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Preface

The XII Predoctoral School of Astrophysics, organized by the European As-
trophysics Doctoral Network (EADN) took place on 6–17 September 1999, and
was hosted by the Faculty of Physics of the University of La Laguna (Tenerife,
Spain). The topic of the School was chosen because of the important role played
by binary stars in modern astrophysics. Today, it is thought that at least half
of all known stars in our galaxy form and evolve in binary or multiple systems,
and this makes the study of binary stars essential to our understanding of stellar
evolution. The physics of binary stars is a very active area, in which recent major
advances have been made, both in theoretical modelling and observations. While
the study of binary stars is a field with too many branches to be fully covered
in a two-week course, for the 1999 EADN School we selected a few topics that
gave a rather wide view of the present research.

The school was attended by 41 students from 12 different European countries
(Belgium, Croatia, Estonia, France, Germany, Greece, Italy, Ireland, Poland,
Portugal, Spain and the United Kingdom). The lectures were delivered in the
mornings over two weeks, with two afternoon sessions in which the students had
the possibility of presenting their research work in the form of a short talk or
poster paper.

The students’ accommodation and other organizational costs were partially
covered by the European Union Training and Mobility of Researchers Programme,
Contract No. ERBFMMACT960173, and by a grant from the Gramholm Foun-
dation of Sweden. We acknowledge the support received from the following in-
stitutions: the University of La Laguna, the Instituto de Astrof́ısica de Canarias
and the island’s local authorities (Cabildo de Tenerife) and La Laguna Town
Hall). The travel costs of the invited lecturers were partially covered by Iberia
airlines, while the Disa Oil Corporation supported the cost of the coffee breaks
offered to attendants at the School. We are much indebted to Prof. Tom Ray,
from the Dublin Institute for Advanced Studies (Ireland), Coordinator of the
EADN Schools, for his advice in the organization of the XII Predoctoral School.

La Laguna F. Carlos Lázaro
February 2001 Maria J. Arévalo
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1 Physical Processes in Close Binary Systems

Antonio Claret1 and Alvaro Giménez1,2

1 Instituto de Astrof́ısica de Andalućıa, CSIC,
Apartado 3004, E-18080 Granada, Spain
claret@iaa.es

2 Laboratorio de Astrof́ısica Espacial y F́ısica Fundamental, INTA,
Apartado 50727, E-28080 Madrid, Spain
ag@laeff.esa.es

Abstract. We review briefly some basic aspects of the structure and evolution of a star
distorted by tides and rotation. Proximity effects like, for example gravity-darkening,
are discussed using the properties of stellar internal structure. On the other hand,
the differential equations of the dynamics of close binary systems are discussed with
particular attention to apsidal motion. The tidal evolution equations for late and early-
type stars are also included and theoretical predictions are compared, when possible,
with observations. Concerning stellar atmospheres, limb-darkening laws are revised
using recent models. Furthermore, the influence of an external radiation field on the
distribution of the intensities and on the irradiated spectrum is also investigated.

1.1 Introduction

The theory of stellar structure and evolution is certainly one of the most im-
portant achievements of modern Astrophysics. It allows us to understand the
observational HR diagram, the stellar content of clusters and galaxies, their
chemical evolution, the estimation of ages and distances for single stars, or the
evolution of close binary systems. A quite good description, both qualitative
and quantitative, of stellar structure and evolution is now-a-days available and
the comparison of theoretical models with observations has provided important
constraints to our knowledge of the Universe. Among the most important ones
is the possibility to look to stars into the past and compare stellar structure for
different ages. These results have to be carefully evaluated under the light of the
adopted input physics for the models.

In order to test the theory, or derive empirical values for adopted parameters,
observational data are needed. But the main parameter driving the structure
and evolution of a star is its mass, which can only be determined accurately
in binary systems. The study of astrophysical processes in detached eclipsing
binaries is thus a well-known method to empirically explore stellar structure for
conditions different than those in the Sun. The need for double-lined eclipsing
binaries comes from the requirement of accurate dimensions for a variety of stars,
allowing a reliable comparison of observational data with theoretical predictions.
In our aim of deriving new information from the comparison of observations with
theoretical models, another condition is to restrict the star sample to members of

F.C. Lázaro, M.J. Arévalo (Eds.): LNP 563, pp. 1–47, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



2 A. Claret and A. Giménez

well-detached binaries. We consider a double-lined eclipsing binary to be “well-
detached” when the two components behave like “normal” single stars in all
aspects except their dynamical evolution, i.e. they are well inside their Roche
critical limits, there is no mass transfer, and previous evolution has not been
affected by binarity. The problem from the observational point of view is of
course that most well-detached binaries will become interacting when they evolve
and their radii become close to their Roche lobe. It is therefore difficult to find
evolved stars in binaries still in a well-detached configuration.

In the following pages, we intend to introduce briefly how theoretical models
are constructed, which are their main problems and uncertainties, and how they
can be better understood under the illuminating information provided by double-
lined eclipsing binaries. For this purpose, we have separated this presentation
in five sections, including the Introduction. The second section set the scene
for theoretical developments indicating the needs for additional information. In
the third section, we explore the modifications introduced in stellar structure
for binary stars, while their atmospheres are treated in Sect. 4. The dynamical
behavior of detached binary systems is discussed in the fifth section. The com-
parison between theoretical predictions and actual observations are performed
in each section, when possible. Finally, on the word close in the title of this
Chapter. We refer to close binaries as double systems for which the proximity
effects caused by deformations are important; not those which interact strongly,
exchanging mass, for example.

1.2 Basics of Stellar Structure

1.2.1 Equations of Hydrodynamics

Because of the prevailing physical conditions in their interiors, stars can gen-
erally be studied as self-gravitating fluids. We therefore use standard equations
of hydrodynamics to specify local physical quantities (like density, ρ, pressure,
p, and instantaneous velocity, v, or any other thermodynamical quantity that
may be needed) as a function of position, x, and time, t. For a given point, the
position in space corresponds to what is seen by a stationary observer in the
Eulerian description while, if it corresponds to that seen by an observer that
follows the motion of a reference element, we use the Lagrangian description of
the fluid. Both are connected through the Lagrangian derivative,

D

Dt
≡ ∂

∂t
+ v · ∇ (1.1)

which can be applied to any studied quantity of the fluid.
For the study of stellar structure, three well-known equations of hydrody-

namics are found to be useful:

1. The equation of continuity,

∂ρ

∂t
+ div(ρv) = 0 (1.2)
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which gives the rate of change of mass-density in a given element of flowing
gas. If we furthermore define the specific volume as V = 1/ρ, measuring the
volume taken up by a unit of mass, and use the Lagrangian description of
the equation of continuity, we can write,

1
V

DV

Dt
= divv (1.3)

and divv is the rate of expansion of a given volume of gas during its motion.
2. The equation of motion

∂v

∂t
+ (v · ∇)v + 2ω×v = −1

ρ
∇p− ω × (ω × r) + f (1.4)

for a frame of reference rotating at the angular rate ω, where f denotes
the external forces per unit mass (which have yet to be specified) other than
those corresponding to rotation or pressure (either from the gas or radiation).
Let us now consider three possible contributions to f :
• The force per unit mass due to gravity, which is nothing else than the

gravitational acceleration g and can be expressed through the gradient
of a potential ΦG,

g = ∇ΦG (1.5)

such that the mass-density obeys Poisson’s equation,

∇2ΦG = −4πGρ (1.6)

where G is the gravitational constant and ΦG(x, t) is the full gravita-
tional potential, i.e, taking into account self-gravitation terms as well as
external contributions. Moreover, we can express the term of the cen-
trifugal force by means of a rotational potential,

ΦR = −1
2
(ω × r)2 (1.7)

such that ∇ΦR is the centrifugal term and we can combine it with the
gravitational term using Φ = ΦG + ΦR. Of course, Poisson’s equation
should be re-written as,

∇2Φ = −4πGρ + 2ω2 (1.8)

In the absence of any further contribution to the force acting on the fluid
element, Euler’s equation of motion takes the form,

∂v

∂t
+ (v · ∇)v + 2ω × v = −1

ρ
∇p +∇Φ (1.9)

• The force due to the presence of a magnetic field with strength B,

f = − 1
8πc

∇B2 +
1

4πc
(B · ∇)B (1.10)

under the assumption of no displacement currents and setting the mag-
netic permeability μ = 1.
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• The force due to frictions or viscous force can be expressed through divτ̂ ,
where τ̂ denotes the stress tensor of viscous dissipation forces.

3. The equation of energy conservation,

DQ

Dt
=

DU

Dt
+

p

ρ
divv (1.11)

which is derived from the first law of thermodynamics as a Lagrangian de-
scription for the rate of change of the heat per unit mass, Q, in terms of that
for the total internal energy U .
The heat rate of change will equal that of the internal energy only for in-
compressible fluids. Moreover, the heating term can be expressed, taking into
account all contributions, as

ρ
DQ

Dt
= Φv + ρε− div(F + F r) (1.12)

where F and F R are, respectively, the heat and radiative flux vectors, while
ε represents the rate of energy released by thermonuclear reactions and Φv

denotes the rate at which heat is generated by viscous friction, thus called
the dissipation function.
Following Fourier, we can express the heat flux using the thermal conduc-
tivity, χ,

F = −χ∇T (1.13)

and the radiative flux using the opacity of matter,

F R = −4acT 3

3κρ
∇T (1.14)

where a is the radiation density constant, κ is the opacity, and c is the speed
of light.
An additional contribution to (eq. 1.12) should also be considered if transport
of energy is possible via turbulent convection of fluid elements. We will see
this later. On the other hand, we can express the contribution to the energy
of the system due to the displacements of matter shells through the entropy
function S.

1.2.2 Equations of Equilibrium

We can obviously study the figures of equilibrium of stellar structure using the
equations in the previous section under different external conditions. To start
with, let us assume the simplest case, when,

1. Viscosity in the stellar structure is negligible (τ̂ = 0).
2. There are no magnetic fields, or they are also negligible (B = 0).
3. Stars are in hydrostatic equilibrium and there is no motion of the fluid

elements with respect to the rotating reference frame (v = 0).
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The equation of motion (eq. 1.9) is then reduced to the equation of hydro-
static equilibrium,

∇p = ρ∇Φ (1.15)

where the potential Φ still represents the combination of the gravitational and
centrifugal contributions. Moreover, the gravitational term includes self gravita-
tion of the stellar configuration as well as the contribution of external potentials.
In other words, this equation is valid for the case of binary stars with rotation
and tides. It implies moreover that, even for non-spherical figures of equilib-
rium, surfaces of equal pressure, density, or mean molecular weight, are defined
by equipotential surfaces.

In addition, the equation of continuity takes the form,

∂ρ

∂t
= 0 (1.16)

and both, (eq. 1.15) and (eq. 1.16), can be re-written in the more familiar form,

dp

dm
= −G

m

4πr4 ρ (1.17)

dr

dm
=

1
4πr2ρ

(1.18)

if we consider only the contribution of self gravitation for the potential, i.e.,
non rotating isolated stars, and thus spherical symmetry. In such case, Pois-
son’s equation can be integrated to obtain an explicit form of the gravitational
potential.

To determine three quantities (ρ, m, p) as functions of the relative radius r, we
need something more than two differential equations. Additional constraints are
needed, either in the form of equations relating the three unknown parameters
or with new differential equations. In the first case, we should adopt relations
p = p(ρ) like that adopted for the set of the polytropic models. Since we know
that a realistic equation of state p = p(X, ρ, T ) requires an adequate knowledge of
the local temperature and chemical composition, additional differential equations
are needed to close the problem, taking into account the thermal behavior of the
stellar structure.

The simplest expression available for the equation of state of stellar matter
considers an ideal gas and radiation pressure in such a way that,

p =
k

μmU
ρT + aT 4 (1.19)

being k the Boltzman’s constant, μ the mean molecular weight, and mU the
atomic mass unit.

Using the definition of luminosity as,

L(r) = 4πr2F (r) (1.20)
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the equation of energy conservation (eq. 1.13) for spherical symmetry can now
be written as,

dL

dm
= ε− T

∂S

∂t
(1.21)

which, under equilibrium conditions, neglecting the rate of heat change in com-
parison with the energy flux, becomes the more familiar,

dL

dm
= ε (1.22)

This later simplification, equivalent to neglecting the time derivative of the
entropy function, is permitted as long as we consider variations in time which
are slow compared to the Kelvin-Helmhotz time scale.

On the other hand, the equation of energy transport for the radiative flux
can be used to determine the temperature gradient, neglecting the contribution
of thermal conduction, since for spherical symmetry,

dT

dm
= −GmT

4πr4p
∇ (1.23)

where

∇ = ∇rad = − 3κL(r)p
16πacGmT 4 (1.24)

The only remaining term is that taking into account the transport of energy
through turbulent gas motions, as expected in convective regions where∇=∇conv

which is computed using the theory of convection. This depends on the value of
∇cri that is given by

∇cri = ∇ad −
(

∂lnT

∂lnμ

)
p,ρ

∂lnμ

∂m

4πr4p

Gm
(1.25)

The computation of which is the dominant contribution to the energy trans-
port, either radiation or convection, is made through the Schwarzschild criterium,
i.e., the lowest temperature gradient.

For the computation of simple stellar structure models we have now 4 dif-
ferential equations (hydrostatic equilibrium, conservation of mass, conservation
of energy, and energy transfer). Establishing physically realistic boundary con-
ditions, we can solve them for four independent quantities provided that any
additional parameter involved in the equations is independently known (nuclear
reaction rates, opacities, or convective energy transport coefficients).

The above equilibrium equations then take the form given by eqs. 1.17, 1.18,
1.22 and 1.23, where ∇ = ∇rad if ∇rad < ∇cri or ∇ = ∇conv if ∇rad > ∇cri

where ∇cri and ∇rad are the critical and radiative gradients, respectively. In the
right-hand side of (eq. 1.22) we can include the term −T∂S/∂t if we want to
take into account the time variation of the total entropy or εν for energy loss via
neutrinos.

As a consequence, we can compute all basic stellar parameters (radius, den-
sity, pressure, temperature, and luminosity) throughout the stellar interior as a
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function of the relative mass for a given total mass and chemical composition
distribution.

The distribution of chemical elements is a function of the initial chemical
composition and age. If composition changes are assumed to be only due to nu-
clear reactions (neglecting e.g., diffusion), the abundance by mass X of hydrogen
for example is given through the variation,

dX

dt
= −rX (1.26)

where rX is the net destruction rate obtained by summing over the reactions in
which hydrogen is involved.

Numerical methods to solve the given set of differential equations with the
corresponding internal and external boundary conditions follow two different
approaches. In the first method, known as the shooting technique, the four dif-
ferential equations are integrated from the center to a selected fitting point and
from the surface down to the same point. The final solution is obtained by re-
quiring that both integrations agree at the selected matching point. The second
method, leading to relaxation techniques, approximate the differential equations
by a set of difference equations. In this way, N (the number of shells) equations
of the form, (

Yi+1 − Yi

xi+1 − xi

)
−Gi+ 1

2
= 0 (1.27)

are used, where Gi+ 1
2

are the generic right-hand terms of the differential equa-
tions evaluated at the middle of the interval. A method is then applied us-
ing differential corrections until some pre-adopted criterium for convergence is
achieved. Details about the different numerical methods available can be found
in Kippenhahn et al. (1967) and Kippenhahn and Weigert (1990).

1.2.3 Changes in the Adopted Simplifications

Reality is of course much more complicated than the up to now adopted simple
assumptions. We will describe in Sect. 3 the modifications introduced by con-
sidering the effects of rotation and tides. In this section we will only make some
comments about the expected problems for single stars even with negligible dis-
tortion, that have not been discussed in the evaluation of stellar structure or
were assumed to be well known.

1. Opacity: Due to the complexity involved in the physics, the opacities are
computed by specific codes and tabulated as a function of the chemical
composition, temperature and density. Given that an evolving model changes
its internal distribution of chemical elements due to nuclear burning, several
tables are needed to take into account these changes. For example, non-ideal
gases have to be considered for partial ionization of heavy elements and
absorption by more than just hydrogenic approximations have to be taken
into account.
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2. Nuclear Reaction rates: Let us consider only the nuclear reactions that are
important for energy generation. They are the p-p chain, and the CNO cycle,
for hydrogen burning, and the triple-alpha reaction, for helium burning. If
nucleosynthesis studies are to be carried out, additional reactions must be
included (Fowler et al. 1975, Caughlan et al. 1985, 1988).
The change with time of a given chemical element Xi is

∂Xi

∂t
= −

∑
k

εk

Qik
+
∑

j

εj

Qij
(1.28)

where k represents all reactions that destroy i while j denote the reactions
creating it, Qik and Qij are the involved energies, while εik and εij are the
nuclear energy generation rates.
If we are dealing with a convective region we have

∂Xi

∂t
=

∫
conv

(
−∑k

εk

Qik
+
∑

j
εj

Qij

)
dm∫

conv
dm

(1.29)

3. Equation of state: The total pressure is the sum of the gas pressure and the
radiation pressure. The ions and the electrons contribute to the gas pressure.
The latter contribution depends on the degree of ionization and degeneracy.
For a non ideal gas, as in the case of the opacities, the thermodynamical
quantities are given in extense tables computed by specific codes. For ex-
ample, for the physical conditions prevailing at the stellar cores, relativistic
effects should be considered in the evaluation of velocities and pressures due
to electrons. A good review on the role of the equation of state in stellar
evolution can be found in Christensen-Dalsgaard and Däppen (1992).

4. Chemical composition distribution: Often the chemical profile in the interior
of a stellar models depends on the nuclear rates which took place locally and
on the time. However, it is possible that the chemical elements may migrate
to regions of higher temperature/pressure. Such a diffusion process is slower
than the nuclear time but for some cases it may be important. Rotation also
may induce changes in the chemical profile (Zahn 1992).

5. The energy transport: The energy in the interior of a star may be trans-
ported by radiation, convection and conduction depending on the physical
conditions. In the case of convection, there are hotter macroscopic mass
elements which move upwards while the cooler ones move in the opposite
direction allowing for an exchange of energy. Of course, a region where con-
vection dominates is chemically homogeneous. The switch between radia-
tion/convection follows the Schwarzschild criterium. Such a limit may be
exceeded if we consider convective overshooting. This is due in few words
to the non-zero velocity of the convective cells when they reach the surface
where the Schwarzschild criterium is verified. Penetration in stable radiative
regions is unavoidable, but it is only poorly known how relevant the effect is
and the way to quantify it. On the other hand, for a gas of electrons which
is highly degenerate, another process appear: heat conduction.
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6. Mass loss/gain: A star can lose mass during its evolution through stellar
winds (slow process) or through catastrophic events. Binary systems also
gain/lose mass when their components achieve their Roche lobes. These
loss/gain of mass obviously change the structure and future evolution of
such stars. Concerning the mass loss/gain in binary systems, see de Loore
(1999, this volume) and for rates of mass loss through stellar winds, see
Nieuwenhuijzen & de Jager (1990).

1.3 Perturbed Stellar Structure

1.3.1 Stellar Shapes

Stars are, in general, not spherical bodies. Rotation produces a flattening at
the poles while tidal effects in close binary systems produce an elongation or
oblateness in the direction of the companion star. The real shape of a star which
belongs to a binary system will thus be given by the combination of both effects.
For those readers interested in more details on the mathematical formulation,
see Kopal (1959, 1978).

The equations of hydrodynamics should be able to reproduce the behavior
of stellar structure under the effects of rotation and tides. In fact, the equation
of hydrostatic equilibrium (eq. 1.15) is valid for stellar configurations with both
contributions, and showed that surfaces of equal density, pressure (and chemical
composition), correspond to those with equal potential. The problem of obtaining
the actual distorted shape of real stars is therefore reduced to the evaluation of
the potential due to all forces acting on any point of the configuration.

Let us consider a generic point within the star, P (r, θ, φ) (Fig. 1.1) attracted
by a stratum comprised between ro and r1. The interior and the exterior potential
will be given by:

V int = G

∫ r1

ro

dm′

Δ

V ext = G

∫ ro

0

dm′

Δ
(1.30)

Fig. 1.1. Geometry for the determination of the potential.
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where the distance between the mass element dm′ and the point P is given by,

Δ =
(
r′2 + r2 − 2rr′ cos γ

)1/2
(1.31)

where the angle γ between the position vectors of the mass element and the
point P is,

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ′ − φ) (1.32)

Using now Legendre polynomials,

1
Δ

=
1
r

∞∑
n=0

(
r′

r

)n

Pn(cos γ) for r′ < r (1.33)

1
Δ

=
1
r′

∞∑
n=0

( r

r′
)n

Pn(cos γ) for r′ > r (1.34)

respectively, for internal and external points, the potential becomes,

V =
∞∑

n=0

(r′)nV int
n +

∞∑
n=0

(r′)−n−1V ext
n (1.35)

where,

V int
n = G

∫ R

r

∫ π

0

∫ 2π

0
ρr1−nPn(cos γ)dr sin θdθdφ r′ < r (1.36)

V ext
n = G

∫ r

0

∫ π

0

∫ 2π

0
ρr2+nPn(cos γ)dr sin θdθdφ r′ > r (1.37)

for the potential on P of mass elements internal (external) to it in the stellar
configuration.

The radius r will be a function r(a, θ, φ) representing the equation of an
equipotential surface, where a is the average radius of the equipotential. We can
then write,

r = a

⎡
⎣1 +

∞∑
j=0

Yj(a, θ, φ)

⎤
⎦ (1.38)

where Yj are spherical harmonic functions with respect to the center of mass. If
Yj(a, θ, φ) can be factored using Legendre polynomials and an amplitude function
as

Yj(a, θ, φ) = fj(a)Pj(θ, φ) (1.39)

and we can neglect terms including Y 2
j , it is possible to use a well-known condi-

tion of orthogonality for Legendre polynomials,∫ π

0

∫ 2π

0
Pn(cos γ)Yj(a, θ, φ) sin θdθdφ =

4π

2j + 1
Yj(a, θ′, φ′) (1.40)
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for j = n, but it is null if j �= n.
This allows us to change variable from r to the more convenient a, as well as

the simplification of the involved integrals, to finally get,

V = 4πG

∫ R

a

ρada +
∞∑

j=1

aj 4πG

2j + 1

∫ R

a

ρ
∂(a2−jYj)

∂a
da +

Gm(a)
r

+

+
∞∑

j=2

4πG

(2j + 1)aj+1

∫ a

0
ρ
∂(aj+3Yj)

∂a
da (1.41)

where we have used the mass internal to the distance a as given by,

m(a) = 4π

∫ a

0
ρa2da (1.42)

and the surface value R corresponds to the first root of ρ(a) = 0.
The terms of the potential corresponding to n = 0 were extracted from the

series and the term for n = 1 of the external potential vanishes due to symmetry
(the center of mass coincides with the center of coordinates).

Let us assume now that the external disturbing potential can also be ex-
pressed in terms of Legendre polynomials as,

V ′ =
∞∑

j=0

cja
jPj(θ, φ) (1.43)

where cj depend on the nature of the distortion. This is just a general solution
of Laplace equation ∇2V ′ = constant.

Since the total potential, V + V ′, should be constant for surfaces of equal
pressure or density, the coefficients corresponding to individual values of j must
all cancel, i.e. from (eq. 1.41) using (eq. 1.38) and (eq. 1.42),

Y i
j

∫ a

0
ρa2da− 1

(2j + 1)aj

∫ a

0
ρ
∂(aj+3Yj)

∂a
da− aj+1

2j + 1

∫ R

a

ρ
∂(a2−jYj)

∂a
da =

cj

4πG
aj+1Pj(θ, φ) (1.44)

which is known as Clairaut’s equation. If we are dealing with equipotential sur-
faces, then there will be n equations, as the one above, describing the distorted
stellar surfaces (due to V’ through cj).

Further derivation with respect to a of Clairaut’s equation gives,(
jYj

aj+1 +
1
aj

∂Yj

∂a

)∫ a

0
ρa2da−

∫ R

a

ρ
∂(a2−jYj)

∂a
da =

cj

4πG
(2j + 1)Pj(θ, φ)

(1.45)
where, for a = R the second integral becomes zero while the first one is M/(4π).
Using logarithmic derivatives we can now define,

ηj(a) =
a

Yj

∂Yj

∂a
(1.46)
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and the surface distortion parameter is defined as

Δj =
2j + 1

j + ηj(R)
(1.47)

all of which allows us to finally write, for the spherical harmonics at the stellar
surface,

Yj(R, θ, φ) = cjΔj
Rj+1

GM
Pj(θ, φ) (1.48)

describing the shape of the stars, although not explicitly because the harmonics
are also found in the distortion parameter and, of course, cj is still to be specified.

1.3.2 The Internal Structure

Let us now evaluate how the internal constitution of the star affects its external
shape in a close binary system. A second derivation of Clairaut’s equation with
respect to a gives,(

a2 ∂2Yj

∂a2 − j(j + 1)Yj

)
3
a2

∫ a

0
ρa2da + 6ρ

(
a
∂Yj

∂a
+ Yj

)
= 0 (1.49)

and, using the logarithmic derivatives (eq. 1.46), we can transform the second
order differential equation into a first order one, which is the Radau’s equation
(or Clairaut-Radau),

a
dηj

da
+ 6

ρ(a)
ρ(a)

(ηj + 1) + ηj(ηj − 1) = j(j + 1), (j = 2, 3, 4, ...) (1.50)

with ηj(0) = j − 2 as a boundary condition, being ρ(a) the average density
internal to the distance a as given by m(a).

The solution of Radau’s equation, for a particular density distribution, gives
values of ηj(R), and allows us to know how the internal structure (ρ/ρ) affects
the distorted configuration through (eq. 1.47) and (eq. 1.48). The solution is
generally obtained for a given density distribution through a fourth-order Runge-
Kutta numerical integration of (eq. 1.50). An example based on more realistic
models is shown in Fig. 1.2.

For practical reasons, since the dependence of the dynamical behavior of the
binary system is a function of Δj − 1, the apsidal motion constants are also
introduced by means of

kj =
1
2
(Δj − 1) =

j + 1− ηj(R)
2 (j + ηj(R))

(1.51)

where, again, ηj describe the derivatives of the deviations of the equipotential
surfaces from spherical symmetry and R is the radius of the configuration. The
apsidal motion constants can be directly compared with observational values as
we will show in Section 5. A value of ηj(R) = j +1 is obtained for configurations



1 Physical Processes in Close Binary Systems 13

Fig. 1.2. The integrated values de η(r) for a 10 M� model. The thick line denotes a
ZAMS model while the thin one represents a model at the TAMS.

with infinite concentration of mass towards the center while for a homogeneous
mass distribution is ηj(R) = j − 2. Thus the apsidal motion parameters, k2, for
these two extreme examples, following (eq. 1.51), will be between 0 and 0.75
(observational data show that real stars are in fact highly concentrated in mass
with values of k2 around 0.01).

1.3.3 The Perturbing Potential

We can now evaluate the significance of the distortion through the coefficients cj

in (eq. 1.43). Using the obtained derivatives of Clairaut’s equation, it is possible
to show that the perturbing potential, at a distance r > R can be written as,

V ′(r) =
GM

r
+

∞∑
j=2

2kj
R2j+1

rj+1 cjPj(θ, φ) (1.52)

Let us assume that now that, at large distances, the perturbing potential is
well reproduced by that of a mass point, i.e., we can neglect the second term in
the right-hand side of (eq. 1.52) and, using again Legendre polynomials,

V ′(r) =
GM

r
=

GM

d

∞∑
j=2

(
R

d

)j

Pj(λ) (1.53)

where d is the distance between the components, λ = cos φ cos θ is measured over
the surface of the perturbed configuration with radius R, and the total mass M
corresponds to the perturbing star, since

r2 = d2 + R2 − 2dRλ (1.54)
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A simple comparison of (eq. 1.53) with (eq. 1.43) shows that, cj will be given by

cj =
GM

dj+1 (1.55)

It is then easy to see that neglecting square values of the spherical harmonics
implies that only terms up to j = 4 should be considered. On the other hand,
the assumption about perturbation due to mass points is consistent with the
same approximation. We thus have for the spherical harmonics representing tidal
distortion,

Y tid
j = Δj

M2

M1

(
R

d

)j+1

Pj(λ) (1.56)

On the other hand, if the configuration rotates rigidly with angular velocity ω
around the z axis the corresponding potential (eq. 1.7) will be:

V ′ = −1
3
ω2r2P2(cos θ) (1.57)

as can be easily checked through the solution of Poisson’s equation (eq. 1.6).
Comparison of (eq. 1.57) with (eq. 1.43) immediately leads to,

c2 = −1
3
ω2 (1.58)

and zero for j �= 2. The corresponding rotational spherical harmonic takes then
the form,

Y rot
2 = −1

3
Δ2

R3ω2

GM
P2(cos θ) = −1

3
Δ2(1 + q)

(
R

d

)3

P2(cos θ) (1.59)

where we have used for the second part Kepler’s third law and rotational syn-
chronization with the orbital motion.

1.3.4 Application to the Stellar Surfaces

As a direct application of the mentioned equations, let us compute the projected
stellar surface over the plane of the sky. Defining 3 points in the distorted stellar
surface: x, in the direction of the perturbing star, z, towards the poles, and y, in
the perpendicular direction to the previous points, we have a three-axis ellipsoid
given by,

x = a

(
1 +

1
6
(1 + 7q)Δ2

(
R

d

)3
)

(1.60)

z = a

(
1− 1

6
(2 + 5q)Δ2

(
R

d

)3
)

(1.61)

y = a

(
1 +

1
6
(1− 2q)Δ2

(
R

d

)3
)

(1.62)
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which correspond to the surface values of,

r = a
(
1 + Y rot

2 + Y tid
2
)

(1.63)

if only terms j = 2 are considered and rotational synchronization is adopted.
The projection of the defined three-axis ellipsoid over the plane of the sky is
obviously given, in terms of the orbital inclination i and the orbital phase β, by

S = π(x2z2 cos2 i + z2y2 cos2 β sin2 i + x2y2 sin2 β sin2 i)1/2 (1.64)

This would certainly allow us the computation of theoretical light curves for
eclipsing binaries if the emerging flux is constant over the projected surfaces and
we can treat eclipses by means of a suitable function giving the portion of star
eclipsed in terms of orbital phase and inclination. We will come back to this
point in next Section.

Another interesting effect of the distorted stellar shapes is gravity-darkening.
In 1924, von Zeipel showed that in a distorted star the emerging flux is propor-
tional to the local gravity, that is,

T 4
eff ∝ gβ1 (1.65)

with β1 = 1 for envelopes in radiative equilibrium. This can be immediately seen
as a result of (eq. 1.14). Later, Lucy (1967) demonstrated that, for stars with
convective envelopes, the same effect may be present but with an average value
of β1 = 0.32.

The local gravity can be approximated by,

g =
dΦ

dr
(1.66)

while the average value is given by,

go = G
M

r2 (1.67)

at the stellar surface. Then, for j = 2, it is easily found that,

g − go

go
= −

∑
j

(1 + η2(R))Y2(θ, φ) =
(

1− 5
Δ2

)( r

a
− 1

)
(1.68)

and a rotationally distorted star, for example, will show larger temperatures in
the poles. We will return to this subject in Section 4.

1.3.5 Application to the Structure of Rotating Stars

We have seen the effects of perturbations in the shape of the stars, and how the
stellar interior drives them. An extensive source on the subject can be found in
Tassoul (1978). Now we would like to show some ways to obtain stellar structure
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models taking into account rotational perturbations in the basic set of differential
equations discussed in Sect. 2.

Using only a first order approach (Kippenhahn and Thomas 1970) , we can
use the total potential for rotation at any distance r within the interior of the
star for j = 2, i.e.,

Φ =
Gmφ

r
+

1
2
ω2r2 sin2 θ − 4πG

5r3 P2(cos θ)
∫ a

0
ρ

d

da

(
a5f2

)
da (1.69)

where, mφ stands for the enclosed within the equipotential surface, and in agree-
ment with (eq. 1.38), (eq. 1.39), and (eq. 1.57),

r = a (1− f2P2(cos θ)) (1.70)

f2 =
5ω2a3

3Gmφ(2 + η2)
(1.71)

where ω is the angular velocity, P2(cos θ) is the second Legendre polynomial, a
the radius of the level surface, η2 is the logarithmic derivative of the spherical
harmonic defined through Radau’s equation, and the remaining symbols have
their usual meaning.

The differential equations of stellar structure are then changed as follows:

∂rφ

∂mφ
=

1
4πρr2

φ

(1.72)

∂pφ

∂mφ
= −Gmφ

4πr4
φ

fP (1.73)

∂Lφ

∂mφ
= ε− T

∂S

∂t
(1.74)

∂ lnTφ

∂ lnPφ
=

3κLφpφfT

16πacGmφT 4
φfP

(1.75)

where we have considered the entropy S of the stellar structure and the Schwarzs-
child criterion is given by:

∂ lnTφ

∂ lnPφ
= min[∇ad,∇rad

fT

fP
] (1.76)

where ∇ad and ∇rad are the spherical adiabatic and radiative gradients. Some
modes of convective motions may be changed by rotation but we do not take
into account here these effects and the conventional criterion of stability is used.
The quantities fP and fT are given by

fP = 4πr4
φ

1
GmφSφg−1

(1.77)
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and,

fT =

(
4πr2

φ

Sφ

)2
1

gg−1
(1.78)

where the mean values of g and g−1 are taken over equipotentials and Sφ is the
integrated value of the distorted surface.

To compute fP and fT one has to know the relationship between a and rφ.
The radius of a sphere with equivalent volume is related to the radius of the
level surface by

r3
φ = a3

(
1 +

3
5
f2
2 −

2
35

f3
2

)
(1.79)

4.3 4.2 4.1 4 3.9 3.8
3

3.2

3.4

3.6

3.8

Fig. 1.3. Standard and rotating models (7 M�). Continuous line indicates a model
without rotation, long dashed rotating model with Ωi=8.5×10−5s−1, small dashed
line denotes model with Ωi=7×10−5s−1 and dotted line represents a model with
Ωi=5×10−5s−1.

The value of a is then obtained through iteration of (eq. 1.79). Figure 1.3
shows an example of a model with and without rotation for the case of local
conservation of the angular momentum (Claret 1999). The effect of luminosity
and effective temperature lowering can be clearly noticed. However, the distribu-
tion of angular momentum should be determined through integration of a fourth
order differential equation and the assumption of local conservation is only an
approximation (Zahn 1992). Moreover, the above equations are valid only for the
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case of conservative potential. In the case of local conservation, as the models
evolve the potential is no longer conservative and the density and the tempera-
ture are not constant on the equipotential (Meynet and Maeder 1997). For not
excessively distorted configurations we do not expect large differences if a more
elaborated treatment is used. Another limitation is concerned with the transport
of angular momentum due to the rotationally-induced instabilities. Another way
to treat the stellar configuration under the effect of rotation and tides, as well as
the potential in the interstellar region between the component stars is derived
from the approximation to the solution of the restricted three-body problem
named after Roche (Kopal 1959, Tassoul 1978).

1.4 Stellar Atmospheres in Close Binary Systems

1.4.1 Introduction

Eclipsing binaries provide the royal road to the study of surface inhomogeneities
in stellar surfaces. Eclipses are nothing else than a scan of the surface of a star by
the shadow of it mate that occur once per orbit and star. We have seen that the
study of the light curves of detached eclipsing binaries would have been almost
straightforward if variations of light were only due to surface distortions and
mutual eclipses. In fact it is not so because of the highly non linear problem
involved which requires the solution through the frequency domain for a very
simplified case or an inverse problem in general. This is done by the optimization
of a χ2 function derived from the comparison of actual observations with a
synthetic light curve. The search for the optimum combination of parameters is
done, either through a direct exploration of the phase space within physically
realistic boundaries, or differential corrections.

We are not going to provide details about the problem here but it is certainly
possible to check the accuracy of the distortion of the component stars plus
the flux distribution over the surface of the two components to some level and
favorable cases. It is obviously always important to avoid systematic errors in the
synthetic light curve models in order to obtain accurate and realistic physical
parameters from the light curves, i.e. relative radii, luminosity ratio, orbital
inclination, etc.

The flux distribution over the surface of a star is known to be non-uniform
even for single non-rotating stars. This is due to the effect known as limb darken-
ing. But in rotating configurations, we have seen that an additional contribution
is due to the effect of gravity-darkening which is also affected by mutual tides
in close binaries. Finally, we have to consider in binary stars the contribution
of mutual irradiation of the stellar atmospheres adding to their computation an
external source of energy. Let us have a look to all of them.

1.4.2 Limb-Darkening

Limb-darkening coefficients are an important tool to study the light curves of
eclipsing binaries, but also to measure stellar angular diameters, to investigate
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line profiles perturbed by rotation or, more recently, to study some effects of
gravitational micro-lensing (Alcock et al. 1997). Of course, limb-darkening is a
well known effect of the semi-transparency of the upper atmospheric layers of
the stars. It is clearly visible in the Sun and expected to be present in all stars
irrespective of temperature, binarity, or rotational distortion. We are mainly
interested in the modifications introduced by the effects of a close companion.

Many efforts have been dedicated to compute and analyze limb-darkening
coefficients for stellar atmospheres and their use in synthetic light curves in the
past (Grygar 1965, Shul’berg 1973, Manduca et al. 1977) However, the basic tool
used in these investigations was plane parallel model atmospheres developed for
stars generally hotter than the Sun. The more simple fitting to the intensity at
any point of the stellar surface is given by the well-known linear expression:

I(μ) = I(1)(1− u(1− μ)) (1.80)

while the quadratic approximation can be written as,

I(μ) = I(1)(1− a(1− μ)− b(1− μ)2) (1.81)

and, more recently, a square root approximation was proposed (Dı́az-Cordovés
& Giménez 1992) as given by,

I(μ) = I(1)(1− c(1− μ)− d(1−√μ)) (1.82)

where u is the linear limb-darkening coefficient, a and b the quadratic coefficients,
c and d the square root ones, μ = cos γ (γ being the angle between the line of
sight and the emergent flux), and I(1) is the monochromatic specific intensity
at the center of the disk.

The mathematical method used to derive limb-darkening coefficients from
the model atmospheres is still a matter of discussion. Some authors prefer the
least-squares fit while others adopt some kind of weighted average approach
based on the conservation of the total flux (i.e, the flux computed using the
integration of the intensity values should be equal to the flux using the adopted
limb-darkening law). For at least the case of eclipsing binaries, we certainly
prefer the least-squares method as much better representative of the actual flux
distribution over the stellar surface, and this is what we basically need for the
study of scans of the stellar disk. Flux conservation then should be a consequence
of the good quality of the fitting and adopted law (Claret and Giménez 1990,
Wade and Ruciński 1985, Van Hamme 1993, Dı́az-Cordovés et al. 1995, Claret
et al. 1995b)

For close binaries, an additional complication is added to the theoretical
values of limb-darkening coefficients. This is the mutual irradiation of the atmo-
spheres of the component stars which was certainly not taken into account in
the models for isolated stars. Irradiation may change drastically, under certain
conditions, the distribution of intensities along the stellar disk. Qualitatively, an
irradiated stellar atmosphere will present a more uniform distribution of bright-
ness. We will come back to this point later.
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The least-squares method was used to fit the computed specific distribution
to the three approximations given in (eq. 1.80), (eq. 1.81), and (eq. 1.82). We
adopted model atmospheres by Kurucz (ATLAS 1993) with solar abundances
and a mixing-length parameter α = 1.25. These models were computed for 1221
wavelengths at 17 values of μ (1.0-0.01). The range of effective temperatures con-
sidered goes from 3500 up to 50000 K while the logarithm of the surface gravity
varies between 0.0 and 5.0 (Fig. 1.4). From the observational point of view, it
is interesting to perform the calculations of limb-darkening coefficients for the
most frequently used photometric systems (i.e., uvby, UBV, and its extension
RIJHK).

3.6 3.8 4 4.2 4.4 4.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log g=4.0

Fig. 1.4. The linear limb-darkening coefficients as a function of log Teff for the filters
R,I,J,H,K with Al-Naimiy’s results included (solid lines). Case log g=4.0.

A discontinuity in the values of u around log Teff = 3.87 and a change
in the general trend, for the cooler stars, around log Teff = 3.6, are evident
(Dı́az-Cordovés et al. 1995, Claret et al. 1995b). The discontinuity is certainly
an effect of the theoretical model atmospheres most probably related to the
treatment of convection or, at least the change from models dominated by ra-
diative atmospheres to those with an important contribution of convection. The
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change of trend around Teff = 4000 K is linked to deep convective envelopes.
But to explore this behavior in more detail further models are needed in the
cooler end of the main sequence, i.e., models for M-type dwarfs. New models,
down to Teff = 2000 K have been therefore used to cover such a gap (Claret
1998a). These data are important in order to study stars in the lower part of
Main-Sequence as well as brown dwarfs. The results show that the change of
trend is confirmed but followed soon by a reversal back to the normal behavior,
i.e., higher values of limb-darkening coefficient for cooler atmospheres, around
log Teff = 3.52 (Fig. 1.5).

Even though linear fittings are known to be unrealistic for a detailed descrip-
tion of the stellar flux distribution, the analysis of eclipsing binaries does not
require for the time being the use of non-linear expressions. Future accurate light
curve may show a very different situation. In any case, we can compare the re-
sults derived for cool stars using the model atmosphere code PHOENIX (Allard
and Hauschildt 1995, Allard et al. 1997, Hauschildt et al. 1997a, 1997b) with
those calculated using the intensities generated by ATLAS. For effective tem-
peratures - log Teff ≥ 3.8 - the PHOENIX limb-darkening coefficients compare
well with the ATLAS results but they are systematically larger for all photo-
metric bands. Such a behavior may be caused by abundances and mixing-length
differences used in both codes.

For coolest models this tendency is maintained, with the exception of Ström-
gren u and v, and Johnson U. For these filters the tendency is the opposite and
the linear coefficients computed following the ATLAS code is larger achieving
a difference of about 25%. The worst situation is for the U band. In this range
of effective temperatures the results using ATLAS are less accurate due to the
missing of molecules.

1.4.3 Irradiated Atmospheres

It is well known that when the two components of an eclipsing binary system are
sufficient close to each other, their mutual irradiation is very important in the
analysis of the light curves. This is one of the proximity effects observed in the
light curves and treated through the reflection coefficient or, its equivalent, the
albedo. For the phase dependence of the effect, generally a Lambertian reflection
is considered as the simplest approach to the real problem but over a distorted
stellar surface. Most authors have adopted an albedo of 0.5 for stars with con-
vective envelopes and 1.0 for those with radiative atmospheres. We summarize
the main theoretical and observational aspects of the irradiation as follows:

• Dugan (1908) and Stebbins (1911) ⇒ first observations
• Eddington (1926) and Milne (1927) ⇒ first theoretical interpretation
• Chandrasekhar (1945, 1947, 1950) ⇒ exact solution for the grey case
• Hosokawa (1959) ⇒ albedo of 0.50 for secondaries of Algol-type
• Rucinscki (1969) ⇒ albedo is 0.50 for star with deep convective envelopes
• Miner (1966), Mc Namara (1967), Hall (1967) ⇒ general conclusion that

secondaries of classical Algols present strong ultraviolet excess and lower
metallicity than their mates
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Fig. 1.5. The linear limb-darkening u computed following PHOENIX intensities (full
hexagons) and those computed following ATLAS results (full lines) versus effective
temperatures for log g = 5.0.

• Under the spectroscopic point of view Naftilan (1975a, 1975b, 1976), Bond
(1972), Kondo and Okazaki (1980) ⇒ metal deficiency in these secondaries.

On the other hand, it has also been observationally found that, stars with
irradiated atmospheres generally present ultraviolet excesses and low metal con-
tents when compared to their companions. This of course has been discussed in
the light of late-type stars with enhanced chromospheric activity due to tidally
induced fast rotation. In this case, it is well known that active chromospheres
produce both an ultraviolet excess and an apparent low metallicity because of
the filling of absorption lines with chromospheric emissions (Hall 1989, Giménez
et al. 1991). But, in close binaries, irradiation of the atmospheres may be an
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important if not the dominant contribution to the observed effects (Claret and
Giménez 1992; Smak 1999, this volume).

Chandrasekhar (1945, 1947, 1950) was the first to to treat the external ir-
radiation and presented an exact solution for the grey atmospheres. Later and
using an ATLAS version Buerger (1969, 1972) investigated the case where the
two stars, source and irradiated, are hot. Kirbiyik and Smith (1976) studied the
circulation currents due to irradiation. More recently Claret and Giménez (1992)
investigated the specific case of classical Algols (see this paper for more extensive
references on the numerical methods used in the irradiation investigation).

The relation between the effective temperature of the models and their albe-
does can be written in the form:

WbolF
∗
r = σ(T 4

H − T 4
eff ) (1.83)

where F ∗
r = σT ∗4r2νj is a radial external flux, T ∗ is the effective temperature

of the irradiating star, r is the apparent radius of the irradiating star, νj is the
cosine of the incidence angle, Wbol is the bolometric albedo, Teff is the effective
temperature of the non-irradiated model and TH is the effective temperature
of the irradiated model. The theoretical albedoes computed with this approach
have been found to be in good agreement with the observational values. Let us
have a look to the actual theoretical predictions and their possible observational
effects.

Overluminosity of the Secondaries in Classical Algols. As already seen,
the albedo is smaller than 1 for convective atmospheres which are expected to
be valid for the secondary mass losing components of classical Algol-type bi-
naries. These atmospheres reflect Wbol of the incident flux giving rise to the
mentioned reflection effect. The amount (1−Wbol)F ∗ is absorbed and the atmo-
sphere should re-emit this excess of energy sooner or later. The net effect is that
the stars increase their temperature and luminosity. In this way, it will appear
to be overluminous and its position in the HR diagram will be displaced toward
the left when compared to their normal expected positions for subgiants. The
amount of the mentioned shifts depends on the conditions of the irradiation. Fig-
ure 1.6 shows the behavior of the change in the effective temperature caused by
irradiation (δT ) as a function of the relative incident flux. This should explain, at
least partially, the observed overluminosity of the secondaries of classical Algols
(Claret and Giménez 1992).

Metal deficiency in the secondaries of classical Algols. When a model
atmosphere is compared to an observed spectrum the effects of irradiation are
not normally taken into account. By inspecting Fig. 1.7 it can be seen that,
for some regions of the spectrum, standard spectra with less metals reproduce
the irradiated models better than those with the original chemical composition.
This means that systematic errors may be introduced in the interpretation of
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Fig. 1.6. Theoretical shift in the effective temperature due to irradiation as a function
of the relative flux (continuous line). The observational data are from Garćıa (1990).

atmospheres of close binary systems. Observational data seems to actually indi-
cate the apparent metal deficiency of the cooler components of Algol-type stars
(Claret and Giménez 1992).

Limb-darkening of irradiated atmospheres. Irradiated models show limb-
darkening coefficients very different from those for non-irradiated models with
the same effective temperature and log g. This means that the use of coefficients
computed from non-irradiated model atmospheres is not the correct procedure
in the case of some types of binaries like classical Algols (Claret and Giménez
1990; see Fig. 1.8). It is certainly more complicated to introduce the effect of
irradiation in the prediction of theoretical coefficients for limb-darkening since we
have to take into account a number of additional parameters such as the relative
distance between the two stars and realistic values for the effective temperatures,
consistent with the parameters of the system under study.

1.4.4 Gravity-Darkening

An approximated expression of the gravity-darkening law was derived before
using the parameters which characterize the distortion of a star in a binary
system. In fact, this indicates that the gravity-darkening is a structural problem
rather than an atmospheric one. In spite of this fact, in such a derivation we
only treated the geometric parameters rather than the physical ones. It showed
though that gravity darkening is a typical consequence of distorted stars, either
rotationally, tidally, or both.

Gravity darkening is certainly an important, but not always sufficiently stud-
ied, parameter in the analysis of the light curves of eclipsing binaries and in the
investigation of the effects of rotation in clusters (Pérez Hernandez et al. 1999).
The exponent β1 should therefore be well known under different physical circum-
stances for such studies. In a stellar envelope the energy is often transported by
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Fig. 1.7. Comparison between irradiated and standard spectra. The thick line repre-
sents the irradiated spectra computed using typical values of classical Algols: T∗=12000
K, Teff=5300 K, TH=5890 K, r=0.22, log g=3.44, ν=0.67 and log [A/H]=0.0. The
thin line corresponds to the standard one with the same effective temperature and log
g but adopting different values of log [A/H]. The Strömgren filters are indicated for
reference.

convection and/or radiation. One does not expect that the values of β1 would
be the same for the two cases. In fact, for stars in strict radiative equilibrium
(pseudo-barotrope), von Zeipel demonstrated that the variation of brightness
over the surface is proportional to the effective gravity. In mathematical form,

F = −4acT 3

3κρ

dT

dΦ
gβ1 (1.84)

where β1 = 1.0, g is the local gravity, Φ is the total potential and the remaining
variables have their usual meaning.

From the point of view of convective envelopes, Lucy could find that the
same relation (eq. 1.84) was valid but using β1 = 0.32 (average value). This
jump of β1 was, and still is, very uncomfortable from the observational and
theoretical points of view. The two processes of energy transport can even exist
simultaneously in a given stellar envelope. Therefore, one would expect a less



26 A. Claret and A. Giménez

Fig. 1.8. Effect of the distance of the irradiating source and of the angle of incidence
of the irradiating source on the emergent intensity distribution. Asterisks indicate the
six μ points used previously to this work (no limb-brightening is detected). Note that
only with the introduction of 12 additional μ points (continuous line) it is possible to
discriminate if there is limb-darkening or limb-brightening (Claret 2000b).

abrupt change. In order to advance a little further, a more sophisticated method,
based on the properties of the stellar interior models, was developed (Claret 1995,
1998b, 2000a). In this way the gravity-darkening exponent is not only a function
of the effective temperature as until now accepted but also of the mass, radius
and evolutionary status.

An interesting behavior of β1 is expected for moderately massive models
whose tracks cross over the boundary between radiative and convective equilib-
rium. A 2 M� model was selected to represent this situation. In Fig. 1.9 one can
see how β1 depends on the effective temperature while on the upper right corner
of the same figure we plot the usual HR Diagram. As expected, the gravity-
darkening exponent for Main-Sequence models is 1.0 confirming the prediction
by von Zeipel and it begins to decrease until the point indicated by letter B
which is the boundary between both competing regimes of transport of energy.
During contraction (B-C) the effective temperature increases, which is reflected
by an increase of β1. After C the effective temperature decreases as well as the
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Fig. 1.9. The gravity-darkening exponent β1 for a 2 M� model. In the upper right
corner the corresponding HR Diagram is shown.

Fig. 1.10. Observational values of the gravity-darkening exponent (Rafert & Twigg
1980) as a function of the effective temperatures. Open circles represent detached sys-
tems, full triangles semi-detached systems, full squares denotes contact systems while
open triangles denotes other systems. The full line represent the theoretical β1 for
homogeneous models.
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gravity-darkening exponent. For very deep convective envelopes, for stars at the
red giant phase, β1 seems to stabilize at 0.3.

Although it is not a easy task, a significant effort was made by Rafert &
Twigg (1980) to derive gravity-darkening from light curves analysis. Their re-
sults are shown in Fig. 1.10 where the theoretical values by Claret (1998b) are
also displayed. The comparison shown in Fig. 1.10 can be considered within
the inherent modeling and observational difficulties. Evolutive effects may also
change the comparison (see the previous figure).

1.5 Dynamics of Close Binary Systems

1.5.1 The Secular Equations

We have obtained already the equation leading to the internal structure con-
stants for theoretical models. Now, using techniques of celestial mechanics, we
shall derived them for two real distorted stars which are rotating and orbiting
around a common center of mass.

It is well known that, if the component stars behave like mass points, there
is no mass exchange or loss, and the system is isolated, their dynamical behavior
is given by the solution of the equations:

d2r

dt2
+

G(m1 + m2)
r3 r = 0 (1.85)

where r is the radius vector. The solution for the angular variation of the radial
component is,

d2u

dφ2 + u =
GM

j2 (1.86)

where M = m1 + m2 and j stands for the specific angular momentum r2dφ/dt
and can be easily expressed by means of Kepler’s laws. Moreover, three second-
order differential equations define six constants of integration which are known
as the orbital parameters:

Ω - the longitude of the ascending node
i - the inclination of the orbit
a - the semi-major axis of the relative orbit
e - the orbital eccentricity
ω - the longitude of the periastron
T0 - the time of passage through periastron.
Note that the orbital period is not one of them because of its implicit defini-

tion through the other parameters. It is also well known that, working with the
above equations, the relative motion of one star around its mate is given by the
ellipse equation:

r =
a(1− e2)
1 + e cos v

(1.87)

where v is the true anomaly.
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Let us now consider distorted stars, which can not be reduced to mass points,
but keeping the assumptions about no mass exchange/loss and system isolation
from external gravitational potentials. Then, if the perturbation function can be
written in such a form that the total potential,

V = G
m1m2

r
+

m1m2

m1 + m2
R12 (1.88)

the center of mass will move with constant velocity and the dynamical equations
of the system will be:

d2x

dt2
+

G(m1 + m2)
r3 x =

∂R12

∂x
(1.89)

d2y

dt2
+

G(m1 + m2)
r3 y =

∂R12

∂y
(1.90)

d2z

dt2
+

G(m1 + m2)
r3 z =

∂R12

∂z
(1.91)

which can not be solved in a closed form.
For a non negligible, but small, disturbing function R12, we can use the well-

known perturbation method leading to Lagrange equations which allow us to
write the same solution of the unperturbed problem but showing some variation
with time of the six orbital parameters.

Let us now re-define some of the orbital “constants” in such a way that,

ω ≡ ω + Ω (1.92)

u ≡ ω + v (1.93)

ε ≡ ω − nTo (1.94)

We have then:
1

An

dΩ

dt
=

1√
1− e2 sin i

∂R12

∂i
(1.95)

1
An

di

dt
=

1√
1− e2 sin i

∂R12

∂Ω
− tan i

2√
1− e2

(
∂R12

∂ω
+

∂R12

∂ε

)
(1.96)

1
An

dA

dt
= 2A

∂R12

∂ε
(1.97)

1
An

de

dt
= −

√
1− e2

(
1−√1− e2

e

∂R12

∂ε
+

1
e

∂R12

∂ω

)
(1.98)

1
An

dω

dt
=

tan i
2√

1− e2

∂R12

∂i
+
√

1− e2

e

∂R12

∂e
(1.99)

1
An

dε

dt
=

tan i
2√

1− e2

∂R12

∂i
−
√

1− e2 1−√1− e2

e

∂R12

∂e
− 2A

∂R12

∂A
(1.100)
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If we now consider R to represent the component acting in the direction of
the radius vector of R12, S the perpendicular to the radius vector in the orbital
plane and W that perpendicular to the orbital plane, the equations above can
be re-written as:

dΩ

dt
=

W sinu

nA2
√

1− e2 sin i
(1.101)

di

dt
=

W cos u

nA2
√

1− e2
(1.102)

dA

dt
=

2
n
√

1− e2

(
R sin v + SA(1− e2)

r

)
(1.103)

de

dt
=
√

1− e2

nA
(R sin v + (cos v + cos E)S) (1.104)

dω

dt
=
√

1− e2

nAe

(
−R cos v +

[
1 +

r

A(1− e2)

]
S sin v

)
+

W sinu

n
√

1− e2A2
tan

i

2
(1.105)

dε

dt
= − 1

nA

(
2r

A
− 1− e2

e
cos v

)
R− 1− e2

nAe

[
1 +

r

(1− e2)

]
S sin v (1.106)

Now the definition of the orbital period will be different depending on the
orbital parameter adopted to measure it. If we adopt the simplifications for
perturbed configurations of Sect. 2, the perturbing function R12 can be expressed
as

R12 = R1 + R2 (1.107)

and, Ri = Ri,rot + Ri,tid being the individual terms for rotation and tides,

Rrot
i = −2μω2

i R5
i k2i

3Gmir3 P2(ν
′
i) (1.108)

and

Rtid
i =

μm3−i

mi

4∑
j=2

kjiR
2j+1
i

rj+1rj+1
ε

Pj(λ
′′
i ) (1.109)

where μ = G(m1 + m2), ωi is the angular velocity of the component i, Ri is the
mean radius and kji are the internal structure constants while ν

′
i is the cosine of

the angle between the radius-vector and the rotation axis and λ
′′
i is the cosine

of the angle between the direction of the tidal distortion and the radius-vector.
In the case of viscous stars, producing tidal lag, the radius-vector in the

direction of the lagging tide is,

rε =
A(1− e2)

1 + e cos(v − ε)
(1.110)

otherwise, r = rε.
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Using the contributions for rotation and tides, we can now obtain the per-
turbation function in the direction of the above defined directions. After the
corresponding differentiations, the components of the rotational contribution
are expressed as,

R =
2μ

G

2∑
i=1

k2iω
2
i R5

i

mir4 P2(ν
′′
1 ) (1.111)

S = −2μ

G

2∑
i=1

k2iω
2
i R5

i

mir4 ν
′′
1 ν

′′
2 (1.112)

W =
2μ

G

2∑
i=1

k2iω
2
i R5

i

mir4 ν
′′
1 ν

′′
3 (1.113)

where the ν
′′

are the partial derivatives of ν′ with respect to the three angles
described before.

For tidal distortion, if there is no lag, the components S and W become zero
due to symmetry and the component R is

[R cos ν] = −2μ

2∑
i=1

m3−i

mi

4∑
j=2

(j + 1)kjiX
−(2j+3),1
o

R2j+1
i

A2j+3 (1.114)

where we have averaged the R function over the orbit using the well known
expressions of Celestial Mechanics, defining the zero-order Hansen coefficients,

1
P

∫ P

0

( r

A

)n

cos(mvt)dt =
(−n−2
m

) (e

2

)m

(1− e2)
n+3

2

F

(
m + n + 2

2
,
m + n + 3

2
, m + 1, e2

)
(1.115)

where the hypergeometric functions have positive values for m + n + 2 ≤ 0 or
zero otherwise. Similarly,

1
P

∫ P

0

( r

A

)n

sin(mvt)dt = 0 (1.116)

for any integral value of m and n.
We can now see that the orbital parameter variations are restricted to the

orbital plane if rotation is coplanar. No lagging tides have only contributions to
R and the rotational contributions to W vanish for rotational axes perpendicular
to the orbital plane so that ( 1.101) and ( 1.102) become,

dΩ

dt
= 0 (1.117)

di

dt
= 0 (1.118)
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Furthermore, for the parameters in the orbital plane, we reduce the equations
of Lagrange to,

dA

dt
=

2
n
√

1− e2

(
Rersinv + SA(1− e2)

r

)
(1.119)

de

dt
=
√

1− e2

nA
(R sin v) (1.120)

dω

dt
=
√

1− e2

nAe
(−R cos v) (1.121)

dε

dt
= − 1

nA

(
2r

A
− 1− e2

e
cos v

)
R (1.122)

It is therefore evident that, in this case, also the orbital eccentricity and
separation will remain constant because of the sin v dependence.

Taking into account the properties of the coefficients, with no dissipative
forces, even for no coplanar rotation,

dA

dt
=

de

dt
= 0 (1.123)

Finally, the rate of variation with time of the longitude of periastron is

dω

dt
=

2∑
i=1

ω2
i k2i

2πρi

a2
i

(
1− 3

2
sin2(θi + i)− 1

2
sin 2(θi + i) tan

i

2

)
3n

2(1− e2)
(1.124)

where ai = Ri/A. Note the dependence on the angular arguments θi y i. If the
equatorial plane does coincides with the orbital plane they are null. However, if
this is not the case, there may be a recession of the line of apses.

Concerning the tidal contribution, the Lagrange equations give the following
expression:

dω

dt
= 2μ

√
1− e2 1

neA3

2∑
i=1

m3−i

mi

4∑
j=2

(j + 1)kjiX
−(2j+3),1
o a2j+1

i (1.125)

The total rate of the advance of the periastron is the sum of both contribu-
tions. An useful parameter, the rate per cycle or orbital period, will be given
by,

Δω

2π
=

P

U
=

1
n

(
(
dω

dt
)rot + (

dω

dt
)tidal

)
(1.126)

where U is the period of revolution of the line of apses.
With the exception of (kji), all parameters in the above equation can be

independently measured and thus the weighted average of the internal structure
constants can be empirically derived for individual binary systems.
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1.5.2 Relativistic Effects

There are two assumptions in what we have discussed in the previous Sections:
that the binary system is isolated from external potentials and that Newton’s
law of Gravitation is valid. The first one has to be modified for binaries with
a third body or moving through a resisting medium, while the second has to
be revised under the light of the more realistic theory of General Relativity
(Giménez 1985). In this latter case, the displacement does not depend on the
rotational and tidal distortions and should be added to the classical Newtonian
term. In fact it is found that the change in position of the periastron per orbit
is given by (Levi-Civita 1937),

δω =
6πGM

ac2(1− e2)
(1.127)

where M denotes the total mass of the system and if U
′

denotes the period of
revolution of the line of the apses, we have,

P

U ′ = 6.35× 10−6 m1 + m2

A(1− e2)
(1.128)

provided that the semi-major axis and masses are given in solar units.
It is interesting to note that the expression for the relativistic apsidal motion

can also be derived using the Lagrange perturbation equations if the appropriate
correction to the Newtonian potential, due to relativistic effects, is introduced
as R12.

1.5.3 Effects of a Third Body and Interstellar Medium

The other possible corrections come from the fact that the binary system may
not be completely isolated. The presence of a third component, with period P ′

perturbs the orbit of a close binary system, with period P and one of the sensitive
elements is the longitude of the periastron. The induced apsidal motion, U ′,
for coplanar orbits and small eccentricities can be approximated by (Martynov
1948),

P

U ′ =
3
8

m3

m1 + m2 + m3

(
P

P ′

)2

+
225
32

m2
3

(m1 + m2 + m3)2

(
P

P ′

)3

(1.129)

In general, if we consider that the two orbits are eccentric e, e′ and showing
an inclination angle I we have,

P

U ′ = 2a

(
1− e2

2
+

3
2
e

′2 − 2 tan2 I

)
+ 50a2 (1.130)

where,

a =
3
8

m3

m1 + m2 + m3

(
P

P ′

)2

(1− e2)−3/2 (1.131)
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On the other hand, the line of the nodes also precesses with a period U”

P

U ′′ = 2a

(
1 + 2e2 +

3
2
e

′2 − 1
2

tan2 I

)
− 2a2 (1.132)

Another effect that may change the rate of advance of periastron is that of
a viscous medium. The resistance itself has no influence on that rate but the
mutual attraction is changed. Indeed, there appears a recession of the apsidal
motion given by (Hadjidemetriou, 1967)

P

U ′′′ = −GP 2σ

2π
(1.133)

where U
′′′

is the period of revolution of the line of the apside due to this effect
and σ stands for the density of the medium. Average interstellar densities though
imply that this effect should be in general a negligible contribution.

1.5.4 Apsidal Motion: Comparison with Observations

Classical systems. During several decades a discrepancy between theory and
observation was reported concerning apsidal motion: the theoretical models
seems to be less mass concentrated than real stars (Schwarszchild 1958, Kopal
1965, Giménez 1981). As the apsidal motion period depends on the relative radii
as r−5 only systems with accurate absolute dimensions can be used to com-
pare with the observations. Furthermore, the stellar models available some time
ago were not accurate enough to carried out a significant comparison. Many
attempts were then made in order to decrease the above commented discrep-
ancy (see Claret and Giménez 1993 for an extense list of contributions of many
authors to the field).

Stellar masses and radii are now-a-days available in an amount statistically
significant (Andersen 1991) and some of them present apsidal motion. On the
other hand, stellar models also improved due mainly to new opacities. The two
conditions simultaneously mean that a realistic comparison between observation
and theory is possible.

In order to carried out such a task, let us first introduce the appropriate
equations for the apsidal motion test.

P

U
= c21k21 + c22k22 (1.134)

where k2i is the apsidal motion constant for the component i.

c2i =

[(
Ωi

ωK

)2(
1 +

m3−i

mi

)
f(e) +

15m3−i

mi
g(e)

](
Ri

A

)5

(1.135)

where the auxiliary functions f(e) and g(e) are given by

f(e) = (1− e2)−2 (1.136)
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g(e) =
(8 + 12e2 + e4)f(e)2.5

8
(1.137)

In the above expressions m is the mass of the component, Ri the stellar radius,
A the semi-major axis, Ωi is the angular velocity of the component i, e is the
eccentricity and ωK is the keplerian angular velocity.

The first term in (eq. 1.135) is the rotational contribution while the second
one concerns to tidal distortions. The mean value for the internal constant struc-
ture that will be compared with those derived from theoretical models is given
by:

k2obs =
1

360 (c21 + c22)
ω̇obs (1.138)

if ω̇obs, the rate of variation of the periastron position, is given in degrees/cycle.
This last value should be corrected by the relativistic contribution (Section 5.2).
The theoretical mean value is

k2theo =
c21k21theo + c22k22theo

c21 + c22
(1.139)

where k21theo and k22theo are the theoretical apsidal motion constants for the
primary and secondary, respectively. Such values are inferred from a previous
comparison with the absolute dimensions.

Before to perform the apsidal motion test, as a first step we have to check if
the models are able to reproduce some basic stellar parameters. The constraints
are

• a good agreement between the observed effective temperatures of each of the
component stars and the theoretical values given by the stellar models

• a common age for the two components

The first of these requirements is presented in Fig. 1.11 where we plot the
observed and theoretical effective temperature for a sample of stars showing
apsidal motion. Figure 1.12 shows the evolutionary ages for both components
of each system. Of course, slight variations in the chemical composition may
improve even more the aspect of these pictures. Finally, Fig. 1.13 displays the
comparison between the observed and predicted apsidal motion rates. The old
systematic trend, models less mass concentrated than real stars, is no longer
detected.

Relativistic systems. The eclipsing binaries which present apsidal motion are
also useful to test the predictions of the General Relativity - GR - for the peri-
astron advance (Giménez 1985, Giménez & Scaltriti 1982). It was shown in the
previous section that using new opacity calculations, core overshooting, rota-
tion, improved orbital elements and recent apsidal motion rates the theoretical
predictions are in good agreement with observations. The old problem, that real
stars seemed to be more mass concentrated than predicted by theory, was solved
or at least minored. As we did not know a priori which was the cause for these
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Fig. 1.11. Comparison between observed and theoretical effective temperatures. Mod-
els with core overshooting and mass loss

discrepancies we have separated the systems presenting high relativistic contri-
butions in order to avoid these disagreements with the theory to be attributed
to relativistic effects. As the name indicates, the relativistic systems are those
for which the advance of the periastron predicted by the GR is comparable with
the classical contribution. Moreover, the separation in two classes is justified
given that the observations for some relativistic systems, DI Her and AS Cam,
do not seem to be in agreement with GR predictions. An alternative theory for
the periastron shift was presented by Moffat (1984, 1989) and, in principle, it
was able to explain such systems. However, such theory presents some problems
which will be discussed.

About 10 systems with significant relativistic contribution were selected to
test the validity of the current stellar models and the predictions of GR (Claret
1998c). These systems were submitted to the same tests as described in the
previous Section. The results can be seen in Fig. 1.14. An analysis of this figure
indicates that the predictions by the General Relativity and the new stellar
models are able to explain the shift in the periastron position. On the other
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Fig. 1.12. Comparison between evolutionary ages derived for each of the component
stars. Models with core overshooting and mass loss.

Fig. 1.13. Observed versus predicted average values of log k2 using models with core
overshooting, mass loss corrected for the effect of rotation.
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Fig. 1.14. Theoretical and observed apsidal motion constants for relativistic systems.
The shift in the periastron was computed correcting ω̇obs by the prediction of the
General Relativity

hand, the two versions of the non-symmetrical theory of gravitation by Moffat
are not supported by the observations.

1.5.5 Tidal Evolution

As previously seen, we assume that the stars are in hydrostatic equilibrium. In
binaries, however, the angular velocities Ω1 and Ω2 may be different from the
orbital velocity ω and the bulges due to tides are not in phase with the line
joining both stars. It can be shown that for low viscosity the angle α (Fig. 1.15)
is related with the tidal frequency σlm through

α =
R3

tfGm
σlm (1.140)

where tf is the friction time.
Introducing (eq. 1.140) in the secular equations we shall have the temporal

derivatives of the eccentricity, angular velocity and of the semi-major axis. These
equations are coupled but if we assume that the system is near to synchronism
and low eccentricity, the equations are decoupled. We can define the time scales
for synchronization and circularization,

1
τsync

=
6k2

tf
q2 mR2

I

(
R

A

)6

(1.141)
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Fig. 1.15. Tides induced in the primary component.

1
τcir

=
21k2

tf
q(q + 1)

(
R

A

)8

(1.142)

where k2 is the apsidal motion constant, I is the moment of inertia, q the mass
ratio, A the semi major axis and R is the stellar radius. These equations hold
for stars with convective envelopes where turbulent dissipation is efficient (Zahn
1966). The convective friction time tf is given by

tf =
[
mR2

L

]1/3

(1.143)

where L is the star luminosity.
For more massive stars, with convective cores and envelopes in radiative equi-

librium, the dissipation mechanism is due to radiative damping. The g-modes
can resonate with the periodic tidal potential. If there is a departure from syn-
chronism the gravity waves produced by the convective core will be damped in
the surface zone since the dissipation time is shorter than the tidal period. The
times scales are given by (Zahn 1975)

1
τsync

= 5
(

Gm

R3

)1/2

q2(1 + q)5/6E2
mR2

I

(
R

A

)17/2

(1.144)

1
τcirc

=
21
2

(
Gm

R3

)1/2

q(1 + q)11/6E2

(
R

A

)21/2

(1.145)

where E2 is related with the dynamic tidal contribution to the total perturbed
potential. E2 is similar to k2 but it is much more dependent on the stellar
structure than the apsidal motion constant. This parameter, E2, is computed
numerically given the complexity of the differential equations which must be
solved (Claret and Cunha 1997).

All astrophysical parameters required by the set of differential equations,
including evolutionary age, were obtained by comparing the theoretical models
mentioned directly for each star of the sample. After the integration of the
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above differential equations we are able to compare the theory with the levels
of synchronism and circularization. It is shown in Fig. 1.16 the observed and
theoretical rotational velocities at the periastron.

Fig. 1.16. Observed and
theoretical rotational ve-
locities assuming synchro-
nization at periastron. Full
hexagons denote primaries
and open ones represent
the secondaries. Note the
position of the components
of DI Her and TZ For B.
(Claret & Cunha 1997).

Analyzing that figure we can consider that the stars compiled by Andersen
(1991) are, on average, pseudo-synchronized as indicated by Giménez & Ander-
sen (1983) and more recently by Claret & Cunha (1997). Figures 1.17 and 1.18
show the critical times tcri compatible with Fig. 1.16, even for DI Her given its
age this system has not time to synchronize/circularize.

Synchronization levels do not give as conclusive results as in the case of the
circularization of orbits: while for the latter case we can say if a system is eccen-
tric or not, a similar reasoning can not be applied directly to synchronization,
since the interior can rotate at a different angular velocity than the envelope does.
The results of the integration of eqs. 1.142 and 1.145 are shown in Fig. 1.19; the
observed eccentricities versus log (t/tcri) where t is the age of the system. The
results are satisfactory, especially for the more eccentric orbits, since all these
systems are on the left of the zero point, i.e., their ages are smaller, and in some
systems equal, to their predicted circularization times.

An interesting case to be analyzed is that of TZ For. TZ Fornacis is an
eclipsing binary system whose components have masses of 2.05 and 1.95 M�
and a period of 75.7 days. The radius of the more massive component is 8.32
R� while the radius of the secondary is 3.96 R�. The mean errors are smaller
than 3 %. The primary seems to be synchronized but the secondary does not. In
fact, it rotates about 10 times faster than the primary and about 16 times faster
than the theoretical value. By comparing the stars with theoretical models, we
infer that the primary is burning helium in the core while the secondary is near
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Fig. 1.17. Critical times for synchronization using the turbulent dissipation and ra-
diative damping mechanisms versus the age. Case of primaries. The position of DI Her
is indicated.

Fig. 1.18. Same remarks as in the previous figure. Case of the secondaries.
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Fig. 1.19. Comparison between the evolutionary ages and critical times for circular-
ization using turbulent dissipation and radiative damping mechanisms.

the “red hook”(see Fig. 1.1 by Claret & Giménez 1995). The diagnosis diagram
shown in Fig. 1.20 is very useful useful since it distinguishes the synchronous
component from the asynchronous one. In this way, it was have shown how
both components of TZ Fornacis probably evolved, the circularization as well as
the synchronization for the primary were achieved, while the secondary is still
presenting high degree of asynchronism (Claret and Cunha 1997).

Another braking mechanism is based on the work of Tassoul (1987, 1988).
Following this description, the stars in a close binary system tend to synchronize
and circularize the orbit due to the distortions which cause large scale hydrody-
namical currents. Regardless of the dissipation mechanism used, we would like
to stress the fact that the differential equations which govern the orbital param-
eters of a binary system must be integrated instead of using the corresponding
time scales. Moreover, they were assumed several approximations: constant pe-
riods during the integration of the differential equations, little departure from
synchronism, small eccentricities, etc. The integration of the differential equa-
tions which control the orbital parameters depends strongly upon the initial
conditions. Besides the limitations and approximations quoted above, the most
crucial limitation was probably not to consider the pre main-sequence evolution.

Some especial systems. Some binary systems are of especial interest concern-
ing stellar evolution and dynamical behavior. Among them, we select the case
of EK Cep and HV 2274. The first one is interesting because it provides more
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Fig. 1.20. The evolution of the radii of TZ For. The continuous line represents the
primary while the dashed one denotes the secondary. The left side arrow indicates the
point where circularization and synchronization of the primary are achieved. The other
arrow indicates the time where the secondary would synchronize.

constraints than usually double-lined eclipsing binaries do. On the contrary, the
second system do not provide very accurate dimensions but, its attraction is that
it is an extragalactic eclipsing binary situated in the Large Magellanic Cloud.

Let us analyze first the case of EK Cep (Claret et al. 1995a). Really, it is
a very good candidate to test evolutionary models since we have observational
data concerning

• accurate absolute dimensions (Popper 1987)
• good determination of the apsidal motion rate (Giménez and Margrave 1985)
• determination of surface lithium abundance (Mart́ın and Rebolo 1993)
• the secondary component is suspected to be in a pre main-sequence phase

Figure 1.21 shows the behavior of the radii of the components of EK Cep.
The models fits very well the absolute dimensions and confirms the secondary

as a pre main-sequence star. With respect to the apsidal motion rates predicted
values of k2 are in excellent agreement with the observational data. Concerning
lithium burning, the models indicate no depletion for the primary while they
predict a depletion of 0.1 dex, which is consistent with the abundance derived
by Mart́ın and Rebolo (1993).

On the other hand, the system HV 2274, located in the LMC, observed by
Watson et al. (1992) only provides the light curve - no information on the masses
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Fig. 1.21. The evolution of the radii and apsidal motion constant for EK Cep.

- and an estimation of the apsidal motion period around 123 years. On the base of
theoretical evolutionary models computed for the LMC and the observed apsidal
motion rate, it was predicted the masses and radii for both components of this
system (Fig. 1.22). The masses were constrained to be between 10 and 12 M�.

Recently, using ground-based photometry, spectrophotometry on board of
Hubble Space telescope, Guinan et al. (1998) were able to determine the abso-
lute dimensions for HV 2274 which are in good agreement with the theoretical
predictions. Stellar models computed for the precise observed masses give even a
better agreement for the masses and radii as well as for the apsidal motion rate.
Of course, the importance of the case of HV 2274 is in the fact that this system
is the first extragalactic binary where it has been possible to investigate the sur-
face astrophysical parameters as well as tidal interactions using the techniques
of apsidal motion.
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Fig. 1.22. The theoretical P/U for HV 2274 as a function of the time (Claret 1996).
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27. Claret, A., Giménez, A. 1995, A&A, 296, 180
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Abstract. “Activity” is a term that came originally from solar astrophysics, where
astronomers refer to the quiet Sun and the active Sun depending on whether our star
is in a state of sunspot minimum or maximum, respectively. More physically, we mean
with activity all phenomena inside and outside of a star that are related to its magnetic
field, e.g. the rise of flux tubes in a stellar convection zone and their appearance as
spots and plages on the stellar surface or, magnetically induced particle acceleration
and its braking effect on the stellar rotation, or simply the interplay between a mag-
netic field and its surrounding plasma. Bear three things in mind, a magnetic field
plays a key role in many astrophysical processes, its mathematical treatment can be
somewhat complicated and, therefore, is always the first process that is neglected . . .
The stellar magnetic field is intimately related to stellar rotation and the quest to un-
derstand stellar magnetic activity is thus always a quest to understand stellar rotation.
In this lecture, we will focus on the many aspects of stellar rotation and compare the
situation of binary stars with their single star counterparts whenever appropriate. I will
concentrate on the available observations and their interpretations even though that
fundamental progress will also come from the detailed inclusion of magnetic fields in,
e.g., radiation hydrodynamics. We emphasize how important considerations of mag-
netic activity will become once the new generation of large telescopes is turned to
late-type binary stars. Parts of the topics in this lecture are adapted and updated from
my reference [111] which appeared in german language. I have tried, however, to avoid
topics that were already covered in the excellent review by Guinan & Giménez [36]

2.1 Plasma + Magnetic Field + Velocity Field =
Magnetic Activity

2.1.1 Ingredient 1: An Astrophysical Plasma

An astrophysical plasma must be electrically neutral to a very high degree be-
cause otherwise it would quickly recombine given the good mixing due to the
high particle velocities. A plasma’s properties are always the sum of the prop-
erties of its particles, i.e., its electrons, ions, and neutrons. If the energy per
particle is the same, then the plasma is in equilibrium and the velocity distri-
bution of its particles follows a Maxwellian distribution (describes the number
of particles per volume with velocities v + dv). Less massive particles must have
higher average velocities to carry the same energy than a heavy particle and
thus dominate the kinetic energy of the plasma while the more massive particles
have lower velocities and mainly contribute to the density of the plasma. The
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kinetic energy of a plasma is then

3
2
kTe =

1
2
mev̄e

2 (2.1)

and the plasma density

ρ = ρion + ρe + ρn with ρx = nxmx , (2.2)

where n is the number of particles of species x, and m their mass. The plasma
pressure is given by the average momentum from all particles. If sufficient colli-
sions between particles take place, we can assume that on average all particles
contribute the same amount of momentum in all three spatial directions. The
resulting plasma pressure will be

pi =
1
3
nmv2 for i = 1, 2, 3 . (2.3)

The electrical conductivity of the plasma is independent of the energy that a
particle can carry and depends solely on the collision rate. The more collisions
between charged particles, the better will be the charge transport. A simple
formula relates conductivity, σ, in electro motoric units (e.m.u.) to the plasma
temperature, T , in K

σ = 1.53× 10−13 T
3
2

Z
, (2.4)

where Z is the atomic number. E.g., the conductivity in the solar convection
zone varies between 106 − 103 A/Vm (SI units).

2.1.2 Ingredient 2: A Magnetic Field

The Maxwell equations decribe the connection between magnetic and electric
field, the charge density, and the current while the hydrodynamic equations
relate pressure, density, and temperature to the plasma velocity. Combining
these two sets of equations, we include the induction equation

∂B
∂t

= ∇× (v ×B)︸ ︷︷ ︸
induction

+
1

4πσ
∇2B︸ ︷︷ ︸

diffusion

, (2.5)

which describes the evolution of the magnetic field with time. The two terms
marked can sometimes be approximated by their integral values

∇× (v ×B) ≈ vB

�
(2.6)

1
4πσ

∇2B ≈ B

4πσ�2
. (2.7)

The quantity 4πσ�2 is the diffusion time scale, i.e. the time for a magnetic field
of scale � to change by its own magnitude through Ohmic decay, and �/v is the
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advective time scale (e.g. the rise time of a flux tube through the convection
zone). The ratio of these two timescales, and thus the ratio of the two terms in
(2.5), defines the magnetic Reynoldsnumber (Rm = τdiff/τadv).

A most important ingredient for our understanding of the solar-stellar con-
nection is the interaction of the magnetic field with the astrophysical plasma.
The magnetic field produces the pressure B2/8π (in cgs units) perpendicular to
the field lines and a tension B2/4π along the field lines but since charged parti-
cles move freely parallel to the field, the plasma is not affected by the magnetic
tension. For example, in a young sunspot horizontal equilibrium is reached when
the difference of the gas pressure outside and inside the spot equals its magnetic
pressure

poutside = pinside +
B2

8π
(2.8)

while the vertical equilibrium is basically given by the hydrostatic equilibrium

dp

dr
= −ρg . (2.9)

The plasma in a sunspot reaches a stable equilibrium by lowering its vertical
position (the so-called Wilson depression) because the pressure in its surrounding
increases with depth. Of course, spots can sink because they are cooler than their
surrounding. If the magnetic pressure exceeds the gas pressure a current must
flow along the field lines and the last of the four Maxwell equations becomes

∇×B = j = αB (2.10)

where B is the average magnetic field, j is the current and α a scalar quantity
(α = 0 is the special case of a potential field). The magnetic energy is propor-
tional to α2. The appearance of an additional current in the direction of the
average field is called the α effect (see also next section). Because the current
itself does not produce a force, the field is a force-free field. Of course there
is an upper limit for B in places where the magnetic forces are so large that
the plasma motion is effectively brought to a halt. The simplest form of such a
dynamical limit is equipartition, i.e. when the kinetic-energy density equals the
magnetic-energy density. The corresponding field strength is

Beq =
√

ρμ v , (2.11)

where ρ is the density of the plasma, μ the magnetic permeability, and v the
plasma velocity. A solar granule exhibits a typical velocity of 2 km s−1 at the solar
surface (ρ ≈ 3× 10−4 kg m−3) and thus allows an equipartition field strength of
0.04 Tesla.

It is assumed that the magnetic field structures on the stellar surface are
the product of magnetic flux that was released somewhere in the stellar interior.
The origin of this assumption is an effect called magnetic buoyancy. Magnetic
structures that have the same temperature than their surrounding and are in
pressure equilibrium still experience a net upward lift (Parker [80]). The char-
acteristic lift velocity is the Alfvén velocity from (2.11). Inserting the density
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from a solar convection-zone model and an expected field strength of ≈10 T,
the Alfvén velocity at the bottom of the convection zone is of the order of 60
m s−1. It would take a magnetic structure about one month to cross the solar
convection zone. Therefore, magnetic flux can not be stored in the convection
zone for much longer than this and certainly not over the entire 11-year cycle.
It needs a sufficiently stable region where it can be stored and thereby strength-
ened by a dynamo process. The current thinking is that the solar magnetic field
is generated in the overshoot region below the convection zone from where it
rises to the surface (Fig. 2.1).

Fig. 2.1. Schematic plots of the α effect (upper right) and the Ω effect (lower right).
The left graph shows a pseudo three-dimensional look inside the Sun and highlights a
single magnetic field line. The two shaded spheres indicate the surface and the bottom
of the convection zone, respectively (so do the thick circle and the thin circle in the
small panels). AR indicates a bipolar active region. The axis of rotation is also indi-
cated. (After David H. Hathaway, Solar Physics Branch, Marshall Space Flight Center,
NASA).

2.1.3 Ingredient 3: A Velocity Field

The stellar plasma of a rotating star has a preferred sense of motion due to the
direction of the stellar rotation. The radial gradient of the angular velocity is
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called differential rotation. The combination of these two velocity fields convert
an embedded poloidal magnetic field into a toroidal (azimuthal) field and back.
The toroidal component is generated from the shear of the poloidal field (Ω
effect) and the poloidal field itself is generated by the deformation of the toroidal
field due to plasma motions in the convective layer (α effect). Figure 2.1 is a
schematic plot to illustrate the magnetic geometry. Both effects may be spatially
connected (classical αΩ dynamo) or may be separated (e.g. overshoot-layer αΩ
dynamo).

2.2 Stellar Rotation in the Hertzsprung-Russell Diagram

2.2.1 Some Basics and New Solar Data

When a stars moves off the main sequence, its radius and moment of inertia
increases. If we want to correlate these parameters with the (observable) surface
rotational velocity, we need to know how the angular momentum is distributed
throughout the stellar interior. The angular momentum, L, in units of [kg m2s−1]
is generally written as

L = Iω (2.12)

where I is the moment of inertia and ω = v/R the angular velocity (v is the
velocity usually in km s−1 and R the surface radius in km). The angular mo-
mentum of a spherical star of density ρ at distance r from the core is given
by

L =
8π

3

∫
ρ(r)ω(r)r4 dr . (2.13)

Using the surface values, we can express the formal equation above also as a
pseudo angular-momentum equation when we replace the integral with a single,
dimensionless number k (k is the gyration radius, it parameterizes the deviations
of density from a homogeneous sphere and is tabulated in some basic physics
books; some authors prefer to write K ≡ k2. For most stars, k2 ≈ 1/13 is a good
approximation). Equation (6.1) then reads

L = k2MRv = k2MR2ω. (2.14)

The Sun’s radius of gyration is 0.25, and its total angular momentum is approx-
imately 1.7×1041 kg m2s−1. When we compare this to the angular momentum
of the nine planets in the solar system, around 3×1043 kg m2s−1, i.e. approx-
imately a factor 100 higher, we see immediately that rotation in binary stars
will be dominated by the angular momentum of the orbital motion rather than
by the rotation of the individual components. If we put another Sun into our
solar system instead of the nine planets, the orbital angular momentum raises
to something in the range of 1045 to 1048 kg m2s−1, i.e., 104 to 107 times higher
than the solar rotational momentum. The energy that is contained in the (nor-
mal) stellar rotation is also relatively small, about 108 times smaller compared
to the nuclear energy reservoir of the Sun. These numbers significantly change
when a star evolves and becomes a giant.
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Fig. 2.2. The internal ro-
tation profile of the Sun for
three latitudes, 0◦, 30◦, and
60◦ between 0.4 and 1 r/R.
Data from SOHO MDI. The
vertical dotted line indicates
the bottom of the convection
zone. (After Kosovichev et al.
[57]).

Only for the Sun, we have the capability to “look inside a star” by apply-
ing seismological inversion techniques to observed radial velocity and brightness
variations (there are various proceedings on this topic, see e.g. Weiss & Baglin
[137]). Figure 2.2 shows a radial cut through the upper 60% of the Sun. This
data were obtained with SOHO’s Michelson Doppler Imager (MDI) and reveal
rigid rotation down to the radiative zone and, thus, in Eq. (6.1) ω(r) ≈const.
Figure 2.2 also clearly demonstrates that the latitude-dependent surface differ-
ential rotation is maintained until close to the bottom of the convection zone.
The discontinuity at this depth, e.g. for a latitude of 0◦ in Fig. 2.2, is now used
as good evidence that it is the true location of the solar dynamo. However, this
might not be the case for giant stars, or for contracting pre-main-sequence stars,
where the evolution of the stellar interior redistributes its mass and thus possibly
also redistributes the interior angular momentum.

Historically, Kraft [58], [59] separated between two cases (see also Gray [33]):
First, angular momentum is not exchanged radially but is conserved in “shells”
and its total amount is conserved with time as the star evolves:

(Iω)surface today = (Iω)surface ZAMS

k2MRvshell = k2
0MR0v0

vshell = v0
R0

R
. (2.15)

Here, k and M are constant because we assume that angular momentum is
conserved within each shell. R0 denotes the stellar radius on the zero-age-main-
sequence (ZAMS) and R is the current radius (R > R0). The second case is
pretty much the opposite, that is, angular momentum is completely redistributed
throughout the stellar interior and, as a consequence, the star rotates rigidly.
Then, the radius of gyration is not a constant anymore and we get

vrigid = v0

(
k0

k

)2
R0

R
(2.16)
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and, because evolved stars have denser cores and larger envelopes as compared
to dwarf stars, i.e. k < k0, we should see the relation

vrigid > vshell. (2.17)

On average, a rigidly rotating star should have a higher surface rotation velocity
than a star that has conserved its angular momentum in shells. Stars in open
clusters of known age are the ideal tracers for a comparison of above prediction
with the actual case (cluster stars are chemically homogeneous and their original
angular momentum came from the same pre-stellar cloud and likely was of similar
amount). If one adopts a simple theoretical model for the change of R with mass
and time, i.e. R(M, t), and considers it in above series of equations, Kraft [59]
came to the surprising result that the calculated velocities even exceeded the
upper limits of the observed velocities. He correctly concluded that the cluster
stars observed must have undergone a significant loss of angular momentum.
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Fig. 2.3. Boundary lines in the H-R diagram. The magnetic and acoustic regions are
indicated as described in the text. (After Gray [34]).

2.2.2 Rotation Regimes in the H-R Diagram

Which regions in the Hertzsprung-Russell diagram are influenced by rotation?
Figure 2.3 shows four different sections. When more massive stars evolve across
the granulation boundary, i.e. develop a convective envelope, their rotation will
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have already slowed down below what is needed to drive a dynamo. These stars
will fall into the domain labeled “Acoustic 1”. The less massive stars, say up to
2 M�, that thus have shallow convection zones, are not yet in the evolutionary
status where their moments of inertia significantly increase nor experience sig-
nificant magnetic braking, and thus still maintain most of their rotation at this
time. These stars already drive a weak dynamo and the corresponding region is
labeled “Magnetic 1”. Once these stars evolve past the rotation boundary, i.e.
where strong magnetic braking takes away much of their angular momentum,
their surface rotation slows down and so should their magnetic activity. However,
in this region we find the most active stars of all. It is the regime of the tidally
locked components of the RS Canum Venaticorum binaries (“Magnetic 2”) and
of some abnormally fast-rotating, apparently single giants (see the contribution
by F. C. Fekel in Strassmeier et al. [119]). The region labeled “Acoustic 2”, that
appears separated from the others by the coronal-boundary line, is currently
being rediscussed. This is because many new ROSAT all-sky survey detections
of giants above the coronal line were reported (Hünsch et al. [48]). Nevertheless,
beyond the coronal-dividing line stars should have slowed down even more due
to their further increase of the moment of inertia during regular evolution and
should exhibit no (coronal) X-ray emission.

2.3 Angular Momentum Loss by Magnetic Braking

2.3.1 Principle

The principles of magnetic braking were already layed out by Schatzman [98]
back in the early fifties. But once again, let’s take our Sun as an example. Con-
sider a particle of the solar wind, an electron or a proton, that leaves the solar
surface radially and travels into space. Right at the solar surface its tangen-
tial velocity component equals the rotational surface velocity of the Sun, i.e.
vsurface ≈2 km s−1. When it reaches the Earth’s orbit, it should have slowed
down to R�/avsurface ≈ 10 m s−1 (a = 1 AU) if it conserved its angular momen-
tum. However, the HELIOS spacecrafts measured velocities of the order of 1–10
km s−1 (Pizzo et al. [87]), that is a factor 100–1000 faster than anticipated. The
cause is that the (charged) particles are travelling along open field lines and not
just radially outwards. To do so, the energy that is contained in the magnetic
field per unit volume must be significantly larger than the particle’s kinetic en-
ergy and thus its trajectory is dominated by the direction of the magnetic field
lines rather than by the gravitational field. If some of the stellar magnetic-field
lines are open and reconnect, e.g. with the interstellar medium, a stellar wind
exerts a torque on the star and effectively removes angular momentum from it
and thus brakes its surface velocity. The magnetic field lines will be distorted
opposite to the direction of the stellar rotation (see Fig. 2.4) and do not leave
the star radially but will be bent. Their curvature causes a (tangential) counter-
acting force on the surrounding stellar plasma (a bented field line always wants
to straighten because ∇·B = 0 must be fulfilled). If the field is anchored strictly
at the poles – we assume that the magnetic poles coincide with the rotation
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poles (which is, e.g., not true for the Ap stars) – then the amount of dissipated
angular momentum is very small and braking almost negligible. However, if the
field is anchored near or at the equator (e.g. in active regions) then the braking
is strongest.

Fig. 2.4. Magnetic braking due to mass loss
along open field lines. Pole-on view, the di-
rection of rotation is indicated. (After Kippen-
hahn & Möllenhoff [55], Bibliographisches Institut
Mannheim/Wien/Zürich.)

Naturally, this raises the question of where are the field lines anchored in the
star and what part of the star will be braked? A hint comes from observations:
we know that the (surface rotational) velocity dispersion on the ZAMS is very
large, even for stars in the 1–2 solar-mass range, but that it is very small at the
age of the Sun (4.5 Gyr) and already at the age of the Hyades (600 Myr). But
even the very young (70 Myr) α-Persei-G stars are rotating on average faster
than the – barely older – Pleiades G stars (100 Myr). Compare the individual
diagrams in Fig. 2.5. Therefore, magnetic braking must be very effective, at
least for the observable surface layer. Significant angular-momentum transport
in the convective envelope of these stars must have taken place and theorists
believe that the transport mechanism is the turbulent convection induced by
the torque of the magnetic field (e.g. Gough [30]). A purely hydrodynamical
mechanism, namely the evolutionary change of viscosity of the stellar plasma,
may be sufficient to explain the solar spin down and the observed rigid rotation
profile of today’s Sun (Pinsonneault et al. [82]), but not the rapid-braking phase
of young cluster stars. It seems that the entire convection zone participates in
the braking.

2.3.2 Two Types of Magnetic Field

The likely mechanism to generate the magnetic field1 in a solar-like star is
Parker’s αΩ dynamo (Parker [80]). It is the main ingredient in Babcock’s picture
of the solar magnetic cycle. There is good evidence that it operates in a shear
layer between the radiative core and the convection zone (see also Sect. 2.7 and
Fig. 2.21). The differential rotation between the radiative core and the convec-
tive envelope winds up the field and causes a deformation (a “shear”) of the
1 For some basic equations see, e.g., the review on stellar coronae by Schmitt [99]

during the Brussels EADN lectures in 1996.
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Fig. 2.5. A comparison of observed rotational velocities (v sin i) as a function of effec-
tive temperature (or equivalently mass since these are main-sequence stars) for stars in
three open clusters. Top panel: α Persei stars (age ≈70 Myr), middle panel: Pleiades
(100 Myr) and, bottom panel: Hyades (600 Myr). Notice that the Hyades cluster has
no rapidly-rotating stars cooler than ≈6000 K (≈G0) anymore. (After John Stauffer,
Smithsonian Astrophysical Observatory).

poloidal field which, in turn, generates an additional toroidal field component
and thus creates a Lorentz force which counteracts the shear due to the poloidal
field.

Mestel & Weiss [74] suggested that there is a magnetic field even in those
parts of the stellar interior where the energy transport is dominated by radiation
and that it may interact with the dynamo-generated field. For the late-type stars
of question, i.e. the 0.6–1.6 solar-mass range on the main sequence and up to
≈3 solar masses for evolved stars, the radiative zone covers the inner 50–80 %
of the stellar radius below a convective envelope. If such an inner field exists, its
natural explanation is that it is left over from the contraction of the pre-stellar
cloud, i.e. it is the frozen-in interstellar field (sometimes called the primordial
field).

Numerical simulations show a strong dependence of the surface rotation upon
the radial extent of the inner primordial field (e.g. Charbonneau & MacGregor
[14]). Only if the two fields are separated braking can be achieved in roughly
107 years, i.e. the correct order that is observed in open clusters. The simula-
tions also show that the rotational dependence is strongest in the time interval



58 K.G. Strassmeier

between arrival on the ZAMS and an age of 2×108 years and converges for all
configurations only above an age of approximately 1 Gyr (the age of the ZAMS
arrival of the Sun was computed to be 4×107 years). In order to agree with obser-
vations, the coupling between a primordial inner field and a dynamo-generated
outer field must be absent or at least very weak.

2.3.3 Magnetic Activity Depends on the Rotational History

It seems that today’s magnetic activity of a main-sequence star is already pre-
determined in its youth, i.e., at times when the pre-stellar-cloud material is still
there and the central object still gains its luminosity mainly from contraction.
The link of the central object with its circumstellar environment sets the star’s
original surface rotational velocity. Therefore, magnetic activity of a star on the
ZAMS will be determined by the rotational history when it still was a pre-main-
sequence (pms) star. Did the star have a disk? And if so, how long did it live
and how efficient did it remove angular momentum from the star? During the
very early stages in stellar life (after ≈104 years) the cloud of which the star has
formed is still distributed around it like a cocon (these stars are called “class 0”
protostars). During later stages, at an age of ≈105 years, the left-over cloud ma-
terial will be concentrated in an accretion disk (these stars are called “class I”
protostars or classical T Tauri stars). After all of the disk material has been
accreted and/or blown away by a stellar wind, the star is free to rotate. Stars
at this stage, roughly at 106 years, are called the weak-lined T Tauri stars or
“class II” protostars.

In a review by Bouvier [10], it is suggested that pms stars with long-lived
disks (classical T Tauri stars) have slowed down their surface due to disk locking
but not their interior. From a rotational point of view, their core has decoupled
from the envelope and possibly wound up the frozen-in field of the pre-stellar
cloud (see also Bouvier et al. [11]). If so, then this is the time when the shear
between the core and the envelope causes the poloidal field to change into some
toroidal components which effectively brakes the core and possibly accelerates
the envelope. We do not know enough yet about the process of core-envelope
decoupling in order to fully understand rotational evolution but it seems that
differential rotation (surface and internal) is the key to magnetic activity.

2.4 Stellar Rotation in Binary Stars

2.4.1 Magnetic Braking in Close Binaries?

The effect of magnetic braking can also be applied to binaries with magnetically
active components like the RS CVn- or BY Dra stars (for a summary of such
stars see the catalog of chromospherically active binary stars (CABS catalog;
Strassmeier et al. [121]). However, tidal coupling in late-type close binaries is
such a powerful mechanism that it alone will be sufficient to force the stellar
rotation to synchronize to the orbital revolution. Also, there may not be many
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open field lines in an active binary that could account for the braking effect.
At the moment there is no consistent numerical treatment of magnetic braking
in binaries because it is strongly dependent upon the field geometry and we do
not know enough about the actual field distributions in close binaries. Also, it is
quite common that both stellar components are active once the orbital period is
short enough to initiate dynamo action (several days for dwarf components and
up to several weeks for giant components). Then, even stars with very shallow
convection zones can become magnetically active. An imaginative – but purely
hypothetical – picture was put forward by the japanese astronomers Uchida &
Sakurai [131] in the early eighties. It nicely demonstrates the complexity of the
(joint) stellar magnetic field in a close RS CVn-binary system (Fig. 2.6).

Fig. 2.6. Simulation of a
possible field geometry of
a RS CVn-type binary.
Viewing angle is approxi-
mately “pole on”. (After
Uchida & Sakurai [131]).

2.4.2 Evidence for Inter-binary Material

There is some observational evidence for Uchida & Sakurai’s picture from recent
VLBI and X-ray observations. Lestrade [67] presented evidence of intra-binary
radio emission in the two active systems UX Ari (G2V+K0IV; see Fig. 2.7) and
σ2 CrB (F6V+G0V). It is known that radio emission from these stars stems from
the gyrosynchrotron process associated with large-scale magnetic fields and that
the interaction between magnetic loops attached to the surfaces of the two stellar
components may reconnect and thereby cause the electron acceleration that is
needed for radio emission.

Further evidence of intra-binary activity comes from coronal X-ray maps of
the eclipsing binary AR Lacertae (G2IV+K0IV). After initial semi-successful
attempts in the eighties, Siarkowski et al. [105] presented even 3-D maps of the
X-ray emission in and around AR Lac. Their map from June 1993 (see Fig. 2.8)
showed that the bulk of the emission comes from in between the binary. However,
only about half of the total emission is either rotationally modulated or eclipsed
and thus subjected to the mapping. The other half must come either from a halo
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Fig. 2.7. Sky distribution of the VLBI astrometric measurements (left panel; circles
with error bars) and the projected spectroscopic orbit of the RS CVn binary UX Ari
(dotted ellipse). The right panel is the VLBI intensity map. The uncertainties of the
astrometric VLBI data are only 0.3 milliarcseconds. The radius of the primary subgiant
component is 0.25 milliarcseconds. The astrometric measurements suggest that the
center of the radio emission wanders within the intra-system region. (After Lestrade
[67]).

around both stars or from their rotation poles (the polar caps remain visible
during the partial eclipse). Of course, this reenders the mapping an ill-posed
process with remaining uncertainties of unknown extend but is further evidence
of the existence of inter-binary magnetic fields.

Yet more evidence comes from the detection of a X-ray “superflare” on the
RS CVn-binary HR 5110 (F2IV+K2IV)(Graffagnino et al. [31]). The flare emit-
ted 4×1036 erg within a three-day event. Such energies are hard to explain with
a conventional two-ribbon flare model and the authors suggested that it comes
from a common corona in-between the two active stars. All types of flares on the
Sun, mostly compact flares and two-ribbon flares, are related to magnetic fields
in the one or another way and we may presume that stellar flares are as well.
The observation of a flare from the inter-binary region would thus be evidence
for the existence of a strong joint magnetic field between the stars.
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Fig. 2.8. The inter-binary
X-ray emission of AR Lac.
The observations were made
with the Solid-State Imaging
Spectrograph (SIS) onboard
of ASCA in the energy range
0.4–1.5 keV. The top panel
shows the orbital plane, the
lower panel shows (half of) the
side view. (After Siarkowski et
al. [105]).

2.4.3 The Angular Momentum Distribution
on the Upper Main Sequence

Now that we have identified likely mechanisms for the braking of the Sun and
solar-type stars, we want to put that information into a larger picture and see
what stars of higher mass tell us. This can be done by looking at a single diagram
(Fig. 2.9) that plots (pseudo) angular momentum versus stellar mass as was done
first by McNally [73].

It is obvious from this diagram that the more massive stars behave qualita-
tively differently than the lower-mass stars. The change takes place at a spectral
type of ≈F2–F5. Stars cooler than this or, equivalently, stars less massive than
this, must have lost a significant amount of their initial angular momentum. A
spectral type of F2–5 on the main sequence coincides with the state where stars
start to develop a convective envelope; and thus also a dynamo-generated mag-
netic field that, in turn, switches on a magnetic-braking mechanism. The earlier,
more massive, stars lack this braking and can maintain their initial angular mo-
mentum gained during the contraction of the pre-stellar cloud. It is easy to show
that this will lead to the L/L� = 100M5/3 dependence shown in Fig. 2.9. In his
original paper, Kraft [60] used a simple mass-luminosity relation together with
moments of inertia from stellar models to derive this relationship. The exponent
of the power-law fit was later revised by Kawaler [52] (but see also Dicke [21]
and Gray [33]). But what about binaries?

2.4.4 Rotational Velocities of Close Binaries

It was realized from the beginning that widely separated binaries (with this
usually the Visual Binaries are meant) behave much like single stars since their
gravitational interaction is too weak. We thus reformulate our question and ask
“What about close binaries?”, and mean binaries with orbital periods so short
that tidal interaction plays a significant role in the evolution of its components.
We explicitely exclude mass-exchanging systems like the Algols, β Lyraes, and
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Fig. 2.9. Rotational angular momentum in solar units versus stellar mass. Both axes
are logarithmic. The thick line is the observed mean for stars hotter than the Sun and
follows approximately the relation L/L� = 100 M5/3 (straight line). The rapid-braking
and the slow-braking domains are indicated. Plusses are Pleiades stars, open circles are
α Per-cluster stars. The Sun is also indicated. (After Gray [35]).

W UMas, because they exhibit a completely different mechanism to exchange
angular momentum.

Let’s plot the same graph as, e.g. in Fig. 2.5 for the three open cluster, but
now only for components in close binaries from the field. We borrow this diagram
from the book by David Gray [35] and show it in Fig. 2.10. Immediately, we see
that stars in close binaries behave differently to their single-star counterparts.
Binary stars hotter than ≈F5 usually rotate slower while binary stars cooler than
that rotate faster than their single counterparts. The explanation was already
suggested in the introduction in Sect. 2.2.1 where we found that the angular
momentum stored in the orbital motion of a binary can be about a million times
higher than that of the stellar rotation. Consequently, the stellar rotation will
synchronize to the orbital motion (and not vice versa). For an average (close)
binary system with an orbital period of, say, 10 days, this means that a rapidly-
rotating, more massive star with an initial rotation period of a few days will be
slowed down to the orbital value, while a slowly-rotating, less-massive star with
an initial rotation period of several tens of days will be speeded up. It is this
increased rotational velocity that runs, on the average, a more effective dynamo
in late-type, close-binary components than in single stars.

However, simple scaling between single and binary stars proportional to rota-
tional velocity or rotational period has been abandoned meanwhile. The feedback
onto the stellar interior when a star rotates more rapidly than it should, turned
out to be too complicated and needs refined mechanisms to deplete angular mo-
mentum within the stellar interior (i.e. it needs an answer to the question where
the field lines are anchored in the star). For binaries, we will encounter two of
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Fig. 2.10. The distribution of observed rotational velocities, v sin i, for components of
close binary stars (open circles). The line shows the mean for single stars. We see that
stars hotter than ≈F2–5 rotate on average slower than single stars while stars cooler
than ≈F2–5 rotate faster than typical single stars (After Gray [35]).

the most promising theories later in the next section. First, let us consider tidal
coupling in more detail and see what happens if a binary orbit is eccentric.

2.5 Synchronisation of Stellar Rotation

2.5.1 The Earth-Moon Binary System

The term “tidal coupling” indeed stems from the observation of tides of our
oceans. Tides are nothing else than the effect of differential gravitation in the
sense that regions on Earth that are farther away from the moon will be less
attracted to the moon’s gravitation than closer ones (following Newton’s 1/r2

dependence). A fluid is more prone to this effect because it always tends to
enlarge its surface and the effect of tides is so much easier to see then (the main
land also experience tides). Anyway, we may take the Earth-Moon system as an
example of a binary with an orbital period of one month (actually it is a triple
system because of the Sun) and see what the principle effects of tidal coupling
will be.

First of all, we pretent that the Earth’s water envelope (2/3 of the Earth’s
surface are oceans) plays the same role as the plasma of the convective envelope
of a solar-type star. Since the rotation of the Earth is much faster than the orbital
revolution of the Moon, i.e. one day compared to one month, the Earth will rotate
several times under the tidal deformations of its envelope. This causes significant
friction between the ocean and the ocean floor, i.e. between the envelope and the
core. As we know, friction causes a depletion of heat which in turn is taken from
the rotational energy of the Earth. Thus, it is tidal friction that slows down the
rotation of the Earth. The total angular momentum in the Earth-Moon system
must be conserved though and, as the consequence, the distance to the Moon
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increases until the rotation is synchronized to the orbital motion of the Moon.
The equilibrium state at the time when the orbital and the rotational periods
are equal will be reached at a period of roughly 50 days – which will happen in
about a billion years from now.

For convective binary stars, two mechanisms to deplete angular momentum
were proposed in the literature: tidal friction and meridional plasma motions. It
is not completely decided yet which one is to be favored but it seems that they
are likely complementary.

2.5.2 Tidal Friction in Close Binaries

Of course, we can not apply the Earth-Moon scenario to stars – with or without
convective envelopes – and the previous chapter was just meant to illustrate
the effect of tides in general. Nevertheless, the basic principle is the same but
the detailed physical mechanism that depletes rotational energy is different. For
stars with convective envelopes, J.-P. Zahn [139], [140] suggested that it is the
change of the viscosity of turbulent convection cells that effectively produces en-
hanced friction throughout the stellar convection zone and thus converts angular
momentum.

Zahn finds a surprisingly short time scale of

tfriction ≈
(

MR2

L

) 1
3

≈ 1 Year , (2.18)

where M is the stellar mass, R the stellar radius, and L the stellar luminosity. It
suggests that any change in the turbulent convection of a star with a convective
envelope – like the Sun – has a profound effect on its rotation.

If we consider a very young binary system whose components still rotate
asynchronuously to the orbital motion, the tidal bulges will not immediately
align along the apsidal line of the system. Instead, they will be misaligned by
the difference of the angular velocities of the rotation and the orbit (ωrot−ωorb).
A fact that has been known for over hundred years (Darwin [19])2. The time it
takes to reach complete synchronisation can then be computed via the change of
kinetic energy that is needed by the orbit to align the bulges or, equivalently, by
the viscous dissipation of kinetic energy of the stellar rotation. Zahn’s theory of
viscous tidal friction predicts the following synchronization time scale in years

tsync ∝ f(k, q) tfriction
I

MR2

( a

R

)6
≈ 104

(
1 + q

2q

)2

P 4 , (2.19)

where f(k, q) is a function that includes the gyration radius k (an equivalent
of the mass distribution inside the star) and the mass ratio, q = M2/M1 of
the stellar components. I is the total moment of inertia and a/R the distance
between the components in units of the stellar radius. P is the orbital period.
Note that mass and radius in the left part of (2.19) refer always to only one of
the two stellar components.
2 G.H. Darwin; not related with Charles D., the evolution guru.
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2.5.3 Meridional Motions

A purely hydrodynamical mechanism was suggested by J.-L. Tassoul & M. Tas-
soul [128], [129], [130]. For a star with a convective envelope it is based on the
triggering of a meridional flow in the outer layers due to the non-spherical shape
of one of the binary components (or both). The rotational angular momentum
is thereby converted into a poleward meridional motion. Tassoul & Tassoul find
a synchronisation time scale in years of

tsync = 34
(

L�
L

) 1
4
(

M

M�

) 5
4
(

R�
R

)3

P
11
4 , (2.20)

where L is again stellar luminosity and P the orbital period. A comparison with
the tidal-friction synchronisation time scale shows that the Tassoul mechanism
is significantly more effective (on average several orders of magnitude).

Table 2.1. Active Binaries with Synchronized Rotation

Star Spectral-type Porb Prot

(days) (days)

EI Eri G5IV 1.947227 1.945
V711 Tau G5IV+K1IV 2.83774 2.841
RS CVn F4IV+G9IV 4.79785 4.791
II Peg K2-3V-IV 6.724183 6.718
HU Vir K0IV-III 10.3876 10.28
σ Gem K1III 19.60447 19.41
V792 Her F2IV+K0III 27.5368 27.07
HR 4665 K1III+K1III 64.44 63.75

Table 2.1 is a list of several examples of active, synchronuously rotating
binaries. Porb is the orbital period from radial velocities, and Prot is the stellar
rotation period from photometric observations.

2.5.4 Pseudosynchronuous Rotation

In a binary with an eccentric orbit, both stars will experience yet another com-
ponent of differential gravitation due to the varying distance between the two
stars during one orbital revolution. Based on this effect, the dutch astronomer
P. Hut [49], [50] showed that a rotating star in equilibrium will eventually take
on the orbital angular velocity at periastron, and not an average value along the
orbit. According to Kepler’s second law, this means that the synchronized rota-
tion period will be the value corresponding to the angular velocity at periastron,
which is, of course, shorter than the orbital period. The relation between this
pseudo-synchronuous rotation period and the orbital period as a function of the
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orbital eccentricity, e, is given as a truncated series by Hut to

f(e) =
Ppseudo

Porb
=

(1 + 3e2 + 3
8e4)(1− e2)

3
2

1 + 15
2 e2 + 45

8 e4 + 5
16e6

. (2.21)

Figure 2.11 shows f(e) in graphical form. For a given eccentricity one reads off
the function f(e) and multiplies it with the orbital period to find the pseudo-
synchronous period.

Fig. 2.11. The dependence of the synchro-
nisation period on the orbital eccentricity.
f(e) = Ppseudo

Porb
as given in Eq. (2.21).

2.5.5 Asynchronuous Rotation

Table 2.2 lists several examples of active binaries with asynchronuous rotation.
Some of them rotate faster than the synchronuous or the pseudo-synchronuous
period, some of them slower. Naturally, one would now think that these systems
had not had enough time to synchronize their rotation, but will do so in the
future. However, all these systems contain either evolved stars like class-III giants
and class-IV subgiants or are old low-mass, main-sequence stars that had already
enough time to synchronize according to any of the above theories (see also
the comments in Habets & Zwaan [38]). Another argument, namely that some
of these systems are overflowing their Roche lobes and transfer mass from one
component to the other, remains at best speculative because none of the systems
in Table 2.2 show convincing evidence of mass transfer.

The puzzle has not been solved so far. Two polish astronomers, however,
suggested an interesting way out of the dilemma (Glebocki & Stawikowski [29]).
They suggested that the stellar rotation axis/axes in these systems is/are not
perpendicular to the orbital plane and offered a statistical study based on pho-
tometric period determinations and spectroscopic v sin i measurements to pin
down the inclination of the rotation axes with respect to the orbital plane. In
my opinion the errors from v sin i measurements and from radii estimates are
too large, especially for giant stars of low-to-moderate gravity and thus having
strong surface velocity fields, as that the difference between the photometrically
determined period and that from the rotational velocity can be used to obtain
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Table 2.2. Active Binaries with Asynchronuous Rotation

Star Spectral-type e Porb Ppseudo Prot

(days) (days) (days)

AY Cet G5III 0.00 56.824 . . . 77.22
α Aur G0III/G9III 0.00 104.01 . . . 8.0
VY Pyx K0III 0.00 45.13 . . . 19.34
DQ Leo G5III-IV/A7V 0.00 71.69 . . . 55.0
λ And G8IV-III 0.04 20.521 20.0 53.95
HD 181809 K1III 0.05 13.048 12.8 60.23
LU Hya K1IV 0.13 16.54 14.9 21.0
V1285 Aql M3.5V/M3.5V 0.20 10.319 8.3 2.9
HD 155989 G5III 0.32 122.56 73.5 30.0
TY Pic G8-K0III 0.32 106.74 64.0 43.76
12 Cam K0III 0.35 80.174 45.2 80.94
RZ Eri K0IV 0.35 39.28 21.6 31.4
AZ Psc K0III 0.50 47.12 16.5 91.2
LS TrA K2IV/K2IV 0.52 49.431 16.3 46.19
BN Mic K1III 0.52 63.09 20.8 61.73
HD 118234 K0.5III 0.59 59.05 14.7 64.0
HR 7578 K2-3V/K2-3V 0.69 46.817 7.9 16.5

sin i with reasonable error bars; which just means that we need better spec-
troscopy. As we will see later, Doppler imaging of components with large v sin i
offers another – much more reliable – way to determine sin i.

2.5.6 A Comparison with Observations

When we now make the step to compare theoretical predictions with actual
observations, it is very import to realize the meaning of time scales. Most im-
portant, we need to realize that, if we insert today’s observed stellar parameters
into (2.19) and (2.20), we obtain the time scale of synchronisation of a to-be-
synchronized binary but with today’s parameters. For evolved stars, this can
lead to incorrect comparisons. Actually, we would rather need to insert the stel-
lar parameters before the synchronization takes place, which then requires exact
knowledge of the current evolutionary status of the two binary stars and its
history.

It is obvious that a comparison can only be made for binary systems where we
have very exact knowledge of the relevant stellar parameters, e.g. masses good
to within a few percent, just to name an example. This was done by Andersen et
al. [2] for two binary systems each containing two giant stars; TZ For, an inactive
eclipsing binary and Capella (α Aur), an active non-eclipsing binary. Since the
present paper deals with active binaries, let us summarize some of the stellar
properties of Capella and compare them to the inactive TZ For system. This
is done in Table 2.3 but I refer to the paper of Andersen et al. [2] for further
discussions.
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Table 2.3. A comparison between TZ For and Capella

Hot Star Cool Star
Parameter Capella TZ For Capella TZ For
Spectral type G1III F7III G9III G8III
Mass [M�] 2.5±0.2 1.95±0.03 2.6±0.4 2.05±0.06
Radius [R�] 8.3±0.5 3.96±0.09 14.1±4.1 8.32±0.12
Temperature Teff [K] 5800±300 6350±100 5000±200 5000±100
Luminosity [L�] 66 23 72 39
Gravity log g [–] 3.0±0.1 3.53±0.02 2.75±0.11 2.910±0.017
Density [g cm−3] 0.0067 0.044 0.0025 0.0050
Rotation period Prot [days] 8.5 4.7 104: 105
v sin i [km s−1] 36±3 42±2 5±2 4±1
v sin isyn [km s−1] 2.7 2.6 3.8 5.5
Orbital period Porb [days] 104.02 75.67
Eccentricity [–] 0.000 0.000
Inclination i [◦] 47 85.64±0.05

Astrophysical parameters of single giant stars are uncertain because there
are just a few such stars that can be studied in spectroscopic binary systems,
and even less that are also eclipsing binaries. Moreover, Roche lobe overflow and
mass exchange set a limit to the stellar radius in a close binary. Non-interacting
binaries with giant components have therefore mostly very long orbital periods
and are difficult to observe fully within an astronomer’s lifetime. There are,
however, a few systems that have sufficiently short orbital periods (see Andersen
[1]). Capella is such a system and consists of a G1III and a G8-K0III component
(e.g. Strassmeier & Fekel [118]) in a 104-day orbit.

The Capella binary has been classified as a RS CVn system and is included in
the catalog of chromospherically active binary stars (Strassmeier et al. [121]). It is
untypical in that the hotter of the two components, the G1III giant, is the active
star and not the late-type G8-K0 component. Therefore, the G1 component could
be covered with starspots that modulate the photospheric light with the stellar
rotation period. Detecting the accompanying light variability could lead to a
precise stellar rotation period for this Hertzsprung-gap giant.

Capella is usually much too bright for standard high-precision broad-band
photoelectric photometry and is a challenge for modern light-sensitive instrumen-
tation. Moreover, its long orbital period of 104 days makes it a further challenge
for obtaining full phase coverage and the fact that there are two stars that make
up for the observed light diminishes the observable amplitude. The only reliable
(and published) photometry that we are aware of is that by Krisciunas & Guinan
[61], who observed the star independently between 1981 and 1990. They found
a possible 0.04 mag peak-to-peak variability in V. Their period analysis showed
peaks in the power spectrum corresponding to periods of 82 days and 67 days.
None of them seemed significant.
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Fig. 2.12. The Wolfgang-Amadeus APT at Fairborn Observatory in southern Arizona.
Left: Wolfgang, blue optimized. Middle: Amadeus, red optimized. Right: Lou Boyd,
Director, fully optimized.

Therefore, we put Capella on Amadeus, one of the two Vienna “Wolfgang-
Amadeus” APTs (Fig. 2.12) for routine monitoring (which is still underway).
The Amadeus APT is optimized for red wavelengths with an EMI-9828 pho-
tomultiplier tube and use a narrow, 31-Å FWHM, Hα filter. In addition, all
measurements of Capella were made with a 5m neutral density filter in front of
the spectral filter. Along with a 10-sec integration time, we were able to keep
the count rates below 1 Mill. c/s.

The data from the first two observing seasons are shown in Fig. 2.13. Clearly,
Capella is a variable star with an amplitude of 0.04 mag as suggested by Krisci-
unas & Guinan [61]. A multifrequency analysis suggests two significant (but still
preliminary) photometric periods of 104±13 and 8.50±0.24 days that we inter-
pret to be the rotation periods of the cool and the hot component of Capella,
respectively. These periods, if correct, would confirm that the hotter component
of Capella rotates asynchronuously while the cooler component appears to be
synchronized to the binary motion.

The present position of the G1III component in the Hertzsprung gap, where
it is approaching the base of the giant branch, indicates that violent changes are
taking place in its internal structure; the mass of the convection zone increases
rapidly as does also the total stellar moment of inertia (Sweigart et al. [127],
Rutten & Pylyser [97]). We may expect that this has a profound impact on the
visible surface rotation of the two Capella giants. Precise rotation periods of
more stars in this evolutionary stage may thus help to further understand the
angular-momentum loss in late-type stars.
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Fig. 2.13. The seasonal Hα-light curves of Capella for 1996/97 (panel a) and for
1997/98 (panel b). The error bars refer to rms magnitudes obtained by averaging
count rates throughout an observing sequence. For each of the two data sets, the
average magnitude is set to zero.

2.6 Stellar Rotation and Orbital-Period Variations

Orbital-period variations of binary stars are usually attributed to mass exchange
from the Roche-lobe filling star to the other component. However, mass exchange
can not account for alternating period changes, as observed in some Algols and
in most active RS CVn binaries, because the direction of the mass exchange is
predetermined and does not reverse within observationally accessible time scales
(but see also, e.g. Biermann & Hall [9]). Back in 1992, Applegate [3] suggested a
qualitative model in which the orbital period is modulated by the stellar activity.
His model was recently quantified and expanded by Lanza et al. [65] and we will
discuss it in more detail in this chapter.

2.6.1 First, Precise Stellar Rotation Periods Are Needed

In the previous as well as in the forthcoming chapters, we find the stellar ro-
tation period to be an utterly important parameter. However, it is not an easy
task to measure rotation periods. Formally, one could deduce a rotation period
off the line broadening from a single high-resolution spectrum together with an
assumption of a stellar radius, but this is notoriously uncertain due the unknown
inclination of the rotation axis. Periods determined from photometry are usually
a factor of 10–100 more accurate than from rotational velocities from line broad-
ening and are an excellent tool for probing even differential rotation or specific
surface phenomena like starspots, plages, and their evolutionary changes. The
trivial relation between surface velocity and rotation period is

Prot = 50.6
R sin i

v sin i
, (2.22)

with the rotation period in days, R sin i in solar radii, and v sin i in km s−1.
Sunspots are the most important tracers of solar rotation (cf. Bray & Lough-

head [12], Zirin [141]). In as early as 1611, G. Galilei, J. Goldsmid, and Ch.
Scheiner traced the positions of sunspots to actually discover solar rotation, and
the same principle is nowadays also used for more distant stars (Kron [62], Hall
[39] a.o.). Fig. 2.14 demonstrates its validity from disk-resolved solar observa-
tions. Note in this connection that starspots that are detected from photometric
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observations usually are a factor 10–1000 larger than Sunspots. The “missing-
flux” problem, i.e. the question where the energy goes that is blocked by the
spots becomes even worse then. This energy already amounts to 1036 erg in case
of the Sun, which is equivalent to the energy budget of the solar chromosphere
and corona combined! (For more discussions on that topic, start with Spruit
[106]).

Fig. 2.14. Variations of the total so-
lar flux (the solar “constant”) due
to the apparent motion of a sunspot
group across the solar disk. The bar
in the lower right corner represents
a change of 0.05%. (Data from Hugh
Hudson, after Friedman [54]).

With the advent of fully robotic telescopes, the search for rotationally mod-
ulated light variations became a relatively straightforward task. There are cur-
rently at least three groups that employ automatic photoelectric telescopes
(APTs) for this reason: Tennessee State University joined together with the Mt.
Wilson H&K program and operates several APTs at Fairborn observatory in
southern Arizona (Henry [47]), the Vienna University Observatory also operates
two APTs at the same site (Strassmeier et al. [117]), while the Catania Obser-
vatory operates an APT at their observatory on Mt. Etna in Sicily (Rodonó &
Cutispoto [95]). Repeated observations are also made at several manual obser-
vatories, most noticably at ESO with the now decommissioned 50-cm telescope
(e.g. Cutispoto [17]). The results of all these photometric observations are series
of light curves for well over hundred spotted stars with time coverages just inter-
rupted by the annual seasons, the day-and-night cycle and, of course, unfavorable
weather conditions and – rare – telescope failures. As an example, Fig. 2.15 shows
the long-term light variations of the spotted, close binary XX Tri (HD 12545).
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Fig. 2.15. Photometry of XX Tri. a The long-term V light curve from 1985 through
1999. Notice that the star was at its brightest level ever in January 1998 (JD 2,450,820).
b Seasonal 1997/98 V data (the lower panel shows the differential check minus com-
parison magnitudes). c The same data as in panel (b) but phased with the rotation
period of 24 days. Notice that the scatter in the V-light curve is due to spot changes
from one rotation to the next and not due to instrumental scatter. (After Strassmeier
[112]).

2.6.2 Differential Rotation

With the availability of long-term APT photometry of stars with large starspots,
such as for the tidally-locked close binaries of the RS CVn or BY Dra type, it is
possible to search for differential rotation in a large sample of stars. The appli-
cability was amply demonstrated by various groups and I refer to the papers of
Baliunas et al. [4], Strassmeier & Bopp [116], Lanza et al. [66], and the review by
Hall [43]. The simplest technique is to determine photometric periods from con-
secutive parts of a photometric time-series, usually from consecutive observing
seasons if the period is of the order of weeks or longer, and relate the differences,
ΔP , to the average period (ΔP/ < P >). In case the star is in a binary and
is synchronized to the orbital motion, the orbital period can be used instead of
the average period. However, there is some theoretical support for the view that
the convective motion in the outer layers of close late-type binary components is
governed by the orbital angular momentum (Schrijver & Zwaan [101]) and care
must be exercised when data from long intervals in time are phased together.
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Most eclipsing RS CVn binaries show indeed relatively complex orbital-period
variations. The prototype RS CVn, for example, exhibits orbital observed-minus-
computed (O-C) variations of up to 0.2 days in about 40 years (Rodonó et al.
[96]; Fig. 2.16).

Fig. 2.16. Orbital period variations of
RS CVn. The O −C residuals were com-
puted using a period of 4.797817 days.
Note the long-term variation with a pos-
sible period of 100 years and smaller vari-
ations on a shorter time scale. See text.
(After Rodonó et al. [96]).

Hall [42] used O-C based photometric periods of 85 active stars to infer their
differential surface rotation. The range of observed rotation periods should be
a measure of the strength of differential rotation and could be converted to a
differential-rotation parameter, k ≡ ΔΩ/Ω, if one assumes a restricted latitude
range for the spots. After correcting the sample for their various Roche-lobe
fillings by introducing a dimensionless Roche-lobe filling factor F (0 < F < 1),
Hall [42] found the following relation

log k = −1.96(±0.12) + 0.71(±0.07) log Prot − 0.38(±0.16) F . (2.23)

In words, differential rotation becomes much smaller as rotation becomes faster.
Most stars in Hall’s sample had coefficients 10 to 1000 times smaller than the
Sun (k� ≈ 0.2), i.e. they are close to being rigid rotators. Differential rotation
is more suppressed the faster a star rotates. This is what non-linear dynamo
theories predict. One word of caution though: Hall used the observed timings
of light curve minima, i.e. the times when a spot is facing earth, to deduce the
changes of the photometric period. If there is more than one spot and if they are
not strictly separated by 180◦, the actual light-curve minimum traces a timing
that corresponds to the disk averaged maximum spot coverage and not to the
longitude of a particular spot. Recent measurements of differential rotation by
means of actual light-curve spot modelling (e.g. for HR7275; Strassmeier et al.
[122]) and even in combination with Doppler imaging (e.g. for HU Vir; Hatzes
[44], Strassmeier [109]) gave coefficients even smaller by a factor 2–4 than those
predicted from Hall’s relation. However, taking into account the large scatter
in the relationship above, the values observed individually are still within the
uncertainties of Hall’s general relationship.

Unfortunately, photometric time-series modelling can not provide the sign
of the differential rotation coefficient, i.e. decide whether the equatorial regions
rotate faster than the polar regions or vice versa. It would require to actually
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resolve the stellar disk and to determine the latitudinal location of the spots that
give rise for the light variations observed. This has been done with the Doppler-
imaging technique and many new results regarding differential surface rotation
(for binaries and single stars) become now available. Instead of reviewing the
individual results I refer to the (upcoming) proceeding of the 11th “Cool Stars,
Stellar Systems, and the Sun” meeting held shortly after this summer school in
Puerto de la Cruz, Tenerife in early October 1999.

2.6.3 Applegate’s Scenario

Photometric observations of eclipsing binaries showed that most Algols, RS CVn-
W UMa-, and CV-systems3 exhibit orbital-period variations with amplitudes
of around ΔP/P ≈ 10−5 to 10−6 and with periods of decades to centuries.
Figure 2.16 shows a plot of the O−Cs for the prototype RS CVn binary during
the past 100 years (cf. Rodonó et al. [96]). From a study of a large sample of
Algol binaries, Hall [40] found that only Algols with spectral types later than G0,
i.e. stars with a sufficiently deep convective envelope, had also alternate period
variations as observed in many active binaries. An example of an alternate period
change, i.e. where the period increases at one time and decreases at another, is
again shown in Fig. 2.16 for the prototype active binary RS Canum Venaticorum.
These observations point to a connection between the orbital-period variations
and stellar magnetic activity because the presence of a deep convection zone and
rapid rotation almost guarantees the functioning of a stellar dynamo.

Applegate [3] postulated that changes in the gravitational quadrupole mo-
ment of the active component in a binary system can alter the orbital pe-
riod while keeping the orbital angular momentum constant. If an active star’s
quadrupole moment increases – due to a yet unknown reason –, the gravitational
pull onto the other component increases as well, and an additional centripedal
acceleration takes place that moves the two stars closer together and thus in-
creases the orbital velocity. On the contrary, if the quadrupole moment decreases,
the separation increases and the orbital velocity decreases. Therefore, any mech-
anism that can alter the gravitational quadrupole moment of a star can also
alter the orbital period; and will do so on time scales even shorter than tidal
friction (cf. Lanza et al. [65]) (see also Sect. 2.5.2).

Two mechanism are discussed that can change the graviational quadrupole
moment of a star, which amounts to a deviation of its spherical shape together
with a change of its gravitational potential energy. One mechanism is to some-
how redistribute the internal angular momentum and the other is a change of the
azimuthal magnetic field. Both result in an oblateness of the star. Applegate [3]
suggested that there is a certain amount of angular momentum that is periodi-
cally exchanged between the inner and the outer convection zone as a function
of the magnetic activity cycle. At times when high angular-momentum mate-
rial comes to the outer convective layers, the surface will spin up and become
slightly oblate which, in turn, increases the gravitational quadrupole moment.
3 Cataclysmic Variables.
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The opposite happens when this material sinks to the bottom of the convection
zone. This model would also require a change in luminosity of order 0.1 mag
which was found to be in agreement with some observations (Hall [41]; but see
also Baliunas & Soon [5] for solar observations). Photometric cycles for a set of
ten active stars were recently investigated by Oláh et al. [78] who found mul-
tiperiodic periods for eigth of them with cycle periods as long as over 60 years
and as short as 2.4 years (e.g. for V833 Tau; K5V+?).

On the one hand, a magnetic field of several kiloGauss would be sufficient to
exert the torque through its Lorentz force that is required to also account for
such an angular-momentum exhange. The underlying mechanism is a periodic
change of the azimuthal field component which results in a change of the effective
centrifugal acceleration within the stellar interior and thus also changes the
gravitational quadrupole moment. Recently, Lanza et al. [65] linked such an
angular-momentum exchange to the framework of different types of dynamo
theories that were proposed to explain solar and stellar activity. Based on the
fact that the orbital-period variations change sign and that the driving force for
the quadrupole moment must do so as well, Lanza et al. [65] concluded that it
is more likely that active stars harbour a α2Ω-type4 dynamo rather than the
solar-like αΩ type (for a review of dynamo theories see, e.g., the proceedings of
IAU Colloq. 130, edited by Tuominen, Moss, and Rüdiger 1991).

An important ingredient of most dynamo theories is differential rotation. It
is thought to be the agent to convert the originally weak poloidal field into a
strong azimuthal field. This includes a conversion of kinetic rotational energy
into magnetic energy. Following Lanza et al. [65] and references therein, the
quadrupole moment of a rotating star is

Q = k
Ω2 R5

G
(2.24)

where k is the apsidal-motion constant that is tabulated for stellar models of
various age, e.g., by Claret [40]. Ω is the angular rotational velocity, R the
stellar radius, and G the gravitational constant. The change of Q is then given
by a change in the angular velocity ΔΩ/Ω

ΔQ = Q

(
ΔΩ

Ω

)
. (2.25)

The orbital period variation that corresponds to the change of Q is given by

ΔP

P
≈ ΔQ

M a2 , (2.26)

where M is the mass of the magnetically active component, and a is the semi-
major axis of the orbit. For a typical RS CVn system, k is ≈ 0.15, R ≈ 2−7 R�,
and Ω ≈ 10−5 to 10−4 s−1. According to Eqs. (2.24–2.26) this implies that a
4 In the absence of differential rotation or any other shear layer, Coriolis forces and

turbulent convection throughout the convection zone can take over (= α2 dynamo).
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relative change of angular velocity of ΔΩ/Ω ≈ 10−3 to 10−2 is needed to explain
the observed orbital-period variations in Algols and RS CVns (cf. Applegate [3]).
For RS CVn itself, an angular velocity variation of 3.6% is required. But after
including the effect of the Lorentz force, and assuming a mass of 50% of the total
mass for the convective envelope, the required change is just 0.4%. This value is
then in agreement with the observations in Fig. 2.16.

Lanza et al. [65] also considered the resulting balance between the kinetic en-
ergy and the magnetic energy and found that, if 1% of the kinetic energy of the
convective envelope of a subgiant is converted into magnetic energy during the
activity cycle, the mean field change is around 3×104 Gauss for the azimuthal
field. The underlying poloidal field strength must be of order 100 G to drive the
torsional oscillation in the first place. Recent Zeeman-Doppler images of the ac-
tive binary HR1099 (=V711 Tau) by Donati [23] recovered all three components
of the magnetic field on the surface of this active K subgiant. Figure 2.17 shows
the separate Doppler images for the three magnetic-field components with az-
imuthal fields of up to ±1 kG. Donati [23] also detected orbital-period variations
of HR1099 with a possible period of 18±2 years. It provides evidence that the
average azimuthal field in the convection zone is of the right order, i.e. 6 kG
as suggested from an upper limit of the changes in angular rotation velocity of
HR1099 (Donati [23]). Because there will be some radial gradient of the field
strength within the convective zone, the expected field at the surface is likely
1 kG and thus in agreement with the observations.

2.7 Rotation and Dynamo

2.7.1 The Rossby Dynamo Criterion

In the earlier sections, we saw that magnetic activity, i.e. dynamo action in solar-
type stars, is always accompanied by magnetic braking. Ironically, the magnetic
field generated or strengthened by the dynamo is destroying itself via the loss of
stellar angular momentum and thus by braking of the stellar surface (which in
turn lowers the effective dynamo action and thus the generation of the magnetic
field). Durney & Latour [26] suggested that this can not go on forever, e.g. until
the stellar rotation comes to a total halt. They showed that a classical αΩ-
dynamo will switch off long before because the α-effect will cease to function.
(This is the name of the effect in which a toroidal field will be twisted due to
differential rotation so that at least some of it becomes poloidal. The amount of
twist is called the helicity; see Fig. 2.1.)

Durney & Latour realized that enhanced turbulent convection will eventu-
ally destroy the differential rotation and, if a solar-type dynamo should work
successfully, the poloidal field must be wound up quickly enough not to be de-
stroyed. Therefore, the stellar rotation period must be shorter than the typical
convective turn-over timescale:

Prot < τconv =
�

vconv
. (2.27)
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Fig. 2.17. Zeeman-Doppler image of the active K component of the close binary sys-
tem HR1099 (=V711 Tau). All three field components were resolved and show field
strengths of ±1 kG in 1995.94. The upper left map is the photospheric temperature
map. Notice the strong azimuthal field at or near the stellar rotation pole. (After Donati
[23]).

This is the classical dynamo criterium (see Rodonó [93] for a more complete
summary). Stars with periods longer than this critical period should not be
active. � is a characteristic convective length and vconv a characteristic convective
velocity. The ratio of P over τ is called the Rossby-number and must be less than
one for a star to be active (see Fig. 2.18):

Ro ≡ Prot

τconv
< 1. (2.28)

With Prot = 2πR�/vrot, we may rewrite (2.28) to

Ro =
2πR�

vrot

vconv

�
, (2.29)

and predict the (observable) minimum rotational surface velocity for active stars

vrot > 2πvconv
R�

�
. (2.30)
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While we can estimate the stellar radius, we are left with the two unknowns
� and vconv. What could a “characteristic” length or velocity be? Maybe the
thickness of the entire convection zone (0.28 R� in case of the Sun)? Or the
diameter of a typical convective eddy (maybe 100 km)? Or the path that a
convective element flows until it is completely mixed with its surrounding? The
latter is called the mixing length, �, and is proportional to the pressure scale
height, Hp of a perfect gas under hydrostatic equilibrium,

� = α Hp, (2.31)

where α is a dimensionless parameter of the order of one and

Hp ≡ − dr

d log p
=

kT

μ mH g
. (2.32)

If we compare the extremes, say the pressure scale height at the bottom of
the convection zone (with a typical velocity for the overshoot region) to the full
depth of the convection zone, we get alone an uncertainty of a factor four. Not
yet counting the uncertainties of the adopted “characteristic” velocity. It seems
to me that significantly better stellar observations are needed to pinpoint criteria
for dynamo operation.

Fig. 2.18. Photospheric activity as a func-
tion of the Rossby number. “Activity” is rep-
resented by the photometric V-band ampli-
tude in magnitudes (delta V). This sample
of 359 stars includes stars throughout the
HRD. However, only stars with Ro less than
≈ 0.65 (log Ro ≈ −0.2) appear to be photo-
spherically active. (After Hall [43]).

2.7.2 Rotation-Activity Relations

All stellar dynamo theories predict increased efficiency with increased rotation
(for a review on dynamo action and rotation see Rodonó [93]). This is also what
has been observed from disk-averaged activity indicators since the days of O. C.
Wilson’s seminal paper – actually a series of papers, e.g. Wilson [138] – and its
quantification for single dwarf stars by Noyes et al. [77]. These studies, and many
other, adopted the strength of the Ca ii H&K-core emission lines near 395 nm as
the indicator of magnetic activity. Atmospheric activity is most easily measured
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Fig. 2.19. A comparison of a Ca ii spectrum of the Sun (lower panel) and that of
an active binary (top panel). Notice the very strong H and K emission lines in the
active-binary spectrum. Both spectra were taken with the 0.9-m coudé feed telescope
at KPNO.

by the radiative losses from the layers above the photosphere since they depend
on the magnetic-flux density in the respective lower layers (most dominantly
from the flux density in the photosphere). The solar H&K-line cores come from
a region 2000 km above the τ = 1 photosphere where the local temperature has
risen up to ≈7000 K. The ions and electrons are accordingly faster compared to
the underlying photosphere and collisions and scattering between calcium atoms
and fast electrons are more frequent. Figure 2.19 compares the Ca ii H and K
emissions from the Sun to that of an active binary.

Synoptic solar H&K observations verified the expected relation to the pho-
tospheric magnetic-field strength throughout the solar cycle (see, e.g. Schrijver
[100]) and represent the basis for stellar applications. It is important to note
that the disk-averaged observations of the Sun correspond rather to an “average”
magnetic feature than to an averaged network. Thus, our stellar observations of
surface features from disk-integrated data are on a sound basis. But again, what
about binaries?

Figure 2.20 shows the dependence of activity on surface rotation. The two
panels a and b plot rotation as velocity and period, respectively, and explicitely
compare single stars (plusses) with binary stars (dots). We see that, on average,
a comparable star in a binary rotates faster than its single counterpart and is
also more active. Note that the sample in Fig. 2.20 includes only stars that are
significantly more active than the Sun. Despite that there is a clear tendency
of decreasing chromospheric flux with decreasing rotational velocity or period,
the scatter for a given rotation is about 1 dex. This can be only partially due to
observational errors in the rotation rates and strengthens the view that it is not
solely rotation that scales the emerging magnetic flux (Noyes et al. [77]).
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Fig. 2.20. The rotation-activity relation for evolved
stars. The abscissas show log vrot in the upper panel (a)
and log Prot in the lower panel (b). The ordinates are
logarithmic Ca ii K surface flux in erg cm−2s−1. Plusses
and dots compare the results for single and binary stars,
respectively. (After Strassmeier et al. [123]).

2.7.3 Distributed Dynamo versus Boundary-Layer Dynamo:
The Red-Dwarf Puzzle

The puzzle is a simple one (if it is one after all?): if there were no radiative
core in the stellar interior, and thus no overshoot region that would enable the
generation and storage of magnetic fields, we would expect such a star to be
magnetically inactive. This is the old controversy of a boundary-layer dynamo
below the convection zone against a distributed dynamo throughout the con-
vection zone or even just below the stellar surface (see the book by Stix [108]
for further details). Canonical stellar evolution theory predicts that stars below
≈0.3 M� are fully convective and thus should not possess a boundary layer.

As was demonstrated by SOHO, local velocity fields can be used to indicate
the position of the dynamo. Figure 2.21 shows in the bottom panel the distri-
bution of the velocity of sound as a function of depth in the solar interior (the
upper panel shows the rotation rates for the equatorial regions; see Fig. 2.2 for
other latitudes as well). The increase of detected frequencies between 0.6–0.7
R� (a depth of approximately 190,000 to 270,000 km) is due to a local increase
of the speed of sound, maybe acompanied with a chemical inhomogeneity, and
coincides with the location of the overshoot region. That, in turn, suggests it to
be a rather turbulent place, exactly what a dynamo needs.

However, HST observations of the very low-mass star Van Biesbroeck 10 (=
Gliese 752B; M8Ve) in 1994 uncovered a strong UV flare and provided indirect
evidence for the existence of surface magnetic fields on a fully-convective star.
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Fig. 2.21. Upper panel: A plot of
the solar equatorial rotation rate as a
function of depth. These data show a
sharp shear layer just beneath the so-
lar convection zone (its lower bound-
ary is indicated by the vertical dotted
line). Lower panel: Also, they indi-
cate that the sound waves speed up in
this region and provide a more turbu-
lent regime that is necessary for a dy-
namo process. (After Kosovichev et
al. [57]).

Actually, VB 10 (Gliese 752B) is the secondary component of a binary system
just about 6 pc away. The primary is a red dwarf of just one third of the mass
of the Sun, while the secondary – the star that showed the flare – is near the
threshold of stellar hydrogen burning of just 0.08 M�, which is certainly not
massive enough to have a radiative core.

Stellar flares are caused by intense, twisted magnetic fields that accelerate
electrons and even protons to much above the local velocity of sound. The rapid
energy release heats the surrounding stellar atmosphere up to several 100,000 K.
The most extreme flares on the Sun can even cause brief nuclear reactions on the
surface, as inferred from the appearance of 2.2 MeV γ-ray emission. The outburst
temperature on VB 10 was indirectly measured at 270,000 K and Linsky [68]
attributed it to the presence of an intense, but unstable, magnetic field. After all,
this suggests a dynamo process that operates without the presence of a boundary
layer.

X-ray emission from VB 10, VB 8 (M7Ve) and Gliese 406 (M6Ve) has been
detected with ROSAT, and VB 8 and VB 10 show even evidence of flaring in X-
rays (c.f. Linsky et al. [69]). VB 8 was detected already with the high-resolution
imager onboard the Einstein satellite and in the extreme ultraviolet by EUVE
(see Drake et al. [25]). Most recently, Neuhäuser & Comerón [75] announced the
detection of X-ray emission from a very young brown dwarf in the Chamaleon I
dark cloud and Neuhäuser et al. [76] possibly found another young, bona-fide
brown dwarf in the ρ-Ophiuchi cloud. Stellar X-ray emission is usually either due
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Fig. 2.22. Artistic conception of the interiors of the two components of Gliese 752A
and B (the latter is also called VB 10). While the primary still has a small radiative
core, the very-low mass secondary (VB 10; 0.08 M�) must be fully convective. However,
it was the secondary that showed a strong UV flare and thus must harbor a strong
magnetic field. The insert shows a somewhat simplified standard model for the primary
and emphasises the anchoring of magnetic field lines in the boundary between radiative
core and convective envelope. (After STScI press release PR95-03, J. Linsky, JILA).

to an active corona or due to shocks in a massive stellar wind. A very cool, low-
mass, star like VB 10, or even a brown dwarf, can not have a massive stellar wind
like an O-star and the X-ray emission must be due to stellar activity and thus
a magnetic field. Further observational evidence for magnetic activity on fully
convective stars comes from recent radio observations. Benz et al. [8] detected
a large coronal radio source above the rotation poles of the fully-convective,
young flare star UV Cet B which indicated a poloidal magnetic field of strength
15–130 G.

Therefore, we face the possibility that all late-type stars – including our
Sun – operate a mixture of dynamo processes. That is, a boundary-layer dy-
namo in the overshoot region below the convection zone as well as a distributed
dynamo throughout the convection zone. At this point we enter the regime of
speculation since no computations have been done with both types of dynamos
simultaneously. However, there is growing evidence for a mixed dynamo. The
boundary-layer dynamo is successful in explaining the various sunspot phenom-
ena including their latitudinal distribution, Joy’s law (tilt dependence with lati-
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tude), and its proper motions (Caligari et al. [13]) and also provides the correct
timescales to store magnetic flux for as long as the sunspot cycle. The place of
the dynamo must be sufficiently “stable” and, according to the Schwarzschild-
criterium, means that the local d lnT/d ln p-gradient must be smaller than the
adiabatic temperaturegradient (T temperature, p pressure)

∇ ≡ d lnT

d ln p
< ∇ad. (2.33)

Spruit & van Ballegooijen [107] identified the overshoot region to be such a sub-
adiabatic region5 and suggested it to be the location of the solar dynamo (see
also Stix [108]). The overshoot-layer dynamo also explains the existence of high-
latitude and even polar spots on very rapidly rotating stars (Schüssler & Solanki
et al. [103]) but currently fails to explain the equatorial and low-latitude spots
on these stars (see also Belvedére et al. [7]). On the other hand, recent Zeeman-
Doppler images of the active stars LQ Hya and HR 1099 by Donati [23] show
a dominant azimuthal field component (i.e. a field parallel to the surface) and
Donati [23] claimed that this is a sign of a distributed dynamo operating in the
convection zone just beneath the stellar surface. Since LQ Hya is a single star and
HR 1099 a RS CVn-type close binary, we presume that binarity per se does not
influence the quality of the dynamo. Furthermore, Zeeman splitting of lines in
the very active M4.5Ve-dwarfs Gliese 729 and EV Lac revealed very high surface
field strengths of 2–4 kG (Johns-Krull & Valenti [51]). Since late M dwarfs must
have a very deep convective envelope due to their low temperatures, or are even
fully convective, the observations of strong fields on these stars also favors the
existence of a distributed dynamo rather than a boundary-layer dynamo.

Finally, the relation of velocity fields induced by non-radial oscillations and
the appearance of magnetic surface fields must be incorporated into the next-
generation dynamo models – solar and stellar ones – if real observations are to be
modeled (not to mention the inner primordial field as discussed in Sect. 2.3.2).
Reasoning to do so comes from the fact that the average oscillation frequency
of the Sun changes along with the 11-year sunspot cycle. Pallé et al. [79] first
demonstrated this from disk-integrated resonance-spectrometer measurements
of frequency shifts obtained at the Observatorio del Teide. Figure 2.23 shows
the relatively close relation between frequency shift and sunspot number for
the previous cycle. It suggests that the Sun changes some interior (dynamic?)
parameters during its sunspot or magnetic cycle just as Applegate’s scenario in
Sect. 2.6.3 requires. Whether it is of right order is currently unknown.

But how can we “observe” the dynamo? Well, of course, we can’t do so
directly, but the Sun demonstrates that we could do it indirectly; by using mag-
netic surface phenomena like spots as surface tracers of the dynamo action. The
appropriate observation technique is called Doppler imaging, or Doppler tomog-
raphy, and we will discuss it in more detail in the following Sect. 2.8.

5 A region with δ ≡ ∇ − ∇ad < 0 is called subadiabatic and is stable, a region with
δ > 0 is called superadiabatic and is unstable.
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Fig. 2.23. The change of os-
cillation frequencies of � <
4 of the Sun as a function
of time (upper curve). The
lower curve plots the relative
sunspot number. Time is in-
dicated in years on the upper
axis and in Julian dates on the
lower axis. (Data from Pere L.
Pallé, Instituto de Astrofisica
de Canarias).

2.8 Doppler Imaging of Stellar Surface Structure

This section outlines the principles of the Doppler-imaging technique, summa-
rizes the observational requirements, and presents some relevant observations
and results of stars in close binaries.

2.8.1 Principle

Doppler imaging is an elaborate computational technique similar to medical
tomography and inverts a series of high-resolution spectral line profiles into an
“image” of the stellar surface (Deutsch [20], Vogt et al. [135], Rice et al. [92],
Collier Cameron [16], Piskunov & Rice [84]). Cool starspots produce distortions
in the spectral line profiles that systematically change during a star’s rotation
(Fig. 2.24). It is the way how these distortions change with time which allows to
reconstruct the stellar surface temperature distribution. The technique is very
similar to that described in the chapter by Marsh in these proceedings except
that the velocity range in the line profile is restricted to the (rotating) stellar
surface and the intensity range is given by the temperature contrast between
spotted and unspotted photosphere.

A rotationally broadened spectral line profile, R(λ), as a function of rota-
tional phase, ϕ, can be written as

Robs(λ, ϕ) =
∫∫

Ic(M, X(M))Rloc(M, X(M), λ + ΔλD(M, ϕ)) cos θ dM∫∫
Ic(M, X(M)) cos θ dM

(2.34)
where Ic is the continuum intensity, Rloc the local line profile, M the position
on the stellar surface, ΔλD the Doppler shift of the surface element dM at
a particular rotation phase, and X(M) the unknown surface parameter that
is solved for. In our case X(M) ≡ Teff(M), for Ap-stars it may be chemical
abundance (or actually equivalent width).
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Fig. 2.24. The relation between the position of a dark spot on the stellar surface
and its appearance as a bump in the broadened spectral line profile. The left three
rotational sequences (a) are for a low-latitude spot and the right sequences (b) are for
a high-latitude spot. (After Rice [89]).

The inverse problem amounts to finding the surface parameter X(M) from
the observed profiles such that

Dλ(ϕ) =
1

nϕnλ

nϕ∑
ϕ=1

nλ∑
λ=1

g(ϕ, λ)[Robs(ϕ, λ)−Rth(ϕ, λ)]2 ≤ σ2. (2.35)

Since this is an ill-posed problem, one introduces an additional criterion – a
so-called regularisation functional r(X(M)) – and minimizes

E(X(M)) = D(X(M)) + Λ r(X(M)) (2.36)

where Λ is the Lagrange multiplier. The choice of r(X(M)) is related to the
choice of X, and two regularisation functionals are usually used for temperature
mapping,

Maximum Entropy : r(X(M)) =
∫ ∫

M
X(M) log(X(M))dM (2.37)

and

Tikhonov : r(X(M)) =
∫ ∫

M
| ∇X(M) |2 dM. (2.38)

Note that the “physics” go into the computation of the local line profiles
and the continuum intensities as well as the model atmospheres from which the
profiles are computed via a LTE solution of the equation of radiative transfer
(see, e.g., Piskunov & Rice [84], Strassmeier et al. [120]).

Continuum variations are used as additional constraint in the line-profile in-
version because stars with cool spots show light and color variations that are
modulated with the stellar rotation period (e.g. Rodonó & Cutispoto [94], Strass-
meier et al. [114]). Simultaneous photometry in several bandpasses is required
and small, but fully automatic, telescopes do a good job (see Strassmeier et al.
[117]). Even amateur astronomers regularely contribute to this kind of photo-
metric monitoring.
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From solar analogy we know that starspots are regions of strong magnetic
fields and cause different levels of polarization for different parts on the so-
lar/stellar surface. Extracting spatial information from all four Stokes parame-
ters, however, requires extremely high quality spectra (Donati [22], Semel et al.
[104]).

Example: A Four-Pixel Star. Let’s assume that the surface of the star that
we want to Doppler image consists of just four pixels (usually one works with
approximately 3000 pixels). This is convinient because then we can do the in-
version simply by hand. The following example is described in more detail by
Gull & Skilling [37] and also in Piskunov et al. [85].

Our “four-pixel” star looks like the following: The true pixel intensities are

I1 I4

I2 I3

known and are I1 = 4, I2 = I4 = 8 und I3 = 16. However, our “observations”
can not resolve the star and gave the following results (these are synonym for
the spectral line profiles observed)

I1 + I2 + I3 + I4 = 36, I1 + I2 = 12, I1 + I4 = 12. (2.39)

Obviously, from these data we can not determine the individual intensities be-
cause we can not solve for four unknowns with just three equations, i.e. ob-
servations. This is called an ill-posed problem because there are many possible
solutions that would fit the observations. Now we introduce the regularisation
in form of a maximum entropy or Tikhonov functional and write out the terms
in the integrals in (2.37) and (2.38):

rMaxEnt = I1 log I1 + I2 log I2 + I3 log I3 + I4 log I4

rTikhonov = (I1 − I2)2 + (I2 − I3)2 + (I3 − I4)2 + (I4 − I1)2.

Each of these two equations is the sought for fourth equation to solve the prob-
lem. We now substitute into (2.39) and get

with rMaxEnt : I1 = 4, I2 = I4 = 8, I3 = 16
with rTikhonov : I1 = 3, I2 = I4 = 9, I3 = 15.

Maximum entropy provided the correct solution of the problem and Gull &
Skilling [37] compared this result with the answer to a more every-day question:
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“How many kangaroos are blue-eyed and left-handed if 1/3 of all kangaroos have
blue eyes and 1/3 are left handed, assuming that these properties are uncorre-
lated”. Note though that the Tikhonov regularisation provided the same perfect
fit to the observations. Since the four pixels had well defined intensities, and
the Tikhonov regularisation searches for the smoothest possible solution, it will
smooth the mean surface gradient to an extent that is still able to reproduce the
observations. The maximum entropy regularisation is designed for cases where
no correlation exists between neighbouring pixels, which is the case for our four-
pixel star, and thus provided the correct answer. Actual applications, however,
have to deal with noise in the data (our four-pixel star data were implicitely of
infinite signal) and then a Tikhonov regularisation may be as appropriate as the
maximum entropy.

2.8.2 Observational Requirements

Two stellar parameters – brightness and rotational broadening – dictate the
instrumental requirements for Doppler imaging. The former sets a limit for the
achievable S/N ratio and the latter determines the size of a resolution element on
the stellar surface. In detail, there are five observational criteria to be considered
(see also Collier-Cameron [16] and Strassmeier [110]):

Ratio of Local Line Broadening to Rotational Broadening. This ratio is
fixed for a given star and should be as large as possible. It limits the resolution
on the stellar surface even at infinite instrumental resolution,

rspot

Rstar
≥ FWHM local line

star

FWHMDoppler
star

(2.40)

where r is the spot radius (for an assumed circular feature) in units of the
stellar disk radius R. The smallest v sin i of a star that was successfully Doppler
imaged is currently 17.5 km s−1 (HD 129333; Strassmeier & Rice [124]). The
upper limit of v sin i is basically determined by the achievable S/N ratio of the
spectra because the lines get very shallow at the high rotation rates observed,
e.g., in young open-cluster stars. The current record holder is nevertheless the
single field G-giant FK Comae with a v sin i of 160 km s−1 (Doppler imaged by
Korhonen et al. [56]).

Remark 1. Only stars with v sin i ≥ 17 km s−1 are currently useable for Doppler
imaging !

Noise and Photon Statistics. Because the spot shape on the stellar surface
is determined by the shape of the bump in the line profile, we aim for the highest
possible S/N. Observations showed the existence of line-profile variability on the
sub-percent level with respect to the continuum and if we would like to detect a
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1% spot-bump amplitude (Rbump) at a level that is n times the uncertainty of
a spectral-line profile point (σprofile), we require

Rbump ≥ n σprofile with (2.41)

σprofile = f (Δt, Ṅλ, NRON, νsampling, 1−Rline,ff, sky . . . ) (2.42)

where Δt is the integration time, Ṅλ the stellar photon flux, NRON the read-
out-noise of the CCD, νsampling the sampling frequency of pixels through the
line width, 1 − Rline the depth of the spectral line, ff the “stability” of the flat
field of the CCD, and sky the sky background contribution. Obviously we need
a signal-to-noise ratio of ≈300 for a 3σ detection. Order extraction from large
format echelle spectra must be done extremely carefully (see, e.g., Donati [22])
to avoid systematic line profile errors due to, e.g., a slight misalignment between
dispersion direction and CCD pixel rows. Much higher S/N can be achieved by a
least-squares deconvolution of individual line profiles in an echelle spectrum and
consequent coadding (Donati [22], but see also e.g. Kennelly et al. [53], [54]).

The series of maps in Fig. 2.25 compares some simulations for various S/N
ratios. A S/N of 150:1 represents a typical observation of a V=10th-magnitude
star with a 3–4m class telescope, a spectral resolution of R=120,000 and a 50-
min integration time (e.g. as achieved in paper IX for the pre-main-sequence star
HDE283572 with the 3.6-m CFHT; Strassmeier & Rice [125]). The maps in the
right column in Fig. 2.25 are difference maps between the original input map and
the recovery and emphasize the surface regions of increased sensitivity. Overal,
we conclude that S/N ratio alone does not significantly improve the recovery
once S/N≈300:1 is surpassed.

Remark 2. The desired S/N ratio per wavelength bin is at least 200–300:1 !

Instrumental Resolution. The best resolution on the stellar surface is achieved
when

FWHMinstr ≤ FWHMline (2.43)

where FWHMline is the width of the intrinsic (local) line profile. Of course,
even for stars that would not rotate, the observed line widths are significantly
broadened. For example, a solar-type star with Teff=5000 K has a thermal line
width of 1.2 km s−1, a microturbulence of ≈ 2 km s−1, and a macroturbulence
of ≈ 4 km s−1. While the latter two mechanism can be deconvolved from the
observations the thermal width remains as the intrinsic barrier. If we now con-
sider the instrumental resolutions usually applied for Doppler-imaging work, i.e.
λ/Δλ ≈ 35 000 − 120 000 or ≈ 8–3 km s−1, we see that, even when λ/Δλ is
100 000, one gives away resolution on the stellar surface by approximately a
factor of two. Nevertheless, simulations showed that reliable images can be re-
constructed even when only five spectral resolution elements are available across
the line (Piskunov & Wehlau [86], Strassmeier & Rice [124]).

Remark 3. One should aim at λ/Δλ ≈ 250 000 for stars with small v sin i and
100 000 for stars with moderate to large v sin i !
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Fig. 2.25. Examples of recovery using a Tikhonov penalty function at various S/N ra-
tios. The top image is the (artificial) input image. The others are, from top to bottom,
recovered with S/N=3000:1, 300:1, and 75:1. The images in the right column are the
difference maps between input and output. (The grey scale indicates the temperature
difference in Kelvin. White regions indicate no difference, and black regions indicate
maximum difference.) A reconstruction with S/N=900 (not shown) is practically iden-
tical to the S/N=3000 case. (After Rice & Strassmeier [91]).

“Bump” Smearing. During a CCD integration the star rotates and the spots
keep moving through the profile and consequently a spot bump will be eventually
smeared out. We can easily show that the smearing width, δ, in per cent of the
full width of the line profile is four times the integration time divided by the
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stellar rotation period. With(
dλ

dt

)
spot

=
2π

Prot

λ0v sin i

c
and Δλrot � π

2
λ0v sin i

c
(2.44)

we get

δ(bump) =
λ̇Δt

Δλrot
� 4

Δt

Prot
. (2.45)

As an example consider the RS CVn-binary EI Eri with Prot = 1.945 days and
v sin i = 50 km s−1. If the integration time Δt = 1h then δ(bump) is ≈ 8% or
≈ 10◦ on the stellar surface.

Remark 4. Integration times must be as short as possible. Aim for Δt ≤ 0.01 Prot.

Data Phasing. In principle, just two line profiles, taken at opposite phases,
will allow to see almost the entire stellar surface above a latitude of −i (i is
the inclination of the stellar rotation axis with respect to the line of sight).
In practice, however, Doppler imaging requires six to eight line profiles well
distributed over a rotation cycle to recover the full stellar surface. If these profiles
are taken during different rotation cycles one phases the data with the stellar
rotation period. The latter is usually approximated by the photometric period
or, when the rotation is synchronized, by the orbital period. Both periods are
usually determined with sufficient precision but aliasing in case no orbital period
is known, or the star is single, remains a fundamental problem. Moreover, broad-
band lightcurves of spotted stars tell us that there can be changes of the spot
distribution with time scales as short as a few stellar rotations. Although this
might not be true for every star it must be assured that the light curve shape
did not change during the spectroscopic observations!

Perfect phase coverage is only rarely achieved in real observations, given
interruptions due to bad weather, telescope-time limitations etc.. In Fig. 2.26
we show a simulation of the influence of phase gaps in the data. Firstly, two
successive observations are removed from the whole evenly-spaced data (original
data spacing is 20◦) according to a phase gap of 0.167 or 60◦ in stellar longitude.
Secondly, we remove three successive phases (a gap of 0.222 or 80◦) and then
four successive phases (a gap of 0.278 or 100◦). Note that Fig. 2.26 compares the
obtainable image quality for input data that have very high S/N and no external
errors in order to separate the phase-gap influence from other effects. For this
case, we find that our Doppler-imaging technique is not severely prone to phase
gaps.

Remark 5. Ideally, the observing interval should not exceed the length of one
stellar rotation period and should cover as many phases as possible!

2.8.3 Some Applications to Close Binary Stars

In the following, I will discuss some recent results on a few selected binary
systems.
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Fig. 2.26. Examples of recoveries with increasing phase gap (from top to bottom).
Maps in the left column are recovered maps from the input map in Fig. 2.25, in the
right column are again the difference maps. From top to bottom: phase gaps of 60◦

(phase 0.167) from 305◦ to 5◦, 80◦ (phase 0.222) from 285◦ to 5◦, and 100◦ (phase
0.278) from 265◦ to 5◦. S/N of the data was 3000:1 in order to exclude all other effects.
(After Rice & Strassmeier [91]).

A Post-main-sequence Binary: V711 Tau = HR 1099. Vogt & Penrod
[134] were the first to obtain a Doppler image of V711 Tau from data in late 1981
and discovered its prominent polar spot. Because the Sun does not show spots in
excess of ±40◦ , this discovery spurred significant interest in these types of stars.
V711 Tau is a triple system and consists of a close double-lined spectroscopic
pair with a spotted and rapidly rotating K1IV primary and an inactive and
slowly rotating G5V secondary in a 2.8-day orbit. The tertiary is a fainter K3V
star 6 arcsec away.

Subtracting the secondary spectrum from the composite spectrum is manda-
tory in the case of V711 Tau because, firstly, the non-negligible amount of con-
tinuum dilution due to the secondary and, secondly, the blending of the primary
lines with the secondary lines near conjunction. There are several ways to remove
the secondary spectrum but one has to decide already at the time of taking the
observations if a particular technique will be applied. We make use of a computer
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program that combines two template spectra and compares it to the observed
(composite) spectrum by searching through a three-dimensional parameter space
to find the best estimates for v sin i, radial-velocity shift, and relative intensity
weight for each of the two components. We note that the primary’s actual con-
tribution to the joint continuum is phase dependent due to the star being a light
variable. The effective relative intensity weight of the primary then changes. This
will affect the primary’s line equivalent widths – but not the line-profile shape
– and is actually used as an additional constraint by the Doppler-imaging code
and must not be removed from the data (Strassmeier & Bartus [113]), while
others remove this effect prior to mapping and just invert the line-profile shape
(e.g. Vogt et al. [133]).

6425 6430 6435 6440 6445
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Fig. 2.27. An example of the secondary-star removal from a composite spectrum. The
dotted line is the observed (composite) spectrum of V711 Tau and the dash-dotted
line shows the contribution of the secondary star as a result of a two-component fit to
the composite spectrum. Note that the relative continuum level of the secondary was
shifted to unity for better visualization. The spectrum of the primary (full line) is then
obtained by removing the secondary and re-normalizing it to the continuum level of
the primary. (After Strassmeier & Bartus [113]).

Photoelectric photometry of V711 Tau through a, say, 30-arcsec diaphragm
not only includes the variable primary component but also both non-variable
companions. The additional light from the two stars considerably dilutes the
amplitude of the photometric variations of the primary. We remove this dilution
effect by applying a simple magnitude-scaling equation to the observed differen-
tial magnitudes. Additionally, the primary’s light curve is folded with the peri-
odic variations from a small ellipticity effect due to the fact that the primary is
nearly filling its Roche lobe (Fekel [27]). We correct for this by removing a cos 2φ
term (φ being the phase) with a full amplitude of 0m.026 in V. Also plotted in
Fig. 2.28 is a spot-model fit from a least-squares solution of the seasonal V and
IC light curves.



2 Magnetic Activity in Binary Stars 93

Fig. 2.28. Differential V-photometry for V711 Tau and the fit with a time-dependent
spot model. The upper light curve (dots) is the original light curve prior to any prepa-
rations, while the lower light curve (dots) is after removal of the dilution due to the
secondary and tertiary star and the ellipticity effect of the primary. The various line
styles indicate a spot-model fit with the individual effects removed. (After Strassmeier
& Bartus [113]).

At this stage, everything is ready for Doppler imaging. We first perform a
full LTE spectrum synthesis in each of the wavelength regions observed by us-
ing a grid of ten model atmospheres from ATLAS-9 (Kurucz [64]) as well as a
pre-calculated table of elemental abundances. We then alter the abundances – if
necessary – by fitting the observed spectrum and then proceed with the altered
abundance table. For each iteration a discrepancy integral between model and
data is computed and minimized with the help of conjugate gradients. Simul-
taneous inversions of up to twenty lines with either a maximum-entropy or a
Tikhonov regularisation is possible with TempMap (Rice [89], Rice & Strass-
meier [90]) but we usually include no more than 10 blends per main-mapping
line to keep the CPU time down. Note that TempMap inverts the V and IC
light curves simultaneously and thus further constrains the Doppler image.

Our images from late 1996 show five distinct spots (see Fig. 2.29). A large and
asymmetric polar spot with an average temperature contrast of 1100 K seems
to be the most prominent feature (referred to as spot A) and the map agrees
well with independent results from other researchers (e.g. Donati [23]). Such a
comparison is very important because, even if one has high-S/N observations,
Doppler imaging remains an ill-posed problem. Together with the collection of
maps by the group of S. Vogt and A. Hatzes (Vogt et al. [133]), there are now
consistent maps for V711 Tau from three independent groups. All of them recover
a polar spot which, in our opinion, is further evidence for its reality. We also
note that the combined positions of spots A plus B, as well as C plus D agree
reasonably well with the positions from our photometric two-spot time-series
modelling in Fig. 2.28.

For further analysis one may compute cross-correlation functions (ccf) from
two consecutive Doppler maps (Fig. 2.30). This is done by cross-correlating strips
of constant latitudes as described, e.g., in Donati & Collier Cameron [24] and
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Fig. 2.29. Ca i 6439-Å images for the epochs 1996.860 and 1996.912. The maps are
presented in a flattened pole-on view from latitude −40◦ to 90◦. Latitudinal circles are
drawn at separations of 30◦. The phases of the spectroscopic observations are marked
around the maps by arrows, latitudes are drawn in steps of 30◦. Several surface features
are marked A–E. (After Strassmeier & Bartus [113]).

Strassmeier et al. [115]. Such cross-correlation maps can be used to search for a
consistent longitudinal migration pattern as a function of latitude, e.g. caused by
differential rotation, and indeed may show a latitude-dependent phase migration
for V711 Tau at one stage (as indicated by the <-shaped ccf above the equator
and at a phase shift of 0.6). Since this pattern did not repeat in other ccf maps it
suggests that intrinsic spot changes are common and that the surface differential
rotation is likely masked by short-term changes, e.g. by a short lifetime of small
spots due to local magnetic-field reconnections. High time-resolution Zeeman-
Doppler images will eventually help to sort the phenomenology in the magnetic
zoo.

Let us now turn to another interesting star, and to an even more complex
application of the Doppler-imaging technique.

Fig. 2.30. Cross-correlation func-
tion between the two maps in
Fig. 2.29. The projection style is
now Mercator. The x,y-axes plot
stellar latitude versus the phase
shift required to optimally corre-
late the two maps.
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A Main-Sequence Eclipsing Binary: ER Vul = HD 200391. ER Vulpecu-
lae is a close binary with two synchronized G dwarfs (G0V+G5V) in a 0.698-day
orbit. Its components are on the main sequence and both stars show large Ca ii
H&K emission-line fluxes and rotationally broadened line profiles (e.g. Barden
[6]). No normal G dwarf would rotate that fast unless it is a young ZAMS
star at the age of the α-Per cluster. ER Vul represents a laboratory to study two
evolved main-sequence stars with the angular momentum of a single ZAMS star.
The only other close eclipsing binaries that were Doppler imaged are YY Gem,
consisting of two active dMe stars (Hatzes [45]), and V471 Tau, consisting of
a K dwarf and a white dwarf (Ramseyer et al. [88]). The imaging of both of
these binaries exhibit some “abnormalities” that are difficult to deal with, i.e.
the rich molecular spectrum in case of YY Gem, and the wind impact from the
white dwarf in case of V471 Tau, and thus renders these maps uncertain and
preliminary.

The orbit of ER Vul is very close to circular with a radius of just 4 R� and
its inclination of 67◦ causes partial eclipses. It is the combination of the fast
rotation of two solar-type stars, and thus the large line broadening, with the
occurence of eclipses that makes this system special. The eclipses will even help
to further constrain the Doppler imaging because the transiting star will act like
a mask when it moves across the eclipsed component.

Vincent et al. [132] presented a version of the Doppler-imaging technique
that includes this additional information (see also Fig. 2.31).

In principle, the technique is the same as for a single star but that the Doppler
shift in the line profiles now also includes the orbital motion of both binary
components. The elements of the orbital motion are assumed to be known to

Fig. 2.31. Artificial data set for an eclipsing binary star.
Phases 0.25 and 0.75 mark the conjunctions. In such a case,
the Doppler shift of a particular surface feature includes the
orbital motion of the respective component. The eclipsing
star acts like a mask and limits the visibility time of low-
latitude features on the eclipsed component (in case of a
partial eclipse as is shown in this figure). Note that polar
features would not be eclipsed. (After Vincent et al. [132]).
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arbitrary precision, the stars are spherical, and the spectrum synthesis is precal-
culated, tabulated, and then interpolated. The explicit solution of the radiative
transfer for both atmospheres (if not identical) allows to includes line blends
and preserves line equivalent width. This is important because the relative line
depths need to be modelled along with continuum variations due to spots. Fur-
thermore, short-period binaries have very large radial-velocity variations and
thus large orbital Doppler shifts. Therefore, large strips of spectrum need to
be synthesized in order to reproduce the combined spectrum, and this is CPU
intensive.

Following the numerical mapping experiments of Vincent et al. [132] and
their principle verification, Piskunov [83] presented Doppler images for both
components of ER Vul (Fig. 2.32). The temperature distribution obtained is
shown in Fig. 2.32. Hot spots are recovered with ΔT ≈ 1200 K near the substellar
points and are presumably due to the reflection effect. Cool regions were also
detected on both components but seem to be unrelated to the relative positions
of the two stars. A large feature on the cooler secondary star extends almost
accross the entire disk, best seen at phase 0.42 in Fig. 2.32. Such enormous
cool spots are usually only seen on rapidly-rotating giants. The “record” holder
in this context is the K0 giant in the single-lined spectroscopic binary XX Tri
(HD 12545). A single spot sixty times larger than the largest sunspot group (or
equivalently twenty times the projected solar disk) was detected by Strassmeier
[112]. However, despite that the eclipse in the ER Vul system helps to constrain
the solution, the mapping of ER Vul outside of eclipse still suffers from a north-
south ambiguity. The fact that the enormous cool feature on the secondary
appears near quadrature calls for a confirmation of this, otherwise impressing,
result. Future observations, maybe from someone at this summer school, will
clearify the situation.

A Pre-main-sequence Binary: V824 Ara = HD 155555. V824 Ara con-
sists of a G5 IV primary star and a K0 V-IV secondary star in a short-period
orbit of P = 1.68 days. Pasquini et al. [81] suggested that the binary is part
of the young disk population in agreement with its high Li i 6708-Å abundance.
The position of the two stellar components in the H-R diagram with respect to
the pre-main-sequence tracks of D’Antona & Mazzitelli [18] gives masses of 1.12
and 0.99 solar masses for the primary and secondary, respectively. The isochrone
that fits both stars best suggests an age of ≈18 Myr.

Fig. 2.33 shows our Doppler images of V824 Ara (Strassmeier & Rice [126]).
These maps were derived with the maximum-entropy inversion code TempMap
and presumed an inclination of 50◦ and a v sin i of 36.8±1 km s−1 and 33.7±1.5
km s−1 for the primary and secondary component, respectively, and micro- and
macroturbulences of 2.0 km s−1 with solar abundances. The range of surface tem-
peratures on the primary is 3300–5400 K with an average (surface-integrated)
value of 4900 K while the secondary shows a range of 3400–5200 K and an av-
erage of 4550 K. The most significant feature on the primary is a complex equa-
torial region covering the longitudes between � ≈ 220◦ through about � = 330◦.
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Fig. 2.32. Doppler images of ER Vul. The images are shown at 12 phases (indicated by
the number) throughout the entire orbit. The relative separation of the two components
is on the same scale as the diameter of the images. The G0 primary star is on the right
at phase 0.00. (After Piskunov [83]).

Its coolest part consists of a large, somewhat elongated spot tilted against the
stellar equator and located at � ≈ 300◦. Our primary-star maps also recover a
cool and slightly decentered polar spot with a temperature difference of approx-
imately 1700 K relative to the adopted “unspotted” photosphere of 5400 K. An
appendage at � ≈180◦, that reaches down to approximately +60◦ in latitude, is
also evident.
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Fig. 2.33. Doppler images of V824 Ara from Ca i 6439 Å. Lower left panel: primary
component. Lower right panel: secondary component. The top panel, a, shows a repre-
sentative spectrum of the combined V824 Ara spectrum and identifies the Ca i 6439 Å
and Fe i 6430 Å lines from both components. (After Strassmeier & Rice [126]).

The secondary star does not show a polar cap-like spot but has instead a
cool high-latitude spot at � ≈ 270◦ and b ≈ +70◦ that is probably connected
with a lower latitude feature at around � = 225◦. A very small and particularly
cool feature at � = 130◦ and b ≈ +30◦ with ΔT ≈ 1800 K seems to be required
by a sharp bump in the data at these phases.

A comparison of the two Doppler images in Fig. 2.33 does not show an imme-
diately obvious spot concentration at the facing hemisphere’s central meridians
(longitudes of 90◦ and 270◦ for the primary and secondary, respectively) and
we thus can not confirm the earlier finding by Hatzes & Kürster [46] that the
spots on both V824 Ara components are preferentially located on the facing
hemispheres. Nevertheless, our maps suggest that either component is likely in-
fluenced by the activity of the other component.

V824 Ara is the only known (close) pre-main-sequence binary where both
components can be Doppler imaged independently. It thus allows – at least
in principle – the determination of the inclination axes for both components
separately. From numerical inversions of artificial test data it was amply demon-
strated that the misfit between the data and the model (χ2) was minimized when
the correct inclination is adopted (e.g. Kürster et al. [63], Strassmeier [112]). The
run of the χ2 distribution for both components of V824 Ara for a large range of
inclinations is shown in Fig. 2.34. It has a flat minimum of width ≈20◦ at about
the same inclination range for both stars (40◦–62◦ for the primary and 48◦–67◦

for the secondary, respectively). The quality and sampling of the present data
limits the precision at which the inclination can be determined. We do not re-
gard the difference of 6◦ as significant. Therefore, we conclude that the rotation
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axes of the two components of V824 Ara have equal inclination with respect to
the orbital plane.

Fig. 2.34. The misfit between the data and the
predicted profiles (χ2) of V824 Ara as a func-
tion of stellar inclination. The full line is for
the primary (G5), the dashed line for the sec-
ondary (K0). The most likely values are indi-
cated with a vertical dotted line, and the range
of equally likely values is shown as horizontal
bars. Note that both ranges significantly over-
lap, which suggests that the inclinations are
very likely identical for both components. (After
Strassmeier & Rice [126]).

The existence of a polar or very high-latitude spot along with large low-
latitude features may indicate that a mixture of solar and non-solar magnetic
flux behavior exists. Firstly, the Sun does not show a polar spot at all and,
secondly, does not exhibit spots larger than a fraction of a percent of the visible
hemisphere and their occurence is limited to just a narrow equatorial band. Such
a bimodality of the spot distribution on pre-main-sequence stars was recently
predicted in the flux-tube modelling by Granzer et al. [32]. To make a more
detailed comparison for V824 Ara, we adopted the MHD code used by Granzer
et al., originally designed by Caligari et al. [13] and Schüssler et al. [102], in
combination with a model of the solar convection zone and spun it up to the
rotation period of V824 Ara (Ω = 16 × Ω�). Two underlying stellar pre-main-
sequence models are computed matching the masses of the two components of
V824 Ara. Hydrogen burning was assumed to contribute 0.01% of the total
luminosity (according to a nominal age of ≈18 Myr).

The results are shown in Fig. 2.35 in form of a stellar crossection and a
surface spot-probability function for each stellar component. The crossections
show the path of the crests of the emerging flux tubes plotted as lines. The
spot-probability pattern is shown as a function of latitude. Larger width of the
pattern corresponds to higher probability of magnetic flux emergence. The two
main conclusions from this figure are, firstly, we would expect to see magnetic flux
only above a latitude of approximately 35–40◦ and no spots below that latitude,
i.e., near the equator (for both stars). Secondly, if there is indeed a polar spot
on the primary and a high-latitude feature on the secondary they must have
formed after the flux-tube emergence because the current model suggests no
flux tubes at latitudes above 70◦. A possible mechanism to transport flux to the
pole is meridional circulation. Recent time-series Doppler images of the RS CVn
binary HR 1099 suggest such a poleward migration scenario (Vogt et al. [133],
Strassmeier & Bartus [113]) and would be a possible explanation for the polar
activity on V824 Ara.
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Primary:

Secondary:

Fig. 2.35. The predicted latitude distribution of emerging flux tubes for the two stellar
components of V824 Ara. The stellar models were computed with an updated version
of the Kippenhahn-code for pre-main-sequence models matching V824 Ara. A radial
cross section (left) is shown with the trajectories of the summit of rising flux loops. The
small sector below the convection zone at r/R=0.6 indicates the width of the overshoot
region. The right panels show the spot-probability function on the stellar surface as a
function of latitude λ. (After Strassmeier & Rice [126] and Granzer et al. [32]).

Two Contact Binaries: AE Phe and YY Eri. Webbink [193] suggested a
scenario in which W UMa-type contact binaries with common envelopes evolve
into rapidly rotating single stars. The progenitors of W UMa binaries are likely
to be very active short-period RS CVn systems while the single, rapidly-rotating,
after-W UMa mergers could be identified with the class of the overactive FK Co-
mae giants (for a review see Guinan & Giménez [36]). If so, one must assume
that the magnetic flux observed in the RS CVn stars is conserved throughout
the W UMa stage (because the FK Comae stars are magnetically very active
and otherwise a mechanism must be invented that dilutes or even switches the
dynamo off and on again). In any case, cool W UMa systems should be mag-
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netically active and possibly show spots on their surfaces. In the meantime, this
has been amply demonstrated from light-curve modeling of W UMa’s.

However, there are two major problems with Doppler imaging of W UMa
stars. Firstly, their high rotational velocities of up to 200 km s−1 and thus their
shallow lines and, secondly, the non-spherical shape of the two stellar compo-
nents. While the radiative transfer in a W UMa-star atmosphere, and the com-
putation of the specific intensities over the stellar disk, remains a source of
uncertainty, its relative impact is likely to be weak due to the enormous line
broadening. Nevertheless, it seems mandatory to perform test reconstructions
before applying the mapping technique to real data. This was done by Piskunov
[83] and for this lecture I follow his paper.

Figure 2.36 shows such a test reconstruction. The stellar parameters of the
F8-type contact-system Y Sextantis with a mass ratio of 1:2 and an orbital pe-
riod of 0.42 days were adopted. The projected rotational velocity is 180 km s−1.
The gravitational darkening coefficient, usually denoted β, was set to the value
of 0.08 suggested by Lucy [104] for stars with convective envelopes. A single spot
of rectangular shape and 500 K cooler was placed on the equator of the primary
component. Solving the forward problem for such a systemic configuration in a
spectral region containing a strong Fe i line (5506.78 Å in this case) generates a
set of simulated observations. These artificial data, degraded to a S/N ratio of
100:1 by salting in some random noise, are then inverted to obtain the Doppler
image (in the right column in Fig. 2.36). The reconstruction of the spot is rea-
sonably good, just the sharp edges are lost due to the low S/N of the data, and
further improvements could be made by including simultaneous photometry.

Maceroni et al. [72], [71] presented the, so far, only maps of contact bina-
ries. They presented two maps of the southern W UMa systems AE Phe and
YY Eri. The YY Eri map is reprinted in Fig. 2.37. Both stars have quite short
periods of around 0.3 days but are relatively bright (8-th magnitude). Never-
theless, the stringent S/N requirement and that of preventing phase smearing
(see Sect. 2.8.2) limits one to the use of strong lines like Hα. The disadvantage
of such strong lines is that they are contaminated by chromospheric emission
and velocity fields. They are still sensitive to cool photospheric spots but they
do not (opposite to the optically-thin lines) map a particular layer in the stellar
atmosphere. Therefore, Maceroni et al. [72] did not attempt to map the surface
temperature but instead mapped equivalent width relative to the solar value,
i.e. W = S ∗W�, where W� is the equivalent width of the solar line and S is a
geometrical function only dependent on the position of the surface (it actually
contains the Roche geometry as well). The maps in Fig. 2.37 show the resulting
S distribution with different grey scales. S = 1.83 corresponds to approximately
350 K above the average value and S = −0.5 to 400 K below the mean. The
maps are not yet conclusive but indicate the expected irradiance patterns and
show the stellar poles to be hotter than the backs and the equator. Whether,
and how, this is related to the ongoing mass exchange is presently not under-
stood but newer and better Doppler maps of contact binaries may allow a better
insight in the origin of mass transfer.
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Y Sextantis simulation (spot)

Original model Reconstruction
Fig. 2.36. Test reconstruction of a simulated W UMa-type contact binary. The sys-
tem parameters were adopted to simulate the F8 contact binary Y Sextantis. A single,
rectangular cool spot is placed on the primary star. Left: input model. Right: recon-
struction. (After Piskunov [83]).
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Fig. 2.37. Doppler images of
the contact binary YY Eri. The
maps were obtained from high-
resolution Hα line profiles and
plot the Hα equivalent width
S relative to the solar value
(see text). Approximately, S =
1.83 corresponds to temperatures
350 K above the mean value and
S = −0.5 to 400 K below the
mean. (After Maceroni et al. [72]).
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65. Lanza A. F., Rodonó M., Rosner R. (1998) Orbital period modulation and mag-

netic cycles in close binaries, MNRAS 296, 893
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78. Oláh K., Kollath Z., Strassmeier K. G. (1999) A&A, submitted
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Abstract. Topics covered by this review are: observational data, basic parameters and
standard model for non-magnetic cataclysmic variables (CV’s), structure of accretion
disks in CV’s and their thermal instability, dwarf nova outbursts, boundary layer, and
origin of emission lines.

3.1 Introduction

The field of cataclysmic variables (in short: CV’s) is so broad that a selection
of topics to be covered by the present series of lectures had to be made. It
was guided by two factors. The first was the personal interest and preference of
the author. The second – was the intention to provide the students and future
readers with a minimum of basic information about those observational facts
(e.g. emission lines from disks in close binary systems) and theories (e.g. models
of accretion disks) which are important not only in the field of cataclysmic
variables but also in other areas, ranging from Algols to quasars.

Bibliography. Due to the lack of space no attempt was made in this article
to present an extensive bibliography on CV’s and their accretion disks. The
most recent books, conference volumes, and reviews, containing a more detailed
treatment of many problems discussed below and – in particular – detailed lists
of references to individual papers, are: Cordova 1995, Duschl et al. 1994, Frank
et al. 1992, Hack and la Dous 1993, Kato et al. 1998, King 1995, la Dous 1994,
Osaki 1996, Lin and Papaloizou 1996, Papaloizou and Lin 1995, Sellwood and
Goodman 1999, Sion 1999b, Wheeler 1993, Wickramasinghe et al. 1997.

Units and notation. The units used throughout this review will be those of the
cgs system (unless specifically noted otherwise, like – for example – in the case
of stellar masses and radii expressed in solar units, or the orbital period given
alternatively in seconds, hours, or days). In Sect. 3.2, following the common
custom in the area of binaries, capital letters will denote system parameters in
absolute (i.e. cgs) units, while small letters – their dimensionless equivalents;
for example: the radius of the disk will be either Rd or – in units of the orbital
radius – rd = Rd/A. In further sections, however, following the common practice
in the field of accretion disks, small letters will also be used for some parameters,
including those denoted earlier with capital letters; for example: rd in Sect. 3.3-
3.5 will be the same as Rd in Sect. 3.2. To avoid possible confusion another
warning concerning this point will be given in Sect. 3.3.3. In the case of accretion
the radial component of velocity of the accreting material vr will be negative.
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Consequently the accretion rate Ṁ will also be negative and some formulae will
contain its absolute value |Ṁ |. In the text, however, we shall simply write Ṁ .

Terminology. Standard, self-explaining terminology will be used, with only
few items requiring special comments at this point. The mass ratio will be defined
as q = M2/M1, with the primary component being the white dwarf. The term
“Keplerian”, used commonly in application to an accretion disk, is imprecise
and can be misleading. It actually refers to the circular Keplerian motion of an
element of the disk around the much more massive central object. The orbital
velocity, which is given in this case by (3.12), is commonly referred to as the
“rotational”velocity, and this can also be misleading.

Equations. Equations will be numbered with extra letters being added in
some cases to indicate their applicability: “(K)”– for Keplerian motion (in the
sense defined above), and “(S)”– for steady-state accretion.

3.2 Cataclysmic Variables as Binary Systems

3.2.1 Standard Model

Cataclysmic variables, in spite of a considerable diversity of their observed char-
acteristics and types of behavior, can be almost uniquely described by the fol-
lowing, relatively simple definition:

(a) they are binary systems;
(b) the primary component is a white dwarf;
(c) the secondary component is a low mass main sequence star filling its

Roche lobe; and
(d) the mass transfer rate is between, roughly, 10−11 and 10−8M�/yr.
Concerning point (c) we should add that in few cases (best lnown examples

being T CrB, GK Per) the secondary can be an evolved star. Point (d) requires
two comments. The lower limit to the mass transfer rate is a natural one, imposed
by the existence of gravitational waves, which – at the shortest orbital periods
– are the main factor responsible for removing the angular momentum from
the system and thereby forcing the secondary to remain in contact with its
Roche lobe and transfer mass at such a rate. The upper limit is connected with
the structural behavior of the accreting white dwarf: at Ṁ > 10−8M�/yr it
becomes a giant and the binary system belongs to a different category of objects
(e.g. symbiotic stars).

The standard model of a CV, corresponding to that definition, is shown in
Fig. 3.1 In addition to the two stellar components, it includes the accretion disk
around the white dwarf formed as a result of the mass transfer and the hot spot,
at the edge of the disk, resulting from the collision of the stream with the outer
parts of the disk.

It should be added, however, that this model does not apply to magnetic
CV’s, which contain white dwarfs with strong magnetic fields and do not possess
regular accretion disks (see Marsh 1999). The present article will be devoted
exclusively to non-magnetic CV’s with accretion disks.



112 J. Smak

Fig. 3.1. Standard model of a cataclysmic varaible. Rotation of the system and of the
disk is counterclockwise. BL denotes the boundary layer.

3.2.2 Observational Data and Basic Parameters

The bulk of data pertaining to the determination of basic system parameters
comes from observations in the optical part of the spectrum, from near ultraviolet
to near infrared. On the other hand, observations in the far UV and in the X-ray
region are crucial primarily for studying specific physical processes.

The relative contributions from the two stellar components, from the disk,
and from the hot spot, differ considerably from one system to another. This im-
plies that for a given CV some of the observational data reviewed below might
not be available, seriously limiting the possibility of determining its system pa-
rameters. Fortunately, even in such cases when only a partial set of data is
available, they can be supplemented with additional relations discussed in Sect.
3.2.3 and 3.2.4, and this often permits all the parameters to be determined.

The following general rules can be mentioned at this point. In the optical
part of the spectrum the contribution from the white dwarf is generally quite
small, except for the quiescent dwarf novae of very short periods. It is signifi-
cant or even dominant, however, in the far UV (see Sion 1999b). On the other
hand the contribution from the much cooler secondary becomes large at longer
wavelengths, particularly in the near IR, and at longer orbital periods.

Concerning the contribution from the disk and from the hot spot, we may
first note that one of the most characteristic signatures of a CV spectrum are
the strong emission lines (primarily of hydrogen and helium), formed in the disk
atmosphere and chromosphere. They are usually double (see Sect. 3.2.4). Super-
posed on such a double profile, there is often an additional, S-wave component,
produced in the vicinity of the hot spot, its radial velocity reflecting the local
motions of the emitting atoms in that particular area. The relative contributions
from the disk and from the hot spot to the optical continuum depend primarily
on the mass transfer and accretion rates. At higher mass transfer rates, which
result in steady-state or stationary accretion, with Ṁaccr = Ṁtr, the disk domi-
nates in the global flux, while the contribution from the hot spot is much smaller.
The same is true in dwarf novae during their outbursts. In dwarf novae at qui-
escence, however, when Ṁaccr  Ṁtr, it is the hot spot that may provide as
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much as 50 percent of the optical flux, while the contribution from the disk is
very small.

3.2.3 Spectroscopic Observations

Representative optical spectra of CV’s can be found, for example, in the survey
papers by Honeycutt et al. (1987) and Williams (1983). When the absorption
lines of the secondary are visible in the spectrum, they can be used to determine
its spectral type and – more importantly – its radial velocity variations. Radial
velocities of the white dwarf can be measured indirectly from the emission lines
originating in the accretion disk. In some systems broad wings of the absorption
lines, confirming the white dwarf nature of the primary, are also visible. By fitting
theoretical profiles to them it is possible to determine the effective temperature
and gravity of the white dwarf. As mentioned above, the white dwarf contributes
significantly or even dominates in the far UV. Consequently, observations in that
spectral region (in particular with the IUE and HST) provide crucial information
not only about the temperature of the white dwarf, but also about the structure
of its outer layers, rotation and the chemical composition (cf. Sion 1999ab).

Concerning the observed values of K1 and K2 one must remember that the
situation is often complicated by two effects. In the case of the secondary it is the
effect of its irradiation by the boundary layer: The temperature distribution on
the surface of the secondary is non-uniform (simply speaking – its hemisphere
facing the primary is hotter), and that makes the radial velocities measured
from the resulting absorption line profiles no longer representative for the true
stellar velocity. In particular, the observed value of K2 depends on the amount
of irradiation and differs systematically from the true K2. The best documented
example is SS Cyg (Hessman et al. 1984). In the case of the primary, its radial
velocities being measured from the emission lines, any significant departure from
the crucial assumption of disk’s axial symmetry may affect the observed value
of K1 (one of the possible sources of concern is the presence of the S-wave
component; see above). Obvious tests for the presence of any such spurious
effects include (a) deviations of the observed radial velocity curves from the
expected sinusoidal shape, (b) discordant values of the two systemic velocities,
γ1 and γ2, and (c) discordant values of the two conjuction phases, ϕ◦,1 and ϕ◦,2;
in the case of eclipsing systems they should also agree with photometric ϕ◦.

3.2.4 Photometry: Eclipse Light Curves

CV’s with orbital inclinations larger than, roughly, i ≈ 65 − 75◦ are eclipsing
systems. The nature of eclipses depends on the relative contributions from the
two stellar components, the disk, and the hot spot.

In the case of dwarf novae at quiescence the eclipse is due to an occultation
by the secondary of the white dwarf, of the hot spot, and of the disk. Fig. 3.2
presents a schematic light curve of such an eclipsing dwarf nova, showing (a)
the so-called orbital hump, or shoulder, lasting for about one-half of the cycle;
it is due to the phase dependent contribution from the hot spot, which during
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Fig. 3.2. Schematic light curve of an eclipsing dwarf nova at quiescence. Vertical
dotted line marks ϕ = 0 – the phase of the true conjunction. The bars on top mark the
durations of eclipses. Note that the eclipses of the white dwarf and of the hot spot are
total, while that of the disk – only partial. The large hump, with a maximum prior to
eclipse, is due to the hot spot.

the other half of the cycle is hidden behind the disk (see Fig. 3.1) and (b) the
superposition of three eclipses. Their details are:

(1) The eclipse of the disk is very shallow and can usually be identified only
by making a detailed analysis of the light curve. This is due to the fact that
the relative contribution from the disk is small and that its occultation is only
partial.

(2) The eclipse of the white dwarf is symmetric around ϕ = 0. In fact it is
this eclipse that can best be used to define the true zero-phase.

(3) Due to an asymmetric location of the hot spot (see Figs. 3.1 and 3.7),
its eclipse is shifted in phase and its ingress lasts longer than its egress.

(4) In the case of both eclipses, their partial phases are rather short, indicative
of the small dimensions of the white dwarf and the hot spot. This simplifies
considerably the analysis.

In general, the four phases of contacts depend on the geometrical parameters
of the system. When the duration of the partial eclipse is short, we can use the
mean phases of ingress and egress, i.e. ϕ12 = (ϕ1 +ϕ2)/2 and ϕ34 = (ϕ3 +ϕ4)/2,
which do not depend on the dimensions of the eclipsed body. In the case of
the white dwarf ϕ12(WD) ≡ ϕ34(WD) depends only on the dimension of the
secondary (which is determined by the mass ratio) and on the inclination. In the
case of the hot spot ϕ12(HS) and ϕ34(HS) depend also on its location, which
can be described with the spot’s radial distance rs and its position angle θ.
Eliminating θ, as a function of q and rs, using the shape of particle trajectories
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(see Fig. 3.7), we can write the following three relations:

ϕ12(WD) = f1(q, i) (3.1)

ϕ12(HS) = f2(q, i, rs) (3.2)

ϕ34(HS) = f3(q, i, rs) (3.3)

These relations are sufficient to determine the three parameters: q, i, and rs.
Concerning rs it should be added that that the hot spot is usually assumed to
be located exactly at the edge of the disk, i.e. that rs ≡ rd (and Rs ≡ Rd).

To complete this discussion we should mention that at lower inclinations,
close to i ≈ 65◦, the white dwarf may not be eclipsed and, if so, only the hot
spot eclipse can be analyzed. Such a situation is observed in the case of two well
known dwarf novae U Gem and WZ Sge.

In the case of CV’s with steady-state accretion and of dwarf novae during
their outbursts, the eclipse is primarily due to an occultation of the disk by the
secondary. Several methods have been devised to analyse such eclipses in order
to determine relevant parameters, including those of the disk. Their detailed dis-
cussion is beyond the scope of the present article. Two comments, however, must
be made with regard to oversimplifying assumptions of some of those methods.
The first concerns the contribution from the hot spot. The second – the finite
geometrical thickness of the disk.

The hot spot contributes a small, but non-negligible amount of the total flux.
It is responsible for a “hump”, with a 10–15 percent amplitude, just prior to the
eclipse, and for a marked asymmetry of the eclipse itself. This can be taken into
account by decomposing, in a relatively simple way, the observed light curve into
its spot and disk components and using the disk light curve in further analysis.
An example of such a decomposition, presented in Fig. 3.3, clearly shows the
effects involved. Neglecting this step and using the observed light curve must
lead to spurious results.

The disk has a finite geometrical thickness and this produces two effects.
First, in addition to the flux coming from its surface, there is a non-negligible
contribution from its edge, or outer belt, which – in the case of a steady-state
disk – is much cooler than the central parts. Secondly, at inclinations closer to
90◦ the disk surface is not only viewed at a very oblique angle but becomes partly
obscured by the disk’s edge (see Sect. 3.2.4). Neglecting those effects inevitably
leads to spurious results. For example, the widely used MEM technique (Horne
1993) produces flat distributions of the disk temperature, T (R), which turn out
to be simply an artifact, resulting from the assumption of a flat disk (Smak
1994b).

Finally, let us mention that when the secondary contributes significantly to
the total flux, its presence can be seen in the light curve in the form of (a) the
secondary eclipse, resulting from its partial occultation by the disk, and (b) the
“ellipticity”observed out of eclipses. Both effects are most easily detected in the
infrared light curves.
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Fig. 3.3. Decomposition of the blue light curve of UX UMa into its spot and disk com-
ponents (Smak 1994a). The observed light curve is shown by crosses in part (a). Part
(b) is the reconstructed spot light curve (squares), clearly showing its eclipse; the con-
tinuous line is the theoretical spot light curve without eclipse effects. The reconstructed
disk light curve is shown by squares in part (a).

3.2.5 The Secondary Component

We shall show below that when the secondary component fills its Roche lobe
and obeys a specific mass-radius relation, then its mass uniquely determines
the orbital period of the binary system. It is the very existence of this P −M2
relation that often helps to determine the basic parameters of a CV’s even in
those cases when the observational data would normally be insufficient for this
purpose.

Let us assume that the secondary is less massive than the primary. In such
a case (more precisely – when q = M2/M1 ≤ 0.8) its dimensionless mean radius
can be approximated with (see Paczyński 1971):

r2 = R2/A =
2

34/3 μ1/3 (3.4)

where μ = M2/(M1 + M2). Combined with the Kepler Law it gives

R2 =
2

34/3 (GM2)
1/3

(
P

2π

)2/3

(3.5)
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This is equivalent to a general relation between the mean density of the secondary
which fills its Roche lobe and the orbital period (Faulkner et al. 1972):

P 〈ρ〉1/2 =
(

3π

G

)1/2 (
34/3

2

)3/2

= 3.78× 104 (3.6)

Assuming the mass-radius relation in the form

(R2/R�) = CR (M2/M�)β (3.7)

and combining it with (3.5), we get

P = 3.18× 104 CR
3/2 (M2/M�)(3β−1)/2 (3.8)

For lower main sequence stars, with CR ≈ 1 and β ≈ 0.88, we get

P ≈ 3.18× 104 (M2/M�)0.82 [s] ≈ 8.8 (M2/M�)0.82 [hrs] (3.9)

In the case of ultra-short-period CV’s (see Paczyński 1967), with their secon-
daries being very low mass, degenerate stars, for which

R2 ≈ 0.0126 (1 + X)5/3
M2

−1/3 (3.10)

where X is the hydrogen content, we get from (3.8)

P ≈ 45
(1 + X)5/2

M2/M�
(3.11)

From (3.9) and (3.11) it follows the existence of the minimum orbital period for
hydrogen-rich CV’s, which turns out to be slightly longer than 1 hour. This is
also connected with the evolution of CV’s (see Paczyński and Sienkiewicz 1983).

3.2.6 Emission Line Profiles

The shapes of the profiles of the emission lines from disks can be discussed with-
out going into the complex details of the mechanism(s) of their origin (see Sect.
3.5.3). This is due to the fact that the Doppler broadening due to the rotation of
the disk, which defines their characteristic double-peaked shape, dominates over
other broadening factors. The simplest model is then the one involving a flat,
Keplerian disk, with axial symmetry (see Robinson et al. 1993 and references
therein).

With the Keplerian rotational velocity given by

VK =
(

GM1

R

)1/2

(K) (3.12)

we obtain the lines of constant radial velocity on the surface of the disk shown
in Fig. 3.4, which helps to understand the origin of the double-peaked profile:
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Fig. 3.4. Lines of constant radial velocity on the surface of a flat, Keplerian disk.
Radial velocities are expressed in dimensionless units such that 1 corresponds to the
rotational velocity at the outer radius of the disk. The other half of the disk is symmetric
with respect to the one shown, with radial velocities being of opposite sign.

those parts which contribute to the profile near radial velocity equal to the outer
rotational velocity of the disk have the largest area. The resulting profile is given
by

F (U) ∼
∫ R2

R1

R3/2 f(R) dR

[1− (U/V )2]1/2 (K) (3.13)

where U is the radial velocity observed at inclination i = 90◦, V = V (R) ∼ R−1/2

is the Keplerian velocity of rotation, R1 and Rd are the inner and outer radii
of the disk, R2 = min[Rd, Rd(Vd/U)2], Vd = V (Rd), and f(R) is the emissivity
or the surface density distribution of emitting atoms. For inclinations i �= 90◦,
U should be multiplied by sin i. Introducing dimensionless variables such that
r = R/Rd, v = V/Vd, and u = U/Vd, and then substituting x = ur1/2 we get

F (u) ∼
∫ r2

r1

r3/2 f(r) dr

(1− u2r)1/2 ∼ 1
u5

∫ x2

x1

2x4f(x2/u2) dx

(1− x2)1/2 (K) (3.14)

where r2 = min(1, u−2), x1 = ur
1/2
1 , and x2 = min(u, 1).

The radial dependence of emissivity can be determined from observations in
a number a ways (see references in Robinson et al. 1993). The integral equation –
(3.13) or (3.14) – can be inverted and used to reconstruct the radial dependence
of emissivity f(R) directly from the observed line profile. The same can be done
via Doppler tomography (see Robinson et al. 1993, Marsh 1999). Results show
that the radial dependence of emissivity can be approximated by f(R) ∼ R−β ,
with – typically – β ∼ 1.5− 2.0. Introducing such a form for f(R) into (3.14) we
get

F (u) ∼ u2β−5
∫ x2

x1

x4−2β dx

(1− x2)1/2 (K) (3.15)

Figure 3.5 shows line profiles calculated from (3.15) for various combinations of
r1 and β (Smak 1981). The main conclusions resulting from these profiles are
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Fig. 3.5. Emission line profiles from a flat, Keplerian disk with emissivity given by
f(R) ∼ R−β . Left panel shows their dependence on the radial width of the disk, r1 =
R1/Rd being the inner radius in units of the outer radius. The profiles correspond
to r1 = 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5. Right panel shows the dependence on the
parameter β. The profiles correspond to β = 0, 0.5, 1, 1.5, 2, and 2.5. Radial velocity
u is normalized to the rotational velocity at the outer radius of the disk. (For economy
of space only half-profiles are shown).

1. The line profile is double-peaked.
2. The peak velocity corresponds to the rotational, Keplerian velocity at the

outer radius of the disk, Vpeak = Vd sin i.
3. The velocity at the extreme edge of the line corresponds to the rotational,

Keplerian velocity at the inner radius of the disk.
This model is, obviously, a major oversimplification. In a more realistic ap-

proach one should include the effects of the finite instrumental resolution, and
the Doppler and Stark broadening. All of them affect the profile in a similar way,
making the peaks less pronounced and the wings more extensive. In particular,
the peak velocity is no longer identical with the rotational velocity at the outer
radius. Approximately we have (Smak 1981) Vpeak ≈ 1.05 Vd sin i.

Vd sin i, as measured from the separation of the peaks in the double profile,
provides an important information not only about the disk, but also about the
mass ratio. Using (3.12) and the standard expression for the orbital velocity of
the primary component we get

K1

Vd sin i
=

μ

(1− μ)1/2 rd
1/2 =

q

(1 + q)1/2 rd
1/2 (K) (3.16)

where rd = Rd/A is the dimensionless outer radius of the disk. When both K1
and K2 are known, (3.16) can thus be used to determine the outer radius of the
disk rd and, with A also known, Rd. When only K1 is known, but rd is also known
(for example from eclipse analysis; see Sect. 3.2.2), then (3.16) determines the
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Fig. 3.6. Obscuration patterns on the surface of the disk with z/r = 0.1. The narrow
area, behind the primary, is due to its shadow.

mass ratio and, consequently, M1, M2, A, and Rd. The same applies of course
to the case when only K2 is known.

The assumption of a flat disk works well only at low inclinations. At inclina-
tions close to 90◦, due to the disk’s finite thickness, its surface becomes partly
obscured by the disk edge. This is shown in Fig. 3.6. From a comparison with
Fig. 3.4 we can conclude that, at inclinations where the obscuration is still only
moderate, it will affect primarily the central part of the line profile making the
depression between the two peaks deeper. At higher inclinations, however, the
central part of the disk is also shadowed an then the entire profile is affected.

3.2.7 Problems

2-1. Assuming that the secondary is a spherical star with (dimensionless) radius
r2, derive exact equivalents of relations (3.1)-(3.3). Note that in this case μ will
be replaced with r2. (Derivation of (3.1) can actually be found in any standard
textbook!).

2-2. Which of the parameters of an eclipsing dwarf nova at quiescence can be
determined when the observational data consist of P , K1, and ϕ12(WD) (defined
in Sect. 3.2.1)?

2-3. Same as is 2-2, when the observational data include: P , K1, K2, and
ϕ12(WD). Which of the standard assumptions described in Sect. 3.2.1 can be
verified in this case?
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2-4. What kind of data would be needed to verify the assumption rs ≡ rd?
2-5. Using (3.6) calculate the mean density of the secondary for orbital peri-

ods ranging from 1 to 10 hours. At what periods is this density of the order of
100 g/cm3, indicating that the secondary must be a degenerate star?

2-6. Adopting, for simplicity, relations (3.9) and (3.11), determine the mini-
mum value of the orbital period and the corresponding mass of the secondary.

2-7. Derive equation (3.16).
2-8. Derive the shape of obscuration areas shown in Fig. 3.6.

3.3 Accretion Disks

3.3.1 Formation of an Accretion Disk

To understand the basic physics involved in the formation of an accretion disk in
a binary system we begin by considering the motion of the stream flowing from
the internal Lagrangian point L1 towards the primary. Under the assumption
that the mass of a stream element is negligible compared to the masses of the
two stars (restricted three-body problem), using dimensionless variables, such
that M1 = (1 − μ), M2 = μ, A = 1, and P = 2π, this can be done relatively
simply. In particular, for low velocities of escape from L1 (in dimensionless units:
v  1), the problem has only one free parameter – the mass ratio q, or μ =
M2/(M1 + M2) = q/(1 + q).

The top part of Fig. 3.7 shows the trajectory of a particle (or stream element)
for the mass ratio q = 0.25 or μ = 0.2. After passing near the primary the
particle begins to move around it on a rosette-like trajectory or, more precisely,
on an elliptical orbit undergoing rapid precession under the influence of the
secondary. Its parameters are uniquely determined by the mechanical energy and
the angular momentum carried by the particle. Replacing such a single particle
with a stream we immediately conclude that, due to collisions resulting from
intersecting trajectories, the energy of the stream elements must be dissipated. It
can easily be shown that, at a given angular momentum, which is conserved, the
minimum of energy corresponds to a circular Keplerian orbit, its radius being
uniquely determined by that angular momentum. Denoting its dimensionless
equivalent by rh and dimensionless momentum by h we have

rh =
h2

1− μ
(K) (3.17)

Since h depends only on μ it follows that rh is also a function of μ. Calculations
show that rh decreases with increasing μ (see bottom part of Fig. 3.7). The first
extensive calculations of this kind, leading to the conclusions presented above,
were made by Kruszewski (1966, 1967), his results being later confirmed by
Lubow and Shu (1975). Consequently, “angular momentum radius”rh is often
called the “Lubow-Shu radius”(although the name “Kruszewski-radius”would
appear more appropriate).

At this point – within purely mechanical approximation – we conclude that
the material supplied by the stream must eventually form a Keplerian ring of
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Fig. 3.7. Particle trajectories in a binary system. Top: Trajectory of a particle for
μ = 0.2. Dotted circle is the circular orbit with radius rh defined by the particle’s
angular momentum. Bottom: Collection of trajectories showing dependence of their
shapes on μ. Each trajectory begins at L1 and ends at rh, to show their dependence
on μ. The secondary is shown only for μ = 0.05.

radius rh, rotating (or rather revolving) around the primary. As the density in
the ring increases, the pressure effects become non-negligible and due to them
the ring should eventually become a torus.

Including now the viscosity changes the situation in a substantial way. Vis-
cous interactions result in an exchange of the angular momentum between the
elements. Those which give away part of their angular momentum to their neigh-
bours move – as a result – closer to the central star. The others – due to the
acquired excess of the angular momentum – move outwards. The ring (or torus)
spreads out into a disk.

3.3.2 General Equations

The equation of continuity and equations of motion can be, in general, written
as

∂ρ

∂t
+ div (ρ v) = 0 (3.18)

and
ρ

Dv

Dt
= − grad P + div ŝ − ρ ∇Ψ (3.19)
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where
Dv

Dt
=

∂v

∂t
+ (v · ∇) v (3.20)

Ψ is the potential and ŝ is the viscosity tensor (stress tensor)

ŝ =

⎡
⎣ sxx sxy sxz

syx syy syz

szx szy szz

⎤
⎦ (3.21)

with

sxx = 2 μ
∂vx

∂x
+ λ div v (3.22)

sxy = μ

(
∂vx

∂y
+

∂vy

∂x

)
(3.23)

and similar expressions for other elements. μ and λ are, respectively, the shear
and bulk viscosity coefficients per unit volume.

3.3.3 Assumptions

The assumptions that will successively be made in the following considerations
are:

A1. The disk is axially symmetric,
A2. The disk is geometrically thin,
A3. The accretion is stationary (S), and
A4. The disk is Keplerian (K).
We begin by making use of assumptions A1 and A2 which permit considerable

simplification of the equations allowing, in particular, the radial and vertical
structure of the disk to be treated separately. The first of them implies the use
of cylindrical coordinates with all derivative ∂/∂θ ≡ 0. The second assumption
will eventually allow us to “average”all radial equations over z. In preparation
for that step we will neglect the z-derivatives of velocity components.

Assumptions A3 and A4 will be introduced later.
Important note: From now on, following the common custom in this area,

small letters will be used to designate some of the parameters, such as the coor-
dinates (e.g. z), velocities (e.g. vr, vθ), radial distances and radii (e.g. r, r1, rd).
Note that the radial component of velocity of the accreting material vr will be
negative. Consequently the accretion rate Ṁ will also be negative.

3.3.4 The Radial Structure

We begin with the equations of the radial structure. With assumptions A1 and
A2 the continuity equation becomes

∂ρ

∂t
+

1
r

∂

∂r
(rρvr) = 0 (3.24)
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Multiplying (3.24) by 2πr and integrating it in z over the vertical thickness of
the disk, i.e. from −z◦ to z◦, we get

∂

∂t
(2πrΣ) +

∂

∂r
(2πrΣvr) =

∂

∂t
(2πrΣ) +

∂Ṁ

∂r
= 0 (3.25)

where
Σ =

∫ z◦

−z◦
ρ dz (3.26)

is the surface density, vr is the z-averaged radial component of the velocity, and

Ṁ = 2πrΣvr (3.27)

is the local accretion rate.
Applying the same same assumptions to the equations of motion we get for

the tangential component of the velocity vt

ρ

(
∂vt

∂t
+ vr

∂vt

∂r
+

vrvt

r

)
=

∂

∂r

[
μ

(
∂vt

∂r
− vt

r

)]
+

2μ

r

(
∂vt

∂r
− vt

r

)
(3.28)

Introducing the angular momentum h = vtr and angular velocity ω = vt/r, after
simple calculations we get

ρ

(
∂h

∂t
+ vr

∂h

∂r

)
= − 1

r

∂

∂r
(r tθr) (3.29)

where
tθr = − μ r2 ∂ω

∂r
(3.30)

is the (θ, r) element of the shear stress tensor in cylindrical coordinates.
Combining the continuity equation (3.24) with the equation of tangential

motion (3.29) we obtain the following equation for the conservation of the angular
momentum

∂

∂t
(ρh) +

1
r

∂

∂r
(rρhvr) +

1
r

∂

∂r
(r tθr) = 0 (3.31)

Multiplied by 2πr and integrated over z it becomes

∂

∂t
(2πr Σh) +

∂

∂r
(Ṁ h) +

∂g

∂r
= 0 (3.32)

where
g =

∫ z◦

−z◦
2πr tθr dz (3.33)

is the momentum of viscous forces. Putting μ = νρ, where ν is the viscosity
coefficient per unit mass, and using (3.30) we get another expression

g = − 2π r3 ∂ω

∂r
Σν̄ (3.34)
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where ν̄ is the z-averaged value of ν.
Equation (3.32) can be simplified using second part of (3.25):

2πr Σ
∂h

∂t
+ Ṁ

∂h

∂r
+

∂g

∂r
= 0 (3.35)

Getting Ṁ from this equation and inserting it into the second part of (3.25)
produces

∂Σ

∂t
=

1
r

∂

∂r

{[
rΣ

∂h

∂t
− ∂

∂r

(
r3 ∂ω

∂r
Σν̄

)]
/

∂h

∂r

}
(3.36)

This is the general equation describing the time-evolution of an accretion disk.
We now introduce assumptions A3 and A4 (Sect. 3.3.3). Assumption of sta-

tionary accretion implies that all time-derivatives vanish and Ṁ = const. Inte-
grating (3.35) under this assumption gives

Ṁ (h− hi) + (g − gi) = 0 (S) (3.37)

where h and g are parameters of an element at radial distance r, while hi and gi

refer to the inner edge of the disk at, or near, the stellar surface. Postponing a
more detailed discussion of this problem till Sect. 3.5.1, we only note here that
the location of the inner edge of the disk is defined by the condition that viscous
interactions should no longer operate there, and that occurs when ∂ω/∂r = 0,
i.e. when ω(r) reaches its maximum. If so, we can put gi = 0 and this allows us
to rewrite (3.37) as

Ṁ (h− hi) + g = 0 (S) (3.38)

Turning to assumption A4 we note that the disk becomes Keplerian (or nearly
Keplerian) when its elements move inwards along tightly wound spiral trajec-
tories, with vr  vt. Neglecting vr, using standard, Keplerian formulae for vt,
h, and ω, and assuming ri ≈ r1, i.e. that the disk extends to the surface of the
white dwarf (see Sect.3.5.1), we then obtain the “Keplerian”version of (3.34),
(3.36), and (3.38):

g = 3π h Σν̄ (K) (3.39)

∂Σ

∂t
=

3
r

∂

∂r

[
r1/2 ∂

∂r

(
r1/2 Σν̄

)]
(K) (3.40)

Ṁ (GMr)1/2
[

1 − (r1/r)1/2
]

+ g = 0 (SK) (3.41)

Combining the last of these equations with g from (3.39) gives a condition on
Σν̄ for a stationary, Keplerian disk:

Σν̄ =
(−Ṁ)

3π

[
1 − (r1/r)1/2

]
(SK) (3.42)



126 J. Smak

3.3.5 The Energy Equation

The energy equation per unit volume can be written as

ρ
dEm

dt
+ ρ

dEt

dt
= ρ

dQ

dt
+ ρ

dW

dt
(3.43)

where Em and Et are the mechanical and thermal (internal) energy, ρ dQ/dt is
the heat supplied to the element, and ρ dW/dt – the work performed over the
element. From the equations of motion we have

ρ
dEm

dt
=

∑
jk

vk
∂sjk

∂xj
(3.44)

ρ
dW

dt
=

∑
jk

∂

∂xj
(vk sjk) (3.45)

where vk, and sjk are the components of the velocity vector and the viscous
stress tensor in the rectangular system of coordinates, with j, k = 1, 2, 3. We
also have

ρ
dQ

dt
= − div F (3.46)

where F is the flux which carries away the energy dissipated by viscous interac-
tions inside the element.

From those four equations we get for the flux

div F = − ρ
dEt

dt
+

∑
jk

sjk
∂vk

∂xj
(3.47)

which in the case of a flat, axially symmetric disk becomes

div F = − ρ
dEt

dt
− p div v + μ

(
r

∂ω

∂r

)2

(3.48)

Finally, in the case of thermal equilibrium, assuming that p div v is negligible
and that |∂F/∂r|  |∂F/∂z|, we obtain

dF

dz
= μ

(
r

∂ω

∂r

)2

(3.49)

which in the Keplerian case reduces to

dF

dz
=

9
4

μ ω2 (K) (3.50)

Equations (3.49) and (3.50) simply describe the intuitively obvious fact that in
the case of a flat disk the energy dissipated inside the element by the viscous
interactions is carried away by the flux in the vertical direction (“up”and “down”,
since the disk has two sides).
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In the case of an axially symmetric disk in thermal equilibrium, i.e. when
dEt/dt = 0, equation (3.43) and its z-integrated version take the form

ρ
∂Em

∂t
+ ρ vr

∂Em

∂r
+ div F +

1
r

∂

∂r
(rtθrω) = 0 (3.51)

2πr Σ
∂Em

∂t
+ Ṁ

∂Em

∂r
+ 2πr 2F◦ +

∂

∂r
(gω) = 0 (3.52)

where F◦ is the flux at the surface of the disk (z = z◦) and “2”accounts for the
disk’s two sides. Making use of the continuity equation (3.25) we get

∂

∂t
( 2πr ΣEm) +

∂

∂r
(ṀEm) + 2πr 2F◦ +

∂

∂r
(gω) = 0 (3.53)

In the case of stationary accretion this becomes

Ṁ

(
∂Em

∂r
− ω

∂h

∂r

)
+ g

∂ω

∂r
+ 2πr 2F◦ = 0 (S) (3.54)

which in the Keplerian case, with g from (3.39), reduces to

F◦ =
9
8

ω2 Σν̄ (SK) (3.55)

Finally, with Σν̄ from (3.42), we obtain

F◦ = σ Te
4 =

3
8π

|Ṁ | GM1

r3

[
1 − (r1/r)1/2

]
(SK) (3.56)

This relation shows an interesting property of an accretion disk. If we condider
a single surface density element which – somehow – dissipates its mechanical
energy and gives away its angular momentum at a rate which makes it spiral in
with velocity vr, then we have

Σ
dEm

dt
= Σ

dEm

dr
| vr| = 2 F◦ (SK) (3.57)

where “2”again accounts for the two sides of the disk. This gives

F◦ =
1
8π

|Ṁ | GM1

r3 (SK) (3.58)

Note that the coefficient in front of (3.56) is 3 times larger, making F◦ at large
distance ∼ 3 times higher, and that at small radial distances, due to the factor
in the square bracket, F◦ resulting from that equations is much smaller. This is
due to the fact that the viscous couple transports energy from the inner to the
outer parts of the disk.

Let us now summarize main results. In the case of non-stationary accretion
the evolution of a Keplerian disk is described by (3.40). To calculate that evolu-
tion we need an additional relation, Σν̄ = f(Σ), between the z-integrated vis-
cosity Σν̄ and the surface density Σ. Such a relation can be obtained only by in-
tegrating equations of the vertical structure. This will be discussed in Sect.3.3.7.
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Equation (3.56) is the basic relation in the case of stationary accretion. To-
gether with (3.55) it provide a relation between three important parameters:
the local flux, or effective temparature, the accretion rate, and the z-integrated
viscosity (including their dependence on r). It can be written as

F◦ = σ Te
4 ∼ |Ṁ | ∼ Σν̄ (SK) (3.59)

3.3.6 Radiative Properties of a Stationary Accretion Disk

Equation (3.56) can be used already at this point, without any information con-
cerning the viscosity, to discuss radiative properties of stationary accretion disks.

The luminosity of an accretion disk with radius rd can be obtained by inte-
grating (3.56). The result is

Ld = L◦
[

1− xd
−1
(
3− 2 xd

−1/2
)]

(SK) (3.60)

where xd = rd/r1 and

L◦ =
1
2

GM1

r1
|Ṁ | (SK) (3.61)

is the luminosity of a disk extending to infinity. Note that this formula could
be obtained also from (3.58), or – simply – from the energy difference between
infinity and r1.

L◦ and Ld are the mean luminosities. Observed luminosities depend on the
orbital inclination. In the simplest case of a flat disk, taking into account only
the geometry and the limb darkening, we have

L(i) = 〈L〉 ( 1− u + u cos i )
(

1
2
− u

6

)−1

cos i (3.62)

where u is the limb darkening coefficient. Adopting u = 0.6 we have

L(i) = 〈L〉 ( 1.5 cos i + 1) cos i (3.63)

This relation is often used to correct the observed absolute magnitudes for the
effect of inclination. Obviously, however, it cannot be applied to inclinations
close to 90o.

In the black body approximation the spectral energy distribution of the disk
is given by (see Smak 1989)

ν Fν = 45 π−4 L◦ f

(
ν

ν∗
, xd

)
(SK) (3.64)

where

ν∗ =
k

h

[
3

8πσ

GM1

r1
3 |Ṁ |

]1/4

(3.65)
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Fig. 3.8. Normalized, dimensionless spectral energy distributions of black body disks.
Solid curves, from right to left, correspond to disks with xd = rd/r1 = 10, 25, 100, and
500. Dotted lines represent f ∼ ν4/3 and f ∼ ν3.

with h being here the Planck constant, and

f

(
ν

ν∗
, xd

)
=

(
ν

ν∗

)4 ∫ xd

1

x dx

exp
[
x3/4

(
1− x−1/2

)−1/4
ν/ν∗

]
− 1

(3.66)

Using these equations we can calculate the spectral energy distributions of black
body disks as a function of only one parameter: xd = rd/r1. They are shown
in Fig. 3.8. Note that for very large disks the assymptotic solution at the low
frequency end of the spectrum is f ∼ ν4/3. For very small disks, however, we have
f ∼ ν3, corresponding to the Rayleigh-Jeans law. Therefore the observed shape
of the spectrum cannot, in general, be used as a diagnostic tool for steady-state
accretion.

3.3.7 The Vertical Structure

Equations of the vertical structure of the disk closely resemble those of the stellar
structure. From (3.26) we have

dΣz

dz
= ρ (3.67)

where we use index “z”to denote Σ(z); note that Σ, as defined by (3.26) and used
elsewhere in the text, is Σz at z = z◦. The equation of hydrostatic equilibrium
in the thin disk approximation is

dP

dz
= − GM1

r3 z ρ (3.68)
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In addition we have (3.50) as the equation of “energy generation”and the usual
equation involving the vertical transport of energy

dT

dz
= ∇ T

P

dP

dz
(3.69)

where ∇ = min(∇r,∇c), and ∇r,∇c are the radiative and convective gradients.
To integrate these equations we obviously need an expression for μ which

appears in (3.50). Viscosity, however, remains unknown and therefore it appears
useful to begin with the first two equations only.

Crude Approximation. Equation of hydrostatic equilibrium can be integrated
(or averaged) crudely to give

P ≈ GM

r3

z◦Σ
2

(3.70)

We now adopt the equation of state for perfect gas, which can be written as

P =
k

μH

Σ

2z◦
T (3.71)

where μ is here the mean molecular weight, and Σ/2z◦ is the average density.
Combining these two equations we get for the average temperature (which will
be needed later in the α-disk model)

T = CT
μH

k

GM1

r3 z◦2 (3.72)

with CT = 1.

Polytropic Approximation. Adopting the standard polytropic relation

P = K ρ 1+ 1
n (3.73)

and the equation of state for perfect gas we integrate the equation of hydrostatic
equilibrium and get (Paczyński 1978)

ρ = ρc

[
1 −

(
z

z◦

)2
]n

(3.74)

T = Tc

[
1 −

(
z

z◦

)2
]

(3.75)

where ρc and Tc are the “central”density and temperature at z = 0:

ρc =
[

1
2K(n + 1)

GM1

r3 z◦2
]n

(3.76)
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Tc =
μH

k

1
2(n + 1)

GM1

r3 z◦2 (3.77)

These solutions show one important property of the disk: the distribution in z of
the density, temperature and pressure are rather flat. This is best demonstrated
by the ratio of mean-to-central density, ρ̄/ρc, which varies only from 1 for n = 0
to about 0.5 for n = 3, and the ratio of mean-to-central temperature T̄ /Tc = 2/3
(see Paczyński 1978). The mean temperature is now given by (3.72) with CT =
1/3(n + 1), i.e. smaller than in the earlier case of the crude approximation; for
example CT = 1/3 for n = 0 and CT = 1/12 for n = 3.

Geometrical Thickness: z◦/r. At this point we can already verify our as-
sumption A2 (Sect.3.3.3). From (3.72) we have

z◦
r

=
[(

k

μH
T

)
/

(
CT

GM1

r

)]1/2

(3.78)

With, for example, M1 = 1M�, r = 1 × 1010, T = 1 × 104K, μ = 0.5 − 1.0,
and CT = 1/12 − 1, we get z◦/r = 0.01 − 0.04. This confirms nicely our initial
assumption (for further discussion of z◦/r see Sect.3.3.9).

3.3.8 α-Disks

In spite of many efforts in this area, the nature of viscosity in the accretion disks
still remains unknown and the famous α-prescription proposed by Shakura and
Sunyaev (1973) remains the only way to overcome our ignorance in this respect.

With turbulence being among the possible candidates, by analogy with the
turbulent viscosity which is proportional to the mean velocity and mean size of
turbulent eddies, Shakura and Sunyaev assumed

μ = ρ ν = α ρ vs z◦ (3.79)

where vs is the velocity of sound and α is a dimensionless parameter; note that
in the case of subsonic turbulence α < 1.

For perfect gas the velocity of sound can be, using (3.72), and then assuming
Keplerian motion, written as

vs =
k

μH
T = CT

GM1

r3 z◦2 = CT vt
2
(z◦

r

)2
(K) (3.80)

With (3.72), (3.78), and (3.80) the viscosity can now be expressed as follows

μ = α ρ CT
1/2 h

(z◦
r

)2
= α CT

−1/2 P /ω (K) (3.81)

At this point we can already verify the assumption of the Keplerian, or near-
Keplerian, motion. From (3.55) and (3.56), using (3.81) (for simplitcity with
CT = 1) we have for the flux

F◦ =
9
8

ω2 α Σ h ≈ 3
8π

( 2π r Σ | vr| ) ω2 (K) (3.82)
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from which it follows that

| vr|
vt

≈ 3
2

α
(z◦

r

)2
(K) (3.83)

As can be seen, for a flat disk |vr| is indeed much smaller than vt.
The most important consequence of the α-disk approximation is, however,

that we can now use (3.81) to complete the flux equation (3.56). In practice this
requires, of course, specifying the value of CT , which appears in (3.81) as a result
of a preliminary, approximate integration of the equation of hydrostatic equilib-
rium. As it turns out, however, α – as defined originally by (3.79) – becomes
also a proportionality factor in the resulting expression for the viscous stress and
this opens up a possibility of an alternative definition of this parameter. Using
this approach, which has been commonly adopted in the field of CV’s (see Osaki
1966), one gets from (3.56)

dF

dz
=

3
2

α ω P (K) (3.84)

This, in fact, is the practical, numerical definition of α.
The four equations of the vertical structure can now be integrated and that,

in turn, permits the construction of the time-dependent models of disks. Before
presenting the results of such numerical integrations, we will pause to discuss
the characteristic time scales which can already be estimated at this point.

3.3.9 The Time Scales

The four characteristic time scales are: the dynamic time scale in r:

τd ∼ ω−1 (K) (3.85)

the dynamic time scale in z:

τz ∼ z◦
vs

∼ τd (K) (3.86)

the viscous (i.e. accretion) time scale:

τν ∼ r

|vr| ∼ τd

[
α
(z◦

r

)2
]−1

(K) (3.87)

and the thermal time scale:

τth ∼ Σ vs
2 / F◦ ∼ τd / α (K) (3.88)

Note that with (z◦/r)2  1 and α < 1 we have

τd ∼ τz < τth  τν (3.89)
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3.3.10 The Σ – Te Relation, Stability, and Disk Thickness

As already mentioned, the problem of the vertical structure of the disk closely
resembles that of the stellar structure. With z considered as independent vari-
able, we have four equations – (3.67), (3.68), (3.69), and (3.84) – for the four
dependent variables: Σz, ρ, T , and F , with the equation of state used to ex-
press P as a function of ρ and T . As in the stellar case, from the excess of
two boundary conditions it follows the existence of two relationships between
Σ, F◦, and z◦. Note that those parameters are equivalent to the mass, radius,
and luminosity in the stellar case and the two relations are equivalent to the
mass–radius–luminosity relations.

The assumptions and procedures used in the numerical integrations are sim-
ilar to the stellar case (for details see references in Cannizzo 1993). There are
some delicate points which are worth mentioning here. First, that (3.84) which
was derived for z-averaged parameters is now used locally. Secondly, that there
are problems in connection with the application of the mixing-length theory to
the disk case, which are solved only in an approximate way. Fortunately, in the
case of a geometrically thin disk this does not appear to result in major uncer-
tainties or errors. Finally, let us emphasize that the four equations are solved for
an assumed set of values of the radial distance r, the central mass M1, and the
viscosity parameter α. Of these, only r and M1 are the obvious “free”parameters,
their values to be chosen specifically to describe different parts of the disk in a
given binary system. α, however, is not only an unknown parameter but, in
principle, could also depend on other parameters. It is therefore a matter of an
arbitrary decision that we adopt one value of α to apply to the entire disk.

The main result of numerical integrations is the relation between F◦ and Σ.
In fact, it is a relation between four parameters: F◦, Te, Ṁ , and Σν̄ (see 3.59 and
discussion there). For reasons, which will become immediately apparent, this re-
lation is usually presented as the Σ−Te relation (Fig. 3.9). It has a characteristic
S-shape which reflects the dependence on temperature of the opacity: due to the
ionization of hydrogen it has a high maximum at temperatures around 1×104K.
In the case of a thin disk this corresponds, depending on other parameters, to
Te ∼ 6000 − 8000◦K. For the same reason, as long as the disk is thin and the
surface density is not very low or very high (i.e. for the range of Σ shown in
Fig. 3.9), the Σ − Te relations calculated for different values of r are of nearly
identical shape (see Fig. 3.9); they are only shifted in Σ and, slightly, in Te.
Fig. 3.9 also shows two important features. At large distances and higher tem-
peratures the assumption of a thin disk begins to be violated (this could become
a problem in the case of long-period Algols, but not in the case of CV’s). The
disk is optically thick, except at small distances and at low temperatures where
it becomes optically thin. Dependence on α is similar (see Fig. 3.9): curves with
lower α’s are shifted to the right, while those with higher α’s – to the left.

We now turn to the problem of stability. Starting with stability against local
perturbations in Σ, let us assume for their shape

ε cos
(

2π

λ
r

)
(3.90)
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Fig. 3.9. Top: Σ − Te relations for M1 = 1M�, α = 0.1 and a series of values of r.
Broken lines mark loci of constant constant optical thickness and of constant values of
z◦/r. Bottom: The same with M1 = 1M� and r = 1 × 1010 showing the dependence
on α.

with λ  r, and that – locally – we have

F = σ Te
4 ∼ Σs rq (3.91)

From (3.48) with Σν̄ from (3.55), we get

∂Σ

∂t
∼ − s ε cos

(
2π

λ
r

)
(3.92)

This implies that an instability occurs when s < 0. Therefore, of the three
branches of the Σ − Te relation, it is the middle branch which is unstable.

More importantly, the middle branch of the Σ−Te relation is also thermally
unstable. This can be shown in a qualitative way even without performing any
model calculations. Let us assume that a model deviating from thermal equi-
librium is located in the Σ − Te diagram to the right of the standard relation
(calculated, as described above, for the case of equilibrium). Since at a given Te
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Fig. 3.10. Thickness of a steady-state disk as a function of radial distance for three
accretion rates: log Ṁ = 17, 18, and 19. Broken lines correspond to z◦/r ∼ r0.05 and
∼ r0.20.

the flux generated inside the disk by viscosity, Fν , must be, roughly, proportional
to Σ, while the emerging flux is F◦ = σTe

4, it follows that the difference Fν−F◦
must be used for heating the disk material. Conversely, a model located to the left
of the equilibrium Σ − Te relation must undergo cooling. Let us now consider a
perturbation in temperature. In the case of the hot (upper) branch of the Σ−Te

relation such a perturbation will produce a reaction of opposite sign, resulting
in the return to equilibrium. The same is true for the cool (lower) branch. In the
case of the middle branch, however, a positive (negative) perturbation in T will
result in further heating (cooling), i.e. in an instability. This instability provides
basic mechanism for dwarf nova outbursts, which will be discussed in the next
Section.

The second relationship resulting from integrations involves z◦. Since we are
interested primarily in the dependence of this parameter on the accretion rate,
we express this relation as z◦ = f(F◦) and replace F◦ with Ṁ from (3.56). The
results, plotted in Fig. 3.10, show that in the case of steady-state accretion the
disk is slightly concave

z◦
r
∼ rξ (3.93)

with ξ between 0.05 and 0.20. Furthermore, due to its dependence on tempera-
ture (3.78), z◦/r increases with Ṁ . At Ṁ = 1019 it already exceeds z◦/r = 0.1
and it is clear that at higher accretion rates our assumption of a thin disk would
begin to be violated.

3.3.11 Problems

3-1. From (3.56) find the radial distance at which the temperature reaches its
maximum.

3-2. Derive (3.62).
3-3. How does the assumption of a flat disk is used in the derivation of (3.68)?
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3-4. Derive an expression for ρ̄/ρc for polytropic disks.
3-5. Using (3.78) for the case of steady-state accretion, express z◦/r as a

function of the accretion rate and radial distance. Assume T̄ ≈ Te and, for
simplicity, neglect the square bracket in (3.56).

3-6. Using an approximate formula Σ = f(Te, r, α) of the form suggested
by Fig. 3.9, derive an expression for the mass of a hot, steady-state disk as a
function of rd, Ṁ , and α. For the mass of the central star adopt M1 = 1M�.

3-7. How does the vertical structure of the disk and, in particular, the shape
of the Σ−Te relations, depend on the mass of the central star M1? Repeat now
3-6, including M1.

3.4 Dwarf Nova Outbursts

3.4.1 Dwarf Novae

Dwarf novae form a subclass of CV’s, their characteristic photometric property
being quasi-periodic outbursts with amplitudes from 2 to 6 amplitudes and re-
currence periods (or cycle lengths) ranging from weeks to months or even years.
Two important points have to mentioned immediately after such a short def-
inition. First, that their behavior is far from being regular: for a given dwarf
nova the durations of individual outbursts and quiescent intervals vary consid-
erably from cycle to cycle in an irregular way. For example, in the best studied
case of SS Cyg, its outburst cycles range from 15 to 95 days, while outburst
durations – from 2 to 22 days. Secondly, as a group, dwarf novae are far from
being homogeneous, with three main subtypes being: the U Geminorum stars,
the Z Camelopardalis stars, and the SU Ursae Majoris stars. The U Gem stars
represent relatively simple outburst behavior which can be explained quite well
with the disk instability model presented below. In the case of the other two
subtypes their behavior is more complex.

The Z Cam stars, in addition to longer or shorter intervals of dwarf nova ac-
tivity, show longer or shorter “standstills”of constant brightness. It is commonly
accepted that they represent a borderline case with the mass transfer rate almost
sufficient to satisfy the stability condition (3.94). When it gets only slightly en-
hanced, due likely to irradiation of the secondary by the boundary layer (Meyer
and Meyer-Hofmeister 1983), the accretion becomes stationary; the dwarf nova
behavior returns when it falls again below the critical level.

The SU UMa stars, in addition to normal outbursts show less frequent
superoutbursts with somewhat higher amplitudes and much longer durations.
This group consists mostly of dwarf novae with the shortest orbital periods
(Porb < 2 hrs), with notable exceptions being TU Men (P = 2.58 hrs) and
U Gem (P = 4.89 hrs), its 1985 superoutburst lasting for the record long 40
days. The characteristic feature of superoutbursts are the superhumps – light
variations with a period few percent longer than the orbital period, which ap-
pear shorthly after superoutburst maximum and persist through its decline. The
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superoutbursts are either due to the enhanced mass transfer rate caused by ir-
radiation by the secondary (Osaki 1985), or due to the tidal instability of the
outer parts of the disk (Osaki 1996), or both.

3.4.2 Disk Instability Model for Dwarf Nova Outbursts

It has long been suspected that the dwarf nova outbursts are due to non-
stationary accretion. According to an original hypothesis by Osaki (1974), the
accretion in dwarf novae between outbursts is limited to the outer parts of the
disk: the material supplied by the secondary collides with the disk producing the
hot spot, but remains stored in the disk’s outer parts. Then, due to an instability
(not identified at that time), this material is suddenly accreted onto the white
dwarf producing an outburst. This hypothesis proved to be correct in early 1980-
ies, starting with the pioneering work by Meyer and Meyer-Hofmeister (1981),
identifying the nature of the instability, and followed by several papers in which
the disk instability model was developed.

Fig. 3.11. The Σ − Te relation and the resulting limit cycle mechanism for the dwarf
nova behavior (see text for details).

The main cause of dwarf nova outbursts is the thermal instability of their
disks. If so, we can already at this point explain why such outbursts are shown
only by some, but not all CV’s. The thermal instability, as it follows from con-
siderations presented in Sect.3.3.9, must occurs whenever the temperature of
any part of the disk, predicted for the steady-state case, falls in the range cov-
ered by the middle, unstable branch of the Σ − Te relation. Under steady-state
conditions the lowest temperature in the disk, as predicted by (3.56), occurs in
its outermost parts, at R = Rd. In order to avoid instability that temperature
must belong to the hot, stable branch of the Σ − Te relation, i.e. it must be
higher than the temperature Tcrit at the critical point C (see Fig. 3.11). With an
approximate expression for Te from (3.56) this stability condition can be written
as

Ṁtr
M1

rd
3 <

8π

3G
σ Tcrit

4 (3.94)
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where the right hand side depends only on Tcrit which, as can be seen from
Fig. 3.9, is only a weak function of α, r, and also of M1. The left hand side can
be evaluated from observational data for individual CV’s and then we find that,
indeed, in the case of dwarf novae the stability condition (3.94) is not fulfilled,
while in the case of other, stationary accretion CV’s, their basic parameters are
such that they comply with this condition. In fact, the main factor here is the
mass transfer rate, which in the case of dwarf novae is systematically lower.

We now consider – first in a qualitative way – the consequences of the ther-
mal instability. Within a critical range of the mass-transfer/accretion rates, cor-
responding to the middle branch of the Σ − Te relation, stationary accretion
is replaced with a cyclic behavior, alternating between the two stable branches
(Fig. 3.11). Let us consider, for example, the outer parts of the disk. Remem-
bering, that the Σ − Te relation represents in fact a more general relationship
given by (3.59), we obtain the following qualitative description of the four main
phases of the resulting limit cycle. On branch AB (corresponding to quiescence)
the local accretion rate (Ṁaccr) is lower than the rate at which the material is
supplied from the outside (Ṁtr) and, consequently, the surface density increases.
When the critical density is reached (and exceeded) at point B, the thermal in-
stability develops, resulting in a rapid (on a thermal time scale) transition to
branch CD (corresponding to the outburst maximum). There the situation is
reversed: with Ṁaccr > Ṁtr the surface density decreases until critical point C
is reached, where the thermal instability develops again, resulting in a transition
to the lower branch. Note that the same picture would be obtained for any ring
inside the disk, except that in that case, instead of the mass transfer rate, we
would consider the rate at which the material is supplied from the outer parts
of the disk.

With those conclusions, applicable only to the local behavior, it remains to
be seen how the limit-cycle mechanism operates on a global scale, i.e. in the case
of the entire disk. In particular – whether an instability occuring somewhere
in the disk propagates inward and outward in a coherent way, necessary to
reproduce the observed dwarf nova behavior. Time dependent model calculations
involve numerical integrations of the basic diffusion equation (3.40), with Σν̄
provided by the Σ − Te relation. Crucial role in those calculations is played by
the outer boundary conditions which, in particular, determine the outer radius
of the disk and its variations during the dwarf nova cycle. Those boundary
conditions involve the the following three effects:

(1) The tidal removal of the angular momentum from the outer parts of
the disk; the standard, commonly adopted value of the effective tidal radius
of the disk is Rtid ∼ 0.9RRoche, as resulting from analytical considerations by
Papaloizou and Pringle (1977).

(2) The deposition of the stream material; note that its specific angular
momentum (see (3.17) in Sect.3.3.1) is lower than that of the disk’s outer parts.

(3) The outside transfer of the angular momentum by viscous forces acting
within the disk.
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Fig. 3.12. Model outbursts of Type A obtained with model parameters M1 = 1.0M�,
M2 = 0.4M�, log Ṁ = 17.1, and α = 0.1. Shown are the bolometric luminosity (in
g/s), radius (in 1010 cm), and mass of the disk (in 1024 g). Time is in 105 s. Dots in the
middle plot mark regions of the disk undergoing thermal instability: they show how
the heating and then cooling fronts propagate within the disk during outburst.

The most important results of such model calculations are (see, for example,
Figs. 3.12 and 3.13):

(1) The limit cycle mechanism, resulting from the thermal instability of the
disk, is indeed responsible for the dwarf nova behavior.

(2) Two different values of the viscosity parameter α are needed for the
two branches of the Σ − Te relation, with αhot/αcool ≈ 4, for the limit-cycle
mechanism to operate coherently on a global scale.

(3) There are two types of outbursts: Type A, or outside-in, when the insta-
bility begins in the outers parts of the disk and propagates inward, and Type
B, or inside-out, when it begins in the inner parts of the disk and propagates
outward. Those two types differ in their observable characteristics and those
differences help to identify them among well observed dwarf novae.

(4) The radius of the disk expands during an outburst and contracts during
quiescence. Such variations are indeed observed in the case of few eclipsing dwarf
novae, notably in U Gem and IP Peg.

Unlike the observed light curves, the model produced light curves are strictly
periodic. Even in the case of Type B outbursts of different amplitudes and du-
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Fig. 3.13. Same as in Fig. 3.12 for a Type B outburst with log Ṁ = 16.5. Note that
some of the inside-out instabilities do not propagate all the way to the disk’s outer
edge, with the resulting outburst amplitude being lower.

rations, the characteristic pattern, consisting of alternating outbursts, repeats
periodically (see Fig. 3.13). In order to explain the observed light curves (in-
cluding those of Z Cam and SU UMa stars) it is necessary to take into account
several additional effects and processes, such as:

(1) Heating of the secondary component by the white dwarf and the boundary
layer, resulting in modulations of the mass outflow rate.

(2) Heating of the inner parts of disk, affecting their structure and potentially
capable of removing the cause of the thermal instability.

(3) Tidal instability of the outer parts of the disk and its effect on global disk
behavior.

3.4.3 The Value of αhot

Characteristic time-scales observed during dwarf nova outbursts include the
widths (or durations) of outbursts, the rates of decline following outburst max-
imum, and the UV delays observed during rise, which are correlated with the
orbital period (see Fig.. 3.14). Their dependence on the viscous time-scale, de-
fined by α on the hot branch of the Σ − Te relation, provides an important and
almost unique opportunity of an empirical determination of αhot.
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Fig. 3.14. The width of outburst and the rate of decline versus the orbital period
relations. Crosses are observational data. Filled squares and triangles are model data
with αhot = 0.2 for, respectively, Type A and Type B outbursts.

It is instructive to begin with the following analytical considerations (for de-
tails, simplifying assumptions and approximations – see Smak 1999). The char-
acteristic time scales observed during outbursts can be related to the travel time
of the accretion wave. In the α-disk approximation, by integrating vr from (3.83),
we can obtain for the travel time between rd and the inner radius ri

Δt (rd, ri) ∼ α−0.7 Ṁ−0.37 M1
−0.46 (rd

1.33 − ri
1.33) (K) (3.95)

Assuming that rd is the tidal radius rtid ∼ 0.9 rRoche, using Kepler Law to
replace rd with Porb, and neglecting ri, we obtain the following dependence on
the orbital period and the viscosity parameter α = αhot:

Δt ∼ α−0.7 Porb
0.74 (K) (3.96)

This shows that the observed correlations with the orbital period simply reflect
the dependence on the radius of the disk.

By comparing the observed correlations with those obtained from model light
curves calculated with different values of αhot, we find αhot ≈ 0.2. Accordingly,
Fig. 3.14 shows model data with αhot = 0.2. Similar comparison for UV delays
gives αhot ∼ 0.1− 0.2.
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3.4.4 Problems

4-1. Using (3.94) calculate critical values of the mass transfer rate Ṁcrit for
various combinations of M1 and rd. Adopt (a) log Tcrit ≈ 3.87, and then (b)
log Tcrit = 3.87− 0.08 log(r/1010), as resulting from data presented in Fig. 3.9.

4-2. Thermal instability can also be avoided in the case of very low mass
transfer/accretion rates, when Te everywhere in the disk is lower than the critical
temperature T

′′
e , defined by point B of the Σ − Te relation. Adopting log T

′′
e ≈

3.79 (see Fig. 3.9), calculate Ṁ
′′

crit corresponding to such a situation. (Note that
this will be more complicated than in 4-1).

4-3. Assuming z◦/r = const. integrate (3.83) to obtain a simpler version of
(3.95), not containing Ṁ .

3.5 Boundary Layer

3.5.1 Simple Model of the Boundary Layer

The angular momentum h, angular velocity ω, and energy e, of the material at
the inner edge of the disk, i.e. at r = ri, are given by the standard, Keplerian
formulae. The same parameters describing the equatorial surface layers of the
white dwarf, h1, ω1, e1, depend on its rotation. In the extreme case of rotation
with the critical, break-up, angular velocity

ωcrit =
(

GM1

r1
3

)1/2

(K) (3.97)

they would also be Keplerian. In the more likely case, however, of a more slowly
rotating (in particular: non-rotating) white dwarf, h1, ω1, and e1 are smaller. It
is obvious then that between the inner edge of the disk and the surface of the
star, the excess mechanical energy of disk’s element must be dissipated and its
excess angular momentum transferred away, before that element can be accreted
onto the stellar surface. This region is called the boundary layer.

The importance of the boundary layer can be recognized if we calculate the
amount of energy to be dissipated. For simplicity let us assume that ri ≈ r1 (note
that this assumption has already been made in Sect.3.3.4; it will be justified later
in the present Section). Then for the luminosity of the boundary layer we get

LBL =
1
2

GM1

r1
Ṁ

[
1 −

(
ω1

ωcrit

)2
]

(3.98)

By comparing LBL with Ld (3.61), we can conclude that, in the case of a non-
rotating white dwarf (ω1 = 0), the luminosity of the boundary layer is equal to
that of the disk which extends to infinity; in the case of a finite disk (3.60) it is
even higher.

Figure 3.15 shows the expected dependence of the angular velocity on r.
In the disk ω is Keplerian or nearly Keplerian. In the boundary layer it must
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Fig. 3.15. Schematic dependence of the angular velocity on radial distance.

decrease to ω1. Note that, by definition of ri, ∂ω/∂r = 0 and gi = 0 at that
point. This implies that the excess angular momentum can be transferred from
the boundary layer only to the equatorial surface layers of the white dwarf.

The main properties of the boundary layer can be established by considering
the following, very simple model (Lynden-Bell and Pringle 1974). The equations
of motion (in the cylindrical system, integrated in z, and with pressure term
neglected) are

Σ

[
∂

∂r

(
vr

2

2

)
− 1

r

vθ
2

2

]
= 2

∂

∂r

(
μ

∂vr

∂r

)
+ 2 μ

∂

∂r

(vr

r

)

+
∂

∂r

[(
μ − 2

3
λ

)
1
r

∂

∂r
(rvr)

]
− Σ

GM1

r2 (3.99)

Σ vr
∂

∂r
(rvθ) =

1
r2

∂

∂r

(
μr3 ∂ω

∂r

)
(3.100)

Assuming that the flow is stationary (but not Keplerian!), by combining (3.27),
(3.34), and (3.38) we get for the radial component of the velocity

vr = ν̄
dω

dr
/ (ω − ωi) (3.101)

Let us define new, dimensionless variables x, v, and Ω, all of order of unity:

x =
r − r1

δ
(3.102)

where δ = ri−r1 is the radial extent, or width of the boundary layer (we reserve
the term “thickess”for the z-coordinate),

v =
δ

ν̄
vr (3.103)

Ω = ω/ωcrit (3.104)
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With these definitions, using vr from (3.101), we get

v =
dΩ

dx
/ ( Ω − Ωi ) (3.105)

Inserting this into (3.99) we obtain

d

dx

(
v2

2

)
+ 2

d

dx

(
1
r

d (rv)
dx

)
− d

dx

[(
λ

μ
− 2

3

)
1
r

d (rv)
dx

]

+
[

2
dv

dx
+

(
λ

μ
− 2

3

)
1
r

d (rv)
dx

]
d

dx
[ log (rv) ]

= −
{

δ3

ν2 r1
(
ω 2

crit − ω1
2)}(r1

r

)2

⎡
⎢⎣ 1 − Ω2

(
r
r1

)3

1 − Ω2
1

⎤
⎥⎦ (3.106)

where Ω1 = Ω(r = r1) and the expression in last square bracket is a dimension-
less measure of the imbalance of centrifugal force and gravity which varies from
unity at r = r1 to zero at larger distances, where the motion becomes Keplerian.

We now note that each major bracket in (3.106) contains a dimensionless
expression which – with one exception – is of order of 1. The only exception is
the curly bracket on the right-hand side and it is obvious that it must also be of
order unity. This leads to the following expression for δ

δ ≈ ν̄ 2/3

[ r1 (ω 2
crit − ω2

1) ]1/3 (3.107)

In the case of a slowly rotating white dwarf we can neglect ω2
1 (in comparison with

ω 2
crit) and adopting again the α-approximation for viscosity, insert ν̄ ≈ α ω z◦2,

from (3.81), to get

δ ≈ α2/3 z◦
(z◦

r

)1/3
(

ω2 r

ω 2
crit r1

)1/3

(3.108)

Since all terms on the right-hand side, except z◦, are either < 1 or  1, we
finally get

δ = ( ri − r1 )  z◦ (3.109)

The radial extent of the boundary layer turns out to be much smaller than its
vertical thickness z◦. With z◦ being smaller then r, the final conclusion is

ri ≈ r1 (3.110)

which remains true also in the case when z◦ is comparable to r1 (see below),
since even in that case, on account of other terms in (3.108), δ remains very
small. An important consequence of (3.110) is that ωi ≈ ωcrit. It was already
used in Sect.3.3.4 to derive (3.39)-(3.42).



3 Cataclysmic Variables 145

Fig. 3.16. Schematic presentation of models of the boundary layer. (a) Simple model
presented in Sect.3.5.1. (b) The hot, optically thin model applicable low Ṁ . (c) The
complex model, with density and temperature gradients, applicable to high Ṁ . Dotted
regions are hot (∼ 107 − 108K) and optically thin. Shaded regions are cool (∼ 105K)
and optically thick. Note the large extent of the boundary layer in z over the surface
of the white dwarf.

Let us now assume that the boundary layer is geometrically thin (z◦/r1 small)
and optically thick (see Fig. 3.16a). If so, its luminosity can be calculated as

LBL = 2 × 2π r1 δ σTe
4 (3.111)

Let us furthermore assume for simplicity that the white dwarf is non-rotating.
Taking δ, from (3.108), putting ω/ωcrit ∼ 1 (in fact it decreases from ≈ 1 at
r = ri to zero at r = r1), inserting it into (3.111), and comparing it with our
earlier expression for LBL (3.98), leads to the following estimate of the effective
temperature

Te
4 ≈ 1

8πσ

GM1

r1
3 Ṁ

[
α

(
z◦
r1

)2
] −2/3

(3.112)

With α ∼ 0.1− 0.2 and z◦/r ∼ 0.01− 0.2 this gives

Te ≈ (3− 11)× 105
(

M1

M�

)1/4 (
r1

5.4× 108

)−3/4
(

Ṁ

1× 1018

)1/4

(3.113)

The simple model presented above was sufficient to obtain an estimate of the
radial extent of the boundary layer, and to show that ri ≈ r1. It is too crude,
however, to provide an adequate description of the structure of the boundary
layer, or to reliably predict its observable properties. Note, for example, that if
we assume that the boundary layer is optically thin (and, since it is so hot, it is
likely to be optically thin), then its temperature would be much higher.

Due to the time limitations it is impossible to continue now with a detailed
description of more realistic models for the boundary layer (e.g. Drew and Kley
1993, Narayan and Popham 1994, Popham 1997 and references therein). We
conclude only with a qualitative picture, resulting from such models and from
their comparison with observations, particularly with the observed X-ray flux
(see, e.g., Patterson and Raymond 1985a):
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(1) At low accretion rates the boundary layer is optically thin, very hot (T ∼
107−108K), nearly uniform, and extending considerably in the vertical direction
(see Fig. 3.16b). The flux in this case consists primarily of hard X rays.

(2) At high accretion rates the structure of the boundary layer becomes more
complex (Fig. 3.16c). Its central parts are dense, cool, and optically thick, with
temperature being, roughly, that given by (3.113), so that the flux from that
region comes primarily in the form of far UV and soft X-ray radiation. Regions
above (and below) those central parts are optically thin and are characterized
by strong density and temperature gradients; in particualr, the temperature
increases with z up to T ∼ 107 − 108K. Those regions are then responsible for
the hard X-rays.

3.5.2 Heating of the White Dwarf

The boundary layer, being located so close to the white dwarf, is heating its
surface layers. Due to geometry (Fig. 3.16) roughly one-half of the flux from
the boundary layer must be intercepted by the white dwarf and reprocessed in
its outer layers into thermal radiation with Te = 104 − 105K. But, due also to
geometry, this occurs only in an equatorial belt adjacent to the boundary layer
(cf. Patterson and Raymond 1985a).

In the case of dwarf novae the accretion through the boundary layer and,
in consequence, its luminosity LBL, are strongly modulated during the outburst
cycle. As a result the white dwarf is heated during outbursts and then cools down
during quiescence. This is well documented with observations in the far UV (in
particular with the IUE and HST), their interpretation providing information
about the temperature and its distribution on the surface of the white dwarf,
and about their variations during the dwarf nova cycle (see Sion 1999ab and
references therein).

3.5.3 Origin of Emission Lines

There are no definite models explaining in quantitative terms the origin and,
in particular, various regularities and correlations shown by the emission lines
observed in the spectra of CV’s. There is no doubt, however, that the basic
mechanism involves irradiation of the disk by the boundary layer and the white
dwarf. This is strongly suggested by the following observational evidence.

(1) The first and most dramatic evidence for irradiation came from observa-
tions of emission lines in the spectrum of DQ Her by Chanan et al. (1978). They
found that the intensity and profile of the He II λ4686 line vary with the 71-sec
period. The phase of these oscillations depends on wavelength in a way which
demonstrates that they are produced by irradiation of the disk by the rotating
beam from the white dwarf.

(2) Patterson and Raymond (1985ab) found that the emission line intensities
are correlated — directly or indirectly — with the X-ray flux. There is a cor-
relation between the X-ray-to-visual flux ratio and the equivalent width of the
Hβ line. This correlation could only be a consequence of two other correlations
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between Fx/Fv and EW(Hβ) and the accretion rate. But it is more likely, that
– to quote Patterson and Raymond – Fx/Fv is well correlated with EW (Hβ)
because the X-rays produce the emission lines. There is also a correlation be-
tween the flux in the He II λ4686 line and the accretion rate. Patterson and
Raymond demonstrated that at higher accretion rates the soft X-ray flux from
the boundary layer is fully sufficient to produce this line via photoionization. At
lower accretion rates the same role could be played by the hard X-ray flux.

(3) In the case of dwarf novae, during early rise to an outburst, the emis-
sion lines are replaced with absorption lines which dominate the spectrum at
maximum and during early decline reverse again to emission (for references see
Robinson et al. 1993). The same phenomenon shows up in the (U-B) – (B-V)
color variations. During rise, when the contribution from the disk becomes domi-
nant, and when its Balmer continuum reverses also from emission to absorption,
the colors become similar to those of an A-type star and — as the disk be-
comes hotter — of a B-type star. During the decline, when Balmer continuum
in emission reappears again, the colors return to their values at quiescence.

Fig. 3.17. The self-screening of the disk during dwarf nova outbursts of Type A (left)
and Type B (right). Upper panels show the light curves. Lower panels show the disk-
radius variations and — as shaded areas — those disk parts which are screened from
irradiation. R is in units of 1010 cm, t5 is time in 105 s.

The explanation of this behavior is simple and provides a strong argument in
favor of irradiation (Smak 1990). Accretion in dwarf novae during their outbursts
is non-stationary, with all disk parameters varying with time. The crucial point
is that the disk is not always concave and, in particular, that its variable shape
controls irradiation by the central source. At a given point on the disk surface
the condition for irradiation is that the local ratio z/r must be larger than z/r
everywhere at smaller distances; otherwise this point is screened from irradiation
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by the inner parts. Fig. 3.17 shows the shade-patterns obtained from two dwarf
nova models for Type A and Type B outbursts. The screening effects appear
rather dramatic: large parts of the disk are in shade from early rise to about
mid-decline. In the absence of irradiation these parts will produce absorption
lines.

Irradiation of the disk’s atmosphere by the boundary layer and the white
dwarf results in

1. photoionization by high energy photons, and
2. heating of the disk atmosphere.
The relative importance of the two effects depends on the spectral energy

distribution of the irradiating flux. Major fraction of the flux emitted directly
by the boundary layer consists of soft and hard X-rays. They are responsible
primarily for the production of higher excitation/ionization lines, for example
those of He I and He II. On the other hand the flux reprocessed by the white
dwarf comes in the form of thermal radiation with Te = 104 − 105K. Compared
to the local disk’s flux, this irradiating flux is usually rather small. Irradiation,
however, is very oblique (typically at an angle in the range 80−90◦) and therefore
affects effectively the upper layers of the disk atmosphere. This results in a
temperature inversion, i.e. in the formation of a chromosphere, where emission
lines of lower excitation, in particular – those of hydrogen, must be formed.

3.5.4 Problems

5-1. Assuming that exactly one-half of the flux from the boundary layer is in-
tercepted by the equatorial belt of the white dwarf extending to latitude ϕ and
that this leads to a uniform heating within that belt, derive an expression for the
resulting temperature as a function of M1, r1, Ṁ , and the intrinsic temperature
of the white dwarf Te,◦. Putting M1 = 1M�, r1 = 5.4 × 108, Te,◦ = 104K, and
Ṁ = 1×1018, perform calculations for ϕ = 30◦ and 90◦ (i.e. for uniform heating
of the entire white dwarf.

5-2. Repeat calculations from 5-1 for the main sequence primary in an Algol
system, with M1 = 5M� and R1 = 5R�.
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4 Observations of Cataclysmic Variable
and Double Degenerate Stars

Tom R. Marsh

Department of Physics and Astronomy, Southampton University, Highfield,
Southampton SO17 1BJ

4.1 Introduction

In this chapter I will discuss cataclysmic variable stars and close pairs of white
dwarfs or “double degenerates”. These stars are connected through their evo-
lution, but in this case also because they are personal interests of mine. The
detailed topics that I discuss are also personal choices and I make no attempt to
be comprehensive in my coverage. The reader is referred to Brian Warner’s book
[104] for such a treatment of cataclysmic variable stars. The theory behind the
accretion discs which play such a key rôle in these objects is covered elsewhere
in this volume by J.Smak.

Cataclysmic variable stars (CVs) are beautifully set up to allow us to study
accretion. The two stellar components of the binary, a white dwarf and a low-
mass main-sequence star, are faint, and their semi-detached configuration means
that the geometry is entirely specified by the mass ratio and orbital inclination
alone. In eclipsing systems we can see the accretion regions occulted by the
main-sequence star allowing us to determine their contribution to the light from
the system. Much of what we know of CVs has come from such studies. The
problem faced in all such investigations is how to deduce the distribution of
accretion light from the data. CVs are far too small to be resolved directly – they
typically subtend < 10−4 seconds of arc – and we learn nothing of their structure
from direct imaging except in the case of nova shells. As a result several indirect
imaging techniques have been developed, and it is these that will occupy me in
this contribution. I begin by looking first at the method of “eclipse mapping”,
developed by Keith Horne to address the problem of understanding light curves
of systems with discs [33]. Next I look at “Doppler tomography”, which deals
with line emission [50]. The emphasis of these sections is on the disc-accreting
systems, and to redress the balance I then consider the magnetic accretors, for
which similar techniques have been applied in more recent years. Finally I change
tack to another hobby of mine, the evolution of close binaries. I do so by focusing
upon near-relatives of CVs in evolutionary terms, close pairs of white dwarfs.

4.2 Eclipse Mapping

To understand eclipse mapping, one must first understand how the light curves
of CVs come about, and how they can be computed. I thus begin this section
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c© Springer-Verlag Berlin Heidelberg 2001



152 T.R. Marsh

by describing how it is possible to specify the geometry in CVs, and then look
in general at how one might invert light curve information; this leads onto the
eclipse mapping method. I then describe results, and finish by discussing some
significant problems that might affect many such investigations.

4.2.1 Calculating Light-Curves of CVs

The basic geometry of CVs is well established. An example of the sort of data
that has inspired this confidence is shown in Fig. 4.1 which shows the light curve
of an eclipsing dwarf nova, Z Cha, along with illustrations of the geometry at
various phases. This is an example of how a fairly complex set of light sources
may appear in a light curve. In this low (quiescent) state of Z Cha the main
sources of light are (a) the white dwarf, (b) the bright-spot where the mass
transfer stream hits the disc, and (c) the accretion disc itself. The mass donor
star is a very cool M dwarf and contributes negligibly at optical wavelengths.
The white dwarf and bright-spot are compact sources of similar size which lead
to sharp steps in the light curve. The white dwarf is the first of these two to
be eclipsed, and the first to come out of eclipse. The steps caused by the white
dwarf are of equal size going into eclipse (ingress) and coming out (egress). The
bright-spot, which is on the edge of the disc, causes the large “hump” in the
light curve, as its projected area reaches a maximum when pointing at us. By

Fig. 4.1. The quiescent (low-state) light curve of the eclipsing dwarf nova Z Cha [107]
along with schematic pictures of the appearance of the system at the indicated phases.
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the time of eclipse, the bright-spot is fading, and as a result the egress step is
smaller than the ingress step. What of the disc? In this system it is faint, but
not negligible, because one can see some light at phase 0.0 when both the white
dwarf and bright-spot are in eclipse. The disc also reveals itself in the rise in flux
in between the egress of the white dwarf and that of the bright-spot.

It is data like those of Fig. 4.1 that have led to the standard model of CVs:
a Roche-lobe-filling, near-main-sequence star orbits a white dwarf. Mass trans-
ferred from the larger star forms a disc with a bright-spot at its edge, or, if
the white dwarf is sufficiently magnetic, it falls in a stream straight onto the
white dwarf. Since the secondary star fills its Roche lobe, its surface lies close
to the potential surface that touches the inner Lagrangian point. The shape of
this surface is entirely specified by the mass ratio q = M2/M1 where M1 is the
mass of the white dwarf primary star and M2 is the mass of the main-sequence
secondary star. The only other parameter needed to describe the eclipse is the
orbital inclination i. If the eclipse of the white dwarf is visible, then its width
gives a relation between q and i, and we have only one degree of freedom. In some
systems the eclipse of the bright-spot gives another independent q–i constraint,
and the geometry is fully specified [107].

Once q and i are specified, the visibility of any point in the system can be
determined in the following manner:

(i) First calculate the vector in the rotating frame of the binary which points
towards Earth (a function of orbital phase).

(ii) Next, iterate to find the minimum Roche potential along this vector starting
from the point of interest. The minimum in this case is restricted to the
vicinity of the secondary star.

(iii) If this minimum potential is less than that at the inner Lagrangian point,
the point is occulted.

The above procedure can be applied to any model of the accretion bright-
ness, and allows computation of a light-curve for any given surface brightness
distribution or “map”. The next question is: can we do the reverse? That is,
given a light curve, can we deduce the equivalent map?

4.2.2 Light Curve Inversion

The answer to the question posed at the end of the last section is, in general,
no. To see why, consider the eclipse of a single point. Its ingress phase picks out
a surface of all points with the same ingress phase, corresponding to the edge of
the region obscured by the secondary star. The egress phase picks out another
such surface. The intersection of these two surfaces is a line. However light is
distributed along this line, it will produce an eclipse indistinguishable from that
of the original point. Evidently we require more information than just a light
curve. In fact we need to make some assumptions about the form of the map.
This leads to two general approaches, parameterisation and regularisation.
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4.2.3 Parameterisation

In this approach one tries to identify the simplest, perhaps physically motivated,
model of the light distribution which can fit the data. This is the basis of the
description of Fig. 4.1. Normally such a model comes with several parameters
that need adjusting to the particular system in question. Thus one might need
to fit the radius and surface brightness of the white dwarf, similar parameters
for the bright-spot and also its position, the radius of the disc along with some
sort of specification of its intensity distribution. This approach can be successful,
and, for example, was used to deduce the extraordinary absorbed spectrum of
the white dwarf in the dwarf nova OY Car [37].

Parameterisation has some considerable advantages. It is usually easy to
estimate uncertainties upon the fitted parameters. The fitting process is also
typically fast. Unfortunately, there are sometimes even more significant draw-
backs. If the range of variation of real systems is large, one can reach a state of
requiring more and more components, which often become rather ad hoc. At the
same time, it is easy to build degeneracy into the model, which makes fitting,
and the interpretation of any uncertainties, difficult. Finally, it can be hard to
know just how to improve a model that is not fitting well.

4.2.4 Regularisation

To reduce the problems of parameterised models, one tries as much as possible
to constrain the model, for example by using as few components as possible.
In regularisation one does the reverse: the model is designed to be as flexible
as possible, within some set of limited, and, it is hoped, broadly applicable
conditions. Examples of such a conditions are the common assumptions that the
disc is flat and that it lies in the orbital plane.

The flexibility is achieved by dividing up the region to be imaged into very
many, M say, separate elements or pixels. The effects of neighbouring pixels are of
course very similar and near degenerate, thus in this approach severe degeneracy
is built in from the start. The idea at this point is not to find the best fit, but
to find a “good enough” fit, usually one of low enough χ2 to be considered a
statistically acceptable description of the data. For example if there are N data
points, one may require

χ2 ≤ N (4.1)

In general there are infinitely many models that can satisfy such a restriction;
they define a volume of the M -dimensional space needed to define the pixels.
To select a unique model, one then picks out some other feature felt to be
desirable, such as smoothness. This can be done if this property can be expressed
as some function of the model values. Let’s say this property is encapsulated in
a function S, and that we want the model of maximum S, consistent with the
restriction above. Then we use Lagrange’s method of undetermined multipliers
and maximise

S + λ(χ2 −N)
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with respect to the model and the multiplier λ. This is what is meant by regu-
larisation.

This approach can worry those used to the straightforward χ2-minimisation
approach. After all, does not χ2 encapsulate all that we know? Well, in fact it
does not because we always know, or think we know, something about the likely
brightness distribution even before any data is taken. Thus given the strong
shear present in accretion discs we do not expect significant structure in the
azimuthal direction. Adopting a pure minimum χ2 approach effectively throws
away such knowledge in favour of the data no matter how poor the latter may be.
In regularisation the function S encodes our prior knowledge and the resulting
images are those that fit the data acceptably, but also match our expectations
of smoothness, or whatever, as well as possible.

4.2.5 The Maximum Entropy Method

What do we use for the regularising function S? There are many possibilities.
For instance one might try to minimise the difference between each pixel value
Ii, and the average of its close neighbours Ai which would give

S = −
M∑
i=1

(Ii −Ai)2.

Although many such possibilities exist, one function, closely related to the equa-
tion for entropy familiar from statistical mechanics, has become popular. This
takes the form

S = −
M∑
i=1

pi ln pi (4.2)

where

pi =
Ii∑M

j=1 Ij

. (4.3)

Whether this function is the only correct choice has been the subject of heated
debate. One of the original motivations for this choice was the idea that the
image of maximum entropy was one that had the least information, and that it
only contained features forced by the data. Since then a more rigorous derivation
based upon Bayesian statistics and the imposition of consistency conditions has
been developed [20,89]. However some researchers do not attach particular signif-
icance to the function −∑ p ln p, regarding it rather as one example amongst a
set of possible functions that give the much the same effects, essentially encoding
our prior belief that the outcome must be smooth [66,73]. However, whatever the
arguments for or against entropy, its use has been facilitated by the wide avail-
ability of the powerful MEMSYS code [90] and so I will not consider alternatives
any further.
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In the absence of data, the entropy (4.2) is maximised if the pi are all the
same. This is easily seen using Lagrangian multipliers by maximising

S + μ

(
M∑
i=1

pi − 1

)
.

The second term imposes the restriction implied by the definition of pi (Eq 4.3).
Maximising with respect to pi gives

−1− ln pi + μ = 0

so the pi are identical as stated.

Default images. In his original paper [33], Horne used a modified form of the
entropy:

S = −
M∑
i=1

pi ln
pi

qi
(4.4)

where as before
pi =

Ii∑M
j=1 Ij

and in addition
qi =

Di∑M
j=1 Ij

where the vector D is called the default image. To see why it has this name, if
we maximise S as before with Lagrangian multipliers we obtain

−1− ln
pi

qi
+ μ = 0

which therefore leads to pi = qi and I = D. So in the absence of data, the
modified form of entropy (4.4) is maximised when the image is the same as the
default. This form of entropy therefore measures departures from the default.
Viewed in this way the original form (4.2) measures departures from a constant.

The motivation for using default images is that we know that the surface
brightness of a disc is likely to be far from constant. Instead it will typically rise
steeply towards the centre of the disc. However, we still expect azimuthal sym-
metry. Thus Horne used default images that were themselves computed from the
model images by computing images of perfect azimuthal symmetry with nearly
the same radial profile as the model images. Horne showed that this allowed re-
liable recovery of the radial surface brightness from light-curves, although spot
features were azimuthally blurred by the process.

It should be realised that the default image is only a guide for the image.
If the data require departure from axi-symmetry, there is nothing to stop the
growth of such structure in the final model.

I now move on to the results of applying the maximum entropy method
(MEM) to the lightcurves of CVs.
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4.2.6 Early Results of Eclipse Mapping

The novalike RW Tri. The first application of eclipse mapping was to the
nova-like (steady-state) system RW Tri [35]. The light-curves, MEM fits and
radial brightness distributions are plotted in Fig. 4.2. This was an important
result as it largely confirmed the theoretical steady-state effective-temperature
distribution [see Smak this volume]:

T 4
e =

3GMW Ṁ

8πσR3

(
1−

√
RW

R

)
. (4.5)

More precisely it confirmed the T ∝ R−3/4 that holds at large radii. Horne
[35] was also able to show from his multi-colour data that the colours of the disc
in RW Tri were intermediate between those of black-bodies and stars.

Fig. 4.2. The left-hand panel shows the light-curves of the eclipsing nova-like (steady
state) RW Tri along with MEM fits [35]. The right-hand panel shows the surface
brightness versus radius along with predictions for steady-state, black-body discs.

The dwarf nova Z Cha. Figure 4.3 compares quiescent and outburst light-
curves of the dwarf nova Z Cha. Compared to the quiescent data (which we saw
before in Fig. 4.1), the outburst data exhibit a much smoother eclipse, indicative
of domination by the disc. Horne & Cook applied the eclipse mapping method
to these data [34], obtaining the radial brightness profile shown on the left of
Fig. 4.4.

The outburst light-curve corresponds to a radial profile that is close to a
steady-state. Wood et al. [107] decomposed the quiescent light-curve into white
dwarf, bright-spot and disc components. The radial profile corresponding to
their disc light-curve is plotted on the right of Fig. 4.4. This reveals a profile
dramatically different from steady-state predictions, being much less intense in
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the centre of the disc. This is much as expected from the disc instability model of
dwarf nova outbursts in which mass accumulates at the edge of the disc during
quiescence.

Fig. 4.3. The figure shows the outburst light-curves of the eclipsing dwarf nova Z Cha
[34], with the quiescent data of Fig. 4.1 [107] plotted on the same scale (lower curve).

4.2.7 More Recent Results of Eclipse Mapping

The dwarf nova EX Dra. Figure 4.5 shows a very nice example of eclipse
mapping applied to the dwarf nova EX Dra by Baptista et al [3]. The figure
shows the substantial changes in the surface brightness of the disc that occur
during the outburst cycles of dwarf novae; EX Dra is a particularly good system
for such studies as it outbursts frequently compared to other eclipsing dwarf
novae.

Spectrally-resolved eclipse mapping. All the work I have discussed so far
has been based upon broad-band photometry. In 1993, Rutten et al. [79,81] had
the simple but powerful idea of taking high time-resolution spectrophotometry,
effectively giving many hundreds of very narrow-band light curves. When each
of these is mapped, one can obtain the spectrum over different regions of the
disc, exactly the sort of data that is needed for comparison with models of
atmospheres of discs [101,102]. This technique is known as “spectrally-resolved
eclipse mapping”.



4 Cataclysmic Variables and Double Degenerates 159

Fig. 4.4. The left-hand panel shows the radial brightness profile of Z Cha in outburst
[34], while the right-hand panel shows the profile corresponding to the quiescent disc
[107].

Baptista et al. [2] applied this method to HST data of the eclipsing nova-
like variable, UX UMa. Examples of the light curves and the final spectra they
derived are plotted in Fig. 4.6.

These spectra clearly show the increase of intensity as one moves from the
outer to the inner disc. As one might expect, this increase is most significant
at short wavelengths. In the outer disc a strong Balmer jump in absorption is
visible.

Note the spectrum at the bottom of Fig. 4.6, marked as “uneclipsed light”.
This is needed to prevent a common artifact of eclipse mapping in which the
code tries to push light to the back of the disc where it does not get eclipsed.
This comes about because the eclipses are shallower than expected for an axi-
symmetric disc. In some cases this might be a result of significant emission from
the mass donor star which I have so far assumed to be negligible. However, this
is not the case with UX UMa since the spectrum of the uneclipsed light does
not correspond to any normal stellar spectrum.

4.2.8 Flat Temperature Distributions

Horne’s first application of eclipse mapping showed that the disc of the novalike
variable RW Tri matched steady-state expectations [35]. However, this has by no
means always been the case. Rutten et al. [78] present the radial profiles of six
novalikes, 2 or 3 of which have much flatter profiles than expected for steady-state
models. In other words, the inner disc appears fainter than expected relative to
the outer disc. In the light curves, this reveals itself in V-shaped rather than
U-shaped eclipses.

The nature of the problem is well shown in the eclipsing old nova, V Per
[108]. Figure 4.7 shows that steady-state models only match the V-shaped light
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Fig. 4.5. Light curves and MEM images of the eclipsing dwarf nova EX Dra observed
at a series of different stages of its outburst cycle [3].
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Fig. 4.6. Light-curves of the novalike UX UMa are plotted in the left panel with
equivalent MEM images. On the right are plotted the spectra at different radii obtained
after all wavelengths have been mapped [2]. Radii are indicated to the left of the spectra
and are measured in terms of the distance of the inner Lagrangian point to the white
dwarf.
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curve at implausibly high mass transfer rates (> 10−6 M� yr−1). More realistic
mass transfer rates lead to deep U-shaped light curves. This effect translates to
the flat radial profiles discussed.

Fig. 4.7. The light-curve of the eclipsing old nova V Per is plotted along with steady-
state model light curves for mass transfer rates of 10−10, 10−8, 10−6 and 10−4 M�yr−1

[108].

In my opinion this problem is a serious one because the steady-state predic-
tion is really little more than the conservation of energy. To see this consider the
energy liberated as mass flows from radius R + dR to R:

GMW Ṁ

2R2 dR.

(The factor 1/2 appears because half the energy goes into kinetic energy rather
than radiation). Spread over an area of 4πR dR (two sides of the disc), this
implies an effective temperature Te given by

T 4
e =

GMW Ṁ

4πσR3 .

This is very close to Eq. 4.5, with the only difference a factor of 3(1−√RW /R)/2
owing to the work done by viscosity which transfers energy liberated close to the
white dwarf out to the rest of the disc.

There is no doubt over the conservation of energy, so how can theory and
observations be reconciled? There are several possibilities:

• the energy liberated in the inner disc is not radiated but is carried off in
some other manner, e.g. a wind.
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• the energy liberated in the inner disc is not radiated but is advected onto
the white dwarf.

• we don’t see the inner disc because the outer disc obscures it.

The second possibility is a straw man that can be knocked down easily: if power
was advected onto the white dwarf (such models are popular for black-hole binary
stars), it would still have to be liberated at the white dwarf, and we would surely
detect it in X-rays. The first possibility is less easily dismissed although it would
be remarkable if such a mechanism could remove 90% of the energy as needed
to fits observations, and it provides no convincing reason for why some systems
match steady-state predictions, and others do not. I believe it is the third, and
perhaps most prosaic, explanation that is the correct one.

All the eclipse maps presented so far were calculated assuming that the disc
is flat. Although it has been shown that results are little affected if instead the
disc has a modest flare [108,82], there is no question that if the outer disc was
so thick that the inner disc was invisible, then we could not derive a reliable
surface brightness. There is good evidence that exactly this is the case.

Fig. 4.8. The light-curve of the eclipsing dwarf nova OY Car in super-outburst [8].

Figure 4.8 shows the HST light curve of the dwarf nova OY Car in a state of
“super-outburst” (unusually long and bright outbursts) [8]. The eclipse starts off
normally enough, but during egress there is a substantial drop in flux – a “dip”.
This is caused by (time-variable) obscuration of the inner disc by the outer disc.
In fact it is very likely that there is still obscuration away from the dip phases
because there is spectroscopic evidence for absorption at all phases in this data.

Further evidence comes from absorption of the white dwarf’s spectrum by
cool material in OY Car during quiescence [37]. Finally in UX UMa it is found
that the side of the disc nearest to us is very deficient in UV flux compared to
the side furthest from us [2]. This is exactly as expected if the outer edge of the
disc is absorbing light from the inner disc because this will affect the nearest
side of the disc and UV wavelengths most of all.
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The apparent ability of discs to be thick is a little surprising. The theoretical
disc height to radius ratio H/R is of order the sound speed in the disc CS divided
by the orbital speed Vorb:

H

R
∼ CS

Vorb
.

For the expected temperatures of the outer discs of CVs, this gives H/R ∼ 1/50,
and so we don’t expect the thickness of discs to matter much unless a system
is within a few degrees of being edge-on. However, the inclination of UX UMa
is only 71◦, and yet obscuration seems significant. To date there has been little
work on trying to explain this problem.

4.2.9 Eclipse Mapping Summary

Eclipse mapping is a simple and powerful technique that tests our most funda-
mental predictions for accretion discs. It allows us to obtain images of discs that
subtend less than 0.1 milli-arcseconds at Earth. The greatest triumph of eclipse
mapping is probably the confirmation of the steady-state temperature distribu-
tion, one of the corner-stones of the theory of accretion discs. The extension
of eclipse mapping to spectrophotometry gives data that can be tested directly
against model atmospheres of discs.

Unfortunately, it seems that real discs are somehow able to puff up at their
outer edge. The absorption and obscuration caused by this may prevent our
seeing the inner discs at all in some systems, which suggests that caution should
be exercised in the interpretation of some eclipse maps. More work is needed to
evaluate just how serious such effects are.

With that warning, I leave eclipse mapping, although I will mention very
similar techniques when discussing magnetic CVs. Before that however, I turn
my attention to the imaging method known as “Doppler tomography”.

4.3 Doppler Tomography

Doppler tomography is a technique that allows us to image CVs and related bi-
nary stars in the light of their emission lines [50]. Its name comes about because
it turns out that the formation of the emission line profiles is closely analogous
with the problem of X-ray tomography used in medicine to image internal or-
gans of the human body. As it deals with line emission, Doppler tomography is
immediately at a disadvantage compared to eclipse mapping in terms of telling
us where most of the energy is emitted in CVs. However, it makes up for this by
being a much better conditioned inversion, which means that Doppler tomogra-
phy can reveal more complex structures than can eclipse mapping. I will discuss
several of these. I begin by considering the formation of the line profiles of CVs.

4.3.1 Emission Line Profiles

It has long been known that accretion discs can produce double-peaked line
profiles [91,38,92,36]. This can occur if the disc produces line emission from its
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surface with an intrinsic width much less than the orbital speed. This is only
possible if the sound speed CS is much less than the orbital speed Vorb, conditions
which we have already seen apply to the discs of CVs.

Figure 4.9 illustrates how the double-peaked profiles come about.

Fig. 4.9. An illustration of how an accretion disc can produce a double-peaked profile.
At the lower-right is a schematic illustration of the binary with dashed lines of equal
radial velocity (the system is viewed from below, equivalent to orbital phase 0.25). At
the lower-left, is the equivalent in velocity coordinates (see text).

When the orbital velocity dominates over the intrinsic line profile, emission
from a particular point in the disc will add into the observed line profile at
a velocity matching its radial velocity at the time of observation. Thus it is
useful to consider lines of equal radial velocity in the system at a particular
phase. Fig. 4.9 does this for orbital phase 0.25. A pattern of curved lines can be
seen running over the disc. This has a shape identical to a magnetic dipole field
pattern, and is a direct result of a so-called “keplerian” velocity field, V ∝ R−1/2.
As we move from high to low velocities, the areas of the crescent-shaped regions
of equal radial velocity increase rapidly. This corresponds to the increase in flux
moving from the wings of the profile towards zero velocity. However, the increase
in area cannot be sustained forever because eventually it is curtailed by the edge
of the disc. If we try to go to lower velocity, the area decreases once more, and
so two peaks are formed at the projected speed of the outer disc [91].
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Throughout most of this section I will be referring to images in “velocity
space”. This is illustrated in the lower-left of Fig. 4.9. I define coordinate axes
with x running from the accretor to the donor, y in the direction of motion of the
donor, and z to form a right-handed triad, i.e. z = x ∧ y. This definition leads
naturally to the definition of Vx and Vy, with one subtlety, which is that these are
projected inertial speeds rather than rotating-frame speeds (“projected” meaning
projection onto our line of sight). Thus the accretor has velocity (0,−K1), while
the donor has velocity (0,K2), where K1 and K2 are the respective projected
orbital speeds. Lines of equal radial velocity in velocity space are straight, but
their angle depends upon the orbital phase. With the definitions given, the lines
of equal radial velocity make angles of 360◦φ with respect to the Vy axis at
orbital phase φ, increasing in the clock-wise direction.

I will come back to discuss velocity space more later, but before proceeding,
I first look at the observational evidence in favour of the model.

Evidence for the Doppler-shifted profile model. The most obvious evi-
dence for the Doppler-shifted model is the ubiquity of double-peaked profiles in
CVs, particularly in dwarf novae. U Gem [97], Z Cha [48], OY Car [1], IP Peg
[49], V2051 Oph [105], and many others show such profiles. However, there are
also many systems that do not show double-peaked profiles, most notably many
eclipsing novalike variables. That theses systems are eclipsing shows that it is
not just low inclination that prevents our seeing double-peaks [92]. The absence
of double-peaked profiles in many systems is a worry, but luckily there is even
better evidence that the model is correct for those systems which do have them.
Consider Fig. 4.10 which shows the eclipse of Hβ in the dwarf nova IP Peg [49].
Since the disc rotates in the same direction as the donor, just before mid-eclipse
the approaching, blue-shifted side of the disc is occulted. Thus in the middle
profile of Fig. 4.10, the blue-shifted side of the profile is absent. The top profile
was taken only a few minutes later, by which time the approaching side of the
disc has emerged from eclipse while the receding, red-shifted half has been oc-
culted. There can be little doubt of the validity of the Doppler-shifted formation
model in this case, and such data can be used to confirm the keplerian velocity
field [111,49].

4.3.2 Profile Formation by Projection

When discussing the profile formation model, I introduced the idea of velocity co-
ordinates, in which lines of equal radial velocity were parallel straight lines. This
makes the translation from model image to profile particularly straight-forward,
as all we need do is project the image along the direction appropriate to the or-
bital phase in question. Projection here means the mathematical transformation
of integration along (in this case) lines across a 2D image to produce the 1D
profile. The projection of an image at two phases is illustrated in Fig. 4.11.

The artificial image has been created with a spot which can be seen to project
into different parts of the profile at different phases. If one saw the two peaks in



4 Cataclysmic Variables and Double Degenerates 167

Fig. 4.10. The emission line Hβ in the eclipsing dwarf nova IP Peg as seen at three
times. From top to bottom are plotted (i) the profile just after mid-eclipse, (ii) the
profile just before mid-eclipse, and (iii) the profile out of eclipse.

the profiles, one could deduce the position of the spot in the image by tracing
back along the projection directions. This is in essence how line profile informa-
tion can be used to reconstruct an image of the system; we will encounter this
as back-projection.

A series of line profiles at different orbital phases is therefore nothing more
than a set of projections of the image at different angles. The inversion of pro-
jections to reconstruct the image is known as “tomography”, the case of medi-
cal X-ray imaging being perhaps the most famous, although it occurs in many
other fields too. I now discuss the inversion method known as “filtered back-
projection”.

4.3.3 Filtered Back-Projection

By the definition of the coordinate axes, the radial velocity VR of a point at
(Vx,Vy) at orbital phase φ is given by

VR = γ − Vx cos 2πφ + Vy sin 2πφ, (4.6)

where γ is the mean or systemic velocity of the star. The projection to form the
line profile, f(V ,φ), a function of radial velocity V and orbital phase φ, from an
image in velocity coordinates, I(Vx,Vy), can then be written:

f(V, φ) =
∫ ∞

−∞

∫ ∞

−∞
I(Vx, Vy)g(V − VR) dVx dVy, (4.7)

where g is a function representing the line profile from any point in the image,
including effects such as instrumental blurring. Note that g is assumed to be
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Fig. 4.11. A model image and the equivalent profiles formed by projection at angle
appropriate to orbital phases 0.25 (right-most profile) and 0.5 (lower profile).

the same at every point. It is the linear dependence of VR upon Vx and Vy (4.6)
which gives the straight line projection in velocity coordinates.

The inversion of Eq. 4.7 is detailed in the appendix. The process can be
summarized in the following two steps. First the line profiles are filtered in
velocity to derive modified profiles, f̃(V, φ). For mathematically exact inversion,
the filter is |s|/G(s), where G(s) is the Fourier transform over V of g(V ) and s
is the frequency in inverse velocity units. If the local line profile g(V ) is gaussian
then so too is G(s), dropping to zero at large s. Thus the filter will strongly
amplify high frequencies, and the image will likely be corrupted by noise. This
may be familiar when it is realised that division by G(s) is just the standard
(and noise-sensitive) Fourier deconvolution; the presence of |s| in this case only
exacerbates the problem. Thus in practice, the filter is modified to |s|W (s), where
W (s) is a (typically gaussian) “window” function to cut off high frequencies and
therefore limit the propagation of noise into the final image. The penalty for this
is that the final image is a blurred version of the true image.

The second step is that of back-projection:

I(Vx, Vy) =
∫ 0.5

0
f̃(γ − Vx cos 2πφ + Vy sin 2πφ, φ) dφ. (4.8)

An intuitive understanding of back-projection is very useful when trying to make
sense of Doppler maps. There are two ways of imagining the process. The first
one is perhaps the most obvious from Eq. 4.8 which implies that each point in
the image can be built by integrating along a sinusoidal path through “trailed”
spectra (spectra viewed in 2D form with axes of velocity and phase). The par-
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ticular sinusoid is exactly that which a spot at the particular place in the image
would produce in the trailed spectra. This view is illustrated in Fig. 4.12.

Back-projection is named for another, perhaps more useful, way of regarding
this operation. In effect, Eq. 4.8 means that the image is built up by smearing
each filtered profile along the same direction as the original projection which
formed it (see Fig. 4.13).

This way of looking at back-projection shows very clearly why small numbers
of spectra cause linear artifacts in Doppler maps, and one should always be
wary of such features. Similarly, any anomalies, such as unmasked cosmic rays
or unmasked eclipses are liable to cause streaks across Doppler maps.

Fig. 4.12. An illustration of back-projection as integration through trailed spectra.
If a track coincides with a sinusoidal component, there is a large contribution to the
integral and a spot will appear in the final image.

4.3.4 MEM Inversion

The inversion from line profiles to image can be regarded in the same sense as
the eclipse mapping problem, and MEM can be applied in a very similar way
[50]. In practice, filtered back-projection often does a perfectly adequate job,
and is comparatively easy to code and fast to apply. MEM seems to be better at
suppressing the “spokes” characteristic of limited numbers of spectra, and can
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Fig. 4.13. An illustration of back-projection. Each profile is smeared across the image
at an angle matching the original direction of its projection.

be easily extended to cope with blended lines (see [57] for example), variable
local line profiles, and many other deviations from the simple model discussed.
Moreover, just as MEM is routinely applied to sharpen blurred images (without
allowing excessive noise amplification), so it can go further towards the effective
implementation of the exact filter |s|G−1(s) and thus produce somewhat sharper
features than the windowed filter |s|W (s) allows.

4.3.5 Understanding Doppler Maps

Figure 4.14 shows some of the key components of a CV represented in velocity
space. The donor star is assumed to co-rotate with the binary, which means that
it appears with the same shape in velocity as in position coordinates, although
rotated by 90◦ owing to the relation v = Ω∧r between velocity and position for
“solid-body” rotation. This reassuring property is somewhat misleading, since
the disc, which is very definitely not co-rotating with the binary, ends up being
turned inside out so that the inner disc is at large velocities while the outer disc
appears as a ring at low velocity. The gas stream is plotted twice: once with its
true velocity and once with the velocity of the disc along its path. The positions
of all these components is fully specified if the projected orbital velocities of the
two stars, K1 and K2, and the orbital phase are known. The overall scale is set
by K1 + K2; their ratio q = K1/K2 = M2/M1 defines the detailed shape of
the stream and Roche lobe. The orbital phase sets the overall orientation of the
image, and if it is not known the image will be rotated by an unknown amount
relative to the “standard” orientation of Fig. 4.14.



4 Cataclysmic Variables and Double Degenerates 171

Fig. 4.14. A schematic of some key components in velocity coordinates.

Although velocity coordinates simplify the picture of line profile formation,
it is simple enough to invert into position coordinates – indeed this is how I
originally computed Doppler images [47]. However, I abandoned this approach
for two reasons. First, the translation between velocity and position is often not
known. In fact, perhaps it is never known, given that it is likely that deviations
from keplerian flow occur. This means that position maps would require recom-
putation each time system parameters were updated. Second, the same place
in the system can produce emission at more than one velocity. This is not an
abstract possibility, but happens in almost every system that has been imaged.
There are many examples of bright-spot emission from the gas stream while the
disc at the same location produces emission at a completely different velocity.
If such data is imaged into position coordinates on the basis of keplerian rota-
tion, a spot of emission would be produced at a completely spurious location
in the disc, but it is hard to see what else could be done. Sticking to velocity
coordinates is a reminder of these potential difficulties of interpretation. Only in
eclipsing systems is there potential for disentangling such effects.

While we cannot translate the data into position space, there is no difficulty
in translating any theoretical model into velocity coordinates. Indeed, ideally,
the theory–data comparison should be made by predicting trailed spectra, doing
away with the need for Doppler maps altogether. However, Doppler maps still
have a rôle in that theoretical models are not good enough to predict all the
peculiarities of real systems, and comparison is easier in the half-way house of
velocity space.

The idea of translating to velocity space also applies to how one should
think about Doppler maps. Rather than trying to translate features of maps
mentally from velocity to position coordinates, one should try to think of various
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components and imagine where they would appear in velocity space. With that
said, I now turn to look at some results.

4.3.6 Doppler Imaging Results

There are now a large number of examples of Doppler tomography, covering CVs
along with other types of binary as well, such as Algols and X-ray transients,
the latter being very similar to CVs in many ways [53,13]. Some of the most
spectacular images have come from magnetic CVs; I will look at these in the
third section of this contribution. In this section I concentrate upon results from
disc accreting systems.

Disc rings and bright-spots. The first Doppler maps published revealed
broadened rings of emission corresponding to emission from discs and also bright
spots of emission caused by the gas stream/disc impact [51,31,52]. It has since
become clear that usually the spot emission comes from the gas stream rather
than the disc. An exception to this rule is seen in the system U Gem where the
bright-spot appears half-way between the predicted stream and disc positions,
which may indicate that we are seeing emission from downstream of the impact
[51].

An example of a Doppler map of this variety is shown in Fig. 4.15 which
shows images of several lines of the 46-minute period, helium accretor GP Com.
This system does not have a well-determined orbital phase, so this is a case
where there is rotational uncertainty in the images, albeit the same amount for
each image. GP Com shows the broadened disc rings, and an obvious bright-
spot at the edge of the disc (and therefore near the peak of the disc ring in
velocity coordinates). In addition it displays emission at zero velocity. This is
a “forbidden region” for most CVs – there is no single part of the system that
is stationary relative to the centre of mass. GP Com has an unusually extreme
mass ratio – 50:1 – which means that the accretor is almost stationary and may
be the origin of the low velocity spot.

The images of GP Com are very similar in nature to those of other short
period/extreme mass ratio systems such as WZ Sge [94], GD 552 [31], LY Hya
[96] and X-ray novae [53,12]. In more equal mass ratio systems the disc compo-
nent is displaced noticeably downwards, as expected because the radial velocity
amplitude of the accretor is larger, but again the images have the same overall
structure.

In systems with well-determined parameters the position of the bright-spot
in Doppler images can be used to measure its distance from the white dwarf,
which can serve as an estimate of the outer disc radius. So too can the disc
ring itself. This is superior to simply measuring double-peak separations from
mean spectra since the latter may include unrecognised contributions from the
bright-spot and/or red star.

The existence of bright-spots of emission was well-known before the advent
of Doppler tomography, as in many systems the ‘S’-wave is obvious, and mea-
surable, see for example Stover et al.’s analysis of U Gem [97]. It is fair to ask
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Fig. 4.15. Doppler images of the helium accretor, GP Com showing a broad ring of
emission from the disc and two spots of emission, the outermost of which is from the
gas stream/disc impact region.

then, what extra does Doppler tomography bring to this topic? Chiefly, Doppler
tomography gives an objective description of the emission without requiring in-
tuitive development of models. If the emission can be described by a disc and
single spot, this is not much of an advantage, but it becomes vital in more com-
plex cases, such as is shown in Marsh et al.’s study of U Gem [51] and, as we will
see below, in the discovery of spiral shocks in IP Peg. Doppler tomography can
make an important contribution even when the emission distribution is simple.
A good example of this is Johnston et al.’s analysis of the X-ray nova V616 Mon
[41], where they modelled the emission pattern in terms of a simple parametric
model of the disc plus “spot”. They described the spot with a very large-scale
asymmetry, and their best-fit parameters for this model led them to deduce an
extreme mass ratio for the system. Later Doppler tomography revealed that the
spot was in fact very localised, and, combined with study of the secondary star,
was consistent with a very different mass ratio.

Emission from the secondary star. It is common to see emission from the
secondary star [52,23,24] in Doppler images. The exact location of this is infor-
mative as to whether the emission is intrinsic to the secondary stars or generated
by irradiation. Irradiation, for example, favours emission on the side of the sec-
ondary closest to the white dwarf, and this can be seen in Doppler images. A nice
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example of this was presented by Schwope [88] for the star QQ Vul where one can
see the effect of irradiation in producing emission and suppressing photospheric
absorption at the same tie (Fig. 4.16).

Fig. 4.16. Doppler images of the secondary star in QQ Vul shows emission concen-
trated on the side facing the white dwarf (grey-scale) whereas photospheric absorption
(contours) is mostly on the opposite face [88].

Standard Doppler tomography assumes that all elements are seen equally at
all phases, which is clearly not the case for emission from the secondary star.
Rutten and Dhillon [80] developed code which can cope with this and therefore
can image the secondary star correctly. The potential of this method, at least
when applied to Balmer emission, may be limited by intrinsic broadening other
than Doppler — there is good evidence for this in detached white dwarf/M-dwarf
binaries [58]. CaII lines are likely to prove a better bet in such work.

The mystery of missing discs. While dwarf novae often show double-peaked
lines, it is well known that many nova-like variables fail to do so. Indeed, there
is a group of such objects called the “SW Sex” stars, with the presence of single-
peaked lines as one of its defining criteria, in spite of most of these stars being
of sufficiently high inclination to eclipse. It is no surprise then that these lead
to very different Doppler images from those discussed so far, as can be seen in
the Doppler map atlas published by Kaitchuck et al. [43]. Novalikes often show
a single blob of emission to the lower-left of the centre of mass, and usually too
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low to be consistent with the gas stream. There is evidence for the gas stream
over-flowing the disc which can cause emission in this region of Doppler maps
[27], but there are still features for which a convincing explanation is lacking in
my opinion, such as the relative weakness of eclipses in the lines. The reader is
referred to [28,17] for further discussions of these systems.

Spiral shocks. As I mentioned above, Doppler tomography is seen at its best
on complex emission patterns, which produce spectra which defy simple intuitive
inversion. In the 1980s there were several theoretical papers describing “spiral
shocks” in discs driven by the tidal field of the secondary star [85,93]. It was
noted by Robinson et al. [77] that these should be visible in Doppler images, but
that, so far, there was no sign of them. It was a great surprise, perhaps even a
“shock”, then when Steeghs et al. [95] (Fig. 4.17) found evidence for very strong
spiral shocks in the dwarf nova IP Peg during outburst. Spiral shocks have since
been confirmed in several other outbursts of IP Peg, and, with hindsight, were
probably present in earlier outburst spectra of the system [52].

The spiral shocks of IP Peg are persistent: Figure 4.18 shows them still going
strong six days into an outburst.

They may even last into quiescence, although they are expected to be more
tightly wound and difficult to detect [95]. Still, this is something that should be
searched for.

More difficult to understand is why these shocks are so strong in IP Peg, but
relatively vestigial in other systems for which suitable data exists, although it
has to be remarked that there is very little outburst spectroscopy overall, and
IP Peg is unusual in having particularly strong line emission during outburst.

There is much to be done in this area. Above all perhaps, we need to cover
a full outburst of IP Peg rather than comparing different stages of different
outbursts as we have been forced to do so far. The way in the spiral shocks
evolve may have much to tell us about the evolution of the disc during outburst.
In addition, these shocks need to be searched for in other systems to see if we
can understand when and why they appear.

4.3.7 Extensions to Doppler Tomography

There are a number of possible extensions to Doppler tomography, although they
all have additional possible pit-falls too. I have already touched on Rutten &
Dhillon’s Roche tomography [80] which describes the secondary star accurately,
although in practice intrinsic broadening may limit its usefulness. Bobinger et al.
[9] describe a method for simultaneous Doppler and eclipse mapping of emission
lines. In this a single image is computed to fit both spectra and light curves of
the lines, with a keplerian velocity field used to translate between position and
velocity space. It is difficult to evaluate how much spectra or line flux domi-
nate the final maps, but it is clear that spectral information does alleviate the
degenerate nature of eclipse mapping. Of course, the need to assume a partic-
ular velocity field is a dis-advantage. An attempt has been made to avoid this
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Fig. 4.17. Trailed spectra (data at the top, fits at the bottom) and Doppler maps of
IP Peg during outburst show a two-armed spiral pattern [95].

by simultaneously adjusting a spatial image and a position–velocity map to fit
spectra of eclipsing systems [7]. In this method, spectra out of eclipse serve to
fix the velocity space image as usual, which is then translated to position space
through the eclipse information. The technique was able to recover a V ∝ R−1/2

relation from spectra of V2051 Oph, but as developed it could not handle the
difficult case of the same place producing emission at more than one velocity.

4.3.8 Doppler Mapping Summary

Doppler mapping provides us with a fairly objective interpretation of emission
lines in cataclysmic variables. It is seen at its best when unravelling the spiral
shocks seen in IP Peg where the large-scale of the features makes the spectra
hard to understand from intuition alone. The significant caveat is that Doppler
tomography is based upon a few simple assumptions which are certainly vio-
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Fig. 4.18. Spiral shocks are still strong six days after the start of an outburst [63].

lated in some, and probably most, systems. It is up to individual researchers to
evaluate the significance of departures from the ideal case.

A brief literature search reveals published Doppler maps for some 11 dwarf
novae, 17 old novae and nova-likes, 9 intermediate polars and 12 polars, but
compared to over 300 systems listed in Ritter & Kolb [75], this is is not so
very many. I don’t feel that we have reached the stage when we can say what
an average Doppler map of a dwarf nova is like. Still less have we explored in a
consistent way the evolution of Doppler maps with time or in the light of different
emission lines. The commonly-observed Balmer lines may not be so favourable
because of intrinsic broadening which may limit the resolution attainable to
something much worse than is possible from purely instrumental limitations.
Many well-known systems – RX And, AH Her, RU Peg to name a few – have
no published Doppler maps, and outburst images are limited to IP Peg, SS Cyg
and EX Dra. There is thus plenty of work to do in this area.

4.4 Magnetic Cataclysmic Variables

I have so far concentrated upon systems which accrete via discs around the
compact objects. There is however a very different class of systems in which the
disc is either truncated with a large hole at its centre or entirely absent, owing
to the strong magnetic field of the accretor. These systems are divided into two
types, the AM Her stars or “polars” and DQ Her stars or “intermediate polars”.
The AM Her stars are the most magnetic. They are so magnetic that they have
no disc and the white dwarf is locked to the orbit of the binary star. Thus all
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variations occur on the orbital period. In the DQ Her stars, the white dwarf is
not magnetic enough to lock to the orbit and spins faster than the binary. The
magnetic field still disrupts the disc, but at least in some systems, not entirely,
and so one pictures them as having discs with central holes. The white dwarf
spin is seen in photometry of DQ Her stars along with combinations of the spin
and orbital frequencies.

I will start by concentrating upon the AM Her stars which have received
intensive study in recent years as a result of many new discoveries from the
ROSAT X-ray satellite. For reviews of these systems see [104,6,15]. In this section
I will concentrate on aspects connected with the earlier sections, namely attempts
to map the structures in these systems.

4.4.1 The Accretion Column

Figure 4.19 shows the nature of accretion in an AM Her star. Mass overflows
from the mass donor as usual through the inner Lagrangian point, but rather
than orbiting the white dwarf, to result in formation of a disc, the material locks
onto the white dwarf’s field and flows down onto one or both magnetic poles.

Fig. 4.19. A schematic picture of an AM Her star [15].

Accretion in AM Her stars is very different from disc dominated systems.
Rather than spending many orbits slowly spiralling down onto the white dwarf,
the gas flows more-or-less in free-fall onto the white dwarf. In doing so it ac-
celerates to close to the escape velocity of the white dwarf (of the order of
5,000 Km/s) but must at some point come to a halt in order to accrete. It does
so in a strong shock a little way above the white dwarf’s surface, converting most
of the kinetic into thermal energy. Protons with velocities of 5,000 Km/s have
energies of 130 keV . This energy is transferred to the electrons and radiated as
bremsstrahlung at X-ray wavelengths (Fig. 4.20).

At the same time, the electrons are in a very strong magnetic field and
radiate cyclotron radiation as well. Most of this comes out at optical and infrared
wavelengths. Cyclotron radiation is particularly effective immediately after the
shock; bremsstrahlung is increasingly important as the gas cools following the
shock. The cyclotron radiation is strongly polarised. When seen face on, circular
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Fig. 4.20. On the left is a schematic picture of the base of the accretion column in
a magnetic cataclysmic variable star [15]. On the right are two views of the accretion
spot.

polarisation dominates, whereas when seen on the limb of the white dwarf, a
pulse of linearly polarised radiation is seen (Fig. 4.20).

The above discussion only scratches the surface of the radiation sources in
AM Her stars. There is evidence to suggest that the accretion flow is blobby in
nature and that the blobs can carry energy below the photosphere of the white
dwarf; this eventually escapes as soft X-ray emission. Adding to this, much of
the radiation after the accretion shock will be intercepted by the white dwarf
and then re-radiated. Radiation from the spot can also be expected to impinge
on other structures in the system such as the accretion stream prior to the shock
and the mass donor star.

4.4.2 Magnetic Fields

There are two main indicators of the strength of the magnetic fields in AM Her
stars. In their high states, cyclotron emission is significant at optical wavelengths,
and it is possible to detect broad spectral humps from cyclotron harmonics
(Fig. 4.21). With a broad spectral range it is possible to identify which harmonics
the humps correspond to. The magnetic field then follows more-or-less from the
standard relation

ωC =
eB

γme

where ωC is the fundamental cyclotron angular frequency, e is the charge on the
electron, me its mass, γ the Lorentz factor and B the magnetic field. For γ ≈ 1
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Fig. 4.21. The optical spectrum of the AM Her, RXJ1724.0+4114 showing cyclotron
humps.

this leads to

λC = 10.7
(

B

10 MG

)−1

μm

where λC is the wavelength equivalent to ωC .
AM Her stars occasionally go into extended low states, during which the

photospheres of the white dwarfs can dominate their spectra. Then Zeeman-
split absorption lines can be seen, allowing another method of measuring the
field. The two methods are not exactly the same since the cyclotron radiation
comes almost exclusively from the magnetic poles whereas the Zeeman lines can
come from the whole photosphere and some assumed field pattern is needed to
deduce the polar field strength. The accretion column is the site of optical line
emission, which raises the potential for measurement of magnetic fields from
Zeeman splitting and associated circular polarisation in the lines. Only recently
has this been seen in the high field system AN UMa [86].

Fields in AM Her stars range mostly from 10 to 100 MG, leading to fun-
damental cyclotron humps at wavelengths from 1 to 10μm; the exception is
AN UMa which has a field of 230 MG, the current record [86]. The cyclotron
emission weakens at high harmonics, part of the reason, presumably, why it is
not often seen in DQ Her stars. The field distribution in AM Her stars is very
different from that of isolated magnetic white dwarfs where roughly equal num-
bers of systems are seen in each decade of field strength from 1 to 1,000 MG.
It may be that very magnetic white dwarfs are only rarely produced during the
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evolution of CVs, or that very magnetic white dwarfs speed the evolution of
CVs, reducing their apparent numbers.

4.4.3 Light Curves

In their high states, the light curves of AM Her stars are dominated by their
accreting pole or poles, with significant contributions from the rest of the white
dwarf’s photosphere and the gas stream. The energy is radiated close enough to
the white dwarf that it can appear and disappear from our view as the white
dwarf rotates. The light curves depend, amongst other things, upon the incli-
nation of the system and the latitude and longitude of the accretion spot, and
therefore one can hope to measure these parameters from light curves.

Even more can be learned from polarimetry which shows other distinct char-
acteristics as the accretion spot changes orientation. For instance when the ac-
creting pole is at the limb of the white dwarf, linear polarisation is seen with
an electric vector parallel to the limb. Consider then the case of an edge-on sys-
tem with a spot on the equator compared with the same system with a spot at
latitude 45◦. In both cases, the spot will be visible for half a spin (and there-
fore orbital) period and therefore not obviously distinguishable from light curves
alone. However, the first case will show little change in polarisation angle, while
the latter will switch by 90◦.

Figure 4.22 shows polarimetry of the star ST LMi. In this case the accreting
pole is on the hemisphere furthest from us leading to a short period of visibility;
the variation of polarisation can be understood approximately as outlined ear-
lier. An important early result of such analyses was the discovery by Cropper
[14] of a clustering in the longitudes of the accreting poles which implied exact
synchronism between the white dwarf and the binary orbit. This is in spite of
a tendency for the white dwarf to spin-up owing to continued accretion of mat-
ter. The only plausible explanation for this is dipole/dipole interaction between
the white dwarf and mass donor star. On the other hand, to reach synchronism
requires a dissipative process such as the induction of currents in the secondary
star as the white dwarf’s magnetic field sweeps by it. An interesting recent ap-
plication of these ideas has been made by [61] who suggest that the loss of the
secondary star’s magnetic field, which may occur at very short orbital periods
when it becomes a brown dwarf, could cause loss of synchronism, followed by a
short spin-up phase during which the star becomes first a DQ Her star and then
a “propeller” – a system that does not accrete but expels matter. This could
lead to the observed lack of AM Her stars at the shortest orbital periods.

Absorption by the accretion stream can have a very important effect upon
the light curves of AM Her stars. This is especially obvious at wavelengths of
high opacity such as the EUV.

Figure 4.23 shows a good example in the eclipsing system HU Aqr. The eclipse
appears to vary in width according to the wavelength, and is particularly broad
at EUVE and ROSAT wavelengths. The HST UV data is distinctly different but
there is a definite dip just before eclipse. The interpretation of this data is that
we are seeing the material in the stagnation region where the stream threads
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Fig. 4.22. Polarimetry of the AM Her system ST LMi shows a distinct bright phase
as the accreting pole (which is placed in the lower hemisphere) comes into view [16].

onto the magnetic field pass in front of the accreting spot just prior to the true
eclipse by the companion star. At EUVE wavelengths the stream obscuration
is total, whereas it only appears as a dip in the UV. The position of the dip
is observed to vary with time and this can be used to measure the change in
location of the stagnation spot, which is expected when the mass transfer rate
changes [87].

Modelling of the light curves of AM Hers has become sophisticated with
essentially similar methods to that of eclipse mapping applied to a situation
of very different geometry. Thus assuming a particular flow geometry, as can
be fixed by assuming a dipole field geometry and knowing the locations of the
accreting spots, one can adjust the brightness along the stream, both ballistic
and magnetically-dominated, to match observations [25,26].

This has been taken still further in order to fit polarimetric data [72]. In this
case a model of cyclotron emission is required rather than just the usual simple
sum over intensity.
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Fig. 4.23. Light curves of the eclipsing AM Her star HU Aqr at different wavelengths
[87].

4.4.4 Optical Spectra

In recent years the application of tomography to AM Her stars by Schwope and
collaborators has produced some remarkable results. There are obvious risks in
naively applying tomography to such systems – we know that there are flows out
of the orbital plane, violating one of the core assumptions built into standard
tomography. However, in practice such regions do not seem to contribute strongly
enough to the line emission to make much difference. In any case the main
effect of such out-of-plane motion is a blurring of the reconstruction rather than
anything more serious [50].

The system HU Aqr provides a good example of what tomography can tell
us – Fig. 4.24.

The contrast with the disc accreting systems is dramatic. The main structures
visible are the heated face of the secondary star – there being no disc to shield it
– and the initial part of the gas stream. There is also a distinct change between
low and high state data. As expected, it seems that the stagnation point moves
outwards in the low state to appear as a bright region on the stream. In addition
there is also some evidence for emission from the magnetically-dominated part of
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Fig. 4.24. Trailed spectra and Doppler maps of the eclipsing AM Her star HU Aqr
[87].

the flow, and relatively simple models of the field threading process can explain
the location of this emission in velocity space.

4.4.5 DQ Her Stars

Some researchers differentiate between DQ Her stars and “intermediate polars”
on the basis of spin period, with the term “DQ Her star” being reserved for the
short spin period systems such as GK Per (Pspin ≈ 6 mins) and DQ Her itself
(Pspin ≈ 140 secs), while the intermediate polars are longer period systems with,
typically, Pspin ∼ 0.1Porb. Although they could well have different magnetic
field strengths, it is not at all clear that there is anything that fundamentally
distinguishes the two, and so I will use the term DQ Her to refer to all such
systems, distinguished by their coherent pulsations on periods other than the
orbital period.

DQ Her stars are not as well understood as their more magnetic counter-
parts. This is probably mostly because they are more complex. DQ Her stars
show pulsations so they must have an inner magnetically dominated region. On
the other hand, some of them show disc-like features such as double-peaked lines
(most obviously DQ Her itself), and so they may have disc-like structures. On
the other hand, X-ray data of DQ Her stars often show a signal at the “beat”
frequency ω − Ω between the spin and orbital frequencies ω and Ω, which in-
dicates that the accretion spot “knows” where the secondary star is [103,67,4].
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This suggests that there is stream overflow – matter streaming over the disc and
hitting the magnetosphere directly. Such components are variable, so it looks as
though sometimes there is stream overflow and sometimes there is not.

To add to the complication, despite stream overflow, much of the accretion
may occur as material from the inner edge of the disc connects to the field. This is
not as clean a process as occurs in the AM Her stars and will lead to an accretion
“curtain” rather than a spot. This accretion curtain will obscure the accretion
areas on the white dwarf for a wide range of inclinations. The obscuration is
most marked at X-ray wavelengths and means that the X-rays peak when the
accreting regions are pointing away from us. The situation described is illustrated
in Fig. 4.25.

The precise behaviour is likely to vary markedly with details of geometry.
Add to this the difficulty in many DQ Her stars of detecting the mass donor
star, and thus the orbital phase, and a rather confusing picture emerges.

The spin periods of DQ Her stars. Any discussion of DQ Her stars would be
incomplete without presenting a plot of their spin versus orbital periods, shown
in Fig. 4.26.

There has been a great deal of work trying to explain this diagram, which was
partly responsible for the intermediate polar/DQ Her division discussed earlier
because when there were fewer systems known, it appeared that the systems
that cluster below the Pspin = 0.1Porb line were distinctly different from the
shorter spin period systems such as DQ Her itself. What needs explaining is how
the white dwarfs manage to attain an equilibrium spin period. On the one hand
accretion of angular momentum acts to spin them up, while on the other the
magnetic field drags on the inflowing material, which, at least when it is far out,
will tend to slow the spin down.

Material orbiting the white dwarf only slows the latter down if it is outside
the co-rotation radius where the white dwarf’s spin period matches the orbital
period at that radius. A key factor is the relative size of this radius compared
to the magnetospheric radius at which the magnetic and ram pressures balance.
The latter radius is dependent upon the strength of the magnetic field but also
upon the mass transfer rate, which may vary. This can lead to some interest-
ing consequences. For instance, suppose that a white dwarf is spun up under
high mass accretion which subsequently decreases. It may happen that the mag-
netospheric radius then becomes larger than the co-rotation radius. A possible
consequence is that most material is flung away from the white dwarf rather than
accreted by it. The white dwarf loses energy in the process. Exactly this may
be occurring in the peculiar system AE Aqr in which the observed rotational
power loss implied by the spin-down of the white dwarf greatly exceeds the total
electromagnetic energy that we observe from the system [110]. Such systems are
the “propellers” I referred to earlier when discussing the evolution of AM Her
stars. AE Aqr is therefore not near a state of equilibrium at present.

Wynn & King [109] have modelled the process of accretion in magnetic sys-
tems by introducing a drag term for material crossing field lines. This was used
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Fig. 4.25. Schematic picture of a DQ Her star (from [62]).
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Fig. 4.26. Spin versus orbital periods of DQ Her stars (from [29]).

to interpret AE Aqr, and more recently in understanding EX Hya, which has a
spin period 2/3 as long as the orbital period, and which is explained by having
a magnetospheric radius comparable to the distance to the inner Lagrangian
point [44]. These models are fascinating for the variety of new phenomena they
predict, but I think it is fair to say that they are only weakly backed up by
observations. Part of the problem here is that the models predict dynamics but
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not the brightnesses of the various components and it may be that components
specific to the DQ Her nature of the stars are not especially prominent. The
reader is referred to King & Wynn [44] for more details.

Tomography of DQ Her stars. Tomography of DQ Her stars is in its infancy,
and presents new problems. If we are looking for features specific to DQ Her stars,
as we surely should be, we must tackle the issue of multiple periods. Normal
tomography will give us an average view of the system. A better approach is
only to image the system with spectra taken when the relative orientations of
the white dwarf and binary are the same, or approximately the same [56]. This
can be achieved by selecting all spectra of similar “beat” phase (i.e. phased on the
ω−Ω frequency). Since this involves selecting only a fraction of the spectra, it is
clear that acquiring the data for tomography of DQ Her stars is significantly more
challenging than for either AM Her stars or non-magnetic CVs. The situation is
even more difficult than this suggests however. Much of the variation in DQ Her
spectra may be caused by optical depth effects in the accretion curtain near the
white dwarf. This occurs on the white dwarf’s spin period – the orbital phase
is relatively unimportant – and suggests that tomography is best carried out by
selecting spectra of constant spin phase. Such data show evidence for emission
from curtains on one or both poles [30]. We have two interpretations here for the
same data. In one case maps are calculated by selection of the same beat phase,
and in the other on the same spin phase. It is not clear which is to be preferred,
and probably both contain an element of truth but not all of it.

4.4.6 Magnetic CV Summary

In the past few years many new AM Her stars have been discovered from ROSAT
data. The new discoveries have led to impressive advances in the field. Optical
spectra and light curves have probed the ballistic stream and threading region
of the flow far from the white dwarf; X-ray light curves, optical photometry,
spectroscopy and polarimetry have revealed the accretion shock and magnetic
white dwarf. There is much scope for more work of this nature. For example,
there are a small number of AM Her stars which are not quite synchronised and
can be expected to change structure as the white dwarf slowly rotates relative to
the binary; these stars could reveal fascinating aspects of how gas threads onto
the magnetic field. Many AM Her stars are optically faint and will require the use
of the new generation of large aperture telescopes. Advances in X-ray satellites
are finally making X-ray spectroscopy of reasonable resolution a reality which
will have a substantial impact upon our understanding of accretion columns in
these stars.

Progress on the related DQ Her stars has been slower. These are intrinsically
complex stars, and lack most of the diagnostics available in the AM Her case. In
many cases for instance, we do not even know the orbital phase for these stars
for sure. It is also likely that DQ Her stars are not homogeneous in the sense that
some have discs whereas others might not. With the diamagnetic blob models
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of Wynn & King [109], I have the impression that theory has crept rather ahead
of observations. Nevertheless, the variety of possible phenomena, and the likely
evolutionary connections between DQ Her and AM Her stars make it imperative
that we continue to study these enigmatic objects.

4.5 Double-Degenerate Binaries

In the last section I change subject to look at a set of non-interacting binary
stars consisting of close pairs of white dwarfs. These are also known as “double
degenerates”. My interest in these stars is for what they can tell us about the
evolution of binary stars. These systems were predicted to exist in substantial
numbers some time ago [39,106], moreover they were suggested as potential
progenitors of Type Ia supernovae. By the early 1990s, after several searches
had turned up just one system [76,18,10] in addition to another found by chance
[83], this possibility was looking less likely. However, since that time several more
systems have been found and, while other objections can be raised to double-
degenerates as the progenitors of Type Ia supernovae [112], the intrinsic numbers
are probably not a problem. Indeed, these systems are probably at least a factor
of 10 more common than CVs.

4.5.1 Progenitors of Type Ia Supernovae

Type Ia supernovae (SNe) are very bright explosions of stars that have attracted
much attention in recent years as a result of their use in cosmology. Observations
of Type Ia SNe at redshifts z ∼ 1 appear to show that the expansion rate of
the universe may be increasing with time, indicative of a significant cosmological
constant [70,74]. This has led to increased interest in the explosions themselves,
if only to check that the cosmological result is not an artifact of the evolution of
Type Ias with redshift.

Type Ia SNe are characterised by an absence of hydrogen and helium in
their spectra at any time. They also occur in all types of galaxy, in contrast to
the better-known Type II SNe which are not seen in elliptical galaxies. These
two features have led to general agreement that Type Ia SNe are caused by ex-
plosions of the degenerate material of white dwarfs [11]. Since white dwarfs do
not explode on their own, these white dwarfs must be accreting within binary
systems. Explosions may occur when a white dwarf exceeds its Chandrasekhar
limit, with carbon igniting at the centre. Indeed at one time the perceived simi-
larity of Type Ia SNe was used as an argument in favour of Chandrasekhar-limit
explosions. This has since become less compelling as it is now known that there
are significant variations amongst Type Ia SNe. Other possibilities exist. Hydro-
gen dumped onto a white dwarf can explode once 10−5 – 10−4M� of material
has accumulated; we know such explosions as classical novae. If the same process
takes place with helium, much more material is needed (∼ 10−1M�) before an
explosion occurs. As a result it is much bigger, and could even trigger the rest
of the underlying white dwarf to explode as well. These are known as Edge-Lit
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Detonations (ELDs), but whether they occur or not depends upon the accretion
rate, with higher rates reducing the chance of explosive ignition.

Modelling of such explosions is difficult, and it is not yet clear which initial
circumstances will lead to something approximating the explosions that we see.
This makes it hard to decide what sort of binary system produces Type Ia SNe.
Some, however, can probably be ruled out. For instance, CVs suffer from the
violent thermonuclear runaways of hydrogen referred to above. These are seen
as classical novae which if anything erode the mass of the white dwarf and
prevent it ever exploding as a Type Ia SN. The unstable burning that leads
to classical novae occurs at accretion rates below about 10−7M� yr−1. Much
above this rate the white dwarf cannot cope and develops an extended envelope,
becoming essentially a red giant once more. Even if such an object did explode,
it would not be seen as a Type Ia SN. We are left with a small range around
from 1 to 4 × 10−7 M� yr−1 in which steady accretion and hydrogen burning
can take place with little expansion of the white dwarf. In the early 1990s a
new class of luminous (1029 – 1031 W) X-ray source – the Super-Soft Sources
(SSSs) – were recognised [99,19] – see [42] for a review. Apart from their high
luminosities which are close to the Eddington limit for a 1 M� object, these
sources are characterised by very soft X-ray spectra which peak at around 40 eV.
They are now widely believed to be white dwarfs undergoing steady accretion
and nuclear burning. It is the relatively large area of a white dwarf compared
to a neutron star that explains their soft spectra compared to the better-known
low mass X-ray binaries. Since the potential energy/unit mass at the surface of
white dwarfs is relatively small, SSSs are dominated by fusion power rather than
accretion power. This means that their high luminosities require lower accretion
rates than if only accretion was taking place, and this explains why we can see
the X-rays at all [100]. SSSs are now one of the leading candidate progenitors
of Type Ia SNe [112]. The high accretion rates of these objects are thought to
stem from thermal-timescale mass transfer from stars somewhat more massive
than the white dwarfs, e.g. 1.3 – 2.5 M� [42]. They are in fact “failed” CVs in
the sense that their mass ratios do not allow the low mass transfer rates of CVs
since mass transfer from one star to a less massive one shrinks the binary orbit.
The SSSs are an attractive class of progenitor, except that the small range of
stable burning accretion rates may make it difficult for enough Type Ia SNe to
be produced by this route (but see [21]), and they may not last long enough
to produce SNe in elliptical galaxies. Thus we should keep in mind alternatives,
with double-degenerates probably the leading contenders.

All binary stars are predicted to emitt gravitational radiation, losing orbital
energy and angular momentum in the process. This process makes the binary
star’s orbit tighter and will ultimately lead to merging. Two stars of masses M1
and M2 in a circular orbit of period P hours will merge on a timescale of

tm = 1.0× 107M
−5/3
G P 8/3 yr (4.9)
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where MG is known as the “chirp mass” (in solar units), and is given by

MG = M
( μ

M

)3/5
,

where M = M1 + M2 is the total mass and μ is the reduced mass given by
1/μ = 1/M1 + 1/M2. This loss is insignificant for most binary stars, but be-
comes important for periods of a few hours or less. If the two stars are white
dwarfs, once the orbital period is of the order of 100 s, the lighter white dwarf
will undergo rapid Roche lobe overflow onto its companion, and we have the
potential for explosions to occur. Two carbon-oxygen (CO) white dwarfs may
lead to a combined object which exceeds the Chandrasekhar mass, while CO+He
double degenerates (DDs) may lead to ELDs. The merger is a violent process
which will heat the material. While this is needed to ignite the material it can
reduce the degeneracy and make the subsequent explosion less violent. In fact
it is not clear that an explosion will occur at all, with a slower transition to a
neutron star, or perhaps relatively sedate burning as an R CrB star amongst
alternative outcomes. Nevertheless, since the details of the explosions are not
well understood, DDs must remain as potential progenitors.

Until the 1990s, DDs suffered from another problem – they were not common
enough. What should they look like? As pairs of detached white dwarfs, DDs are
to be found amongst the white dwarfs. Systems capable of leading to Type Ia
SNe need to have short enough periods to merge within the age of the Galaxy.
This generally implies an orbital period P < 10 h, and therefore substantial
radial velocities for the component stars. This has been the principle behind
all searches for DDs. However, as mentioned at the start of this section, these
searches [76,18,10], which covered 44, 25 and 54 white dwarfs respectively, only
uncovered one DD (WD 0957-666) in addition to another found by chance (L870-
2, [83]), and neither of these had a period short enough (at least when first
measured – see [64]) to be representative of a Type Ia progenitor.

The failure to find any possible progenitors was taken to be a serious blow
against DDs as Type Ia progenitors [76] on the basis of an estimated local Type Ia
rate of 6.8× 10−14 pc−3 yr [98]. However, there were problems with the analysis:
first, as Robinson & Shafter recognised [76] and was later confirmed theoretically
[40], a significant fraction of DDs may merge so quickly that they would be too
hot to show the absorption lines needed for detection. More simply, the Type Ia
rate they used was probably too high, since multiplying by an effective volume
for the Galaxy of 5 × 1011 pc3, gives a total rate in the Galaxy of one every 30
years, whereas it is more commonly thought to be about 10 times lower than
this [112]. Instead binary “population synthesis” studies, in which primordial
binaries are evolved to estimate the probabilities of various outcomes, suggest
that only 1 in ∼ 400 white dwarfs need be Type Ia progenitors to match the
observed SN rate [40]. Coincidentally, these models predict a total merger rate
of order 1 every 30 yr [22], but most of these presumably do not lead to Type Ia
supernovae. Judged against this fraction, the failure of the early searches which
covered ∼ 100 systems is hardly surprising. The question remains however, how
many DDs are there?
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4.5.2 Finding Double-Degenerates

The fraction of 1 in 400 mentioned above refers to systems with short enough
periods to merge within a Hubble time and which have enough mass to exceed
the Chandrasekhar limit [40]. However, there are many more of longer period and
lower mass. Indeed the fraction of white dwarfs that are DD without qualification
is predicted by the same models to be more like 1 in 10. Finding them is a little
harder than finding bona fide Type Ia progenitors since longer period and lower
mass systems have smaller radial velocities, but it is still not difficult. We now
know some 15 of these systems.

The breakthrough started when Bergeron, Saffer & Liebert [5] published
a spectroscopic study of white dwarfs. They fitted blue spectra to determine
gravities and effective temperatures of their targets, and then translated these
to masses using cooling models (Fig. 4.27). The possibility of deducing masses
from spectra alone is one of the great advantages of white dwarfs.

Fig. 4.27. The gravity and mass distributions of the white dwarfs studied by Bergeron,
Saffer & Liebert [5].

Of 129 targets, 14 had masses below 0.45 M�, well below the typical mass
of white dwarfs of ≈ 0.55 M�. There has not been enough time for stars below
0.8 M� to become white dwarfs and it is thought that the minimum mass of white
dwarfs from stars of higher mass is similar to the observed peak at ∼ 0.55 M�,
although this is dependent upon uncertain details of mass loss on the red giant
branch (RGB) and asymptotic giant branch (AGB). There is however a simple
way of producing white dwarfs of lower mass – by mass loss within a binary star.
If a star within a binary comes into contact with its Roche lobe before reaching
the tip of the RGB it may end as a white dwarf of low mass and mainly helium
composition.

In the case of low mass white dwarfs, we know that any companion is either an
M dwarf or brown dwarf or another compact object, since any other star would be
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brighter than the white dwarf that we see. Stars of these types cannot accrete at
high rates and therefore it is likely that they were overwhelmed in the most recent
mass transfer phase that led to the emergence of the low mass white dwarf. If so
then the most recent phase would have been a common envelope phase. During
the common envelope phase both stars orbit within a single envelope. They lose
energy and angular momentum to the envelope until the latter is dissipated
and the binary emerges considerably tighter than before mass transfer started.
This leads to the following conclusion: if low mass white dwarfs are indeed the
products of binary evolution, and assuming that the two stars did not merge,
they will now be close binary stars and probably straightforwardly detectable
as such.

With this motivation Marsh, Dhillon & Duck [54] studied 7 of the low mass
white dwarfs found by Bergeron, Saffer & Liebert [5], and found that 5 of them
were binary stars, a startling success rate compared with the earlier searches for
Type Ia SN progenitors [76,18,10]. There were several reasons for this. First, the
selection of white dwarfs of low mass paid off as they are indeed predominantly
made within binary stars. Second, the first observing run was spaced in time to
raise the sensitivity to long period systems. Third, and probably most impor-
tantly, we observed Hα at moderately high resolution R ∼ 8, 000 which allowed
us to use the sharp non-LTE core shown by Hα but not the other Balmer lines
in white dwarfs (Fig. 4.28).

Fig. 4.28. Mean spectra of three double degenerates corrected for orbital motion along
with the multi-gaussian fits used to measure their velocities [54].

Subsequent work [55,64,84] has raised the total number of DDs of known
orbital period to the 15 quoted above. Along with these several sub-dwarf B
(sdB)/white dwarf binaries have been discovered [84,65,68] – these systems are
probably immediate precursors to DDs since it is thought that the sdB star will
evolve into a white dwarf. Amongst the systems found are several with periods
short enough to merge well within a Hubble time. The current record-holder is
WD 0957-666, which with P = 88 min will merge 200 million years from now
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[64]. WD 0957-666 consists of two white dwarfs with masses of ≈ 0.33 M� each
and so is unlikely to become a supernova — what it will become is an interesting
question. One system, WD 1704+481, has an orbital period of 1/7th of a day and
appears to consist of a CO/He white dwarf pair. If Type Ia SNe are ELDs then
WD 1704+481 is a possible progenitor [60].

Whatever these systems do become on merging, it looks as though their
numbers are not a problem, as I now look at in a little more detail.

4.5.3 The Space Density of DDs

While an improvement upon the situation a decade ago, the total number of
DDs known pales beside the large number of CVs (> 300) with measured orbital
periods and yet intrinsically DDs are more numerous by far. The space density
of CVs is of order 3× 10−5 pc−3, although most of them are probably very faint
and may not actually appear very much like the brighter CVs that we know.

The space density of DDs is probably best obtained by considering the frac-
tion of white dwarfs that are DD. I have already quoted a number of 1 in 10
obtained from theory, and several observations support this. First, there are the
14 low mass white dwarfs out of 129 from Bergeron, Saffer & Liebert [5], most
of which are DD. Second, Saffer et al. [84] carried out a radial velocity survey
of 107 white dwarfs, finding evidence for variability in 13 of them. Some of their
detections are probably false alarms [59], but at least 7 of them are confirmed.
Maxted & Marsh [59] carried out a smaller but more sensitive survey, and man-
aged to constrain the DD fraction to the range 2 to 19%. This needs improving,
but so far all lines of evidence are consistent with a 10% fraction.

The space density of white dwarfs has been measured from proper motion
surveys [46,45] and from associations with nearby stars [69]. The total of these
is near 10−2 pc−3, making the DD space density 10−3 pc−3, of order 30 times
that of CVs. Of course most of them are several billion years old and very faint,
but radial velocity studies are possible at least to an age of a billion years, about
10% of the age of the Galactic disk, and therefore there should be of order 400
DDs within 100 pc that can be detected as such. At this distance a white dwarf
of this age will have V ∼ 16, well within reach of relatively modest telescopes.

4.5.4 Gravitational Radiation from DDs

No matter how old they are, DDs will continue to emitt gravitational waves, and
their high space density supports the suggestion that gravitational radiation from
DDs may dominate the low frequency gravitational wave spectrum (ν < 10−2 Hz)
that is potentially observable with space-based interferometers such as LISA
[32,71]. Given the space density of DDs, there are of order 500 million in the
Galaxy and since interferometers like LISA have little directionality, they could
be a major source of noise for observations of other sources. The majority will
be too closely spaced in frequency to be resolvable, but at high frequencies it
should be possible to see individual sources.
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As described earlier, optical searches for Type Ia candidates are insensitive
to systems formed at very short periods. Gravitational wave observations avoid
this problem entirely. To see this more quantitatively, assume for simplicity that
all DDs have identical masses, so that the present day merger rate is given by

m =
∫ ∞

0
b(P, tm) dP

where b(P, t) dP dt is the birth rate of systems with periods from P to P + dP
between times t to t + dt ago. Here tm(P ) is the time for a DD of period P to
merge, as given in Eq 4.9. Of course at long P , tm exceeds the age of the Galaxy
and the birth rate drops to zero, and so DDs of long period are not directly
relevant to the merger rate.

We cannot observe b(P, t) directly but instead can constrain the distribution

f(P, t) dP dt,

representing the number of existing DDs with periods between P to P +dP and
ages between t to t + dt. The two are related by

f(P, t) =
(

P

P ′

)5/3

b(P ′, t),

where P ′ is the orbital period at birth, a time t ago, and is given by

P ′8/3 = P 8/3 + αt,

where α is a constant depending upon the stellar masses. Optical searches can
constrain f(P, t) over the entire range of periods of interest, but only over re-
stricted ranges of t since very young and very old white dwarfs have weak ab-
sorption lines making radial velocity measurements difficult. A lower limit tl for
f(P, t) translates to a lower limit on the value of P for b(P, t). We therefore
cannot constrain b(P, t) observationally at short periods because these systems
do not last long enough to get into the radial velocity surveys. On top of this
to measure b(P, tm), we must actually measure f(P, tm) and P → 0, but given
the (P/P ′)5/3 factor and that P ′ tends to constant as P → 0, such short period
systems are extremely rare. These uncertainties can only be avoided by relying
upon the results of theoretical models of b(P, t), effectively extrapolating from
the long periods which we can measure. This is something that we would prefer
to avoid given the problems with theory discussed in the next section.

Potentially gravitational wave observations can avoid this problem entirely
since they can detect the short period systems which will merge within the next
few thousand years, irrespective of their age. Thus in one stroke they can be
used to determine the current merger rate. In order to determine the merger
times we will need to know the values of MG; this can be done if it is possible
to measure both periods and period derivatives of the shortest period systems.
If space-based interferometers can be realised, there is considerable potential for
learning about DDs.
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4.5.5 Double Degenerates as a Test Population
for Binary Star Evolution

The difficulty of finding DDs is down to their similarity to single white dwarfs.
Luckily, there are enough of them that simply searching known white dwarfs
is feasible. Most importantly, although it is hard work finding DDs, one can
quantify the selection effects that go into their discovery in a way impossible
with the CVs except at the most rudimentary level.

Fig. 4.29. Detection probabilities (99.99% confidence level) versus orbital period are
plotted for four sampling strategies. The lowest curve shows the case of a single pair
of spectra, each of precision 5 Km/s separated by 10 minutes. The next curves show
the effects of adding identical pairs of spectra every year for periods of one year, two
years and finally ten years. The calculations are based upon stellar masses of 0.5 M�.

Figure 4.29 for instance shows examples of the detection probability versus
orbital period for various hypothetical radial velocity observations. What is sig-
nificant about this figure is first that it can be calculated at all, and second that
good detection probability can be maintained up to periods > 100 d, covering
the entire range of theoretical interest. Add to this that it is often possible to see
both components of DDs and that both masses and ages (as white dwarfs) can
be estimated from spectra alone (avoiding the need to know the orbital inclina-
tion), and it can be seen that DDs furnish us with a rich a set of constraints for
testing theory.

The advantages of DDs have already made themselves felt. The fainter com-
ponent has been detected in six systems so far, making measurement of their
mass ratios possible. Fig. 4.30 shows an example of such a system.

The surprise of the observed mass ratios is that most of them are close to, or
greater than, unity. The observed mass ratio is defined as the mass of the brighter
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Fig. 4.30. The trailed spectra of the DD WD 0957-666 in the left panel shows two com-
ponents, with one fainter and in anti-phase with the other. The right-hand panel shows
the result of subtracting a fit to the brighter component to emphasize its companion
[64].

star divided by the mass of its companion. To first order the brighter white
dwarf should be the younger. In population synthesis models the binary often
goes through two common envelope phases. The first of these shrinks the binary
and the the younger white dwarf therefore forms in a tighter binary than did its
companion. As a result the younger white dwarf should be the least massive and
the mass ratios should be less than 1. For this reason theoretical distributions
peak around q = 0.5 to 0.6 [40,22]. The observed mass ratios therefore suggest
that, on the contrary, the first mass transfer event does not usually shrink the
binary, and may even expand it since two systems have mass ratios significantly
in excess of unity. Algol-type mass transfer can do this and therefore may be
more significant compared to common envelope evolution than theory originally
suggested. This is a significant discrepancy: Han [22] was only partially successful
in trying to modify theory specifically to match the observed mass ratios – see
Fig. 4.31.

Another comparison of data and theory is presented in Fig. 4.32 which shows
orbital periods and primary masses (from model atmosphere fits).

Theory does not convincingly match the observations. In particular too many
white dwarfs of very low mass are predicted. There is no obvious way in which
such white dwarfs could be hidden, and yet it is also difficult to see why they
should not be produced.
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Fig. 4.31. The observed mass ratios are compared with the distribution for helium
white dwarf primary stars from Han’s models [22]

4.5.6 Double Degenerates Summary

Double degenerates are simple systems which, although hard to detect, are in-
trinsically common. The lack of strong selection effects and, in many instances,
the accuracy of system parameters, makes them a good class of binary for test-
ing binary star evolution. Indeed, this has already proved effective with the high
fraction of near equal mass-ratio systems and the absence of very low mass white
dwarfs particular problems for theory at present. Whether DDs are Type Ia pro-
genitors remains unknown, but it can no longer be convincingly argued that
there are not enough of them. Even the lack of any systems with total masses
above the Chandrasekhar mass is probably not a problem as the systems known
at present are dominated by the searches of low mass white dwarfs.

4.6 Conclusions

In these lectures I have endevoured to cover recent work on cataclysmic vari-
ables and double degenerate binary stars. Indirect imaging techniques have been
applied widely in the field of CVs and have sharpened the comparison between
theory and observation of these systems. It would be nice to replace these with
physically accurate models involving only a few parameters, but it does not look
as though this will be possible in the near future at least. Several discoveries have
only been possible as a result of indirect imaging: in particular spiral shocks in
outbursting dwarf novae and the line emission from stream-threading in AM Her
systems.

There is much work to be done in continued application of these techniques
to a larger range of systems and more intensively to individual systems in a range
of states. While some cataclysmic variables are very similar to each other, their
differences can often be more surprising. What makes one star have especially
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Fig. 4.32. The observed periods and primary masses are compared to theory [84]; stars
are sdB/white dwarf binaries mostly plotted with a nominal mass of 0.5 M�.

strong line emission and spiral shocks in outburst? Why do some show much
stronger continuum and/or line-emission from the bright-spot than others? Why
is the ballistic stream obvious in some AM Her stars but not others? Some of
these differences may be trivial, but others may be significant, and only continued
observation can help.

A significant worry in interpreting observations is the thickness of the discs
in non-magnetic CVs. Just how they can be as thick as they sometimes appears
is not clear. Many peculiarities of behaviour may be a result of this phenomenon,
about which, so far, theory has had little to say. Although it may well be a detail
in terms of the overall structure of CVs, its effect upon eclipsing systems may be
disproportionately significant since so much of our knowledge of CVs has come
from these systems.

The evolution of CVs is an area that may well benefit from large-scale optical
surveys over the next few years. I hope that it can be connected to the evolution
of other large populations of binary stars as only then can theories be truly
tested. I have described one such population – the double-degenerates – and
have given examples of how it challenges theory. Larger telescopes will bring
many more of these systems within our reach and should tech us much about
how they came to be.

Appendix

In this appendix I show that, as stated in section 4.3.3, Eq. 4.7 can be inverted
by application of the filter |s|/G(s) followed by the back-projection of Eq. 4.8. I
define the Fourier transform F (s) of a function f(x), and its inverse by

F (s) =
∫ ∞

−∞
f(x)e−i2πsx dx.
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f(x) =
∫ ∞

−∞
F (s)ei2πsx ds.

The frequency s here is measured in cycles per unit x. Now take the Fourier
transform over V of the line profile equation, 4.7:

F (s, φ) =
∫ ∞

−∞
f(V, φ)e−i2πsV dV (4.10)

=
∫ ∞

−∞

∫ ∞

−∞
I(Vx, Vy)

∫ ∞

−∞
g(V − VR)e−i2πsV dV dVx dVy (4.11)

= G(s)
∫ ∞

−∞

∫ ∞

−∞
I(Vx, Vy)e−i2πsVR dVx dVy. (4.12)

Dividing through by G(s), multiplying by |s| and taking the inverse Fourier
transform gives the filtered line profiles

f̃(V, φ) =
∫ ∞

−∞

|s|F (s, φ)
G(s)

ei2πsV ds

=
∫ ∞

−∞

∫ ∞

−∞
I(Vx, Vy)

∫ ∞

−∞
|s|e−i2πs(V −VR) ds dVx dVy. (4.13)

Finally, back-project these filtered profiles according to Eq. 4.8, that is com-
pute the integral ∫ 0.5

0
f̃(VR, φ) dφ,

where
VR = γ − Vx cos 2πφ + Vy sin 2πφ. (4.14)

Putting dashes on various symbols to avoid confusion later, then the back-
projection integral becomes∫ 0.5

0
f̃(VR, φ) dφ =

∫ ∞

−∞

∫ ∞

−∞
I(V ′

x, V ′
y)
∫ 0.5

0

∫ ∞

−∞
|s|e−i2πs(VR−V ′

R) ds dφ dV ′
x dV ′

y

=
∫ ∞

−∞

∫ ∞

−∞
I(V ′

x, V ′
y)
∫ 1

0

∫ ∞

0
se−i2πs(VR−V ′

R) ds dφ dV ′
x dV ′

y

=
∫ ∞

−∞

∫ ∞

−∞
I(V ′

x, V ′
y)δ(V ′

x − Vx)δ(V ′
y − Vy) dV ′

x dV ′
y

= I(Vx, Vy). (4.15)

The third line above follows from the second after transforming from polar co-
ordinates s and φ to cartesian sx = s cos 2πφ and

sy = s sin 2πφ, and using Eqs. 4.14 so that∫ 1

0

∫ ∞

0
se−i2πs(VR−V ′

R) ds dφ =
∫ ∞

−∞

∫ ∞

−∞
e−i2π[−(Vx−V ′

x)sx+(Vy−V ′
y)sy] dsx dsy

(4.16)
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and then the integrals over sx and sy separate to give the two Dirac δ-functions
of the penultimate line of Eq. 6.1 since

δ(x) =
∫ ∞

−∞
e±i2πsx ds.

This justifies the assertions of Sect. 4.3.3.
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Abstract. The evolution of a star depends primarily on its mass, chemical composi-
tion, so it is important to know the distribution of stellar masses when the stars are
born. Stars can be born as singles, in pairs, or in multiple systems. A large fraction of
the stars belongs to binary systems. Hence it is essential to know how stellar masses are
distributed at birth, how many stars are formed, not only as singles, but also what frac-
tion originates as binary systems, and what is then the mass ratio and orbital period
distribution of these binaries. Since massive stars are intrinsically the brightest ones, it
is interesting to try to discover their properties in distant stellar groups. Until now ob-
servations of massive stars are reasonably complete for a restricted portion of our own
Galaxy, within a sphere with a radius of about 3 kpc from the Sun. Conclusions from
these observations are then extended to the whole Galaxy. Before starting the study
of evolution of close binary systems, we examine first the evolution of single stars. So
we begin to deal with the stellar structure processes, stellar evolution in general, we
investigate how evolution occurs differently for stars of low, intermediate and large
mass. Comparison of evolutionary computations with observations allows restricting a
number of uncertainties of the value of parameters in the equations of stellar structure
and evolution. The evolution of close binaries differs from the evolution of single stars,
since the presence of a companion sets limits on the stellar expansion during its evolu-
tion. We examine the processes that have to be added to the stellar structure equations
to compute the structure of the components of binary systems, and to calculate their
evolution. Here also we study in detail the uncertainties and their effects on the results
of the computations. An overview is presented of the existing evolutionary computa-
tions for various masses, with various assumptions on the processes, stellar wind mass
losses for massive components, convection criteria, the behaviour of semiconvection,
the accretion process, standard accretion models, full mixing models, the formation of
common envelope systems, the formation of discs. Comparison of computations with
observations of binaries that are representative for a given class allows to draw general
conclusions and to discard a number of uncertainties. The combination of the results of
massive single stars and massive binaries allows predictions concerning the evolution of
certain stellar populations ( Wolf-Rayet stars, luminous blue variables, X-ray binaries,
...), i.e. predictions on their progenitors, and their evolutionary history. We investigate
uncertainties in binary statistics (frequency, mass ratio and period distribution) and
try to determine how these uncertainties affect the results. Observations of massive sin-
gle stars and of massive close binaries, allow to present a consistent evolutionary model
for both, that is able to explain the stellar content and the overall stellar properties
for the solar neighbourhood.
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5.1 Stellar Evolution
During the Successive Nuclear Burning Phases

Before we discuss the evolution of close binary stars we review very briefly the
evolution of single stars. They may be divided into low mass stars, intermediate
mass stars and massive stars. Each group has a different evolutionary history.
Low mass stars develop after core hydrogen burning a helium core where the
electrons are degenerate. This degeneracy is lifted by the helium flash. Inter-
mediate mass stars ignite helium in non-degenerate conditions, but develop a
highly electron-degenerate carbon-oxygen core after central helium exhaustion.
The massive stars evolve through all phases of nuclear burning without encoun-
tering degeneracy. The temperature can increase beyond 6 108 K igniting central
carbon burning in a quiescent way, and producing Ne and Mg. The mass lim-
its can vary according to assumptions adopted in the construction of stellar
models, e.g. mass-loss, overshooting. The treatment of the convection in the in-
terior stellar layers and the ensuing mixing is very important in this respect.
Indeed, the extent of convection in the stellar interior determines the mass of
the different burning cores and the occurrence of electron degeneracy. In the con-
ventional way the boundary of the central convective regions is determined by
the Schwarzschild criterion. When overshooting of convective cores is included
the separation masses between the groups of stars are larger. In the case of the
Schwarzschild criterion we consider as low mass stars, stars with masses below
2.3 M�, intermediate stars have masses between 2.3 and 9 M�, and massive stars
are larger than 9M�; in the case of large overshooting (Roxburgh criterion) these
vales are respectively 1.6 and 6M�.

5.1.1 The Zero-Age Main Sequence

The term main-sequence means the phase of central hydrogen burning. For lower
mass stars (M < 1.3M�) hydrogen burning in the core occurs via the proton-
proton cycle, for larger masses via the CNO-tri-cycle. The mass fraction of hy-
drogen is large (X = 0.7), so the MS phase represents an important fraction of
the lifetime of a star (about 90 percent). As hydrogen in the stellar central parts
is converted into helium, the star moves to the right in the HRD. The ZAMS is
the curve given by (L, Teff ) - values that correspond to homogeneous stars that
just started hydrogen burning. When the pp-chain is the primary hydrogen burn-
ing mode, i.e. for masses below 1.3 M� , the central temperatures Tc are lower
than 2.107K. The nuclear energy-generation rate is moderately temperature-
dependent; in the temperature regime 6.60 <log Tc < 7.38, εpp ≈ T 4toT 6. In
stars with larger central temperatures (7.08 < log Tc < 7.7) the CN and CNO
bi-cycles are dominant, the nuclear energy-rate, εCNO ≈ Tn, with n between
13 and 20. In the case of the CNO- cycles the energy-generation rates are so
temperature-dependant that the energy is produced in the immediate vicinity
of the centre. This leads to extremely huge temperature gradients and the core
becomes convective. Summarized: in stars on the upper part of the ZAMS the
nuclear energy is produced according to the CN and CNO bi-cycles ; they have
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convective cores. In stars on the lower part of the ZAMS the energy is produced
via the pp cycle; these stars have radiative cores. The discriminating mass is
≈ 1.3M�, the discriminating central temperature is ≈ 2107 K. Also in the outer
layers there are differences: in the lower ZAMS stars, with cool atmospheres,
the adiabatic gradient is reduced by ionization zones, and convective zones are
present. In ZAMS stars with Teff > 8300 K the ionization zones are very thin,
there is no convective energy transport ; the outer layers are in radiative equilib-
rium. Figure 5.1 shows the effect of the metallicity on stellar models with masses
between 0.2 and 100 M� in the HRD. The Z-values range between 0.00001 and
0.03. Figure 5.2 shows how the central temperature and the density vary with
the stellar mass.

5.1.2 General Characteristics of ZAMS Models

- If M > 1.3 - 1.4 M� the cores are convective, the outer layers are in radiative
equilibrium. If M< 1.3 - 1.4 M� the cores are not convective, the envelopes are
convective.

- If M> 1.7 M� the envelopes are radiative (envelope convection is ineffective
for hot stars).

Fig. 5.1. The ZAMS position for stars with masses between 0.2 and 100 M� for metal-
licities between Z = 0.00001 and 0.03. The masses are given in M�. (After Vanderlinden,
1982)
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- The large convective core mass fraction qcore for larger mass stars is the
consequence of radiation pressure. Larger masses imply larger core masses.

- Stars with masses 0.4 M� < M < 1.3M� have convective envelopes and
radiative cores. This is a consequence of the proton-proton cycle for the energy
generation which is less temperature dependent than the CNO tri-cycle.

- In the mass range 1.3 - 1.7 M� small convective cores and shallow or
moderately well-developed convective envelopes may occur.

- Stars with M < 0.4 M� are completely convective (Limber, 1958).
- The ZAMS is terminated at M ≈ 0.04 M�
- The central density ρc increases with decreasing mass. It attains a maxi-

mum at ≈ 1.3 M� ; then it decreases with decreasing mass. This behaviour is
determined by the change-over from the pp- cycle to the CNO tri-cycle at ≈ 1.3
M�

- The central temperature increases with increasing mass.
- Radii increases with increasing mass.
- For M < 0.08 M� the evolution is so slow that these stars are still at the

ZAMS. During the lifetime of the Galaxy they barely have evolved.
- ZAMS population II stars are believed to be formed at the early beginnings

of the Galaxy; the more massive stars among them have already evolved from
the ZAMS ; therefore the computations for population II stars are restricted to
low-mass stars.

Fig. 5.2. Tc and ρc for ZAMS models for various masses. The masses are given in M�
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5.1.3 Shell Sources

At the end of a burning phase, the central parts of the star are formed by the
“ashes”of the nuclear burning. The nuclear reactions stop since the nuclear fuel
is exhausted. But just outside this inert core the temperature may have become
sufficiently high to start nuclear burning in a shell around this core, using the
remains of the nuclear fuel in a thin shell. This process is called nuclear shell
burning. It is evident that nuclear shell burning generally occurs at composition
discontinuities. So, during core hydrogen burning 4He nuclei are formed in the
central regions of stars at temperatures of a few tens of million degrees. These
helium layers are surrounded by regions still containing a considerable amount of
hydrogen. In thin shells of matter thermonuclear fusion processes may be active,
producing energy; these shells are called active shell sources. If the temperature
drops below the threshold for nuclear reactions (e.g. if expansion occurs) the
nuclear energy production in the shell comes to an end and the shell becomes
inactive. Inactive shell sources may be reactivated by rising temperatures .

5.1.4 Hydrogen Burning

The computations of stellar evolution start from a chemically homogeneous
model, i.e. at each point in the star the X- Z-and Y values are the same. During
a time interval Δt, the changes

ΔX = dX/dt.Δt, and ΔY = dY/dt.Δt are determined at each point of the
star and so a stellar model is computed. This new model serves then as input
for the next static model and so on. Also mass losses may be considered, e.g.
mass transfer and mass loss for the evolution of close binaries, or mass losses
by stellar winds for massive stars. Low-mass stars (M< 1.6 - 2.3 M� ) where
H- burning occurs mainly via the pp-chain develop radiative cores surrounded
by convective envelopes, extending to the base of the photosphere. Lower-mass
stars have smaller cores. At the start the core is chemically homogeneous. The
stellar energy losses are supplied by nuclear reactions. These occur at a nuclear
time-scale which is much larger than the dynamical time scale. This allows the
star to adopt its structure quasistatically to the decreasing hydrogen fuel supply.
Matter is not mixed, thus the change of the hydrogen content by weight, XH , is
proportional to the energy generation εH . During a time step Δt, the change of
the hydrogen content ΔXH is given by ΔXH ≈ εHΔt. A graph of the hydrogen
abundance versus the mass Mr gives the so called hydrogen profile.

The chemical evolution, (the change of XH in each mass shell can be followed
for a sequence of evolutionary models. Figure 5.3 depicts the change of the
hydrogen profile during core hydrogen burning for a 1 M� star. When the end
of the main sequence is attained XH= 0 in the stellar centre. Larger masses (M
>1.6-2.3M�) evolve in a different way. If the central temperature is larger than
2.107, H-burning occurs via the CNO tri-cycle in a convective core. Inside this
core matter is mixed so fast, compared to the local nuclear fusion processes, that
the composition throughout the core is homogeneous, even though the nuclear
burning, (proportional to the temperature), is much more efficient in the central
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Fig. 5.3. The H-profile of a low mass star of 1 M� versus the mass Mr during the MS
phase. Initial chemical composition: X = 0.7, Z = 0.02. The table shows the number
of the successive profiles, and the corresponding evolutionary times

regions than in the surrounding layers. The energy generation ε is now given by
ε = ρXZCNOTn with n ≈ 18, and ZCNO the mass fractions of C, O and N. The
energy production is now linear in X, instead of quadratic. The change of the
hydrogen abundance is proportional to the energy generation, just as for lower
mass stars, but now we have to calculate the average of the energy production
< εH > over the whole core, since matter is mixed. Hence ΔXH ≈< εH > Δt.

During core hydrogen burning the convective core decreases. In Fig. 5.4 the
evolution of the H- profile during the MS stage for a 20 M� star is shown. At the
end of H-burning the convective core has completely vanished ; a small helium
core is present, of about 5 percent of the total mass. During helium burning
the convective core increases again. In the envelope the composition has not
changed, since these layers are too cool for nuclear reactions. For all massive
stars the behaviour is the same; the more massive the star, the more the H
profiles are shifted to the right, i.e. to larger M/Mtot-values.

5.1.5 Evolution in the HRD

1. Low mass stars: M< 1.3M�.
When H- burning starts the evolutionary models in the HRD are situated at
the ZAMS. The energy generation rate ε ≈ ρX2Tn, hence the energy gener-
ation decreases with X, unless ρ and/or T increase. Lower energy generation
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Fig. 5.4. The hydrogen profile of a 20 M� star versus the fractional mass Mr/Mtot
during the main sequence phase. Initial chemical composition:X = 0.7, Z = 0.02. The
table in the figure shows the number of the successive profiles, and the corresponding
evolutionary times

means lower pressure, and the star would contract, leading to larger X. Ac-
cording to the virial theorem a part of the released potential energy is used to
increase the temperature; the remaining part goes into radiation. So ρ and T
increase; this leads to a larger energy output, hence a larger L. The net effect
is a higherr luminosity, and a small increase in the radius of the core and the
envelope. The star moves in the HRD upward and slightly to the left (lower
curves of Fig. 5.5). Stars on the main sequence convert hydrogen into helium
in the core; the core may become helium-dominated. Hydrogen burning occurs
mainly in a relatively thick shell around a small, increasing helium core, which
is almost isothermal. When the end of the main sequence stage a chemically
inhomogeneous structure develops. The star is now centrally condensed. The
radius increases, Teff decreases. The right upward motion continues. The evo-
lution accelerates.

2. More massive stars.

In stars with central temperatures larger than 2 107K, the energy is produced
by the CN- and the CNO bicycle. The masses are larger than 1.3M�. These
stars have convective cores, matter is mixed. The chemical composition in
these cores is uniform. Intermediate mass are dominated by Kramers’ opacity.
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Fig. 5.5. The zero age main sequence, ZAMS and the end points of hydrogen burn-
ing, the termination of the main sequence, the TAMS. The hatched area is the main
sequence band. L in L�

For larger masses, electron scattering is dominant. The energy generation rate
ε≈ ρXZCNOTn; ZCNO is the mass fraction of C,N and O required for the
nuclear reactions. N has a typical value of ≈ 18. Since in this case ε≈ X,the
effect of a decrease of X on the energy production rate will be less important
than for smaller mass stars; the contraction of the core is also less pronounced.
The luminosity increases and the star expands. The expansion rate is larger
than the luminosity increase, hence the star moves slightly upward to the
right. When the initial hydrogen abundance is reduced to about 0.05, the
energy release rate can no longer support the core; the core contracts. The
luminosity does not vary very much, hence the effective temperature increases:
the motion of the star in the HRD is upwards to the left (see Fig. 5.5). This
is the end of the MS stage. During the main sequence stage helium nuclei are
produced at temperatures below the temperature required for helium ignition,
a hydrogen-rich envelope surrounds this helium core.

5.1.6 Red Giants

When a shell source is developed, the core becomes inert, it may however con-
tribute to the luminosity by gravitational contraction. Shell sources have the
tendency to remain at the same place, so the envelope expands as the core con-
tracts The shell luminosity Ls remains nearly constant, and consequently the
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surface temperature decreases. The star moves in the HR diagram nearly hor-
izontally to the right. The hydrogen shell is shallow, not far from the stellar
centre. The motion is upward towards the red giant region. The envelope may
become convectively unstable, hence the chemical profile of the envelope is uni-
form. Stars of different masses have different evolution schemes: In low-mass stars
degeneracy starts before core helium ignition begins and this degeneracy is only
lifted by the helium flash (a sudden ignition of helium); this leads to expansion
of the core. Finally the core readjusts its structure and helium burning starts at
normal, non-degenerate conditions. In higher-mass stars helium burning starts
before degeneracy becomes dominant, since a temperature gradient is developed
by the increasing importance of gravitation. After core contraction the hydro-
gen burning shell produces most of the energy. The produced helium layers are
added to the core. This core exceeds the Chandrasekhar-Schönberg limit. This
is the maximum mass fraction an isothermal, non-degenerate core can have in
a star in equilibrium. The energy is produced in a nuclear shell surrounding the
core. The core contracts rapidly, the central temperature rises, the shell burns
faster and the envelope expands. In the HRD the star moves to the right and
slightly downwards. Finally these stars contract and become white dwarfs. More
massive stars undergo at the end of their evolution explosions phases, and finally
become neutron stars. The most massive collapse and become black holes.

5.1.7 Zero Age Main Sequences

We define as zero-age main sequence any sequence of homogeneous stellar equi-
librium models of various masses M. The zero age main sequence (ZAMS) is a
curve. We use the term “zero age”, to avoid confusion with the main sequence
(MS) itself, which is a domain. We will consider H-, He- and C-zero age main
sequences, chemically homogeneous stars consisting of a certain element (H, He,
C, ...) burning H, He or C in their central parts. H-, He- and C-zero age main
sequences are depicted in Fig. 5.6.

1. Hydrogen Zero Age Main Sequence

The computation of chemically homogeneous hydrogen burning equilibrium
models is rather easy, and H-ZAMS models are available for all kinds of chem-
ical compositions. From the computational results simple, but important re-
lations may be derived, MR and ML-relations. L increases strongly, and R
increases slowly with increasing M.

Mass luminosity relation : L ≈M b ; b ≈10/3 in the mass range 1 to 40 M�

Mass radius relation : R ≈Ma ; a ≈ 0.6 for lower masses, and a ≈ 0.8
for larger masses
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Fig. 5.6. The H-ZAMS, the He-ZAMS and the C-ZAMS (thick lines). The models are
labeled with their mass (in M� ). The curve in fine line shows the locus of constant
radius for R�

2. The Helium Main Sequence (He MS)
The He-MS is the set of chemically homogeneous equilibrium models consist-
ing almost completely of helium, at the stage of core He burning. They can
represent remnants of initially more massive stars which have lost their H-
rich envelope, and developed a central He- core. In the HRD the He-MS is
positioned far left of the H-MS. When we compare stars of the same mass at
the H-MS and the He-MS it turns out that the helium stars have larger lumi-
nosities and smaller radii. The helium burning reactions are very temperature
dependent; consequently helium burning occurs in a small central sphere. Ow-
ing to the large energy flux a convective core is produced.

Mass luminosity relation : log L = 3.15 log M + 2.03

Mass radius relation : log R = 1.13 + 2.26 log M + 0.78 (log M)2

3. The Carbon Main Sequence ( C-MS)

The C-ZAMS is the set of homogeneous central carbon burning models. The
stars contain pure 12C or a mixture of 12C and 16O, the end products of
helium burning, and a small quantity of heavy elements. The C-ZAMS in the
HRD is positioned at logTeff > 5. C-ZAMS models have smaller radii and
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larger luminosity than stars of the same mass at the H-ZAMS, or the He-
ZAMS. C-ZAMS models have large convective cores.

Mass luminosity relation: log L =2.8 + 4.8log M -2.56(log M)2

Mass radius relation: log R = - 1.366+1.58 log M - 0.9 (log M)2

Mass luminosity relations for models of the H-, He- and C- ZAMS are shown
in Fig. 5.7.

Fig. 5.7. Mass- luminosity relations for models of the H-ZAMS, the He-ZAMS and the
C-ZAMS

5.1.8 The Equations of Stellar Structure

The physical state of the stellar interior depends on position and on time. A
star has a well determined spatial structure at any time but also changes with
time. For simplicity we consider the star as spherically symmetric, not deformed
by rotation, and not influenced by a magnetic field. In this case the structure
can be described by four physical principles: the equation of motion of the mass
layers, conservation of mass and energy and the energy transport mechanism.
These principles yield five differential equations describing the stellar structure.
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We first list the parameters used to describe the physical conditions inside stars:
r : we consider spherical models, hence all parameters only depend on the dis-
tance r from the star’s center
ρ : the density of the stellar matter in g/cm3

Mr : the mass, inside a sphere with radius r. The total stellar mass, MR, is
denoted by M
T : the temperature of the stellar material
P : the total pressure in the stellar interior.
The pressure, exerted by the particles and the photons of the stellar plasma, is
related to the density of the material, its temperature and its chemical compo-
sition. This relation is the equation of state.
Lr: this parameter denotes the amount of energy flowing across a sphere with
radius r. The energy at the stellar surface LR, is denoted by L. The total lu-
minosity of the sun, L�, is used as basic unit. First, we give the equations as
functions of the distance r. Afterwards, we give the transformed equations as
a function of thhe mass coordinate, Mr, more suitable for the computation of
stellar models.

dP

dr
= −G

Mrρ

r2 (5.1)

dMr

dr
= 4πr2ρ (5.2)

dLr

dr
= 4πr2ρ[ε− T

dS

dt
] (5.3)

Lr

4πr2 = Frad + Fconv (5.4)

dT

dr
=
−3
4ac

κρ

T 3

Lr

4πr2 (5.5)

dT

dr
=

γ − 1
γ

T

P

dP

dr
(5.6)

Ṁ = Ṁ(t) (5.7)

ε is the energy production per unit of mass

κ is the opacity

TdS
dt in the equation for the luminosity is the entropy-term.

All quantities(T, L, P, M) are expressed as a function of r. Since for stars the
mass is a more important factor as the radius, we use Mr as independent variable.

We have then as set of equations for the stellar structure:

dr

dMr
=

1
4πr2ρ

(5.8)



5 Evolution of Close Binaries 215

dP

dMr
= −G

Mr

4πr4 (5.9)

dLr

dMr
= ε− TdS

dt
(5.10)

dT

dMr
=
−3
4ac

κρ

T 3

Lr

16π2r4 (5.11)

dT

dMr
=

γ − 1
γ

T

P

dP

dMr
(5.12)

together with the equation of state, expressions or tables for the opacity κ and
for the nuclear energy ε.

5.2 General Considerations on the Evolution
of Close Binary Systems

5.2.1 Characteristics

Binaries are characterized by the masses M1 and M2 of their components, the
orbital period (P) the eccentricity e and the spins of the components. The semi-
major axis A is given by Kepler’s law

(
2π

P
)2A3 = G(M1 + M2) (5.13)

and the total orbital angular momentum is determined by

J =
M1M2

(M1 + M2)
2πA2

√
(1− e2)

P
(5.14)

We define the primary as the component which was originally the most mas-
sive component; the originally less massive star is denoted as the secondary.
This evolutionary definition may differ from the observational viewpoint where
primary means the visually most luminous component. The mass ratio q is the
ratio of the mass of the secondary to the mass of the primary.

5.2.2 The Roche Model

The evolution of a star which is a component of a binary is different from the
evolution of a single star with the same mass and the same chemical composition,
because of the existence of a point in between the two components where the
effective gravity vanishes and where matter from one star may flow freely towards
its companion.
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5.2.3 Circularization - Synchronization

Eccentricities of shorter period binaries (of the order of days), with intermediate
masses with components of sizes comparable to the orbital separation are small
but the eccentricities of binaries with larger separation are larger. The spins of
the components seem to be synchronized with respect to their orbital revolution
(Plavec, 1970; Levato, 1976).

About the observed spin periods one is less certain. The projected rotational
velocity of the optical star of the HMXB Vela X-1 (HD 77581) is about 125
km/s and its most probable radius ≈ 28− 35R�. This means that the spin
period is ≈ 11− 14 days. Comparing this with the orbital period P = 8.9 days,
we may conclude that the binary is not far from synchronization. Penny (1996)
examined rotational velocities of a number of OB+OB binaries. She concluded
that the binary components of HD 215835 (O6n + O6n, P = 2.1 days) seem to
rotate at 75 percent of the synchronous rotation; the components of HD 165052
(O6.5V + O, P = 6.14 days) and of HD 149404 (O8.5I + O7III, P = 9.8 days)
rotate at 2 to 3 times the synchronous rate. The binaries HD 93403 (O5f +
O7.5, P = 15.1 days) and HD 152248 (O7f + O, P = 5.97 days) have almost
reached synchronism. So, many possibilities remain open. That circularization
and synchronization in shorter period binaries prevail follows from the fact that
for given masses and fixed angular momentum, the mechanical energy of a binary
attains its minimum when both stars have circular orbits and synchronized spins
(Lynden-Bell and Pringle, 1974). Since all physical systems tend to such a stable
equilibrium binaries will tend to achieve circularization and synchronization.
Zahn (1977) gives typical time scales for the case of small eccentricities:

Tsync =
1

6q2k2

1
MR2 (

a

R
)6tF (5.15)

Tcirc =
4

63q(1 + q)k2
(
a

R
)8tF (5.16)

k2 is the apsidal motion constant and I the spin moment of inertia of the star with
mass M. For information on the apsidal motion constants, see e.g. Schwarzschild,
1958, p 154. A very uncertain parameter is the time scale for frictional dissipa-
tion tF . The time scales depend strongly on the binary period (smaller periods,
smaller time scales) and on the stellar radius (larger radii, smaller time scales).
In massive stars with radiative envelopes and short orbital periods, these time
scales are smaller than the nuclear lifetime of the primary (order of a few days).
In binaries with larger periods synchronous rotation and circularization may
never be achieved. Some binaries have difficulties to reach their equilibrium con-
figuration; their orbit remains eccentric. On the other hand, asynchronous spins
may cause turbulence in stellar envelopes, enhancing considerably the viscos-
ity; hence the tendency to reach synchronization increases (Tassoul, 1987, 1988,
1990; Tassoul and Tassoul, 1992). The general conclusion is that binaries with
initial periods of the order of days and with a small initial eccentricity will
reach their equilibrium configuration (synchronized and circularized) within a
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time scale shorter than their evolutionary time scale. For binaries with larger
initial periods, and/or large initial eccentricities it is an open question if they
will become circularized or not.

5.2.4 Roche Equipotential Surfaces

We consider a binary with a circular orbit, where spin and orbit are synchronized.
Already at the beginning of core hydrogen burning, the two components are
centrally condensed and their gravitational field may be represented by that of
a point source. In a Cartesian co-ordinate system, - the origin at the centre of
mass, - z-axis along the spin axis and x-axis along the line joining the stellar
centres, the equipotential surfaces are given by:

Φ = − GM1

(
√

(x− μa)2 + y2 + z2)
− GM2

(
√

(x− (1− μ)a)2) + y2 + z2)
−

−1
2
ΩB

2[x2 + y2] = ct (5.17)

μ =
M2

M1 + M2
(5.18)

ΩB =
2π

P
(5.19)

Figure 5.8 shows the intersection of the equipotential surfaces with the orbital
plane (z = 0). The function Φ has five saddle points, the Lagrangian points L.
In these points the centrifugal and gravitational forces (modified by the Coriolis
acceleration) are in balance. The second and third Lagrangian points L2 and
L3 are potential minima. They are situated on the x-axis at the right and the
left of the binary centres. Very important is the first Lagrangian pointL1, the
point of gravitational balance on the x-axis between the two components. The
equipotential surface across L1 is the critical or Roche surface (Roche lobe).
The Roche radius Rc is defined as the radius of a sphere with the same volume
as the Roche lobe. The Roche radius as a function of the mass ratio q can be
approximated by an interpolation formula given by Eggleton (1983):

Rc

a
=

0.49
0.6 + q2/3ln(1 + q−1/3)

(5.20)

5.2.5 Roche Lobe Overflow

If the envelope of the primary rotates synchronously with the binary orbital
motion, hydrostatic equilibrium applies in the co-rotating frame and the pressure
equation is given by

∇P = −ρ∇Φ (5.21)

Surfaces of equal pressure and density coincide with equipotential surfaces.
The shape of a binary component may be represented by an equipotential. Owing
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Fig. 5.8. The equipotential surfaces and the 5 points of Lagrange for a binary. The
equipotential surfaces are labeled with their potential energy. The critical equipotential
surface, the critical Roche lobe in 8-form, is indicated. The mass centre is +

to stellar expansion, the outer layers may reach the critical Roche lobe, and attain
L1. InL1 hydrostatic equilibrium is no longer valid since ∇Φ = 0. Considering for
simplicity, an isothermal gas near L1, the one-dimensional equation of motion
may be written as:

(v2 − c2
s)

dv

dx
= ∇Φ (5.22)

v is the velocity of the gas, cs the local isothermal sound speed. In order to
retain a monotonic increasing velocity field near and across L1 (where ∇Φ=0),
v ≈ cs, hence matter travels across L1 and flows at hypersonical speed towards
the companion. The process is called the Roche lobe overflow (RLOF). Matter
can flow from one component to the other. The component losing matter due to
RLOF is called the mass loser or mass donor, and similarly, the component that
accepts (accretes) this matter is designated as the mass gainer or the mass accre-
tor. Near the stellar centres the equipotential surfaces are almost spherical; with
increasing distance from these centres the deviation from the spherical shape
becomes stronger. For a well-determined value of the potential the equipotential
surfaces have a common point between the stellar centres. Although Roche lobes
are not strictly spherical they do not differ by much from a sphere. The radius
of a sphere of the same volume as the volume of the Roche lobe is called the
Roche radius RR.
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5.2.6 Discussion of the Roche Model

The Roche model is a good approximation. Condition is that circularization
and synchronization are maintained, also during the process of RLOF. Tidal
interaction will stabilize the orbit. Even in the case where the envelope of the
primary rotates asynchronously with the orbit, a saddle point (zero effective
gravity point) exists between the two components (Kruszewski, 1963). Also here
it is possible to define a critical surface from where funnelled mass loss takes
place. For spin periods not too different from the orbital period, the critical ra-
dius differs not very much from the Roche radius, computed as if the star was
synchronized. Even for binaries with eccentric orbits, there is a saddle point be-
tween the two components. Because its exact place is depending on the orbital
phase, a situation may arise where mass loss by critical lobe is not constant in
one revolution, but shows on and off phases. On the other hand there are cir-
cumstances where synchronism cannot be attained. Evolving primaries expand.
This occurs on a nuclear time scale

tnuc = 1010M/L (years) (5.23)

during CHB, further on the Kelvin-Helmholtz time scale

tKH = 3.1107M2/RL (years) (5.24)

during hydrogen shell burning. Owing to this expansion the star spins down and
rotation and orbital motion become asynchronized. Tidal interaction will force
this star to absorb orbital angular momentum in order to spin up. For small
mass ratios (q ≤ 0.2), the available orbital angular momentum is not sufficient
to meet the need of the primary. The low mass companion is then swallowed by
the primary (Sparks and Stecher, 1974).

5.2.7 The Mass Loss Rate During RLOF

An evolving primary expands and its photosphere can reach L1 from where mass
loss will occur. For the computation of the mass loss rate one can proceed as
follows:

1. Calculate the interior structure of the star with the set of eqs. 5.1-5.7
derived for single stars

2. Compare the radius of the star to the Roche radius determined by eq. 5.20
If R > Rc, calculate by iterations the mass loss rate, the mass loss and the

remaining mass of the star, so that its radius equals the Roche radius. For the
calculation of the Roche radius of a binary component it is assumed that the
binary is circularized, and that the star rotates synchronously.

The assumption that the stellar radius equals the Roche radius derived from
the binary period and mass ratio, gives very reasonable mass loss rates. It gives
satisfactory evolutionary tracks of the two components.

This numerical procedure works well in situations where the mass loss leads
to a decrease of the stellar radius. This is always the case when the massive
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star has a radiative envelope but not at all when the star has a deep convective
envelope (red supergiants). Let us approximate the envelope convection in a
massive star by adiabatic convection. Most of the envelope of a massive star is
fully ionized so the equation of state satisfies the relation

P ∝ ρ5/3 (5.25)

Combined with the hydrostatic pressure this leads to the following relation
between radius and mass

R ∝M1/3 (5.26)

A decreasing mass leads to an increasing radius. Or, mass loss (on a dynam-
ical timescale, shorter than the thermal time scale) leads to stellar expansion.
The star will undergo a very violent mass loss phase on a dynamical time scale
of the order of hours. The heavy increase of the stellar radius will make that
the secondary star will be swallowed by the primary; this phase is known as the
common envelope phase of a binary.

5.2.8 Mass Transfer

In order to have an idea of the process of mass transfer we consider the changes
of the stellar radius and the Roche radius as the mass of the star decreases
(Fig. 5.9). The evolution of the radius of an isolated star is shown by the straight
line AB’, vertically upward, at constant mass. In a close binary the radius R1
increases until the critical Roche radius r1 is reached, in point B, where the mass
exchange process starts. During the beginning stages of the mass exchange the
stellar radius remains more or less constant (BC) and then decreases as the mass
loss continues (CD1). When mass loss starts the Roche radiusr1 decreases. The
orbit shrinks. The change of r1 as function of M1 (decreasing) is shown by the
curve r1, from B to E. When the masses M1 and M2 of primary and secondary
are equal, r1 attains its minimum value (at E). For M1 < M2, r1 will increase
again, (ED), i.e. the orbit widens again. Since R1 > r1 between B and C, mass
loss is required to reduce the mass of the primary. For radiative envelopes this
occurs on a thermal time-scale. The curve for r1 shows how the radius of a star
in thermal equilibrium changes as its mass decreases by removal of the outer
layers. Beyond point C the stellar radius of the primary is smaller than the
Roche radius. Two possibilities may be distinguished:

• R1 < r1: the binary becomes detached
• If a new nuclear burning stage starts, the star fills its Roche lobe and again

mass loss occurs, but now on a nuclear time-scale (CD).

Hence two mass exchange stages may be associated with the evolution of
binaries: a rapid mass transfer phase, where the mass ratio of the two components
is reversed from q > 1 to q < 1 (q = M1/M2), this phase is followed by a gradual
increase of the mass M2 of the secondary. The rapid phase can be very short,
of the order of 104 to 105 years. Hence the succession of the events during mass
transfer is as follows (see Fig. 5.9):
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• A - B : star 1 expands on a nuclear timescale
• B - C : rapid mass transfer takes place, on a thermal timescale. The system

consists of a subgiant (remnant of the primary, now the less massive star) and
a main sequence star (the most massive star).

• Beyond C the subgiant evolves on a nuclear time-scale, expanding slowly, and
transferring a small amount of matter.

Fig. 5.9. The behaviour of the stellar radius and the Roche radius for a close binary
system, with mass exchange. BCD1 represents the radius of equilibrium models with
decreasing mass

5.2.9 The Different Types of Unevolved Close Binaries

Depending on their initial mass, stars are characterized by one, two or three ma-
jor expansion phases: the CHB phase, the hydrogen shell burning phase and the
He shell-burning phase. Primaries of close binaries, depending on the initial or-
bital period, will fill their Roche lobe during one of these three expansion phases.
Following the original idea of Kippenhahn and Weigert (1967) and Lauterborn
(1969), we divide the unevolved close binaries into:

• Case A: the primary fills the Roche lobe during its CHB phase;
• Case B: the primary fills the Roche lobe during its H shell burning phase,
• Case C: the primary fills the Roche lobe during its He shell burning phase;
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Case B binaries are by far the most frequent class of observed binaries. One
may expect a different evolutionary behaviour in binaries where RLOF starts
when the mass loser has a mainly radiative envelope (case Br) compared to
binaries where RLOF starts when the mass loser has a deep convective envelope
(case Bc). Among all case B types, case Br binaries are the most frequent ones.

5.2.10 Direct Accretion or Formation of a Keplerian Disc

For matter leaving the primary through L1 where the stream is caught into the
potential well of the secondary, we can consider two situations:

- the matter streams directly towards the secondary
- the gas-stream forms first a disc around the secondary.
This has been examined by Lubow and Shu (1975). For binary masses M1

and M2, considered as point masses and a given period P, a detailed calculation
of the trajectories of the particles shows that a disc is produced, provided that
the radius R2 of the secondary is smaller than Rdisc, the radius of the disc.

5.2.11 The Spin-Up Process of the Secondary

In the case the gas-stream forms a Keplerian disc around the secondary, it can
be checked that a mass element dM hitting this secondary with mass M2, has
a specific angular momentum dJ (=dM

√
GM2R). R is the radius of the sec-

ondary. This value has to be compared with the rotational angular momentum
Jrot (=Iωrot) of the star itself, (for rigid rotation). I is the moment of inertia,
ωrot the rotational angular velocity of the star. Making use of the evolutionary
computations for single stars, we can calculate the total amount of mass that has
to be accreted to force the whole star to rotate at the critical break-up velocity

ωcrit=

√
G(M2 + dM)

R3

Here we assume that during the accretion the radius R remains unchanged.
Detailed computations of the accretion process reveal that in reality this is not
exactly true, unless the amount of accreted matter is small. And this is precisely
the case here: if a 25M� mass gainer accretes about 3M� through a Keplerian
disc it starts to rotate at its break up velocity. The computations were made
with the assumption that the complete star is spinning up. If the spin-up pro-
cess affects only the envelope, a smaller amount of matter is required to force
these outer layers to rotate at break-up velocity. We may conclude that when
a Keplerian disc is formed around the secondary during the RLOF of the pri-
mary, a very efficient mechanism to remove angular momentum from the disc is
required to produce efficient mass transfer.

5.2.12 Conservative and Non-conservative Evolution

For the computation of evolution sequences we may consider the following pos-
sibilities: a) conservative evolution: the total mass and angular momentum are
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considered as remaining constant. When the mass transfer stage starts, mass
is removed from the primary and added to the companion. From the changing
masses of the two components the variation of the period and the ensuing vari-
ation of the Roche radius can be derived. b) non-conservative evolution: mass
and angular momentum losses are taken into account. This treatment allows the
consideration of contact phases. In this case specifications are required to define
the fraction of the lost mass, not accreted by the secondary, hence leaving the
system, stored in a disc, or in a common envelope, and also for the momentum
losses. It is possible for both cases to restrict the computations to the evolu-
tion of the primary, and to use the changing mass of the secondary only for
the calculation of the changing period, or to calculate the evolution of the two
components simultaneously. For the non-conservative treatment mass and angu-
lar momentum losses have to be taken into account. A quantity ΔM leaves the
primary during mass exchange, determined in such a way that the star remains
within its Roche lobe; since the mass loss time-scale and the accretion time-scale
are not necessary similar, one may assume that only a fraction β, hence a quanti
ty βΔM is accreted by the secondary. For the angular momentum loss a similar
procedure can be adopted: if one neglects the rotational angular momentum, and
assuming that matter expelled by one or even two of the components is leaving
the system, the orbital angular momentum transported by matter leaving the
system may be calculated.

The fractional mass loss c can be expressed as

c =
ΔM

M1i + M2i

The orbital angular momentum transported by the material leaving the sys-
tem may be evaluated using a Jeans’ mode, hence as ΔJ= cJ. Consequently the
distance A and the period P vary, according to Kepler’s third law as

A

Ai
=

(1− c)2(M1iM2i)2(M1 + M2)
(M1M2)2(M1i + M2i)

(5.27)

P

Pi
=

(1− c)3(M1iM2i)2(M1 + M2)
(M1M2)3(M1i + M2i)

(5.28)

5.2.13 Evolution of the Primary

The structure of both components can be computed by applying a code for simul-
taneous evolution. The radii of the two components and their respective Roche
radii are calculated and compared to each other.In this way contact phases can
be treated properly. The structure of the accretion star can be followed, ac-
cording to the mass accretion formalism and the adopted treatment. Depending
on the accretion process this star can be rejuvenated by the accreted matter
and its lifetime can increase significantly. This rejuvenated secondary can also
overflow its own Roche lobe, and possibly reversed phases of mass transfer can
occur.Simultaneous evolution computations reveal that several mass ratio rever-
sals can occur during the evolution of binary systems.
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• Low mass case B - 1M� < M1 < 2.8M�
As an example of the evolution of low mass stars, where mass transfer starts
after core hydrogen exhaustion, hence case B-, we describe the evolution of
a system of 2M� + 1M�. Electron degeneracy sets in at the core, when the
hydrogen shell is decreasing. The contraction of the core occurs not very fast,
hence there is a rapid expansion of the envelope. The mass of the hydrogen-
exhausted core is less than 0.35M� for M < 2.8M� ; the temperature increase
is not high enough to start He-burning. The mass exchange stops by extinc-
tion of the H-shell; the star becomes a white dwarf. Only the evolution of the
primary was calculated in detail; the mass of the secondary was just used to
compute the changing semi-major axis and the period. A Case B evolution of
a low mass, close binary system, of 2M� +1M� , is depicted in Fig. 5.10. The
evolutionary track in the HRD is given in Fig. 5.11. Details comcerning the
evolution are given in Table 5.1.

• Case A
As an example the simultaneous case A evolution of a system of 9M� +
5M�, with an initial period of 1.45 days (Kippenhahn and Weigert, 1967) is
described. The primary starts filling its Roche volume during core hydrogen
burning. A phase of fast mass transfer sets in and a large fraction of the mass of
the primary is transferred towards the companion. The mass ratio is reversed,
i.e. the initially most massive star becomes the less massive one. The system
becomes semi-detached. Hydrogen burning in the core of the mass increasing
secondary is accelerated, hence the core hydrogen abundance of the secondary
decreases faster than in the core of the primary. The H-abundance decreases
from 0.602 to 0.259. During the mass transfer matter is removed from the outer
layers. The lower layers expand in order to restore hydrostatic equilibrium.
The energy for this expansion is stolen from the luminosity. So the luminosity
decreases drastically. At the end of the RLOF phase the luminosity increases
again. After this phase of fast mass transfer (in 12.5 million years) a phase of
slow mass transfer starts. Hydrogen burning continues in the convective core.
The secondary remains near the ZAMS for million years.The system shows
the characteristics of Algol stars. The RLOF phase comes to an end when
the mass of the primary is 3.02M�. The evolution is depicted in Fig. 5.12;
evolutionary tracks are shown in Fig. 5.13.

5.2.14 The Evolution of the Two Components -
Simultaneous Evolution

The constraints for the evolutionary computations are as follows: as long as the
system does not overflow its outer critical surface (through L2) the computations
occur in the conservative way; when the outer critical surface is overfilled mass
loss from the system is considered. To allow matter to escape from the system
it needs some extra energy, at least sufficiently large to bridge the potential
energy difference between L2 and the Roche lobe. This energy per unit mass can
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Fig. 5.10. Case B evolution of a 2M� + 1M� system. The evolutionary times t are
in million years, the orbital periods in days. Black circlesrepresent hydrogen-rich, gray
circles helium-rich regions

be estimated for q = 1 as 0.27 GM/A. This value is typical for a large range
of mass ratios. The formula reveals that mass can more easily escape in wider
systems than in closer ones; for extreme mass ratios the factor 0.27 becomes much
smaller, hence for systems with large mass ratios matter can escape more easily.
In order to check the value of simultaneous evolution, we compare evolutionary
sequences for the two components of a system of 2M� + 1M�, with an initial
period of 1.14 days, with the track of the primary of the same system, with
the same initial period, calculated by Kippenhahn, Kohl and Weigert (1967) in
Fig. 5.14.

The system of 9M� + 8.1M� with an initial period of 3.13 days (Fig. 5.15)
follows the conventional track of conservative evolution (Packet, 1988). The mass
loss rate attains a maximum value of 1.610−4M�yr1 and the atmospheric hydro-
gen abundance by mass drops from 0.7 to 0.21 for the primary, from 0.7 to 0.67
for the secondary. The remnant of the primary evolves through helium burning
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Table 5.1. Evolution of a system of 2M� + 1M� (Kippenhahn, Kohl, Weigert). The
status, -detached (d), or semi- detached- (sd), L, Teff , and the atmospheric hydrogen
abundance of the primary, Xat are shown. The original composition is X = 0. 602, Y
= 0.354, Z = 0.044 . The letters refer to Fig. 5.11

Age M1 M2 P Status logL logTeff Xat Model

0. 2. 1. 1.14 d 1.307 3.972 0.60 A

4.8179 2. 1. 1.14 d 1.405 3.909 0.60 B

5.0591 2. 1. 1.14 d 1.500 3.947 0.60 C

5.6958 2. 1. 1.14 s.d 1.567 3.899 0.60 D

5.6989 1.55 1.45 0.80 s.d 0.715 3.781 0.60 E

5.7509 0.96 2.04 1.22 s.d 0.518 3.710 0.60 F

6.3538 0.28 2.72 21.40 s.d 1.444 3.634 0.57 G

6.4940 0.28 2.72 21.40 s.d 1.280 3.653 0.57 H

6.6808 0.28 2.72 23.74 s.d 1.489 3.642 0.57 I

6.8176 0.26 2.74 23.74 d 1.634 3.667 0.57 J

6.8710 0.26 2.74 23.74 d 1.698 3.795 0.57 K

6.9044 0.26 2.74 23.74 d 1.588 4.329 0.57 L

6.9328 0.26 2.74 23.74 d 1.024 4.492 0.57 M

6.9651 0.26 2.74 23.74 d -0.572 4.297 0.57 N

and then expands again, so that a second phase of mass exchange starts. This
second phase of mass transfer occurs for primaries in the mass range of 3 to 10
M�yr1 and the atmospheric H-abundance by mass drops from 0.7 to 0.21 for
the primary, from 0.7 to 0.67 for the secondary, consequence of the expansion of
the helium envelope resulting from the energy output of the small helium shell
source.

5.2.15 Reversals of the Mass Ratio

Simultaneous evolution computations show mass ratio reversals during the evo-
lution of binary systems. A case A evolution of a system of 9M� +8.1M� ,initial
period 0.77 days is examined (Packet, 1988). During a phase of fast mass transfer
the mass ratio is reversed. Hydrogen burning in the core of the mass accreet-
ing secondary is accelerated, hence Xc2, the core H abundance of the accretion
star decreases faster than in the core of the primary. When Xc2 is ≈ 0.4 the
mass transfer is reversed, owing to the expansion of the secondary. This results
in Roche lobe overflow. The mass ratio is reversed once more, and owing to
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Fig. 5.11. The evolutionary track for the primary of a close binary system of 2M� +
1M�. The zero age main sequences for normal hydrogen abundances(ZAMS), and for
X = 0, (He ZAMS) are also shown. The letters near the track refer to Table 1

the mixing in, of new H in the core of the primary,Xc1 increases. The system
becomes semi-detached. The primary, which is now again the most massive com-
ponent evolves faster, and after some time overflows its Roche lobe. The critical
surface through L2 is now rapidly attained ; mass and angular momentum leave
the system ; the result will be a spiral-in, leading to to coalescence of the two
components. Rather complicated situations may occur,with successive phases of
mass transfer where the mass ratio is reversed twice. The history of a system of
9M�+8.1M� with an initial period of 3.13 days is shown in Fig. 5.15. Figure 5.16
shows the changing core H abundance and the mass ratio.

5.2.16 Simultaneous Evolution with Moderate Overshooting

If extended mixing is taken into account, the evolution of the stars is altered; the
duration of the core H burning phase is increased, hence the main sequence life-
time of the stars becomes larger, and also the gradient in the hydrogen profile in
the stellar interior, consequence of the shrinking of the convective core, is nearer
to the surface. Evolutionary tracks, computed with and without overshooting,
reveal that the radius at red point, i.e. the maximum radius reached during
main sequence evolution is much larger for overshooting models. Consequently
the relative occurrence of case B and case A-evolution for close binaries will be
influenced drastically by overshooting.



228 Bert C. De Loore

Fig. 5.12. The evolution of a medium mass close binary, case A. The time t is in
million years, the orbital period P in days. The primary fills its Roche lobe during core
hydrogen burning and transfers matter towards its companion. There are two phases of
mass transfer, a rapid phase where somewhat more than 5.3M� is transferred in 60000
years, followed by a slow phase. Black circles represent hydrogen rich-, gray circles
helium-rich regions (Kippenhahn and Weigert, 1967)

5.2.17 The Evolution of Intermediate Mass Close Binaries (IMCB)
for Galactic and MC-Abundances

A grid of evolutionary models was computed with the simultaneous code for
intermediate mass binaries (masses between 3M� and 15M� and with periods
small enough to allow mass transfer by Roche lobe overflow. This grid, together
with grids for massive close binaries could be used as input for population syn-
thesis, to investigate e.g. starbursts. Moreover it is interesting to examine the
influence of different initial abundances on the evolution of IMCB, the physics
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Fig. 5.13. Evolution of a 9M� + 5M� system. The evolution of the primary of the
binary system is shown as a thick line. The mass transfer starts in (a), the rapid mass
transfer ends in (b). From b to c slow mass transfer occurs. In fine line the evolution
of a non-disturbed 9M� is sketched

of accretion and evolutionary consequences and the evolution of the secondary
before, during and after the mass transfer The computations were restricted to
case Br systems, i.e to cases where the primary has a mostly radiative enve-
lope. To examine the effect of accretion on the structure and evolution of the
secondary two accretion models were used:

Soft mass transfer model: Matter whirls onto the surface of the secondary
with zero velocity and is assumed to have the same specific entropy as the stel-
lar surface layers (Neo et al., 1977; Flannery and Ulrich, 1977, Kippenhahn and
Meyer-Hofmeister, 1977). This means that when the outer layers of the secondary
star are in radiative equilibrium, this will not be destroyed by the accretion The
gravitational energy of the accreted matter is converted into radiation which per-
haps blows up the outer layers of the secondary, and so leading to the formation
of a contact binary. The physics of this process are included in the code. If mat-
ter was transferred from primary to secondary during earlier nuclear processes,
matter with a larger molecular weight might be deposited onto the surface layers
of the secondary. This causes thermohaline convection, which is treated as an
instantaneous process (Kippenhahn et al., 1980; Packet, 1988). Semiconvection
was treated in the code by the Schwarzschild criterion (Stothers and Chin, 1976).
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Fig. 5.14. Comparison of the evolution of a 2M�+1M� system, with an initial period
of 1.14 days, computed with a simultaneous evolution code, with earlier computations
of Kippenhahn, Kohl and Weigert, 1967. The track of the observatio primary of the
simultaneous computations is shown as thick line, the track of the accreting secondary
is a fine line, marked with open circles. The track of Kippenhahn et al. is shown as a
full fine line, marked with dots

Full mixing model: If at the start of the RLOF the distance between the two
is sufficiently large to allow mass transfer through a (Keplerian) disc, the sec-
ondary spins up. Even for rigid rotation, only a few solar masses are needed to
speed up this secondary to break up velocity. Rapid rotation causes very efficient
turbulent diffusion or even complete mixing of the star (Zahn, 1994). Vanbev-
eren and De Loore (1994) have studied the effect of full mixing on the evolution
of MCB’s in general. The used code allows a choice between soft mass transfer
and complete mixing during the mass transfer process. The adopted opacities
influence only marginally the evolution of the primary in a close binary. Indeed
in the major part of the star electron scattering is the main opacity source, and
only in the very outer layers the temperature is sufficiently low to allow recom-
bination of the chemical elements and only here processes different from electron
scattering become important. Some small quantitative differences exist between
the Galactic and the SMC results, but this has probably no observational conse-
quences. The evolution during Roche lobe overflow of the primary and the final
remnant mass after the RLOF phase do not significantly depend on the details
of the RLOF. Given the initial mass of the primary of a case Br binary, we can
replace the more or less complicated behaviour during the mass transfer in the
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Fig. 5.15. The simultaneously computed evolution of an intermediate mass system of
9M� + 8.1M� , with initial period of 3.13 days leading to an early case B of mass
exchange

HR diagram by a box. What really happens in this box is not very important.
In Fig. 5.20 we show the evolutionary tracks of all our primaries but we have
replaced the RLOF track by a black box. The initial period has an effect on the
mass loss rates during the RLOF. The larger the period the later the RLOF
starts, the shorter the process and the more violent the mass loss rate.

Table 5.2 shows the best-fit relations between the remnant mass after RLOF,
and the initial mass, for the Galaxy, the LMC and the SMC.

It is quite obvious that the evolution of the secondary depends critically on
the details of the RLOF, i.e. on how much mass lost by the primary is accreted
by the secondary (the parameter search) and on the adopted accretion model.
However also for the secondary it is possible to propose a general scenario once
the accretion model is chosen.

5.3 Evolution of Massive Close Binaries

5.3.1 Introduction

The qualitative evolutionary scenario (Fig. 5.17) of MCBs was introduced by
Paczynski (1967) and was later completed by Van den Heuvel and Heise (1972).
We consider a binary system where the primary is a massive star and possibly
also the secondary. First both components evolve as single stars, independent
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Fig. 5.16. The core H abundances Xc1 and Xc2 of the primary and secondary, and
the mass ratio q, of a system of 9M� + 2.7M� , with an initial period of 0.77 days,
evolving according to case A. The mass ratio is reversed twice, connected with the
changing speed of the variation of the core hydrogen

from each other. The most massive star expands faster than the companion does;
hence it reaches first its critical radius and the RLOF starts. When the primary
has lost most of its hydrogen rich envelope, it contracts; it shrinks within its
Roche lobe and the RLOF stops. The system then consists of a hydrogen deficient
CHeB star and an OB-type star that has accreted part or all the matter lost by
the loser. Paczynski (1967) first suggested that these systems might represent
the observed WR+OB binaries. After core He- exhaustion, the He star explodes.
If the explosion does not disrupt the system, the post SN-binary resembles an
OB+cc binary. Van den Heuvel and Heise (1972) suggested that these systems
could represent the observed massive X-ray binaries. As the OB-type mass gainer



5 Evolution of Close Binaries 233

Table 5.2. Best-fit between the RLOF-mass and the initial mass, for binaries with
galactic, LMC and SMC-composition

3M� ≤ M ≤ 7M�

Mf = 0.1M1.32
i GAL

Mf = 0.11M1.32
i LMC

Mf = 0.124M1.32
i SMC

M ≥ 7M�

Mf = 0.093M1.44
i Gal

Mf = 0.085M1.52
i LMC

Mf = 0.048M1.7
i SMC

further evolves, it expands and its radius may also reach a critical value. A second
RLOF phase starts, but now, due to the extreme mass ratio of the binary, the
low mass compact star will be swallowed into the envelope of the OB star and it
begins spiraling in. The final outcome will be either a very close binary with a
period of a few hours, consisting of a helium star and a compact companion, or
the system can be disrupted and evolve into two neutron stars, i.e. two runaway
pulsars. At the end of the evolution of the helium star, a second SN occurs.
In most of the cases, the system will be disrupted leaving behind two single
runaway pulsars. There remains also a very small probability that the binary
remains bound, and evolves into a binary pulsar like PSR 1953+29.

5.3.2 The Evolution of the Primary During Mass Transfer

Before the start of the RLOF, both components of a MCB evolve as rotating
single stars with the same mass. Just as for single stars, most of the evolutionary
computations of MCBs use the structure equations established for non-rotating
spherical symmetric plasma, i.e. the set of equations 5.1 to 5.7 together with
the equation of state, expressions or tables for the opacity κ and for the nuclear
energy ε. It turns out that MCB components have rotational velocities which
are (on average) smaller than or equal to those of single stars.

1. Primaries with initial mass ≤ 40M�: case Br.
Case Br means that the RLOF starts when the primary is a hydrogen shell
burning star with an envelope which is mainly in radiative equilibrium (typical
periods: between a couple of days and 1000 days; they are shown in Fig. 5.18).
The evolution of the primary can be studied in a simplified way, without
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Fig. 5.17. The qualitative MCB scenario as it was introduced by Paczynski (1967)
and completed by Van den Heuvel and Heise (1972)

computing explicitly the evolution of the secondary, just using its mass for
the determination of the critical Roche radius.
During the first 10 percent of the RLOF phase, the star evolves on the Kelvin-
Helmholtz timescale and loses matter at very high rates. Roughly, these rates
satisfy the relation

Ṁ =
M

τth
= 310−8 RL

M

(in M�yr−1, M, R and L in solar units).



5 Evolution of Close Binaries 235

Fig. 5.18. Mass-period diagram showing the different RLOF cases

The maximum values for Ṁ are of the order of 10−3M�/yr: the star is then
in the rapid phase of mass transfer. Due to the entropy term in the equation
of energy this rapid mass loss leads to a rapid decrease of the luminosity.
When the central temperature and density are sufficiently high to start the
CHeB process, the expansion rate of an H-shell burning star decreases. This
means that the mass loss required keeping the star within its Roche volume
decreases: the star enters the slow RLOF-phase. During the slow phase the
stellar luminosity increases again, and the star tries to restore thermal equi-
librium. This equilibrium is reached when most of the H rich layers have been
removed. Detailed evolutionary computations reveal that, a massive hydrogen
shell-burning star tends to stop its expansion when He is burning in the core
and when the atmospheric H- abundance Xatm drops below 0.2-0.3. The star
is then in thermal equilibrium and contracts: the RLOF process is finished.
The structure of an H- shell-burning star at the beginning of CHeB, in thermal
equilibrium, does not depend on the details of the RLOF process0t. Conse-
quently a rather unique relation exists between the mass just before RLOF
(Mb) and at the end of the RLOF (Ma), practically not dependent on the
initial mass ratio, the period of the binary and the treatment of the RLOF
process, in a conservative or non-conservative way. Also the treatment of semi-
convection has only a small effect on the computations of massive primaries
in interacting binaries. Except for relatively small quantitative differences, the
evolutionary properties of MCBs for the Galaxy discussed above also apply
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Fig. 5.19. Evolutionary tracks of massive primaries in a case Br binary assuming
conservative RLOF; the points B and E indicate respectively the beginning and the
end of the RLOF phase

to the Magellanic Clouds, which means they are independent of the initial
metallicity.
Figure 5.20 shows evolutionary tracks of primaries of case Br MCBs with
Galactic (full lines) and SMC (dashed lines) abundances. The evolution of
primaries after RLOF is practically not dependent on the details of the RLOF
phase; a box has replaced the RLOF stage. What occurs inside the box has
practically no repercussion on the output.
The masses at the end of CHB and after RLOF are given in table 5.3. Best-
fit relations between the pre-RLOF and post-RLOF mass are given in eq.
5.31, 5.32. The computations were performed with small convective core over-
shooting during CHB; SW mass loss with the following equation was included

logṀ = 2.365logL− 3.710logTeff − 9.639 (5.29)

and compared with
logṀ = 1.69logL− 15.4 (5.30)

The results are very similar.
Best-fit relations for the remnant mass after RLOF:

Galaxy : Ma = 0.093M1.44
b (5.31)

LMC : Ma = 0.085M1.52
b (5.32)
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Fig. 5.20. The overall evolutionary behavior of primaries of case Br close binaries.
Galactic tracks are in full lines, SMC tracks are dashed

SMC : Ma = 0.048M1.7
b (5.33)

With the same mechanism for the stellar wind, but when large core-overshooting
is applied, we find:

Galaxy : Ma = 0.055M1.79
b (5.34)

A hydrogen stripped star with mass M starting CHeB is in thermal equilibrium
and has an equilibrium radius Re which can be approximated by

Re = 0.62.10−4M3 − 0.49.10−2M2 + 0.18M + 0.17 (5.35)

Re is in R�, M in M�. The relation is practically independent on the metal-
licity
The further evolution can be derived by using the available evolutionary com-
putations of hydrogen poor CHeB stars. RLOF in a MCB for case Br evolution
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Table 5.3. The mass of the primary for case Br evolution at the end of CHB (MeCHB)
and at the end of the RLOF (MeRLOF) for the Galaxy (first number) and the SMC
(second number).

MZAMS MeCHB MeRLOF

9 9 2.2-2.2

12 12-12 3.3-3.6

15 15-15 4.5-4.5

20 19.5-20 6.7-7.9

25 24-25 9.3-11.1

30 28-29.5 12.3-16.3

40 36-39 18.6-25.3

stops when Xatm ≈ 0.2− 0.3. So the mass of the RLOF remnant must equals
the mass of the CHB core of the corresponding progenitor for Xc ≈ 0.2− 0.3.
This means that it is sufficient to calculate the CHB evolution to predict the
overall evolution of the primary.

2. Primaries with initial mass 40 to 50M�: case Bc and C
Equation 5.24 tells us: the larger the radius of the H shell burning star, the
smaller the thermal time scale. This means also: the larger the initial period,
the more violent the rapid phase of the RLOF and the larger the . The mass
loss rate becomes critical for periods sufficiently large enough to start RLOF
when the primary has a convective envelope: this is case Bc. In this case the
mass loss due to RLOF will be a very fast process (section 999). The star will
lose matter on the dynamical time scale, of the order of hours. The secondary
is unable to accept all this mass and soon after the beginning the RLOF a com-
mon envelope is produced. The further evolution depends then on the effect of
viscosity when the secondary is moving into this common envelope. Detailed
computations where this process was followed till the end have never been car-
ried out. An attempt to predict the evolution of a case Bc binary was made
Tutukov and Yungelson (1979). The scenario goes as follows: the primary in a
case Bc binary, starts filling its Roche lobe, soon after the onset of the RLOF
process. A common envelope phase starts. Deposition of orbital energy of the
secondary by viscous drag will remove this envelope It is reasonable to assume
that also for case Bc the mass loss process will stop when most of the H-rich
layers have been removed and this means that relations (5.33) or (5.34) can
also be applied here. If we know the mass of the common envelope that has to
be removed, one can calculate the period change. The removal of the common
envelope implies a very large orbital period decrease. Detailed computations
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for case C binaries have never been performed. Probably the primary does not
only lose all its H, but also a part of the He rich layers outside the He burning
shell.

3. Primaries with initial mass 40-50M�: case A
Also for case A binaries, during the RLOF process a rapid and a slow phase
occur. The rapid phase occurs on a thermal time scale (as in the case of
Br systems) which is much longer for CHB stars than for H shell burning
stars. Hence the mass loss rates during the rapid RLOF phase in case A
binaries are much smaller than for corresponding case Br binaries. The rapid
phase is followed by a slow phase and this lasts nearly the entire remaining
CHB lifetime. At the end of this phase, layers, which were in the H burning
core at the beginning of CHB, appear at the surface. These layers have CN
equilibrium abundances, so we expect to observe these stars as OBN stars.
The atmospheric H- abundance remains almost normal. At the end of CHB,
the star contracts hence the RLOF ends. Later on H starts burning in a shell
just outside the newly formed He-core, a new expansion phase starts, and the
primary overflows its Roche again and a case Br type of evolution follows (this
phase is called case ABr). Since the primary lost already a large amount of
matter during the previous case A RLOF, the case ABr RLOF is less violent.
The RLOF comes to an end when He burning in the core starts and when
Xatm ≈ 0.2− 0.3, i.e. comparable to case Br, the remnant mass after case
ABr is the mass of the H burning convective core of the progenitor when the
central hydrogen content Xc = 0.2-0.3.
So, the large mass loss during RLOF in an early case A binary, leads to a
much smaller mass of the convective core during CHB is smaller than in a
case Br binary. The remnant mass after case ABr RLOF in a binary after
early case A evolution, is smaller than the remnant mass of the same primary
of a pure case B binary. For periods sufficiently large to start case A RLOF
when the central hydrogen content of the primary < 0.2-0.3, the final mass
after the case ABr RLOF is equals to the final remnant mass after a pure case
Br RLOF.
As example of case A evolution of a MCB, Table 5.4 summarizes the general
evolution of 15 M� and 30 M� primaries with companions of respectively
13.5 M� and 27 M� with an initial period of 2 days,evolving in a conservative
way. The evolutionary tracks for a system of 15 M� +13.5 M� are depicted
in Fig. 5.21.

5.3.3 The Variation of the Period During RLOF

The period of a massive close binary (MCB) varies as a consequence of the
changing mass of the components. Two main processes affect these masses: stellar
wind mass losses, and mass transfer- or loss by Roche lobe overflow. The effects
of these two are different; in some cases the wind losses are important, in other
cases the effect of the stellar wind is only marginal compared to the RLOF mass
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Fig. 5.21. Evolutionary track of the primary of a 15M� + 13.5M� galactic early case
A binary; the initial period is 2 days

loss. Stellar winds are driven by radiation pressure. This radiation pressure is
the main driver of a more or less spherical symmetric stellar wind but it does
not affect considerably the gas-stream caused by the RLOF process. We consider
two cases:

The RLOF mass loss is much larger than a possible stellar wind (SW)
mass loss. We consider binaries where RLOF occurs and where effects of SW
mass loss on the variation of the binary period during RLOF can be neglected. It
turns out that only the most luminous LBVs have SW mass loss rates that may
be comparable to RLOF mass losses. So, we exclude the VMCBs. We consider
the case of conservative RLOF, - all mass leaving the primary due to RLOF is
accreted by the secondary, and the case of non-conservative RLOF- at least a
part of the mass lost by the primary during its RLOF leaves the binary system.
In the case of non-conservative RLOF one defines a parameter β, this is the
fraction of the mass lost by the primary accreted by the secondary. So if M1
(resp. M2) is the mass loss (resp. mass gain) rate of the primary (secondary),
one has

Ṁ2 = −βṀ1 ; 0 ≤ β ≤ 1 (5.36)
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Table 5.4. The evolution of the early case A binaries 15M� + 13.5M� and 30M� +
27M�. Period 2 days. The phase marked as Max is the phase where the mass loss rate
is largest

Phase T ime M1(M�) Ṁ logTeff logL/L� Xc

ZAMS 0 15 0 4.47 4.26 0.7

Begin RLOF 8.75 15 0.086 4.43 4.48 0.39

Case A

Max 8.88 13 92.2 4.39 4.3 0.38

End RLOF 16.6 6.6 0 4.27 4.16 0.01

Case A

Begin RLOF 16.8 6.6 2.42 4.29 4.24 0

Case B

Max 16.9 4.3 86.8 4.19 4.24 0

End RLOF 16.9 3.1 0 4.2 4.32 0

Case B

Phase T ime M1(M�) Ṁ logTeff logL/L� Xc

ZAMS 0 30 0 4.58 5.03 0.7

Begin RLOF 3.27 29.5 1 4.55 5.17 0.46

Case A

Max 3.34 26.6 211 4.53 5.07 0.45

End RLOF 7.42 14.1 0 4.46 5.02 0.03

Case A

Begin RLOF 7.67 14 10 4.48 5.12 0

Case B

Max 7.67 12.1 825 4.41 5.06 0

End RLOF 7.68 9.52 0 4.39 5.16 0

Case B

Conservative RLOF.
The rotational angular momentum of a binary component is always much smaller
than the orbital angular momentum. This means that efficient mass transfer
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requires an efficient mechanism to move the surplus of angular momentum of
the transferred matter back into orbital angular momentum of the components.
Conservation of mass implies conservation of total orbital angular momentum.
Combination of eq. 5.13 and 5.14 gives

M2
1 M2

2

M1 + M2
A = const (5.37)

and, using Kepler’s law
P

Ps
= [

M1sM2s

M1M2
]3 (5.38)

Values at the start of the RLOF are denoted by the subscript ’s’. The results
of close binary evolutionary computations reveal that the period of the binary
reaches a minimum during RLOF, and, after RLOF is always larger than the
period before RLOF.

Non-conservative RLOF.
-a. Non-conservative RLOF in case A/case Br binaries.
In most of the MCBs (except the VMCBs), SW mass loss is not sufficiently

large to allow the primary to escape RLOF. At the beginning of the RLOF
phase, the primary suffers mass losses at very high rates (10−3M�/yr). If all
this matter is accreted by the secondary, it expands and both stars may enter a
contact phase. So the system may enter a situation as sketched in Fig. 5.22. Only
one possibility is known by which matter can leave a case A/case Br MCB in an
efficient way at rates comparable with the RLOF mass loss rate of the primary,
is mass transport through the second point of Lagrange, L2. In this way a ring
forms around the binary with a radius L2C, with C the center of mass. We
assume as simplification that the orbits are circular and that a circular ring
revolves in the same sense as the binary at a distance Aring from C, the mass
center. The angular momentum per unit mass in the ring is then

jring =
√

G(M1M2)Aring (5.39)

The variation of orbital angular momentum when−(1−β)dM1 is lost through
L2, is given by

dJ = jring(1− β)dM1 (5.40)

dP

P
= (1 + 3α)

(1− β)dM1

(M1 + M2)
− 3dM1

M1
− 3dM2

M2
(5.41)

with

α =
(M1 + M2)

2

M1M2

√
Aring

A
(5.42)

The ring formed by matter passing across L2 has as radius Lr ≈ L2C. For
a large range of binary mass ratios, L2C = 1.3A. Consequently, considering the
ratio Ar/overA = η as constant, equation 5.41 can be integrated.



5 Evolution of Close Binaries 243

Fig. 5.22. Mass loss from a case A/case Br binary across L2 and the formation of a
ring around the system, during RLOF

For β �= 0

P

Ps
= [

M1 + M2

M1s + M2s
][

M1

M1s
]3[

√
η(1−β)−1][

M2

M2s
]
−3[

√
η 1−β

β +1]

(5.43)

For β = 0, and η = 1.3, eq. 5.41 becomes

P

Ps
= [

M1 + M2

M1s + M2s
][

M1

M1s
]0.42e3.42 M1−M1s

M2 (5.44)

As usual, “s”refers to values at the start of RLOF. This formalism leads to
an important reduction of the orbital period.

-b. Common envelope phases for case binaries evolving according to case
Bc/C.

The RLOF in MCB for case Bc/case C mass exchange is very vehement. For
primaries with a convective envelope, mass loss leads to a rapid expansion soon
after the beginning of the RLOF. As a result the secondary will be dragged in
by the primary: this is the common envelope phase of a case Bc/case C binary.
Binaries consisting of a massive primary and a low mass secondary (q ≤ 0.2)
will not enter a RLOF stage. Instead, this secondary will be swallowed into the
envelope of the primary. Also here we may call this a common envelope stage.
As energy sources in a massive binary that can remove matter from a common
envelope we know stellar nuclear radiation energy and orbital energy. Stellar
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nuclear radiation can drive a stellar wind from the common envelope; the rate
is comparable to that of supergiants, i.e. a few times10−6 − 10−5M�/yr.

When the orbital energy is used in an efficient way this can lead to larger
mass loss rates. Perhaps, orbital energy of the secondary is transformed into
thermal energy of the common envelope (viscosity could play an important role)
and the secondary spirals-in into the envelope. A part of the thermal energy
goes into radiation; another part ejects matter of the common envelope out of
the system.

As illustration of the consequences of this common envelope /spiral-in pro-
cess, we consider a 20 M� OB type star with a companion of 2 M�. We assume
maximum efficiency for the transformation of orbital energy into escape energy.
From our computations we know that M1e = 7 M�, so we can estimate that the
removal of 13M�implies a reduction of the period by a factor 2000. We therefore
conclude that the spiral-in process in a binary with very small mass ratio is able
to remove a significant fraction of the mass of the primary star combined with
a severe reduction of the orbital separation and consequently of the period.

The variation of the period by stellar wind mass loss.
We consider the orbit as circular during the mass loss phase, and the stellar
wind mass loss as spherically symmetric. ω is the orbital angular velocity, and
r1 and r2 the orbital radii (with respect to the center of mass of the system) of
the stasr with mass M1 and M2 , dM1 and dM2 the mass of infinitesimal shells
that leave the stars. The angular momentum loss is then

dJ = ωr1
2dM1 + ωr2

2dM2 (5.45)

=
2π

P

M2
2A2

(M1 + M2)2
dM1 +

2π

P

M1
2A2

(M1 + M2)2
dM2 (5.46)

= J [
M2

M1 + M2

dM1

M1
+

M2

M1 + M2

dM2

M2
] (5.47)

We use now eq. 5.14 with e=0 and find

dJ

J
=

dM1

M1
+

dM2

M2
− 1

2
d(M1 + M2)
M1 + M2

+
1
2

dA

A
(5.48)

Combination of the last two ( 5.47 and 5.48) gives:

dA

A
=

d(M1 + M2)
M1 + M2

=
1
2

dP

P
(5.49)

hence
P

Po
= [

M1o + M2o

M1 + M2
]2 (5.50)



5 Evolution of Close Binaries 245

Mergers.
For mass ratios q below 0.2, the low mass companion is swallowed by the massive
component. This spiral-in process leads to drastic period reduction. So, when the
low mass component is a normal CHB star, both stars will probably merge. The
low mass secondary is practically a homogeneous star at the beginning of the
spiral-in phase. Therefore the evolution of the massive component after merging
is probably similar to the evolution of an accretion star with as mass the sum of
its own mass and the mass of the low mass star.

This can also happen in binaries with initial q > 0.2, for non-conservative
RLOF, leading to a significant reduction of the orbital period as predicted by
equations 5.43 or 5.44. The further evolution is uncertain. Possibly the evolution
of the merger could be similar to the evolution of a star that accreted an amount
of mass equal to the mass of the secondary. However there remains the difficulty
that the chemical composition of the secondary can be far from homogeneous,
so that the effect of merging is not predictable.

The case when the loss rates by RLOF and by SW are comparable.
If the mass of the primary in VMCBs exceeds 40-50 M�, the RLOF competes
with the LBV stellar wind mass loss process. When the SW is large enough, the
RLOF process can be avoided. In this case the period variation is entirely de-
termined by equation 5.50, implying a significant binary period increase. When
the SW and the RLOF mass loss rates are comparable, one can obtain a first
order estimate of the period variation by combining equation 5.50 (to determine
the period variation caused by the SW mass loss) and either equation 5.38 (con-
servative RLOF) or equation 5.43 or 5.44 (non-conservative RLOF). If the SW
mass loss and the common envelope/spiral-in act togetherone has to take into
account the binding energy of the common envelope.

5.3.4 The Evolution of the Primary Before and During its RLOF

Before the start of the RLOF, the two components of a MCB evolve as rotating
single stars of the same mass. Most of the evolutionary computations of MCBs
are performed using the structure equations established for a non-rotating spher-
ical symmetric plasma (equations 5.1 to 5.7). Comparison of the observed rota-
tional properties of MCB components with the ve-distribution of massive single
stars reveals that MCB components have rotational velocities (on the average)
smaller than or equal to those of single stars.

In primaries with masses beyond 40-50 M�, large LBV like SW mass loss
occurs. Consequently the amount of matter lost by a primary during its RLOF
is largely reduced. For very large SW, the RLOF will not even begin. After the
removal of most of the H-rich layers by SW and possibly by RLOF the primary
evolves into a WR star; SW mass loss continues at high rates (equation 5.50).
In table 5.5 we summarize some evolutionary properties of the orbital elements
of galactic binaries where this type of SW dominated evolution applies. We
call ΔMSW the total mass lost by the primary due to SW, and ΔMRLOF the



246 Bert C. De Loore

mass lost due to RLOF (ΔMSW + ΔMRLOF is then the total mass of the H-
rich envelope of the primary). The period variation caused by the spherical
symmetric SW is given by equation 5.50.During thr RLOF the loss/transfer
of ΔMRLOF implies a period variation; for the 60 M� + 5 M� binary, the
spiral-in formalism was adopted . Note that, even when the spiral-in process
is responsible for the removal from the 60 M� star of only a small amount of
mass, the orbital period reduction is very significant. Later on it will become
clear that this reduction is necessary for the explanation of the low mass X-
ray binaries with a BH component, i.e. low mass X-ray binaries with a BH
component provide indirect evidence that LBV mass loss is not large enough for
a very massive primary to escape the RLOF.

Table 5.5. The change of the period evolution in a binary with a 60 M� primary;
during an LBV SW phase the star loses 10 M� ; during an ensuing RLOF phase the
starloses an additional 6 M�; the results are compared to the case where the whole 16
M� are lost by LBV SW; P is the period, Po the initial period, SWR is the start of the
WR phase, SWC is the beginning of the WC phase, ECHeB is the end of CHe-burning.
CHeB; DMSW-O DMSW-LBV, DMRLOF are resp. the total mass lost by the primary
during the O-type phase, the LBV phase and during the RLOF/spiral-in phase

System ΔM
SW −O

ΔM
SW −LBV

ΔM
RLOF

( P
Po

)
SW R

( P
Po

)
SW C

( P
Po

)
ECHeB

60+30 12 16 0 - 2.2 3 5.2
- 12 10 6 b=0.5 1.1 1.5 2.5
- - - - b=1 1.8 2.4 4.1

60+10 12 16 0 - 2.8 4.5 11.5
- 12 10 6 b=0 0.2 0.3 0.8

60+5 12 16 0 - 3.1 5.4 17.4
- 12 10 6 spiral-in 0.03 0.05 0.2

Best-fit relations between the initial ( Mi) and final mass (Mf ) for initial
mass between 3 and 7 M�:

Galaxy : Mf = 0.1M1.32
i (5.51)

LMC : Mf = 0.11M1.32
i (5.52)

SMC : Mf = 0.124M1.32
i (5.53)

for initial mass between 7 and 15 M�:

Galaxy : Mf = 0.093M1.44
i (5.54)

LMC : Mf = 0.085M1.52
i (5.55)

SMC : Mf = 0.048M1.7
i (5.56)
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5.4 The Evolution of the Secondary

5.4.1 Accretion Effects

Mass transfer occurs either by direct accretion by the secondary, or by formation
of a Keplerian disc. Matter falling onto a star has a velocity close to the free-fall
velocity vf−f

vf−f =

√
2GM

R
(5.57)

This can be used to calculate the dynamical pressure Pdyn exerted by this matter:

Pdyn = ρv2
f−f =

Ṁ

4πR2 vf−f (5.58)

Ṁ is the mass accretion rate.
For MCBs this dynamical pressure is always much smaller than the hydro-

static pressure and may be neglected. So to examine the reaction of a star accret-
ing matter we may assume hydrostatic equilibrium. The gas stream produces a
shock front near the stellar surface (Ulrich and Burger, 1976). The gravitational
energy of this instreaming matter is converted into thermal energy and is radi-
ated in the form of UV radiation and X-rays. Assuming that this process occurs
with 100 percent efficiency, the radiated luminosity produced by accretion, hence
called Lacc is

Lacc =
GM

R
Ṁ (5.59)

In MCBs, this luminosity only exceeds the critical Eddington luminosity when Ṁ
is larger than 10−2M�/yr, which is one or two orders of magnitude larger than
the mass transfer rates during a typical RLOF. We therefore conclude that the
accretion luminosity does not alter the hydrodynamics of the in-falling matter.
Although accretion of matter in a binary is local, thus not spherical we may
assume that this matter is very rapidly redistributed over the stellar surface so we
can model the effect of accretion by a spherical symmetric formalism. So the main
effect of mass accretion is the compression of all mass layers in the stellar interior
due to the increase of gravity and consequently the release of gravitational energy
of these layers. This release is represented by the entropy term in the energy
equation 5.10. Adopting the mass fraction m = Mr

M as independent variable (see
also Neo. et al., 1977), the energy equation reduces to

dS

dt
=

∂S

∂t
− Ṁ

M
[

∂S

δlnm
] (5.60)

The second term is called the homologous term, the first one the non-homologous
term.

We can distinguish two cases, the standard accretion model, and the accretion
induced mixing model (full mixing model).
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Model for standard accretion. If we assume that the radiative equilibrium
of the outer layers is not disturbed by accretion, in other words, if the entropy of
the infalling matter is equal or larger than the entropy of the envelope of the mass
gainer we are dealing with the ’standard accretion model’. The entropy gradient
remains positive during the accretion, the homologous term in equation 5.60
leads to an enhancement of the luminosity: the star becomes overluminous with
respect to its mass. This overluminosity becomes significant if the star does not
have sufficient time to get rid of this excess energy (accretion time scale (≈ M

Ṁ
) shorter than the thermal time scale (equation 5.24) thus

Ṁ ≥ 3.210−8 RL

M
(5.61)

(in M�/yr, R, L and M in solar units). As an example, a mass gainer of 15M�
star at the end of CHB becomes significantly overluminous for an accretion rate
> 10−3M�/yr. A significant overluminosity may cause the outer layers of the
star to expand and so a situation can arise where also the mass gainer fills its
critical equipotential surface: the binary is then a contact binary. The reaction of
the convective core of an accreting star in the case of the standard model is very
important. Secondaries in interacting binaries may have already performed a
large part core hydrogen burning when RLOF of the primary starts. This means
that a molecular weight gradient in its interior has been built up. An increase
of the stellar mass leads to an increase of the stellar convective core, but this
leads on its turn to the formation of a molecular weight barrier at its border,
prohibiting a fast increase of the convective core. The treatment of convection
and semi-convection is extremely important. The timescale of mixing depends
on the diffusion coefficient.

We can consider two limiting cases:
1: diffusion in the semi-convective layers on top of the convective core

occurs very fast. The boundary of the convective core is determined by the
Schwarzschild criterion; the chemical profile of the elements in the semi-convective
region satisfies the condition ∇rad = ∇ad.

2: the diffusion coefficient is small, so the diffusion process in semi-
convective regions is slow (small diffusion coefficient). We may expect a much
slower increase of the convective core when the star is accreting matter and a
situation can even occur where the convective core does not increase.

During the RLOF, a primary may transfer to its companion mass layers,
which have been nuclearly processed during an earlier evolutionary phase. This
mass with a molecular weight larger than the molecular weight of the outer layers
of the mass gainer, when accreted, causes an inverted μ-gradient. This situation
is very unstable and initiates mixing. The process, commonly known as ’thermo-
haline convection’, has been studied by e.g. Zahn (1983) and by Kippenhahn et
al. (1980). They conclude that it is a very fast process, which may be treated as
an instantaneous process. The numerical procedure for this fast mixing is then
straightforward: the accreted mass can be mixed with the outer layers of the
gainer until a situation occurs where the molecular weight of the mixed layers
is equal to the molecular weight of the layer just below the mixed region. It is
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obvious that this process will produce stars with increased N and depleted C
and O at their surface.

Model for accretion induced full mixing. Accretion of mass implies accre-
tion of angular momentum; hence a mass gainer will spin up, which will induce
mixing and thus destruction of the radiative equilibrium. If moreover, the en-
tropy of the accreted matter is much lower than the entropy of the envelope of
the gainer, convection will smear out the entropy profile. This convection zone
will grow inwards. The homologous term in equation 5.60 vanishes in this con-
vection zone; therefore the overluminosity will not be as large as in the standard
accretion model. The limiting situation is of course the complete mixing of the
whole star. We will call this the “model for accretion induced full mixing ”.

5.4.2 Evolutionary Computations

1. Accretion case 1a.
Diffusion in the semi-convective layers on top of the convective core occurs
very fast.
For accretion time scales, smaller than the thermal time scale of the CHB
star, the mass gainer has a position in the HR diagram very close to that
of a normal CHB single star of the same mass and composition. After the
accretion phase, the further evolution of the star is practically similar to that
of a normal single star of the same mass. If the accretion time scale exceeds
the thermal time scale, the mass gainer becomes overluminous and its radius
increases significantly. When this occurs in a binary, the mass gainer as well
may fill its critical Roche volume and a contact system is formed. At the end
of the rapid accretion phase, thermal equilibrium is restored very fast and the
star moves in the HRD to the position of a normal single star of the same
mass and composition. Also in this case the further evolution is normal, After
accretion, the stars are rejuvenated. In the HRD, they are on a time-isochrone
with a time scale lower than the real lifetime. For binaries with a mass ratio
close to one, the RLOF starts when the secondary is also in its hydrogen shell
burning stage. In Fig. 5.23 we show the evolution of a 12 M� hydrogen shell
burning star accreting 8 M� and we compare the track with that of a 12 M�
CHB mass gainer.
The He core is fixed and somehow protected by the hydrogen burning shell.
Accretion does not increase the core but instead produces an extended fully
convective region on top of the H- burning shell. After the accretion phase the
star is (slightly) underluminous for its mass,
The most important feature is the further evolution of the gainer after the ac-
cretion process. The star has a He core, small for its mass, and, as consequence
of a large convection region on top of the burning shell; this shell possesses a
large amount of fuel. So a rapid expansion of the star does not occur during
the H shell burning and CHeB phase. The star remains in the blue part of the
HRD and does not make evolve towards the RSG region. We did not continue
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Fig. 5.23. The evolution of a 12 M� star accreting 8 M�. A dashed track shows the
evolution for accretion onto a CHB star, a full track for accretion onto a hydrogen
shell burning star. Some evolutionary stages are indicated: (1) : end of the accretion
phase: the star contracts and restores rapidly its thermal equilibrium; (2) : end of the
contraction phase; the star has attained thermal equilibrium and has a position in the
HR diagram normal for its mass and chemical composition. The evolution is continued
till the end of CHB.

our evolutionary computations after CHeB up to the SN explosion, but we
can reasonably believe that the star remains a blue star till the end.

2. Accretion case 1b.

In this case the diffusion in semi-convective layers is very slow. The formation
of a μ-barrier on top of the convective core right at the start of the accretion
phase, inhibits a rapid increase of the core mass. Even when the gainer is
a CHB star, a situation can arise which is comparable to the one for an
accretion case 1a, and when the gainer is an H shell-burning star. Braun
and Langer (1995) carried out detailed computations. After accretion, the
stars are underluminous; rejuvenation is less pronounced, compared to case
1a. Even gainers, which were CHB stars at the beginning of the mass transfer,
can remain blue stars during their entire further evolution after accretion.
Furthermore, although the stellar mass was considerably increased, their core
mass remained almost the same as before the accretion. Their further lifetime
(and certainly their CHeB lifetime) may therefore be significantly larger than
that of a normal single star of the same mass. This scenario explains (at
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least partly) the large number of AB-type supergiants observed in the blue
Hertzsprung gap in the HR diagram.

3. Accretion case 2.
Even for large accretion rates, the large expansion of the star, - typical for
accretion case 1-, does not occur. When the star is fully mixed, the treatment
of semi-convection is of no importance. Figure 5.24 shows evolutionary tracks
of a 20 M� star accreting 5 M� at the end of CHB. The three accretion
cases described above, are shown; and the evolution track of a normal 25 M�
single star as well. The accretion tracks of the various models are replaced by a
dashed line joining the HRD positions before and after the mass accretion. The
rejuvenation of a mass gainer is very pronounced with the accretion induced
mixing model. When the accretion process starts during the second half of the
CHB phase of the gainer, the star after accretion is significantly overluminous
andremains so during the further evolution. For a given spectral type and
luminosity class of the gainer, the mass can be 20 to 30 percent lower than
that of normal stars of the same class.

5.4.3 The Variation of the Chemical Abundances
in the Surface of a Mass Gainer

During the second part of the RLOF, the primary transfers CNO processed
matter. In this way, RLOF and thermohaline mixing produce stars with surface
layers significantly N enhanced and CO depleted. If, owing to accretion, the
star is fully mixed the effect is obviously much more pronounced. The surface H
abundance in mass gainers is not very much affected in the standard case. With
the accretion induced mixing process, on the contrary, the hydrogen abundance
in the outer layers of the gainer can significantly be reduced.

5.4.4 The Further Evolution of a MCB
after the Core-Collapse of the Primary

The evolution of the primary is finished when the core is composed mainly
of iron and nickel, and nuclear processing ceases. When the mass of the FeNi
core is larger than a given critical value, the whole star will probably collapse
and will form a massive black hole (BH). This critical value depends on the
equation of state of matter where electrons and nuclei are degenerate, and this
is not well known. Also the post-CHeB evolution of massive stars is not well
understood, hence linking the critical core mass value to a critical value for
the initial mass of a star is uncertain. Possibly above a minimum initial mass
of 40-50 M� binary components might form BHs. Observations of massive X-
ray binaries reveal that neutron stars are remnants of binary components with
initial mass up to at least 40 M�, and this is not in contradiction with the value
quoted above. SN explosions do not occur when BHs are formed, hence it can
be expected that the majority of binaries with primaries beyond ≈ 40 − 50M�
will pass an LBV mass loss phase, possibly followed by a RLOF but, due to
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Fig. 5.24. Evolutionary tracks of a 20 M� star, accreting 5 M� at the end of its CHB
phase, with the three accretion models 1a, 1b, 2, discussed above. For comparison also
the track of 25 M� single star

the LBV stellar wind, with a reduced mass loss and mass transfer, and then
form an OB+BH binary. For primaries with initial mass below 40-50 M�, the
final FeNi core will explode and finish as a NS. The mass layers outside the core
are ejected. The event can possibly disrupt the binary. In this case, the further
evolution of the OB component is that of a single star. Since there was accretion,
the chemical composition may be different from that of a normal single star. We
can consider the following possibilities:

• The mass of the OB type mass gainer is larger than 40-50 M�. In this case
we expect the further evolution of the gainer is similar that of a single star
of the same mass and hence will evolve according to the LBV/RSG mass loss
processes.

• The mass of the OB type mass gainer is smaller than 40-50 M�. Primaries
in binaries with a mass ratio not to close to one will evolve after the mass
transfer phase like single stars of the same mass. When the initial mass ratio
is close to one, the star can remain a blue star during its whole life. These
stars will then afterwards explode as blue supergiants, producing events like
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SN 1987A. When the SN explosion does not disrupt the binary, an OB+NS
binary remains. The evolution of an OB+ cc binary (cc, a compact object, is a
NS or a BH) depends on the orbital period, the mass of the OB component and
the initial mass ratio q of the system. The q-value determines the evolutionary
phase of the mass gainer at the start of the mass transfer.

When the mass of the OB type component exceeds the minimum mass of
LBVs (40-50 M� for LBV’s of the Galaxy), the OB star will lose a significant
amount of its H rich layers by an LBV type SW, possibly followed by a spiral-
in stage. The total amount of matter lost by the OB star by this spiral-in is
strongly reduced by the preceeding SW mass loss. Such binaries will probably
evolve into a core helium-burning star accompanied by a cc, (CHeB+cc); these
are (WR+cc) binaries. Such systems are rare. When the mass of the OB type
component is smaller than 40-50 M�, we can consider three subclasses:

• The period is large enough to let the OB star evolve into a RSG before it fills
its critical Roche volume; the OB star can then lose most of its H- rich layers
by a RSG stellar wind and the binary evolves into a WR+cc, with a very large
orbital period. Such large period systems are probably very rare.

• The mass gainer in the progenitor binary started late enough with accretion,
so that afterwards it remains in the blue part of the HR diagram during its
remaining lifetime. Probably the OB+cc binary will continue as OB+cc bi-
nary till the SN explosion of the OB star. This explosion will be of type II SN
but from a blue progenitor, like SN1987A. The class of OB+cc binaries are
candidates for massive X-ray binaries, so the X-ray lifetime of this class could
be very long, possibly the entire CHeB lifetime of the OB type star.

• After accretion the OB star evolves more or less as a normal star; the period
of the OB+cc binary is small enough to allow the OB star to fill the critical
Roche volume before it evolves into a RSG. Later on the binary enters a
spiral-in stage.

5.5 Evolutionary Computations
for Massive Close Binaries and Observations

5.5.1 Introduction

We have now, for a large sample of binaries, with various masses, periods and
mass ratios computed extended series of evolutionary tracks. The aim is to find
out if we can match the characteristics of observed binaries by these tracks. Some
groups of stars are in this respect very interesting, a.o. the Wolf-Rayet stars, the
massive X-ray binaries, OB runaways, . . .
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5.5.2 The WR Stars

WR stars show in their spectrum emission lines of helium and nitrogen, -WN
stars-, helium and carbon, -WC stars-, or helium and oxygen, -WO stars. The
majority of the WR stars are hot hydrogen deficient core helium burning stars.
WN stars show CNO equilibrium abundances, the WC and WO types show the
products of the 3α-process. Some WR stars show WC and WN characteristics
together: these are called WNC stars. The relative strengths of NIII, NIV, NV
in WN stars and CIII, CIV in WC stars, allow a further subdivision of WR stars
from WN2 to WN9, WC4 to WC9 (Smith et al., 1996). In most of the late type
WN stars we see hydrogen in their spectrum; the majority of the early types are
hydrogen deficient.

WN stars without hydrogen (mostly early types) are called WNE types; WN
stars with hydrogen (mostly late types) are classified as WNL types (Vanbeveren
and Conti, 1980). Figure 5.25 shows the WR area in the HR diagram. This has
to be considered with much care, since the determination of Teff in the case
of WR stars, is very difficult. Owing to the very large stellar wind mass loss
rates, the outflowing mantle is very dense and all photospheric information is
hidden. The WR spectrum is the spectrum of the mantle; hence the derived
temperature is the temperature of this mantle. Hence the temperature resulting
from the NLTE analyses is too small, the real Teff is larger, perhaps 100000K.
The WR region in the HR diagram is in the upper-left corner, LogTeff ≥ 4.4
and Log L/ L� ≥ 4.5.

For a discussion of their relation to other massive stars, one has to con-
sider volume-limited samples and therefore, good distance determinations are
required. If we are sure the WR star is a member of a well-populated stellar
aggregate, the distance can be determined. For WR stars not belonging to a
cluster or association, the problem is more difficult and one has to rely on WR
subtype-absolute visual magnitude calibrations. Stellar wind mass loss rates for
galactic WR stars were derived in a semi-empirical way. A linear best fit for
stellar wind mass loss rates for galactic WR stars (but with very poor statistical
significance (Hamann, 1994)): is given by

log(−Ṁ) = 1.5logL− 12 (5.62)

with M in M�/yr, L in L�.
WR stellar winds are not homogeneous, but they are clumpy; the use of ho-

mogeneous models could overestimate the mass loss rates for WR stars perhaps
by a factor 3. For more details, and tables with calibration, we refer to Vanbev-
eren, Van Rensbergen and De Loore, 1998. The dependence of the WR mass loss
rates on metallicity is also not clear.

5.5.3 WR+OB Binaries

For a number of WR+OB binaries, the WR mass loss may be driven from the
orbital properties and the inclination. In the case there is not enough informa-
tion, the mass of the OB-type component may be estimated from a mass-spectral
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Fig. 5.25. The HRD area occupied by WR stars

type-luminosity class calibration. We can consider the mass gainers as normal
stars calculated with the standard accretion model, or we can use the results
for gainers calculated with the accretion induced mixing model during the mass
transfer. From the evolutionary computations of hydrogen poor CHeB remnants
after RLOF and the mass relation (5.31,5.32) (small overshooting during CHB),
one can estimate the initial mass of these systems. For WR stars of the WNL or
WNE- type, and assuming the star at the beginning of its WNL (resp. WNE)
phase gives a minimum progenitor mass; assuming the star at the end of its
WNL (resp. WNE) phase gives a maximum progenitor mass. When the WR
star is a WC type, we get only results when it is assumed that the WC star is
at the beginning of the WC phase. We may conclude that all the observed WC
binary components seem to have an initial mass larger than 35 M�. So probably
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for the majority of them no SN explosion will occur; they will finally collapse
and form a BH.

A large fraction (at least 60 percent, possibly 90 percent) of the observed WN
binary components seem to have initial masses larger than 30 M� and therefore,
just as for the WC binary components, they will probably collapse into a BH.

If one uses evolutionary computations with large convective core overshoot-
ing or rotation during the CHB phase, the initial mass of the WR progenitors
may on the average be ≈30 percent smaller than the values given in table 5.6.
The conclusions concerning the BH formation however remain valid, since over-
shooting and/or rotation also have a tendency to reduce the minimum mass for
BH formation.

Table 5.6. The probable mass range of the WR components in galactic WR+OB
binaries; M�RLOF is the mass estimate of the WR progenitor just after RLOF and
Minit is the probable initial mass of the WR component assuming small convective
core overshooting during CHB. M is in M�

WRnr HD P Sp.Type MWR + MOB M�RLOF Minit

21 90657 8.3 WN4+O4-6 15+29 17-21 35-45

31 94546 4.8 WN4+O8V (9-13)+(20-30) 11-18 27-40

47 E311884 6.3 WN6+O5V 42+50 42-44 >70

97 E320102 11.6 WN3-4+O5-7 (11-26)+(23-52) 14-29 35-55

127 186943 8.6 WN4+O9/B0V 9+22 11-15 27-35

133 190918 111.8 WN4+O9Ib (14-18)+(33-42) 16-23 35-50

139 193576 4.2 WN5+O6 9+26 12-15 30-35

151 CX Cep 2.1 WN5+O8 11+21 13-17 33-38

153 211853 6.7 WN6+O6 (13-17)+(26-35) 16-23 35-50

155 214419 1.6 WN7+O 31+26 31-33 57-65

9 63099 14.7 WC5+O7 (16-25)+(25-40) >22 >45

11 68273 78.5 WC8+O 9+23 >16 >38

30 94305 18.8 WC6+O6/8 (11-16)+(23-35) >17 >37

42 97152 7.9 WC7+O7V (12-18)+(20-30) >18 >39

79 152270 8.9 WC7+O5-8 (8-19)+(22-52) >15 >35

113 168206 28.7 WC8+O8-9III-V 12+24 >18 >39

140 193793 7.9yrs WC7+O4-5 23+62 >29 >56

V Sag 0.51 WN5?b+F8V 1+3.8 >1 >10(?)
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5.5.4 WR+OB Systems without RLOF

1. LBV-Wind-made systems
For primaries of MCBs larger than 40-50 M� the binary may attain the
WR+OB phase without mass transfer. A spherically symmetric SW increases
the orbital period of the binary, so these WR+OB binaries should have pe-
riods larger than 15 days for WN types, and larger than 20 days for WC
types. Another point is that, since there was no accretion, the stars were
not rejuvenated, hence the WR star and the OB type companion need to be
on the same time-isochrone, i.e. the OB companions in these binaries should
be preferentially late O-type giants or supergiants or early B type supergiants.

The LBV scenario leads to good values for the spectral type of the OB type
component of the WC binaries HD 94305 and HD 168206, and is probably
a good evolutionary scenario. The O type components in E311884 and HD
193793 have an early spectral type; they cannot be explained if rejuvenation
has not played a role. HD 68273 (γ2V el) and HD 190918 are good candidates
for the LBV wind scenario. Figure 5.26 summarises the evolution of both
systems with the assumption that both systems passed an LBV phase rather
than RLOF.
In the figure is also sketched their further evolution. Primaries with initial
mass larger than 40-50 M� will probably finally collapse and form a BH (no
SN!). Both systems will evolve into a BH+OB binary, with a period of the
order of 100 days. When the OB type component starts filling its Roche lobe,
the BH will spiral-in into the atmosphere of the OB star. If the conversion
of orbital energy into potential energy of the outer layers of the OB star the
system after the spiral-in will be a WR+BH binary with a period of 5-8
hours. Around many single WR stars shell like structures seem to be present,
possibly produced during previous efficient LBV- or RSG-SW mass loss.

2. RSG-Wind-made systems
Primaries smaller than 40 M� may lose their hydrogen rich layers by a large
SW during the RSG if the original binary period was large (> 600 days).
The binary period increases with SW mass loss, so it can be expected that
the period of post-RSG WR+OB binaries is larger than 1000 days. Since
accretion (hence rejuvenation) did not occur in these binaries, just as for
binaries evolving according to the LBV scenario, the OB type component
should be a late O type giant/supergiant or an early B type supergiant. Three
good candidates are HD 137603, HD 192641 and HD 193077.

5.5.5 WR+OB Systems Made by RLOF

In MCBs where the SW of the primary is sufficiently small to allow RLOF,
the removal of an important fraction of the matter lost by the primary due to
RLOF and flowing out of the system leads to a very large reduction of the orbital
period.
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Fig. 5.26. Evolution scenario for the WR binaries γ2V el and HD 190918, LBV wind
scenario candidates

Mass transfer during RLOF rejuvenates the mass gainer, so when the OB
component in a WR+OB binary looks younger than the WR star, this is a proof
that mass transfer occurred. Inspection of the spectral types of the OB stars in
observed WR+OB binaries, reveals that mass transfer must have taken place
in the binaries HD 90657, HD 94546, E320102, HD 186943, HD 193576 (V444
Cyg), HD 63099, HD 97152, HD 193793(?). All these systems are practically
circularized, except HD 193793, and this indicates that probably tidal effects
played a significant role. An example of the class of binaries where mass transfer
must have played an important role, is V444 Cyg. The observed mass of the
WNE component ≈ 9 M�, so from our evolutionary catalogue we derive as mass
of the progenitor ≈ 30 M� and an age of the binary of 7 million years. The OB
companion is an O6 star. The age of a normal O6 star is 1-2 million years, hence
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Fig. 5.27. Evolution scenarios for the OBN+OB binary HD163181 and the WR+OB
binary V444 Cyg

the OB star must have been rejuvenated, and this means that mass accretion
must have occurred. The observed mass of the O6 component is ≈ 25− 26M�.
A normal O6 star has a mass of 37 M� (when it is a class V) and ≈ 48M� (when
it is a class III). Therefore we can conclude that either the O-type component is
not an O6-type star but rather an O7-O8, or the O6 component is significantly
undermassive for its spectral type, in other words, overluminous for its mass. If
one adopts a conservative RLOF, to obtain the observed post-RLOF component
masses and the orbital period, one finds that the progenitor system must have
been a 30 M� + 12 M� case A binary with a period of ≈ 3 days. This scenario
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does not lead to an overluminosity of the O-type mass gainer. Soon after the
start of the RLOF also the secondary fills its Roche volume and a contact system
is formed. A conservative scenario for V 444 Cyg is not very likely.

So one has to try something else. Figure 5.27 shows the quasi-conservative
MCB evolutionary scenario and Fig. 5.28 shows the evolutionary tracks. For the
evolution of the gainer we adopted the full mixing process and treated accretion
in the standard way. The progenitor system is a 30 M� + 20 M� MCB with
initial period P = 46 days. Owing to SW during CHB, the orbital period increases
slightly to 54 days. To match the observed masses of the components of V444
Cyg we had to assume β=0.5 i.e. half the mass lost by the primary during its
RLOF also leaves the system. However the assumption β=0.5 depends on the
choice of the initial mass of the secondary. Starting with a 16 M� secondary, the
masses of V444 Cyg are recovered with β = 0.8.

Fig. 5.28. Case B evolution for the WR+OB binary V444 Cyg. It is assumed that the
RLOF process was quasi-conservative

The period at the end of the RLOF is 3.5 days: the system matches a WNL
+ OB binary. Further mass loss by SW removes the remaining hydrogen rich
layers. When the WR star has evolved into a WNE star, its mass is 9 M�, the
period is 4.2 days. At the end of the mass transfer, when the secondary has been
fully mixed, the O6-type component may be an overluminous star with mass
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M= 26 M� and a homogeneous composition (X, Y, Z) = (0.5, 0.48, 0.02).

The further evolution of V444 Cyg.:
The WR star will explode leaving as remnant a NS. If the binary is disrupted,

the single OB-type runaway will become a RSG. Mass loss by SW will remove
the hydrogen rich layers and the star will evolve into a WR star with mass
between 10-14 M�, depending on the previous RLOF, conservative or quasi-
conservative, and on the adopted accretion model, the standard accretion model
or the accretion induced mixing model. If the system is not disrupted, the binary
will evolve into a spiral-in phase. The observed period is 4.2 days, so the NS will
spiral-in completely and a Thorne-Zytkow-object (TZO) will be formed. Further
SW mass loss during the RSG phase of this TZO will remove its H-rich layers and
a WRTZ is formed. Figure 5.27 shows the evolutionary similarity, -the present
situation, the component masses -, of the binary HD 163181 and V444 Cyg. HD
163181 is on its way to evolve into a WR binary like V444 Cyg.

5.5.6 WR Stars with an OB Type Companion of Lower Luminosity

Important mass transfer will not occur occur in OB+OB binaries where the
LBV SW mass loss was very efficient, or if the period is sufficiently large so
that the primary suffers a RSG stellar wind mass loss, before starting RLOF,
or if the binary is a case Bc type evolving through a common envelope, Since
there was no mass transfer, the mass ratio of the binary (MOB/MWR) may be
significantly smaller than in those WR+OB binaries where mass transfer has
occurred, and it will be more difficult to detect the OB companion. The WR
stars WR19, WR104 and WR119 (catalogue of Van der Hucht et al., 1981) are
possibly binaries with a fainter OB type; their progenitors might be MCBs that
evolved according to one of these scenarios. We can expect the presence of shell
or ring structures as observed around some single WR stars.

5.5.7 WR Stars with a Normal Low Mass Companion

Her X-1-like binaries, and LMXBs with a BH component, are an indirect proof
of the existence of MCBs with extremely small mass ratio with a rather high
frequency. When the primary in such binaries is sufficiently massive and when the
LBV SW mass loss was very efficient, a WR accompanied by a normal low mass
companion is formed with a period of the order of some days to a few decades.
For primary masses below 40-50 M� and for sufficiently large binary periods,
the binary will evolve according to the RSG scenario, leaving as remnant a WR
star and a normal low mass companion with a very large period (order of years).
Also a case Bc binary with an initial mass ratio below 0.2, may evolve into a WR
accompanied by a normal low mass companion after a SW/common envelope
phase. Figure 5.29 illustrates the MCB evolution leading to the formation of
binaries with a CHeB star (WR) + low mass companion.

CHeB (WR) stars with an initial mass below ≈ 40M� will end their evolution
as NS accompanied by a SN explosion; if their mass is larger than 40-50M� they
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Fig. 5.29. Scenario for MCBs with small mass ratio, evolving into WR stars with a
low mass solar type component (possible evolutionary scenario for HD 50896 and HD
197406)

will collapse into a BH without a SN. If the SN explosion does not disrupt the
system, the cc+low mass star system may further evolve into a LMXB, like Her
X-1 for the lower masses, or an LMXB with a BH candidate for larger masses.
Binaries with primaries below 40 M�, hence where a SN occurs, will in most
cases be disrupted. and will leave a single NS and a low mass runaway with a
large peculiar space velocity, exceeding 100 km/s. HD 50896 and HD 197406 are
two WR candidates with a low mass companion orbiting with a period of a few
days,
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5.5.8 The Descendants of CHeB+OB Binaries

The CHeB remnant after RLOF in MCBs evolves into an NS or a low mass BH
preceded by a SN explosion, or the CHeB star can collapse completely (without
a SN explosion) and form then a massive BH. The SN explosion can lead to
the disruption of the binary. The evolution of the OB-type star determines the
further history of the binary (or remaining single star). OB stars with a compact
companion may become HMXB.

5.5.9 X-ray Binaries

About 200 Galactic X-ray sources are known, with fluxes in the energy range 1-10
keV (hard X-rays). Some strong sources were found in the Magellanic Clouds.
From the observed fluxes X-ray luminosities LX ≈ 1033 − 1038 erg s−1 were
derived. Zeldovich and Guseynov (1966) suggested that at least some strong X-
ray sources are rotating neutron stars, accreting matter expelled by a companion
star. This was confirmed by Schreier et al. (1972); they showed that the source
Cen X-3 pulses with a period of 4.84 s; such a period is characteristic for the
rotation period of a neutron star with a strong magnetic field, member of an
eclipsing binary with a 2.087 day period.

1. High mass X-ray binaries (HMXB)
HMXBs are X-ray binaries with as optical component a massive star. Some 70
HMXBs have been found. For 22 systems an orbital period could be derived.
They are listed in Table 5.7. For pulsating X-ray sources, the pulse period is
given. One can distinguish two subclasses:

(a) HMXBs with an OBe type optical component
OBe/X-ray binaries have orbital periods between 15 days and a few hundred
days. OBe/X-ray binaries have spectral types earlier than B2. The X-ray
component is pulsating hence indicating it is a rotating, magnetic NS. OBe
optical components lay well within their Roche volumes. They lose matter
by stellar wind. As a consequence of their high rotation velocities a large
part of this stellar wind matter may be confined within a disc. X rays are
produced by accretion of this disc matter by the neutron star.

(b) Standard HMXBs
The optical components of standard massive X-ray binaries are giants or
supergiants. They have very small eccentricities and their orbital periods
are in most cases smaller than 10 days. They are persistent X-ray sources.
There are two groups of HMXBs:
- a large group where the X-ray source is pulsating and where most likely
a rapidly rotating NS is operating (the spin period equals the pulse period)
with strong magnetic fields
- a smaller group with non-pulsating X-ray sources (ex. Cyg X-1, LMC X-3)

1. Pulsating standard HMXBs.
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If the optical star in an X-ray binary is identified, the system is eclipsing and
the X-ray source pulsates, accurate mass estimates of the two components
can be obtained. From the Doppler shifts in the spectra at various orbital
phases and Doppler tracking of the pulse period of the pulsar the radial
velocities can be found.
When the optical star nearly fills its Roche lobe, it has the shape of a
pear, which causes photometric variability. Comparing the theoretical light
curves of nearly Roche lobe-filling stars and the observed light curve allows
a determination of the inclination angle i. This has been performed for six
standard pulsating HMXBs It turned out that the observed average mass
value of the six pulsars is about 1.4 M�, the Chandrasekhar limit of a
neutron star.
2. Non-pulsating HMXBs.
From the mass- spectral type- luminosity class relation for the optical com-
ponent the mass of the compact object can be derived. For LMC X-3, was
found MX ≈ 6 M�, a value beyond the upper mass limit of a stable neu-
tron star; therefore the X-ray source is classified as a black hole. The most
probable BH candidate is the X-ray source in Cyg X-1. In 1966 (Giacconi
et al., 1967) discovered the X-ray binary Cyg X-3. The X-ray flux shows
a 4.8 hour period modulation and Van Kerkwijk et al. (1992) classified it
as a WR+cc system. Two other WR+cc candidates are HD 50896 (vari-
ability period: 3.76 days) and HD 197406 (variability period: 4.32 days).
Both candidates sit far above the galactic plane. For HD 50896 the radial
component of the runaway velocity is about100 km/s (Schmutz, 1997). If
HD 197406 is a WR+cc, it might be a WR+BH binary (Drissen et al., 1986).

2. Low mass X-ray binaries (LMXB) with a MCB history
LMXBs are X-ray binaries with as optical component a low mass star. Many
LMXBs are old binaries belonging to Globular Clusters. They are probably
formed by close encounters, i.e. tidal capture or by exchange collisions of
old neutron stars (Verbunt, 1990; Bhattacharya and Van den Heuvel, 1991).
Some LMXBs are found in the galactic disc. A formation mechanism as for
globular cluster sources is not very likely, since the stellar density in the disc
is much smaller. More plausible is the ’accretion-induced collapse’ process
(Canal et al., 1990). A Roche lobe filling low mass blue star sends matter to
a white dwarf companion (an O-Ne-Mg white dwarf) with a mass near the
Chandrasekhar limit. When the mass is sufficiently large, the WD collapses,
leaving an NS and a low mass companion. A few LMXBs are important for
a better understanding of MCB evolution, the LMXB BH candidates and the
X-ray pulsar Her X-1. Their characteristics are given in Table 5.8.

5.5.10 HMXBs with OB-Type Components

Massive X-ray binaries (HMXBs) are the end products of the evolution of MCBs,
after explosion of the evolved mass gainer, leaving a compact companion. For
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Table 5.7. Orbital data of known HMXBs. Mcc is the mass of the compact companion
and Mo.s that of the optical star (M�)

Source Sp.Type Porb(d) e Mcc Mo,s Ppulse(s)

HMXBs with OBe component

A 0538-66 B2 IIIe 16.7 ≥0.4 104
4U 0115+63 Be 24.3 0.34 3.61
E0236+610 B0e 26.5
V 0332+53 Be 34.2 0.31 4.38
EXO 2030+375 Be 46 0.4 41.8
A 0535+26 O8.7 IIIe 111 0.2-0.4 104
GX 304-1 B2Vne 133 272
4U 1145-679 B1Vne 188 292

Standard HMXBs

A 0114+65 B0.5Ib 11.6 850(?)
X Per O8.5III-V 580? 835
4U 1700-37 O6.5f 3.4 0.01 1.8±0.4 52±2
Vela X-1 B0.5Ib 9 0.09 1.9±0.6 24±2.5 283
1E 1145.1-614 B2Iae 9.8 297
LMC X-1 O7-9III 4.22
4U 1538-52 B0I 3.7 1.1±0.4 21±9 529
Wray 977 B1.5Ia 41.5 0.47 48 696
SMC X-1 B0I 3.9 0 1.2±0.3 17±4.5 0.78
Cen X-3 O6-8(f)p 2.1 0 1.1±0.6 21±4 4.84
LMC X-4 O7III-V 1.4 ≤0.1 1.5±0.4 13.5
Cyg X-1 O8.7Iab 5.6 0
LMC X-3 B3V 1.7 0.13

HMXBs with a WR type component
Cyg X-3 WR? 0.2

spherically symmetric SN explosions, the OBe/HMXBs should have eccentrici-
ties ≤ 0.1; the observed values however are much higher (Table 7). This can be
interpreted as indirect (but strong) evidence that the SN explosion was asymmet-
ric. The available information derived from the masses of the OB components in
standard HMXBs is more reliable. For evolutionary purposes, the three HMXBs
Vela X-1, Wray 977 and Cyg X-1 are particularly interesting.

• Vela X-1.
In the atmosphere of the supergiant optical companion we see an overabun-
dance of He; one expects also an overabundance of N and CO. From the orbit
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Table 5.8. LMXB candidates with an MCB history (Van Kerkwijk et al, 1995 (Her
X-1); McClintock, 1992, (A0620-00, GS 2023+338, GS 1124-68)

System LX Sp.type Period f(m) pulse period

(erg/s) type (days) (Mo) (sec)

Her X-1 2.1037 A 1.7 0.9 1.24

LMXB black hole candidates

A0620-00 1038 K5V 0. 2.91 0.08 -

GS 2023+338 2.1038 K0III-G9V 6.47 6.26 0.31 -

GS 1124-68 1038 K0-4V 0.433 3.07 0.4 -

and X-ray eclipse one can derive the mass and radius of the supergiant:
R = 28 - 35�, M = 21.5 - 26.5M� From a combination of NLTE results, or-
bital and X-ray eclipse observations, follows: logL

L�
= 5.5− 5. and a distance d

of 1.8 - 2 kpc.
Using the annual proper motions and the radial velocity, Van Rensbergen,
Vanbeveren and De Loore (1996) found that Vela X-1 left the association Vela
OB1 some 2±1 million years ago. The distance of Vela OB1 is≈ 1.9 kpc (Blaha
and Humphreys, 1989), close to the value for Vela X-1 and thus confirming the
proposition that the progenitor of Vela X-1 was a member of the association.
A first attempt to match the observations is to compute evolutionary models,
treating the accretion in the standard way. After the accretion, the evolution
of the star is continued up to the beginning of hydrogen shell burning. The
have a final mass roughly equal to the observed mass of the optical star in Vela
X-1. The tracks are depicted in Fig. 5.30. The accretion process is treated in
the standard way. The numbers along the tracks are mass values. The position
of the tracks can be compared with the observed HRD position (and masses)
of the optical component of Vela X-1. Comparison of the HRD position of the
B0.5 supergiant with these tracks, reveals that evolutionary models of mass
gainers computed with the standard accretion model are unable to match the
characteristics of the optical component of Vela X-1. The H and He abundance
remain close to the solar values, and this is different of the ε value derived with
actual NLTE atmosphere codes.
The accretion process is treated in the standard way. The numbers along the
tracks are mass values. The position of the tracks can be compared with the
observed HRD position (and masses) of the optical component of Vela X-1.
Comparison of the HRD position of the B0.5 supergiant with these tracks,
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Fig. 5.30. Possible models for Vela X-1. Evolutionary tracks of mass gainers with
masses of 15 to 21 M�. Accretion in the standard way

reveals that evolutionary models of mass gainers computed with the standard
accretion model are unable to match the characteristics of the optical compo-
nent of Vela X-1. The H and He abundance remain close to the solar values,
and this is different of the ε value derived with actual NLTE atmosphere codes.
Since the standard accretion model does not work, we tried the accretion in-
duced mixing model. Figure 5.31 shows the evolutionary tracks, calculated
with full mixing. As mass gainers we selected secondaries where the accretion
process begins at the end of CHB, corresponding to MCBs with initial mass
ratio near one. The figure also gives the predicted H to He ratio.

The accretion induced mixing model is used. The position of the tracks can
be compared with the observed HRD position (and masses) of the optical
component of Vela X-1. These tracks are able to reproduce the optical com-
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Fig. 5.31. Possible models for Vela X-1. Evolutionary tracks of mass gainers with
masses of 15 to 21 M�. Accretion by full mixing

ponent of Vela X-1 The accretion induced mixing model is able to reproduce
the observed HRD position of the B0.5 supergiant of Vela X-1, and explains
also explain the ε value. Evolutionary tracks for the progenitor of the binary
Vela X-1, matching all observational characteristics, are depicted in Fig. 5.32.
Figure 5.33 shows the evolutionary scenario. The model predicts that the SN
explosion kicked the X-ray binary out of the association Vela OB1 less than 3
million years ago.

The binary Vela X-1 will evolve further by a spiral-in process of the neutron
star into the B supergiant. A TZO will be formed. When the SW has removed
the hydrogen rich layers, the star will have evolved into a Wolf-Rayet Thorne
Zytkow object (WRTZ).

• Wray 977

The X-ray source Wray 977 is a pulsar, hence the compact object is an NS.
The mass of the optical companion is very large, between 38 and 48 M� (Sato
et al. (1986), Kaper et al. (1995).
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Fig. 5.32. Evolutionary tracks of a MCB explaining the observed properties of the
HMXB Vela X-1. We started with a MCB of 25 M�+22.5M�. Check the HRD position
of the optical component to the HRD of the members of the association Vela OB

The evolutionary scenario is shown in Fig. 5.33. We tried out various scenarios,
and found that that a non-conservative scenario, with β=0.5, and starting
with initial masses between 39 and 46 M� can match the observations; if the
RLOF is assumed to be conservative, these initial masses are reduced to 33
M� and 40 M� respectively. We can generalize and conclude that primaries
in interacting binaries with initial mass up to 30 M� (perhaps up to 40 M�)
end their life as neutron stars, accompanied by a SN explosion). The further
evolution of Wray 977 is depending on the SW mass loss of the supergiant and
the effect on a possible spiral-in phase. If the mass loss rate is small, Wray
977 will evolve into a TZO (like Vela X-1). If the supergiant evolves into an
LBV, the SW can reduce the spiral-in process and a WR+cc binary could be
formed.
If the compact object in 4U1700-37 turns out to be a neutron star, its evolution
is probably similar to that of Wray 977.
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Fig. 5.33. Evolutionary scenario for Wray 977 and Vela X-1

• Cyg X-1
A lot of uncertainties exist so the characteristics of this X-ray source should
be handled with care. The optical star is an O9.7 Iab type star; 28000 K ≤
Teff le 33000 K; log (L/L�) ≈ 5.4 The mass of the optical component M ≥
17 M�; most probably (accounting for its luminosity), the mass ≈ 30 M�, He
might be overabundant. Mcc ≥ 7 M�; the most probable mass ranges between
10 M� and 16 M�.
Since the mass Mcc of the compact star exceeds by far the maximum mass
of a stable NS; it may be considered as a BH candidate. Observations of the
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HMXB Wray 977 seem to indicate that primaries with initial mass as high
as 40 M� evolve into neutron stars. So the BH in Cyg X-1 originated most
probably from a star with initial mass > 40M�. If we may generalize we can
conclude that some massive stars with initial mass ≥ 40 M� end their life
with a mass ≥ 10M�. Since black holes most probably result from stars with
initial mass larger than 40-50 M�, the progenitor binary probably followed
the LBV scenario, without (or with very small) mass transfer.

5.5.11 The OB Type Runaways ζ Oph and ζ Pup

Supernova explosions occur in many cases in an asymmetric way. Hence a large
fraction of the OB type stars that became runaway as a consequence of such
explosions in binary systems, are expected to be in reality single.

1. ζ Oph

ζ Oph is an O 8.5 V star. It has a peculiar velocity of about 46 km/s, so it
is a runaway, and a very high rotational velocity (vesini = 365 km/s). The
H-abundance Xatm ≈ 0.577 (Herrero et al., 1992) is much lower than the solar
value (Xatm = 0.7). The star is in the vicinity of the Sco-Cen OB association;
this association consists of three subgroups, Upper Scorpius, Upper Centau-
rus and Lower Centaurus Crux. Van Rensbergen, Vanbeveren and De Loore
(1996) showed that single star evolutionary computations cannot match the
abundance constraint, the past trajectory of the star, the position of the three
clusters and the assumption that the star was kicked out of one of these clus-
ters.

2. ζ Pup

This is a rapidly rotating O4If star (vesini = 210 km/s) with a runaway ve-
locity of 65 km/s, /s and Xatm ≈ 0.546 (Herrero et al. 1992). The distance
d ≈ 400 pc, so log(L/L�) ≈ 5.8. Van Rensbergen, Vanbeveren and De Loore
(1996) examined the possibility that ζ Pup was ejected from one of the two
clusters in the direction of this star, from Vela 2 or Vela R2, as single star as
a consequence of cluster ejection less than 2.106 years ago and found that this
is practically impossible.

3. Evolutionary scenarios

We examine a massive close binary scenario for both runaways. Neither in
ζ Oph nor in ζ Pup are indications for the presence of a compact object.
Hence we start from the assumption that the supernova explosion disrupted
the binary. So the space velocity of both runaways is related to the masses of
the components of the pre-SN binary ζ Oph.
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Fig. 5.34. A possible evolution scenario for ζ Oph and for ζ Pup

The observed value of Xatm ≈ 0.577 can be used as evidence for the accretion
induced mixing model. A possible evolutionary scenario is shown in Fig. 5.34.
We started from an initial system of 22 M� + 13M� and calculated the RLOF
phase with β=0.5. After some 10 million years the primary exploded, and
about 3 million years later the mass gainer hits the observed HRD position
of ζ Oph. The binary originally belonged to Upp Cen Lup (a subgroup of the
Sco-Cen-OB association).
Also in ζ Pup the observed H abundance is very low, so just like forζ Oph
we may assume that extended mixing occurred during the accretion process.
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Fig. 5.35. The computed evolution of a MCB matching the observational character-
istics of the runaway ζ Pup. The track track leading to the SN depicts the evolution
of the 40 M� primary. Two mass gainers of 38 and 36 M� match the observed HRD
position and the atmospheric chemical abundance of ζ Pup

Figure 5.35 depicts a possible evolutionary scenario of the runaway. As initial
system we used a 40M� + 38 M� massive close binary. After the mass transfer
phase the primary leaves as remnant an 18M� WNL star, the secondary is a
44 M� early O-type dwarf. The remaining H-rich layers are removed by SW
mass loss, and the binary evolves into a WC star and an early O-type star.
The SN explosion of the WC star disrupts the system. From the observed
space velocity of 70 km/s, we can estimate a pre-SN period of ≈ 4 days;
this limits the initial period of the binary. The mixing in the gainer during
mass transfer explains the overluminosity of ζ Pup and the high surface He-
abundance. Also because of this mixing the further evolution of the star is
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similar to the evolution of a single star but with initial (X, Y) abundances
significantly different from normal i.e. (X, Y,) = (0.5-0.55, 0.48-0.43). The
LBV and/or RSG type SW removes ≈ 15M� more. It evolves into a 25M�
WNL star. ζ Pup will probably end its life as a massive BH. The evolution
can be compared to that of the optical component of the HMXB Wray 977.

5.6 Conclusions

Using detailed evolutionary simultaneous computations for massive close bina-
ries with various constraints (conservative, non-conservative evolution, standard
mixing, induced mixing, full mixing, starting from initial distribution functions
for the period, the masses, the mass ratios, the binary frequency, taking into
account the repercussion on the orbital parameters of supernova explosions, we
succeded in explaining the observed features of a number of evolvced systems.
Comparison of the computed evolution of these systems with observations allows
to restrict possible values on a number of parameters. accounting properly for
the effect of the supernova explosion.

Although the observations of massive stars are only complete for a restricted
domain of our Galaxy, it is possible to find a massive star evolutionary model
explaining most of the observations. The question if all this may be extended
to the whole Galaxy or even to other galaxies is at the moment not solved.
Improvement of the quality of the observations and extending the number of ob-
servations to more remote regions of our galaxy and to other galaxies is therefore
very important. For more details on observations and evolution of massive single
stars and binaries we refer to an extended review of Van den Heuvel (1993),
a monograph of De Jager ‘The Brightest Stars ’, a monograph by Vanbeveren,
Van Rensbergen and De Loore, ‘The Brightest Binaries ’, ‘Stellar Structure and
Evolution ’by Kippenhahn and Weigert, a review ‘Massive Stars ’by Vanbeveren,
De Loore and Van Rensbergen, ‘Structure and Evolution of Single and Binary
Stars ’, by De Loore and Doom.
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6 X-Ray Binaries and Black Hole Candidates:
A Review of Optical Properties

Jorge Casares
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Abstract. This chapter summarizes the optical properties of X-Ray Binaries, with
special emphasis on the class of Low Mass X-ray Binaries and Soft X-Ray Transients.
The latter provide the most compelling evidence for the existence of black holes in
the Universe, with nine well-established dynamical studies. We review the techniques
employed to extract the component masses and discuss the importance of systematic
effects. Despite the growing number of black hole cases, the uncertainties involved
are still too large to draw statistical conclusions on the mass distribution of collapsed
objects. We also present new observational techniques which may help to improve the
mass determinations and set constraints on the theory of Supernovae and black hole
formation.

6.1 X-ray Binaries

Our Galaxy is populated with about 103 powerful X-ray sources with typical lu-
minosities LX � 1036−1039 erg s−1. This energy output is most easily explained
invoking a model of mass-exchanging binaries with a compact star (i.e. neutron
star or black hole) [164],[152]. This scenario is solidly supported by many em-
pirical results obtained since the dawn of X-ray astronomy . Before highlighting
the most significant contributions let me summarize the basis of the canonical
model.

6.1.1 Introduction

X-ray binaries are close binaries consisting of a compact object and an optical
(companion) star. The optical star fills its Roche lobe1 and transfers gas onto the
compact object. Material shares the angular momentum of the companion star
and this needs to be reduced for accretion to take place. This is done by the action
of viscous processes which take place around the compact object, in the so-called
accretion disc. The net effect of the accretion disc is both the removal of angular
momentum and the extraction of gravitational potential energy (ΔEacc = GMm

R
with m the accreted mass, M and R the mass and radius of the accretting
object) from the accreted gas which is the ultimate source of X-rays. Matter
being accreted at a rate ṁ will power an accretion luminosity

Lacc =
GMṁ

R
(6.1)

1 Roche lobes are the binary equipotential surfaces intersecting in a single point, the
so-called inner Lagrangian Point L1.
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which is the maximum gravitational energy available. As a matter of fact, only
a fraction Lrad = ηṁc2 is radiated, where η stands for the efficiency to convert
the rest mass at infinity into radiation. Note that, for a given ṁ, the accretion
efficiency depends on the ratio M/R or “compactness” of the central object.
This can also be defined as Rs/R, where Rs = 2GM/c2 is the Schwarzschild
radius. Only in black holes we do reach “compactness” ≥ 1 but, also in the
less compact neutron stars we reach η ∼ 0.1, far greater than the efficiency
of nuclear reactions2 η ∼ 0.007. Thus, the radiation energy delivered by ac-
cretion onto neutron stars and black holes exceeds nuclear combustion energy
ΔEnuc � 0.007mc2 = 6 × 1018 erg g−1, which is the most common energy re-
source in the Universe. For example, a typical neutron star with M � 1.4M�
and R � 10 km is able to extract ΔEacc � 1020 erg g−1 from its gravitational
potential well. This is a powerful engine which, when accreting at a characteris-
tic rate ṁ � 1016 g s−1 would yield a luminosity Lacc ∼ 1036 erg s−1. Assuming
that this luminosity is emitted as a black body we can obtain a rough estimate
of the mean radiation energy Lacc = 4πR2σT 4

b which for R � 10 km yields a
black body temperature Tb � 107 K. For a typical photon energy hν = kT � 1
keV and hence most of the accreted energy is radiated in the X-ray band.

A maximum luminosity will be reached when radiation pressure balances the
gravitational force of accreted matter. This is known as the Eddington luminosity
which, under the assumption of spherically symmetric accretion of hydrogen
plasma, is given by

LEdd =
4πGMmpc

σT
� 1.3× 1038

(
M

M�

)
ergs−1 (6.2)

where mp is the proton mass and σT the Thomson scattering cross-section. With
LX � 1036− 1038 erg s−1 the galactic X-ray sources are consistent with neutron
stars accreting matter in X-ray binaries up to the Eddington luminosity. More
detailed information on accretion physics onto compact binaries can be found
in [53].

In the late 60’s the advent of X-ray astronomy opened a new window on the
Universe with the discovery of a large population of galactic X-ray souces. The
first optical identifications were Sco X-1 [147] and Cyg X-2 [57] and their optical
spectra showed marked similarities with Cataclysmic Variables i.e. interacting
binaries containing an accretting white dwarf. In particular, evidence for broad
H and He emission lines suggested the presence of an accretion disc whereas
the detection of late-type photospheric absorptions in Cyg X-2 was tentatively
atributed to the mass donor companion. Intensive efforts to discover periodicities
in the lightcurves and radial velocities failed but the model of accreting compact
binaries survived based only on the spectroscopic properties.

2 This assumes a hydrogen rich fuel.
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The first X-ray source shown to be a true binary was HDE 226868, the 9th
magnitude optical counterpart of Cyg X-1. Optical spectroscopy [193] unveiled
a 5.6d radial velocity curve with an amplitude of 64 km s−1. The optical com-
panion is an OB supergiant with M ≥ 15M� which, combined with the radial
velocity parameters, yield a compact object of MX ≥ 3M�. This limit exceeds
the maximum mass of a neutron star (see Sects. 2 and 4) strongly suggesting
that Cyg X-1 contains a black hole! The canonical model for X-ray binaries was
widely accepted shortlt thereafter when X-ray observations of Her X-1 revealed
the presence of a 4.8s pulsed signal. The X-ray pulse showed an accumulated
delay of arrival times, following a 2d sine-wave, and regular eclipses at the times
of maximum delay [152] (see Fig. 6.1). The simplest explanation requires a 4.8s
pulsing neutron star orbiting around a giant star every 2d at high inclination: the
X-ray signal experiences a periodic phase delay caused by the finite light travel
time across the system and is eclipsed at every passage through the superior
conjunction with the non-collapsed star.

Fig. 6.1. Her X-1 observed in X-rays. Top panel shows the arrival time of the 4.8s
pulsations. Bottom panel displays the X-ray light curve with evidence for a total eclipse.
Adapted from [152].

Since the early days of X-ray astronomy, significant progress has been achieved
in the number of orbital period detections. This has been possible through the
discovery of X-ray/optical eclipses and modulations, with timescales of ∼ hr-d
and radial velocity modulations of emission/absorption lines, with amplitudes
of ∼ 10 − 102 km s−1. This information has been efficiently exploited using so-
phisticated techniques, such as eclipse mapping and Doppler tomography which
have rendered the first brightness distribution maps of accretion discs and com-
panion stars both in the continuum and emission lines. They have provided un-
precedented insights into the physics of these systems (e.g. radial temperature
distributions, irradiation effects). A comprehensive review of these techniques
and their results can be found in [108].
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6.1.2 Classification: HMXBs and LMXBs

X-ray binaries can broadly be divided into two main groups according to the
properties of the optical companions: High Mass X-Ray Binaries (HMXBs) and
Low Mass X-Ray Binaries (LMXBs).

Fig. 6.2. The two groups of X-ray binaries: HMXBs and LMXBs. From [179].

Companion stars in HMXBs are OB supergiants transfering mass via stellar
wind (with typical ṁ ∼ 10−6 M� yr−1) or possibly with incipient Roche lobe
overflow. The luminous supergiant dominates completely the optical emission,
whereas the X-rays frequently show regular pulses, indicative of strong magnetic
fields in the accreting neutron stars. They have characteristic Lopt/LX > 1 and,
due to the large size of the companion’s Roche lobe, the orbital periods are al-
ways longer than 1d and a significant fraction exhibit eclipses.

LMXBs, on the other hand, have late-type companion stars which are nor-
mally overwhelmed by the optical flux caused by reprocessing of the X-rays
in different parts of the binary (mainly the accretion disc). They have typical
Lopt/LX < 0.1 and the X-rays can exhibit fast bursts whose profiles have ex-
ponential decays on timescales ∼ 30s. These are interpreted as thermonuclear
explosions on the surface of weakly magnetized neutron stars [102]. There are
more than 175 LMXBs known but only a modest fraction (∼ 4 %) show X-ray
eclipses, far less than expected for a random distribution of binary orientations.
This puzzling result was noted in the early days of X-ray astronomy and used to
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cast some doubts on the binary model. However, Milgrom [121] proposed that
the reason behind this was a simple selection effect: LMXBs have thick accretion
discs which efficiently screen the companion star from the X-rays produced in
the vicinity of the compact object; in other words potentially eclipsing LMXBs
are not seen in X-rays because the accretion disc blocks the compact object’s
line of sight at all orbital phases. Milgrom’s theorem provides a basic geometrical
constraint on LMXBs: the opening angle of the accretion disc γ is related to the
system mass ratio q(= M2/M1) via Paczynski’s formula [138] for the size of the
Roche lobe

R2

a
� 0.462

(
q

1 + q

)1/3

� tan γ (6.3)

where R2 is the equivalent radius 3 of the companion’s Roche lobe and a is the
binary separation. LMXBs typically have q ∼ 0.1 − 0.7 and hence γ � 15◦.
Therefore, the distribution of inclinations in LMXBs has a maximum at i ∼ 75◦

(note that i is defined as the angle between the line of sight and the perpendic-
ular to the binary orbit).

The spread of HMXBs in the galactic plane, with a dispersion in latitude
σ
〈
bII
〉

= ±1.9◦, is consistent with Pop I objects, as expected from the early
spectral types of their companion stars. On the other hand, LMXBs cluster to-
wards the galactic center and show a much wider distribution of distances above
the galactic plane, with a dispersion σ

〈
bII
〉

= ±9.1◦ corresponding to 1 kpc.
This difference is naturally explained in the context of neutron star formation
models where supernovae explosions can provide ∼ 102 km s−1 kick velocities to
the binary from an asymmetric collapse which will spread out the distribution
of parent binaries [186]-[144]. Obviously neutron stars in HMXBs also receive
kick velocities although their high mass companions will efficiently “absorb” the
system’s recoil velocity (e.g. see [72])4.

In addition, kick velocities are also needed to accommodate the observed
number of LMXBs (∼ 100 − 200) with birthrates predicted by current evolu-
tionary models [172],[182]. For instance, we can assume that most LMXBs are
formed from parent binaries consisting of a massive primary (the progenitor
of the neutron star) with M1 ∼ 10 − 15M� and a low mass secondary with
M2 ≤ 1M�5. The Common–Envelope phase will remove the hydrogen envelope
of the massive star, leaving a naked He core with M1(He) ∼ 2.5 − 4M� which
will undergo a Type Ib supernova explosion, forming a collapsed neutron star
3 Roche lobes are, by definition, not spherical and hence this represents the circular

radius of a sphere whose volume is equivalent to that of the Roche lobe.
4 The longest period (≥ 15 d.) HMXBs have Be companions in highly eccentric or-

bits which can only be explained by kick velocities at the formation of the neutron
star [183]. They constitute a well-defined subclass of HMXBs called “Be X-ray Bi-
naries” [180].

5 The contribution to the final population of LMXBs expected from the M1 > 15M�
tail of the distribution can be neglected, assuming a Salpeter IMF.
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of Mns ∼ 1.45M� [188]. The condition for the binary to survive a symmetric
supernova, and hence become an LMXB, is that the ejected mass cannot ex-
ceed half the mass of the binary prior to the explosion [11], i.e. Mns + M2 ≥
1/2× (MHe + M2) or MHe ≤ 2×Mns + M2 = 3.9M� and consequently almost
every system will survive the supernova and become LMXBs. The birthrate im-
plied by these numbers would be ≤ 10−4 yr−1, in obvious contradiction with
the birthrate required by the observed number of LMXBs coupled with their
estimated lifetime (107 − 108 yr), that is 10−6 − 10−5 yr−1 [83]. van den Heuvel
& van Paradijs [182] (see also [144]) have shown that kick velocities of � 102

km s−1 would disrupt the required fraction of parent binaries so as to reconcile
both birthrates.

6.1.3 A Subclass of LMXBs: the Soft X-ray Transients

There is a subgroup of LMXBs called Soft X-ray Transients (SXTs), sometimes
also referred to as X-ray novae. These are characterised by massive X-ray out-
bursts (usually lasting for several months) during which they are discovered by
X-ray or γ-ray all-sky monitors such as those on Ginga, GRO and XTE (Fig. 6.3).
SXTs are being discovered at a rate of 1-2 per year and, although the sample
is still limited, it has been noted that their galactic distribution (unlike neu-
tron star LMXBs) is consistent with that of Population I objects, i.e. they do
not cluster towards the galactic center [197]. This suggests that the progenitors
of the galactic black holes were massive Population I OB stars. Furthermore,
the distribution of galactic latitudes is more concentrated towards the galactic
plane, indicating that compact primaries are somehow formed through a sym-
metric supernova collapse. Table 6.1 presents an updated list of the currently
known X-ray transients.

The outburst lightcurve usually exhibits a fast rise (a few days) followed
by exponential decay with typical e-folding times of ∼ 45 d [39] (see Fig. 6.3).
They have long recurrence times of typically several decades, much longer than
dwarf novae outbursts. During outburst LX ∼ 1038 − 1039 erg s−1 and they are
indistinguishable from (X-ray) persistent LMXBs. The X-ray spectra exhibit a
hard power-law (with associated flickering) extending to several hundred keV;
superposed on this there is a softer X-ray component 6, with the exception of
a few remarkable cases like GS2023+338 or J0422+32 (more details on X-ray
properties of SXTs can be found in [170]). At quiescence, the X-ray luminosity
drops to LX ≤ 1033 erg s−1 and the optical brightness decreases by ∼ 3−7 mag.
The companion star is almost entirely responsible for the quiescent optical flux,
opening the possibility to perform dynamical studies and constrain the nature of
the compact stars. Following this strategy we now know that most SXTs (≥ 70%)
contain black holes, whereas almost all persistent LMXBs contain neutron stars,
as implied by the detection of X-ray bursts. The high incidence of black holes
6 hence their name, coined so as to distinguish them from the harder Be X-ray tran-

sients, a sub-class of HMXBs where X-ray activity is driven by variable mass accre-
tion in highly eccentric orbits [106].
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Table 6.1. X-Ray Transients

Source Alter. Name Quiescent V mag. Reported Outbursts

A1455-314(=Cen X-4)† V822 Cen 18.3 1969, 79
4U1543-47∗ 17 1971, 83, 92
A1524-62 KY Tra >21 1974, 90
A0620-00∗ V616 Mon 18.3 1917,75
X1908+005(=Aql X-1)† V1333 Aql 21.6 1975 and every 200-300 d.
X1658-298† V2134 Oph > 23 1976, 78, 99
H1743-32 1977
H1705-25∗ V2107 Oph 21.5 1977
4U1630-47 1978 and every 	 600 d.
X1608-522† >20 1978
EXO 1846-031 1985
EXO 0748-676† UY Vol >23 1985
GS1354-645 BW Cir 22 1987, 97
GS2000+25∗ QZ Vul 22.5 1988
GS1826-24 1988
GS2023+338∗ V404 Cyg 18.4 1938, 56, 89
GRS1124-68∗ GU Mus 20.4 1991
GRO J0422+32∗ V518 Per 22.4 1992
GRS1009-45∗ N Vel 1993 22 1993
GRS1716-249 V2293 Oph >22 1993
GRO J1655-40∗ N Sco 1994 17.3 1994
XTE J1755-324 1997
XTE J1748-288 1998
XTE J1550-564 B∼22 1998, 99
XTE J2012+381 21.3 1998
XTE J2123-058† 22.5 1998
XTE J1859+226 ∼ 23 1999
XTE J1118+48 1999

∗Firm black holes supported by dynamical evidence.
†Neutron star binaries.

There are two solid pieces of observational evidence supporting the important
role of X-ray reprocessing as the source of optical emission:

a) Emission at λλ4640−4650 or “Bowen blend”: The spectra of LMXBs
are characterised by a blue spectral distribution and broad emission lines of
HI, HeI and high excitation lines of FeII, HeII λ4686 and the Bowen blend at
∼ λ4645. Unlike Balmer and HeI lines, the EWs of high excitation HeIIλ4686 and
the Bowen blend are correlated with LX, disappearing when the source reaches
quiescence. The Bowen blend is a combination of high excitation lines (mainly
CIII, OII and NIII at λλ4634 − 4642) produced by the fluorescence resonance
mechanism which initially requires seed photons of HeII Lyα at λ303.78 [115].
Several intermediate resonance lines are also produced (e.g. λ3133, λ3444) and
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line intensity ratios can be compared to models in order to derive the physical
conditions of the reprocessing region [150].

b) Time delay between optical and X-ray bursts: Sometimes, LMXBs
exhibit optical bursts delayed by a few seconds with respect to the X-ray bursts.
The delay times are consistent with the light-travel across the binary (typically ∼
2 secs) and suggest that X-ray reprocessing takes place in the accretion disc and
(occasionally) in the companion star. The optical signal also appears smeared
out with respect to the X-ray pulse, an indication that the reprocessing site is
extended (e.g. [177]). Correlated rapid variability between optical/UV and X-ray
lightcurves has been detected in the SXT J1655-40 during its 1996 outburst[82].
The optical and UV variability lag the X-rays by 10-20 secs, pointing to the
accretion disc as the reprocessing site in this long period binary. For a localized
reprocessing site, the time-delay distribution is a function of binary phase. The
shape and amplitude depend on the inclination and the separation between the
X-ray source and the reprocessing site, and can be used to determine both by
employing “echo mapping” techniques[80].

The optical properties of LMXBs contain statistical information of irradi-
ated discs. For example, the histograms of dereddened colours (B − V )0 =
−0.09±0.14, (U −B)0 = −0.97±0.17 are consistent with a flat optical distribu-
tion Fν �constant rather than the standard Fν ∝ ν1/3 law expected in viscously
heated discs. These colours agree well with irradiated model predictions, where
most of the reprocessed energy is radiated in the UV [103]. The average ratio of
optical to X-ray luminosity yields Lopt(300− 700 nm)/LX(2− 11 keV ) � 0.002
which can also be expressed as a magnitude difference ξ = B0 −mx = 21.8±1.0,
with the X-ray magnitude defined as mx = −2.5 log FX(μJy) [185]. If we apply
the bolometric correction7 to the optical flux one obtains Lopt/LX(2−11keV ) =
ε � 0.02. ε stands for the efficiency of reprocessing and depends on geometry
parameters i.e. inclination and disc solid angle, as seen from the X-ray source,
and albedo (i.e. fraction of X-rays reflected).

A crude estimate of the averaged disc temperature is provided through simple
energy balance in a black-body approximation R2

dT
4
d � εR2

xT 4
x , where Rd and Rx

are the radius of the disc and the X-ray source (neutron star) and Td and Tx are
the temperatures of the disc and the X-ray source respectively. Assuming typical
values Rx � 10 km, Tx � 107 K and Rd � 2 light-secs we obtain Td � 30000
K. This averaged temperature is impossible to attain in accretion discs heated
by viscous processes such as in Cataclysmic Variables (CVs hereafter). Further-
more, the histogram of absolute V magnitude of LMXBs peaks at MV � 1.0.
For comparison, CVs have MV � 5−7 and, therefore, accretion discs in LMXBs
are, on average, � 102 more luminous than in CVs. More information about the
optical properties of LMXBs can be found in [187].

7 i.e. by including the UV flux, as determined in the prototype system Sco X-1 [190].
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The ionization parameter ξ provides a rough guide to the ionization state of
the gas inside accretion discs in LMXBs. This is defined as ξ = LX/nR2

d, where
n is the number density and ξ is therefore proportional to the ratio of ionizing
energy available divided by the total mass stored in the disc. LMXBs (and SXTs
in outburst) typically have LX � 1038 erg s−1 and n � 1015 cm−3. In the inner
disc regions (i.e.Rd � 1010 cm) ξ � 103 and hence the gas will be highly ion-
ized. This is comparable to the values observed in the BLRs of AGNs, and so
the same physical processes are at work (mainly photoionization, recombination
and fluorescence). The spectra will thus be dominated by FeII permitted lines,
HeII λ4686 and Bowen resonance lines, in addition to the absence of forbidden
lines

To summarize, accretion discs in LMXBs are strongly affected by irradiation.
With LX � 1036 − 1038 erg s−1 the optical radiation is generated by X-ray
reprocessing, and accretion discs appear much hotter and brighter than in CVs,
where viscous heating becomes the dominant mechanism. In the next section
we will see how irradiation effects can transform the temperature profile and
geometry of the disc. This has a crucial impact on the stabilization of accretion
discs and the development of outbursts cycles.

6.1.5 Irradiated Disc Models

Model by Vrtilek et al. A&A 235, 162 (1990): A simple model to in-
vestigate the effects of strong X-ray heating on the structure of accretion discs
was proposed by Vrtilek et al. [189] (VR model hereafter). The model starts by
assuming a standard Shakura & Sunyaev disc [163], i.e. geometrically thin, op-
tically thick and stationary (Ṁ = constant) with extra-heating input by X-ray
illumination. By combining the eq. of hydrostatic equilibrium

h =
cs

ΩK
=

√
P

ρ

1
ΩK

and the perfect gas equation

P =
ρkT

μmH

one obtains
kT

μmH
= Ω2

Kh2 (6.4)

where ΩK = (GM
r2 )1/2 is the Keplerian angular velocity and h the disc height.

When irradiation is negligible, the thermal equilibrium condition in an optically
thick disc yields [163]

σT 4
0 =

3GMṀ

8πr3

(
1−

√
rint

r

)
, (6.5)
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i.e. the standard temperature profile of stationary optically thick discs is T0 ∝
r−3/4 (for r � rint). However, if irradiation becomes important the accretion disc
will absorb a fraction (1 − η) of the incident X-rays (with η the albedo) which
will be thermalised and will raise the local temperature. The optical radiation
emitted by a disc surface element ds will, therefore, have two contributions due
to viscous heating and X-ray irradiation

σT 4
eff = σT 4

0 + (1− η)F irr
X (6.6)

where F irr
X is the X-ray flux received by ds. For LMXBs we have F irr

X � Fvis

and the first term on the right-hand side of eq 6.6 can be neglected. In addition,
under the assumption that the disc is geometrically thin we can approximate

F irr
X � LX

4πr

δ(h/r)
δr

so

T 4
eff � (1− η)

LX

4πσr

δ(h/r)
δr

. (6.7)

For the disc to be irradiated we have to assume a concave geometry, i.e.

h ∝ rn (6.8)

And now we can solve eqs 6.4, 6.7 and 6.8 if we assume that the vertical
structure of the disc is isothermal, i.e. Teff = T (r). This is the crucial assumption
of this model and is expected to hold when F irr

X � Fvis. By solving the system
of equations we get

h ∝ r9/7

T ∝ r−3/7 (6.9)

which can be compared to the standard (viscously heated) Shakura & Sunyaev
discs [163]

h ∝ r9/8

T ∝ r−3/4 . (6.10)

Therefore, irradiated discs are geometrically thicker and have a flatter tem-
perature profile than non-irradiated discs. In the next section we will show that
this result is fundamental to understanding the outburst cycles in interacting
binaries.

As an example of applying the VR model we have analyzed the lightcurves
of J2123-058, an X-ray transient discovered by XTE in June 98. The lightcurves
exhibit regular eclipses with a period of 6hr and occasional optical (and X-ray)
bursts, an indication that the compact object is a neutron star. We followed
the evolution of J2123-058 in the optical from the peak of the outburst down to
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Fig. 6.4. Lightcurves and best model fits at different stages of the outburst. X-ray
luminosity was fixed at LX = 1.3 × 1037 erg s−1, LX = 1.3 × 1036 erg s−1 and LX = 0,
from top to bottom. The best fits provide i = 76◦, Rd = 0.75 RL1 , γ = 7.6◦ and
i = 72◦, Rd = 0.56 RL1 , γ = 5.7◦ on 6 July and 16 August respectively. An ellipsoidal
model fixing i = 73◦ is overplotted to the quiescence data on September.

quiescence using the IAC-80 and the Optical Ground Station (OGS) telescopes
at the Observatorio de Izaña in Tenerife8.

Figure 6.4 depicts the evolution of the R-band orbital lightcurve as the out-
burst progresses. It shows dramatic variations of shape and amplitude, from
irradiation-dominated to a pure ellipsoidal modulation when the X-rays switch
off and represents an ideal case to study lightcurve variations as a function of LX.
The lightcurves were fitted using synthetic models which include eclipses, X-ray
heating of the companion and the accretion disc (according to VR model) and
shadowing of the companion by the accretion disc. Model fits yield consistent
values for the inclination at two different epochs independently (i = 76± 1◦ and
i = 72±3◦) and succesfully reproduce the shape and amplitude of the lightcurves
by requiring that both the accretion disc radius Rd and flaring angle γ shrink by
a few percent (see Fig. 6.4). Note that LX has dropped by a factor 10 between

8 The OGS and the IAC-80 telescopes are operated on the island of Tenerife by the
European Space Agency (ESA) and the Instituto de Astrof́ısica de Canarias, respec-
tively.
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the two fits and yet X-ray irradiation in the disc is the dominant contribution
to the optical flux. More details of this analysis can be found in [206].

Model by Dubus et al. MNRAS 303, 139 (1999): An alternative “self-
consistent” model (i.e. with no a priori assumptions on disc geometry or ver-
tical structure of temperature) of irradiated discs has been recently proposed
by Dubus et al. [45] (DU model hereafter). They start by showing that the key
assumption of VR model (i.e. isothermal profile in the vertical direction when
F irr

X � Fvis) does not necessarily hold. The temperature at the disc mid-plane
T0 is given by

T 4
0 = T 4(τtot) =

3
8
τtotT

4
eff + T 4

irr

where Teff is the non-irradiated effective temperature (produced by viscous heat-
ing), Tirr the temperature generated by irradiation and

τtot =
∫ ∞

0
κρdz

the total disc optical depth integrated in the vertical direction z, with κ the
opacity and ρ the disc density. For the disc to be isothermal (i.e. T0 � Tirr)
T 4

irr � τtotT
4
eff or, equivalently (in flux units)

σT 4
irr

τtot
=

F irr
X

τtot
� Fvis.

Therefore, VR model’s assumption of vertically isothermal discs depends crit-
ically on τtot and this assumption may break down in the outer disc, where τtot
can reach ∼ 102 − 103.

DU integrate numerically the equations of disc structure, i.e. conservation of
mass, angular momentum and energy, including the radiative transfer equation
in the vertical direction. The results of their computations indicate that, as
opposed to VR model, irradiated discs are convex and the temperature profile
is not affected unless F irr

X
τtot

� Fvis. Due to the convex geometry the outer disc
would be shielded from X-rays by the inner disc, unlike the VR model. However,
as we will see in the next section, there is compelling observational evidence that
outer discs in LMXBs are strongly affected by irradiation [184]. To overcome this
contradiction DU suggests that either accretion discs in LMXBs are warped or the
X-ray source is extended e.g. accretion discs have a corona which scatter the high
energy photons arising from the vicinity of the compact object. Warped discs
(i.e. each ring is tilted to the orbital plane and precessing) could be triggered and
maintained by radiation pressure [142]-[143], a very likely mechanism to work in
the strong X-ray irradiation fields characteristic of LMXBs.
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6.1.6 Disc Instabilities: Persistent and Transient LMXBs

Although the standard Shakura & Sunyaev model [163] assumes accretion discs
are stationary (i.e. Ṁ = constant) the very existence of SXTs indicates that this
approximation is no longer valid. In order to trigger the outbursts we need to
invoke a physical process responsible for modulating the (steady) accretion flow
from the companion star onto the compact object. Two competting mechanisms,
inspired by previous models for dwarf novae outbursts, have been proposed to
account for outbursts in LMXBs:

Mass-Transfer Instability: Developed by Hameury, King and Lasota in a set
of papers [64]-[66], this model needs a companion star underfilling its Roche lobe
by a few percent. Steady hard X-ray (≥ 7 keV) irradiation during quiescence is
required to expand the star’s atmosphere and initiate the mass transfer phase.
The star tries to adjust the radius expansion (and Ṁ) to be in equilibrium
under the irradiation effect. However, for a certain range of Ṁ the process can
be unstable and an outburst will be triggered. This requires a substantial fraction
of the accretion luminosity during quiescence to be emitted as hard X-rays and
a lower limit has been proposed:

LX(> 7keV ) > 4× 1034
(

M1

3M�

)2(
M2

M�

)
ergs−1

Thanks to the increase in sensitivity of X-ray observatories (e.g. ROSAT,
ASCA and XTE) it is now possible to study the quiescent X-ray spectra of several
SXTs in the 0.5-10 keV band and they are found to be very soft (Tbb ∼ 0.2−0.3
keV) [171]. The observed luminosities are much lower than expected for standard
disc models (e.g. [119]) and has inspired a new scenario for accretion during qui-
escence, the Advection Dominated Accretion Flow or ADAF model. In the ADAF
model the inner disc is replaced by a very hot, optically thin accretion flow which
has extremely low radiative efficiency and carries most of the accretion energy
directly onto the compact object [123],[124]. ADAFs are the only scenario which
can succesfully fit the whole spectral distribution of quiescent black hole X-ray
transients from IR to soft X-rays [204],[125],[47]. ADAF models predicts hard
X-ray luminosities below the limit required by mass-transfer instability models
although detections above � 10 keV are not yet possible (we have to wait for
the better sensitivity of XMM and INTEGRAL).

Additional complications for mass-transfer instability models come from the
first Doppler tomograms of SXTs obtained in quiescence [109],[29],[21],[69]. Ac-
cretion disc images consistently show strong Balmer emission from the hot spot
or impact region between the accretion stream and the outer disc rim. These
observations imply that mass transfer (and hence Roche lobe overflow) takes
place during quiescence. The mass-transfer instability model has been finally
excluded by the lack of a physical mechanism to trigger the outburst (i.e. how
the companion is heated at the low quiescent LX) and also the success of the
rival model.
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Disc Instability: This model was initially proposed by Huang & Wheeler [81]
and subsequently refined by Cannizo et al. in a sequence of papers [18]-[20]. The
outbursts are likely triggered by thermal-viscous instabilities in the accretion
disc, caused by a sudden change in the disc opacity κR at T ≤ 104 K, when
HII starts to recombine. The dependence of opacity on temperature can be
parameterised as κR ∝ ρT a (see Fig. 6.5) with

a � − 3.5 if T ≥ 104K ,

a � 5− 10 if T ≤ 104K ,

a ≤ − 5 if T ≤ 103K .

(6.11)

The condition for thermal instability to occur in a disc annulus Σ is given
by [53] (

δ lnQ+

δ lnT0

)
Σ

>

(
δ lnQ−

δ lnT0

)
Σ

, (6.12)

where Q+ and Q− represent the heating and cooling rate in the disc annulus Σ.
If Q+ > Q− the disc mid-plane temperature T0 will rise and, due to eq. 6.12, the
heating gradient will be higher than the cooling gradient so T0 will continue to
increase until an instability occurs. The cooling rate depends on the opacity [163]
and it is easy to show that (δQ−/δ lnT )Σ = 4.5− a. Therefore, according to eq.
11, if T ≤ 104 K then (δQ−/δ lnT )Σ < 0 whereas (δQ+/δ lnT )Σ > 0 always
and a thermal instability will take place. A more detailed description of this
mechanism is provided in [166].

Fig. 6.5. Variation of disc opacity κR with temperature for different ρ. From [91].
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Because temperature drops with disc radius, a simple condition9 for the ex-
istence of “stable”(i.e. persistent) accretion discs is that the outer disc remains
hotter than the HII recombination temperature, i.e. Td > TH � 104 K, or equiv-
alently in a Shakura & Sunyaev disc (see eq. 6.5)

Ṁ2 > Ṁcrit (6.13)

where Ṁ2 is the mass transfer rate from the companion star and Ṁcrit ∝ R3
dT

4
H

is the disc (critical) mass transfer rate which triggers a thermal instability in the
outer disc.

These concepts were first applied to CVs by Smak [165] almost two decades
ago. He obtained an approximated expression for Ṁcrit by assuming typical
values Rd � 0.7×RL1 and M2/M1 ∼ 0.1 and making use of Paczynski’s equation
for the size of the primary’s Roche lobe [138]

RL1

a
� 0.38− 0.2 log

(
M2

M1

)
(valid for M1 > M2) together with Kepler’s Third law a3 ∝ P 2. Smak’s relation

Ṁcrit � 2.9× 10−9
(

P

3 hr

)2

M�yr−1 (6.14)

shows a dependence of Ṁcrit on orbital period and, when applied to CVs, it was
successful in separating the persistent novalikes (Ṁ2 > Ṁcrit) from the transient
dwarf novae (Ṁ2 < Ṁcrit)10. However, van Paradijs [184] noted that this relation
failed to accommodate the observations of LMXBs since Ṁcrit seemed to be a
factor � 10−2 lower than predicted by eq. 6.14. He suggested that accretion discs
in LMXBs are strongly affected by intense X-ray irradiation. The outer layers
are efficiently heated up and, therefore, irradiated discs stabilize at much lower
Ṁcrit than viscously heated discs (see Fig. 6.6).

He estimated the new temperature profile for irradiated discs (based on VR
model with the disc opening angle γ = 12◦ and albedo η = 0.92, as derived from
model comparison with observations of a sample of LMXBs [43]) and derived a
new relation for Ṁcrit − P , which we reproduce here, adapted from [94],

Ṁ irr
crit � 5× 10−11

(
M1

M�

)2/3(
P

3 hr

)4/3

M�yr−1. (6.15)

Note that mass ratios in LMXBs, as opposed to CVs, will vary significantly
according to whether the compact object is a neutron star or a black hole. Thus,
9 Strictly speaking, a viscous instability is also needed for an outburst to occur (i.e.

the mass transfer rate is not constant through the disc) which leads to the concept
of limit cycle (see [165]). Note, however, that thermal instability is always necessary
and therefore our reasoning is still valid.

10 The Ṁ2 values of individual systems were obtained by dividing the mass accreted
during outburst by the observed recurrence time.
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Fig. 6.6. Distribution of neutron star LMXBs in log LX (or log Ṁ) vs orbital period P .
Solid circles mark persistent LMXBs whereas stars indicate transients. Smak’s and van
Paradijs’s relations for Ṁcrit are drawn as dotted and continuous lines, respectively.
Persistent systems should lie above the line and transients below.

Fig. 6.7. Same as Fig. 6.6 but for X-ray binaries with black holes. Only the critical
line for the irradiated disc case is shown.

instead of the approximation M2/M1 ∼ 0.1 used in eq. 6.14 we now use M2 ∼ 0.4
M�. This is why M1 appears as an extra free parameter in eq. 6.15. The new
expression provides a succesful division between persistent and transient LMXBs
for both neutron star (M1 = 1.4 M�, Fig. 6.6) and black hole (M1 = 10 M�,
Fig. 6.7) primaries.
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6.2 Black Hole Candidates

The concept of a black hole dates back to the early works by Michell and Laplace
at the turn of the 18th century, when they conceived the possible existence of
very massive objects with escape velocities ve(=

√
(2GM/R)) larger than the

speed of light. This was still a classical physics concept of black hole, described
as a large concentration of mass in the low density domain of normal stars (i.e.
ρ ∝ R−2

s ). The real breakthrough did not happen until 150 years later, with
Einstein’s General Relativity where black holes were found as singularities in
Schwarzschild’s solution to the field equations. But it has only been in the last
three decades that X-ray astronomy has started to provide the first observational
evidence for the existence of stellar objects with Rs/R ∼ 1 in the Universe. These
have been followed by the first mass function determination in Cyg X-1 [193],[9]
and an intense (and controversial) debate on the possibility of deriving black
hole signatures began (e.g. see [170] and included references).

On one hand, observational evidence for neutron stars (NS hereafter) is com-
pelling through the detection of rapid X-ray pulsars (in HMXBs) and bursts (in
LMXBs) both secure indications of a small solid surface (i.e. R > Rs). However,
the demonstration of the presence of black holes (BH hereafter) remains elusive
and indirect since it requires the proof of the existence of event horizons. Cur-
rently, the most solid evidence is based on the detection of accreting compact
objects more massive than the maximum possible mass for a NS, Mmax

NS , which
ultimately depends on the assumed equation of state (EOS hereafter).

The EOS provides M-R relations for a fixed core density ρc, and each EOS has
a maximum NS mass Mmax

NS (Fig. 6.8). One can distinguish between soft EOS,
with Rmax ∼ 8 − 10 km and Mmax

NS ≤ 1.6 M�, and stiff EOS with Rmax ∼ 15

Fig. 6.8. Standard equations of state of neutron stars
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km. For the stiffest EOS Mmax
NS is found to be � 2.7 M�. The effect of rapid

rotation can raise this limit up to 20 %, yielding Mmax
NS � 3.2 M� [54]. A firm

upper bound can also be established independently from the EOS selected, by
assuming that General Relativity is the correct theory of gravity and causality
holds inside NS i.e. the sound velocity is lower than the speed of light. This pro-
vides Mmax

NS � 3.0 M� [145]. However, it should be noted that in all cases where
a neutron star is known to be present (through bursts or pulsations) and its
mass can be accurately measured, those masses are all consistent with MNS < 2
M� (see Sect. 5). The most secure way to demonstrate the existence of BHs
is, therefore, by weighing the masses of compact stars, and this experiment can
only be performed in X-ray binaries.

After the discovery of the first two black holes (Cyg X-1 and LMC X-3)
involving HMXBs, almost all the newly found black hole candidates (�22) belong
to the class of Soft X-ray Transients (SXTs), or X-ray novae, a subgroup of
LMXBs. The SXTs are ideal for such studies because of the low mass of their
secondary stars. This allows firm lower limits to be set to the mass of the compact
object, as the secondaries can be studied during the long periods of quiescence
between outbursts (when the accretion disc is faint). In the next section we will
focus on the techniques employed to measure masses in X-ray binaries and the
impact of systematic effects on those masses. We will show how our final mass
determination can be seriously compromised if these systematic effects are not
properly accounted for.

6.3 Mass Determination

A complete determination of the component masses in a binary system requires
the radial velocity curves of both stars and a knowledge of the inclination an-
gle. Unfortunately, compact objects in LMXBs do not radiate or pulse (with
Her X-1 as the only exception) and, consequently, their radial velocity curves
are not available. The study of gas dynamics could, in principle, constrain the
system parameters. In particular, the line wings originate in the vicinity of the
compact object and hence they ought to share its orbital motion. Unfortunately,
the emission profiles are broad, complex and highly variable (e.g. [24]). The
“double-gaussian” method was proposed as a way of revealing the relevant ve-
locity information by convolving the spectra with two Gaussian bandpasses[151].
This technique enables us to extract the centroid of the line regions separated
by the distance a between the two Gaussian filters. Sine waves are subsequently
fitted to the velocity points and the 3 free parameters (the systemic velocity
γ, the velocity semiamplitude K1 and phasing φ of the gas) are displayed as a
function of a in the so-called “diagnostic diagram”[162].

K1 will approach the true compact object’s velocity at the extreme line wings
and the choice of a is critical in the final determined value. However, the selection
of a is rather arbitrary, and independent studies can sometimes yield inconsis-
tent results (e.g. [73],[132]). In addition, systematic phase lags (relative to the
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Fig. 6.9. Example of a radial velocity curve determined from the wings of Hα in N
Mus 91 (=GU Mus), using the “double-gaussian” method with a bandpass separation
a = 2000 km s−1 (a). Note the phase shift of -0.12 relative to the expected radial
velocity curve of the compact object, which should be maximum at phase 0.5 in the
phase convention used in this plot. Panel (b) sketchs the Gaussian bandpass used over
a sample profile. Panel (c) shows the convolution function marking the velocity point.
From [132].

expected motion of the primary star)[132] plus mean γ-velocities that are differ-
ent from the absorption line γ-velocity [168] are commonly found (see Fig. 6.9).
These results indicate that either the emission from the inner disc is non axisym-
metric or the line wings are corrupted by other components (e.g. S-waves from
the line core or winds). The “light-center” method was subsequently proposed
as a strategy to correct for the line core contamination by extrapolating the
“diagnostic diagram” towards phase 0 in velocity space (see [107] for details).
However, it has been found that distortion emission from the hot-spot and other
asymmetries are still present [109]. Furthermore, the uncertainties involved are
dominated by large systematic errors which are very difficult to quantify. There-
fore, the analysis of the emission line velocities is systematically biased and the
results obtained through this technique are unreliable for accurate studies of
binary system parameters.

Consequently, the determination of masses in LMXBs is usually reduced to
a single-line spectroscopic binary problem where all the information has to be
extracted from the optical star. A complete solution to the system parameters,
however, can be obtained from three observational experiments involving high
resolution optical spectroscopy and infrared photometry. This prescription has
been summarized in several papers (e.g. [33], [22]). Here we present an updated
version including illustrative examples based on recent results.
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6.3.1 The Mass Function

This is a fundamental equation for the determination of binary system parame-
ters which derives directly from Kepler’s 2nd and 3rd laws. It relates the masses
of the two stars (M1, M2) and the inclination angle (i) through two observable
quantities which are readily measured from the radial velocity curve of the op-
tical star: the orbital period Porb and the radial velocity semiamplitude K2. It
has the form

f(M) =
K3

2Porb

2πG
=

M3
1 sin3 i

(M1 + M2)
2 =

M1 sin3 i

(1 + q)2
(6.16)

where q = M2/M1 is the mass ratio. It is clear from eq. 6.16 that the mass
function f(M) represents an absolute lower limit to M1, i.e. at the extreme case
when the mass of the companion star is neglected (i.e. q → 0) and the binary is
seen edge on (i = 90◦). Therefore, given our previous discussion on the EOS for
NS, a mass function in excess of 3 M� is considered as a secure black hole diag-
nostic. This is why the work on V404 Cygni revolutionized the field of black hole
searches: its mass function is the highest yet measured (6.1±0.1M� [25],[27]; see
Fig. 6.10) and, for the first time, placed an accreting compact object comfortably
above the upper limit of maximally rotating neutron stars for any “standard”
EOS assumed. Therefore, V404 Cygni is widely considered as the best evidence
for a black hole, where no additional assumptions on i nor M2 have to be invoked.

Fig. 6.10. Radial velocity curve of the secondary star in V404 Cygni. The radial
velocity semiamplitude K2 = 209 ± 1 km s−1 combined with the orbital period
P = 6.4714 ± 0.0001 d yield f(M) = 6.08 ± 0.06M�. Adapted from [25].
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Note, however, that f(M) ∝ K3
2 , and hence this limit is extremely sensitive

to uncertainties in the radial velocity amplitude. Any non-uniform brightness
distribution across the surface of the companion star will modify the radial ve-
locity curve and affect our system parameter determination. There are several
sources of systematic errors in K2, the most important being X-ray irradiation
which tends to supress the absorption lines near the L1 point. This will displace
the center of light away from the companion’s center of mass. Consequently, the
radial velocity curve will be significantly eccentric and a sine-wave fit to it will
give an observed Kobs which will be larger than the true K2. The ratio K2/Kobs

is called the K-correction [192] and it depends on the X-ray luminosity and geo-
metrical effects (q and shielding of the companion’s inner face by the disc). The
presence of the irradiation effect can be revealed through an elliptical fit to the
radial velocity curve and by performing a test of significance (as compared to a
simple sine-wave fit) [42].

Irradiation is considered to be negligible in quiescent X-ray transients (where
Lx ≤ 1033 erg s−1) but it can be important in X-ray active states [3]. A dramatic
example is offered by observations of GRO J1655-40 (=N Sco 94) during the
decay of the 1994 outburst, when Lx = 1.4×1037 erg s−1. Orosz & Bailyn fitted
the radial velocity curve with a simple sine-wave, obtaining K2 = 228.2 ± 2.2
km s−1. This, combined with P=2.6d gave f(M) = 3.24 ± 0.09M� and hence
was a strong case for a black hole [135]. The same data was subsequently fitted
by Phillips et al. using an irradiation model, obtaining K2 = 192− 214 km s−1

which reduces the mass function to f(M) = 1.93− 2.67M� [140] (Fig. 11). This
latter result was finally confirmed by observations in true quiescence which give
K2 = 215.5±2.4 km s−1 and f(M) = 2.73±0.09M� [160]. The new mass function
is 16 % lower than the first reported value, enough to disclaim GRO J1655-40
as a secure black hole candidate (based purely on dynamical information).

6.3.2 Rotational Broadening

The companion stars transfer matter onto their compact objects and hence they
must be filling their Roche lobes with their sizes given by eq 6.3. In addition,
the short orbital periods (∼ hr) and old ages (> 107 yr) of these close binaries
suggest that the companion stars must be synchronised, i.e.

ωs = ωorb

where ωs and ωorb are the stellar and orbital angular velocities respectively. The
projected linear velocities would then be

Vrot sin i

R2
=

K2 + K1

a
=

K2(1 + q)
a

(6.17)

where q = M2/M1 = K1/K2. Combining eq 6.3 and 6.17 one obtains [192]

Vrot sin i = 0.46 K2 q1/3(1 + q)2/3 (6.18)
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Fig. 6.11. Influence of irradiation effects in the radial velocity curve. From [140].

and hence the mass ratio q can be measured directly from the radial velocity
curve and the observed rotational broadening (Vrot sin i) of the secondary’s ab-
sorption lines [59]. The rotational velocity is determined by comparing our target
with broadened versions of spectral type templates (e.g. through a χ2 minimiza-
tion technique [109]; see Fig. 6.12). The rotationally broadened versions of the
template are computed by convolution with a Gray profile of the form [62]

G(x) =
6(1− ε)
π(3− ε)

(
1− x2)1/2

+
3ε

2(3− ε)
(
1− x2) (6.19)

where ε is the limb darkening coefficient, which takes into account the attenua-
tion of the radiation field Iλ towards the stellar limb, x = v/Vrot sin i and v is
the radial velocity of a surface element of the star. The Gray profile is computed
under the assumption of a spherical geometry and a linear approximation of the
limb darkening effect i.e. Iλ ∝ 1 − ε + ε cos θ, with θ being the angle between
the line of sight and the normal to the surface. The limb darkening coefficient
depends smoothly on Teff and λ and is usually taken as constant over the line
profile. More details about the treatment of limb darkening can be found in [40].

Absorption features are usually shallower in the target than in the broadened
template due to dilution by the residual accretion disc continuum or veiling,
which is found to contribute ≤ 40% percent in the R band. This analysis is also
sensitive to the spectral type of the template, thus enabling us to constrain this
simultaneously to Vrot sin i and the veiling (e.g. see [31]). Note that the template
spectra must be observed with the same instrumental setup as the target in
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Fig. 6.12. Example of rotational broadening analysis of V404 Cygni. From bottom to
top: a KOIV template, the template broadened by Vrot sin i = 39kms−1, the spectrum
of V404 Cyg in the rest frame of the secondary star and the residual after subtraction
of the broadened template. A formal uncertainty of 1 km s−1 (2%) in Vrot sin i was
achieved. From [27].

order to cancel out instrumental resolution effects. For the typically low q values
of LMXBs δ(q)/q � 2.6 × δ(Vrot sin i)/Vrot sin i and hence a 6 % accuracy
in Vrot sin i is needed to yield a 15 % determination of q. This experiment is
technically challenging as typical values of Vrot sin i are 40-100 km s−1, so high
spectral resolution (≤ 1Å) is needed. Given the faintness of these objects (V≥18),
large telescopes are required even for the brightest SXTs.

Two main sources of systematic errors are at play in this calculation. To
start with, the limb darkening coefficients (e.g. as listed in [1]–[191]) have been
computed using atmospheric stellar models and they are appropriate for the
continuum. Absorption lines are formed higher up in the stellar atmosphere and
thus one would expect limb darkening to be smaller, especially in the line cen-
ter [41]. A conservative estimate of the systematic uncertainty introduced by
this approximation can be obtained by computing Vrot sin i using the extreme
possible values ε = 0, 1 and this has been shown to be ∼ 14% [195].

Companion stars in LMXBs are clearly non-spherical and hence the use of
a Gray profile introduces a second source of systematic error. In fact, the rota-
tional profile changes with orbital phase because of the varying aspects of the
Roche potential (see Fig. 6.13) and it is not clear that the orbitally averaged
profile necessarily coincides with the spherical Gray profile. Marsh et al. [109] ex-
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plored this effect by computing the phase-averaged rotational profile in A0620-00
through properly integrating the velocity field in a Roche geometry (but assum-
ing a continuum limb-darkening law). They concluded that the use of eq 6.19
can result in a 5% underestimation of q. This is at (or smaller than) the level
of the current statistical errors achieved and so the results are not seriously
compromised. A correct treatment of the problem would require integrating the
rotational profile in a Roche geometry including a properly computed limb dark-
ening law varying within the line profile, and this has not yet been solved. In
the meantime, the use of the Gray profile seems an acceptable approximation
which introduces a systematic uncertainty of typically 2σ ∼ 14 % due to our ig-
norance of the “averaged” limb darkening law for the lines. This is demonstrated
in the mass ratio determination in J1655-40 where the Vrot sin i analysis pro-
vides q = 0.39± 0.05 [160] whereas a completely independent calculation, based
on the analysis of the light curve (see Fig. 6.15) yields q = 0.33± 0.01 [135].

Whereas the phase averaged Vrot sin i depends mainly on q, its orbital vari-
ation is a strong function of i and could be compared to synthetic models to
derive this important parameter. The details of the modulation also depend on
the gravity darkening coefficient β (especially around phase 0.5 where the local
gravity changes more rapidly) and ε, to a smaller extent. This way of determin-
ing i has the advantage over the ellipsoidal modulation (see below) of not being
affected by any residual veiling, although the effect is very subtle (≤ 10%). Re-
solving a few percent variation in Vrot sin i requires excellent quality spectra of
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Fig. 6.13. Orbital modulation of Vrot sin i in AE Aqr compared to synthetic models
computed for β = 0.08, ε = 0.65 and three inclinations: i = 40◦ (dotted line), i = 58◦

(solid line) and i = 70◦ (dashed line). The modulation is a direct confirmation of the
geometrical distortion of the companion star. From [30].
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will be cooler and, therefore, the phase 0.5 minimum becomes deeper than the
minimum at phase 0.

Model calculations show that the shape and amplitude of the ellipsoidal mod-
ulation are functions of q and i [2]. In particular, the amplitude is a strong (in-
creasing) function of i, but is insensitive to q if q ≤0.1. This is normally the case
in SXTs (see Table 6.2) and therefore model fits to the ellipsoidal modulation
can be used to determine i directly. Unfortunately, there is additional compli-
cating structure in the optical light curves [76], and it is likely that they are
contaminated by the residual continuum from the accretion disc and/or possible
flares or starspots on the surface of the secondary (cf. RS CVn-type activity).
In particular, the ellipsoidal modulation in V404 Cyg has shown a superimposed
variability with a characteristic timescale of∼6hr (e.g. [26],[139]), which presum-
ably originates in the accretion disc. This type of “short” time-scale variability
has also been detected in A0620-00 [74] and seems to scale as a fixed fraction of
the orbital period (i.e. ∼ 1/25Porb). It may be a common property of quiescent
SXTs which has escaped detection in fainter sources given the long integrations
used (see Fig. 6.14).

Long-term (a few % longer than Porb) distortion waves have also been de-
tected in the light curves of quiescent SXTs (e.g. [36],[75]). These are identified
as an oscillation in the height of the two maxima and it has been proposed that
they could be produced either by large spots in a non-synchronized secondary or
a precessing accretion disc, like the “superhump” modulation seen during out-
bursts [130] when the disc exceeds the 3:1 resonance radius [199].

Fig. 6.15. Ellipsoidal fits to the IR light curves of A0620-00. From [154].
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The effect of these contaminating continuum sources will be to dilute the to-
tal amplitude of the optical lightcurves and, consequently, ellipsodal model fits
will only provide a lower limit to the inclination. In [139], the short-time scale
variability was removed by fitting ellipsoidal models to the lower envelope of the
lightcurve, which should define the minimum contamination level. Alternatively,
if the veiling is known (e.g. through comparing the depth of the absorption lines
with a broadened template) then a reasonable i determination can also be pro-
vided.

The spectral distribution of the veiling in the UV/Optical has been measured
in a few systems (A0620-00 [131],[118], Cen X-4 [35],[118], V404 Cyg [26]) and it
consistently drops towards longer wavelengths. Moreover, since the companion
stars in SXTs all have late spectral types they are expected to dominate com-
pletely at IR wavelengths. This assumption allows us to fit lightcurves of SXTs
in the IR with pure ellipsoidal models, yielding the most realistic i determina-
tions (e.g. [153],[155]). Furthermore, models are less affected by uncertainties in
the limb and gravity darkening coefficients than in the optical. An example of
an ellipsoidal fit to a K band lightcurve is shown in Fig. 6.15.

Subsequent IR photometry [148] has shown, however, that short-time scale
contamination is still present in H-band observations of V404 Cyg. This result
undermines the key assumption of negligible IR veiling and suggests that accre-
tion discs in SXTs, which may be optically thick in their cool outer parts, also
contribute significantly to the IR flux. Therefore, ellipsoidal fits to IR lightcurves
would strictly provide only lower limits to i and thus upper limits to M1. At-
tempts to quantify the veiling in the K band using medium resolution spec-
troscopy have yielded upper limits (<14% in V404 Cyg [156] and <27% in
A0620-00 [159]) leaving the matter still unresolved.

Fig. 6.16. Orbital lightcurves of J1655-40 in quiescence and model fits including el-
lipsoidal modulation and grazing eclipse of the companion star by the accretion disc
at phase 0.5. The disc contribution to the optical light is completely negligible in this
case. Adapted from [135].
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N Sco 94 (=J1655-40) and 4U1543-47 are atypical SXTs containing early
type companions (A2V and F6IV) which completely dominate the observed flux
at optical wavelengths. The veiling is therefore negligible and the results of the
ellipsoidal fits can then be taken as unbiased i determinations. The mass ratio
for N Sco lies in the range where ellipsoidal models are sensitive to q (q >
0.1) so this parameter can also be measured. In addition, during the outburst
phase the binary was found to show grazing eclipses between the star and the
accretion disc [4] (but not of the X-ray source) which set tight constraints on the
inclination. Detailed ellipsoidal model fits to lightcurves in quiescence, including
the phase 0.5 eclipse by the dim accretion disc, have yielded i = 70 ± 1◦ and
q = 0.33±0.01 [135] (see Fig. 6.16). These are the most accurate determinations
in any SXT and provide the most precise component masses yet measured (see
also [79] for an independent result, with a more conservative treatment of the
error bars).

Fig. 6.17. Orbital lightcurves of J1655-40 during outburst and best model fits showing
the effect of X-ray irradiation. The best fits were obtained by fixing i and q to the values
derived in Fig. 6.16 and leaving the disc radius, temperature law and flared angle as
free parameters. Only irradiation of the companion star was included. (see [135] for
details)

Moderate X-ray irradiation is known to affect the thermal structure of the
star’s outer layers thereby changing the brightness distribution of the Roche lobe
and the shape of the ellipsoidal modulation. The main effect will be to fill-in the
phase 0.5 minimum which, under severe X-ray heating, can even reverse into
a single maximum (e.g. Fig. 6.4). The influence of irradiation shows up clearly
in the light curves presented in Fig. 6.17, where the deepest minimum has now
shifted to phase 0. Model fits were presented in [78] which included both mutal
eclipses and irradiation effects on the disc (according to VR model) and the
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secondary (allowing for the X-ray shadow cast by a flared disc). They yielded
i = 65◦ − 76◦ in good agreement with the quiescent fits. The mass ratio is,
however, poorly constrained to q = 0.18−0.26 and is only marginally consistent
with the more precise fits to the clean ellipsoidal light curve in quiescence.

6.4 Dynamical Black Holes

The combination of these three techniques (i.e. optical mass function, rotational
broadening and ellipsoidal modulation) has rendered the first realistic compact
object masses and the evidence that most SXTs harbour black holes. A first
application of this prescription was already presented in [59] for the case of the
HMXB Cyg X-1. I will now summarize the results of this work as a general
example of the methodology for weighing masses in X-ray binaries.

TCyg X-1 was the first black hole candidate discovered, but the low value of
its optical mass function

M1 sin i3(1 + q)−2 = 0.25M�, (6.20)

required estimates of i and q in order to place any sensible constraints on M1.
Restrictions on the inclination came from the the absence of X-ray eclipses
i.e. i ≤ 60◦ which, combined with the expected mass for a “normal” O9.7Iab
(M2 = 33M�), yield M1 > 4M� [10]. Unfortunately, there is compelling evi-
dence for optical companions to X-ray binaries to be severely undermassive for
their spectral types [178] and thus a full parameter solution was required. Being
a HMXB, the mass transfer in Cyg X-1 is mainly powered by a strong stellar
wind and therefore it is not clear whether the companion star actually fills its
Roche lobe. Gies and Bolton [59] modelled the optical lightcurves of Cyg X-1
using an extension of the ellipsoidal models discussed in Sect 3.3 allowing for
a fill-out factor ρ ≤ 1. For a given inclination, the amplitude of the ellipsoidal
modulation will always be lower and thus ρ = 1 provides an absolute lower limit
to the true inclination. Also, the star may not be synchronised and, therefore,
eq 6.18 has to adopt the more general expression

Vrot sin i = Ω ρ 0.462 K2 q1/3(1 + q)2/3, (6.21)

where Ω is the corotation factor which parameterizes the degree of synchronism
i.e. Ω = ωs/ωorb. They computed ellipsoidal models and synthetic line profiles,
in a Roche potential geometry, which were simultaneously fitted to the data to
reproduce the observed Vrot sin i and amplitude of the ellipsoidal modulation.
Figure 6.18 presents the fitted solutions in the M1 − M2 plane as defined by
eqs 6.20 and 6.21 for a set of ρ and Ω values and a measured Vrot sin i � 96 km
s−1. The allowed region in the parameter space is constrained by the inclinations
i ≤ 60◦ (i.e. no X-ray eclipses; line E), i ≥ 33◦ (i.e. ρ = 1) and M2 ≤ 50M�,
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based on evolutionary arguments applied to a O9.7Iab star11. Adding the extra
free parameters ρ and Ω means that a wide range of (i, M1, M2) solutions can
equally fit the data and then these too need to be constrained. Actually, ρ and
Ω are limitted by two theoretical restrictions:

• The absence of statistically significant eccentricity in the radial velocity curve
indicates that the orbit is circularised [58] which, together with the advanced
evolutionary state of the optical star suggest Ω � 1 [149].

• Stellar wind model fits to the HeII λ4686 emission indicate large filling-out
factors in the range ρ � 0.9 − 1.0 [60]. These new constraints lead to the
solutions M1 = 16± 5M� and M2 = 33± 9M�12.

Fig. 6.18. Constraints on the masses of the two components in Cyg X-1. Allowed
solutions are contained in the shaded region. See text for details. From [58].

SXTs present cleaner examples of the application of this prescription since
the optical companions are low-mass stars tidally locked (ρ = 1) in short period,
circularised orbits which transfer mass through Roche lobe overflow (Ω = 1).
Therefore, the determination of the optical mass function, Vrot sin i and model
fits to the ellipsoidal light curve (corrected for veiling) provide a full solution
to the system parameters. For a decade, 4-m telescopes like WHT in La Palma,
UKIRT in Hawaii or CTIO in Chile, have enabled us to test this method with
the brighter transients. Systems like A0620-00, V404 Cyg and GU Mus could be
11 A further constraint is set by a lower limit to the distance d > 1.9 kpc [202] which,

combined with the observed luminosity and the Roche geometry leads to a lower
limit on M2.

12 Note that these numbers have been refined to M1 = 4−15M� and M2 = 12−19M�
by an independent technique which employs detailed atmospheric modelling of the
OBI star to yield log g and Teff [77].
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Table 6.2. Optical properties of soft X-ray transients

Source P γ K2 f(M) q i M1 Sp. ρ LiI

(d) (km/s) (km/s) (M�) (M2/M1) (deg.) (M�) Type ρMS

4U1543-47 1.12 -87 124 0.22 ± 0.02 ∼0.5 20-40 ∼ 2.7-7.5 A2V 0.28

J0422+32 0.21 9 381 1.21 ± 0.06 0.116+0.079
−0.071 20-40 10 ± 5 M2V±2 1.19 ?

V616 Mon 0.32 10 433 2.72 ± 0.06 0.067 ± 0.010 37 ± 5 10 ± 5 K3-5V 0.62 Y

J1655-40 2.62 -142 216 2.73 ± 0.09 0.39 ± 0.05 67 ± 3 6.7 ± 1.2 F6IV 0.03 Y

GU Mus 0.43 16 406 3.01 ± 0.15 0.128 ± 0.04 54 ± 20 6+4
−2 K3-4V 0.35 Y

N. Vel 93 0.29 30 475 3.17 ± 0.12 0.137 ? ∼ 37-51 ∼ 3-5 K8V±2 0.77

N. Oph 77 0.52 -54 441 4.65 ± 0.21 0.014+0.019
−0.012 70 ± 10 6 ± 2 K5V±2 0.23

QZ Vul 0.34 19 520 5.01 ± 0.12 0.042 ± 0.012 56 ± 15 10 ± 4 K3-5V 0.55 Y

V404 Cyg 6.47 -0.4 208 6.08 ± 0.06 0.067 ± 0.005 55 ± 4 12 ± 2 K0IV 0.002 Y

J2123-058 0.25 73±4

Cen X-4 0.63 186 146 0.21 ± 0.08 0.16+0.04
−0.05 43 ± 11 1.4 ± 0.5 K5-7IV 0.16 Y

Aql X-1 0.79 >36 K6-M0 0.10

References: 4U1543-47: [136]; J0422+32: [133], [28], [49], [71]; V616 Mon: [118], [109],
[154]; J1655-40: [135], [160]; GU Mus: [134], [31], [157]; N. Vel 93: [51]; N. Oph 77: [50],
[70]; QZ Vul: [29], [48], [69], [6]; V404 Cyg: [25], [27], [155]; J2123-058: [206]; Cen X-4:
[117], [153], [141]; Aql X-1: [37], [38], [196].

intensively scrutinized, providing the first reliable compact object masses. The
advent of 10-m Keck has expanded the field considerably towards the fainter
members of the class and has opened the door to statistical comparison of system
parameters. A compilation of the results is presented in Table 6.2. Four main
trends can be outlined:

a) Most SXTs contain BHs. Compact object masses derived using the pre-
vious prescription yield 9 dynamical black holes with M1 > 3.2M� and one
neutron star, Cen X-4, with M1 = 1.4±0.5M�. The detection of X-ray bursts
in 5 additional systems makes a total of 6 NS out of 28 SXTs (21%) whereas
the remaining 79% are likely to contain BHs. On the other hand, almost all
persistent LMXBs are known to contain NS. In Sect 1.6 we saw how X-ray
irradiation can stabilize accretion discs, i.e. preventing the development of
instabilities if T irr

d > TH or, equivalently, Ṁ2 > Ṁ irr
crit ∝ P 2. Therefore, the

high impact of BHs in SXTs indicates that BH systems tend to have lower Ṁ2.
This question has been intensively studied in the last four years by King and
colleagues demonstrating that the reason behind this behaviour rests on evo-
lutionary considerations [94],[95],[96][97]. These can be summarized as follows:

LMXBs are a particular phase in binary evolution right after the common en-
velope episode and the explosion of the more massive star in a supernova [188].
The output will be a detached binary containing either a NS or a BH and a
low mass main sequence star in a ∼ 0.5-10 day orbit. The system will come
into contact because of two processes: the nuclear expansion of the secondary
star and the shrinkage of the orbit caused by angular momentum loss. The
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characteristic physical timescales of these two mechanisms are tMS and tAML.
The binary evolution and subsequent activity (i.e. transient/ persistent) will
depend on the interplay between tMS and tAML and we have two possible
scenarios:

(1) tMS  tAML: The secondary star evolves off the Main Sequence before
angular momentum loss bring the system into contact, and this occurs for
P ≥ 2 days. The secondary star will be a subgiant or stripped giant with M2
and L2 being controlled by the mass of the degenerate helium core [169]-
[194]. The secondary star will transfer mass on a nuclear timescale at a rate
Ṁ2 growing with P according to the equation

Ṁ2 � 4.0× 10−10P 0.93
d m1.47

2 M�yr−1

where m2 = M2/M� and Pd = P/day [92]. Note that Ṁ irr
crit � 1.9×10−7P 2

d

M� yr−1 and, because P ≥ 2 d, Ṁ2 < Ṁ irr
crit and the systems will be tran-

sients. An example is V404 Cyg [93].

(2) tMS ≥ tAML: angular momentum loss shrinks the orbit before the
secondary evolves off the Main Sequence and this occurs for P ≤ 2 days.
If tMS ∼ tAML the secondary star can be significantly evolved before the
onset of the mass transfer phase. This is the situation for most SXTs and
the mass transfer rate is given by the expression

Ṁ2 = 2× 10−9m
−2/3
1 m

7/3
2

(
P

3hr

)5/3

+ 7.6× 10−11m
2/3
1 m2

2

(
P

3hr

)−2/3

,

(6.22)
where m1=M1/M�, m2=M2/M2(MS) and M2(MS)�0.33(P/3hr)M� is
the main sequence mass. The first term in eq 6.22 grows with P and ac-
counts for the angular momentum loss due to magnetic braking. The second
term, reflects the angular momentum loss by gravitational radiation. It de-
creases with P and hence only dominates for orbital periods ≤ 3hr. Note the
inverse dependence of the first term with m1 which gives massive compact
objects a higher chance to be transients. Figure 6.19 plots eq 6.22 for the
case of an unevolved secondary star (i.e. m2 = 1) and a range of compact
object masses. The dash-dotted line represents Ṁcrit whereas the dotted
line indicates the relevant case Ṁ irr

crit.

Neutron star binaries with main sequence companions have Ṁ2 > Ṁ irr
crit at

all orbital periods and they must be persistent. Therefore, the few transient
neutron star binaries (e.g. Cen X-4) require highly evolved companions (i.e.
m2  1) in order to trigger disc instabilities. According to Fig. 6.19, BH bina-
ries with main sequence companions would also be persistent and evolutionary
models predict a significant population of BH binaries with unevolved com-
panions. However, there is evidence of only one possible persistent BH binary
(GX339-4) in ∼ 200 LMXBs. A solution to this puzzle arose in [95] where they
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Fig. 6.19. Ṁ2 vs P for different compact object masses. Companion stars are assumed
to be main sequence.

proposed disc irradiation must be less efficient in BHs than in NS binaries,
the reason simply being the lack of a hard surface in BHs which leaves the
inner disc region as the likely X-ray source. This lies at the orbital plane and
subtends a solid angle (as seen by the outer disc) a factor ∼ H/R smaller
than the compact object’s surface, with H, R being the outer disc height and
radius. X-ray irradiation of the outer disc will consequently be smaller and
hence Ṁ irr

crit will rise by a factor ∼ 6 (dashed line in Fig. 6.19). This explains
why the short period BH binary J0422+32, which contains a main sequence
M2 companion, is also a SXT13.

b) SXTs contain late-type companions and hence their mass ratios are very
extreme (q ≤ 0.15). There are two exceptions, 4U1543-47 and J1655-40, with
intermediate mass donors (2-3 M�) and slightly different evolutionary history
(see [86]). The companions are also considerably undermassive for their spec-
tral types. This is clearly seen in column 10 of Table 6.2 which provides the
star’s mean density (ρ) normalised to the density of a main sequence star

13 The real scenario is somehow more complex since another stability limit holds for
cold quiescent accretion discs at lower mass transfer rates (Ṁcold) [67] which in turn
defines an instability band in Fig. 6.19, at Ṁcold < Ṁ2 < Ṁ irr

crit. Ṁcold depends
critically on the inner disc radius and the long recurrence times of SXT outbursts
suggest that accretion discs may be truncated in their inner regions [120], rendering
support to ADAF models.
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Fig. 6.20. Distribution of spectral types of companion stars and mass ratios in SXTs.
Neutron star SXTs are marked in white.

(ρMS) with spectral type determined from spectroscopy (i.e. column 9). Since
the companion star fills its Roche lobe its size is given by Paczynski’s equation
(eq.3) which, combined with Kepler’s Third law yield

R2 = 0.234P
2/3
hrs M

1/3
2

or equivalently
ρ [gr/cm3] = 110P−2

hr .

Therefore, the Roche lobe density depends entirely on the orbital period Phr.
ρ/ρMS is equivalent to the fill-out fraction of a normal mainn sequence star
and is always < 1 (except for J0422+32) meaning that secondary stars in
SXTs are evolved (see also [167]). The most extreme cases are V404 Cyg
and J1655-40. In the first case the companion is a stripped-giant or subgiant
whereas, in the second case, it is crossing the Hertzsprung gap, just before
ascending the giant branch [100],[99].

c) BH binaries have significantly lower systemic velocities than NS bina-
ries, suggesting the lack of a recoil velocity during the collapse of the progenitor
(see [198]). Here again 4U1543-47 and J1655-40 are the exceptions with space
velocities comparable to neutron star binaries (e.g. Cen X-4). The most likely
explanation for the high space velocity in these two binaries is a delayed BH
formation i.e. a neutron star is formed in the initial supernova collapse which
shortly afterwards will become a BH because of subsequent accretion of fall-
back matter or a phase transition [12]. However, there is an alternative view
where the velocity dispersion in all BH binaries can be explained by variable
mass ejection during the SN explosion and hence no quick velocities would be
required in BH formation[198],[126].
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d) Companion stars tend to show strong 7Li λ6708 lines with EWs of
typically ∼ 300 mÅ (see Fig. 6.21). This was first noted during the analysis of
the first observations to determine the spectral type of the secondary star in
V404 Cyg [110] where the Li feature stood out as the one significant difference
between V404 Cyg and the K0IV template star with which it was fitted. Later,
it was also detected in the high resolution high S/N spectra of V616 Mon [109],
Cen X-4 [111] and subsequently in GU Mus [114] and QZ Vul [48].

Fig. 6.21. AAT and WHT spectra of Cen X-4, V404 Cyg and V616 Mon showing the
presence of LiI λ6708. From [34].

The EWs have been converted into abundances through non-LTE line model
fits after correcting for the amount of veiling measured in the spectra (e.g.
see [111]). Table 6.3 list the EWs and derived abundances. They are in the
range log NLi = 2 − 3, consistent with the primordial cosmic abundance (see
Fig. 6.22). This is a striking result as Li is found with this abundance only in
young stars, where convective mixing (that leads to Li destruction) has not yet
had time to substantially reduce the initial Li content; e.g. observations of K
stars in the Pleiades and Hyades indicate typical depletion times of 107 − 108

yrs. And this must be an upper limit since extra depletion of a factor 10 is
expected from steady mass transfer at typically ∼ 10−9 M� yr−1. It is very
unlikely that all these SXTs are young (≤107yrs), so the conclusion must be
that Li is being created at these sites.
This group of SXTs have a wide range of orbital periods (0.32–6.5 days), four
are black holes while one is a neutron star and the secondaries are of signifi-
cantly different size. The only property they share is the massive X-ray out-
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Table 6.3. Li abundances in companion stars to SXTs

Name Sp. T. Teff Veiling EW (LiI) log NLi

K mÅ NLTE
Cen X-4 K5-K7 V 4250 25% 480±30 3.1± 0.4
V404 Cyg G9-K1 IV 4750 5% 290±30 2.7± 0.4
V616 Mon K3-K5 V 4500 6% 235±40 2.1± 0.4
GU Mus K3-K5 V 4500 12% 420±60 3.0± 0.5
GS2000+25 K5 V 4400 15% 250 ± 40 2.2 ± 0.5
J0422+32 M2 V 3700 40% ≤ 480 ≤ 2.0
N. Oph 77 K3-7 V ∼ 4400 32% ≤ 120
J1655-40 F6-7 IV 6400 ≤ 2% 55 ± 8

burst that recurs every few decades, and it has been proposed [111],[114],[112]
that CNO spallation by α particles and α−α collisions during these outbursts
result in the production of Li. With large mass outflows seen during the out-
bursts [23] the Li can thereby be transferred to the secondary star.

Alternative spallation scenarios have also been proposed involving the high
ion energies (∼ MeV) arising in advection dominated flows around compact
objects. In [203] Li is produced in the accretion flow by α particles and sub-
sequently expelled, thereby contaminating the companion star. In [63] CNO
spallation is directly produced by neutron flux onto the companion star. Re-
cently, it has been argued that the Li overabundance observed in SXTs is
consistent with observations of RS CVn systems, i.e. chromospherically active
K stars in close binaries, [8] and hence the same mechanism might be at work
(see Fig. 6.22). Independent evidence of possible coronal activity is the de-
tection of Hα [31],[70] and IR CaII [21] emission from the companion star in
Doppler images.

Since the orbital periods and atmospheric structure of the secondaries in CVs
are comparable to SXTs, they might also show strong Li lines. However, a
follow-up campaign has given only upper limits [113]. A clear implication of
this result is that the high Li abundances in SXTs are not a consequence of
inhibiting depletion mechanisms or chromospheric activity; it also tells us that
white dwarf primaries do not provide sufficient accretion energy to power the
nucleosynthesis reactions.

It has been suggested that a possible test for Li production mechanisms
through spallation is related to the observed γ-ray line at 476 keV in Nova Mus
1991 [111]. This was originally interpreted as a gravitationally-redshifted e−-
e+ annihilation line, double-peaked due to Keplerian rotation of the disc [61].
Instead, this feature can be associated with the 7Li∗ de-excitation, which also
provides a more natural explanation of the width of the line and the time
delay of the event. The recent discovery of Li in the companion star of N
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Fig. 6.22. Number distribution of 7Li abundance in the companion stars of SXTs
and CVs (upper limits). Vertical lines mark the Li abundance in young cluster stars
(log NLi = 3.1) and in old stars of the galactic halo (log NLi = 2.1). The primordial
cosmic abundance is constrained between these two lines. The dashed-style histogram
represents the distribution observed in RS CVn binaries.

Mus 1991 lends strong support to this scenario [111]. Other γ-ray lines of
interest are the 429 keV, resulting from the de-excitation of 7Be∗, and the
3.561 MeV line from the 6Li∗ de-excitation, both nuclei are produced in the
course of α − α collisions. Alternatively, the presence of the 2.224 MeV line
would indicate neutron capture onto protons, favouring [63]. Possible tests of
spallation mechanisms in the optical are the detection of a high abundance of
side-elements (D, Be, B) and a large isotopic ratio 7Li/6Li ∼ 5, much higher
than in the interstellar medium. However, these observations are challenging.
The Li doublet separation is only ∼ 0.1 Å, much lower than the rotational
broadening of the companion star features (typically ≥ 40 km s−1. Also D, Be
and B lines are located in the near UV, where the stellar spectrum is strongly
hampered by a combination of interstellar reddening and the large veiling of
the accretion disc.

6.5 Mass Distribution of Collapsed Objects

The analysis of the mass distribution of collapsed objects has a crucial impact
on the most fundamental areas of modern physics, namely Particle Physics and
General Relativity. In particular, the distribution of neutron star masses provides
important constraints on the equation of state of condensed matter (see Sect.
2). A fundamental experiment, for instance, would be to discover a neutron star
with a mass larger than 1.6 M� since this will automatically rule out soft equa-
tions of state as in [13]. Very precise mass determinations (e.g. [173],[127],[174])
are available from time delays in millisecond radio-pulsars and are all consis-
tent with a narrow Gaussian distribution with M1 = 1.35 ± 0.04 M� (Fig. 6.23).
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Finn [52], on the other hand, has examined the observed distribution using a sta-
tistical Bayesian analysis which assumes that neutron star masses are uniformly
distributed between a lower and upper bound. He finds that neutron star masses
in radio pulsars are bound by the limits 1.01-1.34 and 1.43-1.6, just consistent
with soft EOS.

Fig. 6.23. Distribution of neutron star masses. The shaded region is forbidden by soft
equations of state, while the black region marks the black hole domain. Vertical lines
indicate the mean mass of the Gaussian distribution for radio pulsars (1.35±0.04 M�).

Dynamical masses are also available from pulsing neutron stars in six eclips-
ing HMXBs and they have all been found to lie in the range 1.0–1.9 M� (see
[89] and references therein). Unfortunately, the uncertainties involved are signifi-
cantly larger than in radio pulsars, the reason being non-Keplerian perturbations
in the radial velocity curves. These are driven by stellar wind contamination
(which becomes very important in the early type companions to HMXBs) and
X-ray heating effects.

Quiescent SXTs are free from these systematic effects although there is only a
handful containing neutron stars. The brightest of all is Cen X-4 and its neutron
star mass has been measured as M1 = 1.4± 0.5 M� [153],[141]. The unsatisfac-
tory large error is governed by the uncertainty in the inclination angle. Persistent
LMXBs, on the other hand, are suspected to contain relatively “massive” neutron
stars since steady near-Eddington accretion rates can supply a few extra 0.1 M�
in the course of their life-times (∼ 108 yr [181]). However, mass determinations
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are usually hampered by the difficulty to see the optical companion, normally
overwhelmed by X-ray reprocessed radiation. In a few exceptions (e.g. Her X-1,
Cyg X-2), the companion is a giant star or sufficiently evolved to dominate the
optical spectrum, like Cyg X-2 which contains a F0III in a 9.8d orbit. Despite
Cyg X-2 being a strong X-ray source, the irradiation flux onto the companion’s
surface is unimportant because of its early spectral type and the large orbital
separation (neither the radial velocity curve nor light curves seem to be influ-
enced [32],[137]). The mass ratio has been measured from the broadening of the
F0III absorption spectrum to be q = 0.34 [32] which, combined with the mass
function and ellipsoidal modulation fits, yields M1 = 1.78± 0.23 M� [137].

Finally, neutron star masses are also available from binary millisecond pul-
sars (BMPs). These contain a neutron star and a degenerate low-mass star in a
detached orbit and are considered descendants of the evolution of LMXBs, after
the companion has transfered all its envelope [7]. J1012+5307 is one of a few
BMPs where the faint white dwarf has been detected in the optical. The radial
velocity curves of both components are, therefore, available through radio pulses
and optical spectroscopy of the degenerate dwarf. In addition, model atmosphere
fits (which only depend on Teff and log g [146]) to the white dwarf spectrum ren-
ders an accurate determination of M2 and hence, a full solution to the system
parameters. This analysis has yielded a neutron star mass in J1012+5307 of
M1 = 1.6 ± 0.22 M� [17] and M1 = 1.5 − 3.2 M� [90] by two independent
studies. This system, together with Cyg X-2 and Vela X-1 [88], provide the most
promising cases for massive neutron stars which may invalidate soft EOS.

Figure 6.24 presents the observed distribution of black hole masses as given in
Table 6.2. Despite the large errorbars (mainly dominated by uncertainties in the
inclination), Bailyn et al. [5] have attempted to study the statistical properties of
seven systems (excluding 4U1543-47 and N Vel 93) following a Bayesian analysis
identical to that by Finn and found:

• (1) All determinations, except for V404 Cyg, are consistent with a narrow
range of black hole masses around ∼ 7 M�. This suggests that V404 may
belong to a different population of parent binaries and also a preference in
nature to form black holes with a particular mass.

• (2) There is a gap between 3-5 M� in the distribution, implying that these
black holes have not been formed through accretion induced collapse of neu-
tron stars since at least ∼ 3M� would have been accreted.

However, these conclusions were obtained before 4U1543-47 and N Vel 93
were discovered and their preliminary mass estimates are in open contradiction
with (2). In addition, it is evident that (1) is completely dominated by the small
error in the J1655-40 mass determination. Clearly more accurate determinations
are needed for other systems before drawing any statistically significant conclu-
sion on the distribution of BH masses. In particular, a factor 2 improvement in
the error bars of J0422+32, V616 Mon, and QZ Vul will be a major progress. At
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Fig. 6.24. Observed distribution of black hole masses. Errorbars in dashed style indi-
cate preliminary mass estimates.

least for V616 Mon, this should be feasible with the better sensitivity of current
IR detectors.

6.6 Comparison with Supernovae Models

The theoretical black-hole and neutron star mass distributions depend critically
on the EOS (which establishes the critical mass dividing NS and BH formation)
and the current understanding of the late evolution stages of massive stars and
supernovae models. The latter contain several theoretical uncertainties which
completely dominate the final distribution, namely:

• The treatment of convective mixing in massive stars, which conditions the
amount of fresh material being brought from the radiative atmosphere into
the convective nucleus, and hence the size of He to Fe cores.

• The mass-cut or fraction of the stellar core to become the compact remnant
(the remaining will be expelled). This determines the size of the collapsing
nucleus.

• The amount of fallback or fraction of envelope swallowed by the remnant.
This depends critically on the budget between the binding energy of the star
(calculated by integrating the stellar mass profile [55]) and the kinetic energy
Ek of the mantle at infinity (typically ∼ 1.2×1051 erg as determined from fits
to supernova lightcurves [46]). Ek is a fraction of the total available explosive
energy and the actual fraction is highly uncertain as it depends on the detailed
physics of the supernova explosion such as the neutrino cross sections, EOS,
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the angular momentum of the progenitor, etc... Supernova models computed
in [175], for instance, suggest that progenitors more massive than ∼ 30 M�
will swallow most of the envelopes leaving ≥ 10 M� black hole remnants.

• The mass-loss of envelopes through strong winds during the Wolf-Rayet phase
of stars more massive than ∼ 35− 40 M� (e.g. see [44]). This defines the size
of the He core prior to the Type Ib supernova and is usually computed from
the expression [200]

ṀWR = 5× 10−8
(

MWR

M�

)2.6

M�yr−1

Since the mass-loss rate increases with MWR the final He cores will converge
to ∼ 3−5 M� for a wide range of initial masses ∼35-80 M�. However, see [68]
for evidence of reduced mass-loss rates.

• The influence of binarity in the evolution of the massive star. Particularly, the
massive star can transfer its hydrogen envelope during the common envelope
phase leaving a “naked” He core which will behave like a Wolf-Rayet star
experiencing large mass-loss through a wind [14]. The collapsed remnant can
thereby end up with much lower mass than if it had evolved from a single star.

• The initial mass function IMF of the progenitors. There is observational evi-
dence that IMF ∝M−γ

prog with γ ∼ 1.8− 3.1 in our mass range of interest i.e.
≥ 8− 10M� [105].

Figure 6.25 presents an example of remnant distributions computed in [176]
using massive star evolution (up to 40 M�) and explosive models from [201].
They choose a Salpeter IMF (i.e. γ = 1.35) and fixed the kinetic energy Ek =
1.2× 1051 ergs for all masses but dismissed the effect of fallback. Massive stars
were exploded either before or after the H envelope has been transfered through
Roche lobe overflow (i.e. Type II or Type Ib supernovae, respectively). In the
second scenario, only the “naked” He nucleus is exploded and two close peaks
at ∼ 1.32 M� are produced (bottom panel). This seems to be in good agree-
ment with the observed distribution of neutron stars in MSPs and most HMXBs,
except for Vela X-1. The first scenario (top panel) predicts a bimodal birth func-
tion with peak masses at 1.28 and 1.73 M� which can now also accommodate a
population of “massive” NS, such as Cyg X-2 and J1012+537, or low-mass black
holes (if a soft EOS is assumed). However, the BH population observed in SXTs,
with masses in the range ∼ 3− 14M� cannot be explained.

High-mass BHs (≥ 3 M�) are difficult to obtain in close binaries because
the companion will uncover the He core during the common envelope stage,
allowing for strong winds to drastically reduce its mass. The effect is important
when Roche lobe overflow takes place during Case A (ZAMS) and Case B (H
burning in shell) mass transfer. However, if the H envelope is removed after the
massive star has finished He core burning (Case C mass transfer), it will be
in the short-lived (∼ 104 yrs) supergiant stage with shell He burning and the
effects of mass-loss will be small [15]. The massive star has essentially evolved
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Fig. 6.25. Remnant distribution function computed in [176] compared to the observed
distribution of neutron star masses in MSPs and HMXBs. Stars were assumed to un-
dergo either a Type II supernova explosion (top) or a Type Ib supernova (bottom).

as a single star and the resulting core masses can be obtained from [201]

MHe � 0.08 (MZAMS)1.4
. (6.23)

The He core masses left by 20-35 M� ZAMS will lie in the range 5-12 M�
and will collapse into ∼ 3− 10M� BHs. This scenario will only take place if the
binary orbit is wide enough to avoid Case B mass transfer but tight enough to
go through Case C evolution and it has been estimated to be in a very narrow
range ∼ 1600 − 1800R� [87]. In addition, the large orbital shrinkage needed
to expel the envelope of the massive star during the common envelope stage
favours low-mass companion stars and hence, extreme binary mass ratios. This
is in good agreement with observations of BHs in SXTs, where ∼ 75 % of the
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Fig. 6.26. The mass distribution of compact remnants computed in [56].

binaries have K-M companions and q < 0.2 (see Fig. 6.23).

Figure 6.26 presents remnant distributions computed in [56] using a 2D core-
collapse simulation and a Scalo IMF (γ=2.7), compared to the observed distri-
bution of BHs in SXTs. Different line styles demonstrate the effect of wind-loss,
binarity and mass transfer through Case B in the final distribution. These show
continuous quasi-exponential functions from NS up to BH with no evidence for
gaps and some indication of upper mass cut-off at ∼ 10− 15M�. Neutron stars
outnumber (∼ 90 %) BHs and the fraction of BH masses in the range 3-5 M� is
very sensitive to the power-law index γ of the IMF while the fraction of masses
in the range 5-10 M� depends on the assumptions about binaries and winds.
The observed distribution of BHs in SXTs qualitatively agrees with the theo-
retical function including binary effects and mass loss by winds in the standard
treatment (dashed-dotted line). Only V404 Cyg, with a 12 M� remnant, remains
outside the theoretical distribution and which may indicate an overestimation
of the mass-loss rates.

Companion stars in X-ray binaries have survived a supernova explosion and
hence they might have been contaminated by nucleosynthesis products of the
ejecta. Therefore, the study of possible abundance anomalies in their atmo-
spheres could be used to set further constraints on supernova models. This new
approach has been applied, for the first time, by Israelian et al. [84] to obser-
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vations of J1655-40, the BH SXT with the most precise mass determination
(Table 6.2). Their high resolution spectrum (Fig. 6.27) shows a clear excess of
OI (λ8446 and the triplet at λ7771-5) and other α-elements (e.g. Mg, Si, Ti) rel-
ative to F6III-IV template stars. LTE model atmospheres were used to compute
synthetic spectra for a normal F6III star (i.e. Teff = 6400 K, log g = 3.7, micro-
turbulence ξ = 2 km s−1 and [Fe/H] = 0) and the abundance of α-elements was
iterated until a good fit to the J1655-40 spectrum was achieved. This analysis
shows that α-elements are overabundant by a factor � 6-10. They cannot be
synthesized in the core of the � 2.3M� companion and therefore must come
from the ejecta of the supernova which formed the BH.

Fig. 6.27. Spectral analysis of the secondary star in J1655-40. Dotted lines corre-
spond to spectra of F6 templates whereas dashed lines show synthetic spectra for a
set of α-element abundances. Note that the abundance of element X is defined as
[X/H] = log [N(X)/N(H)]star − log [N(X)/N(H)]�, where N(H) is the number den-
sity of atoms. Figure adapted from [84].

An upper limit to the He core mass which underwent a Type Ib supernova
is set by the remnant’s mass, i.e. MHe ≥ 6− 8M�, whereas the binary survival
condition [11] yields MHe ≤ 2MBH + M2 � 10 − 16M�. Standard supernovae
models (e.g. using eq. 6.23) require massive stars in the range � 25 − 40M�
to leave � 5 − 16M� remnants and they also predict the ejection of typically
≥ 1− 2M� of matter enriched with nucleosynthesis products, 70 % of which is
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Oxygen (e.g. [128]). In order to explain the observed abundance of α-elements
one requires an enrichment of ∼ 10−3M� and Israelian et al. show this is plausi-
ble since it is significantly lower than the fraction intercepted by the companion
in a spherically symmetric explosion14. The measured S abundance, however,
does not agree with nucleosynthesis yields in standard supernova models since
very little of this element is predicted [128]. New models have been recently
proposed by Nomoto et al. [129] to fit the lightcurves of SN 1998bw and SN
1997ef which require a factor 10 higher kinetic energies than in ordinary su-
pernovae. These are called Hypernovae and nucleosynthesis yields computations
are in good agreement with the observations of J1655-40, strongly suggesting
that the precursor was a hypernova. Further evidence of the hypernova nature
of J1655-40 has been presented in [16].

Detailed chemical analysis of the atmospheres of companion stars can, there-
fore, be used to extract “fosil” information on supernova explosions in X-ray
binaries and estimate the precursor’s masses. The combination of this new tech-
nique with new accurate dynamical masses of remnants, is expected to provide
fundamental constraints on current supernovae models, the theory of massive
star and close binary evolution.
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191. R.A. Wade and S.M. Rucinski, ApJ Supp. Series 60, 471 (1985).
192. R.A. Wade and K. Horne, ApJ 324, 411 (1988).
193. B.L. Webster and P. Murdin, Nature 235, 37 (1972).
194. R.F. Weebink, S. Rappaport and G.J. Savonije, ApJ 270, 678 (1983).
195. W.F. Welsh, K. Horne and R. Gomer, ApJ 410, L39 (1993).
196. W.F. Welsh, E.L. Robinson and P. Young AJ, astro-ph/0004344.
197. N.E. White, in The Evolution of X-ray Binaries, ed. S.S. Holt and C.S. Day (AIP

308, 1994), p.53.
198. N. E. White and J. van Paradijs, ApJ 473, L25 (1996).
199. R. Whitehurst, MNRAS 266, 35 (1994).
200. S.E. Woosley, N. Langer and T.A. Weaver, ApJ 411, 823 (1993).
201. S.E. Woosley and T.A. Weaver, ApJ Supp. Series 101, 181 (1995).
202. C.-C. Wu et al., PASP 94, 149 (1982).
203. I. Yi and R. Narayan, ApJ 486, 363 (1997).
204. I. Yi, R. Narayan, D. Barret and J.E. McClintock, A&A Supp. 120, 187 (1996).
205. H. von Zeipel, MNRAS 84, 665 (1924).
206. C. Zurita et al., MNRAS, astro-ph/0003092.


