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Preface

This book assembles the notes that have been written for the lectures deliv-
ered at the school-forum CML2004, a meeting held at Institut Henri Poincaré
(Paris) from the 21st of June to the 2nd of July 2004.

The purposes of CML2004 were to give a survey of the most significant
achievements in the theory of coupled map lattices (CML) and of related
spatially extended systems, and to stimulate debates on open problems and
future directions of research.

The panorama of CML theory has been presented through a series of 15
lectures given by specialists. Additional results have been given in the form of
short communications, of posters and of young scientist sessions (organised by
Pierre Guiraud and Arnaud Meyroneinc). In addition to these expository ses-
sions, stimulated discussions and public debates on questions and on relevant
open problems have taken place.

About 60 participants attended the meeting. They essentially consisted of
physicists and mathematicians in nonlinear dynamics, from young scientists
(about 20 participants where PhD students or postdocs) to senior scientists,
working either on CML or on other subjects (about 20 participants).

As Ecole Thématique, CML2004 received essential support from the CNRS
without which the meeting could not have been realised. The following institu-
tions also contributed to the financial support: Ministère de la Recherche et des
Nouvelles Technologies, Centre de Physique Théorique de Palaiseau, Centre de
Physique Théorique de Marseille, École Polytechnique, Ministère des Affaires
Etrangères, Université de Provence, École doctorale de Marseille “Physique et
Sciences de la Matière”, European Physical Society (Young Physicist Fund).



VI Preface

The participants appreciated the facilities of the Institut Henri Poincaré.
The organisers appreciated the assistance of its administrative staff. Arkady
Pikovsky, who could not attend CML2004, helped us to raise funds. We are
grateful to him for his advice. As a special acknowledgement, we wish to ex-
press our gratitude to Ricardo Lima who has kept encouraging and supporting
us since the beginning of our respective post-graduate studies.

Paris, Marseille Jean-René Chazottes
November 2004 Bastien Fernandez
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The CML2004 Project

J.-R. Chazottes1 and B. Fernandez2

1 Centre de Physique Théorique, CNRS & École Polytechnique 91128 Palaiseau
Cedex, France
jeanrene@cpht.polytechnique.fr

2 Centre de Physique Théorique, CNRS & Universités de Marseille et Toulon
Luminy Case 907, 13288 Marseille Cedex 09, France
bastien@cpt.univ-mrs.fr

Coupled map lattices (CML) are basic models for the time evolution of nonlin-
ear systems which, above all, are extended in space or involve many individual
units. The characteristic features of CML are

• discrete time dynamics
• discrete nature of the underlying space (lattice or network)
• the local variables consist of real numbers or real vectors.

Formally speaking, a CML is a discrete time dynamical system generated
by a mapping acting on real (vector) sequences. The typical and most studied
example is the model introduced by Kaneko in 1983 and given by the following
iterations

ut+1
s = (1− ε)f(ut

s) +
ε

2
(f(ut

s−1) + f(ut
s+1)) t ∈ N, ε ∈ [0, 1]

where ut
s ∈ R and f is a real mapping.

Depending on the context, the configurations {ut
s} represent the spatial

profile of a chemical concentration, of a population density, of a velocity field,
etc. In these cases, the configurations are bounded sequences, sometimes finite
or periodic. Some systems however require unbounded configurations. This
is the case for instance in the Frenkel-Kontorova model of particle chains
where ut

s represents the position along the real line of the sth particle, see
the chapters on monotone dynamics [Floŕıa, Baesens and Gómez-Gardenes],
[Baesens] and [Coutinho].1

As shown by the basic model, the dynamics of a CML is governed by
two competing terms; an individual nonlinear reaction represented by f and
a spatial interaction (coupling) with variable intensity ε. In the basic model,
the interaction is a convolution operator which represents a diffusive coupling.
These two terms are applied successively, a characteristic feature of CML, and
1 We refer to the chapters by using the name(s) of their author(s).

J.-R. Chazottes and B. Fernandez: The CML2004 Project, Lect. Notes Phys. 671, 1–8 (2005)
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this ensures that bounded initial configurations remain bounded (provided
that f is bounded). However, CML are not restricted to such composition nor
to convolution couplings and many other models have been considered.

Their simple formulation make CML a paradigm of nonlinear spatially
extended dynamical systems. In particular, CML are specially designed to fa-
cilitate computer simulations over large space-time domains. The simulations
exhibit an extraordinary large panel of behaviours upon changes in the lo-
cal map and in the interaction (or simply in their parameters). This diverse
phenomenology motivated the application of CML to the simulation of real
systems. For instance, a spectacular application pointed out to us by Pierre
Guiraud is afforded by the simulation of cloud formation by a CML derived
from fluid dynamics equations2.

In the endeavour to describe CML analytically, various methods, tech-
niques and tools have been borrowed from the theory of Dynamical Sys-
tems (stability analysis, Lyapunov exponents, bifurcations, symbolic dynam-
ics, etc.). Some results have been confirmed or obtained in a rigorous math-
ematical framework (e.g. global and partial synchronisation, front dynamics,
etc.). As far as Mathematics is concerned, CML form a proper source of prob-
lems since they are dynamical systems with infinite dimensional phase space
and since they do not satisfy the usual assumptions on dynamics for large
physically relevant sets of parameters (e.g. uniform hyperbolicity, prescribed
symbolic dynamics, etc.).

For a more complete exposition of the origins of CML, of their motivations,
and for an overview of problems, we refer to chapter introductions, especially
of [Bunimovich] and [Just and Schmüser].

The purposes of the meeting CML2004 were to present a survey of the
theory of CML and of related spatially extended systems (lattice dynami-
cal systems, discrete time systems with continuous space, integro-differential
equations, etc.), and to stimulate debates on open problems and future direc-
tions of research. In order to cover both physical and mathematical aspects,
to avoid overlap between lectures and to appeal to a broad audience, 15 spe-
cialists were invited to present results on a given theme. By doing so, we were
conscious of the fact that many significant contributors to the theory of CML
could not present their results. But we had the feeling that a limited number
of lectures could bring more material to a large audience than a series of talks.

This volume collects the notes written by the lecturers, sometimes with
the help of collaborators. The themes cover numerical, theoretical and math-
ematical aspects of various spatially extended systems. More than the results
themselves, concepts, techniques and tools developed for their analysis are pre-
sented. Since the investigation of a model on its own without any relationship
to concrete situations has only little interest, examples of comparison and of
2 Go to http://nis-lab.is.s.u-tokyo.ac.jp/∼nis/animation.html to see the

movie Cloud simulation by CML and to download the related paper [R. Miyazaki,
S. Yoshida, Y. Dobashi and T. Nishita, Proc. of Pacific Graphics (2001) 363–372)].
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adaptation to physical and biological problems are given. The presentation is
by no means complete, but we hope it can serve as a basis for future research
on spatially extended systems.

Before going into details we present a schematic overview of most sig-
nificant phenomena in Fig. 1. This picture collects the dynamical regimes,
together with the transitions between regimes, which occur depending on the
local map and on the interaction intensity. Naturally, the phenomenology here
has been fairly simplified. It does not make any distinction between various
forms of interaction (local coupling or global coupling). More importantly, it
does not make any distinction between various spatially extended systems. To
a smaller extent, neither does it take into account the lattice size dependence
nor the dependence on boundary conditions.3 Still we hope that this figure
can guide the reader through the book.

3 4 a Local mapMonotone (eg. bistable) Chaotic

Unimodal (eg. f(x)=ax(1−x))

Neural models Genetic regulatory networks Kuramoto model
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Fig. 1. Schematic representation of the phenomenology of CML (and of related
models) versus the local map and the coupling intensity. Obviously, the phenomena
may extend to larger domains than those indicated here. For instance, synchronisa-
tion may occur for any local map provided that the coupling (and the lattice size)
is suitably chosen

The chapters have been assembled into 4 thematic parts. The first two
parts are devoted to the description of statistical and geometric properties of
CML. The third part collects results on the dynamics of monotone spatially
extended systems. The last part concerns the introduction and analysis of
models motivated by dynamical problems in Biology.
3 Apart from an example in Sect. 5 of [Bunimovich], the effect of boundary condi-

tions remain largely unravelled.



4 J.-R. Chazottes and B. Fernandez

1 Statistical Properties of Coupled Chaotic Maps

Inspired by the analogy with spin models in Statistical Mechanics which
emerges from symbolic dynamics, the consideration of global statistical prop-
erties of chaotic CML started soon afterward the introduction of CML, in 1988
precisely. The analogy suggests that, typically, phase transitions should occur
when the coupling parameter increases. The transition is expected to split
a unique space-time chaotic phase (high temperature) into several ordered
phases (low temperature). However, the reputation of Statistical Mechanics
technical difficulties warns that any attempt on a rigorous description of a
phase transition in CML would face arduous problems.

To start with, characterising space-time chaotic phases is a problem in its
own which has been the preliminary focus of many studies. A mixing hyper-
bolic dynamical system on a compact set has a (unique) natural phase with
several equivalent characteristic properties. This equivalence fails in infinite
lattices. Characterising the natural measures then needs to be addressed prior
to any other statistical property in CML.

Various proposals have been made. Using again analogy with Statistical
Mechanics, a natural measure should be the Gibbs measure of an appropriate
Hamiltonian on the space-time lattice [Just and Schümser], [MacKay] and
[Jarvenpää]. In the framework of the theory of Dynamical Systems and with
an ergodic theorem in mind, a natural measure should describe the statistics
of orbits issued from “typical” initial conditions, [Bunimovich] and [Keller and
Liverani]. In the dual formulation of the dynamics, a natural measure should
be the limit of iterations of any “regular” initial distribution, [Bunimovich],
[MacKay] and [Keller and Liverani].

With a definition provided, the question of uniqueness of the natural mea-
sure in infinite lattices comes to the centre of attention. Contrary to the case
of finite lattices of weakly coupled chaotic maps, requiring that all finite di-
mensional projections be absolutely continuous does not ensure uniqueness
[Jarvenpää]. On another hand, due to infinite extension, some transients may
last forever and can thus be defined as a proper phase; a phenomenon which
does not exist in finite lattices [Just and Schmüser] and [MacKay]. Unique-
ness can be shown however for small couplings in a suitable Banach space
(of measures having finite dimensional marginals with at most exponentially
growing total variation) [Keller and Liverani].

Two distinct approaches to phase transitions have been proposed. One ap-
proach is based on the formal derivation of a master equation for probabilities
associated with atoms of the symbolic partition. It consists in showing that
some transitions between atoms depend on the coupling parameter [Just and
Schmüser]. However, this approach can be hardly controlled from a mathe-
matical point of view. More importantly, changes in transition probabilities
correspond to changes in the topology of the repeller (bifurcation) rather than
to changes in its statistics only. Such changes may not be due to infinite spatial
extension but may also occur in finite lattices. In this case, the term “phase
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transition” would not be appropriate [Bunimovich], [Just and Schmüser and
[MacKay].

An alternative mathematically rigorous approach is to construct CML with
prescribed phase transitions. The CML consist in piecewise affine mappings
based on probabilistic cellular automata (PCA) which have been proved to
possess a phase transition, in particular Toom’s PCA [Just and Schmüser] and
[MacKay]. Coupling there is introduced by letting the local map depend on
symbolic states at neighbouring sites. Such models fairly differ from classical
CML. However, this trick allows to overcome the unsolved problem of deter-
mining the symbolic dynamics of a CML for an arbitrary coupling parameter.

2 Geometric Aspects of Lattice Dynamical Systems

Beside focusing on specific phenomena such as phase transitions, and as sug-
gested by the explicit dependence on the coupling parameter, a standard issue
in CML is to describe the dynamics over the entire coupling parameter range.
Due to competitions between local and interaction terms and between linear
and nonlinear terms, this is a formidable task which has been accomplished
only in particular cases. In arbitrary lattices, only the extreme regimes of weak
and of strong couplings can be considered as satisfactorily described.

In view of perturbation theory, the dynamics at each site in a CML with
weak coupling can be regarded as a local map perturbed by contributions
from other sites. Accordingly, the behaviours in uncoupled and in weakly
coupled regimes should be qualitatively the same provided that the local map
dynamics is robust to perturbations.

The simplest case is when the local map has two stable fixed points. Then
if the coupling parameter is small enough, just as in the uncoupled case the
CML has an infinite set of stable fixed points on which the action of space
translations has positive topological entropy [Afraimovich]. This property is
called spatial chaos and extends to weakly coupled lattices of local maps with
stable periodic orbits.

When the local map is strongly chaotic, space-time chaos exists for small
coupling. That is to say, when the local map has a hyperbolic set with pos-
itive topological entropy, then the CML with sufficiently weak coupling has
a hyperbolic set on which the Z

2-action of space-time translations also has
positive topological entropy.

In spite of being intuitively simple, weak interaction regimes gave the op-
portunity to adapt to lattice systems various dynamical systems techniques,
e.g. persistence of uniform hyperbolicity under weak coupling, symbolic dy-
namics [Afraimovich] and [MacKay]. They also allowed to obtain results which
are specific to lattice dynamical systems, e.g. description of space-time peri-
odic configurations as orbits of a low-dimensional map, density of space-time
(quasi-)periodic configurations with given (quasi-)period [Afraimovich].
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Whereas structural stability of uncoupled systems does not depend on the
symmetry of translation invariance and extends to some heterogeneous CML,
in strongly coupled regimes, the dynamics relies on this symmetry.

The basic strongly coupled regime in translation invariant CML is syn-
chronisation. In this context synchronisation means that the subset of con-
stant configurations, namely the diagonal, attracts all orbits in phase space
[Afraimovich] and [Maistrenko, Popovych and Tass].

Synchronisation takes place when all transverse eigenvalues of the mapping
derivative computed at any point on the diagonal have modulus uniformly
smaller than 1. The synchronisation is said to be chaotic if the tangential
Lyapunov exponent on the diagonal (which in CML is nothing else but the
Lyapunov exponent of the local map) is positive.

In the case where only the transverse Lyapunov exponents on the diagonal
are negative (which happens when the coupling parameter decreases from the
synchronisation regime) the basin of attraction of the diagonal is only local
and may have a complex riddled structure, a phenomenon called partial syn-
chronisation. Riddled basins are not limited to CML but emerge in a broader
context, specifically in equivariant dynamical systems [Ashwin].

Riddled basins only concern a neighbourhood of the diagonal. The rest of
phase space may contain orbits not asymptotically approaching the diagonal,
a reminiscence of weakly coupled regimes. A simple example is a stable peri-
odic orbit [Maistrenko, Popovych and Tass]. An example with a dense subset
of unstable periodic orbits has also been exhibited [P. Glendinning, Milnor
attractors and topological attractors of a piecewise linear map, Nonlinearity
14 (2001) 239–257].

3 Spatially Extended Systems with Monotone
Dynamics

The typical situation for which the dynamics of a spatially extended system
can be reasonably analysed over the whole coupling parameter range is that of
systems with monotone dynamics. If an initial configuration lies below another
initial configuration, then this ordering is preserved at later times.

Monotonicity is a classical property in parabolic partial differential equa-
tions (maximum principle). In lattices of coupled ordinary differential
equations, it follows from cooperativity [Baesens]. For instance, it holds in the
paradigmatic Frenkel-Kontorova model when assuming strong enough dissi-
pation. In CML monotonicity holds for every ε ∈ [0, 1] provided that the local
map f is an increasing function [Coutinho and Fernandez].

With the dynamics of chains in periodic potentials in mind, monotonic-
ity can be completed with translation invariance and periodicity. Periodicity
means that if the difference between two initial configurations equals, say 1
at all sites, then this difference remains unchanged at later times.
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A monotone periodic translation invariant system has a regular and uni-
form nonlinear dynamics. Either each orbit remains sandwiched between sta-
tionary configurations (pinned regime) or all orbits indefinitely increase (or
decrease) with finite velocity (sliding regime). In the sliding regime the propa-
gation velocity is unique in phase space and there are corresponding travelling
waves with rotationally ordered shape. The propagation velocity continuously
depends on the system parameters. In particular, it is known to be positive
for sufficiently large driving force (sufficiently large local map asymmetry in
CML).

This phenomenology does not depend on the details of the model, a system
either with continuous time [Baesens] or with discrete time. Neither it does
depend on the details of the spatial interaction (discrete or continuous dif-
fusion or both) [Coutinho and Fernandez]. This justifies substituting certain
models by more convenient ones. In particular, one may assume the dynamics
of lattice systems with small step sizes (discrete diffusion) to be suitably repre-
sented by the dynamics of a system defined on the whole real line (continuous
diffusion), or vice-versa.

Excepted when generated by a driving force, transport may also be caused
by a time dependent action on the system (non-autonomous system). In par-
ticular, switching on and off an asymmetric potential or switching on and off
the diffusive interaction may also generate propagation (ratchet effect) [Floŕıa,
Baesens and Gómez-Gardeñes].

Even though the orbits remain bounded between two stationary configura-
tions, there may be propagation. In this case, propagation concerns interfaces
(discommensurations) between two contiguous stable stationary configura-
tions. (Interfaces between a stable and an unstable configuration can also be
relevant.) Bistable systems provide the basic framework where propagation of
interfaces between stable phases can be analysed [Coutinho and Fernandez].

Bistable spatially extended systems satisfy monotonicity, translation in-
variance and the existence of two stable constant configurations at distance,
say 1. In discrete time systems with arbitrary spatial interaction, the dynamics
of interfaces is analogous to the previous one. There exists a unique asymptotic
horizontal velocity for all interface orbits, this velocity depends continuously
on the system parameters, and there are travelling waves (fronts).

4 Specific Lattice Dynamical Systems

In certain lattices with few sites, the dynamics can be described in the whole
coupling range even though monotonicity is not assumed. A typical example
with rich phenomenology is the Kuramoto model of globally coupled oscil-
lators, a system of coupled ordinary differential equations. In this model,
the sequence of bifurcations generated by decreasing the coupling is well-
established [Maistrenko, Popovych and Tass]. Starting from a globally at-
tracting synchronised orbit, bifurcations split asymptotic configurations into
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clusters with synchronised motions. For smaller couplings, clusters break into
independent oscillators. In lattices with a large enough number of sites, this
scenario includes a chaotic attractor for intermediate couplings. Motivated by
synchronisation caused neurological diseases in brain function, the Kuramoto
model has been employed to simulate the impact of a stimulation on an as-
sembly of neurons.

The mechanisms leading to synchronisation in networks of neurons have
been thoroughly investigated taking into account detailed neurons and synaps-
es characteristics [Ermentrout]. In a different context where the neurons have a
excitable dynamics and not an oscillatory one, propagating waves with regular
or lurching motion have been exhibited. Some of these waves are the analogous
of travelling fronts in systems with monotone dynamics mentioned above.

Another class of biological systems which comprehension involves network
dynamics is that of genetic regulatory networks. The dynamical characteristics
of the mechanisms involved in this context are a local piecewise contracting
dynamics combined with a complex interaction graph [de Jong and Lima].
This combination is rather original in the framework of lattice dynamical
systems and the resulting dynamics has only been completely described in
networks with simple graphs.
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1 Introduction

Coupled Map Lattices (CML) were simultaneously and independently intro-
duced by K. Kaneko, R. Kapral and S. Kuznetsov in 1983–84 [1, 2, 3, 4, 5, 6].
CML describe the time evolution of fields that can be split into an independent
evolution of local systems (elements) of these fields (usually defined by some
map of a local phase space) followed by (spatial) interactions of these local
systems generated by some operator acting on the entire (global) phase space
of CML. A structure of local systems in CML forms a lattice. At any mo-
ment of time all values of local variables are defined. These values determine
a spatial structure (pattern) of the field. In CML it is assumed that all local
dynamical systems are identical and that the spatial interactions between any
local system and the rest of CML are the same for all local systems. (In more
general Lattice Dynamical Systems (LDS) dynamics is not assumed to be a
composition of a local dynamics and spatial interactions and neither to be
translationally invariant.)

It is a remarkable fact that three scientists in three different countries intro-
duced the same model, while having quite different goals. Kapral used CML to
model the dynamics of spatially extended systems in chemistry, Kuznetsov was
interested in developing a renormalization group approach similar to Feigen-
baum’s universality to spatially extended systems (especially to electrical cir-
cuits). Kaneko had quite different and more general agenda. He considered
CML to be a new powerful model to study dynamics of spatially extended
systems of virtually any nature and was the most active researcher and pro-
pagandist in this area (see e.g., [7, 8, 9, 10] and references therein).

It is believed that there were two major reasons for the introduction of
CML. In the early 80s the theory of finite dimensional (point, non-extended)
dynamical systems had been already fairly well developed during the preced-
ing two decades started with the seminal Kolmogorov’s paper [11] which built

L.A. Bunimovich: Coupled Map Lattices: at the Age of Maturity, Lect. Notes Phys. 671, 9–32
(2005)
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a bridge between deterministic and probabilistic dynamics. However, just a
very moderate success had been achieved in the studies of the dynamics of
spatially extended systems, traditionally described by partial differential equa-
tions (PDE). First, CML provided seemingly simpler models where one can
usually safely assume that dynamics of local components of the field (local
dynamics systems or local maps) is (well) known and therefore the effect(s) of
spatial interactions could be singled out. And secondly, CML are, in a sense,
ideal models for computer simulations. Indeed, CML are discrete in space.
Therefore, they allow a direct numerical simulation without using various dis-
cretization schemes required by PDE. This crucial feature of CML was espe-
cially intensively used by Kaneko, who produced a large variety of numerical
studies of CML and provided a lot of pictures which visualized spatio-temporal
patterns of different regimes of dynamics [7, 12]. At this initial stage CML
started to attract a lot of attention not just as useful computational models
but also as promising phenomenological models of space-time dynamics.

Mathematical studies of CML started with the paper [13], which devel-
oped an approach to a rigorous investigation of these systems. This approach
is based on an extension of the thermodynamic formalism developed by Sinai,
Ruelle and Bowen [14, 15, 16] for finite dimensional (local) dynamics to spa-
tially extended systems, especially to CML.

The thermodynamic formalism is a far reaching extension of symbolic dy-
namics. Symbolic dynamics is based on a coding of orbits of dynamical systems
into double-infinite (in case of invertible dynamics) or semi-infinite (in case of
non-invertible dynamics) sequences of positive integers. By virtue of such cod-
ing, the dynamics gets represented in the corresponding space of (admissible
by dynamics) sequences by their shift on one coordinate. The thermodynamic
formalism goes much farther by interpreting these sequences as configura-
tions of spins (discrete variables) of particles in lattice systems of statistical
mechanics. The corresponding potential of interaction between these (virtual)
particles (or spins) is determined by the (initial) dynamical system and equals
logarithm of its Jacobian (see e.g., [15]).

Statistical mechanics consists of two parts, that are called equilibrium and
nonequilibrium statistical mechanics, respectively. The equilibrium statistical
mechanics deals with stationary and equilibrium measures for the correspond-
ing systems. The central problem in equilibrium statistical mechanics is to find
all equilibrium measures. These equilibrium measures are called phases. If a
number of equilibrium measures changes (with a change of some parameter,
usually a temperature) then the system is said to have a phase transition.
The corresponding value of the parameter, where a phase transition occurs is
called a critical value (e.g., a critical temperature).

In the paper [13] (see also [17]) it has been conjectured that if the local sys-
tems in CML are strongly chaotic and if the spatial interactions are sufficiently
weak, then in the corresponding system there is only one equilibrium mea-
sure. Therefore this conjecture claims that there are no phase transitions in
the range of weak spatial interactions provided that local systems are strongly
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chaotic (e.g., uniformly hyperbolic). This conjecture has been proved in [13]
for a class of expanding one-dimensional (local) maps with a special type of
spatial interactions which provides a Markov partition for such CML. This
result has been then proved for much more general local dynamics and less
restrictive classes of spatial interactions [19, 31].

It has also been shown in [13] (as well in [19, 31]) that the corresponding
CML with this unique equilibrium measure has the property of space-time
mixing, i.e., the correlations in these systems decay both in time and in space.
This property of space-time mixing is one of the strongest properties of space-
time chaos that a spatially extended system may have. However, it is just
one out of many various properties of space-time chaos in spatially extended
dynamical systems. Unfortunately this property of space-time mixing has been
called in [13] a space-time chaos, and despite the attempts to correct this
terminology [32] it is still often addressed as space-time chaos.

The absence of phase transitions and space-time mixing mean that all
typical (with respect to this unique equilibrium measure) orbits of the cor-
responding CML behave and look similar, i.e., they produce essentially the
same spatio-temporal patterns. This property of absence of different spatio-
temporal patterns in an extended system has been interpreted as the absence
of coherent structures in such systems [13, 17].

The presence of coherent structures is a well known phenomenon in ex-
tended dynamical systems. It has been first observed and received this name
in experimental studies of turbulence with high Reynolds numbers. Before the
paper [13] there was no general definition of coherent structures. Instead, this
name was usually given to some simple spatial or spatio-temporal patterns
that have been observed in real or numerical experiments or to some simple
exact solutions of dynamical equations of spatially extended systems.

In [13] not only a general definition of coherent structures has been given
but also a principally new interpretation of this phenomenon has been pre-
sented. This interpretation is based on the correspondence between spatially
extended dynamical systems and lattice models of statistical mechanics pro-
vided by the thermodynamic formalism.

A coherent structure according to [13] is an invariant measure µ of a spa-
tially extended system. A support of an invariant measure is formed by some
set of orbits of a spatially extended dynamical system. If this measure is er-
godic then all these orbits have the same spatio-temporal structure. This set
of similar in this sense orbits forms a coherent structure corresponding to
the measure µ. (Usually, a dynamical systems has many invariant measures
but only a few of them, that are in some sense “observable” (realizable) in
experiments of various nature are of interest. These measures are referred to
as physical, stable, natural, etc. A choice of relevant measure(s) is crucial in
dealing with statistical properties of dynamical systems, and we will discuss
it later in details.)



12 L.A. Bunimovich

A measure having the property of space-time mixing is, of course, ergodic.
If an extended dynamical system has a unique (observable) measure with the
space-time chaos then, just by definition of space-time chaos, its (typical)
orbits have no coherence whatsoever. However, if an extended system has
several equilibrium (observable) measures then the orbits in the supports of
such measures already have some coherence. Indeed, a choice of one of these
measures provides some information about properties (structure) of the orbits
(solutions) that belong to the support of this measure.

Therefore, the approach developed in [13] allows to relate coherent struc-
tures of spatially extended dynamical systems to phase transitions in the
corresponding to these systems models of statistical mechanics. After phase
transitions several equilibrium measures appear and orbits in their support
are not space-time chaotic. Hence, they have some kind of coherence. Observe,
that such orbits still could be rather chaotic, but they are not “completely”
chaotic. Thus, the treatment of coherent structures as measures is rather gen-
eral. It allows, for instance, to compare a level of coherence of different struc-
tures (measures). Many efforts were made to verify this approach to coherent
structures numerically and to justify it rigorously [33, 48]. This area remains
one of the most exciting in the studies of lattice dynamical systems.

Phase transitions occur when some parameter(s) of spatially extended dy-
namical systems change. Therefore phase transitions in this sense are some-
what similar to bifurcations of dynamical systems. This similarity could be
helpful, but, on another hand, it already led to a lot of confusions. Especially,
it became kind of fashionable to call bifurcations phase transitions. (I believe
that one of the reasons for that is a sort of feeling that phase transitions are
better funded now than bifurcations. Although this feeling may be true this
confusion does not help in studies of this complicated and still not well defined
and by far not well understood area.)

Certainly the major difference between spatially extended dynamical sys-
tems and nonextended (point) ones is in the presence of spatial interactions
(between local (point) dynamical systems). Therefore (one of) the most im-
portant parameters is a strength (amplitude) of spatial interactions. Most of
mathematical results on CML were obtained for weak spatial interactions.
Then the strength of spatial interactions can be treated as a small parameter,
and a problem can be analyzed by a kind of perturbation theory. Often this
perturbation problem is highly nontrivial (e.g., singular) though.

There are three major areas where this approach has been applied. The
first, already mentioned, deals with CML with strongly chaotic (e.g., mixing)
local dynamics. Then such system obviously is space-time mixing when there
are no spatial interactions at all between the local systems. Indeed, in such
system the spatial correlations are identically zero. The second area deals
with the construction of exact interesting solutions (often of some complicated
nature) for corresponding infinite dimensional dynamical systems [49, 50, 51].
Usually the existence of these solutions is already known for CML without
spatial interactions. To find such solutions one just needs to know that the
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corresponding projections on the local dynamics exist. The problem is to prove
a version of the implicit function theorem in an infinite dimensional space with
properly defined norm. This area produced a variety of interesting results
including the existence of breathers in some systems appeared in physics and
other applications. The third area deals with the problem of construction
and stability of more or less standard (e.g., waves) or chaotic solutions in
LDS and/or with their hyperbolicity. A mathematical problem here again is
in infinite dimension and therefore in a proper choice of a norm or metric
[52, 53, 54, 55].

It is important to mention that the goal of the first two areas is to demon-
strate that (at least in some cases) the dynamics of weakly interacting CML
or LDS is qualitatively the same as of noninteracting systems. In other words
these areas deal with situations where spatial interactions, that are at the
heart of dynamics of spatially extended systems and, in fact, make these sys-
tems to be spatially extended, are in a sense negligible. The third area deals
mainly with problems that are standard for nonextended (point) systems as
well.

To understand the dynamics of spatially extended systems one should
rather address a question how spatial interactions can influence (change) dy-
namics of local systems. One of such crucial problems is the already discussed
problem of phase transitions, where a number of equilibrium states (measures)
changes at some critical value of an amplitude of spatial interactions. Another
question of this type deals with the analysis of bifurcations that occur when
this amplitude changes, i.e., the amplitude of spatial bifurcations is considered
as a bifurcation parameter.

The last problem is a central one in the analysis of interacting dynamical
systems of any kind, i.e., for systems with finite as well as with infinite number
of local components, for systems with identical local components (e.g., for
CML) as well as for systems with different local components (e.g., for LDS of
general type). It is worthwhile to mention that the classes of spatially extended
or of interacting systems are naturally restricted when one addresses a specific
problem. For instance, some authors insist that the notion of phase transitions
should be used only for infinite systems (i.e., for systems with infinitely many
interacting components) while the problem of synchronization usually deals
only with systems with a few interacting components (subsystems) which are
nonidentical. In fact, the phenomenon of synchronization assumes that (weak)
interactions force different systems to evolve in some sense synchronously [56].

2 Multicomponent Dynamical Systems (MDS)

In this section we give the definitions of some types of dynamical systems
with interacting components. Let N be a finite or countable collection of in-
dices. Consider a direct product (XN , ρN ) of compact metric spaces (Xi, ρi),
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i ∈ N . Then XN :=
⊗

i∈N Xi is a phase space of a multicomponent dynam-
ical system, and Xi, i ∈ N , are phase spaces of local components (which are
sometimes called local phase spaces). Points x̄ ∈ N can be naturally repre-
sented as (finite or infinite) collections x̄ = (xi), i ∈ N . A metric in N can
be defined in different ways. The most popular (and in a sense natural one)
is ρN (x̄, ȳ) := maxi∈N ρi(xi, yi).

The collection Ti, i ∈ N , of local maps Ti : Xi → Xi defines the local
dynamics of a multicomponent system. We assume that any local system
(component) is equipped with a reference measure mi and that all local maps
Ti are nonsingular with respect to mi, i ∈ N .

Often mi is assumed to be the Lebesgue measure on Xi, i ∈ N . It is a
natural assumption for numerical (as well as for interpretation of real) exper-
iments. Then a natural class of (initial, not steady state) probability distribu-
tions on Xi is formed by measures on Xi that are absolutely continuous with
respect to mi.

The local dynamics Ti defines the evolution of (probabilistic) measures µ
on Xi via the relation

T ∗
i µ(A) = µ(T−1

i A) (1)

where A ⊂ Xi is a (measurable) subset of Xi. Therefore we can assume that
Ti acts on (Xi, ρi,mi), i ∈ N .

Let mN :=
⊗

i∈N mi. Consider a (nonsingular) map T (N ) : XN → XN .

Definition 2.1. The pair (XN , T (N )) is called a multicomponent dynamical
system if the dynamics T (N ) can be decomposed into a superposition (compo-
sition) T (N ) = I(N )◦TN of an interaction I(N ) between the local components
and the direct product TN := (

⊗
i∈N Ti) of local maps Ti, i ∈ N .

So far we did not assume that the collection of local components form any
kind of (global) structure, i.e., we considered the indices i ∈ N as just abstract
numbers. If, however, we consider this lattice of integers to be placed into
some (“physical”) space then the local components (and the corresponding
variables xi) form a lattice (field) in such space. Then we can consider the
collection of values (xi), i ∈ N , as forming some spatial structure (snapshot)
in the corresponding physical space. Of course, the set of indices i ∈ N does
not need to be a (sub)set of integers. The indices could be integer vectors,
and then we get a multidimensional lattice, elements of some set of a Cantor
type, etc. In many cases, e.g., in the most of applications, the number of local
components is finite.

One of the most amenable for theoretical studies and quite interesting
for many applications (as well as in the situation when there is just a finite
number of local components) is the (spatially) homogeneous case when all
local systems (Xi, ρi,mi, Ti), i ∈ N , coincide.

We assume that the map I(N ) : XN → XN , which defines ‘interactions’
between local components is identical on the diagonal set XN

diag = {x̄ ∈ XN :
xi = xj ∀ i, j}. This assumption means that any homogeneous state x̄ ∈ XN

diag
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is a fixed point of the interaction operator, I(N )x̄ = x̄, i.e., interactions cannot
change local coordinates if they are all equal. This property is a substitute of
translation invariance for a multicomponent dynamical system with a finite
number of local components.

If a number of local components in a spatially homogeneous system is in-
finite then there is a natural action S(N ) of a (semi)group of (spatial) transla-
tions generated by shifts on some vector of the lattice formed by local systems.
Therefore S(N ) : XN → XN can be viewed as a dynamical systems generated
by spatial shifts. This group commutes in the spatially homogeneous case with
time shifts (dynamics) and therefore the pair (T (N ), S(N )) forms a space-time
dynamics.

The Definition 2.1 of a multicomponent dynamical system looks some-
what restrictive because of the assumption of superposition of a local dynam-
ics and (spatial) interactions. However, it is not the case. Indeed, any map
T : XN → XN can be represented as T ≡ T ◦ (

⊗
i∈N Id), where Id is an

identity. In this representation the map T corresponds to the ‘interaction’
I(N ). However, this (formal) description while being relevant for multicom-
ponent dynamical systems is not at all satisfactory for systems of interacting
particles, which are the major models of interest in statistical mechanics. In
these models the dynamics of individual particles (without interactions) is
rather simple and often just trivial. Therefore it is the interactions that make
the dynamics of interacting particles interesting. On the contrary, in multi-
component dynamical systems the dynamics of individual components (local
systems) can be quite nontrivial (in fact, it could be any dynamical system).
Therefore the property that interactions are just the identity on the diagonal
is not an acceptable condition for statistical mechanics.

Perhaps the most popular example of interactions in multicomponent dy-
namical systems is a (spatially) homogeneous finite range coupling

(Iεx̄)i := (1− ε)xi + ε
k∑

j=−k

ajxi+j (2)

where the parameter ε is the strength of interactions, k is the radius of inter-
actions, ai ≥ 0 are some constants, and

∑k
i=−k ai = 1. Observe that the set of

all interactions described by (2) forms a convex hull of values of coordinates
x̄ in the k-neighborhood of the ith coordinate.

In the literature lattices of (interacting) maps often are referred to as
CML or Lattice Dynamical Systems (LDS) if their time evolution can be or
cannot be represented as the composition of a local dynamics and of (spatial)
interactions respectively. Especially there is ubiquity of important examples
which arise in various applications and are obtained by space discretizations
of PDE where a multicomponent dynamical system has the form

(Tεx̄)i := (1− ε)Tixi + ε

k∑

j=−k

ajxi+j (3)
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i.e., an operator of interactions acts in the space XN rather than on its shift
T (N )XN under an (independent) local dynamics.

One cannot decompose formally this system into the superposition of
the local dynamics (described by the map Ti) and spatial interactions Iε.
It is possible, however, to construct an equivalent system that satisfies both
Definition 2.1 and the condition of invariance of the diagonal. The trick is
to consider a replica of the local systems. Namely, for each local component
we take its “delayed” copy acting on the phase space Yi ≡ Xi such that the
interaction map Φ, Φ(x̄, ȳ) := x̄′ is defined via the relation

x′i = (1− ε)xi + ε

k∑

j=−k

ajyi+j . (4)

Then the local dynamics is defined as T : xi → (Tixi, xi). It is easy to see
that the multicomponent dynamical system (Φ ◦ T ,⊗i∈N (Xi ⊗ Yi)) where
the dynamics is the composition of a local dynamics and interactions onto
x-component is the initial multicomponent system (Tε,⊗i∈NXi).

An important example of (2) is the diffusive coupling

(Iεx̄)i = (1− ε)xi +
ε

3
(xi−1 + xi + xi+1) (5)

i.e., the spatially homogeneous finite range interactions with k = 1 and ai =
1/3. This system represents a discretization of the Laplacian. In fact,

−εxi +
ε

3
(xi−1 + xi + xi+1) =

ε

3
((xi+1 − xi)− (xi − xi−1)) =

ε

3
(∇x)i.

Multicomponent dynamical systems (MDS) occupy an intermediate place
between PDE and deterministic cellular automata (DCA). This is illustrated
in the following table.

Time Space Local (phase) Space
PDE C C C
MDS D D C
DCA D D D

where C stands for “continuous” and D for “discrete.”
It is worthwhile to mention that time in MDS can be continuous as well.

We then just get coupled ordinary differential equations instead of coupled
maps. A principal restriction is that the space (structure of a network of
interacting local dynamical systems) in MDS is discrete. Indeed, although
some of these models are obtained by discretization of PDE in the limit when
the step of such discretization tends to zero, a character of dynamics of MDS
usually changes uncontrollably. In fact, to keep the same type of dynamical
behavior one needs to rescale the parameter(s) of the system in a peculiar
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way (i.e., depending on an exact system we are dealing with). This lack of
a limit transition to the system with continuous space is similar to the lack
of transition from the discrete models of statistical mechanics to continuous
models.

3 Deterministic (DCA) and Probabilistic (PCA)
Cellular Automata

The dynamics of MDS is much richer than the dynamics of DCA because a
local dynamics in DCA acts on a discrete local phase space and therefore it
cannot be complex. On the other hand, a local dynamics in MDS can be quite
complex (e.g., chaotic) and mimic random processes. Therefore the dynamics
of MDS has, in a sense, the same complexity as the dynamics of PCA, where
discreteness of a local phase space is “compensated” by random interactions
between their (local) components. We consider for the sake of illustration and
comparison with MDS two examples of CA, one DCA and one PCA. Both
these examples belong to a popular class of CA of the “majority” type (or
voter models).

Let xi, i ∈ Z be a local variable assuming two values 1 and −1. The
dynamics of a DCA is given via the relation

xn+1
i = sgn(xn

i−1 + xn
i + xn

i+1)

where n is the time variable. It is clear that every isolated plus or minus
changes sign at the next moment, but clusters of pluses or minuses never
change. Therefore two states with alternating signs (· · ·+−+−+− · · · ) form
a period two orbit, while all sequences with alternating clusters of pluses and
minuses with lengths greater than one form an uncountable set U of fixed
points. In fact, it is easy to prove that the set U is an attractor for all orbits
except the period two orbit. Thus the dynamics of this DCA of a voter type
is very simple.

The next example is the celebrated PCA introduced by A. Toom [54]. We
start with a general definition of a probabilistic cellular automaton.

Let G be a finite or a countable graph. Consider a function v : G →
{1, 2, . . . ,K} defined on the set of all vertices of this graph (which we denote
by the same letter G) and assuming a finite number K < ∞ of values. A
neighborhood O(g) of a vertex g ∈ G is the union of vertices to which g is
connected. We assume that G is locally finite, i.e., for each vertex g ∈ G its
neighborhood O(g) consists of at most L <∞ vertices of the graph G.

A collection v(g), g ∈ G defines an instant configuration of PCA. A dy-
namics of PCA is a dynamics of its configurations. For each vertex g ∈ G
and for each configuration v(O(g)) of its neighborhood transition probabili-
ties p(v(g), v(O(g)), i), i ∈ {1, 2, . . . ,K} are defined which determine a state
(a value v(g)) at the vertex g at the next moment of time.
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In the simplest version of Toom’s example of PCA a graph G is the two-
dimensional lattice Z

2, and each vertex can be in two states +1 and −1. A
neighborhood O(g) of a vertex g ∈ Z

2 in this PCA consists of two vertices
N(g) and NW (g) where N(g) is the nearest neighbor of g in the North di-
rection, and NW (g) is the nearest neighbor of N(g) in the West direction.
Transition probabilities are defined by a variant of a majority rule. It says
that probabilities of the state v+(g) at the next moment of time equal

P (v+(g) = +1) = 1− δ

2
if sgn (v(g) + v(N(g)) + v(NW (g))) = +1

P (v+(g) = +1) =
δ

2
otherwise . (6)

If δ = 0 then Toom’s PCA becomes the DCA for which the configurations of
all pluses and of all minuses are fixed points of the dynamics.

The dynamics of PCA is (in general or “on average”) simpler than the
dynamics of MDS and in particular (again, generally) it is simpler to analyze.
It is a reason why in many attempts to construct MDS with some desired
properties the idea is to mimic some (class of) PCA by MDS. It is well known
that the dynamics of (chaotic) dynamical systems is as rich as the dynamics of
stochastic processes. We will explain now following [44] a simple construction
which allows to represent Markov chains as deterministic dynamical systems
(in fact as piecewise linear maps).

Let T be a nonsingular map from the unit interval [0, 1] into itself. Denote
by ∆ = {∆i}W

i=1 a partition of [0, 1] into disjoint intervals ∆i and W ≤ ∞.
We will call the partition ∆ a special partition for the map T if ∀ i ≤ W , T
is a diffeomorphism on the inner part of ∆i onto its image.

The map T will be called Markov if there exists a special partition ∆
such that T∆i =

⋃
j∈I(i)∆j for each i, where I(i) is some set of indices. Such

partition is called a Markov partition. Hence we deal here with special Markov
partitions.

Consider now the following set of (probabilistic) measures on [0, 1]

Mu([0, 1],∆) =

{

µ ∈M([0, 1]) :
µ(I)
µ(I ′)

=
|I|
|I ′| ,

∀ i and ∀ intervals I, I ′ ⊂ ∆i

}

where |I| is the Lebesgue measure (length) of the interval I. According to its
definition Mu([0, 1],∆) (where u stays for “uniform”) is the collection of all
probability distributions with constant densities on each interval ∆i ⊂ ∆, i.e.,
the restriction of any measure from this set to an interval ∆i is proportional
to its length for any i ≤W .

Theorem 3.1. [44] For any given transition matrix P of a Markov chain
with W states, W ≤ ∞, there exists a piecewise linear one-dimensional map
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T with a Markov partition ∆̂ such that the restriction of the induced map T ∗

to Mu([0, 1], ∆̂) is equivalent to the left action of P in the space of probability
distributions.

We outline a proof of this simple statement. Take any partition ∆ of [0, 1]
into W ≤ ∞ subintervals. For any integer i ≤W , let Ii = {ij}j denote the set
of indices such that Piij

> 0. Then the refined partition, consisting of intervals
∆ij with lengths |∆ij | = Piij

|∆j | is a special partition ∆̂ for a piecewise linear
map T : [0, 1] → [0, 1] defined as follows: on each interval ∆ij the map T is a
linear map from this interval onto the interval ∆j . The partition ∆̂ is Markov
since for any pair of indices i, j the image of ∆ij under the action of T is an
interval from the original partition, and hence a union of intervals from the
partition ∆′.

Let {∆̂k} be an enumeration of ∆̂. The density of the corresponding mea-
sure µ ∈ Mu([0, 1], ∆̂) is piecewise constant on intervals ∆̂k. We associate
with the measure µ a vector of ρ̂(µ) with components (ρ̂(µ))k = µ(∆̂k).
The constructed map T is Markov and linear on each element ∆̂k. There-
fore (ρ̂(T ∗µ))k = (ρ̂(µ)P )k for any k.

Observe that if a number of states W of this Markov chain is finite and the
number of positive elements in the ith row of the matrix P does not exceed
K, then the number of elements in the special partition for the constructed
map does not exceed WK.

It is worthwhile to mention that generally it is not possible to construct a
continuous map representing a given Markov chain. Consider, for example a
Markov chain with three states and the transition matrix

P =




1/2 1/2 0
0 1/2 1/2

1/2 0 1/2



 .

Then the described construction gives the following map [44]:

Tx =






2x, if 0 ≤ x < 1
3

2x− 1
3 , if 1

3 ≤ x < 2
3

2x− 4
3 , if 2

3 ≤ x < 5
6

2x− 1, if 5
6 ≤ x ≤ 1 .

One cannot rearrange these four intervals to make the corresponding map
continuous (even though we effectively got just four intervals instead of six
provided by the construction). To place the map T to a circle instead of the
interval would not help either. Indeed, the structure of the transition matrix
P implies that the interval(s) corresponding to at least one of the three states
of the Markov chain must be mapped to the intervals corresponding to two
other states. Therefore there will be a gap there.
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A much more important and interesting example is provided by a deter-
ministic model of a random walk on non-negative integers. Such random walk
is defined by transition probabilities pi,i−1, pi,i+1, pi,i to move at one step
to the left, to the right or remain in the current position, and by the proba-
bilities p0,0 and p0,1 for the boundary i = 0. Transition probabilities for the
corresponding one-dimensional map T are pi,j = |∆j |/|T∆i| for any pair of
indices i, j, |i− j| ≤ 1.

Although Markov chains with a countable number of states form a rich
class of models this class does not include PCA. Let PM : M(XM ) →M(XM )
be a transfer operator corresponding to a Markov chain M acting on the
space XM of its states. We say that this Markov chain is equivalent to a
dynamical system (T,X) if there exists a subspace MM (X) of the space of
(probabilistic) measures on X and a homeomorphism π : M(XM ) →MM (X)
such that π◦PM = T ∗ ◦π. This notion of equivalence is a generalization of the
equivalence of the restricted induced map to the left action of the transition
matrix discussed in Theorem 3.1.

Theorem 3.2. [44] For any PCA on a locally finite graph G there exists a
(deterministic) dynamical system generated by a countable number of maps
with dynamics equivalent to the dynamics of this PCA.

To construct such (equivalent to PCA) dynamical system at each vertex
g ∈ G we define a collection of maps corresponding to all possible configura-
tions of states at g and in its neighborhood O(g). A particular choice of the
map is determined by the configuration of these states.

A total number of configurations (of values v(g) and v(O(g)) cannot exceed
KL < ∞ for any g ∈ G. Observe that for any configuration v(O(g)) the
construction in the proof of Theorem 3.1 can be readily applied to define
a piecewise linear map Tv(O(g)) from [0, 1] to itself with Markov partition
consisting of at most KK intervals ∆i. This map has the dynamics equivalent
to the one of our CA (defined by transition probabilities). Finally consider
a multicomponent dynamical system with the phase space X = [0, 1]G (a
direct product of unit intervals). At each vertex g ∈ G a finite number of
one-dimensional maps Tv(g) is defined. Finally, for any point x̄ = (xg) ∈ X
its image is defined via the following procedure. Let xg′ ∈ ∆i(g′) for any
g′ ∈ O(g). Then the value of the gth coordinate of x̄ at the next moment
of time is defined by the map Tv(O(g))(xg), which concludes the construction
required in Theorem 3.2. A particular case of this construction was considered
in [43].

By making use of the same argument as above one can construct a MDS
with K = ∞ as well if for any i ∈ {1, 2, . . . ,K} only a finite number of
transition probabilities (in the definition of a cellular automaton) are positive.
However, the graph G still must be locally finite.
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4 Relevant Measures for Dynamical Systems

Before discussing the problem of phase transitions in multicomponent dy-
namical systems, it is necessary to understand which class(es) of measures
for dynamical systems are of interest in this respect. In fact, even without a
general agreement what (if anything) one should mean by phase transitions
in dynamical systems (not necessarily in spatially extended ones) majority of
authors admit that one must relate the phenomenon of phase transitions with
a change of a number of some measures for corresponding dynamical systems
when their parameters vary. However, there is no general agreement which
class(es) of measures one should consider in this respect (perhaps besides the
obvious fact that only invariant measures matter). Moreover, the existing lit-
erature on this problem is very confusing. Indeed, different authors use the
same names for different objects, different names for the same objects, etc.
This situation brings even more confusions into a sophisticated problem on
phase transitions in dynamical systems.

We will consider only dynamical systems with discrete time. However, the
case of continuous time does not require any changes. It is customary when
talking about relevant (classes of) measures for dynamical systems to refer
to the review paper by Eckmann and Ruelle [58] where two classes of mea-
sures were singled out as reasonable candidates for relevant measures. One of
this classes goes back to Kolmogorov although the corresponding measures
are usually called stochastically stable (or zero-noise limit) measures. Real
(physical, chemical, etc.) systems usually evolve in the presence of some noise
(because of uncontrollable fluctuations of an “environment,” etc.). Therefore
their evolution must be described by some stochastic (Markov) process rather
than by a deterministic dynamical system. If the stationary measures of these
random processes (indexed by an amplitude ε of the noise) converge as ε→ 0
to an invariant measure of the dynamical system then this measure is called
stochastically stable (zero-noise limit or Kolmogorov) measure. However such
measures may not exist (e.g., if a dynamical system has attractors with riddled
basins). Another measures singled out in [58] are called Sinai-Ruelle-Bowen
(or SRB) measures. SRB-measures are usually defined for sufficiently smooth
hyperbolic dynamical systems (e.g., C2 diffeomorphisms f) and are charac-
terized by following two properties

(i) f has a positive Lyapunov exponent almost everywhere with respect to a
measure µ and

(ii) µ has absolutely continuous conditional measures on unstable manifolds.
For uniformly hyperbolic (Anosov, axiom A, etc.) systems the zero-noise
limit and SRB measures coincide.

Both these classes of measures belong to more general class of physical
measures [58]. A measure µ is called a physical measure for a dynamical system
f : X → X if there exists a positive Lebesgue measure set A ⊂ X such that
for any continuous function φ : X → R
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1
n

n−1∑

i=0

φ(f ix) −→
n→∞

∫

φdµ (7)

for every x ∈ A. The term “physical” suggests that such measures should
be “observable” in physical experiments. It is not quite clear yet whether a
set of positive Lebesgue measure in fact ensures a ‘physical’ observability,
but certainly the notion of physical measures is very reasonable and widely
accepted.

We will follow here a slightly more general approach suggested in [44]
where instead of the dynamics of observables one deals with the dynamics
of measures. Let (X, ρ) be a compact metric space with a certain reference
measure m on it. Often m is taken as Lebesgue measure but it can be another
measure as well. The dynamics on X is defined by a nonsingular, with respect
to the measure m, map T (i.e., m(T−1A) = 0 whenever m(A) = 0). Consider
the space M(X) of probabilistic measures on X equipped with the topology
of weak convergence. The induced map T ∗ : M(X) → M(X) is defined as
T ∗µ(A) = µ(T−1A) for any µ ∈M(X) and any Borel set A ⊆ X.

A measure µT is called a natural measure for the map T if there exists
an open subset U ⊂ X such that for every µ ∈ M(X) absolutely continuous
with respect to the reference measure m and having its support in U

1
n

n−1∑

k=0

T ∗kµ −→
n→∞µT . (8)

The relation (8) means that µT is a stable fixed point of the dynamics
of absolutely continuous (initial) measures. The set U is called the basin of
attraction for the measure µT . (A similar definition has been used in [41, 59].)

A dynamical system can have several natural measures. Indeed, a natural
measure is just an attractor of the action of T in the space of measures on
X. One of the advantages of this definition of a natural measure is that it
can be equally applied to random systems (Markov chains) as well. Indeed,
let T ∗ be the transfer operator of a Markov chain with the phase space X.
Then T ∗ generates the dynamics of measures on M(X). In other words, it is
a conjugate operator to the transition matrix of this Markov chain.

The next definition of a sample measure is quite similar to the definition
of a physical measure. The only difference that we now consider pathwise
convergence of sample measures, rather than convergence of orbits of the
induced map. A sample measure µp

T (where p stands for “point”) is a common
limit (as n→∞) of 1

n

∑n
k=1 δT nx for almost all points x ∈ U , where δx stands

for the Dirac measure at the point x.
Both these definitions are based on Gibbs’ idea of construction of sta-

tionary measures, and are closely related to the Bogoliubov-Krylov approach
in the theory of dynamical systems. In the literature these two (natural and
sample) measures are often identified. However, as we will see the relations
between these measures can be nontrivial.
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SRB measures for a dynamical system T : X → X are denoted by µc
T

(where c stands for “conditional”). The following statement establishes rela-
tions between µT , µp

T , and µc
T .

Theorem 4.1. [44]

(a) If µp
T exists, then µT is also well defined and µT = µp

T .
(b) If µT is absolutely continuous with respect to the reference measure m,

invariant and ergodic then µp
T is well defined and µp

T = µT ; however,
without ergodicity this might not hold.

(c) If µc
T is stable with respect to the dynamics of absolutely continuous (ini-

tial) measures then µT = µc
T .

(d) The existence of µT or µp
T does not imply the existence of µc

T .

For the proof of this theorem see [44]. We just consider here some instruc-
tive examples.

It is somewhat surprising that even if the sample measure µp
T exists and

is unique it might be non-ergodic, which is illustrated by the map

Tx =

{(
1− sin

(
πx− π

2

))
/2 if 0 < x < 1

x if x = 0 or x = 1 .
(9)

The locally maximal attractor for this map consists of two fixed points 0 and
1. For any (initial) point x ∈ (0, 1)

1
n

n−1∑

k=1

δT nx −→
1
2

(δ0 + δ1) = µp
T . (10)

However, this µp
T is obviously non-ergodic. Analogously, the images under

the dynamics of any absolutely continuous probabilistic measure converge to
µT = 1

2 (δ0 + δ1). So, µT is also non-ergodic and µT = µp
T .

The condition in (b) that µT must be invariant may seem to be redun-
dant. In fact, it is not needed if the map T is continuous. However, for a
general nonsingular map µT might not be invariant. Consider, for instance,
the following map T : [0, 1] → [0, 1]

Tx =

{
x/2 if 0 < x ≤ 1
1 if x = 0.

(11)

It is easy to see that any probabilistic measure on [0, 1] converges under the
action of the induced map T ∗ to the δ-measure at 0. However, T has no
invariant measure.

The statement that the natural measure might not coincide with the sam-
ple measure µp

T may look suspicious. To realize that it can nevertheless hap-
pen, consider the following map [60]
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Tx =






x+ 4x3 if 0 ≤ x <
1
2

x− 4(1− x)3 if
1
2
≤ x ≤ 1 .

(12)

This map has two neutral fixed points at 0 and 1. For any probabilistic
absolutely continuous measure µ the sequence Tn∗µ weakly converges to
µT = 1

2 (δ0 + δ1) as n→∞ [61], which is non-ergodic (as for the map (9)).
Let IA(x) be the indicator function of the set A, i.e., IA(x) = 1 if x ∈ A

and 0 otherwise. It has been shown [60] that for any sufficiently small δ > 0
and for almost every point x ∈ [0, 1] (with respect to Lebesgue measure)
lim supn→∞

1
n

∑n−1
k=0 I[0,δ](T kx) = 1 and lim infn→∞ 1

n

∑n−1
k=0 I[0,δ](T kx) = 0.

Therefore, a sample measure µp
T does not exist. Thus the existence of a natural

measure does not even ensure that µp
T exists.

A contracting map with a single globally attracting fixed point has δ-
measure at this point and this is the unique invariant measure. Obviously
both µT and µp

T coincide with this measure, while the measure µc
T does not

exist in this case. (Sometimes people argue that µc
T for this map still exists

because a (nonexisting!) unstable manifold of the globally attracting fixed
point can be viewed as an empty set, and therefore δ-measure at this point
can be viewed as an absolutely continuous one on this empty set. I believe
that such a formal approach is just not much useful but rather harmful. For
instance, it implies that this (the most stable) dynamical system is mixing,
i.e., strongly chaotic, and thus claims that there is no difference whatsoever
between regular and chaotic dynamics.)

The assumption in (b) that the natural measure µT is absolutely contin-
uous is rather restrictive. It holds however for some important classes of dy-
namical systems, e.g., for maps satisfying the Collet-Eckmann condition and
for piecewise expanding maps. Actually the conditions in (b) cannot be made
essentially weaker, which is illustrated e.g., by the example of an expansive
homeomorphism satisfying the specification property [62].

Another remark is that an SRB measure may exist but be not finite.
It happens already for the closest to uniformly hyperbolic systems almost
Anosov diffeomorphisms, i.e., for diffeomorphisms which are uniformly hyper-
bolic everywhere besides in a finite number of points. Similar results hold for
one-dimensional locally expanding maps with some neutral points (see e.g.,
[12] and references therein).

Finally, it is worthwhile to mention recent surveys concerning SRB and
physical measures [63, 64].

5 Phase Transitions in Multicomponent Dynamical
Systems

The notion of a natural measure is well defined for MDS with a finite number
of (local) components, i.e., N <∞. Indeed, in this case (XN , ρN ,mN ) is also
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a finite-dimensional metric space with a certain reference measure. Therefore
one can apply and use for MDS with a finite number of components all the
already discussed definitions and results.

One of the problems for MDS with an infinite number of components is
that any probabilistic measure absolutely continuous with respect to mN must
coincide with it. Therefore, for infinite-dimensional multicomponent dynami-
cal systems, one needs to use another approach to initial measures.

Let L ⊆ N be a subset of the set of indices N . Denote by π∗
L : M(XN ) →

M(XL) the projection operator in the space of probabilistic measures defined
as π∗

Lµ =
∫
µd(⊗i∈(N\L)mi) for any measure µ ∈ M(XN ). Since there is a

natural embedding of spaces M(XL) into M(XN ) one can choose a family
of distances dist = distL on these spaces such that

dist(π∗
Lµ, µ) −→

|L|→|N|
0 (13)

for every µ ∈M(XN ).
We call a measure µ ∈ M(XN ) smooth if its marginals µi = π(i)µ are

absolutely continuous with respect to the reference measures mi for any i ∈
N . We define an infinite-dimensional generalization of the natural measure
µT as a common limit of Cesaro means (1/n)

∑n−1
k=0(T (N )∗)nµ of all smooth

measures µ ∈ M(XN ) supported on a direct product ⊗i∈NUi of some open
sets Ui ⊆ Xi, i ∈ N . The set ⊗i∈NUi plays the role of the basin of attraction
for µT .

Consider a family of multicomponent dynamical systems (Tγ ,X) depend-
ing on some parameter γ. We say that this family has a phase transition at
γ = γc if the number of natural measures changes when the parameter γ
crosses the value γc that is called a critical parameter value.

Observe that this may happen in two different ways. Let for γ < γc every
finite-dimensional approximation (T (L)

γ ,XL) has a finite numberNγ of natural
measures µγ

L and Nγ does not depend on L. Assume also that any natural
measure µγ

N of the complete system is a (weak) limit of measures µγ
L. Then a

phase transition occurs if all finite dimensional dynamical systems (T (L)
γ ,XL)

(where |L| is large enough) i.e., “close” to |N |) have a phase transition as γ
crosses the value γc, i.e., a number Nγ changes at γc, and the same happens
in the complete system.

However, (in the infinite-dimensional case only, i.e., when |N | = ∞) there
is also another scenario. Namely, finite-dimensional approximations (subsys-
tems) may not demonstrate any phase transition, but their limit points either
are not natural measures of T (N )

γ at the value γc, or new natural measure(s)
of the complete systems appear which are not limit points of natural measures
of finite-dimensional subsystems.

Many authors assume that only the second scenario can be called a phase
transition in MDS in analogy with the approach of the equilibrium statistical
mechanics. We rather believe that this point of view is too restrictive because



26 L.A. Bunimovich

the MDS form much richer class than the systems of statistical mechanics.
Indeed, as has already been noted, individual subsystems (‘particles’) in sta-
tistical mechanics in the absence of interactions with another subsystems have
a simple dynamics, while in MDS such dynamics can be very complex.

With a slight abuse of notations, we denote by T (L) a |L|-dimensional
approximation of the infinite-dimensional map T (N ) for a given subset L ⊂ N
of the set of indices. To define such an approximation explicitly one needs to
specify boundary conditions, i.e., we have to choose the states of the local
systems in the remaining infinite-dimensional part of the phase space.

It can be done in various ways. The most common ones are the fixed
boundary conditions, where the coordinates of the vector (x̄)j for j ∈ (N\L),
do not change in time, and periodic boundary conditions, where L is a finite
set of consecutive integers.

The following simple example [44] shows that a choice of the boundary
conditions can change even very rough characteristics of the dynamics. Let
Xi = [0, 1], and Tix ≡ Tx := x − ax(x − 1)2, 0 < a < 1 for all i ∈ N = Z

1,
and Iε is the diffusive nearest-neighbors interactions. For a given subset of
indices L denote by I(L,y)

ε the finite-dimensional approximation of the in-
teraction map with the boundary conditions fixed at the value y for all co-
ordinates in N\L. Then for each value of the amplitude ε, 0 ≤ ε ≤ 1, of
spatial interactions the multicomponent system (I(L,0)

ε TL, [0, 1]L) has only
one attractor (and thus only one ergodic natural measure). On the contrary,
if 0 < ε < 3a/(8 + 2a) a number of attractors of the system (I(L,1)

ε TL, [0, 1]L)
varies between 2 and 2|L| (depending upon the structure of the set L). How-
ever, this multicomponent system has only one attractor in case of periodic
boundary conditions. The corresponding proofs can be found in [44].

We will be mainly concerned with the situation when for each finite subset
of L of indices and for a certain choice of boundary conditions the correspond-
ing finite-dimensional approximations T (L) have only one natural measure,
while the entire system has several natural measures. In the statistical me-
chanics there are numerous examples of multi-particles systems with such
behavior. An important example is provided by Toom’s voter model (6). In
this PCA there is one natural measure for δ > δc but two natural measures
(supported on configurations with predominantly +1s or −1s respectively) for
δ < δc. Recall that in this model each local component can be in two states
(+1 or −1), and the time evolution is govern by random “interactions” of
local components, i.e., a future state of the local subsystem is determined by
the present state of a certain subset of its neighbors with a random error.
Therefore, according to our approach (definition) this model is not a multi-
component dynamical system.

A deterministic version of this model has been constructed in [43], where
the randomness of interactions in Toom’s model has been substituted by a col-
lection of operators of local interactions for each local subsystem. A choice of
a particular operator of local interactions is determined by the symbolic states
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(rather than by exact values of local variables) in the same set of neighbors
as in the Toom’s PCA.

Observe that the procedure described in the Sect. 3 allows to construct a
deterministic one-dimensional Markov map corresponding to a PCA. In fact,
the construction in [43] basically follows the same idea. However, the resulting
system is, of course, again equivalent to PCA and, in fact, have a trivial local
dynamics. Indeed, the resulting spatial interaction is just a choice of one of
several given maps. The result of this choice depends on states of neighboring
elements. Thus such choice is, in fact, a random trial although formulated
in different terms. The construction in Sect. 3 shows how such a translation
from the probabilistic language to a (pseudo) dynamical one can be done in
a general setting. In the heart of any such translation is a substitution of
uncertainty of an outcome of a random trial by uncertainty of a local state
when, instead of an explicit value (number) such state is labelled by a set (an
element of some partition).

I believe that the MDS form a richer class of systems than the lattice
models of statistical mechanics, and therefore one should adopt a more general
approach to the phenomenon of phase transitions in these systems than the
one of statistical mechanics. Especially phase transitions (i.e., changes in a
number of natural measures) in MDS with a finite number of components
are of interest if one considers parameters of spatial interactions (rather than
internal parameters of the dynamics of (local) components).

Observe that it is not a problem of perturbation theory because we are
interested in the regimes of dynamics which are different from the dynamics
of noninteracting local systems (components). So it is a more sophisticated
problem. Some such scenarios has been found (see e.g., [65, 66]). Especially
the one discussed in [65] seems to be quite robust and rather general. However
much more work should be done in this area.

It is confirmed formally [38] that the idea of phase transition [13, 17] lead-
ing to a more organized spatio-temporal dynamics works (if one adopts a
general approach to phase transitions in MDS). It is tempting, however, to
demonstrate that in MDS there are phase transitions similar to the ones in
lattice models of statistical mechanics, especially in the Ising model. A hunt
for an Ising type phase transition in CML started with the influential paper
by Miller and Huse [36] where they showed numerically such phase transi-
tion in Z

2 with nearest-neighbors diffusive interaction of piecewise linear an-
tisymmetric one-dimensional maps. One of interesting questions in this area
is whether Ising-type phase transitions can occur in one-dimensional CML. It
is a well known result in statistical mechanics that there are no phase tran-
sitions on Z

1. However, in CML on Z
1 due to nontrivial dynamics of local

maps there is another (second) dimension generated by time shifts (dynam-
ics). There are some promising numerical results in this respect for CML on
Z

1 with modified Miller-Huse local maps [37, 45]. An interesting observation
made in these studies is that a critical point corresponds to a minimum (with
respect to the amplitude of interactions) of the Lyapunov dimension [67] in
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the corresponding CML. Therefore the phase transition occurs at the point
where these CML become the “most organized.”

We conclude this section with the formulation of several conditions which
ensure that phase transitions in a MDS cannot occur.

Theorem 5.1. [44] Suppose that for any finite subset L ⊂ N there exists
only one natural measure of the induced map T (L)∗ := πLT (N )∗πL, and there
exist functions φ, ψ : R

1 → R
1 and a constant C <∞ such that for any two

smooth measures µ, ν ∈ M(XN ) and for any two finite subsets L ⊂ L′ ⊂ N
the following conditions hold

dist(T (L)∗µ, T (L)∗ν) < Cdist(µ, ν) (14)

dist(T (L)∗µ, π∗
LT (L′)∗µ) < ψ(|L|) −→

|L|→∞
0 (15)

uniformly in µ,
dist(T (L)∗n

µ, µL) < φ(n) −→
|L|→∞

0 (16)

uniformly in µ,L. Assume also that

dist(T (L)∗µ, T (N )∗µ) −→
|L|→|N|

0 (17)

for any µ ∈M(XN ).
Then the multicomponent dynamical system (T (N ),XN ) has only one natural
measure.

Observe that in this theorem we do not assume that the dynamics is
decomposable into a local dynamics and (spatial) interactions. Therefore the
local components (subsystems) in the MDS may be non-identical. If we make
such assumption than a simpler version of theorem can be formulated.

Theorem 5.2. [44] Let Xi ≡ X, Ti ≡ T for all i ∈ N , and the map T
is nonsingular with respect to the reference measure mi ≡ m. Suppose also
that the interaction I is local, i.e., the value (Ix̄)i depends only upon a finite
number of “neighboring” components of xi in the vector x̄. Then the statement
of Theorem 5.1 remains valid if we preserve the assumption (16), drop (17)
and instead of (14) and (15) use weaker assumptions

dist(I∗µ, I∗ν) < const dist(µ, ν) (18)

dist(I(L)∗µ, π∗
LI(L′)∗µ) < ψ(|L|) −→

|L|→∞
0 (19)

for any L′ ⊃ L and µ, ν ∈M(XN ).

So far the uniqueness of natural measures in the limit when the system’s
size goes to infinity has been proved for several classes of (local) chaotic maps
in the region of weak spatial interactions [13, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31]. It remains to be seen though whether or not it is the only
region where MDS do not have phase transitions.
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Concluding Remarks

Coupled Map Lattices proved to be an exciting and interesting object to
study, which influenced development of the entire area of dynamics of infinite-
dimensional and, especially, spatially extended systems. In particular it al-
lowed to make exact some crucial but somewhat vague notions as space time
chaos, intermittency and coherent structures. The first successes of the theory
of CML generated high expectations about their applications for real systems.
However, it did not happen despite many efforts.

A mathematical theory of CML, on the other hand, became a respected
part of the general theory of dynamical systems. A major challenge now is to
apply the new notions, ideas and approaches developed in the theory of CML
to the real systems where identity (or almost identity) of the components
does not hold (as e.g., in the synchronization theory). The infinite dimension
(number of components) is also a rather artificial condition. It is our opinion
that the crucial question “what (spatial) interactions can do to dynamics of
local (noninteracting) systems” remains widely open. To address this the most
important problem one must move out of the region of weak interactions.
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Coupled map lattices are a paradigm for studying fundamental questions in
spatially extended dynamical systems. Within this tutorial we focus on qual-
itative changes of the motion which are intimately related with the limit of
large system size. Similar to equilibrium phase transitions, such qualitative
changes are an ubiquitous feature of dynamical systems with a large num-
ber of degrees of freedom. Within the first section of this chapter we present
an overview and some phenomenological facts of phase transitions in coupled
map lattices. The following two sections describe in some details analytical
tools which are useful for understanding phase transition behaviour in dynam-
ical systems beyond plain numerical simulations. In Sect. 2 we explain how
coupled map lattices are linked with the canonical equilibrium physics of spin
systems when techniques of symbolic dynamics are applied. Using a simple
model we explain how coupled map lattices are linked with phase transitions
in equilibrium spin models. In the third section we describe an alternative ap-
proach in terms of kinetic spin models linking the dynamics of coupled map
lattices with equilibrium and nonequilibrium statistical mechanics. We keep
our presentation throughout this tutorial entirely elementary and confine the
presentation to some basic concepts which are useful for tackling the analysis
of phase transitions in extended dynamical systems.

1 Introduction and Overview

The dynamics of spatially extended dynamical systems is a long standing issue
in theoretical physics and applied mathematical sciences. Prominent examples
with strong emphasis on experimental aspects concern pattern formation out
of equilibrium [1]. Due to the boost in the understanding of low-dimensional
chaotic motion during the last two decades the emphasis has shifted recently
towards the investigation of spatio–temporal dynamics. Unfortunately most
of the underlying physical equations of motion like Navier–Stokes or Maxwell–
Bloch equations are far too complex for analysing fundamental features
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beyond straightforward numerical simulations. Since time discrete models
have proven to be fruitful in understanding low-dimensional chaos, coupled
maps have become a paradigm for the investigation of space-time chaos [2, 3].
While the derivation of time discrete models may be based in principle on
Poincaré cross sections such an approach does not apply for models with a
spatially continuous variable, i.e. partial differential equations. Thus there
still does not exist a satisfactory derivation of coupled map lattices from first
principles1.

Qualitative changes of the dynamical behaviour, i.e. topological changes of
the phase space portrait are important and universal features. These changes
are called bifurcations [4]. In spatially extended dynamical systems an ad-
ditional mechanism may cause changes of the motion if the limit of a large
number of degrees of freedom is considered. Such transitions share common
aspects with equilibrium phase transitions in thermodynamic systems. In any
finite canonical equilibrium ensemble the partition sum depends analytically
on the parameters, e.g. the temperature. Non–analytic behaviour, i.e. qualita-
tive changes may arise when the limit of infinite system size is considered. In
fact, an approximate formal description of such equilibrium phase transitions
in terms of a simple Ginzburg-Landau theory results in an order parameter
equation which displays plain bifurcations (e.g. a pitchfork bifurcation for a
homogeneous Ising system). Thus it became to some extent popular to term
any type of bifurcation a phase transition (cf. e.g. [5]). Here we pursue a dif-
ferent nomenclature. While bifurcations may occur in any type of dynamical
system, regardless of the number of degrees of freedom, there are changes of
the dynamics which are absent in any finite size system and which occur only
if the limit of infinite system size is considered2. In accordance with equi-
librium thermodynamics we will call such qualitative changes (proper) phase
transitions in order to distinguish these features from plain bifurcations. A
formal definition of such a concept may become cumbersome (cf. [6]) and we
refrain from giving a mathematical account. However, if one wants to study
such aspects from a theoretical perspective the investigation of coupled map
lattices is quite useful.

Coupled map lattices are spatio–temporal discrete dynamical systems.
Consider a lattice, e.g. a spatially one-dimensional array of sites ν ∈ {0, 1, . . . ,
L−1}. On each lattice site consider a continuous variable taken e.g. from
an interval x(ν) ∈ I. Then the state of the system is determined by an L-
dimensional vector x = (x(0), . . . , x(L−1)). As for the dynamics on each lattice
site a map f : I → I acts on the corresponding component and the value at
1 Sometimes one claims that numerical integration schemes for partial differential

equations yield coupled map lattices. We find such an argument superficial. While
integration schemes employ a small spacing between grid points, the lattice con-
stant of coupled map lattices is usually large compared with the observed spatial
structures. Thus both schemes focus on different asymptotic regimes.

2 That means the long time limit and the limit of infinite system size do not com-
mute.
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time n+ 1 is determined from the state at time n ∈ N0 through the action of
the map f and a coupling between neighbouring sites, e.g.

x
(ν)
n+1 = (1− ε)f

(
x(ν)

n

)
+
ε

2

[
f
(
x(ν−1)

n

)
+ f

(
x(ν+1)

n

)]
(1a)

= Φε

[
f
(
x(ν)

n

)
, f

(
x(ν+1)

n

)
, f

(
x(ν−1)

n

)
, . . .

]
(1b)

= (Tε(xn))(ν)
. (1c)

The coupling shown in (1a) is usually called diffusive coupling. There is no
special reason for this choice apart from its simplicity and the hope that
numerical features are independent from the particular form of the coupling
(cf. [7] for a phenomenological analysis of particular models). The parameter
ε ∈ [0, 1] indicates the strength of the coupling. The factor (1−ε) is introduced
for convenience as it ensures that the dynamics of the coupled map lattice (1a)
is confined to the phase space IL. Equation (1a) clearly indicates that coupled
map lattices may be considered as the composition of two actions, namely the
action of the single site map f on each lattice site and a coupling function
Φε : IL → I mediating the interaction as indicated in (1b). Such a formulation
also indicates that coupling functions are of course not limited to the case of
a diffusive (i.e. nearest neighbour) coupling and that quite different choices
are possible. Finally, on an even more abstract level one may consider coupled
map lattices just as dynamical systems acting on the phase space IL, where
the L-dimensional map Tε depends on a coupling parameter in such a way that
the choice ε = 0 yields for each component the action of the single site map
f (cf. (1c)). Which type of formulation is preferred depends on the particular
context. In some cases (e.g. when (1a) or (1b) are used) one needs in addition
the specification of boundary conditions when starting the investigation for
finite lattice size. Throughout our exposition we will use periodic boundary
conditions x(ν) = x(ν+L) since they are quite easy to handle. However, to the
best of our knowledge no systematic investigation of the influence of boundary
conditions is available in the literature.

The formulation of coupled map lattices in terms of (1b) or (1c) is quite
flexible. Generalisations to spatial lattices of dimension larger than one are ob-
vious, by taking the spatial index ν to enumerate the lattice sites and choosing
appropriate coupling functions Φε. There is no need to restrict the dynamical
variables x(ν) to intervals and to confine the full phase space to simple cubes
IL. It is even possible to start from the very beginning with a system on infi-
nite lattices e.g. by considering ν ∈ Z. Such an approach, usually used in the
mathematical context [6, 8, 9, 10, 11] is advantageous for performing rigor-
ous proofs, although it calls for a careful definition of the dynamical system.
Our strategy avoids these technicalities and starts from systems of finite size.
The limit L → ∞ will be considered when dynamical quantities have been
computed. Thus our approach adopts a physicist’s point of view of equilib-
rium phase transitions. In addition starting with a system of large but finite
size directly refers to numerical simulations of space-time chaotic dynamics.
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Finally the formulation in terms of (1b) or (1c) emphasises the role of differ-
ent symmetries in the dynamical systems. Translation invariance is the most
prominent one and we restrict our analysis to the translation invariant case.
The study of dynamical systems with broken translation invariance, e.g. ran-
dom coupled maps, is a science in its own (cf. e.g. [12] and references therein
for aspects linking dynamical systems with glass transitions) and is still at its
infancy.

Phase transitions in coupled map lattices are intimately linked with the
limit of large system size. The effect of the system size on the dynamics can
be demonstrated in terms of numerical simulations. A particularly simple
example is given by dynamical systems with global coupling, i.e. when the
coupling preserves permutation symmetry. A corresponding coupling function
reads

Φε

[
x(ν), x(ν+1), x(ν−1), . . .

]
= x(ν) +

ε

L

L−1∑

µ=0

g
(
x(µ) − x(ν)

)
(2)

where the analytical form of the interaction g(x) depends on the particular
model. The apparent simplicity of globally coupled models makes this class
attractive for the investigation of fundamental properties of chaotic dynami-
cal systems in the limit of large system size [13]. In fact, globally interacting
chaotic maps may display nontrivial correlations even for weak interaction
[14], provided the single site map f is structurally unstable [15, 16, 17, 18].
The aspect which concerns us most is the appearance of a phenomenon in
strongly coupled models [19] which mimics a phase transition like behaviour.
When one considers (structurally stable) chaotic single site maps the weak
coupling regime is governed by a “space-time chaotic” state, i.e. a regime
where the dynamics at different sites is uncorrelated. At a critical coupling
strength εc, which depends on the particular choice of the single site map and
the interaction function, the synchronised solution, i.e. the state x(ν)

n = x
(µ)
n

for all µ and ν, becomes linearly stable. That transition takes place in any
system of finite size L and is just a plain bifurcation. The former “space-time
chaotic” state remains as a chaotic saddle yielding a “space-time chaotic”
transient dynamics. Such a scenario is in full accordance with features known
from low dimensional chaotic systems. But the transient times increase when
the system size is increased (cf. Fig. 1 for an example of globally coupled
Bernoulli maps). The observed exponential dependence of the mean transient
time on the system size, Tε,L � exp(αεL), may be understood in terms of a
very simple geometric argument [20]. The synchronised solution x

(ν)
n = x

(µ)
n

denotes the diagonal in the phase space IL. For strong coupling ε > εc this
state is linearly stable and possesses a trapping region such that the dynamics
tends towards the synchronised solution once the trapping region is entered3.
3 In formal terms the trapping region may be defined to be a simply connected

open subset of the basin of attraction which contains the synchronised solution.
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Fig. 1. Dependence of the inverse of the mean transient time (the relaxation rate) on
the system size in a globally coupled map lattice for different values of the coupling
strength. Confer [19] for further details of the model

From linear stability considerations the trapping region may be estimated
by a cylinder with diameter d aligned along the diagonal in phase space. Its
volume is estimated by DdL−1 where D denotes the size of the domain I of
the single site map f . In the phase space IL there still exists the “space-time
chaotic” saddle causing the chaotic transient dynamics. Assuming some de-
gree of mixing a simple argument tells us that the probability for a typical
initial condition to hit the trapping region is given by the volume ratio of
the trapping region and the full phase space, DdL−1/DL. This crude argu-
ment predicts the transient dynamics to be a Poisson process with probability
(d/D)L−1, i.e. with a time scale being given by T � (D/d)L (cf. e.g. [19] for
some numerical confirmation). Thus exponentially long transients may be ex-
plained in terms of simple geometric features, and such arguments may be
applied quite generally at least on a phenomenological level. It is just such
a property of the transient dynamics which is characteristic for phase tran-
sitions. Whereas no stable “nontrivial” dynamics persists in any system of
finite size, since finally the synchronised solution is reached, the dynamics
stays to be chaotic if systems of large size are considered. Even in models
of moderate size L any simulation cannot overcome the transient regime of
length T � exp(αεL). Thus to capture the relevant dynamics in terms of sta-
tionary states one has to consider first the limit of large system size and then
the asymptotic limit of large time scales. Such a property is quite well known
from equilibrium phase transitions4. Thus supertransients are an important
indicator for the occurrence of phase transitions in spatio–temporal dynamics.
4 One should however keep in mind that these arguments have to be considered

with caution. There are types of transient behaviour, e.g. in diffusive systems,
where time scales increase with system size as well, e.g. T � L2. That however
usually does not cause phase transitions (cf. e.g. [21]). Thus the simple argument
cannot replace a careful formal definition of phase transitions.
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Fig. 2. Single site map of the Miller–Huse model. The inset shows a typical snap-
shot of pattern appearing in a spatially two-dimensional nearest neighbour coupled
Miller–Huse model (black/white pixels encode the sign of the single site variable
x(ν)). Confer [22] for further details of the model

A second class of quite popular examples of coupled map lattices displaying
phase transitions are given by spatially two-dimensional coupled systems. The
model introduced by Miller and Huse [22] is based on single site maps f of a
double tent with an inversion symmetry (cf. Fig. 2). The single site dynamics
is chaotic and develops random jumps for the sign σ(ν) = sign(x(ν)) of the
single site variable x(ν). Thus such a type of motion can be considered as a kind
of random spin dynamics, a so called kinetic spin model. Placing the maps
on the sites of a two-dimensional square lattice and introducing a nearest
neighbour coupling a phase transition appears which shares some common
features with the two-dimensional equilibrium Ising model (cf. [23] for the
original idea). In fact, numerical simulations of large systems display such a
characteristic in a strong coupling regime. But a careful numerical analysis
of the critical behaviour shows that naive universality arguments cannot be
applied straightforwardly, i.e. the coupled map lattice inherits some hidden
long range correlations yielding deviations from the Ising universality class
[24, 25]. The description of coupled map lattices in terms of kinetic spin models
on some coarse grained level looks promising and we will exploit the analytical
structure of such approaches in detail in Sect. 3.

These two examples indicate what kind of feature one may expect when
dealing with phase transitions in coupled map lattices. But solely on numerical
grounds it seems difficult to judge whether a particular qualitative change of
the dynamics is really related to the limit of infinite system size or whether
the phenomenon is just caused by plain bifurcations (cf. e.g. the results in [3]).
Therefore phase transitions in coupled map lattices call for formal analytical
approaches although one might be forced to restrict the analysis to special
model systems.
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Already the seemingly simple case of weakly coupled maps poses a con-
siderable challenge. When chaotic single site maps f are considered a naive
view suggests that the weakly coupled system ε� 1 behaves to some extent
like the uncoupled map, e.g. that spatio–temporal correlations decay expo-
nentially and that the statistics of coordinates x(ν) can be described by some
distribution function. But the real proof of such conjectures is far from triv-
ial and requires several technical assumptions concerning the map and the
coupling (cf. e.g. [8, 9, 10, 11] for the analysis of various cases). In order to
tackle such a problem one assigns symbols lattices to each spatio–temporal
pattern. One dimension of the symbol lattice corresponds to the temporal
evolution in the dynamical system whereas the other dimensions of the sym-
bol lattice take the spatial extension of the dynamical system into account.
Such approaches, called symbolic dynamics in a proper sense, are quite fruit-
ful in linking the ergodic properties of dynamical systems to the statistics
of symbol patterns, i.e. to the statistical mechanics of spin systems. In fact,
such concepts have been developed in the context of low-dimensional chaos
where the corresponding symbolic dynamics yields the statistical mechanics of
symbol chains, i.e. one-dimensional spin systems. Then qualitative changes of
the dynamics, i.e. bifurcations are reflected by equilibrium phase transitions
caused by long range interactions (cf. e.g. [26] for the treatment of intermittent
motion). We will consider the essence of such approaches in Sect. 2 using a
simple example, so that most of the intricate technical difficulties which enter
a more general discussion are avoided. Summarising these ideas, the dynamics
of a d-dimensional coupled map lattice is mapped to the equilibrium statis-
tical mechanics of a d + 1 dimensional spin system. With certain technical
assumptions one can show that the case of weakly coupled maps corresponds
to the high–temperature phase of the spin system, so that all correlations,
i.e. the spatio–temporal correlations in the map lattice, decay exponentially
and the invariant measure is unique even in the limit of infinite system size.
Increasing the coupling, i.e. decreasing the temperature in the associated spin
system, may cause phase transitions when the limit of infinite system size is
considered. Thus long range spatio–temporal correlations develop and the dy-
namical system possesses different ergodic components. One should however
keep in mind that this type of approach targets at the limit of infinite system
size. The structure of the dynamical system, e.g. the symbolic dynamics must
be simple in order to apply the technique.

An alternative approach to deal with phase transitions in dynamical sys-
tems keeps the time as a dynamical variable and performs a coarse grained
description with respect to the phase space variables only (cf. the discussion
of the Miller–Huse model in the previous paragraphs). Based on partitions
in phase space, e.g. by assigning at each time n symbols σ(ν)

n according to
the sign of x(ν)

n , one obtains a probabilistic model in the symbolic description
where the transitions rates between different symbol states are determined by
the underlying deterministic dynamics. In such a way one obtains descriptions
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where on the level of the symbols a time evolution still exists, i.e. a kinetic
Ising model or more general a probabilistic cellular automata. Such an idea
can be worked out on a quite general level and may be applied to a variety
of dynamical systems [27, 28]. But the focus here is on studying coupled map
lattices. Application of such a program requires the knowledge of the temporal
evolution of the phase space density. Thus one mostly deals with piecewise
linear systems where the phase space densities are piecewise constant (cf. e.g.
[29] for an investigation of one-dimensional maps or [16, 30] for the treatment
of the mean field description of globally coupled maps). Using this property
the just mentioned program can be performed explicitly and the dynamics of
coupled map lattices may be studied beyond the weak coupling limit [6, 23].
The occurrence of phase transitions in short ranged coupled models seems to
require an underlying spatially two-dimensional coupled map lattice in accor-
dance with common wisdom of equilibrium statistical physics. We are devoting
Sect. 3 for a more detailed discussion of such fruitful concepts.

There still does not exist a concise picture of phase transitions in spatially
extended dynamical systems. At least coupled map lattices are a promising
model class to study such a fundamental property. In what follows we will
present methods and examples to cope with such a challenge.

2 Symbolic Dynamics of Coupled Maps

Symbolic dynamics is a tool to investigate the temporal evolution in terms
of statistical properties of symbol arrays. Using a suitable partition of the
phase space each initial condition generates an array of symbols according
to the itinerary of the phase space point. Thus the dynamics is mapped to
a symbol lattice where the time is translated into one spatial dimension of
the lattice. In addition properties of the dynamical system are mapped to the
equilibrium statistical mechanics of spin systems when an appropriate Hamil-
tonian is introduced. Although such approaches are nowadays contained in
undergraduate textbooks (cf. e.g. [31, 32]) we try to keep our presentation
self–contained and summarise the essential notations in Sect. 2.1. In fact we
are not presenting a general theory here but just illustrate the essential fea-
tures in terms of a simple model, a particular piecewise linear map. We will
use this concept to demonstrate in Sect. 2.2 how the dynamics of coupled
map lattices can be understood in terms of two-dimensional spin models. In
particular, a coupled map lattice will be introduced such that the dynamics
is equivalent to the nearest neighbour coupled Ising model. The nature of the
phase transition and the consequences for the dynamics of the coupled map
lattice is analysed in some detail. For our approach we rely for some tech-
nical reasons on the dynamics on invariant sets of saddle type, i.e. repellers.
Thus we will in addition recall how such dynamical systems are related with
iterated function schemes [33].
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Fig. 3. Diagrammatic view of the map (3) and (4). The partition (5) and the first
generation of cylinder sets is indicated as well

2.1 Basic Concepts for Piecewise Linear Maps

We now introduce some fundamental concepts in terms of a simple example,
namely a one-dimensional map f which is piecewise linear on an interval, say
I = [−a, a] (cf. Fig. 3). In analytical terms the map is given by

f(x) =
{
g−(x) if x < 0
g+(x) if x > 0 (3)

where the two piecewise linear branches of the map are defined by

g−(x) =
{
γ−−(x+ c) if x < −c
γ−+(x+ c) if 0 > x > −c (4a)

g+(x) =
{
γ+−(x− c) if 0 < x < c
γ++(x− c) if x > c

(4b)

for some fixed value 0 < c < a and γσσ̃ > 1. The map is sketched in Fig. 3.
By construction the map f maps points outside the interval I which are not
considered any further, i. e. leave the domain of the map5. Points which stay
in the interval I for one iteration are thus located in the two sets U− and U+

where
Uσ = g−1

σ (I), σ ∈ {−,+} . (5)

Phase space points which stay within I upon two iteration steps are contained
in one of the intervals Uσ0σ1 = g−1

σ0
(Uσ1) = g−1

σ0
(g−1

σ1
(I)) where the symbol

5 To ensure the structure depicted in Fig. 3 we suppose that the slopes of the map
obey the inequalities γ±± > a/(a − c) and γ±∓ > a/c.
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string σ0σ1 tells us the itinerary of the phase space point with respect to the
partition (5). Iterating this procedure we obtain the so called cylinder sets

Uσ0σ1...σn−1 = g−1
σ0

(Uσ1...σn−1) = {x ∈ I | fk(x) ∈ Uσk
, 0 ≤ k ≤ n− 1} . (6)

Taking “the limit” of large n one obtains the invariant set M of the map f ,
i.e. those phase space points which stay in I for an infinite number of iteration
steps

M =
⋂

n≥1




⋃

σ0...σn−1

Uσ0σ1...σn−1



 . (7)

Because of the expansiveness of the map f , |f ′(x)| > 1, the length of the
cylinder sets (6) decreases exponentially and the invariant set turns out to
be a Cantor set with nontrivial fractal dimension. Since points which are not
contained in M will leave the domain of the map our invariant set is of saddle
type, i.e. a repelling invariant set.

The labelling of cylinder sets by symbol strings σ0σ1 . . . σn−1 has nice
properties with respect to the dynamics. Just by definition (6) it follows that

f(Uσ0σ1...σn−1) = gσ0(Uσ0σ1...σn−1) = Uσ1...σn−1 (8)

and
f−1(Uσ1...σn−1) =

⋃

σ0

Uσ0σ1...σn−1 (9)

while unions of cylinder sets obey
⋃

σn

Uσ0...σn−1σn
⊆ Uσ0...σn−1 . (10)

Roughly speaking (8) tells us that the iteration of the map f corresponds
to a symbol shift of a symbol string. Fixing an (infinite) symbol sequence
(σ0, σ1, . . .) the corresponding sequence of cylinder sets Uσ0 , Uσ0σ1 , Uσ0σ1σ2 ,
. . . yields nested intervals which finally single out a unique point x(σ0,σ1,...) ∈
M , since the length of the cylinder sets decreases exponentially. In fact this
recipe yields a homeomorphism (i.e. a continuous transformation with a con-
tinuous inverse) between the invariant set M and the space of all symbol
sequences Σ = {−,+}N. Due to (8) this transformation nicely complies with
the dynamics. Introducing the symbol shift S by S : (σ0, σ1, . . .) �→ (σ1, . . .) we
obviously have f(x(σ0,σ1,...)) = xS(σ0,σ1,...). This property is usually condensed
in a commuting diagram6

6 Since we are considering repelling sets our transformation is a conjugacy. Often
such a property has to be relaxed. If one considers attracting sets then the relation
between phase space points at the boundary of the partition and symbol sequences
fails to be uniquely defined.



On Phase Transitions in Coupled Map Lattices 43

S : Σ −→ Σ
� �

f : M −→ M
. (11)

Thus the dynamics is equivalent to a symbol shift and orbits of the map f (i.e.
initial conditions on the repeller) are efficiently labelled by symbol sequences.
Our symbolic dynamics is based on the partition (5) of the phase space. Such
partitions are usually called Markov partitions since the corresponding symbol
sequences do not contain long ranged correlations between the symbols.

So far the construction has focussed on topological properties of the dy-
namics. We are now going to address the question “how frequently” a partic-
ular orbit, i.e. a symbol sequence, occurs. To be more definite we introduce
probabilities for a symbol string σ0σ1 . . . σn−1 to occur when iterating the map
f . Since the phase space points generating such a symbol string are contained
in the corresponding cylinder set (6), the probabilities may be denoted by
µ(Uσ0σ1...σn−1) where µ denotes an invariant measure. The condition of time
invariance of the probabilities requires that (cf. (9))

µ(Uσ1...σn−1) = µ(f−1(Uσ1...σn−1)) =
∑

σ0

µ(Uσ0σ1...σn−1) (12)

whereas the usual subadditivity of a measure yields (cf. (10)7)

µ(Uσ0...σn−1) =
∑

σn

µ(Uσ0...σn−1σn
) . (13)

Finally normalisation requires that

1 =
∑

σ

µ(Uσ) . (14)

Actually (12), (13), and (14) just define the invariant measure, and there are
many possible solutions of these equations. For instance if we take the ansatz

µ(Uσ0...σn−1) = hσ0σ1

pσ0σ1

α

pσ1σ2

α
· · · pσn−3σn−2

α
νσn−2σn−1 (15)

with nonnegative weights pσσ̃ ≥ 0 on the right-hand side, then the condition
of invariance (12) results in

αhσ1σ2 =
∑

σ0

hσ0σ1pσ0σ1 (16)

while the subadditivity (13) yields

ανσ0σ1 =
∑

σ2

pσ0σ1νσ1σ2 . (17)

7 Since the invariant measure is supported by M , (10) becomes an identity when
the cylinder sets are restricted to M .
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Equations (16) and (17) are nothing else but eigenvalue equations for the
4 × 4 matrix Aσσ̃,τ τ̃ = pσσ̃δσ̃τ which is usually called the transfer matrix of
the map. Actually (16) is just the celebrated Frobenius–Perron equation [34]
written with respect to a basis consisting of piecewise constant functions (cf.
e.g. [35]). Finally normalisation (14) results in

1 =
∑

σ0σ1

hσ0σ1νσ0σ1 . (18)

Thus given the weights pσσ̃ the parameters of the measure are determined8.
We have computed a whole family of invariant measures where each mea-

sure is in fact ergodic. There still remains the problem which measure de-
scribes the dynamics of “typical” initial conditions. Since we are dealing with
repelling sets, i.e. a Lebesgue typical initial condition leaves the domain of our
map after a finite number of iterations, this question deserves a more detailed
discussion. If one considers a uniform distribution of initial conditions in the
interval I then after n iteration steps the fraction

∑
σ0...σn−1

λ(Uσ0...σn−1) is
still contained in I, where λ(Uσ0...σn−1) denotes the normalised length (i.e. the
normalised Lebesgue measure) of the cylinder set. By construction (cf. (8))
the length obeys

λ(Uσ0σ...σn−1) =
1

γσ0σ1

1
γσ1σ2

· · · 1
γσn−2σn−1

λ(Uσn−1) (19)

since in each iteration step the map f expands by a factor γσσ̃. Using this
property and some standard transfer matrix argument the fraction of initial
conditions remaining in the domain of the map scales exponentially (cf. [36])

∑

σ0...σn−1

λ(Uσ0...σn−1) � αn (20)

where the (topological) escape factor α < 1 obeys the eigenvalue (15) and
(16) if the weights are identified with the inverse slopes

pσσ̃ =
1
γσσ̃

· (21)

Thus the measure (15) determined by the inverse slopes of the map is ap-
parently related with the dynamics of “typical” initial conditions. One may
pursue this argument by introducing the concept of conditional invariant mea-
sures [37]. Consider a uniform distribution of initial conditions. The fraction
µc

0(f
−1(I)) of initial conditions stays in the interval I when performing an it-

eration step where µc
0 = λ denotes the (normalised) Lebesgue measure. There-

fore µc
1(E) = µc

0(f
−1(E))/µc

0(f
−1(I)) denotes the probability that after one

8 As usual a common factor between the left and the right eigenvector remains un-
determined. However, such a fact does not influence the expression of the measure
(15).
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iteration step phase space points appear in the set E ⊆ I, provided those ini-
tial conditions leaving I are ignored. Iterating this prescription the quantity
µc

k+1(E) = µc
k(f−1(E))/µc

k(f−1(I)) yields the fraction of initial conditions,
ending up in E after k+ 1 iteration steps. Using µc

0(f
−1(I)) =

∑
σ λ(Uσ), (9)

and (19), straightforward iteration results in

µc
k+1(Uσ0...σn−1) =

∑

σ−k−1...σ−1

µc
0(Uσ−k−1...σ−1σ0...σn−1)

∑

σ−k...σ0

µc
0(Uσ−k...σ0)

=

∑

σ−k−1...σ−1

γ−1
σ−k−1σ−k

. . . γ−1
σ−1σ0

λ(Uσ0...σn−1)

∑

σ−k...σ0

γ−1
σ−kσ−k+1

. . . γ−1
σ−1σ0

λ(Uσ0)
. (22)

Standard arguments of linear algebra9 tell us that the limit

hσ0σ1 = lim
k→∞

∑

σ−k−1...σ−1

γ−1
σ−k−1σ−k

. . . γ−1
σ−1σ0

∑

σ−k...σ0

γ−1
σ−kσ−k+1

. . . γ−1
σ−1σ0

λ(Uσ0)
(23)

exists since the numerator behaves like αkhσ0σ1 and the denominator like
αk where α denotes the largest eigenvalue and hσ0σ1 the corresponding and
properly normalised eigenvector of the eigenvalue (16) with the choice (21).
Thus taking the limit k → ∞ we obtain the stationary probabilities (the so
called conditional invariant measure)

µc
∞(Uσ0...σn−1) = hσ0σ1λ(Uσ0...σn−1) . (24)

Equation (24) determines the probability distribution of phase space points
when the density is properly rescaled after each iteration step, taking the loss
of probability into account. The right-hand side tells us that such a probability
is described in terms of a density function where the density is determined
by the eigenvalue problem (16) with the special choice (21). In this sense the
invariant measure (15) subjected to the choice (21) describes the distribution
of typical initial conditions, while the adjoint eigenvalue problem (17) takes the
fractal support of the measure into account [38]. Measures which describe the
ergodic properties with respect to typical initial conditions are usually called
SRB measures. In general they are linked with the local expansion rates as
expressed by the fundamental relation (21). Henceforth we will restrict our

9 Using e.g. the previously mentioned transfer matrix Aσσ̃,ττ̃ = γ−1
σσ̃ δττ̃ (cf. (16)

and (17)), the numerator and denominator can be expressed in terms of the kth
power of this transfer matrix.
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analysis to this choice. There exists a whole multifractal industry analysing
the implications of the other cases and we refer the interested reader to the
literature [39, 40, 41].

Properties of the dynamical system, e.g. mean values and correlation func-
tions can be evaluated in terms of the invariant measure (15). If we consider
for the purpose of illustration the simplest case, i.e. a piecewise constant ob-
servable G(x) = Gσ if x ∈ Uσ, then the mean value is given by

〈G〉 =
∫

G(x) dµ =
∑

σ

Gσµ(Uσ)

=
1
n

n−1∑

k=0

∑

σ0...σn−1

Gσk
µ(Uσ0...σn−1) (25)

where for the last expression we have employed the conditions of invariance
(12) and (13)10. For the temporal correlation function one obtains in the same
way

〈G(x) G(f �(x))〉 =
∫

G(x)G(f �(x)) dµ =
∑

σ0...σ�

Gσ0Gσ�
µ(Uσ0...σ�

)

=
1
n

n−1∑

k=0

∑

σ0...σn+�−1

Gσk
Gσk+�

µ(Uσ0...σn+�−1) . (26)

Inspecting (25) and (26) the average values can be expressed as canonical
equilibrium averages of a single spin variable Gσ when one defines the spin
Hamiltonian through the statistical weight

µ(Uσ0...σn−1) = exp(−Hσ0...σn−1) . (27)

The Hamiltonian Hσ0...σn−1 defines the statistical mechanics of a spin chain
where the spatial extension corresponds to the temporal evolution of the dy-
namical system. For our model (15) and (21) the Hamiltonian reads

Hσ0...σn−1 = − lnhσ0σ1 − ln νσn−2σn−1 +
n−2∑

k=0

ln γσkσk+1 + (n− 2) lnα

�
n−1∑

k=0

(−Jσkσk+1 − hσk) + n lnα (28)

where 4J = − ln[γ++γ−−/(γ+−γ−+)], 2h = − ln[γ++/γ−−], and we use the
symbols σk as well to indicate the spin quantum number ±1. Thus apart
from boundary conditions which have been omitted in the last line of (28)

10 Actually the last expression is useful if one wants to generalise the considerations
to more complicated variables where the limit of a fine partition is really needed.
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the Hamiltonian is given by the nearest neighbour coupled Ising chain. The
exchange constant is determined by the curvature of the map, the external
field by the symmetry, and the ground state energy by the escape rate.

So far the formulation of ergodic averages in terms of canonical ensem-
bles is just a formal procedure. It does not help to compute the dynamical
properties since the invariant measure must be known a priori in order to
determine the Hamiltonian. But standard results of statistical mechanics tell
us how the mean values and the correlations depend on the parameters of the
Hamiltonian, i.e. on the parameters of the map. Such results are in particular
valid in the thermodynamic limit n→∞, i.e. in the limit of fine partitions of
the phase space. Since we have obtained a spin chain with short range inter-
actions canonical averages are analytic expressions and the correlations decay
exponentially, even if quite complicated observables G(x) are considered. Thus
we obtain that the mean value (25) depends analytically on the parameters
of the map and that the correlation (26) decays exponentially. Summarising,
by adopting a symbolic description and translating the time into a lattice
dimension dynamical properties may be reformulated within the concepts of
canonical equilibrium statistical mechanics. For expansive dynamical systems
we obtain Hamiltonians with short range interaction. No (equilibrium) phase
transitions occur and analytic dependence of the mean values on the para-
meters of the system is obtained. If expansiveness is violated then long range
interactions are caused and phase transitions may occur. A prominent exam-
ple is intermittent dynamics where the bifurcations in the dynamical system
are mapped to particular phase transitions in the corresponding equilibrium
statistical mechanics [26].

A direct numerical simulation of our model is not feasible since Lebesgue
almost all initial conditions leave the domain I. But considering the “inverse”
dynamics in terms of an iterated function scheme [33] we obtain a nice method
to generate a time series and to compute the invariant density by numerical
means. In fact such an approach just formalises the construction of the in-
variant set M , (7), by a sequence of cylinder sets. Starting with our initial
domain E0 = I the preimage E1 = f−1(E0) = ∪σg

−1
σ (E0) consists of the two

intervals (5). We may iterate such a procedure Ek+1 = ∪σg
−1
σ (Ek) so that

Ek consists of the union of cylinder sets of order k. Since our original map
is expansive the inverse branches g−1

σ are contractions and the sequence (Ek)
converges towards the (maximal) invariant set M of our dynamical system. It
is determined by the condition (cf. e.g. [33] for a nice introduction containing
the technical details)

M =
⋃

σ

g−1
σ (M) . (29)

The collection of contractions {g−1
σ } is called an iterated function scheme.

We may apply this idea to generate orbits of our dynamical system. Suppose
the symbol sequence (σ0, σ1, . . .) of an orbit is given. Then the orbit obeys
xn+1 = f(xn) = gσn

(xn). Inversion of the branch yields the reversed dynamics
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xn = g−1
σn

(xn+1). Since the inverse branches are contractions, any initial value
converges after a short transient phase towards the true orbit. Of course in
order to generate a “typical” orbit (i.e. to take a “typical” symbol sequence)
one has to formulate the concept of an invariant measure using the iterated
function scheme. By definition the invariant measure obeys

µ(E) = µ(f−1(E)) =
⋃

σ

µ(g−1
σ (E)) (30)

for any (measurable) set E. In order to generate a µ-typical symbol sequence
we consider the conditional probability that a symbol σn appears provided
that the symbols σk, k ≥ n+ 1 are given

w(σn|σn+1, σn+2, . . .) = lim
k→∞

µ(Uσnσn+1...σk
)

µ(Uσn+1...σk
)

. (31)

Choosing symbols according to these transition probabilities we generate a
µ-typical orbit through

xn = g−1
σn

(xn+1) with probability w(σn|σn+1, σn+2, . . .) (32)

where the symbols σk, k ≥ n + 1 are determined by xk. Such a type of
stochastic model yields a typical orbit on our repeller. For our particular case
(15) the transition probabilities yield a Markov chain since evaluation of (31)
results in

w(σn|σn+1, σn+2, . . .) =
hσnσn+1

hσn+1σn+2

pσnσn+1

α
(33)

and the eigenvector hσn+1σn+2 does not depend on the second symbol (cf.
(16)). The dynamical system (32) admits a skew product structure. The sto-
chastic part may be considered as a single spin flip dynamics with short term
memory. The iteration rule for the phase space point xn is then derived from
the dynamics of the symbols.

The invariant measure may be computed in terms of a histogram from a
typical trajectory. Since our dynamical system is supported by a fractal no
smooth density exist and visualisation calls for a cumulative distribution, e.g.
P<(x) = µ((−∞, x]). If one considers the simplest case, i.e. linear contrac-
tions g−1

σ , then the cumulative distribution clearly shows a devil’s staircase
like behaviour and thus reflects the Cantor set structure of the invariant set
(cf. Fig. 4). Introducing a finite external field into the corresponding statisti-
cal mechanics breaks the symmetry of the map and the invariant measure. If
we introduce a finite curvature in the branches of the map, i.e. if we take a fi-
nite nearest neighbour interaction in the statistical mechanics into account no
qualitative change occur. However, in the low temperature limit, i.e. J →∞,
a singular point is approached since the decay of equilibrium correlation func-
tions of the nearest neighbour Ising model slows down. We may study how
this behaviour is reflected by the dynamical system. There are in fact differ-
ent ways approaching the asymptotic limit, depending on the behaviour of
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Fig. 4. Cumulative distribution P<(x) of a piecewise linear model with J = 0 and
(a) h = 0, (b) h = 0.2, and (c) h = −0.2 (cf. (28)). In each case the escape factor
is chosen to be α = 0.8. The shape of the single site map f is sketched in grey
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Fig. 5. Cumulative distribution P<(x) of a piecewise linear model with h = 0 and
(a) J = 0.25, (b) J = 1.0 (cf. (28)). In each case the escape factor is chosen to be
α = 0.8. The shape of the single site map f is displayed in grey

the ground state energy, i.e. the escape factor. Figure 5 summarises some typ-
ical results. One clearly recognises that the cumulative distribution develops
a square root like singularity at the fixed points of the map, x = ±1. Thus
the invariant measure accumulates in this phase space region. The neighbour-
hood of the fixed point generates symbol sequences containing long strings of
symbols with the same sign, i.e. the fixed points corresponds to the ground
states of the Ising Hamiltonian. Furthermore since the fixed points tend to
become marginally stable in the limit J → ∞ the decay of temporal corre-
lations slows down. Thus the behaviour is a caricature of the intermittency
transition mentioned previously [26, 41]. The two pure phases correspond to
the two fixed points of the map and the invariant measure tends to localise
at the fixed points. Of course no phase transition is caused since we have
considered a degenerated limit.

In summary, low-dimensional dynamical systems have been cast into the
framework of canonical equilibrium statistical mechanics of spin chains. In this
approach the spatial coordinate of the spin system corresponds to the tem-
poral evolution of the dynamical system. Since the invariant measure defines
the spin Hamiltonian, the explicit construction of the statistical mechanics
requires the full solution of the dynamical model. One may generalise these
concepts to more complicated dynamical systems, e.g. higher dimensional ex-
panding maps [42]. The crucial step for the application of the present concept
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is the knowledge of the underlying symbolic dynamics (cf. e.g. [43]). Since our
focus is on fundamental aspects in coupled map lattices we stay with our sim-
ple model. For the statistical mechanics of general low-dimensional dynamical
systems we refer the interested reader to the literature [44].

2.2 Coupled Repeller Maps

Based on the approach sketched in Sect. 2.1 we are going to introduce a
coupled map lattice exhibiting an Ising–like phase transition. Our construc-
tion closely follows the elementary ideas of [45]. Consider a spatially one-
dimensional lattice of length L and place on each lattice site the single site
map (3). To introduce the essential notation let us first consider the trivial
case without coupling, Φε=0[x(ν), . . .] = x(ν). Then the dynamics is governed
by

x
(ν)
n+1 = (Tε=0(xn))(ν) = f

(
x(ν)

n

)
. (34)

On each lattice site a symbol σ(ν) ∈ {−,+} indicates which branch (4) of the
single site map is applied. Actually the uncoupled map (34) is not defined
on the full phase space IL since points leave the domain on iteration. The
partition (5) of the single site map carries over to a partition of the spatially
extended system in the trivial way

Uσ = Uσ(0) × Uσ(1) × · · · × Uσ(L−1) . (35)

The symbol sequence σ = (σ(0), σ(1), . . . , σ(L−1)) which labels the set (35)
takes the spatial degrees of freedom into account. Each set is mapped to IL

by the system Tε=0. To take the temporal aspects of the motion into account
we again introduce finer partitions of the phase space in terms of cylinder
sets. Since we consider still the uncoupled case the cylinder sets are given by
direct products of the single site quantities

Uσ0σ1...σn−1
=

{
x ∈ IL |T k

ε=0(x) ∈ Uσk
, 0 ≤ k ≤ n− 1

}
. (36)

Obviously the cylinder sets are linked with the dynamics through the property
(cf. (8))

Tε=0(Uσ0σ1...σn−1
) = Uσ1...σn−1

(37)

These geometric features are summarised in Fig. 6. In particular, the prod-
uct structure of the cylinder sets reflects the fact that our dynamical system
possesses no spatial coupling. Cylinder sets, i.e. roughly speaking the space
time orbits, are labelled by two-dimensional spin lattices σ0σ1 . . . σn−1. One
dimension of the spin lattice corresponds to the temporal evolution whereas
the second dimension takes the spatial extension of the dynamical system into
account.

The invariant measure (15) of the single site map carries over to our dy-
namical system as well. Using the condition (21) we have
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(−+)(+U +
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)
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Fig. 6. Diagrammatic view of the first generation of cylinder sets (dashed rectangles)
of the uncoupled map lattice (34) for L = 2. A cylinder set Uσ σ̃ and its image Uσ̃

are grey shaded

µε=0(Uσ0σ1...σn−1
) = hσ0σ1

pσ0σ1

α

pσ1σ2

α
· · ·

pσn−3σn−2

α
νσn−2σn−1

(38)

where the weights are defined in terms of the Jacobian DTε=0 of the uncoupled
map

pσ σ̃ =
L−1∏

ν=0

1
γσ(ν)σ̃(ν)

=
∣
∣det

(
DTε=0(x)|x∈Uσ σ̃

)∣
∣−1

. (39)

The remaining quantities entering the invariant measure (38) are likewise
given as products of the single site quantities and are thus determined by the
associated eigenvalue problem11 (cf. (16) and (17))

αhσ1σ2
=

∑

σ0

hσ0σ1
pσ0σ1

(40a)

ανσ0σ1
=

∑

σ2

pσ0σ1
νσ1σ2

. (40b)

Following the spirit of the previous section we can rewrite the measure
(38) in terms of a canonical weight of a two-dimensional spin Hamiltonian (cf.
(28))

Hσ0σ1...σn−1

= − lnµε=0(Uσ0σ1...σn−1
)

= − lnhσ0σ1
− ln νσn−2σn−1

+
n−2∑

k=0

L−1∑

ν=0

ln γ
σ

(ν)
k σ

(ν)
k+1

+ (n− 2)L lnα . (41)

11 In general, the largest eigenvalue scales exponentially with the system size, i.e.
L
√

α tends to a finite value in the thermodynamic limit.
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Thus we obtain the statistical mechanics of uncoupled spin chains. The par-
ticular boundary conditions are again determined by the eigenvectors of the
transfer matrix. No phase transition will occur in this model. But we sus-
pect that the corresponding two-dimensional spin Hamiltonian may exhibit
equilibrium phase transitions when a spatial coupling is introduced in the cou-
pled map lattice. Hence the dynamical system may develop different ergodic
components in the thermodynamic limit.

In order to introduce a nearest neighbour coupling, while keeping the sym-
bolic dynamics as simple as possible, we consider a piecewise linear coupled
map lattice where the local slopes depend on the neighbouring symbols. A sim-
ple model is obtained when an unidirectional coupling with periodic boundary
conditions x(L) = x(0) is considered. Using the abbreviations (cf. (28))

Γσ(ν)σ̃(ν)σ(ν+1) = exp
(
−hσ(ν) − Jσ(ν)

(
σ̃(ν) + σ(ν+1)

)
+ e0

)
(42)

and (cf. (4))

G−σ(x) =
{
Γ−−σ(x+ c) if x < −c
Γ−+σ(x+ c) if −c < x < 0 (43a)

G+σ(x) =
{
Γ+−σ(x− c) if 0 < x < c
Γ++σ(x− c) if c < x

(43b)

we define the coupled map lattice by12

(Tε(x))(ν) =






G−−(x(ν)) if x(ν) < 0 and x(ν+1) < 0
G−+(x(ν)) if x(ν) < 0 and x(ν+1) > 0
G+−(x(ν)) if x(ν) > 0 and x(ν+1) < 0
G++(x(ν)) if x(ν) > 0 and x(ν+1) > 0

. (44)

Equation (44) is essentially the single site map (3) with the local slope depend-
ing on the sign of the right neighbour coordinate. The interaction is mediated
by the parameter J (cf. (42)) but we still keep the symbol Tε=J for the coupled
map lattice in order to be consistent with the notation introduced in Sect. 1.
The partition on which the coupled map lattice is defined is now given by (cf.
(35))

Vσ = G−1
σ(0)σ(1)(I)×G−1

σ(1)σ(2)(I)× · · · ×G−1
σ(L−1)σ(0)(I) (45)

and the corresponding cylinder sets read (cf. (36))

Vσ0σ1...σn−1
=

{
x ∈ IL |T k

ε (x) ∈ Vσk
, 0 ≤ k ≤ n− 1

}
. (46)

To distinguish between the quantities of the uncoupled and the coupled map
lattice we use the symbol V for the sets of the latter model. Of course the
12 It is still possible to cast the coupled map lattice in the form (1b). But we refrain

from writing down the coupling function explicitly.
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Fig. 7. Diagrammatic view of the first generation of cylinder sets (dashed rectangles)
of the coupled map lattice (44) for L = 2. A cylinder set Vσ σ̃ and its image Vσ̃ are
grey shaded. Cf. Fig. 6 for the case without coupling

dynamical constraint (37) is again valid if the quantities of the coupled map
lattice are considered. A diagrammatic view of the cylinder sets is shown in
Fig. 7. Due to the finite coupling the product structure of the cylinder sets is
removed.

Since the map lattice Tε is piecewise linear, the Jacobian yields
∣
∣det(DTε(x))|x∈Vσ σ̃

∣
∣

=
L−1∏

ν=0

Γσ(ν)σ̃(ν)σ(ν+1)

= exp

(

−h
L−1∑

ν=0

σ(ν) − J

L−1∑

ν=0

σ(ν)(σ̃(ν) + σ(ν+1)) + Le0

)

. (47)

The invariant measure of our model is given by (cf. (38))

µε(Vσ0σ1...σn−1
) = hσ0σ1

pσ0σ1

α

pσ1σ2

α
. . .

pσn−3σn−2

α
νσn−2σn−1

(48)

where the weight is determined by the inverse of the local expansion rate (cf.
(21)), i.e.

pσσ̃ =
1

∣
∣det(DTε(x)|x∈Vσ σ̃

)
∣
∣ (49)

and the corresponding eigenvalue problem (40) determines the remaining pa-
rameters of the measure (48). By construction the corresponding Hamiltonian
of the two-dimensional symbol lattice is now given by
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Hσ0σ1...σn−1

= − lnµε(Vσ0σ1...σn−1
)

�
n−1∑

k=0

L−1∑

ν=0

(
−hσ(ν)

k − Jσ
(ν)
k

(
σ

(ν)
k+1 + σ

(ν+1)
k

))

+ nL(e0 + ln L
√
α) . (50)

Thus we end up with a nearest neighbour coupled two-dimensional Ising
model. For h = 0 this model displays a second order phase transition at
Jc = Artanh(

√
2−1) in the thermodynamic limit. The equilibrium correlations

become long ranged, a macroscopic magnetisation appears, and the canoni-
cal distribution develops two different ergodic components. These properties
are shared by the underlying coupled map lattice. Hence the spatio–temporal
correlations do not decay exponentially (cf. (26)) and the time average of
∑L−1

ν=0 σ
(ν)/L remains finite in the thermodynamic limit (cf. (25)) despite the

fact that any finite system coupled map lattice still has a mixing dynamics.
The two different ergodic components which develop at the phase transition
point just correspond to the pure phases of positive and negative magnetisa-
tion, i.e. to trajectories which on average tend to localise either in the left-hand
or the right-hand part of the interval I. The ground state of the Hamiltonian
(50), i.e. the zero temperature configuration, is given by the fully aligned
spin lattice (for J > 0). These spin lattices correspond to the two spatially
homogeneous fixed points of the map lattice. Thus the phase transition is a
macroscopic localisation of the measure at the linearly unstable fixed points.
In this respect the coupled map lattice shares some common features with the
dynamics of the single site map (cf. Sect. 1). But for the coupled map lattice
it is remarkable that the involved fixed points are not marginally stable at the
phase transition point and throughout the low-temperature phase. A modu-
lation of the local slope by a factor of four is already sufficient to induce the
phase transition.

In principle it is even possible to analyse our model by direct numerical
simulations despite we are dealing with repelling sets. As already indicated in
Sect. 1 the motion on repelling sets can be generated by an iterated function
scheme which is determined by the inverse branches of the coupled map lattice
determine. The transition probabilities to generate a state σn provided the
history σk, k ≥ n+ 1 is given read (cf. (31))

w(σn|σn+1, σn+2, . . .) = lim
k→∞

µε(Vσnσn+1...σk
)

µε(Vσn+1...σk
)

=
hσnσn+1

hσn+1σn+2

pσnσn+1

α
(51)

where the representation (48) of the measure has been used. Since the explicit
form of the eigenvector of the transfer matrix is involved the corresponding
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stochastic spin dynamics is already fairly complicated. Thus we do not pursue
this approach here.

Our model system shows that based on symbolic dynamics it is indeed
possible to identify a qualitative change in the dynamics which appears only
in the limit of infinite system size. By construction the type of phase transition
described here is contained in the Ising universality class. For different choices
of the single site map and the local slopes (42) quite general Hamiltonians
can be realised. Thus different types of equilibrium phase transitions may
appear in these models. One should however keep in mind that the approach
requires to some extent a simple symbolic dynamics, since the influence of a
complicated grammar on the phase transition behaviour is still unexplored.

3 Coupled Map Lattices and Kinetic Ising Models

The concept described in the previous section mainly focuses on stationary
properties of dynamical systems like invariant measures or (stationary) cor-
relation functions. Transient dynamics like relaxation towards equilibrium is
difficult to tackle within such an approach. In contrast, coarse grained descrip-
tions of the dynamics in terms of suitable partitions of phase space that keep
the time as a dynamical variable are useful to cope with such problems. We
will sketch that such ideas are capable to deal with the dynamics of coupled
map lattices from a different perspective.

For the purpose of illustration let us consider a spatially one-dimensional
coupled map lattice with single site maps motivated by the Miller–Huse model,
cf. Sect. 1. Hence we take the following double tent map defined on I = [−1, 1]
(cf. Fig. 8)

f (x)

x

δ

Fig. 8. Single site map, (52), for two different values of the parameter δ. Solid line:
δ < 0, broken line δ > 0
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fδ(x) =






−2− x/a if −1 ≤ x ≤ −a
x/a if −a < x < a
2− x/a if a ≤ x ≤ 1

(52)

where 1/a = 2 − δ denotes the modulus of the slope. We introduce a small
parameter |δ| � 1 which will be useful later on for applying some analytical
expansion. For δ = 0 the two subintervals I+ = [0, 1] and I− = [−1, 0] are
invariant sets. The single site map induces a hopping between these two in-
tervals if δ < 0 while hopping is suppressed for δ > 0. On the level of a coarse
grained description in terms of symbols σn = sign(xn) the motion may be
considered as a kinetic single spin model. The transition emerging at δ = 0
is a plain bifurcation, a so called crises [46], and the motion for δ < 0 is usu-
ally called crisis induced intermittency. Nothing like a proper phase transition
takes place at δ = 0.

Placing these maps on a chain of length L, introducing the nearest neigh-
bour coupling (1a), and choosing periodic boundary conditions we obtain a
kind of minimal model [21]

x
(ν)
n+1 = (Tε,δ(xn))(ν) = (1− ε)fδ(x(ν)

n ) +
ε

2

[
fδ(x(ν+1)

n ) + fδ(x(ν−1)
n )

]
. (53)

It is our goal to analyse the dynamics of (53) using perturbation expansions
for small |δ| and ε. Thus let us first comment on the trivial case δ = ε = 0.
Then each cube

Iσ = Iσ(0) × Iσ(1) × · · · × Iσ(L−1) (54)

labelled by a symbol string σ = (σ(0), . . . , σ(L−1)) ∈ {−,+}L is an invariant
set with respect to the uncoupled map lattice Tε=0,δ=0. The dynamics in each
cube is mixing. If we turn on the coupling and the deformation parameter δ
transitions between the cubes may be induced. For instance considering an
ensemble of initial conditions it seems tempting to describe the motion on a
coarse grained level by the probability pn(σ) that at time n the trajectory
visits cube Iσ. Based on quite general arguments one may conclude that these
probabilities obey a master equation

pn+1(σ) = pn(σ) +
∑

σ̃

[w(σ̃ → σ)pn(σ̃)− w(σ → σ̃)pn(σ)] . (55)

Formal derivations of such an equation from first principles can be obtained
e.g. by applying standard projection operator techniques borrowed from non-
equilibrium statistical physics [47, 48]. As for the structure of the master (55)
we just recall that the two contributions in the sum just yield the gain and
the loss due to transitions. The transition σ → σ drops from our considera-
tions. For large n the solution of (55) tends towards a stationary state p∗(σ)
which in fact may be identified with µ(Iσ) when µ denotes the SRB measure
of the coupled map lattice. The essential approximation in writing down (55)
consists in neglecting non-Markovian contributions. Since in the perturbative
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regime |δ|, ε� 1 transitions between different cubes are rare, the mixing dy-
namics in each cube ensures that the memory between different transitions
is destroyed and the Markovian approach in terms of (55) becomes feasible.
The essential step remains to be the evaluation of the transition probabilities
w(σ → σ̃) quantifying transitions from cube Iσ to cube Iσ̃.

Let us emphasise the difference between the present concept and the ap-
proach used previously in Sect. 2. The description in terms of the master (55)
relies on a spatial coarse graining of the dynamics. We do not require that the
partition in terms of the cubes (54) fulfills some Markov property. Hence we
do not resolve finer scales in phase space in terms of cylinder sets (cf. (46)).
Thus the probabilities pn(σ) are not capable to resolve the statistics within a
cube. But the approach via (55) still contains the time as a dynamical vari-
able and thus can deal explicitly with transient dynamics and the relaxation
towards equilibrium.

We are now going to estimate the transition probability for a fixed transi-
tion σ → σ̃ in the limit of small coupling and deformation δ. Actually we will
introduce a suitable notion for a transition so that finally the master equation
is valid. The obvious definition xn ∈ Iσ, xn+1 ∈ Iσ̃ fails since it does not refer
to the time scale separation which accounts for the validity of the Markov ap-
proximation. In the perturbative regime transitions are rare as the trajectory
spends most time in the interior of a cube. Let us assume that a particular
coordinate x(ν) at a fixed lattice site ν is going to change sign, i.e. it is going
to induce the transition. Then depending on σ(ν) = sign(x(ν)) the coordinate
is either close to the maximum or to the minimum of the single site map

x(ν) = aσ(ν) +O(ε, δ) (56)

since fδ maps such points to the boundary of the interval Iσ(ν) (cf. Fig. 8).
Let us compute successive iterates up to first order in the small parameters
ε and δ. Applying (53) and taking into account that to first order fδ(x(ν)) =
(1−2|x(ν)−aσ(ν)|)σ(ν) we obtain for the first iterate at the site ν and its two
neighbours

(Tε,δ(x))(ν) = σ(ν) − σ(ν)
(
ε+ 2|x(ν) − aσ(ν)|

)

+
ε

2

∑

ρ=±1

f0(x(ν+ρ)) +O(ε2, εδ, δ2) (57)

and
(Tε,δ(x))(ν±1) = f0(x(ν±1)) +O(ε, δ) . (58)

Observing that the coordinate (57) is close to the boundary a similar compu-
tation yields for the second iterate

(
T 2

ε,δ(x)
)(ν)

= σ(ν)
(
δ + 2ε+ 4|x(ν) − aσ(ν)|

)

− ε
∑

ρ=±1

[

f0(x(ν+ρ))− 1
2
f2
0 (x(ν+ρ))

]

+O(ε2, εδ, δ2) (59)
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and (
T 2

ε,δ(x)
)(ν±1)

= f2
0 (x(ν±1)) +O(ε, δ) . (60)

Proceeding in the same way we obtain for the �th iterate

(
T �

ε,δ(x)
)(ν)

= 2�−2σ(ν)
(
δ + 2ε+ 4|x(ν) − aσ(ν)| (61)

− εσ(ν)
∑

ρ=±1

[
f0(x(ν+ρ))− 2t�(x(ν+λ))

] )
+O(ε2, εδ, δ2)

where

t�(x) =
�∑

k=2

1
2k
fk
0 (x) . (62)

Equation (61) describes the asymptotic growth of the coordinate x(ν) as long
as its value stays in [−a, a]. From the definition (62) it is clear that the function
t� approaches rapidly the limit

t∞(x) = lim
�→∞

t�(x) (63)

which is frequently called the Takagi function (cf. Fig. 9). Hence using this
asymptotic property the coordinate x(ν) changes sign from σ(ν) to −σ(ν) if

δ + 2ε+ 4|x(ν) − aσ(ν)| − εσ(ν)
∑

ρ=±1

[
f0(x(ν+ρ))− 2t∞(x(ν+ρ))

]
< 0 . (64)

-1

-0.5

0

 0.5

1

-1 -0.5 0  0.5 1

Fig. 9. Solid line: Takagi function t∞(x), (63). Broken line: f0(x)−2t∞(x) (cf. (66)
and (68))
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Thus the condition for the occurrence of a transition just depends on the
neighbouring coordinates13, i.e. on the nearest neighbour symbols σ(ν±1). Ac-
cording to this observation the transitions can be grouped into three distinct
types

type I: + ++ → +−+ −−− → −+− (65a)
type II: −++ → −−+ +−− → + +− (65b)

type III: +−+ → + + + −+− → −−− (65c)

Only those transitions σ → σ̃ enter the master (55) where a single symbol of
the chain σ is flipped. Master equations with such special transition probabil-
ities are often called kinetic Ising models. The dynamics of such an equation
can be generated in terms of a stochastic spin dynamics according to the (lo-
cal) transition rates of the master equation [49, 50]. Therefore even numerical
simulations become feasible. They are widely used in the context of solid state
physics.

The condition (64) determines which type of transition (65) is really pos-
sible and enters the sum in (55) with finite probability. Obviously the optimal
choice to fulfil the condition (64) is given by x(ν) = aσ(ν) indicating that the
transition starts in the centre of the interval. Optimal choices for the nearest
neighbour coordinates have to maximise the expression containing the Takagi
function, subjected to the constraint which type of transition is considered,
i.e. which values for the nearest neighbour symbols σ(ν±1) = sign(x(ν±1)) are
assumed. Introducing the abbreviations

b+ = sup{f0(x)− 2t∞(x) |x ∈ [0, 1]} (66a)
b− = sup{f0(x)− 2t∞(x) |x ∈ [−1, 0]} (66b)

the condition (64) yields the constraints

type I: δ < −2ε+ 2εb+ (67a)
type II: δ < −2ε+ ε(b+ + b−) (67b)

type III: δ < −2ε+ 2εb− (67c)

The numerical values of the constants (66) are computed straightforwardly
by employing the self similar features of the Takagi function (cf. Fig. 9)

b+ = 1, b− = 1/3 . (68)

Hence the conditions (67) split the ε–δ parameter plane into four regions
where different types of transitions occur (cf. Fig. 10 and [21] for a detailed
analysis of the underlying kinetic Ising model):

13 In higher orders of the perturbation expansion other lattice sites will enter as
well.
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δ

ε

δ=0

δ=−2   /3ε

=−4   /3δ ε
1

23

4

0

Fig. 10. Diagrammatic view of the bifurcation diagram of the coupled map lattice
(53) according to the conditions (67). Labels refer to the regions mentioned in the
text. Greyshading indicates the type of coupling according to (72), antiferromagnetic
(light), ferromagnetic (dark)

• Region 1 (δ > 0): According to (67) and (68) no transition is possible. No
spin flips occur, i.e. all transition probabilities of the master (55) vanish.
Each cube Iσ contains an attractor of the coupled map lattice.

• Region 2 (−2ε/3 < δ < 0): Only transitions of type I are permitted. Those
cubes Iσ contain an attractor where the symbol chain σ does not contain
three successive symbols of the same type.

• Region 3 (−4ε/3 < δ < −2ε/3): Transitions of type I and II are per-
mitted. The dynamics settles on an alternating symbol sequence σ =
(+,−,+,−, . . .) or σ = (−,+,−,+, . . .), if we consider for simplicity sys-
tems of even system size L. Thus there are two attractors

• Region 4 (δ < −4ε/3): All types of transitions are feasible and the attractor
encompasses all cubes.

Roughly speaking, decreasing δ increases the number of possible transitions
and decreases the number of attractors of the coupled map lattice. One should
however keep in mind that these changes are just plain bifurcations which
change the topology in the phase space. They are not linked to (proper) phase
transitions as the size of the system does not play an essential role.

While we have so far discussed which transition is possible we may in addi-
tion estimate the numerical value of the corresponding transition probability.
Condition (64) determines those points in the phase space which trigger a
particular transition

Eσ(ν−1),σ(ν),σ(ν+1) =
{

(x(ν−1), x(ν), x(ν+1)) ∈ Iσ(ν−1) × Iσ(ν) × Iσ(ν+1) |

δ + 2ε+ 4|x(ν) − aσ(ν)| − εσ(ν)
∑

ρ=±1

[
f0(x(ν+ρ))− 2t∞(x(ν+ρ))

]
< 0

}
.

(69)
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Assuming that due to the mixing properties of the tent map and the small
transitions rates the distribution of phase space points stays uniform within
each cube we may estimate the transition rate by the (normalised) volume of
the transition region (69). The numerical values of the transition rates deter-
mine the dynamics of the corresponding kinetic Ising model. Here we focus on
the behaviour in region 4 and refer the interested reader for the discussion of
the other cases to the literature [21]. In region 4 all three types of transitions
(67) are possible with finite transition rates wI , wII and wIII . Actually we
have obtained a kinetic Ising model with nearest neighbour interaction (cf.
[49]). For the stationary distribution the sum in the master equation (55)
must vanish. In our case the even stronger condition of detailed balance holds
meaning that each term of the sum vanishes individually14

w(σ̃ → σ)p∗(σ̃)− w(σ → σ̃)p∗(σ) = 0 . (70)

Observing that transitions of type II do not increase the number of +/− pairs
in the symbol chain, and that transitions of type I and III are inverse to each
other one easily recognises that the stationary solution can be written as

p∗(σ) =
1
Z

exp

(

J
L−1∑

ν=0

σ(ν)σ(ν+1)

)

(71)

when we define the effective exchange constant by the ratio of the transition
probabilities

J =
1
4

ln
(
wIII

wI

)

. (72)

In fact, the validity of (70), (71), and (72) is easily checked a posteriori. Close
to the boundary of region 3 the transition rate wIII is small and the coupling
(72) is predominantly antiferromagnetic, in accordance with the stationary
state in region 3. Within region 4 wIII may increase and the coupling may
turn out to become ferromagnetic (cf. Fig. 10). Above all the stationary state
in region 4 is a finite temperature canonical ensemble of an Ising chain. Of
course no phase transition will occur in this one-dimensional setup.

Since the one-dimensional coupled map lattice (53) can be described in
terms of a one-dimensional kinetic Ising model it seems tempting to investi-
gate (proper) phase transitions by considering the spatially two-dimensional
case. But here one has to add an important reservation. The analysis of the
model (53) resulted in a coarse grained description which obeys detailed bal-
ance (70). Such a condition requires constraints on the transition rates which
crucially depend on the underlying coupled map lattice. Taking for instance
a one-dimensional coupled map lattice with asymmetric coupling, one ob-
tains transition rates violating detailed balance (cf. [52] for the analysis of the

14 Actually this condition poses a constraint on the transition probabilities in terms
of a potential condition [51].
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unidirectionally coupled case). Thus in general one may end up with nonequi-
librium kinetic Ising models. In such cases phase transitions are possible even
in the spatially one-dimensional setup [53]. A similar phenomenon occurs for
the obvious generalisation of the model (53) to two spatial dimensions. Again
one obtains a master equation violating detailed balance. Thus a proper un-
derstanding of phase transitions in coupled map lattices calls for a deeper
understanding of nonequilibrium models in statistical mechanics. In fact, as
proven in [6] one may end up with a coarse grained description which is more
general than a kinetic Ising model. In such cases one has to introduce carefully
the concept of a (proper) phase transition since the notions from equilibrium
statistical mechanics do not apply directly. Above all more research even for
quite simple models is still needed in order to classify phase transitions in
coupled map lattices properly.
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Indecomposable Coupled Map Lattices with
Non-unique Phase

R.S. MacKay
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1 Introduction

A compact topologically mixing uniformly hyperbolic attractor for a diffeo-
morphism of a finite-dimensional manifold with Hölder continuous derivative
carries a unique probability measure describing the long-time statistics of the
forward orbits of almost all initial conditions in its basin. This was proved
[28] by converting the orbits of the dynamical system into symbol sequences
from a finite alphabet (indexed by time) and considering them as states of a
statistical mechanical spin chain with a certain interaction energy which de-
cays exponentially with separation, so leading to a unique phase. The results
have been extended to many classes of non-uniformly hyperbolic system by
different approaches (e.g. [30]).

What about spatially extended dynamical systems? By analogy with sta-
tistical mechanics, could increasing from one dimension (time) to more than
one (time plus space) permit non-unique probabilistic behaviour (even if the
system is indecomposable in an appropriate sense at the topological level)?
This question was raised by [13, 5], for example.

Because of the statistical mechanics analogy, I shall refer to the possible
probabilistic behaviours of dynamical systems as phases. These are probability
distributions on the set of all orbits, not just on the state space.

Although infinite systems are probably a fiction, they are a good ideali-
sation to study for such questions, because (i) under conditions to rule out
associated spin chains with infinitely many states per site or slowly decay-
ing interaction, finite-dimensional topologically mixing systems have unique
phase, and (ii) non-unique phase for an infinite system can be reflected in ex-
traordinarily long transients for large but finite versions (for a proved example,
see [29]).

For many researchers the interest in spatially extended dynamical systems
focusses on partial differential equations (PDEs), but analysis of PDEs is
highly technical, which makes it difficult to address the essential phenomena.
The question of non-unique phase is already interesting for spatially discrete

R.S. MacKay: Indecomposable Coupled Map Lattices with Non-unique Phase, Lect. Notes Phys.
671, 65–94 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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systems, however, such as networks of oscillators [19]. I shall address the
question in the simplest context: coupled map lattices (CML) [15], where
time also is taken to be discrete.

Despite much numerical work suggesting non-unique phase can occur in
CML (e.g. [24, 7] and Just’s lectures in this school) and some papers claiming
to prove it or make it plausible for some examples ([27] comes very close),
the paper [10] appears to be the first to give a proved example. I do not
count examples where the non-uniqueness arises purely from a bifurcation at
the topological level, or where it refers to escape measures on unstable sets
(e.g. [14] and Just’s lectures).

As has been seen in other lectures in this school, piecewise affine systems
are much easier to analyse and yet can exhibit a lot of the phenomenology of
smooth ones. Following [10], I shall construct a variety of piecewise affine CML
with provably non-unique phase. The examples illustrate not just non-unique
invariant measure but also the phenomena of non-trivial collective behaviour,
eternal transience and an arrow of time. Although somewhat artificial, it is
better to have some concrete examples than nothing at all. An analogy is the
2D Ising model of statistical mechanics, which is a toy model of a ferromagnet
but gave the first context in which it was proved that non-unique phase can
arise (I don’t count mean field approximations).

The examples all have “symbolic dynamics”, which again makes them
easier to analyse. Systems with symbolic dynamics have a particular class of
phase called Gibbs phases. I will argue that for systems with symbolic dynam-
ics, Gibbs phases form the physically relevant class, describing the statistics
of local observables on the orbits of all “uncertain” initial conditions started
a long time in the past.

In more detail, Sect. 2 begins by giving four examples of CML with prov-
ably non-unique Gibbs phase. The key idea is to simulate probabilistic cel-
lular automata (PCA) for which analogous non-uniqueness has already been
proved. Then I give an appropriate definition of indecomposability and show
that these examples are indecomposable. Next, an example is given with an
absorbing subset which looks as if it ought to attract the orbit of almost every
initial condition, yet there is a large subset of initial conditions which never
discover it, despite the system being “pre-indecomposable”. Then I show how
to build invertible versions of these examples. Finally, I make a time-reversible
indecomposable CML with non-reversible phases.

Section 3 motivates the concept of Gibbs phase for CML with symbolic
dynamics, by building up from the simpler cases of Markov chains, ordinary
dynamical systems and PCAs. Some readers may prefer to read this section
before Sect. 2, but I consider it better to go straight to the examples, which
have obviously relevant non-unique phases, before going into details of what
class of phases should be considered for general CML with symbolic dynamics.
The discussion is by no means complete, but I hope it helps.

The notes conclude with some challenges and an appendix on the concept
of reversibility for Markov chains and PCA.
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2 A Selection of Examples

2.1 CML with Ferromagnetic Phases and Variants

Example 1. Let “space” S = Z
2 and “time” T = Z. For each “site” s =

(s1, s2) ∈ S, define its neighbourhood N(s) = {s, s + (1, 0), s + (0, 1)} (the
“North-East-Centre” (NEC) neighbourhood). Take “local state space” M =
[0, 1]. For “lattice state” x = (xs)s∈S ∈ MS define “lattice symbolic state”
σ ∈ {+,−}S by (for each s ∈ S):

σs(x) =
{

+ if xs ≥ 1/2
− if xs < 1/2 .

For ε ∈ (0, 1], apply at each site a piecewise affine map from Fig. 1 accord-
ing to the symbolic state of the NE neighbours. The slopes are 2

ε and 2
2−ε .

This defines a CML, even though the influence of neighbours is via only their
symbolic state rather than continuously (like the more familiar discrete dif-
fusion). Note that in contrast to common usage, ε represents deviation from
deterministic symbolic dynamics rather than coupling strength; the uncou-
pled case is ε = 1. Given initial condition x−N ∈ MS at some large negative
time −N , denote the state at times t ∈ T with t ≥ −N by xt.

0 1
0

1

(a)
0 1

0

1

(b)
0 1

0

1

(c)
- +

-

+

Fig. 1. Local maps for a CML with ferromagnetic phases for ε < εc (here ε = 0.13),
for symbolic state of the NE neighbours: (a) ++, (b) +− or −+, (c) −−

For ε near 1, this CML has a unique Gibbs phase G. In particular, by the
x �→ 1 − x symmetry of the CML, G(σs(xt) = +) = 1

2 for all (s, t) ∈ S × T .
In contrast, for ε small enough, there is more than one Gibbs phase. The set
of Gibbs phases for a system is convex, so can be described by the pure (or
“extremal”) Gibbs phases, those which can not be written as a non-trivial
convex combination of others. Thus I will make the statement in terms of
pure Gibbs phases [10]:

There exists εc ∈ (0, 1) (numerically about 0.18 [3]) such that for all ε ∈
[εc, 1] there is a unique Gibbs phase, whereas for each ε ∈ (0, εc) there are
pure Gibbs phases G±(ε) and c(ε) > 1

2 such that for all (s, t) ∈ S × T ,
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G+
(
σs(xt) = +

)
= G− (

σs(xt) = −
)

= c .

Furthermore, G± are space-time translation invariant.
By analogy with statistical mechanics, I say the phases G± are “ferromag-

netic”. To simplify the following discussion of this example I’ll assume that
G± are the only pure Gibbs phases (though I’m not aware of a proof).

What is the implication of this result for typical initial conditions? As I’ll
explain in Sect. 3, for spatially infinite systems I don’t know how to inter-
pret “typical”, so instead I think in terms of “uncertain” initial conditions.
An uncertain initial condition is a probability distribution for initial condi-
tions which has absolutely continuous marginal on each finite subset L of S,
whose densities �L satisfy some further conditions. Then the answer is that
for any bounded subset Λ of space-time S × T and initial time sufficiently far
in the past, the probability distribution for the components in Λ of the orbits
is some convex combination p+G

+ + p−G− with p± ≥ 0, p+ + p− = 1, de-
pending on the initial condition, initial time and Λ. In words, you should see
samples from the probability distribution G+ with probability p+ and from
G− with probability p−. For most initial conditions drawn from the initial
probability distribution, I think this translates into seeing large patches with
the statistics of G+ and large patches with those of G−, separated by nar-
row wandering domain walls, though the logical implication is not clear to me.

Example 2. The next example is given by Fig. 2. For ε ∈ (0, εc) it has two
pure Gibbs states Ges (for “even sites”) and Gos (for “odd sites”) with

Ges
(
σs(xt) = (−)s1+s2

)
= Gos

(
σs(xt) = −(−)s1+s2

)
= c

(the same εc and c(ε) as above). So you see chessboard patterns. The phases
are “antiferromagnetic”.

0 1
0

1

(a)
0 1

0

1

(b)
0 1

0

1

(c)

Fig. 2. Local maps for a CML with antiferromagnetic phases for ε < εc, for symbolic
state of the NE neighbours: (a) ++, (b) +− or −+, (c) −−
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Example 3. The third example uses the maps in Fig. 3 (equivalently, inter-
change ε with 2− ε in the first example). For ε ∈ (0, εc) it has two extremal
Gibbs states Get (for “even time”) and Got (for “odd time”) with

Get
(
σs(xt) = (−)t

)
= Got

(
σs(xt) = −(−)t

)
= c .

So a period-2 behaviour emerges, alternating between a predominance of +
and −. The phases are “period-2 ferromagnetic”. They are examples of “non-
trivial collective behaviour” [7, 16] or “asymptotic periodicity” [22]. This is a
type of non-uniqueness that would not be apparent if one restricted attention
to invariant measures, and yet is highly significant. Hence I think it important
to look at measures on the set of orbits, not just invariant ones (on the state
space).

0 1
0

1

(a)
0 1

0

1

(b)
0 1

0

1

(c)

Fig. 3. Local maps for a CML with period-2 ferromagnetic phases for ε < εc, for
symbolic state of the NE neighbours: (a) ++, (b) +− or −+, (c) −−

Example 4. Finally, use the maps in Fig. 4 (equivalently, interchange ε with
2− ε in the second example). For ε ∈ (0, εc) it has two extremal Gibbs states
Ge and Go (for “even” and “odd” space-time) with

Ge
(
σs(xt) = (−)s1+s2+t

)
= Go

(
σs(xt) = −(−)s1+s2+t

)
= c .

These phases are “period-2 antiferromagnetic”.

2.2 How the Constructions Work

The idea of these constructions is that (i) there are indecomposable proba-
bilistic cellular automata (PCA) with non-unique Gibbs phase, and (ii) any
PCA can be simulated by some CML.

A PCA is a stochastic process on an infinite product of finite state spaces
generated by transition probabilities given by independent spatially local
rules. A good reference on theory and examples of PCA is [29].
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0 1
0

1

(a)
0 1

0

1

(b)
0 1

0

1

(c)

Fig. 4. Local maps for a CML with period-2 antiferromagnetic phases for ε < εc,
for symbolic state of the NE neighbours: (a) ++, (b) +− or −+, (c) −−

The examples of the previous subsection are based on a case of Toom’s
majority voter PCA. Its state space is {+,−}S with S = Z

2. Let m be the
majority sign in the NEC neighbourhood of s. Then the σt

s are updated inde-
pendently and synchronously by transition probabilities:

P (σt+1
s = m| σt) = 1− ε

2
P (σt+1

s = −m| σt) =
ε

2
.

Toom proved that there is εc ∈ (0, 1) such that starting from the all +
state at t = 0, for ε ∈ (0, εc) there is c > 1

2 such that for all s ∈ S and
t ∈ Z+, P (σt

s = +) ≥ c (and converges to c as t → ∞) [29, 20]. I will not
go into the proof here, except to remark that it uses a stochastic analogue of
monotonicity, a concept that has been seen to be useful in other lectures at
this school. Specifically, for all s ∈ S,

P (σt+1
s = +| σt = σ′) ≥ P (σt+1

s = +| σt = σ′′)

whenever σ′ ≥ σ′′ in the partial order defined by σ′
s ≥ σ′′

s for all s ∈ S in the
order + > −. This property is called “attractivity” in some of the literature.

To simulate a PCA by a CML, if the PCA has N states for each site (N = 2
here) and transition probabilities pij(n) from state i to j at site s given the
state n of the neighbours (excluding s itself), use for each n a piecewise affine
map of M = [0, 1] to itself subdivided into N intervals of equal length to rep-
resent the states, with slopes 1

pij(n) from the ith subinterval to the jth. One
can allow the lengths of the subintervals to vary, with corresponding modifi-
cations of the slopes (e.g. [27]), but ours seems the easiest general prescription
(Sakaguchi’s produces a second order CML, i.e. xt+1

s depends on xt−1
s as well

as xt, and is less flexible in the set of PCAs it can simulate).
In what sense does the CML simulate the PCA? Firstly, if one considers

probability distributions on MS with constant marginal density on each set
corresponding to the symbolic state of a finite subset of S, then the induced
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map on the densities preserves this property and is precisely the action of the
PCA on probabilities. There is a deeper sense, however. Under iteration of
the induced map on probability measures on MS , for any finite subset L ⊂ S,
the marginal density ρL of any uncertain initial condition on [0, 1]S becomes
asymptotically constant on each cylinder set (i.e. set corresponding to a given
symbolic state on L) [10].

Knowledgeable readers might have expected me to use a 2D kinetic Ising
model instead of Toom’s PCA. This will be done in Sect. 2.7, but Toom’s PCA
has the advantage of robustness: one can modify the transition probabilities
somewhat and still keep the phenomenon of non-unique phase (e.g. [3]). This is
in contrast to kinetic Ising models where breaking the +/− symmetry reduces
them generically to a unique phase.

Toom’s PCA is 2D. Are there 1D examples with non-unique phase (and
yet indecomposable in a good sense)? Yes. Indeed there is a 1D PCA with
infinitely many pure phases [9], but it is complicated and not entirely explicit
(see [12] for an introduction to the paper)! It would be nice to have a simpler
1D example, and two pure phases would suffice.

2.3 Indecomposability

It is clear that non-unique phase can arise in trivial ways if we do not require
the system to be indecomposable in some sense. If a dynamical system has
more than one attractor there will be at least one phase for each. Even if there
is one attractor but it consists of several pieces which are cyclically permuted
there will be at least one phase for each of the pieces in which the orbits can
start (some people would want to identify them because they give the same
time-averages but I think it is useful to distinguish them).

The same goes for Markov chains. There it is usual to require irreducibility
and aperiodicity, because any Markov chain can be reduced to pieces with
these properties. A Markov chain is irreducible if it has no proper forward
invariant subset; equivalently, if for all states i, j it is possible to get from i
to j in a positive number of steps. An irreducible Markov chain is aperiodic
if there is N such that for all i, j it is possible to get from i to j in precisely
N steps (if not then it is the “composition” of a deterministic periodic cycle
with an aperiodic irreducible Markov chain). An aperiodic irreducible finite-
state Markov chain has a globally attracting invariant measure, thus a unique
phase, whereas a period-M irreducible finite-state Markov chain has a unique
invariant measure but M phases.

It is appropriate here to make a warning about terminology. Many prob-
abilists (though not all, e.g. [18]) say a system with a globally attracting
invariant measure is ergodic, whereas dynamicists say it is mixing and use the
word “ergodic” for an invariant measure that can not be decomposed into two
(i.e. an extremal invariant measure).
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For dynamical systems, a good notion of indecomposability is topological
mixing: for any two non-empty open sets A,B in the state space, the image
of A intersects B at all large enough times. This could be applied to CML by
considering product topology on MS .

A stronger notion of indecomposability, however, is Bowen’s specification
property (e.g. [17]): for all δ > 0 there exists D0 ∈ Z+ such that for all finite
sequences of orbit segments x(i), i = 1, . . . , I on consecutive time intervals
[ai, bi] with separations ai+1 − bi ≥ D0 there exists an orbit y agreeing to
within δ with x(i) at each time in [ai, bi] for each i ∈ {1, . . . , I}.

For CML, an appropriate version of the specification property should refer
to space as well as time. Thus I say a CML on a space S is indecomposable
if for all δ > 0 there exists D0 ∈ R+ such that for all finite sets of bounded
subsets Ai ⊂ S×T , i = 1, . . . , I, with separations at least D0, and orbits x(i),
there exists an orbit y agreeing to within δ with x(i) on Ai for each i.

The separation of two subsets A,B ⊂ S × T is defined by D(A,B) =
inf{d(a, b) : a ∈ A, b ∈ B}. For metric d on S×T one can use d((s, t), (s′, t′)) =
dS(s, s′) + |t′ − t| (or the maximum) where dS is any metric on S such that
the neighbourhoods N(s) have bounded diameter.

This is a stronger definition than used in [10] but still holds for many
appropriate CML with symbolic dynamics, including our Examples 1–4. For
these examples, let λ = 2

2−ε and choose D0 > 2 log 1/δ
log λ . Let Bi be the D0/2-

neighbourhood of Ai. Let σ be the symbolic state of x(i) on each Bi, extended
arbitrarily on the rest of S × T . Let y be the orbit corresponding to σ. Each
yt

s is determined by Σt
s = (σu

r )r∈N(s),u≥t, because for any τ ≥ t,

yt
s = gt(. . . (gτ (xτ+1

s ) . . .)

where gu denotes the inverse branch of the local map corresponding to the
symbolic state on N(s) at time u. The gu are contractions by a factor of at
least λ, so by taking τ →∞ we obtain a unique yt

s for each choice of Σt
s, and

all those with given σ on N(s) × [t, τ ] are contained in an interval of length
at most λt−τ . In particular, y is determined to within δ on each site of Ai by
σ on Bi, so agrees with x(i) to within δ on each site of Ai.

The above definition of indecomposable can also be applied to PCA by re-
placing “orbit” by “allowed realisation” and dispensing with δ (it is similar to
the “strong irreducibility” of [6]), though probabilists often ask for a stronger
property to rule out events with vanishing probability (see the literature on
“positive rates”, e.g. [12]).

2.4 CML with Eternal Transients

An interesting phenomenon discovered numerically by [8] and again by Livi
et al. (see [11] for recent work of theirs and references), is that some spatially
extended systems with a small attracting subset can take extraordinarily long
times to discover the attractor; instead they bounce around for a long time
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in a chaotic transient. This suggests that for the infinite system there is an
additional pure phase to that on the attracting subset. I present here a proved
example of this.

Example 5. Let S = Z and N(s) = {s, s+ 1} for each s ∈ S. For xs ∈ [0, 1]
define σs = ± according as xs ≥ 1

2 or < 1
2 . Then apply the local maps

indicated in Fig. 5, where the slopes are 1
1−ε and 1

ε , for ε small enough.

0 1
0

1

(a)
0 1

0

1

(b)
- + - +

L RL R

Fig. 5. Maps defining a CML with eternal transient phase for ε small enough (drawn
with ε = 1

4
), to be applied when the right-hand neighbour is (a) −, (b) +

The subset [ 12 , 1]S is invariant, so there is a Gibbs phase (in fact pure and
corresponding to the Bernoulli measure B(1− ε, ε) on it), and it would seem
that it ought to absorb the orbits of most initial conditions. This is indeed the
case if ε is not too small, but remarkably for ε small enough there is another
pure Gibbs phase, supported on the complement.

The construction is based on Stavskaya’s PCA (a case of the discrete-
time asymmetric contact process, also known as directed site percolation) on
{+,−}S where

P (σt+1
s = +| σt) =

{
1 if σt

s = σt
s+1 = +

ε otherwise

(the remaining probability 1 − ε in the second case going to σt+1
s = −) for

which corresponding behaviour has been proved if ε is small enough (≤ 0.09,
though numerically it is good up to about 0.31 [29]). To make the construction
fit within our general framework of expanding maps with symbolic dynamics,
we subdivide the + interval at 1 − ε/2 into two subintervals L ∪ R and use
a map that expands each of L and R to [12 , 1] for the ++ case, so that we
obtain symbolic dynamics with alphabet {−, L,R}. The same phenomenon
would occur, however, if the map of [12 , 1] in the + case were replaced by any
other with uniform density as mixing measure.
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It would be interesting to analyse examples where the map of [12 , 1] in the
+ case has a globally attracting fixed point, to exhibit the phenomenon of
“stable chaos” of [11].

Many variants of this example can be constructed, using more general
discrete-time contact processes or PCAs associated to directed percolation,
though I am not aware of proofs of non-unique phase for most of these (there
is a proof for a broad class of continuous-time contact processes, e.g. [21]).

2.5 Pre-indecomposability

The eternal transient example is not indecomposable, since it possesses the
forward invariant subset [12 , 1]S . In [10] we got round this by allowing D0 to de-
pend on the diameters of the Ai, which allows us to wait for influence of distant
− to propagate in and exploit the discontinuity, but I think that obscured the
point that really the CML should be considered only “pre-indecomposable”
and it is not appropriate to ask for more.

I’ll explain the concept first in the context of Markov chains. I say a Markov
chain is pre-indecomposable if it has an aperiodic irreducible component which
can be reached from anywhere. For a finite-state Markov chain this is a nec-
essary and sufficient condition for unique phase.

Similarly, I’ll say a dynamical system is pre-indecomposable if it has an
attractor A with the specification property and for all δ > 0 there exists
τ > 0 such that for every orbit up to time 0 and orbit on A from time τ there
exists one within δ of each. Thus we can include the basin of the attractor and
furthermore the closure of the basin. For C1+α systems in finite dimensions
I think this suffices for unique phase (Bowen’s fat horseshoe example shows
that the Hölder condition can not be dropped).

Thus I’ll say a CML is pre-indecomposable if it has an indecomposable
invariant subset A and for all δ > 0 there exists τ such that for every orbit
x up to time 0 and orbit y on A from time τ onwards there exists an orbit z
within δ of each.

This holds for Example 5: take A = [12 , 1]S and τ > 2 log 1/δ
log λ where λ = 1

1−ε ,
then let σ equal that for x up to time τ/2 and that for y thereafter, and let
z be the orbit with symbol table σ, which exists because the only forbidden
transition is ++→ −.

2.6 Construction of Invertible Examples

So far, the examples have been non-invertible. This would not disturb re-
searchers in dissipative PDE (like reaction-diffusion systems), but for other
contexts like nonlinear wave equations or oscillator networks, it would be bet-
ter to have invertible examples.

A simple way to make an invertible CML to simulate a PCA is to replace
the expanding 1D maps by “baker’s maps”: take local state space M to be
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Q = [0, 1]2 with coordinates (x, y), and construct a map which on the x
coordinate is as before and on the y coordinate is just (for 2-state PCA)

y′ =
{
y/2 for x < 1/2,
(1 + y)/2 for x ≥ 1/2 .

The Gibbs phases for this CML are just those for the expanding map examples
in x, supplemented by the distribution in y corresponding to the possible
symbol histories of x, converted to binary expansions. For example, for G+

in Example 1, for any (s, t) the marginal on xt
s has a step function density

with values c(ε), 1 − c(ε) for x > 1
2 , x < 1

2 , and the marginal on yt
s is a

singular continuous distribution because the symbol histories form a source
with entropy (in base-2) h < 1, thus for large N most of the probability is
supported on about 2Nh of the 2N intervals [p−1

2N , p
2N ] for p = 1, . . . , 2N , whose

total length 2N(h−1) → 0 as N →∞, yet there are no atoms.
Note that in general for an invertible system one obtains different Gibbs

potentials for forward and backward evolution (see Sect. 3.8), and hence in
general different sets of Gibbs phases. For the invertible CML just constructed,
there is a unique backwards Gibbs phase and it is uniform in y.

An alternative construction, for which the local maps are continuous
(though the CML still has discontinuities with respect to coupling), is to
take piecewise affine continuous deformations of hyperbolic automorphisms
of a 2-torus, with continuously deformed Markov partition, but there are re-
strictions on the possible transition probability matrices, so I won’t pursue it.

2.7 Reversible CML with Non-reversible Phases

In some contexts (e.g. much of Hamiltonian mechanics), the dynamics is not
only invertible but also reversible. A dynamical system is reversible if it is
invertible and conjugate to its inverse via an involution (a map R on the state
space whose square is the identity). So for any motion there is an equally
possible reversed motion. The prime example is celestial mechanics: if one
were to reverse the momenta of all the planets one would obtain the time-
reversed motion.

The basic laws we use for the universe are reversible, yet we see a very
definite arrow of time. This is expressed in various ways like the second law
of thermodynamics, cause precedes effect, and outgoing radiation conditions.
Why are only motions compatible with these conditions apparent and not
their time-reverses?

The prevailing view (e.g. [25]) attributes the arrow of time to a very special
choice of initial condition (big bang), but I consider that unsatisfactory as an
explanation, because it is still locked in the “cause precedes effect” mindset.
In contrast, I suggest it is a result of non-unique space-time Gibbs phase at
some level, probably quantum gravity, selecting one light-cone in preference
to the other in large space-time patches.
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Here I make a toy model to illustrate the possibility. I use chaotic dynamics
instead of quantum physics to provide the stochastic effect (as done in [2] for
other purposes).

The starting point is synchronous 2D kinetic Ising models. These are PCA
(of period-2 rather than autonomous, but that does not cause essential trou-
ble) which are reversible (see the Appendix for a discussion of what it means
for a PCA to be reversible) and which have precisely two pure phases. I’ll
simulate this by a reversible CML. The phases are reversible but by making
a suitable skew product over this CML, I’ll then make a reversible CML with
non-reversible phases.

For kinetic Ising model, take state space {+,−}S with S = Z
2 and define

the neighbourhood N(s) of s ∈ S to consist of s± (1, 0) and s± (0, 1). Choose
J ∈ R+. Say a space-time site (s, t) is “even” or “odd” according as s1 +s2 + t
is even or odd. For (s, t) even, let m =

∑
r∈N(s) σ

t
r and “Glauber dynamics”

P (σt+1
s = ±| σt) =

1
2

(1± tanh(Jm)) =
exp±Jm

expJm+ exp−Jm

and for (s, t) odd, let σt+1
s = σt

s. This PCA has the nice features that it is
reversible and its Gibbs phases are in one-to-one correspondence with those for
the equilibrium statistical mechanics of the 2D Ising model at temperature
1, with potential −

∑
s

J
2 σs

∑
r∈N(s) σr (the factor 1

2 is to compensate for
counting each bond twice). For J large enough, the 2D equilibrium Ising
model has two pure phases, thus so does the kinetic Ising model. There are
other transition rates that achieve the same properties (e.g. Metropolis rates).
Also the kinetic Ising model can be reformulated as an autonomous PCA by
going to a diagonally moving frame (Ex 1.4b of [29]), so one could produce
an autonomous CML to simulate it, but the moving frame complicates the
reversibility properties.

The kinetic Ising model can be simulated by an expanding CML using
the construction of Sect. 2.2 again. Indeed, a variant of the method was used
by Sakaguchi [27] long before our work, but with a variable partition and
constant slope on each partition element instead of fixed partition and varying
the slopes of the map within each partition element, which to my mind makes
the non-uniqueness of phase less marked because both phases have uniform
marginal density on all finite subsets. Also, it is not clear whether the paper
contains a complete proof, and the construction is less flexible than ours.
Finally, Sakaguchi’s CML is second-order, meaning that to determine xt+1

one needs both xt and xt−1 (though through only the symbolic state of xt−1),
so to make a first-order CML out of it, one would have to augment the local
state, which becomes messy.

We want to simulate the kinetic Ising PCA by a reversible CML, however.
The following variant of our baker’s map construction produces one.

Example 6. Take S = Z
2, local state space M = [−1, 0]2 ∪ [0, 1]2 (really, I

mean disjoint union, so there are two distinct points (0, 0)) with coordinates
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(x, y), for each s ∈ S let N(s) = {s ± (0, 1), s ± (1, 0)}, and let σs = ±
according as (xs, ys) ∈ [0, 1]2 or [−1, 0]2. Choose J ∈ R+. For (s, t) even,
evaluate m(s) =

∑
r∈N(s) σr ∈ {−4,−2, 0, 2, 4} and p± = 1

2 (1 ± tanhJm),
and apply the following map to (xs, ys) (see Fig. 6):

x
1

1

p

-1

-1

-p

-p

y

-

p
-

+

+

+

-

Fig. 6. The domains (vertical rectangles) and ranges (horizontal rectangles) of the
affine pieces of the local maps for Example 6

For 0 < x < p−

{
x′ = − x

p−

y′ = −p+y

For p− < x < 1
{
x′ = 1− 1−x

p+

y′ = 1− p+(1− y)

For − p+ < x < 0
{
x′ = − x

p+

y′ = −p−y

For − 1 < x < −p+

{
x′ = −1 + 1+x

p−

y′ = −1 + p−(1 + y) .

For (s, t) odd, apply the identity map.
This CML is reversible with respect to R : x ↔ y and t �→ 1 − t (as the

CML is non-autonomous, the notion of reversibility needs a slight modifica-
tion, hence the necessity to specify which reflection to take in time). It is also
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indecomposable (similar proof to Example 1). For J > Jc = log(1+
√

2), there
are c > 1

2 (in fact, c = 1
2 (1+(1−1/ sinh4 J)

1
8 )) and precisely two pure phases

G±, and G±(σt
s = ±) = c. Both phases are reversible, however, because they

are essentially just the Gibbs phases of the kinetic Ising PCA, which are re-
versible.

To make a reversible CML with non-reversible Gibbs phases, I first note
that Example 6 is also reversible with respect to R′ : (x, y) �→ (−y,−x),
t �→ 1− t, and G± are not reversible with respect to this involution. I am re-
luctant to claim this as a valid example of reversible CML with non-reversible
phases, however, because one could say I just chose the wrong involution. So
I seek to modify Example 6 to lose R-reversibility but keep R′-reversibility.
This can be done by a skew-product over Example 6, where dynamics in ad-
ditional variables z is added.

Example 7. In addition to the (x, y) dynamics of Example 6, choose an invert-
ible map g of a manifold Z which is not reversible with respect to any involu-
tion (this rules out Z being finite), take local state space ([0, 1]2∪ [−1, 0]2)×Z
with coordinates (x, y, z), at odd (s, t) take z′ = g(z) if σ = + and z′ = g−1(z)
if σ = −, and at even (s, t) take z′ = z. This is reversible with respect to
R′′ : (x, y, z) �→ (−y,−x, z) but not with respect to any involution which in-
terchanges x and y. If g has unique and distinct forward and backward phases,
then the resulting CML is indecomposable (because given δ > 0 one can in-
sert a bounded band of symbols + or − to move zs from one phase to the
other), and has pure phases corresponding to G± on (x, y) and the forwards
(respectively backwards) phase of g, because with G+-probability 1, for each
site s,

∑T
t=0 σ

t
s → +∞ as T → +∞, so zt

s moves to the forward phase of g as
t increases, and similarly for G−. These phases are not reversible.

Concretely, one can take Z = [−1,+1] and g to be any diffeomorphism of
[−1,+1] with fixed point set {−1,+1} and the product of the slopes at the
ends not equal to 1. The final condition rules out existence of any smooth
reversor, but one might prefer to rule out all continuous reversors. Then one
could take something like Z = B3, the unit ball in three dimensions, and g
to be a Bernoulli diffeomorphism on its boundary S2 (which can be made
by smoothing a pseudo-Anosov map of S2

4 , the sphere with four punctures,
following Katok) and to attract all the interior to a fixed point at the origin.
Alternatively, one could take Z = T

2 and g a non-reversible uniformly hy-
perbolic map: non-reversibility can be achieved by making the forward and
backward SRB measures not mappable onto each other.

Although Example 7 solves the problem posed, it is not ideal. Firstly, it
leaves the realm where Gibbs phases are defined, since the skew products are
not hyperbolic in any good sense: the z dynamics is a sequence of g and g−1,
so any amount of expansion in Z can be undone by a suitable symbol sequence
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in the future. Secondly, my original aim was to make examples with phases
carrying a thermodynamic arrow of time or selecting a radiation condition, but
z has no interpretation as entropy and there is no coupling of the z dynamics
between sites. Perhaps a thermodynamic arrow of time could be achieved
by a space-time analogue of the interface phases of the 3D Ising model, and
a radiation condition by skew-product with a suitable deterministic cellular
automaton.

An interesting question is whether examples of reversible CML with
non-reversible phases can be made that are also symplectic, because that
would suggest that non-reversible phase could occur in spatially extended
Hamiltonian systems.

3 Motivation for Gibbs Phases

3.1 Probabilistic Behaviour

For a deterministic dynamical system, each initial condition determines a
unique trajectory, but it often happens that many initial conditions lead to
similar trajectories as time goes to infinity. This holds in a strong sense for
initial conditions in the basin of an attracting fixed point. It holds in a slightly
weaker sense for initial conditions in the basins of different points of the
same attracting periodic orbit, because their orbits become similar only if one
allows to compare suitable time-shifts. For chaotic systems (meaning at this
stage that they have sensitive dependence on initial conditions), trajectories
of typical pairs of initial conditions are unlikely to converge together, but the
trajectories of many initial conditions may still be similar to each other in a
statistical sense. The tidiest way to say this is that the probability distribution
of the state at time t with respect to any member of a specified class of
measures on initial conditions may converge in weak-* as t→∞ to a common
probability measure (a sequence µn of measures on a topological space M
converges in weak-* if for all continuous functions φ : M → R the sequence of
expectations µn(φ) converge; the terminology comes from viewing measures
as a subset of the dual of the space of continuous functions on M).

For example, for f : x �→ 4x(1 − x) on [0, 1] and any absolutely con-
tinuous measure µ on [0, 1], i.e. one which gives probability zero to all sets
of Lebesgue measure zero, then µ is represented by a density � ∈ L1[0, 1]
with

∫
�(x)dx = 1. Define the “transfer” operator T on densities � by∫

g(x)(T�)(x)dx =
∫
g(f(x))�(x)dx for all g ∈ L∞[0, 1]; then Tn� → �̄ as

n→∞ where
�̄(x) =

1
π
√
x(1− x)

meaning
∫
g(x)(Tn�)(x)dx →

∫
g(x)�̄(x)dx for all g ∈ L∞[0, 1]. Note that it

follows that for any τ > 0, the probability distribution for (xt, xt+1, . . . , xt+τ )
converges as t→∞ (in weak-* topology) to that generated by f from �̄.
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I think about this is in terms of the orbits of uncertain initial conditions.
If one does not have infinite precision over the initial condition then it is more
reasonable to consider the initial condition as a probability measure, perhaps
tightly peaked around some point but nonetheless absolutely continuous. This
point of view allows me to say that the orbits of all uncertain initial conditions
have the same statistics in the above example, whereas all I can claim for exact
initial conditions is that almost all lead to the same statistics: it is essential to
remove a set of Lebesgue measure zero of exceptional orbits, like those which
converge to an unstable fixed point or periodic orbit.

One can make examples, however, with a two-band attractor or more than
one attractor, for which such convergence does not happen unless one starts
in the same basin. Such examples have more than one probabilistic behaviour.

I call probability measures on realisations in time originating from nice
enough initial measures far in the past phases (not to be confused with phase in
the sense of position in a cycle or in a bundle over a circle). They are sometimes
called “states” but I reserve this word for the points of the state space of the
dynamics (confusingly called “phase space” in the older literature!). Their
time-averages are often called natural or physical or SRB measures.

Any convex combination of phases is also a phase: for example start with
initial probability distribution supported partly in the basin of one attractor
and partly in that of another, but the interest focusses on the pure phases,
which are the phases which can not be expressed as a convex combination of
others (sometimes called extremal phases).

3.2 Ordinary Symbolic Dynamics

Some dynamical systems have the nice feature that there is a partition of
the state space into regions and a directed graph between the regions such
that every path in the graph (called a symbol sequence) occurs for some orbit
and there is precisely one orbit for each path in the graph. Thus to each
symbol sequence σ there corresponds an initial condition x0(σ). The regions
are allowed to overlap along “negligible” sets, so orbits which pass through
such overlap sets may have more than one symbol sequence, but this is a
relatively unimportant issue. The system is said to have symbolic dynamics.

Symbolic dynamics occurs for every locally maximal compact uniformly
hyperbolic set for a C1 diffeomorphism, and also for suitably constructed
maps with jump discontinuities, like expanding maps for which each interval
of continuity is mapped onto a union of intervals of continuity.

3.3 Gibbs Phases for Markov Chains

Before considering the asymptotic probabilistic behaviour of deterministic dy-
namical systems with symbolic dynamics, let’s study the same question in the
simpler context of a Markov chain.
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It is usual to specify a Markov chain by giving the forward transition
probabilities pσσ′ from states σ to σ′, which define probabilities

P{σ1, . . . , στ | σ0} =
τ−1∏

t=0

pσtσt+1

for the initial value problem. Actually, to avoid confusion with the official def-
inition of Markov chain, which specifies probabilities for all sequences not just
conditional on initial conditions, I should give this a different name, like “pre-
Markov chain”. The distinction is important because we are trying to decide
when specification of the transition probabilities implies a unique probabil-
ity distribution on doubly infinite sequences. Nevertheless, I’ll follow many
physicists and call it a “Markov chain” except in the Appendix.

Even though they do not determine the unconditional probabilities of se-
quences, the transition probabilities do define the probability distributions for
the two-point boundary value problems with σm, σn given (assuming there ex-
ists a path with positive probability):

P{σm+1, . . . , σn−1| σm, σn} =
1
Z

n−1∏

t=m

pσtσt+1

where Z = Z(σm, σn) is a normalisation constant. This can be rewritten as

P{σm+1, . . . , σn−1| σm, σn} =
1
Z

exp

(

−
n−1∑

t=m

log
1

pσtσt+1

)

·

Thus log 1
pσσ′

can be interpreted as an “energy” contribution from the transi-
tion σ → σ′ of state along a 1D statistical mechanics chain at temperature 1,
and the above equation for the probability distributions for two-point bound-
ary value problems is precisely that defining (Boltzmann-)Gibbs phases of
such a statistical mechanics model.

A Gibbs phase for a Markov chain is a probability distribution on doubly
infinite sequences of states such that the conditional probability distribution
for all two-point boundary value problems is given by this formula. Of course,
for an aperiodic irreducible Markov chain there is a unique Gibbs phase,
generated by its stationary measure and the transition probabilities.

3.4 Gibbs Phases for Expanding Maps

For expanding maps with symbolic dynamics and Hölder continuous derivative
on each branch there is an analogous way to determine the possible long-time
statistics of orbits, but in general we have to consider boundary value problems
where all the symbols before some time and after some other time are given,
rather than just two-point.
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A map f is expanding if there is a τ > 0 and λ > 1 such that fτ expands
the distance between any two nearby points by at least λ. Note that such
maps are necessarily noninvertible, but I’ll consider invertible maps later.

If we start from an absolutely continuous measure with density � at some
large negative time M , and we observe the symbol sequence σ from time
M to some large positive N , then we could ask what is the probability of
the subsequence σm, . . . , σn for some fixed times m and n between M and
N , given the remaining symbols. I will find it useful to assume that log � is
Hölder continuous on each subset with a given long enough symbol sequence,
though this should not really be necessary.

The answer is proportional to
∫
�(xM ) dxM over the set of xM with symbol

sequence σM , . . . , σN , this being the measure of the set of initial conditions
which follows the given symbol sequence. Using the map f , which is invertible
in the domain where the given symbol sequence occurs, we can change variable
of integration from xM to xM+1 = f(xM ), obtaining

∫

�(xM ) dxM =
∫

�(xM )
|detDfxM | dx

M+1

over the set with symbol sequence σM+1, . . . , σN , where xM is regarded as a
function of xM+1 by using the appropriate inverse branch of f . Iterating this
procedure up to any time K ≤ N , we find that the probabilities of symbol
sequences σm, . . . , σn given the rest are proportional to

∫
�(xM )

∏
t∈{M,...,K−1} |detDfxt | dx

K

over the set with symbol sequence σK , . . . , σN .
For K > n, the range of integration is independent of σm, . . . , σn. For

M large (negative), the set of xM with given symbol sequence σM , . . . , σm−1

has exponentially small diameter in m−M , so by the assumed continuity of
log �, � can be approximated by constant density on it. If we choose K to be
roughly halfway between n and N , then for N large,

∏
t∈{M,...,K−1} |detDfxt |

is close to constant for each symbol sequence (because Df is Hölder continuous
and the sets over which the xt can range are exponentially small in N − t).
Thus as M → −∞, N → +∞, the conditional probabilities of σm, . . . , σn

are proportional to 1/
∏

t∈{M,...,K−1} |detDfxt |, which acquires a well defined
meaning because the effect of the terms far from times t ∈ {m, . . . , n} depends
exponentially weakly in K − t, t−M on σm, . . . , σn.

It is common to rewrite this relative conditional probability as

exp



−
∑

t∈{M,...,K−1}
log |detDfxt |





to make it look like the condition for a Gibbs measure in statistical mechanics.
Thus we see that the possible probabilistic behaviours for expanding maps
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with symbolic dynamics started far in the past from an absolutely continuous
measure correspond to the Gibbs phases for a 1D spin chain with energy
contribution from site t given by log |detDfxt |, where xt is the state at time
t corresponding to a given symbol sequence. Since xt depends exponentially
weakly on symbols distant from t and Df is Hölder continuous, this gives an
exponentially decaying interaction between sites in the spin chain.

3.5 Gibbs Phases for PCA

For a PCA with space S, if we wish to know the probability measures on
all possible realisations on S × T (with T = Z) which are consistent with
the transition probabilities, including arbitrarily far in the past, then we can
again write them as Gibbs phases.

As for general Markov chains, we consider boundary (rather than ini-
tial) value problems, but now in space-time rather than just time. For each
bounded subset Λ of space-time S × T and state η on the complement of
Λ, we can ask for the conditional probability distribution for the state σ on
Λ. Define the templates for the PCA to be the subsets of S × T of the form
{(s, t + 1)} ∪ {(r, t) : r ∈ N(s)}, where N(s) is the neighbourhood of depen-
dence for s, and for state σ and template τ define the weight wτ (σ) to be the
transition probability pτ (σ) for the transition represented by the restriction
of σ to τ . Then

P (σ on Λ| η off Λ) =
1
Z

∏

τ∩Λ

pτ (σ ∨ η)

where τ ∩Λ means the set of templates having nonempty intersection with Λ,
σ ∨ η is the state on S × T given by σ on Λ and η off Λ, and Z is chosen to
normalise the distribution (provided that there is at least one σ compatible
with η). Thus we view PCA on S as a class of Markov random field on S × T
(with the special features that the templates have the shape above and the
weights on a template with given state on N(s) sum to 1 over the state at the
“apex”). This conditional probability can be rewritten as

P (σ on Λ| η off Λ) =
1
Z

exp

(

−
∑

τ∩Λ

log
1

pτ (σ ∨ η)

)

which looks like the condition for a Gibbs distribution for a statistical me-
chanics spin lattice on S × T where each template τ contributes an energy
log 1

pτ (σ) (in temperature units).

3.6 CML with Symbolic Dynamics

The concept of symbolic dynamics extends to some CML, in particular those
we constructed to simulate PCA, and also uniformly hyperbolic CML as I’ll
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indicate below. For a CML, a trajectory x is an array of xt
s with s ∈ S, t ∈ T

(T = Z+ or Z, for the expanding or invertible case, respectively), and the
symbol sequence is replaced by a symbol table σ = (σt

s)s∈S,t∈T .
Our examples have constant derivative on each piece corresponding to

a given symbolic transition, but for general expanding CML with symbolic
dynamics, the derivative depends on the exact state making a given symbolic
transition, which is determined by more distant symbols in space and time.
So to justify the concept of Gibbs states for general expanding CML with
symbolic dynamics, we need to examine the dependence of the derivative on
the full symbol table. Following [26, 23], here is a sketch (which applies equally
well in the invertible case).

For CML F on MS , the orbits xt+1 = F (xt), t ∈ T , correspond to the
fixed points of the map F on MS×T defined by

(Fx)t
s = Fs(xt−1) .

If F is differentiable (in uniform norm) with bounded derivative, then so is F .
I say an orbit x is uniformly hyperbolic if it is a non-degenerate fixed point of
F , i.e. I−DFx is invertible; since DF is bounded it follows that (I−DFx)−1

is bounded. I say a set U of uniformly hyperbolic orbits is uniformly hyperbolic
if there exists C ∈ R such that ‖(I −DFx)−1‖ ≤ C for all x ∈ U .

If the coupling in F is local (or exponentially decaying in a suitable sense)
then it can be shown that this definition of uniform hyperbolicity is equivalent
to the usual one in terms of a splitting of the tangent space into a contract-
ing subspace and a backwards contracting subspace with uniform exponential
contraction estimates and angle of splitting bounded away from zero. In ad-
dition, however, we obtain exponential decorrelation in space. The point is
that uniform hyperbolicity plus exponentially decaying coupling implies that
the matrix elements of (I −DFx)−1 decay exponentially from the diagonal in
both space and time. In particular, this implies that the dependence of xt

s on
symbol σt′

s′ decays exponentially with d((s, t), (s′, t′)), which will be required
in the next section.

This viewpoint on uniform hyperbolicity for CML has many consequences
for the dynamics at the topological level as well as probabilistic. In particu-
lar, it allows one to construct symbolic dynamics for weakly coupled uniformly
hyperbolic maps [26] and to obtain many of the results of Afraimovich’s lec-
tures. The idea is that given a uniformly hyperbolic set U of orbits for CML F
then all C1-small perturbations of F possess a unique continuation of U , with
topologically equivalent dynamics. Specifically, if F depends on parameters λ,
the continuation x(λ) of an orbit x(0) ∈ U is given by

∂x

∂λ
= (I −DFx)−1 ∂F

∂λ
(x) .

This can be used to make further examples of interesting topological dynamics
in CML. For example, one can make CML with localised chaotic attractors, by
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taking the on-site dynamics to have an attracting fixed point and a uniformly
hyperbolic chaotic attractor (e.g. Plykin or solenoid), choosing one site to
be on the chaotic attractor and the rest on the fixed point, and adding any
smooth weak coupling [23].

Furthermore, the shadowing theorem extends to this space-time context, so
the approach allows to construct symbolic dynamics for any locally maximal
uniformly hyperbolic set for a CML (choose a sufficiently fine set of time-
periodic orbits and then use shadowing to associate to any orbit at each
(s, t) ∈ S × T one of the periodic orbits, thus constructing its symbol table).

3.7 Gibbs Phases for Expanding CML with Symbolic Dynamics

For a CML F on MS , the phases should describe the statistics of orbits from
all nice enough initial probability distributions on the state space, started
far enough in the past. It is not yet clear what is the sensible class of initial
probability distributions to consider: see Jarvenpää’s lectures. For safety, I
will restrict attention to those with a C and a δ > 0 such that their marginals
on any finite subset L ⊂ S have an L1 density �L and

| log �L(x)− log �L(y)| ≤ C
∑

s∈L

d(xs, ys)δ

as in [4] and [10], but in fact I will require it only when x and y have the same
symbol table on some neighbourhood of L×{0} in S×T . I believe this Hölder
condition on the logarithm of the densities is unnecessarily strong, but I have
not yet formulated a better one.

Given an initial measure satisfying the Hölder condition at a large negative
time M , we ask for the probabilities of symbol tables on a given Λ ⊂ S × T ,
conditional on the symbol table outside Λ. Fatten Λ to some larger patch Λ′,
in both space and time, to allow for the fact that in general the symbols on
Λ depend on the state off Λ as well as on Λ, but exponentially weakly as the
distance away from Λ increases. Because the CML has finite range coupling,
disturbances can propagate at most at some speed. Let SM be the subset of S
at time M capable of influencing the state on Λ′. Fatten SM in space to a set
J . Then the conditional probabilities P of symbols on Λ are proportional to∫
�J (xM )

∏
s∈J dx

M
s over the subset of states xM on J giving rise to the given

symbol table (modulo a slight dependence on the state outside J in general,
which one should bound).

Change variable from xM
s to xM+1

s at all sites s ∈ SM such that N(s) ⊂
SM , using the map F . Call this set of sites SM+1. The volume change factor is
the determinant of the block of DF corresponding to SM+1, which I’ll denote
DFSM+1 , evaluated at the state xM at time M . Then

P =
1
Z

∫
�SM (xM )

|detDFSM+1(xM )|
∏

dxt
s
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where (s, t) ranges over SM+1 at time M + 1 and the remaining sites of J at
time M .

It is convenient to rewrite

|detDFSM+1(xM )|−1 = exp
(
−tr logDFSM+1(xM )

)
.

For any invertible operator A, tr logA can be calculated in an arbitrary
bounded connected neighbourhood of a given A0, up to a constant, by writ-
ing A = A0

∏
i(I − Bi) for a suitable finite product of operators with each

||Bi|| < 1, using log(I − B) = −
∑

n≥1
Bn

n so tr log(I − B) = −
∑

n≥1
trBn

n ,
and letting tr logA =

∑
i tr log(I − Bi) (it is not necessary to add a value

for tr logA0 because the choice would change only the normalisation constant
Z). Alternatively, it can be calculated as

∫ 1

0
tr
(
A−1(λ)A′(λ)

)
dλ along any

differentiable path of invertible operators to A from a convenient reference
point A0. Note that neither approach defines logA itself if the Bi do not com-
mute or A′(λ) does not commute with A(λ) along the path (one has to use
the Campbell-Baker-Hausdorff formula; we neglected to mention this in [10]),
but both always give the correct trace.

Next, we can expand

exp
(
−tr logDFSM+1(xM )

)
= exp

(

−
∑

s∈SM+1

tr(logDF )ss(xM )

)

where (logDF )ss denotes the diagonal block of logDF corresponding to site s
(of dimension equal to that of the local state space, so 1 for all our expanding
examples). Since all that matters is the sum over s, one can again replace the
true logDF by either of the surrogates of the previous paragraph.

Now iterate the change of variables to a nested sequence of subsets St at
times t = M, . . . , τ , where τ is the largest time in Λ′. Then

P =
1
Z

∫

�SM (xM ) exp



−
∑

(s,t)∈K

tr(logDF (xt))ss




∏

(s,t)∈L

dxt
s

where K is the subset of S × T with t ≥ M that can influence the state on
Sτ at time τ and L is the union of its “boundary” and the sites of J at time
M not in SM+1. See Fig. 7 for an illustration for the case of a 1D nearest
neighbour CML.

Since the dynamics is expanding and Λ is contained in the subset of S×T
which can influence the state on L, the domain of integration is the same
for all σ (given η). Now x on J determines x on a fattening K ′ of K. The
exponent is almost independent of x in the domain of integration for each
fixed σ and η, because the symbolic state determines the actual state with
exponential accuracy and DF is assumed to be Hölder continuous. Finally,
�SM can be approximated by a constant, independent of σ, because of the
Hölder condition on initial measures.
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Fig. 7. Illustration of the change of variables for a 1D nearest neighbour CML

Thus, taking appropriate limits,

P (σ on Λ|η off Λ) =
1

Z ′(Λ, η)
exp



−
∑

(s,t)

tr logDF (xt)ss



 .

I came up with this formula in February 1995 (unpublished notes); the same
idea was presented independently in [4] and used again in [14].

3.8 Gibbs Phases for Invertible Dynamical Systems

For invertible systems (whether ordinary or CML), symbolic dynamics uses
backward-time symbols as well as forward, and the appropriate formulae for
Gibbs phases use detDfu and logDfu, where Dfu is the restriction of the
derivative of f to the unstable subspace, and some choice of way of comparing
volumes on the unstable subspaces of different points has to be made.

For an invertible system, however, it is also possible to ask for the prob-
abilistic behaviour at large negative times. This is given by the backwards
Gibbs phases, which use (Dfs)−1 instead of Dfu (where Dfs is the restric-
tion of Df to the stable subspace). For systems preserving a volume form,
these give the same result, but in general they give different results.

An example where this can be seen by simple simulation (as well as proved)
is the torus map

x′ = 2x+ y +
k

2π
sin 2πx

y′ = x+ y
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for |k| ∈ (0, 1). It is uniformly hyperbolic and topologically mixing and has
unique forwards and backwards Gibbs phases, but they are different (and
singular with respect to each other and Lebesgue measure).

4 Some Challenges

How robust are the examples of indecomposable CML with non-unique phase
given here? By Toom’s work, Examples 1–4 (and probably 5) are robust to
small changes in the slopes provided they remain constant, but presumably
one can also make the slopes slightly non-constant and still keep the phenom-
ena, because the resulting Gibbsian random fields on space-time should not
be very different from the Markovian ones of the PCA.

Can you make continuous (or smooth) examples of indecomposable CML
with non-unique phase? If our examples are very robust then one might be
able to make the local map depend continuously on the state of neighbours,
rather than just on their symbolic state. Alternatively, to simulate a PCA we
chose to use piecewise constant expansion factors, but really we needed this
only modulo a coboundary. Does the freedom to choose a coboundary allow
to make continuous examples? As a third alternative, might it be possible
to make a CML version of Toom’s proof for the majority voter PCA? The
idea would be to make a continuous CML which is monotone in the usual
dynamical systems sense within each local symbol.

Can you explain the “stable chaos” of [11]?
What do Gibbs phases for CML tell us about “typical” orbits? For ordinary

dynamical systems, they give the statistics for the orbit of Lebesgue almost
every point in the basin of attraction. The problem for spatially extended
systems is to make sense of “typical”.

What is the most general notion of “nice enough” initial probability dis-
tribution which would lead to selection of Gibbs phases?

Can you find examples of non-unique phase without using symbolic dy-
namics? Unique phase can be proved for some classes of system without sym-
bolic dynamics (e.g. [1] and Keller’s lectures), but the methods do not yet
suggest how to make examples with non-unique phase. Alternatively, the con-
cept of “equilibrium state” does not require symbolic dynamics, though would
exclude nontrivial collective behaviour.

Can you make symplectic examples of reversible CML with non-reversible
phase? This would connect more closely to Hamiltonian dynamics and hence
to fundamental models of the universe. The symplectic form need not be the
standard one.

Can you make a reversible CML exhibiting phases with a second law
of thermodynamics, or radiation conditions, rather than just being non-
reversible? For example, one might hope to make a form of nontrivial col-
lective behaviour which is not recurrent, or a skew product over the kinetic
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Ising model which generates outgoing waves in forward time when the under-
lying state is + and backward time when it is −. Perhaps a 2D version of
Stavskaya’s PCA has a phase with an interface zone across which the den-
sity of − increases from 0 to its value for the eternal transient phase, and a
reversible version could be made?

Appendix: Reversibility of Markov chains and PCA

It is common to regard Markov chains as the epitome of irreversible behaviour:
a preferred direction of time seems to be built in because we usually charac-
terise them by their forward transition probabilities, and memory of the initial
state is lost as time goes forwards (completely if the chain is irreducible and
aperiodic).

Nevertheless, the Markov property does not distinguish between backward
and forward time. A Markov chain (e.g. [18]) is a discrete-time stochastic
process on a countable state space such that the sequences of states in the past
and future of any moment are independent given the state at that moment.
From this it follows that the probability of any given finite sequence of states
can be factorised as a probability of the initial state multiplied by a sequence
of forward transition probabilities, but it could be written equally well as a
probability for the final state multiplied by a sequence of backward transition
probabilities (or even starting at any intermediate time and working out both
ways in time). Note that this is true regardless of whether the Markov chain
is stationary (a stochastic process is stationary if the probability distribution
for realisations is invariant under time-shifts).

A stochastic process (Xt)t∈Z is said to be reversible if the probability
distribution for (Xt, . . . , X

′
t) is the same as for (Xτ−t, . . . , Xτ−t′) for all t, t′, τ .

Note that “reversible” is not the opposite of “irreversible”. Most reversible
Markov chains exhibit irreversible behaviour, in the sense of loss of dependence
of the future state on the state at time 0, but they have identical loss of
dependence in reverse time.

I consider it appropriate, even essential, to extend the concept of reversibil-
ity of stochastic processes to something which is a closer analogue of the notion
in deterministic dynamics. IfR is an involution of the state space (a map whose
square is the identity I), I say a stochastic process (Xt)t∈Z is R-reversible
if (R(Xτ−t), . . . , R(Xτ−t′)) has the same distribution as (Xt, . . . , X

′
t) for all

t, t′, τ . Just as is well known for the standard case of R = I, an R-reversible
stochastic process is automatically stationary (just choose two different val-
ues for τ). Also if π is the probability distribution at time 0 (and hence at
any time, by stationarity) for an R-reversible Markov chain with transition
probabilities pij then by taking t = t′ = τ = 0 we obtain πR(i) = πi for all
states i and by taking t = 0, t′ = τ = 1 we obtain

πipij = πR(j)pR(j)R(i)
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for all states i, j (in the standard case R = I, the first relation is vacuous
and the second is known as “detailed balance”). Furthermore, if a stationary
Markov chain satisfies these two conditions then it is easy to prove it is R-
reversible (generalising another standard result).

Often, however, under the name “Markov chain” we are presented just
with forward transition probabilities pij , specifying conditional probabilities
like P (i1, . . . , it|i0) but not P (i0) nor P (i0|i1), for example. This is not a full
prescription of a Markov chain, which officially specifies the probabilities of all
events in the space of sequences, so to avoid confusion I’ll call it a pre-Markov
chain. It is precisely our situation: we wish to know the possible stochastic
processes compatible with the transition probabilities, including arbitrarily
far in the past, and decide if there is a unique one or not.

A pre-Markov chain does not define a backwards pre-Markov chain, so is
not invertible, yet we’d like to be able to say if a pre-Markov chain is reversible
or not. I propose a definition, based on considering the transition probabilities
as defining probabilities for two-point boundary value problems rather than
initial value problems (as in Sect. 3.3).

To simplify exposition, let’s first restrict attention to autonomous pre-
Markov chains (meaning the transition probabilities do not depend on time).
A pre-Markov chain (pij) defines the probabilities of sequences i0, . . . , iτ given
i0, iτ (provided a path of positive probability exists) to be

P (i0, . . . , iτ | i0, iτ ) =
1
Z

τ−1∏

t=0

pitit+1

with Z a normalisation factor. Given involution R, say the pre-Markov chain
is R-reversible if for each two-point boundary value problem the probability
distribution is the same as for that given by reflecting all sequences in time
and in state using R, equivalently,

1
Z

τ−1∏

t=0

pitit+1 =
1
Z ′

τ−1∏

t=0

pR(it+1)R(it) .

This holds if there exists a probability distribution π such that

pR(j)R(i) = πipij/πj

for all i, j, and for a large class of pre-Markov chains this is also a necessary
condition (see next four paragraphs). Such a π is an equilibrium measure for
the pre-Markov chain (

∑
i πipij = πj for all j), so (p, π) defines a Markov

chain. If R = I it is reversible, but for R �= I if πR(i) �= πi for some i then
it is not R-reversible. Thus the notion of R-reversibility allows the possibility
of making R-reversible pre-Markov chains with non-R-reversible equilibrium
measure.

To see that the above sufficient condition is often also necessary, given p for
which the graph of allowed transitions is connected and each state can be both
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preceded and followed by a cycle (and a hypothesis on the highest common
factors of lengths of cycles, to be formulated later), the general solution for
non-negative q of

1
Z

τ−1∏

t=0

pitit+1 =
1
Z ′

τ−1∏

t=0

qittt+1

for all i0, iτ for which there exists an allowed path is

qij = DVjpij/Vi

for some D > 0 and positive function V .
To prove this, let zij = qij/pij for allowed transitions, so the condition is

that the product of zitit+1 along all paths from i0 to iτ in the same time τ
is the same. Choose a cycle i0, . . . , iN = i0 and let D be the Nth root of the
product of zitit+1 around it. Any other cycle gives the same value because if
γ1, γ2 are two cycles of lengths N1, N2, and one can get from γ1 to γ2 by a
path γ then the two paths γN2

1 γ and γγN1
2 connect the same two states in

the same time so have the same product of z. Similarly, if γ1 and γ2 can be
reached from a common point then there exists a preceding cycle γ3, so γ1, γ2

have the same value of D as γ3 (and similarly if they can lead to a common
point). Iterating this procedure for cycles which are linked only by a chain
of segments in alternating directions, we show that all cycles have the same
value of D.

Now choose a reference state o, let Vo = 1 and for each j reachable from o
let Vj be the product of the z along a path from o to j divided by Dτ where τ is
the length of the path. There might be more than one path from o to j. If they
have the length then the product of z is the same, so no ambiguity results. If
path γ1 from o to j is longer than γ2 by K > 0 then j is followed by some path
γ3 ending in a cycle γ. If the length of γ divides K, say N times, then γ1γ3

and γ2γ3γ
N joins the same points in the same time, so the value of Vj is the

same using γ1 or γ2. Similarly, if o is preceded by a cycle of length dividing
K, or if there are cycles γ4 preceding o and γ5 following j whose lengths have
highest common factor dividing K, one can construct two paths joining two
points in the same time and hence see that Vj is well defined. Similarly if γ2

contains a state on a cycle with length dividing K, or if both contain states on
cycles with lengths whose highest common factor divides K, then we find the
same value for Vj . For j that can lead to o, one can define Vj to be Dτ divided
by the product (which is non-zero) of z for backward transitions from o, and
again argue that this produces no contradiction. Finally, one can alternate
forwards and backwards paths to define Vj for all j, because we assumed the
graph is connected.

Thus under these assumptions, for an R-reversible pre-Markov chain,

pR(j)R(i) = DVjpij/Vi

for some D and V . Summing over i yields 1 = DVj

∑
i

pij

Vi
, so D

∑
i

pij

Vi
= 1

Vj
.

Now assume Z =
∑

i
1
Vi
< ∞ and sum over j, to obtain DZ = Z, so D = 1.
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Then πi = 1
ZVi

is a probability distribution such that for all i, j,

pR(j)R(i) = πipij/πj .

The considerations of this Appendix extend from Markov chains to PCA.
When we talk about PCA, we usually mean a pre-PCA, specifying conditional
probabilities for initial value problems, rather than a full stochastic process.
This suffices to determine the probabilities for boundary value problems, how-
ever, as in Sect. 3.5. Hence given an involution R of the local state space we
can define a pre-PCA to be R-reversible if the conditional probabilities for
all time and state reflected boundary value problems are the same as for the
originals. A sufficient condition for this is that the associated Markov random
field model be equivalent to one with time-symmetric templates such that
the weights for state-time-reflected configurations differ by a (multiplicative)
coboundary, i.e. a function of configuration on the template such the product
over any bounded subset Λ of space-time given the state outside is indepen-
dent of the state on Λ (such as Vj/Vi for the case of a pre-Markov chain pij).
One could also allow involutions of the product state space not of product
form, but I won’t pursue that here.

Now for the kinetic Ising model, which is not autonomous but period-2, we
need to modify the definition of reversibility again. I’ll say a period-2 Markov
chain (meaning the distribution is invariant under shifts by even times) is
R-reversible if the distribution of sequences reflected about half-odd integer
times and with states reflected by R is unchanged. Similarly, a period-2 pre-
Markov chain is R-reversible if the probabilities for all two-point boundary
value problems are invariant under reflection in a half-odd integer time and
reflection of the states by R. The same goes for period-2 PCA.

For example, the kinetic Ising model is reversible with R = I, because an
equivalent Markov random field (i.e. after multiplication by a coboundary) is
that with templates τ of the form {(s, t), (s ± (1, 0), t), (s ± (0, 1), t), (s, t +
1), (s± (1, 0), t+ 1), (s± (0, 1), t+ 1)} for (s, t) even, and weights

wτ =
exp 1

2 (σt
s + σt+1

s )Jm
expJm+ exp−Jm

if σt+1
r = σt

r for all r ∈ N(s) (where m =
∑

r∈N(s) σ
t
r), 0 otherwise,

which are invariant under time-reflection. The coboundary consists of fac-
tors exp 1

2Jσ
t+1
s σt+1

r and exp 1
2Jσ

t
sσ

t
r for each r ∈ N(s), each of which cancel

with corresponding factors in overlapping templates.
The kinetic Ising PCA is also reversible with respect to interchange of ±.
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This chapter is divided into three parts. I start with a review of the existence
results of SRB-measures for coupled map lattices. In the second part I give
a brief introduction to the behaviour of Hausdorff dimension under general
projections. Finally, I construct a counterexample to the Bricmont–Kupiainen
conjecture and discuss its role in the definition of SRB-measures for coupled
map lattices.

1 Existence of SRB-measures

A coupled map lattice is a discrete time dynamical system (X,T ) consisting
of the phase space X and the mapping T : X → X. The phase space X =∏

L M is the product of a compact (finite dimensional) manifold M over some
lattice L equipped with the product topology. The dynamics T = A ◦ F is a
composition of the uncoupled map F =

∏
L f , where f : M → M is called

the local dynamics, and the coupling A : X → X, which ties the independent
local systems into one infinite dimensional system. I will mainly concentrate
on the situation where M is the unit circle S1, f is an expanding smooth map,
L is the d-dimensional lattice Z

d, and the coupling A is a small perturbation
of the identity such that the dependence of the ith coordinate A(x)i on xj

decreases exponentially fast with respect to the natural distance |i− j| on Z
d.

Coupled map lattices were introduced by Kaneko in 1983. I refer to [40] (see
also [11]) for an overview of the numerous results obtained in the 1980’s and I
will concentrate on the existence results of SRB-measures (for the discussion
on the definition of SRB-measure see the end of Sect. 3). The existence of
SRB-measures for coupled map lattices was first proved by Bunimovich and
Sinai in [12]. They studied a system where the phase space X =

∏
Z
[0, 1]

is the product of unit intervals over the one dimensional lattice Z, the local
dynamics f : [0, 1] → [0, 1] is an expanding C1+δ map (that is, f ′ is Hölder
continuous with exponent δ), and A is a special nearest neighbour coupling,
meaning that the value of A(x)i depends only on xi−1, xi, and xi+1. They

E. Järvenpää: SRB-Measures for Coupled Map Lattices, Lect. Notes Phys. 671, 95–114 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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proved that there exists an ergodic invariant Borel probability measure µ on X
such that its projections µΛ onto finite dimensional subsystems XΛ =

∏
Λ[0, 1]

(Λ ⊂ Z is finite) are absolutely continuous with respect to the corresponding
Lebesgue measure. The measure µ is also mixing with respect to the dynamics
T (which I will call the time dynamics) and the space dynamics induced by
the natural left shift σ : Z → Z, σ(i) = i − 1. Pesin and Sinai [53] extended
this result to the case where the local maps are (genuinely) hyperbolic.

The essential feature of the coupling used in [12, 53] is that it is iden-
tity on the boundaries of the space. This guarantees the existence of Markov
partitions which enables the use of thermodynamic formalism, that is, one
can apply the methods of statistical physics. Keller and Künzle [44] studied a
more general coupling and more general local dynamics, namely only piecewise
C1+δ, and obtained the existence of an SRB-measure. However, they managed
to prove mixing properties only for finite dimensional approximations, not for
the whole infinite dimensional system. For corresponding results in the case
of hyperbolic local maps, see [60].

In [9] Bricmont and Kupiainen extended the aforementioned results in
several ways. First of all, they studied d-dimensional lattice Z

d for arbitrary
d ∈ N. Secondly, they had an infinite range coupling which was only de-
manded to be small and to decay exponentially with respect to the distance
between lattice sites. Thirdly, they proved good mixing properties, namely,
they obtained an exponential decay of correlations for local observables in the
infinite dimensional system. The price for this is that they had to consider
real analytic expanding maps on the local phase space S1. In [10] they ob-
tained the same results for C1+δ maps. The fact that similar methods can
be applied if one replaces the unit circle by any compact manifold admitting
expanding smooth maps was observed in [31]. Jiang [36] and Jiang and Pesin
[37] have proved the corresponding results as Bricmont and Kupiainen in the
case where the local dynamics is hyperbolic. Inspired by the works of Just
[38, 39], I studied in [30] globally coupled maps and proved the existence of a
SRB-measure. Furthermore, I verified that correlations decay like 1/N where
N is the system size.

A natural question arising from these results is whether one can say some-
thing about the spectrum of the Perron–Frobenius operator associated to the
infinite dimensional system. This question has been studied for example by
Baladi et al. [3], Fischer and Rugh [22], Baladi and Rugh [4], Blank, Keller,
and Liverani [7], Schmitt [57], and many others. For more information on this
approach see the presentation of Gerhard Keller in this school.

I try to give a rough idea of the proofs of the results in [10] without going
too deep into technical details. For readers’ convenience I give explicitly the
assumptions of [10]. The phase space is X =

∏
Zd S1. It is practical to use

the covering map xj �→ ei2πxj and describe the mappings via their lifts. The
local dynamics is given by an orientation preserving expanding C1+δ map
f : R → R. Note that this implies the existence of λ > 1 and k ∈ N \ {0, 1}
such that f ′(x) > λ and f(x+ 1) = f(x) + k for all x ∈ R. One assumes that
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f(0) ∈ [0, 1). For all i the ith component A(x)i of the coupling is assumed to
be continuously differentiable with respect to every variable xj such that for
all x, y ∈ X ∣

∣
∣
∣
∂A(x)i

∂xj
− δij

∣
∣
∣
∣ ≤ εe−β|i−j|

and ∣
∣
∣
∣
∂A(x)i

∂xj
− ∂A(y)i

∂xj

∣
∣
∣
∣ ≤ ε

∑

k∈Zd

e−β(|i−j|+|i−k|)|xk − yk|δ

for some ε, β, δ > 0. Here δij is the Kronecker’s delta. Furthermore, the cou-
pling is assumed to be space translation invariant, that is, A = τi ◦ A ◦ τ−1

i

for all i ∈ Z
d. Here (τi(x))j = xj−i.

Example 1.1. An example of a coupling satisfying the above assumptions is

A(x)i = xi +
ε

(2π)2
∑

k∈Zd

2−|i−k| cos(2π(xi − xk))

with β = log 2/2.

Remark 1.1. In this chapter I always assume that measures are Borel regular
(for the definition see [49, Definition 1.5]). Since Bricmont and Kupiainen
defined a regular measure meaning something different (see Definition 1.2) I
do not explicitly mention Borel regularity to avoid confusion.

Definition 1.1. A measure µ is T -invariant if T∗µ = µ where the image
measure is defined by T∗µ(B) = µ(T−1(B)) for all Borel sets B. A T -invariant
probability measure µ on X is a SRB-measure if µΛ � LΛ for all finite Λ ⊂ Z

d

where L is the Lebesgue measure on X. The notation µ � ν means that
measure µ is absolutely continuous with respect to ν. If µ� ν then the Radon–
Nikodym derivative dµ/dν is called the density of µ with respect to ν.

For the differentiation theory of measures see [49, Sect. 2].

Definition 1.2. Let Λ ⊂ Z
d be finite. The space Cδ(XΛ) consists of continu-

ous functions h on XΛ such that

|h(x)− h(y)| ≤ C
∑

i∈Λ

|xi − yi|δ.

We equip Cδ(XΛ) with the norm

‖h‖δ = ‖h‖∞ + sup
x,y∈XΛ

|h(x)− h(y)|
∑

i∈Λ |xi − yi|δ
·

A probability measure µ on X is regular if µΛ � LΛ, its density hΛ is con-
tinuous and strictly positive, and log hΛ ∈ Cδ(XΛ) for all finite Λ ⊂ Z

d.
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In [10] the following theorem was proved.

Theorem 1.1. Let T satisfy the assumptions given above. There exists ε0 > 0
such that for all ε < ε0 the map T has a SRB-measure µ. Furthermore, µ is
invariant and exponentially mixing under the space-time translations gener-
ated by τi and T : there exists m > 0 and C < ∞ such that for all finite
B,D ⊂ Z

d and for all g ∈ L∞(XB) and h ∈ Cδ(XD) we have
∣
∣
∣
∣

∫

g ◦ Tnhdµ−
∫

gdµ

∫

hdµ

∣
∣
∣
∣ ≤ C ‖g‖∞ ‖h‖δ e

−m(n+d(B,D))

where d(B,D) = min{|i− j| | i ∈ B, j ∈ D} and C depends on the diameters
of B and D. Finally, for all regular measures ν the sequence (T∗)nν tends to
µ in the weak∗ topology.

There are three main tools in the proof of Theorem 1.1: Perron–Frobenius
operator, equilibrium states associated to interactions in lattice models of
statistical physics, and polymer expansions.

Definition 1.3. Let M be a compact manifold, L the Lebesgue measure on
M , and T : M → M a non-singular mapping meaning that L(B) = 0 if
and only if L(T−1(B)) = 0 for Borel sets B. The Perron–Frobenius operator
P : L1(M) → L1(M) associated to T is defined by the equation

∫

g ◦ T h dL =
∫

gP (h) dL (1)

for all g ∈ L∞(M) and h ∈ L1(M).

Observe that if µ � L then also T∗µ � L by the non-singularity of T .
Thus if h is the Radon–Nikodym derivative of µ with respect to L then P (h)
is the Radon–Nikodym derivative of T∗µ with respect to L. (In the sequel the
Radon–Nikodym derivative is called simply the density.) Therefore, P may be
viewed as the restriction of T∗ to measures which are absolutely continuous
with respect to L. From this it is obvious that if h is a fixed point of P , that
is, it is an eigenstate with eigenvalue 1, then hL is an invariant measure for
T . It is a well-known result that if T is an expanding C1+δ map on a compact
manifold M then the spectrum of P , restricted to the space of functions
of bounded variation, consists of a simple eigenvalue 1 and the rest of the
spectrum is inside a disc of radius γ for some γ < 1. This implies that any
smooth initial density will converge under the iteration of P to the density of
the unique invariant measure µ which is absolutely continuous with respect to
L. In fact, the SRB-measure µ is equivalent with L. These results are due to
Sinai [59], Ruelle [54], and Bowen [8]. For more information on these questions
see [1, 2]. An easy-to-access exposition of interval maps is [13].

I will need the following explicit form of the Perron–Frobenius operator
which is valid in the expanding orientation preserving case:
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P (h)(x) =
∑

y:T (y)=x

h(y)
detDT (y)

· (2)

This formula is easily verified via the change of variables.
The idea of the proof of Theorem 1.1 is that one first takes a finite Λ ⊂

Z
d, fixes some boundary condition xΛc on XΛc (where Λc = Z

d \ Λ), and
obtains in this way an expanding map on the finite dimensional manifold
XΛ. More precisely, TΛ : XΛ → XΛ is defined by TΛ = AΛ ◦

∏
Λ f , where

AΛ(x)i = A(xΛ, xΛc)i for all i ∈ Λ and the boundary condition xΛc does not
evolve in time. Then one iterates the constant function 1 with the Perron–
Frobenius operator PΛ associated to this finite dimensional approximation. By
the aforementioned results concerning finite dimensional expanding maps the
sequence PN

Λ (1) will tend to the density of the unique SRB-measure µΛ of the
finite dimensional system. Finally, letting Λ tend to Z

d along some increasing
sequence, one shows that the sequence µΛ converges to some measure µ which
is independent of the boundary condition xΛc . This limiting measure is the
SRB-measure of Theorem 1.1.

As a result of the above method one obtains the following lattice gas model.
In addition to the lattice Z

d each iterate of the Perron–Frobenius operator
will give a new copy of Z

d leading to the lattice L = Z
d × N. As a result

we have a phase space Ω =
∏

L M(i,j), where M(i,0) = S1 for all i ∈ Z
d and

M(i,j) = {0, . . . , k− 1} for all i ∈ Z
d and j ∈ N \ {0}. Here k is the number of

preimages of any point for the map f : S1 → S1. Denoting by f also the lift
of f , one sees that the different preimages of a point x ∈ [0, 1) are of the form
f−1(x + s) where s = 0, 1, . . . , k − 1. Let ψs(x)i = f−1(A−1

Λ (x)i + si) where
s ∈ {0, . . . , k − 1}Λ. Then by (2)

PΛ(h)(x) = detDA−1
Λ (x)

∑

s∈{0,...,k−1}Λ

h(ψs(x))
∏

i∈Λ f
′(ψs(x)i)

and further

PN
Λ (1)(x) =

∑

s1,...,sN

N∏

t=1

(
detDA−1

Λ (ψst−1 ◦ · · · ◦ ψs1(x))

∏

i∈Λ

(f ′(ψst ◦ · · · ◦ ψs1(x)i))−1
)
·

One begins the proof by writing

PN
Λ (1) = e−H (3)

where H is a real valued function on ΩΛ×{0,...,N}. In the terminology of sta-
tistical physics the function H is called Hamiltonian. In order to apply the
methods of statistical physics one still has to localize the Hamiltonian, mean-
ing that one needs to find an interaction Φ such that
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H =
∑

Y ⊂Λ×{0,...,N}
ΦY

where ΦY is a function on ΩY . One proves that the interaction ΦY , which
depends on Λ, N , and the chosen boundary condition xΛc , will tend to an
interaction ΦY , which is independent of Λ,N , and the boundary condition xΛc ,
as N tends to infinity and Λ tends to Z

d. The results of statistical mechanics
guarantee that, provided the limiting interaction Φ has some nice properties,
there will be a unique equilibrium state µ̃ associated to it. This equilibrium
state is a measure on Ω and it will be exponentially mixing with respect to
translations in L. Note that the translation in N direction corresponds to the
time dynamics of the original coupled map lattice. Thus the projection of µ̃
onto ΩZd×{0} will be the SRB-measure of Theorem 1.1.

An excellent introduction and a handbook of lattice gas models of statis-
tical physics is [58]. A more compressed but still complete exposition can be
found in [55]. I refer to these books for more information on equilibrium and
Gibbs states and I briefly explain some relevant results concerning interac-
tions. In the case where the underlying lattice is at least two dimensional, it
is important to distinguish between several norms used in the space of inter-
actions. For simplicity I assume that the interactions are translation invariant
and 0 is a fixed point in the lattice. If

‖Φ‖0 =
∑

Y 
0

|ΦY |

is finite, then there exists an equilibrium state (see [58, Corollary III.2.9]).
Assuming that

‖Φ‖1 =
∑

Y 
0

|Y ||ΦY |

is small, the equilibrium state is unique (see [14, 15]). If for some γ > 0

‖Φ‖2 =
∑

Y 
0

eγd(Y )|ΦY |

is small, then the equilibrium state is unique and the correlations decay ex-
ponentially (see [23]). Finally, supposing that for some γ > 0

‖Φ‖3 =
∑

Y 
0

eγ|Y ||ΦY |

is small, the equilibrium state is unique and the correlation functions are
analytic (see [29]). Here |Y | is the number of elements in Y and d(Y ) is the
diameter of Y .

The interaction rising from the proof of Theorem 1.1 does not fall into any
of the above classes. In fact, it is of the form Φ0 + Φ1 where Φ0 is a finite
range one dimensional interaction and ‖Φ1‖2 is small. In [9] the analyticity
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assumptions guarantee that ‖Φ1‖3 is small. Since the behaviour of one dimen-
sional lattice models is radically different from higher dimensional ones, this
kind of interaction will imply the nice properties stated in Theorem 1.1.

How does one localize a Hamiltonian? One method (also used by Bricmont
and Kupiainen) is telescoping. Namely, let H = H(x1, . . . , xn) and 0 be some
fixed value which every coordinate may attain. Then

H(x1, . . . , xn) =H(x1, . . . , xn)−H(x1, . . . , xn−1, 0)
+H(x1, . . . , xn−1, 0)−H(x1, . . . , xn−2, 0, 0)
+ · · ·+H(x1, 0, . . . , 0)−H(0, . . . , 0) +H(0, . . . , 0) .

Now one can define

Φ{1,...,k}(x1, . . . , xk) = H(x1, . . . , xk, 0, . . . , 0)−H(x1, . . . , xk−1, 0, . . . , 0)

and set ΦY ≡ 0 if Y �= {1, . . . , k} for all k = 1, . . . , n. To use this method, some
numbering of points in Λ× {0, . . . , N} has to be fixed. The ε in the coupling
guarantees that if the set Y contains points with different space coordinates,
then there will be ε in the interaction. The exponential decay of the coupling,
in turn, is needed to make the norm ‖·‖2 small. Finally, one has to decompose
the Hamiltonian also in the time direction. Note that in time direction one has
a sequence of ψ’s (see (3)). Each ψ is a contraction with coefficient λ′ < 1 since
f−1 is a contraction and the coupling is small. Although λ′ is not necessarily
small, (λ′)M is small for M large. So one has to divide the terms into two
groups depending on the number of ψ’s they contain. This is the reason why
one has the Φ0-part in the interaction which is not small.

Since the interaction does not fall into any of the well-known classes of
interactions described above, the claims of Theorem 1.1 have to be proved
explicitly. It is clear that if there is some correlation between observables
supported on B and D there must be interactions connecting the sets B and
D. There are two possibilities: either there is one term ΦY connecting these
sets, or there is a chain of terms ΦY1 , . . . , ΦYn

starting from B and ending in D.
In the first case, the smallness of correlation is due to the exponential decay of
the interaction with respect to the diameter of the set. In the second case, there
must be many terms and each of them contains one ε. To make this argument
rigorous one has to have a good way of indexing all different possibilities. The
polymer expansion is a technical tool which is developed for these purposes.
It enables one to write an explicit formula for the correlation functions and
expectations of local observables, that is, functions depending only on finitely
many coordinates. From this formula one finds an upper bound for the rate of
mixing. I refer to [9, 10] for more details. An excellent introduction to polymer
expansions is [58, Sect. V.7].

In [9] Bricmont and Kupiainen made a conjecture that there is only one
SRB-measure for the systems they considered. Note that according to The-
orem 1.1 this conjecture is true in the class of regular measures (see Defini-
tion 1.2).
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2 Projection Results

In this section I give an overview of some results in the field of geometric mea-
sure theory which seem to be totally unrelated to the results of the previous
section. However, it appears that they are closely connected to the solution
of Bricmont–Kupiainen conjecture.

I start with a simple example.

Example 2.1. Consider a line segment in R
3. If one projects it onto a two di-

mensional plane, one obtains a line segment, unless the plane happens to be
perpendicular to the original line segment in which case one obtains a point.
Hence this one dimensional set is projected generically onto a one dimensional
set. If, instead of line segment, one projects a cube the result is two dimen-
sional. Thus the projection of the three dimensional cube is two dimensional.

Amazingly these two simple examples illustrate the general behaviour of
Hausdorff dimensions of projections as the following theorem states:

Theorem 2.1. Let 0 < m < n be integers and B ⊂ R
n. Then

dimH(PV (B)) = min{dimH(B),m}

for γn,m-almost all V ∈ G(n,m). Here G(n,m) is the Grasmann manifold of
m-planes in R

n, γn,m is the Haar measure on G(n,m), PV is the orthogonal
projection onto V , and dimH(B) is the Hausdorff dimension of B.

This theorem was first proven by Marstrand [46] in the plane, then by
Kaufman [41] in the plane using different methods, and finally by Mattila [47]
in full generality. The corresponding result is true also for measures. Recall
that the definition of the Hausdorff dimension of a measure is as follows:

Definition 2.1. The Hausdorff dimension of a finite measure µ on R
n is

dimH(µ) = inf{dimH(B) | B is a Borel set with µ(B) > 0}
= µ- ess inf

x∈Rn
dimloc µ(x)

where

dimloc µ(x) = lim inf
r→0

logµ(B(x, r))
log r

is the lower local dimension of µ at x. Here B(x, r) is the closed ball centred
at x with radius r.

The analogue of Theorem 2.1 is valid for measures:

Theorem 2.2. Let 0 < m < n be integers and let µ be a finite measure on
R

n. Then for γn,m-almost all V ∈ G(n,m)

dimH(PV ∗µ) = dimH(µ), if dimH(µ) ≤ m

PV ∗µ� Lm, if dimH(µ) > m .
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Theorem 2.2 is more or less explicitly stated in [20, 24, 41, 48]. Theo-
rems 2.1 and 2.2 may be summed up by saying that Hausdorff dimension is
preserved under typical projections. Note that the set of exceptional directions
may be quite large although it has zero measure (see [16, 42, 52]).

There are several extensions of these theorems. Instead of Hausdorff dimen-
sion, one may consider different dimensions like packing dimension, box count-
ing dimension, multifractal q-dimensions etc. (see [18, 19, 20, 21, 25, 32, 35]).
Note that the choice of dimension effects also on the results obtained. One may
also replace typical projections by a prevalent set of C1-maps (see [25, 32, 56]).
Hunt and Kaloshin [26] showed that the corresponding results are not true in
infinite dimensional situations. I refer to the excellent survey of Mattila [50]
for more information.

To give some flavour of the aforementioned results, I make a simple cal-
culation which contains some essential features related to projections. One
crucial ingredient in this context is the s-energy of a measure which I now
define.

Definition 2.2. Let µ be a finite measure on a metric space (X, d) and s > 0.
The s-energy of µ is

Is(µ) =
∫∫

d(x, y)−sdµ(x)dµ(y) .

The finiteness of s-energy is closely related to the Hausdorff dimension
of a measure. In fact, if Is(µ) < ∞ then dimH(µ) ≥ s. On the other hand,
assuming that s < dimH(µ), the measure µ has a restriction with finite s-
energy (see [49, pp. 109–110]). This indicates the relevance of the energies
of projected measures when calculating their Hausdorff dimensions. To begin
with I derive a useful formula for integrals according to which for any measure
µ on a separable metric space X

∫

f(x)dµ(x) =
∫ ∞

0

µ({x ∈ X | f(x) ≥ t}) dL1(t) (4)

for all non-negative Borel functions f (see [49, Theorem 1.15]). Indeed, letting
A = {(x, t) ∈ X × R | f(x) ≥ t} we have

∫ ∞

0

µ({x ∈ X | f(x) ≥ t}) dL1(t) =
∫ ∞

0

µ({x ∈ X | (x, t) ∈ A}) dL1(t)

=
∫

L1({t ∈ [0,∞) | (x, t) ∈ A}) dµ(x) =
∫

L1([0, f(x)]) dµ(x)

=
∫

f(x) dµ(x).

Let µ be a measure on R
n. The starting point of the energy calculations of

projections of µ is [49, Lemma 3.11] according to which there exists a constant
c such that
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γn,m({V ∈ G(n,m) | |PV (x)| ≤ δ}) ≤ cδm|x|−m. (5)

Combining this with (4), we obtain for all 0 < s < m and x ∈ R
n \ {0} the

following result (see [49, Corollary 3.12]):
∫

|PV (x)|−sdγn,m(V ) =
∫ ∞

0

γn,m({V ∈ G(n,m) | |PV (x)|−s ≥ t}) dL1(t)

=
∫ ∞

0

γn,m({V ∈ G(n,m) | |PV (x)| ≤ t−
1
s }) dL1(t)

≤
∫ |x|−s

0

dL1(t) +
∫ ∞

|x|−s

γn,m({V ∈ G(n,m) | |PV (x)| ≤ t−
1
s }) dL1(t)

≤ |x|−s + c|x|−m

∫ ∞

|x|−s

t−
m
s dL1(t)

=
(

1 +
cs

m− s

)

|x|−s . (6)

Using (6), we find a constant C such that
∫

Is(PV ∗µ)dγn,m(V ) =
∫∫∫

|x− y|−sdPV ∗µ(x)dPV ∗µ(y)dγn,m(V )

=
∫∫∫

|PV (x− y)|−sdµ(x)dµ(y)dγn,m(V )

=
∫∫∫

|PV (x− y)|−sdγn,m(V )dµ(x)dµ(y) ≤ CIs(µ).

(7)

According to (7), if Is(µ) < ∞ then Is(PV ∗µ) < ∞ for γn,m-almost all
V . This is one of the key observations of the proofs of Theorems 2.1 and 2.2.
It is clear that this method will give results only for almost all projections.
However, as I mentioned earlier, “almost all”-results are the best possible ones
in this context.

A very important extension of the projection results is due to Peres and
Schlag [52]. They replace projections by a general parametrized transversal
family of mappings from a compact metric space to R

m. Intuitively, transver-
sality means that when the parameter is also changed the mapping is changed
fast enough. Since I will use [52, Theorem 7.3] in Sect. 3, I state it explicitly
but not in the full generality.

Definition 2.3. Let (X, d) be a compact metric space, Q ⊂ R
n an open con-

nected set, and Π : Q ×X → R
m a continuous map with n ≥ m. Define for

all x �= y ∈ X
Φx,y(λ) =

Π(λ, x)−Π(λ, y)
d(x, y)

·

The mapping Π is regular if for any multi-index η = (η1, . . . , ηn) ∈ N
n there

exists a constant Cη such that
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|∂ηΠ(λ, x)| ≤ Cη and |∂ηΦx,y(λ)| ≤ Cη

for all λ ∈ Q and for all x �= y ∈ X. Here ∂η = ∂|η|

(∂λ1)η1 ...(∂λn)ηn and |η| =
∑n

i=1 ηi.

Definition 2.4. A regular mapping Π : Q ×X → R
m is transversal if there

exists a constant C such that for all λ ∈ Q and for all x �= y ∈ X the condition
|Φx,y(λ)| ≤ C implies

det(DΦx,y(λ)(DΦx,y(λ))T ) ≥ C2.

Here the derivative with respect to λ is denoted by D and AT is the transpose
of a matrix A.

The following theorem from [52] gives a relation between Sobolev norms of
images of measures under transversal family of regular mappings and energies
of original measures.

Theorem 2.3. Let Π : Q × X → R
m be transversal and let µ be a finite

measure on X such that Is(µ) < ∞ for some s > 0. Then there exists a
constant Cγ such that

∫

Q

‖Π∗µ‖22,γ dLn(λ) ≤ CγIs(µ)

provided that m+ 2γ ≤ s. Here ‖ · ‖2,γ is the Sobolev norm, that is,

‖ν‖22,γ =
∫

Rm

|ν̂(ξ)|2|ξ|2γdLm(ξ)

for any finite compactly supported measure on R
m, where

ν̂(ξ) =
∫

Rm

e−iξ·xdν(x)

is the Fourier transform of ν.

Proof. See [52, Theorem 7.3].

Remark 2.1. Let ν be a finite compactly supported measure on R
n. If ‖ν‖2,0 <

∞ then ν is absolutely continuous with respect to the Lebesgue measure Ln

and its Radon-Nikodym derivative is L2-integrable (see [33, Remark 2.6]).

I stated only the part of [52, Theorem 7.3] concerning measures whose
dimensions are larger than m since I need only that part in Sect. 3. There
is also the part which says that the dimension is preserved if it is less than
m. I say briefly something about the assumptions of Theorem 2.3. It is quite
obvious that some kind of smoothness is needed and almost as obvious that
the regularity assumption I formulated in Definition 2.3 is not the optimal
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one. The role of transversality may be explained as follows. Recall from the
results of orthogonal projections that there may always be some exceptional
directions. Since Theorem 2.3 deals with a parametrized family of maps one
could smoothly parametrize one exceptional projection with as many parame-
ters as one likes. Thus there must be some condition guaranteeing that if the
parameter is changed also the mapping is changed. In the proof there will be
a calculation like (7) in one form or the other where one needs an analogue of
(5). Transversality, in turn, is needed for this.

3 Counterexample to Bricmont–Kupiainen Conjecture

In this section I describe how one can construct a counterexample to the
Bricmont–Kupiainen conjecture (see [33]). This counterexample is based on
the results of Sect. 2.

Consider the standard 1
3 -Cantor set K on the unit interval and let Hs|K

be the restriction of the s-dimensional Hausdorff measure to K where s =
log 2/ log 3 is the Hausdorff dimension of K. ThenHs|K is an ergodic invariant
measure for the map f : [0, 1] → [0, 1], f(x) = 3x mod 1. Since the packing
and Hausdorff dimensions of K coincide, the Hausdorff dimension of the n-
fold product Kn is equal to n log 2/ log 3 (see [49, Theorem 8.10]). Thus for
any m one can find N such that for all n > N the dimension of Kn is larger
than m. This is true also for the product measure (Hs|K)n. According to
Theorem 2.2, the projection of (Hs|K)n is absolutely continuous with respect
to Lm for typical m-planes. However, the Bricmont–Kupiainen conjecture
deals with specific projections, namely, those determined by coordinate planes.
And clearly in this example the coordinate planes are not typical. The idea of
our example is that a small coupling will perturb the uncoupled map slightly
such that the coordinate planes become typical ones. Actually we do not prove
quite this but instead we find a parametrized family of conjugating maps such
that almost all conjugates of the uncoupled map have infinitely many SRB-
measures.

Let X =
∏

Zd S1, K =
∏

Zd K, and µ =
∏

Zd Hs|K . Since Hs(K) = 1
(see [17, Theorem 1.14]), µ is a probability measure. I denote by µΛ the
projection of µ onto XΛ. As in Sect. 1, I will use the same symbol for maps
(like f : S1 → S1, f(z) = z3) and their lifts (like f : R → R, f(x) = 3x).
Consider Aε : X → X,

Aε(x)i = xi +
∑

l∈Zd

εil2−|i−l|g(xl)

where for some ε0 > 0 one has εij ∈ (−ε0, ε0) for all i, j ∈ Z
d, and g :

R → R is smooth and 1-periodic. For convenience assume that |g(x)| < 1
for all x ∈ R. It is not difficult to see that Aε is invertible provided ε0 is
small enough (depending on |g′|). Namely, local invertibility follows from the
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implicit function theorem, and global invertibility from the fact that Aε is a
lift of a map on X. Set E =

∏
Zd×Zd(−ε0, ε0) and L =

∏
Zd×Zd ρ where ρ

is the normalized restriction of the Lebesgue measure to (−ε0, ε0). I use the
abbreviations EΛ×Λ̃ and LΛ×Λ̃ for the natural restrictions. For Λ ⊂ Λ̃, I denote
the natural projection from XΛ̃ onto XΛ by πΛ̃,Λ. Let Tε = Aε ◦

∏
Zd f ◦A−1

ε .
Now Aε∗µ is clearly Tε-invariant. In [33] we proved the following theorem.

Theorem 3.1. For L-almost all ε ∈ E the map Tε has infinitely many SRB-
measures.

The proof is divided into two steps. First we fix finite Λ ⊂ Λ̃ ⊂ Z
d such

that |Λ̃|s > |Λ| and consider the restriction of A to Λ̃ with open boundary
condition, that is,

Aε,Λ̃(x)i = xi +
∑

l∈Λ̃

εil2−|i−l|g(xl) .

Using Theorem 2.3, we show that for LΛ×Λ̃-almost all ε ∈ EΛ×Λ̃ the projection
(πΛ̃,Λ◦Aε,Λ̃)∗µΛ̃ is absolutely continuous. For this we have to restrict the map
g by demanding that |g′| > b > 0 in the set K. (Note that by 1-periodicity
there must be points where g′ = 0.) This guarantees that the transversality
condition is satisfied. The final step is to let Λ̃ tend to Z

d. This is a tech-
nical calculation and I refer to [33] for more details. Intuitively this limiting
process should not cause any problems. Indeed, according to Theorem 2.3,
the larger the dimension of the measure, the smoother its projection is. Thus
tilting the measure also in the complement of Λ̃ should make the situation
better. However, one should keep in mind the result of Hunt and Kaloshin [26]
according to which the Hausdorff dimension may decrease under projections
from infinite dimensional space onto finite dimensional subspaces. Although
it is possible that everything fails at the infinite limit, our setup indicates that
this is not very likely and the smoothness argument given by Theorem 2.3 is
stronger. The technical calculation in [33, Proposition 3.3] shows that this is
indeed the case.

Finally, the above consideration implies that there are at least two SRB-
measures, namely Aε∗µ and the SRB-measure constructed by Bricmont and
Kupiainen. However, instead of taking the standard Cantor set where one
deletes the middle third, one may delete the first or the last third. At every
coordinate direction one may choose one of these three sets. Clearly it is
possible to choose g such that |g′| > b > 0 on all these three sets. In this way
one obtains infinitely many SRB-measures.

Now I explain some details of the proof to illustrate what is going on.
To use Theorem 2.3, let Π : EΛ×Λ̃ × YΛ̃ → XΛ, Π(ε, x) = πΛ̃,Λ ◦ Aε,Λ̃(x).
Here YΛ̃ =

∏
Λ̃[−t0, t0] for some 1

9 < t0 < 1
6 . This is just a technical detail

to guarantee that |g(t) − g(t′)| ≥ b|t − t′|. Now Π is clearly regular so it is
enough to study the validity of the transversality assumption. We equip YΛ̃

with the metric
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d(x, y)2 =
∑

l∈Λ̃

2−2|i0−l||xl − yl|2

where i0 ∈ Λ is some fixed point. Now

Φx,y(ε)i =
Π(ε, x)−Π(ε, y)

d(x, y)
=
xi − yi +

∑
l∈Λ̃ εil2−|i−l|(g(xl)− g(yl))

d(x, y)

for all i ∈ Λ. Fix i ∈ Λ, k = (k1, k2) ∈ Λ× Λ̃, and x �= y ∈ YΛ̃. Then

DΦx,y(ε)i,k =
δi,k12

−|i−k2|(g(xk2)− g(yk2))
d(x, y)

·

Thus for i, j ∈ Λ

(DΦx,y(ε)DΦx,y(ε)T )i,j =
δi,j

d(x, y)2
∑

l∈Λ̃

2−|i−l|−|j−l|(g(xl)− g(yl))2

≥ δi,jb
22−|i−i0|−|j−i0|.

(8)

So transversality assumption is valid with the constant C = b|Λ|2−
∑

i∈Λ |i−i0|.
Note that, in order to obtain the inequality in (8), it is important that one
has the parameter εil for all (i, l) ∈ Λ× Λ̃. This is easy to understand. Let x, y
be such that xl = yl for all l except l0. If εil0 were missing, these two points
would not “see” the change of parameters. This is the reason why we have to
consider the infinite dimensional parameter space E.

Remark 3.1. (1) Taking any coupled map lattice which is close to T0 in the
sense that it has an invariant set close to K, one can repeat the above argu-
ments without changing the conjugacy Aε. Therefore it is possible to decom-
pose a suitable space of coupled map lattices into leaves such that inside each
leaf almost every system has infinitely many SRB-measures. This shows that
the uniqueness of the SRB-measure is a very atypical situation. The explicit
form of the conjugacy Aε is irrelevant. It is simply enough to find one. In order
to apply Theorem 2.3 it is essential that the map depends on all coordinates
such that the decay rate is not faster than the one in the definition of the
metric. More precisely, there has to be some lower bound on the decay so that
one can define an appropriate auxiliary metric (see (8)).

(2) Note that by Theorem 2.3 the densities of (πΛ ◦Aε)∗µ are smooth, in
particular, Hölder continuous. The uniqueness proof of Bricmont and Kupi-
ainen fails for these measures because there are regions where the density is
zero, and so one cannot take the logarithm of the densities.

Finally, I would like to say a couple of words about the definition of SRB-
measure. I will mainly concentrate on coupled map lattices and refer to the
review of Young [61] for more general discussion. In the case of Axiom A
diffeomorphisms there are several equivalent ways to define the SRB-measure.
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For describing these let M be a set, T : M →M a map, and L some preferable
measure on M (for example the Lebesgue measure if M is a manifold). First
of all, SRB-measure µ is natural meaning that there exists an open set U ⊂M
such that for all ν � L|U

lim
n→∞

1
n

n−1∑

i=0

(T∗)iν = µ

convergence being in the weak∗ topology. Secondly, SRB-measure µ is ob-
servable, that is, there exists an open set U ⊂ M such that for L-almost all
x ∈ U

lim
n→∞

1
n

n−1∑

i=0

δT i(x) = µ .

Thirdly, SRB-measure is an equilibrium state for an interaction constructed
from the derivative of T (see Sect. 1). Fourthly, SRB-measure is (the unique)
invariant measure absolutely continuous with respect to L, or its conditional
distributions on unstable leaves are absolutely continuous with respect to the
corresponding Lebesgue measure. There are also other definitions for the SRB-
measure like that it is a measure which is stable under random perturbations,
but I will not consider these and refer to [61] for more information.

Although all the above definitions are equivalent for Axiom A diffeomor-
phisms they are not equivalent for a general dynamical system. For example
the third and the fourth definitions are meaningful only if the system is in
some sense hyperbolic. Blank and Bunimovich [6] have proved that an ob-
servable measure is always natural and an ergodic invariant natural measure
which is equivalent to the Lebesgue measure is observable. Applying a result
of Inoue [28] (see also [43]), they showed that there are invariant non-ergodic
natural measures which are not observable. In [34] Tolonen and I constructed
an ergodic invariant natural measure which is not observable. See also [51] for
related results. Since these different definitions are not equivalent in general,
the natural question is what is the right definition for a SRB-measure in the
case of coupled map lattices. The definitions of naturalness and observability
assume that there exists some preferable measure on the space. On finite di-
mensional manifolds the Lebesgue measure (or some smooth modification of
it) has clearly a special role. So, if X =

∏
Zd S1, one may consider the infi-

nite product of normalized Lebesgue measures on S1 which is a probability
measure on X. However, if one modifies the Lebesgue on S1 just a little bit
and takes the product of these measures, then one obtains a measure which
is singular to the product of Lebesgue measures. This indicates that there is
no unique preferable measure for coupled map lattices to define naturalness
or observability. For the same reason the fourth definition is not directly ap-
plicable. But keeping in mind that coupled map lattices are models for real
life phenomena, one may argue that, although the real life systems are high
dimensional, they are nevertheless finite dimensional. At least one can make
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only finite number of observations of finite number of particles. One may also
interpret a measurement as a projection so it is natural to consider the fi-
nite dimensional projections of an invariant measure. In a finite dimensional
subsystem it does not matter whether one uses Lebesgue measure or some
modification of it. Therefore Definition 1.1 is a very natural definition.

In statistical physics a phase transition is associated with the non-uni-
queness of equilibrium states. (At the temperature 0 degrees of Celsius there
are two phases – water and ice.) An interesting question is whether there
could be a phase transition in coupled map lattices even for small cou-
pling due to the infinite dimensionality of the system although for the local
dynamics there were unique SRB-measure. If one takes as the definition of
SRB-measure the one saying that it is an equilibrium state for a poten-
tial constructed from the derivative of the map, then the results of [10, 37]
imply that there are no phase transitions. If one adopts Definition 1.1, then
the results of [33] imply that there is a phase transition even for small cou-
pling. To resolve this paradox, one should analyze the results of [33] more
carefully. Indeed, these results imply that for any finite Λ ⊂ Z

d there is an
open set U ⊂ XΛ with positive Lebesgue measure such that for LΛ-almost all
x ∈ U there are boundary conditions xc

1 and xc
2 such that

lim
n→∞

1
n

n−1∑

i=0

δT i(x,xc
i )

= µi, i = 1, 2

and µ1 �= µ2. However, in order to see a measure which is different from the
SRB-measure constructed by Bricmont and Kupiainen, one has to choose the
boundary condition carefully. In other words, the boundary condition depends
on x, and one may argue that the phase transition implied by Theorem 3.1 is
not a physical one.

In statistical physics it is natural to talk about equilibrium states asso-
ciated to interactions since the interaction is the primary concept. However,
from the point of view of dynamical systems interaction is rather a tool than a
fundamental basic quantity. Thus one would like a more dynamical definition
for SRB-measure. Although being natural, Definition 1.1 has the drawback
that SRB-measure is not unique for small coupling. I motivated this defini-
tion by saying that a measurement is a projection. However, projection means
that one takes an average over all boundary conditions. Since one can make
only finitely many measurements, one studies also finitely many boundary
conditions. Thus it is perhaps better to study conditional distributions on fi-
nite dimensional subsystems and demand that they are absolutely continuous
with respect to the Lebesgue measure. This approach has been taken by Keller
and Zweimüller in [45]. They proved the uniqueness of SRB-measure in this
sense. However, they have to assume that the coupling is unidirectional over
the one dimensional lattice N meaning that the boundary conditions have an
effect on finite subsystems but the finite subsystems have no effect on the
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boundary conditions. Although this assumption is reasonable one would like
to relax it.

One possible alternative is to say that µ is a SRB-measure if it is natural or
observable with respect to all measures of the form

∏
Zd ν where ν is absolutely

continuous with respect to the local Lebesgue measure. A step in this direction
is taken by Bardet in [5].

As a concluding remark I emphasize that although the theory of SRB-
measures for weakly coupled expanding or hyperbolic maps is already quite
well understood there are still some very basic problems to be solved.
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33. E. Järvenpää and M. Järvenpää: On the definition of SRB-measures for coupled
map lattices, Comm. Math. Phys. 220, (2001), pp 1–12 105, 106, 107, 110
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This chapter is divided into three parts. I start with a review of the existence
results of SRB-measures for coupled map lattices. In the second part I give
a brief introduction to the behaviour of Hausdorff dimension under general
projections. Finally, I construct a counterexample to the Bricmont–Kupiainen
conjecture and discuss its role in the definition of SRB-measures for coupled
map lattices.

1 Existence of SRB-measures

A coupled map lattice is a discrete time dynamical system (X,T ) consisting
of the phase space X and the mapping T : X → X. The phase space X =∏

L M is the product of a compact (finite dimensional) manifold M over some
lattice L equipped with the product topology. The dynamics T = A ◦ F is a
composition of the uncoupled map F =

∏
L f , where f : M → M is called

the local dynamics, and the coupling A : X → X, which ties the independent
local systems into one infinite dimensional system. I will mainly concentrate
on the situation where M is the unit circle S1, f is an expanding smooth map,
L is the d-dimensional lattice Z

d, and the coupling A is a small perturbation
of the identity such that the dependence of the ith coordinate A(x)i on xj

decreases exponentially fast with respect to the natural distance |i− j| on Z
d.

Coupled map lattices were introduced by Kaneko in 1983. I refer to [40] (see
also [11]) for an overview of the numerous results obtained in the 1980’s and I
will concentrate on the existence results of SRB-measures (for the discussion
on the definition of SRB-measure see the end of Sect. 3). The existence of
SRB-measures for coupled map lattices was first proved by Bunimovich and
Sinai in [12]. They studied a system where the phase space X =

∏
Z
[0, 1]

is the product of unit intervals over the one dimensional lattice Z, the local
dynamics f : [0, 1] → [0, 1] is an expanding C1+δ map (that is, f ′ is Hölder
continuous with exponent δ), and A is a special nearest neighbour coupling,
meaning that the value of A(x)i depends only on xi−1, xi, and xi+1. They

E. Järvenpää: SRB-Measures for Coupled Map Lattices, Lect. Notes Phys. 671, 95–114 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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proved that there exists an ergodic invariant Borel probability measure µ on X
such that its projections µΛ onto finite dimensional subsystems XΛ =

∏
Λ[0, 1]

(Λ ⊂ Z is finite) are absolutely continuous with respect to the corresponding
Lebesgue measure. The measure µ is also mixing with respect to the dynamics
T (which I will call the time dynamics) and the space dynamics induced by
the natural left shift σ : Z → Z, σ(i) = i − 1. Pesin and Sinai [53] extended
this result to the case where the local maps are (genuinely) hyperbolic.

The essential feature of the coupling used in [12, 53] is that it is iden-
tity on the boundaries of the space. This guarantees the existence of Markov
partitions which enables the use of thermodynamic formalism, that is, one
can apply the methods of statistical physics. Keller and Künzle [44] studied a
more general coupling and more general local dynamics, namely only piecewise
C1+δ, and obtained the existence of an SRB-measure. However, they managed
to prove mixing properties only for finite dimensional approximations, not for
the whole infinite dimensional system. For corresponding results in the case
of hyperbolic local maps, see [60].

In [9] Bricmont and Kupiainen extended the aforementioned results in
several ways. First of all, they studied d-dimensional lattice Z

d for arbitrary
d ∈ N. Secondly, they had an infinite range coupling which was only de-
manded to be small and to decay exponentially with respect to the distance
between lattice sites. Thirdly, they proved good mixing properties, namely,
they obtained an exponential decay of correlations for local observables in the
infinite dimensional system. The price for this is that they had to consider
real analytic expanding maps on the local phase space S1. In [10] they ob-
tained the same results for C1+δ maps. The fact that similar methods can
be applied if one replaces the unit circle by any compact manifold admitting
expanding smooth maps was observed in [31]. Jiang [36] and Jiang and Pesin
[37] have proved the corresponding results as Bricmont and Kupiainen in the
case where the local dynamics is hyperbolic. Inspired by the works of Just
[38, 39], I studied in [30] globally coupled maps and proved the existence of a
SRB-measure. Furthermore, I verified that correlations decay like 1/N where
N is the system size.

A natural question arising from these results is whether one can say some-
thing about the spectrum of the Perron–Frobenius operator associated to the
infinite dimensional system. This question has been studied for example by
Baladi et al. [3], Fischer and Rugh [22], Baladi and Rugh [4], Blank, Keller,
and Liverani [7], Schmitt [57], and many others. For more information on this
approach see the presentation of Gerhard Keller in this school.

I try to give a rough idea of the proofs of the results in [10] without going
too deep into technical details. For readers’ convenience I give explicitly the
assumptions of [10]. The phase space is X =

∏
Zd S1. It is practical to use

the covering map xj �→ ei2πxj and describe the mappings via their lifts. The
local dynamics is given by an orientation preserving expanding C1+δ map
f : R → R. Note that this implies the existence of λ > 1 and k ∈ N \ {0, 1}
such that f ′(x) > λ and f(x+ 1) = f(x) + k for all x ∈ R. One assumes that
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f(0) ∈ [0, 1). For all i the ith component A(x)i of the coupling is assumed to
be continuously differentiable with respect to every variable xj such that for
all x, y ∈ X ∣

∣
∣
∣
∂A(x)i

∂xj
− δij

∣
∣
∣
∣ ≤ εe−β|i−j|

and ∣
∣
∣
∣
∂A(x)i

∂xj
− ∂A(y)i

∂xj

∣
∣
∣
∣ ≤ ε

∑

k∈Zd

e−β(|i−j|+|i−k|)|xk − yk|δ

for some ε, β, δ > 0. Here δij is the Kronecker’s delta. Furthermore, the cou-
pling is assumed to be space translation invariant, that is, A = τi ◦ A ◦ τ−1

i

for all i ∈ Z
d. Here (τi(x))j = xj−i.

Example 1.1. An example of a coupling satisfying the above assumptions is

A(x)i = xi +
ε

(2π)2
∑

k∈Zd

2−|i−k| cos(2π(xi − xk))

with β = log 2/2.

Remark 1.1. In this chapter I always assume that measures are Borel regular
(for the definition see [49, Definition 1.5]). Since Bricmont and Kupiainen
defined a regular measure meaning something different (see Definition 1.2) I
do not explicitly mention Borel regularity to avoid confusion.

Definition 1.1. A measure µ is T -invariant if T∗µ = µ where the image
measure is defined by T∗µ(B) = µ(T−1(B)) for all Borel sets B. A T -invariant
probability measure µ on X is a SRB-measure if µΛ � LΛ for all finite Λ ⊂ Z

d

where L is the Lebesgue measure on X. The notation µ � ν means that
measure µ is absolutely continuous with respect to ν. If µ� ν then the Radon–
Nikodym derivative dµ/dν is called the density of µ with respect to ν.

For the differentiation theory of measures see [49, Sect. 2].

Definition 1.2. Let Λ ⊂ Z
d be finite. The space Cδ(XΛ) consists of continu-

ous functions h on XΛ such that

|h(x)− h(y)| ≤ C
∑

i∈Λ

|xi − yi|δ.

We equip Cδ(XΛ) with the norm

‖h‖δ = ‖h‖∞ + sup
x,y∈XΛ

|h(x)− h(y)|
∑

i∈Λ |xi − yi|δ
·

A probability measure µ on X is regular if µΛ � LΛ, its density hΛ is con-
tinuous and strictly positive, and log hΛ ∈ Cδ(XΛ) for all finite Λ ⊂ Z

d.
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In [10] the following theorem was proved.

Theorem 1.1. Let T satisfy the assumptions given above. There exists ε0 > 0
such that for all ε < ε0 the map T has a SRB-measure µ. Furthermore, µ is
invariant and exponentially mixing under the space-time translations gener-
ated by τi and T : there exists m > 0 and C < ∞ such that for all finite
B,D ⊂ Z

d and for all g ∈ L∞(XB) and h ∈ Cδ(XD) we have
∣
∣
∣
∣

∫

g ◦ Tnhdµ−
∫

gdµ

∫

hdµ

∣
∣
∣
∣ ≤ C ‖g‖∞ ‖h‖δ e

−m(n+d(B,D))

where d(B,D) = min{|i− j| | i ∈ B, j ∈ D} and C depends on the diameters
of B and D. Finally, for all regular measures ν the sequence (T∗)nν tends to
µ in the weak∗ topology.

There are three main tools in the proof of Theorem 1.1: Perron–Frobenius
operator, equilibrium states associated to interactions in lattice models of
statistical physics, and polymer expansions.

Definition 1.3. Let M be a compact manifold, L the Lebesgue measure on
M , and T : M → M a non-singular mapping meaning that L(B) = 0 if
and only if L(T−1(B)) = 0 for Borel sets B. The Perron–Frobenius operator
P : L1(M) → L1(M) associated to T is defined by the equation

∫

g ◦ T h dL =
∫

gP (h) dL (1)

for all g ∈ L∞(M) and h ∈ L1(M).

Observe that if µ � L then also T∗µ � L by the non-singularity of T .
Thus if h is the Radon–Nikodym derivative of µ with respect to L then P (h)
is the Radon–Nikodym derivative of T∗µ with respect to L. (In the sequel the
Radon–Nikodym derivative is called simply the density.) Therefore, P may be
viewed as the restriction of T∗ to measures which are absolutely continuous
with respect to L. From this it is obvious that if h is a fixed point of P , that
is, it is an eigenstate with eigenvalue 1, then hL is an invariant measure for
T . It is a well-known result that if T is an expanding C1+δ map on a compact
manifold M then the spectrum of P , restricted to the space of functions
of bounded variation, consists of a simple eigenvalue 1 and the rest of the
spectrum is inside a disc of radius γ for some γ < 1. This implies that any
smooth initial density will converge under the iteration of P to the density of
the unique invariant measure µ which is absolutely continuous with respect to
L. In fact, the SRB-measure µ is equivalent with L. These results are due to
Sinai [59], Ruelle [54], and Bowen [8]. For more information on these questions
see [1, 2]. An easy-to-access exposition of interval maps is [13].

I will need the following explicit form of the Perron–Frobenius operator
which is valid in the expanding orientation preserving case:
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P (h)(x) =
∑

y:T (y)=x

h(y)
detDT (y)

· (2)

This formula is easily verified via the change of variables.
The idea of the proof of Theorem 1.1 is that one first takes a finite Λ ⊂

Z
d, fixes some boundary condition xΛc on XΛc (where Λc = Z

d \ Λ), and
obtains in this way an expanding map on the finite dimensional manifold
XΛ. More precisely, TΛ : XΛ → XΛ is defined by TΛ = AΛ ◦

∏
Λ f , where

AΛ(x)i = A(xΛ, xΛc)i for all i ∈ Λ and the boundary condition xΛc does not
evolve in time. Then one iterates the constant function 1 with the Perron–
Frobenius operator PΛ associated to this finite dimensional approximation. By
the aforementioned results concerning finite dimensional expanding maps the
sequence PN

Λ (1) will tend to the density of the unique SRB-measure µΛ of the
finite dimensional system. Finally, letting Λ tend to Z

d along some increasing
sequence, one shows that the sequence µΛ converges to some measure µ which
is independent of the boundary condition xΛc . This limiting measure is the
SRB-measure of Theorem 1.1.

As a result of the above method one obtains the following lattice gas model.
In addition to the lattice Z

d each iterate of the Perron–Frobenius operator
will give a new copy of Z

d leading to the lattice L = Z
d × N. As a result

we have a phase space Ω =
∏

L M(i,j), where M(i,0) = S1 for all i ∈ Z
d and

M(i,j) = {0, . . . , k− 1} for all i ∈ Z
d and j ∈ N \ {0}. Here k is the number of

preimages of any point for the map f : S1 → S1. Denoting by f also the lift
of f , one sees that the different preimages of a point x ∈ [0, 1) are of the form
f−1(x + s) where s = 0, 1, . . . , k − 1. Let ψs(x)i = f−1(A−1

Λ (x)i + si) where
s ∈ {0, . . . , k − 1}Λ. Then by (2)

PΛ(h)(x) = detDA−1
Λ (x)

∑

s∈{0,...,k−1}Λ

h(ψs(x))
∏

i∈Λ f
′(ψs(x)i)

and further

PN
Λ (1)(x) =

∑

s1,...,sN

N∏

t=1

(
detDA−1

Λ (ψst−1 ◦ · · · ◦ ψs1(x))

∏

i∈Λ

(f ′(ψst ◦ · · · ◦ ψs1(x)i))−1
)
·

One begins the proof by writing

PN
Λ (1) = e−H (3)

where H is a real valued function on ΩΛ×{0,...,N}. In the terminology of sta-
tistical physics the function H is called Hamiltonian. In order to apply the
methods of statistical physics one still has to localize the Hamiltonian, mean-
ing that one needs to find an interaction Φ such that
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H =
∑

Y ⊂Λ×{0,...,N}
ΦY

where ΦY is a function on ΩY . One proves that the interaction ΦY , which
depends on Λ, N , and the chosen boundary condition xΛc , will tend to an
interaction ΦY , which is independent of Λ,N , and the boundary condition xΛc ,
as N tends to infinity and Λ tends to Z

d. The results of statistical mechanics
guarantee that, provided the limiting interaction Φ has some nice properties,
there will be a unique equilibrium state µ̃ associated to it. This equilibrium
state is a measure on Ω and it will be exponentially mixing with respect to
translations in L. Note that the translation in N direction corresponds to the
time dynamics of the original coupled map lattice. Thus the projection of µ̃
onto ΩZd×{0} will be the SRB-measure of Theorem 1.1.

An excellent introduction and a handbook of lattice gas models of statis-
tical physics is [58]. A more compressed but still complete exposition can be
found in [55]. I refer to these books for more information on equilibrium and
Gibbs states and I briefly explain some relevant results concerning interac-
tions. In the case where the underlying lattice is at least two dimensional, it
is important to distinguish between several norms used in the space of inter-
actions. For simplicity I assume that the interactions are translation invariant
and 0 is a fixed point in the lattice. If

‖Φ‖0 =
∑

Y 
0

|ΦY |

is finite, then there exists an equilibrium state (see [58, Corollary III.2.9]).
Assuming that

‖Φ‖1 =
∑

Y 
0

|Y ||ΦY |

is small, the equilibrium state is unique (see [14, 15]). If for some γ > 0

‖Φ‖2 =
∑

Y 
0

eγd(Y )|ΦY |

is small, then the equilibrium state is unique and the correlations decay ex-
ponentially (see [23]). Finally, supposing that for some γ > 0

‖Φ‖3 =
∑

Y 
0

eγ|Y ||ΦY |

is small, the equilibrium state is unique and the correlation functions are
analytic (see [29]). Here |Y | is the number of elements in Y and d(Y ) is the
diameter of Y .

The interaction rising from the proof of Theorem 1.1 does not fall into any
of the above classes. In fact, it is of the form Φ0 + Φ1 where Φ0 is a finite
range one dimensional interaction and ‖Φ1‖2 is small. In [9] the analyticity
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assumptions guarantee that ‖Φ1‖3 is small. Since the behaviour of one dimen-
sional lattice models is radically different from higher dimensional ones, this
kind of interaction will imply the nice properties stated in Theorem 1.1.

How does one localize a Hamiltonian? One method (also used by Bricmont
and Kupiainen) is telescoping. Namely, let H = H(x1, . . . , xn) and 0 be some
fixed value which every coordinate may attain. Then

H(x1, . . . , xn) =H(x1, . . . , xn)−H(x1, . . . , xn−1, 0)
+H(x1, . . . , xn−1, 0)−H(x1, . . . , xn−2, 0, 0)
+ · · ·+H(x1, 0, . . . , 0)−H(0, . . . , 0) +H(0, . . . , 0) .

Now one can define

Φ{1,...,k}(x1, . . . , xk) = H(x1, . . . , xk, 0, . . . , 0)−H(x1, . . . , xk−1, 0, . . . , 0)

and set ΦY ≡ 0 if Y �= {1, . . . , k} for all k = 1, . . . , n. To use this method, some
numbering of points in Λ× {0, . . . , N} has to be fixed. The ε in the coupling
guarantees that if the set Y contains points with different space coordinates,
then there will be ε in the interaction. The exponential decay of the coupling,
in turn, is needed to make the norm ‖·‖2 small. Finally, one has to decompose
the Hamiltonian also in the time direction. Note that in time direction one has
a sequence of ψ’s (see (3)). Each ψ is a contraction with coefficient λ′ < 1 since
f−1 is a contraction and the coupling is small. Although λ′ is not necessarily
small, (λ′)M is small for M large. So one has to divide the terms into two
groups depending on the number of ψ’s they contain. This is the reason why
one has the Φ0-part in the interaction which is not small.

Since the interaction does not fall into any of the well-known classes of
interactions described above, the claims of Theorem 1.1 have to be proved
explicitly. It is clear that if there is some correlation between observables
supported on B and D there must be interactions connecting the sets B and
D. There are two possibilities: either there is one term ΦY connecting these
sets, or there is a chain of terms ΦY1 , . . . , ΦYn

starting from B and ending in D.
In the first case, the smallness of correlation is due to the exponential decay of
the interaction with respect to the diameter of the set. In the second case, there
must be many terms and each of them contains one ε. To make this argument
rigorous one has to have a good way of indexing all different possibilities. The
polymer expansion is a technical tool which is developed for these purposes.
It enables one to write an explicit formula for the correlation functions and
expectations of local observables, that is, functions depending only on finitely
many coordinates. From this formula one finds an upper bound for the rate of
mixing. I refer to [9, 10] for more details. An excellent introduction to polymer
expansions is [58, Sect. V.7].

In [9] Bricmont and Kupiainen made a conjecture that there is only one
SRB-measure for the systems they considered. Note that according to The-
orem 1.1 this conjecture is true in the class of regular measures (see Defini-
tion 1.2).
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2 Projection Results

In this section I give an overview of some results in the field of geometric mea-
sure theory which seem to be totally unrelated to the results of the previous
section. However, it appears that they are closely connected to the solution
of Bricmont–Kupiainen conjecture.

I start with a simple example.

Example 2.1. Consider a line segment in R
3. If one projects it onto a two di-

mensional plane, one obtains a line segment, unless the plane happens to be
perpendicular to the original line segment in which case one obtains a point.
Hence this one dimensional set is projected generically onto a one dimensional
set. If, instead of line segment, one projects a cube the result is two dimen-
sional. Thus the projection of the three dimensional cube is two dimensional.

Amazingly these two simple examples illustrate the general behaviour of
Hausdorff dimensions of projections as the following theorem states:

Theorem 2.1. Let 0 < m < n be integers and B ⊂ R
n. Then

dimH(PV (B)) = min{dimH(B),m}

for γn,m-almost all V ∈ G(n,m). Here G(n,m) is the Grasmann manifold of
m-planes in R

n, γn,m is the Haar measure on G(n,m), PV is the orthogonal
projection onto V , and dimH(B) is the Hausdorff dimension of B.

This theorem was first proven by Marstrand [46] in the plane, then by
Kaufman [41] in the plane using different methods, and finally by Mattila [47]
in full generality. The corresponding result is true also for measures. Recall
that the definition of the Hausdorff dimension of a measure is as follows:

Definition 2.1. The Hausdorff dimension of a finite measure µ on R
n is

dimH(µ) = inf{dimH(B) | B is a Borel set with µ(B) > 0}
= µ- ess inf

x∈Rn
dimloc µ(x)

where

dimloc µ(x) = lim inf
r→0

logµ(B(x, r))
log r

is the lower local dimension of µ at x. Here B(x, r) is the closed ball centred
at x with radius r.

The analogue of Theorem 2.1 is valid for measures:

Theorem 2.2. Let 0 < m < n be integers and let µ be a finite measure on
R

n. Then for γn,m-almost all V ∈ G(n,m)

dimH(PV ∗µ) = dimH(µ), if dimH(µ) ≤ m

PV ∗µ� Lm, if dimH(µ) > m .
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Theorem 2.2 is more or less explicitly stated in [20, 24, 41, 48]. Theo-
rems 2.1 and 2.2 may be summed up by saying that Hausdorff dimension is
preserved under typical projections. Note that the set of exceptional directions
may be quite large although it has zero measure (see [16, 42, 52]).

There are several extensions of these theorems. Instead of Hausdorff dimen-
sion, one may consider different dimensions like packing dimension, box count-
ing dimension, multifractal q-dimensions etc. (see [18, 19, 20, 21, 25, 32, 35]).
Note that the choice of dimension effects also on the results obtained. One may
also replace typical projections by a prevalent set of C1-maps (see [25, 32, 56]).
Hunt and Kaloshin [26] showed that the corresponding results are not true in
infinite dimensional situations. I refer to the excellent survey of Mattila [50]
for more information.

To give some flavour of the aforementioned results, I make a simple cal-
culation which contains some essential features related to projections. One
crucial ingredient in this context is the s-energy of a measure which I now
define.

Definition 2.2. Let µ be a finite measure on a metric space (X, d) and s > 0.
The s-energy of µ is

Is(µ) =
∫∫

d(x, y)−sdµ(x)dµ(y) .

The finiteness of s-energy is closely related to the Hausdorff dimension
of a measure. In fact, if Is(µ) < ∞ then dimH(µ) ≥ s. On the other hand,
assuming that s < dimH(µ), the measure µ has a restriction with finite s-
energy (see [49, pp. 109–110]). This indicates the relevance of the energies
of projected measures when calculating their Hausdorff dimensions. To begin
with I derive a useful formula for integrals according to which for any measure
µ on a separable metric space X

∫

f(x)dµ(x) =
∫ ∞

0

µ({x ∈ X | f(x) ≥ t}) dL1(t) (4)

for all non-negative Borel functions f (see [49, Theorem 1.15]). Indeed, letting
A = {(x, t) ∈ X × R | f(x) ≥ t} we have

∫ ∞

0

µ({x ∈ X | f(x) ≥ t}) dL1(t) =
∫ ∞

0

µ({x ∈ X | (x, t) ∈ A}) dL1(t)

=
∫

L1({t ∈ [0,∞) | (x, t) ∈ A}) dµ(x) =
∫

L1([0, f(x)]) dµ(x)

=
∫

f(x) dµ(x).

Let µ be a measure on R
n. The starting point of the energy calculations of

projections of µ is [49, Lemma 3.11] according to which there exists a constant
c such that
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γn,m({V ∈ G(n,m) | |PV (x)| ≤ δ}) ≤ cδm|x|−m. (5)

Combining this with (4), we obtain for all 0 < s < m and x ∈ R
n \ {0} the

following result (see [49, Corollary 3.12]):
∫

|PV (x)|−sdγn,m(V ) =
∫ ∞

0

γn,m({V ∈ G(n,m) | |PV (x)|−s ≥ t}) dL1(t)

=
∫ ∞

0

γn,m({V ∈ G(n,m) | |PV (x)| ≤ t−
1
s }) dL1(t)

≤
∫ |x|−s

0

dL1(t) +
∫ ∞

|x|−s

γn,m({V ∈ G(n,m) | |PV (x)| ≤ t−
1
s }) dL1(t)

≤ |x|−s + c|x|−m

∫ ∞

|x|−s

t−
m
s dL1(t)

=
(

1 +
cs

m− s

)

|x|−s . (6)

Using (6), we find a constant C such that
∫

Is(PV ∗µ)dγn,m(V ) =
∫∫∫

|x− y|−sdPV ∗µ(x)dPV ∗µ(y)dγn,m(V )

=
∫∫∫

|PV (x− y)|−sdµ(x)dµ(y)dγn,m(V )

=
∫∫∫

|PV (x− y)|−sdγn,m(V )dµ(x)dµ(y) ≤ CIs(µ).

(7)

According to (7), if Is(µ) < ∞ then Is(PV ∗µ) < ∞ for γn,m-almost all
V . This is one of the key observations of the proofs of Theorems 2.1 and 2.2.
It is clear that this method will give results only for almost all projections.
However, as I mentioned earlier, “almost all”-results are the best possible ones
in this context.

A very important extension of the projection results is due to Peres and
Schlag [52]. They replace projections by a general parametrized transversal
family of mappings from a compact metric space to R

m. Intuitively, transver-
sality means that when the parameter is also changed the mapping is changed
fast enough. Since I will use [52, Theorem 7.3] in Sect. 3, I state it explicitly
but not in the full generality.

Definition 2.3. Let (X, d) be a compact metric space, Q ⊂ R
n an open con-

nected set, and Π : Q ×X → R
m a continuous map with n ≥ m. Define for

all x �= y ∈ X
Φx,y(λ) =

Π(λ, x)−Π(λ, y)
d(x, y)

·

The mapping Π is regular if for any multi-index η = (η1, . . . , ηn) ∈ N
n there

exists a constant Cη such that
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|∂ηΠ(λ, x)| ≤ Cη and |∂ηΦx,y(λ)| ≤ Cη

for all λ ∈ Q and for all x �= y ∈ X. Here ∂η = ∂|η|

(∂λ1)η1 ...(∂λn)ηn and |η| =
∑n

i=1 ηi.

Definition 2.4. A regular mapping Π : Q ×X → R
m is transversal if there

exists a constant C such that for all λ ∈ Q and for all x �= y ∈ X the condition
|Φx,y(λ)| ≤ C implies

det(DΦx,y(λ)(DΦx,y(λ))T ) ≥ C2.

Here the derivative with respect to λ is denoted by D and AT is the transpose
of a matrix A.

The following theorem from [52] gives a relation between Sobolev norms of
images of measures under transversal family of regular mappings and energies
of original measures.

Theorem 2.3. Let Π : Q × X → R
m be transversal and let µ be a finite

measure on X such that Is(µ) < ∞ for some s > 0. Then there exists a
constant Cγ such that

∫

Q

‖Π∗µ‖22,γ dLn(λ) ≤ CγIs(µ)

provided that m+ 2γ ≤ s. Here ‖ · ‖2,γ is the Sobolev norm, that is,

‖ν‖22,γ =
∫

Rm

|ν̂(ξ)|2|ξ|2γdLm(ξ)

for any finite compactly supported measure on R
m, where

ν̂(ξ) =
∫

Rm

e−iξ·xdν(x)

is the Fourier transform of ν.

Proof. See [52, Theorem 7.3].

Remark 2.1. Let ν be a finite compactly supported measure on R
n. If ‖ν‖2,0 <

∞ then ν is absolutely continuous with respect to the Lebesgue measure Ln

and its Radon-Nikodym derivative is L2-integrable (see [33, Remark 2.6]).

I stated only the part of [52, Theorem 7.3] concerning measures whose
dimensions are larger than m since I need only that part in Sect. 3. There
is also the part which says that the dimension is preserved if it is less than
m. I say briefly something about the assumptions of Theorem 2.3. It is quite
obvious that some kind of smoothness is needed and almost as obvious that
the regularity assumption I formulated in Definition 2.3 is not the optimal
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one. The role of transversality may be explained as follows. Recall from the
results of orthogonal projections that there may always be some exceptional
directions. Since Theorem 2.3 deals with a parametrized family of maps one
could smoothly parametrize one exceptional projection with as many parame-
ters as one likes. Thus there must be some condition guaranteeing that if the
parameter is changed also the mapping is changed. In the proof there will be
a calculation like (7) in one form or the other where one needs an analogue of
(5). Transversality, in turn, is needed for this.

3 Counterexample to Bricmont–Kupiainen Conjecture

In this section I describe how one can construct a counterexample to the
Bricmont–Kupiainen conjecture (see [33]). This counterexample is based on
the results of Sect. 2.

Consider the standard 1
3 -Cantor set K on the unit interval and let Hs|K

be the restriction of the s-dimensional Hausdorff measure to K where s =
log 2/ log 3 is the Hausdorff dimension of K. ThenHs|K is an ergodic invariant
measure for the map f : [0, 1] → [0, 1], f(x) = 3x mod 1. Since the packing
and Hausdorff dimensions of K coincide, the Hausdorff dimension of the n-
fold product Kn is equal to n log 2/ log 3 (see [49, Theorem 8.10]). Thus for
any m one can find N such that for all n > N the dimension of Kn is larger
than m. This is true also for the product measure (Hs|K)n. According to
Theorem 2.2, the projection of (Hs|K)n is absolutely continuous with respect
to Lm for typical m-planes. However, the Bricmont–Kupiainen conjecture
deals with specific projections, namely, those determined by coordinate planes.
And clearly in this example the coordinate planes are not typical. The idea of
our example is that a small coupling will perturb the uncoupled map slightly
such that the coordinate planes become typical ones. Actually we do not prove
quite this but instead we find a parametrized family of conjugating maps such
that almost all conjugates of the uncoupled map have infinitely many SRB-
measures.

Let X =
∏

Zd S1, K =
∏

Zd K, and µ =
∏

Zd Hs|K . Since Hs(K) = 1
(see [17, Theorem 1.14]), µ is a probability measure. I denote by µΛ the
projection of µ onto XΛ. As in Sect. 1, I will use the same symbol for maps
(like f : S1 → S1, f(z) = z3) and their lifts (like f : R → R, f(x) = 3x).
Consider Aε : X → X,

Aε(x)i = xi +
∑

l∈Zd

εil2−|i−l|g(xl)

where for some ε0 > 0 one has εij ∈ (−ε0, ε0) for all i, j ∈ Z
d, and g :

R → R is smooth and 1-periodic. For convenience assume that |g(x)| < 1
for all x ∈ R. It is not difficult to see that Aε is invertible provided ε0 is
small enough (depending on |g′|). Namely, local invertibility follows from the
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implicit function theorem, and global invertibility from the fact that Aε is a
lift of a map on X. Set E =

∏
Zd×Zd(−ε0, ε0) and L =

∏
Zd×Zd ρ where ρ

is the normalized restriction of the Lebesgue measure to (−ε0, ε0). I use the
abbreviations EΛ×Λ̃ and LΛ×Λ̃ for the natural restrictions. For Λ ⊂ Λ̃, I denote
the natural projection from XΛ̃ onto XΛ by πΛ̃,Λ. Let Tε = Aε ◦

∏
Zd f ◦A−1

ε .
Now Aε∗µ is clearly Tε-invariant. In [33] we proved the following theorem.

Theorem 3.1. For L-almost all ε ∈ E the map Tε has infinitely many SRB-
measures.

The proof is divided into two steps. First we fix finite Λ ⊂ Λ̃ ⊂ Z
d such

that |Λ̃|s > |Λ| and consider the restriction of A to Λ̃ with open boundary
condition, that is,

Aε,Λ̃(x)i = xi +
∑

l∈Λ̃

εil2−|i−l|g(xl) .

Using Theorem 2.3, we show that for LΛ×Λ̃-almost all ε ∈ EΛ×Λ̃ the projection
(πΛ̃,Λ◦Aε,Λ̃)∗µΛ̃ is absolutely continuous. For this we have to restrict the map
g by demanding that |g′| > b > 0 in the set K. (Note that by 1-periodicity
there must be points where g′ = 0.) This guarantees that the transversality
condition is satisfied. The final step is to let Λ̃ tend to Z

d. This is a tech-
nical calculation and I refer to [33] for more details. Intuitively this limiting
process should not cause any problems. Indeed, according to Theorem 2.3,
the larger the dimension of the measure, the smoother its projection is. Thus
tilting the measure also in the complement of Λ̃ should make the situation
better. However, one should keep in mind the result of Hunt and Kaloshin [26]
according to which the Hausdorff dimension may decrease under projections
from infinite dimensional space onto finite dimensional subspaces. Although
it is possible that everything fails at the infinite limit, our setup indicates that
this is not very likely and the smoothness argument given by Theorem 2.3 is
stronger. The technical calculation in [33, Proposition 3.3] shows that this is
indeed the case.

Finally, the above consideration implies that there are at least two SRB-
measures, namely Aε∗µ and the SRB-measure constructed by Bricmont and
Kupiainen. However, instead of taking the standard Cantor set where one
deletes the middle third, one may delete the first or the last third. At every
coordinate direction one may choose one of these three sets. Clearly it is
possible to choose g such that |g′| > b > 0 on all these three sets. In this way
one obtains infinitely many SRB-measures.

Now I explain some details of the proof to illustrate what is going on.
To use Theorem 2.3, let Π : EΛ×Λ̃ × YΛ̃ → XΛ, Π(ε, x) = πΛ̃,Λ ◦ Aε,Λ̃(x).
Here YΛ̃ =

∏
Λ̃[−t0, t0] for some 1

9 < t0 < 1
6 . This is just a technical detail

to guarantee that |g(t) − g(t′)| ≥ b|t − t′|. Now Π is clearly regular so it is
enough to study the validity of the transversality assumption. We equip YΛ̃

with the metric
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d(x, y)2 =
∑

l∈Λ̃

2−2|i0−l||xl − yl|2

where i0 ∈ Λ is some fixed point. Now

Φx,y(ε)i =
Π(ε, x)−Π(ε, y)

d(x, y)
=
xi − yi +

∑
l∈Λ̃ εil2−|i−l|(g(xl)− g(yl))

d(x, y)

for all i ∈ Λ. Fix i ∈ Λ, k = (k1, k2) ∈ Λ× Λ̃, and x �= y ∈ YΛ̃. Then

DΦx,y(ε)i,k =
δi,k12

−|i−k2|(g(xk2)− g(yk2))
d(x, y)

·

Thus for i, j ∈ Λ

(DΦx,y(ε)DΦx,y(ε)T )i,j =
δi,j

d(x, y)2
∑

l∈Λ̃

2−|i−l|−|j−l|(g(xl)− g(yl))2

≥ δi,jb
22−|i−i0|−|j−i0|.

(8)

So transversality assumption is valid with the constant C = b|Λ|2−
∑

i∈Λ |i−i0|.
Note that, in order to obtain the inequality in (8), it is important that one
has the parameter εil for all (i, l) ∈ Λ× Λ̃. This is easy to understand. Let x, y
be such that xl = yl for all l except l0. If εil0 were missing, these two points
would not “see” the change of parameters. This is the reason why we have to
consider the infinite dimensional parameter space E.

Remark 3.1. (1) Taking any coupled map lattice which is close to T0 in the
sense that it has an invariant set close to K, one can repeat the above argu-
ments without changing the conjugacy Aε. Therefore it is possible to decom-
pose a suitable space of coupled map lattices into leaves such that inside each
leaf almost every system has infinitely many SRB-measures. This shows that
the uniqueness of the SRB-measure is a very atypical situation. The explicit
form of the conjugacy Aε is irrelevant. It is simply enough to find one. In order
to apply Theorem 2.3 it is essential that the map depends on all coordinates
such that the decay rate is not faster than the one in the definition of the
metric. More precisely, there has to be some lower bound on the decay so that
one can define an appropriate auxiliary metric (see (8)).

(2) Note that by Theorem 2.3 the densities of (πΛ ◦Aε)∗µ are smooth, in
particular, Hölder continuous. The uniqueness proof of Bricmont and Kupi-
ainen fails for these measures because there are regions where the density is
zero, and so one cannot take the logarithm of the densities.

Finally, I would like to say a couple of words about the definition of SRB-
measure. I will mainly concentrate on coupled map lattices and refer to the
review of Young [61] for more general discussion. In the case of Axiom A
diffeomorphisms there are several equivalent ways to define the SRB-measure.
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For describing these let M be a set, T : M →M a map, and L some preferable
measure on M (for example the Lebesgue measure if M is a manifold). First
of all, SRB-measure µ is natural meaning that there exists an open set U ⊂M
such that for all ν � L|U

lim
n→∞

1
n

n−1∑

i=0

(T∗)iν = µ

convergence being in the weak∗ topology. Secondly, SRB-measure µ is ob-
servable, that is, there exists an open set U ⊂ M such that for L-almost all
x ∈ U

lim
n→∞

1
n

n−1∑

i=0

δT i(x) = µ .

Thirdly, SRB-measure is an equilibrium state for an interaction constructed
from the derivative of T (see Sect. 1). Fourthly, SRB-measure is (the unique)
invariant measure absolutely continuous with respect to L, or its conditional
distributions on unstable leaves are absolutely continuous with respect to the
corresponding Lebesgue measure. There are also other definitions for the SRB-
measure like that it is a measure which is stable under random perturbations,
but I will not consider these and refer to [61] for more information.

Although all the above definitions are equivalent for Axiom A diffeomor-
phisms they are not equivalent for a general dynamical system. For example
the third and the fourth definitions are meaningful only if the system is in
some sense hyperbolic. Blank and Bunimovich [6] have proved that an ob-
servable measure is always natural and an ergodic invariant natural measure
which is equivalent to the Lebesgue measure is observable. Applying a result
of Inoue [28] (see also [43]), they showed that there are invariant non-ergodic
natural measures which are not observable. In [34] Tolonen and I constructed
an ergodic invariant natural measure which is not observable. See also [51] for
related results. Since these different definitions are not equivalent in general,
the natural question is what is the right definition for a SRB-measure in the
case of coupled map lattices. The definitions of naturalness and observability
assume that there exists some preferable measure on the space. On finite di-
mensional manifolds the Lebesgue measure (or some smooth modification of
it) has clearly a special role. So, if X =

∏
Zd S1, one may consider the infi-

nite product of normalized Lebesgue measures on S1 which is a probability
measure on X. However, if one modifies the Lebesgue on S1 just a little bit
and takes the product of these measures, then one obtains a measure which
is singular to the product of Lebesgue measures. This indicates that there is
no unique preferable measure for coupled map lattices to define naturalness
or observability. For the same reason the fourth definition is not directly ap-
plicable. But keeping in mind that coupled map lattices are models for real
life phenomena, one may argue that, although the real life systems are high
dimensional, they are nevertheless finite dimensional. At least one can make
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only finite number of observations of finite number of particles. One may also
interpret a measurement as a projection so it is natural to consider the fi-
nite dimensional projections of an invariant measure. In a finite dimensional
subsystem it does not matter whether one uses Lebesgue measure or some
modification of it. Therefore Definition 1.1 is a very natural definition.

In statistical physics a phase transition is associated with the non-uni-
queness of equilibrium states. (At the temperature 0 degrees of Celsius there
are two phases – water and ice.) An interesting question is whether there
could be a phase transition in coupled map lattices even for small cou-
pling due to the infinite dimensionality of the system although for the local
dynamics there were unique SRB-measure. If one takes as the definition of
SRB-measure the one saying that it is an equilibrium state for a poten-
tial constructed from the derivative of the map, then the results of [10, 37]
imply that there are no phase transitions. If one adopts Definition 1.1, then
the results of [33] imply that there is a phase transition even for small cou-
pling. To resolve this paradox, one should analyze the results of [33] more
carefully. Indeed, these results imply that for any finite Λ ⊂ Z

d there is an
open set U ⊂ XΛ with positive Lebesgue measure such that for LΛ-almost all
x ∈ U there are boundary conditions xc

1 and xc
2 such that

lim
n→∞

1
n

n−1∑

i=0

δT i(x,xc
i )

= µi, i = 1, 2

and µ1 �= µ2. However, in order to see a measure which is different from the
SRB-measure constructed by Bricmont and Kupiainen, one has to choose the
boundary condition carefully. In other words, the boundary condition depends
on x, and one may argue that the phase transition implied by Theorem 3.1 is
not a physical one.

In statistical physics it is natural to talk about equilibrium states asso-
ciated to interactions since the interaction is the primary concept. However,
from the point of view of dynamical systems interaction is rather a tool than a
fundamental basic quantity. Thus one would like a more dynamical definition
for SRB-measure. Although being natural, Definition 1.1 has the drawback
that SRB-measure is not unique for small coupling. I motivated this defini-
tion by saying that a measurement is a projection. However, projection means
that one takes an average over all boundary conditions. Since one can make
only finitely many measurements, one studies also finitely many boundary
conditions. Thus it is perhaps better to study conditional distributions on fi-
nite dimensional subsystems and demand that they are absolutely continuous
with respect to the Lebesgue measure. This approach has been taken by Keller
and Zweimüller in [45]. They proved the uniqueness of SRB-measure in this
sense. However, they have to assume that the coupling is unidirectional over
the one dimensional lattice N meaning that the boundary conditions have an
effect on finite subsystems but the finite subsystems have no effect on the
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boundary conditions. Although this assumption is reasonable one would like
to relax it.

One possible alternative is to say that µ is a SRB-measure if it is natural or
observable with respect to all measures of the form

∏
Zd ν where ν is absolutely

continuous with respect to the local Lebesgue measure. A step in this direction
is taken by Bardet in [5].

As a concluding remark I emphasize that although the theory of SRB-
measures for weakly coupled expanding or hyperbolic maps is already quite
well understood there are still some very basic problems to be solved.
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Waves and Oscillations in Networks of Coupled
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1 Introduction

Neural systems are characterized by the interactions of thousands of indi-
vidual cells called neurons. Individual neurons vary in their properties with
some of them spontaneously active and others active only when given a suf-
ficient perturbation. In this note, I will describe work that has been done on
the mathematical analysis of waves and synchronous oscillations in spatially
distributed networks of neurons. These classes of behavior are observed both
in vivo (that is, in the living brain) and in vitro (isolated networks, such as
slices of brain tissue.) We focus on these simple behaviors rather than on
the possible computations that networks of neurons can do (such as filtering
sensory inputs and producing precise motor output) mainly because they are
mathematically tractable. The chapter is organized as follows. First, I will
introduce the kinds of equations that are of interest and from these abstract
some simplified models. I will consider several different types of connectivity –
from “all-to-all” to spatially organized. Typically (although not in every case),
each individual neuron is represented by a scalar equation for its dynamics.
These individuals can be coupled together directly or indirectly and in spa-
tially discrete or continuous arrays.

Neural models are roughly divided into two main classes: spiking models
and firing rate models. We will concentrate on spiking models in this chapter.
A comprehensive review of neural network models is given in [8]. In spiking
models, we track the firing (or spikes) of individual units, while in firing rate
models, we are interested mainly in the average frequency that each unit fires.
Individual neurons are highly complex spatially extended nonlinear systems.
However, in most models that involve networks of neurons, they are reduced
to points in space. The description of these point neurons is itself often very
complicated involving dozens of nonlinear differential equations. Again, most
� Supported in part by NIMH and NSF
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modelers simplify the neurons considerably often reducing them to one- or
two-dimensional dynamical systems.

The canonical representation of point neurons is due the Hodgkin and
Huxley wherein each cell is considered to be an equivalent electrical circuit
with a single capacitor and several resistors in parallel. Thus, the neuron
satisfies the differential equation:

C
dV

dt
= I −

∑

k

gk(t)(V − Ek) (1)

where I is the experimentally applied current, C is the capacitance of the
neuron, Ek are constant reversal potentials, one for each ionic species that
travels across the membrane, and gk(t) are the time-dependent conductances
(reciprocal of resistances). The key theoretical point that Hodgkin-Huxley
advanced is that gk(t) are themselves dependent on voltage. That is,

gk(t) = ḡkmphq

where p, q are nonnegative integers (sometimes 0), ḡk is a nonnegative con-
stant, and x = (m,h) satisfy equations of the form:

τx(V )
dx

dt
= x∞(V )− x .

Without these extra variables, the voltage dynamics is just linear. The original
Hodgkin-Huxley model for the squid axon membrane has three of these extra
variables, one for the potassium current and two for the sodium current. The
simplest model (and one which is commonly used in simulations) is called
the leaky integrate-and-fire (LIF) model. There is only one current and it is
passive:

C
dV

dt
= I − gL(V − EL) . (2)

However, there is an additional rule that states that if V (t) crosses a proscribed
value, VS , then it is reset to VR < VS and the neuron is said to have fired. If I
is sufficiently large, the neuron will fire repetitively with a frequency, ω given
by:

ω−1 =
C

gL
log

I − gL(VR − EL)
I − gL(VS − EL)

.

This makes sense only if I > gL(VS −EL). For I large, the frequency is linear
with I. Another related model is called the quadratic integrate-and-fire (QIF)
model:

C
dV

dt
= I + gL(V − VL)(V − VT )/(VT − VL) . (3)

As with the LIF, when V (t) reaches VS it is reset to VR. By choosing VS = +∞
and VR = −∞, we recover the dynamics for the normal form of a dynamical
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system near a saddle-node on a limit cycle [9, 13, 15]. If I > gL(VT −VL)/4 ≡
I∗, then the QIF fires repetitively with frequency:

ω = K(I)
√

(I − I∗)

where K(I) is a complicated expression tending to a constant as VS → +∞
and VR → −∞. Thus, unlike the LIF model, the QIF model has a square-root
dependence of frequency on current for large currents.

Almost all of the neural models that we are concerned with in this chapter
fire repetitively when sufficient current is injected into them. There are essen-
tially two mechanisms for going from rest to periodic activity. One of these is
the saddle-node on a limit cycle which we have already described. The other
mechanism is through a Hopf bifurcation. Near this bifurcation, the behavior
of the neuron is similar to its normal form [4]:

dz

dt
= z(a− b|z|2)

where a, b, z are complex. If we take a = 1+ i and b = 1 we recover the “radial
isochronous clock” (RIC), see [23].

Finally, there are many interesting cases in which the dynamics of the
neuron are essentially two-dimensional with V as one dimension and x as
the other, where x is one of the auxiliary variables in the Hodgkin-Huxley
formalism. For example, suppose that there are only two ionic species: a linear
leak and a calcium current. Then the model has the form:

C
dV

dt
= I − gL(V − EL)− gCam∞(V )h(V − ECa) (4)

τh(V )
dh

dt
= h∞(V )− h . (5)

m∞ is monotonically increasing while h∞ is a decreasing function of V. For
this model, τh is sometimes very large, so that it is justifiable to use singular
perturbation methods to analyze it. We will do this later in this chapter.

Now that we have briefly described the dynamics of neurons we can ask
how to couple them. Neurons communicate in many ways, but the most com-
mon mechanism is through chemical synapses. When the presynaptic neuron
fires, it produces currents in the post-synaptic neuron. Synapses are mod-
eled similarly to the ionic channels but the auxiliary variables depend on the
presynaptic voltage rather than the postsynaptic potential. Thus, a network
of neurons is described by equations of the form:

C
dVj

dt
= Ij − Iionic,j −

∑

k

cjksk(Vj − ER,k) (6)

dsj

dt
= α(Vj)(1− sj)− sj/τj (7)

where cj,k are nonnegative constants, ER,k is the reversal potential of the kth
synapse and Iionic,j are the intrinsic currents for neuron j. When convenient,
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we will go to the continuum limit to study spatially organized systems. Thus,
our goal in the rest of this chapter is to describe the behavior of coupled
systems of neurons.

2 PRC Theory and Coupled Oscillators

We suppose that each neuron is, by itself, an oscillator and that the interac-
tions between neurons are brief and pulsatile. Then, instead of treating the
full equations for each oscillator, we suppose that without any external signal,
each cell traverses its limit cycle in a regular periodic manner. Thus, we con-
sider each neuron to lie on a one-dimensional circle and satisfy the equation
θ′ = 1 where θ is the phase of the cycle. Each time θ crosses an integer, we
say that the neuron has spiked. Experimental biologists often treat rhythms
of unknown mechanism as such black boxes. In order to do some interesting
mathematics on this black box, we ask what the effects of brief external per-
turbations are on the timing of the spikes of our model. Again, this technique
has been used for decades to quantify the behavior of biological oscillators
[1, 2, 5, 16, 24]. Suppose that the oscillator fires at t = 0, 1, 2, . . . in absence
of any external perturbations. Now suppose at t = φ ∈ [0, 1), we apply a
brief stimulus. This will cause the oscillator to fire at some time t = T (φ).
In absence of the stimulus, the oscillator fires at t = 1 so that the effect
of the stimulus has been to advance the timing by an amount 1 − T (φ). If
T > 1, then a “negative” advance is actually a delay. We call the function,
∆(φ) = 1 − T (φ), the phase-resetting curve or PRC. The PRCs of cortical
neurons have been measured by several groups, notably [19, 21].

Figure 1 shows the PRCs from the three simplified models described in
the above text. In each of these models, at a time t = φ the voltage was
incremented by an amount a, either positive or negative. For the experimental
neuron, the current is held constant to induce repetitive firing and then a brief
square pulse of current is superimposed on this background. We note that for
small stimuli, the PRC of the RIC is roughly, ∆RIC(φ) = −a sin 2πφ and for
the QIF, it is roughly, ∆QIF (φ) = a(1 − cos 2πφ). The PRC for the RIC is
very similar to that measured for the flashing rhythm of Pteroptyx malaccae,
a Malaysian firefly species known for its dramatic synchronous displays.

Given that we have computed a PRC for a neuron, how can we use this in
a mathematical model? In general, the PRC depends in a complicated fashion
on the amplitude but for small stimuli, this is almost linear. Consider, first a
pair of identical neural oscillators such that each time one fires, the other is
adjusted using its PRC. Formally, we can write [14]:

θ′1 = 1 + ∆(θ1)δ(θ2)
θ′2 = 1 + ∆(θ2)δ(θ1) .

Here δ is the Dirac impulse function. This formulation is readily generalized
to arbitrary networks of oscillators and by changing the “1” to, say, ωj we
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Fig. 1. PRCs from three common models of single neurons and the PRC from a
pyramidal cell with some fits to a conductance-based model

can endow each oscillator with its own intrinsic frequency. Let’s first study
the two-oscillator system by reducing it to a map. Let F (φ) = φ + ∆(φ). We
make two important assumptions about F : (i) F ′(φ) > 0 and (ii) F (0) = 0.
Note that (ii) implies that F (1) = 1 since ∆(φ) is periodic. Clearly, the PRC
for the LIF violates (ii), but the neural PRC and those of the RIC and QIF
both satisfy (ii). For weak enough coupling, a small, they also satisfy (i).
Physically, these assumptions say that no stimulus can instantly make the
neuron fire and that at the moment of spiking, the neuron ignores all stimuli.

We now construct a map for a pair of oscillators. Suppose that when
1 fires, 2 is at φ so that the new phase for 2 is F (φ) and 1 is reset to 0. At
t = t2 ≡ 1−F (φ) oscillator 2 fires and oscillator 1 has traveled exactly t2 since
its frequency is 1. Thus, the phase of oscillator 1 is set to F (t2) and oscillator
2 is set to zero. Finally, oscillator 1 will fire once again at t1 = 1− F (t2) and
the phase of oscillator 2 will be t1. This yields the map

φ −→ 1− F (1− F (φ)) ≡ G(φ) . (8)

We see immediately that G(0) = 0 so that there is a synchronous solution.
By looking at the iteration, φn+1 = G(φn), we can analyze the approach to
and stability of fixed points. Figure 2 shows G(φ) for the three oscillators,
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Fig. 2. Maps derived from the PRCs in the previous figure

QIF, RIC, and the real neuron. (For the neuron, we use the approximation,
∆(φ) = φ(1−φ)/(1+exp(−6(φ−0.6))) which is a reasonable fit.) For each of
these maps, there is also a non-zero fixed point corresponding roughly to the
“anti-phase” solution in which the oscillators fire alternately. The fixed point
φ = 0 is stable if and only if |G′(0)| < 1 or

|F ′(1−)F ′(0+)| = |1 + ∆′(1−)||1 + ∆′(0+)| < 1 .

We have used limits, 1− and 0+ since the PRCs are continuous, but may
not be continuously differentiable at endpoints. (This is certainly true of the
neural PRC which is nearly flat at 0 and has a negative slope at 1.) For a > 0
in the RIC, synchrony is asymptotically stable as it also is for the neural PRC.
The linear stability gives no information for the QIF since ∆′(0) = 0 for this
model, but the graphical picture shows that synchrony is stable.

We next turn to some questions about synchrony in more complex net-
works. Suppose that we have N identical oscillators and each is connected to
all the others in exactly the same fashion. Then clearly, synchrony is a solu-
tion. In [10] we analyzed this and proved the following condition for stability.
Let α0 = F ′(0+) and α1 = F ′(1−). Then synchrony is linearly stable if and
only if each of the quantities βl ≡ αl

0α
N−l
1 , 1 ≤ l < N is less than 1. This

leads to a rather interesting situation. Suppose that α0 > 1 and α1 < 1 as is
the case for the neural PRC. Then for l sufficiently large, we can guarantee
that βl is positive. Thus, for a small network, it is possible that synchrony is
stable but for a larger network, it becomes unstable!

Surprisingly, the analysis of synchrony for locally coupled networks is much
more difficult than the all-to-all case. The reason for this is that with all-to-all
coupling, the ordering of the firing is preserved because of the monotonicity
of F (φ) and the fact that each time an oscillator fires, all other oscillators are
affected identically. We conjecture that if synchrony is pairwise stable, then
it is also stable in a one-dimensional network of nearest-neighbor coupled
oscillators. Here, by pairwise stability of synchrony, we mean that for two
identical symmetrically coupled oscillators, synchrony will be stable. In one-
dimensional rings of sufficient size, there is also the possibility of waves. That
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is, there is a constant phase-difference between successive oscillators so that
the net phase change around the ring is an integer. Consider the network of
N nearest neighbor oscillators:

θ′j = 1 + ∆(θj)[δ(θj−1) + δ(θj+1)]

where we identify 0 with N and N + 1 with 1. Suppose that when oscillator
j fires, oscillator j − 1 has phase τ so that its new phase is F (τ). After N
iterations of this, we want to have traversed a single cycle. This leads to the
following algebraic condition for the existence of a wave:

G(τ,N) ≡ F (F (τ) + (N − 2)τ) + τ = 1 .

Basically, this just says that each oscillator receives two inputs from its two
neighbors and that after these it must traverse one cycle. Waves with mul-
tiple cycles replace the 1 with m. The wave is linearly stable if and only if
(i) αN < 1; (ii) α1αN < 1; and (iii) 1 + α1αN > αN , where α1 = F ′(τ) and
αN = F ′((N − 2)τ + F (τ)). The last condition is trivially satisfied if the first
two hold. These simple conditions are analogous the conditions for synchrony
for a pair of neurons. We point out that this formula is not valid for τ = 0
which is the synchronous solution since it assumes that the firing order is fixed
(which is valid near a traveling wave).

In two-dimensions, it is possible to find rotating waves. For example, con-
sider a 4 × 4 network with nearest neighbor coupling using the RIC PRC.
Cells at the corners receive only two inputs, those at the edges, three, and in-
terior cells, four from their neighbors to the north, east, south, and west. The
following table summarizes the various firing times in terms of four ((N/2)2)
unknowns:

0 α τ/4− β τ
τ − β γ τ/4 + γ τ/4 + α

3τ/4 + α 3τ/4 + γ τ/2 + γ τ/2− β
3τ/4 3τ/4− β τ/2 + α τ/2

The structure of this table depends crucially on the fact that the PRC we
use is odd-symmetric. Like in the work [18], we can exploit this symmetry
to reduce the number of equations. In [18] further symmetries allowed us to
reduce the system even more. If ∆(−φ) �= −∆(φ) then there can generally be
no reduction. We can use this to derive a series of algebraic conditions for the
existence of a rotating wave. Goel and Ermentrout [10] find these explicitly
for N = 4, 6, 8 and also continue the solutions in the amplitude parameter a
for the RIC.

Before moving on to propagation of waves in active media, I want to state
a general result about coupled PRCs which is possible when we replace the
impulse coupling with a smooth version. Consider the following model:

dθj

dt
= 1 +

∑

k

cjkP (θk)∆(θj) . (9)
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The function P (θ), called the coupling function, should be regarded as a pulse-
like function; for example P (θ) = A exp(−B(1− cos 2πθ)) where B is a large
positive number and A is chosen so that the area under P over one period
is 1. As B → ∞ this function tends to an impulse function. Suppose that
cjk ≥ 0, cjk = ckj and that ∑

k

cjk = c

is a constant. The last assumption implies that θj(t) = φ(t) where

dφ

dt
= 1 + c∆(φ)P (φ) ≡ f(φ) .

We assume that f(φ) > 0 so that φ(t) is a periodic solution with period:

T =
∫ 1

0

ds

f(s)
.

The first two assumptions allow us to find a simple condition for the stability
of the synchronous state. Suppose the matrix cjk is irreducible and

Q ≡
∫ T

0

P (φ(t))∆′(φ(t)) dt < 0 .

Then the synchronous state is asymptotically stable. The condition on Q
is intuitively appealing and has a simple interpretation. Suppose that P is
positive near the firing time and nearly zero the rest of the time. Then we
require the slope of the PRC to be negative at the firing phase. This is not
true for the QIF or the real neuron, but it is true for the RIC. However, for
the real neuron, the PRC has a big negative slope on one side of 0 and a very
shallow positive slope on the other, so for a symmetric pulse, P , Q < 0 as
required. The assumptions on cjk are not unreasonable, for example, any ring
of oscillators with symmetric positive coupling will work.

3 Waves in Spiking Models

In the first half of these notes, we examined coupled networks of oscillatory
neurons. I want to turn now to networks of synaptically coupled units which
are not intrinsically oscillatory. Rather, we will assume that the network is
“excitable”; that is small perturbations decay to rest, but large enough ones
lead to an action potential. Each cell could be a full conductance-based model
such as (1), or a simpler scalar model such as the LIF or QIF model. Consider
the following general class of scalar models:

dV (x, t)
dt

= f(V (x, t)) + g

[

V (x, t),
∫

Ω

k(x, y)s(y, t) dy

]

(10)

The functional s(x, t) is effect of the cell at x firing. This could satisfy its
own differential equation or be a proscribed function of t or just a nonlinear
function of V.
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3.1 Theta Model

Let me start with a simple model in which the function s has no independent
dynamics. Recall the QIF model (3). This is a scalar model, but it is not
convenient for mathematical analysis, so that we transform it to the so-called
theta model by setting V = V0 + V1 tan(θ/2):

dθ

dt
= 1− cos θ + (1 + cos θ)I (11)

where I represents all the inputs. The spiking threshold is θ = π or V = +∞
and the reset is θ = −π or V = −∞. Since −π = π, the theta model is
smooth around the spiking so that it represents a smooth dynamical system
on the circle. If I < 0 then θ tends to a stable fixed point and if I > 0,
then θ traverses the circle with frequency

√
I/π. (See Fig. 3A.) Suppose that

the coupling function is as in the previous section; just a pulse like function
of θ (see Fig. 3B) and that the domain is the whole line with homogeneous
coupling. Then, we arrive at:

dθ(x, t)
dt

= 1− cos θ + (1 + cos θ)
(

I + g

∫ ∞

−∞
K(x− y)P (θ(y, t)) dy

)

.

K(x) is nonnegative, symmetric, and monotone non-increasing for x > 0.
I < 0 so that the medium is not spontaneously active. Intuitively, we might
suspect that if we excite a region above threshold, then the coupling might
induce propagation of activity and lead to a traveling wave. This is in fact
true under a rather broad range of conditions. Figure 3C shows a simulation of
the model and the profiles of two values of θ(x, t). A traveling pulse satisfies,
θ(x, t) = U(ξ) where ξ = x − ct. At ξ = +∞ we want U(ξ) = θrest and
at x = −∞, U(ξ) = 2π + θrest. This says that the wave traverses exactly
one cycle. While there is no published proof of the existence of such a wave
front for this model, existence and stability follow with minor changes from a
theorem of X. Chen [6] as long as

Q(u) = 1− cos u + (1 + cos u)(I + gP (u))

has two roots in [0, 2π). If I < 0, P (u) is narrow enough, and the peak, θT

of P (u) is close enough to π, then Q(u) will have the required roots. In two
spatial dimensions, we can expect spiral waves as shown in part D of the
figure.

Osan et al. [17] have considered the same theta model but the coupling
function is no longer a simple function of the state θ. Instead, s(x, t) =
exp[−(t − t∗(x))/τ ] where t∗(x) is the time at which θ(x, t) crosses π. They
proved the existence of a traveling wave solution to this problem and in a
subsequent paper, Rubin [20] formulated the stability questions.
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Fig. 3. Waves in a theta model. (A) Phase space of the theta model; (B) Coupling
function of θ; (C) Traveling wave for a line of cells; (D) Spiral wave for a two-
dimensional array

3.2 Thalamic Models

We conclude with a rather complicated conductance-based model of a region
of the brain called the thalamus. At its simplest, the network consists of two
layers of neurons, the thalamocortical cells (TC) and the reticular nucleus cells
(RE). Each neuron satisfies an equation of the form (4) with an additional
equation for the synapses. The phaseplane for an individual cell is shown in
Fig. 4A. Each cell is endowed with a calcium current which produces rebound
excitation. That is, suppose the cell is inhibited for a period of time. This raises
the V -nullcline as seen in the figure (s = φ). The equilibrium moves toward
the new fixed point. If the inhibition is rapidly removed, the V -nullcline falls
back to the original position (s = 0) which leaves (V, h) above hmax. This
causes the voltage to jump to the right branch of the nullcline (a rebound
spike), before returning to rest. (More details on this cycle are provided in
the next paragraph.) If the two layer network of these cells is wired up as in
Fig. 4B, then under some circumstance, the result is a wave of activity across
the network. Such a wave is shown in Fig. 4C. This is not a smooth wave;
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Fig. 4. Thalamic network model. (A) Phaseplane showing the h-nullcline (dashed)
and the V -nullcline at rest (s = 0) and when a region of length φ is inhibiting (s = φ).
Several important values of h are shown. The approximate singular trajectory of a
lurching wave is drawn in thick lines. (B) The architecture of the full model. (C) A
simulation of a lurching wave. Grey scale depicts voltage; white = 40 mv and black
= −90 mV. (D) The function F (φ) from (15) with hmax = .7, hmin(φ) = .2 + .5φ,
hr(φ) = .5 + φ, τR/τL = 2

rather we call this a lurching wave. Here is what happens. A group of TC cells
fires. This excites RE cells nearby causing them to fire. They inhibit the TC
cells including those surrounding the original population of firing cells. The
fresh population is inhibited and when the inhibition wears off, they fire as a
group.

We now attempt to explain this and find a formula for the size of the groups
that fire as well as the time it takes for them to fire. In order to do this, we
will simplify a bit and consider a single layer of cells with inhibitory coupling.
Thus, when a group of cells fires, it inhibits a neighboring group. After the
inhibition wears off, the next group fires and so on. (In the next section, we
will look at the transition from smooth waves to lurchers through a different
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set of simplified models.) To analyze this model, we use singular perturbation.
The present exposition will be a drastic approximation to a fuller analysis of
the model which can be found in [22]. The equations of interest are

ε
∂V

∂t
= f(V, h)− g

∫ ∞

−∞
W (x− y)s(y, t) dy(V − Vin) (12)

∂h

∂t
= (h∞(V )− h)/τ(V ) (13)

ε
∂s

∂t
= αH(V − VT )(1− s)− βs . (14)

f(V, h) is all the intrinsic currents of the cell. We suppose that the interaction
kernel, W (x) is a square and without generality, assume it is zero outside of
x = (−1/2, 1/2). We assume that τ(V ) takes on two values, τR when V is on
the right branch of the V -nullcline and τL when V on the left branch. The
parameter ε is small indicating that the dynamics is governed by the calcium
recovery variable, h. (We should really start with ε multiplying the right-hand
side of the h equation and then rescale time. In the interest of brevity, I have
already done this.) By letting ε → 0, we analyze the singular trajectory and
compute the properties of the wave. Figure 4A shows the singular trajectory
of a group of cells. Suppose that φ is the size of the group of cells that is turned
on. This inhibits a neighboring group, which are all at rest, h0. As long as the
first group remains on the right-branch of the V -nullcline, the second group
crawls up the left branch of V -nullcline toward hr(φ) the resting state. When
the first group reaches the bottom of the inhibited (s = φ) V -nullcline, the
inhibition disappears. All cells that are above hmax will jump to the right
branch, starting the cycle again. With this simple description of the wave, we
can derive formulas for the time between jumps and the size of group that
jumps. Suppose the group that jumps is on x ∈ (−φ, 0). This means that all
the synaptic variables, s(x, t), in the group are at their equilibrium values,
a ≡ α/(α + β). Thus

Stot(x) ≡
∫ ∞

−∞
W (x− y)s(y, t) dy = a

∫ 0

−φ

W (x− y) dy .

We assume that φ is smaller than the synaptic footprint, so that Stot(x) =
aφ for x ∈ (0, φ). For the time in which this group of cells in on the right
branch of the V -nullcline, all cells in (−φ, φ) feel the same common inhibition
parameterized by φ and see the V -nullcline labeled s = φ in the figure. At the
up-jump, all the cells roughly jump horizontally with h = hmax, the maximum
of the s = 0 V -nullcline. They remain on the right branch until they reach
hmin(φ) where they jump back. For V on the right branch, h∞(V ) = 0, so the
time it takes is

T = τR ln
hmax

hmin(φ)
.
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In the meantime, the group of cells at x ∈ (0, φ) is feeling the inhibition; So,
starting from rest, they are heading toward the upper equilibrium point at
hr(φ). During this period h satisfies

τL
dh

dt
= h∞(VL(h))− h, h(0) = h0 ,

where VL(h) is the value of the voltage on the s = φ V -nullcline. We approx-
imate h∞(VL(h)) as hr(φ) so that we can solve for h in this time period:

h(x, t) = hr(φ) + (h0 − hr(φ))e−t/τL .

When the inhibition wears off at t = T only the cells above hmax will make
the jump. Thus, for self-consistency, we must have

h(φ, T ) = hmax

or:

hmax = hr(φ) + (h0 − hr(φ))
(

hmin(φ)
hmax

)τR/τL

≡ F (φ) . (15)

Thus, we reduce the problem to a single equation for φ. F (0) = h0 < hmax

so that for small φ, F (φ) < hmax. If the synaptic coupling g is large enough
and τR/τL is also large, then F (φ) will be larger than hmax for φ in some
range. Indeed, the function F (φ) is parabolic in shape (see Fig. 4, so there
will either two roots or no roots to this equation. Having found φ we can then
plug it back to get T and thus get the speed of the lurching wave. In [22] a
more correct and precise analysis is presented and compares very closely to
the solutions obtained by numerically simulating the full model.

3.3 Integrate-and-fire

We close this chapter with an example system which shows the transition from
smooth waves to lurching waves as a parameter varies. We will examine the
simplest neuronal dynamics, the LIF, in which there is a fixed delay between
the time that a cell fires and the time that it excites the neighboring cells.
For small delays, the system is like the coupled theta-cell model and a solitary
smoothly propagating wave exists and is stable. For large delays, we can think
of this as analogous to the thalamic model based on inhibition and rebound.
The delay is analogous to the time for the inhibition to wear off allowing the
stimulated cell to fire; if this is large enough lurching occurs. Suppose that
each time a cell fires, the result on a neighboring cell is a proscribed function
of time, α(t). The domain is the real line. Then the equation of each cell is:

τ0
∂V (x, t)

∂t
= −V (x, t) + gsyn

∫ ∞

−∞
w(x− y)α(t− T (y)− τd) dy + I ,



354 B. Ermentrout

where I is a constant applied current and T (x) is the time at which the cell at x
fires. We say that a cell fires when V (x, t) crosses VT , the threshold. Typically,
α(t) = (exp(−t/τ1) − exp(−t/τ2)/(τ1 − τ2) for t > 0 and 0 otherwise. w(x)
will be either a square, Gaussian, or exponential interaction.

Since V satisfies a linear differential equation, we can integrate this equa-
tion once to obtain a Volterra integral equation for V (x, t). We then note that
V (x, T (x)) = VT by definition which leads to a very interesting functional
equation for T (x):

VT

gsyn
=
∫ ∞

−∞
dy w(y)G[T (x)− T (y)− τd] , (16)

where
G(t) =

∫ ∞

0

e−(t−s)/τ0α(s) ds .

Equation (16) is equivalent to the original model under the assumption that
each cell fires at most one time. We could justify the “one-spike” assumption
by assuming a very strong hyperpolarizing afterpotential or strong synaptic
depression, both preventing further spikes.

Figure 5A shows the firing pattern of a network of LIF neurons with two
different delays. In the left, a smooth wave appears so that T (x) = x/ν where
ν is the wave velocity. On the right, this simple description no longer holds.
However, we do have that T (x + L) = T (x) + Tper and the average velocity is
ν = L/Tper. That is, T (x)−x/ν is a periodic function of x. The smooth wave
is simple to analyze since we know the exact form of T (x) = x/ν. Plugging
this into (16), we obtain:

VT

gsyn
=
∫ ∞

0

dyw(y + τdν)G(y/ν) ≡ F (ν) .

The function F (ν) can be analytically determined in several interesting cases,
for example if w(x) = exp(−|x/σ|)/(2σ) and τ1 = 0, we find

F (ν) =
2(τ0ν + σ)(τ2ν + σ)

τ0νσ
exp(τdν/σ) .

In general, this is a parabolic function of ν so that there are either no roots,
one root, or two roots. Figure 5B shows the velocity as a function of the
threshold for several different parameters and delays. It was showed in [7]
showed that this was generally the case for conductance-based neurons using
a combination of numerical shooting and asymptotics.

Following [12] or [3], we can look at the stability of these traveling waves.
Substituting, T (x) = x/ν + εeλx into (16) and taking the O(ε) terms, we
obtain an equation for λ:

E(λ) ≡
∫ ∞

0

dyw(y + τdν)G′(y/ν)
[
1− e−λ(y+τdν)

]
= 0 . (17)
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bistable

Fig. 5. The integrate-and-fire model with delays. (A) a raster plot showing the
time of firing of cells in a numerically computed wave for two delays. (B) velocity
as a function of the threshold for different α functions. Note the Hopf bifurcation
leading to instability of the smooth wave. (C) Complex behavior of the network;
white region – only smooth waves are stable; light grey – only lurching waves are
stable; dark grey – both waves are stable. (D) Lurching period as a function of
synaptic strength

The function E(λ) is called the Evans function; E(0) = 0 since there is trans-
lation invariance. If the real part of λ is positive, the perturbation of the wave
will grow exponentially as it advances through space and it is thus unstable. It
was showed in [3] and [12] that the lower branch of solutions (the slow waves)
are unstable for all parameters. The fast waves are stable if there is no delay.
What is relevant to lurching waves is that Golomb and Ermentrout showed
in [12] that for a large enough delay, the fast waves lose stability at a Hopf
bifurcation and give rise to waves that have periodic modulation. That is,
T (x)− x/ν is a periodic function. We have not yet computed the direction of
bifurcation for this problem; however, we have done careful numerical analy-
sis the results of which are shown in Fig. 5C. There is a complex regime of
bistability between lurching waves and smooth waves. We conjecture that the
borders of this region are precisely those places where the Hopf bifurcation
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switches from sub- to super-critical. (Oscillations branching from subcritical
Hopf bifurcations undergo turning points to become stable leading to a regime
of bistability between the fixed point and the oscillation.) These results suggest
that the transition between smooth waves and lurching waves in the thalamic
model is a consequence of changing the effective delay to excitation. Golomb
and Ermentrout showed [11] simulations of a conductance-based model of TC
and RE cells that undergoes a transition from smooth to lurching waves as
the strength of inhibition (and thus the effective delay to firing) increases.

As in the previous section of this chapter, we can estimate the size of a
lurching group of neurons in certain asymptotic regimes. Recall that for the
singular perturbation arguments, we let ε, the recovery rate for the T-current
tend to zero. In unscaled time, this means that the period between lurching
groups tends to infinity. The analogue in the present model is to let the delay
become arbitrarily large. We obtained the following estimate for the size, L
of a group of neurons which fire together during a lurching cycle:

VT

gsyn
=
∫ 2L

L

dy w(y) ≡W (L) .

This implicitly defined function gives an excellent approximation for the size
of the lurching group as shown in Fig. 5D. For an exponential footprint,

L ∼ σ ln
(

gsyn

2VT

)

for large gsyn while for a Gaussian footprint,

L ∼
√

2σ
√

ln(gsyn/VT ) .
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1 Introduction

A remarkable development in molecular biology today is the upscaling to the
genomic level of its experimental methods. Hardly imaginable only 20 years
ago, the sequencing of complete genomes has become a routine job, highly
automated and executed in a quasi-industrial environment. The miniaturiza-
tion of techniques for the hybridization of labeled nucleic acids in solution
to DNA molecules attached to a surface has given rise to DNA microarrays,
tools for measuring the level of gene expression in a massively parallel way
[1]. The development of proteomic methods based on two-dimensional gel
electrophoresis, mass spectrometry, and the double-hybrid system allows the
identification of proteins and their interactions at a genomic scale [2].

These novel methods in genomics produce enormous quantities of data
about different aspects of the cell. On the one hand, they allow the identifica-
tion of interactions between the genes of an organism, its proteins, metabo-
lites, and other small molecules, thus mapping the structure of interaction
networks. On the other hand, they are able to detect the evolution of the
state of the cell, that is, the temporal variation of the concentration and the
localization of the different molecular components, in response to changes
in the environment. The big challenge of systems biology consists in relating
these structural and functional data to each other, in order to arrive at a
global interpretation of the functioning of the organism [5, 6]. This amounts
to predicting and understanding how the observed behavior of the organism –
the adaptation to its environment, the differentiation of its cells during
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development, even its evolution on a longer time-scale – emerges from the
set of molecular interactions.

In addition to high-throughput experimental methods, mathematical and
computational approaches are indispensable for the analysis of genetic reg-
ulatory networks. Given the large number of components of most networks
of biological interest, connected by positive and negative feedback loops, an
intuitive comprehension of the dynamics of the system is often difficult, if not
impossible to obtain. mathematical modeling supported by computer tools can
contribute to the analysis of a regulatory network by allowing the biologist
to focus on a restricted number of plausible hypotheses. The formulation of a
mathematical model requires an explicit and non-ambiguous description of the
hypotheses being made on the regulatory mechanisms under study. Further-
more, its simulation by means of the model yields predictions on the behavior
of the cell that can be verified experimentally.

The use of mathematical methods for the modeling and simulation of mole-
cular interaction networks is not new, of course. The first modeling studies of
gene regulation, such as the well-known Goodwin model of genetic autoreg-
ulation [10], can be traced back to the very beginnings of molecular biology,
while the modeling of metabolic pathways has an even longer pedigree. Nev-
ertheless, it is fair to say that mathematical modeling has not yet been fully
integrated in the actual practice of biological research, at least not to the
extent this has been the case for other scientific disciplines, most notably
physics. This raises the question whether some of the accumulated experience
in physics may be transferable to biology, in particular the combined mathe-
matical and experimental analysis of carefully designed and tightly controlled
artificial systems. The interest of such systems derives from the fact that they
allow the dynamics of basic mechanisms found in every natural system to be
studied in isolation.

In this chapter, we will discuss methods for the modeling and simulation of
one particular type of molecular interaction network, called genetic regulatory
network. Today, a large part of the experimental data available, notably gene
transcription data, concerns these networks of genes, proteins, and their mu-
tual interactions. Many reviews of the modeling and simulation of genetic reg-
ulatory networks have been published in recent years (e.g., [13, 14, 15, 16, 61]),
presenting the wide variety of formalisms that have been proposed in the
literature, such as oriented graphs, Bayesian networks, Boolean networks,
differential equations, and stochastic master equations. We will restrict the
discussion here to ordinary differential equations and to iterations of maps.
These continuous-time and discrete-time models have been often used for the
modeling of biological systems and a large number of powerful techniques for
their analysis are available.

In Sect. 2, we introduce some biological notions, fundamental for un-
derstanding the nature of genetic regulation and genetic regulatory net-
works. Sections 3 and 4 discuss the analysis of a simple example network,
a cross-inhibition network of two genes, by means of several continuous-time
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differential equations and discrete-time dynamical systems. In addition, ref-
erences are made to modeling studies of real genetic regulatory networks un-
derlying the functioning and development of several prokaryote and eukaryote
systems. The chapter ends with a brief discussion and conclusions.

2 Genetic Regulatory Networks

Genes are segments of DNA involved in the production of proteins, which
play a primary role in the chemistry of a living cell [9]. The process in which a
protein is produced from the information encoded in the nucleotide sequence
of the DNA is called gene expression. Gene expression comprises several steps,
two of which are shown in Fig. 1. First, the coding region of a gene is tran-
scribed into mRNA by an enzyme called RNA polymerase. The resulting
mRNA molecule then functions as a template for the synthesis of a protein by
another enzyme, the ribosome, in a process called translation. In eukaryotic
organisms, gene expression is considerably more complicated and may involve
intermediary steps in which RNA is processed and transported from the cell
nucleus to the cytoplasm. The synthesis of proteins is balanced by their degra-
dation, that is, by processes that break down proteins into their amino acid
components.

mRNA

protein

amino acids

regulation of
degradation

DNA

regulation of
transcription

regulation of
translation

DNA transcription

RNA translation

protein degradation

Fig. 1. Regulation of production and degradation of proteins

The level of gene expression, that is, the cellular concentration of the pro-
tein encoded by a gene, depends on the relative activity of protein synthesis
and degradation. In order to adapt the gene expression level to the require-
ments of the cell at any given time, complicated mechanisms regulating the
production and destruction of proteins have emerged in the course of evolu-
tion (Fig. 1). A simple example is the control of transcription by a repressor



310 H. de Jong and R. Lima

protein binding to a regulatory site on the DNA, thus preventing RNA poly-
merase from transcribing the gene. The example illustrates that the regulation
of gene expression involves proteins encoded by other genes. This gives rise
to genetic regulatory systems structured by networks of interactions between
genes, proteins, and other molecules, so-called genetic regulatory networks.

We will illustrate the main interactions in a genetic regulatory network
by means of a simple example: the regulation of the expression of the sigma
factor σS in Escherichia coli. of the sigma subunits of the RNA polymerase
is to recognize specific transcription initiation sites on the DNA, the so-called
promoters. The expression or activation of a certain sigma factor therefore
leads to the expression of a specific subset of genes of the organism. This
type of regulation is often used by bacteria to assure a global response to an
important change in their environment. Because of their importance for the
global functioning of the cell, the expression of the sigma factors themselves
is often tightly regulated.

E. coli possesses seven different sigma factors [17, 18]. The principal sigma
factor, σ70, directs the transcription of the so-called housekeeping genes. In
many stress situations (lack of nutriments, high osmolarity, change of pH
or of temperature, etc.), E. coli expresses the alternative sigma factor σS ,
encoded by the gene rpoS. σS takes its name from the fact that it plays an
important role in the adaptation to a particular stress, frequently encountered
by bacteria: the depletion of nutriments in the environment, which leads to a
considerable slowing down of cell growth, called the stationary growth phase.
However, σS is activated in response to many other kinds of stress [19]. The
regulation of the concentration of σS in the cell is extraordinarily complex
and provides a good illustration of the different modes of regulation shown in
Fig. 2.

Although regulation of transcription constitutes the preferred mode of reg-
ulating gene expression in bacteria, few studies have addressed this subject in
the case of rpoS. As a consequence, our knowledge on the transcriptional reg-
ulation of this gene remains incomplete. The protein CRP, a typical repressor-
activator, specifically binds the DNA at two sites close to the major promoter
of rpoS [19]. One of these sites overlaps with the promoter, which implies
that CRP and RNA polymerase cannot simultaneously bind to the DNA,
due to sterical constraints. As a consequence, CRP represses the transcrip-
tion of rpoS. The second binding site of CRP is located just upstream of
the promoter. This geometry is reminiscent of the lac operon, where CRP
binding to a similarly-positioned site establishes protein-protein interactions
with the RNA polymerase, thus favoring the recruitment of RNA polymerase
to the promoter [20]. The molecular details of this apparently contradictory
regulation of the transcription of rpoS by CRP are still only partially under-
stood. Nevertheless, the example illustrates one type of regulation that is quite
widespread in bacteria: a protein binding the DNA (the regulator) prevents
or favors the binding of RNA polymerase to the promoter.
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a

Fig. 2. Regulation of the synthesis and degradation of the sigma factor σS . Only
the interactions detailed in the text are shown. The notation follows the graphical
conventions proposed by Kohn [21]

The expression of rpoS is not only regulated at the transcriptional, but
also at the post-transcriptional level. The translation of the mRNA of rpoS
is stimulated by environmental stress factors such as high osmolarity, low
temperature, or low pH. The translation begins with the recognition of the so-
called Shine-Dalgarno sequence by the ribosome, followed by the binding of the
latter to this sequence. The efficiency of translation depends on the similarity
of the Shine-Dalgarno sequence to the consensus sequence, and its accessibility
for the ribosome. The mRNA of rpoS, like any other RNA, is not only a
linear molecule, but possesses a particular secondary and tertiary structure.
If the Shine-Dalgarno sequence is sequestered in a secondary structure (e.g.,
an RNA helix), it will be less accessible to the ribosome and the efficiency of
translation will be reduced. In the case of rpoS, at least three small regulatory
RNAs (DsrA, RprA, OxyS) and an equal number of proteins (HU, H-NS,
Hfq) are known to modify the structure of the RNA near the Shine-Dalgarno
sequence [19, 22].

Not only the synthesis of σS is tightly regulated, but its degradation is also
subject to multiple environmental and physiological influences [19]. Like many
proteins in E. coli, σS is degraded by proteases. All proteins are recognized by
proteases when they are misfolded or truncated. In addition, certain proteins
contain sequences (often at the N or C-terminal region) that are specifically
recognized by proteases. In the case of σS , a highly specialized system targets
the protein for degradation by the ATP-dependent protease ClpXP. The pro-
tein RssB, when phosphorylated, forms a tight complex with σS . RssB also
interacts with ClpX, the subunit of the ClpXP complex that recognizes the
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substrates of the protease, and thus targets σS towards ClpXP. The catalytic
subunit, ClpP, degrades σS and RssB∼P is released, ready to dispatch an-
other σS molecule towards degradation. The system is finely regulated by a
feedback loop: the synthesis of RssB depends on σS . In addition, the σS-RssB
system is subject to environmental signals, since RssB only binds to σS , if it
is phosphorylated in response to a thus far unidentified signal.

Transcription, translation, and degradation are regulated by a large num-
ber of interactions, as illustrated here for σS . This convergence or “fan-in” of
influences on rpoS and its protein is accompanied by an even more important
divergence or “fan-out”, in the sense that σS regulates the transcription of
at least 70 genes of E. coli [19]. Among these genes, several encode proteins
involved, directly or indirectly involved in the regulation of the synthesis and
degradation of σS . This endows the network with a complex feedback struc-
ture, responsible for the adaptation of the transcriptional program of the
bacterium to external perturbations.

The complexity of the genetic regulatory network is further increased by
the fact that it is integrated with other networks. As we mentioned above,
by citing the example of RssB, the σS regulon is the target of environmental
signals. It is also the target of regulatory factors originating in the cellular
metabolism. For instance, the expression of σS , or at least of genes dependent
on σS , is also sensitive to the concentration of lactic acid or the redox state of
the cell (as measured by the ratio of NADH and NAD+) [19]. The genetic reg-
ulatory network controlling the expression of rpoS as well as the regulation of
expression of target genes of σS is thus embedded in the metabolic and signal
transduction networks of the cell. A complete understanding of the dynam-
ics of this system would require a detailed description of all these elements.
However, we can often abstract from the metabolic and signal transduction
networks – by focusing on their effects on gene expression – and neverthe-
less obtain an adequate description of the global functioning of the regulatory
system [23].

3 Ordinary Differential Equation Models

3.1 Nonlinear Models

Nonlinear ordinary differential equations are probably the most-widespread
formalism for modeling genetic regulatory networks. They represent the con-
centration of gene products – mRNAs or proteins – by continuous, time-
dependent variables, that is, x(t), t ∈ T , T being a closed time-interval
(T ⊆ R≥0). The variables take their values from the set of non-negative real
numbers (x : T → R≥0), reflecting the constraint that a concentration can-
not be negative. In order to model the regulatory interactions between genes,
functional or differential relations are used.
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More precisely, gene regulation is modeled by a system of ordinary differ-
ential equations having the following form:

dxi

dt
= fi(x), i ∈ [1, . . . , n] , (1)

where x = [x1, . . . , xn]′ represents the vector of concentration variables of the
system, and the function fi : R

n
≥0 → R, usually highly nonlinear, the regula-

tory interactions. The system of (1) describes how the temporal derivative of
the concentration variables depends on the values of the concentration vari-
ables themselves. In order to simplify the notation, we can write (1) as the
vector equation

dx

dt
= f(x) , (2)

with f = [f1, . . . , fn]′. Several variants of (2) can be imagined. For instance,
by taking into account the input variables u, it becomes possible to express
the dependence of the temporal derivative on external factors, such as the
presence of nutriments. In order to account for the delays resulting from
the time it takes to complete transcription, translation, and the other stages
of the synthesis and the transport of proteins, (2) has to be changed into a
system of delay differential equations [16].

The above definitions can be illustrated by means of a simple network
of two genes (Fig. 3). Each of the genes encodes a regulatory protein that
inhibits the expression of the other gene, by binding to a site overlapping the
promoter of the gene. Simple as it is, this mutual-inhibition network is a basic
component of more complex, real networks and allows the analysis of some
characteristic aspects of cellular differentiation [24, 26].

a b

A

B

Fig. 3. Example of a simple genetic regulatory network, composed of two genes (a)
and (b), the proteins A and B, and their regulatory interactions

An ordinary differential equation model of the network is shown in
Fig. 4(a). The variables xa and xb represent the concentration of the pro-
teins A and B, encoded by the genes a and b, respectively. The temporal
derivative of xa is the difference between the synthesis term κa h−(xb, θb,mb)
and the degradation term γa xa. The first term expresses that the rate of
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synthesis of protein A depends on the concentration of protein B and is de-
scribed by the function h− : R≥0×R

2
>0 → R≥0. This so-called Hill function is

monotonically decreasing. It takes the value 1 for xb = 0, and asymptotically
reaches 0 for xb → ∞. It is characterized by a threshold parameter θb and a
cooperativity parameter mb (Fig. 4(b)). For mb > 1, the Hill function has a
sigmoidal form that is often observed experimentally [28, 29]. The synthesis
term κa h−(xb, θb,mb) thus means that, for low concentrations of the protein
B, gene a is expressed at a rate close to its maximum rate κa (κa > 0), whereas
for high concentrations of B, the expression of the gene is almost completely
repressed. The second term of the differential equation, the degradation term,
expresses that the degradation rate of the protein A is proportional to its
own concentration xa, γa being a degradation parameter (γa > 0). In other
words, the degradation of the protein is not regulated in this example. The
differential equation for xb has an analogous interpretation.

dxa

dt
= κa h−(xb, θb, mb) − γa xa

dxb

dt
= κb h−(xa, θa, ma) − γb xb

h−(x, θ, m) =
θm

xm + θm

(a)

1

0

h−(x, θ, m)

xθ

(b)

Fig. 4. (a) Nonlinear ordinary differential equation model of the mutual-inhibition
network (Fig. 3). The variables xa and xb correspond to the concentrations of pro-
teins A and B, respectively, the parameters κa and κb to the synthesis rates of the
proteins, the parameters γa and γb to the degradation rates, the parameters θa and
θb to the threshold concentrations, and the parameters ma and mb to the degree
of cooperativity of the interactions. All parameters are positive. (b) Graphical rep-
resentation of the characteristic sigmoidal form, for m > 1, of the Hill function
h−(x, θ, m)

Because of the nonlinearity of the functions f , the solutions of the sys-
tem of ordinary differential equations (2) cannot generally be determined by
analytical means. This is even true for the nonlinear model of the two-gene
network (Fig. 4). However, because the model has only two variables, we can
obtain a qualitative understanding of the dynamics of the network, by apply-
ing the tools available for analysis in the phase plane (see [30] for an accessible
introduction).

The phase plane of the system is represented in Fig. 5. Every point in
the plane represents a pair of concentrations xa and xb. The solutions of the
system of differential equations give rise to trajectories in the phase plane,
as illustrated in (a). Another way of studying the dynamics of the system
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consists in analyzing the vector field, that is, the vector of temporal deriv-
atives (dxa/dt, dxb/dt)′ associated with each point. This gives an indication
of the direction of the trajectories passing through the point, as illustrated
in (b). The analysis can be refined by tracing the nullclines in the phase
plane, that is, the curves on which the temporal derivatives of xa and xb

equal 0 (here, these curves are defined by xa = (κa/γa)h−(xb, θb,mb) and
xb = (κb/γb)h−(xa, θa,ma)). The points where the nullclines intersect are the
equilibrium points of the system. If all trajectories in a neighborhood of the
equilibrium point remain in that neighborhood, then the equilibrium point is
stable. If, in addition, they converge towards the equilibrium point, the latter
is asymptotically stable. So, by studying the vector field around the equilib-
rium point, one can determine its stability. In the case of the nonlinear model
of the network in Fig. 3, there are three equilibrium points: two of these are
asymptotically stable and one is unstable (Fig. 5). The result of the analysis
summarized in this paragraph is often called the phase portrait.

0 0
se

ue

se

0

(a)

xb xb

xb

xa

xa

xa
(b)

(c)

= 0dxb/dt

= 0dxa/dt

Fig. 5. Phase portrait of the nonlinear model of the mutual-inhibition network
(Fig. 4). (a) Examples of trajectories. (b) Vector field and nullclines. The system
has two asymptotically stable equilibrium points (se) and one unstable equilibrium
point (ue). (c) Hysteresis effect, resulting from a transient perturbation of the system
(broken line with arrow)
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The above phase-plane analysis predicts that the mutual-inhibition net-
work is bistable. That is, starting from certain initial conditions, the system
will reach one of the two stable equilibria. From a practical point of view, the
unstable equilibrium has no importance, because it is only attained for quite
specific initial conditions. Moreover, a perturbation of the unstable equilib-
rium, even vanishingly small, will cause the system to converge towards one of
the stable equilibria. The phase portrait also reveals that the system exhibits
hysteresis. If one perturbs the system from one of its stable equilibria – for
instance, by provoking a strong degradation of the protein present at a high
concentration – the other equilibrium can be reached (Fig. 5(c)). From then
onwards, even if the source of strong degradation has disappeared, the sys-
tem will remain at the new equilibrium. In other words, the example suggests
that a simple molecular mechanism may allow the system to switch from one
functional mode to another. For this reason, mutual-inhibition networks, or
more generally networks with positive feedback loops, have been assigned a
central role in cellular differentiation [26].

It is important to remark that the above analysis is not just a theoretical
exercise. In fact, the properties of the mutual inhibition network revealed by
the analysis – bistability and hysteresis – have been experimentally tested
by Gardner et al. [27]. The network of Fig. 3 has been reconstructed in Es-
cherichia coli cells by cloning the genes on a plasmid. The genes have been
chosen such that the activity of the corresponding proteins can be regulated
by external signals. In addition, reporter genes have been added that allow
the state of the cell to be measured. The resulting mutual-inhibition network
functions independently from the rest of the cell, like a “genetic applet”, in
the words of the authors. Carefully-chosen experiments have shown that the
system is bistable and can switch from one equilibrium to the other following
chemical or heat induction.

The qualitative analysis of the dynamics of the mutual inhibition network,
summarized in Fig. 5, is valid for a large range of parameter values. However,
for certain parameter values, the behavior of the system changes, as can be
verified in Fig. 6. By increasing the value of the parameter θb, the nullcline of
xa, defined by xa = (κa/γa)h−(xb, θb,mb), moves upwards. As a consequence,
one of the stable equilibria and the unstable equilibrium approach and then
annihilate each other. For values of θb close to, or above, κb/γb, the system
loses its bistability and hysteresis properties. In the terminology of dynamical
systems theory, a bifurcation has occurred [30].

Generally, for networks having more than two genes, an analysis in the
phase plane is no longer possible. In certain cases, one can reduce the di-
mension of the system by simplifying the model, but most of the time, nu-
merical techniques become necessary. Numerical simulation approximates the
exact solution of the system of equations, by computing approximate val-
ues x0, . . . ,xm for x at consecutive time-points t0, . . . , tm (see [31] for an
introduction). Many computer tools for numerical simulation have been de-
veloped, some specifically adapted to networks of molecular interactions (see
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Fig. 6. Analysis of the bifurcation occurring when the value of the parameter θb is
increased. The value in (a) is larger than the value in (b)

the references in [32]). These tools are at the heart of the analysis of non-
linear models of genetic regulatory networks. Unfortunately, their practical
application is often difficult, due to the general absence of in vitro and in vivo
measurements of the parameters of the model. These values are only avail-
able for a few systems whose functioning has already been well characterized
experimentally.

Several solutions exist for dealing with the lack of quantitative data on
the network components and their interactions. A first approach consists in
using the increasing amounts of expression data, obtained by, for example,
DNA microarrays or quantitative RT-PCR. Starting with measurements of the
concentration variables x at several stages of the process under investigation
in different experimental conditions, the parameter values can be estimated
by means of system identification techniques [33]. A second approach consist
in downplaying the importance of having precise value for the parameters.
It is based on the hypothesis that it is the network structure rather than
the parameter values that confers stability to the system. As a consequence,
essential properties of the system should be robust to variations in parameter
values, that is, for wide ranges of parameter values the model should reproduce
the qualitative dynamics of the system [34, 35].

Many examples of the application of nonlinear differential equation models
to prokaryote and eukaryote genetic regulatory networks can be found in the
literature. To cite just a few, we mention the models of the infection of E.
coli by the bacteriophages λ [8] and T7 [25], circadian rhythms in the fruit
fly Drosophila melanogaster [7], and the establishment of segment polarity in
the same organism [34].

3.2 Linear Models

Nonlinear ordinary differential equation models give an adequate descrip-
tion of important aspects of the dynamics of genetic regulatory networks.
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Unfortunately, the nonlinear models become quite difficult to treat mathe-
matically when passing from simple synthetic networks like the one in Fig. 3
to the complex networks controlling the functioning and development of real
organisms. This raises the question whether the dynamics of genetic regulatory
networks could not be equally well described by linear differential equation
models, which possess more favorable mathematical properties.

A system of linear ordinary differential equations has the form (2), but the
functions f are linear. That is, (2) can be rewritten as follows:

dx

dt
= A x + b, A ∈ R

n×n, b ∈ R
n . (3)

Henceforward, we will make the hypothesis that the element of the matrix
A and the vector b are constants. As a consequence, the system (3) has an
analytical solution, given by linear systems theory [36].

How can we model a genetic regulatory network by means of linear or-
dinary differential equations? By way of example, the model of the mutual-
inhibition network is shown in Fig. 7(a). It much resembles the nonlinear
model presented in Sect. 3.1: as before, the time derivative is equal to the dif-
ference between a synthesis term and a degradation term. However, a linear
function l− : D×R>0 → R≥0, D ⊂ R≥0 is now used instead of the sigmoidal
function h−. As the latter function, l− is monotonically decreasing, but it
is characterized by a single parameter, θ, defining the slope. In addition, the
domain of the variable x is restricted to D = [0, 2θ] ⊂ R≥0, because 1−x/(2θ)
becomes negative for x > 2θ, thus violating the obvious constraint that the

dxa

dt
= κa l−(xb, θb) − γa xa

dxb

dt
= κb l−(xa, θa) − γb xb

l−(x, θ) = 1 − x

2θ

(a)

1

0

l−(x, θ)

θ 2θ

x

(b)

d

dt

xa

xb
=

−γa −κa/(2θb)
−κb/(2θa) −γb

xa

xb
+

κa

κb

(c)

Fig. 7. (a) Linear ordinary differential equation model of the mutual-inhibition
network (Fig. 3). The variables xa and xb correspond to the concentrations of the
proteins A and B, respectively, the parameters κa and κb to the synthesis rates of the
proteins, the parameters γa and γb to the degradation rates, and the parameters θa

and θb to the strength of the interactions. All parameters are positive. (b) Graphical
representation of the linear function l−(x, θ). (c) Reformulation of the model in (a)
in the matrix form of (3)
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synthesis rate must be non-negative (Fig. 7(b)). It is easily verified that the
model can be rewritten in the form (3) (Fig. 7(c)). Note that the model is
only valid for xa ∈ [0, 2θa] and xb ∈ [0, 2θb], due to the definition of l−.

As in the case of the nonlinear model, the qualitative dynamics of the
network can be studied in the phase plane. Figure 8(a) shows some exam-
ples of trajectories in the phase plane. From a superficial comparison with
Fig. 5(a), one would be inclined to conclude that the linear and nonlinear
models make more or less identical predictions of the dynamics of the sys-
tem. However, analysis of the nullclines – defined by xa = (κa/γa) l−(xb, θb)
and xb = (κb/γb) l−(xa, θa)) – shows that this is not the case (Fig. 8(b)). In
fact, the linear system has only a single equilibrium point, corresponding to
the unstable equilibrium point of the nonlinear system in Fig. 5(b). Almost
all trajectories reach either one of the segments xa = 2θa or xb = 2θb after
a while, and would continue towards (−∞,∞)′ or (∞,−∞)′, respectively, if

0 0

= 0

ue

0

κb/γb

2θb

κa/γa

dxb/dt

= 0dxa/dt

2θa

κa/γa

κb/γb

2θa

2θb

xb xb

xb

xa xa

xa

(a) (b)

(c)

dxa/dt = 0

dxb/dt = 0

Fig. 8. Phase portrait of the linear model of the mutual-inhibition network (Fig. 7).
(a) Examples of trajectories. (b) Vector field and nullclines. The system has a single
unstable equilibrium point (ue). (c) Analysis of the bifurcation occurring when the
value of the parameter θb is increased. The value of θb in (c) is larger than that in
(b). The analysis is restricted to [0, 2θa]× [0, 2θb], the part of the phase space where
the linear model is defined
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the system were defined outside [0, 2θa]× [0, 2θb]. Figure 8(c) shows that the
equilibrium point disappears if one increases the value 2θb above κb/γb, while
keeping the other parameters at the same value. In that case, all trajectories
reach the segment xa = 2θa.

The phase-plane analysis summarized in Fig. 8 teaches us that, when mod-
eled by a system of linear differential equations, the mutual-inhibition network
no longer exhibits bistability or hysteresis. The predictions of the model there-
fore contradict what is experimentally observed by Gardner and colleagues
[38]. In fact, the example shows that the nonlinear character of the inhibition
of gene expression by regulatory proteins, expressed by means of the function
h−, is crucial for the global dynamics of the network. The approximation of
h− by l− is unable to preserve essential properties of the dynamics. On the
other hand, the analysis of the two-gene network suggests that linear models
could contribute to the analysis of the local dynamics of the system. For ex-
ample, even though they do not converge towards a stable equilibrium point,
the trajectories in Fig. 8(a) resemble those predicted by the nonlinear model
in the neighborhood of the unstable equilibrium (Fig. 5(a)).

This property of linear models can be exploited when trying to reconstruct
the connectivity of a genetic regulatory network from experimental data. Sup-
pose one had a time-series of measurements of the concentration variables,
obtained by DNA microarrays or quantitative RT-PCR. This series of mea-
surements can be represented in the form of a matrix X̂, where X̂ ∈ R

n×m.
Every element x̂ij of this matrix represents a measurement, more specifically
the measurement of the variable xi at time-point j. Instead of a time-series
of measurements, the columns of the matrix X̂ could also represent measure-
ments realized under various experimental conditions, for instance, the steady
state reached by a mutant of the organism after a physiological perturbation.

System identification techniques [33] allow the values of the elements of
the matrix A and the vector b to be estimated from measurements X̂. These
estimations make it possible to infer the interaction structure of a network,
as can be easily understood by considering the matrix A in the case of the
mutual-inhibition network (Fig. 7(c), see also [23, 37]). In fact, the negative
sign of the off-diagonal elements aab and aba corresponds to the inhibition of
gene a by protein B, and the inhibition of gene b by protein A, respectively.
If B activated a and A activated b, these elements would have been positive
(which can be simply verified by replacing l−(x, θ) by l+(x, θ) = 1− l−(x, θ)
in the model of Fig. 7(a)). More generally, it follows that the estimation of the
values of A and b from expression data provides us with information about
the regulatory structure of the system, that is, on the existence of interactions
between the genes and the nature of these interactions (activation, inhibition).

From a technical point of view, the use of linear ordinary differential equa-
tion models simplifies the approach of reconstructing genetic regulatory net-
works from gene expression data. In comparison with nonlinear models, linear
models have a restricted number of parameters, as can be seen by comparing
the models in the Figs. 4(a) and 7(a). In addition, powerful techniques for
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parameter estimation exist for linear models. Taken together, this makes lin-
ear models more adapted to the quantitative and qualitative limitations of the
experimental data available today. In fact, the expression data obtained by
DNA microarrays are often noisy and the number of measurements m much
smaller than the number of variables n. Therefore, most studies on network
reconstruction to date have used linear or pseudo-linear models. Examples of
such studies are the reconstruction of the SOS regulon in E. coli [38, 39], part
of the network underlying rat central nervous system development [12], and
a modular view of the global regulatory network in S. cerevisiae [11].

3.3 Piecewise-Linear Models

The linear differential equation models are easier to analyze than the nonlinear
models, as we have seen in Sect. 3.2. However, this mathematical simplicity
comes at the price of a reduced ability to take into account essential properties
of the dynamics of the system. Are there models that are easy to treat math-
ematically and nevertheless capable of adequately representing the dynamics
of the system? In this section, we will study a class of models that answer
both requirements: piecewise-linear differential equations.

The general form of the models is given by (2), with the additional con-
straint that the functions f are piecewise linear. That is, the phase space R

n
≥0

is divided into regions ∆(j), j ∈ [1, . . . , p], in each of which the network is
described by a system of linear differential equations. While being globally
nonlinear, a piecewise-linear differential equation model is locally linear.

dx

dt
= A(j) x + b(j) (4)

A(j) ∈ R
n×n, b(j) ∈ R

n, x ∈ ∆(j) ⊆ R
n
≥0, j ∈ [1, . . . , p] .

As for the linear models, we will assume that the elements of A(j) and b(j) are
constants. This implies that in each region ∆(j), (4) can be solved analytically.

Piecewise-linear differential equations have been used to model genetic reg-
ulatory networks since the early seventies [40, 41, 42, 43]. In order to illustrate
their application, we will again consider the example of the two-gene network.
The piecewise-linear model, presented Fig. 9, is obtained from the nonlinear
model by replacing the sigmoidal function h− by another approximation, the
step function s− : D × R>0 → R≥0, D ⊂ R≥0. For concentrations x below
the threshold θ, s−(x, θ) equals 1, whereas for concentrations x above θ, the
function evaluates to 0. For x = θ, it is not defined. As one can verify in
Fig. 9(c), the model can be rewritten in the form (4). The segments xa = θa

and xb = θb divide the phase space into four regions, ∆(1), . . . ,∆(4). In each
region, after evaluation of the step functions, the model reduces to a system
of two linear differential equations.

In the cases that interest us, the reduced system of differential equations
associated with a region ∆(j) is not only linear, but also uncoupled. That
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dxa

dt
= κa s−(xb, θb) − γa xa

dxb

dt
= κb s−(xa, θa) − γb xb

s−(x, θ) =
1 , x < θ,

0 , x > θ.

(a)

1

0

s−(x, θ)

xθ

(b)

0
xa

xb

∆(4)

∆(2)

θb

θa

∆(1)

∆(3)

∆(1) :
d

dt

xa

xb
=

−γa 0
0 −γb

xa

xb
+

κa

κb

∆(2) :
d

dt

xa

xb
=

−γa 0
0 −γb

xa

xb
+

κa

0

∆(3) :
d

dt

xa

xb
=

−γa 0
0 −γb

xa

xb
+

0
κb

∆(4) :
d

dt

xa

xb
=

−γa 0
0 −γb

xa

xb

(c)

Fig. 9. (a) Piecewise-linear differential equation model of the mutual-inhibition
network (Fig. 3). The variables xa and xb represent the concentration of proteins A
and B, respectively, the parameters κa and κb the synthesis rates, the parameters γa

and γb the degradation rates, and the parameters θa and θb threshold concentrations
for A and B, respectively. All parameters are positive. (b) Graphical representation
of the step function s−(x, θ). (c) Piecewise-linear structure of the model in (a),
corresponding to the division of the phase space into four regions (∆(1), . . . , ∆(4))
by xa = θa and xb = θb

is, A(j) is a diagonal matrix and the temporal derivative of the variable xi

does not depend on variables other than xi. Such a system has a very simple
analytical solution. In fact, one can show that, in the region ∆(j), all solutions
locally converge towards the point φ(∆(j)) = (b(j)

1 /a
(j)
11 , . . . , b

(j)
n /a

(j)
nn)′ [40]. For

instance, in ∆(1), the solutions converge towards φ(∆(1)) = (κa/γa, κb/γb)′,
while in ∆(2), they converge towards φ(∆(2)) = (κa/γa, 0)′ (Fig. 10(b)). If
φ(∆(j)) ∈ ∆(j), then φ(∆(j)) is an equilibrium point of the system, which is
for instance the case for ∆(2) and ∆(3).

The piecewise-linear model does not specify how the system behaves on
the segments xa = θa and xb = θb, where one or more step functions, and
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φ(∆(4))
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φ(∆(4))

φ(∆(3))
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κa/γa

κb/γb
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Fig. 10. Local phase portraits of the piecewise-linear model of the mutual-inhibition
network (Fig. 9). The figure shows (a) the regions ∆(1), . . . ∆(4), (b) examples of
trajectories in these regions, (c) the regions ∆(5), . . . , ∆(9) located on the segments
xa = θa or xb = θb, and (d) examples of trajectories arriving at or departing from
these regions. The trajectories are straight lines, because in the simulations we set
γa = γb

hence the corresponding differential equations, are not defined. In order to
treat this problem, Gouzé and Sari [44] have proposed an approach which
consists of extending the differential equation model (4) to a differential in-
clusion model, following ideas developed in control theory. This solution ex-
ploits mathematical concepts that are outside the scope of this chapter, but
for our purposes, it is sufficient to know that the approach is elegant from a
theoretical point of view and easy to use in practice. In the example, it allows
the local analysis of the dynamics of the network to be extended to regions
of the phase space located on the segments xa = θa and xb = θb, that is,
∆(5), . . . ,∆(9) (Fig. 10(c)). The results of the analysis are intuitive: the solu-
tions of the system instantaneously traverse ∆(5), . . . ,∆(8), whereas solutions
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reaching ∆(9) can remain indefinitely in this region or leave it after a certain
time (Fig. 10(d)).

The local analyses of the dynamics of the system in the different regions
of the phase space can be combined into a global analysis, as illustrated
in Fig. 11. The predictions of the piecewise-linear model are qualitatively
equivalent to those obtained by the nonlinear model. The network has three
equilibrium points, of which two are stable and one is unstable (Fig. 11(a)).
Part (c) of the figure shows that a transient perturbation may cause the

0
se

ue

se

xa

xb

θa κa/γa

θb

κb/γb
dxb/dt = 0

dxa/dt = 0

(a)

0
se

xa

xb

κa/γa

κb/γb

θb

θa

dxb/dt = 0

dxa/dt = 0

(b)

0
xa

xb

(c)

Fig. 11. Global phase portrait of the piecewise-linear model of the mutual-inhibition
network (Fig. 9). (a) Vector field and nullclines. The system has two stable equi-
librium points (se) and one unstable equilibrium point (ue). (b) Analysis of the
bifurcation produced when the value of the parameter θb is increased. The value of
θb in (b) is larger than that in (a). (c) Hysteresis phenomenon, following a transient
perturbation of the system (broken line with arrow)



Genetic Regulatory Networks 325

system to switch from one stable equilibrium to the other. As for the non-
linear model, an increase of the value of the parameter θb, without changing
the value of the other parameters, can bring about a bifurcation: one of the
two stable equilibria and the unstable equilibrium disappear (Fig. 11(b)). In
summary, the example shows that, while facilitating the mathematical analy-
sis, the piecewise-linear models allow us to preserve essential properties of the
mutual-inhibition network. There are good reasons to believe that this is also
true for other, more complex networks, but this has not been formally proven
yet.

The analysis of the piecewise-linear model of the two-gene network sug-
gests a discrete, more compact representation of the dynamics of the sys-
tem [45]. In fact, every region of the phase space can be seen as a qual-
itative state, in which the system behaves in a qualitatively homogeneous
way. For instance, in the region ∆(1), all trajectories converge towards the
point φ(∆(1)) = (κa/γa, κb/γb)′, whereas in ∆(2), they converge towards
φ(∆(2)) = (0, κb/γb)′. Two qualitative states can be connected by a tran-
sition, if there exists a solution starting in the region corresponding to the
first state that reaches the region corresponding to the second state, without
passing through a third region. This is the case for the solutions in ∆(1) which,
while converging towards φ(∆(1)), reach ∆(5), ∆(6) or ∆(9). The set of qual-
itative states and transitions between these states defines a state transition
graph.

The state transition graph obtained for the model of the mutual-inhibition
network is shown in Fig. 12(a). The graph is composed of nine qualitative
states, associated to the regions of the phase space (Fig. 10), and the transi-
tions between these states. Three of the nine states are qualitative equilibrium
states, that is, states corresponding to a region containing an equilibrium
point. The graph summarizes the dynamics of the network in a qualitative
manner. For instance, it provides information on the reachability of an equi-
librium point from a given region. If the equilibrium point is reachable, there
must exist a path in the graph going from the qualitative state corresponding
to the initial region to the qualitative equilibrium state corresponding to the
region in which the equilibrium point is contained.

Generally speaking, the state transition graph associated to a piecewise-
linear model will vary with the parameter values. However, following de Jong
and colleagues [45], one can define a class of models determined by inequality
constraints on the parameters. Under certain, not too restrictive conditions,
each model in that class produces the same state transition graph. This can be
illustrated by means of the example of the two-gene network, by considering
the transitions from QS1, the qualitative state corresponding to the region
∆(1). The transitions from QS1 to the states QS 5, QS6 and QS9 do not depend
on the exact values of the parameters, as long as κa/γa > θa and κb/γb > θb.
In fact, under these conditions, φ(∆(1)) ∈ ∆(4) and the trajectories in ∆(1) all
reach QS 5, QS 6 or QS9 after a certain time. A qualitative simulation method
has been proposed, which symbolically computes the state transition graph
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QS 9

QS1

QS 6

QS3 QS8
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Fig. 12. (a) State transition graph produced from the piecewise-linear model of the
mutual-inhibition network (Fig. 9). The qualitative equilibrium states are circled
[45]. (b) Detailed description of the sequence of qualitative states 〈QS1,QS5,QS2〉

for a piecewise-linear differential equation model, supplemented by inequality
constraints on the parameters [45]. This method has been implemented in a
computer tool called Genetic Network Analyzer (GNA) [47].

The interest of qualitative simulation derives from the fact that it is
adapted to the lack of quantitative information on genetic regulatory net-
works, a problem already referred to in previous sections. Instead of numerical
values, the method uses inequality constraints that can usually be specified by
means of the qualitative information available in the experimental literature.
On the formal level, the qualitative simulation method is related to a method
developed by Thomas and colleagues, which is based on asynchronous logi-
cal models [26, 48]. The two methods have demonstrated their usefulness in
the study of a certain number of prokaryotic and eukaryotic networks, whose
analysis is rendered difficult by the almost complete absence of numerical pa-
rameter values ([46, 49, 50, 51, 52]; see [53] for a review and [3, 4] for related
ideas).

4 Coupled Map Networks

In this section, we consider another class of models, namely discrete time
systems with continuous variable. As shown during this school discrete time
models are widely employed to model the dynamics of spatially extended
systems, notably in Physics. Excepted for logical models, discrete time models
of genetic regulation networks however are somehow usual.

As argued below, discrete-time models provide a simple framework where
to analyse the consequences of interactions delays on the dynamics. They also
largely benefit from tools and techniques in the theory of dynamical systems.
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To be specific, the models considered in this section consist of iterations
of network mappings, the so-called Coupled Map Networks (CMN). For the
sake of simplicity, we only consider piecewise affine and contracting CMN.
The dynamics, i.e. the orbits {xt}t∈Z, is given by the following induction
(piecewise-affine and contracting) [57, 58]

xt+1
i = axt

i +
∑

j∈I(i)

KijH(sij(xt
j − Tij)) . (5)

In this expression, the subscript i runs over {1, . . . , N} for a network composed
of N nodes. Each variable xt

i belongs to the interval [0, 1] and represents a
(density of) concentration at time t. The parameter a belongs to [0, 1) and
represents an extinction rate (in absence of any other interaction). The symbol
H denotes the Heaviside function:

H(x) =
{

1 if x ≥ 0
0 if x < 0 .

In relation (5), the set I(i) is the set of genes which have an action over i. In
other terms, instead of being defined by an adjency matrix, the interaction
graph associated with the network is entirely characterised by the collection
of sets {I(i)}N

i=1.
The action from j to i is either an activation when the number sij , called

the sign, is equal to +1, or an inhibition when sij = −1. The corresponding
weights Kij are assumed to be positive according to the assumption of cumu-
lative interactions. For the sake of simplicity and without loss of generality
[57] the weights can always be assumed to be normalized as follows

∑

j∈I(i)

Kij = 1− a.

Finally, the threshold parameters Tij belong to the open interval (0, 1). (These
parameters were denoted by the symbol θ in the previous section.) For the
sake of coherence with the references [54, 56, 57], we keep the notation θ for
the symbols associated with the atoms of the partition, see below.

The choice of a piecewise affine model not only simplifies the analysis but
also allows to globally describe the dynamics both in phase space (here the set
R

N ) and parameter space. However, by using continuation arguments some
results on the existence and stability of orbits can be shown to extend to
smooth perturbations.

Along the same line, that the synthesis term in (5) is a linear combina-
tion of basic interactions H(sij(xj − Tij)) is another simplifying assumption.
According to the genetic regulatory network under consideration, other syn-
thesis terms, such as combinations of products of basic interaction or more
general nonlinear interactions may be more relevant. Once these terms re-
main piecewise constant, the global mapping remains piecewise affine and the
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principle of analysis still apply. Naturally, since the phase space partition into
domains with affine dynamics gets more elaborated, the global description of
the dynamics and its changes with parameters is getting more involved.

According to (5), each iteration of a given gene concentration xi can be
viewed as the action of a one-dimensional affine map chosen among 2I(i) maps
(see Fig. 13). Each affine map corresponds to a choice of

∑
j∈I(i)Kijθij where

θij ∈ {0, 1} are called symbols.

ix t+1
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0 1

t
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(a) (b)

Fig. 13. The one-dimensional affine maps acting on a given gene concentration xi

in the case where (a) I(i) = {k, l}, (b) I(i) = {i, k, l}. In complement, we have also
assumed that i ∈ I(p), i ∈ I(m) and i ∈ I(n)

There are two cases depending on the fact that the given gene i has self-
interaction (i.e. when i ∈ I(i)) or not (i.e. when i �∈ I(i)). In the second case,
the choice of the value of the symbol does not involve the gene itself and each
of the previous one-dimensional map is defined on the whole interval [0, 1].

In the first case however choosing a value for the symbol θii implicitly
assumes that xi < Tii or xi ≥ Tii

1. Therefore all one-dimensional maps are
only defined on some interval (the interval for which θii = 0 or the one for
which θii = 1). Nonetheless, the maps can be grouped pairwise in order to
define discontinuous maps defined on the whole [0, 1], each map corresponding
to a choice of {θij} for j �= i and letting θii be arbitrary (see Fig. 13 (b)).

In any case, each affine one-dimensional map has a fixed point defined by

1
1− a

∑

j∈I(i)

Kijθij . (6)

By normalisation, this point belongs to [0, 1] (see Fig. 13).
As the simplest feature of a dynamical system, one may first be interested

in fixed points of the CMN. The previous arguments on one-dimensional maps
1 xi ≤ Tii or xi > Tii if sii = −1
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at each gene show that the n-uple (x1, · · · , xn) is a fixed point of the system (5)
only if each of its component xi is a fixed of a corresponding one-dimensional
map, i.e. if we have xi = 1

1−a

∑
j∈I(i)Kijθij .

Once all these components have been chosen, actually once the value of
the symbols {θij} have been chosen, one has to ensure that (x1, · · · , xn) is
invariant under the action of the CMN. A sufficient condition for this is

θij = H(sij(xj − Tij)) ∀i = 1, . . . , N, ∀j ∈ I(i)

i.e. the result of computing H(sij(xj − Tij)) with the fixed point component
gives the prescribed symbol value θij . Geometrically, this condition imposes
that the fixed point resulting from the choice of symbol values {θij} belongs
to the corresponding domains.

If this condition is satisfied, then the prescribed fixed point exists. Other-
wise it does not exist. Naturally, the existence of a fixed point depends on the
network structure and on the parameters a,Kij and Tij .

The reasoning which consists firstly in computing a priori the orbit compo-
nents using symbols and secondly in checking that the computed orbit actually
belongs to the prescribed region is crucial in piecewise affine dynamical sys-
tems [54]. In particular, it is by applying this method that most results on
CMN have been obtained.

In order to describe other orbits than fixed points in the CMN, for sim-
plicity we start by considering those orbits in the attractor. By a technical
argument, it turns out that the orbits in the attractor exactly correspond to
orbits with infinite (and bounded) past, the so-called global orbits [57]. Pre-
cisely, a global orbit is a bounded sequence {xt}t∈Z which satisfies the relation
(5) for all t ∈ Z. An orbit belongs to the attractor of the CMN iff it is global.

Given an arbitrary orbit {xt} of the CMN (not necessarily a global one) a
symbolic sequence {θt

ij}, namely its code, can be computed. For each t, each
i ∈ {1, . . . , N} and each j ∈ I(i), we compute the symbol associated with the
interaction from j to i at time t, i.e.

θt
ij = H(sij(xt

j − Tij)) i ∈ {1, . . . , N}, j ∈ I(i) (7)

On the other hand, the geometric induction in (5) can be solved to obtain
the expression of an arbitrary orbit. In particular, for a global orbit, this
expression only depends on the code and we have

xt
i =

∑

j∈I(i)

Kij

∞∑

q=0

aqθt−q−1
ij i ∈ {1, . . . , N}, t ∈ Z . (8)

Notice that in the case where the code is constant θt
ij = θij for all t, this

expression reduces to the expression (6) of fixed points. More generally, rela-
tion (8) gives the expression of any periodic orbit by choosing a periodic code
θt+T

ij = θt
ij , the expression of any quasi-periodic orbit when a quasi-periodic

code is chosen and so on.
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Since a ∈ [0, 1), any fixed point is locally stable if none of its component
intersects the (corresponding) interaction thresholds (if xj �= Tij for all i, j).
However (and contrary to as in logical models) when a �= 0, fixed points cannot
(generically) be reached in a finite number of iterations. To a broader extent,
orbits do not reach stable periodic orbits in a finite number of iterations and
it may happen that the trajectory depends entirely on its past history.

In short terms, we have shown that an orbit belongs to the attractor of
the CMN iff 1/ its components are given by (8) and 2/ its code is given by
(7). This is the fundamental statement employed to describe the symbolic
dynamics; namely guess a symbolic sequence, compute the orbit and check
that the symbolic sequence is actually the code of the computed orbit.

Alternatively, the previous statement can be phrased in terms of symbolic
sequences. A symbolic sequence {θij}t∈Z is the code of an orbit in the attractor
iff it is given by (7) and the components are given by (8). At once, a symbolic
sequence {θij}t∈Z is the code of an orbit in the attractor iff it satisfies the
admissibility condition

θt
ij = H



sij




∑

l∈I(i)

∞∑

q=0

aqθt−q−1
jl − Tij







 i ∈ {1, . . . , N}, j ∈ I(i), t ∈ Z .

The admissibility condition is nothing but the condition that the components
of the global orbit corresponding to a symbolic sequence belong to the region
of phase space specified by the symbols. It is the analogous for an arbitrary
global orbit of the condition above for the existence of a fixed point with a
prescribed code, namely

θij = H



sij



 1
1− a

∑

l∈I(i)

Kjlθjl − Tij







 ∀i = 1, . . . , N, ∀j ∈ I(i)

It is important to notice that computing xt
i uses the symbols {θt

ij}j,t whereas
checking that xt

i belongs to a suitable atom uses the symbols {θt
ji}j,t. More-

over, while the variables xi are associated with genes, the symbols θij are
associated with interactions between genes.

Describing the attractor and its changes with parameters amounts to de-
scribe the set of admissible sequences and its changes with parameters. Tech-
nically, we have shown that the CMN on its attractor is conjugated with the
action of the left shift on admissible symbolic sequences.

We now show that the orbits generally persist under small changes of
parameters. The required condition is that they differ from any threshold pa-
rameter. Actually, they must be bounded away from these thresholds. To be
precise, suppose that an admissible symbolic sequence {θt

ij} is given for some
values of the parameters a,Kij and Tij . Suppose also that the distance be-
tween the components and the corresponding thresholds is uniformly bounded
from 0, i.e.
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inf
i∈{1,...,n}, j∈I(i), t∈Z

|xt
j − Tij | = δ > 0.

(The sequence is said to be strictly admissible.) Then, the thresholds parame-
ters can be slightly modified without affecting the orbit. That is to say, there
exist2 T ′

ij ∼ Tij for all i, j such that

θt
ij = H(sij(xt

j − T ′
ij)) i ∈ {1, . . . , N}, j ∈ I(i), t ∈ Z

with θt
ij and xt

i kept unchanged. Consequently, the same code remains admis-
sible for the CMN with parameters a,Kij and T ′

ij with the orbit unchanged.
We have shown that the orbits persist under small changes in threshold.

By using continuity of the components (8) with the parameters a and Kij ,
one can shown that the same code remains admissible for the CMN with
parameters a′,K ′

ij and T ′
ij sufficiently close to the original ones. (If a′ �= a

and/or K ′
ij �= Kij then the orbit component will be slightly modified.)

On one hand, this shows that each global orbit is expected to exist on
open sets of parameters (on product of intervals in threshold space when a
and Kij are kept constant). On the other hand, it shows that a qualitative
change in the attractor (a bifurcation) only happens when some global orbit
component passes an interaction threshold.

Numerical simulations of networks with a large number of genes reveal
that the asymptotic dynamics very often consists of clusters of genes with
oscillating behaviour immersed in sea of genes in a stationary state [55]. The
size and distribution of clusters usually depends on the initial condition. Note
that from relation (5), a gene concentration xt

i oscillates only if an incoming
symbol θt

ij oscillates with j ∈ I(i). That is to say, xt
i oscillates only if the con-

centration xt
j oscillates for some gene j acting on i. By a recursive argument,

there must be a closed path in the network graph on which all genes have
oscillating concentration genes must belong to a circuit of genes with oscil-
lating concentrations. A closed oriented path passing once through its nodes
is called a circuit (a feedback loop in the previous section). A network graph
which consists in a unique circuit (i.e. up to a relabeling of genes, we have
I(i) = i− 1 mod N) is said to be an isolated circuit.

A closer examination [59] shows that the presence of oscillations in a cir-
cuit depends on the product of signs sij along the circuit. In positive circuit
(i.e. when the product equals 1) the oscillations occur for some initial con-
ditions and some parameters. In negative circuits, oscillations occur for all
initial conditions and all parameters. (A complementary result shows that,
in a isolated circuit, if one of the thresholds were chosen outside the interval
[0, 1], then any orbit would converge toward a fixed point. In particular, no
oscillation can occur in this case.)

As building bricks of larger networks, isolated circuits are interesting in
their own. By using symmetries, one shows that two circuits with N genes and
identical product of signs are conjugated3 by a simple change of variables and
2 Actually any T ′

ij such that |T ′
ij − Tij | < δ will do.

3 Precisely, the orbits outside discontinuities are conjugated.
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parameters. Therefore, in practice, one only has to investigate the dynamics
of a representative of positive (resp. negative) circuit for any N ∈ N.

As in Sects. 3.1 and 3.3, we now investigate the dynamics of the two-gene
network with mutual inhibition. (A formal way to define this network in the
present formalism is by letting n = 2, I(1) = 2, I(2) = 1 and s12 = s21 = −1.)
Using also the normalisation K12 = K21 = 1 − a, the CMN becomes in this
case {

xt+1
1 = axt

1 + (1− a)θt
12 where θt

12 = H(T12 − xt
2)

xt+1
2 = axt

2 + (1− a)θt
21 where θt

21 = H(T21 − xt
1)

(9)

where again H is the Heaviside function.
As in Sect. 3.3, the thresholds T21 and T12 define a partition of phase space

into 4 atoms (see Fig. 14). (According to the definition of H, the CMN is well-
defined on discontinuities lines which are included in the 4 atoms.) Naturally,
the direction of motions in each atom are the same as for the differential
equations. We shall see that a large part of the dynamics is also the same.

I11 I10

I01 I00

x

x2

1T

T

21

12

Fig. 14. Partition of the phase space for the mutual inhibition of two genes. The
domains (atoms) labels Iθ21θ12 follow coding and the arrow show the possible tran-
sition between atoms

Firstly and just as for the differential equation, the attractor is contained
in a square, the square [0, 1]2 in our case according to weight normalisation.
It means that this square is invariant and that the orbit issued from any
initial condition (x0

1, x
0
2) ∈ R

2 asymptotically approaches [0, 1]2. Actually,
this property is not limited to this network but extends to arbitrary CMN
[57].

Therefore, one may restrict attention to initial conditions and to orbits
lying in the square [0, 1]2.

Secondly and as mentioned above, a displacement of any threshold outside
[0, 1] results in a (unique) globally attracting fixed point and the system is
monostable (see also Figs. 6 and 11).
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Keeping the initial assumption T12, T21 ∈ (0, 1), Fig. 14 shows that I01 and
I10 are invariant. Due to contraction (i.e. |a| < 1), they both contain a unique
fixed point (0, 1), and (1, 0) respectively, which attracts all initial condition
in I01 (resp. I10).

Moreover, points in I11 (resp. I00) can be mapped in any atom I01, I10,
I00 or I11. In particular, the set of points in I11 which are mapped in I00

(and vice-versa) is a rectangle. This property is in contrast with differential
equations where only special initial conditions (those on a specific line) can
reach simultaneously both discontinuities, see Fig. 10.

As in differential equations, every orbit in I11 must leave this atom after
a finite transient. If the orbit enters I01 or I10, then it converges to the cor-
responding fixed point. If it enters I00, then it may stay there for a while but
must leave this atom after a finite transient. Again, either it enters I01 or I10

and it converges to a fixed point, or it enters I11.
Hence the dynamics of orbits eventually entering one of the atoms I01 or

I10 is just as for differential equations. The orbits converge to one of the fixed
point (0, 1) or (1, 0). However and depending on parameters, there are orbits
which oscillate forever between I00 and I11.

If such orbits exist, then their code has identical symbols at each time,
i.e. θt

12 = θt
21 for all t. Due to contraction of the CMN, the orbit approach

(or coincide) with some global orbits with the same code property. According
to (8), every global orbit with θt

12 = θt
21 for all t lie on the diagonal, i.e. we

have xt
1 = xt

2 := xt for all t and where xt necessarily satisfies the following
induction

xt+1 = axt + (1− a)H(T12 − xt) = axt + (1− a)H(T21 − xt)

By applying results for the one-dimensional piecewise affine contraction x �→
ax + (1− a)H(T − x), the parameter domains for which the mutual inhibitor
has permanent oscillations on the diagonal can be explicitly computed [57].
In the threshold space (T12, T21) where a is constant, these domains are col-
lections of squares across the diagonal with some fractal structure and which
depend on a. In most cases, the square corresponds to stable periodic oscilla-
tions.

When the threshold are close but outside these squares, there are no per-
manent oscillations. The system however keeps some oscillatory features. In-
deed for open sets of initial conditions, the corresponding orbits have some
transient oscillations before converging to one of the fixed point (0, 1) or (1, 0).

The presence of oscillations in the CMN can be attributed to a consequence
of delays. The effect of say x1 crossing the threshold T21 at some time t has an
influence on x2 at time t + 1, after a delay of duration 1. This delay accounts
for finite reaction times and finite propagation velocity through the network.
During the interval between t and t + 1, x2 keeps having the same evolution
it had before t. In particular, in spite of x1 activating (resp. inhibiting) x2

from t on, this influence being negligible at the origin, the concentration x2
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keeps decreasing (resp. increasing) between t and t + 1. The activation (resp.
inhibition) will only affect x2 after t + 1.

This suggests that open sets of trajectories may cross two discontinuities
in the interval between t and t+1 and this may lead to oscillations. Depending
on parameters, the oscillations may or may not be permanent.

The analysis of the CMN shows that permanent oscillations may occur in
a two-gene mutual inhibitor provided that both thresholds and both degrada-
tion rates are close to each other. As far as application of models to concrete
situations is concerned, we point out that experiments on mutual-inhibitor
have not revealed permanent oscillations [38]. We suspect this absence of oscil-
lations to be due to important difference between thresholds and/or between
degradation rates and we believe such oscillations are possible in systems
where both genes have similar parameters.

Of course permanent oscillations could also be exhibited by delay differen-
tial equations. However, as dynamical systems with infinite-dimensional phase
space4, their analysis happens to be more involved. The advantage of discrete
time models is to mimic the delays by keeping the phase space dimension
unchanged.

The difference between discrete time behaviour and that of the differential
equation contrasts with classical results on discretization schemes employed
in numerical integration of differential equations. Indeed with an appropri-
ate change of time scale (and variable), the CMN can be obtained from the
equation in Fig. 9 (a) by applying a finite-difference scheme. However, match-
ing both dynamics requires some conditions on parameters, notably that the
discretization step be small enough, depending on the trajectory.

5 Discussion

The functioning and development of living organisms – from bacteria to hu-
mans – are controlled by genetic regulatory networks composed of interactions
between DNA, RNA, proteins, and small molecules. The size and complexity
of these networks make an intuitive understanding of their dynamics difficult
to attain. In order to predict the behavior of regulatory systems in a system-
atic way, we need modeling and simulation tools with a solid foundation in
mathematics and computer science. In this chapter, we have examined the
modeling and simulation of genetic regulatory networks by means of different
types of differential and difference equations.

In any of the continuous time or discrete time version of genetic regulatory
network models, due to contraction, the trajectories in every atom converges
to a steady state which may or may not belong to the atom. In the second case,
4 The phase space of a delay differential equation is a set of trajectories prescribed

on the delay interval, i.e. a set of functions x(t) with t ∈ [T, T + d) if d is the
delay.
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the trajectory eventually leaves the atom and is further deviated. In order to
realize the difference between continuous time and discrete time models, one
may connect consecutive iterates of CMN by straight lines and consider the
whole broken line as a continuous time trajectory.

In the differential equation, when the trajectory crosses a threshold it is
instantaneously affected (see Fig. 10 (d)). In the CMN however the trajectory
remains unaffected for a while, until the next iteration point is reached. As
mentioned before, this difference in dynamics can be interpreted as a delay
effect.

To a broader context, modeling the time evolution of physical systems
by dynamical systems with either discrete or continuous time has a long his-
tory [60]. In the case of spatially extended systems or for systems with many
interacting units, the dynamics often involves a coupling parameter.

As seen in other lectures in this school, insights on the influence of inter-
actions can be gained by considering weak couplings. A basic result there is
the preservation of the complete phase portrait when passing from an uncou-
pled to the corresponding weakly coupled hyperbolic system. Mathematically
speaking, continuation arguments are applied to prove that a conjugacy holds
between both systems.

As piecewise contractions, continuation arguments can also be applied to
models of genetic regulatory networks. This allows to mathematically confirm
some modularity of the large networks dynamics, a modularity announced
in [62]. Indeed, the dynamics of networks composed of weakly interacting
circuits (i.e. assuming that the weights Kij of interactions between circuits
are small) have the same dynamics as the collection of uncoupled circuits.
This argument generally holds for very weakly interacting circuits. However,
if their attractor consist of periodic orbit with short period, it may extends
to fairly large interaction weights.

Structural stability of weakly interacting systems is probably the unique
common feature between models of genetic regulator networks and other sys-
tems considered in this school and there are important difference.

The first main difference is the number of nodes to be considered in the
network. Indeed whereas most “realistic” regulatory networks typically have
from 10 to 100 nodes, many spatially extended systems are reasonably rep-
resents macroscopic networks of microscopic interacting units, so a typical
size is 1023 nodes. A simplifying assumption there is to consider the limit
of an infinite number of nodes, the thermodynamic limit [55]. It is not clear
at all how result on the dynamics at the thermodynamic limit could be ex-
tend to intermediate-sized systems, like most genetic regulatory networks. In
particular, it would be interesting to know whether the localized, but specific
oscillations described in the last section are a more general feature of such sys-
tems and whether they are experimentally observed. It is worth noticing that
the study of such mesoscopic systems recently became an important challenge
in Physics.
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In spite of involving a few number of genes, regulatory network usually
have complex interaction graphs. Many genes are connected to each other
and the incoming and outgoing interactions highly depend on the gene. This
is another major difference with spatially extended systems where an usual
assumption is that the incoming and outgoing interaction do not depend on
the node (translation invariance). As in some neural networks models, simpli-
fying assumptions consists in assuming all-to-all interactions (globally coupled
systems) (see the lectures by Maistrenko and by Ermentrout in this school) or
random interactions. The assumption seem not to fit exactly with interaction
graphs constructed from biological data analysis. Specific graph models and
mathematical tools for the analysis of such complex networks of intermediate
size are still largely missing.

Another challenge consists in the integration of genetic regulatory networks
with metabolic networks, signal transduction networks, and other interaction
networks. Even if, for certain problems, the study of one type of network
in isolation may be satisfactory, comprehending the functioning of an entire
cell obliges us to build models combining gene regulation with metabolism,
signal transduction, and other processes. Excellent mathematical models of
the individual cellular processes exist nowadays. However, the integration of
models of the different processes remains a difficult task. The networks in-
volve different types of interaction, modeled by different types of equation.
Moreover, the processes that are concerned evolve on different time-scales,
sometimes differing by several orders of magnitude. Among other things, this
raises mathematical problems associated with the stiffness of the resulting
differential equations. Several approaches for the integration of different types
of network have been proposed, but there can be no doubt that the subject
remains largely unexplored.
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3 Department of Stereotaxic and Functional Neurosurgery, University Hospital,

50924 Cologne, Germany
4 Institute of Mathematics, Academy of Sciences of Ukraine, 01601 Kyiv, Ukraine
maistrenko@imath.kiev.ua, o.popovych@fz-juelich.de,
p.tass@fz-juelich.de

The Kuramoto model of N globally coupled phase oscillators is an es-
sentially non-linear dynamical system with a rich dynamical behavior and a high
relevance for numerous applications. We study the Kuramoto model from the stand-
point of bifurcation theory and chaos theory of low-dimensional dynamical systems.
We focus on the desynchronization transition and the role of the Cherry flow in it.
Furthermore, we study chaos, hyperchaos, and multistability. With an additional
symmetry condition the Kuramoto model is reduced to the Winfree type model
of half the dimension. We find out that the dynamics in the symmetric manifold
is responsible for the desynchronization transition. With a further decrease of the
coupling, the manifold loses its transverse stability, which gives rise to a highly
developed hyperchaotic behavior.

1 Introduction

1.1 Goal

Starting with the work of Winfree [2] and Kuramoto [3], there has been a
growing interest in synchronization of globally coupled limit cycle oscillators
[4, 5, 6, 7, 8, 9]. Possible applications include many self-organizing systems
in physics, chemistry, biology, and medicine and range, e.g., from Joseph-
son junction arrays [10], semiconductor lasers arrays [11], chemistry [12], car-
diac pacemaker cells [13], flashing fireflies [14] to the development of demand-
controlled brain pacemakers for the therapy of neurological and psychiatric
diseases [16, 17]. Fundamental to all such applications is, to understand mech-
anisms that cause synchronization or desynchronization.

If the coupling between limit cycle oscillators is strong enough, in general
phase synchronization occurs: All oscillators start to rotate with the same
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average frequency. With a decrease of the coupling strength, a desynchroniza-
tion occurs: The oscillators split into groups of different average frequencies,
such that inside each group the frequency is the same. This transition is called
a frequency-splitting bifurcation. It represents a common property of very dif-
ferent ensembles of coupled oscillators with both local and global coupling,
characterized by regular or chaotic dynamics (see e.g. [18, 19, 20, 21] and
references therein).

General properties of the phase dynamics in ensembles of nonlinear limit
cycle oscillators with weak global coupling are described by the Kuramoto
model [3]

ψ̇i = ωi +
K

N

N∑

j=1

sin(ψj − ψi) , i = 1, . . . , N (1)

where ψi are phase variables ωi are natural frequencies, K > 0 is a constant
coupling parameter. In the thermodynamic limit N →∞ a transition from the
synchronized state to a complete desynchronization occurs, when the strength
of the coupling decreases below a certain critical value [3].

In spite of numerous studies, in the finite-dimensional Kuramoto model
the desynchronization mechanism is still far from being well understood (see,
e.g., [19] and references therein). This issue is the starting point of the present
chapter. Unlike Kuramoto, Strogatz and others [3, 19] we do not use well-
developed statistical techniques. In contrast, our goal is to study the Kuramoto
model (1) from the point of view of bifurcation theory and chaos theory of
low-dimensional dynamical systems.

By introducing new variables, the phase differences ϕi = ψi+1−ψi, the di-
mension of the Kuramoto model (1) is reduced by one. The system’s dynamics
is then given by a smooth flow on an (N − 1)-dimensional torus T

N−1.
The simplest, non-trivial example is given by the system of N = 3 Ku-

ramoto equations. In this case, the reduced dynamics of the phase differences
acts on a two-dimensional torus T

2. We consider this example in detail in
Sect. 2.2 to demonstrate the mechanism of the frequency-splitting bifurca-
tion [22]. The complete bifurcation diagram is plotted, and the existence of
a Cherry flow is shown for a rather large region of the parameter plane. The
Cherry flow exists before the desynchronization transition and controls the
course of the frequency-splitting bifurcation. We conclude that, depending on
the parameters, two robust bifurcation scenarios can be realized causing an
instant emergence of two or three different average frequencies, respectively.

For dimension N ≥ 4, the behavior of the Kuramoto model can be chaotic.
For N = 4, we demonstrate the existence of a chaotic attractor in the three-
dimensional system phase space. The chaotic attractor arises due to a de-
struction of a two-dimensional resonant torus, which is in agreement with the
known torus-destruction scenario for the transition to chaos [23]. The chaotic
attractor exists for a wide range of the coupling strength. Finally, it disappears
in a boundary crisis. For higher dimensions, the dynamics of the Kuramoto
model can be hyperchaotic. We demonstrate this phenomenon in the case of
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N = 7 by calculating all six Lyapunov exponents. Two of them turn out to
be positive for a large interval of the coupling strength (see Sect. 3.5).

In Sect. 3 we consider a class of symmetric Kuramoto models. They are
characterized by the existence of an [N/2]-dimensional invariant manifold
which represents a hyperplane in the whole N -dimensional phase space. Our
findings show that, the symmetric invariant manifold is stable for an essential
part of the coupling parameter range. Moreover, the desynchronization tran-
sition which is a main subject of our study, takes place in the system when
the dynamics is restricted to the invariant manifold.

1.2 The Winfree Model

Phase synchronization in ensembles of globally coupled oscillators was first
studied by Winfree [1, 2] who proposed the model

ψ̇i = ωi +
K

N
R(ψi)

N∑

j=1

P (ψj), i = 1, . . . , N . (2)

According to the Winfree model (2), dynamics of each phase ψi reacts on
its own state through the function R and is influenced by a mean-field type
function P . A special case of the Winfree model with R = − sin ψ and P =
1 + cos ψ was considered in [7].

1.3 Kuramoto Model

Kuramoto found another model describing the evolution of the phase dynam-
ics of an ensemble of N weakly coupled, nearly identical limit cycle oscillators.
He showed that, under these assumptions, the long-term dynamics is given by
the following general system

ψ̇i = ωi +
N∑

j=1

Γij(ψj − ψi) , i = 1, . . . , N (3)

where Γij is an interaction function of phase differences. The dynamics of
system (3) is determined by the form of the function Γij . Kuramoto considered
the simplest, non-trivial case of equally weighted, globally coupled oscillators:
Γij(ϕ) = KN−1 sin ϕ for all i and j, with constant coupling strength K.
System (3) with this coupling term takes the form of model (1) and is known
as the Kuramoto model.

For the statistical theory of the Kuramoto model (1), well developed by
Kuramoto, Strogatz and others (see [19] for an excellent survey), the natural
frequencies ωi are assumed to be given by a probability density function g(ω).
The function g(ω) is often assumed to be unimodal and symmetric with re-
spect to a mean frequency Ω, i.e. g(Ω + ω) = g(Ω − ω) for all ω. g can, e.g.,
be a Gaussian, a Lorentzian or a uniform distribution.
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The form of (3) is invariant with respect to a change of variables given
by ψi �→ ψi + Ωt, which reduces the mean frequency to zero by choosing a
coordinate system rotating with frequency Ω. New natural frequencies are
obtained by the subtraction ωi − Ω. Then, in the new variables, the natural
frequencies ωi are symmetrically distributed around zero: g(ω) = g(−ω).

Following Kuramoto, we consider the phase variables ψ1, ψ2, . . . , ψN of
(1) as a set of points moving along the unit circle in the complex plane. An
important characteristic of the collective dynamics of the ensemble is given
by the complex order parameter

r(t) eiΨ(t) =
1
N

N∑

j=1

eiψj(t) (4)

which is the circular mean of the circular phases exp[iψj(t)]. The amplitude
r(t) of the order parameter measures the extent of in-phase synchronization
of the ensemble, and Ψ(t) is the average phase of the ensemble. r(t) = 1 cor-
responds to complete in-phase synchronization, whereas r(t) = 0 corresponds
to an absence of in-phase synchronization. Note that the case r(t) = 0 may
be associated with complete desynchronization (in terms of a uniform dis-
tribution of the phases) or with cluster states, e.g., two symmetric clusters
synchronized in anti-phase (see, e.g., [16]).

Using the complex order parameter (4), the Kuramoto model becomes

ψ̇i = ωi −Kr sin(ψi − Ψ), i = 1, . . . , N . (5)

Under this representation the role of the coherence term r(t) becomes evident.
r(t) acts as an effective coupling strength. By providing a positive feedback
between coupling and coherence, r(t) contributes to a circular causality un-
derlying the emergence of self-organized synchronized states.

Kuramoto has studied the case where the amplitude r(t) of the order
parameter is constant and the average phase Ψ(t) is rotating with a constant
frequency Ω (clearly, Ω can be reduced to zero).

In our study presented below in Sect. 3, we consider the N -dimensional
Kuramoto model fulfilling a symmetry condition for the natural frequency
distribution. In the corresponding invariant manifold M (which represents a
[N/2]-dimensional hyperplane in the whole phase space) the average phase
Ψ(t) vanishes, and (5) turns into a Winfree type model (2), such that the
amplitude r of the order parameter plays role of the mean-field term P .

1.4 More General Kuramoto Models

For the standard Kuramoto model (1) the coupling function reads Γ =
KN−1 sin ϕ. More generally, the coupling function Γij(ϕ) should contain
terms that involve not only a simple sine term, but also higher harmonics.
Tass [15, 16] considered the four-mode model with
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Γ (ϕ) =
1
N

4∑

m=1

[Km sin(mϕ) + Cm cos(mϕ)]

and stressed the importance of higher harmonics for the emergence of clus-
ter states. Furthermore, he extended this model by incorporating stimulation
terms in order to develop desynchronizing stimulation techniques (see below)
[17].

Hansel, Mato and Meunier [24], and later Kori and Kuramoto [25] exam-
ined the two-mode case with a phase shift between the harmonics:

Γ (ϕ) =
K

N
[sin(ϕ− α)− c sin 2ϕ] .

The phase shift α plays role of a delay and controls the competition between
the two harmonics in Γ . While the first term in Γ promotes an in-phase
synchronization, the second term causes an anti-phase synchronization. For a
particular choice of the parameter values, α = 1.25 and c = 0.25, an interesting
phenomenon occurs, the so-called slow switching, which was explained in the
terms of a heteroclinic loop connecting a pair of cluster states.

The Kuramoto model with a time delay can be written as

ψ̇i = ωi +
K

N

N∑

j=1

sin[ψj(t− τ)− ψi(t)] , i = 1, . . . , N . (6)

Schuster and Wagner [26] considered the simplest, but definitely non-trivial
case of only N = 2 coupled phase oscillators in (6). They found that the
delay causes the appearance of new stable phase-locked states with different
frequencies Ωi, where their number grows with an increase of τ . This property
of multistability is a major difference between the time-delayed system (6)
and the standard ordinary differential Kuramoto model (1). In the standard
Kuramoto model (1) with sine coupling only one, just the mean frequency Ω
can be stabilized in the synchronized state. See [27] for more studies of the
multistability phenomenon and other properties of the time-delayed Kuramoto
model.

1.5 Kuramoto Model and Deep Brain Stimulation

In several neurological diseases brain function is severely perturbed by patho-
logically enhanced synchronization. For example, resting tremor in Parkin-
son’s disease (PD) appears to be caused by a cluster of neurons located in
the thalamus and the basal ganglia which fire synchronously at a frequency
similar to that of the tremor (3–6 Hz). While under physiological conditions
these neurons fire incoherently, in patients with PD this cluster acts like a
pacemaker and activates cortical areas, which causes the peripheral shaking
[28]. In patients with advanced PD or with essential tremor who do not re-
spond to drug therapy, depth electrodes are chronically implanted in target
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areas like the thalamic ventralis intermedius nucleus or the subthalamic nu-
cleus [29]. As yet, electrical deep brain stimulation (DBS) is performed by
administering a permanent high-frequency (>100 Hz) periodic pulse train via
the depth electrodes. DBS mimics the effect of tissue lesioning and appears to
suppress the activity of the pacemaker-like cluster which, in turn, suppresses
the peripheral tremor [29]. DBS has been developed empirically, mainly based
on observations during stereotaxic neurosurgery. The advent of nonlinear dy-
namics and statistical physics in the field of clinically oriented neuroscience
lead to a model-based development of stimulation techniques [16, 17].

For this, in a first step the impact of stimulation on an ensemble of uncou-
pled oscillators in the presence of noise has been studied [30]. In this approach
a phase oscillator has been used as a simple model for an oscillatory neuron.
Next, in addition the oscillators’ mutual coupling has been taken into account
[16], which led to the model

ψ̇j = ωj +
N∑

k=1

Γ (ψj − ψk) + X(t)S(ψj) + Fj(t) (7)

where ψj is the phase of the jth phase oscillator, Γ is a 2π-periodic global
coupling, S is a 2π-periodic, time independent function modelling the stim-
ulus, where X(t) = 1 during stimulation, and X(t) = 0 without stimulation
[16]. The random forces Fj(t) are modelled by Gaussian white noise fulfilling
〈Fj(t)〉 = 0, 〈Fj(t) Fk(t′)〉 = Dδjkδ(t− t′) with constant noise amplitude D.

Model (7) formed the basis for the study of transient, stimulation-induced
dynamics. In particular, such mechanisms have been used to develop stimu-
lation techniques which provide effective means for demand-controlled desyn-
chronization [17].

These stimulation techniques have recently been verified in simulations of
physiologically realistic neural network models for target populations relevant
for DBS. It should be mentioned, that not only the steady state dynamics of
the Kuramoto model, but also its repertoire of transient dynamics appears
to approximate a large class of steady state and transient network dynam-
ics in a generic way. It is advantageous to develop stimulation techniques by
using the generic model (7) and testing them in microscopic neural network
models, instead of exclusively using the high-dimensional microscopic models
with their huge number of model parameters, which are often not accessible
to analytical or sound numerical analysis. Furthermore, in the meantime the
demand-controlled stimulation techniques have been verified in experiments
in both patients and animals. The corresponding papers are just being sub-
mitted.
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2 Frequency-Splitting Bifurcation

2.1 Simplest Example: N = 2

Let us consider the case of only two coupled phase oscillators, which is given
by the Kuramoto model with N = 2:

ψ̇1 = ω1 + (K/2) sin(ψ2 − ψ1)
ψ̇2 = ω2 + (K/2) sin(ψ1 − ψ2) .

Two phases ψ1 and ψ2 are called synchronized if their difference ϕ(t) =
ψ2(t) − ψ1(t) is bounded for all t > 0. For the phase difference ϕ(t) one
immediately obtains

ϕ̇ = ∆−K sin ϕ (8)

with ∆ = ω2−ω1. The phase difference ϕ(t) is bounded, if (8) has equilibria,
i.e. fixed points. Desynchronization occurs when the fixed points disappear.

There are two fixed points, φ(s) = arcsin( ∆
K ) which is stable, and φ(u) =

π − arcsin( ∆
K ) which is unstable. They exist if and only if K ≥ Kc, where

Kc = ∆

is a critical bifurcation value. For any K > Kc, both phase variables ψ1 and ψ2

rotate with the same average frequency, the mean frequency Ω = (ω1 +ω2)/2.
A bifurcation occurs at K = Kc: for K < Kc the phases ψ1 and ψ2 rotate
with different average frequencies ω1 and ω2, where

ω1,2 = Ω ± π

(∫ 2π

0

dϕ

∆−K sin(ϕ)

)−1

.

The desynchronization transition at K = Kc is called a cluster-splitting bi-
furcation. Beyond the bifurcation, as K tends to zero, the average frequencies
ω1 and ω2 approach the natural frequencies ω1 and ω2. A typical bifurcation
diagram is presented in Fig. 1.
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Fig. 1. Frequency-splitting bifurcation diagram for the Kuramoto model from (1)
with N = 2 phase oscillators with the natural frequencies ωi: {−0.5, 0.5}. ωi = 〈ψ̇i〉,
where 〈·〉 denotes averaging over time. Ω is the mean frequency



292 Y.L. Maistrenko et al.

2.2 From Cherry Flow Scenario to Frequency-Splitting: N = 3

Next, we consider the Kuramoto model of N = 3 phase oscillators given by

ψ̇1 = ω1 + (K/3) [sin(ψ2 − ψ1) + sin(ψ3 − ψ1)]
ψ̇2 = ω2 + (K/3) [sin(ψ1 − ψ2) + sin(ψ3 − ψ2)]
ψ̇3 = ω3 + (K/3) [sin(ψ1 − ψ3) + sin(ψ2 − ψ3)] .

As for N = 2, there exists a critical bifurcation value K = Kc for the splitting
of the common average frequency ω1 = ω2 = ω3 = Ω. The course of the
splitting depends on the ratio of the differences of the natural frequencies ω1,
ω2 and ω3 and may produce two or three different frequencies.

Figure 2 illustrates three different types of the frequency-splitting bifurca-
tions. In Fig. 2(a) a standard bifurcation sequence is plotted. With decreasing
K, first, at K = Kc, complete synchronization ω1 = ω2 = ω3 = Ω turns into
two unequal frequencies ω1 = ω2 and ω3. Then, at a smaller coupling para-
meter value Kc1, the first cluster (with ω1 = ω2) is also splitted, causing a
complete desynchronization: ω1 �= ω2 �= ω3. Both bifurcations may be referred
to as cluster-doubling bifurcations. In Fig. 2(b) and Fig. 2(c) two examples of
a cluster-tripling bifurcation are presented. The synchronous motion breaks
up at K = Kc, instantly producing three different frequencies. Furthermore,
just after the bifurcation, successive frequency differences ∆1 = ω2 − ω1 and
∆2 = ω3 − ω2 become locked in a 1:1 resonance [Fig. 2(b)] and in a 1:2 reso-
nance [Fig. 2(c)]: ∆1/∆2 = 1 : 1 and ∆1/∆2 = 1 : 2, respectively. Below we
will show, that, depending on the parameters, at the bifurcation any other
p : q resonance can robustly be obtained.
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Fig. 2. Frequency-splitting bifurcation diagrams for the Kuramoto model from (1)
with N = 3 phase oscillators, with a non-uniform distribution of the natural fre-
quencies ωi: (a) {−0.97,−0.4,−0.2}, (b) {−1.0, 0.0, 0.96}, and (c) {−1.0, 0.0, 0.953}.
ωi = 〈ψ̇i〉, where 〈·〉 denotes averaging over time. Ω is the mean frequency

The mechanism of the frequency-splitting bifurcation can be explained by
considering the corresponding two-dimensional system of the phase differences
ϕ1 = ψ2 − ψ1 and ϕ2 = ψ3 − ψ2:

ϕ̇1 = ∆1 + (K/3) [sin(ϕ2)− sin(ϕ1 + ϕ2)− 2 sin(ϕ1)]
ϕ̇2 = ∆2 + (K/3) [sin(ϕ1)− sin(ϕ1 + ϕ2)− 2 sin(ϕ2)]

(9)
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where ∆1 = ω2 − ω1 and ∆2 = ω3 − ω2. We consider the flow Φ defined by
(9), which is a flow on a two-dimensional torus T

2 = [0, 2π[2.
Let first ∆1 = ∆2 = 0. In this case, the phase portrait of the system

(9) does not depend on K > 0 and synchronization always takes place, see
Fig. 3(a). There are six equilibria each characterized by two Lyapunov expo-
nents λ1 and λ2, namely: sink at the origin O(0, 0), λ1 = λ2 = −K; three
saddles S1(0, π), S2(π, 0), S3(π, π), λ1 = K, λ2 = −K/3; and two sources
N1(2π/3, 2π/3), N2(4π/3, 4π/3), λ1 = λ2 = K/2. Any trajectory of system
(9) originating anywhere (except for the unstable equilibria and the stable
manifolds of the saddles) approaches the stable node O without even a single
rotation around the torus.

Next, we consider the case with ∆1 = ∆2
def
= ∆ > 0. Under this condition,

system (9) preserves its symmetry with respect to the diagonal {ϕ1 = ϕ2}
which is an invariant manifold – we denote in by M – of the torus flow Φ.
Equation (9) on the manifold M turn into

ϕ̇ = ∆− K

3
[sin(ϕ) + sin(2ϕ)] (10)

where ϕ
def
= ϕ1 = ϕ2. For the values of ∆, that are positive and small enough,

(9) has six equilibria O, N1, N2, S1, S2, S3 (see Fig. 3a). With decreasing
control parameter K/∆, first, S2 and N2 annihilate in an inverse saddle-
node bifurcation. Then, the saddles S1 and S3 collide with the unstable node
N1, in this way producing, instead, a saddle S. This is a combination of
two bifurcations, local (inverse pitchfork) and global (homoclinic). After this
bifurcation, we obtain a phase portrait as shown in Fig. 3(b). It contains
two equilibria, a stable node O and a saddle S, and an unstable periodic
orbit P (born in the homoclinic bifircation). This is a so-called Cherry flow
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Fig. 3. Schematic representation of the phase portraits for (9) with ∆1 = ∆2 = ∆.
(a) ∆ = 0: The phase portrait contains a stable node O, saddles S1, S2, and S3,
and unstable nodes N1 and N2. (b) ∆ > 0 and 1.70 < K/∆ < 3 (Cherry flow): The
phase portrait contains a stable node O, a saddle S, and an unstable periodic orbit
P , and is foliated by stable manifolds W S

1 and W S
2 of the saddle S, as indicated by

gray regions
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[31, 32, 33, 34, 35]. Following [34], a Cherry flow is defined as a smooth flow on
a two-dimensional torus, which has two equilibria, one being a saddle and the
other being a sink or source, and it has rotating trajectories of some rotation
number which is called winding ratio. In the symmetric case ∆1 = ∆2 = ∆ >
0, obviously, the winding ratio of the Cherry flow equals 1:1.

With a further decrease of the coupling strength the frequency-splitting
bifurcation occurs at K = Kc ≈ 1.70∆. The stable node O and the sad-
dle S vanish in a saddle-node bifurcation producing a stable periodic orbit
γ (which coincides with the torus diagonal M). As a result, both phase dif-
ferences ϕ1 = ψ2 − ψ1 and ϕ2 = ψ3 − ψ2 start to grow, which corresponds
to a desynchronization in the original Kuramoto system in form of a cluster
tripling.

Let now ∆1 �= ∆2 and let, for definiteness, ∆1 < ∆2. In the bifurcation
diagram in Fig. 4(a) three saddle-node bifurcation curves B1, B2, and Bc, are
shown. They correspond to pairwise annihilations of the six equilibria of (9) as
follows: N2 meets S2 at curve B1, N1 meets S3 at B2, and, finally, O meets S1

at Bc. Above B2, the flow Φ has no circular rotations around the torus. The
Cherry flow exists in the hatched parameter region between the B2 and Bc

∆2
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(a)B
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1:11:21:3

ms∆

0:1

Fig. 4. (a) Two-parameter bifurcation diagram for (1) with N = 3. The Cherry
flow region is hatched. The main resonant tongues 0:1, 1:3, 1:2, 2:3, 3:4, and 1:1
are shown. (b) Enlargement from (a). Parameter variations along the arrow in
(a) and the right arrow in (b) correspond to the bifurcation diagrams in Figs. 2(a)
and 2(b), respectively
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curves. Its winding ratio varies continuously with the parameters as a devil’s
staircase, and may be rational or irrational. In Fig. 4(a) two main resonant
tongues are shown, with winding ratio 0:1 (light gray) and 1:1 (dark gray).
Other resonant tongues, with winding ratios p : q, are aligned in between
the main 0:1 and 1:1 tongues. All the tongues extend up to the singular
parameter point C = (1, 3), where they glue together and end. (Quasiperiodic
torus rotations take place for the fractal parameter set which complements
the union of the resonant tongues and is very thin: both its Lebesgue measure
and its Hausdorff dimension equal zero; see [32, 33]).

Figure 4(b) presents an enlargement of the bifurcation diagram shown in
Fig. 4(a) for the region where the Bc bifurcation curve intersects the resonant
tongues. The enlargement shows that the resonant tongues, which exist above
Bc, are naturally continued below Bc, in the desynchronization region. The
frequency-splitting bifurcation occurs when the parameter point crosses Bc.

For all ∆1/∆2 < ∆tr, where ∆tr is the intersection point of the 0:1 tongue
boundary with the Bc bifurcation curve, a cluster doubling takes place: Only
the second phase difference ϕ2 grows. At other parameter values, i.e. for
∆1/∆2 > ∆tr, the desynchronization transition always shows up as a cluster-
tripling: Both phase differences ϕ1 and ϕ2 start growing, in this way causing
an instant splitting of all three phase variables ψ1, ψ2, and ψ3. The transitions
are illustrated in Fig. 2(b) and Fig. 2(c) respectively.

The cluster-splitting desynchronization transition shown is more compli-
cated near boundaries of the Cherry flow resonant tongues. Indeed, the reso-
nant tongues contain thin boundary layer strips, where a stable periodic orbit
exists (see [35]). The periodic orbit is born in a homoclinic bifurcation of the
saddle S. One of the homoclinic bifurcation curves is shown in Fig. 4(b) as a
dashed line H inside the 0:1 tongue. Hence, two attracting states co-exist in
the vertically hatched region between the curve H and the tongue boundary:
(1) the Cherry flow steady state O, and (2) the stable periodic orbit emerging
in the homoclinic bifurcation at H. The multistability region is attached to the
Bc saddle-node curve, comprising a non-empty interval ∆ms < ∆1/∆2 < ∆tr.
If a desynchronization transition takes place in this interval, e.g., when K/∆2

is decreased along the left arrow in Fig. 4(b), synchronized and desynchro-
nized states co-exist for the range of parameters between H and Bc. This
sideband type multistability regions exist in any Cherry flow resonant tongue
(not shown in Fig. 4(b) being very thin). They extend along the tongues’
boundaries up to the singular parameter point C(1, 3). We conclude that in
the Kuramoto model a stable desynchronized state can, actually, arise even
far before the saddle-node disappearance of the phase-locked state.

2.3 Multiple Frequency-Splitting: N = 5

Figures 5(a) and 5(b) illustrate two different types of the cluster-splitting
bifurcation in the five-dimensional Kuramoto model. Natural frequencies ωi

(i = 1, 5) are randomly chosen close to a uniform distribution. As one can
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Fig. 5. Frequency-splitting bifurcation diagrams for the Kuramoto model from
(1) with N = 5 phase oscillators, with a non-uniform distribution of the nat-
ural frequencies ωi: (a) {−1.0022,−0.50446, 0.00106, 0.49869, 0.99804}, and (b)
{−1.00064,−0.50017, 0.00347, 0.50170, 0.99852}. ωi = 〈ψ̇i〉, where 〈·〉 denotes av-
eraging over time. Ω is the mean frequency

observe, with a decrease of the coupling strength K, the common average
frequency Ω instantly splits at K = Kc into five and four clusters, respec-
tively. The 1:1:1:1 resonance [Fig. 5(a)] and the 1:1:0:1 resonance [Fig. 5(b)]
take place for the corresponding four-dimensional torus dynamics of the phase
differences. In Fig. 6 four main resonant tongues with winding ratios 1:1:1:1,
1:0:1:1, 1:1:0:1, and 1:0:1:0 are shown for this case. Each of the tongues hits
the frequency-splitting bifurcation curve Bc for a non-empty parameter range.
Therefore, for the five-dimensional Kuramoto model, the course of the bifurca-
tion, in the case where more than two phase clusters emerge, is also preserved

1:1:0:1

1:0:1:1 1:1:1:1

Bc
Synchroniza

tio
n

1:0:1:0

Fig. 6. Two-parameter bifurcation diagram for the Kuramoto model from (1) with
N = 5 and ∆i = 0.5, i = 2, 4. Four main resonant tongues are shown
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under small parameter perturbation. In other words, the multiple frequency-
splitting bifurcation is of co-dimension 1, as in the case with N = 3 described
above.

We expect, that this low-dimensional mechanism also controls the fre-
quency splitting bifurcation in the general N -dimensional Kuramoto model
from (1). In this case, the dynamics is reduced to an (N − 1)-dimensional
torus flow of the phase differences ϕi = ψi+1 − ψi, which is an (N − 1)-
dimensional analog of (9). For K > Kc, synchronization is caused, generally,
by a unique sink O. When K decreases to Kc, this sink and, thus, also syn-
chronization vanishes due to an inverse saddle-node bifurcation. For a range of
the coupling parameter values greater than Kc, some of the phase differences
ϕi already display circular rotations on the (N − 1)-dimensional torus (like
for the Cherry flow in dimension two). Let us characterize these rotations by
the (N − 1)-dimensional analog of the winding ratio, r1 : · · · : rN−1, which
indicates how many phase differences ϕi rotate, and with which ratio with re-
spect to each other. When the steady state O disappears at K = Kc, the stable
torus rotations arise, in this way causing a desynchronization. As in the three-
dimensional case, we expect the number of phase clusters emerging in the N-
dimensional frequency-splitting bifurcation to be equal to the number of non-
zero coordinates of the corresponding (N − 1)-dimensional winding ratio +1.
This mechanism is robust with respect to small parameter perturbations. We
conclude that in the Kuramoto model the frequency-splitting bifurcation, in
the case where more than two phase clusters emerge, is also of co-dimension 1.

3 Symmetric Kuramoto Model

3.1 Invariant Manifold and Reduction to the Winfree Model

We consider the N -dimensional Kuramoto model of the form (1):

ψ̇i = ωi +
K

N

N∑

j=1

sin(ψj − ψi) , i = 1, . . . , N . (11)

Suppose that the natural frequencies ωi are symmetrically allocated around
the mean frequency Ω. There are two variants for that depending on whether
N , the number of oscillators in the ensemble, is even or odd. Let us introduce
N0 = [N/2], where [·] is the integer part of the number. In the even case
N = 2N0 and in the odd case N = 2N0+1. By subtracting the mean frequency
Ω (by using the variable change ψi �→ ψi + Ωt) the natural frequencies ωi

becomes symmetric with respect to zero as shown in Fig. 7.
The Kuramoto model, with the symmetric natural frequency distribution

as in Fig. 7, has an N0-dimensional invariant manifold M :

M = {ψi+1 − ψi = ψ−i − ψ−i+1, i = 1, . . . , N0} . (12)
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ω0 ω 1ω −1 N...
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N odd
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0

...
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ω

Fig. 7. Schematic representation of the distribution of natural frequencies for the
Kuramoto model with even and odd number of oscillators N

The manifold M corresponds to identical deviations of ith and −ith phases
ψi and ψ−i from zero, for any i = 1, . . . , N0. The average phase Ψ is equal
to (ψ1 + ψ−1)/2 in the even case, and is equal to ψ0 = const in the odd
case. Hence, Ψ is a constant, and below we can put Ψ = 0. Therefore, for the
points in the manifold M , the average phase Ψ of the complex order parameter
r(t) exp(iΨ) can be assumed to equal zero.

The invariance of the manifold M means that any trajectory which is
initiated in the manifold will never leave it. The manifold itself is a hyper-
plane which can be represented as N0-dimensional torus embedded in the
N -dimensional phase space of the Kuramoto model.

The N -symmetric Kuramoto model, being restricted to the manifold M ,
takes the Winfree form (2):

ψ̇i = ωi −Kr sin ψi, i = 1, . . . , N0 . (13)

Here, r is the amplitude of the order parameter (4), which corresponds to the
extent of in-phase synchronization:

r =
1
N

N0∑

j=−N0

cos ψj . (14)

Therefore, the dynamics inside the manifold M is given by the following N0-
dimensional equations:
N = 2N0:

ψ̇i = ωi −
K

N0
sin(ψi)

N0∑

j=1

cos ψj , i = 1, . . . , N0 . (15)

N = 2N0 + 1:

ψ̇i = ωi −
K

2N0 + 1
sin(ψi)



2
N0∑

j=1

cos ψj + 1



 , i = 1, . . . , N0 . (16)
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The reduced (15) and (16) are of Winfree form (2). The natural frequencies
ωi in (15) and (16) are positive (more precisely, not negative). They belong
to the right half of the distribution of the natural frequencies of the original
N -dimensional Kuramoto model (1) (see Fig. 4). Below let us assume that
ωi+1 ≥ ωi, i = 1, N0.

3.2 Stability of the Invariant Manifold

The existence of the invariant manifold M itself does not guarantee that the
dynamics of the Kuramoto model will be restricted to it. For this, the manifold
must be transversely stable, i.e. stable with respect to perturbations in direc-
tions out of the manifold. The transverse stability of M is controlled by the
transverse Lyapunov exponents, i.e. those which correspond to eigenvectors of
the Jacobian matrix of the symmetric N -dimensional Kuramoto model which
are transverse to the manifold. Note that there are N − N0 − 1 transverse
Lyapunov exponents in each point of the manifold M .

The dynamics in the manifold is given by (15) and (16). It is transversely
stable if all transverse Lyapunov exponents are negative. The manifold dy-
namics loses its transverse stability when the maximal transverse Lyapunov
exponent becomes positive.

By evaluating the maximal transverse Lyapunov exponent along a typical
trajectory of the reduced (15) and (16), parameter regions with transverse
stability of M can be obtained. Our numerical simulations show that there
exists Ksb < Kc such that the dynamics in M is transversely stable for all
K > Ksb. However, as shown in Sect. 3.4 for the case N = 4, transversely
stable state in the manifold coexists for a range of parameter K values with
another chaotic attractor outside the manifold. It would be interesting to
verify whether the multistability can take place for larger N .

Since Kc > Ksb, the synchronized behavior, which is characterized by the
common average frequency Ω, is always restricted to the manifold M . With
a decrease of K beyond Kc, the synchronization is destroyed in a frequency-
splitting bifurcation. The common frequency Ω splits into two or more dif-
ferent frequencies. So for Ksb < Kc, the bifurcation takes place inside the
manifold M . Therefore, the desynchronization transition in the symmetric
Kuramoto model is actually determined by the reduced Winfree model given
by (15) and (16).

3.3 Desynchronization Transition: From Saddle-Node
to Symmetry-Breaking

By a desynchronization transition in the Kuramoto model, we mean a se-
quence of bifurcations occurring between complete synchronization and com-
plete desynchronization. The latter means that oscillators with different nat-
ural frequencies have different average frequencies. After the occurrence of
complete desynchronization, other bifurcations may take place. Finally, as
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K → 0, the dynamics shows up as an uncoupled behavior acting on the
(N − 1)-dimensional torus.

The desynchronization transition starts at K = Kc with the first frequency-
splitting bifurcation. It is caused by the unique stable equilibrium O, which
vanishes in a saddle-node bifurcation. The equilibrium belongs to the manifold
M , which allows us to find the critical bifurcation parameter analytically. In-
deed, any equilibrium of the reduced Kuramoto model (15) and (16), satisfies
the equations

ωi −Kr sinψi = 0 (17)

where

r =






1
N0

N0∑

j=1

cos ψj , N = 2N0

1
2N0 + 1



2
N0∑

j=1

cos ψj + 1



, N = 2N0 + 1 .

As it follows from (17), the equilibria are located on a one-dimensional mani-

fold sinψ1 = ω1
ω2

sinψ2 = · · · = ω1
ωN0

sinψN0 . We denote x
def
= sin ψ1. Then x is

a root of a scalar algebraic equation

x · r(x) =
ω1

K
(18)

where

r(x) =






1
N0

N0∑

j=1

√

1−
(

ωj

ω1
x

)2

, N = 2N0

1
2N0 + 1



2
N0∑

j=1

√

1−
(

ωj

ω1
x

)2

+ 1



, N = 2N0 + 1 .

(19)

To find the bifurcation value K = Kc of the saddle-node bifurcation, we take
into account that the stable equilibrium O is given by the smallest positive
root of (18). The root disappears (by colliding with another root) when the
left-hand part function in (18) reaches the maximum value, i.e., at x = xc,
where xc satisfies

xcr
′(xc) + r(xc) = 0

(r′ denotes the derivative of r). Finally, we conclude from (18) that the sadle-
node bifurcation occurs at K = Kc, where

Kc =
ω1

xcr(xc)
· (20)

Formula (20) provides a simple analytical expression for the beginning of the
desynchronization transition in the symmetric Kuramoto model. The result
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of the bifurcation at K = Kc is the appearance of a stable periodic orbit γ
which belongs to the invariant manifold M .

With a further decrease of the coupling strength K, the stable periodic
orbit γ undergoes a number of bifurcations, finally producing a chaotic behav-
ior inside the manifold M . The chaotic dynamics in the manifold M first may
be transversely stable up to a symmetry-breaking bifurcation value Ksb. The
system’s dynamics changes from a low-dimensional chaotic attractor in the
manifold to a high-dimensional hyperchaotic attractor in the whole (N − 1)-
dimensional phase space. As our numerics show, these two attractors, one in
the manifold and another outside the manifold, can co-exist for a range of
the coupling parameter prior to Ksb. Then, the phenomenon of multistability
occurs for the Kuramoto model: depending on the initial conditions one of
the two stable, very different limiting states is realized. The high-dimensional
hyperchaotic behaviour is characterized by the number of positive Lyapunov
exponents. We found numerically, that there are two and four positive Lya-
punov exponents for N = 7 and N = 10, respectively.

Below, we illustrate properties of the symmetric Kuramoto model in the
cases N = 4 and N = 7.

3.4 Chaotic Attractor in the Kuramoto Model: N = 4

An example of the desynchronization transition for the four-dimensional Ku-
ramoto model is shown in Fig. 8. The corresponding Lyapunov exponents
are plotted in Fig. 9. The natural frequencies ωi are chosen to be uniformly
distributed in the interval [−0.15, 0.15].
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Fig. 8. Frequency-splitting bifurcation diagram for the Kuramoto model from (1)
with N = 4 phase oscillators, with natural frequencies ωi uniformly distributed in
the interval [−0.15; 0.15]. ωi = 〈ψ̇i〉, where 〈·〉 denotes averaging over time. Ω is the
mean of the eigenfrequencies
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Fig. 9. Lyapunov exponents of the Kuramoto model from (1) with N = 4
phase oscillators, with natural frequencies ωi uniformly distributed in the interval
[−0.15; 0.15]

It turns out that the maximal Lyapunov exponent is positive for a rather
long coupling parameter interval, which indicates the appearance of a chaotic
attractor. The chaotic attractor is depicted in Fig. 10. It is born at K =
Ktd = 0.141. . . due to a torus-destruction scenario [23]. With an increase of
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Fig. 10. Return map at ϕ1 = 0 for the Kuramoto model from (1) with N = 4 phase
oscillators, with a uniform distribution of the natural frequencies ωi in the interval
[−0.15; 0.15]
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the coupling strength K a fractal structure of the chaotic attractor emerges.
Finally, it vanishes at K = Kcr = 0.1815. . . in a boundary crisis.

Before the appearance of the chaotic attractor, i.e. for K < Ktd, the
dynamics of the system is periodic or quasiperiodic and may occupy the whole
three-dimensional phase space, so that it is not restricted to the invariant
manifold. After the disappearance of the attractor, i.e. for K > Kcr, the
dynamics of the system is attracted by the two-dimensional invariant manifold
of the form (12)

M = {ψ2 − ψ1 = ψ4 − ψ3}
and, hence, cannot be chaotic and turns out to be stationary, periodic or quasi-
periodic. The manifold dynamics is transversely stable for all K > Ksb, where
Ksb = 0.180. . . is a parameter value of the symmetry-breaking bifurcation of
M (i.e. of the transverse destabilization of the in-manifold dynamics).

Note that Ksb < Kcr which implies multistability in the Kuramoto model.
Indeed, in the parameter interval between Ksb and Kcr, two attractors co-
exist. One is a stable periodic orbit inside the two-dimensional invariant man-
ifold M , the other is the chaotic attractor in the whole three-dimensional
phase space (see Figs. 9 and 10d).

The two-dimensional dynamics inside the manifold is given by (15) with
N0 = 2. In the example considered, ω1 = 0.05 and ω2 = 0.15. At K = Kc =
0.24. . . a stable node O is born in a saddle-node bifurcation. It belongs to the
manifold and gives rise to the appearance of the Cherry flow for K > Kc. The
Cherry flow has two fixed points, a stable node, a saddle, and an unstable
periodic orbit of winding ratio 1:0.

To trace the desynchronization process in the original four-dimensional
Kuramoto model, we decrease the coupling strength back from the Cherry
flow to the three-dimensional chaotic attractor (see. Figs. 8 and 10). First, at
K = Kc, the frequency-splitting bifurcation occurs. A stable periodic orbit
with winding ratio 1:0:1 arises and provides two phase clusters: ω̄1 = ω̄2 and
ω̄3 = ω̄4. At the next bifurcation moment, at K = 0.228.., the phases in
both clusters split from each other. Beyond the splitting, the parameter point
crosses infinitely many higher resonant tongues.

At K = 0.2. . . the system approaches the main resonant tongue 1:1:1.
The stable periodic behavior inside it is still transversely stable and hence, as
before, the system’s dynamics takes place in the manifold M . With decreasing
K the resonant behavior within the manifold loses its transverse stability,
which causes a symmetry-breaking bifurcation at K = Ksb, as shown by the
graph of the transverse Lyapunov exponent λ⊥ in Fig. 9. After the symmetry-
breaking, the dynamics of the system is no longer restricted to the manifold
and is captured by the chaotic attractor.

With a further decrease of the coupling strength beyond Ktd, the behav-
ior is mostly quasiperiodic on a two-dimensional torus which lies outside the
manifold M . The strength of the attraction of the torus decreases with de-
creasing K. Finally, as K tends to zero, one gets an uncoupled behavior on
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the three-dimensional torus. Its winding ratio is given by the differences of
the natural frequencies of the Kuramoto model. In the example considered,
we again obtain the resonance 1:1:1.

3.5 Hyperchaos: N = 7

In Figs. 11 and 12, an example of a desynchronization transition and the
graphs of the corresponding Lyapunov exponents are shown for the Kuramoto
model of dimension N = 7. Again, we examine the case with natural frequen-
cies equally distributed, now in the interval [−1 ; 1].
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Fig. 11. Frequency-splitting bifurcation diagram for the Kuramoto model from (1)
with N = 7 phase oscillators, with natural frequencies ωi uniformly distributed in
the interval [−1.0; 1.0]. ωi = 〈ψ̇i〉, where 〈·〉 denotes averaging over time. Ω is the
mean frequency
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phase oscillators, with natural frequencies ωi uniformly distributed in the interval
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The symmetric invariant manifold M is three-dimensional. The dynamics
within this manifold is given by (16) with N0 = 3 and natural frequencies
ω1 = 1/3, ω2 = 2/3, and ω3 = 1. It can be regular or chaotic. For K = Ksb

= 1.28. . . , a hyperchaotic behavior in the whole six-dimensional phase space
emerges. Indeed, two maximal Lyapunov exponents λ1 and λ2 are positive
for a sufficiently long parameter range (see Fig. 12). They vanish only at
K = Ktd ∼ 0.477.

4 Conclusion

In the present chapter, we considered the Kuramoto model from the stand-
point of nonlinear dynamical systems. Our approach revealed a sequence of
bifurcations, which, in particular, give rise to the appearance of desynchro-
nized states, chaos, hyperchaos, and multistability. The desynchronization
transition starts with the saddle-node bifurcation of the unique phase-locked
state. After the bifurcation phase clusters emerge, each rotating with its own
frequency. With a further decrease of the coupling strength, the bifurcation
scenario, which we present here, finally leads to complete phase desynchro-
nization, where all phases rotate with different frequencies. On this route to
desynchronization, with a decrease of the coupling strength, first, the dynam-
ics is regular, namely periodic or quasiperiodic. This regularity ceases with
the transition to chaos. The chaotic regime is intersected by windows of peri-
odicity.

The Kuramoto model displays high-dimensional hyperchaotic behavior,
which is present within a wide parameter range. The complexity of the hyper-
chaos can be characterized by the number of positive Lyapunov exponents.
This number grows with the dimension N of the Kuramoto model, which indi-
cates that the hyperchaos becomes more and more developed with increasing
system size N . We observed, that there are two positive Lyapunov exponents
in the case with N = 7; four for N = 10; and nine for N = 20. In the case
N = 4, we have also observed multistability of chaotic and regular dynamics.

The richness and complexity of the nonlinear dynamics of the Kuramoto
model is interesting and highly significant from the standpoint of both theory
and applications. Our results demonstrate how fruitful the nonlinear dynamics
approach may contribute to a better understanding of the behavior of the
Kuramoto model.
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1 Introduction

This chapter deals with the study of travelling waves in discrete time spatially
extended systems with monotone dynamics. Such systems appear for instance
in alloy solidification, in population dynamics and in solid-state physics. Spe-
cial emphasis is made on the existence of travelling waves, on the uniqueness
of their velocity and on their relevance for the description of propagation
phenomena in such systems.

The first section deals with interfaces between two stable homogeneous
phases and their propagation in the form of fronts. The analysis applies to
systems of bistable one-dimensional maps coupled via the convolution with an
arbitrary distribution function [6]. This analysis completes a previous work on
piecewise affine bistable CML [3, 4] and its extension to systems of piecewise
affine one-dimensional maps coupled via convolution [5].

The second section deals with travelling waves in monotonous extended
systems driven by spatially periodic forces. These systems are inspired by dis-
crete time analogues of the dissipative dynamics of Frenkel-Kontorova models
(see the chapters by Floŕıa, Baesens and Gómez-Gardeñes and by Baesens for
such dynamics in continuous time). For such nonlinear systems, a dispersion
relation is obtained and the existence of travelling waves with arbitrary wave
and corresponding frequency is shown [7].

In spite of similarities with other works in the literature (see e.g. [12]) the
methods and, particularly, the formalism developed in the papers [3, 4, 5, 6,
7] are quite distinct and original. They encompass in a unified framework,
systems with continuous couplings and systems with discrete couplings. In
particular, changes in the dynamics of travelling waves (e.g. changes in shape
and in velocity) are described when the coupling continuously changes from
a discrete to a continuous one.
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265–284 (2005)
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2 Bistable Extended Maps

2.1 From Bistable CML to General Bistable Extended Mappings

As a starting point, we consider the basic model of CML

ut+1
s = (1− ε)f(ut

s) +
ε

2
(
f(ut

s−1) + f(ut
s+1)

)
(1)

where the real number ut
s ∈ [0, 1] represents the element of a lattice configu-

ration at discrete time t ∈ Z and discrete space s ∈ Z, and where ε ∈ [0, 1)
is the coupling strength. The map f is a bistable map from [0, 1] into itself.
A bistable map is a continuous increasing mapping from [0, 1] into itself with
exactly 3 fixed points, namely the points 0, c and 1. The points 0 and 1 are
attracting and c is unstable, see Fig. 1.

Fig. 1. A bistable map f

The evolution of a configuration under a bistable CML can be viewed as
a local force which impels convergence to some steady state (a stable fixed
point of f , either 0 or 1), followed by a diffusion process which takes the form
of the following linear operator

(Lu)s = (1− ε)us +
ε

2
(us+1 + us−1) . (2)

In particular, if at time t the configuration satisfies ut
s > c for all s ∈ Z, then

the evolution forces the configuration to converge uniformly to the fixed point
us = 1 for all s ∈ Z. On the opposite, if ut

s < c for all s ∈ Z, then the evolution
forces the configuration to converge uniformly to the fixed point us = 0 for
all s ∈ Z. Hence these fixed points represent stable phases of the dynamics.

The goal of this first section is to investigate the competition between
these two phases, namely the evolution of configurations which at some time
satisfy ut

s < c for sufficiently large negative s and ut
s > c for sufficiently large

positive s. Typically, the resulting motion is the invasion of one phase into
the other one, an invasion ruled by special solutions of (1), namely the fronts.
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A front of rational velocity p
q for the CML (1) is a configuration which

satisfies this evolution equation and the relations

∀s, t : ut+q
s = ut

s−p, lim
s→−∞ut

s = 0 and lim
s→+∞ut

s = 1 .

Before starting the investigation of such fronts, one may wonder about the
existence of fronts with irrational velocity in CML. A simple way to take into
account both rational and irrational velocities in a unique formalism is to
define a front of velocity v for the CML (1) as a configuration which satisfies

ut
s = φ (s− tv)

where φ : R → [0, 1] is a real function, called the front shape, which satisfies

lim
x→−∞φ (x) = 0 and lim

x→+∞φ (x) = 1 .

In other words the introduction of functions of real variable in CML allows
to study fronts with irrational velocities. However, using also this formalism
in the description of fronts with rational velocities has proved to be useful for
the global comprehension of fronts dynamics.

Early studies in this direction showed the existence of such fronts (of ra-
tional or irrational velocity depending on parameters) for (1) when f is a
discontinuous piecewise affine map with constant slope [3]. The existence of
fronts has also been shown in a CML with continuous piecewise affine bistable
local map and unidirectional coupling [1]. The proof in [3] is achieved by using
an explicit construction of the front shape for this CML. In order to show the
existence of such fronts when the local map f is an arbitrary (continuous)
bistable map, it is useful to fully generalise the model under consideration.

Actually, one may not restrict oneself to CML defined by (1) but also
consider more general CML whose iterations involve larger, even unbounded,
neighbourhoods. In addition, a reversal symmetric coupling is not required
and this assumption can be dropped. That is to say, one may consider the
following coupling operator

(Lu)s =
∑

n∈Z

�nus−n

where the coefficients �n are nonnegative real numbers such that
∑

n∈Z

�n = 1 .

Note that the coupling operator in (2) is recovered by choosing �−1 = �1 = ε
2 ,

�0 = 1− ε and �n = 0 for n /∈ {−1, 0, 1}.
Since the front shape is defined as a function of real variable, it is natural

to extend the action of the dynamics to the functions of real variable. That is
to say instead of the CML (1), we consider



268 R. Coutinho and B. Fernandez

ut+1 (x) =
∑

n∈Z

�nf(ut (x− n)) .

where each ut is a function from R to [0, 1].
Of course, the dynamics of lattice configurations is recovered by consider-

ing the invariant set of functions which are constant on every interval [s, s+1)
where s ∈ Z. But such an extension provides an appropriate framework to the
front shape dynamics.

At this stage, an additional extension appears immediately. One may con-
sider diffusive linear operators of the form

(Lu) (x) =
∑

n∈Z

�nu (x− rn)

where the coefficients �n are nonnegative real numbers such that
∑

n∈Z
�n = 1

and rn are arbitrary real numbers (not only integers). An alternative way of
writing this operator is by using the convolution with a distribution function
h. Recall that such a convolution is defined by the Lebesgue-Stieltjes integral

(Lu) (x) = h ∗ u(x) :=
∫

R

u(x− y)dh(y) . (3)

That is to say, one may consider diffusive linear operator of the form Lu = h∗u.
In the previous case, the coupling operator can be written h ∗ u with the
distribution function h being given by h(x) =

∑
n∈Z

�nH (x− rn) where H is
the Heaviside function

H(x) =
{

0 if x < 0
1 if 0 ≤ x

Convolutions are not limited to discrete distribution functions and, as a final
extension, one may consider Lu = h ∗ u where h is an arbitrary distribu-
tion function, that is to say, any increasing function with the following limits
limx→−∞ h(x) = 0 and limx→+∞ h(x) = 1.

Therefore instead of only considering the dynamics of fronts in bistable
CML, we consider the dynamics of fronts in bistable (spatially) extended
maps whose iterations write

ut+1 = Fut = h ∗ f ◦ ut (4)

where h is an arbitrary distribution function and f an arbitrary bistable map.
(A further extension will be considered in Sect. 2.4.)

In order to have a well-defined convolution operator (3) for arbitrary distri-
bution function h, the functions u need be Borel measurable. Accordingly we
consider the dynamics (4) in the set B of Borel-measurable functions defined
on R with values in [0, 1].

It is noteworthy that the present formalism collects in a unique framework,
CML and classical models with continuous diffusive couplings. On one hand
the basic model of CML is recovered for
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h(x) = (1− ε)H(x) +
ε

2
(H(x + 1) + H(x− 1)) .

On the other hand by choosing h to be the absolutely continuous distribution
function with heat kernel

h(x) =
∫ x

−∞
e−πy2

dy, x ∈ R

the map Fu(x) = (h ∗ f ◦ u)(x) =
∫

R
f ◦ u(x−y)e−πy2

dy gives an integral
formulation of a reaction-diffusion process in discrete time. Indeed, we then
have Fu(x) = wu(x, 1/4π), where wu(x, t) is the solution of the initial value
problem ∂wu

∂t = ∂2wu

∂x2 and wu (x, 0) = f ◦ u(x).
The rest of this section is dedicated to a sketch of the front analysis in

bistable extended maps defined by (4). This amounts to prove the existence
of a velocity v and of a front shape φ which solves the front equation

φ (x− v) = h ∗ f ◦ φ (x) .

2.2 Basic Properties

Every bistable extended map F defined by (4) has three basic properties.
The first property, which is intensively used in the analysis, is homogeneity.
Homogeneity is expressed by the relation

T vF = FT v for all v ∈ R (5)

where T v is the translation by v, namely the operator acting in B and defined
by T vu(x) = u(x− v) for all x ∈ R.

The second important property of F is continuity in the sense of pointwise
convergence, namely

∀x ∈ R lim
n→∞un (x) = u (x) ⇒ ∀x ∈ R lim

n→∞Fun (x) = Fu (x) . (6)

Finally, the third fundamental property is monotonicity, namely

u ≤ v ⇒ Fu ≤ Fv . (7)

Using these three properties we can deduce other important facts:

(a) Under the action of F , every increasing function is mapped into an in-
creasing function. Using the fact a function is increasing iff it lies above
any of its right translation, we have

∀δ > 0 T δu ≤ u ⇒ T δFu ≤ Fu .

(b) The map F commutes with the projection P	 on left continuous func-
tions. Indeed this projection is defined by P	u(x) = lim

y→x
y<x

u(y) and for any

function in its domain, we have P	u(x) = lim
n→∞u(x− 1

n ). Using homogene-
ity and continuity, we conclude that FP	u = P	Fu. Similarly, one shows
that F commutes with the projection Pr on right continuous functions.
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2.3 Results and Concepts

Existence of Fronts

As suggested before, any bistable extended map of the form (4) has fronts for
some velocity v. This is formally claimed in the following statement.

Theorem 2.1. For any distribution function h and any bistable map f , there
exists a velocity v ∈ R and an increasing function φ with the following limits
limx→−∞ φ(x) = 0 and limx→+∞ φ(x) = 1 which solves the front equation
T vφ = h ∗ f ◦ φ.

The proof of this Theorem is sketched in Sect. 2.5. The proof is accomplished
by a construction of an increasing function φ with the desired properties for
a chosen velocity v.

Note that monotonicity of the front shape φ is not imposed by the front
equation. Indeed in some cases (e.g. in weakly coupled CML or in strongly
unidirectionally coupled CML), it may happen that a bistable extended map
also has fronts with non monotonous shape.

Moreover, uniqueness of monotonous shape cannot be expected in general.
There are examples of bistable CML with several monotone front shapes which
cannot be identified by applying translations.

Bistable Regular Maps and the Uniqueness of Front Velocity

In spite of the front shape need not be unique, one may wonder about the
uniqueness of the velocity. It turns out that this uniqueness holds provided
that the map f is so-called regular, a fairly general situation. Indeed, a bistable
map f is said to be regular if it is a weak contraction in the neighbourhoods
of the stable fixed points (see Fig. 2), i.e. if we have

∃δ > 0 [x, y ∈ (0, δ) or x, y ∈ (1− δ, 1)] ⇒ |f (x)− f (y)| ≤ |x− y| .

That a bistable map be regular is a quite mild condition relies on Taylor
expansion. Indeed by using Taylor formula, one obtains the following sufficient
conditions for a bistable map f to be regular

f is analytic, or
f ∈ C1 and f ′ (0) < 1 and f ′ (1) < 1, or
f ∈ C2 and f ′′ (0) �= 0 and f ′′ (1) �= 0, or
f ∈ C3 and f ′′′ (0) �= 0 and f ′′′ (1) �= 0, and
. . .

Nevertheless, one can exhibit examples of non regular C∞ bistable maps.
With regularity provided, Theorem 2.1 can be completed by an assertion

on velocity uniqueness.
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Fig. 2. Bistable regular and non regular local maps

Theorem 2.2. For any distribution function h and any regular bistable map
f , there exists a unique velocity v ∈ R and an increasing function φ with the
following limits limx→−∞ φ(x) = 0 and limx→+∞ φ(x) = 1 which solves the
front equation T vφ = h ∗ f ◦ φ.

Hausdorff Distance of Increasing Functions

Uniqueness of the front velocity in extended systems with regular bistable
maps naturally addresses the question of the dependence of this velocity on
the local map and on the coupling operator, i.e. the dependence of v(f, h) on
f and on h.

The dependence under consideration here is continuity with changes in f
and in h. In order to address this problem, adequate notions of convergence
both for local maps f and for distribution functions h need to be introduced.

As far as local maps are concerned, convergence is understood in the point-
wise sense, i.e. {fn} converges to f iff limn→∞ fn(x) = f(x) for all x ∈ [0, 1].

As far as distribution functions are concerned, the convergence is ruled by
a distance in the set of (right continuous) increasing functions. The distance
between two distribution functions h and h′ is given by

d(h, h′) = inf{ε > 0 : h(x− ε)− ε ≤ h′(x) ≤ h(x + ε) + ε, ∀x ∈ R } . (8)

For this distance, the ball of radius ε centred at h is the set of functions for
which the graph lies in the band of width 2

√
2ε in the direction of the line

y = −x around the graph Gh of h. The graph of h is defined by

Gh = {(x, y) : P	h (x) ≤ y ≤ Prh (x)} .
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In fact it is not difficult to show that this distance is the Hausdorff distance
restricted to graphs of such functions:

d(h, h′) = max
{

sup
z1∈Gh

(

inf
z2∈Gh′

‖z1 − z2‖
)

, sup
z1∈Gh′

(

inf
z2∈Gh

‖z1 − z2‖
)}

where the R
2 norm ‖.‖ is given by ‖(x, y)‖ = max {|x| , |y|}.

By using relation (8), one shows that the convergence with respect to the
distance d(·, ·) is equivalent to the convergence at all continuity points, the
usual convergence of distribution functions [10]. Precisely, we have
limn→∞ d(hn, h) = 0 iff limn→∞ hn(x) = h(x) for all x where h is contin-
uous [6].

The advantage of such a distance is that it allows continuous distribution
functions to converge to discontinuous ones and vice-versa. As a particular
consequence, changes in front velocity can be analysed when continuously
passing from a model with continuous diffusive operator to a model with
discrete diffusive operator (and vice-versa).

Continuity of the Front Velocity

The continuous dependence of the front velocity with respect both to the
local map and to the distribution function is given by the following statement.
Assume that f is regular and let v(f, h) be the unique front velocity of the
mapping Fu = h ∗ f ◦ u.

Theorem 2.3. Let {fn}n∈N be a sequence of regular bistable maps which con-
verges pointwise to a bistable regular map f . Let {hn}n∈N be a sequence of dis-
tribution functions and h be a distribution function such that lim

n→∞ d(hn, h) =

0. Then lim
n→∞ v(fn, hn) = v(f, h).

In particular, the front velocity varies continuously with any parameter of
the local map (provided that the map pointwise depends continuously on its
parameter(s)) and with any coupling parameter (provided the distribution
function depends continuously on this parameter). For instance, in the CML
defined by (1), the front velocity depends continuously on ε.

A special consequence of this result is the existence of fronts with irrational
velocity (for appropriate value of ε) in any CML (1) for which the front velocity
is not constant when ε moves in [0, 1].

As suggested before, Theorem 2.3 contains the claim that the front velocity
of an extended bistable map with infinite range coupling can be approximated
to arbitrary accuracy by the front velocity of an extended bistable map with
finite range discrete coupling, and vice-versa.



Spatially Extended Monotone Mappings 273

Interfaces and Reference Centres Ja(ψ)

Once the existence of front has been established, the natural question to ad-
dress is their Lyapunov stability. Lyapunov stability of fronts is an elaborated
question which lies beyond the scope of this chapter.

In this section we provide some information about the dynamics of con-
figurations which need not be monotone, nor need to cross once the unstable
fixed point c of f . These configurations are called interfaces. An interface is
a function u ∈ B such that there exists c− ∈ (0, c), c+ ∈ (c, 1) and j1 ≤ j2 ∈ R

so that u(x) ≤ c− if x ≤ j1 and u(x) ≥ c+ if x ≥ j2 (see Fig. 3 for an example
of an interface crossing several times the point c.)

Fig. 3. An interface function u

Interfaces possess the following dynamical properties. If u is an interface,
then every iteration F tu (t ≥ 0) is an interface. Moreover, the numbers c−
(resp. c+) can be chosen arbitrarily near to 0 (resp. 1) provided that t is
chosen (accordingly) large enough.

As shown below, the asymptotic dynamical property shared by all inter-
faces is a unique propagation velocity, the front velocity of course.

In order to compute this velocity, the interface location at each time is
measured according to a reference threshold a. We introduce the reference
centre of an interface u as the smallest point at which the function is not
smaller than a, i.e.

Ja(u) = inf {x ∈ R : u(x) ≥ a} .

In the case where this quantity is finite, by applying a translation, the function
can be centred at 0. Indeed, we have Ja(T−Ja(u)u) = 0.

Velocity of Interfaces

According to the previous dynamical property, for any interface and any
a ∈ (0, 1), the quantity Ja(F tu) is finite for all t sufficiently large. The next
statement claims that any interface has asymptotically the front velocity, no
matter the initial number of crossing the level c is.
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Theorem 2.4. Let h be a distribution function and let f be a regular bistable
map. For every interface u and every a ∈ (0, 1), we have

lim
t→+∞

Ja(F tu)
t

= v(f, h) .

Needless to say that the front velocity is an important characteristic of ex-
tended bistable map. It plays a similar role to the one played by the rotation
number in circle maps.

2.4 Generalisation

The results on front dynamics extend to linear convex combinations of maps of
the form Fu = h∗f ◦u. An interesting application of such an extension resides
in lattice dynamical systems as introduced in the chapter by Bunimovich in
this volume.

Instead of the map F defined by (4) we now consider the map F defined
by

Fu =
∑

k∈N

akhk ∗ fk ◦ u, u ∈ B .

Here the numbers ak ≥ 0 and
∑

k∈N
ak = 1. The functions hk are distributions

functions and the maps fk are continuous increasing maps defined on [0, 1]
such that there exists c ∈ (0, 1) so that for every k ∈ N we have

fk(x) ≤ x if 0 ≤ x ≤ c and x ≤ fk(x) if c ≤ x ≤ 1 .

Moreover, we assume that the map

f =
∑

k∈N

akfk

is bistable. Its unstable fixed point is then c.
In addition, we say that the map F is regular if there exists δ > 0 such

that for every k ∈ N we have

|fk(x)− fk(y)| ≤ |x− y| if x, y ∈ (0, δ) or if x, y ∈ (1− δ, 1) .

All previous results on existence of fronts (Theorem 2.1), uniqueness of the
velocity (Theorem 2.2), continuous dependence of the velocity on the parame-
ters (Theorem 2.3) and existence and uniqueness of the velocity of interfaces
(Theorem 4) extend to the present mapping F .

Example. Lattice dynamical system. Let ε ∈ (0, 1) and f be a regular bistable
map such that the map f0 defined on [0, 1] by f0(x) = f(x)−εx

1−ε is increasing.
Let f1(x) = x, a0 = 1 − ε, a1 = ε, ak = 0 if k > 1, h0 = H and h1 =
1
2 (T 1H + T−1H).

The map

Fu(x) =
∑

k∈N

akhk ∗ fk ◦ u(x) = f ◦ u(x) +
ε

2
(u(x− 1)− 2u(x) + u(x + 1))

satisfies the desired properties and is regular.
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2.5 Sketch of the Proof of Existence of Fronts

This section presents a brief description of the proof of front existence. The
complete proof is given in [6].

The first step consists in introducing subfronts, that is to say increasing
functions which satisfy the inequality Fu ≤ T vu. To be precise, let I ⊂ B
be the subset composed of increasing functions, let v ∈ R and c+ ∈ (c, 1).
Consider the set of subfronts of velocity v defined by

Sv,c+ =
{
ψ ∈ I : Fψ ≤ T vψ and Jc+(ψ) = 0

}
.

If Sv,c+ is not empty, consider the function

ηv(x) = inf
u∈Sv,c+

u(x), x ∈ R .

It turns out that ηv ∈ Sv,c+ and therefore ηv is a minimal sub-front of velocity
v.

In a second step, we consider the maximal sub-fronts velocity

v̄ = sup
{
v ∈ R : Sv,c+ �= ∅

}

and we consider the minimal sub-front of maximal velocity, namely ηv̄. (This
minimal subfront exists because one shows that Sv̄,c+ �= ∅.) The construction
suggests ηv̄ is a good candidate to solving the front equation. However, this
is not always the case.

In order to construct a front shape from this function, we start by com-
puting iterates Fnηv̄. We translate them so that they all be centred at 0 (i.e.
Jc+(T−jnFnηv̄) = 0 where jn = Jc+(Fnηv̄)) and we look for a limit function.
That is to say, we consider the sequence {T−jnFnηv̄}n∈N.

Then we prove that lim infn→∞ (jn+m − jn) = mv̄. This property is em-
ployed together with an arithmetical lemma in order to ensure the existence
of a strictly increasing sequence {nk} such that for all m we have

lim
k→∞

(jnk+m − jnk
) = mv̄ .

By Helly’s Selection Theorem3 the sequence {T−jnk Fnkηv̄}k∈N has a conver-
gent subsequence which, without loss of generality, we assume to be the same
sequence, i.e. there exists η∞ ∈ Sv̄,c+ such that

η∞ = lim
k→∞

T−jnk Fnkηv̄ .

3 Helly’s Selection Theorem states that if {fn} is a sequence of monotonically in-
creasing functions on R with 0 ≤ fn (x) ≤ 1 for all x and n, then there is a
function f and a sequence {nk} such that

f (x) = lim
k→∞

fnk (x) for every x ∈ R .

See Chap. 10 in [9] or exercise 13, Chap. 7 in [11].
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Now we consider the sequence T−mv̄Fmη∞. Since η∞ ∈ Sv̄,c+ , this sequence
has the following property

ηv̄ ≤ T−(m+1)v̄Fm+1η∞ ≤ T−mv̄Fmη∞ .

Therefore it converges to a limit function

φ = lim
m→∞T−mv̄Fmη∞ .

By continuity of F , the function φ ∈ I satisfies the front equation T v̄φ =
Fφ and is such that limx→+∞ φ(x) = 1. However, one cannot conclude that
limx→−∞ φ(x) = 0 but only that

lim
x→−∞φ (x) ∈ {0, c} .

In order to complete the proof, one first shows that if f and h are such that

f ′ (c) = +∞ and inf {x ∈ R : h(x) > 0} = −∞

then limx→−∞ φ (x) = 0 and the existence of fronts is proved in this case. In
the general case, the conclusion follows

(1) by showing that any f (resp. h) can be approximated to arbitrary
accuracy by local maps (resp. distribution functions) satisfying the previous
assumptions and

(2) by showing that the limit of a sequence of extended bistable maps
having fronts with converging velocities possesses itself a front (with the limit
velocity).

3 Extended Circle Maps

3.1 Frenkel-Kontorova Models and Extended Circle Maps

One-dimensional chains of particles coupled by springs and placed in a peri-
odic potential are represented by doubly infinite real sequences {us}s∈Z (us

represents the location of the s-th particle). In the dissipative limit, the dy-
namics of such chains, when driven by a constant force, are described by the
gradient of a Frenkel-Kontorova (FK) functional (see the chapters by Floŕıa,
Baesens and Gómez-Gardeñes and by Baesens). It means that the sequences
evolve according to the differential equation

∂tus = V ′(us) + D + (us−1 − 2us + us+1)

where the potential V is periodic V (x + 1) = V (x) and D ∈ R is the driving
force.



Spatially Extended Monotone Mappings 277

This equation is a special case of the following one

∂tus = − (g′2(us−1, us) + g′1(us, us+1)) + D

where g : R
2 → R is a C2 function satisfying the periodic condition

g(x + 1, y + 1) = g(x, y)

and such that the partial derivative g′′12(x, y) ≤ 0 for all (x, y) ∈ R
2 (twist

condition).
This section concerns the dynamics of discrete time analogues of such

equation; namely discrete time dynamical system defined by

ut+1
s = ut

s − ε
(
g′2(u

t
s−1, u

t
s) + g′1(u

t
s, u

t
s+1)

)
+ εD (9)

where t ∈ Z and ε > 0 is the discretisation step. Special emphasis will be
put on travelling wave solutions whose shape is an increasing periodic (in a
suitable sense) function. Precisely, our concern will be with orbits given by

ut
s = ψ (αs + ναt) (10)

where ψ is an increasing function such that ψ (x + 1) = ψ (x)+1. The number
α > 0 is called the mean spacing (wave number) of the wave and the number
να is called the rotation number (frequency).

A special case of travelling waves is when να = 0 for which the configu-
rations are stationary. In particular, according to relation (9), the existence
of such stationary configuration for D = 0 is nothing else than the famous
Aubry-Mather Theorem [8].

Just as done for bistable extended maps, we extend the analysis to sys-
tems with continuous space variable. That is to say, rather than considering
sequences us : Z → R, we consider functions u(x) : R → R. In this larger
phase space, the dynamics writes ut+1 = Fut where

(Fu) (x) = u (x)− ε (g′2(u (x− 1) , u (x)) + g′1(u (x) , u (x + 1))) + εD . (11)

In order to deal with separate sets of travelling waves for distinct mean
spacing, for each α > 0, we consider the set (see Fig. 4)

Nα =
{
u : u : R → R, u increasing and u(x + 1

α ) = u (x) + 1
}

.

Since for any function ψ satisfying ψ(x + 1) = ψ(x) + 1 the function φ (x) :=
ψ (αx) belongs to Nα, the travelling wave solutions (10) can be written as
follows

ut = T− να
α tφ

where φ ∈ Nα and T v is again the translation operator defined by T vu(x) =
u(x− v).
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Fig. 4. A function u in Nα

Note that horizontal translations in Nα can be viewed as vertical ones.
So it is indifferent to view travelling waves either as propagating vertically or
horizontally.

Just as bistable extended map do, the maps defined (11) commute with
translations and are continuous with respect to pointwise convergence. In
addition they can be shown to be increasing.

Lemma 3.1. [7] For every L > 0, there exists εL > 0 such that, for every
ε ∈ (0, εL], α ∈ (0, L] and u, v ∈ Nα, we have u ≤ v implies Fu ≤ Fv.

At once, the map F satisfies the following properties

(a) For some α > 0, or for all α > 0, F maps Nα into Nα.
(b) F is increasing, u ≤ v ⇒ Fu ≤ Fv.
(c) F is periodic, F (u + 1) = F (u) + 1.
(d) F is homogeneous, T vF = FT v ∀v ∈ R.
(e) F is continuous, ∀x ∈ R lim

n→∞un (x) = u (x) ⇒ ∀x ∈ R lim
n→∞Fun (x) =

Fu (x) .

The results in this section, in particular the uniqueness of rotation number
(Proposition 3.1) and the existence of travelling waves (Theorem 3.1), hold
for any map F which satisfies the properties a) to e). Such maps are called
(spatially) extended circle maps.

The properties b), c) and d) imply that every set Nα on which an extended
circle map F is defined is invariant under the action of F . So the dynamics is
well-defined.

The dynamics of functions with negative mean spacing (i.e.Nα with α < 0)
is also included in this framework. Indeed, it suffices to apply the inversion
x �→ −x and to analyse the subsequent extended circle map. In the case α = 0,
the dynamics reduces to that of a lift of circle map (see below).
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3.2 Coupled Lift of Circle Maps

A special example of extended circle map are the mappings which are formally
identical to the bistable extended maps of the first section, namely

Fu = h ∗ f ◦ u . (12)

However f is now a lift of a circle map (i.e. f is increasing, continuous map
from R into itself for which f(x + 1) = f(x) + 1 for all x) and h is now a
distribution function satisfying

∫
R
|x|dh(x) < ∞ [7]. Such maps cannot be

interpreted as (extended) lift of coupled circle maps. Indeed for any integer
function n : R → N, we have F (u + n) = F (u) + h ∗ n. But in general the
function h ∗ n is not an integer function.

Anyway, coupled lift of circle maps (with discrete distribution function)
can be interpreted as models of chains diffusively coupled particles in titled
periodic potential (Frenkel-Kontorova models).

In the uncoupled case h = H (where H is the Heaviside function) that is
to say in the case where Fu = f ◦ u, then Theorem 3.1 applied with α = 1
states the existence of a semi-conjugacy to some translation for any lift of
circle map f . Indeed, it states the existence of a lift of a circle map φ ∈ N1

such that f ◦ φ = T−ν1φ where ν1 is the rotation number of F in N1 (see
Proposition 3.1), the rotation number of f indeed.

3.3 Rotation Number of Extended Circle Maps

Unlike the analysis of fronts in bistable extended map for which the uniqueness
of the velocity has been shown once a solution has been exhibited, the proof
of existence of travelling waves with periodic shape begins with uniqueness of
the rotation number.

In addition, the proof itself is simpler because the set Nα containing the
solutions are compact. This is also a reason why the proof extends to arbitrary
circle maps F and holds not only for maps of the form h ∗ f ◦ u (or their
extension

∑
k hk ∗ fk ◦ u).

Horizontal displacements will be measured by using the reference zero:

J(u) := J0(u) = inf{x ∈ R : u(x) ≥ 0}

which is finite for every u ∈ Nα with α > 0 and satisfies the properties
J(T νu) = J(u) + ν and u ≤ v implies J(u) ≥ J(v).

The existence and the uniqueness of the rotation number for extended
circle maps is given in the following statement.

Proposition 3.1. Let F be an extended circle map defined on Nα for some
α > 0. For every u ∈ Nα and every x ∈ R, the limit να := limt→∞

F tu(x)
t

exists and does not depend on x nor on u.
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Furthermore, we have
∣
∣J(F tu) + ναt

α

∣
∣ ≤ 2

α for all t ∈ N . Hence

να = lim
t→∞

F tu(x)
t

=− α lim
t→∞

J(F tu)
t

·

The existence of the rotation number να = limt→∞
F tu(x)

t extends to func-
tions which need not be periodic but which can be sandwiched between two
functions in Nα, see [7] for more details.

Proof: Every function u ∈ Nα satisfies the inequalities

ϕ−
α ≤ T−J(u)u < ϕ+

α (13)

where u < v means u ≤ v and u �= v and where the functions ϕ−
α and ϕ+

α are
defined by ϕ−

α (x) = �αx� − 1 and ϕ+
α = �αx�+ 1 for all x ∈ R, see Fig. 5.

Fig. 5. The functions ϕ−
α and ϕ+

α

The quantity jt := J(F tϕ−
α ) is finite for every t ∈ N. The inequalities (13)

imply ϕ−
α ≤ T−jtF tϕ−

α and T−(jt− 1
α )F tϕ+

α < ϕ+
α because J(F tϕ+

α ) = jt − 1
α

for all t. Applying F s, we obtain

F sϕ−
α ≤ T−jtF t+sϕ−

α and T−(jt− 1
α )F t+sϕ+

α ≤ F sϕ+
α

and then js ≥ jt+s− jt and (jt+s− 1
α )− (jt− 1

α ) ≥ js− 1
α . The sub-additivity

of the sequence {jt}t∈N and the super-additivity of {jt − 1
α}t∈N imply that

the following limit exists and is finite

lim
t→∞

jt

t
= inf

t>0

jt

t
= sup

t>0

jt − 1
α

t
·

We denote this quantity by −να

α . A consequence is the following important
inequality
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−να

α
t ≤ jt ≤ −

να

α
t +

1
α

, ∀t ∈ N .

We are now about to prove the existence and uniqueness of the rotation num-
ber for the function ϕ−

α . By applying the inequalities (13) to the function
F tϕ−

α , we obtain

ϕ−
α − �jtα� = T

1
α 
jtα�ϕ−

α ≤ F tϕ−
α < T

1
α �jtαϕ+

α = ϕ+
α − �jtα� .

As a consequence, for every x ∈ R we have

να = − lim
t→∞

�jtα
t ≤ lim inf

t→∞
F tϕ−

α (x)
t ≤ lim sup

t→∞
F tϕ−

α (x)
t ≤ − lim

t→∞
�jtα�

t
= να

the rotation number associated with ϕ−
α exists and does not depend on x.

In addition, ϕ−
α + 1 ≤ ϕ+

α ≤ ϕ−
α + 2 and thus the rotation number also

exists and does not depend on x for the function ϕ+
α . Finally, by applying the

inequalities (13) we conclude the same results for any u ∈ Nα �

3.4 Existence of Travelling Waves

Proposition 3.1 claimed that every configuration in Nα propagates asymptot-
ically with a unique (horizontal) velocity. The main theorem below claims the
existence of a configuration which the action of F amounts to a translation
by −να/α.

Theorem 3.1. [7] Let F be an extended circle map defined on Nα for some
α > 0. There exists φ ∈ Nα such that Fφ = T− να

α φ.

The proof is similar to the proof of front existence. As said before, the main
difference resides in the compactness of Nα which considerably simplifies the
proof.

In a first step, we consider the set of sub-solutions of the travelling wave
equation. Given ν ∈ R, we define

S(ν) =
{
u ∈ Nα : T

ν
α Fu ≤ u and J(u) = 0

}
.

Next we show the rotation number can be defined using these sets:

Lemma 3.2. να = inf {ν ∈ R : S(ν) �= ∅}.

Proof of the Lemma: Given t ∈ N, let the function ϕt be defined by

ϕt(x) = min
0≤s<t

{
T− s

t (jt− 1
α )F sϕ+

α (x)
}

, ∀x ∈ R

where jt and ϕ+
α were introduced in the proof of Proposition 3.1. The fact

that ϕ+
α ∈ Nα and the properties of F ensure that ϕt ∈ Nα for every t. Thus

all J(ϕt) are finite. Moreover, by monotony of F , we have T− 1
t (jt− 1

α )Fϕt ≤
T− s+1

t (jt− 1
α )F s+1ϕ+

α for every 0 ≤ s < t. This implies that
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T− 1
t (jt− 1

α )Fϕt ≤ min
1≤s≤t

T− s
t (jt− 1

α )F sϕ+
α ≤ min

0≤s<t
T− s

t (jt− 1
α )F sϕ+

α = ϕt

because T−(jt− 1
α )F tϕ+

α ≤ ϕ+
α as indicated by the right inequality (13). We

have shown that the set S(−α
t (jt − 1

α )) is not empty for every t > 0. There-
fore, we have

να = −α lim
t→∞

1
t

(

jt −
1
α

)

≥ inf {ν ∈ R : S(ν) �= ∅} .

On the other hand, we assume that u ∈ S(ν) �= ∅ for some ν ∈ R. Then
ϕ−

α ≤ u by relation (13) and thus F tϕ−
α ≤ F tu ≤ T− ν

α tu which implies
jt ≥ − ν

α t, i.e. ν ≥ −α jt

t for all t > 0. Consequently, we have

inf {ν ∈ R : S(ν) �= ∅} ≥ να .

�

As in the proof of front existence, the second step consists of considering
a minimal sub-solutions, namely we consider the function

ην(x) = inf
u∈S(ν)

u(x), ∀x ∈ R .

It turns out that S(να) �= ∅ and ηνα
∈ S(να).

In a third step, we consider the sequence
{
Tn να

α Fnηνα

}
n∈N

. By monotony
and homogeneity, we have

T (n+1) να
α Fn+1ηνα

≤ Tn να
α Fnηνα

, ∀n ∈ N .

In addition, one can show that T
1
α ϕ−

α ≤ Tn να
α Fnηνα

and hence that the se-
quence is bounded from below. Consequently, this sequence converges point-
wise to the limit function φ ∈ Nα which satisfies Fφ = T−να/αφ. We refer to
[7] for more details.

3.5 Continuity of the Rotation Number

Just as the front velocity, the rotation number να varies continuously with
changes of extended circle maps (and in particular with their parameters).

For coupled lift of circle maps Fu = h ∗ f ◦ u, changes are the same as
before; namely pointwise convergence for the local map f and convergence in
the Hausdorff topology for the distribution function h (an additional condition
is needed to ensure that the distribution functions h satisfy

∫
R
|x| dh(x) <∞,

see Lemma 3.3 in [7]).
For the discrete time version (9) of the Frenkel-Kontorova model, a contin-

uous dependence with parameters and with the generating function has been
shown [7]. All these results are deduced from the following statement valid for
arbitrary extended circle maps. If limn→∞ supu∈Nα

d(Fn(u), F (u)) = 0 where
the distance d(·, ·) is the Hausdorff distance, then limn→∞ να(Fn) = να(F ).

In complement to continuity with respect to changes in the map, the ro-
tation number depends continuously on the mean spacing α. This is proved
by using bigger spaces Mα′,α′′ which contain Nα for every α′ ≤ α ≤ α′′.
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3.6 Extended Circle Maps with Vanishing Rotation Number

Recall that Aubry-Mather Theorem states that any Frenkel-Kontorova func-
tional possess stationary configurations for every mean spacing α [8].

In the present framework, this amounts to say that the map F defined by
(11) with D = 0 has, for every α, a fixed point in Nα. By Proposition 3.1 and
Theorem 3.1, this result would follow from the fact that να = 0 for all α.

It turns out that the property να = 0 for all α > 0 is not limited to the
model (11) with D = 0. As stated in the next statement, it extends to any
extended circle map satisfying some symmetry condition.

Theorem 3.2. If there exists a lift of a circle map f̃ such that the following
relation holds ∫ 1

α

0

(Fu− u)d(f̃ ◦ u) = 0 (14)

for every continuous function u ∈ Nα (α > 0), then the rotation number
να = 0.

The proof essentially relies on various properties of the Lebesgue-Stieltjes
integral [7]. The fact that the model (11) with D = 0 satisfies this property,
however, is elementary and claim in our final statement.

Proposition 3.2. For every generating function g, every α > 0, and every
ε > 0, the map

Fεu(x) = u(x)− ε (g′2(u(x− 1), u(x)) + g′1(u(x), u(x + 1))) ∀x ∈ R ,

satisfies the condition (14) with f̃(x) = x.

Indeed by using T− 1
α u = u + 1, we have

∫ 1
α

0

(Fεu− u)du

= −ε

∫ 1
α

0

g′2(u(x), u(x + 1))du(x + 1)− ε

∫ 1
α

0

g′1(u(x), u(x + 1))du(x)

= −ε

∫ 1
α

0

dg(u(x), u(x + 1)) = 0

for every continuous function u ∈ Nα.
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1 Introduction

Broadly speaking, monotone dynamics means that some partial order is pre-
served under the dynamics, that is, if two solutions of some differential equa-
tion are ordered at an initial time, they remain in the same order at later
times; we also speak of order-preserving dynamics. This monotonicity prop-
erty makes the dynamics comparatively simple.

In the theory of partial differential equations, monotonicity methods are
well-established, based on maximum principles. Maximum principles are fun-
damental tools to compare solutions of initial boundary value problems asso-
ciated to systems of (non-linear) parabolic PDEs, and to establish existence
of positively invariant sets and monotonicity properties of the dynamics. An
example of this type of result is that generically a bounded solution for a
reaction-diffusion system converges asymptotically to an equilibrium. For an
overview of maximum principles for PDEs we refer to the textbook by Prot-
ter and Weinberger [26], and for the main monotonicity results on reaction-
diffusion equations we refer to the monograph by Smith on Monotone Dy-
namical Systems [28] and the bibliography therein (up to 1995).

In ordinary differential equations, monotonicity methods and comparison
arguments go back to the 1930’s with the works of Müller [25] and Kamke
[18] but really took off in the dynamical systems community in the 1980’s
in particular with the important contributions of Hirsch, e.g. [14, 15] for so-
called cooperative systems of ODEs, leading to what is now described as
monotone dynamical systems theory. Strict cooperativity for coupled ODEs
is a condition on the interactions between variables which plays the same role
as the diffusion term in reaction-diffusion equations and is responsible for the
monotonicity of the dynamics. For an overview and references on monotone
dynamical systems we refer again to [28]. Most results reported there concern
bounded solutions. For example, as for parabolic PDEs, under some conditions
on the partial order, generic bounded solutions of strictly cooperative systems
of ODEs converge asymptotically to equilibria.

C. Baesens: Spatially Extended Systems with Monotone Dynamics (Continuous Time), Lect.
Notes Phys. 671, 241–263 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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In this chapter we shall concentrate on monotone dynamics in networks of
coupled ODEs. In the first part, we shall consider cooperative systems of first
order ODEs. We shall first show how cooperativity of the interaction between
sites implies monotonicity of the dynamics and how strict cooperativity leads
to strict monotonicity. An example of strictly cooperative extended systems
are Frenkel-Kontorova (FK) models with gradient dynamics. For such models
we shall use strict monotonicity to prove the existence of rotationally ordered
spatially periodic equilibria for any mean spacing, providing an alternative
proof for a result from Aubry-Mather theory of minimum energy states. We
shall also establish that spatially periodic solutions converge asymptotically
to equilibria if there are any. If there are no such equilibria, as is the case
for FK models with strong enough additive forcing term, then solutions are
unbounded and strict monotonicity will be used to prove that they converge
asymptotically to a unique periodically sliding solution.

Mechanical systems satisfy Newton’s second law so are described by sec-
ond order differential equations. For such systems gradient dynamics can been
seen as a strong damping limit so that the inertial term is negligible, thereby
reducing second order ODEs to first order ODEs. In the second part of this
chapter, we shall consider networks of damped mechanical units with coop-
erative coupling and we shall show that if the damping is strong enough
(overdamping) then there is again a partial order which is preserved under
the dynamics and strict monotonicity if the system is strictly cooperative.
Our example of application will be the overdamped dynamics of FK models
for which strict monotonicity will allow us to prove similar results as for the
gradient dynamics.

2 First Order Local Dynamics

In this section we consider networks of coupled units with one-dimensional
local dynamics, so the setting is a system of first order coupled ODEs:

ẋn = fn(x, t) (1)

for n in some index set S, and x := (xj)j∈S ∈ R
S ; xj represents the state of

unit j, x denotes the state of the network and the state space X will be R
S

or some subset of R
S . The set of sites S may be finite or infinite, for instance

S = Z
d for some d. We shall assume that the function f := (fj)j∈S : X × R

is continuously differentiable with respect to uniform topology. In such case
the solution x(t) (alternatively denoted φt(x(0))) to the initial value problem
exists and is unique for any initial value x(0) and times |t| small enough. For
many physically motivated systems the solutions exist for all positive times.
If the system (1) is autonomous and the solutions are defined for all times
t ∈ T = R or R+, then the map φ : T ×X → X : (t,x) → φt(x) is called a
(global) flow or semi-flow respectively.
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Cooperativity Condition

We shall assume that the functions fn : R
S × R+ → R satisfy

∂fn

∂xj
(x, t) ≥ 0 ∀j �= n (cooperativity condition) (2)

in the domain of interest, that is, the derivative of the forcing by a neighbour
with respect to the state of the neighbour is non-negative. Systems of the form
(1) satisfying condition (2) are called cooperative systems, a terminology which
was introduced by the biology community studying population dynamics and
then brought to the dynamical systems community by Hirsch.

Note that system (1) is called a competitive system if the inequalities in (2)
are reversed: ∂fn

∂xj
(x, t) ≤ 0 for all j �= n, thus, by time reversal, a competitive

system becomes cooperative and vice-versa.

2.1 Cooperativity Implies Monotonicity

We use here the natural partial order “less than or equal to” on sequences in
R

S , defined by
x ≤ y if, for all i ∈ S, xi ≤ yi . (3)

We use also the following additional notation.

x ≥ y if y ≤ x “greater than or equal to” (4)
x < y if x ≤ y and x �= y “less than” (5)
x > y if y < x “greater than” . (6)

We say that the dynamics are monotone or order-preserving if for any
x(0), y(0) ∈ R

S

x(0) ≤ y(0) =⇒ x(t) ≤ y(t) (7)

for all t > 0 for which both are defined. So if two initial points are ordered, the
solutions starting from these points remain in the same order for all positive
times.

We now show that the dynamics of cooperative systems (1) are monotone,
i.e. preserve the partial order (3).

Proposition 2.1 (Weak monotonicity of the dynamics). If system (1)
is cooperative, i.e. satisfies condition (2), then x(0) ≤ y(0) implies that x(t) ≤
y(t) for all positive t such that both are defined.

Proof. We first prove the monotonicity of the linearised dynamics about any
path x(t). Then we show how the monotonicity follows for the full system (1)
by taking a homotopy between the two solutions x(t) and y(t).1

1 This strategy is similar to that in parabolic PDEs: maximum principles are estab-
lished for linear equations but can be used to compare solutions of the nonlinear
equations because the mean value theorem produces a linear equation for the
difference of two solutions.
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(i) The linearisation of system (1) about a path x(t) takes the form

ξ̇n =
∑

j∈S

∂fn

∂xj
(x(t)) ξj , n ∈ S (8)

or, in compact form,
ξ̇ = A(x(t)) ξ .

The non-diagonal entries of the matrix A(x(t)) are non-negative by the
cooperativity condition. To take care of the diagonal terms, we set µ =
supk,x− ∂fk

∂xk
(x) (assuming for instance that the ∂fk

∂xk
are uniformly bounded

in the range of interest), and define γ(t) := eµtξ(t). Then γ(t) ≥ 0 if and only
if ξ(t) ≥ 0, and γ satisfies the linear system

γ̇k =
(

µ +
∂fk

∂xk

)

γk +
∑

j �=k

∂fk

∂xj
γj , k ∈ S (9)

or
γ̇ = B(x(t))γ

where the matrix B(x(t)) = A(x(t)) + µId is non-negative definite (for any x
and t). It then follows that γ(t) ≥ 0 for t > 0 if γ(0) ≥ 0, which can be seen
for instance using Picard iterations:

γ(n+1)(t) = γ(0) +
∫ t

0

B(x(s))γ(n)(s) ds, γ(0)(t) = γ(0) .

Hence ξ(t) = e−µtγ(t) ≥ 0 for positive t if ξ(0) = γ(0) ≥ 0.
(ii) Let xλ(0) := (1 − λ)x(0) + λy(0) for λ ∈ [0, 1], and let xλ(t) be the

solution of (1) with initial condition xλ(0). Define ξλ(t) := ∂
∂λxλ(t). Then ξλ

satisfies the linearised equation (8) about xλ(t), and ξλ(0) = y(0)−x(0) ≥ 0.
It then follows from part (i) that ξλ(t) ≥ 0 for any positive t and hence

y(t) = x(t) +
∫ 1

0

ξλ(t) dλ ≥ x(t) (10)

as required, where
∫ 1

0
ξλ(t) dλ denotes the vector in R

S with n-th component
∫ 1

0
ξλ
n(t) dλ. �	

2.2 Strict Cooperativity Implies Strict Monotonicity

We define a relation 
 “strictly less than” on R
S by

x 
 y if xn < yn for all n ∈ S . (11)

We say that the dynamics are strictly monotone if for any x(0), y(0) ∈ R
S
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x(0) < y(0) =⇒ x(t) 
 y(t) (12)

for all t > 0 for which both are defined. So if two distinct initial points are
ordered, all components of the solutions starting from these points are strictly
ordered for all positive times. This means that it is enough for one component
yn − xn to be positive at t = 0 to make all the components of y and x be
pulled apart at later times. In the case of a finite network, our definition is
equivalent to those of strongly order-preserving [23] and strongly monotone
[16]. For infinite networks, all three are different [28].

With the following slightly stronger assumption, we shall show that the
dynamics of system (1) are strictly monotone.

We say that system (1) is strictly cooperative if for each pair i, n ∈ S there
is a j-chain n = n0, n1, . . . , nj = i for some j ≥ 1, nk �= nk+1, for all k, and
for k = 0, . . . , j − 1 there is ck such that

∂fnk

∂xnk+1

(x) ≥ ck > 0 for all x ∈ X . (13)

Proposition 2.2 (Strict monotonicity). If system (1) is strictly coopera-
tive, then x(0) < y(0) implies that x(t) 
 y(t) for all t > 0 for which both
are defined.

Proof. Again, strict monotonicity is first obtained for the linearized dynamics,
i.e. we show that ξ(0) > 0 implies that ξ(t) � 0 for all positive t, and then
homotopy provides the result.

(i) By assumption ξ(0) > 0, so there is a site i for which ξi(0) > 0,
say ξi(0) = δ > 0, and some k for which ∂fk

∂xi
≥ cki > 0. Then (9) gives

γ̇k ≥ ckiγi≥ ckiδ since γ̇i ≥ 0 and γi(0) = ξi(0) = δ. Therefore γk(t) ≥ ckiδt,
hence

ξk(t) ≥ ckiδte
−µt . (14)

Continuing in such a way, for a site n ∈ S connected to site i by a j-chain
n = n0, n1, . . . , nj = i with

∂fnk−1
∂xnk

≥ cnk−1nk
> 0, k = 1, . . . , j, we obtain

ξn(t) ≥
j−1∏

k=0

cnknk+1δe
−µt tj

j!
> 0 .

(ii) Introducing xλ, λ ∈ [0, 1], and ξλ as in the proof of weak monotonicity,
it follows from part (i) that ξλ(t) � 0 for all t > 0 since ξλ(0) = y − x > 0
by assumption. Hence

y(t) = x(t) +
∫ 1

0

ξλ(t)dλ � x(t) . �	 (15)

Now that we have established the monotonity/strict monotonicity of the
dynamics of cooperative/strictly cooperative systems, we shall present some
consequences for a particular class of extended systems, the Frenkel-Kontorova
models.
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3 Gradient Dynamics of the Frenkel-Kontorova Model

The Frenkel-Kontorova model can be seen as a doubly infinite one-dimensional
chain of identical classical particles with convex nearest neighbour interaction,
subject to a spatially periodic potential. The potential energy of the chain is
the formal sum

H(x) =
∑

n∈Z

h(xn, xn+1) =
∑

n∈Z

W (xn+1 − xn) + V (xn) (16)

where xn ∈ R denotes the position of particle n, x denotes (xn)n∈Z, the
function h : R

2 → R is C2 with h(x, x′) = W (x′−x)+V (x); V is the periodic
on-site potential, which we shall assume has period 1: V (x + 1) = V (x), so
that h(x + 1, x′ + 1) = h(x, x′), and W is the interaction potential between
(nearest) neighbours, which we shall assume is (uniformly) strictly convex:
W ′′(x) ≥ b for some positive constant b. The potential energy of the chain is
typically infinite but its gradient is well-defined. The Newtonian dynamics of
such a chain is described by a system of second order ODEs

mẍn + γẋn = − ∂H

∂xn
(x) , n ∈ Z (17)

where m denotes the mass of the particles, and γ is the damping factor. For
many physical systems modelled by FK chains, for instance charge density
wave materials and Josephson Junction arrays, the relevant parameter ranges
are strong damping compared to inertia (see the chapter by Floŕıa et al. in
this book), so a first approximation is to drop the inertial term mẍn in (17). In
this section, we shall consider this limiting case with no inertial term, so that
the local dynamics at each site are described by first order rather than second
order ODEs; in a subsequent section we will see that keeping a small inertial
term (overdamped second order local dynamics) leads to same qualitative
results because the dynamics are order-preserving in the range too.

So (taking γ = 1 without loss of generality) we consider here what we call
the gradient dynamics2 of the Frenkel-Kontorova model,

ẋn = − ∂H

∂xn
(x) , n ∈ Z (18)

which is a first order system of the form (1) with fn(x, t) = − ∂H
∂xn

(x) and
S = Z. Equation (18) take the form

ẋn = W ′(xn+1 − xn)−W ′(xn − xn−1)− V ′(xn) , n ∈ Z . (19)

For instance, for the Standard FK model where the interaction between
neighbours is simply harmonic (W (x) = 1

2x2) and the on-site potential is
V (x) = k

4π2 (1− cos 2πx), the latter equations become

2 Some other authors use the terms “dissipative dynamics” [11] or “overdamped
limit” [8] for this limit — see also the chapter by Floŕıa et al. in this book.
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ẋn = xn+1 − 2xn + xn−1 −
k

2π
sin 2πxn . (20)

The first three terms of the right hand side of (20) are just the discrete Lapla-
cian, so that (20) is a spatially discrete version of a reaction-diffusion equation,
as noticed by Angenent [1] who was the first to use monotonicity techniques
for FK models.

System (19) is strictly cooperative because of the strict convexity of the
interaction between neighbours, since the only non-zero non-diagonal terms
of the derivative of f are

∂fn

∂xn−1
= W ′′(xn − xn−1) ≥ b ,

∂fn

∂xn+1
= W ′′(xn+1 − xn) ≥ b (21)

and given site i > n, take the chain n, n + 1, . . . , i (similarly for i < n) and
for i = n take i, i + 1, i.

So it follows from the previous section that gradient dynamics of FK mod-
els are strictly monotone. This also remains true for additively or parametri-
cally driven FK models where

h(x, x′) = C(t)W (x′ − x) + K(t)V (x)− F (t)x (22)

as long as C(t) ≥ 0 for all t.3 See the chapter by Floŕıa et al. in this book
for examples of time-dependent forcing where the monotonicity property is
exploited.

We shall now derive a number of consequences of the monotonicity prop-
erty of the dynamics.

The local flow φt of (19) commutes with the group of translations {σij :
(i, j) ∈ Z

2} defined by

(σijx)n = xn+i + j for all n ∈ Z . (23)

Thus if x is a solution of (19), so is any of its translates σijx. It follows that
if σijx(0) ≤ x(0) for some i, j, then the same holds at all future times for
which x(t) is defined.

For w ∈ N, say x has width ≤ w if ∀m ∈ Z there exists n−(m), n+(m) ∈ Z

with 0 ≤ n+(m)− n−(m) ≤ w such that

σm,n−(m)x ≤ x ≤ σm,n+(m)x . (24)

Then width ≤w is preserved by the forward dynamics. If x has bounded width,
then it has a mean spacing ρ, i.e.

xn − xm

n−m
→ ρ , as n−m→∞ . (25)

In fact |(xn − xm)− (n−m)ρ| ≤ w [5]. The mean spacing is preserved under
the forward dynamics (because n±(m) are).
3 If C(t) = 0 for some t then the system is cooperative but not strictly cooperative.
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Say x ∈ R
Z is weakly rotationally ordered (abbreviated WRO) if, for all

i, j ∈ Z,
either σijx ≤ x or σijx ≥ x . (26)

(Equivalently x has width ≤1.) Similarly, say x ∈ R
Z is (strictly) rotationally

ordered (abbreviated RO)4 if, for all i, j ∈ Z,

either σijx 
 x or σijx = x or σijx � x . (27)

So the set of translates {σijx : i, j ∈ Z} of a RO state x form a totally ordered
set for the partial order on sequences.

Monotonicity of the dynamics implies that weak rotational order is pre-
served under the dynamics, and strict monotonicity implies that if, at t = 0,
x is weakly rotationally ordered, then it becomes (and remains) strictly rota-
tionally ordered for positive t. In particular, WRO equilibrium states are in
fact RO.

The gradient system (18) induces a well defined semi-flow φt, t ≥ 0 at
least in the following spaces of configurations of infinite chains:

(i) spatially periodic chains of type (p, q) ∈ Z× N: xi+q = xi + p ∀i ∈ Z;
(ii) chains with bounded width and product topology (the topology of point-

wise convergence), metrized for example by d(x,y) =
∑

i∈Z
2−|i||xi −

yi|/(1 + |xi − yi|).
The existence of the semi-flow arises because the vector field −∇H is contin-
uously differentiable, and modulo the translation σ01 the spaces are compact.

3.1 Existence of RO Equilibria for Each Mean Spacing

Monotonicity of the gradient flow of (18) can be used to prove the existence
of RO equilibria of all mean spacings [1, 13], so providing an alternative proof
of one of the results of the Aubry-Mather theory [2, 19]. To make the presen-
tation simple we will only prove here the existence of RO spatially periodic
equilibrium states, which have rational mean spacing.

Proof. Let Xpq := {x ∈ R
Z : xi+q = xi + p ∀i ∈ Z}, the class of type (p, q)

spatially periodic sequences. These have mean spacing p/q. The space Xpq can
be parametrized by the q variables (x0, x1, . . . , xq−1). If x ∈ Xpq, in system
(18) the vector field (− ∂H

∂xn
(x))n∈Z is a period-q sequence, hence the space

Xpq is invariant under the flow.
For sequences x of type (p, q), weak rotational order implies

[
p

q
(i− j)

]

≤ xi − xj ≤
⌈

p

q
(i− j)

⌉

(28)

4 Golé [13] uses the terminology cyclically ordered for rotationally ordered.
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(where �a� denotes the smallest integer greater than a and [a] denotes the
integral part of a), inequalities that are easily proved by contradiction using
the definitions of type (p, q) and WRO.

The quotient space XWRO
pq,σ := {x ∈ Xpq,x is WRO}/〈σ01〉 is forward

invariant under the flow and is compact. (To show compactness, without loss
of generality take x0 ∈ [0, 1], and use (28) for the other xi’s.)

For x ∈ Xpq, let Hpq(x) :=
∑q−1

i=0 h(xi, xi+1), so Hpq is a function of the q
variables (x0, x1, . . . , xq−1). Now Hpq is a continuous function on the compact
set XWRO

pq,σ therefore has a minimum. Also, Hpq is a Lyapunov function since

Ḣpq =
q−1∑

i=0

∂H

∂xi
ẋi = −

q−1∑

i=0

(
∂H

∂xi

)2

= −|∇Hpq|2 ≤ 0 (29)

and Ḣpq is strictly negative unless ∇Hpq = 0, i.e. at equilibrium points. Now
if x is WRO then φt(x) is RO for all t > 0, so there are no equilibria on the
boundary of XWRO

pq,σ , and Hpq(φt(x)) < Hpq(x) for all x on this boundary. We
deduce that the minimum of Hpq must be in the interior of XWRO

pq,σ , hence the
minimum is a critical point and we have proved the existence of a rotationally
ordered equilibrium of type (p, q). �	
We shall now investigate the dynamics when there are equilibria.

3.2 Dynamics when There are Equilibria

Here and in the next section, we will extend the discussion to FK models sub-
mitted to a “tilted” periodic potential: h(x, x′) = W (x′−x)+V (x)−Fx, with
F constant, i.e. with dynamics subject to a uniform constant additive force
(for instance, modelling an electric field on charge density wave materials):

ẋn = W ′(xn+1 − xn)−W ′(xn − xn−1)− V ′(xn) + F . (30)

Again, we will restrict ourselves to spatially periodic solutions. We first in-
vestigate what the dynamics are when there are equilibria in Xp,q. There are
RO equilibria when F = 0, as shown in the previous section, and if the RO
minimum found there is non-degenerate at F = 0, there remains an (RO)
minimum for |F | small enough.

Suppose there is an equilibrium x� in Xpq (p, q not necessarily co-
prime). Let x ∈ Xpq. There are integers j1 ≤ j2 such that σ0j1x

� ≤
x ≤ σ0j2x

� and, by order preservation, the same is true for positive times:
σ0j1x

� ≤ φt(x) ≤ σ0j2x
�, t > 0. Therefore the forward orbit of x is stuck

in some compact set and hence its omega-limit set ω(x) is not empty. Let
Hpq(x) :=

∑q−1
i=0 h(xi, xi+1)− Fxi. We have again Ḣpq = −|∇Hpq|2 and Hpq

is a Lyapunov function. Then La Salle’s Invariance Principle5 [21] implies that
5 Salle’s Invariance Principle: if V is a Lyapunov function on state space X, i.e.

V is non-increasing along orbits in X, then the omega limit set ω(x) of a point
x ∈ X is a set of forward orbits along which V takes some constant value.
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ω(x) is a connected set of equilibria with the same value of Hpq, Hpq = c for
some real c. Connectedness is a classical property of omega-limit sets, and
monotonicity implies that this set of equilibria has to be totally unordered.

�	
Generically, ω(x) is a unique equilibrium. Thus a bounded forward orbit

of type (p, q) generically converges to an equilibrium, as for parabolic PDEs.

3.3 Dynamics when There are no Equilibria

Consider now the case of “high” tilt. If |F | is large enough, one can show that
there are no equilibria of bounded spacing [6]. For instance, for the Standard
FK model (20) it is easy to see that this is the case if |F | > k

2π since then (in
the case F > 0), − k

2π sin 2πxn + F ≥ a for some positive a and all xn, and so
for an equilibrium we need (xn − xn−1) ≥ (xn+1 − xn) + a for all n, that is
an unbounded sequence of spacings.

Say a map u : R → R
S is periodically sliding (with period T ) if there exists

T > 0 such that u(t + T ) = u(t) + 1 for all t, where 1 denotes the vector in
R

S with all components equal to 1 (and here S = Z).
Let’s consider again spatially periodic solutions. If there are no spatially

periodic equilibria of type (p, q), what happens to the dynamics for this class
of initial conditions? We will find that there is a periodically sliding solution
u(t + T ) = u(t) + 1 which attracts the orbits of all spatially periodic initial
conditions of same mean spacing ρ = p/q. All particles of the chain move
with the same average velocity v = 1/T , which does not depend on the initial
condition but depends on ρ and on F .

Theorem 3.1. [5] If there are no rotationally ordered equilibria in Xpq (p, q
coprime), then there exists a rotationally ordered periodically sliding solution

u(t + T ) = u(t) + 1 ∀ t (31)

in Xpq, some T > 0, with u̇ � 0 and σmnu = u((n + mp/q)T ), which
attracts all of

⋃
k≥1 Xkp,kq, with phase; i.e. for every x ∈

⋃
k≥1 Xkp,kq there

exists τ ∈ R such that ||x(t + τ)− u(t)|| → 0 as t →∞.

Alternatively, (31) can be written u(t + T ) = σ01u(t), so if we identify u and
σ01u by taking the quotient space as in Sect. 3.1, the equivalence class u∼(t)
is a periodic orbit of period T .

Proof. 1. Let

XWRO,+
pq := {x ∈ Xpq : x is WRO and ẋ ≥ 0} (32)

the set of weakly rotationally ordered spatially periodic orbits of type (p, q)
with non-negative velocity. This set is non-empty because the Aubry-Mather
minimal energy equilibrium for F = 0 in Xp,q is weakly rotationally ordered
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and has ẋ = F ≥ 0. It is forward invariant by monotonicity. The quotient
space XWRO,+

pq,σ := XWRO,+
pq /〈σ01〉 is compact. Therefore, by Birkhoff’s Recur-

rence Theorem [7]6, XWRO,+
pq,σ contains a recurrent point. Let u be a represen-

tative. Recall that a point x is said to be recurrent if it is a limit point of its
forward orbit, i.e. there is an sequence of times tj → ∞ such that φtj

x → x
as j →∞.

2. We now show that if the orbit of u is recurrent in the quotient space
XWRO,+

pq,σ := XWRO,+
pq /〈σ01〉 and is not an equilibrium, then it has to be

time-periodic. Suppose that u is not an equilibrium, so that u̇(0) > 0. Then,
by strict monotonicity, u̇(t) � 0 for positive t. Thus u(t) increases and is
unbounded, else it would converge to an equilibrium. In fact each ui(t) is
unbounded since RO orbits have to satisfy the constraining inequality (28).
Let {

τ+ := inf{τ ≥ 0 : u(τ) ≥ u + 1}
τ− := sup{τ ≥ 0 : u(τ) ≤ u + 1} .

(33)

Then 0 < τ− ≤ τ+ < ∞. We wish to show that τ− = τ+, so suppose for
contradiction that τ− < τ+. Then, by strict monotonicity, given t0 > 0, there
exist τ ′

± ∈ R with τ− < τ ′
− < τ ′

+ < τ+ and

u(τ ′
− + t0) ≤ u(t0) + 1 ≤ u(τ ′

+ + t0) .

Note that u(τ ′
−) � u + 1 � u(τ ′

+). There exists a recurrence time t1 > t0
such that u(t1) + 1, u(τ ′

− + t1), u(τ ′
+ + t1) are close enough to u + (N + 1)1,

u(τ ′
−) + N1, u(τ ′

+) + N1 respectively for some positive integer N , that

u(τ ′
− + t1) � u(t1) + 1 � u(τ ′

+ + t1) . (34)

But this contradicts monotonicity from time t0 to t1. Hence τ− = τ+. Denoting
the common value by T we have u(T ) = u(0)+1 and hence the desired sliding
periodicity.

3. Next we show that σmnu = u((n + mp/q)T ). The previous argument
applied to σmnu instead of u + 1, but with τ± permitted negative since we
can extend u to negative times by periodicity, shows that σmnu = u(τ) for
some τ . Thus

u((nq + mp)T ) = u + (nq + mp)1 = σq
mnu = u(qτ) . (35)

But u̇ � 0, and so τ = (n + mp/q)T .
4. Finally, we show that the orbit of u attracts all of

⋃
k≥1 Xkp,kq, with

phase. Let x ∈
⋃

k≥1 Xkp,kq. Then there exists k ∈ N such that x ∈ Xkp,kq.

6 Birkhoff’s Recurrence Theorem says that every continuous map on a compact
metric space has a recurrent point. For a proof not requiring Zorn’s lemma, see
hint 3.3.4 in [19].



252 C. Baesens

Let {
τ+(t;x) = inf{τ ∈ R : u(τ + t) ≥ x(t)}
τ−(t;x) = sup{τ ∈ R : u(τ + t) ≤ x(t)} .

(36)

Then −∞ < τ−(t;x) ≤ τ+(t;x) < ∞. If τ−(0;x) = τ+(0;x) = τ , then
x = u(τ), and hence x(t) = u(t+τ) for all t ≥ 0. Else, by strict monotonicity,
τ− is increasing and τ+ is decreasing. Let τ∞

− = supt≥0 τ−(t;x) and τ∞
+ =

inft≥0 τ+(t;x). Then τ∞
− ≤ τ∞

+ . If τ∞
− < τ∞

+ , then let y be a limit point of the
sequence (xk)k∈N = (x(kT )− k1)k∈N

(which exists because the sequence is
bounded between u(τ±(0;x)) and Xkp,kq is finite-dimensional). It follows that
τ±(0;y) = τ∞

± . But by strict monotonicity τ∞
− < τ−(t;y) ≤ τ+(t;y) < τ∞

+

for t > 0. Choose a t > 0 and take k large enough that xk is close enough
to y that τ∞

− < τ−(t;xk) ≤ τ+(t;xk) < τ∞
+ . Hence τ∞

− < τ−(t + kT ;x) ≤
τ+(t + kT ;xk) < τ∞

+ contradicting the definition of τ∞
± . Thus τ∞

− = τ∞
+ .

Denoting the common value by τ we deduce that ‖x(t + τ) − u(t)‖ → 0 as
t →∞. �	

Remarks:

(i) Theorem 3.1 implies that if there are no rotationally ordered equilibria
of type (p, q), p, q coprime, then there are no equilibria of type (kp, kq)
for any k ≥ 1, else the omega limit set of any type (kp, kq) configuration
would be a set of equilibria of the same type, as shown in Sect. 3.2. Hence
if there exists an equilibrium of type (kp, kq) for some k ≥ 1 then there
exists a rotationally ordered equilibrium of type (p, q).

(ii) If, instead of thinking of Xpq as a set of spatially periodic states of an in-
finite chain, one thinks of it as a chain of length q with periodic boundary
conditions, then one could call these sliding solutions travelling waves on
a ring (e.g [20])

(iii) Presumably, the “depinning transition” from the case with equilibria to
the case with none is generically the bifurcation of a homoclinic orbit to a
saddle-node (saddle-node on a cycle bifurcation), which produces a peri-
odic orbit whose frequency (or equivalently, in our context, mean speed)
goes like 1/

√
F − Fc, where Fc is the transition value of the parameter F .

3.4 Gradient Dynamics of FK Models Under Time-Periodic
Forcing

As mentioned earlier, the monotonicity property persists for the gradient dy-
namics of FK models subject to time-dependent uniform additive or paramet-
ric driving forces, where

h(x, x′) = C(t)W (x′ − x) + K(t)V (x)− F (t)x (37)

as long as C(t) ≥ 0 for all t. As a consequence, rotational order and mean
spacing are preserved under the dynamics, and the average velocity of the
particles does not depend on the initial condition.



Spatially Extended Systems with Monotone Dynamics 253

In [11] Floŕıa and Mazo investigated the dynamics of the Standard FK
model with time-periodic additive forcing

ẋn = xn+1 − 2xn + xn−1 −
k

2π
sin 2πxn + F (t) (38)

with F (t) = F̄ + Fac cos 2πν0t (ac-dc forcing). When varying the average F̄
of the external driving force, for initial conditions of type (p, q), they observe
numerically that the average velocity v̄ of the particles is a continuous and
non-decreasing function of F̄ , which is locally constant at rational values of
v̄/ν0. At these rational values, they find stable resonant solutions, i.e. solutions
satisfying uj(t) = uj+r(t− s/ν0) + m for some integers m, r, s, and for which
v̄ = ν0(rp+mq)/qs. That v̄(F̄ ) is continuous and non-decreasing has recently
been proved by Hu et al. [17], as well as the stability of the resonant solutions.

Without additive forcing (F = 0), a non-zero average velocity of the par-
ticles can also be achieved under time-periodic parametric forcing (C(t) =
C(t + τ) or K(t) = K(t + τ)) if the period-1 potential V (x) is not symmetric
(e.g. V (x) has one maximum per period at x = 0 and one maximum per pe-
riod at a �= 1/2) – see the chapter by Floŕıa et al. in this book on the ratchet
phenomenon.

4 Second Order Local Dynamics

The gradient dynamics case m = 0 is an idealised limit, however; in true
physical systems there is a small but non-negligible inertial term. Numerical
results of Floŕıa, Falo and Mazo suggested that for small positive m, the results
presented in the last section for spatially periodic boundary conditions, that is
the existence of a globally attracting periodically sliding solution for sufficient
tilt F , remained true (though not for large m, as already made clear by [3] and
rediscovered by [8]). Many authors had lamented that monotonicity methods
did not seem to extend to networks of multicomponent (or equivalently higher
order) units, but these numerical results motivated us to look for a partial
order for networks of units with second order inertial dynamics, which would
be preserved if the inertial terms were small enough compared to the damping.
Another motivation for us was a success in the context of strongly damped
nonlinear hyperbolic PDEs by Gallay and Raugel [12].

We shall show that under some overdamping condition and the same coop-
erativity condition as before, there is indeed a preserved partial order which
makes monotone the inertial dynamics of networks, and this monotonicity is
strict if the system is strictly cooperative.
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The systems we consider are coupled second order ODEs of the form

mnẍn + γnẋn = fn(x), mn, γn > 0 (39)

for n in some index set S, and C1 functions fn satisfying

∂fn

∂xj
≥ 0 ∀j �= n (cooperativity condition) (40)

and
−4mn

∂fn

∂xn
≤ γ2

n ∀n (overdamping condition) (41)

in the range of interest. By dividing by γn we reduce to the case γn = 1 for
all n. By setting vn = ẋn, we rewrite (39) (with γn reduced to 1) as a system
of first order ODEs

ẋn = vn

v̇n =
1

mn
(fn(x)− vn)

n ∈ S . (42)

We define the state of a unit to be the pair x̄n = (xn, vn) ∈ R
2, and the state

of the network to be the index set x̄ := (x̄n)n∈S , which we also sometimes
write as x̄ = (xn, ẋn)n∈S . For the state space X we take the set X0 of all
states x̄, or various subsets. We assume that conditions hold on X such that
(42) defines a local flow φ on X.

4.1 Motivation for the Partial Order

To indicate why it is reasonable to expect the flow φ of (42) to preserve a
partial order for small mn, consider first the case of a single linear damped
oscillator

mnẍn + ẋn + knxn = 0 (43)

(with damping normalised to 1, and mn, kn > 0). In the overdamped regime
4mnkn ≤ 1, the phase portrait (with vn = ẋn) is shown in Fig. 1. It can be
seen that any cone of the form
{
(xn, vn) ∈ R

2 : vn ≥ λnxn, (2αn − 1)vn +
(
(1− αn)λ+

n − αnλ−
n

)
xn ≥ 0

}

(44)
with λn between the (negative) slopes λ±

n = − 1
2mn

±
√

1
4m2

n
− kn

mn
of the

eigenvectors and αn ∈ [0, 1], is forward invariant (the cone shown is the case
λn = − 1

2mn
, αn = 1

2 for which the second condition reduces to xn ≥ 0).7

Turning now to a network of such units with cooperative linear coupling, the
coupling makes no difference to ẋn and adds non-negative contributions to v̇n

7 A partial order which is preserved by an single overdamped oscillator was in fact
found earlier by Levi [22] and Qian et al. [27], independently.
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Fig. 1. Phase portrait of (43) for mn = 1, kn = 0.2. A forward invariant cone is
shown in grey

from all units with xk ≥ 0 because of the cooperativity condition. Thus, the
product cone

{(x,v) : vn ≥ λnxn, xn ≥ 0 ∀n ∈ S} (45)

is forward invariant for any choice of λn between λ±
n . For simplicity of formulae

we will choose λn = − 1
2mn

, αn = 1
2 though other choices are possible.

4.2 Order-Preservation

We define a partial order “less than or equal to” on X by x̄ ≤ ȳ if for all
n ∈ S {

xn ≤ yn

2mnẋn + xn ≤ 2mnẏn + yn .
(46)

We use the following standard additional notations

x̄ ≥ ȳ if ȳ ≤ x̄ “greater than or equal to” (47)
x̄ < ȳ if x̄ ≤ ȳ and x̄ �= ȳ “less than” (48)
x̄ > ȳ if ȳ < x̄ “greater than” . (49)
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It will be convenient to define a relation
 “strictly less than” on X as follows.
For x̄, ȳ ∈ X, write

x̄ 
 ȳ if

{
xn < yn

2mnẋn + xn < 2mnẏn + yn

for all n ∈ S . (50)

The dynamics of system (42) are said to be monotone if given any x̄(0),
ȳ(0) ∈ X,

x̄(0) ≤ ȳ(0) =⇒ x̄(t) ≤ ȳ(t) (51)

for all t > 0 for which both are defined.
The dynamics are strictly monotone if given any x̄(0),ȳ(0) ∈ X,

x̄(0) < ȳ(0) =⇒ x̄(t) 
 ȳ(t) (52)

for all t > 0 for which both are defined.
For a sequence x = (xn)n∈S , let

µ(x) := sup
n

(

−mn
∂fn

∂xn
(x)
)

(53)

Proposition 4.1 (Monotonicity of overdamped dynamics).
Suppose that two points x̄(0) and ȳ(0) in X satisfy x̄(0) ≤ ȳ(0), then x̄(t) ≤
ȳ(t) for t ≥ 0, as long as (i) both exist and

(ii) µ(z̄(t)) ≤ 1
4 for all z̄(t) such that x̄(t) ≤ z̄(t) and z̄(t) ≤ ȳ(t) . (54)

Proof. The monotonicity of the overdamped cooperative dynamics is estab-
lished in the same lines as for first order dynamics: one first proves monotonic-
ity of the linearised dynamics about a path x̄(t) for which µ(x(t)) ≤ 1

4 for all
t ≥ 0 (e.g. the mn are sufficiently small), and then homotopy allows to deduce
the same for system (39), provided µ ≤ 1

4 in the stated region.
(i) The linearisation of (42) about a path x̄(t) is

ξ̇n = υn

υ̇n =
1

mn

(
∑

k

∂fn

∂xk
(x)ξk − υn

)

.
(55)

Let

βn = 2mnυn + ξn

γn = ξnet/2mn

αn = βnet/2mn

(56)

and write ξ̄ = (ξ̄n)n∈S and γ̄ = (γ̄n)n∈S with ξ̄n = (ξn, βn) and γ̄n = (γn, αn)
respectively. Equation (55) yields
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γ̇n =
1

2mn
αn

α̇n =
(

1
2mn

+ 2
∂fn

∂xn
(x(t))

)

γn + 2
∑

k �=n

∂fn

∂xk
(x(t)) γk

(57)

or (for short)
˙̄γ = B̄(x(t))γ̄ .

In (57) the term 1
2mn

+ 2 ∂fn

∂xn
(x(t)) is non-negative by the overdamping con-

dition µ(x(t)) ≤ 1
4 for all t ≥ 0, and the partial derivatives of f in the sum

are non-negative by the cooperativity condition (40), so the matrix B̄(x(t))
is non-negative. It follows that if γ̄(0) ≥ 0̄, that is if ξ̄(0) ≥ 0̄, then γ̄(t) ≥ 0̄
for all positive t, hence ξ̄(t) ≥ 0̄ for all positive t, as required.
(ii) Define the homotopy

x̄λ(0) = (1− λ) x̄(0) + λ ȳ(0), λ ∈ [0, 1] (58)

and let x̄λ(t) be the solution of (42) with initial condition (58), as long as it
exists. Let ξ̄λ(t) = ∂

∂λ x̄λ(t). Then

ξ̄λ(0) = ȳ(0)− x̄(0) ≥ 0̄ . (59)

Therefore

ξ̄λ(t) ≥ 0̄ for t ≥ 0 as long as x̄λ(t) exists and µ(x̄λ(t)) ≤ 1
4 , (60)

by part (i). Now

x̄λ(t) = x̄(t) +
∫ λ

0

ξ̄λ′(t) dλ′ (61)

so is trapped between x̄(t) and ȳ(t) as long as (60) holds, so the only way for
x̄λ(t) to cease to exist or for µ(x̄λ(t)) to exceed 1

4 is for the hypothesis (54)
to fail. In particular

ȳ(t) = x̄(t) +
∫ 1

0

ξ̄λ(t) dλ ≥ x̄(t) (62)

as long as (54) holds. �	

Proposition 4.2 (Strict monotonicity of overdamped dynamics).
If the functions fn in (39) furthermore satisfy the strict cooperativity condition
(13) then x̄(0) < ȳ(0) implies that x̄(t) 
 ȳ(t) for t > 0, as long as (i) both
exist and

(ii) µ(z̄(t)) ≤ 1
4 for all z̄(t) such that x̄(t) ≤ z̄(t) and z̄(t) ≤ ȳ(t) . (63)

Strict monotonicity of the overdamped dynamics in the case of strictly
cooperative interactions is proved in a similar (though slightly more technical)
way as for the gradient dynamics [6].
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5 Overdamped Inertial Dynamics of Frenkel-Kontorova
Models

As application of the previous section, we consider again tilted Frenkel-
Kontorova chains, for which system (42) takes the form, for all n ∈ Z

ẋn = vn

v̇n =
1
m

(W ′(xn+1 − xn)−W ′(xn − xn−1)− V ′(xn)− vn + F )
(64)

with mn = m > 0 for all n, F constant and non-negative, and V ,W ∈ C2

satisfying V (x+1) = V (x) (periodicity), W ′′(x) ≥ b > 0 (convexity / cooper-
ativity). Here µ(x) = supn m(W ′′(xn+1 − xn) + W ′′(xn − xn−1) + V ′′(xn)).
For instance, for the Standard FK model, the second equation in (64) reads

v̇n =
1
m

(

xn+1 − 2xn + xn−1 +
k

2π
sin 2πxn − vn + F

)

(65)

and µ(x) ≤ m(2 + k), so the overdamping condition (54) is satisfied for all
states as soon as

0 < m ≤ 1
4(2 + k)

·

We restrict here to the space X of states with bounded spacings and velocities,
supn∈Z |xn−xn−1| < ∞ and supn∈Z|vn| < ∞, with metric given by supremum
norm, for which system (64) defines a local flow φ. This local flow commutes
with the group of translations {σ̄i,j : (i, j) ∈ Z

2} defined by

(σ̄i,jx̄)n = (xn+i + j, vn+i), ∀n ∈ Z . (66)

The width of a state is defined as for the gradient dynamics (24) (with σ̄i,j

instead of σi,j and states x̄ instead of configurations x), and is preserved under
the forward dynamics. Configurations with bounded width have well-defined
mean spacing, which is also preserved under the forward dynamics.

Say x̄ is weakly rotationally-ordered (WRO) if for all i, j ∈ Z either

σ̄i,jx̄ ≤ x̄ or σ̄i,jx̄ ≥ x̄ . (67)

(Equivalently, x̄ has width ≤ 1.) Similarly, say x̄ is (strictly) rotationally-
ordered if for all i, j ∈ Z either

σ̄i,jx̄ 
 x̄ or σ̄i,jx̄ = x̄ or σ̄i,jx̄ � x̄ . (68)

By strict monotonicity, if x̄(0) is weakly rotationally-ordered then x̄(t)) is
rotationally ordered for t > 0.
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Global Semi-Flow

For N ∈ N define XN to be the set of states in X such that

|xn − xn−1| ≤ N (69)
|2m(vn − vn−1) + (xn − xn−1)| ≤ N (70)

and let

µN = m sup{W ′′(xn+1 − xn) + W ′′(xn − xn−1) + V ′′(xn)} (71)

where the supremum is taken over the xn−1, xn, xn+1 such that

|xn − xn−1| ≤ N and |xn+1 − xn| ≤ N .

Note that every x̄ ∈ X is in some XN because there exist L1, L2, V1, V2 such
that for all n ∈ Z, (xn−xn−1) ∈ [L1, L2] and vn ∈ [V1, V2]; then take N to be
the integer above 2m(V2−V1)+max{|L1|, |L2|}. System (64) defines a global
semi-flow on XN for µN ≤ 1

4 . This is because x̄ ∈ XN is equivalent to

σ̄−1,−N x̄ ≤ x̄ ≤ σ̄−1,N x̄ . (72)

Thus for µN ≤ 1
4 Proposition 4.1 implies that XN is preserved under the

forward flow. The vector field is Lipschitz on XN (since V and W are C2 and
V is periodic), hence the flow is defined for all positive times.

Dynamics of Spatially Periodic States

We call spatially periodic states of type (p, q), the states in the set

X̄p,q := {x̄ ∈ X : xn+q = xn + p, vn+q = vn ∀n ∈ Z} ;

this set is invariant under the dynamics of (64).
We now show that the results on the gradient dynamics of spatially pe-

riodic configurations described in Sect. 3 extend to the overdamped inertial
dynamics of spatially periodic states.

Dynamics When There are no Equilibria

We say that x̄(t) is periodically sliding with period T if

x̄(t + T ) = x̄(t) + 1̄ ∀t

where 1̄ denotes the state with (1̄)n. In absence of equilibria, we find again
that there exists a unique periodically sliding state which attracts all spatially
periodic solutions of same mean spacing.
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Theorem 5.1 (Periodically sliding solutions). If there are no rotationally
ordered equilibria in X̄p,q then there exists a rotationally ordered periodically
sliding solution ū(t + T ) = ū(t) + 1̄ with T > 0 in X̄p,q, with ˙̄u � 0̄ and
σ̄m,nū = ū((n + mp

q )T ), which attracts all of ∪k≥1X̄kp,kq with phase, i.e. for
every x̄ ∈ ∪k≥1X̄kp,kq there exists τ ∈ R such that ‖x̄(t + τ) − ū(t)‖ → 0 as
t →∞.

The proof follows the lines of that of Theorem 3.1 (see [6]).
The question of existence of periodically sliding solutions in the classes

of spatially periodic states of type (p, q) has recently been addressed by
Katriel in [20] for inertial but not necessarily overdamped dynamics of tilted
FK models. There, no monotonicity property is assumed and the proof consists
of formulating this existence problem as a fixed point problem in a Banach
space and then uses the Schauder Fixed Point Theorem. Remain open the
interesting questions of uniqueness and stability of those solutions.

Dynamics When There are Equilibria

In presence of equilibria, we find again that orbits converge to (sets of) equi-
libria. More precisely, suppose that there exist equilibria in ∪k≥1X̄kp,kq. Note
from Theorem 5.1 that in this case there must be a rotationally ordered equi-
librium in X̄p,q.

Theorem 5.2. If there exists a rotationally-ordered equilibrium in X̄p,q then
for all x̄ ∈ ∪k≥1X̄p,q the ω-limit set ω(x̄) is an unordered connected subset of
the set of equilibria in X̄kp,kq, some k, with constant Hkp,kq.

Generically ω(x̄) is a single equilibrium.

Proof. The initial condition x̄ is bounded by certain translates of the equilib-
rium. On X̄p,q, define the total energy of a one-period segment of the chain

Hp.q(x̄) =
q−1∑

n=0

W (xn+1 − xn) + V (xn)− Fxn + 1
2mẋ2

n . (73)

Now Hp.q is a Lyapunov function since dHpq

dt (x̄) = −
∑q−1

n=0 v2
n ≤ 0, and Ḣpq(x̄)

is strictly negative unless x̄ is an equilibrium. Thus it follows from La Salle’s
invariance principle [21] that there exists E ∈ R such that ω(x̄) is a connected
subset of the set of equilibria in X̄kp,kq with Hkp,kq = E. That ω(x̄) is un-
ordered follows from [28]. �	

For the overdamped inertial dynamics of the Standard FK model with
additive driving force F (t) = F̄ + Fac cos 2πν0t, Hu et al. [17] have obtained
the same results as those mentioned in Sect. 3.4 for the gradient dynamics.
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6 Further Discussion and Open Problems

1. The preserved partial order of Sect. 4 can be extended to networks of more
general type than second order mechanical units; e.g. the units can be any
dimensional systems of first order ODEs such that the linearized forward
dynamics preserves some cone and the coupling respects the product cone.

2. Theorem 3.1 and 5.1 are also valid for finite FK chains [5]. In the gradient
dynamics case, elements of a proof were first presented by Middleton [24]
in the case of finite chains and then by Floŕıa and Mazo [11] for infinite
chains, but their proofs were incomplete.

3. In our presentation of gradient and overdamped dynamics of Frenkel-
Kontorova models with constant uniform driving force, we have restricted
ourselves to classes of spatially periodic configurations of type (p, q). Can
Theorems 1 and 2 be extended to genuinely infinite dimensional classes
of initial conditions? The issue is that strict monotonicity is not enough.
The next two items elaborate on this question for two particular cases.

4. What is the fate of spatially non-periodic configurations of rational mean
spacing e.g. discommensurations, i.e. un → vn as n →∞ and → vn+j − i
as n → −∞ for some v of type (p, q) with iq − jp = ±1 (these are called
discommensurations of type (p, q)±). For instance
a) if there are no type (p, q) equilibria does every configuration of mean

spacing p/q and bounded spacing converge pointwise to the periodi-
cally sliding type (p, q) solution, with phase?

b) if there are type (p, q) equilibria but no equilibrium discommensu-
rations of type (p, q)+, is there a periodically sliding type (p, q)+
discommensuration?8 What is its basin of attraction?

These questions are open in both the gradient case and the overdamped
case.

5. It should be possible to extend Theorems 3.1 and 5.1 to weakly rotation-
ally ordered configurations with irrational mean spacing. An attempt was
presented in [5] but an error was pointed out in [6]. Assuming that a RO
sliding solution with irrational mean spacing exists, what would be its
basin of attraction?

6. For FK models with fixed constant tilt F , can one show that the sliding
velocity v(ρ) (defined to be 1/T , with T the sliding period) is a continu-
ous function of the mean spacing at irrationals (assuming the solution to
question 5 is found) and lim

ρ↗p
q ± v(ρ) exist and equal v(p

q±) (assuming

solution to question 4b) and v(p
q±) ≥ v(p

q ) with generic strict inequality
if v(p

q±) �= 0? (as suggested by the numerics of Floŕıa and Mazo[11]).
This result, namely the continuous dependence of the sliding velocity on

8 In the case of integer mean spacing, existence of a travelling discommensuration
for gradient dynamics can be inferred from [10] and was obtained independently
in [9].
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the mean spacing, has been obtained for discrete time FK models, see the
chapter by R. Coutinho and B. Fernandez in this book.
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13. C. Golé: Symplectic Twist Maps: Global Variational Techniques, Advanced Series
in Nonlinear Dynamics 18, World Scientific (2001), and references therein. 248

14. M. Hirsch, Systems of differential equations which are competitive or cooperative
1: Limit sets, SIAM J. Appl. Math. 13 167–179 (1983). 241

15. M. Hirsch, Systems of differential equations which are competitive or cooperative
II: convergence almost everywhere, SIAM J. Math. Anal.16, 423–39 (1985). 241

16. M. Hirsch, Stability and convergence in strongly monotone dynamical systems,
J. reine angew. Math. 383 1–53 (1988). 245

17. B. Hu, W-X Qin and Z. Zheng, Rotation number of the overdamped Frenkel-
Kontorova Model with AC-driving, preprint 2004. 253, 260

18. E. Kamke, Zur Theorie der Systeme Gewoknlicher Differentialgliechungen, II,
Acta Math. 58, 57–85 (1932). 241

19. A. Katok and B. Hasselblatt: Introduction to the Modern Theory of Dynamical
Systems, (Cambridge, CUP, 1995). 248, 251

20. G. Katriel, Existence of travelling waves in discrete sine-Gordon rings, preprint
2004. 252, 260



Spatially Extended Systems with Monotone Dynamics 263

21. J.P. La Salle, An invariance principle in the theory of stability, in Int. Symp.
on Differential Equations and Dynamical Systems ed J Hale and J P La Salle
(London: Academic), p 277 (1967). 249, 260

22. M. Levi, Nonchaotic behavior in the Josephson Junction, Phys. Rev. A bf 37(3)
927–931 (1988). 254

23. H. Matano, Strongly order-preserving local semi-dynamical systems – Theory
and applications, in Res. Notes in Math., 141, Semigroups, Theory and Appli-
cations, eds H. Bresis, M.G. Crandall and F. Kappel, eds, vol. 1, (Longman
Scientific and Technical, London) pp 178–185 (1986). 245

24. A.A. Middleton, Asymptotic uniqueness of the sliding state for charge density
waves, Phys Rev. Lett. 68, 670–673 (1992). 261

25. M. Müller, Uber das Fundamenthaltheorem in der Theorie der gewohnlichen
Differentialgleichungen, Math. Zeit. 26 619–645 (1926). 241

26. M.H. Protter and H.F. Weinberger: Maximum Principles in Differential Equa-
tions, (Springer-Verlag, New-York, 1984). 241

27. M. Qian, W Shen and J. Zhang, Global behavior in the dynamical equation of
J-J type, J. Diff. Eqns 71(2), 315–333 (1988). 254

28. H.L. Smith: Monotone Dynamical Systems, Providence, AMS Mathematical sur-
veys and monographs 41 (1995). 241, 245, 260



The Frenkel-Kontorova Model
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1 Introduction – Presentation of the Model

In the preface to his monograph on the structure of Evolutionary Theory
[1], the late professor Stephen Jay Gould attributes to the philosopher Im-
manuel Kant the following aphorism in Science Philosophy: “Percepts without
concepts are blind; concepts without percepts are empty”. Using with a bit
of freedom these Kantian terms, one would say that a scientific model is a
framework (or network) of interrelated concepts and percepts where experts
build up scientific consistent explanations of a given set of observations. Good
models are those which are both, conceptually simple and universal in their
perceptions. Let us illustrate with examples the meaning of this statement.

The mathematical pendulum, i.e. a Newtonian mass point of mass m and
(angular) position u, subject to a sinusoidal potential V (u), with

energy =
1
2
mu̇2 + V (u) (1)

is an archetype of good model. The variety of its applications makes it ubiq-
uitous in Physics. Figure 1 shows the formal equivalence of a mathematical
pendulum and the Josephson effect between two superconducting electrodes
separated by a thin layer of an insulating material. Here the angular variable
ϕ is the so-called gauge invariant superconducting phase difference

ϕ = θ1 − θ2 − (2π/Φ0)
∫ 2

1

Adl (2)

where A is the electromagnetic vector potential, θ1(2) are the phases of the
wave function of the superconducting state at each electrode, and Φ0 is a
constant called the flux quantum unit.

L.M. Floŕıa, C. Baesens and J. Gómez-Gardeñes: The Frenkel-Kontorova Model, Lect. Notes
Phys. 671, 209–240 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



210 L.M. Floŕıa et al.

A second good example is the Ising model, a familiar model in modern
Statistical Mechanics. Approaches based on this model play there a role as
basic as pendulum in General Physics does. The Ising model is a lattice or
network of N interconnected two-state (sj = ±1) nodal elements interacting
with energy Jijsisj per link, and N is macroscopically large. The complex
singular macroscopic behaviour observed in the so-called critical phenomena,
has in this conceptual-perceptual framework a referent of rigorous basic un-
derstanding. The simplicity of the two-state (on-off, up-down) nodal element
on more or less complex connectivity patterns, pervades current theoretical
studies in neural networks. It also permeates recent approaches to biological,
social and communication networking studies, where interesting generaliza-
tions of the model are often needed. In particular, more general dynamical
variables at nodes are clearly required in many interesting issues concerning
these applications.

The model of interest here belongs, as the pendulum and Ising model, to
that class of scientific models which along the years have provided insightful
conceptual tools and perceptions in the rigorous analysis of a wide range of
theoretical problems. We refer to this model as the Frenkel-Kontorova (FK)
model, though other names are sometimes used in the vast literature on this
model. Nowadays, in Statistical and Nonlinear Physics it plays a basic role
with important applications in materials and condensed matter systems as
well as in several micro- and nano-scale technologies [2, 3].

The Standard FK model can be seen as a one-dimensional lattice of iden-
tical pendula oscillating in parallel planes, coupled to nearest neighbors by
identical (linear) torsion springs.

Alternatively, viewed as a model for spatially modulated structures in solid
state physics, the (more general) FK model is a chain of Newtonian particles
in one dimension, connected by springs and placed in a spatially periodic
potential which represents, for instance, the interaction with a substrate. The
total potential energy of the system is formally1

H({ui})) =
∑

i

V (ui) +W (ui, ui+1) (3)

where ui denotes the position of particle i, V is the (on-site) external potential,
and W is the interaction potential between (nearest) neighbors. We shall
denote by h(ui, ui+1) the local potential energy at site i:

h(ui, ui+1) = V (ui) +W (ui, ui+1) . (4)

In the Standard FK model, ui denotes the (one-dimensional) angle vari-
able at site i, and the potential functions have the following forms: V (u) =
K

4π2 (1− cos 2πu), and W (u, u′) = 1
2 (u′− u)2− µ(u′− u), where µ denotes the

natural length of the springs. More generally, we call here (unforced) Frenkel-
Kontorova models, the systems for which the local potential V is periodic:
1 Formally, because the sum in (3) typically diverges in the case of an infinite chain.
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V (u+ 1) = V (u), to fix ideas, and the interaction function W (u, u′) depends
only on the difference u′−u, i.e., (abusing notations) W (u, u′) = W (u′−u) or
W (∆u) (using the notation ∆u = u′ − u), and furthermore W is a (strictly)
convex function, so that W ′′(u) > 0.2 This convexity property of the in-
teractions turns out to be a crucial ingredient both for the well established
(rigorous) theory of equilibria in the thermodynamic (infinite system size)
limit, that we will summarize in Sect. 2, and for the dissipative dynamics that
we will develop in further sections. Much less general theory is available for
the cases in which W (∆u) is not a convex function.

Motivated in the 30’s and 40’s (XXth century) by studies on plasticity
of solids i.e. dynamics and thermodynamics of localized lattice imperfections,
the model of coupled pendula or other nonlinear oscillators serves today as
the referent name of a streamline in the little history of solid state physics
research. Localized elementary excitations under terms as diverse as lattice
(or discrete) skyrmions, vortices, fronts, solitons, kinks and breathers have
emerged as the most convenient basic descriptors of the ubiquitous complex
phenomena associated with the competition of

• self-focussing effect of the nonlinear (non-quadratic) on-site potential V (u),
and

• dispersive effect of coupling between sites.

These are the essential ingredients captured in a simplest (though non
trivial) way by the FK model. A good indication of the offsprings vigor of
this conceptual-perceptual framework is the recent interest (see [4]), both
theoretical and experimental, in the issues of localization and transport in
Nonlinear lattices. Among the ample variety of current experimental lines of
research with which the model is concerned, we now briefly refer to two moti-
vating examples. The first one comes from superconducting technologies3 at
the micro-scale (micrometer sized devices) which are based on the above men-
tioned Josephson effect. The second example deals with the elastic properties
at the nanoscale level of the DNA double strand.

1.1 A JJ Parallel Array

The superconducting circuit sketched in Fig. 1.e [5] consists of two parallel
superconducting wires with equispaced Josephson junctions (JJ) in between,
which are labeled by j. The relevant nodal variables ϕj are the gauge invariant
phase differences across the junctions. The equation for their time evolution
is

ϕ̈j + Γϕ̇j + sinϕj = λ(ϕj+1 − 2ϕj − ϕj−1) + iext (5)

2 We also assume that V and W are twice differentiable.
3 These technologies have practical uses in quantum metrology, radio-frequency

emission, magnetic field and photo-detection, as well as current attempts to (solid
state based) quantum computation devices.
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Fig. 1. Equivalence of Josephson junction arrays and chains of coupled pendula.
The Josephson current and voltage between the two superconductors of the Joseph-
son junction represented in (d) are functions of the phase difference ϕ introduced in
(2): IJ = Ic sin ϕ and V = �/2e dϕ/dt. The RCSJ model sketched in (a) describes
all the contributions for the current in the Josephson junction: I = IJ + IR + IC .
Using the ϕ-dependence of the voltage and the Josephson current and after normal-
izing, the equation for the currents becomes iext = ϕ̈+Γϕ̇+sin ϕ. This equation has
the same functional form as the one describing the motion of a damped pendulum
with torque (b) or of a particle in a tilted washboard potential (c). The expression
of the single Josephson junction is used for the description of the Josephson junc-
tion parallel array (e) to obtain (5) which, in this case, is formally equivalent to the
equation describing the dynamics of a chain of damped pendula with torque (τapp)
coupled by torsion springs [5]

where the parameter λ measures the importance of the induced fields, the
damping parameter Γ that of the resistive normal current, and iext the bias
external current. The presence of a magnetic field is felt by the electromagnetic
circuit as an imposed average torsion per unit length on each field ϕj . Denoting
by f0 the magnetic flux (in quantum flux units) through a single plaquette,
the boundary conditions are given by ϕ0 = ϕ1−2πf0 and ϕN+1 = ϕN +2πf0

for the case of open-ended arrays, and ϕN+1 = ϕ1−2πnk and ϕ0 = ϕN−2πnk

for ring arrays. The integer nk is the number of fluxons trapped in the array.
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Equation (5) is easily recognized as describing the dynamics of a 1d chain
of damped pendula with torque, coupled by torsion springs. Experiments on
parallel JJ arrays and their consistent interpretation based on the dynamics
of the FK model were reported in [6]. More recently, several designed (period-
ically inhomogeneous) parallel JJ arrays were experimentally studied showing
ratchet transport of fluxon matter, as theoretically predicted [7]. Using the ba-
sic tools and concepts from the rigorous theory of FK models, we will show in
Sect. 5 that some classes of parametrically driven FK models exhibit collective
(non-thermal) ratchet transport.

1.2 Unzipping DNA

Replication and transcription are two basic functions performed by the DNA
molecule both inside living cells and in laboratory routine essays. These func-
tions require the opening of base pairs (A-T, G-C, . . . ) as schematically illus-
trated in Fig. 2. Motivated by the possible role of bubble opening in thermal

Fm
(t)

(a)

(b)

(c)

(d)

Fig. 2. (a) Schematic representation of the Replication and Transcription of the
DNA. The DNA unzipping involved in the two processes is described using a con-
stant force scheme based on the Peyrard-Bishop-Dauxois sequence dependent model,
as sketched in (b). In the PBD model, sketched in (c), the relevant on-site variable
is the distance yj between the two bases of the pair j. The potential V (yj) accounts
for the interaction between these two nucleotides (A-T or G-C), and W (yj , yj+1) is
the energy of interaction between neighboring pairs j and j + 1. (d) Shape of the
potential V (y) given by (6)
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denaturation of double stranded DNA chains, the model of Peyrard-Bishop-
Dauxois, PBD for short, tries to capture in a workable simple way the local
energy balance which governs the physics of base pair opening.

The relevant variable yj at pair j is the inter-base distance, so that pair
opening means “big y”. Following the intermolecular potential theory, the
following functional form for the on-site potential energy has the appropriate
shape:

V (y) = D
(
e−ay − 1

)2 (6)

while the coupling through the double strand of sugar backbone can be as-
sumed either quadratic, as in the original version [8], or sensibly corrected as
in [9]:

W (yj , yj+1) =
1
2
C(yj+1 − yj)2

(
1 + ρe−α(yj+1+yj)

)
. (7)

The PBD model is a generalized4 FK model for the elasto-plastic prop-
erties of DNA base pair opening. Interesting experiments on DNA unzipping
have been already reported [10]. One should note that there is no periodicity
symmetry in real DNA of living cells, though periodic blocks in the “junk”
chromosomal DNA are well known to be overabundant [11]. Thus the lack of
homogeneity is essential for the basic description of many observed phenom-
ena in living double stranded DNA molecules. We stress this point here, as
an example of the added complexity in this particular use of the FK model in
DNA prospective technologies.

2 Equilibrium States

In condensed matter, a physical motivation for studying equilibrium states of
the FK model came from the observed abundance of modulated (structured)
phases in minerals as well as in man-made materials and/or compounds, and
the need to understand the peculiar multiphase diagrams shown by experi-
ments.

We shall consider here the thermodynamic limit, so equilibrium config-
urations (or states) will be represented by doubly infinite sequences (ui),
−∞ < i < +∞. Balance of forces at each site n yields5

0 = − ∂H

∂un
= −∂(h(un−1, un) + h(un, un+1))

∂un
(8)

= W ′(un+1 − un)−W ′(un − un−1)− V ′(un) (9)

for the (general) FK model, and more specifically for the Standard FK model

un+1 − 2un + un−1 −
K

2π
sin 2πun = 0 . (10)

4 generalized, in the sense that the on-site potential V (y) is not periodic.
5 Though the energy H in (3) may be infinite, its gradient is well defined.
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There is a one-to-one correspondence between equilibrium configurations (un)
of an FK model and orbits ((un, pn)) of a symplectic twist map of the cylinder,
which can be obtained from (9) using a Legendre transform, as usually done
to go from the Lagrangian formulation of a problem to the Hamiltonian one.
Setting pn = −∂h(un,un+1)

∂un
= W ′(un+1−un)−V ′(un), the convexity condition

W ′′ > 0 allows to invert this expression to obtain un+1 as a function of un and
pn, and then we use pn+1 = W ′(un+1 − un). For instance, for the Standard
FK model, we easily obtain from (10):

un+1 = un + pn +
K

2π
sin 2πun (11)

pn+1 = pn +
K

2π
sin 2πun . (12)

This is the familiar Standard map, paradigm example of a twist map6 of the
cylinder.

Of particular importance are the minimum energy configurations, m.e.c.
for short, which are sequences (uj) such that, given any integers m < n,

Hmn ≡
n−1∑

j=m

h(uj , uj+1) (13)

is (globally) minimal with respect to all variations of (um+1, . . ., un−1), keep-
ing um and un fixed. They correspond to action-minimizing orbits of the
associated twist map.

M.e.c. are also local minima of the energy (3), meaning equilibrium con-
figurations for which the quadratic form in the series expansion of the energy
around the equilibrium is positive or zero:

δH � 1
2

∑

m,n

∂2H

∂un∂um
δnδm ≥ 0 (14)

(for square summable (δn)). Local minima are (linearly) stable equilib-
ria. For stable equilibria, the eigenvalues of the symmetric stability matrix
(∂2H/∂u2)mn are non-negative; in fact, these are the squared eigenfrequen-
cies of small Hamiltonian (undamped) oscillations around the equilibrium
(uj). Together with their limit points, they form the phonon spectrum of the
configuration. The presence of a gap ∆ph in the phonon spectrum, meaning
the spectrum is bounded away from zero, reflects the breaking of continuous
translational invariance in the lattice state.

Because h(u, u′) does not depend on the index (lattice homogeneity) and
it is (diagonally) periodic: h(u+ 1, u′ + 1) = h(u, u′), the action of the group
of translations {σrm : r,mintegers} on configurations (uj), defined by

6 twist means that
∂un+1

∂pn
> 0 and this is equivalent to the convexity condition on

W .
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σrm(uj) = (uj+r +m) (15)

preserves the equilibrium property and the minimum energy property.
Given two configurations (uj), (vj), one says that the first one is less than

the other (uj) < (vj) if uj < vj for all j. A configuration is rotationally ordered,
RO for short, if the set of its translates by all the σrm is a totally ordered set
of configurations. It follows that a RO configuration (un) has a well defined
mean spacing between particles (or torsion angle between pendula)

〈un+1 − un〉 = lim
n→∞,m→−∞

un − um

n−m
= ω (16)

and furthermore satisfies

|un+r − un − rω| < 1 for all integers r, n . (17)

This quite constraining RO property is particularly important, as it turns out
that

m.e.c. ⇒ RO . (18)

Indeed, since the interaction potential W (∆u) is convex, it costs less energy
for configurations to differ as little as possible (given the potential V (u)) from
equispaced configurations with same mean spacing, i.e. to be RO.

Macroscopic variables are averages over the lattice state, which can be
computed with the appropriate distribution functions. For RO configurations,
these are the distribution functions (modulo 1), d.f. (mod 1) for short, of real
doubly infinite sequences:

Let us denote by FM,N
u (x) the fraction of indices n, (M ≤ n ≤ N), for

which the fractional part Frac(un) lies in the interval [0, x). The distribution
function (mod. 1) Fu(x) of the configuration u = (uj), (0 ≤ x ≤ 1), is defined
as the limit

Fu(x) = lim
M→−∞,N→∞

FM,N
u (x) (19)

provided the limit exists. Clearly, Fu(x) is a non-decreasing function, with
F (0) = 0 and F (1) = 1. Not every conceivable sequence possesses it, but RO
configurations do. Thus, quantities like the mean spacing or the mean energy
per particle ε = 〈h(un, un+1)〉 of RO configurations can be computed as the
Stieltjes integrals

ω =
∫ 1

0

∆u dFu (20)

ε =
∫ 1

0

h(u, u′) dFu (21)
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where Fu is the d.f. (mod 1) of the configuration (uj).7 The d.f. (mod 1) of
a RO configuration may either have plateaux at intervals where no particles
locate (modulo 1), and jumps, or be a smooth function in some other instances.

For every mean spacing there is at least one recurrent m.e.c. (called ground
state) [12]. This property (recurrent) means that given any integer r and any
number ε > 0, there are integers m and s > 0 such that both inequalities
|ur+s − ur − m| < ε and |ur+s+1 − ur+1 − m| < ε are satisfied. Recurrent
configurations of the FK model correspond to recurrent orbits of the associated
twist map. The distribution function (mod 1) Fω of a ground state defines a
whole class of equivalent ground states as follows: take an arbitrary real α,
and consider f = F−1

ω (the inverse of Fω) and lift it to the real line by
f(u + 1) = f(u) + 1; then the configuration (un) = (f(nω + α)) is a ground
state equivalent to the original one.

Commensurate ground states (un) are (spatially) periodic (of minimal pe-
riod), in the sense that they satisfy a relation of the form un+q = un + p
for all n, where q > 0 and p are coprime integers, and so their mean spacing
is the rational number ω = p/q. These configurations are generically pinned,
meaning that one has to put some finite energy EPN on the system to displace
the configuration over the path-dependent barriers of energy (Peierls-Nabarro
barriers) separating ground states8. The value of EPN is the energy difference
between the ground state and a RO minimax (unstable equilibrium) configura-
tion (the saddle point configuration) ordered between two contiguous ground
states.

A pinned configuration has a finite coherence length (or decay range) of
fluctuations, ξ, meaning that if a field component, say un0 , is externally dis-
placed, this produces displacements of the other components un, which decay
exponentially with the distance |n− n0|: ∼ exp(−|n− n0|/ξ). Also, there is a
gap ∆ph > 0 in the phonon spectrum.

Ground states with irrational mean spacing ω, called incommensurate, can
be viewed as limits of sequences of periodic configurations of mean spacing
pn/qn → ω as n→∞. The physical properties of these structures depend on
the parameter K of the model: for each irrational ω there is a critical value
Kc(ω) of K s.t.

• for K < Kc the d.f. (mod 1) is a continuously differentiable strictly in-
creasing function: the family of ground states form a continuum and cor-
respond to the orbits of an invariant Kolmogorov-Arnold-Moser torus for
the twist map of the cylinder. The ground state is sliding (unpinned), so
that EPN = 0. Consequently, localized induced fluctuations extend through
the lattice and the decay range diverges: ξ → ∞. The phonon spectrum is
gap-less.

7 In what follows, we will drop the suffix u when it is clear which configuration we
are talking about, or we may use the suffix ω to emphasize that it is the d.f. (mod
1) of a configuration with mean spacing ω.

8 We assume a gap between contiguous ground states.
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• For K > Kc the d.f. (mod 1) becomes the inverse of a so-called Can-
tor function and the family of ground states form a Cantor set (called
Aubry-Mather set, or cantorus in the twist map context). They are pinned:
EPN > 0, ∆ph > 0, and ξ has a finite value. The transition at Kc(ω) cor-
responds to the breaking of the invariant KAM torus into a cantorus, and
the fractalization of such continuous invariant sets is a critical phenomenon
[13, 14].

Besides the ground states, there are non-recurrent m.e.c. called discom-
mensurations, DC for short. These configurations connect asymptotically
(n → ±∞) two contiguous commensurate ground states (typically one is a
translate of the other, but they can be different in general) by an energy min-
imizing path of exponentially localized length (the width of the DC) around
a lattice site (the center of the DC). They correspond to heteroclinic orbits
of the associated area-preserving twist map. The width of the DC is given
by the decay range ξ of the recurrent asymptotic configuration. Note also
that the d.f. (mod 1) of a DC coincides with that of the recurrent substrate
(the deviation of a DC configuration relative to substrate being exponentially
localized).

The DCs are elementary defects, i.e., localized compressions (retarded
DCs) or expansions (advanced DCs) superimposed on the recurrent substrate
modulation. If ω is close to a rational ω0 = p/q, the ground state with mean
spacing ω can be viewed as an “array of DCs” (advanced if ω > ω0, retarded
if ω < ω0) over the recurrent (periodic) ground state of mean spacing ω0.
The interaction energy between neighboring DCs decays exponentially with
the quotient inter-distance/width, ∼ exp(−1/(ξ|ω − ω0|)), so that for ω very
close to ω0 and/or high values of K (i.e. ξ small), these elementary localized
excitations are almost non-interacting (and pinned).

We call Discommensuration Theory the theoretical perspective which de-
scribes the modulated phase as a system of localized DCs (weakly, or not
so weakly) interacting. Note that it is a description built upon an emergent
property which assumes the role of new elementary component of the many-
body system, roughly illustrating the notion of emergent property in Complex
Systems theory [15, 16]9.

There are two limits in which the equilibrium states of a Frenkel-Kontorova
model can be found explicitly.

(i) If K = 0 (i.e. no external potential), called the the integrable limit, then
the equation for equilibria reduces to

−W ′(un+1 − un) +W ′(un − un−1) = 0 for all n (22)

that is, the terms W ′(un+1−un) are the same for all n. Now the function W ′

is strictly increasing since W ′′ > 0 (convexity condition), so it follows that for

9 Temperature, however, is the archetype among the simplest examples, being much
richer and deeper.
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all n, the difference un+1 − un = un − un−1 is a constant independent of n,
equal to ω, say. Hence equilibria are configurations of the form

un = nω + α ∀n (23)

where α is some constant. So, for every value ω of the mean spacing, there
is a one-parameter family (continuum) of equispaced equilibria, parametrized
by the phase α.
(ii) If W (u) ≡ 0 (i.e. no interaction between neighbors), called the anti-
integrable limit, then the equation for equilibria reduces to

− ∂H

∂un
= −V ′(un) = 0 ∀n (24)

It follows that any sequence of critical points of the potential V is an
equilibrium state. For instance, for the Standard FK model, V ′(un) =
K/2π sin 2πun = 0 so any sequence of half-integers is an (anti-integrable)
equilibrium state: there are lots of them!

Sequences (un) of minima of V are local minima of the total energy and
correspond to metastable states. Minimum energy configurations are now only
weakly rotationally ordered (meaning that translates by the σrm may touch:
(σr,mu)j ≤ uj (or ≥ uj) for all j, instead of strict inequalities). In the case
where V (u) has a unique minimum per period, at u = a, say, it is easy to see
that the ground states of mean spacing ω are of the form

un = Int(nω + α) + a ∀n (25)

where α is a constant. Obviously, this one-parameter family of ground states
does not form a continuum like in the integrable limit.

We will use these two limits for our models of collective ratchet transport
in further sections.

For a more extensive (and mathematically oriented) presentation of the theory

of equilibrium states of FK models, we refer to [17]; the Aubry-Mather theory of

minimum energy states can also be found in [18] and [19].

3 Dissipative Dynamics

Non-equilibrium situations in the framework of the FK model are certainly
of interest concerning many theoretical and experimental studies. In particu-
lar, the behaviour of Hamiltonian nonlinear discrete fields is of fundamental
interest in Theoretical Physics. However, in connection to experimental and
prospective technological research, two ingredients are often important to add
to the ideal Hamiltonian description:
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• Coupling to other (external) variables are often amenable to an analysis in
terms of driven and damped dynamics and/or

• Thermal effects (Langevin, or other dynamics).

Even neglecting thermal effects (noise), a full characterization of the lattice
dynamics governed by equations of the form

mün + Γ u̇n = C(t)(∆2u)n +K(t)V ′(un) + F(t) (26)

where (∆2u)n denotes the discrete Laplacian un+1−2un+un−1 is a formidable
task, with too many interesting aspects, which is well beyond the scope of
these lectures. We shall restrict here to a particular regime of parameters, the
overdamped regime10 (or dissipative) limit m/Γ → 0, i.e. we shall drop the
inertial term mün in (26) and consider systems of the form

u̇n = C(t)(∆2u)n +K(t)V ′(un) + F(t) (27)

for which the dynamics are relatively simple due to the following property of
(27): if two initial conditions are ordered, their trajectories will remain so at
any later time:

(ui(0)) < (vi(0)) ⇒ (ui(t)) < (vi(t)) for all t > 0 , (28)

i.e., the dynamics of the overdamped system preserve the (partial) order on
sequences [19, 20, 21, 22]. This order-preserving property originates from the
convexity of the interaction potential W (∆u).

Since the set of translates {σr,n(uj)} of an RO configuration (uj) is a
totally ordered set, we deduce that the RO property is preserved under the
dynamics of (27). Given the key role played by rotational order in the theory of
m.e. equilibrium states, one may wonder if it can be of use in the analysis of the
dynamics of (27). The answer, as will be seen in the lectures by C. Baesens on
monotone dynamics, is positive. The dynamics of RO configurations is easier
to characterize (the d.f. (modulo 1) F(ũj)(x; t) is well defined and it carries
over all the information on the configuration (ũj(t)), if it is recurrent). Even
more, a RO trajectory (ũj(t)) and its translates σr,m(ũj(t)) (associated to the
same d.f.(mod 1) F(ũj)(x; t)) can be used, like a fisher net, to bound (finite
spacing) trajectories (uj(t)) that have same mean spacing:

σr1,m1(ũj(t)) < (uj(t)) < σr2,m2(ũj(t)). (29)

This sandwich construction plays a central role in proving, for instance,
uniqueness (for initial conditions with bounded spacing and a same mean
spacing) of the asymptotic average velocity (or flow) of the chain:
10 This limit is called gradient dynamics in the lectures by C. Baesens. Indeed the

right hand side in (27) is the gradient of the total energy H. In those lectures,
overdamped means inertial dynamics (26) with ratio m/Γ small enough but not
zero.
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J = lim
T→∞

T−1

∫ T

0

〈u̇n〉 dt (30)

Extensive numerical studies have motivated (and guided in some cases)
rigorous results and theorems in this field. We now highlight some remarkable
features of the dynamics of (27) revealed by numerics [21].

1. Existence of thresholds for transport. A kind of ubiquitous peculiarity in
many observed transport phenomena is the existence of threshold values
of the drive parameter, below which equilibrium is stable and no transport
occurs. The characterization of thresholds for both cases of additive and
parametric driving can be done. For example, under constant additive force
F(t) = F (and constant parameters K and C) there is a mean spacing
dependent depinning force Fth(ω) > 0 if K is large enough, beyond which
the structure slides and the asymptotic state is unique [22]. The scaling of
different quantities at the depinning transition is nontrivial for irrational
values of ω. The issue of thresholds for parametric driving (F(t) ≡ 0, K(t)
or C(t) not constant in (27)) will be addressed in the Sect. 6 for a specific
model which is amenable to exact analysis.

2. Multiple attractor coexistence. The uniqueness of asymptotic sliding states
observed for constant additive force does not extend if the additive force is
periodic in time. This is also the case for general parametric driving. The
abundance of metastable equilibria has its counterpart in the coexistence of
multiple resonant (synchronization) states, all sharing the common average
velocity value.

3. The addition of a small inertial term mün in (26) does not alter qualita-
tively the dynamics. A preserved partial order has also been found in this
case [23].

4 Exercises

1. Distribution functions (mod 1) of the integrable limit configurations.
(a) Compute the d.f. (mod 1) Fω,α(x) of the sequence (ũn) = (nω+α) for

rational ω = p/q (p and q coprime integers).
(b) Deduce that for irrational values of ω, Fω,α(x) = x.

2. Use the results of previous exercise to compute the fraction µ(α, β, ω) of
indices n for which Int(nω + α) �= Int(nω + β), for rational and irrational
values of ω.

4.1 Solutions to Exercises

1. (a) The sequence Frac(np/q + α), −∞ < n < +∞, is periodic of period q
and takes values ε+ lq−1, l = 0 . . . , q−1, where ε = q−1Frac(qα) < q−1

for all α. To compute the limit (19) which defines the d.f. (mod 1),
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we may consider a subsequence of FM,N
ũ (x) for which N −M + 1 = qj

(j = 1, 2, . . . ), for fixed α and x. Such a subsequence is clearly constant
(independent of j), so one only needs to compute F 1,q

ũ (x), this value
giving the limit Fp/q,α(x).

If ε < x < 1, then the number of indices n (1 ≤ n ≤ q) such that
Frac(np/q+α) < x is the number of consecutive segments of length q−1

inside the interval [ε, x), i.e. 1 + Int(q(x− ε)−), where Int(x−) denotes
the greater integer less than x (i.e. equals the integral part of x, Int(x),
except at integers). This expression gives also the correct (zero) result
for 0 ≤ x ≤ ε. Using the property 1+Int(x) = −Int((−x)−), one obtains

Fp/q,α(x) = −q−1Int(q(−x+ q−1Frac(qα))) (31)

Note that Fp/q,α(x + q−1) = F (x) + q−1, for x < 1 − q−1. Also, the
change α→ α+ q−1 leaves Fp/q,α(x) invariant.

(b) An irrational number ω is the limit of a sequence of rational numbers
pl/ql → ω, with pl → ∞ and ql → ∞ as l → ∞ (pl and ql coprime for
each l).

Thus, using the previous result for each rational approximant pl/ql

and the fact that q−1
l Frac(qlα) → 0 for all α as l→∞, we obtain

Fω,α(x) = lim
l→∞

−q−1
l Int(−qlx) = x (32)

which does not depend on α. In other words, orbits of an irrational
rotation are uniformly distributed on the circle. A proof of this well-
known result, based on the Weyl criterion, can be found in [24].

2. The fraction µ(α, β, ω) of indices n for which Int(nω+α) �= Int(nω+β) can
be obtained from the distribution functions (mod 1) Fω,α(x) and Fω,β(x)
as follows:
Write nω + β = nω + α + (β − α) and split terms between their integral
and fractional parts, and then realize that

Int(nω + α) = Int(nω + β) (33)

iff

α− β ≤ Frac(nω + α) < 1 + α− β (34)

or, equivalently, iff

β − α ≤ Frac(nω + β) < 1 + β − α . (35)

Thus, the indices n violating (33) are those violating any of the inequalities
in (34) or, equivalently, any of the inequalities in (35). There are different
cases, depending on α− β:
(i) For 0 ≤ α − β < 1 the second inequality in (34) holds for all n,

while the first inequality is violated when Frac(nω + α) < α − β,
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so µ(α, β, ω) = Fω,α(α− β). Alternatively, the first inequality in (35)
holds for all n, while the second inequality is violated when Frac(nω+
β) ≥ 1 + β − α, so µ(α, β, ω) = 1− Fω,β(1 + β − α).

(ii) For α− β ≥ 1 both inequalities in (34) are violated for all n, so that
µ(α, β, ω) = 1.

Hence we obtain

µ(α, β, ω) =






1 if |α− β| ≥ 1
Fω,α(α− β) = 1− Fω,β(1 + β − α) if 0 ≤ α− β < 1
Fω,β(β − α) = 1− Fω,α(1 + α− β) if 0 ≤ β − α < 1

(36)
where, for rational ω = p/q, Fp/q,α(x) is given by (31), and for irrational
ω, Fω,α(x) = x (32). Thus, in the irrational case, µ(α, β, ω) depends only
on the difference x = α− β, and one obtains the piecewise linear function

µ(x) =






1 if x ≤ −1
−x if −1 < x ≤ 0
x if 0 ≤ x < 1
1 if 1 ≤ x .

(37)

5 Ratchet Effect

Think of a Brownian particle experiencing a mirror-asymmetric periodic po-
tential V (u), so that the density distribution function ρ(u) (d.d.f. for short)
of the particle position u is peaked around the minimum of the potential
(see Fig. 3). Then turn ideally the potential off, so that the d.d.f. diffuses
symmetrically and, after a while, turn the potential on again: as shown in
the figure the distribution centroid (or mean position)

∫
u ρ(u) du has been

shifted. This directional transport results from the symmetric diffusion of the
d.d.f. followed by asymmetric localization. The rectification of thermal fluctu-
ations in asymmetric environments is commonly referred to as ratchet effect
in recent literature [25].

A slightly different version of the ratchet effect is the following: instead
of turning on-off the potential V (u), we can monitor the temperature so that
the amplitude of the thermal fluctuations (the strength of the diffusive forces)
is turned on and off. At zero temperature, the d.d.f. of the particle position
is sharply localized at the minimum of the potential, while at high enough
temperature, it widens enough to allow ratchet transport when switching tem-
perature on and off cyclically.

Now think of an equilibrium structure of a FK model with a mirror-
asymmetric shape for V (u) and turn this potential off, so that only diffusive
forces (interaction potential W (∆u)) act on the lattice. After relaxation to
equispaced equilibrium turn the potential V (u) on again. Does one observe
transport in this cyclic process? The following unsophisticated argument pro-
vides a positive answer to this question (and an estimation of the flow).
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Fig. 3. Thermal versus collective flashing ratchet mechanism. Panel (a) shows
schematically the thermal broadening of the density distribution function of one
particle when the potential is off and how this can produce directed motion when
switched on again. In (b) the collective interaction between particles in an extended
system produces again a net flow when switching on and off the asymmetric poten-
tial. In both cases the particle mainly responsible for the flow in this cycle has been
highlighted. The center of mass of the unit cell (three particles in two periods of the
potential) at t0 and t0 + T is marked by the dotted line to see the one-cycle advance

• The distribution centroid ucm(u) =
∫ 1

0
x dFu(x), of the configuration u =

(un), cannot change when the potential V (u) is turned off, due to Newton’s
third law. To compute the centroid displacement during the on-semicycle,
let us denote by [∆,∆+ 1] the set of values of the initial position u0(0) of
particle 0 in an equispaced configuration, such that u0(∞) (the asymptotic
position of the particle after the potential has been turned on again) lies
inside the 0th well of the potential V (u) (which we assume to be the interval
[0, 1]). The centroid of the uniform distribution in [∆,∆ + 1] is located at
∆ + 1/2, while the distribution centroid of the asymptotic equilibrium is
ucm(bfu(∞)) =

∫ 1

0
x dFu(∞)(x). Thus, the centroid displacement in one

cycle is simply ucm(u(∞)) − ∆ − 1/2. One has just to realize that a zero
value for this quantity cannot be generic, but indeed rather exceptional
provided the mirror-asymmetry condition on V (u).
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This “poor man” derivation can be properly formalized, in order to provide
a rigorous proof of existence of collective (non thermal) ratchet effect in FK
models, as we will see in the following section.

The “temperature on-off” version of the thermal ratchet effect has also a
collective ratchet counterpart in the following (non thermal) cycle: Turn on
and off the coupling potential W (u, u′) of the FK model. For this version we
will also find ratchet transport, provided the coupling parameter is turned on
above some threshold value which depends on the mean spacing ω (and the
specific potential functions).

For both versions of the collective ratchet effect, the Discommensuration
Theory [26] provides deep insights into the details of this transport phenom-
enon. This will be analyzed in Sect. 7, before concluding with a few exercises
in Sect. 8.

6 Collective Ratchet Effects in FK Model

To fix ideas, we shall consider here FK models with harmonic coupling, i.e.
W (u, u′) = 1

2 (∆u)2 − µ∆u, (∆u = u′ − u), and shall assume that the on-
site potential V (u) has a single minimum per period, at u = a (mod 1),
0 < a < 1, and maxima at integer values of u. More specifically, in the
first version of the collective FK ratchet, we will denote by K the amplitude
of the on-site potential and write K V (u) instead of V (u). For the second
version, this amplitude will be kept equal to unity, and we will parametrize
the interaction, writing CW (∆u), instead of W (∆u), where C (= K−1) is
the coupling parameter.

In version 1 (respectively 2), K(t) (resp. C(t)) will be a crenelated function
of time, taking alternatively values 0 andK (resp. 0 and C), for times of length
τoff and τon respectively, so that the period of a cycle is T = τoff + τon. Both
semi-periods τoff and τon are assumed to be much larger than the characteristic
times of relaxation to equilibrium. This last assumption allows to impose
equilibrium conditions on configurations at switching times. We also assume
the overdamped limit of dynamics:

u̇n = (∆2u)n +K(t)V ′(un) (version 1) (38)
u̇n = C(t) (∆2u)n + V ′(un) (version 2) (39)

Under the overdamped dynamics, rotational order and mean spacing are
preserved, and we have uniqueness of the asymptotic average velocity (or flow,
(30)) for fixed mean spacing; also ground states are RO. These facts will allow
us to restrict our analysis to RO configurations for which distribution functions
(mod 1) are defined. The algorithm to compute the flow, or equivalently, the
displacement of the distribution centroid during a cycle, will be to count the
fraction of particles that pass over the position u = 0 (mod 1) during each
semicycle, J 0

off and J 0
on and add them up.
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6.1 Switching Potential V (u) On-off

The initial configuration (before turning the potential off) at t = 0 is assumed
to be a ground state (i.e., a recurrent and minimum energy configuration) of
mean spacing ω for the value K of the potential amplitude. Its d.f. (mod 1)
will be denoted by FK,ω and, using the notation f = F−1

K,ω for the lift to the
real line of the inverse of FK,ω(x), the initial configuration can be written as

uα
n(0) = f(nω + α) (40)

where α is some constant. Once the potential is turned off, this configura-
tion evolves asymptotically to some equispaced (integrable limit) configura-
tion which we shall assume is reached at t = τoff ,

uα
n(τoff) = nω + β . (41)

Given α, the value of β is uniquely determined, due to Newton’s third law
which imposes that (on average) no net macroscopic motion occurs:

〈uα
n(τoff)− uα

n(0)〉 = 0 . (42)

By decomposing uα
n(0) as the sum of its integral and fractional parts, and

using Int(uα
n(0)) = Int(nω + α) (recall that FK,ω(0) = 0 and FK,ω(1) = 1),

(42) yields, for rational ω = p/q (p, q coprime),

β − α = q−1

q−1∑

n=0

(Frac(uα
n(0))− Frac(nω + α))

= ucm(K,ω = p/q)− q−1Frac(qα)− 1
2
(1− q−1) (43)

where ucm(K,ω) denotes the d.f. (mod 1) centroid of the configuration
(uα

n(0)). Note that the last equality follows from the expression for the dis-
tribution centroid in the period-q case, ucm(K, p/q) = q−1

∑q−1
n=0 Frac(uα

n(0)),
and from the solution to exercise 1 in Sect. 4. For irrational values of ω the
result is

β − α = ucm(K,ω)− 1
2
· (44)

From 0 ≤ ucm < 1, one easily deduces that |β − α| ≤ 1/2 + (2q)−1, and
as11 β = α whenever q = 1, we conclude that |β − α| ≤ 3/4 < 1 for all q.
The consequence of this inequality is that not all particles pass over u = 0
(mod 1).

The absolute value of the partial local flow |J 0
off | through u = 0 (mod 1) is

the fraction µ(α, β, ω) of indices n such that Int(nω+α) �= Int(nω+ β). This
quantity has been computed in exercise 2 of Sect. 4 (36–37). Then the flow

11 Note that the ground states for integer values of ω are already equispaced.
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during the off-semicycle is J 0
off = sign(β − α)µ(α, β, ω), which we can write

as:

J 0
off =

{
q−1Int

(
q
(
ucm(K, p/q)− 1

2 (1− q−1)
))

for ω = p/q
ucm(K,ω)− 1

2 for irrational ω (45)

Consider now the on-semicycle. At the beginning of this semicycle the
initial configuration is equispaced, uβ

n(0) = uα
n(τoff) = nω + β. Then this

initial configuration evolves asymptotically to some recurrent RO equilibrium
configuration which we assume is reached at t = τon, uβ

n(τon), a ground state
for the parameter values K and ω. In order to compute the partial local flow
J 0

on through u = 0 (mod 1) during this semicycle, we have to introduce a
quantity ∆(K,ω), which we call the saddle phase. This quantity is the same
∆ which appeared in the qualitative argument above in Sect. 5.

Let us denote by Mm the set of values of δ for which Int(uδ
0(τon)) = m,

with m integer, where uδ
n(τon) denotes the RO configuration of equispaced

initial condition uδ
n(0) = nω + δ. Using the property of order preservation

of the dynamics, it is easily seen that if δ1 and δ2 are in Mm, then for all λ
in [0, 1], λδ1 + (1 − λ)δ2 is also in Mm. In other words, Mm is an interval.
Moreover, the length of this interval is 1, because if δ is in Mm, then δ + 1 is
in Mm+1. We define the saddle phase ∆ as the infimum of the interval M0.

If it is the case that the ground state equilibria corresponding to (K,ω) are
pinned configurations, they are attracting fixed points of the dynamics, each
one surrounded by its basin of attraction, the open set of initial configurations
asymptotically evolving to the fixed point. The frontier of two contiguous
basins contains an unstable equilibrium, a saddle (or minimax) configuration,
which attracts only initial conditions on the frontier. On the other hand, the
equispaced equilibria (nω+δ) of the system at K = 0 form a line in the phase
space, parametrized by δ. The intersection of the stable manifold of the saddle
(i.e. the frontier) with the line of equispaced configurations is just (u∆

n (0)).
This geometrical interpretation justifies the term “saddle phase” for ∆. In a
more physical language, the Peierls barrier (which is the energy of the saddle
configuration relative to stable equilibria), produces the opening of a step
(often called Peierls gap) in the distribution function (mod 1), which starts
at ∆. If the equilibria are not pinned, then ∆ corresponds to the phase of the
initial configuration such that u∆

0 (τon) lies on top of a potential maximum.
Though one cannot speak of a saddle in this case, we will keep the term
for ∆.

Before computing the partial local flow J 0
on, we now prove that |∆| < 1

(The following notation is used, uδ+

n = limδ→δ+ uδ
n, and uδ−

n = limδ→δ− uδ
n). If

it were the case that ∆ ≤ −1, then one could always find an RO equilibrium
configuration (ũn) with Int(ũ0) = −1 and u∆+

n < ũn for all n (because the
fluctuations of a RO configuration with respect to equispacing are strongly
bounded – recall (17)). On one hand, as (ũn) is an equilibrium configuration,
ũn(τon) = ũn(0) for all n, so that Int(ũ0(τon)) = −1; on the other hand, order
preservation implies that u∆+

n (τon) ≤ ũn(τon), so that 0 = Int(u∆+

n (τon)) ≤
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Int(ũn(τon)) = −1. This contradiction proves that ∆ > −1. Mutatis mutandis,
the same type of argument also proves that ∆ < 1.

As the initial configuration is uβ
n(0) = nω + β, one easily realizes that the

fraction of particles passing over u = 0 (mod 1) during the on-semicycle is the
fraction of indices n such that

Frac(nω + β) < ∆ if ∆ > 0
Frac(nω + β) ≥ 1 +∆ if ∆ ≤ 0 (46)

that is, F̃ω,β(∆) if ∆ > 0, and 1− F̃ω,β(1+∆) if ∆ > 0, where the d.f. (mod 1)
F̃ω,β(x) was computed in Exercise 1 of Sect. 4 (expressions (31) and (32)).
Note that particles cross u = 0 (mod 1) from right to left if ∆ > 0 (negative
flux) and from left to right if ∆ < 0 (positive flux). Then using the expressions
(43) and (44) for β − α, we obtain

J 0
on =

{
q−1Int

(
− q∆+ Frac

(
q
(
ucm − 1

2 (1− q−1)
)))

for ω = p/q

−∆ for irrational ω
(47)

(the same expressions for both signs of ∆).
Finally, the flow J (K,ω) during the cycle is the sum of (45) and (47):

J (K,ω) =

{
1
q Int

(
q
(
ucm

(
K, p

q

)
−∆

(
K, p

q

)
− 1

2

(
1− 1

q

)))
for ω = p/q

ucm(K,ω)−∆(K,ω)− 1
2 for irrational ω .

(48)
Both quantities, the distribution centroid ucm(K,ω) and the saddle phase

∆(K,ω), are continuous functions ofK and ω. Indeed ucm is a ground state av-
erage, and the Aubry-Mather theory assures that the ground state d.f. (mod 1)
changes continuously. On the other hand, the saddle configuration also changes
continuously, so that one expects the saddle stable manifold and consequently
the saddle phase to vary continuously as well.

Thus, for the version 1 of the collective ratchet effect in the standard
FK model, the flow is a well defined continuous function J (K,ω) with point
discontinuities at rational values of ω = p/q; the size of these discontinuities
behaves as (2q)−1.

Given a particular potential function V (u), the quantities ucm(K,ω) and
∆(K,ω) determining the flow can be computed with arbitrary numerical preci-
sion: The computation of ucm only requires the obtention of the corresponding
ground state configuration, which can be efficiently achieved by numerical in-
tegration of (38) for an equispaced initial configuration. Combining this with
a simple bisection method provides also the value of ∆. Numerical results [27]
of these quantities for an arbitrary chosen V (u) are shown in Figs. 4(1) and
4(2). The resulting flow J (K,ω) is shown in Fig. 4(3).
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Fig. 4. Numerical results using the pinning potential V (u) = (2π)2[sin(2π(u+ b))+
0.22 sin(4π(u + b))] with b = 0.194969. (1) shows the saddle phase ∆(K, ω) for K =
1, 2, 4, 10 (labeled from a to d). The mean asymmetry ucm = ucm −1/2 is plotted in
(2) for the same values of K. (3) shows the surface J (K, ω) for 0.5 < K < 6.0 and
0 < ω < 1. The figure reflects the crests of high flow near integer commensuration
and the small region of current reversal around ω = 0.5 at low values of K

6.2 Switching Interaction W (∆u) On-off

We now consider the version 2 of the collective ratchet effect in the FK
model. The initial configuration (before turning the coupling off) is a ground
state uα

n(0) = f(nω + α). When the interaction W (∆u) is switched off (anti-
integrable limit), every single particle in the configuration evolves towards
the minimum of its potential well, so that the asymptotic configuration is a
recurrent stable RO uncoupled configuration, which can be written as

uα
n(τoff) = Int(nω + α) + a. (49)

Thus, during the off-semicycle, no particles pass over u = 0 (mod 1), and the
partial local flow J 0

off = 0.
Now the coupling parameter is turned on to the value C. It is easy to re-

alize that for small enough values of C no particles can pass over a potential
maximum. Indeed, if the coupling parameter is much smaller than the (ab-
solute value of the) maximal slope of the pinning potential V (u), the coupling
forces cannot overcome the pinning forces and each particle will remain in its
initial potential well, so that J 0

on = 0 for all ω. This suggests the existence of
a threshold value of the coupling, though it may depend on ω.

In order to prove that there is a threshold value, likely dependent on the
mean spacing ω, Cth(ω) <∞, such that for C > Cth(ω) the flow is non-zero,
we can analyze the limit C → ∞ of version 2. This limit is equivalent to the
limit K → ∞ of the version 1; in this limit the distribution centroid ucm of
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uncoupled configurations tends to a for all ω, and the saddle phase ∆ tends
to zero, so that from the (48) one obtains the limit flow

J (∞, ω) =
{
q−1Int

(
q
(
a− 1

2 (1− q−1)
))

if ω = p/q
a− 1

2 if ω is irrational . (50)

One concludes that, provided a �= 1/2, the flow is zero only for those rationals
ω = p/q such that q ≤ (2|a − 1/2|)−1, which is a finite set of values in the
unit interval. Then, for each mean spacing ω (except at most a finite number
of rationals per unit interval), there is a threshold value 0 < Cth(ω) < ∞ of
the coupling parameter separating two different regimes.

In order to visualize the existence of thresholds for transport, one can think
of the phase portrait in configuration space: The recurrent stable RO equilib-
rium un = f(nω+α) has a basin of attraction whose frontier is the saddle sta-
ble manifold. For low values of C, the uncoupled configuration Int(nω+α)+a
belongs to this basin of attraction. Increasing the value of C results in a contin-
uous variation of the ground state, the saddle, and the saddle stable manifold.
When C = Cth(ω) the saddle stable manifold touches on the point in con-
figuration space representing the uncoupled configuration. A further increase
of C places the uncoupled configuration inside the basin of attraction of the
contiguous ground state.

We show in Fig. 5 the numerical computations [28] of Cth(ω) for the same
potential function V (u) as in Fig. 4. One can clearly observe there both jump
and point discontinuities at rational values of ω. Note that a ≈ 0.610061 and
(2|a−1/2|)−1 ≈ 4.5 for this potential, so C−1

th could only be zero for q ≤ 4, as
confirmed by the numerics. Figure 6 shows numerical computations of the flow
J (C,ω) for some values of the coupling parameter C; the most remarkable
aspect of these graphs is their piecewise linear shape. In the next section we
will discuss these features from the perspective of the Discommensuration
Theory.

Fig. 5. Numerical computation of the inverse of the threshold coupling parameter
(C−1

th ) as a function of ω (drop lines are guides for the eyes)
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ω ω

J

Fig. 6. Plot of the flow J (ω) for two different values of the inverse coupling para-
meter C−1 = 0.8 and 0.7

7 Discommensuration Theory

As mentioned in Sect. 2, according to the Discommensuration (DC) Theory,
a ground state of mean spacing ω, with phonon gap, is well approximated by
an “array of DCs” on a ground state of close enough rational mean spacing
ω0 = p/q, more precisely, by a concatenation of segments of DCs of mean
length |qω − p|−1, with advanced DCs if ω > ω0 and retarded DCs if ω < ω0,
the error being exponentially small in |qω− p|: at most exp(−1/(2ξ|qω− p|)),
where ξ is the decay range (coherence length) of the DC.

So provided ξc is small, where c = |qω − p| is the density of DCs (inverse
of the average spacing between DCs), the DCs in the array are almost non-
interacting (thus almost identical) field excitations. This allows to describe
the physical properties of the ground state of mean spacing ω in terms of
the DC properties relative to the substrate configuration (the ground state of
mean spacing ω0).

A convenient variable for the representation of a DC is the averaged rela-
tive positions ϕDC

j of the DC configuration (wDC
j ) with respect to the substrate

configuration (uω0
j ):

ϕDC
j = q−1

q−1∑

i=0

(
wDC

j+i − uω0
j+i

)
. (51)

Figure 7 illustrates the “intrinsic” properties of a DC: The excess length of
a DC is the asymptotic difference limj→∞ ϕDC

j −limj→−∞ ϕDC
j = ±q−1, where

+ is for advanced and − for retarded DCs. The width of a DC is twice the
decay range ξ of the substrate configuration, and the center of a DC is an index
j0 for which the deviation from the substrate configuration is maximum. A
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(a)

(b)

(c)

(d)

Fig. 7. (a) Graphical representation of the intrinsic properties of an advanced DC
(see text for definitions). (b) Array of equispaced DCs. (c) Distribution function
(mod 1) of an array of equispaced DCs over a commensurate configuration: each
jump in the d.f. (mod 1) of the commensurate configuration (central vertical line
in the figure) is now splitted into several jumps at the DC particle positions, of
height c. (d) The relative advance L of the DC center during a time T involves a
microscopic total displacement of L/q relative to substrate

finite displacement of the DC center j0 → j0 +L involves a total displacement
of particles ≈ ∓Lq−1 relative to the substrate.

An array of identical DCs (on a substrate of mean spacing ω0) with density
(inverse number of particles between DC centers) c = q|ω−ω0| = |qω−p| has
a d.f. (mod 1) Fω as sketched in Fig. 7.c: there are new jumps (with respect to
the substrate d.f. Fω0) located at the DC particle positions wDC

j (mod 1), and
the height of these jumps is the density c of the array. From these observations
one can see that the Fω-average of a period-1 test function g can be expressed
as ∫ 1

0

g dFω =
∫ 1

0

g dFω0 + c gDC (52)



The Frenkel-Kontorova Model 233

where the quantity gDC is a characteristic (intrinsic property) of a single DC,
thus independent of ω. The importance of (52) is that it provides the full
Taylor (power) series expansion of macroscopic variables in a neighborhood
of ω0 (note that c = q|ω − ω0|), which contains no terms higher than linear.

We will now derive explicitly (52) for the particular case g(u) = Frac(u),
i.e. compute ucm(ω)− ucm(ω0) for values of ω very close to the rational ω0:

ucm(ω)− ucm(ω0) = lim
N→∞

(2N + 1)−1
N∑

n=−N

(Frac(uω
n)− Frac(uω0

n )) (53)

≈ lim
N→∞

(2N + 1)−1
N∑

n=−N

(Frac(vn)− Frac(uω0
n )) (54)

where (vn) is the configuration of concatenated DCs, and an error of size at
most exp(−1/(2ξ|qω − p|)) is incurred. Now, assuming 2N + 1 " c−1 " 1
we approximate the sum above as the number c(2N + 1) of DCs in the seg-
ment of length 2N + 1 times the average contribution of each DC. To make
sense of the contribution

∑N
n=−M (Frac(wDC

n ) − Frac(uω0
n )) of a DC, where

wDC
n denote the particle positions in a DC configuration centered at n = 0,

one has to consider the limit of the sum over whole numbers of period q,
limk→−∞,l→+∞

∑lq+i
n=kq+i(Frac(wDC

n )−Frac(uω0
n )), else in general it oscillates

for ever as M,N →∞. This still depends on the phase i (mod q), but it can
be shown to cycle periodically through the q possibilities along the array of
DCs. So the end result is that

lim
N→∞

(2N + 1)−1
N∑

n=−N

(Frac(vn)− Frac(uω0
n )) ≈ c αDC , (55)

with

αDC =
1
q

q∑

i=1




∞∑

k=−∞




kq+i+q−1∑

n=kq+i

(
wDC

n − uω0
n

)






 . (56)

We can thus write, with exponentially small error:

ucm(ω) = ucm(ω0) + |ω − ω0|qαDC (57)

where αDC can be interpreted as the relative asymmetry of the DC with
respect to the substrate (ω0 = p/q) configuration. In formula (57), it is to be
understood that αDC must be computed with the advanced DC if ω > p/q
and with the retarded one if ω < p/q.

From (57), we see that whenever α+ �= −α− (± denoting advanced/
retarded DC), there is a jump discontinuity in the first derivative of ucm(ω).
Unless some special symmetry is invoked in particular cases, these singulari-
ties must occur generically. Indeed, they are easily observed in the numerical
computations [27] of the distribution centroid shown in Fig. 4.b. We also see
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clearly in Fig. 4.b that the saddle phase ∆(ω) has a discontinuous first deriv-
ative. However this quantity is not a Fω-average, so that the explanation of
this observation cannot be made on the basis of (52) (note also that the very
concept of DC looses all meaning in the integrable limit K = 0).

As one should not expect that the discontinuities in the slope of ucm(ω)
exactly cancel those of ∆(ω), one concludes that the flow J (K,ω) shows
discontinuous first partial derivative with respect to ω at rationals. Indeed,
our numerical results are fully consistent with this expectation.

For the version 2 of the collective ratchet effect, the DC theory remains a
valid approach during the complete cycle, provided C is bounded. An inter-
esting consequence for the functional form of the flow dependence on ω is the
following:

Assume that ω is close to a rational ω0 = p/q, ω > ω0 (respectively
ω < ω0), and Cth(ω) < C <∞. Let r+ (resp. r−) be the displacement of the
advanced (resp. retarded) DC center relative to the substrate after a complete
on-off cycle. (Note that, in general, r+ and r− can be different integers.) The
flow J (C,ω) can thus be written as

J (C,ω) = J (C,ω0)∓ r±|ω − ω0|
= J (C,ω0)− r±(ω − ω0) (58)

with exponentially small error. On one hand, this assures continuity of the
flow respect to ω, and on the other a discontinuous first partial derivative
whenever r+ �= r−. The numerical computations of the flow shown in Fig. 6
confirm these expectations.

From the DC theory basic tenet, a DC configuration is the one-sided limit
of a sequence of (commensurate or incommensurate) ground state configura-
tions of average spacings ωj approaching the rational p/q from the left (re-
tarded DC) or right (advanced DC) side. Thus, the one-sided limit Cth((p/q)±)
is the threshold coupling for the (advanced/retarded) DC configuration at
ω = p/q. Unlike the centroid, the threshold coupling is not a configuration av-
erage, and then there is no reason that Cth(p/q), Cth((p/q)+) and Cth((p/q)−)
should coincide and they indeed do not, in general, as shown by numerical
results in Fig. 5.

8 Exercises

1. A close inspection of the graph of C−1
th (ω) in Fig. 5 reveals that the value

of Cth(ω) at rationals is greater than its left-hand and right-hand limits
there and, apart from these point discontinuities, Cth(ω) is a step function.
Use Discommensuration Theory to explain these numerical observations.

2. Metastable configurations of the FK model are stable configurations which
are not m.e.c. They are assured to exist for all values of ω, provided
K is high enough (or, equivalently, C is low enough). A simple type of
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metastable structure is an array of DCs on a commensurate substrate with
a non-homogeneous inter-spacing between contiguous DCs. For the version
2 of the collective ratchet effect, an initial metastable configuration of this
type can evolve after a complete on-off cycle into a translate of itself.
(a) Give an argument supporting the previous statement.
(b) Work out a numerical example confirming this assertion.
(c) Argue that this is not possible to happen for the version 1 of the

collective ratchet effect.
3. Along these lecture notes we have assumed thermodynamic limit condi-

tions. An important issue in some applications to experimental systems
is how finite size effects can modify the system behaviour. Concerning dy-
namics, in particular, it is important to note that for finite chains the mean
spacing ω is no longer a constant of motion. The parameter which controls
the finite system length in the Standard model (W (∆u) = 1

2 (∆u)2−σ∆u)
is the tension σ (i.e. the unstretched length of the “springs”). Also, the
very notion of RO configuration is not so useful for a finite system. The
aim of this exercise is to illustrate some of the differences in the behaviour
in the version 1 of the ratchet collective effect. Consider an equispaced
initial configuration of 720 particles with spacing 3/80, and integrate the
equations of motion of overdamped dynamics at K = 0.05 for both peri-
odic boundary conditions (pbc – infinite system size) and a finite system
with σ = 3/80 with free boundary conditions (fbc).
(a) Compute the flow in both cases and plot the ϕ-profile:

ϕj = q−1

q−1∑

i=0

(
ufbc

j+i − upbc
j+i

)
. (59)

(b) Explain the ϕ-profile and the difference in the flow in terms of the
asymmetric entrance of DCs at boundaries.

(c) Answer question (a) for K = 0.4, and comment on the differences with
respect to the case K = 0.05.

8.1 Solutions to Exercises

1. The positions (mod 1), Frac(wDC
j ), of the particles around the DC center

j0 are placed inside the gaps between the particle positions (mod 1) of the
ground state configuration (see Fig. 7); in particular, there are particles
in the DC configuration closer to the potential maxima. Then one expects
that the threshold coupling of a DC is lower than the threshold of the
commensurate substrate: Cth(p/q) > Cth((p/q)±).

For the second observation, to fix ideas, consider an array of ad-
vanced DCs (ω >∼ p/q) with a very low density c = qω − p, so that
the DCs behave independently, i.e. each of them behaves as a single DC
does. For C < Cth((p/q)+) neither the DCs nor the substrate can move,
then Cth(ω) ≥ Cth((p/q)+) for ω >∼p/q. On the other hand, as the DCs
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are assumed independent, they do move for C > Cth((p/q)+), so that
Cth(ω) ≤ Cth((p/q)+). Thus, provided the assumption of independent DCs
holds, one concludes Cth(ω) = Cth((p/q)+) for ω >∼p/q.

2. (a) Provided the distances between contiguous DCs in the array are large
enough, each DC will move independently of the others for values of the
coupling larger than the DC threshold. After a complete on-off cycle,
the displacement of each DC center will be the same, then the distances
between DCs will remain as the initial ones, and the final configuration
will be a translate of the initial metastable configuration.

(b) First, one has to compute a DC configuration on a commensurate
ground state. We make the arbitrary choice ω0 = 1/2 and compute the
advanced DC configuration by integrating the overdamped equations
of motion (using a standard Runge-Kutta algorithm) for an initial eq-
uispaced configuration of 251 particles over 125 periods of V (u). We
use the same potential function as in the numerical examples shown in
previous sections, and C = 2. Then, we construct the initial metastable
structure by joining four finite pieces (of different length) of the DC
configuration centered around the DC center and finally impose peri-
odic boundary conditions (see Fig. 8).

After numerical integration of the equation of motion (during
semicycle times large enough to assure that equilibrium is effectively
reached after each semicycle), we observe that the final configuration
is a translate of the initial one (see Fig. 9). As expected from the ar-
gument above, each DC center has been shifted by the same amount.
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Fig. 8. Plot of ϕj for an array of 4 discommensurations. The substrate is an ω0 =
1/2 configuration, and ω = 21/40. The coupling parameter is set to C = 2. The
separation between the DCs (c−1

i ) in the metastable configuration are symbolized
by the arrows between them
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Fig. 9. Evolution of the metastable configuration of Fig. 8 after one period τoff +τon.
The initial distance between the DCs is preserved. As can be seen from the initial
and final state of each DC ((a), (b), (c) and (d)) all the DCs centers have been
shifted 1 site to the left
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Fig. 10. (a) Time evolution of ϕj . The times of the instantaneous profiles are
t = 102, 2 · 103, 2 · 104, 105 and 106 � τrelax. Figures (b), (c), (d) and (e) show the
instantaneous force (or velocity) distribution of the fbc configuration at t = 2 · 103,
2 · 104, 105 and 106 respectively

(c) In the version 1 of the collective ratchet effect, any initial metastable
configuration evolves asymptotically during the off-semicycle to an eq-
uispaced configuration. This cannot evolve back to metastable during
the on-semicycle, so that the dynamical persistence of metastable con-
figurations is impossible in version 1.
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3. (a) The results of the numerical computation of the ϕ-profile at different
evolution times are plotted in Fig. 10. The flow difference is 0.12174−
0.00589 = 0.11585.

(b) We observe a negative average slope of the ϕ-profile. Thus, the asymp-
totic equilibrium of the fbc configuration has a shorter total length than
the pbc equilibrium; it can be described as an array of (equispaced)
retarded DCs over the pbc configuration.

The negative excess length (which for initial times is concentrated
at the boundaries) spreads slowly over the whole chain. In other words,
DCs enter on a short time scale, and then propagate on a larger time
scale toward inner regions. One also observes that more DCs enter
from the left boundary than from the right one, so that the center of
mass of the final fbc configuration is displaced relative to that of the
pbc one, explaining the flow difference. In Figs. (b) to (e) we plot the
instantaneous force (or velocity) profile of the fbc chain.

(c) For K = 0.4 the flow difference is much smaller: 0.04911 − 0.04653 =
0.00258. As observed in the ϕ- profile in Fig. 11, the DCs that en-
ter from the boundaries (due to the shortening of the chain length)
are unable to overcome the Peierls-Nabarro barrier to their motion,
and the negative excess length remains concentrated near boundaries.
Consequently, inner regions of the chain do not feel any effect from the
boundaries, and the macroscopic behaviour is unaffected by boundary
conditions.
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Fig. 11. Profile of ϕj for the K = 0.4 free ends configuration with σ = 3/80 and
N = 720
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21. L.M. Floŕıa and J.J. Mazo, Adv. Phys. 45, 505 (1996). 220, 221
22. C. Baesens and R.S. Mackay, Nonlinearity 11, 949 (1998). 220, 221
23. C. Baesens and R.S. Mackay, Nonlinearity 17, 949 (2004). 221
24. L. Kuipers and H. Niederreiter Uniform distribution of sequences (John Wiley

and Sons, New York 1974). 222
25. Appl. Phys A 75 (2002), special issue on “Ratchets and Brownian motors”,

guest ed. H. Linke. 223
26. L.H. Tang, Ph.D. Thesis, (Carnegie-Mellon University 1987); L.H. Tang and

R.B. Griffiths J. Stat. Phys. 53, 853 (1988). 225
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1 Introduction

The collective dynamics of groups of coupled dynamical systems is of great
interest for understanding spontaneous pattern formation in biological and
many other systems; see for example [58]. One can learn a lot about such sys-
tems by first studying idealized cases where the systems are perfectly identical;
this approach has been very successful in understanding general properties of
synchronization as well as particular applications; see for example [77]. In this
chapter we consider how this can lead to the appearance of attractors with
riddled basins. These basins appear because symmetries of dynamical systems
force the presence of invariant submanifolds; the attractors within invariant
manifolds may be only weakly attracting transverse to the invariant manifold
and this leads to a basin structure that is, roughly speaking, full of holes.

From a theoretical point of view, this behaviour is of interest because it
seems strange or pathological but is in some sense common. From a practical
point of view, this behaviour points towards the presence of extreme sensitivity
of the dynamics to noise, also called ‘bubbling’ of attractors. Most interest-
ingly, if we consider generic dynamics within a class of symmetric systems,
riddled basins can appear as a robust phenomenon; they can be persistent for
open sets of parameters of the system.

For the remainder of this section we briefly discuss basins of attraction and
a motivating example of a piecewise linear map with an explicitly computable
riddled basin attractor. More general properties of riddled sets and basins are
discussed in Sect. 2 including their noise sensitivity. This is followed in Sect. 3
by a discussion of the use of symmetries, ergodic measures and Lyapunov
exponents tools for identifying riddled basins; we also discuss anisotropic rid-
dling in Sect. 4 along the lines of [7]. Finally in Sect. 5 we outline a few open
problems related to riddling phenomena.

P. Ashwin: Riddled Basins and Coupled Dynamical Systems, Lect. Notes Phys. 671, 181–207
(2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



182 P. Ashwin

1.1 Attractors for Smooth Maps on Compact Manifolds

Qualitative dynamics is about ignoring information. Since one cannot find
explicit solutions to all but the simplest dynamical systems, the first step is
usually to concentrate on what happens “eventually”, i.e. for the asymptotic
dynamics, and this leads to several possible definitions of attractor. We will
discuss a couple of these notions, though there are other notions of attractor
based on invariant measures are also very useful; see for example [29, 71]. We
refer the reader to the other chapters in this volume for further discussion and
examples of attractors in coupled systems as well as [61].

We concentrate on dynamical systems generated by iterated maps

f : M →M

where M is a compact manifold and f is a smooth map generating a dynam-
ical system on iteration, though in some cases we may drop assumptions of
smoothness or may wish to consider flows Ft with t ∈ R. There are some com-
ments on generalizations of this to other less restrictive cases in later sections,
in particular in Sect. 5.

The (forward) trajectory through x ∈ M is the set {fn(x) : n =
0, 1, 2, · · · } and we say a set A ⊂ M is (forward) invariant if f(A) = A.
Define the ω limit set by

ω(x) =
⋂

n>0

{fm(x) : m > n} .

This represents the set of points that the orbit of x accumulates on as t→∞.
Note that the set ω(x) is invariant under f . To see this, consider y ∈ ω(x);

then there is a sequence nk such that fnk(x) → y. Continuity of f means that

fnk+1(x) → f(y)

and so f(y) is also in ω(x). Hence ω(x) is (forward) invariant.
In cases where f is invertible one can apply the same considerations to

α(x), the limits of f−n(x) as n → ∞. An attractor is in some sense the
smallest set that contains all ω(x) limits that one care about; since ω-limit
sets are invariant we only really need to consider invariant sets as candidates
for attractors. Given an invariant set A, consider the set of points whose orbits
are asymptotic to A

B(A) = {x ∈M : ω(x) ⊂ A}

which is the basin of attraction of A.
For the definition of attractor given by Milnor [56] we need a Lebesgue

equivalent background measure on M that we denote by �(·) and by �(A) > 0
we include the possibility that it is infinite. Recall that Lebesgue measure
is simply a generalization of length/area/volume such that one can measure
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many sets constructed from infinite unions and intersections of open sets. We
say the compact invariant set A is a weak attractor if (M1) holds, it is a Milnor
attractor if (M1) and (M2) hold, and a minimal Milnor attractor if (M1) and
(M2’) hold [16], where:

(M1) �(B(A)) > 0.
(M2) For any proper compact invariant subset A′ ⊂ A we have

�(B(A) \ B(A′)) > 0.

(M2’) For any proper compact invariant subset A′ ⊂ A we have

�(B(A′)) = 0.

for further comments on these notions see also [24].
One can think of a Milnor attractor as the smallest compact set that

attracts all initial conditions except for a set of zero measure with respect to
some natural “background measure”. As shown in [56] Milnor attractors can
be constructed by examining the likely limit sets for positive measure subsets
S ⊂M ; these are compact sets Λ(S) that are the smallest such that ω(x) ⊂ Λ
except for a zero measure set of x ∈ S.

From the point of view of numerical simulations of a dynamical system,
Milnor attractors are just as reasonable a definition of attractor as for ex-
ample an asymptotically stable attractor; recall that an asymptotically stable
attractor is an A such that (i) for any open set U containing A there is an
open set V containing A such that x ∈ V implies that fn(x) ∈ U for all n and
(ii) ω(x) ⊂ A for all x ∈ V . An A that satisfies only (i) is Lyapunov stable.
Note that an asymptotically stable attractor must be a weak Milnor attractor
with a basin than contains an open set.

1.2 A Motivating Example

Simple examples of systems with riddled basin attractors can be found by
considering skew product dynamical systems. A direct product of two maps
g and h is simply the map obtained by f(x, y) = (g(x), h(y)); g and h are
referred to as factors; projecting onto one of the coordinates gives a map that
is well-defined. A skew product is a map of the form

(x, y) �→ f(x, y) = (g(x), h(x, y)) (1)

that has only one factor, in this case g. In cases where h(x, y) = yĥ(x, y) the
map (1) has an invariant subspace N = {(x, 0)}. We consider as in [6] the
piecewise linear map on (x, y) ∈ [0, 1]× [0,∞) of the form (1) where

g(x) =
{
α−1x for 0 ≤ x < α
(1− α)−1(x− α) for α ≤ x < 1 (2)

h(x, y) =






γy for y < 1 and 0 ≤ x < α
γ−1y for y < 1 and α ≤ x ≤ 1
1 + β(1− y) for y ≥ 1 .

(3)
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We will assume that γ > 1, 0 < α < 1
2 and −1 < β < 0 are fixed. Varying

α through 1/2 allows one to observe a blowout bifurcation of an attractor
A = N . Varying β allows one to change the dynamics between supercritical
and subcritical scenarios; for more details of the other parameter values, see
[6]. In the case −1 < β < 0, any trajectory that arrives in y ≤ 1 will stay
there for ever.

First, observe that this map has an invariant subspace y = 0 on which the
dynamics is chaotic on this set A in the strongest sense that is commonly in
use; the dynamics has Lebesgue measure as an ergodic invariant measure for
which the dynamics is Bernoulli.

Now pick any x ∈ [0, 1] and consider its itinerary under the “skewed dou-
bling map” g. This defines a symbol sequence {si}i=0,1,2··· where si = 0 if
0 ≤ f i(x) < α and si = 1 if α ≤ f i(x) ≤ 1. Define

lk = #{0 ≤ j < k : sj = 0}, rk = #{0 ≤ j < k : sj = 1},

the number of times that the itinerary of x is resp. to the left/right of x = α.
For almost all x we can use the fact that Lebesgue measure on [0, 1] is invariant
and ergodic under g to conclude that the following sequences converge

lim
k→∞

lk
k

= α, lim
k→∞

rk

k
= 1− α (4)

for almost all x ∈ [0, 1]. If we now define

Mk(x) = γlk−rk

then as long as α < 1
2 we have by (4) that limk→∞ 1

k (lk − rk) = 2α− 1 < 0 so
that limk→∞ lk − rk = −∞. Hence

lim
k→∞

Mk(x) = lim
k→∞

exp [(lk − rk) ln γ] = 0

for almost all x. By comparing with (3) one can verify that

fk(x, y) = (gk(x),Mk(x)y) (5)

as long as Mk(x)y does not exceed 1. We define

Y (x) = max
(

1, (sup
k≥0

Mk(x))−1

)

For almost all x we have 0 < Y (x) ≤ 1. If y < Y (x) then (5) holds for all
k ≥ 0 because Mk(x)y will never exceed 1.

In summary, there is a function Y (x) with Y (x) > 0 for almost all x that
describes the basin of attraction of A:

B(A) = {(x, y) : 0 ≤ y < Y (x)}.
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Clearly, the Lebesgue measure of B(A) must be greater than zero; it is simply
�(B(A)) =

∫
[0,1]

Y (x) dx, and A is a minimal Milnor attractor because almost
all x have g orbits that are dense in [0, 1].1 However the function Y (x) is
highly non-smooth and it is this that makes the basin B(A) in fact riddled as
shown in Fig. 1.

x

y

Fig. 1. The black set shows a numerical approximation of the riddled basin for the
attractor in (x, 0) with α = 0.45, γ = 1.2 and β = −1 for the map (1,2,3). The box
shows points (x, y) ∈ [0, 1]2 while initial conditions in the white set are ejected to
y ≥ 1

For this example we can compute the measure within the basin as in [6].
Let ε = 2α− 1 and note that α < 1/2 implies that ε < 0 in what follows. We
partition [0, 1]2 into a set of strips

In = [0, 1]× (γ−n−1, γ−n), n = 0, 1, 2, . . .

where the strip In has height γ−n−1(γ − 1). The form of the map means that
it is conjugate to a mapping on the In defined by

T (x, n) = (g(x),m(x, n))

where

m(n, x) =






n− 1 if 0 ≤ x < α and n > 0
n+ 1 if α ≤ x ≤ 1 and n > 0
0 if n = 0

1 Recall that a sequence of points xn is dense in a metric space M if any open set
in M contains a point in the sequence.
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which can be viewed as a biased random walk on N ∪ {0} with 0 being an
absorbing state. Let qn, n > 0, be the probability of arriving at the state 0;
then

qn =
1
2
(1 + ε)qn−1 +

1
2
(1− ε)qn+1

which has solution qn = Λ−n where Λ = (1 − ε)(1 + ε) will satisfy Λ > 1.
Hence the measure of points that are attracted to the invariant subspace is
given by

�(B(A)) =
∞∑

n=1

γ−n−1(γ − 1)(1− Λ−n) =
γ(Λ− 1)
Λγ − 1

·

Clearly �(B(A)) → 0 as ε → 0−. We illustrate in Fig. 2 the structure of
the complement of the basin of attraction; note that there are “tongues” of
instability that come down to touch the x-axis at all points (x, 0) such that
the itinerary of x ends in an infinite number of 0s. Since this set is dense,
we can conclude that the basin of attraction of y ≥ 1 is dense and all points
must exit after a finite time, it follows from this that this set is open and
dense. In terms of Y (x) this means that Y (x) = 0 on a dense set in [0, 1];
since Y (x) is almost everywhere positive, Y (x) is discontinuous on a dense
set on [0, 1]. In fact, Y (x) is upper semicontinuous at almost all x and the set
{(x, y) : y > Y (x)} is open and dense in R

2.
One might suspect that this behaviour is caused by the presence of discon-

tinuities in the map (1) but in fact this is not the case; similar basins appear
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Fig. 2. (a) The structure of the basin of attraction of A for the map (1,2,3) discussed
in the text. For α < 0 the invariant set A in y = 0 has a basin with positive measure
whose complement is open and dense and whose structure is shown by the shaded
set. The coding indicates the x-itinerary of those points in y < 1 before they are
expelled to y ≥ 1. By including all possible finite words that occur before expulsion
one obtains a set that is dense and open in [0, 1]2 yet which does not have full
measure. (b) shows the strips In for this map (see text)
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naturally in smooth and even invertible maps and seem to be robust in many
systems with symmetries or invariant subspaces.

1.3 Related Notions of Basin Complexity

A somewhat simpler concept than riddled basin, is that of a fractal basin
boundary. It has been observed since the work of Julia and Fatou for complex
maps, that even linearly stable equilibria e may have basins of attraction B =
B({e}) with boundary such that the Hausdorff dimension dimH(∂B) is not an
integer; for example, see [32, chapter 14] (recall that ∂B = B \ Interior(B)).
One should stress however that for riddled basins, not just the boundary has
“fractal” properties, but the whole set is inseparable from its boundary and
in fact ∂B = B up to a set of zero measure.

Another notion of attraction that is weaker than asymptotic stability but
is stronger than Milnor attraction is that of essential asymptotic stability [54];
we say an invariant set A is e.a.s. if it is asymptotically stable if one excludes
a set of small measure compared to small neighbourhoods of A; more precisely
if there is a set S such that for any neighbourhood U of A and any 0 < a < 1
there is a neighbourhood V of A with �(V \ S)/�(V ) > a where x ∈ V \ S
implies that fn(x) remains in U and is asymptotic to A. Such attractors are
found quite commonly and robustly in heteroclinic networks that have lost
asymptotic stability. However in this case the basin of attraction of A may
still be an open unriddled set.

2 Riddled Sets and Riddled Basins

In contrast to attractors with fractal basin boundaries, a riddled basin is
“fractal” everywhere. However, since a basin of attraction must have positive
measure within phase space, in fact it must have Hausdorff dimension equal
to that of phase space and so cannot have non-integer dimension. It is a “fat
fractal” in the terminology of [30, 34] in that it contains a dense set of holes.
In the following we will use the definitions as in [16] though we note that
there are several possible equivalent definitions. We denote by Bδ(x) = {y ∈
M : |y − x| < δ} the open δ-ball about x in M .

A riddled subset A ⊂ R
n is a measurable set with the property that for

any δ > 0 and any x ∈ A we have

�(A ∩Bδ(x)) > 0 and �(Ac ∩Bδ(x)) > 0 . (6)

More generally given any set A with positive measure one can define its riddled
component

Arid = {x ∈ A : �(Bδ(x) ∩A)�(Bδ(x) ∩Ac) > 0 for all δ > 0} .
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We use this to distinguish cases of full riddling (�(A \ Arid) = 0), lack of
riddling (�(Arid) = 0), with partial riddling being any other case. If A is the
closure of an open set with smooth boundary then ∂A = Arid.

Sometimes one would like to discuss a similar condition to (6) but rather
than comparing A and its complement Ac one would like to compare to disjoint
subsets A and B of R

n. If A and B are disjoint and both have positive measure
then we say A is riddled with B in the case that almost all x ∈ A and all δ > 0
have

�(Bδ(x) ∩A)�(Bδ(x) ∩B) > 0 .

In the case that A is riddled with B and B is riddled with A we say they are
intermingled.2

One can show that the riddled component of an invariant set A is invariant
for a large class of maps. We say f is of type (P) if it is continuous, a local
homeomorphism and nonsingular (i.e. for any V , �(V ) = 0 if and only if
�(f(V )) = 0). The following result taken from [16] can be generalised to cases
where f is almost everywhere a local homeomorphism or to some classes where
f is invertible but discontinuous on a set of zero measure [12].

Theorem 2.1. Suppose that f : M → M is of type (P) and V is invariant,
then Vrid is invariant.

Proof. Consider x ∈ V and choose a neighbourhood U1 of x and U2 of f(x)
such that f : U1 → U2 is a homeomorphism. Consider any δ > 0 such that
Bδ(x) ⊂ U1 and Bδ(f(x)) ⊂ U2. Continuity of f means that we can find δ >
ε > 0 such that f(Bε(x)) ⊂ Bδ(f(x)). Hence �(Bδ(f(x))∩V c) ≥ �(f(Bε(x))∩
V c); by considering the local inverse we see that there is a δ > 0 such that
�(Bδ(x)∩V c) = 0 if and only if there is an ε > 0 such that �(Bε(f(x))∩V c) = 0.
Applying the same argument to V in place of V c means that x is in Vrid if
and only if f(x) is. ��

This result can adapted to the case where f is almost everywhere a local
homeomorphism in which case we conclude that Vrid is invariant up to a set
of zero measure.

2.1 Characterization of Riddled Basins

One approach to characterizing dynamical invariants of riddled basins has
been to compute their uncertainly exponent; [34, 62]. This allows one to com-
pute a quantity that characterizes the “riddledness” of the basin or more
generally of a “fat fractal”. We define this as in [62] for a riddled subset of R

2.

2 If two positive measure sets A and B are intermingled then they cannot be evenly
distributed in the following sense; the Lebesgue density theorem [82, p107] or [32,
p69] implies that almost all points in A are points of density for A in the sense
that for almost all x ∈ A, limε→0 (Bε(x) ∩ A)/(Bε(x)) = 1. Hence almost all
points in A ∪ B are density points for only one of the sets A or B.
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Pick a typical line transverse to the basin and choose two points within 2ε of
each other. If we can estimate the probability p that one point is in the basin
and the other is not by p ∼ εφ we say that there is an uncertainty exponent
φ; in [62] it is shown that one can estimate this as the ratio φ = (λ⊥)2/4Dλ||

where λ⊥ and λ|| are the transverse and tangential Lyapunov exponents and
D is the rate of convergence of variance of finite time Lyapunov exponents.

Another (simpler) characterization of a riddled basin proposed by [62] is
the scaling of the measure near the attractor; this corresponds to taking a
line at a distance y from the attractor; in many cases the measure of the
basin intersected with this line scales as yη. This is estimated in [62] as being
η ∼ |λ⊥|/D.

An interesting observation is that the Kaplan-Yorke formula relating di-
mension of attractor to Lyapunov dimension [44] can fail for riddled basin
attractors; one characteristic of blowout bifurcations is that they are associ-
ated with a sudden regain of the validity of that formula.

2.2 Locally and Globally Riddled Basins

There are cases where an attractor has a basin with full measure in some
open neighbourhood but still a form of riddling in the convergence towards
the attractor. More precisely, consider any open neighbourhood U of A and
define the basin of A relative to U to be

BU (A) = {x ∈M : ω(x) ⊂ A and fn(x) ⊂ U for all n ≥ 0} .

We say the basin of A is locally riddled if there is a neighbourhood U of A
such that BU (A) is riddled [16] (this is a stronger assumption than that given
in [9] where it is only assumed that the riddled component of BU (A) is dense
in A). It is globally riddled in the case that U can be chosen to be equal to M .

2.3 Riddling and Noise Sensitivity; Bubbling of Attractors

A useful model for noise in iterated maps consists of adding an independent
uniformly distributed random variables to all components at every iteration.
For attractors with riddled basins, this can give rise to discontinuous behaviour
in the support of attractors as the noise goes to zero and was called bubbling
in [8].

More precisely, suppose that A ⊂ N ⊂ M with A a Milnor attractor for
f : M →M and the basin of A is locally riddled (say BU (A) is riddled with U
compact in M) but which is asymptotically stable in the invariant subspace
N . Consider the perturbed map

xn+1 = fσ(x) = f(xn) + σξn (7)

where ξn is a vector of i.i.d. random variables uniformly distributed in
[−0.5, 0.5]. Suppose that fσ has an attractor Aσ in the sense that Aσ is the
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smallest compact set that contains all limit points for realizations of the noise
ξn and all x in some open region.

We say the attractor A for f is stable to noise if Aσ → A in the Haus-
dorff metric as σ → 0. This is a weaker notion than for example stochastic
stability discussed in [18]; the latter considers convergence of measures for the
perturbed system to a natural measure for the noise-free system. Define the
unstable set of A to be

U(A) = {x : ∃{x−n} with f(xn−1) = x−n & limn→∞ d(x−n, A) = 0}

i.e. the set of points that have a backward trajectory from A (this definition
is simpler if f is invertible); clearly U(A) ⊃ A. If A is stable to noise then
U(A) ⊂ A. Riddled basin attractors typically have U(A) �⊂ A and so are not
stable to noise.

We will explore further properties of bubbling (in the presence of several
invariant subspaces) in Sect. 4.

3 Symmetry, Transverse Stability and Riddling

Consider a smooth iterated mapping f : M →M with M = R
m some Euclid-

ean space and write �N (.) to denote Lebesgue measure on N a linear subspace
of M . Suppose that f commutes with (is equivariant for) the action of some
finite matrix group Γ acting on M (we only consider finite groups here though
similar results can be obtained for compact groups). This means that for any
x ∈M and for any g ∈ Γ we have that

g.f(x) = f(g.x) .

In general this will force a number of linear subspaces of M to be f -invariant.
More precisely, given any subgroup Σ of Γ we define the fixed point subspace

Fix(Σ) = {x ∈M : gx = x for all g ∈ Σ}

which is f -invariant. Not all subgroups give rise to distinct fixed point sub-
spaces; those that do are the isotropy subgroups of the action of Γ on M ; these
are the subgroups Σ(x) with x ∈ M such that Σ(x) = {g ∈ Γ : gx = x};
these are precisely the possible symmetries of points in M . We therefore ob-
tain, for a given group action, a finite number of linear subspaces Ni ⊂ M ,
i = 1 · · ·n and isotropy subgroups Σi ≤ Γ such that Ni = Fix(Σi) and so
f(Ni) ⊂ Ni. Note that Ni ⊂ Nj if and only if Σi ≥ Σj . Observe also that
Ni ∪ Nj = Nk for some k is also invariant. Conversely, if Σk is the smallest
isotropy subgroup that contains both Σi and Σj then Ni ∪Nj = Nk.

Two subgroups Σ1, Σ2 are conjugate if there is a g ∈ Γ such that Σ1 =
g−1Σ2g. The next basic result states that conjugate subgroups have fixed
point spaces that are mapped onto each other by the group. More precisely
we have the following elementary result.
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Lemma 3.1. Suppose that Σ is an isotropy subgroup and g ∈ Γ . Then g−1Σg
is an isotropy subgroup and Fix(g−1Σg) = g−1Fix(Σ).

Proof. Note that

Fix(g−1Σg) = {x ∈M : g−1hgx = x for all h ∈ Σ}
= g−1{gx ∈M : hgx = gx for all h ∈ Σ} = g−1Fix(Σ) .

��
There has been some work on symmetries of general chaotic attractors in

symmetric systems; see [33] for an overview, and [17, 19, 25, 27, 55]. Other
phenomena that can appear include intermittent dynamics between states
with a variety of different symmetries; for example [13, 14, 31].

3.1 Example; Invariant Subspaces for Four Globally Coupled Maps

Consider the map on R
4 defined by

x′i = (1− ε)f(xi) +
ε

4

4∑

j=1

f(xj) + σiηi (8)

for i = 1, . . . , 4, where at each time-step each ηj is an independent random
variable that is uniformly distributed on [−0.5, 0.5]. The local map f(x) =
1 − ax2 is a quadratic map and ε is the coupling strength. The noise in the
ith component can be controlled by setting σi nonzero.

The system (8) has been studied by several authors including notably
Kaneko [42] although only with isotropic noise perturbations, and displays a
wide range of synchronization and chaotic behaviour. Taborev et al. [79] have
also recently looked at the noise-free case of n = 3 cells in some detail.

This map has the symmetry of all permutations on n objects; it is equivari-
ant under the action of the group S4 given by permutation matrices on R

4.
There are many invariant subspaces corresponding to isotropy subgroups;
these can be characterized by partitions of {1..4} into 1 ≤ m ≤ 4 groups of
identical cells and after identifying conjugate subgroups the possible isotropy
subgroups are conjugate to one of the partial clustering states S1, S2, S2×S2,
S3 and S4. These have fixed point subspaces that are given by coordinates
within one partition being equal; for example if H is the subgroup generated
by the two-cycles (12) and (34) then Fix(H) = {(x, x, y, y)}.

One can order the possible subspaces by Σ1 < Σ2 if and only if Fix(Σ2) ⊂
Fix(Σ1); for the case Γ = S4 this gives the containments as shown in the
isotropy lattice in Table 1. Note that for n larger the isotropy lattice of Sn

becomes much more complicated.
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Table 1. The lattice of isotropy subgroups up to conjugacy for the symmetry group
S4 of four globally coupled maps. The arrows indicate containment of subgroups;
the isotropy subgroups can be interpreted as cluster states for the coupled maps

S4

↙ ↘
S3 S2 × S2

↘ ↙
S2

↓
S1

3.2 Symmetries and Lyapunov Exponents

Now suppose we have a compact invariant set A ⊂ N ⊂ M with N a linear
invariant subspace. Assume that A supports an ergodic f -invariant probability
measure µnat that is a natural measure, i.e. there is a positive measure set
(with respect to Lebesgue measure on N) such that points in these sets have
ergodic averages determined by µ; i.e. such that

lim
k→∞

1
k

k−1∑

j=0

φ(f j(x)) =
∫

A

φ(y) dµ(y)

for any continuous φ : N → R and a positive measure set of x ∈ N . We also
define

Erg(A) = {µ : ergodic measures with support on A}.
With respect to any ergodic measure µ ∈ Erg(A) we define the Lyapunov
exponents (L.E.s)

λ(x, v) = lim
n→∞

1
n

log
|Dfn(x)v|

|v| ·

Oseledec’s theorem [29, 53, 60, 66, 71] implies that for µ-almost all x and any v
this limit converges and may take one of only a finite number of possible values
λi(µ), i = 1, . . . ,m (we count multiplicity by the dimension of the subspace of
v that give this value for typical x). Recall that given any ergodic measure with
support contained within an invariant subspace N , the Lyapunov exponents
(L.E.s) will split into two groups [9, 23]; the tangential L.E.s λ||j (µ) and the
transverse L.E.s λ⊥j (µ); the former correspond to perturbations v within
N (cf the Sacker-Sell spectrum [75]). We assume that for any ergodic µ the
transverse L.E.s are ordered greatest first; λ⊥1 (µ) ≥ λ⊥2 etc. Define

Λmax = sup
µ∈Erg(A)

λ⊥1 (µ), Λnat = λ⊥1 (µnat).

In the case that Λmax > 0 and Λnat < 0 we will obtain an attractor A whose
basin is locally riddled and possibly globally riddled, and at least there will be
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a neighbourhood U for which the attractor have a relative basin BU (A) whose
riddled component includes A. It is however more difficult to come up with
necessary conditions for globally riddled basins that are not very restrictive.
See [7, 9, 16, 24] for some conditions that imply local riddling.

We say a Milnor attractor is regular if for any open neighbourhood U of A
then the measure of the basin of A relative to U is positive; �M (BU (A)) > 0.
A result in [1] implies that any Milnor attractor that is a uniformly hyperbolic
within N with Λnat < 0 will be regular.

Note that for uniformly hyperbolic A (within N) all ergodic measures
on A are limit points of sequences of periodic measures supported within A
[78] and so for such sets the existence of a measure with positive transverse
Lyapunov exponent implies the existence of periodic points with L.E.s that
are arbitrarily close to that of the natural measure.

3.3 Examples of Riddled and Intermingled Basins

Since the phenomena of riddled basins was uncovered [1], riddled basins have
been found in a range of applications, for example learning dynamical systems
[59], coupled chaotic oscillators [8], mechanical systems [83] and electronic
systems [38] and especially coupled maps, e.g. [36] where the literature is too
extensive to list; see other chapters in this book.

As an example, we consider here a smooth map from [11] with a riddled
basin attractor:

f(x, y) = (rx(1− x) + sxy2, νe−xy + y3) (9)

with r = 4, s = 0.3 and ν = 1.5. This has an attractor within y = 0 given
by A = [0, 1] × {0} on which the dynamics is that of a logistic map with
r = 4.3 Evaluating the transverse Lyapunov exponent with respect to any
ergodic measure µ within A amounts to computing the integral

λ⊥(µ) =
∫

(−x+ ln(ν)) dµ(x) = ln ν −
∫

x dµ(x).

Observe that (9) has a fixed point in A at (0, 0) has the largest possible
λ⊥ = 0.40546511 meaning that Λmax = 0.40546511, while the natural measure
gives Λnat = −0.094534. We can use the topological conjugacy of the map f
on A to a doubling map to conclude that there is a dense set of preimages
of the fixed point at (0, 0); hence we expect the basin of attraction of A to
be locally riddled. In this case we can observe that it is globally riddled; see
Fig. 3. Note that unlike the example (1) this map is neither discontinuous nor
a skew product, as long as s �= 0.

Examples of intermingled basins have been found in maps [2] (three inter-
mingled basins) and [41] as well as coupled ODEs [28]. We present an example

3 In this case the basin of A within y = 0 contains no points outside of A.



194 P. Ashwin

Fig. 3. Numerical approximation of the riddled basin of attraction of an attractor in
y = 0 for the smooth map (9) with r = 4, s = 0.3 and ν = 1.5. The basin is shown
in black, while the points in white converge to attractors at infinity. The image
(a) shows the basin in the area [−0.1, 1.1]× [−0.6, 0.6] while (b) shows a zoom into
[0.5, 0.7] × [−0.1, 0.1]

in a map due to Ding and Yang [28] of two intermingled basins for a map on
(x, y) ∈ [−1, 1]2 given by f(x, y) = (x′, y′) where

x′ = g(x) + ε(g(y)− g(x) + g(y)3 − g(x)3)

y′ = g(y) + ε(g(x)− g(y) + g(x)3 − g(y)3)
(10)

for g(x) = 3.4x(1− x2)e−x2
and ε = 0.48. This map has attractors A± in the

diagonal x = y on either side of the origin. Figure 4 illustrates the basin of
the attractor A+ in black; the approximation is obtained by computing

An = f−n([0, 1]× [−1, 1]).

If we assume that A± are the only Milnor attractors for f then

⋂

m>n

(
⋃

p>m

Ap

)

will converge (apart from a set of zero measure) to B(A+) as n→∞. The sets
A6 and A25 are shown; the Lebesgue density theorem implies that almost all
points are points of density for either the white or the black set (though there
are clearly do exist points such as (0, 0) that are points of density for neither
white nor black set; it is even possible that these are dense in [−1, 1]2).

3.4 Normal and Non-normal Parameters

Most analytical studies of blowout bifurcation rely on being able to vary the
dynamics while preserving the dynamics on some invariant subspace. This
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(a) (b)

Fig. 4. Numerical approximation of intermingled basins of attraction of an attractor
A+ in x = y, x > 0 for the map (10) with ε = 0.48. The basin is shown in black,
while the points in white are an approximation of the set basin of A−. Both images
show the area (x, y) ∈ [−1, 1]2; (a) shows an approximation using 6 iterates while
(b) uses 25 iterates

allows one to effectively vary the transverse Lyapunov exponents for fixed
invariant measures. More precisely, if fr : M →M is parameterized smoothly
by r ∈ R and if fr(N) = N for all r and some fixed submanifold then we say
r is a normal parameter if fr|N is independent of r. Otherwise we refer to r
as a non-normal parameter. For normal parameters the Lyapunov exponents
will vary with the parameter in a way that may or may not be analytic; see
for example [9, 73, 74]. In cases that the normal Lyapunov exponent does
vary continuously, the transition to riddling of a basin can be determined by
finding the point at which it loses asymptotic stability.

As discussed in [11, 26] the transitions obtained on varying a non-normal
parameter will typically be much more complicated than on varying a normal
parameter, unless the attractor within N is robust [20]. We refer to the other
chapters in this volume for discussion of the blowout bifurcation.

4 Anisotropic Riddling in Coupled System

Following [7] we consider properties of riddling that can appear in the presence
of more than one invariant subspace. Riddling of the basin may occur in
some directions but not others; we say that riddling is typically anisotropic
in transverse directions unless they are symmetrically related in ways that
we characterize in Theorems 4.1, 4.2. In more general cases the dynamics can
display anisotropic sensitivity to noise. We also illustrate internal riddling
transitions where the number of directions in which riddling occurs changes.
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For nested invariant subspaces N and P with A ⊂ N ⊂ P ⊂M we define

{λN,P
i (µ) : i = 1, . . . ,dimP − dimN}

to be the set of possible λ⊥(x, v) attained for v ∈ P and x is typical with
respect to the measure µ. We also define

ΛN,P
max = sup

µ∈Erg(A)

λN,P
1 (µ)

and
ΛN,P

nat = λN,P
1 (µnat).

In the case of symmetries we often obtain attractor within an invariant
subspace N that is nontrivially contained within several distinct invariant
subspaces P1, P2 etc. The L.E.s in different directions Pi can however in
certain circumstances be related. In what follows T is some isotropy subgroup
of Γ :

Theorem 4.1. Suppose that N = Fix(T ) and N ⊂ Pk = Fix(Σk), k = 1, 2
where Σk ⊂ T are isotropy subgroups that are conjugate within T . Suppose
that A ⊂ N is an attractor. Then λN,Pk

i , ΛN,Pk
max and ΛN,Pk

nat are independent
of k.

Proof. We write Σ = Σ1 so that P1 = Fix(Σ). There is a g ∈ T such that
P2 = Fix(g−1Σg) = g−1Fix(Σ) = g−1P1. Now gx = x and G has orthogonal
action, so |gy| = |y| for any y. Equivariance of f implies equivariance of the
derivative (Df(gx)gv = gDf(x)v). Hence for any x ∈ N and v ∈ P1 we have

λ(g−1x, g−1v) = lim
n→∞

1
n

log
|Dfn(gx)gv|

|gv|

= lim
n→∞

1
n

log
|gDfn(x)v|

|gv| = λ(x, v).

This means that any L.E. λN,P1
i is also a L.E. λN,P2

i and vice versa. ��
The previous result requires that the conjugating element g is in T . More

generally one can require that g maps Fix(T ) to itself. This implies that
g ∈ Norm(T ) where Norm(T ) = {h ∈ Γ : hT = Th} is the normalizer of T .
In this case the result above can be adapted as long as the measure µnat has
symmetry g (a symmetry on average [19]). More precisely,

Theorem 4.2. Suppose that N = Fix(T ) and N ⊂ Pk = Fix(Σk) for k =
1, . . . , l where Σk ⊂ T are related by Σk = g−1

k Σgk for some gk ∈ Norm(T ).
Suppose that A ⊂ N is an attractor with natural measure µnat invariant under
action of all gk. Then λN,Pk

i , ΛN,Pk
max and ΛN,Pk

nat are independent of k.

Proof. This follows as for the previous result on noting that there is a gk-
invariant set of x with full µnat-measure that has the same L.E.s. at each
point. ��
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4.1 Directions of Riddling

Recall that a basin of attraction B(A) is riddled (in M) [1] if for any x ∈ A
and δ > 0 we have

�M (B(A) ∩Bδ(x))�M (B(A)c ∩Bδ(x)) > 0

where �M (·) denotes Lebesgue measure on M . Similarly, we say the basin of
attraction of A ⊂ N0 is riddled in the direction Ni for any invariant subspace
Ni where N0 ⊂ Ni if

�Ni
(B(A) ∩Bδ(x))�Ni

(B(A)c ∩Bδ(x)) > 0.

Observe that it is necessary for B(A) ∩ Ni to have positive �Ni
-measure in

order to get riddling.
Suppose that A is a Milnor attractor such that A ⊂ N0 ⊂ N1 ⊂ M . If

A is riddled in M then it need not be riddled in either Ni. In fact examples
discussed in [1, 9] have attractors that are riddled in M but asymptotically
stable and therefore unriddled in the largest linear subspace N that contains
the attractor. What we emphasise here is that it may be unriddled in a larger
invariant subspace. The same holds even if A is not an attractor but a chaotic
saddle in M .

Suppose a Milnor attractor A in M has Λnat < 0 < Λmax for the system
restricted to an invariant subspace N ′ with N ⊂ N ′ ⊂ M . Then the same
inequality holds for the full system and will imply riddling in the full basin,
as long as A is an attractor in M .

One can find systems f : M → M with an invariant set A contained in
an invariant subspace N such that A is an attractor in M but not in N . For
example, consider the flow induced by the vector field

(ẋ, ẏ) = (x3 − y2x, x2y − y3) (11)

shown in Fig. 5. This has an equilibrium at (0, 0) that has the open basin of
attraction given by y2 > x2. However, all points with y2 < x2 are repelled
away to infinity. Thus the origin is an attractor in R

2 but has trivial basin of
attraction in the invariant subspace given by the x-axis. In this example this
is a degeneracy caused by non-hyperbolicity of the fixed point at the origin.
We expect that this behaviour cannot occur in sufficiently hyperbolic systems.

In applications where noise is highly directional, riddled basin attractors
may have a degree of sensitivity of an attractor to anisotropic noise that is
dependent on whether the noise is in directions in which the basin is unriddled
or not as we will see later.

4.2 Internal and Other Riddling Transitions

Given any attractor A with a riddled basin in a system with several invariant
subspaces, we can characterize this basin by examining the dimension d̃ of the
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x

y

Fig. 5. The dynamics near the non-hyperbolic fixed point at the origin (0, 0) for
(11) such that it is a Milnor attractor for the full system but not for the system
restricted to the invariant subspace (x, 0)

largest invariant subspace N containing A such that the basin of B(A) ∩ N
is unriddled. Note that dim(A) ≤ d̃ ≤ dim(M). Any change in d̃ we term
an internal riddling transition. It is clear that such transitions will occur in
higher-dimensional systems; as A loses asymptotic stability in more directions
the index d̃ will decrease.

Similarly one can apply the standard riddling bifurcation criteria in each
subspace to predict parameter values when internal riddling transitions will
occur; see [16, 48, 51, 63, 81]. Such transitions will typically be rather unclear
on varying system parameters if the chaotic attractors are not structurally
stable; only by examining normal parameters of the system such that the
dynamics on the attractor is left unchanged can one hope to find internal
riddling transitions appearing as codimension one transitions. Similar tran-
sitions where riddling bifurcations are replaced by blowout bifurcations will
also occur in such systems; see for example the systems studied in [5].

4.3 A Numerical Example

If we examine the map (8) for parameter values that are intermediate between
strong and weak coupling one may find a wide variety of attractors of different
symmetries that are multi-stable. One can also find, for example, (i) chaotic
saddles that have basins that are riddled within certain invariant subspaces
(ii) attractors that are riddled in some directions but not others and hence
(iii) anisotropic bubbling response to anisotropic noise.

Here we consider an attractor in

Fix(S2 × S2) = {(p, p, q, q) : p, q ∈ R}.

that occurs when a = 1.71 and ε = 0.15. Figure 6(i) shows a time series on
this attractor for an initial condition very close to
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Fig. 6. Anisotropic bubbling behaviour caused by anisotropic riddling of the basin
of an attractor for a system of four globally coupled maps (8) that lies in an invariant
subspace with symmetry S2 ×S2. (i) shows time-series for the noise-free system; the
circles show the values of x1 and x2 while the crosses show the values of x3 and x4.
In (ii) the attractor in (i) is subject to very low amplitude noise. In (iia) the noise
is added in only the x1 direction giving rise to bubbling in this direction. In (iib) it
is added in only the x3 direction giving a stable response, due to the attractor not
being riddled in this direction
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(p, p, q, q) = (0.00292, 0.00292, 0.8004, 0.8004)

and no added noise; σj = 0 for all j. On addition of noise (iia) shows x1−x2 for
the same initial condition but with σ1 = 10−5. The large deviations away from
x1 = x2 indicative of bubbling in the direction (1, 0, 0, 0) and hence indicate
that the basin of attraction of this attractor is riddled to perturbations into
the invariant subspace (p, q, r, r). By contrast, (iib) shows x3 − x4 for the
same initial condition but with σ3 = 10−5. In this case there is apparently
stable response indicating that the basin is not riddled into the invariant
subspace (p, p, q, r). Note that (i) shows that the statistics of x1 and x3 are
quite different; the natural invariant measure associated with this attractor is
not invariant under the transformation

(x1, x2, x3, x4) �→ (x3, x4, x1, x2).

If this symmetry did leave the attractor invariant then by applying Theo-
rem 4.2 either both or neither of the directions (1, 0, 0, 0) and (0, 0, 1, 0) would
be riddled. Numerical calculations indicate that the transverse L.E. in the di-
rection (1, 0, 0, 0) is approximately −7.8 × 10−4 whereas it is approximately
−0.2842 in the direction (0, 0, 1, 0); this agrees with the anisotropic bubbling
observations.

5 Some Open Problems

In the final section we highlight some open problems and themes of interest
related to riddled basins.

5.1 Unfolding of Blowout and Riddling

One of the most intriguing aspects of blowout bifurcation and associated tran-
sitions to riddled basins are the observation, noted first by [64] in many ex-
amples one can clearly classify the nonlinear stability of the system into one
of two scenarios: either subcritical, where a riddled basin attractor loses its
basin at blowout to become a repellor, or supercritical, where an attractor
is locally but not globally riddled before blowout, and after blowout there is
on-off intermittency [37, 69, 70] or a stuck-on attractor [3]. (See [67, 68, 84]
for more early work on loss of chaotic synchronization)

By analogy with bifurcation of fixed points, it would be nice to understand
precisely what determines criticality at blowout and hence whether basins of
attraction are locally or globally riddled. The map (1,2,3) was studied in [6]
where it was noted that for this map, the two scenarios could be distinguished
subcritical (resp. supercritical) if the essential basin of attraction of A was
zero (resp. positive) measure at the point of blowout.4 In the general case this
4 The essential basin of A is defined as the set of points y whose trajectories visit any

neighbourhood of A with positive frequency; i.e. such that lim supn→∞
1
n
#{0 ≤

k < n : fk(y) ∈ U} > 0 for all U neighbourhoods of A.
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amounts to a conjecture. Other work has examined absorbing areas [21, 52]
and weak attractors [16] to give criteria for supercriticality; for example in [16]
the presence of a larger weak attractor containing a riddled basin attractor
seems to indicate that blowout will be supercritical.

Generally, can one find conditions that ensure that a “scenario” occurs at
blowout and if we can do this, find conditions so that the classification of the
blowout into a scenario is computable in some sense? So far, it seems that is
may only be possible to answer this in a very limited sense; if so, why can one
nevertheless observe this scenario in many simulations?

5.2 Riddling for Infinite Dimensions

Many mathematical models that arise include temporal delays and/or spatial
extension in such a way that the phase space on which the dynamics occurs
is unavoidably infinite dimensional. So far there is no corresponding concept
for riddled basin, or indeed Milnor attractor, that works in cases where a nice
background measure such as Lebesgue is not available. It should be possible
to use ideas such as prevalence [39] in such cases to make some progress but
this has not yet been done to my knowledge.

5.3 Pseudo-Riddled and δ-Riddled Basins

A strange feature of riddling is that in cases that one can prove it exists it is
often hard to find, while in cases where can prove it does not exist, numerics
often seem to say the opposite. For example, in [49] examples of pseudo-
riddled basins are presented. In [12] the concept of δ-riddling was used to give
a numerical profile of pseudo-riddling by saying that a set is δ-riddled if (6)
holds for a given δ; the set is then riddled in the usual sense if it is δ-riddled for
all δ > 0. It would be nice to gain a better theoretical understanding of these
effects and their consequences, though any simple minded approach clearly
has the disadvantage of not being invariant under coordinate changes.

5.4 Genericity of Riddled Basins

In dissipative dynamics that has no imposed invariant subspaces, it is the
belief of the writer (and others) that riddled basin attractors do not arise
except in exceptional circumstances, namely when there are invariant sub-
spaces forced by system symmetries or for example by other constraints [72].
Can one prove any meaningful results in this direction? An important part
of this questions is to understand the prevalence of the appearance of chaotic
attractors; see for example [20, 22, 40, 50, 57].

The appearance of a minimal Milnor attractor that has a partially riddled
basin was suggested in [16] to be a degenerate case; can one prove a sense in
which this is for example non-generic in a class of smooth systems?
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5.5 Unstable Attractors

There has been some very interesting recent work looking at dynamical sys-
tems of globally delay pulse coupled oscillator systems, motivated by simple
models of neural systems. These systems can possess attractors that are an
extreme case of riddling; there is a neighbourhood of the attractor that has
zero measure intersection with the attractor’s basin. Such unstable attractors
have been found to be quite widespread in the dynamics of certain systems
[80]. It is a challenge to understand constraints on the appearance of such
attractors and their characteristic properties.

5.6 Non-Ergodic Attractors and Riddling

In most standard examples where one can prove the existence of riddled basins
the attractor in question is ergodic, namely it possesses an SRB measure whose
support is the attractor. Nonetheless, in the presence of symmetries it has been
recognised for some time that for many cases one can find structurally stable
attractors that are not ergodic; in particular robust attracting heteroclinic
cycles [35, 46, 47] between saddle equilibria, periodic orbits or even chaotic
saddles [4, 27, 31]. These attractors are non-ergodic and not even transitive
(no dense orbits); they consist of chains of connecting orbits and invariant
sets [13, 14].

As a particular example of this in a finite coupled map lattice is the system
with one-directional coupling considered in [15]:

Xk
n+1 = f(Xk

n) e−γXk−1
n

where n ∈ N, k ∈ Z is taken modulo 3 and f(x) = rx(1 − x). Due to the
presence of invariant subspaces Xk = 0 (for any k) if we choose 2 < r < 4
and γ large enough this system can be shown to have open sets of spatially
periodic initial conditions that are attracted to states with no convergence of
ergodic averages; see [15] for more details.

For a skew product system of a chaotic attractor forcing a robust hete-
roclinic cycle one can exhibit examples where the cycle has a locally riddled
basin even though the attractor is non-ergodic [4]. How general is this?

5.7 Other Problems Related to Riddled Basins

Some researchers have implied that there are connections between the com-
putability of riddled basins and decidability [65, 76]. It would be of interest
to know if riddling may help one to understand the nature of chaotic be-
haviour in area-preserving maps such as the standard map, or in other area-
preserving maps; for example Fig. 7 shows in black the invariant set of points
that approach arbitrarily close the discontinuity for an area-preserving map
that arises in signal processing; see [10, 12] for a discussion of this and gener-
alization of the results such as Theorem 2.1 to area-preserving discontinuous



Riddled Basins and Coupled Dynamical Systems 203

-1 0 1

-1

0

1

Fig. 7. The black region shows the set of points within the square [−1,−7/8]2

whose orbits accumulate on the discontinuity for the area-preserving map (x, y) �→
(y, g(−x + 0.9y)) where g(x) = x for x ∈ [−1, 1) and g(x + 2) = g(x). It is an open
question whether this set is riddled; the white regions are packed with invariant
curves centred on periodic points and the map can be viewed as a planar piecewise
isometry

maps. It would be of great interest to be able to determine if the set shown
in this figure is riddled or not. Other problems include getting a better un-
derstanding of properties of intermingled basins.
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valentin@cactus.iico.uaslp.mx

1 Introduction

Phenomenological models of motions in media with dissipation in the form
of lattices of coupled ordinary differential equations or maps appeared about
50 years ago and since then play an important role in study of dynamical
properties of systems in material science, fluid dynamics, chemistry, image
processing, biology, etc [1]. We will call them Lattice Dynamical Systems
(LDS), see below. A special class of LDS, the so called Coupled Map Lattices
(CML), has been introduced almost simultaneously in [2, 3, 4, 5] and, mainly
because of convenience of numerical simulations, became a basic model in the
field [6]. Beginning with [7], many rigorous mathematical results have been
obtained concerning topological and ergodic features of LDS and CML.

In this chapter we try to describe some rigorous results and ideas related
to topological properties (see also [8]).

2 LDS with Discrete Time. Definitions

Being models of extended media LDS have to be, in principle, infinite-
dimensional dynamical systems. At the same time, there are many models
where one has only a finite number of coupled active elements or even just
a few. In this chapter we will focus on the infinite dimensional models; some
problems of correspondence between finite and infinite-dimensional cases will
be discussed at the end of the chapter.

2.1 The Phase Space

The phase space of LDS is the set of all configurations

B = {u |u = {uj}, uj ∈ R
p, j ∈ Z

d, ‖ u ‖<∞}
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where d ≥ 1 is the dimension of the lattice, p ≥ 1 is the dimension of the
range space of the function of state uj and the norm ‖ · ‖ is usually taken to
be one of the following ones (|uj | is the length of the vector uj)

• the l∞-norm, ‖ u ‖∞= supj∈Zd |uj |.
• the l2 norm, ‖ u ‖2= (

∑
j∈Zd |uj |2)

1
2 .

• the l2q norm, ‖ u ‖q= (
∑

j∈Zd
|uj |2
q|j| )

1
2 where q > 0 is a fixed number.

We note that l21 = l2. It is simple to see that B is a Hilbert space in
the l2q -norm and a Banach space in the l∞-norm. The l∞-norm is consistent
with the uniform topology while the l2q -norm, q > 1, is consistent with the
product topology. Both are important because they reflect different features
of lattice dynamics in the infinite dimensional space. Therefore, we use both
these norms through all the chapter. Of course, sometimes people use other
norms [24].

2.2 The Evolution Operator

In the definition below it is assumed that the local dynamics at the site j
depends only on finitely many neighboring sites. Of course, there are models
where coupling depends on infinitely many states, but in this chapter we
consider the simplest situation.

The evolution operator F : B → {Rp}Z
d

generating LDS u′ = F(u) is
defined by

u′j = F ({uj}s) (1)

where {uj}s = {ui | |i− j| ≤ s}, |j| = max{|j1|, . . . , |jd|} or |j| = |j1|+ · · · |jd|
and F : (Rp)(2s+1)d

→ R
p is a smooth function. It follows that F(B) ⊂ B (in

the case of l2q -norm, 0 < q ≤ 1, it is always assumed that F ({0}s) = 0). To
avoid non-essential technicalities let us assume from the very beginning that
F is Cr, r ≥ 2, and there exists a constant M > 0 such that

∣
∣
∣
∣
∂F

∂ui

∣
∣
∣
∣ ≤M,

∣
∣
∣
∣
∂2F

∂ui∂uj

∣
∣
∣
∣ ≤M (2)

for any collection {u0}s ∈ (Rp)(2s+1)d

. Let us remark that these assump-
tions are not as restrictive as they seem. In fact people are only interested in
bounded configurations but not in their asymptotic behavior as |uj | goes to
infinity.

The following statements hold:

• In the l∞-norm and in the l2q -norm, 0 < q ≤ 1, F is Cr.
• In the lq-norm, q > 1, F is Lipschitz-continuous with the constant L =
M(2s+ 1)

3
2 dq

s
2 [9].



Some Topological Properties of Lattice Dynamical Systems 155

Definition 2.1. The dynamical system (F ,B) will be referred to as a lattice
dynamical system (LDS) and we will write

u(n+ 1) = F(u(n)) or uj(n+ 1) = F ({uj(n)}s) . (3)

2.3 Translational DS

The group of translations {Sj0}j0∈Zd acts in the space B as follows:

(Sj0u)j = uj+j0 if u = {uj} .

Each element Sj0 is a linear bounded operator (an isometry in the l2-
norm or in the l∞-norm). Clearly each map Sj0 commutes with the evolution
operator F . Sometimes the dynamical system

(
{Sj0}j0∈Zd ,B

)
is called the

translational dynamical system (TDS).

2.4 Examples

Among the most important examples are the following ones

• Discrete version of the reaction-diffusion equation:
– One dimensional case

uj(n+ 1) = uj(n) + αf(uj(n)) + ε (uj−1(n)− 2uj(n) + uj+1(n)) . (4)

– Two dimensional case

uj,k(n+ 1) = uj,k(n) + αf(uj,k(n)) + ε(uj−1,k(n)
− 4uj,k(n) + uj−1,k(n) + uj,k−1(n) + uj,k+1(n)) (5)

where j, k ∈ Z, n ∈ Z+ and α, ε are non-negative parameters.
• Linearly coupled map

F(u) = L ◦ G(u) (6)

where (Gu)s = f(us), s ∈ Z
d, L is a linear bounded operator and f is

a non-linear function. For example, the diffusively coupled maps are very
popular in the literature:

uj(n+ 1) = f(uj(n)) + ε (f(uj−1(n))− 2f(uj(n)) + f(uj+1(n))) (7)

2.5 Simplest Orbits of LDS

The following types of orbits are the simplest ones and should be studied at
first:

• Steady-state solutions or fixed points.
They do not depend on time and satisfy the following equation:

uj = F ({uj}s) . (8)



156 V. Afraimovich

• Spatially-homogeneous solutions.
They do not depend on spatial coordinates and satisfy the equation:

v(n+ 1) = F ({v(n)}s) . (9)

• Traveling wave solutions with integer wave-numbers and velocities.
These solutions depend on a linear combination of temporal and spatial
coordinates and have the form:

uj(n) = ψ (l · j +mn) (10)

where l ∈ Z
d is an integer wave vector, l · j is the scalar product and

ψ : Z → R
p is a vector function.

In this chapter we will discuss mainly these configurations.

3 Fixed Points of LDS

One of the important problems related to fixed points is the problem of sta-
bility. We describe two approaches to solve it.

3.1 Finite Dimensional Description

In this subsection we consider the only case d = 1. Then the (8) can be
rewritten as:

uj = F (uj−s, . . . , uj+s), j ∈ Z . (11)

Thoroughly we impose the following assumption

Assumption 3.1 ∂F
∂uj−s

�= 0, ∂F
∂uj+s

�= 0 for any collection {uj}s ∈ R
2s+1.

It implies that (11) can be solved with respect to uj+s, i.e., because of the
implicit function theorem, 11 is equivalent to

uj+s = g(uj−s, . . . , uj+s−1), j ∈ Z . (12)

Introduce the notations

u−s = x1, u−s+1 = x2, . . . , us−1 = x2s,

and the map G : R
2s → R

2s defined by

G(x) = x′ (13)

where x = (x1, . . . , x2s), x′ = (x′1, . . . , x
′
2s) and

x′1 = x2 , . . . , x
′
2s−1 = x2s, x

′
2s = g(x1 . . . , x2s) .
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It directly follows from the definition that every configuration u = {uj}
satisfying (11) corresponds to the orbit xj = Gj(x0) of the dynamical system
generated by G. Indeed, define a correspondence χ as follows. Given x0 ∈ R

2s

let
(
χ(x0)

)
j

= (xj)s be the s-coordinate of the vector xj . Denote by Λ ∈ R
2s

the set of all points of all bounded orbits of dynamical system (13). It can be
easily shown that the following statement hold.

Lemma 3.1. For any norm in B, the map χ : Λ→ B is injective and satisfies

χ ◦G = S1 ◦ χ (14)

where S1 is a generator of translational dynamical system; in the l2q-norm, χ
is a homeomorphism for any q > 1; and there exists q0 > 1 such that for any
q ≥ q0, Λ = R

2s and χ is a diffeomorphism.

The first statement follows from the definition of χ and the fact that,
because of Assumption 3.1, G is invertible. Now, if x0 and y0 are sufficiently
close, then xj and yj are close too for |j| < N , so that χ(x) and χ(y) are close
in the l2q -norm, q > 1, which implies the continuity of χ. Differentiability can
be proved by direct calculations.

Thus, to list fixed point of F one needs to describe all bounded orbits of
dynamical system (13).

Example 3.1. Consider the system (4). Then (12) becomes

uj+1 = 2uj −
α

ε
f(uj)− uj−1 (15)

and the dynamical system (13) reads

x′1 = x2, x′2 = 2x2 −
α

ε
f(x2)− x1 . (16)

It can be shown (see for instance [10]) that for f(x) = bx(x2 − 1) there is a
G-invariant set Λ such that G|Λ is topologically conjugated to the Bernoulli
shift with three symbols. It was also proved in [11] that the trajectories in Λ
are the only bounded ones provided that b is large enough.

3.2 Stability: Finite Dimensional Approach

There are many results about stability of fixed points in LDS, see for in-
stance [13, 14] and references therein. In this chapter we describe two meth-
ods.

Following the ideas of L. Glebsky [12] we present an approach to study
stability in the l∞-norm for d = 1. Let u∗ = {u∗j} be a configuration satisfying
(11). We are interested in the spectrum of the linearization operator L of F
at u∗, defined by ξ′ = Lξ, explicitely given by

ξ′j = Aj ({ξj}s) (17)



158 V. Afraimovich

where Aj = ( ∂F
∂uj−s

, . . . , ∂F
∂uj+s

)uk=u∗
k
. If the operator L − λI has a bounded

inverse one then λ �∈ specL. Let us express this fact in a finite dimensional
fashion. Because of Assumption 3.1, the equation

Aj ({ξj}s)− λξj = 0 (18)

can be rewritten as follows:

ξj+s = Cλ
j (ξj−s, . . . , ξj+s−1) (19)

where Cλ
j is a linear form.

Let ξj−s = ηj
1, . . . , ξj+s−1 = ηj

2s then the latter equation is equivalent to
the system ηj+1 = Bλ

0 (xj)ηj , ηj = (ηj
1, . . . , η

j
2s), or

ηj+1
1 = ηj

2, . . . , ηj+1
2s−1 = ηj

2s, ηj+1
2s = Cλ

j (ηj
1, . . . , η

j
2s) . (20)

In other words, for the orbit {xj} = χ−1(u∗) the cocycle Bλ
m(xj) is well-

defined. Notice that B1
0(xj) = DG(xj), the differential of the map G.

Let us remind (see for instance [40] and references therein) that the cocycle
is the sequence of linear maps Bλ

m(xj) : R
2s → R

2s such that, for any m > 0,

Bλ
m(xj) = Bλ

0 (xj+m−1) ◦ · · · ◦Bλ
0 (xj+1) ◦Bλ

0 (xj)

and
Bλ

−m(xj) =
(
Bλ

0 (xj−m) ◦ · · · ◦Bλ
0 (xj−2) ◦Bλ

0 (xj−1)
)−1

.

The cocycle Bλ
m(xj) is said to be hyperbolic if

• There is a decomposition R
2s = Es(xj)⊕Eu(xj) such that Bλ

0 (xj)Es(xj) =
Es(xj+1) and Bλ

0 (xj)Eu(xj) = Eu(xj+1).
• There are constants c > 0, 0 < ρ < 1, γ > 0 such that if v ∈ Es(xj) then

for any j ∈ Z,m ∈ Z+,

|Bλ
0 (xj+m)| ≤ cρm|v|

and if v ∈ Eu(xj) then

|Bλ
0 (xj−m)| ≤ cρm|v| .

• The angle �
(
Es(xj), Eu(xj)

)
≥ γ.

The following theorem explains why we remind these definitions.

Theorem 3.2. If the operator L is self-adjoint and the cocycle Bλ
m(xj) is

hyperbolic then λ �∈ spec L.

So, such values of λ do not belong to the spectrum of the operator and
have nothing to do with stability of u∗. For example, if {xj} is hyperbolic
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then, because of B0
1(xj) = DG(xj), λ = 1 does not belong to specL, and this

orbit might correspond to a stable fixed point.
The theorem can be proven by straightforward construction of the Green

function (L− λI)−1 and by showing that this operator is bounded in the l∞-
norm (L. Glebsky, unpublished). Let us remark that if L is not self-adjoint,
one can consider L∗L and apply the theorem.

Of course it is difficult to check conditions of hyperbolicity of specific
cocycles, but sometimes it is possible to do so.

Example 3.2. Coming back to the (4), for all j let u∗j = u0, f(u0) = 0, and let

f ′(u0) = a. Then DG = [ 0 1−1 2−αa
ε

], and Bλ
0 (xj) = [ 0 1−1 2+ λ−αa−1

ε
], the con-

stant matrices. Therefore hyperbolicity means the existence of the eigenvalues
µ1,2 such that one of them is greater than one in modulus (since µ1µ2 = 1
another one will be less than 1). The characteristic equation for Bλ

0 (xj) is
µ2 − µb+ 1 = 0, where b = 2 + λ−αa−1

ε . Those λ for which |µ1,2| �= 1, do not
belong to spec L, therefore we are only interested in µ1,2 = e±iφ.

It is simple to see that for every b, |b| ≤ 2, the characteristic equation has a
solution µ = eiφ. The inequality |b| ≤ 2 can be rewritten as −4 ≤ λ−αa−1

ε ≤ 0
or

1 + αa− 4ε ≤ λ ≤ 1α . (21)

Thus, if
4ε− 2 < αa < 0 (22)

then the absolute value of every point in the spectrum of L is less than 1 and
u∗ is stable in the l∞-norm.

In this example the configuration u∗ is spatially homogeneous and the
spectrum of L can be computed directely. Indeed, in this case this operator
becomes

(Lξ)j = (1 + αa− 2ε)ξj + ε(ξj−1 + ξj+1) .

A direct calculation shows that for every ω ∈ [0, 1), the configurations ξj =
cos(2πωj) and ξj = sin(2πωj) (Fourier modes) are eigenvectors in l∞ with
eigenvalue

λ(ω) = 1 + αa− 2ε+ 2ε cos(2πω) .

The relation (21) immediately follows. A standard functional analysis ar-
gument shows that the spectrum is the same interval [1 + αa − 2ε, 1 + αa]
in l2.

While the argument applied here use translation invariance of the config-
uration u∗, the method of cocycles does not. So it could extend in principle
to spatially periodic (and non-periodic) fixed points.
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3.3 Approximation by Finite Dimensional Operators

The idea is to approximate the spectrum of the linearization operator L by
spectra of finite dimensional matrices. We have a linear map ξ′ = Lξ. Given
N ∈ N, N > s, let the operator LN : B → R

(2N+1)dp be defined as follows:

(LNξ)j = 0, |j| > N,

(LNξ)j = (Lξ)j |j| < N − s

(LNξ)j is an arbitrary bounded linear form if N − s ≤ |j| ≤ N .

Such an operator can be treated as the map of B into itself.

Theorem 3.3. [9, 15] Assume that B is endowed with the l2q-norm, q ≥ 1.
If L is normal and all LN are normal for N ≥ N0 then specL ∪ {0} ⊂
clos

(⋃∞
N=n0

specLN

)
.

By using this theorem one can find conditions of linear stability of specific
fixed points and other orbits of CML (see for example [15, 16, 17]). In order
to use this theorem one has to estimate the spectrum of the matrices LN .
One can do it by using Gershgorin disks [25], since it is known that for any
spectral value of λ of the matrix (aij) the inequalities

|λ− aii| ≤
∑

k �=i

|aij |

hold. For the example (4) this inequality becomes the conditions (21) and we
get (22).

Unfortunately, for l2q -norm, q > 1, linear stability does not imply stability
with respect to the original non-linear system. Some discussions about the
l2q -norm can be found in [18].

3.4 Spatial Chaos

It is well known from experimental works that disordered spatial field distrib-
utions (temperature, velocity, etc) occur in unbounded media with dissipation
and energy pumping (see for instance [19]). If such a medium is described in
the form of a LDS then the picture of spatial disorder can be expressed as
follows.

Definition 3.1. [20] A LDS is said to have spatial chaos if there exists a TDS-
invariant set Λ of stable steady-state configurations on which TDS manifests
a chaotic behavior (for example, the topological entropy of TDS is positive).
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Consider again the system (4) with f(z) = z(z− c)(1− z), 0 < c < 1, and
α > 0. In the uncoupled situation (ε = 0) the system (4) has infinitely many
steady-states solutions u∗ = (. . . , u∗−1, u

∗
0, . . .), u

∗
j ∈ {0, c, 1}, j ∈ Z

d. They
form a TDS-invariant set Λ3, and TDS|Λ3 is topologically conjugated to the
full (Bernoulli) shift with three symbols in the l2q -norm for an arbitrary q > 1.
Furthermore, DF|u∗ = diag

(
1 + f ′(u∗j )

)
, where

f ′(u∗j ) =






−αc, u∗j = 1
−α(1− c), u∗j = 0
α(1− c)c, u∗j = c .

It follows that every solution u∗, where u∗j ∈ {0; 1}, is stable in the l2q -norm,
q ≥ 1, provided that 1 − α c > −1, 1 − α(1 − c) > −1. Thus, the uncoupled
system has spatial chaos since TDS|Λ2 is conjugated (for q > 1) to the full
shift with two symbols (so, the topological entropy is log 2), where Λ2 ⊂ Λ3

is the set of all configurations {u∗j}, u∗j ∈ {0; 1}. Notice that the solution
{u∗j} ∈ Λ3 for which at least one u∗j0 = c is unstable.

If 0 < ε � 1 then, instead of Λ2, we will have a TDS-invariant set Λ2(ε)
consisting of stable steady-state solutions close to the corresponding solutions
in Λ2, so the system (4) has spatial chaos either.

In the same way, one can show [15] that the system (5) with the same
nonlinearity f(z) possesses spatial chaos. Under the same conditions it has
a TDS-invariant set Λ

(2)
2 (ε) labeled by infinite matrices (aij), (i, j) ∈ Z

2,
aj ∈ {0; 1} (i.e., the elements of the full Z

2-shift symbols), and the action
of TDS on Λ

(2)
2 (ε) is topologically conjugated to the full Z

2-shift with two
symbols in the l2q -norm for any fixed q > 1. Each of these configurations is
asymptotically stable in the l2q -norm, q > 1.

Let us remark that for systems with spatial chaos it is natural to expect
that the maximal attractors are infinite dimensional; in fact, it is generally
true for a LDS (see for instance [21] and references therein). Therefore people
use the Kolmogorov ε-entropy to characterize their complexity.

3.5 Homoclinic Points of TDS

It is possible to work on the problem of spatial chaos when a LDS is de-
scribed by simple formulas as above. But in more complex situations one
needs to have some verifiable criteria. For example, for a smooth dynamical
system, the existence of transversal homoclinic trajectory implies the existence
of Smale horseshoe. Thus, transversal homoclinic orbits serve as indicators of
some chaotic behavior. As we shall see now homoclinic orbits of TDS may also
serve as indicators of spatial chaos provided that some additional conditions
hold.
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Definition 3.2. [20] A steady state solution u is said to be a homoclinic point
of TDS if there exists u0 ∈ R

p such that lim|j|→∞ uj = u0.

It follows from the continuity of F that the constant configuration u0 = {u0
j =

u0, ∀j} is also a solution of (8). We will deal here with the l∞-norm (in [20] we
considered the l2-norm). Let σ (DF(u)) be the spectrum of the linearization
operator DF at a fixed point u.

Definition 3.3. 1. The fixed point u is asymptotically stable if σ (DF(u)) ⊂
{λ | |λ| < 1} and hyperbolic if σ (DF(u)) ∩ {λ | |λ| = 1} = ∅.

2. If u is hyperbolic then the dimension of pB is denoted by index (DF(u))
where pB is the projection of B associated to the spectrum subset
σ (DF(u)) ∩ {λ | |λ| > 1}.

Let us remark that:

• If u is the steady state solution then Sju, j ∈ Z
d is also a steady state

solution,
• the configuration u is stable in the l∞-norm iff it is stable in the l2-norm

[22].
• If u is a homoclinic point for the constant fixed point u0 and u0 is stable

then σ (DF(u))∩{λ | |λ| > 1} consists of finitely many isolated eigenvalues
with finite multiplicity.

By using these facts it was shown in [22] that if there exists a homoclinic
solution u then there are infinitely many “multi-hump” homoclinic solutions.
More precisely, we proved

Theorem 3.4. [20, 22] Suppose that u is a homoclinic point for the constant
fixed point u0, u0 stable and u is hyperbolic in the l∞-norm. Then there exists
r > 0 such that for every finite or infinite collection of indices {ik} ∈ Z

d

satisfying |im − in| ≥ r, m �= n,

1. there exists a steady state (“multi-hump”) solution u({ik}) that is close to
the union

⋃
j∈{ik} Sju (a more detailed formulation is found in [20, 22]);

2. if u is stable then u({ik}) is stable either.
3. if u is unstable then index (DF(u({ik})) = card ({ik}) · index (DF(u))

where card means the cardinality of a set.

Let us remark first that for the existence of multi-hump solutions the
assumption of hyperbolicity is not necessary, it is sufficient that σ (DF(u)) �!
{1} (see [12]). Second, homoclinic orbits of TDS can be treated as defects
(localized patterns) of the field, and the number r becomes an important
parameter of the field that could be estimated by using quantities related to
the LDS and to the solution u [23].
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3.6 Heteroclinic Points of TDS

Let u1 = {u1
j} = u1

0, u
2 = {u2

j} = u2
0, j ∈ Z

d, be two spatially-homogeneous
fixed points of a LDS.

Definition 3.4. [22] A steady-state solution u12 = {u12
j } is said to be a het-

eroclinic point for the pair u1, u2 in the j0–direction, j0 ∈ Z
d, if for any

i ∈ Z
d,

|utj0+i − u1
0| → 0, t→ −∞, and |utj0+i − u2

0| → 0, t→∞ .

If u1 = u2 then u12 is called a homoclinic point in the j0–direction.

Trivially, for d = 1 one has only one direction.
There is an interesting analogy between heteroclinic points of smooth dy-

namical systems and the ones of TDS. We describe two results.

Closed Heteroclinic Contours

Assume that for the pair of spatially–homogeneous points u1 and u2 there are
heteroclinic points u12 and u21.

Theorem 3.5. [22]

1. If u1, u2, u12 and u21 are all linearly stable in the l∞-norm then there exist
stable homoclinic points in the j0–direction of TDS for u1 as well as for u2.

2. If u1, u2 are stable and u12, u21 are hyperbolic then there are hyperbolic
homoclinic points in the j0–direction for u1 as well as for u2.

Let us remark that this theorem is similar in a sense to the following
well-known result of the smooth dynamical systems theory.

Let u1 and u2 hyperbolic periodic points and their stable and unstable
manifolds intersect transversally, i.e., Wu

u1 ∩W s
u2 �= ∅, W s

u1 ∩Wu
u2 �= ∅, then

there are “transversal” homoclinic orbits for u1 and u2. In the theorem con-
ditions of the transversality of intersections are replaced by conditions of sta-
bility (or hyperbolicity).

One can ask, say for d = 1, if is it true that the hyperbolicity of u1, u2, u12

and u21 with respect to the evolution operator implies the “transversality” of
intersections of stable and unstable sets (which are defined if one considers
the TDS) of u1, u2 along u21, u12, or vice versa. We do not know the answer,
and the main obstacle is the difficulty of right definitions of smoothness and
transversality in the l∞–norm of the action of the TDS on the set of steady-
state solutions.
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Classification of Heteroclinic Orbits in Morse–Smale Systems
and Heteroclinic Points of TDS

A Morse–Smale system has only finitely many periodic orbits but may have in-
finitely many heteroclinic ones. To describe them one can use the partial order
introduced in [30] and the notion of “beh” introduced in [31]. Let us remind
them. We will speak about periodic orbits of the smooth dynamical system
but keep in mind that they will be replaced below by spatially–homogeneous
solutions of TDS.

One writes u1 ≤ u2 if W s
u2 ∩ Wu

u1 �= ∅, i.e. there is a heteroclinic orbit
from u1 to u2. Let us remind that for Morse–Smale systems all intersections
are transversal. If u1 ≤ u2 then there is an ordered collection {v1, . . . , vm}
of periodic orbits such that u1 ≤ v1 ≤ v2 ≤ . . . ≤ vm ≤ u2 and every
intersection Wu

u1 ∩W s
v1 ,Wu

v1 ∩W s
v2 , . . . ,Wu

vm ∩W s
u2 contains the only finitely

many heteroclinic orbits. In this case the orbits belonging to Wu
u1 ∩W s

u2 are
said to have beh equals m. If m > 0 then this intersection contains infinitely
many heteroclinic orbits and they can be described in terms of a topological
Markov chain [32].

For TDS, one again may say that u1 ≤ u2 if there is a heteroclinic point
u12 of TDS. We proved in [22] that if u1 ≤ u2 and u2 ≤ u3 then u1 ≤ u3 and
there exist infinitely many heteroclinic orbits joining u1 and u3. But we did
not make a classification of heteroclinic orbits similar to the one described
above. It is a nice open mathematical problem even for d = 1.

4 Spatially-homogeneous Solutions

Spatially-homogeneous solutions v(n) satisfy the (9) and, by definition, belong
to B provided that |v(n)| ≤ const <∞.

4.1 Stability in the “Nearest Neighbors” Case

Let us consider d = 1 and the LDS

uj(n+ 1) = F (uj−1(n), uj(n), uj+1(n)) . (23)

Any spatially-homogeneous solution uj(n) = v(n) satisfies the equation

v(n+ 1) = F (v(n), v(n), v(n)) .

Assume that |v(n)| ≤ const < ∞. The linearized equation for perturbations
is ξ(n+ 1) = L(n)ξ(n) or

(L(n)ξ(n))j = A1(n)ξj−1(n) +A2(n)ξj(n) +A3(n)ξj+1(n) (24)

where A1(n) = F ′
uj−1

(v(n), v(n), v(n)), A2(n) = F ′
uj

(v(n), v(n), v(n)),
A3(n) = F ′

uj+1
(v(n), v(n), v(n)). By using Gershgorin disks, one can prove
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that if A1(n) = A3(n) and A2(n)−2|A1(n)| > −1+δ, A2(n)+2|A1(n)| < 1−δ,
0 < δ < 1, then {v(n)} is stable in the l2-norm.

One can use this approach to find conditions of stability of spatially-
homogeneous solutions in LDS with d > 1 and more general couplings. A
more sophisticated approach to study stability of spatially-homogeneous so-
lutions was proposed in [14].

4.2 Unidirectional Coupling

For d = 1, there is a class of models reflecting the development of pertur-
bations along physical coordinate [26]. Some of them may be described as
semi-infinite LDS of the form [27]:

uj = f(uj(n)), 0 ≤ j ≤ k (25)

uj = f(uj(n))− γ

[

φ(uj(n))−
r∑

s=1

αs[φ(uj−s(n))

]

+ ε

l∑

t=−l

βtuj+t(n), r, l ≤ k . (26)

We proved in [27] that if the system (25) has a hyperbolic attractor, then
there exists q > 1 such that the system (25, 26) has a finite-dimensional
hyperbolic (in the l2q -norm) attractor if ε, γ are small enough and some other
conditions are satisfied. It does not imply, however, that for the l∞-norm the
dimension of the attractor could not grow along spatial coordinate and could
not be infinite for the system (25, 26).

4.3 A Particular Case

We consider the system

xj(n+ 1) = f(xj(n))− γψ(xj−1(n), xj(n)), xj ∈ R, j > 0 (27)

with the boundary condition x0(n+ 1) = x0(n) where f , ψ are smooth func-
tions and ψ(x, x) = 0. If we assume that xj(0) = x0(0), then xj(n) = x0(n),
j ∈ Z+, will be a spatially-homogeneous solution of (27). We assume that
|x0(n)| ≤ const < ∞. According to the linearized system one can single out
two types of coupling. The linearized equation has the form

ξj(n+ 1) =
(

f ′(x0(n))− γ
∂ψ

∂xj
(x0(n), x0(n))

)

ξj(n)

− γ
∂ψ

∂xj−1
(x0(n), x0(n)) ξj−1(n) . (28)
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We introduce the Lyapunov exponent for a function w(n) as follows

λ(w(n)) = limN→∞
1
N

N−1∑

n=0

w(n).

Let λγ = λ(f ′(x0(n))−γ ∂ψ
∂xj

(x0(n), x0(n))), so that λ0 = λ (f ′(x0(n))). Thus,
one can treat λγ as the Lyapunov exponent of the cocycle on the orbit {x0(n)}.

Definition 4.1. The coupling is said to be dissipative if λγ < λ0 and inertial
if λγ = λ0.

The simplest example of dissipatively coupled maps is the CML

xj(n+ 1) = f(xj(n))− γ (f(xj(n))− f(xj−1(n))) . (29)

An interesting problem is to find an example of inertially coupled LDS. One
may assume that in the stable situation, generally, any coupling is a combi-
nation of dissipative and inertial couplings and one can believe that it is so
for the system

xj(n+ 1) = f(xj(n))− γ (xj(n)− xj−1(n)) . (30)

For the system (29) it is possible to derive conditions of stability in terms
of the Lyapunov exponent λ0 of the individual map. Let us remark that, for
any ε > 0 there exists N(ε) such that for N > N(ε) the following estimate
holds

m+N−1∏

k=m

|f ′(x0(k))| ≤ Cme
(λ0+ε)N .

If we assume that the orbit {x0(n)} is the uniformly hyperbolic one for the
individual map so that Cm ≤ c < ∞ then we arrive to the following theo-
rem [28]

Theorem 4.1. If

λ0 < − ln |1− γ| − γ

1− γ
, 0 < γ < 1 (31)

then ξj(n) → 0 uniformly in j, i.e., {x0(n)} is linearly asymptotically stable
in the l∞-norm.

The inequality (31) implies that λ0 < 0, i.e., generally, x0(n) is a stable,
eventually periodic, orbit.
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4.4 Synchronization of Chaotic Motions in Infinite Lattices

One can say not too much about this problem. First of all, there is no rigor-
ous results confirming the possibility to synchronize chaotic “oscillators” for
infinite lattices. Numerical simulations by definition deal with finite lattices.
Nevertheless, people who perform such simulations believe that for identi-
cal individual subsystems in chaotic regimes, subjected to some dissipative
coupling, synchronized motions can occur. For example, the authors of [33]
studied the system

xj(n+ 1) = (1− γ1 − γ2)f(xj(n)) + γ1f(xj−1(n)) + γ2f(xj+1(n)) (32)

j = 1, 2, . . . , N , with boundary conditions

x1(n+ 1) = (1− γ2)f(x1(n)) + γ2f(x2(n))

xN (n+ 1) = (1− γ1)f(xN (n)) + γ1f(xN−1(n))

where f(x) = ε−x2. It has been shown that for ε = 1.67 the individual system
xj(n+ 1) = f(xj(n)) manifests a chaotic behavior and for γ1 = 0.7, γ2 = 0.1
the diagonal x1 = x2 = . . . = xN is stable in transversal directions even for
N " 1.

So, an interesting open problem now is to prove that chaotic synchro-
nization can (or can not) occur in infinite lattices of identical elements, to
describe conditions on individual systems, couplings, etc. For specific cases
it was shown in [29] and (Yu. Maistrenko, unpublished) that synchronization
regimes do not exist in infinite LDS. However a question arises: even if such
regimes exist how robust can they be with respect to small perturbations of
individual subsystems.

Let us try to formulate an intuitive scenario. Consider the system

xj(n+ 1) = f(xj(n), µj) + γF ({xj(n)}s) (33)

0 ≤ j ≤ N , where the individual “rule” f depends on a parameter µ, and
the displacement of parameters δ = supj,j′ |µj − µj′ | is very small, i.e. δ � 1.
Assume also that for equal values of parameters µj = µ0 the system (33) pos-
sesses a synchronized chaotic regime for γ = γ0. There is a logical possibility
that the size of the region of values of γ for which a chaotic synchronized
regime occurs behaves asymptotically as N−β where β > 0 depends on d,
on boundary conditions and on the function f . Thus, the problem is to find
conditions of chaotic synchronization and to show that such regimes can (or
can not) be robust.

5 Traveling Waves

As far as in the PDE-theory a stationary traveling wave solution depends on
a linear combination of spatial and temporal variables, u(x, t) = ψ(lx + vt),
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where l is the wave vector, lx is the scalar product and v is the velocity. For
LDS this definition works as well and one can define

uj(n) = ψ(lj +mn) (34)

as a traveling wave solution. One can immediately see from this definition that
fixed points of operator S−j0 ◦Fk are traveling wave solutions of the type (34)
if lj0 = mk.

Let us remark that some methods and ideas presented here are similar to
the ones from the Sect. 3. Nevertheless, there are differences because both
the evolution and translation operators act on the set of traveling waves
non-trivially. This fact implies different dimensions and norms for different
embeddings, and therefore a repetition will be not completely unjustified.

5.1 Finite-Dimensional Description

Substituting (34) in (3) we obtain the following expression

ψ(lj +mn+m) = F ({ψ(lj + li+mn)}|i|≤s) . (35)

We assume that
max
|i|≤s

|li| < m (36)

then (35) can be rewritten in a finite dimensional form. Indeed, let us
order the collection of numbers {li}|i|≤s in the natural way {li}|i|≤s =
{p1, p2, . . . , pN(s)}, pk < pk+1; some of these values can have multiplicity
greater than 1. Then (35) can be presented as follows:

ψ(lj +mn+m) = G(ψ(lj + p1 +mn), . . . , ψ(lj + pN(s) +mn)) . (37)

Sometimes (37) is called the traveling wave equation. Because of the assump-
tion (36), p1 > −m, pN(s) < m. We introduce the “traveling coordinate”
t = lj +mn+m, then (37) becomes

ψ(t) = G(ψ(t−m+ p1), . . . , ψ(t−m+ pN(s))) . (38)

This equation can be rewritten in the form of a dynamical system generated
by a map T : x → x where x = (x1, . . . , xM ), xk = ψ(lj +mn+ p1 − 1 + k),
k = 1, . . . ,M , M = m− p1 and T is expressed as follows

xk = xk+1, k = 1, . . . ,M − 1, xM = G(x1, xp2−p1 , . . . , xpN(s)−p1) . (39)

Example 5.1. We consider again the system (4) (so d = 1) and choose m =
3, l = 2, so that M = 3− (−2) = 5, uj(n) = ψ(2j + 3n). The (38) becomes

ψ(t) = ψ(t− 3) + αf(ψ(t− 3)) + ε(ψ(t− 5)− 2ψ(t− 3) + ψ(t− 1)) (40)
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and if we introduce the notations: x1 = ψ(t − 5), x2 = ψ(t − 4), x3 = ψ(t −
3), x4 = ψ(t− 2), x5 = ψ(t− 1), then the map T : R

5 → R
5 looks as follows

x1 = x2, . . . , x4 = x5, x5 = x3 + αf(x3) + ε(x1 − 2x3 + x5) . (41)

Every bounded orbit of the dynamical system (41) corresponds to a solution
of the traveling (40) and therefore, to a traveling wave solution of the original
system.

Following the work [34], we describe a construction of this correspondence
for the case d = 1.

5.2 Two Embeddings

For d = 1 the traveling wave (38) becomes

ψ(t) = F (ψ(t−m− ls), ψ(t−m− l(s− 1)), . . . , ψ(t−m+ ls)) (42)

where t is the traveling coordinate, and the assumption (36) becomes

m ≥ ls+ 1 . (43)

Let x1(t) = ψ(t − m − ls), x2(t) = ψ(t − m − ls + 1), . . . , xls+1(t) =
ψ(t −m), xls+m(t) = ψ(t − 1), then the dynamical system generated by the
map G can be written as

x1(t+ 1) = x2(t), . . . , xls+m−1(t+ 1) = xls+m(t),
xls+m(t+ 1) = F (x1(t), x1+l(t), . . . , x2ls+1(t)) . (44)

It simple to see that if det ∂F
∂x1

�= 0 then G is a diffeomorphism. We assume
that this condition holds.

The orbits of the map G : R
p(ls+m) → R

p(ls+m) can be embedded into the
phase space B of LDS. One of these embeddings can be defined as follows. Let
the map χ : R

p(ls+m) → (Rp)Z be defined by formulas

χ(x)j =






xj if − ls−m ≤ j ≤ −1
(Gi+1x)ls+m if j > −1
(Gj+ls+mx)1 if j ≤ −ls−m− 1 .

The following theorem holds:

Theorem 5.1. [34]. There exists q0 ≥ 1 such that for any q > q0 we have

1. χ(Rp(ls+m)) ⊂ B, where B is endowed with the l2q-norm,
2. χ is a smooth injective map, and
3. S1 ◦χ = χ ◦G, the map G commutes with the shift S1 generating the TDS.
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For the l2q–norm, q < q0, or for the l∞–norm not all orbits of G are bounded
and the map χ is not defined for all points in R

p(ls+m). Nevertheless the
restriction of χ of the set Λ of all points of all bounded orbits of G is well-
defined and still satisfies the last statement of the theorem.

We describe now how the evolution operator acts on the set of traveling
wave solutions. Let ψ ∈ χ(Rp(ls+m)) and define the map α by (αψ)j = ψ(lj).

Theorem 5.2. Under the conditions of Theorem 5.1 and for q > q0 we have

1. α(Rp(ls+m)) ⊂ Bql

2. α is smooth map and
3. F l ◦ α = α ◦ Sm.

Corollary 5.1. Let A be a hyperbolic locally maximal set of the map G then
A = α(χ(A)) is a hyperbolic locally maximal set of F l in Bql .

In the l2q -norm, q < q0 or in the l∞-norm the map α is still well-defined
on the set χ(Λ), and the last statement of Theorem 5.2 holds.

Thus the dynamics of the LDS on the set of traveling waves is defined,
in fact, by the map G that has a special form. We will call G the generalized
Hénon-type map.

5.3 Generalized Hénon-type Maps

Something can be said about dynamics of the map G in the case of weak
couplings. We consider the system

uj(n+ 1) = f(uj(n)) + εT (uj−s(n), . . . , uj+s(n)) . (45)

The map G : X → X, x = (x1, . . . , xls+m), becomes

x1 = x2, . . . , xls+m−1 = xls+m (46)
xls+m = f(xls+1) + εT ({xp(i)uj−s}i≤s)

where xk ∈ R
p, p(i) = li + 1, i = 0, 1, . . . , s. The following statement was

proved in [34].

Lemma 5.1. It f : R
p → R

p is a diffeomorphism possessing a hyperbolic
locally maximal set then there exists ε0 > 0 such that for every ε, with |ε| < ε0,
the map G possesses a hyperbolic locally maximal set provided that det ∂T

∂x1
�= 0.

What one can say if f is not one-to-one? Some results related to this
problem can be found in [35]. We consider now an example of such a situation
in the system (4). We will seek traveling wave solutions in the form uj(n) =
ψ(j + n) [36]. The traveling wave equation can be written as
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ψ(j + n+ 1) =
1

1− ε
[(1− 2ε)ψ(j + n) + εψ(j + n− 1) + αf(ψ(j + n))]

and if we set xn = ψ(j + n− 1), yn = ψ(j + n) then we arrive to the system

xn+1 = yn, yn+1 =
ε

1− ε
xn +

1
1− ε

[(1− 2ε)yn + αf(yn)] . (47)

For example, if f is a cubic polynomial as in Subsect. 3.4 then one can find
parameter values for which the system (47) has a Smale horseshoe [36], i.e.,
plenty of chaotic orbits exist. They correspond to traveling waves with “chaotic
profiles” [36], see also [37]

Another related problem can be formulated as follows: Let f be a quadratic
(or unimodal) map of the interval and ls+m > 2. Is it possible to generalize
results of [38] to this case?

5.4 Abundance of Traveling Waves

We know that in a basic set of a smooth Axiom A system periodic points
are dense, and this fundamental fact allow people to succeed in many diffi-
cult problems of hyperbolic dynamics (see for instance [40]). It would be not
surprising if a similar statement would occur for LDS. But, as we study now
traveling wave solutions, then the following conjecture seems to be interesting.

Conjecture 5.1. If Λ is closed locally-maximal transitive hyperbolic set of a
LDS, then traveling waves solutions are dense in Λ.

Maybe one must assume also that Λ is compact. This conjecture is based
on some results that we are going to describe now.

Coupled Extended Circle Maps [41]

Let S be unit circle, S = {x(mod1)}, SZ =
⊗

i∈Z
Si where Si are copies of

S and R
Z = {x = (. . . , x−1, x0, x1, . . .)}. Let Bq = {x ∈ R

Z , ‖ x ‖< ∞},
‖ · ‖ is the l2q -norm, q > 1. Denote by π : R

Z → SZ the projection: π x =
(. . . , x−1(mod1), x0(mod1), x1(mod1), . . .), and endow SZ with the metric

d(πx, πy) = inf ‖ x̃− ỹ ‖

where the infimum is taken over all elements x̃, ỹ ∈ Bq with πx̃ = πx, πỹ = πy.
We denote by T the set SZ endowed with this metric. Let f : S → S be an
expanding Cr-map, r > 1 and F : R → R its lift. We assume that 1 < F ′ <∞.

Now we introduce a LDS by

(
F̂x

)

j
= F (xj) + ε

s∑

i−j=−s

ai−j(xi)
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where ak(x) are Cr-smooth 1-periodic functions. So, F̂ generates a LDS on
Bq and F defined by

(Fx)j = F (xj) + ε

s∑

i−j=−s

ai−j(xi), mod 1

generates a LDS on T.
We call the solution of the form xj(n) = ψ(kj + mn) the traveling wave

solution of the (k,m)-type.

Theorem 5.3. There exists ε0 > 0 such that for each ε ∈ [0, ε0] and for every
k,m ∈ Z the traveling wave solutions of the (k,m)-type are dense in T.

The theorem shows that one can approximate an arbitrary point on T by
a point of a traveling wave solution of the (k,m)-type in such a way that
the j-th coordinates of these configurations will be close to each other for
−N ≤ j ≤ N , N " 1, but for other values of j the corresponding coordinates
might be very different. In the following example it is not the case.

LDS with Hyperbolic Repellers in Individual Systems

We consider the system generated by the map (6) for which the individual
map f : I → I of the interval is supposed to satisfy the following assumptions.

• There exists a finite collection of piecewise disjoint closed intervals I1, . . . ,
IN ⊂ I,

• |f ′(x)| > 1, x ∈ Ii, i = 1, . . . , N ,
• for any i there exists j such that Ij ⊂ Int (f(Ii)).

These conditions imply that for the map f there exists a hyperbolic repeller
Λ0 ⊂

⋃N
i=1 Ii consisting of all points of all orbits belonging to

⋃N
i=1 Ii. The

restriction f |Λ0 is topologically conjugated to the topological Markov chain
(ΩA, σ) where the transition matrix A is determined by the last assumption.

We proved in [43] that if the l∞-norm ‖ L−Id ‖< ε, and ε is small enough,
then the map F (generating the CML) has an invariant set Λ̃ such that F|Λ̃
is topologically conjugated to F0|Λ̃0

where F0 is the evolution operator for
uncoupled system, L = Id, and Λ̃0 = ΛZ

0 .
It is useful now to rephrase the definition of traveling wave solutions. We

say that u is a traveling wave configuration of the velocity v ∈ Q if v = m
l and

F lu = Sm
1 u where S1 is the shift generating the TDS. It is simple to verify

that a traveling wave configuration are points belonging to a traveling wave
solutions of the form ψ(lj +mn).

If v ∈ R\Q, we say that u is a traveling wave configuration of the velocity
v if for any sequence {(mi, li)}i∈N, mi ∈ Z, li ∈ N, such that limi→∞ mi

li
= v

one has
lim

i→∞
‖ F liu− Smi

1 u ‖= 0.
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Theorem 5.4. If the topological Markov chain (ΩA, σ) is mixing, ‖ L−Id ‖<
ε, and ε is small enough then, for any v ∈ R, the traveling wave configurations
of the velocity v are dense in Λ̃ (in the l∞-norm).

Let us remark that in [44, 45, 46], the authors have proved the exis-
tence of traveling waves (the so-called fronts) with arbitrary real velocity
and monotonic shape in bistable CML, see the chapter by R. Coutinho and
B. Fernandez.

To finish this section let us mention that we omitted all results related to
stability of traveling waves. Some of them can be found in [34, 37].

6 Weakly Coupled Systems

There are many results for weakly coupled LDS. In our framework those are
systems of the form

uj(n+ 1) = f(uj(n), µj) + εF ({uj(n)}s) (48)

generated by the map that will be denoted by Fε, where the coupling para-
meter ε is assumed to be small and µj is a parameter of the individual map.
If µj = µ0, j ∈ Z

d then the system (48) is of the type (3). A problem that
naturally arises is to prove the topological similarity of coupled and uncoupled
systems provided that the individual maps posses some hyperbolic properties.
Such kind of structural stability, in fact, occurs, and it was proved by several
authors in several situations. But in any of them it has been assumed that the
individual map f(x, µj) has a hyperbolic locally-maximal set Λj with chaotic
behavior of orbits. Then the product Λ0 =

⊗
j∈Zd Λj will be an invariant

set for the uncoupled map F0 and will inherit some hyperbolic properties
depending on the norm in B. Furthermore, because of hyperbolicity, Λj can
be described in terms of a topological Markov chain (ΩAj

, σj) where Aj is
a transition matrix. In other words, fj |Λj

is topologically semi-conjugated to
the subshift (ΩAj

, σj) (conjugated if Λj is a zero-dimensional repeller of f).
Thus, the product (Σ, σ) where Σ =

⊗
j∈Z

ΩAj
, σ =

⊗
j∈Z

σj , gives a sym-
bolic description of the uncoupled system. The hyperbolicity of F0|Λ0 allows
us to prove the structural stability result by using sometimes the symbolic
representation (Σ, σ). In particular, it was proved that for small values of ε
there is a Fε-invariant set Λε. The following results are worth to be listed.

• The existence of the conjugacy between F0|Λ0 and Fε|Λε which is a homeo-
morphism in the l∞-norm for the spatially homogeneous situation (µj = µ0)
has been proved in [42] by means of Implicit Function Theorem (IFT). The
authors considered short range interactions, i.e., F may depend on infinitely
many variables but the dependence decays exponentially fast with the label
of coordinates. Of course, the coupling in (48) automatically satisfies this
assumption since F has only finitely many arguments.
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• The existence of such a conjugacy again for the spatially homogeneous
situation where the coupling of the convolution type was also proved in [43],
as it was already mentioned, without using IFT, but only for the case where
Λj is a zero-dimensional repeller on the interval. The proof is performed by
using the symbolic system (Σ, σ), and it is more constructive in a sense
that one can, in principle, control the magnitude of ε. Furthermore, the
spatial dependence of interaction does not need to be of short range, just
summability is sufficient.

• For homogeneous (Theorem 3.16 in [24]) and non-homogeneous (Theorem
7.1 in [24]) cases the existence of the conjugacy has been proved by using
IFT again in some unusual norm (that is something in between the l∞ –
and the l2q -norm, q > 1).

• For the non-homogeneous case (µj �= µ0) the existence of conjugacy was
proved in [48] for the l2q -norm, q > 1. Again the case of zero-dimensional
repellers of the maps of the interval was considered and some additional
natural conditions were assumed. The author used methods of [43, 49, 50]
and did not use IFT.
The conjugacy implies that all topological properties of a weakly coupled
system are the same as for the uncoupled one. So, such important features
of hyperbolic set as a proper symbolic description, the density of periodic
points and traveling wave solutions in the transitive case, etc. are established
without any difficulty. Furthermore, a calculation of some characteristics of
chaos (for example the density of directional entropy) can be performed in
a very simple way.

7 From Infinite to Finite Lattices. Concluding Remarks
and Problems

Of course, there are many other interesting solutions in LDS which are worth
to be studied and there are many other results about topological properties
of some LDS. But, we believe that the ideas given in these lectures and their
results will serve as a first step to be acquainted with this field. For results
on ergodic theory of LDS see [47, 51] and references therein, and also some
chapters in this volume.

We now describe some important problems when passing from infinite to
finite lattices [10].

The system (4) is infinitely extended, i.e., −∞ < j <∞. We now ask how
the behavior of solutions of a large but finite lattice is related to the behavior
of solutions of (4). We restrict ourself to the steady-state solutions and will
impose different boundary conditions.

We consider solutions on a finite lattice, −N ≤ j ≤ N .
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7.1 Periodic Boundary Conditions

Steady-state solutions of (4), i.e., solutions of (16) satisfying the identity uj ≡
uj+2N+1 can be treated as solutions on the finite lattice −N ≤ j ≤ N with
periodic boundary conditions.

We consider the simplest question: let PN be the number of steady state
solutions, how to describe the asymptotic behavior of PN as N → ∞? Of
course, the question is valid only if PN �=∞. If PN is infinite for some N then
the question could be reformulated: how many isolated steady-state solutions
exist if N " 1?

Evidently, PN equals the number of (2N+1)-periodic points of the system
(16). We may specify the problem. Fix R " 1 and consider only periodic
points belonging to the ball of radius R centered at the origin. Then we can
expect that PN <∞ for any N . If so, then we can introduce the quantity

λP = limN→∞
lnPN

2N
, i.e., PN ∼ e2λP N .

So we have the expression of λP as the growth number of periodic points;
very often such a growth number equals the topological entropy (see, for
instance, [40]) and then

PN ∼ e2htopN . (49)

7.2 Dirichlet Boundary Conditions

Assume that the desired solutions satisfy the relationship u−N = 0, uN = 0.
This means that x−N+1 = 0, yN = 0. In other words, any orbit segment
(xj , yj) satisfying (16) for −N + 1 ≤ j ≤ N and the conditions

x−N+1 = 0, yN = 0 (50)

corresponds to a finite collection of points

u−N = x−N+1 = 0, u−N+1 = y−N+1, . . . , uN = yN = 0

which constitute a steady-state solution of (4) satisfying the Dirichlet bound-
ary condition. Let us treat it in the following way. Consider the lines L1 =
{(x, y) : x = 0}, L2 = {(x, y) : y = 0} and let (x∗N , y

∗
N ) be a point of intersec-

tion G2NL1∩L2 where G is the map (16). Then the points (x∗−N+1, y
∗
−N+1) =

G−2N (x∗N , y
∗
N ), (x∗−N+2, y

∗
N+2) = G−2N+1(x∗N , y

∗
N ) · · · (x∗−N+j , y

∗
−N+j) =

G−2N+j−1(x∗N , y
∗
N ), . . . , (x∗N , y

∗
N ) form the desired orbit segment.

In other words, the number of steady-state solutions satisfying the Dirich-
let boundary conditions is equal to the number (say DN ) of points in the
intersection G2NL1 ∩ L2.

If λD = limn→∞ lnDN

2N , then we have an asymptotic relationship

DN ∼ e2λD·N . (51)
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7.3 Neumann Boundary Conditions

For a discrete spatial variable, the Neumann boundary condition can be ex-
pressed as follows: u−N = u−N+1, uN−1 = uN , i.e.,

x−N+1 = y−N+1, xN = yN . (52)

The number of steady-state solutions satisfying these conditions is equal
to the number of the orbit segments (xj , yj), −N + 1 ≤ j ≤ N , satisfying
(52), and this number, say ξN , equals the number of points in the intersection
S2NL ∩ L where L is the diagonal {(x, y) : x = y}. Again we can introduce

λNe = limN→∞
lnξN
2N

so that
ξN ∼ e2λNeN . (53)

The problem of the asymptotic behavior of the number of points in the
intersection fkL1 ∩ L2, where L1, L2 are submanifolds of a smooth manifold,
and f is a smooth map (in particular a diffeomorphism) is said to be a problem
of dynamics of the intersection. Such problems which have appeared recently
in different branches of analysis are very interesting. There are some general
results (see for instance [39] p. 261), but there are no approaches to solve
specific problems. For example, the following open problems seem to be very
attractive.

• Is it true that, in general

λP = λD = λNe ?

If it is true for most nonlinearities f(u) then we can introduce some kind
of “structural stability” for infinitely extended systems. For such systems
the number of steady-state solutions will be approximately the same for all
boundary conditions if the size of the lattice N " 1. And, for example, in
numerical simulations we may use arbitrary boundary conditions to study
the solutions in an infinite lattice. If it is not true then the following problem
appears.

• Which parameters are “responsible” for the values of λj , j ∈ {P,D,Ne} ?
• What kind of bifurcations occurs if the line L1 is moved so that its slope

goes from −∞ to ∞?
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1 Introduction

The collective dynamics of groups of coupled dynamical systems is of great
interest for understanding spontaneous pattern formation in biological and
many other systems; see for example [58]. One can learn a lot about such sys-
tems by first studying idealized cases where the systems are perfectly identical;
this approach has been very successful in understanding general properties of
synchronization as well as particular applications; see for example [77]. In this
chapter we consider how this can lead to the appearance of attractors with
riddled basins. These basins appear because symmetries of dynamical systems
force the presence of invariant submanifolds; the attractors within invariant
manifolds may be only weakly attracting transverse to the invariant manifold
and this leads to a basin structure that is, roughly speaking, full of holes.

From a theoretical point of view, this behaviour is of interest because it
seems strange or pathological but is in some sense common. From a practical
point of view, this behaviour points towards the presence of extreme sensitivity
of the dynamics to noise, also called ‘bubbling’ of attractors. Most interest-
ingly, if we consider generic dynamics within a class of symmetric systems,
riddled basins can appear as a robust phenomenon; they can be persistent for
open sets of parameters of the system.

For the remainder of this section we briefly discuss basins of attraction and
a motivating example of a piecewise linear map with an explicitly computable
riddled basin attractor. More general properties of riddled sets and basins are
discussed in Sect. 2 including their noise sensitivity. This is followed in Sect. 3
by a discussion of the use of symmetries, ergodic measures and Lyapunov
exponents tools for identifying riddled basins; we also discuss anisotropic rid-
dling in Sect. 4 along the lines of [7]. Finally in Sect. 5 we outline a few open
problems related to riddling phenomena.
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1.1 Attractors for Smooth Maps on Compact Manifolds

Qualitative dynamics is about ignoring information. Since one cannot find
explicit solutions to all but the simplest dynamical systems, the first step is
usually to concentrate on what happens “eventually”, i.e. for the asymptotic
dynamics, and this leads to several possible definitions of attractor. We will
discuss a couple of these notions, though there are other notions of attractor
based on invariant measures are also very useful; see for example [29, 71]. We
refer the reader to the other chapters in this volume for further discussion and
examples of attractors in coupled systems as well as [61].

We concentrate on dynamical systems generated by iterated maps

f : M →M

where M is a compact manifold and f is a smooth map generating a dynam-
ical system on iteration, though in some cases we may drop assumptions of
smoothness or may wish to consider flows Ft with t ∈ R. There are some com-
ments on generalizations of this to other less restrictive cases in later sections,
in particular in Sect. 5.

The (forward) trajectory through x ∈ M is the set {fn(x) : n =
0, 1, 2, · · · } and we say a set A ⊂ M is (forward) invariant if f(A) = A.
Define the ω limit set by

ω(x) =
⋂

n>0

{fm(x) : m > n} .

This represents the set of points that the orbit of x accumulates on as t→∞.
Note that the set ω(x) is invariant under f . To see this, consider y ∈ ω(x);

then there is a sequence nk such that fnk(x) → y. Continuity of f means that

fnk+1(x) → f(y)

and so f(y) is also in ω(x). Hence ω(x) is (forward) invariant.
In cases where f is invertible one can apply the same considerations to

α(x), the limits of f−n(x) as n → ∞. An attractor is in some sense the
smallest set that contains all ω(x) limits that one care about; since ω-limit
sets are invariant we only really need to consider invariant sets as candidates
for attractors. Given an invariant set A, consider the set of points whose orbits
are asymptotic to A

B(A) = {x ∈M : ω(x) ⊂ A}

which is the basin of attraction of A.
For the definition of attractor given by Milnor [56] we need a Lebesgue

equivalent background measure on M that we denote by �(·) and by �(A) > 0
we include the possibility that it is infinite. Recall that Lebesgue measure
is simply a generalization of length/area/volume such that one can measure
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many sets constructed from infinite unions and intersections of open sets. We
say the compact invariant set A is a weak attractor if (M1) holds, it is a Milnor
attractor if (M1) and (M2) hold, and a minimal Milnor attractor if (M1) and
(M2’) hold [16], where:

(M1) �(B(A)) > 0.
(M2) For any proper compact invariant subset A′ ⊂ A we have

�(B(A) \ B(A′)) > 0.

(M2’) For any proper compact invariant subset A′ ⊂ A we have

�(B(A′)) = 0.

for further comments on these notions see also [24].
One can think of a Milnor attractor as the smallest compact set that

attracts all initial conditions except for a set of zero measure with respect to
some natural “background measure”. As shown in [56] Milnor attractors can
be constructed by examining the likely limit sets for positive measure subsets
S ⊂M ; these are compact sets Λ(S) that are the smallest such that ω(x) ⊂ Λ
except for a zero measure set of x ∈ S.

From the point of view of numerical simulations of a dynamical system,
Milnor attractors are just as reasonable a definition of attractor as for ex-
ample an asymptotically stable attractor; recall that an asymptotically stable
attractor is an A such that (i) for any open set U containing A there is an
open set V containing A such that x ∈ V implies that fn(x) ∈ U for all n and
(ii) ω(x) ⊂ A for all x ∈ V . An A that satisfies only (i) is Lyapunov stable.
Note that an asymptotically stable attractor must be a weak Milnor attractor
with a basin than contains an open set.

1.2 A Motivating Example

Simple examples of systems with riddled basin attractors can be found by
considering skew product dynamical systems. A direct product of two maps
g and h is simply the map obtained by f(x, y) = (g(x), h(y)); g and h are
referred to as factors; projecting onto one of the coordinates gives a map that
is well-defined. A skew product is a map of the form

(x, y) �→ f(x, y) = (g(x), h(x, y)) (1)

that has only one factor, in this case g. In cases where h(x, y) = yĥ(x, y) the
map (1) has an invariant subspace N = {(x, 0)}. We consider as in [6] the
piecewise linear map on (x, y) ∈ [0, 1]× [0,∞) of the form (1) where

g(x) =
{
α−1x for 0 ≤ x < α
(1− α)−1(x− α) for α ≤ x < 1 (2)

h(x, y) =






γy for y < 1 and 0 ≤ x < α
γ−1y for y < 1 and α ≤ x ≤ 1
1 + β(1− y) for y ≥ 1 .

(3)
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We will assume that γ > 1, 0 < α < 1
2 and −1 < β < 0 are fixed. Varying

α through 1/2 allows one to observe a blowout bifurcation of an attractor
A = N . Varying β allows one to change the dynamics between supercritical
and subcritical scenarios; for more details of the other parameter values, see
[6]. In the case −1 < β < 0, any trajectory that arrives in y ≤ 1 will stay
there for ever.

First, observe that this map has an invariant subspace y = 0 on which the
dynamics is chaotic on this set A in the strongest sense that is commonly in
use; the dynamics has Lebesgue measure as an ergodic invariant measure for
which the dynamics is Bernoulli.

Now pick any x ∈ [0, 1] and consider its itinerary under the “skewed dou-
bling map” g. This defines a symbol sequence {si}i=0,1,2··· where si = 0 if
0 ≤ f i(x) < α and si = 1 if α ≤ f i(x) ≤ 1. Define

lk = #{0 ≤ j < k : sj = 0}, rk = #{0 ≤ j < k : sj = 1},

the number of times that the itinerary of x is resp. to the left/right of x = α.
For almost all x we can use the fact that Lebesgue measure on [0, 1] is invariant
and ergodic under g to conclude that the following sequences converge

lim
k→∞

lk
k

= α, lim
k→∞

rk

k
= 1− α (4)

for almost all x ∈ [0, 1]. If we now define

Mk(x) = γlk−rk

then as long as α < 1
2 we have by (4) that limk→∞ 1

k (lk − rk) = 2α− 1 < 0 so
that limk→∞ lk − rk = −∞. Hence

lim
k→∞

Mk(x) = lim
k→∞

exp [(lk − rk) ln γ] = 0

for almost all x. By comparing with (3) one can verify that

fk(x, y) = (gk(x),Mk(x)y) (5)

as long as Mk(x)y does not exceed 1. We define

Y (x) = max
(

1, (sup
k≥0

Mk(x))−1

)

For almost all x we have 0 < Y (x) ≤ 1. If y < Y (x) then (5) holds for all
k ≥ 0 because Mk(x)y will never exceed 1.

In summary, there is a function Y (x) with Y (x) > 0 for almost all x that
describes the basin of attraction of A:

B(A) = {(x, y) : 0 ≤ y < Y (x)}.
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Clearly, the Lebesgue measure of B(A) must be greater than zero; it is simply
�(B(A)) =

∫
[0,1]

Y (x) dx, and A is a minimal Milnor attractor because almost
all x have g orbits that are dense in [0, 1].1 However the function Y (x) is
highly non-smooth and it is this that makes the basin B(A) in fact riddled as
shown in Fig. 1.

x

y

Fig. 1. The black set shows a numerical approximation of the riddled basin for the
attractor in (x, 0) with α = 0.45, γ = 1.2 and β = −1 for the map (1,2,3). The box
shows points (x, y) ∈ [0, 1]2 while initial conditions in the white set are ejected to
y ≥ 1

For this example we can compute the measure within the basin as in [6].
Let ε = 2α− 1 and note that α < 1/2 implies that ε < 0 in what follows. We
partition [0, 1]2 into a set of strips

In = [0, 1]× (γ−n−1, γ−n), n = 0, 1, 2, . . .

where the strip In has height γ−n−1(γ − 1). The form of the map means that
it is conjugate to a mapping on the In defined by

T (x, n) = (g(x),m(x, n))

where

m(n, x) =






n− 1 if 0 ≤ x < α and n > 0
n+ 1 if α ≤ x ≤ 1 and n > 0
0 if n = 0

1 Recall that a sequence of points xn is dense in a metric space M if any open set
in M contains a point in the sequence.
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which can be viewed as a biased random walk on N ∪ {0} with 0 being an
absorbing state. Let qn, n > 0, be the probability of arriving at the state 0;
then

qn =
1
2
(1 + ε)qn−1 +

1
2
(1− ε)qn+1

which has solution qn = Λ−n where Λ = (1 − ε)(1 + ε) will satisfy Λ > 1.
Hence the measure of points that are attracted to the invariant subspace is
given by

�(B(A)) =
∞∑

n=1

γ−n−1(γ − 1)(1− Λ−n) =
γ(Λ− 1)
Λγ − 1

·

Clearly �(B(A)) → 0 as ε → 0−. We illustrate in Fig. 2 the structure of
the complement of the basin of attraction; note that there are “tongues” of
instability that come down to touch the x-axis at all points (x, 0) such that
the itinerary of x ends in an infinite number of 0s. Since this set is dense,
we can conclude that the basin of attraction of y ≥ 1 is dense and all points
must exit after a finite time, it follows from this that this set is open and
dense. In terms of Y (x) this means that Y (x) = 0 on a dense set in [0, 1];
since Y (x) is almost everywhere positive, Y (x) is discontinuous on a dense
set on [0, 1]. In fact, Y (x) is upper semicontinuous at almost all x and the set
{(x, y) : y > Y (x)} is open and dense in R

2.
One might suspect that this behaviour is caused by the presence of discon-

tinuities in the map (1) but in fact this is not the case; similar basins appear
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Fig. 2. (a) The structure of the basin of attraction of A for the map (1,2,3) discussed
in the text. For α < 0 the invariant set A in y = 0 has a basin with positive measure
whose complement is open and dense and whose structure is shown by the shaded
set. The coding indicates the x-itinerary of those points in y < 1 before they are
expelled to y ≥ 1. By including all possible finite words that occur before expulsion
one obtains a set that is dense and open in [0, 1]2 yet which does not have full
measure. (b) shows the strips In for this map (see text)
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naturally in smooth and even invertible maps and seem to be robust in many
systems with symmetries or invariant subspaces.

1.3 Related Notions of Basin Complexity

A somewhat simpler concept than riddled basin, is that of a fractal basin
boundary. It has been observed since the work of Julia and Fatou for complex
maps, that even linearly stable equilibria e may have basins of attraction B =
B({e}) with boundary such that the Hausdorff dimension dimH(∂B) is not an
integer; for example, see [32, chapter 14] (recall that ∂B = B \ Interior(B)).
One should stress however that for riddled basins, not just the boundary has
“fractal” properties, but the whole set is inseparable from its boundary and
in fact ∂B = B up to a set of zero measure.

Another notion of attraction that is weaker than asymptotic stability but
is stronger than Milnor attraction is that of essential asymptotic stability [54];
we say an invariant set A is e.a.s. if it is asymptotically stable if one excludes
a set of small measure compared to small neighbourhoods of A; more precisely
if there is a set S such that for any neighbourhood U of A and any 0 < a < 1
there is a neighbourhood V of A with �(V \ S)/�(V ) > a where x ∈ V \ S
implies that fn(x) remains in U and is asymptotic to A. Such attractors are
found quite commonly and robustly in heteroclinic networks that have lost
asymptotic stability. However in this case the basin of attraction of A may
still be an open unriddled set.

2 Riddled Sets and Riddled Basins

In contrast to attractors with fractal basin boundaries, a riddled basin is
“fractal” everywhere. However, since a basin of attraction must have positive
measure within phase space, in fact it must have Hausdorff dimension equal
to that of phase space and so cannot have non-integer dimension. It is a “fat
fractal” in the terminology of [30, 34] in that it contains a dense set of holes.
In the following we will use the definitions as in [16] though we note that
there are several possible equivalent definitions. We denote by Bδ(x) = {y ∈
M : |y − x| < δ} the open δ-ball about x in M .

A riddled subset A ⊂ R
n is a measurable set with the property that for

any δ > 0 and any x ∈ A we have

�(A ∩Bδ(x)) > 0 and �(Ac ∩Bδ(x)) > 0 . (6)

More generally given any set A with positive measure one can define its riddled
component

Arid = {x ∈ A : �(Bδ(x) ∩A)�(Bδ(x) ∩Ac) > 0 for all δ > 0} .
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We use this to distinguish cases of full riddling (�(A \ Arid) = 0), lack of
riddling (�(Arid) = 0), with partial riddling being any other case. If A is the
closure of an open set with smooth boundary then ∂A = Arid.

Sometimes one would like to discuss a similar condition to (6) but rather
than comparing A and its complement Ac one would like to compare to disjoint
subsets A and B of R

n. If A and B are disjoint and both have positive measure
then we say A is riddled with B in the case that almost all x ∈ A and all δ > 0
have

�(Bδ(x) ∩A)�(Bδ(x) ∩B) > 0 .

In the case that A is riddled with B and B is riddled with A we say they are
intermingled.2

One can show that the riddled component of an invariant set A is invariant
for a large class of maps. We say f is of type (P) if it is continuous, a local
homeomorphism and nonsingular (i.e. for any V , �(V ) = 0 if and only if
�(f(V )) = 0). The following result taken from [16] can be generalised to cases
where f is almost everywhere a local homeomorphism or to some classes where
f is invertible but discontinuous on a set of zero measure [12].

Theorem 2.1. Suppose that f : M → M is of type (P) and V is invariant,
then Vrid is invariant.

Proof. Consider x ∈ V and choose a neighbourhood U1 of x and U2 of f(x)
such that f : U1 → U2 is a homeomorphism. Consider any δ > 0 such that
Bδ(x) ⊂ U1 and Bδ(f(x)) ⊂ U2. Continuity of f means that we can find δ >
ε > 0 such that f(Bε(x)) ⊂ Bδ(f(x)). Hence �(Bδ(f(x))∩V c) ≥ �(f(Bε(x))∩
V c); by considering the local inverse we see that there is a δ > 0 such that
�(Bδ(x)∩V c) = 0 if and only if there is an ε > 0 such that �(Bε(f(x))∩V c) = 0.
Applying the same argument to V in place of V c means that x is in Vrid if
and only if f(x) is. ��

This result can adapted to the case where f is almost everywhere a local
homeomorphism in which case we conclude that Vrid is invariant up to a set
of zero measure.

2.1 Characterization of Riddled Basins

One approach to characterizing dynamical invariants of riddled basins has
been to compute their uncertainly exponent; [34, 62]. This allows one to com-
pute a quantity that characterizes the “riddledness” of the basin or more
generally of a “fat fractal”. We define this as in [62] for a riddled subset of R

2.

2 If two positive measure sets A and B are intermingled then they cannot be evenly
distributed in the following sense; the Lebesgue density theorem [82, p107] or [32,
p69] implies that almost all points in A are points of density for A in the sense
that for almost all x ∈ A, limε→0 (Bε(x) ∩ A)/(Bε(x)) = 1. Hence almost all
points in A ∪ B are density points for only one of the sets A or B.
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Pick a typical line transverse to the basin and choose two points within 2ε of
each other. If we can estimate the probability p that one point is in the basin
and the other is not by p ∼ εφ we say that there is an uncertainty exponent
φ; in [62] it is shown that one can estimate this as the ratio φ = (λ⊥)2/4Dλ||

where λ⊥ and λ|| are the transverse and tangential Lyapunov exponents and
D is the rate of convergence of variance of finite time Lyapunov exponents.

Another (simpler) characterization of a riddled basin proposed by [62] is
the scaling of the measure near the attractor; this corresponds to taking a
line at a distance y from the attractor; in many cases the measure of the
basin intersected with this line scales as yη. This is estimated in [62] as being
η ∼ |λ⊥|/D.

An interesting observation is that the Kaplan-Yorke formula relating di-
mension of attractor to Lyapunov dimension [44] can fail for riddled basin
attractors; one characteristic of blowout bifurcations is that they are associ-
ated with a sudden regain of the validity of that formula.

2.2 Locally and Globally Riddled Basins

There are cases where an attractor has a basin with full measure in some
open neighbourhood but still a form of riddling in the convergence towards
the attractor. More precisely, consider any open neighbourhood U of A and
define the basin of A relative to U to be

BU (A) = {x ∈M : ω(x) ⊂ A and fn(x) ⊂ U for all n ≥ 0} .

We say the basin of A is locally riddled if there is a neighbourhood U of A
such that BU (A) is riddled [16] (this is a stronger assumption than that given
in [9] where it is only assumed that the riddled component of BU (A) is dense
in A). It is globally riddled in the case that U can be chosen to be equal to M .

2.3 Riddling and Noise Sensitivity; Bubbling of Attractors

A useful model for noise in iterated maps consists of adding an independent
uniformly distributed random variables to all components at every iteration.
For attractors with riddled basins, this can give rise to discontinuous behaviour
in the support of attractors as the noise goes to zero and was called bubbling
in [8].

More precisely, suppose that A ⊂ N ⊂ M with A a Milnor attractor for
f : M →M and the basin of A is locally riddled (say BU (A) is riddled with U
compact in M) but which is asymptotically stable in the invariant subspace
N . Consider the perturbed map

xn+1 = fσ(x) = f(xn) + σξn (7)

where ξn is a vector of i.i.d. random variables uniformly distributed in
[−0.5, 0.5]. Suppose that fσ has an attractor Aσ in the sense that Aσ is the



190 P. Ashwin

smallest compact set that contains all limit points for realizations of the noise
ξn and all x in some open region.

We say the attractor A for f is stable to noise if Aσ → A in the Haus-
dorff metric as σ → 0. This is a weaker notion than for example stochastic
stability discussed in [18]; the latter considers convergence of measures for the
perturbed system to a natural measure for the noise-free system. Define the
unstable set of A to be

U(A) = {x : ∃{x−n} with f(xn−1) = x−n & limn→∞ d(x−n, A) = 0}

i.e. the set of points that have a backward trajectory from A (this definition
is simpler if f is invertible); clearly U(A) ⊃ A. If A is stable to noise then
U(A) ⊂ A. Riddled basin attractors typically have U(A) �⊂ A and so are not
stable to noise.

We will explore further properties of bubbling (in the presence of several
invariant subspaces) in Sect. 4.

3 Symmetry, Transverse Stability and Riddling

Consider a smooth iterated mapping f : M →M with M = R
m some Euclid-

ean space and write �N (.) to denote Lebesgue measure on N a linear subspace
of M . Suppose that f commutes with (is equivariant for) the action of some
finite matrix group Γ acting on M (we only consider finite groups here though
similar results can be obtained for compact groups). This means that for any
x ∈M and for any g ∈ Γ we have that

g.f(x) = f(g.x) .

In general this will force a number of linear subspaces of M to be f -invariant.
More precisely, given any subgroup Σ of Γ we define the fixed point subspace

Fix(Σ) = {x ∈M : gx = x for all g ∈ Σ}

which is f -invariant. Not all subgroups give rise to distinct fixed point sub-
spaces; those that do are the isotropy subgroups of the action of Γ on M ; these
are the subgroups Σ(x) with x ∈ M such that Σ(x) = {g ∈ Γ : gx = x};
these are precisely the possible symmetries of points in M . We therefore ob-
tain, for a given group action, a finite number of linear subspaces Ni ⊂ M ,
i = 1 · · ·n and isotropy subgroups Σi ≤ Γ such that Ni = Fix(Σi) and so
f(Ni) ⊂ Ni. Note that Ni ⊂ Nj if and only if Σi ≥ Σj . Observe also that
Ni ∪ Nj = Nk for some k is also invariant. Conversely, if Σk is the smallest
isotropy subgroup that contains both Σi and Σj then Ni ∪Nj = Nk.

Two subgroups Σ1, Σ2 are conjugate if there is a g ∈ Γ such that Σ1 =
g−1Σ2g. The next basic result states that conjugate subgroups have fixed
point spaces that are mapped onto each other by the group. More precisely
we have the following elementary result.
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Lemma 3.1. Suppose that Σ is an isotropy subgroup and g ∈ Γ . Then g−1Σg
is an isotropy subgroup and Fix(g−1Σg) = g−1Fix(Σ).

Proof. Note that

Fix(g−1Σg) = {x ∈M : g−1hgx = x for all h ∈ Σ}
= g−1{gx ∈M : hgx = gx for all h ∈ Σ} = g−1Fix(Σ) .

��
There has been some work on symmetries of general chaotic attractors in

symmetric systems; see [33] for an overview, and [17, 19, 25, 27, 55]. Other
phenomena that can appear include intermittent dynamics between states
with a variety of different symmetries; for example [13, 14, 31].

3.1 Example; Invariant Subspaces for Four Globally Coupled Maps

Consider the map on R
4 defined by

x′i = (1− ε)f(xi) +
ε

4

4∑

j=1

f(xj) + σiηi (8)

for i = 1, . . . , 4, where at each time-step each ηj is an independent random
variable that is uniformly distributed on [−0.5, 0.5]. The local map f(x) =
1 − ax2 is a quadratic map and ε is the coupling strength. The noise in the
ith component can be controlled by setting σi nonzero.

The system (8) has been studied by several authors including notably
Kaneko [42] although only with isotropic noise perturbations, and displays a
wide range of synchronization and chaotic behaviour. Taborev et al. [79] have
also recently looked at the noise-free case of n = 3 cells in some detail.

This map has the symmetry of all permutations on n objects; it is equivari-
ant under the action of the group S4 given by permutation matrices on R

4.
There are many invariant subspaces corresponding to isotropy subgroups;
these can be characterized by partitions of {1..4} into 1 ≤ m ≤ 4 groups of
identical cells and after identifying conjugate subgroups the possible isotropy
subgroups are conjugate to one of the partial clustering states S1, S2, S2×S2,
S3 and S4. These have fixed point subspaces that are given by coordinates
within one partition being equal; for example if H is the subgroup generated
by the two-cycles (12) and (34) then Fix(H) = {(x, x, y, y)}.

One can order the possible subspaces by Σ1 < Σ2 if and only if Fix(Σ2) ⊂
Fix(Σ1); for the case Γ = S4 this gives the containments as shown in the
isotropy lattice in Table 1. Note that for n larger the isotropy lattice of Sn

becomes much more complicated.
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Table 1. The lattice of isotropy subgroups up to conjugacy for the symmetry group
S4 of four globally coupled maps. The arrows indicate containment of subgroups;
the isotropy subgroups can be interpreted as cluster states for the coupled maps

S4

↙ ↘
S3 S2 × S2

↘ ↙
S2

↓
S1

3.2 Symmetries and Lyapunov Exponents

Now suppose we have a compact invariant set A ⊂ N ⊂ M with N a linear
invariant subspace. Assume that A supports an ergodic f -invariant probability
measure µnat that is a natural measure, i.e. there is a positive measure set
(with respect to Lebesgue measure on N) such that points in these sets have
ergodic averages determined by µ; i.e. such that

lim
k→∞

1
k

k−1∑

j=0

φ(f j(x)) =
∫

A

φ(y) dµ(y)

for any continuous φ : N → R and a positive measure set of x ∈ N . We also
define

Erg(A) = {µ : ergodic measures with support on A}.
With respect to any ergodic measure µ ∈ Erg(A) we define the Lyapunov
exponents (L.E.s)

λ(x, v) = lim
n→∞

1
n

log
|Dfn(x)v|

|v| ·

Oseledec’s theorem [29, 53, 60, 66, 71] implies that for µ-almost all x and any v
this limit converges and may take one of only a finite number of possible values
λi(µ), i = 1, . . . ,m (we count multiplicity by the dimension of the subspace of
v that give this value for typical x). Recall that given any ergodic measure with
support contained within an invariant subspace N , the Lyapunov exponents
(L.E.s) will split into two groups [9, 23]; the tangential L.E.s λ||j (µ) and the
transverse L.E.s λ⊥j (µ); the former correspond to perturbations v within
N (cf the Sacker-Sell spectrum [75]). We assume that for any ergodic µ the
transverse L.E.s are ordered greatest first; λ⊥1 (µ) ≥ λ⊥2 etc. Define

Λmax = sup
µ∈Erg(A)

λ⊥1 (µ), Λnat = λ⊥1 (µnat).

In the case that Λmax > 0 and Λnat < 0 we will obtain an attractor A whose
basin is locally riddled and possibly globally riddled, and at least there will be
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a neighbourhood U for which the attractor have a relative basin BU (A) whose
riddled component includes A. It is however more difficult to come up with
necessary conditions for globally riddled basins that are not very restrictive.
See [7, 9, 16, 24] for some conditions that imply local riddling.

We say a Milnor attractor is regular if for any open neighbourhood U of A
then the measure of the basin of A relative to U is positive; �M (BU (A)) > 0.
A result in [1] implies that any Milnor attractor that is a uniformly hyperbolic
within N with Λnat < 0 will be regular.

Note that for uniformly hyperbolic A (within N) all ergodic measures
on A are limit points of sequences of periodic measures supported within A
[78] and so for such sets the existence of a measure with positive transverse
Lyapunov exponent implies the existence of periodic points with L.E.s that
are arbitrarily close to that of the natural measure.

3.3 Examples of Riddled and Intermingled Basins

Since the phenomena of riddled basins was uncovered [1], riddled basins have
been found in a range of applications, for example learning dynamical systems
[59], coupled chaotic oscillators [8], mechanical systems [83] and electronic
systems [38] and especially coupled maps, e.g. [36] where the literature is too
extensive to list; see other chapters in this book.

As an example, we consider here a smooth map from [11] with a riddled
basin attractor:

f(x, y) = (rx(1− x) + sxy2, νe−xy + y3) (9)

with r = 4, s = 0.3 and ν = 1.5. This has an attractor within y = 0 given
by A = [0, 1] × {0} on which the dynamics is that of a logistic map with
r = 4.3 Evaluating the transverse Lyapunov exponent with respect to any
ergodic measure µ within A amounts to computing the integral

λ⊥(µ) =
∫

(−x+ ln(ν)) dµ(x) = ln ν −
∫

x dµ(x).

Observe that (9) has a fixed point in A at (0, 0) has the largest possible
λ⊥ = 0.40546511 meaning that Λmax = 0.40546511, while the natural measure
gives Λnat = −0.094534. We can use the topological conjugacy of the map f
on A to a doubling map to conclude that there is a dense set of preimages
of the fixed point at (0, 0); hence we expect the basin of attraction of A to
be locally riddled. In this case we can observe that it is globally riddled; see
Fig. 3. Note that unlike the example (1) this map is neither discontinuous nor
a skew product, as long as s �= 0.

Examples of intermingled basins have been found in maps [2] (three inter-
mingled basins) and [41] as well as coupled ODEs [28]. We present an example

3 In this case the basin of A within y = 0 contains no points outside of A.
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Fig. 3. Numerical approximation of the riddled basin of attraction of an attractor in
y = 0 for the smooth map (9) with r = 4, s = 0.3 and ν = 1.5. The basin is shown
in black, while the points in white converge to attractors at infinity. The image
(a) shows the basin in the area [−0.1, 1.1]× [−0.6, 0.6] while (b) shows a zoom into
[0.5, 0.7] × [−0.1, 0.1]

in a map due to Ding and Yang [28] of two intermingled basins for a map on
(x, y) ∈ [−1, 1]2 given by f(x, y) = (x′, y′) where

x′ = g(x) + ε(g(y)− g(x) + g(y)3 − g(x)3)

y′ = g(y) + ε(g(x)− g(y) + g(x)3 − g(y)3)
(10)

for g(x) = 3.4x(1− x2)e−x2
and ε = 0.48. This map has attractors A± in the

diagonal x = y on either side of the origin. Figure 4 illustrates the basin of
the attractor A+ in black; the approximation is obtained by computing

An = f−n([0, 1]× [−1, 1]).

If we assume that A± are the only Milnor attractors for f then

⋂

m>n

(
⋃

p>m

Ap

)

will converge (apart from a set of zero measure) to B(A+) as n→∞. The sets
A6 and A25 are shown; the Lebesgue density theorem implies that almost all
points are points of density for either the white or the black set (though there
are clearly do exist points such as (0, 0) that are points of density for neither
white nor black set; it is even possible that these are dense in [−1, 1]2).

3.4 Normal and Non-normal Parameters

Most analytical studies of blowout bifurcation rely on being able to vary the
dynamics while preserving the dynamics on some invariant subspace. This
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(a) (b)

Fig. 4. Numerical approximation of intermingled basins of attraction of an attractor
A+ in x = y, x > 0 for the map (10) with ε = 0.48. The basin is shown in black,
while the points in white are an approximation of the set basin of A−. Both images
show the area (x, y) ∈ [−1, 1]2; (a) shows an approximation using 6 iterates while
(b) uses 25 iterates

allows one to effectively vary the transverse Lyapunov exponents for fixed
invariant measures. More precisely, if fr : M →M is parameterized smoothly
by r ∈ R and if fr(N) = N for all r and some fixed submanifold then we say
r is a normal parameter if fr|N is independent of r. Otherwise we refer to r
as a non-normal parameter. For normal parameters the Lyapunov exponents
will vary with the parameter in a way that may or may not be analytic; see
for example [9, 73, 74]. In cases that the normal Lyapunov exponent does
vary continuously, the transition to riddling of a basin can be determined by
finding the point at which it loses asymptotic stability.

As discussed in [11, 26] the transitions obtained on varying a non-normal
parameter will typically be much more complicated than on varying a normal
parameter, unless the attractor within N is robust [20]. We refer to the other
chapters in this volume for discussion of the blowout bifurcation.

4 Anisotropic Riddling in Coupled System

Following [7] we consider properties of riddling that can appear in the presence
of more than one invariant subspace. Riddling of the basin may occur in
some directions but not others; we say that riddling is typically anisotropic
in transverse directions unless they are symmetrically related in ways that
we characterize in Theorems 4.1, 4.2. In more general cases the dynamics can
display anisotropic sensitivity to noise. We also illustrate internal riddling
transitions where the number of directions in which riddling occurs changes.
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For nested invariant subspaces N and P with A ⊂ N ⊂ P ⊂M we define

{λN,P
i (µ) : i = 1, . . . ,dimP − dimN}

to be the set of possible λ⊥(x, v) attained for v ∈ P and x is typical with
respect to the measure µ. We also define

ΛN,P
max = sup

µ∈Erg(A)

λN,P
1 (µ)

and
ΛN,P

nat = λN,P
1 (µnat).

In the case of symmetries we often obtain attractor within an invariant
subspace N that is nontrivially contained within several distinct invariant
subspaces P1, P2 etc. The L.E.s in different directions Pi can however in
certain circumstances be related. In what follows T is some isotropy subgroup
of Γ :

Theorem 4.1. Suppose that N = Fix(T ) and N ⊂ Pk = Fix(Σk), k = 1, 2
where Σk ⊂ T are isotropy subgroups that are conjugate within T . Suppose
that A ⊂ N is an attractor. Then λN,Pk

i , ΛN,Pk
max and ΛN,Pk

nat are independent
of k.

Proof. We write Σ = Σ1 so that P1 = Fix(Σ). There is a g ∈ T such that
P2 = Fix(g−1Σg) = g−1Fix(Σ) = g−1P1. Now gx = x and G has orthogonal
action, so |gy| = |y| for any y. Equivariance of f implies equivariance of the
derivative (Df(gx)gv = gDf(x)v). Hence for any x ∈ N and v ∈ P1 we have

λ(g−1x, g−1v) = lim
n→∞

1
n

log
|Dfn(gx)gv|

|gv|

= lim
n→∞

1
n

log
|gDfn(x)v|

|gv| = λ(x, v).

This means that any L.E. λN,P1
i is also a L.E. λN,P2

i and vice versa. ��
The previous result requires that the conjugating element g is in T . More

generally one can require that g maps Fix(T ) to itself. This implies that
g ∈ Norm(T ) where Norm(T ) = {h ∈ Γ : hT = Th} is the normalizer of T .
In this case the result above can be adapted as long as the measure µnat has
symmetry g (a symmetry on average [19]). More precisely,

Theorem 4.2. Suppose that N = Fix(T ) and N ⊂ Pk = Fix(Σk) for k =
1, . . . , l where Σk ⊂ T are related by Σk = g−1

k Σgk for some gk ∈ Norm(T ).
Suppose that A ⊂ N is an attractor with natural measure µnat invariant under
action of all gk. Then λN,Pk

i , ΛN,Pk
max and ΛN,Pk

nat are independent of k.

Proof. This follows as for the previous result on noting that there is a gk-
invariant set of x with full µnat-measure that has the same L.E.s. at each
point. ��
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4.1 Directions of Riddling

Recall that a basin of attraction B(A) is riddled (in M) [1] if for any x ∈ A
and δ > 0 we have

�M (B(A) ∩Bδ(x))�M (B(A)c ∩Bδ(x)) > 0

where �M (·) denotes Lebesgue measure on M . Similarly, we say the basin of
attraction of A ⊂ N0 is riddled in the direction Ni for any invariant subspace
Ni where N0 ⊂ Ni if

�Ni
(B(A) ∩Bδ(x))�Ni

(B(A)c ∩Bδ(x)) > 0.

Observe that it is necessary for B(A) ∩ Ni to have positive �Ni
-measure in

order to get riddling.
Suppose that A is a Milnor attractor such that A ⊂ N0 ⊂ N1 ⊂ M . If

A is riddled in M then it need not be riddled in either Ni. In fact examples
discussed in [1, 9] have attractors that are riddled in M but asymptotically
stable and therefore unriddled in the largest linear subspace N that contains
the attractor. What we emphasise here is that it may be unriddled in a larger
invariant subspace. The same holds even if A is not an attractor but a chaotic
saddle in M .

Suppose a Milnor attractor A in M has Λnat < 0 < Λmax for the system
restricted to an invariant subspace N ′ with N ⊂ N ′ ⊂ M . Then the same
inequality holds for the full system and will imply riddling in the full basin,
as long as A is an attractor in M .

One can find systems f : M → M with an invariant set A contained in
an invariant subspace N such that A is an attractor in M but not in N . For
example, consider the flow induced by the vector field

(ẋ, ẏ) = (x3 − y2x, x2y − y3) (11)

shown in Fig. 5. This has an equilibrium at (0, 0) that has the open basin of
attraction given by y2 > x2. However, all points with y2 < x2 are repelled
away to infinity. Thus the origin is an attractor in R

2 but has trivial basin of
attraction in the invariant subspace given by the x-axis. In this example this
is a degeneracy caused by non-hyperbolicity of the fixed point at the origin.
We expect that this behaviour cannot occur in sufficiently hyperbolic systems.

In applications where noise is highly directional, riddled basin attractors
may have a degree of sensitivity of an attractor to anisotropic noise that is
dependent on whether the noise is in directions in which the basin is unriddled
or not as we will see later.

4.2 Internal and Other Riddling Transitions

Given any attractor A with a riddled basin in a system with several invariant
subspaces, we can characterize this basin by examining the dimension d̃ of the
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x

y

Fig. 5. The dynamics near the non-hyperbolic fixed point at the origin (0, 0) for
(11) such that it is a Milnor attractor for the full system but not for the system
restricted to the invariant subspace (x, 0)

largest invariant subspace N containing A such that the basin of B(A) ∩ N
is unriddled. Note that dim(A) ≤ d̃ ≤ dim(M). Any change in d̃ we term
an internal riddling transition. It is clear that such transitions will occur in
higher-dimensional systems; as A loses asymptotic stability in more directions
the index d̃ will decrease.

Similarly one can apply the standard riddling bifurcation criteria in each
subspace to predict parameter values when internal riddling transitions will
occur; see [16, 48, 51, 63, 81]. Such transitions will typically be rather unclear
on varying system parameters if the chaotic attractors are not structurally
stable; only by examining normal parameters of the system such that the
dynamics on the attractor is left unchanged can one hope to find internal
riddling transitions appearing as codimension one transitions. Similar tran-
sitions where riddling bifurcations are replaced by blowout bifurcations will
also occur in such systems; see for example the systems studied in [5].

4.3 A Numerical Example

If we examine the map (8) for parameter values that are intermediate between
strong and weak coupling one may find a wide variety of attractors of different
symmetries that are multi-stable. One can also find, for example, (i) chaotic
saddles that have basins that are riddled within certain invariant subspaces
(ii) attractors that are riddled in some directions but not others and hence
(iii) anisotropic bubbling response to anisotropic noise.

Here we consider an attractor in

Fix(S2 × S2) = {(p, p, q, q) : p, q ∈ R}.

that occurs when a = 1.71 and ε = 0.15. Figure 6(i) shows a time series on
this attractor for an initial condition very close to
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Fig. 6. Anisotropic bubbling behaviour caused by anisotropic riddling of the basin
of an attractor for a system of four globally coupled maps (8) that lies in an invariant
subspace with symmetry S2 ×S2. (i) shows time-series for the noise-free system; the
circles show the values of x1 and x2 while the crosses show the values of x3 and x4.
In (ii) the attractor in (i) is subject to very low amplitude noise. In (iia) the noise
is added in only the x1 direction giving rise to bubbling in this direction. In (iib) it
is added in only the x3 direction giving a stable response, due to the attractor not
being riddled in this direction
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(p, p, q, q) = (0.00292, 0.00292, 0.8004, 0.8004)

and no added noise; σj = 0 for all j. On addition of noise (iia) shows x1−x2 for
the same initial condition but with σ1 = 10−5. The large deviations away from
x1 = x2 indicative of bubbling in the direction (1, 0, 0, 0) and hence indicate
that the basin of attraction of this attractor is riddled to perturbations into
the invariant subspace (p, q, r, r). By contrast, (iib) shows x3 − x4 for the
same initial condition but with σ3 = 10−5. In this case there is apparently
stable response indicating that the basin is not riddled into the invariant
subspace (p, p, q, r). Note that (i) shows that the statistics of x1 and x3 are
quite different; the natural invariant measure associated with this attractor is
not invariant under the transformation

(x1, x2, x3, x4) �→ (x3, x4, x1, x2).

If this symmetry did leave the attractor invariant then by applying Theo-
rem 4.2 either both or neither of the directions (1, 0, 0, 0) and (0, 0, 1, 0) would
be riddled. Numerical calculations indicate that the transverse L.E. in the di-
rection (1, 0, 0, 0) is approximately −7.8 × 10−4 whereas it is approximately
−0.2842 in the direction (0, 0, 1, 0); this agrees with the anisotropic bubbling
observations.

5 Some Open Problems

In the final section we highlight some open problems and themes of interest
related to riddled basins.

5.1 Unfolding of Blowout and Riddling

One of the most intriguing aspects of blowout bifurcation and associated tran-
sitions to riddled basins are the observation, noted first by [64] in many ex-
amples one can clearly classify the nonlinear stability of the system into one
of two scenarios: either subcritical, where a riddled basin attractor loses its
basin at blowout to become a repellor, or supercritical, where an attractor
is locally but not globally riddled before blowout, and after blowout there is
on-off intermittency [37, 69, 70] or a stuck-on attractor [3]. (See [67, 68, 84]
for more early work on loss of chaotic synchronization)

By analogy with bifurcation of fixed points, it would be nice to understand
precisely what determines criticality at blowout and hence whether basins of
attraction are locally or globally riddled. The map (1,2,3) was studied in [6]
where it was noted that for this map, the two scenarios could be distinguished
subcritical (resp. supercritical) if the essential basin of attraction of A was
zero (resp. positive) measure at the point of blowout.4 In the general case this
4 The essential basin of A is defined as the set of points y whose trajectories visit any

neighbourhood of A with positive frequency; i.e. such that lim supn→∞
1
n
#{0 ≤

k < n : fk(y) ∈ U} > 0 for all U neighbourhoods of A.
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amounts to a conjecture. Other work has examined absorbing areas [21, 52]
and weak attractors [16] to give criteria for supercriticality; for example in [16]
the presence of a larger weak attractor containing a riddled basin attractor
seems to indicate that blowout will be supercritical.

Generally, can one find conditions that ensure that a “scenario” occurs at
blowout and if we can do this, find conditions so that the classification of the
blowout into a scenario is computable in some sense? So far, it seems that is
may only be possible to answer this in a very limited sense; if so, why can one
nevertheless observe this scenario in many simulations?

5.2 Riddling for Infinite Dimensions

Many mathematical models that arise include temporal delays and/or spatial
extension in such a way that the phase space on which the dynamics occurs
is unavoidably infinite dimensional. So far there is no corresponding concept
for riddled basin, or indeed Milnor attractor, that works in cases where a nice
background measure such as Lebesgue is not available. It should be possible
to use ideas such as prevalence [39] in such cases to make some progress but
this has not yet been done to my knowledge.

5.3 Pseudo-Riddled and δ-Riddled Basins

A strange feature of riddling is that in cases that one can prove it exists it is
often hard to find, while in cases where can prove it does not exist, numerics
often seem to say the opposite. For example, in [49] examples of pseudo-
riddled basins are presented. In [12] the concept of δ-riddling was used to give
a numerical profile of pseudo-riddling by saying that a set is δ-riddled if (6)
holds for a given δ; the set is then riddled in the usual sense if it is δ-riddled for
all δ > 0. It would be nice to gain a better theoretical understanding of these
effects and their consequences, though any simple minded approach clearly
has the disadvantage of not being invariant under coordinate changes.

5.4 Genericity of Riddled Basins

In dissipative dynamics that has no imposed invariant subspaces, it is the
belief of the writer (and others) that riddled basin attractors do not arise
except in exceptional circumstances, namely when there are invariant sub-
spaces forced by system symmetries or for example by other constraints [72].
Can one prove any meaningful results in this direction? An important part
of this questions is to understand the prevalence of the appearance of chaotic
attractors; see for example [20, 22, 40, 50, 57].

The appearance of a minimal Milnor attractor that has a partially riddled
basin was suggested in [16] to be a degenerate case; can one prove a sense in
which this is for example non-generic in a class of smooth systems?
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5.5 Unstable Attractors

There has been some very interesting recent work looking at dynamical sys-
tems of globally delay pulse coupled oscillator systems, motivated by simple
models of neural systems. These systems can possess attractors that are an
extreme case of riddling; there is a neighbourhood of the attractor that has
zero measure intersection with the attractor’s basin. Such unstable attractors
have been found to be quite widespread in the dynamics of certain systems
[80]. It is a challenge to understand constraints on the appearance of such
attractors and their characteristic properties.

5.6 Non-Ergodic Attractors and Riddling

In most standard examples where one can prove the existence of riddled basins
the attractor in question is ergodic, namely it possesses an SRB measure whose
support is the attractor. Nonetheless, in the presence of symmetries it has been
recognised for some time that for many cases one can find structurally stable
attractors that are not ergodic; in particular robust attracting heteroclinic
cycles [35, 46, 47] between saddle equilibria, periodic orbits or even chaotic
saddles [4, 27, 31]. These attractors are non-ergodic and not even transitive
(no dense orbits); they consist of chains of connecting orbits and invariant
sets [13, 14].

As a particular example of this in a finite coupled map lattice is the system
with one-directional coupling considered in [15]:

Xk
n+1 = f(Xk

n) e−γXk−1
n

where n ∈ N, k ∈ Z is taken modulo 3 and f(x) = rx(1 − x). Due to the
presence of invariant subspaces Xk = 0 (for any k) if we choose 2 < r < 4
and γ large enough this system can be shown to have open sets of spatially
periodic initial conditions that are attracted to states with no convergence of
ergodic averages; see [15] for more details.

For a skew product system of a chaotic attractor forcing a robust hete-
roclinic cycle one can exhibit examples where the cycle has a locally riddled
basin even though the attractor is non-ergodic [4]. How general is this?

5.7 Other Problems Related to Riddled Basins

Some researchers have implied that there are connections between the com-
putability of riddled basins and decidability [65, 76]. It would be of interest
to know if riddling may help one to understand the nature of chaotic be-
haviour in area-preserving maps such as the standard map, or in other area-
preserving maps; for example Fig. 7 shows in black the invariant set of points
that approach arbitrarily close the discontinuity for an area-preserving map
that arises in signal processing; see [10, 12] for a discussion of this and gener-
alization of the results such as Theorem 2.1 to area-preserving discontinuous
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-1 0 1

-1

0

1

Fig. 7. The black region shows the set of points within the square [−1,−7/8]2

whose orbits accumulate on the discontinuity for the area-preserving map (x, y) �→
(y, g(−x + 0.9y)) where g(x) = x for x ∈ [−1, 1) and g(x + 2) = g(x). It is an open
question whether this set is riddled; the white regions are packed with invariant
curves centred on periodic points and the map can be viewed as a planar piecewise
isometry

maps. It would be of great interest to be able to determine if the set shown
in this figure is riddled or not. Other problems include getting a better un-
derstanding of properties of intermingled basins.
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Abstract. We study one-dimensional lattices of weakly coupled piecewise expand-
ing interval maps as dynamical systems. Since neither the local maps need to have
full branches nor the coupling map needs to be a homeomorphism of the infinite
dimensional state space, we cannot use symbolic dynamics or other techniques from
statistical mechanics. Instead we prove that the transfer operator of the infinite
dimensional system has a spectral gap on suitable Banach spaces generated by mea-
sures with marginals that have densities of bounded variation. This implies in par-
ticular exponential decay of correlations in time and space.

1 Introduction

Typical dynamical systems have a multitude of invariant probability mea-
sures. There are essentially two ways to characterize the “physically rele-
vant” ones among them: in the spirit of statistical mechanics one can look at
those measures which satisfy a variational principle with a potential of the
type “logarithm of the unstable Jacobian”. From a more dynamical persp-
ective one may look at those measures which are absolutely continuous w.r.t.
the natural volume measure m on the state space, or at those for which the
space averages of regular observables equal the corresponding time averages
for a set of initial conditions of positive m-measure. In many cases both ap-
proaches lead to the same result. In the case of coupled map lattices, which are
infinite-dimensional dynamical systems, one needs some extra care to apply
these ideas. For the statistical mechanics approach this is done in other chap-
ters of this book. Here we concentrate on the dynamical systems approach.

Let L be a finite or countable index set, e.g. L = Z or L = Z/dZ and let
I = [0, 1]. We investigate time-discrete dynamics on the state space X = IL,
composed of independent chaotic actions on each component I of X and
of some weak interaction between the components that does not destroy the
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chaotic character of the whole system. More specifically, let τ be a piecewise C2

map from I to I with singularities at ζ1, . . . , ζN−1 ∈ (0, 1) in the sense that τ is
monotone and C2 on each component of I \{ζ0 = 0, ζ1, . . . , ζN−1, ζN = 1}. We
assume that τ ′′/(τ ′)2 is bounded and that τ satisfies the following combined
expansion and regularity assumption:

There is M ∈ N such that κM := inf |(τM )′| > 2 and such that

τm(0), τm(ζ1±), . . . , τm(ζN−1±), τm(1) �∈ {ζ1, . . . , ζN−1}

for m = 0, . . . ,M − 1.

(1)

If inf |τ ′| > 2 this condition is trivially satisfied for M = 1. A simple but
prominent example of such a map with M > 1 is a symmetric mixing tent
map, i.e. a map τs(x) = s( 1

2 − |x −
1
2 |) with slope s ∈ (

√
2, 2]. It satisfies (1)

with N = 2, ζ1 = 1
2 , M = 2 and κM = s2.1

Now a map T0 : X → X describing the uncoupled dynamics is defined by

(T0x)i = τ(xi) (i ∈ L) (2)

and coupled maps Tε := Φε ◦ T0 are introduced using appropriate continuous
couplings Φε : X → X close to the identity on X.2 One of the most widely
used couplings in numerical studies – which despite its simplicity resisted for
quite some time a rigorous mathematical treatment – is the diffusive nearest
neighbor coupling on Z or Z/dZ

(Φεx)i =
ε

2
xi−1 + (1− ε)xi +

ε

2
xi+1 (i ∈ L) . (3)

It is an example of a class of more general C2-couplings Φε whose C2 dis-
tance to the identity Φ0 is of order ε and is controlled in terms of constants
a1, a2 > 0 – see Sect. 3.1 for details. We say that such a coupling has finite
coupling range if there is w > 0 such that ∂jΦε,i = 0 whenever |i− j| > w.

Our main result is:

Theorem 1.1. Let L = Z. Given a mixing3 local map τ as introduced above
and given a1, a2, w > 0, there exists εmax > 0 such that for each (a1, a2)-
coupling Φε with coupling range w and each ε ∈ [0, εmax] holds:
1 An elementary discussion of the basic dynamical properties of these maps can be

found in [1]. For the mixing property see [2].
2 The regularity assumption in (1) seems unavoidable if a weakly coupled system

Tε is to behave like a small perturbation of T0, because weak couplings affect each
individual map τ like a small perturbation, and it is known that in the absence
of the above assumption arbitrarily small perturbations can change the dynamics
of τ completely, see the examples in [3, 4, 5].

3 Under the assumptions made on τ there exists at least one invariant probability
density for τ . We say that τ is mixing, if no power of τ has any other invariant
probability density. This will be discussed in some detail in Sect. 2.5.
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1. The coupled system Tε has an invariant probability measure µε whose finite-
dimensional marginals are absolutely continuous w.r.t. Lebesgue measure
and have densities of bounded variation. It has finite entropy density, and
it is unique among all measures from this class for which the variation of
the marginals increases at most subexponentially with the dimension.

2. There are constants γ, γ′, θ ∈ (0, 1) and C,C ′ > 0 such that for bounded
observables φ, ψ : X → R which depend only on coordinates xa+1, . . . , xb,

∣
∣
∣
∣

∫

φ · (ψ ◦ Tn
ε ) dµε −

∫

φdµε

∫

ψ dµε

∣
∣
∣
∣ ≤ Cθ−(b−a) γn ‖φ‖C1‖ψ‖C0 (4)

and
∣
∣
∣
∣

∫

φ · (ψ ◦ σn) dµε −
∫

φdµε

∫

ψ dµε

∣
∣
∣
∣ ≤ C ′γ′|n|−(b−a) ‖φ‖C0‖ψ‖C0 (5)

where σ is the left shift on X = IZ.
3. The distance (in a suitable metric) between µε and µ0 is of order ε ln ε−1.

The proof of this theorem relies on a spectral analysis of the transfer operator
associated with Tε. It combines results and ideas from [6, 7, 8, 9] and is
developed step by step in this chapter. The existence part and the finiteness
of the entropy density are proved in Theorem 4.1 in Sect. 4.4. Uniqueness of
µε, the exponential decay of correlations, and the estimate on the distance
between µε and µ0 are derived in Sects. 4.7, 4.8, and 4.9 from Theorem 4.3,
which guarantees the existence of a spectral gap for the transfer operator of
Tε on suitable Banach spaces. In Sect. 4.8 we also prove the following strong
law of large numbers (compare [10, Theorem 5.1]):

Corollary 1.1. In the situation of Theorem 1.1, let ψ : X → R be a continu-
ous observable. Let f : I → R be any probability density of bounded variation,
and let (fm) be the corresponding probability measure on I. Then

lim
n→∞

1
n

n−1∑

k=0

ψ(T k
ε (x)) =

∫

ψ dµε for (fm)Z-a.e. x (6)

where (fm)Z is the infinite product measure on X = IZ with one-dimensional
factors (fm).

This result suggests the interpretation of µε as the unique physical (or observ-
able) measure of Tε.4 It is supported by the stability of µε under independent
random noise discussed (without proof) in Sect. 4.9.

4 For a discussion of physical measures and related notions in more general settings
see e.g. the contribution of L.A. Bunimovich in this volume.
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2 Dynamics at a Single Site

The dynamics at each single site of our system is modeled by a mixing piece-
wise expanding map. We will see that the dynamics of such maps are sta-
tistically stable in several respects: there is a unique stationary probability
density towards which each initial density converges under the action of the
dynamics (asymptotic stability), and neither this stationary density nor the
rate at which initial densities are attracted by it change much under small
perturbations of the map. Therefore we can expect that in weakly coupled
systems, where the mutual coupling between the single site maps can also be
interpreted as a kind of perturbation, the behavior of the system at single
sites does not change drastically under the influence of the coupling.

2.1 Piecewise Expanding Maps

We say that a map τ : I → I is piecewise expanding (p.w.e.) if

• there are ζ1, . . . , ζN−1 ∈ (0, 1) which define subintervals Ii = (ζi−1, ζi)
such that each τ |Ii

is monotone and uniformly C2, and
• there are M ∈ N and κM > 2 such that |(τM )′| ≥ κM .5

Our assumptions imply that Dm := sup |( 1
(τm)′ )

′| <∞ for all m ∈ N.

2.2 The Transfer Operator

As the derivatives of p.w.e. maps grow exponentially, the trajectory-wise dy-
namics are very sensitive to initial conditions. But at the same time this insta-
bility is responsible for good asymptotic properties of the transfer operator6

Pτ which describes the evolution of initial densities under the dynamics. This
operator associates to each measurable f : I → R the function Pτf : I → R,

Pτf(x) =
N∑

i=1

(
f

|τ ′|

)

◦ (τ |Ii
)−1(x) · 1τ(Ii)(x) (7)

where 1τ(Ii) denotes the indicator function of the set τ(Ii). By change of
variables it follows that for Lebesgue (m) integrable f : I → R and bounded
measurable ψ : I → R

∫

I

Pτf(x)ψ(x) dx =
∫

I

f(x)ψ(τ(x)) dx . (8)

5 This means that |(τM )′(x)| ≥ κM at all points x where this derivative is defined,
i.e. at all x such that τ i(x) �∈ {ζ0, . . . , ζN} for i = 0, . . . , M − 1. In the sequel
all expressions involving derivatives of τ should be read in this way. Note that it
suffices to have |(τm)′| > κm > 1 for some m ∈ N and to choose M = km such
that κk

m > 2.
6 also called Perron–Frobenius operator
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In particular, if f = f̃ m-a.e., then also Pτf = Pτ f̃ m-a.e. so that Pτ can be
interpreted as an operator on L1

I , the space of equivalence classes of Lebesgue
integrable functions from I to R. As an operator on L1

I , Pτ is unambiguously
defined by (8). The following properties of Pτ are elementary consequences of
its definition (see e.g. [11, Sect. 4.2]):

Pτ is linear and positive. (9)
∫

I
Pτf dm =

∫
I
f dm and

∫
I
|Pτf | dm ≤

∫
I
|f | dm for all f ∈ L1

I . (10)

Pτh = h if and only if µ = hm is a τ -invariant measure, i.e. if
∫
f ◦ τ dµ =

∫
f dµ for each bounded measurable f : I → R.

(11)

Pτ2◦τ1 = Pτ2Pτ1 whenever the three operators are well defined. (12)

Remark 2.1. The “(pre-)dual” characterization of transfer operators by (8)
and its elementary consequences (9)–(12) are not special for 1D maps. They
are valid with exactly the same proofs in rather abstract settings, see e.g. [12,
Sect. 3.2]. Therefore we will use them in later sections where we study transfer
operators for systems of maps without recalling them in detail.

2.3 Functions of Bounded Variation

In order to guarantee the existence of a unique invariant density and its as-
ymptotic stability one needs to study how Pτ acts on spaces of more regular
functions. The first space that comes to mind is probably C1(I), but as Pτf
may have discontinuities even if f has none (see the explicit formula (7) for
Pτf), this space is not invariant under Pτ . The next natural choice that pre-
serves as much of the flavor of C1(I) but allows for discontinuities is the space
BV (I) of functions of bounded variation.

The variation of a C1-function f : I → R can be defined as

V (f) =
∫ 1

0

|f ′(x)| dx . (13)

Approximating this integral by Riemann sums yields the more common ex-
pression

V (f) = sup

{
r∑

i=1

|f(ξi)− f(ξi−1)|
}

(14)

where the supremum extends over all finite partitions 0 ≤ ξ0 < ξ1 < . . . <
ξr ≤ 1 of [0, 1]. This expression is well-defined for any measurable f : I → R.
A third characterization follows from the first one in view of the integration
by parts formula: let

TI,0 = {ϕ ∈ C1(I) : |ϕ| ≤ 1, ϕ(0) = ϕ(1) = 0} (15)
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be a set of C1-test functions on I bounded by 1. Then

V (f) = sup
ϕ∈TI,0

∫ 1

0

f ′(x)ϕ(x) dx = sup
ϕ∈TI,0

∫ 1

0

f(x)ϕ′(x) dx . (16)

Just as the previous one this characterization can be used to define the vari-
ation of any function f ∈ L1

I (and not merely that of C1-functions). Indeed,
(14) leads to the definition

varI(f) = inf{V (f̃) : f̃ = f m-a.e.} (17)

and (16) extends immediately to

varI(f) = sup
ϕ∈TI,0

∫

I

f(x)ϕ′(x) dx . (18)

It is a little extra piece of work to show that the definitions given in (17) and
in (18) really coincide.7 In the sequel we will only use the definition via test
functions in (18). Note that

N∑

i=1

varĪi
(f) ≤ varI(f) . (19)

This follows because if ϕi ∈ TĪi,0 (i = 1, . . . , N), then ϕ : I → R, which is
(unambiguously!) defined by ϕ(x) = ϕi(x) if x ∈ Īi, belongs to TI,0. A direct
consequence of the definition of variation in (18) is

varI(f) ≤ lim inf
n→∞ varI(fn) (20)

whenever f, fn ∈ L1
I and limn→∞

∫
I
|f − fn| dm = 0. Here (and in the sequel)

we use
∫
|f | dm as a shorthand notation for

∫
|f(x)| dx. We denote

BV (I) = {f ∈ L1
I : varI(f) <∞} . (21)

All these considerations apply to any compact interval I, not just to I = [0, 1].
For technical reasons we will often prefer to work with the following variant

of the notion of variation. For any compact interval J , let

TJ = {ϕ ∈ C1(J) : |ϕ| ≤ 1} (22)

and define
VarJ(f) = sup

ϕ∈TJ

∫

J

f(x)ϕ′(x) dx . (23)

Here is a first observation on “Var”.
7 See e.g. [11, Theorem 2.3.12].
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Lemma 2.1. Let J = [a, b], and suppose that (a+ δ, b− δ) is a neighborhood
of I for some δ > 0. If f ∈ C1(J) with f(x) = 0 for x �∈ (a+ δ, b− δ), then

VarI(f) ≤
∫

J

|f ′| dm .

Proof. Each ϕ ∈ TI can be extended to a function ϕ̃ : J → R by linear
interpolation between the points (a|0) and (a+δ|ϕ(0)) on the interval [a, a+δ]
and between the points (b − δ|ϕ(1)) and (b|0) on the interval [b − δ, b], and
by the constant values ϕ(0) and ϕ(1) on the intervals [a + δ, 0] and [1, b − δ]
respectively. In this way, ϕ̃ is continuous, sup |ϕ̃| ≤ 1, ϕ̃(a) = ϕ̃(b) = 0, and ϕ̃
is differentiable except at possibly four points. Hence

∫

I

fϕ′ dm =
∫ b−δ

a+δ

fϕ̃′ dm =
∫ b

a

fϕ̃′ dm = −
∫ b

a

f ′ϕ̃ dm ≤
∫ b

a

|f ′| dm

from which the lemma follows. ��

The next lemma is a kind of tool-box for our work with “var” and “Var”.

Lemma 2.2. Let J = [a, b], f ∈ L1
J , ϕ̇ ∈ L∞

J , c ∈ R, and let ϕ : J → R,
ϕ(x) = c+

∫ x

a
ϕ̇(ξ) dξ.

(a)
∫

J
fϕ̇ dm ≤ sup |ϕ| VarJ(f)

(b) VarJ (fϕ) ≤ sup |ϕ| VarJ(f) + ess sup |ϕ̇|
∫

J
|f | dm

(c)
∫

J
fϕ̇ dm ≤ supu,v∈J |ϕ(u)− ϕ(v)| varJ(f) + ϕ(b)−ϕ(a)

b−a

∫
J
f dm.

(d) If ϕ(a) = ϕ(b) = 0, then
∫

J
fϕ̇ dm ≤ sup |ϕ| varJ(f).

(e) varJ(f) ≤ VarJ (f) ≤ 2 varJ(f) + 2
b−a

∣
∣
∫

J
f dm

∣
∣.

Before we prove this lemma, we discuss a number of consequences.

Corollary 2.1.
∫

J
|f | dm ≤ 1

2 |J | VarJ (f).

Proof. Let ϕ̇ = 1{f>0} − 1{f<0}. Then
∫

J
|f | dm =

∫
J
fϕ̇ dm ≤ 1

2 |J | VarJ (f)

by Lemma 2.2a applied to ϕ(x) = −
∫ (a+b)/2

a
ϕ̇(ξ) dξ +

∫ x

a
ϕ̇(ξ) dξ. ��

Remark 2.2. It is easy to check that VarI(.) and varI(.) are seminorms, i.e.
subadditive and positively homogeneous. Because of Corollary 2.1, ‖f‖BV =
VarI(f) defines indeed a norm on BV (I) = {f ∈ L1

I : VarI(f) < ∞}. It
is equivalent to the more common norm varI(f) +

∫
I
|f | dm on BV (I), see

Lemma 2.2e.

Corollary 2.2. Let ϕ : J → R and suppose that the interval J is partitioned
into subintervals J1, . . . , Jr such that ϕ|Jk

is continuously differentiable for
each k = 1, . . . , r. Let f ∈ L1

J . Then
∫

J

fϕ′ dm ≤ 2 sup |ϕ|
(

varJ(f) +
1

mink |Jk|

∫

J

|f | dm
)

. (24)
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Proof. We apply Lemma 2.2c to each interval Jk separately:
∫

Jk

fϕ′ dm ≤ 2 sup |ϕ|
(

varJk
(f) +

1
|Jk|

∫

Jk

|f | dm
)

.

Summing over k and observing (19) this yields (24). ��
Proof of Lemma 2.2. Let ε > 0, and fix s > 1 such that

∫
{|f |>s} |f | dm < ε.

There exists ψ̇ ∈ C(J) such that
∫

J
|ϕ̇− ψ̇| dm < ε

s , sup |ψ̇| ≤ ess sup |ϕ̇|+ 1,
and

∫
J
ϕ̇ dm =

∫
J
ψ̇ dm. Hence

∫

J

f(ϕ̇− ψ̇) dm ≤ ε ess sup |ϕ̇− ψ̇|+ s

∫

J

|ϕ̇− ψ̇| dm ≤ Cε (25)

where C = 2 + 2 ess sup |ϕ̇|.
Let ψ(x) = c+

∫ x

a
ψ̇(ξ) dξ. Then ψ ∈ C1(J) so that ψ̃ := ψ/ sup |ψ| ∈ TJ .

Hence
∫

J
fψ̃′ dm ≤ VarJ (f). As sup |ψ| ≤ sup |ϕ|+

∫
J
|ψ̇−ϕ̇| dm ≤ sup |ϕ|+ε,

it follows from (25) that
∫

J

fϕ̇ dm ≤
∫

J

fψ′ dm+ Cε ≤ (sup |ϕ|+ ε)VarJ(f) + Cε .

As ε > 0 is arbitrary, we conclude
∫

J

fϕ̇ dm ≤ sup |ϕ| VarJ (f) (26)

which is part (a) of the lemma.
Now let ψ ∈ C1(J), |ψ| ≤ 1. Then (ϕψ)(x) = (ϕψ)(a)+

∫ x

a
(ϕ̇ψ+ϕψ′)(ξ) dξ,

so we may write ˙(ϕψ) = ϕ̇ψ + ϕψ′. Hence, in view of part (a),
∫

J

(fϕ)ψ′ dm =

∫

J

f ˙(ϕψ) dm−
∫

J

fϕ̇ψ dm ≤ sup |ϕ| VarJ(f)+ess sup |ϕ̇|
∫

J

|f | dm .

This is part (b) of the lemma.
If ϕ(a) = ϕ(b) = 0, then also ψ(a) = ψ(b) = 0 so that ψ ∈ TJ,0, and we

can estimate by varJ(f) instead VarJ (f) on the right hand side of (26). This
is part (d) of the lemma.

Next, for ϕ ∈ TJ , let ϕ̃(x) = x−a
b−a (ϕ(x) − ϕ(b)) + b−x

b−a (ϕ(x) − ϕ(a)) =
∫ x

a
(ϕ′(ξ) − ϕ(b)−ϕ(a)

b−a ) dξ. As ϕ̃(a) = ϕ̃(b) = 0 we can apply part (d) of the
lemma to ϕ̃. So
∫

J

f

(

ϕ′ − ϕ(b)− ϕ(a)
b− a

)

dm ≤ sup |ϕ̃| varJ (f) ≤ 2 sup |ϕ| varJ(f) . (27)

As sup |ϕ̃| ≤ supu,v∈J |ϕ(u)−ϕ(v)|, this proves part (c) of the lemma. Finally,
(27) also implies

VarJ(f) = sup
ϕ∈TJ

∫

J

fϕ′ dm ≤ 2 varJ(f) +
2

b− a

∣
∣
∣
∣

∫

J

f dm

∣
∣
∣
∣

and varJ(f) ≤ VarJ (f) follows directly from the definition. This proves part
(e) of the lemma. ��
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2.4 The Lasota–Yorke Inequality

Coming back to the transfer operator Pτ we show next that Pτ (BV ) ⊆ BV .
(Here and in the sequel we write BV instead of BV (I) and var(f) instead of
varI(f).) In fact, we prove much more – an inequality which was discovered in
this context by Lasota and Yorke [16]. In that paper, as well as in numerous
subsequent generalizations of this result, the proof is based on the “elemen-
tary” approach (14) to variation. Here we give a proof using test functions as
in (18).

Proposition 2.1 (Lasota–Yorke inequality). Let τ : I → I be a p.w.e.
map as defined in Sect. 2.1. Let � ∈ N and recall that κ� := inf |(τ �)′| > 0 and
D� = sup |( 1

(τ�)′ )
′| < ∞. Let also E� := 2/(κ� mini |I�

i |) where the I�
i ’s are

monotonicity intervals of τ � which are finitely many. Then, for f ∈ L1
I ,

∫

I

|Pτf | dm ≤
∫

I

|f | dm (28)

Var(P �
τ f) ≤ 2

κ�
var(f) + (D� + E�)

∫

I

|f | dm . (29)

Proof. Equation (28) is just a restatement of (10). We turn to (29). As τ � is
again a piecewise expanding map, it suffices to prove this estimate for � = 1.
Let ϕ ∈ TI . As (ϕ ◦ τ)′(x) = ϕ′(τ(x)) τ ′(x) for all x ∈ I \ {ζ0, . . . , ζN}, we
have

∫

I

Pτf ϕ
′ dm =

∫

I

f (ϕ′ ◦ τ) dm =
∫

I

f
(ϕ ◦ τ)′
τ ′

dm

=
∫

I

f
(ϕ ◦ τ

τ ′
)′
dm−

∫

I

f (ϕ ◦ τ)
(

1
τ ′

)′
dm . (30)

The second term is bounded by D1

∫
I
|f | dm. To the first term we apply Corol-

lary 2.2. As |τ ′| ≥ κ1, this yields (29) (for � = 1). ��

If one applies inequality (29) to P �
τ f, P

2�
τ f, P 3�

τ f, . . . and observes (28), one
obtains by recurrence for each k ∈ N

Var(P k�
τ f) ≤

(
2
κ�

)k

var(f) + (D� + E�)
k−1∑

j=0

(
2
κ�

)j ∫

I

|f | dm . (31)

As κM > 2 by assumption (see Sect. 2.1), it follows at once that

Var(P kM
τ f) ≤

(
2
κM

)k

var(f) + (DM + EM )
κM

κM − 2

∫

I

|f | dm . (32)

In order to extend this inequality to powers Pn
τ which are not multiples of M

we decompose n = kM + p with 0 ≤ p < M . Equation (31) yields
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Var(P p
τ f) ≤

(
2
κ1

)p

var(f) + (D1 + E1)
(2/κ1)M + 1
|2/κ1 − 1|

∫

I

|f | dm (33)

and combining this with (32) we arrive at

‖Pn
τ f‖BV = Var(Pn

τ f) ≤ C1α
n var(f) + C2

∫

I

|f | dm (34)

where 0 < α := (2/κM )
1

M < 1 and C1, C2 are constants that depend on
τ only through M,κ1, κM ,D1,DM , E1, EM . In particular, Pτ is a bounded
linear operator on (BV , ‖.‖BV ).

2.5 Compact Embedding and the Spectral Gap

The usefulness of the space BV is mainly due to the fact that it embeds com-
pactly into L1

I : the unit ball of BV is compact in L1
I , that is, each sequence

(fn)n of L1
I functions with bounded BV -norm has a subsequence which con-

verges (in L1
I -norm) to an element of BV . It follows directly that (BV , ‖.‖BV )

is complete, i.e. BV is a Banach space.
In its simplest form this is known as Helly’s theorem. For the test func-

tion approach to variation that we follow here and that we will extend to
multivariate functions in Chap. 3 this is proved e.g. in [13, 14, 15].8

A first consequence is the existence of an invariant probability density of
bounded variation for the map τ : let fn := 1

n

∑n−1
k=0 P

k
τ 1. Then ‖fn‖BV ≤

1
n

∑n−1
k=0 ‖P k

τ 1‖BV , and (34) implies supn ‖fn‖BV ≤ C2 <∞. Hence there are
h ∈ L1

m and a subsequence (fnj
)j such that limj→∞

∫
I
|h − fnj

| dm = 0. It
follows from the elementary properties (9–11) of Pτ that h is a probability
density and that the measure µ = hm is τ -invariant. The bound ‖h‖BV ≤ C2

follows from (20).
But much more is true. The Lasota–Yorke inequality (29), together with

the compact embedding property of BV into L1
I , allows to apply the Ionescu-

Tulcea/Marinescu theorem [17]:

Theorem 2.1 (Quasi-compactness of Pτ). The operator Pτ : BV → BV
is quasi-compact, i.e. its canonical complexification has only finitely many
eigenvalues of modulus one which all have finite multiplicities, and the rest
of the spectrum is contained in a disc of radius ρ < 1 centered at 0. As
seen before, 1 is an eigenvalue of Pτ . (We will fix ρ such that the rest of the
spectrum is indeed contained in the interior of the disc of radius ρ.)9

8 It is a simple exercise to derive the compact embedding of BV into L1
I from

Lemma 2.2. Hint: Subdivide I into 2n intervals of length 2−n. For f ∈ BV
let fn =

∑2n

k=1 1Ik2n
∫

Ik
f dm. Let ϕ̇n = sign(f − fn). Then

∫
I
|f − fn| dm ≤

∑2n

k=1 2−n varIk(f − fn) ≤ 2−n varI(f) by Lemma 2.2c and (18).
9 More detailed accounts of this theorem can be found e.g. in [11, Chap. 7] and [18,

Sect. 3.2]. See also [19].
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From now on we assume that τ is mixing . That means that 1 is a simple
eigenvalue of Pτ and that there is no other eigenvalue of modulus one. For
p.w.e. maps this in fact equivalent to the usual notion of mixing in ergodic
theory, see e.g. [11, Corollary 7.2.1]. For mixing τ , (1−ρ) quantifies a spectral
gap, i.e. the simple eigenvalue 1 is separated from the moduli of all other
spectral value by (1− ρ) at least. We have indeed

Corollary 2.3 (Spectral gap of Pτ). If τ is mixing, then there is a constant
C3 > 0 such that

∫

I

|Pn
τ f | dm ≤ ‖Pn

τ f‖BV ≤ C3 ρ
n ‖f‖BV (35)

for all n ∈ N and all f ∈ BV with
∫

I
f dm = 0.10

Remark 2.3. Although we will not use it explicitly we note the following fact:
both constants ρ and C3 do not change much under small perturbations of τ
as long as τ and its perturbations satisfy a Lasota–Yorke inequality (34) with
the same constants α,C1, and C2; see [20].)

3 Finite Systems

As an intermediate step towards infinite coupled systems, this section deals
with finite coupled systems of d piecewise expanding maps described by a
transformation Tε on the d-dimensional unit cube. We will see below that –
for sufficiently small |ε| – the maps Tε are piecewise expanding and that one
can develop a spectral theory for their transfer operators PTε

in just the same
way as we did it for the 1D map τ in Chap. 2.

3.1 The Coupling

We recall the notation from the Introduction:

• L is a finite set of cardinality d > 0: it serves as the set of sites. For
notational convenience we work with L = {1, . . . , d} in this section without
interpreting L as a subset of the one-dimensional lattice Z.

• X = IL is the state space of the system: it is a d-dimensional cube.
• τ : I → I is a p.w.e. map as defined in Sect. 2.1.
10 In the spectral theoretic approach the constants C3 and ρ cannot be determined

easily from the “formula” for the map τ . For some maps explicit estimates for ρ
with C3 = 1 are derived in [21]. The proof, which is a refined version of the proof
of our Lemma 2.2c, bypasses spectral theory completely. In [22] (see also [23,
Sect. 8]) it is shown how to obtain explicit estimates on C3 and ρ using Birkhoff
cones. A rigorous numerical approach to estimate these constants is discussed in
[23].
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• T0 : X → X is the d-fold product of the map τ : (T0x)i = τ(xi) (i ∈ L).
• Φε : X → X (|ε| < ε0) is a family of coupling maps ε-close to the identity

in a C2 sense made precise below.
• Tε = Φε ◦ T0 : X → X are the maps describing the coupled systems.

The precise assumptions on Φε are: Φε(x) = x + Aε(x) is a (a1, a2)-
coupling, i.e. there are L × L matrices A′, A′′ with a1 = ‖A′‖1, a2 = ‖A′′‖1
(maximal column sum norm) such that for all i, j, k ∈ L

|(Aε)i| ≤ 2|ε|, |(DAε)ij | ≤ 2|ε|A′
ij , |∂k(DAε)ij | ≤ 2|ε|A′′

ij . (36)

Here ∂j denotes the partial derivative w.r.t. xj . The diffusive nearest neighbor
coupling (3) is an example of a (1, 0)-coupling.

Later we will need the following estimates on (DΦε)−1 derived from (36):

|((DΦε)−1)ij | ≤ ((E − 2|ε|A′)−1)ij where E is the identity matrix, (37)
d∑

i=1

|((DΦε)−1)ij | ≤
1

1− 2a1|ε|
,

d∑

i=1

|∂i((DΦε)−1)ij | ≤
2a2|ε|

(1− 2a1|ε|)2
. (38)

Observe first that (DΦε)−1 =
∑∞

n=0(−DAε)n and that (−DAε)n is dominated
coefficient-wise by |2ε|nA′n in view of (36). This yields (37). Let 1 = (1, . . . , 1)
and let ej be the j-th unit vector. We interpret both as matrices, which plays
a role when we evaluate their ‖.‖1-norms. Then

d∑

i=1

|((DΦε)
−1)ij | ≤

∞∑

n=0

|2ε|n1A′nej ≤
∞∑

n=0

|2ε|n‖1‖1‖A′‖n
1 ‖ej‖1 =

1

1 − 2a1|ε|
·

This is the first estimate in (38), and the second one is proved along the same
lines.

3.2 The Transfer Operator

Recall from Sect. 2.1 that we denote the intervals restricted to which the map
τ is C2 by I1, . . . , IN . Let Qd = {Ii1 × · · · × Iid

: i1, . . . , id ∈ {1, . . . , N}} be
the family of rectangular domains restricted to which the product map T0 is
C2. As in (7) we define the transfer operator PT0 of T0 acting on measurable
f : X → R by

PT0f(x) =
∑

Q∈Qd

f

|det(DT0)|
◦ (T0|Q)−1(x) · 1T0(Q)(x) . (39)

As in the one-dimensional case, PT0 can be interpreted as a positive linear
contraction on the space L1

X of equivalence classes of Lebesgue integrable
functions from X to R, unambiguously defined by
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∫

X

PT0f(x)ψ(x) dx =
∫

X

f(x)ψ(T0(x)) dx (40)

where dx is an abbreviation for dx1 . . . dxd.
In the same way we define a transfer operator PΦε

for the coupling map
Φε. Since Φε is injective, its explicit form is particularly simple:

PΦε
f(x) =

f

|det(DΦε)|
◦ Φ−1

ε (x) · 1Φε(X)(x) . (41)

In view of the elementary properties of general transfer operators discussed
in Remark 2.1, we have for the transfer operator PTε

of the coupled map
Tε = Φε ◦ T0

PTε
= PΦε

PT0 (42)

and both, PΦε
and PTε

, have a (pre)-dual characterization as linear L1
X oper-

ators analogous to (40).

3.3 Multivariate Functions of Bounded Variation

As in the 1D case we need a subspace of L1
X of more regular functions on

which the transfer operators just introduced have “good” spectral properties.
Multivariate functions of bounded variation turn out to be a suitable choice.

There are many equivalent ways to define the variation of a multivariate
function f : X → R, see e.g. [13, 14, 15]. The most intuitive one is perhaps to
define it just in terms of coordinate-wise one-dimensional variation of f . To
this end, and also for later use, we introduce the following notation: For i ∈
{1, . . . , d} we identify x and (xi,x �=i) where x �=i = (x1, . . . , xi−1, xi+1, . . . , xd).
Since we never permute coordinates, this will not lead to any confusion. We
also denote by X �=i the (d − 1)-dimensional cube {x �=i : x ∈ X} and by
fx�=i

: I → R, fx�=i
(x) = f(x,x �=i), the x �=i-section of f . Now we define for

f ∈ L1
X

Vari
X(f) =

∫

X�=i

VarI(fx �=i
) dx �=i, VarX(f) = max

i=1,...,d
Vari

X(f) . (43)

Observe that fx �=i
∈ L1

I for Lebesgue-a.e. x �=i ∈ X �=i by Fubini’s theorem.
So Var(fx �=i

) ∈ [0,∞] is well defined for Lebesgue-a.e. x �=i. That it depends
measurably on x �=i will be shown in Lemma 3.1b. We note the following
immediate consequences of Lemma 2.2e and Corollary 2.1:

Vari
X(1) = 2 and

∫

X

|f | dm ≤ 1
2

Vari
X(f) for each i = 1, . . . , d, (44)

where m denotes Lebesgue measure on X.
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Let
BV (X) = {f ∈ L1

X : VarX(f) <∞} (45)

be the space of functions of bounded variation on X, and note that VarX(.)
is a norm on BV (X).

The above definition of Vari
X(f) is equivalent to a more direct one gener-

alizing the test function approach (18) we used already in dimension one. Let

TX = {ϕ ∈ C1(X) : |ϕ| ≤ 1} . (46)

Proposition 3.1. For each measurable f : X → R and each i = 1, . . . , d,

Vari
X(f) = sup

ϕ∈TX

∫

X

f(x) ∂iϕ(x) dx . (47)

An immediate consequence is that

VarX(f) ≤ lim inf
n→∞ VarX(fn) (48)

whenever f, fn ∈ L1
X and limn→∞

∫
|f − fn| dm = 0.

The proof of this proposition requires smoothing of functions and test
functions by mollifiers: Let η : R → [0,∞) be a symmetric (at zero) C∞

function with
∫

R
η(t) dt = 1 and η(t) = 0 if |t| ≥ 1. For δ > 0 let ηδ(t) =

δ−1 η( t
δ ). The convolution of a function u : I → R with ηδ is defined by

(u ∗ ηδ)(x) =
∫

R
u(x − t)ηδ(t) dt, where u(x − t) is understood to be zero if

(x− t) �∈ I.

Lemma 3.1. Let fx�=i,δ = fx �=i
∗ ηδ.

(a) VarI(fx �=i
) = limδ→0 VarI(fx �=i,δ) for every x �=i ∈ X �=i.

(b) x �=i �→ VarI(fx �=i,δ) and x�=i �→ VarI(fx �=i
) are nonnegative measurable

functions. In particular, Vari
X(f) is well defined in (43).

(c)
∫

X �=i
VarI(fx �=i,δ) dx �=i ≤ supϕ∈TX

∫
X
f(x)∂iϕ(x) dx + o(δ).

Proof. (a) It is a rather classical result from real analysis [14, Theorem 1.6.1]
that for each x �=i ∈ X �=i

lim
δ→0

∫

I

|fx�=i,δ(xi)− fx�=i
(xi)| dxi = 0 . (49)

This implies at once that

VarI(fx �=i
) ≤ lim inf

δ→0
VarI(fx �=i,δ) . (50)

We turn to the reverse inequality. Let ϕ ∈ TI , ε > 0, and let ϕ̃ be any C1

extension of ϕ to all of R with |ϕ̃| ≤ 1 + ε. Then ϕ̃ ∗ ηδ|I ∈ (1 + ε) TI . So
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∫

I

fx�=i,δ(xi)ϕ′(xi) dxi =
∫

I

(fx �=i
∗ ηδ)(xi)ϕ̃′(xi) dxi

=
∫

I

fx�=i
(xi)(ϕ̃′ ∗ ηδ)(xi) dxi

=
∫

I

fx�=i
(xi)(ϕ̃ ∗ ηδ)′(xi) dxi ≤ VarI(fx �=i

) (51)

by definition in (23). Hence VarI(fx �=i,δ) ≤ VarI(fx �=i
).

(b) VarI(fx �=i,δ) =
∫

I
|f ′

x �=i,δ
| dm is a nonnegative measurable function of the

argument x �=i, and so is VarI(fx �=i
) in view of part (a) of this lemma.

(c) Let ψx �=i
(xi) = sign(f ′

x �=i,δ
(xi)), and let J = [−1, 2]. By Lemma 2.1,

VarI(fx �=i,δ) ≤
∫

J

|f ′
x�=i,δ

(xi)| dxi =
∫

J

(fx �=i
∗ ηδ)′(xi)ψx �=i

(xi) dxi . (52)

Let ε > 0. As (fx �=i
∗ηδ)′ is bounded and as |ψx �=i

| ≤ 1, there is ϕ ∈ C1(X �=i×
J) with |ϕ| ≤ 1 such that

∫

X�=i

∫

J

(fx �=i
∗ ηδ)′(xi)ψx �=i

(xi) dxidx�=i

≤ ε+
∫

X�=i

∫

J

(fx �=i
∗ ηδ)′(xi)ϕx �=i

(xi) dxidx �=i

= ε+
∫

X�=i

∫

J

fx�=i
(xi) (ϕx �=i

∗ ηδ)′(xi) dxidx�=i .

(53)

For the last identity observe that (fx�=i
∗ ηδ)(xi) = 0 if xi �∈ (−δ, 1 + δ). As

fx�=i
(xi) = 0 for xi �∈ I, the integral over J in the last expression can be

replaced by an integral over I. Define ϕ̃ : X → R by ϕ̃(x) = (ϕx �=i
∗ ηδ)(xi).

Clearly, ϕ ∈ TX , and combining (52) with (53) we obtain
∫

X�=i

VarI(fx �=i,δ) dx �=i ≤ ε+
∫

X

f(x)∂iϕ̃(x) dx .

As ε > 0 is arbitrary, this finishes the proof. ��
Proof of Proposition 3.1. Fix f and i and denote the expression on the
right hand side of (47) by V (f). Then V (f) ≤ vari

X(f) because, for ϕ ∈ TX ,
all ϕx�=i

(x �=i ∈ X �=i) belong to the set TI of univariate test functions, see
(22).

The reverse inequality follows at once from Lemma 3.1a, Fatou’s lemma,
and Lemma 3.1c. ��

3.4 The Lasota–Yorke Inequality

The Lasota–Yorke inequality (29) for iterates of one-dimensional p.w.e. maps
involves three constants on its right hand side which are determined by basic
properties of the map τ �:
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• κ� is the minimal slope of τ �, i.e. κ−1
� is an upper bound on the contraction

rate of each single inverse branch of τ �,
• D� is determined essentially by the second derivative of τ , and
• E� can be controlled in terms of the inverse of the minimal size of intervals

of monotonicity of τ �.11

The following proposition shows that these are also the quantities one needs
to control for a Lasota–Yorke type inequality for P �

Tε
.

Proposition 3.2 (Lasota–Yorke inequality for finite coupled systems).
Let � ∈ N. For each α� >

2
κ�

and each C4,� > D� +E� there is ε1 ∈ (0, ε0] such
that for |ε| ≤ ε1

∫

X

|PTε
f | dm ≤

∫

X

|f | dm (54)

VarX(P �
Tε
f) ≤ α� VarX(f) + C4,�

∫

X

|f | dm . (55)

Given �, α� and C4,�, the choice of ε1 depends only on the constants a1, a2

which qualify Φε as a (a1, a2)-coupling, see (36).

Equation (54) follows again from (10), see also the remark thereafter. For (55)
we will give a complete proof only when � = 1. In this case it follows directly
from the following separate estimates for PT0 and PΦε

.

Lemma 3.2.

VarX(P �
T0
f) ≤ 2

κ�
VarX(f) + (D� + E�)

∫

X

|f | dm . (56)

Lemma 3.3.

VarX(PΦε
f) ≤ 1

1− 2a1|ε|
VarX(f) +

2a2|ε|
(1− 2a1|ε|)2

∫

X

|f | dm . (57)

Remark 3.1. As the Lasota–Yorke inequality in Proposition 3.2 is useful only
if κ� = inf |(τ �)′| > 2, the restriction to the case � = 1 means that we assume
inf |τ ′| > 2. This was the case dealt with in [6]. It was only in the unpublished
thesis [7] that the geometrically much more subtle case of general � was dealt
with.12

11 A closer look at the definition of E� in Proposition 2.1 reveals that one can
do better: It is essentially the minimal size of the images of the intervals of
monotonicity which determines E�.

12 The treatment of this case in [7] is based on an alternative proof of Lemma 3.2 as
given in [6, Lemma 3.1]. Instead of using the product structure of T �

0 it suffices
to use the fact that the domains restricted to which T �

0 is C2 and expanding
are direct products of intervals (on which τ � is monotone and C2). Let us call
this the rectangular domain property. (The proof of [6, Lemma 3.1] is rather
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Proof of Lemma 3.2. The map T0 = τ ×· · ·× τ is the d-fold direct product
of the p.w.e. map τ , so T �

0 = τ � × · · · × τ � is the d-fold direct product of the
p.w.e. map τ �. Therefore, without loss of generality, we may just treat the
case � = 1 in this lemma.

As VarX(f) = maxi=1,...,d Vari
X(f), it suffices to prove inequality (56) for

each Vari
X separately. We will make as complete use as possible of the product

structure of T0. For notational simplicity we will estimate Var1X(PT0f) only,
the other Vari

X(PT0f) are treated in just the same way.
We write T0 as T0 = S2 ◦ S1 where S1 = IdI × (τ × · · · × τ) and S2 =

τ × (IdI × · · · × IdI). Then PT0 = PS2PS1 , and we can do the estimate in two
steps.

We start by estimating Var1X(PS2f) for f ∈ L1
X . Because of the product

structure of S2, the operator PS2 acts formally like a tensor product operator
on L1

X . More precisely, (PS2f)x �=1(x1) = (Pτfx�=1)(x1). Hence

Var1X(PS2f) =
∫

X�=1

VarI((PS2f)x �=1) dx �=1 =
∫

X�=1

VarI(Pτfx�=1) dx �=1

≤ 2
κ1

∫

X�=1

VarI(fx �=1) dx �=1 + (D1 + E1)
∫

X�=1

∫

I

|fx �=1(x1)| dx1dx �=1

=
2
κ1

Var1X(f) + (D1 + E1)
∫

X

|f | dm .

Here we used the Lasota–Yorke inequality (29) for 1D maps from Proposi-
tion 2.1. Hence,

Var1X(PT0f) = Var1X(PS2(PS1f)) ≤ 2

κ1
Var1X(PS1f) + (D1 + E1)

∫

X

|PS1f | dm .

As
∫

X
|PS1f | dm ≤

∫
X
|f | dm (compare (10)), the proof of Lemma 3.2

will be finished by showing that Var1X(PS1f) ≤ Var1X(f): let ϕ ∈ TX . For
x�=1 ∈ X �=1 let ψx�=1(x1) = ϕ(S1(x1,x �=1)). Then ψx�=1 ∈ TI , and

straightforward analysis.) Now, if one passes to coupled systems, things change.
Although Tε = Φε ◦ T0 still possesses the rectangular domain property, this is no
longer true for powers T �

ε ,  ≥ 2. In fact, already to make sure that, by passing
from T0 to Tε, no new domains occur one needs the full strength of the regularity
assumption (1). But with this assumption one can prove a geometrically much
finer result [7]:

There are constants ε̃ > 0 and c > 0, independent of the size of L, such that
for |ε| ≤ ε̃ and for each domain Zε on which T M

ε is C2 and expanding, there is
a diffeomorphism ΨZε between Zε and the corresponding rectangular domain Z0

of T M
0 which is C2 close to the identity in the sense of a (1, c)-coupling, see (36).

This allows to reduce variation estimates of functions f 1Zε to variation estimates
of functions f̃ 1Z0 , and the latter ones can be dealt with using [6, Lemma 3.1].
See also [24] for a more details.
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∫

X

PS1f(x)∂1ϕ(x) dx =
∫

X

f(x)∂1ϕ(S1(x)) dx

=
∫

X�=1

∫

I

fx �=1(x1)ψ′
x �=1

(x1) dx1dx �=1 ≤
∫

X�=1

VarI(fx�=1) dx �=1 = Var1X(f) .

Now Var1X(PS1f) ≤ Var1X(f) follows from Proposition 3.1. ��

Proof of Lemma 3.3. Let f ∈ L1
X , ϕ ∈ TX , and j ∈ {1, . . . , d}. Denote

(just for this proof) the matrix (DΦε)−1 by (bij). Then

(∂jϕ) ◦ Φε = (D(ϕ ◦ Φε)(DΦε)−1)j =
d∑

i=1

∂i(ϕ ◦ Φε) · bij

=
d∑

i=1

∂i(ϕ ◦ Φε · bij)−
d∑

i=1

ϕ ◦ Φε · ∂ibij .

(58)

Let ψij = ϕ ◦Φε · bij = ϕ ◦Φε · ((DΦε)−1)ij . As all functions ψij are in C1(X),
this implies

∫

X

PΦε
f(x) ∂jϕ(x) dx =

∫

X

f(x) ∂jϕ(Φεx) dx

≤
d∑

i=1

sup
x
|ψij(x)|VarX(f) +

d∑

i=1

sup
x
|∂ibij(x)|

∫

X

|f | dm .

(59)

The two suprema in this estimate are precisely controlled by our assumptions
(36) on Φε and their consequences (38): for j = 1, . . . , d,

d∑

i=1

sup
x
|ψij(x)| ≤

d∑

i=1

sup
x
|((DΦε)−1)ij(x)| ≤ 1

1− 2a1|ε|
d∑

i=1

sup
x
|∂ibij(x)| =

d∑

i=1

sup
x
|∂i((DΦε)−1)ij(x)| ≤ 2a2|ε|

(1− 2a1|ε|)2
·

As ϕ is an arbitrary test function in TX , this finishes the proof of Lemma 3.3.
��

3.5 Existence of Absolutely Continuous Invariant Measures

Having derived inequality (55) one can proceed as in the one-dimensional case:
as in Sect. 2.4 it follows that

VarX(Pn
Tε
f) ≤ 2C1 α

n VarX(f) + 2C2

∫

X

|f | dm (60)

for all f ∈ L1
X and all n ∈ N provided |ε| ≤ ε1. The constants are from (34),

and the additional factor 2 accounts for the passage from ε = 0 to |ε| ≤ ε1.
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(Indeed, there is nothing special with the factor 2. Any factor strictly larger
than 1 would do as well.)

In perfect analogy with the case of piecewise expanding maps of the inter-
val Proposition 3.2 immediately implies the existence of at least one absolutely
continuous invariant measure.

Theorem 3.1. Let Tε : X → X be a coupled map on X = IL as described in
Sect. 3.1. For each |ε| ≤ ε1 there exists a Tε-invariant probability measure µε

which belongs to BV (X).

Proof. As V arX(1) = 2 inequality (60) implies lim supn→∞ VarX(P �
Tε

1) ≤
2C2. Let hn = 1

n

∑n−1
k=0 P

k
Tε

1. Then also lim supn→∞ VarX(P k
Tε

1) ≤ 2C2. As
the space BV (X) embeds compactly into L1

X , see e.g. [13, Theorem 1.19] or
[14, Corollary 5.3.4], it follows that {hn} has accumulation points in L1 which
belong to BV and are the density of an invariant measure. ��

Although we will not use this observation explicitly, an argument of the same
type will guarantee the existence of an invariant measure with marginal den-
sities of bounded variation for the infinite coupled system in Chap. 4.

For sufficiently small |ε| the operator PTε
is again quasi-compact on the

Banach space BV (X), and one can show that it has a spectral gap if the
single site map τ is mixing.13 It is not possible, however, to obtain in this
way a useful d-dependent control over the constants C3 and ρ in the spectral
gap estimate (35). To achieve this we will apply a more recent technique in
Chap. 4. As a by-product we obtain the following d-dependent estimate on
the mixing rate for uncoupled systems: for f ∈ BV (X) with

∫
X
f dm = 0,

∫

X

|Pn
T0
f | dm ≤ (2 + C2)C3 d ρ

n VarX(f) (61)

with constants C2, C3, and ρ from (34) and Corollary 2.3. This is proved at
the end of Sect. 4.5.

4 Infinite Systems over L = Z

The first problem that comes to mind if one attempts to transfer the finite
system theory from Chap. 3 to the case L = Z is certainly: what is a class of
measures which can play the role that the absolutely continuous ones play in
the finite-dimensional case? These are not the measures absolutely continuous
w.r.t. the infinite product Lebesgue measure mZ on the “infinite-dimensional
unit cube” X = IZ. Just look at the uncoupled map T0: If µ = hm is an
invariant measure for the p.w.e. map τ , then its infinite product µZ should be
13 For the case when τ is a mixing tent map a proof is published in [25].
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the measure to look at. But µZ is absolutely continuous w.r.t. mZ if and only
if µ is the Lebesgue measure on I, i.e. if h = 1.14

So we are lead to look at measures whose finite-dimensional marginals
are absolutely continuous. We will introduce various norms on spaces of such
measures, derive Lasota–Yorke inequalities for the transfer operator of Tε on
such spaces and prove the existence of spectral gaps.

4.1 Classes of Measures and Distributions

Let us fix some notation:

• X = IZ, and M is the space of signed Borel measures on X.
• For Λ′ ⊂ Λ ⊂ Z, let πΛ : X → IΛ and πΛ

Λ′ : IΛ → IΛ′
be the canonical

coordinate projections.
• |Λ| is the cardinality of Λ.
• For ν ∈M and Λ ⊂ Z, let νπ−1

Λ be the projection of ν to IΛ, i.e. νπ−1
Λ (U) =

ν(π−1
Λ U) for measurable U ⊆ IΛ.

• I is the family of all intervals Λ = [a, b] ⊂ Z including the empty set.
• L1

Z
= {ν ∈M : νπ−1

Λ is absolutely continuous w.r.t. mΛ for all Λ ∈ I}.
• For ν ∈ L1

Z
and Λ ∈ I we denote by νΛ the density of νπ−1

Λ w.r.t. mΛ. If
Λ = ∅, then νΛ has the constant value ν(X).

• BVZ = {ν ∈ L1
Z

: VarIΛ(νΛ) <∞ for all Λ ∈ I}.
We define two scales of norms on L1

Z
and (subspaces of) BVZ.

Definition 4.1. For 0 < θ ≤ 1 and ν ∈ L1
Z

let

|ν|θ = sup
Λ∈I

θ|Λ|
∫

|νΛ| dm (62)

‖ν‖θ = sup
Λ∈I

θ|Λ| Var(νΛ) . (63)

(Here
∫
|νΛ| dm and Var(νΛ) are shorthand notations for

∫
IΛ |νΛ| dmΛ and

VarIΛ(νΛ), respectively.) Observe that |ν|θ ≤ 1
2‖ν‖θ in view of (44).

L1
θ and BVθ are now defined to be the completions of L1

Z
and of the space

{ν ∈ BVZ : ‖ν‖θ <∞}, w.r.t. the norms15 |.|θ and ‖.‖θ, respectively.
14 For a proof of this let ψ : I → R be any bounded measurable function. By the

law of large numbers 1
n

∑n−1
k=0 ψ(xk) converges to

∫
I
ψ dm for mZ-a.e. x and to

∫
I
ψ dµ for µZ-a.e. x. It follows that µZ is absolutely continuous w.r.t. mZ if and

only if these two integrals coincide for any such function ψ, i.e. if µ = m. We
note for later use that the same argument applies to any two stationary product
measures on IZ. In particular, two such measures are singular to each other if
they are not identical.

15 |.|θ and ‖.‖θ are obviously seminorms. To see that |.|θ is indeed a norm, suppose
that |ν|θ = 0 for some ν ∈ L1

Z. Then νΛ = 0 for all Λ ∈ I so that ν(ϕ) = 0 for
each ϕ ∈ C(X) which depends on only finitely many coordinates. As the space of
these functions is dense in C(X), this means that ν = 0 as a signed measure. As
|ν|θ ≤ ‖ν‖θ by (44), also ‖.‖θ is a norm.
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Example 4.1. Let f be a probability density on I and consider the infinite
stationary product measure ν with one-dimensional factors fm. Observe that
VarIΛ(f) ≥ 2 = VarIΛ(1) for all Λ by (44). Hence |ν|θ = 1 and ‖ν‖θ = VarI(f)
for all θ. In particular, ‖mZ‖θ = 2 for all θ.

In the following lemma we collect a few simple observations.

Lemma 4.1. (a) VarIΛ′ (νΛ′) ≤ VarIΛ(νΛ) for ν ∈ L1
Z

and Λ′ ⊂ Λ ∈ I.
(b) |ν|θ=1 = limn→∞

∫
|ν[−n,n]| dm and ‖ν‖θ=1 = limn→∞ Var(ν[−n,n]).

(c) |ν|θ ≤ |ν|θ=1 and ‖ν‖θ ≤ ‖ν‖θ=1 for all θ ∈ (0, 1] and all ν ∈ L1
Z
.

Proof. (a) Just observe that if ϕ ∈ TIΛ′ , then ϕ ◦ πΛ
Λ′ ∈ TIΛ , and for each

i ∈ Λ′
∫

νΛ′ ∂iϕdm
Λ′

=
∫

(νΛ′ ◦ πΛ
Λ′) ∂i(ϕ ◦ πΛ

Λ′) dmΛ =
∫

νΛ ∂i(ϕ ◦ πΛ
Λ′) dmΛ .

Now (b) follows from (a), and (c) is a direct consequence of the definitions. ��

As we are going to describe the quantitative dynamical properties of cou-
pled systems in terms of properties of transfer operators acting on the spaces
L1

θ and BVθ, it is worth to spend some effort to give more concrete models of
these spaces which are defined rather abstractly as completions.

Remark 4.1. L1
θ=1 = L1

Z

It is a little exercise in measure theory to see that, for ν ∈ L1
Z
, |ν|θ=1 =

supΛ∈I
∫
|νΛ| dm coincides with the total variation norm |ν|1 of the signed

measure ν.16 Hence L1
θ=1 is just the closed subspace L1

Z
of (M, |.|1).

Remark 4.2. BVθ=1 = {ν ∈ BVZ : supΛ∈I Var(νΛ) <∞}.

This means that in the definition of BVθ=1 the completion was not necessary.
The completeness of the space on the right hand side for the norm ‖.‖θ=1

follows easily from the completeness of the spaces (BV (IΛ),VarIΛ).17

Hence, for θ = 1, we have defined spaces of signed measures with additional
regularity properties, and we will show that our coupled Tε always has a unique
invariant measure that belongs to BVθ=1. But neither ‖.‖θ=1 nor |.|θ=1 is
suited to describe the convergence of measures Pn

Tε
ν to the invariant measure –

not even for ε = 0 – as the following example shows.
16 Each signed measure ν has a unique decomposition ν = ν+−ν− as a difference of

two finite positive measures which are singular to each other. The total variation
norm of ν is defined as |ν|1 = ν+(X) + ν−(X). For a proof that |ν|1 = |ν|θ=1 see
e.g. [6, Lemma 2.4].

17 Let (νn) be a Cauchy sequence in BVθ=1. As |.|θ=1 ≤ ‖.‖θ=1, it is a for-
tiori a Cauchy sequence in L1

θ=1. Let ν = L1
θ=1-limn→∞ νn, and let εn =

supk≥n ‖νk − νn‖θ. Let Λ ∈ I, ϕ ∈ TIΛ , and i ∈ Λ. Then
∫

(ν − νn)Λ ∂iϕ dm ≤
limk

∫
(ν − νk)Λ ∂iϕ dm + supk≥n

∫
(νk − νn)Λ ∂iϕ dm ≤ εn so that ‖ν − νn‖θ=1 =

supΛ∈I Var((ν − νn)Λ) ≤ εn → 0.
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Example 4.2. Let h be the unique invariant probability density of the local
p.w.e. map τ , and let µ be the infinite product measure (hm)Z. Recall from
Footnote 14 at the beginning of this chapter that any two stationary product
measures are singular to each other if they are not identical. Hence, as long
as Pn

τ 1 �= h, the measures mZ T−n
0 and µ are mutually singular, which means

that ‖mZ T−n
0 − µ‖θ=1 ≥ |mZ T−n

0 − µ|1 = 2.18

We conclude that the “θ = 1”-norms are unsuited to describe the conver-
gence of mZ T−n

0 to the invariant limit measure µ. For this purpose we will
use the norms |.|θ and ‖.‖θ with 0 < θ < 1. As long as this is all we want to do
with them we need not bother that the spaces L1

θ and BVθ for 0 < θ < 1 are
no longer spaces of signed measures. Note, however, that the positive elements
in L1

θ are finite measures on X.

Example 4.3. Here is an example of a Cauchy sequence in L1
θ whose limit can-

not be interpreted as a finite signed measure on X. Let f : I → R,
∫
f dm = 0,∫

|f | dm = 1. Denote by νk the infinite product signed measure with one-
dimensional factor measures fm at sites i = 1, . . . , k and m at all other sites.
Then |νk|1 = 1 and νkπ

−1
Λ = 0 if Λ ∩ {1, . . . , k} �= ∅.

For r ∈ (1, θ−1) let µn =
∑n

k=1 αkνk with coefficients |αk| ≤ r−1
r rk. Then

µnπ
−1
{1,...,d} =

∑d∧n
k=1 αkνk so that, for each Λ ∈ I which contains {1, . . . , d},

|µnπ
−1
Λ |1 ≤

∑d∧n
k=1 αk ≤ rd. Therefore |µn|θ = supΛ∈I θ

|Λ||µnπ
−1
Λ |1 ≤ 1. Simi-

larly one shows that, if l > n and Λ ⊇ {1, . . . , d}, then θ|Λ||(µn − µl)π−1
Λ |1 ≤

(θr)n, whence |µm − µl|θ ≤ (θr)n, and (µn)n is indeed a Cauchy sequence in
L1

θ. Now let p ∈ N such that rp > 2r
r−1 , and let αk = rk if k is an integer

multiple of p and αk = 0 otherwise. Then similar estimates show that the
total variation norm |µn|1 is at least r−1

r rn, so no “reasonable” limit of the
sequence (µn)n can be a finite signed measure.

4.2 The Infinite Coupled Map

From now on we consider exclusively the case L = Z. Our basic assumptions
on τ and Φε are the same as those made in Sect. 3.1, namely

• X = IZ is the state space of the system.
• τ : I → I is a p.w.e. map as defined in Sect. 2.1.
• T0 : X → X is the infinite product of the map τ : (T0x)i = τ(xi) (i ∈ Z).
• Φε : X → X (|ε| < ε0) is a family of coupling maps ε-close to the identity

in a C2 sense made precise by the notion of (a1, a2)-coupling in (36).
• Tε = Φε ◦ T0 : X → X are the maps describing the coupled systems.

We assume additionally

• The Φε have finite coupling range w > 0, i.e. ∂jΦε,i = 0 whenever |i−j| > w.
So A′

ij = A′′
ij = 0 when |i− j| > w for the matrices A′, A′′ introduced in

(36).
18 If ν ∈ M, then ν T−1

ε (U) = ν(T−1
ε U), so ν T−1

ε ∈ M.
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For a proof of the existence of a Tε-invariant measures in BVθ=1 (Sect. 4.4)
one knows how to work around this additional assumption, see [7], but we
need a finite coupling range for the proof of a spectral gap in Sect. 4.7. So
we make our life easier using this assumption throughout this chapter. The
diffusive nearest neighbor coupling (3), for example, has coupling range w = 1.

In order to reduce estimates on transformed measures νT−�
ε on the infinite

system to estimates on their finite-dimensional marginal densities (νT−�
ε )Λ, we

must relate projections onto different Λ to each other: there are no isolated
finite subsystems in infinite coupled systems. To be more specific, for Λ =
[a, b] ∈ I and � ∈ N let Λ(�) = [a− �w, b+ �w]. Denote ιΛ : IΛ → X the map
(ιΛ(x))i = xi if i ∈ Λ and (ιΛ(x))i = 0 otherwise19, and let

Tε,Λ = Φε,Λ ◦ T0,Λ where T0,Λ = πΛ ◦ T0 ◦ ιΛ, Φε,Λ = πΛ ◦ Φε ◦ ιΛ . (64)

Observe that T0,Λ is just the uncoupled map on IΛ and that Φε,Λ is a (a1, a2)-
coupling on the finite-dimensional space IΛ with the same constants a1, a2

as above. Hence all considerations of Chap. 3, in particular the Lasota–Yorke
inequality (55), apply to Tε,Λ. The important link between Tε and Tε,Λ is given
by

πΛ ◦ T �
ε = π

Λ(�)
Λ ◦ T �

ε,Λ(�) ◦ πΛ(�) for all Λ ∈ I and � ∈ N. (65)

This follows immediately from the finite coupling range property of Φε: no
influence of a coordinate xi with i ∈ L \ Λ(�) can propagate to Λ within �
steps of time.

4.3 The Transfer Operator and a Lasota–Yorke Inequality

We are going to define transfer operators PTε
on L1

θ in terms of the action of
Tε on the densities νΛ of the finite-dimensional projections of ν ∈ L1

Z
. Observe

that, for ν ∈ L1
Z

and ϕ : IΛ → R, (65) implies
∫

X

ϕ ◦ πΛ d(νT−�
ε ) =

∫

X

ϕ ◦ πΛ ◦ T �
ε dν

=
∫

IΛ(�)
(ϕ ◦ πΛ(�)

Λ ) ◦ T �
ε,Λ(�) · νΛ(�) dm

Λ(�) . (66)

This means that

(νT−�
ε )Λ =

(
(PT �

ε,Λ(�)
νΛ(�))mΛ(�)

)

Λ
=: (PT �

ε,Λ(�)
νΛ(�))Λ (67)

where we take the last term just as a short hand for the middle one. Hence,

|νT−�
ε |θ = sup

Λ∈I
θ|Λ|

∫

|(νT−�
ε )Λ| dm ≤ sup

Λ∈I
θ|Λ|

∫

|PT �
ε,Λ(�)

νΛ(�)| dm

≤ θ−2�w sup
Λ∈I

θ|Λ(�)|
∫

|νΛ(�)| dm ≤ θ−2�w |ν|θ . (68)

19 Any other measurable section from IΛ to X would do as well.
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In particular, ν �→ νT−1
ε is a linear operator on L1

Z
bounded w.r.t. the norm

|.|θ. Hence it extends to a bounded linear operator PTε
on L1

θ. That PTε
is

also a bounded linear operator on BVθ is an immediate consequence of the
following Lasota–Yorke type inequality.

Proposition 4.1 (Lasota–Yorke inequality). Let � ∈ N. For each α� >
2
κ�

and each C4,� > D� + E� there are ε1 ∈ (0, ε0] and θ1 ∈ (0, 1) such that for
|ε| ≤ ε1, θ ∈ [θ1, 1], and ν ∈ BVθ,

|P �
Tε
ν|θ ≤ θ−2w�|ν|θ (69)

‖P �
Tε
ν‖θ ≤ α� ‖ν‖θ + C4,� |ν|θ . (70)

Given �, α� and C4,�, the choice of θ1 depends only on the coupling range w,
that of ε1 only on the constants a1, a2 which qualify Φε as a (a1, a2)-coupling,
see (36).

Observe the difference between (69) and the corresponding inequality (54) for
finite systems, where PTε

is a contraction w.r.t. the weak norm.

Proof. Equation (69) is just a restatement of (68). We turn to (70). Let α̃� =
( 2

κ�
α�)1/2 and C̃4,� = ((D� +E�)C4,�)1/2. In view of (67), Lemma 4.1a and the

finite-dimensional Lasota–Yorke inequality (55), we have for each ν ∈ L1
Z

‖P �
Tε
ν‖θ = ‖νT−�

ε ‖θ = sup
Λ∈I

θ|Λ| Var((νT−�
ε )Λ)

= sup
Λ∈I

θ|Λ| Var
(
(PT �

ε,Λ(�)
νΛ(�))Λ

)

≤ θ−2w� sup
Λ∈I

θ|Λ(�)|
(

α̃� Var(νΛ(�)) + C̃4,�

∫

|νΛ(�)| dm
)

≤ θ−2w�α̃� ‖ν‖θ + θ−2w�C̃4,� |ν|θ
for |ε| ≤ ε1, where the choice of ε1 depends on �, α�, C4,�, a1, and a2, see
Proposition 3.2. Now choose θ1 such that θ−2w�

1 ≤ min{α�/α̃�, C4,�/C̃4,�}. ��
As in Sect. 2.4 it follows that there are constants C ′

1, C
′
2 > 0 such that

‖Pn
Tε
ν‖θ ≤ C ′

1 α
n ‖ν‖θ + C ′

2θ
−2wn |ν|θ ≤

(

C ′
1 +

1
2
C ′

2θ
−2wn

)

‖ν‖θ (71)

for all ν ∈ BVθ and all n ∈ N provided |ε| ≤ ε1 and θ ∈ [θ1, 1]. The constant α
can be any number in (( 2

κM
)1/M , 1). C ′

1, C
′
2, ε1, and θ1 will then be chosen as

indicated above and at the end of Sect. 2.4. (Recall that κM > 2 by assumption
(1).)

4.4 Existence of Invariant Measures with Absolutely Continuous
Finite-Dimensional Marginals

In this section we prove the existence of (at least) one probability measure in
BVθ=1 which is invariant under Tε.
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Theorem 4.1. Let Tε : X → X be a coupled map on X = IZ as described in
Sect. 4.2. For each |ε| ≤ ε1 there exists a Tε-invariant probability measure µε

which belongs to BVθ=1. Indeed, ‖µε‖θ=1 ≤ C ′
2.

Proof. Let ν = mZ. As |ν|θ=1 = 1 and ‖ν‖θ=1 = 2 (see Example 4.1), we
have lim supn→∞ ‖P �

Tε
ν‖θ=1 ≤ C ′

2 by (71). Let νn = 1
n

∑n−1
k=0 P

k
Tε
ν. Then also

lim supn→∞ ‖νn‖θ=1 ≤ C ′
2. This implies that lim supn→∞ VarIΛ((νn)Λ) ≤ C ′

2

for each Λ ∈ I. As BVIΛ embeds compactly into L1
IΛ (see Sect. 3.4), there

is a subsequence of ((νn)Λ)n>0 which converges in L1
IΛ to some probability

density hΛ ∈ L1
IΛ . By a diagonal procedure one even finds such a subsequence

for which this convergence holds for all Λ ∈ I. Observe that the family of
densities hΛ, Λ ∈ I, is consistent in the sense that for any Λ′ ⊂ Λ holds
(hΛm

Λ)(πΛ
Λ′)−1 = hΛ′mΛ′

, because all the (νn)Λ have the same property.
Hence, by Kolmogorov’s theorem, there is a probability measure µε ∈M such
that µεπ

−1
Λ = hΛm

Λ for all Λ ∈ I. As limn→∞
∫
|(µε)Λ− (νn)Λ| dmΛ = 0, the

estimate VarIΛ((µε)Λ) ≤ lim infn→∞ VarIΛ((νn)Λ) ≤ C ′
2 follows from (48).

Hence ‖µε‖θ=1 ≤ C ′
2.

It remains to show that µε is Tε-invariant:

|µεT
−1
ε − µε|θ=1 = lim

n→∞ |νnT
−1
ε − νn|θ=1

≤ lim
n→∞

1
n

(|νT−n
ε |θ=1 + |ν|θ=1) = 0 .

��

Corollary 4.1 (Finite entropy density). The Tε-invariant measures µε

from Theorem 4.1 have an entropy density bounded by ln(C ′
2/2). Indeed, for

each ν ∈ BV θ=1 and each Λ ∈ I we have
∫
νΛ ln νΛ dm ≤ |Λ| ln

(
1
2‖ν‖θ=1

)
.

Proof. Let Λ = [a, b], Λ′ = [a, b− 1]. Then
∫

IΛ

νΛ ln νΛ dm =
∫

IΛ′
νΛ′ ln νΛ′dm+

∫

IΛ

νΛ ln
νΛ

νΛ′
dm

≤
∫

IΛ′
νΛ′ ln νΛ′dm+ ln

∫

IΛ

νΛ
νΛ

νΛ′
dm (72)

by Jensen’s inequality, and
∫

IΛ

νΛ
νΛ

νΛ′
dm ≤

∫

IΛ′
sup
xb

(
(νΛ)x �=b

(xb)
)
dx�=b

≤ 1
2

∫

IΛ′
VarI

(
(νΛ)x �=b

)
dx �=b ≤

1
2

VarIΛ(νΛ) ≤ 1
2
‖ν‖θ=1 . (73)

Applying the same estimate to smaller and smaller boxes one arrives at
∫

IΛ

νΛ ln νΛ dm ≤ |Λ| ln
(

1
2
‖ν‖θ=1

)

. (74)
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4.5 Uniqueness and a Spectral Gap – the Uncoupled Case

The compact embedding of BVIΛ into L1
IΛ for each Λ ∈ I which we used in

the last section does by no means imply a compact embedding of BVθ into
L1

θ, which would be needed in order to prove the quasi-compactness of PT0

on BVθ. In fact, we have already seen in Example 4.2 that one cannot expect
this operator to be quasi-compact on BVθ=1 – even when ε = 0, and one can
argue (differently) that quasi-compactness fails also for θ ∈ (0, 1).

So we will give a more direct proof that limn→∞ ‖Pn
Tε
ν − µε‖θ = 0 (with

exponential speed) whenever θ ∈ [θ1, 1) and ν is a probability measure in
BVθ. Observe that this implies in particular the uniqueness of the invariant
µε, even in BVθ. (See the proof of Corollary 4.4 for details of this argument.)
We start with the uncoupled case ε = 0 in this section. The proof is made up
such that it can be extended to the coupled case in the next section.

Theorem 4.2 (Spectral gap). Let ν ∈ L1
θ, and assume that ν∅ = ν(X) = 0.

Then
‖Pn

T0
ν‖θ ≤

C6

1− θ
ρ̂n ‖ν‖θ (75)

where C6 = C ′
1(C

′
1 + 1

2C
′
2) + 2C ′

2C3 and ρ̂ = max{α, ρ}1/2 ∈ (0, 1) are con-
stants derived from (35) and (71).

The proof relies on the following lemma, a variant of which was used for
the first time in [8].

Lemma 4.2. Let Λ′, Λ ∈ I, Λ = [a, b], Λ′ = [a, b − 1], and let S : IZ\{b} →
IZ\{b} be measurable. Suppose that there is some Λ̃ ∈ I such that the maps
(S(x �=b))j, j ∈ Λ′, depend only on coordinates i ∈ Λ̃. Consider the map
τ × S : IZ → IZ, x �→ (τ(xb), S(x �=b)). Then
∫

IΛ

|(P �
τ×Sν)Λ| dm ≤ (2 + C2)C3 ρ

� Varb
IΛ̃(νΛ̃) +

∫

IΛ′
|(P �

τ×Sν)Λ′ | dm (76)

with constants C2, C3, and ρ from (34) and Corollary 2.3.

Proof. Let Λ ∈ I. As
∫

IΛ |(P �
τ×Sν)Λ| dm = supψ

∫
X
ψ d(P �

τ×Sν) where the
supremum extends over all continuous ψ : X → R that depend only on coor-
dinates xi with i ∈ Λ and satisfy |ψ| ≤ 1, we start by estimating the integrals
under the supremum. Given such a test function ψ, let

Ψ(x) =
∫ xb

0

ψ(τ �(ξ), S�(x �=b)) dξ − xb

∫ 1

0

h(ξ)ψ(τ �(ξ), S�(x �=b)) dξ (77)

where h is the unique invariant density of the p.w.e. map τ , see Sect. 2.5.
Then

∂bΨ(x) = ψ ◦ (τ × S)�(x)− ψ̄ ◦ (τ × S)�(x) (78)
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where ψ̄(x) =
∫ 1

0
h(ξ)ψ(ξ,x �=b) dξ. Observe that ψ̄ depends only on coordi-

nates xi with i ∈ Λ′. In particular ψ̄ does in fact not depend on xb. Further-
more, Ψ depends only on xb and on coordinates xi with i ∈ Λ̃. Hence

∫

X

ψ d(P �
τ×Sν) =

∫

X

ψ ◦ (τ × S)� dν =
∫

X

∂bΨ dν +
∫

X

ψ̄ ◦ (τ × S)� dν

=
∫

IΛ̃

∂bΨ νΛ̃ dm+
∫

IΛ′
ψ̄ (P �

τ×Sν)Λ′ dm

≤ sup
x
|Ψ(x)| Varb

IΛ̃(νΛ̃) +
∫

IΛ′
|(P �

τ×Sν)Λ′ | dm (79)

and we must estimate supx |Ψ(x)|:

Ψ(x) =
∫ 1

0

P �
τ (1[0,xb] − xb h)(ξ)ψ(ξ, S�(x �=b))) dξ ≤ C3ρ

�‖1[0,xb] − xb h‖BV

(80)

by inequality (35). As ‖h‖BV ≤ C2, (76) follows now from (79) and (80). ��

Proof of Theorem 4.2. Let Λ = Λ̃ = [a, b] ∈ I, Λ′ = [a, b− 1], and denote
by S the uncoupled map on IZ\{b}. Then T0 = τ ×S, and Lemma 4.2 implies

∫

IΛ

|(P �
T0
ν)Λ| dm ≤ (2 + C2)C3 ρ

� VarIΛ(νΛ) +
∫

IΛ′
|(P �

T0
ν)Λ′ | dm . (81)

Multiplying this inequality by θΛ and taking suprema over all Λ ∈ I this
yields

|P �
T0
ν|θ ≤ (2 + C2)C3 ρ

�‖ν‖θ + θ |P �
T0
ν|θ (82)

where one has to keep in mind that (P �
T0
ν)∅ = ν(T−�

0 X) = ν(X) = 0. Hence

|P �
T0
ν|θ ≤

(2 + C2)C3

1− θ
ρ� ‖ν‖θ . (83)

We combine this with the Lasota–Yorke type estimate (71) for the special case
w = 0: for all k, � ∈ N,

‖P k+�
T0

ν‖θ ≤ C ′
1α

k‖P �
T0
ν‖θ + C ′

2|P �
T0
ν|θ

≤ C ′
1α

k(C ′
1 +

1
2
C ′

2)‖ν‖θ + C ′
2

(2 + C2)C3

1− θ
ρ� ‖ν‖θ . (84)

With k, l = [n
2 ](+1) and ρ̂ = max{ρ1/2, α1/2} this yields (75). ��

Proof of Equation (61). For j = 1, . . . , d let Xj = I{1,...,j}. Let
f ∈ BV (Xd) and define fj : Xj → R, fj(x1:j) =

∫
f(x) dxj+1 . . . dxd. Then

VarXj
(fj) ≤ VarXd

(fd) for all j = 1, . . . , d, and if
∫
f dm = 0, a repeated

application of (82) to any measure ν with ν{1,...,d} = f yields
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∫

Xd

|P �
T0f | dm ≤ (2 + C2)C3 ρ�

d∑

j=1

VarXj (fj) ≤ (2 + C2)C3  ρ� VarXd(f) . (85)

��
The previous inequality implies in particular that finite uncoupled systems

have a unique absolutely continuous invariant probability measure. Indeed,
the existence of a PT0-invariant probability density h0 ∈ BV (X) is proved
in Theorem 3.1. (Observe that h0(x) = h(x1) . . . h(xd) where h is the unique
invariant density for the single site map τ .) Suppose there is another PT0-
invariant probability density h′0 ∈ L1

X . As C1(X) is dense in L1
X there is, for

each δ > 0, some fδ ∈ C1(X) ⊂ BV (X) with
∫

X
|h′0 − fδ| dm < δ. Then (85)

implies, for each � > 0,
∫

|h0 − h′0| dm ≤
∫

|P �
T0

(h0 − fδ)| dm+
∫

|P �
T0

(f0 − h′0)| dm

≤ (2 + C2)C3 � ρ
� VarXd

(f) +
∫

|f0 − h′0| dm .

In the limit �→∞ this yields
∫
|h0 − h′0| dm ≤ δ. This proves the claim.

Corollary 4.2. The infinite uncoupled system has a unique invariant proba-
bility measure with absolutely continuous finite-dimensional marginals. (This
would not be true for coupled systems as shown by the examples in [26]. See
also the chapter by E. Jarvenpää in this book.)

Proof. If ν is a T0-invariant probability measure with absolutely continuous
finite-dimensional marginal densities νΛ, then these densities are invariant
for the uncoupled system on IΛ. By the previous observation, νπ−1

Λ is there-
fore the product measure µΛ, where µ is the unique absolutely continuous
τ -invariant probability measure. Hence ν = µZ by Kolmogorov’s theorem. ��

4.6 A Perturbation Result and a Decoupling Estimate

For our treatment of infinite coupled systems we need a procedure to “decou-
ple” a given site b from all other sites. Technically this boils down to compare
a coupling Φε with a modified one. Following [9] we provide such an estimate
in this section.

Proposition 4.2. Let F, F̃ : X → X be two Lipschitz maps20 with Lipschitz
constant L > 0 that are close in the following sense: There are constants
K0,K1,K2 > 0 such that
20 F : X → X is a “Lipschitz map”, if all Fi(x) are Lipschitz w.r.t. each coordinate

xj with uniformly bounded Lipschitz constants. This means in particular that all
partial derivatives of all Fi exist Lebesgue-a.e., are uniformly bounded and that
Fi(x + sek) − Fi(x) =

∫ s

0
∂kFi(x + ξek)dξ.
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(i)
∑

i∈Z
supx |F̃i(x)− Fi(x)| ≤ K0,

(ii)
∑

i∈Z
supj∈Z supx |∂jF̃i(x)− ∂jFi(x)| ≤ K1, and

(iii) sup{Var(PFt,Λ
f) : 0 ≤ t ≤ 1, Λ ∈ I, f ∈ BV (IΛ),VarIΛ(f) ≤ 1} ≤ K2

where Ft,Λ = πΛ ◦
(
tF̃ + (1− t)F

)
◦ ιΛ, compare (64).

Assume also that ∂jFi = 0 and ∂jF̃i = 0 if |i− j| > w. Then
∫

X

|(PF̃ ν)Λ − (PF ν)Λ| dm ≤ K2

(

K0 +
1
2
K1

)

VarIΛ(1)(νΛ(1)) (86)

for Λ ∈ I and ν ∈ L1
Z
.

Proof. The maps Ft,Λ(1) : IΛ(1) → IΛ(1) are Lipschitz with Lipschitz constant
L, and for any ψ ∈ C1(IΛ) with |ψ| ≤ 1,
∫

X

ψ ◦ πΛ d(PF̃ ν)−
∫

X

ψ ◦ πΛ d(PF ν) =
∫

X

(ψ ◦ πΛ ◦ F̃ − ψ ◦ πΛ ◦ F ) dν

=
∫

IΛ(1)
(ψ ◦ πΛ ◦ F̃ ◦ ιΛ(1) − ψ ◦ πΛ ◦ F ◦ ιΛ(1)) νΛ(1) dm

=
∫

IΛ(1)

∫ 1

0

∂

∂t
(ψ ◦ πΛ(1)

Λ (Ft,Λ(1)(x))) dt νΛ(1)(x) dx

=
∫ 1

0

∑

i∈Λ

(∫

IΛ(1)
∂iψ(πΛ(1)

Λ (Ft,Λ(1)(x)))
∂

∂t
Ft,Λ(1),i(x) νΛ(1)(x) dx

)

dt

=
∫ 1

0

∑

i∈Λ

(∫

IΛ(1)
∂iψΛ(x)

(

PFt,Λ(1)

(
∂

∂t
Ft,Λ(1),i νΛ(1)

))

(x) dx
)

dt

(87)

where ψΛ := ψ ◦ πΛ(1)
Λ . As ψ ∈ C1(IΛ) is an arbitrary test function with

sup |ψ| ≤ 1, this implies
∫

IΛ

|(PF̃ ν)Λ − (PF ν)Λ| dm ≤
∫ 1

0

∑

i∈Λ

VarIΛ(1)

(

PFt,Λ(1)

(
∂

∂t
Ft,Λ(1),i νΛ(1)

))

dt

≤ K2

∑

i∈Λ

VarIΛ(1)

(
(F1,Λ(1) − F0,Λ(1))i νΛ(1)

)
. (88)

Next recall that the variation of multivariate functions is defined as the
maximum of the variations over individual coordinates, see (43). Hence
Lemma 2.2b, which provides an estimate for the variation of a product of
functions of one variable, carries over to the present setting, and we conclude
(observing also (44))

∫

IΛ

|(PF̃ ν)Λ − (PF ν)Λ| dm ≤ K2 (K0 +
1
2
K1) VarIΛ(1)(νΛ(1)) . (89)

��
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The estimate from this proposition does not allow to compare directly Φε

and Φ0 = Id: for any finite lattice L the right hand side of (86) would grow like
|L| – because the constants K0 and K1 are supposed to bound sums over all
lattice sites. On the infinite lattice the right hand side of (86) is thus infinite.
Therefore we apply Proposition 4.2 “site by site” and evaluate (86) by aid of
the next lemma.

Let Λ ∈ I and b ∈ Λ. In order to decouple site b from all other sites we
introduce the following notation: let ῑb : IZ → IZ be the map (ῑb(x))i = xi if
i �= b and (ῑb(x))b = 0. Then define Φε,b, Tε,b : IZ → IZ,

(Φε,b(x))i =

{
xb if i = b

(Φε(ῑb(x)))i if i �= b
and Tε,b = Φε,b ◦ T0 . (90)

Our task is to show that the passage from Φε to Φε,b leads to an error (in the
sense of Proposition 4.2) of order |ε| independent of the size of Λ (depending
heavily on �, though!). Denote by Eb the Z × Z matrix with (Eb)ij = 1 if
i = j �= b and (Eb)ij = 0 otherwise.

Lemma 4.3. Let Φε be a (a1, a2)-coupling.

(a)
∑

i∈Z
supx |(Φε,b(x))i − (Φε(x))i| ≤ 2|ε|(a1 + 1).

(b)
∑

i∈Z
supj∈Z supx |∂j(Φε,b(x))i − ∂j(Φε(x))i| ≤ 2|ε|(2a1 + a2).

(c) All Ft := tΦε,b + (1 − t)Φε (0 ≤ t ≤ 1) are (a1, a2)-couplings and satisfy
assumption (iii) in Proposition 4.2 for K2 = 1−2a1|ε|+a2|ε|

(1−2a1|ε|)2 , and K2 ≤ 2 as
long as |ε| ≤ min{ 1

6a1
, 2

9a2
}.

Proof. The following estimate yields (a):
∑

i∈Z

sup
x
|(Φε,b(x))i − (Φε(x))i|

≤ sup
x
|xb − (Φε(x))b|+

∑

i�=b

∑

j∈Z

sup
x
|(DΦε(x))ij | sup

x
|(ῑb(x))j − xj |

≤ 2|ε|



1 +
∑

i�=b

A′
ib



 ≤ 2|ε| (1 + a1) ·

For (b) observe first that

(∂j(Φε,b − Φε))i =

{
−∂jAε,i if i = b or j = b

(∂jΦε,i) ◦ ῑb − ∂jΦε,i if i �= b and j �= b .

The difference (∂jΦε,i) ◦ ῑb − ∂jΦε,i can be bounded by supx |∂b(∂jΦε,i)(x)| =
supx |∂j(∂bΦε,i)(x)| ≤ 2|ε|A′′

ib. Hence

∑

i∈Z

sup
j∈Z

|(∂j(Φε,b − Φε))i| ≤ 2|ε|
(
∑

i∈Z

sup
j∈Z

(A′ − EbA
′Eb)ij +

∑

i∈Z

(EbA
′′Eb)ib

)

≤ 2|ε|(2a1 + a2) ·
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We turn to (c): That all Ft (and hence also all Ft,Λ) are (a1, a2)-couplings
is a trivial observation. The K2-bound then follows from Lemma 3.3. ��

Combining Proposition 4.2 and Lemma 4.3 we obtain

Corollary 4.3. Let Φε be a (a1, a2)-coupling, Λ ∈ I, and b ∈ Λ. Then
∫

X

|((PΦε,b
− PΦε

)ν)Λ| dm ≤ |ε| (8a1 + 2a2 + 4) VarIΛ(1)(νΛ(1)) (91)

for ν ∈ L1
Z
, as long as |ε| ≤ min{ 1

6a1
, 2

9a2
}.

4.7 Uniqueness and a Spectral Gap – the Coupled Case

We are going to follow essentially the same strategy as in the proof of Theo-
rem 4.2. To this end we decouple the dynamics at a site b ∈ Λ = [a, b] from
all other sites. As a result we obtain an estimate like (81) with an additional
error term. Finally we use the Lasota–Yorke inequality to control this error
term.

Recall that ε1 ∈ (0, ε0] and θ1 ∈ (0, 1) were determined in Proposition 4.1
and ρ̂ = max{ρ, α}1/2 < 1 in Theorem 4.2.

Theorem 4.3 (Spectral gap). Let γ ∈ (ρ̂, 1). There is θ2 ∈ [θ1, 1) such
that for each θ ∈ [θ2, 1) there exist Cθ > 0 and εθ ∈ (0, ε1] such that

‖Pn
Tε
ν‖θ ≤ Cθ γ

n ‖ν‖θ (92)

for all |ε| ≤ εθ, all ν ∈ L1
θ with ν∅ = ν(X) = 0, and all n ∈ N.

In particular, if mZ denotes the product Lebesgue measure on X, then

‖Pn
Tε
mZ − µε‖θ ≤ C ′

θ γ
n := (2 + C ′

2)Cθ γ
n . (93)

Before we prove this theorem, we note the following corollary.

Corollary 4.4 (Uniqueness). Let θ ∈ [θ2, 1) and |ε| ≤ εθ. There is a unique
Tε-invariant probability measure µε in BVθ, and µε belongs in fact to BVθ=1.

Proof. The existence of µε ∈ BVθ=1 was proved in Theorem 4.1. For the
uniqueness assume that µ̃ε ∈ BVθ is also Tε-invariant. Let ν = µε − µ̃ε. Then
Theorem 4.3 applies to ν, and as PTε

ν = ν, it follows that ν = 0.

Proof of Theorem 4.3. Let Λ = [a, b]. The proof consists of three steps.
In view of Corollary 4.3 we may first replace P �

Tε
ν by P �

Tε,b
ν at the expense

of an error of size O(�|ε|). Then we can profit from the product structure of
Tε,b (the site b is completely decoupled now!) and reduce estimates on the box
Λ to estimates on the smaller box Λ′ = [a, b − 1] as we did it in the proof of
Theorem 4.2. Finally we must show that it is indeed sufficient to do all this
for a large but fixed �.
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To begin with,
∣
∣
∣
∣

∫

IΛ

|(P �
Tε,b

ν)Λ| dm−
∫

IΛ

|(P �
Tε
ν)Λ| dm

∣
∣
∣
∣ ≤

∫

IΛ

|(P �
Tε,b

ν − P �
Tε
ν)Λ| dm

≤
�−1∑

i=0

∫

IΛ

∣
∣
∣
(
P i

Tε,b
(PTε,b

− PTε
)P �−i−1

Tε
ν
)

Λ

∣
∣
∣ dm

≤
�−1∑

i=0

∫

IΛ(i)
|((PΦε,b

− PΦε
)PT0P

�−i−1
Tε

ν)Λ(i)| dm

≤ |ε|(8a1 + 2a2 + 4)
�−1∑

i=0

VarIΛ(i+1)((PT0P
�−i−1
Tε

ν)Λ(i+1))

≤ |ε|(8a1 + 2a2 + 4)
�−1∑

i=0

θ−|Λ(i+1)|‖PT0P
�−i−1
Tε

ν‖θ

≤ � θ−|Λ(�)||ε|(8a1 + 2a2 + 4) · (C ′
1 +

1
2
C2)‖ν‖θ =: � θ−|Λ(�)||ε|C7 ‖ν‖θ

(94)

where we used Corollary 4.3 and (71).
Exactly the same reasoning yields
∣
∣
∣
∣

∫

IΛ′
|(P �

Tε,b
ν)Λ′ | dm−

∫

IΛ′
|(P �

Tε
ν)Λ′ | dm

∣
∣
∣
∣ ≤ � θ−|Λ(�)||ε|C7 ‖ν‖θ . (95)

In the next step we will profit from the decoupling: as Tε,b : X → X is the
direct product τ ×S of τ with a map S : IZ\{b} → IZ\{b} for which (S(x �=b))j ,
j ∈ Λ′ depends only on coordinates from Λ̃ = [a − �w, b + �w], we can apply
Lemma 4.2 again and obtain
∫

IΛ

|(P �
Tε,b

ν)Λ| dm ≤ (2 + C2)C3 ρ
� VarIΛ̃(νΛ̃) +

∫

IΛ′
|(P �

Tε,b
ν)Λ′ | dm . (96)

Before we put together (94)–(96) we let γ̃ = (ρ̂γ)1/2. Then ρ̂ < γ̃ < γ and
ρ̂/γ̃ = γ̃/γ < 1. So we can fix θ2 ∈ [θ1, 1) ∩ ((γ̃/γ)1/w, 1), and for θ ∈ [θ2, 1)
we can first choose �θ such that

(2 + C2)C3ρ
�θ ≤ (1 − θ)γ̃2�θ θ2�θw and

(

C′
1

(

C′
1 +

1

2
C′

2

)

+ C′
2

)

(γ̃θ−w
2 )2�θ ≤ γ2�θ

(97)

and then εθ ∈ (0, ε1] so small that 2�θθ−2�θwεθC7 ≤ (1− θ)γ̃2�θ . Then

θ|Λ|
∫

IΛ

|(P �θ

Tε
ν)Λ| dm

≤ (1− θ)γ̃2�θ

(
‖ν‖θ + θ|Λ̃| VarIΛ̃(νΛ̃)

)
+ θ|Λ|

∫

IΛ′
|(P �θ

Sε
f)Λ′ | dm (98)

for |ε| ≤ εθ. Taking the supremum over all Λ ∈ I this yields, as in (82),
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|P �θ

Tε
ν|θ ≤ (1− θ)γ̃2�θ‖ν‖θ + θ |P �θ

Tε
ν|θ . (99)

Now the proof of the proposition can be finished along the lines of the proof
of Theorem 4.2: invoking the Lasota–Yorke type estimates (69) and (71) one
obtains the exponential estimate

‖P 2�θ

Tε
ν‖θ ≤ C ′

1α
�θ‖P �θ

Tε
ν‖θ + C ′

2θ
−2w�θ |P �θ

Tε
ν|θ

≤
(

C ′
1γ̃

2�θ (C ′
1 +

1
2
C ′

2θ
−2w�θ ) + C ′

2θ
−2w�θ γ̃2�θ

)

‖ν‖θ

≤ γ2�θ ‖ν‖θ . (100)

This yields ‖Pn
Tε
ν‖θ ≤ γn‖ν‖θ for even multiples n = 2k�θ of �θ, valid for

|ε| ≤ εθ. For general n = 2k�θ + j with 0 ≤ j < 2�θ one uses (71) to conclude
that ‖Pn

Tε
ν‖θ ≤ (C ′

1+C
′
2θ

−2w�θ )‖P 2k�θ

Tε
ν‖θ ≤

(
(C ′

1 + C ′
2θ

−2w�θ )γ−2�θ
)
γn‖ν‖θ.

This is (92). ��

4.8 Exponential Decay of Correlations

Lemma 4.4 (Exponential decay in time). Let φ, ψ : X → R be bounded
observables that depend only on coordinates in intervals Λφ and Λψ, respec-
tively. Let ε and θ be as in Theorem 4.3, and let µ̃ be a probability measure
from BV θ=1. Then
∣
∣
∣
∣

∫

φ · ψ ◦ Tn
ε dµ̃−

∫

φdµ̃ ·
∫

ψ dµε

∣
∣
∣
∣ ≤ Cθθ

−|Λψ| γn‖µ̃‖θ=1 ‖φ‖C1‖ψ‖C0 .

(101)
For µ̃ = µε this is slightly stronger than (4) of Theorem 1.1.

Proof. It suffices to restrict to the case where
∫
φdµ̃ = 0. Let ν = φµ̃. Then

ν(X) =
∫
φdµ̃ = 0 so that

∣
∣
∣
∣

∫

φ · ψ ◦ Tn
ε dµ̃

∣
∣
∣
∣ ≤

∫

IΛψ

|(Pn
Tε
ν)Λψ

|ψ dm ≤ ‖ψ‖C0 θ−|Λψ|‖Pn
Tε
ν‖θ

≤ ‖ψ‖C0 θ−|Λψ|Cθγ
n‖ν‖θ ≤ ‖ψ‖C0 θ−|Λψ|Cθγ

n‖ν‖θ=1

(102)

by Theorem 4.3 and Lemma 4.1c when |ε| ≤ εθ.
It remains to bound ‖ν‖θ=1: Remembering Lemma 4.1b it suffices to con-

sider boxes Λ ∈ I which include Λφ. Let ϕ ∈ TIΛ . Then
∫

IΛ

∂iϕνΛ dm =
∫

IΛ

∂i(ϕφ) µ̃Λ dm−
∫

IΛ

ϕ∂iφ µ̃Λ dm

≤ ‖φ‖C0 Var(µ̃Λ) + ‖∂iφ‖C0

∫

|µ̃Λ| dm ≤ ‖µ̃‖θ=1 ‖φ‖C1 . (103)

Hence ‖ν‖θ=1 ≤ ‖φ‖C1‖µ̃‖θ=1. This finishes the proof of (101). ��
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Lemma 4.5 (Exponential decay in space). Let φ, ψ : X → R be bounded
observables that depend only on coordinates in the interval Λ. Let γ and θ be
as in Theorem 4.3, and let θ be sufficiently close to 1 that γ′ := γ

1
2w θ−1 < 1

(recall that w is the coupling range). Then, for |ε| ≤ εθ,
∣
∣
∣
∣

∫

φ · (ψ ◦ σn) dµε −
∫

φdµε

∫

ψ dµε

∣
∣
∣
∣ ≤ C ′γ′|n|−|Λ| ‖φ‖C0‖ψ‖C0 (104)

where σ is the left shift on X = IZ.

Proof. We may assume that
∫
φdµε = 0. Let ψ̃ = ψ ◦ σn. As φ and ψ̃ depend

on variables at distance |n|−|Λ| at least, it follows that φ◦T k
ε and ψ̃◦T k

ε depend
on disjoint sets of variables for k = [ |n|−|Λ|

2w ]. Accordingly, by Theorem 4.3,
∣
∣
∣
∣

∫

φ · (ψ ◦ σn) dµε

∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

φ ψ̃ d(P k
Tε
mZ)

∣
∣
∣
∣ + C ′

θγ
k θ−|Λ|−|n| ‖φ‖C0‖ψ‖C0

=
∣
∣
∣
∣

∫

(φ ◦ T k
ε )(ψ̃ ◦ T k

ε ) dmZ

∣
∣
∣
∣ + C ′

θγ
k θ−|Λ|−|n| ‖φ‖C0‖ψ‖C0

=
∣
∣
∣
∣

∫

(φ ◦ T k
ε ) dmZ

∣
∣
∣
∣ ·

∣
∣
∣
∣

∫

(ψ̃ ◦ T k
ε ) dmZ

∣
∣
∣
∣ + C ′

θγ
k θ−|Λ|−|n| ‖φ‖C0‖ψ‖C0

=
∣
∣
∣
∣

∫

φd(P k
Tε
mZ)

∣
∣
∣
∣ ·

∣
∣
∣
∣

∫

ψ̃ d(P k
Tε
mZ)

∣
∣
∣
∣ + C ′

θγ
k θ−|Λ|−|n| ‖φ‖C0‖ψ‖C0

≤ 2C ′
θγ

k θ−|Λ|−|n| ‖φ‖C0‖ψ‖C0 . (105)

As γ′ = γ
1

2w θ−1, (104) follows immediately. ��

4.9 µε as Unique Physical Measure

The invariant measure µε has some properties which qualify it as the unique
physical (or observable) measure: it governs a strong law of large numbers
(Corollary 1.1), and it is stable under small independent random perturba-
tions. Below we prove the first assertion, and we formulate precisely what we
mean by the second one (without providing a proof, though).

Proof of Corollary 1.1 (Strong law of large numbers): Let f : I → R

be a probability density of bounded variation and let ν = (fm)Z the infinite
product measure of the probability measure with density f . Then ν ∈ BV θ=1,
and indeed ‖ν‖θ=1 = VarI(f) <∞ by Example 4.1. Let ψ be a C1 observable
that depends only on finitely many coordinates. (It clearly suffices to prove
the corollary for such observables, because each continuous observable can be
uniformly approximated by them.) In view of [10, Theorem 5.1] it suffices to
prove the two following properties:21

21 Given (106) and (107), the proof of the law of large numbers is easy. We more
or less copy it from [10]. Let Sn(x) =

∑n−1
k=0

(
ψ(T k

ε x) −
∫

ψ ◦ T k
ε dν

)
. Then
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lim
k→∞

∫

ψ ◦ T k
ε dν =

∫

ψ dµε (106)

sup
k>0

∞∑

j=0

∣
∣
∣
∣

∫

(ψ ◦ T j
ε )(ψ ◦ T k

ε ) dν −
∫

ψ ◦ T j
ε dν

∫

ψ ◦ T k
ε dν

∣
∣
∣
∣ ≤ Cθ,ψ <∞ .

(107)
Equation (106) is contained in the special case µ̃ = ν and φ = 1 of (101).
Equation (107) follows also from (101): first replace ψ by ψ −

∫
ψ dµε, i.e.

assume that
∫
ψ dµε = 0. Then apply (101) with µ̃ = P �

Tε
ν and � = |j − k| to

show that ∞∑

j=0

∣
∣
∣
∣

∫

(ψ ◦ T j
ε )(ψ ◦ T k

ε ) dν
∣
∣
∣
∣ ≤ C ′

θ,ψ <∞

and finally apply (101) with µ̃ = ν and φ = 1 to show that

∞∑

j=0

∣
∣
∣
∣

∫

ψ ◦ T j
ε dν

∫

ψ ◦ T k
ε dν

∣
∣
∣
∣ ≤ ‖ψ‖C0

∞∑

j=0

∣
∣
∣
∣

∫

ψ ◦ T k
ε dν

∣
∣
∣
∣ ≤ C ′′

θ,ψ <∞ .

For both of these estimates one uses the fact that supk ‖P k
Tε
ν‖θ=1 < ∞, see

(71).

Remark 4.3. Here is another reason why µε should be considered as the unique
observable invariant measure: it is stable under independent random pertur-
bations. More precisely, consider a smooth family (Sω)ω∈R of C2 maps from
I → I, S0 = IdI . Let (νδ)δ>0 be a family of probability measures on R with
C1 densities supported on [−δ, δ], and consider the random process defined
by the Markov operator22

∫
( 1

n
Sn)2 dν ≤ 1

n2 nCθ,ψ = 1
n
Cθ,ψ by (107), so that the subsequence ( 1

k2 Sk2)k≥1

is L1
ν-summable. In particular, 1

k2 Sk2 → 0 ν-a.e.. To show the a.e.-convergence
of the full sequence, let mn = [

√
n]2. The bound mn ≤ n ≤ mn + 2

√
n ensures

mn
n

→ 1 and |Sn − Smn | ≤ 2
√

n‖ψ‖C0 . Hence

1

n
Sn =

mn

n

1

mn
Smn +

Sn − Smn

n
→ 0 almost surely as n → ∞

and limn→∞
1
n

∑n−1
k=0 ψ(T k

ε x) =
∫

ψ dµε for ν-a.e. x follows from (106).
22 To convince oneself that this is quite a general way to write down random pertur-

bations consider the case in which the Sω are defined on the circle I = R/Z

by Sω(x) = x + ω and where νδ(dω) = δ−1q(δ−1ω) dω. Then, for measures
µ(dx) = h(x) dx,

P̃νδ µ(ϕ) =

∫

R

∫

I

ϕ(x + ω)h(x)δ−1q(δ−1ω) dx dω

=

∫

I

ϕ(y)

(∫

R

h(y − ω)δ−1q(δ−1ω) dω

)

dy (108)
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P̃νδ
µ(ϕ) :=

∫

R

∫

I

ϕ ◦ Sω dµ dνδ(ω) . (109)

We will consider independent random perturbations of this type at each site,
that is

Pνδ
µ(ϕ) :=

∫

RZ

∫

I

ϕ ◦ (⊗i∈ZSωi
) dµ ⊗i∈Z dνδ(ωi) . (110)

Define now Pε,δ := Pν,δPTε
. One can show the following (actually, this is a

nice exercise for the reader):

• Pε,δ has a unique invariant probability measure µε,δ, and this measure
belongs to BV θ=1.

• ‖µε,δ − µε‖θ ≤ Cθ δ (ln δ−1)2, in particular limδ→0 µε,δ = µε in the weak
topology.

We finish by proving assertion 3 of Theorem 1.1.

Lemma 4.6. There exist θ∗ ∈ (0, 1) such that, for each θ ∈ [θ∗, 1) and ε ∈
(0, εθ] (where εθ is as in Theorem 4.3), there exists C ′′

θ > 0 such that

‖µ0 − µε‖θ ≤ C ′′
θ ε ln ε−1 . (111)

Proof. By a repeated application of Corollary 4.3, for each Λ ∈ I and each
probability measure ν ∈ BVθ=1,

θ|Λ|
∫

IΛ

|(PT0ν − PTε
ν)Λ| dm ≤ D′ ε θ|Λ||Λ| |ν|θ=1 ≤ D ε |ν|θ=1

for some constants D′,D > 0. Thus, observing that |PT0 |θ = 1,

|Pn
T0
µ0 − Pn

Tε
µ0|θ ≤

n−1∑

k=0

|(PT0 − PTε
)Pn−k−1

Tε
µ0|θ ≤ nC ′′′

θ ε

for a suitable constant C ′′′
θ > 0. Hence, in view of (92) and Theorem 4.1,

|µε − µ0|θ ≤ |µε − Pn
Tε
µ0|θ + |Pn

T0
µ0 − Pn

Tε
µ0|θ ≤ C ′′′′

θ (γn + nε)

and (111) follows by choosing n proportional to ln ε−1. ��
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