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Preface

Mappings constitute a powerful method for studying dynamical systems.
They are fundamentally based on a formulation of dynamical equations gov-
erning them as a system of first-order ordinary differential equations. Accord-
ing to the theorem of Cauchy, the solutions of these dynamical equations are
unique and are completely determined by the initial conditions, i.e., there
exists the unique transformation or mapping of the initial conditions into
the final conditions. The surface-to-surface maps (Poincare return map) and
stroboscopic maps introduced by Poincaré (1892–99) replace the dynamics
of a continuous system by a discrete one. These maps have important ad-
vantages in a study of dynamical systems. First, they reduce dimensions of
the system at least by one. They allow one to visualize the dynamics of the
system at certain sections (Poincaré sections) of phase space and thereby
display the global behavior of the system. Many concepts of continuous sys-
tems become more clear when they are formulated using Poincaré maps. For
instance, the study of stability of periodic orbits can be simply reduced to a
study of stability of fixed points of the mappings.

The Hamiltonian formulation of dynamical equations of physical systems
of different nature had a deep impact on the study of dynamical systems
(Hamilton, 1834; Goldstein, 1980; Arnold, 1989). A system with N degrees
of freedom can be described by 2N ordinary differential equations of first
order in the phase space of the canonical coordinates q = (q1, . . . , qN ) and
momenta p = (p1, . . . , pN ), and are determined by a single scalar master
function, known as Hamilton function H. One of the features of Hamiltonian
systems is that it conserves certain invariants in phase space, which constitute
phase space as a symplectic space.

Whenever dissipation is negligible, most fundamental models of physics
and mechanics are described by Hamiltonian systems. Hamiltonian systems
have been the subject of numerous studies during the last two centuries in
physics, mechanics, and astronomy, in problems ranging from the dynamics
of elementary particles in accelerators to the dynamics of planetary objects
in a space (Poincaré, 1892–99; Lichtenberg and Lieberman, 1992; MacKay
and Meiss, 1987; Arnold et al., 1988).

Standard numerical methods of integrating systems of ordinary differen-
tial equations are not ideal for the purposes of solving Hamiltonian systems
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because the numerical approximation introduces non-Hamiltonian perturba-
tions that completely change long-term behavior of the solutions. For this
reason, special integration tools, known as symplectic integrators, have been
developed for the numerical study of Hamiltonian systems (see, for exam-
ple, reviews Sanz-Serna (1992); Sanz-Serna and Calvo (1993, 1994); Feng
(1994)). The methods are constructed to preserve the symplectic properties
of Hamiltonian systems by arranging each integration step to be a canonical
transformation. Symplectic integration methods play an important role in
the study of the long-term evolution of Hamiltonian systems.

Mappings are a powerful tool for studying Hamiltonian systems (see, e.g.,
Lichtenberg and Lieberman, 1992; MacKay and Meiss, 1987; Chirikov, 1979;
Zaslavsky, 1985; Sagdeev et al., 1988; Zaslavsky et al., 1991). These maps are
inherently constructed in symplectic from, and thereby preserve properties
of Hamiltonian systems. This approach is most ideal to study the long-term
evolution of a system, especially in cases where the system exhibits chaotic
behavior caused by exponential divergency of orbits with close initial coor-
dinates in phase space. Symplectic maps have been successfully employed
in many problems of astronomy, plasma physics, fluid dynamics, accelerator
physics, and others.

In spite of the extensive use of symplectic maps for many Hamiltonian
problems during the last four decades, the derivation of generic symplectic
maps from given Hamiltonian equations still remains somehow elusive. There
are several approaches to construct symplectic maps from the continuous for-
mulation of systems. One approach is based on the a priori assumption that
the map has a symplectic form and the generating functions associated with
the map are found from the equations of motion (Lichtenberg and Lieber-
man, 1992). Another method to construct symplectic maps is based on the
assumption that a time-periodic perturbation acting on the integrable system
may be replaced by periodic delta functions, which is equivalent to adding
fast oscillating terms to the Hamiltonian (Wisdom, 1982; Zaslavsky, 1985;
Sagdeev et al., 1988; Zaslavsky et al., 1991). Integration of the equations
of motion along delta functions gives symplectic maps with the time-step
equal to the period of perturbation. In particular, this method was used by
Chirikov to derive the celebrated standard map (Chirikov, 1979; Lichtenberg
and Lieberman, 1992). However, these methods have significant shortcomings
and difficulties, and they do not have a good mathematical justification. Par-
ticularly, they do not establish more general forms of the maps, estimate their
accuracy, and establish relations between variables of the original system and
of the mapping.

Recently in Abdullaev (1999, 2002) a mathematically rigorous method to
derive symplectic maps has been developed. Based on the Hamilton–Jacobi
theory and the classical perturbation theory, it allows one to construct sym-
plectic mappings for generic Hamiltonian systems in a rigorous and consistent
way. It does not encounter the difficulties of more traditional methods.
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The present book is devoted to the systematic theory of symplectic map-
pings for Hamiltonian systems and its application to different Hamiltonian
problems. The method is based on the Hamilton–Jacobi method and pertur-
bation theory of classical mechanics. This book compresses 13 chapters. The
theory of construction of Hamiltonian maps is given in the first five chapters.
Application of mapping methods to study physical problems described by
Hamiltonian systems are given in Chaps. 6–13.

The first chapter contains the essential elements of Hamiltonian dynam-
ics including the different formulations of Hamiltonian equations, constant
of motion, the Hamilton–Jacobi method, and the formalism of action-angle
variables. In the second chapter we have presented the methods of classical
perturbation theory. Time-dependent perturbation theory that constitutes
the basis for the construction of symplectic mappings has been also reiter-
ated in this chapter. The current methods to construct the symplectic maps
for generic Hamiltonian problems are discussed in the third chapter. The
Hamilton–Jacobi method or the method of canonical transformation to con-
struct Hamiltonian mappings is presented in the fourth chapter. There we
also discussed the different forms of symplectic maps, their accuracy, and how
they compare with standard numerical symplectic integration methods. Map-
pings near separatrix of Hamiltonian systems are constructed in Chap. 5 us-
ing canonical transformations of the variables. The construction of mappings
near separatrix is illustrated in Chap. 6 for several Hamiltonian systems. In
Chap. 7 we have applied the mapping methods to analyze some non-standard
issues of Hamiltonian dynamics, namely, regular and chaotic dynamics in non-
twist and non-smooth Hamiltonian systems. The rescaling invariance proper-
ties of Hamiltonian systems near the hyperbolic saddle points are discussed
in Chap. 8. Chaotic transport in a stochastic layer and log ε-periodicity (ε
is a perturbation amplitude) in 11

2 -degrees of freedom Hamiltonian systems
are studied in Chap. 9. Applications of symplectic mappings to the study
of magnetic field lines in magnetically confinement devices are presented in
the next three chapters. Particularly, in Chap. 10 the Hamiltonian formu-
lation of magnetic field line equations in magnetically confinement devices,
namely in tokamaks. Particularly, we discuss also the mapping methods to
integrate magnetic field line equations, and mapping models of field lines in
toroidal system. Chapters 11 and 12 are devoted to the application of map-
ping methods to study the magnetic structure in special devices of magnetic
confinement, namely, in ergodic and poloidal divertors. In Chap. 13 other ar-
eas of physics, namely, wave propagation problems, accelerator physics and
dynamical astronomy, where mapping methods play an important role, are
discussed.

The book is intended for postgraduate students and researchers, physi-
cists, and astronomers working in the areas of Hamiltonian dynamics and
chaos, and its applications to plasma physics, hydrodynamics, celestial me-
chanics, dynamical astronomy, and accelerator physics. It should also be
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useful for applied mathematicians involved in analytical and numerical stud-
ies of dynamical systems. Readers are supposed to be familiar with the meth-
ods of classical mechanics on the level of Chaps. 1–3 and 7–9 of the book
Mathematical methods of classical mechanics (Springer-Verlag, 1989) by V.I.
Arnold.

Acknowledgments. The participation in the project “Dynamic Ergodic Di-
vertor” for the Jülich tokamak TEXTOR gave me an opportunity to work
in the area of Hamiltonian dynamics and chaos and their applications to the
plasma physics. For this I indebted to Professor Joachim Treusch, Professor
Gerd H. Wolf, Professor Ulrich Samm and Professor Gert Eilenberger who
invited me to this project and supported my activities in these areas. Pro-
fessor G. Eilenberger read the manuscript and offered valuable suggestions
and comments for improvements. Fruitful cooperations with Dr. Karl-Heinz
Finken and Professor Karl-Heinz Spatschek were very beneficial for me. I
have greatly benefited from many discussions with Professor Robert Wolf,
Professor Detlev Reiter, Dr. André Rogister, Professor Radu Balescu, Pro-
fessor Dominique Escande, Dr. Marcin Jakubowski, Mr. Armin Kaleck, Dr.
Masahiro Kobayashi, Dr. Michael Lehnen, Dr. Albert Nicolai, Dr. Hartmut
Gerhauser, Dr. Dirk Reiser, Dr. Mikhail Tokar’, Dr. Bernard Unterberg, Dr.
Todd Evans, Dr. Raymond Koch, Professor Niek Lopes Cardozo, Dr. Boris
Weyssow. The work has been partially performed in the frame of the Son-
derforschungsbereich (SFB) 591 of the Deutsche Forschungsgemeinschaft led
by Professor Reinhard Schlickeiser. I am also grateful to Professor George
Zaslavsky with whom I started my first steps into the area of chaos theory
and cooperated with him during a long period time.

Jülich Sadrilla S. Abdullaev
August, 2005
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1 Basics of Hamiltonian Mechanics

In this chapter we shall briefly recall the fundamental principles and methods
of Hamiltonian mechanics which will be used throughout the book. This is
for convenience of the reader and to fix notation. For more details, the reader
might consult Arnold (1989). In particular, we shall give different formula-
tions of Hamiltonian equations, and recall the invariants of motion. Special
emphasis will be given to the Hamilton–Jacobi method and the action-angle
formalism to integrate the equations of motion. These methods will be illus-
trated with the example of the pendulum. Finally, we shall shortly discuss
modern methods of numerical symplectic integration of Hamiltonian systems.

1.1 Hamilton Equations

Consider a classical system with N degrees of freedom with qi (i = 1, . . . , N)
being the position coordinates of the particles of the system. In the classi-
cal (Newtonian) formulation the equations governing the time-evolution of
the system are a set of second order ordinary differential equations for the
positions qi.

In the Hamiltonian formulation of classical mechanics the state of the sys-
tem is characterized not only by its positions qi, but also its momenta pi, i.e.,
it is determined by coordinates in the so-called 2N -dimensional phase space
(q, p): N -coordinates q = (q1, . . . , qN ) and N− momenta p = (p1, . . . , pN ).
The time-evolution of the system is then governed by a set of 2N ordinary
differential equations of first order in time t Hamilton (1834):

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, (i = 1, . . . , N) (1.1)

known as Hamilton equations, and determined by only one scalar master
function H = H(q, p, t) known as Hamilton’s function (or Hamiltonian). The
positions qi and momenta pi are called canonical variables and time t is an
independent variable.

The Hamilton equations (1.1) with given initial conditions q(0) = (q(0)
1 , . . . ,

q
(0)
N ) and p(0) = (p(0)

1 , . . . , p
(0)
N ) at the moment t = 0 have unique solution
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2 1 Basics of Hamiltonian Mechanics

qi(t) = qi(t, q
(0)
1 , . . . , q

(0)
N , p

(0)
1 , . . . , p

(0)
N ) ,

pi(t) = pi(t, q
(0)
1 , . . . , q

(0)
N , p

(0)
1 , . . . , p

(0)
N ) , (1.2)

(i = 1, . . . , N) at any arbitrary time instant t > 0 or t < 0.
Geometrically, the trajectories (1.2) may be considered as a flow of a

2N -dimensional fluid in the phase space Lanczos (1962); Guckenheimer and
Holmes (1983). The velocity field v of this fluid flow is v = (q̇1, . . . , q̇N ,
ṗ1, . . . , ṗN ). Below we shall see that this flow preserves some invariants of
motion which are important in construction of mappings.

1.1.1 Invariants of Motion

Invariants (or integrals) of motion are most important to study the evolution
of Hamiltonian systems. A function F = F (q, p, t) is called an integral of
motion if it does not change its initial value during the time evolution of the
system. Using the Hamiltonian equations (1.1) it can be formally written as

dF

dt
=

∂F

∂t
+ {F,H} = 0 , (1.3)

where the notation {F,Φ} stands for the Poisson bracket

{F,Φ} =
N∑

i=1

(
∂F

∂qi

∂Φ

∂pi
− ∂F

∂pi

∂Φ

∂qi

)
. (1.4)

The first integral of the system is the energy of a conservative sys-
tem if the Hamiltonian H does not explicitly depend on time t, i.e., H =
H(q1, . . . , qN ; p1, . . . , pN ). It follows from (1.3) that dH/dt = 0 since ∂H/∂t =
0 and {H,H} ≡ 0, and thus the energy of the conservative system is an in-
tegral of motion, H = E = const.

Another invariant property of Hamiltonian motion (or flow) comes from
its similarity with a “incompressible fluid”, i.e., an arbitrary volume of fluid
element is unchanged during the motion. The condition of incompressibility
for the phase fluid,

∇ · v =
N∑

i=1

(
∂q̇i

∂qi
+
∂ṗi

∂pi

)
= 0 , (1.5)

is satisfied for the canonical equations (1.1) with an arbitrary Hamiltonian
H = H(q, p, t), for conservative, as well as for non-conservative systems. This
property of the Hamiltonian flow leads to conservation of any closed volume
Ω(t) of phase space, i.e.,

V =
∫

Ω(t)

dq1 . . . dqNdp1 . . . dpN = const . (1.6)
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This constitutes the “Liouville’s theorem” which states that the shape of
Ω may be deformed during the motion but its volume remains unchanged.
From (1.6) it follows that the Jacobian of the transformation from initial
coordinates P0 = (q(0)

1 , . . . , q
(0)
N , p(0)

1 , . . . , p
(0)
N ) to final state coordinates P =

(q1(t), . . . , qN (t), p1(t), . . . , pN (t)) equals one:

J =

∣∣∣∣∣
∂q1(t), . . . , qN (t), p1(t), . . . , pN (t)

∂(q(0)
1 , . . . , q

(0)
N , p

(0)
1 , . . . , p

(0)
N )

∣∣∣∣∣ = 1 . (1.7)

The property of Hamiltonian systems given by the Liouville’s theorem
(1.6) and (1.7) constitutes one of the invariants of motion. A number of
invariants of motion may be as many as degree of freedom (see for details
Arnold (1989)). The transformation P0 → P is called a volume-preserving
map (or a symplectic map) when it conserves the certain symplectic structure
of system along with the property (1.7). Below we consider one of them.

Let C be a closed curve in the (2N + 1)-dimensional extended phase
space (q, p, t) consisting points at the different time instants. Then from the
Hamiltonian equations (1.1) it follows that the integral

JC =
∮

C

( N∑

i=1

pidqi −Hdt

)
= const , (1.8)

taken along the closed curve C is a constant of motion, i.e., dIC/dt = 0. The
integral (1.8) is known as Poincaré-Cartan’s integral invariant.

1.1.2 Hamiltonian Equations in Extended Phase Space

In some situations it is useful to formulate the Hamiltonian equations in
the extended phase-space (t, q1, . . . , qN , p0, p1, . . . , pN ) which also includes
the time t and a new canonical momentum p0 conjugated to it in the new
Hamiltonian function H

H = H(t, q1, . . . , qN , p0, p1, . . . , pN )
= p0 +H(q1, . . . , qN , p1, . . . , pN , t) . (1.9)

Let τ be a new independent time-variable. Then from the Hamiltonian equa-
tions for the canonical variables (t, p0) one obtains:

dt

dτ
=

∂H
∂p0

= 1 ,
dp0

dτ
= −∂H

∂t
= −∂H

∂t
, (1.10)

thus t = τ and p0 = −H. The equations for the other variables (q1, . . . , qN ,
p1, . . . , pN ) are given by the Hamiltonian equations (1.1) with Hamiltonian
H (1.9) instead of H. Such a formulation will be used in Sect. 5 to construct
maps near a separatrix.



4 1 Basics of Hamiltonian Mechanics

1.1.3 Formulation of Hamiltonian Equations
with One Coordinate as Independent Variable Instead of t

For some problems it is convenient to choose one of the coordinates as an
independent time like variable. Suppose, that the coordinate q1 obeys the
following condition: q̇1 = ∂H/∂p1 �= 0 in the some region of the phase-space
(q, p) of the system. Then defining t and p0 = −H(q, p, t) as new canonical
variables, coordinate and momentum, supplemented to the rest of canonical
variables (q2, . . . , qN , p2, . . . , pN ), one can obtain Hamilton equations for the
new canonical variables (see, e.g., Arnold (1989))

dt

dq1
=

∂K

∂pt
,

dp0

dq1
= −∂K

∂t
, (1.11)

dqi

dq1
=

∂K

∂pi
,

dpi

dq1
= −∂K

∂qi
, (i = 2, . . . , N) , (1.12)

where
K = K(t, q2, . . . , qN , p0, p2, . . . , pN , q1) = −p1 . (1.13)

is a new Hamiltonian function found by inversion of the relation pt =
−H(q, p, t) with respect to p1. Such an inversion exists since ∂H/∂p1 �= 0.

Formulation of Hamiltonian equations with the q1-coordinate as an inde-
pendent variable is useful to construct Poincaré maps at sections of phase-
space where q1 is constant.

1.2 The Hamilton–Jacobi Method

A powerful method to integrate Hamiltonian equations, the Hamilton–Jacobi
method, is based on a change of variables in the Hamilton equations (see
Goldstein (1980); Arnold (1989)). The change of variables (q, p) → (Q,P )
must be a canonical, i.e., it must preserve the invariants of motion and the
Hamiltonian form of equations. The idea of the Hamilton–Jacobi method
consists of finding such a canonical change of variables which reduces the
Hamiltonian function to a form that the Hamiltonian equations can be easily
integrated. It is important that any canonical transformation of variables is
determined by a so called generating function satisfying the Hamilton–Jacobi
partial differential equation. If we succeed to find a complete integral, i.e., the
solutions of this equation depending on N independent constants of motion
(2N is the number of variables), then the time evolution of the system is
completely determined by the generating function.

1.2.1 Canonical Change of Variables

Consider the change of variables (q1, . . . , qN , p1, . . . , pN ) to new ones (Q1,
. . . , QN , P1, . . . , PN ) given by the 2N functions Qi(q1, . . . , qN , p1 , . . . , pN ),
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Pi(q1, . . . , qN , p1, . . . , pN ) of the 2N variables (q1, . . . , qN , p1, . . . , pN ). Such
a transformation of variables, if canonical, must preserve the invariants of
the system, in particularly, the Poincaré-Cartan integrals (1.8) and the form
of canonical equations (1.1):

dQi

dt
=

∂H
∂Pi

,
dPi

dt
= − ∂H

∂Qi
, (1.14)

with the new Hamiltonian H = H(Q1, . . . , QN , P1, . . . , PN , t). From the in-
variance of the Poincaré – Cartan integral invariant (1.8) follows that the
difference

N∑

i=1

pidqi −Hdt−
N∑

i=1

PidQi + Hdt = dΦ(q, p, t) (1.15)

is a total derivative of some function Φ. The function Φ must depend on
N of the old q = (q1, . . . , qN ), p = (p1, . . . , pN ) and N of the new Q =
(Q1, . . . , QN ), P = (P1, . . . , PN ) variables, and on time t.

There are many possible pairs of independent variables of generating func-
tions F . In many cases one considers four combinations: (q,Q), (q, P ), (p,Q),
and (p, P ). Below we specifically consider the second pair (q, P ) as inde-
pendent variables, i.e., F = F (q, P ) since it allows to obtain the identity
transformation, q = Q, p = P choosing F = q · P . Such generating functions
will be used in the next chapters for perturbation theory and to construct
mappings. In this case (1.15) can be rewritten as

dF (q, P, t) =
∂F

∂t
dt+

N∑

i=1

(
∂F

∂pi
dqi +

∂F

∂Pi
dPi

)

= (H−H)dt+
N∑

i=1

(pidqi +QidPi) , (1.16)

where the generating function F (q, P, t) is related to Φ(q, P, t), i.e., F (q, P, t)=∑N
i=1 PiQi +Φ(q1, . . . , qN , P1, . . . , PN , t). From (1.16) follows the relation be-

tween old and new variables:

pi =
∂F

∂qi
, Qi =

∂F

∂Pi
, H = H +

∂F

∂t
, (1.17)

where

F = F (q1, . . . , qN , P1, . . . , PN , t) .

1.2.2 The Hamilton–Jacobi Equation

Suppose that the canonical change of variables (q, p) → (Q,P ) transforms
the Hamiltonian system (1.1) to the new one such that H depends only on
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the canonical momenta P1, . . . , PN , i.e., H = H(P1, . . . , PN ). Then one can
immediately integrate the Hamiltonian equations (1.14) which gives

Qi = Qi0 + ωi(t− t0) , Pi = const . (1.18)

where ωi = ωi(P1, . . . , PN ) = ∂H(P1, . . . , PN )/∂Pi (i = 1, . . . , n) are
the oscillation frequencies of the system in the new variables (Q1, . . . , QN ,
P1, . . . , PN ).

Using (1.17) one obtains the equation for the generating function F =
F (q1, . . . , qN , P1, . . . , PN , t) which implements such a transformation of vari-
ables:

H

(
q1, . . . , qN ,

∂F

∂q1
, . . . ,

∂F

∂qN
, t

)
+
∂F

∂t
= H(P1, . . . , PN ) . (1.19)

It is known as the Hamilton–Jacobi equation. As a partial differential equa-
tion it usually has a large number of solutions. The solution F (q1, . . . , qN , P1,
. . . , PN , t) of the Hamilton–Jacobi equation (1.19) depending on the N inde-
pendent constants P1, . . . PN is called a complete integral of the equation if
the condition:

det
∣∣∣∣
∂2F

∂qi∂Pj

∣∣∣∣ �= 0 .

is satisfied.

1.2.3 The Jacobi’s Theorem

The Jacobi’s theorem (see, e.g., Arnold (1989)) states that if a solution
F (q, P, t) is a complete integral of the Hamilton–Jacobi equation, then so-
lutions of the canonical equations (1.1) may be presented as

pi =
∂F (q1, . . . , qN , P1, . . . , PN , t)

∂qi
,

Qi =
∂F (q1, . . . , qN , P1, . . . , PN , t)

∂Pi
. (1.20)

It means that the time-evolution of the system is determined completely
by the generating function F (q, P, t). From the implicit algebraic equations
(1.20) one can construct the mapping of the initial conditions (q(0)

i , p
(0)
i ) (i =

1, . . . , n) of the system at the time t = t0 to the final state (qi(t), pi(t)) at an
arbitrary time instant t: the equation (1.20) at time t = t0 determines the
canonical transformation from the initial conditions (q(0)

i , p
(0)
i ) (i = 1, . . . , n)

to the new variables (Q(0)
i , P

(0)
i ) (i = 1, . . . , n). Since the time-evolution of

these variables is known by (1.18), then the original variables (q(t), p(t)) at
any time t > 0 may be found by the backward canonical transformation
(Q(t), P (t)) → (q(t), p(t)) with (1.20). We shall use this idea of Jacobi’s
theorem in Chap. 4 to construct mappings for generic Hamiltonian systems.
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1.3 Action-Angle Variables

In this section we shortly recall the action-angle variables for the integrable
Hamiltonian systems. The formulation of Hamiltonian equations in action-
angle variable is most convenient to study Hamiltonian systems in the pres-
ence of perturbations and to construct symplectic maps. This formalism will
be used throughout the text.

1.3.1 Integrable Hamiltonian Systems

First we recall the notion of integrability of Hamiltonian systems. The integra-
bility problem was solved by the Liouville theorem (the modern formulation
of this theorem was given by Arnold (1989)).

Suppose a given Hamiltonian system has as many as independent con-
stants (integrals) of motion Fi(q, p) = const (i = 1, . . . , N) as degrees of
freedom. These integrals are called to be in involution if they have vanishing
Poisson brackets among themselves {Fi, Fj} = 0 for all i and j. Then the
orbits are confined to an N -dimensional surface in 2N phase space. Consider
the surface (manifold) Mf determined by given values fi (i = 1, . . . , N) of
the integrals Fi(q, p) = fi. Such a system is called integrable.

Hamiltonian motion in a finite domain of the 2N -dimensional phase space
(q1, . . . , qN , p1, . . . , pN ) defined by a manifold Mf may be viewed as a flow
on the surface of the N -dimensional torus. This torus is characterized by N
angular variables (ϑ1, . . . , ϑN ), modd 2π.

For instance, for the one -degree of freedom system with one constant of
motion, energy, H(p, q) = const, the orbits lie on the closed curves C which
are contour curves on the phase plane (q, p) of constant energy E = H(p, q),
shown in Fig. 1.1. These curves are topologically equivalent to circles. Each
point on the circle is uniquely determined by the angle ϑ (mod 2π). The latter
may be viewed as an 1-D torus. From the Liouville theorem immediately
follows that one-dimensional time-independent Hamiltonian systems H =
H(q, p) are always integrable.

q

p

C

ϑ

Fig. 1.1. Closed curve C in the phase plane (q, p)
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Consider a two-degree of freedom Hamiltonian system H(q1, q2, p1, p2)
with two integrals of motion I1, I2 (or E, I1). The trajectories of the system
lie on a 2-D surface determined by two equations I1(q1, q2, p1, p2) = J1 =
const, I2(q1, q2, p1, p2) = J2 = const. This surface is equivalent to the 2-D
torus shown in Fig. 1.2.

Fig. 1.2. Motion on the surface of 2-D torus

1.3.2 Hamiltonian in Action-Angle Variables

In the integrable case the Hamiltonian equations take a most convenient form
if we choose the N independent integrals of motion Fi as canonical momenta
conjugated to the angle variables ϑi. These canonical momenta are called
action variables Ii (i = 1, . . . , N). The Hamiltonian function H depends on
the action variables only

H = H(I1, · · · , IN ) . (1.21)

Then the canonical equations become

dϑi

dt
= ωi(I1, . . . , IN ),

dIi

dt
= −∂H

∂ϑi
= 0 , (1.22)

where

ωi(I1, . . . , IN ) =
∂H(I1, . . . , IN )

∂Ii
, i = 1, . . . , N (1.23)

are the corresponding frequencies of motion along angular variables. Angular
variables ϑi are thus linear functions of time:

ϑi(t) = ωi(I1, · · · , IN )t+ ϑi(0) , i = 1, . . . , N . (1.24)
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1.3.3 Systems with One Degree of Freedom

First consider the simple case of an integrable system with one degree of
freedom with Hamiltonian H = H(q, p). Since H = H(q, p) is the only one
integral of motion the action variable I is a function of H, i.e., I = I(H)
or H = H(I). In the (q, p)-plane a trajectory forms a closed curve C as
shown in Fig. 1.1. The action-angle variables are introduced by a canonical
transformation of the old, (q, p), variables to the new, action-angle variables
(ϑ, I) and given by

I =
1
2π

∮

C

p(q;H)dq , ϑ =
∂F (I, q)

∂I
, (1.25)

F (I, q) =

q∫
p(q; I)dq .

The action I is equal to the area enclosed by the closed curve C divided by
2π.

Consider as an example the harmonic oscillator described Hamiltonian

H = H(q, p) =
p2

2m
+ k

q2

2
. (1.26)

According to (1.25) we have the following generating function,

F (q, I) = I
(
arcsinx+ x

√
1 − x2

)
, (1.27)

where x = q(k/2H)1/2. The relation between the energy H and the action I
is given by

H(I) = ωI , ω =

√
k

m
, (1.28)

where ω is a frequency of harmonic oscillations. The old coordinates (q, p)
are related to the action-angle variables (ϑ, I):

q =

√
2I
mω

sinϑ , p =

√
2Im
ω

cosϑ . (1.29)

1.3.4 Many-Dimensional Systems with Separable Variables

In separable systems with more than one degree of freedom (N > 1) action-
angle variables (ϑi, Ii), i = 1, . . . , N are introduced as in systems with one-
degree of system considered above if the variables in the corresponding prob-
lem are separable. In this case the Hamilton–Jacobi equation (1.19), a par-
tial differential equation in N variables, can be replaced by N ordinary
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differential equations in a single variable. This is possible when the pair
of variables (qi, pi), (i = 1, . . . , N) is entered in the Hamiltonian function
H(q1, . . . , qN , p1, . . . , pN ) only in a combination fi(qi, pi). Then the solution
F (q1, . . . , qN , I1, . . . , IN ) can be written as a sum of terms Fi(qi; I1, . . . , IN )
each depending only on one variable qi, i.e.,

F (q1, . . . , qN , I1, . . . , IN ) =
N∑

i=1

Fi(qi; I1, . . . , IN ) . (1.30)

Then the actions are defined as integrals

Ii =
1
2π

∮

Ci

pidqi , i = 1, . . . , N ,

pi ≡ pi(qi; I1, . . . , IN ) =
∂Fi

∂qi
, (1.31)

taken along the closed contours Ci of constant fi = fi(qi, pi) in the (qi, pi)-
plane. The angle variables, ϑi, are

ϑi =
∂F

∂Ii
=

N∑

i=1

∂Fi(qi; I1, . . . , IN )
∂Ii

. (1.32)

Consider as an example the two-dimensional motion in a polar coordinate
system as an example of a separable Hamiltonian system. Let (r, θ) be the
radial and angular variables, and (pr, pθ) be conjugated momenta, respec-
tively. Suppose that a particle of mass m = 1 moves in the potential field U
depending only on the radial coordinate r, U = U(r). The Hamiltonian of
the system is given by

H(r, pr, pθ) =
p2

r

2
+

p2
θ

2r2
+ U(r) . (1.33)

The system has two integrals of motion: the energy E = H(r, pr, pθ) and the
polar momentum, pθ = const. The latter integral is due to independence of the
Hamiltonian H on the polar angle θ. Therefore, the system is an integrable,
and moreover it is thus reduced to two independent systems with one degree
of freedom with Hamiltonians,

Hr(r, pr) =
p2

r

2
+

L

r2
+ U(r) , Hθ(pθ) =

p2
θ

2
. (1.34)

Consider the canonical transformation of the variables (r, θ, pr, pθ) to the
action-angle variables (ϑr, ϑθ, Ir, Iθ). The corresponding generating function
F = F (r, θ, Ir, Iθ) is time-independent, and according to (1.19), (1.33) it
satisfies the Hamilton–Jacobi equation:
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1
2

(
∂F

∂r

)2

+
1

2r2

(
∂F

∂θ

)2

+ U(r) = H(Ir, Iθ) . (1.35)

The variables r and θ in equation (1.35) are separable, and the solution F is
presented as sum

F (r, θ, Ir, Iθ) =
∫ r

pr(r′,H, pθ)dr′ + pθθ , (1.36)

where

pr(r,H, pθ) =

√

2
[
H− U(r) − p2

θ

2r2

]
.

The action variables (Ir, Iθ) are determined as

Ir =
1
2π

∮

Cr

pr(r,H, pθ)dr , Iθ =
1
2π

∮

Cθ

pθdθ = pθ , (1.37)

where the integrals are taken along the closed contours Cr and Cθ in the
(r, pr)− and (θ, pθ)-planes, respectively (see Fig. 1.3). From (1.37) we obtain
the dependence of the new Hamiltonian H on the action variables Ir and
Iθ, i.e., H = H(Ir, Iθ), and the frequencies of motion ωr(Ir, Iθ) = ∂H/∂Ir,
ωθ(Ir, Iθ) = ∂H/∂Iθ, along the radial r and the polar angle θ, respectively.

According to (1.32) the angle variables (ϑr, ϑθ) are defined as

ϑr =
∂F (r, θ, Ir, Iθ)

∂Ir
, ϑθ =

∂F (r, θ, Ir, Iθ)
∂Iθ

. (1.38)

These formulas define also the relation between the old (r, θ, pr, pθ) and
the new action-angle variables (ϑr, ϑθ, Ir, Iθ), i.e., r = r(ϑr, Ir, Iθ), θ =
θ(ϑr, ϑθ, Ir, Iθ).

p r

r

Cr

(a)

0 0.5 1

p θ

θ/2π

Cθ

(b)

Fig. 1.3. (a) Closed contour Cr of constant Hr(r, pr) in the (r, pr)-plane;
(b) Contour Cθ of constant Hθ(pθ) in the (θ, pθ)-plane



12 1 Basics of Hamiltonian Mechanics

One should note that, in principle, one can introduce the action-angle
variables also for integrable Hamiltonian systems with non-separable vari-
ables. The details of this procedure is described, e.g., in the book by Arnold
(1989). However, the practical applications of this procedure in real non-
separable systems is rather difficult, particularly, since in the nonseparable
case no practicable test exist to decide if the system is integrable or not.

1.4 Particles in a Wave Field

We study the motion of a charged particle of mass m in a monochromatic
electric wave of frequency Ω and wavelength λ = 2π/k. It is governed by the
Newton equation:

mẍ = −eEk sin(kx−Ωt) , (1.39)

where Ek is the amplitude of the wave, and e is the charge of the particle. In a
coordinate system (q, t) moving with phase velocity vp = Ω/k and normalized
to the wavelength, i.e., q = k(x− vpt), the equation (1.39) may be written as
q̈ + ω2

0 sin q = 0, where ω0 =
√
ekEk/m. Introducing the canonical moment

p = q̇ the equations of motion are the Hamiltonian equations

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
, (1.40)

with the Hamiltonian

H =
p2

2
+ U(q) , U(q) = −ω2

0 cos q . (1.41)

The Hamiltonian (1.41) describes the motion of a pendulum. It plays an
important role in the study of general problems of Hamiltonian dynamics
and chaos.

The system (1.40), (1.41) describes the motion of a particle of unity mass
in the potential U(q) = −ω2

0 cos q as shown in Fig. 1.4a. The fixed points of
the system in the (q, p)-plane defined as

q̇ = p = 0 , ṗ = ω2
0 sin q = 0 ,

are p = 0, q = kπ, (k = 0,±1,±2, . . .). Particularly, the points (qe = 2kπ,
pe = 0) where the potential U(q) has local minima, Umin = −ω2

0 , are called
elliptic fixed points since the orbits near them are described by the ellip-
tic closed curves: p2 + ω2

0(q − qe)2 = const. On the other hand, the points
(qh = (2k + 1)πk, ph = 0) where U(q) has local maxima, Umax = ω2

0 , are
called hyperbolic fixed points. The orbits are near these points described by
hyperbolic curves, p2 − ω2

0(q − qe)2 = const.
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Fig. 1.4. (a) Profile of the potential U(x)/ω2
0 = − cos q. (b) Phase space orbits of

the pendulum: curves 1 correspond to the oscillatory motion −ω2
0 ≤ H < ω2

0 , curves
2 and 2’ are separatrices where H = ω2

0 , curves 3 and 3’ correspond to rotational
motion H > ω2

0

Three possible orbits of the system in the phase plane (q, p) are displayed
in Fig. 1.4b. For values −ω2

0 ≤ H < ω2
0 the motion of the pendulum is

vibrational, and is described by a closed orbits curve 1. It also corresponds
to the motion of a particle trapped by the wave.

For H > ω2
0 the motion is described by the unbounded curves 3 and 3′.

They correspond to the rotational motion of pendulum. They also describe
untrapped motion of a particle in a wave-field. The curves 2 and 2′ separate
the two kinds of motion, oscillatory and rotational, in the phase plane (q, p).
These curves connecting the hyperbolic fixed points are known as separatrices.
On the separatrix we have H = ω2

0 .

1.4.1 Trapped Motion of Particles

Consider first the oscillatory motion of the pendulum, when −ω2
0 ≤ H < ω2

0 .
The action variable I for this motion is determined by the integral

I =
1
2π

∮

C

p(q,H)dq =
2
π

qm∫

0

√
2(H + ω2

0 cos q)dq , (1.42)
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where qm is a turning point of motion determined by the condition p(qm,H) =
0. The integration in (1.42) gives the relation between I and H:

I(H) =
8
π

[
E(k) − (1 − k2)K(k)

]
, (1.43)

where K(k) and E(k) are the complete elliptic integrals of the first and the
second kind, respectively, with a module k =

√
(H + ω2

0)/(2ω2
0):

K(k) =

π/2∫

0

dϕ√
1 − k2 sin2 ϕ

, E(k) =

π/2∫

0

√
1 − k2 sin2 ϕdϕ . (1.44)

The frequency of motion ω(H) is given by

ω(H) =
dH(I)
dI

=
πω0

2K(k)
. (1.45)

Its dependence on H in the interval −ω2
0 < H < ω2

0 is shown in Fig. 1.5. At
the small amplitude oscillations near the point q = 0, i.e., for |H +ω2

0 | � ω2
0

(or k → 0), it tends to the frequency of oscillations, ω0, near the elliptic fixed
points:

ω(H) = ω0

(
1 − k2

4
+O(k4)

)
. (1.46)

The asymptotics of ω(H) near the separatrix when H → ω2
0 (k → 1) has

the following form

ω(H) =
πω0

ln(32/|h|) +O(|h|) , h → −0 . (1.47)

where h = (H − ω2
0)/ω2

0 is the energy normalized with respect to the one
Hs = ω2

0 on the separatrix.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

ω
(H

)/
ω

0

(H+ω0
2)/ω0

2

Fig. 1.5. Frequency of oscillation ω(H) versus energy H (−ω2
0 < H < ω2

0)
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The trajectory is determined by the relation between the old coordi-
nates (q, p) and the angle variable ϑ,

sin(q/2) = k sn
(

ω0ϑ

ω(H)
; k
)

, p = 2kω0 cn
(

ω0ϑ

ω(H)
; k
)

, (1.48)

where sn(x; k) and cn(x; k) are the Jacobi elliptic functions with module k.
The coordinates q and p are 2π− periodic functions of the angle variable

ϑ, and the relations (1.48) can be presented as Fourier series:

sin(q/2) =
∞∑

m=1

qm sin(2m− 1)ϑ ,

p =
∞∑

m=1

pm cos(2m− 1)ϑ , (1.49)

where

qm =
2π
K(k)

qm−1/2

1 − q2m−1
, pm =

4πω0

K(k)
qm−1/2

1 + q2m−1
, (1.50)

and q = exp
(
−πK(

√
1 − k2)/K(k)

)
. For the small amplitude oscillation,

when H → −ω2
0 , (k → 0), the harmonics m = 1 gives the main contribution

in (1.49) and the trajectory is similar to the one of harmonic oscillation given
by (1.29).

When a particle approaches the separatrix, i.e., h → 0 the spectrum qm,
pm of the Fourier series (1.49) becomes broader and behave as

qm ≈ m−1
(
1 − π2/ ln(32/|h|

)m−1/2
,

pm ≈
(
1 − π2/ ln(32/|h|

)m−1/2
. (1.51)

It means that in the limit |h| → 0 the variables q(ϑ) and p(ϑ) become dis-
continuous functions of the angle variable ϑ.

1.4.2 Untrapped Motion of Particles: H > ω2
0

This corresponds to the rotational regime of pendulum (see curves 3 and
3′ in Fig. 1.4). The motion is not confined along the coordinate q. Action-
angle variables (ϑ, I) can be introduced using periodic boundary conditions
at values q and q + 2π,

ϑ =
∂

∂I

q∫
p(q′,H)dq′ =

ω(H)
ω0k

F

(
q

2
,
1
k

)
,

I =
1
2π

π∫

−π

p(q,H)dq =
4ω0k

π
E

(
1
k

)
, (1.52)
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where ω(H) = dH/dI is the frequency of motion,

ω(H) =
πω0k

K (1/k)
. (1.53)

The trajectory is described by

sin(q/2) = sn
(

ω0k

ω(H)
ϑ

)
, p =

2
k

√

1 − 1
k2

sn2

(
ω0k

ω(H)
ϑ

)
. (1.54)

The asymptotics of the frequency ω(H) when an orbit approaches to the
separatrix, H → ω2

0 + 0, is determined by

ω(H) =
2πω0

ln(32/h)
+O(|h|) , h → +0 , (1.55)

which is twice larger than the asymptotics (1.47).
The time-dependence of the momentum p(t) for three types of orbits is

plotted in Fig. 1.6: curve 1 corresponds to the small amplitude oscillations,
curve 2 to the oscillatory regime close the separatrix, and curve 3 describes
a rotational regime of the pendulum.

-2

-1

0

1

2

0 0.5 1 1.5 2 2.5 3 3.5 4

p

ω0t

1

2

3

Fig. 1.6. Time-dependence of momentum p(t) for three kind of motion: curve 1
corresponds to small amplitude oscillations (|H +ω2

0 | � ω2
0); curve 2 − oscillations

close to the separatrix (|H − ω2
0 | � ω2

0); curve 3 − rotational regime (H > ω2
0)

1.4.3 Motion on Separatrix

Finally consider the orbits on the separatrix when H = Hs = ω2
0 . The sepa-

ratrix was shown in Fig. 1.4b by the phase space curves 2 and 2′. Using the
equation dq/dt = p(q,Hs) = ω0 cos q/2 one obtains
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q = 4arctan
exp(±ω0τ) + 1

exp(±ω0(t− t0)) − 1
,

p = ± 2ω0

cosh(ω0(t− t0))
. (1.56)

where the upper sign (+) corresponds to the motion along the upper branch
of the separatrix (curve 2), and lower sign (-) describes the motion along
the lower brach (curve 2’), t0 is the time instant when the orbit crosses
the coordinate q = 0. The phase space point asymptotically approaches the
saddle point:

q → ∓π , p → −0 , for t → −∞
q → ±π , p → +0 , for t → ∞

The orbits on the separatrix (1.56) will be used in Sect. 6 to obtain the
mapping near the separatrix.

1.5 On Symplectic Numerical Integration
of Hamiltonian Systems

Hamiltonian equations (1.1) as a set of 2N first order ordinary differential
equations could be numerically integrated using well known standard meth-
ods, like Runge –Kutta methods, applied to the system of the first order
differential equations (see, e.g., Press et al. (1992))

dx
dt

= f(x, t) , (1.57)

where x = (x1, . . . , x2N ) are M variable, and f = (f1, . . . , f2N ) are given 2N
force functions. However, these methods are not at all well suited for inte-
grating Hamiltonian systems, since they do not preserve important invariants
of the motion discussed in Sect. 1.1.1. Particularly, if x(t + h) = Ŝ(h)x(t) is
the numerical solution with the time step h then the Jacobian of transfor-
mation (1.7) from the coordinates x(t) at time instant t to the ones x(t+ h)
at t = t + h will, in general, not be exactly unity as we know it must. This
means that this type of numerical integration does not preserve phase space
area, and the numerically integrated Hamiltonian system becomes a dissi-
pative system. Since the latter has attractors the numerical integration may
lead to an entirely incorrect long time behavior of the solution.

To resolve this problem so called symplectic methods of integration of
Hamiltonian systems have been introduced (see reviews by Sanz-Serna (1992);
Sanz-Serna and Calvo (1993, 1994); Feng (1994) and references therein). The
idea of the symplectic numerical integration is that each step of the inte-
gration is arranged to be a canonical (or symplectic) transformation. In the
last two decades different symplectic methods of integration of Hamiltonian
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systems have been developed. The symplectic methods can be roughly di-
vided into two groups. The first of them includes methods which are based
on the Hamiltonian formalism using generating functions, Lie transforms,
etc. The second group of methods uses well-known methods, for instance,
Runge-Kutta formulas modified such, that their coefficients satisfy certain
conditions. In general, both groups of methods are implicit, i.e., the variable
xk+1 after a step of integration is not explicitly expressed through its previ-
ous value xk. For instance, in the simple approximation it is determined by
an equation xk+1 = xk + hf(xk+1).

Explicit numerical symplectic Runge–Kutta methods have been proposed
for special Hamiltonian systems with separable variables: H(p,q) = T (p) +
V (q). Below we give formulas for the explicit symplectic integrator

(q(t+ h),p(t+ h)) = Ŝ(q(t),p(t)) , (1.58)

developed by McLachlan and Atela (1992). It is given by the following se-
quence of intermediate values (Qj ,Pj), j = 1, . . . , s:

Pi = p(t) + h

i∑

j=1

bjf(Qj−1) ,

Qi = q(t) + h

i∑

j=1

ajg(Pj−1) , (1.59)

with (Q0,P0) = (q(t),p(t)) and (q(t + h),p(t + h) = (Qs,Ps). In (1.59)
g(p) = ∂T/∂p, f(q) = −∂V/∂q are the gradients. The symplectic integrator
contains s coefficients ai, bi (i = 1, . . . , s). They are listed in McLachlan and
Atela (1992).

The accuracy of the symplectic integrators can be measured by the de-
gree of energy conservation. Suppose that the symplectic map (1.58) with
time step h were exact for a time -dependent Hamiltonian K(p,q, t) which
approximates the original Hamiltonian H(p,q). The deviation of H from K
may serve as a good measure of the accuracy of the method. In Sect. 4.2 we
will use this measure to study the accuracy of the symplectic integrator and
the symplectic mappings.

In the following sections we use the the fifth order symplectic integrator
(1.59) (s = 6) for numerical integration of Hamiltonian systems. It will be
also compared with the mapping methods which will be developed later.

1.6 Bibliographic Notes

The methods of classical Hamiltonian dynamics are discussed in many text-
books. Among them one can recommend the classical books by Goldstein
(1980) and by Lanczos (1962). A modern mathematical formulation of classi-
cal mechanics is given in the book by Arnold (1989). Phase space analysis of
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dynamical systems, particularly, Hamiltonian systems can be found in text-
books by Andronov et al. (1981), Arnold (1989), Guckenheimer and Holmes
(1983). The Hamilton–Jacobi method, the action-angle variable formalism
are discussed in Goldstein (1980); Arnold (1989); Lanczos (1962). For more
advanced readers one can recommend also books on the classical and celestial
mechanics by Siegel and Moser (1995); Arnold et al. (1988).

The symplectic numerical integration methods of Hamiltonian systems are
reviewed in Sanz-Serna (1992); Sanz-Serna and Calvo (1994); Feng (1994).



2 Perturbation Theory
for Nearly Integrable Systems

Real dynamical systems are generally not integrable. In many cases the de-
viation of a system from an integrable one is small and can be considered
as perturbation of the integrable system. To study perturbed systems spe-
cial theoretical methods, known as perturbation theory, have been developed.
They are based on the assumption that the solutions of a perturbed sys-
tem are close to the corresponding solutions of the unperturbed (integrable)
system, and one seeks the deviation of the perturbed solution from the un-
perturbed one as a series in the powers of a parameter which characterizes
the strength of the perturbation.

In this chapter we recall the basic ideas and methods of classical perturba-
tion theory in Hamiltonian systems for infinite time intervals. Then we shall
consider on the perturbation methods in finite time intervals since they are
poorly discussed in the literature. The construction of symplectic mappings
for Hamiltonian systems which will be given in Sect. 4 is mainly based on
the perturbation procedure in finite time intervals.

2.1 Perturbation Methods in Infinite Time Intervals

Perturbation methods in general non-linear oscillatory systems are based on
an averaging principle (see Poincaré (1892–99); Bogolyubov and Mitropol’skij
(1958); Nayfeh (1973); Arnold et al. (1988); Arnold (1989)). The averaging
principle or the methods of perturbation theory were first developed in the
19-th century in the problems of celestial mechanics to study the motion of
planets of the Solar system. A comprehensive description of these methods is
given by Poincaré in his classical book “Les méthodes de la mécanique céleste”
(New Methods of Celestial Mechanics, Poincaré (1892–99)). Later the method
was rediscovered by van der Pol in the study of nonlinear oscillatory systems.

Further development of the averaging procedure is connected with names
of N.M. Krylov, N.N. Bogolyubov, L.I. Mandel’stam, and their followers who
applied these methods to the wide-scale problems of nonlinear oscillations
(see, e.g., Bogolyubov and Mitropol’skij (1958); Andronov et al. (1981)).
The main idea of the averaging principle is concluded in a change of variables
that allows to eliminate the fast changing phases from the equations of motion
keeping only slowly varying variables. In this section we briefly recall the main

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 21–37 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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ideas of the averaging principle in Hamiltonian systems and its difficulties
connected with small denominators.

2.1.1 A Fundamental Problem of Dynamics

Suppose an unperturbed system with N degrees of freedom is completely
integrable, and one can introduce action-angle variables (I, ϑ): (I1, . . . , IN ,
ϑ1, . . . , ϑN ) to replace the physical variables (q, p). The unperturbed Hamil-
tonian H0 then depends on the action variables, H0 = H0(I), only and the
unperturbed equations of motion, İi = 0, ϑ̇i = ∂H0/∂Ii, are integrable

Ii = const , ϑi = ωi(I)(t− t0) + ϑi0 , i = 1, . . . , N . (2.1)

where
ωi(I1, · · · , IN ) =

∂H0

∂Ii
, i = 1, . . . , N ,

are the unperturbed frequencies of motion.
Suppose that the system is subjected to time-periodic perturbation. The

set of perturbed Hamiltonian equations can be written as

dϑi

dt
=

∂H

∂Ii
= ωi(I) + ε

∂H1

∂Ii
,

dIi

dt
= −ε∂H1

∂Ii
, (2.2)

with Hamiltonian function

H(I, ϑ, t, ε) = H0(I) + εH1(I, ϑ, t, ε) , (2.3)

where the dimensionless parameter ε stands for the perturbation strength.
The perturbation Hamiltonian H1(I, ϑ, t, ε) is a 2π− periodic function in ϑ
and in time with period T (or with the frequency Ω = 2π/T ). Suppose that
the perturbation is small, ε � 1.

The Hamiltonian problem (2.2), (2.3) describing the dynamics of in-
tegrable system affected by small perturbation has numerous applications
in different areas of physics, mechanics and astronomy. Poincaré (1892–99)
called this problem a fundamental problem of dynamics.

2.1.2 The Main Idea of Averaging Procedure

The averaging procedure is implemented by the change of fast–oscillating
variables (I, ϑ) to slowly varying variables (J, ψ). In Hamiltonian systems
such a change of variables ought to be canonical. The change of variables
is given by a generating function F (J, ϑ, t, ε) of mixed variables: old angle
variables ϑ and new actions J . Since the perturbation is small, F (J, ϑ, t, ε)
can be presented in the form

F (J, ϑ, t, ε) = Jϑ+ εS(J, ϑ, t, ε) ,
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which is close to the generating function, F0(J, ϑ) = Jϑ, for the identical
change of variables, J = I, ψ = ϑ. Then the relation between old and new
variables is given by

I = J + ε
∂S

∂ϑ
, ψ = ϑ+ ε

∂S

∂J
. (2.4)

Suppose that the change of variables given by (2.4) transforms the system
with Hamiltonian H(I, ϑ, t, ε) (2.3) into a new one with H = H(J, ε) depend-
ing only on the action variables J . If there exists such a change of variables,
then the new system is fully integrable 1, i.e.,

J̇ = −∂H(J, ε)
∂ψ

= 0 , ψ̇ =
∂H(J, ε)

∂J
= w(J, ε) . (2.5)

2.1.3 Determination of the Generating Function

Below we consider the method of perturbation theory proposed by Lindstedt
for problems of celestial mechanics (see Poincaré (1892–99); Arnold et al.
(1988)). The generating function S determining the transformation of vari-
ables satisfies the Hamilton–Jacobi equation (1.19), which takes the following
form for the Hamiltonian (2.3):

H0

(
J + ε

∂S

∂ϑ

)
+ εH1

(
J + ε

∂S

∂ϑ
, ϑ, t, ε

)
+ ε

∂S

∂t
= H(J, ε) . (2.6)

For small perturbation parameter, ε, we can seek the generating function
S(θ, J, t; ε) as series in powers of ε:

S(J, ϑ, t, ε) = S1(J, ϑ, t) + εS2(J, ϑ, t) + · · · . (2.7)

We also expand the old, H1(I, ϑ, t, ε) and new, H(J ; ε), Hamiltonians in a
similar series

εH1(I, ϑ, t, ε) = εH1(I, ϑ, t) + ε2H2(I, ϑ, t) + · · · ,

H(J, ε) = H0(J) + εH1(J) + ε2H2(J) + · · · . (2.8)

Expanding the Hamilton–Jacobi equation (2.6) in a series in powers of ε and
equating the terms with the same power in ε we obtain the relation

H0(J) = H0(J) , (2.9)

1 The conditions at which such a transformation exists is formulated by the
Kolmogorov’s theorem on the existence of conditionally-periodic motion (Kol-
mogorov (1954)), and it constitutes the contents of the KAM theory (Arnold
(1963a,b); Moser (1962)), [see Sect. 7.1 for more details.]
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and the equations for the expansion coefficients Si ≡ Si(ϑ, J, t) of the gener-
ating function S(ϑ, J, t; ε):

∂S1

∂t
+
∂H0

∂J
· ∂S1

∂ϑ
= H1(J) −H1(ϑ, J, t) , (2.10)

∂Sj

∂t
+
∂H0

∂J
· ∂Sj

∂ϑ
= Hj(J) − Fj(ϑ, J, t) , j ≥ 2 . (2.11)

where Fj(ϑ, J, t) are the polynomial functions of derivatives ∂S1/∂ϑ, . . . ,
∂Sj−1/∂ϑ. Particularly, for F2(ϑ, J, t) we have

F2(ϑ, J, t) = H2(ϑ, J, t) +
1
2
∂S1

∂ϑ
· ∂

2H0

∂J∂J
· ∂S1

∂ϑ
+
∂H1

∂J
· ∂S1

∂ϑ
. (2.12)

In (2.10), (2.11) and (2.12) the notations a·b , a·c·b stand for a·b =
∑N

i=1 aibi
and a · c · b =

∑N
i,j=1 aicijbj , respectively.

Using (2.1) the formal solutions of (2.10), (2.11) can be written in the
form

S1(ϑ, J, t) = (H1(J) −H00(J)) t−
∑

m,n

′Hmn(J)
exp(imϑ− inΩt)
i(m · ω(J) − nΩ)

,

(2.13)

Sj(ϑ, J, t) =
(
Hj(J) − F

(j)
00 (J)

)
t−
∑

m,n

′F (j)
mn(J)

exp(im · ϑ− inΩt)
i(m · ω(J) − nΩ)

,

(2.14)

where Hmn(J) and F
(j)
mn(J) are the Fourier expansion coefficients of the per-

turbation Hamiltonian H1(ϑ, J, t) and the functions Fj(I, ϑ, t):

H1(ϑ, J, t) =
∑

m,n

Hmn(I) exp(im · ϑ− nΩt) , (2.15)

Fj(ϑ, J, t) =
∑

m,n

F (j)
mn(I) exp(im · ϑ− nΩt) . (2.16)

Here the following notations are used: m = (m1, · · · ,mN ), m · ϑ = m1ϑ1 +
· · ·+mNϑN . In (2.13), (2.14) the sum

∑ ′ means that the term (m = 0, n = 0)
is excluded from summation.

The series (2.14) and (2.16) contain so-called secular terms growing lin-
ear in time t. These terms on the right hand side of series t can be simply
eliminated by choosing the correction terms Hj(J) in the Hamiltonian (2.8)
to be equal to H00, F

(j)
00 :
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H1(J) = H00 , Hj(J) = F
(j)
00 , j ≥ 2 .

Suppose that we have changed the variables (I, ϑ) to new ones (J, ψ) using
the generating function F = J · ϑ + εS1 + · · · + εmSm with a finite number
of the terms up to order of εm. Then the new Hamiltonian H(J, ψ) contains
the terms depending on the phase ψ only in order of εm+1 and higher, i.e.,
H(J, ψ) = H0(J, ε) + εm+1Hm+1(J, ψ) + · · ·. Then new variables (J, ψ) with
the accuracy O(εm+1) obey (2.5) with the simple solution

Ji = const , ψi = wi(J, ε)t+ ψi0 , (i = 1, . . . , N) .

The original variables (I, ϑ) can be found by the canonical transformations
(2.4).

However, the described procedure may fail when the series (2.7), (2.14)
and (2.16) diverge. Indeed, near a set of resonant tori Jmn where the denom-
inator m · ω(Jmn) − nΩ vanish, i.e.,

m · ω(Jmn) − nΩ = 0 , (2.17)

or negligible small the function functions Si are not defined. As we men-
tioned above this problem constitutes the main difficulty of perturbation
series, known as the problem of small denominators (or small divisors).

2.1.4 von Zeipel’s Method

The Lindstedt’s method does not allow to consider the system’s behavior
near resonant tori because of the divergence of the perturbation series. Von
Zeipel developed a version of perturbation theory which allows to treat these
cases. It is based on the same idea of eliminating of phases from Hamiltonian
except slowly changing phases near the resonant tori. Below we demonstrate
the method on the simple example of Hamiltonian system with one degree of
freedom subjected to time-periodic perturbation.

Suppose that Imn is a value of the resonant action satisfying the condition
for given numbers m,n:

mω(Imn) − nΩ = 0 . (2.18)

Consider the system near the resonant value Imn. We represent the perturbed
Hamiltonian in the form

H = H0(I) + εHmn(I) cos(mϑ− nΩt) + εH ′
1(I, ϑ, t) , (2.19)

where the perturbed part of Hamiltonian H ′
1(I, ϑ, t) does not contain the

(m,n)- resonant term. We introduce a new slowly varying variable ψ, J via
the generating function F = (mϑ−nΩt)J+εS(ϑ, J, t, ε). The relation between
the old variables (ϑ, I) and the new ones (ψ, J) is given by
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I = mJ + ε
∂S

∂ϑ
, ψ = mϑ−Ωt+ ε

∂S

∂J
. (2.20)

The new Hamiltonian H is sought in the form :

H = H(J, ε) + εHmn(J, ε) cosψ , (2.21)

which retains only one term depending on the angular variables ψ. Seeking
the generating function S as series of powers of ε (2.7) and the Hamiltonians
H and Hmn as in the form (2.8), one can obtain a set of equations for the
expansion coefficients Si similar to (2.11). Particularly, for the generating
function S1 one obtains the equation (2.10) where the term H1(ϑ, J, t) on
the right hand side is replaced by H ′

1(ϑ, J, t). For the lowest order expansion
coefficients in the expansion of H and Hmn we obtain

H0(J) = H0(mJ) − nΩJ , Hmn(J) = Hmn(mJ) . (2.22)

For the first order generating function S1 one obtains

S1(ϑ, J, t) = −Re
∑

m′,n′

Hm′n′(J)
exp(im′ϑ− in′Ωt)
i(m′ω(J) − n′Ω)

, (2.23)

which does not contain the small denominator mω(J)−nΩ which is respon-
sible for the divergence of the generating functions Si (i = 1, 2, . . .) near the
resonant torus J = Imn (2.18) in the Lindstedt’s method. The number of
small denominators in (2.23) is reduced by one.

Suppose that we have transformed the Hamiltonian into the form (2.21)
by the canonical change of variables (2.20) using the generating function S1

(2.23) in the first order of ε. Then with the accuracy of ε2 the new system
is described by the Hamiltonian (2.21). The latter does not depend on time
variable t, and it is completely integrable.

2.2 Lie Transform Methods

Lie transformation methods in Hamiltonian perturbation theory have been
developed by Hori (1966); Garrido (1968); Deprit (1969); Dragt and Finn
(1976); Dewar (1976) (see also book and reviews by Nayfeh (1973); Cary
(1981); Lichtenberg and Lieberman (1992); Dragt (2000)). Similar to von
Zeipel’s method this method is also based on elimination of fast phases by
the symplectic change of variables: (I, ϑ) → (J, ψ). However, instead of the
mixed variable generating function F (ϑ, J, t) = Jϑ + εS(ϑ, J, t) it uses a so-
called a Lie generating function W (ψ, J, t; ε) which depends only on the new
variables. The canonical transformation T̂ :

(J, ψ) = T̂ (I, ϑ) , (2.24)
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is considered as a shift along “time” ε, the perturbation parameter, with the
“Hamiltonian” W :

dJ

dε
=

∂W

∂ψ
,

dψ

dε
= −∂W

∂J
. (2.25)

At ε = 0 the transformation T̂ is reduced to the identical transformation Ê:
J(ϑ, J, t; ε = 0) = I, ψ(I, ϑ, ε = 0) = ϑ. The inverse transformation T̂−1 is
(I, ϑ) = T̂−1(J, ψ). The Hamiltonian H in the new variables (J, ψ) is a func-
tion of action variables J only: H = H(J) (similar to Lindstedt’s method) or
it depends also on some slow varying angles (similar to von Zeipel’s method).
The new Hamiltonian H generated by the canonical transformation W at
new positions (J, ψ) equals to the old Hamiltonian H at old positions (I, ϑ):

H(J(I, ϑ, ε)) = H(I, ϑ) . (2.26)

Similar to the situation in Lindstedt’s method the perturbation theory
with Lie transforms is based on power series expansion of the H, H, T̂ , and
T̂−1 (Deprit (1969)). They are expanded in series of powers ε similar to (2.8).
Assuming for the Lie generating function W a slightly different expansion
series,

W = W1(ϑ, I, t) + εW2(ϑ, I, t) + ε2W3(ϑ, I, t) + · · · , (2.27)

one obtaines the equations for the functions Wi (i = 1, 2, . . .). For the two
lowest orders they are

∂W1

∂t
+
∂H0

∂I

∂W1

∂ϑ
= H1 −H1 , (2.28)

∂W2

∂t
+
∂H0

∂I

∂W2

∂ϑ
= 2[H2 −H2] − L̂(W1)(H1 +H1) , (2.29)

where L̂(f) is the Poisson bracket operator associated with a function f

L̂(f)g = {f, g} =
∂f

∂ϑ

∂q

∂I
− ∂f

∂I

∂q

∂ϑ
.

The first two terms in expansion series of transformation operators T̂ ,
T̂−1 are given by

T̂1 = −L̂(W1) , T̂2 = −1
2
L̂(W2) +

1
2
L̂2(W1) , (2.30)

T̂−1
1 = L̂(W1) , T̂−1

2 =
1
2
L̂(W2) +

1
2
L̂2(W1) . (2.31)
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The solutions for the Lie generating functions Wi(I, ϑ) are similar to those
(2.13), (2.14) for the generating functions Si of mixed variables. Particu-
larly, the first order solution W1(I, ϑ) coincides with S1(J, ϑ) (2.13) if the old
variable I is replaced by the new one J .

According to (2.30) in first order of ε the change of variables I, ϑ → J, ψ
is given by the transformation:

J = I − ε
∂W1(ϑ, I, t)

∂ϑ
, ψ = ϑ+ ε

∂W1(ϑ, I, t)
∂I

. (2.32)

This transformation coincides with the one (2.4) given by the generating func-
tion S1(J, ϑ, t) of mixed variables when the variable J in S is replaced by I.
The new variables (J, ψ) are explicitly expressed via the old variables (I, ϑ).
This is one of the advantages of the Lie transform formalism over the mixed
generating function formalism in which the transformation (I, ϑ) →(J, ψ) is
given by the implicit relation (2.4).

However, one should note that the transformation (2.32) is not symplectic,
i.e., |∂(J, ψ)/∂(I, ϑ)| �= 1, unlike relation (2.4), although the Lie transform
(2.24) as a whole is symplectic. When one truncates the series of type (2.27)
taking a finite number of terms, which is unavoidable in computer simula-
tions, the transformation (2.24) becomes non-symplectic. As we shall see later
this property limits the application of Lie formalism methods to study the
long term evolution of Hamiltonian systems.

2.3 Time-Dependent Perturbation Series

The problem with small denominators originated from the conditions imposed
on the solutions, S, of the Hamilton–Jacobi equation (2.6). It is supposed that
the solutions (2.13), (2.14), obtained above, work for infinite time intervals.
This leads to the appearance of small denominators in the series (2.7), (2.14)
and (2.16).

Since in many problems we are interested with a behavior of dynamical
systems in finite time intervals it is natural to consider the Hamilton–Jacobi
equation as the Cauchy or the initial value problem. To our knowledge such
an approach has not been discussed systematically in the literature on per-
turbation theory2. The perturbation series for finite time intervals has been
reiterated in Abdullaev (2002) to construct symplectic mappings. These se-
ries do not diverge near resonant values of J as do the perturbation series for
infinite time intervals.
2 A short discussion of time-dependent perturbation theory has been given in the

textbook by Corben and Stehle (1974)
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2.3.1 Cauchy Problem

We consider the Hamilton–Jacobi equation (2.6) as a Cauchy problem, i.e.,
we seek its solutions with initial condition at time t = t0: S(ϑ, J, t = t0, t0) =
S0(ϑ0, J). We denote such a solution as S(ϑ, J, t, t0). It is convenient to set
S(ϑ, J, t = t0, t0) = 0. Similar to Lindstedt’s method the solution can be
sought using the expansion in series of powers of a small parameter ε (2.7):

S(J, ϑ, t, t0, ε) = S1(J, ϑ, t, t0) + εS2(J, ϑ, t, t0) + · · · . (2.33)

All terms Si in the expansion series (2.33) should satisfy the condition
Si(ϑ, J, t = t0, t0) = 0. The equation for S1 coincides with (2.10), and the
equations for Si (i ≥ 2) with (2.11), where Fi ≡ Fi(ϑ, J, t, t0) are polyno-
mial functions of derivatives ∂Sj/∂ϑ, (1 ≤ j < i) of lower order, generating
functions satisfying the above initial conditions.

2.3.2 Generation Functions

The equations for Si are first order partial differential equations and can
be solved by the method of characteristic equations. The left hand sides of
(2.10), (2.11) may be written as total time derivatives of Si ≡ Si(ϑ, J, t, t0)
taken along the unperturbed trajectory (ϑ(t), J(t)) of the Hamiltonian H0(J)
and satisfying the condition ϑ(t = t0) = ϑ0, i.e., ϑ(t) = ϑ0 + ω(J)(t − t0),
J(t) = const. The solution of (2.10) can be written as the integral

S1(ϑ, J, t, t0) = H1(J)(t− t0)

−
t∫

t0

H1(ϑ(t′), J, t′)dt′ = S1(ϑ, J, t) − S1(ϑ0, J, t0) , (2.34)

where integration is taken along the unperturbed trajectory ϑ(t′) = ϑ +
ω(J)(t − t′). In (2.34) the functions S1(ϑ, J, t) are defined by (2.13). Using
the latter it can be rewritten in the form of Fourier series

S1(ϑ, J, t, t0) = −(t− t0)
∑

m,n

c(xmn)Hmn(J)ei(m·ϑ−nΩt)

= −(t− t0)
∑

m,n

|Hmn(J)|
[
a(xmn) sin(m · ϑ− nΩt+ χmn)

+b(xmn) cos(m · ϑ− nΩt+ χmn)
]
, (2.35)

where Hmn(J) = |Hmn(J)| exp(iχmn), and c(x) = b(x)−ia(x) is the complex
function with real and imaginary parts:

a(x) =
1 − cosx

x
, b(x) =

sinx
x

. (2.36)
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Here the argument xmn of these functions is given by

xmn = [m · ω(J) − nΩ](t− t0) .

The function c(x) is localized near origin x = 0. Its real, a(x), and imaginary,
b(x), parts have values a(0) = 0, b(0) = 1 at x = 0 and decay for large values
|x| � 1 as shown in Fig. 2.1.
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Fig. 2.1. Oscillating functions a(x) (curve 2) and b(x) (curve 1)

The higher order generating functions Si (i ≥ 2) are determined by the
integrals

Si(ϑ, J, t, t0) = Hi(J)(t− t0) −
t∫

t0

Fi(ϑ(t′), J, t′, t0)dt′ , (i ≥ 2) . (2.37)

The determination of higher order generating functions Si(J, ϑ, t) (i ≥ 2)
using (2.37) is cumbersome, and requires rather complicated analytical cal-
culations. The second order generating function S2(J, ϑ, t, t0) has been calcu-
lated in Abdullaev (2002) (see Eq. (A.7) in Appendix A). Here we present S2

for the case when the perturbation Hamiltonian H1 contains only one (m,n)
term, i.e., H1 = Hmn(I) cos(m · ϑ− nΩt),

S2(ϑ, J, t, t0) = − (t− t0)3

4
∂2H0

∂J2
m2H2

mn(J)

×
{
B0(xmn) +A2(xmn) sin 2(m · ϑ− nΩt) +B2(xmn) cos 2(m · ϑ− nΩt)

}

− (t− t0)2

2
∂Hmn(J)

∂J
mHmn(J)
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×
{
D0(xmn)+C2(xmn) sin 2(m · ϑ− nΩt)+D2(xmn) cos 2(m · ϑ− nΩt)

}
,

(2.38)

where

B0(x) =
2
x2

(
1 − sinx

x

)
, D0(x) =

1
x

(
1 − sinx

x

)
, (2.39)

A2(x) =
1
x2

[
sin 2x+

1 − 4 cosx+ 3 cos 2x
2x

]
(2.40)

B2(x) =
1
x2

[
cos 2x+

4 sinx− 3 sin 2x
2x

]
, (2.41)

C2(x) =
1 − cosx

x2
cosx , D2(x) = −1 − cosx

x2
sinx , (2.42)

are oscillating functions of x. Similar to the functions a(x), b(x) (2.36) in
the first order generating function S1 the functions B0(x), D0(x), A2(x),
B2(x), C2(x) and D2(x) are localized near x = 0 and decay for large |x| �
1. They are obtained from the localized functions U(x, y), V (x, y), Y (x, y)
and W (x, y) of two variables (x, y) introduced in Abdullaev (2002) (see also
Appendix A) in the limits x → y and x → −y, namely A0(x) = V (x,−x),
D0(x) = W (x,−x) A2(x) = U(x, x), B2(x) = V (x, x), C2(x) = Y (x, x) and
D2(x) = W (x, x) and are plotted in Fig. 2.2. These functions have finite
values at x = 0, i.e., near the resonant action Jmn where according (2.17) to
the denominator, mω(J) − nΩ, vanishes.

2.3.3 Remarks

The main feature of the finite time perturbation series (2.33), (2.35), (2.38)
is absence of divergency due to small denominators unlike the behavior in
Lindstedt’s perturbation series (2.13), (2.14). They are defined at all values
of J including resonant values Jmn where the denominators m · ω(J) − nΩ
vanish. This is because of cancellation of singularities in the oscillating func-
tions a(xmn), b(xmn), B0(xmn), A2(xmn), B2(xmn), D0(xmn), C2(xmn) and
D2(xmn) (xmn = [m ·ω(J)−nΩ](t− t0)) with the finite values at (xmn = 0).

We analyze the perturbation series (2.33) in the resonant case m ·ω(J)−
nΩ = 0. As seen from (2.35) and (2.38), in this case the first and the second
order generating functions, εS1 and ε2S2, are of order of µ = ε(t − t0) and
µ = c1ε

2(t− t0)3 + c2ε
2(t− t0)2, respectively, where c1, c2 ∼ 1. Similarly, one

can expect that the higher order terms εkSk (k ≥ 3) are proportional to εk(t−
t0)kνck(J, xmn) (ν ≥ 1) with finite value coefficients ck(J, xmn) ∼ 1 at the
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Fig. 2.2. (a) Oscillating functions B0(x) (curve 1), A2(x) (curve 2) and B2(x)
(curve 3); (b) Functions D0(x) (curve 1), C2(x) (curve 2) and D2(x) (curve 3)

resonant frequencies, i.e., at xmn = 0. It means that near the resonant values
of J the actual expansion parameter in (2.33) the parameter, µ = ε(t− t0)ν ,
plays the role of small expansion parameter, rather than the perturbation
parameter ε. With increase in time T = t − t0 this parameter µ grows. One
can expect that for values of µ < µc, where µc is a certain critical value
of µ, the expansion series (2.33) converges. It may diverge for µ > µc. The
investigation of convergent properties of finite time perturbation series is
difficult problem, and far beyond the scope of the book.

One should also notice that near the resonant value Jmn the main con-
tribution to the perturbation series (2.33) at the given value of J comes only
from terms (m,n) for which |(m ·ω(J)−nΩ)(t− t0)| ≤ π. The contributions
from terms m,n with |(m ·ω(J)−nΩ)(t− t0)| ≥ π are usually small because
of the oscillatory behavior of the functions a(x), b(x).
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2.3.4 Time-Dependent Lie Transform Method

One can as well develop the time-dependent version of the Lie transforma-
tion method described in Sect. 2.2. For this one must impose initial con-
ditions for all quantities of this theory. Let T̂ (t, t0, ε) and W (ϑ, I, t, t0, ε)
be the time-dependent transformation operator T̂ and the Lie generating
function W , respectively. They must satisfy the following initial conditions:
T̂ (t = t0, t0, ε) = Ê, W (ϑ, I, t = t0, t0, ε) = 0. All coefficients Wi (i = 1, 2, · · ·)
of the expansion series in the powers of ε (2.27) obey the system of equations
(2.28), (2.29) with initial conditions Wi(ϑ, I, t = t0, t0) = 0. The solution
for the first order Lie generating function W1(ϑ, I, t, t0) coincides with the
first order generating function, S1(ϑ, J, t, t0), of mixed variables (2.35) if J
is replaced by I. The higher order Lie generating functions Wi (i ≥ 2) can
be found by integrating the right hand side of corresponding equations along
the unperturbed orbits (ϑ(t) = ϑ0 + ω(I)(t − t0), J = const.) similar to the
integration of higher order generating functions Si of mixed variables (2.37).

2.3.5 Example Duffing Oscillator

We illustrate the application of perturbation methods in finite time intervals
described above with the example of the Duffing equation

ẍ+ ω2
0x = ε(cosΩt+ x3) . (2.43)

Introducing the canonical variables (x, p ≡ ẋ), the equation (2.43) is reduced
to the Hamiltonian system (1.1) with Hamiltonian

H(x, p, t) =
p2

2
+
ω2

0

2
x2 − ε

(
x cosΩt+

x4

4

)
. (2.44)

In action-angle variables (I, ϑ),

x =
√

2I/ω0 sinϑ , p =
√

2Iω0 cosϑ , (2.45)

the Hamiltonian function (2.44) can be written in the form

H(I, ϑ, t) = H0(I, ε) + εH1(I, ϑ, t) , (2.46)

where

H0(I, ε) = ω0I , (2.47)

is unperturbed Hamiltonian, and
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H1(I, ϑ, t) = − 3I2

8ω2
0

− 1
2

√
I

ω0
[sin(ϑ−Ωt) + sin(ϑ+Ωt)]

+
I2

2ω2
0

[
cos 2ϑ− 1

4
cos 4ϑ

]
, (2.48)

is the perturbation Hamiltonian.
Using (2.48), the first order generating function, S1, determined by (2.35)

takes the form

S1(J, ϑ, t, t0) = −
t∫

t0

H1(J, ϑ(t′), t′)dt′

= (t− t0)
√

J

4ω0

∑

n=±1

[a(xn) cos(ϑ− nΩt) + b(xn) sin(ϑ− nΩt)]

−(t− t0)
J2

2ω2
0

∑

m=2,4

(
− 2
m

)m/2

[a(xm) sinmϑ+ b(xm) cosmϑ] , (2.49)

where xn = (ω0 − nΩ)(t − t0), xm = mω0, and the functions a(x), b(x) are
defined by (2.36). The first order correction H1 to the new Hamiltonian is
chosen equal to H1(J) = −3J2/8ω2

0 in order to avoid secular terms. The new
Hamiltonian is thus

H(J, ε) = ω0J − ε
3J2

8ω2
0

, (2.50)

and the perturbed frequency is

w(J, ε) =
∂H(J, ε)

∂J
= ω0

(
1 − ε

3J
4ω3

0

)
. (2.51)

Up to the first order of ε the time evolution of the new variables (ψ, J) is
given by

J = const ,

ψ(t) = ψ0 + w(J, ε)(t− t0) = ψ0 + ω0

(
1 − ε

3J
4ω3

0

)
(t− t0) . (2.52)

The old variables (ϑ, I) are then determined through the generating function
(2.49):

I(t) = J + ε
∂S1(ϑ(t), J, t, t0)

∂ϑ
, ϑ(t) = ψ(t) − ε

∂S1(ϑ(t), J, t, t0)
∂J

.(2.53)

At the same time (2.53), (2.52) describe the solutions of the Duffing equation
(2.43) in action - angle variables (ϑ, I) and the “real world variables” (x, p)
are given in terms of (ϑ, I) according to (2.45). One should note that the
angle variable ϑ is determined implicitly by (2.53).
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A similar perturbative solution can be obtained using the Lie generat-
ing function W1(J, ψ, t, t0) instead of the mixed variable generating function
S1(ϑ, J, t, t0):

I(t) = J + ε
∂W1(ψ, J, t, t0)

∂ψ
, ϑ(t) = ψ(t) − ε

∂W1(ψ, J, t, t0)
∂J

, (2.54)

where W1(ψ, J, t, t0) is determined by the expression similar to (2.49) where ϑ
is replaced by ψ. This equation explicitly determines the old variables (ϑ, J).

We have also integrated the Duffing equation (2.43) using the symplectic
integration scheme of Mc Lachlan & Atela McLachlan and Atela (1992) (see
Sect. 1.5), and compared it with the perturbative solutions (2.53), (2.52),
and (2.54) for the resonant (ω0 = Ω) and non-resonant (ω0 �= Ω) cases.
(The parameters were taken as ω0 = 1, ε = 0.01, Ω = 1 for the first case
and Ω = 1.5 for the second case. For the resonant case (ω0 = Ω =1) the
solutions obtained using three different methods are plotted in Fig. 2.3: curve
1 corresponds the solution (2.53), (2.52) through the generating function
S1(ϑ, J, t) of mixed variables (2.49), curve 2 describes the same solution but
through the Lie generating function W1(J, ψ, t), and curve 3 is obtained by
direct integration of the Duffing equation using the symplectic integration
scheme with the integration step in time ∆t = 2π/300.

In the case of non-resonant perturbation (ω0 �= Ω) both perturbation
solutions are close to the numerical solutions with the relative deviation δI ≡
|I− In|/I < 10−3 up to time intervals T = t− t0 ∼ 103/Ω. The deviation ∆I
increases linearly with T . However, the value of δI corresponding to the Lie
generating function W1 reaches the order of 1 at the time T ∼ 5 × 104/Ω,
while the magnitude of δI corresponding to the mixed variable generating
function S1 reaches the order of 1 δI ∼ 1 at the later time T ∼ 2 × 105/Ω.

2
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Fig. 2.3. Evolution of the action variable I(t) in the resonant case ω0 = Ω: curve
1 corresponds to transformation (2.53) with the mixed variable generating function
S1, curve 2 – to (2.54) with the Lie generating function W1, and curve 3 – with the
symplectic integration. Parameters are ε = 0.01, ω0 = Ω =1
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As seen from Fig. 2.3 in the resonant case (ω0 = Ω) the solutions obtained
by perturbation methods deviate from the one of obtained by the numerical
symplectic integration at much shorter times since the perturbation series
(2.7) diverges with increasing ε(t − t0). However, the perturbation method
with the mixed variable generating function S1 closely reproduces the real
solutions for longer time intervals than the one with the Lie generating func-
tion W1. As was noted above this is because the transformation (2.32) does
not conserve the important symplectic property of Hamiltonian systems.

Perturbation series in finite time intervals obtained in this section will be
used in Chap. 4 to construct symplectic mappings for Hamiltonian systems.

2.4 Method of Successive Transformations

In this section we shortly discuss the method of successive canonical transfor-
mations in the perturbation theory. This method called Kolmogorov’s tech-
nique has been used to prove the theorem concerning the stability of Hamil-
tonian systems to small perturbations known as Kolmogorov-Arnold-Moser
(KAM) theory (Kolmogorov (1954); Arnold (1963a); Moser (1962), see also
Arnold et al. (1988); Lichtenberg and Lieberman (1992) and Sect. 7.1). It is
based on successive canonical changes of variables in a perturbation Hamil-
tonian system and successively eliminates terms in the Hamiltonian of higher
orders in the perturbation parameter ε. This method is an extremely rapidly
convergent with increasing numbers of transformations of variables. Below we
describe the time-dependent version of this superconvergent method. We shall
use this method in Sect. 4.6 to obtain a superconvergent version of symplectic
mappings.

Consider the perturbation Hamiltonian system with Hamiltonian (2.3).
Perform a change of variables (ϑ, I) → (ψ1, J1) in the time interval [t0, t]
with generating function F1(ϑ, J1, t, t0, ε) = ϑJ1 + εS1(ϑ, J1, t, t0), i.e.,

I = J1 + ε
∂S1

∂ϑ
, ψ1 = ϑ+ ε

∂S1

∂J1
, (2.55)

which transforms the Hamiltonian H to H(1):

H(1)(ψ1, J1, t, t0, ε) = H(1)
0 (J1, ε) + ε2H(1)

1 (ψ1, J1, t, t0.ε) . (2.56)

Here

H(1)
0 (J1, ε) = H0(J) + εH1(J) ,

H(1)
1 (ψ1, J1, t, t0, ε) =

1
2
∂S1

∂ϑ
· ∂

2H0

∂J∂J
· ∂S1

∂ϑ
+
∂H1

∂J
· ∂S1

∂ϑ
+O(ε) . (2.57)

The generating function S1 is determined by (2.34), (2.35). The new
Hamiltonian (2.56) has a similar structure as (2.3) but it contains the phase
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ψ1 in the perturbed term ε2H(1)
1 with the perturbation parameter ε2. Apply-

ing a second change of variables (ψ1, J1) → (ψ2, J2) to the new system with
Hamiltonian (2.56) via the generating function

F1(ψ1, J2, t, t0, ε
2) = ψ1J2 + ε2S2(ψ1, J2, t, t0) ,

one transforms H(1) into H(2) = H(2)
0 + ε4H(2)

1 pushing the phase-dependent
perturbation terms to 4-th order in ε. After the m-th change of variables:
(ψm−1, Jm−1) → (ψm, Jm) the Hamiltonian becomes H(m) = H(m)

0 +ε2
mH(m)

1

with a phase-dependent term of order ε2
m

.
As was shown by Kolmogorov (1954) and Arnold (1963a) this procedure

converges quadratically, similar to Newton’s root-finding method (see, e.g.,
Lichtenberg and Lieberman (1992)). Such a quadratic convergence of pertur-
bation series is known as superconvergence.

One should note that the Lindstedt’s perturbation series converges lin-
early. After the transformation of variables with the generating function,
F = ϑJ + εS1 + · · · + εmSm, with the terms up to m− order in ε the phase-
dependent terms in Hamiltonian are retained in εm+1-th order, while in the
superconvergent procedure after the m-th successive transformation they are
only in ε2

m

-th order.
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Methods of perturbation theory in celestial mechanics developed in 19-th cen-
tury are thoroughly described in the treatise by Poincaré (1892–99). Modern
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(1989). Methods of perturbation theory based on the averaging principle in
general dynamical systems and their applications to nonlinear oscillatory sys-
tems are discussed in Bogolyubov and Mitropol’skij (1958); Andronov et al.
(1981); Nayfeh (1973); Wiggins (1990). Perturbation theory for Hamiltonian
systems based on the Lie transform formalism is described in a review pa-
per by Cary (1981) and in the books by Nayfeh (1973); Lichtenberg and
Lieberman (1992); Dragt (2000).



3 Mappings for Perturbed Systems

Poincaré (1892–99) introduced a powerful tool to study dynamical systems
by replacing continuous systems by discrete mappings. As was mentioned in
the preface mappings significantly simplify the study of systems, by reducing
the dimension of the system by one, visualizing the orbits on certain sec-
tions of phase space, and thus simplifying the formulation of many concepts
of dynamical systems. In this chapter we review the traditional methods to
construct symplectic maps for generic continuous Hamiltonian systems. We
consider the generic Hamiltonian system (2.2) with small time-periodic per-
turbations. We shall discuss the main difficulties to construct mappings from
Hamiltonian equations, and the shortcomings.

3.1 Poincaré Mappings

In this section we give a definition of mappings. A Poincaré surface-to-surface
map is defined as follows. In general, trajectories lie in a (2N + 1) dimen-
sional subspace of the extended (2N+2) dimensional phase space (q1, . . . , qN ,
p1, . . . , pN ,t,H). Consider a 2N dimensional cross-section Σ which transver-
sally crosses the trajectories as shown in Fig. 3.1. Let Pk be an intersection
point of the section by a trajectory. The map that associates the point Pk

with the next crossing point Pk+1 is a called Poincaré map:

Pk+1 = M̂Pk . (3.1)

It is a 2N dimensional map. This definition of Poincaré maps includes also
a stroboscopic map, as particular case. Suppose the Hamiltonian of a system
is a periodic function of time with period T = 2π/Ω. Let Σk be sections in
the (2N + 2) dimensional phase space at times t = tk = kT , (k = 1, 2, . . .),
with Pk the phase space coordinates of orbits in the section Σk. Then (3.1)
defines a stroboscopic map relating the coordinates (I, ϑ) at the time instant
tk = kT with the ones at tk+1 = (k + 1)T :

(Ik+1, ϑk+1) = M̂(Ik, θk) , (3.2)

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 39–51 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Pk
Pk+1

Σ

Fig. 3.1. Sketch of Poincare section and Poincaré map

where Ik = I(tk), ϑk = ϑ(tk) are I(t) = (I1(t), . . . , IN (t), ϑ(t) = (ϑ1(t), . . .,
ϑN (t)) at the time instants t = tk (k=0,±1,±2, · · ·)1.

The methods of construction of Poincaré or stroboscopic maps have
been subject of many studies. For general dynamical systems including non-
Hamiltonian systems such methods were discussed in Guckenheimer and
Holmes (1983); Wiggins (1990). Special methods have been also developed
for the construction of Poincaré maps for Duffing-type oscillators with fric-
tion by Eilenberger and Schmidt (1992); Schmidt and Eilenberger (1998).
For Hamiltonian systems Poincaré maps should be presented as symplectic
maps, i.e., should satisfy the volume-preserving condition (1.7):

∣∣∣∣
∂(Ik+1, ϑk+1)
∂(Ik, ϑk)

∣∣∣∣ = det





∂Ik+1

∂Ik

∂Ik+1

∂ϑk
∂ϑk+1

∂Ik

∂ϑk+1

∂ϑk



 = 1 . (3.3)

There exist two main groups of methods to construct generic Hamiltonian
maps. The first which can be called as intuitive method, is based on the a
priori assumption of a special symplectic form of map, and the unknown per-
turbation functions associated with these maps are found from the equations
of motion. The second widely used method which can be called method of
delta functions is based on the assumption that a time-periodic perturbation
acting on the integrable system can be replaced by periodic delta functions.
Then the integration of the equations of motion along the delta functions
gives a mapping.

Along with these generic symplectic maps there exist also many situa-
tions for which the maps can be constructed directly (exact or approximate)
using the physical contents of the system. The map describing Fermi acceler-
ation (Lichtenberg and Lieberman (1992); Zaslavsky (1985)) or ray maps in
a waveguide channel (Abdullaev (1993, 1994a)) are examples of such maps
(see Sects. 3.5, 13.1). In most cases these maps replace exactly a continuous
system by discrete system.
1 Furthermore a subscript k will be used for the iteration steps of map. It should

not be confused with a lower index number of components of I or ϑ.
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Below we present the main methods to construct generic symplectic map-
pings and discuss their difficulties and shortcomings.

3.2 Method of a priori Assumption

Below we present a method of constructing symplectic maps for generic
Hamiltonian systems of type (2.2), (2.3). The idea of this method has been
described in Lichtenberg and Lieberman (1992) for systems with two degrees
of freedom. This is type of mappings has been used in various problems of
plasma physics, dynamical astronomy, accelerator physics and others (see,
e.g., Wobig and Fowler (1988); Wobig and Pfirsch (2001), Hadjidemetriou
(1991, 1993, 1999); Šidlichovský (1997) Sándor et al. (2002) and references
therein).

We demonstrate the method by constructing a stroboscopic map M̂ (3.2)
for the Hamiltonian system (2.2), (2.3) satisfying the condition (3.3). In the
absence of perturbation (ε = 0) the unperturbed Hamiltonian H0(I1, . . . , IN )
describes nonlinear oscillations of the system with frequencies ωi(I1, . . . , IN )
(1.23). The map for this case has the form

Ik+1 = Ik , ϑk+1 = ϑk + ω(Ik+1)T . (3.4)

The phase plane of such a map is shown in Fig. 3.2.

q

p

 ϑk+1

 ϑk

Fig. 3.2. The twist map on the phase plane

Now one assumes that in the presence of a small perturbation the action,
I, and the angle, ϑ, variables acquire additional corrections proportional to
ε thus the map takes the following form (3.4) (see, e.g., Lichtenberg and
Lieberman (1992); Wobig and Fowler (1988); Wobig and Pfirsch (2001)):

Ik+1 = Ik + εf(ϑk, Ik+1) ,
ϑk+1 = ϑk + ω(Ik+1)T + εg(ϑk, Ik+1) , (3.5)
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where f(ϑk, Ik+1), g(ϑk, Ik+1) are perturbation functions. In order to make
the map symplectic according to (3.3) the functions f and g must satisfy the
condition ∂f/∂Ik+1+∂g/∂ϑk = 0, i.e., they should be determined by a single
generating function S(ϑk, Ik+1):

f(ϑk, Ik+1) =
∂S(ϑk, Ik+1)

∂ϑk
, g(ϑk, Ik+1) = −∂S(ϑk, Ik+1)

∂Ik+1
. (3.6)

The mapping (3.5) can be considered as a canonical transformation from
the “old” variables (ϑk, Ik) to the “new” variables (ϑk+1, Ik+1) given by the
generating function

F (ϑk, Ik+1) = ϑk · Ik+1 + TH0(Ik+1) + εS(ϑk, Ik+1) , (3.7)

and can be represented as the relation:

ϑk+1 =
∂F (ϑk, Ik+1)

∂Ik+1
, Ik =

∂F (ϑk, Ik+1)
∂ϑk

. (3.8)

The generating function S can be found from the perturbed equations
of motion. For small perturbation (ε � 1) one can insert the unperturbed
trajectory (I0(t) = Ik+1 const, ϑ0(t) = ϑk + ω(I)(t − tk)) on the right hand
side of the second equation (2.2) for the action I. Then integration gives the
following equation for the generating function S:

∂S(ϑ, Ik+1)
∂ϑk

=

tk+T∫

tk

∂H1

∂ϑ

(
ϑk + ω(Ik+1)(t− tk), Ik+1, t

)
dt . (3.9)

In (3.9) the integral is taken along unperturbed trajectories I0(t), ϑ0(t) over
one period of perturbation. Integration of (3.9) gives

S(ϑk, Ik+1) =
∫

dϑk






tk+T∫

tk

∂H1

∂ϑ

(
ϑk + ω(Ik+1)(t− tk), Ik+1, t

)
dt




 .

(3.10)
Particularly, for the perturbation Hamiltonian H1 in the Fourier expan-

sion form (2.15) this yields

∂H1

∂ϑ
= Re

∑

m,n

Hmnim exp(im · ϑ− inΩt) . (3.11)

Using (3.11), (3.10), we obtain

S(ϑk, Ik+1) = T
∑

m,n

|Hmn|
{
− a(xmn) sin(m · ϑk − nΩtk + χmn)

+b(xmn) cos(m · ϑk − nΩtk + χmn)
}
, (3.12)
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where the functions a(x) and b(x) are defined in (2.36), and xmn = [m ·
ω(Ik+1) − nΩ]T .

After Moser (1962, 1973) the symplectic map (3.5) is called the perturbed
twist map if the frequency ω(I) satisfies the so-called twist condition, i.e.,
dω(I)/dI �= 0 (see Sect. 7.1.1). Its geometry on the torus is shown in Fig. 3.3.

Pk

Pk+1

Fig. 3.3. Poincare map on the torus

Similar approach to construct symplectic mappings for autonomous Hamil-
tonian systems but based on the averaging procedure has been proposed by
Hadjidemetriou (1991) for the applications in dynamical astronomy (see, also
Sect. 13.3). The derivation of mappings similar to (3.5) for more general
dynamical systems, including also Hamiltonian systems were given also in
Wiggins (1990).

The described method of derivation of the symplectic maps has signifi-
cant shortcomings. First of all, it restricts the possible form of the map. For
instance, the following map in the symplectic form

Ik+1 = Ik + εf(ϑk+1, Ik) ,
ϑk+1 = ϑk + ω(Ik)T + εg(ϑk+1, Ik+1) , (3.13)

with perturbation functions

f(ϑk+1, Ik) =
∂S(ϑk+1, Ik)

∂ϑk+1
, g(ϑk+1, Ik) = −∂S(ϑk+1, Ik)

∂Ik
,

equivalently describes a system as perturbed twist map in the form (3.5). The
difference between the two symplectic forms (3.5), (3.6) and (3.13), (3.14) is
that the action variable Ik+1 in the map (3.5) is defined implicitly, while in
(3.13) the angle variable ϑk+1 is defined implicitly.

Secondly, it does not allow to obtain the higher order corrections in the
perturbation parameter ε and therefore to estimate the accuracy of replacing
the continuous system (1.1) by the map (3.5).
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3.3 Method of Delta Functions

The method described below is often used to obtain symplectic maps for
Hamiltonian system affected by time-periodic perturbations with broad spec-
trum (see, e.g., Chirikov (1979); Wisdom (1982); Zaslavsky (1985); Sagdeev
et al. (1988); Zaslavsky et al. (1991); Wisdom and Holman (1991); Mendonça
(1991)). The perturbation Hamiltonian of these systems can be presented in
the form

H1(I, ϑ, t) =
∑

m

M∑

n=−M

Hmn(I) cos(mϑ− nΩt+ χmn) , (3.14)

with a finite but large number of harmonics M � 1. Suppose that amplitudes
Hmn(I) and phases χmn(I) of harmonics Hmn(I) depend only weakly on
the index n. Then omitting index n from these quantities the perturbation
Hamiltonian can be rewritten as

H1(I, ϑ, t) ≈ Hc(I, ϑ)
M∑

n=−M

cos (nΩt) + Hs(I, ϑ)
M∑

n=−M

sin (nΩt) , (3.15)

where

Hc(I, ϑ) =
∑

m

Hm(I) cos(mϑ+ χm) ,

Hs(I, ϑ) =
∑

m

Hm(I) sin(mϑ+ χm) .

Extending summation over n to M → ∞ and using the Poisson summation
rules

∞∑

n=−∞
cos 2πnx =

∞∑

k=−∞
δ(x− k) ,

∞∑

n=−∞
sin 2πnx = 0 ,

one can replace the Hamiltonian (3.15) by the sum of delta functions:

H1(I, ϑ, t) = Hc(I, ϑ)
2π
Ω

∞∑

k=−∞
δ

(
t− k

2π
Ω

)
. (3.16)

Then the equations of the perturbed motion are reduced to

dϑ

dt
= ω(I) + εg(I, ϑ)

∞∑

k=−∞
δ(t− k2π/Ω) ,

dI

dt
= εf(I, ϑ)

∞∑

k=−∞
δ(t− k2π/Ω) , (3.17)
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where

g(I, ϑ) =
∂S(I, ϑ)

∂I
, f(I, ϑ) = −∂S(I, ϑ)

∂ϑ
, (3.18)

are perturbation functions given by the generating function

S(I, ϑ) =
2π
Ω

Hc(I, ϑ) =
2π
Ω

∑

m

Hm(I) cos(mϑ+ χm) . (3.19)

The intuitive justification of the replacement of continuous perturbation
functions (3.14) by series of delta functions is based on the averaging princi-
ple (Wisdom (1982); Wisdom and Holman (1991)): if high-frequency terms
do not contribute significantly to the evolution, then adding these terms also
does not affect the system significantly. However, one should note that such a
replacement of (3.14) by (3.16) introduces artificial singularities and discon-
tinuities to the system at periodic time instants tk = kT . The orbits I(t), ϑ(t)
are not defined at these times.

Integrating the equations (3.17) over one period from tk − 0 to tk − 0 +T
one obtains

ϑk+1 = ϑk + ω(Ik+1)T + ε

tk+0∫

tk−0

g(I, ϑ)δ(t− kT )dt ,

Ik+1 = Ik +

tk+0∫

tk−0

f(I, ϑ)δ(t− kT )dt , (3.20)

where ϑk ≡ ϑ(tk − 0), Ik ≡ I(tk − 0). In (3.20) the integrals over product
of delta function with discontinuous functions are not well-defined, and it is
not clear how to integrate them. In spite of these difficulties the difference
equations (3.20) are often simply reduced to the form of the perturbed twist
map (3.5) with the perturbation functions f and g defined in (3.18) (see, e.g.,
Sagdeev et al. (1988); Mendonça (1991); Abdullaev et al. (1998); da Silva et
al. (2001a,b, 2002a,b)).

Difficulties related with obtaining symplectic mappings from Hamiltonian
equations using the delta function formalism have been also discussed by
Šidlichovský (1997); Hadjidemetriou (1998) (see also references therein).
They have shown that using the formula

tk+0∫

tk−0

f(ϑ, I)δ(t− tk)dt =
1
2

[f(ϑk, Ik) + f(ϑk, Ik+1)] ,

one obtains the map
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Ik+1 = Ik +
ε

2
[f(ϑk, Ik, ) + f(ϑk, Ik+1)] ,

ϑk+1 = ϑk + ω(Ik+1)T +
ε

2
[g(ϑk, Ik) + g(ϑk, Ik+1)] . (3.21)

This mapping, however, is not symplectic, i.e. it does not satisfy the condition
(3.3).

Eberhard (1999) has proposed the symmetric form of mapping integrating
the equations of motion (3.17) from tk to tk+1 using the following formula
for the integration across delta function:

∫ tk±0

tk

f(ϑ, I)δ(t− tk)dt = ±1
2
f(ϑk, Ik) , (ε > 0) .

where ϑk ≡ ϑ(tk), Ik ≡ I(tk). It yielded the following symmetric form of the
map

Jk = Ik +
ε

2
f(ϑk, Ik) ,

Θk = ϑk +
ε

2
g(ϑk, Ik) ,

Θ̄k = Θk + ω(Jk)T ,

Ik+1 = Jk +
ε

2
f(ϑk+1, Ik+1) ,

ϑk+1 = Θ̄k +
ε

2
g(ϑk+1, Ik+1) . (3.22)

The symmetric mapping (3.22) has been compared with the numerical inte-
gration of the equations (3.17) replacing the delta functions by their contin-
uous representation δa(t) = exp(−t2/a2)/aπ1/2 (a → 0). It was found that
this mapping describes the continuous system more closely than the per-
turbed twist map (3.5) (see Sect. 10.5 for details). However, the mapping
(3.22) is not symplectic as well.

Only in the case when the function H1 does not depend on the action
variable, i.e., ∂H1/∂I = g(I, ϑ) ≡ 0, the angle ϑ becomes continuous along
time t the integration gives the map

ϑk+1 = ϑk + ω(Ik+1)T ,

Ik+1 = Ik + εf(ϑk) , (3.23)

which is known as a radial twist map.
One should note that in the map (3.23) the variable Ik is taken as

Ik = I(tk − 0). This should be kept in mind when one compares the original
continuous system with the perturbation (3.14) with the approximated one
(3.16). The trajectories ϑ(t), I(t) of the original system are continuous at any
time, while its replacement by (3.16) introduces discontinuities at the peri-
odic time instants t = tk where the variables (ϑk, Ik) in the map (3.2) should
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be defined. However, for the system (3.16) they are not defined at these times.
Therefore, one should not identify the variables in the map (3.23) with the
ones in the original system. The presented approach to construct symplectic
maps thus does not allow to find the relation between the variables of the
original system and the ones in the map (3.23).

The fact that the variables in the original equations (2.2) and the ones in
the mappings are not identical was noticed in Wisdom et al. (1996). In order
to relate these variables, so-called symplectic correctors were introduced by
means of a Lie formalism.

3.4 The Standard Map

The simplest example of the mapping (3.23), with the perturbation function
εf(ϑ) = (K/2π) sinϑ, is known as the standard map (or the Chirikov-Taylor
map) (see Chirikov (1979), Lichtenberg and Lieberman (1992)):

Ik+1 = Ik +
K

2π
sinϑk , ϑk+1 = ϑk + 2πIk+1 . (3.24)

The parameter K plays role of perturbation strength. It has been extensively
studied during the past two decades as one of the basic models in chaos
theory. It has been widely used in many physical problems, for instance,
to study particle-wave interaction, magnetic field line dynamics in magnetic
confinement devices (see Sect. 10.4 and MacKay and Meiss (1987); Rechester
et al. (1979); Benisti and Escande (1998); Balescu (2000a,b)). The standard
map (3.24) is often assumed to be derived from the standard Hamiltonian

H =
I2

2
+

K

4π2

M∑

n=−M

cos(ϑ− nt+ χn) , (3.25)

when the number of harmonics M → ∞ and the phases χn = 0, identifying
the variables (ϑk, Ik) of the map with the variables (ϑ(tk), I(tk)) of the con-
tinuous system (3.25) (see, for instance Chirikov (1979); Benisti and Escande
(1998)). As will be shown in Sect. 4.3.2, the numerical integration of the sys-
tem with Hamiltonian (3.25) with a large but finite mode number M gives a
result which is significantly different from the one obtained by the standard
map (3.24).

This is related with the fact that the Hamiltonian (3.25) acquires singu-
larities at times t = tk when M → ∞, and the variables I are not defined
at these times. The variables (ϑk, Ik) in the standard map (3.24) are taken
just before the instants t = tk, i.e., (ϑk, Ik) = (ϑ(tk − 0), I(tk − 0)), i.e., the
variables of the mapping do not coincide with the variables of the continuous
Hamiltonian (3.25) taken at t = tk.

In principle, the standard map can be obtained as well by integrating
the Hamiltonian equations (3.17) with the perturbation function εf(ϑ) =
(K/2π) sinϑ in the interval tk + 0, tk + 0 + T . It gives
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θk+1 = θk + 2πIk , Ik+1 = Ik +
K

2π
sin θk+1 , (3.26)

where Ik = I(t = 2πk+0). Both forms of the map (3.24), (3.26) equivalently
represent the standard Hamiltonian in the limit M → ∞.

From the physical point of view one can expect that the mappings (3.24),
(3.26) should closely describe the Hamiltonian system (3.25) for large finite
mode number M . As will be shown in Sect. 4.3.2 (see also Fig. 4.4) the
standard map (3.24), however, does not reproduce Poincaré sections of the
system (3.25).

One can also try to construct the standard map in the form of the per-
turbed twist map (3.5) for the standard Hamiltonian (3.25) using the method
described in Sect. 3.2. Suppose that the perturbation parameter ε = K/4π2 is
small. The unperturbed part of Hamiltonian (3.25) is H0(I) = I2/2 and the
frequency of motion is ω(I) = dH0(I)/dI = I. We apply the formula (3.12)
for the generating function S(ϑk, Ik+1) using the perturbed part of Hamil-
tonian (3.25) with Hmn = 1, Ω = 1, and χmn = 0, and the time instants
tk = kT = 2πk, (k = 0, 1, 2, . . .). Then the generating function S(ϑk, Ik+1)
takes the form

S(ϑ, J) = Ss(J) sinϑ+ Sc(J) cosϑ , (3.27)

where

Ss(J) = −
M∑

n=−M

1 − cos 2πJ
J − n

, Sc(J) =
M∑

n=−M

sin 2πJ
J − n

. (3.28)

Extending the summation in (3.28) to M → ∞ and using the formula

∞∑

n=−∞

1
J − n

=
π

tanπJ
,

we obtain

Ss(J) = −π sin 2πJ , Sc(J) = 2π cos2 πJ .

Thus, the perturbed twist map for the standard Hamiltonian (3.25) takes the
form

Ik+1 = Ik − K

2π

(
− sin(2πIk+1)

2
cosϑk + cos2(πIk+1) sinϑk

)
,

ϑk+1 = ϑk + 2πIk+1 −
K

2
(cos(2πIk+1) sinϑk + sin(2πIk+1) cosϑk) .

(3.29)

Therefore the standard map (3.24) cannot be obtained in the form of the
perturbed twist map (3.5) for the standard Hamiltonian (3.25). We will also
discuss this problem in the next chapter (see Sect. 4.3.2).
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3.5 Exact Mappings of Hamiltonian Systems

For some specific models of physical systems one can reduce the dynam-
ics to exact mappings. One of the representative examples of such systems
was a model proposed by Fermi to describe the acceleration of cosmic rays
by momentum transfer from moving magnetic fields (Fermi (1949)). Ulam
and associates considered a model consisting of a ball bouncing between two
walls, one of them is fixed, and another one is oscillating. Later, different ver-
sions of the model were examined by Zaslavsky and Chirikov (1965); Brahic
(1971); Lieberman and Lichtenberg (1972); Lichtenberg et al. (1980) (see,
also Zaslavsky (1985); Lichtenberg and Lieberman (1992)). Ray propagation
problems in inhomogeneous media is another area where dynamical equa-
tions can be exactly replaced by mappings (Abdullaev and Zaslavsky (1988);
Abdullaev (1993)). This problem will be discussed in Sect. 13.1.

In this section we describe the Fermi acceleration mapping following Licht-
enberg and Lieberman (1992). The geometry of the model is shown in Fig. 3.4.
A particle bounces between a fixed and an oscillating wall. The fixed wall is
at x = 0 and the oscillating wall at xw(t) = a+ bf(t), where a is the average
distance between the walls, b is the amplitude of oscillations, and f(t) is a
periodic function with the period T = 2π/Ω: f(t) = f(t + 2π/Ω). Let tk
be the time of the k-th collision of particle with the fixed wall x = 0, vk be
the velocity after this collision. The particle collides with the moving wall
at times tc determined by tc = tk + xw(tc)/vk. At collision the particle ve-
locity changes to vk+1 = vk − 2dxw/dt|t=tc

and it reaches the fixed wall at
the moment tk+1 = tc + xw(tc)/vk+1. Introducing the phases ϑk = Ωtk and
ψc = Ωtc, and the normalized velocity uk = vk/bΩ, the exact equations of
motion can be represented in the form of a mapping (ϑk, uk) → (ϑk+1, uk+1):

x=0

xw(t)2b

a

Fig. 3.4. Particle bouncing between the fixed x = 0 and the oscillating xw(t) walls
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ψc = ϑk +
a/b− F (ψc)/2

uk
,

uk+1 = uk + F ′(ψc) ,

ϑk+1 = ψc +
a/b− F (ψc)/2

uk+1
, (3.30)

where F (ψ) = −2f(ψ/Ω), and F ′(ψ) ≡ dF (ψ)/dψ. The mapping (3.30)
is written in symmetric form with respect to the variables (ϑs, us), unlike
the one given in Lichtenberg and Lieberman (1992). The phase ψc in the first
equation of (3.30) is defined implicitly. The phase ϑ is the variable conjugated
to the energy E = u2. By direct computation one can show that the Jacobian

∣∣∣∣
∂(Ek+1, ϑk+1)
∂(Ek, ϑk)

∣∣∣∣ = 1 .

The study of this map and its different simplified forms can be found in
Lichtenberg and Lieberman (1992).

3.6 Difficulties in Constructing Mappings

We shall recall the main shortcomings of the two main methods to construct
symplectic mappings for generic continuous Hamiltonian systems. In the first
method it is a priori assumed that the corresponding map has the symplec-
tic form (3.5). However, this form of the map is not the only possible one.
Another symplectic form (3.13) of the map may equivalently represent a con-
tinuous system. The perturbation functions f(ϑ, I), g(ϑ, I) or the generating
function S(ϑ, I) associated with mappings are found from the continuous
equations of motion assuming smallness of the perturbation parameter ε.
Such a method is not rigorous, and it neither allows to find the higher or-
der corrections to the generating function nor to estimate the accuracy of
replacement of the continuous system by the discrete map.

The method of delta functions is usually applied to Hamiltonian systems
affected by perturbations with a broad spectrum. It is based on direct replace-
ment of the perturbation by delta functions periodic in time. This procedure
introduces singularities into system at periodic time instances. Moreover, the
variables of this system with delta functions are not identical to the corre-
sponding variables of the original system. On the other hand, the integration
across delta functions is defined only when the perturbation Hamiltonian
H1 depends only on the angle variables ϑ. For more general perturbation
functions H1(ϑ, I) the integration across the delta functions is not defined
at all. Therefore, the derivation of symplectic maps (3.5) by the method of
delta functions, as done in some publications (see, e.g., Mendonça (1991);
Abdullaev et al. (1998); da Silva et al. (2001a,b, 2002a,b)) is not rigorously
justified.
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Another disadvantage of both methods is that the corresponding maps
determine the system’s phase space coordinates only at the discrete times
tk = kT (k = 0,±1,±2, . . .). They cannot recover the system’s positions
at arbitrary times t between the discrete times tk. Moreover, the symplectic
maps in the form (3.5) and (3.24) are not invariant with respect to the formal
transformation k ↔ k + 1 which is equivalent to the transformation t → −t,
H ↔ −H under which the continuous Hamiltonian system remains invariant.
In the next chapter we develop rigorous methods to construct symplectic
maps which does not have these shortcomings and difficulties.



4 Method of Canonical Transformation
for Constructing Mappings

In this chapter we present the rigorous and systematic method to construct
symplectic maps (3.2), particularly, Poincaré maps for generic Hamiltonian
systems affected by perturbations. The method is based on the Hamilton–
Jacobi method for integrating Hamiltonian equations and Jacobi’s theorem
recalled in Sect. 1.2.2. As we have seen there the idea of the Hamilton–Jacobi
method consists of finding such a canonical change of variables which reduces
a Hamiltonian function to a form that Hamiltonian equations are easy to in-
tegrate. The canonical transformation of variables is given by a generation
function satisfying to the Hamilton–Jacobi partial differential equation. If we
succeed to find a complete integral, i.e., the solutions of this equation depend-
ing N independent constants of motion, then according to Jacobi’s theorem
the dynamics of system is completely determined by the generating func-
tion F (q, P, t). It means that the time evolution of system (q(t), p(t)) can be
found through its initial position (q(t0), p(t0)) by the forward, (q(t0), p(t0)) →
(Q(t0), P (t0)), and the backward, (Q(t), P (t)) → (q(t), p(t)), canonical trans-
formations (1.20) given by the generating function F (q, P, t) taken at the time
instants t0 and t, respectively. The evolution of new variables (Q,P ) between
these time instants is trivial and given by (1.18).

This idea can be also applied to generic perturbed Hamiltonian systems of
type (2.2), (2.3) which may not possess N integrals of motion, and the system
can be non-integrable (see Sect. 7.1). For these systems the complete integral
of the Hamilton–Jacobi equation may not exist. The Jacobi’s theorem can
be also applied to these systems, supposing that there exist approximate N
integrals of motion in the interval between initial, t0, and final, t, times. Then
the evolution of system in an each time interval is determined by Jacobi’s
theorem. By matching the orbits in neighboring time – intervals one can
establish a long-term evolution of system. Such a procedure replaces the
canonical equations of motion by symplectic Hamiltonian maps. Below we
describe such a procedure of canonical change of variables which reduces
continuous Hamiltonian systems to discrete Hamiltonian maps. Generating
functions F of canonical transformation in perturbed Hamiltonian systems
can be found using a perturbation series in finite time intervals (Sect. 2.3).

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 53–81 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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4.1 Canonical Transformation and Mapping

We consider generic Hamiltonian problem described by the system of canoni-
cal equations (2.2), (2.3) namely the fully integrable system with Hamiltonian
H0(I) subjected to the time-periodic perturbation εH1(ϑ, I, t). Our task is to
construct the mapping (3.2) connecting the variables ϑk = ϑ(tk), Ik = I(tk)
at the sequence of periodic time instants tk (k = 0,±1,±2, . . .). The mapping
should be area-preserving (symplectic) (3.3).

In order to construct such a map we consider the system in a time in-
terval tk < t < tk+1, and transform the variables (ϑ, I) to new ones (ψ, J),
which eliminates the phases ϑ in the Hamiltonian H in this time interval.
This transformation will be implemented by the time-dependent generating
function F = F (ϑ, J, t, t0, ε) = ϑ · J + εS(ϑ, J, t, t0, ε) of mixed variables sat-
isfying the initial condition S(ϑ, J, t, t0, ε)|t=t0 = 0 at the time t = t0 located
in the interval tk < t0 < tk+1. The relation between the old (ϑ, I) and the
new (ψ, J) variables is given by (2.4). A new Hamiltonian H is H(J, ε) and
therefore

ψ(t) = ψk + w(J, ε)(t− tk) , J = Jk = const , (4.1)

where time t is in the interval tk < t < tk+1, and w(J, ε) = dH(J, ε)/dJ is a
new frequency. The generating function S(ϑ, J, t, t0) of such a transformation
satisfies the Hamilton–Jacobi equation (2.6).

For the unperturbed system (ε = 0) the generating function F = ϑJ
describes the identical transformation, i.e., ϑ = ψ, I = J , H0(J, ε) = H0(I),
w(J, ε) = ω(I), and the map (3.2) is described by

Ik+1 = Ik , ϑk+1 = ϑk + ω(Ik)(tk+1 − tk) . (4.2)

Consider the effect of non-zero perturbations (ε �= 0). Suppose that in
the time interval tk < t < tk+1 there exits N constants of motion Jk =
(J1, . . . , JN ). Then according to the Jacobi’s theorem the equations of motion
are described as

I =
∂F

∂ϑ
= J + ε

∂S(ϑ, J, t, t0, ε)
∂ϑ

,

ψ =
∂F

∂J
= ϑ+ ε

∂S(ϑ, J, t, t0, ε)
∂J

, (4.3)

where J and ψ are determined by equations (4.1) in the time interval tk ≤
t ≤ tk+1.

From (4.3) follows that the coordinates (ϑ(t), I(t)) of trajectory at any
moment of time t (tk ≤ t ≤ tk+1) with the initial coordinates (ϑk, Ik) at the
time instant t = tk may be found by the two successive canonical transforma-
tions: the first one transforms the original variables (ϑk, Ik) to the new ones
(ψk, Jk), and the second one transforms (ψ(t), Jk) back to the old variables
(ϑ, I) at the time instant t:
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Ik =
∂F (ϑk, Jk, tk, t0; ε)

∂ϑk
, ψk =

∂F (ϑk, Jk, tk, t0, ε)
∂Jk

, (4.4)

I(t) =
∂F (ϑ(t), Jk, t, t0, ε)

∂ϑ(t)
, ψ(t) =

∂F (ϑ(t), Jk, t, t0, ε)
∂Jk

. (4.5)

Using (4.1) and the ansatz F = ϑJ + εS, the map (ϑk, Ik) → (ϑk+1, Ik+1)
(3.2) can be presented in the following symplectic form

Jk = Ik − ε
∂Sk

∂ϑk
, ψk = ϑk + ε

∂Sk

∂Jk
, (4.6)

ψ̄k = ψk + w(Jk, ε)(tk+1 − tk) , (4.7)

Ik+1 = Jk + ε
∂Sk+1

∂ϑk+1
, ϑk+1 = ψ̄k − ε

∂Sk+1

∂Jk
, (4.8)

where Sk ≡ S(ϑk, Jk, tk, t0, ε), Sk+1 ≡ S(ϑk+1, Jk, tk+1, t0, ε).
The symplectic forms (4.4), (4.5) or (4.6)–(4.8) of the mapping (3.2) are

general, and they are independent of assumptions of smallness of perturbation
parameter ε.

The presented method to construct symplectic maps allows to recover the
system’s position at arbitrary time instant t between discrete times tk, unlike
the standard methods described in the chapter 3. Indeed, according to (4.5)
the orbit ϑ(t), I(t) at the moment t located in the interval tk < t < tk+1 can
be found by replacing the last two equations (4.7) - (4.8) in the mapping by

ψ(t) = ψk + w(Jk, ε)(t− tk) ,

I(t) = Jk + ε
∂S(t)
∂ϑ(t)

, ϑ(t) = ψ(t) − ε
∂S(t)
∂Jk

,

where S(t) ≡ S(ϑ(t), Jk, t, t0, ε).

4.1.1 Nonsymmetric Forms of Maps

The generating function S associated with symplectic maps depends of
the initial time t0. By appropriate choosing this parameter in the interval
[tk, tk+1] one can obtain different forms of mapping. If t0 = tk+1 then the
generating function S is identical to zero at the time instant t = tk+1, i.e.,
S(ϑk+1, Ik+1, tk+1, tk+1, ε) ≡ 0. Then the map (4.6) - (4.8) takes the form
similar to the one of the perturbed twist map (3.5):
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Ik+1 = Ik − ε
∂S(ϑk, Ik+1)

∂ϑk
,

ϑk+1 = ϑk + w(Ik+1, ε)(tk+1 − tk) + ε
∂S(ϑk, Ik+1)

∂Ik+1
, (4.9)

where S(ϑk, Ik+1) ≡ S(ϑk, Ik+1, tk, tk+1, ε).
Similarly, taking t0 = tk one can obtain the alternative form the perturbed

twist map:

Ik+1 = Ik + ε
∂S(ϑk+1, Ik)

∂ϑk+1
,

ϑk+1 = ϑk + w(Ik, ε)(tk+1 − tk) − ε
∂S(ϑk+1, Ik)

∂Ik
, (4.10)

where S(ϑk+1, Ik) ≡ S(ϑk+1, Ik, tk+1, tk, ε).
These two alternative forms of mappings are similar to the forms (3.5)

and (3.13) described in the previous section. However, the latter are only the
approximate maps. They can be obtained from (4.9), (4.10) by replacing the
frequency of perturbed system w(I, ε) by unperturbed one ω(I), and taking
the first term in expansion series of the generating function S in powers of
the perturbation parameter ε.

The orbits (ϑ(t), I(t)) at arbitrary time t, tk < t < tk+1, can be also
found by the mapping of form similar to the perturbed twist map (4.10). It
is easy to show the corresponding map is determined by

I(t) = Ik + ε
∂S(ϑ(t), Ik)

∂ϑ(t)
,

ϑ(t) = ϑk + w(Ik, ε)(t− tk) − ε
∂S(ϑ(t), Ik)

∂Ik
, (4.11)

where S(ϑ(t), I) ≡ S(ϑ(t), Ik, t, tk, ε).
The two forms (4.9), (4.10) of the perturbed twist map separately are not

invariant with respect to the backward – forward transformations (k ↔ k+1).
However, under this transformation the map (4.9) is transformed into (4.10),
and vise-versa, if the generating function S(ϑk+1, Ik) = −S(ϑk, Ik+1). As we
will see later this condition is satisfied.

4.1.2 Symmetric Map

If the initial time t0 is located exactly in the middle of the interval, i.e.,
t0 = (tk+tk+1)/2, we call the symplectic map (4.6)- (4.8) as a symmetric map.
This map is invariant with respect to the change of time sequences k ↔ k+1.
The backward map (ϑk+1, Ik+1) → (ϑk, Ik) may be obtained from the forward
map (3.2) by simple reversing sequences of canonical transformation. As will
see later the accuracy of the symmetric map is higher than the perturbed
twist maps (4.9), (4.10).
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The stroboscopic maps (or Poincaré maps) (3.1) can be obtained from the
above maps by putting the map time step τ = tk+1 − tk equal to the period
of perturbation τ = 2π/Ω.

4.1.3 The Generating Function of Mappings

Now we turn to the main task in construction of the symplectic maps, a
determination of the generating function S. As was mentioned above that
we should look for the solution S(ϑ, J, t, t0) of the Hamilton–Jacobi equation
(2.6) in the interval [tk, tk+1] satisfying the initial condition S = 0 at the
initial time t = t0, tk < t0 < tk+1. The natural approach to this problem
would be the time-dependent perturbation theory developed in Sect. 2.3.

Suppose for a moment that the perturbation parameter ε is small. The
generating function S(ϑ, J, t, t0, ε) is sought as the expansion series in powers
of ε (2.33). For the generic Hamiltonian system (2.2), (2.3) the expansion
terms Si (i = 1, 2, . . .) satisfy the (2.10), (2.11). The solutions of these equa-
tions Si(ϑ, J, t, t0) satisfying the initial conditions Si = 0 at t = t0 are deter-
mined by integrals (2.34), (2.37). Particularly, for the perturbed Hamiltonian
H1 in a Fourier expansion form (2.15) the first two terms S1 and S2 are given
by (2.35) and (A.7).

In the first order of ε the mapping (4.6)–(4.8) takes the following form

Jk = Ik − ε
∂S1(ϑk, Jk, tk, t0)

∂ϑk
,

ψk = ϑk + ε
∂S1(ϑk, Jk, tk, t0)

∂Jk
, (4.12)

ψ̄k = ψk + ω(Jk)(tk+1 − tk) , (4.13)

Ik+1 = Jk + ε
∂S1(ϑk+1, Jk, tk+1, t0)

∂ϑk+1
,

ϑk+1 = ψk+1 − ε
∂S1(ϑk+1, Jk, tk+1, t0)

∂Jk
, (4.14)

where S1(ϑ, J, t, t0) is determined by (2.35).
Particularly if the parameter t0 lies in the middle of the interval [tk, tk+1],

i.e., t0 = (tk + tk+1)/2.0 we have the symmetric form of the map. Taking
t0 = tk+1 we obtain the nonsymmetric form

Ik+1 = Ik − ε
∂S(ϑk, Ik+1)

∂ϑk
,

ϑk+1 = ϑk + ω(Ik+1)(tk+1 − tk) + ε
∂S(ϑk, Ik+1)

∂Ik+1
, (4.15)
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with the generating function

S(ϑ, I) ≡ S1(ϑ, J, tk, tk+1) = (tk+1 − tk)
∑

m,n

|Hmn(J)|

×
[
− a(xmn) sin(m · ϑ− nΩt+ χmn)

+b(xmn) cos(m · ϑ− nΩt+ χmn)
]
, (4.16)

where the argument xmn of the functions a(x) and b(x) is given by

xmn = [m · ω(I) − nΩ](tk+1 − tk) .

The mapping (4.15) coincides with the mapping defined by (3.5), (3.6), (3.12)
when the time step ∆t = tk+1 − tk equal to the period of perturbation
T = 2π/Ω.

We should recall the main features the expansion series (2.33), (2.34),
(2.37), (2.35), (A.7) mentioned in Sect. 2.3. The main contribution to each
Si (i = 1, 2, . . .) comes at values of action J near the resonant frequencies
(ω(J), Ω) (m · ω(J) − nΩ = 0). At these resonant values of J the actual
expansion parameter in the series (2.33) is not the perturbation parameter ε
itself but its combination with the time interval (t−t0), i.e., µ = ε(t−t0)ν with
a some exponent ν > 1. As will be shown in Sect. 4.2.1 that µ = ε(t − t0)2

for a simple Hamiltonian problem, the motion of particle in the field of a
wave. Such a nature of expansion allows one to apply the perturbation theory
for generating functions S(ϑ, J, t, t0, ε) not only for the small values of the
perturbation parameter ε, but also for its large values by taking the time
step of mapping τ = tk+1 − tk which keeps the product µ = ε(t− t0)ν to be
small.

4.2 Accuracy of Maps

The small parameter µ for generating functions in mappings equals to µ =
ε(tk − t0)ν . At the fixed perturbation parameter ε the parameter µ takes
a minimal value µ = ε(τ/2)ν for the symmetric map (4.6)–(4.8) with t0 =
(tk + tk+1)/2, while for the perturbed twist map µ has a maximal value
µ = ετν . Therefore, the accuracy of the symmetric map is much higher than
one of the perturbed twist maps (4.9), (4.10). Errors due to truncation of the
power series of generating function (2.7) in µ are smaller for the symmetric
map than for the perturbed twist map. As will be shown in the next sections
that the symmetric map describes Hamiltonian systems much more accurate
than the perturbed twist map.

One should note that from the computational point view the symplectic
mappings (4.6)–(4.8) are implicit. The variable Jk in the first set of equations
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(4.6) and ϑk+1 in the second set of equations (4.8) are defined implicitly, and
they should be found by solving corresponding algebraic equations. For this
purpose one can use Newton’s method (or the Newton–Raphson method)
which has a high rate of quadratic convergency (Press et al. (1992), see also
Sect. 2.4). As an initial value in an iterative procedure one can take

J
(0)
k = Ik − ε

∂S
(0)
k

∂ϑk
, S

(0)
k ≡ S(ϑk, Ik, tk, t0, ε) ,

in the first equation of (4.6), and

ϑ
(0)
k+1 = ψk+1 − ε

∂S
(0)
k+1

∂Jk
, S

(0)
k+1 ≡ S(ψk+1, Jk, tk+1, t0, ε) ,

in the second equation of (4.8). The differences |Jk − J
(0)
k | and |ϑk+1 −ϑ

(0)
k+1|

have an order of µ2 = ε2(t− t0)2 � 1.
In Appendix F we have presented the program for the numerical im-

plementation of the mapping (4.6)–(4.8) for the generic 1+1/2-degrees-of-
freedom Hamiltonian systems. As an example of application of this program
we also give a sample program for plotting Poincaré sections for a specific
Hamiltonian system. The program is written in C–language and it can be
easily run in personal computers with the Lunix operating system.

4.2.1 Particles in a Single-Frequency Wave Field

In order to study the accuracy of maps we consider a simple, completely
integrable Hamiltonian system, namely, the motion of a particle in a single-
frequency wave field studied in Sect. 1.4. The particle motion is described by
the equation of motion (1.39). We consider the wave-field with the amplitude
eEk as a perturbation acting on free moving particle. Introducing angle–
action variables for the free motion of particle, i.e., ϑ = kx, I = kẋ, the
equation of motion can be written in Hamiltonian form with the Hamiltonian

H(ϑ, I, t) =
I2

2
− ε cos(ϑ−Ωt) , (4.17)

where the perturbation parameter ε = ekEk/m. In a coordinate system run-
ning with a phase velocity of the wave, i.e., q = ϑ−Ωt, p = I−Ω, it describes
the pendulum with the frequency of small amplitude oscillations ω0 =

√
ε.

The corresponding Hamiltonian function H0(q, p) = H(q+Ωt, I−Ω, t) is the
constant of motion (see (1.41)). For −ω2

0 ≤ H ≤ ω2
0 the motion is trapped

and trajectory is oscillating near elliptic fixed points. The frequency of these
nonlinear oscillations ω(H) is determined by (1.45).

We will apply mappings to study the Hamiltonian system (4.17). The
unperturbed Hamiltonian H0(I) = I2/2 determines the free motion of
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particle with the frequency (or velocity) ω(I) = dH0(I)/dI = I: ϑ =
ϑ0 + ω(I)(t− t0), I = const.

The first and second order generating functions. According to (2.10), and
(2.35) the first order generating function is

S1(ϑ, J, t) = (t− t0)
[
a(x) sin(ϑ−Ωt) + b(x) cos(ϑ−Ωt)

]
, (4.18)

where a(x) and b(x) are oscillating functions (2.36), and x = (J −Ω)(t− t0).
The second order term S2(ϑ, I, t) is determined by (2.38). Putting m = 1

and n = 1 we obtain

S2(J, ϑ, t) = − (t− t0)3

4

×
[
B0(x) +A2(x) sin(2ϑ− 2Ωt) +B2(x) cos(2ϑ− 2Ωt)

]
, (4.19)

where the localized functions B0(x), A2(x) B2(x) are defined by (2.39), (2.40)
and (2.41).

The map (4.6)–(4.8) for the Hamiltonian system (4.17) may be rewrit-
ten in normalized variables (x, y), x = ϑ − Ωt, y = (J − Ω)(t − t0).
Using (4.18), (4.19) the generating function S for the corresponding map
(xk, yk) → (xk+1, yk+1) may be reduced to

Yk = yk − µ
∂S̄k

∂xk
, Xk = xk + µ

∂S̄k

∂Yk
, (4.20)

Xk+1 = Xk + [w(J, ε) −Ω](tk+1 − tk) , (4.21)

yk+1 = Yk + µ
∂S̄k+1

∂Yk+1
, xk+1 = Xk+1 − µ

∂S̄k+1

∂xk
, (4.22)

with the generating function Sk ≡ S(xk, Yk, tk, µ), and

µS(x, Y, t, µ) = ε(t− t0)S(x, Y, t) ,

S(x, Y, t, µ) = S1(x, Y, t) + µS2(x, Y, t) +O(µ2) , (4.23)

where

S1(x, Y, t) = a(Y ) sinx+ b(Y ) cosx ,

S2(x, Y, t) = −1
4

[B0(Y ) +A2(Y ) sin 2x+B2(Y ) cos 2x] .

Here µ = ε(t − t0)2 is the expansion parameter. As was mentioned in
Sect. 4.1.1 for the symmetric map the expansion parameter µ = ετ2/4. For
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the perturbed twist map the corresponding expansion parameter is larger,
i.e., µ = ετ2.

Existence of such a dependence of the expansion parameter µ on the
perturbation parameter ε and the map step τ allows one to consider also
a relatively large perturbations ε ∼ 1. In these cases one can still use the
first (or up to second) order term in the expansion series by choosing such
a time step τ that keeps the parameter µ to be small. For instance, in the
above example, the parameter µ is not changed if the perturbation ε is in-
creased in two order while the time step τ is decreased only in one order. This
does not increase the computational times proportional to the perturbation
parameter ε.

Comparison of the symmetric map and the perturbed twist map We have
compared the two forms of the map: the symmetric map (4.6)–(4.8) and
the perturbed twist map (4.9). The several trajectories of the system in the
phase plane (ϑ, I) obtained by the symmetric map and the perturbed twist
map (4.9) are presented in Fig. 4.1 using the first order generating function
S1(ϑ, J, t, t0). The value of ε is taken equal to 0.03, and the map step τ is
2π. The initial conditions of trajectories were (ϑ0, I0) = (0, 0.03), (0, 0.2),
(0, 0.33), (0,±0.35) and (0,±0.45). Solid curves describe the exact trajec-
tories of the pendulum, dotted curves and dashed curves correspond to the
symmetric map and the perturbed twist map, respectively. As can see from
Figure the symmetric map much more closely describes the trajectories than
the perturbed twist map. The phase space curves obtained by the symmetric
map are symmetric with respect to the axes I = 0 and ϑ = π similar to the
exact trajectories, while trajectories of the perturbed twist map are slightly
asymmetric.
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Fig. 4.1. Several orbits of the Hamiltonian system (4.17) in the (ϑ, I)-plane ob-
tained by the symmetric map (dotted curves) and the perturbed twist map (dashed
curves). Solid curves describe the exact orbits. Parameters are ε = 0.03, Ω = 0
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4.2.2 Accuracy of the Symmetric Map

The accuracy of the symmetric map is studied on two examples: for the com-
pletely integrable Hamiltonian system (4.17) and for the standard Hamil-
tonian (3.25). In the first case the map solutions are compared with exact
solutions. We also integrated these model Hamiltonian systems by one of
the most accurate symplectic integration methods, namely the fifth –order
explicit Runge–Kutta method described in Section 1.5.

First consider the integrable system (4.17). We have considered the two
cases, time-independent (Ω = 0) and time-dependent (Ω = 1) perturbations.
The amplitude ε is taken equal to ε = ω2

0 = 0.01. We have taken a set of
initial conditions (ϑ = 0, I = Ii), (Ω ≤ Ii ≤ Ω + Is) for trapped orbits
and integrated the system up to t = 4π × 104 by the symmetric map and
by the symplectic integrator of McLachlan & Atela (further we abbreviate
it SI). (Here Is = 2ω0 is the value of amplitude I at the separatrix). The
root-mean-square energy error ‖ H −H0 ‖2, defined as

‖ H −H0 ‖2
2=

1
N

N∑

k=1

(
H(ϑk, Ik, tk) −H0

)2

,

is calculated over all instants time tk = 2πk (k = 1, . . . , N = 2 × 104). They
are shown in Fig. 4.2 as a function of the oscillation amplitude Ii: a) describes
the time-independent case Ω = 0, and b) the time-dependent case Ω = 1.
The map step is τ = π, and the integration step of the SI is ∆t = π/100.
Curve 1 corresponds to the SI, and curves 2, 3 describe the map results. The
curve 2 corresponds to the map with the first order generating function S1

(4.18), and curve 3 corresponds the case when the second order generating
function S2 (4.19) is also included, i.e., S = S1 + εS2.

As can see from Fig. 4.2, the energy errors of the SI in the time-
independent case on several orders smaller than for the map. However, in the
time-dependent case accuracy of the SI is significantly deteriorated whereas
the accuracy of mapping has not been changed. Moreover, the energy errors
of the SI become on two order higher than for maps. Inclusion of the second
order of the generating function S2 improves the accuracy of the map more
than on two or three orders. Particularly, it reduces the energy error by a
factor of 167 at the value of (I −Ω)/Is = 0.5. At this value of I the ratio of
energy errors of the SI, the map with the first order generating function and
with the second order generating function is 832:167:1 for the time-dependent
case (Ω = 1). Therefore, the accuracy of the map at the fixed time-step τ does
not depend on the frequency Ω, while the accuracy of the SI significantly de-
pends on Ω and it deteriorates with increase of Ω at the fixed integration
step ∆t.

For the non-integrable standard Hamiltonian system (3.25) the accuracy
of the map was also tested by integrating the system forward in time up to
a certain time instant tmax then reversing it back in time to the initial time
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Fig. 4.2. Relative root-mean-square energy errors ‖ H −H0 ‖2 /Hs (Hs = ω2
0) for

the system (4.17) as a function of oscillation amplitude I. Parameter ε = ω2
0 = 0.01:

(a) perturbation frequency Ω = 0, (b) Ω = 1. Curve 1 corresponds to the SI with
the integration step ∆t = π/100. The map step is τ = π. Curve 2 corresponds to the
map with the first order generating function S1 (4.18), and curve 3 − S = S1 + εS2

(4.19)

instant t0. We checked how close the orbit comes back to the initial point. The
accuracy significantly depends on whether the orbit is regular, or chaotic. For
this test we have integrated the Hamiltonian system (3.25) with the initial
coordinate (I0, ϑ0) from the time instant t = 0 up to t = tmax and reversed
it back in time. Let If (t) and Ib(t) be the component of the forward orbit
and the backward orbit, respectively. The difference of these components
|If (t) − Ib(t)| are plotted in Fig. 4.3 as a function of tmax − t: a) describes
the case of a regular orbit with the initial coordinates (I0 = 2, ϑ0 = 0.6π); b)
corresponds to the chaotic orbit with (I0 = 2, ϑ0 = 0.02π).

In both Figures curve 1 describes the results of the SI with the integration
step ∆t = 2π/4000, and curve 2 is obtained by the map with the time step
τ = 2π. One can see from Fig. 4.3a that the accuracy of the map reversibility
for the regular orbit is much more higher than one of the SI even with very
small integration steps: for tmax = 2π × 103 the regular orbit is reversed
back to the initial point with accuracy less than 10−10 while for the SI the
accuracy is of order of 10−2. The error is growing linearly with time.

From Fig. 4.3b it follows that the accuracy of the map is also much higher
for chaotic orbits than one of the SI. However, due to exponential growth of
round – up operation errors the time tmax for the reversing back of a chaotic
orbit to the initial point with the accuracy 10−10 is less than tmax ≈ 2π×50.
The reversibility of a chaotic orbit by the SI is much worser. The much
higher reversibility of the map is mainly due to its symmetric from (4.6)–
(4.8) which is invariant with respect to the map reversing transformation
k ↔ k + 1, H → −H. The latter property of the symmetric map expresses
the invariance of Hamiltonian equations (1.1) with respect to the formal time
reversing transformation t → −t, H → −H.
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Fig. 4.3. Accuracy of time-reversing for the SI (curve 1) and the symmetric map
(curve 2). (a) for the regular orbit; (b) for the chaotic orbit. Initial coordinates of
the regular orbit is (I0 = 2, ϑ0 = 0.6π), and chaotic orbit (I0 = 2, ϑ0 = 0.02π).
The integration step of the SI is ∆t = 2π/4000, the map time-step τ = 2π, tmax =
2π × 103. The parameters are K = 1.5, M = 10

Therefore, for the exact integrable system we have shown that the sym-
metric map with the large time steps τ of order of perturbation period 2π/Ω,
(τ ∼ 2π/Ω) can achieve the higher order accuracy of calculations as the sym-
plectic integration methods with the two order smaller integration steps ∆t
than τ . However, the symplectic method requires at least one order shorter
computational times than the symplectic integrator. The more detailed study
of mapping accuracy can be found in Abdullaev (2002).

A proposed method to construct symplectic maps for generic Hamiltonian
systems can be considered as a new alternative method of symplectic inte-
gration. It has several advantages over the standard symplectic integration
methods, especially in the cases of highly oscillatory systems. For instant,
the latter can be hardly applied to integrate the standard Hamiltonian sys-
tem (3.25) with a finite, but large number of harmonics M since it becomes
highly oscillatory. One needs to take very small integration steps ∆t in order
to get results with sufficient accuracy. The most convenient way to integrate
such systems is to apply the symmetric maps (4.6)–(4.8). The maps with a
time step of order of perturbation period have a sufficiently high accuracy.
Moreover, for the fixed time step the accuracy of mapping does not depend
on perturbation frequency (see Abdullaev (2002) for more details).

4.3 Mappings for Hamiltonian Systems
with a Broad Perturbation Spectrum

Consider specific Hamiltonian systems for which symplectic mappings can be
significantly simplified. In practical applications one encounters Hamiltonian
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systems subjected to perturbation with a broad spectrum. These systems can
be described by the Hamiltonian in the form

H(ϑ, I, t) = H0(I) + εH1(ϑ, I, t) ,

H1(ϑ, I, t) = V (ϑ, I)
M∑

n=−M

cos(nΩt) , (4.24)

which contains a large number M � 1 uniformly distributed harmonics in
n. The dependence of perturbation on angular and action variables, (ϑ, I), is
described by V (ϑ, I) which is a 2π-periodic function of angular variable ϑ. It
can be also presented as a Fourier series

V (ϑ, I) =
∑

m

|Hm(I)| cos(mϑ+ χm) = Re
∑

m

Hm(I)eimϑ , (4.25)

where Hm(I) = |Hm(I)| exp(iχm).
The method of delta functions to construct maps for these systems and its

difficulties were discussed in Sect. 3.3. A mathematically correct and phys-
ically reasonable approach to construct symplectic maps for these systems
would consist of two steps: first, to obtain a map for the finite mode number
M and then to consider the limit M → ∞. Such a method would avoid the
uncertainty in integration along periodic delta functions discussed above.

Presenting the perturbation Hamiltonian H1 in the form

H1(ϑ, I, t) = εRe

{
∑

m

M∑

n=−M

Hm(I)ei(mϑ−nΩt)

}
, (4.26)

the first order generating function S1 given by (2.35) for the Hamiltonian
(4.24) can be written as

S1(ϑ, J, t, t0) = Re
∑

m

iHm(J)eimϑ

×
M∑

n=−M

exp(−inΩt)
mω(J) − nΩ

(
1 − e−i(mω(J)−nΩ)(t−t0)

)

= Re
∑

m

iHm(J)eimϑ

(
M∑

n=−M

e−inΩt

mω(J) − nΩ

−e−imω(J)(t−t0)
M∑

n=−M

e−inΩt0

mω(J) − nΩ

)
, (4.27)

where ω(I) = dH0(I)/dI is the frequency of motion. Consider the asymp-
totics of S1(ϑ, J, t) at the limit of large mode numbers M � 1. We use the
formulas
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∞∑

n=−∞

einΩt

a− n
=

πei[t]a

sinπa
,

∞∑

n=−∞

1
a− n

=
π

tanπa
,

where [t] = t − (2k + 1)π/Ω and 2πk/Ω < t < 2π(k + 1)/Ω, (k =
0,±1,±2, . . .). For any arbitrary time-instants t, t0 in the interval 2πk/Ω <
t, t0 < 2π(k + 1)/Ω we have

S1(ϑ, J, t, t0) = Re
∑

m

iHm(J)eimϑ π

Ω sin(πω(J)/Ω)
(
e−i[t]mω(J)/Ω − e−imω(J)(t−t0)e−i[t0]mω(J)/Ω

)
+O(M−1) = O(M−1) ,

i.e., the generating function S1(J, ϑ, t) vanish with large M � 1 (we suppose
that the frequency |ω(J)| is finite, |ω(J)| � M) as

S1(ϑ, J, t, t0) ∼ O(M−1) . (4.28)

However, at the time instants t = tk = 2πk/Ω ± 0 (or [t] = ∓π/Ω) and t0
in the interval 2πk/Ω < t0 < 2π(k+ 1)/Ω the generating function S1(J, ϑ, t)
has the finite asymptotical value for M � 1, i.e.,

S1(ϑ, J, t = 2πk ± 0, t0) = Re
∑

m

iHm(J)eimϑ π

Ω sin(πω(J)/Ω)
(
cos(πω(J)/Ω) − e±imπω(J)/Ω

)
+O(M−1)

= ± π

Ω
Re
∑

m

Hm(J)eimϑ +O(M−1) ,

or

S1(ϑ, J, t = 2πk ± 0, t0) = ± π

Ω
V (ϑ, J)

= ± π

Ω

∑

m

|Hm(J)| cos(mϑ+ χm) . (4.29)

According to (2.37) the higher order generating functions Si(ϑ, J, t) are given
by

Si(ϑ, J, t, t0) = −
t∫

t0

Fi(ϑ(t′), J, t′)dt′ . (4.30)

The second order generating functions S2 vanishes at the limit M → ∞ at all
time-instants t because of the property (4.28) and the definition of the func-
tion F2 (2.12). Similarly, the higher-order generating functions Si(ϑ, J, t),
(i > 2) vanish also, because the polynomial functions Fi of derivatives
∂S1/∂ϑ, . . . , ∂Si−1/∂ϑ on the right-hand side of equations (2.11) vanish at
the limit M → ∞. Therefore, the generating function S(ϑ, J, t) is determined
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only by the first order generating function S1(ϑ, J, t) for arbitrary values of
the perturbation parameter ε. The corrections to the perturbed frequency
w(J, ε) are also vanish at the limit M → ∞, i.e., w(J, ε) = ω(J). Thus the
symmetric map (4.6)–(4.8) can be presented in the form

Jk = Ik − ε
∂S(ϑk, Jk)

∂ϑk
, ψk = ϑk + ε

∂S(ϑk, Jk)
∂Jk

, (4.31)

ψ̄k = ψk + 2π
ω(Jk)
Ω

, (4.32)

Ik+1 = Jk − ε
∂S(ϑk+1, Jk)

∂ϑk+1
, ϑk+1 = ψ̄k + ε

∂S(ϑk+1, Jk)
∂Jk

, (4.33)

where the generating function is determined by

S(ϑ, J) =
π

Ω
V (ϑ, J) =

π

Ω

∑

m

|Hm(J)| cos(mϑ+ χm) . (4.34)

The time step τ of the map (4.31)–(4.33) is equal to the period of perturbation
2π/Ω.

In a case when the perturbation harmonics, Hm(J), does not depend on
the action variable J the mapping (4.31)–(4.33) is further simplified. Indeed,
this case S(ϑ, J) = S(ϑ) and the map is reduced to

Jk = Ik − ε
∂S(ϑk)
∂ϑk

,

ϑk+1 = ϑk + 2π
ω(Jk)
Ω

, (4.35)

Ik+1 = Jk − ε
∂S(ϑk+1)
∂ϑk+1

.

This map can be called a symmetric radial twist map. The radial twist map
of type (3.23) can be obtained from (4.35) for the mapping (ϑk, Jk−1) →
(ϑk+1, Jk), i.e.,

Jk = Js−1 − 2ε
∂S(ϑk)
∂ϑk

, ϑk+1 = ϑk + 2π
ω(Jk)
Ω

. (4.36)

Therefore, the action variable I in the radial twist map (3.23) does not co-
incide with the original action variable in a continuous Hamiltonian system.
In other words, the variables (ϑ, J) are not canonical. The mapping for the
original canonical variables (ϑ, I) has a symmetric from (4.35).
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4.3.1 Non-Symmetric Forms of Maps

For the Hamiltonian system (4.24) one can also construct maps in non-
symmetric forms (4.9), (4.10). However, the generating functions of these
maps have more complicated dependence on perturbation harmonics, Hm(J),
and the frequency ω(J).

To be more specific we construct the map of the form (4.9) by putting
t = tk + 0 = 2πs/Ω + 0 and t0 = tk+1 − 0 = 2π(s+ 1)/Ω − 0 in (4.27). Then
at the limit M → ∞ the generating function S1 is reduced to

S(ϑ, J) ≡ S1(ϑ, J, tk + 0, tk+1 − 0)

=
π

Ω
Re
∑

m

iHm(J)eimϑ 1 − ei2πmω(J)/Ω

tan(πmω(J)/Ω)

=
2π
Ω

∑

m

|Hm(J)|
[
− 1

2
sin
(

2πmω(J)
Ω

)
sin(mϑ+ χm)

+ cos2
(
πmω(J)

Ω

)
cos(mϑ+ χm)

]
. (4.37)

The higher order corrections Si (i ≥ 2) vanish at the limit M → ∞. Thus
the mapping (4.9) takes the form

Ik+1 = Ik − ε
∂S(ϑk, Ik+1)

∂ϑk
,

ϑk+1 = ϑk + 2π
ω(Ik+1)

Ω
+ ε

∂S(ϑk, Ik+1)
∂Ik+1

. (4.38)

Therefore, one cannot obtain the perturbed twist map in the form (3.5)
determined by the generating function depending only on the perturbation
harmonics, Hm(I), similar to the one (4.29). The generating function (4.37)
depends on the action variable I not only through the radial dependence of
the harmonics, Hm(I), but also because of the dependence of the frequency
ω(I) on I.

The approximate nonsymmetric mappings of type (4.9) can be also ob-
tained from the symmetric mapping (4.31)–(4.33) for the intermediate vari-
ables (ψ̄, J), i.e.,

(ψ̄k, Jk) → (ψ̄k+1, Jk+1) , (4.39)

for the small values of the perturbation parameter ε. Indeed, using (4.31)–
(4.33) the mapping for these variables can be written as

Jk+1 = Jk − ε

2
∂

∂ϑk
[S(ϑk+1, Jk+1) + S(ϑk+1, Jk)] ,

ψ̄k+1 = ψ̄k + 2π
ω(Jk+1)

Ω
+

ε

2

[
∂S(ϑk+1, Jk+1)

∂Jk+1
+
∂S(ϑk+1, Jk)

∂Jk

]
. (4.40)
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According to (4.31), (4.33) for small values of ε we have

S(ϑk+1, Jk+1) = S

(
ψ̄k + ε

∂S(ϑk+1, Jk)
∂Jk

, Jk+1

)

≈ S(ψ̄k, Jk+1) +O(ε) ,

S(ϑk+1, Jk) = S

(
ψ̄k + ε

∂S(ϑk+1, Jk)
∂Jk

,

Jk+1 +
ε

2
∂

∂ϑk
[S(ϑk+1, Jk+1) + S(ϑk+1, Jk)]

)
≈ S(ψ̄k, Jk+1) +O(ε) .

Using these approximations and neglecting in (4.39) the small terms of order
of εn, n ≥ 2, the mapping (4.39) can be written in the non-symmetric form
(4.9) with the generating function S(ψ̄k, Jk+1) given by equation (4.34).

4.3.2 Standard Hamiltonian and Corresponding Mappings

In the case H0(I) = I2/2, ε = K/4π2, Hm(I) = δm1 and Ω = 1 the Hamil-
tonian (4.24) coincides with the standard Hamiltonian (3.25) discussed in
Sect. 3.4. According to (4.34) the generating function of the standard Hamil-
tonian is equal to S(ϑ) = π cosϑ and the corresponding map takes the form

Jk = Ik +
K

4π
sinϑk ,

ϑk+1 = ϑk + 2πω(Jk) , (4.41)

Ik+1 = Jk +
K

4π
sinϑk+1 .

We will call this map as a symmetric standard map. It is valid for arbitrary
value of perturbation parameter K. It has been first obtained in Abdullaev
(1999) for small values of K, and for the arbitrary values of K in Abdullaev
(2002).

The standard map of non-symmetric forms (3.24) and (3.26) may be ob-
tained from the symmetric radial map (4.41) for the variables (Jk, ϑk), i.e.,

Jk = Jk−1 +
K

2π
sinϑk , ϑk+1 = ϑk + 2πJk , (4.42)

for the mapping (ϑk, Jk−1) → (ϑk+1, Jk) or

ϑk+1 = ϑk + 2πJk, Jk+1 = Jk +
K

2π
sinϑk+1 , (4.43)

for the mapping (ϑk, Jk) → (ϑk+1, Jk+1). One can see from these mappings
that the action variable J in the standard map does not coincide with the
action variable I in the standard Hamiltonian (3.25). Therefore, the variables
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(ϑ, J) in the standard mapping are not canonical. One should note that the
canonical mapping for the standard Hamiltonian can be obtained in the non-
symmetric form (4.38), (4.37). It gives the mapping (3.29) given in Sect. 3.4.

Poincaré sections, the sequence of phase space coordinates (Ik, ϑk), of the
symmetric standard map (4.41), and the standard maps (4.42), (4.43), and
the non-symmetric mapping (3.29) are shown in Fig. 4.4 for the perturbation
parameter K = 0.7. The symmetric standard map (4.41) very well reproduces
Poincaré section obtained by the integration of the standard Hamiltonian
system (3.25) and by the symmetric map (4.6)–(4.8) with the generating
function (4.27) with a finite number M (see Abdullaev (2002)). The non-
symmetric map (3.29) also reproduces these results, but with less accuracy
(Fig. 4.4d): the width of the stochastic layer (a dark area) is smaller than in
the case of the symmetric map, and the invariant curves are slightly deformed.

For K ≥ 1 the system exhibits unrestricted chaotic motion along the
action variable I. We have compared the second moments of displacement
σ2(t) = 〈(I(t)−〈I)2〉 of such a motion obtained by three different methods: by
the symmetric map (4.6)–(4.8) with the generating function S (4.27) taking a

Fig. 4.4. Poincaré sections for the standard Hamiltonian in the (ϑ, I)-plane ob-
tained by (a) the symmetric standard map (4.41), (b) the standard map (4.42),
(c) the standard map (4.43), (d) the map (3.29). Parameter K = 0.7



4.4 Mappings with Lie Generating Functions 71

finite number of harmonics M = 20, by the symmetric standard map (4.41),
and by the standard map (4.42). The initial stage of evolution of σ2(t) are
plotted in Fig. 4.5 for the perturbation parameter K = 2. As seen from
Fig. 4.5 the symmetric standard map closely describes the system with a
finite M (curves 1 and 2), while the standard map predicts a noisy behavior
(dotted curve 3).
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Fig. 4.5. Second moment of displacement σ2(t) obtained by three different meth-
ods: solid curve 1 corresponds to the symmetric map (4.6)–(4.8) for the standard
Hamiltonian (3.25) with M = 20, dashed curve 2 − to the symmetric standard map
(4.41), and dotted curve 3 − to the standard map (4.42). Parameter K = 2.0

In summary, the Hamiltonian system (2.2), (2.3), (4.24) with a broad
perturbation spectrum, M � 1 and arbitrary perturbation parameter, ε,
can be replaced by the symmetric mapping (4.31)–(4.33) with the generating
function (4.34) or by the non-symmetric mapping (4.38) with the generating
function (4.37). The mappings in non-symmetric forms of type (4.9) with
the simple form (4.34) can be obtained only approximately for the small
perturbation parameter, ε � 1, in terms of the intermediate variables that
are not identical to the original variables of the Hamiltonian system. The
differences between the original variables and the intermediate variables are
of the order of the perturbation parameter.

4.4 Mappings with Lie Generating Functions

Symplectic mappings can be also constructed using the time-dependent Lie
transform method (see Sect. 2.3.4). In this case a map is determined by the
time-dependent forward and inverse Lie transformation operators, T̂ (t, t0)
and T̂−1(t, t0):

(ϑk+1, Ik+1) = T̂−1(tk+1, t0)T̂0(tk+1, tk)T̂ (tk, t0)(ϑk, Ik) ,
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where T̂0(tk+1, tk) stands for the evolution of transformed Hamiltonian sys-
tem with H(J, ε) in the time interval (tk, tk+1). Taking into account the first
order terms of perturbation series for the transformation operator T̂ the map
can be presented in the form similar to the symplectic maps (4.6)–(4.8) in
which the generating function of mixed variables S(ϑ, J, t, t0) is replaced by
the first order Lie generating function W1(J, ψ, t, t0):

Jk = Ik − ε
∂W1(ϑk, Ik, tk, t0)

∂ϑk
,

ψk = ϑk + ε
∂W1(ϑk, Ik, tk, t0)

∂Ik
. (4.44)

ψk+1 = ψk + w(Jk, ε)(tk+1 − tk) , (4.45)

Ik+1 = Jk + ε
∂W1(ψk+1, Jk, tk+1, t0)

∂ψk+1
,

ϑk+1 = ψk+1 − ε
∂W1(ψk+1, Jk, tk+1, t0)

∂Jk
. (4.46)

where W1(ψ, J, t, t0) is determined by the formula (2.34) for S1(ϑ, J, t, t0) re-
placing the variable ϑ by ψ. The main advantage of the maps (4.44)–(4.46)
is that the transformation of variables are determined explicitly, unlike the
mapping (4.6)–(4.8) with implicitly determined variables. It allows to inte-
grate Hamiltonian system very fast.

However, mappings with the Lie generating functions have a serious short-
coming since they are not area–preserving. They cannot be used to study long
term evolution of Hamiltonian systems, especially in non-integrable cases. As
was shown in Sect. 2.3.5 in the example of the Duffing oscillator that the
transformations with the Lie generating functions describes well the evolu-
tion of system in non-resonant cases over sufficiently long time intervals, but
it fails in the resonant case.

Consider, as an example, the application of maps with the Lie generating
function to the Duffing oscillator (2.43). The first order generating function
S1 is determined by (2.49). The Lie generating function W1 is equal to S1 with
replacement of ϑ by ψ. The phase space of the oscillator in the (x, p)-plane
obtained by the symmetric map is shown in Fig. 4.6 for the non-resonant
(a) and resonant (b) perturbations. The time-step of maps is τ = 2π/Ω, the
frequency ω0 = 1. The perturbation parameter ε is taken equal to 0.01 for
the non-resonant case with the frequency of external perturbation Ω = 1.5,
and ε = 0.001 for the resonant case Ω = ω0 = 1.5.
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Fig. 4.6. Poincaré sections of the Duffing oscillator in the (x, p)-plane obtained by
the symmetric map (4.6)–(4.8). (a) Non-resonant case Ω = 1.5, the perturbation
parameter ε = 0.01; (b) Resonant case: Ω = 1, the perturbation parameter ε =
0.001. Parameter ω0 = 1

We have calculated a deviation of action variable I obtained by the maps
from the one calculated by the direct integration of the Duffing equation
(2.43), i.e., ∆I(t) = |Imap − Ieqn|. The time – dependence of ∆I(t) for the
non-resonant case is plotted in Fig. 4.7 for the orbit with the initial value of
I = 0.145. As can see that the relative deviation for the map with the mixed
variable generating function does not grow, and it does not exceed a level
5×10−3. However, for the map with the Lie generating function ∆J(t) grows
with time and it reaches the relative level 0.02 at the time t = 2π × 103.

In the resonant case Ω = ω0 the relative deviation ∆(t)/I0 for the map
with the Lie generating function becomes of order of 1 at very short time
t ∼ 200π, for the map with the mixed variable generating function it reaches
the level of 10% after very long time t = 2π × 104.

Therefore, the maps with the Lie generating function can be used to
description of short term evolution of nonresonant orbits, while maps with
mixed variable generating functions are useful to study the long-term evolu-
tion of system under resonant perturbations.

4.5 Poincaré Maps at Arbitrary Sections
of Phase-Space

The described method of canonical transformations to obtain symplectic
maps along time can be also applied to obtain Poincaré map at the arbitrary
section of phase space. Here we construct Poincaré maps for Hamiltonian
systems in action-angle variables.

To be specific we consider the section Σ of phase space where the angle
variable ϑ1 is fixed (by module 2π). Since the condition ϑ̇1 = ∂H/∂I1 =
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Fig. 4.7. Time-dependence of deviation of the action variable ∆I(t) = |Imap(t) −
Ieqn(t)| obtained by the mappings from the one obtained the direct integration of
the Duffing equation in the non-resonant case. Curve 1 corresponds to the symmet-
ric map, curve 2 − to the map with the Lie generating function. Parameters are
ε = 0.01, Ω = 1.5, ω0 = 1

ω1(I) > 0 is always satisfied one can formulate Hamiltonian equations with
the angle ϑ1 as an independent “time” -variable (see Sect. 1.1.3). We in-
troduce notations ϑ̄ = (ϑ2, · · · , ϑN ), Ī = (I2, · · · , IN ). The corresponding
Hamiltonian function K ≡ K(t, ϑ̄, pt, Ī , ϑ1) = −I1 can be obtained by invert-
ing the original Hamiltonian H(ϑ, I, t) with respect to the action variable I1.
The time t and the energy h = −H are conjugated canonical variables. The
Hamiltonian equations of motion in these variables are

dt

dϑ1
=

∂K

∂h
,

dh

dϑ1
= −∂K

∂t
, (4.47)

dϑi

dϑ1
=

∂K

∂Ii
,

dIi

dϑ1
= −∂K

∂ϑi
, (i = 2, . . . , N) . (4.48)

Suppose that the original Hamiltonian H is presented in the form (2.3).
Since the perturbation parameter ε is small then the Hamiltonian K can be
always written as an expansion series in powers of ε:

K = K0(h, Ī) + εK1(t, ϑ̄, h, Ī, ϑ1) + ε2K2(t, ϑ̄, h, Ī, ϑ1) + · · · , (4.49)

where K0 is the unperturbed Hamiltonian obtained from the original unper-
turbed Hamiltonian H0(I), and Ki (i = 1, 2, . . .) are the perturbed parts of
Hamiltonian. The relation between the new Hamiltonian Ki and the original
Hamiltonian H0, H1 can be found by expansion

K = −I1(H0 + εH1) = −I1(H0) − εH1
∂I1
∂H

− ε2H2
1

∂2I1
∂H2

+ · · · . (4.50)
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Comparing the presentation (4.49) and the expansion (4.50) we obtain

K0(h, Ī) = −I1(H0),

K1(t, ϑ̄, h, Ī, ϑ1) = −εH1
∂I1
∂H

,

K2(t, ϑ̄, h, Ī, ϑ1) = −ε2H2
1

∂2I1
∂H2

, · · · . (4.51)

The functions Ki (i = 1, 2, . . .) are the periodic functions of the “time” vari-
able ϑ1 with the period 2π, and they can be presented by Fourier expansions

Ki(t, ϑ̄, h, Ī, ϑ1) =
∑

m

K(i)
m (h, Ī)eim·ϑ−inΩt . (4.52)

The unperturbed frequencies of the system (ε = 0) (4.47), (4.48), (4.49)
are

νt(h, Ī) =
∂K0

∂h
=

∂I1
∂H

∂H0

∂H
=

1
ω1

,

νi(h, Ī) =
∂K0

∂Ii
= − ∂I1

∂H0

∂H

∂Ii
=

ωi

ω1
, i = 2, . . . , N , (4.53)

where ωi = ωi(I) = ∂H0/∂Ii, (i = 1, . . . , N) are frequencies of the original
unperturbed Hamiltonian system with H0(I).

Poincaré map at the section Σ (ϑ1(mod 2π)= const. ) can be constructed
similar to the time-step map (3.2). The time instants tk should be replaced
by ϑk = 2πk+ const. (Furthermore we will omit the subscript “1” in the
notation of the angle variable ϑ1, and set const=0). Let (tk, ϑ̄k, hk, Īk) be the
k-th crossing point of the orbit (t(ϑ), ϑ̄(ϑ), h(ϑ), Ī(ϑ)) with the section Σ.

Using a procedure described in Sect. 4.1 one can construct a return
(Poincaré) map to the section Σ, i.e.,

(tk+1, ϑ̄k+1, hk+1, Īk+1) = M̂(tk, ϑ̄k, hk, Īk) . (4.54)

The corresponding map is similar to (4.6)–(4.8), it has the form

J̄k = Īk − ε
∂Sk

∂ϑ̄k
, ψ̄k = ϑ̄k + ε

∂Sk

∂J̄k
,

ψ̄k+1 = ψ̄k +∆ϑw̄(H, J̄ , ε) , (4.55)

Īk+1 = J̄k + ε
∂Sk+1

∂ϑ̄k+1
, ϑ̄k+1 = ψ̄k+1 − ε

∂Sk+1

∂J̄k
,

for the action-angle variables (ϑ̄, Ī), and
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Hk = hk − ε
∂Sk

∂tk
, Tk = tk + ε

∂Sk

∂Hk
,

Tk+1 = Tk +∆ϑwt(H, J̄ , ε) , (4.56)

hk+1 = Hk + ε
∂Sk+1

∂tk+1
, tk+1 = Tk+1 − ε

∂Sk+1

∂Hk
,

for the energy–time (t,H). Here Sk ≡ S(tk, ϑ̄k,Hk, J̄k, ϑ = 2πk, ϑ0, ε),
Sk+1 ≡ S(tk+1, ϑ̄k+1, H̄k, J̄k, ϑ = 2π(k + 1), ϑ0, ε). The map step ∆ϑ along
the independent variable ϑ is equal to 2π. The generating function S =
S(t, ϑ̄,H, J̄ , ϑ) determines the changes of variables (t, ϑ̄, h, Ī) → (T , ψ̄,H, J̄)
which transforms the Hamiltonian K(t, ϑ̄, h, J̄ , ϑ, ε) (4.49) into the new one
K0 = K0(H, J̄ , ε). The perturbed frequencies of the system are

w̄(H, J̄ , ε) =
∂K0(H, J̄ , ε)

∂J̄
, w̄t(H, J̄ , ε) =

∂K0(H, J̄ , ε)
∂H .

In order to improve the accuracy one can take smaller map steps ∆ϑ. It
is convenient to set ∆ϑ = 2π/s, where s ≥ 1 is an integer number. Then the
Poincaré map (4.54) is obtained by applying the map (4.55), (4.56) s times.

According to (2.34) the generating function S in the first order of ε is
determined

S1(t, ϑ̄,H, J̄ , ϑ, ϑ0) = −
ϑ∫

ϑ0

K1(t(ϑ′), ϑ̄(ϑ′),H, J̄ , ϑ′)dϑ′ , (4.57)

where the integral is taken along unperturbed trajectories ϑ̄(ϑ′) = ϑ̄(ϑ) +
ν(H, J̄)(ϑ′ − ϑ). Using (4.51) and (4.53), (4.57) may be rewritten in the
terms of unperturbed trajectory ϑ(t′) = ϑ(t) + ω(J)(t′ − t) of the original
Hamiltonian H0(I):

S1(t, ϑ̄,H, J̄ , ϑ, ϑ0) =

t∫

t0

H1(t′, ϑ(t′), J)dt′ . (4.58)

where times t and t0 are located in the interval tk < t, t0 < tk+1, where tk is a
time instant when the trajectory ϑ(t) crosses the section Σ, i.e., ϑ1(tk) = k2π.

Consider the two degrees of freedom Hamiltonian system

H(q1, q2, p1, p2) =
1
2
(p2

1 + p2
2 + ω2

1q
2
1 + ω2

2q
2
2) + ε

[
q1q2 −

1
4
q4
2

]
. (4.59)

It describes the interaction of two coupled oscillators. In the case ε = 1 it
coincides with the Henon–Heiles model Hénon and Heiles (1964). The oscil-
lation along q1 coordinate with a frequency ω1 is linear, and the one along
the q2 coordinate with a frequency ω2 is a weakly nonlinear. The parameter ε
stands for the strength of interactions of oscillators, as well as for the degree
of nonlinearity.
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In action-angle variables (ϑi, Ii) introduced as

qi =
√

2Ii/ωi sinϑi , pi =
√

2Iiωi cosϑi , i = 1, 2 ,

the Hamiltonian can be rewritten as

H = H0(I1, I2, ε) + εH1(ϑ1, ϑ2, I1, I2) , (4.60)

H0(I1, I2) = ω1I1 + ω2I2

(
1 − ε

3I2
8ω3

2

)
, (4.61)

H1(ϑ1, ϑ2, I1, I2) =
√

I1I2
ω1ω2

[cos(ϑ1 − ϑ2) − cos(ϑ1 + ϑ2)]

+
I2
2

2ω2
2

(
cos 2ϑ2 −

1
4

cos 4ϑ2

)
. (4.62)

According to (4.51), for the small perturbation parameter ε � 1 the expan-
sion terms K0 and K1 of the Hamiltonian K (4.50) with the angle ϑ1 as
independent “time” variable are

K0(h, I2) =
h

ω1
+
ω2

ω1
I2

(
1 − ε

3I2
8ω3

2

)
, (4.63)

K1(ϑ1, ϑ2, h, I2) = −H1(ϑ1, ϑ2,−h− I2, I2)

=

√
(−h− ω2I2)I2

ω3
1ω2

[cos(ϑ1 − ϑ2) − cos(ϑ1 + ϑ2)]

+
I2
2

2ω1ω2
2

(
cos 2ϑ2 −

1
4

cos 4ϑ2

)
. (4.64)

The frequencies ν2 and νt determined by the unperturbed Hamiltonian (4.63)
are

ν2(I2) =
∂K0(h, I2)

∂I2
=

ω2

ω1

(
1 − ε

3I2
4ω3

2

)
, νt =

∂K0(h, I2)
∂h

=
1
ω1

. (4.65)

According to (4.57) and (2.35) the first order generating function S(t, ϑ2,
H, J2, ϑ, ϑ0) associated with the map (4.55), (4.56) is determined by
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S(t, ϑ2,H, J2, ϑ, ϑ0) = −(ϑ− ϑ0)

√
(−h− ω2J2)J2

ω3
1ω2

×
∑

n=±1

[a(xn) cos(ϑ2 − nϑ) + b(xn) sin(ϑ2 − nϑ)]

+(ϑ− ϑ0)
J2

2

2ω1ω2
2

∑

m=2,4

(
− 2
m

)m/2 (
a(xm) sinmϑ2 + b(xm) cosmϑ2

)
,

(4.66)

where xn = (ν2(J2) − n)(ϑ− ϑ0), xm = mν2(J2)(ϑ− ϑ0), and ϑ ≡ ϑ1.
In order to obtain the Poincaré section in the (q2, p2)-plane with q1 =

0, where ϑ = 0 (or ϑ = π) one should apply the map (4.55) (ϑ̄k, Īk) →
(ϑ̄k+1, Īk+1) with the map step ∆ϑ = 2π/s successively s times. Figure 4.8
shows the corresponding Poincaré section for the resonant case ω1 = ω2 with
the perturbation parameter ε = 10−3. The map step is s = 2 and the energy
of system is taken equal to E = 0.4. It well reproduces the Poincaré section
obtained by the direct integration of the Hamiltonian system (4.59) using the
standard symplectic integration scheme.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

p 2

q2

Fig. 4.8. Poincaré section of the system (4.59) in the (q2, p2)-plane with q1 = 0
plotted by mapping (4.55). The perturbation parameter ε = 10−3, and the map
step ∆ϑ = π

4.6 Method of Successive Canonical Transformations

The mapping method developed above uses only one canonical (forward and
backward) transformation of variables, (ϑ, I) → (ψ, J), with the generating
function S sought as an expansion series in powers of perturbation parameter
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ε: εS = εS1 + ε2S2 + · · ·+ εmSm. The difference between the exact generating
function and the one with m terms is of order of εm+1.

The mapping (ϑk+1, Ik+1) = M̂(ϑk, Ik) can be also constructed using
the Kolmogorov’s technique of successsive canonical transformations (see
Sect. 2.4). Below we describe the corresponding scheme of this approach.
We present the corresponding mapping in the following form

(ϑk+1, Ik+1) = M̂−M̂0M̂+(ϑk, Ik) , (4.67)

of three successive mappings M̂+, M̂0, and M̂− which stand for

(ψk, Jk) = M̂+(ϑk, Ik) ,

(ψ̄k, Jk+1) = M̂0(ψk, Jk) , (4.68)

(ϑk+1, Ik+1) = M̂−(ψ̄k, Jk+1) ,

respectively. We construct the first map M̂+ as a sequence of maps M̂+ =
M̂

(m)
+ · · · M̂ (1)

+ , corresponding to the successive canonical change of variables

(ϑk, Ik) → (ψ(1)
k , J

(1)
k ) → · · · → (ψ(m)

k , J
(m)
k ) , (4.69)

at the time instant t = tk. This transforms the Hamiltonian as

H0(I) + εH1(ϑ, I, t)
→ H(1)

0 (J (1), ε, t) + ε2H(1)
1 (ψ(1), J (1), t, ε)

→ · · ·
→ H(m)

0 (J (m), ε) + εm
2H(m)

1 (ψ(m), J (m), t, ε) . (4.70)

Each of steps in (4.69) is given by the generating functions Fi = J (i) ·ψ(i−1)+
ε2

(i−1)
S(i)(J (i), ψ(i−1), t, t0), (i = 1, · · · ,m), associated with the map M̂

(i)
+ at

the i-th step

J
(i)
k = J

(i−1)
k − ε2

(i−1) ∂S
(i)
k

∂ψ
(i−1)
k

, ψ
(i)
k = ψ

(i−1)
k + ε2

(i−1) ∂S
(i)
k

∂J
(i)
k

, (4.71)

where S(i)
k ≡ S(i)(J (i), ψ(i−1), t = tk, t0). It is determined by the perturbation

function H(i)
1 (ψ(i), J (i), t, ε)

S(i)(J (i), ψ(i−1), t, t0) = −
∫ t

t0

H(i−1)
1 (J (i)(t′), ψ(i−1)(t′), t′, ε)dt′ . (4.72)

In (4.72) the integration is taken along the unperturbed orbit

J (i) = const, ψ(i−1)(t′) = wi(J (i), ε)(t′ − t) + ψ(i−1)(t) ,
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of the Hamiltonian H(i)
0 (J (i), ε) with the frequency wi(J (i), ε) = ∂H(i)

0 /∂J (i),
(ψ(0) ≡ ϑ, H(0)

1 ≡ H1).
The map M̂0 simply determines evolution of variable (ψ(m)

k , J
(m)
k ) in the

time interval:

J
(m)
k+1 = J

(m)
k , ψ̄

(m)
k = ψ

(m)
k + wm(J (m)

k , ε)(tk+1 − tk) . (4.73)

Finally the map M̂− = M̂
(1)
− · · · M̂ (m)

− carries out the transformation of
the new variables (ψ(m)

k+1, J
(m)
k+1) at the time t = tk+1 back to the original

variables (ϑk+1, Ik+1):

(ψ̄(m)
k , J

(m)
k+1) → · · · → (ψ̄(1)

k , J
(1)
k+1) → (ϑk+1, Ik+1) , (4.74)

at the time instant t = tk+1. Each of the successive steps of the map M̂
(i)
− is

given by

J
(i−1)
k+1 = J

(i)
k+1 + ε2

(i−1) ∂S
(i)
k+1

∂ψ̄
(i−1)
k

, ψ̄
(i−1)
k = ψ̄

(i)
k − ε2

(i−1) ∂S
(i)
k+1

∂J
(i)
k+1

, (4.75)

where S
(i)
k+1 ≡ S(i)(J (i), ψ̄

(i−1)
k , t = tk+1, t0), (i = 1, · · · ,m), and (ϑk+1 =

ψ̄
(0)
k , Ik+1 = J

(0)
k+1).

Since this technique possesses the quadratic convergence, the accuracy of
mapping will be higher. However, the calculations of higher order genera-
tion functions are somehow cumbersome that makes the application of this
superconvergent mapping technique to Hamiltonian problems less practical.

4.7 Summary

In summary, we have developed a general method to construct symplectic
mappings for generic Hamiltonian systems. It may be applied to the general
class of Hamiltonian systems which may be composed as the sum of fully
integrable system and Hamiltonian perturbation. The perturbation is not
required to be small. The construction of mappings is based on the application
of the Hamilton–Jacobi method, particularly, the Hamilton–Jacobi equation
and Jacobi’s theorem to Hamiltonian systems in finite – time intervals. The
generating functions of maps are solutions of the Hamilton–Jacobi equations
in finite time intervals. They are found using the time-dependent perturbation
series developed in Sect. 2.3 It appears that the expansion parameter near
the resonant frequencies is determined by the product of the perturbation
parameter and the time step of map. Particularly, it allows one to apply
mapping method to systems with moderately large perturbations taking the
map time-step sufficiently small.
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Symplectic mappings has been also obtained for the Hamiltonian systems
affected by the broad perturbation spectrum. We have considered the limit of
infinite number of perturbation modes. The method to construct mappings
to the arbitrary cross section of the phase space has been also developed.
The superconvergent version for construction of the mappings using the Kol-
mogorov’s technique is discussed.

We have studied the accuracy of mapping method and compared it with
conventional symplectic integration methods, particularly, with the most ac-
curate fifth-order Runge – Kutta symplectic integrator (see Sect. 1.5. It was
found the map with the large time-steps comparable with the characteristic
time scale of system (e.g., a perturbation period) have the same accuracy as
the symplectic integrator with two or three order smaller integration steps.
The most importantly that the accuracy of map does not depend on per-
turbation frequency, and thereby it allows one to integrate highly oscillatory
Hamiltonian systems which are most challenging problem in numerical analy-
sis (see Petzold et al. (1997)).
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A motion near the separatrix of Hamiltonian systems has fundamental generic
features. As was first shown by Poincaré (1892–99) (see also Sect. 7.1.3) any
small time-periodic perturbation splits the separatrices corresponding to sta-
ble and unstable manifolds which leads to the onset of chaotic motion due
to the exponential divergence of orbits with close initial conditions. This
phenomenon creates the zone of phase space in the small vicinity of the un-
perturbed separatrix, so-called a stochastic layer where the motion of system
is chaotic (see Sect. 7.1.3).

The dynamics of motion near the separatrix can be most conveniently
described by the mappings. A mapping near the separatrix, known the sep-
aratrix (or whisker) mapping first introduced by Filonenko and Zaslavsky
(1968); (see also Chirikov (1977, 1979); Zaslavsky et al. (1991)), and its dif-
ferent modifications has been widely used in various problems of physics and
astronomy. It is a powerful tool to study the onset of chaotic motion due to
the separatrix splitting and properties of the stochastic layer (see Sect. 6.6
for bibliographic notes.)

In this chapter we describe a systematic and rigorous method to de-
rive symplectic mappings near the separatrix based on the Hamilton–Jacobi
method to construct mappings (see Chap. 4). This method allows one to
construct directly a mapping near separatrix in canonical variables. The pre-
sentation mostly follows the papers by Abdullaev (2004b, 2005).

5.1 Separatrix and Mappings

Separatrices are phase-space curves separating regions with the different type
of motion. It connects the hyperbolic fixed point (or points) in phase space.
Two examples of such connections are shown in Fig. 5.1. The saddle connec-
tion is called a homoclinic orbit if the saddle point is connected by itself (see
Fig. 5.1a), or a heteroclinic orbit, if it connects different saddle points (see
Fig. 5.1b). In typical Hamiltonian systems the separatrices are unstable to any
small perturbations1. In particular, a time-periodic perturbation destroys the
separatrix, and the motion near the unperturbed separatrix becomes chaotic.
1 See Sect. 7.5.

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 83–104 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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3

2 1

(a)

    2’

2 1

3

(b)

Fig. 5.1. Phase space structure of system with separatrices: (a) homoclinic orbits
(curve 2) and (b) heteroclinic orbits (curves 2 and 2′) connecting different saddles
points

The domain of chaotic motion, the stochastic layer, is formed in the small
vicinity the unperturbed separatrices.

The motion near the separatrix is generic for nonlinear Hamiltonian sys-
tems. It has been studied over a long time because of its importance in nu-
merous physical applications (see Filonenko and Zaslavsky (1968); Chirikov
(1979); MacKay and Meiss (1987)). The description of motion near the sepa-
ratrix by symplectic maps has own specific features. The frequency of unper-
turbed motion, ω(I), goes to zero when it approaches the separatrix, ω(I) → 0
for I → Is, where Is is a value of action at the separatrix. This makes in-
convenient the use the stroboscopic time step mappings (3.2) because of long
calculation times near the separatrix.

As was shown in Sect. 1.4 on the example of the pendulum the spectra
qm, pm of phase oscillations given by (1.49), (1.50) become broader while
the motion approaches the separatrix, H → Hs (Hs is the energy at the
separatrix) (see (1.51)). The spectrum of phase oscillations, Hm(I), in the
perturbed Hamiltonian H1(ϑ, I, t), i.e.,

H1(ϑ, I, t) =
∑

m

Hm(I) cos(mϑ− nΩt) , (5.1)

has a similar behavior near the separatrix, Hm ∼ m−β . In typical cases the
exponent β becomes less than 3 near the separatrix. The perturbed Hamil-
tonian H1(ϑ, I, t) approaches to a singular δ−like function of angle variable
ϑ.

The first attempt to construct area–preserving mapping to describe the
dynamics of motion near the separatrix has been taken by Filonenko and
Zaslavsky (1968) for the periodically driven pendulum. They had derived
a symplectic map (ϑk, Ik) → (ϑk+1, Ik+1) for action-angle variables (ϑ, I)
with the time step equal to the half of period of phase oscillations in ϑ. The
mapping (Hk, tk) → (Hk+1, tk+1) of the energy (H) and time (t) variables
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over half of phase oscillations in ϑ has been derived by Chirikov (1977, 1979);
Zaslavsky et al. (1991). This definition of mapping is more consistent with the
Hamiltonian formalism with the angle variable ϑ as an independent time-like
variable (see Sect. 1.1.3). Below we recall this map known as the separatrix
(or whisker) map.

5.1.1 The Conventional Separatrix (Whisker) Map

Consider the periodically-driven pendulum described by the Hamiltonian

H(q, p, t) =
p2

2
− ω2

0 cos q + 2εω2
0 cos q cosΩt , (5.2)

where ω0 is the frequency of small oscillations, ε and Ω represent the ampli-
tude and the frequency of perturbation, respectively.

We recall that the unperturbed system (ε = 0) has elliptic fixed points at
(q = 2πn, p = 0) and hyperbolic fixed points at (qs = 2π(s + 1/2), ps = 0)
(n, s = 0,±1,±2, . . .) (see Sect. 1.4 and Fig. 1.4, 5.1b). The separatrices
(curve 2) connecting the saddle points qs, ps with qs±1, ps±1 separates the
trapped orbits (−ω2

0 < H < ω2
0) (curve 1) from the un-trapped ones (H >

Hs = ω2
0) (curve 3). The period of trapped orbits T (H) = 2π/ω(H) has the

following asymptotics near the separatrix H = Hs:

T (H) =
1
ω0

ln
32ω2

0

|H − ω2
0 |

+O(|H − ω2
0 |) , (5.3)

for H → ω2
0 ± 0 .

The orbits on the separatrices (H = ω2
0) are

q(±)
s (t) = 4 arctan

exp[±ω0(t− t0)] − 1
exp[±ω0(t− t0)] + 1

,

p(±)
s (t) = ± 2ω0

cosh[ω0(t− t0)]
, (5.4)

where the signs (±) correspond to the upper (curve 2) and lower branches
(curve 2′) of the separatrix, respectively, and t0 is a time instant when the
orbit crosses a mid-point between two sequential saddle points.

The perturbation (ε �= 0) destroys the separatrix for any small amplitude
of perturbation ε forming the stochastic layer near the unperturbed separa-
trix shown in Fig. 5.2. In order to describe the motion near the destroyed
separatrix Chirikov (1977, 1979) introduced the map (tk,Hk) → (tk+1,Hk+1)
as the increment of the time, ∆t(tk,Hk), and energy, ∆H(tk,Hk), over the
half of phase rotation in phase space:

Hk+1 = Hk +∆H(tk,Hk) ,
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Fig. 5.2. Stochastic layer near the separatrix

tk+1 = tk +∆t(tk,Hk) . (5.5)

It is required that the mapping (5.5) should be area-preserving: |∂(Hk+1, tk+1)
/∂(Hk, tk)| = 1.

The energy increment, ∆H, is found using the equation for the evolution
of energy H

dH

dt
=

∂H

∂t
= −2εΩω2

0 cos q sinΩt .

Integration of this equation along the unperturbed orbits (5.4) on the sep-
aratrix is reduced to the Melnikov integral (Melnikov (1963), and see also
Chirikov (1979); Lichtenberg and Lieberman (1992)):

∆H = −2εΩω2
0

∞∫

−∞

cos qs(t) sinΩtdt , (5.6)

taken along the unperturbed separatrix orbit qs(t) (5.4). For the Hamiltonian
(5.2) the Melnikov integral is given by

∆H = −ω2
0W sinΩt0 , W = ε

Ω2

ω2
0

4π
sinh (πΩ/2ω0)

,

where t0 is the time instant when the orbit crosses a mid-point between two
sequential saddle points. The increment of time ∆t is equal to the half of
period of oscillation T (H) (5.3).

Identifying the the time instant t0 with time variable tk in the mapping
(5.5) the latter can be presented in the form

hk+1 = hk −W sinϕk ,

ϕk+1 = ϕk +
Ω

ω0
ln

32
|hk+1|

, mod 2π , (5.7)

known as the separatrix (or whisker) map. In (5.7) the normalized energy,
h = (H − ω2

0)/ω2
0 , and the phase, ϕ = Ωt0, variables are introduced.
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5.1.2 Shortcomings of Conventional Separatrix Mappings

One of the main shortcomings of the separatrix mapping (5.7) and other
similar mappings is that they are not canonical mappings, i.e., the mapping
variables tk,Hk (or ϕk, hk) are not canonically conjugated. It follows from the
geometrical interpretation of the separatrix mapping first given by Escande
(1988) (see also Rom-Kedar (1994, 1995)) as a return map of time and energy
variables defined at the different sections in phase-space (x, p) of system. As
we will see in Sect. 5.2 the energy variable, H, is taken at the section near
the saddle point, while the time variable, t, is in the section located in the
middle between two consecutive saddle points, i.e., the sections Σs and Σc in
Fig. 6.6, respectively. Therefore the separatrix map (5.7) does not coincide
with the definition of the Poincaré return map where all variables are defined
at the same cross section of phase space. This fact should be kept in mind
when one compares the properties of original continuous Hamiltonian system
with the ones of the corresponding separatrix mapping.

As an example consider the rescaling invariant property of the separa-
trix map (5.7) which has been found in Abdullaev and Zaslavsky (1994);
Zaslavsky and Abdullaev (1995). Since the second equation in (5.7) is deter-
mined by module 2π it is easy to see that the separatrix map is invariant
with respect to the following transformation of perturbation parameter ε:

ε → ε′ = λε , (5.8)

where the parameter λ = exp(2πω0/Ω) depending only on the perturbation
frequency Ω and the frequency ω0 of small amplitude oscillations. This inter-
esting property of the separatrix map, however, is not revealed in the phase
space (x, p) of the Hamiltonian system (5.2). As we will see in Sect. 8.1, it does
not exactly coincide with the rescaling invariance property of Hamiltonian
system near the hyperbolic saddle point.

We should also note an inconsistency which appears in the quantization
problem of classical systems using non-canonical mappings. For instance, in
several works (see Casati et al. (1990)) it has been taken attempts to quantize
the conventional (non-canonical) Kepler map for studying quantum effects in
the process of ionization of highly–excited hydrogen atom in a microwave.
However, such a procedure of quantization of the Kepler map by presenting
energy and time variables as a canonical pair of operators is not consistent
with the fundamental principles of quantum mechanics since the energy and
time variables in this map are not canonically conjugated.

Method to derive separatrix mappings are mainly based on the calcula-
tions of the increments of time and energy variables over phase rotation in
phase space (see, for instance Chirikov (1979)). This method does not al-
low directly obtain canonical separatrix mappings. On the other hand this
method does not allow to estimate the accuracy of the separatrix mapping.
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5.2 The Hamilton–Jacobi Method
to Construct Maps Near a Separatrix

Below we present the rigorous derivation of symplectic mappings near the
separatrix of general Hamiltonian systems using the Hamilton–Jacobi method
described in Chap. 4. Furthermore we call them separatrix mappings in a
broader sense as mappings near the separatrices of arbitrary Hamiltonian
systems. This method has been first used by Abdullaev (1999) to construct
separatrix mappings for Hamiltonian systems with a single hyperbolic saddle
point. Here we consider the case of systems with arbitrary number of saddle
points. For the sake of simplicity we restrict ourselves with generic 1 + 1/2
degrees of freedom Hamiltonian systems H(x, p, t) presented in the form

H(x, p, t) = H0(x, p) + εH1(x, p, t) . (5.9)

where H0(x, p) is the unperturbed Hamiltonian, H1(x, p, t) is the time-
dependent perturbation, and (x, p) are the canonical coordinate and mo-
mentum.

Suppose that the unperturbed system (1.1), (2.3) (ε = 0) at certain energy
level H0(x, p) = const has a finite (or countable) number of saddle points
and corresponding number of saddle–saddle connections in phase space as
illustrated in Fig. 5.3. Let (xs, ps) and (xs+1, ps+1) be two consecutive saddle
points with a heteroclinic connection as shown in Fig. 5.4a. If the system has
only one saddle point then the points (xs, ps) and (xs+1, ps+1) coincide and
a saddle–saddle connection is a homoclinic orbit. The phase space curves 1
and 3 located on the both sides of the separatrix describes different types of
motion. We put H = Hs = 0 on the separatrix.

o

o

o

o

(xs,ps)

(xs+1,ps+1)

(xs+4,ps+4)

(xs+3,ps+3)

Fig. 5.3. Phase space of system with several saddle points. Dotted curves describe
the unperturbed. A perturbed orbit is displayed by a solid curve
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Σs Σc

Σs+1

1

2

3

(xs, ps) (xs+1, ps+1)

(a)

Σs Σc

Σs+1

(tk, hk)

(tk+1, hk+1)
(b)

Fig. 5.4. (a) Phase curve in the neighborhood of the separatrix: curves 1 and
3 describe orbits upper and down the separatrix, curve 2 is the separatrix.
(b) Schematic view of the separatrix map. Solid curve describes the perturbed
orbit, and dotted curve is the unperturbed separatrix

In the phase plane (x, p) we introduce the cross sections Σc and Σs,
shown in Fig. 5.4a. The section Σc consists of a segment perpendicular to the
separatrix at the mid–point between saddle points. The section Σs is located
near saddle points (xs, ps) and consists of two segments perpendicular to each
other with the crossing point at (xs, ps). The both segments of Σs are also
perpendicular to unperturbed phase curves.

We define action-angle variables, (I, ϑ), for the unperturbed motion in a
following way. The action and angle variables are introduced as an integrals

I =
1
2π

∫

C

p(x;H)dx , ϑ =
∂

∂I

x∫
p(x′;H)dx′ , (5.10)

where C is the segment of phase-space curve of constant H = H0(x, p) lo-
cated between two consecutive crossing points with the sections Σs and Σs+1.
Introduced in such a way the action variable I(H) is a continuous function
of energy H while it crosses the separatrix. We will set ϑ = 0 (mod 2π) at
the section Σc, ϑ = ∓π (mod 2π) at the section Σs and (xs+1, ps+1) at Σs+1,
respectively.



90 5 Mappings Near Separatrix. Theory

In typical Hamiltonian systems any small time-periodic perturbation de-
stroys the separatrix, and orbits wobbles around the unperturbed separatrix
(see Fig. 5.4b). Let tk and hk be a time instant and an energy at the k-th
crossing point of the orbit with Σs. We intend to construct the map

(tk+1,Hk+1) = M̂s+1,s(tk,Hk) , (5.11)

connecting the crossing point (tk,Hk) at the section Σs with the correspond-
ing point (tk+1,Hk+1) at Σs+1. The geometric scheme of the mapping is
shown in Fig. 5.4b. The change of the angular variable ϑ over one step of the
map (5.11) is equal to ∆ϑ ≡ ϑk+1 − ϑk = 2π.

Suppose that the system has Nsep independent saddle–saddle connec-
tions. Then there exist Nsep independent mappings (5.11) which completely
determine the dynamics of a Hamiltonian system. The sequence of mappings
M̂s+1,s depends on the topology of saddle–saddle connections in phase space
and the trajectory of motion. Below we develop a general method to con-
struct the full set of mappings. It will be illustrated on specific examples in
the next sections.

5.2.1 Mapping Along Single Saddle–Saddle Connection

Below we construct the mapping (5.11) along the single saddle–saddle connec-
tion. For this one could use the formulation of Hamiltonian equations (4.47),
(4.48) with the angle variable, ϑ, as an independent variable (see Sect. 4.5).
However this method fails near the separatrix where the frequency of motion
ω(H) = dH0/dI → 0 (or dI/dH0 → ∞). This singularity does not allow
to invert Hamiltonian H(I, ϑ, t) in respect to the action variable I near the
separatrix and to present it in the form (4.49). To avoid this difficulty we will
use another approach.

We use the formulation of Hamiltonian equations in the extended phase
space (t, x, p0, p) (see Sect. 1.1). According to (1.9) and (2.3) the equations
of motion in the space of action-angle and time-energy variables (t, ϑ, p0, I)
are

dt

dτ
=

∂H
∂p0

,
dp0

dτ
= −∂H

∂t
,

dϑ

dτ
=

∂H
∂I

,
dI

dτ
= −∂H

∂ϑ
, (5.12)

with the Hamiltonian function

H(t, ϑ, p0, I) = H0(I) + p0 + εH1(t, ϑ, p0) . (5.13)

where p0 = −H, and H1(t, ϑ, p0) ≡ H1(I(−p0), ϑ, t). In (5.13) the perturba-
tion H1 is chosen as the function of energy H.

Suppose that the orbit crosses the section Σs at τ = τk and the next
section Σs+1 at τ = τk+1. We construct the mapping
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(tk+1, ϑk+1, hk+1, Ik+1) = M̂(tk, ϑk, hk, Ik) , (5.14)

where (tk, ϑk, hk, Ik) ≡ (t(τk), ϑ(τk),−p0(τk), I(τk)). From the geometry of
mapping illustrated in Fig. 5.4b it follows that we should impose constraints
on the angle variable ϑ: ϑ(τk) = −π, and ϑ(τk+1) = π.

Using results obtained in Section (4.1) one can write down the mapping
(5.14) in the general form (4.6)–(4.8) for the action-angle variables (ϑ, I) and
for the time-energy variables (t, p0):

Jk = Ik − ε
∂S(k)

∂ϑk
,

Θk = ϑk + ε
∂S(k)

∂Jk
,

Θ̄k = Θk + w(Hk, Jk, ε)(τk+1 − τk) , (5.15)

Ik+1 = Jk + ε
∂S(k+1)

∂ϑk+1
,

ϑk+1 = Θ̄k+1 − ε
∂S(k+1)

∂Jk
,

for action-angle variables, (ϑ, I), and

Hk = hk + ε
∂S(k)

∂tk
,

Tk = tk − ε
∂S(k)

∂Hk
,

T̄k = Tk + wt(Hk, Jk, ε)(τk+1 − τk) , (5.16)

hk+1 = Hk − ε
∂S(k+1)

∂tk+1
,

ϑk+1 = T̄k + ε
∂S(k+1)

∂Hk
,

for the time – energy variables (t, h = −p0). Here

S(k) ≡ S(tk, ϑk, Jk,Hk, τk, τ0, ε)

S(k+1) ≡ S(tk+1, ϑk+1, Jk,Hk, τk+1, τ0, ε)

are values of the generating function S(t, ϑ, J,H, τ, τ0, ε) at τ = τk and τ =
τk+1, respectively. For the Hamiltonian system (5.12), (5.13) it obeys the
Hamilton–Jacobi equation

H
(
t, ϑ, P0 + ε

∂S

∂t
, J + ε

∂S

∂ϑ

)
+ ε

∂S

∂τ
= H̄(P0, J, ε) (5.17)
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in the time interval τk < τ < τk+1 satisfying the initial condition S|τ=τ0 = 0
at the time instant τ = τ0. The time τ0 is a free parameter lying in the
interval τk < τ0 < τk+1. The new Hamiltonian H̄(P0, J, ε) depends only on
new “action” variables (P0, J). In (4.6), (4.56) w(H, J, ε) = ∂H̄(P0, J, ε)/∂J
and wt(H, J, ε) = ∂H̄(P0, J, ε)/∂P0 are the frequencies of perturbed motion.
(Recall that H = −P0).

To solve the Hamilton–Jacobi equation (5.17) we apply the perturbation
theory in finite time interval τk < τ < τk+1 described in Sect. 2.3. In the first
order of perturbation ε the generating function, S, is given by the following
integral similar to (2.34):

S1(t, ϑ,H, J, τ, τ0) = −
τ∫

τ0

H1(τ ′, ϑ(τ ′),−H)dτ ′ , (5.18)

where the integral over “time” τ ′ is taken along the unperturbed orbit ϑ(τ ′) =
ω(H)(τ ′ − τ) + ϑ(τ), t(τ ′) = τ ′. In this approximation the corresponding
frequencies w(J, ε) and wt(J, ε) can be replaced by unperturbed frequencies
ω(H) = ∂H0(I, p0)/∂I and wt(J) = ∂H0(I, p0)/∂p0 =1, where H0(I, p0) =
H0(I) + p0.

Since the generating function S1 does not depend on action J the mapping
(5.14) takes the simplified form

Jk = Ik − ε
∂Sk

∂ϑk
,

ϑk+1 = ϑk + ω(Jk)(τk+1 − τk) , (5.19)

Ik+1 = Jk + ε
∂Sk+1

∂ϑk+1
.

Recalling that ϑk+1 − ϑk = 2π, and using the second equation in (5.19) we
obtain τk+1 − τk = 2π/ω(Jk). Then the mapping for time –energy (t,H)
variables is reduced to

Hk = hk + ε
∂Sk

∂tk
, Tk = tk − ε

∂Sk

∂Hk
,

Tk+1 = Tk + τk+1 − τk = Tk +
2π

ω(Hk)
, (5.20)

hk+1 = Hk − ε
∂Sk+1

∂tk+1
, tk+1 = Tk+1 + ε

∂Sk+1

∂Hk
,

where Sk ≡ S1(tk, ϑk,Hk, Jk, τk, τ0), ω(Hk) ≡ ω(Jk).
The map (5.20) is a most general form of the mapping of time (t) and

energy (H) variables to certain sections in phase space along a single saddle–
saddle connection. In the first order of perturbation parameter ε the generat-
ing function S associated with this map is determined by (5.18). The separa-
trix mapping can be obtained from (5.20), (5.18) in some limiting cases. By
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appropriate choosing the time parameter τ0 in (5.18) one can obtain different
forms of the mapping (see Sect. 4.1.1).

5.2.2 Calculation of the Generating Function

Consider a multi-frequency perturbation with frequencies Ωn and present
the perturbed Hamiltonian H1(H, ϑ(t), t) in (5.18) taken along unperturbed
trajectory as a Fourier series:

H1(τ, ϑ(τ),−H) =
∑

n

Hn(H, ϑ(τ)) cos(Ωnt(τ) + χn) , (5.21)

where χn are the phases of perturbation. Suppose the orbit crosses the section
Σc at the time instant τ = tc when the phase ϑ = 0, and present the Fourier
coefficients as

Vn(H, τ − tc) ≡ Hn(H, ϑ(τ)) .

Taking into account that the unperturbed orbit is given by t = τ , ϑ(τ ′) =
ϑ+ω(H)(τ ′−τ), we find that tc = t−ϑ/ω(H). Then the generating function,
S(t) ≡ S1(t, ϑ,H, τ, τ0) in the time interval tk < t, tc < tk+1 can be reduced
to

S(t) = −
t∫

τ0

∑

n

Vn

(
H, t′ − t+

ϑ

ω(H)

)
cos(Ωnt

′ + χn)dt′ ,

= Re
∑

n

Rn(H, ϑ, t) exp
[
iΩn

(
t− ϑ

ω(H)

)
+ iχn

]
, (5.22)

where

Rn(H, ϑ, t) =

τ0+ϑ/ω(H)−t∫

ϑ/ω(H)

Vn(H, τ)eiΩnτdτ . (5.23)

At the limits t → tk + 0, ϑ → −π and t → tk+1 − 0 = tk + 2π/ω(H), ϑ → π
we have

S(k)(tk,H)=
∑

n

(
K−

n (H) cosΦ+
n (tk,H) − L−

n (H) sinΦ+
n (tk,H)

)
,

S(k+1)(tk+1,H)=−
∑

n

(
K+

n (H) cosΦ−
n (tk+1,H)−L+

n (H) sinΦ−
n (tk+1,H)

)
,

(5.24)

where

Φ±
n (t,H) = Ωn

(
t± π

ω(H)

)
+ χn , (5.25)
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and K±
n (H), L±

n (H) are real and imaginary parts of the integrals R±
n (H) =

K±
n (H) + iL±

n (H), respectively, defined as

R−
n (H) ≡ Rn(H, ϑ = −π, t = tk) =

τ0−tk−π/ω(H)∫

−π/ω(H)

Vn(H, τ)eiΩnτdτ ,

R+
n (H) ≡ Rn(H, ϑ = π, t = tk+1) = −

τ0−tk+1+π/ω(H)∫

π/ω(H)

Vn(H, τ)eiΩnτdτ .

(5.26)

We call these integrals as Melnikov type integrals.

5.2.3 Symmetric Mappings

We call the mapping (5.20) a symmetric map when the free parameter τ0 is
taken exactly in the middle between τk and τk+1, i.e., τ0 = (τk+1 + τk)/2 =
tk + π/ω(H). Then the integrals (5.26) take forms

R±
n (H) = K±

n (H) + iL±
n (H) = ∓

0∫

±π/ω(H)

Vn(H, τ)eiΩnτdτ . (5.27)

The Fourier integrals (5.27) are taken along the unperturbed orbits of system.
In a particular case, when the orbits lie on the separatrix (h = 0) they coincide
with the Melnikov integrals of type (5.6) (see Chirikov (1979)). Indeed, at
the limit h → 0 the frequency ω(h) → 0 and the integrals (5.27) are reduced
to

R+
n (0) =

∞∫

0

Vn(0, τ)eiΩnτdτ ,

R−
n (0) =

0∫

−∞

Vn(0, τ)eiΩnτdτ . (5.28)

It is easy to see the symmetric map conserves an invariance of Hamiltonian
system with respect to time reversing, t → −t,H → −H, which is manifested
in the invariance of mapping with respect to reversing the mapping sequence,
k ↔ k + 1.

5.2.4 Nonsymmetric Mappings

Another forms of mappings can be obtained by setting the free time parame-
ter τ0 in (5.26) equal to τk or τk+1. They are similar to those nonsymmetric
mappings presented in Sect. 4.1.1.
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Consider first the case when τ0 = τk+1 the integrals K
(−)
n and L

(−)
n in

(5.26) vanish, and therefore S(k+1) ≡ 0, hk+1 = Hk. Then the mapping
(5.20) is reduced to

hk+1 = hk + ε
∂S(tk, hk+1)

∂tk
,

tk+1 = tk +
2π

ω(hk+1)
− ε

∂S(tk, hk+1)
∂hk+1

, (5.29)

determined by only one generating function S(tk, hk+1):

S(tk, hk+1)=
∑

n

(
Kn(hk+1) cosΦ+

n (tk, hk+1) − Ln(hk+1) sinΦ+
n (tk, hk+1)

)
,

(5.30)

where K(h) and L(h) are the integrals

Kn(h) + iLn(h) =

π/ω(h)∫

−π/ω(h)

Vn(h, τ)eiΩnτdτ . (5.31)

On the other hand putting τ0 = τk we have S(k) ≡ 0 and hk = Hk since the
integrals K(+)

n ≡ 0 and L
(+)
n ≡ 0, and the mapping (5.20) is reduced to

hk+1 = hk − ε
∂S(tk+1, hk)

∂tk+1
,

tk+1 = tk +
2π

ω(hk)
+ ε

∂S(tk+1, hk)
∂hk

, (5.32)

where S(k+1)(tk+1, hk) is given by

S(tk+1, hk) = −
∑

n

(
Kn(hk) cosΦ−

n (tk+1, hk) − Ln(hk) sinΦ−
n (tk+1, hk)

)
.

(5.33)

In (5.30) and (5.33) the phases Φ±
n (t, h) are defined by (5.25). At the limit

h → 0 we have

Kn(0) + iLn(0) =

∞∫

−∞

Vn(0, τ)eiΩnτdτ . (5.34)

We call the mappings (5.29), (5.32) nonsymmetric mappings since they
are not invariant with respect to reversing the mapping sequence, k ↔ k+1.
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5.2.5 Properties of the Melnikov Type Integrals Kn(h) and Ln(h)

In this section we describe some properties of the Melnikov type integrals
Kn(h) and Ln(h) defined by (5.28), (5.31). First of all consider the relation
between coefficients Hmn(h) of the perturbation (5.21) in a Fourier series in
angle variable ϑ, i.e.,

H1(h, ϑ, t) =
∑

n

Hn(h, ϑ) cos(Ωnt+ χn) ,

Hn(h, ϑ) = Re
∑

m

Hmn(h)eimϑ , H∗
mn(h) = H−m,n(h) , (5.35)

and the integrals Rn(h) = Kn(h) + iLn(h). According to (5.31) one obtains

Rn(h) =
∫ π/ω(h)

−π/ω(h)

Hn(h, ϑ)eiΩnτdτ

= Re
∑

m

Hmn(h)
∫ π/ω(h)

−π/ω(h)

ei(mω+Ωn)τdτ

=
2π
ω(h)

∑

m

sin[π(m−Ωn/ω(h))]
π(m−Ωn/ω(h))

H∗
mn(h) . (5.36)

As seen from (5.36) at the values h = hmn of primary resonances, i.e.,
mω(hmn) = Ωn, the integral Rn(h) is determined by Fourier coefficients
H∗

mn(h), i.e.,

Rn(hmn) =
2π
ω(h)

H∗
mn(hmn) =

2πm
Ωn

H∗
mn(hmn) . (5.37)

The analytical calculation of the integrals Rn(h) is not straightforward.
The asymptotical method to estimate these integrals is presented in Appendix
B. It is shown that the integral Rn(h) can be presented as a sum of regular
and oscillatory parts,

Rn(h) = R(reg)
n (h) +R(osc)

n (h) . (5.38)

The regular part, R(reg)(h), is a smooth and slowly varying function of the rel-
ative energy h. We construct this function by extending the function Rn(hmn)
(5.37) defined at discrete resonant values of hmn (or m) to continuous val-
ues of h by replacing the discrete mode number m by the continuous one
m = Ωn/ω(h), i.e.,

R(reg)
n (h) =

2π
ω(h)

H∗
Ωn/ω(h),n(h) . (5.39)

At the limit |h| → 0 it tends to the value R(0), i.e., to the Melnikov-Arnold
integrals (5.28), (5.34). Analytical and numerical calculations of R(reg)(h)
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for typical Hamiltonian systems presented in Chap. 6 show that R(reg)(h) is
sufficiently close to R(0) at certain small region near the separatrix h = 0,
i.e., R(reg)(h) ≈ R(0).

The oscillatory part, R(osc)(h), is a fast–oscillating function of h with a
vanishing amplitude at the limit |h| → 0: R(osc)(h) → 0. The asymptot-
ical formulae for R(osc)(h) at small values of h are given in Appendix B.
For Hamiltonian systems with hyperbolic saddle points they have generic
features near the separatrix. It was shown that for the perturbation Hamil-
tonian, H1(x, p, t), with the non-vanishing first derivative at the saddle point,
(xs, ps), i.e., ∂H1(x, p, t)/∂x �= 0 (or ∂H1(x, p, t)/∂p �= 0), the leading term
of R(osc)(h) has the following asymptotics like

R(osc)(h) ∼
√
|h|





sin
(

πΩn

ω(h)

)
, for h < 0 ,

cos
(

πΩn

ω(h)

)
, for h > 0 .

(5.40)

Since ω(h) → 0 when |h| → 0 the frequency of oscillations of R(osc)(h) in
h increases with approaching the separatrix. According to the definitions
of R(reg)(h) and R(osc)(h), given by (5.38), (5.39) and the property (5.37)
the function R(osc)(h) has zeros at the primary resonance values of h =
hmn when mω(hmn) = Ωn. As we will see later (see Sect. 5.3) this fact
is important to understanding the applicability and the justification of the
separatrix mapping.

Another important feature of the integrals R(osc)(h) is its rescaling invari-
ance near the separatrix. As we see later the frequency of motion, ω(h), near
the separatrix of Hamiltonian systems with hyperbolic saddle points has an
universal asymptotics, ω(h) ∼ 2πγ/ ln |h|, where γ is a growth increment of
orbits (see Sects. 6.1, 6.2, 8.1, 8.5). Then from (5.40) follows that

R(osc)(λ2h) = λR(osc)(h) , (5.41)

where λ = exp(2πγ/Ωn) is the universal rescaling parameter mentioned in
Sect. 5.1.1 (see Eq. (5.8)).

Complete asymptotical formulae for the integrals R(osc)(h) for generic
Hamiltonian systems are derived in Appendix B. We shall also study the
properties of these integrals in Chap. 6 for the specific Hamiltonian systems.

5.3 Simplification of Mappings

The symmetric mapping (5.20) with the generating functions (5.24), as well
as the nonsymmetric mappings (5.29), (5.32) determined by generating func-
tions (5.30), (5.33), respectively, have a rather complicated structure due to
presence of oscillatory parts of integrals Rn(h) in the generating functions
S(h, t). This may cause some difficulties in numerical solutions of implicit
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equations in the mappings, especially when h approaches to 0. For this reason
it is desirable to simplify mappings. Below we consider such an approxima-
tion which would not only simplify mappings, but also justifies the separatrix
mappings.

5.3.1 “Primary Resonant” Approximation

As have been noted above the oscillatory parts of the integrals Rn(h) have
zeros at primary resonant values of h = hmn, where Rn(hmn) proportional to
Fourier coefficients Hmn of the perturbation Hamiltonian H1(I, ϑ, t) (see Eq.
(5.37)). Since the primary resonant perturbation, Hmn cos(mϑ−Ωnt), affects
significantly on the system near the resonant values of hmn, (mω(hmn) =
Ωn), while the effect of other nonresonant terms is negligible. Then near the
resonant values of hmn the oscillatory part R

(osc)
n (h) is significantly small

than the regular part R(reg)
n (h):

|R(osc)
n (h)| � |R(reg)

n (h)| , for h ≈ hmn . (5.42)

Then one can neglect the oscillatory parts, R(osc)
n (h), in the generating func-

tions, S(h, t), replacing the integrals Rn(h) by their regular parts R(reg)
n (h).

Furthermore we shall call this approximation as a “primary resonant” ap-
proximation .

5.3.2 Simplified Form of Mappings

Further simplicifation of the mappings can be done using the smallness of
perturbation parameter ε. Eliminating the intermediate variables, H, T , we
transform a set of (5.20) into

hk+1 = hk − ε

(
∂Sk+1

∂tk+1
− ∂Sk

∂tk

)
,

tk+1 = tk +
2π

ω(Hk)
+ ε

(
∂Sk+1

∂Hk
− ∂Sk

∂Hk

)
. (5.43)

Using (5.20) and (5.24), one can show that

2π
ω(Hk)

+ ε

(
∂Sk+1

∂Hk
− ∂Sk

∂Hk

)
=

π

ω(hk)
+

π

ω(hk+1)
+G(tk, hk+1, hk) +O(ε2) ,

ε

(
∂Sk+1

∂tk+1
− ∂Sk

∂tk

)
= εF (tk, hk+1, hk) +O(ε2) ,

where
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F (tk, hk+1, hk) =
∑

n

Ωn

(
K(reg)

n (hk+1) sinΦ+
n (tk, hk)

+L(reg)
n (hk) cosΦ+

n (tk, hk)

)
,

G(tk, hk+1, hk) =
∑

n

(
dK

(reg)
n (hk+1)
dhk+1

cosΦ+
n (tk, hk)

−dL
(reg)
n (hk+1)
dhk+1

sinΦ+
n (tk, hk)

)
. (5.44)

with the regular parts of the integrals Kn(h), Ln(h) defined by (5.31). Ne-
glecting the terms of order ε2 one obtains

hk+1 = hk − εF (tk, hk+1, hk) ,

tk+1 = tk +
π

ω(hk)
+

π

ω(hk+1)
+ εG(tk, hk+1, hk) . (5.45)

A straightforward calculation shows that det|∂(hk+1, tk+1)/∂(hk, tk)| = 1,
i.e., the mapping (5.45) is a area–preserving. It is also invariant with respect
to the time reversing transformation, k ↔ k + 1.

The mapping (5.45) can be also obtained from the nonsymmetric forms
of the mappings (5.29), (5.32) using a similar procedure.

5.3.3 Separatrix Mapping Approximation

For typical Hamiltonian systems the regular part, R(reg)
n (h), is a smooth

function of h and its deviation from R
(reg)
n (0) is small. Then the integrals

(5.27) in the generating functions (5.24) can be replaced by the Melnikov type
integrals (5.28), i.e., Kn(h) = Kn(0), Ln(h) = Ln(0)2. Then the mapping
(5.45) can be further simplified to

hk+1 = hk − ε
∑

n

Ωn

{
Kn(0) sin

[
Ωn

(
tk +

π

ω(hk)

)
+ χn

]

+Ln(0) cos
[
Ωn

(
tk +

π

ω(hk)

)
+ χn

]}
,

tk+1 = tk +
π

ω(hk)
+

π

ω(hk+1)
, (5.46)

where Kn(0) and Ln(0) are the integrals defined by (5.34).

2 For specific examples see Sections 6.1 and 6.2 where we shall construct the
separatrix mapping for the perturbed double–well potential and the periodically–
driven pendulum.
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The mapping (5.46) has been first introduced in Abdullaev and Zaslavsky
(1995, 1996) to study magnetic field lines in plasmas (see Sect. 10). It is called
as a shifted separatrix mapping since as it was obtained from the conventional
separatrix mapping by shifting the phases Ωtk (see below Sect. 5.4.1).

Since both variables (t, h) in the mappings (5.45), (5.46) are defined in
the neighborhood of the saddle points, they become important to study the
dynamics and statistical properties of chaotic motion in a system. This is
because of the fact that trajectories spend most of time near the saddle point,
and therefore, the whole dynamics is mainly determined by the phase space
structure of system in the neighborhood of saddle points. We will discuss this
subject in Chap. 8.

5.4 Mapping at Arbitrary Sections of Phase Space

In some applications it is necessary to construct mappings with variables
defined at the arbitrary sections of phase space. These mappings can be
also constructed similar to the ones presented above. However, in general, a
construction of such mappings is not straightforward as the mappings to the
sections Σs along the single saddle–saddle connection (see Fig. 5.4). In the
latter case the mapping (5.11) is determined only by orbits between sections
Σs and Σs+1. In order to obtain a mapping (5.11) where the variables (t,H)
are defined, for instance, at the sections Σc (see Fig. 5.4) one needs to know
the topology of all saddle–saddle connections.

Figure 5.5 illustrates the example of the mapping to the sections Σc.
Suppose the orbit crosses the section Σc at (tk, hk). Because of a sensitive
dependence of orbits near the separatrix on their initial condition the next
crossing point (tk+1, hk+1) may lie the section Σc either on the left side for

Σc Σc

Σc

Σs

(tk, hk)

(tk+1, hk+1) (tk+1, hk+1)

1 2

Fig. 5.5. Geometrical illustration of the mapping to the sections Σc. Solid curves
1 and 2 describe the perturbed orbits, and dotted curves are the unperturbed sep-
aratrices
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the orbits of type 1 or on the right side for the orbits of type 2. The direction
of orbits is determined by the value of energy variable H at the crossing point
of the orbit with Σs. Depending on the condition H > Hs = 0 or H < Hs = 0
the orbit crosses the section Σc on the left hand side or on the right hand side.
In this sense the mapping, in general, should be constructed in algorithmic
way. Below we construct corresponding mapping for the system with a single
saddle point and only one a saddle–saddle connection. The construction of
mappings in a system with more than one saddle–saddle connections will be
considered in Sect. 6.2.3 for the periodically–driven pendulum.

5.4.1 Mapping to a Section Σc

The phase space of such a system is shown in Fig. 5.6. The hyperbolic saddle
point is located at (xs = 0, ps = 0). The dotted curve describes the unper-
turbed separatrix. The orbit reflects from the rigid border x = 0 changing
the sign of momentum p. Then the mapping (tk, hk) → (tk+1, hk+1) defines
the Poincaré return map to the section Σc. It has a general form (5.20) with
the generating function (5.22), (5.23). We should put ϑ = 0 (mod 2π) at both
time instants t = tk and at t = tk+1. For the generating functions Sk and
Sk+1 of the mapping (5.20) we have

Sk(tk,H)=
∑

n

[
K+

n (H) cos(Ωntk + χn)−L+
n (H) sin(Ωntk + χn)

]
,

Sk+1(tk+1,H)=
∑

n

[
K−

n (H) cos(Ωntk+1 + χn)−L−
n (H) sin(Ωntk+1 + χn)

]
,

(5.47)

where K±
n (H), L±

n (H) are the integrals

(tk+1, hk+1)

Σc
(tk, hk)

Σϑ

Σs

Fig. 5.6. Geometry of the mapping to the sections Σc and Σϑ in the system with
the single saddle point
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K±
n (H) + iL±

n (H) =

±π/ω(H)∫

0

Vn(H, τ)eiΩnτdτ . (5.48)

Equations (5.20) with the generating functions (5.47) determine the corre-
sponding map. The first set of this mapping is implicit in energy variable H,
and the last set is implicit in time tk+1.

The mapping can be significantly simplified if the stochastic layer is suf-
ficiently thin. In this case one can replace the integrals (5.48) by their values
at H = 0: K±

n ≡ K±
n (0), L±

n ≡ L±
n (0):

K±
n + iL±

n =

±∞∫

0

Vn(0, τ)eiΩnτdτ . (5.49)

In this approximation the generating function (5.47) does not depend on
energy variable H, and the mapping (5.20) takes the simplified form

Hk = hk + ε
∂Sk

∂tk
,

tk+1 = tk +
2π

ω(Hk)
,

hk+1 = Hk − ε
∂Sk+1

∂tk+1
, (5.50)

or

Hk = hk − ε
∑

n

Ωn

[
K+

n sin(Ωntk + χn) + L+
n cos(Ωntk + χn)

]
,

tk+1 = tk +
2π

ω(Hk)
, (5.51)

hk+1 = Hk + ε
∑

n

Ωn

[
K−

n sin(Ωntk+1 + χn) + L−
n cos(Ωntk+1 + χn)

]
.

This map determines the Poincaré return map of energy (H) and time (t)
variables to the section Σc.

The map (5.51) can be also written in the form of mapping (tk,Hk−1) →
(tk+1,Hk):

Hk = Hk−1 + ε
∑

n

Ωn [Kn sin(Ωntk + χn) + Ln cos(Ωntk + χn)]

tk+1 = tk +
2π

ω(Hk)
, (5.52)

where the coefficients Kn = K+
n −K−

n and Ln = L+
n −L−

n are determined by
the Melnikov type integrals (5.34).

Equations (5.52) coincides with the conventional form of the separatrix
map in which the energy (H) and time (t) are defined at the different sections
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of phase space. Indeed, the intermediate variable H coincides with the energy
taken at the section Σs, while t is on the section Σc.

One should also note that the mapping (5.46) at the section Σs can be
formally derived from the mapping (5.52) by shifting the time variable tk
from the section Σc to the section Σs. Since the phase difference between
these sections is π the time difference along the unperturbed orbit equals
to π/ω(H). Taking into account that the energy variable Hk in the map
(5.52) coincides with one at the section Σs and replacing Hk−1 → hk, tk →
tk + π/ω(hk) we obtain the mapping (5.46).

5.4.2 Mapping to Section Σϑ=η

Now we consider the mapping to the arbitrary section Ση of phase space
with constant phase ϑ = η. The schematic view of the section Σϑ is shown
in Fig. 5.6. It is specified by the phase ϑ = η = const, (−π < η < π),
and consists of the segment of a straight line that can be reached from the
section Σc in time ∆t(h) = |η|/ω(h) along unperturbed phase curves about
the separatrix. The return map (tk, hk) → (tk+1, hk+1), where the variables
(tk, hk) are at the section Ση, is given by (5.20). According to (5.22), (5.23)
the generating functions Sk, Sk+1 are

Sk =
∑

n

(
K+

n (H, η) cosΦn(tk,H) − L+
n (H, η) sinΦn(tk,H)

)
,

Sk+1 =
∑

n

(
K−

n (H, η) cosΦn(tk+1,H) − L−
n (H, η) sinΦn(tk+1,H)

)
,

(5.53)

where

Φn(t,H) = Ωn

(
t− η

ω(H)

)
+ χn , (5.54)

and K±
n (H) + iL±

n (H) = R±
n (H):

R+
n (H, η) ≡ R+

n (H, η, t = tk) =

π/ω(H)∫

η/ω(H)

Vn(H, τ)eiΩnτdτ ,

R−
n (H, η) ≡ R−

n (H, η, t = tk+1) =

−π/ω(H)∫

η/ω(H)

Vn(H, τ)eiΩnτdτ . (5.55)

Consider the case of the thin stochastic layer taking the limiting case H → 0.
Then the integrals (5.55) has the following limits. For the value of the phase
η in the interval −π < η < 0 we have R+

n (0) = Kn(0)+ iLn(0) determined by
the integral (5.34) and R−

n = 0. Therefore, the generating function Sk+1 = 0
and the mapping (5.20) is reduced to
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hk+1 = hk + ε
∂S(tk, hk+1)

∂tk
,

tk+1 = tk +
2π

ω(hk+1)
− ε

∂S(tk, hk+1)
∂hk+1

, (5.56)

with the generating function

S(t, h) =
∑

n

(Kn(0) cosΦn(t, h) − Ln(0) sinΦn(t, h)) . (5.57)

Similarly, for 0 < η < π we obtain R+
n = 0 and R−

n (0) = −Kn(0)−iLn(0).
The mapping becomes

hk+1 = hk + ε
∂S(tk+1, hk)

∂tk+1
,

tk+1 = tk +
2π

ω(hk)
− ε

∂S(tk+1, hk)
∂hk

. (5.58)

The mapping (5.56) is implicit with respect to the variable hk+1, while the
mapping (5.58) is implicit in the variable tk+1. One should note that only
the phases Φn(t, h) of the generating function S(t, h) depends on the energy
h.

5.5 Conclusion

In this Chapter we have described the general method to construct canon-
ical mappings near the separatrix of Hamiltonian systems. The application
of these methods to the specific Hamiltonian system will be considered in
the next chapter. There we shall present some critical comments on existing
mapping methods near the separatrix and give bibliographic notes.
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In this chapter we shall apply the methods developed in the previous sec-
tion to construct mappings near separatrix for some specific problems. They
include a motion in a double–well potential, dynamics of the periodically-
driven oscillator. We consider also the dynamics of particles near the separa-
trix of long–range potential field. These problems are a motion of particle in
a periodically–driven Morse potential and the Kepler problem.

6.1 Motion in a Perturbed Double–Well Potential

As an example we consider a motion of particle in a double − well poten-
tial under external time−periodic perturbation. The system is described by
Hamiltonian

H = H0(x, p) + εH1(x, p, t) ,

H0(x, p) =
p2

2
− x2

2
+
x4

4
,

H1(x, p, t) = εx cos(Ωt+ χ) . (6.1)

The potential function U(x) = −x2/2 + x4/4 and the phase space of un-
perturbed motion (ε ≡ 0) are in Fig. 6.1. The unperturbed system has a
single hyperbolic fixed point at (x = 0, p = 0) and two elliptic fixed points at
(x = ±1, p = 0) (see Fig. 6.1b). For −1/4 < H = H0(x, p) < 0 a motion is
trapped in potential wells (curves 1), and for H > 0 a motion is un-trapped
(curve 3), and the separatrix (H = 0) is described by the curve 2. The action
variable I for the trapped motion (H < 0) is given by

I =
1
2π

∮
p(x;H)dx =

1
π

∫ −b

−a

√
2(H + x2/2 − x4/4)dx

=
2a
3π

[E(k) − b2K(k)] , (6.2)

where (a, b) =
√

1 ±
√

1 + 4H, K(k) and E(k) are the complete elliptic in-
tegrals of the first kind and the second kind, respectively, with a module
k:

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 105–138 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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-0.25

0
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U
(x

)

x

(a)

3

2 11

(b)

x

p

Fig. 6.1. (a) Double–well potential potential U(x) = −x2/2 + x4/4; (b) Phase
space of motion

k =
√

2(1 + 4H)1/4

(1 +
√

1 + 4H)1/2
.

For the untrapped motion (H > 0) we introduce the action variable I
according to the definition given above:

I =
1
π

∫ 0

−a

√
2(H + x2/2 − x4/4)dx

=
√

2
3π

[(a2 − b2)E
(
k−1
)

+ b2K
(
k−1
)
] . (6.3)

The action I(H) is a continuous function of energy H at the separatrix H = 0.
The unperturbed trajectory x(t), p(t) can be determined by the second

relation in (5.10). For the trapped motion (H < 0) we have

x(ϑ) = ±a
√

1 − k2 sn2

(
K(k)

ϑ

π
, k

)
= ±a dn

(
K(k)

ϑ

π
, k

)
,

p = ∓a2k2

√
2

sn
(
K(k)

ϑ

π
, k

)
cn
(
K(k)

ϑ

π
, k

)
, (6.4)

where sn(u; k), cn(u; k),dn(u; k) are the Jacobi elliptic functions. The solution
(6.4) is chosen to order to have the orbit which crosses the section Σc (x =
±a) when ϑ = 0, and the section Σs at ϑ = ±π. The unperturbed frequency,
ω(H) = dH0(I)/dI, of this motion is

ω(H) =
πa√

2K(k)
. (6.5)

Outside the potential wells (H > 0) the orbit is described by
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x(ϑ) = ±a cn
(
u; k−1

)
,

p(ϑ) = ∓a(1 + 4H)1/4 sn
(
u; k−1

)√
1 − k−2 sn2 (u; k−1) ,

u = K
(
k−1
) ϑ
π
. (6.6)

Note that at ϑ = ±π, p(±π) = ±
√

2H. The frequency is given by

ω(H) =
πka√

2K (k−1)
. (6.7)

In Fig. 6.2 the dependence of the frequency of motion, ω(h), given by (6.5),
(6.7) on the energy h is plotted.
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Fig. 6.2. Dependence of frequency of motion, ω(h) on energy h

Near the separatrix (H → 0) the frequency, ω(h), goes to zero according
to the following asymptotics:

ω(H) =
1

ln 16
|H|

+O(H) , |H| → 0 . (6.8)

The trajectory on the unperturbed separatrix (H = 0) is described by

x(±)
s (t) = ±

√
2

cosh(t− tc)
, p(±)

s (t) = ∓
√

2 sinh(t− tc)
cosh2(t− tc)

, (6.9)

where tc is a time instant when the orbit crosses the section Σc.
Using (6.4), (6.6) the perturbation Hamiltonian H1(x, p, t) in (6.1) can be

expanded in Fourier series in the angle variable ϑ:

H1(I, ϑ, t) =
∑

s=−1,1

∞∑

m=1

Hm(H)






cos(mϑ− sΩt), for H < 0 ,

cos([m− 1/2]ϑ− sΩt), for H > 0 ,
(6.10)



108 6 Mappings Near Separatrix. Examples

Hm(H) = ±a






π
K(k)

qm
−

1+q2m
−
, for H < 0

π
K(k−1)

q
m−1/2
+

1+q2m−1
+

, for H > 0 ,
(6.11)

where

q− = exp
[
−πK(

√
1 − k2)/K(k)

]
,

q+ = exp
[
−πK

(√
1 − k−2

)
/K
(
k−1
)]

.

From (6.10) follows that the primary resonance conditions are
mω(H) = Ω (m = 0, 1, 2, . . .) for the trapped motion (H < 0). For untrapped
motion (H > 0) the corresponding conditions are (2m− 1)ω(H) = 2Ω.

The geometry of the separatrix map for the Hamiltonian system (6.1) is
shown in Fig. 6.3. The cross sections Σc consist of the segments of the x
axis located near the farthest crossing points of the unperturbed separatrix
with the x axis. The section Σs is located near the saddle point (xs, ps) and
consists of two perpendicular to each other segments of the x and p axes with
the center at (xs = 0, ps = 0). There are two types of saddle–saddle connec-
tions. For the sake of simplicity we construct the nonsymmetric form of the
separatrix mapping (5.29) presented in Sect. 5.2.4. The generating function
S(tk, hk+1) of this mapping is given by (5.30) which takes the following form
for the Hamiltonian (6.1)

S(tk, hk+1) = K(hk+1) cosΦ+(tk, hk+1) − Ln(hk+1) sinΦ+(tk, hk+1) .

From (6.1) follows that the perturbation function Vn(H, τ) is equal to x(τ),
and according to the definition (5.34) the integral K(h) is equal to:

xΣs

y

ΣcΣc

(tk, hk)

(tk+1, hk+1)

3

4 2

1

(tk+2, hk+2)

Fig. 6.3. Geometry of the separatrix map. Solid curve describes the perturbed
orbit, and dotted curve is the unperturbed separatrix
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K(h) =

π/ω(h)∫

−π/ω(h)

x(±)(τ) cos(Ωτ)dτ = ±F (h) ,

F (h) =
aπ

ω(h)

1∫

−1






dn (K(k)τ ; k) cos(Ωπτ/ω)dτ, for h < 0 ,

cn
(
K(k−1)τ ; k−1

)
cos(Ωπτ/ω)dτ, for h > 0 ,

(6.12)

for the right (x > 0) and left (x < 0) halves of phase space, respectively. At
the separatrix h = 0 we have

K(0) =

∞∫

−∞

x(±)
s (t) cos(Ωτ)dτ

= ±
√

2

∞∫

−∞

cos(Ωτ)dτ
cosh τ

=
±
√

2π
cosh(πΩ/2)

. (6.13)

One can also show that

L(h) =

π/ω(h)∫

−π/ω(h)

x(±)(τ) sin(Ωτ)dτ = 0 . (6.14)

As was shown in Sect. 5.2.5 the integral K(h) consists of regular and
oscillatory parts: K(h) = K(reg)(h) + K(osc)(h). According to (5.39) the
regular part can be expressed through the Fourier components Hm(H) (6.11)
of the perturbation Hamiltonian. Using (6.5), (6.7) we have

K(reg)(h) =
2π
ω(h)

HΩ/ω(h)(h) = ± 2πa√
1 +

√
1 + 4h

q
Ω/ω(h)
−

1 + q
2Ω/ω(h)
−

= ± π
√

2
cosh

(√
2ΩK

(√
1 − k2

)
/a
) , (6.15)

for the case h < 0, and

K(reg)(h) =
2π
ω(h)

HΩ/ω(h)+1/2(h) = ± 2πa
(1 + 4h)1/4

q
Ω/ω(h)
+

1 + q
2Ω/ω(h)
+

= ± π
√

2
k cosh

(√
2ΩK

(√
1 − k−2

)
/ka
) , (6.16)

for the case h > 0. In the limit |h| → 0 the both expressions of K(reg)(h)
coincide with K(0) (6.13) obtained by the direct integration.

The asymptotical formula for K(osc)(h) can be found using the general
asymptotical formulae for the Melnikov type integrals, R(osc)(h), near the
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separatrix obtained in Appendix B. Our problem corresponds to the cases
(ii) and (iii) considered in Sect. B.1.4, and the expression for K(osc)(h) is
given by (B.35). For the Hamiltonian system (6.1) we have the following
parameters α = γ = 1, aξ = 1, aη = bξξ = bξη = bηη = 0. Therefore, one
obtains

K(osc)(h) = ∓2
√

2|h|
Ω2 + 1

{
Ω sin[πΩ/ω(h)], for h < 0 ,
− cos[πΩ/ω(h)], for h > 0 , (6.17)

where the upper sign (−) corresponds to the right side of the phase space
(x > 0), and the lower sign (+) − to the left side of the phase space (x < 0).

Figure 6.4 shows the dependence of the integral K(h) on h obtained by
the direct numerical integration of (6.12), as well as by the analytical for-
mulae (6.15), (6.16), and (6.17): solid curve 1 corresponds to the numerical
calculations, dashed curve 2 − to the analytical result, and dotted curve 3 −
to the regular part K(reg)(h) given by (6.15), (6.16). The perturbation fre-
quency is taken equal to Ω = 4.53236. The corresponding rescaling parameter
λ = exp(2πγ/Ω) is equal to 4.

As seen from Figs. 6.4a-c analytical formulae (6.15), (6.16) the regular
part K(reg)(h) and the asymptotical formula (6.17) for the oscillatory part,
K(osc)(h), well describe the behavior of the integral K(h). The accuracy of
approximation increases with approaching the separatrix. On the other hand
the numerical calculations confirm also the following rescaling property,

K(osc)(λ2h) = λK(osc)(h) , (6.18)

of the oscillatory part of the integral K(h) following from the asymptotical
formula (6.17).

One can easily see that zeros of K(osc)(h) coincide with the primary
resonant values of hmn: mω(h) = Ω (m = 0, 1, 2, . . .) at h < 0, and
(2m− 1)ω(h) = 2Ω for h > 0. Therefore, according to the primary resonant
approximation (see Sect. 5.3.1) one can neglect oscillatory parts, K(osc)(h),
in the mapping retaining only smooth regular parts K(reg)(h).

The dynamics of the system is described by two mappings, (tk+1, hk+1) =
M̂ (±)(tk, hk), (5.30), corresponding to the two different saddle–saddle con-
nections:

hk+1 = hk ∓ εΩF (hk+1) sin
(
ϕk +

πΩ

ω(hk+1)
+ χ

)
,

ϕk+1 = ϕk +
2πΩ

ω(hk+1)
∓ ε

dF (hk+1)
dhk+1

cos
(
ϕk +

πΩ

ω(hk+1)
+ χ

)

±εF (hk+1)
d

dhk+1

πΩ

ω(hk+1)
sin
(
ϕk +

πΩ

ω(hk+1)
+ χ

)
, (6.19)

where F (hk+1) ≡ K(reg)(h) and the phase variable ϕ = Ωt is introduced.
The map with the (+) sign describes the right side of phase space (x > 0),
while one with the (-) sign corresponds to (x < 0).
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Fig. 6.4. Dependence of the integral K(h) on the relative energy h: solid curve
1 describes K(h) obtained by the numerical integration of the integral (6.12), and
dashed curve 2 describes K(h) obtained by the analytical formulae (6.15), (6.16),
and (6.17), and dotted curve 3 corresponds to the regular part K(reg)(h) given by
(6.15), (6.16). (a) in the interval −0.25 < h < 0.16: (b) Expanded view of K(h) in
the rectangular box region shown in (a); (c) Expanded view of the rectangular box
region shown in (b). The perturbation frequency Ω = 4.53236, and the rescaling
parameter λ = exp(2πγ/Ω) = 4
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The simplified form of the mapping given (5.45) in our case can be written
as

hk+1 = hk ∓ εΩK(reg)(hk+1) sin
(
ϕk +

πΩ

ω(hk)
+ χ

)
,

ϕk+1 = ϕk +
πΩ

ω(hk+1)
+

πΩ

ω(hk)

∓εdK
(reg)(hk+1)
dhk+1

cos
(
ϕk +

πΩ

ω(hk)
+ χ

)
. (6.20)

Further simplification of the mapping can be done near the small neighbor-
hood of the separatrix. Using the asymptotics of the frequency ω(h) (6.8)
|h| → 0 and replacing K(reg)(h) by K(0) we obtain

hk+1 = hk ∓ εΩK(0) sin
(
ϕk +

Ω

2
ln

16
|hk|

+ χ

)
,

ϕk+1 = ϕk +
Ω

2

(
ln

16
|hk|

+ ln
16

|hk+1|

)
. (6.21)

The map (6.21) is an example of the algorithmic separatrix map, a term
which is introduced by Shevchenko (1999). The dynamics of system near the
separatrix is described by the sequence of iterations of the maps M̂ (±). This
sequence is determined by a certain rule. Let S(+) and S(−) be domains of
phase space (x, p) in the right (x > 0) and the left (x < 0) half planes,
respectively. Then

M̂k+1 =






M̂ (+) if zk ∈ S(+) and hk < 0 ,
M̂ (−) if zk ∈ S(+) and hk > 0 ,
M̂ (+) if zk ∈ S(−) and hk > 0 ,
M̂ (−) if zk ∈ S(−) and hk < 0 ,

(6.22)

where zk = (xk, pk). Applications of the separatrix mapping (6.21) to study
the rescaling properties of Hamiltonian systems near the saddle points will
be given in Sect. 8.2, and the statistics of a residence time and a Poincaré
recurrence − in Sect. 9.2.

The mappings (6.20), (6.21) are valid for small values of perturbation,
ε � 1. Note, that the second mapping (6.21) is applicable only the area close
to the separatrix, while the first mapping (6.20) can be applied also far from
the separatrix.

For illustration we have applied the mapping (6.20) to obtain Poincaré
sections of system in the (ϕ, h) plane of the 1-th (h > 0) and 4-th branches
(h < 0) of the section Σs shown in Fig. 6.3a. It has been also compared with
the small step numerical integration of the Hamiltonian system (6.1) using
the symplectic integrator (see Sect. 1.5). The mapping result is shown in
Fig. 6.5a, and the results obtained from the numerical integration is presented
Fig. 6.5b. Calculations in both cases were performed with a set of identical
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Fig. 6.5. Comparison of the mapping (6.20) with the direct integration of the
Hamiltonian system (6.1). The perturbation frequency Ω is the same as in Fig. 6.4,
and the perturbation amplitude ε = 10−3. (a) corresponds to the mapping;
(b) − to the equations

initial coordinates. As seen from Fig. 6.5 the mapping well reproduces the
structure of phase space. For the time-step of integration, ∆t, of the equation,
equal to 4π×10−3/Ω, the mapping runs two order faster than the small-step
symplectic integrator.
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6.2 Mapping for the Periodically Driven Pendulum

Consider the periodically–driven pendulum given the following Hamiltonian

H(x, p, t) = H0(x, p) + εH1(x, p, t) , (6.23)

H0(x, p) =
p2

2
− ω2

0 cosx , (6.24)

εH1(x, p, t) = εω2
0

[
A cos(x−Ωt− χ) +B cos(x+Ωt+ χ)

]
. (6.25)

The quantities A and B describe amplitudes of waves propagating in positive
and negative directions of the x-axis.

The geometry of the separatrix map (tk, hk) → (tk+1, hk+1) is shown in
Fig. 6.6. The sections Σs on the (x, p)-plane consist of two perpendicular
segments of x and p axes with the center at the hyperbolic fixed points
(xs = 2π(s+1/2), ps = 0) (s = 0,±1,±2, . . .). Sections Σc consist of segments
perpendicular to the unperturbed separatrices (xs(t), ps(t)) at the midpoint
between two consecutive saddle points, xc = 2πs.

x

p

(tk, hk) (tk+1, hk+1)

(tk+2, hk+2)

Σs Σs

Σc

Σc

Fig. 6.6. Geometry of the separatrix map to the section Σs for the periodically
driven pendulum

The system is described by the Hamiltonian (6.23). Changing the Hamil-
tonian to H → h = (H−ω2

0)/ω2
0 , ω0t → t, p/ω0 → p we write the Hamiltonian

in the form

H =
p2

2
− cosx− 1 + ε [A cos(x− Λt− χ) +B cos(x+ Λt+ χ)] , (6.26)

where Λ = Ω/ω0. The unperturbed motion (ε = 0) is trapped for H < 0 and
un-trapped for H > 0 (curves 1 and 3 in Fig. 5.1). The action-angle variables
(I, ϑ) for the unperturbed Hamiltonian (ε = 0) (see Sect. 1.4) should be
introduced in such a way that they should be continuous at the separatrix
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H = 0. For this we define the action variable I for the trapped motion as
an integral taken along the segment of the orbit on the upper, p > 0, (lower,
p < 0) half of the phase space (x, p):

I =
1
2π

∫ a

b

p(x,H)dx =
1
2π

∫ a

b

√
2(H + 1 + cosx)dx

=
4
π

[
E(k) − (1 − k2)K(k)

]
, (6.27)

where K(k), E(k) are the complete elliptic integrals with a module

k =
√

1 +H/2 ,

and a, b are the roots of the equation p(x,H) = 0 (2π(s − 1/2) < a, b <
2π(s+ 1/2)). The corresponding angle variable ϑ is introduced as

ϑ =
∂

∂I

∫ x

2πs

p(x,H)dx = ω(H)
∫ x

0

dx√
2(H + 1 + cosx)

= ω(H)F (k−1 arcsin(x/2); k) , (6.28)

with the conditions that ϑ = 0 at the sections Σc (x = 2πs) and ϑ(mod 2π) =
±π at Σs, (x = 2π(s+ 1/2). From (6.28) follows that

x(ϑ;H) = 2 arcsin[ksn(ϑ/ω(H); k)] . (6.29)

The frequency of motion ω(H) = dH(I)/dI = π/K(k) has the following
asymptotics near the separatrix:

ω(H) =
2π

ln(32/|H|) , for H → −0 . (6.30)

For the untrapped motion (H > 0) the action-angle variables are intro-
duced as in Sect. 1.4.

I =
1
2π

2π(s+1/2)∫

−2π(s−1/2)

p(x,H)dx =
4k
π
E
(
k−1
)
,

ϑ =
∂

∂I

x∫

2πs

p(x′,H)dx′ == ω(H)k−1F
(
x/2, k−1

)
,

sin(x/2) = sn
(
kϑ/ω(H); k−1

)
= sn

(
k(t− t0); k−1

)
. (6.31)

The frequency ω(H) = πk/K
(
k−1
)

has the same asymptotics (6.30) at H →
+0.

The orbits on the upper (lower) branches of the separatrix (H = 0) are

sinx±(t) = ± sinh(t− tc)
cosh2(t− tc)

, cosx±(t) =
2

cosh2(t− tc)
− 1 . (6.32)
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For the system with the Hamiltonian (6.26) the perturbation Hamiltonian
H1(t, ϑ, p0) in (5.13)

H1(t, ϑ, p0) = ε {A cos [x(ϑ, p0) − Λt− χ] +B cos [x(ϑ, p0) + Λt+ χ]} ,

can be presented in the form (5.21) with

V1(H, t− tc) = (A+B) cosx(ϑ;H), Ω1 = Λ , χ1 = χ ,

V2(H, t− tc) = (A−B) sinx(ϑ;H) , Ω2 = Λ , χ2 = χ− π

2
. (6.33)

Remind that Vn(H, t− tc) ≡ Hn(H, ϑ). On the separatrix we have

V1(0, τ) = (A+B)
(

2
cosh2 τ

− 1
)
,

V2(0, τ) = ±(A−B)
sinh τ
cosh2 τ

. (6.34)

6.2.1 Behavior of Integrals Kn(h) and Ln(h) (5.31)

We evaluate the integrals Kn(h) and Ln(h) (5.31) which appear in the sim-
plified form of the mapping (5.45). Using the relations (6.33), (6.29), (6.31)
these integrals can be reduced to

K1(h) =

π/ω(h)∫

−π/ω(h)

V1(h, τ) cos(Λτ)dτ = 4(A+B)

×






k2
π/ω(h)∫

0

cn2 (τ, k) cos (Λτ) dτ, for h < 0 ,

π/ω(h)∫
0

cn2
(
kτ, 1

k

)
cos (Λτ) dτ, for h > 0 ,

(6.35)

L2(h) =

π/ω(h)∫

−π/ω(h)

V2(h, τ) sinΛτdτ = ±4(A−B)

×






k
π/ω(h)∫

0

sn (τ, k)
√

1 − k2sn2 (τ, k) sin (Λτ) dτ, for h < 0 ,

π/ω(h)∫
0

sn
(
kτ, 1

k

)
cn
(
kτ, 1

k

)
sin (Λτ) dτ, for h > 0 ,

(6.36)

K2(h) =

π/ω(h)∫

−π/ω(h)

V2(h, τ) cosΛτdτ = 0 ,
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L1(h) =

π/ω(h)∫

−π/ω(h)

V1(h, τ) sinΛτdτ = 0 , (6.37)

where

ω(h) = π

{
1/K(k), for h < 0 ,
k/K(k−1), for h > 0 . (6.38)

According to Section (5.2.5) the integrals K1(h), L2(h) consist of regular
and oscillatory parts:

K1(h) = K
(reg)
1 (h) +K

(osc)
1 (h) ,

L2(h) = L
(reg)
2 (h) + L

(osc)
2 (h) . (6.39)

The asymptotical behavior of oscillatory partsK(osc)
1 (h), L(osc)

2 (h) in the limit
|h| → 0 are found in Appendix B.2. Putting in (B.39), (B.40) the parameter
values α = 1, γ = 1 and Ω = Λ we have

K
(osc)
1 (h) = (A+B)

|h|
Λ






(
1 + Λ2

4+Λ2

)
sin
(

πΛ
ω(h)

)
, for h < 0

−
(
1 − Λ2

4+Λ2

)
sin
(

πΛ
ω(h)

)
, for h > 0 ,

(6.40)

L
(osc)
2 (h) = ∓(A−B)

2
√

2|h|
1 + Λ2

×





Λ
(
1 + |h|

12

[
3 + 1+Λ2

9+Λ2

])
cos
(

πΛ
ω(h)

)
, for h < 0 ,

(
1 + |h|

4

[
−1 + 1+Λ2

9+Λ2

])
sin
(

πΛ
ω(h)

)
, for h > 0 ,

(6.41)

where the sign (−) corresponds to the upper branch of the separatrix, and
the sign (+) corresponds to the lower branch of the separatrix. In (6.41) for
L

(osc)
2 (h) we have also presented the next expansion term proportional to

|h|3/2.
For h = 0, when the functions Vn(h, τ) are given by (6.34) the integrals

(6.35), (6.36) can be exactly integrated

K1(0) = 2(A+B)

∞∫

−∞

cos(Λτ)dτ
cosh2 τ

=
2πΛ(A+B)
sinh(πΛ/2)

,

L2(0) = ±(A−B)

∞∫

−∞

sinh τ sin(Λτ)dτ
cosh2 τ

= ±2πΛ(A−B)
cosh(πΛ/2)

. (6.42)

For arbitrary values of h we have numerically integrated the integrals
(6.35), (6.36). The dependencies of the integrals K(h), L(h) on the energy h
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in the interval [–2, 1] are presented in Figs. 6.7a and 6.8a, where solid lines 1
correspond to K(h) and L(h), while dashed lines 2 describe the regular parts,
K

(reg)
1 (h) and L

(reg)
2 (h), respectively. The latter are found by subtracting the

oscillatory parts,K(osc)
1 (h) and L

(osc)
2 (h) given by (6.40), (6.41) from K(h)

and L(h). Figures 6.7(b)−(c), 6.8, (b)−(c) show the consecutive expanded
views of the dependencies K1(h) and L2(h) vs h at its small values. They con-
firm the rescaling properties of the oscillatory parts, K(osc)

1 (h) and L
(osc)
2 (h),

for small values of h described by the asymptotical formulae (6.40), (6.41):

K
(osc)
1 (λ2h) = λ2K

(osc)
1 (h) ,

L
(osc)
2 (λ2h) = λL

(osc)
2 (h) , (6.43)

where λ = exp(2π/Λ) is a rescaling parameter coinciding with the corre-
sponding parameter in (5.8). Such a rescaling behavior of K1(h) and L2(h)
is related with the logarithmic asymptotics (6.30) of the frequency of oscilla-
tions ω(h) near the separatrix.

One should note that the integrals Kn(0), Ln(0) are exponentially small
at large frequency of perturbation Λ = Ω/ω0 � 1, i.e.,

Kn(0), Ln(0) ∼ e−πΛ/2 � 1 . (6.44)

In this case the oscillatory parts K(osc)
n (h), L(osc)

n (h) become dominant.

6.2.2 Mapping to Sections Σs

The general form of this mapping is given by (5.29). The corresponding gen-
erating function (5.30) in our case, according to (6.33), is determined by

S(t, h) = K(h) cosΦ(t, h) , (6.45)

where

K(h) = Λ [K1(h) + L2(h)] ,

Φ(t, h) = tΛ+
πΛ

ω(h)
+ χ . (6.46)

One can show that the oscillatory parts of the integrals K1(h), L2(h) have
zeros at the primary resonant values of h determined by (2m − 1)ω(h) =
2Ω for h < 0 and mω(h) = Ω for h > 0. Then according to the primary
resonance approximation (Section 5.3.1) the integrals K1(h), L2(h) can be
approximated only by their regular parts K(reg)

1 (h), L(reg)
2 (h).

Below we present the simplified form of mapping at the sections Σs given
by (5.45). Using (6.45) one obtains the following expressions for perturbation
functions
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Fig. 6.7. Dependence of integrals K1(h) (normalized to A + B) on h (solid curve

1). Dashed lines 2 correspond to K
(reg)
1 (h); (b) and (c) show the expanded view of

boxed areas in (a) and (b), respectively. The value Λ = 5.4575, λ2 = exp(4π/Λ) =
10



120 6 Mappings Near Separatrix. Examples

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-2 -1.5 -1 -0.5 0 0.5 1

L 2
(h

)

h

1

2

-0.1

-0.05

0

0.05

0.1

0.15

-0.1 -0.05 0 0.05 0.1

L 2
(h

)

h

1

2

-0.02

0

0.02

0.04

0.06

-0.01 -0.005 0 0.005 0.01

L 2
(h

)

h

1

2

(a)

(b)

(c)
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F (tk, hk+1, hk) = K(reg)(hk+1) sinΦ(tk, hk) ,

G(tk, hk+1, hk) =
1
Λ

dK(reg)(hk+1)
dhk+1

cosΦ(tk, hk) , (6.47)

and the mapping (5.45) takes the form

hk+1 = hk − εK(reg)(hk+1) sin
(
ϕk +

πΛ

ω(hk)
+ χ

)
,

ϕk+1 = ϕk +
πΛ

ω(hk)
+

πΛ

ω(hk+1)
+ ε

dK(reg)(hk+1)
dhk+1

cos
(
ϕk +

πΛ

ω(hk)
+ χ

)
,

(6.48)

where ϕ = Λt.
As seen from Figs. 6.7, 6.8 the regular parts, K(reg)

1 (h), L(reg)
2 (h), are

smooth functions h. In the small neighborhood of the separatrix h = 0
their deviations from K1(0), L2(0) are small, i.e., |K(reg)

1 (h) −K1(0)| � 1,
|L(reg)

2 (h) − L2(0)| � 1. Then the mapping (6.48) can be further simplified
by replacing K

(reg)
1 (h) and L

(reg)
2 (h) by K1(0), L2(0). Using (6.42) and the

asymptotics of ω(H) (6.30) near the separatrix the mapping (6.48) is reduced
to

hk+1 = hk − εK±(0) sin
(
ϕk +

Λ

2
ln

32
|hk|

+ χ

)
,

ϕk+1 = ϕk +
Λ

2

(
ln

32
|hk+1|

+ ln
32
|hk|

)
, (6.49)

where

K±(0) = Λ(K1(0) + L2(0)) =
4πΛ2

sinh(πΛ)

[
Ae±πΛ/2 +Be∓πΛ/2

]
. (6.50)

The sign (±) corresponds to the integral taken along the separatrix on the
upper (lower) half phase space, p > 0, (p < 0), respectively.

Let (ϕk, hk) be the phase and the energy at the k-th mapping step. Sup-
pose also, that (xk, pk) are the corresponding phase space coordinates. The
sequence of the mapping iteration M̂k: (ϕk+1, hk+1) = M̂k+1(ϕk, hk), and
the coordinates (xk+1, pk+1) after one map iteration are determined by the
following algorithm

M̂k+1 =






M̂ (+), if M̂k = M̂ (+) and hk > 0 ,
M̂ (−), if M̂k = M̂ (−) and hk > 0 ,
M̂ (−), if M̂k = M̂ (+) and hk < 0 ,
M̂ (+), if M̂k = M̂ (−) and hk < 0 ,

(6.51)

where M̂ (±) are mappings (6.49) along upper and lower branches, respec-
tively.
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The separatrix mapping (6.49) will be used in Sect. 8.1 to analyze the
rescaling properties of Hamiltonian system near the hyperbolic saddle point,
and in Sect. 9.3 to study a chaotic transport along the stochastic layer.

6.2.3 Mapping to Sections Σc

For the problem under consideration there are two different types of sections
Σc: Σ+

c and Σ−
c corresponding to the upper and lower branches of the sep-

aratrix. The geometry of the separatrix mapping to the cross sections Σ±
c

is schematically shown in Fig. 6.9. In general, there are four independent
mappings of the sections Σ±

c to Σ±
c which fully determine the dynamics of

the system. These mapping should be constructed in two steps: in the first
step one should find the map from the section Σ±

c to Σs along a certain
saddle–saddle connection, and in the second step one should map Σs to Σ±

c

along another saddle–saddle connection which depends on the sign energy on
the section Σs. Therefore the dynamics of system is then fully determined,
in general, by four independent mappings, T̂ (±)

1 and T̂
(±)
2 , where T̂ (±)

1 stands
for the mapping of variables (tk, hk) ∈ Σ±

c to (Tk,Hk) ∈ Σs along upper (+)
or lower (−) branches of the separatrix, and T̂

(±)
2 stands for the mapping of

variables (Tk,Hk) ∈ Σs to (tk+1, hk+1) ∈ Σ±
c along upper (+) or lower (−)

branches of the separatrix, respectively.
These mappings can be constructed using the general mapping form (5.16)

described in Sect. 5.2. Below we derive nonsymmetric forms of these mappings
similar to ones (5.29), (5.32) obtained in the subsection 5.2.4.

Σs

Σc
-

(Tk,H k)

p

Σc
-

(tk+2,hk+2)

Σc
+ Σc

+ (tk+1,hk+1)(tk,hk)

x

Fig. 6.9. Geometry of the separatrix map to sections Σ±
c for the periodically–

driven pendulum
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Mapping Σ±
c to Σs

For the sake of simplicity we choose τ0 = τk+1. Recall that τk+1 − tk =
π/ω(Hk). Taking t = tk, ϑ = 0 at the section Σ±

c the generating function
(5.22) is reduced to

Sk(tk,Hk) =
∑

n

[Kn(Hk) cos(Ωntk + χn) − Ln(Hk) sin(Ωntk + χn)] ,

(6.52)

where

Kn(H) =

π/ω(H)∫

0

Vn(H, τ) cos(Ωnτ)dτ ,

Ln(H) =

π/ω(H)∫

0

Vn(H, τ) sin(Ωnτ)dτ , (6.53)

Since τ0 = tk+1 we have Sk(tk+1,Hk) ≡ 0.
Further for the sake of simplicity we consider the case of thin stochastic

layer by taking the limit H → 0. Using formulae for the quantities Vn(H, τ)
at the separatrix given by (6.33), (6.34) we obtain the following integrals

K1 ≡ K1(0) = 2(A+B)

∞∫

0

cosΛτ
cosh2 τ

dτ =
πΛ(A+B)
sinh(πΛ/2)

,

K2 ≡ K2(0) = ±(A−B)

∞∫

0

sinh τ cosΛτ
cosh2 τ

dτ ,

L1 ≡ L1(0) = 2(A+B)

∞∫

0

sinΛτ
cosh2 τ

dτ ,

L2 ≡ L2(0) = ±(A−B)

∞∫

0

sinh τ sinΛτ
cosh2 τ

dτ = ±2πΛ(A−B)
cosh(πΛ/2)

, (6.54)

and the generating function takes the form

Sk(tk) =
1

2Λ
ε
[
K± cos(Λtk + χ) + L± sin(Λtk + χ)

]
, (6.55)

where the following notations are introduced: K± = 2Λ(K1 +L2) and L± =
2Λ(K2 − L1) . Notice that the coefficient K± coincides with (6.50). Taking
into account that Sk(tk+1,Hk) ≡ 0 and using (5.16), (6.55), the mapping
(Tk,Hk) = T̂

(±)
1 (tk, hk) can be written as
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Hk = hk − 1
2
ε
[
K± sin(ϕk + χ) + L± cos(ϕk + χ)

]
,

Φk = ϕk +
Λ

2
ln

32
|Hk|

, Φk = ΩTk . (6.56)

Mapping Σs to Σ±
c

To construct this map suppose we choose τ0 = τk in (5.22), which gives
Sk(tk) ≡ 0. Then taking t = tk+1 , ϑ = 0 at the section Σ±

c and performing
similar procedure as above we obtain the following generating function

Sk+1(tk+1) = − 1
2Λ

ε
[
K± cos(Λtk + χ) − L± sin(Λtk + χ)

]
, (6.57)

Therefore the mapping (tk+1, hk+1) = T̂
(±)
2 (Tk,Hk) can be presented as

ϕk+1 = Φk +
Λ

2
ln

32
|Hk|

,

hk+1 = Hk − 1
2
ε
[
K± sin(ϕk+1 + χ) − L± cos(ϕk+1 + χ)

]
.

(6.58)

According to scheme shown in Fig. 6.9 the mapping

(tk+1, hk+1) = M̂(tk, hk) (6.59)

of the Σ±
c to Σ±

c is presented by two consecutive mappings T̂±
1 , T̂±

2 , given
by the following rules

M̂ =






T̂+
2 T̂+

1 , if (tk, hk) ∈ Σ+
c and Hk > 0 ,

T̂−
2 T̂+

1 , if (tk, hk) ∈ Σ+
c and Hk < 0 ,

T̂+
2 T̂−

1 , if (tk, hk) ∈ Σ−
c and Hk < 0 ,

T̂−
2 T̂−

1 , if (tk, hk) ∈ Σ−
c and Hk > 0 .

(6.60)

Consider a particular case A = B = 1 when the problem coincides with
the one considered in Sect. 5.1.1. Then the coefficient K± = W/ε, where
W is defined by (5.6), L± = −2ΛL1. The mapping (6.59) can be written in
the following simplified form as a mapping (tk,Hk−1) → (tk+1,Hk) for the
non-canonical variables (t,H):

Hk = Hk−1 −W sin(ϕk + χ) ,

ϕk+1 = ϕk + Λ ln
32
|Hk|

, (6.61)

with the energy, Hk, defined at the section Σs and time (or phase), ϕk de-
fined at the sections Σ±

c . The mapping (6.61) formally coincides with the
conventional separatrix mapping (5.7) (supposing χ = 0). The latter can
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be also obtained from the mapping (6.49) by replacement of the phase,
ϕk + Λ/2 ln(32/|hk|) → ϕk. The mapping (6.61) clarifies the meaning of
variables (t, h) in the conventional separatrix mapping (5.7).

In spite of this coincidence, however, there is a fundamental difference
between these mappings. The canonical mappings (6.49), (6.56), (6.58) are
supplemented with the corresponding rules (6.51), (6.60) of their application
which fully determine the evolution of the system in phase space. The formal
derivation of the conventional separatrix mapping (5.7) by calculating the in-
crements does not give any rules to apply this mapping to study the dynamics
of the system. For this reason, it has been mostly employed to estimate the
width of the stochastic layer.

6.3 Mapping for the Periodic–Driven Morse Oscillator

Consider the example of a Hamiltonian system with the saddle point located
at infinity, namely the classical Morse oscillator driven by time-periodic force.
This system has been widely used as the main model in the studies of sto-
chastic excitation and dissociation of diatomic molecules in a microwave field
and associated with the onset of chaos (see Davis and Wyatt (1982); Goggin
and Milonni (1988)). The model is described by the Hamiltonian

H =
p2

2m
+D

(
1 − e−x/a

)2

+ xE0d cos(Ωt+ χ) , (6.62)

where D is the depth of potential well, d is a molecule’s dipole moment, Ω and
E0 are the frequency and the amplitude of a microwave field, the parameter
a is the effective width of the unperturbed potential function U(x) = D(1 −
e−x/a)2, shown in Fig. 6.10. The latter has a minimum at x = 0.

The phase-space structure of unperturbed motion (E0 = 0) is shown in
Fig. 6.10b. The unperturbed motion is trapped when H < D (curve 1),
and it is unbounded when H > D (curve 3). There are two fixed points of
unperturbed motion: the elliptic fixed point at (x = 0, p = 0) and the non-
hyperbolic saddle point at (x = ∞, p = 0). The oscillations frequency near
the fixed point (x = 0, p = 0) is ω0 = (2D/m)1/2a−1.

Introducing the normalized energy, h = H/D − 1, one can show that the
unperturbed orbit of trapped motion, h < 0, is described by

exp(x/a) = |h|−1
[
1 −
√

1 − |h| cosϑ
]
,

p =
maω(h)

√
1 − |h| sinϑ

1 −
√

1 − |h| cosϑ
, (6.63)

where ϑ = ϑ0 + ω(h)(t − tc) is the angle variable, tc is a time instant when
the orbit crosses the point (x1, p = 0), x1 is a left turning point of motion
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Fig. 6.10. (a) Morse potential U(x) = D(1 − e−x/a)2; (b) Phase space of the
unperturbed Hamiltonian (6.62) (E0 = 0): curve 1 corresponds to the trapped
motion (H < 1), curve 2 − to the separatrix (H = 1), and curve 3 − to the
unbounded motion (H > 1)

(p(x1) = 0). We set ϑ0 = 0 in order to have ϑ(tc) = 0. The relation between
the action variable (I) and the energy h is given by

I =
1
2π

∮
pdx =

1
π

x2∫

x1

pdx = a
√

2mD
(
1 − |h|1/2

)
,

H = D

[
1 − (1 − I/I0)2

]
, (6.64)

where I0 = a
√

2mD, x1, x2 are two turning points of motion: x1,2 = a

× ln
[(

1 ∓
√

1 − |h|
)
/|h|
]
, (x1 < x2). The frequency of oscillations ω(h) =

dH(I)/dI is
ω(h) = ω0|h|1/2 . (6.65)

According to quasi-classical quantization rules I = h̄(m + 1/2), (m =
0, 1, 2, . . .), where h̄ is Planck’s constant, one can obtain the discrete energetic
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levels of the Morse oscillator

Hm = D

[
1 −
(

1 − h̄(m+ 1/2)/I0

)2]
. (6.66)

For the lowest energetic levels, mh̄ � I0, we have the energy levels of the
harmonic oscillator: Hm ≈ h̄ω0(m+ 1/2).

The motion on the separatrix h = 0 is given the formula

xs(t) = a ln
1 + ω2

0(t− tc)2

2
, ps(t) = 2p0

ω0(t− tc)
1 + ω2

0(t− tc)2
, (6.67)

where p0 = maω0 =
√

2Dm. The orbits of unbounded motion, h > 0, are
given

exp(x/a) = h−1
[
−1 +

√
1 + h cosh (ω(h)(t− tc))

]
. (6.68)

6.3.1 Mapping

We formulate the Hamiltonian system (6.62) in the extended phase space of
the action-angle (I, ϑ) and the time-energy (t, p0) variables in the form (5.12)
with the Hamiltonian (5.13):

H0(I) = − (1 − I/I0)
2
,

εH1(t, ϑ, p0) = ε
x(ϑ, p0)

a
cos(Ωt+ χ) , (6.69)

where ε = E0ad/D is the dimensionless perturbation parameter. We intend to
construct the Poincaré return map (tk, hk) → (tk+1, hk+1) near the separatrix
to the cross sections Σs and Σc on the phase space. The geometry of this
mapping is plotted in Fig. 6.11. The cross sections Σc and Σs consist of the
segments on the x-axis covering the left, x1, and the right, x2 turning points
of unperturbed motion, respectively. The general form of the corresponding
mapping in the first order of ε is given by (5.20) with the generating function
(5.18). Non-symmetric forms of the mappings are given by (5.29) or (5.32)
with the generating function (5.30).

The stochastic layer formed near the separatrix of the Morse oscillator
is sufficiently large even for small perturbations. The variation of energy in
the stochastic layer may be large enough that the deviation of the generating
function S(H, t) (5.30), (5.27) from its value S(H = 0, t) at the unperturbed
separatrix H = 0 would be not negligible. In this case the dependence of the
generating function S(H, t) on the energy variable H becomes important.

6.3.2 The Symmetric Mapping

According to the relations (6.69), (6.63) the perturbation function Vn(H, τ)
is equal to Vn = x(ϑ,H)/a. Using (6.65) for the frequency ω(h) the integrals
(5.27) can be reduced to:
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Fig. 6.11. Geometry of the separatrix map to the section Σs for the periodically
driven Morse oscillator. A thin curve describes unperturbed separatrix

R±(h, ϑ = ±π) = a−1

0∫

∓π/ω(h)

x(τ, h)eiΩτdτ =
1

iΩa

∓π/ω(h)∫

0

eiΩτ dx

dt
dτ

=

√
1 − |h|
iΩ

∓π∫

0

eiΛ|h|−1/2η sin η
1 −
√

1 − |h| cos η
dη , (6.70)

where Λ = Ω/ω0. Then according to (5.24), the generating function takes
the form

S(tk ± 0,H) = K±(H)Ω−1 cos
(
Ωtk ± πΛ|H|−1/2 + χ

)

−L±(H)Ω−1 sin
(
Ωtk ± πΛ|H|−1/2 + χ

)
, (6.71)

where K+(h) = −K−(h) = −K(h), L+(h) = L−(h) = −L(h), and

K(h) =
√

1 − |h|
∫ π

0

sin τ sin(Λτ/|h|1/2)
1 −
√

1 − |h| cos τ
dτ ,

L(h) =
√

1 − |h|
∫ π

0

sin τ cos(Λτ/|h|1/2)
1 −
√

1 − |h| cos τ
dτ . (6.72)

These integrals also can be also presented as a sum of regular and oscillatory
parts: K(h) = K(reg)(h) + K(osc)(h). The asymptotical estimations of both
parts of K(h) are given in Sect. B.3 of Appendix B.3. The dependence of
the integral K(h) on h is shown in Fig. 6.12 at fixed value of the parameter
λ = 4.
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Fig. 6.12. Dependence of the integral K(h) on h: (a) in the whole interval of h.
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Using the generating function (6.71) the symmetric mapping (5.20) can
be written as

H = hk + ε (K(H) sinαk + L(H) cosαk) ,

Φk = Ωtk + ε

(
dK(H)
dH cosαk − dL(H)

dH sinαk

)

+ε
πΛ

2|H|3/2
(K(H) sinαk + L(H) cosαk) , (6.73)

hk+1 = H + ε (K(H) sinαk+1 − L(H) cosαk+1) ,

Ωtk+1 = Φk +
2πΛ
|H|1/2

+ ε

(
dK(H)
dH cosαk+1 +

dL(H)
dH sinαk+1

)

−ε πΛ

2|H|3/2
(K(H) sinαk+1 − L(H) cosαk+1) , (6.74)
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where

αk = Ωtk +
πΛ

|H|1/2
+ χ , αk+1 = Ωtk+1 −

πΛ

|H|1/2
+ χ .

The first set of equations (6.73) is implicit with respect to the energy
variable H, and the second set (6.74) is implicit with respect to the time
tk+1.

The mapping (6.73), (6.74) can be simplified using a smallness of the
perturbation parameter ε. Carrying out the transformations similar to ones
made in Sect. 5.3.2 and neglecting the terms of order ε2 one obtains

hk+1 = hk − 2εK(hk+1) sin
(
ϕk +

πΛ

|hk|1/2
+ χ

)
,

ϕk+1 = ϕk +
πΛ

|hk|1/2
+

πΛ

|hk+1|1/2
− 2ε

dK(hk+1)
dhk+1

cos
(
ϕk +

πΛ

|hk|1/2
+ χ

)
.

(6.75)

A straightforward calculation shows that det|∂(hk+1, tk+1)/∂(hk, tk)| = 1,
i.e., the mapping (6.75) is a area–preserving. It is also invariant with respect
to the time reversing: k ↔ k + 1.

6.3.3 A Nonsymmetric Mapping

We present also the nonsymmetric form of the separatrix mapping. Particu-
larly, we consider the mapping in the form (5.29). Putting ϑ = −π in (5.27),
one can show that L(h) = 0 and K(h) is determined by (6.72). Then the
generating function (5.30) becomes

S(tk, hk+1) = −2K(hk+1)Ω−1 cos
(
Ωtk +

πΛ

|hk+1|1/2
+ χ

)
.

Then the separatrix mapping (5.29) takes the following form:

hk+1 = hk − 2εK(hk+1) sin
(
ϕk +

πΛ

|hk+1|1/2
+ χ

)
,

ϕk+1 = ϕk +
2πΛ

|hk+1|1/2
− 2ε

dK(hk+1)
dhk+1

cos
(
ϕk +

πΛ

|hk+1|1/2
+ χ

)

− πΛ

|hk+1|3/2
εK(hk+1) sin

(
ϕk +

πΛ

|hk+1|1/2
+ χ

)
.

(6.76)

This map can be also transformed into the form (6.75) by eliminating the last
term in the second equation (6.76) using the first equation, and neglecting
the terms of order ε2.
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Fig. 6.13. (a) Phase space of the separatrix map (6.75); (b) A corresponding
section obtained by a direct numerical integration of Hamiltonian system (6.62).
Perturbation parameter ε = 0.01, normalized frequency Λ = 4

6.3.4 Comparison with a Numerical Integration

The phase space of the separatrix mapping (6.13) near the separatrix region
is plotted in Fig. 6.13a for the perturbation parameter ε = 0.01 and the nor-
malized frequency Λ = Ω/ω0 = 4. It is supposed that the orbit leaves the
system when the energy h exceeds the zero, h > 0, which corresponds to the
unbounded motion. We have compared the separatrix map with the direct
numerical integration of Hamiltonian system with (6.62) using the symplec-
tic integrator presented in Sect. 1.5. The results are shown in Fig. 6.13b. As
seen from Figs. 6.13a,b the separatrix map quantitatively well reproduces all
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features of the regular and chaotic motion of the system: locations of KAM
islands and their widths.

6.4 The Kepler Map

The developed method can be directly applied to construct mappings near
the separatrix of Hamiltonian systems with a saddle point located at in-
finity. Particularly, the separatrix mapping of type (6.75) can be directly
obtained for one-dimensional hydrogen atom in the field of a monochromatic
electromagnetic wave. The latter problem has been subject of the numerous
studies related to the chaotic ionization of highly excited hydrogen atom in
a microwave field (see a review by Jensen et al. (1991); Sanders and Jensen
(1996)). This problem is similar to the mentioned above problem of dissocia-
tion of molecules in a microwave field. In several publications by Casati et al.
(1987); Gontis and Kaulakys (1987); Casati et al. (1988); Jensen et al. (1988);
Kaulakys and Vilutis (1999) the so called Kepler map has been introduced
to study this problem. Here we present the simplified form of mapping which
describes the classical motion of an electron in a one dimensional model of
hydrogen atom in the field of monochromatic electromagnetic field similar to
the map (6.75) for the driven Morse oscillator.

In atomic units (me = h̄ = e = 1) the system is described by Hamiltonian

H = H(x, p, t) =
p2

2
− 1
x

+ xF cos(Ωt+ χ) , x ≥ 0 , (6.77)

where Ω and F is the microwave frequency and amplitude, respectively. In
the absence of microwave field (F = 0) the classical orbit, x(t − t0,H) of
bounded electron (H < 0) is given by

ϑ = ω(H)(t− t0) = arcsin
√

x

xc
−
√

x

xc

(
1 − x

xc

)
, (6.78)

where t0 is the moment of time when electron reflects from boundary x = 0
(perihelion), and xc = 1/|H| is the turning point of classical motion (aphe-
lion). The frequency of motion ω(H) is determined by the relation between
the action (I) and energy (H):

ω(H) =
dH0(I)
dI

=
1
I3

= (2|H|)3/2 , H0(I) = − 1
2I2

. (6.79)

From the perturbed Hamiltonian εH1 = xF cos(Ωt + χ) in (6.77) we have
Vn(H, τ = x(τ,H), and using the relation (6.78) one obtains the Melnikov
type integral Kn(H) (5.31)
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K(H) =

π/ω(H)∫

−π/ω(H)

x(τ,H) cosΩτdτ = − 2
Ω

xc∫

0

sinΩτ(x)dx

= − 2π
|H|ΩJ′

ν(ν) = − 4π
Ω5/3

ν2/3J′
ν(ν) ,

L(H) =

π/ω(H)∫

−π/ω(H)

x(τ,H) sinΩτdτ = 0 , (6.80)

where ν = Ω/ω(H), and J
′

ν(z) ≡ dJν(z)/dz is the derivative of the Anger
function

Jν(z) =
1
π

∫ π

0

cos(νx− z sinx)dx . (6.81)

For ν ≤ 1 (or |H| ≥ Ω3/2/2) the function J
′

ν(ν) is approximated by a poly-
nomial function

J
′

ν(ν) = ν
3∑

k=0

akν
k ,

a0 = 0.49819 , a1 = 0.0183892 ,
a2 = −0.280396 , a3 = 0.0888974 . (6.82)

For ν ≥ 1 (or |H| ≤ Ω3/2/2), it has the following asymptotics

J′
ν(ν) ≈ a

ν2/3

[
1 +

∞∑

k=1

γk

ν2k

]
− b

ν4/3

∞∑

k=0

δk

ν2k
− sin νπ

4πν2

∞∑

k=0

sk

ν2k
, (6.83)

where the coefficients a, b, and the first three coefficients γk, δk, sk are

a =
22/3

31/3Γ (1/3)
, b =

21/3

32/3Γ (2/3)
,

γ1 =
23

3150
, γ2 = −9.373 × 10−4, γ3 = 4.44 × 10−4 ,

δ0 = 0.2, δ1 = − 947
346500

, δ2 = 6.047 × 10−4 ,

δ4 = −3.8 × 10−4 , s0 = 1 , s1 = −1/8 , s2 = 1/32 .

The maximal relative deviation of the asymptotical formula (6.83) from the
value of J′

ν(ν) obtained by numerical integration of the integral (6.81) is
6.3 × 10−3 at ν = 1.34.

At |H| ≤ Ω3/2/2 (ν ≥ 1) the integral K(h) can be presented as a sum

K(H) = K(reg)(H) +K(osc)(H) , (6.84)

where
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K(reg)(H) = K0

{
a

[
1 +

∞∑

k=1

γk

ν2k

]
− b

ν2/3

∞∑

k=0

δk

ν2k

}
,

K(osc)(H) = −K0
sinπν
4πν2/3

∞∑

k=0

sk

ν2k
, (6.85)

K0 = − 4π
Ω5/3

, ν =
Ω

(2|H|)3/2
.

The oscillatory part K(osc)(H) has zeros at the primary resonant values of H,
determined by mω(Hm) = Ω, i.e., K(osc)(Hm) = 0. From (6.80) follows that
the normalized integral K(h)/K0 depends on H only through the quantity ν.
The dependence K(h)/K0 on ν is plotted in Fig. 6.14 by the solid curve 1, the
dashed curve 2 corresponds to the normalized regular part, K(reg)(H)/K0.
The dependence of the normalized integral K(H)/K0 on the energy H is
shown in Fig. 6.15 by the solid curve 1: a) in the interval −1 ≤ H < 0; b) in
the interval −0.1 ≤ H < 0. Dashed curve 2 describes the normalized regular
part, K(reg)(H)/K0.
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Fig. 6.14. Normalized integral K(H)/K0 versus the parameter ν (curve 1); curve
2 describes the normalized regular part, K(reg)(H), for ν ≥ 1

The simplified form of the map given (5.45) takes the following form

hk+1 = hk − FΩK(reg)(hk+1) sin
(
ϕk +

πΩ

|hk|3/2
+ χ

)
,

ϕk+1 = ϕk +
πΩ

|hk|3/2
+

πΩ

|hk+1|3/2

−FΩdK(reg)(hk+1)
dhk+1

cos
(
ϕk +

πΩ

|hk|3/2
+ χ

)
, (6.86)



6.4 The Kepler Map 135

0

0.1

0.2

0.3

0.4

-1 -0.8 -0.6 -0.4 -0.2 0

K
(h

)/
K

0

h

(a)

1

2

0.37

0.38

0.39

0.4

0.41

-0.1 -0.08 -0.06 -0.04 -0.02 0

K
(h

)/
K

0

h

1

2

(b)

Fig. 6.15. (a) Dependence of the normalized integral K(h)/K0 on the energy
h (curve 1) for the frequency Ω = 0.325; (b) Its expanded view in the interval
−0.1 ≤ h < 0. Curve 2 describes the normalized regular part, K(reg)(H)

In this map the both variables ϕk = Ωtk, hk = H(tk) are defined at the same
section Σs of phase space (x, p) located at the maximum distance from the
center x = 0 (aphelion).

In the region very close to the separatrix H = 0 the quantity K(reg)(h)
can be approximated by aK0 = K(reg)(0). Then the mapping is reduced to

hk+1 = hk − FΩaK0 sin
(
ϕk +

πΩ

|hk|3/2
+ χ

)
,

ϕk+1 = ϕk +
πΩ

|hk|3/2
+

πΩ

|hk+1|3/2
. (6.87)

The mapping obtained by Gontis and Kaulakys (1987); Kaulakys and
Vilutis (1999) can be recovered from (6.86) shifting the time t (or the phase
ϕ) by the half period of unperturbed motion, π/ω(H) (or πΩ/ω(H)), i.e.,

ϕk +
πΩ

|hk|3/2
= ϕ̄k → ϕk .

In the number works by Petrosky (1986); Casati et al. (1987); Gontis
and Kaulakys (1987); Casati et al. (1988); Jensen et al. (1988); Sagdeev and
Zaslavsky (1987); Petrosky and Broucke (1988); Chirikov and Vecheslavov
(1989) the conventional Kepler map has been derived calculating the incre-
ments of energy H and phase ϕ over one phase rotation in phase space. It
has the following form (in our notations)

hk+1 = hk − FΩK0 sin ϕ̄k ,

ϕ̄k+1 = ϕ̄k +
2πΩ
|hk|3/2

. (6.88)

This mapping can be formally obtained from the canonical mapping (6.87)
by shifting the phase ϕk → ϕ̄k.



136 6 Mappings Near Separatrix. Examples

We should note that the variables in the map obtained by Gontis and
Kaulakys (1987); Kaulakys and Vilutis (1999) as well as in the Kepler map
(6.88) are defined at the different sections of the phase space: the energy H
is at the maximum distance from the center (aphelion), and the phase, ϕ̄ (or
time t) at the minimum distance (perihelion). Because of this the variables
H and ϕ are not canonically conjugated. The Kepler map in canonical vari-
ables has been constructed by Nauenberg (1990) and later by Pakoński and
Zakrzewski (2001) by integrating Hamiltonian equations in extended phase
space. However, the map obtained in such a way has a complicated form al-
though it is in a good agreement with direct numerical integrations. On the
other hand, the Kepler map is valid only for the small perturbations F and
in the area close to the separatrix.

Casati et al. (1987); Gontis and Kaulakys (1987); Casati et al. (1988);
Jensen et al. (1988) applied the Kepler map in the form (6.88) to study the
classical chaotic ionization of hydrogen atoms in a microwave field which
has been investigated experimentally (see Jensen et al. (1991) and references
therein). The map obtained by Gontis and Kaulakys (1987); Kaulakys and
Vilutis (1999) which is equivalent to the map (6.86) allows one to analyze the
frequency dependence of ionization process and to study the adiabatic and
chaotic regimes of ionization.

The Kepler map (6.88) has been also proposed by Petrosky (1986);
Sagdeev and Zaslavsky (1987); Petrosky and Broucke (1988); Chirikov and
Vecheslavov (1989) to study the chaotic motion of comets near parabolic or-
bits in the Solar system. Particularly, Chirikov and Vecheslavov (1989) have
shown that the motion of Halley’s comet is chaotic.

6.5 Comments on Separatrix Map Methods

During the last decade there were a number of studies devoted to the deriva-
tion of the separatrix mapping and its generalization (see Chirikov (1979);
Zaslavsky et al. (1991); Ahn et al. (1996); Abdullaev and Zaslavsky (1995,
1996); Shevchenko (2000); Luo and Han (2000, 2001); Luo (2002)). These
studies were mainly based on the calculations of the increments of the time,
t, and the energy, h, over phase rotation in phase space, similar to the deriva-
tion of the perturbed twist map, described in Sect. 3.2. This approach leads
to the mappings near the separatrix with time and energy variables defined
at the different sections of phase space (Escande (1988)). Therefore, the vari-
ables of these separatrix maps are not canonical which makes it difficult, in
principle, to compare the phase space structure of a system with ones of the
separatrix mapping. On the other hand the these approaches, in general, does
not allow estimate the accuracy of the separatrix mapping.

For this reason there were several studies to construct the separatrix maps
with variables defined at the same sections of phase space. Particularly, in
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Abdullaev and Zaslavsky (1995, 1996) the so-called shifted separatrix map-
ping has been proposed where both time and energy variables are defined at
the sections near the saddle points. The separatrix mapping to the section
Σc (in our terminology) for the periodically driven-pendulum (5.2) has been
also obtained in Shevchenko (1998, 2000). These mappings has been obtained
from the conventional form of the separatrix map (6.61) by the calculation
of the increment of the energy to the corresponding sections. However, the
map proposed by Shevchenko (1998, 2000) unlike the one (6.59) obtained
here, is implicit in both, time and energy variables, which makes it difficult
for practical calculations.

Nauenberg (1990) and later Pakoński and Zakrzewski (2001) constructed
the implicit symplectic map for canonical variables defined at the same sec-
tions of phase space in the perturbed Kepler problem. Since they employed
the method of calculations of increments in time and energy over one phase
rotation in phase space, it requires to set additional assumptions on depen-
dence of these increments on time and energy variables.

Ahn et al. (1996); Shevchenko (1998, 2000) have proposed the so-called
exact separatrix mappings to describe the dynamics of system for large per-
turbation parameter ε. For instance, for the periodically driven pendulum
Shevchenko (1998, 2000) obtained the exact map from the conventional sep-
aratrix mapping (6.61) by replacing the asymptotics of frequency of motion
ω(H) = 2π/ ln(32/|H|) by its exact expression, ω(H) = 2πk/K

(
k−1
)

for
H > 0 and ω(H) = 2π/K(k) for H < 0, while keeping the same integrals K±

taken along the unperturbed separatrix. However, these maps cannot exactly
describe Hamiltonian system, at least, because of two reasons. Firstly, since
for the large energy variations one should calculate the energy increments
not only along unperturbed separatrix, but along the unperturbed closed or-
bits inside and outside the separatrix. Secondly, the construction of maps by
calculating the increments of time and energy along the unperturbed orbits
is valid only in the first order of the perturbation theory ε (see Sect. 5.2.1).

The Hamilton–Jacobi method discussed in this chapter gives a system-
atic and rigorous way to construct mappings near the separatrix. It allows to
construct mappings to the arbitrary sections of phase space which is impor-
tant in different applications.

6.6 Bibliographic Notes

The separatrix mapping has been first proposed by Filonenko and Zaslavsky
(1968) and later by Chirikov (1979). The geometrical interpretation was first
given by Escande (1988). In early works it has been used to estimate the
width of the stochastic layer near the separatrix (see Filonenko and Zaslavsky
(1968); Chirikov (1979); Zaslavsky et al. (1991)). Later the application of the
separatrix mapping has been extended not only to study the mixing and
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transport processes in the stochastic layer in the abstract Hamiltonian sys-
tems Rom-Kedar (1994, 1995); Vecheslavov (1996); Treschev (1998); Vech-
eslavov (1999) but also in specific physical systems: fluid dynamics, plasma
physics, dynamical astronomy.

A number of studies by Ahn et al. (1996); Abdullaev (1999); Treschev
(2002); Abdullaev (2004b) were devoted to the rigorous derivation of the
separatrix mapping. The different forms of the separatrix map or its general-
izations have been discussed in Abdullaev and Zaslavsky (1995, 1996); Vech-
eslavov (1996, 1999); Luo and Han (2000); Shevchenko (2000); Luo and Han
(2001); Luo (2002); Vecheslavov (2002). Among the mathematical studies to
construct separatrix maps one should mention the works by Treschev (2002,
2004). He has constructed a multidimensional analog of the separatrix map
which determines the chaotic dynamics in the vicinity of asymptotic (separa-
trix) surfaces of a hyperbolic torus. The systematic and rigorous method to
construct mappings near separatrix is developed by Abdullaev (2004b, 2005).

Rom-Kedar (1994, 1995) has applied the separatrix mapping to study the
mixing and transport processes in chaotic Hamiltonian systems. The sep-
aratrix mapping has been used by Treschev (2004) to obtain the rigorous
estimations for the diffusion rates in Hamiltonian systems with many de-
grees of freedom. The separatrix mappings were also played an instrumental
role in a study of the rescaling invariant properties of Hamiltonian systems
near the separatrix and the chaotic transport in the stochastic layer (Ab-
dullaev and Zaslavsky (1994); Zaslavsky and Abdullaev (1995); Abdullaev
(1997); Kuznetsov and Zaslavsky (1997); Abdullaev (2000); Kuznetsov and
Zaslavsky (2002)).

The separatrix mappings have been widely used to study a chaotic trans-
port of passive particles in structured fluids in Weiss and Knobloch (1989);
Ahn and Kim (1994); Latka and West (1995); Weeks et al. (1996); Ahn and
Kim (1997); del Castillo-Negreto (1998); Kuznetsov and Zaslavsky (1998), to
study magnetic field lines in tokamaks in Yamagishi (1995); Abdullaev and
Zaslavsky (1995, 1996); Abdullaev and Finken (1998), and transport in plas-
mas (Escande (1988)), to describe a particle motion in electromagnetic fields
in Lichtenberg and Wood (1989); Zaslavsky et al. (1991). In Shevchenko and
Scholl (1997); Shevchenko (1998, 1999) the separatrix map has been used to
study the dynamics small planetary bodies, asteroids, in the Solar system,
and rotational motion of a satellite.

The Kepler map , which is a specific form of the separatrix map in the
systems with along–range interaction, has been introduced in several publica-
tions by Casati et al. (1987); Gontis and Kaulakys (1987); Casati et al. (1988);
Jensen et al. (1988); Casati et al. (1990); Kaulakys and Vilutis (1999); Pet-
rosky (1986); Sagdeev and Zaslavsky (1987); Petrosky and Broucke (1988);
Chirikov and Vecheslavov (1989). It has been used to study a classical ion-
ization of hydrogen atoms in a microwave field and the motion of comets in
the Solar system.



7 The KAM Theory Chaos Nontwist
and Nonsmooth Maps

In this chapter we will discuss some problems of dynamics and chaos in non-
standard Hamiltonian systems. First of these problems is the dynamics of
Hamiltonian systems in which a so-called twist condition is violated. Par-
ticular example of these system is a one–degree-of-freedom system with a
non-monotonic dependence of the frequency of oscillations on action vari-
able. The second problem is a study of systems subjected to non-smooth
perturbations. These problems have been mainly investigated in the last
decade, and they are less discussed in monographes and reviews. Regular
and chaotic dynamics of these Hamiltonian systems are outside the scope of
the Kolmogorov–Arnold–Moser (KAM) theory. Before discussing these prob-
lems we recall the KAM theory and the onset of chaotic dynamics in stan-
dard Hamiltonian systems. We will use the mapping approach to study these
problems.

7.1 Conservation of Conditionally Periodic Motions.
The KAM Theory

In this section we recall the main ideas of the Kolmogorov-Arnold-Moser
(KAM) theory emphasizing on conditions of its applicability. This theory
concerns the conservation of conditionally –periodic motion of Hamiltonian
systems subjected to small perturbations in infinite time interval. The corre-
sponding theorem has been first formulated by Kolmogorov (1954) with the
sketch of its proof. The theorem has been later proven by Arnold (1963a,b)
and Moser (1962) (see, e.g., Arnold et al. (1988), Arnold (1989)).

Consider an integrable Hamiltonian system described by Hamiltonian
H0(I1, . . . , IN ). The orbits in phase space lie on the surface of the invari-
ant torus determined by the actions (Ii = const) (i = 1, . . . , N). The invari-
ant torus is called irrational (or non-resonant), if the frequencies of motion,
ωi = ∂H0(I)/∂Ii, (i = 1, . . . , N) are rational independent,

k1ω1 + k2ω2 + · · · + kNωN �= 0 ,

for all integer numbers ki not all of which are zero. If the frequencies ωi (i =
1, . . . , N) are rationally dependent then the tori are rational (or resonant).

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 139–174 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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The unperturbed system is nondegenerate if the frequencies are functionally
independent:

det
(
∂2H0

∂I2

)
�= 0 . (7.1)

Suppose that the integrable system is subjected to a small perturbation.
The perturbed system is described by Hamiltonian (2.3). The Kolmogorov’s
theorem (Kolmogorov (1954)) states that under sufficiently small perturba-
tion ε the majority of non-resonant tori are not destroyed, but slightly de-
formed. For the unperturbed system with H0 satisfying the nondegenerate
condition (7.1) the motion on these tori is still conditionally-periodic with
the perturbed frequencies slightly different from the unperturbed ones ω(J).
Orbits densely fill these invariant tori.

Formally, it means that the dynamical system with the Hamiltonian (2.3)
can be transformed to the integrable Hamiltonian system (2.5) with the
Hamiltonian H(J, ε) by the canonical change of variables (ϑ, I) → (ψ, J)
(2.4). Then the invariant tori is determined by new action variable Ji =
const (i = 1, . . . , N), and the motion on tori is conditionally−periodic with
the frequencies w(J, ε) = ∂H(J, ε)/∂J . The proof of the Kolmogorov’s the-
orem is based on the convergence of perturbation series by the successive
canonical changes of variables which eliminate phases in higher orders of ε.
(see Sect. 2.4).

7.1.1 Invariant Tori for Mapping

Below we present the variant of the theorem on invariant tori for the mapping
of 2n dimensional annulus to itself (ϑ, I) → (ϑ̄, Ī) (see Moser (1973); Arnold
et al. (1988)):

Ī = I − ε
∂S(ϑ, Ī, ε)

∂ϑ
,

ϑ̄ = ϑ+ α(Ī) + ε
∂S(ϑ, Ī, ε)

∂Ī
, (7.2)

satisfying to the so-called twist condition,

det
∂α(I)
∂I

�= 0 . (7.3)

where α(I) = (α1, . . . , αN ) is rotation angles (or transforms). This condition
corresponds to the nondegenerate condition (7.1). The map (7.2) coincides
with the perturbed twist map (3.5) (see Sect. 3) with the frequency ω(I) =
α(I)/T .

For the case N = 1 (7.2) describes the mapping of the annulus on the
plane to itself. In the unperturbed case (ε = 0) the orbits lie on circles I =
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const. If the rotation angle α(I) is incommensurable with 2π, i.e., the ratio
α(I)/2π is irrational, then orbits completely fill the circle. The corresponding
circle is said to be nonresonant. When α(I) is commensurable with 2π, i.e.,
α(Imn)/2π = n/m with n and m are integer numbers, the circle is resonant.
The orbit consists of m periodic points on the circle I = Imn. The twist
condition (7.3) means that the rotational angle monotonically changes from
one circle to another one.

The nonresonant and resonant orbits in the (ϑ, I) plane are shown in
Fig. 7.1a1. The horizontal lines correspond to the circles.

In the presence of perturbation (ε �= 0) the nonresonant circles satisfying
the irrationality condition

∣∣∣α(I) − 2π
n

m

∣∣∣ > c
√
εm−ν , (7.4)

are not destroyed, but they are slightly deformed. (Here ν= 2.5, and c is a
constant). The invariant curves have the form

I = J + εf(J, ψ; ε) , ϑ = ψ + εg(J, ψ; ε) , (7.5)

where f , g are continously differentiable functions of period 2π in ψ: f(J, ψ; ε) =
f(J, ψ + 2π; ε), g(J, ψ; ε) = g(J, ψ + 2π; ε), and of order of f, g ∼ 1. The vari-
able J is a constant, and the angle variable ψ is determined by the mapping

J = const , ψ̄ = ψ + w(J ; ε)T , (7.6)

where w(J ; ε) is a perturbed frequency on the invariant curve.
To illustrate this theorem consider the example of a Hamiltonian system

given by Hamiltonian

H(ϑ, I, t) =
∫

ω(I)dI + ε

8∑

m=4

cos(mϑ− t) , ω(I) = I−1 . (7.7)

The rotation angle α(I) = 2πω(I) = 2π/I, and the resonant circles are
Imn = m/n. Several nonresonant and resonant orbits on the (ϑ, I) plane are
shown in Fig. 7.1a in the absence of perturbation (ε = 0). The horizontal
lines correspond to the circles, and the periodic points describe the resonant
orbits.

Figure 7.1b shows the corresponding orbits in the presence of perturbation
with ε = 4×10−4. As seen from Figure the non-resonant orbits are deformed
about the unperturbed ones.
1 Furthermore all calculations throughout the book will be performed using the

mappings (4.6)–(4.8) with the first order generating function (2.35) unless it is
specially noted.
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Fig. 7.1. (a) Non-resonant and resonant orbits for m : n = 5:1, 6:1 and 13:2 in the
absence of perturbation (ε = 0). (b) Corresponding to these orbits invariant curves
in the presence of perturbation (ε �= 0). The resonant orbits are destroyed. Dashed
straight lines correspond unperturbed orbits

7.1.2 Destruction of Resonant Orbits: Nonlinear Resonance

The resonant orbits as well as orbits nearby are completely modified in the
presence of perturbation. The behavior of system in this case is described by
the Poincaré–Birkhoff theorem (Poincaré (1892–99); Birkhoff (1927)). In the
physical literature this phenomenon is known as a nonlinear resonance (see
Zaslavsky and Chirikov (1971); Chirikov (1979); Zaslavsky (1985); Sagdeev
et al. (1988)). Here we consider the dynamics of resonant orbits using von
Zeipel’s method of the perturbation theory (see Sect. 2.1.4).

Consider for simplicity the Hamiltonian system (2.19) with N = 1 near
the resonant value Imn, mω(Imn)−nΩ = 0. We introduce a canonical change
of variables (I, ϑ) → (J, ψ) = (I/m,mϑ − nΩt) in the Hamiltonian system
(2.19) by means of the generating function F = (mϑ−nΩt)J + εS(ϑ, J, t, ε).
Hamiltonian H is transformed to the new one H(ψ, J, t) = H(ϑ(ψ), I(J), t)+
∂F/∂t, which can be written as
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H(J, ψ, t) = Hres(ψ, J) + εH′
1(ψ, J, t, ε) , (7.8)

where H′(ψ, J, t) ≡ H ′
1(ϑ(ψ), I(J), t) does not contain the resonant (m,n)

term, and

Hres(ψ, J) = H0(mJ) − nΩJ + εHmn(mJ) cosψ, (7.9)

is an integrable resonant Hamiltonian.
First we consider the behavior of the resonant Hamiltonian system (7.9).

Suppose that the deviation of action J from the resonance action Imn/m is
small, i.e., |∆J | = |J − Imn/m| � Imn/m. We expand the Hamiltonian (7.9)
in series of powers of ∆J . As we will see below that max|∆J | ∝ √

ε. Then
retaining only the terms up to the first order of ε and taking into account the
resonant condition mω(Imn) − nΩ = 0, one obtains

H̄res =
m2ω′(Imn)

2
(∆J)2 + (k + k′∆J) cosψ , (7.10)

where H̄res(J, ψ) = Hres(ψ, J) − h0 − nΩImn/m and

h0 = H0(Imn) , k = εHmn(Imn) , k′ = εm
dHmn

dI

∣∣∣∣
I=Imn

,

ω(Imn) =
dH0

dI

∣∣∣∣
I=Imn

, ω′(Imn) =
d2H0

dI2

∣∣∣∣
I=Imn

.

According to the twist condition (7.3) the quantity ω′(Imn) does not van-
ish, i.e., dω(I)/dI �= 0. For a certainty suppose that ω′(Im,n)Hmn(Im,n) <
0. When the derivative k′ is neglected the Hamiltonian (7.10) coincides
with Hamiltonian describing the pendulum studied in Sect. 1.4. Introduc-
ing the momentum y = m2ω′(Im,n)∆J and the normalized Hamiltonian
H = H̄resm

2ω′(Im,n) the Hamiltonian (7.10) can be reduced to the stan-
dard form (1.41)

H = y2/2 − ω2
0 cosψ ,

with the frequency

ω0 = m
∣∣∣εHmn(Im,n)ω′(Im,n)

∣∣∣
1/2

. (7.11)

The phase space of the pendulum was shown in Fig. 7.2a. In the (ψ, y) plane
the system has the elliptic fixed point at (ψ = 2π, y = 0), and the hyperbolic
fixed point at (ψ = π, y = 0). Since ψ = mϑ−nΩt there exist m elliptic points
and m hyperbolic points in the original (ϑ, I) plane shown in Fig. 7.1b. The
hyperbolic points are connected by heteroclinic orbits. They sharply divide
the trapped motion with H < ω2

0 from the un-trapped motion with H > ω2
0 .

The maximum variation of the trapped motion in momentum y is equal
∆y = 4ω0 which defines a width of the nonlinear resonance. The width of the
resonance in the action variable I is
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Fig. 7.2. Phase space of Hamiltonian (7.2): (a) k′ = 0; (b) k′ = 0.05. The para-
meter ω0 = 0.1

Wmn = 4
∣∣∣∣
εHmn(Im,n)
ω′(Im,n)

∣∣∣∣
1/2

. (7.12)

When k′ is not small enough that could be neglected, the Hamiltonian
(7.10) is reduced to

H = y2/2 − (ω2
0 + k′y) cosψ . (7.13)

This system has the elliptic point (ψ = π, y = k′), and the hyperbolic fixed
point at (ψ = 0, y = −k′). The separatrix dividing the regions of trapped
and un-trapped motion becomes asymmetric with respect to the resonant
line y = 0. The topology of phase space of the Hamiltonian (7.13) in this
case is plotted in Fig. 7.2b.

Such asymmetric nonlinear resonances appears when the perturbation,
H1(ϑ, I, t), has a strong dependence on action variable I. It occurs, for in-
stance, in the study of magnetic field lines in a so called ergodic divertor
tokamaks (see Chap. 11).

7.1.3 Chaotic Layer Near a Separatrix

Now we consider the influence of the nonresonant perturbation H1(ψ, J, t) in
(7.8) near the separatrix of system. Under the time-periodic perturbations
the majority of invariant curves are preserved: they may be only slightly
deformed. However, the orbits on the separatrix which asymptotically (t →
±∞) approach the hyperbolic points, i.e., stable and unstable manifolds, do
not coincide any more. This phenomenon known as splitting of separatrices
was discovered by Poincaré (1892–99) (for more details a reader may consult
Lichtenberg and Lieberman (1992); Guckenheimer and Holmes (1983)).
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A behavior of orbits sufficiently close to the separatrix becomes very sensi-
tive to the small change of initial conditions. As was noted by Poincaré “. . . it
may happen that small differences in the initial conditions produce very great
ones in the final conditions. A small error [change] in the former will produce
an enormous error [change] in the latter. Prediction becomes impossible . . . ”.
In general, any small error in initial conditions will be growing exponentially,
that the prediction of results will be practically impossible. In other words
the distance, d(t), between two orbits with close initial conditions grows ex-
ponentially,

d(t) = d(0)eσt , (7.14)

where d(0) is an initial distance, and the exponent σ, (σ > 0), is the mea-
sure of divergency of orbits. An example of such exponential divergence of
two orbits near the separatrix with very close initial conditions is shown in
Fig. 7.3. This phenomenon is known as a dynamical chaos or simply chaos.

p

q

1
24

3

Fig. 7.3. Exponential divergence of orbits near the unperturbed separatrix with
very small differences in the initial conditions (curves 1 and 2). Dashed curve 3
describe the unperturbed separatrix, curve 4 − stable orbit

The region near the separatrix with chaotic orbits is known as a stochas-
tic layer. The stochastic layer is formed for any small magnitude of pertur-
bation2. It constitutes a seed or as called by Chirikov an embryo of chaos
(Chirikov (1979)). For sufficiently small perturbation ε the width of the sto-
chastic layer is exponentially small and the chaotic motion is confined in
this very small region. The chaotic orbits cannot diffuse far from its initial
positions because of existence of invariant curves.

In the Chaps. 5, 6 we have developed mapping methods to study a motion
near the separatrix. The structure of the stochastic layer, its properties and
chaotic transport in a stochastic layer will be also studied in Chaps. 8, 9.
2 As was recently shown by Vecheslavov (2001); Vecheslavov and Chirikov (2002)

that for a certain class of Hamiltonian systems the resonance separatrices are
not destroyed even for moderately strong perturbation; see Sect. 7.5
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7.1.4 Lyapunov Exponents

The Lyapunov exponent is the important characteristic of chaotic systems.
It gives a precise quantitative measure of exponential divergence of nearby
orbits. Below we give a definition of the Lyapunov exponent and the method
of its calculation for symplectic mappings (3.2). For simplicity we consider
the system described by the two-dimensional map. Let

dIk =
(
dIk

dϑk

)
(7.15)

be an infinitesimal vector separating neighboring orbits at the k-th step. The
evolution of the vector dIk for one map iteration is described by the following
equation

dIk+1 = JkdIk , (7.16)

where Jk is the Jacobian matrix of the mapping (3.2):

Jk =




∂Ik+1
∂Ik

∂Ik+1
∂ϑk

∂ϑk+1
∂Ik

∂ϑk+1
∂ϑk



 . (7.17)

We recall that detJk = 1. Consider the evolution of the distance dsk =√
dI2

k + dϑ2
k between orbits in the (ϑ, I) plane. According to (7.16) its square,

ds2k, can be written as

ds2k = dIT
k dIk = dIT

k−1J
T
k JkdIk−1

= dIT
0 JT

1 · · ·JT
k Jk · · ·J1dI0 , (7.18)

Let λ(k)
1 , λ

(k)
2 be the eigenvalues of the matrix Jk which satisfy the eigenvalue

problem,

JkA = λA ,

where A is the corresponding eigenvector. The eigenvalues are found as so-
lutions of the equation

det

(
∂Ik+1
∂Ik

− λ ∂Ik+1
∂ϑk

∂ϑk+1
∂Ik

∂ϑk+1
∂ϑk

− λ

)
= 0 ,

from which it follows that

λ
(k)
1,2 = D ±

√
D − 1 , (7.19)

where

D =
1
2

(
∂Ik+1

∂Ik
+
∂ϑk+1

∂ϑk

)
.
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In (7.19) we have taken into account that according to the volume-preserving
condition (3.3) the determinant of the Jacobi matrix Jk is unity.

In general, the eigenvalues λ
(k)
1 , λ

(k)
2 are functions of local coordinates

(ϑk, Ik). In the case D > 1 the eigenvalues λ1k, λ2k are real, and satisfy the
condition

λ
(k)
1 > 1, λ

(k)
2 < 1, λ

(k)
1 λ

(k)
2 = 1 .

In this case the orbits is locally unstable. If D < 1 the eigenvalues λ1k and
λ2k are complex numbers, with the unity modules, |λ1k| = |λ2k| = 1. The
orbits in this case are locally stable.

The Lyapunov exponent, σ, is defined as

σ = lim
N→∞

1
N

ln
dsN

ds0
, (7.20)

or dsn = exp(Nσ)ds0, i.e., it characterizes the degree of exponential diver-
gency of orbit per one map iteration. According to (7.18), it is determined by
the largest eigenvalue, λ(k) = max (λ(k)

1 , λ
(k)
2 ), of the Jacobian matrix Jk:

σ = lim
N→∞

1
N

ln
N∏

k=1

λ(k) . (7.21)

When the eigenvalue λ(k) does not depend on the local coordinates (ϑk, Ik),
i.e., λ(k) = λ1, then σ = lnλ1. The Lyapunov exponent, σ, is positive for the
unstable orbits, and it vanishes, σ = 0, for the stable orbit.

We conclude this section with calculation of the Jacobi matrix of the
mapping (4.12)–(4.14) determined by the generating function (2.35). Use the
presentation of the mapping in the form (4.67) of three successive mappings
(4.68) each of them are given by (4.12), (4.13) and (4.14), respectively. Then
the Jacobian matrix (7.17) can be written as a product of three Jacobian
matrices, corresponding to three successive mappings,

Jk = M̂k+1M̂0M̂k , (7.22)

where

M̂k =
( ∂Jk

∂Ik

∂Jk

∂ϑk
∂ψk

∂Ik

∂ψk

∂ϑk

)
, (7.23)

M̂0 =

(
∂Jk

∂Jk

∂Jk

∂ψk

∂ψ̄k

∂Jk

∂ψ̄k

∂ψk

)
=
(

1 0
ω′(Jk)(tk+1 − tk) 1

)
, (7.24)

M̂k+1 =

(
∂Ik+1
∂Jk

∂Ik+1

∂ψ̄k
∂ϑk+1
∂Jk

∂ϑk+1

∂ψ̄k

)
. (7.25)
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The derivatives in the matrices (7.23), (7.25) are easily calculated from
the mappings given by (4.12) and (4.14)):

∂Jk

∂Ik
=

1
1 + εA12(tk)

,
∂Jk

∂ϑk
= − εA22(tk)

1 + εA12(tk)
,

∂ψk

∂Ik
=

εA11(tk)
1 + εA12(tk)

,
∂ψk

∂ϑk
= 1 + εA12(tk) − ε2A11(tk)A22(tk)

1 + εA12(tk)
, (7.26)

∂Ik+1

∂Jk
= 1 + εA12(tk+1) −

ε2A11(tk+1)A22(tk+1)
1 + εA12(tk+1)

,

∂Ik+1

∂ψ̄k
=

εA22(tk+1)
1 + εA12(tk+1)

,

∂ϑk+1

∂Jk
= − εA11(tk+1)

1 + εA12(tk+1)
,

∂ϑk+1

∂ψ̄k
=

1
1 + εA12(tk+1)

, (7.27)

where

A11(t) =
∂2S1(ϑ, J, t, t0)

∂J2
, A12(t) =

∂2S1(ϑ, J, t, t0)
∂J∂ϑ

,

A22(t) =
∂2S1(ϑ, J, t, t0)

∂ϑ2
. (7.28)

Obtained formulae can be used to calculate the Lyapunov exponents for
generic Hamiltonian systems (2.2), (2.3), (2.15) using the mapping proce-
dure (4.12)–(4.14).

7.2 Applicability of KAM Theory

Conditionally periodic motion of Hamiltonian systems subjected to small
perturbations is preserved only when the certain conditions on the unper-
turbed Hamiltonian and perturbation are satisfied. We list these conditions
of applicability of the KAM theory on invariant tori. They are following:

1. Perturbation ε is sufficiently small.
2. Perturbations H1(I, ϑ, t) or S(I, ϑ) are sufficiently smooth functions.
3. Rotation angles α(I) satisfy the twist condition (7.3).
4. Rotation angles α(I) are sufficiently irrational (7.4).

The case of violation of twist condition will be considered in Sect. 7.3. Here
we discuss the first two conditions.

7.2.1 On the Smallness of Perturbations

The smallness of the perturbation parameter ε is an important condition for
the existence of invariant tori. With the increase of ε the width of destroyed
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Fig. 7.4. A case of global chaos in the Hamiltonian system (7.7) for ε = 1.8×10−3 >
εc

rational tori (or nonlinear resonances) located between invariant tori grows.
At certain level of ε > εc neighboring resonances start to overlap destroying
all invariant tori. Orbits are no longer confined near the resonant tori but
they may diffuse far from its initial positions (see, e.g., Chirikov (1979);
Lichtenberg and Lieberman (1992). The system becomes globally chaotic. It
is illustrated in Fig. 7.4 for the Hamiltonian system (7.7) at the perturbation
ε = 7.6 × 10−3 which exceeds the critical perturbation εc. The case (ε < εc)
was shown in Fig. 7.1b.

The qualitative condition for the onset of global chaos is described by the
resonance overlapping criteria or the Chirikov criteria (Chirikov (1979)). It
states that the global chaos occurs when a sum of half widths of neighboring
resonances, (Wm,n + Wm+1,n)/2 exceeds the distance between them, δI =
|Im+1,n − Im,n|,

σ =
Wm,n +Wm+1,n

2(Im+1,n − Im,n)
≥ 1 .

For simple Hamiltonian systems the exact condition of global chaos can
be found using the renormalization group theory (see, e.g., MacKay (1983,
1993)). For instance, the critical perturbation threshold Kc for the global
chaos in the standard map is Kc = 0.98. In more complex systems the exact
critical perturbation εc may be found by numerical calculations.

In the case of systems with more than two degrees of freedom, N > 2, a
global chaotic motion may happen at any small perturbations ε > 0. In these
systems trajectories could wander arbitrarily far from their point of depar-
ture. However, such a chaotic motion known as Arnold diffusion occurs only
at special initial conditions (Arnold (1964), see also Arnold (1989); Lichten-
berg and Lieberman (1992)). The diffusion rate of such a chaotic motion is
very small and decays with ε as exp(−C/ε) (C is a constant).

The prediction of particle orbits in the stochastic zone becomes practi-
cally impossible because of the exponential growth of small errors in initial
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conditions. For this reason we need a statistical approach to study the dy-
namics of system. The elements of the statistical description of dynamically
chaotic systems will be recalled in Sect. 9.1.

7.2.2 On the Smoothness of Perturbations

The term “smooth” means that the function has a finite number of continuous
derivatives. One introduces a smoothness parameter, β, which is related with
the dependence of Fourier coefficients, Hm(I), of the perturbed Hamiltonian
H1(ϑ, I, t) (2.15) on harmonics number m. For the analytical functions H1

the coefficients Hm(I) decay exponentially, Hm(I) ∝ exp(−Cm). For the
smooth Hamiltonian the coefficients Hm(I) has the power–law dependence,
Hm(I) ∝ |m|−(β+1) (Chirikov (1991)).

The original proof of the Kolmogorov’s theorem given by Arnold was
based on the analyticity of perturbation function (Arnold (1963a)). Moser
(1962) has first proven the theorem for β > βc = 333. Later it was improved
by Rüssman to β > βc = 4 (see, Moser (1973)). At these cases there exists
a threshold value of perturbation εc(β) that a global chaos takes place only
for perturbation ε > εc(β). The critical perturbation εc(β) goes to zero as
β → βc. As was shown by Chirikov (1991) (see also Vecheslavov and Chirikov
(2002)) for simplest two dimensional maps there exists the non zero threshold
εc(β) of onset of global chaos if β > βc = 3.

On the other hand it has been proven that in the case of Hamiltonian
systems with β = 1 the invariant tori do not longer exist for any small ε
(Takens (1971)). However, the similar statement has not been proven for
the case β = 2. Nevertheless, the existence of the global invariant curves in
Hamiltonian systems with β < βc were shown in a number mathematical
studies by Wojtkowski (1981); Hénon and Wisdom (1983); Bullet (1986). Re-
cent extensive numerical and analytical studies of Hamiltonian systems with
β = 2 revealed the existence of invariant resonance structures (Vecheslavov
(2001); Vecheslavov and Chirikov (2002); Chirikov and Vecheslavov (2002)).
These structures act as barriers preventing a global chaotic motion in phase
space. These problems will be shortly mentioned in Sect. 7.5 for simplest two
dimensional maps.

7.3 Non-Twist Maps

A behavior of the system described above may be significantly changed in the
case when the twist condition (7.3) is violated. It takes place, for instance,
when the frequency of nonlinear oscillations ω(I) is a non-monotonic function
of action I and it has local maximum or minimum. At these points

det
(
∂ω(I)
∂I

)
= 0 . (7.29)
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This case occurs in many problems, for instance, in the problem of passive
advection in shear flows (del Castillo-Negreto and Morrison (1993a,b); Morri-
son (2000)), in condensed matter physics (Soskin (1994); Soskin et al. (2003)),
rays dynamics in waveguides (Abdullaev (1994b)), in tokamak magnetic fu-
sion devices with reversed magnetic shear (see, e.g., a review Wolf (2003) and
references therein), in the study of E × B transport in magnetized plasmas
(Horton (1990)) and others. More detailed investigation of these problems
has been started at the beginning of 90s. The recent review by Soskin et
al. (2003) summarizes achievements of these activities called by authors as
“zero-dispersion phenomena”.

In this section we study this phenomenon in Hamiltonian systems from
the perspective of mappings. We restrict ourselves with one-degree-of-freedom
systems. In this case the non-twist condition (7.29) determines local extremal
points of the frequency ω(I), where ω′(I0) = 0. For one-degree-of-freedom sys-
tem (N=1) the curve I = I0 is called a shearless curve (del Castillo-Negreto
et al. (1996)). These extremal points may be local maximum, minimum or
bending points. At the local maximum point I = I0, ω′′(I0) < 0, for local
minimum ω′′(I0) > 0, and the bending point ω′′(I0) = 0.

7.3.1 Dynamics of Systems with a Non-Monotonic Frequency

To be specific we consider a Hamiltonian system similar to (7.7) but with a
non-monotonic frequency ω(I)

H(ϑ, I, t) =
∫

ω(I)dI + ε

10∑

m=1

cos(mϑ− t) , ω(I) =
I

I2 + I2
0

. (7.30)

The profile of ω(I) is plotted in Fig. 7.5. The unperturbed frequency has
maximum at I = I0. The resonant values of Imn (ω(Imn) = n/m),
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Fig. 7.5. Non-monotonic dependence of ω(I) on I (curve 1). Curve 2 describes the
case ω(I) = I−1. A value I0 = 2.49
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Imn =
m

2n
±
(
m2

4n2
− I2

0

)1/2

,

with the same numbers (m,n) are located up and down the shearless curve
I = I0. The resonant actions Imn for the primary resonances (m,n), (m =
5, . . . , 10;n = 1) are shown in Fig. 7.5 by vertical lines. The distance between
neighboring resonant curves is relatively large near the shearless curve. Below
the shearless curve it becomes more dense, while above the shearless the
corresponding distance is large. There is a pair of resonances (m,n)=(5:1)
just about the shearless curve I = I0.

Consider the dynamics of the system under influence of perturbation.
Poincaré section of the Hamiltonian system with (7.30) is shown in Fig. 7.6
for three values of the perturbation parameter ε: (a) ε = 5.97 × 10−4, (b)
ε = 5 × 10−3, (c) ε = 10−2. As seen from Fig. 7.6 for sufficiently small
perturbation (ε = 5.97 × 10−4) most non-resonant curves located far from
the shearless curve are survived in accordance with the KAM theorem. The
resonant curves are destroyed. The motion below the shearless curve becomes
chaotic because of interaction of closely located resonances. However, the
dynamics of pair of resonances (m : n = 5 : 1) near the shearless curve is
different from one predicted by the KAM theory. When ε < εc = 5.97× 10−4

they are separated. At ε = 5.97 × 10−4 the separatrices of resonances of
reconnected as shown in Fig. 7.6a.

With increase the perturbation ε the resonances above the shearless curve
start to overlap breaking invariant curve. It is shown in Fig. 7.6b when ε =
5×10−3. The pair of resonances near the shearless curve is modified. However,
for this value of perturbation there are still invariant curves just above the
these resonances. These invariant curves are “hard” to break. These curves
are destroyed for larger perturbation. This case is shown in Fig. 7.6c when
ε = 10−2. Nevertheless, even for this relatively large perturbation there exists
an invariant curve between pair of resonance about the shearless curve. This
invariant curve prevents a diffusion of orbits from the highly chaotic bottom
region of the system to the another chaotic region above the shearless curve.
Described picture of transition to global chaos in the system with the non-
monotonic frequency is completely different from the one with monotonic
frequency considered in the previous section.

In the following two subsections we analyze specific features of system near
the shearless curves. A study will be based on analysis of the Hamiltonian
(7.9) with only one resonant term located near the extremal point I = I0.
The effect of non-resonant terms εH′

1(ψ, J, t) will be studied by constructing
symplectic mappings.

7.3.2 Behavior Near Local Maxima or Minima

First consider the case when a local minimum or maximum point I0 close
to the resonant action Imn. Dynamics of the system near this point can
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Fig. 7.6. Poincaré section of the Hamiltonian system (7.30). (a) ε = 5.97 × 10−4,
(b) ε = 5 × 10−3, (c) ε = 10−2. A value I0 = 2.49
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be studied by expanding the right hand side of Hamiltonian (7.9) near the
extremal point I0 up to third order term ∆J = J−I0/m. Taking into account
that ω′(I0) = 0 we obtain

Hres(ψ, J) = H0(I0) −
nΩ

m
I0 + (mω0 − nΩ)∆J

+
m3ω′′

0

6
(∆J)3 + (k0 + k′∆J) cosψ , (7.31)

where

k0 = εHmn(I0) , k′ = mε
dHmn

dI

∣∣∣∣
I=I0

, ω′′
0 =

d3H0

dI3

∣∣∣∣
I=I0

.

Introducing a new canonical variable y =
√
m3|ω′′

0 |/2∆J and H = (Hres −
H0(I0) − nΩI0/m)

√
m3|ω′′

0 |/2 the Hamiltonian (7.31) is reduced to

H(ψ, y) = ay + σ
y3

3
+ (b+ k′y) cosψ , (7.32)

where a = mω0 − nΩ, b = k0

√
m3|ω′′

0 |/2, and σ = sgn(ω′′
0 ). The quantity a

describes mismatch between the frequency ω0 at the extremal point I0 and
the resonant frequency: a = m(ω0 −ω(Imn)). The number σ = 1 (or ω′′

0 > 0)
when the frequency ω(I) has a minimum at I0, and therefore a < 0. The
value σ = −1 (or ω′′(I0) < 0) when the frequency has a maximum at I0 and
a > 0. Furthermore we put k′ = 0 for the sake of simplicity.

The fixed points of the Hamiltonian system with (7.31) are determined
by

ψ̇ =
∂H

∂y
= a+ σy2 = 0 ,

ẏ = −∂H

∂ψ
= b sinψ = 0 .

For σ = 1 (a < 0) there are two kind of fixed points: elliptic fixed points at
(ψ(+)

e = π, y
(+)
e =

√
|a|) and (ψ(−)

e = 0, y(−)
e = −

√
|a|). The up and down

hyperbolic fixed points are (ψ(+)
h = 0, y(+)

h =
√

|a|) and (ψ(−)
h = π, y

(−)
h =

−
√
|a|), respectively. Similarly, one can find fixed points for the case σ = −1.

The phase space of Hamiltonian (7.32) is plotted in Fig. 7.7 for the different
values of the perturbation parameter b.

For small values of b the up and down hyperbolic points are connected
only with themselves by heteroclinic orbits similar to the case of the standard
nonlinear resonance. At the certain level of perturbation bc the up and the
down hyperbolic points are reconnected. It occurs when

H(ψ = π, y = y
(−)
h ) = H(ψ = 0, y = y

(+)
h ) .
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According to the Hamiltonian (7.32) we obtain the reconnection threshold

bc = 2|a|3/2/3 . (7.33)

When b > bc the lower hyperbolic point starts to connect itself homoclinically.
The maximum variation of the action variable J near resonant orbits

is proportional to ε1/3, which is larger than for the conventional nonlinear
resonance where it is proportional to ε1/2 (see Eq. (7.12)).

Under influence of the perturbation term εH′
1(ψ, J, t) (7.8) the stable and

unstable homoclinic orbits are split. The motion near the separatrix becomes
chaotic. This and other features of dynamics of system near extremal points
of non-monotonic frequency will be discussed in the next section.

7.3.3 Behavior Near a Bending Point

Near the bending point where ω′′(Imn) = 0 one can expand Hamiltonian
(7.9) near the resonant action Imn up to term of order of (∆J)4. Supposing
k′ = 0 one obtains

H̄res = H0(I0) − nΩI0 + a∆J +
m4ω′′′

0

24
(∆J)4 + k0 cosψ , (7.34)

where ω′′′
0 =d3ω(I)/dI3

∣∣
I=I0

. In a new canonical variable y=(m4ω′′′
0 /6)1/3∆J

the Hamiltonian (7.34) is reduced to

H(ψ, y) = ay +
y4

4
+ b cosψ , (7.35)

where b = k(m4ω′′′/6)1/3, and H = (Hres − H0(I0) − nΩI0) (m4ω′′′
0 /6)1/3.

When a �= 0 the elliptic point of Hamiltonian (7.35) is ψe = π, ye = (−a)1/3,
and the hyperbolic point is ψh = 2π, yh = (−a)1/3. In the case a = 0 the
latter becomes a non-hyperbolic fixed point ψh = 2π, yh = 0. At this point
the orbit on the separatrix approaches the fixed point parallel to the y axis.

The phase space of the Hamiltonian (7.35) is plotted in Fig. 7.8 for the
perturbation parameter b = 0.01 and for different values of a: a) a = 0.09;
b) a = 0. When a = 0 the phase space is symmetric with respect to the
resonance line y = 0. The maximum variation of variable y for the trapped
motion is larger than in cases of the standard nonlinear resonance and of the
local maximum (or minimum), and it has the order of ε1/4. When a �= 0 the
phase space becomes asymmetric with respect to the line y = yh.

7.3.4 Non-Twist Standard Maps

Described a behavior of the system near extremal points of frequency is not
valid when the system is subjected to any small time-periodic perturbation
with more than one harmonics. Then homoclinic (or heteroclinic) connections
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Fig. 7.7. Phase space of Hamiltonian (7.32) for the three different perturbation
parameter b: (a) b = 0.01; (b) b = 0.018; (c) b = 0.025. The parameter a = −0.09
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Fig. 7.8. Phase space of Hamiltonian (7.35): (a) a = 0.09; (b) a = 0. The parameter
b = 0.01

are split, and the motion near the separatrix becomes chaotic. The most effi-
cient way to study this phenomenon is to use symplectic maps. Near extremal
point these maps has a specific non-twist property, since the twist condition
(7.3) is violated. For this reason the corresponding maps are called non-twist
maps. Formally, we will define these maps corresponding to the Hamiltonian
systems (2.3) for which the nondegenaracy condition (7.1) is violated, i.e.,
det (∂2H0/∂I

2) = 0. In general, the non-twist maps have the forms of sym-
metric maps (4.6)–(4.8) with the unperturbed frequencies ω(I) satisfying the
nontwist condition (7.29) at certain values of action variables I0. If the per-
turbation has a broad spectrum the maps can be reduced to the simpler form
(4.31)–(4.33) with generating functions of type (4.34).

These mapping can be simplified near the extremal point I0 (ω′
0 = 0) by

expanding the frequency ω(I) in series of powers of I − I0:

ω(I) = ω0 +
1
2
ω′′

0 (I − I0)2 +
1
6
ω′′′

0 (I − I0)3 + · · · . (7.36)

and approximating the generating function S(ϑ, J) by

S(ϑ, J) ≈ S0(ϑ) =
π

Ω

∑

m

|Hm(I0)| cos(mϑ+ χm) . (7.37)

When the frequency has a local maximum (or minimum), ω′′
0 �= 0, one can

neglect the last term (7.36). Then introducing a dimensionless variable u =√
|ω′′

0 |/2ω0(I − I0) the map (4.31) - (4.33) can be reduced to

Uk = uk +
β

2

∑

m

mHm(I0) sin(mϑk + χm) ,

ϑk+1 = ϑk + α(1 − σU2
k ) , (7.38)
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uk+1 = Uk +
β

2

∑

m

mHm(I0) sin(mϑk+1 + χm),

where σ = sgn(ω′′
0 ) = ±1,

α = 2πω0/Ω, β = 2πε
√

|ω′′
0 |/2ω0/Ω, U =

√
|ω′′

0 |/2ω0(J − I0) .

If the perturbation contains only one harmonics with m = 1, Hm(I0) =
−1 and χm = 0, we obtain the following map

Uk = uk − β

2
sinϑk ,

ϑk+1 = ϑk + α(1 − σU2
k ) , (7.39)

uk+1 = Uk − β

2
sinϑk+1 ,

This map can be rewritten in a nonsymmetric form as the map (ϑk, Uk−1) →
(ϑk+1, Uk) of the variables (ϑ,U):

Uk = Us−1 − β sinϑk, ϑk+1 = ϑk + α(1 − σU2
k ) , (7.40)

When σ = 1 this map coincides with the map introduced in del Castillo-
Negreto and Morrison (1993a), which was called a non-twist standard map.
This map as well as its symmetric form (7.39) describes dynamics of sys-
tem near a local maximum or minimum of frequency. The properties of the
non-twist standard map (7.40) have been discussed in detail in del Castillo-
Negreto et al. (1996, 1997). Particularly, the periodic points and transition
to chaos have been studied. In del Castillo-Negreto and Morrison (1993a)
obtained the map (7.40) from the Hamiltonian

H(ϑ, u, t) = −αu+
αu3

3
+ β

∞∑

n=−∞
cos(ϑ− nΩt)

= −αu+
αu3

3
+ β

2π
Ω

cosϑ
∞∑

k=−∞
δ

(
t− k

2π
Ω

)
, (7.41)

identifying Uk = u(tk − 0) and ϑk = ϑ(tk − 0), where tk = k(2π/Ω).
The map parameters α, β, and the variable u are related with the corre-

sponding parameters a, b, and the variable y in the Hamiltonian (7.32) near
the primary resonances (m = 1, n):

α =
2π
Ω

(a+ nΩ) , β =
2π
Ω

b√
a+ nΩ

, u =
y√

a+ nΩ
. (7.42)

The nontwist standard maps (7.39) and (7.40) describe all features of the
separatrix reconnection and chaotic motion near a maximum (or minimum)
point I0 of frequency ω(I).
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Symmetry properties. The symmetric nontwist standard map (7.39) has a
symmetry with respect to transform

k ↔ k + 1 , ϑk ↔ 2π − ϑk+1 , (7.43)

which corresponds to the time-reversal symmetry of continuous Hamiltonian
equations, t → −t, H → −H.

7.3.5 Fixed Points and Transit to Chaos

The periodic point of order n , x = (ϑ, u) is defined as M̂nx = x, where
M̂ stands for the map (ϑk+1, uk+1) = M̂(ϑk, uk). In general, a determina-
tion of periodic points is a difficult two–dimensional root finding problem.
In del Castillo-Negreto et al. (1996) this problem for the nontwist standard
map (7.40) has been reduced to a one–dimensional root finding problem. For
instance, the periodic points with odd n are found as zeros of the function
F (u) = sin

[
2π
(
ϑ̄− α(1 − Ū2)/2

)]
= 0, where ϑ̄(u), Ū(u) are functions of u:

(ϑ̄(u), Ū(u)) = M̂ (n+1)/2(0, u).
The periodic points of the nontwist standard map come in pairs due to

violation of twist condition: there are two periodic points with the same
rotation number α. With the variation of map parameters the periodic up
and down points may collide. This bifurcation phenomenon accompanying
with the separatrix reconnection has been studied in del Castillo-Negreto et
al. (1996). For instance, the one-period periodic points (m : n = 1 : 0) are
located at (ϑ = 0, u = ±1) and (ϑ = π, u = ±1). The reconnection occurs
when the orbit emerging from the up hyperbolic point (0, 1) joins the down
hyperbolic point (π,−1). The threshold, βc = 2α/3, of such a reconnection
found from the condition H(ϑ = 0, u = 1) = H(ϑ = π, u = −1), where
H(ϑ, u) is the Hamiltonian (7.41) containing only n = 0 term in the sum.
Using the relations (7.42) for n=0 is easy to see that it coincides with the
reconnection threshold (7.33).

Periodic points of the symmetric nontwist standard map (7.39) can be
expressed through the ones of the map (7.40) using the relation between
corresponding variables u and U : u = U + β/2 sinϑ. Due to the symmetry
property (7.43) they are symmetric with respect to the axis ϑ = π unlike
the periodic points of the nontwist standard map (7.40) (see Figures 7.10a,
b). One should note that the phase space locations of periodic orbits of the
continuous Hamiltonian system (7.41) coincide with the periodic points of the
symmetric map (7.40) rather than the nontwist standard map (7.40). This
can be easily confirmed by direct integration of corresponding Hamiltonian
equations with a finite number of harmonics in (7.41).

The phase space of the symmetric nontwist map (7.39) for the primary
resonance (m : n) = (1 : 0) are plotted in Fig. 7.9 for the two values of the
perturbation parameter β: a) β = 0.02094; b) for the reconnection threshold
βc = 0.37699, and α = 0.5655. They correspond to the parameter b = 0.01,
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Fig. 7.9. Phase space of the symmetric nontwist map (7.39) for the resonance
(m : n) = (1 : 0): (a) β = 0.02094; (b) b = βc = 0.37699. The parameter α = 0.5655

bc = 0.018 and |a| = 0.09 in the Hamiltonian (7.32). As seen from Figures 7.9
a, b the symmetric nontwist map well reproduces the phase space and the
separatrix reconnection in the integrable Hamiltonian (7.32) near the ex-
tremal point (see Figs. 7.7a, b). Figures 7.9 b shows the destruction of the
reconnected separatrix and the formation of the chaotic layer due to the high
frequency perturbations in the Hamiltonian (7.41).

The phase space of the nontwist standard maps (7.39) and (7.40) in
the case of secondary higher order resonances (m : n = 5 : 2) are shown
in Fig. 7.10 for the parameters taken in del Castillo-Negreto and Morrison
(1993a): (a) and (b) α = 2.565, β = 0.664, and (c) α = 2.8, β = 0.7. The
cases (a) and (c) correspond to the symmetric nontwist standard map, while
(b) − to the nontwist standard map.

These figures show that even at these relatively large perturbations there
are still barriers near the shearless curve which prevents a diffusion between
the highly developed stochastic zones located on the upper and down re-
gions. In order to break these barriers one needs to significantly increase the
perturbation ε.

7.4 Non-Smooth Mappings

As was mentioned in Sect. 7.2 the invariant curves of non smooth Hamiltoni-
ans with β = 1 do not survive for any small perturbation. In the latter case a
Hamiltonian is the continuous function of angle variable but it has a discon-
tinuous first derivative. Such Hamiltonian systems appears in problems of ray
propagations in waveguides (Abdullaev and Zaslavsky (1988); Tappert et al.
(1991); Abdullaev (1993, 1994b)), in models of the Fermi mechanism of accel-
eration of cosmic rays (Zaslavsky and Chirikov (1965), and see Lichtenberg
and Lieberman (1992)).

In this section we study some new features of dynamics of Hamiltonian
systems subjected to non-smooth perturbations which have been found
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Fig. 7.10. Separatrix reconnection and chaotic motion for the higher order reso-
nance m : n = 5 : 2 obtained by the symmetric nontwist map (7.39) (a), (c), and
the nonsymmetric nontwist map (7.40) (b). Parameters are (a), (b) − α = 2.656,
β = 0.664; (c) α = 2.8, β = 0.7
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recently. It takes place in systems when the twist condition is violated. Al-
though, the global chaos in system occurs for any small perturbation, the
diffusion through the layer formed near the shearless curve is significantly
reduced due to an intermittent nature of motion.

7.4.1 Intermittence in Nontwist Systems

In this section we present a specific example of system in which the two
conditions of the KAM theory applicability, a twist condition (7.3) and a suf-
ficiently smoothness β > βc = 3, are violated (Abdullaev (1994b)). Consider
a motion of particle of unit mass m = 1 in the potential well subjected to
time-periodic perturbation with a broad spectrum:

H(x, p, t) =
p2

2
+ U(x) + εH1(x, p, t) , (7.44)

where ε is a dimensionless perturbation parameter and the potential function
U(r) is given by (see Fig. 7.11)

U(x, t) =
{
L/x2, for 0 < x < 1 ,
U0, for x > 1 .

(7.45)

We present the perturbation H1 in the form

H1(x, p, t) =





x2/2

∑M
n=−M cosnΩt, for 0 < x < 1 ,

0, for x > 1,
(7.46)

where M is the largest harmonics number. In (7.45) L is constant parameter.
When M → ∞ the sum in (7.46) can be replaced by the periodic delta
function δ1(t) =

∑∞
k=−∞ δ(t − k2π/Ω). Then the problem is reduced to the

0
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0 0.5 1

U
(x

)/
U

0

x

Fig. 7.11. Profile of the potential U(r) for L = 0.2
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dynamics of a particle in a potential well under action of periodic kicks. In
this case and when L = 0 the model (7.44) is known as a “kicked oscillator”
which is pertinent to problems in classical and quantum chaos in Hamiltonian
systems (see, e.g., Dana et al. (1989); Schwägerl and Krug (1991); Casati et al.
(1979)). As was shown in Abdullaev (1994b) the problem of ray propagation
in a waveguide with the circular cross section and with a periodic array of
lenses along its axis is reduced to the Hamiltonian problem (7.44).

In the absence of perturbation (ε = 0) the system is integrable with
energy E as the integral of motion. The orbit of particle can be found using
the action-angle variables (ϑ, I). For the action I we have

I =
1
2π

∮
p(x)dx =

L1/2

π
(q − arctan q) , (7.47)

where

p(x, I) =
(

2E(I) − L

x2

)1/2

, q =

√
2E − L

L
.

The permissible energy E of particle in the potential well is E > Emin = L/2,
E < U0. The relation between the angle variable ϑ and the coordinate x is

ϑ =
∂

∂I

∫ x

p(x′, I)dx′ =
ω√
2E






√
x2 − b2, for 0 < ϑ < π ,

2
√

1 − b2 −
√
x2 − b2, for π < ϑ < 2π ,

where b2 = L/2E, and ω(I) is the frequency of oscillations

ω(I) =
∂H0(I)
∂I

=
2πE(I)√
2E(I) − L

. (7.48)

Inverting the relation (7.48), we obtain

x2(ϑ, I) = b2 + (1 − b2)F (ϑ) ,

p =
(

2E(I) − L

x2(ϑ, I)

)1/2





1, for 2πn < ϑ < (2n+ 1)π,

−1, for (2n+ 1)π < ϑ < 2(n+ 1)π ,
(7.49)

where n is an integer number, n = 0, 1, 2, · · ·, and

F (ϑ) =






(ϑ− 2πn)2/π2, for 2πn < ϑ < (2n+ 1)π,

(2π − ϑ+ 2πn)2/π2, for (2n+ 1)π < ϑ < 2(n+ 1)π .
(7.50)

The profile of the function F (ϑ) is shown in Fig. 7.12a. It is the continuous
function of ϑ with the discontinuous derivative dF (ϑ)/dϑ at ϑ = π.
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Fig. 7.12. (a) Profile of the function F (ϑ) (7.50); (b) Frequency of oscillation ω(E)
versus the energy E: curve 1 corresponds to L = 0, curve 2 − L = 0.2, curve 2 −
L = 0.4

When L �= 0 the frequency of oscillations ω(I) is the non-monotonic
function of energy E (or action I) as shown in Fig. 7.12b. It has a minimum
at E = L.

In the presence of the perturbation (ε �= 0) the full Hamiltonian (7.44) in
the action-angle (ϑ, I) takes the form

H(ϑ, I, t) = H0(I) + ε
x2(ϑ, I)

2

M∑

n=−M

cosnΩt . (7.51)

In the limit M → ∞ the evolution of the perturbed system (7.51) can be
reduced to the mapping (ϑk, Ik) → (ϑk+1, Ik+1) in the symmetric form (4.31)
- (4.33) with the generating function

S(ϑ, J) =
π

2Ω
x2(ϑ, J) =

π

2Ω
[
b2 + (1 − b2)F (ϑ)

]
. (7.52)

[We recall that (ϑk, Ik) = (ϑr(tk), Ir(tk)), tk = s2π/Ω, s = 0,±1,±2, . . .].
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The Hamiltonian H (7.51) and the generating function S(ϑ, J) (7.52) are
continuous functions, but their first derivative with respect to ϑ are discon-
tinuous (see Fig. 7.12a), i.e., the smoothness parameter β = 1. Therefore the
KAM theory is not applicable to this case. The invariant curves do not exist
for any small perturbations, and the orbits of system may diffuse far from its
initial state.

First we consider the case when L = 0 describing a monotonic frequency
ω(I) (curve 1 in Fig. 7.12b). The phase space of system obtained by the
mapping (4.31)–(4.33) is shown in Fig. 7.13. As seen from Figure that the
phase space consists of stability islands of various sizes surrounded by thin
chaotic layers formed by destroyed resonant separatrices. The chaotic layers
of neighboring resonances are connected and form a so-called stochastic web
which extends to the whole phase space of the system. Orbits with initial
conditions located on the stochastic web can diffuse far from their initial
positions. The orbits with initial coordinates inside the islands are always
confined and do not diffuse. Described behavior of Hamiltonian systems is
known as a weak chaos.
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Fig. 7.13. Phase space of the Hamiltonian system with (7.51) for the case L = 0.
The perturbation parameter ε = 0.01, and the perturbation frequency Ω = π

Let us turn to the case L �= 0 when the frequency ω(I) becomes non-
monotonic, and the twist condition dω(I)/dI �= 0 is violated at the shearless
curve I = I0, ω′(I0) = 0 (curves 2, 3 in Fig. 7.12b). The dynamics of such a
system under smooth perturbations has been studied in Sect. 7.3. Here, we
consider the case of non-smooth perturbations.

From the relations (7.48) and (7.47) it follows that I0 =
√
L(1 − π/4)/π.

The phase space structure of system for the value L = 0.6 is plotted Fig. 7.14.
One can see that the phase space consists of two clearly distinct zones of the
weak chaos and the strong chaos separated by the region along the shearless
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Fig. 7.14. Phase space of the Hamiltonian system (7.51) on the (ϑ, I)-plane for
the case L = 0.6. The perturbation parameter ε = 0.0146, and the perturbation
frequency Ω = 1.795

line I = I0 ≈ 0.053 (for L = 0.6). The zone of strong chaos is located down
the shearless curve, 0 < I < I0 (or L/2 < E < L). In this region all orbits are
completely chaotic without any stability islands. The region of weak chaos is
on the upper side of the shearless curve, I > I0 (or E > L). There is a very
thin transitional layer near the shearless curve I = I0 connecting the areas of
weak and strong chaos. The width of this layer depends on resonances near
I0. As we will see below the dynamics of the system in this transitional layer
has an intermittent nature.

When the shearless action I0 coincides with the resonant action Imn

(ω(Imn)/Ω = n/m) with the low resonance numbers (m,n) the transitional
layer becomes fairly large. The case of m : n= 3/2 resonance is shown in
Fig. 7.15 for the same values of parameters L and ε as in Fig. 7.14. The
perturbation frequency Ω that creates this resonance is Ω = 3.244. As seen
from Fig. 7.15 the transitional layer surrounds stability islands whose center
coincide with two periodic fixed points. The motion over a considerably long
time interval exceeding the perturbation period T = 2π/Ω occurs along a
regular phase curve which loops the stability island. After one loop of the is-
land the motion switches to another regular phase curve in an irregular way
and the process may be repeated, or it may transit into the region of strong
chaos. Such a behavior of dynamical systems is known as intermittence. The
evolution of energy E(t) with time shown in Fig. 7.16 clearly demonstrates
the intermittent nature of motion in the transitional layer. A more detailed
analysis of this phenomenon will be given below in Sect. 7.4.3 using simplified
non-smooth mappings near a shearless curve.

The term “intermittency” originated in the theory of turbulence is usually
understood a weak chaotic dynamics with a certain quasiregular structure in
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Fig. 7.15. The same as in Fig. 7.14 but for the perturbation frequency Ω = 3.244.
Other parameters are the same. (a) On the (ϑ, I)-plane; (b) on the (x, p)-plane
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Fig. 7.16. Time evolution of the energy E along the single orbit near the transition
region
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space or time (see, for example Paladin and Vulpiani (1987); Stanley and
Meakin (1988)). The examples of intermittent dynamics in Hamiltonian sys-
tems can be found in Zaslavsky et al. (1991).

7.4.2 Simplified Non-Smooth Mappings

In order to study a local behavior of system near the certain resonance (m,n)
we simplify the mapping (4.31)–(4.33) by expanding the frequency ω(I) near
the resonant action Imn. Consider first the case when the resonant action Imn

does not lie on the shearless curve I0. Then ω(I) = ω(Imn)+ω′(Imn)(I−Imn).
Approximating the generating function (7.52) at the resonant action Imn:
S(ϑ, J) ≈ S(ϑ, Imn) and introducing notations

x = ϑ/2π , y = ω′(Imn)(I − Imn)/Ω ,

K = 4
εω′(Imn)

Ω2

[
1 − b2(Imn)

]
, (7.53)

the mapping (4.31)–(4.33) can be reduced to

Yk = yk − K

2
f(xk) ,

xk+1 = xk +m/s+ Yk , (7.54)

yk+1 = Yk − K

2
f(xk+1) ,

where f(x) is the discontinuous function

f(x) =
{
x, for 0 < x < 1/2 ,
−1 + x, for 1/2 < x < 1 . (7.55)

The map (7.54) can be also written in the form

Yk = Yk−1 −Kf(xk) , xk+1 = xk +m/s+ Yk , (7.56)

for the variables (x, Y ). It is known that mappings of type (7.56) with a
discontinuous perturbation function f(x) are chaotic for the arbitrary small
perturbation K (Rokhlin (1961); Chirikov (1969); Aubry (1978); Percival
(1979)). The dynamics of these maps either is completely chaotic (without
stability island), or their phase space is covered by a stochastic web with sta-
bility islands of various sizes. To determine the regime of motion one should
find the Lyapunov exponent, σ, (7.20), determined by the maximum eigen-
value, λk, of the Jacobian matrix (7.17). For the map (7.54) we obtain

Jk =
(

1 −K/2 −K(1 −K/4)
1 1 −K/2

)
.

The eigenvalues of the matrix are
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λk
1,2 = 1 +

K

2

(
1 ±
√

1 − 4
K

)
. (7.57)

When the parameter K > 4 or K < 0 the eigenvalues λ1,2 are real, λ1 >
1, λ2 < 1, (λ1λ2 = 1), and the Lyapunov exponent σ = lnλ1 is a positive
everywhere on the phase space (x, y). In these cases all orbits are chaotic. On
the other hand when 0 < K < 4 the eigenvalues λ1,2 are complex, λ∗

1 = λ2,
(|λ1| = 1), and the Lyapunov exponent σ = 0. For this case there are stable
orbits inside the resonance structures.

According to (7.53) the condition K < 0 is satisfied in the region below
the shearless action, i.e., I < I0, where ω′(Imn) < 0. Similar, the parameter
K > 0 in the region I > I0 (ω′(Imn) > 0). This explains the formation of
regions of strong chaos for I < I0, and of weak chaos for I > I0 (see Fig. 7.14).

7.4.3 A Nontwist Map and Intermittency

Consider now the dynamics of system near the shearless action I0. The sim-
plified map in this case can be obtained in a similar way. It has the same form
as the nontwist map (7.39) but with the discontinuous perturbation function
f(x):

Yk = yk − K

2
f(xk) ,

xk+1 = xk + α0 + Y 2
k , (7.58)

yk+1 = Yk − K

2
f(xk+1) ,

where the following notations are introduced

y =

√
ω′′(I0)

2Ω
(I − I0) , α0 =

ω(I0)
Ω

, K = 4
ε
√

2ω′′(I0)
Ω3/2

.

For the non-canonical variables (x, Y ) the map (7.58) can be written in the
nonsymmetric form

Yk = Yk−1 −Kf(xk), xk+1 = xk + α0 + Y 2
k , (7.59)

which has been obtained by Abdullaev (1994b).
The phase space of the mapping (7.58) is shown in Fig. 7.17a for the

resonant case α0 = n : m = 1:1. As seen from Fig. 7.17 that over fairly
long time interval of order of 102T the orbit near the curve y = 0 follows
the regular curve. During this interval there exists the following approximate
integral of motion along this curve:
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Fig. 7.17. (a) Phase space of the nontwist map (7.58) for the resonance m :
n = 1:1. (b) Evolution of the approximate integral of motion h = y3/3 + KF (x).
Perturbation parameter K = 0.03, α0 = 1

h = y3/3 +KV (x) , (7.60)

V (x) =
∫

f(x)dx =






x2/2, for 0 < x < 1/2 ,

(1 − x)2/2, for 1/2 < x < 1 .

The evolution of h is plotted in Fig. 7.17b. After passing the discontinuity
point x = 1/2 the motion randomly jumps to another regular curve with
the different value of h, and the process repeats itself. This constitutes the
intermittent behavior of the system. Below following Abdullaev (1994b) we
give a qualitative analysis of this phenomenon.

For the sake of simplicity we consider the case α0 = 1. Since the function
f(x) (7.55) is a periodic with a period 1, f(x) = f(x+1), the second equation
in the mapping (7.58) can be replaced by xk+1 = xk +Y 2

k . Then according to
results of Sect. 4.3 Hamiltonian function, [see Eqs. (4.24), (4.35) and (4.34)],
corresponding to the mapping (7.58) has the following form:
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H(x, y, t) =
y3

3
+KV (x)

M∑

n=−M

cos(2πnt) , (7.61)

The generating function of the mapping (7.58) is εS(x) = (K/2)F̄ (x). The
canonical equations of motion can be written in the form

dx

dt
= ω(y) ,

dy

dt
= εY (x, t) , (7.62)

where

ω(y) =
∂H

∂y
= y2 ,

εY (x, t) = −∂H

∂x
= −Kf(x)

M∑

n=−M

cos(2πnt) , (7.63)

For the small values of y the period of motion along the coordinate x is of
order of Tx = 2π/ω(y) = 2π/y2 which is much greater than the period of
perturbation T = 1, Tx � 1. Thus (7.62) describes the effect of small ampli-
tude fast–oscillating perturbations on a nonlinear system. Such a system can
be effectively analyzed using the method of averaging of perturbations (see
Arnold (1989); Arnold et al. (1988); Bogolyubov and Mitropol’skij (1958)).

Consider the domain D of the phase space (x, y): |y| < C < 1, 2πx ∈ S,
where S is a circle, (0 ≤ x (mod 1) < 1). The functions ω(y) and Y (x, t) in
the domain are smooth functions, except a discontinuity line at x = 1/2. We
also suppose that the perturbation parameter ε ≡ K is small. Then in the
domain D where the line x = 1/2 is excluded the system of equations (7.62)
can be replaced by the averaged equations

dξ

dt
= Ω(ζ) ,

dζ

dt
= εY0(ξ, t) , (7.64)

where

Ω(ζ) =
1
T

T∫

0

ω(y)dt = ω(ζ) ,

Y0(ξ) =
1
T

T∫

0

Y (x, t)dt = −Kf(ξ) . (7.65)

According to Bogolyubov (1945) (see, also Bogolyubov and Mitropol’skij
(1958); Arnold et al. (1988)) the solutions, x(t), y(t), of the exact equations
(7.62) are close to the solutions, ξ(t), ζ(t), of the averaged equations (7.64)
with the identical initial coordinates at t = 0: x(0) = ξ(0), y(0) = ζ(0), i.e.,
|x(t) − ξ(t)|, |y(t) − ζ(t)| < ε, on the interval 0 ≤ t ≤ 1/ε. Particularly, the
exact integral
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h̄ = ζ3/3 +KV (ξ) , (7.66)

of the averaged equations (7.64) will be also close to the numerically found
approximate integral of motion h (7.60) of the exact equations (7.62) (or the
corresponding mapping (7.58)). Phase space curves of the averaged system
of equations are shown in Fig. 7.18. They are very close to those shown in
Fig. 7.17b for the same perturbation parameter K.
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Fig. 7.18. Phase space curve of the averaged system (7.64) for perturbation para-
meter K = 0.03

The averaging procedure is not applicable near the line x = 1/2 of the
phase space domain D where the smoothness of the function Y (x, t) is vio-
lated, i.e., the following condition (Bogolyubov (1945), see also Bogolyubov
and Mitropol’skij (1958))

|Y (x, t) − Y (x′, t)| ≤ C|x− x′| ,

where C is a some positive number, is violated because of the presence of the
discontinuous function f(x). Therefore, the averaged equations (7.64) does
not describe the original system (7.62) (or the mapping (7.58)) near the line
x = 1/2. A numerical analysis shows that the system evolves along a smooth
orbit (x(t), y(t)) until it crosses the lines x = 1/2. After crossing this line
it jumps to another smooth orbit with the different constant of motion h.
Direction of a jump occurs along the y-axis is random. However, the rigorous
analytical proof of this numerical finding has not yet been given.

The existence of a transitional layer between the regions of weak and
strong chaos with intermittent nature significantly reduces the global diffu-
sion. It acts as a partial barrier to the global chaotic motion in Hamiltonian
systems.
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7.5 Suppression of Chaos
in Smooth Hamiltonian Systems

As was mentioned in Sect. 7.2 global invariant curves exist in Hamiltonian
systems with sufficiently smooth perturbations whose Fourier coefficients,
Hm(I), decay as Hm(I) ∝ m−(β+1) with the exponent β > βc = 3. However,
the opposite statement that for β < βc = 3 there are no global invariant
curves suppressing a global diffusion for any small perturbation has not been
proven (except the case β = 1) (see Moser (1973)). For the case β = 2 a
specific example of a Hamiltonian system has been found where there exists
a so called invariant resonant structure suppressing the global chaos for a
certain set of perturbation parameter (see, Vecheslavov (2001) and references
therein). Below we shortly discuss this example.

Consider the mapping (Vecheslavov and Chirikov (2001))

yk+1 = yk −Kf(xk), xk+1 = xk + yk+1, (mod 1 ) , (7.67)

where f(x) is the periodic, f(x) = f(x + 1), and antisymmetric, f(−x) =
−f(x), sawtooth perturbation function

f(x) =






2x/(1 − d), for |x| ≤ (1 − d)/2 ,

(1 − 2x)/d, for |1/2 − x| ≤ d/2 ,
(7.68)

Here d is the distance between the sawteeth |f(x)| = 1. The function f(x)
and the corresponding potential function U(x) = −

∫
f(x)dx are plotted in

Fig. 7.19. In the limit d → 0 we obtain the discontinuous function (7.55).
Bullet (1986) and recently, Ovsyannikov3 considered the mapping (7.67)

in the case d = 1/2. They have shown that for a certain countable set of
special values Km of the perturbation parameterK the resonance separatrices
of integer number m of Hamiltonian system are un-split, and it acts as a
barrier to the global chaos along the momentum variable y.

The extensive numerical experiments by Vecheslavov (2000, 2001) have
shown that not only integer but also fractional resonances m : n of arbitrary
orders have critical numbers Km,n whose separatrices do not split. The theory
of the separatrix conversation based on the Melnikov method has been de-
veloped by Vecheslavov (2001); Vecheslavov and Chirikov (2001). Previously,
this approach has been used by Hénon and Wisdom (1983) to study the sep-
aratrix conversation in the oval billiard problem. The diffusion processes in
the mapping (7.67) are studied recently by Vecheslavov and Chirikov (2002);
Chirikov and Vecheslavov (2002).

3 The Ovsyannikov’s theorem has not been published. It is given in Vecheslavov
(2001)
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Fig. 7.19. Sawtooth perturbation function f(x) (7.68) and the potential U(x)

7.6 Bibliographic Notes

A phenomenon of stochastic instability or chaos in Hamiltonian systems is
discussed in many review papers and monographs. Introduction to this phe-
nomenon in dynamical systems including also Hamiltonian systems intended
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motion in Hamiltonian systems is given in the books by Lichtenberg and
Lieberman (1992); Zaslavsky (1985); Sagdeev et al. (1988). More rigorous
mathematical approach to study dynamical systems is discussed in the books
by Guckenheimer and Holmes (1983); Wiggins (1990); Ott (1993). Renor-
malization theory in Hamiltonian dynamics is discussed in a review paper by
Escande (1985) and in a monography by MacKay (1993). Different aspects of
Hamiltonian chaos theory can be found in the collection of papers selected by
MacKay and Meiss (1987). In the review paper by Meiss (1992) a mapping
approach to Hamiltonian dynamics and chaos is discussed.
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In typical Hamiltonian systems chaotic motion appears because of the sepa-
ratrix destruction by any small time-periodic perturbation (see Sect. 7.1.3).
It forms a stochastic layer, a zone, of chaotically unstable motion near the
unperturbed separatrix. In this section we study important properties of the
stochastic layer, namely, a rescaling invariance of phase space of systems near
the saddle points. This property of motion is generic for typical Hamiltonian
systems subjected to time-periodic perturbations. The rescaling invariance
consists of that the phase space (x, p) of system near hyperbolic saddle points
is invariant with respect to the scaling transformation of the perturbation pa-
rameter ε → λε, the shift of perturbation phase χ → χ + π, and the phase
space coordinates (x, p) → (λ1/2x, λ1/2p). The rescaling parameter λ depends
only on the frequency of perturbation, Ω, and the divergence exponent γ of
unperturbed orbits near the saddle point, λ = exp(2πγ/Ω). It means that
the topology of phase space near the saddle point is a periodic function of
log ε with the certain period, log λ.

The rescaling invariance property of motion has been first found in Ab-
dullaev and Zaslavsky (1994); Zaslavsky and Abdullaev (1995) in numerical
simulations, and later it has been explained by Abdullaev and Zaslavsky
(1995, 1996) using the separatrix mapping method. The analytical proof of
the rescaling invariance has been given in Abdullaev (1997) for some class
of Hamiltonian systems. Existence of additional rescaling properties near the
saddle points due to the symmetry of Hamiltonian system in phase space
has been found in Abdullaev (2000). Rescaling invariance properties in au-
tonomous two-degrees-of-freedom Hamiltonian systems has been studied in
Kuznetsov and Zaslavsky (1997). Recently Kuznetsov and Zaslavsky (2002)
have studied a condition at which the phase space structures near the saddle
points of different systems are similar.

This property of motion plays important role in understanding of the
chaotic transport in the stochastic layer. Particularly, it predicts to the uni-
versal periodic log ε− dependence of chaotic transport in the stochastic layer
(Abdullaev and Spatschek (1999); Abdullaev (2000)).

Below we study these generic rescaling properties of motion near the hy-
perbolic saddle points in typical Hamiltonian systems. The study is mainly
based on using the separatrix mappings approach described in the previous
Chaps. 5, 6.

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 175–195 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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8.1 Rescaling Invariance Near Saddle Points
and Separatrix Maps

In this section we consider one degree of freedom Hamiltonian system sub-
jected to time-periodic perturbation, and discuss its rescaling invariant prop-
erties near hyperbolic saddle points. Existence of this property is proven by
the direct numerical integration of Hamiltonian equations and using the sepa-
ratrix mappings. One should note that the conventional separatrix mappings
of type (5.7), (5.52) are not suitable for these analysis. It is because a time
and energy variables in these mappings are defined at the different sections
of phase space, and therefore they cannot be compared with Hamiltonian
equations. For this reason we will use the separatrix mappings at the section
Σs (5.46) located near hyperbolic saddle points.

First we consider the universal rescaling invariance property of system,
and then the rescaling invariance due to the symmetry of Hamiltonian system
in phase space.

8.1.1 Structure of Phase Space Near Saddle Points

Consider the Hamiltonian system given by Hamiltonian

H = H0(q, p) + εH1(q, p, t+ t0) , (8.1)

describing the effect of time dependent perturbation on one degree of freedom
Hamiltonian system H0(q, p). The perturbation H1(q, p, t) is a periodic in
time with the frequency Ω: H1(q, p, t) = H1(q, p, t+ 2π/Ω). A constant t0 is
related to the phase of perturbation, χ = Ωt0.

Suppose that the unperturbed Hamiltonian system H0(q, p) has hyper-
bolic fixed points. Let (qs = 0, ps = 0) be coordinates of one saddle point.
The H0(q, p) may be presented as a power series near the saddle point:

H0(q, p) = H0(qs, ps) ±
α2

s

2
q2 ∓ β2

s

2
p2 +O(δ3) , (8.2)

where αs and βs are the expansion coefficients, O(δ3) is higher order expan-
sion terms (δ ∼ x, p). By a linear rotational transformation

x =
1√

2αsβs
(αsq + βsp) , y =

1√
2αsβs

(−αsq + βsp) , (8.3)

the Hamiltonian (8.2) can be reduced to

H0(q, p) = H0(qs, ps) ± γsxy +O(δ3) , (8.4)

where γs = αsβs is a coefficient determining the exponential growth (or de-
crease) of coordinates near the saddle points: x ∼ exp(±γst), y ∼ exp(∓γst).
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Fig. 8.1. Phase space structure near the hyperbolic fixed point

The phase space of the unperturbed Hamiltonian near the hyperbolic saddle
point is shown in Fig. 8.1. Further suppose that all hyperbolic saddle points
which lie on the same energy surface H(qs, ps) = constant have the same
increments γ ≡ γs. These saddle points are connected heteroclinically (or
homoclinically in the case of one saddle point). The examples of homoclinic
and heteroclinic connections of saddle points were shown in Fig. 5.1a, and
Fig. 5.1b, respectively.

The frequency of closed motion ω(H) has the universal asymptotics when
orbit approaches to the separatrix:

ω(H) =
2πγ

ln A
|H−Hs|

, H → Hs , (8.5)

which depends on the increment, γ, and a certain constant parameter, A. In
(8.5) Hs is then energy on the separatrix.

In typical Hamiltonian systems any small time-periodic perturbation de-
stroys the separatrices, and motion near the unperturbed separatrices be-
comes chaotic (see Fig. 5.2). However the stochastic layer formed in the small
vicinity of the unperturbed separatrices is not uniform. There are regions in-
side the stochastic layer with regular motions (KAM–stability islands). The
examples of stochastic zone are shown in Fig. 8.2. The mutual positions of
these islands and their relative sizes determine the topology of the stochastic
layer. As we will show later that it plays main crucial role in chaotic trans-
port along the stochastic layer. Particularly, the structure of the stochastic
layer near saddle points mainly determines the statistical properties of chaotic
motion because particles spend relatively large times in regions near saddle
points.

8.1.2 Universal Rescaling Invariance

By numerous simulations of different Hamiltonian systems of type (8.1) it
has been found that the phase-space, (x, y), of the perturbed motion near
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saddle points is invariant with respect to the rescaling transformation

ε → ε′ = λε , χ → χ′ = χ+ π ,

x → x′ ≈ λ1/2x , y → y′ ≈ λ1/2y , (8.6)

with the rescaling parameter,

λ = exp(2πγ/Ω) , (8.7)

depending only on the perturbation frequency Ω and the coefficient γ de-
scribing the behavior of the unperturbed Hamiltonian H0(x, y) near saddle
point (8.4). Here χ = t0Ω/2π is the initial phase of perturbation.

This rescaling property is illustrated in Fig. 8.2 by plotting Poincaré sec-
tions of the Hamiltonian system (6.23) of the periodically driven pendulum
near the saddle point (x = π (mod 1), p = 0) for the two set of parameters:
(a) εa = 0.02, χa = 0, and (b) εb = λεa = 0.08, χb = π. The perturbation
frequency Ω is chosen equal to Ω = 4.53236ω0 in order to have the rescaling
parameter λ = exp(2πγ/Ω) = 4. One can see that the phase-space topologies
of the stochastic layer near hyperbolic saddle points (qs, ps) corresponding to
the two set of parameters (εa, χa) and (εb, χb) are similar, i.e., mutual posi-
tions of islands of types 1, . . ., 6 are similar. The coordinates of their elliptic
fixed points, (xe, pe), are related according to (8.6). Numerically calculated
ratios of these coordinates are presented in Table 8.1. (In Table (xa, ya) and
(xb, yb) stand for the coordinates of fixed points for the case (a) and (b),
respectively, xs = π is a hyperbolic fixed point of the unperturbed system.)
As seen from the Table these ratios are approximately equal to λ1/2 ≈ 2,
which confirms the rescaling law (8.6).

Fig. 8.2. Poincaré sections of the Hamiltonian system (5.2) near the saddle point
(q = π, p = 0): (a) εa = 0.02, χa = π + 1, (b) εb = λεa = 0.08, χb = χa − π. The
rescaling parameter is λ = 4, A+ = B− = 1
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Table 8.1. Ratio of relative x- and p-coordinates corresponding the two set of
perturbation parameters (εa, χa) and (εb, χb)

1 2 3 4 5 6
xb−xs

xa−xs
2.000 2.033 2.026 2.000 2.033 2.028

pb
pa

1.995 1.855 2.052 1.995 1.848 2.048

Due to stickiness of orbits to the islands of types 2, 3, 5, 6 particles may
be trapped for a long time while the stickiness to the island 1 (or 4) may lead
long distance flight along positive (or negative) direction of the x-axis. The
variation of perturbation amplitude, ε, periodically changes the topology of
phase space of perturbed motion near saddle points. One expects that this
property can lead to the quasi-periodic dependencies of statistical properties
of chaotic transport in the stochastic layer Abdullaev (2000) (see Chap. 9).

8.1.3 Proof of the Rescaling Invariance of Hamiltonian Equations

Below we present an analytical proof the rescaling invariance of Hamiltonian
equations near saddle points following by Abdullaev (1997). Consider an
arbitrary Hamiltonian system subjected by time-periodic perturbation,

dx

dt
=

∂H0(x, y)
∂p

+ εg1(x, y, t+ t0) ,

dy

dt
= −∂H0(x, y)

∂x
+ εg2(x, y, t+ t0) . (8.8)

The canonical variables (x, y) are chosen in such a way that the unperturbed
Hamiltonian H0(x, y) near the saddle point (x = 0, y = 0) has the form (8.4).
The perturbation is given by the time-periodic functions gi(x, p, t), (i = 1, 2),
with period T = 2π/Ω:

gi(x, y, t) = gi(x, y, t+ T ) , (i = 1, 2) , (8.9)

We does not require that the perturbations to be Hamiltonian, when the func-
tions gi(x, p, t), (i = 1, 2) are determined by the perturbation Hamiltonian:
g1(x, y, t) = ∂H1/∂y, g2(x, y, t) = −∂H1/∂x. Suppose also that the average
value of the perturbation functions, gi(x, p, t), over one period, T , are zero

∫ T

0

gi(x, p, t)dt = 0, (i = 1, 2) . (8.10)

The dimensionless perturbation parameter ε is small, 0 < ε � 1.
Consider the behavior of the system (8.8) near the hyperbolic saddle point

(x = 0, y = 0) by expanding its right hand side in a series of powers of x, y.

gi(x, y, t) = ai(t) + ci1(t)x+ ci2(t)y +O(x2, y2, xy) , (i = 1, 2) , (8.11)
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where

ai(t) = gi(0, 0, t) ,

ci1(t) =
∂gi(x, y, t)

∂x

∣∣∣∣
x=y=0

, ci2(t) =
∂gi(x, y, t)

∂y

∣∣∣∣
x=y=0

.

The coefficients ai(t), cij(t) (i, j = 1, 2) are periodic functions of time with
the period T = 2π/Ω, cij(t) = cij(t+ T ), and

∫ T

0

ai(t)dt =
∫ T

0

ci,k(t)dt = 0 , (i = 1, 2) . (8.12)

Neglecting the small terms of order of O(x2, y2, xy) the equations (8.8)
are reduced to

dx

dt
= −γx+ ε [a1(t+ t0) + c11(t+ t0)x+ c12(t+ t0)y] ,
dy

dt
= γy + ε [a2(t+ t0) + c21(t+ t0)x+ c22(t+ t0)y] , (8.13)

Let (xa(t), ya(t)) be a solution of (8.13) for a certain small value of ε = εa,
and the phase χa = Ωt0, t0 = ta. Suppose that the solution (xb(t), yb(t)) of
the same equation (8.13) corresponds to the transformed parameters

ε = εb = εa/λ , χ = χb = χa − π , (8.14)

where the parameter λ = exp(2πγ/Ω). Then one can show (see Appendix C)
that there exists the following relation between solutions (xa(t), ya(t)) and
(xb(t), yb(t)) corresponding to (εa, ta) and (εb, tb), respectively:

xb = λ−1/2xa − εb

(
λ−1/2c012ya + p0

1

)
+O(ε2b) ,

yb = λ−1/2ya − εb

(
λ−1/2c021ya + p0

2

)
+O(ε2b) . (8.15)

where the coefficients

c012 = 2

T/2∫

0

e2γtc12(t− T/2)dt , p0
1 =

T/2∫

0

eγtp1(t− T/2)dt ,

c021 = 2

0∫

−T/2

e−2γtc21(t− T/2)dt , p0
2 =

0∫

−T/2

e−γtp2(t− T/2)dt ,

are constants of order of O(1). The relation (8.15) confirms the numerically
found rescaling law (8.6). It also shows that the rescaling invariance may be
violated in a small neighborhood of the saddle point (x = 0, y = 0) with a
radius of the order of ε.
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Consider now the case when the (n − 1), (n ≥ 2), derivatives of the
perturbation functions gi(x, y, t), i.e., ∂jgi(x, y, t)/∂xk∂yj−k, (0 ≤ k ≤ j, 1 ≤
j ≤ n − 1), at the saddle point (x = y = 0) are zeros. Then the lowest
order non-zero terms in expansions of gi in powers of x, y are given by the
homogeneous polynomial functions of order n,

gi(x, y, t) =
n∑

k=0

c
(n)
ik (t)xkyn−k , (i = 1, 2) , (8.16)

where the coefficients

c
(n)
ik (t) =

n!
k!(n− k)!

∂ngi(x, y, t)
∂xk∂yn−k

∣∣∣∣
x=y=0

,

are periodic functions of time t with a period T . In this case the equations
of motion (8.8) take the form

dx

dt
= −γx+ ε

n∑

k=0

c1k(t)xkyn−k ,

dy

dt
= γy + ε

n∑

k=0

c2k(t)xkyn−k . (8.17)

Analysis of the equations of motion (8.17) with the perturbation functions
(8.16) is provided in Appendix C.2. It was shown that the relations between
solutions (xa(t), ya(t)) and (xb(t), yb(t)) of these equations corresponding to
the parameters (εa, χa) and (εb, χb) related according to (8.14) are given by

xb = λ−1/2xa +O(ε2b) + εO(λ−2) ,

yb = λ−1/2ya +O(ε2b) + εO(λ−2) . (8.18)

It follows from (8.18), that the rescaling law (8.6) is valid for large values
of the rescaling parameter λ, that λ2 � 1. On the other hand, the rescaled
perturbation parameter εa and εaλ should be small.

8.1.4 Separatrix Mapping Approach

The rescaling invariance of system near saddle points immediately follows
from the property of the separatrix mapping for time and energy variables
defined at the section of phase space near saddle points. Consider, for exam-
ple, the system with a several hyperbolic saddle points shown in Fig. 8.3. The
orbit crosses the branches 1, 2, . . ., 4 of the cross sections Σs near the saddle
points. The each step of the map connecting the branches of the sections Σs

is described by the separatrix mapping (5.46). Suppose the perturbation is a
periodic with a single frequency Ω. Then the frequencies Ωn of higher har-
monics n are simply related to Ω: Ωn = nΩ. Using the asymptotics (8.5) of
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Fig. 8.3. Scheme of the separatrix mapping in the system with a several saddle
points

the frequency of unperturbed motion, ω(H), near the separatrix the mapping
(5.46) can be presented as

hk+1 = hk + ε
∑

n

nΩ

[
Kn sin

(
nϕk + n

Ω

2γ
ln

A

|hk|
+ χn

)

+Ln cos
(
nϕk + n

Ω

2γ
ln

A

|hk|
+ χn

)]
,

ϕk+1 = ϕk +
Ω

2γ

(
ln

A

|hk|
+ ln

A

|hk+1|

)
. (8.19)

Since the phase ϕ = Ωt is defined by module 2π, the mapping (8.20) is
invariant with respect to the transformation

ε → ελ , χn → χn + nπ , h → hλ , (8.20)

where the rescaling parameter λ is determined by (8.7). This rescaling in-
variance property of the separatrix mapping corresponds to the rescaling law
(8.6).

8.1.5 Rescaling Invariance in Parameter Space

The separatrix mapping (8.19) uniquely determines the dynamics of sys-
tem near saddle points. It depends on a few parameters: γ and A in the
asymptotics of the frequency of oscillations ω(H) (8.5), the perturbation
frequency Ω, and the Melnikov-Arnold type integrals Kn, Ln (5.28). We an-
alyze the rescaling invariance properties of the mapping in the parameter
space γ,A,Ω,Kn, Ln. It is easy to check that the separatrix map is invariant
with respect to the transformation of the parameters (γ,A,Ω,Kn, Ln) →
(γ̄, Ā, Ω̄, K̄n, L̄n):
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A → Ā = Aδλ−s , (s = 0, 1, 2 · · ·) ,

Kn → K̄n = Knδ, Ln → L̄n = Lnδ ,

χn → χ̄n = χn + snπ , h → h̄ = hδ , (8.21)

at the fixed perturbation parameter ε and the ratio Ω/γ = Ω̄/γ̄. The para-
meter δ is arbitrary, and λ is the rescaling parameter (8.7). One should note,
that the transformations Kn → K̄n = Knδ, Ln → L̄n = Lnδ are equivalent
to the transformation of the perturbation parameter ε → ε̄ = εδ, at the fixed
parameters Kn, Ln.

The rescaling invariance (8.21) means that the two different systems have
the similar structure of phase space in the neighborhood of saddle points with
the rescaling law

x → x̄ = δ1/2x , p → p̄ = δ1/2p ,

if their parameters (γ,A,Ω,Kn, Ln) and (γ̄, Ā, Ω̄, K̄n, L̄n) are related accord-
ing to (8.21).

In a particular case, s = 0, this rescaling invariant property of system coin-
cides with the one which has been recently found in Kuznetsov and Zaslavsky
(2002). They have shown that the phase space of two different systems near
saddle points has a similar structure if the separatrix mappings correspond-
ing to these systems are equivalent, i.e., the separatrix mapping of the first
system can be transformed to the one of the second system by the rescaling
transformation of mapping parameters.

8.2 Rescaling Invariance due to the Symmetry
of Hamiltonians

If Hamiltonian system (1.1) has some symmetries in the phase-space of canon-
ical variables (x, p) then there exists additional rescaling invariance of sys-
tem near saddle points with respect to the transformation of perturbation
amplitude and its phase. Consider, for example, the motion of particle in
the perturbed double − well potential studied in Sect. 6.1. The hyperbolic
saddle point is located at (x = 0, p = 0) and the parameter γ is equal to
γ = 1. Therefore the rescaling parameter is λ = exp(2π/Ω). The unper-
turbed Hamiltonian, H0(x, p), in (6.1) is symmetric with respect to x → −x,
p → −p, i.e., H0(−x,−p) = H0(x, p), and but the perturbed Hamiltonian
H1(x, p, t) is antisymmetric, i.e., H1(−x,−p, t) = −H1(x, p, t).

The time−periodic perturbation destroys the separatrix, and the motion
near becomes chaotic. Poincaré section of the system in the (x, p) plane ob-
tained by direct symplectic numerical integration is shown in Fig. 8.4 for the
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Fig. 8.4. Poincaré sections of the Hamiltonian (6.1) for εa = 0.0025, χa = π − 1.
The frequency Ω = 2π/ ln λ (the rescaling parameter is λ = 16)

perturbation parameter ε = 0.0025, and phase χ = π − 1. The frequency
of perturbation Ω is chosen to have the value of the rescaling parameter
λ = exp(2π/Ω) equal to 16, i.e., Ω = 2π/ lnλ = 2.2662. The perturbed mo-
tion near the saddle point beside the universal rescaling property (8.6) has an
additional rescaling property due to the symmetry properties of Hamiltonian
(6.1) above mentioned. By direct numerical integration of the equations of
motion we have found that the system near the saddle point (x = 0, p = 0)
is invariant with respect to the following transformation

ε → ε′ = λ1/2ε , χ → χ′ = χ± π/2 ,

x → x′ ≈ ±λ1/4p , p → p′ ≈ ±λ1/4x . (8.22)

Poincaré sections of the system (6.1) near the saddle point are shown in
Fig. 8.5 for the two values of perturbation amplitude ε and phase χ: (a)
εa = 0.0025, χa = π − 1 and (b) εb = λ1/2εa = 0.01, χb = χa − π/2.
(The rescaling parameter λ = exp(2π/Ω) = 16). Note that in Fig. 8.5b
the coordinate q is along the vertical axis, and the momentum p is along
the horizontal axis. As can see from Fig. 8.5 the q- and p-axes are rescaled
according to (8.22).

8.2.1 Separatrix Mapping Analysis

The existence of the rescaling invariance (8.22) can be proven by the sep-
aratrix mapping. To prove this we will use the separatrix mapping (6.21)
obtained in Sect. 6.1. The geometry of the mapping was shown in Fig. 5.4.
The rescaling transformation (8.22) may be also formulated as

ε → λ1/2ε , χ → χ± π/2 , h → −λ1/2h . (8.23)
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Fig. 8.5. Poincaré sections of the Hamiltonian (6.1) near the saddle point (x =
0, p = 0): (a) εa = 0.0025, χa = π − 1, (b) εb = λ1/2εa = 0.01, χb = χa − π/2. The
rescaling parameter is λ = 16

We study the rescaling invariance property of fixed points of motion
near saddle points. Consider the cross-sections of orbits at the branches
p = 1, 2, 3, 4 of the section Σs shown in Fig. 6.3. Let (ϕ(p)

q,s, h
(p)
q,s) be the

(q, s) fixed point at the p-th branch of Σs defined as

(ϕ(p)
q,s + 2πs, h(p)

q,s) =
(
F̂p

)q

(ϕ(p)
q,s, h

(p)
q,s) , (8.24)

where q, s = 1, 2, . . . are integer numbers. The maps F̂p, (p = 1, 2, 3, 4) are
composed by the consecutive application of the separatrix maps M̂ (±):

F̂1 =
(
M̂ (−)M̂ (+)

)q
, F̂2 =

(
M̂ (+)

)q
,

F̂3 =
(
M̂ (+)M̂ (−)

)q
, F̂4 =

(
M̂ (−)

)q
. (8.25)

Although each of the separatrix maps M̂ (±) is not invariant with respect
to the transformation (8.23), but their combinations of type M̂ (∓)M̂ (±),(
M̂ (±)

)2 are transformed as

(
M̂ (+)

)2 → M̂ (±)M̂ (∓) , M̂ (−)M̂ (+) →
(
M̂ (∓)

)2
,

(
M̂ (−)

)2 → M̂ (∓)M̂ (±), M̂ (+)M̂ (−) →
(
M̂ (±)2 , (8.26)

which can be easily proved by direct calculations. Therefore the rescaling
transformations (8.23) transform the maps F̂p as follow

F̂1 → F̂4 , F̂2 → F̂3 , F̂3 → F̂2 , F̂4 → F̂4 (8.27)

for χ → χ+ π/2, and

F̂1 → F̂2 , F̂2 → F̂1 , F̂3 → F̂4 , F̂4 → F̂3 (8.28)
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for χ → χ− π/2. One can see that the transformations (8.23), (8.27), (8.28)
are equivalent to the rescaling invariance of perturbed motion equations near
the saddle point (8.22) found by the numerical integration of the equations
of motion.

The rescaling property (8.23) is demonstrated in Fig. 8.6 by plotting
Poincaré sections of orbits at the section Σs by the separatrix map for
the same parameters as in Fig. 8.5: (a) εa = 0.025, χa = π − 1; (b)
εb = λ1/2εa = 0.01, χb = χa − π/2. They are obtained using the rules of
application of the separatrix mapping (6.22). The region h > 0 corresponds
to the 1-st branch of the section Σs, and h < 0 corresponds to its 4-th branch,
respectively (see Fig. 6.3). Note that the axis h in Fig. 8.6b is inverted. One
can clearly see that the rescaling transformations (8.23) indeed conserves the
topology of phase space with the rescaling law h → −λ1/2h.

Fig. 8.6. Poincaré sections of orbits at section Σs obtained by the separatrix
mapping (6.21) for the same parameters as in Fig. 8.5: (a) εa = 0.0025, χa = π−1,
(b) εb = λ1/2εa = 0.01, χb = χa − π/2. The rescaling parameter is λ = 16
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Such a rescaling invariance near saddle points with respect to the transfor-
mation (8.22) occurs only due to a specific symmetry of Hamiltonian system.
The periodically driven pendulum studied in Sect. 6.2 also has such a prop-
erty for certain type of perturbation. Indeed, one can show that the motion
near the saddle points described by Hamiltonian (6.26) is invariant with re-
spect to the transformations (8.22) if the amplitudes of perturbation waves
A and B, propagating in opposite directions are A = B. In this case the
perturbation parameter K± (6.50) in the mapping (6.49) is reduced to

K± = ±|A+|
4πΛ2

cosh(πΛ/2)
,

where the sign (+) corresponds to the map along the upper half of phase
space, p > 0, and the sign (-) corresponds to the one along the down half of
phase space. Then the separatrix map (6.49) takes the form similar to (6.21).
For the latter we have proven the existence of the rescaling invariance (8.23).

8.3 2D-Periodic Vortical Flow

In this section we consider the rescaling invariance of motion in Hamiltonian
systems with a several types of hyperbolic saddle points. This system is a
two–dimensional periodic vortical flow. It is well known that the Lagrangian
trajectories of fluid elements in a plane are given by the solution of the
Hamiltonian equations of motion

dx

dt
= −∂ψ

∂y
,

dy

dt
=

∂ψ

∂x
,

with the stream-function ψ playing role of Hamiltonian, H and the spatial
coordinates (x, y) as canonical variables in Hamiltonian dynamics
(see Ottino (1989); Pedlosky (1982)).

8.3.1 Model

Consider two dimensional periodic vortical flow subjected to small time−
periodic perturbation. The system is determined by Hamiltonian function
(see Bertozzi (1988))

H = H0(x, y) + εH1(x, y, t) ,

H0(x, y) =
1
2π

cos(2πx) cos(2πy) . (8.29)

For convenience we have chosen the unperturbed Hamiltonian H0(x, y) in
(8.29) with the x-coordinate shifted by a half of spatial period in comparison
with one given in Bertozzi (1988); Ahn and Kim (1994). Hamiltonian (8.29)
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is a good model for many convective flows, including the axisymmetric Taylor
vortex, as well as the Rossby waves in geophysical fluid dynamics (Pedlosky
(1982)).

The phase–space of the unperturbed flow is shown in Fig. 8.7. It has
elliptic fixed points at (x(e)

m = (m−1)/2, y(e)
n = (n−1)/2) and hyperbolic fixed

points at [xm = (m−1/2)/2, yn = (n−1/2)/2], (n,m = 0,±1,±2, . . .). There
are four different types of saddle points: (xm, yn), (xm, yn+1), (xm+1, yn),
(xm+1, yn+1). Because of periodicity of the system along x− and y− axes
with the period of 1 all other hyperbolic fixed points (xm+2k, yn+2p), (k, p =
0,±1,±2, . . .) whose coordinates are shifted on integer numbers belong to
the same type. Therefore there are only eight independent saddle–saddle
connections.

n/2+3/4

n/2+1/4

n/2-1/4
m/2-1/4 m/2+1/4 m/2+3/4x

y

Fig. 8.7. Phase space of the system (8.29)

Near the saddle points the unperturbed Hamiltonian H0(x, y) in (8.29)
has the following expansion in powers of (x− xm), (y − yn):

H0(x, y) = (−1)m+n2π(x− xm), (y − yn) , (8.30)

and according to the expansion (8.4) the parameter γ is equal to 2π.
For H = H0(x, y) = 0 the saddle points are connected along horizontal

x− and vertical y− axes. These saddle connections are described by orbits

cos(2παs(t)) = ±1/ cosh[2π(t− t0)] , α = x, y , (8.31)

where t0 is a time instant when a trajectory passes a midpoint between two
adjacent saddle points.
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Inside of each cell the trajectories are closed with the frequency of oscil-
lations

ω(H) ==
π2

K(k)
, k2 = 1 − 4π2H2 . (8.32)

Near the separatrices H → 0 the frequency ω(H) has the following asymp-
totics:

ω(H) =
π2

ln(2/π|H|) +O(H) . (8.33)

8.3.2 Rescaling Invariance Property

Any time−periodic perturbation destroys the separatrices. The motion near
the unperturbed separatrices becomes chaotic forming a stochastic web along
unperturbed separatrices. The structure of the stochastic web near the sad-
dle points are invariant with respect to the universal rescaling transformation
(8.6) with the rescaling parameter λ = exp(2πγ/Ω) = exp(4π2/Ω) for arbi-
trary small time−periodic perturbation H1(x, y, t).

For some wide class of perturbations H1(x, y, t) it may also exist a rescal-
ing invariance with respect to the rescaling transformations of type (8.22).
Specifically, we consider the time-periodic perturbation of the flow (8.29) in
the form of traveling waves with the same spatial periods as the unperturbed
flow and the phase velocity Ω coinciding with the perturbation frequency:

H1(x, y, t) =
ε

2π
[ay sin(2πy −Ωt− χ) − ax sin(2πx−Ωt− χ)] , (8.34)

where ax and ay are the relative amplitudes of traveling-waves along the x-
and y-axes, respectively. The perturbed Hamiltonian has a following symme-
try property in the (x, y) space:

H1(x+ 1/2, y + 1/2, t) = −H1(x, y, t) . (8.35)

To integrate the Hamiltonian system (8.29), (8.34) we used a fifth order
Bulirsch–Stoer Runge–Kutta method with adaptive step size control, and
10−7 accuracy (Press et al. (1992)). Poincaré sections of orbits near the saddle
points are presented in Fig. 8.8 for the two different amplitudes, ε, and phases
χ of the perturbation related with the rescaling parameter λ = exp(4π2/Ω) =
16: (a) εa = 0.0208, χa = 0; (b) εb = λ−1/2εa = 0.0052, χb = χa + π/2.
The relative amplitudes of waves are chosen as ax = 1 and ay = 0.5.
Figure 8.8a shows Poincaré sections near the saddle points (xm=0, yn=0) =
(−1/4,−1/4) and (xm=0, yn=1) = (−1/4, 1/4). Corresponding plots near the
points (xm=1, yn=1) = (1/4, 1/4) and (xm=1, yn=0) = (1/4,−1/4) are similar
to those near (xm=0, yn=0) and (xm=0, yn=1), and they may be obtained from
the latter by rotating plots by 180◦ around the corresponding points. Fig-
ure 8.8b presents Poincaré sections near points (1/4,−1/4) and (−1/4,−1/4)
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Fig. 8.8. Poincaré sections of orbits in perturbed 2D lattice flow (8.29), (8.34) near
the four different saddle points for the perturbation amplitudes: (a) εa = 0.0208,
phase χa = 0; (b) εb = λ−1/2εa = 0.0052, phase χb = χa + π/2. The rescaling
parameter λ = exp(4π2/Ω) = 16. Other parameters are ax = 1 and ay = 0.5

with the inverted coordinates (x → −x, y → −y). In the inverted coordinates
(x, y) they correspond to the points (xm=0, yn=1) and (xm=1, yn=1).

As can see from Fig. 8.8 that the topology of phase space near the saddle
points are conserved with respect to the rescaling transformation of parame-
ters

ε → λ−1/2ε , χ → χ+ π/2 ,
(x− xm) → −λ−1/4(x− xm′) ,

(y − yn) → −λ−1/4(y − yn′) . (8.36)

One should note that unlike the rescaling law (8.22) for systems with a
single saddle point, in this case the structure of phase space near the saddle
point (xm, yn) is transformed to the one near the other saddle point (xm′ , yn′).
For the even sum m+n the transformation (m,n) → (m′, n′) is the following
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n/2+1/4

m/2+1/4m/2-1/4

n/2-1/4

(Hk+1, tk+1)
(Hk+2, tk+2)

(Hk , tk)

y

x

Σc

Σc

Σc

4 1

3 2Σmn+1

Σmn
Σm+1n

Fig. 8.9. Geometry of the separatrix map for the periodic vortical flow (8.29)

(m,n) → (m,n+ 1) ,
(m,n+ 1) → (m+ 1, n+ 1),
(m+ 1, n+ 1) → (m+ 1, n),

(m+ 1, n) → (m,n) . (8.37)

The rescaling invariance with respect to the transformations (8.36), (8.37)
occurs only due to a symmetry of perturbed Hamiltonian (8.35). The analysis
of this property will be also given below.

8.3.3 Separatrix Maps of the System

To construct the separatrix maps for this system we introduce sections Σmn

(m,n = 0,±1,±2, . . .) centered at the hyperbolic fixed points (xm, yn) shown
in Fig. 8.9. Each of sections Σmn consists of two segments perpendicularly
crossing each other at the hyperbolic point with 45◦ to the x-axis. There are
four branches of the each section Σmn, denoted as p = 1, 2, 3, 4. Define maps
as

z
(m′n′)
k+1 = M̂z

(mn)
k ,

where z
(mn)
k = (tk, hk) is the crossing point of orbit with the section Σmn

at the k-th step of the map. We denote them as X̂(n)
m,m±1, Ŷ

(m)
n,n±1. The map

X̂
(n)
m,m±1 transforms the point zk at the section Σmn to zk+1 at Σm±1,n along

the horizontal axis x at fixed y = yn. Similarly Ŷ
(m)
n,n±1 connects points at the

sections Σmn and Σm,n±1 along the vertical axis y at fixed x = xm. Because
of the periodicity of the system in the (x, y) space with the period 1 there
are following symmetry properties of the maps
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X̂
(n+2)
m,m±1 = X̂

(n)
m,m±1, Ŷ

(m+2)
n,n±1 = Ŷ

(m)
n,n±1 ,

X̂
(n)
m+2,m+2±1 = X̂

(n)
m,m±1 , Ŷ

(m)
n+2,n+2±1 = Ŷ

(m)
n,n±1 . (8.38)

Since there are only eight independent saddle–saddle connections, there are
only eight independent maps M̂ which fully determine the dynamics of
system.

For small perturbations ε � 1 when the stochastic layer near the unper-
turbed separatrices is sufficiently thin the maps (8.38)can be approximated
by the separatrix maps of type (5.46) along the each saddle–saddle connec-
tions. They describe the evolution of energy (h) and time (t) variables at the
sections Σmn, i.e., (hk+1, tk+1) = M̂(hk, tk), (M̂ = X̂

(n)
m,m±1, Ŷ

(m)
n,n±1). Using

the orbits at the separatrices (8.31) and the perturbed Hamiltonian (8.34)
one can show that the integrals Kn and Ln (5.34) along the saddle saddle
connections are determined by

K
(n)
m,m±1 = (−1)n ax K(±), for m+ n = 2k ,

K
(m)
n,n±1 = (−1)m ay K

(±) , for m+ n = 2k + 1 , (8.39)

where k = 0,±1,±2, . . . and

K(±) =
Ω

2π
exp(±Ω/4)
sinh(Ω/2)

.

The coefficients Ln identically vanish. Then the separatrix maps along the
saddle saddle connections take the form

hk+1 = hk + εK
(β)
α,α±1 cos

(
ϕk +

Ω

4π
ln

2
π|hk|

+ χ

)
,

ϕk+1 = ϕk +
Ω

4π

[
ln

2
π|hk|

+ ln
2

π|hk+1|

]
. (8.40)

Because of the symmetry of the perturbed Hamiltonian (8.35) with re-
spect to translation along the x- and y-axes we have the following properties
of the coefficients K(β)

α,α±1:

K
(n)
m,m±1 = −K(n+1)

m∓1,m , K
(m)
n,n±1 = −K(m+1)

n∓1,n . (8.41)

Existence of rescaling invariance of motion near saddle points (8.36),
(8.37) established by numerical integration of the equations of motion can
be proven using the separatrix maps (8.40). It is given in Abdullaev (2000)
by constructing maps F̂ (p)

mn, (p = 1, 2, 3, 4) for fixed points (ϕq,s,Hq,s) near
the saddle points (xm, yn) at the each branches p of the section Σmn, i.e.,

(ϕq,s + 2πs,Hq,s) =
(
F̂ (p)

mn

)q

(ϕq,s,Hq,s) , (8.42)
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as similar to those maps F̂p introduced for determination of the fixed points
(8.24) in the model studied in Sect. 8.2.1. The rescaling transformation (8.36)
is equivalent to the following transformation applied to the mappings (8.42):

ε → λ1/2ε , χ → χ− π/2 ,

H → −λ1/2H, t → −t . (8.43)

The last expression in the second line in (8.43) corresponds to x → −x, y →
−y.

It was shown by Abdullaev (2000) that for even m+n the rescaling of the
mapping parameter (8.43) transform the mappings F̂ (p)

mn in (8.42) according
to the following way:

F̂ (1)
m,n → F̂

(3)
m,n+1 , F̂ (2)

m,n → F̂
(4)
m,n+1 ,

F̂ (3)
m,n → F̂

(1)
m,n+1 , F̂ (4)

m,n → F̂
(2)
m,n+1 . (8.44)

Similarly, for odd m+ n we have

F̂ (1)
m,n → F̂

(3)
m+1,n , F̂ (2)

m,n → F̂
(4)
m+1,n ,

F̂ (3)
m,n → F̂

(1)
m+1,n , F̂ (4)

m,n → F̂
(2)
m+1,n . (8.45)

These transformation properties (8.44), (8.45) of the phase space near the four
saddle points with respect to the rescaling transformations (8.43) are fully
equivalent to the rescaling properties (8.36), (8.37) found by the numerical
integration of Hamiltonian system (8.29), (8.34).

Poincaré sections of orbits at the Σ00 and Σ01 obtained using the sepa-
ratrix maps are shown in Fig. 8.10a for the same parameters as in Fig. 8.8a:
−εa = 0.0208 and χa = 0. Similar plots for the rescaled parameters
εb = λ−1/2εa = 0.0052 and χb = χa + π/2 are presented in Fig. 8.10b at
the sections Σ01 and Σ11. The rescaling parameter λ = exp(4π2/Ω) = 16.
Corresponding plots at the sections Σ11 and Σ10 may be obtained from the
Poincaré plots at Σ00 and Σ10 by shifting the phase ϕ by π, respectively. Note
that the axes ϕ and H in Fig. 8.10b are inverted. These plots confirm the
rescaling invariance of motion with regard of transformations (8.36), (8.37).

8.3.4 On the Validity Conditions
of the Rescaling Invariance Property

The rescaling invariance of phase space of Hamiltonian system near the sad-
dle points with respect to transformations given by (8.6), (8.20), (8.21) is
exact property of the separatrix mapping (8.19). Therefore the validity of
the rescaling law coincides with the validity of the separatrix mapping itself.
As was shown in Chap. 5 (see Sects. 5.3.1, 5.3.3) the separatrix mapping
(8.19) is derived at the following conditions:
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Fig. 8.10. Poincaré sections of orbits of the periodic vortical flow (8.29), (8.34)
obtained by the separatrix mapping: (a) at the sections Σ00 and Σ10 for the para-
meters: εa = 0.0208 and χa = 0; (b) at the sections Σ01 and Σ00 for εb = λ−1/2εa =
0.0052 and χb = χa + π/2. The rescaling parameter λ = exp(4π2/Ω) = 16. Other
parameters are ax = 1 and ay = 0.5

a. in the first order of perturbation parameter ε by neglecting all terms of
order of εn (n ≤ 2);

b. the frequency of motion ω(h) is replaced by its logarithmic asymptotics
(8.5);

The condition (a) means that the rescaling invariance is an effect in the
first order in a small perturbation parameter ε. From the second condition
(b) follows that the effect is valid in the regions of phase space sufficiently
close to the separatrix where the frequency of motion ω(h) can be replaced
by its asymptotics (8.5).
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8.4 Summary

In this chapter we have studied the structure of the stochastic layer in one
degree of freedom Hamiltonian systems subjected to a time-periodic per-
turbation. It was found the structure of phase space of these systems in
the neighborhood of saddle points is invariant with respect to the rescaled
transformation of the perturbation amplitude with the shift its phase and the
rescaling the coordinates (8.6). Beside this universal property of Hamiltonian
systems we have established additional rescaling invariance properties of mo-
tion due to symmetries of system in phase space (8.22). These properties gives
rise to the periodic change of the topology of phase–space near the saddle
point with varying the perturbation amplitude ε. As we will see in the next
chapter it leads to the log ε-periodic dependence of statistical characteristics
of chaotic motion in the stochastic layer.



9 Chaotic Transport in Stochastic Layers

In this chapter we study the statistical properties of chaotic motion in a
stochastic layer in the context of their relation with the structure of phase
space near saddle points. Before discussing this problem we briefly recall the
statistical methods of description of chaotic transport in a stochastic layer of
dynamical systems.

9.1 Statistical Description
of Chaotic Dynamical Systems

In dynamically chaotic systems the motion of particles becomes practically
unpredictable: any small error in initial conditions leads to the enormous
error in the final conditions. In this situation it does not have a sense to
follow each individual orbit, and the statistical description of the dynam-
ics of system becomes appropriate. This approach is based on the concepts
and methods of statistical mechanics. Below we recall the main notions of
statistical description to study dynamically chaotic Hamiltonian systems.

9.1.1 Ergodicity and Mixing

Let (q(t), p(t)) be the position of system in phase space (q, p) at the time
instant t. The time-evolution of system over time period T is given by the
map

(qk+1, pk+1) = M̂(qk, pk) ,

where (qk, pk) ≡ (q(tk), p(tk)), (tk = kT ). Consider the evolution of the
arbitrary integrable function f(q, p) of (q, p). Suppose the system’s orbits lie
in a finite domain W of phase space. Then the motion is called ergodic if the
time averaging of the function f defined as

f̄ = lim
N→∞

1
N

N∑

k=1

f(qk, pk) , (9.1)

is equal to its value, 〈f〉 obtained by averaging over phase space,

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 197–218 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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〈f〉 =
∫

W

f(q, p)dqdp , (9.2)

i.e.,

f̄ = 〈f〉 . (9.3)

In order to introduce the mixing property of dynamical systems we define
the correlation function. Let f and g be two arbitrary integrable functions of
(q, p): f = f(q, p) and g = g(q, p). The correlation function Cfg(τ) is defined
as

Cfg(τ) = Msf · g − f̄ ḡ, τ = sT , (9.4)

where

Msf · g ≡ f(qk+s, pk+s) · g(qk, pk)

= lim
N→∞

1
N

N∑

k=1

f(qk+s, pk+s)g(qk, pk) . (9.5)

The correlation function Cfg(τ) gives a quantitative measure of correlation
of functions f and g separated by time delay τ .

The dynamical system is called a mixing if the correlation function (9.4)
vanishes at the limit τ → ∞:

Cfg(τ) = 0, for τ → ∞ . (9.6)

Mixing represents a more subtle property of system than the ergodicity
and it is related with the exponential divergence of neighboring orbits (7.14).
In systems with the mixing property the initial small finite domain of phase
space acquires the complicated shape with the same area (due to Liouville
theorem) but with the stretched and bended regions as illustrated in Fig. 9.1.
Ergodicity of system follows from the mixing property. However, the opposite
statement that mixing follows from the ergodicity is not generally true.

The law according to the correlation function tends to zero significantly
depends on the structure of phase space. In the case of systems with a highly
developed chaotic zone with no KAM stability islands the correlation function
decays exponentially with τ ,

Cfg(τ) ∼ exp(−τ/τc) , (9.7)

where τc is the correlation time. Usually, it is inverse proportional to the
Lyapunov exponent σ (7.21) averaged over the phase space area W :

τc ∼ 1
〈σ〉 .
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(a)

(b)

Fig. 9.1. Example of mixing property of system: initial phase space area (a) of
circular shape turns into the stretched and bended area (b) with complicated shape

However, in typical partially chaotic Hamiltonian systems with the em-
bedded KAM stability islands in the chaotic zone the correlation function
decays slowly according to power-like law,

Cfg(τ) ∼ τ−p, (9.8)

with the constant exponent p. As we will see later it significantly depends on
the structure of chaotic zone.

In analogy with the notion of entropy in the statistical mechanics
Kolmogorov (1958) introduced a dynamical entropy, hK , for dynamically
chaotic Hamiltonian systems to characterize a degree of stochasticity (see,
e.g. Zaslavsky (1985)). The dynamical entropy also known as the Kolmogorov
entropy has an order of the averaged Lyapunov exponent

hK ∼ 〈σ〉 ∼ τ−1
c . (9.9)

For dynamically chaotic systems the Kolmogorov entropy is positive, hK > 0.

9.1.2 Kinetic Description

In statistical mechanics of many body problems kinetic equations are ob-
tained from the dynamical equations of motion with assumptions like ran-
dom phase approximation. Dynamically chaotic systems with a few degrees
of freedom can be also described in terms of the kinetic equations describing
the irreversible behavior of system. One of the features of dynamically chaotic
systems is concluded in that the kinetic equation for them can be obtained
without above mentioned assumptions of random phases. In typically highly
developed chaotic systems the kinetic equation can be obtained thanks to
exponential decay (9.7) of the correlation functions (9.4).
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Specifically consider a dynamically chaotic system with the Hamiltonian

H = H0(I) + εH1(I, ϑ, t) ,
εH1(I, ϑ, t) = ε

∑

mn

Hmn(I) cos(mϑ− nΩt+ χmn) . (9.10)

Let F (I, ϑ, t) be a probability distribution function (PDF) of particles in
phase space at the moment of time t. Then dN = F (I, ϑ, t)dIdϑ is a number
of particles in the element of area dV = dIdϑ. According to (1.3), (1.4), (9.10)
the time-evolution of the function F (I, ϑ, t) is described by the equation

∂F

∂t
+ ω

∂F

∂ϑ
= ε

(
∂F

∂I

∂H1

∂ϑ
− ∂F

∂ϑ

∂H1

∂I

)
. (9.11)

We introduce the distribution function, f(I, t), averaged over phases ϑ,

f(I, t) =
1
2π

2π∫

0

F (I, ϑ, t)dϑ .

Supposing that in dynamically chaotic systems the correlation functions
Cmm′(τ) of phases ϑ decay exponentially,

Cmm′(τ) = lim
T→∞

1
T

∫ T

0

eimϑ(t+τ)−im′ϑ(t)dt ∼ exp(−τ/τc) ,

from the equation (9.11) one can obtain the following Fokker–Planck equation
for the function f(I, t) (see Lichtenberg and Lieberman (1992); Zaslavsky
(1985); Sagdeev et al. (1988)):

∂f

∂t
=

1
2
∂

∂I

(
D(I)

∂f

∂I

)
, (9.12)

where
D(I) = πε2

∑

mn

m2|Hmn(I)|2δ(mω(I) − nΩ) (9.13)

is the diffusion coefficient in the space of action variable I. This statistical
approach to study irreversible behavior of chaotic dynamics is known also as
the quasilinear theory because of its analogy with the corresponding theory
of plasma oscillations1 (see, e.g., Sagdeev and Galeev (1969)). The diffusion
coefficient (9.13) is called the quasilinear diffusion coefficient. The quasilinear

1 Recently Elskens and Escande (2002a,b) have rigorously proven that diffusion
coefficient D(I) takes on the quasilinear value (9.13) for the chaotic motion of
an electron in plasmas with a set of strongly overlapping Langmuir waves with
random phases. As a result, the macroscopic irreversible evolution of a plasma
is described by its microscopic chaotic dynamics.
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approximation usually is valid for the statistical description of Hamiltonian
systems with highly developed chaos.

Qualitatively, this diffusion process can be considered a random walk
along the action variable I with a step size ∆I and with time step ∆t = 2π/Ω.
The diffusion coefficient of such a process defined as

D(I) =
〈(∆I)2〉

2∆t
,

is given by (9.13).

9.1.3 Anomalous Diffusion

In typical Hamiltonian systems the zone of chaotic motion is not uniform, es-
pecially the stochastic layer near the separatrix. It consists of KAM-stability
islands embedded in a so-called stochastic sea. The structure of the stochas-
tic layer is determined by the mutual positions and sizes of KAM-islands.
Existence of these islands leads to the deviation of chaotic motion from the
normal diffusion processes described by the Gaussian random walk approx-
imation. This is because of long-time range correlations of type (9.8) due
to particles trapped near the islands. In general, such a chaotic motion in
the stochastic layer is not described by the normal random transport process
with the Fokker–Planck equation (9.12). It is one of the important features
of typical deterministic chaotic systems. Departure of the statistics of chaotic
motion from the Gaussian one is called anomalous diffusion. It has been the
subject of extensive studies for more two decades starting from pioneering
works by Karney (1983); Chirikov and Shepelyansky (1984) (see, also reviews
by Bouchaud and Georges (1990); Chirikov (1991); Shlesinger et al. (1993);
Klafter et al. (1996); Metzler and Klafter (2000); Zaslavsky (2002)). In one
dimension the anomalous diffusion along space, x, (or momentum p) coor-
dinate is characterized by a nonlinear time dependence of a second moment
displacement,

σ2(t) = 〈(x(t) − 〈x〉)2〉 = 2Dtγ , (γ �= 1) (9.14)

of random coordinate x. For the normal diffusion process the exponent γ = 1
and D determines a diffusion coefficient. The case γ > 1 is known as en-
hanced (superdiffusive) transport, while the case γ < 1 describes a reduced
(subdiffusive) transport. At the present time it is well established that the
anomalous transport occurs in partially chaotic Hamiltonian systems where
the regions of phase space with the regular motion [so-called the Kolmogorov-
Arnold-Mozer (KAM) stability islands] are embedded in a stochastic zone.
Due to stickiness of orbits to the KAM stability islands chaotic motion al-
ternates with a time intervals with a regular behavior. Then the type and
rate of anomalous transport depend on the structure of the stochastic layer
determined by the mutual positions of the KAM islands and their size.
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Presently several theoretical approaches have been developed to describe
anomalous diffusion in partially chaotic Hamiltonian systems. Among them
one should mention the continuous time random walk (CTRW) method (see,
e.g., Metzler and Klafter (2000)), the fractional kinetic equations (see Za-
slavsky (2002)), the lobe dynamics (see, Wiggins (1990b)). Particularly, the
kinetic theory of the standard map in different diffusion regimes has been
studied by Balescu (2000a,b).

9.2 Non-Gaussian Statistics in Stochastic Layers

In the case of the stochastic layer formed near the separatrices the chaotic
transport is mainly determined by its structure near the saddle points where
particles spend more time than in other parts of the phase space. As was
shown in the previous Chap. 8 the perturbed motion near saddle points is
invariant with respect to the rescaled transformation of the perturbation
amplitude ε and the shift of phase χ and the phase space coordinates (8.6),
i.e., the topology of the stochastic layer in the neighborhood of saddle points
is a periodic function of log ε with the period log λ. Therefore, one can expect
that by varying ε one can periodically change the statistical and transport
properties of chaotic motion in a stochastic layer. Below we demonstrate
these properties for the different models of Hamiltonian systems considered
in the previous chapters. All calculations are carried out using the separatrix
mappings obtained in Chaps. 6 and 8.

9.2.1 Mean Residence Time

We first consider a statistics of residence time of particle in one of wells
in a double–well potential field affected by time-periodic perturbation. The
system is described by Hamiltonian (6.1). Suppose that in the absence of
perturbation a particle is trapped in one of the wells. A motion of particle
may be described in the (x, p) plane by the closed curve 1 in Fig. 6.1b, and
it is separated from the other well by the separatrix (curve 2). The time-
periodic perturbation destroys the separatrix replacing it by a stochastic
layer which is illustrated in Fig. 8.4. If the initial position of particle is inside
the stochastic layer it leaves the potential well by crossing the unperturbed
separatrix during a certain residence time τ which is known as a residence
time. Its value is very sensitive to the small changes of initial coordinate
of particle. The statistics of residence time depends on the structure of the
stochastic layer. Below we study a dependence of mean residence time on
perturbation amplitude ε.

In the quasilinear approximation the mean residence time 〈τ〉 on ε can
be estimated using the following arguments. If one does not take into ac-
count trapped particles one could expect that 〈τ〉 is proportional to the char-
acteristic period of particle’s orbit T (hw) inside the stochastic layer with
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Fig. 9.2. A mean residence time 〈τ〉 in the potential well normalized to the pertur-
bation period T0 versus a perturbation parameter ε (curve 1). Curve 2 describes the
fitting of 〈τ〉 vs ε by a linear function a− b log ε (a = 21.87±2.64, b = 3.92±0.462).
The rescaling parameter λ = 10

effective energy hw, i.e., 〈τ〉 ∼ T (hw). The latter, hw, counted with re-
spect to the separatrix energy, is of order of the width of the stochastic
layer ws(ε) ∼ ε, and taking into account the logarithmic asymptotics of the
period T (hw) ∼ ln(A/hw) (6.8), we have 〈τ〉 ∼ a− b log ε, where a and b are
constants independent on ε. Therefore, neglecting the stickness of particles
to the KAM stability islands one expects that the mean residence time 〈τ〉
linearly decreases with log ε.

The calculations of 〈τ〉 were performed using the separatrix map (6.21)
and it is presented in Fig. 9.2. The value of the perturbation frequency Ω is
chosen to have the rescaling parameter λ = exp(2π/Ω) = 10. Averaging is
made over N = 106 orbits. Curve 1 describes a dependence of 〈τ〉 on ε, curve 2
corresponds to it’s fitting with the linear-log law 〈τ〉 ∼ a−b log ε. From Figure
one can clear see that the mean residence time does not monotonically depend
on ε. There are strong periodic oscillations around linear–log dependence.
These oscillations are due to a periodical variation of the topology of phase–
space near saddle point with the change of perturbation amplitude ε. The
period of oscillations are determined by the rescaling parameter λ, i.e., equals
to log λ.

9.2.2 Statistics of Poincaré Recurrences

According to Poincaré recurrence theorem any orbit of bounded Hamiltonian
system returns to the small neighborhood of its initial position (see, e.g.,
Arnold (1989)). The distribution function Prec(τ) of recurrence time τ is
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the important statistical characteristics of dynamically chaotic systems. It is
defined as

Prec(τ) =
N(τ)
N

,

where N(τ) is the number of recurrences with t > τ and N is the full number
of recurrences. The function Prec(τ) is related to the correlation function of
dynamical variables, C(τ) = 〈ẋ(t+τ)ẋ(t)〉 (see, e.g., Chirikov and Shepelyan-
sky (1984)):

C(τ) ∼ τPrec(τ)/〈τ〉 ,

where 〈τ〉 is the mean recurrence time. The diffusion coefficient (rate) D is
directly related to the correlations,

D ∼
∫ ∞

0

C(τ)dτ .

In a fully developed chaotic system Prec(τ) decays exponentially with τ ,
Prec(τ) ∼ exp(−aτ) (Lichtenberg and Lieberman (1992)). Numerous studies
show that in partially chaotic systems with the KAM islands the recurrence
distribution has a power-law Prec(τ) ∼ τ−p at a large time. First calculations
of the exponent p performed by Chirikov and Shepelyansky (1984); Karney
(1983) for the separatrix map and others different maps gave p ≈ 1.5. During
last decade the values of p ≈ 1−2.5 have been found for different Hamiltonian
systems (Chirikov and Shepelyansky (1984); Chirikov (1991); Geisel et.al
(1987); Shlesinger et al. (1993); Klafter et al. (1996); Artuso (1999); Zaslavsky
(2002)). However, Chirikov (1983) presented some arguments that the value
of p should be equal to 3, which is strongly different from p ≈ 1.5. Murray
(1991) maintained that in order to achieve the exponent p = 3 one requires
larger times. Recently in Chirikov and Shepelyansky (1999) the power−law
decay Prec(τ) ∼ τ−p with p = 3 was numerically observed at very large
times for the dynamical chaos in the standard map with the critical golden
KAM-invariant curve, i.e., m : n = Ω/ω = (

√
5 − 1)/2.

We have studied a dependence of the Poincaré recurrence statistics on
the structure of the stochastic layer by varying perturbation parameter ε.
For this purpose we have calculated statistics of first return times to the 4-
th branch of the section Σs in Fig. 6.3 in the double–well potential affected
by the time-periodic perturbation. All calculations are performed using the
separatrix map (6.21) for the same parameters as in Sect. 9.2.1. The mean
recurrence time 〈τ〉 as a function of the perturbation parameter ε is shown
in Fig. 9.3. Similar to the mean residence time (see Fig. 9.2) it is also a
quasiperiodic function of log ε with the period log λ. However maxima of the
mean residence time correspond to minima of the mean recurrence time 〈τ〉
and vice versa.
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Fig. 9.3. Average recurrence time 〈τ〉 as a function of perturbation amplitude ε

p

1.0

1.2

1.4

1.6

1.8

2.0

2.2

-3 -2 -1

log ε / log λ

Fig. 9.4. Exponents p of asymptotics of Prec(τ) ∼ τ−p as a function of the per-
turbation parameter ε

Probability of recurrences P (τ) computed up to the moderate times τ ≤
1052π/Ω shows that it decays oscillating near to the power-law τ−p which
were also observed in Chirikov and Shepelyansky (1984). The amplitude of
these oscillations varies with perturbation parameter ε. The estimations of
the exponent p for different ε were performed by a fitting of the probability of
recurrences P (τ) with the power-law Cτ−p in the time interval 102 ≤ τ/T ≤
105. The latter is of order of oscillation period of P (τ) around the power-
law τ−p. The dependence of the exponent p on ε is shown in Fig. 9.4 from
which one can recognize a periodic dependence of p on log ε with the period
log λ = log 10. The values of p vary between 1 and 2, and it is oscillating near
the average value p ≈ 1.5 which was observed in most previous calculations
mentioned above.
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9.3 Chaotic Transport in Stochastic Layers.
Three-Wave Field Model

In this section we consider a chaotic transport of particles in a stochastic
layer for three-wave field model (6.23)–(6.25) (see Sect. 6.2). We will study
statistical properties of transport along the (infinite) x - axis, in particularly,
an advection and diffusion by calculating the first, 〈x〉, and the second mo-
ments of the spatial displacement, σ2(t) (9.14), respectively, as well as the
probability density function (PDF) P (x, t) for a particle with position x at
time instant t as a function of perturbation amplitude ε.

Calculations of the statistical moments were performed using the separa-
trix map (6.49) as well as direct numerical integrations of motion equations for
the Hamiltonian (6.23)–(6.25) using the symplectic integrator (1.58), (1.59).
The rescaling parameter is chosen equal to λ = 4 which corresponds the per-
turbation frequency Ω = 4.53236ω0. A set of initial data at t = 0 consisting
of N = 5 × 103 trajectories were taken in a square region centered at the
hyperbolic fixed point (x = π, p = 0).

9.3.1 Advection

An advection in the stochastic layer takes place in the direction of the per-
turbation wave with the larger amplitude amax = max(A,B). The maxi-
mum advection occurs if only one perturbation wave is present. We consider
this case putting A = 1 and B = 0. Calculations show that at least up to
t ≤ 2 × 104T the mean coordinate 〈x(t)〉 is linear function of time t, i.e.,
〈x(t)〉 = vt with an advection speed v. It has been found that the advection
speed v is not a monotonic function of perturbation parameter ε. Similar to
the mean residence time 〈τ〉 (see Fig. 9.2) it varies quasi-periodically with
log ε with the period log λ as shown in Fig. 9.5.

9.3.2 Anomalous Diffusion

To study an anomalous diffusion we have calculated the second moments
σ2(t) (9.14) for A = B = 1. In this case the perturbation in the Hamiltonian
(6.23)–(6.25) acts symmetrically on particles traveling in both positive and
negative directions along the x-axis without advection, i.e., the mean value
〈x〉 = 0.

Figure 9.6 shows the dependence of σ2(t) on the perturbation amplitude
ε at two different time instants: curve 1 corresponds to t = (2π/Ω)×104 and
curve 2 to t = (4π/Ω) × 104. The thick curves correspond to the numerical
integration of the equations of motion, while the thin curves corresponds to
the separatrix map calculations (6.49) [with an average over N = 104 orbits].
One can see that the separatrix map (6.49) correctly reproduces the results
of direct numerical integrations with a good accuracy up to the relatively
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Fig. 9.5. Advection velocity v versus perturbation amplitude ε as obtained by
direct numerical integration. Rescaling parameter λ = exp(2πω0/ν) = 4

large value of ε = 0.1. Fig. 9.6 clearly shows the strong quasi-periodical
dependence of the second moment σ2(t) on perturbation parameter ε. There
are local maxima of σ2(t) at the values ε

(j)
max = λ−jεmax, εmax ≈ 0.192,

and local minima at ε(j)min = λ−jεmin, εmin ≈ 0.08, (j = 1, 2, · · ·). For large
perturbation amplitudes ε > 0.1 the quasi-periodical behavior of σ2(t) is
less pronounced since the rescaling property of Hamiltonian system starts to
violate for large perturbations. With increasing time, the periodic dependence
of σ2(t) on ε becomes even more pronounced.

A quasiperiodic dependence of σ2(t) on ε is a consequence of the periodic
change of the structure of the stochastic layer near saddle points. Minima of
σ2(t) correspond to the situations when a majority of particles are stuck to

1
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σ2 (
t)

2

Fig. 9.6. Second moment σ2(t) versus perturbation amplitude ε as obtained by
direct numerical integration. Solid curve 1 corresponds to t = (2π/Ω) × 104 and
solid curve 2 to t = (4π/Ω) × 104 (thick lines). The corresponding thin line curves
describe the results obtained by the separatrix map (6.49)
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the islands of type 2, 3, 5, 6 (see Fig. 8.2) responsible for trapping particles
by the main wave. Similarly, maxima of σ2(t) describes the case when a
majority of particles are stuck to the islands of type 1, 4 (see Figure 8.2) in
which particles are running along x-axis for a long time without changing the
direction. The variation of ε periodically alternates the domination of these
different types of islands. More detailed discussion of this phenomenon can
be found in Abdullaev (2000).

For large times t we have the following asymptotics of σ2(t) ∼ tγ . The
exponent γ is also a strong quasi-periodic function of log ε with the period
log λ. The dependence γ on ε obtained using the separatrix map (6.49) is
shown in Fig. 9.7. The chaotic transport along the x-axis is superdiffusive
(γ > 1) for all perturbation amplitudes. The exponent γ takes maxima and
minima values at the same ε values as σ2(t) does. The regions with γ > 2
correspond to the acceleration regimes.
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γ

Fig. 9.7. Exponent γ versus perturbation amplitude ε. It is obtained by fitting
σ2(t) with 2Dtγ in the large time interval 104T0 ≤ t ≤ 105T0

9.3.3 Probability Density Function

The separatrix map (6.49) is also applied to calculate PDF P (x, t). It was
calculated at the time instant t = (2π/Ω)× 104 for perturbation parameters
ε in the interval [0.002, 0.1]. The statistics is taken averaging over N = 105

orbits. The PDF is almost symmetrically localized near x = 0. The width
2∆σ of P (x, t) is defined as an area −∆σ < x < ∆σ where a half of orbits is
localized, i.e.,

∆σ∫

−∆σ

P (x, t)dx = 0.5 .
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Fig. 9.8. (a) PDF P (x, t) for the two values of ε: curve 1 − ε = 0.016, curve 2 −
ε = 0.03; (b) Width of the PDF ∆σ versus perturbation amplitude ε

The PDF P (x, t) for two values of ε and the dependence of the width ∆σ on
the perturbation parameter ε are plotted in Fig. 9.8a, b, respectively. Curve
1 in Fig. 9.8a corresponds to ε = 0.016, and curve 2 − to ε = 0.03. These
values of ε correspond to the local maxima and minima of ∆σ. Similar to the
second moment σ2(t) it has also a strong periodical dependence on log ε with
the period log λ.

One should note that the square root of the second moment σ(t) and the
width ∆σ describe the width of the probability density functions. However,
in the case of anomalous (non-Gaussian) transport they describe different
physical situations of transport process. The width ∆σ describe the PDF near
its central part where half of particles are located. The main contribution
to ∆σ comes from random particles and particles trapped by islands due
to stickiness. On the other hand, contributions to σ(t) mainly comes from
particles with long distance flights. Therefore, σ(t) always exceeds the width
∆σ: σ(t) > ∆σ. In the case of normal Gaussian transport both σ(t) and ∆σ
would have the same physical nature.

The main feature of P (x, t) is its long tail asymptotics for |x| � ∆σ. The
latter significantly depends on the perturbation parameter ε. The comparison,
for instance, of the two PDF at ε = 0.048 and ε = 0.08 for which the second
moments σ2(t) have maximum and minimum values, respectively, shows that
while the PDF for ε = 0.048 has a slowly decaying tail, the PDF for ε = 0.08
decays much faster. We have approximated P (x, t) asymptotically by power–
exponential law,

P (x, t) ∼ |x|−αe−β|x| ,

with the fitting exponents α and β. They are found at the time instant
t = (4π/Ω)× 104T0 and presented in Fig. 9.9: (a) describes α versus ε, while
(b) describes β versus ε. It shows the strong quasi-periodic dependence of
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Fig. 9.9. Fitting parameters α and β for a power−exponential law P (x, t) ∼
|x|−α exp(−β|x|): (a) α versus ε; (b) β versus ε. A time instant t = (4π/Ω) × 104

these parameters on log ε appears with the period log λ similar to that for
the exponent γ in the time-asymptotics of σ2(t).

Overall the results show that the asymptotics of PDF P (x, t) for |x| � ∆σ
significantly depends the structure of the stochastic layer, and it is mainly
determined by the outermost KAM-stability islands at the chaos border.

9.4 Chaotic Transport in 2D-periodic Vortical Flow

In this section we consider a chaotic transport in a stochastic web of the two
dimensional time-dependent periodic vortical flow. This example shows that
depending on the perturbation parameter ε the chaotic transport may have
the superdiffusive, normal or subdiffusive characters.

Suppose the periodic vortical flow (8.29) is perturbed by the time-
dependent perturbation

H1(x, y, t) =
ε

2π
[sin(2πy) − sin(2πx)] cos(Ωt+ χ) , (9.15)
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which may be considered as combination wave perturbations sin(2πx−Ωt−
χ)+ sin(2πx+Ωt+χ), sin(2πy−Ωt−χ)+ sin(2πy+Ωt+χ) propagating in
opposite directions of x- and y-axes, respectively. Thanks to the symmetry
property (8.35) of the perturbation (9.15) there exists an additional rescaling
invariance property (8.36), (8.37) of the system. Therefore one expects that
all statistical characteristics of chaotic transport in such a system are to be
quasi-periodical functions of the perturbation amplitude log ε with the period
(log λ)/2.

For the perturbation (9.15) one can expect that the chaotic transport
along x- and y-directions are equivalent, in particularly, mean spatial dis-
placements 〈x〉 = 〈y〉 = 0, and mean squared displacements 〈x2〉 = 〈y2〉.

The chaotic transport in a stochastic web was studied using the separatrix
map constructed in Sect. 8.3.3. The separatrix map for the perturbation
(9.15) has the form (8.40) with the perturbation coefficients

K
(β)
α,α±1 = (−1)β Ω

4π
1

sinh(Ω/4)
. (9.16)

9.4.1 Variation of Diffusion Regimes

The rescaling parameter λ = exp(4π2/Ω) has been chosen equal to 16. The
statistics of transport is studied averaging over N = 104 orbits. The second
moment of the radial displacement σ2

r(t) = 〈x2(t) + y2(t)〉 is displayed in
Fig. 9.10 as a function of ε at the time instant t = (2π/Ω) × 104. As seen
σ2

r(t) is a quasiperiodic function of log ε. Its period, 0.5 log λ is twice smaller
than in the case of transport along the 1D stochastic layer (Section 9.3).
There are sharp periodic peaks of σ2(t) at certain values of ε. As we will see
below they appear due to flights in the stochastic web.

The exponent γ of asymptotics σ2
r(t) ∼ tγ shown in Fig. 9.11 also pe-

riodically varying with log ε. There are large periodic intervals of ε where
γ is less but close to 1. Minima values of the exponent γ are about 0.9
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Fig. 9.10. Second moment of radial displacement σ2 = 〈x2 + y2〉 versus ε. A time
instant t = (2π/Ω) × 104. Rescaling parameter λ = exp(4π2/ν) = 16
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Fig. 9.11. Exponents γ of the asymptotics σ2 ∼ tγ . Parameters of the system are
the same as in Fig. 9.10

in small intervals of ε, where the transport may be considered as a weakly
subdiffusive.

For the most values of ε the exponent γ is close 1 and the chaotic transport
may be well approximated by the normal diffusion (Gaussian) process intro-
ducing a diffusion coefficient D. We have calculated the diffusion coefficients
using its two definitions: (i) through the squared radial displacement:

Dσ = σ2
r(t)/2t , t → ∞ ,

and (ii) through the Gaussian PDF

PG(r, t) =
r

DGt
exp
(
− r2

2DGt

)
,

which describes PDF to find a particle with radial position r =
√
x2 + y2 at

a time instant t corresponding to the initial distribution PG(r, 0) = 2πrδ(r)
of particles at the time instant t = 0. For the normal diffusion process the
diffusion coefficients Dσ and DG should coincide.

Diffusion coefficients Dσ and DG are presented in Fig. 9.12 as functions
of ε. Curve 1 describes the diffusion coefficient Dσ determined from the mean
squared radial displacement σ2

r(t) in the time interval 104 ≤ t/T ≤ 105, and
curve 2 corresponds to DG obtained by fitting the numerically determined
PDF P (r, t) at the time instant t = 105T with the radial Gaussian PDF
PG(r, t). Figure 9.12 also shows a quasi-periodical dependence of both values
of D on log ε similar to those ones in Figs. 9.10, 9.11. For most values of ε
the diffusion coefficients Dσ and DG are close, but Dσ systematically exceeds
DG. The reason of such a behavior was discussed in Sect. 9.3.3, and consists
of fact that there exists a difference between the second moment σ2

r(t) and
the width of the PDF P (r, t) in a case of anomalous diffusion. The coefficient
DG is mainly determined by the central part of the PDF while rare events
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Fig. 9.12. Diffusion coefficients D determined by the asymptotics Dσ = σ2/2t
(curve 1) and by fitting with the radial Gaussian distribution PG(r, t) =
r(DGt)−1 exp[−r2/2DGt] (curve 2). Parameters of the system are the same as in
Fig. 9.10

with long flights may contribute to the Dσ. Results shown in Fig. 9.12 suggest
that in large periodic intervals of ε where differences between Dσ and DG are
small the transport process may be considered as a normal diffusion process.

9.4.2 Superdiffusive Regime. Levý Flights

As seen from Fig. 9.12 there are large difference between Dσ and DG in the
narrow periodic intervals of ε located near values ε = λk/2ε0, ε0 = 0.0031
(k = 0,±1,±2, . . .). They corresponds to the peaks in σ2

r(t) (see Fig. 9.10)
and to the large exponents γ in Fig. 9.11. For these values of ε the Gaussian
approximation fails and the chaotic transport becomes superdiffusive. En-
hanced transport is connected with long distance flights, known as the Levý
flight at these values of ε. A single flight event is shown in Fig. 9.13a in the
(x, y) plane and in Fig. 9.13b in the (t,H) plane for the specific value of
ε = 0.0124.

These flights are connected with stickiness of orbits to the specific KAM–
stability islands. They are shown in Fig. 9.14 on the Poincaré sections of
orbits in the (x, y) plane near the saddle point: (xs = 0.25, ys = 0.25). Four
types of islands continuously labeled by 1–4 are seen as dark sticks. A close
up view of the region near the 1-st island is shown in Fig. 9.14b. The islands
1–4 have different flight directions: 1-st island flies in the direction of 45◦

with respect to positive direction of the x-axis, the 2-nd island in 315◦, the
3-rd island in 225◦ and the 4-th island in 135◦.

Figure 9.15a shows the structure of these KAM-stability islands on the
section Σ11 obtained by the separatrix map: (b) shows close up view of the
region near the tiny-size KAM-stability island shown in (a). The island with
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Fig. 9.13. Long distance flight event: (a) orbit in the (x, y) plane, (b) orbit in the
(H, t) plane. Parameters are ε = 0.0124, χ = 0

Fig. 9.14. (a) Poincaré section near the saddle points − (xs = 0.25, ys = 0.25);
Four tiny-size islands of regular motion responsible for long distance flights are
shown by arrows 1–4; (b) Close up view of the region near the 1-st island shown in
(a). Parameters are the same as in Fig. 9.13

H > 0 (H < 0) in Fig. 9.15a corresponds 1-st (2-nd) and 3-rd (4-th) islands
in Fig. 9.14a, respectively.

The elliptic fixed points (ϕe = 0, π,He ≈ ±1.495 × 10−4 in the (ϕ, h)-
plane correspond to the fixed of the 1- and 3-islands (xe, ye), and the elliptic
fixed points (ϕe = π/2, 3π/2,He ≈ 6.4565×10−4 − correspond to the 2- and
4-islands in Fig. 9.14a.

One should note that although the applied numerical integration scheme
sufficiently well determines the positions of these island on the phase-space
(x, y) but it cannot resolve fine details of their structure because of loosing
accuracy. The fine structure of these tiny-size KAM-stability islands may be
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Fig. 9.15. Poincaré plots obtained by the separatrix map in the (H, t) plane at the
sections: (a) Σ10 (b) Σ11. The small-size islands (with dark edges) are responsible
long distance flights. (c) − close up view of one of theses islands shown in (a).
Parameters are the same as in Fig. 9.13

seen on Poincaré plots in the (t,H) plane obtained by the separatrix map
(see Fig. 9.15c).

9.4.3 Fixed Points of Flight Islands

Islands responsible for flights have a specific feature. As seen from Figs. 9.13b,
9.14 and 9.15 the energy h for trapped orbits takes successively positive and
negative values near the saddle points, for instant, if hk > 0 then hk+1 <
0 and vice versa. The elliptic fixed points (ϕ(e),H(e)) of flight islands at
any section Σmn (or at the equivalent sections Σm±2q,n±2p, q, p = 1, 2, . . . )
can be determined by the fixed points of the map F̂

(p)
mn (8.42) imposing the

requirement that if h(e)
k > 0 then h

(e)
k+1 < 0 and vice versa. The maps F̂ (p)

mn

are constructed consecutive mappings X̂(n)
m,m′ , Ŷ

(m)
n,n′ . For example, the map

F̂ (2)
m,n = Ŷ

(m+2)
n+1,n+2X̂

(n+1)
m+1,m+2Ŷ

(m+1)
n,n+1 X̂

(n)
m,m+1 (9.17)

transforms the fixed point of the 1-st island at the section Σmn with the even
m+ n to the equivalent one at the Σm+2,n+2. It is illustrated in Fig. 9.16.
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x

y

Σm+2,n+2

Σm+2,n+1Σm+1,n+1

Σm+1,nΣm,n

Fig. 9.16. Construction of the map F
(2)
mn for determination of fixed points of the

1-st island responsible for flights

To be specific we determine the principal fixed points of the 1-st island
corresponding to q = 1. Using (8.40), (9.16) the equations for the fixed points
(ϕ(e), h(e)) may be written as

h2 = h1 + εK cosw1 , w2 = w1 + g(h2) ,
h3 = h2 − εK cosw2 , w3 = w2 + g(h3) ,

h4 = h3 − εK cosw3 , w4 = w3 + g(h4) ,
h1 = h4 + εK cosw4 , w1 + 2πs = w4 + g(h1) , (9.18)

where g(h) = (Ω/2π) ln(2/π|h|), w = ϕ + g(h)/2 + χ, and s = 1, 2, . . .. In
(9.18)

(w1, h1) ∈ Σm,n, Σm+2,n+2 , (w2, h2) ∈ Σm+1,n ,
(w3, h3) ∈ Σm+1,n+1 , (w4, h4) ∈ Σm+2,n+1 .

Fixed points of the 1-st flight island should also satisfy the condition: h1 < 0,
h2 > 0, h3 < 0, and h4 > 0. From the equations for the angular variables
wi, (i = 1, 2, 3, 4) in (9.18) follow that

4∑

i=1

g(hi) = 2πs, or
4∏

i=1

|hi| = 16/(π4λs) , (9.19)

where λ is the rescaling parameter. First we consider the case when h1 = h3

and h2 = h4. In this case (9.18) may be reduced to

h2 = h1 + εK cosw1 ,

h1 = h2 − εK cos(w1 +Ω(h2)) ,
|h1h2| = 4/(π2λs/2) .
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Taking into account that h1 < 0, h2 > 0, we obtain the transcendental
algebraic equation for w1:

cosw1 − cos
[
w1 +Ω

(
h2(w1)

)]
= 0 , (9.20)

where h2(w1) is a positive solution of the quadratic equation

h2
2 − εK cosw1h2 + 4/(π2λs/2) = 0 . (9.21)

We determined the fixed points for the values ε near its specific value ε =
0.0124. The corresponding number s is equal to 11. Numerical study of (9.20),
(9.21) shows that the fixed points, (ϕ(e), h(e)), exist for 0.0121 ≤ ε ≤ 0.031. At
the section Σ00 the phase ϕ(e) = π (mod 2π), and h(e) changes in the interval
[−1.542623×10−4,−7.518702×10−5], and at Σ01 the phase ϕ(e) = 3π/2 (mod
2π) and 6.263842×10−4 ≤ h(e) ≤ 1.285161×10−3, respectively. However, the
fixed points are elliptic only for 0.0121 ≤ ε ≤ 0.0131, and they are hyperbolic
for ε > 0.0131.

Determination of fixed points in the cases h1 �= h3 or h2 �= h4 is more dif-
ficult. We have studied them by direct plotting Poincaré sections in the (ϕ, h)
plane. Such islands appear for ε ≥ 0.0132 when the fixed point with h1 = h3,
h2 = h4 becomes a hyperbolic and generating two elliptic fixed points. With
increasing the perturbation ε the stochastic layer near the separatrix grows.
The islands dissappear for ε > 0.0133.

Therefore the flights may occur for the perturbation parameters 0.0121 ≤
ε ≤ 0.0132 due to stickiness to the KAM islands. One can obtain similar
results for the principal fixed points with q = 1 of 2-nd, 3-rd and 4-th islands.

One can conclude that the chaotic transport in the stochastic web of two
dimensional time-dependent periodic vortical flow may exhibit three types of
stochastic processes: subdiffusive, normal Gaussian and superdiffusive. Vary-
ing the perturbation parameter ε one can control the types of chaotic trans-
port.

9.5 Conclusions

Obtained in this chapter results reveal the important relationship between the
structure of the stochastic layer and statistical properties of chaotic transport
in it. It was shown that systems with topologically similar stochastic layers
have similar statistical properties of transport. This property of dynamical
systems was extensively studied in one- and half-degree of freedom Hamil-
tonian systems. Established in the previous chapter the rescaling invariant
property of systems near saddle points gives rise to the periodic change of
the topology of phase–space near saddle points with varying the perturbation
amplitude. It leads in turn to the quasi-periodical oscillations of statistical
characteristics of transport with the change of perturbation amplitude. The
period of these oscillations is determined by the universal rescaling parameter
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λ = exp(2πγ/Ω) which depends only on the expansion coefficient γ of the
unperturbed Hamiltonian near saddle point and the frequency of external
perturbation Ω.

This effect is universal for one-degree-of-freedom Hamiltonian systems
subjected to small time-periodic perturbations regardless on the specific fea-
tures of the system. One can expect the effect occurs in chaotic transport
problems in structured flows, for instance, in chaotic mass transport in a
chain of vortices in a shear layer (see, for instance in del Castillo-Negreto
(1998)). Similarly, it may also be observed in models of physical systems
which are described by a stochastic web (see e.g., Zaslavsky et al. (1991);
Shlesinger et al. (1993); Klafter et al. (1996)).

Our study shows that the chaotic transport rate is not monotonic function
of the perturbation amplitude ε, in spite of that the width of the stochastic
layer linearly increases with ε. This suggests, first, that the width of the sto-
chastic layer, determination of which was a primary goal of many works (see,
e.g., Treschev (1998) and references therein) does not completely character-
ize a chaotic motion. The existence of KAM-stability islands embedded in a
stochastic layer is one of its essential features, and particularly the outermost
islands play a crucial role in chaotic transport. This situation is not taken
into account by qualitative transport theories, for instance, by the quasilin-
ear theory (see Sect. 9.1.2), which predicts the monotonic dependence of the
diffusion coefficient D (9.13) on perturbation amplitude ε.

The established effect also shows the possible range of controlling Hamil-
tonian chaos Lai et al. (1993), in particularly, a chaotic transport by vary-
ing perturbation amplitude. It may be useful to control a transport of heat
and particles in magnetic fusion devices with stochastic magnetic field lines
Ghendrih et al. (1996), a transport of passive scalars in a chain of vortices
del Castillo-Negreto (1998), or a mixing of fluids Ottino (1989).

One should note that the oscillations of normal diffusion coefficient D as a
function of stochasticity parameter K (K > 1) with the period 2π have been
observed in the standard map (3.24) (see Chirikov (1979); Rechester and
White (1980); Rechester et al. (1981)). However, this quasi-oscillatory be-
havior related with the existence of accelerator modes (Karney et al. (1982))
is the exclusive property of the standard mapping, so is unlike the universal
quasi-oscillations of chaotic transport in a stochastic layer on log ε considered
in this work.
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Study of mappings as a part of Hamiltonian dynamics of magnetic field lines
in plasmas were initiated by the research in magnetically confined plasma
devices in a quest for the controlled fusion1. Actually, a fusion research in
early sixties gave a huge impact on the development of Hamiltonian dynamics,
particularly, on mapping methods. Since, particles predominantly follow mag-
netic field lines the determination of their structure is important to confine
particles. In fusion devices, like tokamaks and stellarators the confinement
of charged particles in a bounded area is achieved by specially created (by
external coils and plasma current itself) magnetic fields whose field lines lie
on nested (magnetic) surfaces (Wesson (2004)). In a study of field lines the
most important was the fact that a divergence free magnetic field is equiva-
lent to Hamiltonian system with 1 + 1/2 degrees of freedom (see, e.g., Cary
and Littlejohn (1983); Boozer (1983); Morrison (2000)). The Hamiltonian
formulation of magnetic field lines has been instrumental in early studies of
the problems of stability and destruction of magnetic surfaces in tokamaks
and stellarators due to the presence of magnetic perturbations (Kerst (1962);
Rosenbluth et al. (1966); Filonenko et al. (1967); Freis et al. (1973); Hamzeh
(1974); Finn (1975); Matsuda and Yoshikawa (1975)).

The use of mappings to describe magnetic field lines in tokamaks and
stellarators is intended to simplify the study of different problems in plasma
physics ranging from a stability of magnetic surfaces, particle motion in elec-
tromagnetic fields to the transport of heat and particles in plasmas. In this
chapter we discuss the mapping methods to describe magnetic field lines in
magnetically confined plasmas.

10.1 Magnetic Field Lines as Hamiltonian System

Below we recall some necessary elements of plasma physics and Hamiltonian
formulation of the equations of magnetic field lines. A description of field line
equations in action-angle variables will be also given.
1 There is a number of books devoted to the physics of magnetic confinement of

plasmas. The most complete among of them is, probably, Tokamaks by Wesson
(2004). The reviews accessible for more wider audience are given by Boozer (1992,
2004)

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 219–254 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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10.1.1 Equilibrium Magnetic Field

Let B(x, y, z) be a magnetic field vector at the spatial point with coordinates
(x, y, z). In plasma the magnetic field is determined by the current density
j(x, y, z) and satisfied a divergent-free condition:

∇× B = µ◦j , ∇ · B = 0 , (10.1)

where the constant µ◦ is the magnetic permeability of free space. The mag-
netic field lines, r(τ) = (x(τ), y(τ), z(τ)), are three-dimensional curves tan-
gent to the magnetic vector field B. They are defined as

dr
dτ

= B , (10.2)

where τ is independent parameter related to the length element of curve
ds = (dx2 + dy2 + dz2)1/2: dτ = |B|−1ds.

The high temperature plasma can be considered as an ideal gas of fully
ionized ions and electrons with the equation of state p = 2nT , where p is
a pressure, n ≡ ne = ni is the density of electrons and ions, and T is a
temperature of the plasma. In magnetic fusion devices the plasma is confined
by the magnetic field B in order to isolate it from the walls of the vessel
and to hold it in a bounded area. The equilibrium of this system can be
maintained when the Ampere force µoj × B acting on the plasma column is
balanced with the pressure gradient ∇p: µoj × B = ∇p. From this equation
it follows the equations for the equilibrium magnetic field

B · ∇p = 0 , j · ∇p = 0 . (10.3)

It means that the pressure p(x, y, z) is constant along the magnetic field B and
the current j. Since ∇p is perpendicular to the surface p(x, y, z) = const the
field lines lie on the surface of constant pressure p(x, y, z) = const. Surfaces
of different constant pressure should not cross each other and they should be
bounded in a finite domain. These conditions are satisfied if the surfaces are
nested toroidal surfaces as illustrated in Fig. 10.1. Therefore, the field lines
of the equilibrium magnetic field cover nested toroidal surfaces, known also
magnetic surfaces.

10.1.2 Hamiltonian Field Line Equations

The equations of magnetic field lines in toroidal devices can be conveniently
represented in the terms of variables, a so-called toroidal flux, ψ, and a poloidal
flux, H, an intrinsic poloidal angle, ϑ, and a toroidal angle, ϕ. In terms of
these variables a divergence – free magnetic field B can be always presented in
the following form (see, Hinton and Hazeltine (1976); Boozer (1983); Balescu
(1988); Boozer (1992, 2004))
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p(x,y,z)=consty

z

x

Fig. 10.1. Nested magnetic surfaces in a toroidal system

B = ∇ψ ×∇ϑ+ ∇ϕ×∇H , (10.4)

known as the Clebsch representation. The magnetic field lines, (ψ(ϕ), ϑ(ϕ)),
in this representation satisfy the Hamiltonian equation

dψ

dϕ
= −∂H

∂ϑ
,

dϑ

dϕ
=

∂H

∂ψ
, (10.5)

with (ϑ, ψ) as canonical variables, ϕ as independent time-like variable. The
function H = H(ϑ, ψ, ϕ) plays the role of a Hamiltonian. It is a 2π-periodic
function of ϑ, ϕ.

The unperturbed case corresponds to the equilibrium magnetic field con-
figuration with nested magnetic surfaces. Physically, the quantity 2πψ is the
amount of toroidal magnetic flux enclosed by the magnetic surface of constant
ψ, while 2πH is the poloidal magnetic flux outside a constant H surface. It
is the function of toroidal flux ψ, H = H0(ψ). In this case the equations of
field lines (10.5) are integrable

ψ = const , ϑ = ω(ψ)(ϕ− ϕ0) , (10.6)

where

ω(ψ) =
∂H0(ψ)
∂ψ

=
1

q(ψ)
, (10.7)

is the frequency of “motion” known as a winding number. The quantity q(ψ)
inverse to ω(ψ), i.e., q(ψ) = 1/ω(ψ) is known as the safety factor. The latter
has a meaning of the number of turns along the toroidal angle ϑ per one turn
along the poloidal angle ϕ.

10.1.3 Hamiltonian Formulation of Field Line Equations
in a Toroidal System

The plasma column with toroidal magnetic surfaces is called a toroidal plasma
system. We consider the toroidal plasma column in the cylindrical coordinate
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ϕ
RR0

r

θ

Z

Fig. 10.2. Geometry of a toroidal system

system (R,ϕ,Z) shown in Fig. 10.2. Usually the radial distance R0 called a
major radius of plasma coincides with the center of plasma, and the angle ϕ
is directed along the plasma column. The equations of magnetic field lines in
this system are

1
R

dZ

dϕ
=

BZ

Bϕ
,

1
R

dR

dϕ
=

BR

Bϕ
. (10.8)

The magnetic field B can be presented through the vector potential
A(R,Z, ϕ) = (AR, Aϕ, AZ): B = ∇ × A. Because of the gauge invariance
of the vector potential one can always choose AR = 0. Then one can express
the magnetic field through the components of the vector potential,

BR =
1
R

∂AZ

∂ϕ
− ∂Aϕ

∂Z
, Bϕ = −∂AZ

∂R
, BZ =

1
R

∂RAϕ

∂R
. (10.9)

The AZ component of the vector potential determines the main toroidal
component of the magnetic field Bϕ which typically decays inverse propor-
tional to the radial coordinate R: Bϕ ∝ R−1. In typical plasmas the deviation
of the toroidal field Bϕ from this law due to, for instance, a diamagnetic cur-
rent, is small. For this reason one can neglect a dependence of AZ on the Z
coordinate and the toroidal angle ϕ. We introduce canonical variables (z, pz)
of the Hamiltonian system related with the geometrical coordinate (R,Z)
and the magnetic field, B, according to

z =
Z

R0
, pz =

1
B0R0

∫ R

R0

BϕdR = −Az(R) −Az(R0)
B0R0

. (10.10)

Then the equations for field lines (10.8) can be transformed to the Hamil-
tonian form

dz

dϕ
=

∂H

∂pz
,

dpz

dϕ
= −∂H

∂z
. (10.11)

The variables (z, pz) are canonical coordinate and momentum, the toroidal
angle ϕ plays the role of a time-like independent variable, and the Hamiltonian
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function H is determined by the normalized ϕ- component of the vector po-
tential

H ≡ H(z, pz, ϕ) = − RAϕ

B0R2
0

. (10.12)

In the axisymmetric case the magnetic field does not depend on the
toroidal angle ϕ: Aϕ = Aϕ(R,Z), and thus H = H(z, pz). In this case the
Hamiltonian system (10.11) is completely integrable. The field lines lie on
the nested toroidal surfaces, determined by the surface function H(z, pz) =
f(Z,R) = const. The section of a toroidal surface with the plane ϕ = const
is shown in Fig. 10.3.

R

Z f(R,Z)=const

Fig. 10.3. Magnetic flux surfaces H(z, pz) = f(Z, R) = const

One can introduce the action-angle variables (I, ϑ):

I =
1
2π

∮

C

pzdz , ϑ =
∂

∂I

∫ z

pz(z′, I)dz′ , (10.13)

where the integration is taken along the closed contour C consisting of cross–
section of the surface function f(R,Z) =const with the poloidal plane ϕ =
const (see Fig. 10.3). Actually the action variable I coincides with the nor-
malized toroidal flux ψ. Indeed, according to the definition of variables pz,
and z we have

I =
1
2π

∮

C

pzdz =
1
2π

∫

S

dpzdz

=
1

2πR2
0B0

∫

S

Bϕ(R,Z)dRdZ = ψ , (10.14)
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which has a meaning of the normalized flux of the toroidal field Bϕ through
the area S enclosed by the closed contour C on the poloidal plane ϕ = const
(see Fig. 10.2). The angle variable ϑ is no more than the intrinsic poloidal
angle. In the action-angle variables (ψ, ϑ) the Hamiltonian H = H(ψ) and
the field lines are determined by (10.6), (10.7). The frequency of motion
ω(ψ) = dH(ψ)/dψ determines the safety factor q(ψ) = 1/ω(ψ). It can be
also found from the equation of field lines (10.11). According to the definition
of q it is equal to the number of toroidal turns per one poloidal turn, i.e.,
q = ∆ϕ/2π, where ∆ϕ is the increment of the toroidal angle ϕ when field line
make one full poloidal turn. Then from the first equation (10.11) it follows
that

q(ψ) =
∆ϕ

2π
=
∫

C

dz

∂H/∂pz
, (10.15)

where the integral is taken along the closed contour C of H = H0(z, pz) =
const.

The geometrical coordinates (R,Z) of field lines are periodic functions of
the angle variable ϑ: R(ϑ, ψ) = R(ϑ + 2π, ψ), Z(ϑ, ψ) = Z(ϑ + 2π, ψ), and
they can be presented by Fourier series:

Z(ϑ, ψ) =
∑

m

Zm(ψ)eimϑ , R(ϑ, ψ) =
∑

m

Rm(ψ)eimϑ , (10.16)

with coefficients Rm(ψ), Zm(ψ) depending on a toroidal flux ψ.
In the following subsections we consider some simple equilibrium magnetic

configurations and formulate the Hamiltonian equations of field lines.

10.1.4 The Standard Magnetic Field

Consider first the following model of magnetic field

B0(r, θ) = Bϕeϕ +Bθeθ =
B0

1 + ε cos θ

(
eϕ + eθ

ε

q(r)

)
, (10.17)

known as the standard magnetic field (Balescu (1988)). In (10.17) B0 is the
strength of the toroidal magnetic field at magnetic axis R = R0, and q(r) is
the safety factor, ε = r/R0 is the inverse aspect ratio (the ratio R/r is called
aspect ratio ), (r, θ) is polar coordinates in the minor cross section. The radial
coordinate r is called a minor radius. The relation between the cylindrical
coordinates (R,Z) and the toroidal coordinates (r, θ) is R = R0 +r cos θ, Z =
r sin θ (see Fig. 10.2).

The component of the magnetic field along the toroidal angle ϕ, Bϕ is
called a toroidal field, and its component along the poloidal angle θ, Bθ

is a poloidal field. This model describes the main features of equilibrium
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magnetic field of the toroidal plasma, i.e., the radial decay of the toroidal
field Bϕ ∝ R−1, and nested, circular magnetic surfaces.

The standard magnetic field (10.17) can be presented through the vector
potential A:

A(r, θ) = (0, Aϕ(R,Z), Az(R,Z)) ,

Aϕ(R,Z) =
B0

R

∫
dφ

q (r(φ))
, Az(R) = −B0R0 lnR , (10.18)

where φ = r2/2 = [(R−R0)2 + Z2]/2.
The magnetic surfaces of the field (10.17) represent of circular surfaces

r = const. According to (10.10) and (10.17) the canonical momentum pz is

pz = ln(R/R0) = ln(1 +
√
r2/R2

0 − z2) ,

and the normalized toroidal flux ψ is given by

ψ =
1

2πR2
0B0

∫

Cr

Bϕ(r, θ)rdrdθ = 1 −
(
1 − r2/R2

0

)1/2
. (10.19)

According to (10.13) the relation between the intrinsic poloidal angle ϑ and
the geometrical poloidal angle θ is determined by the integral

ϑ =
∂

∂ψ

∫ z

0

ln(1 +
√
r2/R2

0 − z′2)dz′ =
1

2R2
0

∂r2

∂ψ

∫ θ

0

dθ

1 + r cos θ/R0
,

the integration of which gives

ϑ = 2arctan

√
1 − r2/R2

0 tan(θ/2)
1 + r/R0

. (10.20)

The Hamiltonian H(ψ) is determined by H(ψ) =
∫
dψ/q(r(ψ)), where r(ψ)

= R0[1 − (1 − ψ)2]1/2.
For the large aspect ratio tokamaks, ε = r/R0 � 1, one can approximate

ψ ≈ r2

2R2
0

, ϑ = θ − ε sin θ +O(ε2) . (10.21)

10.1.5 Equilibrium Magnetic Field with the Shafranov Shift

In the standard magnetic field configuration all circular magnetic surfaces
r = const have a common center r = 0. However, in a real toroidal plasma
due to the plasma pressure and the electric current the magnetic surfaces
are shifted outwardly along the radial coordinate R and slightly deformed.
Schematically it is shown in Fig. 10.4. Here R0(r) is the position of the
center of the magnetic surface of radius r, and a is a radius of the the last
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Fig. 10.4. Shifted magnetic flux surfaces in a toroidal plasma

magnetic surface. The shift of R0(r) with respect R0(a) is denoted ∆(r), i.e.,
∆(r) = R0(r) −R0(a). This quantity is known as the Shafranov shift.

Below we consider the model of equilibrium plasma magnetic field which
quite well describes a real plasma with the Shafranov shift. It consists of
nested, circular magnetic surfaces. The Shafranov shift ∆(r) of the magnetic
surface of radius r is given by

∆(r) =
[
R2

0(a) + (Λ+ 1)
(
a2 − r2

)]1/2 −R0(a) , (10.22)

where Λ = βpol + li/2 − 1. Here, βpol is the ratio of the plasma pressure, 〈p〉
to the magnetic pressure, B2

θ/8π of the poloidal field Bθ:

βpol =
8π〈p〉
B2

θ

,

li is the internal inductance. The toroidal, Bϕ, and poloidal, Bθ, fields on
each magnetic surface of radius r are given by (see, Kadomtsev (1988))

Bϕ(R) =
µoIϕ

2πR
=

R0(a)
R0(r)

B0

1 + r
R0(r)

cos θ
, B0 =

µoIϕ

2πR0(a)
,

Bθ(R,Z) =
µoIp(r)

2πr

(
1 + Λ

r

R0
cos θ

)
, (10.23)

where Iϕ is the current of toroidal field, and Ip(r) is the plasma current
flowing through the section enclosed by the magnetic surface of radius r, B0

is the strength of toroidal field at the center of the last magnetic surface, and
R = R0(r) + r cos θ, Z = r sin θ.

The equations of field lines are

dr

Rdϕ
= 0 ,

dθ

dϕ
=

r

R

Bθ(r, θ)
Bϕ(r, θ)

. (10.24)
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From (10.24) follows that the magnetic surfaces are circular r = const. In-
tegrating the second equation in (10.24) over the poloidal angle θ and using
that ϑ = ϕ/q(r), where q(r) is the safety factor, we obtain

ϕ− ϕ0 =
∫ θ

0

rBϕ(r, θ′)
(R0(r) + r cos θ′)Bθ(r, θ′)

dθ′ = q(r)ϑ . (10.25)

Since ϑ is a periodic function of θ with the property ∆ϑ = ϑ(θ+2π)−ϑ(θ) =
2π, we find the safety factor

q(r) =
1
2π

∫ 2π

0

rBϕ(r, θ)
(R0(r) + r cos θ)Bθ(r, θ)

dθ . (10.26)

According to (10.14) one can obtain the following relationships between
the normalized toroidal flux ψ and the radius r of a magnetic surface:

ψ =
R0(r)
R0(a)

[
1 −
(

1 − r2

R2
0(r)

)1/2
]
. (10.27)

For the small Shafranov shift, ∆(r) � R0(a), these formulas may be simpli-
fied to

ψ ≈ 1 −
(

1 − r2

R2
0(a)

)1/2

, r ≈ R0(a)
[
1 − (1 − ψ)2

]1/2

. (10.28)

The relation between the intrinsic poloidal angle ϑ and the geometrical
one θ given by the integral (10.25) is rather complicated (Nguyen et al. (1995))
and it is hard to find the inverse relationship θ = θ(ϑ, r). Below we give a
new relation between ϑ and θ as a series in powers of the inverse aspect
ratio ε = r/R. The details of calculations is given in Appendix D [see also
Abdullaev et al. (1999)].

Expanding the integral in (10.25) in a series of powers of ε the relation
ϑ = ϑ(θ, r) may be presented in the form

ϑ(θ, r) = θ +
M∑

m=1

αm sinmθ +O(εM+1) , (10.29)

where the expansion coefficients αm are series in powers of ε:

αm =
M∑

k=0

α(k)
m εm+k +O(εM+1) .

The coefficients αm for the case M = 4 are given by

α1 = a1ε+
(

3a3

4
− a1a2

2

)
ε3 +O(ε5) ,
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α2 =
ε2

4

[
a2 +

(
a4 −

a2
2

2

)
ε2
]

+O(ε5) ,

α3 =
1
12
a3ε

3 +O(ε5), α4 =
1
32
a4ε

4 +O(ε5) . (10.30)

The coefficients am are polynomial functions of the plasma parameter Λ:

am = (−1)m
m∑

k=0

(m− k + 1)Λk .

The safety factor q(r) may be also presented as a series of powers ε:

q(r) =
r2

R2
0(r)

Iϕ

Ip

(
1 +

1
2
a2ε

2 +
3
8
a4ε

4

)
+O(ε8) . (10.31)

The relation (10.29), expressing the intrinsic poloidal angle ϑ via the
geometrical poloidal angle θ, can be inverted to find θ in terms of ϑ,

θ(ϑ, r) = ϑ+
M∑

m=1

α∗
m sinmϑ+O(εM+1) . (10.32)

The expansion coefficients α∗
m can be expressed in terms of coefficients αm.

They are calculated in Appendix D for the case M = 4.
A typical dependence ϑ on θ is shown in Fig. 10.5a at the magnetic surface

r = 0.43 m, and the radial profile of the safety factor q(r) is plotted in
Fig. 10.5b. The plasma parameters are chosen: βpol = 1, li = 1.2 and R0(a) =
1.75 m. The radial profile of the plasma current density is chosen as j(r) =
(2Ip/πa

2)(1 − r2/a2) where Ip is the full plasma current. The toroidal field
Bϕ = 2.25 T.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ϑ/
2π

θ/2π

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

q(
r)

r/a

(b)(a)

Fig. 10.5. (a) Dependence of the intrinsic angle ϑ on the poloidal angle θ;
(b) Radial profile of the safety factor q(r)
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The accuracy of the relations (10.29) and (10.32) is sufficiently high. At
M = 4 they deviate from the exact formulas by less than 1%. However, the
higher order derivatives, dkϑ/dθk (k > 2), calculated from these formulas are
less accurate because of divergence of series.

10.2 Hamiltonian Equations in the Presence
of Magnetic Perturbations

In real tokamak plasmas magnetic field deviates from the ideal equilibrium
field. Typically the deviation of magnetic field from the background equilib-
rium field called the magnetic field perturbation is small. The physical nature
of magnetic perturbations is diverse, and it ranges from the error fields pro-
duced by imperfect technical installation of poloidal and toroidal field coils,
helical magnetic fields generated by the magneto hydrodynamic (MHD) in-
stabilities of plasmas, up to the artificially created magnetic fields by external
coils as in so-called ergodic divertors (see Chap. 11).

The magnetic perturbations, in general, are not uniform along the toroidal,
ϕ, and poloidal, θ, axes and they break the symmetry of the equilibrium field
along the toroidal axis ϕ. In the presence of these non-axisymmetric mag-
netic perturbation the poloidal flux H can be presented as a sum of the un-
perturbed flux H0(ψ) and the perturbed flux εH1 = εH1(ψ, ϑ, ϕ) depending
on the poloidal and toroidal angles:

H = H0(ψ) + εH1(ψ, ϑ, ϕ) , H0(ψ) =
∫

dψ

q(ψ)
. (10.33)

The dimensionless perturbation parameter ε introduced in (10.33) stands for
the relative strength of magnetic perturbations. Since perturbed Hamiltonian
H1 is a 2π periodic function of ϑ, ϕ, it can be always presented as a Fourier
series:

H1(ψ, ϑ, ϕ) =
∑

m,n

Hmn(ψ) cos(mϑ− nϕ+ χmn) . (10.34)

The integer numbers m and n are called the poloidal and toroidal mode num-
bers, respectively.

In typical situations when the safety factor q(ψ) (or the winding number
ω(ψ)) satisfies the twist condition (7.3), dq/dψ �= 0, the behavior of toroidal
magnetic surfaces in the presence of magnetic perturbations is described by
the KAM theory (see Sect. 7.1). The resonant magnetic surfaces, ψm,n, de-
fined by

q(ψm,n) =
m

n
, (10.35)

are destroyed by any small perturbation forming chain of magnetic islands.
The width of magnetic islands, Wm,n, are determined by (7.12). The ma-
jority of sufficiently irrational magnetic surfaces ψ, satisfying the condition
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|q−1(ψ) − n/m| > C
√
εm−ν , are survived, but they are slightly deformed.

With increasing the magnitude of magnetic perturbations, ε, the neighboring
resonance magnetic surfaces start to interact destroying invariant magnetic
surfaces between them. It leads to the global chaos and unrestricted diffusion
of field lines which guides the particles out of the bounded area to the ves-
sel wall. This phenomenon known also as a magnetic stochasticity is one of
the main undesirable physical processes responsible for breaking the plasma
confinement.

On the other hand the phenomenon of magnetic stochasticity can be
applied in magnetically confined plasma devices to control a particle and
energy transport at the plasma edge. One of these applications is the ergodic
divertor concept introduced to divert particles and a heat releasing from the
plasma to special plates in a controlled way. We study this artificially created
magnetic stochasticity in Chap. 11.

In the pioneering studies of destruction of magnetic surfaces in mag-
netic fusion devices by Kerst (1962); Rosenbluth et al. (1966); Filonenko
et al. (1967); Freis et al. (1973); Hamzeh (1974); Finn (1975); Matsuda and
Yoshikawa (1975) the onset of global chaos of field lines has been investigated
using the Chirikov criteria of overlapping of resonances (7.29). The most
convenient and computationally efficient method to study the dynamics of
magnetic field lines is symplectic mappings. In Sect. 10.4 we will discuss the
most prominent mappings used to model a magnetic stochasticity in tokamak
plasmas.

The study of magnetic stochasticity can be significantly simplified if the
equations of field lines in the presence of magnetic perturbations are reduced
to the Hamiltonian form (10.33), (10.34). It would allow one to apply directly
the qualitative and quantitative methods of Hamiltonian dynamics and chaos
to the problem. Particularly, the Chirikov criteria can be used to obtain qual-
itative estimations for the conditions of formation of magnetic stochasticity.
The computationally effective symplectic mappings can be directly applied
to integrate the Hamiltonian system (10.33), (10.34).

One of the main problems in the Hamiltonian formulation of field line
equations is to find the spectrum of the perturbed Hamiltonian, Hmn(ψ),
through magnetic perturbation, Bper. Below we consider this problem for the
cylindrical and toroidal plasma models. Particularly, we will study a generic
asymptotic behavior of the spectrum of perturbations, Hmn(ψ), for the large
poloidal mode numbers m in toroidal plasmas.

10.2.1 Cylindrical Model of Plasmas

The tokamak plasma with the large aspect ratio R/r � 1 can be modeled
by the cylindrical model. In this model the plasma column is straight along
the z coordinate and confined along the radial coordinate r. The equilibrium
magnetic field of the cylindrical plasma is given by
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B0(r) = eθBθ(r) + ezB0 , (10.36)

where eθ, ez are unit vectors in the cylindrical coordinate system (r, θ, z).
Here B0 is a main component of the magnetic field corresponding to the
toroidal field, Bθ(r) is a poloidal field.

Let B1(r, θ, z) be a non-axisymmetric magnetic perturbation. We impose
a periodic boundary conditions on this field: B1(r, θ, z) = B1(r, θ, z + 2πR)
with the period L = 2πR along the z-axis. The full magnetic field then can
be presented in the form

B = B0(r) + B1(r, θ, z) .

In tokamaks the z-component of the unperturbed field B0 is much larger
larger than the poloidal field, Bθ(r) and the perturbation field, B1: Bz �
Bθ(r), Bz � |B1|. In typical cases the perturbation field can be presented
through the z− component of the vector potential Az(r, θ, z) (B = ∇× A):

B1(r, θ, z) = −er
1
r

∂Az

∂θ
+ eθ

∂Az

∂r
. (10.37)

Because of the periodicity of magnetic perturbations along the z and θ axes
one can present the vector potential Az in a Fourier series:

Az(r, θ, z) =
∑

m,n

Am,n(r) cos (mθ − nϕ+ χmn) , (10.38)

where ϕ = z/R, and χmn are phases.
The equations of field lines, (r(z), θ(z)), in the cylindrical coordinate sys-

tem, given by

dr

dz
=

Br

Bz
,

dθ

dz
=

Bθ

Bz
, (10.39)

can be transformed into the Hamiltonian form (10.5) with the Hamiltonian
(10.33), (10.34) by introducing the toroidal flux ψ = r2/2R2, the intrinsic
poloidal angle ϑ = θ, the toroidal angle ϕ = z/R. The safety factor q and the
perturbed Hamiltonian are determined by

q(ψ) =
r(ψ)B0

RBθ(r(ψ))
, r(ψ) = R

√
2ψ,

εH1(ψ, ϑ, ϕ) = − 1
RB0

Az(r(ψ), ϑ,Rϕ) , (10.40)

According to (10.38) and (10.40) the spectrum of perturbations, Hmn(ψ), are
determined by the Fourier coefficients Amn(r) of the vector potential Az:

εHmn(ψ) = − 1
RB0

Amn(r(ψ)) . (10.41)
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10.2.2 Magnetic Perturbations in Toroidal Plasmas

In the presence of non-axisymmetric magnetic perturbations the toroidal
component of the vector potential A(per)

ϕ (R,Z, ϕ) can be presented as a sum:

Aϕ = A(0)
ϕ (R,Z) +A(per)

ϕ (R,Z, ϕ) . (10.42)

In typical situations the perturbed part of the component AZ is small and
it can be neglected in comparison with the unperturbed part A(0)

Z (R) which
determines the toroidal magnetic field Bϕ. Then the magnetic perturbation
B(per)(R,Z, ϕ) has only two nonzero components BR and BZ which, accord-
ing to (10.9), are expressed via the perturbed part of the vector potential
A

(per)
ϕ (R,Z, ϕ):

B(per)(R,Z, ϕ) =
(
−eR

1
R

∂

∂Z
+ eZ

1
R

∂

∂R

)
RA(per)

ϕ (R,Z, ϕ) . (10.43)

Introducing the toroidal flux ψ and the intrinsic poloidal angle ϑ (10.13)
(or the action-angle variables) for the equilibrium magnetic field, the Hamil-
tonian equations for perturbed field lines (10.11), (10.12) can be presented
as

dϑ

dϕ
=

1
q(ψ)

+ ε
∂H1

∂ψ
,

dψ

dϕ
= −ε∂H1

∂ϑ
, (10.44)

with the perturbed Hamiltonian εH1 ≡ H1(ψ, ϑ, ϕ) given by

H1(ψ, ϑ, ϕ) = −R(ψ, ϑ)
R2

0B0
A(per)

ϕ (R(ψ, ϑ), Z(ψ, ϑ), ϕ) , (10.45)

where R(ψ, ϑ) = R0 + r(ψ, ϑ) cos θ(ψ, ϑ).
The Fourier components Hmn(ψ) in (10.34) of the perturbation (10.45)

are found by the Fourier integrals:

εHmn(ψ) = −Re
∫ 2π

0

∫ 2π

0

R(ψ, ϑ)
(2π)2R2

0B0

×A(per)
ϕ (R(ψ, ϑ), Z(ψ, ϑ), ϕ) e−imϑ+inϕdϑdϕ . (10.46)

In a toroidal system any magnetic perturbations are periodic along the
toroidal, ϕ, and the poloidal, θ, angles, and thus the perturbed vector poten-
tial, A(per)

ϕ can be expanded in a Fourier series

A(per)
ϕ (R,Z, ϕ) =

∑

m,n

Amn(r) cos(mθ − nϕ+ χmn) , (10.47)

where Amn(r) are radial dependent Fourier coefficients. In the case of the
tokamak plasma with circular magnetic surfaces the radial coordinate r coin-
cides with the radius of magnetic surfaces. In general plasma configurations
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the coordinate r is a radius of the magnetic surface averaged over the poloidal
angle θ. It is a function of the poloidal flux ψ, r = r(ψ), while the poloidal
angle θ = θ(ϑ, ψ).

Introducing the inverse aspect ratio ε = r(ψ)/R0 and the dimension-
less perturbation parameter ε = max|A(per)

ϕ |/(R0B0) one can present R as
R = R0(1 + ε(ψ) cos θ(ϑ, ψ)) and Amn(r) = εR0B0amn(ψ), where amn are
coefficients of order of 1. Then using the expansion (10.47) one can transform
the coefficients (10.46) into

Hmn(ψ) =
∑

m′

Smm′(ψ)am′n(ψ) , (10.48)

where Smm′(ψ) is a transformation matrix defined by

Smm′(ψ) = −Re
1
2π

∫ 2π

0

[1 + ε cos θ(ϑ, ψ)] eim′θ(ϑ,ψ)−imϑdϑ . (10.49)

These Fourier integrals depend on the relation between the poloidal an-
gle θ and the intrinsic poloidal angle ϑ. For the large aspect ratio tokamaks,
ε � 1, with circular magnetic surfaces r = const, this relation can be ap-
proximated by (10.21): θ ≈ ϑ − ε sinϑ. Then the diagonal terms Smm(ψ)
have an order 1, and the non-diagonal terms Smm±k(ψ), (k = 1, 2, · · ·) have
an order of εk. Therefore, the main contribution to Hmn(ψ) comes from the
harmonics Amn of the magnetic field with the same poloidal mode m, while
the contribution to this poloidal mode m from the sideband modes Am±k,n

decreases as εk.
However, this commonly accepted feature of mode transformation matrix,

Smm′(ψ), is valid only for small poloidal mode numbers m,m′. As was estab-
lished in Abdullaev et al. (1999) for large mode numbers m,m′ the matrix
Smm′(ψ) may grow with m′ at the fixed m. It means that the main contribu-
tions to Hmn(ψ) may come not from the poloidal mode m and neighboring
modes m′ = m± 1 of magnetic field perturbations, but from those modes m′

located far from m. Below we study these new features of the mode transfor-
mation matrix Smm′(ψ) using the method of asymptotic estimations of the
integral (10.49). Details of calculations are given in Appendix E.

10.2.3 Asymptotics of the Transformation Matrix Elements
Smm′(ψ)

First of all we recall a typical feature of the dependence θ = θ(ϑ) ≡ θ(ϑ, ψ).
According to a definition we have θ(ϑ = 0) = 0 (the high field side) and
θ(ϑ = π) = π (the low field side) (see Fig. 10.5a). These points are the
critical points of the function θ = θ(ϑ). At these points the second derivatives
d2θ/dϑ2 vanish. As we will see below that the asymptotics of the integral
(10.49) at large m,m′ is mainly determined by the behavior of the function
θ = θ(ϑ) near these points, namely by the first and third derivatives at the
points ϑ = 0 and ϑ = π:
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γ1 =
dθ

dϑ

∣∣∣∣
θ=0

, γ3 =
d3θ

dϑ3

∣∣∣∣
θ=0

,

β1 =
dθ

dϑ

∣∣∣∣
θ=π

, β3 =
d3θ

dϑ3

∣∣∣∣
θ=π

. (10.50)

One should note that γ1 > 1, γ3 < 0, 0 < β1 < 1, and β3 > 0. The coefficients
γ1 and β1 determine the tangents of the curves θ versus ϑ at the low field
side and at the high field side, respectively (see Fig. 10.5a).

It is shown in Appendix E that for fixed values of m the main contribution
to the integral (10.49) comes from two intervals of m′. For small values of m′

m′ ≤ m/γ1 + xc(m′|γ3|/2)1/3 , (xc ≈ 2)

the integral Smm′(ψ) may be expressed as a product

Smm′(ψ) = f(0)Amm′(ψ), f(0) = 1 + ε , (10.51)

where f(ϑ) = 1 + ε cos θ(ϑ) and Amm′(ψ) is the the Fourier integral having
the following asymptotics at large m′,m:

Amm′(ψ) =
1
2π

∫ 2π

0

ei(m′θ(ϑ,ψ)−mϑ)dϑ

≈
(

2
|γ3|m′

)1/3

Ai
(
− γ1m

′ −m

(|γ3|m′/2)1/3

)
, (10.52)

expressed via the Airy function Ai(z). The Airy function Ai(x) oscillates for
x < 0 and exponentially decays for x > 0. It has a local maximum at xc ≈ −1.

Similarly, for the values of m′,

m′ > m/β1 − xc(m′β3/2)1/3 , (xc ≈ 3)

the quantity Smm′(ψ) may be approximated by the product

Smm′(ψ) = f(π)Amm′(ψ) , f(π) = 1 − ε , (10.53)

with the following asymptotics

Amm′(ψ) ≈ (−1)m+m′
(

2
β3m′

)1/3

Ai
(

β1m
′ −m

(β3m′/2)1/3

)
. (10.54)

For the intermediate values of m′: m/γ1+xc(m′|γ3|/2)1/3 < m′ < m/β1+
xc(m′β3/2)1/3 unlike (10.52) and (10.54) the integral (10.49) is proportional
to 1/

√
m′. Contributions from these terms may be neglected due to the rapid

oscillations of Amm′ with m′.
An example of the dependence of the transformation matrix Smm′(ψ) on

m′ at the fixed value m = 12 is shown in Fig. 10.6 for the plasma model
considered in Sect. 10.1.5 with the parameter Λ = 1 and the minor radius
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r = 0.43 m. The other plasma parameters are the same as in Fig. 10.5. The
derivatives in (10.50) are β1 = 0.560678, β3 = 0.142254, γ1 = 2.035916, and
γ3 = −4.198625. Figure 10.6a shows Smm′(ψ) itself, and Fig. 10.6b shows
it after multiplication by (−1)m′

. The solid curves correspond to the exact
numerical evaluation the integral (10.49), and the dashed curves describe
their asymptotics by the Airy functions. As seen from Figs. 10.6a,b the as-
ymptotic formulas well describe the transformation matrix Smm′(ψ) near the
values m′ ≈ m/γ1 and m′ ≈ m/β1.

As seen from Figures 10.6a, b the main contribution to Hmn(ψ) with the
fixed m comes from a few magnetic perturbation modes am′n located near
m′ ≈ m/γ1 or m′ ≈ m/β1. The contributions from other modes are negligible
because of rapid oscillations of the transformation matrix Smm′(ψ). Below
we analyze this phenomenon.
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Fig. 10.6. Transformation integral (10.49) Smm1 as a function of m1 for the fixed
m = 12: (a) Smm1 ; (b) (−1)m1Smm1 . Solid curve describes the exact numerical
integration, dashed curve corresponds to the asymptotics given by (10.52), (10.54).
The plasma parameter are the same as in Fig. 10.5
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10.2.4 Asymptotic Behavior of Hmn(ψ)

Using the asymptotic formulae (10.52) and (10.54), the sum (10.48) can be
presented as a sum of two terms,

Hmn(ψ) = f(0)h(l)
mn(ψ) + f(π)h(h)

mn(ψ) , (10.55)

where

h(l)
mn(ψ) ≈

m∑

mmin

am′n(ψ)
(

2
|γ3|m′

)1/3

Ai
(
− γ1m

′ −m

(|γ3|m′/2)1/3

)
dm′ , (10.56)

h(h)
mn(ψ) ≈ (−1)m

mmax∑

m

(−1)m′
am′n(ψ)

(
2

β3m′

)1/3

Ai
(

β1m
′ −m

(β3m′/2)1/3

)
dm′ .

(10.57)

The sums (10.56), (10.57) for Hmn(ψ) significantly depend on how the sign
of the amplitude, am′n changes with m′.

When am′n changes with m′ smoothly, the term h
(h)
mn(ψ) (10.57) can be

neglected because of rapid oscillations of terms under the sum. Taking into
account that the parameter |γ3| � 1 we replace the summation in (10.56))
over m′ by integration by introducing a new variable

x =
γ1m

′ −m

|γ3|m′/2
≈ γ1m

′ −m

(|γ3|m/2)1/3
.

Equation (10.55) can be written as the integral

Hmn(ψ) ≈ f(0)
γ1

∫ ∞

−∞
Ai(x) a

(
m− x(|γ3|m/2)1/3

γ1

)
dx , (10.58)

where a(m) ≡ amn. Since the function a(m) in (10.58) is a smooth function of
m, the integral can be estimated by the Laplace method (see, e.g., Fedoryuk
(1989)). The integration yields

Hmn(ψ) ≈ f(0)
γ1

Ba

(
m− xc(|γ3|m/2)1/3

γ1

)
, (10.59)

where B =
√

2π/|xc|Ai(xc), and xc ≈ −1 is the local maximum of the Airy
function.

Consider the case when the magnetic perturbation amplitude, am′n,
changes rapidly with m′ as am′n = (−1)m′

ã(m′), where ã(m′) is a smooth
function of m′. In this case the first term in (10.55) can be neglected because
of rapid oscillations in the sum (10.56). Then main contribution to Hmn(ψ)
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comes the second term (10.57) which can be estimated similarly to the above
case. The corresponding asymptotic formula for Hmn(ψ) is

Hmn(ψ) ≈ (−1)m f(π)
β1

B ã

(
m+ xc(β3m/2)1/3

β1

)
. (10.60)

Asymptotic formulas (10.59) and (10.60) qualitatively describe the main fea-
tures of conversations of magnetic perturbations in toroidal plasmas. They
can be also used for quantitative estimations of Hmn(ψ). To improve their
accuracy the two parameters B and xc in formulas (10.59) and (10.60) can
be considered as fitting parameters and chosen to have a better agreement
with the numerically calculated values of Hmn(ψ).

To illustrate the mode transformation consider the following example
when the magnetic perturbation modes, amn, are given by

amn = Cm
sin(m−m0)θc

πm(m−m0)
. (10.61)

We consider two case type of coefficients Cm: (i) Cm = (−1)m and (ii)
Cm = 1. The modes are localized near the central mode with a width ∆m =
2π/θc. Suppose that the equilibrium magnetic field is described by the plasma
model considered in Section (10.1.5). The plasma parameters are the same
as in Figures 10.5 and 10.6.

As seen from Fig. 10.7a in the first case (i) the center of the mode distri-
bution m0 of magnetic mode perturbations, amn, (solid curve 1) is shifted to
the lower mode m∗

0 ≈ m0β1 (solid curve 2 and dashed curve 3). The width
of the distribution ∆m = 2π/θc of magnetic perturbations became narrow:
∆m∗ ≈ β12π/θc. In the second case (ii) the central mode number m0 of mag-
netic perturbations is shifted to higher mode m∗

0 ≈ m0γ1 and the distribution
became wider: ∆m∗ ≈ γ12π/θc. The asymptotical formulae (10.59), (10.60)
qualitatively correct describe the transformation of magnetic perturbations
into Hamiltonian perturbations.

From the asymptotic formulae (10.59), (10.60) it follows that a particular
mode m of Hamiltonian perturbations is determined by the mode number
m′ ≈ m/γ1 (or m′ ≈ m/β1) of magnetic perturbations. They reflect the
specific features of mode conversations between the spectra of Hamiltonian
perturbation Hmn(ψ) and of magnetic perturbations is toroidal plasmas. We
will use these features in Chap. 11 to analyze the spectrum of poloidal modes
in ergodic divertor tokamaks.

10.3 Mapping of Field Lines

A symplectic integration of Hamiltonian equations (10.5) with the Hamil-
tonian (10.33) can be performed using the mapping method presented in
Sect. 4.1. The geometry of the mapping of field lines in toroidal plasmas
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Fig. 10.7. Spectrum of magnetic amn (curve 1) and Hamiltonian perturbations
Hmn(ψ) obtained from (10.48) by numerical integration (10.49) (solid curve 2) and
using the asymptotics (10.60) or (10.59) (dashed curve 3): (a) describes the case
Cm = (−1)m, m0 = 20, θc = π/5, fitting parameters: B = 1.3, xc = −1. ; (b) the
case (ii) Cm = 1, m0 = 10, θc = π/5. Fitting parameters: B = 1, xc = 0

is illustrated in Fig. 10.8. The mapping of field lines in tokamaks is con-
structed by the following way. Introduce poloidal sections ϕ = ϕk = (2π/s)k,
(k = 0,±1,±2, . . .), where s (s ≥ 1) is an integer number which stands for a
number of map steps per one toroidal rotation along the torus.

The mapping

(ϑk+1, ψk+1) = M̂(ϑk, ψk) , (10.62)

relates the points, (ϑk, ψk), of the field line (ϑ(ϕ), ψ(ϕ)) at the poloidal section
ϕ = ϕk, with the ones (ϑk+1, ψk+1) at ϕ = ϕk+1. The Poincaré return map
to the same poloidal section ϕk (mod 2π) can be obtained by applying the
map (10.62) s times or setting s = 1 (see Fig. 10.8b).
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ϕk+2ϕk
ϕk+3

ϕk+1

(ϑk,ψk)

(ϑk+1,ψk+1)

(a)

(ϑk, ψk)

(ϑk+s, ψk+s)ϕk =const

(b)

Fig. 10.8. Geometry of mapping in a toroidal system: (a) Scheme of the mapping
along the toroidal angle for the case s = 4; (b) Poincaré return map of field lines
in the poloidal plane ϕk = const

According to (4.6)–(4.8) the general form of the mapping (10.62) for
the Hamiltonian system (10.33), (10.34) has the following symmetric flux-
preserving form

Ψk = ψk − ε
∂Sk

∂ϑk
, Θk = ϑk + ε

∂Sk

∂Ψk
,

Ψk+1 = Ψk , Θk+1 = Θk +
ϕk+1 − ϕk

q(Ψk)
, (10.63)

ψk+1 = Ψk+1 + ε
∂Sk+1

∂ϑk+1
, ϑk+1 = Θk − ε

∂Sk+1

∂Ψk+1
,

with the generating function Sk = S(ϑ, Ψ, ϕ; ε)|ϕ=ϕk
. In the first order of

perturbation parameter ε the generating function, S(ϑ, Ψ, ϕ; ε), according to
(2.10), and (2.35) is given by

S(ϑ, Ψ, ϕ) = −(ϕ− ϕ0)
∑

m

Hmn(Ψ)
[
a(xmn) sin (mϑ− nϕ+ χmn)

+b(xmn) cos (mϑ− nϕ+ χmn)
]
, (10.64)

where the toroidal angle ϕ is located in the interval ϕk+1 < ϕ < ϕk, and

a(x) =
1 − cosx

x
, b(x) =

sinx
x

,

xmn =
(

m

q(Ψ)
− n

)
(ϕ− ϕ0) .

We recall that the free parameter ϕ0 lies in the interval ϕk ≤ ϕ0 ≤ ϕk+1, and
the mapping can be applied to systems with moderately large perturbation
ε by taking the map step ∆ϕ = ϕk+1 − ϕk sufficiently small.

As was shown in Sect. 4.1.1 by appropriately choosing the parameter ϕ0

one can obtain the nonsymmetric forms of the mapping. Particularly, taking
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ϕ0 = ϕk+1 and ∆ϕ = ϑk+1 − ϑk = 2π we obtain the Poincaré return map in
the form

ψk+1 = ψk − ε
∂S(ϑk, ψk+1)

∂ϑk
,

ϑk+1 = ϑk +
2π

q(ψk+1)
+ ε

∂S(ϑk, ψk+1)
∂ψk+1

, (10.65)

where S(ϑk, ψk+1) ≡ S(ϑk, ψk+1, ϕk, ϕk +2π, ε). According to (10.64), in the
first order of ε the generating function S(ϑk, ψk+1) is determined by

S(ϑ, ψ)=2π
∑

m

Hmn(ψ)
[
a(xmn) sin (mϑ+χ′

mn)+b(xmn) cos (mϑ+χ′
mn)

]
,

(10.66)

where xmn = 2π (m/q(ψ) − n), and χ′
mn = χmn − nϕk.

The mapping of the form (10.65) is widely used in the literature referring
to it as the perturbed twist map, when the safety factor q(ψ) is a monotonic
function of ψ.

10.4 Mappings as Models for Magnetic Field Lines

Since early 80’s iterative maps to study magnetic field line in plasmas have
been introduced in order to avoid the time consuming integration of field
line equations. Although, in most cases the maps were not rigorously derived
from the equations of field lines they are constructed in the symplectic form
(10.65) which conserves the flux-preserving property of magnetic field. An-
other requirement was that the map should have a simple form as possible.
Below we shortly discuss some of these important maps.

10.4.1 The Standard Map and its Generalizations

This class of mappings corresponding to the symplectic mapping (10.65) with
the generating function S depending only on the poloidal angle ϑ (Mendonça
(1991)). The general form of corresponding generating function is given by

εS(ϑ) =
K

2π

∑

m

gm cos(mϑ+ χm) , (10.67)

where gm and χm are the constant amplitudes and phases of perturbation
modes. The constant parameter K describes the relative strength of magnetic
perturbation. The corresponding map has the following form

ψk+1 = ψk − K

2π

∑

m

gm sin(mϑk + χm) ,
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ϑk+1 = ϑk +
2π

q(ψk+1)
. (10.68)

The standard map (Chirikov (1979)) can be obtained from (10.68) by
keeping in the generating function S (10.67) only one mode m = 1 with
gm = 1 and χm = 0 and choosing the safety factor q(ψ) = 1/ψ:

ψk+1 = ψk − K

2π
sinϑk ,

ϑk+1 = ϑk + 2πψk+1 . (10.69)

This map has been widely used to model a field line stochasticity in tokamaks
by many authors (see, e.g., Rechester et al. (1979); Rechester and White
(1980); Rechester et al. (1981); Ichikawa et al. (1987); Rax and White (1992).
Thanks to its simple form it allowed one to efficiently calculate the diffusion
coefficients of field lines, the transport of test particles in a magnetic field
with destroyed magnetic surfaces. Recently, the standard map has been used
to model the test particle transport in a tokamak caused by the drift-wave
turbulence (Horton et al. (1998); Kwon et al. (2000)). The more general
maps (10.68) proposed by Mendonça (1991) have been used by Tabet et al.
(1998, 2000); Miskane et al. (2001) to study stochastic magnetic field lines in
tokamaks.

10.4.2 The Wobig–Mendonça Map

In toroidal systems typical magnetic perturbations are radially dependent,
i.e., H1(ψ, ϑ, ϕ) depends on the torodial flux ψ. In order to take into account
this feature of the toroidal magnetic field, the generating function S should
be chosen as a function that depends also on the toroidal flux ψ. The sim-
plest form of such a map proposed by Wobig (1987) and later generalized by
Mendonça (1991)) has the following form

ψk+1 = ψk − K

2π
f(ψk+1)

∑

m

gm sinmϑk,

ϑk+1 = ϑk +
2π

q(ψk+1)
− K

2π
f ′(ψk+1)

∑

m

gm cosmϑk , (10.70)

which corresponds to the map (10.65) with the generating function

εS(ϑ, ψ) = −K

2π
f(ψ)

∑

m

gm cosmϑ, f(ψ) = 1 − exp(−ψ) , (10.71)

where f ′(ψ) ≡ df(ψ)/dψ. The case when f(ψ) = ψ and q(ψ) = 1/ψ was
considered by Wobig (1987). The corresponding map can be obtained from
the map (10.70) at a limiting case. Indeed, near the magnetic axis (ψ = 0),
when ψ � 1, the function f(ψ) can be approximated by a linear function ψ
and the map (10.70) is reduced to (Wobig (1987)):
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ψk+1 = ψk

(
1 +

K

2π

∑

m

gm sinmϑk

)−1

,

ϑk+1 = ϑk +
2π

q(ψk+1)
− K

2π

∑

m

gm cosmϑk . (10.72)

At regions far from the magnetic axis, when ψ � 1, the map (10.70) ap-
proaches the mappings (10.68).

As was noted by Balescu et al. (1998) that the toroidal flux ψ in the
standard map (10.69) may take negative values after some iterations of the
maps for arbitrary value of K. A similar situation occurs in the Wobig map
(10.72) for K > 2π. This fact is not compatible with the magnetic field
line behavior in a toroidal system where the toroidal flux ψ ∼ r2 is always
positive. On the other hand in the both maps the profile of the safety factor
q ∼ r−2 does not represent any realistic case in tokamaks.

10.4.3 The Tokamap

The specific form of the map called a tokamap, which is compatible with
the toroidal geometry has been proposed by Balescu et al. (1998); Balescu
(1998). It describes the global behavior of magnetic field lines in tokamaks.
The tokamap has been constructed as an iterative symplectic map, (10.62)
representing a global picture of a tokamak cross section ϕk = 2πk (mod
2π). The generating function S is chosen to be compatible with the toroidal
geometry, i.e., satisfying the following constraints:

1. The map should be Hamiltonian (or symplectic).
2. It should be compatible with toroidal geometry that the canonical momen-

tum ψ (toroidal flux) be always positive number. For instance, if ψ0 > 0
at the section k = 0 then ψk > 0 for all k ; and if ψ0 = 0, then ψk = 0 for
all k.

The toroidal flux ψ is normalized to its value at the plasma edge, and takes
values in the interval, 0 ≤ ψ < 1. Balescu et al. (1998) has shown that the
following map satisfies these constraints

ψk+1 = ψk − K

2π
ψk+1

1 + ψk+1
sinϑk ,

ϑk+1 = ϑk +
2π

q(ψk+1)
− K

2π
1

(1 + ψk+1)2
cosϑk , (10.73)

where K is a stochasticity parameter, similar to the parameter in the standard
map (3.26). It takes values in the interval: 0 < K < 2π. (We have used in
the safety factor q(ψ) instead of the winding number W (ψ) = 1/q(ψ) in the
original work by Balescu et al. (1998)).
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The generating function S(ϑ, ψ) associated with the tokamap is

εS(ϑ, ψ) = −K

2π
ψ

1 + ψ
cosϑ , (10.74)

and the safety factor q(ψ) can be chosen arbitrary. In Balescu et al. (1998)
the following analytical form has been used,

q(ψ) =
4q(0)

(2 − ψ)(2 − 2ψ + ψ2)
, (10.75)

where q(0) is the value of the safety factor on the magnetic axis ψ = 0. At the
plasma edge ψ = 1 it takes four times the central value, q(1) = 4q(0). This
profile of q(ψ) shown in Fig. 10.9a has been derived by Misguich and Weyssow
(see Appendix A in Misguich et al. (2002b)) for the following density, n(r) =
n(0)[1 − r2], and the electron temperature, T (r) = T (0)[1 − r2]2, profiles in
tokamaks.

If the profile of q(ψ) is a non-monotonic function of ψ then the tokamap
becomes the non-twist map (see Sect. 7.3). The corresponding tokamap called
revtokamap has been studied by Balescu (1988) for the following q− profile

q(ψ) =
qm

1 − a(ψ − ψm)2
, (10.76)

where qm is a minimum value of q at ψ = ψm. The profile of the safety factor
(10.76) is shown in Fig. 10.9b. Parameters a and ψm can be written in terms
of the values of q(ψ) at the axis ψ = 0, q0 = q(0), and at the plasma edge
ψ = 1, q1 = q(1), respectively,

ψm =

[
1 +
(

1 − qm/q1
1 − qm/q0

)1/2
]−1

, a =
1 − qm/q0

ψ2
m

.

The revtokamap describes the dynamics of field lines in a tokamak mag-
netic configuration with a so-called reversed magnetic shear. The latter cor-
responds to the profile of the safety factor q(ψ) which has a minimum not at
the magnetic axis ψ = 0, but at a normalized radius of 0.3-0.4 and regularly
increases towards the center (ψ = 0) and the edge of the plasma (ψ = 1).
Recent tokamak experiments (see reviews by Litaudon (1998); Wolf (2003))
have clearly shown the appearance of improved confinement regimes, internal
transport barriers (ITB’s), in the presence of a reversed magnetic shear.

The first equation in (10.73) can be explicitly solved with respect to vari-
able ψk+1:

ψk+1 =
1
2

[√
P 2(ψk, ϑk) + 4ψk − P (ψk, ϑk)

]
, (10.77)

where
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Fig. 10.9. Profiles of the safety factor q(ψ): (a) a monotonic profile (10.75) (curve
1) and a linear profile q(ψ) = q0 + (q1 − q0)ψ (curve 2) at values q0 = 1, q1 = 4.
(b) The non-monotonic profile (10.76) at the values: q0 = 3, qm = 1.5, and q1 =6

P (ψk, ϑk) = 1 − ψk +
K

2π
sinϑk .

The tokamap has been used to model the formation of transport barriers, and
anomalous subdiffusion of field lines in tokamaks Misguich (2001); Misguich
et al. (2002a,b).

Although the tokamap has not been directly derived from the equations
of field lines it has recently been recovered by Weyssow and Misguich (1999)
from the particle map of the guiding center motion in a toroidal system de-
scribed by the standard magnetic field (10.17) in the presence of the magnetic
field perturbation. As was stated by Weyssow and Misguich (1999) it is de-
duced as a particular case of the particle map in the limit of zero magnetic
moment and when only a simple m = 0 non-resonant magnetic perturbation
is applied. The relation between the tokamap and the continuous field line
equations has been also discussed by Eberhard (1999). Below we study this
problem in detail.

10.5 Continuous Hamiltonian System and Tokamap

One should note that the derivation of the tokamap from a continuous Hamil-
tonian system is not well-defined problem unless we make some additional
assumptions. The main difficulty lies in determining to which kind of a con-
tinuous Hamiltonian function corresponds the tokamap. In order to make
this problem unambiguous we suppose that the perturbation Hamiltonian
H1(ψ, ϑ, ϕ) as well as the generating function S(ϑ, ψ) of the tokamap do not
depend on the safety factor.
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As was shown in Sect. 4.3 general mappings of type (3.5), (10.65) with
the simple generating function (10.74) cannot be constructed for Hamil-
tonian systems of type (10.33) with radial- dependent perturbation func-
tions H1(ψ, ϑ, ϕ). It means that the tokamap cannot be rigorously derived
from Hamiltonian field line equations under the constraint on the Hamil-
tonian and the generating function imposed above in order to have a simple
mapping model. We study this problem by constructing a mapping for the
following continuous Hamiltonian system corresponding to the tokamap:

H =
∫

dψ

q(ψ)
+ εH1(ψ)

M∑

n=−M

cos(ϑ− nϕ) ,

εH1(ψ) = − K

(2π)2
ψ

1 + ψ
, (10.78)

with a large number, 2M + 1 � 1, of toroidal modes n. The magnetic per-
turbation B1 corresponding to this system can be found using the relation
(10.45). From the last equation we obtain the vector potential Aϕ of per-
turbed field

A(per)
ϕ (r, θ, ϕ) = −εR

2
0B0H1(ψ(r))
R(r, θ)

M∑

n=−M

cos(ϑ(r, θ) − nϕ) . (10.79)

Particularly, for the cylindrical model of magnetic field, R = R0, ψ = r2/2R2
0,

and ϑ = θ, we have

A(per)
ϕ (r, θ, ϕ) =

KB0

2(2π)2R0

r2

1 + r2/2R2
0

M∑

n=−M

cos(θ − nϕ) . (10.80)

In the limit M → ∞ the Hamiltonian (10.78) is reduced to

H =
∫

dψ

q(ψ)
+ εH1(ψ) cosϑ

∞∑

k=−∞
δ(ϕ− 2πk) . (10.81)

This Hamiltonian has been used by Eberhard (1999) to derive the tokamap–
like map. The Hamiltonian equations of field lines are

dψ

dϕ
= −∂H

∂ϑ
= −εH1(ψ) sinϑ

∞∑

k=−∞
δ(ϕ− 2πk) ,

dϑ

dϕ
=

∂H

∂ψ
=

1
q(ψ)

− ε
∂H1

∂ψ
cosϑ

∞∑

k=−∞
δ(ϕ− 2πk) . (10.82)

As was discussed in Sect. 3.3 the integration of these equations along the δ-
functions is not well-defined procedure. We would obtain the tokamap (10.73)
if the integrals of type,
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∫ 2π(k+1)

2πk

f(ψ(ϕ), ϑ(ϕ))δ(ϕ− 2πk) ,

where f(ψ(ϕ), ϑ(ϕ)) is a function depending on the orbit (ψ(ϕ), ϑ(ϕ), are
replaced by f(ψk+1, ϑk). Eberhard (1999) integrated the system (10.82) from
ϕk to ϕk+1 using the symmetric definition of the δ-function,

∫ 2πk±ε

2πk

f(ψ, ϑ)δ(ϕ− 2πk) = ±1
2
f(ψk ± 0, ϑk ± 0) , (ε > 0) ,

and obtained the symmetric map corresponding the tokamap

ψ+
k = ψk − 1

2
εH1(ψk) sinϑk ,

ϑ+
k = ϑk − 1

2
ε
∂H1(ψk)
∂ψk

cosϑk ,

ϑ−
k+1 = ϑ+

k +
2π

q(ψ+
k )

, ψ−
k+1 = ψ+

k , (10.83)

ψk+1 = ψ−
k+1 −

1
2
εH1(ψk+1) sinϑk+1 ,

ϑk+1 = ϑ−
k+1 −

1
2
ε
∂H1(ψk+1)
∂ψk+1

cosϑk+1 .

The numerical integration of the continuous system (10.82) by replacing the δ-
function by its continuous representation δ(t) = exp(−t2/a2))/a

√
π, (a � 1)

gives a good agreement with the symmetric form of the map (10.83) rather
than with the tokamap (10.73). The difference between the numerical in-
tegration and the tokamap is relatively large (see Sect. 3.3). In this sense
the tokamap is not good discrete replacement of the continuous Hamiltonian
system (10.81).

However, the constructed symmetric map (10.83) has a serious short-
coming: it is not symplectic, i.e., |∂(ψk+1, ϑk+1)/∂(ψk, ϑk)| �= 1. This is a
consequence of uncertain procedure of integration along δ− functions. In or-
der to obtain the symplectic map from the continuous system (10.81) we can
use the rigorous procedure presented in Sect. 4.3.

10.5.1 The Symmetric Tokamap

The continuous Hamiltonian (10.81) is a particular case of the Hamiltonian
(4.24). According to results of Sect. 4.3 only the symmetric form (4.31) -
(4.33) of the map (10.62) corresponding to the system (4.24) or (10.81) has
the simple generating function (4.34). The generating function of the non-
symmetric mappings (4.38) or (10.65) has a rather complicated form (4.37). It
depends not only on the harmonics Hm(ψ) of the perturbation Hamiltonian
but also on the safety factor q(ψ).

According to (4.31)–(4.33) the symmetric map corresponding the tokamap
Hamiltonian (10.81) can be written as (see Abdullaev (2004a))
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Ψk = ψk − K

4π
Ψk

1 + Ψk
sinϑk ,

Θk = ϑk − K

4π
1

(1 + Ψk)2
cosϑk ,

Θk+1 = Θk +
2π

q(Ψk)
, Ψk+1 = Ψk ,

ψk+1 = Ψk+1 −
K

4π
Ψk+1

1 + Ψk+1
sinϑk+1 ,

ϑk+1 = Θk+1 −
K

4π
1

(1 + Ψk+1)2
cosϑk+1 , (10.84)

by replacing the action variable I by the toroidal flux ψ, the frequency of
motion, ω(J), by the inverse safety factor q−1(Ψ), and putting the pertur-
bation frequency Ω = 1. We call the mapping (10.84) a symmetric tokamap.
The generating function S(ϑ, ψ) associated with this map is

εS(ϑ, Ψ) = −K

4π
Ψ

1 + Ψ
cosϑ . (10.85)

In general, the symmetric tokamap is a implicit map unlike the tokamap.
The first equation in (10.84) can be explicitly resolved with respect to Ψk,
similarly to the tokamap,

ψk+1 =
1
2

[√
P 2(ψk, ϑk) + 4ψk − P (ψk, ϑk)

]
,

P (ψk, ϑk) = 1 − ψk +
K

4π
sinϑk .

However, the last equation in (10.84) cannot be explicitly resolved with re-
spect to the variable ϑk+1. The latter should be found numerically using, for
instance, the Newton method. The zero approximation to ϑk+1 can be chosen

ϑ̄k+1 = Θk+1 −
K

4π
1

(1 + Ψk+1)2
cosΘk+1 .

The symmetric tokamap is invariant with respect to the translation
ϑ ↔ π − ϑ. It reflects the invariance of the symmetric map with respect
to transformation k ↔ k + 1 with the simultaneous change K → −K and
q → −q. The property corresponds to the symmetry of the continuous Hamil-
tonian system with respect to the formal transformation t → −t, H → −H.

10.5.2 Comparison of the Tokamap and the Symmetric Tokamap

Fixed points (ϑs, ψs) of the tokamap and the symmetric tokamap, defined by
ψk+1 = ψk, ϑk+1 = ϑk + 2πn where n is an integer number, are the same.
They either lie in the polar axis ψs = 0, or in the equatorial plane ϑs = 0, π,
sinϑs = 0. For the last case ψs are roots of the equation (Balescu et al.
(1998))



248 10 Magnetic Field Lines in Fusion Plasmas

1
q(ψ)

∓ K

(2π)2
1

(1 + ψ)2
− n = 0 ,

where the signs (∓) correspond to ϑs = 0 and ϑs = π, respectively.
However, the periodic fixed points, (ϑ, ψ) = M̂q(ϑ, ψ), (q > 1), of the

tokamap and the symmetric tokamap are different. For the tokamap they have
been studied in Misguich et al. (2002b). Since the tokamap cannot be exactly
obtained from the symmetric map the the fixed points of the symmetric
tokamap cannot be recovered from those of the tokamap. The deviation of
these maps significantly depends on the perturbation parameter K. It is of
order of ε2 = K2/4π2. For the small values K � 2π it is small, however,
for K ∼ 1 the difference becomes relatively large. Below we will study the
difference between the symmetric tokamap and the tokamap by comparing
their phase portraits. More detailed study of fixed points of the symmetric
map requires a separate investigation and we will not discuss this problem
here.

Figure 10.10 shows phase portraits of the tokamap (10.73) and the sym-
metric tokamap (10.84) with the profile of the safety factor q(ψ) (10.75) at the
perturbation parameter K = 2.55: (a), (b) correspond the tokamap, and (c),
(d) − the symmetric tokamap. Figures 10.10a,c,e describe the phase portrait
in the (ϑ, ψ) -plane, while 10.10b, d, f − in the polar plane (ψ cosϑ, ψ sinϑ).

For comparison we have also integrated the continuous Hamiltonian
(10.78) with a finite number of toroidal modes M = 5 using the mapping
(10.63). They are plotted in Fig. 10.10e, f. The map step along the toroidal
angle ϕ is taken ∆ϕ = 2π.

As seen from Figures the symmetric tokamap very closely describes the
continuous Hamiltonian system (10.78) with a finite number of toroidal modes
M . However, the phase curves of the tokamap are more distorted than in the
symmetric tokamap. The positions of the periodic fixed points are shifted
not only radially, but also along the poloidal angle ϑ. The difference between
the tokamap and the symmetric tokamap becomes more pronounced for large
perturbation parameter K.

To illustrate this we compare the perturbation thresholds Kg of destruc-
tion of the so-called golden KAM curve corresponding to the tokamap and
the symmetric tokamap, respectively. For the tokamap this problem was dis-
cussed by Balescu et al. (1998).

The golden KAM curve is the most robust KAM barrier in the stan-
dard map, and it corresponds to the winding number W equal to g∗ =
G−1

∗ = 0.6180339 . . ., where G∗ is the golden section defined by the equation:
G2

∗ = G∗ + 1. For the safety factor q(ψ) = 1/W (ψ) (10.75) the golden KAM
curve is located at ψg = 0.31599. It lies between two periodic orbits (m,n)
(q(ψmn) = m/n) corresponding to q(ψ2,1) = 2 : 1 located at ψ2,1 ≈ 0.45631
and q(ψ4,3) = 4 : 3 located at ψ4,3 ≈ 0.18946. For the finite perturbation
parameter K > 0 the KAM curves are deformed or broken. The periodic
orbits are replaced by islands. With increasing K the width of islands grows
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Fig. 10.10. Phase portraits: (a) and (b) correspond to the tokamap (10.73); (c)
and (d) correspond the symmetric tokamap (10.84); (e) and (f) correspond to the
symmetric map (10.63) with the Hamiltonian (10.78) with M = 5. The q-profile is
given by (10.75). Parameters K = 2.55, q(0) = 1
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Fig. 10.11. Stochastic belt of the tokamap (10.73) (a) and the symmetric tokamap
(b) with the q-profile (10.75) for K = 4.5, q(0) = 1

destroying the KAM curves located between two neighboring islands. Ac-
cording to Balescu et al. (1998) the golden KAM curve ψg corresponding
to the tokamap is destroyed at Kg = 4.3. However, at this value of K the
golden KAM curve of the symmetric tokamap is still survived. This is shown
in Fig. 10.11 for the perturbation parameter K = 4.5: a) the tokamap; b) the
symmetric tokamap.

In the case of the tokamap several islands including 2 : 1 and 4 : 3 are
already overlapped forming a single stochastic belt. But in the case of the
symmetric tokamap many of these islands are still isolated. From Fig. 10.11b
one can see a gap between the islands 2 : 1 and 4 : 3. The golden KAM curve
of the symmetric tokamap is destroyed at larger value K equal to Kg ≈ 4.8.
The Phase portrait of the symmetric tokamap at K = 5 is shown in Fig. 10.12.
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Fig. 10.12. The same as in Fig. 10.11b but for K = 5.0, q(0) = 1

10.5.3 The Revtokamap and the Symmetric Revtokamap

Consider another example illustrating a difference between the tokamap (or
revtokamap) and the symmetric tokamap (revtokamap) in the case of reversed
magnetic shear configuration described by the safety factor (10.76) (see also
Fig. 10.9b). The mappings in this case are non-twist maps which were studied
in Sect. 7.3. The dynamics of the revtokamap in such a reversed magnetic
shear has been studied by Balescu (1998) with a great detail. Here, we will
only compare the symmetric revtokamap and the revtokamap at large values
of the perturbation parameter K when the difference between these maps is
expected to be large.

Phase portraits of the maps are plotted in Fig. 10.13 for the perturbation
parameter K = 6.3: a) the revtokamap; b) the symmetric tokamap. The
values of the safety factor q(ψ) are chosen equal to q0 = 3 at the magnetic
axis, qm = 1.5 at the minimum, and q1 = 6 at the edge, as in Balescu (1998).
Then the position of the shearless curve is located at ψm = 0.44948974 where
q′(ψm) = 0.

The most robust invariant curves are located near the shearless curve
ψ = ψm. According to the revtokamap the upper region ψ > ψm and the
lower region ψ < ψm of field lines are developed into the chaotic belts: the
upper region ψ > ψm is open, while the lower region is localized. These regions
are separated from each other by the transport barrier located near the per-
turbed shearless curve (see Fig. 10.13a). However, the symmetric revtokamap
with the same perturbation parameter K gives rather a different picture. Al-
though, the upper region ψ > ψm of open field lines is completely chaotic, the
lower region ψ < ψm consists of almost regular field lines with a few isolated
islands (see Fig. 10.13b). This result can be also confirmed by direct integra-
tion of the continuous Hamiltonian system (10.78). In general, the tokamap
systematically gives lower critical values of the perturbation parameter Kg

of destruction of the KAM curves than the symmetric tokamap.
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Fig. 10.13. Phase portraits of the tokamap (a) and the symmetric tokamap
(b) with the reversed q-profile (10.76). Parameters K = 6.3, q0 = 3, qm = 1.5
and q1 = 6

10.6 Other Mapping Models of Field Lines

10.6.1 Analytical Models

We will also mention some other areas of fusion plasma physics where map-
ping methods have been a useful tool to study the transport of energy and
particles. Particularly, in Albert and Boozer (1988); White (1998); Wobig
and Pfirsch (2001) (and references therein) a chaotic motion of particles in
a tokamak due to magnetic perturbations have been studied by replacing
the continuous Hamiltonian equations for the guiding center motion with the
discrete mappings. The standard map and its generalizations have been used
in numerous works (see, e.g., Rechester et al. (1979); Rechester and White
(1980); Rechester et al. (1981); Rax and White (1992); Wobig (1987); Wobig
and Fowler (1988); Mendonça (1991); Tabet et al. (1998, 2000); Miskane et
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al. (2001); Wobig and Pfirsch (2001)) to simulate a transport of the field lines
and test particles in a magnetic field with destroyed magnetic surfaces. It has
been also used by Horton et al. (1998); Kwon et al. (2000) to model a test
particle transport in a tokamak due to a drift-wave turbulence.

Beside of these mappings describing the global dynamics of field lines in
tokamaks and stellarators there were proposed specific mapping models of
field lines at the plasma periphery of poloidal and ergodic divertor tokamaks
by Martin and Taylor (1984); Regianni and Sakanaka (1994); Abdullaev et
al. (1998); Fischer and Cooper (1998); Punjabi et al. (1992); Abdullaev and
Zaslavsky (1996); Abdullaev and Finken (1998) and others. Particularly, we
shall discuss the application of separatrix mappings to study field lines in
poloidal divertor tokamaks in next chapter. Heat and test particle transport in
a tokamak perturbed by externally created magnetic field have been studied
by McCool et al. (1990); Wootton et al. (1991); Feron and Ghendrih (1997)
using different mapping models of magnetic field lines.

The Reversed Field Pinch (RFP) is another fusion device of a magneti-
cally confined plasma. It is known as the equilibrium state of plasma with
the minimal magnetic energy. The magnetic field of this state has intrinsic
turbulent components due to a turbulent transient to the minimal energy
state. The transport and diffusion processes in the RFP are mostly due to
the magnetic field line stochasticity (D’Angelo and Paccagnella (1996, 1999)).
In Bazzani et al. (1989, 1998) the perturbed twist maps have been derived
to study a field line diffusivity and transport in the RFP.

10.6.2 Numerical Mapping Models

Beside analytical mapping models numerical mapping methods have been
also developed to study field lines and modeling heat and particle transport
in tokamak plasmas. The numerical mapping technique has been proposed for
integrating Hamiltonian systems, particularly, the equations of magnetic field
lines and particles in a realistic toroidal geometry. Below we briefly describe
the main idea of the method known as Interpolated Cell Mapping (Tongue
(1987); Montvai and Düchs (1993); de Rover et al. (1996)).

The method uses real space coordinates x = (x, y, ϕ), which may be cylin-
drical coordinates (R,Z, ϕ), or toroidal coordinates (r, θ, ϕ). One introduces
Nϕ cross sections ϕk = const equally spaced along the toroidal angle ϕ. We
define a mapping,

(xk+1, yk+1) = M̂(xk, yk) = (Xk(xk, yk), Yk(xk, yk)) , (10.86)

relating field line coordinates (xk+1, yk+1) at the section ϕk+1 with the
ones (xk, yk) at ϕk. The mapping (10.86) is determined by the set of func-
tions Xk(x, y), Yk(x, y), k = 1, 2, . . . , Nϕ. In order to create these functions
the field line equations (10.2) are integrated numerically from grid points
(xk,ij , yk,ij) (i = 1, . . . , Nx, j = 1, . . . , Ny) at the section ϕk to the in-
tersection point (Xk(xk,ij , yk,ij), Yk(xk,ij , yk,ij)) at the section ϕk+1. The
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functions Xk(x, y), Yk(x, y) are interpolated by the cubic splines from their
computed values at the grid points (xk,ij , yk,ij). Once the set of functions
Xk(x, y), Yk(x, y), k = 1, 2, . . . , Nϕ, have been created one can follow field
lines using the mapping (10.86). The main advantage of this numerical map-
ping technique is that it runs much faster than direct numerical integration
of field line equations.

This numerical mapping and its modifications have been employed by
Kasilov et al. (1997); Runov et al. (2001); Feng et al. (2002) for Monte–Carlo
simulations of transport processes in tokamak plasmas with stochastic field
lines.

However, the numerical mapping (10.86) has a fundamental shortcoming
because it is not symplectic, i.e., flux-preserving. Since the mapping vari-
ables (x, y) are not canonical variables it is hard to impose conditions of the
functions Xk(x, y), Yk(x, y) that would make mappings symplectic.

10.7 Conclusions

In conclusion of this chapter we would like to make general remarks on map-
ping models of magnetic field lines in toroidal plasmas in the presence of
magnetic perturbations. Usually these perturbations are strongly radial de-
pendent which is manifested in the dependence of perturbed Hamiltonian H1

(10.34) on the toroidal flux ψ. In general studies of field lines one wishes to
replace the continuous equations of magnetic field lines in toroidal plasmas
with the simple discrete model, mapping, of field lines. These model map-
pings should satisfy several requirements or constraints which would make
them compatible with the properties of Hamiltonian equations of field lines
and the toroidal geometry of plasmas. The example of such requirements was
given in Sect. 10.4.3. Beside of being symplectic and compatible with the
toroidal geometry one wishes to construct a mapping whose generating func-
tion would have a simple dependence on the radial–dependent perturbation
field. As was shown in Sect. 4.3 that only the symmetric symplectic map of
type (4.31)–(4.33) derived from the Hamiltonian equations satisfies this con-
straint. The non-symmetric form of mapping (4.38) which can be also derived
from a Hamiltonian system has a complicated dependence on perturbation
field H1 and the frequency of motion ω(J) (or the safety factor q(ψ)) (see
the generating function 4.37).

Therefore, when one wishes to construct a model map for magnetic field
lines in a toroidal plasmas, one should impose an additional constraint along
with two ones mentioned in Sect. 10.4.3, namely the map should be con-
structed in a symmetric form of type (4.31)–(4.33) with the generating func-
tion S(ϑ, Ψ) in the form (4.34). The form of perturbation functions Hm(Ψ)
can be established by two other constraints listed in Sect. 10.4.3. Such map-
pings would be more compatible with Hamiltonian equations of field lines.



11 Mapping of Field Lines
in Ergodic Divertor Tokamaks

Mappings have been very useful tool to study magnetic field lines in divertor
tokamaks. In this and the next chapters we study the structure of magnetic
field lines in so-called ergodic and poloidal divertor tokamaks using mappings.
We shall study the general structure of magnetic field, chaotic and statistical
properties of field lines in ergodic divertor tokamaks. Mappings constitute
an important and computationally efficient tool to study magnetic field lines
in both types of tokamaks. In ergodic divertor tokamaks we shall apply the
mapping procedure of magnetic field lines presented in Sect. 10.3.

11.1 Ergodic Divertor Concept

In magnetically fusion devices particles and energy cannot be hold in a con-
finement area for a long time. Due to different turbulent processes particles
and heat are transported to the plasma edge and deposited to the device
wall. A large energy and particle out-flux may damage wall components and
release the impurities into the plasma core. In order to control these processes
at the plasma edge the concept of the ergodic divertor has been introduced
(see Engelhard and Feneberg (1978); Feneberg and Wolf (1981); Samain et
al. (1982)). The idea of the ergodic divertor is based on the creation of a per-
turbed magnetic field at the plasma edge by a special coil system installed
outside the plasma vessel. The perturbation field creates the zone of chaotic
field lines at the plasma edge which are open to the plasma wall. These field
lines guide ionized particles to the special divertor plates. The schematic view
of the poloidal section of ergodic divertor tokamak is shown in Fig. 11.1. In
the literature on plasma physics this zone is more known as an ergodic zone.

During last two decades the ergodic divertor concepts were implemented
in the Texas Experimental Tokamak (TEXT) in Austin, Texas, USA (more
known as a ergodic magnetic limiter) (Gentle (1981); McCool et al. (1990)),
Tore-Supra in Cadarache, France (see a review Ghendrih et al. (1996) and
references therein) and others fusion devices Kawamura et al. (1982). Re-
cently, the dynamic ergodic divertor (DED) (see Finken (1997); Abdullaev et
al. (2003)) has been installed for the Tokamak Experiment for the Technology
Oriented Research (TEXTOR) in Jülich, Germany. Beside the conventional
concept of the ergodic divertor the DED also permits the operation with a

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 255–273 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 11.1. Schematic view of the section of an ergodic divertor tokamak

rotating magnetic field which allows, in particular, to spread the heat and
particles over the large area on the divertor plates.

11.1.1 Mappings to Study Ergodic Divertors

In the ergodic divertor the perturbed magnetic field created by external coils
destroys rational magnetic surfaces at the plasma edge forming magnetic is-
lands. At the certain level of perturbation field the interaction of magnetic
islands creates the stochastic layer (ergodic zone) of magnetic field lines.
The main problem in divertor physics is to study particle and heat trans-
port through the ergodic zone and to determine heat and particle deposition
patterns on the divertor plates. Since charged particles, ions and electrons,
predominantly follow magnetic field lines a determination of the structure
of ergodic zone of field lines at the plasma edge and the patterns of striking
points of field lines, magnetic footprints, on divertor plates are first important
problems. The latter problems can be studied by solving the equations of mag-
netic field lines in the presence of magnetic perturbations created by external
divertor coils. Usually, the direct integration of the equations of magnetic field
lines requires long computational times and has a several disadvantages. For
instance, standard numerical integration methods, like Runge–Kutta, does
not conserve the flux–preserving property of magnetic field.

The most convenient and natural approach to this problem is to use the
Hamiltonian equations of field lines and to study them using symplectic meth-
ods of integration, particularly, symplectic mappings. They always preserve
a magnetic flux, and run much faster. Several mapping models have been
proposed to study the formation of ergodic zone at the plasma edge. The
first mapping model has been proposed by Martin and Taylor (1984) for the
rectangular model of a tokamak. This model has been used in Regianni and
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Sakanaka (1994) to calculate the Lyapunov exponents and diffusion coeffi-
cients. The generalization of the Martin and Taylor mapping model to the
toroidal plasma has been proposed by Viana and Caldas (1992); Caldas et al.
(1996); Viana and Vasconcelos (1997); Ullmann and Caldas (2000); Portela
et al. (2003) to study different statistical properties of magnetic field lines.

More realistic and generic mapping models for magnetic field lines in
the ergodic divertor, namely, the perturbed twist mappings have been pro-
posed by Abdullaev et al. (1998); Fischer and Cooper (1998); da Silva et al.
(2001a,b, 2002a,b). The numerical study and Hamiltonian analyses of mag-
netic field lines have been also studied in Viana (2000). Rigorous mapping
methods developed by Abdullaev et al. (1999); Finken et al. (1999); Abdul-
laev et al. (2001) were applied to study a magnetic structure of the DED of
the TEXTOR.

Below we describe the main features of the perturbed magnetic field, the
formation of ergodic zone and a specific features of field lines in typical er-
godic divertor tokamaks. Specifically, we consider the DED of the TEXTOR
tokamak. The detailed description of these problems can be found in Abdul-
laev et al. (1999); Finken et al. (1999); Abdullaev et al. (2001, 2003).

11.2 Magnetic Structure of the DED

The DED for the TEXTOR tokamak has been proposed (see Finken (1997))
as a new tool to control the plasma edge by the external magnetic pertur-
bations. The new feature of the DED in comparison with the conventional
concept of the ergodic divertor is that it permits to create a rotating mag-
netic field. In this section we consider the coil configuration of the DED and
the magnetic field created by this coil system.

11.2.1 Set of Divertor Coils and Magnetic Perturbations

The set of external coils designed to create the resonant magnetic perturba-
tions at the plasma edge consists of 16 helical coils covering the finite poloidal
section π − θc < θ < π + θc of toroidal surface of radius r = rc. They are
located on the high field side (HFS) , θ = π, of the torus where the toroidal
field Bϕ ∼ (R0 + r cos θ)−1 is higher than at the center of torus r = 0 .
Similarly the side of the torus θ = 0 is called low field side (LFS) , where the
magnitude of the toroidal field is lower than at r = 0. The poloidal extension
of the of coils is ∆θ = 2θc ≈ 72◦. Each coil is winding once around the torus
starting at a toroidal, ϕj = jπ/8, and a poloidal angle θj = π−θc and ending
after one toroidal turn at θj = π+θc, where j (j = 1, . . . , 16) stands for a coil
number. A schematic view of the coil positions in the (ϕ, θ)-plane is shown
in Fig. 11.2a.
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Fig. 11.2. (a) Ideal DED coil configuration in the (ϕ, θ)-plane; (b) Sketch of the
technically implemented DED coil configuration

Described configuration of coils is called ideal. Because of difficulties of
technical implementation of such an ideal coil configuration, the real coil
configuration has been installed in the tokamak device. The coils are bundled
in four quadruples and two additional so called compensations coils are added
to compensate a net poloidal magnetic field resulted from such a bundling
(Kaleck et al. (1997)). The sketch of the technically implemented divertor
coils is shown in Fig. 11.2b.

There are three possible operational regimes of the DED which are in-
tended to create the resonant m : n magnetic perturbations (10.34). In the
first (or standard) regime the toroidal mode n = 4 and a several poloidal
modes m (10 < m < 14) create the ergodic zone near the resonant magnetic
surface q = 3. In the second regime the ergodic zone is created by the toroidal
mode n = 2 and the poloidal modes m = 5 − 7. And finally n = 1 m = 3
in the third regime. For the standard DED operation (n = 4) the current
distribution in the coils is given by

Ij = Ic sin(πj/2 +Ωt) , (j = 1, . . . , 16) , (11.1)
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where Ic is a current amplitude (Ic ≤ 15 kA), and Ω is the rotation frequency
of perturbed magnetic field.

The coil system (11.1) creates the magnetic field perturbations at the
plasma edge localized on the HFS of the torus and radially decaying toward
inside the plasma (Abdullaev et al. (1999); Finken et al. (1999)). It is mainly
determined by the toroidal component of vector potential

Aϕ(r, θ, ϕ) = εB0R0

∑

m

amn(r) cos(mθ − nϕ−Ωt) , (11.2)

where the dimensionless perturbation parameter ε is defined as

ε =
Bc

Bϕ

rc

R0
, Bc =

2µ◦Icn

∆θcrc
, (11.3)

where Bc is the characteristic strength of magnetic field perturbation. For the
large aspect ratio tokamaks, R0/a � 1, the Fourier coefficients am(r) can be
presented in the asymptotical form (see Abdullaev et al. (1999); Finken et
al. (1999)):

amn(r) ≈ gm√
1 − r/R0

(
r −∆(r)

rc

)m

, (11.4)

where

gm = (−1)m+mc
sin[(m−mc)θc]
πm(m−mc)

,

describes the poloidal spectrum of magnetic perturbations formed due to
the finite poloidal extension of the coil set. The central mode number mc

is determined by ∆θc and the toroidal mode number n: mc = 2πn/∆θc.
The poloidal, m, spectrum of perturbation Am is localized near the central
mode mc. The perturbed field has the toroidal mode n = 4 and possesses a
strong radial decay Aϕ ∝ rmc (mc ≈ 20). The factor 1/

√
1 − r/R0 in (11.4)

corresponds to the first order toroidal corrections.
The radial component of perturbed magnetic field Br(θ, ϕ) = r−1∂Aϕ/∂θ

in the (θ, ϕ) plane is shown in Fig. 11.3 for the standard DED operation (n=4)
and the ideal coil configuration. The TEXTOR-DED parameters are chosen
as: R0 = 175 cm, rc = 53.25 cm, the current Ic = 15 kA, ∆θc = 2π/5. The
characteristic strength of perturbed magnetic field Bc = 2.251 × 103 G. The
perturbed field profiles for the technically implemented coil configuration are
calculated by Kaleck et al. (1997).

11.3 Spectrum of Magnetic Perturbations

Since the perturbation field is localized in the finite interval of poloidal an-
gles: π − θc < θ < π + θc at the HFS the spectrum amn of magnetic per-
turbation (11.2), (11.4) contains the factor (−1)m. As have been shown in
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Fig. 11.3. Radial component of the perturbed magnetic field Br in the (θ, ϕ) plane
at the radial distance r = 46 cm

Sections 10.2.2, 10.2.4 the spectra of Hamiltonian perturbations Hmn(ψ) in
this case originate from the spectra of magnetic perturbation am′n(ψ) with
m′ located near m/β1, and it is approximately described by (10.60). Using
(11.4) the spectra Hmn(ψ) for large mode numbers m can be presented by
Abdullaev et al. (1999):

Hmn(ψ) ≈ (−1)mC

√
1 − r

R0

(
r −∆(r)

rc

)m∗
sin(m∗ −mc)θc

πβ1m∗(m∗ −mc)
, (11.5)

where

C =

√
2π
|xc|

Ai(xc) , m∗ =
m+ [mβ3/2β1]1/3

β1
.

The radial coordinate r is considered as a function of the toroidal flux ψ. For
the plasma model with nested circular magnetic surfaces the relation r = r(ψ)
is given by (10.27). The poloidal spectrum Hmn(ψ) (11.5) is located near the
central mode m∗

c ≈ mcβ1 with the width ∆m ≈ πβ1/∆θc. These quantities
are mainly determined by the parameter β1, which depends on the plasma
parameter βpol as well as the flux coordinate ψ. The spectra Hmn(ψ) can be
controlled by simple varying βpol.

Although the asymptotic formula for (11.5) qualitatively correct describes
the spectrum of Hamiltonian perturbation its accuracy is not enough to ob-
tain the quantitatively correct the critical perturbations for the onset of global
chaos of field lines. Since it is hard to obtain the exact analytical formulas for
the perturbation spectrum Hmn(ψ) we have numerically calculated them us-
ing the integral (10.46) and unperturbed field lines R(ψ, ϑ), Z(ψ, ϑ) obtained
from the numerical integration of the equations of field lines (10.11) over one
poloidal turn in the (R,Z) -plane. The values of Hmn(ψ) were calculated for
the linear grid of ψ): ψi = ψ0 + i∆ψ, (i = 1, . . . , N). The safety factor q(ψ)



11.3 Spectrum of Magnetic Perturbations 261

has been also found numerically at this grid. The values of q(ψ) and Hmn(ψ)
for the arbitrary values of ψ are interpolated using the cubic splines.

In order to display the field lines in the geometrical space of the cylindrical
coordinate system (R,Z, ϕ) (or the toroidal coordinate system (r, θ, ϕ)) the
relationship with these coordinates and the flux, ψ, and intrinsic angle, ϑ,
variable are found by integrating of the unperturbed equations of field lines.
This relationship is sought in the following general form

r = r0 +
M∑

m=1

(
r(s)m (ψ) sinmϑ+ r(c)m (ψ) cosmϑ

)
,

θ = ϑ+
M∑

m=1

αm(ψ) sinmϑ .

The Fourier coefficients r(s)m (ψ), r(s)m (ψ), and αm(ψ) are calculated numeri-
cally by integrating the equations (10.11) over one poloidal rotation in the
(R,Z)-plane for the same grid coordinates of ψ. Their values for arbitrary ψ
are interpolated by the cubic splines.

The safety factor q(ψ) and typical properties of the perturbation spectra
Hmn(ψ) obtained in such a way are illustrated in Figs. 11.4 and 11.5 for the
plasma model with circular magnetic surfaces considered in Sect. 10.1.5.

Figure 11.4 shows profiles of q(ψ) for three different values of the plasma
parameter βpol: curve 1 corresponds to βpol = 0.2, curve 2 − to βpol = 1,
and curve 3 − to βpol = 1.8. The dependence of Hmn(ψ) on the poloidal
mode number m at the resonant magnetic surface ψmn, m : n = 12 : 4 is
plotted in Fig. 11.5a for the same values of the plasma βpol. The ψ− (radial)
dependencies of Hmn(ψ) of the four main poloidal modes (m = 11, 12, 13, 14)
are shown in Fig. 11.5b for the value βpol = 1.
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Fig. 11.4. Safety factor profile q(ψ) for three different values of the plasma pa-
rameter: curve 1 – βpol = 0.2, curve 2 − to βpol = 1, curve 3 − to βpol = 1.8.
The crossing points of these curves with the horizontal line q = 3 determine the
resonant magnetic flux ψmn: q(ψmn) = 3
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Fig. 11.5. (a) Hamiltonian perturbation spectrum |Hmn(ψ)| (n = 4) for different
values of βpol at the resonant magnetic surface ψmn (m : n = 12 : 4): curve
1 corresponds to βpol = 0.2, curve 2 − to βpol = 1, curve 3 − to βpol = 1.8. (b)
Dependence of |Hmn(ψ)| on the toroidal flux ψ normalized to one ψa corresponding
the last magnetic surface with the radius r = a. Plasma current Ip= 0.42 MA,
toroidal field Bϕ = 1.875 T. The plasma radius a = 46.7 cm, R0 = 175 cm, Ra =
174 cm

As seen from Fig. 11.4 the q-profiles are significantly modified with a
variation of βpol. The locations, ψmn, of the resonant magnetic surface,
q(ψmn) = m/n are shifted toward inward the plasma with increasing the
plasma βpol. Particularly, the resonant q = 3 magnetic surface is shifted by
∆ψ ≈ 0.05ψa when βpol is changed from 1.8 to 1. Since ψ/ψa ≈ r2/a2, one
can obtain that ∆r ≈ (a/2)

√
ψa/ψ(∆ψ/ψa).

For the plasma of radius a = 46 cm the radial shift of the resonant surface
is ∆r ≈ 1.2 cm. It shows that the threshold of the formation of stochastic
layer changes drastically with the plasma βpol. This is because of the rapid
variation of the perturbation field modes Hmn(ψ) with ψ (or r). According
to (11.5), Hmn(ψ) ∝ ψm/2β1 (see also Fig. 11.5b), and it changes a several
times when ψ varies to ∆ψ ≈ 0.05ψa.
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From Fig. 11.5a also follows that only a group of few poloidal modes
contributes to the destruction of resonant magnetic surfaces located near the
magnetic surface with q = 3. The central mode m∗

c of this group is shifted to
small modes m with increasing βpol.

11.4 Formation of the Ergodic Zone

Below we study the formation of the stochastic layer of field lines at the
plasma edge in the presence of magnetic perturbations. The Hamiltonian
equations of field lines (10.44) in this case are integrated using the mappings
(10.63). The perturbation modes Hmn(ψ) and the safety factor q(ψ) are found
using the cubic spline interpolations of their precomputed values.

The stochastic layer at the plasma edge is formed due to the interactions
of several magnetic islands created on the resonant magnetic surfaces ψmn,
q(ψmn) = m/n, (m∗

c − ∆m/2 < m < m∗
c + ∆m/2). The typical picture of

the formation of the ergodic zone is illustrated in Fig. 11.6 by plotting the
Poincaré sections of field lines in the (ϑ, ψ) plane for the different levels of
magnetic perturbations. At the sufficiently small magnetic perturbation the
resonant magnetic surfaces (m : n), (m = 9, . . . 14), are destroyed and the
chains of isolated islands are formed as shown in Fig. 11.6a. The increase of
the current Ic on the divertor coils up to Ic = 7.5 kA results in overlapping
of three magnetic island with the poloidal mode numbers m = 11, . . . 13,
and in the formation of the stochastic layer of field lines bounded in a finite
area along the radial coordinate ψ. The magnetic island with m = 14 is
isolated. Chaotic field lines is this stochastic layer are closed and they cannot
reach the divertor plates. Fig. 11.6b shows this case. Further increase of the
perturbation current to Ic ≈ 10.5 kA destroys the barrier located between
the resonant magnetic surfaces m = 14 and the stochastic layer. However,
the field lines are still confined and they do not reach the divertor plate. At
the maximal current Ic = 15 kA one obtains the well–developed stochastic
layer with field lines open to the divertor plates which is shown in Fig. 11.6c,
d. Figure 11.6d displays the structure of ergodic zone in the geometrical
coordinate system (θ, r). A small rectangular area on the top of the plot
corresponds to the divertor plate.

In general the formation of the ergodic zone depends on the many para-
meters of the plasma. It can be varied by changing the profile of the safety
factor q(ψ), the plasma parameter βpol, the perturbation current Ic. Different
aspects of this problem including the statistical properties of field lines are
discussed by Abdullaev et al. (1999); Finken et al. (1999); Abdullaev et al.
(2001, 2003).



264 11 Mapping of Field Lines in Ergodic Divertor Tokamaks

Fig. 11.6. Formation of stochastic layer of magnetic field lines with increasing
the perturbation current Ic: (a) perturbation current Ic = 3 kA; (b) Ic = 7.5 kA;
(c) Ic = 15 kA; (d) the same as in (c) but on the geometrical space (θ, r). The
plasma parameter βpol = 1, the plasma current Ip = 420 kA

11.5 Statistical Properties of Field Lines

The chaotic field lines in the ergodic layer contribute to the radial energy and
particle transport at the plasma edge in addition to the perpendicular energy
transport caused by turbulent processes in the plasma. To illustrate this
consider for simplicity a collisionless plasma. Since electrons predominantly
follow magnetic field lines the radial transport of electrons is determined by
the radial deviation of field lines from the magnetic surfaces. Indeed, the
radial diffusion coefficient of electrons is defined as De = 〈(∆r)2〉/2∆t where
∆r is a random radial advance of particle during time period ∆t, and 〈(· · ·)2〉
stands for averaging over magnetic surface. Suppose that ve is the thermal
velocity of electrons. They make a full toroidal turn in time ∆t = ∆l/ve
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where ∆l is the length of field line. Therefore

De =
〈(∆r)2〉

2∆t
=

∆l

∆t

〈(∆r)2〉
2∆l

= DFLve , (11.6)

where

DFL =
〈(∆r)2〉

2∆l
, (11.7)

defines the diffusion coefficient of field lines. It means that in the collisionless
plasma the diffusion of charged particles is mainly determined by the radial
diffusion of field lines1. Below we discuss the problem of determination of
field line diffusion coefficients.

11.5.1 Global and Local Diffusion Coefficients

Let σ2(l) is the second order displacement moment,

σ(l) = 〈(r − 〈r(l)〉)2〉 =
1
N

N∑

i=1

(ri(l) − 〈r〉)2 , (11.8)

where 〈(. . .)〉 means over a set of initial conditions at l = 0 taken on a certain
magnetic surface.

First consider the definition of diffusion coefficients in an unlimited do-
main stochastic layer2. In this case the asymptotics of σ2(l) at the large
distance l has the following general behavior,

σ2(l) = 2DFLl
γ , l → ∞ , (11.9)

where DFL is a constant coefficient (see also Sect. 9.1.3 and (9.14)). For a
normal Gaussian process the exponent γ = 1, and the coefficient DFL is
defined as a field line diffusion coefficient, DFL = σ2(l)/2l, l → ∞. Such
a diffusion coefficient can be called as global since it characterizes a global
diffusive behavior of a system.

However, in the stochastic system with a finite domain, as the ergodic
zone of field lines, the asymptotics (11.9) is not valid at long distances l,
since in this case σ2(l) → constant at l → ∞, i.e., one cannot introduce the
global diffusion coefficient DFL defined as a ratio DFL = σ2(l)/2l, l → ∞.

Nevertheless, in order to describe a transport in the stochastic layer one
can introduce a local diffusion coefficient DFL(r). It gives a quantitative mea-
sure of field line diffusion near the given magnetic surface of radius r. Below
we give analytical and numerical determinations of diffusion coefficients.
1 Actually the radial transport of charged particles in the plasma is more compli-

cated. It is determined not only due to collisions of particles but also the different
kind of electromagnetic instabilities developing in the plasma (see Wesson (2004))

2 As an example one can refer to the astrophysical and space plasmas where the
magnetic field line diffusion represents the main sources of particle transport (see
the paper by Pommois et.al (1999) and references therein).
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11.5.2 Quasilinear Diffusion Coefficients

For the highly developed ergodic zone the diffusion coefficient DFL can
be obtained from the Hamiltonian equations of field lines with the Hamil-
tonian (10.33), (10.34). According to the quasilinear approximation (see
Sect. 9.1.2) the diffusion coefficient D for the Hamiltonian system (9.10)
is given by (9.13). The quasilinear diffusion coefficient, DM , of magnetic
field lines defined as a random walk process along the toroidal flux ψ, i.e.,
DM = 〈(∆ψ)2〉/2∆ϕ, can be obtained from (9.13) by replacing the action I
by the toroidal flux ψ and the frequency of motion ω(I) by the inverse safety
factor q−1(ψ) and the perturbation frequency Ω by n:

DM = πε2
∑

m,n

m2 |Hmn(ψ)|2 δ
(

m

q(ψ)
− n

)
.

The relation between the diffusion coefficient DFL and DM in the magnetic
flux, ψ, and the radial r coordinates can be found using the relation ψ =
r2/2R2:

D
(Q)
FL =

R3
0

r2
DM = πε2

R3
0

r2

∑

m,n

m2 |Hmn(ψ)|2 δ
(

m

q(ψ)
− n

)
. (11.10)

It coincides with the traditionally used quasilinear formula for DFL (see
Ghendrih et al. (1996)) if the term εmHmn is replaced by rBmn/B0R0 where
Bmn is the Fourier expansion coefficient of the perturbed field Br obtained
using the relations (10.37), (10.38) and (10.41), i.e.,

D
(Q)
FL = πR0

∑

m,n

(
Bmn(r)
B0

)2

δ

(
m

q(ψ)
− n

)
. (11.11)

11.5.3 Numerical Calculation of Field Line Diffusion Coefficients

To determine a local diffusion coefficient, DFL(r), numerically we calculate
the second order radial displacement moments according to (11.8) performing
the averaging over a set of initial field lines with initial angle θ being uniformly
distributed on the magnetic surface r = r0(θ).

A typical dependence σ2
r0

(l) on l in the ergodic zone is shown in Fig. 11.7a
for the two cases of open and closed field lines: curve 1 describes the case of
closed ergodic zone; curve 2 corresponds the case of open field lines. In the
first case field lines are confined in the ergodic zone and they don’t reach the
divertor plate, while in the second case the field lines are open and they reach
the divertor plate after a certain number of poloidal turns. It has following
features: σ2

r0
(l) grows with l up to a certain distance, when field lines reach

the boundaries of the ergodic zone, and then it tends to a constant value as



11.5 Statistical Properties of Field Lines 267

5003752501250

1

l /π R0

0.0

0.5

1.0

1.5

2.0

2.5

σ(
l)

2

(a)

5

x 10-6

3

1

(b)

4
2

0

1

2

3

4

6

D
FL

   
   

[m
2 /m

] 5

40 41 42 43 44 45 46 47

ρ        [cm]

Fig. 11.7. (a) Typical behavior of the mean square radial displacement σ2(l) vs
the length l along the toroidal angle ϕ for the two cases: curve 1 describes the case
of the closed ergodic zone; curve 2 corresponds to the case with open field lines.
(b) Radial profiles of local field line diffusion coefficients DFL for different plasma
currents: curve 1 corresponds to Ip = 460 kA, curve 2 − to Ip = 520 kA, curve 3 −
to Ip = 580 kA. Quasilinear diffusion coefficients DQ are plotted by dashed curves:
4 − for Ip = 460 kA, and 5 − for Ip = 520 kA. The plasma βpol = 1

shown by curve 1 in Fig. 11.7a or it decreases when the field lines leave the
ergodic zone hitting the divertor plates (curve 2 Fig. 11.7a).

As was mentioned above in this situation one cannot introduce a global
diffusion coefficient D = σ2

r(l)/2l, (l → ∞) as in the case of unlimited stochas-
tic domain. However, one can introduce a local diffusion coefficient DFL(r) as
σ2

r(l)/2l which is valid for the initial linear growth regime of σ2
r(l) with l (Ab-

dullaev et al. (1999)). Typical profiles of DFL(r) as a function of magnetic
surface radius r are presented in Fig. 11.7b for the different plasma currents.
The corresponding quasilinear diffusion coefficients DFL (11.10) are also plot-
ted in this figure. One can see that DFL grows with r monotonically up to
the certain radius ρl then it decays in the zone r > rl where the field lines
hit the divertor plates in very short lengths. The radius rl characterizes the
inner boundary of the zone of almost regular (non-chaotic) field lines with
very short wall to wall connection lengths. This zone is called as the laminar
zone because of resemblance with the laminar flow in hydrodynamics. The
width of the laminar zone grows with the plasma current Ip.

Usually the quasilinear diffusion coefficients overestimates the diffusion
transport rate in the DED ergodic zone. The quasilinear theory is not valid
in this case since the ergodic zone is formed by overlapping only a few neigh-
boring magnetic islands.

One should note that the local and quasilinear diffusion coefficients do
not completely describe the transport processes in the ergodic zone. They
are valid only for the highly developed ergodic zone. The typical ergodic zone
at the plasma edge is not well-developed, and it consists of areas with the
remnants of magnetic islands as well as areas with almost regular field lines
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with short connection lengths (the laminar zone). The transport processes in
such an ergodic zone cannot be simply described by the quasilinear theory.

11.6 Ergodic Divertor as a Chaotic Scattering System

Field lines at the plasma edge with initial coordinates located in the stochastic
layer eventually leave the plasma region hitting the divertor plate (expect for
those field lines being trapped inside the magnetic islands). In this sense the
ergodic zone with open field lines can be viewed as chaotic scattering system3,
whereby field lines enter into the plasma edge from the divertor plate and
leave when hitting it again after a certain number of poloidal turns, Np, as
illustrated in Fig. 11.8.

45

46

47

48

-0.5 0 0.5 1 1.5
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θ/2π

Divertor plate

1

2

3

Fig. 11.8. Field lines connecting the divertor plate with itself after a several turns,
Np, along the poloidal angle: curve 1 describes Np = 0, curve 2 corresponds to
Np = 1, and curve 3 − to Np = 2

In chaotic scattering systems, a trajectory may leave a system in one of
several different ways. The space of initial coordinates corresponding to the
various exit ways are separated by a boundary, which may be a fractal Bleher
et al. (1990). The set of initial conditions for which trajectories leave the
system in a particular way is called a basin of a particular mode. In the case
of the ergodic divertor it is convenient to classify field lines by the number of
poloidal turns Np. Indeed, the perturbation field created by divertor coils are
localized on the HFS, and field lines enter into the plasma and leave it on this
side making almost full poloidal turns (see Fig. 11.8). Therefore, the set of
initial conditions for which field lines cross the section θ = 0 (mod 2π) with
the same number of times may be referred as the basin of a particular number
3 A definition of chaotic scattering systems can be found in Eckhard (1988); Bleher

et al. (1989); Tel and Ott (1993) and references therein.
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of poloidal turns Np. Field lines with Np = 0 that do not cross the section
θ = 0 belong to a special set called a private flux zone. Spatial structures
of boundaries of basins belonging to different Np reveal fine details of the
structure of field lines which cannot be seen in Poincaré sections. Below we
study the structure of these basins by plotting the contours of Np within the
plasma edge and on the divertor plate.

11.6.1 Basin Boundary Structure at the Plasma Edge

First we consider the structure of basin boundaries referring to the basin as
the set of points (ϑ, ψ) at the given poloidal section ϕ = constant which are
crossed by field lines with a particular number of poloidal turns Np. The
procedure to obtain these plots is the following.

At the poloidal plane ϕ= 0 the field line with a given initial coordinate
(ϑ, ψ) is traced by iterating the map (10.63) along the positive and nega-
tive directions of the toroidal angle ϕ until a field line reaches the divertor
plate. Then we determine a fractional number of poloidal turns Npol as the
ratio of the total change of the poloidal angle ∆θ to the full circle 2π, i.e.,
Npol = ∆θ/2π. The values of Npol computed in this way are close to integer
numbers although they are not exactly integer. Let Np be the integer num-
ber closest to Npol. Areas in the (ϑ, ψ)-plane with different poloidal turns
Np are topologically different. The dependence of Npol on the initial coordi-
nates (ϑ, ψ) is displayed by a contour plot with contour lines separating the
basins of different poloidal turns Np. The example such a plot is presented
in Fig. 11.9.

The basin with one poloidal turn has a non-fractal boundary with the
private flux zone. But it may have fractal boundaries with the basins cor-
responding to two and more poloidal turns. For Np ≥ 2 there are several
topologically different basins related to the same Np. As seen from Fig. 11.9a
the relatively large basins of a few poloidal turns Np ≤ 3 at the plasma
edge are clearly separated by non-fractal boundaries. But they are alternat-
ing with the long dark elongated areas (or stripes) containing the basins for
a few poloidal turns up to very large Np. In Eich et al. (2000) these stripes
were called “fingers”. At the HFS some of these stripes are radially extended
toward the divertor plate.

The structure of stripes has a complicated fractal nature. In order to study
the fine structure of stripes we have magnified the area of the stripe with the
fine resolution of basins of higher poloidal turns. In Fig. 11.9b shows a blow
up of the rectangular area in Fig. 11.9a. It shows that the basins at the stripe
are highly elongated and the boundaries between them have fractal structure,
i.e., the stripes consists of layered basins of different poloidal turns with a
self−similar behavior at different spatial scales. As seen from Fig. 11.9b the
basins of field lines with a few poloidal turns Np are “sandwiched” between
basins for field lines with large numbers of poloidal turns Np � 1.



270 11 Mapping of Field Lines in Ergodic Divertor Tokamaks

Fig. 11.9. Contour plots of Np in the (ϑ, ψ)-plane for the plasma currents Ip =
580 kA. (a) shows the sector 150◦ < ϑ < 210◦, (b) Expanded view of the rectangular
area in (a)

11.6.2 Magnetic Footprints

In order to study the basin boundary structure on the divertor plate we
will use the following procedure. We follow a field line which enters into the
plasma starting from the divertor plate with a given initial coordinate (ϕ, θ)
and returns back to the plate after a certain number of poloidal turns Np.
The set of initial conditions (ϕ, θ) with a particular number Np determines a
basin. The whole picture of basin boundaries with Np ≥ 1 on the plasma wall
determines a structure known as magnetic footprints. Similar to the stripe at
the plasma edge the magnetic footprints have a fractal structure as well. A
typical structure of magnetic footprints is displayed in Fig. 11.10: a) in the
finite poloidal section; b) shows the expanded view of the rectangular region
in Fig. 11.10a.
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Fig. 11.10. Basin boundary structure (magnetic footprints) on the (ϕ, θ) –plane
at the divertor plane: (a) On the entire plane; (b) expanded view of the rectangular
region on the stripe shown in (a). The plasma parameters are the same as for the
case shown Fig. 11.9

One can see from Figs. 11.10 that the field lines can enter into the plasma
(or hit the divertor plate from the plasma side) only along the four pairs of
narrow helical stripes. (Dark blue areas in Figures correspond to the field lines
in a private flux zone). The distance between stripes of each pairs depends on
the plasma current Ip Abdullaev et al. (2001). Each helical stripe has a fractal
structure and it consists of layered basins of different poloidal turns (see Fig.
11.10a, b). The width of layers is changing along the toroidal direction ϕ.
The area of the basin with one poloidal turn Np = 1 is the largest. For the
higher Np > 1 corresponding areas of basins are drastically decreased in size.
The boundaries between these basins are fractal.
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Fig. 11.11. (a): Fractal dependence of Npol on θ along the line with the fixed
toroidal angle ϕ = 145◦ (the yellow line in Fig. 11.10b); (b): Expanded view of the
dashed rectangular area shown in (a)

The fine structure of helical stripes can be revealed by studying the depen-
dence of Np on the poloidal angle θ at fixed toroidal angle ϕ. Such a depen-
dence of Np on θ is described by Cantor-like, fractal curves. It is presented in
Fig. 11.11 at the fixed toroidal angle ϕ = 145◦. The curve in Fig. 11.11a de-
scribes the poloidal dependence of Np along the (yellow) straight line shown
in Fig. 11.10b, while Fig. 11.11b shows the expanded view of the dashed rec-
tangular area in Fig. 11.11a. They clearly show areas of field lines connecting
plate to plate in one, two, three and more poloidal turns Npol. These areas
are described by almost horizontal steps in the fractal curve. The width of
layers becomes smaller with increasing Npol.

The structure of the helical stripes plays an important role for heat and
particle deposition on the divertor plates. Indeed, the basins with Np � 1
correspond to the field lines coming from deep within ergodic zone. These
field lines may bring high energetic particles to the wall because the par-
ticles predominantly move along field lines. Therefore one can expect that
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the spatial distribution of power deposition within the helical stripes will
depend on the spatial structure of basins with Np > 1. The cross–field diffu-
sion of particles broadens the spatial distribution of power deposition around
the maxima located at the basins corresponding to large number of poloidal
turns. This conclusion is confirmed with the Monte–Carlo simulations of heat
and energy transport in the ergodic zone (Runov et al. (2001)). Recent ex-
perimental measurements of heat deposition patterns on the divertor plates
performed by Jakubowski et al. (2004) in the TEXTOR-DED tokamak the
confirm the above theoretical predictions on helical stripe structures.

11.7 Conclusion

In this section we have considered the application of the mapping method to
study magnetic lines in divertor tokamaks. In ergodic divertor tokamaks the
mapping approach is based on the fact that the equations of field lines in the
presence of external nonaxisymmetric magnetic perturbations can be always
formulated in the generic Hamiltonian form, given by (10.5), (10.33), (10.34)
in terms of the toroidal flux, ψ, and the intrinsic poloidal angle, ϑ. Then the
general mapping method developed in the Chap. 4 can be directly applied to
study a magnetic system. It runs much faster than the the direct integration
of field lines equations and it can be applied the case with the moderately
large perturbations.



12 Mappings of Magnetic Field Lines
in Poloidal Divertor Tokamaks

Another important concept to control the plasma edge in tokamaks is the so-
called poloidal divertor tokamaks (see Wesson (2004)). The magnetic configu-
ration of these tokamaks contains a magnetic surface (a magnetic separatrix)
sharply separating closed field lines on nested magnetic surfaces from open
field lines hitting the walls of a fusion device. It has one (or two) singular
points, X-points, on the poloidal section where the poloidal components of
the magnetic field are zeros. These configurations are schematically shown
in Fig. 12.1): a) a so-called single–null poloidal divertor; b) a double–null
poloidal divertor. Such configurations of the magnetic field are created by
one or two external current coils parallel to the plasma current, respectively.
Magnetic fusion devices with a poloidal divertor provide an improved energy
confinement of the plasma and diverts particles and heat efficiently into diver-
tor plates in a special volume, from where they are pumped away. The future
International Thermonuclear Experimental Reactor, ITER, is designed as a
poloidal divertor tokamak.

Magnetic field lines in such a magnetic configuration is described by the
Hamiltonian system with hyperbolic fixed points. The magnetic separatrix
and the X-points correspond to the separatrices and the hyperbolic saddle
points, respectively. Typically any small non-axisymmetric magnetic pertur-
bations destroy the magnetic separatrix replacing it by the stochastic layer
of field lines.

The nature of these magnetic perturbations may range from magnetic
fluctuations produced by plasma instabilities, field errors etc. Typically, mag-
nitudes of magnetic perturbation fields are small. For instance, the amplitude
of error field are δB/B0 ≈ 10−4 (Pomphrey and Reiman (1992)). In present
day tokamaks one uses specially created external magnetic fields to null the
magnetic perturbation caused by magnetohydrodynamic instabilities. Recent
experiments in the Doublet III D (DIII-D) tokamak by Evans et al. (2004),
which has a magnetic configuration with the separatrix, showed that the
external magnetic perturbation created at the plasma edge suppresses the
so-called large edge–localized modes (ELMs) in a high confinement regime
known as H-mode. The ELMs are known as a magnetohydrodymical tur-
bulent processes at the plasma edge which cause large, repetitive heat and
particle loading to the divertor plates. In general, they are considered as

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 275–298 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 12.1. Schematic view of magnetic configurations in poloidal divertor toka-
maks: (a) Single-null divertor; (b) Double-null divertor

undesirable for burning plasma experiments since they deteriorate the plasma
confinement and performance, reduce the lifetime of divertor plates due to
increased erosion from impulsive heat and particle fluxes. A stochastic layer
at the plasma boundary might reduce ELMs. Therefore, a study of stochas-
tic field lines near the separatrix and their structure, the pattern of magnetic
footprints on the divertor plates are important issues to understand the par-
ticle and energy transport at the edge of plasmas in tokamak fusion devices
(Boozer and Rechester (1978); Pomphrey and Reiman (1992); Reiman (1996);
Evans et al. (2002)).

Below we shortly recall the main theoretical studies of magnetic field lines
in poloidal divertor tokamaks. In the early theoretical works by Tomita et al.
(1977, 1978); Boozer and Rechester (1978) the effect of magnetic perturba-
tions on the divertor separatrix has been studied by employing the Chirikov
overlapping criteria to estimate the width of the stochastic layer in the ab-
sence of divertor plates. The direct numerical integration of the equations of
field lines in the DIII-D tokamak in the presence of field irregularities has
been performed by LaHaye (1991). The effect of magnetic perturbations cre-
ated by special coils in this tokamak has been analyzed by Evans et al. (2002)
(see also references therein) using a numerical code which takes into account
a real magnetic geometry of the system. ‘Wire’ models have been used by
Pomphrey and Reiman (1992); Reiman (1996) to study the effect of mag-
netic field errors on the formation of the stochastic layer near the magnetic
separatrix and magnetic footprints on the divertor plates.

Mapping approaches to study magnetic field lines near the separatrix in
divertor tokamaks have been developed by Punjabi et al. (1992, 1994, 1996,
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1997) and Yamagishi (1995); Abdullaev and Zaslavsky (1995, 1996); Abdul-
laev and Finken (1998). The mappings are computationally efficient and they
run much faster than the numerical integration of field line equations. Pun-
jabi et al. (1992, 1994, 1996) proposed simple algebraic mapping models,
called tokamak divertor maps to describe the field lines in poloidal divertor
tokamaks. Later Punjabi et al. (1997, 2003); Ali et al. (2004) obtained the
symmetric form of this map and its more sophisticated generalization. These
area – preserving maps are simple algebraic difference equations. They allow
to study generic features of the structure of field lines near X-points and the
magnetic footprints affected by asymmetric magnetic perturbations. How-
ever, since these simple maps are not deduced from the field line equations it
is not clear how parameters of maps are related to magnetic field configura-
tion. It makes difficult to apply these maps to analyze the magnetic structure
of real poloidal divertor tokamaks.

A separatrix mapping approach to estimate the width of the stochastic
layer formed near the magnetic separatrix has been considered by Yamagishi
(1995). Following Chirikov (1979) he derived the separatrix map for field
lines near the magnetic separatrix in a single null poloidal divertor tokamak.
This separatrix map allowed to plot the structure of the stochastic layer
and estimate its width. In Abdullaev and Zaslavsky (1995, 1996); Abdullaev
and Finken (1998) the separatrix mapping method has been generalized to
describe field line near the X-points and on the divertor plates. The method
of construction of the separatrix mapping from the equations of field lines
in poloidal divertor tokamaks with an arbitrary magnetic configuration has
been proposed. It allowed to obtain not only the structure of the stochastic
layer, and also the magnetic footprint patterns on the divertor plates.

Below we present the separatrix mapping method to describe the magnetic
field line near the magnetic separatrix for arbitrary divertor tokamaks. We
will use the general separatrix mappings derived in Sect. 5.

12.1 Field Lines in Equilibrium Plasmas Near
the Separatrix

According to Hamiltonian equations (10.11), (10.12) field lines are deter-
mined by the poloidal flux, H, related to the vector potential Aϕ(R,Z, ϕ):
H(z, pz, ϕ) = −R(pz)Aϕ(R(pz), R0z, ϕ)/R2

0B0. Consider the unperturbed
case when the magnetic field is homogeneous along the toroidal angle ϕ:
Aϕ = Aϕ(R,Z). The magnetic surfaces then are determined by contour line
of RAϕ(R,Z) = const. The field line equations are determined by the un-
perturbed Hamiltonian H0(z, pz) = −R(pz)Aϕ(R(pz), R0z)/R2

0B0. The nor-
malized toroidal flux, ψ, and the safety factor q(H) on the magnetic sur-
face H = H0(z, pz) = const determined from the field line equations are
given by (10.14) and (10.15), respectively. On the magnetic surface one has
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H = H(ψ), and according to (10.7), the safety factor, q(H), is determined
by q(H) = dψ/dH.

According to (10.9) the X-points (Rs, Zs), i.e., the nulls of the poloidal
field (BR, BZ), on the poloidal section correspond to the hyperbolic fixed
points (zs, ps) of Hamiltonian system (10.11) where

dz

dϕ
=

∂H0

∂pz
= 0,

dpz

dϕ
= −∂H0

∂z
= 0 . (12.1)

In the single null divertor tokamaks there is only one X-point connecting with
itself by the homoclinic orbit on the magnetic separatrix. In the double null
divertor tokamaks there are two X-points and they are connected with two
heteroclinic orbits on the two separatrices, respectively (see Fig. 12.1).

Consider field lines near the X-point (see Fig. 12.2). The unperturbed
Hamiltonian H0(z, pz) can be expanded in a series of powers of (z − zs),
(pz − ps) near the X-points:

H0(z, pz) = H0(zs, ps) +
1
2
Hzz(z − zs)2 +Hzp(z − zs)(pz − ps)

+
1
2
Hpp(pz − ps)2 +O[(z − zs)3, (pz − ps)3] , (12.2)

where Hzz, Hzp, and Hpp are second derivatives of H0 with respect to (z, pz)
taken at the hyperbolic fixed point. By the linear transformation of variable
(see Fig. 12.2):

ξ = (z − zs) cosα− (pz − ps) sinα ,
η = (z − zs) sinα+ (pz − ps) cosα ,

X-point
(zs,ps)

pz

z

η

ξ

α

Fig. 12.2. Field lines near the X-point
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the Hamiltonian (12.2) can be diagonalized:

H0(z, pz) = H0(zs, ps) −
|λ1|
2

ξ2 +
λ2

2
η2 +O(ξ3, η3) , (12.3)

where λ1, λ2, (λ1 < 0, λ2 > 0) are the eigenvalues of the matrix
(
Hzz Hzp

Hzp Hpp

)
,

and they are given by

(λ1, λ2) =
Hzz +Hpp

2
±
√

(Hzz −Hpp)2

4
+H2

zp .

The angle α is determined by tan 2α = Hzp/(Hzz −Hpp).
We introduce the relative poloidal magnetic flux h:

h = H0(z, pz) −H0(zs, ps) . (12.4)

For the closed magnetic field lines the relative flux is negative, h < 0, and
for the open field lines it is positive, h > 0. At the separatrices, h = 0 (see
Fig. 12.1). A behavior of field lines near the separatrix and the X-points
is generic (see Sect. 8.1.1). Particularly, according to (12.3), (8.2)–(8.5) the
safety factor q(h) (or inverse frequency of oscillations) has the following as-
ymptotics:

q(h) =
1

2πγ
ln

Q

|h| +O(h) , |h| → 0 , (12.5)

where γ is a parameter determined the expansion parameter λ1, and λ2 in
(12.3): γ =

√
|λ1λ2|, and Q is a positive constant. Unperturbed field line tra-

jectories lie on the magnetic surfaces of constant h and they can be presented
in the form (R,Z) = R(ϕ;h), Z(ϕ;h).

The increment of toroidal angle ∆ϕ along the field lines near the X-point
has also universal behavior. We calculate, for instance, ∆ϕ along field lines
from the axis ξ at η = 0 (or from the axis η at ξ = 0) to the line η = const (
ξ = const). Using the field line equations near the X-point

dξ

dϕ
= λ2η ,

dη

dϕ
= λ1ξ ,

and the relation η =
√

2h+ |λ1|ξ2/
√
λ2, we have

∆ϕ =
1√
λ2

∫ ξ

ξ0

dx√
2h+ |λ1|x2

=
1
γ

ln

(
ξ

b
+

√
ξ2

b2
+ p

)
. (12.6)

Here ξ0 = 0 , p = 1 for h > 0 and ξ0 = b, p = −1 for h < 0, where b =√
2|h|/|λ1|. At the limit |h| → 0 this integral has the following asymptotics

∆ϕ ≈ 1
γ

ln
2ξ
ξ0

=
1
2γ

ln
2λ1ξ

2

|h| .
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12.1.1 Magnetic Perturbations

Suppose that the magnetic perturbations are described by the toroidal com-
ponent of the vector potential A(per)

ϕ (R,Z, ϕ) which represented as a Fourier
series:

A(per)
ϕ (R,Z, ϕ) = εB0R

2
0R

−1
∑

n

An(R,Z) cos(nϕ+ χn) , (12.7)

where n is the toroidal mode number, ε = max|A(per)
ϕ |/B0R0 is the dimen-

sionless perturbation parameter. Using the expansion (12.7) we present the
perturbed Hamiltonian H1(z, pz, ϕ) in the form

H1(z, pz, ϕ) =
∑

n

Hn(z, pz) cos(nϕ+ χn) , (12.8)

where Hn(z, pz) = −An(R(pz), R0z). In the presence of non-axisymmetric
perturbations (12.7) the magnetic separatrices are destroyed. The field lines
with the initial coordinates located within a certain distance from the sepa-
ratrix become chaotic. These field lines are not confined in the plasma region,
and they leave the plasma region hitting the divertor plates after a certain
number of poloidal turns.

Below we describe the method of the separatrix mapping to study open
chaotic field lines near the destroyed separatrix. This method is computa-
tionally efficient to study the structure of the stochastic layer and to obtain
magnetic footprints on divertor plates.

12.1.2 Separatrix Map

We will use the mappings near the separatrix constructed in the Sect. 5, and
particularly in Sect. 5.3.3. It is convenient to define these sections (Σs) near
the X-points where field lines stay longer. In order to determine magnetic
footprints we should construct also mappings to sections coinciding with the
divertor plates (Σd). The locations of these sections in the poloidal plane and
the magnetic configuration of the systems in the absence of the divertor plates
are shown in Fig. 12.3: a) corresponds to the single null divertor tokamak; b)
corresponds to the double null divertor tokamak. In the case of the single null
divertor there are one X-point and two homoclinic saddle–saddle connections,
Cp and Cc, in the plasma and coil regions, respectively (see Fig. 12.3a). In
the double null divertor tokamak there are two X-points and two heteroclinic
saddle saddle connections, Cp1 and Cp2, in the plasma region, two homoclinic
saddle saddle connections, Cc1 and Cc2, in the lower and upper coil regions,
respectively.

According to definitions given in Sect. 5, the cross section Σs consists of
two stripes (segments in the poloidal (R,Z)-plane) along the ξ and η axes
transversely crossing each other along the X-lines (at the X-point on the
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(a)

R

Z

Plasma

Coil

(ϕk,hk)

(ϕk+1,hk+1)

(ϕk+2,hk+2)

Σs

Σd

Cp

Cc

(b)

R

Z

Plasma

Coil

Coil

Σs

Σs

Σd

Σd

Cp1 Cp2

Cc1

Cc2

Fig. 12.3. Geometry of the separatrix map in a single null poloidal divertor toka-
mak: (a) for single null divertor; (b) for the double null divertor. Solid curves
describe perturbed field lines, dashed curves − the unperturbed separatrix

(R,Z)-plane). The unperturbed field lines cross these stripes transversely
(see Fig. 12.2).

We study perturbed field lines near the separatrix. Let (ϕk, hk) be the
toroidal angle, ϕ and the poloidal flux, h, at the k-th crossing point of field
lines with the cross section Σs. Our aim is to construct the mapping

(ϕk+1, hk+1) = M̂(ϕk, hk) , (12.9)

connecting two consecutive crossing points of field line at the section(s) Σs.
In the case of the single null divertor there are two mappings M̂ (j), j =

(p, c) (12.9) along the separatrices Cp and Cc in the plasma and coil regions,
respectively, which completely determine dynamics of perturbed field lines
near the separatrix (see 12.3a).

For the double null divertor (Fig. 12.3b) there are four mappings corre-
sponding to the four separatrices: Cp1 and Cp2 on the plasma region, Cc1 and
Cc2 in the coil regions, respectively.

According to results obtained in Sect. 5 for the Hamiltonian system
H0(z, pz) in the presence of perturbation (12.8) the mapping along each sad-
dle –saddle connection is given by (5.45) with the perturbation functions F
and G given by (5.44). Replacing the frequency ω(h) by the inverse effective
safety factor q(j)(h), the perturbation frequency Ωn by the toroidal mode
number n, and the time variable t by the toroidal angle ϕ we obtain the fol-
lowing form of the mapping (12.9) along the j-th saddle–saddle connection:

hk+1 = hk − εF (+)(ϕk, hk+1, hk) ,
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ϕk+1 = ϕk + π
[
q(j)(hk) + q(j)(hk+1)

]
+ εG(+)(ϕk, hk+1, hk) ,

(12.10)

where

F (+)(ϕk, hk+1, hk) =
∑

n

n

(
Kn(hk+1) sinΦ(+)

n (ϕk, hk)

+Ln(hk) cosΦ(+)
n (ϕk, hk)

)
,

G(+)(ϕk, hk+1, hk) = −
∑

n

(
dKn(hk+1)
dhk+1

cosΦ(+)
n (ϕk, hk)

−dLn(hk+1)
dhk+1

sinΦ(+)
n (ϕk, hk)

)
, (12.11)

Φ(+)
n (ϕk, hk) = n

(
ϕk + πq(j)(hk)

)
+ χn . (12.12)

The effective safety factor q(j)(h) near the j-th saddle–saddle connection is
given by

q(j)(h) =
1
2π

∫

C(j)

dz

∂H0/∂pz
, (12.13)

where the integral is taken along the contour C(j) of H = H0(z, pz) = const
connecting the sections Σs. In the single null divertor and in the coils regions
in the double null divertor it coincides with the safety factor (10.15). Near the
separatrix the safety factors q(j)(h) have the universal asymptotics of type
(12.5) with the same parameter γ but different constant parameters Q = Qj

corresponding to the different contours C(j).
The mappings (12.10)–(12.12) trace field lines along the positive direction

of the toroidal angle ϕ. We call them the forward maps. For the complete
description we need to determine the backward map to trace field lines along
the negative direction of the toroidal angle ϕ. This map can be obtained from
the forward maps (12.10) by the transformation k → k + 1:

hk+1 = hk + εF (−)(ϕk, hk+1, hk) ,

ϕk+1 = ϕk − π
[
q(j)(hk) + q(j)(hk+1)

]
− εG(−)(ϕk, hk+1, hk) , (12.14)
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where

F (−)(ϕk, hk+1, hk) =
∑

n

n

(
Kn(hk+1) sinΦ(−)

n (ϕk, hk)

+Ln(hk) cosΦ(−)
n (ϕk, hk)

)
,

G(−)(ϕk, hk+1, hk) = −
∑

n

(
dKn(hk+1)
dhk+1

cosΦ(−)
n (ϕk, hk)

−dLn(hk+1)
dhk+1

sinΦ(−)
n (ϕk, hk)

)
, (12.15)

Φ(−)
n (ϕk, hk) = n

(
ϕk − πq(j)(hk)

)
+ χn . (12.16)

According to (5.27) the Melnikov type integrals Kn(h) and Ln(h) in
(12.11) are given

Kn(h) + iLn(h) = Rn(h) =

πq(h)∫

−πq(h)

Vn(h, τ)einτdτ , (12.17)

taken over the functions V (j)
n (h, τ) ≡ Hn(z(j)(h, ϕ−ϕ0), p

(j)
z (h, ϕ−ϕ0)) along

the unperturbed field lines near the j-th separatrix. At h = 0 the integral is
taken along the unperturbed separatrix.

As was shown in Sect. 5.2.5 the integrals Rn(h) can be presented as a
sum of regular, R(reg)

n (h), and oscillatory, R(osc)
n (h), parts, i.e.,

Rn(h) = R(reg)
n (h) +R(osc)

n (h) . (12.18)

The regular part, R(reg)
n (h), is a smooth function of the relative poloidal flux

h. The oscillatory part, R(osc)
n (h), is a rapidly oscillating function of h. The

zeros of R(reg)
n (h), i.e., R(reg)

n (hmn) = 0, coincide with the resonant poloidal
fluxes of primary resonances, q(hmn) = m/n. As was shown in Sect. 5.3.1
that since field lines are mostly affected near the primary resonances where
oscillatory terms of the integrals Rn(h) vanish, we can retain only the smooth
regular parts R(reg)

n (h).
Near the separatrix the mapping (12.10) can be simplified by replacing

the integrals Kn(h), Ln(h) by their values Kn(0), Ln(0) at the separatrix
h = 0 similar to the mapping (5.46).
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hk+1 = hk ∓ ε
∑

n

n

(
K(j)

n (0) sin
[
n
(
ϕk ± πq(j)(hk)

)
+ χn

]

+L(j)
n (0) cos

[
n
(
ϕk ± πq(j)(hk)

)
+ χn

])
,

ϕk+1 = ϕk ± π[q(j)(hk) + q(j)(hk+1)] , (12.19)

where the signs (±) correspond to the forward map, and the lower sign (±)
correspond to the backward map.

The set of mappings M̂ (j) given by (12.19) completely describe perturbed
field lines near the separatrices of magnetic system. They are determined only
by the safety factors q(j)(h) (12.13) and the Melnikov type integrals K(j)

n (h),
L

(j)
n (h) (12.17).

12.1.3 Mappings to the Divertor Plates

To determine magnetic footprints on the divertor plates we need to construct
the mapping of field lines from the sections Σs to the divertor sections Σd.
Since these sections are located close to the X-point it takes for field lines less
than half of poloidal turns to reach the divertor plate from the section Σs.
These field lines can be traced along unperturbed field lines starting from
its coordinates (ϕk, hk) at Σs until they reach the divertor plate Σd. Let
(ϕd, hd) be the toroidal angle and the relative poloidal flux on the divertor
plate. Then the map (ϕk, hk) → (ϕd, hd) is given by

hd = hk , ϕd = ϕk +∆ϕ(hk) , (12.20)

where ∆ϕ(h) is the increment of the toroidal angle ϕ necessary to reach the
plate Σd along unperturbed field lines on the magnetic surface of constant
h = h(z, pz). If the divertor plate Σd is sufficiently close to the X-point the
quantity ∆ϕ(h) can be estimated by (12.6).

Magnetic footprints on the divertor plates are obtained by tracing field
lines by the mappings (12.19) and (12.20) using the following procedure. We
choose a set of field lines inside the plasma with coordinates (ϕ0, h0) at the
section Σs. The relative poloidal flux h inside the plasma in negative, h < 0.
We apply the forward and backward mappings given by (12.19) in the plasma
region until field lines cross the unperturbed separatrix, when hk > 0. Then
using the map (12.20) we find the coordinates (ϕd, hd) on the divertor plate.

12.2 Two-Wire Model of the Plasma

To demonstrate the described method of the separatrix mapping we consider
the simple model of a tokamak plasma. The model consists of two current
loops of radius R0 located at the planes Zp = a and Zc = −a as shown in
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Z Perturbation coils
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1

(b)

Fig. 12.4. (a) Magnetic configuration of the two wire model. (b) Magnetic field
lines in the presence of the magnetic perturbation and the divertor plates. Solid
line corresponds to open field lines hitting divertor plates, the dashed curve is the
unperturbed separatrix

Fig. 12.4a. The first loop carries the plasma current Ip, and the second one
describes the divertor current Ic. Such a model of the plasma well describes
the single null divertor tokamak plasma configuration near the separatrix
which does not depend on the radial profiles of plasma current Ip. However,
this model does not include a plasma response to a perturbation field.

The vector potential Aϕ(R,Z) of the each current loop is given by (see
Morozov and Solov’ev (1966))

Aϕ(R,Z) =
∑

j=p,c

µoIj

πkj

√
R0

R

[(
1 −

k2
j

2

)
K(kj) − E(kj)

]
, (12.21)

where K(k) and E(k) are the complete elliptic integrals with the module

k2
j =

4R0R

(R +R0)2 + (Z − Zj)2
.

Here j = (p, c) stands for the plasma and the current loops, respectively.
For the large aspect ratio tokamaks R0/a � 1, |1 − k2| � 1 and for the

toroidal field Bϕ(R) = B0R0/R the unperturbed Hamiltonian H0(z, pz) =
−RAϕ(R,Z) /B0R

2
0 up to constant terms can be approximated by

H0(z, pz) = LpR
−1
0 ln r2pr

2δ
c , (12.22)

where r2j = x2(pz) + (z− zj)2, x and z are the normalized radial coordinates
x = (R − R0)/R0 and z = Z/R0, and zj = Zj/R0. According to (10.10)
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the momentum pz is related with x: pz = ln(1 + x) or x = exp(pz) − 1. The
quantity Lp = µoIi/4πB0 is the length scale, and δ = Ic/Ip is the ratio of
the coil current Ic to the plasma current Ip.

The Hamiltonian equations of field lines are

dz

dϕ
=

∂H0

∂pz
= 2LpR

−1
0 x

(
r−2
p + δr−2

c

)
exp(pz) ,

dpz

dϕ
= −∂H0

∂z
= −2LpR

−1
0

(
z − a/R0

r2p
+ δ

z + a/R0

r2c

)
. (12.23)

The coordinates of the X-point is located at

(zs, ps) =
(

a

R0

1 − δ

1 + δ
, 0
)

.

One can show that the second derivatives Hzz = −Hpp and the mixed deriv-
ative Hzp at this point vanishes, and the coefficients λ1 and λ2 are

− λ1 = λ2 = γ =
LpR0

2a2

(1 + δ)3

δ
. (12.24)

On the separatrix we have

H0(zs, ps) = (1 + δ)LpR
−1
0 ln

2a2δ

(1 + δ)R2
0

− LpR
−1
0 ln δ . (12.25)

Magnetic flux surfaces, f(x, z) = H(z, pz(x)) = const, are given by

r2pr
2δ
c =

1
δ

(
2a2δ

(1 + δ)R2
0

)1+δ

Λ , Λ = exp(hR0/Lp) , (12.26)

where h is the relative poloidal flux (12.4). Magnetic flux surfaces for δ = 1
are shown in Fig. 12.4a. The width of the separatrix along R and Z axes
are ∆R = a and ∆Z =

√
2a, respectively. The width of the separatrix is

maximum at the planes Z = ±
√

3/2a. Elongation κ = ∆Z/∆R, i.e., the
ratio of the widths of the separatrix ∆Z and ∆R is equal to κ =

√
2.

Analytical integration of field line equations (12.23) in the toroidal system
is rather difficult task. Further to simplify the problem we consider the case
of large aspect ratio tokamak plasmas, |x| � 1, putting pz = ln(1 + x) ≈ x.
Moreover, we suppose that the plasma, Ip, and coil, Ic, currents are equal,
i.e., δ = 1. Then, according to (10.15), (12.23) and (12.22), we have

q(h) =
R0

4πLp

∮

Cp

dz

x(z, h)(r−2
p + r−2

c )

=
a2Λ

4πLpR0






K
(
Λ1/2

)
, for h < 0, (Λ < 1)

Λ−1/2K
(
Λ−1/2

)
, for h > 0, (Λ > 1) ,

(12.27)
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where integration is taken over closed magnetic surface Cp. Here K(k) is
the complete elliptic integral of the first kind with modulus k. Using the
asymptotics of K(k) at k → 1 (|h| → 0), K(k) ≈ ln(4/

√
1 − k2) we obtain

the asymptotic formula for the safety factor (12.5) with the constants

γ =
4LpR0

a2
, Q =

16Lp

R0
.

Using the relation, q(h) = dψ/dh, for the safety factor q(h) one finds the
toroidal flux ψ as a function of the relative poloidal flux h:

ψ =
∫

q(h)dh =
a2

4πLpR0






∫
K
(
Λ1/2

)
Λdh, for h < 0 ,

∫
Λ1/2K

(
Λ−1/2

)
dh, for h > 0 ,

=
a2

2πR2
0






E
(
Λ1/2

)
− (1 − Λ)K

(
Λ1/2

)
, for h < 0 ,

Λ1/2E
(
Λ−1/2

)
, for h > 0 .

(12.28)

At the separatrix, h = 0 (Λ = 1), the toroidal flux ψ is equal to ψa =
a2/(2πR2

0).
The safety factor profile q (12.27) as a function of the toroidal flux ψ is

plotted in Fig. 12.5. We have chosen the value of the length scale Lp equal to
0.0472 in order to fix the value q95 ≈ 3.395, where q95 stands for the value of
the safety factor at the magnetic surface which has 95 % of the total magnetic
flux ψa, i.e., ψ/ψa = 0.95. The major radius is R0 = 6.2 m, and a = 2 m.

According to (12.23) the unperturbed field lines can be found by the
integral

ϕ− ϕ0 =
R0

2Lp

z∫

z0

dz

x(z, h)(r−2
p + r−2

c )
, (12.29)

where z0 is the highest z-coordinate of field line on the flux surface f(x, z) ≡
H0(z, pz(x)) = const. The integration gives

ϕ− ϕ0 =
a2Λ

4LpR0






F
(
ν, Λ1/2

)
, for h < 0, (Λ < 1)

Λ−1/2F
(
ν, Λ−1/2

)
, for h > 0, (Λ > 1) ,

(12.30)

where F (ν, k) is the incomplete elliptic integral of the first kind. The argu-
ment ν is related to the coordinate z = Z/R0:

sin2 ν =
2 + Λ1/2 − (Λ+ 4Z2/a2)1/2

Λ1/2 + (Λ+ 4Z2/a2)1/2






Λ−1/2, for h < 0, (Λ < 1)

Λ1/2, for h > 0, (Λ > 1) .
(12.31)
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Fig. 12.5. (a) Safety factor q as a function of the toroidal flux ψ; (b) Relation
between h and ψ. Dotted lines in both Figures show the values of ψ and h corre-
sponding to the rational magnetic surfaces q = 2, q = 3, and q = 4. The length
scale Lp is chosen equal to 0.0472 to fix q95 = 3.394585 at ψ/ψa = 0.95. Other
parameter are R0 = 6.2 m, a = 2 m

The field line on the separatrix, zs(ϕ), ps(ϕ), is given by

zs(τ) = ±
√

2a
R0 cosh(γτ)[1 + tanh2(γτ)]

,

ps(τ) ≈ xs(τ) = ∓
√

2a tanh(γτ)
R0 cosh(γτ)[1 + tanh2(γτ)]

, (12.32)

where τ = ϕ − ϕ0, upper signs stand for the plasma region, and the lower
ones for the coil region. Note that when ϕ = ϕ0 the field line coordinates are
located at the farthest point from the X-point zs(ϕ0) = ±

√
2a/R0.

12.2.1 Magnetic Field Perturbations

Suppose that non-axisymmetric magnetic perturbations are created by the
pair of perturbation coils with opposite flowing currents ±Id. The coils are



12.2 Two-Wire Model of the Plasma 289

located at (R0 ± d/2, Zc), respectively as shown in Fig. 12.4b. The distance
between perturbation coils d slowly varies along the toroidal angle ϕ, d = d(ϕ)
and it is much smaller than the minor radius a, d � a. Then the perturbation
magnetic field created by these coils is mainly determined by the toroidal
component A(per)

ϕ . It is given by equation of type (12.21), where Ij = ±Id,
Zj = Zc, R0 → R0 ± d/2. For the large aspect ratio tokamak the perturbed
Hamiltonian H1(z, pz, ϕ) takes the form similar to (12.22):

εH1(z, pz, ϕ) = εLpR
−1
0

(
ln r2c+ − ln r2c−

)
, (12.33)

r2c± = (x∓ d(ϕ)/2R0)2 + (z − zc)2 ,

where the perturbation parameter ε is introduced as the ratio of the per-
turbation current Id to the plasma current Ip: ε = Id/Ip. At the distances
|x| � max|d|/R0 the Hamiltonian (12.33) can be approximated by

εH1(z, pz, ϕ) ≈ −εLp

R2
0

2xd(ϕ)
r2c

, r2c = x2 + (z − zc)2 . (12.34)

Suppose that d(ϕ) is the periodic function of the toroidal angle ϕ. Further-
more we specify it as

d(ϕ) = d0 cos(nϕ+ χ)

with the single toroidal mode number n. Therefore, according to the presen-
tation (12.8) we have

Hn(z, pz) = −Lp

R2
0

2xd0

x2 + (z − zc)2
, x = x(pz) = epz − 1 ≈ pz . (12.35)

The Melnikov Integrals Kn(h) and Ln(h).

They are given by

Rn(h) = Kn(h) + iLn(h) =

πq(h)∫

−πq(h)

Vn(h, ϕ)einϕdϕ , (12.36)

Vn(h, ϕ) = Hn (z(h, ϕ), pz(h, ϕ)) ,

where the functions z(h, ϕ), pz(h, ϕ) are the unperturbed orbits of field lines
given (12.30), (12.31).

Since the function Vn(h, ϕ) is antisymmetric with respect to the change
of the sign of its argument, i.e., Vn(h,−ϕ) = −Vn(h, ϕ), the integral Kn

vanishes, Kn ≡ 0. The integral Ln(h) can be found numerically by integra-
tions along the unperturbed field lines given by (12.30), (12.31). Then its
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regular part, L(reg)
n (h), can be obtained by substacting from Ln(h) its oscil-

latory part, L(osc)
n (h), i.e., L(reg)

n (h) = Ln(h) − L
(osc)
n (h). For L(osc)

n (h) the
asymptotical formulas near the separatrix were constructed in Appendix B.

Field lines near the X-point of the model shown in Fig. 12.4 correspond
to the phase space of Hamiltonian system near the saddle point plotted in
Fig. B.1: the axes (R,Z) (or (p, z)) corresponds to the axes (ξ, η), respec-
tively; the plasma region corresponds to the region of the phase space η > 0
and located inside the separatrix. It is obtained by the connection of the
second branch II with the first branch I, i.e, the plasma region h < 0 of the
model corresponds to the region h > 0, η > 0 in Fig. B.1. In this case the
asymptotical formulae for L(osc

n )(h) is given by (B.34) where one should make
appropriate changes: the frequency ω(h) should be replaced by the inverse
safety factor 1/q(h), the perturbation frequency Ω − by the toroidal mode
number n, the case, h < 0, − by h > 0 and vise versa. Then we obtain the
following

L(osc)
n (h) = 2

√
|h|Aξ

{
γ sin[πnq(h)], for h < 0 ,
n cos[πnq(h)], for h > 0 ,

}
+ 2C|h| sin[πnq(h)] ,

(12.37)

where

Aξ =
√

2aξ

β(γ2 + n2)
, C =

2bξη

4γ2 + n2
. (12.38)

In (12.38) the coefficients aξ and C are defined as

aξ =
∂Hn

∂x

∣∣∣∣
x=z=0

= −2Lpd0

R2
0z

2
c

, bξη =
∂2Hn

∂x∂z

∣∣∣∣
x=z=0

= −4Lpd0

R2
0z

3
c

.

The numerical integration of the integral Ln(h) are performed for the
plasma parameters: the major radius R0 = 6.2 m, a = 2 m, the lenght scale
Lp = 0.0472, which are close the ITER plasma parameters. The vertical
position of the perturbation coils is Zc = 3.2 m, and the distance d0 between
them is taken equal to 0.2 m. The dependences of the integral Ln(h) and its
regular part L

(reg)
n (h) on h for the toroidal mode number n = 4 is shown

in Fig. 12.6a. The value of Ln(0) on the separatrix, h = 0, of the plasma
region versus the toroidal mode number n are presented in Fig. 12.6b. The
corresponding values of Ln(0) in the coil region are small and have an order
of 10−5.

In a certain region near the separatrix which includes the rational mag-
netic surfaces q = 3 the function L

(reg)
n (h) can be well fitted by the quadratic

function of h:

L(reg)
n (h) = Ln(0) + anh+ bnh

2 , (12.39)
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Fig. 12.6. (a) Melnikov type integral Ln(h) (12.36) for the toroidal mode number

n = 4: curve 1 corresponds to Ln(h) itself, and curve 2 – its regular parts L
(reg)
n .

(b) Dependence of Ln(0) on the toroidal mode number n. The plasma parameters
are: a major radius R0 = 6.2 m, a = 2 m, the lenght scale Lp = 0.0472. The vertical
position of the perturbation coils Zc = 3.2 m, and the distance between them is
d0 = 0.2 m

with the constant coefficients Ln(0), an, bn. In the interval −1.5 × 10−3 <
h < 1.5 × 10−4 we obtained the following values Ln(0) = 1.81 × 10−3, an =
0.31277, and bn = 40.794 for the toroidal mode n = 4.

As seen from Fig. 12.6b the integral Ln(0) decays exponentially with
increasing the toroidal mode number n. It is well described by the functions

Ln(0) = L0 exp(−An) , (12.40)

with L0 = 8.13457 × 10−3 and A= 0.375677.

Mappings

Below we write down the mappings (12.10), (12.14) for the wire model. Since
Kn(h) = 0, these mappings for the plasma region are reduced to
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hk+1 = hk ∓ εL(reg)
n (hk+1) cosΦ(±)

n (ϕk, hk) ,

ϕk+1 = ϕk ± π [q(hk) + q(hk+1)] ∓ ε
dL

(reg)
n (hk+1)
dhk+1

sinΦ(±)
n (ϕk, hk) ,

(12.41)

where

Φ(±)
n (ϕk, hk) = n (ϕk ± πq(hk)) + χn , (12.42)

where the upper signs corresponds to the forward map, and the lower signs
corresponds to the backward map.

Using the asymptotics of the safety factor q(h) (12.5) in the region close
to the separatrix the mapping (12.41) can be replaced by the separatrix map
of type (12.19):

hk+1 = hk ∓ εnL(reg)
n (0) cos

(
nϕk ± n

2γ
ln

16LpR
−1
0

|hk|
+ χn

)
,

ϕk+1 = ϕk ± 1
γ

ln
16LpR

−1
0√

|hkhk+1|
. (12.43)

Upper signs in (12.43) corresponds to the forward map and the lower signs −
to the backward map.

12.2.2 The Structure of the Stochastic Layer

In this section we study the structure of the stochastic layer near the magnetic
separatrix and X-point using the mappings (12.41), (12.43). Specifically, we
consider the Poincaré section of field lines in the toroidal plane (ϕ,Z), (x =
0, Z > 0) coinciding with the 1-st branch of the section Σs (see Fig. 12.4b).
The Z-coordinate of field lines in this plane is related to the relative poloidal
flux h:

Z = a
√

1 − exp(hR0/2Lp) , h < 0 . (12.44)

First we consider only field lines in the plasma region, terminating them when
they hit the divertor plates.

Figure 12.7a shows the Poincaré section obtained by the mapping (12.41)
and Fig. 12.7b shows one obtained by the numerical integration of the Hamil-
tonian equations of field lines (10.11) with the Hamiltonian (12.22), (12.34)
using the Runge–Kutta scheme. The plasma parameters R0, B0, Lp, and the
perturbation coil positions, Zc, d are chosen as in Fig. 12.6. The toroidal
mode is taken n = 4 and the perturbation parameter ε = Ic/Ip = 0.002. As
seen from Fig. 12.7 the separatrix map quantitatively well reproduces results
of the direct numerical integration: the positions and the widths of magnetic
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Fig. 12.7. Poincaré section of field lines on the branch 1 of the section Σs in the
presence of the divertor plates: (a) obtained by the separatrix map; (b) by inte-
gration of field line equations. Toroidal mode number n = 4 and the perturbation
ε = 0.002. The parameters are the same as in Fig. 12.6

islands. The main advantage of the mapping is its computational speed: it
runs almost three order faster than the numerical integration.

As seen from Fig. 12.7 the stochastic layer of field lines is not uniformly
chaotic. The chaos is highly developed near the separatrix, and the “level”
of chaos decreases towards the plasma, i.e., with the increase the distance
Z: the sizes of KAM stability islands increase. The edge of the stochastic
layer is usually formed by the largest KAM islands. For the case shown in
Fig. 12.7 there is a chain of magnetic islands at the edge of the stochastic
layer corresponding to the primary resonance q(hmn) = m : n = 14 : 4 at the
Zmn ≈ 0.214 m, hmn ≈ −1.75 × 10−4 or ψ/ψa ≈ 0.957.

In the presence of divertor plates, where chaotic field lines are terminated,
the structure of the stochastic layer near the separatrix consists of long stripes
along which field lines leave the plasma region. It is clear seen from the
stochastic layer plotted in Fig. 12.8 for the higher perturbation current with
ε = 0.01 and the same toroidal mode n = 4. Field lines leave the plasma
region after a certain number of poloidal turns.
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Fig. 12.8. The same as in Fig. 12.7 but for the perturbation ε = 0.01

Similar to chaotic field lines in ergodic divertor tokamaks field lines in a
poloidal divertor tokamak can be considered as a chaotic scattering system
(see Sect. 11.6). Field lines can be classified by a number of poloidal turns,
Np, necessary for field lines to connect the left and right divertor plates (see
Fig. 12.4). The fine structure of the stochastic layer in the presence of the
divertor plates can be seen by plotting the boundaries of basins with the
different wall to wall connection turns Np. The basin boundary structure
of Np in the (ϕ,Z)-plane are constructed using the same procedure as in
Sect. 11.6: a field line with a particular initial coordinate (ϕi, Zi) in the
(ϕ,Z)-plane is traced by the forward and backward maps (12.41) along the
positive and the negative directions of the toroidal angle ϕ, respectively,
until they reach the divertor plates. The complete number of map iterations
gives the number poloidal turns, Np, since a field line makes a full poloidal
turn after each map iteration. The countour plot of Np corresponding to
the Poincare section in Fig. 12.8 is shown in Fig. 12.9. The lowest colorbar
corresponds to the basins with the smallest number of Np = 2, and the
highest one corresponds to the basins with Np ≥ 6. The latter basins are not
resolved. Fine details of these basin boundaries are seen in Fig. 12.9b where
the toroidal dependence of Np along the straight line Z = 0.02 m (a blue line
shown in Fig. 12.9a) is plotted.

The structure of basin boundaries is similar to the corresponding structure
in ergodic divertor tokamaks shown in Fig. 11.9. The regions with small
connection numbers, Np = 2 cover relatively large area. As seen from Fig. 12.9
field lines with the large number connection turns Np ≥ 3 are connected along
the long helical stripes. Each helical stripe has a layered fractal structure as
shown in Fig. 12.9c.
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Fig. 12.9. (a) Basin boundary structure of Np on the (ϕ, Z) plane (Z > 0) of the
section Σs. (b) Toroidal dependence of Np along line Z = 0.02 m (a blue line in
(a)) in the region 0.1 < ϕ/2π < 0.35; (c) Expanded view of the rectangular area in
(a)
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12.2.3 Structure of Magnetic Footprints

The magnetic footprints on divertor plates give a pattern of heat deposition.
They have been obtained using the following procedure. For simplicity we
have supposed the simple geometry of divertor plates shown in Fig. 12.4b.
They consists of two segments parallel to the R-axis located at Z = Zd and
crossing the two branches of the separatrix in the coil region. We have taken
a set of field lines with initial coordinates (ϕ0, h0), (h0 < 0), in the (ϕ,Z)-
plane located in the stochastic layer of the plasma region. In order to obtain
magnetic footprints on the left divertor plate field lines were traced using the
forward separatrix map (12.43) until hk > 0, i.e., the field lines intersect the
left branch of the section Σs. Then the field line with (ϕk, hk) is mapped
to the footprint (ϕd, hd) on the divertor plane using the mapping (12.20).
The increment of the toroidal angle, ∆ϕ, for the geometry of the divertor
plates shown in Fig. 12.4b is determined by (12.6), where ξ = Zd. The radial
coordinate R of the footprint can be found using the relation (12.4) between
the relative poloidal flux, hd, and the unperturbed Hamiltonian, i.e., f(Rd) ≡
H0(zd, pz(Rd)) −H0(zs, ps) = hd, where pz(R) = ln(R/R0) ≈ (R − R0)/R0.
If the divertor plates are close to the X-point then according to (12.3) we
have Rd = R0 −

√
2hdR2

0/γ + Z2
d .

The magnetic footprint corresponding to the stochastic layer in Fig. 12.8
is shown in Fig. 12.10. The distance Zd is taken equal to 0.2 m. It consists of
four clusters corresponding the toroidal mode number n = 4. A fine structure
of the cluster is shown in Fig. 12.11: a) represents the structure of boundaries
of basins corresponding to the field lines with the different poloidal numbers
Np; b) Toroidal dependence of Np along the straight line R = R0 − 0.225 m.

Fig. 12.10. Magnetic footprints on the left divertor plate. The plasma and pertur-
bation parameters are the same as in Fig. 12.8 and Zd = 0.2 m
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Fig. 12.11. (a) Basin boundary structure of Np on the divertor plate in the interval
of toroidal angle: 0.1 < ϕ/2π < 0.35; (b) Dependence Np on the toroidal angle ϕ
along the straight line R = R0 −0.225 m (a yellow line in (a)) covering the toroidal
angle region, 0.15 < ϕ/2π < 0.25

As seen from the Fig. 12.11 each cluster has a generic spiral-like structure
with spirals corresponding to the different Np.

The white area on the divertor plate in Fig. 12.10 and the area with
Np = 1 in Fig. 12.11 correspond to field lines connecting the divertor plates
without entering into the plasma region. The areas with Np ≥ 2 correspond
to field lines entering the plasma region. Therefore particles, electrons and
ions, followed these field lines are predominantly deposited along the spirals.
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12.3 Conclusion

The mapping method of the described in this chapter is a very effecient tool
to describe magnetic field lines in magnetically confienement devices with
magnetic separatrices. It allows to straightforwardly obtain the structure of
the stochastic field lines near the separatrix and the magnetic footprints on
the divertor plates. The mapping method can be applied for arbitrary mag-
netic configuration and the mappings have a generic form given by (12.10),
(12.14) determined only by a few functions, namely, the safety factor, q(j)(h),
and the regular parts of the Melnikov type integrals, R(j)

n (h) (12.17) along
each saddle–saddle connections. In the case of the separatrix map (12.19)
one needs only values of R(j)

n (h) at the separatrix h = 0. In the example of a
two-wire model of the plasma we were able to find the safety factor, q(j)(h),
as well as, the coefficients γ and Q(j) in its asymptotical form (12.5) ana-
lytically. For the more general magnetic configurations of the plasma these
quantities can be found by the numerical integration of field line equations.
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In this conclusive chapter we shall briefly discuss some other areas of physics
and the astronomy where methods of Hamiltonian mappings play an im-
portant role. These areas are related to the problems of ray propagation
in waveguide media, particle acceleration and planetary motion. In a good
approximation these problems are described by Hamiltonian systems, and
therefore they can be studied by Hamiltonian mappings.

13.1 Ray Dynamics in Waveguide Media

A description of short-wavelength waves by the concept of rays is one of the
powerful methods to study the propagation of waves in inhomogeneous me-
dia. A ray approximation, also known as the method of geometrical optics,
has been extensively used in the problems of long distance wave propagation
in waveguide media, particularly to low frequency sound propagation in the
ocean and atmosphere, optical radiation in fibers, radiowave propagation in
the ionosphere (see, e.g., Brekhovskih and Lysanov (2003); Marcuse (1982);
Gurevich and Tsedilina (1985)). Importantly that the rays can be described
as a Hamiltonian system which allows to apply the methods of Hamiltonian
dynamics including symplectic mappings to study wave propagation prob-
lems. It also reveals the possibility of a qualitatively new behavior of rays,
namely, the chaos of rays in wave propagation problems in inhomogeneous
media (see reviews by Abdullaev and Zaslavsky (1991); Brown et al. (1991b);
Smirnov et al. (2001); Brown et al. (2003) and the book by Abdullaev (1993)).
In this section we briefly describe the mapping description of ray dynamics
which demonstrates the main phenomena which occur in wave propagation
problems.

13.1.1 Rays as a Hamiltonian System

Ray optics is the oldest area of physics in which Hamilton first developed his
method, known as Hamilton method that was later applied to the classical
(Newtonian) mechanics (Hamilton (1828, 1834)). The Hamilton description
of rays is originated from Fermat’s principle (the principle of least time) ac-
cording to which a ray trajectory in a medium takes a path with the minimal

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 299–316 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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propagation time. Formally, it is written as the functional integral of the path
r(τ) = (x(τ), y(τ), z(τ)) connecting its initial, P0, and final, P1, positions at
space (see Born and Wolf (1986)):

t[r(τ)] =

P1∫

P0

ds

c(x, y, z)
= min , (13.1)

where c(x, y, z) is the speed of light in a medium, ds = (dx2 + dy2 + dz2) is
the element of length along the path.

In waveguide media there is a preferential direction of wave propagation.
For instance, in the case of sound propagation in the ocean it coincides with
the horizontal coordinates x (or y) where z serves as a vertical coordinate.
The equations for rays r(τ) can be obtained from Fermat’s principle (13.1)
by choosing the spatial coordinate x along the preferential wave propaga-
tion direction as an independent time-like variable τ , i.e., τ ≡ x. Then the
ray equations can be presented in the following Hamiltonian form (see, e.g.,
Marcuse (1982); Abdullaev (1993))

dy

dx
=

∂H

∂py
,

dpy

dx
=

∂H

∂y
,

dz

dx
=

∂H

∂pz
,

dpz

dx
=

∂H

∂z
. (13.2)

with the Hamiltonian function

H(y, z, py, pz, x) = −n(x, y, z)
√

1 − p2
y − p2

z . (13.3)

The transversal coordinates (y, z) are canonical coordinates, and (py, pz) are
canonical momenta, defined as

py =
n(x, y, z)ẏ√
1 + ẏ2 + ż2

, pz =
n(x, y, z)ż√
1 + ẏ2 + ż2

, (13.4)

where ẏ ≡ dy/dx, ż ≡ dz/dx.
One should note that a ray concept constitutes the approximate descrip-

tion of wave propagation in inhomogeneous media. Therefore the ray equa-
tions should be obtained from wave equations as their approximate solutions
in the limit of short wavelengths. Let u(x, y, z, t) = u(x, y, z) exp(−iνt) be a
monochromatic wave field of frequency ν (for instance, a pressure variations
during a sound propagation in the ocean). The propagation of this wave is
governed by the wave equation

∇2u− k2n2(x, y, z)u = 0 , (13.5)

where k = 2π/λ = ν/c0 is the wavenumber, and λ is the wavelength.
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When the wavelength λ is much smaller than the characteristic scale-
length, l, of variations of the speed of wave c(x, y, z), λ/l � 1, the solution
of (13.5) can be presented in the form

u(x, y, z) = A(x, y, z) exp[ikΦ(x, y, z)] , kl � 1 , (13.6)

where the slowly varying phase function Φ(x, y, z) and the amplitudeA(x, y, z)
satisfy the equations

(∇Φ)2 = n2(x, y, z) , ∇(A2∇Φ) = 0 . (13.7)

The first equation in (13.7) known as the eikonal equation is similar to the
Hamilton–Jacobi equation (1.19). Introducing the canonical momenta py =
∂Φ/∂y, pz = ∂Φ/∂z and the Hamiltonian H = −∂Φ/∂x, we obtain the
Hamilton function (13.3) from the eikonal equation (13.7).

A geometrical meaning of the momenta, py, pz, and the Hamiltonian H is
the following. Let θ be the angle between the normal vector p = (py, pz, pz) =
∇Φ to the surfaces of constant phase Φ(x, y, z) = const and the x-coordinate,
and ϕ be the angle between the transversal vector p⊥ = (py, pz) and the
coordinate y. Then, according to (13.7) we have the relations

py = n(x, y, z) sin θ cosϕ ,
pz = n(x, y, z) sin θ sinϕ ,

H = −px = −n(x, y, z) cos θ . (13.8)

In weakly inhomogeneous media the variations of a refractive index n is
small in respect to the reference index n0, i.e., n(x, y, z) = n0 + ∆n(x, y, z),
|∆n| � n0. In such media a wave propagates under small angles θ with
respect to the axis x, i.e., θ � 1. Then The Hamiltonian of rays (13.3) can be
simplified by neglecting the small terms of order of |∆n|2/n2

0 � 1, p4
y � 1,

p4
z � 1 and higher,

H(y, z, py, pz, x) = −n0 +
1

2n0
(p2

y + p2
z) −∆n(x, y, z) . (13.9)

This approximation known as a paraxial is equivalent to the Hamiltonian
describing the two-dimensional motion of non-relativistic particle in a time-
dependent potential field U = −∆n(x, y, z).

In waveguide media the speed of wave c(x, y, z) (or the refractive index
n(x, y, z)) non-monotonically depends on the transversal coordinates (y, z)
and it may slowly vary along the longitudinal coordinate x. For instance,
the low-frequency sound speed in the ocean c has a minimum at the certain
level z = zm of the vertical coordinate z (see Fig. 13.1). Thanks to refraction
of rays in this medium they oscillate along the vertical coordinate z about
the level z = z0 whereas they propagate along the horizontal coordinate x
without restrictions.
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Fig. 13.1. (a) Vertical profile of the sound speed c(z) in a deep ocean. (b) Ray
trajectories in an ocean waveguide

When the speed of wave c (or the refractive index n) does not change
along the preferential direction of wave propagation coinciding with the
x-coordinate, i.e., c = c(y, z), the ray system (13.2) is described by the au-
tonomous Hamiltonian H = H(y, z, py, pz). Variations of the speed c along
x-coordinate corresponds to the time-dependent Hamiltonian system. In some
practically interesting cases variations of c along x-axis are small and peri-
odic:

c(x, y, z) = c0 +∆c0(y, z) + δc(x, y, z) ,
δc(x, y, z) = δc(x+ L, y, z) ,

|δc(x+ L, y, z)| � c0 , (13.10)

where L is the spatial period of variations. A problem of ray propagation in
this medium becomes equivalent to the dynamics of Hamiltonian system sub-
jected to time-periodic perturbation, and it is described by the Hamiltonian
system

H = H0(y, z, py, pz) + εH(y, z, py, pz, x) ,

H0(y, z, py, pz, x) = −1 +
1
2
(p2

y + p2
z) −

∆c0(x, y)
c0

,

εH1(y, z, py, pz, x) = −δc(x, y, z)
c0

. (13.11)

This problem has been studied using the methods of Hamiltonian dynam-
ics. The review of these studies are given by Abdullaev and Zaslavsky (1991);
Abdullaev (1993); Smirnov et al. (2001); Brown et al. (2003). Here we discuss
the mapping models of ray propagation in waveguide media.

13.1.2 Mapping Models of Ray Propagation in Waveguide Media

Consider a model of ray dynamics in a waveguide with periodically corrugated
wall. This model proposed by Abdullaev and Zaslavsky (1988) describes the
main features of chaotic and regular dynamics of rays.
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The model waveguide consists of two stiff walls along the x-coordinate
and the medium between them is homogeneous with the refractive index
n = n0. The upper wall z = 0 is flat, and the bottom wall z = h(x) is
periodically corrugated along the x-coordinate, i.e. h(x) = a + bf(x), where
a is the unperturbed width of the waveguide, b is the amplitude of deviations
of the corrugated wall from the level z = a, f(x) is a periodic function along
the x-coordinate with a period L. Suppose that a � b.

The ray trajectory in the waveguide can be easily found, since they are
straight line which successively reflecting the walls. The example of orbit is
drawn in Fig. 13.2. Here xk (k = 0, 1, . . .) are longitudinal coordinates of
the ray at the reflecting points from the upper unperturbed wall, θk is the
corresponding angle between the wall and the ray. Ray dynamics is fully
determined by the mapping

(xk+1, θk+1) = M̂(xk, θk) , (13.12)

connecting the coordinates of rays at the wall z = 0 after reflections from the
corrugated wall.

The map (13.12) corresponds the Poincaré mapping (4.54) of time, t, and
energy, H, variables to the section z = 0 in one-degree-of-freedom Hamil-
tonian system. However, it is written in non-canonical variables (x, θ): the
variable conjugated to the coordinate x is the Hamiltonian H. Using the re-
lation (13.8) between H angle the geometrical angle θ, H = −n0 cos θ, and
one can write the condition of symplecticness for the mapping (13.12)

∣∣∣∣
∂(xk+1, cos θk+1)
∂(xk, cos θk)

∣∣∣∣ = 1 . (13.13)

The map (13.12) can be easily constructed using the geometry of rays
in the waveguide shown in Fig. 13.2. First, suppose that the ray is reflected
only once from the bottom corrugated wall before returning to the upper wall
z = 0 (see Fig. 13.2). Let ψk be a x-coordinate of the reflection point of the
ray from the corrugated wall. Then it is not difficult to find the form of the
mapping (13.12):

a

L

xk+1 xk+2xk ψk ψk+1

θk+1θk

Fig. 13.2. Ray in a waveguide with a corrugated wall
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θk+1 = θk − 2 arctan [bf ′(ψk)] ,
xk+1 = ψk + [a+ bf(ψk)] cot θk+1 , (13.14)

where the intermediate coordinate ψk is determined by the equation

ψk = xk + [a+ bf(ψk)] cot θk , f ′(x) ≡ df(x)
dx

. (13.15)

The equation (13.15) is implicit with respect to the coordinate ψk. For the
small values of b it can be find by the Newton method with the initial input
ψk0 = xk + a cot θk. One can also easily check that the mapping (13.14)
satisfies the condition (13.13).

For the parabolic profile of the wall corrugation

f(x) = 4ξ(1 − ξ) , ξ =
{ x
L

}
, (13.16)

the equation (13.14) can be explicitly solved with respect to ψk. Here {x}
stands for the fractional part of number x, i.e., {x} = x−[x] ([x] is the integer
part of x). The corresponding value of ψk is

ψk = xk + [a+ 4bξk(1 − ξk)] cot θk ,

ξk = −1
2

(A− 1) +
1
2

√
(A− 1)2 + 4Aξ0

k , (13.17)

where

A =
L tan θk

4b
, ξ0

k =
{
xk + a cot θk

L

}
.

The mappings (13.14) and (13.17) describe the case when a ray is reflected
from the corrugated wall only once before reaching the upper wall. However,
the rays propagating at small angles θk to the z axis may reflect from the
corrugated wall a several times over one period. An example of such a case
is shown in Fig. 13.3. The condition of such reflections is

4bξk(1 − ξk) cot θk+1 > L(1 − ξk) or
4bξk

L
− tan θk+1 > 0 . (13.18)

The coordinates (ψ̄k, θ̄k) of the second reflection point of the ray from the
corrugated wall can be found from the geometrical consideration. They are
related to the first reflection point coordinates as

ψk θk ψkθk θk+1

Fig. 13.3. Two consecutive reflections of the ray from corrugated wall in one period
of the corrugation
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θ̄k = θk − 2 arctan[bf ′(ψk)] ,
ξ̄k = 1 − ξk + L tan θ̄k/4b ,

ψ̄k = ψk + L(ξ̄k − ξk) . (13.19)

Then the coordinates (ψk, θk) in the map (13.14) should be replaced by
(ψ̄k, θ̄k).

Similar to the Fermi accelerator mapping (3.30) the mapping of rays is
exact. The both mappings have similar properties. The perturbation function
f(x) (13.16) is a continuous function of x but it has discontinuous first deriv-
atives at points xs = sL, (s = 0,±1,±2, · · ·). The mapping (13.14) belongs to
the class of non-smooth maps discussed in Sect. 7.4 and therefore the KAM
theory is not applicable to this problem. There is no invariant curve for any
small corrugations and one expects that rays with special initial conditions
may diffuse far from their initial state.

13.1.3 Ray Dynamics in the Waveguide Model

Consider first the phase space of the mapping (13.14) in the plane (θ, {x/L}).
It is plotted in Fig. 13.4 for the following values of waveguide parameters:
a = 1, L = 5, and b = 0.01. One can see that rays propagating under small
angles θ, θ < θc ≈ 6◦ are chaotic with some remnants of KAM-stability
islands. Because of absence invariant curves the rays from the chaotic zone
may diffuse rays along the angle θ through the chaotic web structure, formed
along the destroyed separatrices.

However, the majority of rays are trapped in the islands formed near
the resonant angles θmn determined by the commusurability of the spatial
frequency of ray oscillations, ω(θ) = π tan θ/a, along the x-coordinate with
the spatial frequency of corrugation, 2π/L:

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

{x
/L

} 

θ   [grad]

Fig. 13.4. Mapping on the (θ, {x/L}) plane. Parameters are a = 1, L = 5, and
b = 0.01
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Fig. 13.5. Normalized spatial frequency κ = LN/xN , (N 	 1), of ray oscillations
along the x-coordinate as a function of initial ray angle θ: (a) In the interval 0 <
θ < 45◦; (b) Expanded view of the region 18◦ < θ < 19.1◦. Parameters are the
same as in Fig. 13.4

mω(θmn) − 2nπ/L = 0 , or tan θmn =
n

m

2a
L

, (13.20)

where m,n are integer numbers.
Consider some important properties of rays. First we study the spatial

oscillation frequency of rays w(θ) = N/xN (N → ∞) along the axis x in the
corrugated waveguide. In Fig. 13.5 we have plotted the normalized frequency
κ = Lw(θ) against the initial angle θ: solid curve corresponds to the cor-
rugated waveguide, and dashed curve describes the unperturbed case b = 0
when κ = Lω(θ)/2π = (L/2a) tan θ. Figure 13.5a shows the κ vs θ depen-
dence in the interval [0, 45◦], and Fig. 13.5b shows the expanded view of this
dependence in the interval [18◦, 19.1◦]. In the waveguide with unperturbed
walls the dependence of the frequency κ on the initial angle θ is described by
the smooth function. Any small corrugation of the wall dramatically changes
this dependence and it becomes the fractal known as “devil’s staircase”. As
seen from Fig. 13.5 there are intervals of angle θ located near the resonant
angles θmn where the frequency κ remains constant and takes the rational
values κmn = m/n.

The devil’s staircase is a special case of fractal objects (see Mandelbrot
(1982); Bak (1986))1. It has been also found in other Hamiltonian problems,
for instance, in the one-dimensional Ising model by Bak and Bruinsma (1982)
and the Frenkel–Kontorova model by Aubry (1978).

One of the practically interesting characteristics of waves is the signal
propagation time along the rays. Let t(θ, x) be a transmission time of a

1 The role of fractals in wave processes, particularly, in acoustics is discussed in a
review papaer by Zosimov and Lyamshev (1995).
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signal along a ray with the initial angle θ from the plane x = 0 to the
plane x = const. An optical path length along this ray S(θ, z) is defined as
S(θ, x) = c0t(θ, x), where c0 is a reference signal speed. In the waveguide
with a homogeneous refractive index the optical path length is equal to the
geometrical length of ray. From the geometry of rays in Fig. 13.2 one can
easily obtain the optical length

S(θ0, x) =
ψ0

cos θ0
+

N∑

k=1

ψk+1 − ψk

cos θk
+

x− ψN

cos θN+1
, (13.21)

where N is integer number satisfying the condition ψN < x < ψN+1.
The normalized relative optical length (S(θ, x)−x)/L versus the initial an-

gle θ is plotted in Fig. 13.6 for the same waveguide parameters as in Fig. 13.4:
solid curve corresponds to the corrugated waveguide, and dashed curve − to
the unperturbed one. As seen from Fig. 13.4 the optical path length S, similar
to the frequency of ray oscillations, has a “devil’s staircase” – like dependence
on the initial launching angle θ. As seen from Fig. 13.6b the optical lengths of
rays with the small launch angles θ < 3◦ are distributed randomly. They cor-
respond to chaotic rays. For the rays with θ > 3◦ there exist intervals of angle
θ located near the resonant values θmn where the optical length S practically
remains constant, while it varies significantly in the unperturbed waveguide.
The widths ∆θmn these intervals are equal to the width of resonant islands
shown in Fig. 13.4. The obtained result means that when a signal propa-
gated along the resonant rays does not broaden significantly than in the case
of unperturbed rays. The effect may be used to suppress broadening signals
caused by intermode dispersion in waveguides. This phenomenon has been
first found numerically by Abdullaev and Zaslavsky (1988), and it has been
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Fig. 13.6. Relative optical length of ray, ∆S = (S − x)/L, propagated from x = 0
to x, as a function of initial angle θ: (a) In the interval 0 < θ < 45◦; (b) Expanded
view of the small angle region 0◦ < θ < 5◦. Parameters are the same as in Fig. 13.4
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explained later in Abdullaev (1991) (see, also a review by Abdullaev and
Zaslavsky (1991) and a book by Abdullaev (1993)) as a consequence of ray
trapping by nonlinear resonance islands.

One should mention that the numerical studies of sound ray propaga-
tion in a realistic range–dependent deep ocean environment by Tappert and
Tang (1996) revealed the existence of a group of eigenrays (rays connecting
the source of acoustic signal with a receiver) with equal signal transmission
times. This result can be explained by the above phenomenon of nonlinear
resonance. All rays belonging to the group of eigenrays with equal transmis-
sion times are trapped by the same resonant island and therefore they have
similar properties.

13.1.4 Other Mapping Models of Rays

There were proposed also several mapping models of ray propagation in inho-
mogeneous media. Ray mapping models in waveguide media with a refractive
index n(z, x) depending on the vertical coordinate z have been derived by
Abdullaev (1991, 1994a). The chaos of rays in electromagnetic waveguides
with strongly corrugated walls has been studied by Vatrunin et al. (1997).
Area-preserving mappings in sound ray propagation problems have been ob-
tained by Brown et al. (1991a); Tappert et al. (1991) (see also Brown et al.
(2003)). Particularly, in Brown et al. (1991a) the explicit map was derived
for the bilinear model of the deep ocean with a constant sound speed gradi-
ent above and below the sound waveguide axis. The mapping of rays of type
(3.23) with a discontinuously derivative of frequency ω(I) was obtained by
Tappert et al. (1991) for the model of sound channel with a linear sound speed
profile and a periodic bottom. These mappings are used to study the onset
of chaotic ray motion in waveguides with a range–dependent environment.

13.2 Mapping Methods in Accelerator Physics

Particle accelerators are devices used to accelerate charged elementary par-
ticles and ions to high energies (Edwards and Syphers (1993)). One of the
aspects of accelerator physics is the study of single particle motion in acceler-
ators, the determination of dynamical aperture, the stable region in transverse
phase space or the region of long-time stable orbits. In this section we briefly
discuss the main contemporary mapping methods to study this problem.

The schematic view of a circular accelerator (a synchrotron) is shown in
Fig. 13.7a. A particle accelerated during passing through one (or several)
accelerating device(s) (stations) returns from turn to turn by bending mag-
netic fields directed perpendicular to the orbit of particle. The accelerator is
designed to have a closed (reference) orbit. The investigation of stability of
particle orbits with respect to their deviations from the reference orbit is one
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Accelerating
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(a)

x

(b)

y

Reference orbit

s

Fig. 13.7. (a) Schematic view of a circular accelerator (a synchrotron); (b) Coor-
dinate system (x, y, s) with respect to the reference orbit

of the main tasks of accelerator physics. The Poincaré return map is a pow-
erful tool to study this stability problem. In the accelerator theory this map
is also known as full-turn transfer map. In a good approximation when dis-
sipative effects due to synchrotron radiation are neglected a particle motion
in accelerators is described by a Hamiltonian system. Therefore, the problem
can be reduced to the study of stability of Hamiltonian systems (Ruth (1987);
Edwards and Syphers (1993)).

Let s be the coordinate representing arclength along this orbit, and x, y be
coordinates describing transverse displacements with respect to the reference
orbit. The coordinate system is plotted in Fig. 13.7b. The corresponding
canonical momenta are px, py. Since particles move along the coordinate s
it is convenient to use the formulation of Hamilton equations by choosing s
as an independent time-like variable (see Sect. 1.1.3). Let t0(s) and E0 be
a flight time along the reference orbit and a designed energy, respectively.
Then the deviation of time t from t0(s), τ = t − t0(s), and the deviation of
particle energy E from E0, taken with opposite sign, p0 = −(E − E0), are
the canonical conjugated variables. Then the motion of particle is described
by a Hamiltonian

H = H(x, y, τ, px, py, p0, s) . (13.22)

The Hamiltonian H is a periodic function of s with a period equal to the
circumference L of the reference orbit. This is a system with three degrees
of freedom and periodic dependence on the independent variable s (Ruth
(1987); Berg et al. (1994)).

The Hamiltonian of the system can be also written in the action-angle
variables (ϑ, I) = (ϑx, ϑy, ϑτ , Ix, Iy, Iτ ) introduced for motion transverse to
the reference orbit, in the phase space (x, px, y, py) and for the energy - time
variables (τ, p0) (Berg et al. (1994); Wan and Cary (1998)). The Hamiltonian
H can be presented in the form
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H = H0(I) + εH1(ϑ, I, s) ,

εH1(ϑ, I, s) =
∑

m,n

Hmn(I) cos(m · ϑ− 2πns/L+ χmn) , (13.23)

as the sum of unperturbed Hamiltonian H0(I) and perturbed one εH1 de-
pending on the angle variables ϑ and the longitudinal variable s. The fre-
quencies of motion are determined by the unperturbed Hamiltonian H0(I):

ωi =
∂H0

∂Ii
, i = x, y, τ .

The oscillation frequencies in the transversal plane (x, y), ωx, ωy, are known
as betatron oscillations , while the frequency ωτ represents the oscillations of
a flight time and it is called synchrotron oscillations. They have a nonlinear
dependence on oscillation amplitude Ix, Iy. The unperturbed Hamiltonian
H0(I) can be obtained by averaging (Cary (1982, 1984)).

The main aim of dynamics of single particle motion in a circular ac-
celerator is to construct the full turn transfer map for variables z = (x, y,
τ, px, py, p0):

zk+1 = M̂zk, s = 0, 1, 2, · · · , (13.24)

where

zk ≡ z(s0 + kL) (13.25)

are variables at the certain section s = s0 = const.
Contemporary methods to construct the mappings (13.24) have been

overviewed by Dragt (1996) (see also the introduction of a paper by Berg
et al. (1994)). A direct way to obtain the mapping (13.24) is to integrate
the equations of motion numerically with the small steps of s along the ac-
celerator system using the symplectic integrators. However, this procedure
known as tracking requires long computational times, especially, in large ac-
celerators when one needs to evaluate the stability of orbits for more than
106 turns. Because of that one wishes to have a full-turn map expressed in
a single formula one iteration of which is equivalent to one full turn. This
would enormously simplify the study of a stability problem by running orbits
with many different initial conditions.

There are several requirements on such a kind of mappings (see Berg et al.
(1994); Dragt (1996)): a) they should reproduce the full turn map obtained
from the Hamiltonian of the system with high accuracy; b) they should be
symplectic; c) they should run faster as possible with reasonable computer
storage requirements. Below we discuss the main methods to construct such
mappings.

Taylor maps. A widely used approach to construct the full turn map
has been based on Taylor expansions of the right hand side of the mapping
(13.24) in the powers of z:
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z
(i)
k+1 = A(i) +

∑

j

B(ij)z
(j)
k +

∑

jl

C(ijl)z
(j)
k z

(l)
k + · · · , (13.26)

where z(j) = (z(1), . . . , z(6)) = (xk, y, τ, px, py, p0). Equation (13.26) repre-
sents an explicit map known as aTaylor map. The coefficients A(i), B(ij),
C(ijl), . . . in the Taylor map (13.26) are to be found from the tracking code.
The zero order coefficients A(i) describe the translations in phase space caused
by imperfections in devices, the first order coefficients B(ij) describe the linear
properties of the system, and the higher order coefficients C(ijl), etc. describe
its nonlinear properties. Because the map (13.26) must be symplectic, these
coefficients are not independent. The coefficients of different orders are in-
terrelated by a set of complicated conditions. Since in practical calculations
one uses the truncated Taylor series the corresponding mappings become not
exactly symplectic. Beside of this there is another shortcoming of the Taylor
map: expansion series (13.26) are not always suitable for the representation
of orbits which are not too close to the reference orbit.

A powerful method to construct the full turn map by a series of explicit
symplectic nonlinear maps has been proposed by Dragt (1979) (see also Dragt
(1996); Dragt and Abel (1996); Dragt (2000)) using Lie algebraic methods.
It presents the map as the factored product of symplectic maps describing
correspondingly translations in, linear and nonlinear effects. Usually in com-
puter codes one uses symplectic nonlinear mappings expanded in truncated
Taylor series with the limited number of Taylor coefficients. This is one of
main disadvantages of the method since the truncated Taylor maps are not
exactly symplectic. These maps cannot be used to study a long time evolu-
tion of particles. For this reason methods to symplectify these nonlinear maps
have been proposed (see for details in Dragt and Abel (1996) are references
therein).

Symplectic maps with a mixed variable generating function.
These mappings are suitable to study the long term evolution of particle
motion (Berg et al. (1994); Warnock and Berg (1996)). The construction of
these maps is based on the method which we called in Sect. 3.2 the method
of a priori assumption. The corresponding map in terms of action-angle vari-
ables (ϑ, I) has the symplectic form of type (3.13), (3.14):

Ik+1 = Ik +
∂S(ϑk+1, Ik)

∂ϑk+1
, ϑk+1 = ϑk − ∂S(ϑk+1, Ik)

∂Ik
, (13.27)

determined by a generating function S(ϑk+1, Ik) of mixed variables (ϑk+1, Ik).
The generating functions should be found from the relation

Ik+1 = Ik +R(ϑk, Ik) , ϑk+1 = ϑk + Φ(ϑk, Ik) , (13.28)

between the variables (ϑk, Ik) and (ϑk+1, Ik+1) after the full turn. The func-
tionsR(ϑ, I), Φ(ϑ, I) are usually computed by tracking particles with different
initial coordinates (ϑ, I). Since the generating function S(ϑ, I) is a periodic
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function of angle variables ϑ with period 2π, it can be presented as a Fourier
series:

S(ϑ, I) = S0(I) +
∑

m,m 	=0

Sm(I) exp(im · ϑ) .

From (13.27) and (13.28) it follows that ∂S(ϑk+1, Ik)/∂ϑk+1 = R(ϑk, Ik),
and thus the Fourier coefficients Sm(I) are calculated through the function
R(ϑ, I). For arbitrary values of I these coefficients are interpolated by B-
spline functions of I (see for details in Berg et al. (1994)). However, a spline
expansion in action variables I has a disadvantage because of coordinate sin-
gularities in systems with more than one degree of freedom. Such singularities
does not occur in Cartesian coordinates. For this reason Warnock and Ellison
(1999) have presented the generating function of maps by a spline expansion
in these coordinates. The effectiveness of mappings with a mixed variable
generating function to study long term dynamics of particles in circular ac-
celerators has been discussed by Berg et al. (1994); Warnock and Berg (1996,
1997)).

One should note that the mapping (13.27) is not only one and the best
form of symplectic mappings corresponding to the Hamiltonian (13.22). This
is the main shortcoming of the presented method. As we have discussed in
Chaps. 4 and 10 the symmetric maps (4.6)–(4.8) (or (4.31)–(4.33)) more accu-
rately describe Hamiltonian systems than their non-symmetric forms (4.9),
(4.10) (or (4.38)) with the same generating functions. Therefore, the con-
struction of the full turn map in the symmetric form would improve the
accuracy of tracking particles in accelerators without significant increase of
a computational time.

Four-dimensional maps. In many cases one can neglect the influence of
the longitudinal (synchrotron) motion in (τ, p0) on the transversal (betatron)
motion of particles in the phase space (x, y, px, py). Then the system can be
described by 2 + 1/2 degrees of freedom Hamiltonian system with H =
H(x, y, px, py, s). Correspondingly, the transversal motion in this case can
be also studied by reducing the six-dimensional map (13.24) to the four-
dimensional one

(xk+1, yk+1, p
x
k+1, p

y
k+1) = M̂(xk, yk, p

x
k, p

y
k) , (13.29)

for transversal variables (x, y, px, py). This simplifies the study of a stability
of betatron motion by reducing a degree of freedom of system by one.

During the last decade the 4D symplectic mapping (13.29), have been
extensively exploited to study the transverse betatron motion (see Todesco
(1999) and references therein). Particularly, 4D Hénon map Hénon (1969)
and its modifications have been used by Bazzani et al. (1994); Giovannozzi
et al. (1998) to study the different aspects of particle motion in accelerators,
long term stability, the dynamical aperture and others. On the other hand
there is another aspect of the problem related with increasing a dynamical
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aperture. This problem has been discussed by Wan and Cary (1998, 2001)
(and references therein) and the method to find 4D symplectic mappings
(13.29) with reduced chaos has been proposed.

13.3 Mappings in Dynamical Astronomy

The motion of planets and planetary objects in the Solar system has been one
of the oldest problems of classical mechanics (Poincaré (1892–99); Arnold et
al. (1988)). In a good approximation it constitutes a non-relativistic Hamil-
tonian problem of gravitationally interacting bodies. A present interest to
this problem is mostly related with its new aspects concerning the chaotic
evolution of the Solar system (Sussman and Wisdom (1988, 1992); Lissauer
(1999) and references therein). The study of this problem requires the long
term integration (over hundreds million years) of the equations of plane-
tary motion. Direct symplectic integrations of the whole planetary system
are computationally expensive even on the present–day computers. An im-
portant breakthrough in computational efforts has been made by Wisdom
(1982) who developed a mapping method to integrate the equations of mo-
tion. Later there were proposed other mapping methods to study these prob-
lems. In this section we briefly discuss the main mapping methods used in
dynamical astronomy during the last two decades.

Method of Delta Functions. The method developed by Wisdom (1982)
was inspired by Chirikov’s derivation of the standard map by introducing a
series of delta functions into perturbed Hamiltonian (Chirikov (1979)). It
belongs to the type of methods to construct symplectic mappings which we
called the method of delta functions (Sect. 3.3). The idea of the method was
based on the averaging principle: if removing fast oscillating terms in per-
turbed Hamiltonian does not significantly change the dynamics of system,
then adding these terms should not also significantly change it. In the early
version of the method Wisdom (1982) obtained explicit mappings by replac-
ing the resonant terms in Hamiltonian by the series of delta functions with
a period of order of the orbital period. Later Wisdom and Holman (1991,
1992) generalized this method to study the problem of n gravitationally in-
teracting bodies, and it is known now as the n body mapping method. In the
new version they presented the Hamiltonian of n gravitationally interaction
bodies of masses mi

H =
n−1∑

i=0



 p2
i

2mi
−

n−1∑

i<j

Gmimj

rij



 , (13.30)

where rij = |xi − xj | is a distance between bodies, as a sum

H = HKepler +Hint , (13.31)
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of the Kepler Hamiltonian, HKepler, describing the interaction of a dominant
mass m0 (Sun) with other n − 1 small bodies, and interaction Hamiltonian
Hint describing the interaction between n−1 small bodies. In an appropriate
coordinate system related with the center of mass of the whole system they
are reduced to

HKepler =
n−1∑

i=1

(
p′2i
2m′

i

− Gmim0

r′i

)
, (13.32)

and

Hint =
n−1∑

i=1

Gmim0

(
1
r′i

− 1
ri0

)
−
∑

0<i<j

Gmimj

rij
, (13.33)

where m′
i are reduced masses, r′i and p′i are relative distances and momenta

(see Wisdom and Holman (1991) for the exact definitions).
The Kepler motion described by Hamiltonian HKepler is completely inte-

grable. In order to integrate the system in the presence of interaction Hint it
is replaced by HintTδT (t), where

δT (t) =
∞∑

k=−∞
δ(t− kT )

is the series of delta functions with a period T . Between “kicks” at the time
instants tk = kT the system has analytical solutions determined by the
Kepler Hamiltonian HKepler. Integration along the delta functions allows
one to obtain the explicit symplectic mapping which takes into account the
effect of interaction. The mapping is approximately an order of magnitude
faster than the traditional methods of integration.

Symplectic mappings can be refined to make them close to the original
Hamiltonian system (Wisdom and Holman (1991)). It was accomplished by
using the refined sum of delta functions Ψ(t) instead of simple sum δT (t):

Ψ(t) = T
N−1∑

i=0

aiδT (t− τi) ,

where N is the number of delta functions per mapping period T , ai and τi are
the corresponding amplitudes and phases (0 < τi < T ). They are found by
imposing some constraints on the function Ψ(t). The symplectic mappings
obtained by this scheme can be treated also as a symplectic numerical in-
tegration algorithm. A similar scheme has been independently proposed by
Kinoshita et al. (1991).

The method of delta functions and its shortcomings were discussed in
Sect. 3.3. We recall that the mapping variables do not coincide with the vari-
ables of the original system. This is because that replacing a perturbation by
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the series of delta functions introduces artificial singularities at the periodic
time instants where variables becomes undefined. This is origin of that sym-
plectic integration with obtained mapping yields trajectories which exhibit
spurious oscillation in energy and variables. This problem was later recog-
nized by Wisdom et al. (1996) who introduced so-called symplectic correctors
to relate the mapping variables with original variables.

This mapping method has been successfully applied to study many prob-
lems of a chaotic evolution of planetary systems which require the integration
over several hundreds millions years. Among them there were the explanation
of the Kirkwood gaps in the distribution of semimajor axes of the asteroids
(Wisdom (1982, 1983)), confirmation that the evolution of the Solar system
as a whole in chaotic with a time scale of exponential divergence of about 4
million years (Sussman and Wisdom (1988, 1992); Wisdom (1992) and oth-
ers) (see Šidlichovský (1997); Hadjidemetriou (1998); Lissauer (1999) and
references therein).

Mappings with mixed variable generating functions. Another
mapping method based on mixed variable generating functions has been pro-
posed by Hadjidemetriou (1991, 1993) (see also a review by Hadjidemetriou
(1998)). It belongs to the class of methods discussed in Sect. 3.2. Below we
briefly present the main idea of this approach.

Consider the resonant motion of a nearly integrable system with two de-
grees of freedom. By appropriately defining action-angle variable, (ϑ1, ϑ2,
I1, I2), the Hamiltonian of the system can be presented as

H = H0(I1, I2) + εH1(ϑ1, ϑ2, I1, I2) , (13.34)

where H0(I1, I2) is the integrable part, H1 is the resonant perturbation, and
ε is the small parameter. Suppose that ϑ1 is the slowly varying angle near
the resonance, and ϑ2 is a fast angle. By a canonical change of variables
(ϑ1, ϑ2, I1, I2) → (ψ1, ψ2, J1, J2) we eliminate the fast angle ψ2 from the new
Hamiltonian H:

H = H0(J1, J2) + εH1(ψ1, J1, J2) +O(ε2) . (13.35)

This procedure is described by von Zeipel’s perturbation method given in
Sect. 2.1.4. If we succeed to eliminate the phase ψ2 in the new averaged
Hamiltonian (13.35) up to terms of order of εm then the action J2 is an
approximate constant of motion with accuracy of O(εm+1).

Hadjidemetriou (1991) constructed the map (ψk, Jk) → (ψk+1, Jk+1) in
the symplectic form

Jk+1 = Jk − ∂F (ψk, Jk+1)
∂ψk

,

ψk+1 = ψk +
∂F (ψk, Jk+1)

∂Jk+1
, (13.36)

defining the generating function F (ψk, Jk+1) as
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F (ψk, Jk+1) = ψkJk+1 + TH(ψk, Jk+1, J2) . (13.37)

Here (ψk, Jk) are the values of (ψ1(t), J1(t)) taken at the discrete time mo-
ments t = kT , (k = 0,±1,±2, . . .), T is the period of the fast angle ψ2. In
practical applications one restricts itself with the two lowest order terms of
the averaged perturbed Hamiltonian, H = H0 + εH1.

According to Hadjidemetriou (1991) the fixed points of the averaged
Hamiltonian system (13.35) should coincide with the periodic orbits of the
original system (13.34). This condition is necessary to obtain a realistic model
by averaging the original system. However, in some cases when the perturba-
tion series in the averaging procedure does not converge this condition may
be violated (Hadjidemetriou (1999)). In such a case the averaged Hamil-
tonian (13.35) and the corresponding mapping are not realistic models for
the original system.

This mapping method and its different generalizations have been suc-
cessfully applied to study the dynamical behavior of asteroid resonances by
Ferraz-Mello (1997), Roig and Ferras-Mello (1999), Hadjidemetriou (1999)
Sándor et al. (2002) (see also references therein).

Method of separatrix mapping. Some problems of chaotic dynam-
ics of asteroids and the rotational motion of satellites can be reduced to
the well-known Hamiltonian problem, the dynamics of pendulum perturbed
by time-periodic perturbation (Wisdom et al. (1984); Celletti (1990)). It al-
lowed Shevchenko and Scholl (1997); Shevchenko (1998, 1999); Shevchenko
and Kouprianov (2002) to apply a separatrix mapping approach to study
these problems. In particularly, it has been shown that the intermittency in
the chaotic motion of asteroids due to the stickiness of orbits to the mar-
ginal resonances can be explained by the separatrix mapping which allows
to predict the conditions for intermittency (Shevchenko and Scholl (1997);
Shevchenko (1998)). The separatrix mapping has been also applied to study
the planar resonant rotational motion of a non-symmetric satellite in an el-
liptic orbit (Shevchenko (1999); Shevchenko and Kouprianov (2002)). It cor-
rectly reproduces the phase portraits of motion obtained using other mapping
methods and direct numerical integration of equations of the rotational mo-
tion of non-symmetric satellites. The separatrix map runs a hundred times
faster than other mapping methods, and it allows one also to analytically
precalculate positions of resonances and estimate the borders of chaotic mo-
tion.

Other applications of mapping methods in dynamical astronomy can be
found in review papers by Šidlichovský (1997) and Hadjidemetriou (1998).
Particularly, the so-called Kepler map has been introduced in several works
by Petrosky (1986); Sagdeev and Zaslavsky (1987); Petrosky and Broucke
(1988); Chirikov and Vecheslavov (1989) to reveal the chaotic nature of
motion of comets in nearly parabolic orbits in the Solar system (see also
Sect. 6.4).



A The Second Order Generating Function

Here we calculate the second order generating function S2(J, θ, t) for the
Hamiltonian function

H(I, ϑ, t) = H0(I) + εH1(I, ϑ, t) ,

H1(I, ϑ, t) = ε
∑

m

Hm(I) cos(m · ϑ+ χm) , (A.1)

where ϑ = (ϑ1, . . . , ϑn,−Ωt), m = (m1, . . . ,mn, n), m · ϑ = m · θ − nΩt. We
write the first order generating function S1(J, ϑ, t) in the form

S1(J, ϑ, t) = −
t∫

t0

H1(J, ϑ(t′), t′)dt′ =
∑

m

Hm(J)
m · ω

×
[

sin(m · ϑ+m · ω(t0 − t) + χm) − sin(m · ϑ+ χm)
]
. (A.2)

According to (2.11) and (2.12) the second order generating function S2(J, θ, t)
is

S2(J, ϑ, t) = −
t∫

t0

F2(J, ϑ(t′), t′)dt′ , (A.3)

where

F2(I, ϑ, t) =
1
2
∂2H0

∂Ji∂Jj

∂S1

∂ϑi

∂S1

∂ϑj
+
∂H1

∂Ji

∂S1

∂ϑi
. (A.4)

In (A.4) summation over repeating indexes i, j (i, j = 1, . . . , n) is assumed.
Putting (A.1) and (A.2) into (A.4) we obtain

F2(J, ϑ, t) =
1
2

∑

m,m′

mi
∂2H

(1)
0

∂JiJj
m′

j

Hm(J)Hm′(J)
(m · ω) (m′ · ω)

×
[

cos(m · ϑ+m · ω (t0 − t) + χm) − cos(m · ϑ+ χm)
]

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
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×
[

cos(m′ · ϑ+m′ · ω (t0 − t) + χm′) − cos(m′ · ϑ+ χm′)
]

+
∑

m,m′

m′
j

∂Hm

∂Jj

Hm′(J)
m′ · ω cos(mϑ+ χm)

×
[

cos(m′ · ϑ+m′ · ω (t0 − t) + χm′) − cos(m′ · ϑ+ χm′)
]
. (A.5)

We replace the products of the trigonometric functions in (A.5) by their sum
and integrate each of them using the integral

Fms =

t∫

t0

dt′ cos
(
m · ϑ(t′) + s · ω (t0 − t′) + χ

)

= a(xm, xs) sin(m · ϑ+ χ) + b(xm, xs) cos(m · ϑ+ χ) , (A.6)

where xm = m · ω (t− t0) and

a(x, y) = −(t− t0)
cosx− cos y

x− y
, b(x, y) = (t− t0)

sinx− sin y
x− y

.

Then combining the trigonometric functions we obtain the following ex-
pression for the generating function (A.3):

S2(I, ϑ, t) = − (t− t0)3

4

∑

m,m′

mi
∂2H0

∂Ji∂Jj
m′

jHm(J)Hm′(J)

×
{
A

(+)
m,m′ sinφ(+)

mm′ +B
(+)
m,m′ cosφ(+)

mm′ +A
(−)
m,m′ sinφ(−)

mm′ +B
(−)
m,m′ cosφ(−)

mm′

}

− (t− t0)2

2

∑

m,m′

m′
j

∂Hm(J)
∂Jj

Hm′(J)

×
{
C

(+)
m,m′ sinφ(+)

mm′ +D
(+)
m,m′ cosφ(+)

mm′ + C
(−)
m,m′ sinφ(−)

mm′ +D
(−)
m,m′ cosφ(−)

mm′

}
,

(A.7)

where φ(±)
mm′ = (m±m′) · ϑ + χm ± χm′ , and the coefficients A(±)

m,m′ , B
(±)
m,m′ ,

C
(±)
m,m′ and D

(±)
m,m′ are defined as

A
(+)
m,m′ = U(xm, xm′) , A

(−)
m,m′ = −U(xm,−xm′) ,

B
(+)
m,m′ = V (xm, xm′) , B

(−)
m,m′ = −V (xm,−xm′) , (A.8)

C
(+)
m,m′ = W (xm, xm′) , D

(+)
m,m′ = Y (xm, xm′) ,

C
(−)
m,m′ = −W (xm,−xm′) , D

(−)
m,m′ = −Y (xm,−xm′) , (A.9)
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are expressed in terms of four functions U(x, y), V (x, y), W (x, y) and Y (x, y)
of two variable x, y:

U(x, y) =
1
xy

[
sin(x+ y) +

cos(x+ y) − cos y
x

+
cos(x+ y) − cosx

y
+

1 − cos(x+ y)
x+ y

]
(A.10)

V (x, y) =
1
xy

[
cos(x+ y) − sin(x+ y) − sin y

x

− sin(x+ y) − sinx
y

+
sin(x+ y)
x+ y

]
(A.11)

W (x, y) = −1
y

[
cos(x+ y) − cos y

x
+

1 − cos(x+ y)
x+ y

]
(A.12)

Y (x, y) =
1
y

[
sin(x+ y) − sin y

x
− sin(x+ y)

x+ y

]
(A.13)

These functions have the following asymptotics at y → x:

U(x, x) =
1
x2

[
sin 2x+

1 − 4 cosx+ 3 cos 2x
2x

]
(A.14)

V (x, x) =
1
x2

[
cos 2x+

4 sinx− 3 sin 2x
2x

]
, (A.15)

U(x,−x) = 0 , V (x,−x) =
2
x2

(
1 − sinx

x

)
, (A.16)

W (x, x) =
1 − cosx

x2
cosx , Y (x, x) = −1 − cosx

x2
sinx , (A.17)

W (x,−x) =
1 − cosx

x2
, Y (x,−x) = − 1

x

(
1 − sinx

x

)
. (A.18)

The functions U(x, y), V (x, y), W (x, y) and Y (x, y) of two variables x, y
are localized in the finite region |x| ≤ π, |y| ≤ π. They decay at large values
of x, y. The functions U(x, y), V (x, y), Y (x, y) and W (x, y) are shown in
Figs. A.1, A.2.
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Fig. A.1. Functions: (a) U(x, y); (b) V (x, y)

Fig. A.2. Functions: (a) Y (x, y); (b) W (x, y)

If perturbation contains only one (m,n) mode then the function S2 is
reduced to

S2(I, ϑ, t) = − (t− t0)3

4
∂2H0

∂J2
m2H2

m(J)

×
{
A(+)

m,m sin 2(m · ϑ+ χm) +B(+)
m,m cos 2(m · ϑ+ χm) +B(−)

m,m

}

− (t− t0)2

2
∂Hm(J)

∂J
mHm(J)

×
{
C(+)

m,m sin 2(m · ϑ+ χm) +D(+)
m,m cos 2(m · ϑ+ χm) +D(−)

m,m

}
.

(A.19)



B Asymptotic Estimations of the Integral
K(h) and L(h) Near Separatrix

B.1 General Structure of Integrals

For simplicity we shall omit the subscript n of all quantities. Then we consider
three types of the Melnikov type integrals defined by

R+(h) =

π/ω(h)∫

0

V (h, τ)eiΩτdτ,

R−(h) =

0∫

−π/ω(h)

V (h, τ)eiΩτdτ ,

R(h) =

π/ω(h)∫

−π/ω(h)

V (h, τ)eiΩτdτ = R+(h) +R−(h) , (B.1)

The integrals (B.1) are taken along the unperturbed orbits (h, ϑ(t)) or
(q(t;h), p(t;h)). We specify the time t in the following way: at t = 0 the
orbit crosses the section Σc, and at t = ts = π/ω(h) it crosses the section Σs.
With such a definition the function V (h, τ) can be presented as a function of
phase space coordinates:

V (h, τ) ≡ H1 (q(τ ;h), p(τ ;h)) .

We study the asymptotics of R(h), R+(h) and R−(h) near the separatrix,
i.e., at |h| � 1. They can be presented as a sum of regular, R(reg)(h), and
oscillatory, R(osc)(h), parts

R(h) = R(reg)(h) +R(osc)(h) ,

R+(h) = R(reg)(h) +R(osc+)(h) ,

R−(h) = R(reg)(h) +R(osc−)(h) , (B.2)

where the regular parts

R(reg)(h) = F (h,−0) − F (h,+0) ,
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Lect. Notes Phys. 691, 321–333 (2006)
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R(reg)+(h) = F (h,−0) ,

R(reg)−(h) = F (h,+0) , (B.3)

and the oscillatory parts

R(osc)(h) = F (h, π/ω(h)) − F (h,−π/ω(h)) ,

R(osc)+(h) = F (h, π/ω(h)) ,

R(osc)−(h) = −F (h,−π/ω(h)) , (B.4)

are defined through the function F (h, τ),

dF (h, τ)
dτ

= V (h, τ)eiΩτ . (B.5)

Further we suppose that the function V (h, τ) vanishes at the saddle points,
(qs, ps), i.e., V (0,∞) = H1(qs, ps) = 0. Then we have F (0,∞) = 0. In general
cases, this condition can be satisfied by subtracting from the Hamiltonian a
term H1(qs, ps, t) which does not affect the equations of motion.

Below we show that near the separatrix of a Hamiltonian system with hy-
perbolic fixed points the oscillatory parts of the integrals (B.1) have a generic
asymptotic behavior. In the following sections we derive the asymptotical for-
mulae for R(osc)(h), R(osc)±(h) in the limit |h| → 0.

B.1.1 Unperturbed Orbits Near the Separatrix

Suppose H0(q, p) is unperturbed Hamiltonian and (qs, ps) is a saddle point
where

∂H0

∂q
(qs, ps) = 0 ,

∂H0

∂p
(qs, ps) = 0 . (B.6)

One can always choose that H0(qs, ps) = 0. The unperturbed Hamiltonian
H0(q, p) can be expanded in a series of powers of (q − qs), (p− ps) near the
saddle point:

H0(q, p) =
1
2
Hqq(q − qs)2 +Hqp(q − qs)(p− ps)

+
1
2
Hpp(p− ps)2 +O[(q − qs)3, (p− ps)3] , (B.7)

where Hqq, Hqp, and Hpp are second derivatives of H0 with respect to (q, p)
taken at the hyperbolic fixed point. By the linear transformation of variables:

ξ = (q − qs) cosα+ (p− ps) sinα ,
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η = −(q − qs) sinα+ (p− ps) cosα ,

q − qs = ξ cosα− η sinα ,
p− ps = ξ sinα+ η cosα , (B.8)

the Hamiltonian can be diagonalized:

h(ξ, η) ≡ H0(q, p) = −α2

2
ξ2 +

β2

2
η2 +O(ξ3, η3) , (B.9)

where α =
√

|λ1|, β =
√
λ2, and λ1 < 0 and λ2 > 0:

(λ1, λ2) =
Hqq +Hpp

2
±
√

(Hqq −Hpp)2

4
+H2

qp

are the eigenvalues of the matrix

(
Hqq Hqp

Hqp Hpp

)
≡
(

∂2H0
∂q2

∂2H0
∂q∂p

∂2H0
∂p∂q

∂2H0
∂p2

)∣∣∣∣∣
q=qs,p=ps

.

The angle α is determined by tanα = 2Hqp/(Hqq −Hpp).
The equations of motion in the coordinates (ξ, η) are

dξ

dt
=

∂h(ξ, η)
∂η

= β2η ,
dη

dt
= −∂h(ξ, η)

∂ξ
= α2ξ . (B.10)

Phase space of this system near the saddle point is shown in Fig. B.1. Its
solutions (ξ(t;h), η(t;h)), 0 < t < ts which cross the section Σs at the time
moment t → ts = π/ω(h) along the branches I and III of the separatrix are

I II

IIIIV

h<0

h>0

h>0

h<0

Σs

h=0 ξ

η

4

1

2

3

Fig. B.1. Phase curves of Hamiltonian system near the saddle point
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ξ(t;h) = ∓
√

2|h|
α

{
cosh [γ (ts − t)] , for h < 0 ,
sinh [γ (ts − t)] , for h > 0 , (B.11)

η(t;h) = ±
√

2|h|
β

{
sinh [γ (ts − t)] , for h < 0 ,
cosh [γ (ts − t)] , for h > 0 , (B.12)

where γ = αβ. The upper and lower signs in (B.11), (B.12) correspond to
the solution along the branches I and III, respectively. Similarly, solutions
(ξ(t;h), η(t;h)), 0 > t > −ts which cross the section Σs at the time moment
t → −ts = π/ω(h) along the branches II and IV of the separatrix are given
by

ξ(t;h) = ±
√

2|h|
α

{
cosh [γ (ts + t)] , for h < 0 ,
sinh [γ (ts + t)] , for h > 0 , (B.13)

η(t;h) = ±
√

2|h|
β

{
sinh [γ (ts + t)] , for h < 0 ,
cosh [γ (ts + t)] , for h > 0 . (B.14)

These orbits are plotted in the upper half plane (η > 0) shown in Fig. B.1.
Using the asymptotics

2π
ω(h)

=
1
γ

ln
A

|h| ,

we obtain the following asymptotical behavior of orbits at the separatrix,
h = 0,

ξ(t; 0) = ∓
√
A/2
α

e∓γt , η(t; 0) =

√
A/2
β

e∓γt ,

which asymptotically approach to the saddle point (ξ = 0, η = 0) in the limit
t → ±∞, respectively.

B.1.2 Perturbation Hamiltonian in Normal Coordinates ξ, η Near
the Saddle Points

We expand the perturbation Hamiltonian V (h, τ) = H1(q, p) near the saddle
point, (qs, ps), in series of powers of (q − qs), (p− ps) :

H1(q, p) =
∞∑

j=1

Vj(q, p) , (B.15)

Vj(q, p) =
j∑

i=0

c
(j)
i (q − qs)i(p− ps)j−i ,

c
(j)
i =

∂H1

∂qi∂pj−i

∣∣∣∣
q=qs,p=ps

,
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where the zero-order term H1(qs, ps) can be neglected in the evaluation of
the integrals R(h), since they do not affect the equations of motion. By a
linear transformation of variables (B.8) the perturbation Hamiltonian (B.15)
is rewritten in terms of variables (ξ, η):

H1(q, p) =
∞∑

j=1

Hj(ξ, η) ,

Hj(q, p) =
j∑

k=0

b
(j)
k ξkηj−k , (B.16)

where the coefficients b(j)k are linear combinations of c(j)i . If we retain only
terms up to the second order in powers of ξ and η, (B.16) can be presented
as

H1(z, pz) = aξξ + aηη + bξξξ
2 + bξηξη + bηηη

2 +O(δ3) , (B.17)

where

aξ = aq cosα+ ap sinα ,
aη = −aq sinα+ ap cosα ,

bξξ = bqq cos2 α+
1
2
bzp sin 2α+ bpp sin2 α ,

bξη = −bqq sin 2α+ bqp cos 2α+ bpp sin 2α ,

bηη = bqq sin2 α− 1
2
bqp sin 2α+ bpp cos2 α .

Here δ ∼ |q − qs|, |p− ps|. The coefficients aq, . . . , bpp are given by

aq =
∂Hn(q, p)

∂q

∣∣∣∣
q=qs,p=ps

, ap =
∂Hn(q, p)

∂pq

∣∣∣∣
q=qs,p=ps

,

bqq =
1
2
∂2Hn(q, p)

∂q2

∣∣∣∣
q=qs,p=ps

, bqp =
∂2Hn(q, p)

∂q∂p
,

bpp =
1
2
∂2Hn(q, p)

∂p2

∣∣∣∣
q=qs,p=ps

.

B.1.3 Integrals Over the Powers of Orbits ξ(t, t), η(t, h) Near
the Separatrix

The oscillatory parts of R(h) (B.2) are given by the integrals F (h, t) taken
at the values t = ±ts, ts = π/ω(h). According to (B.16) we have expressed
them through the integrals over the powers of orbits ξ(t, t), η(t, h)

X(k,j−k) =
∫ ±ts

ξk(t;h)ηj−k(t;h) exp(iΩt)dt, (0 ≤ k ≤ j) . (B.18)
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Below we estimate the these integrals up to the second order (j ≤ 2):

X(1,0)(h,±ts) =
∫ ±ts

ξ(t;h)eiΩtdt ,

X(0,1)(h,±ts) =
∫ ±ts

η(t;h)eiΩtdt ,

X(2,0)(h,±ts) =
∫ ±ts

[ξ(t;h)]2 eiΩtdt ,

X(1,1)(h,±ts) =
∫ ±ts

ξ(t;h)η(t;h)eiΩtdt ,

X(0,2)(h,±ts) =
∫ ±ts

[η(t;h)]2 eiΩtdt . (B.19)

It is easy to show that
∫ ±ts

sinh [γ(ts ∓ t)] eiΩtdt = ± γ

γ2 +Ω2
e±iΩts ,

∫ ±ts

cosh [γ(ts ∓ t)] eiΩtdt =
iΩ

γ2 +Ω2
e±iΩts .

Using these integrals and the solutions for ξ(t;h), η(t;h) near the saddle point
given by (B.11), (B.12) one obtains the following expressions for X(1,0)(h, ts)
and X(0,1)(h, ts) along the branches I and III, respectively:

X(1,0)(h, ts) = ∓eiΩts

√
2|h|

α(γ2 +Ω2)

{
iΩ, h < 0
γ, h > 0 ,

X(0,1)(h, ts) = ±eiΩts

√
2|h|

β(γ2 +Ω2)

{
γ, h < 0
iΩ, h > 0 . (B.20)

Similarly, the corresponding functions along the the branches II and IV are
given by

X(1,0)(h,−ts) = ±e−iΩts

√
2|h|

α(γ2 +Ω2)

{
iΩ, h < 0
−γ, h > 0 ,

X(0,1)(h,−ts) = ±e−iΩts

√
2|h|

β(γ2 +Ω2)

{
−γ, h < 0
iΩ, h > 0 , (B.21)

respectively.
The second order integrals X(2,0)(h,±ts), X(1,1)(h,±ts), X(0,2)(h,±ts)

along the all four branches I–IV are given by
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X(2,0)(h,±ts) = −ieiΩts
2|h|
α2Ω

C1(h) ,

X(1,1)(h,±ts) = eiΩts
2|h|

4γ2 +Ω2
,

X(0,2)(h,±ts) = ieiΩts
2|h|
β2Ω

C2(h) , (B.22)

where

C1(h) =






(
1 + Ω2

4γ2+Ω2

)
, h < 0

(
−1 + Ω2

4γ2+Ω2

)
, h > 0 ,

(B.23)

C2(h) =






(
−1 + Ω2

4γ2+Ω2

)
, h < 0

(
1 + Ω2

4γ2+Ω2

)
, h > 0 .

(B.24)

B.1.4 Oscillatory Parts of R(h)

According to the relations (B.4) these quantities are expressed through the
functions F (h,±ts) (B.5), which using the expansion (B.17) can be reduced
to

F (h, t) =
∫

V (h, t)eiΩtdt = aξX
(1,0)(h, t) + aηX

(0,1)(h, t)

+bξξX
(2,0)(h, t) + bξηX

(1,1)(h, t) + bηηX
(0,2)(h, t) +O(δ3) . (B.25)

First we consider separately the integrals along each branches, I–IV, of
the separatrix.

The First (I) and Third (III) Branches

Using the relations for the integrals X(k,j−k) given by (B.20), we obtain the
following expressions for R(osc)−(h) and its the real and imaginary parts,
K(osc)−(h) and L(osc)−(h):

R
(osc)+
1 (h) = F (h, ts) =

√
|h|eiπΩ//ω(h)

×
(
±
{
−iΩAξ + γAη, for h < 0
−γAξ + iΩAη, for h > 0

}
+
√

|h| [C − iB(h)]
)

, (B.26)
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K
(osc)+
1 (h) = Re R(osc)−(h) = ±

√
|h|

×






ΩAξ sin[πΩ/ω(h)] + γAη cos[πΩ/ω(h)], for h < 0

−γAξ cos[πΩ/ω(h)] −ΩAη sin[πΩ/ω(h)], for h > 0

}

+|h|
[
C cos

(
πΩ

ω(h)

)
+B(h) sin

(
πΩ

ω(h)

)]
, (B.27)

L
(osc)+
1 (h) = Im R(osc)−(h)

= ±
√
|h|






−ΩAξ cos[πΩ/ω(h)] + γAη sin[πΩ/ω(h)], for h < 0 ,

−γAξ sin[πΩ/ω(h)] +ΩAη cos[πΩ/ω(h)], for h > 0

}

+|h|
[
C sin

(
πΩ

ω(h)

)
+B(h) cos

(
πΩ

ω(h)

)]
. (B.28)

The coefficients Aξ, Aη, B1, B2, and C are defined by

Aξ =
√

2aξ

α(γ2 +Ω2)
, Aη =

√
2aη

β(γ2 +Ω2)
,

B(h) =
2
Ω2

(
−bηη

C1(h)
α2

+ bξξ
C2(h)
β2

)
=
{
B1, for h < 0 ,
B2, for h > 0 ,

B1 =
2
Ω2

[
bξξ

α2
− bηη

β2
+

Ω2

4γ2 +Ω2

(
bξξ

α2
+
bηη

β2

)]
,

B2 =
2
Ω2

[
−bξξ

α2
+
bηη

β2
+

Ω2

4γ2 +Ω2

(
bξξ

α2
+
bηη

β2

)]
,

C =
2bξη

4γ2 +Ω2
. (B.29)

The Second (II) and Fourth (IV) Branches

Using (B.21) one obtains the following expressions for R(osc)+(h), K(osc)+(h)
and L(osc)+(h):

R
(osc)−
1 (h) = −F (h,−ts) = −

√
|h|e−iπΩ//ω(h)

×
(
±
{
iΩAξ − γAη, for h < 0
−γAξ + iΩAη, for h > 0

}
+
√

|h| [C − iB(h)]
)

, (B.30)

The corresponding integrals are
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K
(osc)−
1 (h) = Re R(osc)−(h) = ∓

√
|h|

×






ΩAξ sin[πΩ/ω(h)] − γAη cos[πΩ/ω(h)], for h < 0

−γAξ cos[πΩ/ω(h)] +ΩAη sin[πΩ/ω(h)], for h > 0

}

+|h|
[
−C cos

(
πΩ

ω(h)

)
+B(h) sin

(
πΩ

ω(h)

)]
, (B.31)

L
(osc)−
1 (h) = Im R(osc)+(h) = ∓

√
|h|






ΩAξ cos[πΩ/ω(h)] + γAη sin[πΩ/ω(h)], for h < 0 ,

γAξ sin[πΩ/ω(h)] +ΩAη cos[πΩ/ω(h)], for h > 0 ,

}

+|h|
[
C sin

(
πΩ

ω(h)

)
−B(h) cos

(
πΩ

ω(h)

)]
. (B.32)

The expressions for the integrals R(osc)(h) depend on the saddle–saddle
connection and can be obtained through the integrals R(osc)±(h) given above.
Below we consider the four type of homoclinic saddle–saddle connections
when the system has a single hyperbolic fixed point: (i) the branch II is
connected with the branch I of the separatrix; (ii) the branch IV is connected
with the branch I; (iii) the branch II is connected with the branch III; (iv)
the branch IV is connected with the branch III (see Fig. B.1).

The case (i). Adding the expressions for R(osc)+(h) and R(osc)−(h) taken
with the upper signs we have

K(osc)(h) = Re R(osc)(h) = K(osc)+(h) +K(osc)−(h)

2






√
|h|Aηγ sin[πΩ/ω(h)] + |h|B1 sin[πΩ/ω(h)], for h < 0 ,

−
√
|h|AηΩ cos[πΩω(h)] + |h|B2 sin[πΩ/ω(h)], for h > 0 ,

(B.33)

L(osc)(h) = Im R(osc)(h) = L(osc)+(h) + L(osc)−(h)

= 2






√
|h|AξΩ cos[πΩ/ω(h)] + C|h| sin[πΩ/ω(h)], for h < 0 ,

√
|h|Aξγ sin[πΩ/ω(h)] + C|h| sin[πΩ/ω(h)], for h > 0 .

(B.34)

The case (ii). Adding R(osc)+(h) with the upper signs to R(osc)−(h)
taken with the lower signs one obtains
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K(osc)(h)=2






√
|h|AξΩ sin[πΩ/ω(h)] + |h|B1 sin[πΩ/ω(h)], for h < 0 ,

−
√
|h|Aξγ cos[πΩω(h)] + |h|B2 sin[πΩ/ω(h)], for h > 0 ,

(B.35)

L(osc)(h) = 2






√
|h|Aηγ sin[πΩ/ω(h)] + C|h| sin[πΩ/ω(h)], for h < 0 ,

√
|h|AηΩ cos[πΩ/ω(h)] + C|h| sin[πΩ/ω(h)], for h > 0 .

(B.36)

In the case (iii) the formulae for K(osc)(h) and L(osc)(h) are given by (B.35),
(B.36), respectively, taken with the opposite signs, and in the case (iv)
K(osc)(h) and L(osc)(h) are obtained from (B.33), (B.34) by changing the
sign.

B.2 Periodically–Driven Pendulum

In this section we obtain the asymptotical formulae for the oscillatory parts
of the integrals K1(h) and L2(h) in the problem of the periodically–driven
pendulum (see Sect. 6.2). According to the definitions of the functions Vn(h, t)
given by (6.33) we have

V1(h, t− tc) = (A+B)[1 + cosx(ϑ;h)] ,
V2(h, t− tc) = (A−B) sinx(ϑ;h) .

The hyperbolic fixed points are (xs = ±π, ps = 0). The first two terms in
expansion in series of ξ, η are

V1(h, t) = (A+B)
1
2
ξ2(t;h) , V2(h, t) = −(A−B)ξ(t;h) ,

Figure B.2 shows the unperturbed orbits along which integrations are taken.
Then using the integrals (B.20), (B.22), we obtain

K
(osc)±
1 (h) =

∫ ±ts

V1(h, t) cos(Ωt)dt

=
A+B

2

∫ ±ts

ξ2(t;h) cos(Ωt)dt =
A+B

2
ReX(2,0)(h,±ts)

= (A+B)
|h|

2Ωα2






(
1 + Ω2

4γ2+Ω2

)
sin[πΩ/ω(h)], for h < 0

−
(
1 − Ω2

4γ2+Ω2

)
sin[πΩ/ω(h)], for h > 0 ,

(B.37)
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h>0

h<0
Σs Σs

x

p

B+

B-

U+

U-

S+

S-(−π,0)

(π,0)

Fig. B.2. Phase curves of unperturbed pendulum near separatrix. Here U+ and
B+ stand for the untrapped (h > 0) and trapped (h < 0) orbits near the separatrix
S+ connecting the saddle points (−π, 0) and (π, 0) in the upper half of phase space
(p > 0). Similarly, U− and B− are untrapped (h > 0) and trapped (h < 0) orbits
near the separatrix S− connecting the saddle points (π, 0) and (−π, 0) in the lower
half of phase space (p < 0)

L
(osc)±
2 (h) =

∫ ±ts

V2(h, t) sin(Ωt)dt

= −(A−B)
∫ ±ts

ξ(t;h) sin(Ωt)dt = −(A−B)ImX(1,0)(h,±ts)

= ±(A−B)

√
2|h|

α(γ2 +Ω2)

{
Ω cos[πΩ/ω(h)], for h < 0
γ sin[πΩ/ω(h)], for h > 0 . (B.38)

The integrals K(osc)
1 (h), L(osc)

1 (h) taken along orbits near the separatrix
connecting the saddle point (−π, 0) with the other saddle point (−π, 0) are
obtained from the integrals (B.37), (B.38) using the relations K

(osc)
1 (h) =

K
(osc)−
1 (h) −K

(osc)+
1 (h) and L

(osc)
2 (h) = L

(osc)−
2 (h) − L

(osc)+
2 (h):

K
(osc)
1 (h) = (A+B)

|h|
Ωα2






(
1 + Ω2

4γ2+Ω2

)
sin[πΩ/ω(h)], for h < 0

−
(
1 − Ω2

4γ2+Ω2

)
sin[πΩ/ω(h)], for h > 0 ,

(B.39)

L
(osc)
2 (h) = ∓(A−B)

2
√

2|h|
α(γ2 +Ω2)

{
Ω cos[πΩ/ω(h)], for h < 0
γ sin[πΩ/ω(h)], for h > 0 . (B.40)
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B.3 The Integral K(h) in the Problem
of Driven Morse Oscillator

The integrals in (6.72) can be written as

R(h) = 2a
∫ π

0

f(x)eiηxdx, f(x) =
sinx

1 − a cosx
, (B.41)

where R(h) = K(h)+ iL(h). In (B.41) the following notations are introduced
a =

√
1 − |h|, η = λ/|h|1/2. Since the corresponding system does not have

hyperbolic saddle points we cannot use the method used in the previous
sections. Below we apply a standard asymptotical method to estimate these
integrals.

The regular part of the integral (B.41) can be found by integrating it for
integer values of η = m corresponding to the primary resonances, mω(h) = Ω.
Then using the integral

∫ π

0

cos[(η ± 1)x]
1 − a cosx

dx =
π√

1 − a2

(
1 −

√
1 − a2

a

)η±1

,

and continuing it to the noninteger values of η, we obtain

R(reg)(h) = 2π

(
1 −

√
1 − a2

a

)η

. (B.42)

Then the integral (B.41) can be presented as a sum

R(h) = R(reg)(h) +R(osc)(h) , (B.43)

where R(osc)(h) is the oscillatory part of the integral R(h). We seek R(osc)(h)
for large value of η � 1. Then it can be found by asymptotic expansion of the
integral in a series of power of η−1. We will find the asymptotic expansion
by integration by part.

Integrating (B.41) by part N times, one can obtain

∫ π

0

f(x)eiηxdx = eiηπ
N∑

k=1

1
(iη)k

f (k−1)(x)
∣∣∣∣
x=π

+O(η−N−1) ,

where f (k)(x) is the k-the derivative of the function f(x). One can show
that f (2s)(0) = f (2s)(π) = 0, (s = 0, 1, 2, . . .). For the odd k = 2s + 1
the derivatives f (2k+1)(0) have non-zero values. For the first two non-zero
derivatives we obtain

a1 ≡ f (1)(0) =
1

1 − a
, a2 ≡ f (3)(0) = −1 + a+ 2a2

(1 − a)3
,

b1 ≡ f (1)(π) = − 1
1 + a

, b2 ≡ f (3)(π) =
1 − a− 2a2

(1 + a)3
. (B.44)
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Fig. B.3. Deviation of the asymptotic formula (B.46) for K(h) from the numeri-
cally integrated one. Parameter λ = 2

Therefore, the expansion of K(osc)(h) in a series of power of 1/η up to
fourth terms is given by

K(osc)(h) = Re R(osc)(h) =
2a
η2

(
b1 −

b2
η2

)
sin(πη) +O

(
η−6
)
. (B.45)

Putting a =
√

1 − |h| and η = λ/|h|1/2, we have obtained the following
asymptotic formula for K(h):

Kas(h) = 2π

(
1 − |h|1/2

√
1 − |h|

)λ/|h|1/2

+
2|h|
√

1 − |h|
λ2

sin
(

πλ

|h|1/2

) (
b1 − b3

|h|
λ2

)
+O

(
|h|3
λ6

)
. (B.46)

At the limit |h| → 0, we have

Kas(h) → K0 = 2π exp(−λ) .

The asymptotics of the integral K(h) given by (B.46) is plotted in Fig. 6.12 at
the fixed value of the parameter λ = 4. The asymptotic formula (B.46) is in
sufficiently good agreement with the values ofK(h) obtained by the numerical
integration of the integral (B.41). The deviation of (B.46) from the numerical
K(h) is shown in Fig. B.3. The maximal deviation, max|K(h) − Kas(h)| is
less than 8 × 10−4.



C Proof of Rescaling Invariance
of the Equations of Motion

C.1 The Case of Linear Approximation

For convenience we omit the parameter t0 in (8.13), and consider the following
linear equation with periodic coefficients:

dx

dt
= −γx+ ε[p1(t) + c11(t)x+ c12(t)y] ,

dy

dt
= γy + ε[p2(t) + c21(t)x+ c22(t)y] . (C.1)

We will seek the solutions of (C.1) in the form

x(t) = A(t) exp
(
−γt+ ε

∫ t

0

c11(t′)dt′
)

,

y(t) = B(t) exp
(
γt+ ε

∫ t

0

c22(t′)dt′
)

. (C.2)

For the unknown coefficients A(t), B(t), we obtain the following equations

dA

dt
= εp1(t) exp

(
γt− ε

∫ t

0

c11(t′)dt′
)

+εc12(t)B(t) exp
(

2γt+ ε

∫ t

0

[c22(t′) − c11(t′)] dt′
)

,

dB

dt
= εp2(t) exp

(
−γt− ε

∫ t

0

c22(t′)dt′
)

+εc21(t)A(t) exp
(
−2γt+ ε

∫ t

0

[c11(t′) − c22(t′)] dt′
)
.

(C.3)

The solutions of (C.3) up to the first order of ε have the form

A(t) = A(0) + εB(0)
∫ t

0

e2γt′c12(t′)dt′ + ε

∫ t

0

eγt′p1(t′)dt′ +O(ε2) ,

B(t) = B(0) + εA(0)
∫ t

0

e−2γt′c21(t′)dt′ + ε

∫ t

0

e−γt′p2(t′)dt′ +O(ε2) . (C.4)

S.S. Abdullaev: Construction of Mappings for Hamiltonian Systems and Their Applications,
Lect. Notes Phys. 691, 335–340 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



336 C Proof of Rescaling Invariance of the Equations of Motion

Now we replace the perturbation amplitude, ε, by its rescaled value ελ =
ε/λ. Introducing the notations

Aλ(t) = A(t)λ−1/2
ε , Bλ(t) = B(t)λ−1/2

ε , (C.5)

t0λ =
1
2γ

lnλ ,

and replacing the integration variable t′ → t′ − t0λ, the solution, (C.4), for A
can be transformed to

Aλ(t) = Aλ(0)

+ελBλ(0)
∫ t+t0λ

t0λ

e2γt′c12(t′ − t0λ)dt′

+ελ
∫ t+t0λ

t0λ

eγt′p1(t′ − t0λ)dt′ +O(ε2) . (C.6)

Transform (C.6) by the following way:

Aλ(t) = Aλ(0) + ελBλ(0)
∫ t

0

e2γt′c12(t′ − t0λ)dt′

+ελ
∫ t

0

eγt′p1(t′ − t0λ)dt′

+ελBλ(0)
(∫ t+t0λ

t

−
∫ t0λ

0

)
e2γt′c12(t′ − t0λ)dt′

+ελ

(∫ t+t0λ

t

−
∫ t0λ

0

)
eγt′p1(t′ − t0λ)dt′ . (C.7)

We note that
∫ t+t0λ

t

enγt′f(t′ − t0λ)dt′ = enγt

∫ t0λ

0

enγt′f(t′ + t− t0λ)dt′ ,

enγt − 1 = nγ

∫ t

0

enγt′dt′, (C.8)

where f(t) = c12(t), n = 2 or f(t) = p1(t), n = 1.
We will consider Poincaré sections of the solutions x(t), y(t), taken at

the sections t = Tm, (m = 0, 1, 2, ...). Then using the periodicity of the
coefficients c12(t), p1(t) and the relations (C.8), (C.7) can be reduced to

Aλ(t) = Aλ(0) + ελBλ(0)
∫ t

0

e2γt′
[
c12(t′ − t0λ) + γc012

]
dt′

+ελ
∫ t

0

eγt′
[
p1(t′ − t0λ) + γp0

1

]
dt′ +O(ε2) , (C.9)

where the constant coefficients, c012, and p0
1, are
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c012 = 2
∫ t0λ

0

e2γtc12(t− t0λ)dt , p0
1 =

∫ t0λ

0

eγtp1(t− t0λ)dt .

In a similar way, we can obtain the solution for Bλ:

Bλ(t) = Bλ(0) + ελAλ(0)
∫ t

0

e−2γt′
[
c21(t′ + t0λ) + γc021

]
dt′

+ελ
∫ t

0

e−γt′
[
p2(t′ + t0λ) + γp0

2

]
dt′ +O(ε2) , (C.10)

where

c021 = 2
∫ 0

−t0λ

e−2γtc21(t+ t0λ)dt , p0
2 =

∫ 0

−t0λ

e−γtp2(t+ t0λ)dt .

The expressions, (C.9), (C.10), correspond to the solutions of the equa-
tions

dξλ

dt
= −γ

[
ξλ − ελ(p0

1 + c012ηλ)
]
+ ελ

[
p1(t− t0λ)

+c11(t− t0λ)ξλ + c12(t− t0λ)ηλ

]
,

dηλ

dt
= γ

[
ηλ + ελ(p0

2 + c021ξλ)
]
+ ελ

[
p2(t+ t0λ)

+c21(t+ t0λ)ξλ + c22(t+ t0λ)ηλ

]
, (C.11)

where

ξλ(t) = Aλ(t) exp
(
−γt+ ελ

∫ t

0

c11 (t′ − t0λ) dt′
)

,

ηλ(t) = Bλ(t) exp
(
γt+ ελ

∫ t

0

c22 (t′ + t0λ) dt′
)

. (C.12)

By the linear transformation of variables

xλ = ξλ − ελ
(
p0
1 + c012ηλ

)
,

yλ = ηλ + ελ
(
p0
2 + c021ξλ

)
. (C.13)

Equation (C.11) with the accuracy up to the first order of ελ may be rewritten
in the form

dxλ

dt
= −γxλ + ελ [p1(t− t0λ) + c11(t− t0λ)xλ + c12(t− t0λ)yλ] +O(ε2λ) ,

dyλ

dt
= γyλ + ελ [p1(t+ t0λ) + c11(t+ t0λ)xλ + c12(t+ t0λ)yλ] +O(ε2λ) .

(C.14)

Therefore, the transformation ε → ελ = λε of the perturbation amplitude, ε,
preserves the form of the the equations if the periodic coefficients cik, and pi
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have the same arguments in both equations, (C.14). Since the coefficients are
periodic functions of t with period T this condition is satisfied, for

2t0λ = sT , (s = ±1,±2, . . .) .

Using the definition of t0λ, (C.5), we obtain the possible values of the rescaling
parameter λ:

λ(s) = exp(γTs) = λs, (s = ±1,±2, ...) , (C.15)

where λ is the rescaling parameter given by (8.7). Then using the condition
(8.10) for the coefficients cii(t), and (C.5), (C.11), we have

ξλ(t = 2πm) = exp(−γt)Aλ(t) = exp(−γt)A(t)λ−1/2 = x(t)λ−1/2 ,

ηλ(t = 2πm) = exp(+γt)Bλ(t) = exp(+γt)B(t)λ−1/2 = y(t)λ−1/2 .
(C.16)

Finally, putting (C.15) into (C.13), we obtain the relation, (8.15), between
the solutions of (C.1) and (C.14) at the sections t = mT , (m = 0, 1, 2, ...).

C.2 The Case of Nonlinear Approximation

Consider the nonlinear differential equation, (8.8) with the perturbation func-
tions gi(x, y, t), (i = 1, 2) (8.16). The solution of this equation we will seek
in the form

x(t) = A(t) exp(−γt) , y(t) = B(t) exp(γt) . (C.17)

For the unknown coefficients A(t), B(t) one can obtain the following equations

dA

dt
= ε

n∑

k=0

c1k(t)(A))k(B)n−ke(n−2k+1)γt ,

dB

dt
= ε

n∑

k=0

c2k(t)(A)k(B)n−ke(n−2k−1)γt . (C.18)

The solution of (C.18) with the accuracy up to the first order of ε may be
written as

A(t) = A(0) + ε
n∑

k=0

(A(0))k(B(0))n−k

∫ t

0

e(n−2k+1)γt′c1k(t′)dt′ ,

B(t) = B(0) + ε
n∑

k=0

(A(0))k(B(0))n−k

∫ t

0

e(n−2k−1)γt′c2k(t′)dt′ . (C.19)
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First consider positive values of t > 0. To evaluate the order of the integral
in (C.19), we have specified the periodic coefficients as cik(t) = cos(t + χ).
Then, for t = Tm, one can obtain
∫ 2πm

0

enγt cos(t+ χ)dt = (λnm − 1)
nγ cosχ+ sinχ

n2γ2 + 1
∼ λnm , (n ≥ 2) ,

(C.20)

where λ = exp(γT ). Since γ > 0, the rescaling parameter λ > 1. Usually,
the square of λ has an order of 10, i.e., λ2, and may be considered as a large
parameter. We can seek the asymptotic behavior of the solutions for λ2 � 1,
expanding (C.19) in series of inverse powers of λ2. The main terms in (C.19)
are

A(t) = A(0) + ε(B(0))nλnmC1n[1 +O(λ−2m)] ,

B(t) = B(0) + ε(B(0))nλ(n−2)mC2n

[
1 +O(λ−2m)

]
, (C.21)

where C1n and C2n are constants of order O(1). Therefore, for the for positive
t > 0 the asymptotic expansion of the solutions, (C.19), for λ2 � 1 may be
written as

A(t) = A(0) + ε(B(0))n

∫ t

0

e(n+1)γt′c1n(t′)dt′
[
1 +O(λ−2)

]
,

B(t) = B(0)
[
1 + εO(λ−2)

]
. (C.22)

In a similar way, one can write the asymptotic expansion of the solution,
(C.19), for the negative values of t (t < 0) :

A(t) = A(0)
[
1 + εO(λ−2)

]
,

B(t) = B(0) + ε(A(0))n

∫ t

0

e−(n+1)γt′c2n(t′)dt′
[
1 +O(λ−2)

]
. (C.23)

Now we will study the behavior of the solutions, (C.22), (C.23), in respect
to the transformation, ε → ελ = ε/λ, of the perturbation parameter, ε. Using
the notations in (C.5), and performing the transformations of (C.6) similar
to those ones in the previous section, one can obtain the following expressions
for the transformed solutions, Aλ(t), Bλ(t), at the positive axis of t > 0:

Aλ(t) = Aλ(0) + ελ(Bλ(0))n

∫ t

0

e(n+1)γt′
[
c1n(t′ − t0λ) + γc01n

]
dt′

×
[
1 +O(λ−2)

]
,

Bλ(t) = Bλ(0)
[
1 + ελO(λ−2)

]
, (C.24)

where
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c01n = (n+ 1)
∫ t0λ

0

e(n+1)γtc1n(t− t0λ)dt .

By the similar procedure one can transform the solution (C.23), and obtain
the following expressions for Aλ(t), Bλ(t) for the negative t < 0:

Aλ(t) = Aλ(0)
[
1 + ελO(λ−2)

]
,

Bλ(t) = Bλ(0) + ελ(Aλ(0))n

∫ t

0

e−(n+1)γt′ [c2n(t′ + t0λ) + γc02n]dt′

×
[
1 +O(λ−2

]
, (C.25)

with

c02n = (n+ 1)
∫ 0

−t0λ

e−(n+1)γtc2n(t+ t0λ)dt .

The transformed solutions, (C.24), (C.25), corresponds to the asymptotic
solutions of the following nonlinear equations for the large parameter λ2 � 1:

dxλ

dt
= −γ

[
xλ + ελc

0
1n(yλ)n

]
+ ελ

n∑

k=0

c1k(t− t0λ)(xλ)k(yλ)n−k ,

dyλ

dt
= γ[yλ + ελc

0
1n(xλ)n] + ελ

n∑

k=0

c2k(t+ t0λ)(xλ)k(yλ)n−k . (C.26)

The terms ελc
0
kn(a±λ )n, (k = 1, 2) before the coefficient γ in (C.26) corre-

sponds to the higher order corrections in the expansion of the unperturbed
Hamiltonian, H0(x, y), in series of power of x, y near the hyperbolic fixed
point, (x = 0, y = 0). Since we neglected with these higher order corrections
in H0(x, y), we can neglect them also in (C.26). Thanks to periodicity of
the coefficients c(n)

ik (t), (8.17) and (C.26) have the same form for the value
of the phase t0λ = π. From the latter condition automatically follows the
value of the rescaling parameter λ. The relation, (8.18), between the solu-
tions (xa(t), ya(t)) and (xb(t), yb(t)) of the (8.17) and (C.26) follows from
(C.5), which is valid for the λ2 � 1.



D Relation Between ϑ and θ

The term under the integral (10.25) depending on the poloidal angle θ is

f(ε, θ) =
1

(1 + ε cos θ)2(1 + Λε cos θ)
.

Expansion of f(ε, θ) in a series of powers of ε leads to

f(ε, θ) =
∞∑

m=0

amε
m cosm θ ,

am = (−1)m
m∑

k=0

(m− k + 1)Λk . (D.1)

Using the series (D.1) and integrating (10.25), one obtains the following re-
lationship between ϑ and θ as a series of powers of ε:

ϑ(θ, ε) = θ +
M∑

m=1

αm sinmθ +O(εM+1) , (D.2)

where the coefficients αm are also series in powers of ε. For M = 4 they are
given by (10.30). By similar integration of (10.26) we obtain a series for the
safety factor q(r) (10.31).

Now we consider the inversion of the relation ϑ = ϑ(θ, ε) with respect to
θ. Suppose that we have a relation in the form

ϑ(θ, ε) = θ +
∞∑

m=1

αm sinmθ , (D.3)

with given coefficients αm. Note that αm/αm+1 ∼ ε. A similar expression
exists for the inverse relation θ = θ(ϑ, ε):

θ(ϑ, ε) = ϑ+
∞∑

m=1

α∗
m sinmϑ , (D.4)

with the unknown coefficients α∗
m. From (D.3) and (D.4) follows the relation

between the coefficients α∗
m and αm:
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α∗
m = −

∞∑

m′=1

Amm′αm′ , (D.5)

where

Amm′ =
1
2π

∫ 2π

0

e−i(mϑ−m′θ(ϑ))dϑ =
1
2π

∫ 2π

0

e−i(mϑ(θ)−m′θ) dϑ

dθ
dθ .

We expand the integrand in a series of powers of ε. Since αm ∼ εm, using
(D.3) one can obtain

exp(−imϑ)
dϑ

dθ
= e−imθ

3∑

k=0

F (k)
m (θ) +O(ε4) ,

where

F (0)
m = 1, F (1)

m (θ) = α1(cos θ − im sin θ) ,

F (2)
m (θ) = −m2

4
α2

1 + (2α2 +
m2

4
α2

1) cos 2θ − im(
α2

1

2
+ α2) sin 2θ ,

F (3)
m (θ) = −im

(
α3 +

3
2
α1α2 +

1
24
m2α3

1

)
sin 3θ

+i
m

2

(
α1α2 +

1
4
m2α3

1

)
sin θ − m2

2

(
α1α2 +

1
4
α3

1

)
cos θ

+
(

3α3 +
1
2
m2α1α2 +

1
8
m2α3

1

)
cos 3θ .

Then the matrix Amm′ can be presented in the form:

Amm′ =
1
2π

∫ 2π

0

e−i(m′ϑ(θ)−mθ) dϑ

dθ
dθ=A

(0)
mm′ +A

(1)
mm′ +A

(2)
mm′ +A

(3)
mm′ + . . . ,

where

A
(0)
mm′ = δmm′ , A

(j)
mm′ =

1
2π

∫ 2π

0

e−i(mθ−m′θ)F (j)
m (θ)dθ , j = 1, 2, 3, . . . .

The terms of the first order of ε are

A
(1)
11 = 0 , A

(1)
21 = α1 , A

(1)
12 = −α1

2
, A

(1)
32 =

3α1

2
,

A
(1)
23 = −α1 , A

(1)
43 = 2α1 , A

(1)
34 = −3

2
α1 .

The second order terms are

A
(2)
11 = −1

4
α2

1 , A
(2)
21 = 0; A

(2)
31 =

3
8
α2

1 +
3
2
α2 ,

A
(2)
12 = 0 , A

(2)
22 = −α2

1 , A
(2)
32 = 0 , A

(2)
42 = α2

1 + 2α2 ,
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A
(2)
13 =

3
8
α2

1 −
1
2
α2 , A

(2)
23 = 0, A

(2)
33 = −9

4
α2

1 , A
(2)
43 = 0 ,

A
(2)
53 =

15
8
α2

1 +
5
2
α2 , A

(2)
23 = α2

1 − α2 .

Finally the third order terms are

A
(3)
11 = 0 , A

(3)
21 = −1

2
(α1α2 +

1
4
α3

1), A
(3)
31 = 0 ,

A
(3)
41 =

1
12
α3

1 + α1α2 + 2α3 , A
(3)
12 = −1

2
α1α2 +

1
4
α3

1, A
(3)
22 = 0 ,

A
(3)
32 = −5

4
α1α2 −

9
16
α3

1, A
(3)
42 = A

(3)
13 = 0 ,

A
(3)
23 = −2α1α2 +

13
8
α3

1 , A
(3)
32 = −1

2
α3 + α1α2 −

1
3
α3

1 .

Finally, using (D.5) and neglecting the terms of order higher than ε5 we have
obtained the following expressions for the expansion coefficients α∗

m in (D.4)
in terms of αk:

−α∗
1 = α1 + α1α2 −

1
4
α3

1 +O(ε5) ,

−α∗
2 = α2 −

1
2
α2

1 −
3
2
α2

1α2 +
1
4
α4

1 +
3
2
α1α3 +O(ε6) ,

−α∗
3 = α3 −

3
2
α1α2 +

3
8
α3

1 +O(ε5) ,

−α∗
4 = α4 − 2α1α3 + 2α2

1α2 + α2
2 −

1
4
α4

1.+O(ε6) .



E Asymptotic Estimation
of the Integral Smm′ (10.49)

We write down the integral (10.49) as the Fourier integral

Smm′(ψ) =
1
2π

∫ 2π

0

f(ϑ)eim′Φ(ϑ)dϑ , (E.1)

where

Φ(ϑ) = θ(ϑ) − m

m′ϑ , f(ϑ) = 1 + ε cos θ(ϑ)

are slowly varying functions of ϑ. Integrals of type (E.1) may be evaluated
using the methods of asymptotic expansions in a series of inverse powers
of m′ � 1. However, as we will see below, the method of stationary phase
cannot be directly applied to estimate the integral (E.1) for the values of m′

being of interest because of the specific behavior of the phase function Φ(ϑ).
According to the localization principle (see Fedoryuk (1989)) for m′ � 1

the integral (E.1) is equal to sum of the contributions at the critical points
for Smm′ . There are two critical points for the phase function Φ(ϑ):

ϑ1 = 0 , ϑ2 = π .

As will be shown below, for m′ < m the main contribution to the integral
comes from the first critical point, ϑ1, and for m′ > m the second critical
point contributes to the integral.

Consider first the case m′ > m. One can expand the angle θ in terms of
(ϑ− π) around the second critical point ϑ2 = π:

θ(ϑ) ≈ π + β1(ϑ− π) +
1
6
β3(ϑ− π)3 , (E.2)

where β1, β3 are defined by (10.50). In (E.2) we have taken into account that

d2θ/dϑ2

∣∣∣∣
θ=π

= 0. Since 0 < β1 < 1 and β3 > 0 the first derivative

dΦ(ϑ)
dϑ

= (β1 −m/m′) +
1
2
β3(ϑ− π)2 ,

has two real zeros
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ϑ1,2 = π ±
(

2|m′β1 −m|
m′β3

)1/2

.

when m′ < m/β1, and complex roots when m′ > m/β1. For the values of
m′ which are sufficiently close to m/β1 the singular points ϑ1,2 are close to
each other, and the integral cannot be estimated by the ordinary method
of stationary phase. In the case of degenerate stationary points one should
apply the method described in Fedoryuk (1989).

Using the expansion (E.2), and introducing the integration variable x =
ϑ− π, the integral (E.1) may be written as

Smm′ = (−1)m+m′ 1
2π

∫ π

−π

f(x+ π)eiλ(αx+x3/3)dx (E.3)

where

α =
m′β1 −m

m′β3/2
, λ = m′β3/2 .

For large values of λ and for the small α, the leading term of the asymptotic
expansion of the integral (E.3) may be estimated by replacing f(x + π) by
f(π) and expressing the integral by the Airy function Ai(z):

Smm′(ψ) = f(π)(−1)m+m′ 1
2π

∫ π

−π

eiλ(αx+x3/3)dx

= (−1)m+m′
(

2
β3m′

)1/3

Ai
(

β1m
′ −m

(β3m′/2)1/3

)
, (E.4)

where
Ai(z) =

1
π

∫ ∞

0

cos(zt+ t3/3)dt

is the Airy function (see Abramowitz and Stegun (1965)).
The asymptotic formula (E.4) is valid for small values of α. Comparison

with the exact numerical calculations of the integral (E.1) shows that (E.4)
is a good approximation for Smm′ in the interval

m′ −m/β1 > −c(m′β3/2)1/3 . (E.5)

where c ≈ 3.
A similar asymptotic estimation of Smm′ can be obtained for the small

values of m′ satisfying the condition

m′ −m/γ1 < c(m′|γ3|/2)1/3 . (E.6)
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There is the following formula for these m′:

Smm′(ψ) = f(0)
(

2
|γ3|m′

)1/3

Ai
(
− γ1m

′ −m

(|γ3|m′/2)1/3

)
, (E.7)

where γ1 > 1 and γ3 < 0 are defined by (10.50).
Outside the intervals (E.5) and (E.6) the integrals Smm′(ψ) may be esti-

mated by the method of stationary phase. These integrals are fast oscillating
functions of m′, and have an order of (m′)−1/2. We will not evaluate them
here because of their small contribution.

The formulas (E.4) and (E.7) are the leading terms of an asymptotic
expansion into a series of inverse powers of m′. The full asymptotic expansions
may be found by the method described by Fedoryuk (1989).



F Sample Program for Implementing
a Mapping Procedure

Below we present a program for the numerical implementation of the mapping
for the generic Hamiltonian system of one-degree-of-freedom perturbed by
time-periodic perturbation. The program is written in C-language.

We consider a Hamiltonian system

dϑ

dt
=

∂H

∂I
= ω(I) + ε

∂H1

∂I
,

dI

dt
= −ε∂H1

∂I
, (F.1)

given by the Hamiltonian function

H = H0(I) + εH1(I, ϑ, t) ,

H0(I) =
∫

ω(I)dI ,

H1(I, ϑ, t) =
m=M2∑

m=M1

Hm(I) cos(mϑ−Ωt+ χ) , (F.2)

where Fourier coefficients, Hm(I), are real functions, and the phase χ is
a constant. In (F.2) a finite number of terms numbering from M1 to M2,
(M1 ≤ M2), are taken into account.

Let tk = k∆T , (k = 0,±1,±2, · · ·), be a time sequence with a step ∆T .
Then the evolution of Hamiltonian system (F.1) along this time sequence,
i.e.,

(ϑk+1, Ik+1) = M̂(ϑk, Ik) , (F.3)

where (ϑk, Ik) = (ϑ(tk), I(tk)), is given by the mappings (4.6), (4.7), (4.8).
In the first order of perturbation theory the latter can be written as

Jk = Ik − F (Jk, ϑk, tk) , ψk = ϑk +G(Jk, ϑk, tk) , (F.4)

ψk+1 = ψk + ω(Jk)∆T , (F.5)

Ik+1 = Jk + F (Jk, ϑk+1, tk+1) , ϑk+1 = ψk+1 −G(Jk, ϑk+1, tk+1) ,(F.6)
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where

F (J, ϑ, t) = ε
∂S(J, ϑ, t)

∂ϑ
,

G(J, ϑ, t) = ε
∂S(J, ϑ, t)

∂J
, (F.7)

are perturbation functions determined by the generating function

S(ϑ, J, t) = − (t− tk −∆T/2)
m=M2∑

m=M1

Hm(I)

×
[
a(αm(J)) sin(mϑ−Ωt+ χ) + b(αm(J)) cos(mϑ−Ωt+ χ)

]
, (F.8)

The functions a(x), b(x), and αmn(J) are given by

a(x) =
1 − cosx

x
, b(x) =

sinx
x

,

αm(J) = [mω(J) −Ω] (t− tk −∆T/2) . (F.9)

In (F.8), (F.9) the time parameter t0 is taken in the middle of the interval
[tk, tk+1], i.e., t0 = (tk + tk+1)/2 = tk +∆T/2.

The implicit mapping procedure presented by (F.4)–(F.6) is implemented
by the procedure MappingStep(Y,Z,time).

MappingStep(LPLDOUBLE Y, LPLDOUBLE Z, LPLDOUBLE time)

{

LDOUBLE F,G,F_J,G_T,f,f_J,f_t;

LDOUBLE J,theta,U[2],V[2],t_0, eps_acc=1.0E-12;

int L=0, N_iter=20;

t_0=*time+MapPeriod/2.0;

/*---------------The first step --------------------------*/

GeneratingFunction(&Y[0],&Y[1],&(*time),&t_0,&F,&G,&F_J,&G_T);

J = Y[0]-F;

theta = Y[1];

Iter1:

GeneratingFunction(&J,&theta,&(*time),&t_0,&F,&G,&F_J,&G_T);

f=J-Y[0]+F;

f_J=1.0+F_J;

V[0]=J-f/f_J;

L++;

if ((f_J LE 0) OR (L GT N_iter)) {sig1 = 0; goto exit; }

if (fabs(V[0] - J) GT eps_acc )

{J = V[0]; goto Iter1; }

V[1] = Y[1] + G;

/*--------------------The second step----------------------*/

U[1] = V[1] + MapPeriod*omega(&V[0]);

*time+= MapPeriod;
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/*--------------------The third step-----------------------*/

L=0;

GeneratingFunction(&V[0],&U[1],&(*time),&t_0,&F,&G,&F_J,&G_T);

theta=U[1]-G;

Iter2:

GeneratingFunction(&V[0],&theta,&(*time),&t_0,&F,&G,&F_J,&G_T);

f =theta-U[1]+G;

f_t=1.0+G_T;

Z[1]=theta-f/f_t;

L++;

if ((f_t LE 0) OR (L GT N_iter)) {sig2 = 0; goto exit; }

if (fabs(Z[1]-theta) GT eps_acc)

{theta=Z[1]; goto Iter2; }

Z[0] = V[0] + F;

exit: L = 0;

}

Two-dimensional variables (Y[0],Y[1]) and (Z[0],Z[1]) stand for the initial
(Ik, ϑk) and the final (Ik+1, ϑk+1) variables, respectively, and time stands for
tk. In the first step the map (F.4) is written as an algebraic equation,

f(Jk) = Jk − Ik + F (Jk, ϑk, tk) = 0 ,

with respect to variable Jk, and it is solved using the Newton-Raphson
method Press et al. (1992). The initial value of Jk in the iterative process
is taken J

(0)
k = Ik − F (Ik, ϑk, tk). The iteration is stopped in cases when

the sufficient accuracy, eps acc, is reached. It is interrupted if the derivative
f ′(Jk) becomes negative, or number of iteration exceeds some number N iter
(it is taken equal to 20).

Similarly, in the third step the map (F.6) the variable ϑk+1 is found as a
root of the algebraic equation

f(ϑk+1) = ϑk+1 − ψk +G(Jk, ϑk+1, tk+1) = 0 .

This procedure calls the subroutine GeneratingFunction (J, theta, time,
t0, F, G, FJ , GT ) in which the functions F (J, ϑ, t), G(J, ϑ, t) (F.7) and their
derivatives ∂F/∂J , ∂G/∂ϑ are calculated.

GeneratingFunction(J,theta,time,t_0,F,G,F_J,G_T)
LPLDOUBLE J,theta,time,t_0,F,G,F_J,G_T;
{

int m;
LDOUBLE S=0.0, S_J=0.0, S_th=0.0, S_thJ=0.0;
LDOUBLE phi_m,sinm,cosm,eps_t, x,x_J;
LDOUBLE mm;
Spectrum_Of_Perturbation(&(*J));
eps_t = - Epsilon * (*time-*t_0);

for ( m = M_1; m LE M_2; m++)
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{
mm = (LDOUBLE)m;
x = alpha(&(*J), m)*(*time-*t_0);
x_J = alpha_J(&(*J),m)*(*time-*t_0);
phi_m = fmod(mm* *theta - Omega* *time + phase, pi2);
sinm = sin(phi_m);
cosm = cos(phi_m);

/* S += Hm[m] * (a(&x) * sinm + b(&x) * cosm); */
S_th +=mm*Hm[m] * (a(&x) * cosm - b(&x) * sinm);
S_J += Hm[m] * (a_J(&x)* sinm + b_J(&x)* cosm)*x_J

+ Hm_J[m]*(a(&x) * sinm + b(&x) * cosm);
S_thJ+= mm*Hm[m]* (a_J(&x)* cosm - b_J(&x)* sinm)*x_J

+ mm*Hm_J[m]*(a(&x) * cosm - b(&x) * sinm);
}
*F = eps_t * S_th;
*G = eps_t * S_J;
*F_J = eps_t * S_thJ;
*G_T = *F_J;

}

This function procedure uses the predefined functions a(x), b(x), and α(x)
(F.9) which are defined below. To avoid singularities at the extremely small
value of x the functions a(x) and b(x) are expanded into series of powers of
x in a small neighborhood of x.

LDOUBLE alpha(LPLDOUBLE J, int m)
{ return((LDOUBLE)m*omega(&(*J))- Omega); }

LDOUBLE alpha_J(LPLDOUBLE J, int m)
{ return((LDOUBLE)m*omega_J(&(*J))); }

LDOUBLE b(LPLDOUBLE x)
{ LDOUBLE y2;
y2 = pow(*x,2.0);
if ( fabs(*x) LT 0.01 )
return(1.0-y2/6.0*(1-y2/20.0*(1-y2/42.0

*(1-y2/72.0*(1-y2/110.0)))));
else return(sin(*x)/ *x);

}
LDOUBLE b_J(LPLDOUBLE x)

{ LDOUBLE y2;
y2 = pow(*x,2.0);
if (fabs(*x) LT 0.01)
return(-*x/3.0*(1-y2/10.0*(1-y2/28

*(1-y2/54.0*(1-y2/88.0)))));
else return((cos(*x) - sin(*x)/ *x)/ *x);

}
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LDOUBLE a(LPLDOUBLE x)
{ LDOUBLE y2;
y2 = pow(*x,2.0);
if (fabs(*x) LT 0.01)
return(0.5* *x*(1.0-y2/12.0*(1-y2/30.0

*(1.0-y2/56.0*(1-y2/90.0)))));
else return((1.0-cos(*x))/ *x);

}
LDOUBLE a_J(LPLDOUBLE x)

{ LDOUBLE y2;
y2 = pow(*x,2.0);
if (fabs(*x) LT 0.01)
return( 0.5 - y2/8.0 *(1-y2/18.0*(1-y2/40.0

*(1-y2/70.0))));
else return((sin(*x)-(1.0-cos(*x))/ *x)/ *x);

}

Below we give an example program for calculating Poincaré section of
Hamiltonian system. Specifically, we consider the system with unperturbed
frequency of motion ω(I) = 1/I. The Fourier coefficients Hm(I) of the per-
turbation Hamiltonian are constants, Hm(I).

/* Mapping for plotting Poincare section */
#include <math.h>
#include <stdio.h>
#include "mapping.h"
/*-----------Global variables declaration---------*/
long tempOffset = 0;
long curPos = 0;

LDOUBLE Hm[50],Hm_J[50],Phase[50];
LDOUBLE Epsilon, Omega, time, phase;
LDOUBLE TimePeriod, MapPeriod, D_time;
LDOUBLE pi, pi2;
int M_1, M_2;
int sig1, sig2;

main(argc, argv )
int argc;
char *argv[];

{
FILE *startup, *outX;
int i,j,Trax,NumberOfTrax,MaxSteps;
int MapSteps;
BOOL AutoStart = FALSE;
LDOUBLE Y[4], Z[4];
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LDOUBLE J_i, J_f, theta_i, theta_f;
char tStr[30];
char XFileName[200];
memset(tStr,0,30);
memset(XFileName,0,200);

/*------------ loading initial values into -------------*/
if (argc NE 2)
{ printf("usage: map _XXXX.ini\n\r");
return 0; }

else
{ int namelen = strlen(argv[1]);

strncpy(tStr,&argv[1][1],namelen - 5);
XFileName[0] = ’x’;
strcat(XFileName,tStr);
strcat(XFileName,".dat"); }

if ((startup = fopen(argv[1],"rt")) NE NULL)
{float fl1 = 0, fl2 = 0, fl3 = 0;
fscanf(startup,"%d %d\n\r",&NumberOfTrax,&MaxSteps);
printf("NumberOfTrax= %d,MaxSteps= %d\n",

NumberOfTrax,MaxSteps);
fscanf(startup,"%f %f %f\n\r",&fl1,&fl2,&fl3);
Epsilon = fl1;
Omega = fl2;
phase = fl3;
printf("Epsilon=%5.2f Omega= %5.2f phase= %f\n",

Epsilon,Omega,phase );
fscanf( startup, "%d %d %d\n\r",&MapSteps, &M_1, &M_2);
printf("Step= %d M_1=%d M_2=%d\n\r",MapSteps,M_1,M_2);
fscanf( startup, "%f %f\n\r",&fl1, &fl2);
theta_i = fl1;
J_i = fl2;
fscanf( startup, "%f %f\n\r",&fl1, &fl2);
theta_f = fl1;
J_f = fl2;
printf("J_i= %f, J_f= %f\n",(float)J_i, (float)J_f );
printf("th_i= %f, th_f= %f\n",(float)theta_i,

(float)theta_f );
fclose( startup ); }

/*-------------defining Global variables------------------*/
pi = 4.0 * atan( 1.0 );
pi2 = 2.0 * pi;
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TimePeriod = pi2/Omega;
MapPeriod = TimePeriod/(LDOUBLE)MapSteps;

/*--------------------------------------------------------*/
if ( NumberOfTrax EQ 1 ) Trax = 1;
else Trax = 0;

for ( i = Trax; i LE NumberOfTrax; i++ )
{ long plotNumber=0;
sig1=1; sig2=1;
time=0.0;
Y[0]=J_i+(J_f-J_i)*(LDOUBLE)i/(LDOUBLE)NumberOfTrax;
Y[1]=pi2*(theta_i+(theta_f-theta_i)*(LDOUBLE)i

/(LDOUBLE)NumberOfTrax);
printf("J=%f theta=%f\n",Y[0],Y[1]);

DoIteration:
for (j = 1; j LE MapSteps; j++)

{
MappingStep(Y,Z,&time);
Z[1]=fmod(Z[1],pi2);
if (Z[1] LT 0.0) Z[1]+=pi2;
Y[0]=Z[0];
Y[1]=Z[1];
if ((sig1 EQ 0) OR (sig2 EQ 0) ) continue;
}

plotNumber++;
if (outX=fopen(XFileName,"a+t") )
{ fprintf(outX,"%e %e %e\n",time,Z[1]/pi2,Z[0]); }
fclose(outX);

if ( plotNumber GT MaxSteps )
{ printf("End of trax i=%d\n", i);
plotNumber=0;
continue; }

goto DoIteration;
}

printf( "end of computations\n" );
printf("\n");

}

The frequency of motion ω(I) and its derivative dω(I)/dI are defined by
the functions omega(I) and omegaJ(I). The procedure SpectrumOfPertur-
bation(J) defines the perturbation spectrum H(I).

LDOUBLE omega(LPLDOUBLE J)
{ return( 1.0/ *J ); }

LDOUBLE omega_J(LPLDOUBLE J)
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{ return(-1.0/pow(*J,2.0)); }

Spectrum_Of_Perturbation(LPLDOUBLE J)
{ int m;
for (m = M_1; m LE M_2; m++ )

{ Hm[m] = 1.0;
Hm_J[m] = 0.0; }

}

The above program uses a heading file “mapping.h”, where the definitions
of some operations and functions are given:

#define FAR _far
#define FALSE 0
#define TRUE 1

#define AND &&
#define OR ||
#define EQ ==
#define NE !=
#define LE <=
#define LT <
#define GE >=
#define GT >
#define ENDIF
#define VER -100
#define HOR -101
#define ROUND_UP -102
#define min(a,b) (((a)<(b)) ? (a) : (b))
#define max(a,b) (((a)>(b)) ? (a) : (b))
typedef struct tgRECT { float left;

float top;
float right;
float bottom;} FRECT;

typedef FRECT * LPFRECT;
typedef struct tgPOINT { float x; float y;} FPOINT;
typedef FPOINT * LPFPOINT;
typedef double LDOUBLE;
typedef int BOOL;
typedef LDOUBLE * LPLDOUBLE;
typedef LDOUBLE ** LP2LDOUBLE;

/*----------- Definition of functions ----------------*/
LDOUBLE omega(LPLDOUBLE x);
LDOUBLE omega_J(LPLDOUBLE x);
LDOUBLE alpha(LPLDOUBLE,int);
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LDOUBLE alpha_J(LPLDOUBLE,int);
LDOUBLE a(LPLDOUBLE);
LDOUBLE a_J(LPLDOUBLE);
LDOUBLE b(LPLDOUBLE);
LDOUBLE b_J(LPLDOUBLE);

Finally we give an example of a file with initial data of parameters.

0010 1000
0.0010000 1.00000 0.0000000
2 1 10
0.100000 1.050000
0.200000 9.050000
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transport in a magnetically confined plasma”, Il Nuovo Cimento, 103, 659–668.

Bazzani, A., Di Sebastiano, A., and Turchetti, G. (1998) “Diffusion of magnetic
field lines a confined RFP plasma”, Il Nuovo Cimento, D 20, 1795–1818.

Bénisti, D. and Escande, D.F. (1997) “Origin of diffusion in Hamiltonian dynamics”
Phys. Plasmas, 4, 1576–1581.

Bénisti D. and Escande D.F. (1998) “Nonstandard diffusion properties of the stan-
dard map” Phys. Rev. Lett., 80, 4871–4874

Benkadda, S., Sen, A., and Shklyar, D.R. (1996) “Chaotic dynamics of charged
particles in the field of two monochromatic waves in a magnetized plasma”,
Chaos, 6, 451–460.

Benkadda, S., Kassibrakis, S., White, R.B., and Zaslavsky, G.M. (1997a) “Self-
similarity and transport in the standard map”, Phys. Rev. E 55, 4909–4917.

Berg, S.J., Warnock, R.L., Ruth, R.D., and Forest, É. (1994) “Construction of
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