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P r e f a c e  

As our understanding of chaotic dynamics becomes deeper, and our encoun- 
ters with phenomena of chaos become more extensive, we realize tha t  numer- 
ous natural processes represent a mixture of regular and erratic parts of the 
dynamics. We deal with incomplete chaos where the presence of dynamical, 
or coherent, structures plays a crucial role. There are different indications 
of the partial coherency of real chaotic processes which are named in dif- 
ferent ways in the literature as: coherent structures, intermittency, flights, 
trappings, ballistic modes, etc. From one point of view, this means a serious 
complication for routine investigation of chaotic dynamics and its applica- 
tions. From another viewpoint, this means the loss of universality that  is 
at t r ibuted to a "normal" or "pure" chaos. More accurately, we can say that  
there may be a number of different classes with a specific universality within 
each. In particular, this is how one arrives at L6vy-type processes or fractional 
or even multifractional kinetics rather than habitual Gaussian or Poissonian 
processes. New ideas and new tools are bound to widen our possibilities in 
the understanding and description of chaotic processes to help us gain new 
insights in the origin of turbulence. 

Most of the material of the book is based on the invited talks at the 
workshop held in Carry-Le Rouet in the summer of 1997. Some of the art- 
icles are written especially for this edition. The book includes a number of 
related subjects overlapping via dommon ideas concerned with more specific 
understanding of the nonuniversality of the chaotic dynamics and utilization 
of this information in the kinetics of particles, fluids, and plasmas. The work- 
shop was sponsored by the following institutions and organizations: Com- 
missariat k l 'Energie Atomique (CEA), CNRS, Comission of the European 
Union (fusion programme), Conseil G6n~ral du D6partement des Bouches-du- 
Rh6ne, Direction de la  Recherche et des Etudes Techniques (DRET),  Min- 
istate de la Recherche et des Technologies, Universit6 de Provence, and the 
US Department of Navy. Its Programme Committee included S. Benkadda, 
M. Shlesinger, and G.M. Zaslavsky. 



VI 

We would like to express our deep gratitude to all contributors of the 
volume, who have worked hard to make the issue readable and (we hope) 
useful. 

Marseille, France 
New York, NY, USA 
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Fig.  2.1. Billiard flow 

a) • - standard corner points, ta- inflection corner points 
$1,3,5 - concave boundary arcs, $2,4,~,7 - convex arcs 

- -  Regular reflection, - - - Tangent trajectory 
b) . . . .  Tangent trajectory terminated at an inflection point 

I t  follows tha t  for small  5 > 0 the t ime t = 5 m ap  of  the slanted line (x0 = 
- 5 / 2  + ayo,P~o = 1,py0 = 0) has a square root  s ingulari ty in the l imit  
y0 --* - 0  which corresponds to the tangent  t ra jec tory  (see figure 2.2; a ~ 0 
for graphical  purposes):  

(x6, Y6, Pz~ ~ Py~) = 

(15 q- ayo, Yo, 1, 0) at  Y0 >_ 0 

1 
(2 5 + ayo + O(Syo), 2~:--~5 + O(Syo), 1 + O(yo) 

, 2 v / ~ + O ( y o ) )  at y 0 < 0  

If  q0 and qt = btqo are inner points,  then for a rb i t rary  two small  cross- 
sections in the phase space, one th rough  q0 and the other  th rough  qt, lhe local 
Poincard map is defined by the orbits of the billiard flow. If  no tangency  to 
the b o u n d a r y  arcs is encountered between q0 and qt, then the Poincard map 
is locally a Cr-diffeomorphism. 

One can easily prove tha t  the same remains valid if q0, or qt, or bo th  
of  t h e m  are collision points,  provided the corresponding cross-sections are 
composed of  the nearby collision points.  In fact, the collision set (the surface 



D y n a m i c s  in a N e i g b o r h o o d  of  Separatrices  
of  an Area-Preserv ing  Map 

Dmitry rDeschev 

Department of Mechanics and Mathematics, Moscow State University, Leninski 
Gori, Moscow 119899, Russia 

Abstrac t .  We discuss the global structure of the separatrix branches in a two- 
dimensional area-preserving map and present some formulas estimating the width of 
stochastic layers, provided the map is near-integrable. The concept of the separatrix 
map is also discussed. 

1 Introduct ion  

Let T be an area-preserving diffeomorphism of a two-dimensional manifold M 
and ~ C M a hyperbolic fixed point of the map T. The poinC ~ generates four 
asymptotic curves (below they are called branches or separatrix branches). We 
denote the stable branches by Fsl,2 and the unstable ones by P~1,2. We assume 

~,~ that  the point F does not belong to F1, 2. 
Poincar6 noticed [17] that in general the separatrices intersecting, form a 

very complicated network. Dynamics in the vicinity of this network is highly 
unstable and irregular. Because of this it is accepted to call this vicinity the 
stochastic layer and to characterize dynamics in the stochastic layer by the word 
"chaos". 

The structure of such a chaos is weakly understood. It is known that  in the 
stochastic layer there exists an invariant hyperbolic set on which T is isomorphic 
to the Smale horseshoe. However, the measure of this set vanishes and the 
question what behavior is typical for trajectories in the stochastic layer remains 
open. 

In this paper we discuss global structure of the separatrix branches and 
present some formulas estimating the width of stochastic layers in near-mtegrable 
maps. 



2 Closure  of a s y m p t o t i c  curves  

We mention here two questions well-known in mathematical  folklore and related 
to the problems we deal with in this paper. Suppose that stable and unstable 
separatrices do not coincide: F] O F~ ¢ F~ O F~. and belong to a compact 
invariant set. 

• Does the closure of the separatrices r~ UF"~t UY; O~2 have positive measure? 
,, If the answer to the first question is positive, is the map T restricted to 

this set ergodic? 
Positive answers to this questions would give us a set of positive measure 

which carries a chaotic dynamics. Apparently, both questions are very difficult 
to answer. We present here a simpler result concerning closures of separatrix 
branches. 

T h e o r e m  1 Suppose that T is (71-smOOth and the following conditions hold. 
(1) The set F{ N F~ is not empty. 
(2) The curves F~ and F~ lie in an invariant domain D C M. The closure 

D is compact. 
Then the closure of the unstable branch F--- 7 contains the ,stable one F]. 

C o r o l l a r y  2.1 Since conditions of the theorem are symmetric with respect to 
- -$  - -$  

F~ and F~, the inclusion F~ C F 1 holds, Hence, the sets F 1 and F 1 coincide. 

Let p and q be hyperbolic periodic points of T and let i and j respectively 
be their periods. Since p and q are hyperbolic fixed points for the maps T i and 
TJ, we can define the branches rl ,2(p) H F1,2(q ). We put 

s , u  i 12i-1 T k ( p s , U  s , u  i 12j-1 k s , u  7' (l?~,u (q)). I/V1,2 (q) : '~k=0 W l ,  2 (p)  z "~k=0 ~ ' - - I , 2 ( P ) ) '  

T h e o r e m  2 Suppose that the following conditions hold. 
(1 ')  The set W;(p) O W~(q) is not empty. 
(2 ')  The set W~ (q) n W~ (p) is not empty. 
(3 ')  The asymptotic manifolds W~(p), W~(p), Wl~(q ), arm W?(q) belong to 

an invariant domain D C M. The closure D is compact. 
Then ~ (p) U -W~ (p) = ~ (q) U g ~  (q). 
Furthermore, in the case p = q the equality W~ (p) = - ~  (p) holds. 

Note that the manifold M in Theorems 1-2 can be not compact, not ori- 
entable. It can even have a boundary. 

R e m a r k  2.1 In the case p = q conditions (1 ' )  and (2 ')  coincide. 

Recall that  points of the sets 

(W~(p) U W~(p)) (3 (W~(q) U W~(q)), (W;(q) U W~(q)) N (W~(p) U W~(p)) 



are called homoclinic if p and q lie on the same periodic trajectory, and hetero- 
clinic otherwise. 

Takens proved [18] that  if M is compact,  for any hyperbolic periodic point 
p of Cl-generic area-preserving self-map T of M the set of homoclinic points 
is dense on W1, 2 (p). The word "generic" is understood in the sense of Baire 

category. Note that  methods of [18] are essentially restricted to the Cl-topology.  
The following conjecture was formulated (in a weaker form) by Poincar6. 

C o n j e c t u r e  1 If  p = q and conditions of Theorem 2 hold, the ,set of homoclmic 
points is dense on W~(p) and on W~(p). 

Mather  [13] proved that  if M is compact ,  for a Cr-generic (r _> 4) area- 
preserving map  any two branches of a hyperbolic periodic point have the same 
closure. 

Oliveira [15] obtained the following results related to the problems in ques- 
tion. Let T be a C I area-preserving diffeomorphism of a compact  orientable 
surface. Assume L and K are branches of a hyperbolic fixed point with L = K 
or LC3K = 9. I f K N c o ( L )  # 0 then K Cw(L) .  (Here as ususal, w(L) is the 
c0-1imit set of L.) 

This  result implies, [15] the following assertion. Let M be a compact  ori- 
entable surface and 1 < r < oo. Then L C w(L) for any branch L o f a  C~-generic 
area-preserving map.  

3 W i d t h  o f  a s t o c h a s t i c  l a y e r  

Now assunle that  T is close to an integrable map. We assume also that  sepa- 
ratr ix branches of the hyperbolic fixed point ~ look as shown on Fig. 1. Three 
invariant curves 7+ and 7o closest to the separatrices, form the boundary of the 
stochastic layer. The width w of the stochastic layer is one of impor tant  quan- 
tities characterizing chaotic properties of T in the vicinity of the separatrices. 

I t  turns out that  under some natural  assumptions the following relation 
holds: 

 ld~ l lA. 
Here d is the width of a lobe domain D bounded by segments of the separatrices 
and ,k > 0 is logari thm of the larger multiplier at the hyperbolic fixed point ~'. 
The symbol  N means that, if we have a smooth family T~, of analytic symplectic 
maps,  where To is integrable then for sufficiently small g 

< < c21: (E), 

where C1 and C2 are positive constants. Here the family" TE must  satisfy certain 
regularity conditions [21]. We believe that  these conditions are generic. In some 
cases the genericity can be proved, 



!~ tB 

Figure 1: Separat r ices  of the hyperbol ic  fixed point  z and the s tochast ic  layer. 

If A ~ 1, we see tha t  the quant i t ies  w and d are of  the same  order. However, 
if the s tochast ic  layer appears  when a resonant  invar iant  curve of an integrable 
m a p  dis integrates  A is close to zero. ttence, in this case w is much greater  
than  d. This  s i tua t ion  is typical  for exponent ia l ly  small  separa t r ix  spli t t ing.  If 
l i l~-+0 A(a) = 0 and T satisfies a certain s y m m e t r y  condition,  we expect  tha t  
the es t ima te  

lim w(c)A(e) _ 47r (3.2) 
-+0 d(e) k0' 

holds, where 

k0 = inf{k '  : for all k > k' the s tandard  m a p  

+ ) 
( ~  9 + J  

has no invar iant  curve homotop ic  to the circle I -- 0}. 

More precisely, let us put  

kl = inf{k '  : there exists k < k'  such tha t  the s t andard  

m a p  has no invar iant  curve homotop ic  to the circle I = 0}. 

A well-known conjecture s ta tes  tha t  k0 = kl. The  fo rmula  (3.2) holds pro- 
vided this conjecture is valid. The  constant  k0 = 0 .971635 . . .  was evaluated 
numer ica l ly  in [8, 12, 16]. 

Note tha t  to have a clear mean ing  for the relat ion (3.2) one should define 
precisely the quant i t ies  w and d. This  can be done, for example ,  in te rms  of 
no rma l  coordinates ,  see [21] for details. 



I t  is possible to present an invariant version of the relation (3.1). Let A be 
the symplectic area of the stochastic layer and AD the area of a lobe. Then we 
have: 

A AD logA~ j 
),2 (3.a) 

The corresponding analog of tile formula (3.2) (under the same assumptions) is 

AA 2 8rr 2 
lim = (3.4) 
~-~o AD log A~* k0 

In the general (non-symmetric) case the fractions 

w(e).~(e) AA 2 

d(•) ' AD log AT) 1 

do not have limits as g --+ 0 but oscillate between two positive constants. 
Formulas (3.1)-(3.4) can be regarded as relations between w, A and the 

quantities A, d, AD. In the perturbat ive situation the last ones are standard 
to compute: to obtain the functions d(e) and AD (g) one can use the Poincar~- 
Melnikov theory or its generalizations to the case of exponentially small splitting 
[9, 10, 3, 7, 19, 20]; A(e) in the main approximation is usually evaluated easily. 

Part icular  cases of the relation (3.1) were discovered in [2, 6, 23], but no 
rigorous proofs were presented there. In these papers such useful object as the 
separatr ix map  was introduced. Analyzing this map, Dovbysh [41 proved the 
estimate w/d <const provided A ~ 1. In paper [1] the est imate w/d >_ const is 
established in the same case. Lazutkin [11] has obtained the est imate (3.1) for 
separatrices of the s tandard map.  

Consider as an example a pendulum with vertically periodically oscillating 
suspension point, t tamil tonian of the system is as follows: 

H(q ~, ~, t, ~) : ,~/2 + ~ ~os 4 + ~o(~t)cos 4. (3.,~ } 

Here ~" = q" mod 2rr is the angle between the pendulum and the vertical. ~ is 
the corresponding momentum,  f~ > 0 is the "interior frequency" of the system 
({~ equals gravity acceleration divided by the length of the pendulum), ,~ is 
the frequency of the suspension point oscillations and ~he parameter  g is pro- 
portional to the ampli tude of the osci|lations multiplied by :,,2 The form of t.he 
oscillations is determined by the 27r-periodic function 0. First. let us assume 
that  g is small and the other parameters  in the system are of order 1. 

The Poincar~ map in this system has the hyperbolic fixed point 4 = P := 0. 
It is easy to calculate: 

l (e)  = 27r~2/ac + O(e). 

Width of the stochastic layer around the "eight-like'" separatr ix structure 
of the point ~ ' =  t7 = 0 is of order e provided 8. {2. as .~ 1 and {) is not con- 
stant.  Under the same assumptions the area A of the stochastic layer is of order 
e loge  - l  



Now consider the sys tem with Hami l ton ian  (3.5) under  the following as- 
sumpt ions :  

f~= 1, w = l / c ,  O ( s ) = 2 e - l B c o s s .  

This  means  tha t  the frequency of the suspension point  oscil lation is large 
( ~  l / e )  and the ampl i tude  is of  order e2. 

Area  of the corresponding s tochast ic  layer layer can be e s t ima ted  as follows: 

471.2 ~rE-1 
4rr2 e-'r~-~/2Bf(BU)(1 + o(1)) < A < e~kl  e -  /2Bf(BU)(1 + o(1)), 
c4ko - _ 

where f (z)  = E o  f ,~z'~ is an entire rea l -analyt ic  funct ion [20, 19]. Here are the 
values of  several  coefficients f . :  f0 = 2, 

= 0 .65856738 . . . ,  f2 = 6 . 6 5 1 7 4 1 . - . - 1 0  -2 ,  
fa = 3 . 2 1 0 1 0 . . . - 1 0  -a ,  ]'4 = 9 . 0 3 3 6 7 . - . ' 1 0  -~,  
f5 = 1 . 6 6 2 0 . . . - 1 0  -6 , f6 = 2 . 1 5 3 4 . . , 1 0 - s ,  
fr  = 2 . 0 7 0 . . . - 1 0  -1°, f s  = 1 . 5 3 - . . ' 1 0  - lu-  

Recall t ha t  apparent ly ,  k0 = kl. 

4 S e p a r a t r i c e s  a n d  t h e  P o i n c a r ~  
r e c u r r e n c e  t h e o r e m  

In this section we prove T h e o r e m  1 in the topological ly  s imple  s i tuat ion:  when 
M is a plane, or a cylinder, or a sphere. The  case of other  surfaces and T h e o r e m  
2 are analyzed in [22]. 

Below we can assume tha t  the m a p  T preserves each branch F; '~. Indeed, 

if T does not  satisfy this condit ion,  we jus t  change T by T 2. 
Let U C D be any open set such tha t  U Cl F~ ~ 0. Suppose  tha t  

U (3 F~' = O. (4. t )  

Then  T h e o r e m  1 is proved as soon as we obta in  a contradic t ion with its con- 
dit ions.  Considering if necessary instead of U a smal ler  domain  (which will be 
denoted also by U for brevi ty) ,  we can assume tha t  U = U + O U ° tO U - ,  where 
U ± are open, connected,  and U ° C F~ is a connected interval  (see Fig. 2). Let 

be the min ima l  connected piece of F{ such tha t  ~ is its endpoin t  and U ° C I'. 
We can assume tha t  

U NT(I )  = 0, (4.2) 

U N T - I ( I  ") • U 0. (4.3) 

These  equalit ies mean  tha t  U ° and U ± are sufficiently small .  



g 0 

[ 

F~ s ~2 

>' ' ~/t" 

. . . . . . . . . . . .  / / i  

/ 

Figure 2 : Scheme of the minimal connected piece of the stable branche. 

L e m m a  4.1 There exists a natural l > 1 ,such that 

U + N T  Z(U + ) ¢ 0 ,  U - N T  I ( U - ) ¢ 0 .  

Proof of Lemma 4.1. Consider the map  

T x T "  M x M - +  M x M, T × T(z l , z2)  = (T(z l ) ,T(z2) ) .  

This map  preserves the measure (T × (r, where cr is the area on M. The set, 
U + x U -  lies inside the compact  invariant set D x D. Hence, according to the 
Poinear~ Recurrence Theorem, for infinitely many naturals / 

(T × T / ( U  + x U - ) ~ ( U  + × U-)  ¢ ~. 

The l emma is proved. 

There exists a smooth closed curve 7 satisfying the following properties. 
(a)  -~ c U'. U' = U u T ~ (U). 
(b )  The set 3/N Tt(U °) consists of a single point z' and the curves 7 and 

Tf(U °) intersect at z ~ transversely. 
The curve 7 goes along the set Tf(U +) from the point z ~ to the set U +. 

Then 7 passes through the interval U ° to the set U - ,  goes to the set T~(U - )  
and returns to the point z' (see Fig. 3). 

According to property (a)  and equality (4,1) we have: 

-~ n F~ = 0 (4.4) 

L e m m a  4.2 There exists an interval [ C F~ satisfying the following two prop- 
erties. 

(A)  Endpoints of I are 2 and zo, where zo is homocIinic. 
(B) I n  ~" = T~(U°). 
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4 J u . ) /  

. Z  ~ 

~2 
! -  
L 

/ 
/ 

/ Cl ~ 
/ 

/ 
Figure 3 : Scheme of  the 7 curve as defined in l e m m e  4.1. 

Proof of Lemma 4.2. The  interval  I '  = T l -  ~(I') \ T* (I') conta ins  a homocl in ic  
point .  Indeed,  o therwise  we have a con t rad ic t ion  with a s sumpt ion  (1)  because  
of  the re la t ion  P~ = UkczTk(I ' ) .  We denote  this homocl in ic  point, by zo. Hence. 
I is defined by ( A ) .  

Now Lernma  4.2 follows from two inclusions: 

T~(U °) c (I c~ U') c T~(g/°). 

The  first one is obvious.  Let us check tile second one. We have: I C T l - ~ ( / ) .  
This  re la t ion  toge ther  with the one l > l imply 

[ ~'1 ~7 C T l - l ( I )  A ~ C T ( i )  N = 0 

due to (4.2). Analogous ly ,  

Here we have used a s sumpt ion  (4.3). L e m m a  4.2 is proved.  
Accord ing  to p rope r ty  ( A )  the poin ts  ~ and zo can be connec ted  by an 

interval  I u of the uns tab le  s epa ra t r i x  branch F~'. The  curve ¢ = I U I ~' is closed. 
Accord ing  to the def ini t ion of 2, and p roper ty  ( B )  tile curves I and ~, have 
exac t ly  one c o m m o n  poin t  (the poin t  z') and intersect  at  z'  t ransversely .  The  

curves t ~ and 7 do not  intersect  because of" (,i.4). Hence, the curves cr and 2 are 
t ransversa l  to each o ther  and have exact ly  one c o m m o n  point .  Here we arr ive 
at  a con t rad ic t ion  because in tile topologica l ly  sirnple case (i.e.. on a p l a n e  on a 
cyl inder ,  or on a sphere) any two curves t ransversa l  to each o ther  have an even 
number  of in tersect ion points .  



5 T h e  s e p a r a t r i x  m a p  

Es t ima tes  (3,1)-(3.4)  are proved in [21]. The  ma in  tool used in the proofs is 
tile sepa ra t r ix  map .  In this section we describe our  const ruct ion of the sepa-  
ra t r ix  map .  This  const ruct ion differs f rom the original one [23, 6], Seems, our 
m e t h o d s  are more  convenient  when one needs es t imates  of  errors of  the main  
approx imat ion .  

Below we always assume tha t  the m a p  T is rea l -analyt ic  in z. 
In the vicini ty of the point  ~ the m a p  T is a hyperbol ic  rota t ion.  More 

precisely, the following l e m m a  holds. 

L e m m a  5.1 It is possible to choose in a lteighborhood of the point ~ o~ M real- 
analytic symplectic coordinates (x, y) such that the following assertions hold. 

(1) Coordinates of "£ vanish. 
(2) The map T has the form 

(~,y) -~ L(x,y) = (~,M, ~/M), M = M(~y), (5.1) 

where the function Ad is real-analytic and ¢¢1(0) = tt > 1. 

On a fo rmal  level existence of such coordinates  was establ ished by Birkhoff. 
T h e y  are called normal .  Convergence of the procedure  in t roducing the normal  
coordinates  was establ ished in [14]. The  m a p  (5.1) has the first integral  xy. 

R e m a r k  5.1 The normal eoordinatc, s (x. y) are not defined uniquely. For am/ 
real-analytic at zero function r(z)  (r(0) ¢ 0) the coordinates x' = x l r (xg) .  
yl = y r(xy) are also normal. 

R e m a r k  5.2 I f  the map T depends smoothly on a parameter (,say, e), the ~tof 
real coordinates also can be chosen de'pending smoothly on ¢ while the point 
£ = $(e) remains hyperbolic. 

Below we assume tha t  inside the higher loop of the "eight" (see Fig. 1) we 
have x > 0, y > 0. 

T h e  n o r m a l  coordinates  (x, y) can be continued to a ne ighborhood  of the 
separa t r ices  according to the following induct ive procedure.  Suppose  t ha t  the 
po in t  z E N has  the coordinates  (x, y). Then  we define coordinates  of the points  
T(z)  and T -~ (z) by L(x, y) and L - I  (x, y) respectively. Far f rom the point. ~ we 
have at  least  two different cont inuat ions  of the coordinates  (by T k and by T -k ,  
see Fig. 4). Hence, we have two gluing t ransformat ions :  

U + : { (x ,y )  : y is small ,  x > 0, x,--  1} ~-~ { (x ,y )  : y > 0, y ~ 1, x is small}, 
(7-  : { (x ,y )  : y is small ,  x < 0, x ~ 1} --> {(x, y) : y < 0, y ~ 1. x is small}.  

(5.2) 
The  m a p  U + corresponds to the higher loop of the "eight" and U -  to the 

lower one. The  maps  L and U ± obviously commute :  

f-,::~: o L .... L o U ± . (5.3) 
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U + 

x ~ r 

U- 

Figure 4: Continued normal coordinates and the gluing maps 

P r o p o s i t i o n  5.1 Suppose that the map T has an analytic inte.qT~d F : N --+ N 
(i.e. F = F o T) .  Then in normal  eoordinates F = F(xy) .  Moreover, i f  the 
critical point x = y = 0 of  the funct ion F is non-degenerate, the gluing maps 
preserve the product x y  and 

U ± (x, y) = ( x y ( a ~ : / x  + y,~± (xy))  -1 , ~ t x  + y,~± (xy) )  

Here a± are positive constants and n±(r )  are funct ions  analytic" at the point 
r ~ O .  

Let us assume that the T~ is a smooth family of analytic maps such that the 
fixed point 2(0) of the map To is hyperbolic, To is integrable and separatrices 
of To form a figure eight curve. The gluing maps have the form 

~t ± = (xy(a~:/x + yn± (xy)) - I ,  ~ : / x  + y~± (xy)) + (f(x,  y, e), .0(x, y, c)). (5.4) 

According to the relation (5.3), 

]±(~M,y/M,~) = ~](x,y,~),  ~±(~.M,y/M,~) = M - ~ g ( x , y , ~ ) .  (5.5) 

P r o p o s i t i o n  5.2 I f  the maps U ± are analytic in x and y in the domains  

{~o < ± ~  < x0, lyl < Yo}, (5.6) 

for  some positive Xo, Xo and Yo, the following relations hold: 

] ' ± ( x , y , e )  = x f ± ( x , y , ¢ ) ,  ~ ± ( x , y , c ) = y g ± ( x , y , c ) .  

The funct ions  f ± ,  g~= are analytic in the domains (5.6") and 

f : t : ( x A d , y / A d , c )  = f ± ( x , y , e ) ,  g ± ( x A 4 , y / . M , c )  = g ± ( x , y , e ) .  (5.7) 
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We put  

f+ (x , y , e )  = upm( log lx l / log3 ,4 (O,O) )+O(y)+ O(e). (5.8) 

The  funct ions  upm(~)  are obviously 1-periodic in ~o. 
In the vicini ty of  the separatr ices  the m a p s  T~ generate  the so-called sepa- 

ra t r ix  m a p s  S~. 1 
To define the m a p s  ~'~, we identify any two points  Zl and z2 of N whose 

no rma l  coordinates  (xl ,  Yl) and (x2, 92) satisfy the relat ion 

x2 = M~(~y~ ,e )x~ ,  y2 = M-~(x~y~e)y~ ,  ~ c Z. (5.9) 

(The p a r a m e t e r  e is assumed fixed.) After this identification the m a p s  5'~ are 
de te rmined  by the gluing maps .  Below we assume tha t  the a rgumen t  y in the 
gluing m a p s  is smal l  and x is of order one. By using (5.4)-(5.8),  we can write: 

U~(x,y) = (a~2x(xy+eu±(loglxl/logM(O,O))),a~/x) 

+(o( ly l  + ~)~, o(lyl +~) ) ,  (5.10) 

Let us in t roduce the act ion-angle  variables for the corresponding separa t r ix  
map .  We pu t  

I = M e - l x y ,  ~ = M - 1 1 o g l x [ .  (5.11) 

I t  is easy to check tha t  dIAd~o = e - ~ ( l  +O(xy))dyAdx. In the variables (I ,  ~) 
the identif icat ion (6.1) takes the form ~c = ~2 rood 1. 

We restore the informat ion  abou t  sign of the variable x (lost in (5.11)) by 
adding the sign + or - to the coordinate  sys tem (I ,  ~) according to the value 
of sign(x).  In the variables (I ,  ~, ~r), ~ • {+,  - }  the m a p s  ,5'~ have the fo rm 

s~ ( i ,  ~, ~) = (j ,  e~, p), 

J = I + A. u~(qp) + eA • O(1 + Ill/A) 2, 

¢ = ~ + ~  loga - -~A+logI J ]+c  .O(I+LII / ,~)  2 , (5.12) 

p = ~rsign(J).  

Here we have used the equalities (5.10)-(5.11) and the e s t ima te  O(y) = 
O(eI/.~). Note tha t  s imilar  formulas  are contained in [5]. 

In the m a i n  app rox ima t ion  the dependence of the separa t r ix  m a p  on log c is 
periodic.  Indeed,  for any integer n the change e --+ e'~ae preserves the m a p  

J = ~+ ,~ .~ (~0) ,  

¢ = ~ + ~  loga2 - - -~+ l °g [ J [  , 

p = ~ s i g n ( J ) .  

1Note that the separatrix map can be defined also in the ca.se when 5(~) is hyperbolic only 
for s > 0. This case is typical for exponentially small separatrix splitting. See [21] for the 
details. 
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Earlier this property was pointed out in [24]. 
Note that for large values of the action variable the separatrix map is close 

to integrable. Indeed, let us put I = I0(1 + Au) and J = I0(1 + Av), where 110] 
is large. The separatrix map becomes close to the following one: 

v = u ,  ~ = ~ +  log 2 ~ + l o g ( l + ) ~ v ) ,  p = ~ s i g n ( I 0 ) .  

Due to this it is possible to use perturbation arguments when studying the case 
of large I. 

The work was partially supported by Russian Foundation of Basic Research 
(Grant 96-01-00747) and by INTAS 93-339-ext. 
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Abs t rac t ,  Sufficient conditions are found so that a family of smooth Hamiltonian 
flows limits to a billiard flow as a parameter e --~ 0. This limit is proved to be 
C 1 near non-singular orbits and C o near orbits tangent to the billiard boundary. 
These results are used to prove that scattering (thus ergodic) billiards with tangent 
periodic orbits or tangent homoclinic orbits produce nearby Hamiltonian flows with 
elliptic islands. This implies that ergodicity may be lost for smooth potentials which 
are arbitrarily close to ergodic billiards. Thus, in some cases, anomoulous transport 
associated with stickiness to stability islands is expected 

1 I n t r o d u c t i o n  

The billiard model is concerned with the motion of a point particle traveling 
with a constant speed in a region and undergoing elastic collisions at the 
region's boundary. This motion is very much like in tha t  of a real billiard 
table - the main difference is that  there is no friction in the model (so the 
ball never stops nor rolls). In the two-dimensional setting of our model, the 
ball is actually a small disk (a two-dimensional ball). Different shapes of the 
billiard table, and the number of balls that  one considers influence the type 
of motion a ball may execute. Ergodic billiards are billiard tables in which 
the balls execute a uniformly disordered motion: all possible positions and 
velocities are realized by the traveling billiard balls (for almost all initial 
positions). 

The billiard problem has been extensively studied both in its classical and 
quantized formulation. Numerous applications lead to study such a model 
problem; First, there exist direct mechanical realizations of this model (e.g. 
the motion of N rigid d-dimensional spheres in a d-dimensional box may 
be reduced to a billiard problem, possibly in higher dimensions [21, 22, 7]. 
See also [6] for the inelastic case.). Second, it serves as an idealized model 
for the motion of charged particles in a potential, a model which enables 
the examination of the relation between classical and quantized systems, 
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see [14] and references therein. Finally, and most important, this model has 
been suggested [21] as a first step for substantiating the basic assumption of 
statistical mechanics - the ergodic hypothesis of Boltzmann (see especially 
the discussion and references in [22, 24]). 

In all the applications of this model, of special interest are so-called scat- 
tering billiards, i.e., billiards in a complement to the union of a finite number 
of closed convex regions. For example - the two-dimensional idealization of a 
gas in the form of a lattice of rigid disks produces a scattering billiard (" the 
Sinai billiard"). The motion in a scattering billiard is highly unstable thus 
produces strong mixing in the phase space. More precisely, it has been shown 
[21, 11, 1] that the corresponding dynamical system is (non-uniformly) hy- 
perbolic, it is ergodic with respect to the natural invariant measure and it 
possesses K-property. Based on this theory, statistical properties of various 
scattering systems have been analyzed (see [5, 4]). 

Fig. 1.1. Tangent trajectories 

a) Singular (tangent) periodic trajectory 
b) non-singular periodic trajectory, 

Tangent homoclinic trajectory to the periodic orbit. 

Do small perturbations ruin the ergodicity property of a scattering bil- 
liard? In this paper we consider the perturbation caused by the "natural" 
smoothening of a billiard flow, by which the step-function potential at the 
billiard boundary is replaced by a family of smooth potentials approaching 
the step function, preserving the correct reflection law near the boundary. 
We stress that the billiard reflection rule (" angle of reflection equals angle 
of incidence") appears as a limit only, and the billiard itself is, of course, 
an idealized model to the real motion. Therefore, the problem of relating 
the statistics manifested by the billiard dynamical systems to actual physi- 
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cal applications must inevitably include the study of the smoothening of the 
billiard potential. 

The influence of such smoothening is a non-trivial question, since the 
dynamical system associated with the billiard we consider (in the simplest 
setting, this is a two-dimensional area-preserving mapping [21]) is singular. 
In particular, as explained more precisely in section 2.1, singularities appear 
near trajectories which are tangent to the billiard's boundary - like the ones 
shown in figure 1.1. Thus, even though the scattering billiard is hyperbolic 
almost everywhere, theoretically, there exists a possibility that the singular 
set (e.g. singular periodic orbits) will produce stability islands under small 
perturbation. While such a phenomenon seems to be quite common, general 
theory does not exist. Indeed, it is clear that the results are not straightfor- 
ward - namely it is not true that all smooth systems approaching a singular 
hyperbolic and mixing system have stable periodic orbits nor is the converse 
- that they have the same ergodic properties as the singular system. (As an 
example, consider an analogous problem for one dimensional maps; For a 
family of tent maps of an interval which are known to be ergodic and mix- 
ing, the ergodicity property may be easily destroyed in an arbitrarily close 
smooth family: if the maximum of the interval image produces a periodic or- 
bit, it is clearly stable. However, the smooth one-dimensional map does not 
always possess stable periodic orbits: there may be a positive measure set of 
parameter values for which the smooth maps are ergodic and mixing [16]). 

In this paper we prove that, indeed, a perturbation of a scattering billiard 
to a smooth Hamiltonian flow may create stability islands near singular pe- 
riodic and homoclinic orbits of the billiard. An important ingredient of the 
proof is the established connection between the limiting smooth Hamiltonian 
flows and the singular billiard flow. This connection, which seems to be fun- 
damental for understanding the applicability and limitations of the billiards 
to more realistic models of particle motion has not been previously formalized 
(to the best of our knowledge), and has received surprisingly little attention. 

In the physics community it has been assumed to exist; For example, in 
[15] the qualitative behavior of orbits of the diamagnetic Kepler problem has 
been analyzed by studying the four-disk billiard system which has similar 
spatial structure. Furthermore, in that paper, the correspondence between 
elliptic periodic orbits of the smooth Itamiltonian system and singular peri- 
odic orbits of the modeling billiard was noticed. Nevertheless, our analysis 
reveals non-trivial requirements on smooth potentials approaching the bil- 
liard potential, which are essential for the dynamics of the corresponding 
Hamiltonian system to follow the dynamics of the billiard flow. Therefore, a 
rigorous proof of a correspondence between billiard and "smooth" orbits can 
not be immediate. 

Mathematically, Marsden [19] has studied a more general question of the 
behavior of the symplectic structure when a family of smooth Hamiltonians 
approaches a singular limit, and related these problems to the general study 
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of distributions on manifolds. In this setting, he showed that  some properties 
of the smooth Hamiltonians are preserved by the singular one. For example, 
he proved that  if the families of Hamiltonians are uniformly mixing then the 
mixing property carries to the singular system as well. Here we investigate 
the other direction of the above result - namely given a singular system which 
is mixing - what can be said on the natural family of smooth Hamiltonian 
which approaches this limiting system. 

Recently, an example of another kind of smooth analogue of a scattering 
billiard with elliptic islands was constructed [9]; namely, for the motion of a 
point-wise particle in a finite-range smooth potential, where the potential 's 
support consists of a finite number of non-overlapping disks on a plane torus. 
It  was shown that  in this geometry the smooth potential  effect is to create 
a finite-length-travel along the scattering disks, and this produces focusing 
shifts near tangent trajectories even in the limit of high energies. Thus, it 
was proved that  for any given energy level, there exists an arrangement of 
the disks for which elliptic islands exist. Here, a completely different approach 
is taken, which in particular, does not assume any specific geometry of the 
scatterers note that  the potential is of a finite-range. 

Another type of natural  perturbation of a billiard is achieved by a de- 
formation of the billiard's boundary (in a non-smooth fashion for scatter- 
ing billiards with a piece-wise smooth boundary).  While such deformations 
have been extensively studied numerically, we are not aware of theoretical 
approaches for studying the near-ergodic regime. On the other end, pertur- 
bations of near-integrable billiards may be studies using Melnikov technique 
[8]. 

Traditionally, transport  properties of the extended Sinai billiard were 
studied in terms of the decay of the correlation function [5]. More recently 
(see [27] and references therein), Poincar@ recurrences and stickiness in phase 
space of both Sinai billiards and Casini billiards were numerically studied. 
It has been demonstrated that  the appearance of sticky islands for some pa- 
rameter values causes anomoulous transport  - specifically power-law decay for 
the Poincar~ recurrences distribution. To produce the anomoulos transport  
a parameter  controlling the shape of the billiard was carefully tuned to pro- 
duce self-similar sticky island structure. Moreover, it has been observed that  
such a tuning is possible near any parameter value for which islands exist. 
Here, we prove that islands may be produced by smoothening of the billiard 
boundary. Combining these results implies that by tuning the smoothening 
one can obtain sticky islands and thus anomonlous transport for the Lorenz 
gas model with arbitrarily sharp smooth potentials. 

The general scheme of the paper is as follows: In 2.1 we introduce the 
billiard flow in a general domain, and describe its nature near regular and 
tangent collision points and its relation to the standard billiard map. Then, 
in 2.2, we introduce a class of one-parameter families of Hamiltonians and 
formulate sufficient conditions on this class so that  as the parameter  c --* 0 
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they approach the billiard flows. In section 2.3 some examples of families of 
smooth tIamiltonians satisfying our assumptions are presented. In section 2.4 
we formulate the main theorems which establish in which sense the IIamilto- 
nian flows approach the billiard flow. In section 3 we utilize these theorems 
to prove the existence of elliptic islands in IIamiltonian flows which approx- 
imate scattering (Sinai) billiards; First, we study the phase space structure 
of the billiard map near singular periodic orbits and near singular homo- 
clinic orbits. We prove that existence of such orbits implies the appearance 
of a non-smooth analogue of the Smale horseshoe, similar to the horseshoe 
in the H~non map. Then, using the closeness results of section 2.4 we estab- 
lish that if a singular periodic orbit/homoclinic orbit exists for the billiard 
map, then necessarily there exist nearby Hamiltonians with elliptic periodic 
orbits. The appearance of persistent singular homoclinics and singular (tan- 
gent) periodic orbits for scattering billiards is conjectured and the former is 
numerically demonstrated. Section 4 is devoted to a discussion on the im- 
plication of these results. In appendix A examples showing the necessity of 
some of the conditions imposed on the family of IIamiltonians are presented. 

2 C l o s e n e s s  o f  p l a n e  b i l l i a r d s  

a n d  s m o o t h  H a m i l t o n i a n  f l o w s  

2.1 Bil l iard flow 

Consider an open bounded region D on a plane with a piecewise smooth 
(C r+l, r > 2) boundary S. On S there is a finite set C of so-called corner 
points cl, c2 , . . ,  such that the arc of the boundary that connects two neigh- 
boring corner points is C~+Lsmooth. Let us call these arcs the boundary arcs 
and denote them by $1, $2,. . . .  The set C includes all the points where the 
boundary loses smoothness and all the points where the curvature of the 
boundary vanishes. Thus, the curvature has a constant sign on each of the 
arcs Si. Being equipped with the field of inward normals, the arc is called 
convex if its curvature is negative (with respect to the chosen equipment) and 
it is called concave if its curvature is positive (see figure 2.1). 

Consider the billiard flow on /9 which describes the motion of a point 
mass moving with a constant velocity between consecutive elastic collisions 
with S. The phase space of the flow is co-ordinatized by (z, y ,p , ,p~)  where 
(z, y) is the position of the particle in/9 and (px, p~) is the velocity vector: 

i =py. (2.i) 
IIenceforth, to distinguish between the phase space and the configuration 
space D we reserve the term "orbit" for the orbits in the phase space and the 
term "trajectory" for the projection of an orbit to the (x, y)-plane. 

The flow is defined by the condition that the velocity vector (px,py) is 
constant in the interior, and at the boundary it changes by the elastic reflec- 
tion rule so p~ + p~ = const and the angle of reflection equals the angle of 
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incidence with the opposite sign. Taking the point of reflection as the origin of 
the coordinate frame and the boundary's  normal at that  point as the y-axis, 
the reflection rule is simply 

(2.2) 

namely, the angle of incidence ¢ is arctanpy/p~:. This law is well defined only 
when the normal can be well defined: it is invalid at the corners where the 
boundary looses its smoothness. 

Generally, the incidence angle ¢ belongs to [-~,-~] ,  but  if the boundary is 
convex, I¢1 < 7" If the boundary arc is concave, it is possible to have ¢ = q-~ 
(figure 2.1) which corresponds to a trajectory tangent to S. 

A special case is a tangent trajectory (¢ = =t:-~) which reaches the bound- 
ary at an inflection point. One can easily see that  any close trajectory un- 
dergoes an unboundedly large number of collisions before leaving a small 
neighborhood of the inflection point, and for the trajectory tangent to the 
boundary at the inflection point itself there is no reflection at all (figure 2.1). 
The trajectory is terminated at the moment of such tangency and the corre- 
sponding orbit of the flow is not defined for greater times. Tha t  is the reason 
for excluding the inflection points from consideration by putting them into 
the corner set. 

Denote points in the phase space of the billiard flow as q = (x, y , p , , p ~ )  
and the time t map of the flow as bt : qo(xo, Yo, p~0, p~0) ~-* qt(xt,  yt, p~:t, pyt). 
Recall that  the reflection law is not defined at the corner points; thus, by 
writing qt = btqo, we mean, in particular, that  the piece of trajectory that  
connects (z0, y0) and (zt, yt) is on a finite distance of the corner set C. At 
the same time we allow the trajectory to have one or more points of tangency 
with concave components of S. 

A point q(z,  y, p~, py) in the phase space is called an inner  point if (x, y) ¢ 
S, and a collision point if (x, y) E ( S \ C ) .  Obviously, if q0 and qt = btqo are 
inner points, then qt depends continuously on q0 and t. Otherwise, if qt is a 
(non-tangent) collision point, the velocity vector undergoes a jump: denoting 
by qt-o = bt-oqo and qt+o = bt+oqo the points just  before and just after the 
collision, it follows that  (p~t+0,p~t+0) and (p~:t-o,P~t-o) are related by the 
elastic reflection law. To avoid ambiguity we assume that  at a collision point 
the velocity vector is oriented inside D; thus, we put bt _~ bt+o. 

Further, if qt is an inner point and if the piece of trajectory that  connects 
(z0, Y0) and (xt ,  Yt) does not have tangencies with the boundary, then qt de- 
pends Cr-smoothly on q0 and t. On the other hand, it is well known [21] that  
the map bt loses smoothness at any point q0 whose trajectory is tangent to 
the boundary at least once on the interval [0, t]. Indeed, choosing coordinates 
so that  the origin is a point on a concave boundary arc Si, the y-axis is the 
normal to Si and the z-axis is tangent to Si, the arc is locally given by the 
equation 

y = - z  2 + . . .  
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Fig.  2.1. Billiard flow 

a) • - standard corner points, ta- inflection corner points 
$1,3,5 - concave boundary arcs, $2,4,~,7 - convex arcs 

- -  Regular reflection, - - - Tangent trajectory 
b) . . . .  Tangent trajectory terminated at an inflection point 

I t  follows tha t  for small  5 > 0 the t ime t = 5 map  of  the slanted line (x0 = 
- 5 / 2  + ayo,P~o = 1,py0 = 0) has a square root  s ingulari ty in the l imit  
y0 --* - 0  which corresponds to the tangent  t ra jec tory  (see figure 2.2; a ~ 0 
for graphical  purposes):  

(x6, Y6, Pz~ ~ Py~) = 

(15 q- ayo, Yo, 1, 0) at  Y0 >_ 0 

1 
(2 5 + ayo + O(Syo), 2~:--~5 + O(Syo), 1 + O(yo) 

, 2 v / ~ + O ( y o ) )  at y 0 < 0  

If  q0 and qt = btqo are inner points,  then for a rb i t rary  two small  cross- 
sections in the phase space, one th rough  q0 and the other  th rough  qt, lhe local 
Poincard map is defined by the orbits of the billiard flow. If  no tangency  to 
the b o u n d a r y  arcs is encountered between q0 and qt, then the Poincard map 
is locally a Cr-diffeomorphism. 

One can easily prove tha t  the same remains valid if q0, or qt, or bo th  
of  t h e m  are collision points,  provided the corresponding cross-sections are 
composed of  the nearby collision points.  In fact, the collision set (the surface 



2a 

y .~7 
.," 

..*° 

Fig. 2.2. Singularity near a tangent trajectory 

(x, y) E S in the phase space) provides a global cross-section for the billiard 
flow. The corresponding Poincar~ map relating consecutive collision points is 
called the billiard map. A point on the surface is determined by the position s 
on the boundary S and by the reflection angle ¢ which yields the direction of 
the outgoing velocity vector (the absolute value of the velocity does not mat- 

2 2 ter because p~ q-py is a conserved quantity - the energy - and it may be taken 
arbitrary by rescaling the time). The initial conditions, corresponding to a 
trajectory directed to a corner or tangent to a boundary arc at the moment 
of the next collision, form the singular set on the (s, ¢)-surface. Generically, 
the singularity set is a collection of lines which may be glued at some points. 
The billiard map is a Cr-diffeomorphism outside the singular set; it may be 
discontinuous at the singular points. Near a singular point corresponding to 
the tangent trajectory the continuity of the map can be restored locally by 
taking two iterations of the map on a half of the neighborhood of the singular 
point (see figure 2.2). The obtained map will, nevertheless, be non-smooth at 
the singular point, having the square root singularity described above. 

2.2 Class  o f  s m o o t h  H a m i l t o n i a n s  

Formally, the billiard flow may be considered as a Hamiltonian system of the 
form 

Hb = -~ + + Vb(x, y) (2.3) 

where the potential vanishes inside the billiard region D and equals to infinity 
outside: 

0 (x, y) e D (2.4) 
Vb(x, y) = y) ¢ D 

Clearly, this is an approximate model of the motion of a pointwise particle 
in a smooth potential which stays nearly constant in the interior region and 
grows very fast near the boundary. However, it is not obvious immediately 
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when (and in which sense) this motion is indeed close to the billiard motion. 
We examine this question in this section and describe a class of potentials for 
which the billiard approximation (2.4) is correct in some reasonable sense. 

Consider a Itamiltonian system associated with 

H = - -  + + V(x ,y ;e )  (2.5) 

where the potential V(x,  y; e) tends to zero inside the region D as e --* 0 and 
it tends to infinity outside. Specifically, we require that  
I. For any compact region K C D the potential V(x,  y; e) diminishes along 
with all its derivatives as c --* O: 

lim I I v (x ,  y; e)l<(~,~)eK}llc,+, = 0. (2.6) 
e,--*+0 

The growth of the potential to infinity across the boundary is a more 
delicate issue. The crucial construction here is that  V is evaluated along the 
level sets of some finite function near the boundary. Namely, putt ing the set 
C of corner points ei out of consideration, we suppose that  in a neighborhood 
of the set ( D \ C )  there exists a function Q(x, y; e) which is C ~+I with respect 
to (z, V) and it depends continuously on ~ (in Cr+l- topology) at c > 0. 
Specifically, Q(x, y; e) along with its derivatives have a proper limit as e -~ 0. 
Assume that  
I I a  On the boundary, the function Q(x,y;O) is constant between any two 
neighboring corner points: 

Q(z, y; ~ = O)l(~,~)~s, -= Q~ (2.7) 

We call Q a pattern function. For each boundary component Si, for Q 
close to Qi, let us define a barrier function Wi(Q; e) which does not depend 
explicitly on (x, y) and assume that: 
I I b  There ezists a small neighborhood Ni of the arc Si on which the potential 
V is given by Wi evaluated along the level sets of the pattern function Q: 

V(z ,  y; e)l(,,u)~N, - W,(Q(z, y; e); e) (2.8) 

I I c  The gradient of V does not vanish in a finite neighborhood of the boundary 
arc .8:  

VVl(~,~)~N, # o (2.9) 

which is equivalent to the following conditions 

and 

vol(~,~)cN, # o (2.to) 

d 
--~w,(o;e) # o. (2.1t) 
at¢ 
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Conditions I Ia ,b ,c  formalize the requirement that  the direction of the 
gradient of the potential must be normal to the boundary as e ~ +0. Ob- 
viously, this is necessary for having a proper reflection law in the limit: if 
the reflecting force has a component tangent to the wall, then the tangent 
component p~ of the momentum will not be preserved during the collision 
(see (2.2)). 

Now we may describe the rapid growth of the potential across the bound- 
ary in terms of the barrier functions Wi only. Choose any of the arcs Si and 
henceforth suppress the index i. Without loss of generality assume Q = 0 
on S. By (2.10), the pattern function Q is monotonically increasing across S 
and we assume Q is positive inside D near S and negative outside (otherwise, 
change inequalities in (2.12) to the opposite ones). Assume 
I I I  As e ~ +0 the barrier function increases from zero to infinity across the 
boundary Si : 

lim W(Q;  e) = { +co O < 0 (2.12) 
,~+o 0 Q > 0 

Note that  according to I. and I Ib . ,  for any Q0 > 0 

lim IIW(Q, ~)lq>Q011cr+, -- O. (2.13) 
e~+0  

Clearly, it will cause no troubles if one allows W to take infinite values: 
by (2.11), the function W is monotonic and if it is infinite at some Q, it is 
infinite for all smaller Q; on the other hand, trajectories always stay in the 
region where W is bounded: since the energy given by (2.5) is conserved, the 
value of the potential is bounded by the initial value of H. We will study 
limiting behavior (as e --* +0) of the smooth Hamiltonian system (2.5) in a 
given, fixed energy level, H = H*. This implies that  all trajectories stay in 
the region W < H* for any e. It follows that  the symbol +c~ in (2.12) may 
be replaced by any value greater than H*. 

It is immediately evident that  the particle in the potential V satisfying 
condition I moves in the interior of D with essentially constant velocity along 
a straight line until it reaches a thin layer near the boundary S where the 
potential runs from small to very large values (the smaller the value of e, 
the thinner the boundary layer). By virtue of condition I I I ,  if the particle 
enters the layer near an interior point of some boundary arc (corner points are 
not considered in this paper), it can not penetrate the layer and go outside - 
because fixing the value of the energy bounds the potential from above. Thus, 
the particle is either reflected, exiting the boundary layer near the point where 
it entered, or it might, in principle, stick into the layer, traveling along the 
boundary far away from the entrance point. As simple arguments show (see 
the proof of theorem 1 below), condition I I  guarantees that  when a reflection 
does occur it will be of the right character, approximately preserving the 
tangential component (p~) of the momentum and changing sign of the normal 
component (p~). However, as argued below, and shown by an example in 
Appendix A, conditions I - I I I  are insufficient for preventing the existence of 
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non-reflecting trajectories. Since such finite length travels along the boundary 
layer must be forbidden in the limit e --* 0, we impose an additional restriction 
on the shape of the potential near the boundary. Denote the normal force 

function by F(Q; e) = ~---~W(Q, e) and require the following: 

IVThe normal force is a monotonic funclion of Q: 

W"(Q) =_ F'(Q) > O. (2.14) 

(According to condition I I I ,  since W decays rapidly across Q = 0, it follows 
that  its derivative F(Q) is close to - o o  at small Q. Then, as Q grows, F(Q) 
0 by (2.13). Thus, F(Q) can not be strictly decreasing function and the 
monotonicity of F(Q) is indeed equivalent to the positiveness of F'(Q).) 

To see how a violation of the monotonicity condition can lead to the ap- 
pearance of non-reflecting trajectories suppose that  for arbitrarily small c 
there is an interval of values of Q, arbitrarily close to the boundary, on which 
the graph of absolute value of F(Q) is as shown in figure 2.3: it grows from 
zero to very large values, then decays back to nearly zero at a value Q~which 
approaches zero as e --. 0, and only after that  it grows to infinity. Since the 
force is the gradient of the potential and, according to condition II ,  it is 
proportional to F(Q) whereas the distance to the wall is proportional to Q, 
it follows that  the graph of the normal component of the reflecting force vs 
the distance to the wall has the same shape as in figure 2.3. Thus, the initial 
velocity of the particle can be taken such that  the normal component of the 
velocity is completely damped when moving through the region of the first 
peak of F(Q), leading to the trapping of the particle in the zone where the 
reflecting force is nearly zero with the normal component of velocity close to 
zero too. In this case the distance to the wall will change very slowly and 
the particle may stay at a small distance to the wall for a long time, travel- 
ing Mong the boundary instead of making reflection. An explicit example of 
such trapping in a circular billiard is presented in Appendix A. In fact, the 
geometry of the boundary plays a crucial role here: one can show that  the 
finite length travels along a concave boundary arc are forbidden even for the 
non-monotonic F(Q) (though the reflection time may still be unboundedly 
large in this case). 

Conditions I - IV guarantee, as is precisely formulated in section 2.4, a 
correct reflection law only in the C°-topology and not in the Cl-topology. 
As this issue is very important for the sequel, we explain its intuitive impli- 
cation now. Let us take a point (Xo, Yo) and momentum (P~0, Pro) as initial 
conditions for an orbit of the Hamiltonian system (2.5) and let us take the 
same initial conditions for the billiard orbit. Consider a time interval t for 
which the billiard orbit collides with the boundary S only once, at some point 
(xc, y~) (see figure 2.4). Here, the incidence angle ¢i~ is the angle between the 
vector (zo - x,, Y0 - Y,) and the inward normal to S at the point (x¢, Yc); the 
reflection angle ¢°~ is the angle between the vector (zt - zc, yt - ye) and the 
normal, where (xt, yt) is the point reached by the billiard trajectory at the 
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Q 

Fig. 2.3. Non-monotonic normal force 

time t. In the same way one may define the incidence and reflection angles 
for the trajectory of the Hamiltonian system where (x0, Y0) and (x¢, y~) are 
taken the same as for the billiard trajectory and (zt(e), yt(e)) is now defined 
by the Hamiltonian flow (see figure 2.4). We expect the trajectory of the 
Hamiltonian system to be close to the billiard trajectory; in particular, it 
should demonstrate a correct reflection law 

¢ i . ( , )  + ¢ o . , ( 0  . 0 

for sufficiently small e. Note, however, that  (¢i" + ¢o~t) is a function of the 
initial conditions. Conditions L I V  give only C°-closeness of these functions to 
zero and to ensure a Cl-correct reflection law we need the following additional 
condition on W(Q): 
V There exists an ~ E (0, 1) such that the following holds for any interval 
[Ql(e), Q2(e)] on which W ( Q )  is bounded away from zero and infinity for all 

lim W " ( Q )  - O, (2.15) 
,40 IW'(Q)I3+  

uniformly on the interval [Q1, Q2]. 
This condition is used directly in the proof of theorem 1 (see [25]). To 

give the reader a feeling of how the smoothness may. be lost, consider a one- 
dimensional reflection described by the equation Q + W' (Q;e)  = 0 where 
Q > 0, W(0; e) = +c~, lim,_0 W(Q; e) = 0 at Q > 0. Here, Q is the position 
of a particle moving inertially until a collision with the wall at Q = 0, after 
which the particle reflects elastically and moves back. The time of collision 

/ ( i .  v'~dO where H is the value of and Q" (e) is given by r = ~f H - W ( Q ) energy 

is such that  W(Q*; e) = H. Differentiation with respect to H gives 
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(zo, Yo) (%, Yt) 

I " ~ ( z ,  y) ,~ (s,q (z, y) .~.~. /  
( z ~ - - Y / ( z , ~ , ) , , ~  (s,~) 

Fig. 2.4. Reflection by Hamiltonian flow 

dT ~ "H 
- w , ~ , ) (  - w ( 1 ) ) - 1 / ~  dH 

1 /Q. W'(Q*) - W'(Q)(H - W(Q))-~12dV. (2.16) 
~ W , ( Q * )  _ w - - ~ - w ( o )  

Note that (W'(Q*) - W'(Q))/(W(Q*) - W(Q)) "~ W " / W ' ,  therefore re- 
strictions should be imposed on W' ,  like in condition V, to have dr/dH 
bounded. 

2.3 Examples  for smoo th  Hami l ton ians  l imi t ing  to bi l l i ards  

Conditions I-V are in fact quite general, and they are fulfilled by many rea- 
sonable choices of the pattern and barrier functions. For the pattern function, 
consider any smooth function Q depending on two variables (~e, y). Corners 
are created at the singularities of the level sets and at the points of inflection. 

For the barrier function conditions I-V need to be fulfilled. For example, 
the following barrier functions W(Q, e) satisfy them (for fl > 0): 

£ 

Q--Z, (1-QZ)~, c~-~,  cflnQI ~, cln...tlnQI. 

One may easily produce more examples because there is no restriction on 
the growth rate: given any potential V satisfying conditions I-V the poten- 
tial ¢(V) also satisfies these conditions provided ¢ is a smooth monotonic 
function of V such that ¢(0) = 0, ¢(cx)) = ~ .  

In section 3 we consider the billiard corresponding to the following family 
of pattern functions: 

1 1 Q(~, 7) 7t ~ ' + ( y _ ¼ ) ~ _ R ~ + x ~ + ( y + ~ ) ~ _ R ~  Y; 

1 + 1 )-1 
(~ - ~)~ + ~ - R~ (~ + ¼)2 + y~ _ R~ (2.17) 
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where R ~ = 1 + (1 - 1)2 and 7 is a parameter (not necessary small). The 

billiard domain is bounded by the level set Q(x,  y) = 0. For 7 --~ 0 this defines 
a square whereas for 7 > 0 it defines a concave shape bounded by the four 
circles of radius R which intersect at the four corner points (x, y) = (+1, +1). 

Taking the barrier function in the simplest form W ( Q ,  e) = ~ produces 
the following Hamiltonian system: 

1 2  1 2  
H.r,e( x, y, p~, pv ) = -~p~ + -~Pv + 

( 1 1 
+ - 2) + 2(1 - v)  + + - 2)  + 2(1 + v) 

1 1 

7 ( x ~ + y ~ - 2 ) + 2 ( 1 - x )  + 7 ( x 2 + y ~ - 2 ) + 2 ( 1 + x ) )  

Notice that  for 7 --* 0, the square geometry produces separable - hence inte- 
grable - Hamiltonian flow. This is, of course, a very interesting limit, which is 
not studied in this paper. Notice also that  here the limit e ~ 0 is equivalent 
to the limit H ~ oc with e held fixed. 

2.4  C l o s e n e s s  t h e o r e m s  

Denote the Hamiltonian flow of (2.5) by ht(e). Given t and c, the flow maps 
a phase point q0 = (x0, yo,P~o,p~o) to qt(e) = (xt(e), yt(e),p~t(e),pv~(e)). We 
will call qt(e) the smooth orbit of q0 and will examine how close is it to the 
billiard orbit btqo = qt( O ). The corresponding trajectories ( x t ( c ), yt( e ) ) and 
(xt(O), yt(O)) on the (x, y)-plane will be called the smooth and, respectively, 
the billiard trajectories. 

Let (x¢, y¢) be the first point of collision of the billiard trajectory with 
the boundary S; by definition, (x¢, Yc) = (Xo, Yo) + (pxo,Pvo)tc, where t = tc 
is the moment of collision. Since the potential V is nearly zero in the inte- 
rior of the billiard domain D, the smooth orbit of q0 is arbitrarily close (as 
e ~ 0) to the billiard orbit before the collision: namely, the point (xt (e), Yt (e)) 
moves with essentially constant velocity until reaching a small neighbor- 
hood of (x¢, y¢). Take a small 5 > 0 and consider the boundary layer $6 -- 
{IQ(x,  y; e ) - Q ( x c ,  y¢; e)l _< 5}, where Q is the pattern function. For any small 
5, if e is sufficiently small, the smooth trajectory enters the boundary layer at 
some time t,,~(e). Denote qi,(e) = q,,.(e); by definition, IQ(xi,(e),  yi,(e); e) - 
Q(x¢, y¢; c)l = 5. The closeness of the billiard and the smooth orbits (before 
the collision) implies the existence of the limits (see figure 2.4) 

tin = ,li~mootin(E)' qin ~-- ~in~ qin(£); 

moreover, 

limti~ = t~ ,  }i~(xi,~,yi,~) = (x~,y~), }in~(p~,in,pv,i,~) = (P~o,Pvo). 
,%--*0 
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Analogously, denote the moment  when the smooth trajectory exits the 
boundary layer as tout(e) (we will prove that  such a moment exists) and 
denote the corresponding value of qt(e) as qout(e). The time interval ( tout(e)-  
tin(e)) will be cMled the collision time. For fixed 6, the limiting values of the 
introduced quantities as c -~ 0 will be denoted as tout, qo,t (the existence of 
the limits is given by Theorem 1 below). 

It is natural  to call the relation between the limits qout and qi, the reflec- 
tion law. By definition, qout(e) and tout(e) are functions of qin. If the conver- 
gence of lim,--.0(qout, to,t)(e) is uniform in some neighborhood of a given q;,,  
then the reflection law is C °. If, moreover, there is a uniform convergence for 

the derivatives with respect to qin, then these limit to -0(q°ut't°"t) , so the 
Oqin 

reflection law is C t. 
Note that  the relation between the reflection laws corresponding to dif- 

ferent values of 6 is found trivially for the billiard flow, and it is absolutely 
the same for the Hamiltonian flow because it limits to the billiard flow out of 
any fixed boundary layer. Therefore, no information is lost if one considers 
the limit of the reflection law as 6 ~ O, as it is done in the following theorem. 

T h e o r e m  1. For the Hamiltonian system (2.5) where the potential V (z, y; e) 
satisfies conditions I - IV ,  if initial conditions qo are such that for the billiard 
orbit btqo the point of reflection is not a corner: (zc, yc) E S \ C ,  then for any 
sufficiently small 6 the limits (as e --~ O) qout and to~t are well defined. As 

--* 0, the collision time tends to zero: 

t , , )  = o 

and the limiting C O reflection law is: 

Uout) = u , . )  

(Px,out,Py,out)+(P~,in,pu,in) = 2(p . , ine .+Pu, lneu)(e . ,e  ~) 

(2.18) 

(2.a9) 

where ~ = (e=,e~) is the unit vector tangent to the boundary at the point 

If, additionally, condition V is fulfilled and the ingoing velocity vector 
(P~,~n,Py,in) is not tangent to the boundary at the point (xc,yc), then the re- 
flection law is C 1. 

One may check that  the above reflection law is exactly the reflection law 
associated with the billiard flow. In other words, theorem 1 says that  

lira ] im II(qout(e),tou,(e)) - (qou,(O),tou,(O))(I = 0 (2.20) 
6 ~ 0  e--~O 

where the norm is C O- or Cl-norm in a small neighborhood of qi~. Since 
out of the boundary layer the Hamiltonian flow limits to the billiard flow as 
• --* O, this local result implies immediately the following global version. 
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Theor e m 2: I f  qo and qt : btqo are inner phase points, then, as e ~ O, the 
time t map ht(e) of the flow defined by Hamiltonian (2.5) where V(x ,  y;e) 
satisfies assumptions I - I V  limits to the map bt in the C°-topology in a small 
neighborhood of qo. If, additionally, condition V is fulfilled and if  the billiard 
trajectory of qo has no tangencies to the boundary for the time interval [0, t], 
then ht(e) ---+ bt in the C 1 sense. 

Theorem 2 follows from theorem 1, and vice versa. The proof of the theo- 
rems (in fact, a C r -convergence proof) is given in [25]. Namely, the following 
is proved there 

limlimsupll(qo,,t(e),tout(e)) - (qout(O),to~t(O))ll = 0 (2.21) 
~--*0 e---*O 

which is formally weaker than (2.20), but it is, obviously, also sufficient for 
the validity of theorem 2. 

The general idea of the proof is as follows (see details in [25]). By condi- 
tion II ,  the gradient of the potential is close to normal to the boundary near 
the point of reflection. This implies, almost immediately, that  the tangential 
component p~ of the momentum is approximately preserved during the col- 
lision. Essentially, this means that  the motion described by the Hamiltonian 
system (2.5) can be thought as a sum of two almost independent motions: in- 
ertial motion parallel to the boundary and reflection in the normal direction. 
In the limit e ~ 0, the parallel motion prevails in some sense for the nearly 
tangent trajectories, whereas for the non-tangent trajectories its contribu- 
tion can be neglected. Thus, in both cases the consideration is essentially 
one-dimensional and this makes the proof of the C o part  of theorem 1 pretty 
simple. The proof of the C 1 version is more involved and it requires estimates 
of some integrals along the orbit of the Hamiltonian system, necessary for the 
evaluation of the solution of the linearized equations. 

A more specified way to formulate closeness of  the I/amiltonian system 
under consideration to the billiard approximation is to use the Poincar~ sec- 
tions. Let q0 and qt ~- ht(e)qo (e > 0) be inner phase points and w0 and wl be 
small surfaces transverse to the flow near q0 and qt. Then the flow defines the 
local Poincard map hts (e) : wo ~ wl where t / (e)  is the flight time from ~o0 to 
wl. The Poincard map preserves the foliation of the cross-sections by the lev- 
els of equal energy. Therefore, reduced Poincar$ maps are defined taking fixed 
energy levels on w0 onto the levels of the same energy on $1. For e > 0 (respec- 
tively e = 0) the reduced Poincard map is a two-dimensional area-preserving 
Cr-diffeomorphism (respectively - almost everywhere Cr-diffeomprphism). 
Obviously, the flow is recovered by the set of reduced Poincard maps along 
with the corresponding flight times, and vice versa. Thus, theorem 2 admits 
the following reformulation. 

T h e o r e m  3. I f  qo and qt = btqo are inner phase points and wo and wl 
are small cross-sections through qo and qt respectively, then at all small e 
the Hamiltonian flow (2.5) satisfying conditions I - I V  defines the reduced 
Poincard map of the the energy level of qo in ~o into ~1. As e ~ 0 this map 
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limits (in C °) to the reduced Poincard map of the billiard flow as does the 
flight time. In addition, if condition V is satisfied and the segment of billiard 
trajectory between qo and qt does not have tangencies to the boundary of the 
billiard domain, then the convergence is C 1. 

The last theorem allows one to utilize persistence theorems regarding two- 
dimensional area preserving diffeomorphisms in order to establish relations 
between periodic orbits of the billiard flow and of the Hamiltonian flows under 
consideration. 

Recall that an orbit (e.g., a periodic orbit) of the billiard flow is called non- 
singular if its trajectory in the (x, y)-plane does not have tangencies with the 
boundary of the billiard domain (and by definition the trajectory cannot hit 
a corner either). For a non-singular periodic orbit, for a cross-section through 
an inner point on it, the reduced Poincar6 map of the billiard flow is locally 
a diffeomorphism and the intersection of the periodic orbit with the cross- 
section in the phase space is a fixed point of the diffeomorphism. Generally, 
the fixed point is either hyperbolic or elliptic. Fixed points of both types are 
preserved under small smooth perturbations in the class of area preserving 
diffeomorphisms. Thus, theorem 3 implies the following statement. 

Coro l la ry  1 - pe r s i s t ence  of  pe r iod ic  orbi ts :  I f  a non-singular periodic 
orbit Lo of the billiard flow is hyperbolic or elliptic, then at e sufficiently small 
the Hamiltonian flow ht(c) has a unique continuous family of hyperbolic or, 
respectively, elliptic periodic orbits L, in the fixed energy level of Lo which 
limit to Lo as e ~ O. 

If L0 is hyperbolic, the local stable (Wl~c(L,)) and unstable (Wl~oc(L,)) 
manifolds of L~ depend continuously on ¢ (as smooth manifolds) and limit to 
l/V~c(L0 ) and Wl~c(L0 ) respectively. The global stable and unstable manifolds 

- WU(L,) and W ' ( L , )  - are obtained as the continuation of Wl~o¢(L,) and 
WI~c(L¢) by the orbits of the flow. Note that for the billiard flow, by applying 
the continuation process tangencies to the boundary and corner points are 
bound to be encountered by some points belonging to the manifolds. Using 
local cross-sections as above, it is easy to see that the following result holds. 

Coro l la ry  2 - ex tens ions  of  s tab le  and  uns t ab l e  manifolds:  Any piece 
No of WU(Lo) or W~(Lo) obtained as a time t > 0 shift of some region in 
VVI~¢(Lo ) (respectively, a time t < 0 shift of some region in Wl'o¢(Lo)) is a 
C o- or, if no tangencies to the boundary are encountered in the continuation 
process, Cl-limit of a family of surfaces K,  C W"(L , )  (resp. K,  C W ' ( L , ) ) .  

The above persistence results apply only to non-singular periodic orbits; 
near the singular periodic orbits the billiard flow is non-smooth and the 
standard theory is not valid. However, it is of interest to study the behavior 
near a singular periodic orbit for ~ > 0. We consider this problem in the 
next section for the case of so-called scattering billiards. Here, the billiard 
flow is hyperbolic whence all non-singular periodic orbits are hyperbolic. We, 
nevertheless, show that the singular periodic orbits give rise to stable (elliptic) 
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periodic orbits in the Hamiltonian systems (2.5) limiting to the scattering 
billiards. 

3 Appearance of elliptic islands in the smooth 
Hamiltonian approximation of scattering billiards 

Consider scattering billiards - namely billiards which are composed of concave 
arcs with the curvature bounded away from zero, and non-zero angles between 
the arcs at the corner points. The corresponding billiard flows are hyperbolic 
and exhibit strong ergodic properties (they are K-systems) [21, 1, 11]. In 
particular, almost every orbit covers the whole phase space densely. In this 
section we examine how these properties may be lost by the approximating 
smooth Hamiltonian flows for arbitrarily small positive e values. We propose 
two mechanisms for the appearance of elliptic islands which destroy these 
properties: one mechanism is controlled by the existence, in the billiard flow, 
of a singular periodic orbit and another mechanism is controlled by the exis- 
tence of a singular homoclinic orbit. To be specific, from here on, we consider 
only simple singular orbits; i.e., those for which the corresponding trajecto- 
ries in the billiard domain have exactly one tangency to the billiard boundary 
and do not approach corner points. 

First, we study the phase space structure of the local Poincar~ map near 
such orbits, showing that  locally these create a "sharp" horseshoe which, em- 
bedded in a one parameter family of billiard maps, unravels as the parameter 
3' varies (see figure 3.3). Then, using theorem 3, we establish that  the two 
parameter family of IIamiltonian flows ht(¢; 7) which approach the family of 
billiards as e ~ 0 undergoes, for sufficiently small e, a series of bifurcations 
associated with the disappearance of a Smale's horseshoe. It is well estab- 
lished that  in this process elliptic islands are created. Thus, it follows that  
for each sufficiently small e there exist intervals of 7 values for which elliptic 
islands exist. 

We end the section with some conjectures on the genericity of the phe- 
nomena mentioned above: we expect that  singular homoclinic and periodic 
orbits are, in fact, unavoidable in scattering billiards. Apparently, systems 
possessing simple singular homoclinic and periodic orbits are dense among 
all scattering billiards. We provide a numerical example which supports such 
a conjecture regarding the density of billiards with singular homoclinic orbits. 
A proof of this conjecture combined with the results presented here would 
imply that for any given scattering billiard on a plane, there exists a nearby 
Hamiltonian flow possessing elliptic islands. 

3.1 Singular periodic orbits. 

The hyperbolic structure of the scattering billiards plays a crucial role in the 
understanding of the behavior near a singular periodic orbit. For the billiard 
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map B (the map relating two consecutive collision points; see section 2.1), the 
presence of hyperbolic structure implies that for almost every point P(s,  ¢) 
in the phase space there exist stable and unstable directions E~,, and E~,, 
depending continuously on P.  The system of stable and unstable directions 
is invariant with respect to the linearized map: d p B E  "(u) = EB(~ ), which is 
uniformly expanding along the unstable direction and uniformly contracting 
along the stable direction: if v e E" (v E E ' ) ,  then I]dpBv]] > e xr I lvll (resp., 
lidpBvll <_ e-x'llvll) in a suitable norm; here, r is the flight time from P 
to P B ,  the uniformity means that  the value ~ > 0 is independent of P (see 
details in [3]). 

Equivalently, there is an invariant family of stable and unstable cones: 
the unstable cone at a point P is taken by the linearized map d p B  into 
the unstable cone at the point BP; the image is stretched in the unstable 
direction and shrinks in the stable direction. Similar behavior appears for 
the stable cone under backward iterations. There is an explicit geometrical 
description of these cones for scattering billiards [26]. Consider a point (s, ¢) 
in the phase space and a small curve passing through this point. Taking two 
points on this curve defines two inward directed rays emanating from the 
billiard boundary near s (see figure 3.1). If these rays intersect, then the 
tangent direction to this curve belongs to the stable cone of (s, ¢); otherwise, 
it belongs to the unstable cone (in other words, the unstable cones are given 
by ds • de > 0 and the stable cones by ds • de < 0). Moreover, it can also 
be shown that  if the intersection of the rays with each other occurs before 
the first intersection of the rays with the billiard boundary, then the tangent 
direction to the forward image of the small curve under consideration belongs 
to the unstable cone of the image of (s, ¢). 

It follows from the simple geometry above that the tangents to a line 
of singularity at any point lies in the stable cone, and the tangent to any 
iteration of the singularity line by the billiard map lies in the corresponding 
unstable cone. In particular, this implies that  intersections of the singularity 
lines with their images are always transverse. 

Next, we find the normal form of the first return map of the billiard 
map near a simple singular periodic orbit (a periodic orbit with only one 
tangency). More precisely, consider a periodic orbit L with the corresponding 
sequence of collision points P i (s i ,¢~)( i  = 0 , . . . n -  1): Pi+l = BP~ where 
Pn = P0. Since L is a simple singular periodic orbit, assume that  P = P0 
belongs to the singular set (so [¢11 = ~). Take a small neighborhood U of P 
and denote as S the line of singular points in U (it is the line composed of 
the points whose trajectories are tangent to the billiard boundary near Sl). 
Then, we prove the following proposition: 

P r o p o s i t i o n  3.1 Given a simple singular periodic orbit L as above, the local 
return map near t9o may be reduced to the form: 

~(v - x/max(v, 0)) - u + . . .  
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Fig. 3.1. Hyperbolic structure - the stable and unstable cones 

a) Geometrical interpretation of stable/unstable directions 
b) Phase space structure 

where v = 0 gives the singularity line, u = 0 is its image, and [~1 > 2. 
As will be apparent by the proof, it is useful to define an auxiliary billiard 

B (r), for which the boundary arc by which the tangency of the periodic orbit 
occurs (i.e. near so) is pushed slightly backwards so that  the singular periodic 
orbit becomes a regular orbit for the auxiliary system. The quantity ~ in 
(3.1) is simply the trace of the linearization matr ix  of the first return map of 
the auxiliary billiard about the periodic orbit. Since the auxiliary billiard is 
scattering, its regular periodic orbits are hyperbolic, hence [~[ > 2. 

P r o o f  o f  P r o p o s i t i o n  3.1 Consider the local structure in U, near the sin- 
gularity line ,U. The line Z divides U into two parts, Ur and Us; the orbits 
starting on U, (e.g. Pg' in figure 3.2) do not hit the boundary near sl and 
approach it near the point s2, the orbits starting on Us (e.g. Pg in figure 
3.2) have a nearly tangent collision with the boundary in a neighborhood 
of sl.  Without  loss of generality we assume that  Z is locally a straight line 
(s - So) + k(¢ - ¢0) = 0, where k > 0 because ~ must lie in the stable cone 
(s - s0)(¢ - ¢0) < 0, and that  U~ is given by (s - so) + k(¢ - ¢0) < 0 and Us 
by ( s -  so) + k ( ¢ -  ¢0) ~ 0. 

Consider the first return map [~ defined on U. The map B equals 
B n - 1 . . .  B2B1Bo on Us and B , - 1 . . .  B2Bo on U~ where Bi is a restriction of 
the billiard map on a small neighborhood of Pi. According to section 2.1.1, 
/~ is a continuous map but it loses smoothness on ~ .  Namely, the restriction 
B0s of B0 on Us exhibits the square root singularity described in section 2.1.1 
whereas the map Blur is regular and it can be continued onto the whole U 
as a smooth map B0~: erasing a small piece of the boundary containing the 
tangency point sl,  B0r will simply be the billiard map from U to a small 
neighborhood of P2 (see the action of B0~ on Pg i n  figure 3.2). Obviously, 
B0r~U = BIBosZ,  therefore the first return map B is continuous. One may 
represent the map /~  as a superposition of regular and singular maps: 

= B(~). B (~) 
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B 0 a t ~  0 ' 

Fig. 3.2. Structure near singular periodic orbit 

a) Action of billiard map near a singular segment of trajectory 
b) Phase space structure near singular periodic orbit: 1234 is mapped onto 1~21314 r 

where 

and 

B (') = Bn_z . . .B2Bo , .  

B(S) = ~ id on U~ 
[ Bo~IB1Bo, on U, 

The singular par t  B (') : U --* U may be obtained by inverted reflection near 
the tangency point 81 (see the action of B(~) on P~ in figure 3.2). I t  is not 
hard to calculate that  B(") is given by 

S' = S +  kx/max(S + k¢,O) + . . .  
• ' = • - X/ a (S + O) + . . .  

where S ---- s - so, ¢ -- ¢ - ¢0 are coordinates in U, and the dots stand for 
the quantities infinitely small in comparison with S, • or x /max(S  + k~, 0) 
as S , ¢  --- 0. 

The regular part  B (r) is, by definition, the first return map  for the aux- 
iliary billiard obtained by pushing the boundary near the tangency point sl 
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slightly aside the trajectory of L. The point P is a fixed point for B(r) (as 
well as for the map /3). Since the auxiliary billiard is still scattering, the 
point P is a hyperbolic fixed point for B (r). Moreover, the unstable cone 
S • 4i > 0 must be mapped inside itself by the linearization of B (~) at P.  

If \{' b21bll b12)b22 is the corresponding linearization matrix, the last condition is 

equivalent to the requirement that all bij are of same sign. Recall that  B(~) 
is an area-preserving diffeomorphism, so 

bllb22-b12b~l = 1. 

Superposition of B (r) and BO) gives, to leading order in S, 4~ and 
~//max(S + k~, 0), the following formula for the map/3:  

( ~ = b11S + b~24~ - ( b12 - bllk )~/max( S + k~, O) + . . .  
= b21SWb22q ~ (b22 b~lk)k/max(SWkq~,O)-4- 

(3.2) 

Provided inequalities 3.5 are satisfied, as proved in the lemma below, the 
normal form 3.1 is obtained from the above expression by changing to the 
new coordinates u, v where u is aligned with the singularity line (v ~ S + k~) 
and v is aligned with its image. From the calculation, it follows that  the 
quantity ~ is (bxl + b22), namely the sum of eigenvalues of the linearization of 
the regular part B (~) of/3 at P. Since the product of the eigenvalues equals 
to 1 and since they do not lie on the unit circle, it follows that  

I~1 > 2, (3.3) 

as indicated in the Proposition. D. 
L e m m a  3.1: The coefficients bij in (3.2) obey the inequa~ties: 

(b12-bllk)(b22-b21k) > 0 (3.4) 

Ibx21 < Ibl~lk (3.5) 
Jbezl < Ib=xlk. 

(3.6) 

Proof." Since the image /3L: of the singularity line S + k@ = 0 must lie 
in the unstable cone S • 45 > 0, it follows from 3.2 that  the first inequality 
(b12 - b11k)(b22 - b21k) > 0 holds. Moreover, it is geometrically evident that  
for a small piece I of a straight line through P which lies in the unstable cone, 
i.e., for which the increase of s is followed with the increase of ¢ (see figure 
3.2 - imagine a line going through P~, 1°0, P~) the image of I fq Ur by B0 and 
the image of I f3 Us by B1 B0 lie both to one side of the point P2 (or s2 when 
projected to the configuration plane). In other words, these images belong 
both to the same half of the unstable cone of P2 corresponding to a definite 
sign of (s - s2). Since the linearization of each of the maps Bi preserves the 
decomposition into the stable and unstable cones, it follows that  the image 
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of I by /3  is a folded line with the vertex at P which divides/~1 in two parts 
belonging both to the same half of the unstable cone of P; i.e., S and ~ have 
the same sign on /} ( l  f3 Ur) and /~( l  n U,). By (3.2), it is equivalent to the 
condition that  the sign of (b12 - bllk) is opposite to the sign of b12 and bll 
and the sign of (b22 - b~lk) is opposite to the sign of b22 and b21 (recall that  
all bij are of same sign). Thus, the second and third inequalities Ib121 < Ibll Ik 
and [b22[ < [b~lIk hold. ~. 

Now, embed the billiard under consideration in a one parameter family of 
scattering billiards bt(.; 7) for which all arcs depend smoothly on the param- 
eter 7, while the corner points are held fixed; we suppose that  the billiard 
with the simple singular periodic orbit L is realized at 7 = 0. The regular 
part B(r) of the first return map of U depends smoothly on 7, hence its hy- 
perbolic fixed point P(~) is also a smooth function of % The same is valid 
for the position of the singularity line ~.y. For a general family of billiards, 

the parameterization by "7 may be chosen so that  the distance between P(~) 
and 2Yx is proportional to 7 (it is true if, for instance, one changes the bil- 
liard boundary locally, near the tangency point sl only: such a perturbation 
moves the singularity line but the map B(~) and the position of its fixed point 

remain unchanged). Assume, with no loss of generality, that  p(r) E Ur for 

7 > 0 and that  P~(r) E Us for 7 < 0. Therefore, by the definition of B (r), its 
fixed point is a fixed point of /}  for 7 > 0, and its fixed point is imaginary 
when 7 < 0. 

Thus, for such a family of billiards, the normal form (3.1) of the first 
return m a p / 3  is now rewritten as 

~(7 -b v - v/max(v, 0)) - u + . . .  

In this form, the map/3~ looks similar to the well-known Hdnon map but it 
has another type of nonlinearity. In fact we show below: P r o p o s i t i o n  3.2 

Consider the map (3.7). For a small fized neighborhood U of the origin, let 
~ be the set of all orbits of B-r which never leave U. Then there exist 7 + 
values such that ~7 -= 0 for 7 < 7-  < O, and i f7  > 7 + > 0 and small, then 
g27 is in one-to.one correspondence with the set of all sequences composed 
of two symbols (r, s): "r" corresponds to entering Ur and "s" corresponds to 
entering Us. 

Proof :  Indeed, take a small 6 > 0 and let the neighborhood U be a 
1 1 

rectangle { -6  < u < ~6, - 6  < v < ~6} where x = ~ ( ~ l ~ l -  1) > 0 (recall 

that  1(I > 2). Let 7 + = (2 - )6 > 0 and 7-  = - ~-~6. Then, for sufficiently 

small 6, one may check that  for the given choice of U the map (3.'/) takes 
the horizontal boundaries of U (marked 1 and 3 in figure 3.3) on a finite 
distance of U for all 7 E [7-, 7+]. The images of the vertical boundaries 2 
and 4 which intersect the singularity line, fold as indicated in figure 3.3: the 
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segments 2a,4a are mapped to 2a',4a' and the segments 2b,4b are mapped to 
2b',4b'. The folded lines 2',4' may intersect U but they lie on a finite distance 
of their preimages (the boundaries 2 and 4) for all 7 E [7- ,  7+] . Thus, the 
image of U by/~7 has a specific shape of a sharp horseshoe. Changing 7 shifts 
the horseshoe along the v-axis, so at 7 = 7 + the intersection of the horseshoe 
with U consists of two distinct connected components (figure 3.3b). On each 
component the map/~7 is smooth and hyperbolic. The statement regarding 
the one-to-one correspondence to Bernoulli shift on two symbols follows as 
in the standard construction of the horseshoe map [23, 18]. In particular, it 
implies that each of the two components has a hyperbolic fixed point. On the 
other hand, at 7 = 7 -  the intersection o f / ~  U with U is empty (figure 3.3c) 
and no fixed points may exist in U. n. 

Notice the following three important  conclusions from the proof of the 
above proposition: first that  there exist 7 + values such that  for 7 + two hy- 
perbolic fixed points exist and for 7 -  no fixed points exist in the square region 
U near the intersection of the singularity line with its image. Second that  7 + 
may be chosen arbitrarily small (by taking smaller U). Third, no fixed points 
can pass through the boundary of U as 7 varies from 7 -  to 7 + because the 
image of the horizontal boundaries of U never intersects the boundary of U 
and the image of the vertical boundaries U may intersect only the horizontal 
parts of the boundary. 

Now, take a two-parameter family of Hamiltonians H(.;  e,7) which ap- 
proach the family of billiard flows bt(.; 7) as e ~ 0, in the sense that  condi- 
tions I -V  are satisfied uniformly with respect to 7. Note that  for the billiard 
flow, the structure of the Poincard map of an arbitrary small cross-section 
w through an inner point on the simple singular periodic orbit L is abso- 
lutely the same as described above (because the ma p / ~  is a particular case 
of the Poincar$ map, corresponding to the cross-section made of collision 
points, and different Poincar~ maps are smoothly conjugate near L; see sec- 
tion 2.1.1). Due to the C°-closeness result of theorem 3, it follows that  for e 
sufficiently small the corresponding Poincar$ m a p / / c 7  for the Hamiltonian 
system transforms a rectangle U' C w (analogous to the rectangle U) to a 
horseshoe shape (which is now smooth because the Hamiltonian system is 
smooth at all e > 0). At 7 = 7 -  the intersection IIe.rU' n U' is empty for 
small e whence //e~- has no fixed points in U'. Moreover, no fixed points 
can pass through the boundary of U' as 7 varies from 7 -  to 7 + because the 
fixed points of the first return billiard map stay on a finite distance from the 
boundary of U' for all 7 E [7-,  7+] • 

The two fixed points of the Poincar~ map of the billiard flow which exist 
at 7 = 7 + are hyperbolic and do not belong to the singularity line. Thus, by 
the corollary 1 to theorem 3, each of these hyperbolic fixed points exists for 
the map He.r+ at all sufficiently small e. Now, fixing any e small enough, a 
fixed point of//eT+ changes continuously as 7 decreases, until it merges with 
some other fixed point (as we argued, the fixed point must disappear before 
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Fig.  3.3. Sharp horseshoe bifurcation near singular periodic orbit 

One iterate of the indicated box by the truncation 
(0 = v, ~ = ~(3' + v - ~ )  - u) of the normal form (3.7) 

in all figures ~ = 3, 6 = 0.05. 
a) 7 - - 0 b )  7---0.015 > 7  + = 1 / 1 6 0 c )  7 - - - -7 - - - - -1 /30 .  

• - period n point. 

7 = 7 -  and it can not  leave U'  via crossing the boundary) .  In a general 
family  of  sufficiently smoo th  Hamil tonian  systems, one o f  the merging fixed 
points  is necessary saddle and another  is elliptic. Thus,  we have established 
tha t  

generically, for each e small enough, there exists an interval of values of 7 
for which the smooth Hamiltonian system possesses an elliptic periodic orbit. 

W i t h o u t  genericity assumptions,  we m a y  conclude the following. T h e o r e m  



42 

4: I f  a scattering billiard has a simple singular periodic orbit L, then there 
exists a one-parameter family of smooth Hamiltonian flows he(e) limiting to 
the billiard flow as e--* 0 (i.e. satisfying conditions I - V )  and for which there 
exists a sequence of intervals of e values converging to 0 on which elliptic 
periodic orbits Lt exist in the energy level of L. These elliptic periodic orbits 
limit to the singular periodic orbit as e ~ O. 

3.2 Singular homoclinic orbits 

Consider a non-singular hyperbolic periodic orbit L0 of the billiard flow. 
Suppose, its stable and unstable manifolds intersect along some orbit F. 
This is a homoclinic orbit; i.e., it asymptotes L0 exponentially as t --+ +co.  
Assume that  F is simple singular which means that  its trajectory has one 
point of tangeney with the billiard's boundary (see figure 1.1 b). 

Let P(s,  ¢) and/3(g,  ~) be collision points on F: P is the last before the 
tangency and/3  is the first after the tangency. By definition, t5 = B 2 p  where 
B is the billiard map. Consider, in the (s, 4) plane, the local segment W u 
of the unstable manifold of L0 to which P belongs. Since the tangent to 
W ~' at P belongs to the unstable cone, it must intersect the singularity line 
transversely at P.  Thus, as explained in the proof of lemma 3.1, the image 
of W ~' in a neighborhood of P under the billiard map folds with a sharp 
square root singularity a t /3 ,  see figure 3.4. Now, the poin t /3  belongs to the 
stable manifold as well. Since the tangent to W s belongs to the stable cone, 
it follows that  the folded image of W u lies to one side of W s, so a sharp 
homoclinic tangency is created a t /5 ,  as shown in figure 3.4. 

In a general family of scattering billiards (as in section 3.1), two trans- 
verse homoclinie intersections appear at 7 > 0 and none at 7 < 0. For the 
corresponding two-parameter Hamiltonian family, arguments analogous to 
those in the proof of theorem 4 show that  
generically, for any e sufficiently small there exists 7* (e) for which a quadratic 
homoclinic tangency occurs. 

Recall that  the occurrence of homoclinic tangencies is a well-known mech- 
anism for the creation of elliptic islands [20]. Thus we have established: 

T h e o r e m  5: I f  a scattering billiard has a simple singular homoclinic orbit F, 
then there exists a one-parameter family of smooth Hamiltonian flows he(e) 
satisfying conditions I -V,  which limits to the billiard flow as e --+ 0 and for 
which there exist a sequence of intervals of e values converging to zero for 
which elliptic periodic orbits exist in the energy level of 1". 

The period of the elliptic periodic orbits mentioned in Theorem 5 goes to 
infinity as e --* 0. In fact, in the two-parameter family of smooth Hamilto- 
nians elliptic periodic orbits of bounded period limit, as e --+ 0, to singular 
periodic orbits corresponding to 7 ¢ 0. Thus Theorems 5 and 4 are very 
much related. Indeed, like the appearance of stable periodic orbits near a 
homoclinic tangency is proved in smooth situation (see [12, 20, 13]), one may 
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a) 7 = 0 near/7 b) 7 = 0 near Z's image 
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B w J  " . . . . . . . . . . . . . . . .  

Fig. 3.4. Bifurcation of singular homoclinic orbit 

c) 7 > 0 d) 7 < 0, near ~'s image 
• - homocllnic points. 

show that 
in a general family of scattering billiards having a sharp homoclinic tangency 
at 7 = 0 there is a sequence of values of 7 accumulating at 7 = 0 for which 
singular periodic orbits exist. 
Now the reference to theorem 4 gives another proof of theorem 5. 

3.3 On the  generic i ty  o f  the  el l iptic is lands creation 

It is well known [17, 2, 3] that  for scattering billiards the hyperbolic non- 
singular periodic orbits are dense in the phase space. The stable/unstable 
manifolds of such orbits cover the phase space densely and the orbits of their 
homoclinic intersections also form a dense set. 

It follows that  the periodic orbits and the homoclinic orbits get arbitrar- 
ily close to the singularity set. It seems thus intuitively clear that  for any 
scattering billiard very small smooth perturbations may be applied to place 
a specific periodic orbit or a specific homoclinic orbit exactly on the singu- 
larity line, so that  Theorem 4 and 5 may be applied. Proving these intuitive 
statements turns out to be quite a delicate issue, thus we formulate these as 
conjectures: 

C o n j e c t u r e  1: Any scattering billiard may be slightly perturbed to a scatter- 
ing billiard for which a singular (tangent) periodic orbit exists. 

C o n j e c t u r e  2: Any scattering billiard may be slightly perturbed to a scat- 
tering billiard for which there e~:isls a non-singular hyperbolic periodic orbit 
which has a singular homoclinic orbit. 
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3.4 N u m e r i c a l l y  produced singular homoclinic orbits 

$ 

Fig. 3.5. Billiard between four disks 

To examine the appearance of singular homoclinic orbits we consider the 
billiard in a domain bounded by four symmetrical circles 

x2 +(y-4-1)2= R2; (x:t:l)2 +y2 = R 2 

where R 2 1 + ( 1 -  1 2 = ~) . The quantity 7 (which is, approximately, the 

curvature of the circles) serves as the free parameter for unfolding the singu- 
larity. We find explicitly the corresponding billiard map, and using DSTOOL 
package[10], we find numerically hyperbolic periodic orbits of this mapping 
and their stable and unstable manifolds. The billiard map is found on the 
fundamental  domain of the billiard - a triangular region cut by an arc as 
shown in the figure 3.5. We find the return map to the slanted side of 
the triangle, which is parameterized by s, the horizontal coordinate, and 
by ¢, the outgoing angle to the normal vector ( - 1 , - 1 ) ,  see figure 3.5. We 
choose an arbitrary value of 7 and the simplest hyperbolic non-singular pe- 
riodic orbit, as shown in the figure (the fixed point of the return map to 
the slanted side of the reduced domain). Then, we construct the stable and 
unstable manifolds for this periodic orbit. We examine how these manifolds 
vary by small variation of 7, until we find a value of 7 for which singu- 
lar homoclinic orbit appears. The success (see figure 3.6 and figure 3.7) of 
the very crude search for such a delicate phenomena, near every 7 value 
we have chosen, supports conjecture 2 regarding the density of systems for 
which such orbits exist. In fact we have found, by such a search near 7i = 
i * 0.05, i = 1 , . . . ,  10, eleven sharp homoclinics to this specific periodic orbit 
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(at 7 = 0.0837, 0.10165, 0.1018, 0.153, 0.2077, 0.2552, 0.29245, 0.3329, 0.3832, 
0.4143, 0.4692). 

J in  (¢) 

O • 1 

Fig. 3.6. Numerically produced sharp homoclinics 

4 C o n c l u s i o n s  

There are two main results in this paper; First, we have found sufficient 
conditions for establishing that a family of smooth Hamiltonian flows limits 
to the singular billiard flow (see Theorem 1, 2 and 3). These conditions are 
fulfilled by smooth Hamiltonians with potentials approaching a step function 
in almost arbitrary way (see section 2.3); they fail, nevertheless, when the 
potentials are highly oscillatory (i.e., condition IV or V fails). 

Second, we have established that if a scattering billiard (we use the par- 
ticular hyperbolic structure associated with such billiards) has a singular pe- 
riodic orbit or a singular homoclinic orbit, then there exist arbitrarily close 
to it smooth Hamiltonian flows which possess elliptic islands, hence these are 
not ergodic (Theorem 4 and 5). Finally, we have conjectured, and have pro- 
vided numerical support to these conjectures, that in fact scattering billiards 
with singular periodic orbits and singular homoclinic orbits are dense among 
scattering billiards (conjectures 1 and 2 of section 3.3). If these conjectures 
are correct, then theorems 4 and 5 will imply that arbitrarily close to any 
scattering billiard there exists a family of non-ergodic smooth Hamiltonian 
f lOWS. 

Such statements imply that ergodicity and mixing results concerning two- 
dimensional non-smooth systems cannot be directly applied to the smooth dy- 
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s i n  (¢) 
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Fig. 3.7. Magnification near numerically produced sharp homocfinics 

a) ~ = 0.28 b) 7 = 0.29245 c) 7 = 0.31 

namics they model• Whether the same holds for higher dimensional systems, 
e.g. three-dimensional billiards or multi-particle billiards, is yet to be studied. 

On the other hand, eventhough stability islands may appear in smooth 
billiard-like problems, the size of an individual island is expected to be very 
small. Thus,with no doubt, while the smooth flow may be non-ergodic, it 
will "seem" to be ergodic for a very long time; Statistics (e.g. correlation 
function) which are based upon finite time realizations may appear to behave 
as in the scattering billiards (e.g. fall off quasi-exponentially [5]). Whether  
longer realizations will reveal very different statistical properties, depends on 
the number of elliptic islands, the total area they cover in the phase space 
and on the "typical" period of the islands. Thus, estimates of the islands 
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sizes, their periods, and of the real potential steepness (the "physical e")  are 
necessary to supply estimates on the time scale for which the mixing property 
will appear to hold. 

We may try to estimate the periodicity of the elliptic periodic orbits of 
smooth flows approaching generic scattering billiards, by very naive argu- 
ments. Indeed, since stable periodic orbits are generated from singular peri- 
odic orbits of the billiard, one may expect (if conjecture 1 is correct) that 
the least period of stable periodic orbits of a smooth Hamiltonian system 
which is e-close to the billiard is of the order of the Poincar4 return time 
to an e-neighborhood of the singularity surface for the billiard flow. Notice 
that the billiard flow is a hyperbolic system; therefore, the return time in the 
billiard and, correspondingly, the typical period of the stable periodic mo- 
tions in its smooth approximation must, essentially, be l o g a r i t h m i c  in e and 
not of a power-law type. Namely, very small e values, corresponding to very 
steep potentials, may still produce stability islands which are observable on 
physical time-scales. 
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A A n  e x a m p l e  o f  s m o o t h  H a m i l t o n i a n  a p p r o x i m a t i o n  

o f  t h e  c i r c u l a r  b i l l i a r d  w i t h  n o n - r e f l e c t i n g  t r a j e c t o r i e s  

Consider the Hamiltonian 

1 2  1 2  H = -~p:: + -~p~ + e V ( 1  - x 2 - y2) (A.1) 

where the potential V is given by 

v ( Q )  = e x p  - A Q  + - -  , 
IQ 

with some positive constant A. The potential is of the form e V ( Q )  where the 
pattern function is defined by Q ( x ,  y; e) - 1 - x 2 - y 2 for all e. As e --* 0, 
the above Itamiltonian satisfies conditions I - I I I ,  which garuantee that 
near the boundary, x ~ + y~ = r ~ = 1, the correct elastic reflection rules are 
approached. Thus one may expect that the motion described by (A.1,A.2) 
limits to the billiard in the unit circle. We show that this is not the case; 
there exist initial conditions inside the unit circle for which the orbits of the 
Hamiltonian system ( A . 1 , A . 2 )  stick to the circle boundary for infinitely long 
time at arbitrarily small e. Notice that condition IV is violated. 
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The specific choice of V is not too important.  Essentially, we use that  

W W 
liminfl-~-- ] = A < co whereas aim sup J--I  = oo. (A.3) 

u - , 0  V 

Hamiltonian (A.1) is rotationally invariant, thus the particle's angular 
momentum 12: 

12 = r20 (A.4) 

is preserved. It follows that  the system is integrable and may be easily ana- 
lyzed. In polar coordinates (z = r cos 8, y -- r sin 0) the equations of motion 
are of the form 

F = r(02 + 2eV'(1 - r2)) = r(~-~ - + 2eV'(1 - r2)) (A.5) 
ii = 

r 

The radial motion decouples, and is governed by the Hamiltonian: 

1.2 1 122 1.2 
H = - ~ r  + - ~ - - ~ - + e V ( 1 - r ~ ) = ~ r  +Yell ( r ;12,  Q (A.6) 

The maximal polar radius, r*, reached by an initial condition (r0, ÷0) with 
/2 ¢ 0 is found from: 

1 122 1.2 1 ~22 
Veil(r*; 12, e) = eV(1 - r .2) + -~ -~  = ~r  o + 5~o2 + eV(1 - r~) = h (A.7) 

As e -+ 0, the value of r* tends to 1. The time spent by the orbit near r = r* 
is given by 

/ ~ ds (A.8) 
2 . - V e i l  ( s ;  12, 

thus it is infinite if: 

# * .  * 122 
V/ys(r ,12, e ) = - r  (~ -~ +  2 e V ' ( 1 - r * ~ ) ) - O  (A.9) 

(i.e. if F = 0 at r = r*). It follows, that  if there exist (r*(r0, F0, 12; e) > r0, e) 
solving (A.7) and (A.9) simultaneously, then, the phase point will move for 
infinitely .long time close to the unit circle with non-zero angular velocity 
( l i r n t . _ + ~  O = (r0/r*)~00). 

Next, we show that  such a solution exist for many initial condition and 
for a sequence of e --~ 0 values. First, since V(Q) is a monotonic function, for 
any r* > r0 one may find e such that (A.7) is satisfied; moreover, e --* 0 as 
r* ~ 1. Resolving (A.7) with respect to e and plugging the result in (A.9) 
we get 

,~ I V ' ( i  - r * 2 ) l  i . ( A . I O )  
r V(1 - r .2) - V(1 - r0 2) = + ( r * / r 0 )  2 - 1 
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According to (A.3), this equation is solved by an infinite number  of values of 
r* (with their corresponding e(r*; r0, ÷0,/~0)) limiting to r* = 1, provided 

r ~  1 (A.11) ( )2 A- 1 < ro2(1 -4- ~ ) .  

any given A > 0, and for any r0 < I ~ A  < Clearly, for 1 such initial 

conditions exist. Summarizing: if the initial conditions satisfy (A.11), then 
there exist an infinite number  of values of e, approaching e = 0, for which the 
orbit  sticks to the boundary for infinitly long time. 
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Strong Variation of Global-Transport Properties 
in Chaotic Ensembles 

Itzhack Dana and Tamir Horesh 

Department of Physics, Bar-llan University, Ramat-Gan 52900, Israel 

Abstract .  Chaotic transport is studied for Hamiltonians H in which one coordinate, 
say q, is cyclic (i.e., it does not appear in H), leading to the conservation of the conju- 
gate coordinate ("momentum" p). It is assumed that the dynamics depends nontrivially 
on the "parameter" p in H. As a consequence, one expects to observe a variation of the 
global-transport properties, both normal and anomalous, in a generic chaotic ensem- 
ble that exhibits all values of p. By considering the realistic model system of charged 
particles interacting with an electrostatic wave-packet in a uniform magnetic field, 
it is shown that this variation can be actually quite strong. This finding may have 
applications to "filtering" sub-ensembles with well-defined values of p. 

Hamiltonian chaos (see, e.g., MacKay and Meiss 1987 and references therein) 
is a unique phenomenon in that it generically appears interleaved with or- 
dered/stable motions on all scales of phase space (Meiss 1986; Umberger and 
Farmer 1985), leading to long-time correlations (Karney 1983; Meiss and Ott 
1986) and quasiregularity (Dana I993) in the chaotic motion. A fundamental 
question is then to what extent the transport due to the deterministic chaos 
resembles that  associated with a truly probabilistic random process, such as 
Brownian motion (Chirikov 1979). This question has been investigated exten- 
sively during the last two decades, mainly for systems which can be described 
by area-preserving maps. A globally diffusive transport, (R 2) = 2Dr ( ( )  de- 
notes initial-ensemble average, R is some radius vector in the phase space, and 
D is the diffusion coefficient), is often observed numerically (see, e.g., Chirikov 
1979; Dana and Fishman 1985) but occurs rigorously only in very special cases 
(Cary and Meiss 1981). The self-similar islands-around-islands hierarchy in phase 
space [Meiss 1986; Zaslavsky et al. (1997)] should be responsible to the anoma- 
lous global diffusion, (R 2) c¢ t u (0 < # < 2) [Shlesinger et al. 1993; Zumofen 
and Klafter 1994; Zaslavsky et al. (1997); Afraimovich and Zaslavsky (1997)], 
which may be described by Lgvy random-walk processes (Shlesinger et al. 1993; 
Zumofen and Klafter 1994). 

Because of the complex phase-space structure of a generic Hamiltonian system, 
chaotic transport is usually quite inhomogeneous locally (Karney 1983; MacKay 
et al. 1984; Dana et al. 1989~ Afanasiev et al. 1991). In this paper, we show that 
one can also observe a high inhomogeneity in the global-transport properties due 
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to the following simple scenario. Consider a Hamiltonian H in which one coor- 
dinate, say q, is cyclic, i.e., it does not appear in H. The conjugate coordinate 
("momentum"),  p, is then a constant of the motion and appears in H as a "pa- 
rameter", H = H(R,  t; p). Here R denotes all the other phase-space coordinates 
and, for the sake of generality, a dependence on time t is included. Our crucial 
assumption is that  the dynamics in the R phase space depends nontrivially on 
the "parameter" p. Now, since p is actually a coordinate, a generic, realistic en- 
semble of particles will exhibit all values of p. Such an ensemble can be divided 
into sub-ensembles characterized by well-defined values of p. The assumption 
above then implies that different sub-ensembles will be characterized by differ- 
ent global-transport properties, e.g., a normal-diffusion coefficient D(p) or an 
anomalous-diffusion exponent p(p). As a result, a variation of these properties 
throughout the entire ensemble will be observed. 

We show here that  this variation can be actually quite strong by considering the 
realistic model system of charged particles interacting with an electrostatic wave- 
packet in a uniform magnetic field. This system is described by the Hamiltonian 

H = f12 / (2M)  ÷ K V ( k x ,  ~) , (1) 

where Fl = p - e A / c  is the kinetic momentum of a particle with charge e and 
mass M in a uniform magnetic field B (along the z-axis), K is a parameter, k is 
the wave-vector (in the z-direction), and V is a general function describing the 
electrostatic wave-packet. This function is periodic in both kx (with period 21r) 
and time t (with period T). Without loss of generality, the values of M and k 
will be both set to 1 from now on. 

To see that  (1) is a Hamiltonian of the kind described above, let us express 
it using the natural degrees of freedom in a magnetic field. These are given by 
the conjugate pairs (xe, Yc) (coordinates of the center of a cyclotron orbit) and 
( I I , ,  Fly), see Johnson and Lippmann (1949). Defining u = Fl,/la;[, v = Hu/w,  
where w = e B / c  is the cyclotron frequency, and using the relation xc = x + 
II~/w = x + v (easily derivable from simple geometry), (1) can be rewritten as 
follows 

g = w2(u 2 + v 2 ) / 2 +  K V ( z ¢  - v, t) . (2) 

It is now clear that  y¢ is cyclic in H, so that it corresponds to the coordinate q 
above. The conserved "momentum" p is then x¢. 

In what follows, we shall assume the simple wave-packet 

V ( x ,  t ) = - c o s x  ~ ~ ( t - s T )  , 
$ ~ - - - - O O  

reducing (2) to the Hamiltonian of a kicked harmonic oscillator. The latter sys- 
tem has been investigated extensively by Zaslavsky et hi. (1986) (see the review 
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article by Zaslavsky 1991) who assumed, however, the very specific value z~ = 0 
in (2). These investigations have led to the discovery of the well-known prop- 
erties of this system. Since the harmonic oscillator is degenerate (linear in the 
action), the nonlinear perturbation in (2) is strong (in the sense of KAM theory) 
for all values of K,  especially under resonance conditions, wT = 2~rm/n (m and 
n are coprime integers). One then expects, on the basis of general arguments, 
that  unbounded chaotic motion of (u, v) should exist for arbitrarily small val- 
ues of K in the resonance case. This motion is observed to take place diffusively 
on a "stochastic web" [see Fig. l(a)], analogous in some aspects to the Arnoi'd 
web. For n = 3, 4, 6, the web has crystalline symmetry (triangular, square, 
hexagonal), while for all other values of n > 4 it has quasicrystalline symmetry. 
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Fig. 1. Portions of the stochastic webs for m/n = 1/4, K = 1.4, and (a) x¢ = 0, (b) 
are = r/2.  Each plot contains 40 000 points of chaotic orbits, generated by iterating 
100 times an ensemble of 20 × 20 initial conditions near the origin with the map 
corresponding to (2). Notice that the diffusion rate in case (b) is slower than in case 
(a). Without loss of generality, the value of ~ in (2) is set to I in this paper. 

The need to consider general values of z¢ has been pointed out only recently by 
Dana and Amit (1995), who developed a general formalism for calculating the 
normal-diffusion coefficient D(zc) for Hamiltonian (2) as a function of ze. Here 
D(z¢) is defined, under resonance conditions wT = 27rm/n, by 

1 2 
D(z¢) = l ina  ~ (R,,,)E(~o) , R ~ = = . ( u , - u o ) 2 + ( v , - v o )  2 (3) 

(assuming the limit exists), where (u,, v,), s integer, are the values of (u, v) at 
times sT  - 0 and the average ( ) is taken over a sufficiently large sub-ensemble 
E(z , )  of initial conditions (u0, v0) at fixed x,. As already emphasized by Dana 
and Amit (1995), the average D ~  of D(zc) over zc is of practical importance, 
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since in an experiment one usually measures the average diffusion rate of a 
generic ensemble, exhibiting all the values of zc. Here we shall focus on the 
dependence of the global-transport properties on z¢. An impressive example 
showing this dependence was given, apparently for the first time, by Dana (1994) 
in a quantum-chaos context: for the n = 4 web (square crystalline symmetry),  
and for small K,  the diffusion rate for zc = 7r/2 is much slower than that  for 
ze = 0. Traces of this phenomenon can be observed already for K not very small, 
as shown in Fig. 1. Later, Pekarsky and Rom-Kedar (1997) have shown that  for 
small K the n = 4 web undergoes a dramatic structural change, mediated by a 
sequence of bifurcations, as z¢ is varied from z~ = 0 to zc = ~r/2 (this can also 
be seen in Fig. 1). They showed that the width of the stochastic layer of the web 
is proportional to exp(-~r2/K~), where e = 1 for zc = 0 and e = 2 for zc = rr/2. 
This explains the strong difference in the diffusion rate in the two cases for small 
K,  observed by Dana (1994). 

Analytical expressions approximating D(xc) to high accuracy for K sufficiently 
large can be obtained using the formalismof Dana and Amit (1995). For example, 
for the n = 4 web we find 

{~Jo(K)  1 eo 
D(x~) ~ I¢ 2 + ~ cos(2xc) + ~ E exp(-2irx~) x 

r ~ - - - 0 0  

[ ( - 1 ) ' J o ( r K ) J ] ( K )  - J 2 ( r K ) J 2 r ( K )  cos(4xe)] } , (4) 

where J , ( K )  is a Bessel function. For K sufficiently large, the expression in (4) 
can be simplified by identifying the dominant terms in the sum over r. 

A variation of the global-transport properties, which is much stronger than that 
in the normal-diffusion case [e.g., D(x¢)  in (4)], can be observed when anomalous 
diffusion is present, 

2 s,,(~) , (5 )  

where R~ is defined by (3) and #(z~) is the anomalous-diffusion exponent, 
/~(Xc) ¢ 1. "Superdiffusion", with 1 < /J(zc) < 2, can be observed for suffi- 
ciently large values of K in the case of the crystalline webs (n = 3, 4, 6). In this 
case, the translational symmetry allows for the existence of generalized periodic 
orbits, the "accelerator modes". Their defining equations are 

u , , + ~ ,  = u , ,  + 2rrjl , v,,,+~,, = v , ,  + 2 r j 2  , (6) 

for all integers s, where l is the minimal period and 2 r ( j l ,  j~) is a lattice vector 
characterizing the accelerator mode. If sn  is replaced by s n  + r, r = 1, ..., I n -  1 

(corresponding to the "other" points of the periodic orbit), Eqs. (6) will be sat- 
isfied with (jl ,  j2) replaced by O r ( j x ,  j2 ) ,  where O is a rotation by an angle 
c~ = 2 r r m / n .  If the accelerator mode is linearly stable, each point of it is usually 
surrounded by a stability island. All the points within an island move essentially 
(i.e., on a sufficiently large scale) according to Eqs. (6), leading to "acceleration", 
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R~l,~ o¢ s ~ (i.e., g = 2). On the other hand, points in the chaotic region (stochas- 
tic layer of the web) will "stick" near the boundaries of the islands, following 
their accelerating motion for a long time interval, and are ejected afterwards 
back inside the chaotic region. After some time, they will eventually stick again 
near the boundaries of the islands. This process explains figuratively the origin 
of the global suPerdiffusion with an exponent /J taking values between /~ = 1 
(corresponding to the normal diffusion expected in a strongly-chaotic regime or 
in the absence of accelerator islands) and # = 2 (corresponding to acceleration 
within the islands). A quantitative explanation of superdiffusion and a general 
relation between/~ and the self-similarity properties of accelerator islands have 
been given recently by Afraimovich and Zaslavsky (1997) [see also the recent 
review article by Zaslavsky et al. (1997)]. 

In the case of our system, the crucial observation is that,  for a given value of 
K,  accelerator islands may exist only in some intervals of z¢. In these intervals, 
the characteristics of the islands usually vary strongly with zc. This is shown 
in Fig. 2 for the n = 4 web at K = 3.25. For this value of K,  we were able 
to find only accelerator modes of minimal period I - 1 with (jl  - 1, j2 = 0) 
and (Jl - 1, j2 = 1) [recall the definition (6)]. These modes exist only in the 
ze-intervals covered by the several curves in Fig. 2. The modes are linearly stable 
and give rise, usually, to accelerator islands only if the trace of their linearity- 
stability matr ix  is between - 2  and 2 (the two horizontal dashed lines in Fig. 
2). Fig. 3 shows an enlargement of Fig. 2 in the main interval of xc where the 

14.0 

(D 
¢.D 
c~ 

4.0 

t - -  

- 6 . 0  
0.0  1,0 2.0 3.0 

/ 
(1. O) ] (1, 011 (1, 1) 

l . . . . . . . . . . . . .  _ _ _  'ii ' . . . . . . . . .  

X c 

Fig. 2. Trace of the linear-stability matrix as a function of x¢ for the accelerator modes 
with minimal period I = 1 in the case of n = 4 and K = 3.25. These modes exist only 
in the intervals of x¢ covered by the several curves, and are linearly stable only if the 
trace is between - 2  and 2 (the two horizontal dashed lines). The label (1, 0) or (1, 1) 
near each curve is the type (jl, j2) of the corresponding mode. 
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(1, 1) accelerator mode e~sts. We also plot here a properly normalized area 
S(zc) of the corresponding accelerator island as a function of z¢. Obviously, 
S(xc) vanishes for zc outside the interval. 
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Fig. 3. An enlargement of Fig. 2 in the main z¢-interval of existence of the (1, 1) 
accelerator mode. The dashed line with diamond symbols gives the area of the cor- 
responding accelerator island, in units such that the maximum value of the area, at 
x~ = ~r/2, is 5. The area was actually computed only for x~ _< ~r/2, and the reflection 
symmetry around x~ -- 7r/2 was used to complete the plot for xc > rr/2. 

We have performed an accurate calculation of the anomalous-diffusion exponent 
p(zc) (n = 4, K = 3.25) for the same values of xc used to plot the curve 
of S(z¢) in Fig. 3. This calculation was made as follows. For a given value of 
zc, a large ensemble of 400 x 400 initial conditions, uniformly distributed in 
the 27r × 2~" unit cell of the web, was iterated 1219680 times with the map 
corresponding to (2). Initial conditions inside accelerator islands were easily 
identified by their accelerating motion, and were removed from the ensemble. 
The remaining ensemble, E ( z ¢ ) ,  should consist then entirely of initial conditions 
inside the chaotic region. Indeed, we have found that  for times t = sn  < 1219680 
the ensemble E(zc)  evolves reasonably well according to the anomalous-diffusion 
law (5). The anomalous-diffusion exponent #(z¢) was determined from the best 

R 2 fit of the function f ( s )  = B s  u to ( ,-)E(=o)" The results are shown in Fig. 4. The 

strong oscillatory variation of p with zc, from/~ ~ 1 (i.e., nearly normal diffusion) 
to /z  ~ 1.5, is quite remarkable! Notice that the oscillatory behavior of/J(zc) is 
quite different from the monotonous one of S ( x c )  (the area of the accelerator 
island in Fig. 3). In particular, the maximal value of #(z~) is not attained at 
x¢ = ~r/2, as in the case of S(z¢). In fact,/z(zc) is really determined not by S(x~) 
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but by the self-similarity properties of the accelerator islands [Afraimovich and 
Zaslavsky (1997); Zaslavsky et al. (1997)]. 

1.40 
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X c 

F i g . 4 .  Anomalous-diffusion exponent ~(xc) for n = 4 a n d  K = 3.25,  calculated as 
explained in the text. As for the area curve in Fig.  3, p(x¢) was  a c t u a l l y  computed 
on ly  for  xc <_ 7r/2, and the reflection symmetry around xc = r r /2  was  u s e d  to complete 
the plot for xc > ~r/2. 

In conclusion, we have shown that global-transport properties, such as the 
normal-diffusion coefficient D and the anomalous-diffusion exponent #, can vary 
throughout a chaotic ensemble due to a general and simple scenario. This has 
been illustrated by a realistic model system of charged particles interacting with 
an electrostatic wave-packet in a uniform magnetic field. For this system, we have 
found that the variation of the global-transport properties, mainly the anoma- 
lous ones, can be remarkably strong. We expect that this finding should have 
experimental applications to "filtering" or preparing sub-ensembles character- 
ized by well-defined values of the conserved momentum, e.g., zc. This can be 
easily accomplished, for example, by considering electrostatic wave-packets de- 
pending on a "phase" ¢, i.e., V = V ( z - ¢ ,  t), and by adjusting ¢ so the maximal 
transport rate is attained at the desired value of zc. Other theoretical aspects 
of the problem considered in this paper will be studied in future publications. 

We would like to thank V. Rom-Kedar, G. M. Zaslavsky, F. Skiff, and J. Klafter 
for useful comments and discussions. This work was partially supported by the 
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Humanities. 
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Abs t rac t .  Nonuniformity of the phase space of chaotic Hamiltonian dynam- 
ics can result from the existence of a sticky set called "Sticky Riddle" (SR) 
imbedded into the phase space. Fractat and multifractal properties of SR can 
be described for some simplified situations. Existence of SR imposes similar 
stickiness for chaotic orbits when they approach the vicinity of SR. As a result, 
the orbits reveal behavior with power-like tails in the distribution of Poincar6 
recurrences and exit times, which is unusual for hyperbolic systems. We exploit 
the generalized fractal dimension to describe the set of recurrences. 

Keywords .  Chaos, fractMs, dimensions, Poincar~ recurrences 

Introduction 

Direct observation of motion of chaotic particles in the phase space displays 
a certain nonuniformity of orbits distributions. More precisely, a typical point 
visits different parts of invariant sets with different frequencies. The nonuni- 
formity can manifests itself in different ways: there may be holes in the phase 
space (islands) which can not be penetrated by an orbit from the outside space 
(stochastic sea), and there may be a concentration domains inside the stochas- 
tic sea due to known or unknown reasons. Numerous simulations show a fairly 
rich collection of realizations of the nonuniformity. For Hamiltonian systems, 
which will be discussed in this article, the nonuniformity of the invariant set can 
occur because of islands, cantori, unstable isolated periodic orbits, boundaries, 
and other reasons. Observations and descriptions of some of the mentioned 
properties of orbits can be found in [1,2]. In fact, occurrence of the nonuni- 
formity of the invariant set, or stationary distribution function (using physical 
terminology), is at the heart of our understanding of the Hamiltonian chaos 
and its different applications. First, nonuniformity should be related in some 
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way to special, say, singular properties of the dynamics in the phase space. The 
singularities do not yet have a rigorous and/or convenient classificiation despite 
the fact that they can easily be observed from the simulation. One can mention 
a border between chaotic and nonchaotic motion as the most typical example 
of a singularity. Singular points or sets can be imbedded into the stochastic 
sea. Secondly, presence of singularities imposes specific large scale space-time 
asymptotics of distribution functions and correlators. Third, nonuniformity 
and singularities lead to absence of the familiar Gibbs microcanonical distribu- 
tion, i.e. to significant changes in statistical and thermodynamical properties 
of system with chaotic dynamics (see for discussions [3]). 

In the light of the above described "unusual" properties of chaotic dynamics, 
we should seek new approaches which could automatically reveal the absence 
of characteristic space-time scales. Fractal or multifractal features of systems 
with different powerwise distributions can be considered using special methods 
of analysis, which became routine after a set of pioneering publications [4-7]. 
These results have been followed by rigorous description of the famous f (a)  
spectrum of dimensions [8-10]. 

Invariant sets of sticky chaotic dynamics should be considered in accordance 
with the existence of infinite moments. As a good (and important) example 
one can mention the distribution of Poincar~ recurrences. It was shown by 
simulation and on the physical level of consideration that for some situations 
there exists a power-type tail of the Poincard recurrences distribution with 
an exponent connected to an exponent of the macroscopic transport [11-13]. 
Fractal and multifractal analysis can be applied to the Poincard recurrences 
[14,15], providing a new tool to study chaotic dynamics. 

In this article, we discuss the existence of limit sets, called "sticky riddles" 
(SR), for Hamiltonian chaotic dynamics which is not uniformly hyperbolic. We 
apply space-time scaling properties of SR to describe invariant distributions of 
the Poincar~ recurrences. 

1 Bad Orbits 

In this section, we would like to attract the attention to the existence of 
zero measure of special type orbits which are bad in the sense that they do 
not possess a typical hyperbolic property that is valid for all typical orbits of a 

Hamiltonian system. 
Assume that/z is an invariant probability measure and A is the support of 

p, i.e. A is a closed invariant set of our dynamical system with p(A) -- i. Given 
x E X, one can consider the upper  and lower pointwise dimensions at x 

d~,(x) ----limsup logp(B(x, e)) 
~--+o log e ' 

du(x) =liminf log/~(S(z, e)) (1.1) 
~ 0  loge 
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where B(z, e) is the ball of radius e centered at the point z. If 

du(x ) = du(x ) -- du(x  ) (1.2) 

then dt,(z ) is called the pointwise dimension at x ([16]). Thus, 

p(B(z,  e)) -~ e a.( ')  (1.3) 

at  the  po in t  x. For  e rgodic  measures  wi th  nonzero  L y a p u n o v  exponien ts ,  
du(x ) .=. d for p-almost every x , i.e. it might be that  d~(x) does not equal 
d only on a set of zero measure. This result has recently been proved in [17] 
although it has been known for a long time as the Eckmann-Ruelle conjecture 
[181. 

Let 
K ~ = { z E A ] d u ( z ) = a } ,  h e R ,  (1.4) 

then the f ( a )  spectrum for dimensions is defined by f ( a )  -- dimH K,~ where 
dinah Ka denotes the Hausdorff dimension of the set K~. Thus, f ( a )  is nontriv- 
ial if there are many sets of zero measure but nonzero dimension with scaling 

p(B(z,  e)) ~ e ~, 

The set A can be decomposed now as 

A =  U 
--oo<a<oo 

# a .  (1.5) 

u s (1.6) 

where S = {zldu(z ) does not exist } is the so called Shereshevsky set [19]. It 
was shown in [19] that  for a class of C 2 surface diffeomorphisms with Smale 
horseshoe A, having different rates of contraction and expansion at different 
points, the set S is dense in A and has positive Hausdorff dimension for any 
good enough (equilibrium) measure p. Of course, p(S) = 0 for any good ergodic 
measure #. Thus, even for dynamical systems with hyperbolic invariant set we 
see that:  

(1) the existence of zero measure sets Ka with different scaling constants im- 
plies nontrivial f(c 0 spectrum (and, in fact, nontrivial Hentschel-Procaccia 
spectrum [4]); 

(2) the existence of zero measure set S is the reason for many mathematical 
difficulties in the study of multifractal properties of dynamics. 

Bad, irregular orbits appear also in the problem of calculating Lyapunov expo- 
nents, in performing of time (Birkhoff) averages, in evaluation of local entropies 
etc. - see [10, 20]. It is unclear if, the irregular sets are physically negligible 
even for "uni formly hyperbolid' system. Nevertheless, for systems with nonuni- 
formly hyperbolic orbits (such as orbits in chaotic sea of Hamiltonian system), 
bad orbits become physically recognizable. 
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For Hamiltonian systems with chaotic dynamics, the chaotic sea does not 
cover the full phase space, and one needs to extract a set of islands and boundary 
layers to obtain a region with chaotic behavior. The behavior of orbits near the 
island boundary layer was studied in [13,21-23] as a fractal object which imposes 
powerwise distribution in the large time asymptotics of chaotic kinetics. More 
specifically, the island boundary is sticky, the subisland boundary is stickier and 
so on. This is the major cause of the fractal (multifractal) space-time behavior 
of the orbits. As numerical experiments show, sticky orbits "attrac?' a typical 
orbit in chaotic sea, forcing it to behave nonchaotically for a long time. It is 
possible to extract some quantitative information if we know scaling laws in a 
hierarhy of islands of different generations. For that,  the hierarhy has to be 
infinite. 

A simple, one-dimensional (non-Hamiltonian) analog of this situation is an 
infinitely renormalizable map in the family of quadratic maps 

: ax(1 - x )  = f , ~ ( z ) ,  a E [0,41 • (1.7) 

Let us remind that fa is infinitely renormalizable [24] if there are infinitely 
many numbers nx, n~, . . -  and infinitely many subintervals 11, I2 , . . .  such that  
fn~ Ii C Ii, fn~ has the only one critical point on Ii = [xi,yi] and fn 'x i  = xl. If 
so, then f " '  [Ii can be treated as fl[0, 1] ( after some rescalling). It is possible 
to define a "stickt]' set 

c ~  rnk  k 
F = N  W f~Ii  (1.S) 

i = l k : l  

which is really sticky since it attracts almost every orbit on [0, 1]. The dy- 
namics fa IF is nonchaotic - the topological entropy of fa IF equals zero. There 
are infinitely many values of a E [0, 4] for which fa is infinitely renormalizable. 
The well-known Feigenbaum attractor is realized for an infinitely renormaliz- 
able situation. It is known how length (/i) behaves as i ~ c~ (scaling law is 
determined by eigenvalues of the period-doubling transformation), therefore it 
is possible to find the fractal dimension and other characteristics of the set F 
(see for instance [24], [25]). 

In order to obtain information in the Hamiltonian case, one must first de- 
fine a situation similar to the infinitely renormalizable one for one-dimensional 
families. We do it in the Sec. 3 by introducing a notion of sticky riddles (SR). 
Then, one must transform a knowledge of scaling laws into the information 
about the behavior of sticky orbits and orbits around islands. For that,  we use 
a generalized Carath~odory construciton (Sec. 5), and notions of dimension 
and capacities for Poincar~ recurrences (Secs. 6 and 7). 

2 E x a m p l e s  o f  St icky  Orbi t s  

In this section a few examples will be given of bad orbits that  occur in 
different physical models. 
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(a) I s l a n d - a r o u n d - i s l a n d s  s t r u c t u r e  in  t h e  s t a n d a r d  a n d  
web maps. 

A typical Hamiltonian system has a rich set of islands in phase space, with 
a regular dynamics inside the islands and with narrow stochastic layers isolated 
from the main stochastic sea domain. As an example, one can consider the web 
map 

f i = v ,  ~ = - u - K s i n v  (2.1) 

or the standard map 

p = p - K s i n x ,  ~ = z + p ,  (2.2) 

with a fairly well known island structure which will be discussed more below. 
The islands-around-islands structure was observed and described in different 
situations [1,21,13,26]. The dynamics near the islands boundary is singular due 
to the phenomena of stickines, and it can dominate in the large time asymp- 
totics. This influences almost all important  probability distributions, such as 
the distribution of distances, exit times, recurrences, transit times, etc. The 
main feature of all such distributions is that  they may not correspond to either 
Gaussian or Poissonian (or similar) processes with all finite moments. This is 
due to the presence of powerlike tails in the asymptotical limits of large space- 
t ime scales. More precisely, one must admit that  simulations show a possibility 
of existence of infinite moments of the recurrences distribution for some values 
of the parameter  K,  while a rigorous theory of that  property does not exist. 

Being more specific, one can say that power-wise tailed distributions are 
a consequence of a (multi-) fractal singular scattering zone near the island 
boundaries. More precisely, there are different sets of islands with different 
asymptotics (different powers of distribution tails) and different scales for where 
and when the asymptotics work. Different intermediate asymptotics is a crucial 
characteristic of the anomalous transport,  as was mentioned in the problem of 
advection [27], and the problem of charged particle motion in an electromagnetic 
field [28]. This is the basis for introducing a multifractal description of some 
distributions in chaotic dynamics. 

In numerical experiments, we can not recognize sticky orbits directly and 
special methods of visualization should be used. Usually, the power-like tails 
in distributions indicate the presence of sticky orbits. Nevertheless, there are 
geometric criteria of the existence of such kind of orbits. One of them is an 
infinite hierarchy of islands of nonvanishing prolifiration numbers q (see below). 
For example, for the map (2.2) one can find the value K = Ks = 6.908745. . .  for 
which an eight-island chain (i.e. q = 8) persists in subislands of three successive 
generation. (See Fig. 1 from [15].) We expect the existence of such a value Ks 
for which the sequence of multiplication of islands of smaller and smaller sizes 
is infinite with a coefficient (proliferation number) q = 8 excluding the initial 
3-island figure. One can find more such examples in [13,29]. 
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Fig. 1. Example of the island hierarchies for the standard map [13]. (a) The main 
island and first generation of a three-island chain. (b) Magnification of the 
right island in (a). (c) Magnification of the left island in (b). (d) Magnification 
of the bottom island in (c). 
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In the simplest situation, the islands hierarchy satisfies the exact renormal- 
ization conditions: 

n qn -- Aqq0 , (Aq > 3) 

s .=A}s0 ,  (As<l) 
T, -- A~T0 , (AT > 1) 

(2.3) 

where q,~, S, ,  and Tn are, correspondingly, the number of islands, area of islands, 
and period of the last invariant curve inside islands of the n-th generation. More 
complicated sequences can be shown for the equations (2.1),(2.2). 

(b) Bil l iards 
A particle in billiards of different shapes is another example of a dynamical 

system with bad orbits. For example, Sinai billiard (with so-called infinite hori- 
zon) has infinitely long bouncing orbits. Because of such orbits, there exists a 
possibility for any orbit to stick for an arbitrarily long time to the bouncing 
regime. An example of such an orbit is shown in Fig. 2 [30]. In the corre- 
sponding Poincar6 section in Fig. 2(b), s's (dark lines) correspond to bounces 
and reflections with 7r/4 angle without scatterings. The measure of bad or- 
bits is zero. Nevertheless, any hyperbolic orbit approaches the s's, which leads 
to strong effects for the Poincar6 recurrences distribution [31-33] and kinetics 
which seems non-Gaussian [30]. 

3 Cr i te r ia  of  t he  Exis tence  of  St icky Orb i t s  

It is well-known that Hamiltonian dynamical system generally contains ho= 
moclinic orbits [34] belonging to transversal intersections,of stable and unstable 
manifolds of periodic orbits. Therefore (see, for example, [35]), it contains hy- 
perbolic subsets which consist of "good', hyperbolic orbits. Nevertheless, the 
characteristics of hyperbolicity for the hyperbolic subsets intimately depend on 
the "orders of the resonances" of the basic periodic orbits, i.e. on their periods. 
Numerical simulations show that there are many values of parameters, say K 
as in (2.1),(2.2), for which stickiness is originated by a fractal (or multifractal) 
set of islands displayed in Fig. 1. In a rough way, such a fractal is shown in Fig. 
3. From another point of view, stickiness means a decreasing of the Lyapunov 
exponents and angles between stable and unstable manifolds when the islands 
become smaller, i.e. when the order of generation of islands becomes larger. 
This effect can be qualitatively explained using Figs. 1 and 3. The bound- 
ary layer has a finite width. Infinite proliferation of the number of islands, i.e. 
q, -~ oo in (2.3), yields additional scaling property for the angles of intersection 
of islands' separatrices 

= (cXi/All)"O0 = (Ao = cA . /A ,  < 1) (3.1) 
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Fig. 2. Sinai billiard with a trajectory that makes many bounces (a) and the corre- 
sponding Poincar6 section (b). 

6.5 

0 0 0 

° 0 °  
• 0 0 

• Q 

Q Q • 

• 0 0 

° 0 °  
• • 0 

0 • • 

o O o  
0 0 0  

II, 
0 0 • 

o O o  
O 0 O  

0 0 • 

o O o  
0 • Q 

Q • 

0 0 0  

0 • • 

o Q o  
0 • Q 

Fig. 3. Example of the phase space partitioning 
for islands-around-islands structure. 



67 

with a constant c of order one and scaling constants .~±, 2kll for the islands sizes. 
Let us note that  

AS = ~±~11 (3.2) 

It is possible to estimate that  the local Lyapunov exponent is proportional to 
the angle ~ of the separatrices intersection at the main saddles of islands, or to 
the inverse period Tn, and it tends to zero due to (3.1)(3.2) as n --+ cx). The same 
is true for orbits in hyperbolic sets in the neighborhood of homoclinic orbits 
to these basic periodic trajectories. In other words, the hyperbolicity of orbits 
becomes weaker if we move from the "hearf '  of chaotic sea to its "boundart]'  
and we can expect that  it disappears at on the boundary, and that the orbits 
very close to the boundary layers are not chaotic at all. 

Let us attach a mathematical  sense to this statement.  First of all, give a 
definition of sticky orbits and sets. For the sake of simplicity we consider only 
the case of area preserving maps of the plane (i.e. the systems with 1.5 or 2 
degrees of freedom). Let g -: R 2 --4 R 2 be an area preserving map. A piece of 
plane u homeomorphic to the disk is said to be an island of stability if gqu = u 
for some integer q. In fact, q is the minimal period of periodic points in u. 

De f in i t i on .  A n  intlnite set M = { U~o...i~_~ }, n = 1 , 2 , . . . ,  1 < i, < k ,  < co, 
o f  islands o f  s tabi l i ty  is said to be the s t i cky  riddle (SR)  i f  

(1) 

(2) 

(3) 

(4) 

(5) 

for any island uiQ,...i,~_ 1 E M there is an island ujo...j ,_ ~ E M such that  

g = Ujo. . . j ._ , ;  

i fg  (Uio...in_~) = uj0...j,_, then for any i, 0 < i < k , ,  there is j ,  0 _< j _< 

k, ,  such that  g (Uio...i,,_li) = •Jo'"J,*-lj; 

diana Uio...i~_t -'~ O, therefore area(Uio...i,_a ) --~ 0 as n --~ cx); 

for any sequence of points xn E uio...in_,, the lim xn exists; 
n - - $  o o  

If x,, 6 Uio...i,_a C M, n E Z+, y~ E vj0...j,,_, E M, m 6 Z+, and 
Vjo...jk_x ~ Uio...ik_~ at least for one k, then lim x ,  ~ lim y,, .  

~ - - b  Oo  r/l---I. Oo  

D e f i n i t i o n .  Let M be a SR. The set 

= lfxlx = lira x,~, x,~ E Uio...i~_l ~ i s  called the sticky set, and orbits in S are S 
n . - . ~  o o  ) 

called sticky orbits. 
Let us emphasize that  an islands-around-islands structure satisfies the def- 

inition of S R .  Indeed: (1) an island of the n-th generation is mapped into 
an island of the same generation; (2) if an island uio...i,,_~i lies in a vicinity of 
the island uiQ...in_~ then its image Ujo...jn_~j lies in a vicinity of the image of 
Uio...i,,_~ i.e. dynamics on the (n + 1)-th level is consistent with the dynamics of 
the n-th level; (3) this property is trivially understandable; (4) there is the only 
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point of accumulation of islands uio...in_l along any infinite branch (ioil ...) of 
the "treg' { ( i 0 " "  i,,-x)},°°=l; (5) as numerical simulations show, in the islands- 
around-islands structure the distance between any pair of neighboring islands 
of a fixed, n-th, generation roughly a constant (idependently of the choice of 
particular neighboring pair) and depends only on n. It follows that  for different 
branches (i0il "" "), the points of accumulation are different. 

Thus, the existence of SR, and in particular the existence of infinite islands- 
around-islands hierarchy is a criterion of the existence of sticky orbits. 

The following questions immediately become very important .  Let us formu- 
late them for the maps (2.1), (2.2). 

- Is it true that  sticky orbits exist for many values of the parameter  K ? 

- Is it true that  for some value Ks of K, the set of sticky orbits has nonzero 
Lebesgue measure? nonzero Hausdorff dimension? 

If true, we may introduce some parameters to measure the difference between 
good and sticky orbits. (We can treat orbits having positive Lyapunov exponent 
as good orbits). For example, one can consider the ratio 

rues(S) 
~7- rues(G) 

where S(G) is the set of all sticky (good) orbits and mes is the Lebesgue mea- 
sure. Definitely, 1/should be a function of the parameter  K : ~? = t/(K) whose 
behavior must reflect essential properties of the systems (2.1), (2.2). Or we can 
study the Hausdorff dimension of the set S (if it has zero Lebesgue measure). 
The dependence r/(K) can be of the devil's-stair-case type. 

4 S y m b o l i c  D y n a m i c s  on  t h e  Se t  o f  S t i c k y  O r b i t s  

A sticky set S is the topological limit of the sets uio-.i,_l in the SR. The 
properties (1)-(5) of the SR allow us to reproduce the behavior of g[S. It 
is useful to consider some symbolic model. Denote by ~ the set of infinite 
sequences w = (i0, i l , . . - ) ,  1 < ij < kj < 0o with a metrics 

dist (w',w") = ~ li'k ~- i'll, a > l .  (4.1) 

k=O 

If kj < C < ~ for some constant C then f~ becomes a compact set home- 
omorphic to the standard Cantor set (if kj > 1, j = 1 ,2 , . . . ) .  In order to 
define a dynamics on f~, we have to take into account the property (1) in the 
definition of SR. We define the desired map T : f~ --~ fl as follows. For any 
w__= (io,il,.'.) E ~ and any n = 1 ,2 , . . . ,  set 

T([io,. . . , in-ll)=(~o,. . . , jn-1]) if g(Uio...i._,)=Ujo..j._, (4.2) 
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Thus ,  we have the nested sequence of "cylinders" [ j 0 , ' " , j , - a ] ,  n = 1, 2 , . . . ,  
co 

and define T w  = fq [1o,"" jn-1]. 
- -  n = l  

It follows f rom the definition tha t  the map  T is well-defined and cont inuous 
due one-to-one.  The  map  T maps  cylinders to cylinders. Therefore  it is very 
similar to the so called dyadic adding machine  [24]. Despite the fact tha t  the 
model  looks artificial, it is the simplest symbolic  model  of the type  of dynamics  
occurring in SR. It  is useful to remind the definition of the model.  

D y a d i c  a d d i n g  m a c h i n e :  Let f~+ be a set of all one-sided infinite se- 

quences f rom "0" and "1" with the usual distance. Denote  by ~ : f~+ ~ f~+ the 
following map:  

- i f  w =  (1, 1 , . . . )  then J w =  (0 ,0 , . . . ) ;  
- if  w__ = ( i 0 , i l , . . - ) ,  ik = 1, k = 0 , . . . , j -  1, ij = 0, then (~w__)k = 0, 

k = O , - - . , j -  1, (Jto)j = 1, ($w)j+s = ij+,, s >__ 1, 

- if w =  (O, ia, . . . )  then (fw__ = (1 , i l , . . . ) .  

Then  the map  J is one-to-one. Indeed, 

- 6 - 1 ( 0 , 0 , . . . ) =  ( 1 , 1 , . . . ) ,  

- if w_ -- (io, ix . . . ) ,  ik ---- 0, k -- 0 , . . . , j -  1, ij = 1, then ( J - l t o )k  ---- 1, 
k = 1 , . . .  , j  - 1, ( ~ - l w ) j  ---~ 0 ,  ( ~ - l w ) j + s  - -  i j + s ,  8 > 1, 

- if w =  ( 1 , i l , - - - )  then $ - 1 w =  (0, i l , - - - ) .  

It  is clear tha t  J is continuous.  The  dynamical  sys tem ($", f2 +) is called the 
dyadic  adding machine.  The  reason for tha t  can be unders tood if we consider 
the Abel ian group of 2-adic integers 
{k = io + i12 + i222 + --- + i ,_12  n-1 }. The  t ransformat ion  tha t  adds the el- 
ement  ~ = (1, 0, 0 , . . . )  to the number  k corresponds to the map  6 generated 
by our  dynamica l  system. The  map  (i maps  cylinders to cylinders of the same 
length,  for example  

(1, 1, O) 6 ) (0, O, 1) } (1, O, 1) ---+ (0, 1, 1) > 

(1, 1, 1) ) (0 ,0 ,0)  > (1 ,0 ,0)  ---+ (0, 1, 0) > (1, 1,0). 

"I *l , In t roduce  the following metrics on f~+: for w = (i0, i l , . . . ) ,  w__' = (%, h ,  ' "), let 

- -  " I  . . " I  " " I  dist(w',_ _w)= 1 if i 0 = , 0 ,  " , ' , - 1 = ' - - 1 , ' , ¢ i -  . (4.3) 
n 

T h e n  the m a p  ~ is isometry because of the proper ty  above: ($w__)k = (6w')k, 
k = 0, 1 , . . . ,  n - 1, and 1In = dist,ew ($w__, Sw__') = 
distnew (to, w~). Therefore,  the topological entropy of ~ is zero. 
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Generally, the map  Tiff  can be an m-adic adding machine or a generalized 
adding machine (see, for instance [24]) with zero topological entropy. 

The following theorem shows us that  the maps  glS and TIf~ have the same 
dynamics.  

T h e o r e m  1. The maps TI~ and g[S are topologically conjugated 

PROOF. We prove this for the case when Tiff is just  a dyadic adding ma-  
chine. For the general case, the proof is basically the same with nonessential 
technical complications. 

Fix n E Z+ and let u0...0 = A°n, AJ  = gJ&°n, j = 1 , . . . , k n .  Assume that  

sets /kJ are ordered in such a w a y  that  i f x  E S, x = l i m  x , ,  xn E A~ (n), 
n - - b O o  

n E Z+, then j (n)  = io + i12 + . . .  + i,,_12 n where ik E {0, 1} and independent 
of n. Thus, a map  h : x --+ (i0, i l , - . . )  is well-defined. Since /kJ are disjoint 
closed sets, we have that  h is continuous. It  is one-to-one, thanks to the prop- 
erty (5) in the definition of SR. Show that  h is a conjugacy. Indeed, we have 
g/X~,~ A~ "+1 for jn < 2 n 1 and _ ^ ~ " - 1  o = - Y"n  = /k n. Then, if the sequence 
Jn = io + i 1 2 + " ' + i n 2  n-1 corresponds to the point w = (i0,il  " " )  and x E S, 
it follows tha t  the sequence of numbers {jn + 1} for the point gx corresponds 
to the sequence (iw. Thus, h o g = tf o h. 1:3 

This theorem shows that  on the set S, area preserving m a p  g in some new 
"symbolid' coordinates is represented as generalized adding machine. In other 
words, there is a sequence of subsets h ( [ i0 . .  " in-l])  = Wio...i,_l of different 
levels, n = 1, 2,- .., of the sticky set 5' such that  the map-g acts as a permuta t ion  
on every fixed level n = 1, 2 , . . . .  

R e m a r k .  From a topological viewpoint, the dynamics of the map g on the set 
of  sticky orbits is similar to the dynamics of a dissipative map on the Feigen- 
baum attractor Yc~o [24]. Nevertheless, scaling properties of the set S can be 
different from those for 51. The main difficulty here is an unfamiliar type of 
inductive processes for sticky sets. In standard geometric constructions (Moran- 
like, [10] for example), the sets of  the (n + 1)-th level are contained inside the 
sets of  the n-th level. In our situation, the sets of  the next level do not be- 
long to the sets of the previous level; they are just  associated with sticky sets. 
The study of the fractal properties of sticky sets is therefore an interesting new 
problem. 

5 G e n e r a l i z e d  D i m e n s i o n s  

As was mentioned above, temporal  characteristics of sticky orbits are as 
impor tan t  as spatial  ones. To study their fractal properties in space and t ime 
we apply a general approach developed by Pesin [36] on the basis of classical 
Carathdodory results [37]. 
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Assume tha t  X is a metric space with a distance p, and 5 is a collection of 
open subsets of X,  or Y is the collection of all balls of all diameters. Consider 
functions ~(u), T/(u) of subsets u • Y satisfying the following properties: 

(1) ,7(u) > 0 if u # ¢, ~(u) > 0. 

(2) For any ~ > 0 one can find ¢ > 0 such that  t/(u) < (i for any u • iT with 

d iam u < e (diam ui = sups,re m p(x, y)). 

The collection iT and the function ¢(u), T/(u) of sets in Y form a Carathdodory 
structure [36]. Fix some Carath6odory structure and consider a finite or count- 
able cover G = {ui} of X by sets ui with diam ui < e. Then introduce the 
s u m  

M(a,  e, G) = Z ~(ui)q(ui)" (5.1) 
i 

and consider its infimum 

M(a,e) = inf Z ( ( u i ) , ( u i ) " ,  
i 

where the infimum is taken over all finite or countable covers G with d iam 
Ul ~ e, uj • G. The  quantity M(a, e) is a monotone function with respect to 
e, therefore, there exists a limit 

m((~) = lira U(c~, e). 
e--~0 

I t  was shown in [36] that  there exists a critical value a¢ • [ - c %  c¢] such that  

r e ( a ) = 0 ,  ~ > a ~ ,  a ¢ 4 + o ~ ,  

m ( a ) = o ¢ ,  a < ~ c ,  a c # - ~ .  

The number  ac is said to be the Carathdodory dimension relative to the struc- 
ture (Y, ~, r/). 

For example,  if iT is a collection of balls {B(x, e)} of all diameters  e > 0, 
centered at all points x E X,  ((B(x,  e)) =_. l, 71(B(x, e)) = e, then 

N 

M(a, ¢, G) = Z[d iamB(x i ,  ei)] ~, 
i = 1  

and ac = dimHX is the Hausdorff dimension. I f  the Hausdorff measure rn(ac) 
is positive and finite then the average 

m c  
< [diarnB(xl, q ) ] ~  >,-, -~--, e >> 1. 
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Consider another structure (~r,~,T/) on the same set X,  and let ae be the 
corresponding dimension. If 0 < m(cr¢) = me < oe then the average 

< " °  > =  

i 

also behaves as m e / N  if e << 1; here N is the number  of sets ui in a cover with 
diam ui < e. 

Now introduce the sum 

R(,~, e, G) = ~ ~(u,),7(,,,) ° ,  (5.2) 
i 

where {ui}  = G is a cover of X by sets ul with diam ui = e (not < e as above!). 
Consider the infimum 

R(~,  e) -- inf R(~,  e, G), 

where the infimum is taken over all covers G = {ui},  with diam ui = e. We 
may expect that  the limit e --+ 0 does not exist. Consider the upper and lower 
limits 

F(a) = l i m , . o R ( a ,  e) 

and 
r ( a )  = lira R(a ,  e). 

¢...a. 0 

It  was shown in [36] that  there are critical values ~c _> ~ such that  

0,  >ao, ac¢+o , 
F(c~) = 

oo, c~ < ~c, & c ¢ - - o o ,  

and 
0, 

r ( ~ ) =  
co, a<a_q_~, ~_q.~:/:-oo, 

The number  •e is said to be the upper and a e the lower capacity relative to 
the structure (5 ,~ ,  r/). 

For example,  if j r  is the collection of the balls {B(z,  e)} of all diameters  
e > 0 centered at all points z E X and 

71( B ( x  , e) ) -- d iamB(x ,  e) = e, 

then 

R(a,  e) = i~f E [ d i a m B ( x i ,  e)] ~ = N(e)e '~, 
i 
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where N(e) is the minimal  number  of balls of the d iameter  e, needed to cover 
X .  Hence, 

Re = dimBX, the upper  box dimension of  X:  

dimBX = li--~-+0 inN(e) 
tn l /e  

and 

= d/.~_.~X, the lower box dimension: 

inN(e) 
d imnX = l i r r ~ °  grille 

If we assume, in addit ion,  tha t  

0 < r_. (dimBX) < ~ ,  

then 
N (ek) --'~" ,'-, e k 

0 <  < 

N (e_4) -~ e. - " °  
:-3 ' 

where {ek} ((e__j }) is a sequence of  values of e such tha t  

l ime-,0R (~c, e) = lim R (tie, ~k) 
k--+ oo 

and 
lim~_~0R (a_~, e) = l im R (a_~, e_,). 

k - + o o  

If  the box dimension exists, i.e., 

dirnBX = dirnBX = b, 

then 
N(e)..~e -b,  e ( ( 1 ,  (5.3) 

and for an a rb i t ra ry  s t ructure  (5 r,  ~, 7/) we have 

< ((ui)~?(ui) z >,.. e b. (5.4) 

provided tha t  ~ - 6e = b. Thus,  the described construct ion allows one to 
es t imate  the asympto t ic  behavior  of some average values of funct ions of sets. 
We use it to  s tudy  Poincard recurrences.  



74 

6 D i m e n s i o n  a n d  C a p a c i t i e s  for  P o i n c a r ~  R e c u r r e n c e s  

Fractal behavior of temporal characteristics: Poincar~ recurrences, exit times, 
transit times, etc., is the key indicator of the presence of sticky orbits. As nu- 
merical observations show, an orbit in chaotic sea behaves as follows: after some 
time interval of "mixin]', it arrives in the vicinity of a sticky set, and for a long 
time behaves as a piece of a sticky orbit; after that  it returns back to the chaotic 
sea and is subjected to mixing again; then the process is randomly repeated. 
Taking into account that  the process inside the sticky sets is nonchaotic, as 
it was shown above, one can understand that such an "intermit tencf  leads 
to an additional memory of the process and to power tails in the distribution 
of Poincar$ recurrences, exit time, etc., instead of the exponential decay [13]. 
Fractal analysis can be applied to the temporal characteristics and, particularly, 
to the Poincarg recurrences. 

Orbits in Hamiltonian systems with bounded motion possess a property 
of repetition of their behavior in time. Given an open set U in M and a 
point z E U, let us denote by t(x, U) the smallest positive integer for which 
gt(~'U)x E U again. 

D e f i n i t i o n .  1. We call t(x, U) the Poincarg recurrence (in fact, the first 
Poincard recurrence) for the set U specified by the point x (it can be oo, of 
course). 

2. The quantity v(U) -- i n f ~ v  t(x, U) is called the Poincar@ recurrence for 
the set U. 

Thanks to Poincar~ recurrence theorem the number r(u) < oo for any open 
set u (let us remind that g is area-preserving). 

A desired characteristics should be an average value of r (u) .  We use the 
Carath~odory-Pesin construction to introduce it. Consider the following 
Carath~odory structure: (.%') is the collection of all open sets in the phase space 
M, )/(u) = diam u, ~(u) = ~oq[r(u)] where ~o(t) is a monotonically decreasing 
function and r(u)  is the Poincar~ recurrence for the set u E 2-. Then, consider 
the quantities (5.1) in the form 

M(c~, e, 9, q) =-- i ~ f y ~  ~(v(ui))q(diam ul) ~ (6.1) 
i 

where infimum is taken over all covers G = {ui}, diam ui < e, and (5.2) is 
considered in the form 

R(a,  e, ~, q) -- i~f E ~(r(ui)q(diam ui) a (6.2) 
i 

and infimum is taken over all covers H = {ui}, diam ui = e. Now apply the 
general construction and obtain the dimensions a(q) and capacities a_(q) and 
(i(q) for values of the parameter q in an interval. These characteristics are said 
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to be the spec t rum of  d imensions  and the spec t ra  of  capaci t ies  for Poincarg 
recurrences.  I t  follows f rom [36] t ha t  (~(q) < __a(q) < 5(q).  Assume tha t  there 
is a n u m b e r  q0 (q0 or q_0) such t ha t  (~(q0) = 0 (~(q0) = 0 or ~(q-0) = 0). T h e n  
the  value qo (qo or q-0) is called the d imension (the upper  or  lower capac i ty)  for 
Poincarg recurrences.  

In order  to unders tand  the significance of the definition, let us suppose  t h a t  
q0 = q0 = q-0 and  dimB M = b is the box dimension.  T h e n  

< ~ ( r ( u i ) )  q° >--, e b, d i a m u i  = e. (6.3) 

I t  was shown in [14] tha t  in a nonchaot ic  s i tua t ion  (min imal  sets),  the funct ion 
~(t)  = l i t  can serve well, thus for the case of  min ima l  sets we have 

1 eb (6.4) < ~ >,. ,  
r(ui)  q° 

and we can expect  t ha t  
< > _   -b/qo (6.5) 

Let us manifes t  t ha t  for the m a p  T on the set of  st icky orbits ,  the funct ion 
~(t)  = l i t  m a y  serve well. For the sake of simplicity,  consider the dyadic  adding  
mach ine  with  the following dis tance on f~+: 

dist (w, w')  = ~ Ilk - i~,[ > 2. a _ _ a ~ - + ~  , 

k=O 

I t  is s imple  to check tha t  for e, a - "  < e < a - n ( 1  - l / a )  -1 ,  each pair  of  points  
w,_w I with dist  ( w , w  ~) < e has the s ame  n first coordinates  io, i l , ' " , i n - 1 .  
Moreover,  for any two points  with different k- th  coordiante ,  0 < k < n - 1, 
the  dis tance is grea ter  t han  e. Tak ing  into account  the definit ion of the adding 
machine ,  we can see tha t  

b gn2 
r ( u / ) = 2  n ~ e  In2/l"~ i.e. - - =  

qo inn"  

This  n u m b e r  does not  equal  cx) or 0. This  means  tha t  ~o(t) = l i t  is a sui table  
funct ion.  (It  is clear tha t  in this case the box d imension  is b = In 2 / I n  a, i.e. 
q0 = 1). 

T h e  example  in the next  section shows tha t  in chaot ic  cases we should use 
= e - t ,  i.e. (6.1) becomes  

< e-q°r(~'') > ~  e b (6.6) 
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7 Spectrum of Capacities for Transitive Topological Markov Chains 

Let A be the matr ix  of transitions for a topological Markov chain satisfying 
the condition of mixing ([35]): there exists no > 0 such that  A "° has only 
positive entries. Therefore, we may introduce such a metric on the space of 
admissible sequences f~a for which 

diam([ io- . - i ._1])  = a - ' ,  n > no, a > 1, 

[io'"" in- l ]  is a cylinder, i.e. 

(7.1) 

[ i o ' " i . - l ]  = {w__= ( J o j t " ' )  e ~aljo = i o , ' ' ' , j . - t  = i . - 1 } ,  

the set of all admissible infinite sequences for which the first n coordinates are 
determined by [ i o ' " i n - 1 ] .  

R e m a r k .  Such topological Markov chains appear, for example, when we de- 
scribe some repellers of  maps with the constant derivative a. The simplest of  
them is the map x --+ ax, rood 1, restricted to a set of  orbits belonging to [0, 1] 
and forming a topologicM Markov chain. 

We shall calculate the capacity, so we may consider only values of e = a - " ,  
n E Z+, and we consider covers of f~A by cylinders {[i0"" .in_lJ} for a fixed n. 
Then the Eq. (6.2) becomes 

' . - ' ) a  -c`°  (7.2) 
(io'"in-t)  

where the sum is taken over all admissible words ( i0 . . .  i . -1 ) .  The  main idea 
is to rewrite (7.2) in the form 

( P i e  -q  4- P2e -2q + ' "  "4- Pm,, e -m'~q) a - cm  (7.3) 

where Pk is the number of cylinders [io. . .  i . -1] for which 
r ( [ i 0 . . . / n_ t ] )  = k. Of course, for that we need to show first that  mn < e¢. 
The following result holds. 

Proposition 7.1. Rn(c L q) can be represented in the form (7.3) where 

m n <  n + no 

(no is a constant in the condition (7.1) of  mixing). 

It means that  Poincar~ recurrence for a cylinder of the length n cannot be 
greater than n + no. The next proposition tells us that the Poincard recurrence 
is realized due to the vicinity of the orbit to a corresponding periodic point. 
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P r o p o s i t i o n  7.2. r([ i0 "" in- I] )  = k where k is the minimal period of all 
periodic points belonging to [i0""" i,~-1]. 

Let Amax = max{AlA ~ specA). The number of k-periodic points behaves 
k asymptotically a s  )~max, k )>)> 1. It allows one to estimate the upper and lower 

capacities by using Propositions 7.1, 7.2. 

P r o p o s i t i o n  7.3. ~(q) < 0 i f  £nAmax -- q < 0, and 

tnAmax - q (7.4) 
~(q) < ena 

i f  l n A m a  x - q > 0. 

Proposition 7.4. The upper capacity 6~e(q) satisfies 

~nArn~x -- q (7.5) 
6~(q) > ena 

Comparing (7.5) and (7.4) we have 

Theorem 2. (1) I fq  < htop then ~(q) : (htop - q)/ lna;  

(2) #0 = htop = enAm~x. 

R e m a r k .  Takinginto account that the number of admissible words { [i0 • • • i , _  1] } 
is asymptotically equal to exp(nhtop) = e q°n, we can write that 

< e -q°r([ i° ' ' ' i~- l])  ~>..~ e - q ° n ,  or  

< r([ i0- . - i ,~_l])  > ~  n = - l n e / l n a ,  (7.6) 

(c = a-") .  Thus, ~o(t) = e - t  works well in an idea/chaot ic  situation. 

In our considerations, the constant a served as a rate of expansion of the 
shift map a at every point w = ( i0 , i l , . . . ) .  We saw that  the capacity q0 is 
just  the topological entropy, it does not carry new information. In a more real 
hyperbolic situation when the rates of expansion (and contraction) depend on 
a point, we may expect that  the capacities q-0 and the topological entropy are 
independent characteristics. 

8 Working with Sticky Orbits 

As was shown above, the behavior of Poincar~ recurrences in a nonchaotic 
situation is of the following type 

< r(ui)  >,~ e - ~ , <  diamui  > =  e << 1, 

and in a chaotic situation, it is completely different: 

< r(ui)  >,,, -/31gnc, < diamui  > =  e << 1, 
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where/3 and/31 are constants. How could we describe the behavior of those 
orbits in the chaotic sea which are spending considerable amount  of time in 
the neighborhood of sticky sets? Let us present some results from our work 
[15] which show that  exit times from a vicinity of a sticky set may reflect some 
properties of the Poincar~ recurrences on the set. 

We assume that there is a S R  {Uio..i~_~ } and the corresponding sticky set 
S. Let us remind that  it follows from the symbolic description (Theorem 1) 
that  there is a sequence of subsets Wio...i,,_~, h ([i0"'" in- l])  = Wio...i,,_~, of the 
set S. There are some preliminary results which allow us to believe that  the 
following assumption holds for a general situation. 

M a i n  conjecture 

diamuio...i,,_l ",, diamWio...i,_l, n >> 1. 

In other words, we claim that  scaling properties of the islands of the n-th 
generation, n >> l, are the same that scaling properties of some subsets of S of 
the n-th generation which form convinient partitions (coverings) of the sticky 
set S. 

Now consider space-time partitioning that was introduced in [22] - see also 
[13], [15], and resembles a picture similar to Sierpinsky carpet (Fig. 3). Let the 
central square be an island of a zero-order generation. Surround the island by 
an annulus which represent a boundary island layer. It consists of gl (91 -- 8 
in Fig. 3) subislands of the first generation (dashed small islands in Fig. 1). 
We can parti t ion the annulus into gl domains, so that each of them includes 
exactly one island of the first generation; then we surround each island of the 
first generation by an annulus of the second generation and repeat the process. 
On the nth step the structure can be described by a "word'  

W n  : W(ffl,g2,''',gn). 

The total number of islands on the nth step is 

(8.1) 

and any island from the nth generation can be labeled by 

u~ n) = Uio...i . . . .  1 < ij < gj, V j .  (8.3) 

Let us now introduce a time that a particle spends in the boundary layer of 
an island. This time, 

carries all information about the nth generation islands (8.1)-(8.3). By intro- 
ducing a residence time for each island boundary layer, we have a situation 
comparable to the plain Sierpinsky carpet or plain fractal situaiton because of 

N .  = gl . " g . ,  (8.2) 
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the nontriviality of the space-time coupling. In fact, we are attaching an addi- 
tional parameter responsible for the temporal behavior to the simple geometric 
construction for a Cantor set. 

A simplified situation corresponds to the exact self-similarity of the con- 
struction described above, i.e., similar to (2.3): 

S} n) = S (") = A]S (°), Vi, 

T~ (") = T(") = A~.T (°), Vi, (8.5) 

where S} n) is the area of an island ul '*) and T (n) is introduced in Eq.(8.4). 
Expressions in Eq.(8.5) correspond to equal areas and residence times for all 
islands of the same generation. Two scaling parameters As and AT represent 
the existence of the exact self-similarity in space and time correspondingly. 
Precisely such a situation was described in [22,23,13] for maps (2.1) and (2.2), 
with 

)~S < 1, )~T > 1. (8.6) 

In addition to Eq.(8.5), there is a sefl-similarity in the islands' proliferation 
mentioned in (2.3), i.e., 

g .  = ~ ; g 0 ,  ~g > 3 (8 .7)  

It follows from Eqs. (8.2) and (8.7) that  

g .  = " " (8 .8)  Aggo = Ag 

if we start from the only island (go = 1). 
Let us study some characteristics of the process. 
Consider a cover of the sticky set S by the sets Wio...i._l 

Thanks to the main conjecture, 
= h ([i0""' in-l]). 

Moreover, T (n) - A~,T(°). Therefore, the sum (6.2) for the function ~(t) = 1/t 
becomes 

const.  ~ AT q" (V/~s)an (8.9) 
(io...i.) 

It follows that  the spectrum of capacities for Poincar~ recurrences on S is 

~(q)  = 2 qe .~T  - en~g (8 .10)  
gnAs 

and the capacities 
£nAg (8.11) 

qo =enAT 
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If we consider spectrum of capacities and capacities for the exit times from the 
vicinity of the sticky set, we arrive exactly at the expresison (8.9) and obtain 
the same formulas (8.10) and (8.11). 

Let us remark that  under main conjecture we may calculate the Hausdorff 
and box dimensions of the SR. For example, in the simplest situtaion described 
above, the sum (5.2) for the function ~(ui) -- 1 becomes 

Therefore 

const. 
1 E (VA/~sss)~n=c°nstexpn(lnAa+'2alnAs) " 

(io,...,in-1) 

a0 = dimBS = 2 In A 9/[ ln  As 1. (8.12) 

As in [15], we may consider the space-time partitioning (8.3)-(8.4) to obtain 
the spectrum and capacities for the reduced times (times per unit of area), etc. 

9 C o n c l u s i o n s  

Numerical simulations clearly expose a new property of chaotic dynamics 
in systems that  often occur in different applications. This propety can be 
formulated as intermittency, or stickiness, or nonuniformity of the phase space, 
and so on. A remarkable feature of the stickiness is that it can be referred to as 
the existence of "Sticky Riddle" (SR) set embedded into the phase space. The 
SR is a cause of the existence of bad orbits and can be considered as support  
for a special kind of dynamics. We speculate about the existence of the SR as 
a topological and dynamical object with fractal or multifractal properties. The 
latter can be seen from the distributions of the Poincar~ recurrences or exit 
times, which possesses power-like tails instead of having all finite moments. 
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Part  2: 

Fluids and Turbulence 
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Fig. 2.2. Singularity near a tangent trajectory 

(x, y) E S in the phase space) provides a global cross-section for the billiard 
flow. The corresponding Poincar~ map relating consecutive collision points is 
called the billiard map. A point on the surface is determined by the position s 
on the boundary S and by the reflection angle ¢ which yields the direction of 
the outgoing velocity vector (the absolute value of the velocity does not mat- 

2 2 ter because p~ q-py is a conserved quantity - the energy - and it may be taken 
arbitrary by rescaling the time). The initial conditions, corresponding to a 
trajectory directed to a corner or tangent to a boundary arc at the moment 
of the next collision, form the singular set on the (s, ¢)-surface. Generically, 
the singularity set is a collection of lines which may be glued at some points. 
The billiard map is a Cr-diffeomorphism outside the singular set; it may be 
discontinuous at the singular points. Near a singular point corresponding to 
the tangent trajectory the continuity of the map can be restored locally by 
taking two iterations of the map on a half of the neighborhood of the singular 
point (see figure 2.2). The obtained map will, nevertheless, be non-smooth at 
the singular point, having the square root singularity described above. 

2.2 Class  o f  s m o o t h  H a m i l t o n i a n s  

Formally, the billiard flow may be considered as a Hamiltonian system of the 
form 

Hb = -~ + + Vb(x, y) (2.3) 

where the potential vanishes inside the billiard region D and equals to infinity 
outside: 

0 (x, y) e D (2.4) 
Vb(x, y) = y) ¢ D 

Clearly, this is an approximate model of the motion of a pointwise particle 
in a smooth potential which stays nearly constant in the interior region and 
grows very fast near the boundary. However, it is not obvious immediately 
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Correlations after exper iments  done is b loody bad. 

Only  prediction is science. 

Fred Hoyle, 1957 The Black Cloud, Harper, N-Y. 

A b s t r a c t .  Following a critical overview of the phenomenological aspects a selec- 
tion of issues which are essentially beyond phenomenology are presented with the 
emphasis on issues which can be effectively addressed quantitatively via geomet- 

rical statistics. In particular, it is argued that  regions with concentrated vorticity 
(tubes-filaments-worms) are not tha t  important  as it has been thought before 
and do not seem to play a special role in the overall dynamics of turbulent flows: 
these regions are more the consequence rather than the dominating factor of the 
turbulence dynamics. The  ' random sea' /background, in which are embedded 
the strongest filaments, appears to be strongly non-Gaussian, not passive and 
possessing distinct structure. Moreover, apart  of enstrophy dominated regions 
and the background turbulent flows contain other dynamically more important  
regions. These are the strain dominated regions with the following subregions of 
special interest: i - regions responsible for the highest enstrophy generation and 
its rate, and associated with high values of the largest eigenvalue of the rate of 
strain tensor A1, and finite curvature of vortex lines, alignment between vorticity 

and the corresponding eigenvector Aa, ii - regions, which are wrapped around 
the enstrophy dominated regions and associated with alignment between ~ and 
A2 and mostly positive values of the intermediate eigenvalue A2, and iii - regions 
with large magnitude of the smallest eigenvalue Aa, alignment between ~ and 
,k3, large curvature of vortex lines and most of vortex compressing, tilting and 
foMing. Among other issues are reduction of nonlineraity, non-Gaussian nature 
of turbulence and 'kinematic' effects, and nonlocality. 

K e y w o r d s .  Turbulence, phenomenology, geometrical statistics, reduction of 
nonlinearity, nonlocality, unresolved issues. 

This paper is based in part on the lectures delivered by t h e  author  in Ecole Norrnale 
Sup~rieure, Universit~ Paris VII in May 1995 and in Laboratoire Mod~lisation en M~canique, 
Universit~ Paris VI in February 1996 and  on  the  latest  work  performed since then.  
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1 I n t r o d u c t o r y  n o t e s  a n d  b a c k g r o u n d  

John yon Neumann wrote in his report  to the Office of Naval Research in 1949 
[179]: Turbulence is a phenomenon which sets in in a viscous fluid for small 
values o f  the viscosity coe~cient  v (reckoning u in significant units, that is, as 
the  reciprocal Reynolds '  number  l / R e  2), hence its purest, limiting form may  
be interpreted as the asymptotic,  l imiting behavior of  a viscous fluid for u --* O. 
This asymptotic (long time) behaviour at large enough but finite (not necessar- 
ily very large) Reynolds numbers is usually referred as fully developed (strong) 
turbulence (FDT). 3 
It is commonly believed that  FDT in incompressible fluid is described by the 
Navier-Stokes equations (NSE) supplemented by initial (IC) and boundary con- 
ditions (BE) 

o , u  + × u = - v  ( p / p  +  2/2) + 2 u, v .  u = 0, (1, 2) 

where, Ot =-- O/Ot, u(x,  t) and p(x, t) are the fluid velocity and pressure, ~o --- 
curl u, p is the density and v is the kinematic molecular viscosity (both con- 
stant). 
Though there exist a set of deterministic differential equations probably contain- 
ing (almost) all of turbulence, most of our knowledge about turbulence comes 
from experiment (laboratory, field and numerical). This was understood long ago 
by A.N.Kolmogorov:...I soon understood that there was little hope of  developing 
a pure, closed theory, and because of absence of  such a theory the investigation 
must  be based on hypotheses obtained on processing experimental data [236] 4 
Much later he wrote tha t  the observational material is so large, that it allows to 
foresee rather subtle mathematical  results, which would be very interesting to 
prove [144]. 
Indeed the heaviest and the most ambitious armory from theoretical physics and 
mathematics was tried for more than  fifty years, but  without much success 5 _ 
FDT, as a physical and mathematical problem remains unsolved. This s ta te  of 
matters  is reflected in the eharacterisitic feature of reviews of turbulence research 
which to a large extent deal with methods (and their failures) rather than with 
results, showing that  turbulence remains among the fields with overproduction 
of publications without any real breakthrough in understanding. In addition 
to this mathematical/ theoretical  'deadlock'[179] one of the main difficulties in 
turbulence research in general, and in all the applications in particular, is tha t  
high enough values of Reynolds numbers are inaccessible in the forseeable future 

2 T h e  R e y n o l d s  n u m b e r  is defined as  R e  = L U / v ,  where  L ,  U are  typical  l eng th  a n d  veloci ty  
scales a n d  u is t h e  k inemat i c  molecu la r  v iscosi ty  o f  t h e  fluid. 

3 T h e  e m p h a s i s  in t h e  d i scuss ion  t h a t  follows is ma in ly  o n  s t r ic t ly  th ree -d imens ion~l  fluld- 
dynamiezd  t u r b u l e n c e  (again  FDT)  in incompressl%le flows. 

4Therefore ,  t h e  i m p o r t a n c e  o f  e x p e r i m e n t a l  research  in t u rbu l ence  goes far beyond  t he  view 
of  t h o s e  w h o  t h i n k  of  exper imen ta l i s t  a s  a super ior  k ind  o f  profess ional  fixer knowing  how to  
t u r n  n u t s  a n d  bol t s  into  a conf i rmat ion  o f  the i r  theories.  T h i s  is t he  m a i n  r ea son  t h a t  t h i s  
p a p e r  is b iased  exper imental ly .  

5For a n  u p - t o - d a t e  cri t ical  review of  these  a t t e m p t s  see C h a p t e r  9 in [90]. 
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neither in laboratory nor via direct numerical simulations [171]. There are also 
many 'technical'difficulties, such as methods of analysis of huge amounts of data 
on turbulent flows. Ironically turbulence is the most important field in fluid 
dynamics and in a vast variety of applications. Not accidentally the most saga- 
cious 'practit ioners 'of turbulence claim that  the best thing which can happen 
in applied fluid mechanics would be the creation of a basic theory of developed 
turbulence. 
In the sense of the epigraph above turbulence 'is bloody bad': the number of 
predictions made in the field is limited by the number of fingers on one hand - 
the rest are correlations after experiments done, i.e. 'postdictions'. 
In spite of the absence of a sound theory, a hundred years of systematic s tudy re- 
sulted in a considerable amount of mostly phenomenological knowledge on qual- 
itative manifestations and quantitative properties of turbulence, so turbulence 
can no longer be viewed as incomprehensible [61] and is no longer a complete 
mystery [107]. 
The qualitative properties/features of all turbulent flows at high enough Reynolds 
numbers are essentially the same, i.e. they are universal. It is natural to use 
this qualitative universality for a more detailed identificiation of FDT. 

M a j o r  q u a l i t a t i v e  p r o p e r t i e s / f e a t u r e s  o f  F D T  [174], [235] 

• - Intrinsic spatio-temporal randomness, irregularity. FDT is definitely chaos. However, 
vice versa, generally, is not true: many chaotic flow regimes are not turbulent (e.g. La- 
grangian/kinematic chaos, laminar "turbulent" flows). 
• - Extremely wide range of strongly interacting scales, i.e. turbulent flows are large  
systems. In atmospheric flows relevant scales range from hundreds km to parts of a ram, 
i.e. it possess ,-~ 10 is excited degrees of freedom. Hence extreme complexity of FDT. 
• - Highly dissipative. A source of energy is required to maintain turbulence. Continuous 
energy flux from large to small scales: the energy supply is at mostly large scales 6, its 
dissipation is at small ones. Statistical irreversibility. 
• - Three-dimensional and rotational! It is a "random" field of vorticity with predominant 
vortex stretching (!), i.e. continuous net production of enstrophy by inertial nonlinear pro- 
cesses, which is dissipated by viscosity. Random potential flows are not FDT. 
• - Strongly diffusive (random waves are not), i.e. it exhibits strongly enhanced transport 
processes of momentum, energy, passive objects (scalars, e.g. heat, salt; vectors, e.g. ma- 
terial lines, magnetic field). Laminar 'hyperbolic' flows exibit enhanced transport of passive 
objects only. 

Whereas these qualitative features of FDT are universal (there are more more 
specific for FDT, see below the main text) and generally characterise FDT flows 
as a whole, the quantitaive properties vary largely with the range of scales of in- 
terest. The large scale (IS) properties of FDT depend on particular mechanisms 

6The common view on turbulence dynamics is via the Richardson-Kohnogorov cascade of 
energy (the famous poem by Richardson). However, there are numerous examples in which 
turulence develops from small scales into the larger ones, e.g. in all spatially developing 
turbulent flows, both flee such as turbulent jets, wakes, plumes, and wall bounded such as 
turbulent boundary layers. 
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generating turbulence and, generally, are not universal though they possess prop- 
erties which in some sense are universal. I t  is the small  scale (SS) turbulence 
which, since Kolmogorov, is believed to possess a number of universal proper-  
ties independent of the  large scale flow structure 7 Small scale FDT is usually 
considered in a narrow sense as FDT per se and is one of the main themes here. 
This SS turbulence, especially its scaling properties,  remains for more than  fifty 
years one of the most active fields of inquiry. Derivation of scaling properties 
of FDT directly from NSE analytically remains one of the most popular  illusive 
goals of theoretical research. This (scaling) and other phenomenological aspects 
are extensively reviewed in [90], [228], so only additional notes will be made 
referring to aspects which deserve updat ing and comments  as a backgroud for 
the sequel. 
It  should be stressed tha t  some of the universal properties of I=DT are charac- 
teristic of much broader class of nonlinear systems, others are specific for FDT. 
Both will be addressed in the sequel with the emphasis on the  latter. 

2 A n  Overview of  P h e n o m e n o l o g y  

The t e rm phenomenology is defined in the Ne w Webster 's  New  World Dictio- 
nary, College edition (1962) as follows: 
P h e n o m e n o l o g y -  The  branch of  a science tha t  classifies and describes its phe-  
nomena  wi thout  any a t t e m p t  at explanation. 
I t  is claimed frequently tha t  in turbulence research phenomenology helps to  
explain some features of turbulent  flows. The reader is invited to fashion an 
opinion of his own whether this is really the case. In any case the combination 
phenomenological  understanding o f  tubrulence sounds somewhat  too ambitious. 

2.1 Universality, local isotropy and scaling 

The first main ingredient of  Kolmogorov theory is the  hypothesis of local isotropy 
'in an arbitrary turbulent  t tow with su~c ien t l y  large Reyno lds  n u m b e r  Re  --- L~ 

V 

in suttlciently small regions G o f  the  four-dimensional space (xI,  x2, x3, t )  no t  
lying close to the boundaries o f  t he  flow or other  singularities o f  it'[141]. To- 
gether with his definition of local isotropy (definition 2 in [141]) this hypothesis 
postulates at  large Reynolds numbers restoring in the statistical sense o f  all the 
symmetr ie s  o f  the Navier-Stokes equations s locally in t ime and space - -  except 
of  the scaling one. This hypothesis was confirmed in several experiments,  the 
latest and the  most impressive ones made by in high-Reynolds-number turbulent  
flows with mean shear both  without and under the influence of large extra  mean 
strain rates in the large wind tunnel of NASA Ames, [211], [212]. 

?Though quite an opposite poss~ility was pointed out: ... perhaps there is no 'real turbu- 
lence problem', but a large number of turbulent flows and our problem is the self imposed and 
possibly impossible task of ~tting many phenome~a into the Procrustean bed of a universal 
turbulence theory [213]; see also[ll5], [116]. 

SSpaoe/time translations, Galilean transformations, the full group of rotations, which in- 
dude reflections. 
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In order to cope with scale invariance symmetry  of NSE at Re >> 1 Kolmogorov 
introduced his famous s imilari ty  hypotheses: the first one stating that  all the 
statistical properties of the small scale FDT are uniquely defined by m e a n  dissi- 
pation e 9, (c), and kinematic viscosity, u , while the second hypothesis referred 
to  the so called inertial range of scales g, L >> g >~ 7}, in which the statistical 
properties of FE)T are uniquely defined by (e) only. Here ~ = ua/4(e) 1/4 is the 
Kolmogorov dissipation scale. The second similarity hypothesis implies tha t  a t  
Re  >~ 1 in the inertial range the scale invariance symmetry of NSE is the same 
(in the  statistical sense) as for the Euler equations (EE) 10 in which the kinematic 
viscosity i/---- 0, and that  (e) remains f ini te  as Re  --* oo. From this Kolmogorov 
predicted his famous 2/3  law, i.e. h = 1/3 [14t]. 

(r) C2( ) /ar (3) 

where S~(r)  = ((Aull)v}, p = 2 -  is the second order structure function of the 
longitudinal velocity increment Aull = [u(x + r)  -- u (x ) ] ,  r / r ,  and C2 is an 
'absolute'  constant. Another most remarkable quanti tat ive prediction made by 
Kolmogorov is his -4/5 law obtained as a direct consequence from NSE [142] 

s (r) = (4) 

in which the constant Ca = - 4/5. Both predictions have a very solid experimen- 
tal confirmation (see [90], [174], [175], [211], [212], [2281 and references therein). 
It  is noteworthy that  in many cases the inertial interval for S~ (r) (and/or  energy 
spectra) is considerably longer than  that  for the structure function S~ (r) of the 
transverse velocity increments Au±  ---- Au  -- Auti (see e.g. [129], I158], I175]) - 
a fact which is definitely beyond phenomenology. This is directly related to the 
observation that  local isotropy occurs in a range of scales much shorter (or even 
in some cases is not observed at all, see section 3.1) than the range of scales in 
which (3) and (4) are observed. 
Kolmogorov theory raised a number of fundamental issues which dominate to  
a large extent  the contemporary research in i=DT. Some of these issues are dis- 
cussed as a backgroud for the sequel. 
The first issue is whether the normalized mean dissipation e = U a L - l ( e )  tends 
really to a finite limit as Re  --* oo or it is Re  dependent even at very large 
Reynolds numbers. There are many speculations on this subject, while the ex- 
perimental evidence, though favoring the former, is exteremely limited. Recent 

9For a Newtonia~ fluid the  local dissipation e = 2vsi~sik, where 2s~k : Ou~/Oxk +Ouk/Oxi 
is t he  ra te  of s t ra in  tensor. The  par t icular  expression for • is of no  impor tance  for Kolmogorov 
theory  of  the  inertial range (except of  the  extent  of  th is  range,  i.e. its upper  cutoff, ~7, which 
is dependent  on  the  par t icular  mechanism of dissipation),  since viscosity appears  in it as a 
' subsidiary agent'[179] providing a ' s ink 'of  energy. Therefore any small amoun t  of  any kind 
of  th is  ' subsidiary agent'will do whatever  the  part icular  mechanism of energy dissipation is. 
Moreover, as conjectured by  L. Onsager  in 1949 [190] and  proved recently [61], [79], the  role 
of  such a subsidiary agent can b e  played by  chaotic mot ion  on arbitrari ly small  scales in an 
invlscid fluid provided the  flow field is ' rough 'enough  at  any scale whatever  small. 

1°The EE equat ions axe invariant if s imultaneously the  distance,  t ime and velocity are scaled 
by A, A 1 - h  and  A h correspondingly, wi th  arbi t rary  h. 
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resul t s  o b t a i n e d  using glycerol ,  w a t e r  and  low t e m p e r a t u r e  he l ium gas [41] al-  
lowed to  show t h a t  E = const with in  t he  range  of  Reyno lds  numbers  va ry ing  over 
more  t h a n  t h r e e  decades  (3-  103 < Re < 7 . 1 0 6 ,  see f igure 1) when t h e  flow is 

forced b y  ' r ough '  moving  boundar ies ,  l i  However,  when  t h e  moving  bounda r i e s  
were  s m o o t h  e(Re)  = const was a decreas ing  funct ion of  Reyno lds  number  s im- 
i lar  to  such Re -dependence  in o t h e r  conf igura t ions ,  e.g. in p ipes  wi th  s m o o t h  
walls.  Never theless ,  t h e  bulk of t h e  flow exh ib i t ed  clear  R e - i n d e p e n d e n t  be-  
haviour ,  i nd i ca t i ng  t h a t  t he  ma in  difference be tween  t h e  two cases is due  to  t he  
d i s s imi l a r i t y  in t he  coupl ing  be tween  t h e  bounda r i e s  and  t h e  bu lk  of  t h e  flow. 
This  is in ag reemen t  wi th  t h e  resul t s  of  s imi la r  e x p e r i m e n t s  wi th  d r ag  reduc ing  
add i t ives  which d id  not  exh ib i t  a n y  d r ag  r educ t ion  in case  of  ' r ough '  b o u n d a r i e s  
[40]. 
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Figure 1. Reynolds number dependence of normalized dissipation rate of energy ~ in a 
turbulent  flow in a circular tank forced by counter rota t ing top and bottom. Adapted 
from the P h . D .  Thesis by O. Cadot 1995, Laboratoire de Physique Statistique de 
t'Ecole Normale Supdr/eure, Universitd Paris  VH, see also [41]; top - schematic of 
water/glycerol  and low temperature  helium gas facilities [72], [22]. 

1lit is noteworthy that in the engineering practice this fact has been recognized long ago in 
a great variety of flow configurations, see e.g. [118]. 
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indicating that  drag reduction phenomena in turbulent flows are mainly associ- 
ated with the specific processes of the coupling between the boundaries and the 
bulk of the flow. 
It  is noteworthy that  rigorous upper bounds of E are independent of Reynolds 
number at large Re (see [39], [136], [180] and references therein), and thereby 
are consistent with the experimental results. There are some indications from 
recent DNS of NSE [49] that  the statistical properties of inertial range are inde- 
pendent of the dissipation mechanism in conformity with Kolmogorov ideas, see 
also [179]. 
The Reynolds independent behaviour of some global characteristics of turbulent 
flows ( such as the total dissipation in the above example) at large Re comprises 
one of their quantitative universal properties. This is distinct from some univer- 
sal (mostly scaling) properties of small scale turbulence presumably independent 
of the large scale flow structure [177]. 

2.2 Intermittency 

In a broad sense the term intermittency refers to an extremely uneven spatial 
distribution of dissipation, though most small scale quantities (such as enstrophy 
oa 2, here w --- curl u is the vorticity vector and others, see below) exhibit such 
a spiky behaviour as well. There is no general agreement on the meaning of the 
term intermittency, but it seems unjustified to associate it solely or mostly with 
the so called anomalous scaling, just  like defining intermittency via r-dependence 
of the flattness <(AuII)2~)/<(AUlI)2) ~ (i.e. associating it with even moments only 
[151]). Nevertheless, it is commonly believed that  among the manifestations of 
the small scale intermittency is the experimentally observed deviation of the 

scaling exponents in relations of the type (3) for s t ructure functions S~(r) for 
p > 3 from the values implied by the Kohnogorov theory (i.e. anomalous scaling) 
which in turn is due to  rare strong events. Namely, 

C~ (~F/ r~, (5) S (r) 3 -,, 

where (~ = p/3 - #p < p/3 is a convex nonlinear function of p (see figure 2). 
It was claimed recently on the basis of high resolution DNS of NSE and labora- 
tory  data  [49], [50] tha t  (p exhibit unambiguous departures from the KoImogorov 
1941 theory not only for p > 4 but  also for - 1  < p _< 2, though this departure 
is less than 5% (see also [261]). 
Thus - unlike the other symmetries - the assumed global scale invariance (single 
scaling exponent h) of NSE at Re >> 1 is broken. 
Following the Landau objection to universality 12 Kolmogorov put  forward his 
refined similarity hypothesis (RSH) [143] in which he replaced the mean dissipa- 
tion (e> by 'local'dissipation er averaged over a region of size r. However, 'once 
the K41 theory was abandoned a Pandorra 's  box o[ possibilities is opened'[147]. 

12The famous remark by Landau in the first Russian edition of Fluid Mechanics by Landau 
and Lifshitz 1944 about the role of large scale fluctuations of energy dissipation rate, i.e. 
nonuniversality of both the scaling exponents ~p and the pref~ctors Cp in (5). 
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Indeed, the RSH was followed by numerous phenomenological models attempt- 
ing to describe some aspects of intermittency, such as the multifractal model or 
its alternative using the statistics of the so called breakdown coefficients (ratios 
£r~/er~,ri ~_ rk) and great many others (for references see [30], [31], [58], [74], 
[90], [99], [215] which include the most recent ones). 
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1 ° I I I I 
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P 

Figure 2. Exponents of structure functions for the longitudinal velocity component 
(/k,$, ×) and temperature (V,o) ;  / k ,~  - [4], o - [210], e -  [259]; x - exponents of 
structure functions for the transverse velocity component [185]. 

All of these models (including the RSH [172]) are in good agreement with the 
experimental and numerical evidence, e.g. these models exibit the same scaling 
properties (and some other such as PDFs') as in real turbulence [7], [12], [49], 
[44], [26], [206], [209], [210], [259]. It is noteworthy that  many of these models 
are based on qualitatively different premises/assumptions and with few excep- 
tions have no direct bearing to NSE (for a partial list of recent examples see [20], 
[25], [44], [30], [31], [33], [38], [48], [74], [77], [99], [172], [178], [218], [215], [261], 
[277] and numerous references therein). 13 The most common justification for 
the preoccupation with such models is that  (at least some of them) they share 

13Therefore the  success of  such models can hardly be evaluated on the basis of how well 
they agree wi th  experiments.  For example, there exist a great many theories which produce  
the  k - 5 / 3  energy spec t rum for qualitatively and /o r  physically dif ferent reasons. A recent 
example is a suggest ion tha t  t h e  specrum o f  fully deve loped  turbulence  is de t e rmined  by  t he  
equi l ibr ium stat is t ics  o f  t h e  Euler  equat ions  and tha t  a full  description o f  turbulence  requires 
only  a per turbat ion ,  smal l  in s o m e  appropria te  metr ic ,  o f  a Gibbsian equil ibrium [62]. 
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the same basic symmetries (perhaps also some hidden symmetries), conserva- 
tion laws and some other general properties, etc. as the NSE. The general belief 
is that  this - along with the diversity of such systems (there are many having 
nothing to do with FDT, e.g. granular systems, financial markets, activity in 
brain) - is the reason for the above mentioned agreement. However, this is not 
really the case, e.g. in [147] a counter example of a 'dynamical equation is exhib- 
ited which has the same essential invariances, symmetries, dimensionality and 
equilibrium statistical ensembles as the Navier-Stokes equations but which has 
radically different inertial-range behaviour'! Many models, such as mostly pop- 
ular GOY model (for references see [25], [44], [99], [126], [161]), a variant of shell 
models originated with the systems of hydrodynamical type of Obukhov since 
1969 [187], exhibit temporal chaos only. Therefore, such and most of other mod- 
els hardly can be associated with the intermittency of real FDT which involves 
essentially spatial chaos as well. Moreover, for the above reasons the agreement 
between such models and experiments (both laboratory and nimerical) cannot 
be used for evaluation of the success of such models. 
Note that  there exists a controversy regarding the exponents (~  of structure 
functions for the transverse velocity increments (Au± ---- Au -- Aull ). According 
to [42], [46], [45], [127], [185], these are practically indistinguishable from the 

ones for longitudinal velocity components (4 ) ,  whereas a substantial diference 
between the two was found in [311, [32], [58], [70], [102], [105] such that  the trans- 
verse structure functions are more intermittent than the longitudinal ones both 
in the sense of deviation of scaling exponents and behaviour of PDFs of velocity 
increments (especially their tails), just like lateral velocity derivatives are more 
intermittent than the longitudinal ones, and enstrophy is more intermittent than 
the total  strain (see e.g. references in [32] and [57]). It is noteworthy that  the 

discrepancy between ~ and ~ is noticalble for p > 6. Therefore, it is not garan- 
teed that  it is not an artifact of insufficient number of significantly contributing 
data  points for p > 6, i.e. large total number of data  points may be not sufficient 
for determination of ~ ,  since the main contribution to transverse velocity in- 
crements comes from enstrophy dominated regions [32], occupying much smaller 
volume than strain-dominated regions (four times smaller following the results 
[32]), which - according to [32] - contribute mostly to the longitudinal velocity 

increments) 4 Note that  the deviation of ~ from p/3 ((~ < p/3) was much 
larger when the number of data  points was not large enough (see, e.g. figure 
14 in [3]), just like the deviation observed for ~ in [31], [32], [58], [70], [102], 

[105]. The difference between scaling exponents (~  and ¢pll for longitudinal and 
transverse velocity increments - if it is not an artifact - points to a kind of lack 
of universality (i.e. ~ are not that  universal). It was proposed, therefore, in 

14However, it  was s h o w n  in large Reyno lds  n u m b e r  expe r imen t s  (up to  Re~ ~,- 3 .  103) 

[198] t h a t  t h e  Ko lmogorov  ref ined similar iW h y p o t h e s i s  (RSH) Au~ II ==/~1 (re~) 1/3 is valid b o t h  
w h e n  t h e  d iss ipa t ion  £r averaged  over scales r was  e s t i m a t e d  via  i ts  convent iona l  su r roga t e  
15 t t (Oul /Oxl  ), i. e. b a s e d  on  longitudinal veloci ty c o m p o nen t ,  a n d  t h e  one  based  on  t h e  lateral 
(transversal) veloci ty component ~/2(o%a3/OqXl). Here ~1 is a s tochas t i c  var iable  i n d e p e n d e n t  

b o t h  of  r a n d  R e .  
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[58] (see also [57]) that no more than the two sets of independent exponents 

(i.e ~ and ~ )  are required for describing the scaling Of all smafl-scale features 
as longitudinal and transverse velocity increments, dissipation, enstrophy, and 
circulation. It should be reminded that there exist other 'universality'proposals 
involving 'much more'scaling exponents (see e.g. [90], [166], [167] and references 
therein). 
All the above is a clear indication that the question about the origins of intermit- 
tency in real FDT remains open. Similarly open are the questions on universality 
of the intermittency manifestations in FDT, though judging by the multitude of 
models of intermittency there is no universality whatsoever. 
Phenomenology and models only will hardly be useful and convincing, since 
almost any dimensionally correct model, both right or wrong, will lead to cor- 
reet scaling without appealing to NSE and/or elaborate physics: 'The wonderful 
thing about scaling is that you can get everything right without understanding 
anything'[149]; '...it is clear t h a t / f  a result can be derived by dimensional analy- 
sis alone.., then it can be derived by almost any theory, right or wrong, which is 
dimensionally correct and uses the right variables'f37], i.e. scaling laws are not 
necessarily theories. 15 With all the importance of scaling, turbulence phenomena 
are infinitely richer than their manifestation in scaling and related things. Most 
of these manifestations are beyond the reach of phenomenology. Phenomenology 
is inherently unable to handle the structure of turbulence in general and phase 
and geometrical relations in particular, to say nothing of dynamical aspects such 
as build up of odd moments, interaction of vorticity and strain resulting in pos- 
itive net enstrophy generation~predominant vortex stretching (see below). It 
seems that there is little promise for progress in understanding FDT in going 
on asking questions about scaling and related matters only [88], [244] without 
looking into the structure and, where possible, basic mechanisms which are spe- 

cific of turbulent flows. A recent attempt to relate the scaling exponents ~ and 
~ with some aspects of turbulence structure was made in [32] (see also [255]). 

3 Beyond phenomenology 

3.1  O n  p o s s i b l e  o r i g i n s  o f  s m a l l  s c a l e  i n t e r I n i t t e n c y  o f  FDT 

These are roughly of two kinds, kinematic and dynamic. 
Direct  in terac t ion  be tween  large and  small  scales. One of the manifes- 
tations of such interaction is that in many situations the small scales do not 
forget the anisotropy of the large ones. There exist considerable evidence for 

15Indeed t h e  Kolmogorov  theory  a n d  m a n y  subsequen t  models  used  disispation as  a bas ic  
quan t i ty ,  i. e. i n t i m a t e l y  r e l a t ed  t o  strain. Several  l a t e r  theor ies  are  based  on hierarchies  of  
vorticity d o m i n a t e d  s t ruc tures .  Most  o f  both kinds  of these  theor ies  a re  in good ag reemen t  wi th  
e x p e r i m e n t a l  resul ts .  However,  whi le  t he re  is a bas ic  reason,  not  on ly  on  d imens iona l  g rounds ,  

for RSH Au~ ~F : p l  (rE~) 1/3, s ince it can  be  seen as a ' loca l 've rs ion  of  t he  - 4 / 5  Kolmogorov  law 
( (Aul l )3)  : --4/5(e)r, a s imi la r  c l a im t h a t  A u  ± : ~2(rf~r)  1/3 ( ~  : vu~ 2) [58] r ema ins  j u s t  one 
more  d imens iona l ly  - but  no t  necessar i ly  phys ica l ly  - correct  r e l a t ion  (note  t h a t  ( ( A u ± )  3) -- 0). 
Here,/~1, f12 are  s tochas t i c  va r i ab les  i ndependen t  of  Re  and  r. 
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this [5], [751, [129], [130], [2001, [2661, [2751, [2761. Along with deviations from 
local isotropy there are other manifestations of direct interaction between large 
and small scales [46], [129], [130], [156], [157], [173], [196], [229] (for a list of 
earlier references see [241]). These effects seem to occur due to various external 
constraints like boundaries, initial conditions, forcing (e.g. as in DNS) mean 
shear/strain,  centrifugal forces (rotation), buoyancy, magnetic field, etc., which 
usually act as an organizing factor, favoring the formation of coherent structures 
of different kinds (quasi-two-dimensional, helical, hairpins, etc.). These are as a 
rule large scale features which depend on the particularities of a given flow and 
thus are not universal. These structures, especially their edges are believed to  
be responsible for the contamination of the inertial range. 
The following example of a 'simple'turbulent flow provides reliable information 
on the existence and importance of the direct interactions between the large and 
small scales in turbulent flows. Consider a unidirectional in the mean fully de- 
veloped turbulent  flow such as the flow in a plane channel in which all statistical 
properties depend on the coordinate normal to the channel boundary, x2, only. 
In such a flow a simple precise kinematic relation is valid as follows 

d(ulu2)/dx2 -- (w X U ) l  = (oJ2u 3 - -  ~a)3u2) -~- O, (6 )  

which is just a consequence of the vector identity (u-~r)u ~ w x u+~Z(p/p+u2/2) 
in which incompressibility and d(- . . ) /dxl ,3  = 0 where used, and (.--) means an 
average in some sense (e.g. t ime or /and  over the planes x2 = const, etc.). Since 
in these turbulent  flows d(uau2)/dx2 is essentially different from zero at any 
arbitrarily large Reynolds number (see figure 3), one can see from (6) that  at 
least some correlations between velocity and vorticity are essentially different 
from zero too. 
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Figure 3. Dependence of the mean Reynolds stress (UlU2) on the distance from the 
wall in turbulent flows in channels of cross section with large aspect ratio. Adapded 
from [269]. 
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Note tha t  in isotropic flows (w × u) = 0. Since vorticity is essentially a small 
scale quantity the relation (6) is a clear indication of a dynamically important 
statistical dependence between the large (u) and small (w) scales. Without 
this dependence d(UlU2>/dx2 -- O, which means that  the mean flow would not 
'know'about its turbulent part at all. It is noteworthy that  both correlation co- 
efficients {~2~ {~3~2~ (and many other statistical characteristics, 

e.g. measures of anisotropy) are of order 10 -2 even at rather small Reynolds 
numbers. Nevertheless, in view of the dynamical importance of interaction be- 
tween velocity and vorticity in turbulent shear flows (the relation (6) is approx- 
imately valid in almost many important turbulent flow such as boundary layers, 
wakes, jets, etc. in which d(.-'>/dXl,3 << d(.. .) /dx2) such 'small'correlation 
by no means does not imply absence of dynamicaly important statistical de- 
pendence and direct interaction between large and smaIl scales. In fact, the 
above result is related to the simple kinematic fact that  after all u =curl ca. In 
this respect it belongs to origins of intermittency of kinematic nature, but not 
d(ulu2}/dx2 = O, which is definitely a dynamical effect. The direct interaction 
between large and small scales similar to the one in the above example may exist 
in a much broader class of turbulent flows and regions in these flows, e.g. with 
appropriate scale (in t ime and space) separation such as vorticity 'pancakes'[36]. 
M u l t i p l i c a t i v e  noise  i n t e r m i t t e n c y  of  pass ive  ob jec t s  in r a n d o m  me-  
dim It is known for about thir ty years that  passive scalars exhibit anomalous 
scaling behaviour and strong intermittency (see figure 2) even in pure Gaussian 
random velocity field (see [4], [56], [146], [151], [152], [153], [201], [220], [221], 
[272], [273], [274] and references therein). Similar behaviour is exhibited by a 
passive vector in a random Gaussian field [154], [205], [256]. Though these are 
dynamically linear systems with the so called multiplicative noise (i.e. statisti- 
cally they are 'nonlinear') and in this sense are kinematic in respect with real 
FDT, they may reflect the contribution of kinematic nature in real turbulent 
flows as it was demonstrated in [223]. It is noteworthy that  the intermittency ef- 
fects in such linear systems are stronger than in [=DT [4], [154], [210] and exhibit 
anomalous scaling, which, generally, is nonuniversal I59]. On other aspects of 
passive scalar 'misbehaviour'in turbulent flows see [230], [110], [200], [220], [227], 
[242] and references therein. In view of the recent progress in this field it was 
claimed that  investigation of the statistics of the passive sca/ar field advected by 
random flow is interesting for the insight it offers into the origin of intermittency 
and anomalous scaling of turbulent fluctuations [201]. More precisely it offers an 
insight into the origin of intermittency and anomalous scaling of fluctuations in 
random media generally and independently of the nature of the random motion 
[272], [273], [274], i.e. it gives some insight into the contributions of kinematic 
nature, but does not offer much regarding the specific dynamical aspects of strong 
turbulence as is [=DT. Moreover, anomalous diffusion (including scaling) of pas- 
sive objects occurs in purely laminar flows in Eulerian sense (E-laminar flows) 
as a result of Lagrangian chaos (E-turbulent flows). For examples, see [10], [11], 
[51], [268], [271] and references therein (see section 8). 
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'Nea r ' s i ngu l a r i t i e so  It is not known for sure whether Euler equations (EE) at 
large Reynolds numbers and /or  even NSE develop a genuine singularity in finite 
time, though there is some evidence that  at least for EE this may be t rue [36], 
[65], [90], [101], [135], [184], [188]. Whatever is the real situation it seems a 
reasonable speculation that  these 'near'singularities trigger topological change 
and large dissipation events (for NSE); their presence is felt at the dissipation 
scales and is perhaps the source of small scale intermittency [65], though it does 
not help to understand the inertial range intermittency without invoking the 
reacting back of the dissipation range on the inertial range. This is possible due 
to  mentioned above direct coupling between the targe and small scales and other 
nonlocal effects [80], e.g. the 'bottleneck phenomenon'f84] in which viscosity 
leads to a 'pileup'of energy in the inertial range of scales. The experimentally 
observed phenomenon of strong drag reduction in turbulent flows of dilute poly- 
mer solutions and other drag reducing additives [104] is another example of such 
a 'reacting back'effeet. 
Near singular objects associated with non-integer values of the energy spectrum 
scaling exponents are thought to be closely related with some structure(s) and, 
consequently, with intermittency of turbulent flows [255]. 
In any case the 'near'singular objects may be among the origins of intermittency 
of dynamical nature. 
I n s t a n t o n s °  This is a recently proposed approach seeking the dynamical origin 
of intermittency in the so called instantons [85], [86], which are path integral 
analogy of, e.g. solitons associated with the separatrix in the phase space of a 
pendulum (unstable equilibria). The instanton is both a dynamical and a sta- 
tistical object - a kind of average characterising the very intense events of the 
kind under consideration and containig information on their prehistory. 
The most popular view is tha t  intermittency specifically in FDT is associated 
mostly with some aspects of its spatio-temporal structure, especially the spatial 
one. Hence, the close relation between the origin(s) and meaning of intermit- 
tency and structure of turbulence. Just like there is no general agreement on the 
origin and meaning of the former there is no concensus regarding what are the 
origin(s) and what turbulence structure(s) really mean. What  is definite that  
turbulent flows have lots of structure(s) a6 

3.2 O n  t h e  s t r u c t u r e  of  t u r b u l e n c e  

3.2ol On the origins of structure(s) of/in turbulence 

This question - in some sense - is a 'philosophical'one. But its importance is in 
direct relation to  even more important  questions about  the origin of turbulence 
itself. The  difficulties of definition what the structure(s) of turbulence are (mean) 
are of  the same nature as the definition of turbulence itself. So before and in 

lSThe term structure(s) is used here deliberately in order to emphasize the  duality (or e v e n  

multiplicity) of the  meaning of the  underlying problem, The i l r~ is about how turbulence 
'looks like'. The second implies existence of some e n t i t i e s .  
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order  to  'see 'or  'measure ' the  s tructure(s)  of  turbulence  one encounters  the  most  
difficult questions such as wha t  is (say, dynamica l ly  relevant) s t ructure? ,  s t ruc-  
tu re  of  wha t?  which quanti t ies possess s t ruc ture  in turbulence?,  can s t ruc ture  
exist in 's tructureless '(art if icial)  pure r andom Gaussian field and  which? All this 
- like m a n y  other  issues - are int imately related t o  the  skil l /art  t o  ask the  right 
and  correct ly  posed questions. 
I n s t a b i l i t y °  The  most  commonly  accepted view on the  origin of  turbulence  
is the  (continous s ta te  of  [238]) flow instability. An  addit ional  aspect  is t h a t  
instabil i ty is considered as one of  the  origins of  s t ructure(s)  in /o f  turbulence.  
However, this latter veiw requires to  admi t  p re t ty  long ' m e m o r y ' o f  turbulence  
or, alternatively, presense in the  'pure ly ' turb lu lent  flow regime (i.e. at  large 
enough Reynolds  numbers)  of  instabil i ty mechanisms similar to  those existing 
in the  process of  t ransi t ion form laminar  to  turbulent  flow state.  
E m e r g e n c e °  Ano the r  less known view is t h a t  s t ructure(s)  emerge in large 
Reynolds  number  turbulence  ou t  of  'purely  r andom st ructureless 'background,  
e.g. via the  so-called inverse cascades. A m o n g  the  spectacular  examples,  are 
the  'geophysical  vort ices ' in the  a tmosphere  and  in the  ocean. Another  example 
is the  emergence of  coherent  objects  (vortex f i laments /worms)  out  of  initially 
r andom Gaussian velocity field via the  NSE dynamics  (cf., e.g. figure l a  and 
figure 3 in [216]). 17 
I t  " j u s t  e x i s t s "  or do flows become turbulent  or t hey  are " ju s t ' such?  
'To the  f lows observed in t h e  long run af ter  the  inf luence o f  t h e  initial condit ions 
has  died down there  correspond certain soIut ions o f  t h e  Navier-  S tokes  equations.  
These  solut ions  cons t i tu te  a certain mani fo ld  Ad = M ( p )  (or A4 = M ( R e ) )  in 
phase  space invariant under  phase  f low'[111]. 'Kolmogorov's scenario was based 
on the  c o m p l e x i t y  o f  t he  dynamics  along the  a trac tor  ra ther  than i ts  stability'[13] 
(see also [97], [131], [132]). This  view is a reflection of  one of the  modern  beliefs 
t ha t  t he  s t ructure(s)  of  turbulence  - as we observe it in physical  space - is (are) 
the  manifes ta t ion of the  generic s t ruc tura l  propert ies  of  mathemat ica l  objects  
( in  phase space) which are  called (strange) a t t rac tors ,  which are  invariant in 
some sense. In o ther  words here the  s t ructure(s)  is assumed to  be 'buil t  in ' the  
turbulence  independenly of  its origin (hence universality).  
Wha teve r  the  origin (both of turbulence  and  its s t ructure(s))  at  large enough 
Reynolds  numbers  it is extremely complex - -  apparent ly  random/s tochas ic .  For 
instance, the  so called "coherent s t r u c t u r e s ' o f  different scales and  shapes appear  
r andomly  in space / t ime  and  many  of their  propert ies  change r andomly  as well. 18 

17Recall P. W. Anderson with the emphasis on the concept of 'broken symmetry', the ability 
of a large collection of simple objects to ahabdon its own symmetry as well as the symmetries 
of the forces governing it and to exhibit the 'emergent property'of a new symmetry [2]. One 
of the difficulties in turbulence research is that no objects simple enough and such that a 
collection of these objects would ad~tuately represent turbulent flows were found so far. 

18The term scales is used everywhere in its simple geometrical meaning without any other 
implication, Speaking about scales of some individual structures in turbulent flows requires to 
keep in mind that even the 'simplest'most popular structures like vortex filaments/worms have 
at least two very different scales: their length can be of order of the integral scale, whereas its 
cross section is of the order of the Kolmogorov scale. 
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3°2°2 How structure(s)  of  turbulence 'look(s) like' ? 

Until recently very little was known what this structure is or how the struc- 
tures look like (in physical space). The structure in question is the so called fine 
structure and not the one which is promoted by various external factors and/or  
constraints like boundaries, mean shear, centrifugal forces (rotation), buoyancy, 
magnetic field, etc., which usually act as an organizing factor, favoring the for- 
mation of coherent structures of different kinds (quasi-two-dimensional, helical, 
hairpins, etc.). These are as a rule large scale features which depend on the par- 
ticularities of a given flow and thus are not universal. It is noteworthy that  the 
statement that  turbulence has structure is in a sense trivial: to say that  turbu- 
lent flow is 'completely random'would define turbulence out of existence ([238], 
p. 295) - after all turbulent flows seem to obey the Navier-Stokes equations. 
Since the first DNS simulations [2251 a number of other computations were per- 
formed (see [32], [1121, , [121], [124], [125], [193], [216], [217], [2321, [260], and 
references therein), which demonstrated clearly that  fluid-dynamical turbulence 
which is 'homogeneous'and 'isotropic'has structure(s), i.e. contains a variety of 
strongly localized events. The primary evidence is related to spatial localization 
of subregions with large enstrophy (i.e. intense vorticity) which are organized in 
long, thin tubes-filaments-worms. Such filaments were observed also directly in 
laboratory experiments (the ones mentioned in figure 1) employing the property 
of intense vorticity to be strongly correlated with regions of low pressure and 
using small air bubbles for visualization of these regions ([72], [258] and also 
[I19], [214] and references therein). This follows from the Poisson-like equation 
for pressure 2 V 2 p / p  = w 2 - 2sij si j .  There is some evidence that  in regions with 
moderate magnitude of vorticity it is organized in sheet-like structures [134], 
[216], [232]. Much less is known about regions with large strain, s~js~j, i.e. dissi- 
pation. They were tentatively identified as layered vortex sheets in [214], which 
was not confirmed by other observations or computations so far. Most common 
observations at Reynolds numbers accessible in DNS showed that  isosurfaces of 
high strain are wrapped around the regions strong enstrophy I35], [121], [137], 
[193], [207], [208], [217], [232]. However, in [232] and in recent computations, 
[32] isosurfaces of large strain were observed as sheet-like objects with very sharp 
edges (razors/flakes). In fact such objects were observed already in [224] (see 
there figure 21). This does not mean that  vorticity field in these regions is simple 
and is necessarily sheet-like too. Some examples of the results mentioned are 
shown in figure 4. 
The relatively s imple  appearance of the observed structures as shown above 
prompted a rather popular view that  turbulence structrure(s) is (are) simple in 
some sense and that  essential aspects of turbulence structure and its dynam- 
ics may be adequately represented by a random distribution of simple (weakly 
interacting) objects, such as straight strained (Burgersilike) vortices (see [246] 
and references therein). In particular, it is commonly believed that  mos t  of the 
structure of turbulence is associated with and is due to various strongly localized 
intense events/structures, e.g. mostly regions of concentrated vorticity so that  
' turbulent  f low is domina ted  by vor tex  tubes  o f  small  cross-section and bounded 



100 

e c c e n t r i c i t y ' ( [ 6 1 ] ,  p. 95) and  t h a t  these events are mainly responsible for the 
phenomenon  of in termi t tency ([21], [90], [129], [178] and  references therein).  

\ ..~ • ~.~ ~,, ~ ,. • 

• W:e¢.7~ " ~" -.,',:'N-~ 7~..~ 

"::~.', . . .  ".• . . • 

Figure 4. Vortex filaments in DNS [217] (top left) and laboratory [72] (top right)• 
Isosurfaces of the second invariant of the velocty derivatives tensor Q = w 2 - s i j s~ j  

(bottom left) at  2 r r n s  positive level, i.e. vorticity dominated regions, and isosurfaces 
of strain s i j s~ j  (bottom right) at 2 r m s  level [32] , i.e. strain dominated regions. 
The two bottom pictures were not included in the paper [32], but are available at 
h t t p : / / w v # w . e n g . u c i . e d u / - b o r a t a v / a n d  are used here by permission of the authors. 

I t  is a rgued in [246] t h a t  such views are inadequate  and  tha t  - t hough  impor-  
t an t  regions of  concent ra ted  vort ici ty are not t h a t  impor tan t  as commonly  
believed. Namely, regions o t h e r  t h a n  concent ra ted  vort ici ty such as: i - ' s t ruc-  
ture less 'background,  i i  - regions of  s t rong vor t ic i ty /s t ra in  (self) interact ion and 
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largest enstrophy generation, and i i i -  regions with negative enstrophy pro- 
duction are dynamically significant (in some important  respects more signifi- 
cant than those with concentrated vorticity) strongly non-Gaussian, and possess 
structure. Due to strong nonlocality of turbulence in physical space all the re- 
gions are in continuous interaction and are strongly correlated. 
These conclusions are the outcome of use of quantitative manifestaions of tur- 
bulence structure (see sections 4 - 8). 

3 .2 .3  O n  'simple'quantitative m a n i f e s t a t i o n s  o f  t u r b u l e n c e  s t r u c t u r e  

On a qualitative level it is widely recognized that  fluid-dynamical turbulence 
(even 'homogeneous'and 'isotropic') has 'structure(s) ' ,  i.e. contains a variety of 
strongly localized events, which are believed to influence essentially the proper- 
ties of turbulent flows. Being extremely useful the individual observations of such 
events are inherently limited as compared with statistical information. Indeed, 
pure Gaussian velocity field has some structure too (see figure 3 in [216], show- 
ing that  such field has also some 'vortex filaments', though much less in number 
and less intense than in a real flow). In other words, though what we see is 
real - the problem is in intepretation. This requires to employ the quantitative 
manifestations of turbulence structure. In order to proceed to the quantitative 
aspects of the problem it is not sufficient to look at pictures (whatever beautiful) 
and one has to turn to numbers and quantitat ive relations such as in mentioned 
above anomalous scaling, which is one of many other more specific quantitative 
manifestations of turbulence structure. 
Speaking about 'structure(s) ' in turbulence the implication is tha t  there exist 
something 'structureless', e.g. Gaussian random field as a reperesentative of 
full/complete disorder. It is frequently claimed that  'Kolmogorov's work on the 
fine-scale properties ignores any structure which may be present in the flow'([90], 
p. 182) and that  it is associated with near-Gaussian statistics [217]. The main ar- 
gument overruling the above claims is the Kolmogorov 4/5 law (4) 19, which is the 
first strong indication of presense of s tructure 20, showing that  non-Gaussianity 
and structure of turbuence are directly related to the dissipative nature of FDT. 
It is remarkable that  the title of this paper by Kolmogorov [142] is Dissipation 
of  ene rgy /n  the locally isotropic turbulence. Likewise the structure functions 

of higher odd orders S~(r) = ((Auii) p> are essentially different from zero (see 
references in [28], [228], [246]). An interesting consequence of (4) is that non- 
Gaussianity increases with scale in contradistinction with the rather common 
opposite view. The 4/5 law (4) belongs to the most prominent and distinctive 
features of turbulent  flows of utmost dynamical significance - the build up of odd 
moments both in large and small scales which among other things means phase 
and geometrical coherency, i.e. structure. Indeed, as was discovered by Taylor 
[233], [234] (for later references see [28], [228], [246]) another most important  

19This relat ion has a t t r ac t ed  considerable a t t en t ion  recently (see [7], [90], [106], [130], [163}, 
[228], [254] and  references therein) .  

20In the  inert ial  range,  L >> £ >> r/. In t h e  diss ipat ion range £ ~ r/ turbulence  is s t rongly 
non-Gauss ian  and  in te rmi t ten t  t oo  [145], [182]. 
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odd moment  associated with small scales - the enstrophy generation (COiOJj8ij} 
- is essentially positive, which reflects one of the most basic specific proper- 
ties of three-dimensional turbulent  flows - the (prevalence of) vortex stretching 
process. Hence the particular emphasis on the odd moments. In addition, the 
non-Gaussianity found experimentally both  in large and small scales is exhib- 
ited not only in the nonzero odd moments,  but  also in strong deviations of even 
moments  from their Gaussian values. Thus both  the large and small scales differ 
essentially from Gaussian indicating tha t  both  possess structure. 
A special aspect  of non-Gaussian behaviour is related to  strong fluctuations of 
velocity: it was observed in laboratory [185] and numerical experiments [123], 
[154], [259] tha t  the single point P D F  of velocity at  large amplitudes of velocity 
fluctuations is sub-Gaussian and recently was confirmed theoretically using the 
instanton formalism [86]. 
A number of more subtle issues related to quantitative aspects of s tructure of 
turbulence can be effectively addressed via what  is denoted in the sequel by the 
te rm 'geometrical statistics'(see [64], [68], [245], [252] and references therein). 

4 Geometr ica l  s tat i s t ics  

The widely known example of the utmost  importance of geometrical relations 
in turbulence is the qualitative difference between the dynamics of 3D and 2D 
turbulence. This is seen immediately from the equations for vorticity ~;i and 
enstrophy ;0 2 

Dtwi = wjsij + vV2wi, Dt(~2/2) = aJiOJj8ij + l/OJiV2Wi, (7, 8) 

where Dt -- O/Ot+uk (O/Oxk). The nonlinear terms wj sij and *oi~oj sij are known 
to  be responsible for the so called vortex stretching (VS) and enstrophy genera- 
tion (EG). In other words the essential dynamics of 3D-turbulence is contained in 
the  interaction between vorticity ¢o and the rate  of strain tensor sq. Both wj sij 
and wiwjsij vanish identically for 2-D flows. Among other things VS responsible 
for the enhanced dissipation in turbulent  flows 21 and it is one of the pr imary 
mechanisms for formation of structures. 
So far there have been given no theoretical arguments  in favor of positiveness of 
(~o~ojs~j}. The argument  tha t  the reason is the (approximate) balance between 
the enstrophy generation and enstrophy dissipation is misleading and puts the 
consequences before the reasons, since it is known tha t  for Euler equations the 
enstrophy generation increases with t ime very fast (apparently without limit) 
[36], [61], [87], [100], [135], [188]. Another  rather  common view tha t  the preva- 
lence of vortex stretching is due to the predominance of stretching of material  

21Taylor [234] was the first to realize this fundamental importance of the vortex stretching 
process and its prevalence over vortex compressing. He demonstrated experimentally the 
essential positiveness of (coicojslj) in a turbulent grid flow using the relations imposed by 
isotropy. Later this has been shown directly for several flows via measurements of all the nine 
velocity derivatives [249] and also by direct numerical simulations [223]. 
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lines is - a t  bes t  - t r ue  in p a r t  only, since, t he re  exis t  severa l  qualitative differences 
be tween  the  two processes.  

V o r t e x  s t r e t c h i n g  v e r s u s  s t r e t c h i n g  o f  m a t e r i a l  l ines[243] • - The equation 

for a material line element 1 is a linear one and the vector 1 is passive, i.e. the fluid flow 
doesn't 'know' anything whatsoever about 1. In other words the vector 1 (as any passive 
vector) doesn't exert any influence on the fluid flow. The material element is stretched 
(compressed) locally at an exponential rate proportional to the rate of strain along the 
direction of ], since the strain is independent of ]. 
• - On the contrary the equation for vorticity is a nonlinear partial differential equation and 
the vector w is an active one - i t  'reacts back' on the fluid flow (vorticity and rate of strain 

o_~ ~_ o__~ tensor are composed of derivatives of the same velocity field: z ro t  u, 2s~j ~ o=j -- Ü=i ' 

i.e. the strain does depend in a nonlocat manner on and vice versa). In other words the 
rate of  vortex stretching is a nonlocal quantity, whereas the rate of stretching of material 
lines is a local one. Therefore the rate of  vortex stretching (compressing) is different from 
the exponential one (and is unknown). Also, it is noteworthy that there are much 'less' 
vorticity lines than the material ones - at each point there is typically only one vorex line, 
but infitely many of material lines. This leads to differences in the statistical properties of 
the two fields. 
• - Consequently while a material element £ tends to be aligned with the largest (positive) 
eigenvector of si j ,  vorticity tends to be aligned with the intermediate (mostly positive) 
eigenvector of sl j  : the eigenframe of s,j rotates with an angular velocity ~8 of the order 
of vorticity ! [73]. 
• - For a Gaussian isotropic velocity field the enstrophy generation is identically zero, 
(w~wjs~jt - -  0 [223], whereas the mean rate of stretching of material lines is essentially pos- 
itive [17], [53], [101]. The same is true of the mean rate of vortex stretching (w iw js i j ) lw  1-2 
(for other counter-examples see below) and for purely two-dimensional flows. This means 
that one can expect that in turbulent flows the mean growth rate of material lines is larger 
than the one of vorticity [191]. Recently this was really observed in decaying DNS turbu- 
lence [114]. In other words the nature of vortex stretching process is dynamical and not a 
kinematic one as is the stretching of material lines. 
• - An additional difference due to viscosity becomes essential for regions with concentrated 
vorticity, in which there is an approximate balance between enstrophy generation and its 
reduction. Vortex reconnection is allowed by nonzero viscosity. No such phenomena exist 
for material lines. 

As men t ioned  above  in 3-D tu rbu l ence  (.)~.~j 8ij ) is an  essent ia l ly  pos i t ive  quan-  
t i t y  - t h e  P D F  of  .~i.;jsij is s t rong ly  pos i t ive ly  skewed. This  reflects  one of  t he  
mos t  bas ic  specific prope r t i e s  of t h r ee -d imens iona l  t u r b u l e n t  flows - t h e  (preva-  
lence of) t h e  vor tex  s t r e t ch ing  process .  T h e  e n s t r o p h y  genera t ion  wiwjsij is 
an  o u s t a n d i n g  nonzero  odd m o m e n t  of  u t m o s t  d y n a m i c a l  i m p o r t a n c e  in t u r b u -  
lence. Indeed ,  in t he  h y p o t h e t i c a l  case  of  absence  of  VS a n d  EG or  even in case 
when  only  (~i~vjs~j) = 0 -  as a s sumed  by  K a r m a n  [128] - t he  t h r ee -d imens iona l  
t u rbu lence ,  as  we observe  it,  wou ld  not  exist .  
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4.1 G e o m e t r i c a l  invariants  versus  the ir  surrogates  

Quantities like wiwj  s i j  are geometrical invariants (see also section 7), e.g. they 
remain invariant under the full group of rotations in contradistinction with other 
n o n i n v a r i a n t  combinations of velocity derivatives. For this reason the geometri- 
cal invariants are mostly appropriate for studying physical processes in turbulent 
flows, their structure and universal properties (see [29], [181], [243], [249] and 
references threrein). 
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Figure 5. PDF's of enstrophy w 2, total strain sijs~j (dissipation) and their surro- 
gate 15(oqul/Oxl) 2 (left column) and enstrophy generation w~wjs~j, S~jSjkSk~ and their 
SUl~ogate 17.5(o%a1/OXl) 3 (right column). 

Surrogates of the type (OUl /OXl)= reperesent adequately only the means of the 
true quantities such as mean disspation. Other properties (spectral, fractal, scal- 
ing, etc.) of the surrogates and of the true quantities (invariants) are generally 
different (see, [228], [243], [245], [249] and references therein; for some recent 
results on such differences see [113], [267]). Likewise there exist qualitative dif- 
ferences between the flow regions dominated by strain and those by vorticity 
(e.g. [29], [32], [57], [58], [117], [217], [223], [274] and references therein). A new 
aspect of such a difference is addressed in sections 4.3, 4.4, 10.2.1. An example 
of the differences between the true quantities and their surrogates is shown in 
figures 5 and 6 for a DNS of NSE in a cube at Taylor microscale Reynolds number 
Re~ ~ 75 [250], [252]. 
A usual phenomenological argument [90] results in the estimate w i ~ j s i j  ~" w 3, 
whereas in reality it is only w i w j s i j  ~ w7/a in slots of w, but w ~ j s i j  ~ ~¢3 

in slots of s (see [246] and references therein), showing the importance of tak- 
ing into account the mutual o r i e n t a t i o n  of vorticity w and the eigenframe )~i 
(i ---- 1,2, 3) of the rate of strain tensor s i j .  In other words the essential dynamics 
of 3D-turbulence contained in the interaction between vorticity w and tile rate 
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of  s t r a in  t ensor  s iy  d e p e n d s  s t rong ly  not  on ly  on the  m a g n i t u d e  of  vor t i c i ty  a n d  
s t r a in  bu t  also on t h e  geome t ry  of  t he  field of  veloci ty  der iva t ives ,  in pa r t i cu l a r  
on t h e  m u t u a l  o r i en ta t ion  of  vo r t i c i ty  aa a n d  the  e igenf rame Ai o f  t h e  r a t e  o f  
s t r a in  t enso r  8ij. 
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Figure 6. Joint P D F ' s  and  scatter  plots of enstrophy w 2, total  strain s i j s i j  (dissipation) 
and  their surrogate 1 5 ( O u i / O x l )  2 (left column), and enstrophy generation wiwjslj ,  
s~j s j k s k~  and their surrogate 1 7 . 5 ( O u t / O x l )  a (right column). 

One  of  t he  s imples t  means  to  cha rac t e r i ze  q u a n t i t a t i v e l y  th i s  geomet r ica l  a spec t  
of  t u rbu l ence  dynamics  is to  look a t  t h e  a l ignmen t s  be tween  vor t i c i ty  and  s t ra in ,  
e. g. t h e  P D F s  of  t h e  cosine of  t he  angle  be tween  vor t i c i ty  a¢ a n d  t h e  e igenveetors  
Ai.  
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4 . 2  A l i g n m e n t s  

Various alignments comprise an impor tant  simple geometrical characteristics and 
manifestation of the dynamics and structure of turbulence. For example, there 
is a distinct qualitative difference between the PDFs  of cos(w, )~i) 22 for a real 
turbulent  flow and a random Gaussian velocity field. In the last case all these 
PDFs  are precisely flat! [223]. An example of special dynamical  importance 
is the strict alignment between vorticity and the vortex stretching vector Wi -- 
~j sij. In real turbulent flows it is strongly asymmetr ic  [223], [249], [246], [252] in 
full conformity with the prevalence of vortex stretching over vortex compressing, 
i.e. positiveness of (~v~jsij) = (w.  W ) ,  whereas it is symmetr ic  for a random 
Gaussian field [223]. Thus the very existence of alignments such as mentioned 
above points to the presence of internal organization of flow at various scales, 
i.e. alignments belong to the rare quantitative statistical manifestation of the 
existence of s t ructure in turbulence. They are the simplest representative of 
a much broader class of geometrical statistics in turbulent  flows [245]. I t  is 
noteworthy tha t  while the above mentioned (an some others) alignments are 
intimately related to the dynamics of turbulent  flows, there are alignments which 
are mostly of kinematic nature, e.g. alignment between the Lamb vector ca × u 
and its potential  part  (pressure gradient), the alignment between velocity and 
the eigenvectors of rate  of strain tensor and some others [246], [252]. 
Alignments by their very definition are suitable for events of any magnitude, 
since they do not contain the ampli tude of the quantities involved. Finally, 
alignments are invariant in the sense tha t  they are independent of the system 
of reference and therefore, along with other invariant quantities are the most 
appropr ia te  in studying of physical processes generally and in particular for 
characterization of the structural  nature of turbulent  flows. 
Due to these properties using of alignments enables to answer in a simple and 
reliable way a number of questions on turbulence structure [252]. 

5 The  geometry  of vortex  stretching 

In order to address this issue let us remind some simple relations for the key 
quantities of turbulence dynamics - the vortex stretching vector Wi = o3j 8ij and 
enstrophy generation ,~iwjsij and some related quantities (see also section 6). 

~oiwjsij --- w2Ai cos2(w, Ai) ---- ~w2; W 2 -- w2Ai2 cos2(w, :hi) , (9, 10) 

Here ~ -- Ai cos(w, )~i) - -  is the rate  of enstrophy generation. I t  is seen from the 
relaltions (8,9) tha t  indeed - as mentioned above - the essential dynamics of 3D- 
turbulence contained in the interaction between vorticity w and the ra te  of strain 
tensor sij depends strongly not only on the magnitude of vorticity and strain 
but  also on the geometry of the field of velocity derivatives, in particular on the 

22The eigenvalues of the rate of strain tensor are denoted as Ai and A1 > A2 > An, A1 + 
A2 +An ~ 0 due to incompressibility, so that A1 > 0 and A3 < 0. It is known from experiments 

- both numerical [14] and laboratory [249] - that (A2) > 0. 
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mutual orientation of vorticity ¢0 and the eigenframe Ai of the rate of strain 
tensor s i j .  This is t rue especially regarding the rate  of enstrophy generation 
w i w j s i j  (i.e. ~ = Aicos(w,~.~)) and similar quantity for W 2 (i.e. W 2 / w  2 = 

A 2 cos(w,Ai)), which depend explicitly only on the orientation of vorticity, but  
not on its magnitude. 
In view of the importance of the predominant vortex stretching and positive 
net enstrophy generation, i.e. (wioJjsij) > 0 it is useful to  introduce an angle 
between w and W ,  since w i w j s i j  ~ w -  W.  It is easy to see from the simple 
relation 

h, cos2( , (u) 
cos( , w )  = ¢os  

tha t  the alignment between oa and W (i.e. positive w i w j s i j )  is realized in two 
situations [252]: i - w is aligned with ~1 (h i  > 0) and ii  - ~ is aligned with 
)~2 (A2 assumes both positive and negative values, but  is positively skewed [14], 
[249]) . Indeed, the contributions both to a =- w i w j s i j  and c~ associated with 
AI and A2 are positive (see table 1). 

(wUAlcos2(oa, A1)) (w2A2cos2(w, A2)) (w2Aacos(w,A3)) 
DNS 1.06 0.51 - 0.57 
Grid 1.17 0.39 - 0.56 

DNS 1.47 0.49 - 0.97 
Grid 1.17 0.46 - 0.63 

Table 1. Contribution to the total mean of enstrophy generation (a) ~ (w2A~ cos 2 (w, A~)) 

and its rate (c~) ----_ (A~ cos2(w, Xi)) from the terms corresponding to the eigenvalues A~ 
of the rate of strain tensor slj. Grid turbulence and DNS, PeA m 75 [252]. 

It is surprising, at first sight, tha t  the largest contribution to a and a comes 
from the regions associated with the largest  eigenvalue A1 of the rate of strain 
tensor s i j  and not from the ones associated with the i n t e r m e d i a t e  eigenvalue A2, 
since it is known that  there exists a strong tendency of alignment between ~a 
and )~2 (as shown in figure 7) ([14], [246] and references therein). This apparent 
contradiction will become clear in the sequel Meanwhile we note that  the align- 
ments between ¢o and X1 and between w and A2 correspond to two qualitatively 
different in several respects regions of turbulent flow [246], [252]. 

5.1 Strained vortical (Burgers-like) objects 

We start  from regions with concentrated vorticity, which constutue a subset of 
much larger regions in which there is a tendency for alignment between w and 
A2. This is clearly seen from the figure 7. Indeed, regions corresponding to 
cos(w, A2) > 0.9 occupy about 20% of the total  flow volume, whereas the set of 
points with concentrated vorticity (say, ~2 > 3(~2)) is comprised of less 6% of 
the total flow volume [252 l. 
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Figure  7. P D F s  of cos(w, A2), DNS, Rex ~ 75 [246], [252]. Top left - condi t ioned on 
enst rophy w 2 and  s 2, top right - condi t ioned on  curvature  C of vortex lines. Note tha t  
the  tendency for a l ignment  between w and  A2 exists both in regions of large w 2 and  
large s 2 (see also [87], [217]). Note tha t  for a Gauss ian  velocity field these P D F s  are 
precisely flat. Bo t tom - jo in t  P D F  of cos(w, A2) and  w 2 (the joint  P D F  of cos(w, A2) 
a n d  s 2 is similar to the one shown in this figure [252]). I t  is seen tha t  the max imum 
of joint  P D F  of cos(w, A2) and  w 2 (and similarly of cos(w, A2) and  s 2) takes place at  
cos(w, A2) ~ 1 a nd  w 2 ~ 0, i.e. at  the points  with weakest vort ici ty and  strongest 

a l ignment  between w and  A2. 
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The  main feature and shortcoming of these objects (straight strained vortices) 
is tha t  they possess one-dimensional vorticity and therefore zero curvature of 
vortex lines. Though the reIation between vorticity and strain is essentialiy non- 
local ' the presence of  a strained vortex itself  modifies the local strain field'([159] 
p. 242) - after all both  are composed of derivatives of the same velocity field. 
However, the special feature of the straight strained vortices is that  they are 
impotent in the sense that  they do not change that  part  of the strain by which 
they are strained themselves: this part  of strain is prescibed a priori, i.e. it 
is independent decoupled from their vorticity. These vortices do change only 
that  part  of their strain which is not reacting back on their vorticity. In other 
words there is only one way interaction: the vorticity is strained by that  part  
of strain which does not 'know'anything about  the vorticity. In this sense such 
vortices are passive: the essential ingredient of nonlinearity, the main feature of 
t rue genuine nonlinear interaction - -  the self-amplification - -  is absent in these 
objects. In this sense the nonlinearity is reduced in these objects. This property 
is directly related to  zero curvature of vorex lines in straight strained vortices 
(see figure 4, top and bot tom left and figure 7, top left) - -  the genuine nonlin- 
earity is present only in regions with nonvanishing curvature. This is what is 
observed when looking for (apparent) singularities of Euler equtions ([36], [100], 
[101], [135], [184], [188], [202]) and vortex reconnection ([87], [138]). 
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Figure 8. Comparison of enstrophy generation cr ~ WiWkSik (left) and its rate a 
W~WkS~k/W 2 (right) with their viscous reduction uw~V2w~ and vw~V2w~/w 2 in slots of 
w and s. DNS, Rex ~ 75 [251]. 
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In other words regions with concentrated vorticity with small curvature in real 
turbulent flows seem to be mostly the result, the consequence rather than dom- 
inating factor of the turbulence dynamics. Possessing (almost) maximal enstro- 
phy they are in an approximate equilibrium in the sense that  their fairly large 
(but not largest!, see section 5.3) enstrophy generation is approximately bal- 
anced by the viscous reduction and in this sense they are less active than the 
strain dominated regions possessing much larger (apparently maximal) enstro- 
phy generation which is considerably larger than its viscous reduction. This is 
seen from the comparison of the rate enstrophy generation (~ -- a)i~ksik/w 2 and 
its viscous reduction va)~72~/va 2 in slots of ~ and s as shown in figure 8 [251]. 
Indeed, the imbalance between stretching and viscous terms in slots of s is much 
larger than in slots of w. This difference is especialy large at large values of of 
and s. This means that  the time scale estimated from the imbalance of stretching 
and viscous terms ~2 { Dt(va2 /2 ) }-t  ~ {wi~ks~k/w2 + ,~iV2 ~i/~2}-1 in slots of 
w is much larger than such t ime scale in slots of s, i.e. the life t ime of regions 
with concentrated vorticity is large comparing to that  of the regions with large 
strain, i.e. large rate of energy dissipation. This explains - at least in part  - 
the observability of the regions with conce,~rated vorticity and the difficulties 
in observing the regions with large dissipation (but see [214]) and points to the 
importance of studying more carefully the regions of turbulent flows with strong 
imbalance between vortex stretching and viscous destruction of vorticity. It is 
noteworthy that  the Burgers-like objects in real turbulent flows possess essen- 
tially nonvanishing curvature [95], [251], so that  the self-amplification of their 
vorticity is not vanishing as in perfectly straight ones. 

5 . 2  T u r b u l e n c e  b a c k g r o u n d  - n o t  s t u c t u r e l e s s  r a n d o m  s e a  

Use of aligmnents allowed to show that  - contrary to the common view - the so 
called 'background'is strongly non-Gaussian, is dynamically not passive and is 
not structureless (figures 7, 9, 10) [246], [252]. 
Though the strongest tendency for alignment between w and X2 is observed 
for large .j2 this alignment is still significant (see bot tom of figure 7) in the 
'background'(say w 2 < (to2)) especially taking into account tha t  the background 
is occupying about  70% of tlm flow volume (cf. with the volume occupied by 
strong vorticity, say ;02 > 3(.~2), which is only about 6% of the flow volume). 
Note that  this does not contradict the mostly known result about  the tendency 
of alignment between w and ).2 in regions of concentrated vortieity: the regions 
with such an alignment are an order of magnitude larger than those with con- 
centrated vorticity only [250], [252]. 
The significance of the background is stressed more clearly in figure 9, showing 
the normalized enstrophy generation ,JiwjSij IwJ-lJWl-1 = cos(w, W) .  Just like 
in the case of cos(w, X2) the tendency for alignment between w and W exists 
both in regions of large w2 and s 2. However, it is much stronger for large strain 
s 2 (see section 5.3). It is seen that  the maximum of joint PDF of cos(w,W) and 
w 2 (and of cos(w, W )  and s 2) takes place at cos(w, W )  ~ 1 and w 2 ~ 0, i.e. at 
the points with weakest vorticity and strongest alignment between w and W.  
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Note also the strong asymmetry of its PDF  for the background w2 < (w2), which 
is almost the same as for the whole field. This asymmetry remains significant 
even for 0fl < 0.1(w2), and becomes stronger for aJ 2 < (~2) and cos(~a, X2) > 0.9 
(not shown, see [250], [252]). Moreover, this asymmetry remains significant for 
both small ~2 and s 2 (see figure 10). We remind that  for Gaussian velocity field 
the PDF  of cos(w, W )  is symmetric. 
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Figure 10. PDFs of cos(w, W) for the 'weakest'part of turbulent flow; DNS, Re~ ~ 75 
[252]. 

One can see from figures 7, 9 and 10 that  the maxima of the joint PDFs  of 
both cos(w, X2) and cos(w, W )  are located at weakest enstrophy and strongest 
alignment between w and X2, and 60 and W .  The same is true for a variety of 
joint PDFs  of other quantities [250], [251], [252]. 
The above results show clearly that  the background is strongly non-Gaussian, 
not structureless and not passive. 

5.3 Regions of strongest vort ic i ty /s tra in  interaction 

As mentiond above the important point is that  at least in quasi-isotropic flows 
the largest contribution to the enstrophy generation ~Ji~djsij = w2Ai cos2(¢o, Xi) 
comes from the regions associated with the largest eigenvalue A1 of the rate of 
strain tensor sij ([249], [250], [251], [252], [260]) and not from the ones associated 
with the intermediate eigenvalue A2 to which belong the regions of concentrated 
vorticity. Namely the ratio of (a)2il cos2(6o, •I)) to (w2A2 cos2(w, )~2)) is roughly 
2 : 1 .  The same is true of a = Ai cos2(w,Xi) (see Table 1). 
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This shows that  there exist regions (intense and weak - -  both structured and 
dynamicaly active) other than concentrated vorticity regions, which at least in 
the above sense are dynamicaly more important  [250], [251], [252]. 
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Figure 11. PDF's of the enstrophy generation rate ~ for the whole field and condi- 
tioned on w 2 (left) and s 2 (right). DNS, Rex ~ 75 [251]. It is seen that there exist 
considerable regions with vortex compression (i.e. a < 0) also for large enstrophy (see 
also [125]), whereas in regions with large strain the rate of enstrophy generation ¢~ is 
mostly positive. 

These regions are associated mainly with largest strain rather than enstrophy 
[208], [250], [251], strong tendency of alignment between w and )~1 [250], [252], 
and fairly large curvature of vorticity line [251]. These regions are characterised 
by largest, apparently maximal, enstrophy generation and its rate (as shown in 
figure 8), which are much larger than their viscous reduction as discussed in 
section 5.3. This is consistent with the PDFs  of a conditioned on w and s (see 
figure 11) and with the results of [66] tha t  the dominating contribution to a 
comes from the local (self) interaction of vorticity ca and strain s i j ,  which is 
absent in Burgers-like objects. The behaviour of W 2 and W 2 / ~  2 in slots of 
and s is essentially the same (see figure 16 below). 
As implied by the results shown in table i these regions are associated with strong 
tendency for alignment between w and the largest eigenvector ),1 (corresponding 
to  the largest eigenvalue A1) of the rate of strain tensor si j  as illustrated in figure 
12 [2501, [2511, [252]. 
Similarly the dependence of enstrophy generation a ~ ~ v ~ j s i j  and its rate ct 
Ai cos2(ca,)~i) on ~0 and on s =_ ( s i j s i j )  1/2 is qualitatively different for small and 
large curvature of vortex lines in such a way that  the nonlinearity is manifested 
stronger in regions of large curvature [251]. In particular, the disparity in the 
behaviour of a and a in slots of w and s becomes larger at small curvature, 
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whereas at large curvature the dependence of a and a on ~ and s is very similar. 
This last fact is a reflection of stronger interaction of vorticity and strain in 
regions with large curvature and positive a and consequently with non-negligible 
vortex folding and tilting (see the next section). 
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Figure 12. Conditional averages of enstrophy generation a (left) and its rate a (right) 
in slots of cos(w, Aa). DNS, Re~ ~ 75. 

The regions just discussed comprise a subset of larger regions dominated by 
strain. Namley, these are the regions with large vortex lines curvature. There  
exist at least two other kinds of strain dominated regions: those with small 
curvature of vortex lines, which wrap around the vorticity dominated regions 
(tubes/worms), which contribute mostly to the alignment of w and :h2 as shown 
in figure 7, and regions with large magnitude of A3 and large negative a, in 
which most of vortex compressing, tilting and folding occur. 

5.4 Vortex compression,  tilting, f o l d i n g  a n d  curvature 

The most basic phenomenon in turbulence - the predominant vortex stretching, 
i.e. predominant enstrophy generation er -- ~i,Jjsij so that  (a) > 0 - cannot 
occur in a finite volume without its concomittants - vortex compressing (a < 0) 
and folding ([60], [61] and references therein; the term folding was introduced 
by Reynolds in 1894 [204] in the context of folding of material lines). Hence, 
the importance of looking at properties of turbulent flow in regions with large 
curvature and a < 0, which typically occupy about  1/3 of the whole flow volume 
[251], and for the evidence and characterisation of the vortex folding in three- 
dimensional turbulence. These regions with or, a < 0 play an important role 
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in the  dynamics  of  turbulence.  For example,  these regions make a positive 
contr ibi t ion to  the  magni tude  of the  vortex s tretching vector  W i  -- w j s i j  in (6). 
Indeed, W 2 = a)2A~ 2 cos2(o~, Xi) and  W 2 / . ;  2 --- A 2 cos2(w, Xi) are large for large 
A2cos2(~,J~3) , see tab le  2, for which the  ens t rophy generat ion a -- ¢oioajsij = 

~o2Ai cos 2 (w, Xi) and its ra te  (~ = A i cos 2 (w, Xi) are negative.  

(w2A12 cos2(w,)~l) ) (w2A22 cos2(w, A2) ) (~,,'2 A32 cos2 (w, ,k3) ) 
0.53 0.15 0.32 

(A12 OA)S2( 60, "~1 )} ( A2 C0S2( 0'~, '~2)) (a3 2 C/)82 ( 60, "~3)) 
0.51 0.11 0.38 

Table 2. Contribution to the total mean of the magnitude of vortex stretching vector 
(W 2) ~ (w2A2 cos2(w, Ai)) and its rate ( W 2 / w  2) --- (Ai2 co s2(w, Ai)) from the terms 
corresponding to the eigenvalues Ai of the rate of strain tensor sij. DNS, Rex ~ 75. 

Similarly, ens t rophy generat ion (and ~) can be small, whereas W 2 (and W a / w  2) 
can be  large. 
A closely related process is the  vor tex  ti l t ing, which is character ized by the  ra te  
of change of direct ion of vorticty. This  ra te  is obta ined  from the  equat ions  (11), 
(12) for the  magni tude  of vort ici ty ~ and its unit  vector  ~ which are equivalent 
t o  equat ions  (6), (r)  

Dew = a w  + vt ,  Dtzai  = s i jve j  - a w i  + v t ,  (12, 13) 

where and v t  s tands  for viscous terms.  
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Figure 13. Conditional averages of the magnitude of the rate of change of vorticity 
direction r/2 = W 2 / w  2 - a2 _-- A~ cos2 (w, ~ )  - {Ai cas2 (w, X/)} 2 [251]. Left - in slots of 
w and s, from which it is seen that  the direction of vorticity is changing much stronger 
in strain dominated regions. Right - in slots of As, showing that this rate of change is 
(apparently) largest in (sub)regions of vortex compression with large magnitude of A3 
. Note that  r/2 is increasing in slots of A1 and A2 too but at slower rates (not shown). 
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The  vector ~/i = sij w j  - a w i  = W i / o : -  a w i / ~  is the  inviscid ra te  of  change of  the  
unit  vector zv along the  direction of  vort ici ty w ,  and is responsible for the  ra te  of  
change of  its direction [64], and ~ _L w, i.e. vector 71 is associated with vortici ty 
tilting. Its magn i tude  is q2 : W 2 / ~ 2  _ ~2 : A2 cos2(w, Ai ) _ {Ai cos2(w, Xi)} 2. 

From this it is seen t h a t  in regions with negative a, a the  ra te  of  change ~1 of  the  
uni t  vector *e can be  large, since, as mentioned,  these regions make a positive 
contr ibut ion to  the  magni tude  of  the  vortex s t re tching vector Wi -- wjs i j ,  so 
t h a t  W2/o f i  : A2cos2(w, X~) can be  large and  a 2 = {Aicos2(w, X~)} 2 can be  
small. This happens  in regions associated with large magni tudes  of  A3 as is seen 
from figure 13. 
I t  is reasonable to  associate the  above process with large curva ture  of  vortex lines 
and  similar quanti t ies,  which should reflect their folding and  ti l t ing - at  least 
t he  result ing aspect  of  these processes. Hence a m o n g  the  quest ions of  interest is 
abou t  the  propert ies  of  curvature  and  relation between curva ture  and dynami-  
cally relevant quanti t ies  such as ens t rophy  w2, ens t rophy generat ion or, ra te  of  
ens t rophy  generat ion a ------ a / w  2 and  relations such as various alignments.  Of  
course, the  u l t imate  clarification of  such relations can be obta ined  from looking 
at  global properties.  One can hope t h a t  some insights can be gained from local 
analysis,  i.e. from working wi th  point  quanti t ies at  a par t icular  t ime moment .  
We br ing few typical  results relevant to  the  theme of  this paper.  More details 
are  given in [251]. 
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Figure 14. Conditional averages of cttrvatttre C of vortex lines [251], DNS, Re~ ~ 75. 
Left - in slots of w and s for the whole field and for positive and negative rate of 
enstrophy generation a: 1 - (c1~)/(c), 2 - (c[~)/(c) and ~ > O, 3 - (cl,,,)/(c) and 
a < 0, 4 -  (c[8)/(c), 5 (c[8)/(c) and a > O, 6 -  (c[~)/(c) and a < 0. Note the 
qualitatively different behaviour of curvature in slots of w (decreasing) and in slots of 
s (increasing). Right - in slots of rate of enstrophy generation ~. Re~ ~ 75. Note that 
the curvature of vortex lines increases with lal both for negative and positive a. 
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In a simplified form the logic is tha t  strong stretching results in strong vortic- 
ity: indeed regions with strong vorticity are known to be tube-like with small 
curvature as observed visually in a number of numerical simulations cited above 
(see also [95]). However, more close inspection shows that  the matters  are much 
more complicated (figure 14) due to a number qualitative differences between 
material and vortex lines (see section 4). One can see that  indeed, the curvature 
decreases in slots of w. However, this behaviour is practically the same for the 
whole field, for positive and for negative rate of enstrophy generation c~ (the 
reader is reminded again that  typically regions with a > 0 occupy about 2/3 
of the turbulent  flow field, and regions with (~ < 0 comprise about  a 1/3 of the 
whole flow volume ). This last fact, i.e. the behaviour of curvature C versus 
w for negative rate of stretching ~ < 0 and strong increase of curvature with 
strain (again for the whole field and both for a > 0 and for c~ < 0) undermines 
the simple analogy with the behaviour of material lines in turbulent flows (see 
section 4). Similarly, as is expected the curvature of vortex lines is increasing 
with Is{ for (~ < 0 due to folding of vortex lines, but  again, most interestingly 
the same behaviour of C is observed for c~ > 0 due to self-induction unlike the 
case of material lines. This is consistent with the results on the comparison of 
dependence of enstrophy generation ~oi~oksik and its viscous reduction woiV2w~ 
on 0) 2 and s 2 (figure 8) and curvature C . Namely, the preferential alignment 
between ¢o and )-2 is correlated with small curvature and there is no preferential 
alignment between ¢o and X2 at large curvature (figure 7, top right). 
The  above shows that  the 'most nonlinear'are the regions with large curvature, 
dissipation, i.e. strain, and preferable alignment between ¢o and X1, and not the 
regions of concentrated vorticity with small curvature and preferable alignment 
between ¢o and ),2, such as the filaments observed in direct numerical simlua- 
tions of Navier-Stokes equations and laboratory experiments 2a. This brings us 
to  next issue. 

6 Reduction of nonlinearity 

This notion has several aspects all of them directly related to geometrical statis- 
tics. One of the simplest aspects concerns the magnitude of the vortex stretching 
and enstrophy generation terms, i.e. W -- Iwjsijl and wiwjs,j in (1) and (2). 
Their magnitude is expected to  be smaller than w 2 and w a respectively due to  
reduction of nonlinearity in long, thin tubes-filaments-worms which are believed 
to be in some sense locally quasi-one-dimensional [90], i.e. that  nonlinearity is 
stronger outside of these structures. Hence the term depletion (expulsion) of non- 
linearity. Following this line one would expect that  in regions with strong align- 
ment between vorticity ~o and the intermediate eigenvector X2 vortex stretching 
and enstrophy generation should decrease as Icos(w, X2)l increases. Indeed W 

23It is n o t e w o r t h y  t h a t  regions  o f  concen t r a t ed  vor t ic i ty  axe not  f lee  of  vor tex  compression 
in t h e  s a m e  p r o p o r t i o n  as  in  t h e  whole  t u r b u l e n t  field [124], [125] which  is poss ib ly  assoc ia ted  
w i t h  Kelv in  waves a long  t h e  w o r m s  [257], a n d  is cons is ten t  w i th  t h e  r e su l t s  shown  in figures 
11 a n d  14. 
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and its rate are decreasing but  remain essentially finite. However, contrary to  
the above expectation the enstrophy generation and its rate increase in slots of 
I cos(co, A2)l and becomes maximal at I cos(co, A2)I "~ 1 (figure 15). 
In other words in these regions the rate of creation of enstrophy w 2 is the largest 
and in this sense the nonlinearity is stronger and not weaker than in, at  least, 
some of their background using I cos(~a, A2)t as a criterion. The above tendencies 
are stronger in regions with strong vorticity and survive in the background, e.g. 
regions of weak enstrophy [248], [252]. 
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Figure 15. Conditional averages of: left - enstrophy generation a, vortex stretcing W 2 , 
right - rates of enstrophy generation a, vortex stretcing W 2 / w  2 , i n t e r m e d i a t e  eigenvalue 
of the rate of strain tensor A2 and the ratio A2/s in slots of cos(w, ~2). DNS, Re~ ~ 75 
[251]. 

Note that  none of the quantities wiwjsij, W, A2 and A2/s become small for t 
cos(w, ~2) I "  1 indicating that  the flow does not become locally two-dimensional. 
In particular, it is important tha t  in these regions the intermediate strain (i.e. 
A2) is positive and is increasing too with Icos(¢o, A2)l, which correspond to strong 
straining in these regions (cf. with pure two-dimensional flow in which A2 - 0). 
Thus one can speculate tha t  there is a tendency to 'localization of nonlinear- 
ity'in space which, somewhat paradoxically, is sustained by nonlocal effects due 
nonlocal relation between strain and vorticity and due to pressure ('nonlocal 
localization'), see section 8. Note, that  the claim on 'localization of nonlin- 
earity'is supported by the behaviour of A2/s in slots of Icos(w, A2)l, which is 
similar to the one of A2/(s) as shown in figure 15. In order to get more in- 
sight it is necessary to look into more subtle aspects of geometrical statistics 
than just single space/ t ime point alignments. For the moment is it is clear 
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that  ' s imple 's tructures in three-dimensional turbulence are qualitatively differ- 
ent from those in pure two-dimensional turbulence in which the nonlinearity is 
really depleted in such structures - -  however, in three-dimensional turbulence 
such structures do not seem to be  the best  candidates to  look for depletion of 
nonlinearity [2501, [248], [252]. Nevertheless, taking the enstrophy generation 
~iwjs i j  as a measure of nonlinearity the objects with strong alignment between 
6o and ,k2 appear  to be  not the most nonlinear, since their enstrophy generation 
wiwjsij  comes most ly  from the nonloeal effects and not from self-stretching 
([123], [250], [252]). Indeed, as shown in figure 8 and section 5.3 the enstrophy 
generation and its ra te  are much larger in strain dominated regions (than tha t  in 
enstrophy dominated ones) with finite curvature of vortex lines and associated 
with largest eigenvalue A1 of the ra te  of strain tensor and alignment between 
and A1. The  main contribution to vortex stretching is these regions comes from 
local effects associated with the (self) interaction of w and sij [66] in contrast 
with the enstrophy dominated regions in which the vortex stretching is sustained 
most ly  by nonloeal effects (see section 7). Similarly other nonlinear dynamically 
relevant quantities (vortex stretching W 2 and its rate  W 2 / w  2 as shown in figure 
16; for r/2 see figure 13 left) also are strongly reduced in regions of concentrated 
vorticity as compared to their values in strain dominated regions. 24 

120 

80 

40 

;.P' 

<W21~<co>> / <W2> /"~' ~ 
/ <w2> ,,/,,' 

2 3 4 5 

03/<03>, s/<s> 

tiil il.i 
t 1 

1 -'"" <W 2/('021 > 
..-" co 

2 4 

oo/ <co> , s/<s> 

Figure 16. Conditional averages of vortex stretching W 2 (left) and its rate W2/w 2 
(right) in slots of w and s. DNS, Re~ ~ 75. 

There are also other dynamically impor tant  quantities which behaviour in slots 
of w and s is qualitatively different, see figure 17. 
Among other aspects of the problem of reduction of nonlinearity is the compar- 

24It should be emphasized that though the above results are likely to be true at large 
Reynolds numbers they cannot be seen as an indic~tlon that NSE may not develop a singularity 
in finite time [19], since these results reflect statistical tendencies and there exist, e.g. (small) 
regions with very large enstrophy, enstrophy generation and alignment between to and A1. 
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ison of nonlinearities in real turbulent  flows with their Ganssian counterparts 
[155], which is meaningful for even moments only. For example, 
(lu × - V(p  + × - V(p  + < 1 ( ~  0.5 - 0.6) [55], [155]; 
( W 2 ) / ( W 2 ) G  < 1 (N 0 .7 - -0 .8 ) [224] ,  [134], [249]. In this sense nonlinear- 
ity is reduced. However, in the sense of odd moments the real nonlinearity 
is 'infinitely'larger, since for a Gaussian velocity field the odd moments van- 
ish identically, e.g. the longitudinal velocity structure functions of odd order 
S2n+l(r) : ({[U(X-b r ) -  u(x)] ,  r/r}2n+i), enstrophy generation (Wi~kSik) and 
its rate (W~kSik/W 2) and many others. In other words build up of odd mo- 
ments such as S3(r), (Wit~kBik) > 0 is an important  specific manifestation of 
nonlinearity of turbulence along with being the manifestation of its structure. 
The nonzero (Wi~kSik) is associated with the strict alignment between w and W 
and in this sense this alignment is enhancing the nonlinearity. As is seen from 
figures 9, 10 this alignment is significant throughout all the regions of turbulent 
flow. On the other hand, the alignment between u and rot w [253] is reduc- 
ing (WiWkSik). Indeed, since (wiO)kSik) = (w.rot (u × w)) = (rot w.  (u × w)) = 
- (~.  (u×rot ¢0)), and since - (u.rot w) --- (w) 2 > 0 there is a tendency of 
(anti-)alignment between u and rot w reducing the magnitude of u×rot w and 
thereby of ( O J i O ~ k S i k )  . Though this is a purely kinematic effect it is directly re- 
lated to the dissipative nature of turbulent flows, since the mean dissipation 
(,> = 
On other aspects of reduction of nonlinearity, such as resulting from the so called 
Beltramization related to alignment between u and w, etc., see [169], [222], [239], 
[248], [250] and references therein. 

7 N o n l o c a l i t y  

This is one of the main reasons the problem of turbulence is so difficult. As 
mentioned in section 7 the localization of vorticity in vortex filaments is mostly 
sustained by the nonlocal effects in physical space, which keep all the regions in 
turbulent flow in continuous interaction and mutual transformation. 
The well known property of nonlocality of NSE in physical space is two-fold. 
On one hand, it is due to  pressure ( 'dynamic'nonlocality), since p- lV2p  = 
w 2 - 2sijsij, so tha t  pressure is nonlocal due to nonlocality of the operator 
V -2. The nonlocality is strongly associated with essentially non-Lagrangian na- 
ture of pressure. For example, replacing in the Euler equations the pressure 

Hessian ~ which is both nonlocal and non-Lagrangian, by a local quantity Bx~gxj , 
~ j V 2 p  = ee{a)2 -- 2s,jsij} turns the problem into a local one and allows to 
integrate the equations for the invariants of the tensor of velocity derivatives 
OujOxj  in terms of a Lagrangian system of coordinates moving with a parti- 
cle ([47] and references therein). This means that  nonlocality due to presure is 
essential for sustaining turbulence without external random forcing as, e.g. in 
Burgers turbulence [192], [277]. 
Similarly the equations for vorticity (1) and enstrophy (2) are nonlocal in w 
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- ~  + ~ u =rot-l~a due since they contain the rate of strain tensor sij = oxj 0x~ ' 

to nonlocality of the operator rot-  t ('kinematic'nontocality). Both aspects are 
reflected in the equation for the rate of strain tensor sij [264] 

1 ~2~ij) o~p 
Dtsij = --s~kskj -- ~(wi¢vj -- OxiOx~ + vt, (14) 

and for the third order quantities, e.g. wiwjsij, e, [189], [243], [250] 

02p 
Dt~iwjsij  = Odj8ijWk8ik -- ;di;Oj OXiO:-------~. -~ vt, (15) 

9 , 4  = 2 + eos2(w, -  2(w, + vt, (16) 

where vt  stands for viscous terms and ~ri, ~'i are respectively the eigenvalues and 
0 2 the eigenvectors of the pressure hessian ~ .  

It is seen from the equations (5), (6) that the rate of change of enstro- 
phy generation Dta and Dta depend on the geometrical relations between vor- 
ticity w and both the eigenframe of the rate of strain tensor ),i and that of 
the pressure hessian ~ri [181], [189], [250]. An important aspect is that the 
equation (5) and a similar one for sikskjsij contain two invariant quantities 

0~__  reflecting the nonlocal dynamical effects 8ikSkj oxiOxj 
due to pressure and can be interpreted as interaction between vorticity and pres- 
sure and between vorticity and and strain. In particular the equation (5) for the 
enstrophy generation cr _= ~vi¢vjsij shows both aspects of nonlocality of vortex 
stretching process. The first term in (5) is strictly positive wisijwkSki =-- W 2 > O. 
This means that the nonlinear processes involving vortex stretching (or direct in- 
teraction of vorticity and strain) always tend to increase even the instantaneous 
enstrophy generation. Here also the term W32 = w2X.~ cos2(w, ,k3) associated with 
the negative eigenvector of the rate of strain tensor A3, i.e. vortex compressing 
or negative enstrophy production a)~A3 cos2(w, )k3), makes a positive (!) contri- 
bution to the rate of change of enstrophy generation (W~ = ~v~h~ cos2(w, Xi)). 
It is natural to call the term W 2 (which is just the squared magnitude of the 
vortex stretcing vector) as the inviscid rate of increase of the enstrophy genera- 
tion term. However, the inviscid rate of change of enstrophy generation contains 
also a second term reflecting the interaction between vorticity and the pressure 
hessian °2v It appears that (wiwj ~ \  is positive and is about (W2)/3, i.e. OziOxj ' Ox~Ozj / 
in the mean the nonlinearity in (5) is reduced by this nonlocal term, since for a 
Gaussian velocity field (w~wj ~ )  _~ O. Consequently the PDF of cos(w, Wn) ,  

0~ W~ = wj ~ ,  is strongly skewed just like the PDF of cos(w, W )  [247], [250]. 
Another aspect of reduction of nonlinearity is seen clearly from figure 17. Namely, 
the nonlinearity is strongly reduced in the enstrophy dominated regions (fila- 
ments/worms), whereas it is enhanced in strain dominated regions. Note the 
qualitatively different behaviour of wiwj ~ (figure 17 top) in enstrophy dom- 
inated regions (decreasing with ~v) as compared to that in strain dominated 
regions (increasing with s). 
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8 N o n - G a u s s i a n  nature  of turbu lence  and 'kine- 
mat ic '  effects 

As mentioned above one of the prominent  and distinctive specific features of 
turbulent  flows of u tmost  dynamical  significance, such as specific expression of 
nonlinearity of turbulence and its structure,  and the most  spectacular  manifes- 
tat ions of their  non-Gaussian nature  is the build up of odd moments  of various 
quantities. For this reason the  quanti ty c o s ( w , W )  = w iw jS i j JwJ - ] lW1-1  ap- 
peared so useful in the  diagnostics of the non-Gaussian nature  of the ' r andom'  
'structureless '  sea in turbulent  flows, which appeared to be  quite the  opposite, 
i.e. not stuctructureles,  dynamical ly not passive and essentially non-Gaussian. 
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DNS and random Gaussian ( . . . .  ). l:{e~ ~ 75. The behaviour shown in (b) seems 
to contradict  the one shown in figure 7, since there exist a tendency for alignment 
between u~ and W and between ~v and )~2. However, more close inspection shows that  
the alignments shown in this figure and in figures 7 are associated mo6tly with di f ferent  

regions in the flow [251]. 
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A simple demonstration how the dynamics of turbulence makes it non-Gausssian 
can be seen from taking ( . . . )  from the equation (17) (dropping the viscous term) 

n ) (17) = - 

For a G a u s s i a n  velocity f ield <~di~djSij ) = O, < o ) i W j ~  > ----- O, <oJjsijiZkSik> ~ 
(W 2) = ~ <w2) 2 [223], [250]. If the initial conditions are Gausssian the flow ceases 
to  be gausssian with finite rate. In other words it is seen directly from (17) tha t  
turbulence cannot be Gaussian (see also [183]). In this sense Gaussian initial 
conditions are not 'good', since no flow state existing in reality is Gaussian. It 
is seen also from (17) that  initially Gaussian and potential velocity field with 
small seeding of vorticity will produce - at least for a short t ime - an essentially 
positive enstrophy generation. 
Turbulence - being essentially non-Gaussian - is such a rich phenomenon that  
it can 'afford'a number of manifestations (sometimes nontrivial or, at least, not 
obvious, [223], [239], [262]), which are Gaussian-like. A recent example of such 
behaviour is shown in figure 18. This example is interesting in tha t  the Gaussian- 
like behaviour is exhibited by third order quantitites. For other examples see 
[223]. 
Many second (and higher) order quantities in turbulent flows exhibit exponential 
tails in their PDF's.  However, precisely the same behaviour is characteristic of 
purely Gaussian isotropic velocity field. For example, PDF's  of w2 and s 2 of 
a Gaussian velocity field have exponential tails [223] and their shape is very 
similar to tha t  in real turbulent flows like those shown in figure 5. Using the 
explicit expressions for the PDF's  of w2 and s 2 from [223] it is staightforward to  
obtain the values of flatness for w2 and s 2 for an arbitrary Gaussian velocity field. 
Alternatively the same result is obtained directly without invoking the explicit 
expressions for the PDF's  of w2 and s 2, but  using instead the decomposition 
rule for forth-order moments. Namely, F~2 : ( ~ 4 > / ( 0 2 2 > 2  ---- 5/3 and F82 : 
(s4)/(s2) 2 = 7/5, i.e. the  flattness of enstrophy is larger than that  of total  strain 
(w4)/(~2)2 _ (sa)/(s2)2 = 4/15 25. Does one have to  conclude from the above 
result tha t  the enstrophy field is more intermittent than that  of total strain in 
a Gau.ssian velocity field. Definitely not, since by definition Gaussian velocity 
fields lack any intermittency. This example shows that  even moments only are 
not sufficiient for characterisation of the non-Gaussian nature and intermittency 
of turbulence. 
Similarly the PDF  of pressure has exponential tails, which in addition is strongly 
negatively skewed. It is not easy in this case to demonstrate this directly due to  
nonlocal nature of the ~7 -2 operator  [109]. Much easier is to do this via looking 

~2_2sijsij 
a t  ~72p. Using the same method as in [223] the PDF 7)(x), x = = 2<~2) , 

25This is precisely the extreme of the 'generic'inequality obtained in [54} in somewhat dif- 
ferent way using the  the decomposition rule for forth-order moments. 
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is expressed in the following way (Spector 1996, private communication) 

P ( x )  = {3 '125512}1(4~ ) x 2 e ~ [K2(4x) - IQ(4x)],  x < 0, 

which for large Ixl has the asymptotics --, Ixl 1/2 e -al=l , 
and 

P ( x )  = {3 '1255/2}/ (4~r)  x 2 e -n=I {K2(4x) + Kl(4x)] ,  x > 0, 

which for large x has the asymptotics ,~ x 3/2 e - ~ .  
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turbulence, Re~ ~ 75; . . . . . .  slope + 4.5, - -  . . . .  slope - 2.9. 

grid 

So, as expected, the distribution of ~72p is asymmetric even for a Gaussian veloc- 
ity field. This result is in good quanti tat ive agreement with the ones from lab- 
oratory and DNS experiments (figure 19), showing that  these effects are mostly 
of kinematical nature as many others [223], [239]. 
In this sense the non-Gaussian strongly intermittent behaviour and anomalous 
diffusion of passive objects (scalars, vectors) in a Gaussian or any other a p r io ry  
prescribed random velocity field is a kinematic effect, since the Lagrangian veloc- 
ity field is an ex~ermely complicated noR-linear functional of the Eulerian field. 
How complicated is the issue of the relation between the Lagrangiau and Eule- 
rian fields can be seen on the example of the so called Lagrangian (kinematic) 
chaos or Lagrangian turbulence (chaotic advection) with a p r i o r y  prescribed 
and no t  r a n d o m  Eulerian velocity field (E-laminar). In such E-laminar, but  L- 
turbulent flows ([10], [11], [51], [103], [203], [2681, [271] but  see [263] references 
therein ) the statistics of the latter has no counterpart  in the former to be re- 
lated with. The  complication is, of course, due to Lagrangian chaos. In genuine 
E-turbulent flows, which are L-turbulent too, i.e. El- turbulent ,  the fluid particle 
chaos consists of two contributions: Eulerian and Lagrangian. 
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9 Concluding comments  

Turbulence has more unresolved issues than otherwise. In this chapter along 
with concluding remarks notes on some of these issues are made, partially rather 
speculative. 

9 . 1  U n i v e r s a l i t y  v e r s u s  n o n u n i v e r s a l i t y  

9.1.1 Q u a n t i t a t i v e  ver s u s  qua l i ta t ive  

As mentioned in the introduction the qualitative properties/features of all tur- 
bulent flows at  high enough Reynolds numbers are essentially the same, i.e. it is 
meaningful to speak about  qualitative univesality of turbulent flows. In addition 
to  properties/features mentioned in section 1 there are more such as the build 
up of odd moments (e.g. the predominance of vortex stretching over vortex 
compressing), a variety of alignments and other aspects of geometrical statistics 
and there seem to exist many not yet known. The similarity between the large 
scale properties of (the same) turbulent flows at transitional, very moderate and 
large values of Reynolds number can be qualified as one of the manifestations 
of qualitative universality of turbulent  flows. The likely reason for this is tha t  
the nonlinear terms...remain active at surprisingly low Reynolds numbers [168]. 
Therefore it seems not necessary to 'hunt 'very large values of Reynolds number 
in studying and trying to understand the basic physics of turbulence. Scaling 
and related matters  proved not very useful [88], [244] in understanding of ba- 
sic physics of turbulence so far as to justify, e.g. enormous efforts in accurate 
measurement of exponents at very large values of Reynolds number. The simi- 
larity of large scale properties of turbulent  flows at different values of Reynolds 
number is likely to be among the main reasons for the sueeess (whatever this 
means) of the most of low dimenional models and their low sensitivity to the 
details of the subgrid scale models ([38], [93], [107], [122] and references therein). 
This does not mean that  low dimensional models of turbulent  flows represent 
adequately the physics of turbulent flows, just like it is doubtful that  things like 
low dimensional chaos, etc., can be qualified as turbulence (especially FDT). 

9.1o2 Large  scales  versus  smal l  

The quantitaive properties v a r y  largely with the range of scales of interest. 
Though the large scale (kS) properties of FDT depend on particular mecha- 
nisms generating turbulence and, generally, are not universal in the sense tha t  
they are different for different flows they are universal in the sense that  they 
become independent of Reynolds number for a particular class of flows, e.g. for 
particular geometry. There is also some evidence that  the (statistical) properties 
of turbulent flows with the santo geometry, not homogeneous and at very modest 
Reynolds numbers, are invariant of the boundary and initial conditions (BC and 
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IC) at least in some cases. For example, typical DNS computations of NSE of 
turbulent flows (e.g. in a circular pipe [76] and a plane channel [139], in a cubic 
box [123], [252], [260], etc.) involve extensive use of periodic BC. The results of 
these agree very well with those obtained in laboratory experiments, in which 
the BC have nothing to do with periodicity 26 and in which the IC were totally 
different from those in DNS. No explanation of this kind of invariance is known 
so far, but it is naturally to expect that  it is related to some kind of hidden 
symmetry(ies) of the NSE. If such exist they may be the reason for similarity 
of results obtained via ONS of NSE in, e.g. periodic boxes by various forcing 
(different deterministic, random/stochastic, etc.). 
On the other hand, the far field statistical properties of free shear turbulent flows 
(mixing layers, wakes, jets) are known to possess strong memory (sensitive to 
the conditions at their 'start ') with some properties not universal in Reynolds 
number (see [71], [270] and references therein). These flows develop in space 
beginning with small scales into the large ones, in apparent contradiction to the 
Richadrson-Kolmogorov cascade ideas. Another peculiarity of these flows (and 
other spatially developing flows like boundary layers) is that  their turbulent part 
is confined in a bounded region surrounded by purely laminar flow with a dis- 
tinct though very convoluted (fractal?) boundary. 
As mentioned in section 1.1 there is reasonable evidence that  the normalized 
mean dissipation ¢ ---- U3L-I(e) tends to a finite limit, or at  least is bounded 
by a Reynolds independent bound, as Re --* co. Since at large Reynolds num- 
bers (e) ~ v(w 2) this means tha t  (~2) ~ v-1 at Re > >  1, i.e. it is Reynolds 
dependent. There exists evidence on Reynolds dependence of less trivial small 
scale quantities such skewness and flatness of some velocity derivatives and some 
other [6], [8], [15], [161, [21], [23], [53], [78], [94], [194], [197], [219], [228], [231], 
[269]. As in the case of large scales there is neither full agreement between the 
results of different authors nor understanding of the reasons for the Reynolds 
dependence at large values of the Reynolds number. 
At present there are no clear answers to the questions like How much universal 
is turbu/ence (FDT) and in what sense? What is the origin o[ intermittency 
in turbulence? Is anomalous scMing necessarily related to some (intermittent) 
structure of turbuIent 1low? Are these two terms, i.e. anomalous scaling and 
intermittency, synonymous? Answers to such and similar questions cannot be 
obtained within the frame of phenomenology or similar approaches. In order to 
make at least some progress one has to look into more details of the turbulence 
structure and specific aspects of its dynamics. 

26The correlation coefficient between two v~lues of any quanti ty at the  opposite such bound-  
aries (i.e. the  points separated at  max ima l  dis tance in the flow domain) will be precisely equal 
to unity and close to uni ty for the points  in the  proximity of such boundm'ies, whereas in any 
tea/flow the  correlation coefficient becomes very small  for points separated by a distance of 
the  order of  (and larger than)  the  integral scale of turbulent  flow. 
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9 . 2  S t r u c t u r e  

It is commonly believed that  most of the structure of turbulence is associated 
with and is due to various strongly localized intense events/structures,  e .g. 
mostly regions of concentrated vorticity so that  'turbulent flow is dominated by 
vortex tubes of sinai1 cross-section and bounded eccentricity'([61], p. 95) and 
that  these events are mainly responsible for the phenomenon of intermittency. 
However, it appears tha t  the concentrated vorticity (tubes-filaments-worms) is 
not that  important  as it has been thought before, they 'do not seem to play a 
special role in the overall dynamics of turbulent [tows'and 'the effect of removing 
the worms is small,...'[121]. In other words, the 'worms'are more the consequence 
rather than the dominating factor of the turbulence dynamics (for more details 
and references see [246]). 
On the contrary all regions in turbulent  flow than just  those with intense vor- 
ticity are spatially structured, since structure in (quasi-homogeneous/isotropic) 
turbulent flow is associated with alignments rather than with strong vorticity 
only. 

9.2.1 Vort ic i ty-dominated versus strain-dominated regions 

A useful way of distinguishing between different regions in turbulent flows is 
based on inviariants of tensor of velocity derivatives Aij = O u i / O x j  and of rate 
of strain tensor ([29], [32], [117], [181] and references therein). In particular 
it is common to look at  enstrophy dominated regions as contrasted to those 
dominated by strain. The enstrophy dominated regions are well defined by, say, 
high enough enstrophy ;02 and are tube/filament-like objects. They form a sub- 
set of much larger locally quasi-two-dimensional regions corresponding to large 
cos(w, A2) , i.e alignment between ~ and )~2- However, it is not enough to specify 
the magnitude of the total  strain s 2 in order to  'visualize'in a unique way the 
strain dominated regions, which - as demonstrated above - contain a number of 
qualitatively different regions. In particular, the set of strain dominated regions 
contains the following three dynamically significant subsets 2z . 
i - The  largest enstrophy generation occurs in regions of strongest (local) vortic- 
i ty/strain interaction, which are different from those with concentrated vortic- 
ity. These regions contribute most to the  enstrophy generation, which is much 
larger than viscous reduction of enstrophy, and at least in this respect are dy- 
namicaly more important than those of concentrated vorticity. These regions 
are associated with alignment between w and ,kl, large values of AI, fairly large 

27These three s t ra in  dominated regions may overlap since large to ta l  s t rain s2 = A12 +A 22 + A  32 
cannot  be associated with large value of one of Ai only due to incompressibily A1 JrA2 +A3 = 0 
(A1 > A2 > A3; - 2 < A2/A1 < - 1 / 2 ,  - 1 / 2  < A2/A1 < 1). However, these regions 
mostly are associated also with alignments between ¢~ and corresponding eigenvector Ai [251]. 
This excludes overlapping at large enough oos2(w, Ai). Note t ha t  dynamically impor tan t  
quantit ies (such as enstrophy generation a = w2A~ cos2(w, Ai) , i t 's  ra te  a = Ai cos2(w, Ai), 
the  magnitude of vortex stretching W 2 = w2A 2 cos2(~, Ai) and the  ra te  of change of vorticity 
direction 112 = W 2 / w  2 -- ~2 = A2 cos2(w, Ai ) _ {Ai cos2(w, Ai)} 2) contain A~ and cos2(to, Ai) 
in oombinations like Ai cos2(w, AI) and A~ cos2(tw, Ai) only. 
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curvature of vortex lines and, obviously, are dynamically most active, strongly 
non-Gaussian and possess structure. 
ii - Regions, which are wrapped around the enstrophy dominated regions and 
associated with alignment between 60 and ,k2 (just like in the enstrophy domi- 
nated regions) and mostly positive A2. 
iii - Regions with large magnitude of A3, alignment between w and ,k3, large 
curvature of vortex lines, vortex compressing (i.e. negative enstrophy generaton 
and its rate), tilting and folding. In these regions considerable part  of curvature 
of vortex lines is generated along with the other part produced in the regions of 
largest enstrophy generation via self-induction [251]. 

9°2°2 Background 

The above regions, both enstrophy and strain dominated are surrounded by the 
so called 'background', which contra t ry  to common beliefs is not stuctructure~ 
less, dynamically not passive and essentially non-Gaussian just  like the whole 
flow field - even with weakest measurable vorticity and /or  strain or any other 
region with 'weak'excitation in some sense. The structure of this apparently 
random background seems to  be rather  complicated. The previous qualitative 
observations (mostly from DN5) on the 'little apparent structure in the low 
intensity component'or the 'bulk of  the volume'with 'no particular visible struc- 
ture'should be interpreted that  no simple visible structure has been observed 
so far in the bulk of the volume in the flow. It is a reflection of our inability 
to  'see'more intricate aspects of turbulence structure: intricacy and 'random- 
ness'are not synonyms of absence of structure. 
The  same is t rue of all the regions other than those with concentrated vortic- 
ity. However, the structure is definitely present practically everywhere in the 
turbulent flow, but  it is more complex than just a collection of 'simple'objects 
such as vortex tubes, though the lat ter  may only seem to be simple. Indeed, 
even in rather 'simple'nonturbutent configurations (see, e.g. [1], [87], [138], [140], 
[226] and references therein) the structure of vorticity field is far more compli- 
cated than just a collection of simple objects such as vortex tubes, etc. This 
together with the limited role of the 'simple'objects in turbulent  flows leads to  
the conclusion that  it would be somewhat wishfully naive to expect, that  such a 
complicated phenomenon like turbulence can be adequately described in terms 
of collections of such 'simple'(weakly interacting) objects only. On the contrary 
it seems that  all the regions - -  concentrated vorticity, the background, regions 
of strong vorticity-strain (self) interaction and largest enstrophy generation, and 
regions with negative enstrophy production - -  are in continuous interaction and 
mutual transformation and are strongly correlated due to strong nonlocality of 
turbulence in physical space. In other words no set of 'simple'weakly interacting 
objects is known so far, which represent adequately the turbulent  field. 
At this stage little is known about  how the structure of the regions different 
from those with concentrated vortieity looks like. One of the main issues for the 
future research is to get more insight into this structure and in the dynamics of 
the interaction and mutual transformation of different regions/structures. This 
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requires much more than single point space-time statistics mostly used in this 
paper. In particular things like time evolution, Lagrangian statistics (e.g. [114], 
[181], [217], [265] and references therein) relating the spatial structure and the 
time dimension have to be used and studied. Some of such work is in progress. 
All the above results were obtained at rather low Reynolds number (Re~ ~ 75). 
However, a number of very similar results, such as various alignments, etc., were 
obtained in numerical simulations of Euler equations ([24], I36], [61], I87], [188], 
[189], [195], [202] and references therein) thereby showing tha t  - at least quali- 
tatively - they should be valid at large Reynolds numbers. 
These results seem to be also of importance for further basic research in tur- 
bulence and in their implications and consequences for a large number of exist- 
ing and forthcoming theoretical descriptions of turbulence/turbulent flows, e.g. 
those based on expansions near a Gaussian field, and those representing the 
turbulent field as a collection of 'simple'objects. 

9.3 On right results not  necessarily for the right reasons 

Turbulence is an extremely rich phenomenon with a great multitude of mani- 
festations. Therefore, due to the richness of turbulence phenomenon correspon- 
dence of some ' theory'to some experimental results may occur not necessarily 
for the right reasons. The correspondence with experimental results is at best 
only a necessary condition. One of the oldest examples is the mixing length 
theory and related things like gradient transport, eddy viscosity, etc.,J69], [165], 
[176]. In a recent example mean velocity distributions were obtained 'from the 
first principles'for turbulent Couette and Poiseuille flows, which are in very good 
agreement with experimental results for real three-dimensional flows [27]. The 
problem is that  these theoretical results are based on a two-dimensional model 
lacking any vortex stretching whatsoever. The third example is the popular 
GOY and similar models (for references see [25], [44], [99], [126], [161]) a variant 
of shell models originated with the dynamical systems of hydrodynamical type 
of Obukhov since 1969 [187], exhibit temporal chaos only. Therefore such mod- 
els hardly can be associated with the intermittency of real FDT which involves 
essentially spatial chaos as well. Therefore a question arises as to whether cor- 
respondence of such models (as well as many others [20], [25], [30], [33], [38], 
[44], [48], [74], [77], [99], [172], [178], [215], [218], [261], [277]) with experimental 
results in real turbulent systems [7], [12] [206], [44], [209], [259] occurs for the 
fight reasons. The fourth example relates to the belief that  essential aspects of 
turbulence fine structure and its dynamics may be adequately represented by a 
random distribution of strained vortical objects (sheets, filaments, tubes-worms- 
sinews)- or other 'simple'objects. This idea goes back to Townsend [237] (see 
also [18] pp. 159 -16t) and it was developed to a high level of sophistication 
(for references see [246]). However, in this way the turbulent field is represented 
by elements which comprise - contrary to the common belief - not the most im- 
portant part of the flow. The main feature and shortcoming of these objects is 
that  they possess single-component vorticity, zero curvature of vortex lines and 
consequently such objects lack the 'genuine'nonlinearity of turbulent flows - -  
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the self-amplification: they are stretched by the strain which is decoupled from 
them. In addition these elements are stretched only, whereas in real turbulent 
flows both vortex stretching and vortex compressing occur - -  the last occupying 
about  a third of flow volume. The fifth example is associated with the belief tha t  
essential aspects of quasi-two-dimensional turbulent flows (Q2D) can be well de- 
scribed by pure two-dimensional ones (P2D) both globally and locally (e.g. [99], 
[199]), i.e. e in Q 2 D  = P 2 D  + e is small in some sense. One of the popular 
beliefs is that  locally this is t rue of Q2D regions with concentrated vorticity (vor- 
tex filaments). However, it appears tha t  locally quasi-two-dimensional regions 
corresponding to large cos(w, A2) - to which belong the regions of concentrated 
vorticty - are qualitatively different from purely two-dimensional ones in tha t  
they posses essentially nonvanishing enstrophy generation ~ and intermediate 
eigenvalue A2 of the rate of strain tensor, whch are identically zero in P2D flows 
[248], [252]. Moreover, in these regions both a and A2 are larger than in the 
whole field and in this sense e is not small  in Q2D = P 2 D  + c. 
In case of globally Q2D turbulent flows the matters seem to be even controver- 
sial, which is seen from the case of nonhomogeneous flows. For example, the 
experimental (and recent numerical) results obtained for turbulent  MHD flows 
in channels with large aspect ratio in the presence of an azimuthal magnetic 
field showed that  in such flows (at Re _< 104), - which are Q2D - on one hand, 
the drag is indistinguishable from its laminar value, and on the other hand, the 
level of turbulence may be substantially higher than tha t  in the same flow with- 
out magnetic field (see e.g. the review [240]). However, the examination of the 
results of the  DNS of plane Poiseulle turbulent flow (which is P2D) at Re ,,~ 104 
[120] shows that  its drag is about twice larger than its purely laminar value and 
is only twice smaller than its value for the 3D turbulent flow, i.e. P2D plane 
Poiseulle turbulent  flow is not not tha t  low dissipative. Moreover, the Reynolds 
stresses in this flow are not small either (as was expected before) and contribute 
about a half to the total  stress. These, results were confirmed recently using an 
essentially different code [164]. The problem of the relation(s) between Q2D and 
P2D turbulent flows is complicated further by the multiplici ty of Q2D states: 
there exist several Q2D flows such as flows in rotating frames, flows with sta- 
ble density stratification, MHD-flows and some others, which along with being 
similar kinematically (geometrically) in many respects are very different dynam- 
ically. There is little doubt about  the qualitative difference between Q2D states 
produced by physically different processes, e.g. the ones in MHD are of dissi- 
pative nature (Joule dissipation), whereas those with rotation are not. Strong 
anisotropy is a necessary condition only for Q2D and /or  low dissipative behav- 
ior, e.g. shear turbulent flows with strong shear are both strongly anisotropic 
and strongly dissipative. Similarly, strong correlations along some direction 
(i.e. Q2D behavior) do not exclude the possibility of vorticity stretching in this 
direction [248], [252]. 
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9.4  F i n a l  r e m a r k s  

Due to space limitations many issues which are beyond phenomenology were 
even not touched 2s, so some general remarks are in place. 

9.4.1 T h e  c lo su re  p r o b l e m  a n d  m o d e l i n g  

Hans Liepmann wrote in 1979: Turbulent modelling is still on the rise owing to 
rapid development of  computers coupled with the industrial need for manage- 
ment of turbulent flows. I am convinced that much of  this huge effort will be 
of passing interst only. Except for rare critical appraisals...much of this work 
is never subjected to any kind of critical or comparative judgement. The only 
encouraging prospect is that current progress in undertsanding turbulence will 
restrict the freedom of such modelling and guide these efforts toward a more 
reliable discipline [162]. 

Liepman's critisism was directed to (already at tha t  time) great number 
of publications which used a variety of assmnptions all of them very remote from 
any physical bas/s to say nothing of any rigorous mathematical  basis. This s tate  
of matters  was changed due to recent important rigorous results (see [92] and 
references therein). Namely, it was proved that the Friedman-Keller chain of 
equations for the moments [133] (and consequently the Hopf equation) has a 
unique solution for initial conditions in appropriately chosen functional space. 
In other words a positive answer was given to the question whether the closure 
problem has a solution, and an estimate of convergence of approximations for 
the closure of the infinite chain of equations for moments was given. Thus, it 
became clear - at least in principle - that  turbulence modelling can be put  on 
a rigourus foundation, e.g. [81]-[831, though just like simulation (DNS) by itself 
does not bring undestanding, neither does modelling of whatever sophistication. 

28For example ,  t h e  following ques t ions  were men t ioned  in t h e  first a n n o u n c e m e n t  o n  t h e  
Second M o n t e  Verit~ Colloquium on Basic  Prob lems  in Turbulence to  be  held  in Swi tzer land  
in March  22-27, 1998: 
A m o n g  t h e  main  t h e m e s  at  the  M o n t e  Verit~ I were: t he  impl icat ion and  relevance o f  dy -  
namical  s y s t e m s  to ( ful ly  developed)  turbulence,  reduct ion o f  nonlineari ty ,  some  aspects  o f  
turbulence  s t r u c t u r e ,  f undamen ta l  e x p e r i m e n t s  ( inc luding t h e  numer ica l  ones),  and some  oth-  
ers. 
In addit ion to  t h e  m e n t i o n e d  above poss ib le  t h e m e s  for discussion include some  f undamen ta l  
mathe~natical  issues, h o w  universal turbu lence  is? ( W h a t  are  t h e  s i tuat ions  and what  are t h e  
propert ies  which a re  invariant o f  I C  and  BC?,  is the  inertial r ange  dynamic s  independen t  o f  
viscosity, t h e  t y p e  o f  dissipation,  etc.?), is it possibi le  to  p u t  turbu lence  model l ing  and  t h e  
problezn o f  closure on a reasonable /r igorous  p h y s i c a l / m a t hema t i ca l  foundation?,  h o w  realis- 
t i c / a d e q u a t e  are t h e  a t t e m p t s  to  represen t  turbulence  via a collection o f  ' s imple 'objects  (like 
'coherent s t r u c t u r e s "  'eigensolutions' ,  'worms' ,  etc.)?, is it  poss ible  to cons truct  a k ind  o f  
's tatist ical  mechan ic s ' o f  at least s o m e  "simple ' turbulent  f lows? wha t  can be learnt about  t h e  
dynamics  o f  turbu lence  from s tudies  o f  pass ive  objec ts  (scalars, vectors. . . )  in real and 'syn- 
the t i c2urbu lence?  l inear versus n o n l i n e a r  processes  in turbu len t  flows, in terplay o f  k inemat ics  
and  dynamics ,  geometr ical  stat ist ics,  to  w h a t  e x t e n t  is it poss ible  to  control  turbulence?,  and  
some  others  (see also [91], [228] a n d  references  therein) .  
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9.4,2 R e d u c e d  ( low d i m e n s i o n a l )  r e p r e s e n t a t i o n s  

Perhaps the biggest fallacy about turbulence is that it can be reliably described 
(statistically) by a system ot; equations which is far easier to solve than the full 
time-dependent three-dimensional Navier-Stokes equations (P. Bradshaw [37]). 
In spite of this warning there is a general belief tha t  an adequate  reduced (low 
dimensional) description is possible, e.g. via reduction of the huge number of 
degrees of freedom in FDT by retaining the so called relevant/important ones 
(i.e. Perhaps large systems boil down to a few degrees of freedom...[43]), though 
the  meaning of what  are the re levant / impor tant  modes/degrees  of freedom is 
quite problematic [107], [148]. Most frequently it is argued tha t  these are 
'modes 'containing most of the  energy, but  - at  least from the physical point 
of view - the  'modes ' ,  e.g. carrying most  of the energy dissipation are not less 
re levant / impor tant  in some sense, and 'mixed modes ' re lated to both small and 
large scales such as eigenfunctions of (uiwy) (note tha t  the vortex stretching vec- 
tor Wi = O(ui~;j)/Oxj) may appear  even more re levant / impor tant  (see section 
3.1) [241]. Even in such a case there  is little hope to obtain a low dimensional 
approximation representing adequately 29, e.g. such a 'simple'turbulent flow as 
the flow in a plane channel at  ra ther  low Reynolds number  (Re = 3300) which 
a t t rac tor  dimension is est imated to  be of the order 103 ! [132]. The exceptions 
are when the flow - though turbulent  - at  the outset is strongly dominated by 
some 'low dimensional subsystem' ,  e. g. [108], [160], [186], . 

9.4.3 Concluding 

Perhaps it is guileless to think tha t  the 'problem of turbulence 'would be resolved 
if one would have a super-hyper computer  enabling to 'solve ' the NSE or whatever  
at any Reynolds number. Suppose one can do this and also measure whatever 
one wants. The  real problem is what  one is going to do next with the many  GB 
of data.  In fact the situation is more serious, which is seen from the following 
example. There  is now available fully resolved da ta  from DNS of NSE on a tur-  
bulent flow in a plane channel at  ra ther  low Reynolds number  (Re = 3300, based 
on the half-width of the channel and the mean velocity) [139]. While extremely 
useful in a great variety of aspects  this did not lead to any qualitative change 
in the  understanding of this flow. Likewise due to DNS at  ra ther  moderate  Re 
much more is known about  a variety of  turbulent flows than  before. Neverthe- 
less, little proggress was made in understanding of such flows. It  seems tha t  
for the  progress in understanding of basic physics of turbuent  flows - at least at  
present stage - one needs neither very high Reynolds numbers nor precise deter- 
mination of scaling exponents, etc. a t  such Reynolds numbers. Turbulent flows 
at  the asymptot ic  regime at  Re >> 1 (--* co) - if such exists - do not seem to be 
simpler than  those at  very modera te  Re, and are definitely much less accessible 
in every respect. 
Quoting Feinmann: The next great era of awakening of human intellect may 

29Inadequate (too) low dimensional approximations may lead to spurious chaotic behaviour 
[52], which disappears when the  number  of the  basic functions becomes large enough. 
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well produce a method of  understanding the qualitative content o f  equations. 
To day we cannot. Today we cannot see that the water flow equations contain 
such things as the barber pole structure of  turbulence... We cannot say that  
something beyond it like God is needed or not. A n d  so we can hold strong 
opinions either way [89]. Qualitative is the key word, since there is a qualita- 
tive difference between being able to measure and /or  compute/calculate all one 
wants and understanding. Perhaps the efforts of turbulence community should 
be somewhat shifted to the qualitative aspects of the problem. 
It is remarkable that  in spite of - or perhaps just because of - frustrated and 
unsuccessful a t tempts  to construct a predictive theory of FDT and generally of 
turbulent flows based on the first principles the attraction of the turbulence prob- 
lem is only growing. This is reflected in disproportionally large to the funding 
continuing efforts in most of the areas of the field. And so one can be optimistic 
that  in the end the glorious enigma of turbulence as a physical phenomenon will 
be resolved. 
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Forced and Decaying 2D Turbulence: 
Experimental Study 
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Abs t rac t .  We report experimental results obtained on freely decaying and forced two- 
dimensional turbulence. The flow is produced in a thin stratified layer of electrolyte, 
using an electromagnetic forcing. The velocity and vorticity fields are measured using 
a particle image velocimetry (PIV) technique. The study of the temporal evolution of 
the system confirms in detail the scaling theory of Carnevale et el. (1991). We further 
measure the merging time r, the mean free path A, and the mean square displacement 

2 t 0.sT, t 0.45 2 t 1 3 The try of the vortices. We find the following laws : r ~ A ,.~ a~ -.* . 
statistics of passive particles (albeit virtual) in the system is also studied. They move 
hyperdiffusively, with an exponent identical to that obtained for the vortex motion. We 
find the dispersion of the particles is controlled by L6vy flights, produced by the jets 
formed by the dipoles. We finally underline the close relationship between the decay of 
turbulence decay and the dispersion phenomena. We further turn to the forced case. 
We find the energy spectrum displays a clear k -5/3 law with a Kolmogorov constant 
lying in the range 5.5-7.5, which is consistent with the current numerical estimates. 
The dispersion of pairs of passive particles is found to be controlled by Richardson law, 
throughout the inertial range of scales revealed by the analysis of the flow field. No 
evidence for the existence of Levy flights has been found. At variance with the decaying 
case, it is not clear whether coherent structures may play any role in the control of 
the main characteristics of the inverse cascade, along with the pair dispersion in the 
corresponding inertial range of scales. 

1 I n t r o d u c t i o n  

Two-dimensional turbulence has been much studied in recent years, because of its 
applications in astrophysics and geophysics, its relative accessibility to numerical 
computation, and as a fascinating field in its own right. The formation of coherent 
structures or vortices has been established both numerically and experimentally 
as a characteristic feature of 2D turbulent flows. In freely decaying turbulence, 
the vortices tend to live long compared to their turn-over time. From the time at 
which the coherent structures have been formed, and until the final dipole state 
has been reached, the governing dynamical processes are the mutual advection of 
vortices, and the inelastic merging of like-sign vortices. Assuming a self-similar 
evolution of the vortex system, Carnevale et al. (1991) proposed the extremum 
vorticity of the core of the vortices, w~, t ,  and the total kinetic energy as the two 
invariants controlling the decaying regime. Assuming further that the vorticity is 
concentrated in vortices, they obtained the following scaling laws for the density 
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of vortices p, the vortex radius a, the mean separation between vortices r, the 
velocity u of a vortex, the total enstrophy Z, and the kurtosis K u  of the vorticity 
distribution : 

, U ,~a , 

in which length £ and time scale T are defined by : 

(1) 

The exponent ~ is not determined by the theory. Numerical studies, both of 
the full Navier-Stokes equations and of point-vortex models, have consistently 
given values ~ = 0.71 - 0.75 (Carnevale et al. (1991), Weiss and McWilliams 
(1992)). On the experimental side, the early investigations of the decay regime 
(Couder (1983), Hopfinger et al. (1983)) confirmed that as time increases, the 
vortex population becomes depleted and the mean vortex size raises up. However, 
accurate quantitative analysis of the phenomenon was not successfully achieved. 
Recently, one author of the present paper made detailed measurements of the 
decay regime of quasi-two dimensional flows (Cardoso et al. (1994)). However, 
in the system they explored, three dimensional perturbations were suggested to 
play an important role. All this means that at the moment, our knowledge of 
the phenomenon essentially relies on numerical studies. 

Theoretically, several attempts have been made to determine ~ (Pomeau 
(1996), He (1996b), Trizac and Hansen (1996), Huber and Alstr0m (1993)). 
Based on the sealing laws (1), one of the authors of the paper by CarnevMe et 
al. (1991) has proposed a derivation that yields ~ = 1, but argued for lowering 
corrections (Pomeau (1996)). On the other hand, on the background of a theo- 
retical approach using a probabilistic method to describe the motion of vortices 
in an external strain-rotation field, it has been suggested that the value of 
depends on initial conditions (He (1996b)). In a related context, the 2D ballistic 
agglomeration of hard spheres with a size-mass relation mimicking the energy 
conservation rule for vortices, the value ~ = 0.8 is derived under mean-field 
assumptions (Trizac and Hansen (1996)). Further, in another possibly related 
context, that of Ginzburg-Landau vortex turbulence, the value ~ = 3/4 has been 
proposed (Huber and alstr0m (1993)). 

The first part of the paper is thus devoted to the study of freely decaying 
turbulence, along with the dispersion of passive particles. We will confirm the 
theory of Carnevale et al, and find an appealing correspondence between the 
decay and the dispersion problems. Throughout the study, the coherent struc- 
tures, i.e. the long living vortices with circulation well above the background, 
will appear to play a central role. 

£ = ~ [~ t v ~ ,  T = a~2- (2) 



147 

In a second part, we study the forced case. We will show evidences for the 
existence and stationarity of the inverse cascade ; moreover we report the obser- 
vation that,  within the inertial range of scales, the pair dispersion is governed 
by Richardson law, i.e. the distance between such pairs increases, in the average, 
as the time raised to power three. These results will suggest a strong difference 
between the free decay and the forced case, concerning the role of the structures. 

2 E x p e r i m e n t a l  s e t - u p  

The experimentM set-up we use has been described in a number of papers. The 
flow is generated in a square PVC cell, 15 cm x 15 cm. The bot tom of the cell 
is made of a thin (1 mm thick) plate of glass and permanent magnets are placed 
just  below. They produce a vertical magnetic field which has a maximum value 
of about 0.3 T and decay over a typical length of 3 mm. Using different magnet 
arrangements, we are able to study different spatial structures of the forcing. 
The cell is filled with two layers of NaC1 solution of different densities in a stable 
configuration, that is the heavier underlying the lighter. Each layer is 3 mm thick 
so that  the aspect ratio of the fluid domain is small. We drive an electric current 
from one side of the cell to the other, and the interaction of this current with 
the magnetic field produces forces which drive the flow. The flow is visualized by 
using clusters of tiny particles placed at the free surface. We record the images 
of the flow and then process them using particle image velocimetry techniques 
in order to get the velocity fields. The grids we use for computing the velocity 
fields are typically 40 × 40 in the decaying case (Sect. 3) and 64 × 64 in the 
forced case (Sect. 4). The advantages of this method are that  it is completely 
non-intrusive and that  it allows us to measure the complete velocity field at any 
time. 

There are several qualitative arguments in favour of the two-dimensionMity 
of the flows generated in our set-up : the aspect ratio, the Froude number (which 
measure the "strength" of stratification) and the ratio of measured horizontal 
divergence to maximum vorticity are all very small (a few percents each). More 
precise experiments, involving measurements both at the free surface and at 
the inner interface, have recently shown that three-dimensional perturbations 
were relaxing very quickly and that the assumption of two-dimensionality was 
justified for our experiments. 

3 T h e  d e c a y  o f  t u r b u l e n c e  

To study the decay of turbulence, we force the system for a few seconds until the 
wished flow structure has been obtained, and from a time defined as t = 0, let 
the system decay freely (without any further energy input). A similar method 
has been used in earlier studies (Cardoso et al. (1994), Tabeling et al. (1991)), 
however without the use of density stratification. 
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3.1 T h e  effect  of  b o t t o m  friction 

On Fig. 1 we plot the evolution of the energy for a typical experiment. In a 
transient time period of maximum duration 2 seconds after the forcing, the flow 
field reorganizes into a stationary vertical profile (Paret et al. (1997)). Thereafter, 
the only effect of tridimensionality is the friction on the bottom of the cell, 
causing the energy to decay exponentially, E = Eoexp(-at) .  The time constant 
a agrees with the characteristic time for the relaxation of a Poiseuille profile 
1/a = 2b2/~r2//, where b is the total thickness of the fluid layer and // is the 
kinematic viscosity. 
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Fig. 1: The evolution of the system energy pr. area. Straight line: e - 0 " 1 4 t .  

The friction against the bottom can in the case of a stationary velocity profile 
be represented by a linear term in the 2D Navier-Stokes equations, or in terms 
of the vorticity ~v(z, y), 

cgtw + J(~v, ¢) =//V2~v - aw (3) 

where w = - V 2 ¢  and J(. ,-)  is the Jacobian, and ¢ the streamfunction. In order 
to counterbalance the term - a w  we apply the transformation 

~(w, y,t)  -~ ~(x, y,t)e -a t  (4) 

and rescale the time as at* = 1 - e - a t .  One then arrives at 

a , .~  + J(~,  ¢) = / / * V ~  (5) 

where u* ---- e a t / / .  The flow is therefore equivalent to a two-dimensional flow 
with a time dependent viscosity. In the limit of high Reynolds numbers, it is 
legitimate to discard the temporal variation of the viscosity and confront the 
experimental results to pure two dimensional systems using a constant viscosity. 
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All measurements of temporal properties will hereafter be expressed in terms 
of the transformed time t*. Note that under the transformation the maximal 
observational time is t~, = 1/~. 

3.2 Vortex  ident i f icat ion  

In Fig. 2 we show a scatter plot of vorticity versus streamfunction for a typical 
experimental situation. We note, that for large absolute values of w there is 
functional relation between ¢ and w, w = f (¢ ) ,  with f'(~p) > 0. This means 
that  the nonlinear term in the Navier-Stokes equation vanishes, and hence that  
the structures are stationary. 

As a definition of a vortex, we take areas of the flow with large magnitude of 
the vorticity (Benzi et al. (1987), McWilliams (1990)). So, we search for values 
IT( ~, Y)I of the vorticity field around a unique, local extrema we~t such that 
w ~ t  > IT(x ,  Y)I > w, ,  where w, is a threshold. We use values of the threshold 
such that  the initial number of vortices is correctly determined. In pratiee this 
limits the ratio w, /w~: t  "~ to lie between 0.4 and 0.5. Our method agrees with 
the Weiss Criterion (McWilliams (1984)), associating vortices to the areas of the 
flow with a negative determinant of the velocity derivatives. 

In the numerical study of McWilliams (1990), there were added requirements 
to the axi-symmetry of the vortices. We find this too restrictive, and on the 
border of what is meaningful given the experimental resolution. 

An example of how our procedure works is shown in Fig. 2. The mean vortex 
radius a is found from the mean area occupied by the vortices. The mean distance 
r between the vortices is found by averaging over the distances between nearest 
neighbours. The position of a vortex is defined by the position of its extremum 
vorticity. 

3.3 The  s tat i s t ics  of  vort ices  

Q u a l i t a t i v e  a spec t s .  The governing dynamical processes observed in the ex- 
periments are the mututal  advection of vortices, and the merging of like-sign 
vortices. 

The time evolution of the vorticity field in a typical experiment is displayed 
in Fig. 3. The image borders coincides with the solid rim around the edge of the 
experiment. We arrange the magnets such that  the initial forcing produces an 
8 x 8 array of vortices (upper image). At that point, the forcing is turned off. 
After some time, like-sign vortices start  to merge, almost exclusively with one 
of their initial nearest neighbours. Fewer and larger structures are thus formed, 
as one will see turning to the middle image, obtained after 4.2 sec. Both well- 
formed vortices and pairs in the midst of a merging are visible. The formation 
of dipoles is in general observed throughout the decay, but  they will usually 
not move very far - either because one of the vortices breaks off and merges 
with another vortex, or simply due to the constraining action of the field of the 
surrounding vortices. Finally, at t* = 11 sec. (lower image) the energy is so small 
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Fig. 2: Left: Vorticity w versus streamfunction ¢, for a typical experiment. Right: 
An example of the procedure used to identify the vortices. The areas colored 
uniformly white correspond to negative-sign vortices, grey areas to positive-sign 
vortices. 

Fig. 3: Examples of calculated vorticity fields, showing the qualitative evolution 
of the flow from a large number of small vortices, to a smaller number of larger 
vortices. The overall exponential decline of the energy does not allow the final 
state to be reached. Left: t* = 0 s (initial field). Middle: t* = 4.2 s. Right: t* = 
l l s .  

that  no further evolution of the vortices can be observed. With the initial large 
number of vortices, chosen to get good statistics in the decay regime, the limited 
experimental t ime (see Sect. 3.1) does not allow us to reach the final state. This 
is however possible starting with a smaller number of vortices, see Marteau et 
al. (1995), Marteau (1996). 
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M e a s u r e m e n t s .  We show the geometrical proporties of the vortices; that is, 
the number of vortices, their radius and nearest-neighbour separation. We also 
measure the global dynamical quantities characerizing the system, apart from 
the energy the enstrophy, extremum vorticity and kurtosis. 

In Fig. 4 1 show on double-logarithmic scale the time evolution of the number 
of vortices obtained in several experiments with similar initial conditions. There 
is a scatter from one realisation to another, but they all have the following 
charateristics: 

For t* < 1 s, the decrease in number is slow or vanishing. As explained in 
Sect. 3.1, 3D effects might still play a role in the system up to app. 1.5 s. As 
well, it takes some time (up to a second), before the vortices are liberated from 
the effect of the initial conditions, and start to move among each other, and 
merge. For 1 s < t* < 10 s, the number of vortices decreases. For t* > 10 s, the 
energy has decreased to a few percent of its initial value, and the vortices start  
to disappear compared to the experimental noise. 

Fig. 5 shows the evolution of the number of vortices obtained after ensemble 
averaging over nine experiments. A least-squares algebraic fit to the time period 1 
s < t* < 10 gives an exponent ~ = -0.70.  Furthermore, plotting the logarithmic 
slope of N(t*)  (inset in Fig. 5) a plateau appears for the above time period, 
thus confirming the algebraic decay of the vortex number. If plotting N(t*)  on 
a semi-logarithmic scale, a curvature is seen that is clearly incompatible with an 
exponential law. 

Summing up, we find the following law for the decay of the vortex number 

N ,-~ t*-0.704-0.1, (6) 

where the error bar accounts for the variability in the individual runs. 
In Fig. 4 I show as well the vortex radius a, and the mean vortex separation 

r as a function of the resealed time. The mean separation is evaluated taking 
distances between nearest-neighbour vortices. Both quantities increase, showing 
that  the geometry expands as time increases. Algebraic laws are well defined for 
the period 1 s < t* < 10 s (2 s < t* < 10 s for the radius). 

a ( C )  ~ t ~ C °384-°15.  (7) 

The evolution in vortex radius a deserves a closer inspection. In Fig. 5 we 
show the evolution of the instantaneous vortex radius distribution, P ( a / <  a >)). 
There is a reasonable collapse, and no trend in the time evolution can be seen. 
This confirms the self-similar behaviour of the system (Weiss and McWilliams 
(1992)). 

The enstrophy and the kurtosis of the system, along with the extremum 
vorticity, are represented on Fig. 6 (the enstrophy and extremum vorticity are 
corrected for the exponential decline of the energy). If power laws are assumed, 
they read 

wext ,~ t,_o.094-o.04 ' __Z ,~ t,_o.18 K u  ,-~ t *012 (8) 
E ' 



g-, 

Z 

E 
0 

g-. 

100 

lO 

152 

x t 

• • • n 
~ $  • , .  

I 

lO 
t* [s] 

Fig.4: Number of vortices, their separation and radius versus rescaled time for 
several experiments, log-log scale. Lines: t * - ° 7 °  t.0.21, t.0.3s (6,7). 

The conservation of the extremum vorticity is a basic assumption in the theory 
(Carnevale et al. (1991)). Here, we find a slight decay, which is probably due to 
a finite Reynolds number effect (as seen as well the numerical studies by Weiss 
and McWilliams (1992)). 

D i scuss ion .  Let us now compare our results to the theory (Carnevale et al. 
(1991) and equations (1)). If we take 0.70 + 0.1 as the value defining the exponent 
~, we expect 0.18 + 0.025 for the increase of the vortex size a(Q, 0.35 + 0.05 for 
the distance between vortex centers v(t) which agrees well with the experiment. 

Another way to test the theory is to whether the internal relations proposed 
by the theory agree with the experiment. According to the theory, one should 
have : 

E =  2 4 p~,a (9) 

On Fig. 6 we plot the ratio 2 4 E/pw~: ta  . Within 10 %, a plateau is found, showing 
that  the above relation hold in the experiment. 

The laws for the kurtosis and the enstrophy, while having the right signs, 
are slower than the predictions (Carnevale et al. (1991) and equations (1)) gives 
t *0"35 for the kurtosis, and t *-°35 for the enstrophy), and the power laws are 
not well defined. This is probably due to a lack of spatial resolution of the PIV 
technique at early times, i.e. when the structures have the smallest size. The 
presence of systematic errors leading to an underestimate of the enstrophy in 
the first few seconds may explain why the power law behaviour is deteriorated, 
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Fig. 5: Left: Instantaneous distributions of vortex radii, for times t* = 2.2, 3.4, 
4.8, 6.9, 10.0 s. The values of a are divided by the mean value < a >. Right: 
Number of vortices versus rescaled time averaged over 9 experiments on log-log 
scale. Line: t ~-0"70. Inset: the logarithmic slope. 

and the value of the exponent is below the prediction (in absolute value). A 
similar argument holds for the kurtosis. 

To sum up, we find good agreement between the experimental results and 
the self-similar decay theory (Carnevale et al. (1991)), the value of ~ being de- 
termined to ~ = 0.70 ± 0.1 consistent with numerical estimates. 

3.4 T h e  m o v e m e n t  o f  v o r t i c e s  

We now turn the attention to the dynamical  characteristics of the vortices. In 
order to continously follow the motion of the vortex centers, the intervals between 
the calculated vorticity fields correspond to a small movement of the vortices, 
compared to the inter-vortex distance. We typically calculate 65-75 fields over the 
whole duration of the experiment, or 4-8 pr. rescaled second. Having tracked all 
vortices thoughout the experiment, we calculate: the mean collision t ime % the 
mean free distance A, the mean velocity u, and the mean squared displacement 

2 The notions will be detailed in the following. O "  v . 

The collision time r could also be called the 'lifetime' of a vortex. It is the 
mean time between two subsequent mergings of the same vortex. The time it 
takes two vortices to merge is 5-10 times smMler than their collision time, and 
can be neglected. 

Correspondingly, the mean free path A is the mean displacement of the vortex 
center between two mergings. Additionally, we also measure Ate, defined as the 
length of the trajectory followed by the vortex center in the time interval in 
question. 

The vortex velocity u is calculated as a finite difference between vortex posi- 
tions, using a fixed timestep dt = 0.5 s. The timestep is larger than the intervals 
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Test of the expression E 2 4 = pwe=ta for the system energy. Plott ing the ratio a 
plateau is formed. 

between the calculated vorticity fields, to avoid the influence of noise, due to the 
finite resolution of the vortex positions. 

For each time, the mean is obtained by averaging over the properties of all 
the vortices present in the system. 

2 of the vortices Finally, we calculate the total mean square displacement c~ v 
that  survive through the whole experiment (allowing for a vortex to merge on 
its way). The 'surviving'  vortex in a merging is defined as the one with highest 
ex t remum vorticity. 

M e a s u r e m e n t s .  In Fig. 7 we plot the quantities $, St~ and r versus t ime on 
log-log scale. The da ta  stems from the same nine realisations as in the previous 
Sect. 3.3. All three quantities grow with t ime in a similar manner.  

We remark that  at t*= 7 s, the mean lifetime v is app. 5 s. This means 
that  the measurement  will s tart  to be influenced of the finite duration of the 
experiment (up to t*= 11 s), and the curves saturate. 

We have examined the power law behavionr of ~ and r in the (short) t ime 
interval 1.5 s < t* < 7 s. Assuming algebraic laws, the results of least-squares 
fits are the following 

T ,-- t *057:E0"12, )~tr '~ t*0'49:E0"09, /~ '~ t *0"45:E0"10. (10) 

In agreement with the qualitative impression, the measured exponents are close. 
As before, the errorbars are est imated by taking into account the dispersion in 
the curves from the individual experiments. 
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2 Straight line: t *1"3 Fig. 8: Left: The mean square displacement of the vortices cry. 
Right: Invariants: )~Na, and c~/)~ut*. Flat lines are shown for comparison. 

2 calculated for 34 vortices In Fig. 8 we plot the mean square displacement c~, 
tracked throughout the whole experimental  time. A well-defined power law is 
observed. For the t ime interval 1.2 s < t* < 7 s we find 

r l aa ' ° l  (11) (7" v ~ 

The exponent is markedly larger than one, so the vortices move hyperdiffusively. 

D i s c u s s i o n .  The increase in A, Atr and r is not surprising. The system gets 
more and more dilute during the decay; the area occupied by the vortices Na 2 
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decreasing as t*-~l~. Therefore, the mean distance A a vortex has to travel before 
meeting and merging with another vortex will increase. The fact that  At~ is a 
factor of three larger than A, is a result of the intricate movement  of the vortices, 
that  can be seen in Fig. 9. 

Let us try to quantify these ideas using a simple geometrical argument,  sim- 
ilar to that  classically given in kinetic gas theory. Est imate  ), as the distance 
travelled by a vortex in unit t ime (,-- u, the advection velocity), divided by the 
probabil i ty of suffering a collision in this t ime interval ( ~ u times the collisional 
cross section times the density of vortices). Then 

u 1 
. . . .  (12) 

u(rp pa 

since the collisional cross section is proportional to the radius for a system of 
circular disks (Melander et al. (1988)). (p is the density of vortices, N / L 2 ) .  

The collision t ime v will be r ,-~ A / u .  Inserting the algebraic laws for the t ime 
evolution of a and p, one arrives at 

), ~ T .v t~t-¼~ ~ t ~ .  (13) 

With  the obtained value ~ = 0.7, we should have r ,-~ ), N t °.x, which is in agree- 
ment  with the observed power laws (10). However we observe an unexpected, 
slight decrease in the mean vortex velocity u, which seems to cause the expo- 
nents to differ from each other (Fig. 7). To further test (12), we have in Fig. 8 
plotted the product )~Na, as given by the data.  A clear plateau is observed for 
times 1.5 s < t* < 7 s, corresponding to the scaling regime of ,~. We conclude 
tha t  the expressions (12) and (13) are confirmed by experiment. 

The behaviour of ~ can be understood as follows: introduce a vortex diffusion 
coefficient D by 

2 (14) (r~ =_ D t .  

Again adapting arguments from kinetic gas theory, D is taken as the mean free 
pa th  t imes the vortex speed u . We get 

D : Au (15) 

Thus, the growth in length scale causes D to grow as well. Further, the mean 
2 is now given by : square displacement of the vortices c% 

~2 ..~ D t  ..~ hu t .  (16) 

2 t, that  is, Brownian motion of If  D had been constant, one would have that  a .  --~ 
the vortices. But now D increases with time, and in turn the variance grows faster 
than t. The proposal (16) can be further tested directly, by plotting c~/()~ut*)  

versus t ime (Fig. 8). A plateau appears for times larger than 1.5 s, so (16) is 
well verified by experiment.  

It  is tempt ing to infer, from the above relations, a formula between ~ and an 
exponent characterising the temporal  evolution of the mean square displacement 
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of the vortex centres. From (12) and (16), on may deduce that  if c~ 2 grows as t ' ,  
one must have the following relations between ( and u : 

3 (17) 

By taking ~ = 0.7, one should find the mean square displacement of the vortices 
is characterized by an exponent equal to 1.5. This is a bit larger than the observed 
exponent which is 1.3; however systematic errors adds so as to violate (17). The 
main factor is that  u is not exactly constant, but slightly decrease with time. 
In practice, one can say that the relations (12) and (16) are consistent with the 
experiment, and the corresponding straightforward relation (17) must be taken 
only as a crude formula expressing the existence of a link between the exponent 
characterizing the decay, and that  characterizing the dispersion of the vortices 
in the experiment. 
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Fig. 9: Left: Some trajectories of vortices (lines), and passively advected particles 
(points, with app. equal time spacings. The analysis uses five times the shown 
resolution). Parts of particle trajectories defined as a flight is shown with a 
grey line. Right: Examples of flight identification. We show the velocities of 
single advected particles; regions defined as flights by the procedure described 
in Section 3.5 are marked with a thick line. (There is added 2, 4 and 6 cm/s  to 
the upper curves in order to separate the curves). 
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3.5 D i s p e r s i o n  o f  pass ive  p a r t i c l e s  

In this section, we present studies of the dispersion of passive, imaginary parti- 
cles. The trajectories x(t) is obtained by integrating the equation 

d x ( 0  _ v (x ,  t) (18) 
dt 

for chosen initial conditions. The derivatives v(x)  are given by the experimentally 
determined velocity fields. As above, the velocity fields are found with small, 
regular time intervals, to ensure that the velocities only change slightly. The 
40 × 40 velocity fields are interpolated in space and time, and the trajectories 
are calculated using a standard 4th order Runge-Kutta method with adaptive 
stepsizing. 

We find that  this is an effective method for extracting statistical quantities 
from the flow fields. It allows us to obtain a number of trajectories, that  would 
be difficult to achieve experimentally. The imaginary particles are indeed truly 
passive, so we do not have to consider the question of Stokes drag or similar 
experimental problems. On the other hand, since there is a limited resolution 
of the velocity field (0.375 cm between neighbouring vectors); particles cannot 
correctly sample motions on a much smaller scale. We remark that  in any case 
the quanti ty we are interested in, namely the mean square displacement 0.2 of 
the particles, is determined by the large scale properties of the flow (and already 

after 1 sec. the typical ~ > 0.7 cm). 
To demonstrate the qualitative behaviour of the particle motion, we have 

in Fig. 9 shown some examples of particle trajectories. We note that  trapping 
effects are not visible. Particles tend to get ejected from vortices, both during 
mergers, and as an effect of the straining of vortices due to the surrounding field. 
The observation that the vortex cores are characterized by a low tracer density 
is in qualitative accordance with Elhmaidi et al. (1993). Trapping in vortices 
and sticking on their periphery is not an effect that  seems important  for the 
particle dispersion in out experiment; indeed, well-defined trappings are too rare 
to justify a detailed analysis. Flights, or parts of the trajectories with a velocity 
persistently higher than the mean velocity, are on the other hand often observed. 

In Fig. 10 we show the mean of the absolute squared displacement 0.2 of the 
particles. Conditioning the average only to include particles that  do not visit 
high-vorticity regions, does not make any difference. This suggests that the vor- 
tices are not important  for the dispersion properties of the passive particles. A 
clear power law emerges for times between 1 s and 7 s. The inset shows the 
logarithmic derivative of the preceding points. For small times, the exponent 
decreases from 1.8, while from t = 6 s, the exponent drops to 1; this is in ac- 
cordance with the classical prediction (Taylor (1921)). However, the change in 
exponent shows a clear plateau, thus defining a dispersion coefficient for inter- 
mediate times, with the value 0.2 ~ p.39. As a mean over three experiments, we 
find 

0 .2 ,,, t 14+°1 (19) 
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Fig. 10: The mean square displacement of 3200 passive, imaginary particles (cir- 
cles) and a subset of 2208 particles not entering high-vorticity regions (line). 
The latter curve has been divided by 2. Inset: the logaritmic slope of the overall 
mean. 

It is remarkable that  this exponent is undistinguishable from that  corresponding 
to the mean square displacement of the vortex centers. 

C h a r a c t e r i z a t i o n  in t e r m s  of  flights• It turns out that the velocities of 
the particles vary strikingly, according to which region of the flow the particle 
sample. To make this observation quantitative, we have developed a procedure 
to analyze the trajectories for flight events; some examples of the procedure are 
shown on Fig. 9. The flights are determined by searching for extrema of the 
velocity above a threshold (taken as 0.80 cm/s, where the square root of the 
total, constant, system energy per unit area, is 0.71 cm/s). The beginning and 
end of a flight event is defined by the maximum and minimum in acceleration 
before and after a velocity extremum. The absolute value of the acceleration is 
required to be above another threshold (taken as 0.3 cm/s2), ensuring that  the 
flight corresponds to the time between when the particle enters and exits a flow 
region with high velocity. The conclusions remain valid for a variation of the 
above thresholds within -4- 15%. 

We stress that  there does not exist a universal algorithm to define flights 
of particles in hydrodynamical flows. We have checked for a large number of 
trajectories that  our procedure correctly identifies the events, that  strike an 
observer 'by eye' as flights. 

The flight time distribution on Fig. 11 is a result of this procedure. 5700 
particle tracks have been analyzed, giving a total of 4400 flight events. For flights 
longer than 1.5 seconds and less than 6 seconds, the distribution follows a power 
law. For long flights, the statistics will be influenced by the finite duration of 
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Fig. 11: Left: Probability distribution of flight times. Straight line: t) -~~6. Inset: 
the same distribution(thick line), along with the distribution of flights with ex- 
t remum velocity occurring between t* = 2 to 5 seconds (thin line), and t* = 5 
to 10 seconds (dotted line). Right: Vorticity field to t = 8.5 s. The positions of 
particles undergoing a flight are marked with black squares. 

the trajectories (the total duration of this experiment is 11 s); giving a rapid 
decrease in P(t!)  for t /  > 6 s. We conclude that the distribution of flight times 
has an algebraic tail, 

P(t]) ,.~ t-] 26+°2. (20) 

We have investigated the temporal evolution of the characteristics of this distri- 
bution; this is shown on the inset of Fig. 11. The plot shows the same analysis, 
but  preformed over a smaller range of time, so as to see how the characteristics 
of the distribution evolves with time. Although the statistics is on the border of 
being sufficient to draw reliable conclusions, it seems that the tails stay parallel 
to each other as time increases, so that the slope of the distribution does not 
vary with time. This means that the distribution are not sensitive to the fact 
that  the system expands. 

We have investigated in which regions of the flow the particles move when 
they are subject to a flight. As demonstrated in Fig. 11, flights predominantly 
occur for particles located between opposite-sign vortices. This is not surprising, 
since the regions between two close opposite-sign vortices are characterized by 
large velocities, forming a jet-like structure. So there is a straightforward physical 
explanation for the occurrence of flights. 

The exponents we find for the flight distribution are consistent with those 
for the variance. According to Klafter et al. (1987), we effectively have c~ 2 ,-~ 
t 4-~'6 ~ t 14, in good agreement with the previous result (19). This shows that  
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we can regard the hyperdiffusion for the passive particles as anomalous, that is 
caused by extreme (flight) events. 

3.6 S p e c t r a l  characteristics 

In Fig. 12 we show energy spectra E(k),  calculated from the obtained velocity 
fields at t = 0s and t = 23 s. The spectrum is initially very peaked around the 
forcing wavenumber, but tends to broaden for the first seconds of the experi- 
ment. This is in agreement with the observation that there is a spread in the 
distribution of vortex sizes for times in the scaling range, as seen qualitatively 
in Fig. 3, and quantitatively in Fig. 5. 
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Fig. 12: Energy spectrum at t=  0 s and t = 23 s (the last multiplied by 100 to 
show the curves at the same scale). Straight line: ~ k -3"3.  

Regarding the slope of the spectrum for late times in the range 0.1 < k/27r < 
0.7, a comparison with a straight line of slope -3.3 shows that  a power law is not 
well-defined, there being turnings on the curve suggesting competing effects. The 
mean value of the vortex radius a for t = 23 s is 1.2 cm, giving a wavenumber 
at the order of k/2~r ~ 1/(2a) ,~ 0.4 cm -1. Thus, the vortices are present at the 
scales where the systematic decrease in E(k) takes place, suggesting that they 
account for the spread in energetic wavenumbers. 

An intriguing observation is the value of the slope of the spectrum, which 
evokes the enstrophy cascade. Indeed, the transfer of enstrophy seems to operate 
towards larger scales, whereas the usual enstrophy cascade proceeds in the other 
direction. Nevertheless, it cannot be ruled out that this spectrum is influenced by 
mechanisms close to those involved in the usual enstrophy cascade, thus giving 
rise to a k -3a -  dependence. Further experiments are needed to clarify this point. 
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4 F o r c e d  t u r b u l e n c e  - I n v e r s e  c a s c a d e  o f  e n e r g y  

We now turn to the issue of forced turbulence. Contrary to the decaying case, 
the flow is driven during the whole duration of the experiments and there is no 
t ime limitation except the one imposed by the fact that  for very long times the 
stratification is lost and the two-dimensionality assumption is no longer justi- 
fied. We use periodic magnet arrangements in order to input the energy at a 
given wave-number. This wave-number is chosen large (energy input at small 
scales) in order to have a wide range of scales available for the cascade of energy 
toward large scales. Finally, in order to impose a zero mean flow so as to get 
homogeneous turbulence, we use a random-in-time forcing: the electric forcing is 
made of a time series of impulses of constant amplitude and random sign. Each 
impulse has a duration longer than the characteristic time of the vertical trans- 
fers. Each experiment has a typical duration of 6 minutes which corresponds 
approximately to 50 turn-over times. The injection Reynolds number, based on 
the root-mean-square velocity and the injection scale has a typical value of 100. 
One should notice that these characteristics are comparable to the largest nu- 
merical simulations performed on the subject (Borue (1994), Smith and Yakhot 
(1994)). 

The experiments display two regimes: first, a short transient phase which 
duration is around 30 seconds, then, a phase during which the properties of the 
flow do not vary much. A typical stream-function field taken during this second 
regime is shown in Fig. 13. It can be seen that there are many structures of dif- 
ferent sizes. From such a plot, it would be difficult to infer a single characteristic 
size as it is possible in the decaying case. This shows that the dynamics involved 
in both cases may be rather different. Since we input energy at small scales, the 
fact that  there are large structures present in the stationary regime is a sign that  
there is indeed a transfer of energy toward large scales. 

Fig. 13: Typical stream-function for the stationary regime 
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4.1 S p e c t r a l  p r o p e r t i e s  

A typical series of energy spectra are displayed in Fig. 14(a): the initial one (o), 
computed 2 seconds after the current has been switched on, an intermediate 
one (o) averaged over a few fields covering a short time interval centered at t 
= 10 s, and the final spectrum (,,), averaged over 160 fields, well beyond the 
transient regime. The initial spectrum (o) shows that the injection of energy 
is well localized in wave-number space. At later times, in the transient regime, 
the energy transfer from large to small wave-numbers is signalled in Fourier 
space by the progressive building up of a spectrum with a k -5/3 power law, 
as illustrated by the transient spectrum (o). The final spectrum (*) displays 
a k -5/3 behavior over a range slightly narrower than one decade (the black 
line corresponds to a calculated - 5 / 3  scaling). In Fig. 14(b) the final spectrum 
of Fig. 14(a) is displayed compensated by the Kolmogorov scaling, E(k)k 5/3. 
Over the same range of scales as those for which the scaling law is observed in 
Fig. 14(a), a clear plateau is observed, which confirms that  the spectral exponent 
is close to - 5 / 3 .  For the present experiment, the most energetic wave-number is 
k0 ,~ 0.13 cm -1 , which is larger than the wave-number 27r/L based on the cell 
size. 
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Fig. 14: Energy spectra : (a) temporal evolution, (b) compensated energy spec- 
t rum for the stationary regime. 

We have checked that our flow is stationary, homogeneous and isotropic. 
Stationary is assessed by the fact that  both the energy and the enstrophy of 
the flow are almost constant during the whole experiment, apart from the short 
initial transient. The root-mean-square velocity deviations from the mean flow 
(which is approximately zero) display no space dependency in the bulk of the 
flow. Of course, because of the no-slip condition on the walls of the cell, these 
deviations must fall to zero when we approach the boundaries. Isotropy is less 
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straightforward: because of the geometry of the cell and the structure of the 
magnet  arrangement, the flow cannot be isotropic at the largest scales and at 
the forcing scales. However, if we band-pass-filter the velocity fields, just keeping 
the modes lying in the inertial range, and compute the angular energy spectrum 
(Fig. 15), we find that  the angular dependency of the energy spectrum is very 
weak and that  isotropy is quite well satisfied in the inertial range. 
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Fig. 15: Angular energy spectrum (inertial range) 

We have also determined the Kolmogorov constant in our experiments. First, 
it must be noticed that,  since the injection Reynolds number is not very large, a 
non-negligeable part of the energy input flows to the viscous scales without tak- 
ing part  in the inverse cascade. Thus, determination of e from the total dissipa- 
tion rate overestimates the energy transfer rate in the inverse cascade and yields 
a very low value for the Kolmogorov constant. Using three different methods, we 
have determined the true energy transfer rate and we have found C k -- 6.5 =E 1 
which is consistent with the estimations from the best numerical simulations 
(Matrud and Vallis (1991), Smith and Yakhot (1994)). 

4.2 S t a t i s t i c s  o f  t h e  v o r t i c i t y  f ie ld  

We now turn to the physical space characteristics of this inverse energy cas- 
cade, and more precisely to its consequences in term of coherent structures and 
vortices. The first consequence of the shape of the energy spectrum is that  the 
enstrophy spectrum Z(k) has a maximum value when k is equal to the injection 
wave-number. Actually, we have Z(k) = k2E(k) and since E(k) scales as k -5/3 
for k <_ ki and as k -'~ with n > 3 for k >_ ki, the above conclusion is straightfor- 
ward. This shape of the enstrophy spectrum implies that,  if there are vortices in 
the flow, they must have a characteristic size of the order of the injection scale. 
This is confirmed by the distribution of vortex sizes displayed in Fig. 16. The use 
of log-lin scales makes it clear that this distribution is a decreasing exponential 
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function of the vortex radius r for sizes corresponding to the inverse cascade. 
This shows that  even if there are coherent structures in theses flows, their influ- 
ence on the dynamics is probably very weak. This is certainly the most striking 
difference between decaying and forced turbulence. 

10 4 

1000 

100 

10 

\ t \ 
Injection Scale 

! 

0 1 2 3 4 5 6 

Size ( 4 r  [cm] ) 

Fig. 16: Distribution of vortex sizes 

These characteristics of the vorticity field may also be a hint of the physical 
mechanism underlying the inverse cascade. The naive approach consists in saying 
that  the inverse cascade is made of a sequence of merging events between same 
sign vortices as it is the case in decaying turbulence. However, if it was so, the 
distribution of vortex sizes should be broad and probably not an exponentially 
decreasing function. The inverse cascade should rather be an aggregation process, 
that  is the formation of large patches of same sign vorticity. This picture is 
favoured when looking at the transient regime of our experiments. Figure 17 
displays, at 4 different times in the transient regime, the regions of positive 
(white) and negative (black) vorticity: it can be seen that,  as the cascade builds 
up, the vorticity tends to seggregate and form larger and larger patches of the 
same sign. 

4.3 D i s p e r s i o n -  Richardson's  law 

We have studied some dispersion properties of the inverse cascade by looking 
at the temporal evolution of the separation of pairs of particles initially close 
to each other, using the technique described in Sect. 3.5. We used 10000 pairs 
in order to achieve a good statistical convergence. The results are displayed in 
Fig. 18. It can be seen that  there exists a range of time during which the squared 
separation R ~ scales as t 3. Such a result was originally proposed by Richardson in 
the twenties (Richardson (1926)). It has been observed in numerical simulations, 
but we probably provide one of the first experimental observation of Richardson's 
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Fig. 17: Transient evolution of the vorticity field (t -- 2,6,10 and 22 s) 

law. Since this result can be inferred from dimensional analysis (assuming that  
R 2 depends only on t and ¢), it is probable that there are no Levy flights in the 
forced case. Indeed, using many possible definitions of a flight (including of course 
the definition used in Sect. 3.5) we have not found any probability distribution 
of flight times with a power-law scaling. Thus, the existence or non-existence of 
flights in such flows and the existence of deviations from dimensional analysis 
predictions cannot be decided at the moment. Further experiments using more 
particles and measurements of higher order moments of the probability density 
function of the separation R will be the aim of future work. 

5 C o n c l u s i o n  

To conclude briefly, the study shows a clear distinction between decaying and 
forced turbulence. In the former case, long live vortices play a central role,and 
an approach based on the analysis of the behavior of individual objects, with 
well defined characteristics, allows to describe correctly the main features of 
the decaying regime. In the latter case, statistical dimensional arguments, based 
on the hypothesis that  the system is geometrically self similar, provides correct 
answers to finding out the exponents of the spectral laws and those controlling 
the dispersion of Richardson pairs. We thus have two examples where different 
approaches - one structural, and the other statistical - are successful and at the 
moment alternative ways of tackling the two problems do not seem available. It 
is clear that  in the forced case, the two approaches are at least complementary. 
We tend to think that it would be interesting to figure out the content of such a 
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Fig. 18: Temporal evolution of the squared separation R 2 between particles ini- 
tially close to each other. Left: R 2 vs. t . Right: R?/t  3 vs. t 

complementarity, so as to reach a situation where a complete, consistent, physical 
description of the inverse cascade is made available. 
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Abs t r ac t .  We r e v i e w  a series of experimental investigations of anomalous trans- 
port in quasi-geostrophic flow. Tracer particles are tracked for long periods of time in 
two-dimensional flows comprised of chains of vortices generated in a rapidly rotating 
annular tank. The tracer particles typically follow chaotic trajectories, alternately 
sticking in vortices and flying long distances in the jets surrounding the vortices. 
Probability distribution functions (PDFs) are measured for the sticking and flight 
times. The flight PDFs are found to be power laws for most time-dependent flows 
with coherent vortices. In many cases the PDFs have a divergent second moment, 
indicating the presence of L~vy flights. The variance of an ensemble of particles is 
found to vary in time as (r 2 ~ C, with y > 1 (superdiffusion). The dependence of 
the variance exponent ~/on the flight and sticking PDFs is studied and found to be 
consistent with calculations based on a continuous time random walk model. 

1 I n t r o d u c t i o n  

An ensemble of particles in a non-uniform fluid flow will disperse as a conse- 
quence of the variations in the fluid velocity as well as the effects of molecu- 
lar diffusion. In most situations, advection due to fluid motion is much faster 
than  molecular diffusion, and dominates the t ransport  process. Coherent large 
scale structures, such as vortices and jets, are frequently present in fluid flows 
and strongly influence particle motion. A quantitat ive understanding of the 
effect of coherent structures on t ransport  and mixing in fluids is essential to 
accurately model such diverse processes as the dispersal of pollutants in the 
ocean and atmosphere,  the persistence of the atmospheric ozone hole, and 
mixing and chemical reactions in stirred fluids. 

Coherent structures typically result in inhomogeneous t ransport ,  with 
particles mixing well in some regions of the flow but isolated from others. 
The most  prominent  example of this phenomenon is the maintenance of the 
ozone hole by the circumpolar night jet. Similarly, Jupi ter 's  Great  Red Spot 
stays red despite the extremely turbulent environment because the existence 
of a stable vortex inhibits turbulent mixing. 

The presence of coherent structures results correlations in particle motion 
tha t  can persist for long distances and/or  times. This may result in the inap- 
plicability of the Central Limit Theorem used to derive the equation for the 
dispersion of particles in a normal diffusive process, ~2 = (x2)  _ ( x ) 2 ~ t ,  of- 
ten resulting instead in anomalous diffusion, cr2~t ~t, ~/¢1 [1]. The presence of 
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anomalous diffusion in the atmosphere was recognized in 1926 by Richardson 
[2], who investigated the separation of weather balloons and found in some 
circumstances a2~t 3. (At very long times, transport  in fluids of finite extent 
will necessarily be normally diffusive due to Brownian motion [3]. In many 
realistic flows, however, there are several orders of magnitude between the 
time scale for mixing due to advection and that  due to Brownian motion.) 

In this paper we review transport  studies performed in a two dimensional 
(2D) flow. The study of 2D flows is of interest in part because its relative 
simplicity facilitates comparison between theory and experiment. In addition, 
most atmospheric and other geophysical flows are predominantly 2D as a re- 
sult of the effect of planetary rotation, as are some flows of importance in 
plasma physics from the effects of applied magnetic fields. Finally, the equa- 
tions of motion for tracer particles in a 2D flow are identical to Hamilton's 
equations of motion in phase space for dynamical systems [4], so 2D fluid flow 
provides a unique avenue for investigating Hamittonian chaos. 

The experiments described below were performed in a rotating annulus 
designed to match the important  dimensionless parameters of large scale geo- 
physical flows. Rapid rotation ensures a predominantly 2D flow, as predicted 
by the Taylor-Proudman theorem [5]. A schematic of the annulus is show 
in Fig. 1. The annulus is completely filled with fluid. The top and sides are 
transparent  to allow for illumination and visualization. The flow is forced by 
pumping fluid into and out of the annulus through concentric rings of holes 
in the base of the annulus. The pumping generates a radial pressure gradi- 
ent which, through the action of the coriolis force, generates an azimuthal 
jet, co-rotating when the source ring lies outside the sink ring, and counter- 
rotating for the opposite configuration. The bot tom of the annulus has a 
slope of 0.1, which mimics the dynamical effect of planetary curvature on at- 
mospheric flows (the beta-effect) [5]. A discussion the design considerations 
for the annulus can be found in [6]. 

2 T r a n s p o r t  a t  h i g h  R e y n o l d s  n u m b e r  

Experiments investigating the dynamics of strongly nonlinear geostrophic 
flow are described in Refs. [6-8]. In addition to quantitative studies of the 
dynamical instabilities, qualitative studies of mixing and transport  were per- 
formed by dye injection. For westward (counter-rotating) jets, large coherent 
vortices were found to persist in a turbulent background over a wide range 
of flow parameters. Dye injected into the vortices remained inside the vor- 
tex for long periods of time, while dye injected outside of the vortex mixed 
rapidly throughout the turbulent flow, but would not significantly penetrate 
the vortices, even after several minutes (the vortex turnover time was about 
2 seconds). 

For eastward (co-rotating) jets, a narrow wavy jet was found to exist up 
to the highest accessible forcing. Dye injected into the jet diffused quickly 
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Fig. 1. Schematic of rotating annulus: rl = 10.8 cm, r2 = 43.2 cm, d = 8.1 cm, 
and h = 20.3 cm at r2- See text for details. The configuration of the annulus was 
slightly different for the experiments described in section 2 [7], [8], [6]. 

within the jet, and then slowly filled the region outside of the jet (and, to 
a lesser extent, inside) through a series of tongues generated from the crests 
of the traveling wave [6], [8]. Dye injected far from the jet spread uniformly 
in the region delimited by the jet, but virtually no cross-jet t ranspor t  was 
observed, even after 500 rotations of the annulus. This effective dynamical  
barrier appears  to work in much the same way the southern polar night jet 
acts as a barrier to t ransport  of ozone from lower latitudes into the polar 
region. 

3 T r a j e c t o r i e s  i n  v o r t e x  c h a i n s  

For less energetic flows, we have performed detailed measurements of indi- 
vidual particle trajectories in single annular chains of vortices to investigate 
the role of chaotic advection in particle t ranspor t  [9-12]. These experiments 
were performed at Reynolds numbers above the initial instabilities in the ax- 
isymmetric flow that  exists at very low forcing, but below any indications of 
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turbulent flow. At low pumping rates, the vortex chain rotates at a constant 
rate, producing a periodic signal on a hot film velocity probe mounted at a 
fixed position on the annulus (Fig. 2(a)). 
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Fig. 2. Velocity time series and power spectral density P(f) obtained from hot 
film probe measurements of the azimuthal velocity component at r = 35.1 cm: (a) 
time-independent flow; (b) seven-vortex flow with periodic time dependence in the 
reference frame co-rotating with the vortex chain (see Fig. 3); (c) six-vortex flow 
with periodic time dependence in the vortex chain reference frame; (d) five-vortex 
flow with chaotic time dependence; (e) four-vortex flow with chaotic time depen- 
dence (see Fig. 4); (f) weakly turbulent flow (see Fig. 5). These data are taken in 
the tank frame of reference, as opposed to the co-moving frame of reference used 
for the particle pictures in this paper. 

Transport is measured by putting several hundred small ( ~  l m m  diam- 
eter), neutrally buoyant tracer particles into the tank. They are il luminated 
by light shining through the outer cylinder of the annulus and are viewed 
through a video camera rotating about the experimental set up. Automated  
tracking techniques [13] are used to find the trajectories of the individual 
particles. 
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3.1 F l o w s  S tud ie d  

At the forcing rates used in this experiment, a counter-rotating jet is unstable 
to a chain of four, five, six, or seven vortices above the outer ring of holes 
[14]. The instability at the inner shear layer is inhibited by a 6.0 cm tall 
annular Plexiglas barrier with outer radius of 19.4 cm that  is inserted above 
the inner ring of holes (see Fig. 1). (Without the barrier, the flow would 
be composed of two vortex chains, one above each forcing ring [14].) The 
vortex chain rotates relative to the tank at approximately half the speed of 
the azimuthal jet as seen in the annulus frame of reference (typically 4 cm/s). 
In a reference frame moving with the vortices, the vortex chain is sandwiched 
by azimuthal jets going in opposite directions (e.g. Fig. 3). 

We study transport  in flows generated with six different forcing tech- 
niques, using either water (kinematic viscosity v = 0.009 cm2/s), or a water- 
glycerol mixture (38% glycerol by weight; a kinematic viscosity u = 0.03 cm2/s). 
The time-dependence of some of the flows are similar, so in this paper we 
label some of the flows by their structure (number of vortices). The six flows, 
listed with the pumping rate, F, tank rotation rate, £2, and working fluid, 
are: 

1. Time-independent flow with six vortices (F  = 45 cma/s, f2 = 1.5 Hz, 
water-glycerol). The inner (outer) ring of holes acts as a source (sink) 
through with fluid is pumped into (from) the tank. In the reference 
frame co-rotating with the vortex chain, the flow is time-independent 
(Fig. 2(a)). This flow should not have chaotic mixing; tracers should fol- 
low the streamlines. 

2. Seven-vortex flow with quasi-periodic time dependence (see Fig. 3; F = 
45 cma/s, /2 = 1.5 Hz, water-glycerol). The parameters for this flow are 
the same as the time-independent flow, but  the initial conditions were 
different. In the reference frame co-rotating with the vortex chain, this 
flow is time-periodic; in the reference frame of the tank, the motion of 
the vortices around the annulus results in quasi-periodic time dependence 
(Fig. 2(b)). This flow is termed "modulated wave flow" in Ref. [11]. 

3. Six-vortex flow with quasi-periodic time dependence (F  = 45 cma/s, 52 = 
1.5 Hz, water-glycerol). This flow is generated with the same techniques 
as the time-independent flow, except that  the radial forcing has a non- 
axisymmetric perturbation. The forcing flow through one 60 ° sector of 
source and sink holes is restricted to less than half that  for the rest of the 
forcing holes. Thus the vortex chain is perturbed as it moves past this 
constricted sector, with the period of the perturbation being the time for 
a vortex to precess around the annulus (70.0 s). In the reference frame 
of the vortex chain, the flow is time-periodic. In the reference frame of 
the tank, the flow is also time-periodic (Fig. 2(c)), as the perturbat ion 
is stationary with respect to the tank. In all other reference frames, the 
flow is quasi-periodic in time. This flow is termed "time-periodic flow" in 
Refs. [10], [11]. 
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Fig. 3. The seven-vortex flow is revealed by the trajectories of 20 particles tracked 
for 300 s in a reference frame co-rotating with the vortices. In this reference frame, 
the vortex chain is sandwiched between two azimuthal jets. This flow has periodic 
time dependence in this reference frame. The inner and outer circles represent 
the annulus boundaries, and the grey circle indicates the location of the Plexiglas 
barrier. (Figure from Ref. [111. ) 

4. Five-vortex flow with chaotic t ime dependence (F  = 45 cm3/s,  /2 = 1.5 
Hz, water-glycerol). This flow is similar to the six-vortex flow, except tha t  
the flux through the perturbing sector is completely shut off. There are 
still well-defined vortices in this flow, but the number of vortices alter- 
nates between five and six over long periods of time. This flow has chaotic 
time-dependence, as can be seen from the hot film probe measurements  
(Fig. 2(d)). The word chaotic in this case denotes Eulerian chaos, that  is, 
a chaotic velocity field, as distinct from Lagrangian chaos of the particle 
trajectories. This flow is termed "chaotic flow" in Refs. [10], [11]. We do 
not actually know this flow is chaotic in the sense of positive lyapunov ex- 
ponents, but  the noise floor shown in Fig. 2(d) is higher than the previous 
flows, a signature of chaos. 

5. Four-vortex flow with chaotic t ime dependence (see Fig. 4; F = 52 cma/s ,  
= 1.0 Hz, water). Rather  than the inner and outer forcing rings, this 

flow uses the inner and middle forcing rings (r = 18.9 cm and 27.0 cm), 
to allow the vortices to be larger, and prevent an inner jet from forming, 
as can be seen in Fig. 4. 

At this high pumping rate, the motion of the vortices is chaotic, as 
shown in the velocity power spectrum shown in Fig. 2(e). As with the 
five-vortex flow, this is Eulerian chaos. This flow was termed "chaotic 
flow" in Ref. [12]. (Again, the chaos of this flow has not been rigorously 
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Fig. 4. The four-vortex flow is revealed by the trajectories of 12 particles tracked 
for 100 s in a reference frame co-rotating with the vortices. The inner and outer 
circles represent the annulus boundaries, and the grey circle indicates the location 
of the Plexiglas barrier. (Figure from Ref. [12].) 

. 

confirmed, but  the power spectrum is reasonable evidence of the chaos of 
the flow, as are the qualitative observations of the vortex motion.) 
Weakly turbulent flow (see Fig. 5; F = 45 cm3/s,  £2 = 1.5 Hz, water). 
This flow was generated using a special forcing configuration. Only the 
outer ring holes were used (r = 35.1 cm). The ring is divided into 60 ° 
sectors, al ternating between sources and sinks. The resulting flow con- 
sists of vortices of both  signs, and there are no persistent jets or other 
structures. Note that  the previous flows are all laminar; this is the only 
velocity field tha t  is turbulent.  

The velocity power spectrum consists of broadband noise and no domi- 
nant spectral components; see Fig. 2(f). This flow is termed "turbulent 
flow" in Ref. [10] and "weakly turbulent flow" in Ref. [11]. 

The flows are summarized in Table 1. 

3.2 A n a l y s i s  t e c h n i q u e s  

After a typical experimental  run of 4 hours, we have tracked typically 5-10 
trajectories with duration greater than 20 minutes, 30 with 10-20 minutes 
duration, and several hundred with 2-10 minutes duration. Statistics for the 
longer times are improved by repeating the experiments with the same control 
parameters  (but see discussion in Sec. 5). 

The t ranspor t  is analyzed as a one-dimensional process in the azimuthal 
direction 0. The variance is calculated by the relations 
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Fig,  5. Two trajectories show the lack of long-lived coherent structures in the weakly 
turbulent flow. The beginning and end of one trajectory is marked with circles, the 
other with squares; both particles start at the far right. The inner and outer circles 
represent the annulus boundaries, and the grey circle indicates the location of the 
Plexiglas barrier. The particles are shown in the reference frame of the annulus. 
(Figure based on Ref. [11].) 

T a b l e  1. Summary of the flows investigated, with kinematic viscosity L,, pump flux 
F,  and dimensionless numbers Ro, Ek, and Re (calculated using U = 3 cm/s as 
the typical velocity for all flows). The rotation rate $2 = 1.5 Hz for all flows (except 
the [our-vortex flow as noted). Time dependence listed is in the reference frame 
co-rotating with the vortex chain. 

Flow name v (cm2/s) F (cm~/s) Ro × 102 Ek × 106 Re 
Time-independent 0.03 45 4.0 4.0 400 
(with six vortices) 

Seven-vortex 1 
(time-periodic) 

Six-vortex 2 
(time-periodic) 

Five-vortex 3 

(Eulerian chaos) 

Four-vortex 4 
(Eulerian chaos) 

0.03 45 4.0 4.0 400 

0.03 45 4.0 4.0 400 

0.03 45 4.0 4.0 400 

0.009 52 12 2.0 1000 

Weakly turbulent  5 0.009 45 16 1.2 1100 
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(t)  = ( a o  2( t ,  - ( A o ( t ,  , 

n o ( t , 7 )  = 0 ( 7  + t)  - 0 ( 7 )  , 

(i) 

where the ensemble average is over r for individual trajectories and over the 
different trajectories in the run. This procedure treats each tracer as though 
starting from the same angle at the same time. This method is accurate for 
times greater than typical vortex turnover times (typically 10-20 s) but results 
in a variance that  grows as t 2 for short times [15]. Only those trajectories 
that  display both sticking and flight events are used in the calculation of the 
variance. The first and last events (sticking or flight) are removed to avoid 
any biasing. (That  is, when a particle is first observed, it is in the middle of an 
event; we consider the trajectory only after this event has finished, so that  all 
particles are considered at the beginning of a flight or sticking event, rather 
than in the middle of an event.) Different analysis techniques were examined 
to insure that  the results are not strongly dependent on the biasing effects. 

Sticking and flight time probability distribution functions (PDFs) are 
determined from local extrema of 0(t); see, e.g., Fig. 8. A flight is identified 
by an angular deviation A0 > Ovortex (angular width of a single vortex) 
between successive extrema, and the sticking events are the intervals between 
flights. The PDFs are normalized histograms of the durations of these events. 
Histograms are generated with logarithmic binning, normalized, and plotted 
on log-log or log-linear scales. 

The PDFs are adjusted to correct for biases toward shorter sticking/flight 
times, due to the finite duration of the measured trajectories. The adjust- 
ment is determined by generating long, artificial trajectories numerically with 
known, ideal power law sticking and flight time distributions. These long tra- 
jectories are then chopped randomly into smaller sections with a distribution 
of durations comparable to those in the experiment. PDFs determined from 
these chopped trajectories are also biased toward smaller times. The adjust- 
ment is determined by comparing the PDFs from the chopped trajectories to 
the ideal PDFs (both from numerical data); the exponents characterizing the 
PDFs for the chopped time series are about 0.3 larger than for the original 
long time series. Note that  all reported exponents are the corrected values; 
the values measured directly from the PDFs are reported in footnotes for 
each PDF figure. 

4 R e s u l t s  

4.1 T i m e - i n d e p e n d e n t  flow: no  chao t i c  m i x i n g  

Ideally, particle trajectories in a time-independent flow fall on closed stream- 
lines and there is no chaotic advection. While molecular diffusion of the tracer 
particles is completely negligible on the time scale of the experiments, slight 
imperfections due to noise, Ekman pumping, and finite-size particle effects 
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can have a noticeable effect on the trajectories.  Such imperfections are in- 
evitable in an experiment ,  even when Fourier spec t ra  indicate t ha t  the veloc- 
ity field is t ime-independent ,  as is the case for the flow in Fig. 6. The  imper-  
fections allow tracers  to wander between neighboring streamlines, apparen t ly  
filling the interior of  a vortex; see Fig. 6(a). The imperfections occasionally 
lead to the escape of a t racer  particle near a separatrix,  bu t  we find tha t  
in pract ice  t racers  remain  t r apped  for long periods of time. Trapping times 
of 800 s (approximate ly  40 vortex turnover  times) such as the one shown in 
Fig. 6(a) are common.  Similarly, t racers  tha t  s tar t  in a jet remain in the  jet  
for long times, e.g. Fig. 6(b). 

(c) ~l~ 

70 

50 

50 

~2 

3(1 

20 

10 

I(X) 2~X) ~ I 30(1 4lll0 50(I 

t (s) 
8(10 

Fig.  6. (a) and (b) Tracer particle trajectories in the time-independent flow, viewed 
in a reference frame co-rotating with the vortex chain. (c) The azimuthal displace- 
ment as a function of time for the particles in (a) and (b); the starting angle O(t = O) 
is arbitrary. The inner and outer circles represent the annulus boundaries, and the 
grey circle denotes the Plexiglas barrier. (Figure based on Ref. [10].) 

The  az imuthal  coordinate  O(t) for a part icle in a vor tex oscillates about  a 
cons tant  value, while for a particle in a jet with constant  velocity, O(t) grows 
linearly with time, as shown in Fig. 6(c). In the absence of noise, the variance 
of a dis tr ibut ion of particles grows as t 2 (ballistic separat ion) [16]. 
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4.2 Time-per iod ic  flows: power law flights 

Chaot ic  advect ion is observed in the seven- and six-vortex flows, the two 
flows with periodic t ime dependence in the reference frame co-rota t ing with 
the vortex chain. Particles frequently make transi t ions to and from vortices, 
as seen in Fig. 7. Ins tead of  being t r apped  indefinitely, particles have sticking 
events interspersed with flights in the jet regions. 

Fig.  7. Chaotic particle trajectories in the six-vortex flow (time-periodic in the 
reference frame of the vortex chain). Long sticking events can be seen in each case, 
and flights of length greater than one rotation about the annulus can be seen in 
(c), (d). Hyperbolic fixed points, near which the particle motion is particularly 
susceptible to transitions between flights and sticking events, are evident in all 
of the trajectories. The particle motion is viewed from a reference frame that is 
co-rotating with the vortex chain, and the beginning of each trajectory is marked 
by a triangle, the end by a circle. (Note that this is incorrectly labeled in Ref. [10], as 
can be seen by comparing Fig. 6(a) and Fig. 7(a) in that article. It is also incorrectly 
labeled in Ref. [9]; compare Fig. l(b) and Fig. 2(b).) These trajectories are from the 
six-vortex flow, but are typical in appearance for the seven-vortex and five-vortex 
flows. (Figure based on Ref. [10].) 

This in termit tent  sticking/flight behavior  is apparent  in plots of O(t), as 
shown in Fig. 8. The  observed sticking times and flight times range from 
~ 1 0  s to ~600  s. The  lower boundary  of ~ 10  s is half  a vortex turnover  time. 
(The vor tex turnover  time, measured by doubling the average t ime between 
successive reversals for particles in a vortex, is ~23  s. The five-vortex and 
six-vortex flows have similar vortex turnover times, ~20  s.) 

In Fig. 8 it can be seen tha t  the slopes of the flight segments are approx-  
imately  constant ,  indicating tha t  the azimuthal  velocity, w = dO~dr, remains 
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Fig. 8. Azimuthal displacement O(t) as a function of time for the particle trajec- 
tories in Fig. 7. The oscillations of the tracer particle trajectories correspond to 
motion around a vortex, and the diagonal lines correspond to flights. The starting 
angle O(t = 0) is arbitrary. These trajectories are from the six-vortex flow, but 
are typical in appearance for the seven-vortex and five-vortex flows. (Figure from 
Ref. [10].) 

s teady during the flights, except when the tracer passes near a hyperbolic 
point, where both  c~ and the radial component  of velocity can decrease nearly 
to zero. Some asymmet ry  is observed in the flight speed and the relative prob- 
ability of clockwise and counter-clockwise flights, but the P D F  exponents ap- 
pear to be the same. A numerical simulation designed to approximate  these 
flows showed significant asymmetry  [17]. 

To find the PDFs  for the flight and sticking events, the trajectories of 1300 
particles were analyzed for the seven-vortex flow, and 1700 particles for the 
six-vortex flow. The cleanest da ta  (of all six flows) were obtained for the quasi- 
periodic seven-vortex flow, and the results are shown in Fig. 9. The flight P D F  
shows clear power law decay, PF(t )  ~ t - "  with p = 3.2 :t: 0.2. The PDFs for 
flights in the +0 and - 0  directions were compared and found to have similar 
decay exponents. The sticking PDF has a curvature indicating asymptot ic  
behavior steeper than a power law (but does not appear  exponential). 

The fact that  the velocity of the flights are approximately constant,  and 
tha t  the P D F  show power law behavior suggests tha t  the results of of the 
continuous t ime random walk model (CTRW) developed in Refs. [18], [19], 
[12] are applicable to this system. The results relevant for this work are 
summarized in figure 10, which shows the predicted variance exponent 7 as 
a function of the exponents p and v of the flight and sticking PDFs,  for both  
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Fig.  9. Seven-vortex flow: (a,c) flight and (b,d) sticking probability distribution 
functions, shown on (a,b) log-log axes and (c,d) log-linear axes. The error bars 
show the statistical uncertainty (v/N). The flight PDF shows power law decay, 
P F  ~ t - ' ;  the line drawn in (a) is a least squares fit to the decaying data yielding 
# = 3.2 + 0.2. The sticking PDF does not show a clear power law decay nor an 
exponential decay; the straight line (drawn for comparison) in (b) has a slope of 
-2.55, with the slope obtained from a least squares fit to the last 8 points in the tail. 
(The uncorrected value of # is 3.4 4- 0.2; see Sec. 3.2 for details of the correction.) 

symmet r i c  and asymmetr ic  r andom walks. For a detailed discussion of the 
model,  see Ref. [12]. 

Since # > 3 for this flow, the Central  Limit Theorem predicts  normal  
diffusion (a2(t)  ,-~ t "~ with 7 = 1). We compute  the  variance as discussed in 
Sec. 3.2, with the results shown in Fig. 11. The  slope of the variance plot is 
shown in the inset, and suggests t ha t  the variance grows superdiffusively. For 
short  t imes (t < 10 s), the variance grows ballistically, 7 = 2. This is because 
of the  vor tex turnover  time: for times less than  ,,,10 s, particles in flight are 
indist inguishable f rom those stuck in a vortex [15]. Part icles all appear  to be 
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(b) 
<tf>=oo $ <t~>=oo$ 
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Fig. 10. Phase diagrams for variance of (a) symmetric and (b) asymmetric (or 
biased) random walks, from Ref. [12]. # and ~ are the exponents controlling 
the asymptotic power law decay of the flight and sticking P D F s ,  respectively: 
PF(t f )  ~ t f "  and P s ( t s )  ~ t ~ ' ,  as t -+ co. For each region, bordered by the 
solid lines, the relationship between the variance exponent V In2(t) ~ t~] and # and 
u is shown. The shadings indicate areas where the behavior is normally diffusive 
(V = 1), subdiffusive (V < 1), superdiffusive (V > 1), and ballistic (V = 2). 
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moving with a constant velocity (different for each particle), some in opposite 
directions, and thus the variance must grow ballistically. 

For longer times, 7 cannot be determined accurately, most likely due to 
a lack of trajectories with long durations. It is clear that  for our data ?/does 
not ever approach 1, the value expected for normal diffusion. The Berry- 
Ess6en theorem predicts that  the time for a (symmetric) random walk to 
reach normally diffusive behavior scales as [20], [21] 

, ( 2 )  

where the moments are for the flight length PDF. For the seven-vortex flow, 
however, the third moment is infinite, since # < 4. From Ref. [12], the first 
two exponents in an asymptotic expansion for the variance at long time, 
o*2(t) ~ C t  ~ + C ' t  ~' a r e " / =  1 and 7' = 0 for it > 4, so that  only the leading 
term grows with time. For 3 < it < 4, however, 7 = 1 and 7' = 4 - it, thus 
the second order term also grows with time, and a very slow convergence is 
expected. 

10 ~ 

. - "  . - ' ' , , 5  

10.~ 10" . . . .  , , . . t  101 10 ~ 10 ~ 

t (s) 

A IO l 

' ~  10" 

V lO-I 

Fig. 11. Variance as(t)  for the ensemble of tracer particles for the seven-vortex 
flow (solid line). The slope, shown in the inset, indicates that the variance grows 
superdiffusively. (Figure based on Ref. [11].) 

The flight and sticking PDFs for the six-vortex flow are shown in Fig. 12. 
Again, the flight PDF shows clear power law decay, with a slope of it = 
2.5 3= 0.2. The PDFs for leftward and rightward flights separately had similar 
decay exponents (within their uncertainties). The sticking PDF clearly decays 
faster than a power law, although it is unclear if the decay is exponential. 
Note that  this interpretation is different from Refs. [9], [10], where it is s tated 
that  the sticking-time PDF appears to show power law decay. (The PDFs in 
those articles were constructed with constant-width bins, so the deviation 
from power law behavior was less evident.) 
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Fig. 12. Six-vortex flow: (a,c) flight and (b,d) sticking probabili ty distribution func- 
tions, shown on (a,b) log-log axes and (c,d) log-linear axes. The error bars show the 
statist ical  uncertainty (v/N). The flight PDF shows power law decay, PF ~ t -u ;  the 
line drawn in (a) is a least squares fit to the decaying da ta  yielding # = 2.5 =t= 0.2. 
The sticking PDF does not show a clear power law decay nor an exponential decay. 
Note that  these PDFs are slightly different from those shown in Refs. [9], [10] due 
to the improvement in binning technique (Sec. 3.2). (The uncorrected value of # is 
2.8 4- 0.2; see Sec. 3.2 for details of the correction.) 

Again ,  the  resul ts  can  be c o m p a r e d  wi th  the  analys is  f rom the  C T R W .  
T h e  s ix -vor tex  flow par t i c les  are  undergo ing  an a s y m m e t r i c  r a n d o m  walk  
wi th  # = 2.5 and  u ~ ec, sugges t ing  t h a t  the  var iance  should  grow as 
a2( t )  ,-~ t ~ wi th  3` = 4 - # = 1.5, t h a t  is, superdif fus ively  (see Fig.  10(b)).  
F igu re  13 shows t h a t  for t > 20 s, the  var iance  grows wi th  3' = 1.65 + 0.15. 
Given  the  u n c e r t a i n t y  of # (+0.2) ,  the  p red i c t ed  and  measu red  values for 3" 
a re  in accord.  As no ted  above  for the  seven-vor tex  flow, the  var iance  grows 
ba l l i s t i ca l ly  for t imes  shor te r  t h a n  a vor tex  tu rnover  t ime.  
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Fig. 13. Variance a 2 (t) for the ensemble of tracer particles for the six-vortex flow 
(solid line). The slope, shown in the inset, indicates that the variance grows su- 
perdiffusively, with ~/= 1,65 + 0.15. (Figure based on Ref. [9].) 

While both the seven-vortex flow and the six-vortex flow have periodic 
time dependence, it is not surprising that  the transport  results are different. 
The seven-vortex flow has na tura l ly  arising time-dependence, while the six- 
vortex flow is per turbed periodically by an artificial change in the forcing (as 
described in Section refflowss). In the vortex reference frame, the instability 
of the seven-vortex flow has a frequency of 0.00033 Hz and a mode number 
of 3 (measured from particle tracking). The mechanical perturbation of the 
six-vortex flow appears with a frequency of 0.014 Hz (in the vortex reference 
frame) and is mode number 1. 

4.3 C h a o t i c  flows 

The two chaotic flows, the five-vortex flow and the four-vortex flow, also 
exhibited chaotic mixing. Similar to the seven- and six-vortex flows, the dif- 
ference between the two chaotic flows is the nature of the forcing: the chaotic 
time dependence of the five-vortex flow is due to the mechanical perturba- 
tion, while the chaotic time dependence of the four-vortex flow arises due to 
natural  instabilities. 

The trajectories for the five-vortex flow appear similar to those shown in 
Fig. 7, while typical trajectories of the four-vortex flow are shown in Fig. 14. 
The four vortices are not stationary but  move erratically. (The pictures shown 
are taken in a frame of reference co-rotating with the average speed of the 
vortex chain, but  there is substantiM variation in the instantaneous speed of 
each vortex.) 

Figure 15 shows the angular position of the particles as a function of time 
in the four-vortex flow. The oscillatory behaviors correspond to motion when 
the particle is "sticking" in a vortex, and the longer diagonal lines are flights 
in the outer jet. Flights are distinguished from sticking motions by examining 
the azimuthal distance traveled before reversing direction: particles travel in 
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Fig.  14. Chaotic particle trajectories in the four-vortex flow (chaotic time depen- 
dence). Nearly all of the flight behavior is in the outer jet; a brief flight in the inside 
can be seen in (a). The chaotic motion of the four vortices can be seen in (b), where 
the particle spends most of its time in the same vortex which moves erratically. The 
beginning of each trajectory is marked by a circle, the end by a triangle. (Figure 
from Ref. [12].) 

a vor tex  for at most  7r/2 radians before changing directions, while a particle 
t ha t  leaves one vortex and enters the next  (the min imum flight distance) will 
move at least ~ /2  radians. Unlike the other  flows, for the four-vortex flow 
there  is no s t rong inner jet and particles do not  travel long distances on the  
inner side of the vor tex chain. Approximate ly  10% of the flights seen in the  
four-vortex flow are short  hops on the inner side of the vortex chain, f rom 

(h) 

f 
( 

3e~ 

t (S) 

I 
~00 900  

Fig.  15. Angular displacement 8(t) as a function of time for the trajectories shown 
in Fig. 14. Diagonal lines indicate flights, while the small oscillations correspond to 
particle motion within a vortex. Despite the chaotic motion of the vortices, a clear 
distinction can be made between flight behavior and sticking behavior. (Figure from 
Ref. [121. ) 
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one vor tex to an adjacent  vortex; these hops take less than  40 s, and do not  
cont r ibute  to  the  long-t ime statistics. 

To compile the  flight and sticking PDFs ,  1100 particles were examined 
for the  five-vortex flow and 210 particles were examined for the four-vortex 
flow. (It was very difficult to  t rack particles for long times for the four-vor tex 
flow; particles disappeared from the visible area rapidly.) 

The  flight and sticking P D F s  for the five-vortex flow are shown in Fig. 16. 
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Fig.  16. (a,c) flight and (b,d) sticking probability distribution functions, shown 
on (a,b) log-log axes and (c,d) log-linear axes, for the five-vortex flow. The error 
bars show the statistical uncertainty (VrN). The flight PDF appears to decay faster 
than a power law; the line drawn for comparison has a slope of -2.2, and is a least 
squares fit to the data for t > 30 s. The sticking PDF does not show a clear power 
law decay nor an exponential decay, although the data in (d) look roughly linear; 
a least squares fit line is shown. Note that these PDFs are slightly different from 
those shown in Ref. [10] due to the improvement in binning technique (Sec. 3.2). 
(Figure based on Ref. [10].) 
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Neither P D F  shows power law decay, nor do they show convincing exponential 
decay. Note tha t  this interpretation is different from that  given in Ref. [10]. 
As discussed in Sec. 4.2, this is presumably due to an improvement in the 
analysis technique. 

Given the uncertainty of the decay rate of the flight and sticking PDFs,  
comparison with the results of the CTRW model is difficult. The most rea- 
sonable interpretat ion of Fig. 16 would be # -+ oc, ~ --+ co, yielding 7 = 1 
by the Central Limit Theorem. The growth of the variance measured from 
the experiment is shown in Fig. 17, and shows superdiffusive growth with 
7 = 1.55 + 0.15. 
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Fig. 1T. Variance a2(t) for the ensemble of tracer particles for the five-vortex flow 
(solid line). The slope, shown in the inset, indicates that the variance grows su- 
perdiffusively with 7 = 1.55 + 0.15. (Figure based on Ref. [10].) 

The PDFs  for the four-vortex flow are shown in Fig. 18. This is the only 
flow for which both flight and sticking PDFs show power law decay. The decay 
exponents,  adjusted for finite t rajectory duration, are # = 2.0 + 0.2 (flight) 
and ~ = 1.3 ± 0.2 (sticking). (This implies an infinite mean residence t ime for 
particles in a vortex, which would violate the incompressibility condition [22]. 
The P D F  presumably falls off at longer times not accessible experimentally.) 
I t  is remarkable that  these PDFs have a power law form despite the presence 
of Eulerian chaos. Although the vortices are moving erratically with respect to 
each other, particle motion still displays the effects of long-time correlations. 
The model of Refs. [22], [23] exhibits power law flight PDFs  for chaotic 
vortex motion because the outer boundary of the annulus plays the role of 
an invariant surface. 

The long te rm t ranspor t  can be deduced from the CTRW for the four- 
vortex flow. Taking u = 1.3 and # = 2.0, the variance should grow as t ~ with 
V = 2 + v - tt ~ 1.3. The experimentally determined variance for this flow is 
shown in Fig. 19. It  is difficult to track particles for long enough times in this 
flow to gather the statistics necessary to determine the variance accurately; 
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F i g .  18 .  Four-vortex flow: (a,c) flight and (b,d) sticking probability distribution 
functions, shown on (a,b) log-log axes and (e,d) log-linear axes. The error bars 
show the statistical uncertainty (x/-N). The flight PDF decays as a power law, 
P F ( t )  ~ t -~ ,  with # = 2.0 4- 0.2. The sticking PDF also appears to decay as a 
power law, with a decay exponent of u = 1.3 4- 0.2. The error bars for these PDFs 
axe much larger than for Figs. 9, 12, and 16 as this flow had much less data. (The 
uncorrected value of # is 2.3 4- 0.2, v is 1.4 4- 0.2; see Sec. 3.2 for details of the 
correction.) 

hence quant i ta t ive  compar ison with the results of the  C T R W  is difficult. 
However, the behavior  is appears  superdiffusive with an exponent  7 between 
1.5 and 2.0. At  longer times, the exponent  drops below 1.5, and the predict ion 
is in the limit t --~ oc, so the experimental  results appear  consistent.  

The  failure of the variance to reach its asympto t ic  behavior  despite the 
large number  of long t ime trajectories can be unders tood  from an analysis 
of crossover times in the C T R W  model. The  t ime necessary to approach  
the asympto t i c  s tate  can be calculated by retaining lower order  terms in the 
expansion for a (see Ref. [12] for details). Using the values of # = 1.9, v = 1.3, 
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Fig. 19. Variance a2(t) for the ensemble of tracer particles for the four-vortex 
flow (solid line). The slope, shown in the inset, indicates that the variance grows 
superdiffusively. (Figure based on Ref. [12].) 

and cutoff t imes tF ---- 22 s, t s  = 10 s, yields a ~ 0.055t 14 - 0.10t 11. A plot 
of this function on a log-log scale does not reach a slope of 1.5 until 400 s, 
and our data only extend to ~ 5 0 0  s. This slow convergence to asymptot ic  
behavior is a generic feature of L6vy processes and complicates analysis in 
many  experimental  situations and numerical simulations (see discussion in 
Sec. 5). 
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Fig.  20. Mean particle position for four-vortex flow, (O(t)) (solid line). (Figure from 
Ref. [12].) 

Figure 20 shows that the mean particle posit ion Ix/ for the four-vortex 
flow grows approximately linearly with t ime for most  of the range. For longer 
times, (x) appears to start growing faster than linearly in time. For times 
tess than a vortex turnover time, linear growth is expected,  as all particles 
are moving  with constant velocity (whether in a vortex or in the jet). For 
longer times, the model  of Ref. [12] predicts (for # = 2.0 and v = 1.3) that 
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(x) ~ t °3. It is probable tha t  the asymptotic scaling is not reached due to 
lack of statistics at long times (see [12]). 

4.4 W e a k l y  t u r b u l e n t  flow: no  long  f l ights  

The absence of long-lived vortices and azimuthal jets leads to a behavior in 
the turbulent regime that  contrasts markedly with that  in the laminar and 
chaotic regimes. Tracers in the turbulent flow wander erratically, and there are 
no well-defined flights (which are dependent on jet regions) or sticking events: 
compare plots of trajectories in the turbulent flow, Fig. 5, with those for the 
six- and four-vortex flows, Figs. 7 and 14, and compare plots of azimuthal 
displacement O(t) in Fig. 21 with Figs. 8 and 15. 
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Fig. 21. Angular displacement 0(t) as a function of time for the trajectories shown 
in Fig. 5. The upper trace is for the particle marked with circles. (Figure from 
Ref. In].) 

While there are no flights or sticking events in the turbulent flow, the 
trajectories can be treated as random walks by defining a step as the time 
between two successive extrema in 0(t). We find that  the probability distri- 
bution function is exponentiM, P(t)  = Ae - t /~ ,  with A = 0.158 and ~- = 15.2 
s (see Fig. 22), in contrast to the power law PDFs observed for flights in the 
time-periodic and chaotic regimes. 

The slope V of a log-log plot of the variance a 2 (t) (Fig. 23) drops steadily 
from 2 and appears to approach the value expected for normal diffusion (V -- 
1) at long times; however, we cannot follow particles for long enough times 
to determine the asymptotic behavior. This is in agreement with the Central 
Limit Theorem, which predicts ~/ = 1 for an exponentially decaying flight 
PDF. This also agrees with a result derived in 1921 by Taylor [15]. Taylor 
showed that  for very short time scales, a turbulent flow should have ballistic 
mixing (as(t) ,~ t2). This ballistic behavior lasts until particle motions be- 
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Fig.  22.  Probability distribution for azimuthal displacement in the turbulent flow. 
The distribution is exponential with a decay time of 15.2 s. (Figure from Ref. [10].) 

come uncorrelated; for our weakly turbulent flow, this t ime scale appears to 
be about  6 s. 
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Fig. 23. Variance c~2(t) for the ensemble of tracer particles for the weakly turbulent 
flow (solid line). The slope, shown in the inset, suggests the long term behavior may 
be normally diffusive. (Figure based on Ref. [10].) 

A diffusion coefficient can be found for the turbulent flow by fitting the 
variance data, yielding D = 0 . 0 1 0 + 0 . 0 0 3  rad2/s.  The data was fit for t > 10 s 
and t > 100 s, both giving a similar value. By  using r = 30 cm as the approx- 
imate radial posit ion of the particles, the diffusion coefficient can be written 
as Deft = 9 cm2/s .  For particles diffusing purely due to Brownian motion,  
the Einstein relation for the diffusion coefficient is DBrownian = RT/6"nTlaN 
with R the universal gas constant,  ~ the dynamic viscosity, a the particle 
radius, and N Avagadro's number [24]. For our tracer particles this formula 
yields D = 4.4 × 10 -12, a factor of 1012 smaller that the measured diffusion 
coefficient. 



195 

5 D i s c u s s i o n  

We have found superdiffusion in a variety of flows. The data from the six 
regimes are summarized in Table 2. Except for the five-vortex flow, all 
experiments with jets had power law flight behavior. The variance grows 
super-diffusively for all flows with nontrivial time dependence, except the 
weakly turbulent flow which appears to approach normal diffusion for very 
long times, as expected. 

Table 2. Exponents u and tt characterizing the power law decay of probability dis- 
tribution functions for the sticking and flight times, respectively, and the exponent 
~/for the power law time dependence of the variance of the azimuthal displacement 
(measured and predicted). A - -  entry indicates the exponent is undefined. 

Flow name # 
Time-independent - -  
(with six vortices) 

Seven-vortex 
(time-periodic) 

Six-vortex 
(time-periodic) 

Five-vortex ? 
(Eulerian chaos) 

Four-vortex 
(Eulerian chaos) 

Weakly turbulent oo 

/2 "~exp} "~theory 

- -  2 2 

3.2±0.2 ? ~1.5 1 

2.5 ± 0.2 ec 1.65 ± 0.15 1.5 

? 1.55 + 0.15 1? 

2.0±0.2 1.3±0.2 ~1.5 1.3 

~1.2 1 

Precise verification of the CTRW model is not possible given the exper- 
imental limitations. The predictions shown in Fig. 10 for the variance are 
only correct as t ~ e~; for finite t, the variance is composed of several terms. 
Competition between these terms controls the approach to the asymptotic 
behavior. These higher order terms can cause the variance to grow faster than 
its asymptotic growth (3, to appear larger at short times). 

There are several reasons that particles are not observable for long peri- 
ods of time. The most significant reason is probably Ekman pumping [5], a 
boundary layer effect that  results in weak flows that are not perpendicular to 
the axis of rotation. Particles are illuminated only in a narrow horizontal re- 
gion, and Ekman pumping provides a small vertical velocity which can move 
particles into and out of this illuminated slice. Additionally, particles that  
come too close to the edges of the annulus are lost, although they may be 
tracked as a new particle if the particle returns to the visible region. A final 
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concern is the non-neutral-buoyancy of the particles; centrifugal effects could 
cause particles to drift out of the illuminated region. If  there are any corre- 
lations linking the particle behavior to their longevity in the visible region, 
this could further affect results. For example, if particles stuck in vortices 
have a faster vertical drift (perhaps due to Ekman pumping which should 
be stronger in a vortex), then the observations of long-lived particles will be 
biased towards flights. 

Despite these difficulties, the experiments show that  power law scaling 
and Lfivy flights are directly observable in fluid transport .  In addition, the 
diffusive process is clearly anomalous for a broad range of times, and is well 
described the the continuous time random walk model. 
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A b s t r a c t .  Analytical study of a passive particle advection in three point-vortex 
system is described in details. We specify two extreme cases of strong and weak 
chaos depending on the geometry of 3-vortex system. Mappings are derived for 
both cases and domains of chaotic dynamics are calculated analytically. We 
discuss the origin of the coherent vortex cores - -  holes in the stochastic sea 
filled with KAM orbits, and obtain the expression for the core radius in case of 
strong chaos. A weak dependence of core radius on geometrical parameters is 
discovered. For the case of weak chaos the separatrix map is constructed and the 
stochastic layer width is estimated. Numerical simulations have been performed 
and it was found that there exists a fine structure of the coherent core boundary 
layer, which consists of islands and subislands. We also have found the stickiness 
of the advected particle to the boundaries of vortex cores. 

1 Introduction 

Motion of small particles in flows, known as advection, is a subject of many 
recent publications related to such areas as fluid stirring, chemical reactions, 
pollution of the atmosphere and the ocean, visualization of flows, etc. Speaking 
about a small particle, we have in mind the particle that does not influence the 
flow. Other terms are sometimes used, such as tracers, passive particles, or 
Lagrangian particles. For the cases when the flow is stationary, incompressible, 
and inviscid, an advected particle trajectory coincides with a streamline of the 
flow, and the information obtained from the advection, describes the structure of 
the flow. Numerous articles and reviews are devoted to different aspects of the 
advection. The general form of the advection equation is 

r = v ( r , t )  (1.1) 

where r is a coordinate vector of the particle, and v is a given velocity field 
which defines the flow. Formally (1.1) describes a dynamical system which, 
generally speaking, possesses chaotic solutions for some parameter values and 
initial conditions. In this case the advection is known as chaotic. The notion 



200 

of Lagrangian turbulence is also used for the chaotic solutions of (1.I). Chaotic 
advection has been observed in numerous experiments and computer simulations, 
and a number of different theoretical descriptions have been published (see for 
example works [1]-[10] which represent only a small part of the actual list of 
important publications). 

For a divergence-free velocity field (div v=0) the system (1.1) can be written 
in the Hamiltonian form. This form is known explicitly for the three-dimensional 
stationary case v=v(x,  y, z), and for two-dimensional generic case v=v(x,  y, t), 
when (1.1) can be rewritten as 

= v~(x, y , t )  = a ~ l O ~  (1.2) 
= v~(x, y, t) = - o ~ / o x  

using the stream function • = @(x, y, t) that plays a role of the Hamiltonian. 
Both of the above mentioned eases belong to the so-called Hamiltonian systems 
with 1-1/2 degrees of freedom. Such a Hamiltonian system possesses chaotic 
advection for some domains of the phase space, which is simply (z, y)-plane for 
the case (1.2). 

The phase space of the Hamiltonian system with 1-1/2 degrees of freedom 
can be roughly described as domains of chaotic motion (stochastic sea) mingled 
with islands, inside which stable quasiperiodic motion dominates. The transport 
is performed along the area of chaotic motion and a structure (topology) of this 
area is crucial for all properties of transport. 

Application of the methods of the dynamical systems theory to the chaotic ad- 
vection problem has become an established technique. By now chaotization of the 
tracer motion was observed and studied in a large number of systems, includ- 
ing point vortex flows [11],[12],[13],[14], Rayleigh-B~nard convection [15],[16], 
blinking vortices [1], oscillating vortex pair [5],[6] and vortex pair perturbed by 
another point vortices [17], point vortex flows is closed domains [18],[19], etc. 

We want to emphasize, that correspondence of a trajectory of advected parti- 
cle in physical (coordinate) space to a phase-space trajectory of a Hamiltonian 
system implies more than just a fact of appearance of Lagrangian chaos in a 
generic unsteady velocity field. One should also expect the configuration space 
of a tracer to contain all the typical structures of Hamiltonian phase space such 
as islands of regular motion around elliptic points, cantori, island-around-island 
chains, thin stochastic layers inside the islands, etc. 

In fact, such structures were observed in a number of works devoted to the 
chaotic advection in the time-periodic flows, where the possibility of constructing 
a Poincare map for the tracer motion provides us with a convenient visualization 
technique [5],[18],[19],[20],[21]. The importance of this observation is due to the 
crucial role of some of these structures for the transport process. For Hamiltonian 
systems with 1 1/2 degrees of freedom one can establish connections between the 
topology of the phase space and properties of transport [22], which makes the 
detailed study of the phase space topology more significant. 

Point vortex flows, a singular solutions of the 2D Euler equation, are one 
of the most natural and most frequently addressed examples of velocity fields, 
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generating the Lagrangian chaos of the tracers. Being a traditional subject matter 
of fluid mechanics for over a hundred years, (see [23],[24],[25] for a review) point 
vortex systems on one hand share certain features with more involved case of 
coherent vortex structures in 2D turbulence [26],[27],[28],[29], and on the other 
hand can be regarded as Hamiltonian systems with few degrees of freedom, so 
that not only the advection, but the dynamics of the flow itself (in Lagrangian 
framework), can be attacked by the machinery of the Hamiltonian dynamics. 

In the present paper we apply the traditional tools of chaotic dynamics to 
the problem of the coherent vortex cores - the areas of regular advection around 
vortices. Appearance of this non-mixing patches is by far not limited to point 
vortex flows, in fact, they constitute the robust feature of practically any flow 
with the regions of concentrated vorticity [26],[27],[28],[29],[30],[31],[32],[33]. The 
comparative numerical study of the advection in point vortex systems and in 2D 
turbulence carried out in [26] revealed certain common features of advection 
patterns in these two cases. Point vortex models have enormous advantages for 
the analytical treatment of the tracer motion, and in particular, for the study 
of the coherent cores. These advantages stem from the fact that the vortices 
themselves are advected by the flow and thus, as we already mentioned, their 
motion can be described via Hamiltonian equations. The appropriate dynamical 
variable for the problem of the tracer moving coherently with the vortex is the 
displacement of the tracer from the vortex, in other words, the coordinates of 
the tracer in the moving vortex reference frame. It is clear, that the equations 
governing the dynamics of the displacement will be Hamiltonian, since those for 
both vortex and tracer are. 

Our goal is to understand in full detail the advective dynamics of a passive 
particle in a flow provided by the simplest three-vortex system with regular 
dynamics. Possibility to study completely the problem can explain the origin of 
the near-vortex isolated non-penetrable core. Its specific structure possesses a 
level of universality which can be efficiently used for a tracer dynamics in the 
multi-vortex system. Existence of the cores as coherent structures can be utilized 
for speculations on 2D-vortex turbulence, since each vortex can be considered as 
an advected particle in many-vortex system. 

In Section 2 we consider general unbounded planar inviscid incompressible 
2D flow with a point vortex in it, and in particular, advection of a tracer particle 
in the neighborhood of the vortex. We write down the advection equations in 
the reference frame moving with the vortex, and demonstrate its Hamiltonian 
structure. When the tracer is close to the vortex, the Hamiltonian system for the 
dynamics of the displacement is close to an integrable one. We specify the small 
parameter of the problem and rewrite the stream function in the neighborhood 
of the vortex in a form, paradigmatic for the theory of near-integrable systems: 

qI(x, y,t) = Ho(x, y) + eHl(X, y,t) (1.3) 

This section serves to prepare an equation to be studied further in a form suitable 
to apply methods of nonlinear dynamics. 
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To start a more detailed study of the tracer dynamics, one has to be more 
specific about the flow. In Section 3 we revisit one of the oldest examples of 2D 
chaotic advection - the motion of a passive tracer particle in the field of three 
point vortices, sometimes called the restricted four vortex problem due to its anal- 
ogy to the restricted three-body problem in celestial mechanics [13]. It is worth- 
while to mention here, that non-integrability of the general four-vortex system 
was established in [34] and further discussed in [35],[36]. The non-integrability 
of the equations for tracer trajectories in the field of three vortices, and the ex- 
istence of the chaotic motion in this system was demonstrated numerically in 
[11], and analytically, using Melnikov method [37], in [12], actually, before the 
term chaotic advection established itself. In fact, the application of the Melnikov 
method in [12] was not complete, since the method also allows to obtain the 
boundary of the region of stochastic motion in case of weak chaos. This work is 
performed in Section 5, where the separatrix map [38],[10] is constructed for the 
tracer motion. 

Numerical studies in [13],[26] have demonstrated the existence of the coherent 
cores around the vortices with a sharp border between regular and chaotic regions. 
In [13], different regimes of advection were simulated, and Poincare sections of 
the tracer trajectories were constructed to visualize the geometry of the mixing 
region. 

In this paper, we present a more detailed description of the structures in the 
advection pattern, paying special attention to the boundaries between the areas 
of chaotic and regular motion. Apart from typical sticky island-around-island 
structures on the border of islands around elliptic points, we have found that 
for certain geometries of the vortex motion, the boundaries of the regular cores 
surrounding vortices contain a complex mingle of small, extremely elongated 
islands, that create strong stickiness. 

The integrability of the underlying vortex motion makes it possible to carry 
out a detailed analytical study of the advection. In Section 4 we consider the case 
of strong chaotization of the tracer motion. Using the equations in the moving 
vortex frame, we construct a mapping for the trajectories of the tracer inside the 
coherent core. Applying the stochasticity criterion to this map, (see [10],[39] on 
chaos in area-preserving maps), we obtain the analytic expression for the radius 
of the coherent core, which is in a good agreement with numerical results. 

When the vortex motion is close to steady rotating equilateral triangle con- 
figuration, motion of the tracer is chaotic only inside the thin layer around the 
destructed separatrices of the integrable "equilateral" case. We calculate the 
width of those layers in Section 5 by constructing corresponding separatrix map 
and evaluating Melnikov integral. 

2 C o h e r e n t  v o r t e x  cores  in 2D  f low 

In this section we will specify the dynamical structure of equations for advec- 
tion due to a point vortex in a non-stationary flow. Consider a motion of a 
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point vortex in two-dimensional incompressible flow described by the velocity 
field v(x, y, t) - (v~ (x, y, t), %(x, y, t)). Due to the incompressibility condition 
div v = 0 the velocity field of such flow can always be expressed in terms of a 
scalar stream function ~(x,  y, t) as 

09  09  (2.1) 
v~ - -  -if-fly; v y  - -  O x  " 

We also introduce the scalar vorticity w(x,  y , t )  as 

0% Ov~ 0 2 9  0 2 9  
=_ - -  - -  - ( 2 . 2 )  

Oz Oy Oz 2 Oy 2 

A singular localized distribution of vorticity given by: 

wvo~t = kS(x - x~)~(Y - Y,) (2.3) 

is referred to as a point vortex of strength k located at the point xl(t),  yl(t). 
By a point vortex in a two-dimensional flow we will imply the following kind of 
vorticity distribution [40]: 

w = kS(x  - xl( t))5(U - ul( t))  + wa(x ,  y, t) (2.4) 

where wn(x ,  y, t) is regular (nonsingular) at x = xl (t), y = Yl (t). In general, WR 
can possess singularities at some other points, e.g. other point vortices, etc. 

Stream function and velocity field in this case will also have singularities at 
x = x l ( t ) ,  y = y~(t). From (2.2), it follows that the stream function of an 
unbounded planar flow (at rest at infinity) with a point vortex at zx(t), y~(t) has 
the form: 

k 
$ ( z , y , t )  = -4-~r ln[(z - z l ( t ) )  2 + (y - y,(t)) 2] + C R ( z , y , t )  (2.5) 

where CR(x,  y , t )  is regular at z = z l ( t ) ,  y = yl( t )  and is related to the regular 
part of the vorticity by 1 

O~¢n c~2~R 
wR - O~ 2 Oy 2 

The components of the velocity field in this case are: 

0 9  k Y - yl 
v~  - O y  - 2 7  ( z  - ~ 1 )  2 + ( y  - y l ) 2  

0 9  k z - Zl 
Vy --  0X -- 2/I" (X- -  Xl)  2"1- ( y - -  Vl) 2 

O e a  

Oy 

OCR 

Oz 

(2.6) 

(2.7) 

If there is no external forces, acting on the fluid, the dynamics of the flow can 
be obtained from Helmholtz equation: 

0~ -~ + ( v v ) ~  = 0 (2.8) 

1 inverse relation is given by Biot-Savart formula, [40] 
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which states, that vorticity is freely transported by the flow. The above equation 
can also be rewritten in terms of stream function • only: 

0~72@ O@ 0V2q~ O@ 0V~@ 
+ - -  - -  - 0 ( 2 . 9 )  

Ot Oy Oz Oz Oy 

Equations of motion of the point vortex follow from (2.8) by substitution of the 
expressions (2.4) and (2.7) for w and v (see appendix A for derivation): 

~1 ---- ~yR(Xl,Yl); Yl--" ~R (Xl, Yl) (2.10) 

they express the fact, that vortex moves along streamlines of the external flow 
CR(x, y,t), i.e. it has no direct self-action. 

Now we address our attention to the advection of a free passive particle in a 
flow with the point vortex in it, (2.7). We assume that the solution of (2.8) is 
known, i.e. CR(x, y,t) and x:(t), yi(t) are given functions of time. In this case, 
a trajectory of a passive fluid particle {x(t), y(t)} can be found from 

k y - y l  0¢R(x, t) 
x = ' ~ =  2~(~-~:)~+(~-y:)~ +--~-~ Y' 

k z - x :  OCR(x,y,t) 
y = v ~ =  2~ ( x -  x l ) 2 + ( ~ -  yl) 2 o~ 

(2.11) 

which can be regarded as a Hamiltonian system with Hamiltonian function given 
by (2.5). 

One of our prime goals in this paper is to determine whether a passive particle 
initially in the neighborhood of the vortex will stay in this neighborhood, or will 
eventually travel away from it. For this reason we go to the reference frame of 
moving vortex and define the displacement ( -  (~z, ~y) of the particle from the 
vortex: 

~ = x -  xl(t); ~y -~ y -  y:(t) (2.12) 

as the coordinates of the particle in the moving vortex frame. We can easily 
obtain the equations governing dynamics of the displacement ( b y  subtracting 
(2.10) from (2.11): 

~y_ k ~ 
2,~ ~ + ~ 

OOn OCn,_ 
- -  + - ~ y  (~  + ~ ,  yl + 6 , , 0 -  -g-~-y t,~, y:, t) 

OCa OCR(x:, ,t) 
0~: (~:~ + ~ '  u: + ~y, t) + ~ y: (2.13) 

Another way of arriving at this equations is to make a canonical transformation 
to the new variables. Generating function of this transformation is: 

F2(x,~g ) = (x - Xl(t))~y + xyl(t ) (2.14) 
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In this way we see that the Hamiltonian structure of the original system (2.11) 
is preserved in (2.13), and the new Hamiltonian is 

OF~ 
( &  ~y, t)  = ,~ + - - ~  = ,~ + & i~l ( t)  - ~,,~1 (t) - x l  ( t) i~ (t) = 

OeR 0¢R (2.15) = -~4~ lnff~ + ~ )  + ea(x,  + ~ ,  y~ + ~ ,  t) - ~ ~ ~ 0y 

where we have dropped the irrelevant term depending only on time, and expressed 
the velocity of the vortex xl (t), y~ (t) through the regular part of stream function 
eR using (2.10). 

Thus we have established that the displacement of the advected passive parti- 
cle from the point vortex (which also moves with the flow according to (2.10)), is 
described by a Hamiltonian system, with time-dependent Hamiltonian function 
given by (2.15). From the form of (2.15) we can make several conclusions. When 
the passive particle is close to the vortex, i.e. the distance 

~ (C + ~)1/~ 

between the particle and the vortex is small enough, the first term in (2.15), 
which has no explicit time dependence, 

k ln({~ + {~) = k H0({=, {y) =-- -~-~ -~-~ ln~ (2.16) 

is much larger than other terms, 

H l ( { ~ , { u , t )  - eR(xl + {~, Yl + {y,t) c~¢R c9¢R (2.171 - { ~  {~ 

which are of order O(~) ,  and therefore system (2.131 is close in this region of 
phase space to an integrable system defined by Hamiltonian function H0(~x, {y). 
We can estimate the size of this region by comparing the magnitude of different 
terms in the equations (2.13), which gives 

<< (k187rql") 1/2 (2.18) 

where we have defined 

@" = max{  02¢R 02¢RI 0aeRt -6~ '  ~ l '  o-S~y I } (2"19/ 

For the moment let's neglect time-dependent terms, Hl(~x,{y,t). In that 
case { describes the displacement of a passive particle from single point vortex 
moving together in an arbitrary uniform (perhaps non-stationary) velocity field. 
The equations of motion (2.131 reduce to: 

k {~ k {~ (2.20) 
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their solution is: 

~ = ~o cos(ut + ¢o), ~u = ~0 sin(vt + ¢0) (2.21) 

where 
= k/2  0 (2.22) 

and ¢0 is an arbitrary constant initial phase. It describes the circular rotation 
of the passive particle around the vortex, with radius ¢0 and angular frequency 
v. Thus, circles ¢~ + ~ = ¢0 2 = const, are invariant curves of the motion. 

Under the influence of perturbation term (2.17), some of this circles may 
experience a certain deformation of their shape (KAM curves), and some break 
down and are replaced by areas of chaotic motion. As a next step, we will 
consider the breaking of the KAM curves near the singularity at ~ = 0. Let's 
look at the structure of the perturbation terms in the neighborhood of one of the 
invariant circles ~ = ~0, which lies close enough to the vortex, so that (2.18) is 
satisfied. Expanding eR(xl  Jr ~ ,  y~ + ~y, t) in Taylor series in ~ ,  ~y, around the 
vortex position, we obtain: 

2 02¢R¢ ~: O~¢nf~ + Y l ( ~ , ~ u ,  t) = 0 z e R ~  + _w--w-~ ~, ,y + --~y2 ~y O(~3) (2.23) 
Ox 2 ~:c oxoy  

Note, that terms, linear in ~, cancel out, leaving H1 proportional to O(~2). Now 
we can write HI (~ ,  ~y, t) in a form, where the small parameter of the problem, 

- ~0%"lk (2.24) 

enters explicitly: 

where 

yff , t) =  ,,k02¢ 

H1 (~ ,  ¢y, t) = ¢V(¢~, ~u, t) 

[02¢RF2 02¢R¢ ¢ 02¢R~2+O(g3)] 
] 

(2.25) 

(2.26) 

Thus, the Note that V(~x,~u,t) is of the same order of magnitude as H(~0). 
problem of the advection in the vicinity of the selected vortex can be reduced to 
the problem of the time dependent Hamiltonian perturbation of the near-a-core 
motion of the tracer (2.21). This formulation provides ground for the analysis 
of the core size in Section 4. It is apparent now that the effect of the external 
part of the flow on the tracer particle near the vortex can be rendered arbitrarily 
small (but not completely absent) as we take particles closer to the vortex. 

Let the external flow eR have a characteristic frequency vl. Unperturbed 
curves in the vicinity of the vortex satisfy the condition 

v, << v = k/2,~0 ~ (2.27) 

in correspondence to (2.22). It means that for fairly deep orbits the changes of 
any parameters of the system are always adiabatic, and the invariant curves re- 
main undestroyed. In the extended phase space (~ ,  ~u, t) the invariant cylinders 
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of the unperturbed system (2.20) undergo only a slight (exponentially small) de- 
formation under the perturbation H1 (~,  ~y, t) which is due to the external flow 
with upper bounded frequency. We can introduce cylindrical tubes in the ex- 
tended phase space which are the invariant manifolds of system (2.13). Using 
polar coordinates in (~ ,  ~y)-plane, 

= (~  +~y)~ if2, ¢ ~ arctan~/~y (2.28) 

the equation defining this tubes can be written as: 

~(¢,t) = ~0(1 + f(e, ¢,t)) (2.29) 

where f(e, ¢, ~) is bounded, and f --~ 0 as e --~ 0. Estimation of f(e, ¢, t) for 
3-vortex flow will be given in section 4, more general situation will be considered 
elsewhere. 

Each of the invariant cylinders divides the phase space into two regions. If the 
motion starts in one of this regions, it will stay there forever, since the trajectory 
cannot move across the invariant manifold (2.29). The implication for the flow 
motion is that if at some instant of time t = to a passive particle is located 
at ({0, ¢0), then at any other time t it will stay inside the region bounded by 
the curve (2.29). It is important, that, though the shape of the boundary (2.29) 
depends on time, it always remains just a slightly perturbed circle, and will never 
evolve into a filament structure. That means that the part of the fluid occupying 
this region will never mix with the fluid outside and will be carried together with 
the vortex as a coherent structure. This core structures are very rigid due to the 
adiabaticity of the perturbation leading to the exponentially small corrections. 
We will specify this statement in Section 4. 

Thus, the question of the existence of the coherent vortex core in a given flow 
is reformulated as the question of the existence of the invariant curves of the 
forced Hamiltonian system with one degree of freedom. For the particles which 
are close enough to the vortex, the Hamiltonian function (2.15), can be written 
in the form 

H(~,,~y,t) = Ho(~,,~y) + eV(~,,~y,t) (2.30) 

with H0 and V given by (2.16) and (2.25) and the small parameter e (2.24). 

3 Equations, Classification, and Examples 
Advection of a passive tracer particle in the velocity field of three point vortices 
provides us with a valuable example, which on one hand demonstrates a variety 
of different advection patterns, and on the other hand allows a thorough numer- 
ical study. This problem can be approached analytically in special cases where 
the relevant mappings can be constructed to approximate the advected particle 
motion. The integrability of the equations of motion of three point vortices [41], 
[42], implies that the stream function (2.5} can be found explicitly in this case, 
and the periodic character of the motion of vortices in rotating frame means that 
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the flow is periodic in this frame, and gives us a convenient way to monitor the 
advection numerically by constructing the Poincare map for the motion of the 
tracer [11], [13]. 

To proceed with the discussion of the advection problem, we have to take 
a more detailed look at the motion of vortices themselves. Evolution of planar 
incompressible inviscid flows, consisting of a finite number of point vortices N, 
has attracted the attention of physicists for more than hundred years (see [23] 
and [25] for review of literature). These flows have a particular property - their 
dynamics can be derived from the autonomous Hamiltonian system with N de- 
grees of freedom, which is essentially the set of equations on the vortex positions 
(2.10). System (2.10) possesses four independent integrals of motion, and three 
of those integrals are in involution, independent of what the strengths of the vor- 
tices are. As a consequence, motion of three point vortices is always integrable. 
It was studied extensively by several authors, and by now we have a complete 
description of motion types for arbitrary vortex strengths [41],[42],[43],[44]. 

Below, for the convenience of readers, we briefly outline the solution of the 
equations (2.10) for the case of three identical point vortices following [36]. As 
above, denote by k the strength of vortices. It is convenient to introduce complex 
coordinate in the plane: z = x + iy, and to specify the positions of the three 
vortices by means of complex-valued functions of time: zm ( t ) = xm ( t ) + iym ( t ) , 
m = 1,2,3. 

Stream function of this flow is a sum of stream functions corresponding to 
each vortex: 

3 

¢1(z, z* , t )  = _ k  Z 1  n ]z - z j ( t ) ] '  (3.1) 
4rr 

j = l  

so the flow is completely determined by zm (t), m = 1, 2, 3, and its dynamics is 
reduced to the set of equations for the positions of vortices: 

k ~ 1 (j, m = 1, 2, 3) (3.2) 
~ = 2~i ~7= z~ - z~' 

These equations can be written in Hamiltonian form: 

zm = [zm, H] (3.3) 

with Hamiltonian function (compare to (2.16),(2.12)) 

H k 
= - 4 - 7  l n l z m  - 

j#rn 

and fundamental Poisson bracket 

(3.4) 

[z,~, zj] = O, [zm, z~] -- -2i($,nj (3.5) 
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The Hamiltonian (3.4) immediately reveals its translational and rotational 
invariance which allows to construct corresponding integrals of motion: 

and 

- Q + i F  ( 3 . 6 )  
j = l  

3 

j = l  

Using (3.5) one can derive the non-zero Poisson brackets: 

[Q, P] = 3; [Q, L 2] = 2P; 

with two independent integrals in involution: 

[Q2 + p2, L 2] __ 0 

(3.7) 

[P, L 2] = - 2 Q  (3.8) 

(3.9) 

Since Hamiltonian has zero Poisson bracket with any combination of Q, P and 
L, the system has three independent integrals in involution: H, L 2 and Q2 + p2. 

The integrals Q and P defined above are the coordinates of the center of 
vorticity, so conservation of (3.6) means that the center of vorticity doesn't move, 
and below we will put Q = P = 0, i.e. always place the origin of coordinate 
system in the center or vorticity. Second integral L 2 defines the spatial scale 
of the motion and can be made equal to one by an appropriate rescaling of 
coordinates z -+ z/L. Provided Q = P = 0, this integral is equal to the average 
squared distance between the vortices: 

(j, m : 1, 2, 3) (3.10) L2 1 E = - 2, 

Equations (3.2) can be written in a dimensionless form by rescaling the time 
variable t --4 (k/L 2) t The only parameter that is left is the value of the Hamil- 
tonian H,  which can be related to the geometry of the problem, e. g. to the 
product of side lengths of the vortex triangle A: 

(3.11) 

written in the dimensionless form with k = L = 1 (compare to (B.17)). 
Another geometrical parameter is a half of the minimum distance between 

two vortices during their motion, which we denote as a. It is related to H as: 

( 3 . a 2 )  3a - 4 a  3 = e - 2 7 r H  ---- A 

and will be used in numerical simulations. The range of these parameters is: 

H e (0, oo); A E (0,1); a e (0,1/2). (3.13) 
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Solution for the the equations (3.2) can be found in quadratures (see Appendix 
B) and written in the following form, with expressions for l( t) ,  ¢1(t) and ¢2(t) 
given in the Appendix B: 

z..(,) = [/1- 
+(1 + II /2) '[2e-47ri(m-1)/ae i¢~/2] , m = 1, 2, 3 (3.14) 

where the first factor contributes only to the overall rotation of the triangle 
formed by vortices, and the second one describes a relative motion, i.e. a change 
of the triangle shape. The relative motion of three vortices is periodic (except 
of a the special case A = A~ = l/v/2), i. e. after a certain time Tr~l (see 
(B.27),(B.29)) the vortex configuration repeats itself. 

In the meanwhile (during the period TreZ) the triangle spanned by vortices 
is rotated as a whole by a certain angle O(A), so the motion of the vortex tri- 
angle looks like a superposition of the periodic pulsations and uniform rotation 
with rotation frequency ~2(A) = O(A)/Tret (see (B.33)). For a general initial 
configuration, O is incommensurate with 21r, and the the frequency of relative 
motion wrd (A) = 21r/Tret is incommensurate with rotation frequency f~ and the 
overall motion is quasiperiodic. However it is periodic in the reference frame 
rotating with f/, so it is convenient to consider the motion in the reference frame 
co-rotating with vortices. We denote as Era(t) trajectories of vortices in the 
co-rotating frame. They are simply related to the laboratory frame coordinates: 

= z , , , ( t )e  - ' a ' ,  m = 1 , 2 , 3 .  (3 .15)  

The functions zrn (t) are periodic with period Trez and satisfy the equations: 

z. k j ~  _ _ 1  . ~. 
zm = 27r i  ~m 5j + 'f~zm ' ( j , m =  1,2,3) (3.16) 

Depending on the value of the relevant parameter of the system (A, H or 
a), one encounters different types of relative motion of the vortices . Following 
[41],[42], we give a brief description of what happens when A decreases from 1 
to 0 (H increases from 0 to ~ ) ,  and write down the symmetries of different 
regimes, important for the advection problem. 

For A=I, we have H = 0, a = 0.5, I(t) = 1 (see (B.24)) and there is no 
relative motion at all. Vortices form an equilateral triangle uniformly rotating 
around its center with angular velocity f~(1) = 3/2rr. Advection problem in 
this case is integrable. When A is close to 1, vortices perform small oscillations 
around the equilateral triangle, and advection exhibits the onset of chaos in the 
neighborhood of the separatrices of the steady rotating case A = 1. We consider 
this case in detail in Section 5. 

In the range 1/,¢/2 = Ac < A < 1 the shape of the vortex triangle oscillates 
between the two isosceles triangles - the acute one with the base length 2a, when 
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the area of the triangle reaches its maximum, and the obtuse one (minimum of the 
area). During one period of the relative motion, each of these shapes is repeated 
three times, corresponding to three different cyclic permutations of vortices. This 
is a manifestation of the particular symmetry of motion in this range: 

~,m(t + Trel/3) = ~j(t)e 2~i/3, m = 1 , 2 , 3 ;  j -  l = m mod3 (3.17) 

in rotating frame, or 

z m ( t + T r ~ t / 3 ) = z j ( t ) e  i(~+°(^))/3, m = 1 , 2 , 3 ;  j - l = m  rood3 (3.18) 

in the laboratory frame. Note that the orientation ~r, defined as v, = +1 for the 
counterclockwise arrangement of vortices 1,2,3 along the perimeter of the vortex 
triangle, and ~r = - 1  for the clockwise arrangement does not change during the 
motion. 

As A approaches its critical value Ae, Tret grows logarithmically, and the 
solution for A = Ae is aperiodic (except of the situation when the vortices are 
perfectly aligned, one exactly in the middle between the other two, which is a 
hyperbolic equilibrium point of the system). More details concerning this regime 
are in the Section 4, where we address the advection problem for A ~ Ac. 

For 0 < A < Ac the relative motion of vortices is periodic again, but it is dis- 
tinctly different from the case A~ < A < 1. Now the shape of the vortex triangle 
oscillates between two congruent isosceles triangles (maximum of the area, base 
length 2a) with different orientation, passing through the linear configuration in 
the midway. The equivalence of all three vortices (in a sense of the symmetry 
(3.17)) does not exist anymore - one of the vortices becomes special, it always 
stays in the sharp corner of the triangle, never coming to any of the other two as 
close as they come to each other. We number this vortex by m = 1 (in this case 
we have to pick a particular solution of (B.30) for ¢1). For this case we have a 
following symmetry with respect to change of the orientation: 

~'2(t q- Trd/2) : ~'3(t); za(t  q- Trel/2) : ~'2(t); Z'l(t 4- Trel/2) : ~'l(t). (3.19) 

In practice, symmetries (3.17),(3.19) allow to reduce CPU time required for 
constructing the Poineare map for the tracer motion in three or two times re- 
spectively. 

Now, let us look at the motion of an advected particle in the co-rotating frame. 
We denote position of the particle in that frame as ~, : ~ + i~, Its trajectory 
satisfies the equation: 

k ~ 1 + if~" (3.20) 

where stream function ff is given by (3.1) with additional term, corresponding 
to rotational "energy": 

ff(~, ~*, t )=  _k4r ~-~"ln I z -  zJ (t)12 + -~zz* (3.21) 
j = l  
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To estimate size of the coherent structures around vortices, we pick a particular 
vortex, for example one with m = p, and consider dynamics of the displacement 
of the advected particle 

¢ - ~ - ~p (3.22) 

Note that ( is defined in the rotating frame, and is related to the displacement 
in the laboratory frame ~ = ~ +/~y ,  introduced in (2.12), by 

( = 

From (3.20) and (3.16) it follows immediately: 

2~-i + + + ifl¢* 
r n = 2  ~ -- ~-.rnp Zrnp 

(3.23) 

where we have denoted the relative positions of vortices 

L , j  - ~,~ - ~j (3.24) 

The equation (3.23) can be considered as a special case of (2.13) in the rotating 
reference frame. It can be obtained from a time dependent Hamiltonian (2.15) 
with a centrifugal term 

@ ( ( , ( , t ) - - - ~  +~--~ l n l ( - ~ , , p l 2 + : - - +  + CC* (3.25) 
rn=2  Zrap 

We will use this representation in Section 4 to obtain the formula for the radius 
of the coherent cores around vortices. 

To get a generM idea about the character of the advection, we have performed 
numerical simulations of the "three-vortex + tracers" system (3.16),(3.20). To 
visualize spatial pattern of advection we have constructed Poincare sections of 
the tracer motion (taking snapshots in the rotating frame with intervals T~,I) 
for various vortex geometries. Figures la,  lb  correspond to the case A ~ 1, 
when vortices slightly oscillate near the equilateral triangle configuration. Two 
separatrix families of the integrable case A = 1 (see Section 5, Fig. 6), split and 
merge for fairly small deviations of A from unity, Fig la.  Area of chaotic motion 
grows rapidly as A decreases; for A = 0.97926...  (Fig. lb) there already exists 
a well-developed stochastic sea - -  large connected region with strong mixing 
properties. Similar situation occurs for other vortex geometries when A > A~, 
see Fig. lc, ld. 

This figures reveM two main types of islands of regular advection inside the 
mixing region: 

1. Vortex cores - -  smooth, near-circular, robust islands around the vortices, 
existing for any values of A. 

2. Elliptic islands - -  irregularly-shaped islands around elliptic points, ex- 
tremely sensitive to variations in A, each existing only in the limited range 
of A values. 
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(c) (d) 
-1 0 I 

2 :  Z '  

Figure 1: Poincare sections of tracer particle trajectories for different vortex 
geometries: (a) onset of  chaotic advection, a = 0.4996, 1 - A = 9.6 • 10-7; 
(b) well developed stochastic sea exists already for A = 0.97926; (c) A = 0.94, 
elliptic island boundary has a typical island-chain structure, see Fig. 3a for zoom.  
(d) A = 0.71666, note narrow sticky bands around vortex cores, see z o o m  in 
Fig. 3b, 3c, 3d for details of  the structure. 
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(a) (b) 
4 0 1 -1 0 1 
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Y y 

( 

-1 0 1 -1 0 I 

Figure 2: Poincare sections of tracer particle trajectories for different vortex 
geometries. Strong tracer chaotization for near-separatrix vortex flow: (a) A = 
0.707109 > Ac, (b) A = 0.70710668 < Ac. Back to regular advection: (c) A = 
0.6052, (d) A - 0.4636 
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Figure 3: Structures in the mixing region. (a) Magnification of the piece of the 
island chain around elliptic island (Fig. lc), A = 0.94. (b) Narrow sticky bands 
around vortex cores, zoom of central piece of Fig. ld, A = 0 .71666 .  Thin white 
areas inside the bands are regular island structures. Their zoom (stretched in 
x-direction) is shown for two close vortex geometries: (c) A = 0.71682, (d) A = 
0.716917. 
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The strongest chaotization occurs when A is close to Ac. Elliptic islands 
vanish altogether, and the only structures remained in the stochastic sea are 
vortex cores (Fig 2a). Further decrease of A (below Ac) reverses the scenario 
(Fig. 2b, 2c, 2d) - -  stochastic sea gets smaller, elliptic islands reemerge and 
grow, and eventually chaos survives only in the narrow stochastic layers around 
the destructed separatrices of the limiting case A --~ 0, when two of the vortices 
coalesce and advection becomes integrable. Note, that for A > A¢ all three cores 
are identical, while for A < A¢ one of the cores is considerably bigger (due to 
different symmetries (3.17),(3.19)). 

Our simulations clearly indicate the existence of sticky singular zone on the 
border of the islands. Apart from the island chains around the elliptic islands 
(see Fig. lc, 2c, and zoom of such an island in Fig. 3a), which resemble typical 
phase-space structures of Hamiltonian chaos, one can observe dark bands around 
the vortex cores (Fig. ld, 2c), i.e. the boundary of the cores acts as a quasi-trap 
for tracers. Zoom of a piece of dark bands (Fig. 3b) shows, that they contain 
a multitude of small stretched subislands. These subislands, in turn, have a 
complex structure, very sensitive to the smallest variations of system parameters. 
Figures 3c, 3d show such an island (suitably magnified) for two close values of 
A. Sticky island-around-island chains can be responsible for particle trapping. 

4 Strongly chaotic advection 

Here we consider the most important for applications case A ~ Ac, when the 
chaotization of the tracer motion is the strongest. Numerical simulations (Fig. 
2a, 2b) of the passive particle motion reveal a large chaotic component which fills 
completely approximately circular area of radius Rma~ "~ 1.5 L, with the excep- 
tion of almost circular patches of regular motion around the vortices (coherent 
vortex cores) of radius ~ , ~  ,,~ 0.18 L in case A > Ac. In case A < Ac two of the 
cores have the same size, but the third core is bigger, with radius about 0.26 L. 
As A approaches to its critical value Ac, ~ma= practically does not change. 

Existence of the robust vortex cores is a typical phenomenon in the advection 
in flows dominated by the regions of concentrated vorticity. Being one of the 
simplest situations in which the coherent vortex cores appear, 3-vortex flow allows 
to investigate analytically the problem of the size of the cores, and to point out 
relevant features of advection dynamics, determining the size of the cores in 
general case. 

Let us consider the motion of vortices in the rotating frame where it is periodic 
(for A ~ A~). Note, that the frequency of the overall rotation f~(A) has no 
singularity at A = A~, so we can put 

~(A) = fl(Ac) = 3/2r (4.1) 

and concentrate our attention on the relative motion. 
When A is close to A¢, vortices move in a particular way typical for near- 

separatrix dynamics. They perform relatively fast rearrangements (flips) between 
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-.1 ? ~ 

Figure 4: Unstable vortex equilibrium for A = he, separatrices of stream func- 
tion (4.5). Vortex positions (4.2) are marked with asterisks. Solid circles - -  
hyperbolic points (4.7), empty circles - -  elliptic points (4.8) 

different unstable equilibria intervened with longer intervals spent in the neigh- 
borhoods of the equilibria, where they essentially stay at rest. These equilibria 
are close to the saddle points of 3-vortex system (3.16) at A = Ac, and up to an 
irrelevant phase factor they are given by (see Fig. 4, where equilibrium vortex 
positions are marked with asterisks): 

1 1 
; ~ i = ~ ,  S j = 0 ,  £ , k = - ~ ,  iCjCk; i,j,k=l,2,3 (4.2) 

There are six ways to distribute three vortices in three locations, those with the 
same vortex in the center (at zero) can be obtained from each other by rotation, 
so finally we have three different equilibria which we will mark by the number 
of the central vortex (j). For every pair of these saddle points, there exists a 

family of separatrix soliton-like solutions ~ ) ( t  - t o )  parameterized by to, the 
moment of the center of the soliton pulse. They describe the flips of the vortex 
configuration from one saddle point to another and are aperiodic (i.e. the flip 
takes an infinite time). All three of them are identical up to the renumbering of 
the vortices. 

When A > Ae, vortices periodically rearrange themselves between the neigh- 
borhoods of the three equilibria in a way (1) -+ (2) --+ (3) --~ (1). . . ,  or (1) -~ 
(3) -~ (2) --~ (1). . . ,  depending on the initial orientation. For A < Ac one of the 
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vortices gets isolated, and since we agreed to mark this vortex with m = 1, the 
vortex configuration flips between the equilibria (2) and (3): (2) ~ (3) ~ (2) . . . .  
The characteristic time of the vortex configuration flip is given by the width of 
the separatrix pulse (B.28) 

Ir (4.3) 
t, = 3v~  

where we put L = 1. The interval T between pulses is T - T,.et/3 for A > Ac, 
and T =__ Tre,/2 for A < A,. Since Tr,, "-" In IA - Ao1-1 (see (B.27),(B.29)), when 
the value of A is sufficiently close to Ae, we have 

fi- 
T >> t, - 3v~  (4.4) 

The specific character of vortex motion in this case allows to find a mapping, 
describing the advection of the passive particle. As a first step, we look at the 
advection in the velocity field of the equilibrium vortex configuration (4.2). In 
the rotating frame vortices do not move, so the streamlines do not depend on 
time, and advection is regular in all plane. Substituting positions of vortices from 
(4.2) into (3.21) we obtain the stream function in the rotating frame: 

1 ~ 
~,~p(~,, ~,*,t) = -~-~ In (l~lUl~ u - 1/212) -t- I~12 (4.5) 

Apart from singularities at the vortex positions, it has six equilibrium points, 
which are the solutions of 

(gff,ep _ 0 (4.6) 
a~ 

They are two pairs of saddle points: 

~.hyp = .q-~ ~13"4" V / ' i "~  (4.7) 

and a pair of elliptic points: 

~.eu=q-~ 1 + ~  (4.8) 

Separatrices, connecting each pair of saddle points divide the plane into seven 
regions, see Fig. 4. In each of these regions action-angle variables (I, ~b) can be 
introduced, and the motion of advected particle can be described in a simple 
way: 

l(t) = Io, !b(t) = a;(I)t + Ibo (4.9) 

where 

dff,~p (4.10) ca(I) - dl  

is the advection nonlinear frequency, I0 and ~b0 are constants. 
When A ,~, Ae, vortices spend a long time very close to equilibria (4.2), 

and equations (4.9) can be used to describe advection during this intervals. To 
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complete the picture we need the relation between (I, ¢) before and after the 
vortex flip. 

Let's denote by (In, Ca) the values of action and angle variables right before 
the beginning of the n-th flip. We are looking for a map 

(r.+l, ¢.+1) = ¢.) (4.11) 
relating tracer coordinates between two consequent passings of the vortex system 
near the saddle points. Let us denote by AI(I , ,  ¢,) change of I during the n-th 
flip. Then the mapping (4.11) can be approximately written in the form: 

I,+1 -- In + AI(In, On) (4.12) 
= ¢ , ,  + 

where w(I) is given by (4.10) (we have neglected phase detuning during the 
pulse). 

At this moment we will restrict our consideration to the particular problem of 
the size of the coherent vortex cores, which was discussed in general in Section 2. 
That means, that we will be interested in the regions, surrounding the vortices. 
In those regions it is convenient to consider advection in the reference frame 
moving with the vortex which is located in the center of the region. We follow 
definition (3.22), and mark this particular vortex with m = p. (see formulae 
(3.22),(3.23),(3.25)). 

To find AI(I , ,  Ca), we note, that if the tracer is not too close to the border of 
the region (i.e. not too close to the inner separatrix in Figure 4), it spins rapidly 
around the vortex (due to logarithmic singularity in (3.25)). More specifically, 
with the exclusion of a narrow band around the separatrix, the advection non- 
linear frequency (4.10) is much larger than the inverse duration of the vortex flip 
(4.3), i.e. 

w(I)t, >> 1 (4.13) 

and we can treat the rearrangement of vortices as an adiabatic change of the 
parameters in (3.25). This property will be effectively used to find AI(In, ¢ , )  
in the first order of the adiabaticity parameter [45],[39]. 

Below we briefly outline necessary calculations, leaving the details for the 
Appendix C. First, we split stream function (3.25) in two parts: 

#(¢ , (* , t )  = g0(( , (*)  + Yl ( ( , (* , t )  (4.14) 

where H0 is autonomous part: 

H 0 ( ( , ( * )  = -4"-~x In I(I 2 + al¢l 2 (4.15) 

and H1 depends on time through slowly varying parameters zrnp (Q, defined by 
(3.24): 

k 3 (  ¢*) 
Hl( ( , (* , t )  = -~-~ ~-'~ l n l ( -  ~.~pl 2 + : - - -  + ~ ( (4.16) 

z,,p ~'*p 
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In the region of interest [Srnp [ is always larger than [([, so the contribution of i l l  to 
the equation of motion (3.23) contains a small parameter [(/~'mv[ (see Appendix 
C for details). The unperturbed solutions of (4.15) are circular rotations: 

( = (oe i~t (4.17) 

with the frequency 

1 1 ( [ ~ j [ )  
w ( J )  - 2~r(g f~ = ~ - 3  (4.18) 

where zeroth order "action" variable J is defined by: 

i J 1 2 (4.19) J =  ~ ( ( * d ( - ( d ( * ) = - ~ ( ~  

and angle variable is just a polar angle in the (-plane: 

O= arg( (4.20) 

With the help of variables (J, 0) we can express Hamiltonian (4.14) as ~(J,  0; t) 
which has a slow (adiabatic) dependence on t through magnitudes i,~p, ~'~p. Our 
next step will be introducing such variables (J, 0) that dependence of ~ on 0 is 
killed in the first approximation. 

In the lowest order of I(/~,,,,p ] 2 the required transformation is given by the 
generating function (see Appendix C) 

1 1 E 12jle ,o ! 
s(Y, o) = Yo + s,~i~(J) ~------Z + c.c. J 

(4.21) 

and new action j is related to the old one J by: 

1 Ep 12jle2,o ] 
Y = J + 4~7(J)  ~ - - 7  + c.c. (4.22) 

In fact z-, w are slow functions of time, and so is S(] ,  0). New Hamiltonian 
function is given by: 

B(Y,t) = ~,(Y,t) + 7 (Y ,  ~,t) (4.23) 

and we get an equation for the evolution of the adiabatic invariant: 

J - -ff~ (J ,  t) ( ] ,  O, t) - c.c 
= - O00t 2~rw (J)  zamp 

(4.24) 
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where we have replaced 0 by O in the right-hand side with an accuracy of first 
approximation. The total change of j during the vortex flip is small, so it can 
be evaluated by integrating right side of (4.24) through the time of the flip: 

where 

a [2JI . c.c.] (4.25) &J(J'O(°)) = t ] dt = 27rw(J) [ e2''(°)A(J) + 

A(J) ~ fa  e2iW(J)t ~ Zmp dt (4.26) 
t m # p  ~ 3 p  - 

and At is time interval of the order T around the instant to of the vortex flip with 
the phase 0 (0) = 0(t0). During the time of the pulse, vortex trajectories ~-w (t;A) 
are practically indistinguishable from separatrix soliton-like trajectories (which 
can be obtained from (B.28)) corresponding to A = Ac, and can be replaced by 
the latter under the integral. That allows to extend the integration to 4- infinity 
and to close the contour in the complex plane, so (4.26) will be given by the sum 
of contributions from singular points in the upper part of the complex plane. 
Due to the fast decay of the integrand up in the complex plane (w is large, see 
(4.13)), it is enough to take only the singularity, which is closest to the real axis. 
It turns out to be at the point 

.Trt  s 71" 2 
to = ,--~- = i6 ~--~/3 (4.27) 

and for the integral (4.26) we get: 

A(J) = Apw(J)e -"'(s)t" (4.28) 

where constants Ap, depending on the particular vortex and particular flip, were 
evaluated numerically: 

A1 ~ 1 4 8 .  corner-center flip (4.29) 
[Apl = A2 ~ 2.4 corner-corner flip 

here the first value A1 should be taken when the vortex under consideration stays 
near the central equilibrium ~,p = 0 before or after the flip, and the second value 
A2 when it stays outside. 

Now we return to the map (4.30). It is convenient to rewrite it in variables 
(y,0): 

J,,+l = Jn + AJ(Jn,  a,~) (4.30) 
a,+l = O, + ~(J ,+I)T 

since (4.12) requires specification in which region (I, 9) should be taken on each 
step, while (4.30) contains this information through the dynamics of the param- 
eters ~mp. Eventually, (J, 0) are defined in a unique way for particles in the 
c o r e .  
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The question to be answered is: given the initial value of J, is the motion 
regular or chaotic? Since the change in adiabatic invariant per pulse AJ(Jn ,  On) 
is small and the chaotization occurs mainly due to phase instability, we can use 
the stochasticity criterion in a form [I0] 

I [ K -  max 1 > 1 (4.31) 
eeto,2~l [ 50, 

which for the map (4.30) gives: 

I max > 1 (4.32) 
0e[0,2~] dJ  don 

From (4.25) we obtain 

max 

and (4.18), (4.19) gives 

I dAJ(J~,  O,) 
dO,, 1 = 2 ~  Ia(J)l  (4.33) 

dw(J)_  1 (4.34) 
dJ 4~rJ 2 

After substitution of (4.33), (4.34) into (4.32), we arrive at the following condition 
for the motion of the tracer to be chaotic: 

TIA v [ exp(-rra~ ( J)t, ) 
> 1 (4.35) 

The value of action J = Jr which makes left-hand side of (4.35) equal to one 
corresponds to the border between regular and chaotic motion and defines the 
radius of the core around the vortex: 

¢~ --= ~ (4.36) 

Substituting w(J) from (4.18) we get the following equation for (c: 

(~exp(t,/2(~) = 2lAplexp(rrflt')T(A)= 2IAp[exp(~rV~/6)T(A) (4.37) 
71-2 71-2 

where we have used definitions (4.1),(4.3). Dependence of the right side of (4.37) 
on the background vortex flow enters only through the interval between the vortex 
flips T(A), and is apparently quite strong, since T diverges logarithmically when 
A -+ A¢, see (B.27) 

T(A) = 21r In ISAI - t  + Cx + O(laAI In ISAI) (4.38) 

with 
2~r 14x/~ 

C1 = ~ - ~  In - - ~  (4.39) 
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T 

Figure 5: Radius of the vortex core vs. interval between vortex flips T(A). 
Dashed line - outside vortex, A < Ac, m = 1 (lAp] = A2), solid line - flipping 
vortex, all other cases (IApl = A1). 

and we have denoted 5 A  =_ A - Ac .  However, exponential dependence on the 
left-hand side of (4.37) makes core radius essentially independent from T(A). It 
does depend on the type of the vortex rearrangement: if the vortex participates 
in corner-center flips ([Ap[ = A1) (c turns out to be considerably smaller than 
for the "outside" vortex, when [Ap] = A2. We plot solutions of (4.37) versus flip 
interval T in Figure 5 for both cases. When T changes by an order of magnitude, 
change of (~ is only about 10%. Comparison with Fig. 2a, 2b shows that values 
of core radii obtained from (4.37) are in good agreement with the results of 
numerical simulation. 

When 5A is small and T is large, (4.37) gives 

ts 
= In C ~ T  - ln(t , /2)  (4.40) 

where 
C2 = 2lAp I expCTrv/3/6)/rr2 (4.41) 

and we can write explicit formula for the core radius in terms of the geometrical 
parameter of vortex motion 5A: 

,, 1 
¢c = 2(lnln 15A1-1 + In 4C2)J (4.42) 

Formulae (4.37) and (4.42) predict that the core radius should tend to zero as 
5A -+ 0 and T --+ (x~. On the other hand, direct simulation of advection equation 
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does not show any variation in core size as initial positions of vortices are taken 
closer and closer to critical configuration (compare Fig. ld,  where SA ~ 9.6.10 -3, 
T ~ 6.5, and Fig. 2a where SA ~ 2 • 10 -6, T ~ 16.6). Asymptotic of ~c (4.42) 
provides an explanation for this effect - -  ~c decreases extremely slow as A -~ 
Ac (note the double logarithm in (4.42)), and the accuracy of the simulation 
is insufficient to notice any significant decrease in core radius. Even machine 
precision calculation (tiA ~ 10 -16, T ~ 45) will result in less than 10% change 
of ~ .  The number of digits, required to "visualize" the limit (¢ -+ 0 as (fA --~ 0 
is grotesque. 

5 Case of the weak chaos 

The onset of chaotic advection in three-point-vortex system can be studied an- 
alytically by Melnikov method, and in cases of weak chaotization (A ~ 0 and 
A ,~ 1) the width of chaotic layers can be found using separatrix map [38],[10] 
(see also [46]). In this section we carry out the calculations for the case A ~ 1 
and compare the results with numerical simulation. 

Below we consider the deviation of A from unity 

e = 1 - A (5.1) 

as a small parameter and look at the advection for the case e << 1. When e = 0, 
A = 1 vortices stay in the vertices of an equilateral triangle uniformly rotating 
with frequency 

3k 3 
= - -  (5.2) 

= 2~rL 2 2~ 

In the rotating reference frame their positions are constant (see (3.14),(B.24)): 

L -~( . , -I)  
5re(t) = ~ e  m = 1,2,3 (5.3) 

and the stream function of the flow (3.21) does not depend on time: 

k _ p312 F~ ~o(~, ~*) -- --~-~ In ]~ 3 + -~lz] ~ (5.4) 

Advection in this case is regular - -  tracers follow the level lines of if0. Figure 6 
shows singular points and separatrices of this case. 

In the lowest order in e corrections to :~,~ (t) can be found by consequitive 
expansion of the corresponding formulae of Appendix B (see Appendix D for 
details, compare to [12]): 

L( l e,o) 5re(t) = ~ e -~-~(m-U + e m = 1,2,3 (5.5) 
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-1 0 1 

Figure 6: Separatrices of stream function (5.4), A = I. Vortex positions (5.3) 
are marked with asterisks. Solid circles - -  hyperbolic points (5.11),(5.12). 

Up to this order the stream function of the flow in the rotating frame is: 

= - ~  lnl~ ~ - p~ + (6~)'/~-'"'~p~l~ + ~l~l ~ + o(~) (5.6) ~(~ ,~* , t )  

where we have introduced the distance from the vortex to the origin for stable 
(e = 0) configuration: 

p =_ L/v'~ = 3 -1/2. (5.7) 

If we stay out of the immediate neighborhood of the vortices, i.e. I~, - z,n I >> v/~, 
m = 1, 2, 3, we can rewrite (5.6) as: 

~(~, r , t )  = ~0(~, r )  + ,1/2~1(~, r , t )  + 0(0 (5.8) 

where the perturbation is given by: 

~x(~,~*,t)--f-6 m [ ~p2 -~at ) 4,~ ~,~-~---~-~ +c.c. (5.9) 

Equations of motion of a tracer follow from (5.8): 

k ra,~l/2 p (p + 2 z  )~- ia t  z * = [ ~ *  ff]_ k 3~ 2 ~ 3 -3 
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The separatrices of the unperturbed system split when e ~ 0 and are replaced 
by thin stochastic layers (see F ig  7). To proceed, we denote the two triples of 
hyperbolic points (Fig. 6) of ~0 as 

2 
cos ~ exp(ri/3 + 2(m - 1/2)i~r13) m = 1, 2, 3 (5.11) ~,,l (m) = 

2 rr e x p ( 2 ( m -  1)ilr/3) m = 1, 2, 3 (5.12) 

and corresponding values of 80 (separatrix energy) as: 

k lnl~,z,1 p31~ 12 _ 2 • ~ = - ~  - + ~lz,,xl ~ 0.2681 (5.13) 

k 1&3,2 p312 @~ _---- -~-~ In - + 1~,,21 ~ ~ 0.2653 (5.14) 

For the separatrix map we define the pair (h~, t~) in a usual way: hn is the 
deviation of the unperturbed stream function from its separatrix value 

hn =- ¢1o - ~1 t (5.15) 

at the point, when the advected particle comes closest to the saddle point in its 
n-th passage through the saddle point neighborhood, and tn is the moment of the 
center of the next velocity pulse. The mapping 7~,~p : (ha+l, tn+l) = 2b, ep(h,,, t,,) 
has the form [38],[10]: 

hn+a = hn + Ah(tn;an) (5.16) 
tn+l = tn + rr/w(hn+l) 

with the value of Melnikov integral given by 

r t .  +oo 

Ah(tn;an) -- ell2 1 {if0, ffl}(~'~7(t - to) , t )dt  = (5.17) 
d tn--o~ 

= (O o ) 
j , . _~  \ ~z a~. e.e. (~7( t - to ) , t )~ t  (5.18) 

where the sign variable c'n = +1 indicates on which branch the separatrix so- 
lution ~'~r(t - t0) should be taken. In Appendix D the following expressions 
(D.X6),(D.12) for Ah( t , ;~n)  and ~(h) (asymptotic for small h) are derived: 

Ah( t , ;  (rn) = k(6e)l/2p2 sin 12t,,M~. (5.19) 

2,rX 
oa(h) ~ In Ihl ----------7 (5.20) 

where constants X, M~. are listed in the Appendix D. 
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Figure 7: (a) Poincare section of tracer trajectories for case of weak chaos 1 - A  = 
e = 2.4.10 -T, a = 0.4998. Two thin stochastic layers around splitted separatrices 
did not merge yet, compare to Fig. la. (b) Zoom of the above picture near the 
saddle point. 

The width of stochastic layer is found from the equation (see [38],[I0]) 

dt,~+z I ~r ~hh dAh(tn) 
max ~ 1 = max ~-~ dtn ~ 1 (5.21) 

Using (5.19),(5.20) we obtain the full width (both sides of separatrix) of the 
stochastic layer in stream function: 

h,t = v~(M+ + M_)ez/~ (5.22) 
4r2~ 

Evaluating the constants (see (5.20),(D.IS),(D.19)) we find for the first (inner) 
triple of saddle points: 

Ahz = 0.33e 1/2 (5.23) 

and for the second (outer): 
Ah2 = 0.29e 1/2 (5.24) 

The visible width of the layer, i.e. its space width on a plane, near the saddle 
points is given by 

Az = IAhl~" l  ~12 (5.25) 

where the derivative is taken along the direction transversal to the bisectrix of 
the angle between the separatrices. Separatrices of the system are very close to 
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each other, see Fig. 6, 7 and (5.13),(5.14), and for fairly small e = e0 ~ 10 -6 
their stochastic layers merge together (see Fig. la), which puts a limit for the 
use of (5.22). We also have to keep in mind, that in reality the stochastic layer 
grows not smoothly, but step by step, absorbing thin stochastic layers around 
the island chains of the resonances just outside the main layer. Figure 7b shows 
the zoom of the outer stochastic layer near the saddle point for e -- 2.4 10 -7. Its 
width agrees with (5.25) up to the factor 1.5. 

6 Conclus ion  

The main goal of the article was to provide a complete study of advected particle 
dynamics in the 3-point-vortex system. Applying different tools of the Hamil- 
tonian chaos theory it was possible to estimate and derive different zones of 
stochastic and regular motion of a tracer particle. The most important situation 
is related to the generic case, when geometry of the vortices is on one hand not 
too close to the equilateral triangular, and on the other hand the distances be- 
tween all three of them are still of the same order of magnitude, i.e. the system is 
not degenerated into perturbed two-point-vortex flow. In this case advection is 
strongly chaotic - -  the flow created by vortices has a large mixing region. How- 
ever, there exist holes in the stochastic sea - -  non-mixing cores around vortices. 
External advected particle cannot approach any vortex closer than a critical dis- 
tance ~c, while the particle originally inside such a hole, ~ < ~c, cannot escape 
from there. Moreover, in generic case ~c weakly depends on the initial geometry 
of 3-vortex system. This result explains different simulations where such holes 
were observed. 

We also show that there exists stickiness of the advected particle to the bound- 
ary of the holes. This part of results is important for the problem of transport 
of particles, and it will be discussed in more detail elsewhere. 
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A E q u a t i o n s  for  a p o i n t  v o r t e x  t r a j e c t o r y  

Here we derive equations for the trajectory of point vortex (2.10) from Helmholtz 
equation (2.8). To do so, we substitute in (2.8) expressions for vorticity in the 
form (2.4) and velocity in the form (2.7) and obtain: 

k y - ~1 0 ¢ R  

k~'(x - xl)6(u - ul) - i l  + 2~ (~ - ~)2 + (y _ ul)2 + -~-~] + 

k~(x - ~,)~'(y - y~) -yl - 2~ (x - ~,)~ + (u - ul) 2 ~ ) + 

Own 
+ (vnV)~n+ 

where 
02¢n 02¢n .ben OCn 

~R= 0x~ 0y~ ; v R - ( ~ ,  O=) (A.2) 

are regular parts of vorticity and velocity at (xi, Yi)- Multiply this equation by 
z - Xl and integrate over a circle of small radius e centered at (xi, Yl). Taking 
the limit e --~ 0 we get 

xi - OCn (A.3) 
Oy 

which is the first equation of (2. I0). Multiplying (A. I) by y-Yl, integrating over 
the same circle and taking the limit e --+ 0 we get the second equation of (2.10): 

OCn (A.4) 
z)i - 0 x  

B D y n a m i c s  o f  t h r e e  p o i n t  v o r t i c e s  

In this section we obtain solution (3.14) of the equations of motion (3.2) of 
three point vortices of identical strength and polarization. We use the change 
of variables, introduced in [36], and repeat the derivation of the solution for the 
area variable I(t) (see (B.18) below), presented there. Finally, we write down 
expressions for the "configuration angle" el(t) and "rotation angle" ¢2(t) (see 
(B.30), (B.32)), so that the positions of vortices as functions of time (3.14), get 
completely specified. 

Let us start from the equations (3.2): 

k 1 
- 4" = 2~ri (zm zj)' (j,m = 1,2,3) (B.1) 

rnCj 
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As it was mentioned in the text, this is a Hamiltonian system with three inde- 
pendent integrals in involution. They are: Hamiltonian function itself 

1 
H = -4--- ~ ~--~ lnlz,~ - z~l ~, (j, rn= 1,2,3),  (B.2) 

j # r n  

and two quadratic invariants: 

and 

3 

Q2 + p2= Z z,z~ (B.3) 
i,j=l 

3 

L2 = Z [zj [2. (B.4) 
j----1 

The quadratic forms Q2 + p2 and L 2 can be simultaneously diagonalized by the 
following transformation to the new variables Qn, P . :  

3 
L Qn + iPn = --~ Z ei(2"~"/a)(j-t)zJ (n = 0, 1, 2) (B.5) 

which can be regarded as a discrete Fourier transform of an array of vortex 
positions. New variables have canonical Poisson brackets: 

[Q. ,Pm] = 6.m, [Q., Qm] = 0, [P. ,Pm) - 0, (m, n = 0, 1,2). (B.6) 

For n = 0 the transformation (B.5) shows that Q0 and P0 are proportional to 
the coordinates Q and P of the center of vorticity (3.6): 

Qo = Q/v'~, Po = P/v'~ (B.7) 

and are identically equal to zero, since we agreed to chose the origin of coordinates 
at the center of vorticity. 

We have already reduced the number of variables to only two pairs (Q. ,  P,~), 
n = 1, 2. It is convenient to use polar coordinates (.In, On) instead, defined by: 

2~e  i°" =- Qn + iP , ,  

because the invariant (B.4) is linear in J1, J2: 

L 2 = 2(gi + J2) 

(n = 0, 1,2) (B.8) 

(B.9) 

Vortex positions in terms of (Jn, 0,0 are given by an inverse Fourier transform 
of (n.5): 

2 
L 

zj -- vf ~ ~ 2V/~ei°"e -~i"Kj-1)/s (j -- 1, 2, 3) (B.10) 
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Substitution of (B.10) to (B.2) yields the Hamiltonian function in new variables: 

k ln[8(g 3 + j3  _ 2(J1j2)3/2 cos 3(02 - 81))] (B.11) H = -~-~r 

with Poisson brackets 

[J,n, 8,] = 6m,, [J,~, J , ]  = 0, [Sm, 8,] = 0, (m, n = 1,2) (B.12) 

Since (B.11) depends only on the angle difference ¢1 - 82 -81,  new canonical 
variables are useful: 

11 = (J2 - J1)/2; ¢1 - 82 - 81; (B.13) 
12 = (J2 + J1)/2; ¢2 = -  82 "t- 81; 

It follows from (B.9) that Is = L2/4  is an integral of motion. Indeed, Hamilto- 
nian, expressed in new variables 

k 1n[16(I2(I~ + 3I~) - ( I ~  - I21) 3 /2  cos 3¢1)] (B.14) H=-~ 
does not depend on ¢2. Variable [1 has a geometrical interpretation, which is very 
helpful in the analysis of the types of vortex motions. From (B.5),(B.8),(B.13) 
it follows that 

/1 = crA123/Vf3 (B.15) 

where A123 is the value of the area of the triangle with vertices in the current 
position of the point vortices (vortex triangle), and ~r : 4-1 is the orientation, 
which we chose to be a = +1 for the counterclockwise arrangement of vortices 
with m : 1, 2, 3 along the perimeter of the vortex triangle, and cr : - 1  
otherwise. 

The equation, governing the dynamics of 11, follows from (B. 14): 

] 1  - 0/4 _ 12e4""-- (I~ - I~) 3/2 sin 3¢, (B.16) 
0¢1 r 

Now we will use the geometrical parameter A defined in (3.11) 

h = IZl - z211z2 - z311z3 - z l l l L  3 = e - 2 , ' H  ( B . 1 7 )  

instead of the value of the Hamiltonian H, and introduce new "area-variable" by 

I - (I1/I2) ~ = (16/3)A~23/L 4 (8.18) 

Using (B.14), we can exclude the angle ~bl and get the equation for I only: 

( d I ~  = _1113 + 612 + 3(3 - 8A2)I + 8A2(2A 2 - 1)] - P4(I; A) (B.19) 
2 

d r ]  
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Figure 8: Roots of the cubic (B.21) vs. A. 

where the rescaled time variable r is: 

3 
r - 2~rA~L 2 t (B.20) 

Dynamics of I1 coincides with the motion of a particle of mass 2 in the poten- 
tial -P4(I;A) with zero total energy, equation (B.19) being a law of energy 
conservation. 

The potential -P4( I ;  A) has zeroes at I = 0 and at I = I("), where I(") are 
the roots of the cubic in (B.19): 

I(n)(A)=2[(l+8A2)l/2cos(1/3(2~rn+~5))-l],  n =  0,1,2 (B.21) 

with 
cos$(A) = ( -8A 4 - 20A 2 + 1)/(1 + SA2) 3/2 (B.22) 

They are always real and satisfy 1 (1) < I (2) < I (°). As A grows from 0 to 1, 
the largest root I(°) increases from 0 to 1, 1 (2) increases from - 3  to 1, and I (1) 
decreases from - 3  to -8 .  At A = Ac = 1 /v~  root I (2) crosses zero, this value 
corresponds to the unstable collinear configuration I = 0 (saddle point), and 
aperiodic separatrix motion (see Fig. 8). 

To write down the solution of (B.19), we arrange the zeros of potential in 
decreasing order, defining 

j(0) = i(0), j(1) = max{0, I(2)}, j(2) = min{0, IO)}, j(a) = 1(1) (B.23) 

Now I(t) can be expressed in terms of Jacobi elliptic functions: 

rio) _ j(a)c~2sn2 (~r) 
I(r; A) = 1 - a2sn2(Tr) (B.24) 
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where 
as  = (j(o) _ j (1) ) / ( j (3)  _ jO) )  
,7 _- (1/2)((j(o) _ j (2) ) ( j (D _ j(3)))1/2 

and modulus of the Jacobi elliptic function is: 

(B.25) 

~¢ = [ ( j (0 )_  jO)) ( j (2)  _ j (a))l /[( j(o) _ j(2))(j(1) _ j(3))] (B.26) 

Solution (B.24) is periodic with period T equal to: 

4rr A2L 2 K(t¢) (B.27) 
T(A) = 3 k 3, 

where K(t¢) is the complete elliptic integral of the first kind. During the motion I 
stays between J 0 )  and j(0), it never reaches 0 for A < Ac, and does periodically 
for h > Ac. 

Case A -- Ac is special, (to -= 1, period (B.27) has a logarithmic singularity), 
there is an unstable equilibrium solution I -- 0, and a family of aperiodic soliton- 
like solutions given by: 

- 1  

I =  l + ~ c o s h ( v f 3 ( r - r 0 ) )  = l + ~ c o s h  2--~-~( t - t0)  

(B.28) 
where r0 (or to) corresponds to the center of the soliton and the scaling (B.20) 
was used with A s = A~ = 1/2. 

After one period T the vortex triangle repeats its shape, but the vortices get 
redistributed among the vertices of the triangle. It takes several periods T to 
return to the initial arrangement. This time defines the period of relative motion 
of the vortices, when the initial order of the vortices is restored, and is equal to: 

2T if 0 < A < A ¢  (B.29) 
Trot(A)= 3T if A c < A < I  

To specify the motion completely, we have to supply expressions for the angle 
variables Cx and ¢2. Conservation of H immediately yields for the "configuration 
angle" Cx: 

cos 3¢1 = (1 + 31) - 4A ~ (B.30) 
( 1  - I)al 2 

For "rotation angle" ¢2 we have to go back to Hamiltonian in the form (B.14), 
from which we get: 

¢2 - OH _ 3 4A 2 - 12 - 3I (B.31) 
0I~ 4rA2L 2 1 - I 

Using (B.19) we can rewrite it as a quadrature: 

l(t) 4A ~ _ I  2 _ 3 I  

¢2(t) = 2(I - l)x/P4(l ) 
eli (B.32) 
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where polynomial P4(I; A) is defined by (B.19). 
During one period of relative motion, vortex triangle rotates by an angle 

O(A) -- ¢2(Tret) - ¢2(0), which can be found using (B.32). This defines the 
frequency of rotation of the vortex triangle: 

f l  -= O ( A ) / T , - e z  = (¢2(T, - .1)  - ¢ 2 ( 0 ) ) / T , - . t  (B.33) 

Finally we perform the inverse transformations, and write down an expression for 
vortex positions, similar to (B.10), in terms of constants of motion and functions 
I(t), Cx(t) and ¢2(t) defined by (B.24), (B.30) and (B.32): 

zm(t) = --~6 ei¢2(t)/2 [(1- I1/2(t))'/2e-2"i('n-1)/Ze-i¢l(t)/2q- 

-4-(1 -I- I1/2(t))l/2e-4'd(m-D/aei4~'(t)/2] , (m = 1, 2, 3) (B.34) 

C Derivat ion of adiabatic  invariant 

Here we derive the adiabatic invariant (4.22) and generating function (4.21) of 
the corresponding coordinate transformation. 

Let us start from the stream function (4.14), expressed through the zero order 
action-angle variables (4.19),(4.20), considering slow time-dependence of ~',,~p to 
be frozen: 

~(J, O;t) = Ho(g) + eHl(J, O;t) (C.1) 

with Ho(J) obtained from (4.15),(4.19): 

1 Ho(J) = -~-~ In 12J[-  OJ 

and Hi(J, O;t) from (4.16),(4.19),(4.20): 

1 [ 
HI(J,O)-- -4--~ Z lnliei~ ~ X / ~ -  z'~Pl~ + 

rnCp 

ie'° l~/~l i~-'o l,/~l" 
Zmp Zmp 

(c.2) 

(c.3) 
A parameter e in (C.1) has been introduced to keep track of the order of different 
terms. It will be put e = 1 in the end of calculation. 

Below we follow canonical perturbation theory (see [39] for the details of the 
method). Let us look for a transformation with generating function 

s(J ,  o) = Jo + , & ( Z  o) + . . .  (C.4) 

such that, in new variables the Hamiltonian 

# ( Z t )  = #o(J) + ,# l ( J )  + . . .  (c.5) 
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does not depend on new angle up to the first order, and it depends adiabatically 
on time through zmp. From (C.4) we get a coordinate transformation: 

J = j4-eOSl(_,O).7 4-...  
80 

0 = o -  0 s l ( ( , o )  + . . .  (c.~) 
OJ 

so that Hamiltonian (C.5) is: 

/4(J; t) = H(J(J,O),O(J,O)) - U0(J) + eUl(J, 0) + e w ( J ) ~  4-. . .  (C.7) 

where we have used the frequency (4.18) 

¢0(]) = OHo (C.8) 
0J 

Now we expand Hi(J, 0) (the second term in (C.7)), defined by (C.3) (we can 
put 0 = 0 in the first order), in Fourier series in 0, and introduce the averaged 
part: 

1 fo ~ 1 < H1 >=- ~ doll, (J, g) = - ~  B I n  ]~,,,,I 2 (C.9) 
rnep 

and the oscillating part: 

1 [ '2J'e2'e z2mp l {Hi} =- H i -  < Hi>= -4---~ B 4-c.c. 4-. . .  (C.10) 
rn~p 

where the dots in the last formula stay for the higher harmonics. 
Since we require, that/~l(J)  in (C.5) does not depend on 0, (Hi} should get 

cancelled by the third term in (C.7), and we have the equation for the generating 
function S1: 

w(j) cOS1 = - (Hi}  (C.11) 
00 

which yields (4.21): 

[ 1  '2J[ e2ie ] 
S(J,O) = J O +  ~ ~ ~,~-----~4-c.c. (C.12) 

mz~p 

Substituting it to (C.6), we obtain (4.22) for the first order adiabatic invariant J. 

D S t o c h a s t i c  l a y e r  w i d t h  for  t h e  c a s e  A ~ 1 

Solutions to the first order  in 1-A. As a first step to obtain the positions 
of the vortices up to the lowest order in e (5.5), we expand the solution (B.24) of 
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equation (B.19) in powers of e. Using (B.21),(B.25),(B.26) we get: 

a2 32v~ea/2 256V r~ 3/2 
= - 8-"i~ + O(e2); ~ = 3/2 + O(e); ,¢ = 8--~-¢ + O(e 2) (D.1) 

and substituting to (B.24) obtain: 

I(t) = 1 - 8/3e + O(e 3/2) (D.2) 

Substituting the above expression into (B.30) we find 

cos 3¢1 = cos 3r (D.3) 

and taking into account that ¢1 oH = --0--E > 0 we get 

¢1 = r (D.4) 

From (D.2) and the expression for ¢2 (B.32) it follows that up to the irrelevant 
constant phase 

¢2 = ,"  (D.5) 

Collecting everything (see (3.14)) we obtain (5.5): 

L [ 4-,cm n 1/2 ,,, \ 

where we have used definition (B.20) with h = 1. 

Asympto t i c s  of  the  f requency.  The asymptotics of the frequency of near 
separatrix solution is defined by the motion in the neighborhood of the saddle 
point, in other words the period of motion is approximately equal to the time 
required to pass through this neighborhood. We introduce 

= ~"- ~;,,t (D.7) 

the distance from the saddle point, and expand stream function ~o (5.4) in its 
neighborhood (using definitions (5.2),(5.7)): 

1 [z, - 2 z ,  p 
~ ( ~ , C ) = ~ / + ~ [  + ~ C + O ( ~  3) (D.8) 

This expansion can be rewritten, using definition (5.15) as 

h = a~ ~ + 2b~* + a*~ *~ + O(~ 3) (D.9) 

where 
- 4  _ 2 ~ . , , 1 p 3  1 z,,Z 

a ~ b - D/4 (D.10) 
8~ s,~,, - ~ ' 
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Hamiltonian (D.9) describes hyperbolic rotations with increment (decrement) 

A = 4 x ~ [  2 - b 2 (D.11) 

and for the time to pass the saddle point we have: 

log Ihl (D.12) T(') ~ - - - - ~  

which is equivalent to (5.20). 

and 

M e l n i k o v  in tegra l .  To evaluate Melnikov integral, we use 

b~'o k 3~ 2 f~ ~, 
0--~-- - 4~r ~,3 _ p--------~ + ~ z  (D.13) 

c~1 _ k61/2p 2 p3 + 2~,.3 e ifu (D.14) 

Substituting (D.13) and (D.14) into (5.18) and shifting integration variable we 
get: 

Ah(tn; ~n) = 
/_+oo p3 q_ 2,~,3 

k(6e)l/2p2Im[e-ifu" eiflt(5,3_p3)2( k 3z2 

In this expression ~'~ep(t) is a solution of the unperturbed equation (5.10) on 
the separatrix, centered at t = 0. Particular branch of the separatrix is picked 
by ~rn = 4-1. By an appropriate rotation the separatrix solution can be made 
symmetric with respect to the real axis, ~'(-t) = ~," (t), so the value of the integral 
in (D.15) is real and we have 

Ah(t,) = k (6e)l/2p~ sin fttnMa. (D.16) 

where constants M~. are defined by the integral: 

I +~  3 + 2 5 " 3 (  ) Ma.  - 2Re e iNt p k 3z 2 ~ ~, (~7e~-~2 ~-~ ~--'p3 + 7 z dt (D.17) 

with £~P (t) taken on the corresponding separatrix branch. Numerical evaluation 
of (D.17) gives for the inner separatrices: 

M+ = 1.70; M_ = 0.560 (D.18) 

and for the outer: 
M+ = 0.537; M_ = 0.790 (D.19) 
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Conditions I Ia ,b ,c  formalize the requirement that  the direction of the 
gradient of the potential must be normal to the boundary as e ~ +0. Ob- 
viously, this is necessary for having a proper reflection law in the limit: if 
the reflecting force has a component tangent to the wall, then the tangent 
component p~ of the momentum will not be preserved during the collision 
(see (2.2)). 

Now we may describe the rapid growth of the potential across the bound- 
ary in terms of the barrier functions Wi only. Choose any of the arcs Si and 
henceforth suppress the index i. Without loss of generality assume Q = 0 
on S. By (2.10), the pattern function Q is monotonically increasing across S 
and we assume Q is positive inside D near S and negative outside (otherwise, 
change inequalities in (2.12) to the opposite ones). Assume 
I I I  As e ~ +0 the barrier function increases from zero to infinity across the 
boundary Si : 

lim W(Q;  e) = { +co O < 0 (2.12) 
,~+o 0 Q > 0 

Note that  according to I. and I Ib . ,  for any Q0 > 0 

lim IIW(Q, ~)lq>Q011cr+, -- O. (2.13) 
e~+0  

Clearly, it will cause no troubles if one allows W to take infinite values: 
by (2.11), the function W is monotonic and if it is infinite at some Q, it is 
infinite for all smaller Q; on the other hand, trajectories always stay in the 
region where W is bounded: since the energy given by (2.5) is conserved, the 
value of the potential is bounded by the initial value of H. We will study 
limiting behavior (as e --* +0) of the smooth Hamiltonian system (2.5) in a 
given, fixed energy level, H = H*. This implies that  all trajectories stay in 
the region W < H* for any e. It follows that  the symbol +c~ in (2.12) may 
be replaced by any value greater than H*. 

It is immediately evident that  the particle in the potential V satisfying 
condition I moves in the interior of D with essentially constant velocity along 
a straight line until it reaches a thin layer near the boundary S where the 
potential runs from small to very large values (the smaller the value of e, 
the thinner the boundary layer). By virtue of condition I I I ,  if the particle 
enters the layer near an interior point of some boundary arc (corner points are 
not considered in this paper), it can not penetrate the layer and go outside - 
because fixing the value of the energy bounds the potential from above. Thus, 
the particle is either reflected, exiting the boundary layer near the point where 
it entered, or it might, in principle, stick into the layer, traveling along the 
boundary far away from the entrance point. As simple arguments show (see 
the proof of theorem 1 below), condition I I  guarantees that  when a reflection 
does occur it will be of the right character, approximately preserving the 
tangential component (p~) of the momentum and changing sign of the normal 
component (p~). However, as argued below, and shown by an example in 
Appendix A, conditions I - I I I  are insufficient for preventing the existence of 
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1 I n t r o d u c t i o n  

Magnetic confinement of a plasma (for the purpose of controlled thermonuclear 
fusion) is realized in tokamaks or stellarators by a magnetic field ideally struc- 
tured by a set of nested toroidal magnetic surfaces. These are wound around 
a circular magnetic axis. The successive surfaces are labelled by the values of 
any surface quantity (i.e., a quanti ty tha t  is constant on a magnetic surface) 
• , playing the role of a radial coordinate. Each magnetic field line is tangent 
everywhere to a magnetic surface. Any point on such a surface is characterized 
by two angular coordinates: the poloidal angle 0 (the short way around the 
torus) and the toroidal angle ( (the long way around the torus): for convenience 
these angles are measured in radians divided by 27r. 

To put  the matter  into quantitative form, we consider first this ideal (un- 
perturbed) situation We choose for the radial coordinate ~ the toroidal flux ~, 
i.e., the magnetic flux through a surface perpendicular to the magnetic axis; for 
convenience, this quantity is made dimensionless by introducing ¢ = C/Boa 2, 
where B0 is a characteristic magnetic field amplitude, and a is the minor radius 
of the tokamak. In the case of a circular torus, we have simply ¢ = r 2, where r 
is the dimensionless radial coordinate (scaled with a). The magnetic axis thus 
corresponds to the value ¢ = O, and the edge of the torus to  ¢ = 1. The 
(stationary) magnetic field B(x)  must satisfy the two constraints expressing its 
divergence-free nature, and its tangency to the magnetic surface ~ ( x )  --- const: 

v .  B = O, B. V¢ = O. 

The magnetic field satisfying these constraints is conveniently represented 
in the well-known Clebsch fo~n [1] - [3]: 

B = V~b x V0 - Va0 ($b) x V(, (2) 

where the surface quantity ~0(¢) is the (dimensionless) poloidaI flux [the mag- 
netic field and the gradient operators are also made dimensionless by scaling 
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them with B0 and a, respectively]. From this equation one finds the equa- 
tions for the magnetic field lines expressed in the coordinates (¢, 0, () by using 
elementary geometrical formulae [3]. Using the toroidal angle as a running pa- 
rameter, a field line is characterized by the two functions ¢(~), 0(Q obeying 
the following differential equations: 

de _ 0oo dO _ Oao (3) 
d(  0 0 '  d(  0¢ 

As noted by many authors (e.g., [4] - [7]), the field line equations have Hamil- 
tonian structure: O-o plays the role of the Hamiltonian, ( the role of "time", and 
¢ and 0 appear as a pair of canonical variables [this property justifies the choice 
of ¢ as a radial coordinate]. In the unperturbed case, when t~0 is a surface 
quantity, depending only on ¢,  Eqs. (3) represent a 1-degree of freedom, hence 
integrable dynamical system: 

de O, dO W(¢),  (4) 
d~ 

where the winding number (also called the rotational transform) is defined as 
folows: 

w(¢)  = 0~0(¢) (5) 
0¢ 

[In the plasma physics literature, this quantity is often denoted by ~/27r; 
its inverse q = 1 / W  is called the safety factor[. Clearly, ¢ is analogous to an 
action variable, a constant of the motion; the associated angle variable increases 
linearly in time. 

The ideal structure described here is, however, strongly modified whenever 
some perturbation is present: the latter can be due to external features (such 
as imperfections in the coils producing the magnetic field) or to internal fac- 
tors (i.e., instabilities or fluctuations). The topology of the magnetic field is 
then strongly modified: there appear island chains, together with undestroyed 
(but deformed) magnetic surfaces called K A M  barriers, and in between these 
features there exist chaotic orbits filling a 3-dimensional region of space. This 
incompletely chaotic structure is generic for tokamaks; its understanding is a 
prerequisite for any realistic study of transport in such devices. 

The perturbed magnetic field is conveniently represented in the Clebsch form 
(2), in which the unperturbed Hamiltonian is replaced by a function of all three 
coordinates: 

a0 --* a = a0(¢) + K ~a(¢, 0, (). (6) 

The perturbation Hamiltonian K 6a is a 1-periodic function of the angles 0 
and (. The real, positive parameter K,  is called the stochastieity parameter: it 
measures the strength of the perturbation. The corresponding equations of the 
field lines are now: 
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__de _- - K 0 6 c ~ ( ¢ , 0 , ~ )  

d(, O0 ' 

d8 W(¢)  + g 0~fe(¢,0,;)  (7) 
d~ 0¢  

These are the equations of motion of a 1½ degrees of freedom dynamical 
system, which is, generically, non-integrable. This explains the appearance of 
the features described above. 

o o o  

wl t 

t 
or-t  o 

t 

W4 t 
0 0 0  

1 

0.0 

OOt ,O01t, O02t,OO3t,O04 t 

Fig. 1. Typical phase portrait of unperturbed system (polar representation). 

The nature of the orbits is best studied by considering a Poincar4 section 
on a plane perpendicular to the magnetic axis. For simplicity, we assume the 
cross-section of the torus to be circular. The Poincar4 section of the unperturbed 
system consists of a set of concentric circles (coresponding to ergodic magnetic 
surfaces or KAM barriers) interspersed with discrete points (corresponding to 
rational values of the winding number) [Fig. 1]. An alternative graphical rep- 
resentation, which often provides a clearer picture, is obtained by making a 
cut starting from the center (magnetic axis), pulling the two lips apart, and 
expanding the point representing the magnetic axis into a line; after a mirror 
reflexion we obtain a square diagram; the radial coordinate ¢ is represented on 
the vertical axis (0 < ¢ _< 1), and the poloidal angle is given, modulo 1, on 
the horizontal axis (0 _< 8 _< 1) [Fig. 2]. The singularity connected with the 
representation of the magnetic axis will be discussed below. 
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2 Construction of  the tokAmap 

The solution of the field line equations (7) requires a very heavy numerical 
effort for achieving sufficient precision in the non-integrable case. It is therefore 
useful to construct simplified models based on discrete iterative maps rather  
than  on differential equations in order to describe the Poincar6 section of the 
magnetic field. With this mathematical tool, very long orbits are easily obtained 
even with a modest personal computer. It is generally not a simple mat ter  to 
construct a map that  is exactly equivalent to the starting differential equations 
(this would imply the solution of the latter, which is precisely what we want to 
avoid). One may wish to construct,  instead, a model ab initio, and check its 
relevance a posteriori. 

1 

0.9 

~t 0.8 
0 0 0  
~1 t 0.7 
- • -0 .6  

~2t  0.5 
o o D  

3 0.4 

• 4 t 0.2 
0 0 0  

0.1 

D 0 ~ 0 0 0 0 

. . . .  

00.10.20.30.40.50.60.70.80.9 1 

0 t , 0 1 t ,  0 2 t '  0 3 t '  04t 

Fig. 2. Same as Fig. 1, "square representation". 

Several authors have introduced maps representing various aspects of mag- 
netic confinement devices. Punjabi, Boozer et al. [8] - [10] studied the X-point 
in a poloidal divertor geometry of a tokamap by means of very simple algebraic 
maps. Abdullaev and Zaslavsky studied the same divertor problem by means 
of a more sophisticated "separatrix map" [11], [12]. Abdullaev et al. recently 
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constructed a map representing the effect of the dynamic ergodic divertor [13]. 
All these works are models of the edge region (scrape-off layer) of a tokamak. 
A global model of a specific stellarator (W VII-A) was introduced by Wobig in 
an important  work [7] (see also [141). 

In the present work we construct a global model of the magnetic field in 
a tokamak by means of an iterative two-dimensional (~,/9) map. Such a map 
connects the values of the phase-space coordinates at "time" ( = v + 1 to their 
values at '%ime" ( : v, where v is any non-negative integer: v = O, 1, 2, ...: 

Cv+l = P(¢o,/9,,), /9,,+1 = O(¢v,/9,,). (8) 

We hope that  such a relatively simple model can be used as a start ing point 
for the study of anomalous transport  in an incompletely chaotic regime as pre- 
vails in a real tokamak. 

The construction of such a map should satisfy a certain number of con- 
straints. The  first of these requires tha t  the Hamiltonian structure of the dif- 
ferential equations (7) be reflected in the structure of the discrete model, which 
should be a Hamiltonian (or sympleetic) map. The clearest way of constructing 
such a map starts from the fact [15] tha t  in a Hamiltonian evolution the values 
of the canonical variables {¢v+l,/gv+l}at t ime (v + 1) are connected to their 
values {¢v,/gv}at time v by a canonical transformation. Such a transformation 
can be defined by means of a generating function of the new momentum and of 
the old angle [7]: 

F(%bv+l, Or) : ~[)v+l/gv -t- f ( ¢v+ l ,  Or). (9) 

The first te rm in the right hand side corresponds to the identity transfor- 
mation. The transformation equations are: 

OF(~bv+l,/gv) Of(%bv+l,/9,,) 
Cv - OO,, - ¢~+1 + a0~ ' 

Ov+l = OF(¢v+l,0v) = Ov + Of(!l~v+l,Ov) (mo d l )  
O'~v+l 0'~.+ 1 

(10) 

These equations define the map in a semi-implicit form (the explicit form 
is obtained by solving the first equation for Cv+l). The unperturbed map is 
obtained by taking: f ( ¢v+ i ,  0v) = F0(¢v+l).  We then obtain: 

Cv+l = Cv: /9.+1 =-/gv + W(¢v+l)  (rood 1). (11) 

This map represents the exact solution of the integrable Hamiltonian system 
(4). Indeed, Ibv remains constant and/gv increases by W(¢ )  upon each iteration 
(i.e., upon a toroidal turn of 21r). The winding number is simply related to the 
generating function: 

W(¢) = aFo(fJ) (12) 
0¢ 
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The phase portrait of this map is of the type of Figs. 1 or 2. For all the 
values of ¢ such that  W(¢)  = ~ (n, p E Z ), the p-th iterate coincides (modulo 
1) with the starting point, i.e., we have a p-periodic orbit represented by a chain 
of p discrete points. For all irrational values of W, there is a K A M  barrier, i.e. 
the orbit fills densely a horizontal segment in Fig. 2, or a circle around the origin 
in Fig. 1. The location of these features depends, of course, on the shape of the 
winding number function W(¢).  Whenever this is a monotonous (growing or 
decreasing) function, Eq. (11) is called a simple twist map. 

We now introduce a perturbation by considering a generating function of 
the form: 

F(~b~+I, 0v) = ¢~+10~ + F0(¢~+1) + K 6F(¢,+1,0v),  (13) 

where K is the stochasticity parameter introduced in Eq. (6). The map (11) 
becomes: 

¢v+1 = ~ + K h ( ¢ ~ + l , 0 ~ ) ,  

Ov+l = Or + W(¢~+I) + gj(~Zv+l,0v). (14) 

From Eq. (10) we find the following definitions: 

0 5F(¢.+~ ,0~) 0 ~iF(¢~+l, 0~) (15) 
h ( ¢ ~ + ~ , 0 . )  = - 00,. , j(~O~.+~,O,.)= 00~+~ 

It follows that: 

0 h ( ¢ ~ + i , 0 . )  0 j ( ¢ v + l , 0 v )  
+ = 0. (16) 

Eqs. (14) with the functions h and j interrelated by Eq. (16) is the gen- 
eral form of a HAMILTONIAN MAP. It is easily checked that  this map is area- 
preserving and possesses the symplectic property [16]. 

A simple realization of these constraints is obtained by taking h = h(Ov), 
J = J(¢v+1): this corresponds to a general tudst map. The fact tha t  each function 
depends on a single variable greatly simplifies the analysis: the maps studied 
in most textbooks are of this type. An even more specific case is obtained by 
taking h(O) = -(27r) -1 sin 27r0 and j (¢ )  -- 0: 

K 
Cv+l = Cv ~ sin 27r0v, 0v+l = Ov + W(~kv+l). (17) 

Choosing also W(¢)  = ¢ we obtain the celebrated Chirikov-Taylor standard 
map studied by a great number of authors (e.g.: [17], [16], [181). 

The standard map is, however, not a faithful model of a tokamak, for several 
reasons. In the first place, the safety factor profile q(r) is, in most tokamak 
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experiments, a monotonously growing function of r ,  hence of ¢ = r 2. 1 Typically, 
the safety factor on the magnetic axis is q(0) = 1, and at  the edge: q(1) --- 4. 
The value on axis may, however, be smaller q(0) < 1: this has an important  
effect on the properties of the discharge. It  follows that  in a tokamak the winding 
number is a monotonously decreasing function of Ib: this is just  opposite of the 
s tandard map 2. The  map (17) with a monotonous W-profile will be referred to 
as the standard twist map. 

A useful analytic form for this profile was derived by Misguich and Weyssow 
[19], by assuming tha t  the density and electron temperature  profiles in the 

tokamak are, respectively, n(r)  = n(0) [ 1 -  r 2] and T~(r) = T~(O) [ 1 -  r212; 
one then obtains, in the large aspect ratio limit: 

w (2 - ¢)  (2 - 2¢ + ¢2). (18) w ( ¢ )  = 

Here the positive constant w = W(0) is the value of the winding number 
on the polar axis. By default it is taken equal to 1; however, the influence 
of its variation will be discussed below. It  is easily checked that  W ( ¢ )  is a 
monotonously decreasing function, reaching the value w / 4  at the edge. 

The standard twist map does not yet fulfill all the requirements for a faithful 
tokamak model. I t  follows from its geometrical meaning tha t  the coordinate ¢ 
must  be a definite positive number; it may vary in the range 0 _< ¢ _< r/2, where 
r I = (R /a )  is the aspect ratio of the torus, i.e. the ratio of the major radius to 
the minor radius. An indispensable condition is thus: 

If ¢ 0 > 0 ,  then ¢ ~ > 0 ,  Vv. (19) 

On the other hand, the polar axis represented by ~b = 0 plays a special (sin- 
gular) role in the toroidal (or cylindrical) geometry: As the radial coordinate 
can admit no negative values, the axis ¢ = 0 represents (in the "square" rep- 
resentation, Fig. 2) a barrier tha t  can never be crossed. This condition can be 
satisfied when the polar axis is globally invariant: an orbit starting on the axis 
remains forever on the axis: 

If ¢0----0, then ¢ ~ = 0 ,  Vv. (20) 

The no-crossing condition can, however, also be realized more weakly, by 
requiring that  a point starting on the axis may either remain on the axis or 
move to  a positive ¢ (but never to a negative ¢) ,  thus: 

If ¢0 = O, then ev  > O, Vv. (21) 

l I n  recent exper iments  one produces  a locally "reversed shear" ,  i.e., a m i n i m u m  of q(r) 
near the  magnet ic  axis; this has a beneficial effect on  t ranspor t .  In this case one has  also 
q(1) > q(0). This  reversed shear  configuration can easily be  implemented in our  map,  bu t  will 
not  be discussed in the  present article. 

2Note, however t ha t  in a stellaxator the  winding number  is an  increasing function of  q), 
t hough  not  as  s t rongly as in the  s tandard  map.  Wobig [7] models the W VII-A stellarator 
wi th  W ( ¢ )  = ~0 + 0.01¢: a very small shear, indeed. 
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The standard twist map does not satisfy any of these conditions. It is well 
known that ,  for K > 0, an orbit starting at  ¢0 = 0 travels through both positive 
and negative values of ¢ .  Moreover, (in the globally chaotic regime), the orbits 
are 1-periodic in ¢ (as well as in 0), hence ¢ --- 0 plays no special role: there is 
no unique polar axis in this map. 

Wobig [7] took a first step towards solving the problem posed by the geo- 
metrical constraints by making the following ansatz for the generating function 
in Eq. (13): 6F(¢~+l,Ov) = -(2~r)-2¢~+1 cos2~r0~; using Eqs. (14), (15) we 
obtain: 3 

K 
Cv-{-1 ----- C v -  ~ C v + l  sin 27r0~, 

K 
0~+1 : 0~+W(¢~+~)  '21r'---~, / cos27r0~. (22) 

This Wobig map satisfies condition (20); it violates, however, condition (19) 
in a certain domain. Indeed, the explicit form of the first equation (22) is: 

¢~+1 = ¢~ (23) 
1 + g sin 27r0~" 

Clearly, whenever K > 27r, ¢v+1 becomes infinite for a certain value of 0u 
and is negative for a range of 0~ for all Cv. Thus, Wobig's map cannot be 
accepted as a model valid over the whole parameter range 4 

We propose here an alternative ansatz for the generating function 5: 

which yields the ~llowing map: 

1 ~v+l  
(27r) 2 1 + ¢~+1 

cos 27r0v, (24) 

¢~+1 = ¢~ K ¢~+-----L--1 sin 2rOv, (25) 
2W 1 + ¢~+1 

K 1 
Ov+1 = 0,, + W(¢v+1) - (27r)2 (1 + ¢ ~ + i )  2 cos27r0~. (26) 

The winding number profile considered here will be the one defined in Eq. 
(18), which depends on the parameter w. It should be clear, however, that  
the shape of W(¢)  should be considered as being open to variation for studying 

3Ins t ead  o f  (2~r) 2 cos 2wOu, Wobig  used  a m o r e  genera l  per iodic  func t ion  o f  0v. T h i s  does  
no t  c h a n g e  o u r  fo r thcoming  a r g u m e n t .  

4Wobig  c o n s t r u c t e d  his  m a p  as  a specific mode l  for t h e  W VI I -A  s te l lara tor ;  in t h a t  case,  
t h e  empir ica l  value  of  K = 0.004 is used.  For th i s  very  sma l l  value,  t h e  m a p  p r e sen t s  no 
p r o b l e m  a n d  yields a qu i te  sa t i s fac tory  m o d e l  o f  t h e  device. 

5A m o r e  genera l  fo rm o f  o u r  m a p  is ob ta ined  b y  replac ing 9u+1 --~ A ~ + I  in Eq. (24) as  
weU as  in t h e  a r g u m e n t  o f  t h e  wind ing  n u m b e r :  W ( A Cu+I ); set also K - ,  K A in Eq. (26). A 
is a pos i t ive  p a r a m e t e r .  T h i s  m a p  d isp lays  very  in te res t ing  s y m m e t r y  proper t ies ,  which  will, 
however ,  no t  be  d i scussed  here.  W e  t h u s  set  A = 1. 
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various regimes (just as in real experiments, the shape of the safety factor profile 
q(r) can be "tailored"). The motivation of the construction of this map can be 
understood from the consideration of the "partially explicit" form: 

¢v+1 = K 
1 + sin 2~r0~ 2~(1 +~+1) 

Compared to the Wobig map (23) we note here a "self-healing ~' effect: when- 
ever ¢v+1 starts growing dangerously, the denominator (1 + ¢v+1) decreases the 
factor of sin 27rOy and the divergence is avoided. 

In the form (25) the map is nonlinear: it possesses two solutions tbv+l for 
given (¢~, 0v). We make the following choice of the unique branch which provides 
us with the final definition of our map: 

1 {P(~b~,0v) + ~ [ P ( ~ v , O v ) ] 2 + 4 ~ } ,  (27) 'I/)V q_ 1 = 

where the function P(~ ,  O) is defined as: 

K 
P(~b, 0) = ~b - 1 - ~ sin 2~r0. (28) 

Eels. (26) - (28) define a one-valued iterative map that  will be called the 
TOKAMAP. A simple analysis of Eqs. (25) - (28) shows that  condition (19) is 
everywhere satisfied. It also shows that ,  for K < 27r, the polar axis is globally 
invariant, i.e., Eq. (20) is satisfied. For K > 27r, this invariance is lost (because 
P(0, 0) > 0 in a certain range of 0), but Eq. (21) is always satisfied. 

Summing up, the tokamap is a Hamiltonian map, dependin9 on two param- 
eters ( K  and w), under which an initially positive radial coordinate ~b remains 
always positive~ and the polar axis is a barrier that can never be crossed. 

3 Phase portraits of the tokamap 

We show in Fig. 3 a typical phase portrait, corresponding to five orbits with 
w --- 1 and K = 2.55 (400 iterations each). We see three island chains around 
periodic orbits corresponding to winding numbers W = 1, 1/2 and 2/5, as well 
as two KAM barriers. In the polar plot, the islands are represented as closed 
curves that  do not encircle the origin, whereas the KAM barriers are curves 
enclosing the origin. The separatrix enclosing the W = 1/2 island chain is also 
visible, thus displaying the two hyperbolic (X-)points associated with the two 
elliptic (O-)points located at the center of the islands. The increased density of 
points near the X-points shows the beginning of a thin stochastic layer. 
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Fig. 3. Five tokamap orbits for K = 2.55. 

In Fig. 4 we took a higher value of K = 4.0 and pictured four orbits (3000 
iterations each). The remarkable feature here is tha t  the outer part  of the torus 
(near the edge) is now strongly chaotic around the islands W = 1/2, 1/3; but  the 
inner part  of the phase space remains very robust and undestroyed. Pictures 
of this type might lead to a qualitative representation of a tokamap with an 
ergodic divertor. 

We now note the following puzzling point. It  is seen, especially in Fig. 3, 
tha t  all island chains of period p _> 2 have the "expected" structure predicted by 
the Poincar6-Birkhoff theorem [16], [18], which tells us that ,  whenever W ( ¢ )  is 
a monotonous function (i.e. for any twist map), a rational surface breaks under 
perturbat ion into an e v e n  number 2n of fixed points, n elliptic points alternating 
with n hyperbolic ones. This structure is not apparent for the period-1 fixed 
point appearing in Figs. 3 and 4: no corresponding X-point is visible. A careful 
analysis of the proof shows that  the breakdown of the theorem is due to  the 
special nature of the polar axis ¢ = 0: the latter cannot be crossed by the map. 

In order to s tudy the problem quantitatively, we write down the equations 
determining the fixed points by using Eqs. (25 - 26) with ¢~+1 = Cv = ¢ and 
0y+l ---- 0v ---- 0: 

¢ 
sin27r0 = 0, 

1 + ¢  
K 1 

W(¢)  (27r) 2 (1 + ¢ ) 2  cos27r0 = 0 (mod l )  (29) 
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Fig. 4. Four tokamap orbits for K = 4.0. 

The first equation is satisfied for 0 = 0 and 0 = ½; upon substitution into the 
second equation, it is found numerically that  the former yields no root for !b in 
the physical domain 0 _< ~p <_ 1. The value 0 = ½ yields, for every K ,  a physical 
root: it is precisely the fixed point seen in Figs. 3 and 4. A linear stability 
analysis (which we do not describe here) shows tha t  this root corresponds, as 
expected, to an elliptic fixed point. 

Next, we note tha t  the first equation (29) is also satisfied by taking ¢ = 0, 
in agreement with EcI. (20) expressing the invariance of the polar axis. At this 
point an important point should be made clear. The polar axis is represented 
as a single point in the polar representation (Fig.l), but shows up as a segment 
of length 1 in the "square" representation (Fig. 2). The axis should thus be 
thought of as being materialized by a very thin piece of wire of infinitesimally 
small radius, around which the various poloidal orientations are distinguishable. 
The invariance of the polar axis does not imply tha t  each of its points is a fixed 
point: this is only true for K = 0. For finite K,  setting ~Pu = ¢u+1 = 0 in Eq. 
(26) leaves us with a non-trivial one-dimensional map (which could be called 
"axirnap') showing that ,  in general,any point of the axis moves under the map 
to a new poloidal position (in the polar language: moves around the axis by a 
certain angle): 

K 
0v+, ---- 0,, -Fw - (27r)----- ~ cos2~r0~ (modl) .  (30) 

This map has fixed points [for which it reduces to the second equation (29)]: 
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for w = i there are two fixed points: 0 = ¼ and 0 -- 3, which are both physically 
acceptable. Stability analysis shows tha t  both  are X-points. 

The inclusion of these points still does not save the Poincard-Birkhoff theo- 
rem: we have now identified two X-points and one O-point in between: another 
O-point is "missing". The latter can be found by allowing a mathematical,  
though unphysical extension of the phase space which breaks the barrier of the 
polar axis. We find, indeed, tha t  the root O = 0 of the first Eq. (29), sub- 
st i tuted into the second equation yields a root with negative ¢ in the range 
( - 1  < ¢ < 0). Thus, for w = 1, the Poincard-Birkhoff theorem is satisfied 
in the (unphysical) extension of the phase space: there are two fixed O-points 
and two fixed X-points in between (see Fig. 5, which is a blow-up of the re- 
gion neighbouring the polar axis, for K = 0.5). It is important  to note tha t  
this figure does not represent a chain of islands of period 2, but  two separate 
islands of period 1. An orbit starting on the upper island remains there for ever 
(instead of wandering from one island to the other). The  lower part  (~ < 0) of 
this picture is just  a mathematical "ghost". 

In a polar representation, the two X-points on the polar axis will not show up 
directly: they are squeezed into the single central point, which remains invariant 
although it does not represent a t rue fixed point. The  role of the two X-points 
will appear, however, at higher values of K,  even in the polar representation. 
The stochastic layer which develops around the period-1 island star ts  near the 
X-points, i.e., near the origin, in the 19 = 1/4 and 8 = 3/4 directions. 

A very interesting phenomenon occurs when the parameter  w is varied. 
When w increases beyond 1, the positive O-point moves slightly upwards, the 
left X-point moves to  the left, the right X-point moves to the right and the neg- 
ative O-point moves upwards. A bifurcation value w = we(K) is reached when 
the formerly negative O-point and the two X-points merge into a single fixed 
point at  the origin s. For w > we, the picture of Fig. 5 is completely changed. 
The "ghost" fixed points no longer exist; there remains only one positive O- 
point at/9 = ½ and a positive X-point at  0 = 0 (Fig. 6). The  Poincard-Birkhoff 
theorem is satisfied in the positive-¢ sector. 

I t  is instructive to  compare the polar portraits (in the neighbourhood of the 
origin), for not too large K ,  below and above the bifurcation point. In the first 
case (Fig. 7), corresponding to the geometry of the upper part  of Fig. 5, we see 
a set of closed curves centered (topologically) on the fixed O-point. There is 
no significant difference between cycles and KAM-curves in this representation; 
there is a smooth transition between curves that  enclose the origin (KAM) and 
those tha t  do not (cycles). Although the origin is invariant (in this representa- 
tion), it is not a fixed point of the map: no islands develop around it. The  fixed 
O-point thus represents the true magnetic axis, which has been shifted by the 
per turbat ion away from the geometrical polar axis. 

6Keep in mind that 0 = 1 (rood I) ! 
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This is in agreement with the physics of tokamaks: it corresponds to  an 
internal kink mode with m ---- 1, n = 1. It is known that  this instability occurs 
whenever there is a q ---- 1 surface within the plasma, and that  its effect is a 
radial displacement of the magnetic axis (see, e.g., [20], Sec. 6.4). 

9O 

000 

• I t 

180 

0.03 

0 
0 

Fig. 7. Polar phase portrai t  below bifurcation. K = 0.5, w ---- 1. 

An entirely different picture prevails when w > wc (Fig. 8). Here there is 
a well defined separatrix, with a single X-point. The cycles around the O-point 
in Fig. 6 become here crescent-shaped closed curves encircling the (displaced) 
magnetic axis. The lower KAM-curve which is outside the separatrix in Fig. 6, 
is however constrained by the barrier of the polar axis to remain above the latter. 
In the polar representation this yields a set of curves encircling the origin but  
remaining outside the separatrix. Finally, the upper KAM-curves of the square 
representation map into curves enclosing the whole separatrix. This seemingly 
complex topology is realized in tokamaks during the process of sawtooth oscilla- 
tions. The  "bubble" corresponds to  a region with q < 1, which will be expelled 
in t ime by the development of an internal tearing instability. Fig. 8 is precisely 
identical with the field configuration predicted by the Kadomtsev model of the 
sawtooth instability (see [20], Sec. 7.6, [21], Sec. 7.2). 
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4 Tokamap and Continuous Time Random Walk 

A quite different type of information about  the tokamap dynamics is obtained 
by a consideration of t ime series, in particular graphs of Cv vs. v. It is in 
this representation tha t  a very important  aspect of the evolution is manifest: 
stickiness. A chaotic orbit spends a long t ime near the boundaries of island 
chains, KAM barriers and cantori. This property is due to  the "braking" action 
of the complex fractal structure of these boundaries (islands, around islands, 
around islands,...). The fine structure of this process is discussed in other works 
presented at this meeting. Here we take a rather different point of view in the 
approach of this problem: we t ry  to establish a "coarse grained" picture which 
eventually leads to "macroscopic" equations of evolution. 

This methodology was developed in a previous study of the s tandard map 
[22]. It  s tarted from the observation that  a graph of the successive iterations of 
the radial coordinate presents rather regular oscillations in a certain "basin", 
followed by a sudden jump to another mode of oscillation in a different basin, 
which goes on for a certain t ime till another jump happens, etc. We just  show 
here that  this type of behaviour is generic. 

We consider, for K = 3.7, w = 1, a chaotic orbit starting at ¢0 = 0.20, 
80 ---- 0.80: this orbit remains confined in a region blocked by two KAM barriers 
below and above a three-island chain (around W = 2 ~), as seen in the phase 
portrai t  of  Fig. 9 showing 3000 iterations. 
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In Fig. 10 we see a typical section of the t ime series (¢t vs. t) of this orbit,  
for 1700 < t < 2400. The  behaviour described above is manifest: three basins 
can be identified from three regimes of oscillation (mean position, amplitude,  
frequency). They correspond to  motion encircling the island chain (basin O), 
motion above the islands (basin H) and motion below the islands (basin L). 
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Fig. 10. Time series for motion in the stochastic layer of Fig. 9. 
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By plotting the phase space portrait  for the various time ranges, this diag- 
nostic is confirmed (Fig. 11). 

Yk 

0.4 
0.35 

0.3 

0.25 

0.2 
0.15 

0.1 

t: 1700-1900 

0 0.2 0.4 0.6 0.8 1 

0 Ok. 1 

t: 1950-21 O0 
0.4 0.4 0.4 

0.35 0.35 

Yk 0.3 ~ %~, 0.3 d 
0.25 0.25 ,f,'~- , ~  

0.2 ~ ~ 0.2 
0.15 0.10.15 

0.1 0.1 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

O k 0 o m 1 

t: 2200-2400  

Fig. 11. Phase portraits of sections of the t ime series of Fig. 10. 

This behaviour is exactly analogous to the one seen in the standard map [22]. 
It  can be described by a Continuous Time Random Walk (CTRW). The orbit is 
then globally described by a particle sojourning in a basin for a certain "time" 
~, making a transition to another basin, sojourning there, making another jump, 
etc. The process is completely defined by prescribing a waiting time probability 
distribution in basin m: ¢,~(~), and a transition probability from basin m to 
basin n: f~,~. Both quantities can be determined by an analysis of long t ime 
series. 

Using then standard techniques of random walk theory, the probability den- 
sity of finding the particle in basin m at  t ime t, nm(~) can be found exactly, 
and from there on quantities like the mean square displacement and the running 
diffusion coefficient can be calculated. We do not develop here these questions, 
as the method is exactly the same as in Ref. [221; moreover, another paper on 
this subject has been presented at this meeting [23]. 
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5 Conclusions 

We have shown that a simple Hamiltonian map can be constructed, fulfilling 
the minimum requirements for a representation of a magnetic field in toroidal 
geometry. This tokamap describes a structure that is very robust in the central 
region, the stochasticity starting (for increasing K) in the edge region: the 
map could therefore prove useful as a model of a tokamak with an ergodic 
divertor. The central region has some quite interesting topological features, 
which can change dramatically (including a bifurcation) as the value of the 
safety factor on axis is varied. Typical configurations known from tokamak 
physics are qualitatively reproduced by the map. 

Many more properties of the tokamap have been or will be studied in forth- 
coming works. These include questions such as the influence of the shape of the 
winding number, the dependence on of various physical properties, similarity 
and scaling properties. Last but not least, we intend to put charged particles 
in this magnetic field and study the transport properties in a partially chaotic 
tokamak configuration. This problem, which is very poorly understood, is of 
crucial importance for fusion physics. 
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Lagrangian Chaos and the Fast Kinematic 
Dynamo Problem 

Edward Ott* 

Institute for Plasma Research, University of Maryland, College Park, Maryland 

Abstract. In this paper we review results on the fast kinematic dynamo problem, 
emphasizing the recent realization that Lagrangian chaos of the underlying flow is the 
key element for understanding of the problem. We also discuss the generic tendency for 
fractal magnetic field distributions with extreme cancellation properties. The relation 
of ergodic properties of the chaotic flow to properties of the dynamo (e.g., growth rate, 
fractal dimension) are also reviewed. 

1 B a c k g r o u n d  

One of the most basic observed facts of nature is the presence of magnetic 
fields wherever there is flowing electrically conducting matter. In particular, 
magnetic fields are observed to be present in planets with liquid cores, in the 
Sun and stars, and in the Galaxy. A natural question is why this is so. The 
most common approach to this question is to consider the kinematic dynamo 
problem: Will a small seed magnetic field in an initially unmagnetized flowing 
electrically conducting fluid amplify ez'ponentially in time? If the answer is yes, 
then it is unnatural for magnetic fields not to be present. Note that the kinematic 
dynamo problem is essentially a problem of linear stability. Thus the structure 
of magnetic fields as they are currently observed is not directly addressed, since 
current fields presumably have evolved to a nonlinear saturated state. 

The answer to the stability question posed by the kinematic dynamo prob- 
lem depends on the flow field of the fluid and on the electrical conductivity of 
the fluid. For a given flow field one can, in principle, ask for the conductivity 
dependence of the exponential growth rate P of a magnetic field perturbation. 
Vainshtein and Zeldovich [1] suggest a classification of kinematic dynamos based 
on the electrical conductivity dependence of F. In particular, if F approaches 
a positive constant as the conductivity approaches infinity, then they call the 
dynamo a fast dynamo. Otherwise they call it a slow dynamo. This important 
distinction is illustrated schematically in Fig. 1. The horizontal axis in Fig. 1 is 
the magnetic Reynolds number, Rm, which can be regarded as the dimensionless 
electrical conductivity; P ~  = povoLoa, where/~0 is the (mks) magnetic permit- 
tivity of vacuum, v0 is a typical magnitude of the flow velocity, L0 is a typical 
length scale for spatial variation of the flow, and a is the electrical conductiv- 
ity of the fluid. In the Sun, for example, Rm > 10 s. Thus only fast kinematic 

* Also Department of Physics, Department of Electrical Engineering, and Institute for 
Systems Research 
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dynamos are of interest in such cases. In this paper we shall be concerned with 
fast dynamos. 

r 

- FAST 

, Rm 

Fig. 1. F versus R~ for fast and slow kinematic dynamos. 

We adopt the simplest MHD (magnetohydrodynamic) description. The basic 
equation (assuming V. v = 0) is 

OB/Ot + v .  VB = B .  Vv + R~IV2B , (1) 

where t has been normalized to vo/Lo, spatial scales have been normalized to 
L0, and v has been normalized to v0. Note that, for the kinematic dynamo 
problem, Eq. (1) is a linear equation in B, because there is no linear response of 
the velocity, since the Lorenz force, J x B -- p~l (V x B) x B, is quadratic in 
B. Thus we may regard v as an "equilibrium" field determined by factors (e.g., 
convection, stirring, rotation) not appearing in Eq. (1). Our main points are the 
following: 

1. Lagrangian chaotic three dimensional flows typically yield fast kinematic 
dynamos. 

2. In the limit P~  --~ ~o kinematic dynamo magnetic fields are expected to 
concentrate on a fractal set in space. 

3. In the limit R~ --~ o0 the magnetic field has a singular tendency for flux 
cancellation. 

[With respect to point 2 above, we shall be concerned with flows v(x, t) 
that are "smooth" in that they possess no fractal properties of their own. In 
particular, they do not have power law wavenumber spectra. Thus we think of 
the spatial Fourier wavenumber spectrum of v as being peaked at some low 
wavenumber of order l /L0 and decaying exponentially or faster with increasing 
wavenumber.] 
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2 The  Relevance of  Chaos 

The equation describing the position x(t) of a fluid element is 

dx(t)/dt --- v(x(t), t) , (2) 

where v(x, t) is the Eulerian velocity field of the flowing fluid. We say the flow 
is Lagrang~an chaotic if the ordinary differential equations (1) exhibit chaos. In 
particular, consider two initial conditions, x(0) and x(0) + (ix(0), where (ix(0) is 
a differential displacement. Let x(t) and x( t )+  (ix(t) denote the orbits from these 
two initial conditions. Then for Lagrangian chaos ](ix(t)l grows exponentially for 
an arbitrary choice for the orientation of (ix(0), 

I(ix(t)l ~ I(ix(0)lexp(ht) , (3) 

where h > 0 is the (largest) Lyapunov exponent of the flow. The evolution of (ix 
.follows from taking a differential variation of Eq. (2) 

d(ix/dt = (ix- Vv(x(t), t) . (4) 

Now consider Eq. (1) in the "ideal limit" which corresponds to omitting the 
term R~IV2B, 

d~3/dt - OB/Ot + v .  VI3 = 13- Vv , (5) 

where we use the symbol t3 for magnetic fields in the ideal limit. Comparing 
Eq. (4) for (ix and Eq. (5) for ]3 we see that the equations are the same. This 
is a consequence of the frozen in nature of the magnetic field at infinite conduc- 
tivity, and means that the magnetic field grows in proportion to the stretching 
of magnetic field lines by the flow. The connection between fast dynamos and 
chaos is now clear: chaos implies exponential growth of (ix in Eq. (4) and hence 
exponential field line stretching, and for a dynamo we need exponential growth 
of B. There is a catch, however. In particular, the ideal equation (5) can never 
be fully justified even for very large RM. What typically happens for chaotic 
flows is that as Rm becomes large B develops more fine scale structure, so that 
R~IV2B in Eq. (1) remains of the same order as the other terms in (1). This 
implies that B varies on small spatial scales of order 

c. ~ R ~  1/2 (6) 

(Recall that we use the normalizations introduced in (1) so that v ,- 0(1) and 
the typical scale for spatial variation of v is also 0(1).) 

In spite of this the ideal treatment is still a powerful (and correct) indication 
that Lagrangian chaos is the key to fast dynamo action. This point was first 
explicitly made in the paper of Arnold, Zeldovich, Ruzmaikin and Sokoloff [2] 
who considered a chaotic flow in an abstract space of constant negative geodesic 
curvature (not the usual Euclidian space of classical physics), and the point was 
subsequently [3,4] made more physically relevant by considerations for flows in 
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ordinary Euclidian space. By now this consideration is well-developed. An in- 
complete list of some representative papers is Refs. 5-24. An extensive summary 
is contained in the book by Childress and Gilbert [25]. 

Returning to the issue of how solutions of Eq. (1) for B at large Rm are 
related to those of the ideal equation (Eq. (5)) for B, we note that Ref. 4 has 
pointed out that the dynamo growth rate for B obtained from (1) at large R~  
should be related to solutions of the ideal equation (Eq. (5)). In particular, it is 
argued in Ref. 4 that the flux through finite open surfaces is robust under the 
limit P ~  --~ oo. Specifically, let 

Cs(t) = L 1~" dA , (7) 

where Cs and l~ are the flux and magnetic field obtained via solution of the ideal 
equation with some arbitrarily chosen smooth initial condition ]3(x, 0), and S a 
smooth fixed open surface. Then, according to Ref. 4, F ( / ~ ) ,  the growth rate 
for the fastest growing unstable mode obtained from the solution of the linear 
instability problem for Eq. (1) at f i n i t e /~ ,  satisfies 

lim F ( / ~ )  -=/7. = /~  , (8) 
R m  ----* o o  

where/~ is the ideal flux growth rate, 

/~ -- lira sup[t -1 In Cs(t)] . (9) 

That is, for large finite R~,  the growth rate F (R~)  is approximately/~ which 
can be obtained from the ideal equation. Later in this paper we review tests 
of (8) from numerical solutions of (1) for smooth Lagrangian chaotic flows at 
high magnetic Reynolds number. To motivate (8) we note that, during a time 
interval At, the term R~:V2B diffuses the magnetic field over a distance of 
the order of V/~- /R~.  Setting At = /~-1  and recalling our normalizations, we 
have/~ ~ 0(1) (/~' ~ O(vo/Lo) in the unnormalized situation). Thus the diffusive 
rearrangement of the B field during a growth time occurs over the small scale 
e. ~ p~l /2 (Eq. (6)). Since for large enough Rm, the linear size of the fixed area 
S is large compared to E., diffusive rearrangement of B over the scale E. during 
At =/~-1  has little effect on the flux growth through S, and (8) then follows. 

The option of using the ideal equation and (8) to approximate F(R,~) at 
large Rm is attractive because (8) is much easier to numerically solve than (1) 
at large Rm. Indeed the fractal and cancellation properties of the solution of 
(1) mentioned at the end of Sec. I have presented a severe limitation to the 
early pioneering attempts at such numerical solutions [26]. The solution of the 
ideal equation (Eq. (5)) to obtain the flux Cs(t) through a surface S proceeds 
as follows: Choose a sufficiently fine grid of points on S, xi for i = 1, 2 , . . . ,  M. 
For each of these M grid points evolve the position x~ backwards in time using 
the ordinary differential equation dx/dt = v to obtain the location x~ °) that it 
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started from at t -- 0. Now starting from this point and using as initial condition 
171 = 13(x~ °) , 0), where 13(x, 0) is the initial magnetic field, integrate the ordinary 
differential equation dB/dt = 13 • Vv (Eq. (5)) forward from t = 0 along the 
previously computed trajectory x(t) to obtain B(x~, t), the ideal magnetic field 
at the grid point xi at time t. Do this for each of the M grid points, and use the 
results to obtain an approximation to Cs(t), 

S M 
$ s ( t )  - f f  n ,  . B ( x , , t )  , ( lo )  

i = l  

where nl is the unit normal to S at xl. Note that only solutions of differential 
equations are involved in this procedure, and that the computations for different 
x/ can be done in parallel. Equation (1), in contrast, is partial differential and 
is typically solved on a three dimensional grid. 

Another important property of kinematic dynamos is the result known as 
Cowling's antidynamo theorem which states that dynamo action is only possible 
if the magnetic field has three dimensional structure. While this result applies 
independent o f / ~ ,  it is instructive for us to illustrate it in the large Rm limit 
by using the ideal equation (Eq. (5)). In particular, even though Lagrangian 
chaos is possible in (time-dependent) two-dimensional flows we now show that 
fast kinematic dynamos are not possible in two dimensions. Consider a fluid 
confined to a rectangular region with rigid perfectly conducting walls as shown 
in Fig. 2. The line shown in Fig. 2(a) represents the initial configuration of a 
single field line. The dashed horizontal line segment S is crossed by the field line 
in the upward direction. After some time, during which the field line is stretched 
by the Lagrangian chaotic fluid flow (causing the field line length to increase 
exponentially with time), the configuration is as shown in Fig. 2(b). Although 
the number of crossings of S by the field line has increased, due to cancellation, 
the net upward flux through S in Fig. 2(b) is the same as in Fig. 2(a). The two 
dimensional topological constraint that the field line cannot cross itself prevents 
net exponential flux growth through S even though the flux line is exponentially 
stretched. (The situation is fundamentally different in three dimensions, and in 
what follows we only consider three dimensional situations.) 

3 Dynamic Properties from Ergodic Characteristics 
of Lagrangian Chaotic Flows 

In this section we report results on how one can obtain quantities such as the 
dynamo growth rate and fractal dimension of the fields from ergodic dynamical 
characteristics of the Lagrangian chaos of whatever specific velocity field v(x, t) 
occurs in the dynamo problem under consideration. Note that, use of the La- 
grangian chaos for this purpose implies that all calculations are done from the 
ordinary differential equations dx/dt = v and d$x/dt = gx- ~7v (rather than the 
partial differential equation, Eq. (1)). In this section we shall only be reporting 
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~ m -I  

(a) 

Fig. 2. Illustration of Cowling's antidyrmmo theorem for a two-dimensional Lagrangian 
chaotic flow a t / ~  --* oo. 

and illustrating results, not deriving them. For derivations see Refs. 8, 15, 16, 
and 24. 

3 . 1  C a n c e l l a t i o n  E x p o n e n t  

Before proceeding to discussions of the growth rate and fractal dimension it is 
necessary to consider the extreme cancellation properties of magnetic fields in 
the large P ~  limit. In particular, from models [4,9,14] and numerical solutions 
[24] it is evident that  at large time the magnetic fields can undergo rapid spatial 
variations in which their directions flip by t80 ° . This results in local alternat- 
ing layers with opposing fields of thickness of order e. ~ R~ 1/2. Thus, as P ~  
increases this alternation becomes more rapid. 

To quantitatively characterize situations with this kind of extreme tendency 
for cancellation, we use the cancellation exponent introduced in Ref. 14. We 
consider a magnetic field distribution B in three dimensional space, and we 
choose some planar surface S with unit normal n. We divide S into a grid of 
two dimensional e by e squares. Let ¢i be the flux through square i with respect 
to the unit normal n normalized to the tot:d flux through S. If the quanti ty 
X(E) = )-']~i ]¢i1 increases with decreasing e as ~ power law in e then we call that  
power the cancellation exponent and denote i- ~, 

x(E) = I¢ 1 . (11) 
i 

If there were no cancellation, ¢i > 0 for all i, then ~-~i 1¢il = ~-'~-i Oi = 1 and 
= O. (It is assumed that  n is generically independent of the choice of S.) If 

the magnetic field B . (x )  normal to S (where x is on S) is a smooth bounded 
function, then, for small enough e, 

i 



J I 

independent of e, and ~: is again zero. In practice, the magnetic field is always 
smooth on small enough scale; i.e., once we consider scales as small as e, ,~ p ~ l ,  
Eq. (6). Thus the practical meaning of (11) is that  a plot of gnX(e) versus £n(1/e) 
shows a linear scaling range with slope a for e > e,. 

As an example illustrating the cancellation index Fig. 3 shows a plot of ~nx(e) 
for a model with finite l a r g e / ~  (P~ = 101°) versus tn(1/e). [We do not describe 
the model here. The interested reader should refer to Refs. 6, 14-16.] We see that  
the plot is well-fit by a straight line for e > e,. The slope of this line is a. For 
e < E, the curve flattens as expected. 

4 

3 

2 

1 
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Fig .& lnx(e) versus In(l/e) for the four strip model with cancellation a t / ~  :: 10 l° 

3.2 Growth  Rate  Formula 

Say we sprinkle around many initial conditions Xoj(j = 1, 2 , . . . )  in the chaotic 
region of a three dimensional dynamo flow. For each initial condition xoj we 
consider a differential cube J of edge length 5 (where 5 is a differential) centered 
on the initial condition. We then use Eqs. (2) and (4) to evolve the cube forward 
in time by an amount t. This is illustrated in Fig. 4 which shows that  the cube 
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is deformed by the flow into a parallelipiped. We denote the three dimensions 
of the parallelipiped (the length, width and thickness) LljS, L2j, L3jS, where 
Ll j  >_ L2j >_ L3j. For large t, we typically have that Ll j  >> 1 since the flow 
is chaotic. By  volume conservation LljL2jL3j = 1, and so L3j << 1. In what 
follows we assume that  L2j is typically greater than or equal to one. (In this 
case we expect and numerically observe that  the magnetic field concentrates on 
a fractal set of sheet-like structures [15,16}.) The quantities 

1 
hi (Xoj, t) = - In Lij , 

t 
(12) 

for i = 1, 2, 3, are the finite time Lyapunov exponents from point x0#. 

/ 

(a) 

A i ~ r  time t 

(b) 

Fig. 4. Deformation of the differential cube J by the flow. 

A formula using the Lij and giving the dynamo growth rate in the large R ~  
limit (denoted F.)  has been obtain in Ref. 16, 

/ ' ,  = lim 1 - < L 1 L ' ~  > , 
t---,oo t 

(13) 

where the angle brackets denote an average over the initial conditions Xoj and 
the number of these initial conditions is taken to infinity. In application [16,24], 
one uses a large number of initial conditions and plots the quanti ty In < L1L'~ > 
versus t. Fit t ing a straight line to such a plot and obtaining its slope then gives 
T'.. The cancellation exponent ~: can be obtained from the ideal equation, Eq. (5) 
by calculating the magnetic field at a grid of points on some conveniently chosen 
surface S and then obtaining the slope of In ~-']~ [¢i[ versus In ( l /@ As discussed 
in connection with Eq. (10), the ideal magnetic field on the surface S can be 
obtained purely from computations on ordinary differential equations. 
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Since L3 << 1, Eq. (13) implies that  cancellation always reduces the instabil- 
ity growth rate. Setting t~ = 0, we have that  if n was positive, then 

1 
I", < h T =_ lim -- In < L1 > (14) 

t~oc t 

Thus, hT is all upper bound for the P ~  --, oe growth rate F..  The quanti ty 
hT defined in (14) may, under certain circumstances, be identified with one of 
the fundamental quantities characterizing chaos in dynamical systems, namely 
the topological entropy (e.g., see Ref. 28, page 143). Thus, we have that  the 
topological entropy is an upper bound on the growth rate F. [4,23]. It should be 
noted that  the limit on the right hand side of (14) is not the same as the largest 
Lyapunov exponent which is given by 

hi lim 1 = - < l n L 1  > 
t--.oo t 

Since, the average of the log of a quantity is less than or equal to the log of 
the average of the quantity, hT > hi, and we should expect the inequality to 
typically apply. 

3 . 3  F r a c t a l  D i m e n s i o n  

Let V be any three dimensional subregion of V0, where V0 denotes a finite volume 
in which the flow is confined. Then, we define a magnetic field based measure, 

f v  IB(x,t)l  d3x 
It(V) = fro ]B(x, t)Id3x " 

Now say we cover the volume V0 by a grid of e by e cubes. Let tti denote the 
measure of the cube i. We then define a dimension spectrum depending on the 
continuous index q by [27,28] lq(e) = (q - 1 ) - l e n ( ~ i  ItS) ~ Dqgn(1/e). 

For times t large enough so that  the magnetic field has settled into a distri- 
bution with small scale variations at e. Du and Ott  [15] present a formula giving 
the Dq dimension in terms of the Li and the cancellation index. The result for 
q = l i s  

DI = 3 - lira < L1L~ ln(L1L~) > - < L1L~ > In < L1L~ > (15) 
t--+oo < L1L~lnL31 > 

(Note that  for q ~ 1, we obtain from L'Hospital 's rule, Ii(e) = Y~pign(1/iti) 
and D1 is called the information dimension [29].) 

The case q -- 1 is of most direct physical interest since it gives the dimension 
of the set on which the magnetic field concentrates. Thus, the prediction is 
that,  i f / ~  is large and t is large enough so that  the magnetic field varies 

on the limiting scale e. ,-  p ~ 2  determined by finite resistivity, then a plot of 
Y~#i ln(1/iti) versus In(l /e)  has the slope O1 given by (15) for e small but  larger 
than e.. 
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In the case where t is large but not large enough that  e. has been reached, 
Antonsen and Ott  [8] show that  there is a scaling range in e for which 

D1 = 3 -  lim < L t l nL1  > - < L l l n L t  > (16) 
t-.co < L1 In L31 > 

which is the same as (15) with ~ set equal to zero. Thus, as time evolves, the 
large R ~  fractal dimension of the magnetic field distribution crosses over from 
a value given by (16) to a value given by (15). 

4 N u m e r i c a l  C o m p u t a t i o n s  o f  t h e  K i n a m a t i c  D y n a m o  

P D E  a t  L a r g e  R , ~  

The general results discussed in the previous sections pertain to very large P ~ .  
Although large -Rm is relevant in nature, numerical computations at large Rm 

are difficult due to the necessity of resolving small scales, c. ~ p~1/2. Recently, 
Reyl et al. [24] have performed computations for a spatially smooth three dimen- 
sional flow at large enough R m ( / ~  = 106) that  the realizations of the general 
properties we have discussed in this paper become feasible. 

The flow considered in [24] is specifically chosen so as to facilitate large R ~  
computation. This flow is as follows, 

v(x, y, t) = xogz(y)f(t) + yogy(x)f(t - ~T) 

+ zo~(z ) f ( t  - 3T), 

where f(t)  is a periodic function with period T, f ( t )  = 0 for T/3 + nT < t < 
( n +  1)T with n integer, so that  the flows in the x, y, and z directions are turned 
on sequentially. The Lagrangian chaotic dynamics generated by this flow can 
be analyzed by integrating dx/dt -- v over one period T. This gives a three 
dimensional volume preserving map relating x at time t = nT to x at time 
t = (n + 1)T, 

Xn-~l -~- Xn ~- vx (Yn) ,  

yn+l = Y, + ~(xn+l), 
z,+l  = z~ + ~z (x,+l) ,  

where f(t) is normalized so that  f [  f(t)dt = f j / 3  f(t)dt = 1. Because the partial 
differential equation, Eq. (1), is solved using a Fourier spectral representation, it 
is desired that  ~ ,  ~ ,  and vz and their convolutions with the magnetic field have 
simple Fourier transformations. Thus, the ~3's are chosen to be sinusoidal, vx = 
U~ sin(Kuy + O~), ~ = Up sin(K~x + 0N) , ~)~ = Uz sin(K~x + 8z), For discussion 
of the numerical techniques and other details see Ref. [24]. 

Using these computations various large P ~  issues were addressed. These 
include the following: (i) the predicted equality of a obtained from the ideal 
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equation at large time and t¢ obtained from solution of (1) at times after e. has 
been reached; (ii) the predicted equality of the ideal flux growth rate (given by 
(9)), the theoretical growth rate result given by (13), and the growth rate from 
numerical solution of (1) at large Rm; and (iii) the predicted Dq from Ref. [15] 
for different q values (of which the q = 1 result is shown in Eq. (15)). In all cases, 
the predicted and computed results were consistent to within the limits of the 
numerical accuracy attained. 

5 Conc lus ion  

The fast kinematic dynamo problem displays a variety of interesting features 
connected with the singular small scale behavior of the magnetic field. The sur- 
prising result is that  this behavior can be fully understood and quantitatively 
analized by use of concepts from chaotic dynamics. 

This work was supported by the Office of Naval Research (Physics). 
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Lagrangian Chaos and the Fast Kinematic 
Dynamo Problem 

Edward Ott* 

Institute for Plasma Research, University of Maryland, College Park, Maryland 

Abstract. In this paper we review results on the fast kinematic dynamo problem, 
emphasizing the recent realization that Lagrangian chaos of the underlying flow is the 
key element for understanding of the problem. We also discuss the generic tendency for 
fractal magnetic field distributions with extreme cancellation properties. The relation 
of ergodic properties of the chaotic flow to properties of the dynamo (e.g., growth rate, 
fractal dimension) are also reviewed. 

1 B a c k g r o u n d  

One of the most basic observed facts of nature is the presence of magnetic 
fields wherever there is flowing electrically conducting matter. In particular, 
magnetic fields are observed to be present in planets with liquid cores, in the 
Sun and stars, and in the Galaxy. A natural question is why this is so. The 
most common approach to this question is to consider the kinematic dynamo 
problem: Will a small seed magnetic field in an initially unmagnetized flowing 
electrically conducting fluid amplify ez'ponentially in time? If the answer is yes, 
then it is unnatural for magnetic fields not to be present. Note that the kinematic 
dynamo problem is essentially a problem of linear stability. Thus the structure 
of magnetic fields as they are currently observed is not directly addressed, since 
current fields presumably have evolved to a nonlinear saturated state. 

The answer to the stability question posed by the kinematic dynamo prob- 
lem depends on the flow field of the fluid and on the electrical conductivity of 
the fluid. For a given flow field one can, in principle, ask for the conductivity 
dependence of the exponential growth rate P of a magnetic field perturbation. 
Vainshtein and Zeldovich [1] suggest a classification of kinematic dynamos based 
on the electrical conductivity dependence of F. In particular, if F approaches 
a positive constant as the conductivity approaches infinity, then they call the 
dynamo a fast dynamo. Otherwise they call it a slow dynamo. This important 
distinction is illustrated schematically in Fig. 1. The horizontal axis in Fig. 1 is 
the magnetic Reynolds number, Rm, which can be regarded as the dimensionless 
electrical conductivity; P ~  = povoLoa, where/~0 is the (mks) magnetic permit- 
tivity of vacuum, v0 is a typical magnitude of the flow velocity, L0 is a typical 
length scale for spatial variation of the flow, and a is the electrical conductiv- 
ity of the fluid. In the Sun, for example, Rm > 10 s. Thus only fast kinematic 

* Also Department of Physics, Department of Electrical Engineering, and Institute for 
Systems Research 
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dynamos are of interest in such cases. In this paper we shall be concerned with 
fast dynamos. 

r 

- FAST 

, Rm 

Fig. 1. F versus R~ for fast and slow kinematic dynamos. 

We adopt the simplest MHD (magnetohydrodynamic) description. The basic 
equation (assuming V. v = 0) is 

OB/Ot + v .  VB = B .  Vv + R~IV2B , (1) 

where t has been normalized to vo/Lo, spatial scales have been normalized to 
L0, and v has been normalized to v0. Note that, for the kinematic dynamo 
problem, Eq. (1) is a linear equation in B, because there is no linear response of 
the velocity, since the Lorenz force, J x B -- p~l (V x B) x B, is quadratic in 
B. Thus we may regard v as an "equilibrium" field determined by factors (e.g., 
convection, stirring, rotation) not appearing in Eq. (1). Our main points are the 
following: 

1. Lagrangian chaotic three dimensional flows typically yield fast kinematic 
dynamos. 

2. In the limit P~  --~ ~o kinematic dynamo magnetic fields are expected to 
concentrate on a fractal set in space. 

3. In the limit R~ --~ o0 the magnetic field has a singular tendency for flux 
cancellation. 

[With respect to point 2 above, we shall be concerned with flows v(x, t) 
that are "smooth" in that they possess no fractal properties of their own. In 
particular, they do not have power law wavenumber spectra. Thus we think of 
the spatial Fourier wavenumber spectrum of v as being peaked at some low 
wavenumber of order l /L0 and decaying exponentially or faster with increasing 
wavenumber.] 
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2 The  Relevance of  Chaos 

The equation describing the position x(t) of a fluid element is 

dx(t)/dt --- v(x(t), t) , (2) 

where v(x, t) is the Eulerian velocity field of the flowing fluid. We say the flow 
is Lagrang~an chaotic if the ordinary differential equations (1) exhibit chaos. In 
particular, consider two initial conditions, x(0) and x(0) + (ix(0), where (ix(0) is 
a differential displacement. Let x(t) and x( t )+  (ix(t) denote the orbits from these 
two initial conditions. Then for Lagrangian chaos ](ix(t)l grows exponentially for 
an arbitrary choice for the orientation of (ix(0), 

I(ix(t)l ~ I(ix(0)lexp(ht) , (3) 

where h > 0 is the (largest) Lyapunov exponent of the flow. The evolution of (ix 
.follows from taking a differential variation of Eq. (2) 

d(ix/dt = (ix- Vv(x(t), t) . (4) 

Now consider Eq. (1) in the "ideal limit" which corresponds to omitting the 
term R~IV2B, 

d~3/dt - OB/Ot + v .  VI3 = 13- Vv , (5) 

where we use the symbol t3 for magnetic fields in the ideal limit. Comparing 
Eq. (4) for (ix and Eq. (5) for ]3 we see that the equations are the same. This 
is a consequence of the frozen in nature of the magnetic field at infinite conduc- 
tivity, and means that the magnetic field grows in proportion to the stretching 
of magnetic field lines by the flow. The connection between fast dynamos and 
chaos is now clear: chaos implies exponential growth of (ix in Eq. (4) and hence 
exponential field line stretching, and for a dynamo we need exponential growth 
of B. There is a catch, however. In particular, the ideal equation (5) can never 
be fully justified even for very large RM. What typically happens for chaotic 
flows is that as Rm becomes large B develops more fine scale structure, so that 
R~IV2B in Eq. (1) remains of the same order as the other terms in (1). This 
implies that B varies on small spatial scales of order 

c. ~ R ~  1/2 (6) 

(Recall that we use the normalizations introduced in (1) so that v ,- 0(1) and 
the typical scale for spatial variation of v is also 0(1).) 

In spite of this the ideal treatment is still a powerful (and correct) indication 
that Lagrangian chaos is the key to fast dynamo action. This point was first 
explicitly made in the paper of Arnold, Zeldovich, Ruzmaikin and Sokoloff [2] 
who considered a chaotic flow in an abstract space of constant negative geodesic 
curvature (not the usual Euclidian space of classical physics), and the point was 
subsequently [3,4] made more physically relevant by considerations for flows in 
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ordinary Euclidian space. By now this consideration is well-developed. An in- 
complete list of some representative papers is Refs. 5-24. An extensive summary 
is contained in the book by Childress and Gilbert [25]. 

Returning to the issue of how solutions of Eq. (1) for B at large Rm are 
related to those of the ideal equation (Eq. (5)) for B, we note that Ref. 4 has 
pointed out that the dynamo growth rate for B obtained from (1) at large R~  
should be related to solutions of the ideal equation (Eq. (5)). In particular, it is 
argued in Ref. 4 that the flux through finite open surfaces is robust under the 
limit P ~  --~ oo. Specifically, let 

Cs(t) = L 1~" dA , (7) 

where Cs and l~ are the flux and magnetic field obtained via solution of the ideal 
equation with some arbitrarily chosen smooth initial condition ]3(x, 0), and S a 
smooth fixed open surface. Then, according to Ref. 4, F ( / ~ ) ,  the growth rate 
for the fastest growing unstable mode obtained from the solution of the linear 
instability problem for Eq. (1) at f i n i t e /~ ,  satisfies 

lim F ( / ~ )  -=/7. = /~  , (8) 
R m  ----* o o  

where/~ is the ideal flux growth rate, 

/~ -- lira sup[t -1 In Cs(t)] . (9) 

That is, for large finite R~,  the growth rate F (R~)  is approximately/~ which 
can be obtained from the ideal equation. Later in this paper we review tests 
of (8) from numerical solutions of (1) for smooth Lagrangian chaotic flows at 
high magnetic Reynolds number. To motivate (8) we note that, during a time 
interval At, the term R~:V2B diffuses the magnetic field over a distance of 
the order of V/~- /R~.  Setting At = /~-1  and recalling our normalizations, we 
have/~ ~ 0(1) (/~' ~ O(vo/Lo) in the unnormalized situation). Thus the diffusive 
rearrangement of the B field during a growth time occurs over the small scale 
e. ~ p~l /2 (Eq. (6)). Since for large enough Rm, the linear size of the fixed area 
S is large compared to E., diffusive rearrangement of B over the scale E. during 
At =/~-1  has little effect on the flux growth through S, and (8) then follows. 

The option of using the ideal equation and (8) to approximate F(R,~) at 
large Rm is attractive because (8) is much easier to numerically solve than (1) 
at large Rm. Indeed the fractal and cancellation properties of the solution of 
(1) mentioned at the end of Sec. I have presented a severe limitation to the 
early pioneering attempts at such numerical solutions [26]. The solution of the 
ideal equation (Eq. (5)) to obtain the flux Cs(t) through a surface S proceeds 
as follows: Choose a sufficiently fine grid of points on S, xi for i = 1, 2 , . . . ,  M. 
For each of these M grid points evolve the position x~ backwards in time using 
the ordinary differential equation dx/dt = v to obtain the location x~ °) that it 
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started from at t -- 0. Now starting from this point and using as initial condition 
171 = 13(x~ °) , 0), where 13(x, 0) is the initial magnetic field, integrate the ordinary 
differential equation dB/dt = 13 • Vv (Eq. (5)) forward from t = 0 along the 
previously computed trajectory x(t) to obtain B(x~, t), the ideal magnetic field 
at the grid point xi at time t. Do this for each of the M grid points, and use the 
results to obtain an approximation to Cs(t), 

S M 
$ s ( t )  - f f  n ,  . B ( x , , t )  , ( lo )  

i = l  

where nl is the unit normal to S at xl. Note that only solutions of differential 
equations are involved in this procedure, and that the computations for different 
x/ can be done in parallel. Equation (1), in contrast, is partial differential and 
is typically solved on a three dimensional grid. 

Another important property of kinematic dynamos is the result known as 
Cowling's antidynamo theorem which states that dynamo action is only possible 
if the magnetic field has three dimensional structure. While this result applies 
independent o f / ~ ,  it is instructive for us to illustrate it in the large Rm limit 
by using the ideal equation (Eq. (5)). In particular, even though Lagrangian 
chaos is possible in (time-dependent) two-dimensional flows we now show that 
fast kinematic dynamos are not possible in two dimensions. Consider a fluid 
confined to a rectangular region with rigid perfectly conducting walls as shown 
in Fig. 2. The line shown in Fig. 2(a) represents the initial configuration of a 
single field line. The dashed horizontal line segment S is crossed by the field line 
in the upward direction. After some time, during which the field line is stretched 
by the Lagrangian chaotic fluid flow (causing the field line length to increase 
exponentially with time), the configuration is as shown in Fig. 2(b). Although 
the number of crossings of S by the field line has increased, due to cancellation, 
the net upward flux through S in Fig. 2(b) is the same as in Fig. 2(a). The two 
dimensional topological constraint that the field line cannot cross itself prevents 
net exponential flux growth through S even though the flux line is exponentially 
stretched. (The situation is fundamentally different in three dimensions, and in 
what follows we only consider three dimensional situations.) 

3 Dynamic Properties from Ergodic Characteristics 
of Lagrangian Chaotic Flows 

In this section we report results on how one can obtain quantities such as the 
dynamo growth rate and fractal dimension of the fields from ergodic dynamical 
characteristics of the Lagrangian chaos of whatever specific velocity field v(x, t) 
occurs in the dynamo problem under consideration. Note that, use of the La- 
grangian chaos for this purpose implies that all calculations are done from the 
ordinary differential equations dx/dt = v and d$x/dt = gx- ~7v (rather than the 
partial differential equation, Eq. (1)). In this section we shall only be reporting 
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~ m -I  

(a) 

Fig. 2. Illustration of Cowling's antidyrmmo theorem for a two-dimensional Lagrangian 
chaotic flow a t / ~  --* oo. 

and illustrating results, not deriving them. For derivations see Refs. 8, 15, 16, 
and 24. 

3 . 1  C a n c e l l a t i o n  E x p o n e n t  

Before proceeding to discussions of the growth rate and fractal dimension it is 
necessary to consider the extreme cancellation properties of magnetic fields in 
the large P ~  limit. In particular, from models [4,9,14] and numerical solutions 
[24] it is evident that  at large time the magnetic fields can undergo rapid spatial 
variations in which their directions flip by t80 ° . This results in local alternat- 
ing layers with opposing fields of thickness of order e. ~ R~ 1/2. Thus, as P ~  
increases this alternation becomes more rapid. 

To quantitatively characterize situations with this kind of extreme tendency 
for cancellation, we use the cancellation exponent introduced in Ref. 14. We 
consider a magnetic field distribution B in three dimensional space, and we 
choose some planar surface S with unit normal n. We divide S into a grid of 
two dimensional e by e squares. Let ¢i be the flux through square i with respect 
to the unit normal n normalized to the tot:d flux through S. If the quanti ty 
X(E) = )-']~i ]¢i1 increases with decreasing e as ~ power law in e then we call that  
power the cancellation exponent and denote i- ~, 

x(E) = I¢ 1 . (11) 
i 

If there were no cancellation, ¢i > 0 for all i, then ~-~i 1¢il = ~-'~-i Oi = 1 and 
= O. (It is assumed that  n is generically independent of the choice of S.) If 

the magnetic field B . (x )  normal to S (where x is on S) is a smooth bounded 
function, then, for small enough e, 

i 



J I 

independent of e, and ~: is again zero. In practice, the magnetic field is always 
smooth on small enough scale; i.e., once we consider scales as small as e, ,~ p ~ l ,  
Eq. (6). Thus the practical meaning of (11) is that  a plot of gnX(e) versus £n(1/e) 
shows a linear scaling range with slope a for e > e,. 

As an example illustrating the cancellation index Fig. 3 shows a plot of ~nx(e) 
for a model with finite l a r g e / ~  (P~ = 101°) versus tn(1/e). [We do not describe 
the model here. The interested reader should refer to Refs. 6, 14-16.] We see that  
the plot is well-fit by a straight line for e > e,. The slope of this line is a. For 
e < E, the curve flattens as expected. 

4 

3 

2 

1 
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/n 

Fig .& lnx(e) versus In(l/e) for the four strip model with cancellation a t / ~  :: 10 l° 

3.2 Growth  Rate  Formula 

Say we sprinkle around many initial conditions Xoj(j = 1, 2 , . . . )  in the chaotic 
region of a three dimensional dynamo flow. For each initial condition xoj we 
consider a differential cube J of edge length 5 (where 5 is a differential) centered 
on the initial condition. We then use Eqs. (2) and (4) to evolve the cube forward 
in time by an amount t. This is illustrated in Fig. 4 which shows that  the cube 
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is deformed by the flow into a parallelipiped. We denote the three dimensions 
of the parallelipiped (the length, width and thickness) LljS, L2j, L3jS, where 
Ll j  >_ L2j >_ L3j. For large t, we typically have that Ll j  >> 1 since the flow 
is chaotic. By  volume conservation LljL2jL3j = 1, and so L3j << 1. In what 
follows we assume that  L2j is typically greater than or equal to one. (In this 
case we expect and numerically observe that  the magnetic field concentrates on 
a fractal set of sheet-like structures [15,16}.) The quantities 

1 
hi (Xoj, t) = - In Lij , 

t 
(12) 

for i = 1, 2, 3, are the finite time Lyapunov exponents from point x0#. 

/ 

(a) 

A i ~ r  time t 

(b) 

Fig. 4. Deformation of the differential cube J by the flow. 

A formula using the Lij and giving the dynamo growth rate in the large R ~  
limit (denoted F.)  has been obtain in Ref. 16, 

/ ' ,  = lim 1 - < L 1 L ' ~  > , 
t---,oo t 

(13) 

where the angle brackets denote an average over the initial conditions Xoj and 
the number of these initial conditions is taken to infinity. In application [16,24], 
one uses a large number of initial conditions and plots the quanti ty In < L1L'~ > 
versus t. Fit t ing a straight line to such a plot and obtaining its slope then gives 
T'.. The cancellation exponent ~: can be obtained from the ideal equation, Eq. (5) 
by calculating the magnetic field at a grid of points on some conveniently chosen 
surface S and then obtaining the slope of In ~-']~ [¢i[ versus In ( l /@ As discussed 
in connection with Eq. (10), the ideal magnetic field on the surface S can be 
obtained purely from computations on ordinary differential equations. 
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Since L3 << 1, Eq. (13) implies that  cancellation always reduces the instabil- 
ity growth rate. Setting t~ = 0, we have that  if n was positive, then 

1 
I", < h T =_ lim -- In < L1 > (14) 

t~oc t 

Thus, hT is all upper bound for the P ~  --, oe growth rate F..  The quanti ty 
hT defined in (14) may, under certain circumstances, be identified with one of 
the fundamental quantities characterizing chaos in dynamical systems, namely 
the topological entropy (e.g., see Ref. 28, page 143). Thus, we have that  the 
topological entropy is an upper bound on the growth rate F. [4,23]. It should be 
noted that  the limit on the right hand side of (14) is not the same as the largest 
Lyapunov exponent which is given by 

hi lim 1 = - < l n L 1  > 
t--.oo t 

Since, the average of the log of a quantity is less than or equal to the log of 
the average of the quantity, hT > hi, and we should expect the inequality to 
typically apply. 

3 . 3  F r a c t a l  D i m e n s i o n  

Let V be any three dimensional subregion of V0, where V0 denotes a finite volume 
in which the flow is confined. Then, we define a magnetic field based measure, 

f v  IB(x,t)l  d3x 
It(V) = fro ]B(x, t)Id3x " 

Now say we cover the volume V0 by a grid of e by e cubes. Let tti denote the 
measure of the cube i. We then define a dimension spectrum depending on the 
continuous index q by [27,28] lq(e) = (q - 1 ) - l e n ( ~ i  ItS) ~ Dqgn(1/e). 

For times t large enough so that  the magnetic field has settled into a distri- 
bution with small scale variations at e. Du and Ott  [15] present a formula giving 
the Dq dimension in terms of the Li and the cancellation index. The result for 
q = l i s  

DI = 3 - lira < L1L~ ln(L1L~) > - < L1L~ > In < L1L~ > (15) 
t--+oo < L1L~lnL31 > 

(Note that  for q ~ 1, we obtain from L'Hospital 's rule, Ii(e) = Y~pign(1/iti) 
and D1 is called the information dimension [29].) 

The case q -- 1 is of most direct physical interest since it gives the dimension 
of the set on which the magnetic field concentrates. Thus, the prediction is 
that,  i f / ~  is large and t is large enough so that  the magnetic field varies 

on the limiting scale e. ,-  p ~ 2  determined by finite resistivity, then a plot of 
Y~#i ln(1/iti) versus In(l /e)  has the slope O1 given by (15) for e small but  larger 
than e.. 
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In the case where t is large but not large enough that  e. has been reached, 
Antonsen and Ott  [8] show that  there is a scaling range in e for which 

D1 = 3 -  lim < L t l nL1  > - < L l l n L t  > (16) 
t-.co < L1 In L31 > 

which is the same as (15) with ~ set equal to zero. Thus, as time evolves, the 
large R ~  fractal dimension of the magnetic field distribution crosses over from 
a value given by (16) to a value given by (15). 

4 N u m e r i c a l  C o m p u t a t i o n s  o f  t h e  K i n a m a t i c  D y n a m o  

P D E  a t  L a r g e  R , ~  

The general results discussed in the previous sections pertain to very large P ~ .  
Although large -Rm is relevant in nature, numerical computations at large Rm 

are difficult due to the necessity of resolving small scales, c. ~ p~1/2. Recently, 
Reyl et al. [24] have performed computations for a spatially smooth three dimen- 
sional flow at large enough R m ( / ~  = 106) that  the realizations of the general 
properties we have discussed in this paper become feasible. 

The flow considered in [24] is specifically chosen so as to facilitate large R ~  
computation. This flow is as follows, 

v(x, y, t) = xogz(y)f(t) + yogy(x)f(t - ~T) 

+ zo~(z ) f ( t  - 3T), 

where f(t)  is a periodic function with period T, f ( t )  = 0 for T/3 + nT < t < 
( n +  1)T with n integer, so that  the flows in the x, y, and z directions are turned 
on sequentially. The Lagrangian chaotic dynamics generated by this flow can 
be analyzed by integrating dx/dt -- v over one period T. This gives a three 
dimensional volume preserving map relating x at time t = nT to x at time 
t = (n + 1)T, 

Xn-~l -~- Xn ~- vx (Yn) ,  

yn+l = Y, + ~(xn+l), 
z,+l  = z~ + ~z (x,+l) ,  

where f(t) is normalized so that  f [  f(t)dt = f j / 3  f(t)dt = 1. Because the partial 
differential equation, Eq. (1), is solved using a Fourier spectral representation, it 
is desired that  ~ ,  ~ ,  and vz and their convolutions with the magnetic field have 
simple Fourier transformations. Thus, the ~3's are chosen to be sinusoidal, vx = 
U~ sin(Kuy + O~), ~ = Up sin(K~x + 0N) , ~)~ = Uz sin(K~x + 8z), For discussion 
of the numerical techniques and other details see Ref. [24]. 

Using these computations various large P ~  issues were addressed. These 
include the following: (i) the predicted equality of a obtained from the ideal 
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equation at large time and t¢ obtained from solution of (1) at times after e. has 
been reached; (ii) the predicted equality of the ideal flux growth rate (given by 
(9)), the theoretical growth rate result given by (13), and the growth rate from 
numerical solution of (1) at large Rm; and (iii) the predicted Dq from Ref. [15] 
for different q values (of which the q = 1 result is shown in Eq. (15)). In all cases, 
the predicted and computed results were consistent to within the limits of the 
numerical accuracy attained. 

5 Conc lus ion  

The fast kinematic dynamo problem displays a variety of interesting features 
connected with the singular small scale behavior of the magnetic field. The sur- 
prising result is that  this behavior can be fully understood and quantitatively 
analized by use of concepts from chaotic dynamics. 

This work was supported by the Office of Naval Research (Physics). 
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Abstract .  This paper is a review of models for dimensionless scaling laws in fusion 
plasmas. The reasons why this subject is of particular interest are given. Models based 
on the effect of rotational shear flow and avalanches are described in details. 

1 I n t r o d u c t i o n  

Dimensionless scaling laws in thermonuclear fusion plasmas provide in principle 
a reliable way to extrapolate  the performances of present day devices towards a 
reactor [1, 2]. The procedure can be understood as follows. For fixed geometry 
and profiles, and ignoring atomic physics processes, three main dimensionless 
parameters  [3, 4, 5] describe a magnetized fusion plasma: the Larmor radius Ps0 
normalised to the p lasma size a, called p*, the ratio j5 of the kinetic pressure to 
the magnetic  field pressure, and the Coulombian collision frequency normalised 
to a transit  frequency (ion sound speed divided by the machine size), called v*. 
If  n is the density, T the temperature,  and B the magnetic field, these quantities 
scale as p =_ T 1 / 2 / a B ,  fl -- n T / B  2, and v* - n a / T  2. The values of the two latter 
parameters  achieved in present day devices are already close to those relevant for 
a reactor. Thus, an extrapolat ion to a large size tokamak essentially involves the 
normalised Larmor radius p*. The dependence of the confinement on this param-  
eter will be our main concern in the following. It is easy to check that  at fixed 
/~ and v*, the normalised power loss P a  3/4 depends only on p* =_ a - 5 / 6 B  -2/3.  
Let us now introduce a confinement scaling law. A common expression for the 
thermal  diffusivity is X - T / e B  ~0"] ~ (e is the proton charge). The well known 
Bohm scaling law corresponds to a = 0. We will see later that  the gyroBohm 
scaling law a = 1 plays a central role. The confinement time, defined as the 
ratio of the kinetic energy content to the power loss P, scales as a2 /x .  One can 

then easily verify that  the power loss scales as [p . ]a -5 /2  This result proves that  
an extrapolat ion towards a large size reactor, i.e. towards small values of p*, is 
more favorable for a gyroBohm scaling law a = 1 than for a Bohm law a = 0. 
For instance, the extrapolat ion of a discharge in the tokamak J E T  towards the 
I T E R  project predicts a power loss of 80MW when using a gyroBohm scaling 
law and 600MW for a Bohm law [2]. It  turns out that  a gyroBohm scaling law is 
predicted by conventional t ransport  theories based on turbulent diffusion. This 
may  be understood as follows. The correlation times rc are expected to scale as 
the inverse of the growth rates of localized eigenmodes, which depend only on the 
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local gradients and scale as the ion sound speed divided by the plasma size c,o/a. 
Furthermore, the correlation length are expected to scale as a Larmor radius. Us- 
ing a random walk estimate, the local plasma diffusivity behaves as T/eB [p*]~, 
with o~ = 1, i.e. follows a gyroBohm scaling law. Thus, the common expectation 
is favorable for the extrapolation toward a reactor. Unfortunately, it disagrees 
with experimental results in some cases [1, 2]. More exactly, although the dif- 
fusivity for the electron heat channel is found to be gyroBohm, the scaling law 
for ions depends on the confinement regime. In the L-mode (Low confinement), 
ions are found to follow various laws, including the so-called Goldston scaling 
law ~ = -0 .5 ,  whereas in the H- mode (High confinement), the scaling law is 
gyroBohm a = 1. The latter regime is obviously more promising for a reactor. 
Understanding this unexpected behavior of ions is a difficult task. Several expla- 
nations have been proposed to explain the disagreement with experiment. The 
first explanation is based on the fact that the radial widths of linear eigenmodes 
(the so called global modes) scale as pvZp-77a,0a [6, 7]. Using this linear scaling in a 
random walk estimate leads to a Bohm scaling. A second explanation relies on 
the stabilizing effect of a rotational shear flow (diamagnetic phase velocity plus 
diamagnetically induced ExB drift). Such a flow naturally exists in a tokamak 
plasma. An estimate of the poloidal flow is obtained by balancing the pressure 
gradient plus the electric force with the VxB Laplace force. Ones finds that  the 
velocity scales as p*c~o and its spatial derivative scales as p*c,o/a. Starting from 
a growth rate without shear flow 70, which scales as c,o/a, simulations of ion 
turbulence indicate that  the effective growth rate behaves as 70 - ]dV/dr], which 
scales as cso/a ( 1 -  (~*p*), where ~* depends on the details of the profiles. As- 
suming that  the correlation lengths scale as p~0 and using again a random walk 
estimate with a correlation time inversely proportional to the growth rate, one 
finds that  the heat diffusivity should scale as T/eBp* [1 - c~*p*] [8]. This pre- 
diction calls for two comments. First, it is not a monomial expression, i.e. the 
scaling law is not definite. This could explain why various scaling laws are found 
depending on the profiles. Second, since p* is a small nmnber in a tokamak (10 -2 
to 10-3), this effect will play role if the growth rate without shear flow is small 
(a* large), i.e. close to a turbulence threshold. A third explanation emphasizing 
the apparently non local plasma response was recently proposed by Diamond 
and Hahm [9]. This approach is related to the concept of Self-Organized Criti- 
cality (SOC) for which the paradigm is a sand pile automaton first introduced 
by B a k e t  al. [10]. In SOC models, avalanches play a central role [10, 11]. In a 
tokamak plasma, an avalanche corresponds to a fast radial propagation of a heat 
pulse. The mechanism can be understood as follows. A heating burst induces 
locally a transient steepening of the temperature profile. Once the temperature  
gradient exceeds the turbulence threshold, this steepening induces a burst of 
turbulence which expels the heat outward. The process is then renewed at the 
neighbouring radial position. A necessary condition for such a behavior is the 
existence of a turbulence threshold and a conservation law (here energy conser- 
vation). In sand pile numerical models, avalanches occur at all spatial and t ime 
scales. One consequence is a 1/f  behavior of the frequency spectrum, which is 
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commonly observed in these simulations [11]. Also, it is generally found that  tile 
t ime average slope of a sand pile automaton is sub-critical, i.e. it stays below the 
threshold value. Evidences of avalanches have been shown for simplified models 
of tokamak turbulence [12, 13, 14]. It was suggested by Diamond and Hahm that 
large scale avalanches break the gyroBohm expectation by introducing correla- 
tion length which scale as the machine size. This behavior may lead to a Bohm 
scaling. The purpose of this paper is to investigate these issues with a simplified 
2D full radius code computing an Ion Temperature Gradient (ITG) turbulence 
in a tokamak. The code is simplified in the sense that the radial shape of each 
Fourier harmonic with respect to poloidal and toroidal directions is given and 
fixed. This allows a fast computation while keeping the main features of toroidal 
ITG turbulence. In particular the linear stability involves a turbulence thresh- 
old. This code has been first developed to work with a fixed temperature profile, 
essentially by filtering the low scale temperature fluctuations. This constraint 
forbids avalanches. The main results are the following [8]: 

- well above the threshold, the scaling law is gyroBohm 
- close to the threshold, the scaling law does not follow the gyroBohm predic- 

tion. It is shown that  this is due to shear flow stabilization. 
- the correlation lengths usually scale as a Larmor radius, whereas the corre- 

lation times depart from the gyroBohm prediction when the gradient is close 
to the threshold. 

In a second step, this code has been extended to work at fixed thermal flux, al- 
lowing fluctuations of the temperature profile. The main results are the following 
[14]: 

- the heat transport  is intermittent and involve large scale avalanches. 
- the profiles are super-critical, i.e. are above the marginal profile. 

The question of scaling laws is still open in simulations at fixed flux. However, 
preliminar calculations show that  the confinement scaling law is not gyroBohm 
at moderate fluxes. This result is true at fixed temperature gradient or at fixed 
flux, for the same temperature profile and plasma parameters. It suggests that 
the rotational shear stabilisation is the dominant effect. However, simulations at 
high fluxes, where a gyroBohm scaling is expected, are still to be done to confirm 
this result. The remainder of this paper is as follows. The simplified model which 
is used is described in the section 2. Results at fixed temperature gradient are 
shown in section 3 while those obtained at fixed flux are described in section 4. 
A conclusion follows in section 5. 

2 A m o d e l  f o r  a t o k a m a k  i o n  t u r b u l e n c e  

2 . 1  F l u i d  e q u a t i o n s  

We use a cylindrical equilibrium with a coordinate system (r, 0, ~) : r is the 
minor radius of a magnetic surface , 0 (~) the poloidal (toroidal) angle. The 
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magnetic field is 

__ r 0 I" 

where q(r) is the safety factor, R the major radius of the torus. Ion density, 
pressure and electric potential are written under the form 

[n~, p~, ¢] (r) = [n.~, p.~, ¢,~] (r) + ~ In,, p,, ¢]~,~ (~, t)~.p [i(,.O + n~)] 
7Tt~n 

We start  here with a set of fluid equations proposed by Nordman and Weiland 
[15] for toroidal ITG modes, which can be recast under the form [8, 14] 

d~N = - i w ~ . f . N  + iwD. ( f i f .N + rP)  

5. 2J~rp) d~P = ~ w  D . @ f . g  - 7~2rN + . + S (1) 

where the normalisations are 

r r -+ ~ = , t --+ { = c~ot - - '  ; V --~ V = p~oV 
P~o a 

a ei~ a pi 
¢ - + 4 = - - - - ; P i - - + P i -  (2) 

Ps0 T~0 ps0 P~0 

and neo, Teo,Peo are reference values (these are not the values on the magnetic 
axis), cs0 is the acoustic speed, Ps0 = micso/eiBo is the corresponding ion Lar- 
mor radius, and 'a' is the minor radius. The ion temperature profile is supposed 
to be proportional to the electron temperature profile, r being the ratio. We 
have assumed scale separation for the ion density but not for the temperature.  
The normatised profile n(r, t) is defined as 

f 2~ dOd~ ni(r, O, 9, t) 
fi(r, t) = 47r 2 neO (3) 

In practice, the normalised density profile fi(r,t)  is fixed (does not depend on 
time) and flat so that these simplications are not very important .  Definitions 
similar to Eq.(3) hold for the normalised profiles ~h(r, t),ib(r, t). The other defi- 
nitions are 

WD = - - , -~  cos(O)Of + sin(O) Oo (4) 

and 

where )~ = 0 for m=0 ,n=0  radial modes and )~ = 1 for helical m,n fluctuations. 
The time derivative advance is defined by 

d~ = O~ + v~  " V~ = O~ + [O~q~ l oo - l oo~O~] (6) 
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and S is a source term. The linearised version of Eqs.(3) for the poloidal (m) 
and toroidal (n) components is 

O~N.~. = - i~*.f .Nrn~ + i[wD. (~y.N + rP)]mn 

(7) 

where 

dneq im Nmn (8) 
(w* N)m n =-aneqd r p 

and vanishes for radial modes. 

2.2 Quasi-ballooning representation 

The equations above do not account for the parallel dynamics.  The lat ter  effects 
are known to localise the m,n Fourier components in the radial direction around 
the corresponding resonant surface r = r,~,~ such that  q (r,~,,) = -m /n .  To 
introduce this effect, each m,n  mode is developed over a given set of functions 

(r 
[N'P]'nn(r't~ : ~-~[N'P]m'n'e(l~Wt \ 5m,, ] 

r n , n  

(9) 

Here, the set is limited to two functions, even (t = 0) and odd (t = 1). This 
is the min imum required to keep a non-vanishing geodesic curvature and ac- 
count for shear flow generation. These functions are chosen to be gaussians, 
whose width Am,,  is proportional to the local ion Larmor radius Ps (r . . . . .  t) = 

-~1/2 
p,o ~(rm,n, t)J . In the same way, the radial profiles are developed over a set 

of basis functions 

[N, P]~q (~, t~ = ~ [N, P]k (t-) ~vVk (r) 
k 

Wk(r) - -  Jo (~rakr/a) 
J1 (Trc~k) 

(lO) 

where J0, dl are Bessel functions and ak is the k-th zero of d0(zrr/a) . The set 
(Wk) is or thonormal  [16]. Note that  this procedure imposes that  all fields vanish 
at r=a .  Eqs.(1) are then projected onto these m,n and radial shape functions. 
This reduces the dimensionality to 2. The details have already been given in the 
reference [8]. 
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where XgB = p~oc~o/a is the gyroBohm reference value. The link between the 
source amplitude and the total additional power Pi,~p~,t is given by the relation 

'~  Tt TrPsoCso'-' Pinput = o,*o ov----~-,~o (17) 

where V = 21rR1ra 2 is the volume. In this model, the edge gradient adjusts itself 
such the time average of the heat outflux compensates the input flux, which is 
the radial integral of the source S. 

3 S i m u l a t i o n s  at  f i x e d  t e m p e r a t u r e  g r a d i e n t  

3.1 E i g e n m o d e s  a n d  l inea r  s t a b i l i t y  

Results in this section come essentially from the reference [8]. The system that  
was solved is close to Eqs.(1), with additional FLR effects vanishing in the limit 
of small k_LP~o. To perform a p" experiment in a controllable way, the following 
procedure was followed. Let us first consider the case of a slab geometry where 
the density profile is flat (~Th = 0) and the temperature gradient length is 
constant. It is reminded here that  for a fiat density profile, the threshold is given 
by a critical value of the normalised gradient length LTi /R ,  which is thus the 
same everywhere. In this case, the eigenmodes are of the form 

[U,,r,,~, P, ,~]  = [N,,~, P,~] ~ p  [i(m - too)O] (18) 

where 00 is the so-called ballooning angle. 
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7gtob(P*=O.O 1) 

Yglob(P*=0.02) 

t rk/a 
0.5 1.0 

Fig.l:  Global and local growth rates as a function of the resonant surface 
radius (proportional to m/n)  for n=6. The global growth rates correspond to 
the most unstable mode and are calculated for 3 values of p*. Increasing p* is 
stabilizing, i.e. decreases the growth rates. 
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These modes extend all over the minor radius and the corresponding growth 
rates 7toc do not depend on p*. The critical temperature gradient length LTc/R 
is defined in this way. In fact, the temperature gradient length in an actual device 
is not constant and the eigenmodes are spatially localized by profile curvature. 
This localization is achieved by adding a dissipation in the edge and in the 
neighbourhood of the magnetic axis r=0. 

]XTi/~gB LTi/R=O.i2 0*=0.005 a) I 

4 -- LTi/R=0.17 b)- 

LTi]N=0.21 C) 

0.5 1.0 

0 . 5  B 

0.0 
0.0 

Fig.2: Ion heat diffusivity for three values of the temperature gradient length 
LTi/R = 0.12, 0.17, and 0.21 and three values of p* = 0.005, 0.01, and 0.02. 
The threshold given by the lowest order of the ballooning calculation is LTi/R 
= 0.29. 

This procedure leads to localised eigenmodes whose growth rates "~9tob depend 
on p* as shown on Fig.1. It has to be stressed however that  the generic case in a 
tokamak is a parabolic curvature. The present procedure tends to overestimate 
the effect of curvature in the p* dependence of the growth rates. In a second 
step, a controlled amount of poloidal shear flow is added by introducing an ExB 
rotational shear 7E = dyE~dr (the geometry is slab). It has been verified that  
the shear flow is stabilizing. 

3.2 Scaling laws at fixed temperature gradient 

For a given amount of shear flow, the thermal diffusivities are compared for three 
different values of p* (p*=0.005, 0.01 and 0.02) in 3 cases: 

- well above the threshold, i.e. LTi/R << LTc/R 
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- close to the threshold LTi/R < LTc/R 
- very close to the threshold LTi/R ~-- LTc/R 

The results are shown in Fig.2. Well above the threshold, the scaling law is 
gyroBohm since the heat diffusivities normalised to the gyroBohm value are 
roughly the same for the values of p*. Closer to the threshold, a departure from 
the gyroBohm prediction is observed. This breaking of the gyroBohm scaling law 
is obvious on the figure 2 when the gradient is very close to the threshold value. In 
the latter case, there is no turbulence for the largest value of p*=0.02, whereas a 
gyroBohm law would predict the same diffusivity as in the case p*=0.005. This 
observation is consistent with the picture along which the turbulence level is 
proportional to an effective growth rate 7elf : 70 --"~* - - 7 E ,  where 7" represents 
the effect of diamagnetic flow shear. The actual expression for the stabilizing 
term 7" + 7E is still under discussion. A reasonable choice seems to take the 
radial derivative of the mode phase velocity in the laboratory frame. This picture 
is reinforced by an analysis of correlation functions. This analysis indicates that  
the correlation lengths scale as an ion Larmor radius, in agreement with the 
gyroBohm. However, when the scaling is not gyroBohm, the correlation times 
normalised to a/cso depends on p*. 

4 S i m u l a t i o n s  a t  f i x e d  h e a t  f l u x  

4.1 A v a l a n c h e s  

The results in this section correspond to situations where the heat flux is fixed 
and the temperature profile is allowed to fluctuate. An example of temperature 
profile is shown in Fig.3 for the case where p*=0.01 and 5:0=0.01. 
This profile calls for two remarks: 

- the instantaneous profile exhibits a sequence of plateaux and steep slopes. 
The life time of these plateaux is of the order of a few time units a/c~o (i.e. a 
few #s in a tokamak). They correspond to a transient quasilinear flattening. 

- the time average of the temperature profile is smooth, as usually observed in 
a tokamak. The heat diffusivity is estimated from this time averaged profile. 

0 .2  

0.1 

0 .0  
0 .2  

T i I I I 

I I I r / a  
0 .4  0 .6  0 .8  .0 

Fig.3: Instantaneous and time average temperature profiles for S0=0.01, and 
p*=0.01. 
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A remarkable behavior is that  these plateaux are correlated all along the 
minor radius of the discharge, i.e. they correspond to avalanches. An avalanche 
can be understood as follows: a heating induces locally a steepening of the gra- 
dient, which exceeds the turbulence threshold and thus produces an increase of 
the turbulent heat flux, expelling the flux toward a larger radius. At this new 
position, this burst of heat will again increase the temperature and increase the 
turbulence. This process can be repeated many times, such as a domino effect. 

Avalanches can be visualized by looking at the contour lines of the ther- 
mM flux and pressure (Fig.4). There exists avalanches at all spatial and time 
scales. This results in a 1/f  frequency spectrum, which is also observed in sand- 
pile automatons and a fluid model for an interchange turbulence in a cylinder. 
However, this is not a definite proof that  this system is a SOC system. Another 
characterisric is the sub-criticality. It has been indeed observed in some reali- 
sations of SOC systems [17] that  the slope lays below the critical value ahnost 
everywhere in the plasma. A stability analysis of the profiles show that  this is 
not presently the case. The growth rate corresponding to a time average profile 
is indeed positive. Also, increasing the heating source leads to a profile which 
can exceed significantly the marginal profile. An important  question is to know 
whether avalanches can break the gyroBohm scaling, as it has been suggested. 
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Fig.4: Contour plots of therma] flux as function of the radial position p = r / a  
and time. 
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4.2 Scal ing laws at f ixed flux 

A straightforward analysis of the heat equation Eq.(15) tells us that  if the heat 
diffusivity normalised to the gyroBohm value scales as [p,]~-i  (~ = 1 is gy- 
roBohm, a = 0 is Bohm), then the source amplitude S0 has to scale as [p']~ to 
maintain the same temperature profile. To estimate a, the temperature profile 
corresponding to p*=0.01 and S0=0.05 is used as a starting point, and S0 is 
adjusted to recover the same temperature profile for p*=O.02. It is found that  
5:o=0.0425, corresponding to a negative value of c~ _~ -0 .2 ,  i.e. a scaling law 
worst than Bohm. This is confirmed by a local analysis of the heat diffusivities: 
the ratio of the normalised diffusivities is close to a Bohm scaling. The question 
arises whether this is due to the stabilising effect of rotational shear flow or to 
avalanches. The same simulations at fixed temperature profiles, where avalanches 
are forbidden, indicate that  a Bohm scaling persists. This suggests that  the rota- 
tional shear flow is responsible of this breaking. However, simulations at higher 
fluxes, where a gyroBohm scaling law is expected, remain to be done. A firm 
conclusion cannot be given here. 

5 C o n c l u s i o n  

The confinement scaling laws of a magnetized plasma turbulence with respect to 
the normalized ion Larmor radius p* has been investigated. Two situations have 
been studied depending on the control parameter which can be the temperature 
gradient or the thermal flux. In the case where the temperature gradient is the 
control parameter  and is well above the critical value, it is found that the scal- 
ing law of the heat diffusivity is gyroBohm, i.e. the heat diffusivity behaves as 
T/eB [p*]~, with ~ = 1. This is no longer true closer to the threshold, where this 
rule is broken. This is at tr ibuted to the stabilizing effect of the rotational shear 
flow, which depends on p*. A consequence is that the correlation length scales 
as a Larmor radius, but the correlation time normalised to an acoustic time 
a/cso depends on p*. In this case, thereis no definite scaling since a parabolic 
behavior is expected for the heat diffusivity. The picture is rather different when 
the control parameter is the heat flux and the temperature profile is allowed to 
fluctuate. The main observation is that large scale events cross the discharge 
minor radius. These events are similar to avalanches which are observed in Self- 
Organised Systems such as sand pile automatons. However, the time averaged 
gradient is found to be above the critical value, in contrast with some SOC sys- 
tems which are sub-critical. The question of scaling laws for a heat flux driven 
turbulence is still open. Preliminar calculations indicate that the scaling law is 
not gyroBohm in those systems. This effect persists when avalanches are forbid- 
den, suggesting a dominant effect of rotational shear flow. More simulations are 
needed to give a firm conclusion. 
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Bifurcat ion in First-Order Fermi Accelerat ion 
and the Origin of Cosmic  Rays 
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Abs t rac t .  Strong astrophysical shocks are probably the most powerful accelera- 
tors in the universe. The main basis for the shock acceleration to perform so effi- 
ciently is believed to be created by accelerated particles themselves through their 
backreaction on the shock structure resulting in a substantial increase of the shock 
compression. Such an accelerating shock should thus be considered as a dynamical 
system with the pronounced self-organization. We review the current state of the 
theory of nonlinear shock acceleration. The main emphasis is on the bifurcation of 
the solutions for the acceleration efficiency in terms of the rate at which particles 
are drawn from thermal plasma (injection rate), their maximum energy (cut-off) 
and the Mach number of the shock. The bifurcation diagram shows that there ex- 
ists a critical injection rate below which only a relatively inefficient acceleration is 
possible whereas above this quantity the acceleration may become extremely ef- 
ficient. On the other hand, at least in a stationary regime in which all particles 
leave the system at or below the energy cut-off, the acceleration process can hardly 
be continued in a very efficient way to very high energies. A number of plasma 
processes inside the shock transition may drive the system to the inefficient accel- 
eration regime. We speculate on a possible relevance of these results to the lack of 
evidence of high energy protons in supernova remnant shocks. 

1 I n t r o d u c t i o n  

Diffusive shock acceleration, also known as the first order Fermi process in 
shocks, has been formulated in its modern form in a number of papers about 
twenty years ago [1-4]. Initially, the interest in this process was motivated by 
earlier ideas that the cosmic rays (CRs), being so ubiquitous in the Galaxy 
must be born in strong shocks such as the supernova remnant (SNR) shocks. 
It was quickly realized, however, that the problem must be put in a more 
general physical context. Namely, if a strong shock propagates through the 
plasma, the question is which fraction of the shock energy can be channeled 
into accelerated particles (we will also use the term CRs for them). In a 
classical shock theory, a similar question of how the incident flow energy is 
distributed between the thermal motion of the gas behind the shock and 
its bulk motion is solved given the Mach number and the adiabatic index 
of the gas using solely the conservation of the fluxes of mass, momentum 
and energy across the shock transition (Rankine-Hugoniot relations). If, in 
addition, a certain fraction of charged particles can be accelerated to very 
high energies, the problem of distribution of the shock energy cannot be 
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solved within the traditional gas dynamics since high energy particles can 
carry a sizable fraction of energy and momentum even if their mass density 
is negligible. 

The above problem of energy distribution has basically two aspects. The 
first, relatively simple one, concerns primarily the age and the size of the 
shock. Indeed, particles gain energy upon recrossing the shock front to which 
they are bounded diffusively due to scattering off hydromagnetic disturbances 
which are assumed to be sufficiently strong in the shock vicinity. This takes 
time and at least the cut-off energy derives simply from the life time of the 
shock if losses do not come into play before. It is usually assumed that  they 
begin to work when the Larmor radius of accelerated protons approaches 
a certain fraction of the shock size. Electrons start  to loose their energy 
normally long before due to the synchrotron radiation or the inverse Compton 
scattering on a background photon field. 

The second aspect finds its roots deeper in the fact that  accelerated par- 
ticles modify the flow which may substantially alter the acceleration process 
itself. In particular, in a strongly modified high Mach number shock the total 
compression ratio exceeds the conventional value of 'four' markedly, and as 
we shM1 see, the partial pressure of stationary accelerated particles becomes 
a nonintegrable function of momentum without an upper momentum cut-off. 
Therefore, in a quasi-stationary state, when the losses at the upper cut-off 
momentum Pl are compensated through the injection around some slightly 
suprathermal momenta p ~ P0 ~ Pth, the acceleration efficiency will criticMly 
depend on the relation between these two. Moreover, the losses have the ef- 
fect of increasing the total  compression ratio, boosting CR production even 
further. 

In the next section we briefly review the physical formulation of the prob- 
lem and the simple test particle solution for diffusive shock acceleration. 

2 T r a n s p o r t  o f  E n e r g e t i c  P a r t i c l e s  i n  N o n u n i f o r m  

P l a s m a  F l o w s  

A complete Maxwell-Vlasov analytic description of CRs in the turbulent 
shock environment is hardly possible. Since one needs to span typically about 
ten orders of magnitude in particle energy and since the diffusive spreading 
is proportional to particle energy and, thus, the spatial domain of interest 
is correspondingly large, the problem is inaccessible also for direct computer 
simulations. The most efficient reduction scheme of the Vlasov-Maxwell sys- 
tem consists of the following two steps. First, one derives a standard quasi- 
linear system under the assumption that  the wave-particle interaction is due 
to the excitation of MHD waves via the cyclotron resonance with a slightly 
anisotropic energetic particle distribution emerging at the shock. This inter- 
action leads to particle diffusion in pitch angle which is assumed to be the 
fastest process in the quasilinear kinetic equation. Since the hydromagnetic 
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waves (scattering centers) propagate essentially at Alfv6n velocity vn << U in 
the local plasma frame, where U(x) is the bulk plasma speed, they are seen by 
energetic particles as frozen into the flow. Thus, the particle momentum dis- 
tribution must be almost isotropic in the local plasma frame and an equation 
for the isotropic part f ( x ,p ,  t) may be derived by averaging the quasi-linear 
equation over the pitch angle. The result is known as a diffusion-convection 
equation and may be written in the following form (see e.g., [5]) 

Of Of a Of 10U Of (1) 
0--[ + U ox  Oxn-~x -- 3 0 x P O p  

Here the coordinate x is directed along the shock normal and n(p, x) is the 
spatial diffusion coefficient originating from the pitch angle scattering (wave- 
particle collisions). The smallest possible n (the most rapid acceleration) 
corresponds to the Bohm regime in which the mean free path of the particles 
approaches the Larmor radius r L SO that  ~ = rLv /3 ,  where v ~- c is the 
particle velocity. The acceleration time-scale is then given by race "~ n /U  2. 

3 T e s t  P a r t i c l e  S o l u t i o n  

We begin with the simplest solution of equation (1) appropriate for an un- 
modified shock that  is assumed to be running in the positive x -  direction, 
so that  the flow profile in the shock frame is given by U = - u l ,  x > 0 and 
U = -u2 ,  x _< 0, where ul > u2 are the constant upstream and downstream 
flow speeds, respectively. We also assume that there are no accelerated par- 
ticles far upstream, at z = oc, i.e., f ( z  = ec) = 0. Then, the steady state 
solution of equation (1) in the upstream medium, z > 0, is 

/ = fo(p) (2) 

We assume here for simplicity that x is independent of z. Downstream from 
the shock (x _< 0) the only bounded solution is f = fo(P). We have used here 
the continuity of f at x = 0 since particles cross the shock balistically (the 
shock thickness is smaller than the mean free path). Integrating (1) across 
the shock transition gives the particle spectrum 

37" 
f 0 = Q i n j p  -q, where q =  r - 1  (3) 

and r = ul /u2  is the shock compression. The normalization constant Qinj 
should be determined from matching the solution (3) with the thermal distri- 
bution downstream. Unfortunately, equation (1) is invalid for thermal plasma 
due to the strong anisotropy of particle distribution at the shock front for 
velocities v ~ ul - u2 and the original quasi-linear equation should be used 
for this purpose [6]. We will consider parameter Qinj as given. 
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4 Nonlinear Theory of Diffusive Shock Acceleration 

So far we have considered a reactionless or test particle acceleration. If the 
parameter  Qinj is not vanishingly small, and the particle spectrum is extended 
to sufficiently high energies, the pressure exerted by these particles on the 
inflowing gas cannot be neglected while determining the shock structure. 
As a result, the latter acquires the form shown in Fig. 1 by solid line. The 
effect of the slowing down of the upstream flow may be very strong even 
for small Qinj due to the following positive feedback: an increase of the CR 
pressure hardens the spectrum due to the higher compression which further 
increases the pressure. As a result the system jumps from a nearly test particle 
solution with small Pc to a solution in which the flow ram pressure is almost 
totally converted into the CR pressure. To describe this situation we must 
complement equation (1) with an equation for the flow profile U(x). This 
can be obtained from the conservation of mass and momentum. Assuming 
the steady state, introducing for convenience u(x) = -U(x)  and g(z,p) = 
p3f(x, p) the system of equations to determine both the particle distribution 
and the flow profile u(z) takes the form 

1dung 
+ = (4)  

pu = pl ul ,  (5) 

Pc + = p l  (6) 

U 1 

U 

' h  

-U{x} 

CR-preeursor 

subshock 1 = KIpl)/u 1 

I 
9 X 

Fig.  1. The flow structure in a strongly modified CR shock. 

Here p(z) is the mass density, Pl = p(~x~), Pc is the CR pressure 



291 

P~(x)= 4zr c21V' pdp " z) (7) 
Y "  o 

and P¢(oo) = 0. The particle momentum p is normalized to inc. Equation (6) 
is written in the region x > 0 where we have neglected the contribution of the 
adiabatically compressed cold gas confining our consideration to sufficiently 
strong shocks with M 2 ~ plu21/Tegl >> (u,/uo)7, where 7 is the specific heat 
ratio of the plasma (see [7] for a detailed discussion of this approximation). 
The subshock strength can be obtained from the familiar Rankine-Hugoniot 
condition for the gas 

uo 7 + 1  
- - ( 8 )  

u2 7 - 1 + 2Mo 2 

where M0 is the Math number of the flow in front of the subshock. In the case 
of a purely adiabatic heating M0 = MR -('r+I)/2 with R = ul/uo. Behind the 
shock (x < 0) we choose the same solution as for the test particle problem, 
i.e., g = go(P), u(x) = u 2  =const. 

4.1 E x a c t  So lu t ion  for A r b i t r a r y ~ ( p )  a n d  Pl  --+ oo 

Introducing the flow potentiM k~, such as u = d~/dx we seek the solution of 
(4) in the form 

g=g0(;)expL--   j ,  (9) 

where/3(p) -- - ( d i n  go/dlnp)/3. This is the key substitution in our analysis. 
By plugging it in (4) and separating the variables we obtain the following 
equations for gt(x) and fl(p) 

- = 0 ( ] 0 )  

dfl (dlnn 3 )  
p-~p = (1 +/3) \d lnp Z (11) 

where A is a separation constant. Equation (10) may be readily integrated 
and yields the following scaling for the flow velocity in the CR precursor 

i t (X )  - -  U 0 O( X "k](A-1)  ( 1 ~ )  

The solution of equation (11) may also be found in a closed form 

go(p) = Clpz [C2 + / npa/)~-ldp] -)~ (13) 

The constants C1 and C2 should be determined from the solution of injection 
problem [6, 7]. For p not too close to the injection momentump0 the constant 
C~ may be omitted. One sees then that if x is a power-law then the particle 
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spectrum go must also be. A standard assumption g(p) = Kp2(1 + p2)-1/2, 
i.e., when the mean free path of a particle is proportional to its Larmor radius 
(here K is some reference diffusivity), leads to the following behaviour of the 
spectral slope fl (this may be seen from (13)) fl = (2/3)A for p << 1 and 
fl = (1/3)A for p >> 1 (see [8] for a complete solution). 

What  we obtained so far is a formally exact solution to equation (4) that  
requires a rather special flow profile u(x). It is by no means guaranteed that  
this solution satisfies the Bernoulli's integral (6) (the continuity condition 
(5) can be easily satisfied since it does not depend on g). Indeed, the only 
unspecified quantity in this solution that can potentially be used to satisfy 
the functional relation (6) is the constant )% which is, generally speaking, not 
enough. Fortunately this can be done nonetheless. Namely, substituting the 
solution (9) in (7) one obtains 

P ¢ ( ~ ) = p l u l ( u l - u o ) - O ( x / ~ - X / ~ )  (14) 

where Q is a normalization constant proportional to the injection rate Qinj 
introduced earlier. Using equation (12) one may see that the latter expression 
is indeed compatible with equation (6) if )~ -- 1/2 except for very small and 
very large x (see [7, 8] and the next subsection). For the particle spectral in- 
dex downstream (in a standard normalization) q = - d l n  fo/dlnp this yields 
q -= 3(f l+ 1) = 3½ for relativistic particles (p >> 1) and q = 4 for nonrelativis- 
tic ones. Remarkably, the q = 31 index coincides with the plain test particle 
result for a strong shock in a purely thermal relativistic gas, whereas q = 4 
coincides with that  for a nonrelativistic gas. All these in spite of the facts 
that  the flow profile is strongly modified and the total compression ratio may 
be much higher than 4 (q = 4) and even 7 (q = 3½) occurring in nonrelativis- 
tic and relativistic gases, respectively. Moreover, this spectral universality of 
strong shocks remains valid also for a broader class of possible dependencies 
~(p) [8]. 

It is worth while to comment on the asymptotic condition under which the 
above solution of the problem (4-7) is an exact one. The solution for u ( x ) -  u0 
must be scale invariant for all x > 0 and, since the precursor length, where 
it is true, l ,~ ~(pl)/ux o¢ Pl, then Pl should tend to infinity. The power-law 
solution for go is then also exact for all P0 < P < oo. For finite Pl this solution 
is an asymptotic one, strictly valid for x << l and p << Pl. As we mentioned 
the cut-off momentum pl may be very large, the values of pl/PO "~ 10 8 are 
expected in SNR shocks. Therefore, the above solution must form a solid 
basis for an asymptotic theory, operating on 1 << pl < oo. 

4.2 A s y m p t o t i c  T h e o r y  for  P l  < oo. 
R e d u c t i o n  t o  I n t e g r a l  E q u a t i o n  

The above scale-invariant solution for u - u0 and the corresponding power- 
law spectrum cannot be valid for all 0 < x,p < oo. The power-law cuts 
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off at p --~ Pl and, as a result, the scale-invariant behavior of u(x)  breaks 
at x ~ l ,.~ x ( p l ) / u l  where u approaches ul to conform the asymptotics 
u -+ Ul, x --+ oo, Fig. 1. Also at lower momenta p ,,~ P0 the particle spectrum 
must conform to the subshock compression ratio. Accordingly, the flow profile 
deviates at the correspondingly small x from the self similar regime (see the 
next subsection and [7]). In treatment of this situation the so-called spectral 
function turns out to be very useful. It appears naturally in the derivation 
of equation for the particle spectrum go, exactly as we have already done to 
obtain equation (3). This time, however, we integrate equation (4) between 
0 -  and +oo making use of (9). The result reads 

- 3 0 l n p  - - V  u2+-~  

Here the spectral function 12 is defined as follows 

with 

j~0 °° 9(p) = du(e) (16) 

The functional dependence of the variable s on I / i s  not very critical here and 
(16) should be regarded logically as an integral transform u(kV) ~-+ 12(p) rather 
than an equation for V(p) given u('P). The function ~2(p) reflects explicitly a 
degree of shock modification. In an unmodified shock ~2(p) _= Au _---- u0 - u2, 
since then d u / d x  = 0 in the upstream region; the spectral index q = 3fl 
is just  the conventional q = 3us / (u l  - us), (see equation (15)). In general 
A u  < ¢/(p) < ul  -- us and 12(p) ~ ul - u2 as p ~ oo. Even if the shock is 
appreciably modified, one may show that at small p ~ P0 l?(p) -~ Au. The 
spectral index then corresponds simply to the subshock compression ratio, 
and at lower momenta we have 

( -qo 
3us go(P) = Qinj p (18) 

q--~q0-- u 0 - u ~ '  \ P 0 /  

The injection solution [6, 9] produces essentially the same asymptotic result 
for p ~ P0, yielding thus the injection rate Qinj. The solution go(P) can 
be obtained then for all p using equation (15). To this end an independent 
equation for V(p) should be derived. Note, that the only equation available 
to derive an equation for 12 is the Bernoulli's integral (6). Using the solution 
(9) the latter can be rewritten as 

d~ 
d-~ '~ F(~') = Ul (19) 

where 
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F(gl) 47rmc2jpP~ pgodp e x p [  l + / ~ ( P ) g  r] (20) 
a pul o  (35 J 

The low energy asymptotics of go is fixed by (18) determining the CR input 
from the thermal plasma. Substituting equation (15) into (19) the latter 
may be manipulated into the following integral equation for the normalized 
spectral function (see [7]) J(p) = ( /(p)/ f / (po)  

[ / ] +(T) e, '  1 3 " dr" 
e Jr r' + r r ' J ( r ' )  exp O(r2-  1) r " l ( r " )  + 1. (21) 

We have used the notations 

1) 
v = - -  1 -  , e ~ =  1 -  - -  <<1. (22) 

pl 

The eigenvMue { is related to the injection rate v through 

¢ exp [ 3 / l / e  dT (23) 

The numerical factor 0 _~ 1.09 and the injection rate 

4~r mc 2 pors mncc 2 
2 PoQinj - (24) 

u =_ 3 plU 1 rs - 1 ptu~ 

where the number density of CRs is given by 

nc = 4~r go(p)dp/p (25) 
0 

For simplicity, the diffusion coefficient ~ is assumed to have a relativistic form 
= ~oP/Po = tclp/pl for all p, since the relativistic particles are assumed 

to be dynamically much more important than the nonrelativistic ones. In 
order to close the system formed by equations (8) and (21) we need another 
equation to relate the three variables (v, R, rs) of which only one, say v we 
consider as given. As an intermediate step we relate the precursor compression 
R and the spectral function J by inverting equation (16): 

du _ 1 / ~  e,~,f/(s)d s + Z~uS(q') (26) 
d~ 27ri ioo 

where 5 is a delta function corresponding to the jump of u at the subshock. 
Integrating then equation (26) over gr between gr = 0+ and oo, using analytic 
properties of J ( r )  that has two branch points at r = - l / e ,  - s ,  we get 

Au 
f - c  dr [J(r + iO) - J ( r  - i0)] (27) 

~1 - uo  = ~ J - 1 / ~  r 
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We have put I)(p0) ~ Au [7]. The integral around the cut ( - l / e , - e )  may 
be evaluated with the help of equation (21) and the last equation rewrites 

where 

with 

R -  1 ~-U (28) 
1--r~ -t -- C 

/1[~ 
U =  dT- eriC(,) (29) 

3 f r dr1 
- O ( r ~  - 1---~ and ¢(r) = r '~ ( r ' )  (30) 

Equations (8), (21), and (28) form a closed system for describing nonlinear 
shock acceleration given the Mach number M, the cut-off momentum Pl 
and the injection rate u. It may have multiple solutions. On the other hand 
for sufficiently small injection rates u there must always be a solution that  
corresponds to a test particle (linear) acceleration regime in which J --, 1 as 
u --+ 0. This solution can be written down in terms of a Neuman series in u 
or ( as follows 

J = l + - -  ~ f ~ .  + O ( ~  2) (31) 

where we have put rs = 4 and 0 = 1 for simplicity. Solution (31) is essentially 
perturbative and cannot describe multiple solutions of equation (21) that  
appear beyond some u > 0. Namely at u = ul > 0 a pair of new solutions 
appears. They were studied in [7, 10]. As we shall see all the three solutions 
may be conveniently described by the single valued function u = u(R) in the 
(R, u) plane, Fig. 2 We term the solution with R > R1 efficient, and that 
with R2 < R < R1 - intermediate. It merges with the inefficient solution 
at the point u = u2, R = R~. For a fixed u C (ut, u2) all the three solutions 
have different values of /~  and, hence, different subshock compression ratio 
rs. It should be noted that  the injection rate u must be also calculated in- 
dependently in terms of the subshock parameters yielding a function u (R) 
which in combination with the bifurcation diagram should provide isolated 
solutions for R (shown by circles in Fig. 2). 

4.3 S t r u c t u r e  of  t h e  Shock  Transit ion.  
Overa l l  R a n k i n e - H u g o n i o t  R e l a t i o n s  

In a strongly nonlinear acceleration regime, the solution of equation (21) 
is dominated by the first term in the r.h.s, in contrast to the perturbative 
solution (31). Besides that  the exponential factor in the r.h.s, may be replaced 
by unity since J turns out to be large enough. The resulting equation may be 
solved by using the smallness c << 1. A uniformly valid (in r) representation 
of this solution has the following form 
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V 

/ s / ( R )  Intermediate (2) 

....... ient (1) ""~""~ 

0 1 R 2 R t R 

Fig.  2. The nonlinear response R of an accelerating shock to the thermal 
injection of a rate u represented in the form of a single valued function u(R). 
Given u E (Ul, us) there are three substantially different acceleration regimes. 
Possible dependencies us(R) (see text) are also drawn with the thin lines. 

~r( (32) 
J = E(T +¢)(1  +eV) 

Upon substitution of this solution in equations (26) we obtain the following 
equation for the flow potential 

d~ j[o ~ d~ = uo + a e-a+~'Io(a_gt')d~ ' (33) 

where I0 is the modified Bessel function, 

1( 0 a+ = ~ ~ u  -t- oP° 

and 

c~ = u-2° x / ~  
t~ 0 

A simple analysis shows that the most of the precursor can be divided into 
two different regions, described by the following approximate formulae: 

u ( x )  (34) u0 ( u l - u 0 )  1 - , ~ v  exp(-~--~ , z > l  

where the precursor scale height is 1 = ~r~l/20ut, 0 ~ 1.09. For smaller x the 
flow is dominated by the back reaction from low energy injection particles 
and may exhibit larger gradient with a quasi-singular behavior u - u0 ~ v ~ 
if the subshock is significantly reduced. This is, however, a small part of the 
shock transition in the case of efficient solution (ul >> u0). 
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From equation (28) one can easily determine the jump condition across 
the shock. The main result here is the following universal (Mach number 
independent) relation between the flow deceleration in the smooth and in the 
discontinuous parts of the shock transition in the efficient acceleration regime 

U 1 - -  U 0 7/" 

u0 - us - ~YPl (35) 

One sees that  the flow deceleration upstream is, in fact, an amplified subshock 
jump.  In other words, the modification effect disappears whenever does the 
subshoek. The strength of the latter may be obtained from the conventional 
l~ankine-Hugoniot relation (8). 

4.4 P a r t i c l e  S p e c t r u m  

In the case of efficient solution the particle spectrum is given for all x by 
equation (9), where the downstream spectrum in a standard normalization 
(q --* q + 3) being written as f0 ~ p-¢ behaves as follows: q = 3rs/(rs - 1) 
for p ~ P0, and for smaller p joins smoothly the thermal distribution via 
the injection solution that should also yield a normalization constant, or the 
injection rate u. For P0 << P << Pl the spectrum is completely universal, 
q = 3½. Taken together with the linear part of the flow profile from the last 
subsection this allows us to identify the efficient solution with the self-similar 
solution of the subsection 4.1. For p approaching Pl the spectrum hardens to 
q ~ 3.3 but again, independently of any parameters. 

5 B i f u r c a t i o n  o f  A c c e l e r a t i o n  P r o c e s s  

The method of integral equation developed in the preceding section allows 
one to describe the acceleration process on a universal basis in terms of the 
bifurcation analysis. In principle, our parameter space is two-dimensional and 
contains the Mach number M and the cut-off momentum Pl (we will also use 
the parameter Pl/pO - 6 -1 >> 1). A convenient dependent variable is the 
flow compression R that obviously signifies the efficiency of acceleration. In 
the present study, however, we add to this parameter space also the injec- 
tion rate u, since this latter, even though being in principle calculable, may 
vary depending on the model of the subshock dissipation used [11]. Thus we 
perform our bifurcation analysis here in three-dimensional parameter space. 

The character of bifurcation may be seen from the surface plots u = 
u(R, M)  at fixed Pl and u = u(R, pl) at fixed M, respectively, Fig. 3. They 
are obtained on the basis of asymptotic solution of the system (8,21,23,28) 
for ~ << 1 and M >> 1 [10]. The efficient part of the solution may be described 
by the following formula 

. ( R , M )  -- ~ exp V ~  l - -  
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.,¢~, 

b.) v(R,P t) 

-0.2 

"O.l 

Fig.  3. a.) The surface of stationary solutions u(R, M) plotted for  ~ = 10 -3. 
b.) The same as in Figure 3a but v is given as a function of R and 5 for 
M~-(X) .  

with ~ to be taken from the relation 

( R - l -  3 v ~  1 (37) 

One sees that the multiplicity of the solution R = R(v) is always present for 
sufficiently large values of M and Pl. 

6 D i s c u s s i o n  

The above analysis is formally limited to the case of a steady, plane shock 
acceleration with the parameterized injection rate and cut-off momentum. In 
realistic astrophysical situations these quantities may depend on time and/or  
they should be determined selfconsistently from current values of other shock 
parameters. However, our knowledge of the bifurcation diagrams of the so- 
lutions in the given parameter space allows us to draw some important  con- 
clusions about more realistic acceleration processes that  are assumed a priori 
to be neither steady nor one-dimensional. A standard approach in analyses 
of complex dynamical systems is to consider the steady state manifolds like 
our u = v(R, M, Pl) shown, e.g., in Fig. 3 or, at least certain parts of them, 
as attractors of the time dependent system. Then, as system parameters like 
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Pl and u, or dependent variables like the flow compression R evolve in time, 
the system should remain essentially on this manifold. Similarly, when the 
acceleration conditions vary along the shock front and the problem becomes 
three and two-dimensional, the acceleration parameters also change along the 
shock front but they do not leave this manifold. As in many other dynam- 
ical systems with "N" or "S" type characteristics (Fig. 2) the intermediate 
branch of the solution is likely to form an unstable manifold of this system. 
The stability of qualitatively similar hydrodynamic solutions for CR modified 
shocks have been studied recently by Mond & Drury [12]. They demonstrate 
that  the intermediate part of the solution is indeed unstable, e.g., against 
deformations of the shock front (corrugational instability, e.g., [13]). The 
remaining part of the steady manifold also leaves room for ambiguity but, if 
u < ul (p l ,  M ) ,  then the quasi-steady solution cannot be efficient whereas for 
u > uz the solution is by necessity efficient. 

The main issue now is whether the actual injection rate can be main- 
tained at a sufficiently high level while shock characteristics like the sub- 
shock Mach number and the compression ratio are driven to their extreme 
values by the backreaction of accelerated particles. As it is seen from equa- 
tion (23) and Fig. 3 the constraints on injection become stronger when the 
system approaches the most efficient acceleration possible, i.e., when R 
is close to M 3/4 (u(R,  M )  ---+ co as R ---+ M 3/4) and thus rs is close to 
unity. On the other hand, the function u(R) decreases with increasing Pl, 
for all R which should generally facilitate the efficient acceleration namely 
for larger cut-off momenta making it intrinsically unlimited. However, this 
is true only if no other than the adiabatic heating takes place in the CR 
precursor. Indeed, in the above consideration the Mach number at the sub- 
shock is Mo = M R  -4/3. At the same time, as pl grows, the precursor length 
l ,~ t~(pl) /ul  ¢x Pl grows as well and the role of resonant interaction of ther- 
mM particles with the MHD turbulence excited by the high energy particles 
must become more important. As a result, the formula for M0 transforms 
to M o  2 = R S / 3 M  -2 + ~(Pl, R ) (VA/U) (R  - 1), where q is the conversion fac- 
tor of the turbulent energy into the plasma thermal energy. We have used 
equation (6) with the gas pressure added and a well known result that  v A / U -  
fraction of the CR energy goes into MHD turbulence (see [3, 14]). Although 
the calculation of the function 77 is not straightforward, one may still assess 
the possible impact of this additional heating on the bifurcation considered 
in Sec. 5. Since M0 enters the expression (23) for v through the exponen- 
tial factor, even a relatively slow increase of q(pl) will cause a quite rapid 
(probably exponential) increase of u(pl), starting from some pl where the 
exponential growth overcomes a power-law decay in pl dominating over the 
lower momentum range. Formally, a minimum of v(pl) appears already in 
expression (36), i.e., for q - 0. However, the region of validity of this ap- 
proximation shifts to higher R with growing pl (see also [10]) so that  the 
function u(pl, R) decreases monotonically with Pl for any fixed R, again if 
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the heating of the precursor occurs only through the adiabatic compression. 
If ~ increases with Pl, the growth of u(pl) for large Pl implies actually the 
existence of an intrinsic cut-off Plmax since the actual injection rate cannot 
be arbitrary large so that u < u(Plmax). It should be born in mind that  this is 
only valid for efficient acceleration, the system may still advance to higher Pl 
in the inefficient acceleration regime, since the bifurcation curve u(R) always 
passes through the point u = 0, R = 1. However, the estimates of acceleration 
efficiency required to maintain the galactic CR population at the observed 
level show that an averaged SNR shock must put 10-30% of its energy into 
CRs (see e.g., [15]). Tiffs suggests that in the sense of the above bifurcation 
analysis the shock must spend sufficiently long time in the "efficient" state 
in which, as argued above, the maximum energy may be seriously limited. 
On the other hand, observations of the CR background spectra suggest that  
a universal acceleration mechanism (presumably provided by SNR shocks) 
should be able to operate up to energies ~ 102 - 103 TeV. These data are, of 
course, rather indirect. 

Direct observations of the SNRs in the TeV range are still rather incon- 
clusive (see e.g., [16] and references therein). Moreover, some data seem to 
suggest that  either there exists a spectral break in the 10-100 GeV-range 
or the spectrum cuts off there or at somewhat higher energies. This would 
definitely impose serious constraints on the SNR model of CR origin. 

The above bifurcation analysis suggests that  the acceleration process may 
indeed be terminated at relatively low energies if it operates in the efficient 
regime and the inflowing plasma is heated in the precursor noticeably faster 
than at the adiabatic rate. It should be noted, however, that  the existence of 
different cut-off momenta in an ensemble of shocks that supposedly contribute 
to the observed CR background spectrum may still be reconciled with the 
smooth power-law character of this spectrum. Let us label the shocks in the 
ensemble by their cut-off momenta Pl so that the spectrum at an individual 
shock is f(p, Pt) = C(pl)p-q'@I)H(pl-P), where H is the Heaviside function 
and C denotes the (unknown) weight function in the integral spectrum of a 
shock producing power-law spectra with the index qi cut at p = Pl- In the 
simplest case qi(Pl) = const, and C oc p]-~, s > 1, averaging over Pl yields for 
the integral spectrum f(p) ,-, p-q with q = q i + s - 1 .  If qi "~ 3.5, as it would be 
appropriate for efficient acceleration, one needs to have s ~ 1 .7-1 .9  to obtain 
the spectrum of q = 4.2 - 4.4 inferred from observations. If this scenario is 
not totally wrong, one simple conclusion can be drawn immediately: it might 
be difficult to find the SNRs with sufficiently high values of the maximum 
momentum pl. Indeed, since the distribution C(pl) must cover many orders 
of magnitude, say from Pmin to Pm~x, the probability to observe by chance 
a shock with the cut-off between pl >:> Pmin and Pm~x is of the order of 
(Pmin/pl) ~-1 or less if p~ ~ pm~x- Even if the candidates for observations 
are carefully selected, this probability might still be insufficient to find them 
among all the SNRs suitable for observations. 
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Abstrac t .  We present here a review of recent work concerning the theory of photon 
acceleration in space and time varying plasmas. We will focus our atention on the 
dynamical aspects of the photon ray tracing equations and discuss the possible regimes 
of regtdar and stochastic photon acceleration. Photon trapping by an electron plasma 
wave and a model for photon Fermi acceleration will be presented. Our approach will 
be based on the Hamiltonian canonical equations for photons. A covariant Hamiltonian 
description will also be discussed. 

1 I n t r o d u c t i o n  

The concept of photon acceleration is quite recent in Plasma Physics [1-6]. It 
corresponds to an adiabatic frequency-shift of wavepackets propagating in a 
space and time-varying optical medium. This concept applies here to photons in 
their classical sense, as equivalent to elementary wavepackets. Using physical 
intuition, we could say that photons can be accelerated because they have an 
effective mass (except in vacuum). In an isotropic plasma, the photon mass is 
simply related to the electron plasma frequency. Moreover, photon accelera- 
tion is a non-resonant process which allows for the transfer of electromagnetic 
energy from one region of the spectrum to another. It contrasts with the well 
known resonant processes like the nonlinear wave mixing, where spectral trans- 
fer is controlled by well defined energy and momentum conservation laws. We 
can also say that photon acceleration is universal in the sense that it affects 
every photon in the medium, in contract with the well known Compton scat- 
tering which affects only a small fraction of the photons. In this paper we will 
restrict our discussions to the ray-tracing theory, which gives a very simple but 
accurate description of frequency shift of a single photon (a wavepacket) propa- 
gating in a non-stationary plasma [4]. The Hamiltonian version of the ray-tracing 
equations will be presented in Section 2. Using these equations we can extab- 
lish the conditions for photon trapping in the density modulations associated 
with an electron plasma wave. Of particular importance for the understanding 
of laser-plasma interaction are the relativistic electron plasma waves which can 
be excited by short laser pulses. Photon trapping by plasma waves is discussed 
in Section 3. If a given electron plasma wave is perturbed by a second plasma 
wave with a different phase velocity, or if it is modulated by a lower frequency 
wave of a different character (for instance, an ion acoustic wave), a fraction of 
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the photon trajectories can become stochastic. This will lead to the transfor- 
mation of an initial beam of nearly monocromatic radiation into white light. A 
similar effect is known in nonlinear optics as the generation of supercontinuum 
radiation[7]. The transition from regular to stochastic photon acceleration will 
be described in Section 4. Another exemple of a stochastic photon process is the 
ray-tracing model for the photon Fermi acceleration[7], which can occur when 
radiation is trapped inside an oscillating cavity, and will be described in Section 
5. Finally, in Section 6 we will briefly discuss an alternative formulation of the 
ray-tracing equations which is based on a covariant Hamiltonian theory[9]. This 
covariant formulation is a direct consequence of the formal analogies between 
the ray-tracing equations and the equations of motion of a relativistic particle 
with a finite rest mass. 

2 C a n o n i c a l  e q u a t i o n s  f o r  p h o t o n s  

Let us assume an electromagnetic wave propagating in a space and time vary- 
ing plasma. Its frequency w and wavevector k are related by a local dispersion 
relation: D(w, k, wp) = 0 where wp is the electron plasma frequency, depending 
both on the position r and on time t. This expression stays valid as long as the 
space and time scales for plasma variation are much slower than k -1 and w -1. 
The wave electric field can be written in the form: E(r, t) = E0 exp i¢(r, t) The 
local frequency and wavevector appearing in the dispersion relation are defined 
by the space and time derivatives of the phase function ¢: 

cO 

cO = - N ¢  ( i) 

The local values of k and w, for wavepackets propagating across the nonsta- 
tionary medium will then change in space and time, following mean trajectories 
described by the ray tracing equations. It is well known that the ray tracing 
equations can be written in a canonical form: 

dr cOw 
dt cOk 

dk cOw 
_ (2) 

dt cOr 

These ray tracing equations can also be seen as the photon trajectories. We 
notice that the canonical variables here are the photon position r and momentum 
or wavector k, while the energy or frequency w plays the role of the Hamiltonian 
function. Here we will assume that the electron density perturbations associated 
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with the nonstationary state of the plasma, move with a constant velocity v I . 
These perturbations can, for instance, be associated with an electron plasma 
wave with a relativistic phase velocity, as those produced by intense laser beams. 
These electron plasma waves are usually refered as the wakefields of the intense 
laser beam. Using the cold plasma dispersion relation, we can then write the 
photon Hamiltonian as: 

=_ h ( r , k , t )  = V/k c + v l t )  (3) 

This expression clearly shows that a photon propagating in a plasma behaves 
like a particle with a finite rest mass, proportional to the local plasma frequency. 
What  is interesting with the present Hamiltonian formulation of the photon mo- 

tion is that  there is no need for Lorentz transformations to the perturbation (or 
electron plasma wave) frame. The exact relativistic results are obtained just by 
using a canonical transformation from (r, k) to a new pair of canonical variables 
(71, q), such that: 

rl = r - v / t  

q = k (4) 

The new Hamiltonian is now a constant of motion: 

w ' ~  h ' ( w , q ) =  ~/q2c2 + W2p(7)- v/-q (5) 

For each photon trajectory, the value of w ~ can be determined by the initial 
values for its frequency and wavevector, w0 and k0, as w ~ = w0 - v ,  • k0 In 
the following we will apply these equations to study the photon motion in a 
wakefield. 

3 P h o t o n  t r a p p i n g  

The plasma density perturbations associated with a wakefield can be described 
in a one-dimensional propagation model by: 

~ (7) = ~ 0  [ 1 + e cos(k, 7)] (6) 

where wp0 denotes the unperturbed plasma frequency, e the plasma wave ampli- 
tude. and kp is the plasma wave wavenumber. Looking at the photon trajectories 
we can easily recognize that  this plasma wave or wakefield creates a nonlinear 
resonance in the photon phase space (7, q), with trapped orbits turning around 
an elliptic fixed point: 

?r 
70 = 

q0 = c " V  (7) 
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where ~ = v!/c. These trapped orbits are limited by a separatrix which connects 
the two hyperbolic fixed points determined by: 

~ = 0 , ~  

q~ = , ~V ~-~ (8) 

The trapped photon orbits have initial frequencies in a range determined by: 

' (9) ¢a~ < J < w+ 

where w~ correspond to the extreme cases of motion at the elliptic fixed point 
and on the separatrix, respectively, and are defined by: 

w~ = wp0 x/1 + e (10) 
7 

Here 7 is the relativistic gamma factor associated with the velocity v/ of the 
density perturbation. The minimum photon frequency shift occurs for trajecto- 
ries near the elliptic fixed point and the maximum occurs for motion near the 
separatrix. The maximum frequency shift is determined by: 

(11) 

4 S t o c h a s t i c  p h o t o n  a c c e l e r a t i o n  

Interesting new effects can occur when more than one wakefield is excited in the 
plasma. A photon propagating in such a plasma can eventually suffer a stochastic 
acceleration and two distinct photons, having nearly equal initial frequencies 
and positions, will follow exponentially divergent trajectories. This exponential 
divergence of a bunch of nearly monochromatic photons will then generate white 
light. In order to quantitavely determine the conditions under which white light 
generation can occur, let us assume that two distinct high phase velocity plasma 
waves propagate in the plasma. The space and time variation of the electron 
plasma frequency can be described by: 

+ ,1 cos(k1, + vt))] (12) 

where ki and ei are the wavenumbers and amplitudes of the two distinct plasma 
waves (i = 1, 2), the auxiliary variable r} is now defined by r /=  x - vlt and the 
difference between the two phase velocities is V = vl - v2. In the photon phase 
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space (q, y), these two waves build up two distinct nonlinear resonances, with 
hyperbolic fixed points located at qt and q2, such that: 

" ~  1 1  - ei (13) qi -- ~'i "1 - ~,2 

with i = 1, 2. On the other hand, it is easy to realise that  the half-widths of 
these two resonances are determined by: 

/ (14) 
= 7 V -  1 

It is well known that,  in the phase space available around the two resonances, 
a transition from regular motion to large scale stochasticity can occur if the 
resonance widths are larger than a given threshold. A simple and quite accurate 
way to determine this threshold is to apply the overlaping criterion, which states 
that  large scale stochasticity will occur if the sum of the two half-widths is larger 
than the distance between the two resonances: 

]ql -- q2] _< E Aq, (15) 
i----1,2 

This threshold criterion for large scMe stochastic motion in photon phase space 
can be rewritten in more explicit form as: 

+ 
< 1 (16) 

IZ~;~ l y e : K -  ~1 - 

When this condition is satisfied we can say that  white light can be generated 
from a pulse of nearly monochromatic light propagating in a plasma in the 
presence of two wakefields. This was confirmed by numerical calculations [4]. 
It is interesting to note that  the above criterion is independent of the mean 
plasma frequency wp0 and only depends on the amplitudes (el) and on the phase 
velocities (/?~) of the two plasma waves. 

5 Fermi acceleration of photons 

We discuss now a different mechanism for photon acceleration which can occur 
inside an electromagnetic cavity with moving boundaries. This can be seen as 
the photon version of the well known mechanism for cosmic rays acceleration 
first proposed by Fermi, where charged particles can gain energy by bouncing 
forth and back between twomagnetic clouds. In the case of photons, the clouds 
are replaced by mirrors or plasma walls with a sharp density gradient. We can 
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assume t at one of the walls is fixed at z = L0 and the other oscillates arround 
z = 0 wLh a frequency w,~. The amplitude of this oscillation is assumed to be 
eLo, with e << 1. It can be shown that the relative frequency u = w/wo of a 
photon trapped inside the oscillating cavity with an initial frequency w0 evolves 
according to the following discrete map: 

u,+l = u , F ( ¢ , )  (17) 

¢.+1 = ¢ .  + a ( , . + : )  ( is)  

where the phase ¢ is defined by ¢ = wmt and the quantities u and ¢ are deter- 
mined after each successive reflection at the moving plasma wall. The functions 
F(~b) and G(u) depend on the electron density profile of the reflecting plasma 
walls and, for a linear profile of the type he(Z) = 4 a z / L o ,  where a is the slope 
factor, they are given by: 

1 - eb sin(¢n) (19) 
F ( ¢ . )  - : + ,bsin(¢.)  

G(u,,) = 2b(1  + u~.+:)a (20) 

where b = Lowm/c. A qualitative and numerical analysis of these mapping equa- 
tions[8] show that the photon motion can become stochastic above a certain 
threshold value for the frequency, which mainly depends on the wall oscillating 
amplitude e. This result contrasts with the usual Fermi acceleration of charged 
particles, which show that stochastic acceleration only takes place below a given 
threshold for the particle energy. This means that the above map looks like the 
inverse of the maps for charged particles. We conclude that a broad spectrum 
of radiation can be generated from nearly monochromatic light trapped in an 
oscillating cavity. 

6 C o v a r i a n t  f o r m u l a t i o n  

We have already noticed that a photon in a plasma behaves like a relativistic 
particle with an effective rest mass equai to met!  = ~p/c2. This means that the 
photon frequency can be determined by: 

= mef lTc  ~ (21) 

where the photon gamma factor is: 

i Ow 2 w (22) =1/ 
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This analogy with a relativistic massive particle suggests that  a covariant de- 
scription of the photon or ray-tracing trajectories can also be formulated in a 
covariant form [9]. Let us first define the 4-vectors photon position and momen- 
tum, such that: 

= (ct, r) 

k) (23) k =  (-g, 

With the aid of these two 4--vectors, we can construct a covariant Hamiltonian 
for the photon motion in a nonstationary plasma: 

]¢~c ~ 1 H(~, ~) = ~(---~ + ~ ( ÷ )  (24) 

We should notice that the amplitude square of the 4-vector momentum is a 
negative quanti ty ]¢2 2 2 = - r e e f  f c and that,  by definition, we always v e r i f y / : / =  0. 
The associated canonical equations in the 4-dimensional relativistic space will 
be given by: 

dr  a O I?t 

d r  Oka 

d k ,~ O I:I 

d r  Or s 
(25) 

Here we have used the photon proper time r = t / 7 .  The plasma density per- 
turbations associated with a wakefield can now be described by: 

~ (÷) = ~0[Z + ~ cos(~. ~)] (26) 

where ~ is the 4-momentum associated with the wakefield. Let us write ~ • F = 
qZrl - q°r°. If we take k 2 = k 3 = 0 we can write the one-dimensional covariant 
Hamiltonian in adimensional form as h =/:/ /wp0, such that:  

h(=, v; y, u) = (v2 - us) 1 2 ~ ( = , y )  + ~ ( = ' Y )  (27) 

where we have used the new variables z = qZrZ, y = qZr°,  v = klC/aJpo and 
u = koc/wpo.  It can then be shown that the position of the nonlinear resonance 
built by the wakefield in the photon phase space is determined by u0 - - 3  '~ 
and v0 = ~7 ~, where j3 is the normalized phase velocity of the wakefield and 
~/' - 1/V/i  " -  j3 ~ is the corresponding relativistic factor. It can also be easily 
recognized that  the resonance half-width 5uo is determined by: 

, ,  ~,2 (28) ~uo = 7 t~) 

In this way, a covariant formulation equivalent to the description of traping 
photon motion arround a nonlinear resonance, as given in Section 2, can be 
established. The interaction of two such resonances resonances in the relativistic 
space will then lead to a stochastic photon acceleration. 
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7 Conclusions 

In this work we have shown that photon propagation in nonstationary plasmas 
can be described in a rigorous but simple way by the Hamiltonian formulation 
of ray tracing theory. Explicit results for the photon frequency shift were ob- 
tained for photon motion in an electron plasma wave. Photon trapping, photon 
stochastic acceleration and a simple model for photon Fermi acceleration were 
discussed. As an alternative formulation, a covariant Hamiltonian version of the 
photon equations of motion was also described. It can be concluded that our 
Hamiltonian approach to photon acceleration provides a simple, rigorous and 
unified view of the physical processes leading to a frequency shift of electro- 
magnetic wavepacket in a space and time varying plasma. However, it should 
be noted that a more exact approach, based on full wave calculations is also 
possible[10-12] which confirms the results of the above ray tracing description in 
its domain of validity but usually envolves more complicated calculations. 
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Abs t rac t .  Numerical simulations show an enhancement of the 1-D velocity diffusion 
coefficient over the quasilinear value in the regime where the autocorrelation time is 
much smaller than the linear growth time or resonance broadening time. The diffusion 
enhancement occurs when the resonance broadening time is small compared with the 
linear growth time. These simulations are self consistent, use a hybrid PIC/spectral 
symplectic integration method, and have enough modes to be in the continuous spec- 
trum limit. That is, even at the initial amplitudes the intermode spacing is sufficiently 
small that the resonance overlap parameter is large. A possible mechanism for the 
enhanced diffusion (spontaneous spectrum discretization) is discussed. 

1 I n t r o d u c t i o n  

One-dimensional linear analysis shows that  longitudinal plasma oscillations grow 
exponentially when the velocity distribution function is double-humped with a 
sufficiently deep valley. The resulting turbulent electrostatic oscillations lead to 
velocity diffusion, which causes the distribution function to evolve towards the 
stable, single-humped form. Quasilinear theory (Vedenov et al, 1962, Drummond 
and Pines, 1964) predicts the coefficient for this diffusion. Although quasilinear 
theory has been accepted for so long that  it is in the textbooks (eg. Nicholson, 
1983), theoretical work (Adam et al, 1979, Laval and Pesme, 1980, Laval and 
Pesme, 1983, Laval and Pesme, 1984) indicates that it can underestimate the 
diffusion coefficient, even in a regime where its validity is generally accepted. 
The simulations presented here show that  this enhancement does occur, it has 
a dynamical basis, and we provide the enhancement factor as a function of the 
ratio of the linear growth t ime to the resonance broadening time. 

These results have general impact on turbulence theory for several reasons. 
First, if the limits of validity of quasilinear theory, the simplest turbulence thory, 
are still not completely understood, then it is likely that  we do not well under- 
stand the limits of validity of more complicated theories. Second, the present 
results, showing a dynamical basis for turbulent diffusion, indicate a direction 
for future investigations. Third,  a large number of applications of turbulence 
theory rely on quasilinear theory in one form or another, either in direct calcula- 
tions (Goldman et al, 1996) or as giving a form for the diffusion coefficient that  
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is improved by adding fit parameters (Kotschenreuther et al, 1995). Finally, our 
results indicate the difficulty of obtaining valid numerical results for systems with 
small growth rates. Small growth rates can be problematic, as simulation noise 
can then be the dominant wave driver, and a greater number of computational 
cycles is needed. One cannot save computational cycles or reduce relatively the 
effect of noise by increasing the growth rate of instability for the present system, 
as this causes the needed inequality (of resonance broadening time shorter than 
growth time) to be reached only at large wave amplitudes - so close to saturation 
that determining the enhancement becomes problematic. To obtain unambigu- 
ous results one must have methods for carrying out low noise simulations. In the 
present simulations this is accomplished with a hybrid symplectic/PIC code, a 
PIC implementation of the symplectic integrator developed by Cary and Doxas 
(1993). 

As noted by Laval and Pesme (1980), the reason that quasilinear theory may 
be wrong is that in the regime where the linear growth time is greater than 
the resonance broadening time, the nonlinear contributions to wave growth are 
comparable to the linear contributions. Because of energy conservation, enhanced 
wave growth rate implies enhanced diffusion. Subsequent heuristic arguments 
(Laval and Pesme, 1984) led them to suggest that in this regime the growth rate 
(diffusion coefficient) would be enhanced by a factor of two over the value given 
by linear (quasilinear) theory. 

Since those early claims, there has been a seesaw of results in support or 
contradiction. Galeev et al (1980) fistated that the nonlinear interaction of the 
harmonics does not change the structure of the equations, and that for quasilin- 
ear theory to apply, one need only have the autocorrelation time short compared 
with the diffusion time and the resonance broadening time. Early simulations 
(Theilhaber et al, 1987) may have seen some enhancement, but these results were 
inconclusive as at the point of measurement the time scale for diffusive change 
of the average distribution was of the order of the growth time for the modes. 
This loss of scale separation introduces large uncertainty in the measurement. 

Cary et al (1990), noting that in the low-growth-rate regime the enhanced 
diffusion coefficient should be observable in test-particle simulations provided 
the correct ensemble is chosen, carried out a series of test-particle simulations for 
discrete spectra of randomly phased waves. They found that while the quasilinear 
value for the diffusion coefficient was recovered in the limit of large overlap, where 
the resonances widths greatly exceeded the phase-velocity spacing of the waves, 
in regions of intermediate overlap the diffusion coefficient could be enhanced 
over that of the quasilinear value by as much as a factor of 2.5. 

The first experiments (Tsunoda et al, 1991) failed to find any overall en- 
hancement, but they did see mode coupling. Further analytical (Liang and 
Diamond, 1993) and numerical work (Deeskow et al, 1991, Ishihara et al, 1992) 
failed to find any enhancement, but subsequent self consistent simulations (Cary 
et al, 1992) did find an overall enhancement of the growth rate for a spectrum 
initialized with an intermediate value of the overlap parameter. Enhancement 
has now also been seen by Berndtson et al (1994) for evolution in self-consistent 
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fields at intermediate values of the overlap parameter and by Helander and K jell- 
berg (1994) for test-particle simulations in prescribed fields. The most recent 
experimental results (Hartmann et al, 1995) show mode coupling but cannot op- 
erate in the regime of intermediate overlap needed to see the enhancement of 
the growth rate and diffusion coefficient. 

While there is strong evidence now that mode coupling affects the growth 
rate of individual modes, and it has been verified by more than one group that 
the diffusion coefficient and the growth rate can be enhanced in a regime of 
intermediate overlap, it remains to be shown conclusively that enhancement can 
arise self-consistently for a continuous spectrum - one in which the waves are 
strongly overlapping. This is the purpose of the present work. Our simulations 
show that the enhancement of the diffusion coefficient can arise spontaneously 
in continuous-spectrum, self-consistent simulations. Our simulations are initial- 
ized with a sufficiently large number of modes such that the modes are strongly 
overlapping, and we measure the growth rate enhancement at a time both far 
from initialization and far from saturation. We find that that there is a modest 
enhancement (N 30%) of the growth rate for values of resonance broadening 
frequency up to roughly 30 times the linear growth rate. That this is far be- 
low the 120% enhancement given by the turbulent trapping model (Laval and 
Pesme, 1984) shows the possible large uncertainties in such heuristic calcula- 
tions. Our low value also shows that the 60% enhancement seen in Theilhaber et 
al (1987) was indeed spurious. However, it remains possible that the enhance- 
ment factor is greater at larger values of the resonance broadening frequency to 
growth rate ratio. 

In the following section we review the classic system of the bump on tail 
instability including a discussion of the effects of modeling the system with a 
discrete spectrum. In the subsequent section we introduce our numerical model 
for this system. In Sec. 4 we illustrate that mode coupling sets in when the res- 
onance broadening frequency exceeds the growth rate, as predicted by theory 
~dam et al, 1979, Laval and Pesme, 1980, Laval and Pesme, 1983, Laval and 
Pesme, 1984) and seen in experiment [Fsunoda et al, 1991). In Sec. 5 we deter- 
mine the conditions for carrying out definitive simulations to observe the growth 
enhancement. In Sec. 6 we show the results of the simulations: we find the en- 
hancement factor as a function of the ratio of resonance broadening frequency to 
growth rate for values of resonance broadening frequency up to about 30 times 
the growth rate. Finally, we conclude and indicate new directions for research in 
Sec. 7. 

2 T h e  w a r m - b e a m  i n s t a b i l i t y  

The bump-on-tail instability occurs when a weak, broad beam (taken to have 
density rib) is present in a plasma. When the plasma is cold, its response can 
be assumed linear. The resulting evolution is given by the nonlinear interaction 
of the beam with the longitudinM waves supported by the background plasma 
(O'Neil et al, 1971, Mynick and Kaufman, 1978). 
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The evolution of the normalized beam distribution g in the electric field is 
given by the Vlasov equation, 

Og Og eE Og 
~ + " ~ +  m o v - O "  (1) 

The electric field is given by Poisson's equation, 

[/ ] O'--z = pP - Ppo + PbO dvg(;c, v, t) - 1 (2) 

where Pv and Ppo are the perturbed and average plasma charge densities, and 
Pbo is the average beam charge density. Standard linear analysis (Nicholson, 
1983, Cary et al, 1992) of these or equivalent equations shows that for this system 
the modes for all wavenumbers oscillate at the plasma frequency wp, and that 
modes with phase velocity in the range, 

03 
va < v~ -_- ~- < vb, (3) 

where the slope of the unperturbed, normalized distribution go(v) is positive, 
are unstable, with a growth rate given by 

rr ~0 20g0 
= 2 1  v (4)  

where 
rl =- nb/np (5) 

is the ratio of beam density nb to plasma density np. (This convention differs 
from that of Cary et al (1992), where go was the normalized distribution for the 
plasma and the beam). Our goal is to analyze these equations nonlinearly. 

The analysis rests on the approximation that the wave amplitude is slowly 
varying. With the electric field in the form, 

1 M 
E(z, t) = ~ E [ E j  (t) e i(kiz-W't) + c.c.], (6) 

j = l  

the complex amplitudes Ej can be assumed slowly varying, because the growth 
rate (4) is small, and the nonlinear effects are comparable. With this approxima- 
tion, and that of the plasma response being linear, one can derive the equation 

~ww(kj , O e  wj)/~j = - 2  pb°kj / --LdZ exp( - ik jz  + iwjt) /dvg(z,  v,t) (7) 

for the evolution of the wave amplitudes. For a cold background plasma, the first 
factor is given by 

~ (k j ,wj )=  . (8) 
~dp 
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Hence, the evolution of the electric field is given by 

Ej_  o~,pbo / dx / kj --ff exp(-ikjz + ioJjt) dvg(x, v, t). (9) 

In response to this field, standard theory states that beam particles will 
diffuse in velocity, with diffusion coefficient given by the quasilinear value 

° ° ' ( "  -- )l <,o) 
\ kj~v~j v~j~v 

In this formula the brackets denote a local (in phase velocity) average of the 
energy density (per unit Doppler shifted frequency) for the modes with phase 
velocity near the velocity v at which the diffusion coefficient is being evaluated 
(Cary et al, 1992). The diffusion then reduces the slope of the distribution, sta- 
bilizing the waves. 

As discussed early on by Dupree (1996), the theory giving the quasilinear 
diffusion coefficient relies on the autocorrelation time, 

rae = 1/(k,upA%), (11) 

which is the time for decay of the force correlation along a constant-velocity 
(unperturbed) trajectory of a particle, being small compared with what came to 
be called the resonance broadening time, 

rRs -- 1/VRB =-- (k2DQL) -I/3. (12) 

If the reverse is true, the constant-velocity trajectory approximation used to cal- 
culate the diffusion coefficient fails before the integral expression for the diffusion 
coefficient converges. Thus, the accepted criterion for validity of quasilinear the- 
ory has been 

r~c << rRs. (13) 

This condition is equivalent to the criterion that the diffusion time be large 
compared with the autocorrelation time, 

rac << Av~/DQL. (14) 

Galeev et al (1980) states that the validity of quasilinear theory requires the 
validity of only conditions (13) and (14). 

Since the work of Dupree, the question of quasilinear diffusion has been 
approached using the methods of nonlinear dynamics. As discussed by Chirikov 
(1979), the nature of the motion in the discrete spectrum (6) is determined by 
the overlap parameter, 

2 (26v,~ ] 2, (15) 
Aj,OL--(~) \Sv~,j/ 
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which is, up to a factor, the square of the ratio of the resonance width, 

<h,,s -= 2 /elEjl/-',kS, 

of mode j to the phase velocity separation, 

(a6) 

5v~j - wp wp (17) 
k j+l k j  " 

The result of Chirikov's work is that trajectories in the field (6) with fixed, con- 
stant phases and broad spectrum, become chaotic once the overlap parameter 
exceeds approximately unity, and diffuse with coefficient given by the quasilinear 
value (10). This work appeared to provide additional justification for quasilinear 
theory, as in the continuous spectrum limit (where the wave energy is divided 
among M waves with M becoming infinite), the overlap parameter becomes in- 
finite (Cary et  al, 1992, Rechester et  al, 1979). 

In terms of the present notation, the work of Adam, Laval, and Pesme 
(Adam et  al, 1979) and Laval and Pesme (1980, 1983, 1984) states that the con- 
ditions (13) or, equivalently, (14) are not sufficient for validity of quasilinear 
theory. They state that one must also have 

VRB <<  7L. (18) 

Condition (18) ensures that the nonlinear contributions to the wave growth are 
small compared with the linear contributions. For ease of reference we define the 
parameter, 

]A = l / R B / ~  L . (19) 

Then the regime of questioned validity of quasilinear theory is that of 

>> 1. (20) 

3 N u m e r i c a l  m o d e l  

Our nonlinear, dynamical system evolves according to Eq. (1) and Eq. (9). Our 
approach to intergrating the Vlasov equation is to represent the distribution as 
a collection of particles. This gives a discrete Hamiltonian system of N charged 
particles interacting with M modes. Having a Hamiltonian system allows us 
to use the methods of symplectic integration. In this section we present the 
equations of motion and discuss the conditions for validity of our simulation. We 
derive the conditions for the spectrum to be sufficiently finely discretized that it 
is in the continuous spectrum limit, and we determine the number of particles 
needed to well represent the distribution. 
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3.1 Disc re t i za t ion  of  t he  par t ic le  d i s t r i bu t ion  

The Vlasov equation dictates that the distribution is constant along the charac- 
teristics. Hence, for the distribution, 

N 

g(~,  v, t) = ,~ ~_, ~ (~ - ~ , ( t ) )  ~ (v - ~ ( t ) ) ,  (21) 
i=1  

corresponding to a sum of particles, the positions and velocities of the particles 
obey the usual equations of motion, 

;~i = v i  
M 

6i = e E  = LE[EjRcos(kjzl--wit)-  Ejtsin(kjxi-wit)], (22) 
m m 

5=1 

where EjR and Ejl are the real and imaginary parts of the wave amplitudes. 
Normalization for a system of length L, 

/ dxdvg(~, v, t) = Not, L (23) 
J 

determines the coefficient 
cr -= L/N (24) 

in the representation (21). 
The equation for the electric field for discrete particles can be put in the form 

N 
J ~ j R  - -  09pPbO y~ cos(Gx~ - ~#t) 

kiN i=1 

N 
E j l  - -  WpPbO kiN Esin(kjzi-wJt) (25) 

i=1 

To combine these equations with those for the evolution of the particles in a 
single Hamiltonian, we introduce the canonical coordinates, 

Q ~ - P  V-  ~ m 

_ : ~ n .  [N eE~R (261 
, V, m 

With these definitions, our equations of evolution are Hamilton's equations, 

aH 

OH 
~:i = - 

azi 
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OH 
QJ = aP~ 

OH 
P~-  oQj 

with canonically conjugate zi and vi for the Hamiltonian, 

(2r) 

1 i~=iv? + Z [e~sin(aj=,-~t)-Q~cos(kjx,-o~jt)]. H=~ 
- -  j = l  

(28) 
Equivalently, if one uses the variables, 

Xj - Qj cos(w/t) + Pj sin(wit) 

I~ = - Q j  sin(wit) + Pj cos(wit), (29) 

one obtains the Hamiltonian, 

1 N M 

i = 1  j = l  

+ ~ ~ ~ [~ sin(k~,) - x~ cos(k~,)l. 
i----1 j = l  

(30) 

The Hamiltonian in (30) was derived by Mynick and Kaufman (1978) and Es- 
cande (1987) and used in some of our simulations. 

3.2 Integration method  

The Hamiltonian that we have derived is amenable to the symplectic integration 
method developed by Cary and Doxas (1993), which is based on the explicit 
symplectic schemes of Forest and Ruth (1990) and Candy and Rosmus (1991). 
We have augmented the previous scheme of Cary and Doxas (1993) by adapting 
particle-in-cell methods to it. The resulting integrator can achieve 5% accuracy 
in the value of the wave growth rate with a time step of the order of the inverse 
plasma frequency. We only briefly review this method here as it will be discussed 
in more detail elsewhere. 

To have an explicit symplectic integrator one must be able to split the Hamil- 
tonian into a sum of parts, each of which can be integrated exactly. The Hamil- 
tonian (28) can be split into 

H = H1 + H2, (31) 

where 

1 ~ v2 ' (32) Hl=~ 
i----1 



319 

and 

/--~-N m 3/2 
H~=V_~i~=I~=I__~jK"' V" wj, [pj sin(kjxi - wit) - Q j  cos(kjxi - wit)] . (33) 

Each of these Hamiltonians can be integrated exactly. For the alternate Hamil- 
tonian (30), H1 remains the same, while H2 includes also the middle term of 
(30). 

We define T1 (r) to be the transformation that advances according to the 
Hamiltonian H1 by a time step r and T~(r) to the transformation that advances 
H2 by the same amount. Then, the transformation that advances H by r is 
given to second order by T(r)  = Tl(r/2)T2(r)Tl(r/2) + O(r  4) (Candy and 
Rozmus, 1991, Forest and Ruth, 1990). By construction, this integrator is exactly 
symplectic and is therefore expected to better preserve the invariants of the 
Hamiltonian. 

To carry out the present work, we implemented a particle-in-cell (PIC) ver- 
sion of this integrator. The PIC implementation of the integrator follows Cary 
and Doxas (1993) except for the following change. The Hamiltonian (33) is 
rewritten and then approximated as follows 

~ - ~ N  M 312 
H~ = ~ Z ~ .  {PJ [sin(kjxi)cos(wjt)-cos(kjxi)sin(wit)] 

i= l  j :1'---- " 3  

- Q j  [cos(kjzi) cos(wit ) + sin(kjzi) sin(wit)]} 
~ f - ~ N  M 3/2 

wp {Pj [fj(xi) cos(wit) - gj(xi)sin(wit)] 
T i--1 j = l  

- Q j  [gj (x~)cos(wit) + y~ (xi)sin(wjO]} (34) 

where J'j (zi) and gj(zi) are interpolations of sin(k~zi) and cos(k~zi) from grid 
data. Use of interpolation reduces the computational effort from scaling as the 
number of particles times the number of waves to being proportional to just the 
number of particles. However, since the force equation 

r"-- M 3/2 
OH ]O---X-"wP" {Pj []~(zi)cos(wjt)-g~(zi)sin(wjt)] 

- Q j  [g~. (zi) cos(wit) + f; (zi) sin(wit)] } (35) 

involves the derivatives of the functions f and g, we have to use higher order 
interpolation. In order to use a second-order integrator, f~ and g~ must have 
continuous first derivatives, so we use cubic spline interpolation for f and g. 

In general, if we have (regular) grid points x0, Z l , . . . ,  xNg, and we know the 
values of y on these points YO,Yl .... , YN~, then the value of the function y(z) 
for xn < x < Xn-l-1 is given by 

y(x) = Ayn + Byn+l + CY~ + Dy~+I (36) 
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with 
A - X n + l  - -  '~ Zlz B = i - A (37) 

The coefficients C and D are defined such that y has continuous first derivatives, 
and are given by 

= 6(A 3 - A)(Ax) 2 D = 1(B3 - O)(Ax) 2 (38) C 

where Ax = xn+l -- x ,  is the grid spacing. 
For a function of the form y = eik=, the sequence y" is given by y" = c~ke i/¢x. 

Using Eqs. ( 3 6 ) - ( 3 8 )  and the continuity of y', we find 

3 c o s ( k , ~ z )  - 1 

In particular, for the functions f and g in the hamiltonian, we get 

fnj = sin(kjxn) fn~ = aj sin(kjxn) 
II  a. j  = cos(kjx . )  a.j = -~ ¢os(kj~.)  

for the values of the functions on the grid points. 
Using the above for the force equation, we readily obtain 

(39) 

2 / ~ 1  r 1(3B2 1) (Ax)UF~+I 6(3A 2 1)(Ax)UF~ + p,  = e o  + _ _ _ 

G , + I - G ,  + I ( 3 B 2 - 1 ) ( A x ) 2 G ~ + I - 6 ( 3 A 2 - 1 ) ( A x ) 2 G ~ ]  (40) 

where F and G are the fourier transforms of f and g respectively: 

M 312 

F . =  E ~ - -  " " -Ojsin(cajt))fnj j=l J (Pj cos(ca, t) 

M 312 
~,rp 

G,~ = E --kj-i (Pj sin(carl) + Oj cos(cajt))g,q 
j = l  

M 3/2 
F-' Z ca j (ejcos(ca 0 • " = . . . .  sm(wjt))f•j 

j = l  

M 3 / 2  

= Pj sm(cajt) + Qj cos(cajt))g~j 
j = l  

Advancing the particles therefore involves calculating two complex FFT's 
over the Ng grid points, plus N evaluations of Eq. (40). Since Ng << N, this is 
a number of operations that scales as N. We therefore see that the new method 
combines the advantages of the symplectic integrator of Cary and Doxas (1993) 
with the computational efficiency of PIC methods. 
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The code was benchmarked against the results of O'Neil et al (1971) for 
the cold beam case. The results, shown in Fig. 1, are that  for small t ime steps 
(wpAt = 0.1) and small grid spacing (km~=Ax = 0.1) one can achieve high 
accuracy, of the order of one part  in 104. Furthermore, the symplectic integration 
method does not suffer from the long-time spurious loss or gain of energy as does, 
for example, the Runge-Kutta method. 

- i 0  

-20 

-30 

Cold  b e a m  

1 0 0  . . . .  2;o/3;0 . . . .  4 0 0  . . . .  56o 
X.~L=18.3297 

xy=18.3321 

AT/7=1 .3  x 10 -4 

Fig. 1. The wave energy as a function of time for the cold beam instability with a beam 
to plasma density ratio of r /=  5 × 10 -4 modeled with 40000 particles. The timestep 
is what = 0.10, and the grid spacing kAx = 0.10. As indicated in the figure, the 
simulation gives the growth rate to a relative accuracy of 1.3 × 10 -4. 

The code was also benchmarked against the warm beam-plasma instability, 
where a single wave interacts with a broad beam (Cary and Doxas, 1993). As 
shown in Fig. 2 we again found high accuracy for small t ime steps. Finally, 
we tested the code for larger time steps and found that  for t ime steps of size 
wvAt ~ 0.8, and grid spacings of kmazAx .~ 0.8, growth rates were accurate to 
within roughly 2%. These were the values that  we chose to use in subsequent 
simulations. 

3.3 Initial  condit ions  

We chose our initial conditions for the simulations of Sac. 6 so as to minimize 
the ambiguity of our measurements. Our choice was to set up a system where 
the linear growth rate and the quasilinear diffusion coefficient were constant 
across the spectrum of waves and for particles of different velocities. Thus, our 
measurement of the average growth rate is not confused by such effects as the 
differential linear growth rate throughout the spectrum. 

Eq. (4) plus the condition of constant linear growth rate gives a unique form 
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Fig. 2. The wave energy versus time for the warm beam instability with only a single 
wave excited, a beam to plasma density ratio of 0 = 5 x 10 -4 , and modeled by 512000 
particles. The timestep is wpZlt = 0.25 and the grid spacing kAx = 0.34. As indicated 
in the figure, the simulation gives the growth rate to a relative accuracy of 4 x 10 -3. 

for the beam distribution, 

v~ (41) 

where go(v) = 0 outside the range va < v < vb. The coefficients C1 and C2 are 
determined by the normalization condition, f dvgo(v) = 1, and the value of the 
growth rate, Eq. 4. In terms of these parameters,  the coefficients are 

= 2 L(1 + .) (42) 
IrO;p~Va 

C1 = 1 + C2[va ln(vb/Va) -- Vb + Va] (43) 
(vb - v o )  

In choosing the initial spectrum we demand that  the quasilinear diffusion 
coefficient, which is determined by the local ampli tudes of the waves, be constant 
across the spectrum. This is discussed in more detail in Cary et al (1990). Our 
choices are shown in Fig. 3. We chose v, - 0.25 and vb = 0.38 for all of our runs. 
The slope of the distribution is given by (41}. The spectrum shown in Fig. 3b 
has 584 waves with wavenumbers given by 

kj = 2~rnj (44) 
L 

where L is the length of the system. The ampli tude of the waves varies as k -1/~, 
giving a quasilinear difussion coefficient that  is constant in v (cf. Eq. 10). 
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Fig. 3. The initial conditions for the particle distribution (a), and the wave amplitudes 
(b). For clarity, only one out of every five waves is shown. 

4 Mode coupling 

Turbulent trapping theory (Adam et al, 1979, Laval and Pesme, 1980, Laval and 
Pesme, 1983, Laval and Pesme, 1984) states that the enhancement of the dif- 
fusion coefficient over the quasilinear value is caused by modifications of the 
spectrum due to nonlinear mode-mode coupling. Part of this prediction, that 
significant mode coupling arises when # > 1, has been observed experimentally 
(Tsunoda et al, 1991, Hartmann et al, 1995), but the same experiments do not 
observe an enhancement of the average growth rate or diffusion coefficient. A 
possible explanation of this is that mode coupling sets in at moderate values of 
/J, while large values of # are required for enhancement of the average growth 
rate (diffusion coefficient). 

In this section we confirm that mode coupling sets in at # ~ 1. We performed 
a quiet start simulation in which the mode amplitudes initially vanish, and the 
beam particles are placed in a grid in phase space, such that initially the sums 
in Eqs. (25) vanish. As noted in Zekri (1993), this system is at an unstable equi- 
librium point. Roundoff error in the particles' initial positions is then sufficient 
to initiate exponential growth at the linear growth rate. This technique allows 
us to run simulations with very little noise. 
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Figure 4 shows the results of this simulation, which had 2 × 106 particles and 
211 waves, and beam to plasma density ratio of 7/= 2.7 x 10 -9. The spectrum 
grows for seven exponentiations through the point where the overlap parameter 
is unity maintaining its shape. This is the prediction of quasilinear theory: that 
the growth rates for individual modes are given by linear theory, which by con- 
struction gives a constant growth rate across the spectrum for this simulation 
(cf. nq. 41). 

However, once p = 1 is reached, the modes begin to grow differentially as 
can be seen in Fig. 4c. This is the effect of mode coupling. In addition, the am- 
plitudes of three different modes are seen to diverge in Fig. 4d. This simulation 
demonstrates that mode coupling does onset at /z = 1. Unfortunately, this par- 
ticular simulation cannot be carried out further to see the average enhancement, 
as saturation begins to occur not much later. After the onset of saturation dif- 
ferential growth can no longer be unequivocally attributed to mode coupling, 
and the turbulent trapping regime p >> 1 cannot be reached. 

5 Simulation requirements 

As noted in Fig. 4, it is difficult to achieve numerically the large p regime needed 
to observe the enhanced growth rate. In essence, the problem arises because 
within one growth time after the simulation grows to the point p = 1, the 
particles become chaotic, as the Lyapunov time is of the order of the reso- 
nance broadening time (Stoltz and Cary, 1994). Thus, at this point spontaneous 
emission due to the random distribution of particles is present. To have an un- 
equivocal measurement of the growth rate, the wave growth due to spontaneous 
emission must be small compared to the growth due to instability. Moreover, 
the waves must grow significantly past the point where spontaneous emission is 
relevant without reaching saturation, so that saturation dynamics do not confuse 
the measurement of the growth rate. 

In addition, one must use enough modes that the initial overlap parameter 
is large. This ensures that the spectrum is essentially continuous. Hence, three 
conditions are needed for definitive simulations. Large initial overlap, large ratio 
of saturation energy to energy where spontaneous emission is significant, and 
large p. In this section we determine the simulation parameters based on these 
conditions. We do so by estimating the spontaneous emission amplitude, the sat- 
uration amplitude, the linear growth rate, the resonance broadening frequency, 
and the overlap parameter for our numerical method. We then solve for the 
requisite number of particles, modes, and instability parameter. 

5.1 Es t imates  of  theoret ica l  quanti t ies  

G r o w t h  ra te  The growth rate can be estimated from Eq. (4). For this estimate 
we note that the beam distribution (cf Fig. 3) is roughly triangular, centered at 
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F i g .  4. The  wave spect rum for a run  initialized with a quiet s tar t  at successive times 
of wpt = 500 (a), wpt -- S00 (b), and  wpt -- 950 (c). The  initial overlap paramete r  is 
A ---- 0.03. The  dashed horizontal line corresponds to the ampli tude at  which A = 1, 
and  the dash-dot line at  the ampli tude at  which/J = 1. All waves grow at  the same rate 
unt i l  ~pt  ~ 840, at  which t ime / J  ~ 0.6 and  after which differential growth is evident. 
The  ampli tudes  of three different waves versus t ime are shown in (d). 
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some ~ and of width Av. For such a distribution, the growth rate is estimated 
to be 

"YLI,,'p '.l( lAv) (45) 

S a t u r a t i o n  a m p l i t u d e  The saturation of the modes occurs when the distribu- 
tion function has flattened so that there are no regions of positive slope where 
there are modes. Energy conservation then gives the amount of wave energy. 
This calculation is carried out in Sec. 10.5 of Ref. Krall and Trivelpiece (1986), 
for example. The result is 

1 1 

J 

For purposes of estimation, we simply divide the total wave energy among the 
M modes of the simulation. Thus we find the saturation amplitudes to be given 
by 

1 
JEj,,~tJ 2 ~ -~--~mnb~Av.  (47) 

S p o n t a n e o u s  emiss ion a m p l i t u d e  Spontaneous emission can be calculated in 
the usual way (cf Ichimaru, 1973, Sec. 4.3C). One uses unperturbed particle tra- 
jectories in Eqs. (25) and calculates the change in the square of the amplitudes, 
averaged over the random initial positions of the particles. This calculation gives 
the rate of change of the electric field amplitude due to the spontaneous emission 
a s  

.o 2 - k] g (48) 

The spontaneous emission amplitude IEjseJ is defined to be the amplitude at 
which the rate of change given by Eq. (48) equals that from the instability, 
2"rLJEj] 2. Thus, 

71" ~lta) 4 n b 
I E i , , o l  2 -  og(v j) (49) 

• "[L k 3  

This varies across the distribution, but for the center of the distribution it is 
given by 

1 IEj,,,I 2 ,~ -~nbm~zav (50) 
where we used (45) for 7L. 

N u m b e r  of  g rowth  t imes  The number of growth times, NT, can now be esti- 
mated from the satuation amplitude (47) and spontaneous emission amplitude 
(50). We obtain 

F =_ e 2N" = tELs,~tJ2/IEj,,~J 2 = N / 3 M .  (51) 

Thus, we must have a large number of particles per mode to be able to see 
many efolds from the point where spontaneous emission and linear growth are 
competitive, to the point of saturation. 
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Quasilinear diffusion coefficient and resonance broadening width The 
measurements of the growth rate will occur at the point approximately halfway 
from Ej = Ej,se to Ej  = Ej,sat, where the field energy has grown by approxi- 
mately the factor p1/~. With the value of Ej,,e from Eq. (50), one can calculate 
the quasilinear diffusion coefficient using Eq. (10). The result is 

DQL , ~  / rM'nr ' l /2,. ,  i~2 ( 5 2 )  
2 N "~- -P~ " 

From this and Eq. (12) readily follows the typical resonance broadening width, 

~RB/wp -- ( IP t iM/2N) I /3F  z/s. (53) 

Finally, from this and the growth rate (45), one can calculate the parameter, 

. _  (2==#=)1/3 (54) 

that determines the degree to which the experiment is in the regime of enhanced 
growth. In the above equation 

Over lap  p a r a m e t e r  The overlap parameter (15) should initially be large. This 
assures that initially the system is in a state where the diffusion coefficient 
is given by the quasilinear value, and any subsequent enhancement over the 
quasilinear value is due to self-consistent evolution. From Eqs. (15-17) we obtain 
the typical value for the overlap parameter at the point where spontaneous 
emission equals linear growth as 

~lOL - -  (2 r rM)2V~ (56) 

5.2 Ca lcu la t ion  of  s imu la t ion  p a r a m e t e r s  

Equations (51), (54), and (56) can be solved to find the needed numbers of 
particles and modes and the parameter fl in terms of the growth factor F, the 
turbulence strength parameter p, and the initial overlap parameter AOL. We 
obtain 

= ( 2 7 r 2 p 3 ) - l / 2 ( 9 F ) - l / 4  (57) 
,/3 

M = ] (58) 

(-4oL '~ =/3 (3r)4/3 (59) 
N = 3 F M  = k , ~ ]  f l l / 3  
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In addition, our simulations require a number of time steps proportional to 
the number of growth times and the number of steps per period. The number of 
timesteps needed is given by 

g~ gu (60) 

provided one can take large timesteps, k A r A t  = 1, as possible for the Hamil- 
tonian (28). For the Hamiltonian (30), which retains the high frequency in the 
amplitudes, the number of timesteps required is larger by f~/Av. 

The computational time for our simulations scales as the product of the 
number of time steps and the number of particles. 

O hr A 2 1 3 r S / 3 , , 2  (61) 

This equation shows that increasing the parameter p, which measures how far 
one is into the regime of enhanced growth, dramatically increases the computa- 
tional time. 

6 N u m e r i c a l  r e s u l t s  f o r  t h e  g r o w t h  e n h a n c e m e n t  

The calculations of the previous section allow us to choose the simulation pa- 
rameters to have any value of turbulence strength parameter p = vRa /TL .  In 
practice, there is a limit to how large one can choose p, as the numbers of 
modes (58) and particles (59) increase with p, and the number of time steps 
(60) increases even more rapidly. As noted in the last section, the product of 
the number of time steps and the number of particles, increases rapidly with p. 
Given our available computing resources, we were able to carry out simulations 
up to p ~ 40. 

We arbitrarily chose 2.78 < k < 3.70, va = 0.25 and ~ -- 0.38. This gives a 
linear autocorrelation time of wpr~c ~ 2.5, much shorter than any of the other 
times of our simulation. By varying the beam to plasma density ratio over the 
range, 4.1 × 10 -6 < y < 5.3 × 10 -4, we were able to vary p by approximately 
a factor of 30. We chose to have 584 waves, and an initial overlap parameter of 
AOL ~ 200. We measure the growth rate at a typical electric field value such that 
IEjl2/[Ej,,e[ 2 >:~ 1, and tEj]~/]Ej,,at[ 2 << 1, in order to avoid both spontaneous 
emission and saturation effects. 

In this section we show results for the evolution of the turbulent system over 
this range and we obtain the summary plot showing the growth rate enhancement 
as a function of p. 

6.1 The quasilinear regime 

Figure 5a shows the total wave energy plotted against time for the simulation 
having coupling constant of 1/= 2.6 x 10 -4. For this particular run the timestep 
was wpAt  = 0.4 and the grid spacing kma=Az --- 0.25. The linear growth rate for 
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this simulation is 7L/Wp = 0.004. We measured the growth rate by calculating the 
slope of the numerical curve (dotted line) between wpt = 240 and wpt = 440, that 
is after the initial transients have disappeared, but before the beam distribution 
function begins to distort due to the diffusion. Figure 5b shows the distortion of 
the distribution at the end of the growth rate measuring period. We estimate the 
uncertainty in the average growth rate due to using finite grid spacing and time 
step to be 2% on the basis of this being the accuracy found in the benchmarking 
simulations previously. At the center of the time of measurement of the growth 
rate, we had/a -- vaa/TL = 2.2, close to the margin of the enhancement regime. 
We estimate our uncertainty in p to be =t=20%, the amount of variation of p over 
half a growth time. At that time, [Ej[~/[Ej,,e[ 2 ~ 25 so spontaneous emission 
is of the order of 2%. The early faster growth can be attributed to spontaneous 
emission since at wpt = 100 for example we have [Ej]~/]Ej,,~] ~ ~ 5, a 10% effect. 
The very fast early evolution (wpt < 20) is due to the nonequilibrium nature of 
the initial conditions. 

These results show that one can be significantly into what was expected to 
be the regime of enhanced growth rate and diffusion, yet see no enhancement. 
In Fig. 6 we show the mode evolution at the time of measurement of the growth 
rate, when p ~ 2. Differential growth of the modes is already evident, even 
though no enhancement of the average growth rate is observed. 

6.2 The intermediate regime 

Figure 7a shows the total wave energy plotted against time for the simulation 
having coupling constant y = 6.6 × 10 -5. The linear growth rate for this simula- 
tion is 7L/wp = 0.001. For this case the growth rate was obtained by calculating 
the slope on the semilog plot between wpt = 720 and wpt = 1440, that is, again, 
after initial transients have disapeared, but before the beam distribution func- 
tion begins to distort due to diffusion (cf Fig. 7b). At the time of measurement of 
the growth rate, p = vRB/TL = 5.5. At this time the growth rate is observed to 
be enhanced over the linear value by approximately 14%. The ratio of wave en- 
ergy to spontaneous emission is IEj ]2/]Ej,se[2 ~ 21 at this time, so spontaneous 
emission is of the order of 2%. The initial higher growth rate observed can be at- 
tributed to spontaneous emission, since at ~pt = 200 we have IEj 12/IEj,,eI 2 ~ 3, 
a 16% effect. 

6.3 The  e n h a n c e m e n t  regime 

Figure 8a shows the total wave energy plotted against time for the simulation 
having coupling constant of y = 4.1 × 10 -6. The linear growth rate for this 
simulation is 7L/Wp = 6.25 × 10 -5. For this simulation the growth rate was 
found by calculating the slope of the growth rate between wpt = 4800 and 
wpt = 12800. As shown in Fig. 8b, the measurement ends before the average 
velocity distribution has changed significantly. We see that in this regime the 
growth rate (and therefore the diffusion coefficient) is enhanced by approximately 
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F i g .  5. (a) The total  wave energy plotted against t ime for a r un  in the quasil inear 
regime (~ = 2.2). The  numerical  growth rate  is given by the slope of the  dot ted  curve 
between wpt - 240 and  wpt = 440. Numerical  error is es t imated to be ,,, 2%. (b) The  
initial  beam funct ion (dashed curve) and  the dis t r ibut ion funct ion a t  wpt = 440 (solid 
curve). At  the  middle of our  t ime of measurement ,  IEj[2/IE3,~I 2 ~ 25 so spontaneous  
emission is a 2% effect. 

30% over the quasilinear value. The ratio of wave energy to spontaneous emission 
at the time of measurement was {Ej[2/IEj,sel 2 ~ 51, so spontaneous emission is 
of the order of 1%. 

Earlier in the simulation the growth rate is smaller than that  observed be- 
tween wpt = 4800 and wpt --- 12800. This occurs because the quanti ty ~u is 
smaller at these initial values, so that  the growth rate is closer to that  predicted 
by the combination of linear theory and spontaneous emission. This illustrates 
dynamically how the growth rate increases with p. 

The run in Fig. 8 used 6 x 106 particles. With 7L/Wp = 6.25 x 10 -5 and 
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Fig .  6. Snapshots of the wave spectrum for the quasilinear-regime run of the previous 
figure at  wvt = 240 (a) and wvt = 440 (b). Only one in every ten modes is shown, 
for clarity. Differential mode growth is seen in that  the shape of the spectrum is not 
preserved hy the evolution. (c) Plot of two mode amplitudes versus time, also showing 
differential mode growth. 
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Fig. 7. (a) The total wave energy plotted against time for a run in the intermediate 
regime (p = 5.5). The numerical growth rate is given by the slope of the dotted curve 
between wpt = 720 and wpl: = 1440. Numerical error is estimated to be ,,~ 2%. (b) The 
initial beam function (dashed curve) and the distribution function at wpt = 1440 (solid 
curve). At the middle of our time of measurement, IEjI~/IEj,,el ~ ~ 21 so spontaneous 
emission is a 2% effect. 

¢vpAt = 0.4, the integration for two growth times implies the calculation of 
5 x 1011 particle pushes. For our cubic spline symplectic method, this required 
roughly two months of time on an IBM RS/6000 590. 

6.4  E n h a n c e m e n t  o f  g r o w t h  rate  

In all, we carried out a set of eight runs spanning a set of values of # in the range 
1.2 < # < 40. For each of these runs we kept to the same methodology of ensuring 
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Fig. 8. (a) The total wave energy plotted against time for a run in the enhanced 
growth rate regime (tt = 39). The numerical growth rate is given by the slope of the 
dotted curve between wvt = 4800 and wvt = 12800. Numerical error is estimated to 
be ,-, 2%. (b) The initial beam function (dashed curve) and the distribution function 
at apt  = 12800 (solid curve). The ratio of wave energy to spontaneous emission at the 
time of measurement was ]Esl2/{Ej,se] 2 ~ 51 so spontaneous emission is a 1% effect. 

that  the enhancement is measured at a time such that  IEjl2/IEj,,~I ~ >> 1 and 
IEj[2/ IEj , ,a t l  2 << 1, so that  the system is at the same time far from saturation 
and far from the point where spontaneous emission dominates the growth. The 
summary result is shown in Fig. 9, which shows the enhancement factor as a 
function of/~. This plot shows that the enhancement does not begin until/~ 
3 and from there it rises slowly. The vertical error bars (of 2%) in this plot 
may underestimate the error for the simulations, as they account for only the 
numerical integration error, not the errors due to spontaneous emission. Given 
the errors in our measurements, it is not yet clear whether the enhancement 
factor saturates at 1.3, the maximum vMue we observed, or whether it can be 
even larger for greater values of/~. 
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Fig. 9. The observed self-consistent enhancement factor, 7/7L, a~ a function of # for 
a spectrum initialized with a high overlap parameter (A > 200 ). The horizontal error 
bars represent the change in VRB during the finite time required to measure 7. The 
vertical error bars show the size of a 2~0 error, corresponding to the numerical error of 
integration as determined in our benchmark runs (cf. Sec. Ill-b). 

7 S u m m a r y  a n d  c o n c l u s i o n s  

We have observed enhancement of the spectral averaged growth in the regime 
o f / t  = ~RB/TL >> 1. (Quasilinear results are recovered for/~ ~ 1.) This is in 
agreement qualitatively with earlier predictions (Adam et al, 1979, Laval and 
Pesme, 1980, Laval and Pesme, 1983, Laval and Pesme, 1984), but  not quanti- 
tatively, as even for our largest values of/~ (near 40), the observed enhancement 
is only slightly greater than 30%. In addition, we find that the requirement 
/~ >> 1 is very strong, with large ~ needed to see any enhancement; a t / J  = 1 no 
enhancement is observed. 

These results are consistent with the experiments carried out so far. The 
experiment of Tsunoda et al (1991) achieved a maximum of /z  ~ 1.4. In this 
experiment mode coupling was observed, but enhancement was not, consistent 
with the results shown in Figs. 5-6. A more recent experiment (Hartmann et 
al, 1995) was also not able to get into the regime p >> 1. A new experiment 
(Guyomarc 'h  et al, 1996 ) is under construction for the purpose of getting farther 
into the /J  >> 1 regime. 

An important  area of future research is to achieve a better  understanding of 
why the enhancement occurs, and whether it can be larger. The answer to the 
second question awaits the development and use of more powerful computers and 
better  algorithms as well as improved experiments. For the first we note that  
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there does exist one conjecture (Cary et al, 1990), that mode coupling causes 
spontaneous discretization, so that the particles see a field marginally overlap- 
ping, where enhancement factors of ~ 150% have been observed in test particle 
simulations. To test this numerically, we need a better understanding of how 
this shows up statisticaUy in a turbulent field, so that simulations can test for 
it. (The simulations shown here all contain many particle decorrelation lengths 
9/ul~s, and so axe the composition of many statistically independent systems.) 

Another important area of future research is to determine whether such ef- 
fects exist in more than one dimension. Such studies are at a very early stage, 
as the dynamics of particles in a field of many waves at conditions of marginal 
chaos are not well known. In addition, these dynamics have the complications of 
Arnold diffusion. 

Finally, there are the questions of how this work applies in the many cases 
where quasilinear diffusion is used, either bare or as a starting point for param- 
eterizing turbulent diffusion (Kotschenreuther et al, 1995). Is there a modifica- 
tion of the diffusion coefficient for these cases that cannot be seen except in very 
low-noise simulations that correctly model the nonlinear particle effects? Will 
turbulence saturated by wave decay mechanisms saturate at a greater ampli- 
tude? 
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when (and in which sense) this motion is indeed close to the billiard motion. 
We examine this question in this section and describe a class of potentials for 
which the billiard approximation (2.4) is correct in some reasonable sense. 

Consider a Itamiltonian system associated with 

H = - -  + + V(x ,y ;e )  (2.5) 

where the potential V(x,  y; e) tends to zero inside the region D as e --* 0 and 
it tends to infinity outside. Specifically, we require that  
I. For any compact region K C D the potential V(x,  y; e) diminishes along 
with all its derivatives as c --* O: 

lim I I v (x ,  y; e)l<(~,~)eK}llc,+, = 0. (2.6) 
e,--*+0 

The growth of the potential to infinity across the boundary is a more 
delicate issue. The crucial construction here is that  V is evaluated along the 
level sets of some finite function near the boundary. Namely, putt ing the set 
C of corner points ei out of consideration, we suppose that  in a neighborhood 
of the set ( D \ C )  there exists a function Q(x, y; e) which is C ~+I with respect 
to (z, V) and it depends continuously on ~ (in Cr+l- topology) at c > 0. 
Specifically, Q(x, y; e) along with its derivatives have a proper limit as e -~ 0. 
Assume that  
I I a  On the boundary, the function Q(x,y;O) is constant between any two 
neighboring corner points: 

Q(z, y; ~ = O)l(~,~)~s, -= Q~ (2.7) 

We call Q a pattern function. For each boundary component Si, for Q 
close to Qi, let us define a barrier function Wi(Q; e) which does not depend 
explicitly on (x, y) and assume that: 
I I b  There ezists a small neighborhood Ni of the arc Si on which the potential 
V is given by Wi evaluated along the level sets of the pattern function Q: 

V(z ,  y; e)l(,,u)~N, - W,(Q(z, y; e); e) (2.8) 

I I c  The gradient of V does not vanish in a finite neighborhood of the boundary 
arc .8:  

VVl(~,~)~N, # o (2.9) 

which is equivalent to the following conditions 

and 

vol(~,~)cN, # o (2.to) 

d 
--~w,(o;e) # o. (2.1t) 
at¢ 
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Abstract. Classical point particles interacting via a two-body Newtonian potential 
cannot be described by the Gibbs-Boltzmann statistics, because of fatal divergences at 
short distances of the partition function. The assumption of uniform filling of the phase 
space in the course of time must he replaced by the one of spreading in phase space going 
forever. What replaces the Gibbs-Boltzmann statistics then are asymptotic diffusion- 
like laws for this spreading process, where the time enters as a scaling parameter. 
Another possible description of systems of particles with long range interactions is the 
continuum Vlasov mean field equation. It is argued that solutions of these Vlasov- 
Newton equations have finite time singularities with spherical symmetry, and focusing 
of the energy with no mass, like focusing NLS in 3D. 

More than three centuries ago, Isaac Newton solved the two-body problem in 
classical mechanics. The ingenuity and elegance of his geometrical proof still pro- 
vokes the admiration. Over the centuries the three body problem has attracted 
the attention of distinguished minds as Lagrange, Poincard and Kolmogoroff. 
The solution of the many body problem in the sense of an exact analytical so- 
lution is hopeless, since the three body problem is not integrable in general. 
It is tempting to have recourse then to statistical methods to study this many 
body problem, as did Boltzmann for dilute gases with short range forces. Even 
though this does not yield a solution of the many body problem in an explicit 
form, given initial conditions, it provides the statistical properties of the "mean 
solution", a concept bearing some hidden, and not so hidden subtleties, but that 
I shall take as granted. A core concept in statistical physics is the one of equilib- 
rium probability distribution: one assumes, after Boltzmann, that, on average, 
the representation point is at random in phase space, with a probability mea- 
sure given by the Liouville weight. The normalization constant for this measure 
is the so-called partition function, with various expressions depending on which 
"ensemble" one is considering (microcanonical, canonical, etc.). I shall deal with 
the microcanonical ensemble, the one of a system in a closed box, not exchang- 
ing energy or particles with the outside world. This microcanonical partition 
function reads: 

Z~,(E)--JHdq,  dp,$D(E-~_~ p3 ~--~ U(q, - qj)) (1) 
i i 2# i>j 
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where E is the total energy, where I assumed a two body interaction potential 
U(qi - q j ) ,  depending on the distance between the two interacting point parti- 

cles of index i and j. Moreover ~ is the kinetic energy of the particle of index i, 
linear momentum Pi and mass/J. Finally, the boldface letters are for vectors in 
R 3 and (fD is the Dirac function. The explicit calculation of this partition func- 
tion is not possible in general , but for some cases rational expansion near well 
defined limits can be found. For instance for a dilute gas the contribution of the 
short range interaction in equation (1) can be neglected and the integral over the 
momenta can be carried out (Chavanis 1996). For long range forces, as the one 
I will consider here, the situation is more involved. One reason for this is that 
the very concept of long range force is not so clearcut. Actually, one has often 
in mind an interaction potential that decays slowly with the distance, but keeps 
the same dependance at short and large distance, like 1/r for the Newtonian 
and the electrostatic interactions. One immediate consequence is that this in- 
teraction potential diverges at short distance, like 1/r. In situations relevant for 
plasma physics, the system is globally neutral, so that the long range Coulomb 
interaction is screened beyond the Debye length, and finally the Coulomb inter- 
action is felt at short distances only. For realistic situations, quantum effects take 
care of any divergence due to the strong attraction at short distances between 
charges of opposite sign. The situation is completely different for Newtonian 
interactions: no charge cancellation at large distances, and for the problem of 
interest, that concerns a priori systems of macroscopic particles, like stars in a 
galaxy, no quantum effects at short distance , at least if one does not want to 
look at the inner structure of the interacting "point" masses. The consequence of 
this is that gravitational forces are really long range, contrary to what happens 
in plasmas with charge cancellation. Therefore the divergence of the partition 
function that will be just exhibited may be seen as a consequence of the "long 
range" character of the interaction, even though it is formally linked to the short 
distance behavior of the integrand in the coordinate space. Physically speaking, 
the divergence of the microcanonical partition function computed in a finite box 
is a result of the possibility of compensating any increase of the kinetic energy 
by lowering the potential energy when bringing two attracting masses at closer 
distance. The integral over the momenta transforms the partition function into: 

z.¢  =s3N f (5) 
• i>j 

where S3N is the area of the sphere in 3N Euclidean dimensions. This integral 
diverges for N bigger than two, because of the short distance behavior of the 
integrand 

- ( 2 p ( E -  ~ U ( q i  .3N , 
i>j 

when a pair of particles get very close. Let r be this short distance. Since U(qi - 
G ~ qj) = - ~ ,  G constant of gravitation, the integral will behave, for r very 

small like: 
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Z#(E)  = SZN(~,o)N-2 f drr2(~-~) "~-t (3) 

In this integral (#o)N-2 represents symbolically the (converging) result of the 
integration over the positions of the particles not belonging to the close pair. 
For r tending to zero, Z~(E) diverges if N > 2 as claimed. I fN is large enough 
this divergence still exists for contributions arising from three particles close 
together, four particles, etc. But, generally, because of the dr volume element, 
this divergence becomes weaker and weaker when more particles are put into the 
collapsing swarm. Let e be the shortest distance of approach of two particles, a 
short range cut-off, then the partition function is given by an integral that be- 
haves like e 4-3N/2 as a function of e when this length tends to zero, and if N is 
larger than two. This divergence takes into account configurations with only one 
pair of particles close together. If one considers situations when M + 2 particles 
get close together, the partition function diverges like e 4-3N[2-zM because the 
volume element of the M + 2 particles is multiplied by e 3 whenever a particle is 
added to the collapsing swarm. Therefore the strongest divergence comes from 
contributions where two particles are getting very close although the others are 
at finite distance of each other. This says almost nothing about the dynamics 
of a system with arbitrary initial conditions. This idea of arbitrary initial con- 
ditions with Newtonian interaction is already non trivial, because one cannot 
take as one of these conditions a configuration drawn at random in the micro- 
canonical ensemble: we have just proved that, because of the divergence of the 
partition function, this statement is meaningless. Thus one can take for instance 
an arbitrary set of initial conditions, with a given total energy, but chosen with 
a well defined (=normalizable) probability distribution. This might be the uni- 
form distribution on the energy surface, but constrained by the condition that 
no particle is closer to another one than a certain given distance. Furthermore, 
in order to avoid other divergences due to the large distance behavior, I shall 
assume that particles are constrained to live in a box, with perfectly reflecting 
boundaries. This puts the system quite far from astrophysical situations, where 
the masses seem to live in an almost infinite world. The next step consists in 
trying to use the information gained from the divergence of Z~(E) to predict 
the statistical properties of the average behavior of particles interacting with a 
Newtonian potential. The assumption I shall make is an attempt to extend the 
idea of Boltzmann, according to whom the phase space is filled "as uniformly as 
possible" in the course of time. Indeed no equipartition can occur in the present 
case, because of the divergence of the microcanonical partition function. To make 
a parallel, one may think to the diffusion of a Brownian tracer in a finite vol- 
ume: after transients the distribution of the tracer in space will fill uniformly 
the finite volume. In the case of an infinite volume, instead, a tracer starting 
at finite distance will spread in the course of time. If this volume is the full 3D 
space, the long time distribution of concentration will be the familiar Gaussian, 
with a width increasing like the square root of time. This scaling law for the 
spreading of the distribution is a simple consequence of the scaling properties 
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of the diffusion equation, and does not require any detailed knowledge of the 
solution of the diffusion equation. I used this approach to solve the problem of 
the long time behavior of a classical nonlinear field: there, because of the Jeans 
phenomenon, there are infinitely many degrees of freedom, and the long term 
dynamics is just a self similar spreading of energy in wavenumber space toward 
smaller and smaller scales, where the divergence of the volume of phase space 
is located. On the basis of an analysis of the equation of motion for the mode 
interaction, it turned out to be possible to predict the exponents for diffusion in 
wavenumber space, consistent with a selfsimilar behavior (Pomeau 1992). For the 
present problem, the situation is more complicated, because there is no dynam- 
ical theory, like the weak turbulence equations allowing to derive scaling laws. 
The only guidance is that the microcanonical partition function is diverging the 
more strongly when only one pair of particles are getting very close. Therefore I 
shall assume that for long times there is only one pair of masses in a close elliptic 
trajectory that is getting closer and closer as time goes on. The potential energy 
that is so generated is transferred to the kinetic energy of other particles in the 
field, by three body collisions (the close pair and another particle). During such 
a close encounter an exchange of particles might take place: the outgoing pair 
might eventually include the free incoming particle. The basic statement is that 
on average, the outgoing pair has a lower potential energy than the ingoing one, 
which allows to continuously transform potential energy into kinetic energy. An 
isolated pair of particles follows a Keplerian trajectory boosted by an arbitrary 
Galilean transformation. Because of the virial theorem, the kinetic energy of 
the relative motion in the pair is of the same order as the pair potential energy 
(but with a crucial sign difference, of course). I shall assume that the kinetic 
energy of the motion of the center of gravity is of the same order of magnitude 
too. This follows from a kind of Occam razor principle: there is no other large 
energy scale but the one given by the Newtonian interaction in the pair, and 
every other relevant energy is of the same order of magnitude. There is a weak 
point in this assumption: looking back at the divergence of the microcanonical 
partition function, one realizes that the divergence maintains the equipartition 
of kinetic energy: every particle contributes the same way to the sum of kinetic 
energies, clearly not compatible with the assumption just made that a close pair 
has as much kinetic energy as it has potential energy. If this were true, and if 
there were equipartition of the kinetic energies among all particles, this would 
lead to an obvious contradiction for a large number of particles in the box. If 
the potential energy of the close pair is of the same order as the kinetic energy 
of every other particle in the system, it cannot be that the sum of the kinetic 
energies of the many particles is of the order of the interaction energy of a single 
pair. This is not too dramatic however, because the reasoning nowhere requires 
equipartition of the kinetic energies. Said otherwise, not too much should be de- 
duced from the partition function made formally convergent by a cut off in the 
interparticle distance: such a partition function is not a stationary distribution 
of the system, and does not have thus to be represented as a state of this system 
at any given time. Actually, the only information drawn from the divergence of 
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the partition function is that close pairs are preferred configurations. If one had 
restricted the integral by assuming the kinetic energy of the close pair to be of 
the same order as its potential energy, one would have made the integral of the 
partition function slightly less diverging, but still diverging. Anyway a limited 
amount of information only can be drawn from the divergence of the partition 
function regarding the real dynamical process. Now, once the main assumption 
has been set up, one may find the scaling laws for the time evolution of the 
close pair. The parameters of this pair will change only through close encounters 
with a third mass. Because the pair is very close, one does not expect that the 
interaction with far away particles will have any important effect. Certainly too, 
their effect will be less and less important as time goes on and as the pair gets 
closer. Let r(t) be the order of magnitude of the mutual distance inside the pair. 

The potential energy of the pair is _a_~ . Assuming only one energy scale, the 
velocity of the center of gravity of the pair is of order (c-~r)z/2 Given the number 
density n, the mean free collision time tmfp for close encounters with a third 
mass,  that is for encounters at a distance of order r is : 

1 
7~mf p - -  nr31~(Gl~)l/2 

I assume now that at each close encounter, there is an exchange of kinetic and 
potential energy with multiplicative constants of order unity. This is quite natu- 
ral, because the target particle has a negligible speed, although the parameters 
of the close pair are all scaled with a single quantity, its large negative potential 
energy. Therefore, up to irrelevant constants and/or logarithms (counting the 
number of close encounters between time zero and t), one can substitute to tmlp 
the actual time t elapsed since the system started. This gives the scaling law for 
the evolution of the size of the close pair: 

, .  = (4) 

This picture of a dynamical statistical ensemble forbids to apply the virial the- 
orem because its proof supposes a statistically time independent equilibrium 
state, perhaps one more explanation of the missing mass problem in the Uni- 
verse, as this relies upon (among other assumptions) the application of the virial 
theorem to guess the Newtonian interaction energy from the distribution of ve- 
locities of stars. No simple relation between the kinetic and potential energy of 
the full system should exist then. Another consequence is that a classical system 
of points with gravitational interactions is never at equilibrium, something that 
might bear upon the fact that the Universe is manifestly not at equilibrium now, 
although the current theories of the Beginning, as I understand them, point to a 
very hot early Universe almost at thermal equilibrium. Finally, it is of interest to 
look at the consequence of the present considerations for the "fluid mechanics" 
of a large set of masses interacting gravitationally. Perhaps, this points to a two 
population dynamics, where most masses remain single, and where close pairs 
would keep heating the population of singles by transferring kinetic energy to 
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them and lowering their potential energy meanwhile. In this respect it would be 
of interest to know if the observed population of twin stars is like a delta function 
in the statistics of distances from a star to its closest neighbour, meaning that  
there is a well defined population of pairs. For very large systems one should 
expect more than one pair of close particles: probably the number of close pairs 
decays slowly as a function of time through rare encounters of close pairs. 

Another way of approaching the dynamics of particles interacting with New- 
ton's inverse square force is the continuum description. Neglecting correlations, 
the density in phase space f(r, p, t) is a solution of the Vlasov equation with 
a self-consistent gravitation field: this yields the Vlasov-Newton equation. The 
conditions of application of this approximation to a system of point masses are a 
bit unclear: contrary to the situation of plasmas, there is no well defined small- 
ness parameter (the inverse number of particles in a Debye sphere in plasmas) 
allowing to neglect consistently the correlation in the Newtonian case. Hopefully 
some relevant information however can be extracted from the analysis of the 
Vlasov-Newton equation. I shall limit myself to the simple situation of concen- 
tric spherical shells, of negligible thickness, each with mass # and radial position 
r(t), in between 0 and oo. The dynamical equation for this system are: 

d2ri 1 
= - a t  (5) 

j , r i<r  i rJ 2 

A shell at radius ri is attracted by shells closer to the center than itself, and 
the force is as if every inside shell were at the center, a result due to Newton. 
Furthermore, I have neglected the self interaction of the shell, which is consistent 
with the Vlasov-Newton equation used later on. The energy of this system is: 

H(pi,r,)= ~ &  Z GI~2 (6) 
i<j ,r j<rl  r j  

Therefore, the microcanonical partition function reads: 

[ II dpidr,~D (E - H(pi, ri)) (7) Zraicr o (E) 
J i 

where the integral over the ri 's extends from 0 to +c~ , although the momenta 
pi are integrated over the full real line. As for point particles, the momenta  can 
be integrated out, giving: 

Zmicro(E) = SN f R dri(2.(E_ ~ G#2)) NT-IO(E- ~ G#2)r, (8) 
i i<j ,r j<ri  r j  i<j ,r j<ri  

where O(.) is the Heaviside step function imposing a positive kinetic energy. This 
partition function is diverging in two limits, at large and small r i . The latter is 
not relevant for the present work, as I shall assume the system contained within 
a spherical enclosure of radius R. It remains to consider the divergence related 
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to the short distance behavior of the integral giving the partition function. At 
this stage, the long time behavior of the solution might be analysed as before, 
by assuming that near the center two shells are getting closer and closer as time 
goes on, by giving their energy to other incoming shells reflected on the center. It 
is not very reMistic though to continue this calculation, because of the many ide- 
alizations in this model. It seems more interesting to use the information gotten 
from the divergence of the partition function to make predictions for the contin- 
uous description, via the Vlasov-Newton equation. The main information is that 
the potential energy tends to be focused to a point, with spherical symmetry, 
but without focusing of the mass. This is reminiscent of the generic singulari- 
ties of the focusing nonlinear SchrSdinger equation (NLS) in dimension 3: the 
density of potential energy diverges at one point, with a finite amount of total 
energy at the singularity, but with a total mass tending to zero at the singularity 
(Mesurier and al. 1988). In NLS, this follows from the assumption of selfsimilar 
behavior of the solution of NLS near the singularity. In what follows, I shall use 
the same method (search of a selfsimilar solution) to study a possible blow-up in 
the evolution of the Vlasov-Newton equation. As it will appear, things are more 
complicated than for NLS, because Vlasov-Newton is a nonlinear integrodiffer- 
ential equation not too easy to handle. This equation is a first order evolution 
equation for the probability distribution f(r,  v, t) of velocities v and positions 
r of a system of spherical shells with a Newton attraction law. This equation 
reads: 

Of Of t Of 
-6  + + E,(r, = 0 (9) 

The self consistent field Es(r, t) is related to f(r ,  v, t) as 

Es( r , t )=  G/tf0r  /+oo  - r2 dr' dv'f(r,  v', t) 
, J ~ O 0  

This Vlasov-Newton equation has no formal general solution. To gain some un- 
derstanding upon its possible solutions, I shall have to make use of the informa- 
tion coming from the divergence of the partition function. This function gives a 
diverging statistical weight to configurations where two shells are approaching 
r = 0 very closely. Therefore, I expect too a similar behavior of solutions of the 
Vlasov-Newton equation. A selfsimilar solution takes the functional form: 

f(r ,  v, t) = ( - t )  ~ F ( r ( - t )  ~ , v ( - t )  ~) (10) 

where the singularity happens at time zero, whence the ( - t )  in the argument of 
the powers, since I am considering what happens before the singularity ( negative 
times, t being small positive). The exponents a,/3, 7 are to be deduced from the 
Vlasov-Newton equation: by putting the self similar solution in the equation, 
one must get an equation in the stretched variables only, r ( - t )  ~, v( - t )  ~. By 
balancing the three terms one gets two relations: 7 - f l  = 1, a+/3 = -1.  It remains 
to find another relation to determine the three exponents. This one can only be a 
consequence of the properties of conservation. If one assumes the mass conserved 
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during the collapse, one obtains: a - 7 - f l  = 0, which yields a = _ 5 , f l  = 1  -5,72 = 
! Those exponents have the right sign, because they correspond to collapse to 3" 
a single point (fl negative), but they show the unphysical feature of a diverging 
energy in the collapse region. By itself this divergence is not too dramatic: the 
order of magnitude of each of the two contributions (potential and kinetic) to the 
energy diverges, although the total energy might have a different behavior, by 
exact compensation of the kinetic and potential energy. For a selfsimilar solution, 
that  would imply that  this total energy is zero. If such a blow up existed with a 
finite mass and zero total energy, it would be very different from what we expect 
from the divergence of the partition function, where the mass is the smallest 
possible, although the totM energy is finite. That  the total mass is zero is due 
to the continuum limit: therein the masses of the individual shells tends to zero, 
as the divergence of the partition function implies two shells only. This is the 
question I am going to consider: collapse with no mass and a finite total energy. 
Let ET be this total energy. From the scaling relation already found and by 
using the energy ET as supplementary scaling quantity, one gets the following 
scaling form for the solution of Vlasov-Newton: 

where 

= v )  / ( , ' , v , O  ' 

1 4 

r = R(GpET) -* ( - t )  ~ (11) 

v = V(GlJET)-[ ( - t )  -~ (12) 

define the stretched variables R and V, that  are of order one. The total mass in 
the collapse domain behaves like: 

2 2 

i = (ET)~(Gp)-~(- t )~  

This tends to zero as the collapse time approaches ( that  happens when t tends 
to zero). The Vlasov-Newton equations become now a set of equations for the 
function F(R, V), that  reads: 

where: 

F + 4  OF 1 OF OF E "R" OF 
g n-8-  - g V-sv + V-8-  + ,( )-sv = o (13) 

lfn ,[+oo 
F(V,R') (14) 

Es(R) -- --if5 Jo dR J-oo 

To get some insight upon the the solution of these equations, I notice that  by 
taking E(R) as given, the equation for F(R, V) can be solved by the methods 
of characteristics. The boundary conditions constrain Mready very strongly the 
solutions. To see that,  I rewrite the equation for F as: 

F + A(R, V)--~ + B(R, V ) ~  R -- 0 (15) 
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where: 

and 

V 
A(R, V) = - . ~  + E,(R) 

4R 
B(R,V) = ~-  + V 

The formal solution for F will be written in terms of the trajectories of the 
solutions of the two coupled ODE's: 

dV 
dS  

and 

= A(R, V) 

dR 
d---~ = B(R, V) 

where ,U is a dummy parameter("t imes" later on). This system of ODE's does not 
seem to be solvable by explicit quadrature, except in the simple case E,  (R) = 0. 
The solution for this simple case allows to get a fair understanding of the general 
solution. If Ea (R) = 0, V4(R+ V) is a constant of the motion and the trajectories 
are like hyperbolea with the asymptotes V = 0 and V+R -- O. The phase portrai t  
is drawn on figure (1). The only fixed point is R = V = 0. If E,(R) is not zero, 
this fixed point is shifted to R = R*, V = V*, where R* and V* are the root(s) 
of A(R, V) = B(R, V) = 0. R* is the root of 

R* = _ 5 E , ( n * )  (16) 
4 

The field Es(R) is negative and I shall assume it to decrease from a finite or 
infinite value at R = 0 to zero at infinity. Therefore, one and only one root 
R* exists. From the fixed point R = R*, V = V* start  two lines, the stable 
and unstable manifold. Although other possibilities exist, I shall assume that  
the perturbation brought by the attraction does not change the phase portai t  
too dramatically . This phase portrai t  is sketched in Figure (2). The maximum 
or minimum value of R on each trajectory is reached on the line where dR 
B(R, V) - O, that  is on the line 4R + 5V = 0, which helped to draw the figure. 
The method of characteristics yields the values of F on each integral line of the 
velocity field. Let F0 be value of F at some point R0, V0 of an integral line. By 
setting ~ = 0 for the value of 2: at R0, V0, the value of F at any point on the 
same trajectory is 

F(Z) - F(Ro, Vo)e- ~ (17) 

where F ( ~ )  is the value of F at the point R, V reached at ,U, given the starting 
point R0, V0 at ,U = 0. This excludes from the support  of F any open trajectory 
running from ,U = - c o  to +oo , since the value of F for such a trajectory 
would become infinitely large at 2 = -oo ,  and so make diverge any integral of 
F over V, like the one needed to get E,  (R) out of F .  From the phase portrait  
of the velocity field, this leaves two possibilities for trajectories as support  of 
F:  the unstable manifold of the fixed point running from V = +oo, R = 0 
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Figure h Pha~e portrait of the velocity field 

V 

dV = A(R, V) and dJ~ = B(R, V) with E(R) = O. 
d_V dZ' 

~q 

I 
X\\ 

I 
V" 0 

Figure 2: Phase portrait of the velocity field 

dV dR 
~ =  A(R,V) and d--~= B(R,V) 

V 

with E(R) negative of decreasing aJ~solute value from R = 0 to R = co; The 
support of F(R, V) is on the unstable manifold emanating from the fixed point 
and tending to R = 0 and V = -co. Other trajectories, not drawn, ~re also 
supporting F(R, V), that are obtained by reflection of the unstable manifold on 
R=0. 
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to the fixed point, plus eventually open flow lines underneath the stable and 
unstable manifold of the fixed point and above the R - 0 line. Actually the 
situation is quite involved: that  trajectories take a finite "t ime" to travel from 
R = 0, V - +o0 to R = 0, V = - o o  depends on the behavior of Es (R) near 
R = 0, which is dependent itself upon the behavior of F near R = 0, making the 
whole thing self consistent. To keep the dicussion within a reasonable length, I 
will limit myself below to a single case, the one where the support of F is the 
unstable manifold of the fixed point. This makes appear two different problems, 

1) For long negative "times" 27, the trajectory reaches the fixed point. There- 
fore, there is a problem of integrability, in the sense of the possibility of calcu- 
lating Es (R) via integration over V of F.  

2) Assuming that  the first problem can be solved, is the self consistent field 
found by integration of F over V the same as the field Es(R) used to compute 
F by the method of trajectories ? 

The second problem is numerical, as there is no hope to get an explicit 
solution. I plan to study it elsewhere, as well as to discuss the otherl possibilities. 
The first problem concerns the behavior of F near the fixed point. Let (IV and (IR 
be the deviation of V and R away from the fixed point. The linearized dynamical 
equations for (IV and (IR read: 

d(iV gV dEs(R) (IR 
d--£-  5 + ~  - 
dgR 48R 
d---Z - ~ -  + (iV (18) 

The solution of this linearized system makes appear two eigenvalues, o- and this 
takes the general form: (iV, (IR = e ° z  . The eigenvalues a are the two roots of the 
characteristic polynomial: 

3 dEs(R) 4 _ 0 (19) 
o ~ -  ~ o +  dR* 25 

The sum of the roots is 3 ~, that  is the divergence of the velocity field, and the 

roots are real, if ~ d n *  < 1, as assumed. In this case, the solution for F near 
the fixed point and with its support on the unstable manifold takes the local 
form: 

F(R,  v )  = (ID ((~+ - ~) ( in  - (iv)~ ~"÷ (20) 

where a+ is the largest (positive) root of the characteristic equation and (ID is 
the Dirac function. Along the unstable manifold, the relation between Z and the 
local value of R or V follows from the integration of the linearized equations of 
motion. For instance, one has: 

( i v ( ~ )  = (iv(0)e ~°+ (21) 

One may now derive the sought behavior of F near the fixed point: 

F(R, v) = (ID((~+ - ¢)( IR- ( i v ) ( ~ ) ~  (2~) 
O o v  
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This is an integrable function if ~ is less than 1, which is realized if if ~ < 

__6 This condition is weaker than the one for the existence of a negative eigen- 
2 5 "  

value, that  is ~ d R *  < ~ "  If both tr+ and or_ are positive, the singularity of 
F near the fixed point but  along the less unstable eigenvalue is not integrable. 
Therefore, in both cases the only possible support for F is along the most un- 
stable manifold. Of course, this cannot be considered as a proof that  the whole 
schema works, since the inequalities depend on the numerical value of a~,(R) 

dR*  
that  is itself determined self consistently. For positive 57 "times" the unstable 
manifold of the fixed point is asymptotic to the R = 0, V = - c ¢  semi axis. The 
question of the boundary condition at R = 0 for F at R = 0 is relevant if F has 
not decayed to zero along its travel on the unstable manifold. F would decay to 
zero (because of the exponential e -  ~ in the trajectory solution for F.  Close to 
R = O, E, (R) is expected to diverge and the equations of motion for R(57) and 
V(E)  become close to the Hamiltonian system: 

dV 
- -  = E , , ( R )  
d57 
dR 
d57 = V (23) 

From Liouville theorem, the density F in phase space becomes constant near 
R = 0, so that  the mass density, obtained by integration of F over V tends to 
a constant at R = 0. Therefore, from its definition, E,(R)  diverges like R -1 as 
R tends to zero, and finally by elementary scaling arguments it takes a finite ~U 
time to reach R = 0. Therefore, one must worry about the boundary condition 
at R = 0. The usual choice is the perfect reflection, which means there that  the 
boundary value of F at R = 0, V = - c ~  is the same as the asymptotic value for 
F on the trajectory reflected of the unstable manifold. This reflected trajectory is 
defined by the condition of conservation of "energy" in the Hamitonian motion 
near R = 0. This reflected trajectory may either escape to infinity, because 
it is on the "left" side of the separatrices drawn by the stable and unstable 
manifold of the fixed point, or it may be thrown back underneath the stable 
manifold of the fixed point and later on hit again the R = 0 axis with an infinite 
negative velocity. Then the process continues. Notice that  the energy of the near 
Hamiltonian motion decreases in the course of time, at least if the motion takes 
place close to the R = 0 axis. Let 

V 2 
H = - - f  + U(R) (24) 

dv E,(R)  being the energy of the Hamiltonian part  of the equations of 
d R  - -  

motion. From these equations, 

dH V 2 
d57 -- 5 E , (R)  (25) 

The positive term (recall that  R = 0 is attracting) - E s  (R)-~  tends to a constant 
as R tends to zero, because Es(R) is like 1/R there, so that  the dominant  term 
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y ~ 
in ~ is the negative --~-, which shows that near R = 0 the energy H decays 
as 27 grows. Accordingly an infinite set of trajectories is obtained by successive 
reflections on R = 0. Because of the decay of H, the limit set of these trajectories 
should have an infinitely negative energy, and so correspond to the point R = 0 
in the R, V space. Because of the exponential decay of the amplitude of F as 
27 increases, no divergence of the integrals of F over V yielding E, (R) seems to 
be associated to the infinitely many nested trajectories. This gives a consistent 
schema for the solution of the original equations, without divergence of the 
quantities involved. As mentionned already, the full solution of this problem 
cannot be completely given analytically because of the implicit and nonlinear 
relations between F and E,. 

Summary and perspectives: 
The statistical mechanics of a self-gravitating gas shows that in the course of time 
close pairs should form and get closer and closer as time goes on. A somewhat 
similar situation is met when studying the mean field dynamics of this self- 
gravitating gas: there should be a collapse in a finite time, without mass , but 
with a finite amount of energy at the singularity. Indeed this has been studied 
for perfectly symmetric solutions, without angular momentum. Therefore, the 
connection between the two cases is not completely obvious, a question I plan 
to examine in the future. 
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1. Introduct ion 
It is widespread opinion that the adequate description of temporal and spa- 

tial properties of random fields, in particular, hydrodynamic turbulence, have 
to based on spectral-correlation analysis. Nevertheless some important topo- 
graphical information is maintained in probabilistic characteristics of random 
fields (see, for instance, [1-3]). Our report is devoted to description of some 
topographical peculiarities which one can extract from the probability distribu- 
tion functions (pdf's) of random fields in compressible media. Such compressible 
fields give satisfactory mathematical models of broad class of physical phenom- 
ena, for instance, evolution of mass distribution in the Universe [4-7] or moving 
of floating tracer at the ocean surface [3]. Indeed, the divergence of the velocity 
field 

Ovl Ov~ Ov3 (1.1) 
( v .  v (x, t)) = ~ + ~ + o~3 

in depth of the ocean is equal to zero. Let x3 is the vertical and (zl, x2) are 
horizontal coordinates along the surface where the floating tracer is constrained. 
The divergence of the velocity horizontal component, which mostly determines 
the behavior of a floating tracer: 

Ovl Ov2 = Or3 
divhv = ~ + Ox2 -~'£z3 ¢ 0 (1.2) 

is not equal to zero, so floating passive tracer is subject to the laws of motion of 
a passive tracer in a 2D compressible flow. 

The most distinctive peculiarity of tracer in the compressible media is the 
formation of stable cluster structure, i.e. the appearance of small regions of 
high density where almost all particles of passive tracer are putting together, 
surrounding by broad regions of low tracer density. The well known Large-Scale 
Structure of mass distribution in the Universe is the good example of such kind 
structure [4-7]. 

In this report we discuss some simple 2D and 1D models of compressible 
medium illustrating the arising and evolution of the cluster's structure. 

2. Average  areas  and masses of  clusters wi th  raised densi ty  
The first example utilization of probabilistic properties for examination of 

the random fields topographical features is relation of some random field p(x, t) 
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~0 

Fig. I. Schematic illustration of floating tracer clusters on the surface of noncompress- 
ible liquid. Below - picture of moving liquid; above - plot of tracer's density. 

pdf 

WE(p; X, t) ---- (~ (p (X, t) -- p)) (2.1) 

with that  area of space where p(x, t) exceeds the given level p: 

p(~,t) > p .  (2.2) 

Angle brackets (...) mean the statistical averaging. Besides, to make this report 
more evident, we will illustrate general relations by the examples concerning 
random fields of some 1D or 2D compressible media, like in the case of floating 
tracer behavior at the surface of ocean. 

Let us consider probability 

~ O O  # I 

P ( o ( x , t )  > p) = (o (e(x ,¢)  - p)) = wE(e  ; x , t ) e o  

where O(z) is the Heaviside function (•(z) = 1 for z > 0 and O(z) = 0 for z < 0). 
Obviously, the integral of probability over some space domain Q with given 

area Q is equal to 

q P ( p ( x , Q  > p) dx = ( S ( Q , p , t ) )  . 

Here 

s(Q,p,t)  = ]~ e(p(x,t) - p)dx 

- area of regions inside of domain Q where inequality (2.2) is true. 

(2.3) 

(2.4) 
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Fig.  2. Schematic picture of clusters: regions where p(x, t) > r > p*(t). 

If random field p(x, t) is statistically homogeneous, then limit 

1 
lim --= (S (Q, p, t ) / =  s(p, t) 

q--,oo (4 
(2.5) 

is equal to the specific area over whole space where inequality (2.2) is true. On 
the other hand, this specific area just is equal to the integral of random field 
p(x, t) pdf: 

s(p,t) = ~ ( p  ; t ) d p  . (2 .6)  

One can observe in addition that equality 

f ~ 1 (2.7) 

determines the threshold function p* (t) so that regions where 

p(x, t) > p > p" (t) (2.8) 

form a system of "islands" - clusters, imbedded into the "ocean" where opposite 
inequality 

p(x, t) < p" (t) (2.9) 

is valid. If p(x, t) is the density field of some passive tracer, then one can find 
the specific mass of tracer inside pointed out clusters with raised density p(x, 
t) > p: 

re(p; t) = lim 1 q-+~ -~ (M(O,p,t)) (2.10) 
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where 

M(Q, p, t) =/Q p(x, t)O (p (x, t) - p) dx 

is the mass of passive tracer contained at clusters. It is expressed via of pdf wE(p; 
t) of the statistically homogeneous density field by the next formula analogous 
to (2.6): 

m(p;t) = p wE(p ;t)dp . (2.11) 

3. Connec t ions  b e t w e e n  of  Lagrangian  and  Euler ian  p robab i l i t y  
d i s t r ibu t ions  of  r a n d o m  fields 

Above mentioned topographical characteristics of the passive tracer density 
fields were expressed through pdf (2.1) of density field p(x, t) at the Eulerian co- 
ordinate system. We will call such distributions of Eulerian fields as the Eulerian 
probability distribution functions. Many Eulerian statistical characteristics of the 
random fields are expressed via the pdf's of the same fields at the Lagrangian 
coordinate system i.e. via the Lagrangian probability distributions. Sometimes 
investigation of Lagrangian statistical characteristics of random fields is more 
convenient than investigation of Eulerian ones. So establishment of the relations 
between Eulerian and Lagrangian statistical properties of random fields promote 
to the comprehensive investigation of its various statistical and topographicM pe- 
culiarities. To derive these relations let us consider the continuity equation for 
the density of some compressible passive tracer: 

+ ( v .  v(x,t)p) = 0 
Ot 

(3.1) 

Solution thereof has the form: 

p(x,t) = / po(y)Z (x-  X(y,t))dy (3.2) 

where p0(x) is the deterministic initial passive tracer density field, and 

x = X(y,  t) (3.3) 

- random coordinates of some passive tracer's particle, initially (at time t = 0) 
situated at the point y. Recall that X - Eulerian and y - Lagrangian coordinates 
of particle. 

It is worthwhile note that averaging of equality (3.2) gives the first well 
known formula connecting of Eulerian and Lagrangian statistics. Indeed averag- 
ing yields: 

= [ po(y)WL (X; y, t) d y .  (3.4) (p(x, t)) 
J 
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This relation, which makes up the basic theorem of turbulent diffusion state- 
ment [8], tied together the mean value of Eulerian density field (p(x, t)) and the 
Lagrangian pdf of given particle coordinates: 

(x; y, t) = (x  - X ( y ,  t))> . 

As we saw earlier, to study of the random density topographical properties, 
we need in formulas expressing the Eulerian density pdf through Lagrangian one. 
To derive them let us consider the another useful density field representation 
which one can get from (3.2) using the Dirac-delta relation [9]: 

1 
$(x  - X(y , t ) )  - y ( y , t , J ( y )  - Y(x , t ) )  . 

Here the vector function 

is the inverse to (3.2) and 

(3.6) 

0 X ( y ,  t) (3.s) J (y ,  t) = ~y  

is the Jacobian of the mapping of Lagrangian coordinates y to the Eulerian ones 
x. Substituting (3.6) into (3.2) and utilizing of the Diraz-delta probing property 
one can obtain another useful expression for the passive tracer density: 

p(x, t) - P0 (¥ (x ,  t)) P0 (Y(x,  t)) (3.9) 
J (Y(x ,  t ) , t )  - j ( x , t )  

Here J (y ,  t) and j (x ,  t) -- J ( Y ( x , t ) )  are Jacobian in the Lagrangian and 
Eulerian coordinate systems respectively. Equality (3.9) means that  the density 
field closely connected to the Jacobian which is measure of the medium dilation 
(if J > 1) or compression (if J < 1). So it is worthwhile to discuss at first the 
statistics of Jacobian field. Let us consider the joint Eulerian pdf 

wE(y , j ;x , t )  - (~ (Y(x , t )  - y)¢f ( j (x , t )  - j)> (3.10) 

of Eulerian Jacobian field j (x ,  t) and Lagrangian coordinates Y(x,  t) of the 
particle getting into point x at some instant t. Having applied here the expression 
(3.6) one can obtain the promised relation 

wE (y, j ;  x, t) = jWL(X, j; y, t) (3.11) 

connecting the Eulerian probability distribution with Lagrangian one 

WL(X,j;y,t) = (J (X(y , t )  - x) J ( J (x , t )  - j ) )  . (3.12) 

Factor j in (3.11), by which these two pdf 's differ, takes into account the in- 
crease of dilated regions (where j > 1) contribution in the statistical ensemble 

y = Y(x ,  t) (3.7) 
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of Eulerian fields, as compared with the statistical ensemble of its Lagrangian 
counterparts. 

For the physical applications much more interesting to establish the similar 
relations between of the Eulerian p(x, t) and Lagrangian 

P0(Y) 
R ( y , t ) = p ( X ( y , t ) ) -  J (y , t )  (3.13) 

density fields pdf's. It is easy to show from (3.10) - -  (3.13) that the desired 
relation has the form 

pwE(y, p; X, t) = po(y)wL(X, p; y, t ) ,  (3.14) 

where 
WL(X,p;y,t) = (J (X(y,t)  -- x ) J  (R(y, t) - p)) 

is the joint Lagrangian pdf of the random fields X(y, t), R(y, t), and 

(3.15) 

wE(y,p;x,t) = (g (Y(x, t) -- y)~ (p(x, t) - p)> (3.16) 

is the Eulerian joint pdf of the Lagrangian coordinate Y(x, t) and the density 
field p(x, t). Integrating (3.14) over all y, we arrive to the formula 

pWE(p; x, t) = / po(y)WL(X, p; y, t)dy, (3.17) 

expressing the pdf of the Eulerian density field through the joint Lagrangian pdf 
of the random position of given particle, initially situated at point y, and the 
tracer density R(y,t)  in vicinity of that particle. Relation (3.17) generalizes the 
turbulent diffusion basic theorem (3.4). Indeed, one can get (3.4) just integrating 
of (3.17) over the all values p. 

In the case of identical initial tracer density at the all space, that is if 

P0 (x) = p0 = const (3.1S) 

and in the case of statistically homogeneous random velocity field v(x,t) ,  the 
Lagrangian probability distribution at the right hand side of equality (3.17) 
depends only of difference of the Lagrangian and Eulerian coordinates: 

WL(X,p; y , t )  = WL(X -- y , p ; t )  . (3.19) 

A s  a result expression (3.17) is turned into simple algebraic relation 

pWE(p; t) = p0wL(p; t) (3.20) 

joining the Eulerian (2.1) and Lagrangian 

wL(p;y,t) = (~ (R(y,t) -- p)) (3.21) 
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density field pdf's. The corresponding connection between the Eulerian and La- 
grangian pdf's of statistically homogeneous Jacobian field has the form 

~o~(j;t) : jwL(j;t). (3.22) 

Since both pdf's in (3.22) have to satisfy the normalization condition, we auto- 
matically get from (3.22) two conservation laws 

, = 1 .  (3 .23)  

Both of them have the transparent physical sense. The first is the conservation 
law of the area occupied by the medium. The meaning of the second conserva- 
tion law in (3.23) we also grasp in the case of identical initial density (3.18). 
Multiplying the second equality in (3.23) by po and noticing that 

P0 
j(x,  t) - p(x, t) (3.24) 

is the Eulerian density field, we arrive to equality 

(p(x, t)) = P0 • (3.25) 

The latter, in turn, is a consequence of the dynamic mass conservation law. 

4. Lagrangian statistics of  density and Jacobian 
Let us discuss some statistical properties of the passive tracer density and 

Jacobian fields in Lagrangian representation. For this purpose let write out the 
corresponding equations in Lagrangian coordinate system. Namely the equation 
of particle trajectory 

dX 
= v(X, t) X(y, t = O) = y (4.1) 

dt 

and Lagrangian form of continuity equation (3.1) 

dR 
d--t- + u(X, t )R = O, R ( y , t  = O) = po(y) • (4.2) 

One can get the Jacobian evolution equation just by substitution of (3.13) into 
(4.2): 

dJ  
-~  = u ( x , t ) R ,  j ( y , t  = 0) - 1 .  (4 .3)  

Here occurs the new scalar field 

, , ( : , t )  = i v .  , . ' ( , , , t ) )  (4.4) 

- divergence of the velocity field v(x, t). In compressible media under investiga- 
tion it is a some random field, which we will suppose in what follows statistically 
homogeneous. 
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The solution of the Jacobian equation (4.3) has the form 

J (y ,  t) -- exp(L(y,  t)) (4.5) 

where 

Z L(y, 0 = u iX(u, e), e) de .  (4.6) 

For the sufficiently large times t - -  much more than the time of random velocity 
field correlation r~: 

t >> r~ (4.7) 

it has sense, with agree of Central Limit Theorem, to suppose integral (4.6) is 
the Gaussian with the mean value 

(L(y , t ) )  = ( U ) t ,  (U) = (u (X(y , t ) ) )  (4.8) 

and variance 

a~( t )  = 2 B t  , B = ( u ( X ( y , t ' ) , t ' ) u ( X ( y , t ) , t ) ) d t '  . (4.9) 

Respectively the average of Jacobian (4.5) is equal to 

( J (y ,  t)) -- exp [((U) + B) t] . (4.10) 

On the other hand according to the first conservation law (3.23) (J)  = 1. Thus 
we arrive to the useful connection 

(U) = - B .  (4.11) 

Consequently the Lagrangian density field 

R(y,  t) = P0 exp ( - L ( y ,  Q) (4.12) 

has the logarithmically normal pdf 

1 [ In 2 ( p e - T / p o ) ]  
WL (p; t) = 2pv/-~- ~ exp _ 4r  J (4.13) 

where it is used the dimensionless time r = Bt .  In particular it follows from 
(4.13), that  the median curve 

"ilL(t) = poe T (4.14) 

corresponding to the equality 

1 
P (n (y , t )  < -ilL(t)) = ~ (4.15) 

grows exponentially with time. In other words, in the course of time, almost 
all particles of the tracer falls into the compressed regions (clusters) with an 
exponentially growing density. 
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5. T e m p o r a l  b e h a v i o r  o f  t h e  d e n s i t y  f ie ld  
More detailed information about the formation and evolution of the pas- 

sive tracer clusters one can obtain by investigation of the Eulerian probabilistic 
properties of the random density field p(x, t). Using the Lagrangian and Euterian 
pdf's connection (3.20) and already have specified earlier the Lagrangian density 
pdf (4.13), we turn up to the Eulerian pdf of p(x,t):  

wE(p;t) = ~ e ~ p  _ ~ j (5.1) 

Note that  the some statistical characteristics of density field p(x, t) are more 
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Fig. 3. Plots of the Eulerian and Lagrangian probability distributions of dimensionless 
density field P/Po. 

convenient to extract from Fokker-Planck equation 

Ow~ 02 
& - Op2 (p~wE) , wE(p;~=o)  = , ~ ( p - p o )  (5.2) 

to which pointed out Eulerian pdf (5.1) satisfies. For example, it is easy to get 
from (5.2) closed equations for the density field's statistical moments: 

~ r ( p  r* (x, t)) -" n(n -- 1) (p, (x, t)) , (p" (x, t -- 0)) = p~ • (5.3) 

The solutions thereof are 

(p" (x, t)) -- p~ exp(n(n - 1)w) . (5.4) 
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It should be emphasized that  the density field possesses seemingly contra- 
dicting statistical properties inherent to the intermittency processes [10]. Indeed, 
as one can see from (5.4), the variance of Eulerian density field exponentially 
grows up with course of time. It seems to imply an appearance as t increases, of 
very high peaks of the density realizations. At the other hand it contradicts to 
the exponential decreasing of Eulerian pdf median curve 

p* (t) = poe-" • (5.5) 

The latter means that  at large time v >> 1 the Eulerian "probabilistic mass" is 
concentrated at the low density levels p << p0. 

Let us analyze the density temporal behavior in more detail. To this pur- 
pose recall that the Fokker-Planck equation (5.2) can be treated as equation for 
the transition pdf of an auxiliary Markov process p ( r )  , which satisfies to the 
stochastic equation 

dp 
d---r + p = ~ ( r ) p  , p ( v  = O) = Po • (5.6) 

Here ~(r) is a Gaussian white noise with covariance function 

= - 

To our mind named resemblance between p(x, t) and p(r) allows to assume that  
realizations of the density field p(x, t) at fixed point x and auxiliary process p(r) 
realizations are similar. So one can assign the properties of auxiliary process p(r) 
to the temporal behavior of density field p(x, t). 

First of all notice that  there exist exponentially decreasing majorant curves 
[11] 

M ( r ) = A p 0 e  - " ~  ( 0 < / z < l ,  A >  1) (5.7) 

such that  with probability 
P = 1 - A (~-1) (5.8) 

realizations of process p(r), for all t, are situated under the curve M(r ) .  In 
particular, one half of all realizations of p(v) are located beneath the curve 

M ( v )  = 4poe - r l 2  . (5.9) 

Moreover, the area below of p(r) realizations 

Jo u = p ( , - ) e , -  ( 5 . 1 0 )  

bounded almost surely. To prove this statement let us consider the new process 
V ( r )  satisfying to the stochastic equation 

d V  
e---; + u = ~ ( , - ) y  + po , y ( , -  = o) = o . (5.11)  
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Fig. 4. Plots of monotonically decreasing majorant curve and typical realization of 
auxiliary process p(r), modeling the temporal behavior of the passive tracer density 
field p(x, t). 

The solution thereof has the form 

£ V(r) = p0 J(r,  r ' )dr '  (5.12) 

where J(r,  r ') is the solution of the stochastic equation 

dJ 
dT + J : {( r )J  ' J(~ = ~'' ~') = 1. (5.13) 

Comparison of (5.10), (5.12) and (5.6), (5.13) lead to conclusion that random 
variables V (5.10) and V(r = co) (5.12) are statistically equivalent, i.e. pdf's of 
V and V(oo) are coincide. The pdf w(v; r) of Markov process V(r) is submitted 
to the Fokker-Planck equation 

ow ow °2 (5.14) 
Ot po Ov - Ov 2 ' 

As time increases, solution of this equation converges to the stationary pdf 

.o ( -T) ,  lim w(v , r )  = woo{v) = ~ e x p  P0 (v > 0) (5.15) 
1"--I.oo 

It means that for any arbitrary probability p < 1 the area underneath of density 
field p(x =const, t) realizations less than po/B In (l/p) < co: 

(£ ) P p(x,t)dt < p o / B l n  (l/p) < oo = p .  (5.16) 
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6. E v o l u t i o n  o f  c l u s t e r s  
Let us turn back to discussing of the topographical properties of density 

field. It follows from (2.6), (2.11) and (5.1) that the specific area and mass at 
the regions with raised density p(x, t) > p are equal to 

(l,, (6.1) ~.¢7 

m( t ,p )  = 4J (In(pod/p)] (6.2) 
\ 2~/7 ] '  

respectively. Here it is used the error function 

, f  • (z) = ~ oo exp (--y2) d y .  (6.3) 

It is obvious from (6.1), (6.2), that  for the large time, when r >> 1, the specific 
area of such regions decreasing as 

s ( t , p ) ~  - - ~ e x p  - (6.4) 

independently from the ratio PlPo. At the some time inside of these regions 
almost all tracer particles are putting together, so the specific mass of these 
regions tends to one: 

m ( , , p )  ~ ¢ ~ 1 - ~ e x p  - . ( 6 . 5 )  

Correspondingly the threshold level p* (t), such that contours p(x, t) -- p > p* (t) 
separate the whole space onto cluster's regions of the raised density p(x, t) > p 
and remaining "ocean" of lower one, exponentially decreases (see (5.5)). 

Basing on pointed out relations one can imagine the dynamics of the arising 
and evolution of the passive tracer clusters in chaotically moving compressible 
media. 

Initial growth of specific area s(plpo , r) is explained by symmetric density 
field fluctuations 

p ( x , t )  ~ po - ~ ( x , t ' ) e e  (6.6) 

at the small time r < 1, when displacements of particles X ( y ,  t) from its initial 
coordinates y relatively small. Then, when make up the strong Jacobian fluc- 
tuations, clusters appear and specific area begins monotonically decrease. On 
the contrary, clusters specific mass monotonically increase and brings nearer to 
unity for big time (r >> 1). It means that almost all passive tracer particles stick 
at the stable clusters. 
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Fig. 5. Plots of the specific area s(p/po, r) and specific mass m(p/po, r) depending on 
dimensionless time r for the ratio p/po = 1.2. 

7. C l u s t e r s  in  t h e  p r e s e n c e  o f  t h e  m o l e c u l a r  d i f fus ion  
Finally let us disclose some peculiarities of the passive tracer behavior in 

chaotically moving compressible media in presence of the molecular diffusion. 
Let us restrict ourselves by 1D case when density field p(x, t) depends only 
on the one spatiM coordinate x. Such model can describe the case of narrow 
channel, where the water has only a horizontal motion along of channel walls. 
The motion of a floating tracer at the surface of channel can then be described 
like motion of the passive tracer in a 1D compressible medium. In such a case 
the floating tracer density field obeys to the 1D continuity equation 

Op O 02P p( ;t = 0) = p0(x) (7.1) 

It takes into account the molecular diffusion with diffusion coefficient p. At the 
quiet surface when velocity identically equM to zero: v(x, t) - 0, solution of this 
equation in the case of initially putting together particles (po(x) = m6(x) )  

M 
- e x p  ( 7 . 2 )  

describes the monotonically spreading of passive tracer due to the mutually in- 
dependent Brownian motion of the particles. It turns out, in presence of chaotic 
surface motion, when velocity v(z, t) is the some stationary homogeneous ran- 
dom field, influence of chaotic compressions and dilations of floating tracer gives 
rise to the new seemingly unexpected physical effect - localization of clusters due 
to the competition of hydrodynamic chaotic motion and molecular diffusion. Let 
us describe this effect in more detail. 

At first let us looking for the asymptotic solution of continuity equation (7.1) 
for the small molecular diffusion coefficient/J. To this end represent p(z, t) in 
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the form 
p(~, t) = ~(~ , t )  

where ~ is satisfied to the auxiliary first order equation 

0 
+ ~ (v(~, t )~ = o(t) (7.3) 

where 

u ( x , t )  = ° v ( x , t ) .  

r/(t) - -  Gaussian white noise with covariance function 

where the upper bar means averaging over 0(t) ensemble. 
Solution of the equation (7.3) has the form 

t) = f Po (Y)5(.~ (Y, t) - x )dy  . (7.4) ~(~, 

Here )~(y, t) - -  particle trajectory taking into account the molecular diffusion 
and satisfying to the characteristic equation 

02  
ot  = v ( 2 , t )  + ,7(t) , 2 ( u , t  = o) = u . (7.5) 

Let us split X(y,  t) onto two parts: 

2 ( u , t )  = x ( u , t )  + z ( u , t )  (7.6) 

where X ( y ,  t) describes purely hydrodynamic motion of the floating tracer and 
obeys to the equation 

OX 
Ot = v ( X , t )  , X ( y , t  = O) = y . (7.7) 

At the same time z(y, t) takes into account deviation of particle from X ( y , t )  
due to the Brownian motion, and submitted to the equation: 

Oz 
o-2 = , , ( x  + z, t)  - v ( x ,  t) + ,7(t) , z (y ,  t = o) = o . 

Let l~ is the typical scale of spatial variability of the random velocity field v(x, 
t). In what follows we will suppose that the next inequality is true: 

z < <  t~ .  (7.8) 

If it is the case, then one can replace the equation for z(y, t) by the linear 
equation 

Oz 
- ~  = u ( x ,  t ) z  + o( t )  , z(u,  t = o) = o (7.9) 
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In frame of pointed out linear approximation z(y, t) is the Gaussian process with 
zero mean and variance, satisfying to the equation: 

(9~r 2 
& = 2 u ( X , t ) ~  2 + 2 ~ ,  ~ 2 ( y , t = 0 ) = 0 .  (7.10) 

Substituting (7.6) into (7.4) and averaging obtained expression over Gaussian 
ensemble of process z(y, t), we arrive to the promised asymptotic formula for 
1D floating tracer density field taking into account both particles hydrodynamic 
motion and molecular diffusion: 

p(x,~) = f " ~  1 exp (~ : X ( ~ ) ) ~ ]  dy .  (7.11) 
"° (Y) v . .~ (y ,  t) 2.~(y,,)  j 

Let at the initial time t = 0 all particles are concentrated in physically infinitesi- 
mal vicinity of the origin. Then one should take as initial density the po = M~(x) ,  
where M - whole floating tracer mass. As a result the density field acquires the 
form 

p ( x , t )  - R ( x  - X ( t ) , t )  , (7.12) 
where X ( t )  = X(0, t) and 

= e x p  (7 .13 )  

- the "shape" of cluster. Here ¢(t) = a(0, t) - its effective width. 
In what follows for the sake of concreteness we will suppose that the velocity 

field v(z,  t) is Gaussian and delta-correlated in time with covariance function 

( v ( x , t ) v ( x  + s , t  + r)) = a(s)8(r) , a(s) = 2 D -  Bs  ~ + ,.. (7.14) 

Recall that everywhere angle brackets indicate the statistical averaging over 
ensemble of random velocity field v(x,  t). 

/.From stochastic equations (7.7), (7.10) and from (7.14) it follows that col- 
lection {X(t), q(t)} forms the two-dimensional Markov process whose pdf 

f(~, a;$) -- (5(X(t) - x)5(~(t)  - ~r)) 

satisfies to the next Fokker-Planck equation [2] 

-~- = L J ~ x  2 + B~-~  (~r2f) , f (x ,~ ; t  = 0) -- li(x)~(cr) . (7.16) 

Statistical and dynamical interpretation of this equation consequences makes 
possible to understand the clusters' behavior under competition of the molecular 
diffusion and compressible medium chaotic hydrodynamic motion. First of all 
notice that the solution of equation (7.16) falls into the product of two pdf's: 

f ( x ,  or; t) = ~(x; t)g(er; t) (7.17) 
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where the first 
1 - i - ~  ~(=;t)-  ~ e x p  

is responsible for hydrodynamic cluster's diffusion. The second one obeys to the 
equation 

~-  +/~--~ = B~-~2 (¢2g),  g(~;t = 0) = 8(o) (7.18) 

and describes the fluctuations of the ctuster's effective width (see Fig.6). 
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Fig. 6. The temporal behavior of the cluster's width pdf for 1 = 1. 

In particular it follows from (7. I8) that variance of the cluster's width submits 
to the equation 

- 2 .  + B < ~ > ,  ( ~ ( t  = 0)> = 0 ,  

solution thereof 

1 / =~ 2, (eB, _ 1) (7.19) 

has evident physical sense: namely, as long as Bt  << 1, the molecular diffusion 
dominates and cluster's width variance grows with agree of classical diffusion 
law 

ff2(t)> ~ 2 . t .  (7.20) 
Later the medium dilations and compressions begin dominate. As a result (c,2(t)> 
grows up much more faster and when Bt >> 1 the linear law (7.20) is replaced 
by exponential: 

2# Bt (~(t)> ~ ~ e  . 
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It should be emphasized however that conclusions about cluster's behavior 
based on mean variance (7.19) analysis don't reflect properly the actual cluster's 
behavior with course of time. More accurate analysis have to be rested on the 
probabilistic properties of cluster's width. So let us investigate some probabilistic 
consequences of the equation (7.18). It is easy to show that this equation has a 
stationary solution 

goo(~) = , ~ m g ( ~ ; 0  = 2 t exp - , Z = , (7.21) 

describing the statistical properties of cluster's width for case when Bt  >> 1. 

2 g® 

1 ! l=0"2 

0 5 10 

Fig. 7. Plot of cluster's width stationary probability distribution function goo(a) de- 
pending on dimensionless duster's width aft. 

Existing of the stationary distribution (7.21) means that medium chaotically 
compressions prevent from molecular diffusion action and leads to the duster's 
localization. Indeed, averaging of the duster's shape (7.13) with help of pdf 
(7.21) one can obtain that mean duster's density profile 

Ml  1 
<Roo(=)> = , ~ m ( R ( = , 0 >  - ~ =~ + l ~  (7.22) 

relatively well localized along the axis x. This result don't contradicts to tending 
to infinity of mean variance for t ~ oo because the corresponding integral 

( .~ ( t  = ~ ) )  = f (Roo(=)> a= = oo 

is equal to infinity with agree of (7.19). 
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Described localization effect means that despite of immovable media, where 
the maximal density of cluster, according to (7.2), monotonically decreases to 
zero: 

M 
R ( t )  = m a x p ( x , t )  = p ( 0 , t )  - 2 ~ J ~ - ~  ' 

the maximal density of cluster in chaotically moving 1D medium 

M 
R(t) = m a x p ( x ,  t) = R ( x  = 0, t)  - v ~ a ( t )  

has stationary pdf 

2 - ~ T  M B wo~(R) = ~ exp , ~ = 

with non-zero mean and bounded variance 

1) 
<R>= ~ ,  4 =  - • 
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A b s t r a c t .  The continuous time random walk (CTRW) is a powerful stochastic theory 
developed and used to analyze regular and anomalous diffusion. In particular this 
framework has been applied to sublinear, dispersive, transport and to enhanced L~vy 
walks. In its earlier version the CTRW does not include the velocities of the walker 
explicitly, and therefore it is not suited to analyze situations with randomly distributed 
velocities. Experiments and theory have recently considered systems which exhibit 
anomalous diffusion and are characterized by an inherent distribution of velocities. 
Here we develop a modified CTRW formalism, based on a velocity picture in the strong 
scattering limit~ with emphasis on the L~vy walk limit. We consider a particle which 
randomly collides with unspecified objects changing randomly its velocity. In the time 
intervals between collision events the particle moves freely. Two probability density 
functions (PDF) describe such a process: (a) q(r), the PDF of times between comsion 
events, and (b) F(v),  the PDF of velocities of the particle. In this renewal process both 
the velocity of the random walker and the time intervals between collision events are 
independent, identically distributed, random variables. When either q(v) or F(v)  are 
long-tailed the diffusion may become non-Gaussian. The probability density to find the 
random walker at r at time t, p (r, t), is found in Fourier-Laplace space. We discuss the 
role of initial conditions especially on the way P (v, t), the probabilty density that the 
particle has a velocity v at time t, decays to its equilibrium. The phase diagram of the 
regimes of enhanced, sublinear and normal types of diffusion is presented. We discuss 
the differences and similarities between the Ldvy walk collision process considered here 
and the CTRW for jump processes. 

1 Introduct ion 

Anomalous diffusion [1-5] is a well established phenomenon, found in a broad 
range of fields. It  is characterized by 

(r ~) ~ t ~ (1) 

with fl ~ 1. Various mechanisms are known which lead to enhanced diffusion 
(8 > 1), or to subdiffusion, also called dispersive or slow diffusion (13 < 1). For 
these cases the goal is to find the probabil i ty density p (r, t) to be at r at t ime 
t, f rom which t ransport  moments  can be obtained. Stochastic frameworks which 
describe phenomenologically such behaviors include fractal Brownian motion [6], 
fractional calculus [7-12], generalized diffusion equation [13-17] and a generalized 
Langevin equation approach [18, 19]. Two other approaches, relevant especially 
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here, are: (a) the continuos time random walk (CTRW), [20, 21] and (b) a velocity 
approach whose details are given below [2,22-28]. Our main aim in this work is 
to generalize the velocity approach and show its relation to the CTRW. 

All these stochastic theories are used to describe processes for which the 
conditions that ensure the validity of the central limit theorem (CLT) are not 
satisfied. Ldvy and Khintchine [29] introduced a generalization of the CLT to the 
case where xi  in the sum X N  = EN=I xi are independent, identically distributed, 
random variables with a long-tailed distribution so that the existence of the first 
two moments is not necessarily assumed. The corresponding random walk, Xlv, 
is called a L~vy flight. For such random walks the mean squared displacement 
(X~v) diverges for all N > 0 and, hence, a L~vy flight cannot represent an 
anomalous diffusion of the type in Eq. (1). 

A way to overcome the divergence in the mean squared displacement is to 
introduce a velocity into the random walk scheme, the result being that the 
divergence of the mean square displacement found for L~vy flights is replaced 
by enhanced diffusion (see e.g. [25]). Such random walks are called Lgvy walks 
[23] and can be defined within the context of the CTRW. Within the CTRW 
framework the pausing times between successive steps, as well as the lengths of 
the steps, are random variables. Schemes in which the pausing times and step 
lengths are either decoupled or coupled [1, 30] have been investigated thoroughly 
[20, 21]. For both cases the jumping events are instantaneous so that the random 
walker pauses at some location for a finite (random) time and then performs a 
jump, with a vanishing jumping time, to another location. Within the CTRW 
the stochastic evolution is described in terms of ¢ (r, t), the probability density 
of making a jump of length r in the time interval between t and t + dt. Klafter, 
Blumen and Shlesinger [30] introduced a coupled space-time distribution 

Cet (r, t) -- Cr-Uc 'b  (r - t ~¢') (2) 

where, through the Dirac ~ function, r and t are coupled. The idea behind this 
coupling is that the longer is the step, the more time it takes to be performed. 
For this coupling one can find normal, enhanced or sublinear types of diffusion, 
depending on the choice of exponents /~ct and uct (the subscript ct stands for 
CTRW). Recently, in [31] such a coupled CTRW was used to analyze statistical 
properties of chaotic trajectories generated by a deterministic non-linear map. 

Although the jump process described by the CTRW with space-time cou- 
pling, Eq. (2), is a powerful tool describing anomalous diffusion, it considers 
explicitly the positions of the random walkers and not their velocities. Therefore 
it is less suited to describe systems where the velocity of the random walkers is 
an important stochastic ingredient of the transport process. However, recently 
much attention has been drawn to systems which exhibit anomalous type of 
diffusion, and for which the velocities of the walker are randomly distributed 
according to a PDF F(v) [32-36]. 

Approaches which include a constant velocity were developed [2,22-25], where 
a particle moves with a constant speed for some time interval and then a new 
direction of motion is chosen (the kinetic energy of the particle is a constant of 
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motion). In one-dimension such a model is a two state model with the velocity 
having only the values i v .  When the times of free motion with a constant ve- 
locity are independent random variables whose distribution decays algebraically, 
then, under certain conditions, the diffusion is enhanced and displays a Ldvy 
walk. 

Here we consider the more general case for which the magnitude of the ve- 
locity is not necessarily constant, but may rather change due to collision events. 
We investigate a d-dimensional stochastic strong collision model, according to 
which a particle moves freely between turning points (collision events), and at 
each turning point the velocity of the particle (both direction and magnitude) 
is randomized. The process is renewed after each collision. The time intervals 
between collision events are described by a probability density function (PDF) 
q(v) and the velocities of the particle are described by a PDF F(v). Both the 
times and the velocities are assumed to be independent, identically distributed, 
random variables. We call such a process a L~vy walk collision process (LWCP). 

An example for such a process is the anomalous Knudsen diffusion proposed 
by Levitz [37], where the velocities of the gas particles are Maxwell distributed 
and scatterers are randomly distributed on a fractal structure in such a way 
that the PDF of the times between collision events decays algebraically. Other 
examples can be found in non-linear chaotic dynamics and in turbulent systems 
[32, 35, 36] and also in the statistics of single ion trajectories in optical lattices 
which exhibit L~vy walks [27, 34]. 

In figures (1) and (2) two different one-dimensional realizations of the LWCP 
are shown for the case where the mean time between collisions diverges, 

q( , )~ , - : / : .  (3) 

As can be seen the velocity is not a continuous function of time due to the strong 
collision events. Figure (t) shows a realization of the LWCP for the case where 
F(v) is a Gaussian and this should be compared with the two state velocity 
model {i.e.F(v) = 0.5[$(v - 1) + ~(v + 1)]} shown in figure (2) and considered 
previously in [25]. Characteristic of the stochastic process shown in figures (1) 
and (2) are long time intervals in which no collision events take place. In appendix 
A we provide a short algorithm which generates time intervals whose PDF decays 
algebraically with time, Eq. (3) being an example. 

When the collision times are Poisson distributed and the velocity PDF decays 
fast enough the LWCP reduces to the well known strong collision model (the 
Drude model) widely used in the context of plasma and condensed matter physics 
[38, 39]. 

If the time between collision events is a constant r0, the number of collision 
events in the interval (0, t) is a non random variable N. For this case the LWCP 
reduces to a L~vy flight with a diverging mean squared displacement, provided 
that the first or the second moments of the velocity PDF diverge. This case has 
been investigated recently by Zanette and Alemany [40] (and see also [41]). 
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Fig. 1. Velocity vs time (dimensionless units) for a one-dimensional Ldvy walk collision 
process. We generate such a process by generating two random numbers per collision. 
The first is the velocity of the particle, described by the PDF F(v) ,  and the second 
is the time of free motion described with the PDF q(r) Eq. (3). Here the particle has 
encountered 200 collisions and the velocity PDF F(v)  is a Gaussian with a variance 
that equals unity. Notice the long time intervals in which no collision takes place, this 
is an important characteristic feature of the PDF in Eq. (3). 

In figure (3) we show a realization of a one-dimensional  LWCP for which 
both the velocity PDF 

F(Ivl) ~ Iv1-3/2 (4) 
and the collision t ime P D F  q(r), Eq. (3), decay slowly and are characterized by 
heavy tails. Here we observe, in addition to the long t ime intervals, in which no 
collision takes place, also rare events in which the velocity of  the particle becomes  
very large. The longer we observe the process the longer are the free t ime intervals 
and higher are the velocities that are observed. Generally we expect a cutoff in 
the velocity spectrum and then the algebraic decay is not valid for very high 
velocities. 
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Fig. 2. A two state model where the velocity has the values ! 1 .  The collision times 
are the same as found in figure (1). 

The LWCP and the CTRW process, are intimately related as can be seen 
by considering realizations of the two processes. A CTRW process is defined 
through pausing times ~ (i = 1, 2,-- .) and jump lengths xi,  and a sequence of 
these pausing t ime and jump lengths is characterized by 

{[if, xl],... [~, x,],.. .  [@-1, xN_1], [@1}. 

The pausing times satisfy N Y'~n=l 7"nP : t, with t being the observation t ime and the 

location of the random walker is x(t)  N-1 = ~ n = l  xn. Notice that  the N- th  pausing 
time ~ is not related to a displacement XN. The CTRW is a jump process 
and therefore at the time of observation t the particle is t rapped motionless 
somewhere in the system. This is not the case for the LWCP where the t ime 
of free motion, r [ ,  is related to a displacement xi. In this case a sequence is 
characterized by 

{[4, x,],... [~,~, x,],... [~L xN]}. 
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Fig. 3. A LWCP for which both the times between collisions and the velocities are 
described by PDFs with long tails. The LWCP is characterized by long time intervals 
in which no collision events take place, as well by events in which the particle gains 
very high velocities. Notice that we present ln(Ivl) vs time. As discussed in the text, 
for such a process the mean squared displacement diverges. 

The total displacement is x(t) ;v = ~~n=l x , ,  and, unlike the CTRW, the sum- 
mation includes the N-th  term. One might expect that  for a proper choice of 
coupling and PDFs the same asymptotic behavior will be found for both pro- 
cesses. Indeed, as expected, we find that  when diffusion is normal, ;3 = 1 in 
Eq. (1), the two pictures converge for long times. However, for systems exhibit- 
ing anomalous diffusion we find differences between the two approaches thus 
emphasizing the importance of investigating the LWCP. 

The paper is organized as follows. In section (2) a solution of the model, in 
Fourier-Laplace space, is derived. Then, the role of initial conditions is consid- 
ered in section (3). The influence of the first waiting time PDF and of the initial 
distribution of the velocities on the process are investigated. In section (4) the 
asymptotic behavior of our model is investigated. Depending on the parameters 



379 

of the model we find sublinear, enhanced and diverging mean squared displace- 
ments. A comparison between the new results, the coupled CTRW, Eq. (2), and 
other velocity approaches is given in section (5). 

2 The L~vy Walk Collision Process (LWCP) 

Let q (T) be the PDF of the independent time intervals between strong collision 
events. The survival probability 

w ( t )  = 1 - q (,-) dr, (5) 

is the probability that no collision event has taken place in the time interval 
(0, t). Let F (v) be the PDF of the velocity v of the particle. Between collision 
events the particle moves freely according to the law [ see Eq. (2) and [28, 30] ] 

r( t )  = r (0)  + , , t  ~ (6) 

with ~, _> 0. When v = 0 the generalized velocity v is a displacement. Notice 
that  only when ~, -- 1, v has the dimensions of [length/time]. After each free 
motion event the particle's velocity is resampled from the PDF F (v )  and the 
LWCP is renewed. 

We label the collision events in the interval (0, t) according to {1, 2, ...s, ...}, 
and define ~, (r, t) drdt as the probability that the s collision event takes place 
in the interval (r, r + dr) during the time interval (t, t + dr). The PDF r/, (r, t) 
is normalized 

E /  dt d r r l , ( r , t ) =  l , (7) 

where the spatial integration is over the whole space. The PDF T/, (r, t) satisfies 
the recursion relation 

~, (~, t) = 

d, ,  d~-,1,-1 (~ - v r  ~, t - ~-) F (v )  q (~) (8) 

for s >_ 1. The initial condition of starting from r = 0 at t = 0 is incorporated 
by the condition 

r/0 (r, t) ---- J (r) J (t) .  (9) 

The PDF r/, (r, t) is related to the PDF p (r, t) according to 

p ( ~ , t )  = 

s = 0  J J 0  

We now introduce for the Fourier-Laplace transforms the covention that the 
arguments of a function indicate in which space the function is defined, e.g. 
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p (k, u) is the Fourier- Laplace of p (r, t). Using the convolution theorem, Eq. (8) 
can be written as: 

r/s (k,u)  = ~(k,  u)r/s_ 1 (k ,u) ,  (11) 

for s > 1, and Y0 (k, u) = 1. In Eq. (11) we have used the definition 

= L [/v (krV) q (v)] , (12) ~ (k ,u )  

where the operator L is the Laplace transformation, and 

(k r  V) =_- f dveik'vr~'F (v) ,  (13) ? 

is the v --+ k r  v Fourier transform of F (v). Reverting Eq. (10) to the Fourier- 
Laplace space we find 

OO 

p (k, u) = ~ W (k, u) r/, (k, u) ,  (14) 

where W (k, u) is defined by Eq. (12), where q (r) is replaced by W (r). Using 
Eq. (11), which implies y, (k, u) = ~' (k, u), we find: 

W (k, u) (15) 
p (k, u) - 1 - ~ (k, u)" 

It is easy to show that p (k = 0, u) = l/u, as it should from the normalization 
condition. Let as also note that Eq. (15) can be derived from a generalized master 
equation (in analogy to [30, 42]) 

op(r,t) f fo' Ot - dr' drK (r - r ' ,  t - r)  p (r', r ' )  (16) 

with the memory kernel 

K (k, u) - uW(k,u)__- 1 + ~ (k ,u )  (17) 

To derive Eq. (17) one should Fourier-Laplace transform Eq. (16) and compare 
the result with the solution of our model, Eq. (15). 
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3 The Role of Initial Condit ions 

3.1 O t h e r  R e n e w a l  P r o c e s s e s  

The choice of the initial condition can play a significant role in determining 
the nature of the anomalous transport [43]. In some cases it is important  to 
distinguish between the PDF h(tl)  of the time which elapses between the start 
of observation ~ -- 0 and the first collision event at t l ,  and the PDF q (r). In 
our derivation of Eq. (15) we have assumed h (tl) = q (tl). However, one may 
encounter situations where h (tl) ¢ q (tl). An example is the equilibrium renewal 
process [43] where 

1 -  f t 'q (v )dr  
heq (tl) = (r) ' (18) 

and the mean time between collisions (r) = J o  rq (r) dr is assumed to be finite. 
Another issue we consider here is the initial distribution of velocities. We 

denote by P0 (v, 0) the PDF of the velocity of the particles at time t = 0; 
generally P0 (v, 0) # F (v). While for a normal process initial conditions usually 
decay exponentially with time, for some LWCPs exhibiting anomalous diffusion 
the initial condition decays as a power law. As for normal transport systems it is 
of interest to find the relaxation patterns of the velocity PDF,  and relate them 
to the fluctuations characterized, for example, by (r ~ (t)) derived in a following 
section. 

To calculate p (k, u) we first define the survival probability 

f Z (t) = 1 - h (v) dv (19) 

which is the probability that  no collision event has taken place from the start of 
the observation, at t = 0, to time t. Then, similarly to Eq. (15) we find that 

-- h0 (k, u) W (k, u) (20) 
p (k, ~) = Z0 (k, u) + 1 - ~ (k, ~) 

where the functions Z0 (k, u) and h0 (k, u) are defined according to: 

(k, u) _= L [ f  (r) t5o (kr v, 0)] .  7o (21) 

When Po (v, 0) = F (v) and h (r) = q (v), nq. (20) reduces to Eq. (15). 

3.2 T h e  T i m e  D e p e n d e n c e  o f  t h e  Ve loc i t y  P D F  

We define P (v , t )  to be the PDF to find the particle at time t with a velocity v, 
assuming an initial condition P0 (v, 0). Since Z(t), Eq. (19), is the probability 
that  no collision event has taken place in (0, t), and since a single collision event 
is needed to relax P (v, t) to the equilibrium PDF F (v), we obtain 

P (v, t) = Z (t) P0 (v, 0) + [1 - Z (t)] F (v) .  (22) 
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The PDF P (v, t) satisfies the differential equation: 

0 P  (v, t) 
- [P (v, t) - F (v)] ~ -  In [Z (t)] (23) 

0t 

Assuming that  the process is described by a rate a ,  so that  h (tl)  = ae  -at1 we 
have 

P (v, t) = exp (-at) Po (v, 0) + [1 - exp ( - a t ) ]  F (v) .  (24) 

For this case the process is described by 

a P  (v, t) _ - a [ P  (v, t) - F (v)] (25) 
Ot 

This Poissonian process is identical to the strong collision model [38, 39]. Com- 
paring Eq. (23) and Eq. (25) we realize that  our strong collision model, Eq. (23) 
is similar to the standard strong collision model, Eq. (25), with a time dependent 
rate, determined by the transformation 

O In [Z (t)] (26) 

Characterizing anomalous transport processes by time dependent transport  co- 
efficients is well known but should be used with care as pointed out in [44]. Here 
we have been able to justify this approach for the evolution of P (v, t ) .  

It is also possible to describe the process using an integro-differential equation 

cOP (v,t) / foot -~ - dr' drK (v - v', t - r) P (v, r ) .  (27) 

Assuming an initial condition P (v, t = 0) = $ (v - v0), the memory kernel in 
Fourier-Laplace space (v, t) --r (l, u) is found by an approach similar to that 
used to derive Eq. (17), 

uh (u) [F (l) - e il'v°] (28) 
K (1, u) -- eil.vo -t- h (u) IF (l) - eil'vo]" 

The solution of the nonlocal integr(>-differential, Eq. (27), and the differential 
equation Eq. (23), which is local in time, is Eq. (22). Thus, we see that  the two 
approaches can be used to describe the anomalous process. 
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4 The Asymptotic  Behavior of p (k, u) 

We investigate the small (k, u) behavior of p (k, u), Eq. (15), for different F (v) 
and q (v). We consider functions which satisfy F (v) = f (v) and so F (k r  v) = 
i 5 (kv"), which yields p (k, u) = p (k, u). Such a choice means that  we have 
translational symmetry (i.e. (v) = 0) and so there is no net drift. We choose the 
PDFs which behave according to: 

~' ( kr  '~) ~ 1 - C l k 6 r  'w 0 < 6 < 2 (29) 

where (kv v) is small. For (i < 2 the variance of F (v) diverges. We also choose: 

q (~) ~ ~-('+~), (30) 

valid for large r. For 0 < 7 < I the mean time between collisions diverges, while 
when 1 < 7 < 2, (~-) is finite, all other integer moments of q (v) diverge. The 
results which follow below will be compared with the coupled CTRW of Ref. 
[30]. 

The small (k, u) behavior of p (k, u) is determined in the following way. We 
first expand the denominator and nominator of Eq. (15) in the small parameter 
k, 

1 [ { -  C'k'A (~)l (31) 
p ( k , , , )  ~ -;  #c~k'f2 (u)J 

with 

and 

L [T'"W (T)] (32) 
f l  (u )  = - 1 - -  q (u )  

f2 (u) - L [r*Vq (r)] (33) 
1 - q (u) 

We then analyze the small u behavior of f l  (u) and f2 (u). Two important pa- 
rameters J* =_ (iu and 7 control the asymptotic behavior of these functions. 
Notice also that for J < 2 Eq. (31) implies that for t > 0, the mean squared 
displacement diverges, this is expected since the variance of the velocity PDF  
F(v)  diverges. 

We consider now the case when 1 < 7 < 2. Expanding Eqs. (32) and (33) to 
the lowest order of approximation in u, we find 

.Nq'-- 6"  -- 1 n " ) ' 6*  If' (i* 
D 1 /~-~1 " / -  1 < 

f,  (~) ~ (34) 
B~ 6"/Cz (i* < 7 - 1, 

and 
{ u ~-~'-~ B~ ~'/CI 7 < 6" 

(35) 
f2 (u) ~ ~,-1B;~"/61 "y > ~*. 
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Here B~ ~" , with i = 1, 2, are coefficients determined from Eqs. (32) and (33) 
for a given q (r). Notice that  for 7 < J* the power law behavior of fz (u) and 
f2 (u) is given by the same exponent 7 - 6" + 1. This means that  for this case 
both functions are needed in order to obtain the correct asymptotic behavior of 
p (k, u). Using Eqs. (31), (34) and (35) we find 

u6"-" - BT~" k~/u ,V 
p (k, u) ~ u ~ ' -~+z  + B~ ~" k~ 7 < 

p(k ,u )  ~ 1 - B'[6"k'~u -6"+'~-z 6" < 7 < '~* + 1 
u + B~ 6" k 6 

p (k, u) ~ 1 - B? 6" k ~ ,~* + 1 < 7 (36) 
u + B~ 6" k 6 

When 6" + 1 < 7 one can approximate 

1 
p (k,u) ~ (37) (,:," 

which, when inversed Laplace transformed, yields the familiar L4vy PDF 

When $ = 2, the mean squared displacement is finite. LFrom Eq. (31) it is 
easy to show that  

(r 2 (u)) = 2C----! [fl (u) + f2 (u)]. (39) 
u 

Using this equation, the large t behavior of the mean squared displacement is 
then found to be 

9 * "t" 2 ~ 2 v - - ' y + l  

~ (40 )  

2B~ 2~t 7 > 2v, 

for 1 < 7 < 2. When 7 < 2v the diffusion is enhanced and when 2v < 7 the 
diffusion is normal. 

We now find the small (k, u) behavior when 0 < 7 < 1. Expanding Eq. (32) 

{ ul-'YB'~ ~'/C1 6" < 7 -  1 
Yz (u) ~ (41) 

u -~" B~ ~"/Cz 7 - 1 < ~*, 

and from Eq. (33) 

{ .-v Bg~'/C, 7 < ~* 
f2 (,,1 ~ " - " B ' ~ ' / C 1  "y > ,~* 

(42) 
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Using Eq. (31) we find 

p(k,~)~=~'-~-Bfk~'=7 / 7<,~* 
u ~" + B~ ~" k 6 

p(k,u) , , ,  u'r-l-B'~6"kau-a*+'t-1 3" < 7 < $ * +  1 
u'~ + B'~ ~" k 6 

p (k, u) ,.~ u'~-i - B~16" k6 ~* + 1 < "7 
u'r + B'~ ~" k~ 

For 7 < ~* the exponents in Eq. (43) are independent of 7 and for ~ = 2 

(43) 

(~ ( t ) )  ~ ( * 

2B'~2~ t7 

7 < 2 u  

7 > 2 u .  

( 4 4 )  

We see that  when 7 < 2v the diffusion is enhanced for v > 1/2 and slow for 
v < 1/2. The regime 3' > 2v exhibits a subdiffusive behavior. 

All these different types of behaviors of the mean squared displacement are 
summarized in figure (4). Such a phase diagram can be derived also from the 
coupled CTRW, Eq. (2). As far as we know this diagram was presented first 
in [30], where slightly different notations were used, and later by [28]. Other, 
related, though more complex, phase diagrams were found by Weeks et al [45] 
in the context of tracer diffusion in rotating flows. They have taken into account 
also the possibility of sticking events in their random walk scheme. 

4.1 A n  E x a m p l e  

As an example consider the case v = 1 with Gaussian velocities, 

/~ (kv) = exp (-k2v2a2/2). 

For q (r) we choose 

which yields 

q(r)  -- 7 
(1 + v) ~+1' 

/ 1 - r ( 1 - 7 ) u ~  
q (u) ,,~ 

I 1 -  ( r ) u -  F(1 - 7 ) u  w 

0 < 7 < 1  

1 < 7 < 2  

with (r) = 1/(3' - 1). A simple calculation, using Eqs. (31)-(33), shows 

p (k ,  u )  ~ u - ° 5 a ~ ( 1  - -r)(2 - v ) k ~ u  - ~  

u ~ + 0.5a2(1 - 7)7k 2 

(45) 

(46) 

(47) 

(48) 
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Fig.4.  The phase diagram, for 5 = 2, showing the different types of behaviors: (a) N 
for normal diffusion (b) E for enhanced diffusion and (c) S for sublinear, dispersive, 
diffusion. The different types of behaviors are specified in Eqs. (40) and (44). 

f o r O < 7 < l ,  and 

u 2-7 - 0.5a2(7 - 1)/'(3 - 7)k2/u 
p (k, u) ~ ~ 3 - ~  + 0.5~27( 7 _ 1 ) r ( 2  - 7 ) 7 k  ~ 

(49) 

for 1 < 7 < 2. Using Eqs. (48)-(49), the mean squared displacement is: 

"r 2 (t)) ,-, f a2 (1 - 7) t~ 

/ 2a~ (7-1) t3-~ 
(2-~)(3-~) 

0 < 7 < 1  

1 < 7 < 2 .  
(50) 

The regime 0 < 7 < 1 is called the ballistic regime. The behavior (r 2) ,-, t 3-~ 
in Eq. (50), has been recently reported in a large number of systems [4]. When 
7 > 2 diffusion is normal and (r 2) ~ t. 
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5 C T R W  v s  t h e  L ~ v y  W a l k  C o l l i s i o n  P r o c e s s  

A comparison is made between the results obtained here and those obtained 
using the framework of the coupled and uncoupled j ump  CTRW [21, 20]. First 
consider v = 0, which according to Eq. (6) implies that  the generalized velocity 
Vv=o is in fact a displacement. Since the displacement at each step is statistically 
independent of the time interval between steps, it is not surprising that for v = 0 
our L~vy walk collision model is similar to the decoupled version of the CTRW. 
To see this, note that  from Eq. (12) 

qv=o (k, u) = F (k) q (u) (51) 

and Wv=0 = F (k) W (u). LFrom Eq. (15) we find 

Pv=o (k, u) = 1 - q (u____~) F (k) (52) 
u 1 - / ~  (k) q (u)" 

For the decoupled version of the CTRW where ¢ (r, t) = F (r) q (t) one finds 
[20, 21, 30] 

Pet (k ,  u)  - 1 - q (u) 1 (53) 
u 1 -  F ( k )  q (u)" 

Sqs. (52) and (53) clearly differ. The factor F (k) which appears in our colli- 
sion model results from the free evolution in the time interval between the last 
collision event in the sequence and the observation time t. For the CTRW the 
jumping random walker, is fixed in a "deep trap" during this time interval. This 
seemingly small difference in the models can become important as we demon- 
strate. 

We compare now the transformed probability density p (k, u), Eq. (15), and 
the one obtained within the framework of the coupled CTRW. According to Eq. 
(21) in Ref. [30] the CTRW result for the coupled kernel, Eq. (2), is 

Pet (k, u) = 1 - ¢ (u) 1 (54) 
u 1 - ¢ (k, u) 

and ¢ (u) = ¢ (k = 0, u). We rewrite Eq. (15) as 

where 

M D 

p (k, u) -- 1 - q (u_______~) 1 W (k, u) - W (0, u) (55) 
u 1 - ~ ( k , u )  + 1 - ~ ( k , u )  

1 - q (u )  
w ( o , u )  = 

B 

The two models can be compared to each other if we identify 

(56) 

(k, u) = ¢ (k, u) (57) 
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and hence ~ (k = 0, u) --- q (u) -=- ¢ (u). To quantify the differnce between the 
two models we define: 

`5 --- P (k, u) - pet (k, u) : W (k, u) - W (0, u) 1 - ~ ( k , u )  (58) 

For k - 0 we have A _-- 0, as expected from the normalization condition. 
Let us examine now the difference A (k, u) using the small k expansion Eq. 

(29), 
t: 6 

,5 (k, u) ,-~ - e l - - f 1  (u),  (59) 

where f l  (u) has been defined already in Eq. (32). The CTRW result can be 
written in our notation using Eqs. (31), (58) and (59) 

p¢t(k,u).. 1 [  1 ] (60) 
u l+Ctk6f2 (u) " 

Hence, all our results reduce to the CTRW results when we assign f l  (u) = 0 in 
Eqs. (31) and (39), which yields B~ ~" = 0 in Eqs. (36) and (43). The question 
remains whether one can approximate pct(k, u) by p(k, u). Comparing Eq. (31) 
and Eq. (60) one reaches the conclusion that  only if 

h << A (u) (61) 

such an approximation is justified. When all moments of q (r) exist [e.g. when 
q (r) = a e x p  ( - a t )  ] then Eq. (61) is satisfied when u is small, meaning that  
p (r, t) " Pet (r, t) for large t. However, comparing Eq. (34) with (35) and Eq. 
(41) with (42) we see that  the condition in Eq. (61) is not always satisfied. This 
means that  the contribution from fl  (u) cannot be neglected and both f l  (u) and 
f2 (u) determine the long time behavior of p (r, t). For these cases one cannot 
approximate the CTRW PDF pet(r, t) with the LWCP PDF p(r, t) even for long 
times. 

The difference between the two results can be easily understood when J = 2. 
Then (r 2) is non diverging and 

(r2( t ) , - (r2( t ) ,c t=L-l[  02A(k'u) ] 0k 2 ]k=0 , (62) 

where L -1 is the inverse Laplace operator. We find, using Eq. (40), 

 +2)t 7 < 
(r 2> 

- (r2>ct ~ (63) 

7 > 2u, 

when 1 < 7 < 2, and from Eq. (44) 

2 B___q_~_t2~ 
(p2> - -  (l~2>ct ~ r(2v+l) 7 < 2u (64) 

0 7 > 2v, 
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when 0 < 7 < 1. We see that  the LWCP is more "efficient" then the CTRW 
process (i.e. (r 2) - (r2)ct > 0), due to a considerable difference in the prefactors 
of the two processes. Such a behavior, is very different from ordinary diffusion 
processes where random walks provide a good approximation to simple collision 
models. 

Even though the deviations between the two processes exist we emphasize 
that  the exponents appearing in the long time limit of the mean squared dis- 
placement for the CTRW and the LWCP are identical once the correspondence 
Eq. (57) is made. In other words, the non vanishing exponents appearing in Eqs. 
(63) and (64) are identical to those in Eqs. (40) and (44). Thus the difference 
between the two processes is characterized by different prefactors which are the 
cause for our finding (r 2) - (r2)et >_ 0 for long times. 

The deviations between the LWCP and the coupled jump version of the 
CTRW can be understood based upon the following argument. For the CTRW 
at the observation time t the random walker is trapped in a lattice point. The 
random walker has occupied this trap for a time t - t~ t, where t~ t is the location 
on the time axis at which the last jump in the sequence of jumps was executed. 
On the other hand, for the LWCP the particle is always moving according to the 
law in Eq. (6). This evolution includes the time interval t - tt and here tl is the 
location on the time axis at which the last collision in the sequence has occurred. 
To see this better, assume that  for the LWCP during the last time interval in 
the sequence the particle does not evolve but rather stays fixed at the location 
of the last collision event in the sequence occurred. Then we have to replace Eq. 
(10) with 

p (r , t )  = 

fotd  , (r , t -  W (r) , (65) 
8 ~ 0  

leaving Eqs. (5)-(9) unchanged. Then, following the same procedure we have 
followed to derive Eq. (15), we derive the result: 

p (k, u) - W (u) (66) 
1 - ~ ( k , u )  

which is the CTRW result, Eq. (53), provided that  the condition in Eq. (57) 
is satisfied. For normal systems the additional evolution in the last interval in 
the sequence does not contribute significantly to p (r, t) when $ is large, and so 
the collision process and the CTRW give practically the same results. However, 
if the last interval in the sequence is very long, in an averaged sense, then the 
difference between the coupled CTRW process and the LWCP may become large. 

As mentioned in the Introduction, our generalized approach maps onto the 
previous approach when the magnitude of the velocity is a constant Iv I -- 1, and 
the collisions change only the directions of motion. We summarize now similar- 
ities and differences between the results obtained within these two frameworks. 
First, when the variance of F (v) diverges there is no place for comparison, since 
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for the previous theories (r ~) is finite while our approach yields a diverging (r2). 
When the first two moments of F (v) exist, the exponents controlling the dif- 
fusion in Eqs. (40) and (44) are identical to those obtained previously [25, 28] 
while the prefactors are different. 

Another difference between the LWCP and the other constant velocity ap- 
proaches concerns the wings of the PDF p( r , t ) .  For the case Iv[ = 1 one finds 
that  

p ( r , t ) = 0  when I r l > t .  (67) 

This result is obvious, since if the particle has a maximal speed there is prob- 
ability zero to find it beyond Ivlt. What is found for instance in Ref. [46], is 
that  delta peaks appear in the solution for p (r, t), at Irl = t. Now, if we choose 
F (v) to be a Gaussian, Eq. (67) is not valid since the probability of finding the 
particle with a velocity v < oo is nonzero. The delta peaks are not expected for 
this F(v) .  To see this we define 

H (r,t) = 

ev e,-~ (r - , , -~) ~ (t - ~-) F (,.) w (~-). (6s) 

The function H (r , t) ,  is the s = 0 term in the sum that  appears on the right 
hand side of Eq. (10). It describes the contribution to p(r, ¢) from trajectories for 
which the particle did not encounter collisions. We consider the one-dimensional 
case with v = 1 and a Gaussian F (v). Then 

H (=, t) = W (0 V ~  exp [ -  ( ~ / 2 t ~ ) ] .  (69) 

While for the two state model, F (v) -- 0.5 [3 (v -t- v0) + ~ (v - v0)], then 

H (~, t) = W ( 0  0.5 [~ (=It + v0) + ~ ( = I t  - v0)]. (70) 

We see that  H (=, t) behaves differently for the two choices of the PDF F (v). 
For the Gaussian process it is centered around x = 0, while for the constant 
velocity approach, delta peaks appear at ~ = :l:[vlt. Thus, the choice of F (v) 
has an influence on the asymptotic shape of p (r, t). 

6 S u m m a r y  

In this work we have investigated a strong collision model which we have called 
the L~vy walk collision process (LWCP). The LWCP scheme can be viewed as 
a generalization of the CTRW for the case when the velocities of the random 
wMkers are randomly distributed. An extension of the normal Brownian motion 
to anomalous diffusion with sublinear, enhanced or diverging diffusion has been 
given. The CTRW framework with coupled kernels also results in such diffusional 
patterns. However the CTRW, describing a jump process, considers positions of 
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the random walkers rather then their velocities and therefore it is not suited to 
describe the situation we are interested in. Furthermore, we have shown that  
differences exist between the CTRW and our results. Thus, even though the 
exponents and the dynamical phase diagram of the two models are the same, 
the two approaches are nonidentical. The LWCP is found to be more "efficient" 
then the CTRW. 

Unlike the previous velocity models, our work is not restricted to the condi- 
tion that  Iv I is a constant, rather velocities are random variables described by 
the PDF F (v). Our model allows to consider the case when F (v) is long-tailed. 
Even for the case when the variance of F (v) is finite the asymptotic behavior 
of p (r, t) behaves differently for the two approaches. 

Here we have considered in some detail the case where F (v )  is symmetric 
with a zero mean. In general one can include the case where the mean velocity 
is finite and then an anomalous drift is expected. We shall discuss this drift in 
the velocity field F (v )  in a future publication. 

The LWCP assumes strong collisions, which means that  there are no corre- 
lations between the velocity of a particle just before and just after a collision 
event. A Gaussian one-dimensional model with either weak or strong collisions 
has been investigated recently by one of the authors in Refs. [47, 48]. 

Since our model considers the random distribution of velocities, one may 
follow the evolution the velocity PDF P (v, t) to the equilibrium F (v). We 
have shown that  P (v , t )  can be derived from a differential equation with a 
t ime dependent relaxation coefficient a (t). This equation generalizes the strong 
collision model which assumes an exponential process and which has been used 
frequently in different fields. We believe our approach will find its applications 
for non-Gaussian diffusion processes. 

A c k n o w l e d g e m e n t :  The authors acknowledge fruitful discussions with V. Fleu- 
rov, M. Shlesinger and G. Zumofen and the support of a grant from GIF. 

A p p e n d i x  A 
Ways to generate random variables described by different types of PDFs (e.g. 

the exponential, the Lorentzian and the Gaussian PDFs) can be found in Ref. 
[49]. Here we show how to generate random variables whose PDF follows the 
rule 

~ 

for r --~ oo, 0 < r < oo. We have in mind cases where the exact behavior of the 
PDF for small r is irrelevant. Two main methods to generate random variables 
are usually used [49] (a) an accept-reject method, which is not efficient and 
(b) a transformation method. Here we give a simple transformation rule which 
generates random variable described by a longed tailed PDF. 

We use a random number generator which generates a random variable u 
which is distributed uniformly in the interval 0 < u < 1. Then we define the 
transformation (for ~ > 0) 

tan u~r ~ 
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and hence 
( ~ )  T ( 1 - ' ) / '  

q (~) = P(u)la~l = (1 + r2/~) 
and p(u) is the uniform PDF. For long times we have 

q(r) , . ,  ( ~ ) T  -(t+t/g) 

and hence if we identify 1/~ = z our goal is accomplished. 

(73) 

(74) 
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Abst rac t .  We study the equilibrium statistics for a system of point vortices of differ- 
ent circulations in two-dimensions. We use the methods of Lundgren and Pointin [2] 
who have analyzed this problem in the past for vortices of the same strength. This ne- 
cessitates the development of the probability density functions for each of the vortices. 
We find a power-law relationship between the probability distributions of vortices with 
different circulations. These distributions are verified numerically. 

1 I n t r o d u c t i o n  

Recent visualizations of turbulent flows (experimental and numerical) have shown 
the presence of distinct vortex elements as being the key driver of the flow [3], [1]. 
Further, Saffman [10] proposes " t h a t  turbulence should be modelled or described 
as the creation, evolution, interaction and decay of these [discrete vortical] struc- 
tures". Many studies of two-dimensional turbulent flows have shown that  con- 
centrated vortices are an important  feature of such flows. In this context, it is 
of obvious interest to find the statistical properties of the collection of discrete 
vortex elements, singular or with a core, and compare the results obtained to 
numerical simulations and experiments. The concentrated vortices that  occur in 
the previously mentioned studies are of different circulations. In this paper we 
study the statistical mechanics of a system of singular vortices in which each 
vortex can have a different positive circulation. Previous studies in this context 
[2], [6] treated vortices of the same circulation (while possibly of different signs). 
In this case vortices can have different position probability distribution, depend- 
ing on their circulation, as opposed to the case with the same circulation. We 
uncover a power law relationship between probability densities for vortices of 
different circulations. Our theory is supported by numerical calculations. 

2 D e r i v a t i o n  

Consider a system of N point vortices in a plane. The circulation of vortex i is 
Fi > 0. The isolating integrals (constants of motion) are 

N 

71 = - - - ~  
i<j 



3 9 6  

N 

R = E  Fi T r i  
i----1 

(2) 

L 2 -- ~ - T ( r , -  R) 2 , (3) 
i---1 

where 7/ is the energy, R the center of vorticity, and L 2 a constant associated 
with the angular momentum. We let 

t -  Z lr, 
N 

We denote by PN (rl, r2, . .  - , rN) the probability density of the system of vortices 
such that P N d r l d r ~ . . . d r N  is the probability that rl is in dr1, r~ is in dr2 etc. 
In equilibrium, PN is a function of the integrals of motion (7/, R,  L~). We use 
the microcanonical ensemble 

- ~ ( r i - R )  2 - N L  ~ 5 r~ - N t t  / Q ( E , L  2) 

(4) 

which is based on the ergodic hypothesis. The normalizing factor Q must satisfy 

- ~ ( r i  - -  1:1.) 2 - -  N L  2 

i=1 T r i  -- N R  drl . . . d rN .  (5) 

In the case of vortices with different circulations, it is not necessarily true that 
the reduced probability densities 

/ PN d r l . . . d r ~ . . . d r N  , k # i (6) P1, (r,) 

are independent of i. Similarly, 

(ri, rj) = [ PN d r t . . ,  d r k . . ,  drN , k ~5 i , k y£ j . (7) P2,j 
d 



Using Eq. (6), 

~ , =  

397 

~2r .  F ~ - N R  dr1 . . .drk  . . . d rN  k ~ i . 

Differentiating with respect to ri, 

0Pl , ( r l )  ( O 1 O 
or-----7-, - r, ~ rj -g~ lnro)-O-~QP2,j(r,,rj)er~ 

j#i 

0 
1 0 p 1 1 o R Q P l , ( r d ]  J - 2 ( r i  - R ) ;  F 0 0 - - ~ o  1,(ri) - N/~ Q 

Using 

the closure assumption 

(8) 

(9) 

Using the change of variables 

Pl,(~i) = L2P1. (ri) , 

we have 

T/i = (ri - R ) / L  , (13) 

0~ = T \~2k<t r k r t  .4=1 
j#i  

(14) 

P2o(ri, rj) = Pli(ri)Pls(rj)  , (11) 

and thermodynamic  relationships similar to those in [2], we obtain 

OPl,(ri) 
- Fi ,...., 1 ~ < i F k F l  ~ri lnr i j )Pl , (r i )Pls(r j )drj  

0ri j = l  
j#i 

- 2 p l  (rl L 2- R) (1 + I)P1 • (ri), . (12) 

~ -  ~ ~ r, rj, (lo) 
47rNkT 

i<j 
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Using the fact that  each of the probability distributions is rotationaly symmetric 
under the assumption of ergodieity [5] we can consider only the magnitude of Tli 

v,, (7,) = C'exp2r'[" {~='5¢, Ek<,2~NPrJrkr, / I n  7,jv,j (Tj)dT~ - (1 + .),) 7, ~ } (15) 

where Ci is obtained from fv~ pl~(7i)dTi = 1. Clearly then, for N large enough 
(i.e. when the fact that  one of the terms in the sum for each vortex is different 
is irrelevant) 

(Pli (7))l/Fi ___~ (Plj (7))I/Fj (16) -C-, ~ 

i.e 

p, ; (7)  ),-,zr, 
p,,(,7) = (c~c:Z~,_ = c p , A , 1 ) " " "  • (17) 

This is the main result of this paper. The last equation implies that  larger 
vortices will on the average spend more time closer to the center of vorticity 
than smaller vortices. 

3 Numerica l  Simulations 

Numerical simulations of N-vortex dynamics were performed to complement the 
derivations of the previous section. The methodology is similar to that  employed 
in previous studies [8], [9], except as required to accomodate the multi-Fi con- 
figurations. We briefly summarize the relevant details. L = 1, R = 0, H varied. 

In figure 1, a numerical check of Eq. (16) is shown for the case of F1 = 
- .3 ,  N1 = 75, F~ = -1.7,  N~ = 75, and A = 0. A very good match is seen. In 
figure 2 we see that  for the case of same configuration as figure 1, there is very 
good match to the predicted PDF of 

ri f ri 2"~ 
v,,(r) = ~ e x p / - 7 ~  ) 

Figure 3 shows a snapshot of the distribution of the vortices in physical space. 
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4 Conclusions 

In this paper, we have derived statistical mechanics for a system of vortices 
with positive but possibly different circulations. We have uncovered a power-law 
relationship between probability density for different vortices. This relationship 
implies that  larger vortices will on the average spend more t ime near the center 
of vorticity than smaller vortices. 

A number of interesting questions can be pursued as an extension to this 
work. For example, what are the probability density functions for velocity and 
velocity derivatives induced by the considered system of point vortices? We have 
answered this question for same-circulation vortices in our previous work [9]. 
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Abs t r ac t .  Chaotic transport is investigated for the standard map for different values 
of stochasticity parameter K. It is found that the form of the transport coefficient is 
a strong function of K, and that this variation is associated with the formation and 
disappearance of complex multi-island structures. For some values of the parameter 
K superdiffnsion is associated with the existence of exact chains of self-similar islands 
attached to accelerator islands, giving rise to long time stickiness of orbits. Close to 
threshold other types of multi-island structures cause stickiness. In both cases the phase 
space of these traps, and the exponents of the characteristic long time tails associated 
with them are determined. Computational procedures for the anomalous exponents 
and intermediate asymptotics are discussed in many details. 

PACS numbers: 05.45.+b, 47.52.+j, 05.60.+w, 47.53.+n 

1 I n t r o d u c t i o n  

Non diffusive, or anomalous t ransport  is a well established phenomenon. 
I t  occurs in many  different physical systems (see for example Weeks et al. 
1996, Venkataramani  et al. 1997, Benkadda et al. 1997). Transport  can be char- 
acterised by the t ime evolution of the mean-squared-displacement < r 2 (t) >.  
In the case of diffusive processes, the mean-squared-displacement increases lin- 
early with t ime < r2(t) > ~  t, whereas in nondiffusive processes (anomalous),  its 
t ime dependence is < r2(t)  >,~ t ~ with p > 1 (superdiffusive) or p < 1 (sub- 
diffusive). A good illustration of such phenomena is shown in the experimental  
s tudy of a quasi two dimensional flow in a rotat ing vessel (Solomon et  al. 1993), 
where the azimuthal  displacement of tracers exhibits a superdiffusive behaviour. 
Numerical  evidence of anomalous t ransport  for Hamil tonian systems with few 
degrees of freedom has also been found (Zaslavsky et al. 1993, Benkadda et al. 
1997, Afanas 'ev et al. 1991). 

One of the fundamental  problems arising in understanding chaotic t ranspor t  
such as mixing and diffusion by chaotic advection is that  how the Hamil ton ' s  
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equations lead to a specific normal or anomalous kinetics. The phase space topol- 
ogy of Hamiltonian systems is fairly rich and complex. It consists in different sets 
of islands which can appear, disappear, bifurcate etc. depending on the value of 
a control parameter. In order to investigate the transport properties of Hamil- 
tonian systems, it is crucial to understand the geometrical structures of phase 
space which certainly rule the mixing of wandering orbits. 

Recently, considerable effort has been made in the attempt to understand 
these processes, named 'strange kinetics' in (Shlesinger et al. 1993), but a global 
theory is still missing. Strategies used involve new notions, such as L~vy flights, 
fractional brownian motion and recently fractional kinetics (Zaslavsky et aL 

1993, Zaslavsky 1994, Zaslavsky et al. 1997). 
In this paper, we study the transport properties and their links to the phase 

space topology in a two-dimensional area preserving map introduced by Chirikov 
and Taylor (Chirikov 1979) and called the standard map. In spite of its simple 
form, this map captures much of the complexity and canonical behavior of more 
complicated systems. In particular it models many problems of plasma physics 
as well as fluid systems exhibiting Rayleigh-B~nard convection with large aspect 
ratio (Solomon and Gottub 1988). The standard map has the form 

Pn+l = Pn + K s i n ( x . )  

~ n + l  -" Xn "~ P n + l  

(1) 
(2) 

For any orbit initiated in the stochastic sea, and for K > K¢ (K~ = 0.971635406 
(Chirikov 1979)) the phase space motion is unbounded in p, making statistical 
study for these trajectories possible, and in particular the study of time depen- 
dence of the mean-squared-displacement < p2 >. It was found that for almost 
all K values (K > K¢), the process describing the statistics of the action p is 
diffusive, providing a diffusion coefficient D with D = limt~oo P - ~ t  ~ . The the- 
ory giving D as a function of K has been derived in (Rechester et al. 1981) and 
confirmed by numerical experiments. Nevertheless, for particular values of K, D 
is not well defined (D -+ cx~) indicating that for these vMues < p~ > grows faster 
than t. 

An important feature of chaotic orbits in area preserving maps is the exis- 
tence of long time correlations of orbits, with an inverse power law distribution 
P ( t )  ,.. t - ~  of the sticking times. The chaotic orbits spend long times in hier- 
archical structures due to the stickiness of island chains (Karney 1983, Ishizaki 
et al. 1990, Klafter and Zumofen 1994, Zaslavsky 1994, Benkadda et al. 1997). 
Many descriptions of these phenomena have been proposed (Karney 1983, Be- 
loshapkin and Zaslavsky 1983, Chirikov and Shepeliansky 1984, Ishizaki et al. 
1990, Zumofen and Klafter 1994, Klafter et al. 1995, Zaslavsky 1994). Recently, 
the idea that 'strange kinetics' could be linked to the topological structure of 
the islands has been suggested (Zaslavsky et al. 1997), offering a possibility of a 
predictive theory. 

Recently we examined the case of anomalous transport in the standard map 
due to accelerator modes (Benkadda et al. 1997). Let us note that the existence 
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of accelerator islands is a necessary condition for anomalous transport in p, 
but it is not sufficient; not all values of K for which the accelerator islands 
exist produce anomalous transport. For the particular case of self-similar islands 
around islands, a theory based on the fractional generalization of the Fokker- 
Planck-Kolmogorov equation and on the renormalization group transport has 
been derived, giving # = ~ where A, is the scaling parameter for the islands 

area and At is the scaling parameter for a characteristic time (Zaslavsky 1994). 
In this particular case, long correlations are due to orbits wandering inside self- 
similar structures in time and space, providing stickiness around the accelerator 
mode. 

The more general case for which the islands around islands structure is not 
exactly self similar would need generalization of the theory. The goal is to char- 
acterize the nature of the island structures leading to trapping, and to relate the 
time and space scales of the structures to the anomalous diffusion. 

To observe long time trapping, it is simplest to look for the associated flight. 
We are interested in finding values of K which produce a significant modification 
of transport, so we scan values of K and measure the averaged mean squared 
displacement for an ensemble of initial conditions. Near an accelerator island, 
trapping produces flights in p. In Fig. 1 is shown the result of such a scan, showing 
the value of the transport coefficient/J as a function of the map parameter K in 
the vicinity of the accelerator mode. The exact value of # depends somewhat on 
the number of orbits used and the time of the simulation, but the gross features, 
i.e. domains of K in which # is large, persist. 

Near threshold for K > Kc trapping near an island structure leads to long 
flights along x with -Tr < p < 7r. In this case a systematic search for the primary 
trapping structures reveals a well identified topological structure responsible 
for long correlations (White et al. submitted) consisting of a multi-layer island 
structure surrounding a mother island. In this structure self similarity holds for 
the time scales of nested islands but not for the space scale. 

In order to improve our insight concerning the underlying processes leading 
to 'strange kinetics', it is also useful to study different time distributions such 
as Poincar6 recurrence time, sticking time and escape time distributions. 

In this paper we will review transport properties and their link to the topo- 
logical structure of phase space for different values of stochasticity parameter 
K with a particular emphasis on the computational methods used and their ac- 
curacy. Section two deals with these numerical procedures used to characterize 
chaotic transport. These tools are applied to analyse transport near accelera- 
tor modes with self-similar chains of islands. In section three we discuss other 
topological structures responsible for the anomalous transport in the standard 
map for various values of K. In section four we present results that show a link 
between the transport and the probability P(z,  t)dx for a particle to be located 
between z and z + dx at time t .  Finally the last section is devoted to discussion 
and conclusion. 
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Fig. 1. Exponent p for anomalous transport in p versus K near accelerator mode. 

2 S e l f - s i m i l a r i t y  a n d  c h a o t i c  t r a n s p o r t  

The usual way to study transport is to analyze the temporal behaviour of 
different moments. However recently other transport quantities associated with 
characteristic times of the system have been successfully used for characterizing 
chaotic transport (Easton W. et  al. 1993, Meiss 1997, Benkadda et  al. 1994, 
Zaslavsky and Tippet 1991, Zaslavsky and Niyazov 1997, Zaslavsky et  al. 1997). 
In what follows, we will discuss different numerical procedures for computing 
these transport quantities and we will comment on their accuracy. 

2.1 Extraction and characterization of  self similar chains 

Due to periodicity of the standard map in x and p, the phase space can be 
studied on the torus [0, 2~r] x [0, 2~r]. In this representation, the phase space is 
made of islands embedded in the stochastic sea as shown in Fig. 2. Because of the 
Poincarg,-Birkhoff theorem, in the neighborhood of a generic periodic orbit there 
are satellite elliptic orbits of smaller sizes, each of which in turn has satellite 
elliptic orbits, and so forth. These elliptic orbits are ordered forming chains of 
islands around islands. For particular values of K the island chains can assume 
a self similar character. In order to make explicit this self-similarity of islands we 
found values of the perturbation parameter K for which there is a self-similar 
hierarchy of subislands in the boundary layer. 
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The existence of this fine structure and its properties are fundamental in the 
study of anomalous transport. Indeed these islands and their boundaries alter 
the pattern of diffusion dynamics. 

The number of islands surrounding an island is a function of K, and it has 
been conjectured (Zaslavsky 1994) that there exist values of K producing self 
similar structure. The search for K values is made by dichotomy. By changing 
the K value one constrains successively each generation to contain the desired 
number of islands. The required precision of K increases with the generation 
order. 
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Fig. 2. Poincard section for K = 6.476939. Two unconnected islands are embedded in 
the stochastic sea. Each island is urrounded by islands chain and so forth. 

Se l f  s imilar is lands chains 
In Fig. 3 are shown four generations of island chains related to the period 5 

accelerator mode for Kc = 6.476939, where a significant peak is observed in Fig. 
1. The generation 0 island is the 5 accelerator mode top right and subsequent 
generations are seen by proceeding counterclockwise. To obtain this example we 
searched in the vicinity of the critical perturbation parameter value Kc related 
to this accelerator mode, until we found 3 generations of island chains of 11 
islands each for Ke = 6.476939. Let us emphasize that we typically need six 
digits precision to produce this 5-11-11-11 structure. 
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For the visualization of each Poincar$ section magnification, it is convenient 
to initiate a large number of initial conditions near one of the hyperbolic fixed 
points of the studied chain in order to get enough detail. The island chain struc- 
ture naturally appears as being the dark part of Poincar6 plots because of the 
stickiness of trajectories in its vicinity. 
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Fig. 3. Four generations of self-similar 
K = 6.476939. 
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islands related to the accelerator mode, 

For generation 3 of the given example, one needs to perform a magnification 
of the phase space area contained in a square of typical size Ax.Ap with Ax ,~ 
Ap ,,, 10 -4. At these scales each plot is extremely sensitive to the vMue of K 
and reveals very complicated structures of 'parasite' islands. 

At each step one has to concentrate on the first island chain occuring out- 
side the island of the previous generation. Because of the extreme sensitivity 
of Poincarg sections to the K value at small scales, it can happen that during 
the dichotomy procedure, an island chain crosses the stability border and enters 
the island of the previous generation. To guard against this the number of iter- 
ations used to build a plot must be large enough to allow trajectories to leave 
the vicinity of the islands chain and to reach the stochastic sea. Of course after 
each step, one has to check that the number of islands of previous generations 
has not been modified. 

The range of time scales needed to reach the third generation of this self- 
similar islands hierarchy is already of the order of 10 6 . As the statistics for 
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transport exponents involve the same range of steps (as it will be shown in the 
next section devoted to transport) there is no need to explore the hierarchy 
further than the third generation. 

Other examples of self-similar island chain hierarchies have been reported in 
a previous work (Zaslavsky et al. 1997) and will be presented in this section. 

We are now interested in the quantitative characterization of the topological 
properties of these islands around islands structures. Besides the number of 
islands for each generation, two scaling parameters can characterize this self- 
similarity. One is related to the area of an island and the other one is related to 
an appropriate time scale attached to the island (Zaslavsky 1994, Zaslavsky et 
al. 1997, Zaslavsky and Niyazov 1997). 

R e n o r m a l i z a t i o n  o f  a reas  
In order to investigate the spatio-temporal properties related to self-similarity 

we need to determine accurately the phase space domains embedding the accel- 
erator islands and susceptible to contain self-similar chains of islands. Long time 
trapping is only caused by such domains, and for numerical reasons the domain 
of initial conditions used should correspond to them. To make rapid numerical 
calculations of trapping time or exit time for a given set, we divide that  part of 
phase space of interest into N × N domains with a rectangular grid with bound- 
aries x t , z l + A x  and PI ,PI+AP.  The grid provides an immediate coarse graining 
of phase space x,p into i , j  with 

j = ( z -  zl)  * N / A z  + 1 (3) 

i = (p - Pl) * N / A p  + 1 (4) 

Each cell represents an elementary domain of the phase space of area Ax x Ap. 
The procedure consists in initiating initial conditions (103 ) in the stochastic sea, 
applying the map a large number of times (typically 10~), allocating the value 1 
to all nonvisited cells and 0 to the visited ones. To compute the area of an island 
it is sufficient to count the number of cells composing it. The typical grid used 
was N = 1024 which provides enough accuracy, but errors can arise in the matrix 
construction. A more convenient way to build the matrix is to initiate x, P near 
one of the hyperbolic points belonging to the next generation of islands chains. 
Then one has only to check whether the computed area is not over-estimated by 
comparing the border of the island identified in the matrix and a stable orbit as 
near as possible to the separatrix. 

The scaling parameter ,~, related to the area of islands, characterizing one 
toplogical property of the structure, is obtained by dividing the total area oc- 
cupied by islands of generation (k - 1) by the total area occupied by islands of 
generation k. 

n & _ l  = .~,nsk,  ~, > 1 (5) 

Another way to compute the area scaling parameter is to use the area of poly- 
gons built with elliptic fixed points of an island chain. This procedure is more 
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convenient because elliptic fixed points can be very accurately located using the 
s tandard Newton-Raphson method and because of its systematic character. Val- 
ues reported in Table I (see below), show that  the parameter  A~ is independent 
of generation if each island chain contains the same number  of islands. 

Renormalization of characteristic times 
Let us consider now the determination of the scaling paramete r  At related 

to characteristic t ime of an island chain. Unlike the determinat ion of A,, it is 
possible to use many  a priori unrelated definitions for the characteristic time. For 
the theory to be consistent, At must be of course independent of the definition 
used. This  has been conjectured in (Zaslavsky 1994) and already checked for the 
web map  (Zaslavsky et al. 1997, Zaslavsky and Niyazov 1997). The independence 
of At with respect to the definition of the characteristic t ime is the first step to 
test the theory. 

Winding n u m b e r  
The first characteristic t ime used to display the temporal  self-similarity of 

the islands, is the winding number. I t  is the rotation frequency of a stable orbit  
w = 1 /At  with At as the t ime intervM required to completely circle the island O 
point. The winding number  w is thus a function of the location inside an island. 
I t  can be computed for the O point itself, becoming a well defined characteristic 
t ime attached to an island chain. Using again a Newton-Raphson method,  one 
can locate with high accuracy the elliptic fixed point of an island of generation 
k and also calculate the tangent mapping  M. The winding number  is then given 
by (Green 1979): 

wk(O) = 2~r x arccos(½.tr(rI~=l M,)) (6) 
q 

where q is the periodicity of the fixed point. As for )~,, the scaling parameter  )~t, 
is defined as : 

wk-1 = Atwk, At > 1 (7) 

It  is also independent of the generation if each chain contains the same number  
of islands. This characteristic t ime is related to properties of stable trajectories, 
and is thus a priori uncorrelated with properties of unstable trajectories used in 
the s tudy of transport .  

T A B L E  1 
k -k ~k(0) ~r(~) ~ ~r(~) z~S~ ~s 

0 5 2.3433 × 10 -z - 1.189 x 10 -1 . . . .  2.7803 x 10 -2 - 
10 -z 9.791 ! 1.429 x 10 -2 8.318 1.8938 x 10 -3 14.646 ! 1 5 x 11 2.4257 x 

3 5 x 11 x 11 2.2632 x 10 -4 10.58 1.316 x 10 -3 10.86 6.5110 × 10 -5 29.156 
5 x 11 × 11 x 11 2.1877 x 10 -s  10.36 1.219 × 10 -4 10.80 2.2131 x 10 -6 29.421 

L y a p u n o v  e x p o n e n t  
We also used the largest Lyapunov exponent c~ as a characteristic t ime for the 

island. I t  gives the mean exponential rate of divergence of two initially arbitrari ly 



411 

close trajectories. The Lyapunov exponent is associated with a given trajectory 
and written as : 

lim aim "-'(t) lnd(X°'t) d( 0,0) (S) i f - -  

By definition a random initial condition chosen in the vicinity of a given 
island chain will reach the stochastic sea after a certain time. As a consequence, 
the general definition can not be used as a characteristic time attached to a 
given generation. To avoid this difficulty one can use two different approaches. 
The first one consists in using trajectories initiated from hyperbolic fixed points. 
Their localization can be accurate enough to get a reliable characteristic time 
by using the associated tangent mapping, and its eigenvalues. The Lyapunov 
exponent is then given by : 

lnA = (9) 
q 

q 

where A is the largest eigenvalue of 1-I Mi, and q is the periodicity of the hyper- 
i = 1  

bolic fixed point. 
Values of At are given in Table I which shows a very good agreement with values 
of At computed with the previous definition. Like the winding number, the Lya- 
punov exponent is not directly linked to properties of trajectories which will be 
involved in the transport study, because hyperbolic fixed points are not reach- 
able from the stochastic sea, from where are initiated orbits for the transport 
study. 

The second approach consists in using a modified definition for the Lyapunov 
exponent. We compute a mean exponential rate of divergence for only that part 
of trajectories belonging to the vicinity of a given generation. 

1 Nt:T'  (1 )  d(xi,t) 
a = ~ Z Z  aim In (10) 

i = 1  t = l  d(0)--~0 d(xi, O) 

Where the first sum represents the average over initial conditions initiated 
in the generation k , ~ holds for the time spent by the ith trajectory in the 
vicinity of generation k and only k. 

In order to characterize generation 1, we use two matrices, already defined. 
One is attached to generation 1 and the other to generation 2. It is necessary to 
define two matrices because the boundary domain of generation 2 is embedded 
in that of generation 1. A convenient way to build the boundary domain of an 
island chain is to initiate particles near a hyperbolic fixed point, letting them 
evolve under the mapping sufficiently long to generate the domain but not so 
long as to let them escape from the domain. A domain can be enlarged by 
adding to it, mesh points within some range Ai, Aj. For both matrices we use 
the typical size N = 1024. In Fig. 4 it is a shown magnification of phase space 
area represented by the two matrices. Shown dotted is the generation 1 boundary 
domain enlarged by Ai ~ Aj = 4, in order to avoid possible missing cells, due 
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to a lack of initial conditions used for the domain construction. In solid line, is 
shown the boundary domain of generation 2. 
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x 

Fig. 4. Domains used for Lyapunov exponent computation. Dots represent generation 
1 and solid line, generation 2. 

The local Lyapunov exponent is computed using standard methods (Benettin 
et al. 1976), averaging 104 trajectories initiated near the hyperbolic fixed point 
(1.65, 6.236). The divergence rate of nearby trajectories is computed at each step 
using the tangent mapping, only while the trajectories remain in generation 1. 

In order to detect when a trajectory leaves the boundary of generation 1, we 
introduce two different observation periods. One is the periodicity of the accel- 
erator mode 5, and the other one is the periodicity of islands of generation 1: 
5 x 11. Each 5 steps we check whether the trajectory has left the generation 1 
boundary for the stochastic sea by looking at the corresponding cells in matrix 
1. In the same manner, each 55 steps we check whether the trajectory left the 
generation 1 boundary for the generation 2 boundary by looking at the corre- 
sponding cell in matrix 2. So the time spent in generation 1 is determined up to 
a precision of 5 steps when the trajectory leaves the islands chain 1 to reach the 
stochastic sea and up to a precision of 55 steps when the trajectory leaves the 
island chain of generation 1 to reach the next generation. This approximation is 
not relevant because of the large time scale associated with time spent in each 
boundary island chain. 
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Fig. 5. Convergence of Lyapunov exponent associated with generation 1 as a function 
of initial conditions used for its computation. 

In Fig. 5 is shown o" for generation 1 as a function of the number of initial 
conditions used in the average. We see a good convergence towards the value 
1.66 × 10 -3. This quantity measures the e-fold time for orbit separation within 
the first generation of islands. Fig. 6 shows the same convergence for a associated 
to the second generation around the value 1.72 x 10 -4. From these values we find 
)~t = 9 .65 ,  in good agreement with values reported in Table 1. The difference 
comes from two aspects of the computation. First, the procedure used for the 
construction of matrices does not give rigourously the same representation of 
domains for each generation. Second, the random presence of 'parasite' islands 
in each boundary island chain modifies the a computation because of correlations 
which they introduce. To visualize this effect, we show in Fig. 7 histograms for 

attached to generations 1 and 2. We see that they both present an asymmetry 
due to correlations previously mentioned. 

In spite of computational drawbacks, this characteristic time gives a value of 
At in good agreement with the one derived from the winding number. Other self- 
similar accelerator island chains have been investigated (Zaslavsky et al. 1997) 
and the relation between the scaling parameters and the transport exponent 

has been checked. Let us emphasize that the latter relation is well /~ = tn(Xt) 
verified in the case of self-similar chains of islands. 
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Fig. 6. Convergence of Lyapunov exponent associated with generation 2 as a function 
of initial conditions used for its computation. 
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2.2 Distribution of  characteristic times 

In the previous section we showed how to characterize topological properties 
of the phase space domain involved in anomalous transport. In what follows, we 
will present computational results of distributions of characteristic times relevant 
for analyzing transport properties.. 

Sticking time distribution 
Let us consider a domain AF  in phase space, accessible from the stochastic 

sea. During its motion, a wandering orbit enters the domain at times {t~"} and 
leaves it at times {t~ 't } providing a set {ri} -- I~out _ t~n} of times spent in (~i-[-1 
Z1F. These times are functions of z1F, and we are interested in their probability 
distribution function ~,tlck (r; ZIF), with the normalization condition 

fo ° ~stich( AF;  r )d r  = (11) 1 

In order to characterize the two accelerator main islands we use a domain 
defined by the two squares surrounding them as shown in Fig. 8. We construct 
the corresponding matrix b(i, j) so that,  b(i, j) = 1 within the domain and zero 
otherwise. At each step t we evalute b(t) = b(i, j) ,  then b(t) - b(t - 1) - 1 if the 
orbit has just entered the domain,-1 if it has just left it, and zero otherwise. 
This technique will be powerful for more complicated domains like the boundary 
of a n - th order generation. The sticking time distribution is then given by the 
distribution of sizes of b(t) sequences of the type (1 0 0 .. 0 - 1). The statistics 
can be performed by using a large number of trajectories (10 s) initiated in the 
stochastic sea and followed for a given time (106), or by using one trajectory 
followed for a large number of iterations (1011). 

These two approaches are equivalent and give similar results. For the sticking 
time distribution, we will present results using the second option. We initiate an 
orbit near the hyperbolic point (0, 0) and follow it 5 x 1011 steps. In Fig. 9 the 
plot of the sticking distribution is shown in logarithmic scales, using a bin size 
of 10 steps. The sticking time distribution exhibits a power law for t < 103 : 

1 
~,tic~(AF; r) ~ r~,,,o------~ (12) 

with %rich = 2.4 and presents a cross-over 
to improve bin statistics at larger times, 
metrically with time. The result displayed 

within time range [103 , 104]. In order 
we use bin sizes which increase geo- 
in Fig. 10 shows that  the distribution 

follows another power law given by 7,tick ~ 3.2. This slope is determined up to 
a precision of 10%, depending on the time data ranges used for its computation. 
The given value is obtained for 103.8 < r < 105"43. 

This example shows that  different time scales are involved in the sticking pro- 
cess around singular zones (accelerator modes). One may ask the question: Does 
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Fig. 8. Domain used for computing the sticking time distribution for K = 6.47'6939. 

~P, tiek(ZiF; r) exhibit an asymptotic behaviour, and if yes what is the transient 
time ? One can emphasize (Zaslavsky et al. 1997) that O, tick(AF; r) depends 
on the topological structure of the singular zone, and that different time scales 
correspond to characteristic times associated with different accessible fine topo- 
logical structure. This could be checked by using the boundary of each island 
chain previously defined as a domain AF,  but the computation time required 
for sufficient statistics is for the moment prohibitive. 

Po incar6  recurrence  t i m e  d i s t r i b u t i o n  
Let us consider a domain AF in the stochastic sea. As in the previous section 

we can consider the set of times at which an orbit enters AF,  {t~ n } and the set of 
times at which it leaves it, {t°ut}. Times defined by the set {ri} -- {t~,~ 1 - t~ ut } 
are called Poincar~ recurrence cycles. They represent times which orbits need 
to perform a first return to the domain A/" after it has left it. We denote their 
density distribution function ~Vrec(A/'; r),  and the function 

~r~c(r) = lim J ~ , ~ ( A F ; r )  (13) 
A / ~ - ~ 0  Z A I  

can be considered as a probability density of the first return to an infinitesimal 
phase volume A F  after a time interval r with the normalization condition 

f0 ° = 1 (14) ~rec(r)dr 
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Fig. 9. Sticking time distribution for K = 6.476939. The slope of the straight Line for 
r < 1 0 3  is 2.4. 

The recurrence time distribution characterizes the properties of the phase space 
outside AF.  It has been shown in (Zaslavsky et aL 1993, Zaslavsky et al. 1997, 
Afraimovich and Zaslavsky 1997) that  it can be related to transport  properties. 

In the case of chaotic systems with good mixing properties, the recurrence 
t ime has a Poissonian distribution : 

1 
grr~c(r) - - -  exp ( - r / <  r >) (15) < T >  

Nevertheless, due to the presence of singular zones, one can expect that  for 
large times the recurrence distribution exhibits a power law behaviour, which is 
confirmed by the following results. Applying the method used above for sticking 
times, the recurrence t ime distribution is given by the distribution of sizes of 
b(t) sequences of type ( - 1  0 0 .. 0 1). The domain we considered to compute 
the recurrence time distribution is presented in Fig. 11. 

Other domains have been used and have given similar results. The compu- 
tat ion consists in initiating 10 5 particules in the stochastic sea and following 
them up to 10 6 steps. In Fig. 12, loglo(~rec(r)) is shown as a function of r .  The 
straight line shows that  ~re~(r) follows a Poissonian law for r < 10 3 and deviates 
from it at larger times. Let us notice that  this time is comparable to the time 
at which ~tich(AF; v) presents a crossover. 

In Fig. 13, ~rec(r) is shown, using as for the sticking t ime distribution, bin 
sizes which increase geometrically with time, in order to improve bin statistics 
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Fig .  11. Domain used for computing the Poincar6 recurrence time distribution for 
g = 6.476939. 
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at large times. A crossover is observed within the t ime interval [10 3, 10 4] and 
for times larger than 10 4, ~rec(r) exhibits a power law : 

1 
k~rec(r) ~ r~--o (16) 

with 7rec ~ 3.4. This slope is computed for T > 104.3 with an accuracy compa- 
rable to the one obtained for the sticking time distribution, and is in agreement 
with the Kac theorem which states that  mean recurrence time must be finite for 
compact phase space with ergodic motion (Kac 1958). 

The fact that  the slope found for sticking time distribution is comparable 
to the slope found for recurrence time distribution confirms the idea that  long 
recurrence times are due to orbit stickiness around the singular zone. 

E s c a p e  t i m e  d i s t r i b u t i o n  
One can define another characteristic time distribution. Considering the 

phase space domain AF  and orbits initiated in this domain, the set {r  °ut } of 
first escape times provides a local characteristic of transport.  In this approach, 
one has to specify the domain A F  and where orbits are initiated in the domain. 
The distribution of escape t ime ~esc(AF; r )  is then given by the distribution of 
sizes of b(t) sequences of type (0 0 .. 0 - 1). In what follows we present results 
obtained for different domains and different initial condition locations. The first 
domain used to characterize the whole accelerator mode, is a square as seen in 
Fig. 14. 

We uniformly initiate 10 9 orbits in phase space domains represented in Fig. 
15. 

It can occur that  an orbit is initiated in a small 'parasite' island and be stuck 
forever in the domain. Hence we introduce an observation t ime after which orbits 
still in the domain are not included in the statistics. For the present case, the 
observation time is 10 6 . 

In Fig. 16 it is shown the normalized escape time density distribution func- 
tion, using again bins which increase geometrically with time. It exhibits a power 
law for time larger than 10 4 : 

1 
~esc(r) "~ - -  (17) 

with 7e,e ~ 3.2. This value obtained with 10% accuracy is computed within the 
t ime interval 10 4.2 < r < 10 5"z5. In order to characterize more precisely the 
accelerator island and its boundary island chain (BIC), we build domains A F  
following the method described in the previous section devoted to the compu- 
tation of areas. This gives a good representation of the boundary of the island 
chain. The domains thus defined are used to uniformly initiate orbits. Because 
each domain only represents one part of the whole chain, we introduce a period 
of observation as mentioned above to check if an orbit is still in the domain. 
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Fig. 14. Domain used for computing the escape time distribution for K = 6.476939. 
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Let us remark that  because at each generation the observation time is multi- 
plied by 11 (period of the islands chain), the total observation t ime is multiplied 
by this factor at each generation. We apply this procedure to BIC's 1,2,3. Fig. 
17 displays the escape time distributions function associated with each BIC. The 
observation time for BIC 1 is 105, 105 × 11 for BIC 2 and l0 s × 11 × 11 for BIC 3. 
We also note that  the escape time distributions of the three generations exhibit 
the same power law behaviour with an exponent %so "~ -1 .6 .  In this logarithmic 
scale there is a shift between the distributions of two successive BIC's. This shift 
is of the order of 10.5 which corresponds to the typical value of the temporal  
scaling parameter  )~t- 

When we use larger observation times, 10 7 for BIC 1 and 10 s for BIC 2, we 
observe as shown in Fig. 18, a crossover and a power law behaviour with an 
exponent 7e,e ~ 3.5 for BIC 1 and BIC 2. Let us emphasize that  this agrees 
with the results obtained for the sticking time and the Poincard recurrence time 
distributions studied above. We also note that  the %,c value agrees with the one 
obtained with the square domain (Fig. 14). Finally, the crossover times of BIC 
1 and BIC 2 are also in the ratio )~t. This confirms in a way the idea that  each 
fine topological structure is associated with a characteristic time scale. 
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Fig. 16. Escape time distribution for K = 6.476939. The slope of the straight line is 
3.2. 
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2.3 T r a n s p o r t  

In this section, we present numerical computat ions  of  t ime evolution for two 
quantities which define the t ransport  : < Ip(t)l > and < p2(t) >, where brackets 
mean ensemble average. Non-diffusive t ransport  is characterized by : 

< p2(t) >-,~ t"  , /~ :/: 1 (18) 

The g determinat ion involves two kinds of averaging. One is linked to the num- 
ber of initial conditions, and the other one is associated with time. The previous 
s tudy of t ime distributions has shown that  the notion of an absolute t ime asymp-  
totic behaviour should be replaced by an asymptot ic  limit with respect to a given 
t ime scale. 

In Fig. 19 is reported the t ime behaviour of < [p(t)[ > for 105 orbits initiated 
near the hyperbolic fixed point (0,0), followed 106 steps, showing tha t  : 

< Ip(t)l > ~  t "/~ (19) 

In order to check the convergence of < [p(t)[ > with respect to the number  
of initial conditions, we show in Fig. 20 the evolution of p /2  as a function of this 
number.  
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Fig. 19. First order moment < ]pt -p0]  > as a function of time. l0 s initial conditions 
used, K = 6.476939 
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The slope evaluation is made using the standard mean square method, for 
two different time intervals: 5 x 105 < t < 106 and 105 < t < 5 x 105. We see 
that  the convergence is fairly well reached for l0 s orbits, and that  the two slope 
estimations agree, confirming that  within the time interval 105 < I < 106 an 
asymptotic behaviour is also reached. The p value obtained from this method is 
tt = 1.42 + 0.05. We now consider a large number N (105) of initial conditions 
and study the behaviour of the parameter / J /2  as a function of the t ime interval 
[103, t].  We observe in Fig. 21, that  convergence towards/~/2 = 0.707 is reached 
for t > 8 x 105. This value is consistent with the one previously obtained. 

0 . 6  i t ~ i i | 1 

0tl 0.76 

0.74 

0.72 2 - 

.~. 0.7 

0 . 6 8  

0 . 6 6  

0 . 6 4  

0 . 6 2  

i i i I I i i i i 

0"60 I 2 3 4 5 6 7 8 9 10 
Number of trajectories x 104 

Fig. 20. Convergence of the slope as a function of initial conditions used for its com- 
putation, for four different time intervals. Label 1 corresponds to 5 × l0 s < T < l0 s 
and label 2 corresponds to 105 < T < 5 x 105. 

It has been derived (Zaslavsky et al. 1997), using the fractional kinetic equa- 
tion, and the renormalization group, that  in the case of anomalous transport  
involving self similar island chains, 

ln(~,)  (20) 
I~- ln(~t)" 

This is confirmed in the present case, and has already been confirmed for the 
web map (Zaslavsky et at. 1997, Zaslavsky and Niyazov 1997) and recently for 
the Cassini billard (Zaslavsky and Edelman 1997). 
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Fig. 21. pp computation as a function of time range used, for the curve displayed in 
Fig. 19. 

3 P h a s e  s p a c e  s t r u c t u r e s  a n d  s t i c k i n e s s  

The link between anomalous transport  and phase space topology is an im- 
portant  issue. In the case of self similar island chains, when a singular zone ex- 
hibits anomalous stickiness properties, the resulting transport  can be expressed 
in terms of topological properties of this chain Eq. (20). However, the self sim- 
ilarity of island chains is not a sufficient condition for anomalous transport.  
There are also self similar structures which give neither trapping nor anomalous 
transport.  Two very clear examples are given by K = 1.6615554, which is a 
satellite structure of type 6-6-6-6-6-6, and K --- 2.8027452, of type 4-4-4-4-4-4. 
In both cases there are large stochastic gaps between islands, so that  orbits are 
not constrained in passing. 

In this section we will focus on alternate forms of topological structures 
responsible for anomalous transport  in the standard map. The examination of 
the case near threshold allows us to find trapping due to complex multi island 
layers. These topological structures present another kind of trap. Near threshold 
it is convenient to study motion in angle (x) rather than in action (p) because 
of prevailing of a ballistic propagation along x. An ensemble average of initial 
conditions gives the long time behavior of the motion in x as 

< x 2 >_~ t ~', (21) 
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where the brackets indicate an ensemble average with initial conditions taken in 
the stochastic sea. For K below threshold the motion in x is s imply given by flow 
along Kolmogorov- Arnold-Moser (KAM) surfaces, so # = 2 (ballistic motion).  
For very large K the motion is stochastic and diffusive, with ~ = 1. In the 
transit ion region just  above threshold particular values of K give large values 
of ~ due to strong trapping near islands. In the present work we numerically 
determine the nature of the t rapping and hence the cause of the anomalous 
behavior. 

To observe long t ime trapping, it is simplest to look for the associated flight. 
We scan values of K and measure average square distance travelled for an ensem- 
ble of initial conditions. A Poincard plot of individual orbits with flights of length 
greater than 107 then identifies the structure responsible for the flight. In Fig. 
22 is shown a result of scanning K near threshold and measuring < x 2 >,  versus 
time. For this purpose the variables x ,p  are kept on the cylinder, - o o  < x < (x), 
-Tr < p < rr. Otherwise orbits with large p can contribute significantly to < x 2 >, 
but  have nothing to do with trapping. Each point is the result of 105 steps with 
2 × 103 initial conditions, all chosen in the stochastic sea near x = 0, p = 0. It  
is seen tha t  all near-threshold t ransport  in x is anomalous, w i th / t  > 1. 

There is an overall decrease in p towards 1 as K increases and the islands 
vanish, but for some K values there are definite peaks. Figure 22 must  be con- 
sidered as the result of a simulation of a definite t ime length. Simulations of 
different lengths produce somewhat  different plots, for reasons we will explain, 
but  the peaks persist. 
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Fig. 22. Exponent # for anomalous transport in x versus K near threshold. 
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We find that the major peaks shown in Fig. 22 are all due to satellite island 
chains born from the same period three island chains located at p ~ +2. Each 
major peak of Fig. 22 is labeled with the periodicity of the island chain born. 
The newly formed chains tend to have associated with them a large number 
of smaller islands with small passages between islands chains, indicating the 
destruction of a KAM surface at slightly smaller values of K, and the presence 
of cantori (Hanson et al. 1986, Meiss and Ott 1986). 

Although most trapping structures are very complex, some of them are simple 
enough to allow us to extract the essential property which governs their behav- 
ior. This appears to be the existence of a heirarchy of phase space domains with 
geometrically related time scales. One example with both geometrically decreas- 
ing size and frequency scales, which we will refer to as a satellite type, has been 
given in a previous publication (Benkadda et al. 1997). In this work we find that 
the dominant cause of trapping is due to multilayered structures, consisting of 
many well ordered islands with similar spatial scales but geometrically related 
time scales. Such a structure is demonstrated in Figs. 23- 25 which will be dis- 
cussed more later. In the Table 2 are listed some of the structures identified with 
the peaks shown in Fig. 22, for simulations of 106 steps with l0 s initial condi- 
tions. The values shown in Fig. 22 used fewer initial points for shorter times, for 
computational reasons, and therefore differ somewhat from those of the table. 

Table 2 - Major trapping structures and properties 
K islands A ~ 7 a 

1.02 period 3-7 0.3361 1.8 2.1 2.1 
1.06 period 3-6 0.2934 1.6 2.1 3.8 
1.16 iperiod 3-5 0.2479 1.4 2.4 3.2 
1.2415 period 3-4 0.2179 1.6 2.6 3.1 
1.245 )eriod 3-4 0.2239 1.7 2.5 2.6 
1.42 period 3-3 0.1068 1.7 2.4 2.7 
1.54 period 3-2 0.0267 1.5 2.6 2.9 

The peaks in Fig. 22 at the first two values K - 1.02, 1.06 are very weak, 
and the dominance of the identified trap at these values is not as clear as the 
remaining peaks. Two entries are given for the period 3-4 island, one for K 
just above the birth value, and one near the maximum. The value A is the 
area of the island structure. Also given, with only about 10% accuracy, are the 
anomalous transport exponent ]z, and a and 7; the powers of the long time 
tails for the distributions of time spent within the trap, t -~ and outside the 
trap t -~, with a , 7  > 2, in agreement with the Kac theorem (Kac 1958, Meiss 
1997). Parameter a describes the next strongest trap in phase space, so ~ > 7. 
If no traps existed, the distributions would be Poissonian. Domains including 
island structures responsible for trapping all exhibit long time power law tails 
whereas a domain selected at random does not. We also calculated the Poincar$ 
recurrence time for initial conditions chosen in the stochastic sea and found that 
its probability distribution follows a power law with the same slope 7 as the 
distribution of time spent within the trap. 
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In general these structures are very complex. A more extensive publication 
will examine them in detail. But the essential property appears to be the exis- 
tence of layers of stochastic bands separated by island chains, with geometrically 
increasing time scales as one penetrates inward from the stochastic sea towards 
the last bounding KAM surface. An example of a fairly regular multilayered 
structure is that appearing for K between 1.24 and 1.26 (peak 4 in Fig. 22). 
The structure arises at the birth of four islands from the period 3 chain and it 
is surrounded by many layers of island chains. Poincard plots of a long flight are 
shown in Figs. 23 and 24. 

All strong traps consist of islands born of the period 3 island chain, a fact 
easily understood. There are two larger island structures, seen in Fig. 24 as a 
large central island (period one) and the blank spaces bordering p = +~r (period 
2), but an orbit trapped around either structure has p alternatively positive and 
negative, giving z2/ t  -+ O. Thus the period three traps are the largest structures 
giving nonzero flight. 

The four island structure for 1.24 < K < 1.26 is regular enough to allow 
additional quantitative analysis of the trapping dynamics. A Poincar~ plot with 
random initial points, showing a small part of the island chains surrounding the 
trap, is shown in Fig. 25. 

Four different numerical experiments provide sufficient information to make a 
model. The first is a determination of escape time as a function of initial position, 
the second and third are determinations of the long time tails for time spent 
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F i g .  23 .  Po incar6  plot  w i th  one orb i t  exh ib i t ing  a s t rong  st ickiness (fl ight),  K = 1.2415. 
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inside and outside the trap. The fourth is a measure of the relative probability, 
in each layer, for transition to the layers above or below. 

Fig. 26 shows a determination of mean escape times for K = 1.2415. Initially 
2500 orbits were started near the band labels, m = 1, 2, ...7 shown in Fig. 27. 
We see that the escape time is approximately exponential. 

Another numerical experiment reveals a remarkable property of the island 
chain layers. 

By constructing a domain consisting of an annulus bounded by two of the 
island chains, and starting orbits within this annulus, we find that orbits move at 
most one layer per step and that the probability of leaving the annulus through 
the outside edge is much larger than that of leaving through the inside edge. That 
is, the layers are more difficult to penetrate, by a large ratio, moving inward than 
moving outward. 

From the above information a simple model of the island layer trapping 
structure can be constructed. Consider a trap consisting of M levels, with m = 
0,1,2...,M representing the stochastic layers between adjacent island chains, as 
shown in Fig. 27. The stochastic sea is level 0 and level M is the last layer before 
encountering a bounding KAM surface. Characterize each level by probabilities 
for stepping up P+(m) and down P_(m) in m each time step. We know empir- 
ically that P+(m) << P_(m). To match the exponential nature of the escape 

K ---- 1.2415 
I I I I 
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Fig. 24. Poincar~ plot with one orbit exhibiting a strong stickiness (flight), K = 1.2415. 
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t ime we must have P_ (m) = P_ (m - 1)frn with fm < <  1. The fractions f,,, 
determine the escape time curve. The trapping t ime distribution is determined 
by the ratio r , , ,  = P _  ( m ) l P +  ( m ) ,  and the slope of the distribution becomes 
steeper as rm increases. As a simple model choose f t ,  and rm independent of m, 

P _ ( m )  = P o ~  , P + ( m )  - P°f-----~m (22) 
r 

The values P0 = .25, ] = .18, r = 15 give a reasonable fit to the da ta  obtained 
for K = 1.2415. 

We do not have a means of estimating these parameters from spatio-temporal 
scaling laws, as has been done for the self-similar island chains (Benkadda eL al .  

1997, Zaslavsky 1994), or by assuming that  the long time trapping is dominated 
by particular cantori (Meiss and Ott  1986). Of  course in an actual layered struc- 
ture both / and r will be m dependent. As is seen in Fig. 26 the escape t ime is 
not exactly exponential, but  this simple model is sufficient to capture the main 
properties of the trap. Note that  within the accuracy of the determinations, ex- 
cept for the first two peaks, /J  _ 3/2 and 7 -~ 5/2, values found for a system 
with topology similar to our case (Venkataramani e t  al .  1997). 
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Fig. 25. Poincard plot with one orbit exhibiting a strong stickiness (flight), K = 1.2415. 
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4 Transport and probability density function P(~,t)  

In this section we present a numerical study of the one dimensional proba- 
bility density function associated to variable z : P ( z ,  t) and investigate its link 
to the transport  exponent p. P (z ,  t )dz gives the probability for a particle to be 
located between z and z + dz, with the following initial condition : 

P(x, O) = J(x) (23) 

In the case of diffusion processes the solution of the diffusion equation leads to 
the well known result : 

P ( z , t )  = (4~rDt)-ll2ezp ~ (24) 

where D is the diffusion coefficient, and for which all moments defined by : 

< x"~ > =  t ~ l i m / + ~  xmP(x,t)dx , (25) 

are finite. In case of the fractional Brownian motion, P(x, t) leads also to finite 
moments for all m. 
Conversely, processes involving Ldvy flights are characterized by the existence of 
m such that  moments of order larger than m are infinite. Hence, the knowledge 
of P(z,t) gives an important  qualitative information about the nature of the 
processes. We will show that  it can also give a quantitative estimate of the 
anomalous transport  exponent tt. 
The  numerical study of P(z,t) consists in following 105 trajectories initially 
located near the hyperbolic fixed point (0, 0). At different times : t l  = 104, 
t2 = 5.104, t3 = l0 s, t4 = 5.105, t5 = 106, the orbit locations are recorded 
and histograms are built. The number of bins is kept constant and equal to 
100 for each time, which implies that bin size depends on time according to 

In Fig. 29, are shown loglo(P(z, t)) as a function of z for different times t l . . . t s .  
Each curve is symmetric as expected showing that  orbits can be stuck with equal 
probability, to each of the island chains of period 3 responsible for anomalous 
transport.  It is clear also that  each curve deviates from Gaussian, confirming that  
the transport  is not diffusive. In Fig. 30 are shown loglo(P(x, t)) as a function 
of loglo(x) for positive x. 

P(x, t) exhibits a power law behaviour with different powers. Nevertheless, 
for t > 104 the power is fairly stable and P(z, t) has the form : 

~ Ixl , with J = 2 . 6  ± 0 . 1  (26) 

This behaviour shows that  L~vy statistics must be involved to describe the dy- 
namics and that  moments diverge for m > 2. In Fig. 30 , all previous curves are 
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Fig. 28. loglo(P(x, t)) as function of x for 
different times. 

presented on the same graph showing the same shape shifted in x. 
Let us assume that P(x ,  t) can be written in the general form : 

t v ~6 
P ( x , t )  = \ -~1 )  (27) 

Let us consider then two pairs (g l ,  t l ) ,  (;g2, t2) such that P ( x l ,  t l)  = P(x2,  t2), 
which can be obtained from Fig. 30 by the intersection of straight line log(P(x,  t)) = 
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const and the two curves log(P(x, tl)), log(P(z, t2)). Using the general expres- 
sion of P ( x , t ) ,  we find : 

_ tog( l/=2) (28) 
log(tilt2) 

The estimation of v can be performed for different pairs (zx,tl), (x2,t2) in 
order to check its stability and the pertinence of the general expression assumed 
for P(x,t) .  This has been done for P(z l , t l )  and P(z2,t2) with tl = 105 and 
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t2 = 106. The result is shown in Fig. 31 which displays v as a function of  
tog(P(x ,  t)) = eonst. 

o .~m 

o s  

o . l m  

o . l m  

o.l~4 

o ~  

o a  

o.Tm 

o.7 ,s  

o.7~.  

o . ~ 1 4  

.4- 

÷ 
÷ 

,,4. 

_t_ 

÷ 
÷ ÷ 

- ~  s o - 1  s -41~m 
t . ~ , o ( P ( , ¢  t )  

÷ 

i 
- J !  

Fig .31 .  u as a function of loglo(P(x,t)) = const between tt = tO 5 and t2 = 10 e. 

The  shape of  this curve shows that the slope that exhibits P ( x ,  t2) is lower 
than the slope exhibited by P ( x , t l ) .  NevertheLess, the variation is weak within 
the range of  interest and r, can be est imated : 

v = 0.8 5:0.06 (29) 
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As the transport exponent # (cf Eq. (18)) is related to t /by  # = 2t,, from Eq. 
(29) we derive:/J = 1.6 + .12 in agreement with the value reported in the Table 
2. 

5 Conclusion and discussion 

The fine structure of the phase space of Hamiltonian systems is the primary 
origin of anomalous transport. Long-range correlation effects occur from visits of 
orbits to boundary layers in the vicinity of islands. This phenomenon is generally 
refered to as the stickiness of the islands. We have shown that for small changes 
of the stochasticity parameter strong topological changes can occur in the phase 
portrait of the system, with a corresponding strong change in the transport 
characteristics. For particular values of map parameter island structures can 
exist which are very sticky, giving very anomalous transport. As a concrete 
example we considered in this paper kinetic properties of the standard map 
near the threshold of the accelerator mode of period 5 and found a value of K 
producing an exact self-similar chain of islands associated with this accelerator 
mode. Spatio-temporal properties of this island chain have been numerically 
determined. We have shown that the kinetics is anomalous near the accelerator 
mode and corresponds to a superdiffusion process with a characteristic exponent 
related to the spatio-temporal scaling parameters of the island chain. We also 
found that the asymptotic behavior of the probability distribution of escape 
times from boundary domains of the self-similar chain of islands follows a power 
law, and that these escape times are renormalized according to the generation 
of the island considered. Moreover it was shown that the exponent of the power 
law which rules the escape time distribution is related to the transport exponent 
/J. 

Near stochastic threshold of the map, K _~ 1, it is found that the dominant 
contributions to anomalous transport are from multi-layered island structures of 
great complexity. The anomalous transport is related to the trapping time distri- 
bution which is determined by the scaling of transition rates between stochastic 
bands deep within the traps. For this reason the transport exponent can depend 
in a complicated way on the length of the simulation, and may not converge to a 
well defined value. In cases where the island chains form a fairly regular, ordered 
set of layers the dynamics of the trap can be successfully modeled. 

Note that there is no reason to expect traps to have simple structure. In 
general, simulations of different length will explore different levels of a trap and 
lead to somewhat different long time tails. In addition most traps do not possess 
only one path leading from the stochastic sea to the innermost bounding KAM 
surface, but many paths with different time scales present along different parts 
of each one. Thus it is not reasonable for a given continuous time random walk 
analysis to give accurate results for every time interval, nor for the values of 
exponents related to characteristic times probability distributions and p to con- 
verge to definite values for experiments of arbitrary length. The real situation 
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in the standard map seems to be infinitely complex, different for each value of 
K,  and unlikely to be described by a simple universal model constructed for 
one dimensional systems. One can say that  real situation is rather multifractal 
than fractal, nevertheless, different properties of the anomalous transport  (Mon- 
troll and Shlesinger 1984, Afanas'ev et al. 1991, Shlesinger et al. 1993) can be 
efficiently used to make models in corresponding intervals ("windows") of the 
parameter  K.  
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