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Preface 

This school, "Internationale Universit~tswochen ffir Kern- und Teil- 
chenphysik", was founded in 1962. Our insight into details of the zoo 
of elementary particles has changed considerably since then, as has 
our notion of what an elementary particle may be. Some particles 
have been called elementary, like the hadron, but now we understand 
them in terms of building blocks, the quarks and gluons. Some of 
them - the leptons - are still considered elementary. The invited 
lectures at the school were intended to survey methods predicting 
properties of elementary particles. Today's wisdom does not allow 
us to compute ab initio all properties of particles like leptons and 
quarks. However, our understanding of the standard model and in 
particular of QCD has reached a state where many features can be 
computed from the theory with little further input, at least to some 
approximation. At the same time we wanted to present a summary 
of the state-of-the-art knowledge about these quantities from the 
phenomenological point of view. 

Some lectures were about the lattice approach to QCD: Christine 
Davies lectured on the heavy hadron spectrum and NRQCD, Rainer 
Sommer on the QCD running coupling constant, Don Weingarten 
on algorithms and the QCD spectrum. Ling-Fong Li talked about 
the proton spin and the chiral quark model, Serguey Petcov covered 
neutrinos, and Fabio Zwirner lectured about supersymmetric exten- 
sions of the standard model. Finally Peter Zerwas presented a review 
of Higgs physics. 

We thank all lecturers for their efforts at the school. Unfortu- 
nately, the editors had to wait a considerable time for some of the 
contributions and we want to apologize to the other lecturers and to 
the readers for this delay. We are grateful to the series editor for his 
patience! 



VI 

We want to express our thanks to the lecturers and participants 
for the stimulating atmosphere at Schladming. We also thank our 
principal sponsor, the Austrian Ministry of Science and Traffic; we 
were generously supported by the Government of Styria. Helpful sup- 
port and assistance came from the town of Schladming, the Wirt- 
schaftskammer Steiermark (Sektion Industrie), Steyr-Daimler-Puch 
AG Graz, Mercedes-Benz AG Graz and Minolta-Austria GmbH, 
Graz. It takes many people to run such a meeting: We thank our 
colleagues and students for their help. 

Graz, 
May 1998 

C. B. Lang (Director of the School) 
H. Gausterer (Scientific Secretary) 
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The Heavy Hadron Spectrum 

Christine Davies 

Department of Physics and Astronomy, University of Glasgow, 
Glasgow, G12 8QQ, UK 

Abstract.  I discuss the spectrum of hadrons containing heavy quarks (b or c), and 
how well the experimental results are matched by theoretical ideas. Useful insights 
come from potential models and applications of Heavy Quark Symmetry and these can 
be compared with new numerical results from the ab initio methods of Lattice QCD. 

1 I n t r o d u c t i o n  

The fact that we cannot study free quarks but only their bound states makes 
the prediction of the hadron spectrum a key element in testing Quantum Chro- 
modynamics as a theory of the strong interactions. This test is by no means 
complete many years after QCD was first formulated. 

The 'everyday' hadrons making up the world around us contain only the 
light u and d quarks. In these lectures, however, I concentrate on the spectrum 
of hadrons containing the heavy quarks b and c (the top quark is too heavy to 
have a spectrum of bound states, see for example Quigg (1997a)) because in 
many ways this is better understood than the light hadron spectrum, both ex- 
perimentally and theoretically. The heavy hadrons only appear for a tiny fraction 
of a second in particle accelerators but they are just as important to our under- 
standing of fundamental interactions as light hadrons. In fact the phenomenology 
of heavy quark systems is becoming very useful; particularly that of B mesons. 
The study of B decays and mixing will lead in the next few years, we hope, to 
a complete determination of the elements of the Cabibbo-Kobayashi-Maskawa 
matrix to test our understanding of CP violation. CKM elements refer to weak 
decays from one quark flavour to another but the only measurable quantity is 
the decay rate for hadrons containing those quarks. To extract the CKM element 
from the experimental decay rate then requires theoretical predictions for the 
hadronic matrix element. We cannot expect to get these right if we have not pre- 
viously matched the somewhat simpler theoretical predictions for the spectrum 
to experiment. 

Here I will review the current situation for the spectrum of bound states 
with valence heavy quarks alone and bound states with valence heavy quarks 
and light quarks. The common thread is, of course, the presence of the heavy 
quark, but we will nevertheless find a very rich spectrum with plenty of variety 
in theoretical expectations and phenomenology. A lot of the recent theoretical 
progress has been made using the ab initio techniques of Lattice QCD. These are 
described elsewhere (Weingarten (1997)) along with recent results from Lattice 
QCD for the light hadron spectrum. 
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Quark model notation for the states in the meson spectrum will prove useful 
(baryons will not be discussed until section 3). The valence quark and anti-quark 
in the meson have total spin, S --- 0 or 1, and relative orbital angular momentum: 
L. The total angular momentum, which becomes the spin of the hadron, J = 
L + S. The meson state is then denoted by n2S+lLj where n is the radial 
quantum number, n is conventionally given so that  the first occurrence of that  
L is labelled by n=l (i.e. n + l  is the number of radial nodes). L = 0 is given the 
name S, L -- 1, the name P,  etc. To give jPC quantum numbers for the state 
(the only physical quantum numbers) we need the facts that  P = ( -1 )  L+I and: 
for C eigenstates, C = ( -1 )  L+S. In Table 1 a translation between 2S+ILj and 
jPC is provided. 

2Z+ILj jPC 

1So 0-+ 
3SI l - -  
~PI 1 +- 
3po 0 ++ 
3p1 1 ++ 
3p2 2 ++ 

Table 1. j p c  quantum numbers for quark model S and P states 

The ordering of levels that  we see in the meson spectrum ( The Particle Data  
Group (1996)) is generally the naive one i.e. that  for a given combination of quark 
and anti-quark adding orbital or spin momentum or radial excitation increases 
the mass. This is clearer for the heavy hadrons since, because of their masses 
and properties, the quark assignments are unambiguous. For heavy hadrons it is 
also true, for reasons that  I shall discuss, that the splittings between states of the 
same L but  different S are smaller than the splittings between different values 
of L or n. To separate this fine structure from radial and orbital splittings it is 
convenient to distinguish spin splittings from spin-independent or spin-averaged 
splittings. Spin-averaged states are obtained by summing over masses of a given 
L and n, weighting by the total number of polarisations i.e (2J  + 1). Examples 
are given below - they will be denoted by a bar. 

In Section 2 I begin with the phenomenology of mesons containing valence 
heavy quarks, the heavy-heavy spectrum. I shall discuss potential model ap- 
proaches to predicting this spectrum as well as more direct methods recently de- 
veloped in Lattice QCD. Section 3 will describe heavy-light mesons and baryons, 
both from the viewpoint of Heavy Quark Symmetry ideas and from Lattice QCD, 
using techniques successful in the heavy-heavy sector. Section 4 will give conclu- 
sions and the outlook for the future. 
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2 The Heavy-Heavy Spectrum 

Figure 1 shows experimental results for bb and c~ bound states (The Particle 
Data  Group (1996)). They have been fitted on to the same plot by aligning 
the spin-average of the 13PoA,2 states (Xb and Xc). The spin-average X mass is 
defined by 

1 [M(3p0 ) + 3M(3pt  ) + 5M(3p2)] (1) M ( ~ )  = 

and this has been set to zero in both cases. The overall scale of bb meson masses 
is much larger than for c~ but we see that  this simply reflects the larger mass of 
the b quarks. The lightest vector state for bb is the T produced in e+e - collisions 
with a mass of 9.46 GeV. Its radial excitations are known as T' or T(2S),  T" or 
T(3S) and so on. The radial excitations are separated from the ground state by 
several hundred MeV. For c~ the lightest vector state is the J/¢ or ~(1S) and 
this has a mass of 3.1 GeV. Its radial excitations are the ~' or ¢(2S)  and so on. 
Since the scale of Figure 1 spans 1 GeV it is clear that  the splittings between 
states in both systems are very much smaller than the absolute masses of the 
mesons. 

[MeV] 
500 

-500  

.~i3_sl 

c /1%7_70) 
!(zs) _~Iz_sl 

- _~=(2s_) 

L_ S - s t a t e s  ' P - s t a t e s  

Fig. 1. The experimental heavy-heavy meson spectrum relative to the spin-average of 
the Xb(1P) and Xc(1P) states (The Particle Data Group (1996)). 

It is also clear from Figure 1 that  the radial excitations of the vector states 
in the two systems match each other very closely. In fact so closely that  the 
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¢(3770) which has vector quantum numbers cannot be fitted into a scheme of 
radial excitations of the g2 system. It is thought to be not an S state but a D 
state (Rapidis et al (1977)). No bb D candidates have yet been seen). 

The matching of radial excitations is even better if we consider spin-averaged 
S states, 

1 
M(S)  = ~ [M(1So) + 3M(3S1)] . (2) 

The 1S0 state has only been seen for c~ and is denoted ~ .  The 7k(1S ) lies below 
the vector state by 117 MeV and so the spin-average lies one quarter of this 
below the J/g2. As we shall see, this spin splitting in the bb system is expected 
to be much smaller. If we take a reasonable value for M(Y) - M ( ~ )  of 40-50 
MeV (see later), we would find the 1S levels on Figure 1 to be aligned to within 
10 MeV despite a difference in overall mass of a factor of 3. Similar arguments 
apply to the alignment of the 2S levels, although the agreement achieved there 
is not quite as good. 

The spin splittings within the Xb(1P) states ()/bo,)/bl, )~b2) are much smaller 
than those within the X~(1P) states, so that  the spin splittings do depend on 
the heavy quark mass, mv,  quite strongly. For example, we can take the ratio 
for 1P levels: 

M(Xb2) - M(xbo) 53MeV 
- - -  - 0 . 3 s ( 1 ) .  ( 3 )  

M(;~2) - M(;~0) 141 MeV 

Naively this looks very similar to the ratio of b and c quark masses if we take 
these to be approximately half the mass of the vector ground states, T and 
J/g2. Then mc/mb ~ 0.33. This might imply a simple 1/mQ dependence for spin 
splittings. However, the ratio between bb and c~ does depend somewhat on the 
splitting being studied, indicating a more complicated picture. We have : 

~ / / ( X b l )  - -  M()(_bO) = 0.34(2), (4) 
- M(x o) 

and 
M(Xb2) - M(Xbl) = 0.47(2). (5) 
M ( x c 2 )  - M( cl) 

The arrows shown on Figure 1 mark the minimum threshold for decay into 
heavy-light mesons, B B  for bb and D D  for c~. Three sets of S states and two sets 
of P states have been seen below this threshold for bb and two sets of S states 
and one set of P states for c~. Another set of P and two sets of D states are 
expected for bb (Eiehten (1980), Kwong and Rosner (1988)). The states below 
threshold are very narrow since the Zweig-allowed decay to heavy-light states 
(see Fig. 2) is kinematically forbidden and they must decay by annihilation. This 
carries a penalty of powers of the strong coupling constant, a~(MQ). These are 
then the states that  we will concentrate on, because they can be treated as if 
they are stable (and none of the approaches which we will discuss allow them 
to decay). Vector states above threshold can still be seen in the e+e - cross- 
section as bumps but they are much broader and the theoretical understanding 
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hh 

hl 

hl 

Fig. 2. Decay of a heavy-heavy meson to heavy-light mesons above threshold. 

of their masses requires a model for the inclusion of decay channels in the analysis 
(Eichten et al (1978), Ono et al (1986)). 

How can we understand the heavy-heavy spectrum below threshold? The 
fact that  all the splittings are very much less than the masses, noted above, is 
critical. It implies that  dynamical scales, such as the kinetic energy of the heavy 
quarks, are also very much less than the masses i.e. the quark velocities are 
non-relativistic, v 2 << c 2. Typical gluon momenta will be of the same order as 
typical quark momenta, mQv. Thus typical gluon energies, mQv, are very much 
larger than typical quark kinetic energies, mQv 2 (Thacker and Lepage (1991)). 
The gluon interaction between heavy quarks will then appear 'instantaneous'. It 
can be modelled using a potential and energies found by solving Schrhdinger's 
equation. In the extreme non-relativistic limit of very heavy quarks the spin 
splittings vanish. This was noticed above in the relation between bb and c~ split- 
tings and will be discussed in more detail later. In this limit we need only a single 
spin-independent central potential to solve for the spin-averaged spectrum of 
and P states defined above. For a recent review of the history of the heavy quark 
potential see Quigg (1997b). 

2.1 The Spin-Independent Heavy Quark Potential 

Perturbat ion theory for QCD gives a flavour-independent central potential based 
on 1-gluon exchange, which has a Coulomb-like form, 

(6) V ( r ) -  3 r 

where r is the radial separation between the two heavy quarks and as is the 
strong coupling constant. The Coulomb potential cannot be the final answer 
because it would allow free quarks to escape. In addition it gives a spectrum 
incompatible with experiment in which the 1P level is degenerate with 2S. 

For a potential of the form V ~ r N with 2 > N > 0 we have a 1P level 
below 2S, as we observe, and a 1D level above 2S (as we see for charmonium). 
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So, the addition of some positive power of r to the Coulomb potential can rescue 
the phenomenology (Grosse and Martin (1980)). The additional term is usually 
taken to be linear in r and thought of as a 'string-like' confining potential. This 
gives the simple Cornell potential of Eichten et al (1975): 

V ( r ) -  4 a s  + a r  (7) 
3 r  

with a called the 'string tension'. This can reproduce the observed spectrum 
reasonably well. Other successful forms for the heavy quark potential are the 
Richardson potential (Richardson (1979)): 

v(r )  f - 3  (8) = a qe - 47~q ~ , 

in which a running strong coupling constant is included with non-perturbative 
behaviour at small q2 (see also Buchmiiller and Tye (1981)), and the Martin 
potential (Martin (1980), Grant, Rosner and Rynes (1993)): 

V ( r )  = Ar ~ with u ~ 0. (9) 

This last form, essentially a logarithmic potential (Quigg and Rosner (1977)), 
has no QCD motivation but is simply observed to work. All three potential 
forms can reproduce the bb and ce spin-averaged spectra reasonably well if the 
parameters are chosen appropriately. When this is done it is observed that  the 
potentials themselves agree in the region r ~ 0.1 - 0.8 fm in which the 
for the bound states sit (Buchmiiller and Tye (1981)). 

It is interesting to compare the dependence of the energies of the states on 
the mass of the heavy quark, rnQ, in different potentials. This can be done 
for homogeneous polynomial-type potentials easily (see, for example Quigg and 
Rosner (1979), Close (1979)). Schr6dinger's equation for the wavefunction ~P is: 

- + = (10) 

E is the energy eigenvalue and #, the reduced mass, m Q / 2  for the heavy-heavy 
case. For V = Ar  y we can reproduce the same solution at different values of 
mQ if we allow for a rescaling r ~ At. With this rescaling in place 

{ -h2V 2 + A2p)~N+2r N } kP()~r) = 2p~2E~(~r ) .  (11) 

The same solution (with rescaled r) will occur for different values of mQ if 

)~ c (#-1 / (2+N) .  (12) 

This gives a solution for E which varies as 

E o~ mQ N/(2+N) (13) 
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The values of E (and therefore splittings) will then be independent of mQ, as 
observed approximately, for N = 0. This corresponds to the Martin potential. 
The same result can be achieved by mixing N = 1 and N = -1 in the Cornell 
potential. Note that  the Feynman-Hellmann Theorem guarantees that  bound 
states fall deeper into the potential as the mass increases, OE/cg# < 0 (Quigg 
and Rosner (1979)). For N > 0, E falls with me ;  for N < 0, E increases in the 
negative direction. 

The Virial Theorem is helpful in extracting some dynamical parameters. It 
relates the mean kinetic energy to the expectation value of a derivative of the 
potential (see for example Quigg and Rosner (1979)): 

1 dY (14) <K> = 

for homogeneous potentials. For N ~ 0 i.e. V ~ iogr we get K = a constant. 
Since 

/)2 
K = - -  (15) 

2# 

this tells us that 
(p2) (16) 

and 
2(K>m2 (17) ?2 2 ~___ 

ml (ml + m2)ml 

for a meson made of different quarks of masses m~ and m2. v~i is the velocity 
of the quark of mass mi in the bound state. From fits using potential models a 
value of (K) of 0.37 GeV is found (Quigg and Rosner (1979)), giving 

?j 2 

c i n ~ ,  ~- ~ 0.24, 

v 2 
b in T, ~-~ ~ 0.07. 

The quarks are non-relativistic as we originally expected. For the logarithmic 
potential we also have the result that  v 2 is independent of the radial excitation. 
For a Coulomb potential (p2) decreases with increasing n, whereas for a linearly 
rising potential, (p2) increases with increasing n. 

Potential model calculations of the bottomonium and charmonium spectra 
are reasonably successful. See Eichten and Quigg (1994) for a recent exam- 
ple, whose results are plotted in Figure 3. These include not only the central 
(Richardson) potential discussed here but also (perturbative) spin-dependent 
potentials to be described in section 2.2 to get spin splittings. In Eichten and 
Quigg (1994) parameters of the potential were fixed from a subset of states in 
the experimental cE spectrum. Typical deviations from experiment for the rest 
of the c~ spectrum were 30 MeV; typical deviations in the bb spectrum were 
25 MeV. Since the b quark is significantly more non-relativistic in its bound 
states than the e quark one might expect to get bet ter  agreement for the bb 
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[MeV] 

500 

-500 

_#la_s). T(~s) 
o 

T(1D~ _,(37v)) 
-g-- 

x~(Ip) g~(IP) _~o!l_P) h~(!P) 

r(ls) _~./$ . 

L J I 

S -s t a t e s  P - s t a t e s  

Fig. 3. The heavy-heavy meson spectrum from a recent Richardson potential model 
calculation (Eichten and Quigg (1994)). Circles and bursts show the calculated masses 
relative to the spin average of the Xb(1P) and Xc(1P) states and the solid and dashed 
lines show experiment results, where they exist. 

spectrum using fitted parameters  from that  system. However, agreement for the 
cff spectrum would then be worse. In either case it is necessary to fit the param- 
eters of the phenomenological potential from some experimental  information. 
Instead, the central potential V(r )  can be extracted from first principles using 
the techniques of lattice QCD. 

In the mQ ~ oo limit the heavy quark is static. Its world line in space- 
t ime becomes a line of QCD gauge fields in the time direction. In Lattice QCD 
we break up space-time into a lattice of points and represent the gauge field 
by SU(3) matrices, U (Weingarten (1997), Montvay and Miinster (1994)). The 
static quark propagator  then becomes a string of U matrices, as in Figure 4. 

0 ~ ~ : , *  T 

Fig. 4. The world line of a heavy quark on the lattice. 
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We can put a quark and antiquark together and join them up into a closed, 
and therefore gauge-invariant loop, called a Wilson loop (Figure 5). The value 
of the Wilson loop can be measured on sets of gauge fields {U} where a gauge 
field is defined on every link of the lattice. These are called configurations. The 
physically useful quantity is the matrix element of the Wilson loop between vac- 
uum states and this is obtained by averaging values of the Wilson loop over an 
ensemble of configurations where each configuration has been chosen as a typical 
snapshot of the vacuum of QCD. To obtain such an ensemble we mus t  gener- 
ate configurations with a probability weighting e -sQcD and there are standard 
techniques to do this (Weingarten (1997), Montvay and M/inster (1994)). 

} 

Fig. 5. A Wilson loop. The Trace is over colour indices. 

The expectation value over such an ensemble of gauge fields of a Wilson loop 
of spatial size R is related to the heavy quark potential V ( R ) .  This is because 
the ensemble average is a Monte Carlo estimate of the path integral giving the 
matr ix element of the operator which creates and destroys a static heavy quark 
pair at separation R on the lattice. The matrix element becomes exponentially 
related to the ground state energy of the quark anti-quark pair as the time extent 
of the Wilson loop, T, tends to infinity. Since R is fixed, and the quarks in this 
picture have no kinetic energy, this is simply the potential V(R) plus an additive 
self-energy contribution. 

(Wilson Loop) = f / )UWi l sonLoop(U)e  - s Q c °  (18) 
f D U e  - s Q c °  

= (Ol[¢t(o)xt(R)]t=o[¢(O)x(R)]t=TI O) 
T--~. ~:~ 

-~ I<01¢(0)x(R)Iground state)]2e-ET + higher order terms 

E = Vlatt(R) = V ( R )  + c o n s t a n t .  

How is the calculation done? Once the ensemble of gauge field configura- 
tions has been generated, Wilson loops of various different sizes in R and T are 
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measured and average values of W(R,  T) obtained. There is a statistical error 
associated with the number of configurations in the ensemble, i.e. how good 
an estimate of the path integral has been obtained. For a fixed R, W(R,  T) is 
fitted to the exponential form above in the large T limit, extracting E. Away 
from T = oc higher order terms should be included in the fit which are ex- 
ponentials of excitations of the potential. There are a number of techniques to 
improve the values of E obtained, both the statistical error and any systematic 
error from fitting to an exponential form (see, for example, Bali, Schilling and 
Wachter (1997a)). Several of the techniques are similar to those used in direct 
calculations of the spectrum and are discussed in section 2.3. 

Once Vlatt (R) is obtained it can either be used directly or a functional form in 
terms of R can be extracted to inform the continuum potential model approaches 
described above. The functional form usually used is that  of the Cornell potential 
with e = 4a8/3 and an additive constant, I~: 

e 
V~att(R) = aR - ~ + I~ . (19) 

The fit then yields the parameters a, e and ~ .  e is generally taken as a constant, 
although it is possible to determine the running coupling constant as(R) from 
the short distance potential (UKQCD (1992b)). Often the running is mimicked 
by keeping ¢ constant and adding an additional term, f i r  2, This affects slightly 
the value of e obtained, as does the range of R included in the fit. A Martin form 
plus a constant, equation 9, does not fit ~'~att (Bali, private communication). 

It is important  to remember that  t~ t t ,  being obtained from the lattice, is 
measured in lattice units. To convert to dimensionful units of GeV we need to 
know the lattice spacing, a. This requires one piece of experimental information 
(see below). The separation, R, is also measured in lattice units, corresponding 
to a physical distance r -- Ra in fro. Thus the continuum potential V is obtained 
by 

V ( r  = R a )  = V ~ , ( l ~ )  × a -~  . (20) 

However this expression should contain on the r.h.s, only the physical pieces of 
Vlatt and not V~. 

Vc is an unphysical constant which resets the zero of energy. It arises from 
corrections to the static quark self-energy induced by gluon loops sitting around 
the perimeter of the Wilson loop. These give a contribution to the logarithm of 
the Wilson loop proportional to its perimeter, 14(2R + 2T)/2.  Thus the term 1~ 
appears as part  of Vi~tt. In perturbation theory ~ is a power series in the coupling 
constant as,  starting at O(as) ,  but is otherwise a constant in lattice units. From 
equation 20, its contribution to the continuum potential diverges on the approach 
to the continuum limit, a -~ 0, and it should be subtracted from l'}~te before 
equation 20 is applied. Another way to look at this is to notice that  the heavy 
quark potential on the lattice is forced to zero at zero separation, I~},,~(0) = 0, 
when the Wilson loop collapses to two lines on top of one another. Because the 
U matrices are unitary we get (WilsonLoop) -~ 1 = e °. However, the continuum 
potential diverges in Coulomb fashion at zero separation so that V(O)a # O. The 
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physical pieces of the lattice potential will reproduce the continuum behaviour so 
to get Vtatt(O) = 0 will require an additive constant to shift the whole potential 
upwards. This is Vc. 

~ = 6 . 0  . . . . .  
~ = 6 . 2  . . . .  

I I I I I 

0.5 1 1.5 2 2.5 3 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

o 

o 
v > 
A.. 
v > 

r/r o 

Fig. 6. The heavy quark potential obtained from the lattice at two different values of 
the lattice spacing in the quenched approximation. The solid line is a fit of the form 19 
(Bali, Schilling and Wachter (1997a)). The potential and separation are given in units 
of the parameter r0 (see text). 

Figure 6 shows recent results for the lattice potential plotted with the fit- 
ted form above, (19). The parameters extracted can be compared to those of 
phenomenological potentials. 

The Coulomb coefficient, e, is dimensionless and needs no multiplication by 
powers of the inverse lattice spacing to get a physical result, e is the coefficient 
of the 1/R term but the discrete nature of the lattice changes 

1 4:r e iqR qi 
--R ~ L-3 Zq¢o E i  ~/2, 0~ = 2sin-ff . (21) 

Notice that  this lattice form of 1/R is not rotationally 
spacing there are two alternatives. One is to fit this 
1/R; the other is to correct for the discretisation errors 
SQCD which gave rise to them (Lepage (1996)). 

invariant. At finite lattice 
modified 'lattice' form of 
in the naive lattice action, 
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Most precision lattice calculations of the heavy quark potential have worked 
in the quenched approximation in which only the gluonic terms are included in 
SQCD. This is equivalent to ignoring quark-antiquark pairs popping in and out 
of the vacuum (Weingarten (1997), Montvay and Mfinster (1994)). Recent calcu- 
lations (Bali, Schilling and Wachter (1997a), Bali and Schilling (1992), UKQCD 
(1992a)) have given a value of e around 0.3, which is rather smaller than the 
values that  phenomenological potentials have used. For example, Eichten and 
Quigg (1994) use e = 0.54 in their Cornell potential fits. Par t  of this discrepancy 
can be traced to errors in the quenched approximation. When no q~ pairs are 
available in the vacuum for screening, the strong coupling constant will run to 
zero too fast at small distances. Thus 

~(r)Q A < ~(~)fuH~h~o~,, 

V(r)QA. > V(r)fuH~h~o~y 

when V(r) is dominated by the Coulomb term. Calculations of the heavy quark 
potential that  have been done on unquenched configurations (which usually con- 
tain two flavours of degenerate massive quarks in the vacuum, still not entirely 
simulating the real world), indicate that  e is increased by about 10%. This gives 
a steeper potential at short distances, as in Figure 7. SESAM (1996) find eQ.A. 
= 0.289(55) and e~,~q . . . .  h~d = 0.321(100) without the use of the f / R  2 term 
in Equation 19. This doesn't then explain all of the difference between lattice 
values of e and phenomenological continuum values. 

Phenomenological potentials also implicitly include some relativistic correc- 
tions to the static picture that  can be modelled simply as r-dependent additional 
potentials. The first such corrections contain a term inversely proportional to the 
square of the heavy quark mass multiplying a Coulomb potential, and therefore 
altering the effective value of e in an mQ-dependent way. The coefficient of these 
corrections can be calculated on the lattice (Bali, Schilling and \Vachter (1997a)). 
It is found that  e becomes e + b/m~ where b = (0.86(5)GeV) 2, giving a signifi- 
cant increase (35%) to the effective value of e for charmonium but no change for 
bottomonium. This is illustrated in Figure 8, and supports the phenomenological 
use of different values for e in the two systems as a flavour-dependent dynamical 
effect. 

The string tension, a, describes the strength of the linearly rising part of the 
potential. It is dimensionful, so a l e r t  = aa 2. Using values of a from phenomeno- 
logical potentials ( Eichten and Quigg (1994) use x/~ ~ 0.43 GeV) allows us to 
fix a on the lattice and then convert all other dimensionful quantities to physical 
units. However, a and e are anti-correlated from the fitted form used in equation 
19 and this gives some bias. It is better to use instead the value r0 obtained by 
setting r2F(r) to a fixed value. F(r) is the interquark force, obtained by differ- 
entiating the potential, and a suitable fixed value is 1.65 which corresponds to 
ro ~ 0.5 fm ( -  2.5GeV - I  when hc = 1) (Sommer (1994)). Ensembles at different 
values of a are obtained by using different bare coupling constants in the action, 
SC2CD (Weingarten (1997), Montvay and Miinster (1994)). However, the value of 
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Fig. 7. A comparison of the short-distance heavy quark potential obtained from the 
lattice on quenched and unquenched configurations by the SESAM collaboration. The 
potential and separation are given in units of the parameter r0 (see text). Figure 
provided by Gunnar Bali. 

a for a given value of the bare coupling constant is not known a priori but has to 
be obtained by calculating a dimensionful parameter and comparing to experi- 
ment (or, in the case of a or r0 above, to phenomenology). Fixing a is a critical 
step in a lattice calculation and introduces additional systematic and statistical 
errors into the quoted physical results. In the quenched approximation the value 
of a for a given gauge coupling, fl, will depend on the experimental quantity 
chosen to fix it, and so it is important  to know what quantity was chosen when 
looking at lattice results. This point will be discussed further later• 

Given a value for a, Vl~, - Vc can be converted to GeV at separations, r, in 
fm ( -  GeV-1).  This is then the physical heavy quark potential and it should be 
independent of the lattice spacing at which the calculation was done. Figure 6 
shows that  this is true for current lattice results. 

Using the fitted form for the potential, the spectrum can be calculated by 
solving SchrSdinger's equation in the continuum (Bali, Schilling and Wachter 
(1997a)). The heavy quark mass and the overall scale (given by the string ten- 
sion) need to be adjusted to optimise the fit to experiment. Including the rela- 
tivistic corrections to the potential described above and adjusting the value of 
e to mimic an unquenched result, yields average deviations from experiment of 
around 10 MeV for bottomonium and rather larger, as expected, 20 MeV for 
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Fig. 8. A comparison of the heavy quark potential obtained from the lattice including 
the first relativistic corrections which yield an too-dependent Coulomb term. The static 
(mQ --+ co) potential is given by the solid line and those for b and c by dashed lines. 
Figure provided by Gunnax Bali, see Bali, Schilling and Wachter (1997a). 

charmonium. The remaining systematic errors in the lattice potential (see sec- 
tion 2.2) could cause shifts of this size for bottomonium and make the 20 MeV 
deviations for charmonium look rather fortuitous. 

Exercise: Discuss how you would expect the potential appropriate to 
heavy baryons to behave. How would you calculate this on the lattice? 
(Thacker, Eichten and Sexton (1988)). 

2.2 The Spin-Independent Heavy Quark Potential 

As described above, the infinitely massive heavy quark is only a colour source; it 
carries no spin. To obtain spin splittings then we must move away from the static 
picture. A useful starting point is a non-relativistic expansion of the Dirac La- 
grangian which is appropriate for heavy quarks in heavy-heavy systems (Thacker 
and Lepage (1991)). This can be obtained by a Foldy-Wouthuysen-Tani trans- 
formation of the Dirac Lagrangian in Euclidean space (see for example Itzykson 
and Zuber (1980)): 

/: = Ct (Dr D2 
2mQ (22) 
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c (D2)2 ig 
- 18-~--Q + c 2 Q - - ~ f f - ( D . E - E . D  ) 

~mQ 

c 3 8 g ~ t r ' ( D × E - E × D  ) -  ~ . B  .)~. 
- -  ~ C4 2 ~ Q  Cr . .  

¢ is a 2-component spinor with heavy quark and anti-quark decoupled. The 
mass term C t m Q ¢  has been dropped. D is a covariant derivative coupling to the 
gluon field and E and B are chromo-electric and chromo-magnetic fields. The 
rest of the QCD Lagrangian for light quarks and gluons remains as usual. 

The terms in the Lagrangian can be ordered in powers of the squared velocity 
of the heavy quark using the following power counting rules for momentum and 
kinetic energy (Lepage et al (1992), Bodwin et al (1995)): 

D .., p ... mQv  

K ,.~ mQv  2 

Then from the lowest order field equation 

we have 

D 2 
(cgt - igA4 - ~-----)~ = 0 

zmQ 
(23) 

gA4 "~ cgt "~ K = mQV 2 , 

- - igei jkB k = [Di, Dj] ~ K 2 = m ' ~ v  4 . 

In /: we then see that  the leading order terms on the first line of equation 
22 are O ( m Q v  2) and these give spin-independent splittings in the heavyonium 
spectrum. On the second line are spin-independent terms of O ( m Q v  4) which are 
relativistic corrections to the leading terms. On the third line are spin-dependent 
terms also of O(mQv4) .  These are the leading terms as far as spin-splittings are 
concerned. So, as discussed earlier, spin splittings should be O(v  2) times smaller 
than spin-independent splittings. This is equivalent to 1 /mQ behaviour, with a 
roughly constant kinetic energy, giving around 120 MeV for c~ and 40 MeV for 
bb. Note that  the a • (D × E) and v~ • B spin-dependent terms are of the same 
order because the chromo-magnetic field is suppressed by one power of v over 
the chromo-electric field in the power counting. 

Following these power-counting rules the number of operators to be included 
in £: can be truncated at a fixed order in v2/c  2 and this is obviously a sen- 
sible thing to do if v2/c  2 << 1. In describing heavy-heavy systems with this 
Lagrangian, however, we have lost the renormalisibility of QCD. To obtain use- 
ful results we must put in a cut-off, A, to restrict momenta to p < A < mQ. The 
excluded momenta e.g. in gluon loops will reappear as a renormatisation of the 
coefficients of the non-relativistic operators, the c~ of equation 22. The c~ can 
be calculated in perturbation theory (since they are dominated by ultra-violet 
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scales for A >> AQCD) by matching low energy scattering amplitudes of (22) to 
full QCD to some order in as and p/mQ. The ci are all one at tree-level. 

I will describe two different, but related, approaches to the study of spin 
splittings in heavyonium. One is to take t; of equation 22 and discretise it directly 
on the lattice - this is the NonRelativistic QCD approach (Thacker and Lepage 
(1991)). The second is to develop spin-dependent potentials from £ to add into 
a Schr6dinger equation, H ~  = E¢ ,  and solve for the splittings. 

2 2 p4 

H = ~ I { =  2rni p" - c t  + Vo(r) + L, Sl ,  (24) 

where Vo(r) is the central potential from section 2.1 and I~d includes the spin- 
dependent potentials. Again one can take a phenomenological approach to the 
spin-dependent potentials, or extract them from the lattice. I will describe the 
potential approach first and then return to NRQCD in the next subsection. 

A ,  

/ / 
R 

Fig. 9. The ratio of expectation values required for the spin-dependent potentials. /'1 
and F2 represent insertions of E or B as required for that potential. For some potentials 
these will be on the same side of the Wilson loop. The distance A should be large and 
t is summed over (see text). 

To extract  spin-dependent potentials from QCD we start from the Wilson 
loop which represents a static quark anti-quark pair at separation R (Eichten and 
Feinberg (1981), Peskin (1983)). As discussed earlier, the heavy quark propagator 
in this case is simply a line in the time direction, from the simplest possible 
heavy quark Lagrangian, CtDt¢. Imagine adding a perturbation a . B/2mQ 
to the quark or anti-quark, such as would come from relativistic corrections to 
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the propagator using the Lagrangian of equation 22. On one leg alone, zero is 
obtained by symmetry. If the perturbation is added to both legs and we sum 
over the time separations, t, between the two additions a new contribution to 
the potential is obtained of the form S1SzAV/mQlmQs. 

f0 T AV = 2 lim dt((B(O, 0)B(R, t)))w (25) 

where (0}w means the expectation value in the presence of the Wilson Ioop i.e. 
the ratio of the expectation value of the Wilson loop with the B field insertions 
to that without. This is easy to calculate using the methods of Lattice QCD 
(Michael and Rakow (1985), de Forcrand and Stack (1985)). Figure 9 illustrates 
this ratio for one value of t. An integration over t is required and this is approx- 
imated on the lattice by a sum (see Bali, Schilling and Wachter (1997a) for a 
recent description of the techniques used). The time separations of the insertion 
points from the ends of the Wilson loop, A, must be kept large to ensure that the 
spin-dependent contribution to the static propagation of a QQ pair is obtained 
in the ground state of the central potential; excited states must have time to 
decay away. 

The complete spin-dependent potential is given by (Eichten and Feinberg 
(1981), Chen, Kuang and Oakes (1995)): 

1(s1 ss)ido o vsd=yr .L '(r) 
Q1 Q2 

+ - -L d2 
r \mQlmQ2 

(81  . r S 2 . r  1 Sl" S2 ) d3V3(F ) 
+ \rnQlmQ2r 2 3mQl-m-Q2 

$1 • $2 
+ d4V4(r) 

3mQlmQ2 

+ -  . L &  Vo(T) + vl(r) 
Q1 Q2 

1 ( 8 1 - S 2  ~ "V/ . + -  "Ld2 2(r) 
r \mQlmQ2 ] 

(26) 

The primes indicate differentiation with respect to the argument r of the 
different potentials. Note that the last two terms appear only for the unequal 
mass case. The di and d~ coefficients will be discussed below. In perturbation 
theory the d/ coefficients appear at (_9(1), the d, only at O(cr~) and only for 
mql ~ mQ2. Vo is the central potential, discussed in section 2.1, and V1, I/2, l/~, 
V4 are obtained on the lattice by calculating the following expectation values: 



18 Christine Davies 

~---kVll(R) = 2eijk I i rn  foo~dtt{ ? }/Zw (27) 

~SijV4(R)I = -,-~oolim Jof~dt{ ~ }/Zw. (20) [ R & j  - 1,hj]v3(R) + 2 

As in Figure 9, the denominator Zw is the expectation of the Wilson loop 
without E or B field insertions. 

A lattice discretisation of the E and B field strength operators is required. 
The simplest discretisation of F,v(x) is to take the product of four U matrices 
around a 1 x 1 square in the #, u plane starting from the corner x. This product 
is called a plaquette (Weingarten (1997), Montvay and Miinster (1994)); its 
hermitian conjugate should be subtracted and the resulting SU(3) matrix made 
traceless. Note that factors of 9 that would otherwise appear from equation 22 are 
absorbed into the lattice version of F,v. For the B field, a more symmetric version 
of this is to use, instead of one plaquette, the average of the four plaquettes 
around point x in the spatial plane perpendicular to B (see Figure 10). For 
E the spatial average of the two plaquettes at a given time is used. See Bali. 
Schilling and Wachter (1997a) for details. 

The central potential, as calculated on the lattice, is a spectral quantity, ap- 
pearing in the exponent of the exponential decay of a correlation function. It can 
therefore be directly interpreted as the continuum potential once converted to 
physical units. The spin-dependent potentials, in contrast, are calculated from 
the amplitudes of lattice correlation functions and undergo renormalisation when 
compared to continuum QCD. This renormalisation is visible in equation 26 as 
the di coefficients. These are functions of the ci coefficients since the potentials 
are extracted by perturbing the Wilson loop with operators from equation 22 
(Chen, Kuang and Oakes (1995)). They reflect the matching required between 
this static/nonrelativistic effective theory and full QCD. In this case it is conve- 
nient to do the matching in two stages; full QCD to continuum effective theory 
and continuuum effective theory to lattice effective theory. 
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Y 

b X 

Fig. 10. The sum of four untraced plaquettes around a point (the clover-leaf operator) 
that is used for a B~ field insertion in a wilson loop for spin-dependent potentials (see 
text). 

For the first stage the ci (and therefore di) have been calculated in leading 
order continuum perturbation theory (Eichten and Hill (1990), Falk, Grinstein 
and Luke (1991)). They depend logarithmically on the quark mass and the cut- 
off that is applied to the effective theory. The spin-dependent potentials also 
depend on the cut-off, but not mQ, so that each term in V~d becomes 

di(A, mQ)Vi(A). (30) 

We can use the di calculated in the continuum for the lattice calculation if we 
imagine the continuum effective theory at the same cut-off as the lattice cut-off 
(1/a). 

For the second stage we then match between continuum and lattice effec- 
tive theories at the same cut-off. This provides an additional renormalisation 
which can be significant because of the non-linear relationship between the con- 
tinuum and lattice gauge fields (Lepage and Mackenzie (1993)). This gives rise 
to additional tadpole diagrams in lattice perturbation theory. They have a uni- 
versal nature and can be thought of (even beyond perturbation theory) as a 
constant factor multiplying each gauge link. Equivalently the renormalisation 
can be viewed as arising from the additional perimeter self-energy contributions 
when the E and B field insertion are in place (de Forcrand and Stack (1985)). 
A method to take account of the renormalisation directly on the lattice involves 
calculating, instead of the ratio in Figure 9, the product of ratios in Figure 11 
(Huntley and Michael (1987)). The additional perimeter/tadpole terms from the 
insertions are thereby cancelled out, and it is hoped that any remaining lattice 
renormalisation is negligible. 

Once the spin-dependent potentials are calculated from Figure 11 and mul- 
tiplied by the appropriate di, they can be inserted into a Schr6dinger equation 
and the energy shifts from the spin-independent states can be calculated (Bali, 
Schilling and Wachter (1997a)). They depend on the functional form of tile spin- 
dependent potentials and on the expectation value of the spin and orbital angular 
momentum operators of equation 26 for a particular state. To calculate these 
the following equations are useful (for the last relation see Kwong and Rosner 
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Fig. 11. The ratio of expectation values used for the spin-dependent potentials, taking 
account of renormalisation required to match to the continuum (Huntley and Michael 
(1987)). F1 and F2 represent insertions of E or B as required for that potential. 

(1988)): 

1 { S ( S + 1 ) - ~ 1  ( s l .  s2) = 

(L.  Sl)  = (L-S2)  = ~ ( L .  S) 

1 [ j ( j  + 1 )  - L(L + 1 )  - S(S + 1 ) ]  (L.  S) = 

(Sij) = 4(3(Si .  ~ ) ( S j .  ~) - S~. Sj) 
= 2<3(S. f i)(S-fi)  - S2> 

[12(L. S) 2 + 6<L. S) - 4 S ( S  + 1)L(L + 1)] 

( 2 L -  1)(2L + 3) 

(31) 

The results for the expectation values are tabulated for S and P states in 
Table 2. It is clear from this table that  the only potential contributing to the 
hyperfine splitting between the 3S1 and 1S0 states ( M ( Y )  - M(~b) ,  M ( J / ' P )  - 
M(~k)) is V4. For the splittings between P states, all the spin-spin and spin-orbit 
potentials can contribute in principle. Notice how the spin-averaging described 
at the beginning of section 2 removes all the spin-dependent pieces, to obtain the 
spin-independent spectrum. To remove 1/4 terms from P states the spin-average 
must be taken including the 1P1. 

What  functional form do we expect for the different spin-dependent poten- 
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. iSo aS1 ip  1 3p o 3p 1 3p 2 

/ ~  S \ 3 1 3 1 1 1 t,01 • 211-7 7 -X 7 7 7 
(L.S) 0 0 0 -2 -I 1 
<S,j> ]0  0 0 - 4  2 l } 

Table 2. Expectation values for combinations of spin and orbital angular momentmn 
operators needed for spin splittings in heavy-heavy bound states. 

tials? In leading order perturbation theory (one gluon exchange): 

Vo = - C F a~ 
r 

t 

V l = 0  
i O/s  

v2 = 

V3 = 3C F ~3 

(32) 

V4 = 8~CFas5 (3)(r), 

with C£ = 4/3. The 'same-side' (see equation 27) spin-orbit interaction, t4, is 
absent; the 'opposite-side', V2 is simply V0. The form of 174 implies that  it is only 
effective for states with a wavefunction at the origin i.e. S states. It gives for the 
3S1 1 S0 splitting, 

327ra~ 

We do not then expect any splitting induced by the V4 term between the ~P~ 
and 3P1 states, so the 1P1 mass should be at the spin-average of the 3p states. 

The following inter-relationships between potentials are also useful. 

- v ;  = Vo (34) 

v (r) - g '  (r) 
r 

Va(r) = 2V2V2(r) . (36) 

Equation 34 is the Gromes relation (Gromes (1984)), derived from Lorentz in- 
variance and as such always true. Equations 35 and 36 hold for any vector-like 
exchange (such as single gluon) but only to leading order; they do not survive 
renormalisation of the potentials when the cut-off on the effective Lagrangian 
of equation 22 is changed. In particular Vi and V2 then mix (Chen, Kuang and 
Oakes (1995)). 

A crucial ingredient missed in the perturbative analysis is the confining part 
of the central potential, V0, and this can reappear in the V/. The nature of this 
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confining term is important. General considerations (Gromes (1977)) show that  
it can only arise from vector and/or  scalar exchange, but these two possibilities 
yield quite different accompanying spin-dependent potentials. A vector exchange 
gives rise to V2, 73 and V4, a scalar exchange only to V1 (Gromes (1988)). In 
both cases, a constant term a appears in V~ - V[ from the Gromes relation. 

A useful quantity to study in this respect is the ratio of p state splitt.ings: 

M(3p2) - M(ap1) (37) 
p = M(3p1) -- ~,f(3P0)" 

Experimentally this ratio takes the value 0.48(1) for c~(1P) and 0.66(2) for 
bb(1P) and 0.58(3) for bb(2P). For pure L. S interactions p is simply related to a 
combination of expectation values of L .  S since, considering the spin-dependent 
potentials as a perturbation on the spin-independent one, the expectation value 
of Vi in all the P states is the same. This then gives p = 2. Similarly a pure tensor 
V3 interaction gives p --- -0.4. These are clearly wrong; we require a mixture of 
spin-orbit and tensor terms. For the leading order perturbative potentials in 
equation 32 we can also calculate p exactly because all the expectation values of 
V~ reduce to cancelling terms of the form <r-3>. This gives p = 0.8, larger than 
all the experimental values. The confining term should then appear in such a 
way as to reduce p. 

This is possible if we make the assumption that  the confining term grows 
linearly with r as ~r; such a rapid rise implies a scalar exchange (Gromes (1988)). 
V1 = - a t  and V2 = -CFa~/r  will satisfy the Gromes relation, p becomes 

18 s<r - (38)  
P = 5 2a~<r-3> - 1/4a(r -1> 

and for positive expectation values this will be less than 0.8, in agreement with 
experiment (Henriques, Kellett and Moorhouse (1976)). The cr terra will be more 
effective for longer range wavefunctions such as c~ and bb(2P) giving a smaller 
value of p than for bb(1P). A vector confining potential would lead to the term 
proportional to a appearing in V2 with opposite sign as well as additional }3 
terms, so that  p > 0.8 (Schnitzer (1975)). Of course this does not rule out a 
mixture of long-range vector and scalar pieces. 

The lattice calculation of the spin-dependent potentials confirm the behaviour 
above explicitly, and show (within errors) that  the long range confining potential 
is purely scalar (Huntley and Michael (1987)). V3 and Iq are found to be very 
short-range with V3 showing 1/R 3 behaviour and V4 approximating a fi function 
on the lattice. V~ is approximately constant at the value - a  taken from the 
central potential, whereas V2 -~ 0 at large R. In addition V 1' has a small attrac- 
tive 1/R 2 piece (see Figure 12 from Bali, Schilling and Wachter (1997a)). which 
arises from the mixing between V1 and V~ and its size changes as the lattice 
cut-off ( l /a )  changes, along with the Coulombic 1/R 2 term present in l'~ ~. 

There is no exact Gromes relation on the lattice (Bali, Schilling and Wachter 
(1997b)), but it should be restored in the continuum limit. This relation does 
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Fig. 12. The spin-orbit potential, -V~', at two different values of the lattice spacing 
together with a fit curve of the form a + h /R  2. (Bali, Schilling and Wachter (1997a)). 

in fact work well on the lattice at current values of the lattice spacing and 
this is a non-trivial check of the lattice renormalisation procedure of Figure 11 
(Huntley and Michael (1987)). This renormalisation is done for the left hand 
side of equation 34 but not for the right. See Figure 13 from Bali, Schilling and 
Wachter (1997a). 

As discussed earlier, the spectrum from this lattice potential yields deviations 
at the 10 MeV level for bottomonium and the 20 MeV level for charmonium. 
Systematic errors in the charmonium case are rather larger than this, however. 
The d~ coefficients have large perturbative corrections for the lattice cut-off used 
(mca < 1) and so large uncertainties, cl is set to 1 in equation 24; unknown 
perturbative corrections to that coefficient could induce 50MeV shifts in the 
charmonium spectrum (Bali, Schilling and Wachter (1997a)). As mentioned in 
section 2.1 there are also relativistic corrections to the spin-independent central 
potential (Barchielli, Brambilla and Prosperi (1990)). These can be calculated 
from expectation values of Wilson loops with E and B insertions in a similar way 
to that for the spin-dependent potentials above. The results modify the central 
potential for charmonium quite strongly, again indicating that unknown higher 
order corrections could be significant for that system. 

To go beyond the corrections discussed here in the potential model approach 
is hard; higher order insertions into Wilson loops cannot be reduced to the 
form of an instantaneous potential. We need instead more direct methods of 
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Fig. 13. The difference of spin-orbit potentials, V2 and VI' on the lattice, compared 
to the expectation from the central potential according to the Gromes relation. (Bali, 
Schilling and Wachter (1997a)). 

calculating the spectrum. This must be done on the lattice and will be discussed 
in the next subsection. 

Exe rc i s e :  Fill out Table 2 to include D states. 

2.3 D i r e c t  M e a s u r e m e n t  o f  t h e  B o t t o m o n i u m  S p e c t r u m  
on  t h e  L a t t i c e  

A direct calculation of the heavyonium spectrum on the lattice at first sight 
seems rather hard. There is a large range of scales in the problem, all the way 
from the heavy quark mass to kinetic energies within bound states (~  AQCD). 
To cover these properly in a lattice simulation would require a -1 >> mQ and the 
number of lattice points on a side, L >> mQ/AQcD. 

As we have seen from the previous sections, however, the quark mass itself 
is not a dynamical scale, simply an overall energy shift. We only actually need 
to simulate accurately the important  scales for the bound state splittings, pQ 
and K.  This leads us to work with a lattice with a -1 < (_9(rnQ) and make use 
of the non-relativistic effective theory of equation 22. This Lagrangian can be 
discretised on the lattice (Thacker and Lepage (1991), Lepage et al (1992)) and 
applied using similar techniques to those for handling light quarks on the lattice 
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(Weingarten (1997), Montvay and Miinster (1994)). Details will be discussed 
below. 

There is an important difference between the NRQCD approach and the 
potential model approach of the section 2.2. That approach starts fl'om the 
static theory and so can only produce the potentiaI; the missing kinetic energy 
terms are of equal weight (in powers of v2/c 2) in the spectrum and they must 
be added in subsequently in a Schr5dinger equation. The NRQCD calculations~ 
even at lowest order, include both the ¢~Dt¢ term and the ¢tD2/2mQ¢ terms 
and yield the spectrum directly; the existence of a potential is not invoked at any 
stage. This means that the NRQCD approach can be fully matched to QCD and 
handle the sub-leading effects from soft-gluon radiation that eventually cause a 
potential model picture to break down through infra-red (long time) divergences 
(Appelquist et al (1978), Thacker and Lepage (1991)). We will find potential 
models useful for guiding NRQCD calculations, nevertheless. 

The NRQCD approach uses the Lagrangian of equation 22 as an effective 
theory on the lattice (Lepage et al (1992)). It can reproduce the low energy 
(p < 1/a) behaviour of QCD, but the couplings, ci, must be adjusted from their 
tree level values of 1 to compensat e for neglected high momentum interactions. 
In principle this can be done in perturbation theory by matching scattering 
amplitudes between lattice NRQCD and full QCD in the continuum (here a one- 
stage matching is used). The ci will have an expansion in terms of as( l /a) .  They 
will differ from the c~ of the static approach discussed earlier since the p2/mQ 
term in the heavy quark propagator will give additional explicit 1/mea terms 
which diverge as a -4 0. In this way it is clear that we cannot take a continuum 
limit in NRQCD; we can only demonstrate that results are independent of the 
lattice spacing at non-zero lattice spacing. This is sufficient for them to make 
physical sense, and to be compared to experiment. 

One problem for lattice NRQCD is the possible large renormalisations, ci, 
which come from tadpole diagrams. This was discussed earlier in connection 
with the renormalisation of the spin-dependent potentials in the static case. The 
tadpoles appear with every occurrence of a gluon link field and can be taken 
care of by renormalising each gauge link by a factor u0 as it is read in, 

U0 

and then using the the renormalised gauge link everywhere instead of the origi- 
nal. 

u0 represents how far the gluon links are from their continuum expectation 
value of 1. The easiest quantity to use to set u0 is the plaquette. Since it contains 
four links we have: 

u0 =u0p  = gTr . (40) 

A possibly better motivated value is that in which we look at a single link field 
and maximise its value by gauge-fixing. This should be most effective at isolat- 
ing (by minimising) the true gauge-independent tadpole contribution (Lepage 
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(1997)). The gauge in which this happens is Landau gauge: 

1 (41) uo = uoL = ~Tr(Uu>Landaugauge- 

The difference between the two u0s is small in lattice perturbation theory,. Mea- 
sured (non-perturbative) values on the lattice differ by a few percent at moderate 
values of the lattice spacing. 

Once we have renormalised the gauge fields to take account of the tadpole 
contributions ('tadpole-improvement') we would hope that remaining corrections 
to the ci are smM1. They have been calculated in perturbation theory for those 
terms which contribute to the heavy quark self-energy (Morningstar (1994)). 
The dispersion relation for the heavy quark is required to be 

p2 p4 

E(p)  = c~A + 2m,  8m 3 (42) 

with A an energy shift and mr the renormalised quark mass, and this fixes the 
coefficient Cl in the lattice discretised version of equation 22. Figure 14 shows 
that the (,9(a,) coefficient of Cl is small, its magnitude less than 1, until nzQa 

is less than about 0.8, when it starts to diverge. This is a sign of the power 
ultra-violet divergences of NRQCD mentioned above; we must stay at values of 
a where m v a  > 0.8. Without tadpole-improvement the C9(cts) coefficients are 
all much larger than 1 (Morningstar (1994)), showing that tadpole-improvement 
has captured most of the renormalisation. The results I shall describe here use 
tadpole-improvement and all ci then set to 1. 

The NRQCD Lagrangian is discretised on the lattice in the standard way" 
(Weingarten (1997), Montvay and Miinster (1994)). Derivatives are replaced 
by finite differences, and E and B fields by clover terms. In the process, all 
appearances of mQ are replaced by the bare quark mass in lattice units, mQa; 

and powers of g are absorbed into the lattice fields. The lowest order terms in 
the Lagrangian density (in lattice units) become 

D,~O, -+ Ut~0~+l - tot (4a)  

D 2 ~ Ua: i~z~+'i Jr" U I ~iil/dx "i -- 9. 

2mQ 2mQa 

Each U u field here is understood to have been divided by uo already. 
Then the calculation of the heavy quark propagator is very simple. The 

propagator as a function of spatial indices on a given time slice is related to that 
on previous time slice by an evolution equation: 

UtGt+l - Gt = - a H G t  

G , + I  = U~(1  - aH)G~ 

(44) 

where a H  is the Hamiltonian, for example, the lowest order D e/2mQ term, dis- 
cretised on the lattice as in equation 43. This enables the heavy quark propagator 
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Fig. 14. The O(c~) coefficients of various terms in the NRQCD Lagrangian, calculated 
in lattice perturbation theory after tadpole improvement. A corresponds to the energy 
shift and c~ 2) to the D 4 term. B corresponds to the mass renormalisation and c~ 2) to 
the D~ term, here denoted c5. The vertical lines represent discontinuities when the 
value of the stability parameter, n, is changed. (Morningstar (1994)). 

to be calculated on one pass through the lattice in the time direction start ing 
with some source for the propagator  on time slice 1. This simplicity can be traced 
back to the simple first order t ime derivative in equation 22; calculations of rel- 
ativistic quark propagators  take many sweeps through the lattice (Weingarten 
(1997), Montvay and Mfinster (1994)). 

One technical problem with (44) is that  it can become unstable for modes 
for which H approaches 1. In the free case for the lowest order Hamiltonian we 
have 

H0 = 3 E i  4 sin 2 (pia/2) (45) 
2mQa 

where i runs over the Fourier modes and the maximum value for momenta  close 
to the lattice cut-off is 6/mQa. This would limit values of rnQa to be greater than 
6. Instead we can stabilise the evolution by adding terms which have an effect at 
the cut-off scale but are not important  for the physically relevant momenta  well 
below the cut-off. This gives rise to an evolution equation (Thacker and Lepage 
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(1991)): 

2-nn] - 2n ] Gt (46) 

and the stability requirement is now mQa > 3/n  so reasonable values of mQa 
of (9(1) can be reached for suitable n. In fact it is only important  to stabilise 
the lowest order term H0 like this; the higher order terms of the Lagrangian 
of equation 22 can be added in straightforwardly. For example, we can write 
(Lepage et al (1992)): 

2 ) 1 -  2n j  Ut 1-  2n ] (1 - - -~ - - )G ,  (47) 

with aSH the lattice discretisation of 

c (D2)2 ig 
a u = - ,  + e 8- Q m .  E -  e.  D) 

g ~ g  o ' - B .  (48) - c38 -~Qcr - (D  x E -  E x D) - C42m Q 

Another technical problem which faces all lattice calculations is that  of dis- 
cretisation errors. These arise from the use of finite differences on the lattice 
to approximate continuum derivatives. They mean that even physical lattice 
results, expressed in GeV for example, will depend upon the lattice spacing. 
The dependence will be as some power of a typical momentum scale in lattice 
units. Since the momenta inside heavyonium systems are quite large, (_9(1 GeV), 
discretisation errors will cause a problem if they are not corrected for. 

This is achieved by improving the discretisation of derivatives to include 
higher order terms. For example, ignoring gauge fields, 

a2D 2 o~. 
i , l a t t ~ x  = ~)x+~i Jr- ~?x--~ --  2 ~ x  (49) 

=(eOD, .... ' - 1 ) ( 1 - e  -oD' ..... 

fa2D 2 4 4 .2 1 ) 
= \ i,~,~t + a Di,¢o,~t[ ~ - -~J... ¢5, 

giving O(a 2) errors relative to the leading term. A better  discretisation is then 

a262 2 2 l a t D ~ l a  u 
i , lat t  : a D i , l ~ t t  - 12  (50) 

2 2 where a Di,latt is given by the naive finite difference, a2D 2 has errors at i , lat t  
relative O(a4). 

The other operator that  appears in the leading order terms is the time deriva- 
tive operator,  Dr. Any correction to Dt that  looks like Dt ~ would upset our simple 
evolution equation. Instead the way to correct Dt is to require that  the time-step 
operator be 

e t + l  = e - a H a t  . (51) 



The Heavy Hadron Spectrum 29 

In fact the modified evolution equation (46) is closer to this than (44), and 
would be correct for the kinetic terms in the n -+ oc limit. The gau~e potential 
will appear automatically exponentiated from the appearance of Ut'. The only 
correction that then needs to be made at the next order is to correct for a H g / n  
term that appears when (46) is expanded out and compared to (51) for H = Ho. 
This correction can be made by replacing H0 by 

I~o = Ho - aH'~ (52) 
4n 

The discretisation corrections discussed here, when added in to ~H look a lot 
like relativistic corrections. We can apply the same power counting arguments 
as before to get an idea of their relative size. From (52) we will have a correction 
of (.9(arn~v4). Relative to H0 this is O(amQv2), and for amQ ~ 1 this is (.9(v2), 
the same as the relativistic corrections. Similarly for the term from (50). Thus 
it is only sensible to correct for the discretisation corrections up to an order 
comparable with the order of relativistic corrections being included. For the La- 
grangian of 22 which has the first spin-independent relativistic corrections we 
need only the first spin-independent discretisation corrections described above. 
It might be true on coarse lattices, with mQa > 1, that higher order discretisa- 
tion corrections should be kept. This can be decided by using potential model 
expectation values to better estimate their size (Lepage (1992)). 

There are additional O(a 2) errors from the gluon fields that appear in all the 
covariant derivatives coupling to the heavy quarks, if the gluon fields have been 
generated using the standard Wilson gluon action (Weingarten (1997), Montvay 
and Mfinster (1994)). These errors can be treated perturbatively and corrected 
for at the end of the calculation provided they are small (Davies et al (1995a)). 

The coefficients of the additional terms introduced by the discretisation cor- 
rections in (50) and (52) must again be matched to full QCD. As before, they 
should be tadpole-improved to remove the largest part of the renormalisation 
of lattice NRQCD, and remaining renormalisations can be calculated in lattice 
perturbation theory. The improvement from (52) can be added directly to the 
existing relativistic correction to give the operator 

a4(D2)2 ( l + ' n Q a ~  (53) 
6H1 = el 8m~Qa~------ 5- --~-n / " 

The O(as) corrections to Cl were discussed above and are shown in Figure 14. 
The improvement from (50) gives 

a D ~  (54) (~H5 = c 5 E i  4 4 
24rnQa 

The O(a~) corrections to c5 are also shown in Figure 14 and they are confirmed 
to be small after tadpole-improvement (see Morningstar (1994) and note that e5 
is there called c2). 
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Once the lattice NRQCD Lagrangian (including discretisation corrections) 
has been chosen and the quark propagator Gt calculated for a given gluon field 
configuration, then Gt and the anti-quark propagator G~ can be put together to 
make mesons. This procedure is identical to that  used in lattice calculations of 
the light hadron spectrum. The only difference is that  the meson operator 

c t A ( x l ) ~ ¢ ( x  1 - x2)xtA(x2)  (55) 

has a spin part, f2, which is only a 2 × 2 matrix, rather than the relativistic 
4 x 4. ~2 is the unit matrix for S = 0 mesons and a Pauli matrix for S = 1. In 
addition we have a much better  idea from potential models of what form the 
spatial operator should take, than we do in light hadron calculations. This will 
be discussed below. ~pt and X t are the quark and anti-quark creation operators 
respectively, matched in colour, denoted A, for a colour singlet. 

Then the meson correlation function is calculated as an average over the 
ensemble of gluon field configurations (Weingarten (1997), Montvay and Miinster 
(1994)): 

((xCt~t¢)r(~t~¢~t)0) : (Tr[a~tc ta t¢~])  (56) 
T-+~o ¢ 2 e _  E 2 T  __-} ~ 1  e - E 1 T  -}- -~ . . . .  

E1 and E2 are the energies of states in lattice units, Ephysa. E1 is the energy of 
the ground state in that  ~2, ¢ channel, and E2 is the energy of the first radial 
excitation etc. We can project onto different meson momenta at the annihilation 
time point, T, to obtain the dispersion relation, E as a function of p (Davies et 

al (1994a)). 
Because it is very important in heavyonium physics to calculate radial excita- 

tion energies, we need to optimise the calculation of E1 and E2. The coefficients 
~l  and q52 in (56) represent the overlap of the mesonic operator used with that  
state, #i = (0l~ty2Cxtli), see equation 18. we  can then adjust 4~1 and #'2 by 
changing ¢ in the mesonic operator. For S states we could use an operator in 
which both ¢ and X appear at the same point but this would have overlap with 
all possible excitations and a poor convergence to the ground state. Instead we 
must ¢ and X at separated points with ¢ a 'smearing function'. Potential model 
wavefunctions represent a good first approximation to the spatial distribution of 
quark and anti-quark in heavyonium (Davies et al (1994a)). To make use of these 
wavefunctions on the lattice (specifically to set ¢ equal to the wavefunction) re- 
quires us to fix a gauge otherwise the meson operator will not be gauge-invariant 
and will vanish in the ensemble average. The best gauge to use is Coulomb gauge 
since this (being the 3-dimensional version of the lattice Landau gauge discussed 
earlier) is the gauge in which the spatial gluon field is minimised, and the co- 
variant squared spatial derivative most like the Schr6dinger p2. We then gauge 
transform the lattice gluon fields to Coulomb gauge and use different (b as sim- 
ple functions of spatial separation for different radial and orbital excitations. For 
the ground state ¢ should maximise #1 and minimise 45,, #3 etc, and for excited 
states q~ should maximise #2 and minimise #1, #3 etc. For each O a new quark 
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propagator must be calculated in this approach since the fastest way to make 
the meson operator at the initial time slice is to use ¢(x) as a source for the 

evolution equation for Gt. This Gt is then combined with a G~ in which a delta 
function at the spatial origin was used as the source. The same source ¢ can be 
used for the different spin states (to the extent that  spin-dependent effects on 
the wavefunction are relativistic corrections and therefore small) and the factors 

of $2 at the initial time slice inserted as Gt and G~ are being combined. In this 
way all 2S+ILj states can be made with as many radial excitations as required 
(Davies et al (1994a)). 

It is important  to realise that  the results for E1 and E2 are not affected by 
the choice of ¢; they can simply be obtained more efficiently by good choices. 
Methods other than that  above have also been used; these include building meson 
operators out of a quark and anti-quark joined by a string of gauge fields in a 
gauge-invariant way (Manke et al (1997)); and calculating the propagators from 
delta function sources at a number of spatial points at the initial time and 
working out the optimal ¢ at the end using a variational method (Draper et al 
(1995)). 

However good the choice of ~, each meson correlation function will contain 
several exponentials and a multi-exponential fit must be performed to extract 
them. This is described with technical details in Davies et al (1994a). In gen- 
eral the nth exponential is obtained reliably from an n + 1-exponential fit. In a 
potential model approach to the spectrum, using orthogonal wavefunctions, it 
is easy to get very precise results for radially excited states. In lattice NRQCD 
it is much harder because the ground state will take over exponentially if it is 
present at all in an excited meson correlation function. In addition the variance 
of such a correlation function will be dominated by the ground state so that  the 
ratio of the signal for the excited state compared to noise will fall exponentially 
(see, for example Lepage (1989)). 

The fits to the zero momentum meson correlation functions yield a very accu- 
rate set of energies in lattice units but these cannot be immediately converted to 
absolute energies (although splittings can) because the zero of energy has been 
reset by the absence of the mass term in equation 22. To calculate the spectrum 
we must shift all the lattice energies by a constant and then convert to physical 
units by multiplication with a - t .  

Determining the lattice spacing is actually easier in heavyonium than for 
light hadrons. We can make use of the fact, stated before, that the radial and 
orbital splittings are independent to a very good approximation of the heavy 
quark mass. This means that  we can use one of these splittings, e.g. the 1P - 1S 
splitting, to determine a -1, without having necessarily tuned our heavy quark 
mass very well. In the absence of an experimentally determined spin-average S 
state mass for bottomonium we set 

a -  t 0.44 (57) 
= aE(~g)  - a E ( T )  Ge¥.  

where the denominator is the difference between the lattice energies at zero 
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momentum of the spin average of the ground Xb states and the T. Given a -~ we 
can now convert all differences in energy to splittings to GeV. \ ~  can also use 
E(T' )  - E(T)  to set a -1. 

To tune the bare lattice heavy quark mass, mQ, to the appropriate value for 
the b quark we study the dispersion relation for mesons at finite and small mo- 
menta, where the heavy mesons are non-relativistic. The absolute meson mass 
(e.g. for the T) is given not by the energy at zero momentum but by the denom- 
inator of the kinetic energy term: 

a2p 2 
aRt (p)  = aEr (0 )  + ~ + . . . .  (58) 

Higher order relativistic corrections can also be added to this formula. We adjust 
mQa in the Lagrangian until the T mass comes out at 9.46 GeV within statistical 
errors, using the a -1 determined from the splitting above. Now it is clear that  if 
the splittings used for determining a -1 did depend strongly on mQa this would 
be a tricky iterative procedure. It would require complete calculations at several 
different values of mQa, as is generally undertaken in light hadron calculations. 

This procedure gives us also the shift of the zero of energy, aMr  - aEr  (0). 
It should be independent of the meson studied and so, once calculated, can be 
applied to all mesons. That  is, when divided by 2, it can be applied as a shift per 
quark. This is what allows us to convert differences in zero momentum energies 
on the lattice directly to splittings in physical units, given a-1.  

The shift obtained can be compared to that  calculated in lattice perturbation 
theory from the heavy quark self-energy. The energy shift is given in lattice units 
by 

2(Zmmea - Eoa) (59) 

where Zm is the mass renormalisation. Zm and Eoa are given by perturbative 
expansions, Zm = 1 + a~B + . . .  and Eoa = a~A + . . . .  Again it is clear that  
A and B are smaller when a tadpole-improved lattice Lagrangian is used. (see 
Morningstar (1994) and Figure 14). The shifts obtained on the lattice agree well 
with the perturbative estimates (Davies et aI (1994a), Davies (1997)) when a 
physical scheme for the lattice coupling constant is used (Lepage and Mackenzie 
(1993)) and allowance is made for unknown higher order terms. See Table 3. 

Note that  if we take mQa to oo in this calculation aEo will become I4/2 where 
Vc is the unphysical self-energy part of the heavy quark potential discussed ear- 
lier. Again agreement between perturbation theory (Morningstar (1994), Duncan 
et al (1995)) and potential model results (Bali and Schilling (1992)) is reasonable 
given that  aEo starts at O(a~) and is only known to this order. The effect of 
tadpole-improvement is easy to work out in this case. If the Wilson loops were 
calculated with tadpole-improvement (not usually done) then each U;, would be 
divided by u0 and the loop would pick up a factor (Uo) -2T from links in the time 
direction. Then Vc --4 V~ + 21nu0. Thus to compare the perturbative value of 
aEo(rnQa -~ oc) calculated with tadpole-improvement to the non-perturbative 
values of Vc/2 calculated without tadpole-improvement we must subtract In uo 
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ImQalPerturbative shirt,Non-pert urbative 
5.7] 3.15 ] 7.0(6) ] 6.54(7) 
6.0] 1.71 3.5(2) [ 3.49(3) 
6.2 1.22 2.5(2) / 2.58(3) 

shi~ 

Table 3. Energy shifts for a heavy quark in lattice NRQCD. Results are given for the 
non-perturbative lattice calculation of aMr - aEr(0) and for the perturbative shift 
of equation 59 for three different values of the lattice spacing, set by ~, and for bare 
quark masses appropriate to the b. Errors in the perturbative shifts are estimates of 
unknown higher order corrections. (Davies (1997)). 

from the perturbative calculation. It is also true that B for mQa --4 oc vanishes 
at O(a , )  so Zm -+ 1. Since the dispersion relation for mesons at finite momen- 
tum cannot be obtained from potential model approaches, the quark mass there 
has to be fixed in a different way to the direct NRQCD method above. If the 
energies of states are calculated using the lattice potential including I•, mQa 
should be adjusted until experiment is matched for, say, the 7" on applying a 
shift 2mQa - Vc (Bali, Schilling and Waehter (1997a)). 

Figures 15 and 16 show recent results for the bottomonium spectrum from 
lattice NRQCD. The errors shown on the plot are statistical errors only - it is 
clear that  they are significantly smaller than those from light hadron calcula- 
tions. The simple form of the evolution equation for calculating the heavy quark 
propagator means that  an average over a very large ensemble of gluon fields can 
be obtained with moderate computing cost. Also several different starting points 
can be used on a single gluon field configuration. 

The sources of systematic error are also under better  control than for light 
hadron calculations. There, one of the most serious problems is that  of finite 
volume. A large enough lattice is required not to squeeze the mesons under 
study and distort their masses. Because the T is much smaller than, say, the 
p, a smaller space-time box is sufficient for its study. The calculations shown 
were done on lattices of around 1.5fin on a side. However, radial and orbital 
excitations are larger than ground states and such a lattice may be too small for 
3S and 2P states. Studies on larger volumes should be done for these in future. 
In fact direct calculations of the spectrum have worse finite volume errors than 
calculations of the heavy quark potential, because of lattice symmetries that  
protect V(R)  (Huntley and Michael (1986)). 

Discretisation errors are an additional source of systematic error and in all the 
results shown, the leading discretisation corrections have been made as described 
above. 

Since NRQCD is a non-relativistic expansion, there are systematic errors 
from higher order relativistic terms that  have been neglected. For the spin- 
independent terms all groups have used the lattiee-discretised version of the 
Lagrangian of equation 22. This includes leading terms of O(mQv 2) and correc- 



34 Christine Davies 

GeV 

10.5- 

10.0 

9.5 

.~'i' --o--*-Id'-- 2S 

--5-,r ~ + -  1P 

--o--*-**-- IS 
o •'tN¢ 

~S0 aS~ 1p~ 

- - -  : Experiment 

o : NRQCD (nf = 0) ,~  = 6.0 

• : NRQCD (h i  = 2, K S ,  amq = 0.01),~ = 5.6 

, : SESAM (n I = 2, W,g  = 0.157),~ = 5.6 

. : SESAM (hi  = 2, IV, n = 0.1575),¢? = 5.6 

F ig .  15. Radial and orbital  excitation energies in the T spectrum from lattice NRQCD 
obtained by different groups (Davies et aI (1997), SESAM (1997)). Errors shown are 
statistical only. The scale has been set by an average of a -1 from the 2S - 1S splitting 
and that  from the 1 P -  1S. Experimental results are given by dashed lines and for the 
1P1 state is taken as the spin-average of the Xb states. 

t ions  of O ( m Q v 4 ) .  Errors  are  therefore  at  O(mQv6) ,  giving v 2 x (a typ ica l  k inet ic  
energy)  = 0.01 x 400 MeV for b o t t o m o n i u m  = ~ 4 MeV. This  e r ror  would be 

invisible  on F igu re  15, since it is a 1% er ror  in the  sp l i t t ings  shown. For  the  spin- 
dependen t  t e r m s  a 4 MeV er ror  is more  signif icant  since sp l i t t ings  are  smaller .  
Th is  is the  er ror  e s t ima te  if only the  leading  sp in -dependen t  t e rms  of equa t ion  
22 are  used,  as by the  N R Q C D  co l l abora t ion  (Davies et al (1994a)).  T h e  S E S A M  
group  (resul ts  p resen ted  at  this  school by Achim Spi tz  - see Spi tz  (1997) and  
S E S A M  (1997)) however has  used the  add i t i ona l  re la t iv i s t ic  cor rec t ions  to  the  
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spin-dependent  terms given in the cont inuum by (Lepage et al (1992)): 

5H  = - c7 8m-~{D 2, ~r. B}  (60) 

- c s 6 4 @ 4 { D 2 , a .  (D x E -  E × D)} 

- c9b-~-3 a • E x E. 
8mQ 

This could reduce the relativistic error by another  factor  of v 2 to a round  1% for 
spin splittings also. The  SESAM group tadpole- improve all the terms above using 
UoL and set the  cl to  1. In principal, however, unknown radiat ive corrections from 
lower order  terms, e.g. O ( a ~ )  corrections to c4 beyond tadpole- improvement ,  can 
produce  errors at  the same order as the terms of (60) (if we take a~ ~ v 2 "-~ 0.1, 
bu t  see Bodwin et al (1995)) so this is not  a complete calculation at the next 
order. Note tha t  relativistic corrections to spin-dependent  terms are not  known 
for a potent ia l  model. 
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Fig. 16. Fine structure splittings in the ground state Y spectrum from lattice NRQCD 
obtained by different groups (Manke et al (1997), Davies et al (1997), SESAM (1997)). 
Errors shown are statistical only. The scale is set as in Figure 15. Experimental results 
are given by dashed lines. The spin-average of the Xb states has been set to zero. 

Figure 15 compares  radial  and orbital  splittings to experiment.  The  lattice 
spacing chosen to set the scale is an average of tha t  from the 1P  - 1S spli t t ing 
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Fig. 17. Dimensionless ratios of various splittings to the ~g - T splitting against the 
lattice spacing in fm, set by the ~-~ - T splitting, in the quenched approximation. 
Experimental values are indicated by lines. (Davies (1997)). 

and that from the 2S - 1S splitting. One striking feature is the disagreement 
with experiment for the calculation on quenched configurations (nf = 0). The 
results on the partially unquenched configurations (nf = 2) give much bet ter  
agreement. A quantity which exposes this error in the quenched approximation 
is the ratio of the 2 S -  1S splitting to that  of the 1 P -  1S. Figure 17 demonstrates 
that  the fact that  this ratio is too large is a physical effect - it is not affected 
substantially by lattice discretisation errors. We expect such an effect in the 
quenched approximation because a~ runs incorrectly between scales. This means, 
as discussed earlier, that  the quenched heavy quark potential is too high at small 
values of R and so the S states are pushed up with respect to P states, making 
the 1 P - I S  splitting too small relative to the 2 S - I S .  The effect may be stronger 
for higher excitations, but they are subject to larger lattice errors. 

The error from the quenched approximation is even bigger if we look at quan- 
tities sensitive to a larger disparity of scales to maximise the effect of incorrect 
running. Figure 18 shows the ratio of the 1 P -  IS  splitting in bottomonium from 
the NRQCD collaboration to the p mass from the UKQCD (UKQCD (1997)) 
and GF11 collaborations (Butler et al (1994), Weingarten (1997)). The UKQCD 
p mass results have included discretisation corrections for the light quarks; the 
G F l l  results have not. It is clear that,  although a result independent of lattice 
spacing is obtained when the p mass is improved, it is wrong. 

The fine structure in the spectrum is shown in Figure 16. As already dis- 
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Fig. 18. Dimensionless ratio of the ~ - Y splitting to the p mass against the lattice 
spacing in fln, set by the ~-g-Y splitting in the quenched approximation (Davies (1997)). 
Circles show the UKQCD improved p mass and the squares the GFl l  unimproved mass. 
Experiment is shown by the burst. 

cussed, this is harder to calculate accurately than the spin-independent spectrum 
because it only appears as a relativistic correction. There is no large leading or- 
der term with non-perturbatively determined coefficient to stabilise the results 
as there is in the spin-independent case (D2/2mc2). Since the clover discretisa- 
tion of E and B fields each contain four links (see figure 10) there are several 
powers of u0 in each term when tadpole-improvement is undertaken. This means 
that  spin-splittings are affected strongly by the value of uo and if u0 were set to 
1 (i.e. no tadpole-improvement) results much smaller than experiment would be 
obtained (Davies et al (1994a)). This also means that  the spin splittings change 
when different definitions of Uo are used, in the absence of a perturbative calcu- 
lation of the remaining radiative corrections (for preliminary results on these, see 
Trott ier  (1997b)). The difference between u0p and UOL results in 10-20% shifts to 
the splittings at these lattice spacings (SESAM (1997)). The hyperfine splitting 
is particularly sensitive; in leading order perturbation theory it is proportional 
to c~ (equivalent to Uo 6 when u0 factors in the D 2 term are taken into account). 
The presence or absence of the higher order relativistic corrections also affects the 
results at a similar level (Manke et al (1997), SESAM (1997)). Discretisation cor- 
rections, not surprisingly, are important  as well. Because the fine structure (and 
particularly the hyperfine splitting) is sensitive to short-distance scales (consider 
the functional form of the spin-dependent potentials), the discretisation errors 
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Fig. 19. The Y -  r/b splitting in physical units vs the square of the lattice spacing in fm 
in the quenched approximation. The 2 S  - 1S  splitting has been used to set the scale. 
Squares are results from the lowest order action (Davies (1997)) and diamonds from an 
action which includes spin-dependent relativistic and discretisation corrections (Manke 
et al (1997), Manke (1997)). 

can be quite severe. In the calculation of the NRQCD collaboration in which 
only leading order spin terms are included, the hyperfine splitting in MeV shows 
strong dependence on the lattice spacing - see Figure 19. This makes a physi- 
cal result hard to determine. Results of the other groups in Figure 16 include, 
along with the relativistic spin-dependent corrections, discretisation corrections 
to the leading spin-dependent terms (Lepage et  al (1992)). This should reduce 
the lattice spacing dependence of the physical results but  this analysis is not yet 
complete (see Figure 19 and Manke (1997)). Finally the spin splittings depend 
quite strongly on the quark mass (particularly again the hyperfine splitting) and 
for these the quark mass must be tuned accurately. This requires a very accurate 
determination of the meson kinetic mass as well as of the lattice spacir~g. 

To compare to the real world we would like results with dynamical fermions 
of appropriate number and mass. To estimate how many dynamical fermions are 
'seen' by the bottomonium system, we need to know what the typical momenta 
being exchanged by the heavy quarks are. For T this qr is about 1 GeV, not 
enough to make a c~ pair, so the effective value of nf  should be 3. Almost all 
available sets of gluon field configurations have nf  set to 2, so extrapolation is 
necessary. The results will also depend on the light quark mass of the dynamical 
flavours, and this dependence at worst should be linear (Grinstein and Rothstein 
(1996)): 
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A M  ~ A M o ( I  +c Z m--!q...) . (61) 
,,d,s qr 

For qr >> mq the answer with u ,d  and s quarks can be reproduced by 3 de- 
generate dynamical  quark flavours of mass m~/3 (ignoring m~ and ma).  Results 
should be extrapolated as a function of dynamical fermion mass to ms~3 and 
then extrapolated to n /  = 3 from nf  = 0 and 2. 

In fact no significant m O dependence has been seen by the two groups; 
NRQCD and SESAM, who have done calculations on dynamical configurations 
(using different lattice formulations of the light fermions). The SESAM collabo- 
rat ion with 3 dynamical quark masses does see a definite trend in mq, however 
(SESAM (1997)). Figure 20 shows the dependence of the ratio of the 2S - I S  
to 1 P -  1S splitting on n !  for the two groups. The results are consistent with 
experiment for n I = 3 but n f  = 2 cannot be ruled out without bet ter  statistics. 
More points at other values of n f  would be useful. 
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Fig. 20. The ratio of the 2" - T splitting to the ~~ - r splitting as a function of the 
number of dynamical fiavours. Circles are the results from the NRQCD collaboration 
(Davies et al (1997)) and the burst from the SESAM collaboration (SESAM (1997)). 

The n I extrapolation of the fine structure will be more difficult, even once 
physical results at a given nf  are obtained. Since the fine structure probes much 
shorter distances it is possible that  the effective number of flavours that  it 'sees' 
is higher. Then the challenge will be to find appropriate  quantities to set the 
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scale for an extrapolation to, say, n f  = 4. It will not be possible to use spin- 
independent splittings for which the real world nf value is 3 (Davies (1997)). 

Figure 16 shows disagreement with experiment for the P fine structure in 
the quenched approximation, both in overall scale and for the ratio p, equation 
37. Agreement is better on unquenched configurations, but the systematic errors 
described above must be removed before this is clear. The hyperfine splitting is 
very sensitive to the presence of dynamical fermions. It increases by ~ 30% as n f 
is increased from 0 to 2 for the NRQCD results (see Figure 16). Extrapolations 
in nf  using a variety of other short-distance quantities to set the scale (so the 
physical results differ from those in Figure 16) give a 'real world' value for the 
hyperfine splitting of around 40 MeV. The error is very large at present (25%) 
because of the inaccuracies in the fine structure. With improved calculations this 
can be reduced to 10%. 

2.4 Direct  M e a s u r e m e n t  of  the  C h a r m o n i u m  S pe c tr um 
on  th e  Latt ice  

Unfortunately the NRQCD programme as described for bottomonium does not 
work as well for charmonium. It has been clear all along that charmonium is much 
more relativistic; with the NRQCD approach we can directly see the effects of 
higher order relativistic corrections to the Lagrangian. A calculation with the 
Lagrangian of equation 22 has errors a t  O(rnqv 6) as discussed earlier (Davies et 
al (1995b)). This gives an error of around 30MeV which is 30% for spin splittings, 
On adding higher order terms these large corrections to the fine structure become 
manifest (Trottier (1997a)) and are actually rather worse than the naive 30%. 
An accurate calculation of the ~b - ~c splitting, for example, would then require a 
high order in the NRQCD expansion, coupled with the determination of radiative 
corrections to the coefficients. 

It seems more useful to treat the c quark as a light quark and use stan- 
dard lattice approaches for relativistic quarks (Weingarten (1997), Montvay and 
Mfinster (1994)). However, the fact that inca ,-, 1 on current lattices can lead 
to significant discretisation errors. The heavy Wilson approach (E1-Khadra et 
al (1997)) is an adaption of the standard Wilson light fermion action in which 
higher dimension operators are added to better match to continuum QCD by 
reducing errors of the form (PVa) r*. The coefficients of these operators must be 
calculated and in the strict heavy Wilson approach they are considered as a 
perturbative series in a8 but to all orders in mQa. At large mQa the Lagrangian 
becomes NRQCD-like (since no symmetry between space and time directions is 
imposed) and at small mQa it reduces to the form used for the Symanzik im- 
provement of light quarks. In principle it can span the region from one extreme 
to the other. In practise, NRQCD is rather simpler and faster to implement for 
really non-relativistic fermions. 

The lowest order heavy Wilson action is identical to the Sheikosleslami- 
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Wohlert (SW) action for light quarks in which a clover term 

i 9  - -  ~, 
-~esw~zb(x)au~F" O(x) (62) 

with rnQa-independent coefficient is added to the Wilson action (Sheikholeslami 
and Wohlert (1985), Heatlie et al (1991)): 

(63) 

The coefficient of the clover term is usually taken as 1 after the gauge fields 
have been tadpole-improved, and perturbative calculations to O(as) (mQa --+ O) 
indicate no large additional radiative corrections (see Liischer et al (1997) for 
a discussion). Non-perturbative determinations of this clover coefficient for the 
light quark case are described by Sommer (1997). 

The meson energy-momentum relation must also be considered carefully for 
charm systems (E1-Khadra et al (1997)). For the SW action there is an energy 
shift between the energy at zero momentum (the pole mass) and the kinetic 
meson mass that  sits in the denominator of the kinetic term, as in the NRQCD 
case (equation 58). The shift increases as the quark mass increases and for raQa > 
0.5 it is important  that the physical meson mass is taken from the kinetic mass 
and not from the pole mass which is used for light hadrons. It is possible to 
remove this shift by adjusting coefficients in the full heavy Wilson approach, 
but  it is not necessary. 

For the SW action there is also a problem with non-universality of the shift. 
It should appear simply as a shift per quark and therefore twice as big for a 
meson with two heavy quarks as for a meson with one heavy and one light 
quark. However there is a discrepancy between the shift per heavy quark in 
these two cases and it increases significantly as the heavy quark mass increases 
(Collins et al (1996a), Aoki et al (1997), see Figure 21). The discrepancy arises 
from lattice discretisation errors in relativistic D4-type terms in the heavy quark 
action affecting the heavy-heavy mesons. These terms need to be correct in order 
for the binding energy of a meson to be fed into its kinetic mass. Since the kinetic 
mass appears at O(mQv 2) it is O(mQv 4) terms which do this, whereas the pole 
mass is O(1). If the O(mQv 4) terms are incorrect, the binding energy will appear 
only in the pole mass and the shift will then depend on the binding energy. For 
a heavy-light meson the binding energy is provided by the light quark and this 
problem does not arise. In the NRQCD case (Davies et al (1994b)) the relativistic 
terms are correct because the D4/8m~ term is added by hand and discretisation 

corrections remove D 4 rotational non-invariance. For the SW action this isn't 
true; the D 4 term has an incorrect mass and there is an uncancelled D~ term 
(Kronfeld (1997)). Both these effects can be corrected for in the heavy Wilson 
approach (E1-Khadra et al (1997)), but this has not been done as yet. For charm 
quarks with inca < 0.5 there is not a significant problem, as in clear from Figure 
21. 
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Fig. 21. The energy shift per heavy quark for the S\V action, as a function of heavy 
quark mass, rnoa. Note the difference between results for heavy-heavy mesons (open 
symbols) and those for heavy-light mesons (filled symbols). (Aoki et al (1997)). 

The calculation of charm quark propagators with the SW action proceeds as 
for conventional light quarks (Weingarten (1997), Montvay and Miinster (1994)) 
with the calculation of rows of the fermion matrix inverse by an iterative pro- 
cedure. This converges quite rapidly for heavy quarks, but care must be taken 
to allow enough iterations for the solution to propagate over the whole lattice. 
Meson correlation functions are put together using various smearing functions 
and then fitted to multi-exponential forms as described for the NRQCD case. 
The charm quark mass is tuned by the kinetic mass method as before. 

Figure 22 shows the spectrum for charmonium calculated recently on quenched 
gluon fields with this method and presented at this school by Peter Boyle (Boyle 
(1997b)). Previous results (E1-Khadra and Mertens (1995)) are in agreement 
with this, but don't show such complete fine structure. The hyperfine splitting 
is clearly underestimated and this could be a quenching error, since this splitting 
increases with h i ,  as discussed in the bottomonium case, or it could mean that  
cs is underestimated. The fine structure also shows a discrepancy for the ratio p 
(see equation 37). 

The systematic errors of the SW action for charmonium need some analysis 
(E1-Khadra and Mertens (1995)) before we can extract physical (quenched) re- 
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sults from these calculations. Only one calculation on unquenched configurations 
has been done (Collins et al (1996a)) and problems with fitting errors made it 
hard to draw conclusions. 
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Fig. 22. The charmonium spectrum from quenched lattice QCD using the SW action 
(Boyle (19975)). 

Future work will need to investigate the use of actions with higher order 
terms, possibly on anisotropic lattices (Lepage (1996)). Some preliminary work 
on the charmonium spectrum has been done with these (Alford et al (1997)). 
A small lattice spacing in the time direction is useful for improving exponential 
fits, particularly for excited states, and does not need to mean a small lattice 
spacing in the spatial directions. Indeed such an anisotropy is very natural  for 
non-relativistic systems, as we have seen. 

2.5 O t h e r  H e a v y - H e a v y  S t a t e s  

There is a lot of interest in the literature in other heavy-heavy bound states, 
which have not yet been seen experimentally. The one most likely to be seen in 
the near future is the mixed bound state of bot tom and charm quarks; indeed 
candidates for the 1S0 ground state, the Be, have been seen recently (DELPHI 
(1997a), ALEPH (1997)). 

The b~ system actually has a lot in common with the heavy-light systems of 
the next section, although it is classified here as heavy-heavy because of its quark 
content. The charm quark in the Bc will be more tightly bound and therefore 
more relativistic than in charmonium, and we have already seen that  a non- 
relativistic approach to charmonium is rather inaccurate. In addition, because 
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charge conjugation is not a good quantum number, the two 1 + P states will mix 
to give a different P fine structure to that  for heavyonium. 

Recent continuum potential model results for the bE spectrum are given in 
Eichten and Quigg (1994) and Gershtein et al (1995). 2 sets of S states, 1 set 
of P states and 1 set of D states are expected below threshold for the Zweig 
allowed decay to B, D (7.14 GeV). Note that  the bE states below threshold are 
particularly stable since the annihilation mode to gluons is also forbidden. 

First lattice calculations (Davies et al (1996)) have used NRQCD for both 
the c and b quarks. Agreement with potential model results was found within 
sizeable systematic uncertainties. Better calculations will use NRQCD for the b 
quark and relativistic formulations for the c quark (Shanahan (1997)). However, 
uncertainties still remain about how to fix the bare quark masses in the quenched 
approximation, because of the variations possible in the determination of the 
scale. These problems should become more tractable when complete calculations 
are done including the effects of dynamical fermions. Only preliminary results 
are available on unquenched configurations using NRQCD for b and c (Gorbahn 
et al (1997)). Figure 23 shows a comparison of the spectrum for lattice and 
potential model results. 
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Fig. 23. Lattice results for the spectrum of the Bc system. Open circles indicate 
NRQCD results on quenched configurations, closed circles those on partially un- 
quenched configurations from the MILC collaboration. Bowties indicate results on 
quenched configurations using NRQCD for the b quark and relativistic c quarks. Er- 
ror bars are shown where visible and only indicate statistical uncertainties. (Davies et 
al (1996), Shanahan (1997), Gorbahn et al (1997)). Dashed lines show results from a 
recent potential model calculation (Eichten and Quigg (1994)). 



The Heavy Hadron Spectrum 45 

Other states of a more speculative nature are hybrid states which include a 
gluonic valence component; QQg. Observation of these states would be a direct 
confirmation of the non-Abelian nature of QCD (see possibly E852 (1997)). 
Hybrids are expected containing all quark flavours, but the advantage of studying 
the heavy-heavy hybrids is that the normal QQ spectrum is relatively clean, both 
experimentally and, as discussed here, theoretically. 

There have been several lattice calculations of the hybrid potentials for a po- 
tential model analysis of these states (see, for example, Perantonis and .Michael 
(1990), Juge, Kuti and Morningstar (1997)). Wilson loops are calculated whose 
spatial ends have the appropriate symmetries to project onto the different hybrid 
sectors (see Figure 24). The hybrid potentials obtained can be compared to ex- 
pectations from excited string models and from bag models. From a SchrSdinger 
equation, masses for the hybrid states can be determined; the particular interest 
is in 'exotic' states which cannot appear in the usual QQ sector. These states 
have quantum numbers (J = odd) -+, (Y = even) +- or 0 - - .  They are most 
likely to be visible if their energies are below threshold for Zweig-allowed decay, 
but it is not clear where this threshold is. Some models expect the hybrid states 
to decay to an S-wave heavy-light state and a P-wave, in which case the thresh- 
old is rather higher than for conventional heavyonium decay (for a recent review 
of expected hybrid phenomenology see Close (1997)). 

J f 
~ 

/ ' / / I  

Fig. 24. An example of an operator used at the end of a Wilson loop in the calculation 
of the hybrid (/-/) potential. 

The hybrid potentials obtained (see Figure 25) are very fiat, indicating broad 
states, closely packed in energy. The lightest mass hybrids from these potentials 
are close to the threshold described above. The same picture is obtained by 
calculating the masses of heavy-heavy hybrids directly using N'RQCD (Collins 
(1997b), Manke (1997)). Further work must be done on the spectrum if the 
states are to be accurately predicted for experimental searches. 
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Fig. 25. The heavy hybrid potential from a recent lattice calculation (Juge, Kuti and 
Morningstar (1997)). The Z+ potential is the usual central potential; the H potential 
has a gluonic excitation with spin 1 about the QQ axis and the A potentials have spin 
2. 

3 The Heavy-Light Spectrum 

3.1 M e s o n s  

These are bound states with one heavy valence quark or anti-quark and 1 light 
anti-quark or quark. The levels show a similar picture to that  for the heavy- 
heavy spectrum with the lightest s tate the pseudoscal_ar (1S0) and close by the 
vector (3S1). For charm-light we have pseudoscalars cd = D +, c~ = D O and c~ 
= Ds, and vectors, D *°, D *+ and D*. For bottom-light  we have pseudoscalars 

B , b~ = B -  and b~ = Bs, and vectors again for each. We shall ignore the 
distinction (and slight mass difference) between heavy-light mesons containing 
u and d quarks and often just refer to D and B. Radially excited S states, D '  
and B r are about  500 MeV above the ground states and below these come a set 
of positive pari ty P states, denoted by their spins D~/B~, D1/B1, D~/B~ etc. 
or more generically D** and B**. See Fig. 26 and The Particle Da ta  Group 
(1996). 
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Fig. 26. The spectrum of heavy-light mesons. 

We do not expect a potential model to work well for the heavy-light spectrum 
because the light quarks are now relativistic. The heavy quarks are still non- 
relativistic, however. Taking AQCD as a typical QCD momentum scale of a few 
hundred MeV, we have 

MomentumQ ,-~ Momentumq ~ AQCD 

V_.QQ ,,, AQCD 
¢ mQ 

giving VQ ~ 0.1 for b in B and 0.3 for c in D. This is VQ, not v~, so the heavy 
quark is actually more non-relativistic than in heavy-heavy systems. 

A useful analysis is provided by Heavy Quark Symmetry (see Neubert (1994) 
for a review), In the mQ --4 cx:) limit QCD has an [SU(2NF)] symmetry where 
NF is the number of flavours of heavy quark in the theory. This is evident 
from the NRQCD Lagrangian of equation 22 which, by the arguments above, is 
appropriate for the heavy quarks here also. As mQ -+ oc the Lagrangian becomes 
CtDt¢ when the quark mass term is removed. Thus the heavy quarks become 
spinless and any distinction between flavours disappears (apart from the overall 
energy level set by the missing mass term). The picture of a heavy-light meson 
becomes one of a static heavy quark surrounded by a fuzz), cloud of the light 
degrees of freedom, known as 'brown muck', as in Figure 27. Interactions that 
probe only momentum scales appropriate to the brown muck will not be able 
to see details of the heavy quark at the centre. Notice that this is a completely 
different physical picture to that for heavy-heavy mesons. 
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Fig. 27. A heavy-light meson in the Heavy Quark Symmetry picture. 

From the picture of Figure 27 there is a natural distinction between energy 
shifts in the spectrum that  are caused by something changing for the light degrees 
of freedom, e.g. a radial or orbital excitation, and those caused by something 
changing for the heavy quark, such as its fiavour or spin. In the first case we ex- 
pect that  radial and orbital excitation energies should be approximately indepen- 
dent of the heavy quark flavour, and in the second case we expect much smaller 
splittings with strong heavy quark mass dependence between states of different 
SQ. This hierarchy of splittings is similar to that for heavy-heavy mesons but for 
different reasons. The mQ-independence of the 1P - 1S splitting in heavyonium 
is an accident; in heavy-light mesons it is the consequence of a symmetry of the 
non-relativistic effective theory as mq  --+ ~c. 

A power-counting analysis of the terms in the NRQCD Lagrangian is useful 
to demonstrate this effect (Ali Khan et al (1996)). 

Dt "~ D ..~ AQCD (64) 

from above. Then 

Also 

D___~_ 2 
~ ( 6 2 )  

2mQ mQ 

A ~ At  -+ E, B ~ A2QCD (66) 
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and 

o" • B A2QCD 
~ ~ ( 6 7 )  

mQ mQ 

o'. D × E A~CD 

This shows that,  for the heavy-light case, the NRQCD Lagrangian is a 1/mQ 
expansion (unlike the heavy-heavy case where terms at different order in l/mQ 
appeared at the same order in v~). The leading order term is the Dt term and 
then at the next order come two 1/mQ terms - the kinetic energy" of the heavy 
quark and the spin coupling to the chromo-magnetic field. These are the first two 
terms to know about the heavy quark flavour (mass) and its spin. Any splitting 
that  requires this knowledge will appear first at 1/mQ in an expansion in the 
inverse heavy quark mass. 

The heavy quark spin, SQ, is a good quantum number in the heavy quark 
limit and so we can classify states according to jr = J - S Q .  Each j~ state becomes, 
on the addition of the heavy quark, a doublet with J = jt ~= 1/2 (Isgur and Wise 
(1991)). An analogy can be drawn with atomic physics and the decoupling of 
the nuclear spin as meltoN -4 O. The lightest states are the L = 0; jl = 1/2, 
3S1 (D*, B*)/1So (D, B) doublet. For heavy-light P states the light quark spin: 
Sq, is coupled to the orbital angular momentum to make states of overall spin, 
ji = 1/2 ( 2 polarisations ) or jl ~- 3/2 ( 4 polarisations). Coupling SQ to jl = 
3/2 gives total J=2  (B~, D~) and J = l  (B~, D~) (8 states altogether). Coupling 
SQ to jl = 1/2 gives J=0  or J = l  (4 states altogether). Thus in the j j  coupled 
basis we reproduce the same 12 states as the LS coupled 1P1,3 Po,12 multiplet. 
However, the spin 1 states are a mixture of the 1P1 and 3P1 (with mixing angle 
35 °) because of a lack of charge conjugation. In the mQ -+ o~ limit only the 
splittings caused by the light degrees of freedom remain. The j j  basis becomes 
the correct one and all the jl = 3/2 states become degenerate but split from 
all the jl = 1/2 states. The jl = 3/2 states are narrow (and therefore visible) 
because of the high orbital angular momentum required in decays to D(*)B(*)7~ 
for J=2.  J = l  can only decay to D*/B*n but, having the same jt as the J=2 
state, has a similar total width (see Figure 28 and Isgur and Wise (1991)). 

The difference between the jl + 1/2 and jl - 1/2 members of a doublet is 
a spin flip of the heavy quark. The leading term that  gives rise to this in the 
NRQCD Lagrangian is the (rQ. B term, yielding a splitting behaving as A × (spin 
factors) x 1/mQ. ~ is an expectation value in the light quark degrees of freedom so 
the heavy quark mass dependence of the splitting is as 1/mQ in leading order. 
Table 4 shows experimental values for the vector-pseudoscalar splitting (The 
Particle Data Group (1996)). 1/mQ behaviour fits very well if we take mc ~ 1.5 
GeV and mb ~ 5 GeV. We can also consider the strange quark as a heavy quark 
rather than a light one and add the value for the strange-up/down system, the 
K into the Table. This only works moderately well, with m~ ~ 0.5 GeV, say. The 
coefficient of the 1/mQ dependence is of order 0.2 GeV "~, which is compatible 
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with an expectation value in a light system of A2QCD. Note that  the variation 
with light quark mass between u/d and s is very small. It is clear that  B~ cannot 
be fitted into this heavy-light picture since its expected hyperfine splitting is 
much larger (see section 2.5). 

S p l i t t i n g  

K *  - g 

D * - D  
D; - D~ 
B * - B  

B ;  - B ,  

K~ (1430) - K1 (1270) 
D~ - D1 
D s 2  - Dsl 

Experiment/MeV 
398 

141 
144 
46 
47 

154 
37 
38 

'Expected' value / MeV 
457 
152 

46 

Table  4. Hyperfine splittings for different heavy-light systems; the top group for the 
L ---- 0, jz = 1/2 doublet, the lower group for the L = 1,jl = 3/2 doublet. The final 
column gives expected values for the 3S1 1 So splitting rescaling from the B system by 
the inverse ratio of quark masses given in the text. (The Particle Data Group (1996)). 

Table 4 also shows results for the L = 1, jl -- 3/2 doublet from the D and 
K systems (Eichten et al (1993)). The ratio of splittings between D and K is 
rather different for this case to the one above, probably showing that the K 
is stretching the limits of HQS arguments. Nevertheless, we expect a splitting 
B~ -B1  ofrnc/rnb x (D~ -D1) ~ 12 MeV. A value of 26 MeV is given in DELPHI 
(1995) for the Bs. Experimental results for the L = 1 jl = 1/2 doublet are not 
available since these are much broader than the jz = 3/2 doublet. 

In contrast there are several splittings that we expect, from the argmnents 
above, to be controlled by changes in the light quark degrees of freedom and 
therefore to be independent of the heavy quark mass at leading order. One of 
these is the splitting between the heavy-strange and heavy-up/down mesons. 
Experimentally this is satisfied at the 10% level (see Table 5). Other such split- 
tings are those between radially excited S states and the ground states for which 
experimental information is very limited (B' - / ~  = 580MeV (Landua (1997)) 
and D*' - D* = 630 MeV (DELPHI (1997b))), and between orbitally excited P 
states and the ground S states, which we discuss below. 

For the orbital splittings between heavy-light S and P states we should cal- 
culate a splitting between spin-averaged states, to remove the spin-dependent 
1/mQ effects, and make as clear as possible the mQ-independent light quark 
effects. Since jl = 1/2 states have not been seen, we compare in Table 6 the 
splitting between the spin-average of the jl = 3/2 P states and the spin-averaged 
S states for D and B. Good agreement between the 2 systems is seen. For B 
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,1p1, 

3p2 

'3pl' m Q  ~ oo 

J=l  

jl = 3/2 

} 1/mQ - -  J - - 2  

3po J=l  - -  } 1~too 
- -  J = 0  

jz = 1/2 

Fig. 28. On the left, P fine structure for a degenerate heavy-heavy system. On the 
right, P fine structure for a heavy-light system. 

Splitting[Experiment / MeV 
D~ 'L D 99 
B~ - B 9 0  

Table 5. Experimental values for splittings between heavy-strange and heavy-up/down 
systems (The Particle Data Group (1996)). 

states good spin separation of the P states is not yet available. 
We would also expect the splitting between the jl = 1/2 and the jt = 3/2 

states to be approximately independent of rnQ (Isgur (1997)), although the phys- 
ical spin 1 states will be a mixture of the j j  states away from the mQ ~ oo limit. 
This cannot be checked experimentally as yet. 

3 . 2  B a r y o n s  

There is a huge array of baryon states with one heavy quark and two light 
quarks. Again we can make sense of their masses using Heavy Quark Symmetry 
arguments. We view the baryon as a static colour source (for the heavy quark) 
surrounded by a fuzzy light quark system which is made of two light quarks this 
time instead of a light anti-quark (Falk (1997)). 

We will discuss only the case of zero relative orbital angular momentum. For 
two different light quarks we can combine the light quark spins to give a total St 
of 0 or 1. If the light quarks have the same flavour, only Si = 1 is possible by Fermi 
statistics, remembering the overall anti-symmetry of the colour wavefunction. 
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Splitting 
Kp(1368) - K(792) 
Dp(2445) - O(1975) 
D,~(2559) - D ,  (2076) 
B** (5698) - B(5313) 
B~** (5853) - B, (5404) 

Experiment / MeV 
576 
470 
483 
385 
449 

Table  6. Splittings between spin-averaged jl = 3/2 P states (or experimentally un- 
separated P states) and spin-averaged S states for heavy-light systems (The Particle 
Data Group (1997)). 

Coupling the heavy quark spin then gives the combinations in Table 3.2, with 
overall spin-parity assignments. 

baryon Qqq Sl JP mass~/MeV massb/MeV 
1+ 2285(1) 5624(9) A Q[ud] 0 + 
1+ 2453(1) 5797(8) Q{ud}, uu, dd 1 + 
~+ 2519(2) 5853(8) ,V,* Q{ud}, uu, dd 1 + 

- 1 + 2468(2) = Q[u/ds] 0 + -~ 
1 + 2568(?) ~,' q{u/ds} 1 + 

~," Q{u/ds} 1 + 3+ 2645(2) 
12+ 2704(4) 12 Qss 1 + 

12" Qss 1 + _3+ 
2 

Table  7. JP possibilities for baryons containing one heavy quark along with two light 
quarks. The names are given with subscripts c or b. Masses are given in the last two 
columns, taken from The Particle Data Group (1997), DELPHI (1995) for £:b and 

t 

WA89 (1995) for ~ . 

Using HQS arguments we would expect the splitting between the spin average 
of ~ and ~* states and the A to be independent of mQ, since this splitting 
represents a change in jz. We can check this in Table 8, and it works well even 
when the s quark is considered as a heavy quark. There is in fact very little room 
for sub-leading 1/MQ dependence which can in principle be there (A~cD/m~ 
50 MeV). In the last row is given for comparison the splitting between the spin- 
average of the -~ - '  - *  and ~c and the -~c. This is essentially the same splitting except 
for the different light quark content. The answer is significantly different, showing 
more sensitivity to light quark content than for the mesons (Falk (1997)). The 
physical ~c and --c will be mixtures of the HQS states, just  like the spin 1 
meson P states, but this should not be a big effect. An equal spacing rule, 
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~c ~¢ 5:~ holds well. 

Splitting IExperiment/MeV 
- A~ I 203 

~-~ - A¢ I 212 
- Ab I 210 

e-:"- 
Table 8. Experimental values for the splitting between the spin-average of ~ states 
and the A for different heavy quarks including s. In the last row a comparable splitting 
is given for the ~,c. 

All the fine structure splittings between states of the same Sl but different J 
should behave as 1/mQ. Table 9 shows the experimental information on this for 
the 5: baryons. The s quark fits well into this picture, but the experimental X~ - 

splitting looks significantly different from the expected value (Falk (1997)). 
The experimental results need to be confirmed, however. The ,~* - -~ splitting 
agrees well with the 57" - 5: showing no large m,  effects here. 

Splitting I Experiment 

Z;  - ~b I 56 
J~* - ~ " 80 

/ M.eV 'Expected' 1:: 
2O 

/ .MeV 

Table 9. Splittings between ,U* and • states for different heavy quarks, including s. 
The last column gives expected values for 1/mv behaviour compared to the splitting 
for c. 

We can also take splittings between baryons and mesons. The simplest split- 
ting is between the A baryons and the S state mesons. To remove spurious mQ 
dependence we should take the spin-average of the 1S0 and 3S1 meson states 
(Martin and Richard (1987)). Table 10 shows the experimental results; again 
Heavy Quark Symmetry works much better  than might be expected. 

HQS yields only the mQ dependence of the splittings; it must be combined 
with a non-perturbative method of determining the coefficients of this depen- 
dence. QCD sum rules can be invoked here (Neubert (1994)); Lattice QCD 
provides a better  ab initio method. We discuss results from lattice QCD in the 
next  subsection. 
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Splitting Experiment / MeV 
As - K 323 
Ac - D 310 
Ab -- B 310 

Table 10. The splitting between the A baryon and the spin average of S state 
heavy-light mesons for different heavy quarks, including s. 

Exercise: Discuss what you would expect for heavy-heavy-light baryons. 
Take Q1 ¢ Q~. 

Exe rc i s e :  Compare orbitally excited A, and Ac baryons from the Par- 
ticle Data  Tables. What  does this lead you to expect for the orbitally 
excited Ab ? (Rosner (1995)). 

3.3 Direct  Calculations of  the Heavy-Light Spectrum on the Lattice 

Following the methods described for the heavyonium spectrum, we can calculate 
the heavy-light spectrum directly using lattice QCD. We must combine a heavy 
quark propagator with a light anti-quark propagator (or two light quark propa- 
gators) to make a meson (baryon) correlation function. This we fit as before to 
a sum of exponentials to extract ground and excited state energies and masses. 
In principle some of the excited states can undergo strong decays upsetting this 
relation, but this does not happen in current lattice simulations. 

For hadrons containing a b quark the best method is probably to use NRQCD 
for the heavy quark as described for bottomonium in section 2.3. Because of the 
different power-counting rules for the heavy-light case, the Lagrangian used can 
be different to that  for heavyonium. For example, a consistent calculation to 
O(1/mQ) would include Dr, D2/2mQ and or. B/2mQ terms (tadpole-improved 
as before). In fact for the heavy-light case the spectrum can be calculated in 
the static limit with simply the Dt term, because the light quark provides the 
kinetic energy. In this case, of course, only states of a given jl are obtained 
with no hyperfine splittings. The static limit is very cheap computationally but  
much noisier (Lepage (1992)) than NRQCD even at very large mQ and for this 
reason it may be more accurate to obtain static results from the limit of NRQCD 
calculations. For hadrons containing a c quark, we will discuss results using the 
heavy Wilson (SW) action. 

Since we do not have a potential model in principle to guide our intuition, 
it is more difficult to think of good smearing functions for heavy-light mesons. 
A lot of effort has been put  into this for mesons in the static case (Duncan 
et al (1995), Draper et al (1995)) to ameliorate the noise problems. Again, the 
smearing does not affect the values of masses obtained, but a good smearing can 
reduce the errors. In fact potential-model type wavefunctions (much broader 
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Fig. 29. The B spectrum from lattice QCD using NRQCD for the b quark. Circles 
are in the quenched approximation; open circles use rn~ from K and closed circles, 
ms from K*. Squares are results on configurations with n/ = 2 dynamical fermions. 
Experimental results (The Particle Data Group (1997)) axe given by dashed horizontal 
lines. The B meson mass is fixed to its experimental value in all cases (Ali Khan 
(1997)). 

than for heavyonium) do work reasonably well (Duncan et al (1995), Ali Khan 
et al (1996)), used as a source for the heavy quark, as do gauge-invariant smear- 
ings typical of light hadron calculations (UKQCD (1996b)). The light anti-quark 
for the meson is taken to have a delta function source. Alternatively both prop- 
agators can be smeared, and for baryons it is certainly a good idea for all the 
propagators to be smeared (UKQCD (1996b)). 

The meson operators are similar to those for heavyonium - ~/~.(2¢;~. For the 
NRQCD heavy quark case D is a 2 x 2 matrix in spin space and only 2 components 
are taken from the 4-component light quark. The colors of heavy quark and 
light anti-quark are matched for a colour singlet. The baryon operators need an 
anti-symmetric colour combination, and the light quark propagators combined 
with appropriate spins (UKQCD (1996b)). For example the AQ operator (with 
smearing factors, ¢ suppressed) is: 

0 ABCI AT~ B ,tC = e ~xql ~'sxq2)vQ (68) 

where C is the charge conjugation matrix. 
In principle, having calculated the bottomonium spectrum in NRQCD as 

in section 2.3 on a given set of gluon configurations, we can determine a -1 
and the bare b quark mass, rnb, and the calculation of the B spectrum should 
have no parameters to tune. Unfortunately this is not true in the quenched 
approximation. The disagreement with experiment shown in Figure 18 makes 
it clear that  the a -1 fixed from the T spectrum would be ~ 20% different to 
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that  from Mp, because of the different momentum scales appropriate  to the two 
systems. Heavy-light systems are much closer to light hadrons in these terms than 
to heavyonium. For the best quenched results we really need to use a value for 
a -1 from the heavy-light system itself, but the lack of experimental  information 
on P states makes this hard, since the obvious quantity to use is the 1 P -  1S 
splitting. Usually a -1 is taken instead from light hadron spectroscopy. Large 
statistical and systematic uncertainties there then give a rather  large error. 

6.0- 

G e V  

5.5 ¸ 

5.0 
B Ab Fb ~ 

Fig. 30. Masses of baryons containing one b quark from lattice QCD. Circles use 
NRQCD for the b quark in the quenched approximation, the box uses NRQCD on 
configurations with ni = 2 flavours of dynamical fermions. Triangles (Alexandrou et 
al (1994b)) use Wilson fennions, and diamonds the SW action (UKQCD (1996b)) ex- 
trapolating from the region of the charm quark, again in the quenched approximation. 
Experimental results are given by horizontal lines (The Particle Data Group (1997), 
DELPHI (1995)). (Ali Khan (1997)). 

This creates a problem with the bare b quark mass, rob, since it was fixed 
in bo t tomonium using a -1 from that  system. It  should be fixed again in heavy- 
light systems using the kinetic mass of, say, the B. This is difficult to extract  
accurately because Bs are lighter than Ts. E(p) - E(O) is larger for the B 
than the T so the noise in the meson correlation function at finite momentum 
p (set by E(0)) is worse. An alternative is to calculate the usual energy at 
zero momentum,  EB(O), and apply the energy shift per quark in lattice units 
calculated for heavyonium to get tuba (Ali Khan et al (1996), Collins et al 
(1996b)). 

These problems mean tha t  the heavy-light spectrum cannot be as accurately 
calculated as tha t  of heavyonium. Once dynamical fermions are included suffi- 
ciently well to mimic the real world there can only be one value of a -1 and mb/c. 
We are a long way from this point at present, however. It  is not even possible to 



The Heavy Hadron Spectrum 57 

perform consistent nf extrapolations (to n f  = 3?) of the heavy-light spectrum 
from results at n I = 0 and 2 (Collins et al (1996b) and in preparation). For 
heavyonium differences in methods of fixing a -1 disappeared on this extrapola- 
tion but this is not currently true for heavy-light mesons and shows the presence 
of systematic errors. 

Another difficulty with the heavy-light spectrum is that of fixing the light 
quark mass. This is a problem shared with light hadron calculations (Weingarten 
(1997), Montvay and MOnster (1994)). The B and D calculations must be done 
with several different light quark masses far from the physical u / d  masses and 
the results extrapolated to the chiral limit. This inevitably causes an increase 
in statistical and systematic errors. For the B~ and D~, it is possible to inter- 
polate to the s quark mass although there are ambiguities in fixing that, again 
possibly arising from the quenched approximation (see, for example, Gupta and 
Bhattacharya (1997)). 

Figure 29 shows the b-light meson spectrum using NRQCD for the b quark, 
fixing mb from the B mass and a -1 from M o (from a recent review by Ali 
Khan (1997)). The overall agreement with experiment is good. The B* - B 
splitting is too small, however, both on quenched and on partially unquenched 
configurations. As before, this may be a quenching effect and/or it may arise 
from radiative corrections to c4 beyond tadpole-improvement (see the discussion 
for heavyonium). The problems with fixing m~ are clear. The P states still 
have rather large error bars but the ordering, B~, B1, B~ is becoming clear in 
the lattice results (in disagreement with some expectations (Isgur (1997))). The 
spin 1 P states cannot be clearly separated as yet. Experimental results on the 
P states are likewise uncertain. Results at a different value of the lattice spacing 
are compared in Hein (1997). 

Figure 30 shows the b-light baryon spectrum using NRQCD for the b quark 
(Ali Khan (1997)). Agreement with experiment is again reasonably good, al- 
though the Ab baryon is apparently too heavy on the partially unquenched con- 
figurations. The baryons are probably rather susceptible to finite volume effects, 
and further work is definitely needed on bigger volumes. The S* - S splitting 
is too small in the quenched approximation, which does not seem surprising by 
n o w .  

Results in the static limit for mesons and baryons, for the states that still 
exist there, are similar to those from NRQCD but have been in the past less 
accurate - see Peisa and Michael (1997), UKQCD (1996a), Duncan et al (1995), 
Alexandrou et al (1994a) and Duncan et al (1993). A comparison is made in 
Figure 30 to results using heavy Wilson quarks for the b. This will be discussed 
further below. 

Arguments earlier showing that the heavy quarks are more non-relativistic 
in heavy-light than heavy-heavy does mean that NRQCD should work better for 
the D than for the ~ but currently results are only available for S-states at one 
value of the lattice spacing (Hein (1997)). For c-light mesons and baryons the 
SW action (or other heavy Wilson action) is probably to be preferred even in this 
case. Figure 31 shows a recent D spectrum using the tadpole-improved SW action 
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Fig, 31. The D meson spectrum from lattice QCD using a tadpole-improved S\V action 
in the quenched approximation. Masses are fixed relative to the spin average of the Ds 
and the D] (Boyle (1997a)). Horizontal dashed lines mark the experimental results 
(The Particle Data Group (1996)). 

for the c quark presented here by Peter Boyle (Boyle (1997a)). The agreement 
with experiment is encouraging but it has not been possible to extract  all the P 
fine structure as yet, and errors bars there are still rather large. Uncertainties in 
how to fix a -1 and mc are the same here as for the b case above. In the Figure 
a -1 is taken from light hadron spectroscopy. Results have been compared at two 
values of the lattice spacing (Boyle (1997b)). No D spectrum is available from 
unquenched configurations as yet. 

Figure 32 shows the c-light baryon spectrum using the SW action for the c 
quark but this time not tadpole-improved (UKQCD (1996b)). Agreement with 
experiment for the mQ-independent splittings is reasonable but the hyperfine 
splittings are much too small. At least a part of this comes from the lack of 
tadpole- improvement since this directly affects the '(rQ • B'  terra in this formal- 
ism. 

It is tempting to try extrapolating to the b quark from the c quark using 
the results from the SW action and HQS arguments to set the mQ-dependence 
of splittings. This is probably fine for splittings which have little or no rnQ 
dependence, in which case extrapolation is not really necessary. We have seen 
that  there are several splittings for which the leading behaviour is a constant 
and for which there seems almost no sub-leading dependence on mQ. For the 
splittings that  have strong mQ dependence it is much more difficult to pick up 
this dependence from the small mQ side than from the large. Figure 30 compares 
results from NRQCD with extrapolated results from unimproved Wilson quarks 
(Alexandrou et al (1994b)) and SW quarks (UKQCD (1996b)). In the latter 
case the low value obtained for the hyperfine Z* - ~ splitting becomes worse on 



The Heavy Hadron Spectrum 59 

GeV 
2.7- 

2.5' 

1 

2.3- 

I 
Ac -~ •c •c ~l  ~ ,  ~c  ,f~c f2 c ~ C  ~ C  

Fig. 32, The spectrum of baryons containing one c quark obtained on the lattice using 
the SW action for the c quark in the quenched approximation (UKQCD (1996b)). The 
horizontal dashed lines give experimental results (The Particle Data Group (1997)). 

extrapolation. In principle the SW action is safer for heavy-light mesons than 
for heavy-heavy as was discussed in section 2.4. and so calculations at the b itself 
can and should be done with this method (Simone et al (I997)). 

Finally lattice QCD calculations do not have to restrict themselves to he 
physical quark masses but can explore the whole heavy quark region. This en- 
ables a fit to the dependence on mQ (or on the pseudoscalar meson mass, say) of a 
range of splittings. The coefficients of this dependence are then non-perturbative 
parameters of a heavy quark expansion which can be made use of in other heavy 
quark relations. The values of the coefficients can be compared to expectations 
of powers of AQCD and to QCD sum rule results (Collins et al (1996b), Collins 
(1997a), Gimenez et al (1997)). 

4 C o n c l u s i o n s  

There has been a lot of progress in heavy hadron spectroscopy using the tech- 
niques of lattice QCD in recent years, converting the qualitative understanding 
of potential models and Heavy Quark Symmetry into clear numerical results 
that  test QCD. 

Further work is still needed to bring down systematic errors. Upsilon spec- 
troscopy is the most accurate at present. Here, more calculations need to be done 
with a non-relativistic action which includes next-to-leading spin-dependent terms 
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and radiative corrections to leading terms. Finite volume effects must be studied 
for radially excited states. More accuracy is needed on dynamical configurations 
with several different values of n I to allow for a clear extrapolation of fine struc- 
ture to the real world. A prediction for the T - rib mass at the i0% level is a 
realisable goal with current calculations. 

The charmonium spectrum is more complete experimentally but more work 
is needed on the lattice using heavy Wilson actions to reduce statistical and 
systematic errors (e.g. from D 4 terms). Calculations on configurations with dy- 
namical fermions are required for extrapolations to compare to experiment. 

In the heavy-light sector statistical and systematic errors are inevitably larger 
and these must be reduced if we are to get a clear picture of the fine structure 
and radial excitations from the lattice that  are now being seen experimentally. 
Analyses of scaling as the lattice spacing is changed and finite volume studies for 
these systems are still at an early stage. In the next few years a clearer picture 
will emerge of the effect of the quenched approximation on :softer' momentum 
systems such as light and heavy-light hadrons and ambiguities of scale setting 
and quark mass fixing should be removed. 

Finally, as noted at the beginning, we are also interested in matrix elements 
for radiative and weak decays of heavy hadrons, particularly those which are 
important  for the experimental B physics programme. Calculations of these are 
being done on the lattice also, using the techniques described here for the spec- 
trum. These calculations are much harder and accurate spectrum results will be 
a prerequisite for accurate matrix elements. 
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MeCallum, Colin Morningstar, Junko Shigemitsu, John Sloan and Achim Spitz. 
A lot of the work described here was supported by PPARC and NATO under 
grant CRG 941259. I am grateful to the Institute for Theoretical Physics, UCSB, 
for hospitality and to the Leverhulme Trust and the Fulbright Commission for 
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Nonoperturbative Renormalization of QCD 

Rainer Sommer 

DESY-IfH, Platanenallee 6, D-15738 Zeuthen 

Abs t r ac t .  In these lectures, we discuss different types of renormalization problems 
in QCD and their non-perturbative solution in the framework of the lattice formula- 
tion. In particular the recursive finite size methods to compute the scale-dependence of 
renormalized quantities is explained. An important ingredient in the practical applica- 
tions is the SchrSdinger functional. It is introduced and its renormalization properties 
are discussed. 
Concerning applications, the computation of the running coupling and the running 
quark mass are covered in detail and it is shown how the A-parameter and renormal- 
ization group invariant quark mass can be obtained. Further topics are the renormal- 
ization of isovector currents and non-perturbative Symanzik improvement. 

Contents  

1. Introduction 
Basic renormalization: hadron spectrum; Finite renormalization: (semi-)leptonic 
decays; Scale dependent renormalization; Irrelevant operators 

2. The Problem of Scale Dependent Renormalization 
The extraction of ~ from experiments; Reaching large scales in lattice QCD 

3. The Schr5dinger F~unctional 
Definition; Quantum mechanical interpretation; Background field; Perturbative ex- 
pansion; General renormalization properties; Renormalized coupling; Quarks; Renor- 
realized mass; Lattice formulation 

4. The Computation of a(q) 
The step scaling function; Lattice spacing effects in perturbation theory; The con- 
tinuum limit ~ universality; The running of the coupling; The low energy scale; 
Matching at finite energy; The A parameter of quenched QCD; The use of bare 
couplings 

5. Renormalization Group Invariant Quark Mass 
6. Chiral Symmetry, Normalization of Currents and O(a)-Improvement 

Chiral Ward identities; O(a)-improvement; Normalization of isovector currents 
7. Summary, Conclusions 

1 Introduction 

The topic of these lectures is the computat ion of properties of particles tha t  are 
bound by the strong interaction or more generally interact strongly. The strong 
interactions are theoretically described by Quantum Chromo Dynamics (QCD), 
a local quantum field theory. 

Start ing from the Lagrangian of a field theory, predictions for cross sections 
and other observables are usually made by applying renormalized per turbat ion 
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theory, the expansion in terms of the (running) couplings of the theory. While this 
expansion is well controlled as far as electroweak interactions are concerned, its 
application in QCD is limited to high energy processes where the QCD coupling, 
a,  is sufficiently small. In general - and in particular for the calculation of bound 
state properties - a non-perturbative solution of the theory is required. 

The only method that  is known to address this problem is the numerical 
simulation of the Euclidean path integral of QCD on a space-time lattice. By 
"solution of the theory" we here mean that  one poses a well defined question like 
"what is the value of the 7r decay constant", and obtains the answer (within a 
certain precision) through a series of Monte Carlo (MC) simulations. This then 
allows to test the agreement of theory and experiment on the one hand and 
helps in the determination of Standard Model parameters from experiments on 
the other hand. 

Quantum field theories are defined by first formulating them in a regulariza- 
tion with an ultraviolet cutoff Acut and then considering the limit Acut --+ (x). In 
the lattice formulation (Wilson 1974), the cutoff is given by the inverse of the 
lattice spacing a; we have to consider the continuum limit a ~ 0. At a finite 
value of a, the theory is defined in terms of the bare coupling constant, bare 
masses and bare fields. Before making predictions for experimental observables 
(or more generally for observables that  have a well defined continuum limit) the 
coupling, masses and fields have to be renormalized. This is the subject of my 
lectures. 

Renormalization is an ultraviolet phenomenon with relevant momentum scales 
of order a -1. Since a becomes weak in the ultraviolet, one expects to be able 
to perform renormalizations perturbatively, i.e. computed in a power series in 
a as one approaches the continuum limit a ~ 0.1 However, one has to take 
care about the following point. In order to keep the numerical effort of a simu- 
lation tractable, the number of degrees of freedom in the simulation may not be 
excessively large. This means that  the lattice spacing a can not be taken very 
much smaller than the relevant physical length scales of the observable that  is 
considered. Consequently the momentum scale a -1 that  is relevant for the renor- 
malization is not always large enough to justify the truncation of the perturbative 
series. In order to obtain a truly non-perturbative answer, the renormalizations 
have to be performed non-perturbatively. 

Depending on the observable, the necessary renormalizations are of differ- 
ent nature. I will use this introduction to point out the different types and in 
particular explain the problem that occurs in a non-perturbative treatment of 
renormalization. 

1.1 Basic Renormalization: Hadron Spectrum 

At this school, the calculation of the hadron spectrum is covered in detail in 
the lectures of Don Weingarten (Weingarten 1997). I mention it anyway be- 

1 For simplicity we ignore here the cases of mixing of a given operator with operators 
of lower dimension where this statement does not hold. 
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cause I want to make the conceptual point that  it can be considered as a non- 
perturbative renormalization. I refer the reader to Weingarten's lectures both 
for details in such calculations and for an introduction to the basics of lattice 
QCD. 

The calculation starts by choosing certain values for the bare coupling, go, 
and the bare masses of the quarks in units of the lattice spacing, amfo. The flavor 
index f assumes values f = u, d, s, c, b for the up, down, charm and bottom 
quarks that  are sufficient to describe hadrons of up to a few GeV masses. We 
neglect isospin breaking and take the light quarks to be degenerate, m~ = m d = 
rn~. 

Next, from MC simulations of suitable correlation functions, one computes 
masses of five different hadrons H,  e.g. H = p, ~, K, D, B for the proton, the pion 
and the K-,D- and B-mesons, 

amH = atoll(go, amlo, am~, am~, am b) . (1) 

exp where exp is the exper- The theory is renormalized by first setting mp = m p  , mp 
imental value of the proton mass. This determines the lattice spacing via 

a = (amp)/mp xp . (2) 

Next one must choose the parameters amfo such that  (1) is indeed satisfied with 
the experimental values of the meson masses. Equivalently, one may say that  at 
a given value of go one fixes the bare quark masses from the condition 

(amt-i)/(amp) = e x p / ~ e x p  H = ~r, K, D, B (3) 
"~H l"~p ~ 

and the bare coupling 9o then determines the value of the lattice spacing through 
(2). 

After this renormalization, namely the elimination of the bare parameters in 
favor of physical observables, the theory is completely defined and predictions 
may be made. E.g. the mass of the A-resonance can be determined, 

m,a = a-l[am~][1 + O(a)] . (4) 

For the rest of this section, I assume that  the bare parameters have been elimi- 
nated and consider the additional renormalizations of more complicated observ- 
ables. 

Note. Renormalization as described here is done without any reference to pertur- 
bation theory. One could in principle use the perturbative formula for (aA)(go) 
for the renormalization of the bare coupling, where A denotes the A-parameter 
of the theory. Proceeding in this way, one obtains a further prediction namely 
m p / A  but at the price of introducing O(go 2) errors in the prediction of the observ- 
ables. As mentioned before, such errors decrease very slowly as one performs the 
continuum limit. A better method to compute the A-parameter will be discussed 
later. 
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1.2 Finite Renormalization: (Semi-)leptonic Decays 

Semiteptonic weak decays of hadrons such as K --+ 7r e # are mediated by elec- 
troweak vector bosons. These couple to quarks through linear combinations of 
vector and axial vector flavor currents. Treating the electroweak interactions at 
lowest order, the decay rates are given in terms of QCD matrix elements of these 
currents. For simplicity we consider only two flavors; an application is then the 
computation of the pion decay constant describing the leptonic decay 7r --+ e p.2 
The currents are 

a - -  1 T a X Ai,(x) = ¢ ( x ) ? , T s ~  ~b( ) , 

= , (5) 

where T a denote the Pauli matrices which act on the flavor indices of the quark 
fields. A priori the bare currents (5) need renormalization. However, in the limit 
of vanishing quark masses the (formal continuum) QCD Lagrangian is invariant 
under SU(2)v× SU(2)A flavor symmetry transformations. This leads to non- 
linear relations between the currents called current algebra, from which one 
concludes that  no renormalization is necessary (cf. Sect. 6). 

In the regularized theory SU(2)v× SU(2)A is not an exact symmetry but  
is violated by terms of order a. As a consequence there is a finite renormal- 
ization (Meyer and Smith (1983), Martinelli and Yi-Cheng (1983), Groot et al. 
(1984), Gabrielli et al. (1991), Borrelli et al. (1993)) 

(AR)~, ZAA ~ a ~ l.t ' 

o~ (vR)  = ZvVZ , ( 6 )  

with renormalization constants ZA, Zv that  do not contain any logarithmic (in 
a) or power law divergences and do not depend on any physical scale. Rather 
they are approximated by 

~(1) _2 Z A = I + ~  A y 0 + . . .  , 
_(1) 2 

Z v = l + ~  v g o + . . .  , (7) 

for small 90. 
On the non-perturbative level these renormalizations can be fixed by current 

algebra relations (Bochicchio et al. (1985), Maiani and Martinelli (1986), Lfischer 
et al. (1997 I)) as will be explained in section 6. 

2 Of course, decays of hadrons containing b-quarks are more interesting phenomeno- 
logically, but here our emphasis is on the principle of renormalization. 
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1 .3  S c a l e  D e p e n d e n t  R e n o r m a l i z a t i o n  

a) S h o r t  d i s t a n c e  p a r a m e t e r s  of QCD. As we take the relevant length 
scales in correlation functions to be small or take the energy scale in scattering 
processes to be high, QCD becomes a theory of weakly coupled quarks and 
gluons. The strength of the interaction may be measured for instance by the 
ratio of the production rate of three jets to the rate for two jets in high energy 
e + e-  collisions, 

a(e + e- -+ q qg) q2 = (Pc- +Pc+) 2 >> 10GeV 2 a(q) c ( c r ( e + e - - 4 q q )  ' (8) 

We observe the following points. 

- The perturbative renormalization group tells us that a(q) decreases loga- 
rithmically with growing energy q. In other words the renormalization from 
the bare coupling to a renormalized one is logarithmically scale dependent. 

- Different definitions of a are possible; but with increasing energy, a depends 
less and less on the definition (or the process). 

- In the same way, running quark masses ffi acquire a precise meaning at high 
energies. 

- Using a suitable definition (scheme), the q-dependence of a and ffi can be 
determined non-perturbatively and at high energies the short distance pa- 
rameters a and ~ can be converted to any other scheme using perturbation 
theory in a. 

Explaining these points in detail is the main objective of my lectures. For now 
we proceed to give a second example of scale dependent renormalization. 

b) Weak h a d r o n i c  m a t r i x  e l e m e n t s  of 4-quark opera tors .  Another exam- 
ple of scale dependent renormalization is the 4-fermion operator, 0 "a~=2, which 
changes strangeness by two units. It originates from weak interactions after in- 
tegrating out the fields that have high masses. It describes the famous mixing 
in the neutral Kaon system through the matrix element 

< ~ ° l O ~ - - 2 ( ~ ) l K °  > . 

Here the operator renormalized at energy scale # is given by 

On,=2(#) ZA,=2(#a, go) l - L - -  L - -  - -  I 

( ) j=S,P,V,A,T 

= - 

F s = l ,  P p = ~ f s , . . . , F T = a , ~  , 
zS = O(g02), zv ~- -zA (9) 
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where I have indicated the flavor index of the quarks explicitly. A mixing of the 
L - -  L d leading bare operator, ¢ , 7 , ¢ d ¢ , 7 , ¢  , with operators of different chirality is 

again possible since the lattice theory does not have an exact chiral symmetry 
for finite values of the lattice spacing. The mixing coefficients zj  may be fixed 
non-perturbatively by current algebra (Aoki et al. (1997)). Afterwards, the over- 
all scale dependent renormalization has to be treated in the same way as the 
renormalization of the coupling. 

1.4 Irrelevant Operators  

A last category of renormalization is associated with the removal of lattice dis- 
cretization errors such as the O(a)-term in (4). Following Symanzik's improve- 
ment program, this can be achieved order by order in the lattice spacing by 
adding irrelevant operators, i.e. operators of dimension larger than four, to the 
lattice Lagrangian (Symanzik (1982-83)). The coefficients of these operators are 
easily determined at tree level of perturbation theory, but in general they need 
to be renormalized. 

In this subject significant progress has been made recently as reviewed by 
Lepage (1996), Sommer (1997). In particular the latter reference is concerned 
with non-perturbative Symanzik improvement and uses a notation consistent 
with the one of these lectures. It will become evident in later sections that 
improvement is very important for the progress in lattice QCD. 

Note also the alternative approach of removing lattice artifacts order by 
order in the coupling constant but non-perturbatively in the lattice spacing a as 
recently reviewed by (Niedermayer (1997)). 

2 T h e  P r o b l e m  o f  S c a l e  D e p e n d e n t  R e n o r m a l i z a t i o n  

Let us investigate the extraction of short distance parameters (Section 1.3a) in 
more detail. First we analyze the conventional way of obtaining a from exper- 
iments. Then we explain how one can compute a at large energy scales using 
lattice QCD. 

2.1 The Extract ion of  ~ from Exper iments  

One considers experimental observables O~ depending on an overall energy scale q 
and possibly some additional kinematical variables denoted by y. The observables 
can be computed in a perturbative series which is usually written in terms of 
the MS coupling a~-g, 3 

Oi(q ,y )  = a~-g(q) + A i ( y ) a ~ ( q )  + . . . .  (10) 

3 We can always arrange the definition of the observables such that they start with a 
term a. 
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For example Oi may be constructed from jet cross sections and y may be related 
to the details of the definition of a jet. 

The renormalization group describes the energy dependence of a in a general 
scheme (a = f / (47r)) ,  

00 q~qq = ~(~) , (11) 

where the/~-function has an asymptotic expansion 

~(0) ~ 0  _03 {be + 02bl +. . .}  , 
2 b0 = (41~-~)(11- ~Nf) , 

bl = (41-~) (102 - ~ N f )  , (12) 

with higher order coefficients b~, i > 1 that  depend on the scheme. (12) entails 
the aforementioned property of asymptotic freedom: at energies that  are high 
enough for (12) to be applicable and for a number of quark flavors, Nf, that  
is not too large, a decreases with increasing energy as indicated in Fig. 1. The 
asymptotic solution of (11) is given by 

q--+~ 1 bl ln[ln(q2/A2)] f {ln[ln(q2/A2)]} 2 ) 02 boln(q2/A ) b o[ln(q2/A:)] + 0 \  (13) 

with A an integration constant which is different in each scheme. 

(2 

log(q) 

Fig. 1. Running of a in a definite scheme. 

We note that  - neglecting experimental uncertainties - a~-g extracted in this 
way is obtained with a precision given by the terms that  are left out in (10). 



72 Rainer Sommer 

In addition to c~-terms, there are non-perturbative contributions which may 
originate from "renormalons", "condensates" (the two possibly being related), 
"instantons" or - most importantly - may have an origin that  no physicist has 
yet uncovered. Empirically, one observes that values of (~--g determined at differ- 
ent energies and evolved to a common reference point using the renormalization 
group equation (11) including b~ agree rather well with each other; the aforemen- 
tioned uncertainties are apparently not very large. Nevertheless, determinations 
of a are limited in precision because of these uncertainties and in particular if 
there was a significant discrepancy between a determined at different energies 
one would not be able to say whether this was due to the terms left out in (10) or 
was due to terms missing in the Standard Model Lagrangian, eg. an additional 
strongly interacting matter  field. 

It is an obvious possibility and at the same time a challenge for lattice QCD 
to achieve a determination of a in one (non-perturbatively) well defined scheme 
and evolve this coupling to high energies. There it may be used to compute jet 
cross sections and compare to high energy experiments to test the agreement 
between theory and experiment. Since in the lattice regularization QCD is nat- 
urally renormalized through the hadron spectrum, such a calculation provides 
the connection between low energies and high energies, verifying that  one and 
the same theory describes both the hadron spectrum and the properties of jets. 

Note. A dis-satisfying property of a~-~-g is that it is only defined in a pertur- 
bative framework; strictly speaking there is no meaning of phrases like :'non- 
perturbative corrections" in the extraction of c~-~ from experiments. The way 
that  I have written (10) suggests immediately what should be done instead. 
An observable Oi itself may be taken as a definition of a - of course with 
due care. Such schemes called physical schemes are defined without ambigui- 
ties. This is what will be done below for observables that are easily handled in 
MC-simulations of QCD. For an additional example see Grunberg (1984). 

2.2 Reaching Large Scales in Lattice QCD 

Let us simplify the discussion and restrict ourselves to the pure Yang-Mills theory 
without mat ter  fields in this section. A natural candidate for a non-perturbative 
definition of a is the following. Consider a quark and an anti-quark separated 
by a distance r and in the limit of infinite mass. They feel a force F( r ) ,  the 
derivative of the static potential V(r),  which can be computed from Wilson 
loops (see e.g. Montvay and Mfinster (1994)). A physical coupling is defined as 

ano(q) = -~-TFr2F(r), q = 1/r, CF = 4/3 . (14) 

It is related to the MS coupling by 

_MSq~_~ (15) C~q~ ----- c~-~ + c 1 ~ -~  + . . .  , 
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where both couplings are taken at the same energy scale and the coefficients in 

their perturbative relation are pure numbers. The l-loop coefficient, c~ IS @, also 
determines the ratio of the A-parameters vs. 

Aqq/A~-g = exp ( - c l  MS qr~/(87~b0)) . (16) 

Note that  aqo is a renormalized coupling defined in continuum QCD. 

Problem. If we want to achieve what was proposed in the previous subsection, 
the following criteria must be met. 

- Compute aqrt(q) at energy scales of q ~ 10 GeV or higher in order to be able 
to make the connection to other schemes with controlled perturbative errors. 

- Keep the energy scale q removed from the cutoff a -1 to avoid large dis- 
cretization effects and to be able to extrapolate to the continuum limit. 

- Of course, only a finite system can be simulated by MC. To avoid finite 
size effects one must keep the box size L large compared to the confinement 
scale K -1/2  to avoid finite size effects. Here, K denotes the string tension, 
K = lim~_+~ F ( r ) .  

These conditions are summarized by 

1 1 1 
L >> >> >> a , (17) 

0.4GeV q 10GeV 

which means that  one must perform a MC-computation of an N 4 lattice with 
N = L / a  >> 25. It is at present impossible to perform such a computation. The 
origin of this problem is simply that  the extraction of short distance parameters 
requires that  one covers physical scales that  are quite disparate. To cover these 
scales in one simulation requires a very fine resolution, which is too demanding 
for a MC-calculation. 

Of course, one may at tempt  to compromise in various ways. E.g. one may 
perform phenomenological corrections for lattice artifacts, keep 1/q  ~ a and at 
the same time reduce the value of q compared to what I quoted in (17). Calcu- 
lations of aq~ along these lines have been performed in the Yang-Mills theory 
(Michael (1992), Booth et al. (1992), Bali and Schilling (1993)). It is difficult to 
estimate the uncertainties due to the approximations that are necessary in this 
approach. 

Solution. Fortunately these compromises can be avoided altogether (Lfischer, 
Weisz and Wolff (1991)). The solution to the problem is to identify the two 
physical scales, above, 

q = 1 / L  . (18) 

In other words, one takes a finite size effect as the physical observable. The 
evolution of the coupling with q can then be computed in several steps, changing 
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q by factors of order 2 in each step. In this way, no large scale ratios appear  and 
discretization errors are small for L/a  >> 1. 

For illustration, we modify the definition of aqo(q) to fit into this class of 
finite volume couplings. Consider the Yang-Mills theory on a T × L 3 - torus 
with T >> L. 4 The finite volume coupling, 

&qo(q) ---- k{r2F(r,L)}~-_L/4, q -= 1/L , (19) 

can again be related to the MS coupling perturbatively, 

~ : . M S  qffl ̂  :2 ( 2 0 )  

This relation may come as a surprise since it relates a small volume quantity 
to an infinite volume one. Remember,  however, that  once the bare coupling and 
masses are eliminated there are no free parameters.  Renormalized couplings in 
finite volume and couplings in infinite volume are in one-to-one correspondence. 
When they are small they can be related by per turbat ion theory. In particular,  
(16) holds with the obvious modification. 

The complete strategy to compute short distance parameters  is summarized 
in Fig. 2. One first renormalizes QCD replacing the bare parameters  by hadronic 

Lm,× = O(½fm) : HS ---4 SF(q = 1/Lm~×) 

4 
SF(q = 2/Lm~x) 

Q 

Q 

Q 

$ 

SF(q = 2~/Lmax) 

PT: $ 
P T  

jet -- physics 4--- AQCD, ~f 

Fig. 2. The strategy for a non-perturbative computation of short distance parameters. 

observables. This defines the hadronic scheme (HS) as explained in Sect. 1.1. At 

4 It is well known that perturbation theory in small volumes with periodic boundary 
conditions is complicated by the occurrence of zero modes (Gonzales-Arroyo et al. 
(1983), Liischer (1983)). These can be avoided by choosing twisted periodic boundary 
conditions in space ('t Hooft (1979,1981)), Baal (1983), Liischer and V~'eisz (1985- 
86)). 
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a low energy scale q = 1/Lm~x this scheme can be related to the finite volume 
scheme denoted by SF in the graph. Within this scheme one then computes the 
scale evolution up to a desired energy q = 2~/Lmax. As we will see it is no 
problem to choose the number of steps n large enough to be sure that one is 
in the perturbative regime. There perturbation theory (PT) is used to evolve 
further to infinite energy and compute the A-parameter and the renormalization 
group invariant quark masses. Inserted into perturbative expressions these pro- 
vide predictions for jet cross sections or other high energy observables. In the 
graph all arrows correspond to relations in the continuum; the whole strategy is 
designed such that lattice calculations for these relations can be extrapolated to 
the continuum limit. 

For the practical success of the approach, the finite volume coupling (as well 
as the corresponding quark mass) must satisfy a number of criteria. 

- They should have an easy perturbative expansion, such that the E-function 
(and r-function, which describes the evolution of the running masses) can 
be computed to sufficient order. 

- They should be easy to calculate in MC (small variance!). 
- Di,scretization errors must be small to allow for safe extrapolations to the 

continuum limit. 

Careful consideration of the above points led to the introduction of renormal- 
ized coupling and quark mass through the Schrhdinger functional (SF) of QCD 
(L/iscber et al. (1992), Lfischer et al. (1993-94), Sint (1994-95), Jansen et al. 
(1996)). We introduce the SF in the following section. In the Yang-Mills the- 
ory, an alternative finite volume coupling was introduced in G. de Divitiis et al. 
(1994) and studied in detail in G. de Divitiis et al. (1995 I), G. de Divitiis et al. 
(1995 II) . 

The criteria (17) apply quite generally to any scale dependent renormaliza- 
tion, e.g. the one described in Sect. 1.3 b. Although the details of the finite size 
technique have not yet been developed for these cases, the same strategy can be 
applied. This will certainly be the subject of future research. So far, the approach 
has been to search for a "window" where q is high enough to apply PT but not 
too close to a -1 (Martinelli et al. (1994)). An essential advantage of the details 
of the approach of Martinelli et al. (1994) as applied to the renormalization 
of composite quark operators is its simplicity: formulating the renormalization 
conditions in a MOM-scheme, one may use results from perturbation theory in 
infinite volume in the perturbative part of the matching. Since, however, high 
energies q can not be reached in this approach, we will not discuss it further and 
refer to Donini et al. (1995), Oetrich et al. (1997) for an account of the present 
status and further references, instead. In particular, in the latter reference it 
can be seen, how non-trivial it is to have a "window" where both perturbation 
theory can be applied and lattice artifacts are small. 

Note. (17) has been written for the Yang-Mills theory. In full QCD, finite size 
effects will be more important and one should replace V ~  -4 m~, resulting inn  
more stringent requirement. 
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3 The SchrSdinger Functional 

We want to introduce a specific finite volume scheme that  fulfills all the require- 
ments explained in the previous section. It is defined from the SF of QCD, which 
we introduce below. For simplicity we restrict the discussion to the pure gauge 
theory except for Sect. 3.7 and Sect. 3.8. Apart from the latter subsections, the 
presentation follows closely Liischer et al. (1992); we refer to this work for further 
details as well as proofs of the properties described below. 

C, 

time T 

0 ~ ~ C  

space 
(L×LxL box with periodic b.c.) 

Fig. 3. Illustration of the SchrSdinger functional. 

3.1 Definition 

Here, we give a formal definition of the SF in the Yang-Mills theory in continuum 
space-time, noting that  a rigorous treatment is possible in the lattice regularized 
theory. 

Space-time is taken to be a cylinder illustrated in Fig. 3. We impose Dirichlet 
boundary conditions for the vector potentials 5 in time, 

Ak(x) = ~ CA(x) at x0 = 0 (21) 
at Xo = L ' 

where C, C' are classical gauge potentials and A A denotes the gauge transform 
of A, 

d2(x) = A ( x ) d k ( x ) g ( x )  -1 + A(x)OkA(x) -1, A e SU(N) . (22) 

5 We use anti-hermitian vector potentials. E.g. in the gauge group SU(2), we have 
A,(x)  = A~(x)r'~/(2i), in terms of the Pauli-matrices v a. 
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In space, we impose periodic boundary conditions, 

A k ( x  + L/~) = Ak(x), A(x + L/~) = J (x )  . (23) 

The (Euclidean) partition function with these boundary conditions defines the 
SF, 

etc',o]- f DfAl f n[A]e -s~tA] , (24) 

1/ 
So[A]  - 2g~ d4x  tr { F , , F u .  }, 

Fu,, = O~,A,, - O,,d~, + [d u, d,,] , 

D[A] = 1-[ dA~(x), DfA] = I I d A ( x )  . 
X~Z~a  X 

Here dA(x) denotes the Haar measure of SU(N). It is easy to show that the SF 
is a gauge invariant functional of the boundary fields, 

e [ C  '~ '  , O A] = Z[C',  C] , (25) 

where also large gauge transformations are permitted. The invariance under the 
latter is an automatic property of the SF defined on a lattice, while in the 
continuum formulation it is enforced by the integral over A in (24). 

3.2 Quantum Mechanical Interpretation 

The SF is the quantum mechanical transition amplitude from a state I C) to a 
state [C t) after a (Euclidean) time L. To explain the meaning of this statement 
of the SF, we introduce the SchrSdinger representation. The Hilbert space con- 
sists of wave-functionals ~[A] which are functionals of the spatial components of 
the vector potentials, A~ (x). The canonically conjugate field variables are repre- 
sented by functional derivatives, E~(x) = 1 T ~ ,  and a scalar product is given 

by 

(~l~o') = f D[A] ~[A]*~O'[A], D[A] = I-[ dA~(x) . (26) 
x,k,a 

The Hamilton operator, 

]H = d3x 2 E ; ( x ) E ~ ' ( x )  + F~(x)F~t(x)  , (27) 

commutes with the projector, IP, onto.the physical subspace of the Hilbert space 
(i.e. the space of gauge invariant states), where ]P acts as 

IP¢[A] = f DfA] ¢[A A] . (2s) 
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Finally, each classical gauge field defines a state IC} through 

<CIk~ > = O[C] . (29) 

After these definitions, the quantum mechanical representation of the SF is given 
by 

Z[C', C] = (C'Ie-~TIPIC> 

= ~ e - S o r e n [ C ' l e . [ C ]  * . (30) 
n---~0 

In the lattice formulation, (30) can be derived rigorously and is valid with real 
energy eigenvalues E,,. 

3 . 3  B a c k g r o u n d  Fie ld  

A complementary aspect of the SF is that  it allows a treatment of QCD in a color 
background field in an unambiguous way. Let us assume that  we have a solution 
B of the equations of motion, which satisfies also the boundary conditions (21). 
If, in addition, 

S[A] > S[B] (31) 

for all gauge fields A that  are not equal to a gauge transform B ~ of B, then we 
call B the background field (induced by the boundary conditions). Here, £2(x) 
is a gauge transformation defined for all x in the cylinder and its boundary and 
B r~ is the corresponding generalization of (22). Background fields B, satisfying 
these conditions are known; we will describe a particular family of fields, later. 

Due to (31), fields close to B dominate the path integral for weak coupling 
go and the effective action, 

F [ B ]  - - In Z [C', C] , 

has a regular perturbative expansion, 

1 
F[B] = ~ r 0 [ e ]  +/ '113]  + g~r2[S] + . . .  

go 
to[B] = g02S[B] . 

(32) 

, ( 33 )  

Above we have used that  due to our assumptions, the background field, B, and 
the boundary values C, C' are in one-to-one correspondence and have taken B 
as the argument of F.  
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3.4 Perturbative Expansion 

For the construction of the SF-scheme as a renormalization scheme, one needs to 
study the renormalization properties of the functional, Z. Lfiseher et al. (1992) 
have performed a one-loop calculation for arbitrary background field. The cal- 
culation is done in dimensional regularization with 3 - 2~ space dimensions and 
one time dimension. One expands the field A in terms of the background field 
and a fluctuation field, q, as 

A , ( x )  = B , ( x )  + goq, (x)  • (34) 

Then one adds a gauge fixing term ("background field gauge") and the corre- 
sponding Fadeev-Popov term. Of course, care must be taken about the proper 
boundary conditions in all these expressions. Integration over the quantum field 
and the ghost fields then gives 

FI[B] = ½ in det/~1 - In det/~0 , (35) 

where /~1 is the fluctuation operator and /~0 the Fadeev-Popov operator. The 
result can be cast in the form 

rl[B] - bo r0[B] + O(1) , (36) 
e--*O g 

with the important result that  the only (for ~ -4 0) singular term is proportional 
to Fo. 

After renormalization of the coupling, i.e. the replacement of the bare cou- 
pling by ~ via 

go ~ = ~ 2 ~ s ( ~ ) [ 1  + z l ( ~ ) ~ ( p ) ] ,  zl(~) = ---b° , (37) 
E 

the effective action is finite, 

rtBle___0 = ~ -b0  [ln# 2 - 16-~ ] V0[Bl 

- ½¢' (Oln. , )  + ¢ ' (O lAo)  + (38) 

¢'(01n) = d C ( s l n )  I , C(slA) = Tr . 
s : O  

Here, ~t(OIA ) is a complicated functional of B, which is not known analytically 
but can be evaluated numerically for specific choices of B. 

The important result of this calculation is that  (apart from field independent 
terms that  have been dropped everywhere) the SF is finite after eliminating go 
in favor of 9~-~MS" The presence of the boundaries does not introduce any extra 
divergences. In the following subsection we argue that this property is correct in 
general, not just in one-loop approximation. 
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3.5 G e n e r a l  R e n o r m a l i z a t i o n  P r o p e r t i e s  

The relevant question here is whether local quantum field theories formulated on 
space-time manifolds with boundaries develop divergences that are not present in 
the absence of boundaries (periodic boundary conditions or infinite space-time). 
In general the answer is "yes, such additional divergences exist". In particu- 
lar, Symanzik studied the ¢4-theory with SF boundary conditions (Symanzik 
(1981)). In a proof valid to all orders of perturbation theory he was able to show 
that  the SF is finite after 

- renormalization of the self-coupling, ~, and the mass, m, 
- and the addition of the boundary counter-terms 

f o= d3x + + f o=0d3x (39) 

In other words, in addition to the standard renormalizations, one has to add 
counter-terms formed by local composite fields integrated over the boundaries. 
One expects that  in general, all fields with dimension d < 3 have to be taken 
into account. Already Symanzik conjectured that counter-terms with this prop- 
erty are sufficient to renormalize the SF of any quantum field theory in four 
dimensions. 

Since this conjecture forms the basis for many applications of the SF to the 
study of renormalization, we note a few points concerning its status. 

- As mentioned, a proof to all orders of perturbation theory exists for the ¢4 
theory, only. 

- There is no gauge invariant local field with d _< 3 in the Yang-Mills theory. 
Consequently no additional counter-term is necessary in accordance with the 
l-loop result described in the previous subsection. 

- In the Yang-Mills theory it has been checked also by explicit 2-loop calcula- 
tions (Narayanan and Wolff (1995), Bode (1997)). Numerical, non-perturbative, 
MC simulations (Liischer et al. (1993-94), G. de Divitiis et al. (1995 II) ) give 
further support for its validity. 

- It has been shown to be valid in QCD with quarks to l-loop (Sint (1994-95)). 
- A straight forward application of power counting in momentum space in 

order to prove the conjecture is not possible due to the missing translation 
invariance. 

Although a general proof is missing, there is little doubt that Symanzik's con- 
jecture is valid in general. Concerning QCD, this puts us into the position to 
give an elegant definition of a renormalized coupling in finite volume. 

3.6 R e n o r m a l i z e d  C o u p l i n g  

For the definition of a running coupling we need a quantity which depends only 
on one scale. We choose LB such that it depends only on one dimensionless vari- 
able ~. In other words, the strength of the field is scaled as 1/L. The background 
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field is assumed to fulfill the requirements of Sect. 3.3. Then, following the above 
discussion, the derivative 

F'[B] = ~-~F[B] , (40) 

is finite when it is expressed in terms of a renormalized coupling like ~ but F '  
is defined non-perturbatively. From (33) we read off immediately that  a properly 
normalized coupling is given by 

O~(r) = V~[B] / F'[B] . (41) 

Since there is only one length scale L, it is evident that 0 defined in this way 
runs with L. 

A specific choice for the gauge group SU(3) is the abelian background field 
induced by the boundary values (L/ischer et al. (1993-94)) 

i , i (42) C k = T  ¢2 , C k =  £ ¢~ 0 , k =  1,2,3, 
o ¢3 o 

with 
~r 47r 

3,  
¢2 1 2~ (43) 

¢ 3 = - ! 7 2  

In this case, the derivatives with respect to r /are  to be evaluated at 7] = 0. The 
associated background field, 

Bo=O, Bk=[xoC'k+(L-xo)Ck]/L,  k = 1 , 2 , 3  , (44) 

has a field tensor with non-vanishing components 

aok =OoBk = (C L - c k ) / n ,  k=1 ,2 ,3  . (45) 

It is a constant color-electric field. 

3.7 Quarks 

In the end, the real interest is in the renormalization of QCD and we need to 
consider the SF with quarks. It has been discussed in Sint (1994-95). 

Special care has to be taken in formulating the Dirichlet boundary conditions 
for the quark fields; since the Dirac operator is a first order differential operator,  
the Dirac equation has a unique solution when one half of the components of the 
fermion fields are specified on the boundaries. Indeed, a detailed investigation 
shows that  the boundary condition 

P+¢[~o=0 = P, P-¢[~o=L = P' ,  P~= = ½(1 ± 70), (46) 

 P-I o=0 = CP+h o=L = f ' ,  (47) 
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lead to a quantum mechanical interpretation analogous to (30). The SF 

Z[C', fi', p'; C,/5, p] = f D[A]D[ ¢ IDle]  e -s[A'7'¢] (48) 

involves an integration over all fields with the specified boundary values. The 
full action may be written as 

S [ A ,~ ,¢ ]  = SG[¢, ~3] q- SF[A,~,~]  

= / d4x-@(x)[%D, + reign(x) Sv (49) 

- i d'x i d'x 

with SG as given in (24). In (49) we use standard Euclidean -y-matrices. The 
covariant derivative, Dr,  acts as Du@(x ) = Ou~(x) + Au(x)¢(x). 

Let us now discuss the renormalization of the SF with quarks. In contrast to 
the pure Yang-Mills theory, gauge invariant composite fields of dimension three 
are present in QCD. Taking into account the boundary conditions one finds (Sint 
(1994-95)) that  the counter-terms, 

%b--P_@[,o=0 and ¢--P+¢ix0=L , (50) 

have to be added to the action with weight 1 - Zb to obtain a finite renormalized 
functional. These counter-terms are equivalent to a multiplicative renormaliza- 
tion of the boundary values, 

PR = Zbl/2P, ... ,/sk = Zbl/2/5 ' (51) 

It follows that  - apart from the renormalization of the coupling and the quark 
mass - no additional renormalization of the SF is necessary for vanishing bound- 
ary values p, . . . , /5 ' .  So, after imposing homogeneous boundary conditions for the 
fermion fields, a renormalized coupling may be defined as in the previous sub- 
section. 

As an important aside, we point out that  the boundary conditions for the 
fermions introduce a gap into the spectrum of the Dirac operator (at least for 
weak couplings). One may hence simulate the lattice SF for vanishing phys- 
ical quark masses. It is then convenient to supplement the definition of the 
renormalized coupling by the requirement m = 0. In this way, one defines a 
mass-independent renormalization scheme with simple renormalization group 
equations. In particular, the J-function remains independent of the quark mass. 

C o r r e l a t i o n  func t ions  are given in terms of the expectation values of any 
product (_9 of fields, 

<O> = { ½ f D[A]D[¢]D[-~]Oe-S[A,~,~] t , (52) 
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evaluated for vanishing boundary values p , . . . ,  fi~. Apart from the gauge field and 
the quark and anti-quark fields integrated over, O may involve the "boundary 
fields" (Lfischer et al. (1996)) 

6 6 
¢ ( x ) _  

J 
C'(x)  - C ' (x )  - 6 p ' ( × )  (53) 

An application of fermionic correlation functions including the boundary fields is 
the definition of the renormalized quark mass in the SF scheme to be discussed 
next. 

3.8 Renormal i zed  Mass  

Just as in the case of the coupling constant, there is a great freedom in defin- 
ing renormalized quark masses. A natural starting point is the PCAC relation 
which expresses the divergence of the axial current (5) in terms of the associated 
pseudo-scalar density, 

P ~ ' ( x )  = ~(x)75½~'~b(x) , (54) 

via 

OuA~u(x)  = 2 m P ' ~ ( x )  . (55) 

This operator identity is easily derived at the classical level (cf. Sect. 6). After 
renormalizing the operators, 

° 
R = Z A A ~ ,  , 

P ~  = Z p P  ° , (56) 

a renormalized current quark mass may be defined by 

zA (57) 

Here, m, is to be taken from (55) inserted into an arbitrary correlation function 
and ZA can be determined unambiguously as mentioned in Sect. 1.2. Note that m 
does not depend on which correlation function is used because the PCAC relation 
is an operator identity. The definition of ~ is completed by supplementing (56) 
with a specific normalization condition for the pseudo-scalar density. ~ then 
inherits its scheme- and scale-dependence from the corresponding dependence 
of PR. Such a normalization condition may be imposed through infinite volume 
correlation functions. Since we want to be able to compute the running mass 
for large energy scales, we do, however, need a finite volume definition. This is 
readily given in terms of correlation functions in the SF. 
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Fig.  4. fp (left) and fl (right) in terms of quark propagators. 

To start with, let us define (isovector) pseudo-scalar fields at the boundary 
of the SF, 

2 b k  / ,  

¢ (v) , (58) 

to build up the correlation functions 

fp(X0) = 1 a ( x ) o a >  , 

k : < o ' ° o ° > ,  (59) 

which are illustrated in Fig. 4. 
We then form the ratio 

Zp = const.v/-~l/]p(x)l~0:L/2 , (60) 

such that the renormalization of the boundary quark fields, (51), cancels out. 
The proportionality constant is to be chosen such that Zp = 1 at tree level. To 
define the scheme completely one needs to further speci~, the boundary values 
C, C' and the boundary conditions for the quark fields in space. These details 
are of no importance, here. 

We rather mention some more basic points about this renormMization scheme. 
Just like in the case of the running coupling, the only physical scale that exists 
in our definitions (57),(60) is the linear dimension of the SF, the length scale, 
L. So the mass ~(L)  runs with L. We have already emphasized that 0 is to 
be evaluated at zero quark mass. It is advantageous to do the same for Zp. 
In this way we define a mass-independent renormalization scheme, with simple 
renormalization group equations. 

By construction, the SF scheme is non-perturbative and independent of a 
specific regularization. For a concrete non-perturbative computation, we do, 
however, need to evaluate the expectation values by a MC-simulation of the 
corresponding lattice theory. We proceed to introduce the lattice formulation of 
the SF. 



Non-perturbative Renormalization of QCD 85 

3.9 Latt ice  Formulat ion  

A detailed knowledge of the form of the lattice action is not required for an 
understanding of the following sections. Nevertheless, we give a definition of the 
SF in lattice regularization. This is done both for completeness and because it 
allows us to obtain a first impression about the size of discretization errors. 

We choose a hyper-cubic Euclidean lattice with spacing a. A gauge field U on 
the lattice is an assignment of a matrix U(x, p) E SU(N) to every lattice point 
x and direction # = 0, 1, 2, 3. Quark and anti-quark fields, ¢(x)  and ~(x),  reside 
on the lattice sites and carry Dirac, color and flavor indices as in the continuum. 
To be able to write the quark action in an elegant form it is useful to extend the 
fields, initially defined only inside the SF manifold (cf. Fig. 3) to all times x0 by 
"padding" with zeros. In the case of the quark field one sets 

¢ ( x ) = 0  i f x 0 < 0 o r x 0  > L ,  

and 
P-¢(z) [=o=O = P+~(x)f=o=L = 0, 

and similarly for the anti-quark field. Gauge field variables that  reside outside 
the manifold are set to 1. 

We may then write the fermionic action as a sum over all space-time points 
without restrictions for the time-coordinate, 

SF[U,~, ¢] = a 4 E ~ ( D  + m0)y), (61) 

and with the standard Wilson-Dirac operator, 

3 

D = ~ I  E { % ( V ;  + Vu ) _ a V u V , }  . ,  (62) 
p = 0  

Here, forward and backward covariant derivatives, 

V , ¢ ( x )  = ~[V(x, #)g,(x + aft) - g)(x)], (63) 

V ; ¢ ( x )  = }[¢(x) - U(x - aft, # ) - l ~ ( x  - aft)] , (64) 

are used and rno is to be understood as a diagonal matrix in flavor space with 
elements mo y. 

The gauge field action SG is a sum over all oriented plaquettes p on the 
lattice, with the weight factors w(p), and the parallel transporters U(p) around 

P, 

So[U] = g-~ol E w(p) t r  {1 - U(p)} . (65) 
P 

The weights w(p) are 1 for plaquettes in the interior and 

{½c~ if p is a spatial plaquette at x0 = 0 or x0 = L, (66) 
w(p) = ct if p is time-like and attached to a boundary plane. 
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The choice cs = ct = 1 corresponds to the standard Wilson action. However, 
these parameters can be tuned in order to reduce lattice artifacts, as will be 
briefly discussed below. 

With these ingredients, the path integral representation of the SchrSdinger 
functional reads (Sint (1994-95)), 

f D [ ¢ ] D [ ¢ ] D [ U ] e  - s ,  S = S F + S G  , (67) Z 

D[U] = H dU(x ,  #) , 

with the Haar measure dU. 

B o u n d a r y  c o n d i t i o n s  and  t h e  b a c k g r o u n d  field. The boundary conditions 
for the lattice gauge fields may be obtained from the continuum boundary values 
by forming the appropriate parallel transporters from x + a]~ to x at xo = 0 and 
x0 = L. For the constant abelian boundary fields C and C' that we considered 
before, they are simply 

U(x ,  k)l~o= 0 = exp(aCk) , U(x ,  k)l~o=z = exp(aC~.), (68) 

for k = 1, 2, 3. All other boundary conditions are as in the continuum. 
For the case of (42),(43), the boundary conditions (68) lead to a unique (up to 

gauge transformations) minimal action configuration V, the lattice background 
field. It can be expressed in terms of B (44), 

V ( x ,  #) = exp {aB~,(x)} . (69) 

Latt ice  art i facts .  Now we want to get a first impression about the dependence 
of the lattice SF on the value of the lattice spacing. In other words we study 
lattice artifacts. At lowest order in the bare coupling we have, just like in the 
continuum, 

F = 1 F 0 [ V  ] + O((go)°), F0[V] - g02SG[V] . (70) 
go 

Fhrthermore one easily finds the action for small lattice spacings, 

SG[V] = [1+ (1- ct) ] 

_ 3 N 
_ g-~ ~ (¢:  _ ¢~)2 [1 + (1 - Ct)" ~ n I- O ( a 4 ) ]  (71) 

We observe: at tree-level of perturbation theory, all linear lattice artifacts are 
removed when one sets ct = 1. Beyond tree-level, one has to tune the coefficient 
ct as a function of the bare coupling. We will show the effect, when this is done to 
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first order in go ~, below. Note that  the existence of linear O(a) errors in the Yang- 
Mills theory is special to the SF; they originate from dimension four operators 
Fo~Fok and FktFkl which are irrelevant terms (i.e. they carry an explicit factor 
of the lattice spacing) when they are integrated over the surfaces, cs, which can 
be tuned to cancel the effects of FklFkl, does not appear for the electric field 
that  we discussed above. 

Once quark fields are present, there are more irrelevant operators that  can 
generate O(a) effects as discussed in detail in Lfischer et al. (1996). Here we 
emphasize a different feature of (71): once the O(a)-terms are canceled, the 
remaining a-effects are tiny. This special feature of the abelian background field 
is most welcome for the numerical computation of the running coupling; it allows 
for reliable extrapolations to the continuum limit. 

Expl ic i t  express ion  for / ' q  Let us finally explain that  F'  is an observable 
that  can easily be calculated in a MC simulation. From its definition we find 
immediately 

F '  = - ~  in D[¢]D[~ ]D[U] e - s  0 S  

The derivative ~°s evaluates to the (color 8 component of the) electric field at 
the boundary, 

cos _ 2__2__ a 3 
cot/ g 2 L E {E~(x) - (EkS)'(x)} , (73) 

X 

= ÷ 1 L  ° 

where As = d i a g ( 1 , - 1 / 2 , - 1 / 2 ) .  (A similar expression holds for (E~)'(x)). The 
renormalized coupling is therefore given in terms of the expectation value of a 
local operator; no correlation function is involved. This means that  it is easy and 
fast in computer time to evaluate it. It further turns out that  a good statistical 
precision is reached with a moderate size statistical ensemble. 

4 T h e  C o m p u t a t i o n  o f  c t ( q )  

We are now in the position to explain the details of Fig. 2 (Liischer, Weisz and 
Wolff (1991), Lfischer et al. (1993-94), Capitani et al. (1997)). The problem has 
been solved in the SU(3) Yang-Mills theory. In the present context, this is of 
course equivalent to the quenched approximation of QCD or the limit of zero 
flavors. We will therefore also refer to results in quenched QCD. 

Our central observable is the step scaling function that  describes the scale- 
evolution of the coupling, i.e. moving vertically in Fig. 2. The analogous function 
for the running quark mass will be discussed in the following section. 
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Fig. 5. Schematic plot of the running coupling constructed from the step scaling func- 
tion or. 

4.1 The Step Scaling Function 

We start  from a given value of the coupling, u = ~2(L). When we change the 
length scale by a factor s, the coupling has a value [72(sL) = u ' .  The step scaling 
function, a is then defined as 

or(s, u) = u' . (74) 

The interpretation is obvious, cr(s,u) is a discrete ~-function. Its knowledge 
allows for the recursive construction of the running coupling at discrete values 
of the length scale, 

uk = ~ 2 ( s - k L )  , (75) 

once a starting value u0 = ~2 (L) is specified (cf. Fig. 5). a, which is readily 
expressed as an integral of the j3-function, has a perturbative expansion 

a(s,  u) = u + 2bo ln(s)u 2 + . . . .  (76) 

On a lattice with finite spacing, a, the step scaling function will have an 
additional dependence on the resolution a / L .  We define 

Z ( s , u , a / L )  = u' , (77) 

with 

t~2(L) = u, t~2(sL) = u ' ,  go fixed, L / a  fixed . (78) 

The continuum limit or(s, u) = ~(s ,  u, 0) is then reached by performing calcula- 
tions for several different resolutions and extrapolation a / L  ~ O. In detail, one 
performs the following steps: 
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1. Choose a lattice with L / a  points in each direction. 
2. Tune the bare coupling go such that  the renormalized coupling ~:(L) has 

the value u. 
3. At the same value of go, simulate a lattice with twice the linear size; compute 

u' = ~2(2L). This determines the lattice step scaling function L'(2, u, alL) .  
4. Repeat steps 1.-3. with different resolutions L / a  and extrapolate a l L  --+ O. 

Note that  step 2. takes care of the renormalization and 3. determines the evolu- 
tion of the renormalized coupling. 

Sample numerical results are displayed in Fig. 6. The coupling used is exactly 
the one defined in the previous section and the calculation is done in the theory 
without fermions. One observes that the dependence on the resolution is very 
weak, in fact it is not observable with the precision of the data  in Fig. 6. We 
now investigate in more detail how the continuum limit of ~ is reached. As a 
first step, we turn to perturbation theory. 

1.95 ' t . . . .  I ' '  " ' I . . . .  t . . . .  t ' 

d 
v 

1.9 

1.85 

1.8 , I 
0 

u= 1.5553 

J | t [ t t  

0.05 
, I , ,  , , I ~ 

0.1 0.15 
a /L  

! i J 1 

0.2 

Fig. 6. Typical example for the lattice step scaling function after l-loop improvement. 
The continuum limit (circle) is reached by linear extrapolation. 

4.2 Lattice Spacing Effects in P e r t u r b a t i o n  T h e o r y  

Symanzik has investigated the cutoff dependence of field theories in perturbation 
theory (Symanzik (1982-83)). Generalizing his discussion to the present case, one 
concludes that  the lattice spacing effects have the expansion 

E(2, u, a lL)  - a(2, u) 
= ~ l ( a / L ) u + ~ 2 ( a / L ) u  2 + . . .  (79) ~(2,u) 
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,L,(alL) <,1~--+o ~ ek,,[ln(~)]k (~)  + dk,,[ln(~)]k (~)2 + . . . .  

k----0 

We expect that  the continuum limit is reached with corrections O(alL) also 
beyond per turbat ion theory. In this context O(a/L) summarizes terms tha t  con- 
tain at least one power of alL and may be modified by logarithmic corrections 
as it is the case in (79). To motivate this expectation recall Sect. 1.4, where we 
explained tha t  lattice artifacts correspond to irrelevant operators 6, which carry 
explicit factors of the lattice spacing. Of course, an additional a-dependence 
comes from their anomalous dimension, but in an asymptotical ly free theory 
such as QCD, this just corresponds to a logarithmic (in a) modification. 

0 . 0 1  . . . .  i . . . .  • . . . .  i . . . .  - 

0 . 0 0 5  

0 

c[')*a/L 

O0 0 
0 

- 0 . 0 0 5  , , ,  I . . . . .  I . . . . .  
0 0 . 0 5  0.1 0 .2  

a / L  

O 

O 
I I I I  

0 . 1 5  

Fig. 7. Lattice artifacts at l-loop order. The circles show 51(a/L) for the SU(3) 
Yang-Mills theory with l-loop improvement. The dotted line corresponds to the linear 
piece in a, when only tree-level improvement is used, instead. 

As mentioned in the previous section, the lattice artifacts may be reduced 
to O((alL) 2) by canceling the leading irrelevant operators.  In the case at hand, 
this is achieved by a proper choice of ct(g0). It  is interesting to note, that  by 
using the per turbat ive  approximation 

(~) _2 ( 8 0 )  c t ( g 0 )  ---- 1 -t- C t Y0 

one does not only eliminate el,n for n = 0, 1 but also the logarithmic terms 
generated at higher orders are reduced, 

e ~ , n  = 0 ,  e n - l , .  = 0 . ( 8 1 )  

6 For a more precise meaning of this terms one must discuss Symanzik's effective 
theory. We refer the reader to Lfischer et al. (1996) for such a discussion. 
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For tree-level improvement, ct (go) -- 1, the corresponding statement is e~,n = 0. 
Heuristically, the latter is easy to understand. Tree-level improvement means 
that  the propagators and vertices agree with the continuum ones up to correc- 
tions of order O(a2). Terms proportional to a can then arise only through a 
linear divergence of the Feynman diagrams. Once this happens, one cannot have 
the maximum number of logarithmic divergences any more; consequently en,n 
vanishes. 

To demonstrate further that  the abelian field introduced in the previous 
section induces small lattice artifacts, we show 51 (a/L) for the one loop improved 

case. The term that  is canceled by the proper choice c~ l) = -0.089 is shown as a 
dashed line. The left over O((a/L)2)-terms are below the 1% level for couplings 
u < 2 and lattice sizes L/a > 6. We now understand better why the a/L- 
dependence is so small in Fig. 6. 

From the investigation of lattice spacing effects in perturbation theory one 
expects that  one may safely extrapolate to the continuum limit by a fit 

5Y(2, u, a/L) = a(2, u) +const .  × a/L , (82) 

once one has data  with a weak dependence on a/L, like the ones in Fig. 6. Such 
an extrapolation is shown in the figure. 

4.3 The  C o n t i n u u m  Limit - Universal i ty  

Before proceeding with the extraction of the running coupling, we present some 
further examples of numerical investigations of the approach to the continuum 
limit - and its very existence (L/ischer et al. (1993-94), G. de Divitiis et al. 
(1995 II) ). The first example is the step scaling function in the SU(2) Yang- 
Mills theory (G. de Divitiis et al. (1995 II) ). Here we can compare the step 
scaling function obtained with two different lattice actions, one using tree-level 
O(a) improvement and the other one using ct at l-loop order. (Fig. 8). 

Not only does one observe a substantial reduction of the O(a)-errors through 
perturbative improvement, but the very agreement of the two calculations when 
extrapolated to a = 0, leaves little doubt that  the continuum limit of the SF 
exists and is independent of the lattice action. In turn this also supports the 
statement that the SF is renormalized after the renormalization of the coupling 
constant. 

Turning attention back to the gauge group SU(3), we show the calculation 
of a(2, u) for a whole series of couplings u in Fig. 9. 

4.4 The  R u n n i n g  of  the  Coupl ing  

We may now use the continuum step scaling function to compute a series of 
couplings (75). We start at the largest value of the coupling that  was covered by 
the calculation: .02 = 3.48. This defines the largest value of the box size, Lma~, 

0e(Lr, ax) = 3.48 . (83) 
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Fig. 8. Universality test in the SU(2) Yang Mills theory. 

3.5 

gS(2L) 

2.5 

2 

1.5 

i & m - I 

: • • 

gS(L) 

2.448 

2 . 1 0 0  

t 1.695 

J 

- = ~ • . ] 1.4;]0 
- -  A . C 

• - - " -I 1.243 
- 4  

; - I  0 . 8 8 7  
- 

l l l i l l l l l J l l l ~ l l l l l l l l J l l l l  
0 0.1 a /L 0.2 

Fig.  9. Continuum extrapolation of a(2, u) in the SU(3) Yang-Mills theory. 
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Fig. 10. The running coupling in SU(3) Yang-Mills theory. Uncertainties are smaller 
than the size of the symbols. 

The series of couplings is then obtained for Lk = 2-kLm~×, k = 0, 1 , . . .  8. It is 
shown in Fig. 10 translated to a(q) = ~2(L)/(4~r), q = 1/L (We will explain 
below, how one arrives at a GeV-scale in this plot). The range of couplings 
shown in the figure is the range covered in the non-perturbative calculation of 
the step scaling function. Thus no approximations are involved. For comparison, 
the perturbative evolution is shown starting at the smallest value of a that  was 
reached. To be precise, 2-loop accuracy here means that  we truncate the 3- 
function at 2 loops and integrate the resulting renormaIization group equation 
exactly. Thanks to the recent work (Bode (1997), Liischer and Weisz (1995)), 
we can also compare to the 3-loop evolution of the coupling. 

It is surprising that the perturbative evolution is so precise down to very low 
energy scales. This property may of course not be generalized to other schemes, 
in particular not to the MS-scheme, where the 3-function is only defined in 
perturbation theory, anyhow. 

4.5 T h e  L o w  E n e r g y  Sca l e  

In order to have the coupling as a function of the energy scale in physical units, 
we need to know Lmax in fm, the first horizontal relation in Fig. 2. In QCD, 
this should be done by computing, for example, the product mpLm~x with mp 
the proton mass and then inserting the experimentally determined value of the 
proton mass. 



94 Rainer Sommer 

At present, results like the ones shown in Fig. 10 are available for the Yang- 
Mills theory, only. Therefore, strictly speaking, there is no experimental  observ- 
able to take over the role of the proton mass. As a purely theoretical exercise, 
one could replace the proton mass by a glueball mass; here, we choose a length 
scale, r0, derived from the force between static quarks, instead (Sommer(1994)). 
This quantity can be computed with bet ter  precision. Also one may argue tha t  
the static force is less influenced by whether one has dynamical  quark loops in 
the theory or not. 
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i s5~ 

ro 

, ,  , I , , , I  i , l ,  , , 1 , , ,  
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Fig. 11. The dimensionless combination r2F(r). The different curves show phenomeno- 
logically successful potential models (Eichten et al. (1980), Martin (1980), Quigg and 
Rosner (1977)). The labels on the top of the graph give the approximate values of the 
r.m.s-radii of the bound states. 

On the theoretical level, ro, has a precise definition. One evaluates the force 
F(r) between an external, static, quark-ant i -quark pair as a function of the 
distance r. The radius r0 is then implicitly defined by 

r2F(r)lr=~o = 1.65 . (84) 

On the other hand, to obtain a phenomenological value for r0, one needs to 
assume an approximate validity of potential models for the description of the 
spectra of c5 and bb mesons. This is illustrated in Fig. 11. In fact, the value 
1.65 on the r.h.s, of (84) has been chosen to have r0 = 0.5 fm from the Cornell 
potential. This is a distance which is well within the range where the observed 
bound states determine (approximately) the phenomenological potential. 

In the following we set r0 -- 0.5fm, emphasizing that  this is mainly for the 
purpose of illustration and should be replaced by a direct experimental  observ- 
able once one computes the coupling in full QCD. 
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Fig. 12. Continuum extrapolation of Lm~/ro, using data of Wittig (1995-96), Liischer 
et al. (1993-94). 

To obtain Lm~/ro from lattice QCD, one picks a certain value of L/a,  tunes 
the bare coupling go such that ~2 = 3.48. At the same value of go one then 
computes the force F(r) on a lattice that  is large enough such that  finite size 
effects are negligible for the calculation of F( r )  and determines r0. Repeating 
the calculation for various values of L/a  one may extrapolate the lattice results 
to zero lattice spacing (Fig. 12) and can quote the energies q in GeV, as done in 
Fig. 10. 

4.6 Matching at Finite Energy 

Following the strategy of Fig. 2, one finally computes the A-parameter in the SF 
scheme. It may be converted to any other scheme through a l-loop calculation. 
There is no perturbative error in this relation, as the A-parameter refers to 
infinite energy, where a is arbitrarily small. 

Nevertheless, in order to clearly explain the problem, we first consider chang- 
ing schemes perturbatively at a finite but  large value of the energy. Before writ- 
ing down the perturbative relation between C~x and a y  where X, Y label the 
schemes, we note that  in any scheme, there is an ambiguity in the energy scale q 
used as argument for a. For example in the SF-scheme, we have set q = 1/L, but 
a choice q = lr/L would have been possible as well. This suggests immediately 
to allow for the freedom to compare the couplings after a relative energy shift. 
So we introduce a scale factor s in the perturbative relation, 

ay(sq)  = ax(q)  + c~Y(s)[ax(q)] 2 + cfY(s)[ax(q)] a + . . . .  (85) 

A natural and non-trivial question is now, which scale ratio s is optimal. A 
possible criterion is to choose s such that  the available terms in the perturbat ive 
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series (85) are as small as possible. Since the number of available terms in the 
series is usually low, we concentrate here on the possibility to set the first non- 
trivial term to zero. When available, the higher order one(s) may be used to test 
the success of this procedure. 

Scheme X c x Ms(l) c x MS(l) c x MS(so) 

qq -0.0821 -2.24 -2.19 
SF 1.256 2.775 0.27 
SF SU(2) 0.948 1.41t 0.058 
T P  S U ( 2 )  -0.558 

Table 1. Examples for perturbative coefficients in (85) for Nf = 0. 

So we fix s by requiring c X Y ( 8 )  ~- 0 , which is satisfied for s = So with 

so = exp{-exY(1)/(STrbo)} -- Ax /A~. ,  (86) 

a relative shift given by the ratio of the A-parameters in the two schemes. Ex- 
amples taken from the literature (Liischer et al. (1992), Liischer et al. (1993- 
94), Narayanan and Wolff (1995), Bode (1997), Liischer and Weisz (1995), Fish- 
ler (1977), Sint and Sommer (1996), Billoire (1980), Peter (1997)) are listed in 
Table 1. In the case of matching the SF-scheme to MS, the use of so does in- 
deed reduce the 2-loop coefficient considerably. However for the qq-scheme so is 
close to one and the 2-loop coefficient remains quite big. Not too surprisingly, 
no universal success of (86) is seen. 

A non-perturbative test of the perturbative matching has been carried out 
by G. de Divitiis et al. (1995 II) in the SU(2) Yang-Mills theory, where the SF- 
scheme was related to a different finite volume scheme, called TP. r The matching 
coefficient for this case is also listed in Table 1. Non-perturbatively the matching 
was computed as follows. 

0~F(L) = (or - For fixed L/a ,  the bare coupling was tuned such that  2.0778 
equivalently asF(q = 1/L) = 0.1653). 

- At the same bare coupling 0~p (L) was computed. 
- These steps were repeated for a range of a / L  and the results for 0~p(L) were 

extrapolated to the continuum. 

The result is shown in Fig. 13. 
We observe that  a naive application of the l-loop formula with s -- 1 falls far 

short of the non-perturbative number (the point with error bar), while inserting 

r For the definition of the TP-scheme we refer the reader to the literature (G. de 
Divitiis et al. (1994), G. de Divitiis et al. (1995 I)). 
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Fig. 13. Non-perturbative test of perturbative matching. 

s = so gives a perturbative estimate which is close to the true answer. Indeed, 
the left over difference is roughly of a magnitude an. 

Nevertheless, without the non-perturbative result, the error inherent in the 
perturbative matching is rather difficult to estimate. For this reason it is very 
attractive to perform the matching at infinite energies, i.e. through the A- 
parameters, where no perturbative error remains. 

4.7 T h e  A P a r a m e t e r  o f  Q u e n c h e d  Q C D  

We first note that  the A-parameter in a given scheme is just the integration 
constant in the solution of the renormalization group equation. This is expressed 
by the exact relation 

{/0 ° 1} = _ - ( 8 7 )  A q (bo~2)-bl/(zb~)e_l/(2bo~)exp dz + ~ b~x " 

We may evaluate this expression for the last few data  points in Fig. 10 using 
the 3-loop approximation to the ~-function in the SF-scheme. The resulting A- 
values are essentially independent of the starting point, since the data  follow the 
perturbative running very accurately. This excludes a sizeable contribution to 
the E-function beyond 3-loops and indeed, a typical estimate of a 4-loop term in 
the fl-function would change the value of A by a tiny araount. The corresponding 
uncertainty can be neglecte d compared to the statistical errors. 

After converting to the MS-scheme one arrives at the result (Capitani et al. 
(1997)) 

A (°) = 251 =t= 21MeV (88) 
MS 

where the label (0) reminds us that  this number was obtained with zero quark 
flavors, i.e. in the Yang-Mills theory. Since this is not the physical theory, one 
must also remember that  the overall scale of the theory was set by putting 
r0 = 0.5 fro. We emphasize that  the error in (88) sums up all errors including the 
extrapolations to the continuum limit that  were done in the various intermediate 
steps. 
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4.8 T h e  U s e  of  Bare  Coupl ings  

As mentioned before, the recursive finite size technique has not yet been applied 
to QCD with quarks. Instead, a~-g has been estimated through lattice gauge 
theories by using a short cut, namely the relation between the bare coupling of 
the lattice theory and the MS-coupling at a physical momentum scale which is of 
the order of the inverse lattice spacing that  corresponds to the bare coupling (E1- 
Khadra et al. (1992)). Without going too much into details, we want to discuss 
this approach, its merits and its shortcomings, here. The emphasis is on the 
principle and not on the applications, which can be found in J. Shigemitsu 
(1996). So, although the main point is So be able to include quarks, we set 
Nf = 0 in the discussion; more is known in this case! 

The method simply requires that  one computes one dimensionful experimen- 
tal observable in lattice QCD at a certain value of the bare coupling go- A popular 
choice for this is a mass splitting in the T-system (Davies (1997)). Using as input 
the experimental mass splitting one determines the lattice spacing in physical 
units. 

Next one may attempt to use the perturbative relation, 

(I~M-~(80 a - l )  = O/0 -~- 4.45a 3 + O(a 4) + O(a),  a0 = g2/(47r) (89) 

to get an estimate for a~--g. Here we have already inserted a scale shift So (cf. 
Sect. 4.6). Without this scale shift, the l-loop and 2-loop coefficients in the above 
equation would be very large. In turn this means that  the shift, 

so = 28.8 , (90) 

is enormous. Furthermore, the series (89) does not look very healthy even after 
employing So. Such a behavior of power expansions in a0 has also been observed 
for other quantities (Lepage and Mackenzie (1993)). One concludes that  c~o is a 
bad expansion parameter for perturbative estimates. 

The origin of this problem appears to be a large renormalization between the 
bare coupling and general observables defined at the scale of the lattice cutoff 
1/a. Assuming this large renormalization to be roughly universal, one can cure 
the problem by inserting the non-perturbative (MC) values of a short distance 
observable (Parisi (1981), Lepage and Mackenzie (1993)), the obvious candidate 
being 

P = ~( t rU(p)}  • (91) 

In detail, due to the perturbative expansion, 

1 In(P) = so  + 3.373   + 17.70 o + 
C F T r  " " ' 

we may define an improved bare coupling, 

, (92) 

1 ln(P) (93) O~ [::] ----- CpTr 
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which appears to have a regular perturbative relation to a~-~, 

  (80a -1) = + 0.614   + + o (a )  . (94) 

Of course, the point of the exercise is to insert the average, P,  obtained in the 
MC calculation into (93). Afterwards one only needs to use the (seemingly) well 
behaved expansion (94). One can construct many other improved bare couplings 
but the assumption is that the aforementioned large renormalization of the bare 
coupling is roughly universal and the details do not mat ter  too much. 

On the one hand, the advantages of (94) are obvious: i) one only needs 
the calculation of a hadronic scale and ii) the 2-loop relation to a~--~ is known 
(for n /  = 0). On the other hand, how was the problem of scale dependent 
renormalization (Sect. 2.2) solved? It was not[ To remind us, the general problem 
is to reach large energy scales, where perturbation theory may be used in a 
controlled way. In the present context this would require to compute with a series 
of lattice spacings for which a~-g(soa -1) is both small and changes appreciably. 
The required lattice sizes would then be too large to perform the calculation. 
Therefore one must assume that  the error terms in (94) are small. A particular 
worry is that  one may not take the continuum limit - due to the very nature 
of (94), which says that  a runs with the lattice spacing. This means that  it is 
impossible to disentangle the O(a) and the O(a~) errors. 

We briefly demonstrate now that  this last worry is justified in practice. For 
this purpose we consider the SU(2) Yang-Mills theory, where aSF was computed 
non-perturbatively and in the continuum limit, as a function of the energy scale 
q in units of r0 (G. de Divitiis et al. (1995 II) ). The results of this computation 
are shown as points with error bars in Fig. 14. We may now compare them to 
the estimate in terms of the improved bare coupling, 

a S F ( q ) = a ~ + 0 . 2 3 1 a  3,  q = s o a  -1,  so = 1.871 , (95) 

where the only inputs needed are P as welt as the value of ro/a since qro = 
soro/a. These estimates are given as circles in the figure. 

In general, and in particular for large values of qro, the agreement is rather 
good. However, for the lower values of qro, significant differences are present, 
which are far underestimated by a perturbative error term a 4. 

What  does this teach us about the method as applied in full QCD? To this 
end, we note that  the lattice spacings that  are used in the applications of im- 
proved bare couplings in full QCD calculations, correspond to q * ro < 15. This 
is the range where we saw significant deviations in our test. In light of this it 
appears to us that  the errors that  are usually quoted for a~--g using this method 
are underestimated. It is encouraging, though, that  the values which are ob- 
tained in this way compare well with those extracted from experiments using 
other methods (J. Shigemitsu (1996)). 
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Fig. 14. Test of an improved bare coupling in the SU(2) Yang-Mills theory. 

5 R e n o r m a l i z a t i o n  G r o u p  I n v a r i a n t  Q u a r k  M a s s  

The computation of running quark masses and the renormalization group invari- 
ant (RGI) quark mass (Capitani et ah (1997)) proceeds in complete analog to 
the computation of a(q). Since we are using a mass-independent renormaliza- 
tion scheme (cf. Sect. 3.8), the renormalization (and thus the scale dependence) 
is independent of the flavor of the quark. When we consider "the" running mass 
below, any one flavor can be envisaged; the scale dependence is the same for all 
of them. 

The renormalization group equation for the coupling (11) is now accompanied 
by one describing the scale dependence of the mass, 

am 
q--~-q = T(.0) , (96) 

where T has an asymptotic expansion 

7(.0) ~Z ° - 0  e {do +~edl  + . . . }  , do = 8/(47r) e , (97) 

with higher order coefficients d~, i > 0 which depend on the scheme. 
Similarly to the A-parameter, we may define a renormalization group invari- 

ant quark mass, M, by the asymptotic behavior of ~ ,  

M = lim ~(2bo~2) -d°/2b~ (98) 
q---+ cx~ 

It is easy to show that  M does not depend on the renormalization scheme. It 
can be computed in the SF-scheme and used afterwards to obtain the running 
mass in any other scheme by inserting the proper /3- and T-functions in the 
renormalization group equations. 



Non-perturbative Renormalization of QCD 101 

1 

0.9 

0.8 

_ ' " 1 ' " ' " ' ' ' 1 ' " " ' " ' 1 ' ' ' " '  

preliminary 

l i , l l l l J a , , , t [ [ l l , i , , , , l i i , , l i i  

1 2 3 = 2  g 

Fig. 15. The step scaling function for the quark mass. 

To compute the scale evolution of the mass non-perturbatively, we introduce 
a new step scaling function, 

~rp = Z p ( 2 L ) / Z p ( L )  . (99) 

The definition of the corresponding lattice step scaling function and the extrap- 
olation to the continuum is completely analogous to the case of a. The only 
additional point to note is that  one needs to keep the quark mass zero through- 
out the calculation. This is achieved by tuning the bare mass in the lattice action 
such that the PCAC mass (55) vanishes. At least in the quenched approxima- 
tion, which has been used so far, this turns out to be rather easy (Lfischer et al. 
(1997 II)). 

First results for a p  (extrapolated to the continuum) have been obtained 
recently (Capitani et al. (1997)). They are displayed in Fig. 15. 

Applying ap and c~ recursively one then obtains the series, 

f f t ( 2 - k L m a x ) / f f ~ ( 2 L m a x ) ,  k = 0, 1 , . . .  , (100) 

up to a largest value of k, which corresponds to the smallest 9 that was con- 
sidered in Fig. 15. From there on, the perturbative 2-loop approximation to the 
T-function and 3-1oop approximation to the ~3-function (in the SF-scheme) may 
be used to integrate the renormalization group equations to infinite energy, or 
equivalently to ~ = 0. The result is the renormalization group invariant mass, 

d_0_ (101) M = ff~ (2bo~2) -a°/2b~ exp - ~LZ--~ - bo~] 

In this way, one is finally able to express the running mass ~ in units of the 
renormalization group invariant mass, M, as shown in Fig. 16. M has the same 
value in all renormalization schemes, in contrast to the running mass ~ .  
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Fig. 16. The running quark mass as a function of q -- 1/L. 

The perturbative evolution is again very accurate down to low energy scales. 
Of course, this result may not be generalized to running masses in other schemes. 
Rather  the running has to be investigated in each scheme separately. 

The point at lowest energy in Fig. 16 corresponds to 

M / ~  = 1.18(2) at L = 2Lma~ • (102) 

Remembering the very definition of the renormalized mass (57), one can use 
this result to relate the renormalization group invariant mass mass and the bare 
current quark mass m on the lattice through 

M = m x 1.18(2) x Zh(go) /Zp(go ,  2Lmax/a)  • (lo3) 

In this last step, one should insert the bare current quark mass, e.g. of the strange 
quark, and extrapolate the result to the continuum limit. This analysis has not 
been finished yet but results including this last step are to be expected, soon. 
To date, the one-loop approximation for the renormalization of the quark mass 
(i.e. an approach similar to what was discussed for the coupling in Sect. 4.8) has 
been used to obtain numbers for the strange quark mass in the MS-scheme. The 
status of these determinations was recently reviewed by T. Bhat tacharya and R. 
Gupta  (1997). 

6 C h i r a l  S y m m e t r y ,  N o r m a l i z a t i o n  o f  C u r r e n t s  

a n d  O ( a ) - I m p r o v e m e n t  

In this section we discuss two renormalization problems that  are of quite dif- 
ferent nature. The first one is the renormalization of irrelevant operators, that  
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are of interest in the systematic O(a) improvement of Wilson's lattice QCD as 
mentioned in Sect. 1.4. The second one is the finite normalization of isovector 
currents (cf. Sect. 1.2). They are discussed together, here, because - at least to a 
large extent - they can be treated with a proper application of chiral Ward iden- 
tities. The possibility to use chiral Ward identities to normalize the currents has 
first been discussed by Bochicchio et al. (1985), Maiani and Martinelli (1986). 
Earlier numerical applications can be found in Martinelli et al. (1993), Paciello 
et al. (1994), Henty et al. (1995) and a complete calculation is described be- 
low (Lfischer et al. (1997 I)). We also sketch the application of chiral Ward iden- 
tities in the computation of the O(a)-improved action and currents (Lfischer et 
al. (1996), L/ischer and Weisz (1996), Lfischer et al. (1997 I)). 

Before going into the details, we would like to convey the rough idea of the 
application of chiral Ward identities. For simplicity we again assume an isospin 
doublet of mass-degenerate quarks. Imagine that  we have a regularization of 
QCD which preserves the full SU(2)v ×SU(2)A flavor symmetry as it is present 
in the continuum Lagrangian of mass-less QCD. In this theory we can derive 
chiral Ward identities, e.g. in the Euclidean formulation of the theory. These 
then provide exact relations between different correlation functions. Immediate 
consequences of these relations are that  the currents (5) do not get renormatized 
(ZA = Zv = 1) and the quark mass does not have an additive renormalization. 

Lattice QCD does, however, not have the full SU(2)v x SU(2)A flavor symme- 
t ry  for finite values of the lattice spacing and in fact no regularization is known 
that  does. Therefore, the Ward identities are not satisfied exactly. We do, how- 
ever, expect that  the renormalized correlation functions obey the same Ward 
identities as before - up to O(a) corrections that  vanish in the continuum limit. 
Therefore we may impose those Ward identities for the renormalized currents, 
to fix their normalizations. 

Furthermore, following Symanzik, it suffices to a add a few local irrelevant 
terms to the action and to the currents in order to obtain an improved lattice 
theory, where the continuum limit is approached with corrections of order a 2. 
The coefficients of these terms can be determined by imposing improvement 
conditions. For example one may require certain chiral Ward identities to be 
valid at finite lattice spacing a. 

6.1 Chiral  Ward Identit ies  

For the moment we do not pay attention to a regularization of the theory and 
derive the Ward identities in a formal way. As mentioned above these identities 
would be exact in a regularization that  preserves chiral symmetry. To derive the 
Ward identities, one starts from the path integral representation of a correlation 
function and performs the change of integration variables 

• T a  ~a ~a 
¢ ( x )  E 

= ¢ ( x )  + + , 
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a 

- x eir7 -[4(~)~5-~'(*)] ~(x) -+ ¢(  ) 

= ~(x) + i ~ ( ~ ) 6 ~ ( ~ )  + i ~ ( x ) 6 ~ ( x )  , (104) 

where we have taken e~.(x), e~(x) infinitesimal and introduced the variations 

5 ~ ¢ ( x )  = ½ r ~ / 5 ¢ ( x ) ,  5 ~ ( x )  = O(x)75½v ~ . (105) 

The Ward identities then follow from the invariance of the path integral rep- 
resentation of correlation functions with respect to such changes of integration 
variables. They obtain contributions from the variation of the action and the 
variations of the fields in the correlation functions. In Sect. 6.3 we will need the 
variations of the currents, 

~ezd~(x )  = -JerbOA ~ [x) 6] ,gb  (x)  = • ~6~ ~ -~e ~, (x) (106) ~ \  1 '  

They form a closed algebra under these variations. 
Since this is convenient for our applications, we write the Ward identities in 

an integrated form. Let R be a space-time region with smooth boundary OR. 
S u p p o s e  (.gin t and O~t  are polynomials in the basic fields localized in the interior 
and exterior of R respectively. The general vector current Ward identity then 
reads 

d a u ( x )  (~(X)OintOext> = - -  ( ( 6 ~ O i n t )  Oext), (107) 
R 

while for the axial current one obtains 

o ~ 0 
da , (x )  (A~(x)O~ntO~×t} = - ( ( 5 A O i . t )  ~×t> (108) 

R 

+2m £ d4x (pa(x)OintOext) $ 

The integration measure da ,  (x) points along the outward normal to the surface 
O R  and the pseudo-scalar density P ~ ( x )  is defined by 

Re(x) = 7(x)"/5 1Ta¢(x) • (109) 

We may also write down the precise meaning of the PCAC-relation (55). It 
is (108) in a differential form, 

<[O,A~,(x)  - 2 m P = ( x ) ]  Oext> -~- 0 , (110) 

where now Oext may have support everywhere but at the point x. 
Going through the same derivation in the lattice regularization, one finds 

equations of essentially the same form as the ones given above, but with addi- 
tional terms (Bochicchio et al. (1985)). At the classical level these terms are of 
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order a. More precisely, in (110) the important  additional term originates from 
the variation of the Wilson term, a ~ V * V , ¢ ,  and is a local field of dimension 5. 
Such O(a)-corrections are present in any observable computed on the lattice and 
are no reason for concern. However, as is well known in field theory, such opera- 
tors mix with the ones of lower and equal dimensions when one goes beyond the 
classical approximation. In the present case, the dimension five operator mixes 
amongst others also with O~,A~(x) and Pa(x). This means that  part  of the classi- 
cal O(a)-terms turn into O(gg) in the quantum theory. The essential observation 
is now that  this mixing can simply be written in the form of a renormalization 
of the terms that  are already present in the Ward identities, since all dimension 
three and four operators with the right quantum number are already there. 

We conclude that  the identities, which we derived above in a formal manner, 
are valid in the lattice regularization after 

- replacing the bare fields A, V, P and quark mass m0 by renormalized ones, 
where one must allow for the most general renormalizations, 

(Aa)'~. = ZAA~ , (Va) ~. = ZvV. ~ , 

(PR) a = ZpP a , mR : Z m / F t q  , mq = m0 -- mc , 

- allowing for the usual O(a) lattice artifacts. 

Note that  the additive quark mass renormalization mc diverges like O(gg/a) for 
dimensional reasons. 

As a result of this discussion, the formal Ward identities may be used to 
determine the normalizations of the currents. We discuss this in more detail in 
Sect. 6.3 and first explain the general idea how one can use the Ward identities 
to determine improvement coefficients. 

6 . 2  O ( a ) - h n p r o v e m e n t  

We refer the reader to Liischer et al. (1996) for a thorough discussion of O(a)- 
improvement and to Sommer (1997) for a review. Here, we only sketch how 
chiral Ward identities may be used to determine improvement coefficients non- 
perturbatively. 

The form of the improved action and the improved composite fields is deter- 
mined by the symmetries of the lattice action and in addition the equations of 
motion may be used to reduce the set of operators that  have to be considered 
(Liischer and Weisz (1985)). For O(a)-improvement, the improved action con- 
tains only one additional term, which is conveniently chosen as (Sheikholeslami 
and Wohlert (1985)) 
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with Fg~ a lattice approximation to the gluon field strength tensor Fg~ and one 
improvement coefficient Caw. The improved and renormalized currents may be 
written in the general form 

(VR)~ = Zv(1 + b v a m q ) { V  + acv½(co, + cO*)T~,}, 

(AR)~ = ZA(1 + bAamq){dt ,  + acA½(O. + cO,)P }, 

(Pa) ~ = Zp(1 + bpamq)P ~ . (112) 

(c0, and 07, are the forward and backward lattice derivatives, respectively.) 
Improvement coefficients like csw and CA are functions of the bare coupling, 

go, and need to be fixed by suitable improvement conditions. One considers pure 
lattice artifacts, i.e. combinations of observables that  are known to vanish in 
the continuum limit of the theory. Improvement conditions require these lattice 
artifacts to vanish, thus defining the values of the improvement coefficients as a 
function of the lattice spacing (or equivalently as a function of go). 

In perturbation theory, lattice artifacts can be obtained from any (renormal- 
ized) quantity by subtracting its value in the continuum limit. The improvement 
coefficients are unique. 

Beyond perturbation theory, one wants to determine the improvement coef- 
ficients by MC calculations and it requires significant effort to take the contin- 
uum limit. It is therefore advantageous to use lattice artifacts that  derive from a 
symmetry of the continuum field theory that  is not respected by the lattice reg- 
ularization. One may require rotational invariance of the static potential V(r),  
e.g. 

V(r  = (2, 2 ,1)r /3)  - V(r  = (r, 0,0)) = 0, 

or Lorenz invariance, 

[E(p)]2 _ [E(0)]2 _ p2 = O, 

for the momentum dependence of a one-particle energy E. 
For O(a)-improvement of QCD it is advantageous to require instead that  

particular chiral Ward identities are valid exactly, s 
In somewhat more detail, the determination of c~w and CA is done as follows. 

We define a bare current quark mass, m, viz. 

m _ oo J a a a 1 (0,  + a , ) P  2 (P~(x)dO~xt) , (AI)t, = A t, + acA~ (113) 

s As a consequence of the freedom to choose improvement conditions, the resulting 
values of improvement coefficients such as c~w, CA depend on the exact choices made. 
The corresponding variation of c~w, CA is of order a. There is nothing wrong with 
this unavoidable fact, since an O(a) variation in the improvement coefficients only 
changes the effects of order a 2 in physical observables computed after improvement. 
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When all improvement coefficients have their proper values, the renormalized 
quark mass, defined by the renormalized PCAC-relation, is related to m by 

ZA(1 + bAamq) rn 
mR = Z ' ~ - I - ~ ~  + O(a 2) . (114) 

We now choose 3 different versions of (113) by different choices for Oext and/or  
boundary conditions and obtain 3 different values of m, denoted by ml ,  m2, m3. 
Since the prefactor in front of m in (114) is just a numerical factor, we may 
conclude that  all mi have to be equal in the improved theory up to errors of 
order a 2. Csw and CA may therefore be computed by requiring 

ml = m2 = m3 . (115) 

This simple idea has been used to compute c~w and CA as a function of go in 
the quenched approximation (Lfischer et al. (1997 II)). In the theory with two 
flavors of dynamical quarks, c~w has been computed in this way (Jansen and 
Sommer (1997)). The improvement coefficient for the vector current, cv, may 
be computed through a different chiral Ward identity (Guagnelli and Sommer 
(1997)). 

6.3 No rm al i za t ion  of  Isovector Currents  

Although the numerical results, which we will show below, have been obtained 
after O(a) improvement, the normalization of the currents as it is described, 
here, is applicable in general. Without improvement one just has to remember 
that  the error terms are of order a, instead of a 2. For the following, we set the 
quark mass (as calculated from the PCAC-relation) to zero. 

Norma l i za t io n  condi t ion  for the  vector current.  Since the isospin sym- 
metry of the continuum theory is preserved on the lattice exactly, there exists 
also an exactly conserved vector current. This means that  certain specific Ward- 
identities for this current are satisfied exactly and fix it's normalization automat- 
ically. It is, however, convenient to use the improved vector current introduced 
above, which is only conserved up to cutoff effects of order a 2. Its normalization 
is hence not naturally given and we must impose a normalization condition to 
fix Zv. Our aim in the following is to derive such a condition by studying the 
action of the renormalized isospin charge on states with definite isospin quantum 
numbers. 

The matrix elements that we shall consider are constructed in the SF using 
(the lattice version of) the boundary field products introduced in (58) to create 
initial and final states that  transform according to the vector representation of 
the exact isospin symmetry. The correlation function 

a a 
• fva(X°) = 6-~ E ieabc(O'~(VR)~(x)OC) (116) 

x 



108 Rainer Sommer 

can then be interpreted as a matr ix  element of the renormalized isospin charge 
between such states. The properly normalized charge generates an infinitesimal 
isospin rotat ion and after some algebra one finds that  the correlation function 
must  be equal to 

1 
f l - -  aLd<O'aOa> (117) 

up to corrections of order a 2. The O(a) counter-term appearing in the definition 
(112) of the improved vector current does not contribute to the correlation func- 
tion fvR(Xo). So if we introduce the analogous correlation function for the bare 
current, 

a3 E ie~b~(O'~Vob(X)OC), (118) I v ( x 0 )  : 
x 

it follows from (117) that  

Zvfv(xo) = f l  + O(a2). (119) 

By evaluating the correlation functions f l  and fv(x0)  through numerical simu- 
lation one is thus able to compute the normalization factor Zv.  

N o r m a l i z a t i o n  c o n d i t i o n  for t h e  ax ia l  c u r r e n t .  To derive a normalization 
condition for ZA, we consider (108) (for m = 0) and choose Oint to be the axial 
current at some point y in the interior of R. The resulting identity, 

dau(x) (A~,(x)A,(y)Oext} = ie abe (V ~. (y)Oext) , (120) 
R 

is valid for any type of boundary conditions and space-time geometry, but we 
now assume SchrSdinger functional boundary conditions as before. A convenient 
choice of the region R is the space-time volume between the hyper-planes at 
x0 = Y0 ± t. On the lattice we then obtain the relation 9 

aa E e~bc <[(AR)~)(y0 + t, x) - (dR)3(yo - t, x)](AR)b0(y)O~xt 
x 

= 2i <(VR)~(y)O¢xt> + O(a 2) (121) 

After summing over the spatial components of y, and using the fact that  the 
axial charge is conserved at zero quark mass (up to corrections of order aS), 
(121) becomes 

a6 E ~abc < (dR)~(x)(dR)b(y)Oext> = a 3 Z i<(VR)~(y)(.gext> + O(a2), (122) 
x , y  y 

9 In the context of O(a)-improvement it has been important here that the fields in the 
correlation functions are localized at non-zero distances from each other. Since the 
theory is only on-shell improved, one would otherwise not be able to say that the 
error term is of order a 2 (cf. sect. 2 of Liischer et al. (1996)). 
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where x0 -- y0 + t. We now choose the field product (_0ex t SO that  the func- 
tion fva(Yo) introduced previously appears  on the right-hand side of (122). The 
normalization condition for the vector current (119) then allows us to replace 
the correlation function fvR(Yo) by f l .  In this way a condition for ZA is ob- 
tained (Liischer et al. (1997 I)). 
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Zv 
0.9 

0.8 

' ' ' I ' ' I ' ' ' I ' ' ' I ' ' ' I 

, I , , , I , i i I , , i I i , i I 

1 

Z^ 
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0.8 

, , , I , , , I , , , I , L , I,, , , I 

0 0.2 0.4 0.6 0.8 1 

Fig. 17. Current normalization constants as a function of the bare coupling (Liischer 
et al. (1997 I)). The dotted line is l-loop perturbation theory (Gabrielli et al. (1991)) 
and the crosses correspond to a version of l-loop tadpole improved perturbation the- 
ory (Lepage and Mackenzie (1993)). The full line is a fit to the non-perturbative results. 

L a t t i c e  a r t i f a c t s  a n d  r e s u l t s .  It  is now straightforward to compute Zv, ZA 
by MC evaluation of the correlation functions that  enter in (119),(122). Before 
showing the results, we emphasize one point that  needs to be considered carefully. 
The normalization conditions fix Zv and ZA only up to cutoff effects of order a 2 . 
Depending on the choice of the lattice size, the boundary values of the gauge field 
and the other kinematical parameters  that  one has, slightly different results for 
Zv  and ZA are hence obtained. One may try to assign a systematic error to the 
normalization constants by studying these variations in detail, but since there is 
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no general rule as to which choices of the kinematical parameters are considered 
to be reasonable, such error estimates are bound to be rather subjective. 

It is therefore better to deal with this problem by defining the normalization 
constants through a particular normalization condition. The physical matrix 
elements of the renormalized currents that one is interested in must then be 
calculated for a range of lattice spacings so as to be able to extrapolate the data 
to the continuum limit. The results obtained in this way are guaranteed to be 
independent of the chosen normalization condition, because any differences in 
the normalization constants of order a 2 extrapolate to zero together with the 
cutoff effects associated with the matrix elements themselves. 

Note that a "particular normalization condition" means that apart from 
choosing the boundary values and geometry of the SF, one has to keep the 
size of the SF-geometry fixed in physical units, for example 

L/ro = coast. (123) 

As shown in Fig. 17, the current normalizations can be obtained with good 
precision (in the quenched approximation) after taking all of these points into 
account (L~ischer et al. (1997 I)). 

Coming back to our motivation Sect. 1.2, the results in Fig. 17 now allow for 
the calculation of matrix elements of the weak currents involving light quarks 
without any perturbative uncertainties. 

7 Summary, Conclusions 

We have shown how QCD needs to be renormalized non-perturbatively in order 
to obtain unambiguous predictions that can be compared with experiments. 
Once a non-perturbative definition and calculational technique is available, it 
is in principle quite simple to perform renormalization non-perturbatively. In 
practice, the problem has to be treated with care. 

The only presently available definition is lattice QCD with MC simulations as 
the calculational tool to get predictions. In this case, straightforward solutions to 
the renormalization problem face a serious difficulty: the theory must be treated 
at various different energy scales simultaneously, which is an extremely hard 
(impossible?) task for a MC simulation. To circumvent this difficulty, Lfischer, 
Weisz and Wolff have introduced the recursive finite size technique, where one 
connects low and high energies recursively in small steps. We have shown, how 
this idea can be put into practice in QCD using the Schrhdinger functional as 
a second technical tool. In the theory without dynamical quarks, these meth- 
ods have been shown to allow for the computation of short distance parameters 
like A~-~ and the renormalization group invariant quark mass with completely 
controlled errors! From the practical point of view, the non-perturbative renor- 
malization of other quantities, such as the As = 2 operator, still have to be 
investigated, but no new difficulties are expected to appear. It is therefore plau- 
sible that the renormalization problem can be solved for many specific cases - 
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and with good accuracy. It should not remain unmentioned, however, that  in 
practice each renormalization problem has to be considered separately. Certain 
problems may turn out to be significantly more difficult to solve than the ones 
discussed in the lectures. 

We also sketched, how Symanzik improvement can be implemented in a 
non-perturbative way, reducing the leading lattice artifacts from linear in a to 
quadratic in a (O(a)-improvement). For light quarks, such a project has already 
been done carried out. As a result, significant progress in lattice QCD is expected 
from the use of O(a)-improved QCD. 
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Abstract .  After a pedagogical review of the simple constituent quark model and 
deep inelastic sum rules, we describe how a quark sea as produced by the emission of 
internal Goldstone bosons by the valence quarks can account for the observed features 
of proton spin and flavor structures. Some issues concerning the strange quark content 
of the nucleon are also discussed. 

We shall first recall the contrasting concepts of current quarks vs constituent 
quarks. In the first Section we also briefly review the successes and inadequacies 
of the simple constituent quark model (sQM) which attempts to describe the 
properties of light hadrons as a composite systems of u, d, and s valence quarks. 
Some of the more prominent features, gleaned from the mass and spin systemat- 
ics, are discussed. In the Sec. 2 we shall provide a pedagogical review of the deep 
inelastic sum rules that can be derived by way of operator product expansion 
and/or the simple parton model. We show in particular how some the sum rules 
in the second category can be interpreted as giving information of the nucleon 
quark sea. In the remainder of these lectures we shall show that the account of 
the quark sea as given by the chiral quark model is in broad agreement with the 
experimental observation. 

1 S t r o n g  I n t e r a c t i o n  S y m m e t r i e s  a n d  t h e  Q u a r k  M o d e l  

In the approximation of neglecting the light quark masses, the QCD Lagrangian 
has the global SU(3)L × SU(3)R symmetry. Namely, it is invariant under inde- 
pendent SU(3) transformation of the three left-handed and right-handed light 
quark fields. This symmetry is realized in the Nambu-Goldstone mode with the 
ground state being symmetric only with respect to the vector SU(3)L+R trans- 
formations. This gives rise to an octet of Goldstone bosons, which are identified 
with the low lying pseudoscalar mesons (Tr, K, r/). For a pedagogical review see, 
for example, ref.[1]. 

1.1 C u r r e n t  Quark  M a s s  R a t i o s  as D e d u c e d  f rom Pseudosca la r  
M e s o n  M a s s e s  

The light current quark masses are the chiral symmetry breaking parameters of 
the QCD Lagrangian. Their relative magnitude can be deduced from the soft 
meson theorems for the pseudoscalar meson masses. 
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a The matrix element of an axial vector current operator A,  taken between the 

vacuum and one meson ¢b state (with momentum ku) defines the decay constant 
f~ as 

where the SU(3) indices a, b...range from 1, 2, ....8. This means that  the diver- 
gence of the axial vector current has matrix element of 

= m : f a 6 ~ ,  (1) 

If the axial divergences are good interpolating fields for the pseudoscalar mesons, 
we have the result of PCAC: 

OU A~ = m 2 r~Jav ~ .  (2) 

Using PCAC and the reduction formula we can derive a soft-meson theorem for 
the pseudoscalar meson masses: 

/ ,  
2 2 . /  -"  • mafa( ab ~ -  - - I  d4xe ,kz (0 (zo) [A o (x), O.A; (o)] I o) 

J 

= - (o I[Q% [Q% ~ (o)]]1o) (3) 

where the axial charge is related to the time component of the axial vector 
current as Qs~ = f d3xA~) (z) .  

If we neglect the electromagnetic radiative correction, only the quark masses, 

7"tin = mu(xu + mddd + m~gs, (4) 

break the chiral symmetry. Hence only such terms are relevant in the computa- 
tion of the above commutators. [In actual computation it is simpler if one takes 
~-~m and Q5a to be 3 x 3 matrices and compute directly the anticommutatoTin 
[q@~075q, q~bq] = l q  {ha,  )~b} 75q.] In this way we obtain: 

f ~ m .  ~ 2 = -21(m,, + md) (O i(Csu + dd) t O} 

/~<mK2 ~ = ~1 (m~ + . ~ )  (o L(~ + as)l o) 

2 2 1 4 (OlgslO} 

(5) 

G e U - M a n n - O k u b o  m a s s  r e l a t i o n  a n d  t h e  s t r a n g e  to  n o n - s t r a n g e  q u a r k  
mass  r a t io .  Since the flavor SU(3) symmetry is not spontaneously broken, 

<0 I~u[ o / =  (0 Idd[ o} ~ <0 I~sl o> ~ .3 (6) 
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and f~ = f g  = f~ =-- f;  Equation(5) is simplified to 

/z 3 
2 

m r = 2mn-f5 

#3 
m }  = (,~n + m,) -F 

2 2 (mn + 2ms) #3 m,, = ~ 7~ (7) 
where we have made the approximation of m~ ~_ md =-- mn. From this, we can 
deduce the Gell-Mann-Okubo mass relation for the 0 -  mesons: 

am 2 = 4m 2 _ 2 m . ,  (s) 

as well as the strange to nonstrange quark mass ratio [2]: 

2 ~ 1  m~ _ mu + m~ _ rn ,  (9) 
ms 2ms 2m2K -- m2~ -- 25" 

I s o s p i n  b r e a k i n g  b y  t h e  s t r o n g  i n t e r a c t i o n  & t h e  m ~ , / m d  r a t i o .  In order 
to s tudy the ratio of mu/md,  we need to include the electromagnetic radiative 
contribution to the masses. The effective Hamiltonian due to virtual photon 
exchange is given by 

?-l.y = e 2 f d4xT (a~," (x) j~r~ (0)) D u" (x) (10) 

where D u" (x) is the photon propagator.  Thus, beside the contribution from 7/m, 
we also have the additional te rm on the RHS of (3): 

,~.~b = (o i[@b, [&<,, ~_,]]1 o) (11) 
Now we make the observation (Dashen's theorem[3]) : For the electrically neutral 
mesons, we have [Qh~, 7/~] = 0, which leads to 

~ ( : )  = ~ ( K  °) = ~ (~) = o. (~2) 

On the other hand, J j '~  is invariant (i.e. U-spin symmetric)  under the inter- 
change d 4-+ s, which transforms charged mesons 7r + and K + into each other: 

(13) 
Consequently, we obtain the generalization of (7) as 

3 f=~ ( : )  = (~,, + ,m<,) .~ + . ,  
f2m2 (~r °) = (mu + m~) p3 

3 (14)  : ~ m  ~ ( u + )  = (m~ + .~,) .~ + .~ 

I= .?  (K °) = ( .~  + .~.) .z 

1 
:f2m2 (rl) = ~ (m~ +md + 4ms) #3. 
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From this we can obtain the current quark mass ratios: 

( K O )  - ( K + )  - 
_ - ~ ___20.1 

m 2 (K °) - [rn 2 (K +) - rn 2 0r+)] 

[2m ~ (lr °) - m 2 (K0)] + [m 2 (K +) - m 2 (Ir+)] 
m d  

"~ 1.8 
7Yt u 

If we assume, for example, m,  ~ 190 M e V ,  these ratios yield: 

(15)  

(16)  

rnu ~- 5 . 3 M e V  m8 ~ 9 .5MeV or mn = 7 . 4 M e Y ,  (17) 

which are indeed very small on the intrinsic scale of QCD. This explains why 
the chiral SU(2) and isospin symmetries are such good approximations of the 
strong interaction. 

1 .2  Q u a r k  M a s s e s  f r o m  F i t t i n g  B a r y o n  M a s s e s  

For the baryon mass we need to study the matrix elements (B 17/I B>. The 
flavor SU(3) symmetry breaking being given by the quark masses (4), we need 
to evaluate the matrix elements of the quark scalar densities u~ between baryon 
states : 

N m  = mu(tu + mddd + m~gs 

mOltO • ?n3U3 + Trts~t8 

with 
mo = ~1 (m,, + m~ + m~) Uo = ~u + dd + $s 

m3 = ~ (m,, - md) U3 = ~u -- dd (18) 
m s = I ~ ( m ~ + m d - - 2 m , )  us = ~tu + d d -  2gs 

where, instead of the standard ua = qA~q (A~ being the familiar Gell-Mann 
matrices), we have used, for our purpose, the more convenient definitions of scalar 
densities by moving some numerical factors into the quark mass combinations 

m0,3,s.  
We shall first concentrate on the low lying baryon octet which, being the 

adjoint representation of SU(3), can be written as a 3 x 3 matrix 

~o ~f~A 

The octet scalar densities ua can be related to two parameters (Wigner-Eckart 
theorem): 
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where fi~ is the scalar density expressed as a 3 x 3 mat r ix  in the quark  flavor 
space. The  linear combinat ions  (a  4- f l ) / 2  are the familiar D and F coefficients. 
For example, we can easily compute:  

(p ]us[p) = a - 2/3 = (3F  - D ) m ~  ~ (20) 

(p lua]p)  = a = ( F  + D ) m a ,  s . (21) 

In  this way the baryon  masses with their e lectromagnetic  self-energy sub t rac ted  
(as denoted by the  baryon  names) can be expressed in terms of three parameters  

p = M 0  + (a  - 2/3)ms + am3 (22) 

n = A/go + (a  - 2/3)m8 - area 

~:+ = Mo + (a + f~)m8 + (a - /3)  m3 

G ° = M o  + (c~ + fl)m8 

Z -  ---- M 0  + (a  + • )m8  - ( a - ~ 3 )  m3 

~ -  : Ado + (/3 - 2a )ms  +/3m3 

~o = M o  + (/3 - 2a )ms  - / 3 m 3  

A = Ado - (a  +/3)ras  

We have 8 baryon  masses and three unknown parameters  Ado, a and ;3 - -  hence 
5 relations, one of them should yield quark  mass rat io m s / m 3 .  

- The  (" improved")  Gel l -Mann-Okubo mass relation 

_ _  1 (3A + 2 Z  + - Z °) (23) n q - ~  - - 3  

- The  Coleman-Glashow (U-spin) relation 

Z -  - Z ° -= (p - n) + ( Z -  - Z +) (24) 

- Absence of  isospin I -= 2 correction (i .e.  u3 being a member  of I = 1): 

Z -  + ~ +  - 2 Z  ° = 0 (25) 

- The  hybrid  relation: 
p - n  Y , -  _ ~ o  

- ( 2 6 )  
Z -  - ~ -  Z + - p  

I t  should not  be surprising tha t  we have a relation relating S U  (2) breakings 
to  SU(3)  breakings,  since u3 and Us belong to the same octet  representat ion.  
Recall tha t  here the electromagnetic  contr ibut ion must  be subt rac ted  from 
our  masses (sometimes called the tadpole masses ) .  Since there is no Dashen 
theorem for the electromagnet ic  contr ibutions to  baryon masses, we must  
resort  to  detailed (and less reliable) model  calculations. We quote  one such 
result[4] for the electromagnetic  contr ibutions (AM)~  : 

p -  n = ( p - -  n)obs -- ( p - - n ) ~  ~-- --1.3 -- 1.1 ~_ - 2 . 4 M e V  

~ -  _ _-0 _ (_~- _ zo)obs _ ( Z -  - Z° )~  ~- 6.4 - 1.3 ~- 5 . 1 M e V  

which yields _ 0.02 on bo th  sides of (26). 
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- Both sides of (26) are related to the quark mass ratio 2m3/(3m8 - m 3 ) .  
Thus the above result leads to 

( m-~dd------~)Bmd "~ 0.02 (27) 

which is compatible with the current quark ratio deduced from pseudoscalar 
meson masses (15) and (16): 

mu - rnd _~ 1.8 _~ 0.023. (28) 
ps 1 - 20.1 

1.3 The Const i tuent  Quark Mode l  

S p i n - d e p e n d e n t  c o n t r i b u t i o n s  t o  b a r y o n  masses .  The sQM which at- 
tempts to describe the properties of light hadrons as a composite systems of 
u, d, and s valence quarks. The mass relations derived above may be interpreted 
simply as reflecting the hadrons masses as sum of the corresponding valence 
quark masses. For a general baryon, we have 

B = Ado + M1 + M2 + M3 (29) 

where M0 is some SU(3) symmetric binding contribution. M1,2,3 are the con- 
stituent massesof the three valence quarks. We shall ignore isospin breaking 
effects: M~ = Md =--- Mn, and write the octet baryon masses as, 

N = Mo + 3M,~ (30) 

A = 3.4o + 2M,~ + Ms 

Z = M0 + 2 M ~  + M~ 

= M0 + Mn + 2M~, 

and the decuplet baryon masses as, 

A = 3.% + 3M,~ (31) 

57" =- 340 + 2Mn + 3//~ 
~,* 
- = M o + M , ~ + 2 M ~  

D = Mo  + 3M~. 

While it reproduces the GMO mass relations respectively, for the octet: 

+ Z = l ( 3A  + Z),  (32) N 

and for the decuplet (the equal-spacing rule): 

A - Z * = Z *  : * - - Z *  ~2, (33) 
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it also leads to a phenomenologically incorrect result of A = Z (reflecting their 
identical quark contents). Similarly, such a naive picture would lead us to expect 
that  the N, E ,  3 baryons having comparable masses as A, ~*, _ . .  Observa- 
tionally the spin 3/2 decuplet has significantly higher masses than the spin 1/2 
octet  baryons. Similar pat tern has also been observed in the meson spectrum: 
the spin 1 meson octet is seen to be significantly heavier than the spin 0 mesons: 
Mp,K.,~ >> M~,K,~ even though they have the same quark contents. This sug- 
gests that  there must be important  spin-dependent contributions to these light 
hadron masses[5]. We then generalize (29) to 

B = M ° +  MI+ M2+ Ma+~L\M1M~] + \M-M-~2] + \M-----1-1~3JJ (34) 

where si is the spin of i-th quark, and the constant n one would adjust to fit 
the experimental data. This spin dependent contribution is modeled after the 
hyperfine splitting of atomic physics. For hydrogen atom we have a two body 
system hence only one pair of spin-spin interaction: M1 = me and M2 = My. The 

( ~J-~-'l arises from p • B ~ #e'~p/r3 with the proportional constant worked out meMp ] 
to be 

87re2pv ]2 (o) 

where pp = 2.79is the magnetic moment of the proton in unit of nucleon mag- 
neton, and ~ (0) is the hydrogen wave function at origin. Such an interaction 
accounts for the 1420 MHz splitting between the two 1S states, which gives rise 
to the famous 21 cm line of hydrogen. For the case of baryon, one usually at- 
tributes such interaction to one-gluon exchange; but we shall comment on this 
point in later part  of these lectures, at the end of Sec. 3.2. 

To compute the ~ terms we need to distinguish three cases: Mi Mj 
(a) The equal mass case: M1 = M2 = M3 -= M 

) 
ki>J 

1 1 [S (S + l) - 3s (s + l)] - 2 M 2  ( s 2  - - - s ] )  = 

=.{;+ for S = 1 / 2  
4--M-r for S = 3/2 

(35) 

This is applicable for the N, A, f2 baryons. 
(b) The unequal mass case, for example, (ssn) : Because of color antisym- 

metrization, the baryon wavefunction must be symmetric under the combined 
interchange of flavor and spin labels. Since we have a symmetric superposition of 
flavor states, the subsystem (ss) must have spin 1, Namely, s~ .s~ = 1 ( 2 -  2s~ 2) = 
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i and 
4 ~ 

2ss.  s n  = 

o r  

_ 3 _ ~  - 1  for S = 1 / 2  
1 for S = 3/2  S i * S j  - -  S s " S  s = -~- 4 "~-2 

\M1M2]  + \M~M~]  + \M----~2JJ = [ \  M 2 ] + 2 \ M s M , , J J  

= for S = 1 / 2  

~ + 2M~M. for S = 3/2 (36) 

This case is applicable to ~ and F.*, as well as i7 and i;'* because the sigma 
baryons are isospin I = 1 states (hence symmetric in the nonstrange flavor 
space). 

(c) The A baryon: Because A is an isoscalar, the subsystem must be in spin 0 
state. From this one can easily work out the spin factor to be 3 - 4--~, independent 

of Ms. 
Put t ing  all this together into (34) we obtain, for the octet  baryons: 

3~ 
N = ]~4o + 3M~ - - -  (37) 

A = M o  + 2Mn + Ms - - -  

Z = M o + 2 M , ~ + M s +  - -  

= M o  + Mn + 2M~ + 

3~ 

4M~ 

4M 2 M#VI,~ 
t~ t~ 

4M~ MsM,~ 

and for the decuplet baryons: 

3~ 
A = N/o + 3M,, + - -  (38) 

4M~ 
t~ t~ 

Z* = M0 + 2Mn + Ms + ~ + 2MsM-----~ 

- = M o + M . + 2 M s + ~ + 2 M s M ~  

3n 
t9 = M 0  + 3M~ + - -  4M  

One can obtain an excellent fit (within 1%) to all the masses with the parameter  
values (e.g.[6]) A4o = 0, ~ = 50 MeV and the constituent quark mass values 

of 
M~ = 363 MeV, Ms = 538 MeV. (39) 

Similarly good fit can also be obtained for mesons, with an enhanced value of 
n. Besides some different coupling factors this may reflect a larger I~' (0)12 ~ R -3, 
which is compatible with the observed root mean square charge radii of mesons 
vs baryons: R . . . . .  ~ 0.6 f m  vs Rba,~on ~ 0.8 .fm. 
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Spin a n d  m a g n e t i c  m o m e n t s  o f  t h e  baryon.  Another useful tool to study 
hadron structure is the magnetic moment of the baryon. Their deviation from 
the Dirac moments values (eB/2MB)  indicates the presence of structure. In the 
quark model the simplest possibility is that the baryon magnetic moment is 
simply the sum of its constituent quark's Dirac moments. Clearly, the magnetic 
moments are intimately connected to the spin structure of the hadron. Hence, 
we shall first make a detour into a discussion of the baryon spin structure in the 
constituent quark model. 

Quark contributions to the proton spin. Because it is antisymmetric under the 
interchange of quark color indices, the baryon wavefunction must be symmetric 
in the spin-flavor space. Mathematically, we say that the baryon wavefunction 
should be invariant under the permutation group $3 - -  the group of permuting 
three quarks with spin and isospin labels. 

We shall concentrate on the case of proton. While the product wavefunction 
is symmetric, the individual spin and isospin wavefunctions are of the mixed- 
symmetry type. There are two mixed-symmetry spin-½ wavefunction combina- 
tions: 

(i) Xs - -  symmetric  in the first two quarks: Namely, the first two quarks 
form a spin 1 subsystem: (Notation for the spin-up and -down states: 
I1 1 1 1 

= a n d  - 

1 
11,+1) -= ala2,  I1,0> = --~ (a1~2 + flla2), I1,-1) = fl1~2 

V2 

which is combined with the 3rd quark to form a spin ½ proton: 

' 

o r  

= --~6 (2ala2~3 - al~2a3 - 131a2a3). (40) Xs 

(ii) XA - -  antisymmetric in the first two quarks: The first two quarks 
form a spin 0 subsystem: 

o r  

1 
)CA = --~_ (al/3e -- ~la2)a3. (41) 

V2 
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While XS,A are the spin-½ wavefunctions, with identical steps, we can con- 
struct the two mixed-symmetry isospin-½ wavefunctions X' S , A  : 

Xs = 2UlU2d3 - -  u l d 2 U 3  - dlu2u3) 

XIA = -~2(uld2 - dlu2)u3. (42) 

Both the spin wavefunctions (Xs XA) and the isospin wavefunctions (X} :V'A) 
form a two dimensional representation of the permutation group Sa. For example, 
under the permutation operations of P12 and P13 

1 

M12 

= - 3  - - T  2¢ 

M13 

where Mij are 2-dimensional representations in terms of orthogonal matrices. 
Consequently, we find that  the combinations such as (X~ + X~),  (X~ + X~) 
and (XsX's + XAX'A) are invariant under $3 transformations. In this way we find 
the symmetric proton spin-isospin wavefunction: 

1 
[P+} = ~ (XsX's + XAX'A) (43) 

1 1 
= 7-~[g(2oqa2~3 -- al/3=a3 -- f l lazaa)(2u,uzd3 - uld2U3 - -  d l u 2 u 3 )  

+ l ( a , 3 2 a 3  - ~l a2aa ) ( ul d2u3 - dl u2u3 ) ] 

1 
= 6,/~[4 (u+u+d_ + u+d_u+ + d_u+u+) 

-2(u+u_d+ + u_d+u+ + d+u+u_ 

+u_u+d+ + u+d+u_ + d+u_u+)] 

where we have used the notation of au = u+, /3d = d_, etc. In calculating 
physical quantities, many terms, e.g. u+u+d_, u+d_u+ and d_u+u+ yield the 
same contribution. Hence we can use the simplified wavefunction: 

[p+) = --~6 (2u+u+d_ - u+u_d+ - u_u+d+) (44) 

From this we can count the number of quark flavors with spin parallel or an- 
tiparallel to the proton spin: 

5 1 1 2 
= - (45) u + = ~ ,  u - = ~ ,  d+=-3 ,  u_ a 
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summing up to two u and one d quarks. From the difference 

Aq = q+ - q_ (46) 

we also obtain the contribution by each of the quark flavors to the proton spin: 

4 1 
A u =  ~ A d = - ~  A s = 0 ,  and A Z = I ,  (47) 

where AZ = Au + Ad  + As  is the sum of quark polarizations. 

Quark contributions to the baryon magnetic moments. Instead of proceeding 
directly to the results of quark model calculation of the baryon magnetic mo- 
ments, we shall first set up a more general framework. This will be useful when 
we consider the contribution from the quark sea in the later part of these lec- 
tures. We shall pay special attention to the contribution by antiquarks. If there 
are antiquarks in the proton, the definition in (46) becomes 

A q = ( q + - q _ ) + ( 4 + - ( ] _ ) - -  A q + A 7  (48) 

Thus the quark spin contribution Aq is the sum of the quark and antiquark po- 
larizations. For the q-flavor quark contribution to the proton magnetic moment, 
we have however 

(49) 

where #q is the magnetic moment of the q-flavor quark. The negative sign simply 
reflects the opposite quark and antiquark moments, P7 = -#q" Thus the spin 

factor that enters into the expression for the magnetic moment is Aq, the dif- 
ference of the quark and antiquark polarizations. If we assume that the proton 
magnetic moment is entirely built up from the light quarks inside it, we have 

pp = z~ultu 4- Adpd 4- Asl2s. (50) 

In such an expression there is a separation of the intrinsic quark magnetic mo- 
ments and the spin wavefunctions. Flavor-SU(3) symmetry then implies, the 
proton wavefunction being related the Z + wavefunction by the interchange of 
d ++ s and d ++ g quarks, the relations 

(Au)~r÷ = ( ~ ) p  =_ Au, (~-d)~r+ = B~-s, and (As)s  ÷ = A~'d; 

similarly it being related to the S O wavefunction by a further interchange of 
u ~ s quarks, thus 

- 

= = ,:~S, = = A r t ,  
5.0 ~,+ 

- 

and = = Ad. 
Eo ,E+ 
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We have, 

#~+ = Au#~, + As#d + Ad#8, (51) 

#zo = Ad#,, + A8~d + Z~UlA8, (52) 

the intrinsic moments #q being unchanged when we go from (50) to (51) and 
(52). The n, ~ - ,  and S -  moments can be obtained from their isospin conjugate 
partners p, ~+ ,  and S O by the interchange of their respective u ~ d quarks: 

= : 

p~ = Ad#~ + zi~Upd + ASps, (53) 

#~:_ = As#~, + Au#d + Ad#8, (54) 

#.~- = As#u + Adpd + Aul~s. (55) 

The relations for the I~ = 0, Y ~ 0 moments are more complicated in appear- 
ance but the underlying arguments are the same. 

1 (56) # A - : ~  

1 - 2 2 e  + + ~  P,,  

(57) ]~AL7 = ~ - ~  

In the nonrelativistic constituent quark model, there is no quark sea and 
hence no antiquark polarization, ~ = 0. This means that  in the sQM we have 

Aq = Aq. After plugging in the result of (47), we obtain the result in the 2nd 
column of the Table 1. 

Instead of trying to get the best fit at this stage, we shall simplify the result 
further with the following observation: Because of the assumption My = Md, 
we have #~ = --2#d. The proton and neutron moments are then reduced to 
#p = --3#d and #,~ = 2#d, and thus the ratio 

(58) - -  = - 1 . 5  
tzn 

which is very close to the experimental value of -1 .48.  Furthermore, we have 
seen in previous discussion that  constituent strange-quark mass is about a third 
heavier than the nonstrange quarks Ms/M,~ ~- 3/2, we can make the approxima- 
tion of #8 = 2#d/3. In this way, all the moments are expressed in terms of the d 
quark moment, as displayed in the 3rd column above. One can then make a best 
over-all-fit to the experimental values by adjusting this last parameter  pd. The 
final results, in column 4, are obtained by taking #d -- --0.9 PN, where #N is 
nucleon magneton e/2MN. They are compared, quite favorably, with the exper- 
imental values in the last column. We also note that,  with the d quark having a 



The Proton Spin and Flavor Structure in the Chiral Quark Model 127 

Baryon mag moment u = -2d  d = -0.9#:v exptl # 
(q - -  p q )  8 = 24/3 (PN) 

p (4u - d)/3 -3d  2.7 2.79 

n (4d - u) /3  2d -1.8 -1.91 

Z+ ( 4 u -  s) /3  -26d/9 2.6 2.48 

2~- (4d - s ) /3  10d/9 -1.0 -1.16 

3 ° (4s - u) /3  14d/9 -1.4 -1.25 

3 -  (4s - 4)/3 5d/9 -0.5 -0.68 

A s 2d/3 -0.6 -0.61 

AZ' (d - u ) /v '~  v'~4 -1.6 -1.60 

Table  1. Quark contribution to the octet baryon magnetic moments. 

third of the electronic charge, the f i t-parameter of #d = - -0 .9#~  translates into 
a d quark constituent mass of 

M , -  M~v - 3 4 8 M e V ,  and M e -  3 M ~ _ 5 2 2 M e V ,  (59) 
3 × 0 . 9  2 

which are entirely compatible with the constituent quark mass values in (39), 
obtained in fitting the baryon masses by including the spin-dependent contribu- 
tions. 

s Q M  lacks  a q u a r k  sea .  So far we have discussed the successes of the simple 
quark model. There are several instances which indicate that  this model is too 
simple: sQM does not yield the correct nucleon matr ix  elements of the axial 
vector and scalar density operators.  

Axial  vector current matrix  elements. The quark spin contribution to proton 
Aq in (48) is just the proton matr ix  element of the quark axial vector current 
operator  

2s~,Aq = (p, s [(1%75q[P, s) = 2s~, (q+ - q_ + (1+ - (1-) (60) 

where s~ is the spin-vector of the nucleon, as the axial current vector corresponds 
to the non-relativistic spin operator: 

(o 0 ) 
0" q" 

(61) 
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Through SU(3) these matrix elements can be related to the axial vector coupling 
as measured in the octet baryon beta decays. In particular, we have 

(Z~U --  Z~d)exptl  = 1 . 2 6  

(Au + Ad - 2AS)exp t = 0.6 (62) 

which is to be compared to the sQM results of (47): 

( Z ~ U  - -  z~d)sQM ---- 5/3 
( Au + Ad - 2Z]8)sQM ---- 1. (63) 

Scalar density matrix elements. The matrix elements of scalar density operator 
(1q can be interpreted as number counts of a quark flavor in proton 

(p I(1ql p) = q + (1 (64) 

where q (4) on the RHS denotes the number of a quark (antiquark) flavor in a 
proton. Namely, the proton matrix element of the scalar operator (1q measures 
the sum of quark and antiquark number in the proton (opposed to the difference 
q - (1 as measured by qtq ). It is useful to define the fraction of a quark-flavor 
in a proton as 

(p I@1 p) (65) F (q) = u + + 

We already have calculated proton matrix element of the scalar density in the 
subsection on the baryon masses, (21) and (20). Thus we have 

F(3) F (u) - F (d) a 

F(8) F (u) + F (d) - 2F (s) a - 23 
(66) 

The parameters (a,)3) can be deduced from (22) in the SU(3) symmetric limit 
(m3u3 = 0) ,  as 

M E -  M z  M 2 -  -]kin 
Ol  - -  ~3  - -  

3ms 3m8 

Thus the ratio 
F(3) ]  M ~ - M ~ .  

F----~J cxptl = 2MN - M~ - M z  

which is to be compared to the sQM value of 

= 0.23 (67) 

F(3) ]  = (68) 1 

F(8) JsQ M 3' 

The simplest interpretation of these failures is that the sQM lacks a quark sea. 
Hence the number counts of the quark flavors does not come out correctly. 
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1.4 The  OZI Rule  

The simple quark model of hadron structure discussed above ignores the presence 
of quark sea. Even when the issue of the quark sea in nonstrange hadrons is 
discussed, its (s~) component is usually assumed to be highly suppressed. This 
is based on the OZI-rule[7I, which was first deduced from meson mass spectra. 
In this Subsection we briefly review this topic. 

The  OZI  ru le  for mesons .  The three (qq) combinations that are diagonal in 
light-quark flavors are the two isospin I = 1 and 0 states of a fiavor-SU(3) octet 
together with a SU(3) singlet. Isospin being a good flavor symmetry, there should 
be very little mixing between the I = 1 and 0 states. On the other hand, the 
flavor-SU(3) being not as a good symmetry, we anticipate some mixing between 
the octet- and the singlet- I = 0 states: 

1 (u i  + d d +  s6) . (69) i + r id-  2s ) 10) = Is) = 

Pseudoscalar meson masses and mixings. The Gell-Mann-Okubo mass relation 
for the 0-  mesons, before the identification of ~ as the 8th member of the octet, 
may be interpreted as giving the mass of this 8th meson: 

1 (4m~ - m ~ )  = (567MeV)  2 (70) 

which is much closer to the ~7 meson mass of m ,  = 547 M e V  than m,,  = 
958 MeV. The small difference ms - m ,  can be attributed to a slight mixing 
between the octet and singlet isoscalars. Namely, we interpret ~? and 77' mesons 
as two orthogonal combinations of I8) and 10} with a mixing angle that  can be 
determined as follows: 

( m s  2 m2s~ ( c o s t ?  sintT~ (O~  0 ) ( c o s t T - s i n 0 ~  
rns2o m I ,] = -sint7 cost7/ rn I, \sint7 cost7 } "  

Hence 
2 

m I - -  m ~  
sin2 tTP - -  2 2 

m,,  - m, 7 
i.e. asmall tTp ~-- 11 °. (71) 

We now apply the same calculation to the 

(o:0 

Vector meson masses and mixings. 
case of vector mesons: 

ms,2 = 31 (4m~, - m2p) = (929 M e V )  2 

which is to be compared to the observed isoscalar vector mesons of w (782 M e V )  
and ¢ (1020 M e V ) .  This implies a much more substantial mixing. The diagonal- 
ization of the corresponding mass matrix: 
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requires a mixing angle of 

, 2  2 
sin 2 0 V -  'ms - m ~  or 0 v ~ - 5 0  ° . (72) 

2 _ rr~2 m ~  

The physical states should then be 

]a~) = cos 0v 18) + sin Oy I0) ]¢) = - sin 0v 18) + cos 0v 10). (73) 

After substituting in (69) and (72) into (73), we have 

I~) = 0.7045 [u~ + dd-) + 0.0857 Is~) I¢) = -0.06 [u~ + dd) + 0.996 ]sa). 

This shows that w has little s quarks, while the ¢ mesons is vector meson com- 
posed almost purely of s quarks. Such a combination is close to the situation of 
"ideal mixing", corresponding to an angle of 80 -~ 55 °, with the non-strange and 
strange quarks being completely separated: 

iw > = ~ 1  lu.~ + dd~ I¢} = I s~) . (74) 

The OZI rule. It is observed experimentally that  the ¢ meson decay predomi- 
nantly into strange-quark-bearing final states, even though the phase space~ with 
me > m~, favors its decay into nonstrange pions final states: 

w --+ 37r 89% ¢ --+ K/~" 83% 
-4 pzr 13% 
-+ 37r 3% 

with a ratio of partial decay widths F (¢  --+ 3zr)/F(w --+ 37r) = 0.014. 
This property of the hadron decays has been suggested to imply a strong 

interaction regularity: the OZI-rule --- the annihilations of the s~ pair via strong 
interaction are suppressed[7]. We remark that  this suppression should be in- 
terpreted as a suppression of the coupling strength rather than a phase space 
suppression due to the larger strange quark mass (i.e. it is above and beyond 
the conventional flavor SU(3) breaking effect.) 

The extension of the OZI-rule to heavy quarks of charm and bottom has 
been highly successful. For example it explains the extreme narrowness of the 
observed J/!b width because this (c~) bound state is forbidden to decay into the 
OZI-allowed channel of D/ )  because, with a mass of m j / e  ~ 3100 MeV,  it lies 
below the threshold of 2mD ~-- 3700 MeV. 

From the viewpoint of QCD, applications of the OZI-rule to the heavy c, b, 
and t quarks are much less controversial than those for strange quarks - -  even 
thought the rule was originally "discovered" in the processes involving s quarks. 
For heavy quarks, this can be understood in terms of perturbative QCD and 
asymptotic freedom[8]. It is not the case for the s quark which, as evidenced 
by the success of flavor-SU(3) symmetry, should be considered a light quark. 
Furthermore, the phenomenological applications of the OZI to strange quark 
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processes have not been uniformly successful. In contrast to the case of vector 
mesons (72), there is no corresponding success for the pseudoscalar mesons - -  
as evidenced by the strong deviation from ideal mixing in the ~] and rf meson 
system (71). 

T h e  O Z I  ru le  and the strange quark content of  the nucleon .  A straight- 
forward application of the s quark OZI rule to the baryon is the statement that  
operators that  are bilinear in strange quark fields should have a strongly sup- 
pressed matrix elements when taken between nonstrange hadron states such as 
the nucleon. In particular we expect the fraction of s quarks in a nucleon (65) 
should be vanishingly small. 

s + $ {NISslN) 
(8) - E (q + ~) - iN  I ~  + d~ + ~1 N) ~- 0 (75) 

The "measured" value of the pion-nucleon sigma term[9]: 

a . g  = m n  ( i  I(~u + dd I N )  (76) 

and the SU(3) relation 

1 
Ms ---- ms <Nlusl N> : g (m.  - m~) <N [flu + d d -  2~s I N) 

= MA - M.v ~ -200 M e V ,  (77) 

which is obtained from (20) and (22) in the isospin invariant limit (m3u3 = 0), 
allow us to make a phenomenological estimate of the strange quark content of 
the nucleon[10]: We can rewrite the expression in (75) as 

(N [(f~ + a~) - (f~ + rid- 2~s)l N > 
(8 )  = 

= a , N  -- 25 M e V  (78) 
3a~N -- 25 M e V  

where we have used (77) and the current quark mass ratio m s / m ~  = - 8  corre- 
sponding to m , / m , ~  = 25 of (9). Thus the validity of OZI rule, F (s) = 0, would 
predict, through (78), that  a~N should have a value close to 25 M e V .  However, 
the commonly accepted phenomenological value[ill is more like 45 M e V ,  which 
translates into a significant strange quark content in the nucleon: 

F (s) ~- 0.18. (79) 

We should however keep in mind that  this number is deduced by using flavor 
SU(3) symmetry. Hence the kinematical suppression effect of M~ > Mn has not 
been taken into account. 
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2 D e e p  I n e l a s t i c  S c a t t e r i n g s  

2.1 Polarized Lepton-nucleon Scatterings 

There is a large body of work on the topic of probing the proton spin structure 
through polarized deep inelastic scattering (DIS) of leptons on nucleon target. 
The reader can learn more details by starting from two excellent reviews of [12] 
and [13]. 

Kinematics and Bjorken scaling.  For a lepton (electron or muon) scattering 
off a nucleon target to produce some hadronic final state X,  via the exchange 
of a photon (4-momentum q~), the inclusive cross section can be written as a 
product 

da (l + N --4 l + X )  oc l u v W ~  (80) 

where l u~ is the known leptonic part while Wu, is the hadronic scattering am- 
plitude squared, ~-~x ]T (7* (q) + N (p) -+ X)I 2 , which is given, according to the 
optical theorem, by the imaginary part of the forward Compton amplitude: 

w . .  = f 

= - g . .  + ) 

p - q  p . q  

+i o ~ ' q  s ' g l  v) - . q p  ~g2(q2 'v)  (81) 

where 
q2_____Q2 < 0  and v =  p ' q  (82) 

M 

M being the nucleon mass. s ~ = ~N (p, 8)~[a~f5UN (p, 8) is the spin-vector of 
the proton, and the variable v is the energy loss of the lepton, v = E - E I. We 
have defined the spin-independent/71,2 (q2, v) and the spin-dependent gl,2 (q2, v) 
structure functions. In particular, the cross section asymmetry with the target 
nucleon spin being anti-parallel and parallel to the beam of longitudinally po- 
larized leptons is given by the structure function gl : 

dxdy dxdy - 7rQ - ~ x y ( 2 - y )  gl + O  \ Q2 ] 

where x = ~ and y = v In practice one measures gl via the (longitudinal) 2v M -E " 
spin-asymmetry, 

da~  - d a ~  2 x ~ .  (84) 
,41 = d a ~  -~ d a ~  - 
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in the kinematic regime of t, >> V / ~ .  
To probe the nucleon structure at small distance scale we need to go to the 

large energy and momentum-transfer deep inelastic region --  large Q2 and t~, 
with fixed x. In the configuration space, this corresponds to the lightcone regime. 
The statement of Bjorken scaling is that,  in this kinematic limit, the structure 
functions approach non-trivial functions of one variable: 

F1,2 (q2, v) --+ F1,2 (x), gl,2 (q2, u) -+ 91,2 (x). (85) 

Such problems can be studied with the formal approach of operator product 
expansion, which has a firm field theoretical-foundation in QCD, or the more 
intuitive approach of patton model, which can lead to considerable insight about 
the hadronic structure. 

Inc lus ive  sum rules via operator product expansion. The forward Comp- 
ton amplitude T.v is the matrix element, taken between the nucleon states 

T,~ = (p, s It,vlp, s), (86) 

of the time-order product of two electromagnetic current operators 

t~,~ = i / d4x eiq'~T (J~ (x) J, (0)). (S7) 

It is useful to express the product of two operators at short distances as an infinite 
series of local operators, OA (x) (.98 (0) = ~ Ci (x) O~ (0), as it is considerably 
simpler to work with the matrix elements of local operators Oi (0). For DIS study 
we are interested in the light-cone limit x 2 --+ 0. Hence operators of all possible 
dimensions (di) and spins (n) are to be included: 

OA (x) O ,  (0) = ~ C, (x 2) x,,  ...x,. OF'""~ (0) (88) 

where O~ l"''t*" (0) is understood to be a symmetric traceless tensor operator 
(corresponding to a spin n object). From dimension analysis we see that  the 
coefficient 

where T~ = d i  - n is the twist of the local operator O~ ~ ' ' "  (0). Thus in the light- 
cone limit x 2 --+ 0, the most important contributions come from those operators 
with the lowest twist values. 

In the short distance scale, the QCD running coupling is small so that per- 
turbation theory is applicable. In this way the c-numbers coefficients Ci (x 2) can 
be calculated with the local operators (.9~ 1 " ' "  (0) being the composite operators 
of the quark and gluon fields. 

We are interested, as in (87), in the operator products in the momentum 
space. Namely, the above discussion has to be Fourier transformed from config- 
uration space into the momentum space: x --+ q, with the relevant limit being 
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Q2 _~ c~. The spin-dependent case corresponds to an operator product antisym- 
metric in the Lorentz indices tt and v : 

= zeu~'a~q q,z .... q~' . 'JAjp 
¢ , n = l , 3  . . . .  

(89) 

where C(3) (q2, a~) = 1 + O (a~), [the subscript (3) reminds us of others terms, 

1 & 2, that  contribute to the spin-independent amplitudes FL2 ]. O z " 2 ' t ' °  is a 
A , ¢  

twist-two pseudotensor operator: 

~-----~/z 2 .t...-..+ t t  n 

~7 z D .... D 7~¢ (90) 

where ~ is the quark field with charge e~. The crossing symmetry property 

(p, q) = t.,, (p , -q )  (91) 

implies that  only odd-n terms appear in the [#v] series. (By the same token, 
only even-n terms contribute to the spin-independent structure function F1,2.) 

The spin-dependent part of the forward Compton amplitude (86) is 

p ' q  
+. . .  (92) 

Namely, Im.01 (q2,v) = 27rgl (q2, v) .  When we sandwich the OPE terms (89) 
and (90) into the nucleon states we need to evaluate matrix element 

p, 0 ~ ' 2 ~ ' "  \ A,¢ p, s ]  = 2e~A,~,~s~IY '~ .... I2'" 8 

Plug (93) and (89) into (92) we have 

(93) 

n=l,3,... 

o r  

gl = ~ 2 , (94) 2C(3)ecA,~,,~w 

where w = ~fl  is the inverse of the Bjorken-x variable. Asymptotic freedom of 
QCD has allowed us to express the structure function as a power series in w, (94) 
with calculable c number coefficients C(3) and "unknown" long distance quanti- 
ties An,¢. To turn this into a usefu[ relation we need to invert the summation 
over n (i.e. to isolate the coefficient An,c). For this we can use the Cauchy's 
theorem for contour integration: 

1 s f d  ~1 (~ )  _ 2 C ( 3 ) e c n n , ¢ ,  2, i j _ 2 (95)  
¢ 
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which can be related to physical processes by evaluating the LHS integral with 
a deformed contour so that  it wraps around the two physical cuts, w = (1, oc) 
and ( - c o , - 1 ) .  (The second region corresponding to the cross-channel process.) 
Using 

gl (w + ic) - ~ (w + ic) = 2iIm~l (w) = 4iTrg1 (w) (96) 

and the crossing symmetry property 

gl (p, q) = - g l  (p, -q)  or gl (w, q2) = - g l  ( -w,  q2), (97) 

we then obtain 

/ . . . .  1 ~ dw~l (w) 1 dwIm01 (w) + 1 -1 dwim:~+l(w) 
27ri J w ~+i ~ w ~+i 7r o¢ 

= 2 [1 - ( -1)  n] J l  w + 

= 4 x'~-lgl (z) dz.  (98) 

We recall that  the spin-index n must be odd. The first-moment (n = 1) sum 

~o i 1 2 = ~ C(3)e~Ai,¢ dxgl (x, Q:) ~¢ (99) 

is of particular interest because the corresponding matrix element on the RHS 
can be measured independently, C]. (60) and (93): 

2Als ~ = (p, s ICV~Vs¢l p, s} -- 2s~ A~b. (100) 

Without including the higher order QCD corrections in the coefficient, we have 
the gl sum rule for the electron proton scattering: 

i 21(~Au+~Ad+iAs) . (101) 

For the difference between scatterings on the proton and the neutron targets, 
we can use the isospin relations (Au)n = Ad and (Ad),~ = Au to get: 

fo ~ ( Au - Ad) 
1 

dx [gV~ (x, Q:) - 9'~ (x, Q2) ] = -6 (102) 

The matrix element on the RHS: 

= (p,s[fiT/375dln, s} = 2s'gA (103) 
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is simply the axial vector decay constant of neutron beta decay. Including the 
higher order QCD correction to the OPE Wilson coefficient, one can then write 
down the Bjorken sum rule: 

~01 n gA dx [9f (x, Q2) _ gl (x, Q~)] = -~-C(Ns) (104) 

with the non-singlet coefficient[14], 

C(NS) = 1  as 43 (_~)2 (_~)a rr 12 - 20.22 + ... (105) 

All experimental data are consistent with this theoretical prediction. 

R e m a r k  Anomalous dimension and the Q2-dependence:The Q2-dependence of 
the moment integral, such as LHS of (99), are given by as (Q2) ~ 1/in Q2 
in the coefficient function and by the Q2-evolution of the operator according 
to the renormalization group equation[15], which yields 

= 

(p,s olQ0 p,s} [ s(o0)J ] (t06) 

where 7 is the anomalous dimension of the operator (.9 and b is the leading 
coefficient in the QCD/3 function. The label Q in the matrix elements refers 
to the mass scale at which the operator is renormalized, chosen at #2 ~ Q2 in 
order to avoid large logarithms. For the gx sum rule (99) the Q2-dependence 
is particularly simple. The non-singlet axial current is (partially) conserved, 
hence has anomalous dimension 7 = 0. The singlet current is not conserved 
because of axial anomaly (see discussion below). But it has very weak Q2 
dependence because the corresponding anomalous dimension starts at the 
two-loop level. 

The  pa r ton  model approach. The gl sum rule of (101) has been derived di- 
rectly through OPE from QCD. We can also get this result by using the parton 
model, which pictures the target hadron, in the infinite momentum frame, as su- 
perposition of quark and gluon partons each carrying a fraction (x) of the hadron 
momentum. For the short distance processes one can calculate the reaction cross 
section as an incoherent sum over the rates for the elementary processes. Thus 
in Compton scattering, a photon (momentum q,) strikes a parton (xp,) turning 
it into a final state parton (qz + xp,), the initial and final partons must be on 
shell: 

_q2_. (lo7) (xp~) ~ = (q~ + xp~) 2 or x = 2p.q 

Hence the Bjorken-x variable has the interpretation as the fraction of the lon- 
gitudinal momentum carried by the parton. A simple calculation[16] shows the 
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scaling structure functions being directly related to the density of partons with 
momentum fraction x : 

and 

[q (~) + q (x)] (108) Fff (x) = X E eq 
q-~u,d,s 

1 2[q+(x) q_ (x) + q+ (x) (/_(x)] g~ (x)= ~ E eq - 
q=u,d,s 

1 = i- ~ e2q [~q (X) + ~ (xl] = ~ Z e~q~q (109) 

Thus the spin asymmetry of (84) has the interpretation as 

Eqe~  [Aq (x) + A~ (x)] (110) 

x l  (~) -- Eq e~ [q (x) + q (x)l 

Comparing this interpretation of the spin-dependent structure function to 
that  for the proton matrix elements of the axial vector current (60), we see that  
the gi sum rule (101) implies the consistency condition of 

/o 1 o q:k(x)dx=q:k  ~14-(x) dx=cl:t:. (111) 

In other words, the proton matrix element of the local axial vector current 
(p, s IC%,qlp, s) can be evaluated, in the partonic language, by taking the ax- 
ial vector current between quark states ({q, h IOA,ql q, h) = 2h) and multiplying 
it by the probability of finding the quark in the target proton: 

(p, SlOA,qlp, s) = E (q, hlOA,q[q,h) qh(x) = (Aq)p (112) 
q,h 

where (Aq)p =_ Aq 

Aq(x)  = q+ (x) -- q- (x) + q+ (x) - ci- (x) ~ Aq (x) + Aq (x) .  (113) 

EUis-Jaffe sum rule and the phenomenological values of Aq. Besides 

Au - Ad = gA = F + D = 1.2573 :t= 0.0028, (114) 

if we assume flavor SU(3) symmetry, we can fix another octet combination 

Au + Ad - 2As = A 8 = 3F - D = 0.601 =t= 0.038 (115) 

which can be gotten by fitting the axial vector couplings of the hyperon beta 
decays[17]. In this way (101) can be written as 

Fp -= dxg~ (x) - C(NS) (3gA + AS) + C(s) A ~  (116) 
36 9 
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where A ~  = Au + Ad + As. The non-singlet coefficient has been displayed in 
(105) while the singlet term has been calculated to bell8] 

C(s) = 1 - --c~8 _ 1.0959 + ... (117) 
7 r  

If one assume As = 0, thus AS: = A s we then obtain the Ellis-Jaffe sum 
rule[19] with the RHS of (116) expected (for a8 -~ 0.25) to be around 0.175, had 
become the baseline of expectation for the spin-dependent DIS. The announce- 
ment by EMC collaboration in the late 1980's that  it had extended the old SLAC 
result[20] to new kinematic region and obtained an experimental value for Fp 
deviated significantly from the Ellis-Jaffe value[21] had stimulated a great deal 
of activity in this area of research. In particular another generation of polarized 
DIS on proton and neutron targets have been performed by SMC at CERN[22] 
and by E142-3 at SLAC[23]. The new data supported the original EMC findings 
of As ¢ 0 and a much-less-than-unity of the total spin contribution A• << 1, 
although the magnitude was not as small as first thought. The present experi- 
mental result may be summarized as[24] 

Au = 0.82 :t: 0.06, Ad = -0.44 + 0.06, (118) 

A s = - 0 . 1 1 + 0 . 0 6 ,  A Z =  0.274-0.11. 

The deviation from the simple quark model prediction (47) 

(Aq)exptl "( (Jq)sQM (119) 

indicates a quark sea strongly polarized in the opposite direction from the proton 
spin. That  the total quark contribution is small means that  the proton spin is 
built up from other components such as orbital motion of the quarks and, if in 
the relevant region, gluons. 

Axia l  vec to r  current  and  t he  axial  anomaly .  The most widely discussed 
interpretation of the proton spin problem is the suggestion that  the gluon may 
provide significant contribution via the axial anomaly[25]. Let us first review 
some elementary aspects of anomaly. The SU(3)coto~ gauge symmetry of QCD is 
of course anomaly-free. The anomaly under discussion is the one associated with 
the global axial U (1) symmetry. Namely, the SU (3)-singlet axial current A (°) 
~q=~,d,8 q%'Ysq has an anomalous divergence 

O~ s N 

O"A(, °) = Z 2mq (qi~/sq) +nl-g--trG""G,v (120) 
LTr 

q=u,d,s 

where G "" is the gluon field tensor, G , ,  its dual. nf  = 3 is the number of excited 
flavors. For our purpose it is more convenient to express this in terms of each 
flavor separately. 

Or' (q~'z75q) = 2mq (4i~/~q) + -~-£~rt, ~ , ,  (121) 
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Axial anomaly enters into the discussion of partonic contributions to the 
proton spin as follows: Because anomaly, being related to the UV regularization 
of the triangle diagram, is a short-distance phenomena, it makes a hard, thus 
perturbatively calculable (though not the amount), contribution from the gluon 
so that (112) is modified: 

(p, s IOA,q[P, s) = E (q' h [O A,q[ q, h) Qh (x) + E (G, h IOA,ql G, h) Gh (x) 
q,h G,h 

(122) 
where Gh, just as the quark density Qh being given by (113), is the spin- 
dependent gluonic density. The gluonic matrix element of the axial vector current 
(G, h [(.ga,q [ G, h) is just the anomaly triangle diagram which, with (q, h IOa,ql q, h> 
normalized to +1, yields a coefficient of q :~ .  In this way the proton matrix el- 
ement of the axial vector current is interpreted as being a sum of "true" quark 
spin contribution AQ and the gluon spin contribution: 

Aq (x) = AQ (x) - ~-~AG (x), (123) 

where AG (x) = G+ (x) - G-  (x). Superficially, the second term is of higher 
order. But because the In Q2 growth of AG (due to gluon bremsstrahlung by 

quarks) compensates for the running coupling as ~ (ln Q2)-x,  the combination 
o, AG is independent of Qz at the leading order, and the gluonic contribution 
to the proton spin may not be negligible. However in order to obtain the simple 
quark model result of AS = 0, a very large AG is required: 

aS A G  = As  ~_ _O.1 ~ A G  ~ 2.5. (124) 
27r 

Semi-inclusive polar ized DIS. From the inclusive lepton nucleon scattering 
we are able to extract the quark contribution to the proton spin, Aq -= Aq + 
Aq. Namely, we can only get the sum of the quark and antiquark contributions 
together. More detailed information of the spin structure can be obtained from 
polarized semi-inclusive DIS, where in addition to the scattered lepton some 
specific hadron h is also detected. 

l + N - - + l + h + X  

The (longitudinal) spin asymmetry of the inclusive process can be expressed in 
terms of quark distributions as in (110): 

2 (zaq + A~) 
A1 ~ - ~ q  % (125) 

Eq (q + 0) 

Similarly one can measure the spin-asymmetry measured in semi-inclusive case: 

( ~ D q  ~ + A~D~) 
Ah ~_ Eq eq (126) 

(qD  + 
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where D h, the fragmentation function for a quark q to produce the hadron h, 
is assumed to be spin-independent. Separating Aq from Aq is possible because 
O h 7 ~ D h. For example, given the quark contents such as 7r + ,~ (ud-) and 7r- ,-, 
(rid), we expect 

D~ +>>D~, +, D j  + >>D~ +, and D~- <<D~,-, D j  <<D~ 

In this way the SMC collaboration[26] made a fit of their semi-inclusive data, 
in the approximation of Aa = A d and As = Ag o( s (x) (the strange quark 
distribution did not play an important role, and the final result is insensitive 
to variation of As). SMC was able to conclude that  the polarization of the 
non-strange antiquarks is compatible with zero over the full range of x : 

Aa = A d = -0 .02 4- 0.09 4- 0.03. 

This is to be compared to their result for Aq = Aq - Aq : 

Au = 1.01 4- 0.19 4- 0.14 Ad = -0 .57  4- 0.22 4- 0.11 . 

(127) 

Namely, while the data from inclusive processes suggest that  the quark sea is 
strongly polarized - -  as indicated by the large deviation of measured Aq fl'om 
their simple quark model prediction (118) and (47), the SMC study of the senti- 
inclusive processes hints that  the antiquarks in the sea are not strongly polarized. 

B a r y o n  m a g n e t i c  m o m e n t s .  One of the puzzling aspects of the proton spin 
problem is that ,  given the significant deviation of the quark spin factors Aq in 
(118) from the sQM values, it is hard to see how could the same (Aq)sQM values 
manage to yield such a good description of the baryon magnetic moments, as 
shown in Table 1. 

For this we can only give a partially satisfactory answer : If we assume that  
the antiquarks in the proton sea is not polarized A~ = 0, for which the SMC 
result (127) gives some evidence (and it is also a prediction of the chiral quark 
model to be discussed in See. 3), we can directly use the Aq of (118) to evaluate 

the polarization difference: Aq = Aq = Aq in (49). We can then a t tempt  a fit 
of the baryon magnetic moments in exactly the same way we had fit them by 

using _(~q_)sQM as in Table 1. The resultant fit, surprisingly, is equally good - -  

in fact better, in the sense of lower X2127], [28]. Namely, both the sQM Aq and 
experimental values of Aq can, rather miraculously, fit the same magnetic mo- 
ment data. In this sense, the new spin structure poses no intrinsic contradiction 
with respect to the magnetic moment phenomenology. 

That  it is possible to fit the same baryon magnetic moments with (Aq)  
8QM 

and ( ~ q )  is due to the fact that  the baryon moment, such as (50), is a sum 
exptl 

, 

of products # s  = ~ Aq #q hence different s can yield the same lab if (pq) s 
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2 are changed correspondingly. In both cases we have #~ = --2pd and #,  --- --gPd. 
For the sQM case, we find #d --~ --0.9#N while for the experimental  Aq case, we 
need #d "* --1.4 #N- This shift means a 35% change in the constituent quark mass 
value - -  thus a 35% difference with the constituent quark mass value obtained 
from the baryon mass fit in (39). Consequently, we regard the magnetic moment  
problem still as an unsolved puzzle. 

2.2 DIS on Proton vs Neutron Targets 
Lepton-nucleon scatterings. The spin-averaged nucleon structure function 
F~ can be expressed in terms of the quark densities as in (108) 

l ( d + d ~  + ( s + g )  

[~ 1 1 1 F ~ ' ( x ) = x  ( d + d - ) + ~ ( ~ + ~ ) + ~ ( s + g )  , 

where we have used the isospin relations of (u)v = (d) .  and (d)v = (u)~. Their  
difference is 

1 1 [2z3 + 2 (~_ d3] 
x 1 [F~ ( . )  - F~  (x)] = 5 [(u - d) + (~ - d]] = 5 

where 7?3 = i [(u - d) - (~ - d~] with it integral being the third component  of 

the isospin: f3 dxZa (x) = i .  The simple assumption that  fi = d in the quark 
sea, which is consistent with it being created by the flavor-independent gluon 
emission, then leads the Gottfried sum rule[29] 

f01 [F p (x) - F~ (x)] : 
dx 1 

I a =  ~ 5" (128) 

Experimentally, NMC found that ,  with a reasonable extrapolat ion in the very 
small-x region, the integral Ia deviated significantly from one-third[30]: 

1 2 fo 1 Ia = 0.235 + 0.026 = g + g [~ (x) - d (z ) ]  dx. (129) 

This translates into the s ta tement  that,  in the proton quark sea, there are more 
d-quark pairs as compared to the u-quark pairs. 

~2 - d = -0 .147  5: 0.026. (130) 

R e m a r k  Gottfried sum rule does not follow directly from QCD without addi- 
tional assumption. Unlike the gl sum rule, the Gottfried sum rule can not 
be derived from QCD via operator product expansion. A simple way to see 
this: Because the spin-independent structure function F2 has opposite cross- 
ing symmetry  property from that  of gl, only even-n terms can contribute. 
Hence there is no way to obtain a non-trivial relation for the odd-n moment  
sums of F2 (which the Gottfried sum rule would be an example). But in the 
context of parton model, the Gottfried sum provides us with an important  
measure of the flavor structure of the proton quark sea. 
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Dre l l -Yan  p roces se s .  Because to conclude that NMC data showing a violation 
of the Gottfried sum rule one needs to make an extrapolation into the small-x 
regime, an independent confirmation of fi ~ d would be helpful. A measurement 
of the difference of the Drell-Yan process of proton pN -+ l+l-X on proton and 
neutron targets can detect the antiquark density because in such a process the 
massive (l+l -)  pair is produced by (q~) annihilations[31]. 

Let us denote the differential cross sections as 

o.py ~ d2o " (pN --+ l+l-X) 

8~ra (?T (tP qT (X:)] (131) : 9v/-( E e2q [qe (x,) (x2) + (x,) 
q=u,d,s 

where x/~ = ~M with v ~ being the CM collision energy and M is the invariant 
mass of the lepton pair. y being the rapidity, the fraction of momentum carried 
by the patton in the projectile (P) is given by xl = v/~e y and the fraction in 
the target (T) given by x2 = v~e  -y.  Explicitly writing out the quark densities 
of (131): 

81r o~ 
°'PP = 9----~ 

1 [d 

81r o~ 
f7 pn = - ~  

9 + 

d(x ) + d +  term} 

{ 9  [ ~ t ( x l ) d ( x 2 ) ~ - ( L ( x l ) d ( x 2 ) ]  

1 ] 
[d (xl) fi (x2) + d(xl )  u (x:)] + sterm~ 

In this way the DY cross section asymmetry can be found: 
(TPP -- o-Pn 

A D y  -- aPP -~- o'Pn 

[4u (xl) - d (xl)] [fi (x2) - d(x2)] + [u (x2) - d (x2)] [4fi (xl) - d(Xl)] 

---- [4~ (Xl) + d(Xl)] [?~ (x2) + d(x2)] + [?2 (X2) -~ d(x2)] [4~ (Xl) --~ d(X'l)] 

= (4A - 1) (A - 1) + (A - 1) (4A - 1) (132) 
(hA + 1) (A + 1) + (A + 1) (4A + 1) 

where A (x) = u (x)/d (x) and A (x) = fi ( x ) / d ( x ) .  Thus with measurements of 
ADy and data fit for £ in the range of (2.0, 2.7), the NA51 Collaboration[32] 
obtained, at kinematic point of y = 0 and xl = x2 = x = 0.18, the ratio of 
antiquark distributions to be 

~/d = 0.51 + 0.04 =t= 0.05 (133) 

confirming that there are more (by a factor of 2) d-quark pairs than u-quark 
pairs. 
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3 The Pro ton  Spin-Flavor Structure  
in the  Chiral  Quark Model  

3.1 The Naive Quark Sea 

A significant part of the nucleon structure study involves non-perturbative QCD. 
As the structure problem may be very complicated when viewed directly in 
terms of the fundamental degrees of freedom (current quarks and gluons), it 
may well be useful to separate the problem into two stages. One first identifies 
the relevant degrees of freedom (DOF) in terms of which the description for 
such non-perturbative physics will be simple, intuitive and phenomenologically 
correct; at the next stage, one then elucidates the relations between these non- 
perturbative DOFs in terms of the QCD quarks and gluons. Long before the 
advent of the modern gauge theory of strong interaction, we have already gained 
insight into the nucleon structure with the simple nonrelativistic constituent 
quark model (sQM). This model pictures a nucleon as being a compound of 
three almost free u- and d-constituent quarks (with masses, much larger than 
those of current quarks, around a third of the nucleon mass) enclosed within 
some simple confining potential. There are many supporting evidence for this 
picture. We have reviewed some of this in Sec. 1. Also, the nucleon structure 
functions in the large momentum fraction x region, where the valence quarks 
are expected to be the dominant physical entities, are invariably found to be 
compatible with them being evolved from a low Q2 regime described by sQM. 
For this aspect of the quark model we refer the reader to Ref.[33]. 

However in a number of instances where small x region can contribute one 
finds the observed phenomena to be significantly different from these sQM ex- 
pectations. This has led many people to call sQM the "naive quark model" and 
to suggest a rethinking of the nucleon structure. But we would argue that the 
approach is correct, and only the generally expected features of the quark-sea 
are too simple. This "naive quark-sea" (nQS) is supposed to be composed exclu- 
sively of the u and d quark pairs. Namely, based on the notion of OZI rule, one 
would anticipate a negligibly small presence of the strange quark pairs inside 
the nucleon. This implies, as given in (78), a pion-nucleon sigma term value of 
a~lv -~ 25 MeV. Fhrthermore, the similarity of the u and d quark masses and 
the flavor-independent nature of the gluon couplings led some people to expect 
that d = ~, thus to the validity of the Gottfried sum rule (128). 

In the sQM, there is no quark-sea and the proton spin is build up entirely 
by the valence quark spins. We have deduced the quark contributions to the 
proton spin as in (47), which leads to an axial-vector coupling strength of gA = 
Au - Ad = 5/3. If one introduces a quark-sea, the nQS feature of ~ _~ 0 (thus 
As ~_ 0) leads us to the Ellis-Jaffe sum rule, f~ dxg~ (x) = 0.175. 

Phenomenologically none of these nQS features 

Features of the naive quark sea 
f lavor:  ~ = 0  and d ~  
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have been found to be in agreement with experimental observations. As far 
back as 1976, the connection of the a~N value to the strange quark content of 
the nucleon has been noted. It was pointed out that the then generally accepted 
phenomenological value of 60 MeV differed widely from the OZI expectation[10]. 
In recent years, the 5r~N value has finally settled down to a more moderate value 
of a~N ~-- 45 MeV when a more reliable calculation confirmed the existence of 
a significant correction due to the two-pion cut[ll]. Nevertheless, this reduced 
value still translates into a nucleon strange quark fraction of 0.18, see (79). 

As for the proton spin, starting with EMC in the 1980's, the polarized DIS 
experiments of leptons on proton target have shown that Ellis-Jaffe sum rule is 
violated. The first moment the spin-dependent structure function gl has allowed 
us to obtain the individual Aq of (118). We have already noted that they are all 
less than the sQM values of (47), suggesting that for each flavor the quark-sea 
is polarized strongly in the opposite direction to the proton spin. 

Aq = (Aq)sQ ~ + (~q)~eo < (Aq)~QM ~ (Aq)~e~ < 0. 

Furthermore, the recent SMC data on the semi-inclusive DIS scattering[26] ten- 
tatively suggested A~ _~ A d ~ 0. Thus while the inclusive experiments point 
to a negatively polarized quark sea, the semi-inclusive result indicates that the 
antiquarks in this sea are not polarized. 

The NMC measurement of the muon scatterings off proton and neutron tar- 
gets shows that the Gottfried sum rule is violated[30]. It has been interpreted 
as showing d > ~ in the proton. This conclusion has been confirmed by the 
asymmetry measurement (by NA51132]) in the Drell-Yan processes with proton 
and neutron targets, which yield, at a specific quark momentum fraction value 
(x = 0.18), the result of 3 ~- 2~ in (133). 

To summarize, the quark-sea is "observed" to be very different from nQS. It 
has the following flavor and spin structures: 

Observed features of the quark sea 
f lavor:  d > ~  and ~ 0  

spin : (Aq)~e~ < 0 yet z~_~ 0. 

By the statement of ~ ~ 0, we mean that OZI rule is not operative for the 
strange quark. Recall our discussion in Sec. 1, this means that the couplings for 
the (s~)-pair production or annihilation are not suppressed, although the process 
may well be inhibited by phase space factors. Namely, a violation of the OZI rule 
implies that, to the extent one can ignore the effects of SU(3) breaking, there 
should be significant amount of (s$)-pairs in the proton. 

3.2 The Chiral Quark Idea of Georgi and Manoha r  

Let us start with theoretical attempts to understand the flavor asymmetry of 
> ~ in the proton's quark sea: 

Pauli exclusion principle and the u-d valence-quark asymmetry in the proton 
would bring about a suppression of the gluonic production of ~' s (versus d' s). 
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Thus it has been pointed out long ago[34] that d = ~ would not strictly hold 
even in perturbative QCD due to the fact the u's and d's in the q~ pairs must be 
antisymmetrized with the u's and d's of the valence quarks. This mechanism is 
difficult to implement as the patton picture is intrinsically incoherent. In short, 
the observed large flavor-asymmetry reminds us once more that the study of 
quark sea is intrinsically a non-perturbative problem. 

Pion cloud mechanism[35] is another idea to account for the observed d > 
asymmetry. The suggestion is that the lepton probe also scatters off the pion 
cloud surrounding the target proton (the Sullivan process[36]), and the quark 
composition of the pion cloud is thought to have more ds than ~ s. There is an 
excess of 7r + (hence d's) compared to 7r-, because p -+ n + 7r +, but not a 7r- 
if the final states are restricted nucleons. (Of course, 7r°s has d = g.) However, 
it is difficult to see why the long distance feature of the pion cloud surrounding 
the proton should have such a pronounced effect on the DIS processes, which 
should probe the interior of the proton, and also this effect should be significantly 
reduced by the emissions such as p --~ A++ + ~r-, etc. 

Nevertheless, we see that the pion cloud idea does offer the possibility to 
getting a significant d > g asymmetry. One can improve upon this approach 
by adopting the chiral quark idea of Georgi and Manohar[37] so that there is 
such a mechanism operating in the interior of the hadron. Here a set of internal 
Goldstone bosons couple directly to the constituent quarks inside the proton. In 
the following, we will first review the chiral quark model which was invented to 
account for the successes of simple constituent quark model. 

The chiral quark idea. Although we still cannot solve the non-perturbative QCD, 
we are confident it must have the features of (1) color confinement, and (2) 
spontaneous breaking of chiral symmetry. 

Confinement: Asymptotic freedom a~ (Q) -> 0 suggests that the running 
Q--+e~ 

coupling increases at low momentum-transfer and long distance, and a~ (AQCD) ~-- 
1 is responsible for the binding of quarks and gluons into hadrons. Experimental 
data indicates a confinement scale at 

AQCD ~-- 100 to 300 MeV. (134) 

Chiral symmetry breaking: There are three light quark flavors, rnu,d,s < 
AQc9. In the approximation of mu,d,s = O, the QCD Lagrangian is invari- 
ant under the independent SU(3) transformations of the left-handed and right- 
handed light-quark fields. Namely, the QCD Lagrangian has a global symmetry 
of SU(3)L x SU(3)B. If it is realized in the normal Wigner mode, we should ex- 
pect a chirally degenerate particle spectrum: an octet of scalar mesons having ap- 

1- baryon proximately the same masses as the octet pseudoscalar mesons, spin 
octet degenerate with the familiar ½+ baryon octet, etc. The absence of such de- 
generacy suggests that the symmetry must be realized in the Nambu-Goldstone 
mode: the QCD vacuum is not a chiral singlet and it possesses a set of quark 
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condensate (0 [qq[ 0) ~ 0. Thus the symmetry is spontaneously broken 

SU(3)L x SU(3)n -~ SU(3)L+n 

giving rise to an octet of approximately massless pseudoscalar mesons, which 
have successfully been identified with the observed (Tr, K, 7/) mesons. 

The QCD Lagrangian is also invariant under the axial U(1) symmetry, which 
would imply the ninth GB m r, ~_ m~. But the existence of axial anomaly breaks 
the symmetry and in this way the eta prime picks up an extra mass. 

Both confinement and chiral symmetry breaking are non-perturbative QCD 
effects. However, they have different physical origin; hence, it's likely they have 
different distance scales. It is quite conceivable that as energy Q decreases, but 
before reaching the confinement scale, a8 (Q) has already increased to a sufficient 
size that it triggers chiral symmetry breaking (xSB). This scenario 

AQCD < Axss ~ l GeV. (135) 

is what Georgi and Manohar have suggested to take place. The numerical value is 
a guesstimate from the applications of chiral perturbation theory: Axss "~ 47rf, 
with f ,  being the pion decay constant. Because of this separation of the two 
scales, in the interior of hadron, 

AQCD < Q < A×SB, 

the Goldstone boson (GB) excitations already become relevant (we call them 
internal GBs), and the important effective DOFs are quarks, gluons and in- 
ternal GBs. In this energy range the quarks and GBs propagate in the QCD 
vacuum which is filled with the ~q condensate: the interaction of a quark with 
the condensate will cause it to gain an extra mass of _ 350 MeV. This is the 
chiral quark model explanation of the large constituent quark mass, (much in 
the same manner how all leptons and quark gain their Lagrangian masses in 
the standard electroweak theory). The precise relation between the internal and 
the physical GBs is yet to be understood. The non-perturbative strong gluonic 
color interactions are presumably responsible for all these effects. But once the 
physical description is organized in terms of the resultant constituent quarks 
and internal GBs (in some sense, the most singular parts of the original gluonic 
color interaction) it is possible that the remanent interactions between the glu- 
ons and quarks/GBs are not important. (The analogy is with quasiparticles in 
singular potential problems in ordinary quantum mechanics.) Thus in our xQM 
description we shall ignore the gluonic degrees of freedom completely. 

R e m a r k  One may object to this omission of the gluonic DOF on ground that 
the one gluon exchange[5] is needed to account for the spin-dependent con- 
tributions to the hadronic mass as discussed in Sec. 1. However, in the xQM 
the constituent quarks interact through the exchange of GBs. The axial cou- 

s,.s~ effective terms as plings of the GB-quark couplings reduce to the same -~ mj 
the gluonic exchange couplings. For a more thorough discussion of hadron 
spectroscopy in such a chiral quark description see recent work by Glozman 
and Riska[38]. 
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3.3 Flavor-Spin Structure of  the Nuc leon  

In the chiral quark model the most important  effective interactions in the hadron 
interior for Q < 1 GeV are the couplings of internal GBs to constituent quarks. 
The phenomenological success of this model requires that  such interactions being 
feeble enough that  perturbative description is applicable. This is so, even though 
the underlying phenomena of spontaneous chiral symmetry breaking and con- 
finement are, obviously, non-perturbative. 

Ch i r a l  q u a r k  m o d e l  w i t h  an  o c t e t  o f  Golds tone  bosons .  Bjorken[39], 
Eichten, Hinchliffe and Quigg[40] are the first ones to point out that  the observed 
flavor and spin structures of nucleon are suggestive of the chiral quark features. 
In this model the dominant process is the fluctuation of a valence quark q into 
quark q' plus a Goldstone boson, which in turn is a (qq') system: 

' ' (136) q-L ---+ GB + q~: ~ (qq')o qT" 

This basic interaction causes a modification of the spin content because a quark 
changes its helicity (as indicated by the subscripts) by emitting a spin-zero me- 
son in P-wave. It causes a modification of the flavor content because the GB 
fluctuation, unlike gluon emission, is flavor dependent. 

In the absence of interactions, the proton is made up of two u quarks and 
one d quark. We now calculate the proton's flavor content after any one of these 
quarks turns into part  of the quark sea by "disintegrating", via GB emissions, 
into a quark plus a quark-antiquark pair. 

Suppressing M1 the space-time structure and only displaying the flavor con- 
tent,  the basic GB-quark interaction vertices are given by 

. -  K ° 

K -  R ° - ~  

=g8  &r- + ~K- + ~ + u + ... (137) 

Thus after one emission of the u quark wavefunction has the components 

~I, (u) ~ dn + + sK + + u + , (138) 

which can be expressed entirely in terms of quark contents by using :r + = ud, 
and K + = uS, etc. Since ~r ° and ~/have the same quark contents, we can add 
their amplitudes coherently so that 

( 7r°-~ + -~rl ) : ~ u ~ -  l d d +  ls~ (139) 
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Square the wavefunction we the obtain the probability of the transitions: for 
example, 

Prob [u+ --+ 7r+d_ ~ (ud-)0 d_] = a, (140) 

which will be used to set the scale for other emissions. At this stage we shall 
assume SU(3) symmetry. Hence all processes have the same phase space, and are 
proportional to the same probability a o( Igsl 2 . The specific values are listed in 
the 3rd column of Table 2. The 2nd column is the isospin counter-part obtained 
by the exchange of u ++ d : 

u+ -+ d+ --~ SU(3) sym prob broken U(3) prob 
octet GB nonet GB 

u +  --+ (U~)o s -  d+  -+  (oN)0 s _  a e~a 

g a  a 
1 u+ "+ ( dd) o u -  d+ ---+ (Ug)o d_ -6a ( ~ ) 2 a 

u+ --+ (Sg)o u- d+ -+ (Sg)o d- gal (3£~) 2 a 

Table 2. xQM transition probabilities calculated in models with an octet GB in the 
SU(3) symmetric limit and with nonet GB and broken-U(3) breakings. 

Flavor content calculation. From Table 2, one can immediately read off the 
antiquark number q in the proton after one emission of GB by the initial valence 
quarks (2u + d) in the proton: 

4 1 = 2 × ~a + a + ~a = 2a, (141) 

~=2  × (a+ ~a) + (a+ ~a) = ~ a .  

Since the quark and antiquark numbers must equal in the quark sea, we have 
the quark numbers in the proton: 

u = 2 + f t ,  d = l + d ,  s = g .  (142) 

Spin content calculation. GB emission will flip the helicity of the quark as in- 
dicated in the basic process of (136), while the quark-antiquark pair produced 
through the GB channel are unpolarized: 

1 
V (GB) = ~ [~b (q+) ~ (q~) - ~b (q_) ~ (~_)] .  (143) 
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One of the first x Q M  predictions about the spin structure is that,  to the leading 
order, the antiquarks are not polarized: 

A~ = ~+ - q_ = 0. (144) 

Before GB emissions as in (136), the proton wavefunction is given by (44) giving 
the spin-dependent quark numbers in (45). Now from the 3rd column in Table 
2, we can read off the first-order probabilities: 

2 
P 1 ( u + - 4 d - ) = a  P~ (u+ --* s_) = a  P l ( U + - ~ u - ) = ~ a ,  (145) 

or write this in a more compact notation as 

2 
(u+ = (d_ + s_ + 5u_)a.  (146) 

From this we can also immediately obtain the related probabilities of P1 (u_ -4) ,  
P1 (d+ -+),  and P1 (d_ --+) . The sum of the three terms in (145) being 5a , s  the 
probability of no GB emission must then be (1 - ~a). Combining the 0th and 
1st order terms of (45) and (146), we find the spin-dependent quark densities 
(coefficients in front of q~=): 

-~u+ +-~u_ +-~d+ + d_ + (d_ + s_ +-~u_)a  

1 2 I ~ 2 2 
+-~(d+ + s+ + -~u+)a + 5(u_  + s_ + d_)a + -~(u+ + s+ + 5d+)a 

Together with (144), we can then calculate the quark polarization in the proton 
A q =  A q + A  s = A q = q + - q _  : 

4 37 1 2 
A u  - 3 9 a' A d -  3 9 a' A s  = -a .  (147) 

In order to account for the NMC data  of (130) by fi d =  ~ as - - ~ a  in (141) ,  we 
need a probability of a ~ 0.22. But such a large probability would lead to spin 
content description that  can at best be described as fair. For example it give a 
negative-valued total quark value of A Z  = 1 - 16a/3 ~_ -0.17,  which is clearly 
incompatible with the current phenomenological values in (118) - -  although it 
was still marginally consistent with the original EMC value when this calculation 
was first performed[40]. Also, the antiquark numbers in (141) leads to a fixed 
ratio of ~ / d  = 0.75, which is to be compared to the NA51 result of 0.51, as given 
in (1an), 
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C h i r a l  q u a r k  m o d e l  w i t h  a n o n e t  of  G o l d s t o n e  bosons .  We have pro- 
posed[41] a broken-U(3) version of the chiral quark model with the inclusion of 
the ninth GB, the ~'meson. 

Besides the phenomenological considerations discussed above, we have also 
been motivated to modify the original xQM by the following theoretical consid- 
erations. It is well-known that  1/Ncoto~ expansion can provide us with a useful 
guide to study non-perturbative QCD. In the leading 1/Ncotor expansion (the 
planar diagrams), there are nine GBs with an U(3) symmetry. Thus from this 
view point we should include the ninth GB, the ~/' meson. However we also know 
that  if we stop at this order, some essential physics would have been missed: At 
the planar diagram level there is no axial anomaly and ~' would have been a 
bona fide GB. Also, it has been noted by Eichten et al.[40] that  an unbroken U(3) 
symmetry would also lead to the phenomenologically unsatisfactory feature of a 
flavor-symmetric sea: ~ = d = g, which clearly violates the experimental results 
of (130) and (133). Mathematically, this flavor independence comes about as 
follows. Equating the coupling constants gs = g~ in the vertex which generalizes 
the coupling in (137) 

s ~ g  , 
El = gs ~ qX~@q + 1@ q (148) 

i = 1  

()~¢i = ¢ with Xi being the Gell-Mann matrices) and squaring the amplitude, 
one obtains the probability distribution of 

8 
2 

E (q~iq) ((IAiq) + -~ (qq) (qq) (149) 
i = 1  

which has the index structure as 

8 

E ('~')ab (A')cd + ~5~bS~d = 25.dSbc (150) 
i----1 

where we have use a well-known identity of the Gell-Mann matrices to obtain 
the equality. This clearly shows the flavor independence nature of the result. 

Calculation in the degenerate mass limit. All this shows that  we should include 
the ninth GB but, at the same time, it is crucial that  this resultant flavor- 
U(3) symmetry be broken. In our earlier publication[41] we have implemented 
this breaking in the simplest possible manner by simply allowing the octet and 
singlet couplings be different. Namely, in the first round calculation, we stayed 
with approximation of mn = ms and a degenerate octet GBs. In this way we 
were able to show that with a choice of 

_ g l ~ - 1  (151) 
gs 
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this broken U(3) ~(QM can account for much of the observed spin and flavor 
structure, see Column-5 in Table 3. 

Our calculation has been performed in the SU(3) symmetric limit (i.e. as- 
sumed all phase space factors are the same). In this spirit we have chosen to 
work with 1911 = Igsl • The relative negative sign is required primarily to yield 
an antiquark relation of d - 2fi : as the model calculation gives a ratio 

¢2 
fi/~ _ + 2¢ + 6 (152) 

¢2+8 
Therefore, the experimental value of (133) implies a negative coupling ratio : 
-4 .3  < ~ < -0.7.  We remark that  the relative sign of the couplings is physically 
relevant because of the interference effects when we coherently add the ~' contri- 
bution to those by ~/and ~r °. After fixing this ratio, there is only one parameter 
a that  we can adjust to yield a good fit. It is gratifying that  a = 0.11 is indeed 
small, fulfilling our hope that once the singular features of the nonperturbative 
phenomenon of spontaneous symmetry breaking are collected in the GB degrees 
of freedom, the remanent dynamics among these particles is perturbative in na- 
ture. 

It should also be noted that  we have compared these SU(3) symmetric results 
to phenomenologicai values which have been extracted after using the SU(3) 
symmetry relations as well. For example the result in (118) have been extracted 
after using the SU(3) symmetric F /D ratio for hyperon decays as in (115). 
Similarly, we obtained a strange quark fraction value F (s) _~ 0.19 very close 
to that  given in (79) which was deduced from a~N and an SU(3) symmetric 
F /D ratio for baryon masses (77). Agreements are in the 20% to 30% range, 
indicating that  the broken-U(3) chiral picture is, perhaps, on the right track. 

$U(3) and axial-U(1) breaking effects. The quark mass difference m~ > m,~, and 
thus the GB non-degeneracy, would affect the phase space factors for various 
GB emission processes. Such SU(3) breaking effects will be introduced[45], [46] 
in the amplitudes for GB emissions, simply through the insertion of suppression 
factors: e for kaons, 5 for eta, and ( for eta prime mesons, as these strange quark 
bearing GB's are more massive than the pions. Thus the probability a o( Igsl2are 
modifies for processes involving strange quarks, as shown in the last column of 
Table 2. The suppression factors enter into the probabilities for u+ --+ (u~)0 u_ 
and u+ -~ (dd)o u_ processes, etc. because they also receive contributions from 
the ~ and ~' GBs. Following the same steps as those in (137) to (140), we obtain 
the probabilities as listed in the 4th column of Table 2. In this way the following 
results are calculated: 

1 
[(2¢ + 5 + 1) 2 + 20] a, (153) ~=~ 

1 
[(2( + 5 -  1) 2 + 32] a, <154) 

+ a (1 5) ~=~ 
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and  

A u  4 21 + 452 + 8(  2 + 12e 2 
= - - a (156) 

3 9 

A d  1 6 - ~2 _ 2~2 _ 3e2 
- -  a (157) 

3 9 
As = - ~ 2 a .  (158) 

In  the l imit  of ~ = 0 (i.e. no ~') and ~ = 5 = 1 (no suppression in the degenerate  
mass l imit)  these results are reduced to those of (141) and  (147). 

Results  of the numerica l  calculat ion are given in the last co lumn in Table  
3. Again  our  purpose is not  so much as f inding the precise best-fit  values, bu t  

us ing some simple choice of parameters  to i l lustrate  the s t ruc ture  of chiral quark  

model.  For more detail  of the paramete r  choice, see Ref.[46]. 

Naive xQM xQM 
Phenomenological Eq. QM SU3 sym brok'n SU3 

value # e =- 5 : e = 5 = 
--~ = 1 - - 2 ¢  = 0.6 

a = 0  a -- 0.11 a = 0.15 

- d 0.147 + 0.026 (130) 0 ? 0.146 0.15 
~/d  (0.51 =t= 0.09)~=O.l 8 (133) 1? 0.56 0.63 

+ 0.5 o? 1.86 0.60 

a ,N  : F (s) 0.18 ::k 0.06($?) (79) O? 0.19 0.09 
1 l 0.22 F(3) /F(8 )  0.23 + 0.05 (68) ~ 5 

gA 1.257 + 0.03 5 1.12 1.25 
(F/D)a~ial 0.575 4- 0.016 ~ 2 0.57 

3 3 

(3F - D)~ 0.60 + 0.07 ($?) (115) 1 0.67 0.59 

4 Au 0.82 + 0.06 ~ 0.78 0.85 
Ad -0.44 -i- 0.06 _ !  -0.33 --0.40 

3 

As - 0 . 1 1 + 0 . 0 6  ($?) (118) 0 -0.11 -0 .07 

At,  Ad -0.02 =[= (.11) (127) 0 0 

Tab l e  3. Comparison of x Q M  with phenomenological values. The 3rd column gives 
the equation numbers where these values are discussed. From there one can also look 
up the reference for the source of these values. Possible downward revision of the results 
by SU(3) breaking effects, as discussed in the text, are indicated by the symbol ($?). 
Those values with a question mark (?) in the 4th column are not strictly the sQM 
predictions, but are the common expectations of, what has been termed in Sec. 3.1, 
the "naive quark sea". 
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Since a SU(3) symmetric calculation would not alter the relative strength 
of quantities belonging to the same SU(3) multiplet, our symmetric calculation 
cannot be expected to improve on the naive quark model, i.e. SU(6), results 
such as the axial vector coupling ratio F / D  = 2/3, which differs significantly 
fl'om the generally quoted phenomenological value of F / D  = 0.575 ± 0.016. To 
account for this difference we must include the SU(3) breaking terms: 

1 (3e~ + 21)) F A u - A s  2 6 - a ( 2 5 5 + 4 i  2 + 5  (159) 
-D = A u  + A s  - 2 A d  -- 5 " 6 - a (252 4- 4~ "2 + 9e 2 4- 3) 

Similarly discussion holds for the F / D  ratio for the octet baryon masses. Here 
we choose to express this in terms of the quark flavor fractions as defined by 
(65) and (66): 

F(3) F (u) - F (d) 1 + 2 (fi - d~ 

F(8) F (u) + F (d) - 2F (s) 3 + 2 (fi + d - 2~) 

1 3 + 2a [2¢ + - 3] (160) 
= • 1 ( 9 _ 5 2  5 3 + [2¢5 + 

In the SU(3) symmetry limit of 5 = e = 1, we can easily check that (159) and 
(160) reduce to their naive quark model i.e. SU(6) values, independent of a and 
~. Again it is gratifying to see, as displayed in Table 3, that x Q M  has just the 
right structure so the SU(3) breaking modifications make the correction in the 
right direction. 

3.4 St range  Quark  Conten t  of  the  Nucleon  

We have already discussed the number $ of strange quarks in the nucleon quark 
sea and their polarization As. They are examples of the proton matrix elements 
of operators bilinear in the strange quark fields (p I~F~sl p), or in general we need 
to study the quark bilinear matrix elements of (p [~Fiql p) : 

The  scalar channel.  This operator counts the number of quarks plus the 
number of antiquarks in the proton. In particular the octet components of 
(p Ifiu - d d  I p) and (p Ifiu + d d -  2~s I p) can be gotten by SU(3) baryon mass 
relations as we have shown in (66). But in order to separate out the individual 
terms, say (p ISsl P/, we would need the singlet combination (p I~u + d d  + Ss I p}.  
This is provided by a~rN which is a linear combination of the singlet and octet 
pieces. That is why a measurement of a,,lv allows us to do an SU(3) symmetric 
calculation of the strange quark content of the nucleon. 

We have emphasized that OZI violation means that the couplings for s~ 
pair creation and annihilation may not be suppressed even though the phase 
space surely does not favor such processes. But the phase space suppression is a 
"trivial" SU(3) breaking effect. Our chiral quark model calculation is a concrete 
realization of this possibility: Had we ignored the phase space difference, the 
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GB-quark couplings are such that there would be more strange quark pairs than 
either of the nonstrange pairs in the quark sea, as s~ production by either u or 
d valence quarks are not disfavored. Thus (141) give a relative quark abundance 
in the quark sea of 

: d:  ~ = 3 : 4 : 5 (161) 

In the physical quark sea we do not really expect strange quark pairs to dominate 
because of their production is suppressed by SU(3) breaking effects. 

The xQM naturally suggests that the nucleon strange quark content $ and 
polarization As magnitude are lowered by the SU(3) breaking effects as they are 
directly proportional to the amplitude suppression factors, see (155) and (158). 
This is just the trend found in the extracted phenomenological values. Gasser[47], 
for instance, using a chiral loop model to calculate the SU(3) breaking correction 
to the Gell-Mann-Okubo baryon mass formula, finds that the no-strange-quark 
limit-value of (a,~N)o is modified from 25 to 35 MeV, [i.e.the baryon mass Ms 
in (77) changed from -200 by SU(3) breakings to -280 MeV], thus the fraction 
F (s) from 0.18 to 0.10. It matches closely our numerical calculation with the 
illustrative parameters, see Table 3. 

The strange quark content can also be expressed as the relative abundance 
of the strange to non-strange quarks in the sea, which in this model is given as 

4 ( ~ -  ~)2 + 9e2 
As ~ ~ 1.6e 2 = 0.6. (162) - 

This can be compared to the strange quark content as measured by the CCFR 
Collaboration in their neutrino charm production experiment[48] 

fo 1 -= 1 = 0.477 ~ 0.063, where (xO) = x~t(x) dx, (163) 

which is often used in the global QCD reconstruction of patton distributions[49]. 
The same experiment found no significant difference in the shapes of the strange 
and non-strange quark distributions[48]: 

[x~(x)] o¢ ( l_x)~ [ xf~(x) + xd(x)] 
2 

with the shape parameter being consistent with zero, a = -0.02 • 0.08. Thus, 
it is reasonable to use the CCFR findings to yield 

1 
A~ - ~ - ~, (164) 

which is a bit less than, but still compatible with, the value in (162). 
Thus it is seen that the xQM can yield a consistent account of the strange 

quark content $ of the proton sea. SU(3) breaking is the key in reconciling the 
value as measured in the neutrino charm production and that as deduced from 
the pion nucleon sigma term. 
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The  axial-vector channel.  This operator measures the quark contribution to 
the proton spin. In particular the octet components of 

and 

can be gotten by SU(3) relations among the axial vector couplings of octet 
baryon weak decays, (114) and (115). But in order to separate out the individual 
terms, say (p, s I~'y.~ssl p, s) = 2s.zas, we would need the singlet combination 
Au + Ad + As. This is provided by the first-moment of the structure function 
f g~ dx which is a linear combination of the singlet and octet pieces. That is why 
a measurement of gl (x) allows us to do an SU(3) symmetric calculation of the 
strange quark content of the nucleon. 

A number of authors have pointed out that phenomenologically extracted 
value of strange quark polarization As is sensitive to possible SU(3) breaking 
corrections. While the effect is model-dependent, various investigations[42] -[44] 
all conclude that SU(3) breaking correction tends to lower the magnitude of As. 
Some even suggested the possibility of As ~_ 0 being consistent with experimental 
data. Our calculation indicates that, while As may be smaller than 0.10, it is not 
likely to be significantly smaller than 0.05. To verify this prediction, it is then 
important to pursue other phenomenological methods that allow the extraction 
of As without the need of SU(3) relations. 

Besides polarized DIS of charged lepton off nucleon, we can also use other 
processes to determine As. In elastic neutrino-proton scattering, we can separate 
out the axial form factors at zero momentum transfer, 

q.75 G(q) ] (P']q%,75q]P) = 2~(p') G~ q) (Q2) 7~75 + ~ 2 (Q2) u(p). (165) 

Thus we have G~ q) (0) = Aq. The axial vector matrix element arises from Z- 
boson exchange is proportion to 

(p, 1 
(166) 

where T3 is the 3rd component of the weak isospin operator. The (p Ig%75slp) 
can be separated out because the first two terms are fixed by the neutron axial 
coupling gA. Present data still have large error, however they are consistent with 
a a s  # 0150]. 

The measurements of longitudinal polarization of A in the semi-inclusive pro- 
cess of PN ~ I~A+X [51] have also given support to a nonvanishing and negative 
As. In this connection, it's also important to pursue experimental measurements 
to check the xQM prediction for a vanishing longitudinal polarization of ./i in 
the semi-inclusive processes reflecting the proton spin property of Ag = O. 
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T h e  p s e u d o s c a l a r  channe l .  The nucleon matrix elements of the pseudoscalar 
quark density may be physically relevant in Higgs coupling to the nucleon[52], 
etc. Such operators may be related to the axial vector current operator through 
the (anomalous) divergence equation (121)[53]. If we define 

(p [~i75q[ p} = vq~ (p) i75u (p) (167) 

(p  t r G "  G,~ p} = - A g 2 M v ~ ( p ) i 7 5 u ( P )  (168) 

so that  the non-strange divergence equations may be written as 

2 M p A u = 2 m ~ v ~ - 2 M p ( ~ A g )  (169) 

We would need one more condition in order to separate out the individual mq~q 
terms. This may be obtained by saturation of the nonsinglet channel by Gold- 
stone poles. Let us recall that  the Goldberger-Treiman relation can be derived in 
the charge channel by the 7r ± pole-dominance of the pseudoscalar density. After 
taking the nucleon matrix element of 

0" (~t~/,~f~d) = (rn~ + rnd) (fii75d) 

one obtains 
2MvgA = 2 f ,  gzrNN + #± (170) 

where #j: denotes the correction to the 7r + pole-dominance, and is the correction 
to the gA as given by the GT relation. Repeating the same for the neutral 
isovector channel 

0 r ( f i ~ , ~ u - d T , 7 5 d  ) = 2rn~ (~i75u) - 2md (di~sd) 

we have 
2MvgA = 2f~g~NN + #o + (rn~ -- rod) (t'u + Pal) (171) 

Comparing these two expressions for gA one concludes that  the singlet density 
(v= + Vd) must be small, on the order of correction to the GT expression of gA. 
Assume that  P0 ~- #±,  thus v= = --Vd, we can solve the two equations in (169) 
in terms of the measured Au and Ad given in (118). 

C~s m=v~ = 423 M e V  mdVd = --761 M e V  ~-~Ag = -0.37.  (172) 

With these values we can also obtain 

msv~ = -451  M e V .  (173) 

Because of the large strange quark masses m~, this translates into fairly small 
strange pseudoscalar matrix element of 

(P [gi75s[ p) -~ 0.03 (p Idi75d[ p) .  
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T h e  vec to r  channe l .  Of course the vector charges 

Qi = d3xVo * (x) with V~ = q%-~q (174) 

are simply the generators of the flavor SU(3). In terms of the form factors defined 
a s  

Ai [%F~q) (Q2) + i 2Mp (p' ~%-~q p}=ft(p) a""(P'-P)"F(J) (O2)) u(p) (175) 

where Q2 = (p~ _ p)2 is the momentum transfer, we note that 

(P  qT. ~/q P ) Q 2 =  0 

are constrained by the quantum numbers of the proton: 

F(~') (0) - F (d) (0) = 1, F (s) (0) = 0. (176) 

However, the magnetic moment form factor F (s) (0) needs not vanish. It is 
therefore interesting to measure this quantity. This can be done through the 
observation of parity violation in the scattering of charged-leptons off nucleon. 
The interference of the photon-exchange and Z-boson-exchange diagrams can be 
used to isolate F (s) (0). For detailed discussion, see Refs.[54], [55]. 

3.5 D i s c u s s i o n  

In these lectures we have described an attempt to understand the nucleon spin- 
flavor structure in the framework of a broken-U(3) chiral quark model. The broad 
agreement obtained with simple schematic calculations, as displayed in Table 3, 
has been quite encouraging. If this approach turns out to be right, it just means 
that  the familiar non-relativistic constituent quark model is basically correct - -  
it only needs to be supplemented by a quark sea generated by the valence quarks 
through their internal GB emissions. 

Because the couplings between GB and constituent quarks are not strong, we 
can again use perturbation theory based on these non-perturbative degrees of 
freedom - -  even though the phenomena we are describing are non-perturbative 
in terms of QCD Lagrangian quarks and gluons. Features such as d _ 2~ are 
seen to be clear examples of nonperturbative QCD physics, as they are quite 
inexplicable in terms of a quark sea generated by perturbative gluon emissions. 
(If one gets beyond the perturbative gluonic picture, this d ¢ ~ property is not 
peculiar at all, as the nucleon is not an isospin singlet and there is no reason to 
expect that  its quark sea should be an isospin singlet.) 

In the case of the proton spin structure, because the most often discussed 
theoretical interpretation is the possibility of a hidden gluonic contribution, it 
has led some to think that  other approaches, such as xQM, must be irrelevant. 
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But the alternative theories are attempting a different description by using dif- 
ferent degrees of freedom. To be sure, the QCD quarks and gluons are the most 
fundamental DOF. But we cannot insist on using them for such non-perturbative 
problems as the hadron structure. An analogy with the nucleon mass problem 
will illustrate our point. 

The canonical approach to study the various quarks/gluon contributions to 
the nucleon mass is through the energy-momentum trace anomaly equation[56]: 

Of = m~fiu + mddd -b ms~s - 11 - ~n I ~-~trG" G, , .  (177) 

Just like the more familiar axial vector anomaly equation, the naive divergence 
is given by quark masses while the anomaly term is given by the gluon field 
tensor. (Of course, here we are using the Lagrangian quark and gluon fields.) 
When taken between the proton states, this equations yields 

M , = m n ( p l ( t u + d d l p } + m s ( p l g s l p } + g l u o n t e r m  (178) 

The first term is just the (7~rN '~ 45 MeV representing a tiny contribution by the 
nonstrange quarks, while the second term can also be estimated[52]: 

m s a ~ N  [1 3mn Ms ] ~ 250MeV. (179) 
m"(plsslP}= 2 r a n  m n - m ~ a , ~ . j  

[Because this is an SU(3) calculation, the strange quark term is somewhat over- 
estimated.] One way or other, we see that most of the proton mass came from the 
gluon term[57]. Heavy quark terms can also be included but their contributions 
as explicit quark terms just cancel the corresponding heavy quark loops in the 
gluon terms. In this sense they decouple[58]. 

This led to an important insight: nucleon mass is mostly gluonic. But in terms 
of the QCD quarks and gluons, it is difficult to say anything more. That is why 
the description provided by the constituent quark model is so important. In 
this picture much more details can be constructed: hyperfine splitting, magnetic 
moments, etc. 

The important point is that these two approaches are not mutually exclusive. 
While the constituent quark model does not refer explicitly to gluon, the above 
discussion suggests that it is the non-perturbative gluonic interaction that brings 
about the large constituent quark masses. (In the xQM this takes the form of 
quark interaction with the chiral condensate of the QCD vacuum.) We believe 
that this complementarity of the QCD and sQM descriptions holds for the flavor- 
spin structure problem as well. The non-perturbative features can be described 
much more succinctly if we use the non-perturbative DOF of constituent quarks 
and internal GBs. Thus it is quite possible that the statement of a significant 
gluonic contribution to the proton spin and a correct description of spin structure 
by the x Q M  can both be valid - - jus t  the same physics expressed in two different 
languages. 



The Proton Spin and Flavor Structure in the Chiral Quark Model 159 

A c k n o w l e d g e m e n t .  L.F.L. would like to thank the organizers, in particular 
C.B. Lang, of the Schladming Winter School for warm hospitality. His work 
is supported at CMU by the U.S. Department of Energy (Grant No. DOE- 
ER/40682-127). 

References  

[1] T.P. Cheng and L.F. Li, Gauge Theory of Elementary Particle Physics, Clarendon 
Press, Oxford, 1984. Ch.5. 

[2] M. Gell-Mann, R. Oaks, and B. Rennet, Phys. Rev. 175 (1968) 2195 
[3] R. Dashen, Phys. Rev. 183 (1969) 1291 
[4] S. Coleman and H. Schnitzer, Phys. Rev. 136 (1964) B223 
[5] A. DeRujula, H. Georgi, and S.L. Glashow, Phys. Rev.D 12 (1975) 147 
[6] J. Rosner, Proc. Adv. Study Inst. on Tech. and Concepts in High Energy Physics, 

St. Croix, USVI, ed. T. Ferbel (1980) 
[7] S. Okubo, Phys. Lett. 5 (1963) 163; G. Zweig, CERN Report No. 8419/TH 412 

(1964); J. Iizuka, Prog. Theor. Phys. Suppl. 37-8 (1966) 21 
[8] T. Appelquist and H.D. Politzer, Phys. Rev. Lett. 34 (1975) 43 
[9] T.P. Cheng and R.F. Dashen, Phys. Rev. Lett. 26 (1971) 594 
[10] T.P. Cheng, Phys. Rev. D 13 (1976) 2161 
[11] J. Gasser, H. Leutwyler, and M.E. Sainio, Phys. Lett. B253 (1991) 252 
[12] H.Y. Cheng, Int. J. Mod. Phys. A 11 (1996) 5109 
[13] A.V. Manohar, in Proc. 7th Lake Louis Winter Institute (1992), eds. B.A. Camp- 

bell et al. (World Scientific, Singapore, 1992) 
[14] J. Kodaira et al., Phys. Rev. D 20 (1979) 627; S.A. Larin, F. V. Tkachev, and 

J.A.M. Vermaseren, Phys. Rev. Lett. 66 (1991) 862 
[15] For a review see, e.g. Ref. [1], Ch.10. 
[16] For a review see, e.g. Ref. [1], Ch.7. 
[17] S.Y. Hsueh et a|., Phys. Rev. D 38 (1988) 2056; F.E. Close and R.G. Roberts, 

Phys. Lett. ]3341 (1993) 165 
[18] S.A. Larin, Phys. Lett. B334 (1994) 192; A.L. Kataev and V. Starshenko, Mod. 

Phys. Let t .  A 10 (1995) 235 
[19] J. Ellis and R.L. Jaffe, Phys. Rev. D 9 (19974) 1444 
[20] ES0 Collaboration, M.J. Alguard et al., Phys. Rev. Lett. 37' (1976) 1261; Phys. 

Rev. Lett.41 (1978) 70; G. Baum et al., Phys. Rev. Lett.45 (1980) 2000 
[21] European Muon Collaboration, J. Ashman, et al.,Phys. Lett. B206 (1988) 364; 

Nucl. Phys. B328 (1990) 1 
[22] Spin Muon Collaboration, B. Adeva et al., Phys. Lett. B302 (1993) 533; D. Adams 

et al., Phys.Lett. B329 (1994) 399; B339 (1994) 332(E)); B357 (1995) 248 
[23] E142 Collaboration, P. L. Anthony et al., Phys. Rev. Lett. 71 (1993) 959 E143 

Collaboration, K. Abe et al., Phys. Rev. Lett. 74 (1995) 346; Phys. Rev. Lett. 75 
(1995) 25 

[24] J. Ellis and M. Karliner, Phys. Lett. B341 (1995) 397 
[25] A.V. Efremov and O.V. Teryaev, JINR Report E2-88-287 (1988), G. Altarelti 

and G.G. Ross, Phys. Lett. B212 (1988) 391; R.D. Carlitz, J.C. Collins and A.H. 
Mueller, Phys. Lett. B214 (1988) 229; see also, C.S. Lam and B.N. Li, Phys. Rev. 
D 25 (1982) 683 

[26] Spin Muon Collaboration, B. Adeva et al., Phys. Lett. B369 (1996) 93 



160 Ling-Fong Li and T. P. Cheng 

[27] G. Karl, Phys. Rev. D 45 (1992) 247 
[28] T.P. Cheng and L.-F. Li, Phys. Lett. B366 365; (E) B381, (1996) 487 
[29] K. Gottfried, Phys. Rev. Lett. 18 (1967) 1174 
[30] New Muon Collaboration, P. Amaudruz et al., Phys. Rev. Lett. 66 (1991) 2712; 

M. Arneodo et al., Phys. Rev. D 50 , (1994) R1 
[31] S.D. Ellis and W.J. Stirling, Phys. Lett. B256 (1993) 258 
[32} NA 51 Collaboration, A. Baldit et al., Phys. Lett. B332 (1994) 244 
[33] F.E. Close, An Introduction to Quarks and Partons, Academic Press, London 

(1979). For a recent discussion of the quark model (without the Goldstone structure) 
with respect to the Q2 ¢ 0 probes of the nucleon spin content, see F. Close, Talk at 
the 6th ICTP Workshop, Trieste (1993), Rutherford Appleton Lab Report RAL-93- 
034. 

[34] R.D. Field and R.P. Feynman, Phys. Rev. D 15 (1977) 2590 
[35] See, e.g., E.M. Henley and G.M. Mi]ler, Phys. Lett. B251 (1990) 453 
[36] J.D. Sullivan, Phys. Rev. D 5 (1972) 1732 
[37] A. Manohar and H. Georgi, Nucl. Phys . B234 (1984) 189; S. "Weinberg, Physica 

(Amsterdam) 96A (1979) 327, Sec. 6; H. Georgi, Weak Interactions and Modern 
Particle Theory, (Benjamin/Cummings, Menlo Park, CA, 1984), Sec. 6.4 and 6.5. 

[38] L. Ya. Glozman and D. O. Riska, Phys. Rept. 268 (1996) 263; L. Ya. Glozman, in 
"Perturbative and Non-perturbative Aspects of Quantum Field Theory" Proc. 1996 
Schladming Lectures, Springer-Verlag (Berlin, Heidelberg) 1996. 

[39] J. D. Bjorken, in "Proc 4th Int. Conf. on Elastic and Diffractive Scatterings - 
199r', published in Nucl. Phys. Proc. Suppl. 25B (1992) 253 

[40] E.J. Eichten, I. Hinchliffe, and C. Quigg, Phys. Rev. D, 45 (1992) 2269 
[41] T.P. Cheng and L.-F. Li, Phys. Rev. Lett. 74 (1995) 2872 
[42] B. Ehrnsperger, and A. Sch£fer, Phys. Lett. B348 (1995) 619 
[43] J. Lichtenstadt and H. J. Lipkin, Phys. Lett. B353 (1995) 119 
[44] J. Dai, R. Dashen, E. Jenkins, and A. Manohax, Phys. Rev. D 53 (1996) 273 
[45] X. Song, J.S. McCarthy, and H.J. Weber, Phys. Rev. D 55 (1997) 2624 
[46] T.P. Cheng and L.-F. Li, CMU-HEP97-01, hep-ph/9701248, submitted for publi- 

cation in Phys. Rev. D 
[47] J. Gasser, Ann. Phys. (NY) 136 (1981) 62 
[48] CCFR Collaboration, A. O. Bazarko, et al., Z. Phys. C 65 (1995) 189 
[49] A.D. Martin, W.J. Stirling, and R.G. Roberts, Phys. Rev. D 50 (1994) 6734; 

CTEQ Collaboration, H. L. Lai, et al., Phys. Rev. D 51 (1995) 4763 
[50] D.B. Kaplan and A.V. Manohar, Nucl. Phys. B310 (1988) 527 
[51] WA58 Collaboration, S. Willocq et al., Z. Phys. C 53 (1992) 207: J. Ellis, D. 

Kharzeev, and A. Kotzinian, Z. Phys. C 69 (1996) 467 
[52] T.P. Cheng, Phys. Rev. D 38 (1988) 2869 
[53] T.P. Cheng and L.-F. Li, Phys. Rev. Lett. 62 (1989) 1441 
[54] R.D. McKeown, Phys. Lett. B219 (1989) 140; D.H. Beck, Phys. Rev. D 39 (1989) 

3248 
[55] B. Mueller et al., Phys. Rev. Lett. 78 (1997) 3824 
[56] R. Crewther, Phys. Rev. Lett. 28 (1972) 1421; M. Chanowitz and J. Ellis: Phys. 

Lett. B40 (1972) 397; S.L. Adler, J.C. Collins, and A. Duncan, Phys. Rev. D 15 
(1977) 1712 

[57] M.A. Shifman, A.I. Vainstein, and V.I. Zakharov, Phys. Lett. B78 (1978) 443 
[58] T.P. Cheng and L.-F. Li, " Proc. the Rice Meeting - DPF'90", eds. B. Bonner 

and H. Miettienen, World Scientific (Singapore, 1990), p569. 



Electroweak Symmetry Breaking 
and Higgs Physics 

Michael Spira 1 and Peter M. Zerwas 2 

1 CERN, Theory Division, CH-1211 Geneva 23, Switzerland 
2 Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg, Germany 

Abst rac t .  We present an introduction to electroweak symmetry breaking and Higgs 
physics within the Standard Model and supersymmetric extensions. A brief overview 
will also be given on strong interactions of the electroweak gauge bosons in alternative 
scenarios. In addition to the theoretical basis, the present experimental status of Higgs 
physics and implications for future experiments at the LHC and lepton colliders are 
discussed. 

1 I n t r o d u c t i o n  

1. Revealing the physical mechanism which is responsible for the breaking of 
the electroweak symmetry, is one of the key problems in particle physics. If the 
fundamental particles - leptons, quarks and gauge bosons - remain weakly in- 
teracting up to very high energies, the sector in which the electroweak symmetry 
is broken, must contain one or more fundamental scalar Higgs bosons with light 
masses of the order of the symmetry breaking scale v ~ 246 GeV. The masses of 
the fundamental particles are generated through the interaction with the scalar 
background Higgs field, being non-zero in the ground state [1]. Alternatively, 
the symmetry breaking could be generated dynamically by new strong forces 
characterized by an interaction scale A ~ 1 TeV [2]. If global symmetries of the 
strong interactions are broken spontaneously, the associated Goldstone bosons 
can be absorbed by the gauge fields, generating the masses of the gauge particles. 
The masses of leptons and quarks can be generated through interactions with 
the fermion condensate. 

2. A simple mechanism for the breaking of the electroweak symmetry is incorpo- 
rated in the Standard Model (SM) [3]. To accommodate all observed phenomena, 
a complex iso-doublet scalar field is introduced which, through self-interactions, 
acquires a non-vanishing vacuum expectation value, breaking spontaneously the 
electroweak symmetry SU(2)x× U(1)y down to the electromagnetic U(1)EM 
symmetry. The interactions of the gauge bosons and fermions with the back- 
ground field generate the masses of these particles. One scalar field component  

is not absorbed in this process, manifesting itself as the physical Higgs particle 
H.  

The mass of the Higgs boson is the only unknown parameter  in the symmetry 
breaking sector of the Standard Model while all couplings are fixed by the masses 
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of the particles, a consequence of the Higgs mechanism per se. However, the mass 
of the Higgs boson is constrained in two ways. Since the quartic self-coupling 
of the Higgs field grows indefinitely with rising energy, an upper limit on the 
Higgs mass can be derived from demanding the SM particles to remain weakly 
interacting up to a scale A [4]. On the other hand, stringent lower bounds on the 
Higgs mass follow from requiring the electroweak vacuum to be stable [5]. If the 
Standard Model is valid up to scales near the Planck scale, the SM Higgs mass 
is restricted to a narrow window between 130 and 190 GeV. For Higgs masses 
either above or below this window, new physical phenomena are expected to 
occur at a scale A between ~ 1 TeV and the Planck scale. For Higgs masses 
near 700 GeV, the scale of new strong interactions would be as low as ~ 1 TeV 
[4], [6]. 

The electroweak observables are affected by the Higgs mass through radiative 
corrections [7]. Despite of the weak logarithmic dependence, the high-precision 
electroweak data indicate a preference to light Higgs masses close to ~ 100 
GeV [8]. At the 95% CL, the data  require a value of the Higgs mass within the 
canonical range of the Standard Model. By searching directly for the SM Higgs 
particle, the LEP experiments have set a lower limit of MH ~ 84 to 88 GeV on 
the Higgs mass [9]. If the Higgs boson will not be found at LEP2 with a mass 
of less than about 100 GeV [10], the search will continue at the Tevatron which 
may reach masses up to ~ 120 GeV [11]. The proton collider LHC can sweep the 
entire canonical Higgs mass range of the Standard Model [12]. The properties of 
the Higgs particle can be analyzed very accurately at e+e - linear colliders [13], 
thus establishing the Higgs mechanism experimentally. 

3. If the Standard Model is embedded in a Grand Unified Theory (GUT) at high 
energies, the natural scale of electroweak symmetry breaking would be expected 
close to the unification scale MCUT. Supersymmetry [14] provides a solution of 
this hierarchy problem. The quadratically divergent contributions to the radia- 
tive corrections of the scalar I-Iiggs boson mass are cancelled by the destruc- 
tive interference between supersymmetrized bosonic and fermionic loops.J15] 
The Minimal Supersymmetric extension of the Standard Model (MSSM) can 
be derived as an effective theory from supersymmetric grand unified theories. 
A strong indication for the realization of this physical picture in Nature is the 
excellent agreement between the value of the electroweak mixing angle sin s 0w 
predicted by the unification of the gauge couplings, and the measured value. 
If the gauge couplings are unified in the minimal supersymmetric theory at a 
scale MGUT = (-9(1016 GeV) the electroweak mixing angle is predicted to be 
sin 20w = 0.2336 4- 0.0017 [16] for a mass spectrum of the supersymmetric parti- 
cles of order Mz.  This theoretical prediction must be compared with the exper- 

A~P = 0.2316 4- 0.0003 [8]; the difference of the two numbers imental result sin 2 v W 
is less than 2 per mille. 

In the MSSM, the Higgs sector is built up by two Higgs doublets [17]. The 
doubling is necessary to generate masses for up- and down-type fermions in 
a supersymmetric theory and to render the theory anomaly-free. The Higgs 
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particle spectrum consists of a quintet of states: two CP-even scalar neutral 
(h, H), one CP-odd pseudoscalar neutral (A), and a pair of charged (H ±) Higgs 
bosons [18]. The masses of the heavy Higgs bosons, H, A, H ±, are expected to be 
of order v but may extend up to the TeV range. By contrast, since the quartic 
Higgs self-couplings are determined by the gauge couplings, the mass of the 
lightest Higgs boson h is constrained very stringently. At tree-level, the mass 
has been predicted to be smaller than the Z mass [18]. Radiative corrections, 
increasing as the fourth power of the top mass, shift the upper limit to a value 
between ,,~ 100 GeV and ,,~ 130 GeV, depending on the parameter tan~, the 
ratio of the vacuum expectation values of the two neutral scalar Higgs fields. 

A general lower bound of 73 GeV has been established for the Higgs particle 
h experimentally at LEP [9]. Continuing this search, the entire h mass range can 
be covered for tan~ ~ 2, a value compatible with the unification of the b and 
~- masses at high energies. The search for h masses in excess of ~ 100 GeV and 
the search for the heavy Higgs bosons will continue at the Tevatron, LHC and 
e+e - linear colliders. In these machines the mass range up to ~ 1 TeV can be 
covered [11]-[13]. 

4. Elastic scattering amplitudes of massive vector bosons grow indefinitely with 
energy if they are calculated as a perturbative expansion in the coupling of 
a non-abelian gauge theory. As a result, they violate unitarity beyond a crit- 
ical energy scale of ~ 1.2 TeV. This problem can be solved by introducing a 
light Higgs boson. In alternative scenarios, the W bosons may become strongly 
interacting at TeV energies, thus damping the rise of the elastic scattering am- 
plitudes. Naturally, the strong forces between the W bosons may be traced back 
to new fundamental interactions characterized by a scale of order 1 TeV [2]. If 
the underlying theory is globally chiral-invariant, the symmetry may be broken 
spontaneously. The Goldstone bosons associated with the spontaneous symme- 
try breaking can be absorbed by the gauge bosons to generate the masses and 
to build up the longitudinal degrees of freedom. 

Since the longitudinally polarized W bosons are associated with the Gold- 
stone modes of chiral symmetry breaking, the scattering amplitudes of the WL 
bosons can be predicted for high energies by a systematic expansion in the en- 
ergy. The leading term is parameter-free, a consequence of the chiral symmetry 
breaking mechanism per se which is independent of the particular dynamical the- 
ory. The higher-order terms in the chiral expansion are defined by the detailed 
structure of the underlying theory. With rising energy the expansion is expected 
to diverge and new resonances may be generated in W W  scattering at mass 
scales between 1 and 3 TeV. This picture is analogous to pion dynamics in QCD 
where the threshold amplitudes can be predicted in a chiral expansion while at 
higher energies vector and scalar resonances are formed in ~7r scattering. 

Such a scenario can be studied in W W  scattering experiments where the M" 
bosons are radiated, as quasi-real particles [19], off high-energy quarks in the 
proton beams of the LHC [12], [20], [21] or off electrons and positrons in TeV 
linear colliders [13], [23], [24]. 
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5. This report is divided into three parts. A basic introduction and a summary 
of the main theoretical and experimental results will be presented in the next 
section on the Higgs sector of the Standard Model. Moreover, the search for 
the Higgs particle at future e+e - and hadron colliders will be described. In the 
same way, the Higgs spectrum of supersymmetric theories will be discussed in 
the subsequent section. Finally, the main features of strong W interactions and 
their analysis in W W  scattering experiments will be presented in the last section. 

Only the basic elements of electroweak symmetry breaking and the Higgs 
mechanism can be described in this report. Other aspects may be traced back 
from Ref.[25] and recent review reports collected in Ref.[26]. 

2 T h e  H i g g s  S e c t o r  o f  t h e  S t a n d a r d  M o d e l  

2.1 The Higgs Mechanism 

For high energies, the amplitude for elastic scattering of massive W bosons 
W W  --~ W W ,  grows indefinitely with energy for longitudinally polarized parti- 
cles, Fig.la. This is a consequence of the linear rise of the longitudinal ~l'~ wave 
function, eL = (p, O, O, E ) /Mw,  with the energy of the particle. Even though the 
term of the amplitude rising as the fourth power in the energy is cancelled by 
virtue of the non-abelian gauge symmetry, the amplitude remains quadratically 
divergent in the energy. On the other hand, unitarity requires elastic scatter- 
ing amplitudes of partial waves J to be bounded by ~eAa <<_ 1/2. Applied to 
the asymptotic S-wave amplitude Ao = GFs/81rv/2 of the isospin-zero channel 
2W+WL + ZLZL, with the cm energy given by x/~, the bound on the energy 
[27] 

s <_ 47rv/2/GF ,.~ (1.2 TeV) 2 (1) 

can be derived for the validity of a theory of weakly coupled massive gauge 
bosons. 

However, the quadratic rise in the energy can be damped by exchanging a 
new scalar particle. To achieve the cancellation, the size of the coupling must be 
given by the product of the gauge coupling and the gauge boson mass, Fig. lb. For 
high energies, the amplitude A~ = -GFs/87~x/2 cancels exactly the quadratic 
divergence of the pure gauge boson amplitude A0. Thus, unitarity can be restored 
by introducing a weakly coupled Higgs particle. 

In the same way, the linear divergence of the amplitude A ( f / - ~  WLWL) 
gmyv~  for the annihilation of a fermion-antifermion pair to a pair of longitudi- 
nally polarized gauge bosons, can be damped by adding the Higgs exchange to 
the gauge boson exchange. In this case the Higgs particle must couple propor- 
tional to the mass mf of the fermion f.  

These observations can be summarized in a theorem: A theory of massive 
gauge bosons and fermions that are weakly coupled up to very high energies, 
requires, by unitarity, the existence of a Higgs particle; the Higgs particle is a 
scalar 0 + particle which couples to other particles proportional to the n~asses of 
the particles. 
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(a) 

(b) 

W~ L_ 1,1; 

W ~ W 

Fig. 1. Generic diagrams of elastic WW scattering: (a) pure gauge boson contributions, 
and (b) Higgs boson exchange. 

The assumption that the couplings of the fundamental particles are weak up 
to very high energies, is qualitatively supported by the perturbative renormal- 
ization of the electroweak mixing angle sin 20w from the symmetry value 3/8 
at the GUT scale down to ~ 0.2 which is close to the experimentally observed 
value at low energies. 

These ideas can be cast into an elegant mathematical form by interpreting the 
electroweak interactions as a gauge theory with spontaneous symmetry breaking 
in the scalar sector. Such a theory consists of fermion fields, gauge fields and a 
scalar field coupled by the standard gauge interactions and Yukawa interactions 
to the other fields. Moreover, a self-interaction 

7 I¢1 - (2) 

is introduced in the scalar sector which gives rise to a non-zero ground-state 
value v / v ~  of the scalar field. By fixing the phase of the vacuum amplitude 
to be zero, the gauge symmetry is spontaneously broken in the scalar sector. 
Interactions of the gauge fields with the scalar background field, Fig.2a, and 
Yukawa interactions of the fermion fields with the background field, Fig.2b, shift 
the masses of these fields from zero to non-zero values: 

~1 [(gv '~  2 1] j l :312=g2V2 1 1 

Lt, ) -7- 

: m f -~ g f -~2 

(3) 

Thus in theories with gauge and Yukawa interactions, in which the scalar field 
acquires a non-zero ground-state value, the couplings are naturally proportional 
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Fig. 2. Generating (a) gauge boson and (b) fermion masses through interactions with 
the scalar background field. 

to the masses. This ensures the unitarity of the theory as discussed before. 
These theories are renormalizable (as a result of the gauge invariance which is 
only disguised in the unitary formulation adopted so far), and thus they are 
well-defined and mathematical ly  consistent. 

2 . 2  T h e  H i g g s  M e c h a n i s m  i n  t h e  S t a n d a r d  M o d e l  

Besides the Yang-Mills and the fermion parts,  the electroweak SU2 × U1 La- 
grangian includes a scalar iso-doublet field ¢, coupled to itself through the po- 
tential V, cf. (2), to the gauge fields through the covariant derivative iD  = 
iO - g I W  - g ' Y B ,  and to the up and down fermion fields u, d through Yukawa 
interactions: 

£0 = ID¢[ 2 - ~ 1¢1: - - gddLCdR -- g~£ZL¢cUR + he .  (4) 

In the unitary gauge, the iso-doublet ¢ is replaced by the physical Higgs field H,  
¢ --+ [0, (v + H)/v/-2], which describes the deviation of the I3 = - 1 / 2  component  
of the iso-doublet field from the ground state value v/v~2. The scale v of the 
electroweak symmetry  breaking is fixed by the W mass which in turn can be 

re-expressed by the Fermi coupling, v -- 1 / ~ x / - - ~ F  ~ 246 GeV. The quartic 
coupling A and the Yuknwa couplings g/ can be re-expressed in terms of the 
physical Higgs mass MH and the fermion masses m : ,  

M ~ / =  Av 2 

my = 9 : / V ~  (5) 

respectively. 
Since the couplings of the Higgs particle to gauge particles, fermions and to 

itself are given by the gauge couplings and the masses of the particles, the only 
unknown parameter  in the Higgs sector (apart  from the CKM mixing matrix) 
is the Higgs mass. When this mass is fixed, all properties of the Higgs particle 
can be predicted, i.e. the lifetime and decay branching ratios, as well as the 
production mechanisms and the corresponding cross sections. 
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The  SM Higgs Mass. Even though the mass of the Higgs boson cannot be 
predicted in the Standard Model, stringent upper and lower bounds can never- 
theless be derived from internal consistency conditions and extrapolations of the 
model to high energies. 

The Higgs boson has been introduced as a fundamental particle to render 
2-2 scattering amplitudes involving longitudinally polarized W bosons com- 
patible with unitarity. Based on the general principle of time-energy uncer- 
tainty, particles must decouple from a physical system if their mass grows indef- 
initely. The mass of the Higgs particle must therefore be bounded to restore 
unitarity in the perturbative regime. From the asymptotic expansion of the 
elastic WLWL S-wave scattering amplitude including W and Higgs exchanges, 
A(WL WL --4 WL WL ) -'4 - G F  M ~  / 4v/27c, it follows [27] that 

5 2v%/a  ~ (8 o GeVT. (6) 
Within the canonical formulation of the Standard Model, consistency conditions 
therefore require a Higgs mass below 1 TeV. 

H ~ , Z  
F 

L2 
H" "H H / "H ", 

H'"  " H  

Fig. 3. Diagrams contributing to the evolution of the Higgs sell-interaction )~. 

Quite restrictive bounds on the value of the SM Higgs mass follow from hy- 
pothetical assumptions on the energy scale A up to which the Standard Model 
can be extended before new physical phenomena emerge, which would be as- 
sociated with strong interactions between the fundamental particles. The key 
to these bounds is the evolution of the quartic coupling ,~ with the energy (i.e. 
the field strength) due to quantum fluctuations [4]. The basic contributions are 
depicted in Fig.3. The Higgs loop itself gives rise to an indefinite increase of the 
coupling while the fermionic top-quark loop drives, with increasing top mass, the 
coupling to smaller values, finally even to values below zero. The variation of 
the quartic Higgs coupling ,~ and the top-Higgs Yukawa coupling gt with energy, 
parametrized by t = log #2/v 2, may be written as [4] 

d,~ 3 
dt - 8~ 2 [~  + ~ d  - g4] : ~(v ~) = ~qf/~:_ 

(7) 
d g t -  l [ 9 a 21 
dt 327r 2 -~gt - 8gtg~ : gt(v 2) = ~ ra] /v  . 
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Fig. 4. Bounds on the mass of the Higgs boson in the SM. A denotes the energy scale 
at which the Higgs-boson system of the SM would become strongly interacting (upper 
bound); the lower bound follows from the requirement of vacuum stability. Refs. [~], [5]. 

Only the leading contributions from H, t and QCD loops are taken into account. 
For moderate  top masses, the quartic coupling k rises indefinitely, A ~ +A 2, 

and the coupling becomes strong shortly before reaching the Landau pole: 

= A(v 2) (8) 
1 - l o g  81r z 

Re-expressing the initial value of A by the Higgs mass, the condition A(A) < oc, 
can be translated to an upper bound on the Higgs mass: 

87r2v 2 
M ~  < a--------- r . (9) 

- 3 l o g  7 

This mass bound is related logarithmically to the energy A up to which the Stan- 
dard Model is assumed to be valid. The maximal value of MH for the minimal 
cut-off A ,,~ 1 TeV is given by ~ 750 GeV. This value is close to the est imate of 

700 GeV in lattice calculations for A ~ 1 TeV, which allow the proper control 
of non-perturbat ive effects near the boundary [6]. 

A lower bound on the Higgs mass can be based on the requirement of vacuum 
stability [4], [5]. Since top-loop corrections decrease A for increasing top-Yukawa 
coupling, A becomes negative if the top mass becomes too large. In this case, the 
self-energy potential  would become deep negative and the ground state would 
not be stable any more. To avoid the instability, the Higgs mass must exceed a 
minimal value for a given top mass. This lower bound depends on the cut-off 
value A. 
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For any given A the allowed values of (Mt, MH) pairs are shown in Fig.4. For 
a central top mass m t =  175 GeV, the allowed Higgs mass values are collected 
in Table 1 for two specific cut-off values A. If the Standard Model is assumed 
to be valid up to the scale of grand unification, the Higgs mass is restricted to 
a narrow window between 130 and 190 GeV. The observation of a Higgs mass 
above or below this window would demand a new physics scale below the GUT 
scale. 

A MH 

1 TeV 55 GeV g MH ~ 700 GeV 

1019 GeV 130 GeV g MH ~ 190 GeV 

Table 1. Higgs mass bounds for two values of the cut off A. 

Decays of  the  Higgs Part icle.  The profile of the Higgs particle is uniquely 
determined if the Higgs mass is fixed. The strength of the Yukawa couplings of 
the Higgs boson to fermions is set by the fermion masses m j, and the coupling 
to the electroweak gauge bosons V = IV, Z by their masses Mv: 

g / I n  = GF m /  , (10) 

The total decay width and lifetime, as well as the branching ratios for specific 
decay channels are determined by these parameters. The measurement of the 
decay characteristics can therefore by exploited to establish experimentally that 
Higgs couplings grow with the masses of the particles, a direct consequence of 
the Higgs mechanism sui generis. 

For Higgs particles in the intermediate mass range O ( M z )  <<_ MH < 2 Mz  the 
main decay modes are decays into bb pairs and WIJ~ Z Z  pairs with one of the 
gauge bosons being virtual below the respective threshold. Above the W W ,  Z Z  
thresholds, the Higgs particles decay almost exclusively into these channels with 
a small admixture of top decays near the t t  threshold. Below 140 GeV, the decays 
H --4 T+~ - , CC and gg are also important besides the dominating bb channel; ~/~' 
decays, though suppressed in rate, provide nevertheless a clear 2-body signature 
for the formation of Higgs particles. 

(a) Higgs decays to fermions. The partial width of Higgs decays to lepton and 
quark pairs is given by [28] 

F ( H  -~ .f]) = Af~ 4~2 m ~ ( M ~ ) M H  . (11) 
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Arc = 1 or 3 is the color factor. Near threshold the partial width is suppressed 
by an additional factor /3~ where )3f is the fermion velocity. Asymptotically, 
the fermionic width grows only linearly with the Higgs mass. The bulk of QCD 
radiative corrections can be mapped into the scale dependence of the quark 
mass, evaluated at the Higgs mass. For M/~ ~ 100 GeV the relevant parameters 
are mb(M~) -~ 3 GeV and mc(M~) ~_ 0.6 GeV. The reduction of the effective 
c-quark mass overcompensates the color factor in the ratio between charm and 
7- decays of Higgs bosons. The residual QCD corrections, ~ 5.7 × (a~/zr), modify 
the widths only slightly. 

(b) Higgs decays to W W  and Z Z  boson pairs. Above the W W  and Z Z  decay 
thresholds, the partial widths for these channels may be written as [29] 

F(H -+ VV)  = 6v e F  M~(1 - 4x + 12x2)/3v (12) 
16~/27r 

2 2 where x = M v / M  H and 5v = 2 and 1 for V = iV and Z, respectively. For large 
Higgs masses, the vector bosons are longitudinally polarized. Since the wave- 
functions of these states are linear in the energy, the widths grow as the third 
power of the Higgs mass. Below the threshold for two real bosons, the Higgs 
particle can decay into VV* pairs, one of the vector bosons being virtual. The 
partial width is given in this case [30] by 

3a M¢  (13) 
F ( H - +  VV*) - 167r s 

where 5~v = 1, 6~ = 7/12 - 10 sin ~ Ow/9 + 40 sin 4 0w/27 and 

n(x)  = 3(1- Sx + 20x 2) { 3 x -  I 
1): / .  arccos 

1 
~x -x(2- 13x + 47x 2) - 2(1-6x + 4x2) logx.  

The ZZ* channel becomes relevant for Higgs masses beyond ~ 140 GeV. Above 
the threshold, the 4-lepton channel H --+ Z Z  -~ 4g :~ provides a very clear signal 
for Higgs bosons. 

(c) Higgs decays to gg and ~7 pairs. In the Standard Model, gluonic Higgs decays 
are mediated by top- and bottom-quark loops, photonic decays in addition by 
W loops. Since these decay modes are significant only far below the top and W 
thresholds, they are described by the approximate expressions [31], [32] 

F(H--+ gg) = 36v~r  3 M~ + -~-J 
(14) 

F ( H  -+ 77) = 128v~Tr3 
(15) 
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which are valid in the limit M~ << 4M W, 4M~. The QCD radiative corrections 
which include g g g  and g q q  final states in (14), are very important; they increase 
the partial width by about 65%. Even though photonic Higgs decays are very 
rare, they nevertheless offer a simple and attractive signature for Higgs particles 
by leading to just two stable particles in the final state. 

D i g r e s s i o n :  Loop-mediated Higgs couplings can easily be calculated in the limit 
in which the Higgs mass is small compared to the loop mass, by using a low- 
energy theorem [31]-[34]: 

lim A ( X H )  - 1 0 A ( X )  (16) 
v . - ~ o  v 01ogre 

The theorem can be derived by observing that  the insertion of an external zero- 
energy Higgs line into a fermionic propagator, for instance, is equivalent to the 
substitution 

1 1 m 1 1 0 1 

l~ - rn  l~ - m v l~ - m v O l og  rn  l~ - m 

The amplitudes for processes including an external Higgs line can therefore be ob- 
tained from the amplitude without the external Higgs line by taking the logarith- 
mic derivative. If applied to the gluon propagator at Q2 = O, 17 ..~ ~?~ .GG log ' 2,~rr 

~ ~_e~_! If higher orders the H g g  amplitude can easily be derived as A ( H g g )  = ~ 12~ v" 

are included, the parameter m must be interpreted as bare mass. 

(d)  S u m m a r y .  By adding up all possible decay channels, we obtain the total 
width shown in Fig.ha. Up to masses of 140 GeV, the Higgs particle is very 
narrow, F (H)  < 10 MeV. After opening up the real and virtual gauge boson 
channels, the state becomes rapidly wider, reaching a width of ~ 1 GeV at the 
Z Z  threshold. The width cannot be measured directly in the intermediate mass 
region at the LHC or e+e - colliders; however, it could be measured at muon 
colliders [35]. Above a mass of ~- 250 GeV, the state becomes wide enough to be 
resolved experimentally in general. 

The branching ratios of the main decay modes are displayed in Fig.hb. A 
large variety of channels will be accessible for Higgs masses below 140 GeV. 
The dominant mode are bb decays, yet c~, 7+v - and g g  still occur at a level of 
several per cent. [At MH = 120 GeV for instance, the branching ratios are 68% 
for bb, 3.1% for c~, 6.9% for r + 7  - and 7% for gg.] 77 decays occur at a level 
of 1 per mille. Above this mass value, the Higgs boson decay into W's becomes 
dominant, overwhelming all other channels if the decay mode into two real W's is 
kinematically possible. For Higgs masses far above the thresholds, Z Z  and W W  
decays occur at a ratio of 1:2, slightly modified only just above the t t  threshold. 
Since the width grows as the third power of the mass, the Higgs particle becomes 
very wide, F (H)  ~ ~Marl a [TeV]. In fact, for M H  ~ 1 TeV, the width reaches 
~ ½ TeV. 
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Fig. 5. (a) Total decay width (in Ge V) of the SM Higgs boson as a function of its 
mass. (b) Branching ratios of the dominant decay modes of the SM Higgs particle. All 
relevant higher order corrections are taken into account. 

2.3 Estimating the Higgs Mass 
from Electroweak High-Precision Data 

Indirect evidence for a light Higgs boson can be derived from the high-precision 
measurements of electroweak observables at LEP and elsewhere. Indeed, the fact 
tha t  the Standard Model is renormalizable only after including the top and Higgs 
particles in the loop corrections, indicates that  the electroweak observables are 
sensitive to the masses of these particles. 

The Fermi coupling can be rewritten in terms of the weak coupling and the W 
mass; at lowest order GF/X/~ = g2/8M~v. After substituting the electromagnetic 
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coupling, the electroweak mixing angle and the Z mass for the weak coupling 
and the W mass, this relation can be rewritten as 

G F 27ra 
V~ - sin 2 20wM~ [1 + Ar~ + Art  + ArH] . (17) 

The A terms take account of the radiative corrections. Are describes the shift 
in the electromagnetic coupling if evaluated at the scale M~ instead of zero- 
momentum. Art denotes the top (and bottom) quark contributions to the W 
and Z masses which are quadratic in the top mass. Finally, ArH accounts for the 
virtual Higgs contributions to the masses; this term depends only logarithmically 
[7] on the Higgs mass at leading order, 

A r H - - G F M 2 1 1 [ l o g  M~I ~] (_A¢~ >> AI~-) . (18) 
8v%2 3 

The screening effect reflects the role of the Higgs field as a regulator to render 
the electroweak theory renormalizable. 

Although the sensitivity on the Higgs mass is only logarithmic, the increasing 
precision in the measurement of the electroweak observables allow us to derive 
interesting estimates and constraints on the Higgs mass [8]: 

MH = 1 1 K + 1 1 6  . . . .  6~ GeV (19) 

< 420 GeV (95% CL) .  

It may be concluded from these numbers that the canonical formulation of the 
Standard Model which includes the existence of a Higgs boson with a mass 
below ~ 700 GeV, is compatible with the electroweak data. However, alternative 
mechanisms cannot be ruled out. 

2.4 H i g g s  P r o d u c t i o n  C h a n n e l s  at e + e  - Col l iders  

The first process which had been used to search directly for Higgs bosons over 
a large mass range, was the Bjorken process, Z ~ Z*H,Z*  --+ f f  [36]. By 
exploring this production channel, Higgs bosons with masses less than 65.4 GeV 
were excluded by the LEP1 experiments. The search now continues by reversing 
the role of the real and virtual Z bosons in the e+e - continuum at LEP2. 

The two main production mechanisms for Higgs bosons in e+e - collisions 
a r e  

Higgs-strahlung : e+ e - -~ Z* --~ Z H (20) 

W W  fusion : e+e - -~ F%v~(WW) --+ P¢u,H (21) 

In Higgs-strahlung [32], [36], [37] the Higgs boson is emitted from the Z-boson 
line while WW-fusion is a formation process of Higgs bosons in the collision of 
two quasi-real W bosons radiated off the electron and positron beams [38]. 
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As evident from the subsequent analyses, LEP2 can cover the SM Higgs mass 
range up to about  100 GeV [10]. The high energy e+e - linear colliders can cover 
the entire Higgs mass range in the second phase in which they will reach a total  
energy of about  2 TeV [13]. 

(a) Higgs-strahlung. The cross section for Higgs-strahlung can be written in a 
compact  form 

a(e+e  - --~ Z H )  - G2FM~ [v~ + a~] A 1/2 A + 1 2 M ~ / s  (22) 
967rs [1 - M~/s]  u 

where v~ = - 1  + 4 sin 2 0w and a~ = - 1  are the vector and axial-vector Z charges 
of the electron and A = [1 - ( M  H + Mz)2/s][1 - (l~IU -- ~,IZ)2/8] is the usual 
two-particle phase space function. The cross section is of the size cr --~ c~v/s ,  i.e. 
of second order in the weak coupling and it scales in the squared energy. 

k ......... a(e+e- ~ I-IX) [~] 
1 0 0 ~  " - - . .  . . . .  ~s=500 CeV 

3 0 ~ ' " - - . . . . ~  .......... 800 GeV 

1 0  ~ " - " ' -  " . . . . . .  " " ,  

"-, H .  ~, 

1 • ~ ~'t-.I , I L I I J ' ~ l  I 
100 200 300 400 500 600 700  

Fig. 6. The cross section for the production of SM Higgs bosons in Higgs-strahlun9 
e+e - --~ Z H  and W W / Z Z  fusion e+e - -4 F,~,¢/e+e-H; solid curves: ~ = 500 GeV, 
dashed curves: v/~ = 800 Ge V. 

Since the cross section vanishes for asymptot ic  energies, the Higgs-strahlung 
process is most useful for searching Higgs bosons in the range where the collider 
energy is of the same order as the Higgs mass, v ~  ~ O(MH).  The size of the 
cross section is illustrated in Fig.6 for the energy x/~ = 500 GeV of e+e - linear 
colliders as a function of the Higgs mass. Since the recoiling Z mass in the two- 
body reaction e+e - --+ Z H  is mono-energetic, the mass of the Higgs boson can be 
reconstructed from the energy of the Z boson, M ~  = s - 2 v / s E z  + M~,  without 
any need of analyzing the decay products of the Higgs bosom For leptonic Z 
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decays, missing mass techniques provide a very clear signal as demonstrated in 
Fig.7. 
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Fig. 7. Dilepton recoil mass analysis of Higgs-strahlung e+e - -+ Z H  -+ ~+~-+ any- 
thing in the intermediate Higgs mass range for MH = 140 GeV. The c.m. energy is 
vrs = 360 GeV and the integrated luminosity f £ = 5Orb -1 . Ref.[39], 

(b) W W  fusion. 
implicitly into a compact form, 

Also the cross section for the fusion process (21) can be cast 

a (e+e  - --+ P e v e H ) -  GFMw dx dy 
4v%  . [1+ ( y -  

y ~  + - - y  - 1  i + z - l ° g ( l + z )  

x z2(1 - y) 
y3 l + z  

(2a) 

with ~H = M~/s ,  ~w = M~v/s and z = y(x - ~H)/(~WX). 
Since the fusion process is a t-channel exchange process, the size is set by the 

W Compton wave length, suppressed however with respect to Higgs-strahlung by 
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3 / 2  the third power of the electroweak coupling, a ,~ a w / M  W. As a result, W fusion 
becomes the leading production process for Higgs particles at high energies. At 
asymptotic energies the cross section simplifies to 34[ ; G F M  W s 

~(e+e  - -~ ~ e ~ H )  -~ 4v%------ q -  log ~ - 2 . (24) 

In this limit, W fusion to Higgs bosons can be interpreted as a two-step process: 
The W + bosons are radiated as quasi-real particles from electrons and positrons, 

e ± ~ (ff)W +, with the Higgs bosons generated subsequently in the colliding IV 
beams. 

The size of the fusion cross section is compared with Higgs-strahlung in Fig.6. 
At v ~  = 500 GeV the two cross sections are of the same order, yet the fusion 
process becomes increasingly important with rising energy. 

(c) 77 fusion. The production of Higgs bosons in 73' collisions [40] can be ex- 
ploited to determine important properties of these particles, in particular the 
two-photon decay width. The H 7 7  coupling is built up by loops of charged 
particles. If the mass of the loop particle is generated through the Higgs mech- 
anism, the decoupling of the heavy particles is lifted and the 2t7 width reflects 
the spectrum of these states with masses possibly far above the Higgs mass. 

The two-photon width is related to the production cross section for polarized 
7 beams by 

a(73, ~ H) = 16rr2F(H --+ ~/7) x B W  (25) 
MH 

where B W  denotes the Breit-Wigner resonance factor in terms of the energy 
squared. For narrow Higgs bosons the observed cross section is found by folding 
the parton cross section with the invariant ~'7 energy flux vd£ ~''r/dr for J~^/= 0 
at 7- = M]l/See. 

The event rate for the production of Higgs bosons in 77 collisions of Weizsficker- 
Williams photons is too small to play a role in practice. However, the rate is suf- 
ficiently large if the photon spectra are generated by Compton back-scattering 
of laser light, Fig.8. The 77 invariant energy in such a Compton collider [41] is 
of the same size as the parent e+e - energy and the luminosity is expected to be 
only slightly smaller than the luminosity in e+e - collisions. In the Higg_s mass 
range between 100 and 150 GeV, the final state consists primarily of bb pairs. 
The large 77 continuum background is suppressed in the J y '  = 0 polarization 
state. For Higgs masses above 150 GeV, W W  final states become dominant, 
supplemented in the ratio 1:2 by Z Z  final states above the Z Z  decay threshold. 
While the continuum W W  background in "y7 collisions is very large, the Z Z  
background appears under control for masses up to order 300 GeV. 

2.5 Higgs Product ion  at Hadron Colliders 

Several processes can be exploited to produce Higgs particles in hadron colliders 
[34], [42]: 
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Fig. 8. Production rate of Standard Model Higgs bosons into three exclusive final states 
relevant for the intermediate- and heavy mass regions in 77 collisions. A value of 
4.  l O - 2 f b - 1 / G e V  is assumed for dE'~'~ /dW-r-~,[~O] 

gluon fusion : g9 -~ H 

W W ,  Z Z  fusion : W + W  - ,  Z Z  -~ H 

Higgs-strahlung off W, Z : q~ ~ W, Z ~ W, Z + H 

Higgs bremsstrahlung off top : q(t, g9 --+ t{ + H 

While gluon fusion plays a dominant role throughout the entire Higgs mass 
range of the Standard Model, the W W ,  Z Z  fusion process becomes increasingly 
important with rising Higgs mass. The two radiation processes are relevant only 
for light Higgs masses. 

The production cross sections at hadron colliders, at the LHC in particular, 
are quite sizable so that a large sample of SM Higgs particles can be produced in 
this machine. Experimental difficulties arise from the huge number of background 
events which come along with the Higgs signal events. This problem will be 
tackled by either triggering on leptonic decays of W, Z and t for the radiation 
processes or by exploiting the resonance character of the Higgs decays H -+ ~/~,; 
and H ~ Z Z  -+ 4g +. In this way, the Tevatron is expected to search for Higgs 
particles in the mass range above LEP2 up to about 110 to 120 GeV [11]. The 
LHC is expected to cover the entire canonical Higgs mass range MH ~ 700 GeV 
of the Standard Model [12]. 
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(a) Gluon fusion. The gluon-fusion mechanism [31], [34], [42], [43] 

pp--+ gg--+ H 

provides the dominant production mechanism of Higgs bosons at the LHC in the 
entire relevant Higgs mass range up to about 1 TeV. The gluon coupling to the 
Higgs boson in the SM is mediated by triangular loops of top and bottom quarks, 
cf. Fig.9. Since the Yukawa coupling of the Higgs particle to heavy quarks grows 
with the quark mass, thus balancing the decrease of the amplitude, the form 
factor approaches a non-zero value for large loop quark masses. [If the masses of 
heavier quarks beyond the third generation were generated solely by the Higgs 
mechanism, these particles would add the same amount to the form factor as 
the top quark in the asymptotic heavy quark limit.] 

g ~  . . . . .  H 

g 

Fig. 9. Diagrams contributing to gg -4 H at lowest order. 

The partonic cross section, Fig.9, can be expressed by the gluonic width of 
the Higgs boson at lowest order [34], [42], 

aLo(gg -~ H) = -0M}a(a  - Mg) 

7~ 2 

ao = ~-7~-,~ FLo(H ~ gg) - 
~1vl it 

GFCt~ 
288V'~" 

(26) 

where the scaling variable is defined as rQ = 4M~/M~ and ~ denotes the par- 
tonic c.m. energy squared. The form factor can easily be evaluated: 

3 [1 + (1 rQ)f(TQ)] (27) A~(~Q) = ~ - 

f(TQ) }+`/1-~Q iF T Q < I  - log , / 1  ;Q 

For small loop masses the form factor vanishes, A~ (rQ) ~ -3/8rQ[log(ro/4) + 
iTr] 2, while for large loop masses it approaches a non-zero value, A~(TQ) --+ 1. 
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In the narrow width approximation, the hadronic cross section can be cast 
into the form 

d£99 
aLO(PP--+ H) = a O T H - -  (28) 

dvH 

with d•gg/dTH denoting the gg luminosity of the pp collider, evaluated for the 
Drell-Yan variable TH = M } / s  where s is the total hadronic energy squared. 

g~--- 
g 

9 ~  

9 

H 

t , b ~ - - - H  - - H  

g 

Fig. 10. Typical diagrams contributing to the virtual and real QCD corrections to 
gg--+ H. 

The QCD corrections to the gluon fusion process [34], [42] are very impor- 
tant.  They stabilize the theoretical predictions for the cross section when the 
renormalization and factorization scales are varied. Moreover, they are large 
and positive, thus increasing the production cross section for Higgs bosons. The 
QCD corrections consist of virtual corrections to the basic process gg --+ H and 
real corrections due to the associated production of the Higgs boson with mass- 
less partons, gg ~ Hg and gq --+ Hq, q(t -+ Hg. These subprocesses contribute 
to Higgs production at O(a~). The virtual corrections rescale the lowest-order 
fusion cross section with a coefficient which depends only on the ratios of the 
Higgs and quark masses. Gluon radiation leads to two-parton final states with 
invariant energy ~ > M }  in the gg, gq and q~ channels. 

The final result for the hadronic cross section can be split into five parts 

[ _~] d~C~ 
a ( p p - - ~ H + X ) = a o  1 + C  TH~rH + A a g g + A a g q + A ~ q ~ .  (29) 

The calculation of the corrections has been performed in the M S  scheme. The 
mass MQ is identified with the pole quark mass and the renormalization scale 
in c~s and the factorization scale of the parton densities are fixed at the Higgs 
mass. [The general scale dependence is also known]. 

The coefficient C(TQ) denotes the finite part of the virtual two-loop correc- 
tions. It splits into the infrared part  rr 2 and the finite piece which depends on 
the quark mass: 

C(TQ) = 7c 2 + c(~'Q) . (30) 



180 Michael Spira and Peter M. Zerwas 

The finite parts of the hard contributions from gluon radiation in gg scattering, 
gq scattering and q~ annihilation may be written as 

1 d£ gg a,  
z~agg = dT--~-~-- T x --Tr ao {-zP~g(z)  log z + dgg(z,'rQ) 

H 

+ 1 2 [ ( l ° g ( 1 - _ . _ z Z ) ) + - z [ 2 - z ( 1 - z ) ] l o g ( 1 - z ) ] }  

Aagq = dr E x ao log - -  

H q , q  

Aaqo = dr E ~ x ao dqo (z, rQ) 
H q 

(1 - z) 2 + dgq(Z, 7-Q) 

(31) 

with z = r H / r  = M~/~;  Pgg and Pgq are the standard Altarelli-Parisi splitting 
functions. The coefficient functions c(ro) and d(z, rQ) can be reduced analyt- 
ically to one-dimensional integrals which in general must be evaluated numer- 
ically. However, they can be calculated analytically in the heavy-quark limit 

[a41, [421: 

11 

dgq(z,rQ) --+ ~z 2 - (1 - z) 2 

11 1 z) 3 d g(z, TQ) 
32 

dq~(z,~-Q) --+ ~ ( 1 -  z) a . (32) 

Thus, for light Higgs bosons the production cross section is available in complete 
analytic form, including the complicated QCD radiative corrections. 

The size of the radiative corrections can be parametrized by defining the K 
factor as K = aNLO/CrLO, in which all quantities are evaluated in the numerator 
and denominator in next-to-leading and leading order, respectively. The result 
of this calculation is shown in Fig. l l .  The virtual corrections I(rirt and the 
real corrections Kgg for the gg collisions are apparently of the same size, and 
both are large and positive; the corrections for qq collisions and the 9q inelastic 
Compton contributions are less important. After including these higher order 
QCD corrections, the dependence of the cross section on the renormalization 
and factorization scales is significantly reduced from a level of O(100%) down 
to a level of about 20%. 

The theoretical prediction for the production cross section of Higgs particles 
is presented in Fig.12 for the LHC as a function of the Higgs mass. The cross 
section decreases with increasing Higgs mass. This is, to a large extent: a conse- 
quence of the sharply falling gg luminosity for large invariant masses. The bump 
in the cross section is related to the t t  threshold in the top triangle. The overall 
theoretical accuracy of this calculation is expected to be at a level of 20 to 30%. 



Electroweak Symmetry Breaking and Higgs Physics 181 

3 

2,5 

2 

1.5 

1 

0.5 

0 

4?.5 

" ,  , , , " i , ' "  • 

",/s = 14 TeV M t = 175 GeV 
CTEQ4 

Kmt 

K 

Kqq 
....................................................... ::::::::::::::::::::::::::::::::::::: 

, i f f . i  r - i f r , J , 

50 100 200 500 1000 

M H [GeV] 

Fig. 11. K factors of the QCD-corrected 9luon-fusion cross section a(pp --~ H + X)  at 
the LHC with c.m. energy x/~ = 14 TeV. The dashed lines show the individual contribu- 
tions of the four terms of the QCD corrections given in (29). The renormalization and 
factorization scales have been identified with the Higgs mass and the CTEQ4 patton 
densities have been adopted. 

(b) Vector-boson fusion. The second important channel for Higgs production at 
the LHC is vector-boson fusion, W + W  - --+ H [20], [42]. For large Higgs masses 
this mechanism becomes competitive to gluon fusion; for intermediate masses 
the cross section is smaller by about an order of magnitude. 

For large Higgs masses, the two electroweak bosons II, Z which form the 
Higgs boson, are predominantly longitudinally polarized. At high energies, the 
equivalent particle spectra of the longitudinal W, Z bosons in quarks beams are 
given by 

f W ( x  ) _ G F M  2 1 - x (33) 
2v/~r2 x 

fZL(X) _ G F M ~  [(i~ _ 2eq sin 20w) 2 + (i~)s] 1 - x 
2 v % r  2 z 

x is the fraction of energy transferred from the quark to the W, Z boson in the 
splitting process q --~ q + W, X. From these particle spectra, the W W  and Z Z  
luminosities can easily be derived: 

d £ W W  2 4 [  ] 
_ G F l~l~v 2 1 + Tw log ~-w 

d v w  8~r4 2 ~-w - - T w  (34) 

d £ Z Z  2 ,  [ ] 
-- G F M z  [(I~ - 2eq sin s Ow) s + (i~)s] ( I f  d~'z 87r - - -U-  - 2eq, sin s 0w) 2 + (I~')2 
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with the Drell-Yan variable defined as TV = M~v/S .  Denoting the parton cross 
section for W W ,  Z Z  --+ H by ao with 

ao(VV -+ H) = ao6 (1 - M~/g)  (35) 

~o = v/2 GFTr 

the cross section for Higgs production in quark-quark collisions is given by 

d£ v y  
5(qq --+ qqH) - ao . (36) 

d~-v 

The hadronic cross section is finally obtained by summing (36) over the flux of 
all possible pairs of quark-quark and antiquark combinations 

fM d£q( a(qq' --+ V V  --4 H) = dr E & ' = Ts) (37) 2H/S qq' ~ (qq --4 qq'H;g • 

Since to lowest order the proton remnants are color singlets in the I/VI4 ~, Z Z  
fusion processes, no color will be exchanged between the two quark lines from 
which the two vector bosons are radiated. As a result, the leading QCD cor- 
rections to these processes are already accounted for by the corrections to the 
quark parton densities. 

The W W ,  Z Z  fusion cross sections for Higgs bosons at the LHC is shown in 
Fig.13. The process is apparently most important in the upper range of Higgs 
masses where the cross section approaches values close to gluon fusion. 
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(c) Higgs-strahlung off vector bosons. Higgs-strahlung, q(i --+ V* --+ V H  (V = 
W, Z) is a very important  mechanism Fig.13 for the search of light Higgs bosons 
at the hadron colliders Tevatron and LHC. Though the cross section is smaller 
than for gluon fusion, leptonic decays of the electroweak vector bosons are ex- 
tremely useful to filter Higgs signal events out of the huge background. Since the 
dynamical mechanism is the same as for e+e - colliders, except for the folding 
with the quark-antiquark densities, intermediate steps of the calculation will not 
be given and merely the final values of the cross sections for the Tevatron and 
the LHC are recorded in Fig.13. 

(d) Higgs bremsstrahlung off top quarks. Also the process gg, q(1 --+ t tH is rele- 
vant only for small Higgs masses, Fig.13. The analytical expression for the parton 
cross section, even at lowest order, is quite involved so that  just the final results 
for the LHC cross section are shown in Fig.13. 

Higgs bremsstrahlung off top quarks is also an interesting process for mea- 
surements of the Ht tYukawa coupling. The cross section a(pp --~ tEH) is directly 
proportional to the square of this fundamental coupling. 

Summary. An overview of the production cross sections for Higgs particles at 
the LHC is presented in Fig.13. Three classes of channels can be distinguished, 
as discussed in detail before. The gluon fusion of Higgs particles is a universal 
process, dominant over the entire SM Higgs mass range. Higgs-strahlung off 
electroweak W, Z bosons or top quarks is prominent for light Higgs bosons. The 
WW, ZZ  fusion channel, by contrast, becomes increasingly important  in the 
upper part of the SM Higgs mass range. 

The signatures for the search of Higgs particles are dictated by the decay 
branching ratios. In the lower part of the intermediate mass range, resonance 
reconstruction in VV final states and bb jets can be exploited. In the upper part 
of the intermediate mass range, decays to ZZ* and WW* are important,  with 
the two electroweak bosons decaying leptonically. In the mass range above the 
on-shell ZZ  decay threshold, the charged-lepton decays H --+ ZZ  --+ 4~ + provide 
a gold-plated signature. Only at the upper end of the classical SM Higgs mass 
range, also decays to neutrinos and jets, generated in W and Z decays, complete 
the search techniques. 

2.6 T h e  P ro f i l e  o f  t h e  Higgs  P a r t i c l e  

To establish the Higgs mechanism experimentally, the nature of this particle 
must be explored by measuring all its characteristics, the mass and lifetime, 
the external quantum numbers spin-parity, the couplings to gauge bosons and 
fermions, and last but not least, the Higgs self-couplings. While part of this 
program can be realized at the LHC, the complete profile of the particle can be 
reconstructed across the entire mass range in e+e - colliders. 



184 Michael Spira and Peter M. Zerwas 

10 2 

10 

1 

- 1  

10 

- 2  

lO 

- 3  

10 

- 4  

10 
0 

. . . .  i . . . .  i . . . .  I . . . .  i . . . .  i . . . .  i . . . .  ~ . . . .  i . . . .  i , , ,  

o'(pp--->H+X ) [pb] 

= 14 TeV -,'s 
• ~ gg---~H M~ = 175 GeV 

. . . .  I . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i , ~ ' ,  ; . .~ .  . . . . . .  / 

200 400 600 800 1000 

M H [GeV] 

Fig. 13. Higgs production cross sections at the LHC [x/~ = 14 TeV] for the various 
production mechanisms as a function of the Higgs mass. The full QCD-corrected results 
for the 91uon fusion gg ~ H,  vector boson fusion qq -+ VVqq ~ Hqq, vector boson 
bremsstrahlung qq --~ V* --+ H V  and associated production gg, qq -+ Ht{ ,Hbb are 
shown. The QCD corrections to the last process are unknown and thus not included. 

(a) Mass.  The mass of the Higgs particle can be measured by collecting the 
decay products of the particle at hadron and e+e - eolliders. Moreover, in e+e - 
collisions Higgs-strahlung can be exploited to reconstruct the mass very precisely 
from the Z recoil energy in the two-body process e+e - -+ Z H ,  as discussed 
already before. An overall accuracy of about ( ~ / f H  ~ 100 MeV can be expected. 

(b) Wid th / l i f e t ime .  The width of the state, i.e. the lifetime of the particle, can 
be measured directly above the Z Z  decay threshold where the width grows 
rapidly. In the lower part  of the intermediate mass range the width can be 
measured indirectly by combining the branching ratio for H ~ 2~f, accessible 
at the LHC, with the measurement  of the partial ~/7 width, accessible through 
3'3' production at a Compton collider. In the upper par t  of the intermediate 
mass range, the combination of the branching ratios for H --+ W W ,  Z Z  decays 
with the production cross sections for W W  fusion and Higgs-strahlung, which 
can be expressed both through the partial Higgs-decay widths to W W  and Z Z  
pairs, will allow us to extract  the width of the Higgs particle. Thus, the width of 
the Higgs particle can be determined throughout the entire mass range when the 
experimental  results from LHC, e+e - and optional ~/~/colliders can be combined. 
The direct measurement  of the width in the intermediate mass range will be 
possible at muon colliders in which the Higgs boson can be generated as an s- 
channel resonance: # + # -  --+ H ~ f f ,  V V .  The energy resolution of the ninon 
beams is expected to be so high that  the Breit-Wigner excitation curve can be 
reconstructed [35]. 
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(c) Spin-parity. The angular distribution of the Z / H  bosons in the Higgs- 
strahlung process is sensitive to the spin and parity of the Higgs particle [13]. 
Since the production amplitude is given by A(0 +) ~ ez .  " e z  the Z boson is 
produced in a state of longitudinal polarization at high energies - in accord with 
the equivalence theorem. As a result, the angular distribution 

da 8~I~ 
sin 2 0 + - -  (38) 

d cos 0 As 

approaches the spin-zero sin 2 0 law asymptoticalIy. This may be contrasted with 
the distribution ,-~ 1 + cos 2 0 for negative parity states which follows from the 
transverse polarization amplitude ,4(0-) ,~ ez. × ez -kz. It is also characteris- 
tically different from the distribution of the background process e+e - --+ Z Z  
which, as a result of t /u-channel  e exchange, is strongly peaked in the for- 
ward/backward direction, Fig. 14. 

In a similar way, the zero spin of the Higgs particle can be determined from 
the isotropic distribution of the decay products. Moreover, the parity can be 
measured by observing the spin correlations of the decay products. According to 
the equivalence theorem, the azimuthal angles of the decay planes in H --+ Z Z  --+ 
( # + p - )  (#+#-) are asymptotically uncorrelated, d F + / d ¢ ,  ~ 0, for a 0 + particle; 

1 cos 2¢. for the distribution of the this is to be contrasted to d F - / d ¢ .  --+ 1 - 
azimuthal angle between the planes for the decay of a 0- particle. The difference 
between the distributions follows from the different polarization states of the 
vector bosons in the two cases. While they approach longitudinal polarization 
for scalar Higgs decays, they are transversely polarized for pseudoscalar particle 
decays. 

(d) Higgs couplings. Since the fundamental particles acquire masses through the 
interaction with the Higgs field, the strength of the Higgs couplings to fermions 
and gauge bosons is set by the masses of these particles. It will therefore be a 
very important task to measure these couplings, which are uniquely predicted 
by the very nature of the Higgs mechanism. 

The Higgs couplings to massive gauge bosons can be determined from the 
production cross sections in Higgs-strahlung and WW, Z Z  fusion, with the ac- 
curacy expected at the per-cent level. For heavy enough Higgs bosons the decay 
width can be exploited to determine the coupling to electroweak gauge bosons. 
For Higgs couplings to fermions the branching ratios H ~ b[~, c~, T+T - can be 
used in the lower part of the intermediate mass range; these observables allow 
the direct measurement of the Higgs Yukawa couplings. This is exemplified for 
a Higgs mass of 140 GeV in Fig.15. 

A particularly interesting coupling is the Higgs coupling to top quarks. Since 
the top quark is by far the heaviest fermion in the Standard Model, irregularities 
in the standard picture of electroweak symmetry breaking through a fundamental 
Higgs field may become apparent first in this coupling. Thus the H t t  Yukawa 
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Fig. 14. Left: Angular distribution of Z / H  bosons in Higgs-strahlung, compared with 
the production of pseudoscalar particles and the Z Z  background final states [44]. Right: 
The same for the signal plus background in the experimental simulation of [45]. 

coupling may eventually provide essential clues to the nature of the mechanism 
breaking the electroweak symmetries. 

Top loops mediating the production processes gg -~ H and ~,:,,' -+ H (and 
the corresponding decay channels) give rise to cross sections and partial widths 
which are proportioaal to the square of the Higgs-top Yukawa coupling. This 
Yukawa coupling can be measured directly, for the lower part of the intermediate 
mass range, in the bremsstrahlung processes pp ~ t{H and e+e - --+ t[H.  The 
Higgs boson is radiated, in the first process exclusively, in the second process 
predominantly, from the heavy top quarks. Even though these experiments are 
difficult due to the small cross sections, [cf. Fig.16 for e+e - collisions [47]], and 
the complex topology of the bbbbW+W - final state, this analysis is an important 
tool for exploring the mechanism of electroweak symmetry breaking. For large 
Higgs masses above the t/ threshold, the decay channel H -+ t / can  be studied; in 
e+e - collisions the cross section of e+e - -+ t {Z  increases through the reaction 
e+e - -+ Z H ( - +  t~  [48]. Higgs exchange between t t  quarks also affects the 
excitation curve near the threshold at a level of a few per cent. 

(e) Hi99s self-couplings. The Higgs mechanism, based on a non-zero value of 
the Higgs field in the vacuum, must finally be made manifest experimentally by 
reconstructing the interaction potential which generates the non-zero Higgs field 
in the vacuum. This program can be carried out by measuring the strength of 
the trilinear and quartic self-couplings of the Higgs particles: 

gH3 = 3{V~GFaI~/  , (39) 

g.4 = 3 v ~ G v M ~ .  (40) 
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Fig. 15. The measurement of decay branching ratios of the SM Higgs boson for 
MH = 140 GeV. In the bottom part of the figure the small error bar belongs to the 
r branching ratio, the large bar to the average of the charm and gluon branching ratios 
which were not separated in the simulation of Ref.[46]. In the upper part of the figure 
the open circle denotes the b branching ratio, the full circle the W branching ratio. 

This is a very difficult task since the processes to be exploited are suppressed 
by small couplings and phase space. Nevertheless, the problem can be solved 
at the LHC and in the high energy phase of the e+e - linear colliders for suffi- 
ciently high luminosities [49]. The best suited reaction for the measurement of 
the trilinear coupling for Higgs masses in the theoretically preferred mass range 
of (9(100 GeV), is the WW fusion process 

pp, e+e - ~ W W  --+ H H  (41) 

in which, among other mechanisms, the two-Higgs final state is generated by the 
s-channel exchange of a virtual Higgs particle so that this process is sensitive to 
the trilinear H H H  coupling in the Higgs potential, Fig.17. Since the cross section 
is only a fraction of 1 fb at an energy of ~ 1.6 TeV, an integrated luminosity of 
..~ lab -1 is needed to isolate the events at linear colliders. The quartic coupling 
H 4 seems to be accessible only through loop effects in the foreseeable future. 

To sum up, the essential elements of the Higgs mechanism can be established 
experimentally at the LHC and TeV e+e - linear colliders. 

3 H i g g s  B o s o n s  i n  S u p e r s y m m e t r i c  T h e o r i e s  

Arguments rooted deeply in the Higgs sector, play an eminent role in introducing 
supersymmetry as a fundamental symmetry of Nature [14]. This is the only 
symmetry which correlates bosonic with fermionic degrees of freedom. 
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(a) The cancellation between bosonic and fermionic contributions to the radia- 
tive corrections of the light Higgs masses in supersymmetric theories provides a 
solution of the hierarchy problem in the Standard Model. If the Standard Model 
is embedded in a grand-unified theory, the large gap between the high grand- 
unification scale and the low scale of electroweak symmetry breaking can be 
stabilized in a natural way in boson-fermion symmetric theories [15], [50]. Denot- 
ing the bare Higgs mass by M~/,0 , the radiative corrections due to vector-boson 
loops in the Standard Model by 5M~, y and the contributions of supersymmetric 
fermionic gaugino partners by 2 5MH,f the physical Higgs mass is given by the 

2 sum M 2 = M2H,o + 5 M } , v  + 6MH, f "  The vector-boson correction is quadrat- 

ically divergent, ~M~,  v ~ a[A 2 - M 2] so that for a cut-off scale A ~ A c u r  
extreme fine-tuning between the intrinsic bare mass and the radiative quantum 
fluctuations would be needed to generate a Higgs mass of order M w .  However, 
due to Pauli's principle, the additional fermionic gaugino contributions in super- 

2 ~- -a[A 2 -1~7I 2] so that the symmetric theories are just opposite in sign, 5M/L f 

divergent terms cancel. Since 6 M ~  ~ a[~ i  2 - M2], any fine-tuning is avoided 
for supersymmetric particle masses _g/g O(1 TeV). Thus, within this symmetry 
scheme the Higgs sector is stable in the low-energy range M H  ~ M w  even in 
the context of high-energy GUT scales. 

(b) The concept of supersymmetry is strongly supported by the successful pre- 
diction of the electroweak mixing angle in the minimal version of this theory [16]. 
The extended particle spectrum of this theory drives the evolution of the elec- 
troweak mixing angle from the GUT value 3/8 down to sin 2 0w = 0.2336=t=0.0017, 
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the error including unknown threshold contributions at the low and the high 
supersymrnetric mass scales. The prediction coincides with the experimentally 

l~lezP measured value sin 2 v W = 0.2317 + 0.0003 within the theoretical uncertainty of 
less than 2 per mille. 

(c) Conceptually very interesting is the interpretation of the Higgs mechanism 
in supersymmetric theories as a quantum effect [51]. The breaking of the elec- 
troweak symmetry SU(2)L × U(1)y can be induced radiatively while leaving the 
electromagnetic gauge symmetry U(1)~m and the color gauge symmetry SU(3)c 
unbroken for top-quark masses between 150 and 200 GeV. Starting with a set 
of universal scalar masses at the high GUT scale, the squared mass parameter 
of the Higgs sector evolves to negative values at the low electroweak scale while 
the squared squark and slepton masses remain positive. 

This fundamental mechanism can easily be studied [52] in a simplified model 
for the two stop fields tR and tL, and the Higgs field Hz. Solving the renormal- 
ization group equations 

0 log p2 

Mi~ J 1 L M}L 
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with the initial condition 

GUT scale: 

the masses evolve down to 

ELW scale: 

M 2 = M ?  = M ?  = M  s > 0  (43) 
H2 t R tL 

Me 1 2 = - M6 <0  

M R=0 
1 2 M- tL : + M6 > 0 

at low energies. Both stop states preserve the normal particle character, while 
the negative mass squared of the field H2 generates the Higgs mechanism. 

The Higgs sector of supersymmetric theories differs in several aspects from 
the Standard Model [17]. To preserve supersymmetry and gauge invariance, at 
least two iso-doublet fields must be introduced, leaving us with a spectrum of 
five or more physical Higgs particles. In the minimal supersymmetric extension 
of the Standard Model (MSSM) the Higgs self-interactions are generated by 
the scalar-gauge action so that the quartic couplings are related to the gauge 
couplings in this scenario. This leads to strong bounds of less than about 130 
GeV for the mass of the lightest Higgs boson [18]. If the system is assumed to 
remain weakly interacting up to scales of the order of the GUT or Planck scale, 
the mass remains small, for reasons quite analogous to the Standard Model, even 
in more complex supersymmetric theories involving additional Higgs fields and 
Yukawa interactions. The masses of the heavy Higgs bosons are expected to be 
of the scale of electroweak symmetry breaking up to order 1 TeV. 

3.1 The Higgs Sector of the MSSM 

The particle spectrum of the MSSM [14] consists of leptons, quarks and their 
scalar supersymmetric partners, and gauge particles, Higgs particles and their 
spin-l/2 partners. The matter and force fields are coupled in supersymmetric 
and gauge invariant actions: 

1 S : Sv + S¢ + Sw : Sv = ~ f d6zlfV~I?V~ gauge action 

S¢ = f dSz¢*egv¢ matter action (44) 

Sw = f d6 zW[~p]  superpotential 

Decomposing the superfields into fermionic and bosonic components, and car- 
rying out the integration over the Grassmann variables in z --+ x, the following 
Lagrangians can be derived, describing the interactions of the gauge, matter and 
Higgs fields: 

1 
£y  = - ~ F ,  vF, ,  + . . .  + ~D 2 
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£¢, = D~O*D~,o + . . .  + ~D[0[ 2 

The D field is an auxiliary field which does not propagate in space-time and 
which can be eliminated by applying the equations of motion: D = -~1¢12. 
Reinserted into the Lagrangian, the quartic coupling of the scalar Higgs fields 
turns out to be 2 

/:[¢4] = _ ~ ] ¢ 2 j ~  . (45) 

Thus, the quartic coupling of the Higgs fields is given, in the minimal supersym- 
metric theory, by the square of the gauge coupling. Unlike the Standard Model, 
this coupling is not a free parameter. Moreover, the coupling is weak. 

Two independent Higgs doublet fields HI and H2 must be introduced into 
the superpotential, 

W = - ~ [ J ~ H ~  + ~j[f ,H~LJR + f~H:OJb + f~H~Q~5] (46) 

to provide masses to the down-type particles (HI) and the up-type particles (He). 
Unlike the Standard Model, the second Higgs field cannot be identified with the 
charge conjugate of the first Higgs field since W must be analytic to preserve 
supersymmetry. Moreover, the Higgsino fields associated with a single Higgs field 
would generate triangle anomalies; they cancel if the two conjugate doublets are 
added up, and the classical gauge invariance of the interactions is not destroyed 
at the quantum level. Integrating the superpotential over the Grassmann coor- 
dinates generates the supersyrnmetric Higgs self-energy V0 = I pl 2 (IH~ 12 + IN.212). 
The breaking of supersymmetry can be incorporated in the Higgs sector by intro- 
ducing bilinear mass terms piiHiHj. Added to the supersymmetric self-energy 
part H 2 and the part H 4 generated by the gauge action, they lead to the fol- 
lowing Higgs potential 

2 rr*i r r i  2 rr*i rri  2 i J 
V = m l / - / 1  r l  1 + m 2 - r / 2  172 - -  m l ~ ( e i j H 1 H 2  + hc )  

t 2 ) [ H l . i  i . i  i 2 . i  . i  2 
+ 9  H 1  - H 2  g2] + + l ( g  2 'HI H2 I (47) 

The Higgs potential includes three bilinear mass terms while the strength of the 
quartic couplings is set by the SU(2)L and U(1)y gauge couplings squared. The 
three mass terms are free parameters. 

The potential develops a stable minimum for H~ --+ (0, th) and Hg_ --+ (v-2,0), 
if the following conditions are met: 

> 

• 2 o < (48) 

Expanding the fields about the ground state values vl and v'2, 

H~ = H + cos 3 + G+ sin/3 (49) 

H~ = Vl + [H ° cosa - h ° sina + iA ° sin/3 - iG ° cos 3]/x/~ 



192 Michael Spira and Peter M. Zerwas 

and 
H~ = v2 + [H ° sina + h ° cosa + iA  ° cos/3 + iG ° sin/3]/x/~ 

(50) 
H g = H -  sin/3 - G-  cos/3 

the mass eigenstates are given by the neutral states h °, H ° and A °, which are 
even and odd under C7 p transformations, and by the charged states H+; the G 
states correspond to the Goldstone modes which are absorbed by the gauge fields 
to build up the longitudinal components. After introducing the three parameters 

M~ = 1(92 + g'2)(v~ + v~) 

M~ = m~ ~ + ~ 
VlV2 

tan/3 = __v2 (51) 
?31 

the mass matrix can be decomposed into three 2 x 2 blocks which are easy to 
diagonalize: 

charged matr ix:  M~=sin2/3(M~+M~v)  It : /3 1 lctg/3 

charged mass: M~e = M~ + M~v 

l 
pseudoscalar mass: A¢~ t 

s c a l a r  m a t r i x :  ( ~  [ t g ~ - 1  I 3I~ [ct_gl/3-1 1 )  My = sin 2/3 + 
- c t g 3  tg/3 

scalar masses: 

M 2 1 [M~ + ~ h , H : [  
L 

- 4M;~ M z cos 2 2~ 

7~ 
with - - < a < 0 

2 
(.52) 
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The three zero-mass Goldstone eigenvalues of the charged and pseudoscalar mass 
matrices are not denoted explicitly. 

From the mass formulae, two important inequalities can readily be derived, 

Mh < Mz,-h~[A < MH (53) 

Mw <_ MH± (54) 

which, by construction, are valid in the tree approximation. As a result, the 
lightest of the scalar Higgs masses is predicted to be bounded by the Z mass. 
modulo radiative corrections. These bounds follow from the fact that the quartic 
coupling of the Higgs fields is determined in the MSSM by the size of the gauge 
couplings squared. 

S U S Y  radiat ive  correct ions.  The tree-level relations between the Higgs 
masses are strongly modified by radiative corrections involving the supersym- 
metric particle spectrum of the top sector [53]. These effects are proportional to 
the fourth power of the top mass and to the logarithm of the stop mass. Their 
origin are incomplete cancellations between virtual top and stop loops, reflecting 
the breaking of supersymmetry. Moreover, the mass relations are affected by the 
potentially large mixing between tL and {R due to the top Yukawa coupling. 

To leading order in M 4 the radiative corrections can be summarized in the 
parameter 

_ Mh Mi~ 3GF M 4 l o g - -  (55) 
e V~Tr 2 sin2~ ~I: 

In this approximation the light Higgs mass Mh can be expressed by MA and 
tg 13 in the following compact form: 

M2 = -~ MI  + M~ + e 

- [(M 2 + M~ +~)2 _4MZAM2Cos22/3_4e(M~sin 2/3 + Mzcos 2/3)] 1/2 ]. 

The heavy Higgs masses MH and Mr/± follow from the sum rules 

M~/= M~ + M~ - M~ + e, 

Mi : = + . 

Finally, the mixing parameter a which diagonalizes the CT~-even mass matrix, 
is given by the radiatively improved relation: 

M~ + Mz 2 ~ 
t g 2 a = t g 2 / 3 M ~ _ M ~ + e / c o s 2 / 3  with - ~  < c ~ < 0 .  (56) 

The spectrum of Higgs masses Mh, MH and MH± is displayed as a function 
of the pseudoscalar mass MA in Fig.18 for two representative values tg/3 = 1.5 
and 30. For large A mass, the masses of the heavy Higgs particles coincide 
approximately, MA ~ MH ~-- MH=L, while the light Higgs mass approaches a 
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F ig .  18. (a) The upper limit on the light scalar Higgs pole mass in the MSSM as a 
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smal l  a s y m p t o t i c  value.  The  s p e c t r u m  for large values of tg/3 is h ighly  regular :  

For  smal l  MA, one finds { M  H ~ MA,J~IH~MH+ ~ const},  for large MA the  

oppos i t e  re la t ionsh ip  {M~ ~ const ,  MH ~ MH~ ~ MA} .  
Whi le  the  non- lead ing  effects of mix ing  on the  Higgs mass  re la t ions  are qui te  

involved,  the  impac t  on the  uppe r  b o u n d  of the  l ight  Higgs mass  Mh can be 
s u m m a r i z e d  in a s imple  way: 

M~ < M~ cos ~ 2~ + ~M2 + ~ .  /57) 
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The leading top contribution is related to the parameter e, 

5M 2 = e sin 2/3. (58) 

The contribution, 

(59) 

depends on the mixing parameter 

M t X ,  = M , [ A ,  - ~ ctgg] (60) 

which couples left- and right-chirality states in the stop mass matrix; h, g are 
functions of the stop masses: 

a - b l ° g ~  and g -  (a -b)  2 2 -  ~ l o g  . (6~) 

Subdominant contributions can essentially be reduced to higher-order QCD ef- 
fects. They can effectively be incorporated by interpreting the top mass parame- 
ter Mt -+ Mt(pt )  as the MS top mass evaluated at the geometric mean between 
top and stop masses, #2 t = Mt M~. 

Upper bounds on the light Higgs mass are shown in Fig. 18a for two represen- 
tative values tg/3 = 1.5 and 30. The curves either do not include or do include 
mixing effects. It turns out that  Mh is bounded by about Mh ~< 100 GeV for 
moderate values of tg/3 while the upper bound is given, in general, by Mh ~ 130 
GeV, including large values of tg/3. The light Higgs sector can therefore be cov- 
ered for small tg/3 entirely by the LEP2 experiments - a most exciting prospect 
of the search for this Higgs particle in the next few years. 

The two ranges of tg/3 near tg/3 ,~ 1.7 and tg/3 ~ Mt/Mb "-, 30 to 50 are 
theoretically preferred in the MSSM if the model is embedded in a grand-unified 
scenario [55]. Given the experimentally observed top quark mass, universal 7 
and b masses at the unification scale can be evolved down to the experimental 
mass values at low energies in these two ranges of tg/3. Qualitative support 
for small tg/3 follows from the observation that in this scenario the top mass 
can be interpreted as a fixed-point of the evolution down from the unification 
scale [56]. Moreover, the small tg/3 range is also slightly preferred as radiative 
corrections which reduce the light Higgs mass extracted from the high-precision 
electroweak observables, are minimized in this parameter range [57]. By contrast, 
tuning problems in adjusting the T/b m a s s  ratio are more severe for the large 
tg/3 solution. Nevertheless, this solution is attractive as the SO(10) symmetry 
relation between T/b/t m a s s e s  can be accommodated in this scenario. 
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3.2 SUSY Higgs Couplings to SM Particles 

The size of MSSM Higgs couplings to quarks, leptons and gauge bosons is similar 
to the Standard Model, yet modified by the mixing angles a and ,3. Normalized 
to the SM values, they are listed in Tab.2. The pseudoscalar Higgs boson .4 
does not couple to gauge bosons at the tree level but the coupling, compatible 
with C7 ~ symmetry, can be generated by higher-order loops. The charged Higgs 
bosons couple to up and down fermions with the left- and right-chiral amplitudes 

94- = -@2 [gt(1 ~: 3'5) + gb(1 + 75)], where gt,b = ~ m t . b .  

SM H 1 1 1 

MSSM h eosc~/sin/3 - s i n a / c o s 3  s in(3-ct)  

H sina/sinC? cosa/cos/3 c o s ( ~ - a )  

A 1/tg/3 tg~ 0 

Table 2. Higgs couplings in the MSSM to fermions and gauge bosons /V = IV~ Z] 
relative to SM couplings. 

The modified couplings incorporate the renormalization due to SUSY radia- 
tive corrections to leading order in Mt if the mixing angle a is related to ,3 
and MA through the corrected formula (56). The behavior of the couplings as a 
function of mass MA is exemplified in Fig.19. 

For large MA, in practice MA ~ 200 GeV, the couplings of the light Higgs 
boson h to the fermions and gauge bosons approach asymptotically the SM 
values. This is the essence of the decoupling theorem: Particles with large masses 
must decouple from the light particle system as a consequence of the quantmn- 
mechanical uncertainty principle. 

3.3 Decays of  Higgs Particles 

The lightest neutral Higgs boson h will decay mainly into fermion pairs since its 
mass is smaller than ~ 130 GeV, Fig.20a (e.f. [58] for a comprehensive summary). 
This is in general, also the dominant decay mode of the pseudoscalar boson A. 
For values of tgfl  larger than unity and for masses less than ~,, 140 GeV, the 
main decay modes of the neutral Higgs bosons are decays into b{) and 7" + ~-- pairs; 
the branching ratios are of order ~ 90% and 8%, respectively. The decays into 
c~ pairs and gluons are suppressed especially for large tg ft. For large masses, 
the top decay channels H, A --+ t[ open up; yet for large tg S this mode remains 
suppressed and the neutral Higgs bosons decay almost exclusively into bb and 
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r + r  - pairs. If the mass is large enough, the heavy CP-even Higgs boson H can in 
principle decay into weak gauge bosons, H ~ W W ,  Z Z .  Since the partial widths 
are proportional to cos 2 (B - c~), they are strongly suppressed in general, and the 
gold-plated Z Z  signal of the heavy Higgs boson in the Standard Model is lost in 
the supersymmetric extension. As a result, the total widths of the Higgs bosons 
are much smaller in supersymmetric theories than in the Standard Model. 

The heavy neutral Higgs boson H can also decay into two lighter Higgs 
bosons. Other possible channels are Higgs cascade decays and decays into super- 
symmetric particles [59]-[61], Fig.21. In addition to light sfermions, Higgs boson 
decays into charginos and neutralinos could eventually be important. These new 
channels are kinematically accessible at least for the heavy Higgs bosons H, A 
and He;  in fact, the branching fractions can be very large and they can be- 
come even dominant in some regions of the MSSM parameter space. Decays of 
h into the lightest neutralinos (LSP) are also important, exceeding 50% in some 
parts of the parameter space. These decays affect strongly experimental search 
techniques. 

The charged Higgs particles decay into fermions but also, if allowed kinemat- 
ically, into the lightest neutral Higgs and a W boson. Below the tb and W h  
thresholds, the charged Higgs particles will decay mostly into Tu, and cs pairs, 
the former being dominant for tg/3 > 1. For large MH~ values, the top-bottom 
decay mode H + ~ tb becomes dominant. In some parts of the SUSY parameter 
space, decays into supersymmetric particles may exceed 50 %. 

Adding up the various decay modes, the width of all five Higgs bosons remains 
very narrow, being of order 10 GeV even for large masses. 

3.4 The  P r o d u c t i o n  of SUSY Higgs Part icles  in e+e - Collisions 

The search for the neutral SUSY Higgs bosons at e+e - linear colliders will be 
a straightforward extension of the search presently performed at LEP2, which 
is expected to cover the mass range up to ~ 100 GeV for neutral Higgs bosons, 
depending on tgfl. Higher energies, vG in excess of 250 GeV, are required to 
sweep the entire parameter space of the MSSM. 

The main production mechanisms of neutral Hi99s bosons at e+e - colliders 
[18], [606], [62] are the Higgs-strahlung process and associated pair production, 
as well as the fusion processes: 

z 
(a) Higgs - strahlung : e+e - ~ Z + h / H  

z) 
(b) Pair Production : e+e - A + h / H  

(c) Fusion Processes : e+e - ~ Ue + h / H  

e+e - e+e - + h / H  

The CSP-odd Higgs boson A cannot be produced in fusion processes to lead- 
ing order. The cross sections for the four Higgs-strahlung and pair production 
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F i g .  21 .  Branching ratios of the MSSM Higgs boson H , A , H  ± decays into 
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the squark masses of the first two generations as M ~  = 400 GeV. The gaugino mass 

parameter has been set to M2 = 150 GeV. 

processes can be expressed as 

a ( e + e  - -4 Z + h / H )  = s in  2 / cos2(~5 - a )  aSM 

a(e+e - -4 A + h/H) = cos 2 / sin2(13 - a) X ~sM (62) 

where ~SM is the SM cross section for Higgs-strahlung and the coefficient A 
A~t/2/A~ accounts for the suppression of the P-wave  Ah/H cross sections near 
the threshold. 

The cross sections for Higgs-strahlung and for pair production, likewise the 
cross sections for the production of the light and the heavy neutral Higgs bosons 
h and H,  are mutually complementary to each other, coming either with coef- 
ficients sin 2 (/3 - a) or cos 2 (/3 - a).  As a result, since asM is large, at least the 
lightest CSD~ven Higgs boson must be detected. 

Representative examples of the cross sections for the production mechanisms 
of the neutral Higgs bosons are shown as a function of the Higgs masses in 
Fig.22 for tg/3 = 1.5 and 30. The cross section for hZ is large for ]~fh near the 
maximum value allowed for tg/3; it is of order 50 fb, corresponding to ,-, 2,500 
events for an integrated luminosity of 50 fb -1.  By contrast, the cross section 
for H Z  is large if Mh is sufficiently below the maximum value [implying small 
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MH]. For h and for light H,  the signals consist of a Z boson accompanied by 
a bb or T+'r - pair. These signals are easy to separate from the background 
which comes mainly from Z Z  production if the Higgs mass is close to Mz.  For 
the associated channels e+e - ~ A h  and A H ,  the situation is opposite to the 
previous case: The cross section for A h  is large for light h whereas A H  pair 
production is the dominant mechanism in the complementary region for heavy 
H and A bosons. The sum of the two cross sections decreases from -- 50 to 
10 fb if MA increases from ,-- 50 to 200 GeV at v~  = 500 GeV. In major parts 
of the parameter  space, the signals consist of four b quarks in the final state, 
requiring provisions for efficient b quark tagging. Mass constraints will help to 
eliminate the backgrounds from QCD jets and Z Z  final states. For the W W  
fusion mechanism, the cross sections are larger than for Higgs-strahlung if the 
Higgs mass is moderately small - less than 160 GeV at x/~ = 500 GeV. However, 
since the final state cannot be fully reconstructed, the signal is more difficult to 
extract. As in the case of the Higgs-strahlung processes, the production of light 
h and heavy H Higgs bosons complement each other in W W  fusion, too. 

The charged Higgs bosons, if lighter than the top quark, can be produced in 
top decays, t --+ b + H +, with a branching ratio varying between 2% and 20% in 
the kinematically allowed region. Since the cross section for top-pair production 
is of order 0.5 pb at x/s = 500 GeV, this corresponds to 1,000 to 10,000 charged 
Higgs bosons at a luminosity of 50 fb -1. Since for t g 3  larger than unity, the 
charged Higgs bosons will decay mainly into vu , ,  this results in a surplus of 
v final states over e, # final states in t decays, an apparent breaking of lepton 
universality. For large Higgs masses the dominant decay mode is the top decay 
H + ~ tb. In this case the charged Higgs particles must be pair produced in 
e+e - eolliders: 

e+e - ~ H + H  - . 

The cross section depends only on the charged Higgs mass. It is of order 100 
fb for small Higgs masses at x/~ = 500 GeV, but it drops very quickly due to 
the P-wave  suppression ,,- 3a near the threshold. For MHe = 230 GeV, the 
cross section falls to a level of -~ 5 fb, which for an integrated luminosity of 
50fb -1 corresponds to 250 events, The cross section is considerably larger for 
77 collisions. 

Experimental search Strategies. Search strategies have been summarized for 
neutral Higgs bosons in Refs.[63], [64] and for charged Higgs bosons in Ref.[65]. 
Examples of the results for Higgs-strahlung Zh,  Z H  and pair production Ah,  

A H  and H + H  - are given in Fig.23. Visible as well as invisible decays are un- 
der experimental control already for an integrated luminosity of 10 fb -1. The 
experimental situation can be summarized in the following two points: 
(i)  The lightest CT~-even Higgs particle h can be detected in the entire range of 
the MSSM parameter space, either via the Higgs-strahlung process e+e - -+ h Z  

or via pair production e+e - -+ hA.  This conclusion holds true even at a c.m. 
energy of 250 GeV, independently of the squark mass values; it is also valid if 
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decays to invisible neutralino and other SUSY particles are realized in the Higgs 
sector. 

(ii) The area in the parameter space where all SUSY Higgs bosons can be 
discovered at e+e - colliders is characterized bv~ MH, ~A ~ 1~ ,  independently 
of tg/~. The h, H Higgs bosons can be produced either via Higgs-strahlung or in 
Ah, AH associated production; charged Higgs bosons will be produced in H+H - 
pairs. 

mA = 115 GeY/c 2, tan~ = 10 
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Fig. 23. Experimental simulations of the search for MSSM Higgs bosons in 
Higgs-strahlung hZ/ H Z, heavy pair production HA, charged Higgs production H+ H -, 
and neutral invisible Higgs decays in Higgs-strahlung. Refs.[63]-[65]. 
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The search for the lightest neutral SUSY Higgs boson h is one of the most 
important experimental tasks at LEP2. Up to the present time, mass values of 
the pseudoscalar boson A of less than 75 GeV have been excluded independent 
of tg fL In MSSM scenarios without mixing effects, the entire mass range of the 
lightest Higgs particle h has already been covered for tg~ less than about 1,6; 
however, this conclusion does not hold true yet for scenarios with strong mixing 
effects [8]. With a final energy close to 200 GeV, the Higgs boson h could be 
discovered within the theoretically allowed mass range if the mixing parameter 
were realized below tg/3 g 2.4. This range covers one of the two solutions singled 
out by "r/b mass unification; moreover, it corresponds to the area predicted by 
the fixed-point solution of the top-quark mass. 

3.5 The Product ion of SUSY Higgs Particles in Hadron Coll isions 

The basic production processes of SUSY Higgs particles at hadron coliiders [36] 
are essentially the same as in the Standard Model. Important differences are 
generated nevertheless by the modified couplings, the extended particle spec- 
trum, and the negative parity of the A bosom For large tg 2 the coupling hb~) is 
enhanced so that the bottom-quark loop becomes competitive to the top-quark 
loop in the effective hg9 coupling. Moreover squark loops will contribute to this 
coupling [6@ 

The partonie cross section a(gg -+ qs) for the gluon fusion of Higgs particles 
can be expressed by couplings g, in units of the corresponding SM couplings, 
and form factors A; to lowest order [34], [67]: 

5~o(gg -+ q~) = a~o 6 ( 1 -  M'~ ) , (63) 

/ o.0h/H GFa](~) h/el h/el h / e l ~ h / n ,  , 
128v~Tr gQ AQ (~-Q) + Z 

While the quark couplings have been defined in Table 2, the couplings of the 
Higgs particles to squarks are given by 

M: h _ ""Q gh ~ 2  Q 
go t , ,  -- il/I~ Q T -M-~Q(I3 - eQ sin 20w) sin(a + ~) ,  

M 2 2 
H _ Q 9H M z  (TQ 9QL.a -- ~ Q ± -'~_tJ3 -- eQ sin: 0w) cos(a + j3) . (64) 

C7 ) invariance does only allow for non-zero squark couplings to the pseudoscalar 
A bosom The form factors can be expressed in terms of the scaling function 
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f(Ti = 4M2/M~), cf.  ( 2 7 ) :  

A~/H(T) = ~'[1 + (1 -- T ) / ( T ) ]  , 

A~(7") = Tf(v) , 

Ah/gO_)= 1 - -  - -  (68) 

For small tg/3 the contribution of the top loop is dominant, while for large tg 3 
the bot tom loop is strongly enhanced. The squark loops can be significant for 
squark masses below -~ 400 GeV [67]. 

Both the limits of large and small loop masses are interesting for SUSY Higgs 
particles. The contribution of the top loop to the hgg coupling can be calculated 
approximately in the limit of large loop masses, while the bot tom contributions 
to the q~gg couplings can be calculated in the approximation of small b masses. 

The limits of large loop masses for the C~P-even h, H Higgs bosons are the 
same as in the Standard Model: 

Ah/U Q -+ 2 /3 .  (66) 

The corresponding limit for the CT~-odd A Higgs boson reads: 

A~ --+ 1. (67) 

As a result of the non-renormalization of the axial-anomaly, the Agg coupling is 
not altered by QCD radiative corrections for large loop masses. 

In the opposite limit in which the quark-loop mass is much smaller than 
the Higgs mass, the amplitudes are the same for scalar and pseudoscalar Higgs 
bosons: 

(log'  2 168) 
- T  T 

This result follows from the restoration of chiral symmetry in the limit of van- 
ishing quark masses. 

Other production mechanisms for SUSY Higgs bosons, vector boson fusion, 
Higgs-strahlung off W, Z bosons and Higgs-bremsstrahlung off top and bottom 
quarks, can be treated in analogy to the corresponding SM processes. 

Data from the Tevatron in the channel p/~ -~ bbr+r  - have been exploited [68] 
to exclude part  of the supersymmetric Higgs parameter space in the [MA, tg 9] 
plane. In the interesting range of tg/3 between 30 and 50, pseudoscalar masses 
MA up to 150 to 190 GeV appear to be excluded. 

The cross sections of the various MSSM Higgs production mechanisms at 
the LHC are shown in Figs.24a-d for two representative values of tg/3 = 1.5, 30 
as a function of the corresponding Higgs mass. The total c.m. energy has been 
chosen as ~ = 14 TeV, the CTEQ4M parton densities have been adopted with 
as(Mz) =- 0.116, and the top and bottom masses have been set to kit = 175 
GeV and Mb = 5 GeV. For the Higgs bremsstrahlung off t, b quarks, pp --+ 
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4~Q(~ + X, we have used the leading order CTEQ4L parton densities. For small 
and moderate values of tg/3 ~ 10 the gluon-fusion cross section provides the 
dominant production cross section for the entire Higgs mass region up to Me ~ 1 
TeV. However, for large tg/3, Higgs bremsstrahlung off bottom quarks, pp -4 
bb~ + X ,  dominates over the gluon-fusion mechanism since the bottom Yukawa 
couplings are strongly enhanced in this case. 

The MSSM Higgs search at the LHC will be more involved than the SM 
Higgs search. The basic features can be summarized as follows. 

(i) For large pseudoscalar Higgs masses MA ~ 200 GeV the light scalar Higgs 
boson h can only be found via its photonic decay mode h -+ 7% In a significant 
part of this MSSM parameter region, especially for moderate values of tg~, no 
other MSSM Higgs particle can be discovered. Because of the decoupling limit 
for large M A the MSSM cannot be distinguished from the SM in this mass range. 

(ii) For small values of tg/3 ~ 3 and pseudoscalar Higgs masses between about 
200 and 350 GeV, the heavy scalar Higgs boson can be searched for in the 
'gold-plated' channel H --+ Z Z  -+ 41 +. Otherwise this 'gold-plated' signal does 
not play any role in the MSSM. However, the MSSM parameter region covered 
in this scenario, hardly exceeds the anticipated exclusion limits of the LEP2 
experiments. 

(iii) For large and moderate values of tgf l  ~ 3 the decays H, A --+ T+r - become 
visible at the LHC. Thus this decay mode plays a significant role for the MSSM 
in contrast to the SM. Moreover, this mode can also be detected for small values 
tg/3 ;~ 1-2 and MA ~ 200 GeV. 

(iv) For tgfl £ 4 and 150 GeVG/14A G 400 GeV the heavy scalar Higgs particle 
can be detected in the decay mode H --+ hh -+ b~ryV. However, the MSSM 
parameter range for this signature is very limited. 

(v) For tg/3 G 3-5 and 50 GeVG MA ~ 350 GeV the pseudosealar decay mode 
A --+ Z h  --+ l+t-bb will be visible, but hardly exceeds the exclusion limits from 
LEP2. 

(vl) For pseudoscalar Higgs masses MA ~ 100 GeV charged Higgs bosons, pro- 
duced from top quark decays t -+ H+b, can be discovered via its decay mode 
H + -.+ z-+St . 

The final picture exhibits a difficult region for the MSSM Higgs search at the 
LHC. For tgfl ,-~ 5 and MA ~ 150 GeV the full luminosity and the full data 
sample of both the ATLAS and CMS experiments at the LHC, are needed to 
cover the problematic parameter region [69], see Fig.25. On the other hand, if no 
excess of Higgs events above the SM background processes beyond 2 standard 
deviations will be found, the MSSM Higgs bosons can easily be excluded at 95Yc 
C.L. 

The overall picture reveals several difficulties, Fig.25. Even though the entire 
supersymmetric Higgs parameter space may finally be covered by the LHC exper- 
iments, the individual Higgs bosons are accessible only in part of the parameter 
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Fig. 25. MSSM parameter space including the contours of the various Higgs decay 
modes, which will be visible at the LHC after reaching the anticipated integrated lu- 
minosity f Edt -- 3 × 105pb -1 and combining the experimental data of both LHC 
experiments, ATLAS and CMS [taken from Ref.[69]]. 

space. Moreover, the search for heavy H, A Higgs particles is very difficult due 
to t{ continuum background for masses beyond ~ 500 GeV. 

The search for charged Higgs bosons is quite difficult in general if the mass 
exceeds the top quark mass and t --+ b + H + decays are forbidden kinematically. 
Since H + bosons cannot be radiated off Z or W bosons, they must be produced 
in pairs through the Drell-Yan process [70] or in gg collisions [71]. In the second 
process, and equivalently in W ± H  7= final states, the effective couplings are built 
up by loops of heavy quarks. 
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3.6 Measuring the Negative Parity of the A Boson 

Once the Higgs bosons are discovered, the properties of the particles must be es- 
tablished. Besides the reconstruction of the supersymmetric Higgs potential [72], 
a very demanding effort, the external quantum numbers must be established, in 
particular the parity of the heavy scalar and pseudoscalar Higgs particles H and 
A [73]. 

For large H, A masses the decays H, A --4 t[ to top final states can be used 
to discriminate between the different parity assignments [73]. For example, the 
W + and W -  bosons in the t and { decays tend to be emitted antiparallel and 
parallel in the plane perpendicular to the t~ axis, 

d¢--~- oc 1 =F cos 6. (69) 

for H and A decays, respectively. 
For light H, A masses, 77 collisions appear to provide a viable solution [73]. 

The fusion of Higgs particles in linearly polarized photon beams depends on the 
angle between the polarization vectors. For scalar 0 + particles the production 
amplitude is non-zero for parallel polarization vectors while pseudoscalar 0- 
particles require perpendicular polarization vectors: 

M ( H )  + ~ e :  . e 2  , 

M ( A ) -  .,. e: x e2 • (70)  

The experimental set-up for Compton back-scattering of laser light can be tuned 
in such a way that the linear polarization of the hard-photon beams approaches 
values close to 100%. Depending on the parity + of the resonance produced, the 
measured asymmetry for photons polarized parallel or perpendicular, 

is either positive or negative. 

A - all - a± (71) 
a l l  + a± 

3.7 Non-minimal  Supersymmetric Extensions 

The minimal supersymmetric extension of the Standard Model (MSSM) may 
appear very restrictive for supersymmetric theories in general, in particular in the 
Higgs sector where the quartic couplings are identified with the gauge couplings. 
However, it turns out that the mass pattern of the MSSM is quite typical if 
the theory is assumed to be valid up to the GUT scale - the motivation for 
supersymmetry sui generis. This general pattern has been studied thoroughly 
within the next-to-minimal extension: The MSSM, incorporating two Higgs iso- 
doublets, is augmented by introducing an iso-singlet field N. This extension leads 
to a model [74]-[76] which is generally referred to as the (M+I)SSM. 
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The additional Higgs singlet can solve the so-called #-problem [i.e. /1 
order Mw] by eliminating the # higgsino parameter from the potential and 
by replacing this parameter by the vacuum expectation value of the N field, 
which can be naturally related to the usual vacuum expectation values of the 
Higgs iso-doublet fields. In this scenario the superpotential involves the two 
trilinear couplings H1H2N and N 3. The consequences of this extended Higgs 
sector will be outlined in the context of (s)grand unification including universal 
soft breaking terms of the supersymmetry [75]. 

The Higgs spectrum of the (M+I)SSM includes, besides the minimal set 
of Higgs particles, one additional scalar and pseudoscalar Higgs particle. The 
neutral Higgs particles are in general mixtures of the iso-scalar doublets, which 
couple to W, Z bosons and fermions, and the iso-scalar singlet, decoupled from 
the non-Higgs sector. The trilinear self-interactions contribute to the masses of 
the Higgs particles. For the lightest Higgs boson of each species: 

M2(hl) < M~ cos 2 2/3 + )~2v2 sin 2 23 ,  (72) 

M 2 (A1) < -~42 (A) , 

M2(H +) < M~(W) + M2(A) - A2v ~ . 

In contrast to the minimal model, the mass of the charged Higgs particle could 
be smaller than the W mass. Since the trilinear couplings increase with energy, 
upper bounds on the mass of the lightest neutral Higgs boson h ° can be derived. 
in analogy to the Standard Model, from the assumption that  the theory be 
valid up to the GUT scale: m(h °) ~ 140 Gel:. Thus despite the additional 
interactions, the distinct pattern of the minimal extension remains valid also in 
more complex supersymmetric scenarios [77]. In fact, the mass bound of 140 GeV 
for the lightest Higgs particle is realized in almost all supersymmetric theories. 
If h ° is (nearly) pure iso-scalar, it decouples from the gauge boson and fermion 
system and its role is taken by the next Higgs particle with a large is-doublet 
component, implying the validity of the mass bound again. 

The couplings Ri of the CT~-even neutral Higgs particles h ° to the Z bo- 
son, ZZh °, are defined relative to the usual SM coupling. If the Higgs particle 
h ° is primarily iso-singlet, the coupling R1 is small and the particle cannot be 
produced by Higgs-strahlung. However, in this case h ° is generally light and 
couples with sufficient strength to the Z bosom if not, h ° plays this role. This 
scenario is quantified in Fig.26 where the couplings R~ and R2 are shown for 
the ensemble of allowed Higgs masses m(h °) and m(h °) [adopted from Ref.[lO]; 
see also [75], [78]]. Two different regions exist within the GUT (M+I)SSM: A 
densely populated region with R1 "~ 1 and ml > 50 Gel ' ,  and a tail with R~ < 1 
to << 1 and small ml.  Within this tail, the lightest Higgs boson is essentially 
a gauge-singlet state so that  it can escape detection at LEP [full/solid lines]. If 
the lightest Higgs boson is essentially a gauge singlet, the second lightest Higgs 
particle cannot be heavy. In the tail of diagram 26a the mass of the second 
Higgs boson h ° varies between 80 GeV and, essentially, the general upper limit 
of .-- 140 GeV. h ° couples with full strength to Z bosons, R2 ~ 1. If in the tail 
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Fig. 26. The couplings ZZhl  and ZZh2 of the two lightest CP even Higgs bosons in 
the next-to-minimal supersymmetric extension of the Standard Model, (M + 1)SS:~I. 
The solid lines indicate the accessible range at LEP2, the dotted lines for an energy of 
205 GeV. The scatter plots are solutions for an ensemble o] possible SUSY parameters 
defined at the scale of grand unification. Ref.[75]. 

of diagram 26b this coupling becomes weak, the third Higgs boson will finally 
take the role of the leading light particle. 

Summa. Experiments at e+e - colliders are in a no-lose situation [78] for 
detecting the Higgs particles in general supersymmetric theories even for c.m. 
energies as low as v/s ~ 300 GeV. 

4 Strongly Interacting W Bosons 

The Higgs mechanism is based on the theoretical concept of spontaneous symme- 
t ry  breaking [1]. In the canonical formulation, adopted in the Standard .Model. 
a four-component ]undamental scalar field is introduced, which is endowed with 
a self-interaction such that the field acquires a non-zero value in the ground 
state. The specific direction in iso-space which is singled out by the ground state 
solution, breaks the isospin invariance of the interaction spontaneously. The in- 
teraction of the gauge fields with the scalar field in the ground state generates 
the masses of these fields. The longitudinal degrees of freedom of the gauge fields 
are built up by absorption of the Goldstone modes which are associated with 
the spontaneous breaking of the electroweak symmetries in the scalar field sec- 
tor. Fermions acquire masses through Yukawa interactions with the ground state 
field. While three scalar components are absorbed by the gauge fields, one degree 
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of freedom manifests itself as a physical particle, the Higgs bosom The exchange 
of this particle in scattering amplitudes including longitudinal gauge fields and 
massive fermion fields, ensures the unitarity of the theory up to asymptotic 
energies. 

In the alternative to this scenario based on a fundamental Higgs field, the 
spontaneous symmetry breaking is generated dynamically [2]. A system of novel 
fermions is introduced which interact strongly at a scale of order 1 TeV. In 
the ground state of such a system a scalar condensate of fermion-antifermion 
pairs may form. Such a process is quite generally expected in any non-abelian 
gauge theory of the novel strong interactions [and realized in QCD, for instance]. 
Since the scalar condensate breaks the chiral symmetry of the fermion system, 
Goldstone fields will form which can be absorbed by the electroweak gauge fields 
to build up the longitudinal components and the masses of the gauge fields. Novel 
gauge interactions must be introduced which couple the leptons and quarks 
of the Standard Model to the new fermions in order to generate lepton and 
quark masses through interactions with the ground-state fermion-antifermion 
condensate. In the low-energy sector of the electroweak theory the fundamental 
Higgs field approach and the dynamical alternative are equivalent. However the 
two theories are fundamentally different at high energies. While the unitarity of 
the electroweak gauge theory is guaranteed by the exchange of the scalar Higgs 
particle in scattering processes, unitarity is restored in the dynamical theory 
at high energies through the non-perturbative strong interactions between the 
particles. Since the longitudinal gauge field components are equivalent to the 
Goldstone fields associated in the microscopic theory, their strong interactions at 
high energies are transferred to the electroweak gauge bosons. Since, by unitarity, 
the s-wave scattering amplitude of longitudinally poiarized W, Z bosons in the 
iso-scalar channel (2W+W - + ZZ)/x /~ ,  a ° = x/2GFs/167r, is bounded by 1/2, 
the characteristic scale of the new strong interactions must be close to 1.2 TeV. 
Thus near the critical energy of 1 TeV the W, Z bosons interact strongly with 
each other. Technicolor theories provide an elaborate form of such scenarios. 

4.1 Dynamical Symmetry Breaking 

Physical scenarios of dynamical symmetry breaking are based on new strong 
interaction theories, which extend the constituent spectrum and the interactions 
of the Standard Model. If these interactions are invariant under transformations 
of the chiral SU(2) x SU(2) group, the chiral invariance may be broken spon- 
taneously down to the diagonal isospin group SU(2). This process is associated 
with the formation of a chiral condensate in the ground state and the existence 
of three massless Goldstone bosons. 

The Goldstone bosons can be absorbed by the gauge fields, generating lon- 
gitudinal states and non-zero masses, as shown in Fig.27. Summing up the ge- 
ometric series of vector boson-Goldstone boson transitions in the propagator 
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Fig. 27. Generation of gauge boson masses (V) through the interaction with the Gold- 
stone bosons (G). 

results in a shift of the mass pole: 

1 1 1 92F2/2 1 1 [.q2F2 1 ]  2 1 
q2 ÷ -~'ff + - - q ~ q u ~ q u ~ f f  + - ~  [=---~-- ]"~ + ' "  "-+ q2 _ M~ (73) 

The coupling between gauge fields and Goldstone bosons has been defined as 
igF/v~q, , .  The mass of the gauge field is related to this coupling by 

M 2 = 29'2F 2 . (74) 

The numerical value of the coupling F must coincide with v = 246 GeV. 
The remaining custodial SU(2) symmetry guarantees that  the p parameter,  

the relative strength between N C  and CC couplings, is one. Denoting the W / B  
mass matrix elements by 

1 _2F25 (w ,  LM21w,} = ,j 

( B I M 2 I B )  = I ,e..2 ~g 

{W31M21B/ = {BtM21W 3} 

1 1-9 = 
(75) 

the universality of the coupling F leads to the ratio of the mass eigenvalues 
M ~ z / M  2 = 92/(g 2 + 9 '2) = cos 20w, equivalent to p = 1. 

Since the wave functions of longitudinally polarized vector bosons grow with 
the energy, the longitudinal field components are the dominant degrees of free- 
dom at high energies. These states however can asymptotically be identified 
with the absorbed Goldstone bosons. This equivalence [79] is apparent in the 't 
Hooft-Feynman gauge where for asymptotic energies 

( 7 0 )  

The dynamics of gauge bosons can therefore be identified at high energies with 
the dynamics of scalar Goldstone fields. An elegant representation of the Gold- 
stone fields in this context is provided by the exponentiated form 

u = exp[-i  /v] (77) 

which corresponds to an SU(2) matrix field. 
The Lagrangian of the system consists of the Yang-Mills part £VM and the 

in terac t ions / :o  of the Goldstone fields, £ = £YM + ga .  The Yang-Mills part  is 
1 ~ B~B~,~] The interactions written in the usual form £YM = - - a T r [ W . . t I  ~ + 



216 Michael Spira and Peter M. Zerwas 

of the Goldstone fields can be expanded in chiral theories systematically in the 
derivatives of the fields, corresponding to expansions in powers of the energy for 
scattering amplitudes [80]: 

£a=£o+ ~ £~+" (78) 
d i m = 4  

Denoting the SM covariant derivative of the Goldstone fields by 

Dt, U = O,U - igW~,U + ig'B~,U (79) 

the leading term £0, of dimension = 2, is given by 

V 2 

£o = -~Tr[D,U+ D,U] . (80) 

This term generates the masses of W, Z gauge bosons: M~v = ~Yl _2.u2 and M~ = 
1 2 ~(g -P g'2)V2. The only parameter in this part of the interactions is v which 
however is fixed uniquely by the experimental value of the W mass; thus the 
amplitudes predicted by the leading term in the chiral expansion can be consid- 
ered parameter-free. 

The next-to-leading term in the expansion with dimension = 4 consists of 10 
terms. If the custodial SU(2) symmetry is imposed, only two terms are found 
which do not affect propagators and 3-boson vertices but only 4-boson vertices 
etc. Introducing the vector field V, by 

V~ = U+D~U (81) 

these two terms are given by the interaction densities 

£4 = a4 [TrV. V.]" 

Z5 = ~ [Tr~%V.]  2 • (82) 

The two coefficients G~4, o~ 5 are free parameters which must be adjusted experi- 
mentally from W W  scattering data. 

Higher orders in the chiral expansion give rise to an energy expansion of 
the scattering amplitudes of the form .4 = ~ cn(s/v2) ~. This series will diverge 
for energies at which the resonances of the new strong interaction theory can 
be formed in W W collisions: 0 + "Higgs-like", 1- "p-like" resonances etc. The 
masses of these resonance states are expected in the range MR ~- 4~v where 
chiral loop expansions diverge, i.e. between about 1 and 3 Tel:. 
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4.2 W W  Scattering at High-Energy Colliders 

The (quasi-)elastic 2-2 W W  scattering amplitudes can be expressed at high 
energies by a master amplitude A(s, t, u) which depends on the three Mandelstam 
variables of these processes: 

A ( W + W  - --+ Z Z )  = A(s, t, u) 

A ( W + W  - ~ W + W  - )  = A ( s , t , u )  + A ( t , s , u )  

A ( Z Z  -+ Z Z )  = A(s, t, u) + A(t, s, u) + A(u, s, t) 

A ( W - W -  -+ W - W - )  = A( t , s , u )  + A(u , s , t )  

(83) 

To lowest order in the chiral expansion, £ -4 £YM + £0, the master amplitude 
is given, in a parameter-free form, by the energy squared 8: 

s (84) A(s, t, u) ~ vT . 

This representation is valid for energies s >> M~v but below the new resonance 
region, i.e. in practice at energies v G = O(1 TeV). Denoting the scattering length 
for the channel carrying isospin I and angular momentum J by a1j, the only non- 
zero scattering channels predicted by the leading term of the chiral expansion, 
correspond to 

a ~  = -~ 167~v2 , 
8 

a n  = ~ 96r~v2 , 
s 

a2o -- 32~rv2 
(85) 

While the exotic I = 2 channel is repulsive, the I = J = 0 and I = J = 1 
channels are attractive, indicating the formation of non-fundamental Higgs-type 
and p-type resonances. 

Taking into account the next-to-leading terms in the chiral expansion, the 
master amplitude turns out to be [23] 

s 4(t 2 + u ~) 8s "° 
A(s, t, u) = ~T + an V4 -~- a5 ~ -  ~- ' ' "  (86) 

including the two parameters a4 and as. 
Increasing the energy in the expansion, the amplitudes will approach the res- 

onance area. In this area, the chiral character of the theory does not provide any 
more guiding principle for the construction of the scattering amplitudes. Instead, 
ad-hoc hypotheses must be introduced to define the nature of the resonances; 
see e.g. Ref.[24]. A sample of resonances is provided by the following models: 
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(a) SMheavyHiggs boson: 

A _ M/~/ 1 +  
v 2 s -- ~(~t + i~ IHFHJ  

with F H - -  3 M }  
32~v 2 

(b) c_hirally coupled scalar resonance: 

s g~s ~ 1 
A -  

v 2 v 2 s - M ~ - i M s F s  
2 3 

with F S -  3g~Ms  
32~v 2 

(c) chirally coupled vector: 

(87) 

(88) 

s a M ~  t 
A = - ~  1 - + ~ - M ~  - ~ i M v C v  + (u +4 t) (89) 

with F v -  aM3~ 
1927rv 2 

For small energies, the scattering amplitudes reduce to the leading chiral form 
s / v  2. In the resonance region they are described by two parameters, the mass 
and the width of the resonance. The amplitudes interpolate between the two 
regions in a simplified smooth way. 

q/e 

q/e 

• D- 

W IV I = 0 , 2  Jeven 

~i~ . ~  I = 1  Jodd 
W 

e+ N l l ~  W+ 

e - /  " " 2 / ~ v v v ~  II-- 

Fig. 28. W W  scattering and rescattering at high energies at the LHC and Te V e+e - 
linear colliders. 

W W  scattering can be studied at the LHC and TeV e+e - linear collid- 
ers. At high energies, equivalent W beams accompany the quark and elec- 
tron/positron beams, Fig.28 in the fragmentation processes pp -~ qq --+ q q W W  
and ee --+ v v W W .  In the hadronic LHC environment the final state W bosons 
can only be observed in leptonic decays. Resonance reconstruction is thus not 
possible for charged W final states. However, the clean environment of e+e - 
colliders will allow the reconstruction of resonances from W decays to jet pairs. 
The results of three experimental simulations are displayed in Fig.29. In Fig.29a 
the sensitivity to the parameters 0~4, o~ 5 of the chiral expansion is shown for 
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F i g .  29 .  Upper part (a): Sensitivity to the expansion parameters in chiral electroweak 
models of  W W  -+ W W  and W H  z -4 Z Z  scattering at the strong-interaction thresh- 
old; Ref.[23]. Lower part (b): The distribution of the W B  ~ invariant energy in 
e+e - --+ Y v W W  for scalar and vector resonance models [2~Iy, M y  = 1 TeV], as well 
as for  non-resonant W W  scattering in chiral models near the threshold; Ref.[24]. 
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F i g .  30 .  Invariant mass distributions for the gold-plated purely leptonic final states 
that arise from the processes pp --+ Z Z X  ~ 4~X, pp --+ Z Z X  ~ 2~2yX, 
pp --+ W + W - X ,  pp --~ W ± Z X  and pp ~ W ± W ± X ,  for the LHC (mass in units 
of Ge V). The signal is plotted above the summed background. Distributions are shown 
for a chirally coupled vector with My = 1 TeV, Fv -- 5.7 GeV. 

W W  scattering in e+e - colliders [23]. The results of this analysis can be rein- 
terpreted as sensitivity to the parameter-free prediction of the chiral expansion, 
corresponding to an error of about  10% in the first te rm of the master  ampli tude 
s/v  2. These experiments test the basic concept of dynamical symmetry  break- 
ing through spontaneous symmetry  breaking. The production of a vector-boson 
resonance of mass Mv = 1 TeV is exemplified in Fig.29b [24]. Expectat ions for 
W W  scattering final states in the vector model at the LHC are compared with 
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the background in Fig.30 [22]. 
A second powerful method measures elastic W + W  - --+ W + W  - scattering in 

the I = 1, J = 1 channel. The rescattering of W + W  - bosons produced in e+e - 
annihilation, Fig.28, depends at high energies on the W W  scattering phase 511 
[81]. The production amplitude F = FLO x R is the product of the lowest-order 
perturbative diagram with the Mushkelishvili-Omn~s rescattering amplitude T~, 

7¢ = exp _s f ds' 511(~')___ 
7 ~ J  s ~ s ~ - s - i e  

(90) 

which is determined by the I = J = 1 W W  phase shift 511. The power of 
this method derives from the fact that  the entire energy of the e+e - collider is 
transferred to the W W  system [while a major fraction of the energy is lost in 
the fragmentation of e --+ ~W if the W W  scattering is studied in the process 
ee  --4 ~ y W W ] .  Detailed simulations [82] have shown that  this process is sensitive 
to vector-boson masses up to about M v  ~ 6 TeV in technicolor-type theories. 
More elaborate scenarios have been analyzed in Ref.[83]. 

5 S u m m a r y  

The mechanism of electroweak symmetry breaking can be established in the 
present or the next generation of p p / p p  and e+e - colliders: 

* Whether  a light fundamental Higgs boson does exist; 
, And the profile of the particle can be reconstructed, which reveals the phys- 

ical nature of the underlying mechanism of electroweak symmetry breaking; 
* Analyses of strong WW scattering can be performed if the symmetry break- 

ing is of dynamical nature and generated in a novel strong interaction theory. 

Moreover, depending on the ultimate experimental answer to these questions~ 
the electroweak sector will provide the platform for extrapolations into physical 
areas beyond the Standard Model: either to low-energy supersymraetry sector 
or, alternatively, to a new strong interaction theory at a characteristic scale of 
order 1 TeV. 
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Abs t r ac t .  These four lectures are meant as an elementary introduction to the physics 
of realistic supersymmetric models. In the first lecture, after reviewing the motivations 
for low-energy supersymmetry and the recipe for the construction of supersymmet- 
tic lagrangians, we introduce the Minimal Supersymmetric extension of the Standard 
Model, and comment on possible alternatives. In the second lecture, we discuss what 
can be learnt by looking at such model as the low-energy limit of some unified theory, 
with emphasis at the implications of its renormalization group equations and at the 
possibility of a supersymmetric Grand Unification. The third lecture is devoted to the 
problem of supersymmetry breaking: we review some general features of the sponta- 
neous breaking of global and local supersymmetry, and we compare the supergravity 
models with heavy and light gravitino. In the fourth lecture, we conclude with an 
overview of supersymmetric phenomenology: indirect effects of supersymmetric parti- 
cles in electroweak precision tests and in flavour physics, as well as direct searches for 
the superpartners of ordinary particles. 

1 I n t r o d u c t i o n  

This lecture reviews the motivations for low-energy supersymmetry  and the con- 
struction of supersymmetric  lagrangians, and introduces the Minimal Supersym- 
metric Standard Model (MSSM). The start ing point is the observation that  the 
Standard Model (SM) of strong and electroweak interactions should be regarded 
as an effective low-energy theory, rather than as a fundamental  theory. This leads 
to the naturalness problem of the SM, with its possible solutions: a conspiracy 
between high-energy and low-energy physics, to be understood only in the ' the- 
ory of everything' ,  or a modification of the SM near the electroweak scale, such as 
' technicolor'  or 'low-energy supersymmetry '  in some suitable realization. Other  
motivations for supersymmetry,  of more theoretical nature and less directly re- 
lated (for the moment)  to experimentally accessible physics are also recalled. 
Some basic notions of supersymmetry  are then introduced, to end up with the 
rules for the construction of renormalizable N = 1 supersymmetr ic  lagrangians 
in four dimensions, and an illustration of how the nomrenormalizat ion theorems 
of supersymmetry  can help with the naturalness problem. As a physically rele- 
vant application of the previous rules, the MSSM is explicitly constructed. The 
following features of the model are discussed in some detail: the r61e of soft su- 
pe r symmet ry  breaking, the breaking of the SU(2) × U(1) gauge symmetry  at 
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the classical level, the particle spectrum and interactions, the free parameters. 
In conclusion, some non-minimal variations on the MSSM are briefly mentioned. 

1.1 Motivations for Low-Energy Supersymmetry  

Preamble .  It is quite obvious that the SM mus t  be extended. Among the :hard ~ 
arguments supporting the previous statement, the strongest one is the fact that 
the SM does not include a quantum theory of gravitational interactions. Immedi- 
ately after comes the fact that some of the SM couDlings are not asymptotically 
free, making it almost surely inconsistent as a formal Quantum Field Theory. 
We can add to the above the usual 'soft' argument that the SM has about 20 
arbitrary parameters, which may seem too many for a fundamental theory. 

This does not give us direct information on the form of the required SM 
extensions, but brings along an important conceptual implication: the SM should 
be seen as an effective field theory [1], valid up to some physical cut-off scale 
A. Assuming that the SM correctly identifies the degrees of freedom at the 
electroweak scale (this may not be true, for example, in the case of the SM 
Higgs field), the basic rule of the game is to write down the most general local 
Lagrangian compatible with the SM symmetries [i.e. the SU(3) × S U ( 2 )  × [7(1) 
gauge symmetry and the Poincar~ symmetry], scaling all dimensionful couplings 
by appropriate powers of A. The resulting dimensionless coefficients are then to 
be interpreted as parameters, which can be either fitted to experimental data or 
(if one is able to do so) theoretically determined from the fundamental theory 
replacing the SM at the scale A. Very schematically (and omitting all coefficients 
and indices, as well as many theoretical subtleties): 

£~f/ = A 4 + A2q~ 2 

+ (D~) ~ + ~ 9 ¢ ,  + F 2 + ~ + ~4 

+ + . . . ,  (1) 
A A 2 

where q~ stands for the generic quark or lepton field, ¢ for the SM Higgs riel& 
F for the field strength of the SM gauge fields, and D for the gauge-covariant 
derivative. The first line of (1) contains two operators carrying positive powers 
of A, a cosmological constant term, proportional to A 4., and a scalar mass term, 
proportional to A 2. Barring for the moment the discussion of the cosmologi- 
cal constant term, which becomes relevant only when the model is coupled to 
gravity, it is important to observe that no quantum SM symmetry is recovered 
by setting to zero the coefficient of the scalar mass term. On the contrary, the 
SM gauge invariance forbids fermion mass terms of the form A~q~. The second 
line of (1) contains operators with no power-like dependence on A, but only 
a milder, logarithmic dependence, due to infrared renormalization effects be- 
tween the cut-off scale A and the electroweak scale. The operators of dimensiou 
d < 4 exhibit two remarkable properties: all those allowed by the symmetries 
are actually present in the SM; both baryon number and the individual lepton 
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numbers are automatically conserved. The third line of (1) is the starting point 
of an expansion in inverse powers of A, containing infinitely many terms. For 
energies and field VEVs much smaller than A, the effects of these operators are 
suppressed, and the physically most interesting ones are those that  violate some 
accidental symmetries of the d < 4 operators. For example, a d = 5 operator of 
the form ~ can generate a lepton-number-violating Majorana neutrino mass 

of order G~I/A (where G~ 1/2 ~ 300 GeV is the Fermi scale), as in the see-saw 
mechanism; some of the d = 6 four-fermion operators can be associated with 
flavour-changing neutral currents (FCNC) or with baryon- and lepton-number- 
violating processes such as proton decay. 

At this point, a question naturally emerges: where is the cut-off scale A, at 
which the expansion of (1) loses validity and the SM must be replaced by a more 
fundamental theory? Two extreme but plausible answers can be given: 

(I) A is not much below the Planck scale, Mp - ( ~ Y 2 / V ~  -~ 2.4 × 10 is GeV, 
as roughly suggested by the measured strength of the fundamental interac- 
tions, including the gravitational ones. 

( I I )  A is not much above the Fermi scale, as suggested by the idea that  new 
physics must be associated with electroweak symmetry breaking. 

In the absence of an explicit realization at a fundamental level, each of the 
above answers can be heavily criticized. The criticism of (I) has to do with the 
existence of the 'quadratically divergent' scalar mass operator, which becomes 
more and more 'unnatural '  as A increases above the electroweak scale [2]. On 
general theoretical grounds, we would expect for such operator a coefficient of 
order 1, but experimentally we need a strongly suppressed coefficient, of order 
GF 1/A 2. However, after taking into account quantum corrections, this coefficient 
can be conceptually decomposed into the sum of two separate contributions, 
controlled by the physics below and above the cut-off scale, respectively. Answer 
(I) would then require a subtle (malicious?) conspiracy between low-energy and 
high-energy physics, ensuring the desired fine-tuning. The criticism of (II)  has 
to do instead with the d > 4 operators: in order to sufficiently suppress the 
coefficients of the dangerous operators associated with proton decay, FCNC, etc., 
the new physics at the cut-off scale A must have quite non-trivial properties! As 
we shall see, this is a potential problem also for the supersymmetric models 
discussed in the present lectures. 

At the moment, answer (I) is not very popular in the physics community, 
since we do not have the slightest idea on how the required conspiracy could 
possibly work at the fundamental level. Answer (II) ,  instead, gives rise to a 
well-known conceptual bifurcation: 

( I Ia )  In the description of electroweak symmetry breaking, the elementary SM 
Higgs scalar is replaced by some fermion condensate, induced by a new 
strong interaction near the Fermi scale. This includes old and more recent 
variants of the so-called technicolor models [3] ( 'extended', 'walking', 'non- 
commuting', . . .  ). The stringent phenomenological constraints on technicolor 
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models coming from electroweak precision data will be mentioned later. On 
the theoretical side, technicolor remains quite an appealing idea, still waiting 
for a satisfactory and calculable model. The lack of substantial theoretical 
progress in this field, however, may be due to the technical difficulties of 
dealing with intrinsically non-perturbative phenomena. 

(IIb) The SM is embedded in a model with softly broken global supersymmetry, 
and supersymmetry-breaking mass splittings between the SM particles and 
their superpartners are of the order of the electroweak scale. This approach, 
generically denoted as low-energy supersymmetry, ensures the absence of 
field-dependent quadratic divergences, and makes it 'technically' natural that 
there exists scalar masses much smaller than the cut-off scale. Moreover, a 
minimal and calculable model is naturally singled out, the MSSM. This is 
the approach that will be followed in the rest of these lectures. 

A more  concrete  look at  the  na tura lness  problem.  To understand better 
the motivations for low-energy supersymmetry, already outlined in the previous 
paragraph, we take now a more concrete look at the naturalness problem. Such 
problem arises whenever we insist, as in the SM, on the presence of an elemen- 
tary Higgs field in the lagrangian to describe the breaking of the electroweak 
symmetry, and we want to extrapolate the model to a scale A much larger than 
the Fermi scale. The tree-level potential of the SM is characterized by a mass 
parameter #2 and by a dimensionless quartic coupling A. One combination of 
these two parameters, essentially p2/A, is fixed by fitting the VEV v of the SM 
Higgs field to the measured value of the Fermi constant, defining the scale of 
electroweak symmetry breaking. The squared mass m~ of the physical Higgs 
particle, proportional to #2 or, equivalently, to Av 2, is instead a free parameter 
of the SM. While the lower bound on the Higgs mass comes from experiment 
(mH ~ 85 GeV at the time of this writing), arguments based on perturbative 
unitarity and triviality suggest that self-consistency of the SM is broken unless 

mH < O(1 TeV). (2) 

This is hard to reconcile, from the effective field theory point of view, with the 
fact that, already at one-loop, there are quadratically divergent contributions to 
the Higgs boson mass, as can be checked by performing an explicit calculation 
with a naive cut-off regularization in momentum space. The question then arises: 
how can the Higgs boson mass be of the order of the electroweak scale and not 
of the order of the physical ultraviolet cutoff of the theory? 

The problem outlined above is generic for theories containing elementary 
spin-0 fields. For example, consider a model with a complex spin-0 field of mass 
rnB and a two-component fermion of mass mF, with a Yukawa coupling AF 
and a quartie scalar coupling AB. The one-loop corrections to the boson mass 
include two quadratically divergent contributions of opposite sign, one involving 
a fermion loop and controlled by the Yukawa coupling AF, the other one involving 
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a scalar loop and controlled by the four-point coupling AB, and have the form 

- + . . . ,  (3) 

where A is the ultraviolet cutoff, the minus sign comes from the fermion loop, 
and the dots stand for less divergent terms. The situation is radically different in 
the case of the loop corrections to the fermion mass, the latter being protected 
by a chiral symmetry in the limit mF --4 0. The one-loop diagram correcting the 
fermion mass is logarithmically divergent and proportional to the fermion mass, 
giving 

~mF c( ),~rn~. (4) 

Therefore, the fermion mass can be naturally small. In the case of the scalar 
mass, what we need to make it naturally small is a symmetry relating bosons and 
fermions, and enforcing the vanishing of the coefficient of A 2 in (3), not only at 
one loop but also at higher orders: the only known candidate is supersymmetry. 

O t h e r  m o t i v a t i o n s  for s u p e r s y m m e t r y .  Before starting the discussion of 
low-energy supersymmetry, it is appropriate to recall that there are other theo- 
retical motivations to consider supersymmetry: 

- it is the most general symmetry of the S-matrix consistent with a non-trivial 
relativistic quantum field theory [4]; 

- it is an interesting laboratory for the analytical study of the non-perturbative 
regime of non-trivial four-dimensional quantum field theories [5]; 

- it seems to play an important r61e for the consistency of superstrings [6], 
candidate unified theories of all interactions, including the gravitational ones. 

However, only the naturalness problem requires the existence of supersymmetric 
particles with masses within the TeV scale, making low-energy supersymmetry 
testable at present and forthcoming colliders, and a suitable subject for a School 
entitled 'Computing Particle Properties'. 

1.2 C o n s t r u c t i o n  o f  S u p e r s y m m e t r i c  L a g r a n g i a n s  

The formulation and the perturbative properties of supersymmetric field theo- 
ries are described in many excellent textbooks and reviews (see~ e.g., refs. [7- 
11]). This section summarizes, in a non-technical way, the main ingredients that 
play a r61e in the construction of supersymmetric extensions of the SM at the 
electroweak scale. The non-expert reader is urged to consult the pedagogical 
literature on this subject for a systematic and self-contained presentation. Con- 
cerning the notation, we shall use rather freely either two-component spinors in 
the conventions of [7] or four-component spinors in the conventions of [12]. 
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S u p e r s y m m e t r y  a l g e b r a  a n d  supe r f i e lds .  Supersymmetric field theories 
[13] are based on the supersymmetry algebra [14], a graded extension of the 
Poincar6 algebra, obtained from the latter by adding some generators of fermionic 
character, obeying anti-commutation relations. We limit ourselves here to the 
case of simple (N = 1) supersymmetry in d = 4 space-time dimensions. Most 
realistic models are based on this case, which allows for matter  fields transform- 
ing in chiral representations of the gauge group. Realistic models with extended 
(N > 1) supersymmetry are more difficult to construct and will not be discussed 
here, even if their special field-theoretical properties may justify dedicated in- 
vestigations. The basic anti-commutation relations of the N = 1 supersymmetry 
algebra are, in two-component notation: 

= 2 ~ . ,  {Qo 0n} ~ , ~ 3  = 0 .  (5) 

The supersymmetry generators Q and Q have spin-I/2,  as could be seen by 
looking at their commutation relations with the generators M,,. of angular mo- 
mentum. Also, they commute both with the generators P ,  of space-time trans- 
lations and with the generators T a of possible (global and/or  local) internal 
symmetries. This implies that particles sitting in the same irreducible repre- 
sentations of supersymmetry have spins differing by 1/2, but the same internal 
quantum numbers and, as long as supersymmetry is unbroken, the same mass, 

The most convenient way to classify the representations of supersymmetry 
and to construct actions invariant under supersymmetry is to make use of su- 
perfields. The superspace is defined via the generalized coordinate z = (x, 8, ~), 
where x are the usual space-time coordinates, and ~ and ~ are two-component 
anti-commuting coordinates. A superfield is a function in superspace, and can 
be expanded in ordinary fields as follows 

• (z) = f(z) + ex(z) + ~ ( ~ )  + eo.~(x) + @n(~) (6) 
+ ~,@v,,(z) + ~-X(x) + ~ ¢ ( ~ )  + ~-~d(z). 

To obtain irreducible linear representations of supersymmetry, suitable con- 
straints must be imposed on the generic superfield. The two types of supermul- 
tiplets used in the construction of globally supersymmetric extensions of the SM 
are the chiral and the vector superfields. In a convenient basis for the superspace 
coordinates, chiral superfields have the following simple power expansion: 

¢(x, o) = ~(~) + v % ~ ( z )  + OeF(z), (7) 

where ~v is a complex spin-0 field, ¢ a left-handed two-component spinor and 
F a complex scalar, corresponding to an auxiliary non-propagating field. In the 
Wess-Zumino gauge, vector superfields can be expanded as 

V(x,O,0) = -Oa'-OVu(x) + iOO-O-A(x) - i-~OA(x) + l @-~D(x) ,  (8) 

where V u is a real spin-1 field, )~ and A are two-component spinors of opposite 
chiralities, and D is a real scalar auxiliary field. From the vector superfield we 
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can construct the supersymmetric generalization of the gauge field strength, a 
chiral superfield given by 

. _ ~  O0a2a D -~ ~ (9) 

Renormal i zab le  lagrangians w i th  N = 1 global supe r symmet ry .  With 
the previous superfields, we can easily construct the most general supersymmet- 
ric, gauge invariant, renormalizable lagrangian. In the case of a simple gauge 
group G, to which we associate the vector superfields V = VaT a (where T a are 
the hermitian generators of G) and the gauge coupling constant g, the result is: 

f d2Od2-OCte~V¢+(f d2Ow(~))+h.c.)+~(f d2OWW+h.c.) . (10) 

In the above equation, w(¢) is a gauge-invariant polynomial of degree three in 
the chiral superfields ¢~, called superpotential. Working with four-component 
Majorana spinors, and eliminating the auxiliary fields via their algebraic equa- 
tions of motion, we obtain: 

= + o + + 

1 [ O:w :~.i,y l + [ i v ~ g - ~ i ) d ( T a q o ) i + h . c . ] - ~ ] ~ W  ~ +h.c.~ - V ( ~ , ~ t ) ,  (11) 

where the scalar potential reads 

V =  F i*Fi + DaD . = Ow + E T [q°:(T~')iJ~J]2 >0" (12) 
Cl 

Notice how supersymmetry brings along a unification of couplings. In ordi- 
nary theories, such as the SM, one may introduce three different types of dimen- 
sionless couplings: gauge couplings, Yukawa couplings and quartic scalar cou- 
plings. Supersymmetric theories allow only for two different types of couplings, 
gauge couplings and superpotential couplings, and the dimensionless couplings 
appearing in the scalar potential are related to these. 

H o w  s u p e r s y m m e t r y  may solve the  naturalness  problem.  One of the 
main features of supersymmetric theories is their milder ultraviolet behaviour, 
summarized by the so-called 'non-renormalization theorems' [15]. For example, 
there is no independent renormalization of the superpotential parameters at any 
finite order in perturbation theory. A related property is the absence of field- 
dependent quadratic divergences, as long as there are no anomalous U(1) factors 
in the gauge group. We shall now use this property to give an intuitive expla- 
nation of how supersymmetry may help [16] in the solution of the naturalness 
problem of the SM. 
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Another way of looking at the naturalness problem of the SM is to con- 
sider its one-loop effective potential, which contains a quadratically divergent 
contribution proportional to 

Str fl42(~) = ~-~(-1)2J'(2Ji + 1)m~(~),  
i 

(13) 

where the sum is over the various field-dependent mass eigenvalues m~ (~), with 
weights accounting for the number of degrees of freedom and the statistics of 
particles of different spin J~. In the SM, Str ~ l  2 depends on the Higgs field, 
and induces a quadratically divergent contribution to the Higgs squared mass, 
already identified as the source of the naturalness problem. A possible solution 
of the problem may be provided by N = 1 global supersymmetry. For unbro- 
ken N = 1 global supersymmetry, Str M 2 is identically vanishing, due to the 
fermion-boson degeneracy within supersymmetric multiplets. The vanishing of 
Str M 2 persists if global supersymmetry is spontaneously broken and there are 

no anomalous U(1) factors [17]. Indeed, to solve the naturalness problem of the 
SM one could allow for harmless, field-independent quadratically divergent con- 
tribution to the effective potential: this is actually used to classify the so-called 
soft supersymmetry-breaking terms [18], to be discussed later. With typical mass 
splittings Am within the MSSM supermultiplets, the field-dependent logarithmic 
divergences in the effective action induce corrections to the Higgs mass param- 
eter which are at most O(Am2):  the hierarchy is then stable if Am ~ 1 TeV. 

1.3 T h e  M S S M  

We shall now describe the two basic building blocks of the MSSM lagrangian 
(for reviews, see e.g. refs. [12,19]). 

S u p e r s y m m e t r i c  pa r t  of  the  lagrangian. We are now ready to identi~" 
the minimal renormalizable lagrangian with global N = 1 supersymmetry that 
extends the SM one [20]. 

If we keep G - S U ( 3 ) c  × SU(2)L × U(1)y as the gauge group, the spin-1 
fields of the SM are just replaced by vector superfields. The theory contains then 
some new spin-½ Majorana particles, called 'gauginos': the SU(3) 'gluinos' ~, the 
SU(2) 'winos' ITd, and the U(1) 'bino'/~. 

Similarly, the spire½ matter fields of the SM are replaced by the correspond- 
ing chiral superfields, including, as new degrees of freedom, a complex spin-0 
field for each quark or lepton chirality state: the ~squarks' qL ~- (~L dL)T~ OR, 
dR and the 'sleptons' [L =-- (~'L eL) T, en, in three generations as their fermionic 
superpartners. Remembering that chiral superfields contain left-handed spinors, 
for each generation we shall introduce the superfields Q, L, U c, D C and E ~, 
whose fermionic components are qL, lL, (UC)L -- (uR) ~, (d~)L ~ (dn) ~ and 
(ec)L --  (eR)  c, respectively, where the superscript c denotes charge conjugation. 
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Finally, we must introduce additional multiplets containing the spin-0 degrees 
of freedom necessary for the Higgs mechanism. To give masses to all quarks and 
leptons, to cancel gauge anomalies and to avoid a massless fermion of charge =i=l, 
we must introduce at least two Higgs doublet chiral supermultiplets 

) ( H +~  .~ (1,2, +1/2) .  (14) ( H° ~ (1, 2 , -1 /2) ,  H2 - H o ) H1 - k,H~- 

They contain, in addition to the spin-0 fields (H °, H~-) and (H +, H°), denoted 
here with the same symbols of the corresponding superfields without any risk of 
confusion, also the associated spinor fields (HO,/~-) and (/~+,/~o), the so-called 
'higgsinos'. 

With the chiral superfields introduced above, the most general gauge invari- 
ant and renormalizable superpotential is 

w = hvQUCH2 + hDQDCH1 + hELE~H~ + pHIH2 

+ AQDCL + A 'LLE c + #'LH2 (15) 

+ A"UCD~D ~ . 

In the previous formula, generation indices are understood, but we should keep 
in mind that the couplings #~, (h U, h D, h E) and (A, A', A") are tensors with one, 
two and three generation indices, respectively. The first line of (15) contains only 
terms which conserve the total baryon and lepton numbers, B and L, whereas 
the terms in the second line obey the selection rule A B  = O, IALI = 1, and the 
ones in the third line A L  = O, IABI = 1. The simultaneous presence of the terms 
in the second and in the third line would be phenomenologically unacceptable: 
for example, there could be superfast proton decay mediated by the exchange of 
a squark. 

The usual way out from this phenomenological embarrassment is the assump- 
tion of a discrete, multiplicative symmetry called R-parity, defined as 

R - -  (-1)  23+3B+L , (16) 

where S is the spin quantum number. In practice, the R-parity assignments are 
R = +1 for all ordinary particles (quarks, leptons, gauge and Higgs bosons), 
R = - 1  for their supersymmetric partners (squarks, sleptons, gauginos and 
higgsinos). 

Soft  s u p e r s y m m e t r y - b r e a k i n g  t erms .  The choice of the gauge group and 
of the chiral superfield content, and the requirement of an exact R-parity, are 
enough to specify the form of the globally supersymmetric lagrangian £susy" 
which extends the SM one. However, this cannot be the whole story: we know 
that supersymmetry is broken in Nature, since we do not observe, for exmnple, 
scalar partners of the electron degenerate in mass with it. 

The problem of supersymmetry breaking will be discussed at length in the 
third lecture. To parametrize the phenomenology at the electroweak scale, the 
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MSSM Lagrangian is obtained [21] by adding t o  £SUSY a collection £SOFT of 
explicit but soft supersymmetry-breaking terms, which preserve the good ultra- 
violet properties of supersymmetric theories. In general, £SOFT contains [18] 
mass terms for scalar fields and gauginos, as well as a restricted set of scalar 
interaction terms proportional to the corresponding superpotential couplings 

1 (hUAUQUCH2 --~-.SOFT ~- E i  m21~ij2 4- -ff E A  "~/-/A~aA'4 -]- (17) 

+ hDADQDcH1 + hEAELE~H1 + m'~HIH2 + b.c.), 

where ~i (i = Hi, He, Q, U ¢, D ~, L, E ¢) denotes the generic spin-0 field, and 
AA (A = 1, 2, 3) the generic gaugino field. Observe that, since A u, A D and .4 E 
are matrices in generation space, the most general form of £SOFT contains in 
principle a huge number of free parameters. Moreover, as will be discussed in 
the fourth lecture, for generic values of these parameters there can be serious 
phenomenological problems with flavour-changing neutral currents and with new 
sources of CP-violation. For now, we shall ignore intergenerational mixing. 

1.4 T h e  M S S M  S p e c t r u m  

Tree-level po ten t ia l  and SU(2) x U(1) breaking. The tree-level scalar 
potential associated with the MSSM Lagrangian, 

£MSSM = 128USY -~- £SOFT , (18) 

is a function of all the spin-0 fields of the model. To discuss SU(2)L x U(1)v 
gauge symmetry breaking, it is usually assumed that all squark and slepton fields 
have vanishing VEVs, and the attention is restricted to the Higgs potential: 

Vo = m~ IH~I 2 + m~ IH2I 2 + rn] (HIH2 -4- h.c.) 
g2 ( )2 g,2 ( ) (19) 

+-~ Ht2~H2+Ht~H1 + ~ -  IH~I2-1H, I 2 ~, 

where 

and, thanks to the possibility of redefining the phases of the Higgs superfields, 
it is not restrictive to assume that m] < 0, so that the potential is minimized 
for (;,) (0) 

, vl, v2 E R +. (21) (H,) = , (//2> -- v2 

For the potential to be bounded from below, we have to require that 

$ = m~ + rn~ - 21roll > 0. (22) 

In order to get non-vanishing VEVs at the minimum, we must destabilize the 
origin in field space: 

B - < 0.  ( 2 3 )  
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To minimize the potential, it is convenient to use the auxiliary variables 

v2 (24) v 2 - v~ + v~, t a n 3  ~ , 
Vl 

so that  the minimization conditions assume the simple form 

-2m32 v~ = 4 m~ - m~ tan/3 
sin 2 / 3 = m ~ + m ~ ,  g2+g,~  tan 2 2 - 1  (25) 

With these expressions in our hands, we are now ready to stud)' the MSSM 
spectrum. 

M S S M  s p e c t r u m :  R - e v e n  sec to r .  The R-even sector of the MSSM contains, 
to begin with, all the spin-1 and spin-½ particles of the SM. The only difference 
is the fact that  the mass terms for gauge bosons and fermions are now originated 
by two independent VEVs. For example, the tree-level expressions for the W and 
Z masses are 

g2 t2 
+ g (26) 

' 2 

Quarks of charge Q = 2/3 have tree-level masses proportional to v2, quarks 
of charge Q = - 1 / 3  and charged leptons have tree-level masses proportional 
to Vl. Neglecting for the moment intergenerational mixing, and considering for 
example the third generation, 

mr2 2 2 rob2 2 2 .~ ', 2 = h t v  2 , = hbv  1 , m :  r = h:rv 1 , (27) 

where (h t ,  hb, h¢ )  are dimensionless Yukawa couplings. 
A non-trivial structure arises in the Higgs boson sector, where we have, to 

begin with, two complex doublets, H1 a n d / / 2 ,  amounting to eight real degrees 
of freedom. After shifting the fields a c c o r d i n g  to 

H1 = Vl + v /~  , H2 = S t  + iP1 , (28) 
I ' I i  v2 + 

and after decoupling the three unphysical Goldstone bosons, G O = - cos 3P1 + 
sin/3P2, G + = -cos/3(H~-)* + sin/3H +, G -  = (G+) *, we are left with five 
physical degrees of freedom. Two of them correspond to a charged (complex) 
field, 

H + = sinfl(H~-)* + cosfl(H+),  H -  = (H+)  *, 

with tree-level mass 

where 

2 m2H ± : m2w + m A , 

( 1) 
r n 2 A = - m ' ~  t a n / 3 + ~  . 

(29) 

(30) 

(31) 
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The remaining degrees of freedom correspond to three neutral states• One of 
them is CP-odd, 

A ° = sin3P1 + cos3P2,  (32) 

with mass m~ as in (31). The other two are CP-even, and the corresponding 
mass eigenstates and eigenvalues are obtained diagonalizing the mass matrix for 
S1 and $2: 

(m2zcOS2/3+m2Asin~ --(m2z+rn~)sin~cos/3 ) 
• ( 3 3 )  

M ~ =  \ - ( m } + r n ~ ) s i n / ~ c o s f l  re}s in  ~ 3 + m  2 . A COS2 3 

The explicit expression for the mass eigenvalues is trivially obtained, 

h,H = -~ (m2A +m2z) =t= + m}) 2 4m~m.}cos 2 2~ , (34) 

and the corresponding mass eigenstates read, in order of increasing mass, 

h = - sin aS1 + cos aS2, H = cos aS1 + sin aS2, (35) 

where the mixing angle a is conventionally chosen such that - ~  < a < 0 and is 
given by 

(m2A--m}~ (rn 5 +rn'~ (36) 
cos2a----- --cos2/~ ~ -  ~ , s in2a = - s i n 2 3  - ~ - - - - : - ~  . 

\ " ~ H  - ' ~ , , )  ' \ " 7 +  - "~,) 

It is important  to notice the tree-level mass relations 

m~:L = m ~  + m 2, (37) 

+ : + (38) 

which imply 

m1-l± > mw, mH > mZ, mA > mh, rnh < mzlcos231< mz. (39) 

It is also important  to realize that,  at tree-level, all Higgs masses and couplings 
can be expressed in terms of two parameters only: for example, we can choose 
as independent parameters (mA, tan 3), or (mh, tan 2), or (mh, mA). Some more 
details on the phenomenology of the MSSM Higgs sector will be given in the 
fourth lecture. 
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M S S M  s p e c t r u m :  R - o d d  sector .  We now review the spectrum of the R-odd 
sector of the MSSM. 

The spin-0 s-particles are the superpartners of the ordinary quarks and lep- 
tons. Even neglecting inter-generational mixing, there is another kind of mixing 
that has to be taken into account. Barring the case of sneutrinos, for which 
the corresponding fermion is purely left-handed, the spin-0 partners of left- and 
right-handed quark and leptons can in general mix, and their mixing is described 
by 2 x 2 matrices of the form 

where 

( m2- m2- / 
2 fLL fLR 

.M ] = m 2- m 2 , 
fcR ]RR ) 

( f = e , u , d ) ,  (40) 

m 2- = m } ~ ( s o f t )  + m  2- (D  - t e r m )  + m } ,  
ILL Ic 

(41) 
m -IRR = m}R (soft) + m}. (V - term) + m}, 

m 2_ { m l ( A f + # t a n 3 )  f = e , # , r  d , s , b  
IL~ = _ m I ( A I + # c ° t 3  ) f = u , e , t  

and the D-term eontribution is given by 

m 2 ( D  - term) = m~ cos 23(TaL - sin 20wQ). 

(42) 

(45) 
where the 2 x 2 mass matrix .Me is given by 

M2 ) ,  (x /2mw cosfl x/~mw sin/3 
P 

In general, therefore, one expects the interaction eigenstates, ( f L ,  fR), to differ 
from the mass eigenstates, (fl, f2) in order of increasing mass. However, the 
amount of L-R mixing is proportional to the mass of the corresponding fermion, 
and is usually negligible for the first two generations. 

Among the spin--} sparticles, we find the strongly interacting gluinos, .q, which 
do not mix with other states and whose mass is an independent parameter of 
~SOFT.  

The weakly interacting spin-} sparticles are two charged and four neutral 
gaugino-Higgsino mixtures, usually called "charginos" and "neutralinos", respec- 
tively. 

The two chargino mass eigenstates, (;~1 =k, :~ )  in order of increasing mass, are 
superpositions of winos 14 z+ and Higgsinos H~I, and their mixing is described 
by the mass Lagrangian: 

- " a "  = - , .  (I7¢+ H+ I2¢- / ~ / )  M e  ~ W -  + h.c., (44) 

(43) 
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and is diagonalized by the bi-unitary transformation (.0) 
U*McVt= 0 ~ rn)?~ " (46) 

Similarly, the mixing between the four neutralino states is described by the mass 
lagrangian 

rN u = __1 MN 0 + h.c. , (47) 

where (~°)  T ( ) - /), I7V3, HO/2/o and the 4 x 4 neutralino mass matrix reads 

(c~ =- cos/3, s~ = sin/3, cw - cos0w, sw - s in0w)  

( MOO1 0 -rnzc~sw m z s ~ s w )  
M2 mzc3cw -mzs2cw (48) 

J~N -~ ~ _mzci38W mzczcw 0 -p ' 

\ rnzs~sw -rnzs2cw -# 0 

and is diagonalized by the unitary transformation 

= diag (rn~o rn~o rn~o m ~ ) .  N* fld N N* (49) 

Summarizing, the masses and couplings of the two charginos and of the four 
neutralinos are characterized by four parameters: the gaugino masses M2 and 
M1 (which will be related in the following section), the superpotential Higgs mass 
tt and tanfL It should be noted that the lightest neutralino mass eigenstate, 20  
is the favourite candidate for being the Lightest Supersymmetric Particle (LSP) 
in the MSSM spectrum. An alternative candidate is the sneutrino ~ ,  but it is 
actually the LSP of the MSSM for a much smaller range of parameter space. In 
general, the lightest neutralino turns out to be a mixture of the four interaction 
eigenstates 

~° 1 = N~/? + N~W~ + N~3/:Z ° + N ~ H  ° (50) 

The case of a pure photino, 20 1 = ~, which was assumed for simplicity in some 
old phenomenological analyses, would correspond to the special combination 
(Nil, N12, Nla, N14) = (sin Ow, cos 0w, 0, 0), but there is no theoretical reason 
to prefer it. 

1.5 N o n - m i n i m a l  A l t e r n a t i v e s  to  t h e  M S S M  

The assumptions defining the MSSM are plausible but not compulsory. Relaxing 
them leads to non-minimal supersymmetric extensions of the SM, which typically 
increase the number of free parameters without (at present) a corresponding 
increase of physical motivation. We mention here two popular options. 

The simplest non-minimal model [22] is constructed by adding to the MSSM 
a gauge-singlet Higgs superfield N, and by requiring purely trilinear superpoten- 
tial couplings. Folklore arguments in favour of this model are that it avoids an 
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explicit supersymmetric mass parameter # ,,~ G-~ 1/2, and that the homogeneity 
properties of its superpotential recall the structure of the simplest superstring 
effective theories. These statements, however, are not based on solid theoretical 
ground, and counterarguments exist. 

In the formulation of the MSSM, the assumption of exact R-parity is of 
crucial importance, since relaxing it can drastically modify the phenomenological 
signatures. In fact, by imposing discrete symmetries weaker than R-parity we 
can allow for some of the terms in the last two lines of (15), and therefore 
for explicit R-parity breaking, in a phenomenologically acceptable way [23] (for 
a recent review on the phenomenology of explicit R-parity breaking, see e.g. 
Ref. [24]). Another possibility [25] is that R-parity is spontaneously broken by 
the VEV of a sneutrino field, but it is by now experimentally ruled out by LEP 
data if we stick to the MSSM field content. 

2 T h e  M S S M  as  a L o w - E n e r g y  E f f e c t i v e  T h e o r y  

This lecture explains how we can extract further information on the MSSM by 
assuming that the latter is, in turn, the low-energy remnant of some unified the- 
ory, naturally defined at a very high-energy scale such as the grand-unification 
scale or the Planck scale. The structure of the Renormalization Group Equa- 
tions (RGEs) for the MSSM parameters is explained, with emphasis on their 
infrared properties and on the possibility of SU(2) × U(1) breaking via quantum 
corrections. Supersymmetric grand-unified theories are then introduced and con- 
fronted with non-supersymmetric ones, with a discussion of the novel possibilities 
for proton decay and for the prediction of the low-energy coupling constants. We 
also comment on the complete unification of couplings in superstring theories. 

2.1 MSSM RGE and Implications 

We begin this section with an important observation, which anticipates some 
material of the third lecture. The range of validity of the MSSM depends on the 
microscopic scale As  of supersymmetry breaking, which is defined in terms of the 
vacuum expectation values of some auxiliary fields, and should not be confused 
with the scale Am of the supersymmetry-breaking masses for the MSSM parti- 
cles. If A~ ,-~ Am M, where M is the scale of supersymmetric grand unification 
or even the Planck scale, then we can extrapolate the MSSM up to the scale i~I. 
This is the case, for example, of the so-called hidden-sector supergravity models. 
In the rest of this lecture, such an assumption will be always understood, but we 
should (and will) keep in mind that there may be cases in which it is not valid. 

We shall also assume that, at the very large scale M, we can assign universal 
boundary conditions on the soft terms, in the form of a universal scalar mass 
(m~), a universal gaugino mass (ml/2), and a universal cubic scalar coupling 
(A0), all of the order of the electroweak scale. Then the values of the MSSM 
parameters at the electroweak scale are strongly correlated by the corresponding 
RGEs, whose main features and implications will be discussed in the following. 
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Before discussing the RGEs of the MSSM, we spell out in more detail the 
assumptions on the boundary conditions. For definiteness, we identify here the 
scale M with the grand-unification scale M u  ~ 2 x 1016 GeV. We then assume 
that, in first approximation, at the scale M the running gauge coupling constants 
obey the relations: 

ga(M) = g2(M) = g l ( M )  =- g g ,  (51) 

where g3 -= gs,  g2 =- g and for the U(1)y factor we use the conveniently normal- 
ized coupling gl = x / ~ g ' .  Similarly, we assume for the gaugino masses 

M 3 ( M )  = M~(M)  = .~il(]~J[) ~ 7Ytl/2, (52) 

for the soft supersymmetry breaking scalar masses 

~ ( M )  = ~ :¢  (M) = ~ (~,t) = ~ ( ~ I )  
= ~ o ( M )  --- , ~  (M) = . ~  ( ~ )  = ~ ,  (53/ 

and for the soft supersymmetry-breaking scalar couplings 

A U ( M )  ~- A D ( M )  = A E ( M )  = Ao.  (54) 

We stress that, while (51) and (52) can be justified in models of supersymmetric 
grand unification, the universal structure in generation space of (53) and (54) 
requires a deeper justification in the underlying theory of spontaneous supersym- 
metry breaking. Counting also the supersymmetric Higgs mass p ( M )  = po and 
the supersymmetry-breaking Higgs mixing term m ~ ( M )  = (m~)0, in addition to 
the gauge and Yukawa couplings we have in the MSSM five more parameters 

,o ,  Ao, (SS) 

which control the low-energy effective Lagrangian (18). 

G a u g e  c o u p l i n g s  and  g a u g i n o  masses .  Putting t ~ log Q, where Q is the 
renormalization scale in some mass-independent renormalization scheme, the 
one-loop RGEs for the gauge coupling read [26] 

dg _ (A 1.2.3) (56) 
dt - ~ 2 g d '  : ' ' ' 

and, assuming the boundary conditions (51) and the absence of new physics 
thresholds between M and the scale Q << M, they are trivially solved by 

1 1 b• , Mu 

The one-loop beta function coefficients are given by the general formula bA = 

T ( R A )  - 3C(GA) ,  and those appropriate to the MSSM are easily computed [27] 

33 
b 3 = -3,  b2 : 1, b 1 : -5-. (58) 

D 
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A more detailed phenomenological discussion of the constraints on the low- 
energy gauge-couplings will be given in the next subsection, after introducing 
the concept of supersymmetric grand unification. 

For the gaugino masses, similar equations hold: 

d M A _  bA ~2 ~ ,  (.4 1.2, 3) (59) 
~-~ 871. 2 9 A - t ~  A , : • 1 

and they are also immediately solved with the boundary conditions (52), to give 

g~(Q) (60) MA(Q) - 9 ~  ral/2. 

Numerically, this corresponds to M3 -~ 3 roll2, -~2 "~ 0.85 ml/2, M1 "~ 0.25 rnl/.)_, 
with possible corrections due to higher-loops and threshold effects. 

Yukawa couplings. Neglecting intergenerational mixing, the oneAoop RGEs 
for the third-generation Yukawa couplings read [28] 

dht h t ( 8  2 3 2 1 3 ,  2 ~ ) 
-872 - g3- g2- g +3h + hl , (61) 

( <  - -  - -  - - - ~ g 3  - -  "~g2 - -  9 '2 + 2 h t  dt 8r~ 2 2 / ' 

dh~ h, ( 3 2 3 ,2 3 2 1 ) 
dt - 87r e - - ~ g 2 - ' ~ g  +'~hb + h2~ " (63) 

A close look at the above RGEs, combined with the experimental knowledge of 
the top and bottom quark masses, can give us important informations. 

Consider first the simple case of tan ~ < < rot~rob. In first approximation, we 
can neglect the effects of the (g, g') gauge couplings and of the (hb, h¢) Yukawa 
couplings on the running of the top Yukawa coupling, hr. Then we can imme- 
diately realize that the RGE for the top Yukawa coupling, eq. (61), admits an 
effective infrared fixed point [29], smaller than in the SM case [30]. Whatever 
high value one assigns to the top Yukawa coupling at the large scale M, the 
top Yukawa coupling at the electroweak scale never exceeds a certain maximum 
value, a~  ~* ~ (8/9)(~s, where st -=- h~/(4rr) and os - g~/(47r). Remembering 
the tree-level formula for rnt, this suggests the lower bound 

tan/3 ~ 2. (64) 

However, a precise bound can be established only after the inclusion of the 
possibly sizeable radiative corrections associated with threshold effects, both at 
the unification scale and at the electroweak scale [31], combined with two-loop 
RGEs. As a result, values of tan~3 as low as 1.6 may still be acceptable. The 
bounds of course evaporate if we allow for the possible existence of new physics 
thresholds between the electroweak and the grand-unification scales. 
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This infrared structure becomes even more interesting if we include the effects 
of the bottom-quark Yukawa coupling, so that also large values of tan 3 can be 
considered. In this case, the top and bottom Yukawa couplings admit an effective 
infrared fixed curve, approximately described by [32] 

8 
o~t + ab ~ ~aS / (a t ,  ab) , (65) 

where f is a hypergeometric function bounded by 1 < f < 12/7. This translates 
into the approximate bound 

mt ~ rn~ 
sin2---~ + cos z f3 ~ (200 GeV) z . (66) 

It is remarkable that, for a large range of tan/3 values between 1 and mt/mo,  this 
bound is respected but almost saturated: several theoretical papers have been 
written to suggest possible explanations of this empirical observation, but such 
a discussion is beyond the aim of the present lectures. 

Scalar masses.  For the soft supersymmetry-breaking scalar masses, under the 
same assumptions as above, and considering for the moment the sfermions of 
the third family, we find [33] 

dm2H~ 1 
dt = 87r 2 ( -39~M~ - 9'2M21 + 3h~Fb + h~F~) , (67) 

dm 2H 2 1 
dt 87r 2 

dra ~ 1 

dt 8n 2 

dm~¢ _ 1 
dt 8re 2 

dm2D~ 1 
dt 87r 2 

dm 2 1 

dt 87r 2 

dm2E¢ 1 
dt 8~ 2 

2 2 3h2tFt) ( - 3 g ~  - g':~+~ + (68) 

16 2M 2 
- -  - ~ g 3  3 

162 2 

I t2 9 / 
- 3g~M~ - -~g M~ + h~Ft + h~Fb 

/ 

16 ,2M2 - -~g 1 + 2h~Ft ! 

162 2 
_ _ ~ g 3 M  ~ _ ~g,2~4~ + 2h~Fb) , 

2 2 (_392M4. ,2, ,~ - g ~v,~ + h ~ F ~ ) ,  

(69) 

(70) 

(71) 

(72) 

where 

(-4g'2M~ + 2h~F¢) , 

2 2 F, -- m~ + ~ro + r~.~ + A,, 
o 2 Fb = rn~ + m~¢ + rag, + .45, 

F~ = m2L + r n ~  + m~,  + A 2. 

(73) 

(74) 

(75) 

(76) 
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Similar equations can be derived for the remaining soft supersymmetry-breaking 
parameters (At, Ab, A~, ma 2) and for the superpotential Higgs mass #. Also, the 
inclusion of the complete set of Yukawa couplings, including mixing, is straight- 
forward. 

In general, the RGE for superpotential couplings and soft supersymmetry- 
breaking parameters have to be solved by numerical methods (or approximate 
analytical methods). Exact solutions of the one-loop RGEs can be found for the 
squark and slepton masses of the first two generations, for which the Yukawa 
couplings are negligible: 

3 

b . T  1 -  (77) 
A--1 /Q~ 

where 

and 

b ~  Mu 
FA = 1 + -£:Yw. g2; log Q '  

~3 7 r  ~ - 

(78) 

dc 

c3(i) 8 s s 0 0 
3 3 3 

3 3 0 c2(i)  ~ 0 0 

(79) 

1 8 2 1 2 5C1 ( / ) 1 - 8  9 9 

For example, we ge tmS,  2 2 (5+ 9 ~ m o +  m u o , m D c  ~ + 8)m n, m z  " 0.5 

m ~  ~ m 2 + 0.15 m~/2, with the usual warning that higher loops and threshold 
effects should be included for more accurate predictions. 

Radiative breaking of SU(2) × U(1). One of the most attractive features 
of the MSSM is the possibility of describing the spontaneous breaking of the 
electroweak gauge symmetry as an effect of radiative corrections [34]. Notice 
that, starting from universal boundary conditions at the scale Mu,  it is possible 
to explain naturally why fields carrying colour or electric charge do not acquire 
non-vanishing VEVs, whereas the neutral components of the Higgs doublets do. 
Also, the electroweak scale gets linked with the scale of the soft supersymmetry- 
breaking masses in the MSSM (which remains however an independent input 
parameter), and is stable with respect to quantum corrections. 

We give here a simplified description of the mechanism, in which the physical 
content is transparent, and we comment later on the importance of a more 
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refined treatment.  The starting point are the boundary conditions on the model 
parameters at the scale M, summarized by: 

9u, (ht, hb, hr)o, #o, ml/2, m0, A0, (m~)0. (8o) 

After evolving all the running parameters from the grand-unification scale M to 
a low scale Q ,.~ m z ,  according to the RGEs described in the previous section, 
we can consider the RG-improved tree-level potential l,; (Q), which has the func- 
tional form of (19), but is expressed in terms of running masses and coupling 
constants evaluated at the scale Q. Vo(Q) will describe an acceptable breaking 
of SU(2) x U(1) if the conditions of (22) and (23) are satisfied, together with 
a certain number of conditions for the absence of charge and colour breaking 

2 minima (for recent discussions, see e.g. [35]), and finally if v 2 ~ v I + v~ is of the 
right magnitude to fit the observed values of the W and Z masses, according 
to (26). In other words, the measured values of the weak boson masses set a 
constraint on the independent parameters of (80). 

A crucial r61e in the whole process is played by the top quark mass, since the 
top quark Yukawa couplings governs the renormalization group evolution of the 
mass parameter  rn~2 , as should be clear from (68). For a given set of boundary 
conditions on the remaining parameters, too small values of ht are not able to 
drive/~ < 0 at scales Q ..0 m z ,  so that  the origin remains a minimum and we 
end up with unbroken SU(2) x U(1); on the other hand, too large values of ht 
can either drive 8 < 0, which would correspond to a potential V0(Q) unbounded 
from below, or violate one of the conditions for the absence of charge or colour 
breaking minima. 

The use of the renormalization group improved tree-level potential, V0 (Q), is 
very practical, but it relies on the assumption that,  once all large logarithms have 
been included in the running parameters, all the remaining one loop corrections 
to the scalar potential can be neglected at the scale Q ~.. m z .  We know in fact 
that  the complete expression of the one-loop effective potential is given by 

 I(Q) = Vo(Q) + (81) 

where, neglecting a field-independent part which is proportional to Str  fl'l 2 and 
contributes only to the vacuum energy, 

1 Str  { M 4 ( Q ) [ l o g M 2 ( Q )  z3V1 (Q) -- 647r 2 Q~ ~ ] } .  (82) 

Indeed, it was shown in [36] that,  in order to obtain reliable results, stable under 
small changes of the renormalization scale Q, it is essential to use at least the 
full one-loop effective potential, especially if the supersymmetry-breaking mass 
splittings start  to be sizeable with respect to mz .  A reasonable first approxima- 
tion consists in using Vo(Q), but choosing a scale Q of the order of some average 
stop mass: this minimizes the threshold corrections due to the presence of many 
slightly different mass scales close to the electroweak scale. 
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To conclude the discussion of radiative symmetry breaking, we show now 
that  in the MSSM (with universal boundary conditions) we expect 

rat  
1 < t a n 3  < - - .  (83) 

7rib 

The proof relies on the relation, derived from the minimization of I~o(Q): 

_ + r a } / 2  (84) 

The boundary conditions at the unification scale are ra~ (M) = ra~ (M) = ra~ + 
pg, and the RGE for the difference ra~ - rn~ reads 

d(m~ ra 221 1 I 

dt 87r 2 
(85) 

Imagine now that  tan/~ < 1, and remember the tree-level expressions for the top 
and bot tom masses. The fact that  rat >> rab then implies ht ;>> hb, this in turn 
implies that  at the scale (~, where the use of t~(O) is appropriate, ra~ > ra~. But 
(84) then tells us that  t a n ~  > 1, in contradiction with the starting assumption. 
Similarly we can prove that  tan ~ < rat/rab. 

As a final remark, we stress a problem left unsolved by the MSSM descrip- 
tion of radiative symmetry breaking: the scale of the soft terms, which in turn 
determines the electroweak scale, is not dynamically determined, but introduced 
'by hand'  in the boundary conditions on the mass parameters. To discuss the 
possible dynamical determination of such a scale, needed for a fully satisfactory 
solution of the naturalness problem, we need a theory of spontaneous supersym- 
metry  breaking. We shall come back to this in the third lecture. 

2.2 Supersymmetric  Grand Unification 

The basic idea of grand unification is that the gauge interactions as observed 
at the presently accessible energies, with the different numerical values of their 
coupling constants, are just the remnants of a theory with a single gauge coupling 
constant, spontaneously broken at a very high scale. The simplest possibility is to 
have a single scale Mu >> mz ,  at which a simple gauge group G is spontaneously 
broken down to the SM gauge group, Go - SU(3)c x SU(2)L × U(1)y:  

M u  
G ----+ Go ~ SU(3)c  z SU(2)L x U(1)y 

gu (g3, g2, gl) 

m z  

> s u ( 3 ) c  x u(1)Q. (86) 

There is a vast literature on grand unification, both with and without supersym- 
metry, and many excellent reviews are available (see e.g. [37]). We shall limit 
ourselves here to a qualitative overview of the main differences between the two 
cases and to a few comments on some recent developments. 
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Non-supersymmetric  Grand Unification. The simplest realization of the 
grand-unification idea is the minimal, non-supersymmetric SU(5) model of Georgi 
and Glashow [38] (for a previous at tempt  with partial unification, see [39]). The 
gauge bosons of such model belong to the adjoint representation of the rank-4 
simple group SU(5), 24v: besides the SM gauge bosons, there are 12 additional 
ones, (X,Y)  ~ (3,2, +5/6)  and their conjugates (X,Y) ,  of mass M~-. These 
bosons have fractional electric charge and carry both baryon and lepton number. 
A B  = 3 L  = ±1. Each fermion generation is arranged in an anti-fundamental 
representation, 5F, and in the antisymmetric product of two fundamentals, 10F. 
In terms of SM fermions, the two representations decompose as follows: 

5F --~ (d c, l ) ,  10F --+ (q, U c, eC). (87) 

The scalar fields introduced to describe the different stages of spontaneous sym- 
metry breaking correspond to an adjoint representation, 24s, containing 12 Gold- 
stone bosons and 12 additional scalars of mass M~, and an anti-fundamental 
representation, 5s, containing the SM Higgs boson and an additional triplet 
H ~ (3, 1,1/3) of mass Mn.  

The first stage of symmetry breaking is controlled by the VE\:  of the 24s, of 
order Mu. The masses Mv, M~, MH have model-dependent relations with Mu, 
but in first approximation we can assume that they are all of order :~@. The 
breaking of the SM gauge group at the electroweak scale is controlled instead by 
the VEV of the SM Higgs doublet contained in the 5s. The fermions get masses 
via their Yukawa couplings, of the form 

h (l°) • 10F x 10F × 55, h (5) • 3F X 10F × 5S,  (88) 

where generation indices have been understood. These Yukawa couplings can- 
not give rise to a realistic pattern of fermion masses and mixing (even if some 
predictions such as the rnb/m¢ ratio [40] are intriguingly close to being correct), 
but  are chosen to keep the model simple. 

Non-minimal grand-unified models can be constructed, by enlarging one or 
more of the following: the gauge group (interesting candidates of rank higher 
than four are SO(10) and E6), the fermion content, the scalar content. The), 
will not be discussed here. 

One of the most dramatic phenomenological implications of grand-unification 
is the possibility of AB = AL = 4-1 nucleon decay, for example p ~ e+~ °. 
There are two types of tree-level Feynman diagrams, involving three quarks 
and a lepton on the external lines, that could induce such a process. The first 
type involves the exchange of virtual (X, Y) vector bosons on an internal line, 
and the corresponding rate scales as F 4 ~ 4. gu/M~, the second type invoh,es 
the exchange of the scalar Higgs triplet H,  and the corresponding rate scales 
as F ~ h4 /M},  where h is a Yukawa coupling. In the case of gauge-mediated 
nucleon decay the amount of model-dependence is small. In first approximation. 
from the experimental bound [41] r~P (p  ~ e+Tr °) > 5.5 x 1032 yrs, and from 
the approximate formula 7th(p ~ e+Tr °) ~ 102s±~ grs • [Mv(GeV)/2 x 1014] 4, 
we can deduce a stringent lower bound on the grand-unification scale Mu. 
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The important point is that, from the measured values of two of the low- 
energy gauge couplings, we can extract a rather precise prediction for gg, Mu 
and the third low-energy gauge coupling. In first approximation, we can just solve 
the one-loop RGEs for the running gauge couplings, as discussed in the previous 
section. The only difference is that, in the case of non-supersymmetric grand 
unification, we must use the one-loop beta function coefficients corresponding to 
the SM particle content [26]: 

bO = _7, b0 - 19 b0 41 (89) 
6'  = ~  

Starting from three input data at the electroweak scale, for example [41] 

a3(mz) = 0.121 :k 0.005, (90) 
-~ (91) a~,~(mz) = 128.90 :i: 0.09, 

sin 20w(mz) = 0.2312 :t: 0.0004, (92) 

where all running parameters are defined in the M S  scheme, we can perform 
consistency checks of the grand-unification hypothesis in different models. 

In the minimal SU(5) model [38], and indeed in any other model where (51) 
holds and the light-particle content is just the SM one (with no intermediate mass 
scales between mz and Mu), (57) and (89) are incompatible with experimental 
data. This was first realized by noticing that the prediction Mu --- 1014-15 GeV, 
obtained by using as inputs (90) and (91), is incompatible with the limits on 
nucleon decay. Subsequently, also the prediction sin e 0w -~ 0.21 was shown to be 
in conflict with experimental data [42], and this conflict became more and more 
significant with the progressive accumulation of high-quality data from the LEP 
and Tevatron experiments. 

W h a t  changes wi th  supe r symmet ry .  Some of the problems of non-supesym- 
metric unification, including those with proton decay and with the low-energy 
values of the gauge coupling constants, may find a natural solution with the 
incorporation of supersymmetry. The minimal model of supersymmetric grand 
unification [43] is based on SU(5), and is constructed in analogy with the MSSM. 
Gauge bosons and matter fermions fall in the same SU(5) representations as in 
the Georgi-Glashow model, but are promoted to the corresponding supermul- 
tiplets. The Higgs sector is extended to the following chiral superfields: H(5), 
H(5) and ~(24). The VEV of the adjoint scalar, (~) = V • diag(2, 2, 2, -3,  -3) 
breaks SU(5) down to the SM gauge group, whereas {H} = (0, 0,0, 0, v2) and 
(H} = (0, 0, 0,0, vl) describe the breaking of the electroweak symmetry. The 
superpotential is of the form 

w = h.  10F x 10F X H + h' .  10y x 5F × H 

+M'H-H + )uH27-'H + M Tr E2 + A2 Tr ~a .  (93) 

The breaking of SU(5) must preserve supersymmetry and give mass to the color 
triplet Higgs bosons, while keeping their doublet partners light. Looking at the 
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equations of motion for the auxiliary fields, we fiIld that V ..~ M/A2 and, in 
order to keep the Highs doublets light, M ~ ~_ 3A~V. The fine-tuning related 
to this last condition is at the origin of the so-called doublet-triplet splitting 
problem of minimal supersymmetric grand unification. The superheavy vector 
bosons have masses proportional to guV, the Highs triplets in the fundamental 
and anti-fundamental have masses proportional to A1 V, and the Highs particles 
in the adjoint have masses proportional to A2V. After decoupling these heavy 
states, and introducing by hand some soft supersymmetry-breaking mass terms, 
we are left with the MSSM as the effective theory at scales Q << ~@. 

In the leading logarithmic approximation, the predictions of supersymmet- 
ric grand-unification just depend on the MSSM particle content. Assuming for 
simplicity that all supersymmetric particles have masses of order rnz, we obtain 
[27] Mg _~ 2 x 1016 GeV (which increases the proton lifetime for gauge-boson- 
mediated processes beyond the present experimental limits) and sin" Ow ~- 0.23. 
At the time of refs. [27], when data were pointing towards a significantly smaller 
value of sin 20w, this was considered by some a potential phenomenological short- 
coming of the MSSM. The high degree of compatibility between data and su- 
persymmetric grand unification became manifest [42] only later, after improved 
data on neutrino-nucleon deep inelastic scattering were obtained, and was pro- 
gressively reinforced by the subsequent LEP and Tevatron data. We should not 
forget, however, that unification of the MSSM is not the only solution which 
can fit the data of (90)-(92): for example, non-supersymmetric models with ad 
hoe light exotic particles or intermediate symmetry-breaking scales could also do 
the job. The MSSM, however, stands out as the simplest physically motivated 
solution. 

In models of supersymmetric grand-unification, including the minimal one, 
we still find the conventional mechanisms for proton decay', described by super- 
symmetric operators of physical dimension 6 in natural units of mass. Gauge- 
boson exchange, however, does not lead to proton decay at a detectable rate, 
since the unification mass Mu is more than one order of magnitude higher than 
in the non-supersymmetric case, and the proton lifetime scales as M~.. Color- 
triplet Highs boson exchange could lead to decay modes such as p --+ #+K ° or 
-OuK +, but the corresponding rate would be undetectably small, being propor- 
tional to some Yukawa coupling squared, if the triplet masses are of the order 
of Mcr. However, as pointed out in [46], supersymmetric models admit a new 
class of dimension-5 operators which, when dressed by loops of MSSM particles, 
may lead to a proton lifetime proportional to A m  2 M~: instead of M~, with 
distinctive decay modes such as p -+ K+Y,. This is indeed the case of minimal 
supersymmetric SU(5). However, the detailed predictions for the decay rates are 
rather model-dependent, since they are controlled by superpotential couplings 
containing two arbitrary phases and three independent superheavy masses, and 
by the details of the MSSM particle spectrum. 

If we want to make the comparison between low-energy data and the pre- 
dictions of specific grand-unified models more precise, there are several factors 
that should be further taken into account. After the inclusion of higher-loop 
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corrections and threshold effects, (57) is modified as follows 

1 _ 1 bA lo Mu zil~ j > l  (A = 1,2,3) (94) g (Q) g - 0 - +  + A 

In (94), A ~  represents the so-called threshold effects, which arise whenever the 
RGE are integrated across a particle threshold [44], and A~ >1 represents the 
corrections due to two- and higher-loop contributions to the RGE [45]. Both A~ 
and A~ >I are scheme-dependent, so one should be careful to compare data and 
predictions within the same renormalization scheme. A~ h receives contributions 
both from thresholds around the electroweak scale (top quark, Higgs boson, 
and in SUSY-GUTs also the additional particles of the MSSM spectrum), and 
from thresholds around the grand-unification scale (superheavy gauge and Higgs 
bosons, and in SUSY-GUTs also their superpartners). Needless to say, these last 
threshold effects can be computed only in the framework of a specific grand- 
unified model, and typically depend on a number of free parameters. 

Besides the effects of gauge couplings, A ~  1 must include also the effects of 
Yukawa couplings, since, even in the simplest mass-independent renormalization 
schemes, gauge and Yukawa couplings mix beyond the one-loop order. In minimal 
SU(5) grand unification, and for sensible values of the top and Higgs masses, 
all these corrections are small and do not affect substantially the conclusions 
derived from the naive one-loop analysis. This is no longer the case, however, 
for supersymmetric grand unification. First of all, one should notice that the 
MSSM by itself does not uniquely define a SUSY-GUT, whereas threshold effects 
and even the proton lifetime (due to a new class of diagrams [46] which can be 
originated in SUSY-GUTs) become strongly model-dependent. Furthermore, the 
simplest SUSY-GUT [43], containing only chiral Higgs superfields in the 24, 5 and 

representations of SU(5), has a severe problem in accounting for the huge mass 
splitting between the SU(2) doublets and the SU(3) triplets sitting together in 
the 5 and 5 Higgs supermultiplets. Threshold effects are typically larger than in 
ordinary GUTs, because of the much larger number of particles in the spectrum, 
and in any given model they depend on several unknown parameters. Also two- 
loop effects of Yukawa couplings are quantitatively important in SUSY-GUTs, 
since they depend not only on the heavy quark masses, but also on tan 9: these 
effects are maximal for tan~ close to 1 or to mr~rob, which correspond to a 
strongly interacting top or bottom Yukawa coupling. There is no problem of 
principle in evaluating all these effects, but they introduce a large amount of 
model-dependence when we try to push the comparison between theory and 
experiment to the level of the present experimental precision. The conclusion is 
that, even imagining a further reduction in the experimental errors of (90)-(92), 
it is impossible to claim indirect evidence for supersymmetry and to predict 
the MSSM spectrum with any significant accuracy. The only safe statement is 
that, at the level of precision corresponding to the naive one-loop approximation, 
there is a remarkable consistency between experimental data and the prediction 
of supersymmetric grand unification, with the .~ISSM R-odd particles roughly 
at the electroweak scale. 
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S t r i n g  un i f i ca t ion .  To conclude the discussion of supersymmetric grand unifi- 
cation, it is worth spending a few words on how its phenomenologically successful 
prediction of the low-energy gauge couplings could be embedded within our can- 
didate theories of all interactions, namely superstring theories or, according to 
the most recent developments, the M-theory underlying all superstring theories. 

Traditionally, the discussion of the unification of all couplings used to be 
given in the context of the perturbative formulation of four-dimensional heterotic 
string models. In such a context, the only free parameter is the string tension, 
which fixes the unit of measure of the massive string excitations. All the other 
scales and parameters are related to VEVs of scalar fields, the so-called moduli, 
corresponding to flat directions of the scalar potential. In particular, there is a 

,-, , G -1~')- relation among the string mass Ms c~ '-~/2 the Planck mass Mp ~ x , 
and the unified string coupling constant gstring, which reflects unification with 
gravity, and implies that  in any string vacuum one has (at least in principle) one 
more prediction than in ordinary field-theoretical grand unification. In a large 
class of perturbative string models, we can write down an equation of the same 
form as (10), and compute gu, M u ,  ArAb, . . .  in terms of the relevant VEVs [47]. 
So doing, we find Mu ~- 0.7 x gu x 10 is GeV, more than one order of magnitude 
higher than the naive MSSM extrapolations from low-energy data. This is the so- 
called string unification problem. Several suggestions for its solution have been 
put forward: an intermediate phase of conventional field-theoretical unification 
between M u  and Mstring, large string threshold corrections, intermediate scales, 
etc. 

An intriguing observation was made recently in connection with the newly 
discovered non-perturbative string dualities. In the strong coupling limit, the 
Es x Es heterotic string leads to a new dimension which is slightly different 
from the familiar ten dimensions that  are usually considered in the perturba- 
tive discussion of heterotic string eompactifications. Instead of being similar to a 
circle, it is more like a segment [48]. The gauge fields and matter  live at the end- 
points only, while gravity propagates in the bulk. Suppose that  a fifth dimension 
of this type exists below the unification scale. Since the MSSM fields live in the 
walls, the evolution of the gauge couplings is the standard four-dimensional one. 
Since gravity propagates in the full five dimensions, however, the effective gravi- 
tational coupling runs faster than in four dimensions. For a fifth dimension of the 
appropriate size, the kink in the gravitational coupling can make all couplings 
meet [49] at the unification scale M u .  Of course, this is not more predictive than 
ordinary grand unification, since the size of the fifth dimension can be taken as 
a parameter,  but it shows that the string unification problem may be solved in 
some appealing way. 

3 S u p e r s y m m e t r y  B r e a k i n g  

This lecture begins with some generalities on spontaneous supersymmetry break- 
ing, both in the global and in the local case. Hidden-sector models for super- 
symmetry breaking, characterized by a heavy gravitino, are then introduced, 
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and their open problems discussed. Some more advanced material is also pre- 
sented: the relation between supersymmetry-breaking masses and target-space 
duality properties in a class of string models, and the possibility of generating 
dynamically the hierarchy via quantum corrections in recent versions of the 'no- 
scale' scenario. The case of a light gravitino is also discussed, and exemplified 
via the so-called 'messenger' or 'gauge-mediated' models. It is stressed that the 
phenomenology of this case can be quite different from the previous one, but 
that many properties are universal, and can be understood in terms of general 
low-energy theorems. The possibility of a very light gravitino, with new strong 
interactions very close to the electroweak scale, is finally mentioned. 

3 . 1  G e n e r a l i t i e s  

An important criterion for supersymmetry breaking follows directly from the 
basic anti-commutation relation of the supersymmetry algebra, eq. (5), by taking 
its trace: 

1 
g = ~ (Q1QI -I- Q1Q1 ~- Q2Q2 -[- Q2(~2), (95) 

where H =- P0 is the Hamiltonian. If the Hilbert space has positive norm, which is 
certainly the case for global supersymmetry in the absence of gauge interactions, 
then supersymmetry is spontaneously broken if and only if the Hamiltonian 
does not annihilate the vacuum, HI0) ¢ 0. This corresponds in turn to having 
a positive vacuum energy, (V} > 0. Remembering the structure of the scalar 
potential in renormalizable theories with global supersymmetry, eq. (12), the 
condition for supersymmetry breaking is then that at least one of the auxiliary 
fields of the chiral and vector supermultiplets has a non-vanishing VEV, 

(Fi)#O and/or <D ~)#0. (96) 

The unavoidable consequences of the spontaneous breaking of global supersym- 
metry are then 

- The existence of a massless fermion, the goldstino, residing in the superfields 
whose auxiliary fields acquire non-vanishing VE\rs (in complete analogy with 
the goldstone bosons of ordinary spontaneously broken continuous global 
symmetries). 

- A positive vacuum energy (we shall see in a moment what happens when 
the coupling to supergravity is introduced). 

- Some phenomenologically unacceptable mass relations, such as Str ~42 = 0 
in each separate sector of the spectrum. It should be kept in mind, however, 
that such a relation is valid only at the classical level, and in the absence of 
non-renormalizable interactions and anomalous U(1) factors. 
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Spontaneous S U S Y - b r e a k i n g :  ' k i n e m a t i c s ' .  The general, 'kinematical' as- 
pects of spontaneous supersymmetry breaking are well understood, both in the 
global [50] and in the local [51] case: in a N = 1, d = 4 theory with chiral and 
vector supermultiplets, the order parameters controlling supersymmetry break- 
ing are the VEVs of the associated auxiliary fields, F / and D a, which give a 
positive semi-definite contribution to the scalar potential. For supersymmetry 
breaking to be compatible with a flat space-time background, the inclusion of 
gravitational interactions is essential, since in Poincar6 supergravity the scalar 
potential reads [52] 

r = IIFII 2 + IIDII 2 - I IHI t  2. (97) 

The three terms I IFI 12, ]]DII 2 and [IHI] 2 are positive-semidefinite, and controlled 
by the auxiliary fields of the chiral, vector and gravitational supermultiplets, 
respectively. The first two terms have different expressions but identical r61es 
in local and global supersymmetry; the third one, peculiar to supergravity, has 
the universal property that  {][HI] 2} = 3 m ~ / 2 M 2  , where m3/2 is the mass of 

the spin-3/2 gravitino (the supersymmetric partner of the spin-2 graviton) and 
Mp = ( 8 7 r G N )  - 1 / 2  "~ 2.4 x l0 is GeV is the Planck mass. 

As will be clear in a moment, to generate phenomenologically acceptable 
masses for the supersymmetric partners of ordinary particles, a realistic model 
must have 

A s  - <llfll 2 + IIDII2> 1/4 ~ GF U2 , (98) 

where GF U2 "~ 293 GeV is the electroweak scale. On the other hand, to satisfy 
the present bounds on the cosmological constant (for a review and references, 
see e.g. [53]), a realistic model must also have 1 

a . . . .  ~ (~7}1/4 £ 10-4 eV ~ G F I ~ I p  1 . (99) 

It is then obvious that,  when discussing the vacuum energy, the gravitational 
contribution to the scalar potential must be essentially identical to the non- 
gravitational one. However, as we shall see in the following, there are situations in 
which gravitational interactions can be neglected when restricting the attention 
to the spectrum and the interactions relevant for present accelerator experiments. 

The goldstino G, which provides the +1 /2  helicity components of the massive 
gravitino via the super-Higgs mechanism, is determined by 

d = (Fi )~  i + (D,)A ~ . (100) 

The mass splittings in the different sectors of the model, denoted here schemat- 
ically with a sub-index I,  are controlled by 

(Am2)i  .-~ AI A~, (101) 

where At is the effective coupling of the goldstino supermultiplet to the sector 
I.  This is true not only at tree-level, but  also after the inclusion of quantum 

1 The last approximate equality should be taken here as a mere numerical coincidence. 
even if there may be room for intriguing speculations. 
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corrections, since the latter can be incorporated in a local effective Lagrangian, 
which must exhibit the spontaneous nature of supersymmetry  breaking if a full, 
non-anomalous set of supersymmetric  multiplets is kept. In order for super- 
symmet ry  to solve the naturalness problem, it is customary to require that  the 
mass splittings among the MSSM states be ( A m 2 ) i  ..~ G[, 1. However, this is 
not sufficient to fix As or, equivalently, m3/e (to an excellent approximation,  

As  = V/3 rn3/2Mp): according to the numerical values of the effective couplings 
At, different possibilities arise. 

E x a m p l e :  t h e  O ' R a i f e a r t a i g h  m o d e l .  To illustrate the previous s tatements  
on a simple example, we consider a model with global supersymmetry,  three 
chiral superfields, X -- (x ,¢x ,F~) ,  Y =_ ( y , ~ y , F y )  and Z = (z,~=,F~),  and 
superpotential  

w = A X ( Z  2 - M 2) + # Y Z ,  
( .2) 

o < M 2 < ~ - ~  , (lO2) 

where A, # and M 2 are taken for simplicity to be real and positive. The auxiliary 
fields read 

F* = - A ( z  2 - M2) ,  F~ = - # z ,  F~ = - p y -  2Axz .  (103) 

Supersymmetry  is broken if F~ = ivy = Fz = 0 does not have a solution. Indeed, 
this is the case for the model under consideration. The scalar potential,  

V = A2lz 2 - M212 + #21zl2 + [py + 2Axz[ "2 , (104) 

is minimized for arbi t rary x and y = z = 0, where (F~) = AM 2 ¢ 0, (Fy) = 
(Fz} = 0. Supersymmetry  is thus broken in the X sector, with A~ = (V) = 
([F~] 2} = A2M 4, and we can immediately identify the goldstino with Cx. Com- 
puting the mass spectrum, for simplicity around x = 0, we find 

Field x ~p~ y z (~y, ~Pz; 

(mass)  2 0 0 ttz tt2 + 2A2M2 g2 

(105) 

Observe tha t  the only non-vanishing supersymmetry-breaking mass splittings 
A m  2 are in the Z sector, and can be written in the form 

(Arn2)z  ~ A. AM 2 , (106) 

which makes evident that  the auxiliary field of the goldstino multiplet, Fx, cou- 
ples to the z scalars with strength A, but does not couple to the z and y scalars. 
Moreover, we can easily verify that  Str :~4 e = 0, as expected on general grounds. 
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Spontaneous SUSY-breaking: ' dynamics ' .  Despite the satisfactory under- 
standing of the 'kinematical' aspects of spontaneous supersymmetry breaking, 
what we are still lacking is some compelling idea about the symmetries and dy- 
namics that control such a phenomenon in the fundamental theory of Nature, 
and explain the origin of the different scales relevant for the problem: Am 2, As 
and Acosm. This is a very difficult and ambitious problem, and it is not surprising 
that a final solution has not been found yet. Several interesting ideas have been 
pursued in recent years, but there are still many open problems. We just mention 
here some of the existing approaches, referring the reader to the literature for 
more details. For a recent review of the possible mechanisms of supersymmetry 
breaking, see e.g. [54]. 

One interesting possibility is that, in the context of supergravity; the sponta- 
neous breaking of supersymmetry finds its origin in non-perturbative phenon> 
ena, such as gaugino condensation [55]. Explicit models of this type exist, but 
they have to rely on some ad hoc assumptions: being supergravity an effective, 
non-renormalizable theory, it is difficult to control quantum corrections already 
at the perturbative level. 

Another possibility is spontaneous breaking at the string level, via coordinate- 
dependent compactifieations [56]. There are however unsolved problems such as 
the mechanism for the stabilization of the dilaton VEV and the generic insta- 
bility of string vacua with broken supersymmetry and vanishing cosmological 
constant with respect to string loop corrections. The present hope is that some 
more insight into this mechanism, which may- lead to a non-perturbative formu- 
lation of it, could be gained by exploiting the recently discovered string dualities. 

A different approach to the study of spontaneous supersymmetry breaking 
consists in working at the level of renormalizable gauge theories with global su- 
persymmetry, and in posing dynamical questions of more limited scope. Despite 
the encouraging results in recent years (for reviews, see e.g. [57]), models of dy- 
namical supersymmetry breaking at low energy are still quite contrived when 
one tries to make them realistic. 

Given this state of affairs, in the following we shall give a macroscopic de- 
scription of the different scenarios for spontaneous supersymmetry breaking, 
trying to emphasize their generic features and phenomenological implications, 
and avoiding the discussion of the details of the microscopic theory. 

3.2 Supergravity Models with Heavy Gravitino 

The first possibility, realized in the so-called hidden-sector supergravity models, 
is that the couplings of the goldstino supermultiplet to the MSSM states are of 

2 2 gravitational strength, )~I ~ As/M~,. In this case the desired MSSM spectrum 
requires As ~ "F/2"-l/4~**Pa/rl/2 --- 101° =" 1011 GeV, and therefore rna/2 , . .  GF 1/2. The 
effective theory at the electroweak scale is obtained from the underlying super- 
gravity by taking formally the limit Me -+ cc, while keeping ma/2 fixed [58]: 
this gives precisely the MSSM with explicitly but softly broken supersymmetry. 
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The states with masses O(m3/2) and interactions of gravitational strength need 
not be included in the effective theory 2. 

In the minimal realization of such a scenario, the superfield content of the 
model can be classified in two distinct sectors: the 'observable' sector, containing 
the MSSM states, and the 'hidden' sector, containing at least the gravitational 
supermultiplet and the goldstino supermultiplet (for definiteness, we assume here 
that  it is a gauge singlet chiral superficial, S). The two sectors are connected 
only via non-renormalizable interactions, suppressed by inverse powers of the 

Planck mass. The scale of supersymmetry breaking is given by (Fs) "~ G~: 1/2 Mp, 
and the fermionic component of S is the goldstino G. The gravitino mass is 

m3/2 " ~ '  (Fs)/Mp ~ GF 1/~, and the SUSY-breaking mass splittings, both in the 
observable and in the hidden sector, are of the order of the gravitino mass, since 
they are originated by tree-level couplings of gravitational strength. In contrast 
with the case of renormalizable, global supersymmetry, the supertrace mass sum 
rule is in general violated, and the mass scale characterizing such violation is the 
gravitino mass. 

Before proceeding with the discussion, it may be useful to recall some ba- 
sic facts of N = 1, d = 4 supergravity [52]. Up to higher-derivative terms, the 
theory is completely determined by two functions of the chiral superfields: one 
is the Kghler function G(z,~) = K(z,-5) + log[w(z)l 2, which controls the kinetic 
terms and the interactions of the ehiral multiplets; this function is convention- 
ally decomposed into a K/ihler potential K and a superpotential w. The other 
is the gauge kinetic function lab(Z), which controls the kinetic terms and the 
interactions of the vector supermultiplets. It is customary to work in the natural 
supergravity units, where all masses are expressed in units of the Planck mass, 
i.e. Mp = 1 by convention. An important difference with global supersymmetry 
is that  the scalar potential is no longer positive-semidefinite, but takes the form 
of (97), where, in the standard supergravity notation for derivatives: 

IIFII 2 -IIHII 2 = e [Gi(G-1)iJ y- 3] , (107) 

1 
= ] ( os) IIDII 2 ~(Re f)~-b ~ [ G , ( T a ) ~  j] b k , . 

The structure of the supergravity potential permits, as we have already stressed. 
the breaking of supersymmetry with vanishing vacuum energy, if a delicate can- 
cellation takes place at the minimum: the order parameter for the breaking of 
local supersymmetry in flat space is the gravitino mass, rn 2 = (e 6) = (Iwl2eK/ 3/2 
which fixes the scale of all supersymmetry-breaking mass splittings, and there- 
fore of the MSSM soft mass terms in the low-energy limit. 

E x a m p l e :  t h e  P o l o n y i  m o d e l .  Consider a supergravity model with just a 
single chiral multiplet, Z, in addition to the gravitational one, and canonical 

2 A noticeable exception will be mentioned later on. 
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K~hler potential K = IZI 2, so that  G=~ = 1. For a generic superpotential w, the 
scalar potential reads, in obvious notation: 

r = e 6 (16zl 2 - 3) = e I~l: (]w: + s u ,  I 2 - 31u, I 2) . (109) 

If we choose the Polonyi form for the superpotentiat, wp = m2(Z + ~), where 
m 2 and [ill < 2 are arbitrary parameters, then there is no solution for G: = 0, 
and supersymmetry is spontaneously broken. In particular, for 3 = 2 - 
supersymmetry is broken with vanishing vacuum energy. At the minimum of the 
potential, (z} = ~ -  1, the mass spectrum reads: 

m~/2 = m4e (v~-l)~ , m~ = 2v~m~/e ,  m~ = 2(2 - v~)  m~/2 , (110) 

where A and B are the two spin-0 partners of the goldstino. Having written down 
the model explicitly, it is easy to appreciate its unsatisfactory features. First~ the 
requirement of vanishing vacuum energy is met by fine-tuning the value of the 
parameter/3.  Second, the scale of the gravitino mass is introduced by hand by 
choosing the parameter m: restoring the appropriate powers of the Planck mass~ 
m3/2 '~ m2/Mp,  and there is no explanation for the desired hierarchy between 
m3/2 and Mp. 

To discuss the mass splittings in the observable sector, the simplest possibil- 
ity is to add to the neutral chiral superfield Z some charged chiral superfields 
Y~, keeping a canonical form for the K&hler potential, K = [Z] 2 + ]yi]2, and 
modifying the superpotential as follows 

w = wp(Z)  + Wo(Y), (111) 

where w0 is a cubic gauge-invariant polynomial in the charged fields. So doing. 
for (y} = 0 and (z} as before, there is still a local minimum with broken super- 
symmetry and vanishing vacuum energy. The spectrum of the scalar fields in the 
observable sector can be easily computed. At the minimum under consideration: 

(M2)ij = (V/j) = 0, (M02)i3 ~- (V/3) = di3m~/2 " (112) 

In particular, the supertrace mass relation is violated by gravitational corrections 
of order m~/2: 

Str ~/[2 = rn23/2[_4 + 4 + 2(NT - 1)] = 2 m~/2(NT - 1), (113) 

where NT is the total number of chiral multiplets in the theory. We can easily 
identify in the above formula the negative contribution of the massive grav- 
itino, the positive contribution of the scalar partners of the goldstino, and the 
positive contribution of the complex scalar fields in the observable sector. This 
corresponds indeed to a general result for supergravity models with canonical 
kinetic terms, and brings as good news the possibility of obtaining a realistic 
mass spectrum already at the tree-level. In contrast with renormalizable global 
supersymmetry, here universal and positive masses, equal to the gravitino mass, 
are generated for all scalar fields of the observable sector: in MSSM notation, 
m~ = m~/2. 
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G e n e r i c  p r o b l e m s  of  t he  mode l s  w i t h  h e a v y  grav i t ino .  The previous 
discussion can be extended by including gauge interactions and by considering 
general, non-canonical kinetic terms in the supergravity theory. This allows for 
the generation of all the MSSM soft terms, and also of the superpotential mass 
parameter p, in terms of the defining functions of the model and their deriva- 
tives, evaluated on the vacuum. However, these models exhibit some generic 
problems that  should be solved by a satisfactory mechanism for spontaneous 
supersymmetry breaking, and can be summarized as follows: 

- Class ica l  v a c u u m  energy .  The potential of N = 1 supergravity does not 
2 2. have a definite sign and scales as m 3 / 2 M p  . already at the classical level, we 

must arrange for the vacuum energy to be vanishingly small with respect to 
its natural scale. 

- ( m 3 / 2 / M p )  hierarchy .  In a theory where the only explicit mass scale 
is the reference scale Mp (or the string scale), we must find a convincing 
explanation of why it is m3/2 ~ 10-15Mp (as required by a natural solution 
to the hierarchy problem), and not rna/2 ~ Mp. 

- Stab i l i t y  of  t h e  classical  v a c u u m .  Even assuming that a classical vacuum 
with the above properties can be arranged, the leading quantum corrections 
to the effective potential of N = 1 supergravity scale again as rn~/2 ?~fp2 
too severe a destabilization of the classical vacuum to allow for a predictive 
low-energy effective theory. 

- Unive r sa l i t y  of  s q u a r k / s l e p t o n  mass  t e rm s .  As will be discussed in the 
fourth lecture, such a condition (or alternative but equally stringent ones) 
is phenomenologically necessary to adequately suppress FCNC, but is not 
guaranteed in the presence of general field-dependent kinetic terms. 

From the above list, it should already be clear that  the generic properties of 
N = 1 supergravity are not sufficient for a satisfactory supersymmetry-breaking 
mechanism. Indeed, no fully satisfactory mechanism exists, but interesting pos- 
sibilities arise within string effective supergravities. The best results obtained so 
far are listed below: 

- It is possible to formulate supergravity models where the classical potential is 
manifestly positive-semidefinite, with a continuum of minima corresponding 
to broken supersymmetry and vanishing vacuum energy, and the gravitino 
mass sliding along a flat direction [59,60]. A recent development is the con- 
struction of models of this type where gauge and supersymmetry breaking are 
simultaneously realized, with goldstino components along gauge-non-singlet 
directions [61]. 

- This special class of supergravitv models emerges naturally, as a plausible 
low-energy approximation, from four-dimensional string models, irrespec- 
tively of the specific dynamical mechanism that triggers supersymmetry 
breaking. Due to the special geometrical properties of string effective super- 
gravities, the coefficient of the one-loop quadratic divergences in the effective 
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theory, Str A//2, can be written as [62] 

Str J~42(z,~) 2Q 2 = m3/2( z -5 ) ,  (114) 

where Q is a field-independent coefficient, calculable from the modular weights 
of the different fields belonging to the effective low-energy theory, i.e. the in- 
teger numbers specifying their transformation properties under the relevant 
duality. The non-trivial result is that the only field-dependence of Str ~V/2 
occurs via the gravitino mass. Since all supersymmetry-breaking mass split- 
tings, including those of the massive string states not contained in the ef- 
fective theory, are proportional to the gravitino mass, this sets the stage 
for a natural cancellation of the O(m~/2 ZvIp e) one-loop contributions to the 
vacuum energy. Indeed, there are explicit string examples that exhibit this 
feature. If this property can persist at higher loops (an assumption so far), 
then the hierarchy m3/2 << Mp can be induced by the logarithmic corrections 
due to light-particle loops [60]. 

- In this special class of supergravity models one naturally obtains, in the 
low-energy limit where only renormalizable interactions are kept, very sim- 
ple mass terms for the MSSM states (too, ml /2 ,  (p)o, Ao, Bo - (m~/#)o  in 
the standard notation), calculable via simple algebraic formulae from the 
modular weights of the corresponding fields and easily reconcilable with the 
phenomenological universality requirements [62]. This last result can indeed 
be obtained also in a slightly less restrictive framework [63]. 

Just to give the flavour of the argument, we present here an ultra-simplified 
example, which retains the relevant qualitative features of the general case, with- 
out its full technical complexity. Consider a supergravity theory containing as 
chiral superfields a gauge-singlet T (to be thought of as one of the superstring 
moduli fields), and a number of charged fields C ° (to be thought of as the matter  
fields of the MSSM and possibly others), with K~hler potential 

K -- -31og(T + T) + ~ IC~I2(T +f)~o +,.. ,  (115) 

and superpotential 
w s u s y  = d~3-,C~C2C ='. (116) 

The model exhibits a classical invariance under the following set of transforma- 
tions, parametrizing the continuous group SL(2, R): 

aT  - ib C a --+ (icT + d)~°C ~ (ab - cd = 1) (117) 
T -+ icT  +--------d' ' " 

The above symmetry can be interpreted as an approximate low-energy remnant 
of a T-duality invariance under the discrete group SL(2 ,  Z) ,  corresponding to 
the restriction of the transformations (117) to the case of integer (a, b, c, d) co- 
efficients, and generated by the two transformations T --+ 1 / T  and T --4 T + i. 
We can think of this SL(2 ,  Z)  as an exact quantum symmetry of the underlying 
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string model. In the language of supergravity, the K/ihler potential transforms 
as K --+ K + ¢ + ¢, where ¢ is an analytic function, and the superpotentiat as 
w --+ w e x p ( - ¢ ) ,  so that  the full K/ihler function G remains invariant. 

Without specifying the dynamics which induces the spontaneous breaking of 
local supersymmetry, we can try to parametrize the latter with a superpotential 
modification of the form 

W = W S U S Y  d- /~W,  z~W = k 7i O, (118) 

where k is a constant, independent of the modulus field T, which can be thought 
of as the large-T limit of a modular form of SL(2, Z). In the case in which other 
moduli fields are present, such as the dilaton-axion field S associated with the 
gauge coupling constant, one can replace k with a suitable function of S, with 
the correct transformation properties under a possible S-duality. Notice that 
the superpotential modification introduced above breaks the invariance under 
T -+ 1/T,  but preserves the shift symmetry T --+ T + in. A low-energy structure 
equivalent to the one introduced here has been found in explicit constructions of 
string orbifold models with string tree-level breaking [56], but these results could 
have more general validity, and apply also, with the appropriate modifications. 
to the case of non-perturbative breaking. 

In the supergravity theory defined above, by applying the standard formalism 
we can easily verify the following results: 

- Thanks to the identity [FT[ 2 -- 3e 6, the scalar potential of (97) is automati- 
cally positive-semidefinite. At any minimum of the potential supersymmetry 
is broken and the gravitino mass, m~/~ = k2/ (T  + T) 3 ~ 0 if one takes for 
simplicity C a = 0, is classically undetermined. The modulus field T corre- 
sponds to a flat direction, as in the no-scale models [59], and its fermionic 
partner T plays the role of the goldstino in the super-Higgs mechanism. 

- Str M ~ can be put in the form of (114), with 

Q =  - 2 +  E ( 1  + Ao) , (119) 
C~ 

where the first addendum is the contribution of the massive gravitino and 
the second one the contribution of the matter  fields. 

- In MSSM notation, the following very simple mass terms are generated: 

(m2)~ - 1 + As, (120) 
rn~/2 

( A ) ) ~ .  _ 3 + As + A3 + A-~ , 
m3/2 

(Po)~ 
m3/2 

m3/2 

As + A3 
- -  - - 1 + ~ ,  

2 

As + A3 
- -  - 2 + - -  

2 

(121) 

(122) 

(123/ 
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The above example can be easily generalized to include gauge interactions, with 
a non-trivial moduli dependence of the gauge kinetic function: non-vanishing 
gaugino masses can then be generated, proportional to the gravitino mass, and 
(119) can be modified accordingly. It is important to stress that, in this frame- 
work, the phenomenologically desirable universality properties of the soft mass 
terms can naturally arise as a consequence of T-duality. Furthermore, a non- 
vanishing p-term can be generated for the MSSM, proportional to rna/2, even if 
the supergravity superpotential does not contain any explicit Higgs mass term. 

The weakest point of the above construction is the absence of a string calcu- 
lation showing that,  if there is cancellation of the (.9(m23/2Mp 2) contributions to 
the effective potential at one loop, this cancellation can persist at higher loops. 
Since in the effective theory we can identi~" some quadratically divergent two- 
loop graphs [64], such an assumption is far from obvious. However, there are 
hints [62] that  the numerical coefficient of (119) might be given a topological 
interpretation, so such an assumption is not completely arbitrary. 

2 2 Under the assumption that no terms O(m3/22~I P ) are generated by string 
quantum corrections to the effective potential, the possibility arises of treating 
the gravitino mass m3/2 as a dynamical variable of the low-energy theory valid 
near the electroweak scale, namely the MSSM. Then the actual magnitude of 
the gravitino mass could be determined by the logarithmic quantmn corrections 
[60], as computed in the MSSM. The minimization condition of the one-loop 
effective potential V1, with respect to ma/2, would take the form [65]: 

2 (~V1 Str A44 
m3/2~m~/, 2 - 2I/~ + 647r----- ~ -  = 0. (124) 

The above equation can be interpreted as defining an infrared fixed point for 
the vacuum energy, with the two terms in the second member representing the 
canonical scaling and the scaling violation by quantum corrections, respectively. 
One can show that, for reasonable values of the boundary' conditions on the 
dimensionless parameters, an exponentially suppressed hierarchy m3/2 << -~JP 
can be generated. 

Of course, the reason why m3/2 can be treated as a dynamical variable in the 
effective low-energy theory is the existence of a very flat direction for the modulus 
on which it depends monotonically. This means that, after the inclusion of the 
0(m4/2) quantum corrections, there will be some very light gauge-singlet spin-0 

fields, with 'axion-like' or 'dilaton-like' couplings and masses O(m~/2/A~fp), i.e. 

in the 10-3-10 -4 eV range if m~/2 ~ G~ 1, with interesting astrophysical and 
cosmological implications, including a number of potential phenomenological 
problems [66]. 

3.3 Supergravity Models  with Light Gravitino 

The second possibility occurs when the goldstino supermultiplet is coupled to 
the MSSM sector by gauge or Yukawa interactions, much stronger than the 
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gravitational interactions. Taking for example At ~ 1, to get the desired mass 
splittings one needs As ". GF 1/2, giving m3/2 ~ GF1Mp 1 ~ (few)10 -~ eV. 
If there is some weak coupling and the goldstino supermultiplet couples to the 
MSSM states only via loops, As and m3/2 can increase by a few orders of mag- 
nitude, since the effective couplings AI can be suppressed by numerical factors 
such as a/(4~r) and by mass ratios such as As~M, where ~/  > As is some 
supersymmetry-preserving mass term, possibly associated with the vacuum ex- 
pectation value of a standard-model-singlet scalar field. In this second class of 
models, gravitational interactions are relevant only for the discussion of the vac- 
uum energy, and the effective theory at the electroweak scale can be obtained 
by taking formally the naive limit Mp --+ oc, while keeping As constant [67]. 

A low scale of supersymmetry breaking, As, may be favoured by generic ar- 
guments related with the flavour problem. In the MSSM, the most general set of 
soft supersymmetry-breaking terms introduces many new sources of flavour vio- 
lation, besides the Yukawa couplings in the superpotential: as will be discussed in 
the fourth lecture, only non-generic choices of the soft terms (approximate uni- 
versality or alignment) can lead to an acceptable phenomenology. From the point 
of view of the underlying theory with spontaneous supersymmetry breaking; the 
typical magnitude of the soft terms in the sfermion sector is :I~/A, where A is the 
scale suppressing the corresponding non-renormalizable operators in the K/~hler 
potential. If the scale of flavour physics, Apat., is larger than A, then we would 
expect flavour-breaking effects on the soft terms to be suppressed by A/Afl  .... 
and a phenomenologically acceptable pattern of soft mass terms could naturally 
arise. The opposite situation, A/ta~ ~ A, would generically induce unsuppressed 
flavour violations in the soft terms. These generic arguments are not conclusive. 
but may be taken as an additional motivation to study models where As and A 
are as low as possible. 

A presently popular realization of the light gravitino case is given by the 
so-called 'messenger' or 'gauge-mediated" models (for a recent review and ref- 
erences, see e.g. [68]). In the minimal version of such models, the field content 
can be divided into three sectors: an 'observable' sector, containing the MSSM 
fields; a 'messenger' sector, containing real representations of a grand-unified 
gauge group (for example, a 5 + 5 of SU(5), to be denoted by M and M, respec- 
tively), which interacts with observable sector only via SM gauge interactions; 
a 'secluded' sector, containing at least the gravitational supermultiplet and the 
goldstino supermultiplet S, which has superpotential interactions with the mes- 
senger sector, but is decoupled at tree-level from the observable sector. If super- 
symmetry is spontaneously broken on the vacuum, one expects that  the spectrum 
in the messenger sector is controlled by the combination of supersymmetric mass 
terms, proportional to {S), and supersymmetry-breaking masses, proportional 
to ( V / ~ .  In the observable sector, supersymmetry breaking masses are gener- 
ated by loop diagrams with messenger fields on the internal lines. For example, 
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gaugino masses are generated at one loop, and have the form 

/ ~/7-ff27_~ 

4rr (S) 

whereas universal scalar masses are generated at two loops, and have the form 

\ 47r / - ( ~  " (Fs) " (126) 

It is easy to identify in the above formulae the effective couplings of the gold- 
stino supermultiplets to the observable sector, once the effects of loop diagrams 
have been included. The nice feature of these models is the fact that,  due to 
the universal character of gauge interactions, the soft scalar masses in the ob- 
servable sector are automatically universal. However, because of a Peccei-Quinn 
symmetry, neither # nor rn 2 can be generated by gauge interactions alone, so 
the minimal messenger model must be complicated with some superpotential 
interactions in order to become realistic. Once superpotential interactions are 
introduced, however, the universality properties of the scalar mass terms are no 
longer guaranteed in general. Moreover, if there is no mixing with the MSSM 
states, and a conserved global messenger number can be identified, then we ex- 
pect a stable messenger, which may give rise to cosmological problems. Both 
the difficulties mentioned above can be solved by complicating sufficiently the 
model, but, as a result, no unique candidate messenger model is singled out. 

In view of the above considerations, a more model-independent approach to 
the light gravitino case may be followed (for an extensive discussion, see e.g. 
[69]). It consists in writing down an effective theory for the light multiplets, 
i.e. the MSSM fields and the gravitino, assuming that  the heavier fields (for 
example, the messengers, but not necessarily so) have been integrated out. Such 
an effective theory has both supersymmetry and the gauge symmetry linearly 
realized on the fields, but non-renormalizable operators are present to encode 
the low-energy effects of the underlying dynamics. In this theory, supersymmetry 
is spontaneously broken, and masses and couplings can be read off tree-level 
formulae directly. The limit of such an approach is the lower amount of predictive 
power, but  the advantage is the possibility of an efficient parametrization of 
the model-independent aspects of the resulting phenomenology. In particular, 
the differences with the heavy gravitino case become more and more important  
as the supersymmetry-breaking scale As, suppressing the non-renormalizable 
operators, gets closer and closer to the weak scale. We finally remark that  an 
effective theory of this kind is valid only in a limited energy range, bounded 
from above by unitarity, which essentially dictates, besides A m  ~ As,  also E ~< 
A2s/Am: new (elementary or composite) degrees of freedom must be introduced 
before or near this critical scale to restore unitarity. 
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4 S u p e r s y m i n e t r i c  P h e n o m e n o l o g y  

This final lecture is devoted to the discussion of direct and indirect signals for su- 
persymmetry, and to a review of the present experimental bounds. Three broad 
scenarios for supersymmetric phenomenology are outlined, corresponding to the 
cases of heavy, light and superlight gravitino. The r61e of electroweak precision 
measurements and of flavour physics as indirect tests is explained. After some 
comments on the MSSM Higgs sector, direct searches for supersymmetric parti- 
cles are discussed, summarizing present bounds and future prospects. 

4.1 A Model-Independent Classification 

Let us assume, for now, exact R-parity conservation. Then: 

- supersymmetric (R-odd) particles are produced in pairs: single production 
in reactions initiated by ordinary (R-even) particles would violate R-parity; 

- supersymmetric (R-odd) particles always decay into final states involving an 
odd number of supersymmetric (R-odd) particles; 

- the lightest supersymmetric particle (LSP) is absolutely stable. 

If the LSP is neutral and weakly interacting (typical candidates encountered 
in model-building are the lightest neutralino or one of the sneutrinos in heavy 
gravitino models, and the gravitino itself in light gravitino models), then it is a 
possible candidate for dark matter. In collider phenomenology, being essentially 
invisible to the detectors, the LSP can be characterized by a distinctive missing- 
energy signature. Three broad scenarios for supersymmetric phenomenology then 
emerge, whose general features will be now described. 

Heavy  gravit ino.  This corresponds to m3/2 "~ 102 + 104  GeV, or As 
101° + 10 n GeV. As discussed in the third lecture, in the heavy gravitino case all 
polarization states of the massive gravitino couple with gravitational strength, 
and the MSSM with soft terms is an adequate description up to energy scales 
of order Mu. The two most distinctive phenomenological features are that non- 
renormalizable operators correcting the MSSM are completely negligible at present 
accelerator energies, and that the LSP belongs to the MSSM spectrum. 

Light gravit ino.  This corresponds to m 3 / 2  '-~ 10  - 1  - -  103 eV, or As N 104  - 

106 GeV. In this case, the +1/2 helicity components of the gravitino, corre- 
sponding to the would-be goldstino, couple with strength much greater than 
gravitational, but still smaller than the typical strength of the gauge interac- 
tions or of the Yukawa interactions of heavy fermions. In this case, the new 
non-renormalizable interactions, correcting the MSSM and associated with su- 
persymmetry breaking, are too weak to play a role in the production processes 
of R-odd particles, but may play an important r61e in their decays. Also, we can 
no longer extrapolate the MSSM up to Mu, since tree-level unitarity is violated 
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at a critical energy E~ .~ A~/Arn, and new (elementary or composite) degrees of 
freedom must be introduced before or near this critical scale to restore unitarity. 

An important  property controlling the phenomenology of these models, whose 
LSP is the gravitino, is the nature of the next-to-lightest supersymmetric particle 
(NLSP). If such particle is the lightest neutralino, for example the photino, the 
rate of its decay into a photon and a goldstino is given by [70] 

167r A~ 

This is trivially generalized to the case of an arbitrary neutralino, as long as it 
has a non-negligible photino component. In this case, the typical signature of 
sparticle production and decay is given by photons plus missing energy. If the 
NLSP is a sfermion ] ,  for example a stau or a sneutrino, as it may be the case 
in some of the messenger models, then it likes to decay into the corresponding 
fermion f and a goldstino. In the rn~ = 0 limit, the decay rate reads 

167r A~ " 

In this case, the phenomenology is characterized by missing energy signals, as in 
the standard case of heavy gravitino. 

Superlight g rav i t i no .  This corresponds to r r t 3 / 2  ~ 10 - 6  .'-- 10 - 2  eV, or : is ~-- 
102 - 104 GeV. In this case, the goldstino couplings with the MSSM fields have, 
at the presently accessible energies, a strength comparable with the gauge cou- 
plings. As a result, it is essential to keep track, at energies of the order of the 
electroweak scale, of all the leading non-renormalizable interactions controlled 
by inverse powers of the supersymmetry-breaking scale. In fact, as we shall see 
in a moment, these interactions can now play an important  role in the produc- 
tion processes: we can have not only pair-production of MSSM sparticles, but 
also associated production of a gravitino and a MSSM sparticle, and even pair 
production of gravitinos. It is also clear that in this case the effective theory has 
a very limited range of validity, extending not much above the electroweak scale. 

To conclude the discussion of the superlight gravitino case, we would like 
to comment further on an intriguing aspect of its phenomenology. There may 
be experiments where the available energy is still insufficient for the on-shell 
production of other supersymrnetric particles, but nevertheless sufficient to give 
rise to final states with only gravitinos and ordinary particles, at measurable 
rates. As recently discussed in [71], powerful processes to search for a superlight 
gravitino G (when the supersymmetric partners of the Standard Model particles 
and of the goldstino are above threshold) are e+e - --+ GG7 and q~ -+ GG~,, 
which would give rise to a distinctive (photon + missing energy) signal. The 
first process can be studied at e+e - colliders such as LEP or the proposed NLC~ 
the second one at hadron colliders such as the Tevatron or the LHC. At hadron 
colliders, we can also consider the partonic subprocesses q~ ~ GGg, qg ~ qGG, 
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~g ~ ~GG and gg -~ gGG, all contributing to the ( jet+missing energy) signal. 
In the case of heavy superpartners, all these processes have cross-sections with 
a strong, universal power-law dependence on the centre-of-mass energy and on 
the scale of supersymmetry breaking, s3/ASs. In the absence of experimental 
anomalies, the above processes can be used to establish model-independent lower 
bounds on the gravitino mass. From the present LEP data, we can estimate 
m3/2 ~ 10 -5 eV, corresponding to As ~ 200 GeV. At hadron colliders, the 
analysis is more complicated. In the (7+ ET) channel, there are already some 
published DO data  collected at the Tevatron collider, from which we can extract  
As > 245 GeV, or m3/2 > 1.4 × 10 -5 eV. We estimate that,  with the presently 
available luminosity, the Tevatron experiments should be sensitive up to As 
300 GeV, or m3/2 ~- 2.2 × 10 -5 eV. The sensitivity should be slightly higher in 
the (jet+ ~T) channel: our estimate is As ~ 335 GeV, or m3/2 ~ 2.7 × 10 -~ eV. 
At the LHC, because of the pp initial state, the most sensitive channel will be 
(jet+~lT), which should reach As ~ 2.2 TeV, or m3/2 ~- 1.2 × 10 -3 eV. 

As a final remark, we would like to stress that m3/2 (++ As) is a fundamental 
free parameter  for supersymmetric models, analogous to the Fermi constant GF 
for the models of weak interactions, so it is very important  to measure it or at 
least to bound it from below. 

4.2 S U S Y  vs .  E l e c t r o w e a k  P r e c i s i o n  T e s t s  

The impressive amount of data  collected in recent years at LEP, at the Tevatron 
and elsewhere has confirmed the validity of the SM at an unprecedented level 
of precision. Nowadays, when discussing physics beyond the SM we must take 
into account that  only very delicate deviations from the SM predictions are still 
allowed at the presently accessible energies. 

In this respect, the MSSM performs very well in comparison with other candi- 
date models. Thanks to the fact that  the soft mass terms are invariant under the 
electroweak gauge group, the effects of virtual supersymmetric particles on ob- 
servable quantities decouple in the limit of a heavy sparticle spectrum. Of course, 
having supersymmetric particle masses much heavier than the electroweak scale 
would bring back the hierarchy problem, but this is a different issue: in practice~ 
decoupling occurs very fast and we do not need to worry about naturalness in 
this context. This important  MSSM feature should be contrasted with examples 
of new physics that  do not obey similar decoupling properties, such as a possible 
fourth fermion generation, technicolor~ and others. 

In the case of a heavy sparticle spectrum, the MSSM predictions for precision 
electroweak observables essentially coincide with those of the SM for a relatively 
light Higgs, and the corresponding data do not put very stringent constraints 
on the MSSM parameter space. In some special cases, however, a light sparticle 
spectrum can give rise to sizeable effects: a large stop-sbottom splitting, in the 
presence of relatively small soft masses for the left-handed components, can give 
a sizeable positive contribution to the effective p parameter [72]; loops involving 
light stops and charginos, or the top quark and the charged Higgs, may give 



268 Fabio Zwirner 

sizeable corrections to the effective Zbb vertex, with the possibility of partial 
cancellations [73]; other effects related with the threshold behaviour of light 
charginos in the vector boson self-energies have been considered [74], but their 
potential impact has considerably decreased after the stringent limits on chargino 
masses obtained at LEP2 (see later). 

In the past, given the large number of MSSM parameters, to perform global 
fits it was convenient to organize the data in a model-independent way, by defin- 
ing a suitable approximate parametrization, and by comparing the MSSM pre- 
dictions and the fits to the experimental data in terms of 3-4 relevant param- 
eters. With the present experimental precision, this approach looks no longer 
adequate. In general, the indirect bounds on the MSSM parameter space from 
electroweak precision data are weaker than the bounds obtained from the direct 
searches. Nevertheless, there are small regions of the MSSM parameter space 
where the indirect bounds are the most stringent ones: to discuss these bounds 
at the appropriate level of precision, full MSSM computations are required. 

For more details on supersymmetry vs. electroweak precision data, many 
excellent and updated reviews are available [75]. 

4.3 S U S Y  vs. Flavour Phys ics  

Since the early days of supersymmetric phenomenology, it was realized [21,76,77] 
that, allowing for non-universal soft supersymmetry-breaking terms, the latter 
would be subject to very stringent constraints from FCNC and CP violation. 
An example is the decay > -~ e% subject to the strong experimental bound 
[41] BR(# --~ e'y) < 5 x 10 -11. Off-diagonal slepton mass terms in generation 
space, denoted here with the generic symbol 6m 2, would contribute to the above 
decay at the one-loop level, via diagrams involving virtual sleptons and gaug- 
inos, and the previous limit roughly translates into 6rn2/rn~ < 10-3-10 -5, if 
one assumes gaugino masses of the order of the average slepton mass rn[ (a 
quite complicated parametrization is needed to formulate the bound more pre- 
cisely). Similar constraints can be obtained by looking at the K°-I(  °, B°-t? ° 
systems, at b --+ s3' transitions, at the electric dipole moment of the neutron. 
and at other flavour-changing or CP-violating phenomena. It is important to 
recall that all these bounds are naturally respected by the strict MSSM, where 
the only non-universality in the squark and slepton mass terms is the one in- 
duced by the renormalization group evolution from the cut-off scale M to the 
electroweak scale. However, the same bounds represent quite non-trivial require- 
ments on extensions of the MSSM, such as supersymmetric grand-unified theories 
(SUSY GUTs) and string effective supergravities, since in general one expects 
non-universal contributions to the soft supersymmetry-breaking masses. \;arious 
mechanisms that could enforce the desired amount of universality, or, alterna- 
tively, a sufficient suppression of FCNC and CP violation without universality. 
have been discussed in the literature. For reviews of the theoretical and phe- 
nomenologieal aspects of supersymmetric flavour physics, see e.g. [78]. 
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Moving to more general considerations, the fiavour problem is one of the key 
issues in all extensions of the SM, including the supersymmetric ones. This is due 
to the fact that  in the SM the [SU(3)] 5 x [U(1)] 4 flavour symmetry is strongly 
violated, but  all flavour violation is encoded in the Cabibbo-Kobayashi-Maskawa 
matrix, so that,  thanks to the GIM mechanism, there is natural suppression of 
all flavour-changing and CP-violating effects. Any model of new physics must 
face the flavour challenge, especially if part of the new physics is close to the 
electroweak scale. This is certainly the case of the MSSM, where, as we have 
already anticipated in the third lecture, the supersymmetry-breaking problem 
and the flavour problem get mixed. Models with a light gravitino may naturally 
explain the absence of non-standard flavour-violating effects, whereas models 
with a heavy gravitino may lead to measurable signals, whose detection would 
open a window on the physics at very high scales. 

Even ensuring that  there are no tree-level FCNC, in the MSSM new contri- 
butions to FCNC processes may come from loop diagrams involving virtual non- 
standard particles, such as the charged Higgs bosom the stops and the charginos. 
Comparison with experiment may then lead to indirect constraints on the MSSM 
parameters. Important  examples include the fits to AmB~ and leKI and to the 
inclusive b -~ s 7 rate. If it were possible to reduce the theoretical uncertainties 
due to perturbative and non-perturbative effects of the strong interactions, these 
processes would become a very important  source of indirect limits on the MSSM 
spectrum. 

4.4 The M S S M  Higgs Sector 

We have seen in the first lecture that,  at the classical level, the MSSM is very 
predictive in the Higgs sector, thanks to the fact that supersymmetry forbids an 
arbitrary quartic term in the scalar potential. In particular, the classical relation 
mh < m z  is very constraining: if it were rigorously true, it would allow a deci- 
sive test of the MSSM already at LEP2, and today we would be very close to 
ruling out the MSSM! However, it is by now well known that  the MSSM Higgs 
sector, and in particular the upper bound on the lightest Higgs boson mass, 
are subject to large, finite radiative corrections, dominated by loops involving 
the top quark and its supersymmetric partners [79]. Over the years, the orig- 
inal calculations were progressively refined by the inclusion of: mixing effects 
in the stop sector, resummation of the leading logarithms via the renormaliza- 
tion group, momentum dependence of the self-energies, loops of other MSSM 
particles, the most important  two-loop corrections. The state of the art of the 
theoretical calculations has been recently summarized in [80,81]. For the present 
value of the top quark mass, mt ~- 175 GeV, an average stop mass of i TeV and 
arbitrary stop mixing, the upper bound on mh is approximately 125 GeV. It is 
perhaps worth mentioning an implicit assumption lying behind the derivation of 
such upper bound: non-renormalizable operators, suppressed by inverse power 
of As,  should be negligible; indeed, one can build models with very low scales of 
supersymmetry breaking where this upper bound is strongly violated [69]. 
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As a pedagogical example, we give here the explicit calculation, in a particu- 
larly simple case, of the leading radiative correction to the neutral CP-even mass 
matrix. Considering only the functional dependence on the fields 9, Re H: 
(i = 1,2), the classical potential of the RISSSI can be written as 

The standard way of describing quantum corrections to the classical potential is 
to consider the effective potential, which at the one-loop level can be written as 
Vl = Vo + AV. Including only top and stop loops. working in the scheme 
and neglecting as usual field-independent terms, we find 

where m: = h:cpz and m: = m: + m i  are the field-dependent top and stop 
masses, and Q is the renormalization scale. For simplicity. we have neglected D- 
terms and mixing terms in the stop squark mass matrix, and we have assumed 
a common soft supersymmetry-breaking squark mass mi. 

In analogy with the tree-level case, we can use the one-loop minimization 
conditions, 

to solve for the mass parameters m: and m;. We can then identify the one-loop- 
corrected entries in the neutral CP-even mass matrix with 

Since in our approximation AV does not depend on p1, we can immediately 
write 

(AM;) = (AM;)  12 = 0 .  (133) 

After some very simple algebra, we also obtain 

From (130), and the expressions for m: and mf , we get 

a2 AV 3 
[f11(m3 - f l i (m?)lv=,  . 

(133) 
and then, observing that f " ( m 2 )  = 2 log(m2/Q2), 
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It is now a simple exercise to derive the one-loop-corrected eigenvalues mh and 
m/4, as well as the mixing angle a associated with the one-loop-corrected mass 
matr ix (132). The most striking fact in (136) is that the correction (BJ~4~).22 
is proportional to (mt4/m~v). This implies that the tree-level predictions for rnh 
and mH can be badly violated, and so for the related inequalities. The other free 
parameter  in (136) is m4, but the dependence on it is much milder. 

The phenomenology of the MSSM Higgs bosons has been discussed in some 
detail in the lectures by P. Zerwas at this School [82], so we can afford to be very 
brief here. Supersymmetrie Higgs bosons have been intensively searched for at 
LEP, which in 1997 has collected about 50 pb -1 at x/~ = 183 GeV. LEP searches 
are based on two complementary processes: e+e - --+ hZ, whose cross-section is 
proportional to sin 2 ( f l -  a) ,  and e + e -  ~ hA, whose cross-section is proportional 
to cos 2 (fl - a).  Taking into account that no significant excesses with respect to 
the expected background have been reported for the 1997 run, the combination 
of these two processes should allow to establish, both for h and for A, an absolute 
lower bound of the order of 75 GeV, irrespectively of the parameters control- 
ling the radiative corrections [83]. With the present energy and luminosity, the 
Tevatron collider is not very sensitive to the MSSM Higgs bosons: the present 
limits on the charged Higgs mass from top decays [41] are significant only for 
values of tan fl outside the preferred range 1 < tan ~ < mt/m~. Unfortunately, 
even by further raising the energy towards v ~ = 200 GeV, LEP will not be able 
to explore completely the parameter space of the MSSM Higgs sector [80]. In 
the unfortunate case that  no Higgs boson is found at LEP, the search for SUSY 
Higgs bosons will be continued at the LHC. The first LHC studies (see, e.g., 
[84] and references therein), which focused on the simplified case of heavy su- 
persymmetric particles, have been considerably improved by the computation of 
the most important  MSSM corrections to the relevant production processes, by 
the inclusion of possible Higgs decays into pairs of lighter supersymmetric par- 
ticles, and by more accurate experimental simulations (see, e.g., Ref. [82] and 
references therein). A complete no-lose theorem is not available, but it seems 
quite plausible that,  if the MSSM is correct, at least part of its Higgs sector will 
not escape detection at the LHC. A more complete exploration of the MSSM 
Higgs sector could then be pursued at some high-energy linear e+e - collider, of 
the type currently under study. 

4.5 S p a r t i c l e  S e a r c h e s  

As should be clear by now, the general framework of supersymmetry is so flexible 
that  it is very difficult to give a unified description of the searches for supersym- 
metric particles. In the following, we shall briefly review the present bounds 
(no signal of supersymmetry has been observed yet!) and the future discovery 
potential, organizing the discussion around the most important  machines con- 
tributing to these searches. Unless otherwise stated, we shall assume R-parity 
conservation and work in the case of a heavy gravitino, but here and there we 
shall also comment on the light gravitino case and on the possibility of broken 
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R-parity. Even with these restrictions, the complex interplay of the dependences 
of masses, cross-sections and branching ratios on the various parameters makes 
it very difficult to specify simple general limits. Sometimes, one may choose to 
combine different searches within the so-called 'constrained MSSM': this means 
assuming universal boundary conditions on the soft masses at Mu so that the 
low-energy spectrum and interactions are essentially described (modulo some 
subtleties for the stop sector) by four basic parameters, for example too, ml/2, 
# and tan/3. 

LEP. LEP1 is still a solid basis for very general limits on the sparticle spec- 
trum. Working on the Z peak, and using both indirect constraints from the line 
shape and dedicated searches, all conceivable decays of tile Z boson into pairs 
of supersymmetric particles were studied, with high statistics and controllable 
backgrounds. As a rule of thumb, this allowed to exclude most supersymmetric 
particles up to mass values of the order of mz/2: the only possible exceptions 
were particles with suppressed couplings to the Z boson, such as the lightest neu- 
tralino 2 or the lightest stop [1, for special choices of the corresponding mixing 
parameters. 

At LEP2, the production cross-sections for supersymmetric particle pairs 
are more model-dependent than at LEP2, but, thanks to the higher energy, 
much stronger limits could be obtained. For example, chargino pair production 
is controlled by s-channel (7, Z) exchange and by t-channel ~ exchange, with 
the possibility of destructive interference in the case of a light sneutrino. Since 
chargino decays involve the lightest neutralino, the mass difference between the 
lightest chargino and the lightest neutralino is another important parameter for 
the searches. Barring special corners of the parameter space with low accep- 
tance (almost degenerate chargino and neutralino) or low cross-section (light 
sneutrino), and given the absence of a signal over the background, the lower 
bound on the chargino mass is very close to the kinematical limit. After the 
1997 run at v ~ ~_ 183 GeV, the four LEP experiments [85] give bounds above 
90 GeV. 

Also associated production of neutralinos (22'), of charged sleptons ([+[~ 
and of stop squarks ([1~1) can be used to obtain interesting limits at LEP2. All 
these processes occur via s-channel exchange of neutral vector bosons. In the case 
of selectron production, there is an important additional contribution from t- 
channel neutralino exchange, which may increase the cross-section substantially. 
In the constrained MSSM, the combination of chargino and neutralino searches 
can be used to set a lower bound on the lightest neutralino, but this lower bound 
has a significant dependence on the minimum allowed values for the sneutrino 
mass and for tan/3. Typical limits oi1 the charged sleptons are in the 60-80 GeV 
region, depending on the slepton flavour and on some model assumptions, such 
as the allowed amount of mass degeneracy between left and right sleptons, and 
between sleptons and the lightest neutralino. One of the reasons why the sleptons 
limits are in general weaker than the chargino limits is the strong p-wave phase 
space suppression near threshold. 
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Comparable limits can be derives for the cases of light gravitino and of broken 
R-parity, when the lightest MSSM particle is allowed to decay. 

Hadron eolliders. Being strongly interacting sparticles, squarks and gluinos 
are best searched for at hadron colliders. Both in the heavy and in the light 
neutralino case, production cross-sections for ~ ,  .qO, q~ pair-production in pp or 
p~ collisions are relatively model-independent functions of m~ and rno. As far as 
signatures are concerned, one has to distinguish two main possibilities: if mo < 
m4, then ~ --+ q.~ immediately after production, and the final state is determined 
by ~ decays; if rn~ < m~, then ~ --+ qq immediately after production, and the 
final state is determined by ~ decays. The first case is favoured by the constrained 
MSSM. In old experimental analyses, it was customaw to work under a certain 
set of assumptions: 1) five or six (0L, OR) mass-degenerate squark flavours; 2) 
LSP - "~, with mass negligible with respect to mo,m~; 3) the dominant decay 
modes of squarks and gluinos are the direct ones, ~ --~ q~'} if m~ < mc~ and 

~ q'} if rn4 < m~. The signals to be looked for are then multijet events 
with a large amount of missing transverse momentum. To derive reliable limits, 
however, one has to take into account, that  the above assumptions are in general 
incorrect. For example, one can have cascade decays ~ --+ q~2°¢1, q'qx~ ~ -.- 

- 0  i ~ : t  and ~ + qxi¢1, q Xk --> .... The effects of these cascade decays become more and 
more important as one moves to higher and higher squark and gluino masses. 
Taking all this into account, the present limits from the Tevatron collider are 
roughly in the 200 GeV range (for a recent review, see e.g.[86]). At the LHC (for 
recent studies, see e.g. [87]), CMS and ATLAS should be able to explore squark 
and gluino masses up to 1-2 TeV, essentially filling the MSSM parameter space 
allowed by theoretical prejudices on naturalness. 

The searches for eharginos and neutralinos at hadron colliders are not very 
competitive in the heavy gravitino case. On the other hand, the smaller back- 
grounds for the final states with hard photons gives hadron colliders an advan- 
tage in the light gravitino case. For example, in typical messenger models, the 
present Tevatron data can be used to rule out [88] neutralinos up to 70 GeV and 
charginos up to 150 GeV. 

C o n c l u s i o n s  

The aim of these lectures was to explain, to an audience mainly composed of non- 
experts, why low-energy supersymmetry is a motivated and phenomenologically 
viable extension of the SM near the electroweak scale, which will be directly 
tested in the next few years. 

The audience should have realized that the phenomenological studies of 
MSSM signals at present and future accelerators are at an advanced stage, and 
are continuously improving. Important indirect tests of SUSY are also possible 
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in the realm of flavour physics. Given the present absence of definite experi- 
mental or theoretical evidence, in setting up the framework for these searches 
we should not be prisoner of too restrictive frameworks: Nature may have more 
imagination than we do! 

On the theoretical side, some major open problems remain: the dynamics of 
SUSY breaking, the SUSY flavour puzzle, the cosmological constant problem. 
Despite the intense theoretical activity on all of them, the feeling is that some 
firm guiding principle is needed to make substantial progress. The present hope 
is that string theories and their fascinating duality properties will provide it, 
when better understood. The subject is still young, and there is a lot of room 
left to the young members of the audience for future important contributions... 
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A b s t r a c t .  The solar neutrino problem is reviewed and the possible vacuum oscillation 
and MSW solutions of the problem are considered. 

1 I n t r o d u c t i o n  

The problem of neutrino mass is the central problem of present day neutrino 
physics and one of the central problems of contemporary elementary particle 
physics2 The existence of nonzero neutrino masses is typically correlated in the 
modern theories of the elementary particle interactions with nonconservation of 
the additive lepton charges, Le, Lu and Lr  (see, e.g., [1]). The rather stringent 
experimental limits on neutrino masses obtained so far together with cosmolog- 
ical arguments imply (see, e.g., [7]) that  if nonzero, the masses of the flavour 
neutrinos must be by many orders of magnitude smaller than the masses of the 
corresponding charged lepton and quarks belonging to the same family as the 
neutrino. The extraordinary smallness of the neutrino masses is related in the 
modern theories of electroweak interactions with massive neutrinos to the ex- 
istence of new mass scales in these theories. Thus, the studies of the neutrino 
mass problem are intimately related to the studies of the basic symmetries of 
electroweak interactions; they are also closely connected with the investigations 
of the possibility of existence of new scales in elementary particle physics. Cor- 
respondingly, the experiments searching for effects of nonzero neutrino masses 
and lepton mixing are actually testing the fundamental symmetries of the elec- 
troweak interactions. These experiments are also searching for indirect evidences 
for existence of new scales in physics. 

Neutrinos are massless particles in the standard (Glashow-Salam-Weinberg) 
theory (ST) of the electroweak interactions. The observation of effects of nonzero 

a The neutrino mass problem, the phenomenological implications of the nonzero neu- 
trino mass and lepton mixing hypothesis, the properties of massive Dirac and mas- 
sive Majorana neutrinos, the neutrino mass generation in the contemporary gauge 
theories of the electroweak interaction as well the role massive neutrinos can play 
in astrophysics and cosmology axe the subject of a number of review articles and 
books: see, e.g., [1]-[6]. 
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neutrino masses and lepton mixing would be a very strong indication for exis- 
tence of new physics beyond that predicted by the standard theory. The studies 
of the neutrino mass problem can lead to a progress in our understanding of the 
nature of the dark matter  in the Universe as well [8]. 

One of the most interesting and beautiful phenomenological consequences 
of the nonzero neutrino mass and lepton mixing hypothesis are the oscillations 
of neutrinos [9], i.e., transitions in flight between different types of neutrinos, 
ve ~-~ v~ and /or  ve ~ v~ and/or  v~ ++ v~, and antineutrinos, #e ++ ~ and/or  
Oe ~ ~ and/or  P, ~ ~,. If, for example, a beam of v¢ neutrinos is produced 
by some source, at certain distance R from the source the beam will acquire a 
substantial v ,  component if v¢ ~ v,  oscillations take place. The probability to 
find v ,  at distance R from the source of ve when the neutrinos propagate in 
vacuum and the massive neutrinos are relativistic, P(v¢ -4 v , ) ,  is a function of 
the neutrino energy E, the differences of the squares of the masses mk of the 

2 _ rn~, and of the neutrinos vk having definite mass in vacuum, Arn~ = mj 
elements of the lepton mixing matrix U (see, e.g., [1], [2]). 

At present we have several indications that  neutrinos indeed take part  in 
oscillations, which suggest that  neutrinos have nonzero masses and that  lepton 
mixing exists. One of the indications comes from the results of the LSND neutrino 
oscillation experiment performed at the Los Alamos meson factory [10]. The 
events observed in this experiment can be interpreted as being due to ~, e+ 
Oe oscillations with Am 2 ~ few eV 2 and sin e 20 ~- few x 10 -3, where Am 2 
and sin 2 20 are the two parameters - the neutrino mass squared difference and 
the neutrino mixing angle, which characterize the oscillations in the simplest 
case. The second indication is usually referred to as the atmospheric neutrino 
problem or anomaly [11], [12]: the ratio of the # - l i ke  and e - l ike  events produced 
respectively by the fluxes of (v,  + ~ )  and (re + 0r) atmospheric neutrinos with 
energies ~ (0.2 - 10.0) GeV, detected in Kamiokande, IMB, Soudan and Super- 
Kamiokande experiments, is smaller than the theoretically predicted ratio. The 
atmospheric neutrino data can be explained by v,  ~ v~ and ~, +-~ ~, oscillations 
with Am 2 ... (10 -3 - 10 -2) eV 2 and a relatively large value of sin e 20 close to 1. 

The amount of the solar neutrino data  available at present, the numerous 
nontrivial checks of the fimctioning of the solar neutrino detectors that  have 
been and are being performed, together with recent results in the field of solar 
modeling associated, in particular, with the publication of new more precise 
helioseismological data and their interpretation, suggest, however, that  the most 
substantial evidence for existence of nonzero neutrino masses and lepton mixing 
comes at present from the results of the solar neutrino experiments. In view of 
this we will devote the present lectures to the solar neutrino problem and its 
possible neutrino oscillation solutions. 

The "story" of solar neutrinos begins, to our knowledge, in 1946 with the 
well-known article by B. Pontecorvo [13], published only as a report  of the Chalk 
River Laboratory (in Canada). In it Pontecorvo suggested that  reactors and the 
Sun are copious sources of neutrinos. On the basis of neutrino flux and inter- 
action cross-section estimates he concluded [13] that  the experimental detection 



The Solar Neutrino Problem 283 

of neutrinos emitted by a reactor (i.e., the observation of a reaction caused by 
neutrinos) is feasible, while the detection of solar neutrinos can be very difficult 
(but not impossible). In the same article the radiochemical method of detection 
of neutrinos was proposed. As a possible concrete realization of the method, 
a detector based on the C1-Ar reaction ~ + 37C1 --+ 37Ar + e-  was discussed. 
The possibility to use the C1-Ar method for detection of neutrinos was further 
studied in 1949 by Alvarez [14]. A C1-Ar detector for observation of solar neutri- 
nos was eventually built by Davis and his collaborators [15]. The epic Homestake 
experiment of Davis and collaborators, in which for the first time neutrinos emit- 
ted by the Sun were detected, began to operate in 1967 and still continues to 
provide data. It was realized in 1967 as well [16] that  the measurements of the 
solar neutrino flux can give unique information not only about the physical con- 
ditions and the nuclear reactions taking place in the central part of the Sun, but 
also about the neutrino intrinsic properties. 

The solar neutrino problem emerged in the 70'ies as a discrepancy between 
the results of the Davis et al. experiment [151, [17] and the theoretical predictions 
for the signal in this experiment [18], based on detailed solar model calculations. 
The hypothesis of unconventional behaviour of the solar ve on their way to the 
Earth (as like, e.g., vacuum oscillations [9], [16] ue ++ u,(~) and/or  v~ +9 vs, vs 
being a sterile neutrino, etc.) provided a natural explanation of the deficiency of 
solar neutrinos reported by Davis et al. However, as the fraction of the solar u~ 
flux to which the experiment of Davis et al. is sensitive (neutrinos with energy E 
_> 0.814 MeV) was known [18] i) to be produced in a chain of nuclear reactions 
(representing a branch of the pp cycle) which play a minor role in the physics of 
the Sun and whose cross-sections cannot all be measured directly in the relevant 
energy range on Earth, and ii) to be extremely sensitive to the predicted value 
of the central temperature, To, in the Sun (scaling as T~4), the possibility of an 
alternative (astrophysics, nuclear physics) explanation of the Davis et al. results 
could not be excluded. 

In 1986 an independent measurement of the high energy part (E > 7.5 MeV) 
of the flux of solar neutrinos was successfully undertaken by the Kamiokande II 
collaboration using a completely different experimental technique; in 1990 the 
measurements were continued by the Kamiokande III group with an improved 
version of the Kamiokande II detector [19]. At the beginning of the 90'ies two 
new experiments, SAGE [20] and GALLEX [21], sensitive to the low energy part 
(E > 0.233 MeV) of the solar neutrino flux, began to operate and to provide 
qualitatively new data. The Kamiokande III detector was succeeded by an ap- 
proximately 30 times bigger version called appropriately "Super-Kamiokande", 
which began solar and atmospheric neutrino detection on April 1, 1996 [22]. The 
data obtained since 1986 did not alleviate the solar neutrino problem - on the 
contrary, they made the case for existence of solar neutrino deficit even stronger. 

At the same time considerable efforts were also made to understand better 
the potential sources and the possible magnitude of the uncertainties in the 
theoretical predictions for the signals in the indicated solar neutrino detectors, 
and to develop improved, physically more precise solar models on the basis of 
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which the predictions are obtained [23]. Remarkable progress in this direction 
was made in the last several years with the development of the solar models 
which include the diffusion of helium and the heavy elements in the Sun [24] 
[32], as well as with the appearance of new more precise helioseismological data 
permitting new critical tests of the solar models to be performed [33]-[37]. 

With the accumulation of more data and the developments in the theory 
certain aspects of the solar neutrino problem changed and new aspects appeared. 

In the present lectures we shall review the current status of the solar neutrino 
problem. We shall also review the status of the neutrino physics solutions of the 
problem based on the hypotheses of vacuum oscillations [9] or of matter-enhanced 
transitions [38], [39] of solar neutrinos. 

2 T h e  D a t a  a n d  t h e  S o l a r  M o d e l  P r e d i c t i o n s  

We begin with a brief summary of relevant solar model predictions and of the 
solar neutrino data. According to the existing models of the Sun [23], the solar ue 
flux consists of several components, six of which are relevant to our discussion: 

i) the least energetic pp neutrinos (E < 0.420 MeV, average energy I~ = 
0.265 MeV), 

ii) the intermediate energy monoenergetic 7Be neutrinos (E=0.862 MeV (89.7% 
of the flux), 0.384 MeV (10.3% of the flux)), 

iii) the higher energy SB neutrinos (E _< 14.40 MeV, ~; = 6.71 MeV), and three 
additional intermediate energy components, namely, 

iv) the monoenergetic pep neutrinos (E=1.442 MeV), and the continuous spec- 
trum CNO neutrinos produced in the 3+-decays 

v) of 13N (E < 1.199 MeV, E = 0.707 MeV), and 
vi) of 150 (E < 1.732 MeV, E; = 0.997 MeV). 

The pp, pep, 7Be and SB neutrinos are produced in a set of nuclear reactions 
shown in Fig. 1. These make part of three major cycles (the pp-cycles) of nuclear 
fusion reactions in which effectively 4 protons burn into 4He with emission of two 
positrons and two neutrinos, generating approximately 98% of the solar energy: 

4p ~ 4He + 2e + + 2ue. (1) 

The first (pp-I) cycle (or chain) begins with the p-p (or p-e--p) fusion into 
deuterium and ends with the reaction 3He +3 He --~ 4He + 2p. The second (pp-II) 
and the third (pp-III) cycles begin with the production of :Be in 3He+ 4 He fusion 
and end respectively with the processes 7Li+p --+ 24He and SB -+ 24He+e++ue 
(see Fig. 1). 

The CNO neutrinos are produced in the CNO-cycle of reactions, which, ac- 
cording to the present day understanding, plays minor role in the energetics of 
the Sun: t2C + p --+ 13N + ~/, 13N -+ 13C -t- e -t- -t- /]e, 13C -~ P -~ 14N + ~;/, 
14N+p--+ 150+7 ,  150--~ tSN+e-~+u~ a n d l S N + p - ~  12C+4He. ThePp, 
pep, 7Be and SB neutrino spectra are depicted in Fig. 2. Let us note that the 
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REACTION TERM. v ENERGY 
(%) (MeV) 

P + P ---~2H + e + + Ve (99.96) ~ 0.420 

o r  

p + e -  + p ~ 2H + ve (0.44) 1.442 

2H + P "--* 3He + "7 (100) 

3He + 3He --~ a + 2 p (85) 

o r  

3He -4- 4He ~ 7Be + 7 (15) 

7Be + e-  ~ 7Li + ve (15) ~ 0.861 90% 
[ 0.383 10% 

7Li + p - ,  2 a 

o r  

7Be + P --~ SB + 7 (0.02) 

S B ~ S B e * + e +  + r e  < 15 

SBe* --+ 2 a 

or 

3He "4- p --* 4He + e + -4- ve (0.000004) 18,8 

Fig. 1. The nuclear reactions of the pp--chain in the Sun. 

shapes of the continuous spectra of the pp, SB and the CNO neutrinos are to 
a high degree of accuracy solar physics independent. The total fluxes of the pp, 
pep, 7Be, SB and CNO neutrinos depend, although to a different degree, on the 
physical conditions in the central part of the Sun [23] (see further). 

Solar neutrinos are produced in the central solar region (which practically 
coincides with energy production region) with radius r .  - 0.25 Ro, Ro = 6.96 × 
105 km being the radius of the Sun. The dependence of the source-strength 
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, W s t ~  

Fig. 2. The spectra of the pp, pep, 7Be and SB neutrino fluxes (from [23]). Shown are 
also the ranges of solar neutrino energies to which the Ga - Ge, C1 - Ar and Kamiokande 
II and III experiments are sensitive. 

functions for the pp, 7Be and 8B neutrinos on the distance from the center 
of the Sun, r, is shown in Fig. 3. As this figure illustrates, the major part of 
the SB neutrinos flux is generated in a rather small region, r ~ 0.10 Ro close 
to the center of the Sun; the region of production of 7Be neutrinos extends 
to r ~- 0.15 Ro,  while the region of the pp neutrino production is the largest 
extending to r ~ 0.25 R o. 

Three different methods of solar neutrino detection have been and are being 
used in the six solar neutrino experiments [17], [19]-[22] that  have provided data  
so far: the C1-Ar method proposed by Pontecorvo [13] - in the experiment of 
Davis et al. [15], [17], the v - e -  elastic scattering reaction - in the (Super-) 
Kamiokande experiments [19], [22], and the radiochemical Ga-Ge method - in 
SAGE [20] and GALLEX [21] experiments. 

The threshold energy of the reaction ve +37 C1 --+ e -  +37 Ar on which the 
CI-Ar method is based, is Eta (C1) = 0.814 MeV. Consequently, the pp neutrinos 
do not give contributions in the signal in the Davis et al. detector. Inspecting 
the predictions of all solar models presently discussed in the literature one finds 
that  the major contribution to the signal in the C1-Ar experiment, between 64% 
and 7970, should be due to the sB neutrinos; the 7Be neutrinos are predicted to 
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Fig. 3. The production of the fluxes of pp, 7Be and SB neutrinos as a function of the 
distance R from the center of the Sun (the latter is expressed in units of the solar 
radius R®) (from [23]). 

generate between 22% and 13% of the total signal, and the pep and the CNO 
neutrinos - between 13% and 8%. With a threshold neutrino energy, Eth(K), 
first of 9.5 MeV (7.5 MeV) and subsequently reduced to 7.5 MeV and further to 
7.3 MeV (6.5 MeV), the (Super-) Kamiokande experiments can detect only the 
higher energy SB component of the solar ve flux. 

Having the lowest threshold energy Eth (Ga) = 0.233 MeV, the Ga-Ge  detec- 
tors GALLEX and SAGE are sensitive to all six components of the flux consid- 
ered above. Moreover, the major part of the signal in these detectors, between 
51% and 63%, is predicted to be produced by the pp neutrinos; the 7Be neutri- 
nos are expected to generate between 28% and 2470 of the total signal, the 8B 
neutrinos - between 12% and 5%, and the CNO neutrinos - around (5-7)%. 

The above analysis implies that  the C1-Ar and Kamiokande experiments on 
one side, and the Ga-Ge experiments on the other, are most sensitive to very 
different components of the solar neutrino flux: the former - to the 8B neutrinos~ 
and the latter - to the pp neutrinos. The ZBe neutrinos are predicted to give the 
second largest (and non-negligible) contributions to the signals in both C1 Ar 
and Ga-Ge  experiments. 

Let us turn next to the data. The average rate of 3TAr production by solar 
neutrinos, R(Ar), observed in the experiment of Davis et al. in the period 1971- 
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1996 (altogether ,-~ 800 solar ue induced events registered) is [17] 

(2.56 ± 0.16 + 0.14) SNU. (1) 

Here (and in the experimental results we quote further) the first error is statis- 
tical (1 s. d.) and the second error is systematic. The flux of 8B neutrinos, ~ ,  
measured by the Kamiokande experiments reads [19] 

~B K = (2.80 ~= 0.19 4- 0.33) x 106 cm-Ssec -1. (2) 

The result is based on a statistics of about 600 events accumulated by the two 
experiments in 2079 days of measurements in the period 1986 - 1996. 

The GALLEX and SAGE experiments began to collect data in 1991 and 
1990, respectively. The GALLEX group has registered (in 65 runs) approximately 
300, and the SAGE group has registered (in 33 runs) about 100 solar neutrino 
induced events. The average rates of 71Ge production by solar neutrinos, l~(Ge), 
measured by the two collaborations are [21], [20] 

I~GALLEx(Ge ) = (76.2 + 6.5 + 5) SNU, (3) 

fiSAGE(Ge) = (73 :t: 8.5 +5.2~_6.92 SNU. (4) 
Obviously, the results of the two experiments are compatible. Adding the statis- 
tical and the systematical errors in (3) and in (4) in quadratures and combining 
the two results (i.e., taking the weighted average) we find 

15~xp(Ge) = (75.4 i 7) SNU. (5) 

Recently, the SuperoKamiokande collaboration announced results on solar 
neutrinos based on data collected during a period of 306.3 days. About 4000 (!) 
solar neutrino induced events have been detected. The following value of the SB 
neutrino flux was measured [22]: 

~ g  : (2.44 + 0.06 +o.25~ --0.09] >( 106 cm-Ssec-1- (6) 

The GALLEX collaboration has successfully performed in 1994 and in 1997 
very important (and rather spectacular) calibration experiments with an artifi- 
cially prepared powerful 51Cr source of monoenergetic u~ (four lines: E = 746 
keV (81%), 751 keV (9%), 426 keV (9%) and 431 keV (1~)) of known intensity 
[21]. At the beginning of the two exposures the signal due to the 51Cr neutrinos 
was approximately 15 times bigger than the signal due to the solar neutrinos. 
The results of the experiments showed, in particular, that the efficiency of extrac- 
tion of the 71Ge, produced by neutrinos, from the tank of the detector coincides 
(within the 10% error) with the calculated one. 

Similar calibration experiment has been successfully completed in 1996 also 
by the SAGE collaboration. These experiments demonstrated, in particular, that 
the Ga-Ge detectors are capable of detecting the intermediate energy 7Be neu- 
trinos with a high efficiency. They represent a solid proof that the data on the 
solar neutrinos provided by the two detectors are correct. They also represent 
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the first real proof of the feasibility of the radiochemical method invented by 
Pontecorvo [13] for detection and quantitative study of solar neutrinos. 

An extensive program of calibration studies of the Super-Kamiokande de- 
tector is presently being completed. The aim is to reach an accuracy of 1% in 
the measurement of the energy of the recoil e- from the solar neutrino induced 
reaction u + e- -+ v + e-.  

3 T h e  D a t a  V e r s u s  t h e  S o l a r  M o d e l  P r e d i c t i o n s  

3.1 Modeling the Sun 

The results of the solar neutrino experiments have to be compared with the 
corresponding theoretical predictions. Many authors have worked (and many 
continue to work) in the field of solar modeling and have produced predictions 
for the values of the pp, 7Be, SB, pep and CNO neutrino fluxes, and for the 
signals in the solar neutrino detectors: a rather detailed review of the results 
obtained by different authors prior 1992 and the corresponding references can be 
found in [24]. The articles [25], [27]-[32] describe some of the models proposed 
after 1992. Most persistently solar models with increasing sophistication and 
precision, aiming to account for and/or reproduce with sufficient accuracy the 
physical conditions and the possible processes taking place in the inner parts 
of the Sun have been developed starting from 1964 by John Bahcall and his 
collaborators [23]. 

The solar models are based on the standard assumptions of hydrostatic equi- 
librium and energy conservation made in the theory of stellar evolution. Several 
additional ingredients are needed to determine the physical structure of the Sun 
and its evolution in time [23], [31]: 

1. the initial chemical composition, 
2. the equation of state, 
3. the rate of energy production per unit mass as a function of the density p, 

temperature T and chemical composition #, 
4. the radiative opacity t; as a function of the same three quantities, and 
5. the mechanism of energy transport. 

The initial chemical composition of the Sun is, of course, unknown. However, 
the relative abundances of the heavy elements in the initial Sun, with the excep- 
tion of the noble gases and C, N, and O, are expected to be approximately equal 
to those found in the type I carbonaceous chondrite meteorites (see, e.g., [23]). 
Using the meteoritic abundances and the measured abundances in the solar pho- 
tosphere which includes hydrogen, and taking into account the possible change 
of the heavy element abundances during the evolution of the Sun, permits to fix 
the present day ratio of the heavy element (Z) and hydrogen (X) mass fractions, 
Z/X. The knowledge of Z/X, the normalization condition X + Y + Z = 1, where 
Y is the helium mass fraction, and the requirement that the solar model repro- 
duces correctly the measured value of the solar luminosity (see further) allows to 
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determine the absolute values of the initial solar element abundances (for further 
details see [23]). 

The equation of state requires the knowledge of the degree of ionization and 
the population of the excited states of all elements present in the Sun. Stellar 
plasma effects which introduce deviations from the perfect gas law have to be 
taken into account as well. As we have mentioned earlier, the energy is generated 
in the Sun in four cycles (or chains) of nuclear fusion reactions in which effectively 
4 protons burn into 4He: 4p ~ 4He + 2e + + 2ue. Collective plasma and screening 
effects have to be accounted for in the calculation of the corresponding nuclear 
reaction cross-sections. 

The radiative opacity n is determined by the photon mean free path. It 
controls the temperature gradient (and therefore the energy flow) in the radiative 
zone. The calculation of n requires a detailed knowledge of all atomic levels in the 
solar interior as well the cross-sections of photon scattering (elastic and inelastic), 
emission, absorption, inverse bremsstrahlung, etc. and is a rather complicated 
task. The energy transport  is assumed to be by radiation in the inner part of 
the Sun, and by convection in the outer region. The border region between the 
radiative and convective zones is located at r ~ 0.7R®, where r is the distance 
from the solar center. 

A solar model should reproduce the observed physical characteristics of the 
Sun: the mass [42] M® = (1.98892 + 0.00025) × 1033 g, the present radius 
R® = (6.9596 ± 0.0007) x l0 s km and luminosity [29] (see also [43]) L o = 
3.844(1 =t= 0.004) × 1033 erg s -1, as well as the measured relative photospheric 
mass abundances of the elements heavier than 4He, Z, and of the hydrogen, X: 
(Z/X)photo = 0.0245 (1 + 0.061); actually, these quantities are used as input in 
the relevant computer calculations. An important  constraint is the age of the 
Sun: TO = (4.57 + 0.01) X 109 yr. In order to develop a solar model one typically 
studies the evolution of an initially homogeneous Sun, having a mass M o dur- 
ing a period of time ~-®. To reproduce the values of RG, Lo  and (Z/X)photo at 
time t = T o three parameters in the calculations are used: the initial helium and 
heavy element abundances Y and Z, and a parameter characterizing the convec- 
tion efficiency in the outer region of the Sun (the mixing length parameter).  The 
latter is constrained by the value of Ro.  It is usually assumed that  the Sun is 
spherically symmetric. 

It should be clear from the above brief discussion that  the solar modeling 
requires a rather good knowledge of several branches of physics: astrophysics, 
atomic, nuclear (elementary particle) and plasma physics. The most recent and 
sophisticated standard solar models [28]-[32], [35] include the effects of the slow 
diffusion (relative to hydrogen) of helium and the heavier elements from the 
surface towards the center of the Sun (caused by the stronger gravitational pull 
of these elements relative to hydrogen). 
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3.2 Hel iose i smologica l  Constraints  on  Solar Mode l s  

At present one of the most stringent constraints on the solar models are obtained 
from the helioseismological data. It was discovered experimentally as early as in 
1960 [33] that the surface of the Sun is oscillating with periods which vary in the 
interval between about 15 and 3 minutes (these oscillations are usually referred 
to as the "5 minute oscillations"). In later studies about 106 individual oscillation 
modes have been identified experimentally and their frequencies were measured 
with an accuracy of 1 part in 104 or better. 

The Sun's surface oscillations reflect the existence of standing pressure waves 
(p-waves) in the interior of the Sun (see, e.g., [33]). Some of these waves penetrate 
deep into the region of neutrino production. The p-mode frequencies depend on 
the physical conditions in the interior of the Sun. Using a specially developed 
inversion technique and the more precise helioseismological data on the low- 
frequency oscillations which became available recently, it was possible to recon- 
struct with a remarkable accuracy the sound speed distribution, c(r), in a large 
region of the Sun [33], [35], [36] extending from r ~ 0.05 R e to r ~- 0.95 R e. 
Using the same data permitted to determine the location of the bottom of the 
convective zone, rb, and the matter density at the bottom of the convective zone, 
Pb, as well [37]: 

rb -- (0.708 - 0.714) R o ,  (7) 

Pb = (0.185- 0.199) g/cm ~ . (8) 

The implications of the helioseismological data for the solar modeling are il- 
lustrated in Fig. 4 (taken from [36]), where the ratio (CSM (r) --cHS (r))/CHS (r), 
CHS (r) and cSM (r) being the sound speed distributions extracted from the hello- 
seismological data and predicted by a given solar model, is plotted for two solar 
models - without and including heavy element diffusion [29]. Only the statistical 
errors in the determination of CHS (r) are shown (they are so small that they are 
barely seen), but the general conclusions which can be inferred from such a com- 
parison remain valid after the inclusion of conservatively estimated systematical 
errors [37]. As Fig. 4 illustrates, the difference between cns(r) and CSM(r) for 
the model without heavy element diffusion is so large that this model is prac- 
tically ruled out by the helioseismological data. Actually, the same conclusion 
is valid for all existing solar models without heavy element diffusion (e.g., the 
models [241, [25], [26]). 

Further studies [37] have shown, in particular, that models which have been 
especially designed to explain the observed deficiency of SB neutrinos by lowering 
the temperature in the central region of the Sun (see further), i.e., the so-called 
models with "mixed solar core", also do not pass the helioseismological data test. 
Thus, of the large number of solar models proposed so far only the models which 
include diffusion of the heavy elements are compatible with the helioseismological 
data. 

The agreement of the predictions of the models with heavy element diffusion 
for c(r) with the sound speed distribution deduced from the data is quite impres- 
sive. As Fig. 4 indicates, the root mean square (r.m.s.) deviation from CHS(r) 
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Fig. 4. The ratio (csM - CHS)/CHS, CnS and CSM being the sound speed distributions 
extracted from the helioseismological data and predicted by a given solar model, as a 
function of the distance R from the center of the Sun (expressed in units of the solar 
radius Ro) (from [36]). The ratio is plotted for two solar models - without (dashed 
line) and including (solid line) heavy element diffusion [29]. Only the statistical errors 
in the determination of ¢HS(T) are included in the analysis (they are too small to be 
seen). 

for the model of [29] in the entire range of CHS(r) determination is ~ 0.1%. For 
the model with heavy element diffusion of [35] the r.m.s, discrepancy is ,-, 0.2%. 
Adding the est imated systematic uncertainties in the determination of e l l S ( r )  
allows the difference [CSM(r ) -- CHS(r)[ to be somewhat larger [37] : the ratio 
[CSM(r) --CHS(r)[/CHS(r) for the model [29], however, does not exceed approx- 
imately 0.4% in the region 0.2R® < r < 0.65RG, and about  1% in the neutrino 
production region 0.05R® < r < 0.20R~, for which the helioseismological data  
is less accurate. 

As can be shown [36], in the interior of the Sun one has: c2(r) ~ T(r)/p(r),  
where T is the tempera ture  and # is the mean molecular weight. Consequently. 
even small deviations of the solar model predictions for T and p from their 
actual values in the Sun, 6T and 6#, would lead to a relatively large discrepancy 
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between the predicted an measured values of c(r): 5c/c ~- 0 .5 (ST/T  - 5#/#) .  
Since, according by the standard solar models, T and # vary by very different 
factors in the energy (neutrino) production region, ~ namely, by a factor of 1.9 
and by 39%, it is quite unlikely that the discrepancies between the predicted and 
actual values of T and # mutually cancel to produce the remarkable agreement 
for the models with heavy element diffusion, illustrated in Fig. 4. Barring such 
a cancellation, the comparison between CHS(r) and CSM(r) suggests that for 
the indicated models tSTI/T, 15t~l/~ g 2% in the interior of the Sun, and is 
considerably smaller in most part of the Sun. Since the solar neutrino fluxes 
scale approximately as T~ with n = -1.1; 8; 24 respectively for the pp, 7Be and 
SB neutrinos [40], Tc being the central temperature predicted by the model, the 
above results implies, in particular, that it is impossible to reduce considerably 
even the SB neutrino flux by changing the central temperature within the limits 
following from the helioseismological data. 

3.3 Pred ic t ions  for the  Neu t r ino  Fluxes  and the  Signals 
in the  Solar Neu t r ino  De tec to r s  

We shall present here the results obtained in four models [29]-[32] with heavy 
element diffusion, which can be characterized by their predictions for the total 
flux of SB neutrinos as relatively "high flux" [29], [30], "intermediate flux" [31] 
and "low flux" [32] models. The predictions for the SB neutrino flux and for the 
signals in the solar neutrino detectors in these models determine the correspond- 
ing intervals in which the results of practically all contemporary solar models 
compatible with the helioseismological data [34]-[37] lie (see, e.g., [28], [35]). 
Thus, they give an idea about the dispersion and the possible uncertainties in 
the predictions. 

In Table 1 we have collected the results of the models of Bahcall-Pinsonneault 
(BP'95) from 1995 [29], Richard et al. (RVCD) [30], Castellani et al. (CDFLR) 
[31], and of Dar and Shaviv from 1996 (DS'96) [32] for the values of the fluxes of 
the pp, 7Be, SB, pep and CNO neutrinos at the Earth surface. We have included 
also the estimated 1 s.d. uncertainties in the predictions for the fluxes made 
by Bahcall and Pinsonneault for their model. In Tables 2 and 3 we give the 
predictions for the contributions of each of the indicated six fluxes to the signals 
in the C1-Ar [17] and the Ga-Ge [20], [21] experiments, respectively, and quote 
the predictions for the total signals in these experiments (including the estimated 
1 s.d. uncertainty in the predictions whenever it is given by the authors). 

A comparison between the experimental results (1) - (6) and the correspond- 
ing predictions given in Tables 2 and 3 leads to the conclusion that none of the 
solar models proposed so far provides a satisfactory description of the solar neu- 
trino data: the predictions typically exceed the observations. This is one of the 
current aspects of the solar neutrino problem. 

b They vary respectively by the factor of 53 and by 43% in the entire region of the 
c(r) helioseismological determination. 
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Table 1. Solar neutrino fluxes at the Earth surface (in units of cm-2sec -1) 
predicted by the solar models [29]-[32]. 

Flux BP'95 RVCD CDFLR DS'96 

~pp x 10 - l°  5.91(1 +0.01~ -0.02J 5.94 5.99 6.10 
~pep X 10 -8 1.40(1 -]-0.01~ -o.o2J 1.38 1.40 1.43 
~Se X 10 -9 5.15(1 +0.0~ -o.oTJ 4.80 4.49 3.71 
q5 n X 10 -6  6.62(1 +o.14~ -o.17J 6.33 5.16 2.49 
4~N x 10 -8 6.18(1 +o.17~ -o.2oJ 5.59 5.30 3.82 
4~o x 10 -8 5.45(1 +o.19~ --0,221 4.81 4.50 3.74 

Table 2. Signals (in SNU) in C1-Ar detectors due to the solar neutrinos, pre- 
dicted by the solar models [29]-[32]. 

Type of neutrinos BP'95 RVCD CDFLR DS'96 
pp 0.0 0.0 0.0 0.0 
pep 0.22 0.22 0.22 0.24 
7Be 1.24 1.15 1.08 0.89 
SB 7.36 6.71 5.74 2.64 
13N 0.11 0.09 0.09 0.06 
150 0.37 0.32 0.31 0.25 

Total: 9.3 +1.2 8.5 7.4 4.1 5= 1.2 -1.4 

Taking into account the estimated uncertainties in the theoretical predictions 
and the experimental errors in (1) - (6) one finds that the differences between 
the predictions and the observations are largest for the "high flux" models: the 
measured values of R(Ar), ~(B) and R(Ge) in the C1-Ar, Kamiokande and Ga- 
Ge experiments are at least by (3.5-4.0) s.d. smaller than the predicted ones 
in [29], [30]. The "low flux" model of Dar and Shaviv reproduces the result of 
the Kamiokande and Super-Kamiokande experiments for ~(B). However, the 
prediction of the model for R(Ge) is respectively by at least 3 s.d. higher than 
the GALLEX and SAGE results (3) and (4). The discrepancy between the solar 
model predictions and the Ga-Ge data is somewhat larger if one compares the 
predictions with the combined result (5) of the GALLEX and SAGE experi- 
ments. 

Let us discuss in somewhat greater detail the results of the four representa- 
tive models [29]-[32] for the fluxes of the pp, pep, rBe, 8B and CNO neutrinos 
shown in Table 1. The predictions for the values of the pp and pep neutrino 
fluxes are remarkably coherent: they very from model to model at most by 3% 
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Table 3. Signals (in SNU) in Ga-Ge detectors due to the solar neutrinos, pre- 
dicted by the solar models [29]-[32]. 

Type of neutrinos BP'95 RvcD CDFLR DS'96- 
pp 69.7 70.1 70.7 72.0 
pep 3.0 3.0 3.0 3.0 
7Be 37.7 35.3 32.9 27.1 
SB 16.1 15.4 12.6 6.1 
13N 3.8 3.5 3.3 2.4 
150 6.3 5.6 5.2 4.6 

Total: 137 +s 133 128 115 ~: 6.0 -7 

and 3.570, respectively. Actually, the two fluxes are related [23]: ~pep is pro- 
portional to ~pp and the coefficient of proportionality is practically solar model 
independent, being determined by the ratio of the cross-sections of the reac- 
tions p + e - + p - - + D + u ~  and p + p - - ~ D + e  + + v ~  in which the pep and pp 
neutrinos are produced in the Sun. One has [23]-[32] 

~p~p = (2.3 - 2.4) × 10-3¢pp. (9) 

The value of the pp flux is constrained by the existing rather precise data 
on the solar luminosity, L®. Indeed [41], the solar luminosity is determined by 
the thermal energy released in the Sun in the two well known cycles of nuclear 
reactions, the pp (Fig. 1) and the CNO cycles (see, e.g., [23]), in which 4 protons 
are converted into 4He with emission of 2 neutrinos. From the point of view of 
the energy effectively generated, the indicated hydrogen burning reactions can 
be written as 

4p + 2e- -+ 4He + 2v~. (10) 

Depending on the cycle, the two emitted neutrinos can be both of the pp or 
pep type, or a pp (pep) and a 7Be, a pp (pep) and a SB (pp cycle), and a 150 
and/or 13N (CNO cycle) neutrinos [23], [31]. The thermal energy released per 
one produced pp, pep, 7Be and SB neutrino is equal to (Q/2 - Ej), where Q = 
26.732 MeV is the Q-value of the reaction (7), and I~j is the average energy of the 
neutrino of the type j (j = pp, ...). The energy released per one 150 and/or one 
13N neutrino, as can be shown (taking into account, in particular, the discussion 
of the rates of the different reactions of the CNO cycle given in [23]) is equal with 
a high precision to the difference (Q/2 - (I~N + ]~o)/2). Obviously, the values of 
Q and I~ i are solar physics (and therefore solar model) independent. 

Given the average energies l~ i carried away by the pp, pep, 7Be, SB and 
CNO neutrinos (they are listed at the beginning of Sect. 2, I~B~ = 0.813 5JleV): 
and knowing that the energy emission by the Sun is quasi-stationary (steady 
state), it is possible to relate L® with the pp, pep, 7Be, SB and CNO neutrino 
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luminosities of the Sun. One finds in this way the following constraint on the 
solar neutrino fluxes: 

Cpp+0.958~SBe+0.955~SCNO+0.910~Spep = (6.514 =k 0.031) × 10 l° cm-2sec -1 , 
(n) 

where 
~CNO = ~ N + ~ O ,  

we have used [29] (see also [42], [43]) L e = (3.844 + 0.015) x 1033 erg sec -1 
and have neglected the terms proportional to 4~B and to (¢x -- ¢o)  in the }eft 
hand side of the equation, which are predicted to be considerably smaller than 
3 x l0 s cm-2sec -1. The fluxes ~5 s and (~N -- ~O) have to be more than 46 
and (3 - 4) times bigger than the largest ("high flux") model predictions [29] 
and [30], respectively, in order for these terms to exceed the indicated value. 
The coefficient multiplying the CBe term in (11) is just the ratio of the thermal 
energies produced per one 7Be and one pp neutrino, (Q/2 - l~Be)/(Q/2 - l~pp), 
etc. Since, as Table 1 shows, ~[~Be and ~cNo are smaller than ~pp at least by the 
factors 0.09 and 0.02, respectively, and ~p,p is even smaller (see (9)), (11) limits 
primarily the pp neutrino flux. 

Comparing the experimental results (3) - (6) with the solar model predictions 
given in Table 3 one notices, in particular, that  the rate of a g e  production due 
only to the pp neutrinos, RPP(Ge) = (70 - 72) SNU, is very close to the rates 
observed in the GALLEX and SAGE experiments. This suggests that  a large 
fraction, i.e., roughly at least half, of the pp (electron) neutrinos emitted by the 
Sun reach the Earth intact and are detected. 

The relative spread in the predictions for the 7Be neutrino flux Ose and for 
the signals due to the 7Be neutrinos in the C1-Ar and Ga-Ge experiments, as it 
follows from Tables 1 - 3, does not exceed approximately 30%. 

4 The SB Neutrino Problem 

A further inspection of the results collected in Table 1 reveals that  the differences 
(and the estimated uncertainties) in the predictions of the solar models for the 
total flux of SB neutrinos are the largest: the value of ~B in the models [29]-[31] is 
by more than a factor of 2 larger than the value obtained in the "low flux" model 
[32]. The SB neutrinos are born in the Sun in the 3+-decay, SB --+ SBe* +e+ +~'e, 
of the SB nucleus which is produced in the reaction 

p +  7Be-+ S B + ~  (12) 

initiated by ,-~20 keV protons. Obviously, ~n is proportional to the rate of the 
process (12) taking place in the solar plasma environment, which in turn is 
to large extent determined by the cross-section of (12), al7(Ep). The latter is 
usually represented in the form [23] 

a l 7 ( E p ) -  S17(Ep) exp(-87r e2/v), (13) 
Ep 
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where exp(-8~r e2/v) is the Gamow penetration factor, and Ep and v are the p 
- 7Be c.m. kinetic energy and relative velocity: The largely different values of 
the astrophysical factor $17, $17 -= S17(Ep ~ 20 keV), adopted by the authors of 
[29], [30], [31] and of [32] is one of the major sources of the large spread in the 
predictions for ~B. 

Because of background problems it is impossible to measure the cross-section 
a17(Ep) directly at the low energies of the incident protons, which are of astro- 
physical interest. The experimental studies of the process (12) were performed 
at energies 110 keV < Ep ~ 2000 keV. They are technically rather difficult be- 
cause of the instability of the 7Be serving as a target. The results obtained in 
the indicated higher energy domain are extrapolated to Ep ~ 20 keV using a 
theoretical model describing the data (and the process (12) in the entire en- 
ergy range 20 keV < Ep ~ 2000 keV) and taking into account the possible solar 
plasma screening effects. Obviously, there are at least two major sources of un- 
certainties in the determination of $17 inherent to the indicated approach: the 
uncertainties associated with the data at Ep > 110 keV, and those associated 
with the extrapolation procedure exploited. 

Altogether six experiments have provided data on the the p - ~Be cross- 
section alT(Ep) so far. The results of the four most accurate of them [44], [45] 
can be grouped in two distinct pairs, [44] and [45], which agree on the energy 
dependence of S17(Ep), but disagree systematically by ~ (20-25)% (~(2-3)  
s.d.) on the absolute values of S17(Ep). The authors of [29], [31] (and, we suppose, 
of [30]) used in their calculations the value SIT = (22.4 + 2.1) eV-b derived by 
extrapolation in [46] on the basis of the data from all six experiments. 

A new method of experimental determination of $17 was proposed relatively 
recently in [47]. It is based on the idea of measuring the cross-section of the 
inverse reaction, 7 + SB ~ 7Be + P, by studying the dissociation of SB into 
p + 7Be in the Coulomb field of a heavy nucleus, chosen to be 2°spb. The 
time-reversal symmetry guarantees that the cross-sections of (12) and of the 
inverse reaction should be equal. The extraction of the values of ffl7(Ep) (and of 
S17(Ep)) from the data on the process SB + 2°Spb -+ p + 7Be + 2°Spb is not 
straightforward and is associated with certain subtleties (see, e.g., [48]). 

Using the results of the experiment of Motobayashi et al. [47] on the reaction 
SB + 2°spb ~ p + 7Be + 2°spb to determine the cross-section alT(Ep) in the 
energy interval 500 keV g Ep ~ 2000 keV, the results of the most recent of 
the experiments on (12) of Filippone et al. [45] in the interval (110 - 500) keV, 
and a new extrapolation model developed by them, the authors of [32] obtain 
$17 = 17 ~- 2 eV-b. ~ 

The additional difference between the values of CB predicted in [29] and in 
[32] is due to 

c Let us note that in [25] the value of Sl7 derived in [46] and adopted in [29], [31] 
was also used, but with a larger systematical error, $1~ -- (22.4 -t- 1.3 -t- 3.0) eV-b, 
introduced to account for the (systematic) difference between the data on alT(Ep) 
from the experiments [44] and [45]. 
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i) the use of different (but still compatible within the errors with the measured 
or deduced from the data) values of other relevant nuclear reaction cross- 
sections, as those of the 3He + aHe --4 4He + 2p and 3He + 4He --4 7Be+? 
reactions (a factor ~ 1.2), and 

ii) the use in [29] and in [32] of different methods to account for the diffusion 
of the heavy elements in the Sun. 

The latter leads, in particular, to a difference in the values of the central tem- 
perature in the Sun in the models I29] and I321: Tc(BP'95) = 1.584 × 107 K and 
T¢(DS'96) = 1.561 × l0 T K. As the 8B neutrino flux Cs is very sensitive to the 
value of T¢, scaling as [40] ~SB --~ T~ 4 , the indicated difference in T~ implies an 
additional difference in the values of ~B predicted in [29] and in [32] (a factor of 
~ 1.4). 

5 T h e  M i s s i n g  ~'Be N e u t r i n o s  

Even if one accepts that  there are large uncertainties in the predictions for the 
flux of 8B neutrinos and in all analyses one should rather use for ~B the value 
implied by the (Super-) Kamiokande data, (2) and (6) ,  another problem arises: 
the predictions of all contemporary solar models for the flux of 7Be neutrinos~ 
~SB~, are considerably larger than the value suggested by the existing solar neu- 
trino data. This was first noticed in [49] and confirmed in several subsequent 
more detailed studies [50]-[53] utilizing a variety of different methods. We shall 
illustrate here the above result using rather simple arguments [49], [53]. 

Let us assume that  the spectrum of the sB neutrino flux coincides with that 
predicted by the solar models, i.e., with the spectrum of the u~ emitted in the 
decay SB --+ SBe* + e + + ue (see Fig. 2). This would be the case if the solar 
SB ue behave conventionally during their journey to the Earth. For the value 
of the total 8B neutrino flux one can use the Super-Kamiokande result (6): 
~sK (2 44 +0.26~ -=-- , • - -0.11J × 106 cm-2sec-1, where the statistical and the systematic 
errors were added in quadratures. Knowing 4~B and the the cross-section [23] 
of the Pontecorvo-Davis reaction ve ~_37 Cl --4 e -  ~_37 At, one can calculate the 
contribution of the 8B neutrinos to the signal in the Davis et al. experiment, 
RB(Ar). One finds: 

RB(Ar) : (2.71 +0.30~ SNU. (14) 
- - 0 , 1 4 ,  I 

By subtracting this value from the rate of Ar production measured in the Davis 
et al. experiment we obtain the sum of the contributions of the 7Be, pep and 
CNO neutrinos to the signal in this experiment: 

RBe+pep+CNO(Ar) : (-0.15 +0.37~ SNU. (15) -0.25] 

Given the solar model independent relation (9) between ~p~p and ~pp, and 
that ~pp is rather tightly constrained by the data  on the solar luminosity, we 
can consider as rather reliable (and weakly model dependent) the solar model 



The Solar Neutrino Problem 299 

predictions for pep RSM (Ar) = (0.22 - 0.24) SNU. Taking RPeP(Ar) = 0.22 SNU one 
obtains from (15) 

RBe(Ar) < (-0.37 +0.37~ SNU, (16) 
- -  - - 0 . 2 5 ]  

RBe(Ar) being the 7Be neutrino contribution to the signal in the Davis et al. 
experiment. At 99.73% C.L. (3 s.d.) this implies RBe(Ar) < 0.74 SNU, which is 
smaller than the predictions of the solar models with heavy element diffusion/ 
RB~(Ar) = (0.89 - 1.24) SNU [28], [29], [30], [31], [32], [35]. As RBe(Ar) 
~Se, the result obtained suggests that, if the solar neutrinos are assumed to 
behave conventionally on the way to the Earth (i.e., do not undergo oscillations, 
transitions, decays, etc.), the 7Be v~ flux inferred from the solar neutrino data is 
substantially smaller than the flux predicted by the contemporary solar models. 

Similar (though statistically somewhat weaker) conclusions can be reached 
for the contribution of the 7Be neutrinos to the signal in the Ga-Ge detectors, 
RBe(Ge), and correspondingly for ~Be, by taking into account the fact that  the 
solar model predictions for the contributions of the pp and pep neutrinos to the 
indicated signal, RPP+pep(Ge), are tightly constrained by the data on the solar 
luminosity and vary by no more than 3%: pp+pep -̂~ Pt~M (Gv) = (72.7 - 75.0) SNU. 
Subtracting ~PP+PePr~^~ ""SM ~ , ~ j  = 72 SNU from the rate of Ge production observed in 
the SAGE and GALLEX experiments, Eq. (5), one obtains for the contribution 
of SB, 7Be and CNO neutrinos: RB+B~+CNO(Ge) = (3.4 i 7) SNU. 

Utilizing the value of ~3BSK measured by the Super-Kamiokande experiment 
and the Ga-Ge reaction cross-section [23], [53] permits to calculate the con- 
tribution of the SB neutrinos, RB(Ge), to l:~exp(Ge): RB(Ge) = (5.9 +5.0~_2.0] SNU, 
where the error is dominated by the estimated uncertainty in the value of the 
Ga-Ge reaction cross-section [53]. Subtracting the so derived value of R B (Ge) 
from the value of RB+Be+CNO(Ge) we get: 

RBe(Ge) < (-2.5 +9.2~ SNU. (17) 
- -  - - 7 . 6 /  

Consequently, at 9 9 . 7 3 %  C.L .  (3 s.d.) the contribution of 7Be neutrinos to the 
signals in the SAGE and GALLEX experiments does not exceed 25.1 SNU, while 
the solar models [24]-[32], [36] predict a Be (Ge) ~ 27 SNU. 

Analogous results have been obtained in [50], [52] using different meth- 
ods. The same conclusion has been reached in [51] as well on the basis of a 
X 2 -  analysis of the solar model description of the data, in which the total pp, 
pep, 7Be, SB and CNO neutrino fluxes were treated as free parameters subject 
only to the luminosity constraint (11), while the spectra of solar neutrinos were 
assumed to coincide with the predicted ones in the absence of unconventional 
neutrino behaviour (as oscillations in vacuum, etc.). 

Thus, there are strong indications from the existing solar neutrino data  that  
the flux of 7Be (electron) neutrinos is considerably smaller than the flux pre- 
dicted in all contemporary solar models. Given the results of the GALLEX and 

d Actually, the 3 s.d. upper limit on RB~(Ar) is smaller than the predictions of all 
known to the author solar models proposed in the last 10 years (see also the second 
article quoted in [36]). 
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SAGE calibration experiments, we can conclude that both the Davis et al. and 
the Super-Kamiokande (Kamiokande) data, (2) and (6) (Eq. (3)), have to be 
incorrect in order for the above conclusion to be not valid. The discrepancy bet- 
ween the value of ~Be suggested by the analyses of the existing solar neutrino 
data and the solar model predictions for CBe represents the major new aspect 
of the solar neutrino problem. No plausible astrophysical and/or nuclear physics 
explanation of this discrepancy has been proposed so far. 

6 N e u t r i n o  P h y s i c s  S o l u t i o n s  

o f  t h e  S o l a r  N e u t r i n o  P r o b l e m  

We have seen that none of the solar models developed during the last ten years 
provides a satisfactory description of the existing solar neutrino data. The dis- 
crepancy between the data and the solar model predictions is especially large for 
the majority of models with heavy element diffusion, which are compatible with 
the helioseismological data. The solar model predictions for the signals caused 
by the solar neutrinos in the solar neutrino experiments are larger than the mea- 
sured signals. In particular, no solar, atomic or nuclear physics solution to the 
7Be neutrino problem discussed above was found so far. Since the solar neutrino 
detectors are sensitive either only, or predominantly, to the solar v~ flux, these 
results indicate that the solar ve flux is depleted on the way to the Earth. 

Such a depletion can take place naturally if the solar v¢ undergo transitions 
into neutrinos of a different type, v, and/or y~, and/or into a sterile neutrino v~, 
or are converted into antineutrinos ~ and/or ~ ,  while they travel to the Earth. 
The depletion of the solar v~ flux might be caused also by instability of the solar 
neutrinos which can decay on their way to the Earth. Thus, several physically 
rather different neutrino physics solutions of the solar neutrino problem are, in 
principle, possible. They all require the existence of "unconventional" intrinsic 
neutrino properties (ma~s, mixing, magnetic moment) and/or couplings (e.g., 
flavour changing neutral current (FCNC) interactions). More specifically, these 
solutions include: 

i) oscillations in vacuum [9], [16], [2] of the solar ue into different weak eigen- 
state neutrinos (v u and/or v~, and/or sterile neutrinos, us) on the way from 
the surface of the Sun to the Earth [54]-[58], 

ii) matter-enhanced transitions [38], [39] ue --+ %(~), and/or v~ -~ vs, while the 
solar neutrinos propagate from the central part to the surface of the Sun 
[59]-[61], 

iii) solar v~ resonant spin or spin-flavour conversion (RSFC) in the magnetic 
field of the Sun [62], and 

iv) matter-enhanced transitions, for instance v~ --~ v~, in the Sun, induced by 
flavour changing neutral current (FCNC) interactions of the solar v~ with 
the particles formin~ the solar matter [63]-[65] (these transitions can take 
place even in the case of absence of lepton mixing in vacuum and massless 
neutrinos [63]). 
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All these possibilities have been and continue to be extensively studied (see the 
quoted articles). There have not been recent studies of the solar neutrino decay 
hypothesis [66] which, however, was disfavored [67] by the earlier solar neutrino 
data. 

In what follows we shall discuss the vacuum oscillation and the matter- 
enhanced transition solutions of the solar neutrino problem. The status of these 
solutions has been reviewed recently, e.g., in [68], [69]. 

6.1 Osci l lat ions in V a c u u m  

Neutrino oscillations in vacuum [9], have been discussed in connection with the 
solar neutrino experiments [16] and as a possible solution of the solar neutrino 
problem [2], [1], [54]-[58], [69] (and the literature quoted therein) for about 31 
years. In the simplest version of this scenario it is assumed that  the state vector 
of the electron neutrino, lu¢), produced in vacuum with momentum p in some 
weak interaction process, is a coherent superposition of the state vectors lug) of 
two neutrinos yi, i=1,2, having the same momentum p and definite but different 
masses in vacuum, mi, ml # m2, while the linear combination of ]ul) and [u2), 
which is orthogonal to lue), represents the state vector [u~) of another weak- 
eigenstate neutrino, [u~) = [ug(~)) or Ivy): 

Ir'~) = - lu l )  s inO+ Iv2) cosO, (18b) 

where 0 is the neutrino (lepton) mixing angle in vacuum. We shall assume for 
concreteness in what follows that  v. is an active neutrino, say uu, t u~) = l u.). 

Obviously, the states [u1,2) are eigenstates of the Hamiltonian of the neutrino 
system in vacuum, H0: 

k//-~ i = 1.2. (19) Ho lui) = E i  lui),  E i  = + mi,9 , 

If u~ is produced at time t = 0 in the Sun in the state given by (18a), after 
a time t the latter will evolve into the state 

l u , ( t ) )  = e - iE~t  tul)  cosÜ + e -iE=t {u2) s in0 ,  (20) 

where we have ignored the overall space coordinate dependent factor exp(i p r) 
in the right-hand side of (20) and have assumed that  the solar matter  does not 
affect the evolution of the neutrino system. (The possible effects of matter on 
the evolution of the neutrino state will be considered in the next Section.) Using 
(18a) and (18b) to express the vectors [ut) and [u2) in terms of the vectors [ue) 
and [u,) we can rewrite (20) in the form: 

lug(t)) = A ~ ( t )  lug) + Aue(t) [uu) , (21) 

where 
A ~ ( t )  = e - iE~t  cos 2 0 + e - iE~t  sin 2 0 (22) 
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and 
1 (e_iE2t e_iElt ) Age(t) = -~ sin20 - (23) 

are the probability amplitudes to find respectively neutrino ve and neutrino lzg 
at time t of the evolution of the neutrino system if neutrino ue has been produced 
at time t = 0. Thus, if neutrinos Ul and u2 are not mass-degenerate, ml # rn2, 
and if nontrivial neutrino mixing exists in vacuum, 0 # nzc/2, n = 0, 1, 2, ...~ we 
have [Age(t)t 2 # 0 and transitions in flight between the states [u¢) and Iv,) (i.e., 
between the neutrinos ue and %) are possible. 

Assuming that  neutrinos ul and u2 are stable and relativistic, it is not difficult 
to derive from (22) and (23) the probabilities that  a solar ue with energy E ~- 
lpl -- p will not change into u~, on its way to the Earth,  Pv'o(ue -4 t~e;t), and 
will transform into ug while traveling to the Earth, P r o  (ue -4 u~; t): 

P v o ( u e - 4 u e ; t ) = [ A e e ( t ) 1 2 = l - ~ s i n 2 2 0  1 -  cos2~r , (24) 

~1 [ 1 - c o s  21r R(t~) ] (25) Pv ° (u e  ~ u";t)  = lA"e(t)12 = ~ sin220 L~, J ' 

where a m  2 = mg  - m~,  

L~ = 47rE~Am 2 (26) 

is the oscillation length in vacuum, 

R(ty)  = Ro [1 - ~ cos(2~rty/T)], (27) 

is the Sun-Ear th  distance at time ty of the year (T = 365 days), R0 = 1.4966× l0 s 
km and e = 0.0167 being the mean Sun-Ear th  distance and the ellipticity of the 
Ear th  orbit around the Sun. In deriving (24) and (25) we have used the equalities 

E2 - E1 ~- p + Am2/ (2p)  and t ~ R(tv)  

valid for relativistic neutrinos u~,2. The quantities A m  2 and sin 2 28 are typically 
considered and treated as free parameters to be determined by the analysis of 
the solar neutrino data. 

It should be clear from the above discussion that the neutrino oscillations, 
if they exist, would be a purely quantum mechanical phenomenon. The require- 
ments of coherence between the states ]ul) and ]u2) in the superposition (18a) 
representing the ue at the production point, and that  the coherence be main- 
tained during the evolution of the neutrino system up to the moment of neutrino 
detection, are crucial for the neutrino oscillations to occur. The subtleties and 
the implications of the coherence condition for neutrino oscillations continue to 
be discussed (see, e.g., [2], [70], [71] and the articles quoted therein). 

As it follows from (25), the u~ --4 u,  transition probability Pv'o (ue -4 u,;  t), 
depends on two factors: on (1 - cos 27rR(ty)/Lv),  which exhibits oscillatory de- 
pendence on the distance traveled by the neutrinos and on the neutrino energy 
(hence the name "neutrino oscillations"), and on sin 2 20 which determines the 
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amplitude of the oscillations. In order for the ve -+ v~ oscillation probability 
to be large, Pro(re --4 u,; t) - 1, two conditions have to be fulfilled: the neu- 
trino mixing in vacuum must be large, sin 2 20 --- 1, and the oscillation length 
in vacuum Lv has to be of the order of or smaller than the distance traveled 
by the neutrinos, R: Lv ~ 27rR. If the second condition is not satisfied, i.e., if 
Lv >> 27rR, the oscillations do not have enough time to develop on the way to the 
neutrino detector as the source-detector distance R (in our case the Sun-Ear th  
distance) is too short, and one has Pro(re ~ vu; t) ~ O. 

Let us note that ,  in general, a given experiment searching for neutrino oscil- 
lations, is specified, in particular, by the average energy of the neutrinos being 
studied,/~, and by the distance traveled by the neutrinos to the neutrino detec- 
tor. The requirement Lv ~ 27rR determines the minimal value of the parameter 
Am 2 to which the experiment is sensitive (figure of merit of the experiment): 
min(Am 2) --, 2E/R.  Because of the interference nature of the neutrino oscilla- 
tions, the neutrino oscillation experiments can probe, in general, rather small 
values of Am ~ (see, e.g., [1], [2]). In addition, due to the large distance be- 
tween the Sun and Ear th  and the relatively low energies of the solar neutrinos, 
/~ ,-~ 1 MeV, the experiments with solar neutrinos have a remarkable sensitivity 
to the parameter A m  2, namely, they can probe values as small as 10 -11 eV~: 
Am ~ ~ 10 -11 eV 2. 

To summarize the above discussion, if (18a) is realized and Am 2 ~ 10 -11 eV 2 
the solar ve can take part in vacuum oscillations on the way to the Earth. In 
this case the fiavour content of the electron neutrino state vector will change 
periodically between the Sun and the Earth due to the different time evolution 
of the vector's massive neutrino components. The amplitude of these oscillations 
is determined by the value of sin 2 20. If sin 2 20 is sufficiently large, the neutrinos 
that  are being detected in the solar neutrino detectors on Earth will be in states 
representing, in general, certain superpositions of the states of ~ v~ and v~,. As 
the muon (and tau and sterile) neutrinos interact much weaker with matter  than 
electron neutrinos, the measured signals in the solar neutrino detectors should 
be depleted with respect to the expected ones. This would explain the solar 
neutrino problem. 

Detailed analyses of the solar neutrino data in terms of the hypothesis of 
two-neutr ino vacuum oscillations of solar neutrinos have been performed in the 
period after 1991, e.g., in [54], [55], [57], [68], [69]. It was found that  the two- 
neutrino oscillations involving the v~ and an active neutrino, v~ +4 vu(~), provide 
a good quality description (X2-fit) of the solar neutrino data for values of the 
two vacuum oscillation parameters belonging approximately to the region (see, 
e.g., [68]): 

5.0 x 10-11eV 2 ~ Am 2 ~ 10-1°eV 2, (28a) 

0.65 ~ sin 2 20 _< 1.0. (28b) 

e Obviously, if v~ mixes with u, and/or v¢ and/or us, these states will be superpositions 
of the states of v, and/or u~ and/or vs. 
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Fig.  5. The vacuum oscillation probability Pvo(v~ -4 v~;t), Eq. (24), for the mean 
distance between the Sun and the Earth, t = Ro (upper frame), and the probability 
Pyo(ve -+ re;t)  averaged over a period of 1 year (lower frame), as functions of the 
neutrino energy E for Am ~ = 10 - l°  eV 2 and sin 2 28 = 0.8 (from [57]). For further 
details see the text. 

At  the same time, as it was shown in [55], [57], the oscillations into sterile neu- 
t r ino us, vc +4 us, give a poor  fit of the solar neutr ino da ta  and are thus s t rongly  
disfavored by the  da ta  as a possible solution of the solar neutr ino problem. 

The  probabi l i ty  of  solar ue survival, Pvo(Uc --+ u~; Ro), in which t -~ R( tv)  is 
replaced with the  average Sun-Ear th  distance R0, and the probabi l i ty  Pv'o (ue -+ 
v~ ; t)  averaged over the period of one y e a r J  are shown for A m  2 = 6.3 × 10-1aeV 2 
and sin 2 20 = 0.8 as functions of the solar neutr ino energy E in the upper  and 
lower frames of Fig. 5, respectively (taken from [57]). 

Al though  in the analyses [57], [68] leading to the above results the predictions 
of the solar model  [29] with heavy element diffusion for the fluxes of the pp, pep, 
7Be, SB and CNO neutrinos were used, it was also verified [57], [58], [68] tha t  
the results so obta ined (i.e., the existence of  the vacuum ue ~ uu(T) oscillation 

I The one-year averaged probability has to be used in the analyses of data taken over 
periods of k years, k = 1,2,3,..., as are the data (1) - (4) provided by the C1-Ar, 
Ga-Ge and Kamiokande experiments. 
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Fig.  6. Regions of values of the parameters Am 2 and sin 2 20 (shown in black) for which 
the solar neutrino data can be described (at 95% C.L.) in terms of vacuum u~ ++ u,(r) 
oscillations of the solar ue (from [72]). For further details see the text. 

solution) are stable with respect to variations of the values of the total  s B and 7Be 
neutr ino fluxes within wide intervals in which the predictions of all con tempora ry  
solar models lie.g 

The  results of a recent x 2 - a n a l y s i s  of the solar neutr ino da ta  in terms of the 
hypothesis  of two-neutr ino v~ ++ %(T) oscillations of the solar neutrinos [72], are 
shown graphically in Fig. 6. The analysis was based on the predictions of the 
solar model  of Bahcall  and Pinsonneaul t  [29] with heavy element diffusion. The  
regions in the A m  2 - sin 2 20 plane colored in black correspond to  values of the 
two parameters  for which one obtains (at 95% C.L.) a description of  the data ,  

g Actually, in the analysis performed in [57] the SB neutrino flux qSB was treated as a 
free parameter, while the 7Be neutrino flux OBe was assumed to take values in the 
interval (0.7 _ ,1.~,j~-BeU~mBP95, where o~P95 is the flux in the model [29] (see Table 1). 
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in other words, a solution of the solar neutrino problem, h 
Let us note that  for the values of A m  2 from the interval (28a), the oscillation 

length in vacuum for the solar neutrinos with energy E N 1 MeV is of the order 
of the Sun-Earth distance: Lv "~ (2.5 - 5.0) x 107 kin. At the same time L~. is 
much bigger than the solar radius: Lv >> RG. 

6.2 Matter-Enhanced Transitions 

Let us consider next that  the possible effects of the solar mat ter  on the oscilla- 
tions of solar neutrinos assuming that  (18a) and (18b) hold true and supposing 
first that  Iv~) = lug}. 

The presence of mat ter  can drastically change the pat tern of neutrino oscilla- 
tions: neutrinos can interact with the particles forming the matter.  Accordingly, 
the Hamiltonian of the neutrino system in matter  differs from the Hamiltonian 
of the neutrino system in vacuum H0, 

H,~ -= Ho + Hi,~t , (29) 

where H i m  describes the interaction of the flavour neutrinos with the particles 
of matter.  When, e.g., electron neutrinos propagate in matter,  they can scat- 
ter (due to the H~,~t) on the particles present in matter: on the electrons (e-) ,  
protons (p) and neutrons (n). The incoherent elastic and the quasi-elastic scat- 
tering, in which the states of the initial particles change in the scattering process 
(destroying the coherence between the neutrino states), are not of interest for 
our discussion for one simple reason - they have a negligible effect on the solar 
neutrino propagation in the Sun ~ : even in the center of the Sun, where the den- 
sity of mat ter  is relatively high (,-, 150 g/cm3), an v~ with energy of 1 MeV has a 
mean free path with respect to the indicated scattering processes, which exceeds 
10 l° km (recall that  the solar radius is much smaller: Ro = 6.96 × 105 kin). The 
oscillating v, and v,  can scatter also elastically in the forward direction on the 
e - ,  p and n, with the momenta and the spin states of the particles participating 
in the elastic scattering reaction remaining unchanged. In such a process the 
coherence of the neutrino states is being preserved and the oscillations between 
the flavour neutrinos can continue in spite of, and actually, in parallel to, the 
scattering. 

The ve and vv coherent elastic scattering in the forward direction on the 
particles of mat ter  generates nontrivial indices of refraction of the u~ and v, in 
mat ter  [38]: ~;(ve) # 1, ~(uu) # 1. Most importantly, the index of refraction of 
the v~ thus generated does not coincide with the index of refraction of the v~,: 

h In this analysis the experimental results (1), (2), (4) and (6) and the data from 
the GALLEX experiment obtained in 51 runs of measurements, RGALLEX(Ge) = 
(69.7 4-6.7 + 3:9) SNU, were used. The solution regions of values of Am 2 and sin e 20 
do not change significantly if one uses the most recent GALLEX data, (4). 

i These processes axe important, however, for the supernova neutrinos (see, e.g., [5], 
[6]). 
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~(ve) 5 ~ ~(v,) .  The difference between the two indices of refraction is determined 
essentially by the difference of the real parts of the forward v~ - e -  and vz - e -  
elastic scattering amplitudes [38], Re [F~ ._e- (0 ) ] -  Re [F~ _e-(0)]: due to the 
flavour symmetry of the neutrino - quark (neutrino - nucleon) neutral current 
interaction, the forward v¢ - p ,  n and v~ - p ,  n elastic scattering amplitudes 
are equal and therefore do not contribute to the difference of interest, j The 
real parts of the amplitudes F ~ _ e -  (0) and F~,_~- (0) can be calculated in the 
s tandard theory. One finds the following result [38], [73], [74] (see also [75]) for 
the difference of the indices of refraction of ve and u~: 

t~(v~) - ~(v,)  = ~-i27r (Re [F~o_,-(0)] - Re [F. _~-(0)]) = - plv/2GFN~' (30) 

where GF is the Fermi constant and ATe is the electron number density in 
matter.  Let us note that  the forward scattering amplitudes for the antineu- 
trinos Fo._~-(0) and F ~ _ , - ( 0 )  coincide in absolute value with the amplitudes 
F.~_~-(0) and F . _ ~ - ( 0 )  but have opposite sign and therefore one has 

- = + lv or (31) 
P 

Knowing the expression for the difference of the indices of refraction of v~ 
and v,  in matter,  it is not difficult to write the system of evolution equations 
which describes the v~ +4 v ,  oscillations in matter  [38], [73], [74]: 

i d fA~(t, to)~ -¢(t) d 

where A~ (t, to) (A, (t, to)) is the amplitude of the probability to find neutrino ~% 
(v,)  at time t of the evolution of the neutrino system if at time to the neutrino 
v~ or v~ (or a state representing a linear combination of the states describing 
the two neutrinos) has been produced, t _> to. Furthermore e(t) and ¢' are real 
functions of the neutrino energy E ~ p, of Am 2, of the mixing angle in vacuum 
0 and of the electron number density in the point of the neutrino trajectory in 
mat ter  reached at time t, N~(t), 

1 . Am 2 
e(t) = ~ [ - - ~ -  cos 2t9 - v/2GFN~ (t)], ~' Am2 = 4 E-  sin 20. (33) 

-J We standardly assume that the weak interaction of the flavour neutrinos v~, t,~ and 
v~ and antineutrinos v~, v, and ~ is described by the standard (Glashow-Salam- 
Weinberg) theory of electroweak interaction and that the generation of nonzero neu- 
trino masses and lepton mixing leading to (18a) and (18b) does not produce new 
couplings which can change substantially the neutrino weak interaction, as required 
by the existing experimental limits on such new couplings (for an alternative possi- 
bility see, e.g., [63]). Let us add that the imaginary parts of the forward scattering 
amplitudes (responsible, in particular, for decoherence effects) are proportional to the 
corresponding total scattering cross-sections and in the case of interest are negligible 
in comparison with the real parts. 
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The term v/-2GFN~(t) in the parameter ~(t) accounts for the effects of mat ter  
on the neutrino oscillations. 

Let us note that  the system of evolution equations describing the oscillations 
of antineutrinos Pe ~ ~, in matter  has exactly the same form except for the 
mat ter  term in e(t) which, in accordance with (30) and (31), changes sign. 

Due to the presence of the interaction term Hi~t in the Hamiltonian of the 
neutrino system in matter  Hm, the eigenstates of the Hamiltonian of the neutrino 
system in vacuum, ]ul) and ]u2), are not eigenstates of Hm. As a result of the 
coherent scattering of u~ and uu off the particles forming the mat ter  transitions 
between the states ]ul) and ]u2) become possible in matter: 

<u2l H,~t [Ul> # 0. (34) 

Consider first the case of ve ~ u, oscillations taking place in matter  with electron 
number density which does not change along the neutrino trajectory: N~(t) = 

U TM N~ = const. It proves convenient to find the states ] 1,~), which diagonalize 
the evolution matrix in the right-hand side of the system (32), or equivalently, 
the Hamiltonian of the neutrino system in matter. The relations between the 
matter-eigenstates ]Ulm2) and the flavour-eigenstates ]ue,~) have the same form 
as the relations (18a) and (18b) between the vacuum mass-eigenstates lul,2} and 

lug) = lu?)cOS8m + lu?)s inSm, (35a) 

I ' . )  = - l u g )  sin#~ + IL,~) cosO.~ . (35b) 

Here 8m is the neutrino mixing angle in mat ter  I38], 

e' tan 28 
sin 28,~ -- -- (36) 

V/~-}-£'2 ~/(1 -- N-"~-'I2N~.,~, + t a n 2 2 0  ' 

cos 28m -- e _ 1 - Ne/N~ ~ (37) 
V ~ + e  '2 . / ( 1 -  N Nc_~2+tan 220'  

V N ~ e  s / 

where the quantity 
Am 2 cos 20 

N:e~ 2Ev~GE (38) 

is called "resonance density" [73]. The matter-eigenstates ]vi"~2 ) (which are also 
called "adiabatic") are eigenstates of the evolution matrix (Hamiltonian) in (32), 
corresponding to the two eigenvalues, E TM whose difference is given bv 1,2~ 

E ~  - E ~  = 2V/~e ~ + e '2 Am22E ~ Ne 2 - (I - N-----~- ) cos 228 + sin 228. (39) 

It should be almost obvious from (25) after comparing (18a), (18b) with 
(35a), (35b) that  the probability to find neutrino v,  at time t if neutrino ue has 
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been produced  at t ime to = 0 and it t raversed a distance (t - to) = t ~ Rm in 
ma t t e r  with constant  electron number  density Are, has the form [39]: 

P.~(u~ ~ v . ; t )  = IA,(t)l  2 = ~ sin 2 2Om 1 -  cos27r , (40) 

where 
Rm ~ m (41) 2 ~ 2 7  = ( E ;  - E ,  )t, 

and L m  is the  oscillation length in mat ter :  

L.~ = L ,  . (42) 
~/(1 - ~ e  cos ~ 20 + sin 2 20 

Evidently, the ampl i tude  of the t'e o u ,  os c i l l a t i ons  in ma t t e r  is equal to 
sin 2 20m. It  follows from (36) that ,  most  remarkably,  the dependence of sin 2 20,,, 
on Ne has a resonance character  [39]. Indeed, if in the case of interest the con- 
dit ion 

A m  2 cos  2 20 > 0 (43) 

is fulfilled, for any finite value of sin e 20 there exists a value of the electron 
number  density equal to N [  ~ ,  such tha t  when 

N~ = N~ ~s (44) 

we have 
sin 2 20m = 1. (45) 

~ ' eS  Note  tha t  if N~ = N~ , we get sin e 28m = 1 even if the mixing angle in vacuum 
is small, i.e., if sin 2 20 << 1. This implies tha t  the presence of ma t te r  can lead to 
a s t rong enhancement  of the oscillation probabil i ty Pm(ue --+ US; t) even when 
the u~ ~ u s oscillations in vacuum are s t rongly suppressed due to a small value 
of  sin 2 20 (hence, the name "mat ter -enhanced neutr ino oscillations"). 

The  oscillation length at resonance is given by 

Lv (46 
L ~  - sin 20 ' 

while the width  in Are of the resonance (i.e., the "distance" in N~ between the 
points  at  which sin 2 20m = 1/2) has the form 

A N ' ~  ~ = 2N~ ~ tan  20 .  (47) 

Thus,  if the mixing angle in vacuum is small the resonance is narrow, A N [  ~ << 
7"eS N~ , and the  oscillation length in mat te r  at  resonance is relatively large, L ~  ~ >> 

L~. As it follows from (39), the energy difference E ~  - E~ ~ has a min imum at 
the resonance: 

A m  2 
(E~ n - E ' ~ )  ~'es = min ( E ~  - E ~ )  = 2--E- sin 20. (48) 
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It  is instructive to consider two limiting case. If Ne (( N[ ~, as it follows from 
(36) and (42), 0m ~ 0 (sin 20m ~ sin 20), Lm - Lv and the neutrinos oscillate 
practically as in vacuum. In the opposite limit, N~ >) N[  ~ ,  N [  ~ tan 2 20, one 
finds from (36) and (37) that  0m --- 7r/2 (sin20m ~ 0, cos20m --- - 1 )  and the 
presence of mat te r  suppresses the ~ +4 v ,  oscillations (see (40)). In this case we 
get from (35a) and (35b): 

I e) (49a) 
]~,~,) = - I v y ) ,  (49b) 

i.e., if the electron number density exceeds considerably the resonance density, 
ve practically coincides with the heavier of the two matter-eigenstate  neutrinos 
v~ ,  while the v ,  coincides with the lighter one v~.  

The analogs of (36), (37), (39), (40) and (42) for oscillations of antineutrinos, 
#~ +4 p , ,  in mat te r  with constant Ne can formally be obtained by replacing l\~ 
with ( - N ~ )  in the indicated equations. If condition (43) is fulfilled, we have 
N [  ~ > 0 and the term (1 + N~/N[ ~) which appears, e.g., in the expression for 
the mixing angle in mat te r  0,~ in the case of P~ +4 ~, oscillations, can never be 
zero. Thus, a resonance enhancement of the P~ +9 ~, oscillations cannot take 
place. The matter ,  actually, can only suppress the oscillations. 

I t  should be clear from this discussion that  depending on the sign of the 
product  Am 2 cos 20, the presence of mat ter  can lead to resonance enhancement 
either of the ve +4 v ,  or of the ~ ~ ~, oscillations, but not of the both types 
of oscillations. This is a consequence of the fact [76] that  the mat te r  in the Sun 
or in the Ear th  we are interested in, is not charge-symmetric (it contains e - ,  p 
and n, but  does not contain their antiparticles) and therefore the oscillations in 
mat te r  are neither CP- nor CPT-  invariant, k In what follows we shall assume 
that  Am 2 > 0 and cos20 :> 0, so that  (43) is satisfied and therefore only the 
v~ +4 v ,  oscillations can be enhanced by the mat te r  effects. 

Since the neutral  current weak interaction of neutrinos in the s tandard theory 
is flavour symmetric,  the formulae and results we have obtained above and shall 
obtain in what follows are valid for the case of v¢ - ,~ mixing ((18a) and (18b)) 
and v~ +4 v~ oscillations in mat ter  as well. In what concerns the possibility 
of mixing and oscillations between the v~ and a sterile neutrino v~, ve +4 v~, 
the relevant formulae can be obtained from the formulae derived for the case of 
v~ ~-~ v,(~) oscillations by [76] replacing ATe with (Ne - 1 /2N, ) ,  where N~ is the 
number density of neutrons in matter ,  

The formalism we have developed above can be directly applied, for instance, 
to the s tudy of the mat te r  effects in the v~ +4 v,(~) (v,(~) +4 v~) oscillations of 
the flavour neutrinos which traverse the Ear th  mantle (but do not traverse the 
Ear th  core). The electron number density changes little around the mean value 

k As it is not difficult to convince oneself, the matter effects in the v~ e-~ v, (p~ ~-~ p~,) 
oscillations will be invariant with respect to the operation of time reversal if the .h~ 
distribution along the neutrino path is symmetric with respect to this operation. 
The latter condition is fulfilled for the N~ distribution along a path of a neutrino 
crossing the Earth [77]. 
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of N,  ~ 2.3 cm -3 NA, NA being the Avogadro number, along the trajectories 
of neutrinos which cross a substantial part of the Earth mantle and the N~ = 
const, approximation is rather accurate. If, for example, Am 2 = 10 -a eV 2, E = 
1 GeV and sin e 28 ~ 0.5, we have: 5/[ ~* ~- 4.6 cm -a NA, sin e 20,~ ~ 0.8 and the 
oscillation length in matter,  Lm ~- 3 × 103 kin, is of the order of the depth of the 
Ear th  mantle, l so that  one can have 27rRm ~ L,~. It is not difficult to obtain 
an expression for the v, ~ v,(~) oscillation probability in the case when the 
neutrinos traverse both the Earth mantle and the core assuming N, is constant, 
but  has different values in the two Earth density structures. 

It is not clear, however, what the above interesting results have to do with the 
problem of main interest for us, namely, accounting for the effects of solar mat ter  
in  the oscillations of solar neutrinos while they propagate from the central part  to 
the surface of the Sun. The electron number density (the matter  density) changes 
considerably along the neutrino path in the Sun: it decreases monotonically from 
the value of --~ 100 cm -a NA ('.~ 150 g/cm 3) in the center of the Sun to 0 at the 
surface of the Sun. Actually, according to the contemporary solar models (see, 
e.g., [23], [29]), N~ decreases approximately exponentially in the radial direction 
towards the surface of the Sun: 

N~(t) = N~(to) exp { t - tO ' (50) 

where (t - t o )  ~ d is the distance traveled by the neutrino in the Sun, N~(to) is 
the electron number density in the point of neutrino production in the Sun, r0 
is the scale-height of the change of Ne(t) and one has [23] r0 ~ 0.1Re. 

Obviously, if N~ changes with t (or equivalently with the distance) along the 
neutrino trajectory, the matter-eigenstates, their energies, the mixing angle and 
the oscillation length in matter,  become, through their dependence on Ne, also 
functions of t: Ivl,•} = lu~,e(t)}, E m = E~.2(t ), 8m = 8re(t) and L,n = Lm(t). 1,2 

It is not difficult to understand qualitatively the possible behaviour of the 
neutrino system when solar neutrinos propagate from the center to the surface 
of the Sun if one realizes that  one is dealing effectively with a two-level system 
whose Hamiltonian depends on time and admits "jumps" from one level to the 
other (see (32)). Let us assume first for simplicity that  the electron number 
density in the point of a solar v, production in the Sun is much bigger than the 
resonance density, N,(to) >> N[  ¢*, and that the mixing angle in vacuum is small, 
sin 8 << 1. Actually, this is one of the cases relevant to the solar neutrinos. In this 
case we have 8re(to) ~ 7r/2 and the state of the electron neutrino in the initial 
moment of the evolution of the system practically coincides with the heavier of 
the two matter-eigenstates: 

l The Earth radius is 6371 km; the Earth core, whose density (N~) is larger approxi- 
mately by a factor of 2.5 than the density (N~) in the mantle, has a radius of 3486 
km, so the Earth mantle depth is 2885 km. 
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Thus, at to the neutrino system is in a state corresponding to the "level" with 
energy E~(to). When neutrinos propagate to the surface of the Sun they cross 
a layer of mat ter  in which Ne = N[eS: in this layer the difference between the 
energies of the two "levels" (E~  (t) - E ~ '  (t)) has a minimal value on the neutrino 
t rajectory ((39) and (40)). Correspondingly, the evolution of the neutrino system 
can proceed basically in two ways. First, the system can stay on the "level" with 
energy E~n(t), i.e., can continue to be in the state Ivy(t)) up to the final moment 
ts, when the neutrino reaches the surface of the Sun. At the surface of the Sun 
Ne(ts) = 0 and therefore Om(ts) = O, IP~,2(ts)} = 1/21,2> and E TM = 1,2(ts) El,2. 
Thus, in this case the state describing the neutrino system at to will evolve 
continuously into the state 1/22) at the surface of the Sun. Using (18a) and (18b), 
it is trivial to obtain now the probabilities to find respectively neutrino/2e and 
neutrino v u at the surface of the Sun (given the fact that/2~ has been produced 
in the initial point of the neutrino trajectory): 

P(/2e -4/2~;t~,to) = ]A~(ts,to)l 2 -~ 1(/2~1/22}12 = sin2 0, (52a) 

P(u~ -4/2.; t~, to) - I A . ( t ~ ,  t0)J 2 = 1{/2.1/22)12 = cos 2 0. (52b) 

It  is clear tha t  under the assumptions made (i.e., sin 2 0 << 1), a practically total 
u~ - /2u conversion is possible in the case under study. This type of evolution of 
the neutrino system as well as the /2e --4 /2. transitions taking place during the 
evolution, are called [39] "adiabatic". They are characterized by the fact that  
the probability of the "jump" from the upper "level" (having energy E~(t))  to 
the lower "level" (with energy E~(t)) ,  P', or equivalentiy the probability of the 
/2~(to) -4 u{~(t.) transition, P' = P'(/2~(to) --+ u{~(t~)), on the whole neutrino 
t rajectory is negligible: 

P' =- P' ( /2~ ( to ) --4/2~(t~)) -~ 0 : adiabatic transitions. (53) 

The second possibility is realized if in the resonance region, where the two 
"levels" approach each other most (the difference between the energies of the 
two "levels" (E~(t)  - E ~ ( t ) )  has a minimal value), the system "jumps" from 
the upper "level" to the lower "level" and after that continues to be in the state 
iuF(t))  until the neutrino reaches the surface of the Sun. Evidently, now we have 
P' = P'(/2~(to) --+/2~(t~)) ~ 1. In this case the neutrino system ends up in the 
state lui~(t~)) ___ lug) at the surface of the Sun and the probabilities to find the 
neutrinos/2~ and/2~ at the surface of the Sun are given by 

P(/2e --4/2~;t~,t0) =--1A~(t~,to)] 2 " ~  I(/2e]/21)12 = cos2 0, (54a) 

P(u~ --4/2.;t~,to) -[Au(t~,  to)[ 2 = 1(/2.1/21>12 = sin 2 0. (54b) 

Obviously, if sin20 << 1, practically no transitions of the solar /2~ into /2. will 
occur. The considered regime of evolution of the neutrino system and the cor- 
responding ue --+ /2. transitions are usually referred to as "extremely nonadia- 
batie". 
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Clearly, the value of the "jump" probability P'  plays a crucial role in the the 
ve --~ u. transitions: it fixes the type of the transition and determines to large 
extent ve -~ v. transition probability. We have considered above two limiting 
cases: P~ ~ 0 and P~ ~ 1. Obviously, there exists a whole spectrum of possibilities 
since P~ can have any value from 0 to 1. In general, the transitions are called 
"nonadiabatic" if P' is non-negligible (see further). 

Numerical studies have shown [39] that  solar neutrinos can undergo both 
adiabatic and nonadiabatic u~ ~ v~ transitions in the Sun and the matter  
effects can be substantial in the solar neutrino oscillations for a remarkably wide 
range of values of the two parameters Am 2 and sin 2 20, namely for 

10-TeV 2 ~ Am 2 £ 10-4eV 2, (55a) 

10 -4 g sin 2 29 _< 1.0. (55b) 

It would be preferable to make more quantitative the preceding analysis. We 
will obtain first the adiabaticity condition [39], [78]. 

Using the (35a) and (35b) we can express the probability amplitudes A~ (t, to) 
and A u (t, to) in terms of the probability amplitudes A1 (t, to) and A: (t, to) to find 
the neutrino system in the states IV'~(t)) and Iv~(t))), respectively, at time t: 

Ae (t, to) = A1 (t, to) cos 0m (t) + A2 (t, to) sin 0m (t), (56a) 

A.(t ,  to) = -A~(t ,  to) sinOm(t) + A2(t, to) cosgm(t). (56b) 

Substituting (56a) and (56b) in (32) we obtain the system of evolution equations 
for the probability amplitudes A1 (t, to) and A2(t, to): 

~'~ \A2(t, to) \igm(t) E~(t) \A2(t ,  t0) " (57) 

Here ~,~ (t) -- ~gm (t). It follows from the preceding discussion that the solar neu- 
trino transitions in the Sun will be adiabatic (nonadiabatic) if the nondiagonal 
term in the evolution matrix in the right-hand side of (57), which is responsible 
for the v~(t0) ~ vf~(t~) transitions, is sufficiently small (is non-negligible). The 
corresponding conditions can be written as 

4n(t) >> 1, adiabatic transitions, (58a) 

4n(t) ~ 1, nonadiabatic transitions, (58b) 

where the adiabaticity function 4n(t) is given by 

E•(t) - E•(t) = V~GF (Neres)2 tan 2 20 (1 + tan-220..(t)) ~ (59) 
4n(t) _-- 21~m(t)l I/V~ (t)~ 

In (59) /V~(t) -- dNe(t) and we have used (36), (37) and (39) to derive it. 
Expression (59) for 4n(t) implies that the solar neutrino transitions in the Sun 
will be adiabatic if the electron number density changes sufficiently slowly along 
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the neutrino trajectory; if the change of N~(t) is relatively fast, the transitions 
would be nonadiabatic. 

In order for the solar neutrino transitions to be, e.g., adiabatic, condition 
(58a) has to be fulfilled in any point of neutrino trajectory in the Sun. However, 
it is not difficult to convince oneself using (36), (37), (50) and (59) that if the 
solar neutrinos cross a layer with resonance density N[  e~ on their way to the 
surface of the Sun, condition (58a) will hold if it holds at the resonance point, 
i.e., for the parameter 

4no - 4n(t  = t~e~) = v ~ G v  (N[e ' )2  tan 2 20 
]Ne(t = t ~ ) l  

A]m 2 sin 2 20 Alr ~ 
- -  r 0 7 t  

2 E  cos 20 L ~  ~ ' 

(60) 

where try8 is the time at which the resonance layer is crossed by the neutrinos, 
to < tre8 < ts, A r  res = 2(N[eS/12Qe(t = t~s)[) tan20 ~ 2r0 tan20 is the spatial 
width of the resonance and we have used (38) and (46). Thus, the value of the 
adiabaticity parameter 4n0 determines the type of the solar neutrino transitions. 
It follows from (60), in particular, that  the transitions will be adiabatic if the 
width of the resonance is bigger than the oscillation length at resonance. 

Actually, the system of evolution equations (32) can be solved exactly in 
the case when Are changes exponentially, (50), along the neutrino path in the 
Sun [79], [80]. On the basis of the exact solution, which is expressed in terms 
of confluent hypergeometric functions [81], it was possible to derive a complete, 
simple and very accurate analytic description of the matter-enhanced transitions 
of solar neutrinos in the Sun [79], [82]-[85] (for a review see [86]). The probability 
that  a u~ having momentum p (or energy E ~ p) and produced at time to in the 
central part  of the Sun will not transform into uu(~ ) on its way to the surface of 
the Sun (reached at time t , )  is given by 

P®(ue -~ ue; t , ,  to) = [~®(ue --+ u¢; t , ,  to) + Osc i l la t ing  t e rms .  (61) 

Here 

cos 20m (to) cos 20 

is the average probability, where 

(62) 

t 

P = 

J m  2 exp [-2 ro  sin20]-exp 
F 27rr z~rn=l I - exp L- o ~KJ 

exp [-2rrno(1 - tan 2 8)] - exp [-2r~no(tan -2 e - tan 2 0)] 

1 - exp [-27rn0(tan -2 0 - tan 2 0)] , (63) 
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is [79], [86] the "jump" probability for exponentially varying electron number 
density m Ne, and O,~(to) is the neutrino mixing angle in mat ter  in the point of 
ve production. 

We will not give the explicit analytic expressions for the oscillating terms 
in the probability Po(u~ --+ u~; ts, to), although they have been derived in the 
exponential density approximation for the N¢ as well [84] (see also [89]). These 
terms were shown [85] to be, in general, strongly suppressed by the various 
averagings one has to perform when analyzing the solar neutrino data  in terms 
of the hypothesis that solar neutrinos undergo matter-enhanced transitions in 
the Sun. More specifically, it was found [85] that  the oscillating terms in P¢(u~ --+ 
u~ ts, to) can be important only for the monochromatic 7Be- and pep-neutrinos 
and only for values of Am 2 ~ 10 -s  eV 2. As we shall see, the current solar 
neutrino data  suggest that  Am 2 ~ 10 -7 eV 2. 

It should be emphasized that  for Am 2 ;~ 10 -7 eV ~ the averaging over the 
region of solar neutrino production in the Sun and the integration over the 
neutrino energy renders negligible all interference terms which appear in the 
probability of u~ survival due to the u~ ++ uu(~ ) oscillations in vacuum taking 
place on the way of the neutrinos from the surface of the Sun to the surface 
of the Earth. Thus, the probability that  u~ will remain v~ while it travels from 
the central part  of the Sun to the surface of the Earth is effectively equal to 
the probability of survival of the ue while it propagates from the central part 
of the Sun to the surface of the Sun and is given by the average probability 
-bG(ue --+ u~;t~, to) (determined by (62) and (63)). 

The probability PG(u¢ --+ u¢; t~, to) has several interesting properties. If the 
solar u¢ transitions are adiabatic (i.e., P~ ~ 0) and cos20,~(to) = - 1  (i.e., 
N¢(to) /N[  ~ >> 1, tan20,  solar neutrinos are born "above" and "far" (in N¢) 
from the resonance region), one has 

P(u~ --+ u~; t~, to) -~ sin2 0, (64) 

which is compatible with the qualitative result (52a) derived earlier. The solar Ue 
undergo extreme nonadiabatic transitions in the Sun (4n0 << 1) if, e.g., E / ~ m  ~ 
is "large" (see (60)). In this case again cos20,~(to) ~ - 1  and, as it follows [79] 
from (63), P~ ---- cos 2 0. Correspondingly, the average probability takes the form: 

1 
P(u~ -+ u~;t~,to) --- 1 - ~ sin2 20 , (65) 

which is the average two-neutrino vacuum oscillation probability. Thus, if the so- 
lar neutrino transitions are extremely nonadiabatic, the u~ undergo oscillations in 

m An expression for the "jump" probability corresponding to the case of density (2~% (t)) 
varying linearly along the neutrino path was derived a long time ago by Landau and 
Zener [87]. An analytic description of the solar neutrino transitions based on the 
linear approximation for the change of _N~ in the Sun and on the Landau-Zener 
result was proposed in [88]. The drawbacks of this description, which is less accurate 
[83] than the description based on the results obtained in the exponential density 
approximation, were discussed, e.g., in [82], [83], [86]. 
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the Sun as in vacuum. We get the same result, eq. (65), if Ne(t0)(1-  tan 20) -1 < 
N[  es, i.e., when E / A m  2 is sufficiently small so that  the resonance density exceeds 
the density in the point of neutrino production. In this case [83] the v~ transi- 
tions are adiabatic (P'  - 0) and again the v~ +4 u~(r) oscillations take place in 
the Sun as in vacuum: cos 20re(t0) ~ cos20 and P(v~ -4 v~; t~, to) ~ 1 - ½ sin 2 20. 

Let us note that  the general aspects of the discussion and the results presented 
above are valid also in the case of solar neutrino transitions into sterile neutrino, 
ve --4 us. In particular, the average probability Po(v~ ~ v~; ts, to) in this case 
is given effectively by (62) and (63) with [76] N~(to) replaced by (N¢(to) - 
1/2Nn(to)) in the expression for cos20m(t0), Nn(to) being the neutron number 
density of neutrons in the point of neutrino production in the Sun. 

The probability P(v~ -4 ue; ts, to) is shown as function of E / A m  2 for three 
values of sin 2 20 = 0.8; 0.2; 5 × 10 -3 in Figs. 7a - 7c. 

Further details concerning the analytic description of the matter-enhanced 
transitions of the solar neutrinos in the Sun can be found in [79], [82]-[86], [88], 
[89]. Exact analytic results for the probability of various possible two-neutrino 
matter-enhanced transitions in a medium (v~ -4 v,(~) or the inverse, u~ -4 up(y) 
or the inverse, ~e --4 u~(~) or the inverse, v~ -4 us, etc.), which are based solely 
on the general properties of the system of evolution equations (32) (and do not 
make use of the explicit form of the functions e(t) and d(t)) are given in [89]. 

Earlier studies (from 1993 - 1994) of the possibility to explain the solar 
neutrino problem in terms of the hypothesis of matter-enhanced ue --4 v,(~) 
transitions of solar neutrinos have shown [59] that  the data admits, in general, 
two types of MSW solutions: a small mixing angle nonadiabatic solution for 
10 -3 < sin 2 28 ~ 10 -2, and a large mixing angle adiabatic one for approximately 
0.60 ~ sin 2 20 ~ 0.95, with the allowed values of Am 2 lying in the interval 
10 -7 eV 2 ~ Am 2 ~ 10 -4 eV 2. The terms "nonadiabatic" and "adiabatic" refer 
to the type of transitions the SB neutrinos undergo in the corresponding cases. 
It was also shown (see, e.g., [56], [61]) that  in the case of Ue --4 Vs transitions 
only a small mixing angle nonadiabatic solution, analogous to the u~ --+ u~,(~) 
nonadiabatic solution, is allowed by the data. 

Recently the MSW solutions of the solar neutrino problem have been re- 
examined [72], [68], [69] (exploiting the x2-method)  using the data  (1), (2), 
and (4), the GALLEX result from 51 runs of measurements, I~GALLEX(Ge ) = 
(69.7 =i: 6.7 + 3.9 -4.5) SNU, and the Super-Kamiokande result from 201.6 days of 
measurements (~  3000 events), 4~ K = (2.65 +0.09 +o.14~ -o.0s -0.10J × 106 ~/crn2/sec.  
The analysis was based on the predictions of the solar model of [29] with heavy 
element diffusion for the electron and neutron number density distributions ~ and 
for the relevant pp, pep, ~Be, SB and CNO components of the solar neutrino flux. 
The uncertainties in the predictions for the fluxes estimated in [29] as well as the 
uncertainties of the different solar neutrino detection reaction cross-sections were 

'~ All solar models compatible with the currently existing observational constraints (he- 
lioseismological and other) predict practically the same electron and neutron number 
density distributions in the Sun. 
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Fig. 7. (c)The solar v, survival probability [90]/5o (v, --+ v~ ;t~, to), Eq. (62), averaged 
over the region of production the pp (solid line), pep (long-dash-dotted line), 13N 
(dashed line), 7Be (dash-dotted line), 150 (long-dashed line) and SB (dotted line) 
neutrinos for sin 2 28 = 0.8 (a); 0.2 (b); 0.005 (c) as a function of E/z2m 2. Figures a 
and b correspond to v, --~ v,(~) transitions, while figure c corresponds to v~ -~ v, 
transitions. 
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taken into account. The probabil i ty/so(re --+ ue; t~, to) was calculated following 
the prescriptions given in [83]. The results obtained in the cases of v~ -+ v, iT ) 
and v~ -4 Vs transitions are depicted in Figs. 8 and 9, respectively. 

The solid line contours in Fig. 8 denote regions allowed by the data from 
the Homestake, Kamiokande, SAGE and GALLEX experiments, while the dark 
shaded regions have been obtained by including the Super-Kamiokande data  in 
the analysis. Thus, the dark shaded areas represent the regions allowed by the 
mean event rate data from all experiments. The solid line contours in Fig. 9 
denote the region allowed by the data (at 95% and at 99% C.L.). 

The current solar neutrino data are best described assuming the solar neu- 
trinos undergo small mixing angle v~ --> v~(~) matter-enhanced transitions [72], 
[68], [69] (for this nonadiabatic solution one has 2 Xmi~ = 0.9 (3 d.f.)). The quality 
of the fit of the data is somewhat worse in the case of the large mixing angle or 

X 2 = 1.5). A similar quality of adiabatic solution ( rain is somewhat larger: 2 Xrnin 
the fit of the data is provided also by the hypothesis of transitions into a sterile 
neutrino, v~ --+ us, at small mixing angles 2 (Xmin = 1.5). In contrast, the large 
mixing angle ve ~ ~'s transition solution is practically excluded as a possible 
explanation of the solar neutrino deficit [72], [68], [69] (it is ruled out at 99.98% 
C.L. 2 (Xmin = 21, 3 d.f.) by the data). 

The values of the parameters Am 2 and sin 2 20 for which one obtains (at 95~ 
C.L.) the small mixing angle v~ -+ v~(~) transition solution of the solar neutrino 



The Solar Neutrino Problem 319 

1 0 - 4  

..... 10-o 

lO-e 

10 -v 

lO-S 

(95%) C.L. Allowed Regions 
1 i i T i i J ~  I i , , i i J l l  I , J I , ~ , ~ 1  

! ~  CIAr + Kamiokande + GALLEX + SAGE 

i 4 expel-iments + Super-Kamiokande 

(exp/SSM) ~- 0.400±0.024 

SSM: Bahcall and Pinsonneault 1995 

l | i i ]i]]] i i i i lliI] i i i ii 

10-s 10 -I I00 

sin~(2@) 

Fig. 8. Regions of values of the parameters Am 2 and sin 2 20 (the black areas) for which 
the matter-enhanced ve -+ u,(,) transitions of solar u~ allows to describe (at 95% C.L.) 
the solar neutrino data (from [72]). For further details see the text. 

problem lie in the region: 

3.8 x 10-%V 2 G A m  2 ~ 10-aeV 2, (66a) 

3.5 x 10 -3 ~ sin 2 20 ~< 1.4 x 10 -2. (66b) 

As Figs. 7 and 8 show, the small mixing angle ue --+ us solution region is very 
similar in shape and magnitude to the region of the ue --+ vt,(~) solution, (66a) 
and (66b), but  is shifted with respect to the latter by a factor of ~ 1.3 to smaller 
values of A m  2. 

We have seen that  there can be large uncertainties in the solar model pre- 
dictions for the total  ftux of SB neutrinos and that  the predictions for the 7Be 
neutrino flux vary by ,-~25%. The question of how stable are the MSW solutions 
of the solar neutrino problem discussed above with respect to changes in the pre- 
dictions for the two fluxes ~S and ~SSe naturally arises. A rather  comprehensive 
answer to this question for the u~ --+ u,(~) transition solution was given in [60]. 
and for the solution with ue transitions into a sterile neutrino, u, --~ us - in [59]. 
These studies showed, in particular, that  the existence of the MSW solutions of 
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Fig. 9. Allowed region of values of the parameters Am 2 and sin 2 20 corresponding to 
the matter-enhanced ue --+ v, transition solution of the solar neutrino problem (from 
[72]). For further details see the text. 

the solar neutrino problem is remarkably stable with respect to variations in the 
predictions for the SB and YBe neutrino fluxes. 

6.3 A D e t o u r :  M S W  Trans i t i ons  o f  Solar  N e u t r i n o s  in t h e  Sun  
a n d  t h e  H y d r o g e n  A t o m  

As we have indicated, the two-neutrino matter-enhanced ve --+ v~(~) transitions 
of solar neutrinos at small mixing angles provide the best description of the 
solar neutrino data. In the present subsection we demonstrate [89] that  the 
second order differential equation for the probability amplitude Ae (t, to) of solar 
~e survival coincides in form in the case of solar electron number density N~ (t) 
changing exponentially along the neutrino path, Eq. (50), with the SchrSdinger 
equation for the radial part of the non-relativistic wave function of the hydrogen 
atom, and we comment briefly on this interesting coincidence. 

Using the first equation in (32) to express A~ (t, to) in terms of A~ (t, to) and its 
time derivative, which gives A ,  ( t, to) = ~ ( e( t ) + i d ) A~ ( t, to), and substituting 



The Solar Neutrino Problem 321 

At,(t, to) thus found in the second equation in (32), we obtain a second order 
differential equation for Ae(t, to): 

{ ~d2 +[e  2 + e  ' 2 - i ~ ] } A e ( t , t 0 )  = 0 ,  (67) 

where ~ = d e  and e(t) and e' are given by (33). Introducing the dimensionless 
variable 

t-tQ 
Z = irox/~GFNc(to)e- ro , Zo = Z(t  = to), (68) 

and making the substitution 

Ae(t, to) = A(uc ~ u~) = (Z/Zo) c-a e-(Z-Z°)+i f'o ~(t')dt' A:(t, to), (69) 

we find that the amplitude A'e(t, to) satisfies [79], [80], [84] the confluent hyper- 
geometric equation [81]: 

dZ 2 + ( c - Z )  - ~ - a  d:( t ,  to) = 0 ,  (70) 

where [84] 
Am2 • 2 Am2 (71) 

a = l + i r o - ~ - s m  O, e = l + i r 0  2---E--- 

Equation (70) coincides in form with the Schr6dinger (energy eigenvalue) 
equation obeyed by the radial part, Ckl(r), of the non-relativistic wave func- 

tion of the hydrogen atom [91], ~P(~') = -~bkl(r)Ytm(0', ¢'), where r, 0' and 0' 
are the spherical coordinates of the electron in the proton's rest frame, 1 and 
m are the orbital momentum quantum numbers (m = - l ,  ...,/), k is the quan- 
tum number labeling (together with l) the electron energy, ° Ekl (Ekl < 0), 
and Ytm(0',¢') are the spherical harmonics. To be more precise, the function 
Ckl(Z) = Z -c/2 e z/2 Ckl(r) satisfies equation (70), where the variable Z and 
the parameters a and c are in this case related to the physical quantities char- 
acterizing the hydrogen atom: 

Z = 2  r x / - E k , / E , ,  a = - a ~ l = l +  l -  -X/-L-~/Ek,, c = c , = 2 ( / + 1 ) .  (72) 
a0 

Here a0 = h/(m~e 2) is the Bohr radius and EI = m~e4/(252) ~- 13.6 eV is the 
ionization energy of the hydrogen atom. It is remarkable that the behaviour of 
such different physical systems as solar neutrinos undergoing matter-enhanced 
transitions in the Sun and the non-relativistic hydrogen atom are governed by 
one and the same differential equation. 

The properties of the linearly independent solutions of equation (70), i.e., of 
the confluent hypergeometric functions, qh(a,c; Z), as well as their asymptotic 
series expansions, are well-known [81]. Any solution of (70) can be expressed 
as a linear combination of two linearly independent solutions of (70), ~(a, c; Z) 

o The principal quantum number is equal to (k + l) [91]. 
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and Z 1-e ~(a  - c + 1, 2 - c; Z), which are distinguished from other sets of lin- 
early independent confluent hypergeometric functions by their behaviour when 
Z -~ 0: ¢(a~ ,d ;Z  = O) = 1, a ' ,d  ~ 0 , - 1 , - 2 , . . . ,  a' and c ~ being arbitrary 
parameters. Explicit expressions for the probability amplitudes A(v~ ~ ~¢) and 
A(v~ --+ v~(¢)) in terms of the functions ~(a, c; Z) and ¢(a  - c + 1, 2 - c; Z) 
were derived in [84], [92]. In the case of MSW transitions of solar neutrinos 
(N~(t~) = 0) these expressions have an especially simple form: they are given by 
the corresponding vacuum oscillation probability amplitudes "distorted" by the 
values of the functions ~(a  ~, c~; Z) in the initial point of the neutrino trajectory, 

A(ve --+ v,(~)) = ~ sin28 ~ ( a - c ,  2 - c ; Z o ) - e  *(t-t°) 2E ~ ( a -  1,c;Z0) , 

(73) 
etc., where Z0, a and c are defined in (68) and (71). In the limit [Z0[ ~ 0, which 
corresponds to zero electron number density, expression (73) reduces (up to an 
irrelevant common phase factor) to the one for oscillations in vacuum, Eq. (23). 

It is well-known that the requirement of a correct asymptotic behaviour of 
the wave function Ckl(r) at large r leads to the quantization condition for the 
energy of the electron, Ekl, in the hydrogen atom [91] : Ekl = - E x / ( k  + l) 2, 
(k+l)  = 1, 2, ... (l = 0, 1, 2, ..., (k+l) - 1). Technically, the condition is derived by 
using the asymptotic series expansion of the confluent hypergeometric functions 
in inverse powers of the argument Z [81] (one has Z -+ oc when r --~ oo, see (72)). 
The same asymptotic series expansion in the case of the solutions describing the 
MSW transitions of solar neutrinos in the Sun (we have ]Z0] ~ 520 in this 
case [84]) permit ted to derive i) the simple expression for the relevant "jump" 
probability [79] P', Eq. (63), and ii) explicit expressions for the oscillating terms 
in the solar u~ survival probability [84]. Expression (63) is a basic ingredient of 
the most precise simple analytic description of the two-neutrino matter-enhanced 
transitions of solar neutrinos in the Sun, available at present [83]. 

7 T h e  S o l a r  N e u t r i n o  P r o b l e m :  O u t l o o k  

After being with us for .-~25 years the solar neutrino problem still remains un- 
solved. With the accumulation of the quantitatively new data provided by the 
Ga-Ge  experiments the problem acquired a novel aspect: the constraints on the 
7Be neutrino flux following from the data  imply a significantly smaller value of 
~Be than is predicted by the solar models. The data  of both Davis et al. and 
Kamiokande experiments have to be incorrect in order for the indicated conclu- 
sion to be not valid. The vacuum oscillations and MSW transitions of the solar 
neutrinos continue to be viable and very attractive solutions of the problem. 

The start  of the Super-Kamiokande experiment on April 1, 1996, and the 
presentation of the first preliminary data from this experiment at the "Neutrino 
'96" International Conference in June of the same year [22], marked the begin- 
ning of a new era in the experimental studies of solar neutrinos. This is the era 
of high statistics experiments with real time event detection and capabilities to 
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perform high precision spectrum, seasonal variation [2], [56], day-night asym- 
metry (see, e.g., [93], [94] and the articles quoted therein), etc., measurements. 
Such capabilities are of crucial importance, in particular, for understanding the 
true cause of the solar neutrino deficit. 

The preceding period 1967 - 1996 of solar neutrino measurements, which 
began when the epic Homestake (C1-Ar) experiment started to collect data 
[15], [17], is marked by several remarkable achievements which, given their scale 
and the time and the efforts they took, make this period rather an epoch. For the 
first time neutrinos emitted by the Sun have been observed. The thermo-nuclear 
reaction theory of solar energy generation was confirmed by the detection by 
GALLEX and SAGE experiments of the lower energy solar neutrinos produced 
in the corresponding fusion nuclear reactions. More generally, this result con- 
firms a fundamental aspect of the theory of stellar evolution regarding the role 
played by the nuclear fusion reactions. Finally, the solar neutrino data gathered 
in the indicated period provided, when compared with the predictions of the so- 
lar models, indirect evidences for an "unconventional" behaviour (e.g., vacuum 
oscillations, and/or matter-enhanced transitions, etc.) of the solar neutrinos on 
their way to the Earth. This in turn is the strongest indication we presently have 
for the existence of new physics beyond that predicted by the standard theory 
of electroweak and strong interactions. 

The Super-Kamiokande is the first operating of a group of new generation 
detectors, SNO [95], BOREXINO [96], ICARUS [97], HELLAZ [98], etc., which 
will allow one to perform more detailed and accurate studies of the solar neutrino 
flux reaching the Earth. As is well known, Super-Kamiokande, SNO and ICARUS 
experiments will study the SB component of the solar neutrino flux at energies of 
solar neutrinos E ~ (5-6) MeV; the BOREXINO detector is designed to provide 
information about the 0.862 MeV 7Be component of the flux: approximately 90% 
of the signal produced by the solar neutrinos in the BOREXINO detector (--,50 
events/day according to the reference model [29]) is predicted to be due to the 
7Be-neutrinos. The HELLAZ apparatus is envisaged to measure the total flux 
and the spectrum of the pp neutrinos p in the energy interval E = (0.22 - 
0.41) MeV. 

The SNO experiment is expected to begin to take data in 1998. The construc- 
tion of the BOREXINO detector is under way and is planned to be completed 
by the end of 1998. A prototype of the ICARUS apparatus has been successfully 
tested and the construction of the first 600 ton module has started. The feasi- 
bility studies for the HELLAZ detector have been intensified with the building 
of a small prototype at College de France [98]. Our aspirations to find the cause 
of the solar neutrino deficit established by the results of the spectacular solar 
neutrino experiments of the first generation [15], [17], [19]-[21], and confirmed 
by the first results from the Super-Kamiokande detector, and to get additional 
independent information about the physical conditions in the central part of the 
Sun, are presently associated with the more precise and diverse data the second 

P The HELLAZ detector can be utilized for studies of the 7Be neutrino flux as well. 
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generation detectors are expected to provide. All these are planned to be high 
statistics (typically ,~3000 solar neutrino events/year, Super-Kamiokande is ex- 
pected to collect ~10000 events/year),  i.e., high precision, experiments with real 
time event detection. 

In SNO experiment the SB neutrinos will be detected via the charged current 
and the neutral current reactions on deuterium: ue + D -~ e -  + p + p, and u + 
D --+ v + p + n; the measurement of the kinetic energy of the electron in the first 
reaction will permit to search for possible deformations of the spectrum of SB 
neutrinos at E ___ 6.44 MeV, predicted to exist (see, e.g., the first article quoted 
in [59] as well as [56], [61]) if solar neutrinos take part in oscillations in vacuum 
on the way to the Earth and/or  undergo matter-enhanced transitions in the Sun. 
High precision searches for spectrum deformations will be performed also in the 
Super- Kamiokande experiment in which the energy of the recoil electron from 
the u - e -  elastic scattering reaction will be measured with a high accuracy. 

The high statistics these experiments will accumulate, the measurement of 
the spectra of final state electrons with the SNO and Super Kamiokande detec- 
tors, and of the ratio of the charged current and the neutral current reaction 
rates with the SNO detector, will make it possible to perform various critical 
tests (see, e.g., [56], [61], [93], [94]) of the vacuum oscillation and the MSW, 
as well as of the other possible neutrino physics solutions [62]-[64]~ [66] of the 
solar neutrino problem. We may be at the dawn of a major breakthrough in the 
studies of solar neutrinos. It is not excluded, however, that the data  from the 
BOREXINO and HELLAZ detectors may be required to get an unambiguous 
answer concerning the cause of the solar neutrino problem [60], [57]~ [61]. 
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Large Bilocal Relativistic Potential Model 
for Vector Mesons and Their Leptonic Decays 

Kh. Ab laku lov ,  B.N. Kuranov ,  T.Z.  Nasyrov  

Inst i tute  of Nuclear Physics of Uzbekistan Academy of Sciences, Ulugbek, 702132, 
Tashkent, Uzbekistan 

A b s t r a c t .  The bilocal relativistic potential model (BRPM) is developed for describing 
vector mesons and their leptonic decays. The new Salpeter equation for vector mesons 
is proposed and considering the T --+ pr, decay the representation for p-meson leptonic 
decay constant fp is obtained. It is shown that  BRPM describes on a satisfactory level 
both  the constant .fp and the masses of other charged vector mesons. The values for 
the leptonic decay constants of these mesons are predicted. 

Gauge-ball Spectrum 
of U(1) Lattice Gauge Theory 

J. Cox 1, W. Franzki 1, J. Jers~k 1 , C.B. Lang 2, T. Neuhaus 3, P.W. Stephenson 4 

l Ins t i tu t  fiir Theoretische Physik E, RWTH Aachen, Germany 
2Institut fiir Theoretische Physik, Karl-Franzens-Universit/it  Graz, Austr ia  
3Niels Bohr Insti tute,  Univ. of Copenhagen, Denmark 
4DESY, Zeuthen, Germany 

A b s t r a c t .  We investigate the continuum limit of the gauge-ball spectrum in the four- 
dimensional pure U(1) lattice gauge theory. In the confinement phase we identify var- 
ious states scaling with the correlation length exponent v _~ 0.35. The square root of 
the string tension also scales with this exponent, which agrees with the non-Gaussian 
fixed point exponent recently found in the finite size studies of this theory. Possible sce- 
narios for constructing a non-Ganssian continuum theory with the observed gauge-ball 
spectrum are discussed. The 0 ++ state, however, scales with a Gaussian value ~ ~ 0.5. 
This suggests the existence of a second, Gaussian continuum limit in the confinement 
phase and also the presence of a light or possibly massless scalar in the non-Gaussian 
continuum theory. In the Coulomb phase we find evidence for a few gauge-balls, being 
resonances in mult i-photon channels; they seem to approach the continuum limit with 
as yet unknown critical exponents. 
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Phase Transitions of 1-D Quark Gases 

C.R. Gattringer,  L.D. Paniak and G.W.Semenoff 

Depar tment  of Physics and Astronomy, University of British Columbia, 6224 Agri- 
cultural  Road, Vancouver, B.C. V6T l Z l  Canada 

A b s t r a c t .  We analyze the thermodynamics of U(N) gauge fields in 1+1 dimensions 
coupled to sources in various representations. I t  is shown that  this model can be mapped 
to a matr ix  model which can be solved explicitly in the large N limit. For the case of 
sources in fundamental  and adjoint representation we establish the existence of a phase 
transit ion from a confining cold phase with low density of sources to a deconfining hot 
phase with high density of sources. We show that  the phases can be distinguished by the 
different behaviour of Polyakov loop operators that  wind k-times around compactified 
time. In the confining phase the expectation value of this operator is suppressed ex- 
ponentially with increasing k while for the deconfining phase one finds only power law 
suppression. This criterion in particular works in the presence of fundamental  repre- 
sentation sources. The article Decontlnement Transition for Quarks on a Line appeared 
as preprint  hep-th/9612030 and is in print at Annals of Physics. 

Scattering Phases for Elastic Meson-Meson Scat- 
tering in the massive Schwinger Model  by Means 
of Monte  Carlo Simulations 

C. Gutsfeld, H.A. Kastrup, K. Stergios, J. Westphalen 

Inst i tut  fiir Theoretische Physik E, RWTH Aachen, Germany 

A b s t r a c t .  According to a proposal of Liischer it is possible to determine elastic scat- 
tering phase shifts in massive quantum field theories from the energy spectrum of two 
particle states in finite volumes. This spectrum can be obtained by Monte Carlo sim- 
ulations on a lattice. The Schwinger model describes the interaction of fermions with 
an abelian gauge field in two space-time dimensions. It possesses properties which also 
appear  in QCD, as for instance confinement. I will present a status report  on the in- 
vestigation of the elastic scattering of bound states (mesons) in the massive Schwinger 
model with a SU(2) flavour symmetry, using staggered fermions for the simulations. 
The existence of analytical strong coupling predictions for the mass spectrum and for 
the scattering phases in the low energy region makes it possible to test the numerical 
results. 
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Non-tr iv ia l  Light-Front Vacuum 
in Fock Representa t ion  

L. Martinovic 

Inst. of Physics SAS, Bratislava 

A b s t r a c t .  A Fock representation for the physical vacuum of the Schwinger model 
quantized on the light front is suggested. It is based on the dynamical  zero mode 
of the A + gauge-field component. The 0-vacuum is constructed as a gauge invariant 
superposition of zero-mode coherent states. It reproduces the vacuum-angle dependence 
of the fermion condensate within the bosonized theory. The Weyl-gauge formulation of 
the model and the final gauge fixing on the quantum level via unitari ty transformations 
is shown to yield a formulation containing features not seen in the finite-volume light- 
cone gauge. A possible generalization to higher dimensions is discussed. 

Sum Rules  for A s y m p t o t i c  Form Factors in e+e - --+ 
W + W  - Scatter ing  

Stefano Rigolin 

Universit~ di Padova e INFN Padova, 1-35100 Padova, I taly 

A b s t r a c t .  At very large energies and in S U ( 2 ) L  ® U(1)y gauge theories, the trilinear 
gauge boson vertices relevant for e+e - -~ W + W  - scattering are related in a simple way 
to the gauge boson self-energies. We derive these relations, both from the requirement 
of per turbat ive unitari ty and from the Ward identities of the theory. Our discussion 
shows that ,  in general, it is never possible to neglect vector boson self-energies when 
computing the form factors that  paraxnetrize the e + e  - ~ W + W  - helicity amplitudes. 
The exclusion of the self-energy contributions would lead to estimates of the effects 
wrong by orders of magnitude. We propose a simple way of including the self-energy 
contributions in an appropriate definition of the form factors. 
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The  Structure  of the Cons t i tuent  Quark 

Mitja Rosina 

Dept.  of Physics, University Ljubljana, SL-1001 Ljubjana 

A b s t r a c t .  The constituent quark can be described as a bare quark surrounded by a 
coherent s tate of pions and sigma mesons. We use the linear sigma model Hamiltonian 
and a hedgehog ansatz for the wavefunction. We project good isospin, angular and 
linear momentum. The influence of such a structure on different nucleon observables 
is briefly discussed. Moreover, it is shown how to derive an effective potential  between 
two such constituent quarks. 

Numer ica l  Identif ication of Monopoles ,  Ins tantons  
and Chiral Condensate  on the  Latt ice 

W. Sakuler, M. Feurstein, H. Markum and S. Thurner 

Inst i tut  fiir Kernphysik, Technische Universit~it Wien Wiedner Hauptstrafle 8-10, 
A-1040 Vienna, Austr ia  

A b s t r a c t .  We perform an analysis of the topological and chiral vacuum structure of 
four-dimensional QCD at finite temperature.  Concerning the topological sector, cor- 
relation functions between the distributions of color magnetic monopoles in the maxi- 
mum abelian gauge and the densities of topological charge are computed. An enhanced 
probabil i ty for monopoles inside the core of an instanton is observed. In the chiral sec- 
tor, clear evidence is found on gauge field average and in specific configurations that  
monopole loops and instantons are locally correlated with the chiral condensate. Re- 
cently, nonvanishing quark charge density of fluctuating sign was also resolved at  the 
clusters of nontrivial topological charge density. (Further information: hep-lat/9702004 
and ht tp : / /www.tuwien.ac .a t /e142/Lat /qcd.htmt)  
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Ap and Triviality 

A.J. van der Sijs 

Swiss Center for Scientific Computing, ETH-Ziirich, ETH-Zentrum, RZ, CH-8092 
Z/irich, Switzerland 

A b s t r a c t .  I report on a lattice study [1] of the p-parameter and its interplay with 
"triviality" in the top-bottom-Higgs sector of the Standard Model, with massless b- 
quark. The "Zaragoza prescription" for chiral lattice fermions is used. Non-perturbative 
decoupling of the species doublers is demonstrated numerically. Our main results are: 

We find higher triviality upper bounds on the Higgs and fermion masses than 
usually quoted, both in the range 1300-1500 GeV. 

The data for Ap show huge deviations from the usual perturbative result, but there 
is excellent agreement with one-fermion-loop perturbation theory for given finite lattice 
spacing a and volume V. 

The a-dependence of Ap has a physical interpretation: the finite value of 1/a models 
the energy scale at which "new physics" sets in, as embodied in the higher-dimensional 
operators in the lattice action. The strong sensitivity of Ap, due to its non-decoupling 
nature, thus gives us a nice handle on "physics beyond the Standard Model". 

[1] J.L. Alonso, Ph. Boucaud and A.J. van der Sijs, Nucl. Phys. B (Proc. Suppl.) 
47 (1996) 571; ibid. 53 (1997) 683; and in preparation. 

The bb-Spectrum from NRQCD 
with Dynamical Configurations 

A. Spitz 

Universit~it Wuppertal, Fachbereich Physik, D-42097 Wuppertal, Deutschland 

Abstract .  We investigate the bottomonium spectrum in a "full" QCD gauge field 
background using the Non-relativistic Lattice QCD approach for the heavy quarks. 
Within the SESAM project we have generated statistically significant samples of gauge 
configurations with dynamical Wilson quarks for three values of the hopping parameter 
on a 163 × 32 lattice at/3 = 5.6. We study the dependence of quarkonium level splittings 
on the sea quark mass and compare with the quenched approximation. Relativistic 
corrections up to order Mv 6 are included in the NRQCD-Lagrangian which is tadpole 
improved with u0 taken from the mean link in Landau gauge. 
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C P  V i o l a t i n g  A s y m m e t r i e s  in e+e - -+ t t  
W i t h i n  t h e  M S S M  

Thomas Gajdosik 

Inst. f. Hochenergiephysik, Osterr. Akademie d. Wissenschaften 

A b s t r a c t .  In the Minimal Supersymmetric Standard Model (MSSM) there are pa- 
rameters,  which by making them complex can contribute to CP-viola t ion .  As the top 
quark is heavy enough to decay before its polarization is distorted by hadronization it 
is a good tool for investigating CP-violation. 

We study CP-vio la t ion  effects in e+e - ~ tt, induced by the exchange of super- 
symmetric particles. Asymmetries which are sensitive to CP-vio la t ion  are defined in 
terms of triple product  correlations. A numerical analysis is given. 

U(1) L a t t i c e  G a u g e  T h e o r y  - a D u a l  S i m u l a t i o n  

Martin Zach, Manfried Faber and Peter Skala 

Inst i tut  fiir Kernphysik, TU Wien, Vienna, Austr ia  

A b s t r a c t .  The dually transformed path  integral of U(1) lattice gauge theory can be 
used for high precision calculations of expectation values in the presence of external 
charges. Furthermore, the results can be interpreted in terms of the dual supercon- 
ductor picture and of the effective string picture of confinement. We demonstrate  this 
on some examples. We axe able to investigate much larger lattice distances and much 
lower temperatures,  simulating the dual model. The results show that  a simple inter- 
pretat ion according to the dual London equation without considering fluctuations of 
the fiuxoid string is not possible. We also calculate the free energy as well as the total  
energy stored in the electromagnetic fields for periodically closed flux tubes. Finally we 
investigate the potential  for doubly charged systems and find that  the string tension 
in the confinement phase scales like the charge rather than the squared charge. 
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Quasi-Potential Equation 
for Meson Spectra and Couplings 

I. Zakout 

Department of Physics, Middle East Technical University, 06531 Ankara, Turkey 

A b s t r a c t .  The relativistic equation to describe heavy and light meson is developed. 
An elegant approach to approximate the Bethe-Salpeter equation to quasi-potential 
equation by approximating the quark propagator in appropriate way is discussed in 
detail. The wave function amplitude is projected into energy eigen states. The present 
approach is very useful to study the meson couplings thoroughly and to evaluate the 
matrix elements of many processes which are received much attention to search the 
glueball candidates and exotic mesons recently. 


