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Preface

We became involved with numerical relativity under very different circum-
stances. For one of us (C.B.) it dates back to about 1987, when the current
Laser-Interferometer Gravitational Wave Observatories were just promising
proposals. It was during a visit to Paris, at the Institut Henri Poincaré, where
some colleagues were pushing the VIRGO proposal with such a contagious
enthusiasm that I actually decided to reorient my career. The goal was to be
ready, armed with a reliable numerical code, when the first detection data
would arrive.

Allowing for my experience with the 3+1 formalism at that time, I started
working on singularity-avoidant gauge conditions. Soon, I became interested
in hyperbolic evolution formalisms. When trying to get some practical appli-
cations, I turned to numerical algorithms (a really big step for a theoretically
oriented guy) and black hole initial data. More recently, I became interested
in boundary conditions and, closing the circle, again in gauge conditions. The
problem is that a reliable code needs all these ingredients to be working fine
at the same time. It is like an orchestra, where strings, woodwinds, brass and
percussion must play together in a harmonic way: a violin virtuoso, no matter
how good, cannot play Vivaldi’s Four Seasons by himself.

During that time, I have had many Ph.D. students. The most recent one
is the other of us (C.P.). All of them started with some specific topic, but
they needed a basic knowledge of all the remaining ones: you cannot work on
the saxophone part unless you know what the bass is supposed to play at the
same time.

This is where this book can be of a great help. Imagine a beginning gradu-
ate student armed only with a home PC. Imagine that the objective is to build
a working numerical code for simple black-hole applications. This book should
first provide him or her with a basic insight into the most relevant aspects
of numerical relativity. But this is not enough; the book should also provide
reliable and compatible choices for every component: evolution system, gauge,
initial and boundary conditions, even for numerical algorithms.



VIII Preface

This pragmatic orientation may cause this book to be seen as biased. But
the idea was not to produce a compendium of the excellent work that has
been made in numerical relativity during these years. The idea is rather to
present a well-founded and convenient way for a beginner to get into the field.
He or she will quickly discover everything else.

The structure of the book reflects the peculiarities of numerical relativity
research:

• It is strongly rooted in theory. Einstein’s relativity is a general-covariant
theory. This means that we are building at the same time the solution and
the coordinate system, a unique fact among physical theories. This point is
stressed in the first chapter, which could be omitted by more experienced
readers.

• It turns the theory upside down. General covariance implies that no specific
coordinate is more special than the others, at least not a priori. But this
is at odds with the way humans and computers usually model things: as
functions (of space) that evolve in time. The second chapter is devoted to
the evolution (or 3+1) formalism, which reconciles general relativity with
our everyday perception of reality, in which time plays such a distinct role.

• It is a fertile domain, even from the theoretical point of view. The structure
of Einstein’s equations allows many ways of building well-posed evolution
formalisms. Chapter 3 is devoted to those which are of first order in time
but second order in space. Chapter 4 is devoted instead to those which are
of first order both in time and in space. In both cases, suitable numerical
algorithms are provided, although the most advanced ones apply mainly to
the fully first order case.

• It is challenging. The last sections of Chaps. 5 and 6 contain front-
edge developments on constraint-preserving boundary conditions and gauge
pathologies, respectively. These are very active research topics, where new
developments will soon improve on the ones presented here. The prudent
reader is encouraged to look for updates of these front-edge areas in the
current scientific literature.

A final word. Numerical relativity is not a matter of brute force. Just a
PC, not a supercomputer, is required to perform the tests and applications
proposed here. Numerical relativity is instead a matter of insight. Let wisdom
be with you.

Palma de Mallorca, Carles Bona
April 2005 Carlos Palenzuela Luque
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1

The Four-Dimensional Spacetime

1.1 Spacetime Geometry

Physics theories are made by building mathematical models that correspond
to physical systems. General Relativity, the physical theory of Gravitation,
models spacetime in a geometrical way: as a four-dimensional manifold. The
concept of manifold is just a generalization to the multidimensional case of
the usual concept of a two-dimensional surface. This will allow us to apply the
well known tools of differential geometry, the branch of mathematics which
describes surfaces, to the study of spacetime geometry.

An extra complication comes from the fact that General Relativity laws
are formulated in a completely general coordinate system (that is where the
name of ‘General’ Relativity comes from). Special Relativity, instead, makes
use of inertial reference frames, where the formulation of the physical laws is
greatly simplified. This means that one has to learn how to distinguish between
the genuine features of spacetime geometry and the misleading effects coming
from arbitrary choices of the coordinate system. This is why the curvature
tensor will play a central role, as we will see in what follows.

1.1.1 The Metric

We know from differential geometry that the most basic object in the space-
time geometrical description is the line element. In the case of surfaces, the
line element tells us the length dl corresponding to an infinitesimal displace-
ment between two points, which can be related by an infinitesimal change
of the local coordinates xk in the surface. In the case of the spacetime, the
concept of length has to be generalized in order to include also displacements
in time (which is usually taken to be the ‘zero’ coordinate, x0 ≡ ct). This
generalization is known as the ‘interval’ ds, which can be expressed in local
coordinates as

ds2 = gµνdxµdxν (µ, ν = 0, 1, 2, 3) . (1.1)

C. Bona and C. Palenzuela Luque: Elements of Numerical Relativity, Lect. Notes Phys. 673,
1–17 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



2 1 The Four-Dimensional Spacetime

We can easily see from (1.1) that the tensor gµν is going to play a central
role. In the theory of surfaces, it has been usually called ‘the first fundamental
form’. In General Relativity it is more modestly called ‘the metric’ in order to
emphasize its use as a tool to measure space and time intervals. The metric
components can be displayed as a 4 by 4 matrix. This matrix is symmetric
by construction (1.1), so that only 10 of the 16 coefficients are independent.
Computing these 10 independent coefficients in a given spacetime domain is
the goal of most Numerical Relativity calculations.

The metric tensor gµν is the basic field describing spacetime. One would
need to introduce extra fields only if one wants to take into account non-
gravitational interactions, like the electromagnetic or the hydrodynamical
ones, but the gravitational interaction, as far as we know, can be fully de-
scribed by the metric.

1.1.2 General Covariance

The most interesting property of the line element (1.1) is that it is invariant
under generic (smooth) changes of the spacetime coordinates, namely

xµ = Fµ(xν′
) . (1.2)

This is because the values of space or time intervals are independent of the
coordinate system one is using for labelling spacetime points. This means
that the components of the metric must change in a suitable way in order to
compensate the changes of the differential coefficients dxµ in (1.1),

gµ′ν′ = gµν
∂xµ

∂xµ′
∂xν

∂xν′ . (1.3)

We will say then that the metric transforms in a covariant way or, more
briefly, that it behaves as a covariant tensor field under the general coordinate
transformations (1.2).

The general covariance (1.3) of the metric means that, without altering
the properties of spacetime, one can choose specific coordinate systems that
enforce some interesting conditions on the metric coefficients. One can choose
for instance any given (regular) spacetime point P and devise a coordinate
system such that

gµ′ν′ |P = diag{−c2,+1,+1,+1} ∂ρ′ gµ′ν′ |P = 0 (1.4)

(local inertial coordinate system at P). This means that Special Relativity
holds true locally (in the strongest sense: a single point at a time), and it will
also be of great help in shortening some proofs by removing the complication
of having to deal with arbitrary coordinate systems.

At this point, we must notice some ambiguity which affects to the very
meaning of the term ‘solution’. In the geometrical approach, one solution
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corresponds to one spacetime, so that metric coefficients that can be related by
the covariant transformation (1.3) are supposed to describe the same metric,
considered as an intrinsic tensor, independent of the coordinate system. In this
sense, we can see how in exact solutions books (see for instance [1]) different
forms of the same metric appear, as discovered by different authors. In the
differential equations approach, however, the term solution applies to every set
of metric components that actually verifies the field equations, even if there
could be some symmetry (coordinate or ‘gauge’) transformation relating one
of these ‘solutions’ to another.

This is by no way a mere philosophical distinction. If General Relativity
has to be (as it is) general covariant, then the field equations must have two
related properties:

• The equations must be unable to fully determine all the metric coefficients.
Otherwise there would be no place for the four degrees of freedom corre-
sponding to the general covariant coordinate (gauge) transformations (1.3).

• The equations must not prescribe any way of choosing the four spacetime
coordinates. Otherwise there will be preferred coordinate systems and gen-
eral covariance would be broken.

But in Numerical Relativity there is no way of getting a solution without com-
puting the values of every metric component. This means that the differential
system obtained from just the field equations is not complete, and one must
prescribe suitable coordinate conditions before any numerical calculation can
be made. The mathematical properties of the resulting complete system will
of course depend of this choice of the coordinate gauge. We will come back to
this point later.

1.1.3 Covariant Derivatives

The very concept of derivative intrinsically involves the comparison of field
values at neighboring points. The prize one has to pay for using arbitrary
coordinate systems is that one can no longer compare just field components
at different points: one must also compensate for the changes of the coordinate
basis when going from one point to another. In this way we can interpret the
two contributions that arise when computing the covariant derivative of a
vector field:

∇µvν = ∂µvν + Γ ν
ρµvρ . (1.5)

The first term corresponds to the ordinary partial derivatives of the field
components, whereas the second one takes into account the variation of the
coordinate basis used for computing these components. The Γ symbols in (1.5)
are known as ‘connection coefficients’ because they actually allow to compare
fields at neighboring points.
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The covariant derivative of tensors with ‘downstairs’ indices contains con-
nection terms with the opposite sign (’downstairs’ components correspond to
the dual basis). In the case of the metric, for instance, one has

∇ρgµν = ∂ρgµν − Γ σ
ρµgσν − Γ σ

ρνgµσ (1.6)

(notice that every additional index needs its own connection term).
The connection coefficients Γ ρ

µν are not tensor fields. They transform un-
der a general coordinate transformation (1.2) in the following way:

Γ ρ′

µ′ν′ =
∂xρ′

∂xρ

[
Γ ρ

µν

∂xµ

∂xµ′
∂xν

∂xν′ +
∂2xρ

∂xµ′∂xν′

]
. (1.7)

The additional second derivatives terms appearing in (1.7) compensate exactly
the analogous terms arising in the transformation of the partial derivative
contributions in (1.5, 1.6), so that the covariant derivative of a tensor field is
again a tensor field. Notice, however, that the extra second derivatives terms
in (1.7) are symmetric in the lower indices. This means that the antisymmetric
combinations

Γ ρ
[µν] ≡

1
2

(Γ ρ
µν − Γ ρ

νµ) (1.8)

correspond to the components of a tensor field (torsion tensor), because the
antisymmetric part of the second derivatives terms in (1.7) actually vanishes.

Coming back to the metric tensor, the fact that the transformation of its
first partial derivatives includes both first and second derivatives terms is the
reason why one can define at any fixed point P the locally inertial coordinate
system in such a way that both conditions in (1.4) hold true. It is natural to
assume that the connection coefficients should also vanish in the local inertial
system at P, in order to make sure that Special Relativity is fully recovered
locally. These conditions imply that, in the local inertial coordinate system at
P:

• The torsion (1.8) vanishes
Γ ρ

[µν] = 0 . (1.9)

• The metric is preserved by covariant differentiation

∇ρgµν = 0 . (1.10)

Notice that both (1.9) and (1.10) are tensor equations. And the vanishing of
any tensor quantity in a local inertial system implies that it must actually
vanish in any other coordinate system. This fact, allowing for (1.6), provides
a very useful expression for the connection coefficients in terms of the first
derivatives of the metric components:

Γ σ
µν =

1
2

gσρ[∂µgρν + ∂νgµρ − ∂ρgµν ] (1.11)
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(Christoffel symbols), where we have noted with ‘upstairs’ indices the compo-
nents of the inverse matrix of the metric, namely

gµρgρν = δµ
ν . (1.12)

1.1.4 Curvature

Up to this point, all we have said could perfectly apply to the Special Relativ-
ity (Minkowski) spacetime. All the complications with covariant derivatives
and connection coefficients could arise just from using non-inertial coordinate
systems. Minkowski spacetime is said to be flat because a further specializa-
tion of the local inertial coordinate system can make the metric form (1.4) to
apply for all spacetime points P simultaneously.

In General Relativity, in contrast, gravity is seen as the effect of spacetime
curvature. So one must distinguish between the intrinsic effects of curvature
(gravitation) and the sort of ‘inertia forces’ arising from weird choices of co-
ordinate systems. Here again, this is a very well known problem from surface
theory. The curvature of a surface can be represented by its curvature tensor
(Riemann tensor, as it is known in General Relativity), which can be defined
as follows:

(∇ρ∇σ −∇σ∇ρ) vµ = Rµ
νρσvν , (1.13)

so that it can be interpreted as a measure of the non-commutativity of (co-
variant) derivatives: a property that characterizes true curved spacetimes. The
Riemann tensor Rµ

νρσ defined by (1.13) can be explicitly computed, allowing
for (1.5), in terms of the connection coefficients:

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµ

ρν + Γµ
ρλΓλ

σν − Γµ
σλΓλ

ρν . (1.14)

It is clear from (1.14) that in a flat spacetime, where there exists a co-
ordinate system in which all connection coefficients vanish everywhere, the
curvature tensor is zero, namely

Rµ
νρσ = 0 (1.15)

and, like any other tensor equation, it holds in any other coordinate system.
Conversely, if the tensor condition (1.15) does not hold, then (1.14) tells us
that there can not be any coordinate system in which all connection coeffi-
cients vanish everywhere and the manifold considered is not flat. It follows
that (1.15) is a necessary and sufficient condition for a given spacetime to
be flat. So finally we have one intrinsic and straightforward way to distin-
guish between genuine curved spaces and flat spaces ‘disguised’ in arbitrary
coordinate systems.
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1.1.5 Symmetries of the Curvature Tensor

Riemann curvature tensor is a four-index object. In four-dimensional space-
time, this could lead up to 44 = 256 components. Of course there are algebraic
symmetries that contribute to reduce the number of its independent compo-
nents. Part of these symmetries can be directly obtained from the generic
definition (1.14), which holds for arbitrary connection coefficients. The re-
maining ones come from taking into account the relationship (1.11) between
the connection coefficients and the metric tensor. We have summarized them
in Table 1.1.

Table 1.1. Algebraic symmetries of the Curvature tensor

Generic Case Symmetries Metric Connection (1.11)

Rµ
νρσ = −Rµ

νσρ Rµνρσ = −Rνµρσ

Rµ
νρσ + Rµ

ρσν + Rµ
σνρ = 0 Rµνρσ = Rρσµν

But, even taking all these symmetries into account, one has still 20 alge-
braically independent components to deal with. One can easily realize, how-
ever, that lower rank tensors can be obtained by index contraction from the
Riemann tensor. Allowing for the algebraic symmetries, there is only one in-
dependent way of contracting a pair of indices of the curvature tensor, namely

Rµν ≡ Rλ
µλν , (1.16)

which is known as ‘Ricci tensor’ in General Relativity. It follows from the
algebraic properties of the Riemann tensor that (1.16) is symmetric in its two
indices, so it has only 10 independent components. Contracting again in the
same way, one can get the Ricci scalar

R ≡ Rλ
λ = Rρσ

ρσ . (1.17)

The Ricci tensor (1.16) and the Ricci scalar (1.17) play a major role when
trying to relate curvature with the energy content of spacetime. In three-
dimensional manifolds, the Ricci tensor allows to obtain algebraically all the
components of the curvature tensor (both of them have only six indepen-
dent components). In the four-dimensional case this is no longer possible: the
importance of the Ricci tensor comes instead from the Bianchi identities,

∇λRµ
νρσ + ∇ρR

µ
νσλ + ∇σRµ

νλρ = 0 , (1.18)

which can be obtained directly from (1.14). One can contract two pairs of
indices in (1.18) in order to get the following ‘contracted Bianchi identity’ for
the Ricci tensor
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∇µ

[
Rµν − R

2
gµν

]
= 0 , (1.19)

which can be interpreted as a covariant conservation law for the combination

Gµν ≡ Rµν − R

2
gµν , (1.20)

which is known as the Einstein tensor.

1.2 General Covariant Field Equations

General Relativity is a metric theory of Gravitation. This means that the
physical effects of Gravitation are identified with the geometrical effects of
spacetime curvature. We have seen in the previous section how to describe
spacetime curvature in a general covariant way, so that there are no preferred
coordinate systems. In this section, we will see how to incorporate the effect of
matter and non-gravitational fields. We will need first to generalize their Spe-
cial Relativity description, which is made in terms of inertial reference frames,
to general coordinate systems. Then, we will see how the energy content of
these fields can be used as a source of spacetime curvature in Einstein’s theory
and the complexity of the resulting field equations, which motivates the use of
some approximation techniques. Numerical approximations are singled out as
the general-purpose ones, without any underlying physical assumption which
could restrict its domain of applicability.

1.2.1 The Stress-Energy Tensor

In Special Relativity, the energy content of both matter and fields is described
by a symmetric tensor Tµν (stress-energy tensor). For instance, in the case
of an ideal fluid, where one neglects heat transfer, viscosity and non-isotropic
pressure effects, the stress energy tensor can be written as

Tµν = τ uµuν + p (gµν + uµuν) , (1.21)

where uµ is the fluid four-velocity

uµ = γ (1,v) (1.22)

(we are using geometrized units, so that c = 1), and τ and p are, respectively,
the energy density and the isotropic pressure of the fluid in the comoving
reference frame (v = 0), where the stress-energy tensor could be written as

Tµν = diag(τ, p , p , p ) , (1.23)

so that one can read directly the stress (isotropic pressure in this case) con-
tribution in the space components and the energy contribution in the time
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component. The neglecting of heat transfer implies that there can not be
momentum contributions in the comoving frame.

Energy and momentum conservation in Special Relativity is translated
into a conservation law for Tµν , which can be written in differential form as

∂νTµν = 0 . (1.24)

In the ideal fluid case (1.21), one can easily recover from (1.24) (the special
relativistic versions of) the continuity equation and the Euler equation for
ideal fluids. But (1.24) is a basic conservation law, valid in the general case,
not just for the ideal fluid one. It is then natural to generalize (1.24) as

∇νTµν = 0 , (1.25)

so that one gets a general covariant law with the right special relativistic limit.
And one is ready now to incorporate the stress-energy tensor into the General
Relativity framework.

1.2.2 Einstein’s Field Equations

The general covariant conservation laws of both the Einstein and the stress-
energy tensors (1.19, 1.25) provide good candidates to relate curvature with
the spacetime energy content. General Relativity, Einstein’s theory of Gravi-
tation, is obtained when one imposes the direct relationship (Einstein’s field
equations):

Gµν = 8π Tµν , (1.26)

where the 8π factor comes out from the Newtonian Gravitation limit (we are
using here geometrical units so that both the gravitational constant G and
light speed c are equal to unity).

We can read (1.26) from right to left, concluding that matter or any kind
of physical field acts as a gravitational source which determines the local
geometry of spacetime. In this sense, solving (1.26) as the field equations, will
amount to determine the metric corresponding to a given matter and energy
distribution.

But, conversely, we can also read (1.26) from left to right, noticing that
the physical conservation law (1.25) can be now understood as mere conse-
quence of (1.26) if one allows for the Bianchi identities (1.19). This means
that the motion of matter under the action of gravitation is also governed by
Einstein’s equations. For instance, if we consider a dust-like test fluid, that
is an ideal fluid of incoherent (zero pressure) particles which is insensitive to
any interaction other than gravitation, it follows from (1.21, 1.25) that

uν∇νuµ = 0 . (1.27)

The equation of motion (1.27) amounts to impose that the test particles
move along the geodesic lines of spacetime geometry:
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d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 . (1.28)

Geodesic lines are the natural generalization of straight lines for curved space-
time (lines whose tangent vector is constant, and minimal length lines also).

As far as in Newton first law straight spacetime lines correspond to the
inertial motion of free particles, equation (1.27) can be interpreted as stat-
ing that test particles in a gravitational field are also in inertial motion, but
following the ‘straight lines’ (geodesics) of the curved spacetime geometry.
Gravitation is not considered then just as one more interaction, like electro-
magnetism or nuclear forces, but it is identified with spacetime curvature.

Coming back to the field equations (1.26), the Bianchi identities (1.19)
allow us to write

∇0(G0ν − 8π T 0ν) + ∇k(Gkν − 8π T kν) = 0 (k = 1, 2, 3) , (1.29)

where latin indices will refer to space coordinates. This means that the subset
of 4 Einstein’s equations with at least one time component, namely

G0ν = 8π T 0ν , (1.30)

are first integrals of the system: they get preserved forever provided that the
remaining 6 equations hold true everywhere (you can prove it first for the
three space components and, allowing for the result, complete then the proof
for the time one). This implies that only 6 of the 10 Einstein field equations are
actually independent, so that the equations do not contain enough information
to determine all of the 10 independent metric coefficients, as expected from
the general covariance of the theory (see Sect. 1.1.2). We will be more precise
about that point in the next chapter.

1.2.3 Structure of the Field Equations

From now on, we will look at Einstein’s equations as a set of differential
equations that one must solve for the spacetime metric once the energy content
of spacetime is known. It is more convenient for this purpose to write (1.26)
in the equivalent form

Rµν = 8π

(
Tµν − 1

2
Tλ

λ gµν

)
, (1.31)

that is, allowing for (1.14, 1.16),

∂ρΓ
ρ
µν − ∂µΓ ρ

ρν + Γ ρ
ρλΓλ

µν − Γ ρ
λµΓλ

ρν = 8π

(
Tµν − 1

2
Tλ

λ gµν

)
, (1.32)

where we must remember here the dependence of the connection coefficients
on the metric (1.11), namely
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Γ σ
µν =

1
2

gσρ[∂µgρν + ∂νgµρ − ∂ρgµν ] . (1.33)

It is clear that (1.32) is a non-linear system of second order differential
equations on the metric tensor. This means that generic solutions must have
continuous first derivatives (metric coefficients must be smooth). This point
is important when one tries to build up composite solutions, covering differ-
ent regions of spacetime, by matching local solutions which hold only on one
of such regions. This is a very common situation in local field theories, like
electromagnetism, where different solutions are obtained for the ‘interior’ re-
gion, inside the charge distribution, and the ‘exterior’ or outside one. In the
General Relativity case, the matching conditions for the composite solution
to be valid amount to the continuity of the metric tensor and its first partial
derivatives.

A closer look to (1.32) allows one to notice that the ‘principal part’
(the terms containing the highest order derivatives) can be put into Flux-
Conservative form, that is as a four-divergence, namely

∂ρ[Γ ρ
µν − δρ

µΓ σ
σν ] . (1.34)

This means that one can interpret (1.32) as a system of balance laws, like
in fluid dynamics, with the principal part terms (1.34) describing transport
and the remaining ones acting as sources. The right-hand-side terms, given by
the stress-energy tensor, would describe sources of non-gravitational nature
whereas the quadratic terms on the left-hand-side

Γ ρ
ρλΓλ

µν − Γ ρ
λµΓλ

ρν . (1.35)

would describe the action of the gravitational field itself, acting as its own
source.

One must be very careful, however, with the physical interpretation, be-
cause the splitting of the left-hand-side terms is not unique. Notice for instance
that

Γ ρ
ρµ =

1
2

gσρ∂µgσρ = ∂µln(
√

g) , (1.36)

where g stands here for the absolute value of the determinant of the metric.
This allows to rearrange terms in (1.32) so that the principal part can be
written as

1
√

g
∂ρ[

√
g (Γ ρ

µν − δρ
µΓ σ

σν)] , (1.37)

and the remaining quadratic terms are now

Γ ρ
ρµΓ σ

σν − Γ ρ
λµΓλ

ρν , (1.38)

instead of (1.34) and (1.35), respectively.
On the other side, from the Numerical Relativity point of view, the balance

law structure of (1.32) is a blessing, because one can benefit of the experience
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and results from a much more mature field: Computational Fluid Dynamics
(CFD). This does not mean that all CFD techniques will work fine when
applied directly to Numerical Relativity, but at least one has a very good
guidance, based on years of research. We will take advantage of this fact in
our numerical simulations.

For instance, one can notice that the flux-conservative structure of the
principal part of the equations allows ‘weak solutions’. In the case of General
Relativity, this means that the metric could have first partial derivatives which
are just piecewise continuous. Derivatives across the discontinuity surfaces
would lead to Dirac delta terms, so that the requirement that such delta
terms cancel out exactly in the field equations (1.31), when interpreted in the
sense of distributions, provides the time evolution of these surfaces. It follows
that the discontinuity surfaces (‘gravitational shock waves’) must propagate
with light speed.

The use we are making of the term ‘shock waves’ is just inspired in Fluid
Dynamics, but is not fully justified here. This is because the principal part of
our equations (1.32) does not contain products of the connection coefficients
with their derivatives so that, in the case of weak solutions, the Dirac delta
terms appear always multiplied by continuous factors. This is in contrast with
the usual situation in Fluid Dynamics, where the principal part of the Euler
equation contains convective terms of the form

vk∇kvi , (1.39)

so that discontinuities in the fluid speed v lead to Dirac delta terms with
discontinuous coefficients.

Equations that, like Euler equation, contain that kind of stronger non-
linearities in the principal part are said to be ‘genuine non-linear’ whereas
equations that, like Einstein’s equations, do not contain them are said to be
‘degenerate’. This is not a mere terminological distinction. In the genuine
non-linear case, shocks can develop even from smooth initial data and their
propagation speed can be either higher or lower than the characteristic speed
(sound speed in Fluid Dynamics, where one can get either supersonic or sub-
sonic waves). In the degenerate case, in contrast, discontinuities can never arise
from smooth initial data and their propagation speed is always the character-
istic one (light speed in General Relativity). In the Fluid Dynamics language,
these are just ‘contact discontinuities’ instead of genuine shocks.

This discussion seems to suggest that Einstein’s equations are in some
sense easier than Euler or Navier-Stokes equations for Fluid Dynamics. This
is true only if we look at the non-linearities of these equations from the qual-
itative point of view. But the situation is completely reversed if we look at it
from the quantitative point of view. Remember that the basic quantities in
(1.31) are not the connection coefficients, but the metric tensor. And notice
that the metric derivatives in the expression (1.33) are always multiplied by
the coefficients gρσ of the inverse matrix of the metric.
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Every such coefficient is computed as the adjoint of the corresponding
metric component (six terms) divided by the metric determinant (24 terms).
Every index contraction involves the ten components of the inverse metric,
that is 60 terms (plus the 24 terms denominator). Now, two index contractions
are required in the quadratic contributions

Γ ρ
λµΓλ

ρν (1.40)

in (1.35). For every fixed value of µ and ν, we can expand (1.40) in terms
of first metric derivatives: five such double contractions appear. This makes
5 × 602 = 18000 terms (denominators apart) per equation, that is 1.8 105

terms for the whole system (allowing for every value of µ and ν).
A similar estimate of the remaining contributions (including second deriv-

atives and matter terms) can raise the count up to about 2.3 105 in the full
general case (if one multiplies everything by the square of the metric deter-
minant in order to remove all denominators). These quarter-of-million terms
provide one of the reasons why Einstein’s equations deserve their reputation
as possibly the hardest ones in their class.

1.3 Einstein’s Equations Solutions

1.3.1 Symmetries. Lie Derivatives

A useful strategy for simplifying the field equations system is to focus on
particular solutions with some kind of symmetry. It is well known that, by
adapting the coordinate system to a given symmetry of the solution, one can
usually reduce the number of relevant coordinates. For instance, in the case
of axial symmetry, one can take the azimuthal angle φ to be one of the four
spacetime coordinates so that in this adapted coordinate system one has

∂φgµν = 0 , (1.41)

and the field equations can then be written in a simpler form.
As a consequence of (1.41), all the geometrical objects that can be derived

from the metric without further inputs, like the curvature tensor, must share
the same symmetry, namely

∂φRµ
νρσ = 0 . (1.42)

Then, allowing for Einstein’s field equations (1.31), all the physical quantities
that can be computed, without further input, from the stress-energy tensor
and the metric must also share the same symmetry. In the ideal fluid case
(1.21), for instance, one has

∂φ τ = ∂φ p = 0 , ∂φ uµ = 0 , (1.43)
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so that any dependence on the azimuthal angle φ disappears (φ is an ‘ignor-
able’ coordinate).

From the group-theoretical point of view, we can identify φ with the para-
meter labelling a continuous group of transformations (rotations around one
axis in this case), which is usually known as a ‘Lie group’. These transforma-
tions can be interpreted as mapping every spacetime point P into a continuous
set of points, one for every value of φ. This set of image points of a single one
P defines an orbit of the group. As far as the mapping is continuous, this
orbit is a curve on the manifold and one can compute its tangent vector field
ξ, which is known as the group generator. For instance, the vector field ξ
that generates axial symmetry gets a trivial form in the adapted coordinate
system, namely

ξµ = δµ
(φ) . (1.44)

This group-theoretical considerations will help us in generalizing expres-
sions like (1.41–1.44), which are valid only in the adapted coordinate system,
to a general one, in keeping with the general covariance of the theory. The
standard recipe of changing partial derivatives into covariant ones will not
work here, because the basic equation (1.41) would be transformed in that
way into an identity, valid for any spacetime independently of its symmetry
properties.

The right generalization is based on the fact that the group orbits fill out
spacetime: every point P is contained into its own orbit. This implies that
one can just compare any tensor at P with its image under an infinitesimal
transformation of the Lie group, in order to define a derivative (Lie derivative).
Notice that this definition does not imply that the continuous transformations
we are using should be symmetry transformations: the concepts of group orbits
and generators are valid for any continuous group of transformations, not just
for symmetry groups.

In the case of scalar quantities, the Lie derivative along the vector ξ reduces
to the directional derivative. For instance, the first two equations in (1.43) can
be written in a generic coordinate system as

Lξ τ ≡ ξµ∂µ τ = 0 , Lξ p = 0 . (1.45)

In the case of vector quantities, like in the last equation in (1.43), an extra
term appears, namely

Lξ uµ ≡ ξρ∂ρ uµ − uρ∂ρ ξµ = 0 . (1.46)

Notice that one could replace partial derivatives by covariant ones in (1.46)
without altering the result: this is a tensor expression, valid in a general
coordinate system. The same can be done with the original equation (1.41),
namely

Lξ gµν ≡ ξρ∂ρ gµν + gµρ ∂νξρ + gρν ∂µξρ = 0 , (1.47)

where a correction term appears for every index, following the pattern of
covariant derivatives, but with the opposite sign. As a consequence, the ex-
pression (1.47) gets a simpler form
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Lξ gµν ≡ ∇µξν + ∇νξµ = 0 , (1.48)

which is known as the Killing equation. Any solution ξ of the Killing equation
is known as a Killing vector field and can be interpreted as the generator of a
one-parameter group of isometry transformations (symmetries).

Remember that for a general coordinate transformation the metric coef-
ficients transform in the covariant way (1.3). Isometry transformations are
the particular cases such that the final coefficients happen to be identical to
the original ones, revealing some symmetry of spacetime. Tensors transform
in a covariant way under any change of coordinates, but they are invariant
only under isometry transformations. In the case of the curvature tensor, for
instance, this fact translates into the generic coordinate system version of
(1.42), namely

Lξ Rµ
νρσ = 0 , (1.49)

which must hold for every Killing vector ξ.

1.3.2 Exact Solutions

Symmetry considerations are of great help in order to find exact solutions of
Einstein’s field equations (1.26). Although hundreds of particular solutions
have been found (see [1] for an excellent compendium), and are still being
found today, only those with a high degree of symmetry are being widely
used to build astrophysical or cosmological models.

Let us consider for instance the standard cosmological models. A six-
parameter symmetry group is assumed, so that the orbit of any given space-
time point P is a spatial hyper-surface. The six-dimensional symmetry group
can be described as consisting of a three-dimensional subgroup of rotations
(which will leave the origin point O invariant), plus three more independent
generators mapping the origin O into any other point of the same hyper-
surface. From the physical point of view, we can just say that spacetime is
spatially homogeneous and isotropic (Cosmological Principle).

As far as this is the maximum degree of symmetry for a three-dimensional
manifold, it follows from a classical theorem that the spatial hyper-surfaces
must be of constant curvature. One can also align the time axis with the nor-
mal vectors to these space hyper-surfaces. Putting together all these results, it
follows that the line element with such maximum degree of spatial symmetry
can be written as,

− dt2 + R(t)2
(

dr2

√
1 − k r2

+ r2 dΩ2

)
(1.50)

(Friedman-Robertson-Walker metrics, FRW in what follows), where R(t) is
an arbitrary function and the parameter k can be

k = +1 , −1 , 0 , (1.51)
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corresponding respectively to positive, negative or zero curvature of the space
hyper-surfaces. As commented in the former subsection, all the quantities
obtained from the metric without further input must share its symmetries.
This means that the stress-energy tensor of the FRW metrics corresponds to
an ideal fluid (1.21) with uniform energy density and pressure distribution

τ = τ(t) p = p (t) . (1.52)

The particular expressions for both the energy density τ and the pressure p
will depend of course of the specific expression for the ‘cosmological radius’
R(t) that is being used.

Another widely used solution, the Schwarzschild line element, describes
an static and spherically symmetric spacetime. From the group-theoretical
point of view, it can be obtained by imposing a four-dimensional group of
symmetries. One of the group generators is supposed to describe time trans-
lations, so that we can use an adapted time coordinate in which all metric
components are time-independent. Also, as in the previous case, the group
contains a three-dimensional subgroup of rotations around an origin point O,
so that any given point P is mapped into any other point belonging to the
same spherical surface with center at O.

The use of the term ‘spherical surface’ here is fully justified because a
three-parameter subgroup is the maximum degree of symmetry for a two-
dimensional surface. These surfaces must be then of constant curvature, which
is assumed to be positive in the spherical case. One can even define the
Schwarzschild radial coordinate r so that the area S of such spherical sur-
faces is precisely

S = 4πr2 . (1.53)

The corresponding vacuum metric is then given by

− (1 − 2M/r) dt2 +
dr2

1 − 2M/r
+ r2 dΩ2 , (1.54)

where M is an arbitrary parameter (Schwarzschild mass). The Schwarzschild
metric (1.54) can be used to describe spacetime in the vicinity of an isolated
spherical body of mass M .

Let us remember at this point that we are talking here about local solu-
tions. Schwarzschild spacetime, for instance can not be properly described as
static inside the ‘horizon surface’ at

r = 2M . (1.55)

(Schwarzschild radius). The lines labelled by the t coordinate can no longer
be interpreted as time lines due to the change of sign of the corresponding
coefficient in (1.54). However, one can always build up a composite metric
by matching a suitable interior (non-vacuum) metric to the exterior region of
(1.54), outside the Schwarzschild radius. The interior metric itself needs not
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be static: one could even use a FRW metric corresponding to pressureless fluid
(dust) to model the spherical collapse of an isolated dust ball (Oppenheimer-
Schneider collapse).

The same idea works backwards: one can consider the Schwarzschild metric
(1.54) as describing an spherical void in an expanding FRW dust universe. As
far as the FRW metrics are homogeneous, one can get an arbitrary distribution
of non-overlapping voids in this way. This is known as the Einstein-Strauss
‘Swiss cheese’ model, in which the static local metrics are compatible with the
overall cosmological evolution.

1.3.3 Analytical and Numerical Approximations

Symmetry considerations can be of great help for building exact models of
simple configurations. These simplified models can even serve as a guide for
describing systems departing from the given symmetry by some amount: one
can consider these symmetry deviations as a perturbation of the exact model.
But more complex configurations, like the ones commonly encountered in
Astrophysics, with a lot of details to be accounted for, can be very far from
any symmetry, so that perturbations around a symmetric background could
not be used in a consistent way. This is why one can consider using some other
approximation scheme in order to handle with such more realistic models up
to the required accuracy level.

The weak field approximation scheme consists in replacing the exact line
element by some perturbation series starting with the Minkowski metric of
Special Relativity. The adimensional quotient M/R is used as the perturbation
parameter, where M is the typical mass of the objects considered and R the
typical distance of the configuration. This approach works fine in astrophysical
scenarios involving ordinary stars, like our Sun, where

M = 1.47 km , R = 7 105 km , (1.56)

and even in the vicinity of a neutron star (R = 10 km for the same mass). It
can also be combined with the slow motion approximation scheme, where V/c
is the adimensional parameter, V being the typical speed of the problem.

But all these schemes fail in the most extreme scenarios, where one has
both strong fields and high speeds: Supernova explosions, matter accretion
into a Black Hole or the late stages of a binary system, when the two orbiting
bodies merge into a single compact object. These are not just curiosities that
can be left aside from our research agenda. On the contrary, these astrophysi-
cal configurations are very good candidates as gravitational wave sources. This
is because the effects on Earth of gravitational waves coming from deep space
are so tiny that one needs something really dramatic at the source (strong
fields evolving really fast) in order to have a chance, even a small one, for de-
tecting it. You can see [2] and [3] for an overview of the current interferometer
and resonant (bar or sphere) detection facilities, respectively.
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This is where Numerical Relativity comes into play. Numerical approxima-
tions do not rely on the smallness of physical parameters, that could prevent
to apply it to some otherwise interesting physical situations. The approxi-
mation here consists on the discretization of the continuous set of arbitrary
functions. Any function f is replaced by a finite set of values

f(t) → {f (n)} (n = 1, . . . , N) . (1.57)

The term discretization comes precisely from the fact that the continuous set
of values of f is replaced by a discrete (and finite) set of N numbers. The
adimensional parameter related to the order of the numerical approximation
is just 1/N , independently of the physics of the problem. This is why one can
apply numerical approximations to any physical situations, without having to
restrict oneself to any particular dynamical regime.

The discrete set of values {f (n)} can be constructed in different ways,
depending on the particular numerical approach which is being used:

• In the Spectral Methods approach, the values f (n) correspond to the
coefficients of the development of the function f in a series of some specific
set of basis functions {φ(n)}, namely

f =
N∑
1

f (n)φ(n) . (1.58)

• In the Finite Elements approach, the values f (n) correspond rather to
the integrals of the function f over a set of finite domains with volume Vn,
namely

f (n) =
∫

Vn

f dV . (1.59)

Notice that it can be formally consider as a particular case of the spectral
methods approach by choosing the basis functions φ(n) to be zero outside
the corresponding volume Vn.

• In the Finite Difference approach, the continuous spacetime itself is re-
placed by a lattice of points (numerical grid). The values f (n) are just the
values of the function f for this discrete set of grid points. In the case of
the time dependence, for instance, one has

f (n)(t) = f(tn) . (1.60)

This can be formally interpreted as the limit case of the Finite Elements
approach when the volumes Vn tend to zero, so that the set of (normalized)
basis functions {φ(n)} tends to a set of Dirac delta functions.

Although all these approaches are currently used to deal with the space
variables, time evolution in Numerical Relativity is usually dealt with finite
differences (1.60). This can be interpreted as describing spacetime by a series
of snapshots, step by step, like in a movie film. In the following section, we
will see how to reformulate the field equations in order to keep with this
description.
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The Evolution Formalism

2.1 Space Plus Time Decomposition

The general covariant approach to General Relativity is not adapted to our
experience from everyday life . The most intuitive concept is not that of
spacetime geometry, but rather that of a time succession of space geometries.
This ‘flowing geometries’ picture could be easily put into the computer, by
discretizing the time coordinate, in the same way that the continuous time
flow of the real life is coded in terms of a discrete set of photograms in a
movie.

In this sense, we can say that General Relativity theory, when compared
with other physical theories like electromagnetism, has been built upside
down. In Maxwell theory one starts with the everyday concepts of electric
charges, currents, electric and magnetic fields. One can then write down a
(quite involved) set of field equations, Maxwell equations, that can be easily
interpreted by any observer. Only later some ‘hidden symmetry’ (Lorentz in-
variance) of the solution space is recognized, and this allows to rewrite Maxwell
equations in a Lorentz-covariant form. But the price to pay is gluing charges
and currents on one side, and electric and magnetic fields on the other, into
new four-dimensional objects that obscure the direct relation to experience of
the original (three-dimensional) components.

In General Relativity, we have started from the top, so that we must go
downhill, in the opposite sense:

• By selecting an specific (but generic) time coordinate.
• By decomposing every four-dimensional object (metric, Ricci and stress-

energy tensors) into more intuitive three-dimensional components.
• By writing down the (much more complicated) field equations that translate

the manifestly covariant ones (1.31) in terms of these three-dimensional
pieces.

General covariance will then become a hidden feature of the resulting
‘3+1 equations’. The equations themselves will no longer be covariant under

C. Bona and C. Palenzuela Luque: Elements of Numerical Relativity, Lect. Notes Phys. 673,
19–39 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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a general coordinate transformation. But, as far as the solution space will be
the same as before making the decomposition, general coordinate transforma-
tions will still map solutions into solutions (as it happens with Lorentz trans-
formations in Maxwell equations). The underlying invariance of the equations
under general coordinate transformations is then preserved when performing
the 3+1 decomposition. General covariant four-dimensional equations just
show up this invariance in an explicit way.

2.1.1 A Prelude: Maxwell Equations

Maxwell equations are usually written as

∇ · E = 4πρ (2.1)
∇ · H = 0 (2.2)

−∂t E + ∇× H = 4πj (2.3)
∂t H + ∇× E = 0 (2.4)

where it is clear that the charge and current densities, ρ and j, act as the
sources of the electric and magnetic fields, E and H.

The second pair of equations (2.3, 2.4) can be interpreted as providing a
complete set of time evolution equations for the electric and magnetic fields
(evolution system), whereas the first two equations (2.1, 2.2) do not contain
time derivatives and can be interpreted then as constraints. These constraints
are first integrals of the evolution system if we allow for the charge continuity
equation, namely

∂t ρ + ∇ · j = 0 . (2.5)

Now, we can start joining pieces. The charge and current densities can be
combined to form a four-vector Jµ,

Jµ ≡ (ρ, j) . (2.6)

The electric and magnetic fields can be combined in turn to form an antisym-
metric tensor, namely

Fµν ≡
(

0 −Ej

Ei Fij

)
, Fij ≡ εijkHk (2.7)

(electromagnetic field tensor)
The pair (2.1, 2.3) of Maxwell equations can then be written in the mani-

festly covariant form
∇ν Fµν = 4π Jµ , (2.8)

whereas the other pair (2.2, 2.4) can be written as

∇ρ Fµν + ∇µ Fνρ + ∇ν Fρµ = 0 . (2.9)
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Notice that, allowing for the antisymmetry of the electromagnetic tensor,
the four-divergence of (2.8) leads immediately to the covariant version of the
charge continuity equation (2.5), namely

∇µJµ = 0 . (2.10)

This strongly reminds the General Relativity situation, where Einstein’s equa-
tions (1.31), allowing for the Bianchi identities (1.19), lead to the conservation
of the stress-energy tensor.

2.1.2 Spacetime Synchronization

Coming back to the General Relativity case, the 3+1 spacetime decomposition
is based on two main geometrical elements:

• The first one is the choice of a synchronization. This amounts to foliate
spacetime by a family of spacelike hypersurfaces, so that any spacetime
point belongs to one (and only one) slice. This geometrical construction
can be easily achieved by selecting a regular spacetime function

φ(xµ) (2.11)

such that the level hypersurfaces of φ (defined by φ = const) provide the
desired foliation. In order to consider φ as a local time coordinate, we must
make sure that the resulting slicing is spacelike, namely

gµν∂µφ ∂νφ < 0 . (2.12)

Every single slice can be considered as a three-dimensional manifold. It is
clear that curves on this manifold are also spacetime curves and therefore
the spacetime metric can be directly used for measuring lengths on any
three-dimensional slice. In that way, the three-dimensional metric γij on
every slice is induced by the spacetime metric gµν . The overall picture
can be easily understood by fully identifying the function φ with our time
coordinate, that is

φ(xµ) ≡ t , ∂µφ = δ 0
µ , (2.13)

so that the three-dimensional line element

dl2 = γij dxidxk (i, j = 1, 2, 3) (2.14)

can be obtained from the four-dimensional one by restricting it to the con-
stant time surfaces, namely

γij = gij . (2.15)

• The second ingredient is the choice of a congruence of time lines. The
simplest way is to get it as the integral curves of the system



22 2 The Evolution Formalism

dxµ

dλ
= ξµ , (2.16)

so that the congruence is fully determined by the choice of the field of
tangent vectors ξµ. The affine parameter λ in (2.16) can be chosen to match
the spacetime synchronization by imposing

ξµ∂µφ = 1 . (2.17)

Notice that (2.17) is a very mild condition. It just requires that the time
lines are not tangent to the constant time slices. It does not even demand
the time lines to be timelike, in contrast with the stronger requirement
(2.12) for the time slices (see Fig. 2.1).

Again, the meaning of (2.17) is more transparent if we use φ as the local
time coordinate, that is (2.13),

ξµ = δ µ
0 , (2.18)

so that the time lines equation (2.16) can be trivially integrated

x0 = t , xi = constant (2.19)

We will focus first in the analysis of the time slicing. To do this, we will
use normal coordinates, so that the time lines are chosen to be normal to the
constant time slices. In this way we refrain from using the three extra degrees
of freedom that would allow us to freely choose the tangent vector field ξ.
Here we will not use any other ingredient that the slicing itself: we restrict
ourselves then to the trivial choice

Fig. 2.1. The time slicing and the congruence of time lines. Time lines are not
necessarily timelike, but they can not be tangent to the spacelike slices: they must
‘thread’ them. Notice that the slicing provides a natural choice of the affine para-
meter along the time lines
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ξµ ∼ ∂µφ , (2.20)

or, in local adapted coordinates (2.13),

g0i = 0 (2.21)

(normal coordinates). The line element can then be written, allowing for (2.15,
2.21) as

ds2 = −α2dt2 + γij dxidxj , (2.22)

where the factor α relates the coordinate time t with the proper time τ

dτ = α dt . (2.23)

It follows that the factor α (lapse function) gives us the rate at which
proper time is elapsed along the normal lines (the time lines in normal coor-
dinates). Notice that the lapse function can take different values at different
spacetime points. This means that the amount of proper time elapsed when
going from one slice to another can depend on the location. On the contrary,
the amount of elapsed coordinate time is, by construction, independent of the
space location (see Fig. 2.2). The particular case in which the lapse function
α is constant corresponds to the geodesic slicing (the name will be justified in
the next subsection). The combination of geodesic slicing plus normal space
coordinates is known as the Gauss coordinate system.

Fig. 2.2. The same time slicing is plotted by using either the local coordinate
time (left) or the proper time (right) as the vertical coordinate. We have chosen a
particular lapse function α such that proper time evolution slows down in the central
region, while keeping a uniform rate elsewhere. This lapse-related degree of freedom
will be of great help in numerical simulations of gravitational collapse, where we
will like to freeze proper time evolution in the regions where a collapse singularity
is going to be formed (singularity avoidance). This local proper time freezing does
not affect the coordinate time evolution, represented in the left-hand-side plot, so
numerical simulations can keep running
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2.1.3 The Eulerian Observers

As stated before, in normal coordinates the congruence of time lines is pro-
vided by the slicing itself. We can view this congruence as the world lines of
a field of observers which are at rest with respect to the spacetime synchro-
nization (Eulerian observers). Their four-velocity field uµ coincides, up to a
sign, with the field of unit normals nµ to the slices

nµ = α ∂µφ , gµνnµnν = −1 . (2.24)

The relative sign comes from the normalization condition (2.17), that is

uµ = −nµ , uµnµ = 1 . (2.25)

In normal adapted coordinates, we have

uµ =
1
α

δµ
0 , nµ = α δ 0

µ , (2.26)

so that the tangent vector field u points forward in time.
The motion of any set of observers, represented by a congruence of time

lines, can be decomposed into different kinematical pieces as follows

∇µuν = −uµu̇ν + ωµν + χµν , (2.27)

where every piece describes a different feature of the motion:

• Acceleration, described by the four-vector

u̇µ ≡ uρ∇ρuµ . (2.28)

It is the only non-trivial projection of (2.27) along uµ.
• Vorticity, described by the antisymmetric tensor ωµν . It is the antisym-

metric part of the projection of (2.27) orthogonal to uµ (ωµνuν = 0).
• Deformation, described by the symmetric tensor χµν . It is the symmetric

part of the projection of (2.27) orthogonal to uµ (χµνuν = 0). It can be
further decomposed into its trace, the expansion scalar

θ ≡ tr(χ) , (2.29)

and its traceless part, the shear tensor

σµν = χµν − θ

3
(gµν + uµuν) . (2.30)

In the case of the Eulerian observers, there is no vorticity because, by con-
struction, they are orthogonal to the constant-time hypersurfaces. Their mo-
tion is then characterized only by the acceleration vector and the deformation
tensor. In adapted normal coordinates, allowing for (2.22), the acceleration
vector is given by



2.2 Einstein’s Equations Decomposition 25

u̇µ = (0, ∂i lnα) , (2.31)

so that the choice of a constant lapse corresponds to the inertial motion (free
fall) of the Eulerian observers (this justifies the term ‘geodesic slicing’ we used
in the previous subsection for the α = constant case).

The deformation tensor of the Eulerian observers consists also on space
components only when written in adapted normal coordinates, namely,

χµν =
(

0 0
0 −Kij

)
. (2.32)

The three-dimensional symmetric tensor Kij in (2.32) is known as the extrinsic
curvature of the slicing, whereas the minus sign in (2.32) arises from the sign
convention (2.25).

The extrinsic curvature can be easily computed from (2.27). In normal
adapted coordinates (2.26), we have

Kij = − 1
2α

∂t γij . (2.33)

Notice that Kij admits then a double interpretation:

• From the time lines point of view, it provides the deformation χµν of the
congruence of normal lines, as it follows from (2.27, 2.32).

• From the slices point of view, it provides, up to a one half factor, the Lie
derivative of the induced metric γij along the field of unit normals nµ, as it
follows from (2.25, 2.27), and the space components of the four-dimensional
identity

Ln(gµν) = ∇µnν + ∇νnµ . (2.34)

Of course, these two points of view are equivalent, because the congruence of
normal lines can be obtained from the slicing in a one-to-one way.

2.2 Einstein’s Equations Decomposition

2.2.1 The 3+1 Form of the Field Equations

Let us summarize the results of the previous section:

• We have decomposed the four-dimensional line element into the 3+1 normal
form (2.22), where the distinct geometrical meaning of the lapse function
α and the induced metric γij has been pointed out. This is analogous to
decompose the electromagnetic tensor into its electric and magnetic field
components.

• Einstein’s field equations, contrary to Maxwell ones, are of second order.
This means that one needs also to decompose the first derivatives of the
four-dimensional metric. We have started doing so in the previous subsec-
tion, where we have identified the pieces describing either the acceleration
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or the deformation tensor of the Eulerian observers (the lapse gradient and
the extrinsic curvature Kij of the slices). The remaining first derivatives
can be easily computed in terms of the pieces we have got (see Table 2.1,
where the full set of connection coefficients is displayed).

Table 2.1. The 3+1 decomposition of the four-dimensional connection coefficients.
Notice that the symbol Γ̂ µ

ρσ stands for the connection coefficients of the four-
dimensional metric, whereas in what follows we will note as Γ k

ij the connection
coefficients of the induced three-dimensional metric γij

Γ̂ 0
00 = ∂t ln(α) Γ̂ k

00 = αγkj∂j α

Γ̂ 0
i0 = ∂i ln(α) Γ̂ k

i0 = −αγkjKij

Γ̂ 0
ij = −1/α Kij Γ̂ k

ij = Γ k
ij

We have then for the moment a complete decomposition of the ‘left-hand-
side’ of the field equations. The corresponding decomposition of the source
terms is just the well known decomposition of the four-dimensional stress-
energy tensor Tµν into parts which are either longitudinal (aligned with nµ),
transverse (orthogonal to nµ) or of a mixed type, namely:

• The energy density
τ ≡ 8π Tµνnµnν (2.35)

• The momentum density

Si ≡ 8π Tµ
i nµ (2.36)

• The stress tensor
Sij ≡ 8π Tij , (2.37)

which names arise from the physical interpretation that can be made from
the point of view of the Eulerian observers (the 8π factors are included here
for further convenience).

Now we are in position to translate the four-dimensional field equations
(1.31) in terms of the 3+1 quantities. We will reproduce here for clarity the
original equations in terms of the four-dimensional connection coefficients, so
that we can apply the results of Table 2.1 in an straightforward way:

∂ρΓ̂
ρ
µν − ∂µΓ̂ ρ

ρν + Γ̂ ρ
ρλΓ̂λ

µν − Γ̂ ρ
λµΓ̂λ

ρν = 8π

(
Tµν − 1

2
Tλ

λ gµν

)
. (2.38)

The space components of (2.38) can then be written, after some algebra,
as

1
α

∂tKij = − 1
α

∇iαj +Rij − 2K2
ij + trK Kij −Sij +

1
2

(trS − τ) γij , (2.39)
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where the covariant derivatives and the Ricci tensor on the right-hand-side
are the ones obtained by considering every slice as a single three-dimensional
surface with metric γij (traces are taken with the inverse matrix γij). The
same can be done with the mixed (0i) components, namely

0 = ∇j (Ki
j − trK δi

j) − Si , (2.40)

where we get a first surprise: no time derivative appears on the left-hand-side.
The remaining component of (2.38), the (00) one, leads in turn to

1
α

∂t trK = − 1
α

�α + tr(K2) +
1
2

(trS + τ) . (2.41)

This is also surprising, because the time derivative of the trace of Kij can be
obtained also from the space components equation (2.39). If we do so, we get
by substituting the result into (2.41),

0 = tr R + (tr K)2 − tr(K2) − 2τ , (2.42)

where again no time derivative appears, like in (2.40).

2.2.2 3+1 Covariance

General covariance is lost when decomposing the four-dimensional field equa-
tions (2.38) into their 3+1 pieces (2.39, 2.40, 2.42). As far as the solution space
has not been changed in the process, general coordinate transformations still
map solutions into solutions: the underlying invariance of the theory is in-
tact. The four-dimensional, general covariant, version (2.38) just makes this
underlying invariance manifest.

This does not mean, however, that covariance is completely lost. A closer
look to the right-hand-side terms of the 3+1 system (2.39–2.42) shows that
they are actually covariant under general space coordinate transformations

yi = F i(xj , t) , (2.43)

which preserve the geometry of every single slice. They are also unchanged
under an arbitrary time coordinate rescaling

t′ = G(t) , (2.44)

which affects just the labelling of the slices, but not the slicing itself. We will
call in what follows ‘3+1 covariance’ the covariance under the restricted set
of slicing-preserving coordinate transformations (2.43, 2.44).

The 3+1 covariance of the right-hand sides of the system (2.39–2.42) fol-
lows from the fact that they are composed of two kinds of geometrical objects:

• three-dimensional tensors, like the metric γij or the Ricci tensor Rij , which
are intrinsically defined by the geometry of the slices, when considered as
individual manifolds
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• pieces which can be obtained from four-dimensional tensors by using the
field of unit normals nµ, which is intrinsically given by the slicing. This is the
case of the three-acceleration ∂i lnα, the deformation (extrinsic curvature)
Kij , and the different projections of the stress-energy tensor.

This means that, in spite of the fact that we have used normal coordinates
in their derivation, equations (2.40) and (2.42) keep true in a generic coor-
dinate system. Before getting a similar conclusion about the tensor equation
(2.39), which contains a time derivative, let us consider the case of the sim-
pler scalar equation (2.41). We know from the previous considerations that
the right-hand-side term will behave as a 3+1 scalar. We will consider now
the transformation properties of the time derivative in left-hand-side step by
step:

• It transforms under (2.43) as(
∂ trK

∂ t

)
x=const

=
(

∂ trK

∂ t

)
y=const

− βk

(
∂ trK

∂ yk

)
t=const

(2.45)

where we have introduced the shift βk:

βk(y, t) ≡
(

∂ yk

∂ xr

)(
∂ xr

∂ t

)
y=const

. (2.46)

• Concerning the time rescaling (2.44), let us notice that the lapse function
is not a 3+1 scalar. It follows from its very definition (2.22) that it will
transform instead as

α′ = α

(
∂ t

∂ t′

)
, (2.47)

so that the combination
1
α

∂t (2.48)

is preserved. Notice that the rescaling factor in (2.47) is independent of the
space coordinates, so that the three-acceleration ∂i lnα transforms as a 3+1
vector, as expected.

Putting these results together, it follows that the generic form of equation
(2.41) can be obtained from their expression in normal coordinates by the
following replacement

1
α

∂t trK → 1
α

(∂t − βk∂k) trK . (2.49)

The 3+1 covariance of the resulting expression is clear if we notice that it has
the intrinsic meaning of ‘taking the proper time derivative of trK along the
normal lines’, no matter what is our coordinate system. The same idea can
lead to the corresponding generalization of the tensor equation (2.39), or any
other of the same kind, by using as a rule of thumb the generic replacement

1
α

∂t → 1
α

(∂t − Lβ) . (2.50)
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2.2.3 Generic Space Coordinates

It follows from the previous considerations that the full set of Einstein’s field
equations can be decomposed in a generic coordinate system as follows:

1
α

(∂t − Lβ) γij = −2Kij (2.51)

1
α

(∂t − Lβ) Kij = − 1
α

∇i αj + Rij − 2K2
ij + trK Kij

−Sij +
1
2

(trS − τ) γij (2.52)

0 = ∇j (Ki
j − trK δi

j) − Si (2.53)
0 = tr R + (tr K)2 − tr(K2) − 2τ . (2.54)

A simpler version, in Gauss coordinates, was obtained by Lichnerowicz [4].
It was extended to the general case, although in the tetrad formalism, by
Choquet-Bruhat [5]. The particular version presented here is the one which
became popular from the work of Arnowitt, Deser and Misner (ADM) about
the Hamiltonian formalism [6], and they are often referred as ADM equations
for that reason. We will refer instead to (2.51–2.54) as the 3+1 field equations,
preserving the ADM label for the developments that followed.

The time-dependent space coordinates transformation (2.43), when ap-
plied to the line element (2.22), transforms it to the general form

ds2 = −α2dt2 + γij (dyi + βidt) (dyj + βjdt) , (2.55)

where it is clear that the new time lines y = constant are no longer orthogonal
to the constant time slices. The decomposition (2.55) is actually the most
general one, where the four coordinate degrees of freedom are represented by
the lapse α and the shift βk, whereas the normal coordinates form (2.22) is
recovered only in the vanishing shift case.

Using a non-zero shift is certainly a complication. For instance, the inverse
matrix of the four-dimensional metric is given by

ĝ00 = − 1
α2

, ĝ0i =
1
α2

βi , ĝij = γij − 1
α2

βi βj , (2.56)

and the connection coefficients contain now much more terms (see Table 2.2).
There are physical situations, however, in which a non-zero shift can be

very convenient, for instance:

• When rotation is an important overall feature (spinning black holes, binary
systems, etc.). If we want to adapt our time lines to rotate with the bodies,
then we can not avoid vorticity and normal coordinates can no longer be
used. The shift choice will be then dictated by the overall motion of our sys-
tem, so that our space coordinates will rotate with the bodies (co-rotating
coordinates).
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• When one needs to use space-like (‘tachyon’) time lines. As discussed before,
this is allowed provided that the constant time slices remain space-like. But
one can not have both things in normal coordinates: the squared norm of
the vector ξµ = δµ

0 , tangent to the time lines is given by

ξ · ξ = −α2 + γrs βrβs , (2.57)

so that one would need a super-luminal shift

|β| > α (2.58)

to do the job. This is mandatory if we want to move a Black Hole across
the numerical domain [7]. This can be also very useful when performing
numerical simulations in the vicinity of a Black Hole, if we want to prevent
the horizon from growing too fast, enclosing all of our numerical grid before
we have enough time to properly study the exterior region [8, 9, 10].

Table 2.2. Same as Table (2.1) for the generic coordinates case. The symbol ∇
stands here for the covariant derivative with respect to the induced metric γij

Γ̂ 0
00 = (∂tα + βkαk − Kijβ

iβj)/α Γ̂ 0
i0 = (∂i α − Kijβ

j)/α

Γ̂ k
00 = γkj [∂tβj + α αj − 1/2 ∂j(γrsβ

rβs)] − βkΓ̂ 0
00 Γ̂ k

ij = Γ k
ij − βkΓ̂ 0

ij

Γ̂ k
i0 = −α K k

i + ∇iβ
k − βkΓ̂ 0

i0 Γ̂ 0
ij = −1/α Kij

2.3 The Evolution System

2.3.1 Evolution and Constraints

The 3+1 decomposition (2.51–2.54) splits Einstein’s field equations into two
subsets of equations of a different kind:

• Evolution equations. These govern the time evolution of the basic dy-
namical fields {γij , Kij}, that is (2.51) and:

(∂t − Lβ) Kij = −∇i αj + α

[
Rij − 2K2

ij + trK Kij

−Sij +
1
2

(trS − τ) γij

]
, (2.59)

where, as stated before, no evolution equation is provided for any of the
kinematical (coordinate gauge) fields {α , βi}.
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• Energy and Momentum constraints. These are constraints on the ex-
trinsic curvature components Kij and their space derivatives:

E ≡ 1
2

[ tr R + (tr K)2 − tr(K2) ] − τ = 0 (2.60)

Mi ≡ ∇j (Ki
j − trK δi

j) − Si = 0 . (2.61)

The names of energy and momentum correspond to the matter terms ap-
pearing in each equation.

Notice that we can always re-combine the equations, leading to different
partitions of the full system. The constraint subset (2.60, 2.61), however, can
be univocally characterized as the one in which no time derivative of Kij

appears. This is not the case of the evolution subset: the one we have got with
(2.59) will be called the Ricci evolution system, because it corresponds to the
space components of the four-dimensional Ricci tensor, as it was obtained
in (2.39). One can use the energy constraint (2.60) to cancel out the energy
density τ contribution in (2.59), so that the evolution subsystem will consist
now in (2.51) plus

(∂t − Lβ) Kij = −∇i αj + α [Rij − 2K2
ij + trK Kij − Sij ]

−α

4
[ tr R + (tr K)2 − tr(K2) − 2 tr S ] γij . (2.62)

The subset (2.51, 2.62) will be called Einstein evolution system, because it
can be obtained from the space components of the four-dimensional Einstein
tensor, as it can be easily seen from the matter terms appearing there. Al-
though the Ricci and the Einstein evolution systems are not equivalent when
considered independently, the complete set formed by any of them plus the
energy and momentum constraints is the same one, the individual equations
being just combined in different ways. We will make use of this re-combination
freedom in what follows.

2.3.2 Constraints Conservation

A first look at the 3+1 version (2.59–2.61) of the field equations shows its
strong resemblance with the non-covariant form (2.1–2.4) of Maxwell equa-
tions, where there is also a subset of evolution equations (2.3–2.4) for the
basic dynamical fields {E,H} and a subset of constraints (2.1–2.2) on their
space derivatives. The question arises whether the time derivative of the con-
straints, allowing for the evolution equations, would lead to new constraints.
In the case of Maxwell equations, one can easily verify that this is not the
case by taking the time derivatives of (2.1–2.2) and using both the evolution
equations (2.3–2.4) and the charge conservation equation (2.5). This means
that the constraints are first integrals of the full evolution system: they are
preserved during time evolution. The four-dimensional version of Maxwell
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equations (2.8, 2.9) gives us the key to understand this result: both sides are
conserved. The left-hand side is conserved by the antisymmetry of the elec-
tromagnetic field tensor Fµν , whereas the conservation of the right-hand-side
amounts to that of the charge-current four-vector Jµ (2.10).

In the case of the Einstein equations, the straightforward procedure of
taking the time derivatives of the constraints (2.60–2.61) and then using the
evolution equations (2.59) is impractical, even using an algebraic computing
program. One can however take advantage of the lesson learned in the Maxwell
case and look instead to the four-dimensional form of the field equations (1.26),
where again we find that both sides are conserved. The Einstein tensor Gµν

on the left-hand side is conserved due to the contracted Bianchi identities
(1.19), whereas the conservation of the right-hand-side amounts to that of
the stress-energy tensor Tµν (1.25). This is the idea that we advanced when
discussing equation (1.29).

We will address here this point in a more detailed way. Let us start by
deriving the 3+1 version of (1.25). The most convenient way is to follow the
standard procedure, that is

• by computing it first in normal coordinates.
• by expressing the results in terms of 3+1 covariant quantities
• by using then the standard replacement (2.50) to get the general expression,

valid in any coordinate system.

We give just the final result:

1
α

(∂t − Lβ) τ + ∇j Sj = τ trK − 2Sj ∂j lnα + Kij Sij (2.63)

1
α

(∂t − Lβ) Si + ∇j S j
i = Si trK − S j

i ∂j lnα − τ ∂i lnα , (2.64)

which is the 3+1 version of the general covariant equation (1.25) (remember
that all the indices are raised and lowered here with the induced metric γij).

In the same way, we can also translate into the 3+1 language the cor-
responding conservation equation (1.29) for the difference between the left-
hand-side and the right-hand-side of Einstein’s field equations, namely

1
α

(∂t − Lβ) E + ∇j Mj = E trK − 2Mj ∂j lnα + Kij Pij (2.65)

1
α

(∂t − Lβ) Mi + ∇j P j
i = Mi trK − P j

i ∂j lnα − E ∂i lnα , (2.66)

where we have noted
Pij ≡ Gij − 8π Tij . (2.67)

Now we can see how any eventual deviation from the energy and momentum
constraints { E ,Mi} would propagate, assuming that the time evolution is
given by the Einstein system (2.62):
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Pij = 0 (2.68)
1
α

(∂t − Lβ) E + ∇j Mj = E trK − 2Mj ∂j lnα (2.69)

1
α

(∂t − Lβ) Mi = Mi trK − E ∂i lnα . (2.70)

The corresponding result for the Ricci evolution equation (2.59) can be ob-
tained in an analogous way, by substituting the corresponding condition

Pij = E γij (2.71)

into the full system (2.65, 2.66). Independently of the choice, the resulting
expression will be a linear homogeneous system on { E ,Mi}, so that our state-
ment that the vanishing of such quantities provides a set of first integrals of
the evolution equations holds true, as anticipated from the four-dimensional
version (1.29).

2.3.3 Evolution Strategies

The structure of the 3+1 field equations (2.59–2.61) is so similar to that
of the Maxwell equations (2.1–2.4), that one can get some inspiration for
the equation-solving strategies in electromagnetism in order to do the same
in the gravitational case. One can start by solving the constraint equations
(2.60, 2.61) to compute up to four of the six dynamical degrees of freedom
(represented here by the components of the extrinsic curvature Kij). As far
as the constraints are first integrals of the evolution system, the remaining
equations (2.59) can be used later for computing the two remaining dynamical
degrees of freedom.

This ‘constrained evolution’ approach is specially convenient in astrophys-
ical scenarios where the general relativistic effects can be described as lower
order corrections to the Newtonian Gravity ones. This is because Newtonian
Gravity is completely analogous to electrostatics, in the sense that the time
evolution of the fields is not provided by the equations. The constraints (2.60,
2.61) contain then all the Newtonian effects whereas genuine relativistic ef-
fects, like the field dynamics leading to gravitational waves, must be found
instead in the evolution subset (2.59). One could say that the constraints
contain all the dynamical degrees of freedom, apart from the two of them cor-
responding to gravitational radiation and the ones related with the coordinate
gauge freedom, as we will justify later.

From the Numerical Relativity point of view, the constrained evolution
approach, although it can be useful to deal with specific physical situations,
is not very convenient for building a general purpose code. There are many
reasons for this:

• Constraint equations (2.60, 2.61) are of elliptic type (exemplified by the
Laplace equation). This means that particular solutions are of a non-local
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nature: they depend strongly on boundary conditions and any local pertur-
bation spreads immediately all over the numerical domain. Spectral meth-
ods are specially suited for elliptic equations: they allow to put the outer
boundary very far away, even at infinity, where one can set up very reli-
able boundary conditions, and they usually provide smooth and accurate
solutions without consuming too much computational resources.

• Evolution equations (2.59), on the contrary, are more close to the hyperbolic
type (exemplified by the wave equation), in the sense that local perturba-
tions propagate over the numerical domain with some finite characteris-
tic speed. This allows the appearance of non-smooth perturbations, even
shocks, that are very difficult to deal with using spectral methods. Either
finite differences or finite elements discretization are the numerical methods
of choice for hyperbolic equations.

• There is no generical way of algebraically splitting the dynamical degrees
of freedom in order to single out the ones corresponding to gravitational
radiation. As we will see in the next section, such an algebraic splitting can
only be done if one knows in advance the gravitational waves propagation
direction. This could be the case in highly symmetrical cases: the gravita-
tional radiation degrees of freedom can be just neglected in the spherical
case, so that the radial direction could be used in problems with approxi-
mate spherical symmetry. But there is no such rule for the generic case that
could be used in a general-purpose numerical code.

The obvious alternative to the constrained evolution approach is to use
just the six evolution equations (2.59) to compute everything. The constraints
(2.60, 2.61) could be enforced just on the initial and boundary data, because
they are first integrals of the evolution system and this would be enough to
ensure their validity inside the computational domain. One can even use the
constraints as a quality check of the calculations. This approach, named ‘free
evolution’ [11], continues to be by far the most commonly used in Numerical
Relativity codes, usually implemented with either finite differences or finite
elements discretization. This approach has very deep theoretical and practical
implications, which will be discussed thoroughly in the next chapter.

2.4 Gravitational Waves Degrees of Freedom

2.4.1 Linearized Field Equations

Let us come back to the full set (evolution plus constraints) of 3+1 equations
(2.51–2.54). To avoid coordinate complications, we will choose Gauss coor-
dinates, that is normal coordinates (zero shift) and Geodesic slicing (with
α = 1), that is

ds2 = −dt2 + γ ij dxi dxj . (2.72)

As discussed in the previous chapter, any metric can be written down at a
given spacetime point P in a locally inertial coordinate system such that the
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first derivatives of the metric coefficients vanish at P. Then, as we can get as
close as we want to P, we can safely split the space metric in (2.72) into two
components:

• An Euclidean (flat) background of the form

α0 = 1 , γ0
ij = δij . (2.73)

• A linear perturbation which, when superimposed to the background, allows
one to recover the full metric

δγij = γij − γ0
ij . (2.74)

For further convenience, we will relax here the geodesic slicing condition,
allowing also for linear perturbations of the lapse function, namely

δα = α − α0. (2.75)

Of course, as far as the extrinsic curvature can be obtained from the first time
derivative of the space metric, one must have for consistency

K0
ij = 0 , δKij = Kij . (2.76)

We can substitute the perturbations (2.74–2.76) into the 3+1 equations
(2.51–2.54) for the vacuum case. We get, up to the linear order:

∂t (δγij) = −2 (δKij) (2.77)
∂t (δKij) = −∂2

ij (δα) + δRij (2.78)
0 = δrs[∂r (δKsi) − ∂i (δKrs)] (2.79)
0 = tr (δR) , (2.80)

where the trace is computed with the flat background metric (2.73) and the
linear order expression for the Ricci tensor is given by

δRij = −1
2

δrs[∂2
rs(δγij) + ∂2

ij(δγrs) − ∂2
ir(δγjs) − ∂2

jr(δγis)] . (2.81)

2.4.2 Plane-Wave Analysis

In order to fully analyze the linear system (2.77–2.80), it is convenient to
Fourier-transform the local perturbation and look at the behavior of a generic
plane-wave component, propagating along a given direction ni, namely

δα = ei ω·x a(ω, t) (2.82)
δγij = ei ω·x hij(ω, t) (2.83)
δKij = ei ω·x kij(ω, t) , (2.84)

where ωk = ω nk, δ ij ni nj = 1.
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Now we can translate the partial differential equations system (2.77–2.80)
into the ordinary differential equations one

∂t hij = −2 kij (2.85)
∂t kij = ω2/2 [hij − ni hnj − nj hni + (tr h + 2 a)ni nj ] (2.86)

0 = kni − ni tr k (2.87)
0 = tr h − hnn , (2.88)

where the symbol n replacing an index means contraction with ni. It is then
useful to decompose the Fourier modes into longitudinal (aligned with the
propagation direction ni) and transverse components (tangent to the wave-
fronts, which are the surfaces orthogonal to ni). One gets then three different
types of modes, according to their time evolution:

• Three static modes, as we get from (2.87):

∂t (hni − ni tr h) = −2 (kni − ni tr k) = 0 (2.89)

• One gauge mode, which evolution is fully determined by lapse perturba-
tions,

∂t tr h = −2 tr k , ∂t tr k = ω2 a , (2.90)

where we have used (2.88)
• Two wave modes, oscillating with the Fourier frequency ω,

∂t h⊥⊥ = −2 k⊥⊥ , ∂t k⊥⊥ = ω2/2 h⊥⊥ , (2.91)

where the symbol ⊥ replacing an index means the projection orthogonal to
ni. There are only two independent modes in (2.91), because the trace part
vanishes if we allow for (2.88), that is

tr (h⊥⊥) = tr h − hnn = 0 . (2.92)

This static mode was yet included in (2.89).

Let us focus in the gauge mode (2.90) for a while. In the Gauss coordi-
nate system no lapse perturbations are allowed (a = 0). This means that the
equations allow then for a linear growth of the trace tr h of the metric pertur-
bation, which corresponds to the linear term of the space metric determinant,
namely

γ ≡ det(γij) � 1 + ei ω·x (tr h + · · · ) (2.93)

so that the first equation in (2.90) corresponds to the evolution of the space
volume element

√
γ

∂t
√

γ = −α tr K (2.94)

and the linear gauge mode corresponds then to an overall expansion (or col-
lapse) of the space metric. This is one of the main reasons why Geodesic slicing
is not suitable for numerical simulations, because discretization errors coupled
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with the gauge mode can produce an artificial linear growing which is easily
amplified by the non-linear terms, leading to a numerical blow up. This is why
we have relaxed this condition to allow for generic gauge perturbations.

A much suitable choice in this context would be instead the Maximal
slicing condition,

tr K = 0 , (2.95)

which ensures that the gauge modes are also static (∂t tr h = 0). The time
evolution of tr K is given by (2.41), so that the Maximal slicing condition is
preserved if and only if the lapse function verifies the consistency condition

1
α

�α = tr(K2) +
1
2

(trS + τ) , (2.96)

which reduces to the Laplace equation, up to the linear order, in the vacuum
case.

Maximal slicing has been widely used in Numerical Relativity codes [12,
13], leading to smooth and stable lapse profiles at the cost of solving the
elliptic (Laplace-like) equation (2.96) at every time step. In the non-vacuum
case, equation (2.96) reduces at the linear order to the Poisson-like equation

�(δα) = 4π ρ , (2.97)

where we have considered the mass density ρ as the first order contribution to
the energy density τ (this amounts to consider kinetic and pressure effects as
higher order terms). This is precisely the field equation in Newtonian Gravity

�φ = 4π ρ , (2.98)

which determines the gravitational potential φ for a given mass distribution.
It follows that the lapse perturbation δα can be identified with the gravi-

tational potential φ in the Newtonian limit. This is consistent if we define the
Newtonian limit by the following two conditions:

• We consider perturbations of the Minkowski background up to the linear
order.

• We ignore any evolution effect (apart from the ones produced by the motion
of the sources): this means neglecting gravitational waves, but also enforcing
maximal slicing, as we have seen.

This explains why the maximal slicing condition (2.96) is so effective in pro-
viding smooth lapse profiles, independently of the riddles produced by time
evolution in other field components.

2.4.3 Gravitational Waves and Gauge Effects

Let us summarize now some results from the previous analysis. If we use
normal coordinates with maximal slicing, then, up to the linear order, the
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only dynamical effects on every Fourier component are the ones described by
the two transverse traceless degrees of freedom given by

∂t < h⊥⊥ >= −2 < k⊥⊥ > , ∂t < k⊥⊥ >= ω2/2 < h⊥⊥ > , (2.99)

where we have noted by < · · · > the traceless part, for instance

< k⊥⊥ >≡ k⊥⊥ − 1
2

tr (k⊥⊥) δ⊥⊥ . (2.100)

Equations (2.99) imply that the dynamical behavior of the selected Fourier
component can be described as the one of a plane wave propagating with the
speed of light along the selected direction ni, that is

δ Kij ∼ ei ω(n·x± t) . (2.101)

From the physical point of view, it follows that Gravitational waves should
be transverse and traceless, and should propagate with light speed. One could
wonder whether the fact that gravitational radiation consists of two degrees
of freedom could be anticipated by the following naive balance: six compo-
nents in Kij minus four constraints give precisely two ‘gravitational radiation’
components.

The fallacy in this argument can be easily discovered if one tries to apply it
to Maxwell equations (2.1–2.4). There we have six components in the electric
and magnetic fields, minus two constraints, so that four components are left.
But electromagnetic radiation has only one degree of freedom. This means
that there are non-radiative dynamical contributions to the electromagnetic
field that contribute to the linear order. The true balance should read: six
electromagnetic field components minus two constraints gives four dynamical
degrees of freedom, but only one of them is of a radiative type. In Einstein’s
equations, instead, non-radiative dynamical effects do not show up at the
linear order, where we just find gravitational radiation, aside from eventual
gauge effects.

We have found one such gauge effects: the linear mode (2.90) that appears
when using geodesic slicing. Another kind of gauge effect would show up when
using harmonic slicing, which can be defined as

� t = 0 ←→ ∂t (α/
√

γ) = 0 , (2.102)

where the box symbol stands for the covariant wave operator acting on func-
tions, namely

�Φ ≡ gµν(∂2
µνΦ − Γ̂ ρ

µν∂ρΦ) . (2.103)

The gauge perturbation δα is then dynamically related with the space volume
perturbation. In Fourier space we have

∂t (a − tr h) = 0 (2.104)
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and the gauge mode (2.90) can be written as

∂t a = −tr k , ∂t tr k = ω2 a , (2.105)

which reproduces the same propagation behavior as that of gravitational waves

δα ∼ ei ω(n·x± t) . (2.106)

These ‘gauge waves’ do not describe any physical effect: they are rather
an artifact of the gauge choice. We have introduced the harmonic slicing here
mainly for two reasons

• It provides an oscillatory gauge behavior that is between the linear one
of geodesic slicing and the static one of maximal slicing. We will use a
generalization of this condition it in the next chapter in order to obtain
hyperbolic evolution systems with a view to numerical simulations.

• The direct relationship (2.102) between the lapse function and the space
volume element can be used to avoid collapse singularities in numerical
simulations of black hole spacetimes (singularity avoidance, see Fig. 2.2).
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Free Evolution

3.1 The Free Evolution Framework

3.1.1 The ADM System

As we mentioned in the previous chapter, the ‘free evolution’ approach is by
far the most commonly used today in Numerical Relativity codes. It consists
on using just the evolution equations to compute the full set of dynamical
quantities (γij ,Kij) . We have seen that the subset of evolution equations
is not unique: evolution equations can be modified by adding constraints in
many different ways. This implies that we must distinguish among different
versions of free evolution, depending on the particular variant of the evolution
equations which is selected in each case. The first choice is to take just the
space components of the four-dimensional Ricci tensor, namely

(∂t − Lβ) γij = −2α Kij (3.1)

(∂t − Lβ) Kij = −∇i αj + α

[
Rij − 2K2

ij + trK Kij

−Sij +
1
2

(trS − τ) γij

]
(3.2)

(ADM evolution system).
The constraints are not enforced during evolution, although one can use

the differences

E ≡ 1
2

[ tr R + (tr K)2 − tr(K2) ] − τ = 0 (3.3)

Mi ≡ ∇j (Ki
j − trK δi

j) − Si = 0 (3.4)

as error indicators in order to monitor the quality of the numerical simulations.
The consistency of the free evolution approach relies in the fact that energy

and momentum constraints are first integrals of the evolution system. In the
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previous chapter, we derived this result (2.65, 2.66) from the conservation of
both the Einstein and the stress-energy tensors. In the specific case of the
ADM system (3.1, 3.2), allowing for (2.71), we get the ‘subsidiary system’

1
α

(∂t − Lβ) E + ∇j Mj = 2 E trK − 2Mj ∂j lnα (3.5)

1
α

(∂t − Lβ) Mi + ∇i E = Mi trK − 2 E ∂i lnα , (3.6)

so that it is clear again that Einstein’s solutions will be recovered if and only
if the initial data verify

E = 0 M = 0 . (3.7)

In numerical simulations, however, one must allow for the errors which
are inherent to any approximation. This is why we are interested on using a
well-posed evolution system. By this we mean that small perturbations of the
initial data should not carry us too far away from the original solution (a more
precise definition can be found for instance in [14]). A well-posed evolution
system implies the stability of the solutions at the continuum level, which is
a necessary condition for the stability of numerical solutions. In this way, we
could ensure that violations of the constraints (3.7) arising during numerical
evolution would not grow too fast, so that the numerical solution would be
a consistent approximation to the exact Einstein’s equations solution, to the
required accuracy level.

3.1.2 Extended Solution Space

Let us analyze the situation in more detail. It is clear that the free evolution
approach implies using an extended solution space, even at the continuum
level: less equations to be fulfilled means more solutions. As a consequence,
Einstein’s solutions span just a subset of the extended solution space. This
subset is characterized by the conditions (3.7), which amount to enforce energy
and momentum constraints. This is fully consistent because the subsidiary
system (3.5, 3.6) ensures that the constraints (3.7) are preserved, so that every
true Einstein’s solution remains so during time evolution. As a consequence,
there is a clear cut separation between the original solutions and the extended
ones.

The situation is depicted in Fig. 3.1. The fact that the ADM system (3.1,
3.2) be well-posed would ensure the stability of the extended set solutions
(represented as a rectangle). But true Einstein’s solutions, being a subset of
the extended ones, would also be stable as a result. This means that they
would remain inside their constrained subset (represented as a circle).

Notice also that the extension is not unique: we could choose (2.62)
(Einstein evolution system) instead of (3.2) (Ricci evolution system) for the
time evolution of the extrinsic curvature, and we would get as a result a
different extension of the Einstein’s original solution space.
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Fig. 3.1. The original Einstein’s equations solution space is represented by a circle,
which is contained into the rectangle representing the extended solution space of
the ADM free evolution system. The dotted rectangle in the left drawing represents
a different extension of the original solution space. Stability of the ADM solutions
would mean that the computed solutions would not drift far away from the exact
ones during time evolution. Then, ADM-extended solutions (point A, for instance)
would still be solutions after some time, to the required level of accuracy (they will
not drift outside the rectangle). This would imply also that true Einstein’s equations
solutions (point B, for instance) would remain true solutions, to the required level of
accuracy (they will not drift outside the circle). The plot on the right drawing shows
the effect of a general coordinate transformation, represented here as a mapping with
circular dotted lines. Point A is mapped into point A’, which is outside the ADM-
extended solution space. Point B is mapped instead into B’, which still represents a
true solution

From a different point of view, we must remark that the extended solution
space is no longer invariant under general coordinate transformations. Re-
member that the complete 3+1 version of Einstein’s equations has the same
solution space of the four-dimensional version. This means that a general
coordinate transformation maps solutions into solutions, in spite of the fact
that the equations themselves are covariant only under the restricted set of
transformations (2.43, 2.44) (3+1 Covariance).

The ADM system is still 3+1 covariant, but remember again that we have
obtained it by keeping only the space components of the four-dimensional
equations and neglecting the remaining ones. This way we have broken the
underlying invariance of the full set of Einstein’s solutions, so that general co-
ordinate transformations will no longer map extended solutions into solutions,
as depicted in Fig 3.1.

3.1.3 Plane-Wave Analysis

Let us now apply to the ADM system (3.1, 3.2) the plane-wave analysis, as
we did in the previous chapter for the complete 3+1 system. But we will first
generalize it with a view to further applications:

• The uniform background will be allowed now to take (constant) values
different from the Minkowski ones, that is
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ds2 = −α 2
0 dt2 + γ0

ij dxi dxj . (3.8)

This means that index raising and lowering will be made using γ0
ij , which

can be now different from δij . As a consequence, light rays propagating
in the background along a given direction ni travel with coordinate speed
(space interval versus coordinate time interval)

dxi

dt
= ±α0 ni . (3.9)

• The Fourier components of the linear perturbations will be rescaled as fol-
lows

δα = ei ω·x a(ω, t) (3.10)
δγij = ei ω·x hij(ω, t) (3.11)
δKij = (iω) ei ω·x kij(ω, t) , (3.12)

where we must notice the iω factor in the last definition. This is because
we will look for wave propagation behavior along the chosen direction ni,
that is

ei ω(n·x− v t) , (3.13)

so that the iω factor is expected from the equation (3.1) defining the ex-
trinsic curvature in terms of the metric.

• The harmonic slicing condition (2.102) will be generalized to

∂t ln α = −α f tr K (3.14)

(generalized harmonic slicing), where f is an arbitrary factor that we will
include so that geodesic slicing is recovered for f = 0 and the original
harmonic slicing condition is recovered for f = 1.

One can now substitute the perturbations (3.10–3.12) into the linearized
ADM system plus the coordinate condition (3.14). This is straightforward if
one allows for the expression (2.81) for the three-dimensional Ricci tensor
perturbations. In the vacuum case, one gets

∂t (a/α0) = −iωα0 f tr k (3.15)
∂t hij = −2 iωα0 kij (3.16)
∂t kij = −iωα0/2 [hij − ni hnj − nj hni + (tr h + 2 a/α0)ni nj ] (3.17)

and we will write down this linear system in matrix form:

∂t u = −i ω Au , (3.18)

where u is the array of (the Fourier components of the) perturbations,

u = (a , hij , kij) . (3.19)

The geometric properties of the matrix A (characteristic matrix) are ob-
viously related with the dynamics of the perturbations:



3.1 The Free Evolution Framework 45

• The eigenvectors of A describe modes evolving in time as plane waves (3.13),
provided that their corresponding eigenvalues are real. Notice, however,
that every physical mode will affect some component of both the metric
and its time derivative (the extrinsic curvature), so that it will consist on
two eigenvectors.

• Every (real) eigenvalue provides the propagation speed v of the correspond-
ing characteristic mode (characteristic speeds).

The fact that one has a complete set of eigenvectors corresponding to real
eigenvalues is important from the physical point of view, because it means
that all the modes are wave-like, so that they keep bounded during time
evolution. A first order system verifying this would be said to be ‘strongly
hyperbolic’ [14]. The systems we are considering here are of a mixed type:
first order in time, but second order in space. This is why we will coin the
term ‘pseudo-hyperbolic’ for systems of mixed order with this property. Also,
we will use the term ‘weakly pseudo-hyperbolic’ in this context when all the
eigenvalues are real, but A can not be fully diagonalized, so that the set of
eigenvectors is not complete (the analogous of weak hyperbolicity for fully
first order systems).

In the case of the ADM system, the characteristic matrix can easily put
into a block-diagonal form. One gets from (3.10–3.12) three uncoupled sectors,
containing different types of terms:

• The Transverse sector, given by

∂t h⊥⊥ = −2 iωα0 k⊥⊥ , ∂t k⊥⊥ = −iωα0/2 h⊥⊥ , (3.20)

which consists in six degenerate eigenvectors with light speed v = ±α0 as
their characteristic speed.

• The Mixed sector, given by

∂t hn⊥ = −2 iωα0 kn⊥ , ∂t kn⊥ = 0 , (3.21)

which consists in a four-dimensional degenerate box with zero as the com-
mon eigenvalue, but only two eigenvectors (kn⊥), so that the other two
(hn⊥) can grow linearly with time.

• The Gauge sector, given by

∂t tr h = −2 iωα0 tr k , (3.22)
∂t (a/α0) = −iωα0 f tr k , (3.23)

∂t tr k = −iωα0 a , (3.24)

which can be fully diagonalized in the generic case, with eigenvalues zero
and v = ±

√
f α0 (gauge speed). The only exception is the f = 0 case, which

corresponds to geodesic slicing: the gauge sector can not be fully diagonal-
ized and therefore non-oscillatory growing modes appear, as discussed in
the previous chapter.
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It follows that the ADM system can be at most weakly pseudo-hyperbolic,
when the gauge parameter f is non-negative. But the mixed sector shows
that, independently of gauge considerations, the system can not be pseudo-
hyperbolic in the strong sense so that the linear growing modes in the mixed
sector can not be avoided. This is in contrast with what we got for the full
Einstein system, where either the maximal or the harmonic slicing conditions
allowed us to dispose of such annoying modes. This is the price one pays for
neglecting the constraints in the free evolution approach. We will see in the
next section how high this price can be in numerical simulations and, in the
following ones, how one can modify the ADM system (3.1, 3.2) in order to
obtain free evolution pseudo-hyperbolic systems more suitable for building
numerical codes.

Could we conclude that the ADM system (3.1, 3.2) is well posed?. Well,
it is just a matter of definition. In the mathematical literature, the concept of
‘perturbations growing not too fast’ is defined in a weak way, so that polyno-
mial growth is admissible [14]. In this sense, the linear modes we have found
are not a problem and the ADM system could be well-posed in this weak
sense. But we could adopt on physical grounds a stronger requirement so that
‘perturbations growing not too fast’ is replaced by ‘perturbations having an
upper bound’ and the ADM system can not be well posed in this strong sense.

3.2 Robust Stability Test-Bed

In this section, we will perform a simple numerical test-bed [15] in order to
check out the results of the previous section. The idea is to start from ini-
tial data consisting in a flat background (Minkowski metric) plus a random
perturbation in every dynamical field. The initial level of the random noise
must be small enough to make sure that we are testing just the linear regime,
allowing even for the cumulative effects during the time elapsed in the simu-
lation. One should see then a linear growth of the noise level when using the
weakly pseudo-hyperbolic ADM system, in contrast with the constant noise
level one should get when using any of the pseudo-hyperbolic systems which
will be discussed in the following sections.

Besides its use as a cross-check of analytical calculations, the robust sta-
bility test-bed can be also useful in two other ways:

• As a direct check of the pseudo-hyperbolic character of a given system, when
the analytical calculations are hard to perform, or even when one wants to
explore the non-linear regime.

• As a tool for tuning the numerical methods: fixing the time resolution or
other adjustable parameters in order to keep stability by avoiding at the
same time adding too much numerical dissipation.

We will take advantage of these possibilities here, but let us first introduce
what we consider to be the simplest discretization methods, which will be
used in our test-bed simulations.
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3.2.1 The Method of Lines

The method of lines (MoL) [16] is the generic name of a family of discretization
methods in which the time and space variables are dealt with separately.
This is in keeping with the 3+1 framework, where the natural way of time
discretization is by using finite differences whereas one would like to keep all
the options open for space discretization: finite differences, finite elements or
even spectral methods.

To illustrate the idea, let us consider a ‘semi-discrete’ system in which only
the time coordinate is discretized, whereas space derivatives are kept at the
continuum level, that is

• The evolution of the array u of dynamical fields is written as

∂t u = S (3.25)

where the right-hand side array S contains the remaining terms in the
evolution equations, including the space derivatives ones.

• The continuous flow of time is then approximated by a discrete succession
of instants, labelled as {tn}. The values of the u array at every instant are
then labelled as

u(n) = u(tn) . (3.26)

• The first order approximation for the time evolution between two successive
instants, separated by a time interval ∆t, is provided by the basic Euler step
(forward time difference)

u(n+1) = u(n) + ∆t S(tn,u(n)) . (3.27)

In this way, we are disguising in (3.25) the original system of partial differ-
ential equations (PDE) as a system of ordinary differential equations (ODE),
assuming that we will manage to compute the right-hand-side term S at every
time level, but ignoring for the moment the details. This ‘black box’ approach
allows us to apply the well known ODE discretization techniques to get the
required time resolution, using the Euler step (3.27) as the basic building
block.

A simple Runge-Kutta algorithm would read for instance [17]

S(n) = S(tn,u(n)) (3.28)

u∗ = u(n) + ∆t S(n) (3.29)

u(n+1) =
1
2

u(n) +
1
2

u∗ +
∆t

2
S∗ , (3.30)

so that one gets second order time accuracy, meaning that time discretization
errors are of order (∆t)3, as it can be easily verified by developing (3.30) as a
Taylor series in time around tn . Higher order time accuracy can be achieved
in a similar way.
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‘Dumb’ algorithms, like (3.30), do not incorporate any quality control,
which could adjust dynamically the time step to fulfill some accuracy criterion,
by reducing it when needed to preserve the required accuracy or even by
enlarging it when possible in order to save computational resources. Let us
remember that the preservation of the constraints (3.7) provides such kind of
criteria, so that ‘clever’ algorithms with variable step size can be devised in
a natural way [18]. The only warning is that the discretization of the space
derivatives, which we have ignored for the moment, can set an upper limit
for the size of the time step, dictated by the stability condition of the space
discretization algorithm. We will discuss this in what follows.

3.2.2 Space Discretization

As stated before, the method of lines can be used with any space discretization
method. We will choose here again the finite difference method, so that every
space slice, corresponding to a given instant, will be approximated as a three-
dimensional grid. Every grid node will be labelled by a set of three indices
(i, j, k), one for every coordinate axis. The field values at the grid nodes will
be then represented by the array

ui,j,k = u(t, xi, yj , zk) . (3.31)

The space derivatives in the right-hand-side of (3.25) can be discretized in
many ways. In the simplest case, we will use evenly spaced numerical grids,
so that the space intervals are of constant size along every direction, namely

∆x , ∆y , ∆z . (3.32)

Then we can get second order space accuracy for the partial derivatives easily
by using centered differences. In the case of the first x derivatives, for instance,
the simplest choice is

2 ∂x u ∼ (ui+1,j,k − ui−1,j,k)/∆x , (3.33)

and the same rule can be applied to the other directions. This ‘centering’
strategy can also be applied to second partial derivatives, namely

2 ∂xx u ∼ (ui+1,j,k + ui−1,j,k − 2ui,j,k)/(∆x)2 , (3.34)
4 ∂xy u ∼ (ui+1,j+1,k − ui−1,j+1,k

−ui+1,j−1,k + ui−1,j−1,k)/(∆x∆y) , (3.35)

in order to get again the required second order accuracy.
Numerical grids are obviously of a finite size, so that they must begin and

end at some point along every direction. For these boundary points, one can
no longer use expressions like (3.33) or (3.34), which would require neighbor
nodes on both sides: at least one such neighbors does not exist at the outermost
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grid points. As far as we are not interested in boundary effects for the moment,
we will assume here that our grid has periodic boundaries along every axis
(from the geometrical point of view, this implies the topology of a three-torus).
Allowing for this, we will assume that the last two nodes at the end of any
axis are identical to the first two ones at the beginning, and vice-versa. For
instance:

uN,j,k = u2,j,k , u1,j,k = uN−1,j,k , (3.36)

so that the centered expressions for the first and second partial derivatives
(3.33, 3.34) are applied only for i = 2, . . . N − 1, whereas (3.36) provides the
required values at the boundary points i = 1, N . We are aware that, in most
Numerical Relativity applications, periodic boundary conditions like (3.36)
would not be consistent with the physics of the problem. But for the moment
we are planning to deal just with some test-bed problems, where periodic
boundaries could be assumed consistently, in order to focus on the numerical
treatment of the generic (interior) points.

In the finite difference approach, the set of grid points needed to discretize
space derivatives at a given point P is named as ‘the stencil’. The stencil pro-
vides the numerical domain of dependence of the selected point P, in the sense
that any perturbation at one of the stencil points will change the computed
value at P after a single Euler step (3.27). We can even define the numerical
propagation speed as

vi
num =

s∆xi

∆t
, (3.37)

where s stands here for the stencil size, that is the maximum number of stencil
points besides P along any direction. For instance, we have s = 1 in the second
derivative expressions (3.34), but one could use instead

4 ∂xx u ∼ (ui+2,j,k + ui−2,j,k − 2ui,j,k)/(∆x)2 , (3.38)

which would imply s = 2.
From the physical point of view, as far as our system describes propagation

with some characteristic speeds, the field values at P are causally determined
by the values inside the past half-cone with vertex at P, which slope is given
by (the inverse of) the largest characteristic speed of the system. This provides
the physical domain of dependence of P. In our case, the largest characteristic
speed is either light speed v = α0 or the gauge speed v =

√
f α0 (usually f > 1,

so that gauge speed is actually the largest one).
As seen in Fig. 3.2, depending on the size of the time step ∆t, the physical

domain of dependence of P can be or not fully contained in the numerical
domain of dependence. Consistency requires that the numerical domain of
dependence should contain every point that can have a physical influence on
P. Otherwise the numerical solution is not allowing for the causal behavior
of the dynamical system and this will lead to numerical instabilities, which is
the only way our numerical algorithm has to avoid converging to the physical
solution.
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Fig. 3.2. The numerical domain of dependence of a point P in a finite difference
grid is represented as a dotted triangle, which slope is the inverse of the numerical
propagation speed (s = 1 here). The physical domain of dependence of P is repre-
sented as a dark triangle, which slope is the inverse of the largest characteristic speed
along the given axis. The Courant stability condition is fulfilled in the left drawing,
where the physical domain of dependence is fully contained into the numerical one.
Violating the Courant condition, as depicted in the right drawing, would lead to
numerical instabilities

A necessary condition for numerical stability will be then the Courant
condition, stating that the largest characteristic speed vmax along every given
direction ni can not exceed the corresponding numerical speed,

vmax < ni vi
num . (3.39)

For instance, let us consider the x direction and let us assume f ≥ 1; the
Courant condition (3.39) provides then an upper limit for the numerical time
step, namely

∆t <
s∆x

α0

√
f γ xx

0

. (3.40)

In numerical simulations, the time step limit (3.40) must be checked at
the beginning of every new time level computation. It must be checked at
every grid point and along every axis, keeping always the most restrictive
upper bound on the time step. Usually, an extra safety factor is included, so
that the upper bound gets even more restrictive. This supplementary factor
is usually adjusted by trial and error, either in order to avoid an excess of
numerical dissipation or to suppress other unexpected instabilities.

3.2.3 Numerical Results

Let us now proceed to the numerical simulation. We will set up a cubic grid of
‘only’ 50 points along every axis, with periodic boundary conditions. Although
we have 503 points, the job can be done easily by using a standard personal
computer, even a laptop. Space resolution is not an issue here (we will evolve
just noise), so that the number of points could be reduced as needed: for
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instance, we could take advantage of the periodic boundaries condition to set
up instead a ‘channel’ of 50 × 5 × 5 points if we want a quicker response.

We will measure time in ‘crossing time’ units. This means the time it
would take for a light ray to make a full trip across the numerical grid. We
will choose our time step to be

dt = 0.03 dx . (3.41)

Notice that the light speed value is one in the background (Minkowski) met-
ric, so that the Courant condition (3.40) would allow us to take a time step
even ten times larger. But we prefer to be extremely cautious here about in-
troducing too much numerical dissipation which could artificially lower the
noise level, masking the true properties of the evolution system.

We have plotted in Fig. 3.3 our results for the standard harmonic case
(f = 1). We see the expected linear growth of the ADM system. Notice the
catastrophic exponential growth after some 150 crossing times, revealing a
non-linear instability. We will limit ourselves to discussing the linear regime
as a test for the wave propagation properties of the system. In this sense, the
linear growth of the ADM plot in Fig. 3.3 confirms the weakly hyperbolic
character of the ADM system.

Fig. 3.3. The maximum of (the absolute value of) trK is plotted against the number
of crossing times in a logarithmic scale. The initial level of random noise remains
constant during the evolution in the case of any of the pseudo-hyperbolic systems
that we will describe in what follows (the Z4 one is shown here). In the case of the
ADM free evolution system, which is only weakly pseudo-hyperbolic, a linear growth
is detected up to the point where the code crashes. The label ADM-1 corresponds
to a numerical simulation using a fully first order version of the ADM system, which
will be introduced in the next chapter
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The Z4 system, which will be introduced at the end of this chapter, shows
instead the constant behavior which one would expect from a strongly pseudo-
hyperbolic system. The same qualitative behavior is shown by the BSSN sys-
tem, that will also be introduced later.

Let us briefly discuss the role of numerical dissipation. Every discrete al-
gorithm is just an approximation to the exact equations. Discretization error
terms can be classified into two main categories

• Dispersion errors, which affect the propagation speeds in a way that
depends of the frequency of every perturbation.

• Dissipation errors, which affect the growth of perturbations.

The wrong sign in the dominant dissipation error terms (perturbations explo-
sion) leads to unstable numerical codes. The right sign there leads to stable
codes, at the price of some amount of dissipation. The more accurate the
numerical algorithm is, the less numerical dissipation it contains.

This is why we recommend using at least third-order accurate algorithms
for time evolution. In the simulations presented here, the following third-order
Runge-Kutta algorithm [17]

u∗ = u(n) + ∆t S(n) (3.42)

u∗∗ =
3
4

u(n) +
1
4

u∗ +
∆t

4
S∗ (3.43)

u(n+1) =
1
3

u(n) +
2
3

u∗∗ +
2
3

∆t S∗∗ , (3.44)

is used instead of the simple second-order one (3.30). We can see the dif-
ference by comparing Figs. 3.3 and 3.4, where in the latter the third-order
Runge-Kutta algorithm (3.44) is replaced by the ‘Iterative Cranck-Nicolson’
(ICN) method, which is a second-order predictor-corrector algorithm. Al-
though everything else is the same (space and time resolution, space dis-
cretization method, initial data), we see that reducing the accuracy of the
time evolution discretization is enough to completely distort the plots, mask-
ing the effects we were looking for.

3.3 Pseudo-Hyperbolic Systems

Allowing for the performance of the ADM system in the robust stability test-
bed, one can wonder that it was the evolution system of reference until the
beginning of the 1990’s. Poor resolution, as a consequence of the available
computing resources, combined with the use of dissipative numerical methods,
masked the weakly stable nature of the formalism, as we have seen in Fig. 3.4.
Free evolution with the ADM system has been the approach actually used by
the main Numerical Relativity groups in the long way from the pioneering
spherically symmetric or axially symmetric numerical codes [11, 12] towards
the generic three-dimensional simulations that are routinely performed today.
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Fig. 3.4. Same as in the previous figure, but replacing the third order Runge-Kutta
time-evolution algorithm by a second order predictor-corrector one (ICN). Numerical
dissipation is severely distorting the plots, by masking the linear growth in the ADM
case and dramatically reducing the initial noise level in the pseudo-hyperbolic case.
Notice than both dt and dx are the same as in the previous figure, and we are using
also the same space discretization algorithm: only the time evolution method has
changed

3.3.1 Extra Dynamical Fields

Looking for a better alternative, one can take advantage of an old result, cur-
rently used in analytical approximation schemes to Einstein’s field equations.
The standard expression of the three-dimensional Ricci tensor in terms of the
connection coefficients

Rij = ∂kΓ k
ij − ∂iΓ

k
kj + Γ k

krΓ
r
ij − Γ k

riΓ
r
kj , (3.45)

can be rewritten, by reordering the second partial derivatives, as the De
Donder-Fock [20,21] decomposition

Rij = γrs

[
− 1

2
∂2

rsγij + ∂(iΓj)rs − Γ k
ij Γkrs

+ γkl (∂kγir ∂lγjs − Γirk Γjsl)
]

. (3.46)

A first look at the second derivative terms in (3.46) reveals that they can
be written as the sum of the ordinary Laplacian of the space metric plus the
symmetrized partial derivatives of the combination

Γi = γrs Γirs . (3.47)
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The Laplacian term is welcome if one wants to get the expected oscillatory
behavior for the linear perturbations. In analytical perturbation approaches,
which use the four-dimensional version of the decomposition (3.46), the four-
dimensional analogous of the quantities (3.47) are made to vanish by a very
particular choice of the four spacetime coordinates (harmonic coordinates),
taking advantage of the non-tensor character of (3.47). We will not follow
that way, because we prefer to preserve our coordinate freedom as longer as
possible. Therefore, we must adopt another strategy, which should work in a
generic coordinate system.

The crucial point is to consider instead the quantities Γi as the compo-
nents of a new dynamical field, no longer related with the metric derivatives
trough (3.47). To be consistent with this interpretation, one must provide an
independent evolution equation for the ‘extra’ field. And this can be done if we
allow for the fact that the momentum constraint (3.4) contains space deriva-
tives of the extrinsic curvature, which can be seen itself as a time derivative of
the space metric. One can then switch the order of space and time derivatives
in (3.4), by rewriting it as the evolution equation of the combination

Vi =
1
2

(Γ k
ki − Γi ) , (3.48)

which is directly related with Γi.
Let us write down the linearized version of the resulting ‘Bona-Massó’

system in order to see its structure in a more transparent way:

∂t (δγij) = −2αo (δKij) (3.49)
∂t (δKij) = −∂2

ij (δα) + αo (δRij) (3.50)
∂t (δVi) = 0 , (3.51)

where the linear perturbation of the Ricci tensor is given now by

δRij = −1
2

γ rs
o [ ∂2

rs(δγij) − ∂2
ij(δγrs) ] − ∂i (δVj) − ∂j (δVi) . (3.52)

Notice that the perturbations of the extra field Vi are considered here to
be independent of the metric and gauge perturbations, so that their evolution
equation (3.51) is a genuine part of the free evolution system. This does not
mean that the momentum constraint (3.4) has disappeared. It has only been
transformed into the algebraic form (3.48), that is

Vi =
1
2

γ rs[ ∂i (γrs) − ∂r (γis) ] , (3.53)

which can still be used to monitor the quality of the simulation.
The Bona-Massó evolution system was first obtained in the context of fully

first order systems, which we will discuss in the next chapter. In the first (1992)
paper [22], it was shown to be hyperbolic in that context for the harmonic
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slicing case. This result was later (1995) extended to the generalized harmonic
case [23], which includes the robust slicing conditions currently used at that
time to deal with spherically symmetric black holes. It opened the way to the
use in the Numerical Relativity context of the ‘shock-capturing’ algorithms
currently used in Computational Fluid Dynamics (CFD). These advanced
techniques produced a breakthrough in the state-of-the-art numerical black-
hole simulations, as shown in Fig 3.5.

Fig. 3.5. The error in the apparent horizon mass of a spherically symmetric black
hole is plotted against time. The analytical result is known to be time-independent.
The term FOFCH, for ‘First-Order Flux-Conservative Hyperbolic’, refers here to a
1D code based on (the first order version of) the Bona-Massó formalism [23]. The use
of advanced CFD techniques, which require a full set of characteristic eigenvectors,
when combined with the use of robust slicing conditions, allow to continue the black
hole evolution ‘forever’, provided that the boundary conditions are set in a suitable
way

3.3.2 The BSSN System

The idea of transforming the momentum constraint into an evolution equation
for some extra fields is also behind the formalism introduced just a little bit
later by Shibata and Nakamura [24], much widely known after the work of
Baumgarte and Shapiro [25] (BSSN system). The metric coefficients γij are
there expressed in terms of a conformal metric:

γ̃ij = e−4 φ γij (3.54)

with unit determinant, so that

e4 φ = γ1/3 = [det(γij)]1/3 (3.55)
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The second fundamental form Kij is also decomposed into its trace and trace-
free components, namely

K = γij Kij (3.56)

Ãij = e−4 φ

(
Kij −

1
3

K γij

)
. (3.57)

The conformal decomposition (3.54) allows one to compute easily the con-
nection coefficients of the conformal metric in terms of the original ones,
namely

Γ̃ k
ij = Γ k

ij − 2 [ δk
iφj + δk

jφi − φkγij ] , (3.58)

so that one can split the three-dimensional Ricci tensor appearing in the ADM
evolution equations (3.2) into the corresponding Ricci tensor of the conformal
metric plus some space derivatives of the conformal factor:

Rij = R̃ij − 2 ∇̃iφj + 4φiφj − γ̃ij γ̃rs(2 ∇̃rφs + 4φrφs) . (3.59)

The extra field in the BSSN formalism is provided by the contracted con-
formal connection, that is

Γ̃ i = γ̃rsΓ̃ i
rs = −γ̃ij

,j , (3.60)

which can be related with the extra fields (3.48) of the Bona-Massó formalism
as follows

Vi = −1
2

γ̃ijΓ̃
j + 4φj , (3.61)

so that the conformal Ricci tensor can be finally written as

R̃ij =
1
2

γ̃rs [−∂2
rsγ̃ij + 4 Γ̃ k

r(i Γ̃j)ks + 2 Γ̃ k
ri Γ̃ksj ]

+ γ̃k(i ∂j)Γ̃
k + Γ̃ k Γ̃(ij)k . (3.62)

The full list of BSSN independent dynamical fields is then given (in the zero
shift case) by

u = {α, φ, γ̃ij , K, Ãij , Γ̃ i} . (3.63)

Up to now, the formulas (3.54–3.61) just provide a recombination of the
basic dynamical fields, but no new equations. The main differences between
the BSSN and the Bona-Massó evolution systems are

• The evolution equation for the trace K of the extrinsic curvature in the
BSSN case is not the one that would follow from taking the trace of the
evolution equation of Kij in a straightforward way. One must use instead
the energy constraint to transform the trace equation, before doing all the
replacements, into

∂t K = −�α + α

[
tr(K2) +

1
2

(trS + τ)
]

. (3.64)
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This is another instance of the use of the energy constraint to modify the
free evolution system: we did the same in the previous chapter, where we
compared the ‘Ricci’ evolution system (2.59) with the ‘Einstein’ one (2.62).
We will see in the following section how to do it in a more systematic way.

• The conformal decomposition, as used in the BSSN formalism, generates
new constraints. It follows from (3.54–3.57) that

det(γ̃) = 1 , trA = 0 . (3.65)

These algebraic constraints can be very useful for monitoring numerical
errors. The current practice is to ‘correct’ these errors by rescaling γ̃ij and
resetting the trace of Ãij to zero from time to time during the calculation,
even after every single time step. This ‘semi-constrained’ approach can affect
convergence tests, where the rate of convergence that one could expect from
the discretization method of the ‘free evolution’ algorithm can differ from
the actual results.

3.3.3 Plane-Wave Analysis

Now we can proceed to perform the plane-wave analysis that we introduced
for the ADM system at the beginning of this chapter. We will do it just for
the Bona-Massó case in order to avoid the complications associated with the
conformal decomposition. Remember that this decomposition, as well as the
selection of one or another of the related quantities (3.61) as the extra field, is
only a rearrangement of the dynamical quantities, so that the intrinsic prop-
erties of the evolution system remain actually the same ones. This means that
our results will apply also to the BSSN system, with only a minor difference
in the gauge sector, due to the use of the modified equation (3.64) for tr K.

Let us start then from the linearized system (3.49–3.51). The Fourier com-
ponents of the dynamical perturbations will be written as follows

δα = ei ω·x a(ω, t) (3.66)
δγij = ei ω·x hij(ω, t) (3.67)
δKij = (iω) ei ω·x kij(ω, t) (3.68)
δVk = (iω) ei ω·x vk(ω, t) , (3.69)

where we have scaled the Fourier coefficients of Vk with the same iω factor as
the Kij ones.

One can now substitute (3.66–3.69) into the linear system (3.49–3.51) plus
(the linear version of) the coordinate condition (3.14) in order to get the time
evolution equations for the array of the Fourier-transformed perturbations,

u = (a , hij , kij , vk) . (3.70)

Notice that one must use now the expression (3.52) instead of (2.81) for the
three-dimensional Ricci tensor perturbations. In the vacuum case, one gets
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∂t (a/α0) = −iωα0 f tr k (3.71)
∂t hij = −2 iωα0 kij (3.72)
∂t kij = −iωα0/2 [hij + 2(ni vj + nj vi) + (tr h + 2 a/α0)ni nj ] (3.73)
∂t vk = 0 . (3.74)

In order to write down the characteristic matrix, it is convenient to re-
arrange the dynamical fields array (3.70) in a way that clearly separates the
transverse, longitudinal and gauge sectors, as we did in the ADM case:

u = (h⊥⊥ , k⊥⊥ , hn⊥ , kn⊥ , v⊥ , trh , trk , a/α0 , vn) . (3.75)

The characteristic matrix is given in this basis in a simple block-diagonal form

A =




0 2α0

α0/2 0
0 2α0 0

α0/2 0 α0

0 0 0
0 2α0 0

0 α0 2α0

fα0 0 0
0




(3.76)

(the values not shown are zero), so that it follows that

• The eigenvalues (propagation speeds) are either zero (static modes, like
the (3.74) ones), or the background metric light speed ±α0, or the ‘gauge
speed’ ±

√
f α0. The requirement of real propagation speeds amounts then

to the condition f ≥ 0 on the gauge parameter f .
• A complete set of eigenvectors can be obtained in the generic case, with

the only exception of geodesic slicing (f = 0), where gauge speed vanishes
leading to an extra degeneracy which prevents putting A in full diagonal
form.

We can conclude that the Bona-Massó system is pseudo-hyperbolic for all
the generalized harmonic slicing cases for which

f > 0 . (3.77)

The same is true for the BSSN system, where only minor changes appear
in the corresponding characteristic matrix when compared with (3.76). The
main one arises from the choice of the evolution equation (3.64) for tr K, and
it amounts to the vanishing of the 2α0 coefficient in the last column (gauge
sector). Therefore, it does not affect neither the values of the propagation
speeds nor the completeness of the set of eigenvectors.
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3.4 The Z4 Formalism

The second order pseudo-hyperbolic formalisms we have discussed here rep-
resent an improvement over the free evolution ADM system, both at the the-
oretical and the numerical applications level, where the pseudo-hyperbolicity
property ensures the absence of growing modes in linear perturbations. This
fact has proven very useful in 3D Numerical Black Hole simulations, using
either the Bona-Massó [26] or the BSSN formalisms [27,28].

These formalisms, however, share two drawbacks:

• Energy and momentum constraints are treated in a different way. Energy
constraint is treated like in the ADM case, by relaxing it during time evolu-
tion. Momentum constraint, instead, is considered to provide the evolution
equation for some extra dynamical field (Vi or Γ̃ i, respectively).

• These extra dynamical quantities have no tensor behavior: neither Vi nor Γ̃ i

transform as three-vectors under general space coordinates transformations.

These considerations suggest that these are just intermediate steps towards
more advanced formalisms, in which the energy constraint is not left aside and
the supplementary dynamical quantities have a well defined tensor character.
All these requirements are fulfilled by the ‘Z4 formalism’. [29, 30], which will
be discussed in what follows.

3.4.1 General Covariant Field Equations

The field equations in the Z4 formalism can be written in a general covariant
form at the four-dimensional level, namely

Rµν + ∇µZν + ∇νZµ = 8 π

(
Tµν − 1

2
T gµν

)
, (3.78)

where the ‘zero’ four-vector Zµ plays the role of the supplementary quantity,
so that the full set of dynamical fields consists of the pair

{gµν , Zµ} . (3.79)

Here again, the solution space of the original Einstein’s equations is ex-
tended by introducing the extra dynamical quantity Zµ. The solutions of the
original field equations can of course be recovered by imposing the vanishing
of this four-vector, namely

Zµ = 0 , (3.80)

and the components of this algebraic condition will play the role of the four
energy and momentum constraints, as we will see later. One can even use
the evolving values of Zµ during a numerical simulation as a good general-
covariant indicator of the quality of the approximation. Notice that, in con-
trast with the precedent formalisms, the extended solution space is also general
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Fig. 3.6. The original Einstein’s equations solution space is represented by the in-
ner circle, which is contained into the outer circlerepresenting the extended solution
space of the Z4 system. The plot shows the effect of a general coordinate transfor-
mation, represented here as a mapping with circular dashed lines. Points A, which
represents a Z4-extended solution, and B, representing a true Einstein’s solution,
are mapped into A’ and B’, which still represent either a Z4-extended solution or a
true Einstein solution, respectively. This is in contrast with the behavior shown in
Fig. 3.1 for the ADM system, reflecting the lack of invariance of the ADM-extended
solution space

covariant, so that a generic four-dimensional coordinate transformation maps
solutions into solutions for both the original Einstein’s equations and the Z4
extended ones (3.78) (See Fig. 3.6).

The time evolution of the algebraic constraint (3.80) can be obtained by
taking the four-divergence of the field equations (3.78), and allowing for the
conservation of both the Einstein tensor Gµν and the Stress-energy tensor Tµν .
After a straightforward calculation, one gets the linear homogeneous equation

� Zµ + RµνZν = 0 , (3.81)

which plays here the role of the subsidiary system (3.5, 3.6). It is of second
order in Zµ, so that the vanishing of both Zµ and its first time derivatives is
needed at the initial slice if we want that the algebraic constraint (3.80) be
preserved during time evolution. As we will see below, the vanishing of the
first derivatives of Zµ amounts to imposing the original energy and momentum
constraints. This means that the set initial data leading to true Einstein’s
solutions must consist in an initial metric gµν verifying the usual energy and
momentum constraints plus a zero initial value for the four-vector Zµ.
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3.4.2 The Z4 Evolution System

The general-covariant equations (3.78) can be written in the equivalent 3+1
form [29] (Z4 evolution system)

(∂t − Lβ) γij = −2α Kij (3.82)

(∂t − Lβ) Kij = −∇iαj + α

[
Rij + ∇iZj + ∇jZi

−2K2
ij + (trK − 2Θ)Kij

−Sij +
1
2

(tr S − τ) γij

]
(3.83)

(∂t − Lβ) Θ =
α

2
[ tr R + 2∇kZk + (trK − 2Θ) trK

−tr(K2) − 2Zkαk/α − 2τ ] (3.84)
(∂t − Lβ) Zi = α [∇j (Ki

j − δi
jtrK) + ∂iΘ

−2Ki
j Zj − Θ αi/α − Si] (3.85)

where Θ stands for the projection of the four-vector Zµ along the unit normal
nµ to the space hypersurfaces, namely

Θ ≡ nµZµ = α Z0 . (3.86)

In the 3+1 form (3.82–3.85), it is evident that the Z4 evolution system
consists just in evolution equations. The only constraints (3.80), that can be
translated into:

Θ = 0 , Zi = 0 , (3.87)

are algebraic so that the full set of field equations (3.78) is actually used
during evolution. As a consequence, a general coordinate transformation will
transform Z4-extended solutions into Z4-extended solutions, in spite of the
fact that the 3+1 decomposition (3.82–3.85) of the field equations (3.78) is
covariant only under the restricted set of transformations (2.43). This point
is emphasized in Fig. 3.6.

This is in contrast with the ADM formalism [6], which can be recovered
from (3.82–3.85) by imposing (3.87). The first two equations (3.82, 3.83) would
transform into the ADM free evolution system, whereas the last two equations
(3.84, 3.85) would transform into the standard energy and momentum con-
straints, that is

tr R + tr2K − tr(K2) = 2 τ (3.88)
∇j (Ki

j − δi
jtrK) = Si . (3.89)

These constraints are not enforced in the free evolution approach, so that
the ADM-extended solution space is not invariant under a general coordinate
transformation (see Fig. 3.1). The same result holds for both the Bona-Massó
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and the BSSN formalisms, where the energy constraint (3.88) was still not
enforced, although the momentum constraint was treated in a way which
anticipated (3.85), as we will see later.

The appearance of the new dynamical quantity Θ, which behaves as a
scalar under general space coordinate transformations, allows one to generalize
the time slicing condition (3.14) by adding a linear coupling with Θ, that is

∂t ln α = −fα (tr K − mΘ) . (3.90)

The new gauge parameter m arising here is by no means superfluous, even if it
does not change anything for the Einstein’s true solutions, where Θ vanishes.
The non-trivial parameter value m = 2 will be required to get a pseudo-
hyperbolic system in the standard harmonic case (f = 1), as we will see
below.

3.4.3 Plane-Wave Analysis

Let us consider the linearized version of the Z4 system (3.82–3.85) in order
to study the propagation of a plane wave in a stationary and homogeneous
background (zero shift):

δ γij = ei ω·x hij(ω, t) (3.91)
δ α = ei ω·x a(ω, t) (3.92)

δ Kij = (i ω) ei ω·x kij(ω, t) (3.93)
δ Θ = (i ω) ei ω·x θ(ω, t) (3.94)

δ Zk = (i ω) ei ω·x zk(ω, t) . (3.95)

The time evolution of the Fourier coefficients is given by

∂thij = −2 (i ω) α0 kij (3.96)
∂t(a/α0) = −(i ω) α0 f [ tr k − m θ ] (3.97)

∂tθ = −1
2

(i ω) α0 [ tr h − hnn − 2 zn ] (3.98)

∂tzi = −(i ω) α0 [ni (tr k − θ) − kni ] (3.99)

∂tkij = −1
2

(i ω) α0 λij (3.100)

where we have noted

λij ≡ hij + ni nj (tr h + 2 a/α0) − ni (hnj + 2 zj) − nj (hni + 2 zi) (3.101)

and where the symbol n replacing an index means the contraction with the
unit vector ni.

In order to write down the characteristic matrix, it is convenient to re-
arrange the dynamical fields array in a way that clearly separates the trans-
verse, longitudinal and gauge sectors, as we did before:
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u = (h⊥⊥ , k⊥⊥ , hn⊥ , kn⊥ , v⊥ , trh , trk , a/α0 , θ , vn) , (3.102)

where the symbol ⊥ replacing an index means the projection orthogonal to
ni, and we have used the shorthand

vn =
1
2

(tr h − hnn) − zn . (3.103)

The characteristic matrix of the Z4 evolution system is then given in this
basis in the simple block-diagonal form

A =




0 2α0

α0/2 0
0 2α0 0
0 0 −α0

0 −α0 0
0 2α0 0
0 0 α0 0 −2α0

0 fα0 0 −mfα0 0
0 α0

α0 0




. (3.104)

A simple inspection of the this matrix shows that

• A new sector appears (energy sector) at the lower right corner, involving
the pair of Fourier coefficients.

(θ , vn) . (3.105)

The corresponding eigenvalues are given by the background metric light
speed ±α0. There is a non-trivial coupling between the energy and the
gauge sectors.

• The eigenvalues (propagation speeds) are either zero, or the background
metric light speed, or the ‘gauge speed’ ±

√
f α0. The requirement of real

propagation speeds amounts again to the condition f ≥ 0 on the gauge
parameter f .

• A complete set of eigenvectors can be obtained in the generic case, with
the only exceptions of geodesic slicing (f = 0), where gauge speed vanishes,
and the standard harmonic case (f = 1), where gauge speed coincides with
light speed. In both cases the extra degeneracy is a problem, although in
the second one we can still put A in full diagonal form when m = 2.

We can conclude that the Z4 evolution system is strongly pseudo-hyperbolic
for all the generalized harmonic slicing cases for which

f > 0 , m = 2 if f = 1 , (3.106)

so that we can confirm the relevance of the new gauge parameter m in the
generalized harmonic condition (3.90).
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3.4.4 Symmetry Breaking

We will address now the question of the relationship of the Z4 system with
the precedent ones. To this end, let us consider the following recombination
of the dynamical fields

K̃ij ≡ Kij −
n

2
Θ γij (3.107)

so that the Z4 system (3.82–3.85) can be written in a one-parameter family
of equivalent forms just by replacing everywhere

Kij → K̃ij +
n

2
Θ γij . (3.108)

This kind of transformations leave invariant the solution space of the system
(it is actually the same system expressed in a different basis of dynamical
fields).

But suppose now that we want to enforce the first algebraic constraint in
(3.87), that is

Θ = 0 . (3.109)

This amounts to suppress the Θ field as a dynamical quantity. If this suppres-
sion is made after the replacement (3.108), one gets a one-parameter family
of non-equivalent extended systems with only the three components of the
vector Zi as supplementary quantities (Z3 evolution systems), namely:

(∂t − Lβ) γij = −2α Kij (3.110)

(∂t − Lβ)Kij = −∇i αj + α

[
Rij + ∇iZj + ∇jZi

−2K2
ij + trK Kij − Sij +

1
2

(trS − τ) γij

]

−n

4
α [ tr R + 2 ∇kZk + tr2K − tr(K2)

− 2Zkαk/α − 2 τ ] γij (3.111)
(∂t − Lβ)Zi = α [∇j (Ki

j − δi
j trK) − 2Ki

jZj − Si] (3.112)

where we have suppressed the tilde over Kij , allowing for the vanishing of Θ.
The recombination symmetry (3.108) of the original Z4 system (3.82–3.85)

is broken in the transition to the Z3 one (3.110–3.112), which is produced by
the vanishing of the Θ parameter. This ‘symmetry breaking’ means that any
two different choices of the n parameter in the family of Z3 evolution systems
(3.110–3.112) are not mutually equivalent: their solution spaces are different,
even at the linear order.

The Bona-Massó system [22, 23] can be easily recovered from the n = 0
case in (3.110–3.112). The extra quantities Vi can be obtained from the vector
Zi as follows

Vi =
1
2

γ rs[ ∂i (γrs) − ∂r (γis) ] − Zi , (3.113)
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so that the evolution equation for Vi can be computed in an straightforward
way. Notice that, contrary to what happened with Vi, the ‘zero’ vector Zi

behaves as a three-vector under general space coordinate transformations.
This difference is clearly pointed out by the relationship (3.113) between these
two quantities.

The BSSN system [24, 25] can also be recovered (not so easily) from the
n = 4/3 case in (3.110–3.112). To do this, the Z3 system must be decomposed
into trace and trace-free parts

e4 φ = γ1/3 , γ̃ij = e−4 φ γij (3.114)

K = γij Kij , Ãij = e−4 φ

(
Kij −

1
3

K γij

)
(3.115)

Γ̃i = −γ̃ik γ̃kj
,j + 2 Zi (3.116)

in order to follow the correspondence with BSSN more closely.
It must be pointed out, however, that one does not get in this way the

original BSSN system: there is actually one difference in the lower order terms
(only the principal parts are equivalent). The difference is in the term of the
form

+
n

2
Zkαk γij (3.117)

in the evolution equation (3.111), which is missing in the original BSSN system
[25]. This lower order term is needed for consistency with the general covariant
equations (3.78).

We have seen how both the Bona-Massó and BSSN systems can be ob-
tained from the more general Z4 formalism. The equivalence transformation
(3.107) plays the crucial role because suppressing the Θ field (3.109) produces
a sort of symmetry breaking: different values of the parameter n will lead to
evolution systems that can no longer be transformed one into another once
the set of dynamical fields is reduced by the vanishing of Θ.

We will extend this idea to the remaining supplementary quantity Zi in the
next chapter. Let us just notice here that setting Zi = 0 in the Z3 evolution
system (3.110–3.112) leads to a one parameter family of non-equivalent free-
evolution ADM systems. We can easily identify the n = 0 case as the ‘Ricci
evolution system’ (2.59) and the n = 1 case as the ‘Einstein evolution system’
(2.62) that we introduced as separate options in the previous chapter.
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First Order Hyperbolic Systems

From the mathematical point of view, the mixed-type systems (first order in
time, second order in space) that we have considered in the previous chapter
are associated to the parabolic type of equations. The prototype could be the
Navier-Stokes equation of fluid dynamics, where second order space derivatives
appear in the viscosity terms. Parabolic equations are not the ones usually
associated with causal propagation phenomena, where a finite propagation
speed can be derived in a natural way from the governing equations.

Causal propagation is more easily described instead by systems of equa-
tions of hyperbolic type. The prototype is either the (second order) wave
equation, or the (first order) Euler equations of Fluid Dynamics, where vis-
cosity terms are not taken into account. The fact that Computational Fluid
Dynamics deals mainly with hyperbolic first order systems has stimulated
the research on these systems, leading to interesting developments in Applied
Mathematics, both at the theoretical and the computational level. In order
to take advantage of these advanced developments, it is convenient to express
the mixed-type Numerical Relativity systems in a purely first order form.

4.1 First Order Versions of Second Order Systems

4.1.1 Introducing Extra First Order Quantities

A first order version of the Z4 evolution system (3.82–3.85) can be obtained
in the standard way by considering the first space derivatives

Ak ≡ ∂k lnα, Dkij ≡ 1
2

∂kγij (4.1)

as independent dynamical quantities. This means that we must provide evo-
lution equations for the new quantities (4.1).

C. Bona and C. Palenzuela Luque: Elements of Numerical Relativity, Lect. Notes Phys. 673,
67–92 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



68 4 First Order Hyperbolic Systems

The standard way is just to realize that (4.1) are partial space derivatives
of the metric coefficients, so that the time derivatives of (4.1) will be mixed
second derivatives of these coefficients. By reversing the order of space and
time derivatives, one gets

∂tAk + ∂k[ α Q ] = 0 , (4.2)
∂tDkij + ∂k[ α Kij ] = 0 , (4.3)

where we have noted
Q ≡ −1/α ∂t lnα , (4.4)

which will of course depend of the time slicing condition. The choice (3.90)
would correspond to

Q = f (tr K − m Θ) . (4.5)

Notice that the new quantities Ak behave like the components of a 3+1
vector under general coordinate transformation, but the components Dkij

do not transform in a covariant way. We will consider in what follows the
vanishing shift case for simplicity, so that the full set of dynamical fields can
be given by

u = {α, γij , Kij , Ak, Dkij , Θ, Zk} (4.6)

(38 independent fields). The missing shift terms in (4.2) and (4.5) can still
be recovered by the standard replacement (2.50), but the shift terms in (4.3)
must be obtained instead by a direct computation.

Notice also that the new quantities must be computed now through their
evolution equations (4.2, 4.3). The original definitions (4.1) are now considered
instead as constraints. These new first order constraints are, by construction,
first integrals of the evolution equations, so that it is enough to enforce them
on the initial data. It follows that the first order versions will have a larger set
of constraints than the original second order systems. This is a complication,
both from the theoretical and the computational point of view, as we will see
in what follows.

4.1.2 Ordering Ambiguities

The first instance of such complication is the ordering ambiguities of second
space derivatives. We can combine the space derivatives of the first constraint
in (4.1) to get an ordering constraint for Ak, namely

0 = ∂i Aj − ∂j Ai . (4.7)

The fact that the ordering constraint (4.7) does not hold identically produces
an ordering ambiguity in the second derivatives of the lapse appearing in the
evolution equation (3.83) for Kij . This ambiguity can be easily solved by
taking the symmetric combination
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∇i dj α =
1
2
[∇i(α Aj) + ∇j(α Ai)] , (4.8)

which is the only one that preserves the symmetric character of Kij .
We can get in the same way an ordering constraint for Dkij , namely

0 = ∂r Dsij − ∂s Drij . (4.9)

As far as this ordering constraint does not hold identically, this produces again
an ordering ambiguity in (3.83), where second space derivatives of the metric
appear through the Ricci tensor Rij .

But this time the ambiguity can not be resolved by invoking the symmetric
character of Kij . On one side, we can get the standard Ricci decomposition

(+)Rij = ∂k Γ k
ij − ∂i Γ k

kj + Γ r
rkΓ k

ij − Γ k
riΓ

r
kj , (4.10)

where Γkij stands now for

Γkij ≡ Dijk + Djik − Dkij . (4.11)

On the other side, we can get the De Donder-Fock [20,21] decomposition

(−)Rij = −∂k Dk
ij + ∂(i Γj)k

k − 2Dr
rkDkij

+ 4Drs
iDrsj − ΓirsΓj

rs − ΓrijΓ
rk

k (4.12)

which is most commonly used in Numerical Relativity codes because the sec-
ond derivatives in (4.12) can be interpreted as (minus) the Laplace operator
acting on the metric coefficients plus the symmetrized derivatives of some
terms which can be easily related with the extra quantities of either the Bona-
Massó or the BSSN systems.

There is no fundamental reason to prefer either the (4.10) or the (4.12)
ordering. This is why we will consider an arbitrary combination of both cases,
namely

Rij =
1 + ζ

2
(+)Rij +

1 − ζ

2
(−)Rij , (4.13)

where we have introduced the ordering parameter ζ so that the choice ζ =
+1 corresponds to the standard ordering (4.10), whereas the opposite choice
ζ = −1 corresponds to the alternative one (4.12). The intermediate value
ζ = 0 corresponds to the symmetrization of all second space derivatives.

4.1.3 The First Order Z4 System

Now we are in position to write down the first order version of the Z4 evolution
system (3.82–3.85) (zero shift case)
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∂t lnα = −α Q (4.14)
∂t γij = −2α Kij (4.15)

∂t Kij = −∇iαj + α

[
Rij + ∇iZj + ∇jZi

−2K2
ij + (trK − 2Θ)Kij − Sij +

1
2

(tr S − τ) γij

]
(4.16)

∂tAk = −∂k[ α Q ] (4.17)
∂tDkij = −∂k[ α Kij ] (4.18)

∂t Θ =
α

2
[ tr R + 2∇kZk + (trK − 2Θ) trK

−tr(K2) − 2Zkαk/α − 2τ ] (4.19)
∂t Zi = α [∇j (Ki

j − δi
jtrK) + ∂iΘ

−2Ki
j Zj − Θ αi/α − Si] , (4.20)

where the second derivative terms in (4.16) must be replaced by (4.8, 4.13) and
the quantity Q in (4.14, 4.17) can be obtained from any algebraic condition
of the form (4.5).

The propagation properties of a first order system like (4.14–4.20) are given
by the principal part terms, that is the ones containing partial derivatives. It
is then interesting for further purposes to write down the principal part of
(4.14–4.20) in an explicit way

∂t α = . . . (4.21)
∂t γij = . . . (4.22)
∂tΘ + ∂k [α (Dk − Ek − Zk)] = . . . (4.23)
∂t Zi + ∂k [α (δk

i (trK − Θ) − Kk
i)] = . . . (4.24)

∂t Ak + ∂k [α f (trK − mΘ)] = . . . (4.25)
∂t Dkij + ∂k [α Kij ] = . . . (4.26)
∂t Kij + ∂k [α λk

ij ] = . . . (4.27)

where the dots stand for terms not containing derivatives and we have noted
for short

Di ≡ D k
ik , Ei ≡ D k

ki , (4.28)

λk
ij ≡ Dk

ij +
1
2

δk
i (Aj + Dj − 2Ej − 2Zj) +

1
2

δk
j (Ai + Di − 2Ei − 2Zi)

−1 + ζ

2
(D k

ij + D k
ji − δk

i Ej − δk
j Ei) . (4.29)

Notice that there is no ordering ambiguity in the evolution equation (4.23)
for Θ. This is because the trace of the ζ-dependent terms in (4.29) vanishes
identically. One has the full set of 38 evolution equations for the 38 fields
in (4.6), containing only f and m as gauge parameters and ζ as ordering
parameter.
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4.1.4 Symmetry Breaking: The KST System

We have obtained in the previous sections the first order version (4.14–4.20)
of the Z4 system by assuming the standard evolution equations (4.17–4.18)
for the first order quantities (4.1). But this is not the only way of getting a
first order version of a second order system. Kidder, Scheel and Teukolsky
obtained a first order version of the original ADM system by combining the
energy and momentum constrains with the first order evolution equations
(KST system [31]).

The original KST system assumed a direct power-law relationship between
the lapse and the space volume element (‘densitized’ lapse). This original
system has been generalized by Sarbach and Tiglio [32] in order to include
the wide class of generalized harmonic conditions that we are considering here,
in which the lapse is an independent quantity which must be computed from
its evolution equation (‘dynamical’ lapse). In what follows we will use the
term ‘KST system’ to refer also to this generalization.

We will recover here the KST system from the Z4 one by a symmetry
breaking mechanism, along the lines sketched in Sect. 3.4.4. Let us consider
as a starting point the principal part (4.21–4.27). We will follow a two-step
‘symmetry breaking’ process, namely

1. Recombine the dynamical fields Kij , Dkij with Θ and Zi in a linear way,

K̃ij = Kij −
n

2
Θ γij , (4.30)

dkij = 2Dkij + η γk(iZj) + χ Zk γij , (4.31)

where we have used the notation of [31], replacing only their parameter γ
by −n/2 for consistency with the definition (3.107) in Sect. 3.4.4. Notice
that the linear combinations (4.30–4.31) are generic in the sense that they
are the most general linear combinations that preserve the tensor character
of the dynamical fields under linear coordinate transformations (remember
that the D’s components are not covariant under general coordinate trans-
formations).

2. Suppress both θ and Zi as dynamical fields, namely

Θ = 0 , Zi = 0 . (4.32)

In that way, the principal part (4.22–4.27) becomes

∂t α = . . . (4.33)
∂t γij = . . . (4.34)

∂t Ak + ∂k [ α f tr K̃ ] = 0 (4.35)
∂t dkij + ∂r[ α { 2 δr

k K̃ij − χ (K̃r
k − δr

k tr K̃) γij

+ η γk(i(K̃r
j) − δr

j)tr K̃)} ] = . . . (4.36)

∂t K̃ij + ∂k [ α λk
ij ] = . . . (4.37)



72 4 First Order Hyperbolic Systems

for the reduced set of 34 dynamical fields

u = {α, γij , K̃ij , Ak, dkij} , (4.38)

where λk
ij stands now for

2 λk
ij = dk

ij −
n

4
(dkr

r − dr
rk) γij

+
1 + ζ

2
(dij

k + dji
k) − 1 − ζ

2
(δk

i drj
r + δk

j dri
r)

+ δk
j

(
Ai +

1
2

dir
r

)
+ δk

i

(
Aj +

1
2

djr
r

)
. (4.39)

This provides the ‘dynamical lapse’ version [32] of the KST evolution sys-
tem. In order to recover the original ‘densitized lapse’ version, one must in ad-
dition integrate explicitly the dynamical relationship (4.5) between the lapse
and the volume element (remember that now Θ = 0). It can be easily done in
the case

f = 2 σ = constant , (4.40)

namely
∂t(αγ−σ) = 0 , (4.41)

so that the value of α can be defined in terms of γ for every initial condition.
The same thing can be done with their space derivatives, so that we can take

Ai ≡ σ dir
r , (4.42)

so that the set of dynamical fields is then further reduced to

u = {γij , Kij , dkij} . (4.43)

The principal part of the evolution system is then given by (we suppress the
tildes over the Kij)

∂t γij = . . . (4.44)
∂t dkij + ∂r[α{ 2 δr

k Kij − χ (Kk
r − δr

k tr K) γij

+ η γk(i(Kr
j) − δr

j)tr K) }] = . . . (4.45)

∂t Kij + ∂k [α λk
ij ] = . . . (4.46)

2 λk
ij = dk

ij −
n

4
(dkr

r − dr
rk) γij

− 1 − ζ

2
(δk

i dr
rj + δk

j dr
ri) +

1 + ζ

2
(dij

k + dji
k)

+
1 + 2σ

2
(δk

i djr
r + δk

j dir
r) (4.47)
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which corresponds precisely to (the principal part of) the original KST system
[31].

Notice that we have lost in the process the second gauge parameter m, and
the first one f has been replaced by σ. On the other hand, we have kept the
ordering parameter ζ and we have got one extra energy constraint parameter
n and two extra momentum constraint parameters χ and η.

4.2 Systems of Balance Laws

We have seen in Sect. 1.2.3 how Einstein’s Field Equations can be interpreted
as a system of balance laws. In the previous sections, we have written the
evolution equations in first order form, like the ones appearing in the Fluid
Dynamics domain. Now we are in position to take full advantage of this anal-
ogy, both from the theoretical and from the practical point of view. As an-
ticipated, this will open the door to the application of the powerful methods
and tools from Computational Fluid Dynamics into Numerical Relativity.

4.2.1 Fluxes and Sources

The principal part of the first order Z4 system (4.21–4.27) is in Flux-
conservative form. The same is true for the KST systems (4.33–4.37) and
(4.44–4.46). This means that the time evolution of the array u of dynamical
fields can be written in the form

∂t u + ∂k Fk = . . . , (4.48)

where the Flux terms Fk depend algebraically on the fields, but not on their
derivatives:

Fk = Fk(u, xj) . (4.49)

If one takes into account the full system, not just the principal part, one
gets the full balance-law form:

∂t u + ∂k Fk = S , (4.50)

where the Source terms S do not contain any derivative,

S = S(u, xj) , (4.51)

so that they do not contribute to the principal part.
The terms ‘Fluxes’ and ‘Sources’ come from the hydrodynamical analogous

of the system (4.50). We can integrate term by term the differential system
(4.50) over a given domain V in coordinate space in order to get the integral
form of the balance law:

∂t

[∫
u dV

]
+

∮
Fk dSk =

∫
S dV , (4.52)
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where we have applied Gauss theorem and Sk stands for the boundary sur-
face element along the coordinate direction xk. The hydrodynamical analogy
suggests to interpret u as a sort of density so that the rate of change of the
integrated quantity ū defined as

ū ≡
∫

u dV (4.53)

depends on the integrated effect of the sources inside V

S̄ ≡
∫

S dV (4.54)

and on the fluxes across every boundary Sk of V , namely∮
Fk dSk . (4.55)

4.2.2 Flux-Conservative Space Discretization

The balance law form (4.50) is specially suited for the MoL discretization,
as described in Sect. 3.2.1. This is because in the method of lines there is a
clear-cut separation between space and time discretization. As a consequence,
the source terms contribute in a trivial way to the space discretization, as
described in Sect. 3.2.2. The non-trivial contribution comes just from the
Flux-conservative part (4.48).

The integral version (4.52) provides then a useful way of getting a finite el-
ements discretization of the first order system (4.50). The space discretization
can be obtained directly from:

∂t ū +
∮

Fk dSk = S̄ , (4.56)

so that the evaluation of partial space derivatives has been replaced by that
of surface integrals of the flux terms.

The finite elements grid can be obtained as the dual of the finite differences
grid, so that the elementary cells are centered on every grid node and their
interfaces correspond to the intermediate points between neighbor nodes, as
it is displayed in Fig. 4.1 (only two space dimensions are shown for clarity).

Alternatively, a finite differences discretization can be directly obtained
from the differential version (4.50), namely

un+1 = un − ∆t

∆x
[Fx

i+1/2 − Fx
i−1/2] −

∆t

∆y
[Fy

j+1/2 − Fy
j−1/2]

− ∆t

∆z
[Fz

k+1/2 − Fz
k−1/2] + ∆t S . (4.57)

Every way of computing the interface Fluxes in terms of the values of the
fields at the grid nodes will the lead to a specific numerical algorithm.
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Fig. 4.1. The finite elements grid (dotted lines) consists in an array of elementary
cells, which can be interpreted as the dual of the finite differences grid (solid lines).
The prototype elementary cell, shown as the dark rectangle, is centered around its
corresponding node, shown here as a small circle. It provides the region where the
balance is to be computed. The Flux terms are evaluated at the interfaces, which
are placed halfway between neighbor nodes

Let us consider for instance the scalar advection equation

∂t u + ∂k [λk u] = 0 , (4.58)

which describes propagation of the scalar field u with speed

vk = λk . (4.59)

One can compute the Flux at a given interface just by taking the value of the
quantity u at the ‘upwind’ node, namely

F x
i+1/2 =

λx ui (λx > 0)
λx ui+1 (λx < 0) (4.60)

and the same way for the other directions. The resulting scheme is known as
the first-order upwind discretization method.

One can wonder why a first order method can be obtained by just taking a
zero order approximation, like (4.60), to the interface fluxes. This is a generic
feature of the flux-conservative discretization (4.57). As far as the fluxes ap-
pear in (4.57) only through differences at neighboring interfaces, the leading
errors at every interface cancel each other and one gets one extra order of
accuracy (when dealing with smooth solutions). In this way, a second-order-
accurate algorithm is obtained by using a first order average for the interface
fluxes, namely
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F x
i+1/2 = (F x

i + F x
i+1)/2 , (4.61)

and the same way for the remaining directions.
Quite surprisingly, the simple average prescription (4.61) will be enough

for most Numerical Relativity applications. We just need to use it in the
Flux-conservative space discretization (4.57), which in turn provides the ba-
sic Euler step for the MoL time discretization, as described in Sect. 3.2.1. Our
default choice of a finite difference algorithm will be then a combination of the
third-order Runge-Kutta algorithm (3.44) for the time discretization and the
second-order flux-conservative space discretization arising from the prescrip-
tion (4.61). This is how the numerical results for the first order formalisms,
as shown in Figs. 3.3 and 3.4, were obtained.

4.2.3 Weak Solutions

These order-of-accuracy considerations apply only to smooth solutions of
Einstein’s field equations. As stated in Sect. (1.2.3), there are also composite
solutions in which the metric coefficients can have piecewise continuous first
derivatives. In first order systems, these first derivatives are included in the
array u of basic dynamical quantities (4.6). This means that the partial deriv-
atives in the differential version (4.50) of the evolution system are not well
defined.

To remedy this, one can complete the integration process leading from
(4.50) to (4.56) by integrating also in time, that is

ū(∆t) − ū(0) +
∮

F̄k dSk =
∫ ∆t

0

S̄ dt , (4.62)

where we have noted

F̄k =
∫ ∆t

0

Fk dt , (4.63)

so that no partial derivative appears in this integral version of the evolution
system. Every solution of the differential version (4.50) is a smooth solution
of the integral version (4.62). Conversely, there are solutions of the integral
version (4.62) (weak solutions) which are not smooth.

The differential version (4.50) does not hold for weak solutions, unless
we interpret it in terms of distributions, as discussed in Sect. 1.2.3. In this
case, the piecewise continuous first derivatives can be described by using step
functions on the surface of discontinuity. Derivatives across this surface, like
the ones appearing on the left-hand-side of (4.50), lead to singular Dirac-
delta terms in the equations. Cancellation of these singular terms will fix
the propagation speeds of the discontinuities wavefronts, as anticipated in
Sect. 1.2.3.

We will go here one step further, by computing explicitly these propagation
speeds. We will consider then a piecewise continuous solution in which the
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Fig. 4.2. An elementary cell is built in order to analyze the propagation of a discon-
tinuity wavefront, which is entering by the lower left corner and propagating along
the direction n (only two space dimensions are shown for clarity). The displacements
of the discontinuity points along the x and y axes are labelled by a and b, respec-
tively, whereas the wavefront displacement is labelled by d. The dynamical fields are
supposed to be piecewise constant, with values u+ and u− ahead and behind the
wavefront, respectively

first derivatives are discontinuous across a wavefront surface propagating with
coordinate speed v (see Fig. 4.2 for details). As far as we are interested only
in the singular terms, we will make the following simplifications:

• The metric coefficients are supposed to be continuous.
• The Source terms will be ignored, because they contain at most piecewise

continuous contributions, but no Dirac-delta singularities.
• The remaining dynamical fields in (4.6), corresponding to metric first deriv-

atives, will be taken to be piecewise constant. The values ahead the wave-
front are noted u+, whereas the values behind it will be noted u−.

This model problem is the General Relativistic analogous of the well known
Riemann problem in Fluid Dynamics [33].

With these simplifying assumptions, we can easily evaluate the integral
balance law (4.62) for the elementary cell shown in Fig. 4.2:

• For the density terms, we have

ū(∆t) − ū(0) = −a b

2
(u+ − u−) . (4.64)

• The Flux terms balance gives in turn (two directions only)
∮

F̄k dSk =
∆t

2
[b (Fx

+ − Fx
−) + a (Fy

+ − Fy
−)] . (4.65)

• The final balance can be written then
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d

a
(Fx

+ − Fx
−) +

d

b
(Fy

+ − Fy
−) = v (u+ − u−) (4.66)

where v = d/∆ t is the wavefront propagation speed.

It is easy to see from Fig. 4.2 that the coefficients in the left-hand-side of
(4.66) are precisely the components of the unit normal n to the wavefront.
This means that we can put our final balance into its final form, valid for the
generic three-dimensional case:

nk (Fk
+ − Fk

−) = v (u+ − u−) . (4.67)

These jump conditions are the General Relativistic analogous of the well-
known Rankine-Hugoniot conditions of Fluid Dynamics [33]. These equations
govern the propagation of shocks or any other kind of discontinuities across
the fluid. In the General Relativity case, they provide in addition matching
conditions for composite metrics.

Also, Einstein’s field equations are quasilinear. This means that we can
express the Flux terms in the form

Fk = Ak u , (4.68)

where the matrices Ak are continuous across the wavefronts because they
depend on the metric coefficients, but not on their derivatives. Therefore, the
jump conditions (4.67) can be written as a linear eigenvalue problem, namely

(An − v I) (u+ − u−) = 0 , (4.69)

where the matrix An = nkAk is the characteristic matrix along the direction
n. The eigenvectors of the characteristic matrix correspond to combinations
of the dynamical fields that may have discontinuity surfaces with normal n.
The corresponding eigenvalues (characteristic speeds) provide the physical
propagation speeds for these discontinuity fronts.

This simple behavior in the General Relativity case is due to the quasilinear
form (4.68) of the Fluxes. In Fluid Dynamics, instead, one can compute the
characteristic speeds (like sound speed) by using the methods of the next
section, but one still needs to solve the non-linear Rankine-Hugoniot equations
(4.67) in order to compute the physical shock propagation speeds, which do
not coincide with characteristic speeds: one can easily get supersonic shocks,
for instance.

4.3 Hyperbolic Systems

We have seen yet two independent methods of studying the propagation prop-
erties of the field equations:
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• The plane-wave analysis (see Sect. 3.1.3). It is valid only for smooth solu-
tions. As far as it is based on the underlying physics, it gives consistent
results independently of the way we manage to write down the equations.

• The jump conditions (4.67). It is valid only for non-smooth solutions, con-
taining shocks or discontinuities. It assumes that the evolution system is of
first order and has the balance-law structure.

Now we will see still another method: the hyperbolicity analysis, which is
currently used in the mathematical literature for first order systems [14]. It is
worth to note that the quasilinear nature of Einstein’s Field Equations leads
to a full coincidence of the results obtained by any of these three methods
for the first order version of the equations, where all of them can be applied
independently.

4.3.1 Weak and Strong Hyperbolicity

Hyperbolic first order systems have been proposed for Numerical Relativity
applications since the seminal work of Y. Choquet-Bruhat and T. Ruggeri [37].
In all of them, the original ADM system [6] is modified by using the constraints
in one or another way [22,23,31,32,38,39,40,41,42,43], even taking additional
derivatives [37,44,45] (but see [46,47] for a completely different approach).

We will consider a generic first order system, although the specific devel-
opments will be carried out for the first order version (4.14–4.20) of the Z4
system [30]. For the purposes of our analysis, we will need to deal only with
the principal part, that is the one containing first derivatives of the basic
fields u. In our case, this means that the Source terms can be ignored. For
the sake of generality, we will not assume here that the principal part is in
Flux-conservative form, so that we will start from

∂t u + Ak ∂k u = 0 , (4.70)

which can also be interpreted as a linearized version of (4.48), where the
matrices Ak are given by

Ak =
∂Fk

∂u
. (4.71)

Let us consider now a generic space direction n. We will study the following
eigenvalue problem

(An − v I) u = 0 (4.72)

which is the equivalent for smooth solutions of the linearized version (4.69) of
the jump conditions (4.67). The matrix An = nkAk will be called again the
characteristic matrix along the direction n. Their eigenvalues v will be the
corresponding characteristic speeds.
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We will say that the first order system (4.70) is

• Strongly hyperbolic if, for every direction n, all the characteristic speeds
are real and the characteristic matrix can be put into full diagonal form
(there is a complete set of eigenvectors).

• Weakly hyperbolic if, for every direction n, all the characteristic speeds
are real but, at least for some direction, the characteristic matrix can not
be fully diagonalized.

These definitions coincide with the strong and weak Pseudo-hyperbolicity,
respectively, that were introduced in Sect. 3.1.3, when applied to the homo-
geneous first order system (4.70).

Hyperbolic systems can be shown, with some additional smoothness as-
sumptions [14], to have a well-posed initial-value problem. This implies the
stability of the solutions at the continuum level, which is a necessary condition
for the stability of numerical solutions. We have seen in Sect. 3.2 that strong
hyperbolicity is actually required to get stability at the numerical level. We
will see in the following section how a complete set of eigenvectors is manda-
tory in order to apply advanced numerical methods from Computational Fluid
Dynamics.

Before going further in that direction, let us solve the eigenvalue problem
for the first order version (4.14–4.20) of the Z4 system. Let us notice first
that the principal terms of the evolution equations (4.21–4.22) for the metric
coefficients are trivial, so that we can restrict ourselves to the reduced set of
31 dynamical fields

u = {Kij , Ak, Dkij , Θ, Zk} , (4.73)

which are supposed to evolve in the non-homogeneous background provided
by the metric coefficients α, γij . Let us also introduce the first order version
of the quantity (3.113)

Vk = Dk − Ek − Zk , (4.74)

as an auxiliary variable which will prove very useful for the analysis.
The spectral decomposition of the characteristic matrix An provides the

following list of eigenfields:

• Standing eigenfields (zero characteristic speed)

A⊥, D⊥ij , Ak − fDk + f mVk (4.75)

(17 independent fields), where the symbol ⊥ replacing an index means the
projection orthogonal to ni, for instance

D⊥ij ≡ (δ r
k − nknr)Drij . (4.76)

• Light-cone eigenfields (local characteristic speed ±α)
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L ±
ij ≡ [Kij − ninj tr K] ± [λn

ij − ninj tr λn] (4.77)

E± ≡ θ ± V n (4.78)

(12 independent fields), where the symbol n replacing the index means the
contraction with ni, for instance

λn
ij ≡ nkλk

ij . (4.79)

• Gauge eigenfields (characteristic speed ±α
√

f). In the generic, non-
degenerate, case (f �= 1), we get

G± ≡
√

f [ tr K − µ Θ ] ± [ An + (2 − µ) V n ] , (4.80)

where we have written for short

µ =
f m − 2
f − 1

. (4.81)

In the degenerate case f = 1, one must have m = 2, as discussed below,
and the extra degeneracy allows any value of the combination (4.81). The
corresponding eigenfields can be chosen to be, for instance,

[ tr K ] ± [ An + 2 V n ] . (4.82)

From the list (4.75–4.80) of eigenvectors and their corresponding eigenval-
ues, we can easily conclude that

• All the characteristic speeds are real (the system is at least weakly hyper-
bolic) if and only if f ≥ 0.

• In the case f = 0, the two components of the gauge pair G± are not inde-
pendent, so that the total number of independent eigenfields is 30 instead
of the 31 ones required for strong hyperbolicity.

• The case f=1 (harmonic case) is special:
– if m �= 2, then the gauge pair G± can not be fully decoupled from the

pair E±, so that one has only 29 independent eigenfields
– if m = 2, then these pairs can be decoupled in many ways, due to the

degeneracy of the gauge and light eigenfields. The pair (4.82) is just one of
such choices. One recovers then the full set of 31 independent eigenfields
(strong hyperbolicity).

• The first order Z4 system described by (4.14–4.20) is strongly hyperbolic in
all the remaining cases (f > 0, f �= 1).

The same conclusions apply to the case of a kinematical shift, given inde-
pendently of the dynamical fields (4.73). The main change is that the charac-
teristic speeds are ‘drifted’ by a shift term:

vn = (−βn , − βn ± α , − βn ± α
√

f) . (4.83)

Notice that the use of a superluminal shift can reverse the sign of some charac-
teristic speeds. In the Fluid Dynamics language, these would be ‘sonic points’
and they will deserve a special treatment in numerical applications.
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4.3.2 High-Resolution Shock-Capturing Numerical Methods

We will see now how to take advantage of the strongly hyperbolic nature of
the evolution system in order to apply advanced numerical methods, like the
ones currently used in Computational Fluid Dynamics.

Let us start from the Flux-conservative discretization (4.57). The interface
Fluxes Fi±1/2 must be computed for every elementary cell (we will consider
for the moment only one space direction). The idea is to ‘reconstruct’ the
field values in a consistent way inside the elementary cell, so that one can
get ui±1/2 and, then, compute the interface Fluxes. For a quasilinear system,
this is equivalent to the alternative strategy of computing first the Fluxes at
the grid nodes Fi and then reconstructing the Fluxes at the interfaces (this
is what we actually recommend in practical applications).

We show in Fig. 4.3 two different cell reconstructions. Notice that a dis-
continuity appears at every interface, where the values u− are obtained from
the previous cell and the values u+ are obtained instead from the next cell.
To be more specific, at the i + 1/2 interface one gets

u− = ui u+ = ui+1 (4.84)

for the zero order reconstruction (first panel in Fig. 4.3), or

u− = ui +
1
4

(ui+1 − ui−1) (4.85)

u+ = ui+1 −
1
4

(ui+2 − ui) (4.86)

for the linear reconstruction (second panel in Fig. 4.3).
There are two different ways of dealing with such interface discontinu-

ities. The first one, valid for smooth solutions, is to interpret this discrepancy
between the left-hand-side and the right-hand-side interface values just as a
consequence of the finite difference discretization. The right strategy in this
case would be to improve the accuracy at the interface by taking the average,
that is

ui+1/2 = (u+ + u−)/2 (4.87)

and then compute the interface Fluxes. In this sense, the simple average (4.61)
can be regarded as the result of applying the lowest level reconstruction (4.84)
directly to the Fluxes and then averaging at the interfaces.

The second way of dealing with the numerical discontinuities at the in-
terface is to interpret (u−, u+) as initial data for a Riemann problem. In
this way, we allow for the possibility that some interface discrepancies arise
from real discontinuities, not just from discretization artifacts. Getting the
Fluxes at a given interface would amount then to solving the Riemann prob-
lem there, so that one gets the physical solution even if a shock or any other
kind of discontinuity is crossing through the elementary cell (‘Shock- capturing
methods’).
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Fig. 4.3. Starting from the values of the dynamical fields (alternatively, the fluxes)
at the grid nodes, two different reconstructions are shown inside every elementary
cell: the flat one (first panel) and a linear one (second panel). In both cases, nu-
merical discontinuities appear at every interface (dotted lines) between the left and
right values (arrows and dots, respectively). Notice that the original function was
monotonically decreasing: all the slopes are negative. This monotonicity is preserved
either by the left interface values (arrows) or by the right interface values (dots) in
the flat reconstruction case. In the linear reconstruction case, however, both the left
interface values (at i − 3/2) and the right interface ones (at i + 3/2) show local
extreme values that break the monotonicity of the original function

There are many ‘Riemann solver’ numerical algorithms, which are cur-
rently used in Fluid Dynamics [34]. The General Relativity case, however, is
quasilinear so that most of these algorithms give equivalent results. We pre-
fer to use the a simplified version of the one given by Marquina [35]. The
prescription for getting the interface values ui+1/2 can be stated as follows:

• Decompose both one-sided predictions (u−, u+) as linear combinations
of the set of characteristic fields w. Note that the coefficients in these
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combinations are not necessarily constant: we must use in general a dif-
ferent set of values on each side of the interface.

• Project the forward prediction u−, by suppressing any components corre-
sponding to negative characteristic speeds (forward projection uF ).

• Project the backward prediction u+, by suppressing any components cor-
responding to positive characteristic speeds (backward projection uB).

• Add these upwind-projected values at the given interface, that is

ui+1/2 = uF + uB . (4.88)

There is no mistake: this is not an average, like in (4.61). One is taking in-
stead the positive speed components from the previous cell and the negative
speed components from the next one (note that static characteristic fields,
with vn = 0, do not contribute to the Fluxes in the quasilinear case). Notice
also that we must assume for consistency a definite sign for the character-
istic speed. If vn changes its sign between both sides of the given interface
(a ‘sonic’ point), then a specific combination must be taken instead of the
upwind projections presented here. (see [35] for the details).

The interface Fluxes can then be easily computed from (4.88). Alterna-
tively, if we are reconstructing the Fluxes, the starting point will be the one-
sided predictions (F−, F+), and the same procedure will apply (a little bit
simpler, because static characteristic fields have no Flux, so that they not
even appear in the process). The power of the upwind algorithm (4.88) comes
from the fact that one is using just the sign of the characteristic speeds, not
their values (except at sonic points). This is very helpful in the case of oblique
wavefronts (see Fig. 4.2), where the parallax effect causes the discontinuities
to propagate along the coordinate axes faster than the corresponding charac-
teristic speeds (notice that both a and b are greater than d in Fig. 4.2). As
far as the propagation direction is not reversed by the parallax effect, using
just the signs of the characteristic speeds provides a robust algorithm even in
the case of oblique shocks, as we will show below.

The combination of the upwind algorithm (4.88) with the zero-order ‘flat’
reconstruction of the interface values (first panel in Fig. 4.3) is equivalent to
the first order upwind method (4.60) that we presented when discussing the
advection equation. This is because every eigenfield of the characteristic ma-
trix obeys actually an advection equation along the selected space direction:
the propagation speed is precisely the corresponding eigenvalue of the char-
acteristic matrix. Notice, however, that using the upwind algorithm (4.88)
instead of the standard average (4.61) downgrades the accuracy from second
to first order. This leads to poor numerical results when applied to the modest-
size three-dimensional grids that are currently used in Numerical Relativity,
as we will see below.

A High-resolution Shock-capturing method can be built instead by com-
bining the upwind algorithm (4.88) with a first order reconstruction of the
interface values, like the one presented in (4.85), which will ensure second-
order spatial accuracy. There is a price to pay for this: as we can see in



4.3 Hyperbolic Systems 85

the second panel in Fig. 4.3, the linear reconstruction does not preserve the
monotonicity of the dynamical fields. This will cause spurious oscillations in
the numerical results, as we will see below.

Notice that this monotonicity breaking can occur only when the centered
slope ∆C that is being used for the reconstruction of a given field u (alterna-
tively, its corresponding flux F ) gets at least twice as large as any of the left
or right-sided slopes:

∆L
i ≡ (ui − ui−1) , ∆R

i ≡ (ui+1 − ui) (4.89)

(see Fig. 4.3). Otherwise, the predictions at a given interface are always
bounded between the neighbor node values so that monotonicity of the node
values would imply that of the interface ones. In our case, we have chosen the
average

∆C
i ≡ (∆L

i + ∆R
i )/2 = (ui+1 − ui−1)/2 , (4.90)

and a simple calculation shows that, in this case, the monotonicity breaking
can occur only if one of the left and right slopes (4.89) at a given point is
at least three times larger than the other. This is very unlikely to occur if
one is dealing with smooth solutions using a numerical grid with the required
resolution. But this can be a problem in at least two scenarios:

• When one is dealing with piece-wise continuous solutions, where the dis-
continuities appear independently of the space resolution.

• When one is dealing with smooth solutions that get steep gradients at
specific locations during evolution. This is actually the case in Black-Hole
simulations when one uses singularity-avoidant slicing conditions, as we will
see later.

A monotonicity-preserving algorithm can be obtained by using the non-
linear ‘monotonic centered’ (MC) slope reconstruction [36]

∆MC ≡ minmod( 2∆L , ∆C , 2∆R ) , (4.91)

instead of the linear average (4.90), in combination with the upwind algorithm
(4.88). The minmod function is defined as follows:

• If all the arguments have the same sign, then it selects the one with smaller
absolute value.

• If one of the arguments has different sign than the others, then it is zero.

In this way, the slopes are limited in order to avoid spurious oscillations. The
rule is that interface values must lie between their neighbor node values (see
Fig. 4.4). There is a slight amount of numerical dissipation at the extreme
points (where left and right slopes have different sign), but this is common
to the class of ‘High-resolution Shock-capturing methods’ (HRSC) that are
currently used in Fluid Dynamics. The particular algorithm we have presented
here, which we will call MMC because it combines the Marquina solver with
the MC limiter, belongs to the class of ‘Slope-limiter’ (alternatively ‘Flux-
limiter’) methods, as described in [33,34].
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Fig. 4.4. Same as the second panel in Fig. 4.3, but using the monotonic-centered
reconstruction. Notice that the interface values are bounded now between the neigh-
bor nodes, so that monotonicity is preserved both for the left values (arrows) and
by the right ones (dots) at every interface (dotted lines)

4.3.3 The Gauge-Waves Test-Bed

Now we will test the developments presented in this chapter in a very pecu-
liar situation: Minkowski spacetime endowed with a non-conventional gauge
condition. To understand what we are meaning by this, let us start from
Minkowski metric in the standard inertial coordinate system

ds2 = −dt2 + dx2 + dy2 + dz2 , (4.92)

and perform a general conformal transformation in the two-dimensional sector
spanned by the t, x coordinates, namely

ds2 = H2(t, x) (−dt2 + dx2) + dy2 + dz2 , (4.93)

where now the (t, x) labels refer to the transformed coordinates.
We can simulate here propagation along the x axis (in the positive sense,

for instance), by taking
H(t, x) = h(x − t) (4.94)

(notice that light speed along the x axis is still v = 1 in the transformed
coordinates). The exact time evolution can be then easily obtained from the
initial profile

H(0, x) = h(x) . (4.95)

Note that (4.94) implies

α = h , Kxx = h′ , Ax = h′/h , Dxxx = hh′ . (4.96)

The term ‘Gauge waves’ is justified by the propagation behavior (4.94)
and the fact that the only non-trivial eigenfields belong to the gauge sector
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(4.82). Notice that the metric form (4.93) corresponds to an harmonic slicing
condition (f = 1), so that we must have also m = 2 to ensure strong hyper-
bolicity. The ordering parameter ζ is set to zero, but this is irrelevant for the
moment because only the x derivatives provide non-trivial contributions.

We can evolve either smooth profiles, like a periodic sine wave [15]

h(x) = 1 − A sin

(
2πx

d

)
(4.97)

(with the amplitude A < 1, of course) or non-smooth profiles, like the periodic
‘saw-teeth’ one

h(x) =
x 0 < x < d/4

d/2 − x d/4 < x < 3d/4
−d + x 3d/4 < x < d

(4.98)

which corresponds to a discontinuous (step-like) profile for the first derivatives
in (4.96). In our simulations we will use periodic boundary conditions, setting
the space period along the x axis d = 1, so that a round trip will be completed
after ∆t = 1.

We will first check the standard Flux-conservative second-order method,
defined by the interface average (4.61). In Fig. 4.5, we see the propagation
along the x axis of different Kxx profiles. The simulation takes place in a ‘nu-
merical simulation channel’ of 50×5×5 grid points, with periodic boundaries
along every axis.

The smooth wave profile can be compared with the initial condition after
one round-trip, showing a very good accuracy, even for our modest grid reso-
lution. The step-like profile is compared with the initial conditions after just
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Fig. 4.5. Gauge-wave evolution, as computed with the standard Flux-conservative
second-order method. The initial Kxx profiles (solid lines) propagate along the x
axis from left to right. The first plot corresponds to the evolution of a smooth wave
profile (cross marks), which is compared with the initial condition after one round-
trip: the difference can barely be seen. The second plot shows the evolution of a
step-like profile, which is compared with the initial condition after 10 iterations,
showing spurious oscillations behind both moving discontinuity fronts
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10 iterations, showing instead the expected spurious oscillations that would
contaminate the full profile after a full round-trip.

The spurious oscillations disappear if we use the first-order upwind method,
defined by the upwind prescription (4.88), as shown in Fig. 4.6. Both the sinus
and the step-like profile are compared now with the initial condition after a
full round trip. Severe numerical dissipation tends to smooth out everything,
leading to unacceptable errors. Increasing the grid resolution could improve
this results, but this would amount to waste a precious resource in Numerical
Relativity applications.
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Fig. 4.6. Same as Fig. 4.5, but with the evolution computed with the first-order
upwind method, defined by the prescription (4.88). The evolution of a step-like pro-
file is compared now with the initial condition after a full round trip, just like in
the smooth case. The monotonicity of the initial solution is preserved: the spuri-
ous oscillations have disappeared. However, the profiles after one round trip (cross
marks) show the effect of excessive numerical dissipation, departing from the initial
conditions (solid lines) in a clear way

The results for the MMC second-order method, defined by the prescription
(4.91), give us the best of both worlds, as shown in Fig. 4.7. Smooth profiles
are well resolved, even in our modest-size numerical grid. In addition, step-like
profiles are free of spurious oscillations, and keep their shape in the smooth
trams. The MMC method will be definitely our choice, unless we are sure that
we are dealing just with well-resolved smooth solutions, where the standard
second order method provides a simpler alternative.

Multidimensional Cases

Let us consider now the multidimensional case. This is the real challenge, be-
cause in the one-dimensional (1D) case there are mathematical theorems that
ensure the success of Shock-capturing methods for Flux-conservative Strongly-
hyperbolic systems [33]. The slight monotonicity breaking which remains in
the right-hand-side plot in Fig. 4.7 is due to the source terms that break the
strict Flux-conservative structure required for these theorems to apply.
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Fig. 4.7. Same as the preceding figures, but with the evolution computed with
the monotonic-centered second-order method, defined by the prescription (4.91).
The step-like profile is compared now with the initial condition after a full round
trip, just like in the smooth case. The spurious oscillations have also disappeared.
Numerical dissipation is no longer affecting the sinus profile after one round trip in
a significant way

This is no longer true in the multidimensional case, although the current
strategies try to mimic the 1D algorithms in one or another way [34]. The
difficulty is clearly shown when we decompose the evolution system (4.70) in
the following way

∂t u + Ax ∂x u + Ay ∂y u + Az ∂z u = 0 , (4.99)

so that it is evident that every axis has its own characteristic matrix. As far as
these three matrices do not commute, there is no common basis of eigenvectors
that can be safely be used in order to ‘upwind’ the interface values when one
deals with oblique shocks.

Our approach will be to consider every direction on its own, independently
of the others. This means for instance that the y (respectively, z) interface
values will be selected by using Ay (respectively, Az) as the characteristic
matrix, in the same way we did along the x direction in the 1D case. The
final update of the computed fields will be done by simultaneously, taking
into account every direction, as specified in (4.57) [48].

Coming back to our test-bed problem, the analytic solution for oblique
discontinuities can be obtained by performing a simple space rotation around
the z axis on the line element (4.93). We will consider a 45 degrees rotation

x = (x′ − y′)/
√

2 , y = (x′ + y′)/
√

2 , (4.100)

in order to get a solution which is periodic along both the x and y axes in a
square domain. Notice that all the first derivative quantities

Ai , Kij , Dkij , (4.101)

transform like tensors under the linear coordinate transformation (4.100).
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We will test again the MMC method with the oblique step-like profile given
in Fig. 4.8. The simulation takes place now in a ‘numerical simulation pool’ of
50×50×5 grid points, with periodic boundaries along every axis. The solution
after one round trip does not show any sign of spurious oscillations. In order
to take a closer look, we plot in Fig. 4.10 a longitudinal section corresponding
to the y = 0 plane.
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Fig. 4.8. Initial data for the Kxx components corresponding to an oblique discon-
tinuity profile in the x− y plane. Notice the periodicity along every space axis. The
projection on the front face coincides with the 1D step-like initial profiles in the
preceding figures

We still see some overshots that break the monotonicity of the initial
profile, but this is not a multidimensional effect: the same feature was yet
present in the second plot in Fig. 4.7. The results actually look like what one
would get after a 45 degrees rotation from the previous ‘numerical channel’
simulation, where the propagation direction was aligned with the x axis. We
can conclude that the MMC method can be extended to the multidimensional
case in the way we have described. The fact that the parallax effect causes
super-luminal propagation of the discontinuities along the coordinate axes, as
shown in Fig. 4.2, does not seem to be a real problem in our case.

There is another important feature of these CFD methods, related to the
gauge instabilities, as it can be seen in Fig. 4.11. We keep the numerical
simulations for the smooth profile (4.97) running until 100 round trips in order
to see the cumulative effect in every numerical method. The initial amplitude
is A = 0.1, which is larger than the one proposed for this case in [15].

We have represented in Fig. 4.11 the L∞ norm of tr K. This means the
maximum of (the absolute value of) tr K, which should be constant allow-
ing for the exact solution (4.94). As expected, the first-order upwind method
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Fig. 4.9. The initial Kxx profile shown in Fig. 4.8, corresponding to an oblique step,
is evolved during one full period, using the MMC method. The result agrees with
what one could get after a 45 degrees rotation from the previous simulation, where
the propagation direction was aligned with the x axis, as shown in the second plot
in Fig. 4.7

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 Kxx at t=0
       t=1

Fig. 4.10. A longitudinal section, corresponding to the y = 0 plane, of the results
shown in Fig. 4.9. There are slight overshots in the evolved profile (cross marks)
with respect to the initial Kxx profile (solid line), similar to the ones appearing in
the second plot in Fig. 4.7
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Fig. 4.11. The L∞ norm of tr K is shown for the initial sinus profile, with an
initial amplitude A = 0.1. The first-order upwind method (labelled as U) produces
exponential dissipation. The second-order centered method (labelled as C) starts
by keeping the norm constant, but crashes before completing 40 round-trips. The
MMC method shows instead a slight linear decrease

flattens the solution very quickly. The standard second-order method keeps
the initial value nearly constant, but crashes because of high-frequency gauge
instabilities (this crash was avoided in [15] by selecting a much lower initial
amplitude). The non-linear MMC method shows a little amount of extra dis-
sipation, but manages to complete the 100 round-trips. Moreover, the final
amplitude is still about two thirds of the initial one.

Gauge instabilities are still not fully understood. Our results seem to sup-
port the existence of unstable high-frequency gauge modes that can be cured
if one replaces the standard (linear) high-resolution algorithms by the MMC
(non-linear, Shock-capturing) one. This provides an additional reason to con-
sider Shock-capturing methods as a useful tool, not only for the Hydrodynamic
equations, but also for the gravitational field equations in the full 3D case.
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Boundary Conditions

5.1 The Initial-Boundary Problem

Most Numerical Relativity simulations are devised to approximate the time
evolution of the dynamical fields starting from data given on an initial time
slice: the General Relativistic Cauchy or initial-value problem (IVP). The the-
oretical formalisms we have described so far are built with the objective of
getting a well-posed Cauchy problem. This ensures, at the continuum level,
that the solution is unique and depends smoothly on the initial data. A well-
posed Cauchy problem is also a necessary condition for the existence of stable
numerical algorithms that transpose the same property at the discrete level:
the time evolution of the selected initial data must provide a sound approxima-
tion to the corresponding solution (the accuracy must improve with increasing
numerical resolution).

The numerical applications we have presented in the preceding chapters
were dealing just with periodic solutions. This means that we could identify
the first points of the numerical grid with the last ones along every axis:
from the continuum point of view, our computational arena has the topology
of a three-torus. In this way, there is no genuine ‘first’ or ‘last’ point: we can
always rotate the torus along one symmetry axis, so that the chosen point gets
surrounded by the number of neighbors required for a given computational
stencil. As a consequence, only initial data are required to produce a solution,
both at the continuum and the discrete levels.

In physical applications, however, we will rarely find this three-torus topol-
ogy. Three-dimensional Finite Difference grids usually start at some point and
end at some other one along every axis, and this fact poses a serious problem
both at the continuum and at the discrete level:

• From the discrete point of view, the numerical stencil that is being used for
the ‘interior’ points needs to be modified at end-points, or even at next-to-
end points, where the required number of neighbors is not available inside
the numerical grid.

C. Bona and C. Palenzuela Luque: Elements of Numerical Relativity, Lect. Notes Phys. 673,
93–118 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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• From the continuum point of view, the computational domain has a border,
so that information can cross it in both senses. Of course, incoming infor-
mation can not be obtained from inside, so it must be specified through
additional conditions. These ‘Boundary conditions’ are relevant to the well-
posedness of the system: the pure initial value problem is then transformed
into a initial-boundary problem (IBVP).

5.1.1 Causality Conditions: The 1D Case

In order to clarify these points, let us focus for the moment in the one-
dimensional (1D) case. We see in Fig. 5.1 the domain of dependence of a
boundary point P, displayed as a shaded cone. It is clear that the region out-
side the numerical grid do have causal influence on P, so that extra physical
information is required at the boundary. From the numerical point of view,
the stencil at P must be one-sided (like the one displayed as a dotted triangle)
instead of the centered stencil discussed in previous chapters: this means that
the discretization algorithm must be changed at P.

Fig. 5.1. The domain of dependency of a given boundary point P is shown as a
shaded cone. The outgoing components wout are contained into the left half-cone,
so that their values can be computed consistently by using a one-sided (upwind)
stencil, like the one shown as a dotted triangle. The ingoing components win belong
instead to the right half-cone, which is outside the numerical grid: they must be
provided by the boundary conditions

To be more specific, let us consider a 1D Strongly-hyperbolic Flux-
conservative system (we neglect source terms for the moment)

∂t u + ∂x F = 0 , (5.1)

The characteristic matrix
A =

∂F
∂u

(5.2)
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can be fully diagonalized and the set of dynamical fields u can be then de-
composed in the basis of eigenfields w, that is

ur =
∑

s

Crs ws . (5.3)

We will classify the characteristic eigenfields into two subsets:

• Incoming eigenfields win: the ones with characteristic speed pointing in-
side the computational region.

• Outgoing eigenfields wout: the ones with characteristic speed pointing out-
side the computational region (this includes the tangent ones).

To justify the use of the ‘incoming’ and ‘outgoing’ terms, let us consider the
simplest case, when the characteristic matrix (5.2) has constant coefficients.
Then, the original system (5.1) can be decoupled into a set of independent
advection equations for the characteristic fields, namely

∂twr + λr ∂xwr = 0 , (5.4)

so that the propagation behavior is like the one shown in Fig. 5.1. Simple
causality considerations lead then to the two main requirements for physically
sound boundary conditions

• Boundary conditions must provide the values of all the incoming eigen-
fields. Otherwise we will loose the uniqueness of the solution (not enough
information is given) and this will result into numerical instabilities.

• Boundary conditions must not restrict the values of the outgoing eigen-
fields. This is because the domain of dependence of these fields is fully con-
tained into the computational region, so that their values are completely
determined by inside information. Any further condition would be either
redundant or inconsistent.

The prototype of a boundary condition verifying these two main require-
ments is provided by the linear relationship

w in
r =

∑
s

Mrs w out
s + Cr (5.5)

where the coefficients Mrs and Cr are independent of the dynamical fields.
We will explore the generic conditions (5.5) in more detail in what follows.

5.1.2 1D Energy Estimates

The eigenfield basis w, which is associated to any 1D strongly hyperbolic
system, allows one to introduce a positive-definite quadratic form in the space
of dynamical fields:
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E =
∑

r

(wr)2 (5.6)

(Energy metric).
We will consider the ‘Energy estimate’ E, obtained as the integrated value

of E over the computational domain

E =
∫ b

a

E dx =
∑

r

∫ b

a

(wr)2 dx . (5.7)

Let us consider again the simplest case, with constant characteristic speeds.
The evolution of the eigenfields is governed by (5.4). This is a pure advection
process, where the initial profiles are transported without altering its shape.
This means that the integrals in the sum (5.7) would not change in time when
computed over the full x axis. But, due to the finite size of the computational
domain, one has instead some end-point contributions to the time derivative,
namely

∂t E = −2
∑

r

λr

∫ b

a

wr ∂xwr dx = −
[∑

r

λr(wr)2
]b

a

. (5.8)

A well-posed initial-boundary problem can be easily obtained now by re-
quiring that the right-hand-side term in (5.8) be bounded in a suitable way.
As far as every dynamical field at every grid point contributes to the energy
estimate E (which is positive-definite so that there can no be cancellations of
any kind), this would mean that the values of the dynamical fields themselves
can not grow too fast (at the continuum level at least).

A closer look at (5.8) suggests the following decomposition in terms of
incoming and outgoing eigenfields

∂t E = −
[∑

r

λin
r (win

r )2 +
∑

s

λout
s (wout

s )2
]b

a

, (5.9)

where it is clear that the outgoing terms contribution goes in the right sense
(∂t E ≤ 0), whereas incoming terms contribute instead in the wrong one
(∂t E > 0) because their characteristic speed is positive at the first point a
and negative at the last point b.

Now we are in position to analyze the effect of different choices in the
generic boundary condition (5.5):

• The most conservative one would be to suppress all the incoming fields at
the boundaries, that is

win
s = 0 ∀s , (5.10)

(maximally dissipative boundary condition). In this case it is clear that the
energy estimate E will diminish with time at the maximum rate.



5.1 The Initial-Boundary Problem 97

• The next safe choice would be to relate every incoming field at the boundary
with an outgoing one, grouped by pairs, that is

win
s = σ wout

r , (5.11)

so that the corresponding terms in the sum (5.9) can be grouped as

(λout
r + σ2λin

s ) (wout
r )2 , (5.12)

which will have the right sign provided that the ‘reflection coefficient’ σ is
small enough, that is

λout
r + σ2λin

s ≥ 0 . (5.13)

• An interesting particular case of the former one is when the corresponding
outgoing speed λout

r is zero. Then, there is no ‘small enough’ non-trivial
choice of σ that could verify (5.13). One has instead the contribution

σ2λin
s (wout

r )2 , (5.14)

which goes always with the wrong sign. Notice, however, that this term
is constant in time (λout

r is actually zero), so that it will produce a linear
increasing of the energy estimate E in the worst case.

• As an alternative, one could just specify the incoming fields at the bound-
aries in terms of some given functions, namely

win
s = Cs(t) , (5.15)

so that a convenient upper bound for the growth of the energy estimate can
be obtained by a suitable choice of the functions Cs(t) at the boundaries.

Note that the Energy metric (5.6) is far from being unique: the character-
istic eigenfields could be multiplied by any set of arbitrary factors and, when
some characteristic speeds coincide, the linear degeneracy of the correspond-
ing eigenspace produces non-equivalent quadratic forms which could be used
as alternative starting points, leading to different energy estimates. There are
also other more general choices, as we will see in what follows.

5.1.3 The Multi-Dimensional Case: Symmetric-Hyperbolic
Systems

Let us go back to the multidimensional case, to the linear Flux-conservative
system

∂t u + ∂k(Ak u) = 0 , (5.16)

where we will assume again that the characteristic matrices Ak have constant
coefficients for simplicity. This system will be said to be Symmetric-hyperbolic
if there exists a basis of dynamical fields u such that, for every space direction
n, the corresponding characteristic matrix is symmetric, that is
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nkAk
rs = nkAk

sr ∀n . (5.17)

It is clear that any symmetric-hyperbolic system must be also strongly hy-
perbolic: every real symmetric matrix can be diagonalized and all the corre-
sponding eigenvalues are real. The converse is not true: there are as many
characteristic matrices as space directions and the requirement all of them
must be symmetric when expressed in a given basis is not trivial.

We will restrict ourselves to symmetric hyperbolic systems of the form
(5.16). Let u be one the basis in which the symmetry requirement (5.17) is
fulfilled. We will then define the Energy metric to be

E =
∑

r

(ur)2 . (5.18)

Now some comments are in order:

• In the 1D case, using the basis of eigenfields w ensures that the (only)
characteristic matrix is in diagonal form (that is symmetric, of course).
This means that in 1D symmetric hyperbolicity is equivalent to strong hy-
perbolicity.

• In the 3D case, there is no common basis of eigenvectors for the characteris-
tic matrices along different directions (unless all these matrices commute).
This means that the basis fields u are not eigenvectors (at least not in the
generic case).

• This suggests, even in the 1D case, a further freedom in choosing the basis
vectors for the Energy metric: any combination of the form

ur =
∑

s

Rrsws , (5.19)

where R is any orthogonal matrix, will work, as we will see below.

Now we can proceed along the same lines as in the 1D case. We will consider
again the energy estimate, obtained by integrating E over the computational
domain

E =
∫

E dV =
∑

r

∫
(ur)2 dV . (5.20)

Its time variation is given by (we are using the symmetry requirement here)

∂t E = −2
∑
rs

Ak
rs

∫
ur ∂kus dV = −

∑
rs

Ak
rs

∮
urus nk dS , (5.21)

where the surface integral is over the boundary of the computational domain.
Notice that we need only one characteristic matrix at a time in order to
compute the last integral: the one corresponding to the normal direction n to
the given boundary surface, that is

An = nkAk . (5.22)
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Note also that the term appearing in each surface integral is a scalar with
respect to the orthogonal transformations (5.19). It can be then computed in
the basis of characteristic fields, where An takes the diagonal form

An = diag({λin
r }, {λout

s }) , (5.23)

so that one finally gets the same kind of result than in the 1D case

∂t E = −
∮ [ ∑

r

λin
r (win

r )2 +
∑

s

λout
s (wout

s )2
]

dS . (5.24)

This means that the Energy method can be applied to devise boundary
conditions for multidimensional symmetric-hyperbolic systems in the same
way as in the 1D case, as discussed in Sect. 5.1.2. Some words of caution are
convenient at this point:

• Energy estimates can provide sufficient conditions for a well-posed IBVP
in the symmetric-hyperbolic case. But, as far as the Energy metric is not
unique, the resulting conditions may not be necessary.

• The arguments presented here apply just to the continuum level. Sufficient
conditions at the discrete level will follow only if the numerical algorithm
is able to preserve the integration-by-parts rule, which plays a key role in
these developments. This restricts the choice of discrete algorithms, both
at the interior points and at the boundary ones. See [49] for details.

• The results presented here hold only for pure Flux-conservative systems
(no source terms) and for the linearized case, where the coefficients of the
characteristic matrices are constant. None of these requirements is fulfilled
in Numerical Relativity applications: one must then use Energy estimates
just as a guideline.

A simple example of a symmetric-hyperbolic system is provided by the
first-order version (4.14–4.20) of the Z4 system in the harmonic slicing case
(f = 1, m = 2), for the choice ζ = −1 of the ordering parameter [29]. The
Energy metric can be chosen to be

E = KijK
ij + λkijλ

kij + Θ2 + VkV k , (5.25)

but a ‘constant’ term of the form

(Ak − Dk + 2Vk)(Ak − Dk + 2V k) , (5.26)

containing just fields with zero characteristic speed, could also be added.
We can now check the results presented in this section by using again

the robust stability test-bed. This time periodic boundaries will be replaced
by algebraic boundary conditions of the form (5.11) along every axis in a
small (203 nodes) numerical grid. Note that the outward unit normal n at the
boundary must be defined at corner points (see Fig. 5.2).
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Fig. 5.2. The outward normals to the boundaries of a two-dimensional grid are
shown. A normal direction must be chosen at corner points. Notice that the de-
composition into incoming and outgoing eigenfields is direction-dependent, so that
there are physical ‘in’ and ‘out’ modes along every direction, not just normal to the
boundary surface

We see in Fig. 5.3 the time evolution of ‖trK‖∞, that is the maximum
of the absolute value of trK, which is one of the main contributions to the
energy estimate (5.25). For the maximally dissipative case σ = 0, the expected
decreasing is clearly seen. The case σ = ±1 deserves a further comment,
because every non-zero eigenvalue appears twice, with different signs (zero
shift case), that is

λin = −λout , (5.27)

so that the resulting terms (5.12) do not contribute to the energy decreasing
when σ2 = 1. Then, a constant value of the energy estimate would be ex-
pected at the continuum level. There are two alternative ways of explaining
the observed decreasing when σ = ±1 in Fig. 5.3:

• As the effect of the non-linear source terms and/or the non-constant coef-
ficients in the characteristic matrices involved. This could also explain the
different behavior of the σ = +1 and the σ = −1 cases. This is very un-
likely, because the noise level we are using here is so low that non-linear
contributions can be safely neglected.

• As the effect of numerical dissipation. This does not come from the numer-
ical algorithms used at interior points, which do not show so much dissi-
pation (see for instance Fig. 3.3). This must be due instead to the use of
the first-order upwind method, which is known to be highly dissipative (see
Fig. 4.6), as the one-sided algorithm for the outgoing modes at boundary
points.
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Fig. 5.3. Time evolution of the maximum of the absolute value of trK, which is
one of the main contributions to the energy estimate. For the maximally dissipative
case σ = 0, the expected decreasing is clearly seen. The unexpected decreasing of
the σ = ±1 cases is due to numerical dissipation, caused by the use of the first-order
upwind algorithm at the boundary points

5.2 Algebraic Boundary Conditions

Symmetric hyperbolicity is a strong requirement to be imposed on Numerical
Relativity evolution systems. Of course, the sufficient conditions that would
follow for the IBVP are rewarding, but Numerical Relativity evolution sys-
tems contain both source terms and non-constant characteristic matrices. This
means, as stated before, that the resulting conditions must anyway be con-
sidered just as guidelines, which have to be validated in test-bed problems.

In addition, we know that true Einstein’s solutions must verify the Energy
and Momentum constraints. Simple algebraic conditions like (5.11) do not
allow for this fact: it follows that constraint-violating modes will appear at
the boundaries of the computational region and (the incoming components)
will propagate inwards. Then, even if we started from constrained initial data,
the computed solution will no longer be a true Einstein’s solution once time
evolution begins, even at the continuum level. As we will see, constraint-
preserving boundary conditions are much more sophisticated than (5.11), and
the energy method can not be applied to this kind of boundary conditions in
a simple way.

We will consider constraint-preserving boundary conditions in the next
section. As a previous step, we will keep considering here simple algebraic
conditions, like (5.11). But now we will enlarge the class of evolution systems
to include all the strongly hyperbolic ones. As far as Energy considerations
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will no longer apply here, we will introduce a different kind of developments
that will be used as a guideline for setting up suitable boundary conditions.
Other developments have also been considered, like the Fourier-Laplace de-
composition [19], which would provide necessary conditions for getting a well
posed IBVP problem necessary conditions. The one we will present here is
more in keeping with the hyperbolicity analysis presented in Sect. 4.3.1.

5.2.1 The Modified-System Approach

As stated before, boundary points are dealt with in a special way. The fact
that we are using boundary conditions there means that the evolution system
is being actually modified: a subset of the original equations is replaced by
these boundary conditions. For the purposes of our analysis, the modified
system can be obtained as follows:

• Starting with the original strongly-hyperbolic system, we compute all the
dynamical fields at the boundary points. Notice that this requires using a
one-sided algorithm for the space discretization (see Fig. 5.1).

• We decompose the computed dynamical fields in the basis of characteristic
eigenfields w corresponding to the space direction n normal to the boundary
surface (a normal n is required even at corner points, see Fig. 5.2). As
discussed before, these characteristic fields are classified into incoming and
outgoing ones, according to the sign of their characteristic speed.

• We keep the values of the outgoing eigenfields (this includes the tangent
ones). Their evolution equations are then the original ones, that is:

∂t wout + ∂k(Ak wout) = · · · (5.28)

(only the principal part is written here). Notice that the eigenvectors wout

are associated to the n direction only, so that characteristic matrices along
other directions are not in diagonal form.

• We replace the original values of the incoming eigenfields by the ones ob-
tained from the boundary conditions, for instance

w in
r = σrsw

out
s (5.29)

(no summation here), which is a generalization of (5.11). In this way, the
evolution equations for the incoming fields are being modified, so that the
evolution system that is being actually used at boundary points is no longer
the original one.

We will require the resulting ‘modified system’ (5.28, 5.29) to be hyper-
bolic. This means that the (modified) characteristic matrices along every di-
rection must have real characteristic speeds. This is trivial along the selected
direction n, for which the (modified) basis of eigenfields is formed now by



5.2 Algebraic Boundary Conditions 103

• the original outgoing eigenfields w out
s , with characteristic speeds λ out

s .
• the combinations

w in
r − σrsw

out
s , (5.30)

with zero characteristic speed, as it follows from the algebraic boundary
condition (5.29).

But this is far from being trivial along other directions, oblique to the bound-
ary surface, as depicted in Fig. 5.2.

To be more specific, we will consider the characteristic matrix along a
generic oblique direction r, that is

Ar = rk Ak , (5.31)

where the vector r is related with n by

r = n cosϕ + s sinϕ , (5.32)

and we have taken
n2 = s2 = 1 , n · s = 0 . (5.33)

The hyperbolicity requirement amounts to demand that all the resulting char-
acteristic speeds be real for any value of the angle ϕ.

5.2.2 The Z4 Case

We will apply the preceding considerations to the first order Z4 evolution
system (4.14–4.20). We obtained in Sect. 4.3.1 the complete list of eigenvectors
for the generic case, for which the Z4 system is strongly hyperbolic. We will
here provide simple algebraic boundary conditions of the form (5.11) for the
incoming modes.

Let us consider the boundary which normal n pointing outwards, so that
outgoing fields correspond to positive characteristic speeds and vice-versa. We
get then

E− − σe E+ = 0 (5.34)
L −

ij − σij L +
ij = 0 (5.35)

G− − σg G+ = 0 , (5.36)

where different reflection coefficients are allowed for different fields.
These equations replace the evolution equations for the 7 (remember that

L ±
ij is traceless) incoming eigenfields of the original system (4.14–4.20), by

providing at the same time 7 ‘outgoing’ (actually tangent) eigenfields of the
modified system. Another set of 17 tangent eigenfields (zero characteristic
speed) is given by

Ap, Dp ij , Ak − fDk + f mVk (5.37)

where p is the direction orthogonal to both vectors n and s.
The remaining 14 dynamical fields can be grouped into the following

sectors:
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• Energy sector {E+, Vs}. The corresponding evolution equations are (prin-
cipal part only):

1
α

∂t Vs = −sinϕ ∂s[ Θ ] = −1 + σe

2
sinϕ ∂r[ E+ ] (5.38)

1
α

∂t E+ = −∂r[ Vr + Θ cosϕ ] = −∂r[ E+cosϕ + Vs sinϕ ] . (5.39)

It follows that the characteristic speeds are given by the solutions of the
algebraic equation

λ(λ − α cosϕ) = α2 sin2ϕ
1 + σe

2
, (5.40)

so that real characteristic speeds are obtained for all ϕ if and only if

σe ≥ −1 . (5.41)

• Gauge sector {G+, As}. The corresponding evolution equations are (prin-
cipal part only):

1
α

∂tAs = −sinϕ ∂s[ f(trK − m Θ)]

= −1 + σg

2

√
f sinϕ∂r[ G+ + · · · ] (5.42)

1
α

∂t G+ = −∂r[
√

f Ar + f cosϕ trK ]

= −
√

f ∂r[ G+ cosϕ + As sinϕ + · · · ] . (5.43)

where the dots stand for coupling terms with the energy sector (these terms
are irrelevant here for the eigenvalues calculation). It follows that the char-
acteristic speeds are given by the solutions of the algebraic equation

λ(λ − α
√

f cosϕ) = f α2 sin2ϕ
1 + σg

2
, (5.44)

so that, allowing for the positivity of the gauge parameter f , real charac-
teristic speeds are obtained for all ϕ if and only if

σg ≥ −1 . (5.45)

• Metric sector {L +
ij , Dsij}. The corresponding evolution equations can

be obtained from (principal part only)

1
α

∂tDsij = −sinϕ ∂s[ Kij ] = −1 + σij

2
sinϕ∂r[ L +

ij + · · · ] (5.46)

1
α

∂t L +
ij = −∂r[ λr

ij + cosϕ Kij + · · ·

−1 + ζ

2
(riKnj + rjKni − niKrj − njKri) ]
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= −∂r[ L +
ij cosϕ + Dsij sinϕ + · · ·

−1 + ζ

2
sinϕ (siKnj + sjKni − niKsj − njKsi)

−1 + ζ

2
sinϕ (Dijs + Djis − siEj − sjEi) ] . (5.47)

where the dots stand again for coupling terms with the previous sectors.

The evolution equation (5.47) for the outgoing ‘metric’ fields contains (un-
less ζ = −1) crossed coupling terms that complicate the analysis. For the sake
of simplicity, let us focus on the easiest case, which corresponds to the maxi-
mally dissipative condition

σij = 0 ∀ i , j . (5.48)

One gets then three variants of the same algebraic equation

λ(λ − α cosϕ) =
1
2

α2 sin2ϕ (5.49)

λ(λ − α cosϕ) =
1
2

α2 sin2ϕ

[
1 −

(
1 + ζ

2

)2
]

(5.50)

λ(λ − α cosϕ) =
1
2

α2 sin2ϕ [1 − (1 + ζ)2] , (5.51)

depending on the particular set of components considered (the last two equa-
tions appear twice, so that one gets 10 characteristic speeds that complete the
full set of 38). The most restrictive is the last one (5.51): it implies that one
gets complex characteristic speeds for some values of ϕ unless

ζ ≤ 0 , (5.52)

so that the standard ordering case (ζ = +1) is excluded. This provides a
counter-example for the common belief that maximally dissipative boundary
conditions ‘should always work’.

We can check out these results by using again the robust stability test-
bed. As in the preceding section, where the symmetric hyperbolic case was
considered, we will use algebraic boundary conditions of the form (5.29) along
every axis in a small (203 nodes) numerical grid. In order to compare with the
results shown in Fig. 5.3 for the ζ = −1 case, we will keep the same values of
the gauge parameters, corresponding to the harmonic slicing condition (f = 1,
m = 2). This means that the only change will be to consider different values
of the ordering parameter ζ, so that the evolution system is just strongly
hyperbolic, but not symmetric hyperbolic.

We show in Fig. 5.4 the time evolution of the maximum of the absolute
value of trK, which is one of the main contributions to the Energy metric
(5.25). In the maximally dissipative case (left panel), we see that the choice
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ζ = +1 of the ordering parameter is unstable, whereas the two other choices
ζ = 0 ,−1 are stable and behave in the same way. In the ζ = 0 case (right
panel), we see that the ‘extreme’ values σ = ±1 of the reflection coefficients
lead to code crashing, whereas other choices, closer to the maximally dissi-
pative one σ = 0, work fine, showing the same decreasing behavior as in the
symmetric hyperbolic case.
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Fig. 5.4. Same as Fig. 5.3 for different values of ζ and σ. The plots in the left
panel correspond to different choices of the ordering parameter in the maximally
dissipative case (σ = 0). It follows that the ζ = +1 choice of the ordering parameter
is unstable. Conversely, the plots in the right panel correspond to different values
of the reflection coefficients in the symmetric ordering case (ζ = 0). The extreme
choices σ = ±1 are unstable, while other choices, closer to the maximally dissipative
one, still work

5.2.3 The Z-Waves Test-Bed

One can wonder whether the preceding results will still apply in the non-linear
regime, where the combined effects of the source terms and the non-constant
coefficients must be allowed for. This can be a source of problems, as we saw
in Sect. 4.3.3, where the gauge-waves test-bed was used to check gauge-related
issues. We have seen there how unstable (non-linear) gauge modes caused the
failure of standard numerical algorithms.

We propose here the ‘Z-waves’ test-bed problem in order to check instead
the dynamical issues related with the supplementary fields (Θ , Zi) of the Z4
system. The term Z-waves comes from the expected dynamical behavior, al-
lowing for the subsidiary condition (3.81): every component of the set (Θ , Zi)
should propagate as the solution of a wave equation with non-linear source
terms.

This does not mean that our evolution equations are replaced by the wave
equation. We will actually use the full Z4 first order system (4.14–4.20), with
the gauge parameters choice:

f = 2 , m = 0 (5.53)
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in (4.5), although other gauge values can be used without much change. The
same is true for the ordering parameter: we take here the value ζ = 0, but
ζ = −1 could be used as well. The only restriction here is given by (5.52).

The initial data will be consistent with Minkowski spacetime:

α = 1 , γij = δij , Ai = Kij = Dkij = 0 , (5.54)

and also Zi = 0. The dynamics will come from a gaussian bump in Θ, which
is initially at rest. (see the first plot in Fig. 5.5). The initial height of the
bump is a 10% of the metric values, so we are not going to test just the linear
regime. Notice also that the initial values of all metric derivatives are zero, so
that the resulting dynamics is fully generated by the Θ field.

The simulation takes place in a 50× 50× 5 ‘numerical pool’ with periodic
boundary conditions along the z axis and maximally dissipative boundary
conditions along both the x and y axes.

The dynamical behavior of the computed solution is, as expected, identical
to that of the wave equation. The initial bump splits into two components.
The outgoing one generates a circular wavefront that reaches the boundaries
(see the third plot in Fig. 5.5) and gets out. The incoming one passes through
the origin (see the second plot in Fig. 5.5), generating a second wavefront
with negative amplitude (it can be seen in the fourth plot, contrasting with
the zero-amplitude central region). This secondary wavefront finally reaches
the boundary and gets out (fifth plot).

This dynamical pattern can be seen even more clearly in Fig. 5.6, where
the initial gaussian bump has been replaced by a cylindrical step. In this
way, the simulation corresponds to a weak solution, where the discontinuity
in Θ is introduced through the initial data. We can no longer use here the
second-order centered standard method for the space discretization: it will
be replaced instead by the MMC method, as described in Sect. 4.3.2. The
initial splitting into two components is now manifest in the second plot of
Fig. 5.6. The outgoing one generates again a circular wavefront that reaches
the boundaries (third plot) and gets out without any problem (notice that the
initial discontinuity gets smoothed out during the simulation). The incoming
one starts propagating inwards (second plot), passes through the origin (third
plot), and generates again a second wavefront with negative amplitude (fourth
and fifth plots), which finally reaches the boundary and gets out.

One can wonder where the small riddles in the last plots of both Fig. 5.5
and Fig. 5.6 come from. These look like partial reflections coming from the
boundaries. The question is why these reflections arise at all if we are us-
ing maximally dissipative boundary conditions. Some insight can come from
Fig. 5.7, where we have plotted the L∞ norm of both Θ and Zx (left and right
plots, respectively. We see that there is an initial decreasing, corresponding
to the phase when the original signal is expanding and passing through the
boundaries. But then the decreasing stops, and a fixed level is attained, many
orders of magnitude below the initial ones (the initial value for Zx was ac-
tually zero, but a non-zero value is attained at the very first iteration). The
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Fig. 5.5. Evolution of a initially static gaussian bump of Θ for flat (Minkowski)
initial data. The sequence of plots goes from left to right and from top to bottom.
The initial bump splits into two components. The outgoing one generates a circular
wavefront that reaches the boundaries (third plot) and gets out. The incoming one
passes through the origin (second plot), generating a second wavefront with negative
amplitude (it can be seen in the fourth plot, contrasting with the zero-amplitude
central region). This secondary wavefront finally reaches the boundary and gets out
(fifth plot). Partial reflection can be detected, in the form of small riddles parallel
to the boundaries, in the last two plots

lower limits appearing in Fig. 5.7 are not just due to numerical noise: the
actual values depend on the combination of gauge and ordering parameters.
This rather looks like a dynamical effect, due to the non-linear source terms
in the evolution equations.
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Fig. 5.6. Same of Fig. 5.5, but for an initial profile corresponding to a cylindrical
step (first plot). The MMC numerical method is used here to deal with the initial
discontinuity. The splitting between the incoming and outgoing wavefronts can now
be seen more clearly (second plot). The outgoing wavefront reaches the boundary
at about the same time that the incoming one gets to the origin (third plot). After
crossing through the origin, the incoming wavefront starts propagating outwards
with negative amplitude, leaving behind a zero-amplitude region (fourth and fifth
plots). Notice again the residual riddles in the last plot

This test-bed is also an opportunity to check the common belief that nu-
merical codes can support only a small amount of constraint violations, spe-
cially in the case of the Energy constraint. In the Z4 system, energy and
momentum constraint violations are represented by non-zero values of the
supplementary quantities (Θ , Zi), respectively. As remarked before, the ini-
tial data contain values of Θ up to a 10% of the non-trivial metric coefficients
without any sign of code instabilities.
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Fig. 5.7. L∞ norm of both Θ and Zx (left and right plots, respectively). There
is an initial decreasing, corresponding tho the phase when the original signal is
expanding and passing through the boundaries. A lower-limit level is attained in
each case, many orders of magnitude below the initial one. These lower limits are
not just due to numerical noise: the actual values depend on the combination of
gauge and ordering parameters. The results shown here correspond to the choice
(ζ = 0, f = 2, m = 0)

5.3 Constraint-Preserving Boundary Conditions

The restrictions imposed by the maximally dissipative boundary conditions
(5.29) are too strong to be physically realistic in most cases. One could only
enforce these conditions, in asymptotically flat spacetimes, at spatial infinity.
This can actually be the case if one devises a space coordinates transformation
that assigns finite coordinate values to space infinity [50]: one needs just to
make sure that the computational region extends up to these coordinate values
and impose (5.10) there. This means that the numerical grid covers all the
spatial slice surface, so that one can wonder whether there is still enough
resolution in the strong-field fast-speed region if one has to cover also the rest
of the space, up to infinity.

An alternative procedure is to keep using standard coordinates and to set
up large numerical grids, so that the boundaries can be placed at the ‘wave
zone’. This means that one does not pretend to reach infinity, but just the far
region where the dynamics can be consistently described as the propagation of
outgoing waves in a stationary background. Maximally dissipative boundary
conditions can not be applied in the form (5.10) to this case, because the time-
independent background can be decomposed as a superposition of outgoing
and incoming modes, and suppressing the latter would amount to destroying
the background. In this wave-zone case, (5.10) can be generalized as

∂t w in
r = 0 , (5.55)

which would suppress only the time-dependent incoming modes, while pre-
serving the stationary background, which will be determined by the initial
data.
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There are two weak points in this wave-zone boundaries strategy:

• From the practical point of view, large grids are computationally expensive.
Putting the boundaries farther is competing with increasing the resolution
in the highly dynamical zone, where it is really needed (but see [51,52] for
an interesting alternative).

• From the theoretical point of view, it can only be applied to the outer
boundaries. Inner boundaries, like the ones arising after excising a space-
time region (because it contains a singularity, for instance) would require a
different treatment.

Our goal is to devise boundary conditions that could be applied even in
the ‘near zone’, that is in the dynamical region. This means that the full
complexity of the field equations must be taken into account, so that all the
available information should be used in a consistent way. At this point, we
should remember that the Z4 system contains four fields,

Zµ ⇔ {Θ , Zi} (5.56)

representing energy and momentum constraint violations. We know that these
fields must vanish for true Einstein’s solutions. In what follows, we will take
advantage of this information in order to devise constraint-preserving bound-
ary conditions that could be applied in the near zone.

5.3.1 The First-Order Subsidiary System

We have seen that the time evolution of the algebraic constraint (3.80) is given
by the inhomogeneous wave equation

� Zµ + RµνZν = 0 . (5.57)

It is of second order in Zµ, so that the vanishing of both Zµ and its first time
derivatives is needed at the initial slice if we want to recover a true Einstein’s
solution.

But these initial data requirements will not be enough in the initial-
boundary case. The principal part of (5.57) is precisely a set of uncoupled
wave equations, one for every component of Zµ. This means that we can con-
sider again the standard decomposition into incoming and outgoing modes
for every single component. It follows that non-zero values of the incoming
modes at the boundaries would introduce constraint-violating modes into the
computed solution.

To remedy this, we can write down the second order equations (5.57) as a
first order system and impose then maximally dissipative boundary conditions
on (the first derivatives of) the Zµ components. In this way, the boundaries
will behave as one-way membranes for constraint-violating modes. Any non-
zero value of Zµ, either contained into the initial data or arising from errors
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during the numerical simulation, will find the way out of the computational
region.

This sounds perfect, but there is a difficulty at the very beginning: we are
dealing now with a first order system, so that there are additional ordering
constraints (4.7, 4.9) to be allowed for. It follows that we can not just start
from (5.57). We must instead go back to the first order equations for Θ and
Zi, respectively (4.19, 4.20), and take one extra time derivative to get the
subsidiary system for the first-order version (4.14–4.20) of the Z4 system. Of
course, we must add the time derivatives of the ordering constraints (4.7, 4.9),
but these are trivially satisfied, so that only zero-speed modes are added to
the system in this way.

We give here (the principal part of) the resulting subsidiary system

∂t [∂k Al − ∂l Ak] = 0 (5.58)
∂t [∂k Dlij − ∂l Dkij ] = 0 (5.59)

1/α2 ∂2
tt Θ −� Θ = · · · (5.60)

1/α2 ∂2
tt Zi −� Zi =

1
2

∂k [ ∂i(Ak + Dk) − ∂k(Ai + Di)

+ (ζ − 1) (∂lD
kl

i − ∂kEi) + (ζ + 1) (∂lD
kl

i − ∂iE
k) ] + · · · (5.61)

(the dots stand for non-principal terms), and we can see in the right-hand-
side of (5.61) the coupling terms with the ordering constraints which were not
present in (5.57).

The subsidiary system (5.58–5.61) can be put in first order form in the
usual way, by considering the first derivatives of (Θ, Zi, Ai, Dkij) as new
independent variables. The following evolution conditions

∂t (∂kΘ) − ∂k [ ∂tΘ ] = 0 (5.62)
∂t (∂kZi) − ∂k [ ∂tZi ] = 0 (5.63)

should be added then to complete (the first order version of) subsidiary sys-
tem.

As anticipated, the light-cone structure of (5.57) is not changed by the
coupling with the new zero-speed modes. One gets just some extra terms in
the eigenfields. The vanishing of the incoming modes reads now

1/α ∂t Θ(in) + nk∂k Θ(in) = 0 (5.64)

1/α ∂t Z
(in)
i + nk∂k Z

(in)
i = −1

2
nk [ ∂i(Ak + Dk) − ∂k(Ai + Di)

− (1 − ζ) (∂lD
l

ki − ∂kEi) + (1 + ζ) (∂lD
l

ik − ∂iEk) ] , (5.65)

where n is the outgoing unit normal to the boundary surface.
Notice that equations (5.64, 5.65) could alternatively be derived by im-

posing outgoing Sommerfeld conditions on (Θ, Zi), that is setting the right-
hand-side in (5.65) to zero, and then using the ordering constraints to ‘trade’
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longitudinal by transverse derivatives in the incoming modes of the evolu-
tion system, along the lines proposed in [53]. We have presented here a direct
derivation from the Z4 evolution system, without any further adjustment.

Equations (5.64, 5.65) meet the two requirements we were looking for:

• They provide maximally-dissipative algebraic boundary conditions for the
subsidiary system (5.58–5.63). In this way, no constraint-violating modes
are allowed to enter across the boundaries.

• They provide (derivative) boundary conditions for the evolution system
(4.14–4.20), which can be consistently imposed on true solutions of Ein-
stein’s field equations even in the near zone. Notice that the additional
right-hand-side terms that have appeared in (5.65) also cancel out identi-
cally for a true Einstein solution.

Of course, there are only four equations in (5.64, 5.65), so that only four
independent boundary conditions can be extracted. The remaining boundary
conditions, corresponding to the gauge and the gravitational waves (transverse
traceless) sector, must be provided separately, as we will see in what follows.

5.3.2 Computing the Incoming Fields

The computed values (Θ(in), Z
(in)
i ) can be used now in order to compute

four of the required incoming fields at the boundary. This process is not free
from ambiguities. For the sake of clarity, we will recombine first the dynamical
fields, so that the original basis

(Θ , Kij , Zi , Dkij , Ai) (5.66)

is replaced by
(Θ , K̃ij , Vi , D̃kij , Ai) , (5.67)

where we have defined

Vi = Di − Ei − Zi (5.68)

K̃ij = Kij −
Θ

2
γij , D̃kij = Dkij −

1
2

Vk γij . (5.69)

Note that the quantities Zi do not appear explicitly in the new basis. They
must be obtained instead from the new quantities D̃kij by using the algebraic
identity

D̃i − Ẽi = Zi . (5.70)

Note also that the ‘combine before replacing’ procedure that we are following
here was yet the idea behind the symmetry-breaking mechanism we used in
Sects. 3.4.4 and 4.1.4. The variable K̃ij was yet defined in (3.107) in a more
general way: we are considering here just the n = 1 particular case. The new
variable D̃kij is the natural companion of K̃ij : its evolution equation would
read (principal part only)
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∂t D̃kij + ∂k [ α K̃ij ] = · · · . (5.71)

The Z4 eigenfields obtained in Sect. 4.3.1 can be now, after some algebra,
expressed in terms of the new basis, namely:

• Standing eigenfields (zero characteristic speed)

Aa, D̃aij , Ak − f D̃k + f

(
m − 3

2

)
Vk , (5.72)

where we will use here the indices a, b, c to label the components of the
projections orthogonal to n. Notice that the transverse components D̃aij

are still zero-speed modes, allowing for (5.71).
• Energy eigenfields

E± ≡ θ ± V n (5.73)

(there is no change in this sector).
• Metric eigenfields

L̃ ±
ij ≡ [K̃ij − ninj tr K̃] ± [λ̃n

ij − ninj tr λ̃n] , (5.74)

where we have noted

λ̃k
ij ≡ D̃k

ij +
1
2

δk
i

(
Aj − D̃j +

1
2

Vj

)
+

1
2

δk
j

(
Ai − D̃i +

1
2

Vi

)

−1 + ζ

2
(D̃ k

ij + D̃ k
ji − δk

i Ẽj − δk
j Ẽi) . (5.75)

The notation L̃ ±
ij is to emphasize that the original modes L ±

ij have been
recombined with the Energy ones E±, taking advantage of the degeneracy
(all of them have light speed as characteristic speed).

• Gauge eigenfields. In the generic case (f �= 1), we get

G± ≡
√

f

[
tr K̃ +

(
3
2
− µ

)
Θ

]
± [ An + (2 − µ) V n ] , (5.76)

where µ is defined by (4.81). In the degenerate case (f = 1, m = 2, arbitrary
µ) the eigenfields can be chosen to be, for instance,

[
tr K̃ − 1

2
Θ

]
± [ An ] . (5.77)

Now, it is clear that the incoming value of Θ, given by (5.64), can be used
to provide the incoming eigenfield in the energy sector, namely

E− = Θ(in) − V n . (5.78)

We can also compute in the same way the incoming metric eigenfields of mixed
type, that is



5.3 Constraint-Preserving Boundary Conditions 115

L̃−
na = K̃na −

[
D̃(in)

nna +
1
2

(
Aa − D̃a +

1
2

Va

)

−1 + ζ

2
(D̃ann − γbc D̃bca)

]
, (5.79)

where the mixed components D̃
(in)
nna can be computed from Z

(in)
a allowing for

(5.70), namely
D̃(in)

nna = D̃a − γbc D̃bca − Z(in)
a . (5.80)

Finally, the trace of the transverse components of the incoming metric fields
can be computed as

tr(L̃−
⊥⊥) = γbc [ K̃bc − D̃

(in)
nbc + (1 + ζ) D̃bcn ] , (5.81)

where, allowing again for (5.70), we have

γbc D̃
(in)
nbc = γbc D̃bcn + Z(in)

n . (5.82)

As stated before, the four equations (5.64–5.65) do not provide enough
information to determine the values of the transverse traceless incoming fields
nor the gauge incoming eigenfield. We will keep using in these cases the
safest generalization (5.55) of the maximally dissipative boundary conditions,
namely

∂t G− = 0 , ∂t

[
L̃−

ab −
1
2

tr(L̃−
⊥⊥) γab

]
= 0 , (5.83)

although we are aware that more sophisticated choices could be required in
physical applications.

5.3.3 Stability of the Modified System

Let us summarize the results of the preceding section. The original evolution
system is modified at the boundaries in such a way that the evolution equa-
tions for the incoming modes along the selected direction n take the form
(principal part only):

1/α ∂t E− = 0 (5.84)

1/α ∂t L̃−
na = −∂b

[
D̃b

na − D̃ b
na +

1 − ζ

2
K̃ b

a

]
− ∂a

[
1 + ζ

2
K̃nn

+ An +
1
2

Vn − f + 1
2

trK̃ − (3 − 2m)f + 1
4

Θ

]
(5.85)

1/α ∂t tr(L̃−
⊥⊥) = −∂a

[
γbcD̃s

bc + D̃ a
nn + ζ K̃ a

n + Aa − D̃a +
1
2

V a

]

(5.86)
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plus the trivial evolution equations (5.83) for the gauge and the transverse
traceless modes.

Notice that only transverse derivatives appear on the modified system
equations (5.83–5.86) for the incoming modes. This means that the charac-
teristic speeds along the longitudinal direction n are

{0, λout} , (5.87)

and the modified system is (strongly) hyperbolic along n.
Computing the characteristic speeds along a generic direction r, oblique

to n is a much harder task, even using an algebraic computing program. We
have checked the particular cases

ζ = 0 , ± 1 (5.88)

and we have found that the modified system is hyperbolic (real characteristic
speeds) only in the ζ = 0 case. Instead of reproducing here the derivation of
this result, we will rather check it by using the robust stability test-bed.

To do this, we will proceed as in Sect. 5.2.2. We show in Fig. 5.8 the L∞
norm of trK for different values of the ordering parameter ζ, so that we can
directly compare with the analogous results for the algebraic boundary con-
ditions case, as shown in Fig. 5.4. It follows that the constraint-preserving
boundary conditions (5.84–5.86) are stable only for the ζ = 0 choice, corre-
sponding to a symmetric ordering of the space derivatives.

Notice that in our analysis we have just asked for real characteristic speeds
(weak hyperbolicity), so that strong hyperbolicity is not ensured. We can

Fig. 5.8. L∞ norm of trK for different values of the ordering parameter ζ
and constraint-preserving boundary conditions along one single direction (periodic
boundaries along the other two). Only the choice ζ = 0 leads to a stable behavior.
Even this choice gets unstable when the constraint-preserving conditions are applied
to more than one direction, due to inconsistencies at the corner points.
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Fig. 5.9. Same as Fig. 5.8, but now for the L∞ norm of Dxxx and ζ = 0. A linear
growing mode shows up, confirming that the modified system is just weakly, but not
strongly, hyperbolic

actually see in Fig. 5.9 a growing linear mode in the L∞ norm of some fields
corresponding to space metric derivatives: this confirms that the modified
system (5.83–5.86) is just weakly hyperbolic in the best (ζ = 0) case.

Note also that the comparison with Fig. 5.4 is not exact. In Fig. 5.4, al-
gebraic boundary conditions were imposed along every coordinate axis. In
Figs. 5.8 and 5.9, constraint-preserving boundary conditions are imposed in-
stead only along the x axis whereas periodic boundary conditions are used for
dealing with the y and z directions.

We are not losing in this way the multi-dimensional character of the prob-
lem: the x = constant boundary surfaces are actually surfaces, not just points,
so that oblique modes are still present and can lead to instabilities, as it is ac-
tually the case when ζ = ±1. The only thing we are avoiding in this way is to
apply constraint-preserving boundary conditions to corner points (which are
assigned to the y and z boundary surfaces, where periodic boundary condi-
tions are applied). If we try to apply conditions (5.84–5.86) along every space
direction, then instabilities appear even for the ζ = 0 choice of the ordering
parameter.

The problem at corner points comes from the inconsistency inherent to the
choice of a (unique) normal direction there (see Fig. 5.2). Different faces get
different normal vectors, but corner points belong to two different faces at the
same time. This inconsistency does not lead to instabilities in the algebraic
boundaries case, where we have some range of reflection coefficients to play
with, and a clever choice of the normal direction at the corners allows one to
be safely inside the stability domain of both faces at the same time.
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But this is not the case for the boundary-preserving boundary conditions
(5.84–5.86), where the adjustable reflection coefficients are replaced by precise
conditions for many dynamical fields. This is a problem in practical applica-
tions, where more work should be done along any of the following lines:

• Devising an specific treatment for corner points, instead of just choosing a
‘clever’ value of n.

• Building numerical grids with smooth boundaries (not just ‘cartesian’ ones),
so that the constraint-preserving boundary conditions (5.84–5.86) can be
applied consistently to the boundary surface in an stable way.
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Black Hole Simulations

6.1 Black Hole Initial Data

The simplest Black Hole initial data can be obtained from the Schwarzschild
line element. The ‘Schwarzschild coordinates’ expression (1.54), can be re-
placed by the ‘isotropic coordinates’ version

−
(

ρ − M/2
ρ + M/2

)2

dt2 +
(

1 +
M

2ρ

)4

δij dxidxj , (6.1)

which is better suited for the 3D case.
In order to start a numerical simulation, we must provide the initial values

of every dynamical field (we assume here that we are using a first-order evo-
lution system). As far as we are trying to get a true Einstein solution, these
initial data can not be prescribed arbitrarily: the initial values of (γij , Kij)
must verify the energy and momentum constraints

E ≡ 1
2

[ tr R + (tr K)2 − tr(K2) ] − τ = 0 (6.2)

Mi ≡ ∇j (Ki
j − trK δi

j) − Si = 0 . (6.3)

This is true even if we are using the Z4 formalism, where we must also
impose

Θ = 0 , Zi = 0 (6.4)

on the initial slice. The algebraic conditions (6.4) are not first integrals of
the Z4 evolution system (4.14–4.20). Therefore, the vanishing of the first time
derivative of (6.4) must also be imposed on the initial slice and, allowing for
(4.19, 4.20) this amounts precisely to the energy and momentum constraints
(6.2, 6.3). The second order subsidiary equation (3.81) ensures that no further
conditions are required on the initial data in order to recover a true Einstein
solution.

The easiest (but tricky) way of solving the initial-data constraints (6.2,
6.3) is just to take a t = constant slice of a known exact solution of Einstein’s

C. Bona and C. Palenzuela Luque: Elements of Numerical Relativity, Lect. Notes Phys. 673,
119–143 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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field equations. If we do so with the isotropic form (6.1) of the Schwarzschild
line element, we notice a number of features that can be then extrapolated to
other (simple) sets of Black Hole initial data:

• It is a vacuum solution. This is good for testing just the geometrical sector
of the numerical codes, independently of the hydrodynamical sector, where
matter quantities should be computed from their own evolution equations.

• It is initially at rest (time symmetric initial data), that is

Kij |t=0 = 0 . (6.5)

This means that the momentum constraint (6.3) automatically holds true.
The energy constraint (6.2) gets the simpler form

tr R = 0 (6.6)

• The space metric γij is conformally flat (conformal to the Euclidean
metric). This can be used in order to further simplify equation (6.6), as we
will see in what follows.

• The space metric contains a singularity. This is the origin of the main com-
plications we will face in this chapter, and this is why Black Hole simulations
deserve an special treatment. In the Schwarzschild case, the singularity is
located at the origin

ρ = 0 , (6.7)

where the space metric in (6.1) diverges. Notice that the line element (6.1)
has also a coordinate singularity (vanishing of the lapse), which corresponds
to the apparent horizon (6.10), as we will see below.

• There is an apparent horizon. It can be defined as the two-surface where
outgoing light rays have zero expansion, that is

θ = ∇k nk + Kij ninj − trK = 0 , (6.8)

where n is here the outgoing unit normal to this two-surface (the wavefront).
Quite surprisingly, only the dynamical field values at a given time slice are
needed in order to locate the apparent horizon (which is a local, slicing-
dependent feature). It follows from (6.8) that, for time-symmetric initial
data, apparent horizons are also minimal surfaces (surfaces of minimal
area), that is

∇knk = 0 . (6.9)

In the Schwarzschild case, it is natural to consider spherical wavefronts.
Allowing for (6.1, 6.9), the apparent horizon on the initial slice is the sphere
given by

ρ = M/2 , (6.10)

which corresponds to r = 2M in Schwarzschild coordinates.



6.1 Black Hole Initial Data 121

In order to provide a geometrical interpretation of these features, we will
analyze in more detail the Schwarzschild space metric in (6.1). Let us consider
for instance the geometry of a plane passing through the origin. The two-
dimensional metric for this plane can be written in polar coordinates as

dσ2 =
(

1 +
M

2ρ

)4

[ dρ2 + ρ2dϕ2 ] . (6.11)

The line element (6.11) can also be considered as the metric of some two-
dimensional surface in the three-dimensional Euclidean space. In this way,
the geometry of the original plane in the Schwarzschild (curved) space is
‘embedded’ in Euclidean space, which is more familiar to everyone.

We have plotted in Fig. 6.1 the surface with metric (6.11) in flat space.
Quite surprisingly, the singularity at ρ = 0 arises from the fact that the
‘center’ (ρ = 0) really corresponds to a spherical surface at space infinity.
There is a minimal surface (corresponding to the minimal circle in the figure)
at ρ = M/2, so that lower values of ρ lead back to circles of greater area.
This minimal surface (the ‘throat’ in Fig. 6.1) coincides also with the location

Fig. 6.1. Embedding of the Schwarzschild space metric as an ordinary surface
in Euclidean spacetime. It is the revolution surface obtained from an horizontal
parabola with vertex at the Schwarzschild radius (ρ = M/2 in isotropic coordinates).
Radial lines beginning at infinity in the upper side come to the center, but reach a
minimal circle at ρ = M/2 (the locus of the parabola vertices, seen as a ‘throat’ in
the plot) and then go back by the lower side again to infinity. The singularity comes
precisely from the counter-intuitive fact that ρ = 0 is not actually the center point,
but it corresponds instead to a spherical surface placed at spatial infinity
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of the apparent horizon in the initial (time-symmetric) slice, as it follows by
comparing (6.8) with (6.9). The overall image is a sort of ‘wormhole’, where
the interior geometry is just a replica of the exterior one.

6.1.1 Conformal Decomposition

The fact that the space metric in (6.1), namely
(

1 +
M

2ρ

)4

δij , (6.12)

is conformally flat suggests to consider the conformal decomposition of a
generic three-dimensional metric:

γij = e2U γ̂ij , (6.13)

where γ̂ij is a given conformal metric (the Euclidean one in the Schwarzschild
case).

The connection coefficients of the original and the conformal space metric
are related by

Γ k
ij = Γ̂ k

ij + δk
i Uj + δk

j Ui − Ukγ̂ij . (6.14)

It follows that the corresponding Ricci tensors verify

Rij = R̂ij − ∇̂iUj + Ui Uj − (∇̂kUk + UkUk) γ̂ij , (6.15)

where the conformal metric is used in all index contractions. The correspond-
ing relationship between both Ricci scalars is then

tr R = t̂r R̂ − 4 ∇̂kUk − 2UkUk . (6.16)

When the conformal metric γ̂ij is flat, that is

R̂ij = 0 , (6.17)

it is convenient to express the conformal factor in (6.13) in the form

e2U = Ψ4 , (6.18)

so that the vacuum time-symmetric Energy and Momentum constraints re-
duce to the Laplace equation on Ψ [4]

�̂ Ψ = 0 . (6.19)

By a suitable choice of the space coordinates on the initial slice, one can
always assume that the flat conformal metric takes the Euclidean form, namely

γ̂ij = δij . (6.20)

The spherically symmetric solutions of (6.19) can then be obtained from

∂ρ [ ρ2 Ψρ ] = 0 , (6.21)

so that one gets the Schwarzschild conformal factor in (6.12) as a result.
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6.1.2 Singular Initial Data: Punctured Black Holes

We will consider here a class of initial data which is common to many Black
Hole simulations:

• Time-symmetric, conformally flat initial slice, that is

Kij |t=0 = 0 , γij |t=0 = Ψ4δij , (6.22)

where Ψ is a solution of (6.19).
• Gauss initial gauge

α |t=0 = 1 , βi |t=0 = 0 . (6.23)

• No extra fields on the initial slice. In the Z4 formalism, for instance,

Θ |t=0 = 0 , Zi |t=0 = 0 . (6.24)

The problem of getting consistent initial data leading to true Einstein’s
solutions is then reduced to finding solutions of the three-dimensional Laplace
equation (6.19) in the conformal Euclidean space.

This is exactly the same equation as that of the electrostatic potential
in vacuum. We know that any non-trivial electrostatic potential is gener-
ated by some charge distribution. This means that the solutions Ψ of the
vacuum Laplace equation will usually contain singularities, corresponding to
the location of point charges acting as sources. We have yet seen this in the
Schwarzschild case: the ‘potential’

Ψ = 1 +
M

2ρ
(6.25)

can be interpreted in electrostatic terms as a trivial (constant) contribution
plus a Coulomb term at the origin.

It follows from these considerations that the Schwarzschild case is a good
representative of Black Hole initial data, in the sense that ‘puncture’ sin-
gularities appear in the initial metric through the conformal factor Ψ (the
term ‘puncture’ is actually suggested by the embedded geometry diagram in
Fig. 6.1). Dealing with these singularities in numerical simulations is then the
very first challenge.

The ‘punctured Black Holes’ approach [54,55,56] makes use of the confor-
mal decomposition (6.13) to deal with this problem. We can summarize this
method as follows:

• The conformal factor is assumed to be time-independent and identified with
the initial (singular) conformal factor, that is

e2U = Ψ4 |t=0 . (6.26)
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• Expressions (6.14, 6.15) are used for replacing the original ones in the evo-
lution equations. The conformal factor and its derivatives are computed
analytically from (6.26).

• As a result, the conformal metric γ̂ij replaces the original one as the ba-
sic dynamical quantity (the same is true for its derivatives). In numerical
simulations one computes γ̂ij starting from the regular initial data

γ̂ij |t=0 = δij . (6.27)

To summarize, the punctured Black Hole approach provides a clever way
of dealing with singular initial data by computing analytically the singular
contributions and numerically the regular ones. But the singularities are still
there:

• Care must be taken to avoid placing any grid node at a singular point.
Otherwise one would get infinite contributions from the analytical (singular)
terms.

• Increasing grid resolution leads always to higher contributions from the
(analytical) singular terms: convergence can not be achieved near a singular
point.

This is why other approaches, dealing with regular initial data, have been
considered.

6.1.3 Regular Initial Data

One can wonder wether it is possible at all to start a Black Hole simulation
with regular initial data. The idea is to take advantage of the ‘one-way mem-
brane’ paradigm: no physically meaningful information can get out from the
horizon in a (classical) Black Hole. This means that one can modify the geom-
etry of the interior region without affecting the exterior one, provided that it
is done in a consistent way. One can use this idea to get rid of the unwanted
interior singularities, as we will see below.

To be more precise, a number of comments are in order:

• The one-way membrane is not the apparent horizon (a local feature), but the
event horizon, which can be defined as the boundary of the region which has
no causal effect at infinity. This is a non-local feature (requires information
from all future slices) although it can be computed numerically [57, 58]).
However, as far as we know, the apparent horizon is interior to the event
horizon, so that a safer strategy is to restrict any change to the interior of
the apparent horizon, which can be easily located at any time slice.

• Gauge speed can be higher than light speed. This means that gauge modes
can cross the horizon in both directions. However, this is not against the
one-way membrane idea, because gauge conditions are not part of the field
equations, nor carry any physically relevant information: one can choose
them in a quite arbitrary way. Gauge modifications inside the horizon can
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then be regarded just as one more way of determining the coordinate con-
ditions.

• The stability of the numerical code requires that the numerical speed (3.37)
be higher than the physical speed. It follows that numerical errors propagate
faster than light and, then, they can also cross the horizon in both directions.
Any change whatsoever in the interior region, must then be consistent and
accurate if one wants the get a physically sound solution for the Black Hole
exterior region.

Black Hole Excision

The most popular way of getting Black-Hole regular initial data is to excise any
region, interior to some apparent horizons, that contains singular points [59].
This means that we are setting inner boundaries on our computational grid,
and suitable boundary conditions must be provided there. The problem with
inner boundary conditions is that they should hold in the strong-field high-
speed region. This is in contrast with outer boundary conditions, which could
in principle be placed in the weak-field zone, making things much easier.

One interesting possibility is to place the inner boundaries at minimal sur-
faces (the throat in Fig. 6.1). In the wormhole geometries we are considering,
the interior region is just a replica of the exterior one. This is not so surprising
if one remembers that the Laplace equation (6.19) is the one currently used
in electrostatics, where the method of images provides precisely this kind of
mirror-like solutions. In the Schwarzschild case, the inversion transformation

ρ ←→ M2

4ρ
(6.28)

leaves the spacetime metric (6.1) invariant.
The discrete mirror-like symmetry (6.28) allows one to set up ‘virtual

points’ near the inner boundary by using just physical information from the
grid nodes, without any extra input or assumption. After all, every point inside
the throat is identical to another one outside, both related by (6.28). In the
spherically symmetric case, this provides a nice way of excising the singular
region which has been used successfully in Black Hole simulations [13,23,60].

In the generic three-dimensional case, however inner boundaries are not
usually placed at the throats. The most common choice is to place the inner
boundaries close to the (expanding) apparent horizon [61]. In contrast with
the fixed throat location, apparent horizons are usually expanding with time.
Inner boundaries are then forced to move during evolution, departing from
their initial location at the throat. This makes the whole issue much more
complicated:

• The apparent horizon surface must be located in real time, not just for
tracking purposes, but in order to determine wether the inner boundary
needs to be further expanded or not.



126 6 Black Hole Simulations

• Moving the inner boundary to the next grid point may cause numerical
jumps that must be kept under control.

• Most important: the region behind the inner boundary is no longer a replica
of the exterior one, so that one must provide physically sound and numeri-
cally stable boundary conditions there.

Stuffed Black Holes

Regular initial data can also be obtained without introducing internal bound-
aries. The idea comes once more from the electrostatic analogy suggested by
(6.19), which we will write here in the non-vacuum case as

�̂ Ψ = −1
4

τ Ψ5 . (6.29)

It is well known that the external (Coulomb) field of a spherical charge distri-
bution is the same as the one generated by a point charge. In the same way,
the exterior Schwarzschild geometry is the same as the one generated by a
interior matter distribution with the same total mass.

The idea is then to match the Schwarzschild exterior space metric with a
(non-singular) interior space metric corresponding to some matter distribution
(‘stuffed’ Black Holes [62]). The easiest choice is again that of a conformally
flat metric with a conformal factor verifying (6.29). The matching must be
made precisely at the throat of the vacuum solution to make sure that

• The exterior geometry is fully preserved. This means that the matching can
not be made outside the throat.

• There is no ‘shell crossing’, so the minimal surface is not actually a local
minimum of the surface area. This means that the matching can not be
made inside the throat.

In the Schwarzschild case, the simplest example of this minimal-surface
matching of a non-vacuum interior metric is provided by the well known
Friedman-Robertson-Walker space metric (1.50) in the ‘closed’ case (k = +1).
In isotropic coordinates, the resulting conformal factor can be expressed as:

Ψ4 =
(1 + M

2ρ )4 ρ ≥ M
2

64 [ 1 + ( 2ρ
M )2 ]−2 ρ < M

2 ,

(6.30)

so that we get a constant interior distribution of energy density on the initial
slice, that is

τ =
0 ρ > M

2

3/4 M−2 ρ < M
2 .

(6.31)

The resulting composite geometry can be better understood by looking
at Fig. 6.2, where the corresponding line element is embedded in Euclidean
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Fig. 6.2. Same as Fig. 6.1, but with the lower part replaced by the embedding of
the (closed) Friedman-Robertson-Walker line element, which is a half-sphere. Both
parts match smoothly at the Schwarzschild radius, so that the locus of the parabola
vertices coincides with the equator of the sphere. The resulting composite geometry
is perfectly regular and the radial lines coming from infinity can reach without
problems the center, which corresponds now to ρ = 0

space, as we did in Fig. 6.1 for the wormhole case. There is no singularity of
any kind. The radial coordinate extends now from the center to spatial infinity.
The area of spherical surfaces increases monotonically with their radius, so
that there is no shell crossing.

Explicit expressions have been provided for time-symmetric initial config-
urations containing an arbitrary number of stuffed Black Holes with arbitrary
masses [62]. Robust 3D numerical simulations have also been performed by
using a second order formalism which is a mixture of the Bona-Massó and the
BSSN ones [26]. But remember that there is a price to pay for this:

• The (dust) matter inside the holes must be evolved consistently.
• Although the first derivatives are continuous at the matching surfaces, sec-

ond derivatives are not, so that standard numerical methods may have
problems there.

Free Black Holes

An even simpler alternative is possible in the framework of the Z4 formalism.
In this case, the energy and momentum constraint violations are represented
by the supplementary dynamical fields

Zµ ⇔ (Θ, Zk) . (6.32)

As far as non-zero values of these fields can be evolved without problems,
we can conclude that the Z4 formalism is tolerant to energy and momentum
constraint violations.

Moreover, we know that both Θ and Zk can be computed from light
cone eigenfields, with light speed as characteristic speed. It follows that non-
zero values of these supplementary fields in the initial data would propagate
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along light cones. In the region exterior to the Black Hole, the outgoing part
will reach the outer boundary and (provided that we are using constraint-
preserving boundary conditions) will finally leave out the computational re-
gion. The incoming part will instead cross the horizon, entering the interior
region. As far as nothing travelling with light speed can get out the Black
Hole interior, non-zero values of Θ and Zk will cumulate there.

Playing again with the idea that the interior region has no causal physical
influence on the exterior one, we can devise a simple way of obtaining regular
initial data without either using excision or stuffing:

• Use the physical initial data (the ones verifying the energy and momen-
tum constraints) in the exterior region. This part is common to either the
excising and the stuffing methods.

• Forget about the energy and momentum constraints in the interior region
(‘ Free Black Holes’). Just take there any regular and smooth extension of
the exterior geometry.

As a consequence, allowing for the corresponding evolution equations (4.19,
4.20), non-zero values of Θ and Zk will start appearing and cumulating in
the Black Hole interior. But, as we will see later, this poses no problem to
numerical simulations in the Z4 formalism.

In the Schwarzschild case, one can take for instance the smooth conformal
factor (6.30) (see Fig. 6.3), but now in the context of a fully vacuum metric,

0 0.5 1 1.5 2

2

3

4

5

6

Fig. 6.3. Plot of a conformal factor Ψ providing time-symmetric conformally-flat
initial data for a free Schwarzschild Black Hole. Values on the x axis correspond to
the isotropic radial coordinate ρ, measured in units of M . The singular expression
(6.25) in the interior region (dashed line) is replaced by a regular one (continuous
line). In this case we have taken (6.30), just as an instance. Both expressions coincide
in the exterior region. Notice that the matching is smooth at the apparent horizon
(ρ = M/2)
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so that the energy constraint (6.19) is no longer fulfilled in the interior re-
gion. Alternatively, we can take any other smooth continuation of the exterior
conformal factor to the interior region.

This approach is different from that of the matching problem (finding a
suitable interior solution for a given exterior three-metric), which was that
of the previous section. Here, one just extends smoothly the exterior geom-
etry without imposing any constraint to the interior part. Only regularity
conditions must be required.

6.2 Coordinate Conditions

One can wonder why to choose Black-Hole regular initial data if singularities
will appear anyway during time evolution. This is a good point. In the stuffed
Black Hole case (6.30), for instance, the interior region is filled with dust fluid,
which will collapse by its own gravity to a singularity (there is no opposing
force, not even pressure, to prevent this) in a finite amount of proper time.

Collapse singularities arise when two nearby, but different, time lines (the
world lines of two different Eulerian observers) meet at the very same point.
Then, the proper distance between these time lines, which are labelled with
different space coordinates, vanishes. This means that the space metric is no
longer invertible there (the space volume element

√
γ vanishes). Of course,

this would be fatal for a numerical simulation, which will crash when trying
to compute the (divergent) components of the inverse space metric.

This behavior is generic in Black-Hole spacetimes. Remember that the ap-
parent horizon is defined as the surface for which the expansion of a outgoing
congruence of light rays vanishes (6.8). This expansion is then negative in-
side the apparent horizon, meaning that even outgoing light rays are actually
collapsing. As far as the time slices are space-like hypersurfaces, their normal
lines (the world lines of the Eulerian observers) are time-like, that is interior
to the local light cones. It follows that the expansion of the Eulerian observers
(2.29) must also be negative, that is (2.32)

θ < 0 ⇔ trK > 0 , (6.33)

inside the apparent horizon, so that the normal lines are actually collapsing.

6.2.1 Singularity Avoidance

We have seen in Sect. 2.1.2 how coordinate time (the time label that our
computer is using when proceeding from one time slice to the next) is related
with proper time through the lapse function α. The idea is to slow down the
evolution, by choosing smaller values of α, in the regions that are going to
collapse, whereas keeping constant values of α in the outer regions, where
information about the collapse can actually be recovered. The sequence of
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time slices would then cover most of the outer region, while keeping safely
away from the singularity which is going to form inside the Black Hole (see
Fig. 2.1 for a schematic representation).

Let us be more precise. Let us choose the normal time line corresponding
any fixed point x0 on the initial slice (normal coordinates). Let us suppose now
that this time line is going to meet a collapse singularity in a finite amount
of proper time, that is

√
γ → 0 for τ → τS . (6.34)

The coordinate time elapsed in the process is then given by

∆t =
∫ τS

0

dτ ′

α
. (6.35)

A necessary condition for the singularity to be avoided is that (6.35) be
an improper integral, because the result is the coordinate time at which the
singularity will actually occur. This means that the lapse function α should
‘collapse’ to zero, that is

α → 0 for τ → τL ≤ τS . (6.36)

Otherwise, it is clear that the singularity will be attained in a finite amount
of coordinate time.

We will assume for the moment that the lapse collapses precisely at the
singular point, that is

τL = τS (6.37)

(the case τL < τS will be considered in the next section). In this case, singular-
ity avoidance is achieved if and only if the improper integral (6.35) diverges,
so that the singularity is not attained in a finite amount of coordinate time.
We can put this condition in an equivalent differential form: the improper in-
tegral (6.35) will diverge if and only if the proper time derivative of the lapse
does have a finite value at the singularity, namely

∂τ α |τ=τS
= lim

(
α

τ − τS

)
< ∞ . (6.38)

We can check this condition for the class of generalized harmonic slicing
conditions (3.90) that we are considering here,

∂τ α = −fα tr K (6.39)

(remember that Θ = 0 for true Einstein’s solutions), which we know that leads
to strongly hyperbolic evolution systems for f > 0. It follows that singularity
avoidance will be achieved in our case if and only if

fα tr K |τ=τS
< ∞ . (6.40)
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We can still refine a little bit more our analysis by assuming that

∂τ
√

γ < ∞ . (6.41)

This means that we are dealing just with ordinary collapse singularities (‘fo-
cusing singularities’ in [63]), and not with stronger singularities in which the
space volume element could vanish at an infinite proper-time rate. It follows
that, for generalized harmonic slicing, singularity avoidance is achieved if and
only if either there is a limit surface or

fα
√

γ
< ∞ . (6.42)

Simple examples of singularity avoidance are provided by the choice f =
n (constant), which is currently used in numerical simulations. In that case
condition (6.39) can be easily integrated to give

α/α0 = (γ/γ0)n/2 , (6.43)

so that the lapse is collapsing precisely at the singular point, where the space
volume element is vanishing (no limit surface appears). Allowing for (6.42),
the singularity will not be reached in a finite amount of coordinate time if and
only if

n ≥ 1 . (6.44)

The case n = 1 corresponds to the original harmonic slicing condition, which
verifies (6.44) marginally. This is why higher values, like n = 2 are preferred
in Black Hole numerical applications: they lead to more robust simulations.

6.2.2 Limit Surfaces

Another preferred choice in Black Hole numerical simulations is given by the
generalized ‘1+log’ slicing condition f = n/α. Condition (6.39) can be easily
integrated again to give

α − α0 =
n

2
ln(γ/γ0) , (6.45)

which justifies the ‘1+log’ name (the initial lapse is usually taken to be one).
Notice that the lapse is collapsing here even before the singular point is
reached, at a surface defined by

γ = γL ≡ γ0 exp
(
−2α0

n

)
> 0 . (6.46)

This is a first example of a limit surface. It occurs when and where the
lapse collapse occurs before the metric collapse, that is

τL < τS . (6.47)
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The final slice is then bounded away from the singularity, so that we can
assume that both the space metric and the extrinsic curvature are regular
tensors there. It follows that condition (6.42) can be replaced by

fα |α=0 < ∞ . (6.48)

This would imply that the limit surface will not be reached in a finite amount
of coordinate time.

Hitting the limit surface, however, would not be a big problem, provided
one avoids crossing the line and running into negative lapse values. Anyway,
one must be very careful in order to avoid the divergence of some gauge-related
quantities, that could crash the numerical simulations:

• By rescaling some dynamical fields. The ordinary space derivative of the
lapse

ak ≡ α Ak (6.49)

could be used instead of the logarithmic one Ak. Also, the rescaled gauge
factor

f̃ = fα2 (6.50)

could be used instead of the original one, and so on.
• By implementing some mechanism in the numerical code that avoids run-

ning into negative lapse values. The idea is to freeze the evolution of the
set u of dynamical fields once the limit surface has been reached.

A completely different example of slicing condition leading to a limit sur-
face is provided by the maximal slicing condition (2.95), that is

trK = − ∂τ ln(
√

γ) = 0 , (6.51)

so that the space volume element is not even allowed to depart from its initial
value. In the Schwarzschild case, maximal slicing is known to produce a limit
surface given by [64]

r = rL ≡ 3M/2 > 0 , (6.52)

where r is the Schwarzschild ‘radial’ coordinate, which is actually a time
coordinate inside the horizon (r = 2M), so that (6.52) corresponds to a regular
spacelike hypersurface, bounded away from the r = 0 singularity.

We have seen that, when using maximal slicing, the lapse function must
be computed by solving an elliptic differential equation (2.96), and this is
why we have not considered it in the context of the hyperbolic evolution
formalisms that appeared in the 1990’s. Before these dates, maximal slicing
was currently used in numerical simulations [12] mainly because of its excellent
singularity avoidance properties. It was actually the slicing of choice in the
first 3D colliding Black Hole simulations [13].
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6.2.3 Gauge Pathologies

One can wonder whether singularity avoidant slicing conditions can have some
unwanted side effects. From the theoretical point of view, it is clear that
the direct relationship (6.39) between (the proper time variations of) the lapse
and the volume element will be helpful in the collapse scenario (6.33), where
the lapse diminishes in response to the positivity of trK.

But, conversely, this will make the lapse function to increase in the zones
which, for any reason, are expanding so that trK becomes negative. We will
have then a sort of ‘runaway’ solution, with the time slicing accelerating pre-
cisely in the expanding regions. The lapse could grow then without limit,
leading to a gauge blowup, as we will see in the following section.

Gauge instabilities have also been studied from another perspective (see
[65,66], although a coordinate-dependent definition of velocity is used instead
of ours). The idea is that gauge characteristic speeds

vG = ± α
√

f (6.53)

depend actually on the lapse, which is dynamically related through its evo-
lution equation (3.90) with the corresponding gauge eigenvectors. Allowing
for this dependence, transport-related pathologies (‘gauge shocks’) have been
predicted to occur unless

f̃ ′ = 2α , (6.54)

where we have noted again f̃ ≡ fα2 and the prime is the derivative with
respect to α.

That dependence, however, is indirect, coming only from the source term
in the lapse evolution equation (3.90). In order to analyze this point in more
detail, let us take the time derivative of (3.90). Allowing for the Z4 evolution
equations, we get after some algebra

(1/f̃) ∂2
tt α − � α = −

[
α tr (K2) − f̃ ′ (trK − mΘ)2 +

α

2
(τ + trS)

]

− α
(
1 − m

2

)
[ trR + 2∇Z − tr(K2) + (trK − 2Θ) trK − 2τ ]

+ m Zkak , (6.55)

where we have taken the parameter m as a constant.
As far as all the evolution formalisms share the same Einstein’s solutions,

we can simplify our analysis by switching to the BSSN formulation, so that
(6.55) takes the simpler form [66]:

(1/f̃) ∂2
tt α −� α = − [ α tr (K2) − f̃ ′ (trK)2 ] − α

2
(τ + trS) , (6.56)

which amounts here to take m = 2 and making Θ and Zk to vanish in (6.55).
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Now we can introduce a ‘gauge characteristic time’ λ, defined locally by

∆λ ≡ α
√

f ∆ t . (6.57)

The corresponding time derivative operator is given by

Dλ ≡ 1
α
√

f
∂t . (6.58)

This allows one to write the principal part of (6.56) in the form

D2
λ α −� α = −

[
α tr(K2) − f̃ ′

2
(trK)2

]
− α

2
(τ + trS) , (6.59)

which can be interpreted as an inhomogeneous wave equation. The left-hand-
side describes just transport with constant propagation speed, when measured
in terms of length per gauge time intervals. The right-hand-side (source) terms
are of two types:

• Matter terms
− α

2
(τ + trS) , (6.60)

which will contribute to the lapse collapse in the physically sound case,
when both the matter density and the pressure are positive.

• Kinetic terms

− α tr(K2) +
f̃ ′

2
(trK)2 , (6.61)

which will contribute either to the lapse collapse or to a lapse rebound,
depending on the value of f̃ ′.

Let us discuss the behavior of these source terms. A lapse blowup could
appear in the solution whenever the kinetic terms (6.61) have a positive value
which is not compensated by the matter terms. Condition (6.54) amounts
actually to require the exact cancellation of (6.61) in the one-dimensional
case.

In the three-dimensional case, it is convenient to decompose the extrinsic
curvature tensor Kij into its irreducible components, namely

Aij ≡ Kij −
trK

3
γij , K ≡ trK (6.62)

(shear tensor and expansion factor, respectively), in order to express the ki-
netic terms (6.61) as

− α tr(A2) +

(
f̃ ′

2
− α

3

)
K2 , (6.63)

so that a sufficient condition for avoiding the lapse blowup would be
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f̃ ′ ≤ 2α

3
. (6.64)

Notice however that the condition (6.64) is derived just from the tr2K
source terms in the original equation (6.55). Their effect can be compensated
by other source terms, so that the violation of (6.64) does not imply necessarily
a lapse blowup.

Our conclusion is that any pathological behavior of the gauge-dependent
degrees of freedom, which manifests itself as an blowup of either the lapse
function or its first derivatives, can be interpreted consistently as the combined
effect of the non-linear source terms in the evolution equations, independently
of their origin. This prediction is confirmed by the simple numerical Black-
Hole simulations presented in the following section.

6.3 Numerical Black Hole Milestones

We will present in this section the results of applying the techniques discussed
so far to Black Hole simulations. The idea is to choose a simple example
and to follow it in a step-by-step way. We will therefore avoid unnecessary
complications and go directly to the hearth of the problem, where much insight
can be gained. The natural choice is that of a single Schwarzschild Black
Hole, because it is the simpler one that shows the first difficulties that we will
encounter in generic Black Hole simulations.

There are some decisions to take at the very beginning. These are our
choices:

• Evolution system: The first order version (4.14–4.20) of the Z4 system
• Numerical algorithm: The Method of Lines, with Finite-differences Flux-

conservative discretization. We will keep two options open for the crucial
choice of the interface Fluxes: the standard centered Flux (4.61) and the
MMC method, as described in Sect. 4.3.2.

• Boundary conditions: Maximally-dissipative algebraic conditions at the
outer boundaries, as described in Sect. 5.2.

• Initial data: Free Black Hole initial data (6.22–6.24).
• Coordinate conditions: Singularity avoidant slicing, given by the alge-

braic condition (4.5), with zero shift. We keep all options open for the values
of the gauge parameters f and m.

In keeping with the philosophy of this section, we will restrict ourselves
to modest-size simulations that can be performed in any personal computer.
This implies using small numerical grids of, let us say, 603 nodes and being
ready for overnight calculations in the worst case.

Even if we are using cartesian 3D coordinates for a spherically symmet-
ric problem, we can take advantage of some discrete space symmetries. The
initial data are mirror-symmetric across every coordinate plane. This Octant
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Symmetry is preserved by the evolution equations, and this allows us to com-
pute just over one octant of the spacetime domain. To illustrate how it can
be done, let us focus for instance on the mirror symmetry across the z plane:

• We must classify every dynamical field as being either even or odd under
the transformation

z ←→ − z . (6.65)

• We can then replace the negative z region of the numerical grid by a single
layer of mirror points.

• The dynamical fields values at these mirror points are defined to be the
same ones as the corresponding ones in the first layer of the positive z
region: the sign of the odd fields is just reversed.

Octant symmetry allows us to double space resolution (that is a factor
8 in memory space) for a given grid size. In our case, we will put the outer
boundary at about ρ = 6M , which is definitely too close, in order to get a
reasonable resolution, that is

∆x = ∆y = ∆z = 0.1M . (6.66)

Notice that a value of 6M along the coordinate axes means about 10M along
the cube diagonals, which is the cut that we will show, unless otherwise stated,
in the figures that follow. This will be enough to begin with.

6.3.1 Lapse Collapse and Landing (0 − 5M)

The first stages of the simulation show a collapse of the space volume element
which, allowing for the singularity avoidance properties of the gauge conditions
discussed in this chapter, translates itself into a collapse of the lapse function
α. This lapse collapse can be slower or faster, depending on our choice of
gauge parameters.

We show in Fig. 6.4 the lapse collapse for different choices of the gauge
parameter f . The pattern is very similar: a fast collapse at the beginning
(the lines shown are evenly spaced in time), followed by a slowing down and
eventually ‘landing’ very close to a zero value in the innermost region, which
means that the dynamics gets locally frozen there.

This is the first milestone in a Black Hole simulation. We have not shown
the equivalent results for the harmonic slicing case because our code crashed
before reaching that point. Notice that this was just the limit case at which the
slicing still should manage to avoid the singularity at the continuum level. In
our case, numerical errors make the code to cross the line and the singularity
is not avoided at the discrete level. Of course, different numerical algorithms
could make numerical errors go into the opposite sense. But we will try to
avoid here this kind of ‘fine tuning’, following instead more robust alternatives
when available.
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Fig. 6.4. Lapse collapse for different slicing conditions: the lapse values are shown
every 0.5M . The left panel corresponds to the f = 2 slicing, which has no limit
surface. Notice that the lapse is still away from zero in the last plot (t = 5M).
The right panel shows the same thing for the f = 2/α slicing, which does have a
limit surface. The lapse collapses faster here, so that it gets very close to zero in the
innermost region, as it can be seen in the last plot (t = 4M)
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Fig. 6.5. Same as Fig. 6.4, but with the simulations running for a longer time
(t = 7M in the left panel and t = 6M in the right one). Spurious oscillations appear
in the zones where the slope is changing more abruptly. This suggests that these
zones are poorly resolved by the standard finite difference method

Let us see what happens when allowing our simulations to proceed for a
longer time. We see in Fig. 6.5 how spurious oscillations start appearing in the
regions where the lapse slope is changing more abruptly. This is a numerical
artifact: the appearance of such oscillations can be delayed by improving the
space resolution (but keeping all the remaining parameters fixed). This is why
we qualify these oscillations as spurious: they are a symptom of some lack of
resolution that appears dynamically (and gets worse) during the simulation.

6.3.2 Slice Stretching (3 − 20M)

More insight can be gained by taking a look to Fig. 6.6.
We see that trK is positive at that time (about 6M in our case), so that

we have an overall collapse pattern. But if we look at a radial component
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Fig. 6.6. Plots of Kxx (solid line) and trK (dotted line) along the x axis, corre-
sponding to the f = 2/α slicing at t = 6M . Negative values of Kxx correspond to
the increasing of γxx, that is a radial stretching of the time slice. Notice that this is
compatible with an overall collapse pattern, as shown by the positivity of trK: the
radial stretching is then compensated by the collapse along the angular directions.
Slice stretching is at the origin of the growing lack of resolution which causes the
spurious oscillations shown in Fig. 6.5

(Kxx along the x direction for instance), we see that radial directions are
actually expanding. The geometrical meaning of this behavior can be better
understood by looking at the wormhole embedding diagram in Fig. 6.1. The
radial expansion can be interpreted as the ‘stretching’ of the throat by pulling
up from the top. This stretching is accompanied by the shrinking of the throat
perimeter (the spherical surface area in the 3D case). The total effect on the
space volume element is that of a highly inhomogeneous collapse. The radial
expansion is at the origin of the lack of resolution which causes the numerical
oscillations in Fig. 6.5.

An unwanted numerical effect can be corrected by using better numerical
techniques. We show in Fig. 6.7 exactly the same simulations as in Fig. 6.5,
but now using the MMC method, as described in Sect. 4.3.2. There is no
trace of the oscillations. This is the second milestone we find in Black Hole
simulations: getting rid of the spurious oscillations due to slice stretching.
The way we have done it is by not means unique: similar results could be
achieved by adding suitable fourth-order dissipative terms to the numerical
algorithm [19].

Notice however that slice stretching is a dynamical feature that is still
there, independently of the numerical algorithm one is using. In fact, the plots
in Fig. 6.6 where obtained using the MMC method instead of the standard
centered one (probably you have suspected it by the smoothness of the plot).
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Fig. 6.7. Same as Fig. 6.5, but using the MMC numerical algorithm for the space
discretization, as described in Chap. 5. The spurious oscillations have completely
disappeared. Slice stretching is still there (Fig. 6.6 corresponds actually to the last
plot in the right panel), but it is no longer a problem for numerical simulations

6.3.3 Lapse Rebound (10 − 30M)

Let us see again what happens when allowing our simulations to proceed for a
longer time (the precise value will depend both on the gauge and the ordering
parameter choices).

We see in Fig. 6.8 that the spurious oscillations do not show up anymore.
What we see instead is a sort of rebound of the lapse, which looks like propa-
gating backwards in time in the region near to ρ = 2M . This will be fatal for
the simulation because, as discussed in Sect. 6.2.3, singularity-avoidant slicing
conditions are devised for collapse problems and can produce a lapse blowup
in the expanding regions.
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Fig. 6.8. Same as Fig. 6.7, but with the simulations running for a longer time
(t = 17M in the left panel and t = 14M in the right one). No spurious oscillations
appear anymore. However, the lapse collapse stops and a sort of rebound starts near
the frozen innermost region. The lapse looks then just going backwards there: a
runaway solution will appear causing the code to crash by a lapse blow-up



140 6 Black Hole Simulations

To understand what is going on, let us take a look to Fig. 6.9, where we
have plotted the same quantities as in Fig. 6.6. As a word of caution, let us
remember that the lapse in the innermost region is yet collapsed, so that the
dynamics is frozen there. This means that the features we see in the innermost
region in Fig. 6.9 correspond to an earlier stage (measured in proper time)
than what we see around ρ = 2M , which is the region we are going to analyze
now.

0 0.5 1 1.5 2 2.5 3 3.5 4

-4

-2

0

2

4

Fig. 6.9. Same as Fig. 6.6, but now for t = 14M , corresponding to the last plot
in Fig. 6.8 (right panel). The dynamics in the innermost region is frozen (the lapse
is fully collapsed there). In the region around 2M , however, positive values of Kxx

appear, corresponding to a radial collapse, whereas trK becomes negative, corre-
sponding to a global expansion pattern. This is just the behavior opposite to slice
stretching, and it explains the lapse rebound that can be seen in Fig. 6.8. Notice
that the collapse pattern (positive trK values) is recovered in the outermost region,
where the lapse collapse proceeds as expected

What we see there is just the opposite that what we saw in Fig. 6.6:
trK is now negative, so that we have an overall expansion pattern. But the
radial component (Kxx along the x direction) is collapsing. The geometrical
meaning of this behavior can be better understood by looking again at the
wormhole embedding diagram in Fig. 6.1. Remember that we visualized the
slice stretching at the throat as a result of pulling up from the top. The
rebound can be then interpreted as a sort of elastic response of the Black
Hole geometry to that pull. The whole picture looks like moving backwards
in time in the rebounding region.



6.3 Numerical Black Hole Milestones 141

We can circumvent the rebound problem by making use of the energy-
constraint violations in the Black Hole interior. If we look at (6.55), we see
some matter terms that are actually neglected in the Free Black-Hole scenario.
This means that the energy constraint is not fulfilled inside the horizon and
the value of the gauge parameter m is no longer irrelevant. For instance,
neglecting the energy density terms in (6.55), as we do in the Free Black Hole
case, amounts to add an m−dependent counter-term to the right-hand-side
of the equation, namely

− α

(
3
2
− m

)
τ , (6.67)

which is contributing to the collapse for m < 3/2.
We show in Fig. 6.10 the same simulation as in (the left panel of) Fig. 6.8,

but now with m = −3. Although the collapse is slowing down in the region
between 2M and 3M , it proceeds without showing any rebound, nor any other
kind of gauge pathology. Notice however that the sequence of slices tends to
cumulate in some regions (not only in the innermost one), signaling that the
collapse is slowing down there.

0 2 4 6 8 10
0

 0.2

 0.4

 0.6

 0.8

1

Fig. 6.10. Same as Fig. 6.8 (left panel), but now with the choice m = −3 for the
second gauge parameter. The rebound no longer appears (the plots do not cross),
although the collapse is slowing down at the regions where the different plots tend
to cumulate
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6.3.4 Boundary Conditions (30M and beyond)

Let us see once more what happens when allowing our simulations to pro-
ceed for an even longer time. We see in Fig. 6.11 that the lapse rebound does
not show up anymore. What we see is the collapse of the whole computa-
tional region, which ends up completely inside the apparent horizon. At this
point, one must remember that the lapse function provides the scale factor
between coordinate and proper time: the lapse collapse in the outermost re-
gion in Fig. 6.11 means that proper time gets frozen there slightly above 30M ,
whereas coordinate time goes till 50M and beyond.
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Fig. 6.11. Same as Fig. 6.10, but now running up to 50M (coordinate time at the
outer boundary). The plots are shown now with a larger time interval in order to
get a clearer picture. The whole computational region gets inside the Black Hole
horizon. Notice that we show here a cut along one coordinate axis, not along the
cube diagonal like we did in the previous figures. The outer boundary is then placed
precisely at the plots endpoints (ρ = 6M)

When one reaches this point, two opposite thoughts come to the mind:

• A positive one: the proposed calculation has been completed. The main
obstacles (spurious oscillations, gauge pathologies) have been passed. The
boundary conditions (algebraic ones, remember) are doing a good job, even
if the outer boundary is placed definitely too close, at ρ = 6M . So, it is an
achievement.

• A negative one: even if one could evolve the Black Hole simulation further,
this would be of no value for extracting any physical consequence for the
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outside geometry. We have reached the limit of our (modest) computational
resources.

As scientists, however, we will always try to overcome our limits. There is
a number of ways in which we could do that in this case:

• Getting more computational resources. We can switch from our mod-
est PC to a bigger computer, maybe just a PC cluster. This will allow to
put the outer boundary farther away, so that we can model even Black
Hole collisions and predict the waveforms of the resulting gravitational ra-
diation [28, 55]. This is a limited improvement, however. Every factor 2 in
resolution means a factor 23 in the number of nodes in a three-dimensional
grid (this means 8 times the original memory requirements). Moreover, if
one is using explicit finite-differences methods, there is an extra doubling
on the number of required time steps, allowing for the Courant condition.
This amounts to a 16 factor in the required computing power.

• Implementing even better numerical methods. In the CFD arsenal,
we can find for instance Multi-Patch and Adaptive Mesh Refinement (AMR)
methods [67, 68]. Instead of a homogeneous numerical grid, Multi-Patch
methods make use of different coordinate patches (each one with its own
adapted grid) to cover the computational region. AMR methods go even
farther, by dynamically increasing (or decreasing) the grid resolution ex-
actly where it is needed. These advanced techniques are devised in order to
optimize the available computational resources at the cost of an extra load
on the numerical algorithm.

• Taking advantage of the space-coordinates degrees of freedom.
Instead of adapting the numerical grid, like in the AMR methods, one could
just adapt the space coordinate system (and keep a simple, homogenous,
grid). This could mean to provide a dynamical shift choice that drives grid
points to the places where more resolution is needed [8, 9, 10]. Also, in
Black Hole simulations, one expects the spacetime going through a highly
dynamical transient phase, then approaching a quasi-stationary final stage.
Coordinate choices in which the time lines tend to follow the corresponding
‘quasi-Killing’ vector would be of a great help in these cases.

The way ahead is by no means simple, no matter which one (or which com-
bination) of the preceding options is chosen. The peculiarities of real physical
applications will enter into the scene. Our hope is that at this point one should
be familiar with the basic arsenal of Numerical Relativity tools. The door is
wide open to more advanced developments.
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