones measured by a standard Eulerian observer, namely

eμ = WEμ − nμ(Eνuν) − εμναβuνBαnβ (7.120)
bμ = WBμ − nμ(Bνuν) + εμναβuνEαnβ . (7.121)

Their 3+1 components can be obtained in a straightforward way (the
normal coordinates result is also valid for the shift case):

nμeμ = WvkEk , ei = W (Ei + εijkvjBk), (7.122)
nμbμ = WvkBk , bi = W (Bi − εijkvjEk) . (7.123)

In the same spirit, we can also decompose the electromagnetic four-current
as

Iμ = uμq̃ + j μ, (7.124)

where q̃ and j μ are the charge density and the electric current measured by
the comoving observer, respectively, and j μuμ = 0. Their 3+1 components
can also be obtained in the same way:

q = Wq̃ + j μnμ, Ji = j i + q̃ Wvi = q vi + j i − (j μnμ) vi, (7.125)

so that everything is fully determined by the prescription of the current j in
the local comoving frame.

A standard prescription, known as Ohm’s law, is to consider the current
to be proportional to the Lorentz force acting on charged particles, that is,
a linear relation between j μ and eμ,

j μ = σμνeν , (7.126)

where σμν is the electrical conductivity of the medium. This conductivity can
be calculated in the collision-time approximation [14], and the result may be
written in covariant four-tensor form [15]:

σμν = σ (gμν + ξ2bμbν + ξ εμναβuαbβ). (7.127)

The first term leads to the well-known isotropic (scalar) Ohm’s law, while
the other two represents the anisotropies due to the presence of magnetic
fields. The coefficients are given by

ξ = eτ/m , σ =
nee ξ

1 + ξ2b2
, (7.128)
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where τ is the collision time, ne is the electron density, e and m are the
electron’s charge and mass, and b2 = bμbμ.

It is important to remember that in deriving expression (7.126) for Ohm’s
law we are implicitly assuming that the collision frequency of the constituent
particles of our fluid is much larger that the typical oscillation frequency of
the plasma. Stated differently, the timescale for the electrons and ions to come
into equilibrium is much shorter than any other timescale in the problem, so
that no charge separation is possible and the fluid is globally neutral. This
assumption is a key aspect of the MHD approximation. Moreover, since the
ratio e/m >> 1 (we are using geometrized units), we can assume that in
general the second term in (7.127) is much larger than the third one, which
will be neglected in what follows.

Now we are in a position of getting an explicit expression for the current
Ji in terms of fields measured by an Eulerian observer. Let us start from the
corresponding expression in the local comoving frame, namely

j i = σ [ ei + ξ2 (EkBk) bi ], (7.129)

where we have used
eμbμ = EμBμ = EkBk. (7.130)

Allowing for (7.122), (7.123), and (7.125), we get the final expression

Ji = q vi + Wσ
[
Ei + εijkvjBk − (vkEk)vi

]
+ Wσ ξ2(EkBk)

[
Bi − εijkvjEk − (vkBk) vi

]
. (7.131)

Note that the conservation of the electric charge (7.110) provides the evo-
lution equation for the charge density q. Ohm’s law (7.131) provides the
missing prescription for the (spatial) conduction current J .

7.4.2.1 The high-conductivity limit

The general system of (resistive) MHD equations raises a delicate issue when
the conductivity in the plasma undergoes very large spatial variations. In the
regions with high conductivity, in fact, the system will evolve on timescales
which are very different from those in the low-conductivity region. Mathe-
matically, therefore, the problem can be regarded as a hyperbolic system with
stiff relaxation terms which requires special care to capture the dynamics in
a stable and accurate manner.

A prototypical hyperbolic equation with relaxation is given by

∂tu = H(u, ∂u) +
1
ε

R(u), (7.132)
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where ε > 0 is the relaxation time (not necessarily constant either in space
or in time), H gives rise to a quasilinear system of equations (i.e., H depends
linearly on first derivatives of u), and R does not contain derivatives of u.

In the limit ε → ∞ (corresponding to the resistive MHD equations for the
case of vanishing conductivity) the system is hyperbolic with propagation
speeds bounded by the hyperbolic speed ch. This maximum bound, together
with the length scale L of the system, defines a characteristic timescale τh ≡
L/ch for the hyperbolic part.

In the opposite limit ε → 0 (corresponding to the case of infinite con-
ductivity), the system is instead said to be stiff, since the timescale ε of the
relaxation (or stiff) term R(u) is in general much shorter than the timescale
τh of the hyperbolic part. In such a limit, the stability of an explicit scheme
is only achieved with a timestep size Δt ≤ ε. This requirement is certainly
more restrictive than the Courant–Friedrichs–Lewy (CFL) stability condi-
tion Δt ≤ Δx/ch for the hyperbolic part and makes an explicit integration
impractical. The development of efficient numerical schemes for such sys-
tems is challenging, since in many applications the relaxation time can vary
by several orders of magnitude across the computational domain and, more
importantly, becoming much shorter than the timescale determined by the
hyperbolic speed ch.

When faced with this issue several strategies can be adopted. The most
straightforward one is to consider only the stiff limit ε → 0, where the system
is well approximated by a suitable reduced set of conservation laws called
‘equilibrium system’ [16] such that

R(ū) = 0 , (7.133)

∂tū = G(ū, ∂ū), (7.134)

where ū is a reduced set of variables. This approach can be followed if the
resulting system is also hyperbolic. This is precisely the case in the resistive
MHD equations for infinite conductivity. In this case, depending on which
component of the conductivity is infinite, the equations reduce to those of
either the ideal MHD or the force-free case, which are both described indeed
by an ‘equilibrium system’ in which the conductivity does not appear in the
equations.

7.4.3 Ideal MHD

Let us assume that there is a large amount of free electrons, so (ne e ξ) is
large, while at the same time ξ |b| << 1 (i.e., the collision time τ is small
compared with the electron Larmor period). In this limit the conductivity
(7.127) reduces to
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σμν ≈ σIg
μν , σI = ne e2τ/m , (7.135)

which describes accurately an isotropic highly conducting hot fluid when the
magnetic field is not too large, since the electron density is high and, although
the collision time is short, the product (ne τ) is not small.

The well-known ideal MHD limit of Ohm’s law can be obtained by requir-
ing the current to be finite even in the limit of infinite conductivity (σI → ∞).
This implies that the electric field eμ measured by the comoving observer
must vanish. Allowing for (7.122), we get the well-known ideal MHD condi-
tion

Ei = −εijkvjBk , (7.136)

stating that in this limit the electric field is orthogonal to both B and v. Such
a condition also expresses the fact that in ideal MHD the electric field is not
an independent variable, since it can be computed via a simple algebraic
relation from the fluid velocity and the magnetic vector field.

Note that the current j becomes undetermined in the relation (7.126), but
the redundant Maxwell equations (7.51) and (7.53) may be used to compute
the four-current Iμ directly (assuming the vanishing of Ψ). The evolution
equations for the magnetic field can be obtained by substituting (7.136) in
(7.52) and (7.54), namely

∂t(
√

γ Bi) + ∂k[
√

γ {(αvk − βk)Bi − αviBk + αγkiφ} ]

=
√

γ [−Bk∂kβi + φ γik(∂kα + Γ j
jk) ] (7.137)

∂tφ + ∂i(−βiφ + αBi) = Bi∂iα − αBiΓ k
ki − φ ∂iβ

i − καφ. (7.138)

The electric field can be removed also from the set of conserved quantities,
in order to convert into primitive quantities in a more robust way, that is,

τ = hW 2 + B2 − p − 1
2

[ (Bkvk)2 +
B2

W 2
] , (7.139)

Si = [hW 2 + B2 ] vi − (Bkvk)Bi . (7.140)

The transformation from conserved to primitive is similar to that for an
unmagnetized fluid described before in this chapter. The first step is to note
that the scalar product B ·v can be obtained by contracting (7.140) with B,
namely

viB
i =

SiB
i

hW 2
. (7.141)

Using this relation, the scalar product SiSi can be solved for the Lorentz
factor again, obtaining
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W 2 = [ 1 − x2S2 + (2x + B2)(SiB
i)2

x2(x + B2)2
]−1. (7.142)

Now we can still use the final expression (7.92), with the substitution

τ → τ − (1 − 1
2W 2

)B2 +
(BiSi)2

2x2
. (7.143)

7.4.3.1 Characteristic structure of the ideal MHD

The characteristic structure of the relativistic ideal MHD equations is much
more involved than that of relativistic hydrodynamics. As in classical MHD,
there are seven physical waves: two Alfven waves, two fast and two slow
magnetosonic waves, and one entropy wave. The characteristic structure of
these equations in the fully relativistic case was studied by Anile [9]. It was
found that only the entropic waves and the Alfven waves can be explicitly
written in closed form, while the other four velocities are found by solving a
quartic polynomial:

• One entropic wave, with speed

λentropic = −βn + αvn , (7.144)

which reduces to a material wave for vanishing magnetic field.
• Two Alfven waves, with speeds

λ±
Alfven = −βn + αvn − Bn

hW 2 + B2

[
Bkvk ±

√
h(Bkvk)2 +

B2

W 2

]
, (7.145)

which disappear for vanishing magnetic field.
• Four magnetosonic waves: the two solutions with maximum and min-

imum speeds are called fast magnetosonic waves, and slow magnetosonic
waves the two solutions in between. Their speeds are given by the solution
of the following quartic characteristic equation (which can be obtained
numerically):

0 = hW 4(1 − c2
s)(αvn − βn − λ)4 (7.146)

+ [(βn + λ)2 − α2] [ (αvn − βn − λ)2(hW 2c2
s + B2 + (Bkvk)2W 2 )

− c2
s (W (Bkvk)(αvn − βn − λ) + α

Bn

W
)2 ].

When B = 0 the fast magnetosonic modes reduce to the acoustic waves,
while the slow ones reduce to material waves.

The propagation speeds of these seven waves, which are displayed in
Fig. 7.8, can be ordered as follows:
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FWFW SWSWAW AWCD

x

t

Right StateLeft State

Fig. 7.8 Characteristic structure of the ideal MHD system. It is composed of the four
magnetosonic waves – two fast waves (FW) and two slow waves (SW) – two Alfven waves
(AW), and a contact discontinuity (CD) given by an entropic wave.

λ+
fast ≥ λ+

Alfven ≥ λ+
slow ≥ λentropic ≥ λ−

slow ≥ λ−
Alfven ≥ λ−

fast ,

defining in this way the domain of dependence of the GRMHD system.
A very useful upper bound for fast waves (which have the maximum speed)

can be found by considering the degenerate case of normal propagation [17].
In that case there is an analytical expression for the two fast magnetosonic
waves, namely

λ±
fast = −βn +

α

1 − v2a2

×
[
(1 − a2)vn ±

√
a2(1 − v2)[(1 − v2a2) − (1 − a2)v2

n]
]
, (7.147)

where

a2 = c2
s + c2

a − c2
sc

2
a. (7.148)

The sound speed cs was already defined in (7.80), while the Alfven speed ca

can be written in terms of the comoving magnetic four-vector bμ:

c2
a =

b2

h + b2
, b2 = B2 − E2 = B2/W 2 + (vkBk)2, (7.149)

where we have used that, as far as eμ = 0 in the ideal MHD, the b2 value
coincides with the second invariant in (7.45), which can be computed as well
in the frame of the Eulerian observers.
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7.4.4 The force-free limit

Let us assume now that the magnetic field is large and the fluid is not so hot
(i.e., the collision time is large), so ξ2b2 � 1 . In this case the second term
dominates over the first one in (7.127), which can be reduced to

σμν ≈ σB bμbν σB = nee ξ/b2 , (7.150)

which approximates reasonably well highly conducting cold fluids with low
densities. In this case, the Lorentz force computed in terms of the comoving
fields is just

FμνIν = q̃eμ + σBuμ(bνeν)2 . (7.151)

The analogous of the ideal MHD limit can be obtained by requiring the
current to be finite even in the limit of infinite conductivity (σB → ∞).
Allowing for (7.150), this implies that the electric and magnetic fields must
be perpendicular, that is,

bμeμ = BμEμ = γij BiEj = 0 . (7.152)

This condition amounts to the vanishing of the second term in the Lorentz
force (7.151), namely

FμνIν = q̃eμ. (7.153)

Since the charge density and the electric field in the comoving frame are
usually small, we can assume that in general the Lorentz force will be ne-
glectible in this limit. This is the reason why it is called force-free limit, since
the Lorentz force is very small.

The force-free limit is usually introduced in a different way. In the magne-
tospheres of either neutron stars or black holes the density is so low that even
moderate magnetic field stresses will dominate over the pressure gradients.
This can be modeled by assuming that the stress–energy tensor is dominated
by the electromagnetic part:

Tμν ≈ Tμν
(em) , (7.154)

so that its conservation law implies that the Lorentz force must be negligible:

∇νTμν
(em) = −FμνIν ≈ 0. (7.155)

Let us study in more detail this last relation. Allowing for the electromag-
netic tensor decomposition (7.43), the spatial projection of the Lorentz force,
relative to the Eulerian observers, is just

qEi + εijkJjBk = 0 , (7.156)
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which leads consistently to the force-free relation (7.152). This is an indication
of how the force-free equations are recovered from an infinite conductivity
limit, in a similar way to the ideal MHD.

In this case, the magnetic field evolution is given by the standard Maxwell
equations. On the other hand, the electric field cannot be computed properly
because of the indetermined current. Instead, we can use the conservation of
the momentum, which in the force-free limit reduces to the Poynting vector:

4πSi = εijkEjBk. (7.157)

After evolving the Poynting flux, the electric field can be reconstructed with
the aid of the force-free condition (7.152), that is,

Ei = − 4π

B2
εijkSjBk . (7.158)

As in the case of the ideal MHD, neither the charge density q nor the
gauge source Ψ appear on the equations, so they do not have to be evolved.
Note also that in this limit we have neglected the effects of the fluid, so we
do not need to evolve it at all, at least as far as we are just interested in the
behavior of the electromagnetic field.

Finally, just mention that the characteristic speeds are given by two Alfven
waves and two magnetosonic waves, moving at the speed of light. Thus, we
can still use the expression (7.147) with a = 1 .

7.5 Further developments

Current research in the field of fluids within general relativity is aimed at
the study of a variety of different systems. Mostly these are systems con-
taining strongly gravitating objects or related to cosmology, where gravity
dominates on large scales. Among these we briefly review here some recent
developments, focusing on the study of binary boson and neutron stars. Cer-
tainly the literature on these topics is vast, so we restrict ourselves to some
representative examples where we have direct experience. We address the in-
terested reader to more complete reviews, like for instance [18, 19] for boson
stars and [13] for neutron stars.

7.5.1 Boson stars collisions

Boson stars have been studied in many different contexts [20]. They have been
used as alternative models for compact objects, including black holes [21].
Another outstanding application is their use as models for dark matter [22].
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The problem arises from the observed velocity curves of the stars in a galaxy,
which cannot be explained by using only standard gravity and visible matter.
Different alternatives to resolve this issue are being considered. Among them,
there is the possibility of the presence of an additional ‘dark’ matter source,
which can be modeled by boson stars, reproducing more accurately the ob-
served velocity curves [23]. So, our main motivation in studying boson stars
is to understand their possible role in explaining the dark matter content of
the universe.

There are at least two interesting scenarios arising from the collision of
the boson stars associated to galaxies. The first one would be to analyze the
dynamics and interactions from the collision of two boson stars and compare
with the observed collision of two galaxies, like for instance the bullet cluster
[24]. On the other hand, it is commonly believed that most of the current
galaxies have suffered some collision in their lifetimes, forming as a result
larger and more stable galaxies. Consequently, the second issue would be to
analyze the stability of the final objects produced by the collision of the boson
stars.

Up to now, only the case where both boson stars are described with a single
global scalar field φ has been considered. This choice fully determines the
interaction between the stars, although other alternatives are being currently
considered. The head-on collisions have been studied preliminarily in [25],
and with more detail with an axial symmetry code in [6]. The results, even in
this simple setup, showed very different behaviors depending on the masses
and initial velocities of the stars. For instance, when the velocity of the boson
stars at the collision is high enough, they cross each other keeping mainly the
original shape after the interaction: a behavior which reminds us of a soliton.

On the other hand, when the velocities are low and the masses of the stars
are large, the final object will be too massive to prevent the gravitational
collapse and it will form a black hole. But when the masses are small, the
dynamics and final object will be determined by the type of interaction. Let
us analyze this issue in more detail following mainly the results described in
[26]. The freedom introduced by the complex nature of the scalar field (i.e.,
the solution for the initial data is unaffected by either a phase shift δ or a
frequency reflection ε = ±1) allows many different initial configurations. For
small masses and collision speeds, we can assume initial configurations for
two boson stars of the form

φ = φ
(1)
0 (r1) eiwt + φ

(2)
0 (r2) ei(εwt+δ). (7.159)

In the case of the collision of two identical boson stars (i.e., δ = 0, ε = 1)
the simulations suggest that the merger results into a single boson star in
the stable branch, which oscillates with large amplitude perturbations. The
behavior of the collision of a boson star with another one in phase opposi-
tion (i.e., δ = π, ε = 1) resembles what one would expect for two objects
subject to a repulsive force, but confined within a potential well: the objects
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oscillate around attractor positions. Elucidating the final fate of this system
will require much longer and accurate evolutions. The last case considered
was the collision of a boson star with an otherwise identical star except with
the opposite Noether charge density (i.e., δ = 0, ε = −1). Such a star is called
an anti-boson star and rotates in the opposite direction than its counterpart
in the complex plane. Like in the phase opposition case, the early behavior
agrees with that of the boson–boson case. As time goes on, however, no-
table differences arise. The dynamical behavior when the stars get close is
weaker than in the boson–boson case but stronger than in the boson–phase
opposition case.

The orbiting case has only been studied very recently in [27]. The cases
considered did not show in the final state a stable stationary axisymmetric
configuration.

7.5.2 Neutron stars collisions

Among the binary collisions of astrophysical bodies, the binary neutron star
one is specially important for the production of both gamma ray bursts and
strong gravitational waves. Analogous to the black hole case, the stars or-
bit for many orbits during the inspiral phase until they reach some critical
distance, at which they merge. As opposed to the binary black hole case,
the system now has further degrees of freedom, so the dynamics can be sig-
nificantly different. For instance, at late stages in the inspiral phase, when
the stars are close enough, tidal effects can produce deformations which lead
eventually to matter transfer or even strong enough for disrupting one of the
stars when the masses are very different.

Subsequently, the merger will produce a differentially rotating neutron star
(DRNS), which can display very different behaviors depending on the mass,
equation of state, and other effects like the presence of magnetic fields and
the neutrino cooling. To date only the simplest issue, the mass dependence,
has been analyzed in some detail [28]. For low-mass stars, the DRNS will
be in the stable branch and it will evolve toward a uniformly rotating star
(RNS) due either to viscous or some effective dissipative effects. The final
RNS may end up on the unstable branch and collapse to a black hole. For
moderate masses, the DRNS can have enough mass to become a black hole
(i.e., being in the unstable branch), but the excess of angular momentum
provides an effective extra pressure that prevents the collapse for some time.
As the star loses angular momentum, it starts collapsing to a black hole.
Finally, for high masses the DRNS collapses to a black hole soon after the
merger [29]. Although the qualitative behavior is similar, the exact output
and mass thresholds differ when using a more realistic EOS [30].

Numerical simulations of the merger of the orbiting binary NS, for very
simple EOS and with low resolution, were performed before the binary BH
ones. The absence of singularities, coupled to a weaker curvature scenario,
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seems to be the main reason. However, the lack of resolution prevented to
completely trust the results, even in this simplistic scenario. The current use
of advanced numerical techniques, like adaptive mesh refinement, allowed
for much higher resolutions. The introduction of AMR in the GRHD codes
opened a new line of more accurate evolutions with increasingly reliable ex-
traction of the gravitational waves emitted during the merger, both for binary
neutron star [31–33] and for mixed neutron star–black hole binaries [34]. Cur-
rent efforts concentrate both on studying this problem with higher resolution
and adding key missing physical ingredients, like the influence of the magnetic
fields and the cooling due to neutrino transport.

The addition of magnetic fields, which in standard neutron stars are mea-
sured to be as large as 1012 Gauss, is necessary to attempt explaining some
observed phenomena. The production of gamma ray bursts is nowadays as-
sociated with strong magnetic fields produced in compact objects, like the
catastrophic events relating neutron stars and black holes. These large mag-
netic fields can have a significant effect on the dynamics of the star, which
can be summarized into

• producing extra pressure and anisotropic effects;
• redistributing angular momentum, by connecting parts of the fluid which

would be disconnected in the absence of magnetic fields.

In addition, the magnetic fields can be amplified during the merger of
binary neutron stars due to different mechanisms. The simplest one is the
winding of the magnetic field: when a star with a poloidal magnetic field is
rotating differentially, part of the kinetic energy is converted into a toroidal
magnetic field. Another very effective mechanism is driven by the Kelvin–
Helmholtz instability. During the merger, there is a shear between the fluids of
both stars. By the Kelvin–Helmholtz instability, this shear produces vorticity
and this enlarges the magnetic fields. There are many new instabilities which
were not present in the absence of magnetic fields, which can have a large
influence on the binary neutron stars dynamics. During the merger, magnetic
fields can increase until the point that their effects will be comparable to the
hydrodynamical ones. This different dynamics will produce, consequently, a
different gravitational wave emission [35, 36]. Up to now only few magnetized
binary NS evolutions have been performed, and more work is needed in order
to confirm and understand these results.

The above is just a illustration of how the addition of another extra phys-
ical process can affect the dynamics. Finally, let us just mention that there
are still some missing ingredients which are basic to describe correctly all
the processes involved in neutron stars dynamics. The heating of the plasma
during the merger induces a large production of neutrinos, which carry away
energy and angular momentum from that region of the star. The proper
formalism for describing this radiation transport is given by the Boltzmann
equations, which amount to solve a 7D system (four spacetime coordinates
plus three momenta) of integro-differential equations. Since it is too expensive
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computationally, some approximation approaches have been suggested in or-
der to deal with this problem. More theoretical work is needed in order to
discern which approach is more convenient.
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Maxwell equations, extended, 184

MC slope limiter, 129

Metric tensor, 1

Metric tensor, 3+1 decomposition, 36

MHD equations, 196, 197

MHD equations, ideal, 200, 201

MHD, characteristic structure, 202

MHD, force-free limit, 204

Minimal surfaces, 145

Minmod function, 129

Modified equation approach, 111

Modified flux approach, 130

MoL, method of lines, 112

Momentum density, 32

Monotonicity preserving, 127, 129

Moving punctures approach, 37, 147

MUSCL method, 129

Neutron stars, 192, 207

Neutron stars, evolution, 194

Newtonian limit, 45

NOR system, 86

Normal coordinates, 29

Numerical approximations, 17, 109

Numerical dissipation, 59

Numerical grid, 18

Numerical speed, 57

Numerical stability, 110

Octant symmetry, 161

Ohm law, generalized, 197

Ordering ambiguities, 81

Ordering parameter, 82, 107

Orszag-Tang vortex, 138

Osher-Chakrabarthy algorithm, 130

Perfect fluid, 7, 186

Periodic boundaries, 56, 116

Plane-wave analysis, 43, 52, 65, 73

Polytrope, 189

Poynting vector, 205

Principal part, 10, 83

Pseudo-hyperbolic system, 53, 60, 66, 74

Rankine-Hugoniot conditions, 122

Reflection coefficients, 104

Relaxed system, 19

Ricci evolution system, 38, 77

Ricci tensor, 6

Riemann problem, 121

Riemann solver, 124

Riemann tensor, 5

Robust stability test-bed, 55, 58, 106

Runaway solutions, 159, 164, 165

Runge-Kutta algorithm, 113

Scalar field, 150, 172

Schwarzschild line element, 15, 144

Schwarzschild radial coordinate, 16

Schwarzschild radius, 16

Semi-discrete system, 112, 113, 119

Shear tensor, 31

Shift, 34

Shift, 3+1 recipe, 35

Shift, harmonic, 100

Shift, superluminal, 37, 154

Singularity avoidance, 29, 47, 129, 155

Slice stretching, 162

Slope-limiter methods, 129

Slow motion approximation, 17

Sod tube test, 137

Sound speed, 138, 189

Source terms, 118

Space coordinates, 35

Spacetime geometry, 1

Spacetime symmetries, 13

Spectral methods, 18, 41

SSP algorithms, 113, 127

Stability curve, boson stars, 177

Stability curve, neutron stars, 193

Stencil, 57

Stiff system, 200

Stress tensor, 33

Stress-energy conservation, 8, 39

Stress-energy tensor, 7, 172, 186, 196

Strongly hyperbolic system, 53, 87

Subsidiary system, 50, 69, 70, 95, 97

Symmetric-hyperbolic systems, 91

Symmetry breaking, 75, 83

Time coordinate, 28

Time lines, 28

Time slicing, 27, 155

Time symmetric initial data, 144

Total variation, 133

TOV equations, 192

TVB methods, 135

TVD methods, 134

Vorticity tensor, 31
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Z3 system, 67, 75
Z4 system, 67
Z4 system, 3+1 decomposition, 71
Z4 system, first order, 82, 98
Z4 system, source terms, 100

Weak solutions, 11, 41, 120
Weakly hyperbolic system, 53, 87, 90, 94
Well-posed system, 19, 23, 50, 54, 87

Wormhole, 146, 153

Weak field approximation, 17, 20
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